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Abstract

This thesis presents a comprehensive study on the potential of using imaging polarime-

try methods for the inspection of biological tissues, both plant and animal origin. The

suitability of polarimetric methods for the inspection of diseased plant tissues is demon-

strated by measuring the experimental Mueller matrices of various plant specimens

with di↵erent disease symptoms and infection stages using a complete image Mueller

polarimeter. The ability to retrieve the depolarizing content of the plant samples is

shown to enhance image contrast and reveal wounded regions not visible with regu-

lar inspections. In addition, to combine the discriminatory potential of polarimetric

observables in a single image, we propose two new methods: (1) using the Euclidean

distance between polarimetric values of di↵erent tissues, and (2) using a Normal (Gaus-

sian) function based on polarimetric data to estimate the probability of belonging to

a particular tissue. These two methods are tested on four biological samples of animal

and plant origin and show potential for use in biomedical and botanical applications.

We also present a predictive optical model method for tissue recognition using po-

larimetric indicators and Mueller matrices to recognize the tissue type of a sample in

a single measurement. This method is successfully applied to discriminate between

four di↵erent animal tissues: tendon, muscle, bone and myotendinous junction. Fi-

nally, using machine learning, we compare 12 classification models based on di↵erent

polarimetric datasets to determine the most e↵ective method for tissue classification

in ex-vivo chicken samples. The results show that raw Mueller matrix elements are

the most e↵ective for the design of classification models. The provided results pave

the way of imaging and classification methods based on depolarizing observables for

applications in biophotonics, as for the early detection of pathologies or to implement

automatic assisted procedures.
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PART I

INTRODUCTION





1 Lighting the way: a look at the history and applications of

light in biology and biomedical research

Since the earliest times, humankind has been learning from nature’s phenomena. When

it comes to the science of optics, the first discoveries involve the ancient Egyptians and

Mesopotamians (Babylonians and Assyrians), who polished quartz lenses in order to

replicate the behavior of light in water. Subsequently, the ancient Greeks described the

light as a ray and proposed reflection laws. In turn, various vision theories were devel-

oped in classical antiquity, based either on the eyes of the beholder emitting light rays

or contrarily supporting that the objects were particular light sources. Later, during

the Islamic Golden Age (from the 8th century to the 14th century), Ibn al-Haytham

conducted a wide variety of optical experiments and wrote the Kitab al-Manathir (in

English, “Book of Optics”) [1], which gathered all the results and proposed a new

and more accurate description of the nature of light. He also laid the foundations of

photography with the design of the camera obscura.

After several centuries of developments, the strong scientific understanding in light

science and technology has given place to spectacular contemporary discoveries. Some

examples are the Laser Interferometer Gravitational-Wave Observatory (LIGO) [2], ca-

pable to detect gravitational waves using the basic principle of light interferometry, and

the James Webb Space Telescope (JWST), which revealed galaxies once invisible to us

thanks to its sensibility to capture infrared radiation. Importantly, the strong interest

on exploiting the fundamental properties of light-matter interaction has accelerated

the progress in the design of new light-based technologies. This innovative environ-

ment has allowed great advances in the biomedical research field as, for instance, the

non-invasive techniques which are used to treat tumors. A very popular practice is the

so-called photodynamic therapy (PDT), which takes advantage of the natural aggre-

gation of photosensitizers to tumoral tissue. Accordingly, the molecules are externally

induced to chemically react and destroy the cancer cells by means of controlled light

[3].

With the aim of enhancing the image contrast and the resolution of the di↵erent

biological structures, a wide variety of new and advanced imaging techniques have been

developed [4, 5]. All of these exploit the di↵erent light-matter interactions of scatter-

ing and absorption processes. Particular studies demonstrate the rapid detection and

location of Knightia spp. fish fossils from the Eocene epoch in Green River Formation

(United States), by combining various optical techniques, such as fluorescence, Raman

spectroscopy and scanning electron microscopy [6]. Another example is given by the

so-called multi-spectral and hyper-spectral imaging, which are based on the optical phe-

nomena of di↵erent wavelengths reaching di↵erent tissue depths [7, 8]. Accordingly, the
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intensity response of a sample under di↵erent light wavelengths (e.g., infrared, visible

range, etc.) provides information of various tissue layers. This may lead to a di↵eren-

tiation between two or more structures which were unable to be distinguished under

the same wavelength [9]. These techniques have demonstrated some advantages in

dermatology and cancer inspection [10–14] and in plant science; this last, for instance,

to diagnose some plant diseases and stress [15, 16] or plant phenotyping [17], among

others. When it comes to the microscopic world, a wide variety of optical methods are

being applied for inspection of biological samples. In this context, the measurement of

their physical properties and the proper visualization of di↵erent inherent structures

is of special interest. These approaches include optical coherence tomography (OCT)

[18–20], electron microscopy [21–23], phase contrast microscopy [24–27] and Raman

spectroscopy [28–30], among others. Particular examples are the optical tweezers [31],

which have been used to measure the DNA elastic parameters and its phase transitions

when subjected to di↵erent forces. Furthermore, super-resolution techniques such as

STED microscopy (Stimulated Emission Depletion) [32, 33], overcome the di↵raction

limit in spatial resolution, thus allowing the precise measurements of the length of DNA

fragments [34] or to image intracellular proteins [35]. As a representative example, Fig.

1 shows the STED images of denditric structures of mouse neurons of less than 70 nm

in size (Fig. 1d), which indicates that the achieved resolution is at least of that order

of magnitude.

Figure 1: STED microscopy in the molecular layer of the somatosensory cortex of a mouse with
EYFP-labeled neurons. (A) Anesthetized mouse under the objective lens (63X, NA 1.3, glycerol
immersion) with tracheal tube. (B) Projected volumes of dendritic and axonal structures reveal
(C) temporal dynamics of spine morphology with (D) an approximately fourfold improved resolution
compared with di↵raction-limited imaging. Curve is a three-pixel-wide line profile fitted to raw data
with a Gaussian. Scale bars, 1 µm. [Reproduced from [33]].
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Another widely-used technique is confocal microscopy [36], which plays a potential

role in medical applications, such as for melanoma diagnosis [37] or cardiovascular

solutions, as it provides very precise measurements of the surface coatings of stents

[38, 39]. Importantly, countless biological structures are fluorescent [40, 41], specially

in plant tissues [42, 43]. The strong understanding on how this phenomena is produced

has allowed its combination with other optical techniques such as confocal microscopy

[44, 45]: as a representative example, in Ref. [46] both techniques allow to keep track of

the growth direction of root tips and the migrating cell dynamics in developing embryo

of zebrafish.

Some of the above-mentioned methods are invasive and require sample prepara-

tion (e.g., the injection of some dyes to generate fluorescence [47]). In contrast, im-

age polarimetry exploits both the non-invasive and non-contact optical measurement

techniques. Polarimetry is based on the study of polarization (i.e., property of light,

describes the orientation of the oscillation of the electrical field of EM waves) and how

it is modified due to their interaction with matter [48, 49]. Those testing techniques

provide information about the optical properties of the probed sample and appear as

very useful tools to be implemented in di↵erent research fields. Some particular exam-

ples of their interest are related to astronomy [50–53], for instance to detect planets

outside the solar system [51]. Also for material characterization [54–56], as the strain

characterisation in transparent films [56]; for security and remote sensing [57–60], as

to detect antipersonnel mines [59], and atmospheric pollution studies [61–64], such as

the detection of atmospheric aerosols [62], among others.

Biological tissues are turbid media that strongly scatter light. That is, the incom-

ing photons take di↵erent optical paths across the tissue, which induces changes in

their polarization state. In fact, the di↵erent ultra-structure properties produce cer-

tain polarimetric responses which can be understood as specific polarimetric signatures

of the media. Accordingly, polarimetry takes advantage of these di↵erent polarimet-

ric properties of biological tissues and defines a set of useful tools to enhance the

image contrast of some organic structures and to provide information of certain struc-

tures invisible by using regular (non-polarimetric) images [65–83]. As for the case of

some biological samples presenting certain characteristic degree of anisotropy due to

their basic components. In botany, the birefringence signature of some structures and

macro-molecules (e.g., cellulose) allowed the study of the cell wall composition in plant

samples [75]. Similarly, in animal samples, the strong birefringent signature of dense

collagen and elastin matrix due to their oriented fibers in animal samples [74, 77, 83]

allowed to reveal inhomogeneous regions within intermediate layers of articular carti-

lages in chicken knees [76]. As a representative example, Fig. 2 shows the comparison
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between intensity and polarized images taken from a sheep optic nerve sample [74].

Clearly, the combined use of polarized light and the association of di↵erent colors with

a given collagen fiber orientation, eases the visualization of the various types of fiber

architectures, bundles and interactions.

Figure 2: a) Intensity and b) instant polarized light microscopy (IPOL) image of a sheep optic
nerve head section. Three major organizational components of the sclera are discernible. c) Close-up
of peripapillary sclera revealed highly detailed collagen fiber features: two families of crossing fiber
(white arrow), collagen fiber undulations or crimp (red arrow), and sub-bundle fiber composition (cyan
arrow). d) Close-up of a bundle shows its fiber composition. [Reproduced from [74]].

Polarimetric techniques can be combined with other optical methods to take ad-

vantage of di↵erent light-matter interaction features. As for the case of applications

in biophotonics, when it comes to dermatology [65, 84–88], polarimetric measurements

have demonstrated to ease the delimitation of the diseased tissue region [85] as well as

to assist for a more reliable diagnose even at early stages [65, 84]. Furthermore, the

use of polarimetric measurements and multispectral imaging has allowed the better

visualization, in vivo, of skin pathologies in dark skin types [65], as well as their earlier

diagnose [84]. Also it is useful for monitoring the hemoglobin concentration and oxygen

saturation in the superficial layer of tissue [73]. Other studies found the advantage of

using polarization gating techniques [89] combined with fluorescence microscopy for the

diagnosis of oral cancer [66] and breast cancer [67] at cellular level. Second harmonic

polarimetry methods allow to characterize the orientation of 3D collagen fibrils [69, 70]

and skeletal muscle [71], among others.

One important polarimetric signature of biological samples is their inherent ca-

pability to induce depolarization to the incident light, which has been considered as

a deletory e↵ect which tends to screen or to erase the polarimetric properties of the

samples. Depolarization is defined as a statistical concept originated by the incoherent

addition (either temporal or spatial) of di↵erent light polarizations at the level of the

detector. In other words, it can be understood as the degree of polarization disorder (or

polarimetric randomness) introduced by a given tissue structure to an input polariza-

tion. It is of particular interest for the inspection of biological samples, as they result in
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scattering media, and the non-uniform distribution of polarization properties along the

tissues are the main causes of depolarization. However, the relation between the depo-

larization response of the sample and its intrinsic physical structure and properties are

still not well understood [90–94]. Advantageously, a widespread number of macroscopic

measurements are based on Mueller polarimeters [58, 95] which compound a useful tool

to analyze the depolarization content of samples. For instance, some studies related to

glaucoma, tracked the depolarization response of both healthy and diseased eyes. They

found that patients su↵ering from glaucoma presented higher depolarization response

than individuals with healthy eyes [82, 83]. When it comes to cancer-related research

fields [3, 18, 19, 66, 67], there is an important workforce focused on providing optical

solutions for its early detection and diagnosis [10–14, 37, 96–112]. For instance, to

inspect the polarimetric signatures of brain tissue, could allow to better delineate the

tumor border in brain cancer [97]. As shown in Fig. 3, the contrast between the cortex

and white matter of the brain was increased when inspecting the total depolarization

response of the human brain sample [97].

Figure 3: Images of a thick coronal section of fixed human brain immersed in water and measured
at 550 nm. The dashed line delineates the area of specular reflection on the air–water interface.
[Reproduced from [97]].

Also, polarimetric imaging has been proved to be useful to characterize biological

signatures related to liver cancer [98], uterine and ovarian cancer [99, 104–106, 113],
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breast cancer [67, 100, 108, 109], skin cancer [101, 102, 114, 115] and colon cancer

[103, 110–112], among others [66, 105, 107]. Furthermore, the recently use of Artificial

Intelligence (AI) - assisted inspection of biological tissues [111, 112, 114–119] has al-

lowed the use of polarimetric information for tissue classification tasks. Some studies

use some widely-used supervised and unsupervised machine learning (ML) techniques

[120], such as convolutional neural networks [121], Principal Components Analysis

[122], Logistic Regression [123], Random Forest [124], and Support Vector Machines

[125], among others [126]. In particular, it has been demonstrated how polarimetric

observables constitute reliable metrics capable to distinguish between healthy and can-

cerous ex-vivo colon samples [111, 112] as well as basal cell carcinoma in human skin

[114].

The study of polarimetric properties of animal and human tissues is a well estab-

lished field of work in constant development [10–14, 37, 65–88, 96–112, 114, 116–119].

However, the application of polarimetric methods for the study of plant samples is less

common and, in the last decade, there is a growing interest of exploring more complex

(and rich in terms of information) polarimetric solutions for applications in plant sci-

ence [57, 58, 75, 127–130]. It has been demonstrated that the inspection of di↵erent

polarimetric signatures of plant samples (i.e., dichroism [57, 131–135], birefringence [57,

75, 134, 136–139] and depolarization [57, 140–148]) lead to relevant information that

contribute to the further knowledge and understanding of biological processes. Some

interesting results demonstrate that the light reflected / scattered by the leaf surface

and its internal structure can be well di↵erentiated through polarimetric measurements

[131, 132]. Furthermore, the optical response from the internal leaf structure was de-

pendent on the leaf pigmentation, among others [131]. Other studies demonstrate

distinctive polarimetric features for the leaf tissues and leaf veins [57], thus allowing to

better di↵erentiate those structures when inspecting their optical response to di↵erent

incident states of polarization. Furthermore, dichroism measurements reveal the spatial

organization and concentration of some plant organelles such as pigment–protein com-

plexes in plant thylakoid membranes [133], chloroplasts from onion and tobacco [134]

or spinach-extracted quantasomes [135]. The polarimetric signature of birefringence

is commonly inspected in plant structures and organelles [75, 136–138]. For instance,

it is useful to study the cellulose micro-fibril orientation in developing guard cells of

Allium and Cotton [138, 139], as well as the structure of the trichromes in Arabidopsis

thaliana [136] and stomata [137], or the cell wall composition of di↵erent phylogenetic

groups [75], among others. As a representative example, Fig. 4 shows how polariza-

tion unveils the wide variety of cellulose microfibril orientations in stomatal complex

of plant samples.
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Figure 4: PolScope images of stomata showing crystalline cellulose orientation. Representative
polarized light (left) and colour-coded images (right) of cellulose microfibril orientation are presented
for each species. (A, B) Asplenium, (C, D) Platycerium, (E, F) Arabidopsis, (G, H) Commelina
(note the birefringent crystals in the epidermis), (I, J) Sorghum, (K, L) Triticum. The orientation
colour pie-chart codes the cellulose microfibril orientation for every image. The red vector arrows also
show the orientation direction for a clearer view. S, stoma; SC, subsidiary cell. Size bars =50 µm.
[Reproduced from [75]].

When it comes to depolarization [57, 140–148], it has been underused in plant sci-

ence [140], although it provides relevant information. Alike for the case in animal tis-

sues, the constituent units of plant samples (i.e., cellulose, pectin, water, etc.) present

di↵erent polarimetric features, density, shape and spatial organization. Accordingly,

this environment induces depolarization at macroscopic scale. In particular, depolar-

ization signatures in plant specimen revealed di↵erent plant stress and leaf pollution

levels in leaves and shoots of woody and agricultural plants [140, 141] such as corn and

soybean crop canopies [142]. Importantly, the wide variety of polarimetric responses

in plant samples is of interest, for instance, to be used in plant classification and char-

acterization tasks [57, 143–148]. For instance, the depolarization content of vegetation

is used in remote sensing applications. Particular studies di↵erentiate among plant

species by inspecting variations in surface features which, in turn, modify the incident
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polarization [143]. Other studies use the depolarization signature to discriminate land

mines from background vegetation [144] or to detect and identify extraterrestrial life

forms of plants and bacteria [145], among others [146–148]. More recent studies [57,

127, 128] demonstrate that the inspection of depolarization signatures in plant samples

involves the further physical understanding and the enhance of image contrast among

the di↵erent plant structures. Few examples of interest are the midrib, stomata and

raphides in Epipremnum aureum [128] and vascular webs in Hedera marocanna [127,

149]. Still, in botanical applications, the specific inspection of depolarization channel

is not as common as the use of other polarimetric signatures. In this sense, some

perspectives include the research on new imaging techniques that track the polarimet-

ric responses of di↵erent plant diseases, whose characterization may be of interest for

preventing yield and economic losses [150] due to pests and diseases [151].

1.1 Goals of this thesis

The main objectives of this thesis are related to the use of imaging polarimetry in

biological applications. A variety of polarimetric techniques have been developed and

applied for image enhancement in biological applications, including the use of polari-

metric observables to study biological tissues for the inspection of pathologies, enhance-

ment of image contrast of biological samples, and its classification. It is noteworthy

that the same optical instrumentation has been used throughout the study to measure

the experimental Mueller matrix of the samples, and the same polarimetric observables

have been retrieved from the wide variety of studied organic samples.

The main goals of this thesis are:

1. Mueller polarimetry for plant pathology inspection: to use imaging polarimetry

for the analysis of plant tissues, specifically to study the influence of depolarizing

metrics in plant pathology inspection.

2. Design new image processing methods using Mueller polarimetry: to design new

pseudo-coloration methods for enhancing image contrast in polarimetric images

of biological samples corresponding to tissues with di↵erent characteristics that

cannot be detected with regular intensity images.

3. Use statistics and machine learning based on polarimetric information: to de-

sign classification algorithms for animal tissue recognition that can be applied

to human tissue research. Also, to extend the recognition models to more sophis-

ticated algorithms using machine learning techniques and analyze tendencies in

the polarimetric databases that could enhance the e�ciency of the classification.
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2 Theoretical framework

Light beams can be distinguished in terms of their state of polarization (SoP): (1)

partially or fully unpolarized, when the electrical field oscillates randomly varying its

its polarization ellipse in time [48]; (2) linearly polarized, when the electrical field oscil-

lates in a particular (single) direction; or (3) circularly/elliptically polarized, for light

beams showing their electrical field rotating at a constant rate in a given plane. Di↵er-

ent mathematical formalism describe polarized light under di↵erent assumptions thus

allowing the expression of physical characteristics being useful at di↵erent frameworks.

For instance, R. C. Jones developed a formalism based on the electrical field compo-

nents of light and how anisotropic materials modify their properties [152]; however, it

is restricted to fully polarized light beams. When it comes to the description of po-

larized light when interacting with biological tissues, the Mueller-Stokes (M-S) is the

formalism which suits better [153, 154]: it allows to characterize the state of polariza-

tion of light beams (Stokes vector) and the polarimetric properties of samples (Mueller

matrices, M). In particular, biological tissues are strong depolarizers: they induce ran-

domness on the amplitude and relative phase of the incident light wave components.

From this perspective, M-S includes the description of fully, partially and unpolarized

light beams. Moreover, the M-S formalism is based on radiometric measurements and

therefore is easy to be implemented experimentally and to interpret the data. Accord-

ingly, any state of polarization (fully or partially) of a light beam is defined by means

of the Stokes vector S as [153]:

S =

0

BBB@

S0

S1

S2

S3

1

CCCA
=

0

BBB@

I0� + I90�

I0� � I90�

I45� � I135�

ICL � ICR

1

CCCA
. (1)

where the four Stokes parameters (i.e., the S0, S1, S2 and S3) are related to the to-

tal intensity of the light beam (S0) and quantify the amount of horizontal/vertical

linear polarization (S1), the diagonal/anti-diagonal polarization (S2) or the right/left-

handed circular polarization (S3). These parameters are defined by means of the in-

tensity measurements when analyzing the horizontal/vertical polarization (i.e., I0� and

I90� , respectively), the diagonal/anti-diagonal (i.e., I45� and I135� , respectively) and the

right/left-handed circular polarization (i.e., ICR and ICL, respectively). Fully unpolar-

ized light is encoded by S when all the intensity measurements are equal to the same

amount, i.e., S = (S0, 0, 0, 0)T . Related with this, the degree of polarization (DoP) [48,

49], which characterizes the depolarization behavior of light beams, is defined as:

DoP =
1

S0

q
S
2
1 + S

2
2 + S

2
3 , (2)
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which allows to directly retrieve if the state corresponds to fully polarized (DoP = 1),

unpolarized (DoP = 0) or partially polarized light (0 < DoP < 1).

When describing light-matter interaction, Hans Mueller included the sample de-

scription to the Stokes formalism by means of the Mueller matrix M [154], a real 4⇥ 4

matrix. Importantly, the Mueller matrix of a sample does not only depend on their

intrinsic characteristics (e.g., biological components, structures, etc.) but on the inci-

dent wavelength and direction of both the incident and the sample’s output light beams

[48, 49]. Thus, the sample (M) modifies the SoP of the incident light beam (Sin) and

outputs the state Sout by means of the following linear process:

Sout = M · Sin. (3)

An important advantage of polarimetric-based optical methods is that the measure-

ment of the physical properties of the samples is independent of the intensity of the

illuminating light beam. Importantly, di↵erent structures may disperse or transmit

the same amount of light; however, these objects may modify the SoP of the incident

light beam in a di↵erent way. This dissimilarity allows to distinguish structures using

polarimetric measurements [155]. Some materials induce a phase-shift between the

electromagnetic components of the incident light wave without modifying its intensity

or the degree of polarization (DoP). We refer to the medium which is capable to pro-

duce such phenomena as birefringent. In optics, we take advantage of the wide variety

of materials that are mainly characterized by this property, and use them as optical

retarders (such as wave-plates). On the other hand, some materials, in particular bi-

ological samples or sky clouds, are characterized by its capability to reduce the DoP

of the incident light beam. Those are called depolarizers. Furthermore, dichroic mate-

rials are characterized by the transmittance anisotropy, the dependence of the output

intensity with the incident state of polarization.

In this way, samples are classified under the criteria of their polarimetric behavior as

their physical properties are encoded into the elements of M, mij (where i, j = 0, ..., 3)

[48, 49]:

M =

0

BBB@

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

1

CCCA
. (4)

The Mueller matrix provides the intensity and the complete set of polarimetric prop-

erties (retardance, depolarization and dichroism) which are sensitive to the micro-

architecture of the tissue [156]. These polarimetric characteristics are not related to a

particular element of M but they appear entangled in multiple M elements in a com-

plex way. Particularly, the dichroic content of the sample is defined by the combination
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of (1) diattenuation, D, which describes the property of the sample by which the inten-

sity of the exiting beam, Sout, depends on the polarization state of the incident beam

Sin, and (2) polarizance, P , which describes the polarization capability of the sample

when illuminated by an unpolarized input state Sin. For this reason, it is suitable to

write the Mueller matrix M in a more compact (block) form [48]:

M = m00

✓
1 D

T

P m

◆
, (5)

wherem00 denotes for the mean intensity of transmittance or reflectance of unpolarized

input states, D and P correspond to the 3-dimensional diattenuation and polarizance

vectors, respectively, and the 3 ⇥ 3 sub-matrix m encodes the sample information

about retardance (i.e., birefringence) and depolarization. Importantly, the so-called

Components of Purity (CPs) [48] are defined by the triplet composed by polarizance,

P, dichroism, D and the sphericity degree PS. This last defines the contribution on

depolarization which di↵ers from dichroic origin. The CPs can be directly computed

from M as [48, 49]:

D =

p
m

2
01 +m

2
02 +m

2
03

m00
, P =

p
m

2
10 +m

2
20 +m

2
30

m00
, PS =

||m||2p
3

, (6)

where mij (i, j = 0, ..., 3) are elements of M and m denotes for the the 3 ⇥ 3 sub-

matrix of M. However, further mathematical treatment is required to disentangle the

birefringent and depolarizing behavior of the sample.

These polarimetric properties (retardance and depolarization) can be evaluated

after decomposing the original M into a set of matrices of easier physical interpretation

of the medium. For this purpose, a wide variety of matrix decompositions can be

conducted, either based on the product, sum or di↵erential decomposition strategies

[48]. Importantly, the choice of the method is not trivial. In fact, although in some

cases di↵erent decompositions may lead to comparable results, in general, the method

strongly depends on the specific sample. For the studies conducted in this thesis, we

chose the commonly used Lu-Chipman decomposition [157] due to its high numerical

e�ciency. The Lu-Chipman formalism describes any Mueller matrix M as the product

of three 4⇥ 4 pure Mueller matrices [157] as follows:

M = m00M̂�M̂RM̂D, (7)

wherem00 denotes for the unpolarized transmission / scattering of the sample, and M̂�,

M̂R and M̂D correspond to the well-defined polarimetric observables of pure depolar-

izers, pure retarders and pure diattenuators, respectively. Therefore, the information
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related to these properties of samples is encoded in di↵erent scalar polarimetric ob-

servables derived from those pure matrices. In particular, retardance parameters can

be easily retrieved from the pure retarder matrix M̂R:

M̂R =

✓
1 0T

0 mR

◆
, (8)

where mR corresponds to a 3 ⇥ 3 sub-matrix. Accordingly, the total retardance R

(which describes the global behavior of a general retarder [158]), the linear retardance,

�, and the optical rotation,  (i.e., the rotation applied to the linear retarder) can be

defined as [159]:

R = cos
�1

�����
Tr(M̂R)

2
� 1

����� , (9)

� = cos
�1

⇣p
(MR11 +MR22)2 + (MR21 �MR12)2 � 1

⌘
, (10)

and

 = tan
�1

✓
MR21 �MR12

MR11 +MR22

◆
, (11)

where Tr denotes for the trace of the matrix and MRi,j are the matrix elements of M̂R.

When it comes to depolarization, the pure depolarizer matrix defined from Lu-

Chipman decomposition is written as:

M̂� =

✓
1 0T

P� m�

◆
, (12)

where P� corresponds to the polarizance vector, and m� is the non-diagonal 3 ⇥
3 sub-matrix. Similarly to the definition of above-described retardance parameters,

the depolarization coe�cient (or depolarization power) �, that indicates the average

depolarizing capability of the Mueller matrix M, is defined in the following way:

� = 1� |Tr(m�)|
3

, where 0  �  1. (13)

Importantly, depolarization has been considered as a deletory e↵ect which tends to

screen or to erase the polarimetric properties (traditionally considered as the desired

observables). However, novel depolarization metrics introduced in the literature[126,

160–167], demonstrate that there is a potential interest of considering both polarization

and depolarization e↵ects of media of equal importance. These depolarization-related

metrics describe the process in which the purity of polarization of the incoming light

beam is lost after interacting with the sample. For the particular case of biological

tissues, depolarization e↵ects are mainly induced by the light scattering (e.g., be due

21



to the water contained in tissues) and the non uniformity distribution of di↵erent

polarimetric properties within the sample, directly related to di↵erent sample regions

showing a wide variety of biological compositions, symmetric / aligned structures, etc.

Since the information about these ultra-structures present in the tissues (i.e., structural

and chemical variety) is encoded into the depolarization response, the depolarization

metrics may unveil di↵erences or particularities, overlooked when probed with non

polarized light, which can present a true interest for biological / medical purposes or

characterization.

To describe the depolarization behavior of media, the depolarization index[48],

P�, is widely used. This metric is similar to the depolarization coe�cient � in the

sense that both describe, quantitatively, the overall depolarizing power of the sample.

However, P� is directly computed from the Mueller matrix elements as:

P� ⌘

vuut
⇣P3

i,j=0 m
2
ij

⌘
�m

2
00

3m2
00

, being 0  P�  1, (14)

where mij (i, j = 0, ..., 3) are elements of M. Furthermore, the depolarization informa-

tion contained in P� can also be split in terms of the Components of Purity (P, D and

PS) as,

P� =
1

3

q
D2 + P 2 + 3P 2

S
, 0  P�  1. (15)

It is important to remark that P� is suitable to represent homogeneous depolarization.

However, it does not provide enough information regarding the situations where depo-

larization actually depends on the state of polarization of the illuminating beam. In

this way, an alternative to the depolarization approach by Lu-Chipman [157] was pro-

posed by I. San José and J. J. Gil [168]. They defined the Indices of Polarimetric Purity

(IPPs) [168], which are three invariant depolarizing indicators that contain complete

and detailed information of the capability of samples to induce randomness to input

polarization states. Since the Mueller matrix is not Hermitian - thus we can not ensure

its diagonalization -, to define the IPPs it is worth using the covariance matrix H, a

positive semi-definite Hermitian matrix associated with the Mueller matrix, M [169]:

H(M) =
1

4

3X

i,j=0

mij(�i ⌦ �j), (16)

where mij (i, j = 0, ..., 3) are coe�cients of M, � are the Pauli matrices and ⌦ the

Kronecker product. Accordingly, the IPPs are defined as a set of three real magnitudes,

P1, P2 and P3, which are directly obtained from the four eigenvalues �i of the covariance

22



matrix H as:

P1 ⌘
�0 � �1

Tr(H)
, P2 ⌘

�0 + �1 � 2�2

Tr(H)
, P3 ⌘

�0 + �1 + �2 � 3�3

Tr(H)
, (17)

where the covariance matrix eigenvalues �i are taken in decrease order as �0 � �1 �
�2 � �3 and the IPPs are restricted to 0  P1  P2  P3  1.

Importantly, the feasible region for the IPPs is defined as the so-called purity

space, represented in Fig. 5. This purity space is a tridimensional space whose axis

correspond to a given IPP (i.e., P1, P2 and P3). The boundaries imposed by the

inequalities 0  P1  P2  P3  1, lead to any physically realizable depolarizer to be

represented within the restricted space of the tetrahedron region in Fig. 5.

Figure 5: Purity space representing the feasible region for the Indices of Polarimetric Purity, P1, P2

and P3.

In the purity space, the equality P1 = P2 = P3 = 0 (see the pink dot in Fig. 5), cor-

responding to the coordinate (0, 0, 0), describes the ideal depolarizer characterized by

the Mueller matrix Mideal = diag(m00, 0, 0, 0). On the contrary, the non-depolarizing

(or pure) systems are characterized by P1 = P2 = P3 = 1, which corresponds to the

coordinate (1, 1, 1) (blue dot in Fig. 5). What is more, the physical interpretation of

the purity space, in addition to how much light is depolarized, is related with di↵er-

ent depolarizing mechanisms in the sample [48]. Therefore, the depolarization spaces

can be potentially used to discriminate among structures with di↵erent depolarization

signatures due to their properties and structure. Accordingly, the definition of the

IPPs lies in the statement that any depolarizer response can be synthesized as an inco-

herent sum of four non-depolarizing components whose relative statistical weights are
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performed by combinations of IPPs. In this way, di↵erent types of depolarizers can

be distinguished by only looking at the statistical weight of each pure component. In

particular, the Mueller matrix of the depolarizer can be decomposed by means of the

so-called trivial decomposition as [169, 170]:

M = m00[P1M(Ĥ1) + (P2 � P1)M(Ĥ2) + (P3 � P2)M(Ĥ3) + (1� P3)M(Ĥ4)], (18)

where P1 quantifies the relative portion of pure non-depolarizing component, M(Ĥ1),

P2-P1 is the relative weight of a bi-dimensional depolarizer, M(Ĥ2), P3-P2 is the rel-

ative portion of an equiprobable mixture of three pure components (tridimensional

depolarizer, M(Ĥ3)) and 1-P3 is associated with an ideal depolarizer, M(Ĥ4).

Finally, the already introduced depolarization index, P�, can also be defined in

terms of the IPPs as [48]:

P� =
1p
3

r
2P 2

1 +
2

3
P

2
2 +

1

3
P

2
3 , where 0  P�  1. (19)

It is necessary to remark that di↵erent combinations of IPPs could lead to equal values

of P� [168]. Unlike P�, the IPPs are sensitive to the di↵erent polarimetric anisotropies

(i.e., depolarizing mechanisms) inherent to the probed sample. In this way, the IPPs

synthesize the global information provided by P�, thus allowing to transform from 1-

dimensional space into a 3-dimensional space of richer polarimetric information [168].

3 Methods

This section is devoted to the description of the complete image Mueller polarimeter

used for the experimental Mueller matrix measurements and the samples corresponding

to the ex-vivo animal tissues and plants used in this study.

3.1 Complete image Mueller polarimeter

The acquisition of experimental Mueller matrices of the di↵erent biological samples is

performed by means of a complete image Mueller polarimeter based on Parallel Aligned

Liquid Crystals (PA-LC) retarders. It consists of two compact and mobile arms: The

Polarization State Generator (PSG), which is composed by a linear polarizer oriented

at 0º, followed by two PA-LC at 45º and 0º, respectively, with respect to the laboratory

vertical, and the Polarization State Analyzer (PSA), whose internal elements are the

same as those in PSG but arranged in the inverse order, but additionally placing a CCD

camera for the capture of the sample intensity. This PSG-PSA architecture leads to

the capability of generating and analyzing, respectively for the PSG and PSA systems,

any fully polarized state [171]. The visual representation of the inner components of

both arms is shown in Fig. 6.
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Figure 6: Detailed 3D representation of Polarization State Generator (PSG) and Polarization State
Analyzer (PSA) and their constituent optical components. [Adapted from [149]].

We usually conduct two di↵erent optical configuration measurements. Scattering

measurements 7b) are performed by illuminating the sample placing the PSG at 34º
with respect to the laboratory horizontal and the PSA in vertical position (90º) to

avoid the ballistic reflection. Transmission configuration (Fig. 7a) is characterized by

placing both the PSG and the PSA at 0º with respect to laboratory horizontal.

Figure 7: 3D representation of the complete image Mueller polarimeter used in this study at a)
transmission configuration and b) scattering configuration. [Reproduced from [172]].

In addition, di↵erent illuminating wavelengths are also used, covering the visible

range (625 nm, 530 nm and 470 nm), this allowing us to inspect di↵erent depths into

the sample [173]. To build the experimental Mueller matrix, 36 images of the region of

interest (1.1 x 1.1 cm2) are taken in order to minimize the measurement noise (at least

16 images are needed): we use the 6 illumination (generators) states of polarization and
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the 6 analyzers proposed in Ref. [171]. Complete Mueller matrix measurement lasts

approximately 3.6 seconds, considering the time of calculation of the Mueller matrix

by using the inverse method (0.4 to 2.2 s) [49], PA-LC molecules orientation process

from one polarization state to the following one (⇡ 100 ms) and CCD exposure time.

Particularly, the illumination is performed by means of a four-wavelength high-

power Thorlabs LED source (LED4D211, operated by DC4104 drivers distributed by

Thorlabs) complemented with 10 nm dielectric bandwidth filters distributed by Thor-

labs: FB530-10 and FB470-10 for green and blue wavelengths, respectively. About the

linear polarizers: the one arranged on PSG is a Glan-Thompson prism-based CASIX

meanwhile the one in PSA is a dichroic sheet polarizer distributed by Meadowlark Op-

tics. The four Parallel Aligned Liquid Crystals are Variable Retarders with Temper-

ature Control (LVR-200-400-700-1LTSC distributed by Meadowlark Optics). Imaging

is performed by means of a 35mm focal length Edmund Optics TECHSPEC ®high-

resolution objective followed by an Allied Vision Manta G-504B CCD camera, with 5

Megapixel GigE Vision and Sony ICX655 CCD sensor, 2452(H) x 2056(V) resolution

and cell size of 3.45 µm x 3.45 µm, so a spatial resolution of 22 µm is achieved.

3.2 Sample description

To conduct the polarimetric analysis of ex-vivo animal tissues in Paper C [174] and

Paper D [175], we inspected a collection of 33 di↵erent chicken thighs which were

dissected and split into soft tissues under the supervision of a pathologist. In partic-

ular, from each thigh, we dissected the bone and two sample units per type of the

soft tissues standing for skeletal muscle, tendon and myotendinous junction (Fig. 8).

The aforementioned soft tissues present di↵erent physiological function and structural

properties: the tendon is composed by dense type-I collagen fibers (up to 60 - 80%)

disposed, by following the same orientation as muscle bundles, in parallel and compact

fascicles [176, 177]. Skeletal muscle comprises bundled fascicles of contractile myofibril

chains (in counterpart to tendon, whose non-contractile properties allow it to with-

stand tensions) sheathed with type-I collagen rich tissues [178] which protect muscle

fibers from friction. Myotendinous junction is a combination of the previously men-

tioned muscle and tendon tissues: fiber fascicles of contractile myofibrils and collagen

are progressively mixed and covered by fasciae [179–181].

For completeness, a histological analysis from the same tissue regions was con-

ducted. The histological sections of muscle, tendon, bone and myotendinous junction

were collected and stained using a Masson Trichromic technique. This allowed a clear-

cut di↵erentiation of all connective tissue (and otherwise mesodermal as bone and

muscle). The resulting histological images are presented in Figs. 9 and 10.
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Figure 8: Intensity image measured at 625 nm of a) muscle, b) tendon, c) myotendinous junction
and d) bone tissues of a given chicken thigh. Images correspond to an area of 2.2 × 2.2 cm2.

Figure 9: Histochemical stainings of muscle (A, B), tendon (C, D) and myotendinous junction
(E, F). Bundles (1, 2, 6) of either contractile (A, B, E, F) or dense fibrous (collagen) tissue (C-F)
are surrounded by sheets of lax connective tissue (collagen) concentrically organized as epimysium
(**)/epitenon (**), perimysium/peritenon (5) and endomysium/endotenon (6). In E, F a transverse
section of the myotendinous junction is shown, where the Masson staining reveals the intermixed (*)
fascicles of contractile fibers (discontinuous arrow in (F) and collagenous fibers (arrow in F)). Di↵erent
fascicles of tendinous collagen are highlighted in red, green and gold (C). [Reproduced from [174]].
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Figure 10: Transversal section of striated muscle (A) showing bundles of contractile fibers (red
colored, 1) surrounded by endomysium (2, compare to 3, 4) and included in a single fascicle surrounded
by collagen (perimysium, 5). This structure is analogous to the tendinous structure (B), where the
collagen fibers (3) are densely packed into a sheet of peritenon (4). Longitudinal section of cortical
bone (C), showing bony matrix (6) and lacunae (7) containing osteocytes, vessels and collagen that
are heavily artifacted due to pre-treatment (8); Transverse section through the diaphysis of a long
bone (D), where collagenic periosteum (9), cortical bone (10) and rests of trabecular bone (11) are
arranged in a concentrically layers. Note the regular arrangement of lacunae, both in longitudinal and
transverse sections. Color (from reddish to purple) depends on the amount of mineral deposits in any
given region of the bone. [Reproduced from [174]].

For the study conducted in Paper B [182], we used sections of a trachea, tongue

and heart dissected from a lamb (Figs. 11a, 11b and 11c, respectively). Particu-

larly, the trachea composition is based on hyaline cartilages rings (collagen type-II and

chondroitin sulphate rich) covered and joined by annular ligament (collagen type-I and

fibroblast cells rich fibrous membrane). The undissected tongue is compsoed by skeletal

muscle. As a protective surface, the tongue has stratified squamous epithelium, heav-

ily keratinised with long papillae. Heart sample corresponds to an endocardial view,

particularly on endocardium-covered muscle and sub-valvular apparatus on connective

tissue.
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Figure 11: Intensity image measured at 470 nm of a) trachea, b) tongue and c) heart of a lamb.
Images correspond to an area of 2.2 × 2.2 cm2.

The plant samples inspected in Paper A and Paper B [172, 182] correspond to a

set of 73 leaves from a collection of 18 di↵erent plant specimens. To not to extent the

content of the manuscripts, we restricted the presented results to the most relevant

plant specimens. We analyzed (1) a leaf of Medicago sativa specimen infected with the

alfalfa mosaic virus (AMV); (2) a leaf ofOlea europaea specimen infected with fungus

Venturia oleaginea (causal agent of the olive leaf spot); (3) a leaf of Prunus dulcis

specimen showing disease symptoms of infection from fungus Transzchelia discolor,

(4) a leaf of Quercus pubescens specimen infected with fungus E. alphitoides, which

causes powdery mildew lesions on leaf surface, and (5) a leaf of Vitis vinifera specimen

showing no symptoms of disease.

The M. sativa specimen (Figs. 12a and 12b) is native from warmer-temperate

climates of south-central Asia. It belongs to the Fabaceae family (i.e., legumes) and it is

cultivated worldwide for livestock feeding purposes. Despite the toxicity of unsprouted

alfalfa, it is also suitable for human consumption in sprout stage or dehydrated. The

main characteristics of the infection caused by AMV are the emergence of wilting

or white flecks to necrotic wounds and chlorotic mosaics on leaves. Regarding O.

europaea (Figs. 12c and 12d), this species belongs to the Oleaceae family. Although

the native species were found in eastern land regions around the Mediterranean Sea,

his production is not limited to Mediterranean countries: O. europaea is cultivated

in several countries such as South Africa, New Zealand, North and South America,

and Australia. In addition to olive oil production and fruit consumption (olives), O.

europaea trees are also grown for fine wood manufacturing. Regarding the olive leaf

spot, this worldwide spread disease of olive may cause severe tree defoliation and a

delay in fruit ripening, among other symptoms, thus leading to relevant yield losses.
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Figure 12: Picture of the Medicago sativa leaf a) viewed from the beam and b) underside, and
picture of the Olea europaea leaf a) viewed from the beam and b) underside.

The P. dulcis (Figs. 13a and b), commonly known as almond tree, is a species

native from Iran that belongs to the Rosaceae family. It is common from Mediterranean

climate regions and produces almond fruits which are widely used for nutritional and

cosmetic purposes. The Q. pubescens (Figs. 13c and 13d), a species of white oak,

belongs to the Fagaceae family and it is commonly found in central and southern

Europe. It produces acorns (oak nuts) which can be consumed or extract their oil.

Figure 13: Picture of the Prunus dulcis leaf a) viewed from the beam and b) underside, and picture
of the Quercus pubescens leaf a) viewed from the beam and b) underside.

The V. vinifera (Fig. 14), commonly known as grape vine, belongs to the Vitaceae

family. Native from the central Europe, the land regions around the Mediterranean

Sea and southwestern Asia, V. vinifera is cultivated worldwide for both grape (fresh

or dried) consuming, and vinegar and wine production.
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Figure 14: Picture of the Vitis vinifera leaf a) viewed from the beam and b) underside.

Dr. T. Garnatje and Dr. J. Luque undertook the formal identification of the plant

material used in these studies. An herbarium voucher of M. sativa, O. europaea and

Q. pubescens are deposited in the Herbarium of the Botanical Institute of Barcelona

(BC-983007, BC-983006 and BC-983018 respectively).

4 Results and discussion

In this thesis we explore the use of depolarization-related polarimetric observables in

joint with the commonly-used set of enpolarizing metrics for biophotonics applications.

Through four di↵erent research works, henceforth labeled as Paper A [172], Paper B

[182], Paper C [174] and Paper D [175], we inspect the polarimetric response of a wide

variety of biological tissues and address the extracted information in di↵erent ways,

either related to specific imaging techniques (Paper A and Paper B) or classification

purposes (Paper C and Paper D). In the following, the results and discussions related

to each work are presented.

