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Abstract

Though they achieve great success, deep neural networks typically require a huge
amount of labeled data for training. However, collecting labeled data is often laborious
and expensive. It would, therefore, be ideal if the knowledge obtained from label-
rich datasets could be transferred to unlabeled data. However, deep networks are
weak at generalizing to unseen domains, even when the differences are only subtle
between the datasets. In real-world situations, a typical factor impairing the model
generalization ability is the distribution shift between data from different domains,
which is a long-standing problem usually termed as (unsupervised) domain adaptation.

A crucial requirement in the methodology of these domain adaptation methods
is that they require access to source domain data during the adaptation process to
the target domain. Accessibility to the source data of a trained source model is
often impossible in real-world applications, for example, when deploying domain
adaptation algorithms on mobile devices where the computational capacity is limited or
in situations where data privacy rules limit access to the source domain data. Without
access to the source domain data, existing methods suffer from inferior performance.
Thus, in this thesis, we investigate domain adaptation without source data (termed as
source-free domain adaptation) in multiple different scenarios that focus on image
classification tasks.

We first study the source-free domain adaptation problem in a closed-set setting,
where the label space of different domains is identical. Only accessing the pretrained
source model, we propose to address source-free domain adaptation from the per-
spective of unsupervised clustering. We achieve this based on nearest neighborhood
clustering. In this way, we can transfer the challenging source-free domain adaptation
task to a type of clustering problem. The final optimization objective is an upper
bound containing only two simple terms, which can be explained as discriminability
and diversity. We show that this allows us to relate several other methods in domain
adaptation, unsupervised clustering and contrastive learning via the perspective of
discriminability and diversity.

Following the source-free domain adaptation setting, we also investigate the catas-
trophic forgetting issue after adaptation, where the adapted model should keep good
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performance on the source or all trained domains. To address the forgetting issue, we
propose to use randomly generated domain attention masks to regularize the model
updating during adaptation. This succeeds to keep the knowledge on old domains
while not influence adaptation to new target domains.

In real-world applications, there could be some unseen categories in the target data;
without extra processing, the model cannot handle these open classes. To prepare the
method to generalize to target environments where there may exist unseen categories,
we propose an elegant and simple solution by inserting an additional dimension into
the classifier head. Together with an additional cross-entropy loss during source
pretraining, the model is empowered with strong open-set recognition performance,
which could be directly used for target adaptation and excels at distinguishing open
classes during adaptation.

Key words: source-free domain adaptation, generalized source-free domain
adaptation, continual source-free domain adaptation, source-free open-partial domain
adaptation
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Resumen

Aunque las redes neuronales profundas logran un gran éxito, suelen requerir una enor-
me cantidad de datos etiquetados para su entrenamiento. Sin embargo, la recopilación
de datos etiquetados a menudo es laboriosa y costosa. Sería ideal si el conocimiento
obtenido de conjuntos de datos ricos en etiquetas pudiera transferirse a datos no eti-
quetados. Sin embargo, las redes profundas son débiles para generalizarse a dominios
no vistos, incluso cuando las diferencias entre los conjuntos de datos sean sutiles. En
situaciones reales, un factor típico que afecta a la capacidad de generalización del
modelo es el cambio de distribución entre los datos de diferentes dominios, lo que
es un problema de larga data generalmente denominado adaptación de dominio (no
supervisada).

Un requisito crucial en la metodología de estos métodos de adaptación de dominio
es que requieren acceso a los datos del dominio fuente durante el proceso de adaptación
al dominio objetivo. El acceso a los datos fuente de un modelo fuente entrenado a
menudo es imposible en aplicaciones del mundo real, por ejemplo, al implementar
algoritmos de adaptación de dominio en dispositivos móviles donde la capacidad
computacional es limitada o en situaciones donde las reglas de privacidad de los datos
limitan el acceso a los datos del dominio fuente. Sin acceso a los datos del dominio
fuente, los métodos existentes sufren un rendimiento inferior. Por lo tanto, en esta tesis,
investigamos la adaptación de dominio sin datos fuente (denominada como adaptación
de dominio sin fuente) en múltiples escenarios diferentes que se centran en tareas de
clasificación de imágenes.

Primero estudiamos el problema de adaptación de dominio sin fuente en un entorno
de conjunto cerrado, donde el espacio de etiquetas de diferentes dominios es idéntico.
Solo accediendo al modelo fuente pre-entrenado, proponemos abordar la adaptación de
dominio sin fuente desde la perspectiva de la agrupación no supervisada. Lo logramos
basándonos en la agrupación de vecinos más cercanos. De esta manera, podemos
transferir la desafiante tarea de adaptación de dominio sin fuente a un tipo de problema
de agrupamiento. El objetivo de optimización final es una cota superior que contiene
solo dos términos simples, que pueden explicarse como discriminabilidad y diversidad.

v



Mostramos que esto nos permite relacionar varios otros métodos en la adaptación
de dominio, la agrupación no supervisada y el aprendizaje contrastivo a través de la
perspectiva de discriminabilidad y diversidad.

Siguiendo la configuración de adaptación de dominio sin fuente, también investi-
gamos el problema de olvido catastrófico después de la adaptación, donde el modelo
adaptado debe mantener un buen rendimiento en el dominio fuente o en todos los do-
minios entrenados. Para abordar el problema de olvido, proponemos utilizar máscaras
de atención de dominio generadas al azar para regularizar la actualización del modelo
durante la adaptación. Esto logra mantener el conocimiento de los dominios antiguos
sin influir en la adaptación a los nuevos dominios objetivo.

En aplicaciones del mundo real, puede haber algunas categorías no vistas en
los datos objetivo; sin un procesamiento adicional, el modelo no puede manejar
estas clases abiertas. Para preparar el método para generalizarse a entornos objetivo
donde puedan existir categorías no vistas, proponemos una solución elegante y simple
mediante la inserción de una dimensión adicional en la cabeza del clasificador. Junto
con una pérdida adicional de entropía cruzada durante el preentrenamiento de origen,
el modelo está capacitado con un fuerte desempeño de reconocimiento de conjunto
abierto, que se puede utilizar directamente para la adaptación del objetivo y sobresale
en la distinción de clases abiertas durante la adaptación.

Palabras clave: Adaptación de dominio sin fuente, adaptación de dominio sin fuen-
te generalizada, adaptación de dominio sin fuente continua, adaptación de dominio
parcialmente abierta sin fuente
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Resum

Tot i que aconsegueixen un gran èxit, les xarxes neuronals profundes solen requerir
una gran quantitat de dades etiquetades per a la formació. Tanmateix, recollir dades
etiquetades sovint és laboriós i costós. Per tant, seria ideal que el coneixement obtingut
a partir de conjunts de dades rics en etiquetes es pogués transferir a dades sense
etiquetar. Tanmateix, les xarxes profundes són febles per generalitzar-se a dominis
invisibles, fins i tot quan les diferències només són subtils entre els conjunts de dades.
En situacions del món real, un factor típic que perjudica la capacitat de generalització
del model és el canvi de distribució entre dades de diferents dominis, que és un
problema de llarga data que se sol denominar adaptació de domini (no supervisada).

Un requisit crucial en la metodologia d’aquests mètodes d’adaptació del domini
és que requereixen accés a les dades del domini font durant el procés d’adaptació al
domini objectiu. L’accessibilitat a les dades font d’un model font entrenat sovint és
impossible en aplicacions del món real, per exemple, quan es desplega algorismes
d’adaptació de domini en dispositius mòbils on la capacitat computacional és limitada
o en situacions en què les regles de privadesa de dades limiten l’accés a les dades
del domini font. . Sense accés a les dades del domini d’origen, els mètodes existents
pateixen un rendiment inferior. Així, en aquesta tesi, investiguem l’adaptació del
domini sense dades font (anomenada adaptació del domini sense font) en múltiples
escenaris diferents que se centren en tasques de classificació d’imatges.

Primer estudiem el problema d’adaptació de dominis sense font en un entorn tancat,
on l’espai d’etiquetes de diferents dominis és idèntic. Accedint només al model font
preentrenat, proposem abordar l’adaptació del domini sense font des de la perspectiva
de l’agrupació no supervisada. Ho aconseguim basant-nos en l’agrupació de barris més
propers. D’aquesta manera, podem transferir la difícil tasca d’adaptació del domini
sense fonts a un tipus de problema d’agrupació. L’objectiu final d’optimització és
un límit superior que conté només dos termes simples, que es poden explicar com a
discriminabilitat i diversitat. Mostrem que això ens permet relacionar diversos altres
mètodes d’adaptació de dominis, agrupació no supervisada i aprenentatge contrastiu
des de la perspectiva de la discriminabilitat i la diversitat.

Seguint la configuració d’adaptació del domini sense font, també investiguem
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el problema de l’oblit catastròfic després de l’adaptació, on el model adaptat hauria
de mantenir un bon rendiment a la font o a tots els dominis entrenats. Per abordar
el problema de l’oblit, proposem utilitzar màscares d’atenció de domini generades
aleatòriament per regularitzar l’actualització del model durant l’adaptació. Això
aconsegueix mantenir el coneixement en dominis antics sense influir en l’adaptació a
dominis objectiu nous.

A les aplicacions del món real, podria haver-hi algunes categories no vistes a les
dades objectiu; sense processament addicional, el model no pot gestionar aquestes
classes obertes. Per preparar el mètode per generalitzar-se a entorns objectiu on hi
pugui haver categories no vistes, proposem una solució elegant i senzilla inserint una
dimensió addicional al capçal del classificador. Juntament amb una pèrdua d’entropia
creuada addicional durant l’entrenament previ a la font, el model té un fort rendiment
de reconeixement obert, que es podria utilitzar directament per a l’adaptació d’objectius
i destaca per distingir classes obertes durant l’adaptació.

Paraules clau: adaptació del domini sense font, adaptació generalitzada del
domini sense font, adaptació contínua del domini sense font, adaptació del domini
obert i parcial sense font
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1 Introduction

Over the past decade, due to the information explosion in the digital era, artificial
intelligence has again emerged as one of the most notable topics in both the academic
community and industry. Until now, the successful application cases of artificial
intelligence cover a wide range of topics, including computer vision, natural language
processing, and speech processing, to name a few. With the recent powerful artificial
intelligence tools, the quality of the provided service in above-mentioned application
scenarios has risen sharply in recent years, such as face recognition, chatbot services,
and image/speech synthesis.

The recent breakthroughs in almost all artificial intelligence fields come from
the renaissance of deep learning (deep neural networks), mainly thanks to the rapid
expansion of computational hardware and digitization progress. Unlike using hand-
crafted features, which long dominated progress in the computer vision community,
it is possible to train a large model in an end-to-end manner which is capable of
automatically learning feature representations. In the last few years, the trend of
training large models, which are trained with huge amounts of cross modal data such
as billions of images and text data, has becoming more prevalent.

Though we are achieving promising success with deep learning, there are still some
barriers hindering the comprehensive deployment of deep learning models in some
real-world applications. Training a powerful model typically demands a large amount
of labeled data, it is infeasible and expensive to always collect manually labeled data
to train a new model for every new upcoming task. It would be ideal if the knowledge
obtained on label-rich datasets could be transferred to unlabeled data; in other words,
the pretrained model could be transferred to a new environment or task. This is a
long-standing problem in machine learning and other related communities, which is
usually called transfer learning. Transfer learning aims to transfer the knowledge of a
pretrained model to a new environment and another model.

In this thesis, we investigate a sub-topic in transfer learning, i.e., unsupervised
domain adaptation. More specifically, we focus on a new paradigm of domain adap-
tation termed as source-free domain adaptation, where the pretrained model can be
efficiently adapted to new target tasks without demanding any labeled data and without
access to the labeled source data during the adaptation period.
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Chapter 1. Introduction

Figure 1.1: Illustration of the classic domain adaptation paradigm. The model is
trained with both labeled source data and unlabeled target data, where the label space
of the two domains is the same. The goal is to make the model perform well in the
target domain after adaptation. In this thesis, we will consider other setups for the
domain adaptation problem. Firstly, we will consider excluding source data during
the adaptation process to the target data (Section 1.1.1). Secondly, we will consider
optimizing for both source and target performance (Section 1.1.2). And thirdly, we
will consider non-overlapping label spaces for source and target data (Section 1.1.3).

1.1 Domain Adaptation
In recent years, deep learning models have shown remarkable performance in vari-
ous domains such as image classification, speech recognition, and natural language
processing. However, one of the main challenges of these deep models is their lack
of robustness when applied to new or unseen domains. The typical supervised deep
neural network is easily overfitting and thus has poor generalization ability to new
tasks where there exists a difference between data of the original training data and new
data. And in some cases, even when difference is quite small, the deep model will
still have degraded performance [97]. This is widely studied in the transfer learning
community. Related topics include fine-tuning which typically retrains the model with
the new coming labeled data, knowledge distillation [18] which aims to transfer the
learned knowledge of an existed model to a new model, multitask learning [128] which
lets a single model learn a group of relevant tasks, semi-supervised learning [7] which
aims to improve the model performance with abundant unlabeled data, and domain
adaptation aiming to address the discrepancy between data from different domains or
tasks.

In real-world situations, a typical and most common factor impairing the model’s
generalization ability is the distribution shift between data from different domains.
This problem is known as distributional or domain shift. And in most situations, there
may be only a few labeled data samples, since collecting labels is time-consuming and
sometimes infeasible in the specific application, or even without any labeled data but
quite a lot of unlabeled data. Thus, in this circumstance, it is a desirable property of
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model’s that they can generalize to new tasks or environments where there are only
unlabeled data. The specific research direction to address domain shift is domain
generalization and unsupervised domain adaptation*. Domain generalization[40, 63]
only demands labeled source date, the goal is to drive the source model to produce
domain invariant feature representation, and after training the model could be directly
deployed to new domains. Domain generalization is a challenging problem as it does
not allow the model to adapt to data in the new task. While usually, it is relatively easy
to get enough unlabeled data in the new domains or tasks, and it is possible to improve
the model with those unlabeled data. To deal with this situation, domain adaptation is
proposed.

Domain adaptation aims to address the performance degradation of a model when
it is applied to a different unlabeled domain than the labeled one it has been trained on,
which is illustrated in Fig. 1.1. Early works [38, 98] learn domain-invariant features
based on traditional methods, like kernel method, to link the target domain to the
source domain. Along with the growing popularity of deep learning, many works
benefit from its powerful representation learning ability for domain adaptation [20,
83, 86, 88, 135, 164]. Those methods typically either try to minimize the distribution
discrepancy between two domains [82, 83, 86], or deploy adversarial training [20,
88, 135, 164] to achieve domain invariant feature learning. There are also methods
resorting to reconstruction [35], normalization [92] and optimal transport [150]. And
some recent methods address domain adaptation by clustering [132] or by exploiting
an intermedium domain [94].

In a nutshell, those methods try to find a way to minimize the distance/discrepancy
between the labeled source domain and unlabeled target domain, which is usually
defined explicitly such as maximal mean discrepancy or optimal transport, or explicitly
such as using adversarial training. The forementioned methods mainly focus on
image classification tasks, while there is lots of work also studying domain adaptation
problem on other tasks, such as segmentation [32, 71, 176], object detection [42, 47,
172] and video understanding [16, 19]. There are also works dealing with data in other
modality, such as point cloud [2, 120].

Based on an analysis of the state-of-the-art of domain adaptation, we have identified
three main research directions that we pursue in this thesis and which we will outline
in the following sections.

1.1.1 Source-free Domain Adaptation
Most of the existing domain adaptation methods assume that the labeled data in the
source domain is available during the adaptation phase; in other words, the model is

*In the following text, we will use domain adaptation instead of unsupervised domain adaptation, since
most works that we consider are on unsupervised domain adaptation.
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Figure 1.2: Example of an application with source-free domain adaptation. The server
will dispatch the pretrained source model to the user sides, which are mobile phones.
The user side will conduct the model adaptation with only the local unlabeled data,
where there exist domain shifts between the user and server sides. Due to the potential
property/privacy issues and the limited computation resource, the user sides cannot
access the source images which are on the server side.

trained with both a labeled source domain and an unlabeled target domain. However,
this assumption may not always hold, as accessing source data is often impossible in
real-world applications, for example, when the algorithm is running on edge devices
where there is limited computation capacity to deal with large amounts of source
data, or when the labeled source data have some privacy or property issues. A typical
real-world application example is shown in Fig. 1.2, where the company dispatches
the pretrained model to users, and the model should be adapted to unlabeled user data
without access to the large amount of labeled pretraining data. Without access to the
source data during adaptation, the existing domain adaptation methods will suffer
from inferior performance. To address those mentioned issues, the source-free domain
adaptation setting have been proposed in recent years.

Source-free domain adaptation is a challenging problem, as it requires the model
to learn from the target domain without any labeled data from the source domain.
This problem has attracted a lot of attention from the research community due to
its practical applications in various domains, as well as its high practical value in
real-world applications.

After receiving the source pretrained model, there are mainly two types of source-
free domain adaptation methods. The first type synthesizes some labeled samples [58,
59, 69]. In this way, the model can benefit from the supervision of the generated labeled
data. Another type is applying self-training only based on the in-hand unlabeled target
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Figure 1.3: Illustration of continual source-free domain adaptation, where the model
will be continually adapted to a sequence of unlabeled target domain, and the adapted
model is expected to keep good performance on all seen domains.

data. It could be achieved by either finding better pseudo-labels or by clustering, or by
combining these two ways together at the same time. But usually existing methods
need complex extra modules for feature generation [69] or self-training [149]. In this
thesis, we aim to design computationally efficient methods that exploit the intrinsic
neighborhood structure of target data to improve source-free domain adaptation.

1.1.2 Generalized Source-free Domain Adaptation
If the model is directly adapted to the target domain under the source-free domain
adaptation setting, the model may have degraded performance on the source domain.
And in some real-world applications, the model will be even adapted to a sequence
of unlabeled target domains, which is shown in Fig. 1.3. In this case, the ideal model
should not only have satisfactory performance on the current target domain but keep
good performance on all seen (source and old target) domains after adaptation, since it
is infeasible to deploy one model for each domain, which demands extra computational
resources and is not efficient in real deployment.

Current source-free domain adaptation methods focus on the performance of the
target domain by fine-tuning the source model, leading to forgetting of old domains.
This forgetting issue is typically investigated in the continual learning community,
which aims to train a model with a sequence of target tasks and maintain good
performance on all seen tasks. But the situation here under source-free domain
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Figure 1.4: Illustration of domain adaptation scenario where the label spaces of source
and target domains are not identical, both source and target domains have their own
private categories. The image is taken from the VisDA 2021 challenge [5].

adaptation setting is much more challenging compared to typical continual learning
scenarios, because in source-free domain adaptation the target domains do not have
any labeled data and domain shift exists between different domains. Thus, existing
methods cannot directly be deployed to handle the situation described above. Therefore,
in this chapter, we investigate the forgetting issue under source-free domain adaptation
setting and aim to develop methods that can adapt to a new domain while maintaining
good performance on previous domains.

1.1.3 Source-Free Domain Adaptation in the Open-World
Besides domain shift, another inevitable obstacle lying on the path to deploying
deep learning methods in real-world environments is the presence of potential unseen
categories in new domains, since the dataset used for model pretraining cannot cover
all possibly appearing categories in the target domain. When there are newly appearing
categories in the target domain, the ideal model should distinguish them.

This problem is usually defined as open-set recognition(OSR) [15, 33, 95, 126,
131, 139, 162] where the model should be able to reject samples as coming from
unseen categories. In recent years, there have emerged several works called novel
category discovery [138, 167] or open-world semi-supervised learning [10], which
aim to distinguish every unseen categories. Those works do not consider a domain
shift between the different domains. Recently, several works also introduce open-set
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recognition problems (i.e., category shift) into domain adaptation, which are called as
open-set domain adaptation (OSDA) [9, 27, 28, 54, 79, 99, 116] where target domain
has all source categories and will also have some unseen categories, and universal
domain adaptation (UNDA) or open-partial domain adaptation (OPDA) [29, 66, 75,
111, 113, 161] where source and target domains will have some private classes and
also some shared classes. In these setting, there is no prior information about which
categories are novel or missing. An example of category shift under the domain
adaptation task is shown in Fig. 1.4.

