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Chapter II: Image Models

CHAPTER II

IMAGE MODELS

As it has been highlighted in Chapter I, a segmentation algorithm
should use elaborate image models as well as multiresolution decompositions
in order to improve its performance. This chapter is devoted to the discussion of
the first point; that is, stochastic image modelling. The discussion about
multiresolution decomposition is postponed to a posterior chapter.

Throughout the following chapters, images, which are denoted by I, j),
are defined on an Ny * Ny rectangular lattice:

S§G,)={G1):1<i<Ny,1<j<Ny}, (IL.1)
AN
which is usually square. Furthermore, image models assume that images are
formed by a set of regions R = { R, }, where n € [1 .. Ny * No], and each region is
characterised by a single model. Note that, in an image model, each region
may be characterised by a different kind of model. However, when defining an
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image model, the same region model is usually assumed for the whole set of
regions. Therefore, a stochastic image model is defined by the kind of
stochastic model that describes its regions.

Usually, regions are supposed to be statistically independent and, thus,
so are the different models. Moreover, given that each region should represent

a homogeneous zone within the image, each region model is assumed to be
stationary. The set of picture elements (pixels) within a region R, is denoted by

InG, D ={1G,:G, ) e Ry ). (I1.2)

Since each I(i, j) is considered to be a random variable, each one of these sets I,
is assumed to be a realisation x = { xj; } of a random field X = { Xj; }. Therefore,
the study of an image model is performed by analysing the kind of random field
characterising its regions. Given that images are defined on a discrete, finite
lattice 8 (II.1) and that they can only take discrete values, the discussion is
restricted to discrete-index random fields defined on discrete, finite lattices.

IL 1.- Gaussian random fields

In this kind of model, each region R, is characterised by a Gaussian

Random Field (GRF) [41]. The statistics of a GRF are completely determined in
terms of its mean value U and its covariance matrix C. For computing them,
the components of the random field { Xj; } can be ordered into a vector X. In this

way, the probability density function of the GRF, P(X = x) = P(X = x), has the
form

-wWT O -1 (x-
PXex {_(xu) C 1 (x-p)

1 |
)= T em Ndet(C) 12 ™ . 2 } (e

where N is the number of elements in Ry; that is, the dimension of vector x.

The computation of the joint probability of a single element of a GRF
demands the estimation of the elements of the covariance matrix and the
computation of its inverse. Note that C can be rather large since its dimensions
are NxN. In order to simplify the computation when processing the model, the
covariance matrix can be assumed diagonal [42]; that is:
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c2 ifk =1
Ck, 1= (I11.4)
0 otherwise .

In this case, elements within a region are mutually uncorrelated and
the GRF becomes a white Gaussian random field. The whiteness assumption
is usually made for mathematical tractability of the problem. Indeed, image
data do not really fit pure white Gaussian models very well. Moreover, note
that white gaussian models do not take into account the spatial distribution of
pixels within the region. For instance, a set of pixels distributed on a
rectangular region has the same parameters (same mean and white
~ covariance matrix) when distributed on a region with a very complicated
shape. Thus, both regions share the same characterisation. In addition, given
a region, pixels in its interior can be located in a different way without
changing its mean and white covariance matrix. Therefore, in order to
describe complex textures, more elaborated models (e.g.: taking into account
spatial correlation) have to be used. This case is discussed in the next section.

A second problem of Gaussian models is the estimation of the model
parameters. If the exact values of these parameters are not known a priori
(knowing them is more an academic case than a real one), they have to be
estimated from the data. As it has been emphasised in Section 1.4.5, the tasks
of segmenting an image and of estimating features of its regions are very
related. Indeed, for obtaining correct estimations a segmentation of the scene
has to be already available. Usual estimation procedures do not cope correctly
with the problem of uncertainty in the contours and result in image estimates
suffering from oversmoothing of edges and/or overgrowing of regions.

These drawbacks can be easily seen when applying Gaussian models to
bottom-up and top-down segmentation techniques. In the first case, the process
starts by analysing small regions or even assuming each single pixel as a
region. Therefore, the amount of points used to estimate the parameters of the
GREF is too small, which leads to very poor estimates. Note that, for estimating
the covariance matrix, a minimum number of points are necessary in order to
avoid det (C) = 0.