4.1 Paper A – Polarimetric observables for the enhanced visualization of

plant diseases

As demonstrated in the literature [89, 149, 160, 183], the inspection of depolarization-

related observables allow to enhance the image contrast between structures contained

in biological tissues or even to reveal patterns or organelles which were hidden in regular

intensity images. Despite of its potential, the analysis of depolarization is underused

in plant science. In this work (Paper A [172]) we report the use of depolarization

observables applied for the first time on the visualization and characterization of plant

diseases. We tested the polarimetric methods in a set of 73 leaves corresponding to 18
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plant diseased species. However, we bounded the study in two representative samples

due to their impact and utility in humans: (1) a leaf of Medicago sativa showing the

particular disease symptoms due to the infection of alfalfa mosaic virus (AMV) and (2)

a leaf of Olea europaea presenting the characteristic lesions due to the infection of the

fungus Venturia oleaginea. In particular, M. sativa showed chlorotic areas surrounding

the a↵ected vascular structure. In turn, O. europaea showed alternating necrotic and

chlorotic ring-like lesions surrounding a chlorotic spot. A picture of the M. sativa

and the O. europaea leaves is shown in Fig. 12 of the previous section 3.2. The

obtained results clearly show the suitability of polarimetric methods for the recognition

of these two pathologies in the M. sativa and O. europaea specimens. Importantly, the

procedure was validated in the remaining set of 16 di↵erent diseased species used in

this study and all together highlight the potential of the polarimetric methods. The

complete list of studied plants and diseases can be consulted in Ref. [172].

We first provide the complete polarimetric analysis of the leaves of M. sativa and

O. europaea. Particularly, we measure their experimental Mueller matrices (MMs) by

means of the complete image Mueller polarimeter described in the previous section

3.1. From the acquired MMs, we calculate a set of di↵erent depolarization-related

observables corresponding to the Indices of Polarimetric Purity (IPPs: P1, P2 and

P3), the Components of Purity (CPs: P , D and PS) and the depolarization index, P�.

The standard non-polarized image and the obtained polarimetric images corresponding

to M. sativa and O. europaea are shown in Figs. 15 and 16, respectively. These

polarimetric images were obtained from certain regions of interest (ROIs) in M. sativa

and O. europaea, which are indicated with white and black squares in Figs. 15a and 16a,

respectively. Regarding the M. sativa sample, the depolarization metrics of P1, P2, P3,

P� and PS (Figs. 15c-f and 15i, respectively), clearly manifest an overall enhancement

of image contrast and help to unveil and better spatially locate the wounded zones

and vascular structures within the leaf, which are invisible by using standard non-

polarized images. In particular, up to seven chlorotic spots as well as some vascular

structures which are barely observable by standard intensity images, are well visible by

using polarimetric means in M. sativa (see the yellow arrows and the numeric labels in

Figs. 15c and 15d, respectively). Similarly, the O. europaea sample presents a necrotic

ring surrounding a chlorotic spot which is hardly visible in non-polarized scattering

images (16b). In contrast, the depolarization-related observables of P1, P2, P3, P� and

PS (Figs. 16c-f and 16i, respectively) unveil the presence of vascular structures (see

the yellow arrows in Fig. 16d) and provide a more accurate visualization and spatial

delimitation of the lesions in the leaf: the visual contrast of the wounded region is

increased when compared to that of non-polarized image (Fig. 16b).
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Figure 15: Polarimetric images of Medicago sativa leaf used in this study. a) Picture of the under-
side part of the M. sativa leaf. White square denotes for selected region of interest (ROI) analyzed in
remaining images, b) regular intensity image (M00) of theM. sativa underside ROI and its correspond-
ing polarimetric observables c) P1, d) P2, e) P3, f) P�, g) P, h) D and i) PS for visual comparison.
All images correspond to 625 nm illumination wavelength measurements performed at scattering set-
up configuration. Yellow arrows correspond to the enhanced vascular structures within the sample,
whereas numeric labels (from 1 to 7) indicate the number of chlorotic spots unraveled by means of
polarimetric observables. [Reproduced from [172]].
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Figure 16: Polarimetric images of Olea europaea leaf used in this study. a) Picture of the underside
part of O. europaea leaf. Black square denotes for selected region of interest (ROI) analyzed in
remaining images, b) regular intensity image (M00) of the O. europaea transmission ROI and its
corresponding polarimetric observables c) P1, d) P2, e) P3, f) P�, g) P, h) D and i) PS for visual
comparison. All images correspond to 625 nm illumination wavelength measurements performed at
transmission set-up configuration. Red and yellow dotted lines correspond to diameter and width
measurements for chlorotic spot and necrotic ring, respectively. Yellow arrows indicate the unveiled
vascular structures. [Reproduced from [172]].
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Furthermore, the image enhancement related to depolarizing observables for both

studied plant specimens is quantified by means of various analysis. We first com-

pare the values of the depolarizing metrics versus the regular intensity of the cross-

section along tissue transitions corresponding to the healthy-chlorotic and the healthy-

chlorotic-necrotic on M. sativa and O. europaea, respectively. The particular cross-

sections analyzed, highlighted in yellow lines, together with the corresponding values

are shown in Fig. 17. For the case of M. sativa, the di↵erence between the chlorotic

and the healthy areas is hardly visible when inspecting the regular intensity (M00,

Fig. 17a). However, this di↵erence becomes quite apparent when inspecting the image

corresponding to the index of polarimetric purity P2 (Fig. 17). In such case, healthy

areas show P2 values around 0.20±0.01 while chlorotic areas show characteristic values

around 0.50 ± 0.01. Analogously, the regular intensity image (M00, Fig. 17c) of O.

europaea sample is not sensitive to the necrotic ring border. Conversely, the index of

polarimetric purity P3 shows clear di↵erences between healthy, necrotic and chlorotic

tissue regions (Fig. 17d). For instance, the value of P3 for healthy, necrotic and

chlorotic areas is around 0.20± 0.01, 0.45± 0.01 and 0.10± 0.01, respectively. In con-

trast, regular intensity (M00 in Fig. 17c) shows the chlorotic area as a bright spot with

values close to 0.50± 0.01, the necrotic ring in dark with typical values of 0.05± 0.01,

and the healthy area in dark grey with typical values of 0.90± 0.01. Accordingly, the

di↵erence between healthy and necrotic areas is less net in the intensity image than in

the P3 one.

We further demonstrate this phenomena by computing the visibility, V = [Imax �
Imin]/[Imax + Imin], where Imax and Imin correspond to the maximum and minimum

value of the pixel) of the cross-section along healthy-diseased tissue transitions. The

visibility features a value of V = (0.41 ± 0.05) for the non-polarized intensity and

of V = (0.61 ± 0.03) for the P2 channel in M. sativa. Similarly, we measure the

contrast improvement in polarimetric images compared to the regular intensity. As a

representative example, the visibility of the necrotic ring is estimated to V = (0.84 ±
0.03) and V = (0.00 ± 0.03) for the index of polarimetric purity P3 and the regular

intensity M00, respectively.
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Figure 17: Pixel profile comparison for Medicago sativa and Olea europaea. a) Intensity image at
625 nm of the underside part of M. sativa sample and its corresponding pixel profile, b) polarimetric
purity index P2 and its corresponding pixel profile, c) intensity image at 625 nm of the underside
part of O. europaea sample and the corresponding healthy-necrotic-chlorotic transition pixel profile,
and d) polarimetric purity index P3 and its corresponding pixel profile. The vertical yellow lines on
polarimetric images indicate the plotted pixel profile segments. The squared numeric labels for M00,
P2 and P3 indicate their respective highest and lowest pixel values within the inspected pixel regions.
Red-dotted horizontal lines on plots indicate the diameter of the two chlorotic spots of M. sativa and
width measurements for chlorotic spot and necrotic ring of O. europaea. [Reproduced from [172]].
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Further analysis of the potential of those observables to discriminate between dif-

ferent typologies (healthy or diseased tissues) of plant structures is conducted. In

particular, we select the regions of interest corresponding to the healthy, chlorotic and

necrotic tissue locations within the samples and represent the measured data in two

di↵erent polarimetric spaces built from the IPPs and the CPs metrics (the so-called

Purity space and the Components of Purity space, respectively). This leads us to a

very intuitive visualization of data, and also providing quantitative information of the

structures (or tissue types) that may be present in the images of the probed samples. In

a data cloud figure, pixels corresponding to di↵erent regions should group in separate

clouds. Therefore, non-overlapping clouds indicate that the related regions are well

discriminated. Conversely, either fully or partially overlapping clouds indicate a poor

discrimination of nominally di↵erent zones. Figure 18 presents the data clouds from

selected ROIs (marked in Figs. 18a and 18d as colored rectangles) of healthy (green),

chlorotic (yellow) and necrotic (dark blue) tissue regions of M. sativa (first row in Fig.

18) and O. europaea (second row in Fig. 18) leaves.

Figure 18: Scatter data plots of healthy and diseased tissue regions of Medicago sativa and Olea
europaea. a) Visual indicative for healthy (green) and chlorotic (yellow) tissue selected region of
interest (ROI) for M. sativa, b) corresponding IPPs space (P1, P2, P3) for healthy and chlorotic data
clouds representation, c) components of purity (P, D, PS) space for healthy and chlorotic data clouds
representation, d) visual indicative for selected healthy (green), chlorotic (yellow) and necrotic (dark
blue) tissue ROIs for O. europaea, e) corresponding IPPs space (P1, P2, P3) for healthy, chlorotic and
necrotic data clouds representation and f) components of purity (P, D, PS) space for healthy, chlorotic
and necrotic data clouds representation.[Reproduced from [172]].

Interestingly, from Fig. 18 we conclude that the polarimetric data from di↵erent

tissue conditions (i.e. healthy, chlorotic and necrotic) is clearly located in di↵erent
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spatial positions within the spaces, showing no data mixing, which is directly related

with the high discriminatory potential of the depolarizing metrics when di↵erentiating

the studied tissue characteristics. For the particular case of M. sativa, healthy tissue

data points tend to group close to higher depolarization, while chlorotic regions tend to

group to areas related with less depolarization (green and yellow squares in Fig. 18a,

respectively). This behavior occurs when the data is represented in either the IPPs or

the CPs space (Figs. 18b and 18c, respectively). Therefore, these two tissue conditions

are well-discriminated, as practically no data mixing between tissues with di↵erent

health condition is produced. Importantly, a stronger depolarization response occurs

when the leaves contain non-organized spatial structures or an important number of

microstructures which e�ciently scatter light. In this context, either the biological

or the structural changes caused by the chlorotic symptoms of infected regions are

translated into a less depolarizing e↵ect on incident light when compared with healthy

tissues, thus increasing the sensitivity of depolarizing channels to chlorosis detection.

Similarly, data clouds corresponding to healthy, chlorotic, and necrotic tissue regions

in O. europaea (green, yellow and blue squares, respectively, in Fig. 18d) are clearly

spatially separated in both IPPs and CPs spaces (Figs. 18e and 18f, respectively).

In this case, however, the O. europaea sample demonstrates that chlorotic tissue is

more depolarizing (i.e., yellow dots are quite close to the coordinate (0,0,0) in Figs.

18e and 18f) than healthy tissues. Accordingly, the inspection of the di↵erent disease

symptomatology suggest that the di↵erent leaf tissue structure, in addition to the type

of pathogen which caused the chlorotic symptoms on both inspected leaves, may also

play a role in this di↵erential depolarizing response.

One particular interest is to include the discriminatory potential related to di↵er-

ent polarimetric signatures in a single image. Recent works [149, 183, 184] suggest

the definition of a pseudo-colored image whose layers contain the di↵erent polarimet-

ric features of the sample. In other words, di↵erent polarimetric information origins

are included, all together, in a single and enhanced image. The main idea in these

works is to design a pseudo-colored function based on the weighted combination of

three di↵erent polarimetric observables showing the highest image contrast between

the structures of interest within the sample and associate each chosen observable to

a primary color (i.e., red, green and blue). So far, the methods proposed in previous

studies to build polarimetric based pseudo-colored images are based on simple linear

combinations of polarimetric observables whose weights are set ad-hoc, and thus, far

from optimal approaches. In this work we propose two general pseudo-colored func-

tions which are based on the statistical analysis of the polarimetric data retrieved from

the di↵erent tissue conditions of the inspected samples. The novelty of this approach

is that the chosen depolarizing observables are not restricted to the IPPs space, but
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extended to an optimized selection of polarimetric observables within the IPPs and

CPs spaces. The key advantage of this approach is that we select the polarimetric

observables showing the highest discriminatory potential between the healthy regions

and the di↵erent lesions and combine them in such a manner that the output results in

a colored image. To estimate the di↵erences between these observables when applied

to image healthy and wounded areas, we conducted a Boxplot analysis [185] for the

regions of interest highlighted in in Figs. 18a and 18d. As a representative example,

Fig. 19 shows the resulting analysis of the IPPs and CPs for the M. sativa sample.

Figure 19: Boxplot charts for healthy and diseased regions for Medicago sativa. a) Indices of polari-
metric purity (P1, P2, P3) boxplot for healthy and chlorotic locations on M. sativa, b) Components
of purity (P, D, PS) Boxplot for healthy and chlorotic locations on M. sativa. The corresponding
healthy and chlorotic data distributions are labeled and colored as H (green) and C (yellow), respec-
tively. Red-dashed lines indicate the locations of median values and illustrate they do not fit within
the boxes of di↵erent tissue conditions (healthy or chlorotic), allowing discrimination. Circles and
stars correspond to mild and extreme outlier values, respectively. [Adapted from [172]].

Importantly, to evaluate such di↵erences, the median values in Fig. 19 are high-

lighted with dotted red lines. These indicate the case of a given polarimetric observ-

able that demonstrates the largest di↵erence between both tissue conditions (healthy

/ chlorotic). In the case of the M. sativa, the healthy and chlorotic tissue regions

are clearly separated by the whole set of IPPs as well as by the sphericity degree, PS

(Figs. 19a and 19b, respectively). Similarly, in the case of the O. europaea which

presents chlorotic, necrotic and healthy tissues, the same polarimetric observables (i.e.,

the whole set of IPPs and the sphericity degree PS) are the metrics that lead to the

larger distances between di↵erent tissue conditions. Accordingly, note that the di↵er-

ent tissue conditions are well di↵erentiated when represented within the boxplot charts

(Fig. 19). Taking advantage of this situation, we can set a numeric threshold able

to discriminate between each pair of tissue conditions in a binary way. To do so, we

computed for each polarimetric observable the distance between the median values cor-

responding to di↵erent colored boxes for the M. sativa and the O. europaea samples.
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The three largest median di↵erences between chlorotic and healthy tissue regions on

the M. sativa leaf were demonstrated by P2, P3 and P1, with values of 0.119 ± 0.104,

0.113 ± 0.106 and 0.091 ± 0.085, respectively. In the case of O. europaea, P3, P2 and

PS demonstrate the largest median di↵erences between the chlorotic and healthy tissue

regions, with values of 0.064±0.029, 0.039±0.020 and 0.037±0.015, respectively. Sim-

ilarly, this polarimetric triplet demonstrates the largest values for the case of necrotic

and healthy tissues comparison, with 0.117±0.059, 0.080±0.041 and 0.069±0.032 for

P3, P2 and PS, respectively.

Therefore, by considering the largest di↵erences between medians, we selected two

triplets of polarimetric observables for the pseudo-colored images construction: the

first one consists of the mix of observables from the IPPs and CPs spaces (P2, P3 and

PS) and the other is based on the IPPs by themselves (P1, P2 and P3). Importantly,

from these median di↵erences, we set a given threshold value for each selected polari-

metric observable which allows us to numerically discriminate between di↵erent tissue

conditions: healthy/chlorotic for M. sativa and healthy/chlorotic/necrotic, for O. eu-

ropaea. Afterwards, each separated condition is assigned to a primary color (red, green

and blue, for chlorotic, healthy, and necrotic tissues, respectively). As a representa-

tive example, for the case of the M. sativa leaf sample, given a particular polarimetric

observable (e.g., P2), a first image carrying the chlorotic information of the plant is

binarized with black and red colors according to the pixel values above or below this

certain threshold. Then, the image containing the healthy information of the plant

is similarly binarized this time with black and green color conditions. Accordingly, a

given pseudo-colored function is constructed for each polarimetric observable as follows:

Pi,approach(x, y) = Pi,R�Chlorotic(x, y) + Pi,G�Healthy(x, y) + Pi,B�Necrotic(x, y), (20)

where the sub-index i denotes for the particular depolarizing observable (i = 1, 2, 3, S),

R, G and B denote for red, green and blue, respectively; and each term in corresponds

to a binary-colored image. Importantly, for the case of theM. sativa we can consider the

term Pi,Blue�Necrotic(x, y) = 0 because the sample has no necrotic content. Finally, we

consider the content of the whole triplet of polarimetric observables of [P1, P2, P3] and

[P2, P3, PS]. This information is put together by constructing a linear combination

of the pseudo-colored observables implemented as defined in Eq. 20. The resulting

pseudo-colored functions valid for the M. sativa and the O. europaea are defined as

follows:

Pseudo#1(x, y) = P2,approach(x, y) + P3,approach(x, y) + PS,approach(x, y)],

Pseudo#2(x, y) = P1,approach(x, y) + P2,approach(x, y) + P3,approach(x, y)].
(21)

The visual representation of the e↵ect of pseudo-colored approaches in Eq. 21 is shown

in Fig. 20. In particular, for comparative purposes, Fig. 20 shows the images of
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the classical non-polarizing intensity (M00, Figs. 20a and 20d) and the representative

polarimetric observables of P2 (Fig. 20b) and P1 (Fig. 20e) and the corresponding

pseudo-colored image for M. sativa and O. europaea, respectively.

Figure 20: Visual comparison of Medicago sativa leaf: a) 625 nm intensity image (M00), b) polari-
metric purity index P2, c) processed image by means of #1 pseudo-coloration; Visual comparison of
Olea europaea leaf: d) 625 nm intensity image (M00), e) polarimetric purity index P2, f) processed
image by means of #1 pseudo-coloration. [Reproduced from [172]].

The pseudo-colored images resulting from the triplet P2, P3 and PS (i.e., Pseudo#1 )

demonstrate to be the most suitable one to construct the pseudo-colored functions for

both M. sativa and O. europaea samples (Figs. 20c and 20f, respectively). However,

the pseudo-colored images obtained based on the IPPs (P1, P2 and P3) lead to similar

results. Importantly, both approaches (Pseudo#1 and Pseudo#2 ) demonstrate an

overall visual enhancement of disease symptoms. In particular, the extreme di↵erent

coloration of the chlorotic lesions on M. sativa with respect to the healthy tissue of

the leaf lamina (red and green-colored regions in Fig. 20c, respectively) leads to a

more accurate location of the diseased area. Similar phenomena occurs for the lesions

located on O. europaea leaf. In particular, the pseudo-coloration approach lead to a

better delimitation of the di↵erent transitions from chlorotic spot to necrotic ring and

healthy tissue of leaf lamina (dark/brown, blue and yellowish-colored regions in Fig.
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20f, respectively). It is important to remark that the pseudo-colored images enhance

the contrast between di↵erent tissue conditions, even more than the performance of

isolated imaging of polarimetric observables for M. sativa and O. europaea samples.

The encoded functions successfully delimit the lesions and other structures in both

plant species and demonstrate the further enhance of the visual image contrast between

healthy and diseased regions in inspected plants. This results highlight the suitability

of using this pseudo-coloration methods for biological samples analysis. Particularly,

for the inspection and estimation of direct lesions and the characterization and early

detection of infection processes on plant tissues.

4.2 Paper B – Automatic pseudo-coloring approaches to improve visual

perception and contrast in polarimetric images of biological tissues

Further research on new pseudo-colored approaches is presented in this work (Paper B

[182]). We report two new polarization-based pseudo-coloration methods devised for

the optimized visualization and spatial location of di↵erent structures within biologi-

cal samples. Importantly, the previously reported pseudo-colored methods [149, 183,

184] are based on basic linear combinations of polarization observables whose weights

are not generalized but set ad-hoc for each particular sample in a Heuristic approach.

Unlike this, here we propose two new definitions for the relative weights based on:

(1) the use of the Euclidean distances of actual values of pixels and an average value

taken over a given region of interest in the considered image, and (2) the likelihood for

each pixel to belong to a given class, defined on the basis of a statistical model that

describes the statistical distribution of values of the pixels in the considered image.

These two robust methods are applied on two di↵erent polarimetric spaces derived

from the measured experimental Mueller matrix of inspected samples: the so-called

Indices of Polarimetric Purity (IPPs: P1, P2 and P3) and the Components of Purity

(CPs: P , D and PS). These spaces are chosen because they provide a complete de-

scription of depolarizing samples and compound a suitable set of metrics for tissues

discrimination, as demonstrated in previous works [126, 149, 183, 184]. Therefore, the

use of depolarizing spaces define an ideal framework to implement into pseudo-colored

approaches addressed for tissue discrimination. Accordingly, four di↵erent models are

hereby proposed: the Euclidean distance and the Normal-based approaches for the

IPPs and the CPs polarimetric spaces. In particular, we test these approaches by an-

alyzing di↵erent structures within four representative biological samples with the aim

of enhancing the image contrast between them: two of the samples are animal-origin

tissues and the other two correspond to vegetal samples. The two animal samples

are biopsies from (1) a lamb trachea, (2) a lamb tongue; the vegetal tissues consist of

(3) a leaf of Quercus pubescens showing powdery mildew lesions caused by the fungus
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Erysiphe alphitoides and (4) a leaf of Vitis vinifera presenting no symptoms of disease.

The complete sample description is provided in section 3.2.

The procedure to obtain the pseudo-colored images is conducted as follows. We

start by measuring the experimental Mueller matrix (MM) of the samples above men-

tioned by means of the complete image Mueller polarimeter described in section 3.1. It

is important to remark that, for the case of the V. vinifera, the experimental Mueller

matrix was acquired by means of a multimodal microscope polarimeter [186]. From the

MM we retrieve the standard intensity image (i.e., M00), as well as the depolarization-

related observables of interest: the IPPs - P1, P2 and P3 -, and the CPs - P , D and PS

-. The acquired polarimetric images for each sample clearly demonstrate the potential

of using depolarization observables. In particular, they show an overall enhancement

of image contrast and the revelation of various structures which are unable to be seen

by means of regular intensity images. As a representative example, in Fig. 21 we

show the non-polarized intensity image (Fig. 21a) and the polarimetric observables

corresponding to the IPPs and CPs (Figs. 21b-g) from the V. vinifera leaf sample.

Figure 21: Polarimetric images of the Vitis vinifera leaf measured under the microscope for 533
nm illumination wavelength: a) non-polarized transmission image (M00), the Indices of Polarimetric
Purity b) P1, c) P2 and d) P3 and the Components of Purity e) P, f) D and g) PS . The blue and pink
arrows indicate the location of the vein and the raphides, respectively. The white arrows indicate the
secondary vascular structure. The lime-green dotted box indicates an illustrative region comprising a
cell cluster. [Reproduced from [182]].

Interestingly, in the non-polarized transmission image (Fig. 21a) we can observe

two main leaf features: the vein (indicated by the blue arrow in Fig. 21a), and the

leaf lamina cell clusters (indicated by the green rectangle in Fig. 21a). In addition to

that, the polarimetric images reveal the presence of a third structure consisting of a
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raphide. In vine leaves, raphides are made of calcium oxalate needle shaped crystals

packed together forming prorated clusters of typically 80 µm (long axis) x 30 µm (short

axes). Remarkably, raphides are completely invisible in non-polarized transmission

images (Fig. 21a), but their spatial location becomes clearly visible in polarization-

based images. For instance, they are well visible in the images corresponding to the

index of polarimetric purity P1, polarizance P , diattenuation D and spherical purity

PS (see the pink arrows in Fig. 21b). Furthermore, these polarimetric images reveal

another structure that has a polarimetric signature similar to the vein, which is located

at the upper-left part of the sample (see the white arrows in Figs. 21b and 21e-f,

respectively). This structure may correspond to a secondary vascular structure unable

to be detected by means of regular intensity images (Fig. 21a). Therefore, it is clear

how polarimetric observables allow the recognition of plant structures not visible in

non-polarimetric intensity image M00. This situation highlights the importance of

studying the polarimetric channels for plant structures imaging not only for increasing

the visual image contrast, but also because they reveal structures hidden in regular

intensity images.

To give some numbers, the mean values of the IPPs (Figs. 21b–d) corresponding to

the raphide are P1 = 0.24±0.01, P2 = 0.41±0.01 and P3 = 0.47±0.01, followed by these

corresponding to the cell clusters, P1 = 0.47± 0.01, P2 = 0.50± 0.01 and P3 = 0.56±
0.01, and finally the ones corresponding the leaf vein, P1 = 0.68±0.01, P2 = 0.72±0.01

and P3 = 0.81 ± 0.01. According to the di↵erences in the polarimetric observables

values, the raphide possess an individual signature which di↵ers to that of the vein

and the cluster of cells. The reasons that may explain the elevated depolarization of

the raphide (i.e., lowest IPPs values) are the scattering and spatial heterogeneity’s in

the polarimetric properties, which may be higher in the raphide that in the vein or

in the cluster of cells. Concerning scattering, it is expected that the refractive index

mismatch between a given region and the surrounding media should be higher for

the raphide, made of a solid inorganic component, than for veins or clusters of cells

which are essentially made of a liquid similar to the surrounding media contained by

the membranes forming the cell walls. The largest IPPs values are demonstrated for

the vein structure. Accordingly, it induces less depolarization to the incident light

than other structures because it is a structure essentially filled with a liquid with low

scattering and no polarimetric properties. Regarding the CPs observables, the highest

polarizance mean values are demonstrated for the raphides, P = 0.03±0.01, followed by

the cell cluster, P = 0.003± 0.001, and the leaf vein, P = 0.001± 0.001 (see Fig. 21e).

Likewise, the raphides show the highest mean diattenuation (D = 0.07± 0.01, in Fig.

21f), compared with D = 0.04± 0.01 and D = 0.02± 0.01, corresponding to the vein

and the cell cluster, respectively. Considering these low polarizance and diattenuation
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values, the V. vinifera leaf can be understood as a non-dichroic sample. Conversely, the

highest mean values of the spherical purity PS (Fig. 21g) are demonstrated for the leaf

vein (PS = 0.70± 0.01), this being a direct consequence of the strong alignment of the

cellulose filaments within the vein structure. In turn, the PS values for the cell cluster

and the raphides are reduced to PS = 0.49± 0.01, and PS = 0.31± 0.01, respectively.

Analogously to the situation in P1, the di↵erences in the PS values for the raphide,

the cell cluster and the vein, lead to a well-contrasted image with well-di↵erentiated

regions (Fig. 21e).

The above-discussed enhancement of image contrast between biological structures

is similarly demonstrated when inspecting the polarimetric images of three further

examples: the lamb trachea and tongue samples as well as for the Q. pubescens leaf.

As a representative example, Fig. 22 shows the comparison between non-polarimetric

image with the polarimetric observables for the lamb trachea (Fig. 22a-c) and the Q.

pubescens leaf sample (Fig. 22d-f).

Figure 22: Polarimetric images of the lamb trachea measured at 470 nm: a) non-polarized trans-
mission image (M00), b) the Index of Polarimetric Purity P1, and c) polarizance, P . Polarimetric
images of the Q. pubescens leaf measured at 470 nm: d) non-polarized transmission image (M00),
b) the Index of Polarimetric Purity P1, and c) diattenuation, D. The orange arrow and the orange
dotted line show the vascular structure within the external trachea sheath and the sample border,
respectively. The yellow arrows indicate the location of the cartilaginous rings of the trachea. The
orange-dotted box indicates the location of the Q. pubescens leaf vein. [Adapted from [182]].
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For the particular case of the trachea, P1 (Fig. 22b) provides information about the

surface details of the trachea sheath (e.g. some vascular structures within the external

sheath, indicated with the orange arrow in Fig. 22b). Interestingly, the cartilaginous

rings demonstrate higher mean values for P1 = 0.14 ± 0.01 when compared with the

trachea sheath (P1 = 0.05 ± 0.01). This means that the cartilaginous rings are less

depolarizing than the trachea sheath. Accordingly, the cartilaginous rings demonstrate

higher mean polarizance, P (Fig. 22c) values (P = 0.06 ± 0.01) than the sheath

(P = 0.02 ± 0.01). When it comes to the Q. pubescens, the evident di↵erences in

biological structure and chemical composition between a plant tissue and a fungus, in

this case, the E. alphitoides, lead to di↵erent polarimetric responses. The polarimetric

image of P1 (Fig. 22e) demonstrate the enhancement of the overall image contrast,

thus allowing a proper spatial localization of the leaf lesions. Particularly, P1 is the

observable that leads to larger contrast between classes, and demonstrates a higher

capability to discriminate between features. Regarding the depolarization content of

the inspected sample, the healthy leaf lamina shows high P1 mean values (P1 = 0.82±
0.01). Conversely, the powdery mildew shows lower mean values (P1 = 0.27 ± 0.01).

Accordingly, it can be said that the leaf lamina induces less depolarization to the

incident light than the powdery mildew lesions. The low depolarizing performance of

the leaf lamina suggests that it presents a well-organized cell layout within the leaf, and

a homogeneous polarization response through the structure. In contrast, the e↵ect of

the fungus seems to modify the cell layout structure of the leave, leading to an evident

modification of the polarimetric response of the regions with lesions. Regarding to

the diattenuation response (Fig. 22f), the sample demonstrates, overall, low mean

values (D = 0.13 ± 0.01 and D = 0.23 ± 0.01 for leaf lamina and powdery mildew,

respectively).

Once the potential of polarimetric observable images is demonstrated, polarimetric

based pseudo-colored approaches are constructed to maximize the visual contrast of

di↵erent tissues in the sample. As previously stated, two di↵erent approaches are fol-

lowing studied: the Euclidean distance-based method and the Normal-based approach.

Importantly, the Euclidean distance-based method is limited to the selection of two fea-

tures, but the Normal-based approach is able to discriminate an unlimited number of

characteristics within a single image. Therefore, from the obtained polarimetric images

for each inspected sample, we chose to distinguish the following pair of features: for the

lamb trachea we aim to enhance the tissue di↵erentiation between the trachea ring and

the trachea sheath (see the yellow and blue dashed squares in Fig. 23a, respectively).

For the the lamb tongue, we chose the lingual papillae and the tongue epithelial tissue

(see the pink and green squares in Fig. 23b, respectively). For the Q. pubescens plant

sample we select to discriminate between the powdery mildew and the leaf lamina (see
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the yellow and blue squares in Fig. 23c, respectively). Complementary, to highlight

the potential of the Normal-based model, we select three characteristics within the V.

vinifera sample corresponding to the leaf vein, the raphide and the cell cluster (see the

blue, pink and green squares in Fig. 23d, respectively).

Figure 23: Non-polarized intensity image of a) the lamb trachea, b) the lamb tongue, c) the Q.
pubescens and the polarimetric image corresponding to the index of polarimetric purity P1 of d)
the V. vinifera leaf sample. Each colored square indicates the location of the regions of interest
corresponding to the types of tissue to be distinguished within the resulting pseudo-coloration image.
[Adapted from [182]].

In the following we define the the parameters of interest involved in the pseudo-

coloring models and the general expressions for both the Euclidean-distance and

Normal-based approaches. From the experimental Mueller matrix measurement of

a sample, we extract n polarimetric observables, ~p = [p1, . . . , pn]. Furthermore, we

define i classes corresponding to the pair (or more) di↵erent organic tissues to be dis-

tinguished. Each kind of organic tissues is characterized by the j = 1, . . . , n (where n is

the number of polarimetric observables) means, mi

j
, and standard deviations, �i

j
, corre-

sponding to the p
i

j
observables calculated from a Region of Interest (ROIs) within the

specific class i. For image coloring purposes we also define the vector ~C
i = [Ri

, G
i
, B

i]

(where i = 1, . . . , k) as the standard RGB color space coordinates associated with a

particular tissue class, i.

The pseudo-colored approach based on the Euclidean distance method consists on

computing the Euclidean distance from the values of the n polarimetric observables,

~p = [p1, . . . , pn], from a given image pixel to the mean values ~m
i = [mi

1, . . . ,m
i

n
] of the

polarimetric observables of a given class i. Assuming the discrimination between two

(k = 2) tissue classes (e.g., healthy / infected tissue), the normalized distance is given

by,

d̂i =

vuut
nX

j=1

✓
m

i

j
� pj

m
i=1
j

�m
i=2
j

◆2

, i = 1, 2, (22)
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where m
i=1
j

�m
i=2
j

corresponds to the distance between the means of the two classes

for a given polarimetric observable, pj (j = 1, . . . , n). Accordingly, we associate a given

RGB color coordinate, ~Ci, to each particular tissue class, i. Consequently, the larger

the distance from a given pixel to a given class, the lower the corresponding weight

to its particular class color coordinate, ~Ci. Therefore, each particular class color ~Ci is

pondered as,

Ri = 1� d̂i

d
, i = 1, 2, (23)

where each distance d̂i is normalized by the sum of the distances, d = d̂
i=1+ d̂

i=2, such

that R is positive-definite and ranges between 0 and 1. Thus, the larger the distance

d̂
i, the lower the amount of i-color level included in the pixel. The final pixel color for

the two classes (i = 1, 2), is given by,

~C = [R,G,B] = R1[R1
, G

1
, B

1] +R2[R2
, G

2
, B

2]. (24)

This approach outputs a colored polarimetric image, ~C = [R,G,B], which is based on

the linear combination of the Ri · ~C i terms of the two classes (i = 1, 2), involved.

It is di�cult to generalize the Euclidean distance method to more than two tissue

classes to be distinguished (i.e., k > 2). Therefore, we propose a method to construct

the pseudo-colored functions based on the Normal (Gaussian) probability distribution

of the n polarimetric observables extracted from the experimental Mueller matrix of

the sample. Contrary to the Euclidean method, the Normal approach allows to inspect

an unlimited number of classes k. The probability P
i of a pixel corresponding to the

jth polarimetric observable (j = 1, .., n) of being part of a given class i (i = 1, .., k) is

defined as,

P
i =

Y

j

exp

"
�

✓
pj �mi,j

�i,j

◆2
#
, 0  P

i  1. (25)

Accordingly, for each pixel we get as many probability functions, P i, as classes, i =

1, . . . , k, we want to distinguish. The pseudo-colored image is constructed similarly

as for the Euclidean distance-based method. Each probability P
i is associated with a

particular RGB color coordinate as:

~C = [R,G,B] =
kX

i

P
i · ~C i =

kX

i

P
i · [Ri

, G
i
, B

i]. (26)

This approach outputs a colored polarimetric image, ~C = [R,G,B] such that the

amount of i-color level within a pixel is pondered by the probability of the particular

pixel to be recognized as belonging to the class i.
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In this study, from the experimental Mueller matrix measurement of four biolog-

ical samples (lamb trachea, lamb tongue, Q. pubescens and V. vinifera leaves), we

extract the polarimetric observables corresponding to the Indices of Polarimetric Pu-

rity (IPPs) and the Components of Purity (CPs). Considering the definition of i classes

corresponding to the pair (or more) di↵erent organic tissues to be distinguished, we

chose the following: the ring and sheath in the lamb trachea sample, the papillae and

epithelial tissues in the lamb tongue sample, the powdery mildew and leaf lamina in

Q. pubescens, and the vein, raphides and cell cluster in V. vinifera plant sample.

Therefore, for each one of the polarimetric observables triplet (i.e., the IPPs and the

CPs), we build four pseudo-colored images per sample, according to the two pseudo-

coloration approaches above-described. These four pseudo-colored images, correspond

to the Euclidean-based or Normal-based designs, for the IPP and CP spaces cases. In

the following, we provide the resulting pseudo-colored images obtained for the lamb

trachea (Fig. 24) and tongue (Fig. 25), as well as for the plant samples corresponding

to the Q. pubescens (Fig. 26) and V. vinifera (Fig. 27) leaves.

Figure 24: Raw and pseudo-colored images of the lamb trachea: a) Unpolarized intensity image
(M00) taken at 470 nm, b) Euclidean and c) Normal pseudo-colored images based on the IPP triplet,
d) Euclidean and e) Normal pseudo-coloring based on the CP triplet. Yellow and blue squares show
reference areas corresponding to the trachea ring and sheath, respectively. The white arrows (Figs.
2b and 2d) and the black dotted line (Fig. 2d) denote for the cartilaginous rings and the trachea
border, respectively. [Reproduced from [182]].

In particular, for the lamb trachea sample, we associate the trachea rings and the
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sheath with yellow and blue color coordinates, respectively. The Euclidean distance-

based method for both the IPPs and the CPs polarimetric triplets (see Figs. 24b

and 24d, respectively) enhances the perceived contrast between cartilaginous rings and

trachea sheath. The performance of both polarimetric spaces is quite similar. However,

the use of the IPPs set of observables seem to better di↵erentiate the five trachea rings

from the sheath (see Fig. 24b), thus allowing a clear an accurate identification and

spatial localization of the cartilaginous tissue within the sample. Despite this, the fifth

trachea ring and the full trachea structure border are both better spatially located

when using the CPs (see Fig. 24d). Conversely, the Normal-based approach (see the

Figs. 24c and 24e) has not enough capability to improve visualization, as most pixels in

the image are not recognized as part of any of the two tissue classes. Furthermore, the

set of IPPs observables seem to well di↵erentiate the five rings (indicated with white

arrows in Fig. 24b) from the sheath, thus allowing a clear an accurate identification

and spatial localization of the cartilaginous tissue within the sample. In turn, the

transition between the cartilaginous rings ans the trachea sheath is less accurate when

using the CPs than in the IPPs case: in Fig. 24d, the trachea sheath occupying the

space between rings is misrecognized as cartilaginous tissue too.

The resulting pseudo-colored images for the lamb tongue sample are presented

in Fig. 25. The lingual papillae and the epithelial tissue were associated with pink

and lime-green color coordinates, respectively. The best results are obtained for the

Euclidean pseudo-coloring method based on the CPs triplet (Fig. 25d). Importantly,

note that the tongue structures placed at the bottom part of the non-polarized di↵use

reflectance image (Fig. 25a) are very di�cult, or even impossible to be seen in some

parts (check for instance the region between the Y axis pixels 800 and 1000) due to the

low contrast between them. Same e↵ect can be observed at the very top of the image.

This is mostly due to intensity losses or defocusing introduced by the measure of a non-

planar sample (the tongue), where only the central region is properly illuminated and in

focus. In contrast to that, a clear visual enhancement of those regions is provided by the

pseudo-colored images in Figs. 25c and 25d. In the case of the pseudo-coloring based

on the Normal method (Figs. 25c and 25e), the best visualization is demonstrated

by the implementation based on the IPPs (Fig. 25c). However, the class recognition

rate is lower than for the Euclidean distance case (see the white arrows in Figs. 25c

and 25e, pointing the lingual papillae recognition for the Normal method, compared

with correct recognition of the epithelial tissue in Fig. 25b, by the Euclidean distance

method). In the case of the pseudo-coloring based on the Normal method, the mean

values selected for the epithelial tissue (which are obtained from the region of interest

corresponding to the green rectangle in Fig. 25a) are not representative enough of the

properties of the tissue as they present a large variance across the image. For this
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reason, an important part the epithelial tissue could not be successfully assigned to

the correct class by the method and therefore appears in black (Figs. 25c and 25e).

Therefore, the pseudo-coloring based on the Euclidean approach performs better than

the Normal approach.

Figure 25: Intensity and pseudo-colored images for the inspected lamb tongue: a) regular intensity
image (M00) captured at 470 nm illumination wavelength, b) Euclidean and c) Normal pseudo-colored
images for IPPs, d) Euclidean and e) Normal pseudo-coloring for CPs. Pink and green squares
(Fig. 4a) denote for the selected regions of interest (ROI) of lingual papillae and epithelial tissue,
respectively. White arrows (Figs. 4b, 4c and 4e) indicate a particular region only containing epithelial
tissue. The dotted-squares indicate the unseen / out of focus region (by means of the unpolarized
image, M00) of the tongue. [Reproduced from [182]].

Switching to the inspection of plant samples, the pseudo-colored images of the

Q. pubescens leaf are presented in Fig. 26. In this case, we associate the yellow

and blue color coordinates to the powdery mildew and the leaf lamina, respectively.

The Euclidean distance-based approach (Figs. 26b and 26d) demonstrates an obvious

visual enhancement of the two tissue types to be distinguished. The infected regions

by the powdery mildew clearly appear in a shiny yellow over a blue background which

corresponds to the leaf lamina. Importantly, the use of the IPPs observables (Fig. 26b)

seem to provide a better discrimination than the CPs set (Fig. 26d). The latter can be

seen, because in the pseudo-colored image using the CPs set (Fig. 26d) there are some

areas (highlighted with white rectangles) where some pixels are misclassified while the

same pixels are correctly classified in the image pseudo-colored using the IPPs set.

Moreover, the Euclidean distance-based method shows a better performance than the

Normal function-based approach.
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Figure 26: Intensity and pseudo-colored images for the inspected Q. pubescens leaf: a) non-polarized
(transmission – di↵use reflection) image (M00) captured at 470 nm illumination wavelength, b) Eu-
clidean and c) Normal pseudo-colored images for IPPs, d) Euclidean and e) Normal pseudo-coloring for
CPs. Yellow and blue squares (Fig. 6a) denote for the selected regions of interest (ROI) of powdery
mildew lesion caused by the fungus Erysiphe alphitoides and the healthy leaf lamina, respectively.
White-dotted squares (Figs. 6c and 6e) denote for the misrecognized pixel regions of both Euclidean
and Normal-based methods. [Reproduced from [182]].

Finally, the V. vinifera leaf sample contains three tissue classes to be distinguished.

Accordingly, the pseudo-coloring based on Normal distribution may have an advantage

in this particular situation. Unlike for the examples previously discussed, we select

three classes of structures to be simultaneously visualized in the Normal-based ap-

proach: the raphides, a cell cluster and the leaf vein. The selected regions of interest,

corresponding to the three classes, are indicated with pink, lime-green and blue squares

within the purity index P1 (Fig. 27a). In the case of the Euclidean distance method,

as it is restricted to handle only two classes, we chose the raphide and the cell cluster

(pink and lime-green in Fig. 27a). Note that unlike in the previous samples, instead

of using the non-polarized transmission image (M00; Fig. 21a) to design the ROIs for

the classes we use the P1 image (Fig. 27a) since the raphides are not visible in the

non-polarized transmission intensity channel. The Euclidean distance-based pseudo-

coloring images of IPPs and CPs are shown in Fig. 27b and Fig. 27d, respectively;

and the Normal-based models implemented for IPPs and CPs are shown in Fig. 27c

and Fig. 27e, respectively.

Regarding the performance of the two methods in terms of class coloring and
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visual discrimination, we observe some di↵erences. On the one hand, the IPPs are

not sensitive enough to correctly identify the location of raphides when implementing

the Euclidean approach (Fig. 27b). In particular, some pixels belonging to raphides

are not well-colored in pink, but other pixels that do not belong to raphides, they

are incorrectly painted in pink. Unlike this, the Euclidean method applied with CPs

observables is much more e�cient and quite accurate discriminating between raphides

and cell cluster (Fig. 27d). On the other hand, the IPPs observables applied with the

Normal-based approach are able to correctly identify and localize all the studied classes:

raphides (pink regions in Fig. 8c), the leaf vein (blue region in Fig. 27c) and the cell

cluster (lime-green pixels in Fig. 27c). Furthermore, the vascular structure located

on the upper-left part of the sample image is also colored in blue (indicated with a

white arrow in Fig. 27c), as it is recognized as part of a vein. Finally, when applying

the CPs observables with the Normal-based approach (Fig. 27e), all the classes are

correctly discriminated as well, but due to they are more a↵ected by distances between

pixel-values and mean classes-values, when applying the Gaussian probability function,

more pixels tends to zero probability of belonging to any class, and then, painted in

black, this darkening the whole image.