While there exist only few works under source-free domain adaptation setting
considering the category shift between domains, most of these methods [58, 59] rely
on unknown samples generation and the whole pipeline is rather complex. In this
thesis, we aim to investigate source-free open-partial domain adaptation.

1.2 Objectives and approach
In this thesis, we investigate multiple scenarios under the source-free domain adapta-
tion setting, including the vanilla source-free domain adaptation, generalized/continual
source-free domain adaptation and source-free open-partial domain adaptation. Here,
we briefly define our objectives and approaches to solve the problems mentioned in
the previous subsection.

1.2.1 Source-free Domain Adaptation
Most domain adaptation methods need access to labeled source data during the whole
adaptation stage. This is often infeasible in real-world applications, where there may
exist data privacy or property issues towards source data. Therefore, we investigate
source-free domain adaptation, where a source pretrained model is adapted to the
target domain without access to the source data. Unlike the existing methods which
demands feature generation or complex pipelines, we therefore define the following
objective:

Neighborhood Clustering for Source-free Domain Adaptation: Pro-
pose clustering methods for source-free domain adaptation, which turn the
challenging source-free adaptation problem to an unsupervised clustering
task. By exploiting the intrinsic neighborhood structure, we aim to improve
source-free domain adaptation.

To address the challenges of source-free domain adaptation, we propose two nearest
neighborhood clustering based methods, that encourage local smoothness and overall
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diversity in the output space. In a first method dubbed as Neighborhood Reciprocal
Clustering, we explore direct neighborhood clustering for source-free domain adapta-
tion, which utilizes 2-hop neighbors, and consider the mutual neighborhood relation. In
a second method, dubbed Attracting-and-Dispersing, we formalize the neighborhood
clustering for source-free domain adaptation in the form of log-likelihood optimizing
and optimize the upper bound of the loss function, which can be explained as discrim-
inability and diversity. This also allows us to relate several existing methods in domain
adaptation, unsupervised clustering, and contrastive learning via the perspective of
discriminability and diversity.

1.2.2 Generalized Source-free Domain Adaptation
In many practical situations, models should perform well on both the target and source
domain. For example, in real world application, it is ideal that we can use only one
model in multiple different environments, in other words, the single model will be
continually adapted to multiple target domains. The current source-free domain adap-
tation methods only aim to improve the target performance by fine-tuning the source
model, which will result in forgetting on old domains. To address the forgetting issue
on the old domains, we therefore define the following objective:

Generalized and Continual Source-free Domain Adaptation: We aim
to efficiently adapt the source-pretrained model to one or a sequence of
unlabeled target domains under source-free domain adaptation setting. The
adapted model should have good performance on both source and target
domains.

First to achieve model adaptation in the source-free setting, we propose a simple
clustering-based method, called Local Structure Clustering (LSC), where we encour-
age local smoothness in the prediction space judging by the corresponding feature
similarity in the local neighborhood. Then to avoid forgetting towards the source
domain after adaptation, we propose to use an attention-based regularization, called
sparse domain attention (SDA). It will be deployed as a binary mask to the features,
and during adaptation, the source domain attention mask will be utilized to regularize
the model updating to avoid potential forgetting on the source domain. Furthermore, it
can be easily extended to continual source-free domain adaptation.

1.2.3 Source-free Domain Adaptation in the Open-World
The source data for model pretraining only contains a limited set of categories, and in
many real-world scenarios previously unseen categories can appear in the test data.
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Most existing source-free domain adaptation methods cannot address the open-set
setting where the label spaces of source and target domains are not identical. And the
current methods, considering category shift in source-free domain adaptation, demand
feature generation and complex pipelines. We therefore pursue the following objective:

Source-free Open-partial Domain Adaptation: Under the source-free
domain adaptation settings, the target domain may have unseen categories
and also some source classes will no longer exist in the target domain. The
model should be able to reject all unseen categories while correctly recog-
nize seen classes.

To deal with the potential unseen categories in the target domain, we introduce an
additional category dimension in the classifier head, it corresponds to the unknown (or
novel) categories. During the source pretraining stage, the model will be trained with
only seen categories, and the classifier is expected to output the maximal prediction
score for the ground-truth class, and the second maximal score will be assigned to the
unknown category. In this way, the model possesses strong open-set recognition ability
without training with data from unseen categories. The model could be simply adapted
to target domains, where there are novel classes, by weighted entropy minimization. It
could be further improved to be combined with existing closed-set source-free domain
adaptation methods.
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2 Exploiting the Intrinsic Neighborhood Struc-
ture for Source-free Domain Adaptation*

2.1 Introduction
Most deep learning methods rely on training on large amount of labeled data, while
they cannot generalize well to a related yet different domain. One research direction
to address this issue is Domain Adaptation (DA), which aims to transfer learned
knowledge from a source to a target domain. Most existing DA methods demand
labeled source data during the adaptation period, however, it is often not practical
that source data are always accessible, such as when applied on data with privacy
or property restrictions. Therefore, recently, there have emerged a few works [58,
59, 69, 73] tackling a new challenging DA scenario where instead of source data
only the source pretrained model is available for adapting, i.e., source-free domain
adaptation (SFDA). Among these methods, USFDA [58] addresses universal DA [161]
and SF [59] addresses open-set DA [116]. In both universal and open-set DA the
label set is different for source and target domains. SHOT [73] and 3C-GAN [69]
are for closed-set DA where source and target domains have the same categories.
3C-GAN [69] is based on target-style image generation with a conditional GAN, and
SHOT [73] is based on mutual information maximization and pseudo labeling. Finally,
BAIT [156] extends MCD [115] to the SFDA setting. However, these methods ignore
the intrinsic neighborhood structure of the target data in feature space which can be
very valuable to tackle SFDA.

In this chapter, we focus on closed-set source-free domain adaptation. Our main
observation is that current DA methods do not exploit the intrinsic neighborhood
structure of the target data. We use this term to refer to the fact that, even though
the target data might have shifted in the feature space (due to the covariance shift),
target data of the same class is still expected to form a cluster in the embedding space.
This can be implied to some degree from the t-SNE visualization of target features
on the source model which suggests that significant cluster structure is preserved
(see Fig. 2.1 (a)). This assumption is implicitly adopted by most DA methods, as
instantiated by a recent DA work [132]. A well-established way to assess the structure
of points in high-dimensional spaces is by considering the nearest neighbors of points,

*This chapter is based on a publication in the Advances in Neural Information Processing Systems
(NeurIPS) 2021 [155]
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Figure 2.1: (a) t-SNE visualization of target features by source model. (b) Ratio of
different type of nearest neighbor features of which: the predicted label is the same
as the feature, K is the number of nearest neighbors. The features in (a) and (b) are
on task Ar→Rw of Office-Home. (c) Illustration of our method. In the left shows we
distinguish reciprocal and non-reciprocal neighbors. The adaptation is achieved by
pushed the features towards reciprocal neighbors heavily.

which are expected to belong to the same class. However, this assumption is not true
for all points; the blue curve in Figure 1(b) shows that around 75% of the nearest
neighbors has the correct label. In this chapter, we observe that this problem can be
mitigated by considering reciprocal nearest neighbors (RNN); the reciprocal neighbors
of a point have the point as their neighbor. Reciprocal neighbors have been studied
before in different contexts [50, 106, 168]. The reason why reciprocal neighbors are
more trustworthy is illustrated in Fig. 2.1(c). Fig. 2.1(b) shows the ratio of neighbors
which have the correct prediction for different kinds of nearest neighbors. The curves
show that reciprocal neighbors indeed have more chances to predict the true label than
non-reciprocal nearest neighbors (nRNN).

The above observation and analysis motivate us to assign different weights to the
supervision from nearest neighbors. Our method, called Neighborhood Reciprocity
Clustering (NRC), achieves source-free domain adaptation by encouraging reciprocal
neighbors to concord in their label prediction. In addition, we will also consider
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a weaker connection to the non-reciprocal neighbors. We define affinity values to
describe the degree of connectivity between each data point and its neighbors, which
is also utilized to encourage class-consistency between neighbors, and we propose to
use a self-regularization to decrease the negative impact of potential noisy neighbors.
Furthermore, inspired by recent graph based methods [4, 173] which show that the
higher order neighbors can provide relevant context, and also considering neighbors of
neighbors is more likely to provide datapoints that are close on the data manifold [133].
Thus, to aggregate wider local information, we further retrieve the expanded neighbors,
i.e, neighbor of the nearest neighbors, for auxiliary supervision.

Our contributions can be summarized as follows, to achieve source-free domain
adaptation: (i) we explicitly exploit the fact that same-class data forms cluster in the
target embedding space, we do this by considering the predictions of neighbors and
reciprocal neighbors, (ii) we further show that considering an extended neighborhood
of data points further improves results (iii) the experiments results on three 2D image
datasets and one 3D point cloud dataset show that our method achieves state-of-the-art
performance compared with related methods.

2.2 Related Work
Domain Adaptation. Most DA methods tackle domain shift by aligning the feature
distributions. Early DA methods such as [83, 130, 136] adopt moment matching to
align feature distributions. And in recent years, plenty of works have emerged that
achieve alignment by adversarial training. DANN [31] formulates domain adaptation
as an adversarial two-player game. The adversarial training of CDAN [84] is condi-
tioned on several sources of information. DIRT-T [124] performs domain adversarial
training with an added term that penalizes violations of the cluster assumption. Addi-
tionally, [88, 115] adopts prediction diversity between multiple learnable classifiers to
achieve local or category-level feature alignment between source and target domains.
AFN [151] shows that the erratic discrimination of target features stems from much
smaller norms than those found in the source features. SRDC [132] proposes to
directly uncover the intrinsic target discrimination via discriminative clustering to
achieve adaptation. More related, [99] resorts to K-means clustering for open-set
adaptation while considering global structure. Our method instead only focuses on
nearest neighbors (local structure) for source-free adaptation.

Source-free Domain Adaptation. Source-present methods need supervision from
the source domain during adaptation. Recently, there are several methods investigating
source-free domain adaptation. USFDA [58] and FS [59] explore source-free universal
DA [161] and open-set DA [116], and they propose to synthesize extra training

13
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samples to make the decision boundary compact, thereby allowing to recognise the
open classes. For closed-set DA setting. SHOT [73] proposes to fix the source classifier
and match the target features to the fixed classifier by maximizing mutual information
and a proposed pseudo label strategy which considers global structure. 3C-GAN [69]
synthesizes labeled target-style training images based on the conditional GAN to
provide supervision for adaptation. Finally, SFDA [81] is for segmentation based on
synthesizing fake source samples.

Graph Clustering. Our method shares some similarities with graph clustering work
such as [118, 153, 154] by utilizing neighborhood information. However, our methods
are fundamentally different. Unlike those works which require labeled data to train
the graph network for estimating the affinity, we instead adopt reciprocity to assign
affinity.

2.3 Method
Notation. We denote the labeled source domain data with ns samples as Ds =
{(xs

i , y s
i )}ns

i=1, where the y s
i is the corresponding label of xs

i , and the unlabeled target
domain data with nt samples as Dt = {x t

j }nt
j=1. Both domains have the same C classes

(closed-set setting). Under the SFDA setting Ds is only available for model pretraining.
Our method is based on a neural network, which we split into two parts: a feature
extractor f , and a classifier g . The feature output by the feature extractor is denoted
as z(x) = f (x), the output of network is denoted as p(x) = δ(g (z)) ∈ RC where δ is
the softmax function, for readability we will abandon the input and use z , p in the
following sections.

Overview. We assume that the source pretrained model has already been trained.
As discusses in the introduction, the target features output by the source model form
clusters. We exploit this intrinsic structure of the target data for SFDA by considering
the neighborhood information, and the adaptation is achieved with the following
objective:

L =− 1

nt

∑
xi∈Dt

∑
x j ∈Neigh(xi )

Dsi m(pi , p j )

Ddi s (xi , x j )
(2.1)

where the Neigh(xi ) means the nearest neighbors of xi , Dsi m computes the similarity
between predictions, and Ddi s is a constant measuring the semantic distance (dissimi-
larity) between data. The principle behind the objective is to push the data towards
their semantically close neighbors by encouraging similar predictions. In the next
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sections, we will define Dsi m and Ddi s .

2.3.1 Encouraging Class-Consistency with Neighborhood Affinity
To achieve adaptation without source data, we use the prediction of the nearest neigh-
bor to encourage prediction consistency. While the target features from the source
model are not necessarily totally intrinsic discriminative, meaning some neighbors
belong to different class and will provide the wrong supervision. To decrease the po-
tentially negative impact of those neighbors, we propose to weigh the supervision from
neighbors according to the connectivity (semantic similarity). We define affinity values
to signify the connectivity between the neighbor and the feature, which corresponds to
the 1

Ddi s
in Eq. 2.1 indicating the semantic similarity.

To retrieve the nearest neighbors for batch training, similar to [111, 148, 175], we
build two memory banks: F stores all target features, and S stores corresponding
prediction scores:

F = [z1, z2, . . . , znt ]and S = [p1, p2, . . . , pnt ] (2.2)

We use the cosine similarity for nearest neighbors retrieving. The difference between
ours and [111, 148] lies in the fact that we utilize the memory bank to retrieve
nearest neighbors while [111, 148] adopts the memory bank to compute the instance
discrimination loss. Before every mini-batch training, we simply update the old items
in the memory banks corresponding to current mini-batch. Note that updating the
memory bank is only done to replace the old low-dimension vectors with new ones
computed by the model, and does not require any additional computation.

We then use the prediction of the neighbors to supervise the training weighted by
the affinity values, with the following objective adapted from Eq. 2.1:

LN =− 1

nt

∑
i

∑
k∈N i

K

Ai kS ⊤
k pi (2.3)

where we use the dot product to compute the similarity between predictions, corre-
sponding to Dsi m in Eq.2.1, the k is the index of the k-th nearest neighbors of zi , Sk

is the k-th item in memory bank S , Ai k is the affinity value of k-th nearest neighbors
of feature zi . Here the N i

K is the index set† of the K -nearest neighbors of feature zi .
Note that all neighbors are retrieved from the feature bank F . With the affinity value
as weight, this objective pushes the features to their neighbors with strong connectivity
and to a lesser degree to those with weak connectivity.

To assign larger affinity values to semantic similar neighbors, we divide the nearest

†All indexes are in the same order for the dataset and memory banks.
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neighbors retrieved into two groups: reciprocal nearest neighbors (RNN) and non-
reciprocal nearest neighbors (nRNN). The feature z j is regarded as the RNN of the
feature zi if it meets the following condition:

j ∈N i
K ∧ i ∈N

j
M (2.4)

Other neighbors which do not meet the above condition are nRNN. Note that the
normal definition of reciprocal nearest neighbors [106] applies K = M , while in this
chapter K and M can be different. We find that reciprocal neighbors have a higher
potential to belong to the same cluster as the feature (Fig. 2.1(b)). Thus, we assign a
high affinity value to the RNN features. Specifically for feature zi , the affinity value
of its j -th K-nearest neighbor is defined as:

Ai , j =
{

1 if j ∈N i
K ∧ i ∈N

j
M

r otherwise.
(2.5)

where r is a hyperparameter. If not specified r is set to 0.1.
To further reduce the potential impact of noisy neighbors in NK , which belong to

the different class but still are RNN, we propose a simply yet effective way dubbed
self-regularization, that is, to not ignore the current prediction of ego feature:

Lsel f =− 1

nt

nt∑
i

S ⊤
i pi (2.6)

where Si means the stored prediction in the memory bank, note this term is a constant
vector and is identical to the pi since we update the memory banks before the training,
here the loss is only back-propagated for variable pi .

To avoid the degenerated solution [34, 122] where the model predicts all data as
some specific classes (and does not predict other classes for any of the target data),
we encourage the prediction to be balanced. We adopt the prediction diversity loss
which is widely used in clustering [34, 37, 49] and also in several domain adaptation
works [73, 122, 132]:

Ldi v =
C∑

c=1
KL(p̄c ||qc ),with p̄c = 1

nt

∑
i

p(c)
i ,and q{c=1,..,C } = 1

C
(2.7)

where the p(c)
i is the score of the c-th class and p̄c is the empirical label distribution, it

represents the predicted possibility of class c and q is a uniform distribution.
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Algorithm 1 Neighborhood Reciprocity Clustering for Source-free Domain Adapta-
tion
Require: Ds (only for source model training), Dt

1: Pre-train model on Ds

2: Build feature bank F and score bank S for Dt

3: while Adaptation do
4: Sample batch T from Dt

5: Update F and S corresponding to current batch T

6: Retrieve nearest neighbors N for each of T

7: Compute affinity value A ▷ Eq.2.5
8: Retrieve expanded neighborhoods E for each of N

9: Compute loss and update the model ▷ Eq. 2.9
10: end while

2.3.2 Expanded Neighborhood Affinity
As mentioned in Sec. 2.1, a simple way to achieve the aggregation of more informa-
tion is by considering more nearest neighbors. However, a drawback is that larger
neighborhoods are expected to contain more datapoint from multiple classes, defy-
ing the purpose of class consistency. A better way to include more target features
is by considering the M-nearest neighbor of each neighbor in NK of zi in Eq. 2.4,
i.e., the expanded neighbors. These target features are expected to be closer on
the target data manifold than the features that are included by considering a larger
number of nearest neighbors [133]. The expanded neighbors of feature zi are de-
fined as EM (zi ) = NM (z j ) ∀ j ∈ NK (zi ), note that EM (zi ) is still an index set and
i (ego feature) ∉ EM (zi ). We directly assign a small affinity value r to those expanded
neighbors, since they are further than nearest neighbors and may contain noise. We
utilize the prediction of those expanded neighborhoods for training:

LE =− 1

nt

∑
i

∑
k∈N i

K

∑
m∈E k

M

r S ⊤
m pi (2.8)

where E k
M contain the M-nearest neighbors of neighbor k in NK .

Although the affinity values of all expanded neighbors are the same, it does
not necessarily mean that they have equal importance. Taking a closer look at the
expanded neighbors EM (zi ), some neighbors will show up more than once, for example
zm can be the nearest neighbor of both zh and z j where h, j ∈NK (zi ), and the nearest
neighbors can also serve as expanded neighbor. It implies that those neighbors form
compact cluster, and we posit that those duplicated expanded neighbors have potential
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to be semantically closer to the ego-feature zi . Thus, we do not remove duplicated
features in EM (zi ), as those can lead to actually larger affinity value for those expanded
neighbors. This is one advantage of utilizing expanded neighbors instead of more
nearest neighbors, we will verify the importance of maintaining the duplicated features
in the experimental section.

Final objective. Our method, called Neighborhood Reciprocity Clustering (NRC), is
illustrated in Algorithm. 1. The final objective for adaptation is:

L =Ldi v +LN +LE +Lsel f . (2.9)

Table 2.1: Accuracies (%) on Office-31 for ResNet50-based methods.