A contour image of a segmentation of the Cameraman image is shown
in Figure II.1.a. This result has been obtained by applying a bottom-up
technique (region growing) and an image model using white GRFs. The
oversmoothing of edges can be clearly seen in Figure II.1.b, where each region
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is filled with its mean gray value. This procedure for showing the
segmentation results will be utilised throughout the sequel.

Fig. IL1.- Example of segmentation using bottom-up techniques and GRFs

In top-down techniques, the problems come from the fact that the low
resolution analysis (general view of the image) may overlook some small
details. This loss of detail is owing to the fact that the parameter estimate of a
large area containing a small region does not differ too much from the
estimate of the same area without this interior region. This effect results in an
overgrowing of regions. This problem can be seen in Figure I1.2 in which a top-
down segmentation of the Cameraman image is shown. The segmentation has
been carried out by a "split & merge" algorithm and using GRF models.

In order to solve the parameter estimation problem, different solutions
have been proposed. The estimation can be helped by roughly marking the
transition between zones corresponding to different region models. To this end,
some approaches introduce external information in the estimation process
(the so-called visibility functions). This information governs the switching
between homogeneous zones. Visibility functions can be obtained by different
methods: from simple approaches based on local variance estimates [43] up to
more elaborated techniques dealing with directional and high frequency
components [44]. The main problem with all these techniques is that the
resulting functions are rather ad hoc.
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Fig. 11.2.- Example of segmentation using top-down techniques and GRF's

As it has been pointed out, white Gaussian models do not help
characterising complex regions. A way to improve the gaussian models
performance is by withdrawing the white assumption on the random field.
This translates into a covariance matrix different from diagonal. Therefore,
samples within regions are no longer independent, but do depend on some
other points of the image. This improvement leads to the concept of Markov
random fields. '

IL 2.- Markov random fields

Several 1-D and 2-D Markov processes (Markov Chains and Markov
Random Fields -MRF's-, respectively) have been proposed in the literature over
the years [41, 45]. In the image processing framework, MRF's provide with a
well-suited tool for characterising the existing relationship among nearby
pixels. In this section, image models based on MRFs are presented. Since
images are defined on a discrete, finite lattice 8 (II.1) and can only take discrete
values, the discussion is restricted to discrete-index MRF's defined on discrete,
finite lattices.
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I1.2.1.- Neighbourhood systems

In order to define MRFs, a neighbourhood system over the lattice 8 has
first to be defined:

Definition II.1: A neighbourhood system 1 related to a lattice 8 is defined
as:
n={n;c8 /Gj)e8} (11.5.1)

where n;; is the neighbourhood of site (i, j). This neighbourhood is such
that
a) (i, j) ¢ M (I1.5.ii)
b) (k, 1) € n;j implies @, j) € Nk (I1.5.iii) e

Since causality is not a natural assumption in image processing, a
hierarchical sequence of non-causal neighbourhood systems is often used. The
hierarchy of these systems is related to the maximum distance between sites
within the system.

Definition I1.2: The distance between site (i, j) and (k, 1) on a discrete,
rectangular lattice is defined as an euclidean distance

P=\V(G-k)2+(G-1)2 (I1.6) e

Given that images are usually defined on a rectangular lattice, the distance P
can only take a discrete set of values, namely {1,\[—2, 2, \/?, \/’8, ... }. The order
in this set gives the hierarchy among systems. Therefore, a first-order system
n! consists of those points located at most at a distance P = 1 of the central point
(that is, its four nearest neighbours); a second-order system n2 consists of these

points located at most at a distance P = \ 2 of the central point (that is, its eight
nearest neighbours); and so on. In Figure II.3 these two first systems are
shown, as well as the sequence of neighbourhoods systems up to 1.

It is worth noting that, although these are the most used neighbourhood
systems in image processing, other systems can also be defined. In particular,
it has to be said that non-isotropic systems satisfy conditions (II.5.ii) and
(I1.5.iii). Actually, causal systems (and thus, non-isotropic) have been widely
used in image processing [42, 45].