Figure 27: Non-polarized transmission (M00) and pseudo-colored microscopic images from a Vitis
vinifera leaf section captured at 533 nm illumination wavelength: a) polarimetric purity index P1,
b) Euclidean and c) Normal pseudo-colored images for IPPs, d) Euclidean and e) Normal pseudo-
coloring for CPs. Pink, lime-green and blue squares denote for the selected regions of interest (ROI)
of raphides, leaf lamina cells and vein, respectively. The white arrows indicate the location of the
secondary vascular structure. [Reproduced from [182]].
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Summarizing, the obtained pseudo-colored images clearly overcome the standard

intensity images as well as individual polarimetric observable images, in terms of spatial

location, visualization and recognition of the selected structures within the inspected

biological samples. It is important to note that the pseudo-colored images include

within a single image the relevant information of multiple polarimetric observables.

Therefore, the proposed models demonstrate more potential - in tissue discrimination

- than individual polarimetric images.

Importantly, with regards to the application of the IPPs or the CPs observables

within the proposed methods, we have chosen these metrics because previous works

highlight the suitability of depolarization observables for the discrimination of tissues

and because these two bases, all together, completely describe the depolarization re-

sponse of a samples [149, 183, 184]. Therefore, both the IPPs and CPs represent an

ideal framework to implement pseudo-colored functions for tissue discrimination. Fur-

thermore, for each biological sample to be analyzed, we recommend the use to both

the IPPs and the CPs: whereas the IPPs are more sensitive to the depolarization

anisotropies, the CPs are more related to the physical properties of the constituents

of the sample being at the roots of depolarization (retardance, polarizance, diattenua-

tion). At the end, the characteristics of each particular biological sample will determine

which one of the two basis will provide the more vivid contrast.

4.3 Paper C – Polarimetric data-based model for tissue recognition

The use of polarimetric observables for biological tissue classification has gained signif-

icant attention in recent years due to its potential in cancer detection and recognition.

Many studies have shown the e↵ectiveness of polarimetry in detecting and character-

izing various types of cancer [10–14, 37, 96–112], making it an important tool in the

field of biomedical research.

In this work (Paper C [174]), we aim to further explore the potential of polarimetry

in tissue classification and provide a predictive optical model for tissue recognition

based on polarimetric indicators. The development of accurate and reliable tissue

classification methods is crucial for early detection and diagnosis of diseases, as well as

for guiding surgical procedures and improving patient outcomes. We believe that our

work will contribute to the advancement of polarimetry as a valuable tool in the field

of biomedical research and have the potential to improve the diagnosis and treatment

of various diseases.

The study is conducted on the experimental Mueller matrices of four biological

tissues corresponding to bone, tendon, muscle and myotendinous junction (see Fig. 8
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in section 3.2), measured from a collection of 157 ex-vivo chicken samples. A total of

23 bones, 50 muscles, 50 myotendinous junctions and 34 tendons are analyzed. The

experimental Mueller matrices are measured at three di↵erent wavelengths covering

the visible range (625 nm, 530 nm and 470 nm) using the complete Mueller imaging

polarimeter described in section 3.1. These experimental Mueller images correspond

to a region of interest (ROI) of 512 ⇥ 512 pixels which correlates to an area of 1.1

⇥ 1.1 cm
2. By using the measured experimental Mueller images, we retrieve the

polarimetric images corresponding to the IPPs (P1, P2 and P3), the depolarization index

P�, polarizance P , diattenuation D, global and linear retardance R and �, respectively,

and the optical rotation  . To construct the database, from each complete 512 ⇥ 512

image we compute the mean value for the di↵erent polarimetric observables from an

image sub-ROI of 150 ⇥ 150 pixels (which does not include the saturated -specular

reflection originated- regions). Accordingly, the data matrix used in this study is

composed by 157 ⇥ (27 + 1) items: 157 tissues cases, analysed through 27 predictor

variables (9 polarimetric metrics -P�, P1, P2, P3, P , D, R � and  - measured at 3

wavelength channels; 625 nm, 530 nm, and 470 nm) and one classifier variable with

four categories (the type of biological tissue: muscle, tendon, myotendinous junction

and bone).

We start by conducting an exploratory statistical analysis on the data matrix of

polarimetric indicators to evaluate the normality of the data distributions. We exam-

ined measures of central tendency, dispersion, and asymmetry, as well as conducted

Kolmogorov-Smirnov and Shapiro-Wilk tests to assess the normal distribution fit as-

sumptions [187, 188]. The analysis revealed the non-normal behavior in the measured

data. Therefore, we employed non-parametric statistics procedures, specifically the

Kruskal-Wallis test [189], to determine the discriminatory potential of the polarimetric

indicators for di↵erent tissue types: the analysis revealed that P�, the IPPs (P1, P2,

and P3), and polarizance P are the most sensitive and informative indicators for tissue

characterization. Notably, P appears to be the only metric capable of discriminating

between myotendinous junction and bone tissue. Additionally, retardance indicators

also demonstrated some predictive potential. Based on these findings, we conclude

that the polarimetric characteristics of selective absorption, retardance, and depolar-

ization exhibit distinct signatures in the studied tissues, and are suitable to be used in

predictive optical models.

Importantly, techniques such as discriminant analysis, which require normally-

distributed data and equal variances for each tissue type, cannot be used for our model.

As an alternative, we propose a more robust model based on the logistic regression,

which does not have these requirements. Additionally, the number of variables in the
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original dataset is aimed to be reduced in order to minimize the multicollinearity and

improve the model stability. Specifically, our solution involves: (i) a factor analysis

with Principal Component Analysis (PCA) [122] to identify a set of independent pre-

dictor variables that retain the information from the original variables and explain a

significant portion of the variance in the data. These principal components will be

used as parameters in our multivariate predictive models based on a binary logistic

regression; and (2) the use of Receiver Operating Characteristic (ROC) curves [190] to

evaluate, compare, and optimize the predictive capacity of these models for classifying

di↵erent types of biological tissue.

The Principal Component Analysis (PCA) is a tool used to reduce the dimensions

of a data set. These principal components, C, are mathematical constructs that help to

structure the data and are determined by the original variables. These components can

be analyzed in relation to other variables, and geometrically, they correspond to the

best fitting axes for the data points in the original data set. Before performing the PCA,

we assessed the suitability of this method using Bartlett’s test of Sphericity and the

Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO) [191, 192]. The results of

these tests indicated the appropriateness of our data; thus we calculated the principal

components using the SPSS software. We retain the first 10 principal components,

because they explain more than 90% of the variance in the original metrics. These 10

selected principal components encode the polarimetric information and can be written

as linear combinations of the 27 studied polarimetric metrics, weighed by constants

provided by the component score coe�cient matrix [122]. Figure 28 shows a two-

dimensional space plot of the 27 indicators as a function of the two main principal

components, C1 and C2.

Plotting principal components against each other allows to see how they are con-

nected to physical information of samples and which polarimetric indicators contribute

most to data variability. It is important to note that the metrics in Fig. 28 are clus-

tered into four main areas based on physical characteristics regardless the wavelength.

These clusters included indicators of retardance (R and �), depolarization (IPPs and

P�), dichroism (D and P), and optical rotation ( ). Analysis of polarimetric indica-

tors found that C1 was primarily responsible for describing scattering and depolarization

(IPPs and P�) with weights around 0.5 and 1.0, while C2 had weights between 0 and

0.5. Retardance indicators are largely influenced by the C2 principal component (be-

tween 0.5 and 1.0) and less so by the C1 component (close to 0). Diattenuation and

polarizance are influenced by both main principal components, with a greater repre-

sentation by the C2 component. Optical rotation is not significantly described by the

first two principal components, with both C1 and C2 values near 0. The grouping of
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Figure 28: The plot showing principal components C1 against C2 represents the correlation coe�cients
between the 27 polarimetric indicators and the two first extracted principal components. The notation
of the polarimetric indicators names is composed of the word that represents the measured parameter:
P1, P2, P3 and PA (IPPs and P�, respectively), D and P (diattenuation and polarizance), R andDelta
(global and linear � retardance) and Phi (optical rotation  ), followed by R, G or B (corresponding
to red, green and blue measured wavelength, respectively). [Reproduced from [174]].

physical variables in defined areas of the C1 - C2 space suggests that di↵erent origins of
data variability are related to distinct physical structures in the tissue samples.

We further examined the performance of the 10 principal components as tissue

classifiers by using ROC curve analysis [190]. This method plots the true positive rate

(TPR) against the false positive rate (FPR) for di↵erent thresholds of the classifier,

allowing the evaluation of its ability to classify samples into two categories. The TPR

and FPR are based on the combination of the sample’s actual value and how it is

classified by the model, resulting in four possible outcomes. These outcomes are used

to calculate the sensitivity and specificity, which form the basis for ROC curves. As a

representative example, Fig. 29 shows the ROC curve for the principal component C1
and each tissue type.
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Figure 29: ROC curve of the principal component C1 for (a) muscle, (b) tendon, (c) myotendinous
junction and (d) bone. [Reproduced from [174]]

.

In addition, to compare the performance of di↵erent classifiers, we use the area

under the curve (AUC): AUC values of 0.5 indicate the low predictive capability of the

classifier; AUC values of 1 indicate the 100% sensitiviy and specificity of the classifier.

Using SPSS software, we calculated the ROC curve for all 10 principal components

and for each of the four tissue types. All principal components showed statistical

significance in the ROC curves for one or more tissue types, indicating their potential

usefulness in the classification process. The AUC values of all principal components

when discriminating each biological tissue against the remaining three are summarized

in Table 1. The results in Table 1 indicate that the majority of principal components

possess discriminative potential, as evidenced by values of AUC greater than 0.5. The

components with the highest AUC for each tissue are highlighted in gray in Table 1.

Notably, C1 demonstrates significant discriminatory values across all tissues, while C2
and C3 primarily provide discriminatory information for tendon. Components C4 and
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C5 demonstrate a focus on discrimination between muscle and tendon, and C6 between
tendon and bone; C7 primarily provides information on bone discrimination, while C8
maintains information on discrimination of muscle, tendon, and bone. Finally, C9 and

C10 provide discrimination for the myotendinous junction.

Table 1: AUC of 10 first principal components for all tissues. [Reproduced from [174]].

Muscle Tendon Myotendinous junction Bone

C1 0.733 0.699 0.754 0.734

C2 0.559 0.717 0.567 0.577

C3 0.528 0.651 0.583 0.512

C4 0.731 0.745 0.563 0.542

C5 0.667 0.733 0.500 0.527

C6 0.516 0.714 0.521 0.725

C7 0.567 0.567 0.508 0.722

C8 0.703 0.706 0.544 0.649

C9 0.581 0.540 0.616 0.507

C10 0.569 0.495 0.623 0.601

The probabilistic model is based on a probabilistic function fit to the experimental

data using a logistic function - which transforms the non-linear data into a linear model

through a logistic regression fit -. Importantly, we have chosen to use a logistic function

for our model because it is suitable for non-parametric data and does not require a

linear relationship between the predictors and the probability of the target outcome.

The probability function depends on the values of certain principal components, which

are calculated based on the polarimetric indicator values measured from the samples.

We used SPSS software to conduct a step-wise regression with backward elimination

and the Wald estimator [193] to determine the most significant principal components.

This routine allow us to obtain the following probabilistic functions for the four studied

tissues:

PMuscle =
1

1 + e�(�2.183C1+1.535C4�1.280C5�1.077C8+0.629C9�1.879)
, (27)

PTendon =
1

1 + e�(�2.213C1�2.358C4+1.625C5+1.257C6+1.059C8�3.128)
, (28)

PMyotendinous =
1

1 + e�(0.900C1�0.573C9+0.589C10�0.934)
, (29)

PBone =
1

1 + e�(1.018C1+0.715C2+0.621C4�1.452C6�1.437C7�0.688C10�3.132)
. (30)
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The e�ciency of the four probabilistic models was studied by computing the asso-

ciated ROC curves, represented in Fig. 30. The AUC values were significantly larger

than those obtained when representing the principal components alone (see Table 1).

The AUC values for the muscle, tendon and bone tissue models are high (0.92, 0.95

and 0.89 in Fig. 30, respectively), which highlights the superior discriminatory poten-

tial of the probabilistic functions. The myotendinous junction model has the lowest

discriminatory potential (AUC = 0.79).

Figure 30: ROC curve of the probabilistic model for (a) tendon, (b) muscle, (c) myotendinous
junction and (d) bone. [Reproduced from [174]].

Models in equations (27-30) output a probability value between 0 and 1 associated

with the likelihood of a tissue belonging to a certain category. To build a dichotomous

model, a threshold must be set to distinguish between a ”Yes” or ”No” classification.

However, each threshold will result in di↵erent sensitivity and specificity values. We

use the Youden’s Index [194] to determine the optimal threshold, which corresponds

to the farthest point from the ROC diagonal on the ROC curve, as calculated by d =

sensitivity + specificity – 1. Table 2 shows the computed Youden’s index, sensitivity

and specificity values for each model. The muscle, tendon and bone models have high

60



specificity and sensitivity values (above 80%). The worst result is for the myotendinous

junction tissue with a specificity of 71%.

Table 2: AUC, Youden’s index, sensitivity and specificity of each predictive model. [Reproduced
from [174]].

Muscle Tendon Myotendinous junction Bone

AUC 0.923 0.948 0.789 0.893

Threshold

(Youden’s index)
0.392 0.351 0.285 0.162

Sensitivity (%) 86.0 85.3 82.0 82.6

Specificity (%) 88.8 93.5 71.0 80.6

The sensitivity and specificity results for the predictive models in Table 2 demon-

strate their ability to classify the studied organic tissues. Additionally, the study

highlights the potential of using predictive models based on polarimetric data to di↵er-

entiate between animal tissues and suggests potential applications, such as in medical

imaging. To further demonstrate the potential of this method, an algorithm was de-

veloped such that it applies the probabilistic function to each pixel of the image of a

measured sample. Specifically, using a Mueller matrix image of an arbitrary chicken

tissue measured at three wavelengths (625 nm, 530 nm, 470 nm), the 27 polarimetric

images were calculated. Accordingly, the algorithm calculates the probability of the

pixel being recognized as a particular tissue (resulting in a probability image with val-

ues ranging between 0 and 1) using the functions in equations (27-30). The predictive

model was tested for arbitrary samples of tendon, muscle, myotendinous junction and

bone. In all cases, the results of the algorithm demonstrated its high capability and

accuracy when classifying the corresponding tissues; thus indicating that the proposed

models are suitable for tissue classification and recognition, as shown by the sensitivity

and specificity outcomes in Table 2.

As a representative example, Fig. 31 illustrates the probability function images

for the four predictive models (equations (27-30)) when analyzing an arbitrary sample

of a chicken tendon. The figure includes the intensity image of the tendon (M00,

Fig. 31a) and the output images of the probabilistic models for recognizing muscle

(Fig. 31b), tendon (Fig. 31c), myotendinous junction (Fig. 31d), and bone (Fig.

31e). The probability images are presented in gray scale, with white representing the

maximum probability value (1) and black representing the minimum (0). The tendon

predictive model (Fig. 31c) shows the highest probabilistic values, correctly classifying

the sample as a tendon. The probability images for muscle (Fig. 31b), myotendinous

junction (Fig. 31d), and bone (Fig. 31e) have significantly lower values and correctly
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classify the sample as no-belonging to their corresponding tissue classes (values close to

zero). The myotendinous junction model has the largest values among these models,

but is the least sensitive and specific, as previously discussed. In the same vein, as

the myotendinous junction is a transition between tendon and muscle, it is the most

di�cult tissue to be properly classified.

Figure 31: Intensity image M00 (a) and probability image outcome when applying the Muscle-model
(b), Tendon-model (c), Myotendinous junction-model (d) and Bone-model (e) on an arbitrary chicken
tendon sample. The gray level bars, placed to the right of the corresponding probability function
images, defines the probability of the pixel to be recognized as a particular tissue, in a range between
one (white) or zero (black). [Reproduced from [174]].

4.4 Paper D – Optimizing the classification of biological tissues using

Machine Learning models based on polarized data

The potential of polarimetric methods to enhance the visualization of di↵erent organic

tissue structures is now being used to construct recognition models (as discussed in

Paper C [174]), which may be useful as a guided assistance for clinical procedures or

for the early detection of pathologies in animal and vegetal tissues. In the literature,

di↵erent proposals using polarimetric data to train tissue recognition models based on

regressive [174] or classificatory methods have been found [111, 112, 116]. Machine

learning (ML) models trained with polarimetric data have been found to be suitable
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for classification purposes [109, 111, 112, 114, 118]. Studies have shown sensitivity

to malignant formations in ex-vivo colon samples [111, 112], accurate classification of

healthy and cancerous tissue in histological sections of breast tissues [109] and early

diagnosis of carcinoma in skin [114], among others.

When building recognition models, di↵erent polarimetric observables can be used

for their physical interpretation of samples and their potential for contrast or classifi-

cation. These observables are derived from the Mueller matrix of the sample, which

includes all measurable information on linear polarimetric light-matter transformations.

However, these mathematical transformations may result in loss of relevant informa-

tion and decreased performance of the recognition models. This is an important issue

not discussed in the literature so far, and that becomes the central goal of this work.

In this study (Paper D [175]), we compare di↵erent sets of polarimetric observ-

ables to determine the most suitable framework for biological tissue classification tasks.

We aim to evaluate the possible loss of relevant information when transitioning from

Mueller matrix elements to physically interpretable polarimetric observables using three

di↵erent datasets (labeled A, B and C). The first dataset, A, includes 10 polarimet-

ric observables such as the Indices of Polarimetric Purity (IPPs, P1, P2 and P3), the

Components of Purity (CPs, comprising the degree of spherical purity PS, polarizance

P and diattenuation D), the depolarization index P�, global and linear retardance (R

and �, respectively) and retarder rotation  , obtained from the corresponding Mueller

matrices at the illumination wavelengths of 625, 530 and 470 nm. This results in a

total of 30 observables. Note that the selection of the observables we chose for the

study is not arbitrary but we selected a set of observables that fully inspect the main

polarimetric features of a sample: dichroism, birefringence and depolarization. The

second dataset, B, consists of 15 Mueller matrix elements (excluding the coe�cient

m00) measured at the same three illumination wavelengths. The third dataset, C, con-

tains the 75 features from datasets A and B together. We also consider the influence

of di↵erent wavelengths within the visible range on recognition model’s performance as

di↵erent wavelengths interact with samples di↵erently. The study is conducted in a set

of 33 ex-vivo chicken thigh specimens from which we dissected bones and soft tissues

(muscle, tendon and myotendinous junction). The complete description of the samples

is provided in section 3.2. Particularly, we measured the experimental Mueller matrix

- by means of the complete image Mueller polarimeter described in section 3.1 - from

a total of 165 samples (50 muscles, 34 tendons, 50 myotendinous junctions, and 31

bones). Our raw database consists of: 3 wavelengths ⇥ 25 observables (corresponding

to 15 normalized MM elements excluding m00 + 10 polarimetric observables) = 75

features per type of tissue (tendon, muscle, myotendinous junction and bone).
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We start by applying a data cleansing process to the raw data. To do so, we

selected a reduced region of interest (ROI) of 150 ⇥ 150 pixels from the original 512

⇥ 512-pixel images to ensure that the images consist of pixels only from the specific

tissue, and to avoid artifacts and misleading information. This resulted in homogeneous

tissue sub-region images that exclusively contain the desired tissue information and do

not include saturated pixels or background information. Machine learning algorithms

are trained using a set of labeled data known as training data and their classification

accuracy is evaluated using a separate set of data, referred to as test data, which is

not included in the training set. Therefore, we divide our dataset into two mutually

exclusive sub-sets, one for training and one for testing the algorithms. This division

consists of 80% of the data for training and 20% for testing. To avoid overfitting, we

created two separated datasets containing tissues from di↵erent chicken samples, with

50 muscles, 34 tendons, 50 myotendinous junctions, and 31 bones. To increase the

amount of data for training and testing, we divided each 150 ⇥ 150 pixels sub-sample

image into a grid of 15 ⇥ 15 sub-ROIs, with each sub-ROI having a 10 ⇥ 10 pixels

size. This resulted in an increase of 37,125 samples from the original 165 samples in

the raw database, with 75 features per sample: we augmented the original data to

11,250 muscle images (9,000 for training and 2,250 for testing), 7,650 tendon images

(6,075 for training and 1,575 for testing), 11,250 myotendinous junction images (9,000

for training and 2,250 for testing), and 6,975 bone images (5,625 for training and 1,350

for testing) respectively.

The importance of the di↵erent features within these A, B and C datasets is eval-

uated using the Boruta algorithm [195]. This algorithm is commonly employed to

identify the salient features and eliminate those that are not essential for classification,

potentially improving the performance of the classifier. Our results indicate that, in

this study, the Boruta algorithm identifies the entire set of features in datasets A, B,

and C as important and therefore, none of the polarimetric observables nor the Mueller

matrix elements were removed from the datasets. It is worth noting that the Boruta

algorithm was utilized in this study to select the most pertinent features, however,

alternative approaches such as factor analysis, could have been employed as well.

We trained various algorithms commonly found in the literature to train on our

datasets A, B, and C. In order to maintain the focus of the manuscript, we restricted

the examination to the four models that yielded the highest accuracy: an Artificial

Neural Network (ANN) [121], Support Vector Machines (SVMs) [125], Light Gradient

Boosting Machines (LGBMs) [196], and Extreme Gradient Boosting (XGBoost) [197].

This resulted in the creation of 12 final models: (1) ANN with A, (2) ANN with B, (3)

ANN with C, (4) SVM with A, (5) SVM with B, (6) SVM with C, (7) LGBM with A,
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(8) LGBM with B, (9) LGBM with C, (10) XGBoost with A, (11) XGBoost with B,

and (12) XGBoost with C.

We initiate the training process for multiple machine learning (ML) algorithms

using a set of pre-determined initial parameters. The model parameters are then fine-

tuned using A, B, and C training datasets. This process is iteratively repeated until the

classification error on the training data is su�ciently small, as determined by the accu-

racy score. To optimize our classifiers, we employ the random search cross-validation

method (with five-fold partitioning) as described in [198]. Finally, the performance of

the various classifiers is evaluated by applying them to test data, which are classified

into one of the four classes under investigation: bone, muscle, tendon, and myotendi-

nous junction. The optimization results are presented in terms of the global accuracy

score, which is defined as the ratio of correct predictions to the total number of pre-

dictions made. The corresponding results are summarized in Table 3.

Table 3: Global accuracy score (in %) obtained from each of the 12 classification models. Labels A,
B and C denote for the polarimetric datasets. Gray-colored boxes indicate the highest accuracy score
obtained from each classifier. [Adapted from [175]].

Database

(Number of features)

Artificial

Neural Network
SVM LGBM XGboost

A(30) 81.980 80.835 79.690 80.741

B(45) 88.754 85.549 86.774 86.626

C(75) 89.172 85.832 86.519 85.253

Accuracy score (%)

From Table 3 it is determined that the worst results were obtained for dataset A,

regardless of the chosen machine learning classifier. Notably, dataset A is constructed

by incorporating data from di↵erent polarimetric observables, without considering the

raw MM elements. In contrast, dataset B is created by exclusively considering 15

normalized elements of the Mueller matrix. Lastly, dataset C is formed by combining

all the features in datasets A and B (i.e., A + B). The inferior performance associated

with dataset A implies that the raw information of the Mueller matrix elements is

crucial for the development of classification models. This is demonstrated by the fact

that, for all the studied classifiers (as seen in Table 3), datasets B and C improved the

performance of models based on dataset A by approximately 6%. This suggests that the

transformations applied to the MM elements, when calculating di↵erent polarimetric

observables, result in a loss of vital information for classificatory model development.

While polarimetric observables can be useful for physical interpretation of a sample in

various scenarios, they may not be the optimal framework for classification purposes.
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Furthermore, the Artificial Neural Network (ANN) and support vector machines

(SVM) achieved the highest accuracy scores on dataset C, with percentages of 89.172%

and 85.832%, in Table 3, respectively. Meanwhile, the light gradient boosting machine

(LGBM) and extreme gradient boosting (XGBoost) exhibited the best performance on

dataset B, with percentages of 86.774% and 86.626%, in Table 3, respectively. These

results indicate that the use of normalized Mueller matrix elements alone or in combina-

tion with polarimetric observables may be beneficial depending on the chosen classifier.

Notably, only ANN and SVM exhibit a slightly improved performance on dataset C

(A + B) compared to dataset B, with an increase greater than 1%. However, in ap-

plications where high recognition rate is essential, even a small improvement may be

significant. Thus, the use of raw Mueller matrix data in conjunction with transformed

polarimetric data may be recommended. Additionally, the results of comparing various

machine learning models for fixed datasets (shown in Table 3) indicate that the best

performance is consistently achieved with an Artificial Neural Network (ANN) classi-

fier. This suggests that among the machine learning algorithms evaluated in this study,

ANNs are the most appropriate for classifying the studied tissues. Moreover, this result

is noteworthy given the physiologically similarity between the tissue types correspond-

ing to tendon, muscle and myotendinous junction (see the physiological description

of soft tissues, in section 3.2). In particular, the myotendinous junction is a complex

structure composed of skeletal muscle and tendon. The transition between muscle

and tendon is characterized by a variable proportion of muscle and tendon fascicles.

The varying proportion of muscle and tendon at the myotendinous junction highlights

the potential for increased accuracy when investigating healthy and pathological tissue

samples.

This last hypothesis is reinforced when studying the classifiers in terms of the

confusion matrix. The confusion matrix [199] allows us to study the classification per-

formance of our classifiers when comparing the predicted (columns) and real (rows)

tissue classes. As a representative example, in Fig. 32 we present the confusion matrix

for the ANN, which revealed that this classifier achieved high accuracy for classify-

ing tendon (99.36%) and muscle tissue (90.49%), with lower accuracy for classifying

myotendinous junction (80.89%) and bone tissue (88.89%).
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Figure 32: Confusion matrix and accuracy score obtained from testing the Artificial Neural Network
with the dataset C, the merged (polarimetric observables + MM elements) – label C. [Reproduced
from [175]].

So far, we have demonstrated that the inclusion of raw MM elements in

polarimetric-based classification models is crucial for achieving optimal performance.

This is significant as many proposals in literature omit the raw MM elements in fa-

vor of polarimetric observables, which provide physical interpretation but at the cost

of lost information and decreased accuracy in classification. This suggests that the

conversion from MM elements to polarimetric observables leads to loss of information

that is detrimental to the accuracy of classificatory models. Therefore, we suggest to

prioritize the use of databases with explicit information on MM elements for biological

tissue classification tasks. Additionally, among the ML algorithms investigated in this

work, the use of Artificial Neural Networks (ANN) is identified as the most appropriate

approach for global classification tasks.

We now study the applicability of classification models for image classification of

tissues. To test this, we construct an artificial image composed of four sub-images of

256 ⇥ 256 pixels each, representing muscle, tendon, myotendinous junction, and bone

tissue. These images are randomly selected from tissue measurements not used for

training the classifiers, and normalized to a maximum intensity value of 1. Figure 33

shows the resulting composition of these randomly selected tissue samples measured

at 625 nm illumination wavelength.
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Figure 33: Visual composition containing the normalized intensity images corresponding to random
samples of (1) muscle, (2) tendon, (3) myotendinous junction and (4) bone; at 625 nm. [Reproduced
from [175]].

We want to conduct a pixel-by-pixel imaging classification test. For this purpose,

we utilize the normalized Mueller matrix elements and polarimetric observables at

three wavelengths to test the predictive capacity of the methods for tissue composition

imaging as shown in Fig. 33. The models are constructed using mean values from 10

⇥ 10 pixel sub-images of tissue. This selection is crucial for the successful recognition

of pixel-to-pixel data, as it provides information that is not far from a single pixel. By

properly grouping this obtained data, we generated three new polarimetric datasets

(like the previous A, B and C), labeled as A’, B’ and C’. The trained classifiers were

evaluated on datasets A’, B’ and C’ to assess their classification performance and a 512

⇥ 512 pixel image was created, with each pixel representing a tissue class, indicated

by a corresponding color. This image was compared to the actual tissue image (Figure

33) for visual analysis. The imaging recognition was conducted using the ANN, SVM,

LGBM and XGBoost classifiers. However, to not to extent the content, we show the

results obtained for the XGBoost as a representative example in Fig. 34. Similar im-

ages were demonstrated for the three remaining models of ANN, SVM, and LGBM.

It is important to note that Fig. 34 includes three images corresponding to the anal-

ysis based on the three datasets (A’, B’ and C’). The original image consist of four

sub-images each one representing the di↵erent tissues (muscle, tendon, myotendinous

junction, and bone in Fig. 33). The final classification image (Fig. 34) consists of four

sectors, each one representing the performance of the ANN in classifying one of these

four tissues. Tissue assignment is visualized with a particular color: purple (muscle),
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blue (tendon), green (myotendinous junction), and yellow (bone).

Figure 34: XGBoost imaging tissues classification performance and global accuracy scores of four
random samples corresponding to muscle, tendon, myotendinous junction and bone. [Adapted from
[175]].

Ideally, the resulting image would feature purple in the upper-left corner, blue in

the upper-right corner, green in the bottom-left corner, and yellow in the bottom-right

corner, indicating that all pixels in the image have been correctly classified. However,

as depicted in Figure 34, there are instances of misclassification, particularly for the

muscle class (upper-left block), where some pixels are classified as green (myotendinous

junction) or yellow (bone). Conversely, the myotendinous and bone classes (bottom-left

and bottom-right corners) exhibit the highest degree of accuracy. It is noteworthy that

the original image of the bone (as depicted in the right-bottom sub-image of Figure 33)

includes the presence of a background (holder) in which the bone sample is placed. The

application of XGBoost model to this image allows for the identification of the edge of

the bone sample, as demonstrated in Fig. 34a and 34c. This is achieved by classifying

the holder pixels as an arbitrary tissue class (represented by the green small triangle

located at the bottom-left of the images), resulting in a visual contrast. These findings

highlight the need for proper recognition of the holder through the inclusion of a new

class in the training of the models, utilizing polarimetric data specifically related to

holder measurements. Furthermore, the muscle class is the most poorly classified, with

some pixels being misclassified as bone or myotendinous junction. We suggest that

the observed misclassifications in the mean values-based model, which utilizes averages

taken over 10 ⇥ 10 pixel images, arise from its application in individual pixel-to-pixel

analysis. It is important to note that this analysis was performed on a single example,

whereas the models used in the study account for information from a much larger

number of images (50 ⇥ 255 = 12,750 in the case of muscle analysis). Furthermore,

the global accuracy scores for the three datasets presented in Fig. 34 demonstrate

consistent performance, with scores of 86.465% for the A’ dataset, 96.656% for the B’
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dataset, and 95.740% for the C’ dataset. Notably, the B’ dataset exhibited the best

results among the three datasets tested (Figure 34b), which highlights the importance

of including raw MM elements to improve classification model performance.

On the classification results obtained from the three remaining machine learning

models of ANN, SVM and LGBM, they demonstrate that the inclusion of additional

raw data (B’ and C’ datasets) improved the tissue classification performance. To give

some numbers, the global accuracy scores for the ANN are of with scores of 88.135%

for the A’ dataset, 96.649% for the B’ dataset, and 96.258% for the C’ dataset. SVM

model are of 78.785%, 92.703% and 95.736% for datasets A’, B’ and C’, respectively.

Regarding the LGBM, the global accuracy scores are of 87.577%, 97.279% and 95.891%

for datasets A’, B’ and C’, respectively. It worth to mention that the LGBM and

XGBoost models demonstrate excellent classification of tendon, myotendinous junction,

and bone tissues, with rates above 99%. However, the muscle tissue is the worst

classified class. Overall, the results indicate that LGBM and XGBoost models are the

best performing models for the composed image studied, providing similar results with

classification di↵erences smaller than 0.5%.

The results hereby presented demonstrate that, when applying the methods for

pixel-to-pixel imaging classification, the inclusion of MM-raw data is crucial to achieve

optimal classification of biological tissues.

5 Conclusions

The research presented in this thesis has provided a comprehensive examination of the

use of polarimetric observables for the inspection of biological tissues. First, we have

demonstrated the utility of polarimetric observables, specifically the Indices of Polari-

metric Purity (IPPs) and the Components of Purity (P, D, and PS), for identifying plant

disease symptoms. Additionally, we have shown that the implementation of a pseudo-

coloration image processing method, which utilizes these polarimetric observables, is

an e↵ective tool for enhancing the contrast between di↵erent tissue types (healthy,

necrotic, and chlorotic) in botanical samples. Our results indicate that depolarizing

metrics have the potential to characterize various plant pathologies, as demonstrated

in 18 di↵erent plant species infected by various pathogens. For the purpose of this

study, we have focused on two important agricultural crops: alfalfa (Medicago sativa)

and olive (Olea europaea).

In the study of M. sativa leaves, the use of polarimetric imaging techniques, specif-

ically the depolarization-related observables resulted in a significant enhancement of

image contrast between healthy and diseased regions as compared to standard unpolar-
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ized light intensity images. This improvement in visibility is evident in the observation

of chlorotic spots and vascular structures, which were barely observable in the standard

intensity images. Moreover, the use of visualization and contrast improvement tech-

niques in polarimetric imaging allowed us for precise measurement of diseased regions

in M. sativa plant sample. In the case of the O. europaea sample, polarimetric observ-

ables revealed an increased contrast compared to non-polarized transmission/scattering

images, providing a more accurate visualization and spatial delimitation of lesions in

the leaf. The use of polarimetric observables also unveiled the presence of vascular

structures not visible in non-polarized transmission/scattering images. In addition,

the width of the necrotic ring and the diameter of the chlorotic spot became clearly

delimited in polarimetric images.

We also utilized polarimetric images to investigate the potential of characteriz-

ing disease symptoms in vegetal tissues. By collecting pixels from the original image

and representing them in a data cloud figure, we aimed to determine if regions corre-

sponding to di↵erent tissue conditions could be discriminated. The data clouds were

generated using a three-dimensional representation of the Indices of Polarimetric Pu-

rity (IPPs) and the Components of Purity (CPs). The results from the analysis of a M.

sativa leaf demonstrated clear discrimination between healthy and chlorotic regions, as

these tissue conditions were practically spatially separated in both the IPPs and CPs

space, indicating the potential utility of this approach in characterizing disease symp-

toms in vegetal tissues. The same analysis conducted on the O. europaea leaf tissue

indicated that the depolarizing properties of both IPPs and CPs spaces can e↵ectively

discriminate between healthy, chlorotic, and necrotic tissue regions.

To take advantage of this discriminatory behavior, we employed the pseudo-

coloration approach to enhance the contrast of polarimetric images for improved visual

discrimination of features present in complex scattering media. Our method utilized

triplets of polarimetric observables encoded in the R, G, and B color channels. To the

best of our knowledge, this is the first use of the polarization based pseudo-coloration

approach for the analysis of plant disease symptoms. We improved upon previous

methods by incorporating an optimized selection of polarimetric observables within

the IPPs and CPs spaces and by including an image filtering process based on data

obtained from a Boxplot analysis. These modifications allowed for a more accurate

discrimination between healthy and diseased tissue. In particular, the final pseudo-

colored images for M. sativa and O. europaea demonstrate a visual enhancement of

disease symptoms, leading to a more accurate location of the damaged area. Impor-

tantly, it is noteworthy that the pseudo-colored images enhance the contrast between

di↵erent tissue conditions, even more than the performance of isolated imaging of po-
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larimetric observables for M. sativa and O. europaea samples. This behavior highlights

the suitability of using this image-processing method for analysis of biological samples.

Specifically, it can be used for the inspection and estimation of direct lesions, and the

characterization and early detection of infection processes on plant tissues.

As previously stated, recent studies have proposed the use of pseudo-colored images

to enhance the visualization of tissue imaging, not only in plants, but also in biological

tissues of animal origin. These images are constructed by layering di↵erent polarimetric

features of the sample, allowing for the inclusion of multiple polarimetric information

origins in a single image. The methods employed to construct these images typically

involve a qualitative selection of polarimetric observables and their relative weights,

resulting in a pseudo-colored model that may not be optimal. This suggests a need

for further research to develop more robust and objective methods for creating these

images. In this thesis, we introduced two novel pseudo-coloring models for optimized

enhancement of the visual contrast of di↵erent tissues in biological samples. These

models are based on the Euclidean distance and Normal (Gaussian) function, and

utilize the Indices of Polarimetric Purity (IPPs) and Components of Purity (CPs)

spaces to optimize tissue discrimination. Both methods involve associating di↵erent

colors with specific tissue classes, resulting in pseudo-colored images that incorporate

a range of polarimetric observables. These approaches outperform previous methods

based on basic linear combinations of polarimetric observables, which were obtained

using non-optimal and heuristic approaches. The Euclidean method was found to be

e↵ective in discriminating between two classes in the samples studied, but is limited to

only two classes. On the other hand, the Normal-based approach could discriminate

between more than two classes and provided a probabilistic interpretation of the data,

making it useful as an automatic classifier. However, it is sensitive to the statistical

distribution, variance, and presence of outliers in the data.

The obtained results demonstrate that these models outperform traditional po-

larimetric observables in terms of spatial location, visualization, and recognition of

structures within the samples. It should be noted that these pseudo-colored functions

are not limited to polarimetric spaces and can be applied to other approaches such

as image segmentation and coloring. Further comparison is needed to determine the

optimal scenario for pseudo-colored imaging. We have chosen to use the IPPs and

CPs observables in our proposed methods as previous research has demonstrated their

suitability for tissue discrimination. Our results indicate that the choice of observable

basis, either IPPs or CPs, depends on the characteristics of the sample being analyzed.

Therefore, we recommend using both the IPPs and CPs observables in order to achieve

the best possible visualization of structures in tissue samples.
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Polarimetric techniques have become increasingly prevalent in biomedical applica-

tions due to their ability to provide enhanced contrast of certain structures and reveal

information that is not accessible through non-polarimetric methods, as demonstrated

in this thesis. The utilization of polarimetric data in clinical applications has led to

improved visualization of structures, and the integration of these techniques in auto-

matic recognition models has facilitated the classification of tissues and early detection

of certain pathologies.

With this in mind, we designed four predictive models based on polarimetric met-

rics derived from ex-vivo chicken tissue samples (bone, tendon, muscle and myotendi-

nous junction tissue) for tissue recognition. Our results showed that the data was

non-parametric and had significant potential for tissue discrimination. To construct

a robust predictive model, we applied Principal Component Analysis on the data,

which reduced the dimension of the data space while preserving important informa-

tion. By analyzing the connection between the Principal Components and the original

polarimetric metrics, we found that di↵erent variability directions in the principal com-

ponents space can be associated with di↵erent physical origins of tissue structures.

We used principal component analysis to construct a logistic regression-based model

for each of the four studied tissue categories. The models achieved high sensitivity and

specificity values: 85.3% and 93.5% for the tendon model, 86.0 % and 88.8 % for

the muscle model, 82.6 % and 80.6 % for the bone model, and 82.0 % and 71.0 %

for the myotendinous junction model. The results provide a complementary visual

interpretation for tissue recognition, with a satisfactory level of categorization as per

the sensitivities and specificities stated earlier. The proposed non-invasive methods

discussed in this study could be applied in various biomedical scenarios, such as early

diagnosis of pathologies, with the appropriate statistical data.

The Mueller matrix (MM) is a widely utilized framework for analyzing the polari-

metric response of samples. The MM encodes important polarimetric features such

as dichroism, birefringence, and depolarization. To gain a physical understanding of

a particular sample’s features, a variety of polarimetric observables have been derived

from experimental Mueller matrices in literature. These polarimetric observables are

currently being utilized in various biomedical scenarios to train classification models.

In the last work of this thesis, we studied the potential loss of classificatory informa-

tion during the mathematical transformation from MM elements to derived polarimet-

ric observables. Through an examination of the ideal set of polarimetric features for

creating classificatory models, it was determined that the use of raw MM elements,

MM-derived polarimetric observables, or a combination of both, may yield the most

accurate results. This issue has not been previously reported in the literature and
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highlights the importance of considering the preservation of classificatory information

during the polarimetric feature extraction process. To do so, we measured the experi-

mental Mueller matrices from a collection of four ex-vivo chicken tissue types (muscle,

tendon, myotendinous junction and bone) at three di↵erent wavelengths (625, 530 and

470 nm) within the visible range. These measurements were used to create a polari-

metric database from which three specific datasets were derived: A, B, and C data-

sets considering MM-derived observables (A), normalized MM-elements (B) and the

combination of both (C). These datasets were utilized to train well-known machine

learning classifiers, with a focus on four specific models: Artificial Neural Network

(ANN), Support Vector Machine (SVM), Light Gradient Boosting Machine (LGBM)

and Extreme Gradient Boosting (XGBoost). Each of these models were trained using

the three datasets, resulting in 12 classification models which were then compared in

terms of tissue classification performance. We evaluated the suitability of these models

based on global accuracy scores. Results showed that the ANN classifier trained with

dataset C, which included both MM raw data and polarimetric observables, yielded the

highest global accuracy of 89.172%. This suggests that the inclusion of a mix of infor-

mation improves the classification performance of the models. Additionally, dataset B

(raw MM elements alone) also produced a high global accuracy of 88.754%. However,

dataset A (MM-derived polarimetric observables alone) resulted in the lowest global

accuracy of 81.980%. This trend was consistent across all the classification models

tested. These findings emphasize the importance of incorporating raw MM elements in

recognition models based on polarimetric data and have not been reported in previous

literature. In addition, we also evaluated the performance of the classifiers by com-

puting the corresponding confusion matrix. The results for the best-performing model

(ANN with the C model) indicated that the tendon class was excellently classified, with

an accuracy of 99.36%. Conversely, the myotendinous junction class was found to be

the most challenging to classify, with a best result of 81.16% accuracy. This di�culty

in classification can be attributed to the transitional nature of myotendinous junction

tissue between muscle and tendon, resulting in misclassification with one of these two

classes.

Finally, the potential for using the created models for image classification was

evaluated. An artificial image composed of four di↵erent tissue images was constructed

from the testing data and used to create three new datasets (A’, B’, and C’). The

previously developed models were then applied to these datasets to predict the tissue

class for each pixel of the new image. The results showed that the best proposed models

achieved global accuracy scores higher than 97% with classification rates above 99% for

tendon, myotendinous junction, and bone, as observed for XGBoost and LGBM models

when applied to B’ and C’ datasets (i.e., including raw MM-elements). Among the four
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tissues studied, muscle was the worst classified tissue, with the best results obtained

using the ANN model (B’ dataset), achieving a misclassification rate of less than 6%.

The results suggest that optimal classification of di↵erent tissues can be achieved by

using di↵erent algorithms and highlight the potential for creating ensemble methods

that combine multiple machine learning algorithms for improved performance.