Method SF A→D A→W D→W W→D D→A W→A Avg

DAN [83] ✗ 78.6 80.5 97.1 99.6 63.6 62.8 80.4
DANN [31] ✗ 79.7 82.0 96.9 99.1 68.2 67.4 82.2
ADDA [135] ✗ 77.8 86.2 96.2 98.4 69.5 68.9 82.9
MCD [115] ✗ 92.2 88.6 98.5 100.0 69.5 69.7 86.5
CDAN [84] ✗ 92.9 94.1 98.6 100.0 71.0 69.3 87.7
MDD [165] ✗ 90.4 90.4 98.7 99.9 75.0 73.7 88.0
BNM [21] ✗ 90.3 91.5 98.5 100.0 70.9 71.6 87.1
DMRL [147] ✗ 93.4 90.8 99.0 100.0 73.0 71.2 87.9
BDG [152] ✗ 93.6 93.6 99.0 100.0 73.2 72.0 88.5
MCC [53] ✗ 95.6 95.4 98.6 100.0 72.6 73.9 89.4
SRDC [132] ✗ 95.8 95.7 99.2 100.0 76.7 77.1 90.8
RWOT [150] ✗ 94.5 95.1 99.5 100.0 77.5 77.9 90.8
RSDA-MSTN [39] ✗ 95.8 96.1 99.3 100.0 77.4 78.9 91.1
USFDA [58] - - - - - - 85.4
SHOT [73] ✓ 94.0 90.1 98.4 99.9 74.7 74.3 88.6
3C-GAN [69] ✓ 92.7 93.7 98.5 99.8 75.3 77.8 89.6
NRC ✓ 96.0 90.8 99.0 100.0 75.3 75.0 89.4

2.4 Experiments
Datasets. We use three 2D image benchmark datasets and a 3D point cloud recog-
nition dataset. Office-31 [110] contains 3 domains (Amazon, Webcam, DSLR) with
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Table 2.2: Accuracies (%) on Office-Home for ResNet50-based methods.
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31 classes and 4,652 images. Office-Home [141] contains 4 domains (Real, Clipart,
Art, Product) with 65 classes and a total of 15,500 images. VisDA [102] is a more
challenging dataset, with 12-class synthetic-to-real object recognition tasks, its source
domain contains of 152k synthetic images while the target domain has 55k real object
images. PointDA-10 [105] is the first 3D point cloud benchmark specifically designed
for domain adaptation, it has 3 domains with 10 classes, denoted as ModelNet-10,
ShapeNet-10 and ScanNet-10, containing approximately 27.7k training and 5.1k
testing images together.

Evaluation. We compare with existing source-present and source-free DA methods.
All results are the average on three random runs. SF in the tables denotes source-free.

Model details. For fair comparison with related methods, we also adopt the backbone
of ResNet-50 [41] for Office-Home and ResNet-101 for VisDA, and PointNet [103]
for PointDA-10. Specifically, for 2D image datasets, we use the same network archi-
tecture as SHOT [73], i.e., the final part of the network is: fully connected layer −
Batch Normalization [48] − fully connected layer with weight normalization [117].
And for PointDA-10 [103], we use the code released by the authors for fair compari-
son with PointDAN [103], and only use the backbone without any of their proposed
modules. To train the source model, we also adopt label smoothing as SHOT does.
We adopt SGD with momentum 0.9 and batch size of 64 for all 2D datasets, and
Adam for PointDA-10. The learning rate for Office-31 and Office-Home is set to
1e-3 for all layers, except for the last two newly added fc layers, where we apply
1e-2. Learning rates are set 10 times smaller for VisDA. Learning rate for PointDA-10
is set to 1e-6. We train 30 epochs for Office-31 and Office-Home while 15 epochs
for VisDA, and 100 for PointDA-10. For the number of nearest neighbors (K) and
expanded neighborhoods (M), we use 3,2 for Office-31, Office-Home and PointDA-10,
since VisDA is much larger we set K, M to 5. Experiments are conducted on a TITAN
Xp.

2.4.1 Results
2D image datasets. We first evaluate the target performance of our method com-
pared with existing DA and SFDA methods on three 2D image datasets. As shown in
Table 2.1-2.3, the top part shows results for the source-present methods with access
to source data during adaptation. The bottom shows results for the source-free DA
methods. On Office-31, our method gets similar results compared with source-free
method 3C-GAN and lower than source-present method RSDA-MSTN. And our
method achieves state-of-the-art performance on Office-Home and VisDA, especially
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Table 2.3: Accuracies (%) on VisDA-C (Synthesis → Real) for ResNet101-based
methods.
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Table 2.4: Accuracies (%) on PointDA-10. The results except ours are from Point-
DAN [105]. M: Model, Sh: Shape, Sc: Scan.

SFM→ShM→ScSh→MSh→ScSc→MSc→ShAvg

MMD [85] ✗ 57.5 27.9 40.7 26.7 47.3 54.8 42.5
DANN [30] ✗ 58.7 29.4 42.3 30.5 48.1 56.7 44.2

ADDA [135] ✗ 61.0 30.5 40.4 29.3 48.9 51.1 43.5
MCD [115] ✗ 62.0 31.0 41.4 31.3 46.8 59.3 45.3

PointDAN [105] ✗ 64.2 33.0 47.6 33.9 49.1 64.1 48.7

Source-only 43.1 17.3 40.0 15.0 33.9 47.1 32.7
NRC ✓ 64.8 25.8 59.8 26.9 70.1 68.1 52.6

on VisDA our method surpasses the source-free method SHOT and source-present
method RWOT by a wide margin (3% and 1.9% respectively). The reported results
clearly demonstrate the efficiency of the proposed method for source-free domain adap-
tation. Interestingly, like already observed in the SHOT paper, source-free methods
outperform methods that have access to source data during adaptation.

3D point cloud dataset. We also report the result for the PointDA-10. As shown in
Table 2.4, our method outperforms PointDA [105], which demands source data for
adaptation and is specifically tailored for point cloud data with extra attention modules,
by a large margin (4%).

Table 2.5: Ablation study of different modules on Office-Home (left) and VisDA
(middle), comparison between using expanded neighbors and larger nearest neighbors
(right).

Ldi v LN LE LÊ A Avg
59.5

✓ 62.1
✓ ✓ 69.1
✓ ✓ ✓ 71.1
✓ ✓ ✓ 65.2
✓ ✓ ✓ ✓ 72.2
✓ ✓ ✓ ✓ 69.1

Ldi v LN LE LÊ A Acc
44.6

✓ 47.8
✓ ✓ 81.5
✓ ✓ ✓ 82.7
✓ ✓ ✓ 61.2
✓ ✓ ✓ ✓ 85.9
✓ ✓ ✓ ✓ 82.0

Method&Dataset Acc
VisDA (K =M=5) 85.9

VisDA w/o E (K =30) 84.0
OH (K =3,M=2) 72.2
OH w/o E (K =9) 69.5
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2.4 Experiments

Table 2.6: Runtime analysis on SHOT and our method. For SHOT, pseudo labels are
computed at each epoch. 20%, 10% and 5% denote the percentage of target features
which are stored in the memory bank.

VisDA Runtime (s/epoch) Per-class (%)
SHOT 618.82 82.9
NRC 540.89 85.9

NRC(20% for memory bank) 507.15 85.3
NRC(10% for memory bank) 499.49 85.2
NRC(5% for memory bank) 499.28 85.1

Figure 2.2: (Left and middle) Ablation study of Lsel f on Office-Home and VisDA
respectively. (Right) Performance with different r on VisDA.

2.4.2 Analysis
Ablation study on neighbors N , E and affinity A. In the first two tables of
Table 2.5, we conduct the ablation study on Office-Home and VisDA. The 1-st row
contains results from the source model and the 2-nd row from only training with the
diversity loss Ldi v . From the remaining rows, several conclusions can be drawn.

First, the original supervision, which considers all neighbors equally can lead to a
decent performance (69.1 on Office-Home). Second, considering higher affinity values
for reciprocal neighbors leads to a large performance gain (71.1 on Office-Home).
Last but not the least, the expanded neighborhoods can also be helpful, but only
when combined with the affinity values A (72.2 on Office-Home). Using expanded
neighborhoods without affinity obtains bad performance (65,2 on Office-Home). We
conjecture that those expanded neighborhoods, especially those neighbors of nRNN,
may be noisy as discussed in Sec. 2.3.2. Removing the affinity A means we treat all
those neighbors equally, which is not reasonable.
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Figure 2.3: (Left) Ratio of different type of nearest neighbor features which have the
correct predicted label, before and after adaptation. (Right) Visualization of target
features after adaptation.

We also show that duplication in the expanded neighbors is important in the last
row of Table 2.5, where the LÊ means we remove duplication in Eq. 2.8. The results
show that the performance will degrade significantly when removing them, implying
that the duplicated expanded neighbors are indeed more important than others.

Next we ablate the importance of the expanded neighborhood in the right of
Table2.5. We show that if we increase the number of datapoints considered for class-
consistency by simply considering a larger K, we obtain significantly lower scores.
We have chosen K so that the total number of points considered is equal to our method
(i.e. 5+5*5=30 and 3+3*2=9). Considering neighbors of neighbors is more likely to
provide datapoints that are close on the data manifold [133], and are therefore more
likely to share the class label with the ego feature.

Runtime analysis. Instead of storing all feature vectors in the memory bank, we
follow the same memory bank setting as in [25] which is for nearest neighbor retrieval.
The method only stores a fixed number of target features, we update the memory bank
at the end of each iteration by taking the n (batch size) embeddings from the current
training iteration and concatenating them at the end of the memory bank, and discard
the oldest n elements from the memory bank. We report the results with this type of
memory bank of different buffer size in the Table 2.6. The results show that indeed
this could be an efficient way to reduce computation on very large datasets.

Ablation study on self-regularization. In the left and middle of Fig 2.2, we show
the results with and without self-regularization Lsel f . The Lsel f can improve the
performance when adopting only nearest neighbors N or all neighbors N +E . The
results imply that self-regularization can effectively reduce the negative impact of the
potential noisy neighbors, especially on the Office-Home dataset.
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Figure 2.4: (Left) The three curves are (on VisDA): target accuracy (Blue), ratio of
features which have 5-nearest neighbors all sharing the same predicted label (dashed
Red), and ratio of features which have 5-nearest neighbors all sharing the same and
correct predicted label (dashed Black). (Right) Ablation study on choice of K and M
on VisDA.

Sensitivity to hyperparameter. There are three hyperparameters in our method: K
and M which are the number of nearest neighbors and expanded neighbors, r which is
the affinity value assigned to nRNN. We show the results with different r in the right
of Fig. 2.2. Note we keep the affinity of expanded neighbors as 0.1. r = 1 means no
affinity. r =−1 means treating supervision of nRNN feature as totally wrong, which is
not always the case and will lead to quite lower result. r = 0 can also achieve good
performance, signifying RNN can already work well. Results with r = 0.1/0.15/0.2
show that our method is not sensitive to the choice of a reasonable r . Note in DA, there
is no validation set for hyperparameter tuning, we show the results varying the number
of neighbors in the right of Fig. 2.4, demonstrating the robustness to the choice of K
and M .

Training curve. We show the evolution of several statistics during adaptation on
VisDA in the left of Fig. 2.4. The blue curve is the target accuracy. The dashed red
and black curves are the ratio of features which have 5-nearest neighbors all sharing
the same (dashed Red), or the same and also correct (dashed Black) predicted label.
The curves show that the target features are clustering during the training. Another
interesting finding is that the curve ’Per Shared’ correlates with the accuracy curve,
which might therefore be used to determine training convergence.

Accuracy of supervision from neighbors. We also show the accuracy of supervision
from neighbors on task Ar→Rw of Office-Home in Fig. 2.3(left). It shows that after
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adaptation, the ratio of all types of neighbors having more correct predicted label,
proving the effectiveness of the method.

t-SNE visualization. We show the t-SNE feature visualization on task Ar→Rw
of target features before (Fig. 2.1(a)) and after (Fig. 2.3(right)) adaptation. After
adaptation, the features are more compactly clustered.

2.5 Conclusions
We introduce a source-free domain adaptation (SFDA) method by uncovering the
intrinsic target data structure. We propose to achieve the adaptation by encouraging
label consistency among local target features. We differentiate between nearest neigh-
bors, reciprocal neighbors and expanded neighborhood. Experimental results verify
the importance of considering the local structure of the target features. Finally, our
experimental results on both 2D image and 3D point cloud datasets testify the efficacy
of our method.
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3 Attracting and Dispersing: A Simple Ap-
proach for Source-free Domain Adaptation*

3.1 Introduction
Supervised learning methods which are based on training with huge amounts of labeled
data are advancing almost all fields of computer vision. However, the learned models
typically perform decently on test data which have a similar distribution with the
training set. Significant performance degradation will occur if directly applying those
models to a new domain different from the training set, where the data distribution
(such as variation of background, styles or camera parameter) is considerably different.
This kind of distribution shift is formally denoted as domain/distribution shift. It limits
the generalization of the model to unseen domains which is important in real-world
applications. There are several research fields trying to tackle this problem. One of
them is Domain Adaptation (DA), which aims to reduce the domain shift between the
labeled source domain and unlabeled target domain. Typical works [38, 98] resort to
learn domain-invariant features, thus improving generalization ability of the model
between different domains. And in the past few years, the main research line of
domain adaptation is either trying to minimize the distribution discrepancy between
two domains [82, 83, 86], or deploying adversarial training on features to learn domain
invariant representation [20, 88, 135, 164]. Some methods also tackle domain shift
from the view of semi-supervised learning [74, 163] or clustering [21, 23, 132].

Many recent methods [45, 69, 76, 149, 155, 157] focus on source-free domain
adaptation (SFDA), where source data are unavailable during target adaptation, due to
data privacy and intellectual property concerns of both users and businesses. Some
SFDA methods resort to neighborhood clustering and pseudo labeling. However,
pseudo labeling methods [76] may suffer from negative impact from noisy labels,
and neighborhood clustering methods [155, 157] fail to investigate the potential in-
formation from dissimilar samples. Other methods either demand complex extra
modules/processing [69, 149] or the storing of historical models for contrastive learn-
ing [45].

Based on the fact that target features from the source model already form some
semantic structure and following the intuition that for a target feature from a (source-

*This chapter is based on a publication in the Advances in Neural Information Processing Systems
(NeurIPS) 2022 [158]
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Table 3.1: Detailed comparison of SFDA methods on VisDA. ’ODA/PDA’ means
whether the method reports the results for open-set or partial-set DA. |||L ||| means
number of training objective terms.

Method Extra Modules/Processing ODA/PDA |||L ||| Per-class
SHOT [73] Access all target data for pseudo labeling ✓ 3 82.9

3C-GAN [69] Data generation by conditional GAN ✗ 5 81.6
A2Net [149] Self-supervised learning with extra classifiers ✗ 5 84.3

G-SFDA [157] Store features for nearest neighbor retrieval ✗ 2 85.4
NRC [155] Store features for 2-hop nearest neighbor retrieval ✗ 4 85.9
HCL [45] Store historical models ✓ 2 83.5

AaD Store features for nearest neighbor retrieval ✓ 2 88.0

pretrained) model, similar features should have closer predictions than dissimilar
ones, we propose a new objective dubbed as Attracting-and-Dispersing (AaD) to
achieve it. we upperbound this objective, resulting in a simple final objective which
only contains two types of terms, which encourage discriminability and diversity
respectively. Further, we unify several popular domain adaptation, source-free domain
adaptation and contrastive learning methods from the perspective of discriminability
and diversity. Experimental results on several benchmarks prove the superiority of our
proposed method. Our simple method improves the state-of-the-art on the challenging
VisDA with 2.1% to 88.0%. Additionally, extra experiments on open-set and partial-
set DA further prove the effectiveness of our method. A preliminary comparison
between different SFDA method is shown in Tab. 3.1, which shows the simplicity and
generalization ability of our method: it only requires the storing of features and a few
nearest neighbors searches without any additional module like a generator [69] or a
classifier [149].

We summary our contributions as follows:

• We propose to tackle source-free domain adaptation by optimizing an upperbound
of the proposed clustering objective, which is surprisingly simple.

• We relate several popular existing methods in domain adaptation, source-free do-
main adaptation and contrastive learning via the perspective of discriminability and
diversity, which is helpful to understand existing methods and beneficial for future
improvement.

• The experimental results prove the efficacy of our method, especially we achieve
new state-of-the-art on the challenging VisDA, and the method can be also extended
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to source-free open-set and partial-set domain adaptation.

3.2 Related Work
Domain Adaptation. Early DA methods such as [83, 130, 136] adopt moment
matching to align feature distributions. For adversarial learning methods, DANN [31]
formulates domain adaptation as an adversarial two-player game. The adversarial
training of CDAN [84] is conditioned on several sources of information. DIRT-T [124]
performs domain adversarial training with an added term that penalizes violations of
the cluster assumption. Additionally, [62, 88, 115] adopts prediction diversity between
multiple learnable classifiers to achieve local or category-level feature alignment
between source and target domains. SRDC [132] proposes to directly uncover the
intrinsic target discrimination via discriminative clustering to achieve adaptation.
CST [80] proposes a simple self-training strategy to improve the rough pseudo label
under domain shift.

Source-free Domain Adaptation. The above-mentioned normal domain adapta-
tion methods need to access source domain data at all time during adaptation. In
recent years plenty of methods emerge trying to tackle source-free domain adaptation.
USFDA [58] and FS [59] resort to synthesize extra training samples in order to get
compact decision boundaries, which is beneficial for both the detection of open classes
and also target adaptation. SHOT [73] proposes to freeze the source classifier and it
clusters target features by maximizing mutual information along with pseudo labeling
for extra supervision. 3C-GAN [69] synthesizes labeled target-style training images.
It is based on a conditional GAN to provide supervision for adaptation. BAIT [156]
extends MCD [115] to source-free setting. A2Net [149] proposes to learn an addi-
tional target-specific classifier for hard samples and adopts a contrastive category-wise
matching module to cluster target features. HCL [45] adopts Instance Discrimina-
tion [148] for features from current and historical models to cluster features, along with
a generated pseudo label conditioned on historical consistency. G-SFDA [157] and
NRC [155] propose neighborhood clustering which enforces prediction consistency
between local neighbors.

Deep Clustering and Contrastive Learning. Recent Deep Clustering methods can
be roughly divided into two groups, they the differ in how they learn the feature
representation and cluster assignments, either simultaneously or alternatively. For
example, DAC [13] and DCCM [146] alternately update cluster assignments and
between-sample similarity. Simultaneous clustering methods IIC [51] and ISMAT [43]
are based on mutual information maximizing between samples and theirs augmenta-
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tions. LA [175] depends on a huge amount of nearest neighbor searches and multiple
extra runs of k-means clustering to aggregate features. Recent unsupervised clustering
works [70, 121, 134] start to rely on contrastive learning, where InfoNCE [96] is typi-
cally deployed. And recently NNCLR [25] proposes to use nearest neighbors in the
latent space as positives in contrastive learning to cover more semantic variations than
pre-defined transformations. However an inevitable problem of normal contrastive
learning is class collision where negative samples are from the same class. To tackle
this issue, recent works [46, 67] propose to estimate cluster prototypes and integrate
them into contrastive learning.

3.3 Method
For source-free domain adaptation (SFDA), we are given source-pretrained model
in the beginning and an unlabeled target domain with Nt samples as Dt = {x t

i }Nt
i=1.

Target domain have same C classes as source domain in this chapter (known as the
closed-set setting). The goal of SFDA is to adapt the model to target domain without
source data. We divide the model into two parts: the feature extractor f , and the
classifier g . The output of the feature extractor is denoted as feature (zi = f (x) ∈Rh),
where h is dimension of the feature space. The output of classifier is denoted as
(pi = δ(g (zi )) ∈ RC ) where δ is the softmax function. We denote P ∈ Rbs×C as
the prediction matrix in a mini-batch. Regarding the SFDA as an unsupervised
clustering problem, we address SFDA problem by clustering target features based on
the proposed AaD. In additionally, we relate our method with several existing DA,
SFDA and contrastive learning methods.

3.3.1 Attracting and Dispersing for Source-free Domain Adapta-
tion

Since the source-pretrained model already learns a good feature representation, it can
provides a decent initialization for target adaptation. We propose to achieve SFDA
by attracting predictions for features that are located close in feature space, while
dispersing predictions of those features farther away in feature space.