31
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Fig. IL3.- Hierarchical neighbourhocod systems

I1.2.2- Definition of Markov random fields

Once the concept of neighbourhood system has been introduced, Markov
random fields can be defined:

Definition I1.3: Let X = { Xj;} be a random field; that is, a collection of
random variables, one at each site of the lattice 8. X is said to be a
Markov random field with respect to (8 ,,1) and P X = x) > 0 for all x if
and only if

P Xy /X1, &, D e Q) =P X35/ Xk, &k, D € ny) (I1.7)
where Q is any subset of sites of 8 containing completely nj; but not G, j). ®

As it can be seen, the definition of a MRF is not very restrictive. Actually,
any random field defined over a finite lattice is a MRF simply assuming as
neighbourhood: mj; =8 \(, j). It has to be noticed that neither definition II.1 nor
definition II.3 demand the neighbourhood system to be the same through the
whole lattice. Therefore, a MRF having a neighbourhood system varying with
the position, =1 (i, j), can be defined. Indeed, this choice is seldom done and
MRFs are chosen to be homogeneous - same n;; for every (i, j) -. However, non-
homogeneous MRF's provide with a theoretical way of handling the problem of
boundaries in the finite lattice case. In these cases, sites near the boundary
have associated systems with fewer neighbours than interior sites. This is a
more natural manner of coping with the boundary problem than a toroidal
lattice or any periodical assumption. \

Using the concept of hierarchical neighbourhood systems, Markov-P
models have been defined [46]. The general definition deals with continuous
fields with global Markovian properties, but here, for the sake of simplicity,
only discrete Markov-P random fields with local Markovian properties are
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defined. Local properties imply that the conditional statistics of the value at a
single site Xj;j are stated. However, when working with global properties, the
conditional statistics refer to the values of a set of sites { Xj; }.

Definition II.4: A random field X is said to be a Markov-P random field
with P (X = x) > 0 for all x if and only if

P (Xjj / Xxk1, (k, 1) € Q) = P (Xj5 / X1, (k, 1) € n%) (11.8)

where Q is defined as in (I1.7) and = is the index in the neighbourhood
system hierarchy related to the distance P. ®

Following this definition, a Markov-1 and a Markov-\/—2 random field are
equivalent to a first-order and a second-order MRF, respectively. Note that the
class of Markov-P models is less general than MRF models since the former is
restricted to have a neighbourhood system with circular symmetry (isotropic
neighbourhood), whereas the latter is not.

As it has been highlighted, although Markov-P models are widely used,
other kind of MRF's relying on different neighbourhood systems have also been
studied. For instance, early works, such as [47], make use of causal

neighbourhoods. These models are usually referred as Markov mesh random
fields or unilateral MRF's.

IL.2.3.- Gibbs distributions

It is worth noticing that, until this moment, when defining an MRF no
constraint has been put on the kind of conditional probability defining the
random field. As it has been pointed out by several authors [45, 46], problems
arise when the behaviour of a random field is characterised only in terms of its
conditional probabilities P (Xj; / Xk, (k, 1) € 1), without regarding the resulting
joint probability P (X = x). This set of conditional probabilities cannot be
arbitrarily specified expecting that a joint probability, consistent with it, exists.

This problem is solved in the unpublished work by Hammersley and
Cliffor. In it, the necessity of defining a Gibbs distribution (GD) in order to have
a MRF is stated. GDs provide with a way for defining conditional probabilities
consistent with the joint probability. An extensive study of the relation between
Gibbs distributions and MRF's, as well as of different kinds of random fields
that GDs generate, can be found in [48]. Here, the discussion is restricted to the
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finite lattice case. In order to define Gibbs distributions, the concept of clique
has to be first introduced.