It is worth to mention that we chose to study chicken tissue due to its similarities

to human tissue and the ease of obtaining samples. While further validation on human

tissue is necessary, our findings suggest that these methods may have applications in

biomedical assistance, such as the early detection of certain cancers or skin pathologies.
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“Imaging polarimetry of forest canopies: How the azimuth direction of the

sun, occluded by vegetation, can be assessed from the polarization pattern

of the sunlit foliage,” Appl. Opt., vol. 46, no. 23, pp. 6019–6032, 2007. doi:

10.1364/AO.46.006019.

[61] O. Dubovik et al., “Polarimetric remote sensing of atmospheric aerosols: Instru-

ments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat.

Transfer, vol. 224, pp. 474–511, 2019. doi: 10.1016/j.jqsrt.2018.11.024.

[62] S. Ding, J. Wang, and X. Xu, “Polarimetric remote sensing in oxygen a and b

bands: Sensitivity study and information content analysis for vertical profile of

aerosols,” Atmospheric Measurement Techniques, vol. 9, no. 5, pp. 2077–2092,

2016. doi: 10.5194/amt-9-2077-2016.

[63] Z. Kong et al., “A polarization-sensitive imaging lidar for atmospheric remote

sensing,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 271,

p. 107 747, 2021, issn: 0022-4073. doi: https://doi.org/10.1016/j.jqsrt.

2021.107747.
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[168] I. S. José and J. J. Gil, “Invariant indices of polarimetric purity: Generalized

indices of purity for n×n covariance matrices,” Optics Communications, vol. 284,

no. 1, pp. 38–47, 2011. doi: https://doi.org/10.1016/j.optcom.2010.08.

077.

[169] Gil, J. J., “Polarimetric characterization of light and media - physical quantities

involved in polarimetric phenomena,” Eur. Phys. J. Appl. Phys., vol. 40, no. 1,

pp. 1–47, 2007. doi: 10.1051/epjap:2007153.

[170] J. J. Gil, “Review on Mueller matrix algebra for the analysis of polarimetric

measurements,” Journal of Applied Remote Sensing, vol. 8, no. 1, p. 081 599,

2014. doi: 10.1117/1.JRS.8.081599.

[171] A. Peinado, A. Lizana, J. Vidal, C. Iemmi, and J. Campos, “Optimization and

performance criteria of a stokes polarimeter based on two variable retarders,”

Opt. Express, vol. 18, pp. 9815–9830, 2010.
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Polarimetric observables 
for the enhanced visualization 
of plant diseases
Carla Rodríguez1*, Enrique Garcia‑Caurel2, Teresa Garnatje3, Mireia Serra i Ribas1, 
Jordi Luque4, Juan Campos1 & Angel Lizana1

This paper highlights the potential of using polarimetric methods for the inspection of plant diseased 
tissues. We show how depolarizing observables are a suitable tool for the accurate discrimination 
between healthy and diseased tissues due to the pathogen infection of plant samples. The analysis 
is conducted on a set of different plant specimens showing various disease symptoms and infection 
stages. By means of a complete image Mueller polarimeter, we measure the experimental Mueller 
matrices of the samples, from which we calculate a set of metrics analyzing the depolarization content 
of the inspected leaves. From calculated metrics, we demonstrate, in a qualitative and quantitative 
way, how depolarizing information of vegetal tissues leads to the enhancement of image contrast 
between healthy and diseased tissues, as well as to the revelation of wounded regions which 
cannot be detected by means of regular visual inspections. Moreover, we also propose a pseudo‑
colored image method, based on the depolarizing metrics, capable to further enhance the visual 
image contrast between healthy and diseased regions in plants. The ability of proposed methods to 
characterize plant diseases (even at early stages of infection) may be of interest for preventing yield 
losses due to different plant pathogens.

Polarimetric instrumentation and methods are of interest in a wide range of applications, as for instance, 
in  astronomy1, atmospheric pollution  studies2,3, security and remote  sensing4, materials  characterization5, 
 biomedicine6, etc. In the case of applications in biophotonics, polarimetric methods have proved to be very 
useful tools to enhance the image contrast of some organic structures, and/or providing information of certain 
structures invisible by using regular (non-polarimetric) images. !is situation is useful, for instance, for the early 
detection of some diseases, such as breast  cancer7,8, colon  cancer9, skin  cancer10, or brain  cancer11, among others.

!e above-stated use of polarimetric methods for the study of  animal12 or even  human8–10 tissues is a well-
established "eld of  work13 and nowadays continues in constant development. However, the application of pola-
rimetric methods for the study of plant diseases is less common and, in the last decade, there is a growing 
interest of exploring more complex (and rich in terms of information) polarimetric solutions for applications 
in plant science. Historically, one of the most widely used polarization-based optical instruments for studying 
plant structures is the polarimetric  microscope14. !is instrument allows clear observation of vegetal cells, as 
centrosome-nuclear complexes in cell  division15 or cell suspension culture of plant specimens, as in Picea glauca16. 
Note that polarimetric features exploited by polarimetric microscopes are dichroism and birefringence, when 
they are present in samples. For instance, in the case of vegetal structures, dichroism measurements reveal the 
concentration and spatial organization of some plant organelles such as pigment–protein complexes in plant 
thylakoid  membranes17,  chloroplasts18, or  quantasomes19. Moreover, the birefringence signature of some struc-
tures and macromolecules (for instance, cellulose), allows to study the cell wall  composition20, the trichomes 
 structure21 or  stomata22.

In addition to dichroism and birefringence, depolarization is third polarimetric channel which provide valu-
able information, although it has been underused in plant characterization. Depolarization is a statistical concept 
originated by incoherent (temporal or spatial) addition of di#erent light polarizations at the level of the detector, 
and it can be understood as the degree of polarization disorder (randomness) introduced by a given structure 
to an input polarization. A suitable tool for studying depolarizing information are Mueller  polarimeters23,24, 
that commonly performs macroscopic analysis of samples. Recent  works4,25,26 have shown and discussed the 
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advantages of the depolarization-related observables to enhance image contrast between di#erent plant structures 
of interest, as midrib, secondary veins, stomata and raphides. !is is because their constituent units (cellulose, 
pectin, water content, among others) present di#erent polarimetric features (retardance or dichroism) and/
or di#erent spatial organization, these situations inducing depolarization at macroscopic scale observation. 
Importantly, depolarization methods have proved to be a very interesting tool for the inspection of plant tissues, 
independently or in combination to other optical instrumentation, as spectroscopic instrumentation, phase or 
$uorescent microscopy, among  others25,27.

A popular "gure or metric to study the depolarizing response of plant structures has been the so-called 
degree of polarization (DoP)26,28, which measures the global change in the polarization degree of a radiation 
beam a%er interacting with a given material media, in our case, a plant tissue. !is metric has been used, for 
instance, to estimate the chlorophyll  content29, the plant  stress30 and for vegetation classi"cation  purposes31. !e 
description of the depolarization provided by the DoP, can be re"ned with the use of the so-called depolariza-
tion metric sets as it has been discussed in recent  works25,26. A depolarization space is a combination of at least 
three depolarization-related metrics which are derived from the Mueller matrix, to enhance the image contrast 
in plant  structures4,25,26,32. !is is the case of the so-called Indices of Polarimetric Purity (IPPs)33,34, that are con-
nected with the type of polarimetric randomness that a system induces to incident light (they give information 
of the depolarization anisotropy of the system, i.e., dependence of the input polarization with the resultant 
depolarization response).

When it comes to plant pathogens, virial infections in plant specimens can induce, among others, a decrease 
in photosynthesis through decreases in chlorophyll e&ciency and the disruption of cellular processes. In turn, 
the damaged cellular metabolism induces the development of abnormal substances which are injurious to the 
functions of the plant. Furthermore, plant diseases caused by fungi infections are generally described by the 
pathogen consuming cells or secreting toxins. !ese may lead to plant tissues containing a mix of both necrotic 
(dead) and healthy tissues intermingled with the fungal mycelium and may induce to microscopic structural 
 changes35. !ose biological modi"cations in plants caused by virus and fungi may be the origin of depolarization 
di#erences between healthy and pathological tissues in plants, but more study must be developed in this research 
line to connect microscopic biological changes with macroscopic depolarization measures. In the present paper 
we discuss for the "rst time, the use of polarimetry and in particular the use of depolarization-related metrics 
for the visualization and characterization of plant diseases. In particular we show how depolarizing metrics are 
suitable for the discrimination between healthy tissues and di#erent type and stages of plant infections. !e 
depolarization set of metrics chosen for the present study is the IPPs set because, as stated before, it provides 
three suitable metrics for plant  visualization25,26. In addition to IPPs, we include in the study, for completeness, 
a second set of depolarizing observables: the so-called Components of Purity (CPs)36. !e selection of these two 
polarimetric spaces is not arbitrary. Whereas the IPPs describe the capability of depolarizing samples to intro-
duce polarimetric randomness to incident light, the CPs provide information of the polarimetric characteristics 
in samples inducing depolarization (diattenuation, polarizance and retardance). Importantly, these two spaces 
result in complementary analytical tools, and their combined use completely describes the polarimetric behavior 
of depolarizing  samples37. We further demonstrate the suitability, from a quantitative and qualitative point of 
view, of such depolarizing spaces for plant diseases visualization enhancement. !e analysis is conducted on a 
set of di#erent botanical specimens showing di#erent disease symptoms and injury stages due to the particular 
infection of di#erent pathogen agents. Moreover, the potential of the method is strengthened by applying a 
pseudo-colored approach that helps to magnify the visual contrast between healthy and diseased tissues, or 
between di#erent stages of the disease. We believe that the use of polarimetric methods, which are non-invasive 
and non-contact, for the early detection of plant diseases are of interest because they may contribute to prevent 
large product (and economical) losses in  crops38,39.

Results
!e results presented in this work are related to the study of two leaf specimens su#ering di#erent infections: (1) a 
leaf from a specimen of Medicago sativa (alfalfa), which was found infected with alfalfa mosaic virus (AMV); and 
(2) a leaf from a specimen of Olea europaea (olive), infected with the fungus Venturia oleaginea (olive leaf spot). 
We have bounded the study in these two representative samples, for the impact and utility of these specimens in 
humans, but the main conclusions of this works can be extrapolated to other specimens and infectious agents. In 
particular, we tested the methods in a set of 73 leaves corresponding to 18 plant diseased species (complete list 
presented in Supplementary Table S1) and the obtained results agree. In the particular case of study, the M. sativa 
and the O. europaea, both leaves showed the characteristic lesions of their respective diseases. Medicago sativa 
showed chlorotic areas surrounding the a#ected vascular structure (see Fig. 1a and Supplementary Fig. S1a). 
In turn, O. europaea showed alternating necrotic and chlorotic ring-like lesions surrounding a chlorotic spot 
(see Fig. 2a and Supplementary Fig. S2a). A description of the plants used on the present study is included in 
the “Methods” section.

!e potential of polarimetric observables for the characterization of the above-mentioned diseases was stud-
ied. !e polarimetric and standard intensity images of the M. sativa and O. europaea leaves were taken by means 
of a complete image Mueller polarimeter working at three di#erent illumination wavelengths (625 nm, 530 nm 
and 470 nm) in scattering and transmission con"gurations. In the context of Mueller matrix-derived images, 
we refer to the standard intensity (i.e., the  M00 coe&cient) as the non-polarized intensity image due to the fact 
that it may be interpreted as the image that would have been taken if the sample was illuminated with natural 
(or unpolarized)  light36. A representative example of standard intensity images of samples can be seen in Figs. 1b 
and 2b. In addition, the detailed description of the polarimeter used in this study can be found in “Methods” 
section. !e results presented here correspond to the underside part of the chlorotic M. sativa and O. europaea 
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leaves measured in scattering and transmission con"guration, respectively, at a wavelength of 625 nm because 
they represent the most relevant and interesting "ndings in terms of image enhancement using the polarimetric 
approach. With regards to the illumination channel selection, 625 nm wavelength light penetrates more deeply 
into the sample than shorter wavelengths (530 nm or 470 nm in our case). In this way, in the case of O. europaea 
leaf, light is capable to reach the opposite surface of the leaf, providing information about the diseased tissues 
at all depth levels. Similar behavior occurs for M. sativa leaf, where 625 nm illumination wavelength measure-
ments provide a more accurate description of the lesions. Complementary measurement con"gurations and their 
respective obtained polarimetric images are presented in Supplementary Figs. S1 and S2.

For the optimal presentation and interpretation of results, we perform a qualitative analysis by comparing 
the acquired standard intensity images with the polarimetric observables described in “Methods” section. For 
consistency, the analysis is complemented with quantitative study regarding the polarimetric behavior on dif-
ferent structures of healthy and diseased tissues of samples. We also present a pseudo-colored approach image 
technique that allows a better visualization of certain healthy and diseased plant structures.

Figure 1.  Polarimetric images of Medicago sativa leaf used in this study. (a) Picture of the underside part of 
the Medicago sativa leaf. White square denotes for selected region of interest (ROI) analyzed in remaining 
images, (b) regular intensity image  (M00) of the M. sativa underside ROI and its corresponding polarimetric 
observables (c) P1, (d) P2, (e) P3, (f) PΔ, (g) P, (h) D and (i) PS for visual comparison. All images correspond to 
625 nm illumination wavelength measurements performed at scattering set-up con"guration. Yellow arrows 
correspond to the enhanced vascular structures within the sample, whereas numeric labels (from 1 to 7) indicate 
the number of chlorotic spots unraveled by means of polarimetric observables.
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Polarimetric analysis of chlorosis and necrosis. By taking advantage of the di#erent depolarizing 
behavior of biological structures in  samples40, we calculated di#erent Mueller matrix-derived polarimetric 
observables images and we compared them with standard intensity images, for the two specimen leaves ana-
lyzed. !e selected observables for the analysis of plant samples, which are described in the “Methods” section, 
provide a complete description of the enpolarizing properties of  samples37. In particular, we use the indices of 
polarimetric purity—P1, P2, P3 -, the components of purity—P, D, PS—and the depolarization index PΔ, for the 
polarimetric sample description. !e obtained results show that the depolarization metrics P1, P2, P3, PΔ and PS 
clearly manifest an overall enhancement of image contrast and they help to unveil wounded zones or vascular 
structures that are invisible by using standard non-polarized images. In the following we present two illustrative 
results. !e standard non-polarized transmission images for the M. sativa and O. europaea leaves are shown in 
Figs. 1b and 2b, respectively. !ese images were obtained from certain regions of interest (ROIs) in the leaves, 
indicated with white and black squares in Figs. 1a and 2a, respectively. For comparison purposes, we provide the 
polarimetric images corresponding to the analyzed polarimetric observables, identifying the ones that provide 
the largest image enhancement, i.e., the P2 channel for the M. sativa case (Fig. 1d) and the P3 channel for the O. 
europaea case (Fig. 2e).

Figure 2.  Polarimetric images of Olea europaea leaf used in this study. (a) Picture of the underside part of 
O. europaea leaf. Black square denotes for selected region of interest (ROI) analyzed in remaining images, 
(b) regular intensity image  (M00) of the O. europaea transmission ROI and its corresponding polarimetric 
observables (c) P1, (d) P2, (e) P3, (f) PΔ, (g) P, (h) D and (i) PS for visual comparison. All images correspond to 
625 nm illumination wavelength measurements performed at transmission set-up con"guration. Red and yellow 
dotted lines correspond to diameter and width measurements for chlorotic spot and necrotic ring, respectively. 
Yellow arrows indicate the unveiled vascular structures.
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Importantly, thanks to the contrast enhancement of polarimetric observables in the visualization of the O. 
europaea image, we can clearly distinguish the necrotic ring and chlorotic spot edges visible in di#erent pola-
rimetric channels (Fig. 2c–i), the necrotic ring being invisible by using non-polarized light intensity images 
(Fig. 2b). A thorough discussion of the visualization of disease symptoms by using polarimetric means as well 
as the current sample chlorotic spot and necrotic ring characteristics (diameter and width, red and yellow dotted 
line in Fig. 2e, respectively) is provided in the “Discussion” section.

As a complement to the above-presented images, we quantify the potential of depolarizing metrics to char-
acterize plant pathologies. To do so, we consider the values taken along di#erent cross-sections in the images 
of the observables shown in Figs. 1 and 2. !e particular cross-sections analyzed, highlighted in yellow lines, 
together with the corresponding values are shown in Fig. 3. Figure 3a and b present a comparison between the 
values of the classical unpolarized light intensity transmission  (M00) metric with the depolarization metrics P2. 
!e values of the cross-section displayed correspond to the transition between a healthy and a chlorotic zone 
in the M. sativa specimen leaf. !e di#erence between the chlorotic and the heathy areas is hardly visible using 
the classical  M00 observable, while it becomes quite apparent in the P2 metric image. Healthy areas show P2 val-
ues around 0.20 ± 0.01 while chlorotic areas show characteristic values around 0.50 ± 0.01. Analogously, Fig. 3c 
and d show a comparison between the values of the  M00 metric and the P3 metric for the O. europaea case. !e 
selected cross-section displays the transition between healthy, necrotic, and chlorotic regions. As in the previ-
ous example, the classical  M00 observable (Fig. 3c) is not sensitive to all the features in the plant, for instance it 
does not delimitate the necrotic ring, while the P3 observable (Fig. 3d) clearly discriminates between healthy, 
necrotic and chlorotic. For instance, the value of P3 for healthy, necrotic and chlorotic areas is around 0.20 ± 0.01, 
0.45 ± 0.01 and 0.10 ± 0.01 respectively. Such selectivity results in a clear enhancement of the contrast of P3 images 
when compared to  M00 images. In the example shown in Fig. 3d the necrotic area is clearly visible and appears 
as a “ring” area delimited between the chlorotic spot and the healthy tissue. !e chlorotic area appears as dark 
spot, whereas the healthy area appears in grey. In contrast,  M00 observable shows the chlorotic area as a bright 
spot with values close to 0.50 ± 0.01, the necrotic ring in dark, typical values of 0.05 ± 0.01, and the healthy area 
in dark grey with typical values of 0.90 ± 0.01. !e di#erence between healthy and necrotic areas is less net in a 
 M00 image than in a P3 one.

We now further analyze the potential of those observables to discriminate between di#erent typologies 
(healthy or diseased tissues) of plant structures. To do so, we represent the measured data on di#erent polari-
metric  spaces41, this leading to a very intuitive visualization of data, and also providing quantitative information 
of the structures (or tissue types) that may be present in the images of the probed samples. Moreover, the data 
in each ROI is collected and grouped in what we call a data-cloud which can be used for ulterior statistical data 
treatment or for graphical representation. For instance, data from a homogeneous region should show close 
values with little variance, in contrast to data from a heterogeneous region, which should show di#erent values 
with extended deviation from a mean value. When represented in a graph, data from a homogeneous region 
may group within a well-de"ned region, whereas data from an heterogenous region may tend to spread over an 
irregular volume. !erefore, a graphical representation of data-clouds is a good tool to see at a glimpse the vari-
ability and the average values of such data. When a given area in a sample is represented according to various 
observables, such for instance  M00, IPPs, or CPs, then, data clouds corresponding each to a given observable, can 
be de"ned. Figure 4 presents the data clouds from selected ROIs (marked in Fig. 4a and d as colored rectangles) 
of healthy (green), chlorotic (yellow) and necrotic (dark blue) tissue regions of M. sativa ("rst row in Fig. 4) 
and O. europaea (second row in Fig. 4) leaves. !e size of the corresponding regions of interest were selected 
depending on the tissue availability of sample to perform a homogeneous selection of healthy and diseased tissue. 
In particular, healthy and chlorotic tissue regions on M. sativa correspond to a total of 2800 pixels (40 × 70 and 
70 × 40 pixels, respectively.) In counterpart, healthy, necrotic and chlorotic ROIs for O. europaea are of 90 × 40 
(3600 pixels), 30 × 110 (3300 pixels) and 70 × 40 (2800 pixels), respectively. !e data clouds are represented in the 
IPPs space for the M. sativa (Fig. 4b) and O. europaea (Fig. 4e), as well in the CPs space (Fig. 4c,f, respectively). 
Whereas the M. sativa presents two di#erentiated structures (healthy and chlorotic), the O. europaea presents 
three di#erentiated structures (healthy, necrotic and chlorotic). We see as in both plant specimens, and for the 
two studied polarimetric spaces, the di#erent leaf structures (healthy, necrotic and chlorotic) are clearly di#erenti-
ated and located in di#erent spatial positions without data mixing (the di#erent type of data -di#erent colored 
dots- practically do not overlap in any region of the spaces). !is trend was also observed when selecting other 
a#ected regions and the selected examples in Fig. 4 are representative cases that illustrate the discriminatory 
potential of polarimetric observables for symptom detection and description.

Pseudo‑colored approach. In this section, we want to go one step further in plant pathology imaging 
based on polarimetric observables by using the discussed polarimetric spaces into a pseudo-coloration image 
 method42–44. !e main idea consists of building a “polarimetric triplet” by selecting, between all the used pola-
rimetric observables, the three of them leading to larger image contrast between healthy and diseased tissues 
within the inspected sample. A%erwards, each one of the selected polarimetric images of the triplet is associated 
with a primary color (red, green and blue, respectively), and they are properly combined to build pseudo-colored 
images providing visual contrast between plant structures of interest. Detailed description of the pseudo-colored 
approach proposed in this study can be found in Supplementary Sect. 3.3.

To achieve an optimal use of the pseudo-color approach, the three observables used to represent the RGB 
base must be the ones that better discriminate between healthy and wounded areas. !e discrimination ability 
of a given set of observables can be quanti"ed by measuring the di#erences of these observables when applied 
to image healthy and wounded areas. To estimate these di#erences, we performed a Boxplot  analysis45,46 for 
the regions of interest (ROIs) shown in Fig. 4. In Fig. 5 we show the split Boxplot analysis of the Indices of 
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Figure 3.  Pixel pro"le comparison for Medicago sativa and Olea europaea. (a) Intensity image at 625 nm of the 
underside part of M. sativa sample and its corresponding pixel pro"le, (b) polarimetric purity index P2 and its 
corresponding pixel pro"le, (c) intensity image at 625 nm of the underside part of O. europaea sample and the 
corresponding healthy-necrotic-chlorotic transition pixel pro"le, and (d) polarimetric purity index P3 and its 
corresponding pixel pro"le. !e vertical yellow lines on polarimetric images indicate the plotted pixel pro"le 
segments. !e squared numeric labels for  M00, P2 and P3 indicate their respective highest and lowest pixel 
values within the inspected pixel regions. Red-dotted horizontal lines on plots indicate the diameter of the two 
chlorotic spots of M. sativa and width measurements for chlorotic spot and necrotic ring of O. europaea.
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Polarimetric Purity (P1, P2, P3) and the Components of Purity (P, D, PS) for healthy, chlorotic and necrotic tissue 
regions of M. sativa (Fig. 5a,b) and O. europaea (Fig. 5c,d).

We can see in Fig. 5 that some observables clearly separate the studied necrotic, chlorotic and healthy tis-
sues. To help readers to evaluate such di#erences, the median values are highlighted with dotted red lines in 
the case of largest di#erences. In the case of the M. sativa, which presents chlorotic and healthy tissues, they 
are clearly separated by all the IPPs (P1, P2, P3) metrics (Fig. 5a) as well as by the sphericity degree observable, 
PS (Fig. 5b). In the case of the O. europaea, which presents chlorotic, necrotic and healthy tissues, we see how 
the same observables (IPPs and sphericity degree PS) are those leading to the larger distances between di#erent 
tissues (Fig. 5c,d). Under these results, the IPPs as well as the sphericity degree, PS, are considered to be good 
candidates to implement the pseudo-colored images. Moreover, Boxplot unveils the amount of outlier values 
(mild and extreme, illustrated as small circles and stars in Fig. 5, respectively) of each data distribution so that 
the homogeneity of the selected tissue region can be quanti"ed. !e current distributions of outliers range from 
0.44 to 3.67%. Note that the low percentage of data outliers ensures the homogeneous selection of the tissue 
conditions (healthy, necrotic or chlorotic). !e complete description of outlier values for each analyzed tissue 
region can be found in Supplementary Table S2.

In addition to the above-presented Boxplot analysis, we computed, for each observable in Fig. 5, the distance 
between medians in yellow and green boxes (chlorotic and healthy, respectively) for the M. sativa case (Fig. 5a,b); 
and between medians in yellow and green boxes (chlorotic and healthy, respectively) as well as between medi-
ans in blue and green boxes (necrotic and healthy, respectively) for the O. europaea case (Fig. 5c,d). !e values 
resulting from such comparison are shown in Table 1. !e largest values in Table 1 are highlighted in bold. !e 
median values of each polarimetric observable for selected healthy and diseased regions on both plant species 
are shown in Supplementary Table S3.

By considering the largest di#erences between means according to Table 1, we selected two triplets of pola-
rimetric observables for the pseudo-colored images construction: one mixing observables of the IPPs and CPs 
spaces (P2, P3, PS) and another based on the IPPs by themselves (P1, P2, P3). At this stage, for each depolarizing 
observable selected Pi (where i = 1, 2, 3, S) we set di#erent threshold values, which were derived from the Box-
plot analysis (see Supplementary Table S5). !ese thresholds allowed us to numerically discriminate between 
di#erent tissue conditions: healthy/chlorotic for M. sativa and healthy/chlorotic/necrotic, for O. europaea, and 
then, each separated condition is assigned to a primary color (red, green and blue, for chlorotic, healthy, and 
necrotic tissues, respectively). !is process is illustrated by considering particular examples. In the case of the 
M. sativa, and for a particular observable selected Pi, a "rst binary image (black–red) is constructed according 
to pixel values above/below a certain threshold, this image carrying the chlorotic information of the plant. !en, 
a second binary image (black–green) is similarly constructed carrying the healthy information of the plant. !e 
same procedure is conducted for the for O. europaea, but now, as this specimen presents an extra condition 
(necrosis), three binary-images are obtained: (1) for the chlorotic content (black–red), (2) for the healthy content 
(black–green), and (3) for necrotic content (black–blue). Finally, for each studied metric (P1, P2, P3, PS), a "nal 
pseudo-colored image is obtained by adding all the contributions as following,

Figure 4.  Scatter data plots of healthy and diseased tissue regions of Medicago sativa and Olea europaea. (a) 
Visual indicative for healthy (green) and chlorotic (yellow) tissue selected region of interest (ROI) for M. sativa, 
(b) corresponding IPPs space (P1, P2, P3) for healthy and chlorotic data clouds representation, (c) components 
of purity (P, D, PS) space for healthy and chlorotic data clouds representation, (d) visual indicative for selected 
healthy (green), chlorotic (yellow) and necrotic (dark blue) tissue ROIs for O. europaea, (e) corresponding IPPs 
space (P1, P2, P3) for healthy, chlorotic and necrotic data clouds representation and (f) components of purity (P, 
D, PS) space for healthy, chlorotic and necrotic data clouds representation.
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where the sub-index i denotes for the particular depolarizing observable (i.e., i = 1, 2, 3, S). Note that in the case 
of the M. sativa we can consider Pi, Blue-Necrotic = 0 because there is not necrotic content. Importantly, each term in 
Eq. (1) provides a binary-colored image that has been "ltered according to the threshold criteria above-explained. 
Finally, the content of a full polarimetric triplet, [P1, P2, P3] or [P2, P3, PS], is put together by constructing a linear 
combination of the pseudo-colored observables implemented according to Eq. (1), so generalized "nal pseudo-
colored images, valid for both M. sativa and O. europaea, are obtained as:

(1)Pi,approach(x, y) = Pi,Red−Chlorotic(x, y)+ Pi,Green−Healthy(x, y)+ Pi,Blue−Necrotic(x, y)

(2)Pseudo#1(x, y) = P2,approach(x, y)+ P3,approach(x, y)+ PS,approach(x, y),

Figure 5.  Boxplot charts for healthy and diseased regions for Medicago sativa and Olea europaea. (a) Indices 
of polarimetric purity (P1, P2, P3) boxplot for healthy and chlorotic locations on M. sativa, (b) Components of 
purity (P, D, PS) Boxplot for healthy and chlorotic locations on M. sativa, (c) Indices of polarimetric purity (P1, 
P2, P3) Boxplot for healthy, necrotic and chlorotic locations on O. europaea and (d) Purity components (P, D, PS) 
Boxplot for healthy, necrotic and chlorotic locations on O. europaea. !e corresponding healthy, chlorotic and 
necrotic data distributions are labeled and colored as H (green), C (yellow) and N (dark blue), respectively. Red-
dashed lines indicate the locations of median values and illustrate they do not "t within the boxes of di#erent 
tissue conditions (healthy, chlorotic or necrotic), allowing discrimination. Circles and stars correspond to mild 
and extreme outlier values, respectively.

Table 1.  Polarimetric observables median value di#erence and propagated errors for healthy-diseased tissue. 
!e corresponding three largest median di#erence values are highlighted in bold.

P1 P2 P3 P D PS

Medicago sativa
Chlorotic—Median di# 0.091 ± 0.085 0.119 ± 0.104 0.113 ± 0.106 0.051 ± 0.055 0.042 ± 0.043 0.088 ± 0.081
Olea europaea
Chlorotic—Median di# 0.020 ± 0.014 0.039 ± 0.020 0.064 ± 0.029 0.001 ± 0.013 0.004 ± 0.011 0.037 ± 0.015
Necrotic—Median di# 0.054 ± 0.031 0.080 ± 0.041 0.117 ± 0.059 0.013 ± 0.019 0.011 ± 0.019 0.069 ± 0.032
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As shown in Eqs. (2) and (3), we built two general pseudo-colored functions (corresponding to each of the 
two selected observables triplets) labeled as #1 and #2. Note that both Eqs. (2) and (3) can be applied for the 
two plant specimens analyzed: !e M. sativa and the O. europaea cases. Note as well that the corresponding 
weights of each term in Eqs. (2) and (3) were chosen, for simplicity, as the unit, this giving the same weight to all 
the observables in the triplet, but other weights could be selected to enhance plant structures visualization. In 
fact, the low values of the selected polarimetric observables in the case of the O. europaea (see Supplementary 
Table S3) lead to a darkened "nal image. In such a case, to visually improve the pseudo-coloration approach, the 
weights were pondered by a factor 2 so that the resulting image turned brighter. A more detailed description of 
the method proposed to build pseudo-colored functions is provided in Supplementary Sect. 3.3.

Figure 6 shows three images that illustrate the e#ect of pseudo-coloration to enhance the contrast of polari-
metric images as well as the interest of this technique to discriminate between di#erent tissues. !e "gure shows 
images of classical  M00, the representative polarimetric observable P2 and the corresponding pseudo-colored 
image for M. sativa, and P1 for O. europaea. In particular the "rst row in Fig. 6 presents the classical non-polarizer 
transmission  (M00, Fig. 6a), the polarimetric purity index P2 (Fig. 6b), and pseudo-coloration resulting from 
Eq. (2), labeled as #1 (Fig. 6c), for M. sativa leaf sample. !e second row in Fig. 6 presents the intensity (Fig. 6d), 
the polarimetric purity index P1 (Fig. 6e), and pseudo-coloration resulting from Eq. (2), labeled as #1 (Fig. 6f), 
for O. europaea leaf. We found that the pseudo-colored resulting images for purity-mixed space and isolated 
purity space both shown very similar results. To not to present redundant information, pseudo-colored images 
regarding isolated Indices of Polarimetric Purity [Eq. (3)] for M. sativa and O. europaea, are presented in Sup-
plementary Fig. S4d and h, respectively. !e images resulting from polarimetric based pseudo-colored processing 
are excellent in terms of enhanced visual discrimination of healthy/diseased tissues. Detailed analysis of enhanced 
structures is provided in “Discussion” section.

Discussion
!e present work highlights the suitability of using polarimetric observables, in particular, the Indices of Polari-
metric Purity (IPPs) and the Components of Purity (P, D and PS), for the inspection of plant disease symptoms. 
In addition, we show that the implementation of a pseudo-coloration image processing method, which is based 
on the above-mentioned polarimetric observables, is a useful tool to enhance the image contrast between di#er-
ent tissue natures (healthy, necrotic and chlorotic) of botanical samples. Although the potential of depolarizing 

(3)Pseudo#2(x, y) = P1,approach(x, y)+ P2,approach(x, y)+ P3,approach(x, y).

Figure 6.  Visual comparison of Medicago sativa leaf: (a) 625 nm intensity image  (M00), (b) polarimetric purity 
index P2, (c) processed image by means of #1 pseudo-coloration; Visual comparison of Olea europaea leaf: (d) 
625 nm intensity image  (M00), (e) polarimetric purity index P1, (f) processed image by means of #1 pseudo-
coloration.
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metrics to characterize di#erent plant pathologies was observed in 18 di#erent species a#ected by di#erent 
infection agents, we focus our attention in two speci"c plant species because of their relevance in agricultural 
production: alfalfa (M. sativa) and olive (O. europaea). !e complete list of the specimens used in this study is 
presented in Supplementary Table S1.

Normal levels of chlorophyll in plant cells are the cause of the characteristic green color of leaves and allow 
the natural performance of photosynthetic processes, i.e., the synthesis of organic substances like carbohydrates, 
from the sources of inorganic prime matter and water from soil,  CO2 from the atmosphere, and  light35. Chloro-
phyll de"ciency in plant foliage triggers the appearance of chlorosis: the lack of green pigments, which leads to 
the yellowing of tissues, thus hampering the production of nutritional substances. !e chlorotic symptoms can 
appear due to di#erent biotic and abiotic causes, e.g., iron-de"cient or alkaline soils (high pH levels), and plant 
 pathogens35, such as the alfalfa pathosystem (AMV) studied here. With regards to the necrotic symptomatology 
caused by a pathogen infection, it is characterized by the premature death of a#ected plant cells and the darkening 
of tissues. !e release of pathogen toxins into the plant cell or, additionally, the release of residual components 
from surrounding dead cells into the intracellular space typically induces the necrotic lesion appearance. In this 
study we selected the case of necrosis in leaves of O. europaea as an illustrating example.

All plant samples were inspected at di#erent wavelengths (625 nm, 530 nm and 470 nm) and measuring 
con"gurations (scattering–measuring both the beam and the underside part of the samples, and transmission). 
However, to not to extent the content of the manuscript, we only discuss here the cases providing the most inter-
esting results in terms of disease symptom visualization. In particular, we consider M. sativa leaves measurements 
at 625 nm in scattering con"guration from the underside, and the O. europaea leaves measured in transmission 
con"guration from the outside. Measurements with additional orientations of the leaves were performed and 
the corresponding results are summarized in the Supplementary document.

Although di#erent optical leaf properties may play an important role in leaves spectral  response40, as for 
example the spectral signature of a leaf, in the specimens studied in this work we have observed that longer wave-
lengths penetrate more into samples than shorter wavelengths, as they are less a#ected by scattering processes 
than shorter wavelengths. !is result agrees with discussion provided in Ref.47. In fact, longer wavelengths may 
carry more information about microstructures present in the bulk of the sample than shorter wavelengths, which 
are more sensitive to features present in surface in a bulk region near the surface of the leaves. Since chlorosis or 
necrosis a#ect the whole bulk of the leaf, a relative long wavelength such as 625 nm provides a more complete 
picture of the leave than a shorter wavelength and it is for this reason why we chose in the results shown in the 
main text of the present manuscript. A second reason for our choice, is that chlorophyll has an absorption peak 
close to 625 nm, and although being weak this particular absorption feature will impact the measured depolariza-
tion. In transparent scattering media, photons which contribute to increase the depolarization of light are those 
who followed a higher number of scattering events before reaching the detector. !ose photons are the ones 
which also show longer paths inside the sample because of the multiple scattering events that they experienced. 
In absorbing media, photons which account a higher number of scattering events will be preferentially removed 
from the beam because their paths are longer than those of photons which account a fewer number of scattering 
events. !erefore, and in general, it can be said that an absorbing media is expected to show less depolarization 
than analogous transparent media. In the cases discussed here, because of chlorotic and necrotic tissues show 
reduced chlorophyll concentration, they appear more transparent than healthy ones at 625 nm: reason why 
depolarization measurements at this particular wavelength may be more sensitive to the presence of chlorophyll 
(and therefore to the presence of a wounded tissue) than measurements at wavelengths for which chlorophyll 
does not show any absorption.

In the case of the M. sativa leaf (Fig. 1), the polarimetric images; in particular, the ones corresponding to the 
depolarization-related P1, P2, P3, PΔ and PS observables (Fig. 1c–f,i, respectively); show a signi"cant enhance-
ment of image contrast between healthy and diseased regions when compared to the image of the standard  M00 
unpolarized transmitted or scattered light intensity. For instance, up to seven chlorotic spots (labeled from 1 to 7 
in Fig. 1d) as well as some vascular structures (yellow arrows in Fig. 1c), which are barely observable by standard 
intensity images (Fig. 1b), are well visible by using polarimetric means. !e improvement is further highlighted 
a%er comparing the line cross-sections corresponding to the yellow segments in Fig. 3a (regular intensity image, 
M00 channel) and Fig. 3b (P2 channel), which are taken within healthy and diseased regions in M. sativa sample 
(diseased spots labeled as 4 and 5 in Fig. 1d). In this sense, considering the maximum and minimum values 
(peak-to-valley) in the Fig. 3a and b pixel pro"les (corresponding to the healthy/diseased tissues regions) we 
demonstrate a signi"cant increase of the chlorotic symptom visibility. For practical reason we quantify vis-
ibility with the "gure de"ned by the following expression: V = [Imax − Imin]/[Imax + Imin] , where  Imax and  Imin 
correspond to the maximum and minimum value of the pixel within the selected segment in the cross-section 
or the region in the image. In the case discussed here, the visibility features a value of V = (0.41 ± 0.05) for the 
non-polarized transmission/scattering intensity in Fig. 3a and of V = (0.61 ± 0.03) for the P2 channel in Fig. 3b.

Moreover, thanks to the visualization and contrast improvement in polarimetric images, it is possible to 
measure the width of the diseased regions with a pixel precision limited by the density of pixels in the detector. 
A%er calibration we found that one pixel of CCD corresponds to approx. 21 µm in sample. !erefore, the size of 
the chlorotic regions shown in Fig. 1 are estimated to (34 ± 1) pixel, (730 ± 21) µm, and (38 ± 1) pixel, (820 ± 21) 
µm, for the "rst and second chlorotic spots, respectively. On the other hand, note that we can physically interpret 
the depolarizing behavior of healthy/diseased tissues in M. sativa, considering that the higher the value of IPPs 
within a particular tissue region, the lower depolarization induces to incident  light33. Under this scenario, and 
according to images in Fig. 1, the chlorotic spots induce fewer depolarizing e#ects on incident light (high IPPs 
values) than healthy tissues (low IPPs values) as expected in connection with the previous discussion, because 
of the reduced absorption of light in the sample due to low levels of chlorophyll.
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In the case of the O. europaea sample (Fig. 2), it presents a necrotic ring (surrounding a chlorotic spot) hardly 
visible in non-polarized transmission/scattering images (Fig. 2b). In contrast, polarimetric observables show an 
increased contrast compared to that of non-polarized transmission/scattering, which provide a more accurate 
visualization and spatial delimitation of the lesions in the leaf. Moreover, as in the case of M. sativa previously 
discussed, the use of polarimetric observables unveils the presence of vascular structures (see Fig. 2c–i) non-
visible in non-polarized transmission/scattering images. !anks to this visual improvement, the width of the 
necrotic ring and the diameter of the chlorotic spot are clearly delimited in polarimetric images (yellow and 
red dotted lines in Fig. 2e, respectively): (120 ± 1) pixel, (2.580 ± 0.021) mm, for the necrotic ring width and 
(230 ± 1) pixel, (4.940 ± 0.021) mm for the chlorotic spot diameter. !e unveiled vascular structures are pointed 
out with yellow arrows in Fig. 2d. As in the previous case, this visual discrimination between the diseased and 
healthy regions within the sample can be quantitatively measured analyzing the pixel pro"le corresponding to 
the cross-section represented by yellow segments in Fig. 3c (non-polarized transmission/scattering, M00, image) 
and Fig. 3d (observable P3). As in the previous case, the cross-sections are selected crossing healthy and wounded 
areas of the tissue. !e chlorotic spot appears as a broad bell-like feature in the non-polarized transmission/
scattering cross-section (Fig. 3c) hiding the presence of the necrotic area. In contrast, both the chlorotic spot and 
the necrotic ring can be distinguished in the cross-section corresponding to the P3 observable (indicated with 
a red dashed segment in Fig. 3d). To measure the contrast improvement in polarimetric images compared to 
non-polarized transmission/scattering ones, we take for instance the visibility value for the necrotic ring which 
is estimated to V = (0.84 ± 0.03) and V = (0.00 ± 0.03) respectively.

Furthermore, the necrotic ring registers the highest IPPs values (P3 from 0.15 to 0.56) followed, in descend-
ing order, by the healthy leaf lamina (P3 values ranging from 0.13 to 0.31) and the chlorotic spot (e.g. P3 from 
0.05 to 0.18). !is behavior is physically translated as the necrotic ring inducing fewer depolarizing e#ects on 
incident light than healthy regions whose response is, in turn, even less depolarizing than the chlorotic spot. 
Moreover, note that the le% side (leaf lamina) of the O. europaea sample presents similar values as the necrotic 
ring for some polarimetric channels (see Fig. 2), although such region does not present necrotic-like tissue con-
dition. !is result, which can lead to errors in the physical interpretation of the studied structure, is originated 
by the curvature of the leaf at that le%-region, which leads to out of focus measurements. Under this scenario, 
the collected polarimetric information of a plant region is a#ected by out of focus polarimetric information cor-
responding to other plant regions, all this information being mixed with the actual polarimetric information of 
the studied structure (the le%-side of the leave, in this case). !is situation highlights the importance of analyzing 
well-focused images of plant structures, for the visual inspection of diseased plant samples through polarimetric 
methods. If due to the non-planar surface of the studied sample a proper image focusing of plant structures of 
interest cannot be simultaneously ensured by a single image shot, a scanning-based imaging approach is rec-
ommended. In this work, we focus on the structures at the right-side of the image, as all structures of interest 
(healthy and wounded tissues) are in a non-curved and well-focused region of the leaf. To better illustrate the 
interest of the use of polarimetric images to characterize disease symptoms in vegetal tissues, we chose to collect 
the pixels from the original image and to represent them as a whole in a data cloud "gure. In a data cloud "gure, 
pixels corresponding to di#erent regions should group in separate clouds. Non-overlapping clouds indicate that 
the related regions are well discriminated. On the contrary, either fully or partially overlapping clouds indicate a 
poor discrimination of nominally di#erent zones. For the present study, we used three-dimensional data clouds 
with a selection of variables corresponding to the so-called space of Indices of Polarimetric Purity, (P1, P2 and 
P3), or the space of the Components of Purity, (P, D and PS) (see Fig. 4). In the case of the M. sativa leaf, the data 
clouds, corresponding to healthy and chlorotic regions (green and yellow squares in Fig. 4a, respectively), are 
well-discriminated as these two tissue conditions are clearly spatially separated (i.e., practically no data mixing 
between tissues with di#erent health condition is produced) when represented in either the: IPPs or the CPs 
space (Fig. 4b,c, respectively). According to the previous, healthy tissue (green squares) tends to group close 
to the point (0,0,0) which corresponds to higher depolarization, while chlorotic regions tend to group to areas 
related with less depolarization. Importantly, a stronger depolarization response occurs when the leaves contain 
non-organized spatial structures (i.e., neither not aligned nor homogeneously distributed) or an important 
number of microstructures which e&ciently scatter light. In this context, either the biological or the structural 
changes caused by the chlorotic symptoms of infected regions are translated into a less depolarizing e#ect on 
incident light when compared with healthy tissues, thus increasing the sensitivity of depolarizing channels to 
chlorosis detection. In the case of the O. europaea leaf, both depolarizing spaces clearly discriminate between 
tissue conditions: see how data clouds corresponding to healthy, chlorotic, and necrotic tissue regions in O. 
europaea (green, yellow and blue squares, respectively, in Fig. 4d) are clearly spatially separated in both IPPs and 
CPs spaces (Fig. 4e,f, respectively). However, in this case, the chlorotic data (yellow squares) are quite close to 
the point (0,0,0), therefore indicating that, in this case, chlorotic tissue is more depolarizing than healthy tissue 
(green squares).