We define pi j as the probability that the feature zi ∈Rh has similar (or the same)

prediction to feature z j : pi j = e
pT

i p j∑Nt
k=1 e

pt
i

pk
. It can be interpreted as the possibility that

p j is selected as the neighbor of pi in the output space [36].
We then define two sets for each feature zi : close neighbor set Ci containing

K -nearest neighbors of zi (with distances as cosine similarity), and background set
Bi which contains the features that are not in Ci (features potentially from different
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Algorithm 2 Attracting and Dispersing for SFDA

Require: Source-pretrained model and target data Dt

1: Build memory bank storing all target features and predictions
2: while Adaptation do
3: Sample batch T from Dt and Update memory bank
4: For each feature zi in T , retrieve K -nearest neighbors (Ci ) and their predic-

tions from memory bank
5: Update model by minimizing Eq. 3.6
6: end while

classes). To retrieve nearest neighbors for training, we build two memory banks
to store all target features along with their predictions just like former works [74,
111, 155, 157], which is efficient in both memory and computation, since only the
features along with their predictions computed in each mini-batch are used to update
the memory bank.

Intuitively, for each feature zi , the features in Bi should have less similar predic-
tions than those in Ci

†. To achieve this, we first define two likelihood functions:

P (Ci |θ) = ∏
j∈Ci

pi j =
∏

j∈Ci

epT
i p j∑Nt

k=1 epT
i pk

, (3.1)

P (Bi |θ) = ∏
j∈Bi

pi j =
∏

j∈Bi

epT
i p j∑Nt

k=1 epT
i pk

(3.2)

where θ denotes parameters of the model, for readability we omit θ in following
equations. The probability p j in Eq. 3.1 is the stored prediction for neighborhood
feature z j , which is retrieved from the memory bank.

We then propose to achieve target features clustering by minimizing the following
negative log-likelihood, denoted as AaD (Attracting-and-Dispersing):

L̃i (Ci ,Bi ) =− log
P (Ci )

P (Bi )
(3.3)

Noting that, if we only have P (Ci ), it will be similar to Instance Discrimination [148],
but we also consider P (Bi ) and we operate on predictions instead of features. If
regarding weights of the classifier g as classes prototypes, optimizing Eq. 3.3 is not
only pulling features towards their closest neighbors and pushing them away from

†For better understanding, we refer to Bi and Ci as index sets.
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background features, but also towards (or away from) corresponding class prototypes.
Therefore, we can achieve feature clustering and cluster assignment simultaneously.

To simplify the training, instead of manually and carefully sampling background
features, we use all other features except zi in the mini-batch as Bi , which can be
regarded as an estimation of the distribution of the whole dataset. We can reasonably
believe that overall similarity of features in Ci is potentially higher than that of Bi ,
even if Bi has intersection with Ci since features in Ci are the closest ones to feature
zi . By optimizing Eq. 3.3, we are encouraging features in Ci , which have a higher
chance of belonging to the same class, to have more similar predictions to zi than
those features in Bi , which have a lower chance of belonging to the same class. Note
all features will show up in both the first and second term; intra-cluster alignment and
inter-cluster separability are expected to be achieved after training.

One problem optimizing Eq. 3.3 is that all target data are needed to compute Eq. 3.1,
which is infeasible in real-world situation. Here we resort to get an upper-bound of
Eq. 3.3:

L̃i (Ci ,Bi ) =− log
P (Ci )

P (Bi )

=− ∑
j∈Ci

[pT
i p j − log(

Nt∑
k=1

epT
i pk )]+ ∑

m∈Bi

[pT
i pm − log(

Nt∑
k=1

epT
i pk )]

=− ∑
j∈Ci

pT
i p j +

∑
m∈Bi

pT
i pm + (NCi −NBi ) log(

Nt∑
k=1

epT
i pk )

(3.4)

Since we set NCi < NBi , with Jensen’s inequality:

L̃i (Ci ,Bi ) ≤− ∑
j∈Ci

pT
i p j +

∑
m∈Bi

pT
i pm + (NCi −NBi )(

Nt∑
k=1

1

Nt
pT

i pk + log Nt )

≃ ∑
m∈Bi

pT
i pm − ∑

j∈Ci

pT
i p j + (NCi −NBi )(

∑
k∈Bi

pT
i pk

NBi

+ log Nt )

=− ∑
j∈Ci

pT
i p j +

NCi

NBi

∑
m∈Bi

pT
i pm + (NCi −NBi ) log Nt

(3.5)

where NCi and NBi is the number of features in Ci and Bi . Note that we cannot get
this upper-bound without P (Bi ). The approximation above in the penultimate line
is to estimate the average dot product using the mini-batch data. This leads to the
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Table 3.2: Decomposition of methods into two terms: discriminability (dis) and
diversity (div), which will be minimized for training.

Method Task dis term div term
MI SFDA&Clustering H(Y |X ) −H(Y )

BNM DA&SFDA −∥P∥F −r ank(P )
NC SFDA −g (Wi j pT

i p j )
∑C

c=1 KL(p̄c ||qc )

InfoNCE Contrastive − f (x)T f (y)/τ log( e
τ +

∑
i e f (x−

i )T f (x)/τ)
AaD SFDA −∑

j∈Ci
pT

i p j
∑

m∈Bi
pT

i pm

surprisingly simple final objective for unsupervised domain adaptation:

L = E[Li (Ci ,Bi )],with Li (Ci ,Bi ) =− ∑
j∈Ci

pT
i p j +λ

∑
m∈Bi

pT
i pm (3.6)

Note the gradient will come from both pi and pm . The first term aims to enforce
prediction consistency between local neighbors, and the naive interpretation of sec-
ond term is to disperse the prediction of potential dissimilar features, which are all
other features in the mini-batch. Note that the dot product between two softmaxed
predictions will be maximal when two predictions have the same predicted class and
are close to one-hot vector. Our algorithm is illustrated in Algorithm. 2.

Unlike using a constant for the second term in Eq. 3.5 we empirically found that
using a hyperparameter λ to decay second term (starting from 1) works better, we will
adopt SND [112] to tune this hyperparameter unsupervisedly. One reason may be that
the approximation inside Eq. 3.3.1 is not necessarily accurate. And as training goes
on, features are gradually clustering, the role of the second term for dispersing should
be weakened. Additionally, considering the current mini-batch with the correctly
predicted features zi and zm belonging to the same class. In this case the second
term in both Li (Ci ,Bi ) and Lm(Cm ,Bm) tends to push pm to the wrong direction,
while the first term in Lm(Cm ,Bm) can potentially keep current (correct) prediction
unchanged. Hence, this will suppress the negative impact of the second term. We will
further deepen the understanding of these two terms in the next subsection.

3.3.2 Relation to Existing Works
In this section, we will relate several popular DA, SFDA and contrastive learning
methods through two objectives, discriminability and diversity. This can improve our
understanding of domain adaptation methods, as well as improve the understanding of
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our method.

Mutual Information maximizing (MI). SHOT-IM [73] proposes to achieve source-
free domain adaptation by maximizing the mutual information, which is actually
widely used in unsupervised clustering [37, 43, 109]:

LM I = H(Y |X )−H(Y ) (3.7)

which contains two terms: conditional entropy term H(Y |X ) to encourages unambigu-
ous cluster assignments, and marginal entropy term H(Y ) to encourage cluster sizes
to be uniform to avoid degeneracy. In practice, H(Y ) is approximated by the current
mini-batch instead of using whole dataset [43, 127].

Batch Nuclear-norm Maximization (BNM). BNM [21, 22] aims to increase predic-
tion discriminability and diversity to tackle domain shift. It is originally achieved by
maximizing F -norm (for discriminability) and rank of prediction matrix (for diversity)
respectively:

L =−∥P∥F − r ank(P ) (3.8)

In their paper, they further prove merely maximizing the nuclear norm ∥P∥∗ can
achieve these two goals simultaneously. In relation to our method, if target features
are well clustering during training, we can presume the K-nearest neighbors of feature
zi have the same prediction, the first term in Eq. 3.6 can be seen as the summation
of diagonal elements of matrix PP T , which is actually the square of F -norm (∥P∥F =√

tr ace(PP T )), then it is actually minimizing prediction entropy [21]. As for second
term, we can regard it as the summation of non-diagonal element of PP T , it encourages
all these non-diagonal elements to be 0 thus the r ank(PP T ) = r ank(P ) is supposed
to increase, which indicates larger prediction diversity [21]. In a nutshell, compared
to SHOT and BNM our method first considers local feature structure to cluster target
features, which can be treated as an alternative way to increase discriminability at
the late training stage, meanwhile as discussed above our method is also encouraging
diversity.

Neighborhood Clustering (NC). G-SFDA [157] and NRC [155], which is (will be)
illustrated in Ch. 4 and Ch. 2, are based on neighborhood clustering to tackle SFDA
problem. Those works basically contain two major terms in their optimizing objective:
a neighborhood clustering term for prediction consistency and a marginal entropy term
H(Y ) for prediction diversity. NRC [155] further introduces neighborhood reciprocity
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to weight the different neighbors. Their loss objective can be written as:

Li =− ∑
j∈Ci

g (Wi j pT
i p j )+

C∑
c=1

KL(p̄c ||qc ), (3.9)

with p̄c = 1

nt

∑
i

p(c)
i ,and q{c=1,..,C } = 1

C

where Wi j will weight the importance of neighbor and g (·) is log or identity function.
Although the first term of G-SFDA and NRC is the same as that of our final loss
objective Eq. 3.6, note that our motivation is different as we simultaneously consider
similar and dissimilar features, and Eq. 3.6 is deduced as an approximated upper-bound
of our original objective Eq. 3.3.

And actually here −H(Y ) = ∑C
c=1 p̄c log p̄c = ∑C

c=1 KL(p̄c ||qc )− logC . Although
the second term of those methods are favoring prediction diversity to avoid the trivial
solution where all images are only assigned to some certain classes, the margin entropy
term presumes the prior that whole dataset or the mini-batch is class balance/uniformly
distributed, which is barely true for current benchmarks or in real-world environment.
In conclusion, the above three types of methods are actually all to increase discrim-
inability and meanwhile maximize diversity of the prediction, but through different
ways.

Contrastive Learning. Here we also link our method to InfoNCE [96]), which is
widely used in contrastive learning. As a recent paper [143] points out that InfoNCE
loss can be decomposed into 2 terms:

Li n f oNC E = E(x,y)∼ppos [− f (x)T f (y)/τ]

+ E
x∼pd at a {x−

i }M
i=1∼pd at a

[log(e1/τ+∑
i

e f (x−
i )T f (x)/τ)]

(3.10)

The first term is denoted as alignment term (with positive pairs) is to make positive
pairs of features similar, and the second term denoted as uniformity term with negative
pairs encouraging all features to roughly uniformly distributed in the feature space.

The Eq. 3.10 shares some similarity with all the above domain adaptation methods
in that the first term is for the alignment with positive pairs and the second term
is to encourage diversity. But note that the remarkable difference is that the above
domain adaptation methods operate in the output (prediction) space while contrastive
learning is conducted in the (spherical) feature space. Therefore, simultaneously
feature representation learning and cluster assignment can be achieved for those
domain adaptation methods. Note in normal contrastive learning methods, extra KNN
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or a linear learnable classifier needs to be deployed for final classification, while our
model can directly give predictions.

We list all above methods in Tab. 3.2. Finally, returning to Eq. 3.6, we can also
regard the second term as a variant of diversity loss to avoid degeneration solution,
but without making any category prior assumption. Intuitively, with target features
forming groups during training, the second term should play less and less important
role, otherwise it may destabilize the training. This is similar to the class collision
issue in contrastive learning. If our second term contains too many features belonging
to the same class. Thus it is reasonable to decay the second term.

3.4 Experiments
Datasets. We conduct experiments on three benchmark datasets for image classifica-
tion: Office-31, Office-Home and VisDA-C 2017. Office-31 [110] contains 3 domains
(Amazon, Webcam, DSLR) with 31 classes and 4,652 images. Office-Home [141]
contains 4 domains (Real, Clipart, Art, Product) with 65 classes and a total of 15,500
images. VisDA (VisDA-C 2017) [102] is a more challenging dataset, with 12-class
synthetic-to-real object recognition tasks, its source domain contains of 152k synthetic
images while the target domain has 55k real object images.

Evaluation. The column SF in the tables denotes source-free. For Office-31 and
Office-Home, we show the results of each task and the average accuracy over all tasks
(Avg in the tables). For VisDA, we show accuracy for all classes and average over
those classes (Per-class in the table). All results are the average of three random runs
for target adaptation.

Model details. To ensure fair comparison with related methods, we adopt the back-
bone of a ResNet-50 [41] for Office-Home and ResNet-101 for VisDA. Specifically,
we use the same network architecture as SHOT [73], BNM-S [22], G-SFDA [157]
and NRC [155], i.e., the final part of the network is: fully connected layer - Batch
Normalization [48] - fully connected layer with weight normalization [117]. We adopt
SGD with momentum 0.9 and batch size of 64 for all datasets. The learning rate
for Office-31 and Office-Home is set to 1e-3 for all layers, except for the last two
newly added fc layers, where we apply 1e-2. Learning rates are set 10 times smaller
for VisDA. We train 40 epochs for Office-31 and Office-Home while 15 epochs for
VisDA.

There are two hyperparameters NCi (number of nearest neighbors) and λ, to ensure
fair comparison we set NCi to the same number as previous works G-SFDA [157]
and NRC [155], which also resort to nearest neighbors. That is, we set NCi to 3 on
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3.4 Experiments

Table 3.3: Accuracies (%) on Office-Home for ResNet50-based methods. We highlight
the best result and underline the second best one.
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Chapter 3. Attracting and Dispersing for Source-free Domain Adaptation

Table 3.4: Accuracies (%) on VisDA-C (Synthesis → Real) for ResNet101-based
methods. We highlight the best result and underline the second best one.
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3.4 Experiments

Table 3.5: (Left) Accuracies (%) on Office-31 for ResNet50-based methods. We
highlight the best result and underline the second best one. (Right) Ablation study
on number of nearest neighbors NCi . We highlight the best score and underline the
second best one.

Method SFA→DA→WD→WW→DD→AW→AAvg
MCD [115] ✗ 92.2 88.6 98.5 100.0 69.5 69.7 86.5
CDAN [84] ✗ 92.9 94.1 98.6 100.0 71.0 69.3 87.7
MDD [165] ✗ 90.4 90.4 98.7 99.9 75.0 73.7 88.0
DMRL [147] ✗ 93.4 90.8 99.0 100.0 73.0 71.2 87.9
MCC [53] ✗ 95.6 95.4 98.6 100.0 72.6 73.9 89.4
SRDC [132] ✗ 95.8 95.7 99.2 100.0 76.7 77.1 90.8
SHOT [73] ✓ 94.0 90.1 98.4 99.9 74.7 74.3 88.6
3C-GAN [69] ✓ 92.7 93.7 98.5 99.8 75.3 77.8 89.6
NRC [155] ✓ 96.0 90.8 99.0 100.0 75.3 75.0 89.4
HCL [45] ✓ 94.7 92.5 98.2 100.0 75.9 77.7 89.8
BNM-S [22] ✓ 93.0 92.9 98.2 99.9 75.4 75.0 89.1
AaD ✓ 96.4 92.1 99.1 100.0 75.0 76.5 89.9

NCi Avg
Office-31
1 89.1
2 89.5
3 89.9

Office-Home
1 72.2
2 72.6
3 72.7

NCi Per-class
VisDA

3 86.7
4 87.4
5 88.0
6 88.0
7 88.0
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Chapter 3. Attracting and Dispersing for Source-free Domain Adaptation

Source model only first term without decay with decay

Figure 3.1: Visualization of decision boundary on target data with different training
objective.

Office-31 and Office-Home, 5 on VisDA. For λ, we set it as λ= (1+10∗ i ter
max_i ter )−β,

where the decay factor β controls the decaying speed. We directly apply SND [112] to
select β unsupervisedly. Based on SND we set β to 0 on Office-Home, 2 on Office-31
and 5 on VisDA.

3.4.1 Results and Analysis
Quantitative Results. As shown in Tables 3.3-3.5(Left), where the top part shows
results for the source-present methods that use source data during adaptation, and the
bottom part shows results for the source-free DA methods. On Office-31 and VisDA,
our method gets state-of-the-art performance compared to existing source-free domain
adaptation methods, especially on VisDA our method outperforms others by a large
margin (2.1% compared to NRC). And our method achieves similar results on Office-
Home compared to the more complex A2Net method (which combines three classifiers
and five objective functions). The reported results clearly demonstrate the efficiency
of the proposed method for source-free domain adaptation. It also achieves similar
or better results compared to domain adaptation methods with access to source data
on both Office-Home and VisDA. Note the extension of SHOT called SHOT++ [77]
deploys extra self-supervised training and semi-supervised learning, which are general
to improve the results (an evidence is that the source model after these 2 tricks gets
huge improvement, e.g., 60.2% improves to 66.6% on Office-Home.), we do not list it
here for fair comparison.

Toy dataset. We carry out an experiment on the twinning moona dataset to ablate
the influence of two terms in our objective Eq. 3.6. For the twinning moons dataset,
the data from the source domain are represented by two inter-twinning moons, which
contain 300 samples each. Data in the target domain are generated through rotating
source data by 30◦. The domain shift here is instantiated as the rotation degree. First
we train the model with 3 linear layers only on the source domain, and test the model

40



3.4 Experiments

Table 3.6: Unsupervised hyperparameter selection of β with SND [112], larger
SND should correspond to better target model.

Office-31
β SND↑ Avg
0 4.1366 88.0

0.25 4.3016 89.7
1 4.4494 89.9
2 4.4501 89.9

Office-Home
β SND↑ Avg
0 3.7515 72.7

0.25 3.7402 72.6
0.5 3.7252 72.0
1 3.6923 70.6

VisDA
β SND↑ Per-class
0 8.1823 77.5
1 8.2584 83.8
2 8.3214 86.7
3 8.3311 87.6
4 8.3540 88.0
5 8.3543 88.0
7 8.3530 88.1

on all domains. As shown in the first image in Fig. 3.1, the source model performs
badly on target data. Then we conduct several variants of our method to train the
model. The visualization of the decision boundary in Fig. 3.1 indicates that both terms
in Eq. 3.6 are necessary, and decay of second term is shown to be important.

Number of nearest neighbors (NCi ). For the number of nearest neighbors used for
the first term in Eq. 3.6, we show in Tab. 3.5 (Right) our method is robust to the choice
of NCi , as the results imply that a reasonable choice of NCi (such as 3) works quite
well on all datasets, since only considering few neighbors (such as 1/2) may be too
noisy if all of them are misclassified, while setting NCi too larger may also potentially
include samples of other categories. For larger dataset such as VisDA we can choose a
relatively larger NCi . Note the reason why we choose NCi as 5 in main experiments is
to compare fairly with G-SFDA [157] and NRC [155].

Decay factor β. According to the analysis in Sec. 3.3.2, the second term acts like a
diversity term to avoid that all target features collapse to a limited set of categories.
The role of the second term should be weakened during the training, but how to decay
the second term is non-trivial. We directly adopt SND [112] which computes Soft
Neighborhood Density for unsupervised hyperparameter selection of β. The method is
unsupervised and larger SND predicts a better target models. The results of SND with
different β are shown in Tab. 3.6, the results prove that SND works well to choose
optimal β.

Runtime analysis. Instead of storing all features in the memory bank, we can only
stores a limited number of target features, by updating the memory bank at the end
of each iteration by taking the n (batch size) embeddings from the current training
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Figure 3.2: (Left) Ratio of features which have 3 nearest neighbor features sharing
the same predicted label. (Right) Ratio among above features which have 3 nearest
neighbor features sharing the same and correct predicted label.

Table 3.7: Runtime analysis on SHOT and our method. For SHOT, pseudo labels are
computed at each epoch. 10% and 5% denote the percentage of target features which
are stored in the memory bank.