!e di#erential depolarizing behavior among the two studied plant species might be related to speci"c bio-
logical characteristics of these species. Regarding the visible chlorotic symptoms that showed a di#erential pola-
rimetric response between the species, several hypotheses could be considered: "rst, leaves of M. sativa and O. 
europaea correspond to non-sclerophyllous and sclerophyllous species, respectively, thus suggesting that di#erent 
leaf tissue structure could be involved in this di#erential depolarizing response. Secondly, the chlorophyll-a and 
chlorophyll-b leaf content is di#erent for each plant  species48–50 so that the chlorotic symptoms development 
could be depending on the infected specimen chlorophyllic pro"le. Additionally, the type of pathogen which 
caused the chlorotic symptoms on both inspected leaves may also play a role in the di#erential depolarizing 
behavior: M. sativa was infected with the alfalfa mosaic virus (AMV) and O. europaea was infected with the 
fungus V. oleaginea. As far as the infection strategy of viruses is di#erent from fungi, the chlorotic symptoms 
may manifest in di#erent ways and lead to di#erent physical transformations of plant tissues (thickness, stress 
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resistance, turgor, structure, organization, etc.) of the unitary scatters (cells), therefore resulting in di#erent 
depolarizing behavior. Moreover, Lanza et al.51 described the morphological changes induced by the infection of 
V. oleaginea on O. europaea, consisting of a progressive loss and degradation of plastids and chloroplasts in the 
palisade parenchyma cells. !is degradation process leads to a release of cytoplasmic contents of palisade cells 
at advanced infection stages, which may a#ect the cuticle by reducing the resistance to water loss and causing 
stress on leaf tissues. Interestingly, the chlorotic ring on O. europaea might be also caused by fungal phytotoxins, 
as it was previously  reported52. On the basis of the above comments, it is not surprising that a same symptom, 
i.e. chlorosis, is a consequence of di#erent biological processes in di#erent plants specimens, and therefore, may 
correspond to di#erent polarimetric responses. In terms of the enhancement of the image contrast of disease 
symptoms, we have showed that di#erential information of polarimetric channels can well discriminate between 
di#erent infection status (i.e., chlorosis, necrosis and healthy tissue). !is has been demonstrated for M. sativa 
and O. europaea, and additionally con"rmed in other plant specimens (see the complete list of analyzed speci-
mens in Supplementary Table S1).

!e pseudo-coloration is the second approach that we chose to better use the contrast enhancement pro-
vided by polarimetric images for a visual discrimination of features present in complex scattering media. As 
previously described, we performed a pseudo-coloration image processing based on triplets of polarimetric 
observables information codi"ed in three color (R, G, B) channels. At this point we would like to emphasize 
that we use for the "rst time the pseudo-colored approach to the analysis of plant disease symptoms. Compared 
with previous references, the pseudo-coloration approach was improved by conducting two main modi"cations: 
(1) the depolarizing observables were not restricted to the IPPs space, but extended to an optimized selection of 
polarimetric observables within the IPPs and CPs spaces (2) an image "ltering process, based on data obtained 
from a Boxplot analysis (see Fig. 5), was included in the process to largely discriminate between di#erent tissue 
conditions (healthy/diseased).

In this section we bring the discussion to the pseudo-colored images resulting from the triplet P2, P3 and PS, 
as it is the most suitable one to construct the pseudo-colored functions for M. sativa and O. europaea samples 
(see Table 1). !e pseudo-colored images obtained based on the IPPs lead to similar results, therefore, we invite 
the interested readers to consult results for IPPs in Supplementary Fig. S4. !e "nal pseudo-colored images for 
M. sativa and O. europaea, presented in Fig. 6c and f, respectively, demonstrate a visual enhancement of disease 
symptoms: the extreme di#erent coloration of the chlorotic lesions on M. sativa with respect to the healthy tis-
sue of the leaf lamina (red and green regions on Fig. 6c) leads to a more accurate location of the diseased area. 
Similar behavior occurs for lesions on O. europaea leaf, where performed pseudo-colorations lead to a better 
delimitation of the di#erent transitions from chlorotic spot to necrotic ring and healthy tissue of leaf lamina 
(Fig. 6f). Importantly, we remark here the fact that pseudo-colored images enhance the contrast between dif-
ferent tissue conditions, even more than the performance of isolated imaging of polarimetric observables for 
M. sativa and O. europaea samples (Fig. 6b,e, respectively). !is behavior highlights the suitability of using this 
image-processing method for biological samples analysis. Particularly, the inspection and estimation of direct 
lesions, and the characterization and early detection of infection processes on plant tissues.

Methods
Sample description. !e plant samples used in this work were a leaf of Medicago sativa specimen infected 
with alfalfa mosaic virus (AMV, which causes wilting or white $ecks to necrotic wounds and chlorotic mosaics 
on leaves) and a leaf of Olea europaea specimen infected with Venturia oleaginea (causal agent of the olive leaf 
spot). !is worldwide spread disease of olive may cause severe tree defoliation and a delay in fruit ripening, 
among other symptoms, thus leading to relevant yield losses.

Native from warmer-temperate climates of south-central Asia, M. sativa belongs to the Fabaceae family (leg-
umes), it is cultivated worldwide for livestock feeding purposes. Despite the toxicity of unsprouted alfalfa, it is 
also suitable for human consumption in sprout stage or dehydrated. Regarding O. europaea, this species belongs 
to the Oleaceae family. Although the native species were found in eastern land regions around the Mediterranean 
Sea, his production is not limited to Mediterranean countries: O. europaea is cultivated in several countries such 
as South Africa, New Zealand, North and South America, and Australia. In addition to olive oil production and 
fruit consumption (olives), O. europaea trees are also grown for "ne wood manufacturing.

T. Garnatje and J. Luque undertook the formal identi"cation of the plant material used in this study. An her-
barium voucher of both M. sativa and O. europaea are deposited in the Herbarium of the Botanical Institute of 
Barcelona (BC-983007 and BC-983006, respectively). All methods were performed in accordance with relevant 
guidelines and regulation.

Mueller–Stokes formalism. Di#erent mathematical approaches can be used to describe the polarimet-
ric properties of material  media36. Among those, in this work we use the Mueller–Stokes (M–S) formalism, 
because it is especially suited to deal with partially polarized or unpolarized light, as well as with depolarizing 
 samples53,54. In this approach, polarization of light is described by means of Stokes  vectors36 which are composed 
by four real coe&cients., S0, S1, S2 and S3, whose physical interpretation is directly related to the irradiance (total 
intensity of the beam, S0) and the amount of light which is linearly polarized in vertical and horizontal (S1), 45° 
and 135° (S2) directions, and right or le%-handed circularly polarized (S3). !is Stokes formalism leads to a tridi-
mensional representation of light states of polarization in the so-called Poincaré  sphere36.

In the M–S formalism, polarimetric samples are described by 4 × 4 real coe&cient matrices, the so-called 
Mueller matrices M, which can be understood as the polarimetric transfer functions of polarimetric systems. In 
addition, polarization of light exiting from a sample (represented by the Sout Stokes vector) is linearly related with 
the input polarization (represented by the Sin vector) through the Mueller matrix describing a sample. !e Mueller 
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matrix of a sample can be experimentally measured by using  polarimeters23,24, and it encodes rich polarimetric 
information: dichroism (diattenuation and polarizance), retardance and depolarization. In the following, the 
polarimetric principle of a Mueller matrix experimental determination is brie$y reviewed, but it is thoroughly 
described in Ref.54. By means of a complete image Mueller polarimeter, the sample is illuminated by a set of 
n di#erent controlled light beam polarization states. Accordingly, the polarization of detected (imaged) light 
emerging from the sample is analyzed. To fully determine the experimental Mueller matrix, at least four input 
(and analyzed) states are required, which corresponds to 16 radiometric measurements. In the current work, a 
total of 36 measurements are taken: 6 input states of polarization (generators) and the corresponding 6 analyz-
ers proposed  in55, which are used for minimization of noise in radiometric measurements. !e mathematical 
relationship between the set of incident states and the detected ones is given by the sample 4 × 4 Mueller matrix, 
MS, in the following way:

where the detected radiometric measurements are given by the n × n matrix I, SPSG is the 4 × n matrix of input 
set of polarized light beams where the n columns represent the di#erent Stokes vectors used to illuminate the 
sample, and the n × 4 matrix SPSA which corresponds to the transposed input Stokes vectors. In this way, by 
computing the pseudoinverse of SPSG and SPSA, matrices in Eq. (4), the corresponding Mueller matrix MS of the 
sample can be directly deduced.

Polarimetric observables. !e complete set of polarimetric properties of the sample can be derived from 
the experimental Mueller  matrix36,53,54. While some metrics (as dichroism) can be directly deduced from the 
Mueller matrix, other information as retardance and depolarization content are entangled in such a way that 
a straightforward interpretation is not possible and advanced algebraic methods of analysis, known as matrix 
decomposition methods are  needed56–60. In this way, Mueller matrix M can be written as

where m00 entails the non-polarized transmission/scattering of the sample, D and P are 3-dimensional vec-
tors encoding diattenuation and polarizance, respectively, and 3 × 3 submatrix m entangles the retardance and 
depolarization in a complex way. Whereas D describes the dependency of intensity from emergent light from 
sample with the input state of polarization, P is related to the capability of said sample to polarize light when 
illuminated with an unpolarized  state36. Regarding the m-submatrix, a commonly used formulism to gather 
entangled polarimetric properties is the so-called Lu-Chipman  decomposition55, which describes any Mueller 
matrix M as the product of three 4 × 4 pure Mueller matrices (pure depolarizers, retarders and diattenuators) 
that synthesize well-de"ned polarimetric observables leading to an easier physical interpretation of the medium.

Regarding the depolarization behavior of media, a general quantitative indicator of the overall depolarizing 
power of the sample, the depolarization index PΔ, is commonly  used61,62. Despite of the fact that PΔ is suitable to 
represent homogeneous depolarization, it does not provide enough information regarding the situations where 
depolarization actually depends on the state of polarization of the illuminating beam. In this way, it is worth 
de"ning the covariance matrix H (associated with Mueller matrix, M)61:

where mij represent the Mueller matrix coe&cients, σ are the Pauli matrices and ⊗ the Kronecker product. Since 
Mueller matrices are not Hermitian and thus we cannot ensure they are diagonalizable, we de"ne the so-called 
indices of polarimetric purity (IPP)33 as a set of three real magnitudes, P1, P2 and P3, directly derived from the 
covariance matrix H eigenvalues:

where λ-eigenvalues are taken in decreasing order as λ0 ≥ λ1 ≥ λ2 ≥ λ3 and IPP values are restricted to 
0 ≤ P1 ≤ P2 ≤ P3 ≤ 1. Indices of polarimetric purity de"ne a real tridimensional depolarization space whose inter-
pretation, in addition to how much light is depolarized, is related with di#erent depolarizing mechanisms in the 
sample. !erefore, the depolarization spaces can be potentially used to discriminate among structures which 
di#erent depolarization signatures due to their properties and structure. Based on the idea of representing depo-
larization as the incoherent sum of four pure  components33, IPPs correspond to the statistical weights of each 
component: P1 quanti"es the relative portion of pure non-depolarizing component, P2–P1 the relative weight of 
a bidimensional depolarizer, P3–P2 the relative portion of an equiprobable mixture of three pure components 
(tridimensional depolarizer) and 1 − P3 is associated with an ideal depolarizer. In consequence, di#erent IPPs 
values lead to the comprehension of the inherent depolarizing mechanisms of  samples34. However, we can de"ne 
depolarization index, PΔ, by means of IPPs but also eventually splitting depolarization information in the com-
monly used components of purity P, D and PS:
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where components of purity P and D are the polarizance and diattenuation vector magnitudes, respectively. !e 
sphericity degree, PS, de"nes the contribution on depolarization which di#ers from dichroic origin. !erefore, 
depolarization index builds a common link between both purity spaces. Pure depolarizing systems are those 
which entail PΔ = P1 = P2 = P3 = 0, meanwhile pure non-depolarizing media is characterized by PΔ = P1 = P2 = P3 = 1. 
Recently, it has been demonstrated that the combined use of IPPs and components of purity is an ideal framework 
to describe depolarizing behavior of  samples37.

Complete image Mueller polarimeter. !e polarimetric images shown in this work (Figs.  1, 2 and 
Supplementary Figs. S1 and S2) are gathered from the experimental Mueller matrices of the studied samples, 
which are acquired by means of a complete image Mueller polarimeter. By taking advantage of the wide spec-
tral response of the light source, which actually covers the visible spectrum (from 400 to 700 nm approx.), we 
use three di#erent illuminating wavelengths (625 nm, 530 nm and 470 nm) for the consequently inspection of 
the sample at di#erent  depths47. !e polarimeter consists of two independent optical systems based on Parallel 
Aligned Liquid Crystals (PA-LC) retarders, mounted into two compact mobile arms respectively. !e Polariza-
tion State Generator (PSG) optical design leads to generate any fully polarized state. It is composed by a linear 
polarizer oriented at 0° with respect to the laboratory vertical, followed by two PA-LC at 45° and 0°. Equivalently, 
the Polarization State Analyzer (PSA) is capable to detect any state of polarization. !e PSA uses 6 optimized 
polarization analysis  states55. In our instrument, both the PSG and the PSA consist of a linear polarizer followed 
by two Parallel-Aligned Liquid Crystal cells externally controlled by sending di#erent voltages. !e combination 
of both PSG and PSA, are used to record 36 intensity images which are used to deduce the Mueller  matrix55. 
Regarding internal optical set-up, PSA has the same optical elements as PSG but arranged in reverse order. For 
the acquisition of sample intensity, a CCD camera is placed on the PSA system.

To perform the Mueller matrix measurements of biological samples, two main optical con"gurations are 
used. By tilting by 34° the PSG with respect to the horizontal laboratory reference and maintaining the PSA at 0° 
to avoid the ballistic re$ection, we perform what we call scattering measurements. Complementary, by placing 
both PSG and PSA at 90° we perform transmission measurements. In both con"gurations, we selected from the 
whole sample, a region of interest (ROI) of 512 × 512 pixels, which corresponds to an area of 1.1 × 1.1  cm2. !e 
detailed information about optical components and the visualization of measurement con"gurations (Figs. S5 
and S6) is shown in Supplementary document.

Data availability
!e datasets generated during and/or analysed during the current study are not publicly available due to the 
conduction of di#erent research studies but are available from the corresponding author on reasonable request.
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1. Plant material 

In this work we have considered a set of 18 plant specimens and 73 inspected leaves in total. The plant samples were 
collected at different disease stages. To not to extent the content of the main manuscript, we limited the main discussion to 
the results related to two sample cases: a leaf of M. sativa specimen, showing chlorotic symptomatology due to the infection 
of alfalfa mosaic virus (AMV) and a leaf of O. europaea specimen, showing necrotic ring-like wounds and chlorotic halos 
due to the infection of Venturia oleaginea. In the following Table S1, we present the complete list of the 18 collected plant 
specimens, as well as their causal agent and short symptom description. 

Table S1. Complete name list of the 18 collected specimens and their causal agent and symptom appearance. Different 
symptoms, which were not identified as chlorosis or necrosis were labeled as “other” discolorations observed on leaves. 

The selected specimens for this work are highlighted in gray. 

Plant species Pathogen – Organism group Leaves inspected Symptoms 

Arauija sericifera Undetermined organism 2 Chlorosis 
Arbutus unedo Ruptoseptoria unedonis – Fungi 1 Necrosis 

Celtis australis Undetermined virus 1 Other 
Undetermined phytoplasma 1 Chlorosis 

Ficus carica Undetermined organism 1 Other 
Fig Mosaic Virus – Virus 1 Chlorosis 

Hedera helix 
Xanthomonas – Bacteria 1 Other 

Mycosphaerella hederae-helicis – Fungi 1 Necrosis 
Undetermined organism 1 Chlorosis 

Malva sylvestris 
Malva Mosaic Virus – Virus 13 Chlorosis 

Undetermined bacterium 2 Necrosis 
Puccinia malvacearum – Fungi 20 Other 

Medicago sativa Alfalfa Mosaic Virus – Virus 1 Chlorosis 
Morus sp.  Mulberry Mosaic Virus – Virus 1 Chlorosis 

Olea europaea Venturia oleaginea – Fungi 3 Necrosis 
Parietaria officinalis Ramularia parietariae – Fungi 1 Necrosis 
Plantago coronopus Golovinomyces sordidus – Fungi, powdery mildew 1 Other 

Platanus × hybrida Erysiphe platani– Fungi, powdery mildew 1 Other 
Corythucha ciliata – Insect 1 Chlorosis 

Prunus dulcis Transzchelia discolor – Fungi, rust 2 Other 
Panonychus ulmi – Arthropoda, mite 1 Chlorosis 



Polystigma amygdalinum – Fungi 1 Other 
Wilsonomyces carpophilus – Fungi 1 Necrosis 

Quercus pubescens Undetermined leaf miner – Arthropoda, insect 2 Other 
Erysiphe alphitoides – Fungi, powdery mildew 1 Other 

Rubus idaeus Undetermined organism 1 Necrosis 
Phragmidium violaceum – Fungi, rust 2 Other 

Rumex pulcher Ramularia sp. – Fungi 2 Other 

Viburnum tinus Septoria sp. – Fungi  1 Necrosis 
Undetermined fungus 1 Other 

Vitis spp. 

Daktulosphaira vitifoliae – Arthropoda, insect 1 Other 
Undetermined fungus 1 Other 

Uncinula necator – Fungi, powdery mildew 1 Chlorosis 
Guignardia bidlewii – Fungi 1 Necrosis 

 

2. Qualitative analysis: polarimetric observables 

In the following we present, as a complement to the material presented in the main manuscript, the non-polarized 
transmission / scattering images and the Mueller matrix-derived polarimetric observables (P1, P2, P3, PΔ, P, D and PS) [1] for 
the leaf specimens of Medicago sativa and Olea europaea used in this study, both measured at 625 nm illumination 
wavelength.  

Figure S1 shows a picture of the M. sativa specimen (Fig. S1a), the non-polarized transmission / scattering image (Fig. 
S1b) and the obtained polarimetric images of the Indices of polarimetric purity (P1, P2 and P3), the depolarization index PΔ, 
and the components of purity (P, D and PS) (Figs. S1c to S1i, respectively), by means of the transmission-configuration 
measurement of the leaf. The depolarization inspection for the M. sativa sample clearly demonstrates an overall enhancement 
of image contrast and the revelation of the different spatial locations of the chlorotic wounds and the vascular structures 
(clearly seen in Fig. S1c) of the leaf, which are invisible in regular intensity images. Yellow arrows in Figs. S1d, S1e and S1f 
indicate the chlorotic tissue regions. 

Regarding the O. europaea sample, Fig. S2 shows a picture of the specimen (Fig. S2a), the standard intensity image 
(Fig. S2b) and the obtained polarimetric images of the Indices of polarimetric purity (P1, P2 and P3), the depolarization index 
PΔ, and the components of purity (P, D and PS) (Figs. S2c to S2i, respectively), by performing the scattering-configuration 
measurements of the beam part of the leaf. Inspected polarimetric channels demonstrate, in addition to the overall 
enhancement of image contrast, the accurate delimitation of the necrotic ring as well as the chlorotic spot (at the center of the 
lesion) and halo. Yellow and white arrows in Figs. S1d and S1e indicate the limits of the necrotic ring and the revealed 
diseased regions (chlorotic spot and halo) within the sample, respectively. 



 
Figure S1. Images of polarimetric observables of Medicago sativa leaf. a) Picture of the beam part of the M. sativa leaf 

used in this study. Black square denotes for selected region of interest (ROI) analyzed in remaining images, b) regular 
intensity image (M00) of the M. sativa transmission ROI and its corresponding polarimetric observables c) P1, d) P2, e) P3, f) 

PΔ, g) P, h) D and i) PS for visual comparison. All images correspond to 625 nm illumination wavelength measurements 
performed at transmission set-up configuration. Yellow arrows indicate the locations of chlorotic tissue regions within the 

sample. 



 
Figure S2. Images of polarimetric observables of Olea europaea leaf. a) Picture of the beam part of the O. europaea leaf 

used in this study. White square denotes for selected region of interest (ROI) analyzed in remaining images, b) regular 
intensity image (M00) of the O. europaea beam ROI and its corresponding polarimetric observables c) P1, d) P2, e) P3, f) PΔ, 

g) P, h) D and i) PS for visual comparison. All images correspond to 625 nm illumination wavelength measurements 
performed at scattering set-up configuration. Yellow and white arrows indicate the locations of necrotic ring-like and other 

injured tissue regions (chlorotic spot and halo) within the sample. 

3. Exploratory analysis of polarimetric observables data  
This section is devoted to demonstrate the reliability of the method used for the selection of the polarimetric observables 
triplet. As described in the main manuscript, our purpose is to achieve a pseudo-colored image which provides significant 
results in terms of disease symptom visualization, i.e., to enhance visual differentiation between healthy and diseased tissue 
regions of inspected plants. To this aim, we decided to base the selection of the observable triplet in terms of observable 
median values leading to largest polarimetric differences between healthy and wounded regions of inspected specimen leaves. 
Under this scenario, it is important to know how our data distributions behave and if we are dealing with reliable median 
values. To do so, we performed the Boxplot analysis [2,3]  (Fig. 5 of the main manuscript) for the selected purity spaces (P1, 



P2, P3, P, D and PS) regarding different tissue conditions regions (healthy, chlorotic and necrotic, shown in Fig. 4 of the main 
manuscript) of M. sativa and O. europaea specimens. In this context, we studied the percentage of outliers as well as the 
standard errors of the medians for each observable data distribution.  

3.1 Outliers inspection 

Regarding Boxplot charts (Fig. 5 of the main manuscript), the polarimetric data distributions for each type of tissue condition 
(healthy, chlorotic and necrotic) present a certain amount of outlier values, which are known as particular observation data 
points which lie at an abnormal distance (1.5 times –mild– or 3 times –extreme– the distance between first and third quartile) 
from the first or third quartiles of the distribution (illustrated as circles –mild– and stars –extreme–, respectively, in Fig. 5 of 
the main manuscript).  

The calculated outlier percentages for each polarimetric data observable and for each tissue condition studied are 
provided in Table S2. Importantly, note that a low outlier percentage from a polarimetric observable distribution within a 
given tissue condition indicates that only few data points differ, in an abnormal way, from the whole tendency. Consequently, 
we can demonstrate the homogeneity selection of the different tissue regions (healthy, chlorotic and necrotic). In particular, 
the minimum percentage of outliers (0.44%) is demonstrated for the spherical degree, PS, distribution within the healthy 
region of the O. europaea leaf, whereas the largest (3.67%) lies in the distribution of the index of polarimetric purity P1 for 
the chlorotic tissue region of the M. sativa inspected leaf. From data in Table S2 we can ensure the validity of most 
polarimetric data used for the study presented in this manuscript.   

Table S2. Polarimetric observables outliers in percentage (%) for healthy and diseased regions in Medicago sativa and 
Olea europaea inspected leaves. Maximum and minimum outlier % values are highlighted in gray. 

 P1 P2 P3 P D PS 

Medicago sativa % Outliers Healthy 1.92% 1.39% 1.21% 1.32% 1.21% 1.32% 
 Chlorosis 3.67% 1.50% 2.00% 1.16% 2.08% 3.08% 

Olea europaea % Outliers 
Healthy 0.58% 1.03% 0.97% 0.77% 0.58% 0.44% 

Chlorosis 0.82% 0.89% 1.21% 0.57% 1.03% 0.93% 
Necrosis 1.24% 1.03% 1.63% 0.90% 1.39% 1.30% 

 

3.2 Analysis on median values 

Once the validity of the selected tissue regions of both inspected samples is demonstrated, we can ensure the correct 
treatment of polarimetric data as well as its interpretation in terms of discriminative potential. Regarding the last, we visually 
deduce from median values extended red-dotted lines in Fig. 5 of the main manuscript, the potential of several polarimetric 
observables to set apart the different type of tissues (healthy, chlorotic and necrotic) within a sample. This is because in the 
Boxplot analysis, if the median of one tissue does not coincide within the box of another tissue for a given polarimetric 
observable, those tissues can be interpreted as statistically discriminable within such observable (i.e., the median value of one 
class, falls out the 75% of data corresponding to the other class).  

For the correct quantification of the visual discrimination for both M. sativa and O. europaea samples, the calculated 
median values and the corresponding associated errors for each polarimetric observables (P1, P2, P3, P, D and PS) and type of 
tissue (healthy, chlorotic and necrotic) are presented in Table S3. In this context, the median values for the studied 
polarimetric observables present, overall, low standard deviations of the median. This behavior is correlated with reliable 
polarimetric median values, allowing us to perform comparatives between the discriminative potential of the different metrics 
(P1, P2, P3, P, D and PS) through bloxplot analysis. 

  



Table S3. Polarimetric observables median values and standard deviations on healthy, chlorotic and necrotic regions of 
the studied leaves of Medicago sativa and Olea europaea.  

 P1 P2 P3 P D PS 

Medicago sativa 
Healthy 0.187  

± 0.034 
0.243  

± 0.041 
0.498  

± 0.047 
0.117  

± 0.025 
0.102  

± 0.022 
0.236  

± 0.031 

Chlorosis 0.278 
± 0.077 

0.363 
± 0.095 

0.612 
± 0.094 

0.169 
± 0.048 

0.144 
± 0.036 

0.325 
± 0.074 

Olea europaea 

Healthy 0.033 
± 0.013 

0.068 
± 0.018 

0.012 
± 0.027 

0.023 
± 0.010 

0.024 
± 0.010 

0.055 
± 0.014 

Chlorosis 0.012 
± 0.004 

0.029 
± 0.007 

0.057 
± 0.010 

0.022 
± 0.007 

0.019 
± 0.004 

0.018 
± 0.004 

Necrosis 0.087 
± 0.027 

0.149 
± 0.036 

0.238 
± 0.052 

0.036 
± 0.016 

0.035 
± 0.016 

0.125 
± 0.028 

3.3 Pseudo-coloration functions implementation 

In this section we present the detailed description of the performed steps regarding the pseudo-coloration of M. sativa and O. 
europaea inspected samples, they being based on two triplets of polarimetric observables, (P2, P3, PS) and (P1, P2, P3). 

The main goal is to achieve an image visual enhancement of different plant tissue conditions (healthy and diseased 
regions) when compared with non-pseudocolored polarimetric images. To construct the pseudo-colored images, as explained 
in the main text, we need to define some threshold values discriminating between tissues conditions (chlorosis, healthy and 
necrosis), which were derived from Boxplot analysis (see Fig. 5 in main manuscript). In the following, we explain in detail 
the method to set the different thresholds, corresponding to each polarimetric observable contained into a given triplet.  

Note that the different tissue conditions are well differentiated when represented within the boxplot charts (see Fig. 5 in 
main manuscript). Taking adventatge of this situation, we can set a threshold able to discriminate between each pair of tissue 
conditions in a binary way. In the case of the M. sativa sample, we only need to discriminate between chlorotic and healthy 
tissues, so only one threshold value is required. In turn, in the case of the O. europaea sample, we need to discriminate 
between healthy, chlorotic and nectrotic tissues, so two thresholds are required: (1) chlorotic-healthy and (2) necrotic-healthy 
thresholds (note that healthy tissues gets intermediate values between chlorotic and nectrotic tissues, so no more threshods 
are needed – see Fig. 4 in main manuscript). In addition, this threshold assignment must be repeated for each polarimetric 
observable present in one of the studied triplets (P1, P2, P3, and PS). Under this scenario, for a particular observable and for a 
particular case between two tissue conditions to be discriminated, let us call them condtion A and B, we calculated, from the 
Boxplot chart, the observable value of the first quartile (bottom side of the box), for the tissue condition with the highest 
mean value between A and B, as well as the observable value of the third quartile (upper side of the box), for the tissue 
condition with the smallest mean between A and B. Finally, the threshold value is directly obtained by conducting the 
difference, in each case, between these two quartile values (third and first). Obtained quartile values for the different 
polarimetric observables (columns) and for the different tissue conditions (rows) present in the two studied samples (M. 
sativa and O. europea) are provided in Table S4. Resulting thresholds are presented in following Table S5. 
  



Table S4. First and third quartiles for chlorotic, healthy and necrotic tissue distributions for each polarimetric observable 
of Medicago sativa and Olea europaea leaf studied samples.  

 
P1 P2 P3 PS 

Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3 

Medicago sativa 
Healthy - 0.209 - 0.271 - 0.531 - 0.271 

Chlorotic 0.232 - 0.303 - 0.552 - 0.303 - 

Olea europaea 

Chlorotic - 0.015 - 0.034 - 0.064 - 0.022 

Healthy 0.024 0.043 0.056 0.082 0.104 0.141 0.046 0.066 

Necrotic 0.069 - 0.126 - 0.207 - 0.108 - 

 

Table S5. Definition of leaf lesion types by means of threshold pixel values for chlorotic, healthy and necrotic tissues for 
each polarimetric observable of Medicago sativa and Olea europaea leaf studied samples.  

 Threshold: P1 Threshold: P2 Threshold: P3 Threshold: PS 

Medicago 
sativa 

Healthy P1 < 0.220 P2 < 0.287 P3 < 0.542 PS < 0.269 

Chlorotic P1 ≥ 0.220 P2 ≥ 0.287 P3 ≥ 0.542 PS ≥ 0.269 

Olea 

europaea 

Chlorotic P1 ≤ 0.020 P2 ≤ 0.045 P3 ≤ 0.084 PS ≤ 0.034 

Healthy 0.056 > P1 > 0.020 0 .104 > P2 > 0.045 0.174 > P3 > 0.084 0.087 > PS > 0.034 

Necrotic P1 ≥ 0.056 P2 ≥ 0.104 P3 ≥ 0.174 PS ≥ 0.087 

Note that in a boxplot representation, the box sides (upper and bottom) define the first and third quartiles respectively, and 
thus the 50% of data corresponding to a given distribution falls into the box. Therefore, above the first quartile, as well as 
under the third quartile, there is represented the 75% of the data related to a given data distribution. Importantly, the 
thresholds constructed by using the above-stated approach, are set halfway between the first and third quartiles of the 
particular pair of tissues being discriminated, and thus, this construction ensures a tissue condition recognition in all the cases 
superior to the 75% in each polarimetric channel studied. This is always true if the boxes corresponding to the different 
tissues to be discriminated are not overlapped in a particular polarimetric observable (as it is the case of the observables 
selected for the triplets, see Fig. 5 of the main manuscript). In fact, this recognition rate should be even larger if taking into 
account that the the remaining data (25% of data, which is represented in the whiskers) of each tissue is generally not linearly 
distributed throught the whiskers but especially close to the box sides (i.e., certain data between boxes above/below the 
threshold is still well recognized). For the sake of clarity, a representative graphic example of quartiles selection and 
threshold location is shown in Fig. S3. 



 
Figure S3. Representative example of quartile values location and threshold calculation for chlorotic and healthy P1 

distributions of the Medicago sativa inspected sample. The relative position of first and third quartiles (labels Q1 and Q3, 
respectively) for healthy (H) and chlorotic (C) distributions, are indicated by means of continuous black lines, whereas the 

location of the corresponding threshold (mean value between Q3 and Q1) is red-lined. Red-dashed boxes illustrate the 
percentage of data explained under the third quartile and above the first of the healthy and chlorotic polarimetric observable 

P1 data distribution. 

Once the thresholds were obtained as previously discussed (see values in Table S5), they were used to implement the pseudo-
colored images. To do so, we associated each one of the three primary colors (R, G, B) to the different tissue conditions of 
the inspected samples: chlorotic regions were associated to red, healthy tissues to green and necrotic ones to blue. 
Afterwards, a binary colored image (color/black) is constructed for each tissue condition: values above/below the 
corresponding threshold are assigned to the particular tissue condition color (R-chlorotic, G-healthy, B-necrotic) or to black, 
respectively. Consequently, for each  particular polarimetric observable Pi (i=1, 2, 3, S), we construct three independent 
images, one per primary color (R, G and B), each one carrying the information corresponding to a given tissue condition. 
Afterwards, the three binary colored-images corresponding to a particular polarimetric observable Pi, are added by means of a 
linear combination, leading to a first pseudo-colored image, as showin in Eq. (S1): 

 , , , ,( , ) ( , ) ( , ) ( , ).i approach i Red Chlorotic i Green Healthy i Blue NecroticP x y P x y P x y P x y− − −= + +  (S1) 

Therefore, according to Eq. (S1), the first-approach pseudo-colored functions for the different polarimetric observables in the 
case of M. sativa are defined as: 
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and for the case of O. europaea: 
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where MS and OE sub-labels denote for M. sativa and O. europaea, respectively, and R, G and B for red, green and blue 
primary colors associated to the chlorotic, healthy and necrotic tissue regions, respectively. Note that the term regarding to 
necrotic tissues in M. sativa (Eq. (S2)) is equal to zero (Pi, Blue-Necrotic = 0) because there is no necrotic content within the 
inspected sample. Afterwards, and recalling the selected polarimetric triplets (i.e., (1) the Components of Purity: P2, P3, PS 
and; (2) the IPPs: P1, P2, P3), each of the RGB-layered images obtained from Eqs. (S2) and (S3) is put together by means of 
a second linear combination. In this way, the particular information of each polarimetric observable into a triplet is combined 
in a final RGB-layered pseudo-colored image. The final image linear combinations for the triplets (P2, P3, PS) and (P1, P2, 
P3) for M. sativa and O. europaea inspected samples are presented in the following equations (S4) and (S5), respectively: 
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where MS and OE sub-labels denote for M. sativa and O. europaea. For simplicity, we chose the weigths for polarimetric 
triplets to be the unit. Nevertheless, the overall low values on polarimetric observables on O. europaea lead to a dark tone 
final image. To improve the visualization, the weights were pondered by a factor 2. 

For visual comparison, in Fig. S4 we present the regular intensity images, the images for the indices of polarimetric 
purity P2 and P1, and the obtained pseudo-colored images by means of performing the above-presented relationships in Eqs. 
(S4) and (S5) for M. sativa and O. europaea. The final pseudo-coloration clearly demonstrates, as initially stated, the image 
visual enhancement between pathology symptoms (injured regions) and healthy tissue within the inspected samples. A 
detailed discussion of the obtained results is provided in the discussion section of the main manuscript.  



 

Figure S4. Visual comparison of Medicago sativa leaf (top row): a) 625 nm intensity image (M00), b) polarimetric purity 
index P2, c) processed image by means of #1 pseudo-coloration and d) processed image by means of #2 pseudo-coloration; 
Visual comparison of Olea europaea leaf (bottom row): e) 625 nm intensity image (M00), f) polarimetric purity index P1, g) 

processed image by means of #1 pseudo-coloration and h) processed image by means of #2 pseudo-coloration. 

4. Complete image Mueller polarimeter description 
The experimental Mueller matrices of the collected samples were acquired by means of a complete image Mueller 
polarimeter working at three different illumination wavelengths (625 nm, 530 nm and 470 nm), covering the visible range, 
and two measurement configurations: scattering and transmission. Importantly, the polarimeter used in this work consists of 
two independent optical systems gathered into two mobile compact arms, the polarization state generator (PSG) and the 
polarization state analyzer (PSA). The optical design for PSG consists on the arrangement of a linear polarizer oriented at 0º 
with respect to the laboratory vertical, followed by two Parallel Aligned Liquid Crystal (PA-LC) retarders at 45º and 0º, 
respectively. PSA optical set-up has the same elements as PSG but placed in the inverse order, but additionally placing a 
CCD camera for the capture of the sample intensity. This architecture leads to the capability of generating and analyzing, 
respectively for the PSG and PSA systems, any fully polarized state. Remark that scattering measurements are performed by 
illuminating the sample by placing the PSG at 34º with respect to the laboratory horizontal and the PSA in vertical position to 
avoid the direct reflections and collect scattered light. Transmission configuration is characterized by placing both PSG and 
PSA at 0º with respect to laboratory horizontal. Visual representation of both optical set-up configurations as well as the inner 
components is shown in Figs. S5 and S6, respectively. 



 
Figure S5. 3D representation of the complete image Mueller polarimeter used in this study at a) transmission configuration 

and b) scattering configuration. 

 
Figure S6. 3D representation of the polarization state generator (PSG) and polarization state analyzer (PSA) optical 

components arrangement. 

In the following we provide the detailed information about the optical components within the polarimeter: the illumination is 
performed by means of we use a four-wavelength high-power Thorlabs LED source (LED4D211, operated by DC4104 
drivers distributed by Thorlabs) complemented with 10 nm dielectric bandwidth filters distributed by Thorlabs: FB530-10 
and FB470-10 for green and blue wavelengths, respectively. Imaging is performed by means of a 35 mm focal length 
Edmund Optics TECHSPEC® high resolution objective followed by an Allied Vision Manta G-504B CCD camera, with 5 
Megapixel GigE Vision and Sony ICX655 CCD sensor, 2452(H) × 2056(V) resolution and cell size of 3.45 μm × 3.45 μm, so 
a spatial resolution of 22 μm is achieved. Regarding the two different linear polarizers: the one arranged on PSG is a Glan-
Thompson prism-based CASIX whereas the placed in PSA is a dichroic sheet polarizer distributed by Meadowlark Optics. 
The four Parallel Aligned Liquid Crystals are Variable Retarders with Temperature Control (LVR-200-400-700-1LTSC 
distributed by Meadowlark Optics).  
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Automatic pseudo‑coloring 
approaches to improve visual 
perception and contrast 
in polarimetric images of biological 
tissues
Carla Rodríguez1*, Albert Van Eeckhout1,2, Enrique Garcia‑Caurel2, Angel Lizana1 & 
Juan Campos1

Imaging polarimetry methods have proved their suitability to enhance the image contrast between 
tissues and structures in organic samples, or even to reveal structures hidden in regular intensity 
images. These methods are nowadays used in a wide range of biological applications, as for the early 
diagnosis of different pathologies. To include the discriminatory potential of different polarimetric 
observables in a single image, a suitable strategy reported in literature consists in associating different 
observables to different color channels, giving rise to pseudo‑colored images helping the visualization 
of different tissues in samples. However, previous reported polarimetric based pseudo‑colored 
images of tissues are mostly based on simple linear combinations of polarimetric observables whose 
weights are set ad‑hoc, and thus, far from optimal approaches. In this framework, we propose the 
implementation of two pseudo‑colored methods. One is based on the Euclidean distances of actual 
values of pixels and an average value taken over a given region of interest in the considered image. The 
second method is based on the likelihood for each pixel to belong to a given class. Such classes being 
defined on the basis of a statistical model that describes the statistical distribution of values of the 
pixels in the considered image. The methods are experimentally validated on four different biological 
samples, two of animal origin and two of vegetal origin. Results provide the potential of the methods 
to be applied in biomedical and botanical applications.

Contrast in an image can be understood as the di!erence in either luminance (grey level) or color, that makes 
an object, or a region embedded in a portion of said image, to be distinguishable from the surrounding objects 
or regions. In biological samples, variations of luminosity or color of images are due to changes in the amount 
of light being absorbed, re"ected or scattered by the probed sample. Since such "uctuations are related in a more 
or less involved di!erent properties of the sample (composition, organization, order, structure….) then it can be 
said that absorption, re"ection or scattering are sources of contrast that may allow to perceive variations in the 
physical properties of the imaged scene. #e way in which a sample absorbs, re"ects or scatters light not only 
depends on its intrinsic properties but also depends on the illumination conditions set to probe such sample. 
#e simplest and maybe the most standard way of illuminating an object is to use partially coherent unpolarized, 
either polychromatic or monochromatic, light. Unfortunately in many cases, such a simple way of illumination 
may lead to poorly contrasted images which do not provide enough visual contrast. In those cases the use of more 
sophisticated methods of illumination, such as polarized light imaging, may be employed in order to boost the 
contrast in the images and therefore to retrieve information from probed samples with enhanced accuracy. #e 
use of polarized light has been shown to be useful to reveal di!erences in the composition, thickness, density 
and structural organization as, for instance, in some tendinous structures in animal  samples1 or some organelles 
in  plants2–4. #is is because, when illuminating these biological structures with polarized light, the light matter 
interactions lead to very di!erent polarimetric properties (in retardance, dichroism and/or depolarization), which 
are directly related with their structural  nature1,5. For instance, the anisotropic behavior of the plant vascular 
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structures (mainly composed by organized and well-aligned cellulose  chains6–8), or the animal structures built-in 
collagen (e.g., tendons), induce retardance to the polarization of the incident light beam.

One of the main advantages of polarization is the high sensitivity of the technique to di!erences in composi-
tion and structural organization within the inspected biological tissues. Among others, polarimetry allows the 
imaging of nerve $ber bundles in the human  brain9 and the inspection of Alzheimer  disease10. Polarization-
related techniques also demonstrate high accuracy in the early detection of some cancers such as skin  cancer11, 
colon  cancer12, breast  cancer13,14 and brain  cancer15. Moreover, recent studies reveal the accurate performance of 
some machine learning algorithms built-in the polarimetric analysis of some biological  tissues16–20. #is situation 
may bene$t the implementation of fast in-vivo and non-invasive pathology recognition methods, even at early 
stages. Analogously, the use of these optical techniques in plant science has proved to be very useful, as vegetal 
structures present polarimetric signatures (for instance, dichroism and birefringence) which can be potentially 
exploited for characterizing the spatial organization of some vegetal organelles such as the thylakoid  membranes2 
or the cell wall  composition8. Recently, in addition to dichroism and birefringence, the use of depolarization 
observables to characterize structures in vegetal samples, is arousing growing  interest3,4.

Keeping in mind the suitability of polarimetry for organic tissues characterization, it is feasible to achieve the 
overall enhancement of image contrast, including the revelation of regular intensity-hidden inherent structures, 
by conducting polarimetric measurements of biological tissues (either animal or vegetal). Polarimetric measure-
ments result in a diversity of polarimetric $gures (depolarization, diattenuation, polarizance, linear retardance, 
etc.)21–23 that may provide relevant information of tissue structures but which are commonly visualized as sepa-
rated information channels. With the aim of enhancing the visualization of tissue imaging, recent  works1,24,25 
suggest the construction of a pseudo-colored image whose layers contain the di!erent polarimetric features of 
the sample, i.e., di!erent polarimetric information origins are included all together in a single enhanced image. 
#e main idea in these works is to design a pseudo-colored function based on the weighted combination of 
three di!erent polarimetric observables showing the highest image contrast between the structures of interest 
within the sample and associate each chosen observable to a primary color, RGB (red, green and blue). So far, 
the methods proposed to build polarimetric based pseudo-colored images are based on the qualitative (visual) 
selection of the polarimetric observables and their relative weights, and so, the $nal pseudo-colored model is 
quite arbitrary and not optimal in most of cases.