VisDA Runtime (s/epoch)Per-class (%)
SHOT 618.82 82.9
AaD 520.13 88.0

AaD(10% for memory bank) 490.21 87.6
AaD(5% for memory bank) 482.77 87.5

iteration and concatenating them at the end of the memory bank, and discard the oldest
n elements from the memory bank. We report the results with this type of memory
bank of different buffer size in the Table 3.7. The results show that indeed this could
be an efficient way to reduce computation on very large datasets.

Degree of clustering during training. We also plot how features are clustered
with different decaying factors β on VisDA in Fig. 3.2. The left one shows the ratio
of features which have 3-nearest neighbors all sharing the same prediction, which
indicates the degree of clustering during training, and the right one shows the ratio
among above features which have 3-nearest neighbor features sharing the same and
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3.5 Conclusion

correct predicted label. Those curves in Fig. 3.2 left show that the target features
are clustering, and those in Fig. 3.2 right indicate that clear category boundaries are
emerging. The numbers in the legends denote the deployed β and the corresponding
final accuracy. From the figures we can draw the conclusion that with a larger decay
factor β on VisDA, features are quickly clustering and forming inter-class boundaries,
since the ratio of features which share the same and correct prediction with neighbors
are increasing faster. When decaying factor β is too small, meaning training signal
from the second term is strong, the clustering process is actually impeded. The curves
in Fig. 3.2 (left) signify that this ratio can also be used to choose β with higher
performance unsupervisedly.

Source-free partial-set and open-set DA. We provide additional results under
source-free partial-set and open-set DA (PDA and ODA) setting in Tab. 3.8 and
Tab. 3.9 respectively, where the open-set detection in ODA follows the same protocol
to detect unseen categories as SHOT. On ODA, instead of reporting average per-class
accuracy OS = |Cs |×OS∗

|Cs |+1 + 1×U N K
|Cs |+1 where |Cs | is the number of known categories on

source domain, we report results of HOS = 2×OS∗×U N K
OS∗+U N K , which is harmonic mean

between known categories accuracy OS∗ and unknown accuracy UNK. As pointed out
by [9], OS is problematic since this metric can be quite high even when unknown class
accuracy UNK is 0, while unknown category detection is the key part in open-set DA.
We reproduce SHOT under open-set DA and report results of OS∗, UNK and HOS
in Tab. 3.8, which shows our method gets much better balance between known and
unknown accuracy.

3.5 Conclusion
We proposed to tackle source-free domain adaptation by encouraging similar features
in feature space to have similar predictions while dispersing predictions of dissimilar
features in feature space, to achieve simultaneously feature clustering and cluster
assignment. We introduced an upper bound to our proposed objective, resulting in two
simple terms. Further we showed that we can unify several popular domain adaptation,
source-free domain adaptation and contrastive learning methods from the perspective
of discriminability and diversity. The approach is simple but achieves state-of-the-art
performance on several benchmarks, and can be also adapted to source-free open-set
and partial-set domain adaptation.
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Table 3.8: Accuracy on Office-Home using ResNet-50 as backbone for Source-free
open-set DA. OS*, UNK and HOS mean average per-class accuracy across known
classes, unknown accuracy and harmonic mean between known and unknown accuracy
respectively.
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3.5 Conclusion

Table 3.9: Accuracy on Office-Home using ResNet-50 as backbone for Source-free
partial-set DA (PDA).
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4 Generalized Source-free Domain Adapta-
tion*

4.1 Introduction
Though achieving great success, deep neural networks typically require a large amount
of labeled data for training. However, collecting labeled data is often laborious and
expensive. To tackle this problem, Domain Adaptation (DA) methods aim to trans-
fer knowledge learned from label-rich datasets (source domains) to other unlabeled
datasets (target domains), by reducing the domain shift between labeled source and
unlabeled target domains.

A crucial requirement in most DA methods is that they require access to the source
data during adaptation, which is often impossible in many real-world applications, such
as deploying domain adaptation algorithms on mobile devices where the computation
capacity is limited, or in situations where data-privacy rules limit access to the source
domain. Because of its relevance and practical interest, the source-free domain
adaptation (SFDA) setting, where instead of source data only source pretrained model
is available, has started to get traction recently [58, 59, 69, 73, 156]. Among these
methods, SHOT [73] and 3C-GAN [69] are most related to this chapter which is
for close-set DA where source and target domains have the same categories. 3C-
GAN [69] is based on target-style image generation by a conditional GAN, and
SHOT [73] proposes to transfer the source hypothesis, i.e. the fixed source classifier,
to the target data, together with maximizing mutual information.

However, in many practical situations models should perform well on both the
target and source domain. For example, we would desire a recognition model deployed
in an urban environment which works well for all four seasons (domains) after adapting
model to the seasons sequentially. As shown in [160], the source performance of
some DA methods will degrade after adaptation even with source data always at hand.
And the current SFDA methods focus on the target domain by fine tuning the source
model, leading to forgetting on old domains. Thus, existing methods cannot handle
the situation described above. A simple way to address this setting is by just storing
the source and target model, however, we aim for memory-efficient solutions that
scale sub-linear with the number of domains. Therefore, in this chapter, we propose a

*This chapter is based on a publication in the International Conference on Computer Vision (ICCV),
2021 [157]
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new DA paradigm where the model is expected to perform well on all domains after
source-free domain adaptation. We call this setting Generalized Source-free Domain
Adaptation (G-SFDA). For simplicity, in the paper we will first focus on a single
target domain, and then we describe how to extend to Continual Source-free Domain
Adaptation.

In this chapter, to perform adaptation to the target domain without source data,
we first propose Local Structure Clustering (LSC), that clusters each target feature
together with its nearest neighbors. The motivation is that one target feature should
have similar prediction with its semantic close neighbors. To keep source performance,
we propose to use sparse domain attention (SDA), applied to the output of the feature
extractor, activating different feature channels depending on the particular domain.
The source domain attention will be used to regularize the gradient during target
adaptation to prevent forgetting of source information. With LSC and SDA, the adapted
model can achieve excellent performance on both source and target domains. In the
experiments, we show that for target performance our method is on par with or better
than existing DA and SFDA methods on several benchmarks, specifically achieving
state-of-the-art performance on VisDA (85.4%), while simultaneously keeping good
source performance. We also extend our method to Continual Source-free Domain
Adaptation, where there is more than one target domain, further demonstrating the
efficiency of our method.

We summarize our contributions as follows:

• We propose a new domain adaptation paradigm denoted as Generalized Source-
free Domain Adaptation (G-SFDA), where the source-pretrained model is
adapted to target domains while keeping the performance on the source do-
main, in the absence of source data.

• We propose local structure clustering (LSC) to achieve source-free domain
adaptation, which utilizes local neighbor information in feature space.

• We propose Sparse domain attention (SDA) which activates different feature
channels for different domains, and regularizes the gradient of back propagation
during target adaptation to keep information of the source domain.

• In experiments, we show that where existing methods suffer from forgetting and
obtain bad performance on the source domain, our method is able to maintain
source domain performance. Furthermore, when focusing on the target domain
our method is on par with or better than existing methods, especially we achieve
state-of-the-art target performance on VisDA.
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4.2 Related Works
Here we discuss related domain adaptation settings.

Domain Adaptation. Early domain adaptation methods such as [83, 130, 136]
adopt moment matching to align feature distributions. Inspired by adversarial learn-
ing, DANN [31] formulates domain adaptation as an adversarial two-player game.
CDAN [84] trains a deep networks conditioned on several sources of information.
DIRT-T [124] performs domain adversarial training with an added term that penalizes
violations of the cluster assumption. Domain adaptation has also been tackled from
other perspectives. MCD [115] adopts prediction diversity between multiple learnable
classifiers to achieve local or category-level feature alignment between source and
target domains. DAMN [6] introduces a framework where each domain undergoes a
different sequence of operations. AFN [151] shows that the erratic discrimination of
target features stems from much smaller norms than those found in source features.
SRDC [132] proposes to directly uncover the intrinsic target discrimination via dis-
criminative clustering to achieve adaptation. The most relevant paper to our LSC is
DANCE [111], which is for universal domain adaptation and based on neighborhood
clustering. But they are based on instance discrimination [148] between all features,
while our method applies consistency regularization on only a few semantically close
neighbors.

Source-free Domain Adaptation. Normal domain adaptation methods require ac-
cess to source data during adaptation. Recently, there are several methods investigating
source-free domain adaptation. USFDA [58] and FS [59] explore the source-free uni-
versal DA [161] and open-set DA [116], DECISION [3] is for multi-source DA.
Related to our work are SHOT [73] and 3C-GAN [69], both for close-set DA. SHOT
proposes to fix the source classifier and match the target features to the fixed classifier
by maximizing mutual information and pseudo label. 3C-GAN synthesizes labeled
target-style training images based on conditional GAN. Recently, BAIT [156] ex-
tends diverse classifier based domain adaptation methods to also be applicable for
SFDA. Though achieving good target performance, these methods cannot maintain
source performance after adaptation. Other than these methods, we aim to maintain
source-domain performance after adaptation.

Continual Domain Adaptation. Continual learning (CL) [55, 72, 87, 90] specifi-
cally focuses on avoiding catastrophic forgetting when learning new tasks, but it is
not tailored for DA since new tasks in CL usually have labeled data. Recently, a few
works [8, 91, 129] have emerged that aim to tackle the Continual Domain Adaptation
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after
adaptation

Before
adaptation

source
model

source
feature
target

feature

Nearest Neighborhoods

Figure 4.1: Local Structure Clustering (LSC). Some target features from source model
will deviate from dense source feature regions due to domain shift. LSC aims to cluster
target features by its semantically close neighbors (linked by black line).

(CDA) problem. [8] uses sample replay to avoid forgetting together with domain
adversarial training, [91] builds a domain relation graph, and [129] builds a domain-
specific memory buffer for each domain to regularize the gradient on both target and
memory buffer. Although these methods achieve good performance, they all demand
access to source data. And [60] is source-free but they focus on class incremental
single target domain adaptation where there is only one-shot labeled target data per
class, while our method is related to domain incremental learning and can be deployed
for continual source-free domain adaptation.

f

...

f

...

forward
backward gradient

1 - As
At

g g

gradient regularization

f

...

forward

As

g

(a) forward and backward for source (b) forward for target (c) backward for target

 backward gradient

Reshape Reshape

Figure 4.2: (a-c): Forward and Backward pass for two domains. f, g denote feature
extractor, classifier. As and At are the sparse source and target domain attention.

4.3 Methods
In this section, we first propose an approach for source-free unsupervised domain
adaptation. Then we introduce our method to prevent forgetting of the knowledge
of the source model. Next, we elaborate how to unify the two modules to address
generalized source-free domain adaptation (G-SFDA), and train a domain classifier for
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domain-agnostic evaluation. Finally, we extend our method to continual source-free
domains. We call the proposed method as GSFDA.

4.3.1 Problem Setting and Notations
We denote the labeled source domain data with ns , the samples as Ds = {(xs

i , y s
i )}ns

i=1,
where the y s

i is the corresponding label of xs
i , and the unlabeled target domain data

with nt samples as Dt = {x t
j }nt

j=1. The number of classes is C . In the source-free
setting we consider here Ds is only available during model pretraining. Our method is
based on a neural network, which we split into two parts: a feature extractor f , and
a classifier g that only contains one fully connected layer. The output of network is
denoted as p(x) = g ( f (x)) ∈RC .

4.3.2 Local Structure Clustering
Most domain adaptation methods aim to align the feature distributions of the source
and target domain. In source-free unsupervised domain adaptation (SFDA) this is
not evident since the algorithm has no longer access to source domain data during
adaptation. We identify two main sources of information that the trained source model
provides with respect to the target data: a class prediction p(x) and a location in the
feature space f (x). The main idea behind our method is that we expect the features
of the target domain to be shifted with respect to the source domain, however, we
expect that classes still form clusters in the feature space, and as such, we aim to move
clusters of data points to their most likely class prediction.

Our algorithm is illustrated in Fig. 4.1 (left). Some target features (at the start of
adaptation) deviate from the corresponding dense source feature region due to domain
shift. This could result in wrong prediction of the classifier. However, we assume
that the target features of the same class are clustered together. Therefore, the nearest
neighbors of target features have a high probability to share category labels. To exploit
this fact, we encourage features close in feature space to have similar prediction to
their nearest neighbors. As a consequences clusters of points that are close in feature
space will move jointly towards a common class. As shown in the right of Fig. 4.1,
this process can correctly classify target features which would otherwise have been
wrongly classified.

To find the semantically close neighbors, we build a feature bank F = {( f (xi ))}xi∈Dt

which stores the target features. This is similar to methods in unsupervised learn-
ing [44, 137, 148, 175] or domain adaptation [111]. The method [111] is for universal
domain adaptation, and considers similarity based on instance discrimination [148]
between all features in their loss function, and [44, 137, 175] perform unsupervised
learning using neighborhood information. The work [137] needs pretext training and
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the nearest neighborhood images is retrieved only once by the embedding network
from the pretext stage to train another classification network, while [44, 175] are also
based on instance discrimination between all target features, and utilize neighbourhood
selection to further improve the cluster performance. Different from them, we only use
a few neighbors from the feature bank to cluster the target features with a consistency
regularization.

Next, we build a score bank S = {(g ( f (xi ))}xi∈Dt storing corresponding softmaxed
prediction scores. The local structure clustering is achieved by encouraging consistent
predictions between the k-nearest features applying the following loss:

LLSC =− 1

n

n∑
i=1

K∑
k=1

log [p(xi ) · s(Nk )]+
C∑

c=1
KL(p̄c ||qc )

N{1,..,K } = {F j | top-K
(
cos

(
f (xi ) ,F j

)
,∀F j ∈F

)
},

p̄ = 1

n

n∑
i=1

pc (xi ) ,and q{c=1,..,C } = 1

C

(4.1)

Here, we first find the k-nearest neighbors N in the feature bank for each current
target feature based on the cosine similarity. We minimize the negative log value
of the dot product between prediction score of the current target sample xi and the
stored prediction scores s(Nk ) of N , which is the first term in Eq. 4.1, aiming to
encourage consistent predictions between the feature and its a few neighbors. The
second term avoids the degenerated solution [34, 122], where the prediction of classes
in the target data is highly imbalanced, by encouraging prediction balance. Here pc is
the empirical label distribution; it represents the predicted possibility of class c and
q is a uniform distribution. And we simply replace the old items in the bank with
the new ones corresponding to current mini-batch. In the experiments, we will prove
the effectiveness of the proposed LSC by verifying whether the nearest neighbors are
sharing the right predicted label.

4.3.3 Sparse Domain Attention
Under the G-SFDA setting, we want to not only have high target performance, but
maintain source performance without accessing source data. Our work is inspired by
continual learning (CL) methods [1, 90, 119] which put constraints on each layer for
leaving out capacity for new tasks and prevent forgetting of previous tasks. We propose
to only activate parts of the feature channels of f (x) ∈Rd for different domains, by
a sparse domain attention (SDA) vector Ai∈{s,t } ∈Rd , which contain close-to binary
values that will mask the output of the feature extractor. Inspired by [119], we adopt
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an embedding layer to automatically produce the domain adaptation.

Ai∈[s,t ] =σ(100 ·ei ) (4.2)

where ei is the output of an embedding layer, σ is si g moi d function, and the constant
100 is to ensure a near-binary output, but still differentiable. As and At are both
trained on the source domain and are fixed during the adaptation to the target domain.
Furthermore, when training on source, we use sparsity regularization and gradient
compensation for the embedding layer just like [119]. Thus, we use SDA to build
domain specific information flows where some channels are specific for each domain.
We can maintain the source information by regularizing the gradient flowing into
channels that are activated in the source mask.

For training the source domain, we apply the source attention As , as shown in
Fig. 4.2(a), the output is g ( f (x)⊙As ). In Fig. 4.2(b), we show that when adapting to the
target domain, we use the sparse target attention At for the forward pass. To prevent
forgetting, there should be no update to the feature channels which are present in As .
The reasons are twofold: firstly, the information of those channels is the only source
information provided during source-free adaptation to the target domain; keeping this
information may boost target adaptation, and secondly more importantly, under the G-
SFDA setting we hope to keep the source performance after adapting, therefore target
adaptation should not disturb the information flowing to those channels of feature
associated with source domain. As shown in Fig. 4.2(c), during target adaptation we
propose to use source attention As to regularize the gradients flowing to the classifier
and feature extractor during back propagation:

W fl
←W fl

− (Ās1
T
h )⊙ ∂L

∂W fl

(4.3)

Wg ←Wg − ∂L

∂Wg
⊙ (1C Ā T

s ) (4.4)

where ⊙ denotes element wise multiplication, 1k is an all-ones vector of dimensionality
k, Ās = 1−As , W fl

∈Rd×h is the weight of the last layer in feature extractor, Wg ∈
RC×d is the weight of the classifier. Here the source attention As is used to regularize
the gradient flowing into the source activated channels (for feature extractor) and
also the corresponding neurons in the classifier. With Eq. 4.3 and Eq. 4.4, the source
information is expected to be preserved.

In continual learning literature the masking of weights [89, 90] and activations [1,
93, 119] has been studied. Our method is related to the activation mask methods.
However, other then these methods, our masking only prevents forgetting in the last
two layers W fl

and Wg . We ensure that the features that are crucial for source domain
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performance are only minimally changed, and that the target domain specific features
are used to address the domain shift. Our approach does not prevent all forgetting
of the source domain, since we do not regularize the gradient of the inner layers in
feature extractor.

4.3.4 Unified Training

Algorithm 3 Generalized Source-free Domain Adaptation

Require: Ds (only for source model training), Dt

1: Pre-train model on Ds with both As and At from SDA
2: Build feature bank F and score bank S for Dt

3: while Adaptation do
4: Sample batch T from Dt

5: Update F and S corresponding to current batch T

6: Compute Ll sc based on F and S ▷ Eq. 4.1,4.5
7: Update network with SDA regularization ▷ Eq. 4.3,4.4
8: end while

In this section, we first illustrate how to unify the training with SDA and LSC.
As illustrated in Algorithm 3, first we train the model on Ds with the cross-entropy
loss, with both source and target domain attention As , At , this is to provide a good
initialization for target adaptation where only At is engaged. Then, we adapt the
source model to the target domain with target attention At and only access to Dt with
Eq. 4.1. During backpropagation we regularize the gradients according to Eq. 4.3
and Eq. 4.4. Unlike training with only LSC in Sec. 4.3.2, here we build the feature
bank as F = {( f (xi )⊙At )}xi∈Dt , where we abandon the irrelevant channels since those
channels will not contribute to current prediction and may contain noise. And for the
same reason when using k-nearest neighbors, we also apply the target attention to the
feature, so the N{1,..,K } in Eq. 4.1 turns into:

N{1,..,K } = {F j | top-K
(
cos

(
f (xi )⊙At ,F j

)
,∀F j ∈F

)
} (4.5)

Domain-ID estimation. In the experimental section, we will consider both G-SFDA
with (domain-aware) and without (domain-agnostic) access to the domain-id at infer-
ence time. In the more challenging setting the domain-ID is not available, and needs
to be estimated. Therefore, we propose to train a domain classifier which takes in
feature f (x) to estimate the domain-ID of the test samples, by only storing a very
small set of images of the source domain. We will show in the experiments that
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Table 4.1: Accuracies (%) on VisDA-C (Synthesis → Real) for ResNet101-based
unsupervised domain adaptation methods. Source-free means setting without access
to source data during adaptation. Underlined results are second highest result. Our
results are using target attention At . SF means source-free. GSFDA means method
without domainID.

Method SF plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class
source [41] × 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
ADR [114] × 94.2 48.5 84.0 72.9 90.1 74.2 92.6 72.5 80.8 61.8 82.2 28.8 73.5
CDAN [84] × 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
BSP [17] × 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SWD [62] × 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
MDD [165] × - - - - - - - - - - - - 74.6
IA [52] × - - - - - - - - - - - - 75.8
DMRL [147] × - - - - - - - - - - - - 75.5
MCC [53] × 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
DANCE [111] × - - - - - - - - - - - - 70.4
DANCE [111]

p
- - - - - - - - - - - - 70.2

SHOT [73]
p

94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
3C-GAN [69]

p
94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6

GSFDA
p

96.1 88.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4

we obtain similar results in the challenging domain-agnostic setting as in the easier
domain-aware setting.

4.3.5 Continual Source-free Domain Adaptation
Here we illustrate how to extend our method to continual source-free domain adapta-
tion, where the model is adapted to a sequence of target domains with only access to
current target domain data. Assuming that there are Nt target domains. For source
pretraining we train with all domain attention As and {Ati }i=1..Nt from SDA, for a
good initialization as mentioned before. And when adapting to the j -th target domain,
we compute A ′ which considers all domain attention except the current one. We
replace the As in Eq. 4.3 and Eq. 4.4 with A ′ for current gradient regularization:

A ′ = max(A ′,Ati ), ∀i ∈ {1, .., Nt } \ j (4.6)

where max is an element-wise operation and A ′ is initialized from As . Using A ′
for gradient regularization means training on one target domain should not influence
others.

55



Chapter 4. Generalized Source-free Domain Adaptation

Table 4.2: Accuracies (%) on Office-Home for ResNet50-based unsupervised domain
adaptation methods. Source-free means source-free setting without access to source
data during adaptation. Underline means the second highest result. Our results are
using target attention At .

M
et

ho
d

SF
A

r→
C

l
A

r→
Pr

A
r→

R
w

C
l→

A
r

C
l→

Pr
C

l→
R

w
Pr
→

A
r

Pr
→

C
l

Pr
→

R
w

R
w
→

A
r

R
w
→

C
l

R
w
→

Pr
Av

g
R

es
N

et
-5

0
[4

1]
×

34
.9

50
.0

58
.0

37
.4

41
.9

46
.2

38
.5

31
.2

60
.4

53
.9

41
.2

59
.9

46
.1

M
C

D
[1

15
]

×
48

.9
68

.3
74

.6
61

.3
67

.6
68

.8
57

.0
47

.1
75

.1
69

.1
52

.2
79

.6
64

.1
C

D
A

N
[8

4]
×

50
.7

70
.6

76
.0

57
.6

70
.0

70
.0

57
.4

50
.9

77
.3

70
.9

56
.7

81
.6

65
.8

M
D

D
[1

65
]

×
54

.9
73

.7
77

.8
60

.0
71

.4
71

.8
61

.2
53

.6
78

.1
72

.5
60

.2
82

.3
68

.1
IA

[5
2]

×
56

.0
77

.9
79

.2
64

.4
73

.1
74

.4
64

.2
54

.2
79

.9
71

.2
58

.1
83

.1
69

.5
B

N
M

[2
1]

×
52

.3
73

.9
80

.0
63

.3
72

.9
74

.9
61

.7
49

.5
79

.7
70

.5
53

.6
82

.2
67

.9
B

D
G

[1
52

]
×

51
.5

73
.4

78
.7

65
.3

71
.5

73
.7

65
.1

49
.7

81
.1

74
.6

55
.1

84
.8

68
.7

SR
D

C
[1

32
]

×
52

.3
76

.3
81

.0
69

.5
76

.2
78

.0
68

.7
53

.8
81

.7
76

.3
57

.1
85

.0
71

.3
SH

O
T

[7
3]

p
57

.1
78

.1
81

.5
68

.0
78

.2
78

.1
67

.4
54

.9
82

.2
73

.3
58

.8
84

.3
71

.8
G

SF
D

A
w

/d
om

ai
nI

D
p

57
.9

78
.6

81
.0

66
.7

77
.2

77
.2

65
.6

56
.0

82
.2

72
.0

57
.8

83
.4

71
.3

56



4.3 Methods

Table 4.3: Accuracy (%) of each method on Office-31 dataset using ResNet-50 as
backbones. Randomly specifying 0.8/0.2 train/test split for the source dataset, the
source accuracy is reported on the test set.
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Table 4.4: Accuracy (%) of each method on VisDA dataset using ResNet-101 as
backbone under G-SFDA setting. Randomly specifying 0.9/0.1 train/test split for the
source dataset. T and S denote accuracy on target and source domain. w/ and w/o
denote whether our method has access to domain-ID during evaluation.
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4.3 Methods

Table 4.5: Accuracy (%) of each method on Office-Home dataset using ResNet-50
as backbone under G-SFDA setting. Randomly specifying 0.8/0.2 train/test split for
the source dataset. T and S denote accuracy on target and source domain. domain-ID
means having access to domain-ID during evaluation, w/o domain-ID means using the
estimated domain-ID from domain classifier.
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Chapter 4. Generalized Source-free Domain Adaptation

(a) (b)

Figure 4.3: (a) Training curves on task Ar→Cl of Office-Home dataset. (b) Ablation
study of different K on VisDA.

Table 4.6: (Left two) Ablation study on Office-Home and VisDA. The S and T means
source and target accuracy. (Right two) Ablation on number of stored images per
domain to train domain classifier.

Office-Home S T
Source model 83.9 59.2

GSFDA (w/o SDA) 72.4 70.2
GSFDA (w/ SDA) 81.8 70.8

VisDA S T
Source model 99.6 48.1

GSFDA (w/o SDA) 72.1 74.6
GSFDA (w/ SDA) 90.4 85.0

OH /s S T
65 (paper) 80.0 70.2

130 80.6 70.3
195 80.8 70.4

VisDA /s S T
16 89.0 83.6
32 90.2 84.2

64 (paper) 90.4 84.4

4.4 Experiments
Datasets. Office-Home [141] contains 4 domains (Real, Clipart, Art, Product) with
65 classes and a total of 15,500 images. VisDA [102] is a more challenging dataset
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4.4 Experiments

Table 4.7: Continual Source-free Domain Adaptation, the model is adapted from
source domain (the first domain) to all target domain sequentially. The results on
source domain are reported on the test set.

test
Ar Cl Pr Rw

Ar 74.5 42.0 61.3 68.2
Cl 71.4 56.6 61.2 67.9
Pr 70.9 55.7 73.0 71.2

Rw 72.6 55.6 72.7 77.2

test
Cl Ar Pr Rw

Cl 82.2 49.7 60.0 61.2
Ar 80.1 65.4 63.7 66.3
Pr 79.7 63.2 72.9 68.2
Rw 78.6 64.9 72.8 72.4

test
Pr Ar Cl Rw

Pr 92.0 49.7 41.0 71.0
Ar 91.0 63.6 42.7 72.6
Cl 89.2 61.8 53.1 70.4
Rw 88.6 63.1 51.5 76.5

test
Rw Ar Cl Pr

Rw 86.0 63.0 45.7 77.6
Ar 85.7 72.4 49.8 77.4
Cl 80.7 68.9 59.1 73.4
Pr 84.2 69.1 57.4 80.5

Figure 4.4: Ablation study of SDA on VisDA, which has 12 classes. Accn means the
percentage of target features which share the same predicted label with its 3 nearest
neighbors, and Accnp means the percentage among above features which have the
correct shared predicted class.

with 12 classes. Its source domain contains 152k synthetic images while the target
domain has 55k real object images.
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Chapter 4. Generalized Source-free Domain Adaptation

Evaluation. We mainly compare with existing methods under two different settings,
one is the normal DA and SFDA setting where target performance is the only focus.
Another is our proposed G-SFDA setting, where the adapted model is expected to
have good performance on both source and target domains after source-free domain
adaptation. In this setting, we compute the harmonic mean between source and target
accuracy: H = 2∗AccS∗AccT

AccS+AccT
, and AccS and AccT are respectively the accuracy on

source and target test data. For SFDA, we use all source data for model pretraining.
And for G-SFDA we only use part (80% for Office-Home and 90% for VisDA),
the remaining source data is used for evaluating source performance. We provide
results under both the domain aware and domain agnostic setting (where we estimate
the domain-ID with the domain classifier). Finally, we report results for continual
source-free domain adaptation.

Model details. We adopt the backbone of ResNet-50 [41] for Office-Home and
ResNet-101 for VisDA along with an extra fully connected (fc) layer as feature
extractor, and a fc layer as classifier head. We adopt SGD with momentum 0.9 and
batch size of 64 on all datasets. The learning rate for Office-Home is set to 1e-3 for all
layers, except for the last two newly added fc layers, where we apply 1e-2. Learning
rates are set 10 times smaller for VisDA. On the source domain, we train the whole
network with all domain attentions from SDA, while for target adaptation, we only
train the BN layers and last layer in feature extractor, as well as the classifier. We
train 30 epochs on the target domain for Office-Home while 15 epochs for VisDA.
For the number of nearest neighbors (K ) in Eq. 4.1, we use 2 for Office-Home, since
VisDA is much larger we set K to 10. All results are the average between three runs
with random seeds. For training the domain classifier, we store one image per class
for Office-Home (total 130 images for 65 classes, 2 domains), and randomly sample
64 images per domain for VisDA (total 128 images for 12 classes, 2 domains). The
domain classifier only contains 2 fc layers.

As for SDA, there are two ways to produce attention masks: we can either manually
generate those random binary attentions (75% channels each as in the paper), or
deploy an embedding layer to automatically produce domain attention. When using
embedding layer which takes input the domain id, the domain attention comes from:

Ai∈[s,t ] = Si g moi d(100 ·ei ) (4.7)

where ei is the output of the embedding layer, and the constant 100 is to ensure a
near-binary output, but still differentiable. When training on the source domain, we
use all domain attention masks (both for source and target) as mentioned in the paper,
i.e., updating the embedding layer with all domain IDs. And we fix the embedding
layer during adaptation, thus the domain attentions are fixed (while the embedding
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4.4 Experiments

layer can also be updated). In the experiments, we find that using the embedding layer
for producing SDA obtains similar target performance than manually generating them
randomly and use this in our implementation.

4.4.1 Comparing with State-of-the-art
Target-oriented Domain Adaptation. We first evaluate the target performance of
our method compared with existing DA and SFDA methods. The results on the VisDA
and Office-Home dataset are shown in Tab. 4.1-4.2, our results are using target attention
At . In these tables, the top part (denoted by × in the source-free column) shows results
for the normal setting with access to source data during adaptation. The bottom one
(denoted by

p
in the source-free column) shows results for the source-free setting. Our

method achieves state-of-the-art performance on VisDA surpassing SHOT by a large
margin (2.5%). The reported results clearly demonstrate the efficiency of the proposed
method for source-free domain adaptation. Interestingly, like already observed in the
SHOT paper, source-free methods outperform methods that have access to source data
during adaptation. Our method is on par with existing DA methods on Office-Home,
where our method gets the same results as the DA method SRDC [132] and is a little
inferior to the SFDA method SHOT (0.5% lower than SHOT).In addition, we show the
results of DANCE [111] with and without source data in Tab. 4.1 which are almost the
same. Since both of DANCE and our method are using neighborhood information for
adaptation, these results may imply that source data are not necessity when efficiently
exploiting the target feature structure.

Generalized Source-free Domain Adaptation. Here we evaluate our method under
the G-SFDA setting. Since we leave out part of the source data for evaluation, we need
to reproduce current SFDA methods. 3C-GAN [69] did not release code, we therefore
only compare with the source-free method SHOT [73] reproduced by ourselves based
on the author’s code. We also report the results under the GSFDA setting in Tab. 4.3,
where 20% of source data is for evaluation on source data. The results from SHOT
are reproduced by ourselves based on their code, since the original SHOT uses 90%
of source data for pretraining and does not report the results on source domain. As
shown in Tab. 4.4-4.5, first our method (w/ domain-ID) obtains a significantly higher
H value improving SHOT by 8.8% on Office-Home and 4.6% on VisDA. The gain
is mainly due to superior results on the source dataset, since SHOT suffers from
forgetting. Compared with the source model, our method still has a drop of 2.1%
and 9.2% lower on Office-Home and VisDA, implying there is still space to explore
further techniques to reduce forgetting. We also report the results for domain agnostic
evaluation, where we use the domain classifier to estimate domain-ID. As shown in
the last row of Tab. 4.4 and Tab. 4.5, with the estimated domain-ID, our methods can
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Chapter 4. Generalized Source-free Domain Adaptation

get similar results compared with the domain aware method, and still report superior
H values compared to SHOT. Note there is still source performance degradation, since
we only deploy one SDA module before the classifier. The forgetting is caused in the
layers inside the feature extractor. One factor is the statistics in the BN layers which
will be replaced by the target statistics after adaptation. If we would adapt the BN
parameters back to the source domain (by simply doing a forward pass to update BN
statistics before evaluation), we found that this leads to a performance gain (0.7% and
1.6% on Office-Home and VisDA respectively) on the source domain.

4.4.2 Analysis and further experiments
Training curves. As shown in Fig. 4.3(a), with SDA the source performance during
the whole adaptation stage is quite smooth, which proves the efficiency of SDA.

Number of nearest neighbors K . In Fig. 4.3(b), we show the results with different
K ∈ {1,5,10,15,20,30} in Eq. 4.1 on VisDA. Our method is quite robust to the choice
of K , only K is 1 results in lower results. We conjecture that only using a single nearest
neighbor in Eq.4.1 maybe noisy if the feature locates in dense regions.

Ablation study of SDA. We show the results of removing the SDA in the left of
Tab. 4.6. As expected removing SDA leads to a large drop in source performance.
Unexpected is that removing SDA also deteriorates target performance: a lot on VisDA
(10.4↓), and a little for Office-Home (0.6↓). To further investigate it, we check how
well LSC works with and without SDA on VisDA in Fig. 4.4; here Accn means the
percentage of target features which share the same predicted label with its 3 nearest
neighbors, and among those features Accnp means the percentage having the correct
shared predicted label. According to the results, LSC can lead to good local structure
(most neighbors share the same prediction), however the prediction maybe wrong if
removing SDA, this is especially the case for class 5 and 11 which have totally wrong
prediction (Accnp is 0). This may imply keeping source information with SDA is
helping target adaptation.

Domain classifier. We report results as a function of the number of stored images for
training domain classifier (right of Tab. 4.6). For Office-Home, we ensure at least one
image per class. The results show with a small amount of stored images, the learned
domain-ID classifier works well.

t-SNE visualization. We visualize the features before and after adaptation, which
are already masked by the different domain attentions, the source and target features
are expected to cluster independently, just as shown in Fig. 4.5. The source clusters
maintain well after adaptation, and the disordered target features turn into more
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structured after adaptation. We also visualize features in the shared and specific
domain channels. As shown in Fig. 4.6, features in the shared domain channels cluster
together, but features in the specific domain channels are totally separated across
domains.

Continual Source-free Domain Adaptation. We also provide results (domain
aware) of continual source-free domain adaptation in Tab. 4.7. The results show
that it can work well for all domains. The interesting thing is that adapting to one
target domain will improve the performance on not-seen target domain, for example,
when adapting the model from source domain Cl to the first target domain Ar, the un-
seen target domain Rw also gains. The reason is that the information learned currently
is also helpful for future target domain. Note for some target domains, the result is
lower compared with directly adapting from source to the domain, the reason is that
we decrease the learned channels by using more gradient regularization as in Eq. 4.6,
implying more capacity is needed for adapting to more domains.

Before Adaptation After Adaptation

Figure 4.5: t-SNE visualization of features before and after adaptation on task Ar→Pr
of Office-Home. The blue are source features while the red are target.

4.5 Conclusion
In this chapter, we propose a new domain adaptation paradigm denoted as General-
ized Source-free Domain Adaptation, where the learned model needs to have good
performance on both the target and source domains, with only access to the unlabeled
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Domain Shared Domain Specific

Figure 4.6: t-SNE of features from domain shared and domain specific channels after
adaptation (task Ar→Pr on Office-Home). The blue are source features while red for
target.

target domain during adaptation. We propose local structure clustering to keep local
target cluster information in feature space, successfully adapting the model to the
target domain without source domain data. We propose sparse domain attention,
which activates different feature channels for different domains, and is also utilized to
regularize the gradient during target training to maintain source domain information.
Experiment results testify the efficacy of our method.
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5 One Ring to Bring Them All: Model Adap-
tation under Domain and Category Shift*

5.1 Introduction
Modern deep learning models excel at close-set recognition tasks across various
computer vision application areas. However, there are several inevitable obstacles lying
on the path to deploying those methods to the challenging real world environments.
As there may be 1) some unseen categories in practical scenarios, or 2) distributional
shift between training and testing data. The first problem is usually defined as open-
set recognition (OSR) [15, 33, 95, 126, 131, 139, 162] where the model should be
able to distinguish samples as coming from unseen categories. The second problem
is mostly investigated in the domain generalization (DG) [40, 108, 123, 140, 145]
and domain adaptation (DA) community [20, 21, 23, 74, 82, 83, 86, 132, 135, 164].
DG aims to tackle the domain shift problem in the absence of target domains, while
DA seeks to transfer knowledge from labeled source domains to unlabeled target
domains with training on them with utilizing both labeled source and unlabeled
target data, there is distribution/domain shift between source and target domains. In
recent years, several works introduce open-set recognition into DG and DA, which
are formalized as open domain generalization (ODG) [125, 174], open-set domain
adaptation (OSDA) [9, 27, 28, 54, 79, 99, 116] and universal domain adaptation
(UNDA) [29, 66, 75, 111, 113, 161], respectively.

Table 5.1: Related setting. Cs and Ct denote label set of source and target domain
(for evaluation), P s and P t denote source and target distribution, transductive means
model can be trained on target data.

Task C s ===C t P s ===P t Transductive
Open-set Recognition (OSR) ✗ ✓ ✗

Domain Generalization (DG) ✓ ✗ ✗
Open Domain Generalization (ODG) ✗ ✗ ✗

Domain Adaptation (DA) ✓ ✗ ✓
Open-partial Domain adaptation (OPDA) ✗ ✗ ✓

*This chapter is a preprint under reviewing, 2022 [159]
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The various settings described above are summarized in Tab. 5.1. Usually one
method tailored for a specific setting in Tab. 5.1 does not work well under a dif-
ferent setting. Most existing works in Open-set Recognition are computationally
demanding, either requiring the generation of unknown categories [95] or conducting
additional learning [15, 57, 131]. Additionally, those methods are likely to suffer from
performance degradation if test data are from different distributions. The recent Cross-
Match [174] tackles Open-set Single Domain Generalization problem. It proposes to
use multiple open class detectors which are put on top of existing single domain gener-
alization methods, and it achieves good results at the expense of introducing multiple
open-set detectors and auxiliary unknown sample generation. For open-partial domain
adaptation, most works are based on an explicitly designed unknown-sample rejection
module, which typically requires various hyper-parameters. More importantly, those
OPDA methods all require access to source data during target adaptation, which is
infeasible if having data privacy issues and deployed on devices of low computation
capacity.

In this chapter we investigate how to detect open classes efficiently under the
domain shift. Thus, a question arises, how to build a model training from only known
categories aiming to learn to distinguish samples of unknown categories? Since we
have no access to unknown class data, we can only use the known class data to train
this classifier. We hypothesize that the closest (most similar) class to any known class
can be an unknown class. Given the open-endedness of the unknown class this is a
reasonable assumption. This hypothesis allows us to train the classifier, enforcing
the most probable class to be the ground truth class, and the runner-up class to be
the background class for all source data. This is achieved by introducing an extra
category in the classifier which represents the unknown classes, during training on
samples of known categories (yielding a (n + 1)-way classifier where n is the number
of known classes), the classifier is expected to output the largest score for the ground
truth class, and the second-largest score for unknown class. This way, the model can
learn to reject samples of unknown categories by only training with known classes.
The resulting model training on source data can be directly deployed to open-set single
domain generalization, in other words, it can detect open class efficiently whether
there is domain shift or not.