In this work we present, for the $rst time, two pseudo-coloring models which are designed based on two dif-
ferent methods that allow maximizing the visual contrast of di!erent tissues in the sample. #e two applied meth-
ods for building pseudo-colored images are based on: (1) the Euclidean distance between polarimetric values of 
di!erent tissues; and (2) the Normal (Gaussian) function based on polarimetric data to estimate the probability 
of belonging to a particular tissue. Based on previous studies showing the special suitability of some depolarizing 
spaces in terms of biological samples  discrimination1,3–5, we selected the Indices of Polarimetric Purity (IPPs)26 
and the Components of Purity (CPs)21 spaces as the variables to be implemented within the pseudo-colored func-
tions. Note that these two polarizing spaces are complementary, and fully describe the depolarizing properties 
of  samples27. For completeness, we provide the comparison between pseudo-colored model results, based on the 
Euclidean and the Normal-based approaches, when analyzing di!erent organic samples. Overall, images result-
ing from the pseudo-colored methods presented in this study overcome the regular polarimetric observables in 
terms of spatial location, visualization and recognition of the chosen structures within the inspected samples.

Results
#is section aims to show the results obtained with the Euclidean and Normal-based pseudo-coloring methods 
when used to inspect diverse types of biological samples (animal and vegetal samples). In both methods, the 
construction of the corresponding pseudo-coloring functions is based on the selection of a triplet of polarization-
based $gures or observables. As previously mentioned, we selected depolarization-related observables because as 
reported in  literature16,17,28–30, and based in our previous experience we know that they are suitable to characterize 
biological  samples1,3–5. To reinforce this argument, in section 1 of Supplemental document, we show the images 
of di!erent biological structures related to a representative collection of di!erent polarimetric observables used 
in the literature, as well as the images corresponding to IPPs and CPs, to show how the latter spaces give rise 
to greater visual contrast. In particular, two di!erent scenarios were studied: (1) pseudo-coloring based on the 
Indices of Polarimetric Purity (IPPs, labeled as P1, P2 and P3); and (2) pseudo-coloring based on the Compo-
nents of Purity (CPs, labeled as P, D and PS). #ese depolarization-based $gures, which are discussed in detail 
in the “Methods” section, are selected here because they provide a complete description of the depolarization 
of light by the depolarization-related information of probed  samples27. For illustrative purposes, in this section 
we show an application of the two image processing methods discussed here to four di!erent types of samples, 
two of them were animal tissues and the other two were vegetal tissues. #e two animal samples were biopsies 
from a lamb trachea (showing the trachea ring and the sheath), and a lamb tongue (showing the lingual papil-
lae and epithelial tissue) respectively. #e two vegetal tissues were taken from leaves of a specimen of Quercus 
pubescens presenting powdery mildew lesion caused by the fungus Erysiphe alphitoides (leaf powdery mildew 
vs leaf lamina), and, (4) leaves from a specimen of Vitis vinifera showing no symptoms of disease (leaf vein vs 
raphides vs cell cluster). Note that in the case of the V. vinifera leaf, we simultaneously analyzed three features 
(leaf vein/raphide/cell cluster) to study the ability of the proposed methods to characterize samples with more 
than two di!erent features.

#e pseudo-colored imaging construction procedure is summarized as follows. First, the experimental 
Mueller matrix (MM) image of all the studied samples was measured with a complete imaging polarimeter 
fully described in “Methods” section. From MM images, according to the mathematical background described 
in “Methods” section, we retrieved images of the depolarization-related observables corresponding to the 
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polarimetric triplets of IPPs (P1, P2 and P3) and CPs (P, D and PS), i.e., six polarimetric images were derived from 
each experimental MM of a sample. From each one of these observables, we built four pseudo-colored images 
per sample, according to the approaches described in “Methods” section. #ese four pseudo-colored images, 
correspond to the Euclidean-based or Normal-based designs. In a $nal step the pseudo-colored images of each 
observable obtained with the two methods are compared to each other in order to select the one which higher 
contrast, and therefore the one which o!ers the cleared description of the studied sample. In the following, we 
provide the results obtained for the study of the above-stated biological samples. #e analysis of the results is 
provided in the “Discussion” section.

Polarimetric inspection of animal samples. #e two animal samples discussed here correspond to a 
lamb trachea and a lamb tongue. #e images shown are representative of the di!erent images that we took from 
the same biopsy. #e experimental data were taken in the scattering con$guration, with a spectrally $ltered blue 
light at 470 nm. #e size of the probed samples was 2.2 × 2.2   cm2 and the images were taken using a camera 
with 1024 × 1024 pixels. Figure 1 shows the intensity image of the lamb trachea obtained with unpolarized light 
(M00, Fig. 1a; i.e., unpolarized intensity image) and the retrieved depolarization observables-based images cor-
responding to the IPPs (P1, P2, P3 in Fig. 1b–d) and CPs (P, D, PS in Fig. 1e–g).

As previously mentioned, the following step is to construct pseudo-colored images based on the observables 
of the two chosen triplets of depolarization-based observables, the IPPs (P1, P2 and P3) and the CPs (P, D and 
PS), and to use them to apply the pseudo-color approach based on the Euclidean and the Gaussian approaches. 
#erefore, this procedure leads to four di!erent pseudo-colored images for each sample studied (i.e., Euclidean 
model for (1) IPPs and (2) CPs plus Normal model for (3) IPPs and (4) CPs). In this subsection we focus on the 
results obtained for the animal samples (lamb trachea and lamb tongue samples).

In the particular case of the lamb trachea sample, we choose the trachea cartilaginous rings (marked in yel-
low in Fig. 1a) and the sheath (marked in blue in Fig. 1a) as the features to be di!erentiated within the resulting 

pseudo-colored image. Under this scenario, we associate the trachea rings with the coordinates, 
−−→
CRing = [1, 1, 0] 

corresponding to the yellow color in the standard RGB color space. Analogously, the trachea sheath is associated 

with the RGB coordinates corresponding to the blue color, 
−−−−→
CSheath = [0, 0, 1] . Figure 2 shows the pseudo-colored 

images of the lamb trachea in Fig. 1 resulting from the application of the two coloring approaches. #e unpolar-
ized image is also shown for visual comparison. #e selected ROIs used for reference in the computations are 
indicated by the yellow and blue squares in Fig. 2a, respectively. Figure 2b and d correspond to the Euclidean 
pseudo-coloring for the polarimetric triplets IPPs and CPs, respectively. In counterpart, Fig. 2c and e illustrate 
the Normal pseudo-coloring for the polarimetric observables IPPs and CPs, respectively.

Likewise, we apply the same polarimetric analysis above-described, but this time to the lamb tongue. Figure 3 
presents typical images of the tongue (Fig 3a corresponds to the unpolarized di!use re"ectance, M00, and the 
corresponding polarimetric observables P1, P2, P3, P, D and PS can be seen in Fig. 3b–g respectively).

#e two most well-di!erentiated characteristics within the lamb tongue correspond to the lingual papillae and 
epithelial tissue. Accordingly, we chose these features as the structures to be di!erentiated in the pseudo-colored 

Figure 1.  Images of a lamb trachea measured at 470 nm illumination wavelength: (a) unpolarized intensity 
image (M00), the Indices of Polarimetric Purity (b) P1, (c) P2 and (d) P3 and the Components of Purity (e) 
P, (f) D and (g) PS. #e yellow dotted box (Fig. 1a) and yellow arrows (Fig. 1 g), indicate the location of the 
cartilaginous rings. #e dotted blue box (Fig. 1a) indicates the location of the trachea sheath. #e orange arrow 
(Fig. 1b) and the orange dotted line (Fig. 1f.) show the vascular structure within the external trachea sheath and 
the sample border, respectively.
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Figure 2.  Raw and pseudo-colored images of the lamb trachea: (a) Unpolarized intensity image (M00) taken at 
470 nm, (b) Euclidean and (c) Normal pseudo-colored images based on the IPP triplet, (d) Euclidean and (e) 
Normal pseudo-coloring based on the CP triplet. Yellow and blue squares show reference areas corresponding 
to the trachea ring and sheath, respectively. #e white arrows (Fig. 2b and d) and the black dotted line (Fig. 2d) 
denote for the cartilaginous rings and the trachea border, respectively.

Figure 3.  Polarimetric images of the lamb tongue measured at 470 nm illumination wavelength: (a) regular 
intensity image (M00), the Indices of Polarimetric Purity (b) P1, (c) P2 and (d) P3 and the Components of Purity 
(e) P, (f) D and (g) PS. #e pink and lime-green arrows in Fig. 3a indicate the location of some of the lingual 
papillae and epithelial tissue regions, respectively.
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images. In particular, we associate the polarimetric information of the lingual papillae with pink color with the 

following RGB coordinates 
−−−−→
CPapillae = [1, 0, 0.5] , and the epithelial tissue with the RGB coordinates correspond-

ing to lime-green color with the RGB coordinates 
−−−−−→
CEpithelial = [0, 1, 0.5] , (both arrowed with their corresponding 

color in Fig. 3a). Figure 4 shows the di!use re"ectance image M00 (Fig. 4a) and the images resulting from the 
implemented pseudo-colored functions. #e ROIs corresponding to lingual papillae and epithelial tissue are 
indicated in Fig. 4a with pink and lime-green squares, respectively. Figure 4b and d correspond to the Euclidean 
pseudo-coloring of the inspected sample for the depolarization spaces IPPs and CPs, respectively. Besides, the 
Normal pseudo-coloring for the polarimetric triplets IPPs and CPs is presented in Fig. 4c and e, respectively.

Polarimetric inspection of vegetal samples. In this section we discuss the results obtained from two 
di!erent plants; one was a leaf of Q. pubescens and the other was a leaf of V. vinifera. #e leaf of Q. pubescens show 
powdery mildew lesions caused by the fungus E.rysiphe alphitoides while the leaf of V. vinifera did not show any 
sign of infection or parasitic invasion. #e leaf Q. pubescens was measured with the same imaging polarimeter 
used to obtain the images discussed in the previous section. #e typical size of the $eld of view of the images 
measured with such polarimeter is1.1 × 1.1  cm2 (512 × 512 pixels). #e experimental Mueller matrices of the leaf 
of V. vinifera were measured with a polarimetric microscope in transmission at a wavelength of 533 nm. #e 
$eld of view of the images taken by the microscope correspond to a circle of radius 100 µm. #e non-polarized 
(transmission, di!use re"ectance) intensity image (M00) and the retrieved depolarization observables (P1, P2, P3, 
P, D and PS) for the Q. pubescens sample are presented in Fig. 5.

In order to explore the ability of pseudo-colored images to enhance the visual contrast between healthy and 
infected areas of the leaf, we chose to inspect the characteristics corresponding to the powdery mildew lesions 
and the healthy leaf lamina. In particular, we associate the polarimetric information of the powdery mildew 

with the yellow color, with RGB coordinates 
−−−−−→
CPowdery = [1, 1, 0] , and the leaf lamina with blue color with RGB 

coordinates, 
−−−−→
CLamina = [0, 0, 1] . Note that the chosen colors, blue and yellow are complementary to each other, 

therefore they even the slightest shadow of them can be can be visually discriminated with ease. Figure 6 presents 
the visual comparison between the M00 image (Fig. 6a) and the four pseudo-colored images based on polarimetric 
observables for the inspected leaf of Q. pubescens. As discussed in previous section the pseudo-colored images 

Figure 4.  Intensity and pseudo-colored images for the inspected lamb tongue: (a) regular intensity image (M00) 
captured at 470 nm illumination wavelength, (b) Euclidean and (c) Normal pseudo-colored images for IPPs, 
(d) Euclidean and (e) Normal pseudo-coloring for CPs. Pink and green squares (Fig. 4a) denote for the selected 
regions of interest (ROI) of lingual papillae and epithelial tissue, respectively. White arrows (Fig. 4b, c and e) 
indicate a particular region only containing epithelial tissue. #e dotted-squares indicate the unseen / out of 
focus region (by means of the unpolarized image, M00) of the tongue.
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Figure 5.  Polarimetric images of the Quercus pubescens leaf measured at 470 nm illumination wavelength: (a) 
regular intensity image  (M00), the Indices of Polarimetric Purity (b)  P1, (c)  P2 and (d)  P3 and the Components of 
Purity (e) P, (f) D and (g)  PS. #e yellow arrows, and the blue dotted box (both in Fig. 5a) denote for some of the 
powdery mildew lesions and the leaf lamina location, respectively. #e orange-dotted box (Fig. 5f.) indicates the 
location of the leaf vein.

Figure 6.  Intensity and pseudo-colored images for the inspected Quercus pubescens leaf: (a) non-polarized 
(transmission—di!use re"ection) image (M00) captured at 470 nm illumination wavelength, (b) Euclidean and 
(c) Normal pseudo-colored images for IPPs, (d) Euclidean and (e) Normal pseudo-coloring for CPs. Yellow and 
blue squares (Fig. 6a) denote for the selected regions of interest (ROI) of powdery mildew lesion caused by the 
fungus Erysiphe alphitoides and the healthy leaf lamina, respectively. White-dotted squares (Fig. 6c and e) denote 
for the misrecognized pixel regions of both Euclidean and Normal-based methods.
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were obtained using the functions described in Methods with the above-stated 
−−−−−→
CPowdery and 

−−−−→
CLamina values. #e 

selected regions of interest (ROI) corresponding to powdery mildew and leaf lamina, are indicated in Fig. 6a with 
yellow and blue squares, respectively. #e resulting Euclidean and Normal pseudo-coloring for the polarimetric 
spaces IPPs and CPs are shown in Fig. 6b and d and Fig. 6c and e, respectively.

Regarding to the inspection of V. vinifera leaf, we chose to di!erentiate three main structures present in the 
leaf, the raphides, the vegetal cells walls of the leaf lamina and the venous system, each one associated with the 

pink, lime-green and blue colors corresponding to the RGB coordinates 
−−−−→
CRaphide = [1, 0, 0.5] , 

−−→
CCell = [0, 1, 0.5] , 

and 
−−→
CVein = [0, 0, 1] , respectively. Figure 7 presents the regular intensity image (M00) and the retrieved depo-

larization observables (P1, P2, P3, P, D and PS) for the V. vinifera leaf.
Since the Euclidean distances approach is valid for just two classes, we decide to choose cell walls of the leaf 

lamina. In contrast, the Normal approach accepts more than two classes, so with this method we can visualize, 
simultaneously, the three above-mentioned features: the raphides, the leaf lamina cells and the vein. In this case, 
the pseudo-colored approach results in the images shown in Fig. 8. #is example allows us to show the ability to 
recognize tissues that are invisible in non-polarimetric images thanks to the use of polarimetric images. #is is 
because some biological structures analyzed are invisible in the intensity image (Fig. 7a) and therefore, the ROIs 
used to train the model are directly obtained from polarimetric channels, and in particular, from the P1 image 
which was the one giving the largest visual contrast. In particular, Fig. 8 presents a visual comparison between 
the image corresponding to the polarimetric purity index P1 (Fig. 8a) and the resulting images from both the 
Euclidean and the Normal-based pseudo-coloring methods for the V. vinifera inspected section. As said, note that 
unlike previous cases, in this case we select the polarimetric purity index P1 (Fig. 8a) as reference instead of the 
intensity image (Fig. 7a). #is is because some structures of interest (the raphides in this case) are visible thanks 
to the P1 channel, but completely invisible in the intensity imae (Fig. 7a), and therefore, corresponding ROIs 
were obtained from Fig. 8a. For the sake of clarity, the ROIs of the structures corresponding to the raphide, cell 
cluster and leaf vein, are indicated in Fig. 8a with pink, lime-green and blue squares, respectively. Figure 8b and 
d illustrate the Euclidean pseudo-coloring of the sample by means of the IPPs and CPs observables, respectively. 
Figure 8c and e show the Normal pseudo-coloring for the IPPs and CPs implementation, respectively.

Discussion
In the following, we present a discussion regarding the pseudo-colored images of di!erent animal tissues pre-
sented in the previous “Results” section. In this work, we choose the polarimetric channels that give larger 
contrast between tissues of interest, and apply them within diverse pseudo-coloration methods. Note that we 
do not select the intensity image as one channel for the pseudo-coloration approach. #e loss of the intensity 
channel is a choice in our case, in favor of a more adequate space to enhance the contrast between di!erent tis-
sues. We use the RGB color space mainly because it is made up of three orthogonal variables that vary from 0 to 
1 and the IPPs are restricted to the same value range. However, we want to note that the IPPs are not completely 
independent since the value of P3 channel determines the range of P2 and P1

21. For this reason, another color 
composition may also be useful (or more optimal) to represent the IPPs space.

Figure 7.  Polarimetric images of the Vitis vinifera leaf measured under the microscope for 533 nm illumination 
wavelength: (a) non-polarized transmission image (M00), the Indices of Polarimetric Purity (b) P1, (c) P2 and 
(d) P3 and the Components of Purity (e) P, (f) D and (g) PS. #e blue and pink arrows (Fig. 7a, and b) indicate 
the location of the vein and the raphides, respectively. #e white arrows (Fig. 7b, e and f) indicate the secondary 
vascular structure. #e lime-green dotted box indicates an illustrative region comprising a cell cluster.
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In the case of the lamb trachea sample (Fig. 1), the two most well-di!erentiated structures for the lamb trachea 
in the non-polarized re"ectance image (Fig. 1a) correspond to the cartilaginous rings, composed by hyaline car-
tilage, and the external sheath, also known as tunica adventitia, mainly composed by collagen (both structures 
are indicated in Fig. 1a with yellow and blue squares, respectively). #ese main di!erences in tissue composition 
give raise to the di!erent polarimetric responses explored and discussed in this work. Figure 1 clearly shows 
how the images corresponding to the enpolarization metrics (P1, P2, P3, P, D and PS in Fig. 1b–e) point well the 
di!erence between the two types of tissues and also present an enhanced contrast when compared to the non-
polarized di!use re"ectance (M00 in Fig. 1a). Regardless of the model used to assign colors to pixels, the key to 
ensure a vivid contrast enhancement using a pseudo-colored approach from several channels is the fact that a 
given channel must be sensitive to characteristics of the sample that the other channels are not. For instance, in 
the particular case of the trachea, P1 provides information about the surface details of the trachea sheath (e.g. 
some vascular structures within the external sheath, indicated with the orange arrow in Fig. 1b), while P2 and 
P3 are sensitive to the cartilaginous rings (Fig. 1c–d). Interestingly, the cartilaginous rings demonstrate higher 
mean values for IPPs (P1 = 0.14 ± 0.01, P2 = 0.27 ± 0.01 and P3 = 0.37 ± 0.01) when compared with the trachea 
sheath (P1 = 0.05 ± 0.01, P2 = 0.10 ± 0.01 and P3 = 0.18 ± 0.01), this meaning that the cartilaginous rings are less 
depolarizing than the trachea sheath. Accordingly, cartilaginous rings demonstrate higher mean polarizance P 
(Fig. 1e) values (P = 0.06 ± 0.01) than the sheath (P = 0.02 ± 0.01). In contrast, the sheath induces more diattenu-
ation (D = 0.10 ± 0.01) than the rings (D = 0.05 ± 0.01) (Fig. 1f). Note that in all the cases, polarizance and diat-
tenuation channels present values lower than 0.1. #is situation indicates that the trachea can be considered as a 
non-dichroic structure and that the observed depolarizing e!ects can be mostly associated with either multiple 
scattering or "uctuations in the value and the direction of the retardance of birefringent structures present in 
cartilaginous rings and the trachea sheath. In this regard, retardance is encoded in the sphericity degree PS and, 
as shown in Fig. 1g, it highlights the details of the trachea rings (mean value of PS = 0.2 ± 0.01, see the yellow 
arrows in Fig. 1g) in addition to the surface of the sheath (mean value of PS = 0.07 ± 0.01). Interestingly, note that 
the IPPs provide information about the structure of the polarimetric randomness of samples, and that they are 
directly connected with the CPs through the  relation27: P2 + D2 + 3P2s = 2P21 + 2

3P
2
2 + 1

3P
2
3 . #is fact, together 

with the above-discussed low values for P and D in the trachea sample, suggests that high values of PS may be 
related to the fact that the cartilaginous structure induces less depolarization according to the strong alignment 
of collagenous $bers. In contrast, the low Ps value of the sheath demonstrates the higher depolarizing behavior 
of that tissue. Importantly, all the polarimetric observables unveil the trachea borders (see the orange dotted line 
in Fig. 1f) not seen in the intensity image (Fig. 1a).

Figure 8.  Non-polarized transmission (M00) and pseudo-colored microscopic images from a Vitis vinifera leaf 
section captured at 533 nm illumination wavelength: (a) polarimetric purity index P1, (b) Euclidean and (c) 
Normal pseudo-colored images for IPPs, (d) Euclidean and (e) Normal pseudo-coloring for CPs. Pink, lime-
green and blue squares denote for the selected regions of interest (ROI) of raphides, leaf lamina cells and vein, 
respectively. #e white arrows indicate the location of the secondary vascular structure.
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Regarding to the pseudo-colored images, the Euclidean distance-based method for both polarimetric tri-
plets of IPPs and CPs (Fig. 2b and , respectively) enhances the perceived contrast between cartilaginous rings 
and trachea sheath. Conversely, the Normal-based approach (based on IPPs and CPs in Fig. 2c and e) has not 
enough capability to improve visualization, as most pixels in the image are not recognized as part of any of the 
two classes (i.e., the probability, calculated through the normal function, of belonging to either the ring or the 
sheath is almost zero). #erefore, according to Eq. (10) in “Methods” section, those pixels are represented in black. 
Concerning the observables used to implement the pseudo-coloring model based on Euclidean distances, the 
use of the IPPs set of observables seem to well di!erentiate the $ve rings (indicated with white arrows in Fig. 2b) 
from the sheath, thus allowing a clear an accurate identi$cation and spatial localization of the cartilaginous tissue 
within the sample. In turn, the same pseudo-coloring model based on the CPs set of observables (Fig. 2d) also 
succeeds to give a clear discrimination between the cartilaginous rings and the trachea sheath but the transi-
tion between these two classes is less accurate than in the IPPs case (i.e., the trachea sheath occupying the space 
between rings is misrecognized as cartilaginous tissue too). Despite this, the $'h trachea ring (white arrow in 
Fig. 2d) and the full trachea structure border (black dotted line in Fig. 2d) are both better spatially located in 
the CPs case. In summary because the poor ability of the coloring based on the Normal model to discriminate 
among di!erent classes, the most adequate method to visually inspect structures within the lamb trachea sample 
is the Euclidean distances approach.

#e second case of study is the lamb tongue. Likewise to the case of the lamb trachea above-discussed, we 
retrieve, from the experimental Mueller matrix measurement of the lamb tongue, the isolated polarimetric 
observables images (P1, P2, P3, P, D and PS). In this sample, we focus on two tissue classes: the lingual papillae 
and the epithelial tissue (some of those are indicated with pink and green-lime arrows in Fig. 3a, respectively). 
Regarding the depolarizing content, the mean values for lingual papillae and epithelial tissue are: P1=0.09±0.01, 
P2=0.14±0.01, P3=0.21±0.01, and, P1=0.03±0.01 (Fig. 3b), and P2=0.10±0.01 (Fig. 3c) and P3=0.20±0.01 (Fig. 3b,c 
and d), respectively. In overall, both the lingual papillae and the epithelial tissue demonstrate similar low IPPs 
values, which translate into the tissues having high depolarizing capability. In addition, the epithelial tissue and 
lingual papillae also show similar (and low) mean polarizance P values: P=0.01±0.01 and P=0.04±0.01, respec-
tively (Fig. 3e). In turn, the diattenuation D becomes higher at sample borders (see the bottom region in Fig. 3f), 
reaching mean values of D=0.13±0.01 compared with the D=0.05±0.01 of the central region. #e values of polari-
zance and diattenuation obtained for the lingual papillae and epithelial tissue demonstrate that they are mostly 
non-dichroic structures. #erefore, depolarization observed can be associated to either the e!ect of multiply 
scattered light or the "uctuation in the value and the direction of the birefringent structures. As in the case of 
the trachea sample, due to this non-dichroic behavior, the PS values obtained for the tongue demonstrates more 
depolarizing behavior for the epithelial tissue (lower values of PS=0.08±0.01) than for the papillae (PS=0.12±0.01), 
this leading to a visual contrast between these two classes (Fig. 3g). Importantly, we want to highlight a signi$-
cant improvement provided by some of the depolarizing channels (Fig. 3b–g) with respect to non-polarized 
di!use re"ectance image (Fig. 3a). In particular, note that the tongue structures placed at the bottom part of the 
non-polarized di!use re"ectance image are very di(cult, or even impossible to be seen in some parts (check for 
instance the region between the Y axis pixels 800 and 1000) due to the low contrast between them. Same e!ect 
can be observed at the very top of the image. #is is mostly due to intensity losses or defocusing introduced by 
the measure of a non-planar sample (the tongue), where only the central region is properly illuminated and in 
focus. In contrast to that, a clear visual enhancement of those regions is provided by depolarization observables, 
specially by P1 and PS channels, in which the lingual papillae and the epithelial tissue are clearly observed in the 
whole image. #e latter may be explained by the fact that contrast in polarimetric images is less sensitive to focus 
than in non-polarized intensity  images3 and thus, lead to this image improvement. Indeed, while a $ne tune of 
focus increases sharpness, and thus contrast in non-polarized intensity images, the relative di!erence between 
the polarimetric response of adjacent zones is what provides contrast in a polarization-based  image3. #is situ-
ation is one of the reasons that explains the interest of using polarimetric methods for tissue characterization.

A'erwards, we implement the pseudo-coloring functions for the lamb tongue sample. Accordingly, the lingual 
papillae and the epithelial tissue were associated with two di!erent colors: pink and lime-green, respectively. 
We see how the best results, in terms of visualization, is obtained for the Euclidean pseudo-coloring method 
based on the CPs triplet (Fig. 4d). In agreement with the discussion related to previous Fig. 3, note how tongue 
structures out of focus are now well identi$ed and discriminated in the pseudo-colored images, as they are 
based on polarimetric observables (see Fig. 3b–g) not in intensity gray levels such as the non-polarized dif-
fused re"ectance observable (Fig. 3a). In the case of the pseudo-coloring based on the Normal method (Fig. 4c 
and e), the best visualization is obtained for the implementation based on the IPPs triplet (Fig. 4c). However, 
the class recognition rate is lower than for the Euclidean distance case (see for instance white arrows in Fig. 4c 
and e, pointing the lingual papillae recognition for the Normal method, compared with correct recognition of 
the epithelial tissue in Fig. 4b, by the Euclidean distance method). In the case of the pseudo-coloring based on 
the Normal method, the mean values selected for the epithelial tissue (obtained from the selected ROIs, green 
rectangle in Fig. 4a) are not representative enough of the properties of the epithelial tissue, which present a large 
variance across the image. For this reason, an important part the epithelial could not be successfully assigned 
to the correct class by the method and therefore appear in black in the pseudo-colored images (Fig. 4c and e). 
Under this scenario, it is shown the pseudo-coloring based on the Euclidean approach performs better than the 
pseudo-coloration based in the Normal approach. In order to improve the performance of the pseudo-coloring 
based in Normal methods, it may be possible, for instance, to select multiple ROIs of each class tissue across the 
image and then to evaluate the corresponding mean values. Unfortunately, the latter may result in an obvious 
complication of the method which is to be compared to the simplicity shown by the Euclidean approach (one 
single ROI assignment per tissue class).
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In the following, we switch to the inspection of plant tissues. Following the same protocol that we applied 
to animal tissues in previous cases, we measured the experimental Mueller matrix corresponding to a leaf of 
a specimen of Q. pubescens showing powdery mildew lesions due to the infection of the fungus E. alphitoides. 
Accordingly, the two classes to be di!erentiated within the sample correspond to the healthy tissue (leaf lamina) 
and the regions showing symptomatology (powdery mildew). For the sake of clarity, in Fig. 5a we present the 
intensity image of the leaf, and we highlight some of the locations corresponding to the lesions caused by the 
pathogen (yellow arrows) and the regions corresponding to healthy tissue (blue dashed squares). #e evident 
di!erences in biological structure and chemical composition between a plant tissue, the leaf of Q. pubescens, and 
a fungus, the E. alphitoides, lead to di!erent polarimetric responses. #e polarimetric images based on the IPPs 
(Fig. 5b–d) demonstrate the enhancement of the overall image contrast, thus allowing a proper spatial localiza-
tion of the leaf lesions. Among the IPPs, P1 is the observable that leads to larger contrast between classes, and 
demonstrates a higher capability to discriminate between features (Fig. 5b), followed by P2 and P3 (Fig. 5c and 
d, respectively). Regarding the depolarization content of the inspected sample, the healthy leaf lamina shows 
high IPP mean values: P1=0.82±0.01, P2=0.89±0.01 and P3=0.99±0.01. Conversely, the powdery mildew shows 
lower mean values: P1=0.27±0.01, P2=0.43±0.01 and P3=0.60±0.01. Accordingly, it can be said that the leaf 
lamina induces less depolarization to the incident light than the powdery mildew lesions. #e low depolarizing 
performance of the leaf lamina suggests that it presents a well-organized cell layout within the leaf, and a homo-
geneous polarization response through the structure. In contrast, the e!ect of the fungus seems to modify the 
cell layout structure of the leave, leading to an evident modi$cation of the polarimetric response of the regions 
with lesions. #is di!erent polarimetric response between healthy and infected regions may also be observed in 
the polarizance P channel (Fig. 5e): the healthy lamina shows mean polarizance value of P=0.35±0.01 and the 
powdery mildew of P=0.12±0.01. Note that values of polarizance larger than 0.3 show a non-negligible dichroic 
response of the vegetal cells in the Q. pubescens leaf, being this dichroic capability signi$cantly reduced a'er 
sample infection. Regarding to the diattenuation response (Fig. 5f), the sample demonstrates, overall, low mean 
values (D=0.13±0.01 and D=0.23±0.01 for leaf lamina and powdery mildew, respectively). Finally, among the 
presented CPs, the sphericity degree PS is the observable whose performance better enhances the image contrast 
between the inspected features (see Fig. 5g): healthy lamina shows mean value of PS=0.86±0.01 and powdery mil-
dew, PS=0.34±0.01. #e di!erences in PS values of the healthy and infected regions may be due to modi$cations 
in the cell layout organization (cell alignment) and/or within their polarimetric behavior (mainly birefringence 
or polarizance features). Furthermore, it is important to mention that the black horizontal line (indicated with 
the orange botted box in Fig. 5f) corresponds to an underlying principal vein of the leaf.

Concerning the pseudo-coloring of the image of the Q. pubescens leaf, we associate the yellow and blue colors 
to the powdery mildew and leaf lamina classes respectively. When using the pseudo-coloring method based on 
the Euclidean distance approach (Fig. 6b and d) an obvious visual enhancement of the studied classes is obtained. 
#e infected regions by the powdery mildew clearly appear in a shiny yellow over a blue background which cor-
responds to the of the leaf lamina. #e use of the IPPs set of observables seem to provide a better discrimination 
than the CPs set. #e latter can be seen, because in the pseudo-colored image using the CPs set (Fig. 6d) there 
are some areas (highlighted with white rectangles) where some pixels are misclassi$ed while the same pixels are 
correctly classi$ed in the image pseudo-colored using the IPPs set. Analogously to the conclusions found for 
biological samples previously discussed, the pseudo-coloring method based on the Euclidean distance method 
shows a better performance than the method based on the Normal function-based approach. More in detail, 
for the particular case of the Q. pubescens, the set of observables that gives the most robust results in terms of 
discrimination e(ciency is the set based on the IPPs because it shows larger delimitation of the infected regions 
and their borders.

Finally, we also studied a specimen of V. vinifera showing no pathologic symptomatology. As in the previous 
cases, we measured the experimental Mueller matrix and we retrieved the non-polarized transmission image (M00 
in Fig. 7a) as a reference, and the polarimetric observables corresponding to the IPPs and CPs (Fig. 7b–g). In the 
non-polarized transmission image (Fig. 7a) we can observe two main leaf features, a vein (indicated by a blue 
arrow in Fig. 7a), and cell clusters (e.g., the green rectangle highlights a region of cell clusters in Fig. 7a). Impor-
tantly, polarimetric images in Fig. 8 allow the recognition of other plant structures not visible in non-polarimetric 
intensity images. #is situation provides the importance of polarimetric channels for plant structures imaging, 
not only to increase visual image contrast, but also to reveal structures hidden in regular intensity images. In 
particular, contrarily to non-polarized intensity image (Fig. 7a), polarimetric images reveal the presence of a 
third structure consisting of a raphide. In vine leaves, raphides are made of calcium oxalate needle shaped crys-
tals packed  together31,32 forming prorated clusters of typically 80 µm (long axis) × 30 µm (short axes). Raphides 
are completely invisible in non-polarized transmission images (Fig. 7a), but their presence and spatial location 
becomes clearly visible in polarization-based images, for instance, they are well visible in the P1 image (Fig. 7b), 
indicated by pink arrows, and also, they are visible in the P, D and PS images (Fig. 7e,f and g, respectively). In 
addition, the polarimetric analysis reveals another structure located at the upper-le' part of the sample (indicated 
with white arrows in Fig. 7b and Fig. 7e and f, respectively) that has a polarimetric signature similar to that of the 
vein. #is structure may correspond to a secondary vascular structure. From lower to higher, the mean values of 
the IPPs (Fig 7b–d) corresponding to the raphide are P1=0.24±0.01, P2=0.41±0.01 and P3=0.47±0.01, followed 
by these corresponding to the cell clusters: P1=0.47±0.01, P2=0.50±0.01 and P3=0.56±0.01, and $nally the ones 
corresponding the leaf vein, P1=0.68±0.01, P2=0.72±0.01 and P3=0.81±0.01. Accordingly it can be said that the 
raphide possess an individual signature, di!erent to that of the vein and the cluster of cells and therefore it can be 
said that there are three di!erent classes in the image. #e reasons that may explain the elevated depolarization 
of the raphide are the "uctuations in the polarimetric properties, and scattering, which may be higher in the 
raphide that in the vein or in the cluster of cells. Concerning scattering, it is expected that the refractive index 
mismatch between a given region and the surrounding media, at the origin of scatting, should be higher for 
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the raphide, made of a solid inorganic component, than for veins or clusters of cells which are essentially made 
of a liquid similar to the surrounding media contained by the membranes forming the cell walls and other cell 
organelles. Importantly, note that P2 and P3 mean values in raphides and clusters of cells are quite similar to each 
other, but P1 is signi$cantly di!erent (0.24 and 0.47 for raphides and cell cluster, respectively), which explains why 
the raphides are clearly seen in the P1 image (Fig. 7b). #e largest mean IPPs values correspond to the vein. #is 
means that the vein structure induces little depolarization to the incident light, because it is a structure essentially 
$lled with a liquid with low scattering and no polarimetric properties. Regarding the CPs observables, the high-
est polarizance (Fig. 7e) mean values are demonstrated for raphides (P=0.03±0.01), followed by the cell cluster 
(P=0.003±0.001) and the leaf vein (P=0.001±0.001). Likewise, the raphides show the highest mean diattenuation 
(D=0.07±0.01, Fig. 7f), to be compared to D=0.04±0.01 and D=0.02±0.01, corresponding to veins and clusters of 
cells respectively. Taking these values into account, the V. vinifera leaf shows low polarizance and diattenuation 
response in all its structures, and thus, it can be understood as a non-dichroic sample. Conversely, the highest 
mean values of the spherical purity PS (Fig. 7g) are demonstrated for the leaf vein (PS=0.70±0.01), this being a 
direct consequence of the strong alignment of the cellulose $laments within the vein. In turn, the PS values for 
the cell cluster are reduced to PS=0.49±0.01, and to PS=0.31±0.01 in the case of the raphides. In analogy to the 
image of the P1, these di!erences in the PS mean values for the raphide, the cluster of cells and the vein, provide 
a well-contrasted image with well-di!erentiated regions (Fig. 7e).

#e di!erence of the vein leaf sample with respect to the examples previously discussed is that it contains three 
classes instead of two of them. #e latter may be a drawback to apply the pseudo-coloring based on the Euclid-
ean distance, because it has been de$ned to handle only two classes. #erefore the pseudo-coloring based on 
Normal distribution may have an advantage in this particular situation. Accordingly and unlike in the examples 
previously discussed, we select three classes of structures to be simultaneously visualized (in the Normal-based 
approach): the raphides, a cell cluster and the leaf vein. #e selected regions of interest, corresponding to the three 
classes, are indicated with pink, lime-green and blue squares within the purity index P1 (Fig. 8a). In the case of 
the Euclidean distance method, as it is restricted to handle only two classes, the selected classes are the raphide 
(in pink) and the cell cluster (lime-green). Note that unlike in the previous samples, instead of using the non-
polarized transmission image (M00; Fig. 7a) to design the ROIs for the classes we use the P1 image (Fig. 8a) since 
the raphides are not visible in the non-polarized transmission intensity channel. Implemented pseudo-colored 
images are provided in Figs. 8b-8e, for Euclidian distance (IPPs based in Fig. 8b and CPs based in Fig. 8d) and 
for the Normal-based models (IPPs based in Fig. 8c and CPs based Fig. 8e). Concerning the performance of the 
two methods in terms of class coloring and visual discrimination, we observe some di!erences. On the one hand, 
the IPPs are not sensitive enough to correctly identify the location of raphides when implementing the Euclidean 
approach (Fig. 8b). In particular, some pixels belonging to raphides are not well-colored in pink, but other pixels 
that do not belong to raphides, they are incorrectly painted in pink. Unlike this, the Euclidean method applied 
with CPs observables is much more e(cient and quite accurate discriminating between raphides and cell cluster 
(Fig. 8d). On the other hand, the IPPs observables applied with the Normal-based approach are able to correctly 
identify and localize all the studied classes: raphides (pink regions in Fig. 8c), the leaf vein (blue region in Fig. 8c) 
and the cell cluster (lime-green pixels in Fig. 8c). Furthermore, other structure previously discussed in polariza-
tion images (Fig. 7), the vascular structure located on the upper-le' part of the sample image, it is also colored 
in blue (indicated with a white arrow in Fig. 8c), as it is recognized as part of a vein (as previously told, vascular 
structure and vein presents very similar polarimetric response, and therefore they are recognized as part of the 
same class). Finally, when applying the CPs observables with the Normal-based approach (Fig. 8e), all the classes 
are correctly discriminated as well, but due to they are more a!ected by distances between pixel-values and mean 
classes-values, when applying the Gaussian probability function (Eq. (9) in “Methods” section), more pixels 
tends to zero probability of belonging to any class, and then, painted in black, this darkening the whole image.

Summarizing, due to the excellent recognition and visualization of the classes, as well as the capability of 
discriminating more than two classes simultaneously (three in this case), the best results for the V. vinifera sample 
in terms of visual structure discrimination are obtained when applying the Normal-based approach, implemented 
with the IPPs observables (Fig. 8c). Importantly, if one is just interested to discriminate between two classes, the 
Euclidean distance method based on CPs also provides excellent results (Fig. 8d).

As a $nal remark, we want to highlight that the present work provides the suitability of implementing two 
robust polarimetric image-processing methods, the Euclidean distances and the Normal (Gaussian) function 
(described in “Methods” section), for the visual enhancement of image contrast and the higher accuracy in 
spatial location of the di!erent biological structures within the inspected samples. Both methods are based on 
the association of di!erent colors with the particular tissue classes that should be highlighted, or discriminated, 
within the sample, leading to pseudo-colored images including information of a group of di!erent polarimet-
ric observables into a single image. #e two presented approaches can be used to develop automatic coloring 
methods, and surpass proposals previously presented in the literature, which were based on very basic linear 
combinations of polarimetric observables whose weights were obtained with a non-optimal and mostly heuristic 
 approach1,24,25. Going more speci$cally to the obtained results, when applying these two methods to discrimi-
nate among di!erent structures present in organic samples (lamb trachea, lamb tongue, a Q. pubescens leaf and 
a V. vinifera leaf) they have revealed di!erent strengths and drawbacks. #e Euclidean method provided very 
good results to discriminate between two di!erent classes in the studied samples (see for instance, Figs. 2b, 4d, 
6b and 8d) but as it has been said, this method is restricted to the study of only two classes. In turn, the major 
strengths of the Normal-based approach are that it can provide discrimination between more than two classes 
(see for instance Fig. 8c) and that it provides a further interpretation, as it is based on the probability of a given 
pixel to belong to a given class. #e Normal based approach can also be used as an automatic classi$er. How-
ever, the pseudo-coloring Normal approach is very sensitive to the actual statistical distribution, the variance 
and the presence of outliers in the data. #e Normal distribution approach works well when data is normally or 
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close to normally distributed without outliers. In real-life data, departures from the ideal normal distribution 
in data values results in either misclassi$cation or black pixels, i.e. failure of identi$cation to a given class (see 
for instance Fig. 2c and e).

In this work, we have provided optimized pseudo-colored functions based on polarimetric spaces, which 
enhance other approaches we previously presented in  literature1,24,25,30. However, we want to note that the appli-
cation of pseudo-colored functions is not limited to polarimetric  spaces33–36, and there exist other approaches, 
as image segmentation and coloring  approaches37–40, that lead to interesting results in terms of structures visu-
alization. #ese approaches can be applied directly on polarimetric images, the resulting methods favoring from 
the inherent image enhancement of polarimetry images, but further comparison must be conducted in order to 
determine the best possible pseudo-colored imaging scenario. Regarding to the application of the IPPs or the CPs 
observables within the proposed methods, we have chosen these metrics because previous works highlight the 
suitability of depolarization observables for the discrimination of  tissues1,4,5,11,16,28, and because these two bases, 
all together, completely describe the depolarization response of a  samples27. #erefore, IPPs and CPs represent 
an ideal framework to implement pseudo-colored functions for tissue discrimination. Regarding the samples 
discussed in this section, we have demonstrated that depending on the characteristics of the particular sample, 
either IPP or CP basis, provide to excellent visualization of the structures when used to apply pseudo-coloring 
strategies. Accordingly, for each sample to be analyzed, we recommend the use to the two bases of observables, 
i.e. the IPPs and CPs. Whereas IPPs are sensitive to the structure of the depolarization in samples (i.e., depolari-
zation anisotropies), the CPs are more related to the physical properties of the constituents of the sample being 
at the roots of depolarization (retardance, polarizance, diattenuation).

At the end, the characteristics of each studied sample will determine which one of the two basis will provide 
the more vivid contrast.