Furthermore, our source model with strong capacity to distinguish unknown
categories can be easily adapted to target domain without access to source data under
the challenging source-free open-partial domain adaptation setting, where both source
and target domains have their private classes. We propose to simply use a weighted
entropy minimization to achieve the adaptation.

We summarize our contributions as below:

• We propose a simple method called OneRing, which excels at recognizing open class
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(even with domain shift) after source training, thus it can be directly deployed to
open-set single domain generalization (OS-SDG) and open-set recognition (OSR).

• We can easily adapt the source model to target domain by using weighted entropy
minimization under source-free open-partial domain adaptation setting (SF-OPDA).

• In experiments, we show our method is on par with or outperform current state-of-
the-art approaches on several benchmarks for various different tasks, which proves
the efficacy and generalization ability of our method. Augmented with a close-
set DA approach, our source-free method surpasses current open-partial domain
adaptation methods by a significant margin.

5.2 Related Works
Open-set Recognition. Open-set recognition (OSR) aims to recognize samples of
unknown categories which do not exist in the training set. Several recent methods in
OSR do not utilize extra data for training. OpenHybrid [162] introduces a flow-based
density estimation module, and ARPL [14, 15] proposes to learn a reciprocal point per
category, which is intuitively regarded as the farthest point from the corresponding
feature group. More recently [139] shows that actually OSR performance is enhanced
when improving the model performance on the training set, for example by using
improved data augmentation and other training tricks. In this chapter, we propose a
simple model training directly with two cross entropy losses without either auxiliary
data or an extra learning process. Our proposed OneRing classifier shares similarity
with Proser [169], which aims to assign the second-largest logit to the unknown classes.
However, Proser is much more complex compared to ours: it first trains a good |Cs |-
way close-set classifier and then augment this classifier to |Cs |+C -way, and retrain;
Further, it needs to synthesize novel samples for training the |Cs |+C -way classifier;
And they also need to calibrate the output of the dummy classifier over the extra
validation set by ensuring 95% of validation data are recognized as known. While
in this chapter, we directly train the |Cs |+1-way classifier with a simple objective;
Another main difference is that they only address open-set recognition, while in our
paper we also consider the domain shift, i.e., the challenging source-free open-partial
domain adaptation.

Domain Generalization. In Domain Generalization (DG), a model is typically
trained on multiple labeled source domains. It is expected to have good generalization
ability on unseen target domains with which domain shift exists. A typical solution
for domain generalization is to learn domain invariant features, which can be achieved
by meta learning [24, 64, 65] or additional data generation [170, 171]. In recent years,
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there are several DG works that only use a single source domain. This setting is
known as single domain generalization (SDG) [26, 68, 104, 145]. While most of
those methods only consider the situation where source and target domains share the
same label space, Open Domain Generalization (ODG) [125] is recently proposed to
deal with the problem where the target domain contains open classes. More recently,
CrossMatch [174] introduces an even more challenging setting called Open-set Single
Domain Generalization (OS-SDG) which only relies on one source and where the
target domains contains unknown categories. CrossMatch is built on a complex
network model and needs to synthesize samples of unknown categories. It also applies
entropy-based unknown class rejection with a manually set threshold. In this chapter,
our simple source trained model can be directly deployed to OS-SDG task and gets
surprisingly decent results.

Domain Adaptation. Early methods to tackle domain adaptation (DA) conduct fea-
ture alignment [83, 130, 136] to eliminate the domain shift. DANN [31], CDAN [84]
and DIRT-T [124] further resort to adversarial training to learn domain invariable fea-
tures. Similarly, [62, 88, 115] are based on multiple classifier discrepancy to achieve
alignment between domains. Other methods like SRDC [132], CST [80] address
domain shift from the perspective of either clustering or improved pseudo labeling.
And there are also methods considering category shift source and target domains. They
can be grouped into partial-set DA [11, 12, 78], open-set DA [9, 79, 100, 116] and
universal DA [29, 66, 111, 113, 161] depending on the intersection degree of source
and target label space. OVANet [113] is a universal DA method. It trains extra n binary
classifiers with hard negative classifier sampling to reject unknown samples, OVANet
needs to check the normal classifier head and the corresponding binary classifier for
the final prediction. While in this chapter, we simply train a n +1-way classifier with
normal cross entropy, and the final prediction is directly provided by the classifier.

Source-free Domain Adaptation. Recently, several works address source-free do-
main adaptation (SFDA), where a source pretrained model is adapted to target without
source data. SHOT [73] proposes to use mutual information maximization along with
pseudo labeling. BAIT [156] adapts MCD [115] to source-free setting. 3C-GAN [69]
resorts to fake target-style images generation. HCL [45] conducts Instance Discrimi-
nation [148] over different historical models to cluster features, with the companion of
pseudo labeling. A2Net [149] learns extra classifier specifically for the target domain
and introduce a category-wise matching module for feature clustering. G-SFDA [157]
and NRC [155] are all based on neighborhood clustering through local prediction con-
sistency. AaD [158] further treats SFDA as a typical unsupervised clustering problem
and proposes to optimize an upperbound of a clustering objective. Beyond close-set
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DA, FS [59] and USFDA [58], which are for source-free open-set and open-partial
DA respectively. However, they both synthesize extra training samples of unknown
categories, which help to detect the open classes. OSHT [28] tackles source-free
open-set DA, which adopts pseudo labeling for adaptation and entropy-based metric
to reject open classes. UMAD [75] is for source-free universal DA, it proposes an
informative consistency score to detect open class, then adopts mutual information
for source-free adaptation.. In this chapter, we show that our source pretrained model
can be adapted to the target domain easily by simply minimizing entropy to achieve
source-free open-partial DA.

5.3 Method

5.3.1 Preliminary
In this chapter, we divide data samples into two groups/domains: the labeled source
domain with Ns samples as Ds = {(xs

i , y s
i )}Ns

i=1 on which the model will be first trained,
and the unlabeled target domain with Nt samples as Dt = {x t

i }Nt
i=1. Dt is used for

evaluation. We denote Cs and Ct as the label set of the source and target domain, and
P s and P t as the distribution of source and target data respectively. In this chapter,
we consider three different tasks that vary in the relation between source and target
domain data: 1) Open-set Recognition† (OSR) where the model is only trained on the
source domain, and directly tested on the target domain which contains some unknown
categories but without domain shift (Cs ⊂Ct ,P s =P t , inductive); 2) Open-set Single
Domain Generalization [174] (OS-SDG) which is similarly to OSR trained on a
single source domain, however here there exists a domain shift between source and
target domains (Cs ⊂ Ct ,P s ̸= P t , inductive); 3) Source-free open-partial domain
adaptation (SF-OPDA) which is similar to OS-SDG, here the source model has to
adapt to the target domain without access to any source data and both domains have
private categories (Cs ∩Ct ̸= ;/Cs /Ct ,P s ̸=P t , transductive). For these settings, we
use the same network model containing two parts: a feature extractor f and a classifier
head g .

5.3.2 Source Training: One Ring to Find Unknown Categories
The first stage is to train a model on the labeled source domain which has |Cs |
categories. We expect the resulting model to have the ability to detect unknown
categories which do not exist in the source data. To achieve this, we build a classifier
head as a (|Cs |+++1)-way classifier, where the additional dimension aims to distinguish

†Results for OSR are in the appendix, only aiming to show the generalization ability of our method.

71



Chapter 5. OneRing for Model Adaptation under Domain and Category Shift:

K
n
o
w
n
C
la
ss
es

Sa
m
p
le

D
o

g

S
h

e
e

p

U
N

K

C
a

t
τ

1

τ
2

τ
3

τ
4

L
o
gi
ts

p
2

p
3

p
4p
1

1 0 0 0

C
ro
ss

E
n
tr
o
p
y

p
’ 2

p
’ 3

p
’ 4

p
’ 2

p
’ 3

p
’ 4

0 0 10 0 1

C
ro
ss

E
n
tr
o
p
y

S
o

u
rc

e
 T

ra
in

in
g

 o
n

 K
n

o
w

n
 C

a
te

g
o

ri
e

s

C
o

n
st

ra
in

t:
  τ

1
 >

 τ
4

 >
 τ

2
 ,τ

3

O
n

e 
R

in
g

m
o
d
el

Tr
ai

n
 w

it
h

 s
ta

n
d

ar
d

 C
E 

lo
ss

Tr
ai

n
 w

it
h

 2
 C

E 
lo

ss
e

s

Figure 5.1: (Left) Illustration of training OneRing model on source data with only
known categories. (Right) Toy Example, the decision boundaries and prediction
regions (colorized randomly) after training on 3 known classes with (3 + 1)-way
classifier. Purple points are from unknown category.
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unknown categories. Then the following problem arises: how to train a (|Cs |+1)-way
classifier without any sample from the last/unknown category? Note, if only training
with the normal cross entropy (CE) loss on the source data, the model cannot directly
give prediction to unknown categories.

As mentioned in Sec. 5.1, we hypothesize that any non-ground-truth category
could be regarded as unknown categories. This hypothesis gives us a feasible solution
to train a open-set classifier without actually accessing open classes. Specifically, we
propose to use a simple variant of cross entropy loss with only samples of known
categories to train the (|Cs |+1)-way classifier, which has 2 properties: 1) The largest
output logit of the source samples corresponds to the ground truth class and 2) The
second-largest output logit of source samples will be the unknown class ((|Cs |+1)-th
class in classifier). This way, the model is expected to detect samples of unknown
categories even without training on them. The proposed objective to achieve it is
formalized as follows:

Lsour ce = Exi∼Ds [Lce(p(xi ), yi )+Lce(p̂(xi ), ŷi )] (5.1)

where p(xi ) = g ( f (xi )) ∈ R|Cs |+1 is the output vector of the (|Cs |+1)-way classifier,
while p̂(xi ) ∈R|Cs | is the output vector removing the dimension corresponding to the
ground truth class, and ŷi ∈R|Cs | is a one-hot label with unknown class as ground truth
label. As illustrated in Fig. 5.1 (right), if we have a sample xi belonging to the first
class, the first CE loss in Eq. 5.1 is the typical CE loss on p(xi ) with ground truth
label, p̂(xi ) is produced by removing the first dimension and the second CE loss is
applied on p̂(xi ) with unknown (last) category as label.

We adopt a toy example to illustrate it. As shown in upper part of Fig. 5.1 (right),
we generate isotropic Gaussian blobs with 4 categories, where the last one is treated
as the unknown category (in Purple) and others as known classes (thus |Cs | = 3). We
first train the (|Cs |+1)-way classifier which contains 4 linear layers with the normal
cross entropy loss on samples of known categories, and then evaluate it on all classes.
Upper part of Fig. 5.1 (right) shows that the samples of the unknown category (Purple)
are misclassified as there are only 3 prediction regions for 3 known categories. As
shown in lower part of Fig. 5.1 (right) that there are 4 prediction regions (3 known + 1
unknown categories), after training on 2 CE losses the classifier can detect samples
of unknown category which is unseen before. We attach a demo video to show the
difference between training the (|Cs |+1)-way classifier with only standard CE loss
and those 2 CE losses.

An intuitive understanding of the proposed method is that, we can split the (|Cs |+1)-
way classification into 2 levels: 1) if we check the prediction p(xi ) we would say xi

has to belong to category yi ; 2) if we check the prediction p̂(xi ) we would say that xi

is impossible to belong to all other categories except the potential unknown categories.
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Since in Eq. 5.1 the output score of unknown category (last dimension) will always
rule other non-ground-truth categories, we call the last dimension of the classifier head
as OneRing dimension and our model as OneRing. In the experimental section, we
will show that our OneRing model trained on source data can be directly deployed to
open-set recognition and open-set single domain generalization.

5.3.3 Target Adaptation: One Ring to Bind All Categories without
the Source

Our source-pretrained OneRing model is empowered with the ability to recognition
unknown classes in the target domain. We further posit that it can easily be adapted
to target domains where domain shift and unknown categories exist. The key part is
to rectify the wrong predictions due to the domain shift. We propose to simply use
entropy minimization, which is widely used in DA [73, 84, 111, 113, 124], to achieve
adaptation with only a slight but indispensable modification:

Lt ar g et = bs

n̂kal l

Eȳi∈Cs Lent(p(xi ))+ bs

n̂ual l

Eȳi∈Cu Lent(p(xi )) (5.2)

which is computed in the mini-batch (bs denotes batch size), and ȳi is the predicted
label, n̂kal l

is the number of samples in the whole dataset which are predicted as known
category Cs , n̂ual l is the number of those predicted as unknown category Cu also in
the whole dataset. Here bs

n̂kal l
= Nt

n̂kal l
× bs

Nt
(similar for bs

n̂ual l
), where Nt = n̂kal l

+ n̂ual l

and Nt
n̂kal l

is the reciprocal of the known/unknown category ratio (a prior information
according to the predictions). The reason to deploy these weights is to balance the two
entropy terms, and bs

Nt
is a scale factor. ‡ With this simple objective, the source model

can be adapted to the target domain under domain and category shift efficiently.

Augmented with Attracting-and-Dispersing. Since our OneRing method can equip
models to efficiently detect unknown classes, it can be used as a baseline to be
combined with methods in close-set source-free DA. Here we integrate our method
with a simple state-of-the-art SFDA method Attracting-and-Dispersing (AaD) [158],
which is introduced in Ch. 3, note AaD can not directly tackle the open-partial domain
adaptation setting. AaD has an objective with only 2 dot product terms: Ldi s for
discriminability and Ldi v for diversity, more details can be found in AaD paper. The

‡Instead of using the predictions over the whole dataset to compute known-unknown ratio, we can also
use prediction of current mini-batch for approximation (thus Nt will be replaced by bs, and similar for
n̂ual l and n̂kal l

), in the experiment we empirically found these two different estimation manners lead to
almost the same results.
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resulting objective is:

Lt ar g et+ = bs

n̂kal l

Eȳi∈Cs [Lent(p(xi ))+Ldi s +Ldi v ] (5.3)

+ bs

n̂ual l

Eȳi∈Cu [Lent(p(xi ))+Ldi s ]

where we do not deploy the diversity term for samples predicted as an unknown class
since there is only one single unknown class.

5.4 Experiments
Here we provide quantitative results and analyses related to open-set single domain
generalization and source-free open-partial domain adaptation.

5.4.1 Datasets
Open-set Single Domain Generalization. For OS-SDG the model is trained on
source data and evaluated on target data containing both known and unknown cate-
gories, but here domain shift exists between source and target domains. We use the
following benchmarks just as CrossMatch [174]: 1) Office31 [110] has 31 classes with
3 different domains: amazon (A), dslr (D) and webcam (W). The 10 classes shared
by Office-31 and Caltech-256 [38] will be used as source categories. Then the last 11
classes in alphabetical order along with the 10 source categories will be used as target
categories. Following CrossMatch, we only adopt A as the source domain, since D and
W contain a relatively small amount of samples. 2) Office-Home [141] has 4 domains:
Artistic (A), Clip Art (C), Product (P), and Real-World (R) with 65 categories. In
alphabetic order, the first 15 classes are adopted as source categories. And all classes
are used as target categories. 3) PACS [63] has 4 domains: Art Paint, Cartoon, Sketch,
and Photo. It has 7 categories. Of these, 4 classes (dog, elephant, giraffe, and guitar)
will be used as source categories and all classes will be used as target categories. For
Office-Home and PACS, the model will be trained on one domain and evaluated on all
remaining domains.

Source-free Univeral Domain Adaptation. For SF-OPDA, the model is trained
on the source domain first, then adapted to the target domain without access to any
source data. Here both the source and target domains have their private categories and
the target domain has some unknown categories. We evaluate our method on several
benchmarks following the same setting as previous work in OPDA [111, 113, 161]:
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1) Office-31 shares 10 classes with Caltech-256 which will be used as the common
categories. Then the next 10 classes in alphabetical order will be source private, and
the remaining classes will be target private. 2) Office-Home The first 10 classes in
alphabetical order are shared between domains, and the next 5 categories will be source
private, and the remaining classes are target private. 3) VisDA (VisDA-C 2017) [102]
The 6 classes out of 12 classes will be the shared categories, and source and target
domain both have 3 private classes. 4) DomainNet [101] DomainNet is one of the
largest domain adaptation benchmarks with around 0.6 million images. Following
previous works, we will use 3 domains: Painting (P), Real (R), and Sketch (S). We
will use the first 150 classes as shared categories, the next 50 classes are source private
and the remaining 145 as target private. The number of source, target and shared
categories is described in the title of each Table.

Table 5.2: Accuracy (%) on Office-31 dataset using ResNet-18. Open-set Single
Domain Generalization where |Cs | = 10, |Ct | = 21, |Cs ∩Ct | = 10. All other results
are from [174].

Metric ERM +CM [174] ADA +CM [174] MEADA +CM [174] OneRing-S
Acc 79.8 78.3 80.1 78.6 80.3 79.0 67.3

UNK 27.0 37.6 25.2 34.5 25.1 41.1 77.0
OS* 85.1 82.4 85.6 83.0 85.8 82.8 66.3

H 40.7 51.1 38.7 48.5 38.6 54.7 71.3

Table 5.3: Accuracy (%) on Office-Home using ResNet-18. Open-set Single Domain
Generalization where |Cs | = 15, |Ct | = 65, |Cs ∩Ct | = 15. Other results are copied
from [174].

Artistic Clipart Product Real World Average
OS H OS H OS H OS H OS H

ERM [56] 65.0 31.1 64.1 35.8 60.5 36.3 66.6 33.9 64.1 34.3
ERM+CM [174] 65.5 52.9 63.4 50.5 58.0 47.3 67.8 52.6 63.7 50.8

ADA [142] 68.3 32.9 65.1 42.1 60.5 34.7 67.0 34.9 65.2 36.2
ADA+CM [174] 66.3 46.7 62.6 49.3 58.7 47.5 66.8 50.5 63.6 48.5
MEADA [166] 68.3 33.3 65.3 42.1 60.4 35.7 67.0 34.7 65.0 36.4

MEADA+CM [174] 65.9 52.3 62.9 48.9 58.4 45.3 67.1 50.8 63.6 49.6
OneRing-S 63.5 58.0 63.2 59.2 57.0 55.3 63.1 57.8 61.7 57.6
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Table 5.4: Accuracy (%) on PACS dataset using ResNet-18. Open-set Single Domain
Generalization where |Cs | = 4, |Ct | = 7, |Cs ∩Ct | = 4. Other results are copied from
[174].

Art Paint Cartoon Sketch Photo Average
OS H OS H OS H OS H OS H

ERM [56] 62.2 38.9 55.3 41.0 39.2 28.9 38.3 35.7 48.8 36.1
ERM+CM [174] 63.5 44.9 57.6 48.3 38.5 30.4 42.5 41.6 50.5 41.3

ADA [142] 62.5 39.0 56.4 41.6 39.0 26.9 40.3 38.1 49.6 36.4
ADA+CM [174] 64.3 42.4 60.4 51.8 42.5 35.2 43.8 42.8 52.8 43.0
MEADA [166] 62.4 38.9 56.1 41.3 38.9 26.4 39.9 38.2 49.3 36.2

MEADA+CM [174] 62.6 41.9 60.0 51.4 41.5 35.8 43.5 41.6 51.9 42.7
OneRing-S 54.3 48.1 54.5 58.1 34.8 36.5 32.8 29.4 44.1 43.0

5.4.2 Model Details and Evaluation
For all setting, we directly adopt the prediction of our OneRing model, without using
any extra process for unknown category detection. To ensure fair comparison with
previous methods, our method is based on the original code released by OPDA method
OVANet [113] (modified for OS-SDG and SF-OPDA).

For OS-SDG, we train our OneRing model on source with Eq. 5.1 and directly
evaluate on the target. For SF-OPDA, after finishing source training with Eq. 5.1, we
will adapt the source pretrained model to target domain without using source data.
Only on the very large DomainNet under SF-OPDA setting we found that our method
had difficulties converging. Therefore, we applied a two-phase training on the source
data. In the first phase, we train with the standard CE loss. Then after convergence,
we add the second CE loss for a few epochs. For all experiments under SF-OPDA
setting, the OneRing classifier is fixed during target adaptation. When augmented with
AaD [158], we set the hyperparameter K in Ldi s same as AaD, and β in Ldi v as 1.
We use the predictions in current mini-batch to estimate the known/unknown ratio
in Eq. 5.2, since it does not require access to the whole dataset, and we will show it
achieves similar results as using the one over whole dataset.

For OS-SDG, we will report average per-class accuracy over known categories
(OS∗), unknown class accuracy (UNK) and harmonic mean (H) between OS∗ and UNK.
For SF-OPDA, we will mainly report the harmonic mean, as all previous methods did,
and also the average per-class accuracy over all categories (OS) on Office-31. Note
for OS-SDG and SF-OPDA, the model is expected to have high performance on both
known and unknown accuracy, which should result in a high harmonic mean (H). As
pointed out by ROS [9], OS is not a reasonable evaluation metric and can be quite high
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Table 5.5: Accuracy (%) on Office-31 and VisDA dataset using ResNet-50. open-
partial domain adaptation where for Office-31: |Cs | = 20, |Ct | = 21, |Cs ∩Ct | = 10;
and for VisDA: |Cs | = 9, |Ct | = 9, |Cs ∩Ct | = 6. The second highest H score is
underlined. SF indicates whether source-free.

O
ffi

ce
-3

1
SF

A
2W

D
2W

W
2D

A
2D

D
2A

W
2A

Av
g

V
is

D
A

O
S

H
O

S
H

O
S

H
O

S
H

O
S

H
O

S
H

O
S

H
H

O
SB

P
[1

16
]

✗
66

.1
50

.2
73

.6
55

.5
85

.6
57

.2
72

.9
51

.1
47

.4
49

.8
60

.5
50

.2
67

.7
52

.3
27

.3
U

A
N

[1
61

]
✗

85
.6

58
.6

94
.8

70
.6

98
.0

71
.4

86
.5

59
.7

85
.5

60
.1

85
.1

60
.3

89
.2

63
.5

30
.5

R
O

S
[9

]
✗

-
71

.3
-

94
.6

-
95

.3
-

71
.4

-
81

.0
-

81
.2

-
82

.1
-

C
M

U
[2

9]
✗

86
.7

67
.3

96
.7

79
.3

98
.0

80
.4

89
.1

68
.1

88
.4

71
.4

88
.6

72
.2

91
.1

73
.1

34
.6

D
C

C
[6

6]
✗

91
.7

78
.5

94
.5

79
.3

96
.2

88
.6

93
.7

88
.5

90
.4

70
.2

92
.0

75
.9

93
.1

80
.2

43
.0

D
A

N
C

E
[1

11
]

✗
-

71
.5

-
91

.4
-

87
.9

-
78

.6
-

79
.9

-
72

.2
-

80
.3

4.
4

O
VA

N
et

[1
13

]
✗

-
79

.4
-

95
.4

-
94

.3
-

85
.8

-
80

.1
-

84
.0

-
86

.5
53

.1
U

SF
D

A
[5

8]
✓

-
79

.8
-

90
.6

-
81

.2
-

85
.5

-
83

.2
-

88
.7

-
84

.8
-

87
.4

-
90

.4
-

87
.0

58
.3

O
ne

R
in

g-
S

69
.0

67
.9

92
.5

90
.6

96
.5

89
.4

81
.9

74
.9

64
.8

74
.8

69
.9

78
.8

79
.1

79
.4

35
.2

O
ne

R
in

g
✓

78
.8

83
.8

94
.7

95
.2

97
.5

96
.0

86
.6

85
.7

82
.0

85
.8

81
.0

84
.7

86
.8

88
.5

60
.7

O
ne

R
in

g+
✓

85
.3

85
.4

94
.0

94
.2

97
.0

93
.6

88
.4

86
.1

88
.9

90
.7

87
.3

84
.0

90
.2

89
.0

66
.1

even when UNK is 0, since OS= |Cs |
|Cs |+1×OS∗+ 1

|Cs |+1×UNK. In the following tables,

78



5.4 Experiments

Table 5.6: H-score (%) on Office-Home dataset using ResNet-50 as backbone. open-
partial domain adaptation where |Cs | = 15, |Ct | = 60, |Cs ∩Ct | = 10. The second
highest H score is underlined. SF indicates whether source-free.

SF A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg
OSBP [116] ✗ 39.6 45.1 46.2 45.7 45.2 46.8 45.3 40.5 45.8 45.1 41.6 46.9 44.5
UAN [161] ✗ 51.6 51.7 54.3 61.7 57.6 61.9 50.4 47.6 61.5 62.9 52.6 65.2 56.6
CMU [29] ✗ 56.0 56.9 59.1 66.9 64.2 67.8 54.7 51.0 66.3 68.2 57.8 69.7 61.6
DCC [66] ✗ 58.0 54.1 58.0 74.6 70.6 77.5 64.3 73.6 74.9 81.0 75.1 80.4 70.2

DANCE [111] ✗ - - - - - - - - - - - - 49.2
OVANet [113] ✗ 62.8 75.6 78.6 70.7 68.8 75.0 71.3 58.6 80.5 76.1 64.1 78.9 71.8

OneRing-S 55.7 72.4 79.6 64.6 65.3 74.6 65.9 51.5 77.9 72.1 57.8 75.0 67.7
OneRing ✓ 63.3 72.4 81.0 68.8 67.2 74.6 73.3 60.8 80.9 78.1 63.9 76.7 71.8

OneRing+ ✓ 69.5 81.4 87.9 73.2 77.9 82.4 81.5 68.6 88.1 81.1 70.5 85.7 79.0

Table 5.7: H-score (%) on DomainNet using ResNet-50 as backbone. open-partial
domain adaptation where |Cs | = 200, |Ct | = 295, |Cs∩Ct | = 150. The second highest
H score is underlined. SF indicates whether source-free.

Method SF P2R R2P P2S S2P R2S S2R Avg
OSBP [116] ✗ 33.6 33.0 30.6 30.5 30.6 33.7 32.0

DANCE [111] ✗ 21.0 47.3 37.0 27.7 46.7 21.0 33.5
UAN [161] ✗ 41.9 43.6 39.1 38.9 38.7 43.7 41.0
CMU [29] ✗ 50.8 52.2 45.1 44.8 45.6 51.0 48.3
DCC [66] ✗ 56.9 50.3 43.7 44.9 43.3 56.2 49.2

OVANet [113] ✗ 56.0 51.7 47.1 47.4 44.9 57.2 50.7
OneRing-S 59.1 42.9 43.8 35.5 39.5 52.9 45.6
OneRing ✓ 57.9 52.0 46.5 49.6 44.1 57.8 51.3

we will denote our model trained with only source data as OneRing-S, model after
target adaptation as OneRing, and model augmented with AaD after target adaptation
as One Ring+.
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Figure 5.2: H value of open-partial domain adaptation on Office-Home. We vary the
number of unknown classes as shown in the x axis. Here ’ours’ denotes OneRing
without being augmented with AaD, OVANet and ROS demand source data.

Figure 5.3: (Left) H value of our source model and entropy based rejection on A2C of
Office-Home. t-SNE visualization of features with either only source known categories
(Middle) or also with 10 source extra unknown categories (Right) from source model
on Artistic of Office-Home, where the cross is the class prototype. The red denotes
known classes while other for unknown class.

80



5.4 Experiments

Table 5.8: Accuracy (%) on open-partial DA. Results are from one random run.
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Chapter 5. OneRing for Model Adaptation under Domain and Category Shift:

Table 5.9: Ablation study (R2C of Office-Home) on the proposed weight in the
weighted entropy minimization. Results of OVANet are from our running based on
their official code.

R2C OS* UNK OS H
OVANet [113] 55.1 70.0 56.5 61.7

OneRing w/o weight in Eq.2 19.2 97.8 26.3 32.1
OneRing 57.8 71.6 59.1 63.9

OneRing+ 61.5 82.7 63.4 70.5

Table 5.10: H-score (%) on Office-Home dataset using ResNet-50 as backbone.
Open-partial domain adaptation where |Cs | = 15, |Ct | = 60, |Cs ∩Ct | = 10. The
second highest H score is underlined. SF indicates whether source-free. * indicates
using predictions over the whole dataset instead of mini-batch in Eq. 5.2.

A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg
OVANet [113] 62.8 75.6 78.6 70.7 68.8 75.0 71.3 58.6 80.5 76.1 64.1 78.9 71.8

OneRing-S 55.7 72.4 79.6 64.6 65.3 74.6 65.9 51.5 77.9 72.1 57.8 75.0 67.7
OneRing 63.3 72.4 81.0 68.8 67.2 74.6 73.3 60.8 80.9 78.1 63.9 76.7 71.8

OneRing* 60.9 72.1 80.9 67.7 66.0 73.7 73.1 60.4 81.4 77.7 63.4 78.2 71.3
OneRing+ 69.5 81.4 87.9 73.2 77.9 82.4 81.5 68.6 88.1 81.1 70.5 85.7 79.0
OneRing*+ 70.1 82.5 88.9 75.1 80.1 83.0 82.5 64.6 89.3 81.0 66.4 86.0 79.1

Table 5.11: Open-partial DA on VisDA, results of OVANet are from our running based
on their code.

VisDA source-free OS* UNK OS H
OVANet [113] ✗ 60.5 46.4 58.5 52.5

OneRing-S 25.7 55.9 30.0 35.2
OneRing ✓ 57.2 64.6 58.3 60.7

OneRing+ ✓ 65.5 66.8 65.7 66.1

5.4.3 Quantitative results
Open-set Single Domain Generalization. In Tab. 5.2-5.4, we show the results
of our source model OneRing-S on Office-31, Office-Home and PACS. ERM [56],
ADA [142] and MEADA [166] are methods originally designed for typical domain
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5.4 Experiments

Table 5.12: Open-set DA on Office-31 (VGG19), results (H) except ours are from
OVANet.

Methods source-free A2D A2W D2A D2W W2D W2A Avg
OSBP [116] ✗ 81.0 77.5 78.2 95.0 91.0 72.9 82.6

ROS [9] ✗ 79.0 81.0 78.1 94.4 99.7 74.1 84.4
OVANet [113] ✗ 89.5 84.9 89.7 93.7 85.8 88.5 88.7

OneRing ✓ 91.0 84.5 90.1 96.0 93.7 90.1 90.9

Table 5.13: Closed-set DA on Office-31 (ResNet50), results (accuracy) except ours are
from DANCE, and results of OVANet are from our running based on their official
code.

Methods source-free A2W D2W W2D A2D D2A W2A Avg
ETN ✗ 87.9 99.2 100 88.4 68.7 66.8 85.2
STA ✗ 77.1 90.7 98.1 75.5 51.4 48.9 73.6
UAN ✗ 86.5 97.0 100 84.5 69.6 68.7 84.4

DANCE ✗ 88.6 97.5 100 89.4 69.5 68.2 85.5
OVANet ✗ 88.1 97.0 99.1 88.6 68.8 67.0 84.8
OneRing ✓ 89.0 97.3 100 89.0 70.1 68.5 85.7

generalization, CrossMatch (CM) [174] is plugged into these methods which empower
them with the ability to detect unknown classes in the target domain with several
complex modules, as well as generating unknown samples. While our OneRing-S is
elegantly simple, the results show it can better detect open classes under domain shift
compared to CM. Note, we have no module specifically for DG in OneRing-S. The
fact that OneRing-S has better performance proves the efficacy of our method.

Source-free open-partial domain adaptation In Tab. 5.5-5.7, we show the results
under open-partial DA setting where SF column indicates whether source-free. Note
that our method does not need source data during target adaptation. As shown in
the tables, our source model (One Ring-S) already achieves decent H performance.
The simple OneRing with only entropy minimization already outperforms all other
methods on all 4 benchmarks, adding AaD [158] into method as shown in Eq. 5.3
(OneRing+) can further improve the results significantly, leading to 0.5%, 5.4% and
7.2% improvement on Office-31, VisDA and Office-Home respectively, and it sur-
passes the current state-of-the-art OVANet by by 2.5%, 13% and 7.2% on these 3
benchmarks respectively. We also show the detailed results of OS*, UNK and H in
Tab. 5.8.
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5.4.4 Analysis
Compare One Ring with entropy based unknown rejection. We also show the
results with entropy based unknown rejection, where a sample is predicted as unknown
if the entropy (maximal normalized) of the prediction (with normal classifier head)
is higher than a manually set threshold. Fig. 5.3 (left) shows the H value of source
pretrained model on A2C task of Office-Home under open-partial DA setting, where
the x axis denotes the threshold. Our source model gets better results without any extra
effort.

Figure 5.4: Results on PACS (OS-SDG), with different weight factors applied to the
normal CE loss.

Trade-off between 2 CE losses. In this chapter, we show results where the two CE
losses have equal weight, and hence our method does not have any hyperparameter.
However, in Eq. 5.1, we can also multiply a weight factor to the standard CE loss as
a trade-off. Intuitively, a smaller factor to the standard CE loss gives more weight
to unknown-class recognition and vice verse. The results under OS-SDG setting in
Fig. 5.4 verify this , where the x axis denotes the weight factor multiplied to the
standard CE loss. As can be seen, this trade-off can be used to further improve results.
However, for the sake of simplicity, and given the already good results, we choose not
to optimize this parameter.

Visualization of features and class prototypes. In Fig. 5.3 (Middle), we visualize
the source features and class prototypes (weights of OneRing classifier) from source
model with t-SNE. The prototype of the unknown category is in the corner with no
source features around it. In Fig. 5.3 (Right), we further visualize 10 extra unknown
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classes. It shows that those features of unknown categories will not cluster around any
of the known classes, but they are close to the unknown prototype. This implies that
the OneRing model can efficiently distinguish known and unknown categories.

Importance of weight in entropy minimization. We ablate the weights in entropy
minimization in Eq. 5.2. If removing weights, the OS*, UNK and H on R2C (Office-
Home) will decrease. In Tab. 5.9, we report OS*, UNK, OS and H on VisDA under
open-partial DA, we outperform OVANet on the metrics of both OS and H. It shows
the deployed weights are important and effective to balance the two terms in Eq. 5.2.

Known/unknown ratio estimation through mini-batch or whole dataset. In Eq.
2, we have two choice to estimate the known/unknown ratio, which will be utilized
to balance the 2 entropy terms. In Tab. 5.10, we show that these 2 different manners
lead to almost the same results. Though there may exist some imbalance mini-batches
which only contain few samples predicted as known or unknown, the results imply
that the known/unknown ratio estimated by the mini-batch is enough to achieve decent
performance. Note the Office-Home here is not a well balance (amount of samples per
category) dataset, and also in the target domain the unknown categories (50) are much
more than known (10).

Robustness to amount of unknown categories. In Fig. 5.2, we compare our source-
free OneRing (without being augmented with AaD) to ROS [9] and OVANet [113]
under OPDA setting with different amount of unknown categories from target domain.
The results show that our method is robust to the amount of unknown categories.

Results with OS*, UNK and H on open-partial DA. In Tab. 5.11, we report OS*,
UNK, OS and H on VisDA under open-partial DA, we outperform OVANet on the
metrics of both OS and H.

Results on open-set DA. In Tab. 5.12, we report the results of several open-set or
open-partial DA methods under open-set DA. Our method still gets the best perfor-
mance.

Results on closed-set DA In Tab. 5.13, we report the results of several OPDA
methods under closed-set DA, our method is still superior to other methods.
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5.5 Conclusion
In this chapter, we first introduce a simple method with the proposed OneRing classifier
head, it possesses strong ability to detect unknown categories from target data even
no matter without or with domain shift after training with two simple cross entropy
losses. Then, we further adapt the model to the target domain which contains unknown
categories, with only weighted entropy minimization and no access to source data.
In the experiment, we show that our method achieves good performance on open-set
single domain generalization and source-free open-partial domain adaptation, which
proves the effectiveness of our method.
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6 Conclusions and Future Work

6.1 Conclusions
In this thesis, we have investigated a new paradigm of domain adaptation, called
source-free domain adaptation, which aims to adapt the pretrained source model to
a new unlabeled target domain without access to the labeled source data. We also
studied situations where, after adaptation, the model is expected to not forget on the
source domain. Finally, we investigated the case where the label spaces between
different domains are not identical. For these various domain adaptation scenarios, we
proposed corresponding solutions in this thesis:

• Chapter 2: Neighborhood Reciprocal Clustering for Source-free Domain
Adaptation. In this chapter, we have introduced a source-free domain adaptation
(SFDA) method by uncovering the intrinsic target data structure. We proposed to
achieve adaptation by encouraging label consistency among local target features.
We differentiate between nearest neighbors, reciprocal neighbors, and expanded
neighborhood. Experimental results verified the importance of considering the
local structure of the target features. Finally, our experimental results on both
2D image and 3D point cloud datasets testify to the efficacy of our method.

• Chapter 3: Attracting and Dispersing for Source-free Domain Adapta-
tion. In this chapter, we proposed to tackle source-free domain adaptation
by encouraging similar features in feature space to have similar predictions
while dispersing predictions of dissimilar features in feature space, to simulta-
neously achieve feature clustering and cluster assignment. We introduced an
upper bound to our proposed objective, resulting in two simple terms. Further,
we showed that we can unify several popular domain adaptation, source-free
domain adaptation, and contrastive learning methods from the perspective of
discriminability and diversity. The approach is simple but achieves state-of-the-
art performance on several benchmarks, and can also be extended to source-free
open-set and partial-set domain adaptation.

• Chapter 4: Generalized Source-free Domain Adaptation. In this chapter, we
exploited a new domain adaptation paradigm denoted as Generalized Source-free
Domain Adaptation, where the learned model needs to have good performance
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on both the target and source domains, with only access to the unlabeled target
domain during adaptation. We proposed local structure clustering to keep local
target cluster information in feature space, successfully adapting the model to
the target domain without source domain data. We proposed sparse domain
attention, which activates different feature channels for different domains, and is
also utilized to regularize the gradient during target training to maintain source
domain information. Experimental results testify the efficacy of our method.

• Chapter 5: OneRing for Model Adaptation under Domain and Category
Shift. In this chapter, we first introduced a simple method with the proposed
OneRing classifier head, which possesses a strong ability to detect unknown
categories from target data even without or with domain shift after training
with two simple cross entropy losses. Then, we further succeeded in adapting
the model to the target domain, which contains unknown categories, with only
weighted entropy minimization and no access to source data. In the experiment,
we showed that our method achieved good performance on open-set single
domain generalization and source-free open-partial domain adaptation, which
proves the effectiveness of our method.

6.2 Future work
For future work, we are interested in extending the source-free domain adaptation to
more general scenarios, for example, starting the source-free domain adaptation from
a big foundation model that is already trained with huge amount of multimodality
data. As the foundation model such as CLIP [107] is already able to recognize novel
categories with the corresponding text prompt. Adapting this strong model to a new
environment with only unlabeled data, the resulting model can achieve novel category
discovery which not only rejects unseen classes but also distinguishes each novel
categories. In this way, it will widen the application scenarios of the foundation model.

We are also interested in expanding the downstream tasks from classification
to others, such as semantic/instance/panoptic segmentation, object detection, and
tracking, and the data modality could also be point-cloud and RGB-depth data.

And as it is possible to collect a limited amount of labeled data in the real applica-
tion, we will also consider introducing a few labeled data into the source-free domain
adaptation setting, either by manually labeling or utilizing active learning techniques.
With efficient use of the provided supervision of only a few labeled data, the model
should further improve.

As most existing works in domain adaptation need to access all target data during
the adaptation stage, we are interested in conducting source-free domain adaptation in
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an online manner, for example, fully test-time adaptation where each data point can
only be accessed once. Successful test-time adaptation can reduce the computation
burden, which is highly important for deployment in edge devices.
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