Methods
Sample description. #e animal samples used in this study were a section of a trachea and a section of a 
tongue dissected from an ex-vivo lamb sample bought from a grocery store. All experimental protocols were 
carried out in accordance with relevant guidelines and regulations. #e two vegetal samples used in this work 
were (1) a leaf of Q. pubescens specimen infected with E. alphitoides, which causes powdery mildew lesions on 
leaf surface and (2) a leaf of V. vinifera specimen showing no symptoms of disease. #e Q. pubescens, a spe-
cies of white oak, belongs to the Fagaceae family and it is commonly found in central and southern Europe. It 
produces acorns (oak nuts) which can be consumed or extract their oil. V. vinifera, commonly known as grape 
vine, belongs to the Vitaceae family. Native from the central Europe, the land regions around the Mediterranean 
Sea and southwestern Asia, V. vinifera is cultivated worldwide for both grape (fresh or dried) consuming, and 
vinegar and wine production.

#e Quercus pubescens leaf used in this study was kindly provided by Dra. Teresa Garnatje (Botanical Insti-
tute of Barcelona (IBB, CSIC-ICUB), Barcelona, Spain) and Dr. Jordi Luque (Institute of Agrifood Research and 
Technology (IRTA), Cabrils, 08348, Spain). #e Vitis vinifera leaf was kindly provided by Dr. E. Garcia-Caurel. 
All the sample collecting methods were performed in accordance with relevant guidelines and regulation. T. 
Garnatje and J. Luque undertook the formal identi$cation of the plant material used in this study. An herbarium 
voucher of Q. pubescens is deposited in the Herbarium of the Botanical Institute of Barcelona (BC-983018).

Polarization observables. Among the wide variety of mathematical  approaches21, the Mueller-Stokes 
(M-S) formalism is especially suitable for the description of the polarimetric properties of turbid media, as it 
is based on radiometric measurements and allows to deal with the depolarization content of  samples22,23. In 
this approach, the state of polarization of light beams is characterized by the so-called Stokes vector (S) and the 
polarimetric characteristics of the sample are complexly encoded into the 4 × 4 real matrix called Mueller matrix 
(MM). #e generic MM block form is de$ned as:

From the structure of the MM (Eq. (1)) we can easily retrieve the non-polarized transmission or re"ection 
(m00) and the dichroism (diattenuation and polarizance, the 3-dimensional vectors D and P, respectively). How-
ever, the polarimetric properties related to the retardance and the depolarization are entangled in a 3 × 3 subma-
trix, m. Concerning to the polarimetric observables, whereas the diattenuation gives a measure of the transmis-
sion /re"ection dependence of the sample with the input polarization state, polarizance describes the capability of 
the sample to polarize a fully unpolarized input light beam. In addition, the degree of spherical purity, PS, de$nes 
the portion of depolarization which is not directly related with dichroic properties of the sample.

where ‖m‖2 is the 2-norm of the sub-matrix m. To retrieve the depolarization content, we conduct the Cloude’s 
 decomposition21 which de$nes the MM as a parallel combination (i.e., convex sum) of four non-depolarizing 
(pure) MMs, labeled as MJi, whose statistical weights are proportional to the covariance matrix H(M) eigenvalues 
(λi,)22:
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Interestingly, the depolarizing response being synthetized within the four pure components MJi allows to 
retrieve the di!erent types of depolarizers by simply looking at the weights corresponding to each pure compo-
nent. #e combination of the above-mentioned normalized eigenvalues results into the de$nition of the Indices 
of Polarimetric Purity (IPPs)26: three real, dimensionless and invariant parameters which provide information 
about the polarimetric randomness induced by the sample to input polarization states. #e IPPs are de$ned as:

and are restricted to 0 ≤ P1 ≤ P2 ≤ P3 ≤ 1. #e IPPs de$ne a real 3D-depolarization space whose interpretation is 
related to the polarimetric randomness (i.e., depolarization) induced by di!erent mechanisms within the sample. 
Accordingly, the IPPs’ depolarization space constitutes a suitable tool to discriminate among structures with dif-
ferent depolarization signatures due to their inherent components. Recalling that the depolarizing response of a 
sample can be synthetized as the incoherent sum of four pure components (MJi in Eq. (3)), the IPPs correspond 
to the statistical weight corresponding to each of these pure  components22,26. In particular, P1 is associated with 
the portion of the pure non-depolarizing component, P2-P1 quanti$es the statistical portion of a bidimensional 
depolarizer, P3-P2 corresponds to the portion of a tridimensional depolarizer (equiprobable mixture of three pure 
components) and 1-P3 quanti$es the statistical weight of an ideal depolarizer. Furthermore, the depolarization 
index, PΔ, estimates the overall depolarization of the MM. Importantly, this observable allows to connect the 
polarimetric spaces of (1) the Components of Purity (CPs; composed by the enpolarization metrics correspond-
ing to the diattenuation D, polarizance P and the degree of spherical purity PS) and (2) the Indices of Polarimetric 
Purity (IPPs; P1, P2 and P3) in the following way:

Importantly, when P1 = P2 = P3 = PΔ = 1 is found, the indicators characterize a non-depolarizing (pure) system. 
Conversely, the ideal depolarizer is de$ned by P1 = P2 = P3 = PΔ = 0.

Pseudo‑coloring approaches. In the following, we de$ne the parameters of interest involved in the 
pseudo-coloring models, both for the Euclidean and Normal cases. Assume, from the experimental Muel-
ler matrix (MM) measurement of a given sample, the extraction of n MM-derived polarimetric observables, 
−→
p = [p1, ..., pn]21. Note that the polarimetric observables, −→p  , we use in this study are those de$ned in the previ-

ous section, i.e., the Components of Purity, CPs, and the Indices of Polarimetric Purity, IPPs. Additionally, con-
sider the de$nition of i classes corresponding to di!erent organic tissues. Each kind (i = 1, …, k) of organic tis-
sues (trachea ring, trachea sheath, tongue papillae tissue, tongue epithelial tissue, Q. pubescens powdery mildew, 
Q. pubescens lamina, V. vinifera vein, V. vinifera raphides and V. vinifera cell cluster; in our study) is characterized 
by the j = 1, …, n means,mi

j , and standard deviations, σ i
j  , corresponding to the pij observables calculated from a 

Region of Interest (ROIs) within the speci$c class i. In addition, for image coloring purposes, we also de$ne the 
vector !Ci =

[

Ri ,Gi ,Bi
]

 with i = 1, …, k as the standard RGB color space triplet associated with a particular class i.

Euclidean distances for k=2 classes. In this case we assume we only need to discriminate between k = 2 
classes (e.g. healthy/infected tissue). #is pseudo-colored approach is based on the Euclidean distance from the 

values of −→p  from a given image pixel to the mean values 
−→
mi = [mi

1, ...,m
i
n] of the n polarimetric observables of a 

given class (i = 1 or i = 2). #e normalized distance di,norm is given by,

where mi=1
j − mi=2

j  corresponds to the distance between the means of the two classes for a given polarimetric 
observable, pj (j = 1, …, n). Importantly, we associate a given color, −→Ci , to each particular class, i. Consequently, 
the larger the distance from a given pixel to a given class, the lower the corresponding weight to its particular 
class color, −→Ci . Accordingly, each particular class color −→Ci is pondered by the following subtraction,

where di,norm is normalized by the sum of the distances (i.e., d = di=1,norm + di=2,norm ), so that the subtraction 
is positive-de$nite and ranges between 0 and 1. #us, the larger the distance, di,norm , the lower the amount of 
i-color level included in the pixel. #e $nal pixel color for the two classes (i = 1, 2), is given by,
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Importantly, the method does not behave as a classi$er. Note that some pixels within the image may contain 
more than one color, thus showing a mixed tone between the two basis (pure) colors. Moreover, there are some 
pixels that correspond to some parts of the sample which do not belong to any inspected class, either i = 1 nor 
i = 2. In such case, we can equally interpret both distances (i.e., di=1,norm = di=2,norm ), and thus, the di,norm

/

d 
term in Eq. (7) tends to 1/2 so that Ri ≈ 1/2. Under this approach, as both Ri tend to be 1/2, the resulting color 
for these pixels is an equal mixture of the two selected colors. #erefore, the resulting color encoding cannot 
be used for classi$catory proposes, but just for visual enhancement of the images as shown in “Results” and 
“Discussion” sections. Pseudo-coloring based on the Euclidean-distances method is very e(cient in terms of 
tissues visualization and discrimination.

Normal distribution for k classes. #e previous method is di(cult to generalize to more than two classes 
(k>2). For this reason, in this subsection we propose a second method to construct pseudo-colored functions, in 
this case, based on the Normal (Gaussian) probability distribution of the n polarimetric observables. Contrary to 
the above-presented Euclidean method, the Normal approach allows to inspect an unlimited number of features 
(i.e., classes), k. #e probability Pi of a pixel corresponding to the jth observable (j=1,..,n) of being part of a given 
class i (i=1,..,k) is de$ned as,

which is limited to range between 0 and 1. #erefore, for each pixel we get as many probability functions, Pi, as 
classes, i, we deal with. A'erwards, the pseudo-colored image is constructed by associating each standard RGB 
color space triplet to their corresponding probability function (Pi) in the following way:

#is approach outputs a colored polarimetric image, −→C = [R,G,B] , which is based on the linear combina-
tion of the Pi ·Ci terms of the i classes involved. In other words, the amount of i-color level within a pixel is 
pondered by the probability of the particular pixel to be recognized as belonging to the class i. #erefore, unlike 
the Euclidean distance approach, the pixel color coding associated to this Normal-based model can be used for 
classi$catory proposes.

Complete image Mueller polarimeter. #e experimental Mueller matrices images of tissues are 
acquired by means of a complete image Mueller polarimeter consisting of two independent and mobile arms, 
the Polarization State Generator (PSG) and the Polarization State Analyzer (PSA), which are capable to generate 
and analyze, respectively, any fully polarized state. #e optical systems comprising both PSG and PSA are based 
on Parallel Aligned Liquid Crystals (PA-LC, Variable Retarders with Temperature Control) retarders (LVR-200-
400-700-1LTSC distributed by Meadowlark Optics). In particular, the PSG is composed by a linear polarizer 
(Glan-#ompson prism-based CASIX) oriented at 0°, followed by two PA-LC oriented at 45° and 0°. Likewise, 
the PSA optical set-up is composed by the same optical elements as the PSG but arranged in reverse order. 
#e polarizer within the PSA corresponds to a dichroic sheet polarizer distributed by Meadowlark Optics. All 
orientations are with respect to the laboratory vertical. #e light source device is a four-wavelength high-power 
#orlabs LED source (LED4D211, operated by DC4104 drivers distributed by #orlabs). It is placed on the PSG 
and allows to illuminate with di!erent wavelengths covering the visible spectrum (from 400 to 700 nm, approx.). 
Complementary, we use 10 nm dielectric bandwidth $lters distributed by #orlabs: FB530-10 and FB470-10 for 
green and blue wavelengths, respectively. #e image acquisition (i.e., sample intensity) is conducted by means 
of the set comprising a 35 mm focal length Edmund Optics TECHSPEC® high resolution objective followed by 
an Allied Vision Manta G-504B CCD camera, with 5 Megapixel GigE Vision and Sony ICX655 CCD sensor (of 
2452(H) × 2056(V) resolution and cell size of 3.45 × 3.45 μm). Both optical components are placed on the PSA 
system, achieving a spatial resolution of 22 μm.

#e Mueller matrix measurements of the lamb trachea, the lamb tongue and the Q. pubescens are conducted 
at 470 nm illumination wavelength by tilting by 34° the PSG with respect to the laboratory horizontal refer-
ence and holding the PSA at 0°. #is con$guration allows us to avoid the ballistic re"ection. From the whole 
sample, we select a region of interest (ROI) of 512 × 512 pixels, thus corresponding to an area of 1.1 × 1.1  cm2. 
With regards to the experimental Mueller matrix of the V. vinifera leaf, it is acquired by means of a multimodal 
microscope  polarimeter3 coupled to a light source of white light LED with a narrow-band spectral $lter of 533 nm 
and a spectral width of 15 nm. #e microscope is set at transmission con$guration, where the sample leaf is 
placed between two identical microscope objectives (for imaging and illumination, respectively). #e achieved 
magni$cations are of 50X, 20X, or 5X.

Data availability
#e datasets generated during and/or analysed during the current study are not publicly available due to the 
conduction of di!erent research studies but are available from the corresponding author on reasonable request.
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1. Polarimetric observables for biological samples inspection 
This section is devoted to show the suitability of using polarimetric observables for biological tissue inspection. In the following 
we show the polarimetric images corresponding to the non-polarized intensity (M00), the indices of polarimetric purity (IPPs: 
P1, P2 and P3), the depolarization index PΔ, the components of purity (CPs: P, D and Ps) and the global retardance R, from a set 
of four different biological samples. In particular, we inspect the lamb trachea section and the Vitis vinifera plant sample, 
already shown in the manuscript. In addition, we provide the polarimetric images taken from a leaf of Prunus dulcis plant 
specimen showing disease symptoms from fungal infection and a section of a lamb heart.  

Figure S1 shows the polarimetric images from the lamb trachea section. The cartilaginous rings and the trachea sheath is 
clearly distinguished by the enpolarization metrics of P2, P3, P, and PS (Figs. S1c, S1d, S1f and S1h), as they point well the 
difference between the two types of tissues and also present an enhanced contrast when compared to the non-polarized diffuse 
reflectance (M00 in Fig. S1a).  

 
Figure S1. Polarimetric images of a lamb trachea measured at 470 nm illumination wavelength: a) unpolarized intensity 
image (M00), the Indices of Polarimetric Purity b) P1, c) P2 and d) P3, the depolarization index e) PΔ, the Components of 

Purity f) P, g) D and h) PS and i) the global retardance R. The yellow dotted box (Fig. S1a) and yellow arrows (Figs. S1c, 
S1d, S1f and S1h), indicate the location of the cartilaginous rings. The dotted blue box (Fig. S1a) indicates the location of 

the trachea sheath. The orange arrow (Fig. S1b) and the orange dotted line (Fig. S1g) show the vascular structure within the 
external trachea sheath and the sample border, respectively. 

To highlight the behavior of the polarimetric observables, we computed the visibility,  (see 
Table S1) of the sample regions corresponding to the trachea rings and the trachea sheath for each of the metrics here discussed. 
Additionally, we present the subtraction of the visibility value between both structures. The largest visibility difference between 
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the lamb trachea rings and sheath is demonstrated by the diattenuation D (0.4753 in Table S1), followed by the index of 
polarimetric purtiy P3 and the depolarization index PΔ (0.2621 and 0.2363 in Table S1, respectively). 

Table S1. Visibility of different polarimetric observables corresponding to the trachea ring and trachea sheath in lamb 
trachea sample. The largest differences in visibility values between the inspected structures is highlighted in gray. 

 M00 PΔ P1 P2 P3 P R D PS 

Lamb trachea Ring 0.2596 0.4639 0.4258 0.5644 0.5130 0.6974 0.1030 0.9434 0.4542 
Sheath 0.3145 0.2276 0.4599 0.3859 0.2509 0.5782 0.1348 0.4681 0.4168 

Subtraction:  
Ring vs Sheath 0.0549 0.2363 0.0341 0.1785 0.2621 0.1192 0.0318 0.4753 0.0374 

Similar analysis is conducted for the V. vinifera plant sample. Figure S2 shows the polarimetric images from V. vinifera 
specimen. Importantly, raphides are completely invisible in non-polarized transmission images (i.e., M00 in Fig. S2a), but their 
presence and spatial location becomes clearly visible in polarization-based images, for instance, they are clearly visible in the 
index of polarimetric purtiy P1 image (Fig. S2b), indicated by pink arrows, and also, they are visible in the PΔ, P, D and PS 
images (Figs. S2e-S2h, respectively). 

 
Figure S2. Polarimetric images of the Vitis vinifera leaf measured under the microscope for 533 nm illumination 

wavelength: a) non-polarized transmission intensity image (M00), the Indices of Polarimetric Purity b) P1, c) P2 and d) P3, 
the depolarization index e) PΔ, the Components of Purity f) P, g) D and h) PS and i) the global retardance R. The blue arrow 

(Figs. S2a) indicates the location of the vein. The pink arrows (Figs. S2b, S2e-S2h) indicate the location of the raphides. 
The lime-green dotted box indicates an illustrative region comprising a cell cluster. 

Likewise, the visibility values corresponding to the raphides and the cell cluster are presented in Table S2 as well as the 
subtraction between their values. The largest visibility difference between the raphide and the cell cluster is achieved by the 
index of polarimetric purity P1 (the 0.3154 In Table S2), followed by polarizance, P, and diattenuation, D (0.1269 and 
0.1234 in Table S2, respectively). 

Table S2. Visibility of different polarimetric observables corresponding to the raphide and the cell cluster in Vitis vinifera 
plant sample. The largest difference in visibility values between the inspected structures is highlighted in gray. 

 M00 PΔ P1 P2 P3 P R D PS 

V. vinifera Raphide 0.2319 0.2829 0.5410 0.2323 0.2305 0.9059 0.9698 0.8727 0.2963 
Cell cluster 0.2312 0.2192 0.2256 0.2029 0.2484 0.7790 0.9763 0.7493 0.2195 

Subraction:  
Raphide vs Cell cluster 0.0007 0.0637 0.3154 0.0294 0.0179 0.1269 0.0065 0.1234 0.0768 

Additionally, in Fig. S3 we show the polarimetric images corresponding to a 2.2 x 2.2 cm2 section of a lamb heart. In particular, 



the different polarimetric properties of the sample allow the enpolarizing metrics to reveal different structures. That is the case 
of small vascular structures within the lamb heart revealed by the Index of Polarimetric Purity, P1, and the polarizance, P 
(yellow arrows in Figs. S3b and S3f, respectively). Moreover, the roughness pattern of the tissue is enhanced by Index of 
Polarimetric Purity, P2 and the degree of spherical purity PS (green arrows in Figs. S3c and S3h, respectively). Retardance R 
(Fig. S3i) also reveals some vascular structures and the striated tissue region (yellow and green arrow in Fig. S3i, respectively). 
However, this polarimetric observable does not enhance the overall image contrast as much as the depolarizing metrics of the 
Indices of Polarimetric Purity (P1, P2 and P3) and the degree of spherical purity PS do (Figs. S3b-S3d and S3h, respectively). 

 
Figure S3. Polarimetric images of the lamb heart measured at 470 nm illumination wavelength: a) non-polarized 

transmission intensity image (M00), the Indices of Polarimetric Purity b) P1, c) P2 and d) P3, the depolarization index e) PΔ, 
the Components of Purity f) P, g) D and h) PS and i) the global retardance R. The yellow arrows (Fig. S3b, S3f and S3i) 

indicate the location of a particular vascular structure. The green arrows (Fig. S3c, S3h and S3i) indicate the region showing 
different roughness. 

Finally, in Fig. S4 we show the polarimetric images corresponding to a leaf of Prunus dulcis plant specimen showing disease 
symptoms from fungal infection. The disease is mostly located within the dark spot located at the down-left part of the intensity 
image M00 (indicated with the pink arrow in Fig. S4a). The depolarization-related observables (i.e., P1, P2 and P3 and PΔ in 
Figs. S4b-S4e, respectively) as well as the Components of Purity (i.e., P, D and Ps in Figs. S4f-S4h) reveal the small vascular 
structures contained inside the spot (pink arrow in Fig. S4b), which are unable to be detected by means of regular intensity 
image (Fig. S4a). On the contrary, retardance R focuses on the principal vein (Fig. S4i). 

 
Figure S4. Polarimetric images of the Prunus dulcis leaf measured at 625 nm illumination wavelength: a) non-polarized 

transmission intensity image (M00), the Indices of Polarimetric Purity b) P1, c) P2 and d) P3, the depolarization index e) PΔ, 
the Components of Purity f) P, g) D and h) PS and i) the global retardance R. The pink and green arrows (Figs. S4a and S4b, 

respectively) indicate the location of the fungal disease and the small vascular structures contained.  
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Abstract: We highlight the potential of a predictive optical model method for tissue recognition,
based on the statistical analysis of di�erent polarimetric indicators that retrieve complete
polarimetric information (selective absorption, retardance and depolarization) of samples. The
study is conducted on the experimental Mueller matrices of four biological tissues (bone, tendon,
muscle and myotendinous junction) measured from a collection of 157 ex-vivo chicken samples.
Moreover, we perform several non-parametric data distribution analyses to build a logistic
regression-based algorithm capable to recognize, in a single and dynamic measurement, whether
a sample corresponds (or not) to one of the four di�erent tissue categories.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Polarimetry comprises a set of non-invasive and non-contact testing techniques that provide
information about the optical properties of a sample [1]. Those techniques appear as very useful
tools to be applied in di�erent research fields, such as material classification [2], gas sensing [3],
astronomy [4], biomedicine [5–8], and remote sensing [9] but among all, for the purpose of this
work, they are an especially useful for analyzing and characterizing biological samples [10–12].
Biological tissues are turbid media that strongly scatter light and present certain characteristic
degree of anisotropy due to their ultrastructure components (e.g., the dense collagen and elastin
matrix with oriented fibers, etc.) [13] so these properties lead to certain polarimetric response
(depolarization, retardance, etc.). In several pathologies, morphological changes occur that alter
the polarization properties of tissues [14]. Therefore, polarimetry constitutes a powerful and
promising optical tool for the study and classification of biological samples [11,15]. Moreover,
polarimetry can be combined with other optical techniques such as multispectral imaging [15–21]
or microscopy [22–24].

The Mueller-Stokes (M-S) is a widespread mathematical formalism which allows to characterize
the state of polarization of light beams (Stokes vector) and the polarimetric properties of samples
(Mueller matrices, M). The Mueller matrix, MM, describes the e�ect of a material media,
such as an optical element, or a sample, upon the polarization state of light by generating an
output Stokes vector, Sout, from an input light state of polarization, Sin, for linear processes
[25,26]. One interesting property of the (M-S) formalism is that it is based on radiometric
measurements and therefore is easy to be implemented to interpret experimental data. In addition,
unlike other formalism used to describe polarization, as for instance, the Jones formalism,
the M-S is valid to deal with fully polarized light, but also with depolarization content. In

#426387 https://doi.org/10.1364/BOE.426387
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addition, the Mueller matrix provides the intensity and the complete set of polarization properties,
diattenuation and polarizance (3-dimensional vectors D and P, respectively, in Eq. (1)), retardance
and depolarization (both mixed in the 3⇥ 3 m submatrix) [27–30], which are sensitive to the
microarchitecture of the tissue [16].

M = m00
©≠
´

1 D
T

P m

™Æ
¨

. (1)

The polarimetric characteristics are not related to a particular element of the matrix M but
they appear spread (or entangled) in multiple M elements in a complex way. When a physical
model is not applicable, the polarimetric properties can be evaluated after separating the original
M into a set of simpler matrices. The process of separation is known as matrix decomposition.
In practice, there exists di�erent strategies to perform M decomposition which can divided in
three classes; product, sum and di�erential decompositions. The choice of the decomposition
method is not trivial, and in general, it is specific to the sample being probed, and sometimes
di�erent decompositions may lead to comparable results. The best practice is to apply di�erent
decompositions and then to chose the one which performs the best in terms of computation
time and reliability of the obtained results. For instance for the present work, after testing the
symmetric decomposition [31] and the Lu-Chipman decomposition [32] we chose the later
because it was more numerically e�cient. Depolarization has been considered as a deletary
e�ect which tends to screen or to erase the polarimetric properties (traditionally considered as
the desired observables). Recently the introduction of di�erent depolarization metrics [33–35],
and in particular the depolarization spaces [15], show that there may be an interest of considering
depolarization at the same level than the polarization properties. The di�erent depolarization
metrics are related to the way in which the purity of polarization of the illuminating beam
is lost after interaction with the sample. In biological tissues, light scattering and the non
uniform distribution of polarization properties along the probed samples, are the main causes
of depolarization. Therefore depolarization metrics may unveil di�erences in the way light
scattered or the polarization modified. Since scattering and polarization properties are linked to
the ultrastructures present in the tissues, the depolarization metrics can serve to unveil di�erences
or characteristics in the tissues, overlooked when probed with non polarized light, and which
can present a true interest for biological / medical purposes or characterization. Although we
focused the attention to the physical properties of the medium, other metrics such as the higher
order moments of polarimetric observables recently discussed in the literature [36–39] are of
potential interest and could be used in analogous procedures. Among the known depolarization
metrics we chose to work with the indices of polarimetric purity (IPPs) [11,12,20]. The IPPs
can be calculated from the combination of the eigenvalues (�i) of the covariance matrix H(M)

associated to M [40]. These IPPs provide well-defined polarimetric magnitudes with easier
physical interpretation and further synthetization of sample’s depolarizing mechanisms.

In the present study, we develop a predictive optical model for tissue classification based on
the statistical analysis of di�erent polarimetric metrics, directly derived from the experimental
Mueller matrix of a collection of several ex-vivo chicken samples. The e�ciency of the
developed models, when classifying di�erent biological tissues, is given in terms of sensitivity
and specificity. We also provide the potential of the developed models for tissue characterization
imaging techniques. This study could be of interest for biomedical applications such as for guided
systems in surgical procedures and for early detection of some diseases.

The outline of the manuscript is as follows. In section 2, we briefly review the mathematical
background of the polarimetric metrics selected for the study. In section 3, we provide the
experimental methodology and the pathological description of the four di�erent studied tissues:
tendon, muscle, myotendinous junction and bones (subsection 3.1). We also detail the description
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of the statistical analysis conducted on polarimetric data (subsection 3.2). In section 4, we
describe the construction of an optical probabilistic model suitable for the classification of
biological samples, which is based on a logistical regression applied to polarimetric data, and we
discuss the validity of developed models in terms of sensitivity and specificity, as well as, their
suitability for imaging classification of tissues. Finally, the main conclusions of the study are
provided in section 5.

2. Methods

In this section, we present the mathematical background necessary to build the proposed tissue
recognition model. The model is based on a set of metrics derived from experimental Mueller
matrices of biological samples. Those observables allow us to obtain a clear interpretation of
some physical properties of the samples. We also provide the experimental methodology followed
for the completion of the study.

2.1. Polarimetric metrics

Recalling the M expression in Eq. (1) we define the diattenuation vector D as the metric that
describes the property of an optical element by which the intensity of the exiting beam depends
on the polarization state of the incident beam. Analogously, the polarizance vector P describes
the polarization capability of a sample, when illuminated by an unpolarized input state [41]. Such
magnitudes can be computed and described directly from the combination of M coe�cients by
using:

a) D =
1

m00

q
m

2
01 + m

2
02 + m

2
03, b)P = 1

m00

q
m

2
10 + m

2
20 + m

2
30, (2)

where mab (a,b= 0, 1, 2, 3) represents an element of M.
Other polarimetric characteristics of a sample are also encoded in its Mueller matrix in a

complex way. This information can be synthesized in a product of three pure Mueller matrices,
which are functions of well-defined polarimetric magnitudes for an easier physical interpretation,
by employing the so-called Lu-Chipman decomposition [32]:

M ⌘ m00 · M�P · MR · MD, (3)

where m00 is related to the intensity transmittance or reflectance of the sample and those pure
matrices are defined as depolarizers (M�P), pure retarders (MR) and pure diattenuators (MD).

Therefore, the information related to the depolarization, retardance and diattenuation properties
of samples is encoded in di�erent scalar polarimetric observables derived from those pure matrices.
In particular, the total retardance R, the linear retardance � and the optical rotation are obtained
from the pure retarder matrix MR in this way [28]:

R = cos�1
����Tr(MR)

2
� 1

���� , (4)

� = cos�1
✓q

[MR11 +MR22]2 + [MR21 � MR12]2 � 1
◆

, (5)

 = tan�1
✓
MR21 � MR12
MR11 +MR22

◆
, (6)

where Tr denotes for the trace of a matrix, and MRi,j are the coe�cients of the pure retarder
matrix.

The total retardance (R) allows the description of the global behavior of a general retarder
(i.e., an elliptical retarder), as it combines the linear retardance and the optical rotation [19].
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However, in the context of tissue discrimination, to include individual characteristics of the
retarder constituents, as the linear retardance (�) or the rotation applied to the linear retarder ( ),
may be of interest. Thereby, in the present work, all them will be analyzed individually in order
to consider all the contributions.

Further description of a sample can be achieved by studying its depolarizing properties. To
this aim, it is worth using the indices of polarimetric purity (IPP) [11,12,20]: three invariant
depolarizing indicators that contain complete and detailed information of the capability of
samples to induce randomness to input polarization states [29]. The nature of the IPPs lies in
the statement that any depolarizer response can be synthesized as an incoherent sum of four
non-depolarizing components whose relative statistical weights are performed by combinations
of IPPs. In this way, we can discriminate di�erent types of depolarizers by only looking at the
statistical weight of each pure component.

The IPP observables are obtained from the four eigenvalues �i (which fulfill the condition
�0 � �1 � �2 � �3) of the covariance matrix H(M), a positive semidefinite Hermitian matrix
whose elements are defined through linear combinations of the Mueller matrix [20]. Particularly,
the IPPs (real magnitudes P1, P2 and P3) are defined as:

P1 ⌘ �0 � �1
Tr(H) , P2 ⌘ �0 + �1 � 2�2

Tr(H) , P3 ⌘ �0 + �1 + �2 � 3�3
Tr(H) . (7)

In addition, the depolarization index P�, which estimates the overall depolarization of a M, is
built from IPPs as follows:

P� =
1p
3

r
2P

2
1 +

2
3

P
2
2 +

1
3

P
2
3, 0  P�  1. (8)

These indicators characterize a pure (non-depolarizing) system when P1 = P2 = P3 = P� = 1
is found [42]. Due to eigenvalue restrictions, IPPs are limited by the 0  P1  P2  P3  1
inequalities. The ideal depolarizer is described for P1 = P2 = P3 = P� = 0. Moreover, IPPs
allow synthetizing the global information provided by P�, allowing to transform a 1-dimensional
space into a 3-dimensional information space.

3. Experimental methodology and statistical analysis

In this section, we provide the experimental methodology and the description of the inspected
tissue samples (subsection 3.1) as well as the description of the data analysis conducted on
Mueller matrix-based polarimetric data (subsection 3.2). The study provided in this section lays
the foundation for the subsequent construction of an optical model suitable for the classification
of biological samples, that will be discussed in section 4.

3.1. Experimental methodology and sample description

In the current study, the experimental Mueller matrices of 157 biological samples are measured
at three di�erent wavelengths covering the visible range (625 nm, 530 nm and 470 nm), since
di�erent wavelengths are associated with di�erent light penetration capability in tissues [43].
Such measurements are performed in a scattering configuration (capturing di�use light) by using
a complete Mueller imaging polarimeter (described in section 1 of Supplement 1) based on
parallel-aligned liquid crystal retarders [11,12,15,25].

The inspected tissues were obtained from 25 di�erent ex-vivo specimens of chicken thighs
provided by the same commercial brand. Tissues were taken from unambiguous anatomic
locations under the supervision of a pathologist: we disinserted the muscles in order to dissect
skeletal muscle, tendon and myotendinous junction as well as bone and worked with the same
decomposition conditions. To do so, two samples per each tissue type were obtained (a total of
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23 bones, 50 muscles, 50 myotendinous junctions and 34 tendons) and subsequently frozen at
�16�C. Three hours before measuring, the corresponding samples were systematically defrosted
in order to equalize the decomposition stage. Also, histological sections from the same regions
that were studied were collected and stained using a Masson Trichromic technique, which allows a
clear-cut di�erentiation of all connective tissue (and otherwise mesodermal as bone and muscle).
The detailed process and the histological images (Figs. S2 and S3) are provided in the section 2
of Supplement 1.

An example of an image of each one of the four studied tissues is shown in Fig. 1. Soft tissues
(muscle, tendon and myotendinous junction) and bone present di�erent properties owing to their
physiologic functionality and structure. In the following, we describe a physiological analysis of
each soft tissue in order to well-di�erentiate its structure and biological components. The skeletal
muscle (Fig. 1(a)) is composed by contractile myofibril chains bundled into fascicles sheathed by
perimysium (connective tissue which contains type-I collagen fibers [44]) and packed within
a collagen-rich epimysium layer, which protects muscle fibers from friction. By comparison,
tendons (Fig. 1(b)) are composed by dense collagen (60-80% type-I collagen) fibers arranged
into parallel fascicles by following the same orientation as muscle fibers [45,46] which are
completely enclosed by paratenon (a thick fibroadipose layer) and fascia (collagen-rich tissue that
covers both muscle and tendon) [47,48]. In turn, myotendinous junction (Fig. 1(c)) is a variable
combination of both previously mentioned soft tissues, which are progressively mixed along the
transition muscle-tendon: contractile myofibrils and collagen fibers are bundled into separated
fascicles [49] covered by fasciae. Each fascicle contains fibers of single type (either contractile
or collagenous) but fascicles of each type are intermingled in varying proportions. Finally, bones
(Fig. 1(d)) are composed by a dense matrix of collagen fibers with a varying arrangement that
depends on the type of bony tissue examined. The cortical bony tissue of a long bone like the
one here examined is formed by parallel collagen fibers arranged following the main axis of
the bone and interrupted by lacunae (spaces containing cells) at more or less regular distances.
Around lacunae collagen fibers are distributed concentrically. Mineral deposits are located in the
collagen fibers and, particularly, in the spaces between adjacent collagen fibers.

Fig. 1. Intensity image measured at 625 nm of a) muscle, b) tendon, c) myotendinous
junction and d) bone tissues of a given chicken thigh. Images correspond to an area of
1.1⇥ 1.1 cm2.

Obtained experimental Mueller images correspond to a region of interest (ROI) of 512⇥ 512
pixels which correlates to an area of 1.1⇥ 1.1 cm2 (the images of the experimental Mueller
matrices, MMs, as well as MMs of the decomposed parameters according to section 2 are
presented on Figs. S4 to S11 on Section 3 of Supplement 1). The polarimetric analysis is
performed for a pure tissue region, which exclusively contains the pixels related to the desired
type of tissue and from which the background has been mostly removed. By using the measured
experimental Mueller images, polarimetric images corresponding to di�erent polarimetric metrics
were calculated, according to the equations provided in section 2. To suppress the possible
specular reflection e�ects on camera and to perfectly isolate the desired type of tissue, we selected,
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from the original 512⇥ 512 pixels polarimetric images, a specific sub-image with a sub-ROI of
150⇥ 150 pixels (which does not include the saturated -specular reflection originated- regions)
from which we compute the mean value and standard error for the di�erent polarimetric metric
sub-images. The obtained standard errors of the mean for all the metrics calculated are within
a value ranging between 0.006% and 0.02%, except for the optical rotation , whose highest
standard errors are ranging from 0.3% to 3.4%: those optical rotation errors could be related with
the heterogeneity of the tissue fibers orientations through the whole sample. The general low
values of the standard errors suggest that the computed mean values are reliable and consistent,
probably due to the large number of pixels (150⇥ 150) measured per sample.

3.2. Statistical treatment

The object of the study is a data matrix composed of 157 tissues cases, analysed through 27
predictor variables (9 polarimetric metrics measured at three wavelength channels; 625 nm,
530 nm, and 470 nm) and one classifier variable with four categories (the type of biological
tissues: muscle, tendon, myotendinous junction and bone). The 9 selected polarimetric metrics,
calculated from the experimental Mueller matrix images according to section 2, are: P�, P1,
P2, P3, P, R, D, � and  . Under this scenario, the whole data matrix corresponds to 157 x
(27+ 1) items. It is important to note that there are not conditional relations when experimentally
measuring the 157 cases, so they can be considered as independent observations.

In the following, two statistical studies we applied on measured polarimetric data are described:
(1) an exploratory univariant statistical analysis of the polarimetric data distributions profile; and
(2) a factor analysis on data matrix with principal components extraction, based on the results
obtained with the exploratory analysis, to obtain a more adequate basis to construct a logistic
model capable to discriminate between the four studied tissue categories. These two studies
are provided in subsections 3.2.1 and 3.2.2, respectively. Note that the di�erent statistical tests,
following discussed, applied on experimental data were conducted by using the SPSS software.

3.2.1. Exploratory univariant statistical analysis on polarimetric data distributions

The exploratory univariant statistical analysis applied on the data matrix above-mentioned was
performed at a global level and according to classificatory variable groups (the type of tissues).
Particularly, data distribution is analyzed by studying the central tendency, the dispersion and
asymmetry behavior, outlier’s identification and graphical di�erences between samples sorted by
type of tissue characterization from Boxplot [50,51], as well as by checking normal distribution fit
assumptions (assess of normality charts and contrast tests Kolmogorov-Smirnov and Shapiro-Wilk
[52–55]). The conducted analysis proved that, in general, neither these data distributions nor
their transformations (according to Tuckey’s ladder of powers [56]) fit the normal distribution
behavior. Particularly, primary statistics show that an asymmetric data cloud cannot be fitted
into a normal distribution. In this context, we observe that the 27 metrics present asymmetry:
skewness values di�erent from 0 (associated with normal distribution) indicate the mean position
with respect to the median. The closest skewness value to zero is -0.111 (linear retardance, �,
distribution at 625 nm) meanwhile the highest one, 2.257, is achieved by polarizance, P, measured
at 530 nm. Only 7 from the 27 measured polarimetric distributions can be associated to normal
distributions, with skewness values close to zero (they present values lower than |0.840|), and
they are mostly found at 625 nm. The remaining 20 polarimetric distributions present higher
skewness values, being the polarimetric distributions based on the 470 nm channel those with the
clearest asymmetric tendency.

Additionally, regarding the Boxplot analysis [50,51], we evaluate the total percentage of
outliers (mild and extreme) to show that there is no relevant measurement bias: among the
di�erent polarimetric distributions analyzed, the outlier values range from 0% to 5.09% of the
total distribution data. Because we have not done any normality assumption on measured data and
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because the subsequent statistical analysis is based on robust statistical techniques, we conduct a
conservative approach and those detected outlier values are not removed from the study.

In Fig. 2, we present, as a representative example to illustrate the small number of outliers
associated to the observed data distributions, the Boxplot for the Index of Purity P2 distributions
measured at 625 nm illumination channel and corresponding to the four studied tissues. The
few observed outliers are represented in Fig. 2 by circles (mild) and stars (extremes). What is
more, the asymmetric tendency of the distributions is suggested by the relative position of the
median, which is not equidistant from the first and third quartiles (they are not placed at the
middle of boxes). In addition, the tissue discrimination capability of the metrics is also suggested
by the boxplot analysis as medians do not fit within the boxes of other tissues. For instance,
Fig. 2 illustrates the potential of P2 to discriminate muscle among the remaining tissues (see
dashed red line). Similar tendency is obtained when analyzing 530 nm and 470 nm illumination
wavelength (represented in Supplement 1, Figs. S12 and S13, respectively). These results can be
extrapolated to the remaining M-metrics studied in this work.

Fig. 2. Boxplot of P2 index for all tissues measured at 625 nm illumination channel.
Red-dashed line visually represents the potential of the metric to discriminate muscle among
remaining tissue types: the median of the muscle box does not fit within the other tissues’
boxes. Boxplot points out the low quantity of outliers on data distributions (which can be
extrapolated to the remaining metrics): mild and extreme values are represented by circles
and stars, respectively.

The normality analysis above conducted on polarimetric distributions proved that subsequent
data analysis must be done by following non-parametric statistics. Under this scenario, the
di�erent polarimetric distributions, sorted by type of tissue, were studied by performing a
non-parametric homogeneity multiple contrast analysis: the Kruskal-Wallis test [57,58]. This
test allows us to determine if there are significant statistical di�erences between two or more data
distributions. Therefore, in our case, the outputs are connected with the tissue discriminatory
potential of the studied metrics: p-values lower than 0.05 confirm, with a 95% of confidence, the
capability of the polarimetric indicator to discriminate the origin of the data between di�erent
pair of tissues.

Concerning the Kruskal-Wallis test results (whole data is presented in Table S1 of Supplement
1) we confirm that P�, IPPs (P1, P2 and P3) and polarizance P, are the most sensitive and



Research Article Vol. 12, No. 8 / 1 August 2021 / Biomedical Optics Express 4859

interesting polarimetric indicators for the studied tissue characterization, while the optical rotation
 is not capable to di�erentiate between any pair of tissues. Particularly, polarizance P seems
to be the only metric capable to discriminate between myotendinous junction and bone pair.
With regards to retardance indicators, they also provide some predictive potential. From this, we
conclude that the main polarimetric characteristics of samples (selective absorption, retardance
and depolarization) present certain signatures in the studied tissues, and therefore, the ensemble of
polarimetric indicators selected seems to be adequate to be used in optical models to discriminate
between the studied tissues.

The univariant analysis results above-discussed, particularly the non-normal tendency of
studied polarimetric distribution, manifest the impossibility to implement our solution based on
techniques such as discriminant analysis: this requires, in addition to the assumption of equality
of original metrics, sorted by type of tissue, variance-covariance matrices, that these metrics
follow a multivariant normal distribution behavior. As a consequence, our proposal considers
an elaborated model based on a more robust technique, the logistic regression, which does not
require these assumptions. At the same time, a dimension reduction of the original matrix in
pursuit of non-correlated predictors (that minimize or delete the multicollinearity that generates
instability on models) is aimed. Particularly, this solution considers:

(1) A factor analysis with principal components extraction [59–73] that provides a set of
independent predictor variables (defined as principal components) that maintains the
information contained in the original variables and describes an acceptable proportion of
the variance or inertia of point clouds.

(2) The implementation of multivariant predictive models, based on binary logistic regression
[74] techniques with the extracted principal components as parameters, for the type of
biological tissue classification, as well as the independent predictor and implemented
model associated to ROC curves [75–78] draft for their predictive capacity evaluation,
comparison and optimization.

The factor analysis is described in subsection 3.2.2, whereas the implementation of the
statistical models and their evaluation are described in section 4.

3.2.2. Factor analysis: principal components extraction

The goal of this work is to implement multivariant probabilistic models, particularly a binary
logistic regression, with the capability of determining whether a certain sample corresponds to any
of the chicken tissue categories studied in this work: muscle, bone, tendon and connective tissue.
Because the application of logistic regression on data does not necessarily converge when using
a non-orthogonal basis, it is convenient to obtain a set of uncorrelated (orthogonal) predictors for
the regression formulation which, in turn, define a reduced-dimension space. To do so, when
performing factor analysis, we choose the principal components extraction as it always provides
a solution in which the output factors compound a set of independent (uncorrelated) variables
obtained by linear combinations of the original indicators. The extracted principal components
maintain the same information of the original variables while keeping the maximum possible
variance: they constitute the ideal option to implement on predictive models. It is important to
remark that, because of the uncorrelation of these new components, the multicollinearity problem
in a regression model is avoided.

Before conducting principal components analysis (PCA) on our particular polarimetric data
matrix, we have previously computed the Bartlett’s test of Sphericity [79] and the Kaiser-Meyer-
Olkin Measure of Sampling Adequacy (KMO) [80] to ensure the suitability of factor analysis
for the particular studied polarimetric data. Particularly, Bartlett’s test of Sphericity is based on
the null hypothesis according to which the population correlation matrix is equal to the identity
matrix: in such case, the factor model is not appropriate to treat the input data [79]. On the other
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hand, KMO allows evaluating the degree in which each variable is predictable from the remaining
ones: obtained values larger than 0.5 indicate that at least one common factor underlying the
observed variables exists [80]. The output of both tests shows the suitability of applying factor
analysis (PCA) to our studied data matrix. Bartlett’s test clearly rejects the null hypothesis
(p-value 0.000). Likewise, Kaiser-Meyer-Olkin outputs a value of 0.650, larger than the typical
cut-o�, meaning that there’s a common subjacent factor for the studied variables. Because a
correlation between the variables exists, the factor model is an appropriate methodology for
treating the data. Hence, considering the output of both Bartlett’s and KMO tests, they all suggest
that PCA may suit our particular data set when being applied.

Once the Principal Components have been calculated by using the SPSS software on the data
matrix, we have computed the scree plot [71] (Fig. 3) which allows us to select a reasonable
number of components to be used for the predictive models. In particular, we decided to hold all
components preceding the sedimentation zone: 10 components explain more than 90% of the
original metrics variance.

Fig. 3. Scree plot of the principal component analysis.

The eigenvalues of those components, together with the data variance (in %) and the cumulative
variance (in %) are shown in Table S2 of the Supplement 1. In this way, PCA reduces the
27-dimension space of M-metrics into a new 10-dimension space by identifying the original
variables set underlying dimensions. The extracted factors cannot be directly measured but they
enable the data structuration around a reduced number of variability axis. As the new factors are
mathematical constructions, they do not necessarily have to be connected to physical properties,
but they can be further interpreted by analyzing their dependence with polarimetric metrics.
From a geometrical point of view, the principal components correspond to axes perpendicular to
each other that better fit with the point cloud that sets the data matrix.

4. Predictive model construction: results and discussion

The selected principal components encode the polarimetric information so we can write each
component as the linear combination of the 27 studied polarimetric metrics weighed by some
constants provided by the so-called component score coe�cient matrix, shown in Table S3
of Supplement 1. The fact that the component score coe�cient matrix allows expressing the
di�erent polarimetric metrics as a linear combination of the principal components, or vice versa,
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is determinant because this situation defines the basis for building a probabilistic model. In a
general way, the principal components (written as bC) are obtained by multiplying the M-metrics
27⇥1-dimension vector, bP, by the transposed component score matrix, cCS (a 27⇥10-dimension
data matrix in Table S3): bC = cCS

T ⇥bP, (9)

where bC elements correspond to Ci (i= 1, . . . , 10) and bP is written as follows,

bP = (P�R, P1R, P2R, P3R, PR, RR, DR, �R, R, . . . , G, . . . , B)T , (10)

where R, G and B indicate the wavelength channel (625 nm, 530 nm and 470 nm, respectively) of
the polarimetric indicator and the order of the metric is conserved along the vector.

To illustrate the correspondence between the principal components and the physical variables,
we represent a two-dimensional space plot where the 27 indicators are scattered as a function of
the two main principal components, C1 and C2. The obtained results are shown in Fig. 4.

Fig. 4. The plot showing principal components C1 against C2 represents the correlation
coe�cients between the 27 polarimetric indicators and the two first extracted principal
components. The notation of the polarimetric indicators names is composed of the word
that represents the measured parameter: P1, P2, P3 and PA (IPPs and P�, respectively), D
and P (diattenuation and polarizance), R and Delta (global and linear � retardance) and Phi
(optical rotation ), followed by R, G or B (corresponding to red, green and blue measured
wavelength, respectively).

Note that the metrics are clustered in four main areas (highlighted by black circles) and
more interestingly, those clusters mainly coincide with their physical characteristics regardless
its measured wavelength: retardance related indicators (total and linear retardance, R and �
respectively), depolarization (IPPs and P�), dichroism (diattenuation and polarizance, D and
P, respectively) and optical rotation . By comparing the weight or influence of the two first
principal components when analyzing polarimetric indicators we find that IPPs and P� (scattering,
depolarization) are mostly described by C1 as they are clustered with weights around 0.5 and 1.0
meanwhile the weights of C2 are between 0 and 0.5. When looking at how retardance indicators
are grouped, we find that the presence of the C2 principal component (between 0.5 and 1.0) is
higher than the influence on the C1 component (for the last one, its weight value is close to 0). For
diattenuation and polarizance, they are both influenced by the two main principal components
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but they are especially represented by the C1 component as most dispersion is observed in such a
component. Finally, optical rotation principal components C1 and C2 values are both near 0 so
they do not provide enough information to describe (the two first principal components are not
able to explain optical rotation so we expect to find weights di�erent from zero when analyzing
the remaining components).

Pointing out some interesting facts: plotting principal components against each other provides
us a very intuitive way to understand in which way those components are connected with
actual physical information of samples (the 27 polarimetric indicators), and which one of those
polarimetric indicators (or collection of indicators) carry more data variability in the original
raw data matrix. Interestingly, the fact that physical variables of the same type (for instance
retardance) are grouped in well-defined areas of the C1-C2 space (or of other combinations of
2-dimensional Ci spaces) indicates that di�erent origin in data variability (orthogonal dimensions)
is well connected with actual di�erent physical structures present in the studied tissue samples.

The discussion of the principal component’s space characteristics (such as its discriminatory
potential, sensitivity and specificity) and the predictive model construction of each type of tissue
and its predictive features are described in subsections 4.1 and 4.2, respectively.

4.1. Discriminatory potential of the principal components space

In this section, we are interested in studying the the performance of 10-principal components
space as tissue classifiers. With this aim, the Receiver Operating Characteristic (ROC) curve
analysis [75–78] is carried out: it describes the performance of a classifier (an algorithm or a
particular variable) when classifying measures into two categories by plotting the true positive
rate (TPR), or sensitivity, against the false positive rate (FPR), or 1-specificity, for multiple
threshold values of the classifier. For each classifier and measure, the combination of what
the sample actually is (real value, positive or negative) and how it is classified by the model
(prediction; positive or negative) results in four possible outcomes [76,77]. The mathematical
relations connecting these four criteria define the sensitivity and specificity, which are the base of
ROC curves, and are given by:

Sensitivity =
TP

P
, (11)

Specificity =
TN

N
, (12)

where TP, P, TN and N denote for true positives, total positives, true negatives and total negatives,
respectively. Another way to define sensitivity is the ability to correctly identify positive samples
while specificity results in the opposite case, correctly identifying negative samples [78].

By using the SPSS software, we computed the ROC curve for all the 10-principal components
and for the four di�erent studied tissues (a specific dichotomic predictive model is constructed
for each studied tissue, so four models are constructed). As an example, the ROC curve of the
principal component C1 for each biological tissue is shown in Fig. 5. Note that the di�erent
threshold are all the possible values in C1. However, all principal components present statistical
significance in ROC curves for one or more tissues, which bolsters the interest in keeping them
in the process.

Usually, to compare the performance of classifiers (in our case, to estimate which component
provides better sensitivity-specificity values for a particular tissue), the area under the curve
(AUC) is calculated, with values ranging from 0, when the variable has no predictive capability,
to 1, with 100% both sensitivity and specificity. The AUC values of all principal components
when discriminating each biological tissue against the remaining three are summarized in Table 1.

With regards to the exposed information, we see how most of the principal components
provide certain discriminative potential, with values larger than 0.5. The components with the
largest AUC for a particular tissue are highlighted in Table 1. Notice that C1 present significant
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Fig. 5. ROC curve of the principal component C1 for (a) muscle, (b) tendon, (c) myotendinous
junction and (d) bone.

Table 1. AUC of 10 first principal components for all
tissues.

Muscle Tendon Myotendinous junction Bone

C1 0.733 0.699 0.754 0.734

C2 0.559 0.717 0.567 0.577

C3 0.528 0.651 0.583 0.512

C4 0.731 0.745 0.563 0.542

C5 0.667 0.733 0.500 0.527

C6 0.516 0.714 0.521 0.725

C7 0.567 0.567 0.508 0.722

C8 0.703 0.706 0.544 0.649

C9 0.581 0.540 0.616 0.507

C10 0.569 0.495 0.623 0.601

discrimination values in all tissues, C2 and C3 mostly provide discriminatory information for
tendon, C4 and C5 focus on muscle and tendon discrimination, C6 on tendon and bone, C7 on
bone, C8 keeps the information about muscle, tendon and bone and, finally, C9 and C10 provide
discrimination for the myotendinous junction.

Interestingly, it has been noticed that the principal components predictive potential (given
by the large area under the curve, AUC, values exposed in Table 1) is di�erent for distinct
tissues. Such behavior was expected as every component is written as a linear combination of
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the polarimetric indicators (rows in Table S3 in Supplement 1), and the metric values strongly
depend on the composition characteristics of each biological tissue. Therefore, considering
the structural di�erences between them, some polarimetric indicators and, consequently, some
principal components, are expected to have a higher capacity to discriminate a particular tissue
between the rest.

4.2. Predictive model construction

In this section, the determination of the predictive model for tissue recognition is described.
The constructed model is based on a probabilistic function achieved by fitting the experimental
data (array of principal components values for all chicken samples) to a sigmoid function,
more specifically, to a logistic function. In other words, we perform a non-linear data model
transformation into a linear one by means of a logistic regression fit of data. The logistic function
with the principal components as variables and with a curve maximum value equal to 1 is written
as follows,

p =
1

1 + e
�
✓
�0+

nÕ
i

�iCi

◆ , (13)

where Ci are the i principal components, �i the weights of the components and �0 a constant value.
The function in Eq. (13) is bounded between 0 and 1 and can be interpreted as the probability of
a given outcome.

We have chosen a logistic function because it is valid for non-parametric data and it does not
require the relation between the predictors and the probability of a target outcome to be linear.
Moreover, despite other fitting methods, as it is the case of those based on the ordinary least square
regression (OLS), the logistic function neither requires the residuals to be normally distributed
and exhibit constant variance. Particularly, we have previously verified the non-dependency of
the model predictors (principal components) and their connection with the dichotomic dependent
variable. Moreover, by performing the PCA, the multicollinearity between predictors have been
removed so stable predictive models and convergent iteration processes are achieved. Under this
scenario, four logistic regression functions are designed: one model for each studied biological
type of tissue. As seen in Eq. (13) the obtained probability function depends on some of the
principal components factors which, in turn, depend on the polarimetric indicator values measured
from the image sample. The logistic regression fit on the experimental principal components
(obtained from the experimental polarimetric indicators according to the relations provided in
the component score coe�cient matrix in Table S3 in Supplement 1) is conducted by using the
SPSS software. By applying a stepwise regression approach (backward elimination) and using
the Wald estimator throughout multiple steps, the principal components are removed until only
the most significant ones remain [74].

This routine gave us the values for the weights in Eq. (13) and, accordingly, the obtained
probabilistic functions for the four studied tissues are exhibit below:

PMuscle =
1

1 + e�(�2.183C1+1.535C4�1.280C5�1.077C8+0.629C9�1.879) , (14)

PTendon =
1

1 + e�(�2.213C1�2.358C4+1.625C5+1.257C6+1.059C8�3.128) , (15)

PMyotendinous junction =
1

1 + e�(0.900C1�0.573C9+0.589C10�0.934) , (16)

PBone =
1

1 + e�(1.018C1+0.715C2+0.621C4�1.452C6�1.437C7�0.688C10�3.132) . (17)

To illustrate the goodness-of-fit for the four regressions, the Hosmer-Lemeshow significance
[79,80] and the R2 of Nagelkerke [81,82] indicators are provided in Table S4 of Supplement 1.
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Afterwards, to study the e�ciency of the probabilistic models in terms of sensitivity and
specificity, the associated ROC curves were also computed for each one of the four models. They
are provided in Fig. 6, in which their corresponding AUC are also indicated. We see how the
AUC are significantly larger than those we obtained when representing the principal components
(see Fig. 5 as an example), so we see how the discriminatory potential of the probabilistic
functions clearly overcome the obtained with the principal components by themselves. We want
to highlight that the AUC values obtained for muscle, tendon and bone tissues models, are
significantly high (0.92, 0.95 and 0.89 respectively), providing the e�ciency of these models
for tissue discrimination. In turn, the model providing lower discriminatory potential is that
associated to the myotendinous junction (AUC=0.79). This situation agrees with the fact that
only C1, C9 and C10 components present discriminatory potential for the myotendinous junction
tissue (see Table 1), and the two latter, represent a very small data variation of the whole data
matrix (2.350% and 1.885% of the variance (Table S2), respectively).

Fig. 6. ROC curve of the probabilistic model for (a) tendon, (b) muscle, (c) myotendinous
junction and (d) bone.

Note that models in Eqs. (14–17) provide as output a real number between 0 and 1, associated
to the probability of a given tissue to belong to a particular tissue category. To build a dichotomic
model determining if a tissue belongs or not to a particular category, a threshold (specific
probability value) must be set in a way that values above/below such threshold are associated
with Yes/No answers (i.e., is the unknown sample a bone? Yes-No; is it a tendon? Yes-No, etc.).
However, each possible threshold (probability), as can be seen from ROC curves in Fig. 6, will
lead to a particular pair of sensitivity and specificity values for the constructed models. In our
work, the criterion used to set such threshold is by using the Youden’s Index [83] of the ROC
curves in Fig. 6. According to this criterion, the optimal cut-o� for our models corresponds to
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the farthest point of the probabilistic function in the ROC curves (blue curve in Fig. 6), from the
ROC diagonal (red line in Fig. 6) along Y axis, which is calculated as the maximum value, dmax,
of d = sensitivity+ specificity – 1.

The computed Youden’s index [83] for each model, and its corresponding sensitivity and
specificity values, are shown in Table 2. Note that the models for the muscle, tendon and bone
present high values of specificity and sensitivity (values higher than 80% in all the cases). In turn,
the worst obtained result is that for the myotendinous junction tissue specificity, which descends
to a value of 71% (in agreement with the limited potential of the myotendinous model discussed
in the previous analysis).

Table 2. AUC, Youden’s index, sensitivity and specificity of each predictive model.

Muscle Tendon Myotendinous junction Bone

AUC 0.923 0.948 0.789 0.893

Threshold (Youden’s Index) 0.392 0.351 0.285 0.162

Sensitivity (%) 86.0 85.3 82.0 82.6

Specificity (%) 88.8 93.5 71.0 80.6

Therefore, the sensitivity and specificity obtained results for the constructed predictive models
(data in Table 2) quantify the e�ciency of those models to categorize the studied organic tissues.
What is more, the current study highlights the potential of predictive models based on polarimetric
data to discriminate between animal tissues, and the methods provided could be applied in the
future, for instance, for medical applications.

Following this same idea, to show the potential of the method to be applied to imaging techniques
to discriminate between tissues, we encoded an algorithm that computes the probabilistic function
for each pixel of the measured sample. In particular, for an arbitrary chicken tissue, the Mueller
matrix image is measured at the three studied wavelengths (625 nm, 530 nm, 470 nm), from
which the 27 polarimetric images are calculated. From this polarimetric image database, the
probability image of the arbitrary tissue to be categorized as a particular category (muscle, bone,
tendon and myotendinous junction) is calculated according to the logistic probability functions
in Eqs. (14–17). The algorithm outputs which is the probability of the analyzed pixel to be
recognized as a particular tissue, so the probability image is constructed, with values ranging
between 0 and 1.

As an example, in Fig. 7 we provide the probability function images, corresponding to the four
predictive models when analyzing an arbitrary sample of a chicken tendon. Figure 7 presents the
intensity image of the tendon (M00, Fig. 7(a)), and the output images of the probabilistic models
for the recognition of muscles (Fig. 7(b)), tendons (Fig. 7(c)), myotendinous junctions (Fig. 7(d))
and bones (Fig. 7(e)). Probability images are given in grayscale, in which white is associated to
the maximum probability value (1) and black to the minimum (0). By comparison, the highest
probabilistic values (closer to 1) are clearly obtained by the tendon predictive model (Fig. 7(c)),
recognizing almost all the pixels along the tendon tissue image, and thus, perfectly classifying
the sample as a tendon. In turn, the probability images for muscle (Fig. 7(b)), myotendinous
junction (Fig. 7(d)), and bone (Fig. 7(e)) are based, despite some clustered high output pixels,
on significantly smaller probabilistic values than those present in tendon recognition image
(Fig. 7(c)). Therefore, those models do not assign the tendon sample as muscle, myotendinous
junction or bone, respectively. Among these three probability images, the larger values are
obtained when using the myotendinous junction model, providing that this model prediction is
the less sensitive and specific one, in agreement with previous discussions on model e�ciency.

Analogously, we provide a second example, for the study of an arbitrary muscle sample.
Results are provided in Fig. 8, for the intensity image (M00, Fig. 8(a)), and the four predictive
model output images (muscle, tendon, myotendinous junction and bone recognition, Figs. 8(b-e),
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Fig. 7. Intensity image M00 (a) and probability image outcome when applying the Muscle-
model (b), Tendon-model (c), Myotendinous junction-model (d) and Bone-model (e) on an
arbitrary chicken tendon sample. The gray level bars, placed to the right of the corresponding
probability function images, defines the probability of the pixel to be recognized as a
particular tissue, in a range between one (white) or zero (black).

respectively). The obtained predictive results demonstrate the high capability of the muscle-
recognition model: the highest overall values for the output probability image correspond to the
muscle recognition model (Fig. 8(b)), perfectly classifying the muscle tissue. When analyzing
the probability distribution for the three remaining models, a good discriminating potential is
also demonstrated: the sample’s output shows low probability values for classifying the muscle
as a tendon (Fig. 8(c)), a myotendinous junction (Fig. 8(d)) or a bone (Fig. 8(e)). Once again,
and as expected by the previous analysis (sensitivity and specificity model values in Table 2),
the worst predictive e�ciency is related to the myotendinous junction model, leading to larger
probability values than the tendon and bone models.

Note that the tendon and muscle study cases (results in Figs. 7 and 8) highlight the strong
qualitative and quantitative discriminative potential of the models to be applied for tissue
recognition imaging techniques. For the sake of completeness, the remaining tissue study cases,
bone and myotendinous junction recognition test, can be found in section 6 of Supplement
1. These examples (Fig. 7, Fig. 8 and Fig. S14 and Fig. S15 of Supplement 1) point in the
direction that the proposed models are suitable for tissue classification and recognition, and the
corresponding sensitivity and specificity outcomes will be limited by data provided in Table 2.
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Fig. 8. Intensity image M00 (a) and probability function of muscle (b), tendon (c),
myotendinous junction (d) and bone (e) for chicken muscle measurements. The gray level
bars, placed to the right of the corresponding probability function images, defines the
probability of the pixel to be recognized as a particular tissue, in a range between one (white)
or zero (black).

5. Conclusions

Four predictive models based on the measure of diverse polarimetric metrics derived from the
experimental MM of four ex-vivo chicken tissues (bone, tendon, muscle and myotendinous
junction tissue) have been designed for tissue recognition and provided in this manuscript. The
predictive models start by studying the distribution of the experimental data and their di�erent
statistical origins. Obtained results proved that we deal with non-parametric data with significant
potential to discriminate between studied tissues. Afterwards, with the idea of constructing a
robust non-parametric predictive probabilistic model, we applied a Principal Component Analysis
on data, which allowed us to reduce the dimension of the data space (from 27-dimension to
10-dimensions) but dealing with maxima information as well as to obtain an orthogonal basis of
parameters. By analyzing the connection between the principal components basis and the original
polarimetric metrics, we realized that di�erent variability directions of data in the principal
components space can be roughly associated by di�erent physical origins of the tissue structures
(dichroism, retardance and depolarization).

Subsequently, based on the computed principal components basis, we constructed a logistic
regression on data, leading to four probabilistic models (a model for each one of the four studied
tissues) able to categorize if an arbitrary tissue belongs to a certain tissue category. The sensitivity
and specificity values reached for each one of the four models are respectively: 85.3% and 93.5%
(Tendon-model), 86.0% and 88.8% (Muscle-model), 82.6% and 80.6% (Bone-model) and 82.0%
and 71.0% (Myotendinous junction-model), proving the potential of the method.

Finally, to highlight the suitability of the provided methods to be applied in biological samples
imaging recognition techniques, we computed an algorithm, based on the constructed probabilistic
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models, that provides the probability, between 0 to 1, of a given pixel to be categorized as a
particular tissue, and this is done for all the pixels of a given tissue image. In short, the procedure
outputs four di�erent probability images, corresponding to the probability of an arbitrary tissue to
be muscle, bone, tendon or myotendinous junction tissue. The method provided complementary
visual interpretation for tissue recognition, and a satisfactory categorization of the analyzed tissue
image, according to the sensitivities and specificities stated above.

The proposed non-invasive methods discussed in this work could be applied, by conducting
the required statistical data feeding, in multiple biomedical scenarios, for example, for the early
diagnosis of some pathologies.
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Polarimetric data-based model for tissue 
recognition: supplemental document 
1. Complete image Mueller polarimeter description 
The current study is performed by measuring the experimental Mueller matrices from different 
chicken samples at three different illumination wavelengths covering the visible range: 625 nm, 
530 nm and 470 nm. To do so, a complete image Mueller polarimeter [1-4] is used (Fig. S1) 
Particularly, it is based on Parallel Aligned Liquid Crystals (PA-LC) retarders and consists of 
two compact and mobile arms. The first one, the Polarization State Generator (PSG), allows us 
to generate any fully polarized state so we can illuminate the sample with controlled polarized 
light. It is composed by a linear polarizer oriented at 0º followed by two PA-LC at 45º and 0º, 
respectively, with respect to the laboratory vertical. We illuminate the sample at 56º with respect 
to the vertical so the second arm, called Polarization State Analyzer (PSA) and placed in the 
vertical position avoids direct reflections and collects the scattered light. PSA is composed of 
the same elements as PSG but placed in the inverse order to finally capture, by means of a CCD 
camera, the sample’s intensity image. With this architecture, the polarimeter is capable to 
analyze and determine the polarimetric response of the sample.  

 
Fig. S1. a) 3D representation of the complete image Mueller polarimeter used in this study, b) 

3D representation of the arrangement of the optical components in the PSG and the PSA. 

In the employed set-up, the illumination is performed by using a four-wavelength high-power 
Thorlabs LED source (LED4D211, operated by DC4104 drivers distributed by Thorlabs), 
complemented with 10 nm dielectric bandwidth filters for green (530 nm) and blue (470 nm) 
wavelengths (Thorlabs FB530-10 and FB470-10, respectively). In counterpart, imaging is 
performed by means of a TECHSPEC® high-resolution objective (distributed by Edmund 
Optics) with a 35 mm focal length so a resolution of 22 µm is achieved followed by an Allied 
Vision Manta G-504B CCD camera.  

To build the experimental Mueller matrix, at least 16 independent measurements are 
required (related with different Stokes generation, PSG, and detection, PSA, configurations). In 
the current study, we use 6 illumination states of polarization (generators) and 6 detection 
analyzers instead, so taking 36 images, to minimize the measurement noise of each sample’s 
Mueller matrix. A complete Mueller measurement waiting time lasts ~ 3.6 seconds: liquid 
crystal molecules rearrange the orientation process from one polarization state to the following 
one lasts approx. 100 ms.  

 

 



2. Histological process of samples 
For histological countercheck of the images, samples were obtained from regions analogous to 
the ones submitted to polarimetric analysis (i.e., striated muscle, tendon, myotendinous junction 
and diaphyseal bone). After extraction, they were immersion-fixed in 4% formaldehyde 
overnight and dehydrated through a protocol including immersion in: 70% Ethanol (30’), 80% 
Ethanol (30’), 90% ethanol (30’), 95% ethanol (30’), two successive immersions in 100% 
Ethanol (60’ each) and xylene (60’ each). After dehydration, they were embedded and in a 
paraffin wax. After cooling they were sliced in 5µm-thick sections through microtomy. Sections 
were mounted in crystal slides which were stained after deparaffination. Deparaffination 
protocol includes a 24-hour immersion in xylene and brief, successive rinses in 96% ethanol, 
90% ethanol, 80% ethanol, 70% ethanol and distilled water. Two different histological staining-
techniques were used. 

a) Hematoxylin-eosin is the standard histological technique for diagnostic microscopy. It 
involves the combined use of an oxidized cationic colorant (hematoxylin) that highlights nucleic 
acid-rich regions of the tissue in purple and an anionic colorant (eosin) that stains in a 
characteristic pink color protein-rich area of the tissue, e.g. collagen in pale pink and muscle in 
dark pink. Sections were immersed in a bath containing Harris hematoxylin solution for 10’ 
(Merck ® H9627), differentiated in 1% acid alcohol solution (5 ml of 37% HCl in 495 ml of 
70% ethanol) for around 20”, blued in a bluing solution for 20” (Sigma-Aldric ® S5134) and 
counterstained with Eosin Y for 1’ (Sigma-Aldric ® E4009). Brief rinses in tap water were 
performed between each step.  

b) Masson technique allows the differential staining of connective tissue. It includes 
Weigert’s hematoxylin (a variant of hematoxylin) for nuclei acid-rich regions, acid fuchsin as 
an acid dye for protein-rich cytoplasm, a combination of phosphotungstic and phosphomolybdic 
acids to remove the excess fuchsin from fibers and aniline blue to counterstain the fibers. 
Overall, it provides a blueish color to collagen-rich tissue and deep red color to muscle fibers, 
also allowing the identification of other kinds of tissue. Staining protocol includes a 5’ rinse in 
Weigert Hematoxylin (Merck® 115973), a 5’ incubation in acid fuchsin solution (Sigma-
Aldrich ® F8219), successive incubations (no longer than 3’) in a 20% solution of 
phosphotungstic-phosphomolybdic acid in ethanol (Sigma-Aldrich ® 319279) and a 5’ 
incubation in a 2.5% solution of aniline blue prepared in 2% acetic acid (Sigma-Aldric ® 
B8563). If necessary, a rapid rinse in 1% acetic was performed to remove the excess dye. Brief 
rinses in distilled water were performed between steps. 

After staining, samples were dehydrated in ethanol (5’ in ascending concentrations of 70%, 
80%, 90%, 96%, 100%) and xylene before being covered using Eukitt® as mounting media. 
After drying for 24 hours, sections were scanned (Zeiss AxioScan ®) and analyzed using a 
QuPath free software. Obtained images are presented in Figs. S2 and S3. 



 
Fig. S2: Histochemical stainings of muscle (A, B), tendon (C, D) and myotendinous junction (E, F). Bundles (1, 2, 6) 
of either contractile (A, B, E, F) or dense fibrous (collagen) tissue (C-F) are surrounded by sheets of lax connective 

tissue (collagen) concentrically organized as epimysium (**)/epitenon (**), perimysium/peritenon (5) and 
endomysium/endotenon (6). In E, F a transverse section of the myotendinous junction is shown, where the Masson 
staining reveals the intermixed (*) fascicles of contractile fibers (discontinuous arrow in (F) and collagenous fibers 

(arrow in F)). Different fascicles of tendinous collagen are highlighted in red, green and gold (C). 



 

Fig. S3: Transversal section of striated muscle (A) showing bundles of contractile fibers (red colored, 1) surrounded 
by endomysium (2, compare to 3, 4) and included in a single fascicle surrounded by collagen (perimysium, 5). This 
structure is analogous to the tendinous structure (B), where the collagen fibers (3) are densely packed into a sheet of 

peritenon (4). Longitudinal section of cortical bone (C), showing bony matrix (6) and lacunae (7) containing 
osteocytes, vessels and collagen that are heavily artifacted due to pre-treatment (8); Transverse section through the 

diaphysis of a long bone (D), where collagenic periosteum (9), cortical bone (10) and rests of trabecular bone (11) are 
arranged in a concentrically layers. Note the regular arrangement of lacunae, both in longitudinal and transverse 

sections. Color (from reddish to purple) depends on the amount of mineral deposits in any given region of the bone. 

 

3. Experimental Mueller matrices 
The experimental typical Mueller matrices (MMs) obtained for each type of tissue (muscle, 
tendon, myotendinous junction and bone) measured at 625 nm illumination wavelength are 
shown below followed by the respective parameters (PΔ, P1, P2, P3, P, R, D, δ and Ψ) resulting 
from matrix decomposition. The obtained images correspond to a region of interest (ROI) of 
512 x 512 pixels which corresponds to an area of 1.1 x 1.1 cm2.  

Particularly, typical MM of muscle tissue and the respective polarimetric parameters are 
shown in Figs. S4 and S5, respectively. MMs of tendon, myotendinous junction and bone tissue 
are presented in Figs. S6 and S7, Figs. S8 and S9, and Figs. S10 and S11, respectively.  

 



 
Fig. S4. Experimental Mueller matrix image of a sample of muscle tissue. 

 

 
Fig. S5. Images of the polarimetric parameters PΔ, P1, P2, P3, P, R, D, δ and Ψ from a sample of muscle tissue. 



 
Fig. S6. Experimental Mueller matrix image of a sample of tendon tissue. 

 
Fig. S7. Images of the polarimetric parameters PΔ, P1, P2, P3, P, R, D, δ and Ψ from a sample of tendon tissue. 

 



 
Fig. S8. Experimental Mueller matrix image of a sample of myotendinous tissue. 

 
Fig. S9. Images of the polarimetric parameters PΔ, P1, P2, P3, P, R, D, δ and Ψ from a sample of myotendinous tissue. 

 



 
Fig. S10. Experimental Mueller matrix image of a sample of bone tissue. 

 
Fig. S11. Images of the polarimetric parameters PΔ, P1, P2, P3, P, R, D, δ and Ψ  from a sample of bone tissue. 



 

4. Statistical analysis 
For the correct manipulation of data to construct a predictive model it is mandatory to know 
which are the distributions profile (parametric or not) and, depending on the results, apply the 
corresponding statistical tests to formulate the tissue-discrimination functions. In this way, we 
perform an exploratory univariant analysis (to analyze the distribution profile) and a posterior 
factor analysis with principal components extraction for the dichotomic predictive models’ 
construction. The additional material for the above-mentioned analysis is described in the 
following sections. 

4.1 Exploratory univariant analysis 

To ensure the correct statistical manipulation of polarimetric data distributions classified by 
type-of-tissue variable groups, it is necessary to previously perform an exploratory univariant 
analysis based on the study of the graphical differences between sample’s distributions, as well 
as the central tendency, data dispersion, asymmetry and outlier’s identification by means of 
Boxplot [5,6].  

Recalling the P2 purity index (measured at 625 nm illumination) presented in Fig. 2, in this 
section we provide, in complement, the results in the format of Boxplots corresponding to the 
data acquired at 530 nm and 470 nm in Figs. S12 and S13, respectively.  

 
Fig. S12. Boxplot of P2 index for all tissues measured at 470 nm illumination channel. Red-

dashed line visually represents the potential of the metric to discriminate muscle among 
remaining tissue types: the median of the muscle box does not fit within the other tissues’ 
boxes. Green-dashed line visually represents P2 tendon discrimination capability. Boxplot 

points out the low quantity of outliers on data distributions (which can be extrapolated to the 
remaining metrics): mild and extreme values are represented by circles and stars, respectively. 

The exposed P2 data distributions for all type of tissues measured at 530 nm wavelength (Fig. 
S12) clearly shows the same small number of outliers’ behavior as 625 nm (manuscript Fig. 2) 
and 470 nm (Fig. S13). What is more, asymmetric tendency (position of the median is not in 
the middle of boxes) is common for all wavelengths. Moreover, tissue discrimination capability 
of P2 is pointed out (median line does not fit within the remaining boxes): at 530 nm illumination 
(Fig. S12), the metric shows muscle discriminative potential (see dashed red line) but also 
tendon differentiation from myotendinous junction and bone (see dashed green line). At 470 nm 



illumination conditions (Fig. S13), P2 keeps differentiating muscle (see dashed red line) but also 
works well as a myotendinous junction discriminator (see dashed blue line).  
 

 
Fig. S13. Boxplot of P2 index for all tissues measured at 470 nm illumination channel. Red-

dashed line visually represents the potential of the metric to discriminate muscle among 
remaining tissue types: the median of the muscle box does not fit within the other tissues’ 

boxes. Blue-dashed line visually represents P2 Myotendinous junction discrimination 
capability. Boxplot points out the low quantity of outliers on data distributions (which can be 
extrapolated to the remaining metrics): mild and extreme values are represented by circles and 

stars, respectively. 

For the Kruskal-Wallis [7,8] homogeneity multiple contrast analysis, the output significance of 
the 27 measured polarimetric indicators for each pair of tissue discriminative power is presented 
in Table S1. Particularly, we assume, as null hypothesis, that the data comes from samples with 
the same statistical distribution. By setting a significance level, α, of 0.05, Kruskal-Wallis 
outcomes reject, in most of the cases, the mentioned hypothesis: p-values lower than the 
significance level show the discriminatory potential of the polarimetric indicator between the 
corresponding pair of tissues. Note that, because the SPSS software found no significant 
difference when sorting by pair of tissues, only one value is output for optical rotation, Ψ. 

 
Table S1. Significance (p-value, rounded to three digits) of the M-metrics pair-of-tissue discrimination. 

  
Muscle – 
Tendon 

Muscle – 
Myo. 

Muscle – 
Bone 

Tendon – 
Myo. 

Tendon – 
Bone 

Myo. – 
Bone 

62
5 

nm
 

PΔ 0.000 0.000 0.000 0.559 0.331 0.599 

P1 0.000 0.000 0.000 0.210 0.274 0.948 

P2 0.003 0.000 0.000 0.741 0.181 0.254 

P3 0.000 0.000 0.000 0.723 0.714 0.936 

P 0.427 0.000 0.000 0.036 0.000 0.004 

R 0.378 0.000 0.000 0.002 0.000 0.223 



D 0.070 0.002 0.000 0.149 0.008 0.135 

δ 0.374 0.005 0.000 0.062 0.004 0.614 

Ψ 0.110 

53
0 

nm
 

PΔ 0.351 0.000 0.000 0.000 0.000 0.730 

P1 0.594 0.000 0.000 0.000 0.000 0.389 

P2 0.044 0.000 0.000 0.000 0.003 0.982 

P3 0.995 0.000 0.000 0.000 0.000 0.268 

P 0.054 0.001 0.000 0.062 0.001 0.436 

R 0.001 0.000 0.000 0.358 0.210 0.615 

D 0.695 0.017 0.010 0.060 0.031 0.534 

δ 0.008 0.000 0.000 0.283 0.042 0.247 

Ψ 0.101 

47
0 

nm
 

PΔ 0.480 0.000 0.000 0.000 0.000 0.877 

P1 0.253 0.000 0.000 0.000 0.000 0.436 

P2 0.930 0.000 0.000 0.000 0.000 0.885 

P3 0.340 0.000 0.000 0.000 0.000 0.508 

P 0.010 0.020 0.000 0.835 0.001 0.015 

R 0.024 0.002 0.002 0.358 0.211 0.616 

D 0.383 0.021 0.000 0.181 0.005 0.079 

δ 0.009 0.004 0.009 0.749 0.634 0.830 

Ψ 0.299 

4.2 Principal Components extraction and component score coefficient matrix 

Linked with scree plot [9], Table S2 exposes the eigenvalues of the chosen 10 principal 
components [10,11], together with the data variance and the cumulative variance (both in %). 
Note that C1 carries the highest amount of explained variance. This behavior will be reflected 
in predictive model construction as this component is going to have a strong influence. Lower 
amounts of variance are taken by the remaining components. However, it is important to remark 
that when considering the 10 components as a whole, we achieve a 92% of explained variance.  

Table S2. Percentage of variance explained.  

 Extraction Sums of Squared Loadings 

Total % of Variance Cumulative 

C1 11.195 41.462 41.462 

C2 3.783 14.012 55.473 

C3 2.265 8.391 63.864 

C4 2.008 7.436 71.300 



C5 1.786 6.616 77.915 

C6 1.026 3.799 81.714 

C7 0.890 3.298 85.012 

C8 0.762 2.824 87.836 

C9 0.634 2.350 90.186 

C10 0.509 1.885 92.071 

The 27-dimension metrics space is reduced to a new 10-dimension principal components space. 
In this way, the original polarimetric information is encoded on the principal components: we 
can write each component as a linear combination of the 27 different polarimetric indicators 
weighed by some constants provided by columns of the so-called component score coefficient 
matrix, shown in Table S3.  

 
Table S3. Component score coefficient matrix of the 10 first principal components. 

 
Principal component 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

62
5 

nm
 

PΔ 0.068 -0.083 0.219 -0.061 0.113 0.005 -0.079 -0.050 -0.066 -0.204 

P1 0.066 -0.020 0.154 -0.126 0.205 -0.024 -0.128 0.090 -0.129 -0.178 

P2 0.063 -0.103 0.214 -0.017 0.053 0.013 -0.015 -0.162 -0.035 -0.241 

P3 0.063 -0.090 0.230 -0.060 0.102 0.022 -0.088 -0.026 -0.053 -0.146 

P 0.013 -0.092 0.097 -0.205 0.168 0.441 0.442 0.329 0.252 0.217 

R 0.036 0.154 0.138 -0.032 0.117 -0.329 -0.074 -0.018 0.484 0.636 

D 0.028 -0.107 0.218 0.232 -0.213 -0.082 0.032 -0.252 0.099 -0.077 

δ 0.034 0.160 0.139 -0.098 0.018 -0.114 -0.014 0.402 -0.505 0.532 

Ψ -0.011 0.037 0.008 0.280 0.196 -0.313 0.434 0.472 0.120 -0.622 

53
0 

nm
 

PΔ 0.085 -0.003 -0.105 0.008 0.017 -0.096 -0.044 -0.076 -0.058 0.018 

P1 0.082 0.027 -0.069 0.005 0.045 -0.127 0.020 -0.029 -0.011 -0.044 

P2 0.082 -0.021 -0.095 0.019 -0.023 -0.077 -0.072 -0.121 0.066 -0.002 

P3 0.078 -0.009 -0.132 -0.010 0.035 -0.085 -0.062 -0.094 -0.201 0.083 

P 0.068 0.008 -0.094 -0.016 0.066 -0.004 0.434 -0.315 -0.235 0.111 

R 0.038 0.180 0.105 0.037 -0.038 -0.154 0.250 -0.400 0.294 -0.022 



D 0.043 -0.118 0.089 0.196 -0.245 0.034 0.036 0.239 0.073 0.484 

δ 0.029 0.179 0.111 0.038 -0.156 0.038 0.294 -0.065 -0.553 -0.164 

Ψ -0.001 0.060 -0.005 0.346 0.298 0.145 -0.064 0.098 0.008 0.251 

47
0 

nm
 

PΔ 0.083 0.008 -0.127 0.005 -0.011 0.027 -0.121 0.169 0.079 -0.117 

P1 0.080 0.035 -0.101 0.005 0.005 0.007 -0.143 0.287 0.111 -0.099 

P2 0.081 -0.010 -0.136 0.007 -0.033 0.051 -0.106 0.082 0.097 -0.152 

P3 0.080 0.000 -0.126 -0.002 -0.003 0.017 -0.113 0.124 0.030 -0.065 

P 0.057 -0.027 -0.143 -0.026 0.000 0.244 0.459 -0.190 0.108 0.216 

R 0.033 0.181 0.084 -0.034 -0.119 0.283 -0.083 0.023 0.616 -0.241 

D 0.049 -0.122 0.036 0.184 -0.239 0.002 0.095 0.258 0.005 0.254 

δ 0.025 0.179 0.062 0.012 -0.233 0.356 -0.087 0.196 -0.149 -0.308 

Ψ 0.006 0.054 0.017 0.303 0.236 0.444 -0.235 -0.285 -0.176 0.151 

5. Predictive model construction 

To test the goodness-of-fit of the four constructed predictive models (muscle, tendon, 
myotendinous junction and bone), we rely on the Hosmer-Lemeshow [12] significance and the 
R2 of Nagelkerke [13] measure. Outputs are presented in Table S4.  

Table S4. Hosmer-Lemeshow significance (p-value) and R2 of Nagelkerke, of each predictive model. 

 Muscle Tendon Myotendinous junction Bone 

Hosmer-Lemeshow Sig. 0.192 0.980 0.530 0.956 

R2 of Nagelkerke 0.640 0.690 0.282 0.481 

Because the obtained Hosmer-Lemeshow [12] significance values are larger than the threshold 
(p-value > 0.05), we accept the null hypothesis: all the four predictive models fit the data. 
Regarding to the of R2 of Nagelkerke [13] values, the larger the value the better the fit, being 1 
the maxim value (optimal fit). However, generally speaking, R2 of Nagelkerke values larger 
than 0.2 are acceptable, and larger than 0.6 can be associated to excellent fits. In this vein, 
obtained results show a nice data fit for the muscle (0.64), tendon (0.69) and bone (0.48) 
regressions. In turn, the myotendinous junction data regression lead to an acceptable result 
(0.28), but clearly worst than those obtained for the other tissues. This result is in agreement 
with the models analysis provided in the main manuscript, where the worst results in terms of 
sensitivity and specificity are obtained for the myotendinous junction model. 

6. Tissue recognition through binary logistic model 

For a complementary visual analysis, the output of the probabilistic model for the particular 
cases of an arbitrary bone and an arbitrary myotendinous junction tissue are provided in Figs. 



S14 and S15, respectively. Particularly, Fig. S14 shows the intensity image M00 (Fig. S14(a)) 
and the four probability function images (muscle, tendon, myotendinous junction and bone 
recognition (Figs. S14(b-e), respectively) for a bone sample. Recall that sample holder 
polarimetric information is not characterized: pixel values for background acquired data have 
no physical meaning. The obtained probability function images show how the bone model 
successfully recognize the bone tissue pixels (Fig. S14(e)), clearly showing, in addition, the two 
longitudinal bone edges (marked with yellow and red dotted lines) not visible in intensity image 
in Fig. S14(a). When analyzing the probability distribution of the three remaining functions, a 
good discriminating potential is demonstrated, specially for the tendon model in Fig. S14(c), 
which clearly does not recognize the tissue as tendon. On the other hand, muscle and 
myotendinous junction probability images (Figs. S14(b) and S14(d)) show, with low probability 
values, an overall discard of analyzed tissue to be muscle or myotendinous junction tissues, 
respectively. As in previous discussion, worst predictive results are obtained for the 
myotendinous junction model (Fig. S14(d)).   

   
Fig. S14. Intensity image M00 (a) and probability function of muscle (b), tendon (c), 

myotendinous junction (d) and bone (e) for chicken bone measurements. The gray level bars, 
placed to the right of the corresponding probability function images, defines whether the 

probability of the pixel to be recognized as a particular tissue is one (white) or zero (black). 
Yellow and red dotted lines highlight the position of the edges of the bone.  

Analogously, Fig. S15 shows the intensity image M00 (Fig. S15(a)) and the four probability 
function images (muscle, tendon, myotendinous junction and bone recognition (Figs. S15(b-e), 
respectively) for a particular myotendinous junction sample. The obtained probability images 
when measuring the myotendinous junction sample demonstrate how all the models discard the 
analyzed myotendinous junction tissue to be muscle (Fig. S15(b)), tendon (Fig. S15(c)) or bone 
(Fig. S15(e)), except the actual myotendinous junction model (Fig. S15(d)), who succefully 
identify the tissue as myotendinous junction one. Therefore, the overall recognition of the tissue 
is correct, as the above-stated results are consistent in most image pixels. Only few individual 
pixels throughout the images show deviation from the general tendency, but still they could be 
properly categorized depending on the selected categorization probability threshold selected.  



 

   
Figure S15. Intensity image M00 (a) and probability function of muscle (b), tendon (c), 

myotendinous junction (d) and bone (e) for chicken myotendinous junction measurements. The 
gray level bars, placed to the right of the corresponding probability function images, defines 

whether the probability of the pixel to be recognized as a particular tissue is one (white) or zero 
(black).  
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