Definition II.5: Given a lattice 8 and a neighbourhood system 7, a set of
sites c is said to be a clique if and only if this set is

a) a single point, or

b) if (4, j) # (k, 1), if (4, j) € c and if (k, 1) € ¢ then @, j) € NI
That is, if any two elements in the set are neighbours of each other. The
set of all cliques { ¢ } of (8, 1) is denoted by C. ®

The set of cliques which can be defined on a first-order C 1 and on a
second-order C 2 neighbourhood systems are shown in Figure 11.4. Note that a
configuration containing three sites in diagonal does not form a clique in 12.
This exclusion is owing to the fact that an extreme site in this configuration
does not belong to the neighbourhood of the other extreme site. The extension to
higher order neighbourhoods is straightforward. It has to be noticed that, by
definition, C ™ contains not only the set of cliques only related to n® but also the
whole cliques of € ™1,
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Fig. IL4.- First-order and second-order neighbourhood systems and their sets of cliques
f

Once the clique concept has been introduced, a Gibbs distribution can be
defined as follows:

Definition II.6: A random field X = { X;; } defined on a lattice 8 has a
Gibbs distribution or is called to be a Gibbs random field with respect to
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a neighbourhood system n if and only if its joint distribution is of the
form

P (X =x) = 7 exp (-U)), (11.9)

where U(x) is the energy function, and Z is simply a normalising
constant called the partition function:

Z =Y exp (- UX)) . (I1.10) o

The energy function U(x) is usually expressed as

U@ =13 Ve - (IL.11)

ceC

where x is the site on which the neighbourhood is computed, V¢ (x) represents
a potential associated with the clique ¢ of the neighbourhood of x and T is a
constant that stands for "temperature’. Taking into account that the origin of
GDs lies in statistical mechanics, the terminology used in their definition
should not surprise. Actually, the first known work on GDs dates of 1925 and
dealt with modelling the magnetic properties of ferromagnetics materials (the
nowadays called Ising model [48]). For such a goal, a binary, homogeneous,
isotropic field was proposed.

The physical interpretation of the joint distribution of (I1.9) is that the
smaller the energy of a realisation U(x), the more likely the realisation is.
Moreover, paying attention to (I1.11) it can be seen that, for the same clique
potentials in a realisation, a variation of the temperature T results in a
variation of the probability. This variation is in such a way that when T is large
(the system is hot) the probability is less dependent on the potentials, and
several realisations have similar high probabilities. On the contrary, when T is
small (the system is cold), the influence of the potentials increases and the
distribution P(X = x) becomes more peaked. Note that the behaviour of this
distribution seems suitable for modelling natural systems such as lattice gas
or ferromagnetics systems.

As it has been said above, the main characteristic of GDs is their one-to-
one relation equivalence with MRFs. This equivalence is established in the
Hammersley and Clifford's theorem.
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Theorem II.1: A random field X = { Xj; } is a MRF with respect to the
neighbourhood system m and P (X = x) > 0 for all x, if and only if X is a
Gibbs random field with respect to the same system 1 and its associated
cliques. ®

This theorem was proven in the 1970's independently by several researchers.
For a proof, as well as for a detailed account of the MRF-GD correspondence,
the reader is refereed to [48] and references therein. The power of this theorem
is that, unlike in the simple MRF case, the GD characterisation of the joint
distribution of the random field is free from consistency problems.
Furthermore, the MRF-GD equivalence translates into a one-to-one
relationship between a global description of a random field (provided by GDs)
and a local one (provided by MRFs). Therefore, this equivalence leads to the
possibility of using global characteristics when modelling random fields, but
local features when processing them.

In the segmentation framework, MRFs can be used to obtain global
maximum likelihood segmentations of images modelled by elaborate random
fields. As it has been said in Chapter I, a complex random field can
characterise textured areas by taking advantage of spatial correlation among
samples. Due to the MRF-GD equivalence, algorithms can yield global
maximum likelihood segmentations coping only with local computations. As it
will be seen in the following sections, the main problem when seeking the
maximum of likelihood functions is that these functions are neither linear nor
unimodal. Therefore, maximisation procedures demand the use of elaborated
techniques or suboptimal methods.

The Gibbs description of a random field is basically performed by means
of an exponential distribution. Nevertheless, the definition of the clique
potentials gives as much flexibility as the definition of the neighbourhood
system in the case of MRFs. Thus, by correctly choosing the set of potential
V(x), very complex distributions can be formulated as special cases of GD, as
above stated. A very detailed description of these possibilities can be found in
[45, 48]. Here, only three cases are discussed, ﬁ'esenting for each one their
applications to image processing problems as well as their main advantages
and drawbacks.
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I1.2.4.- Gaussian Markov random fields

As it has been stated in Section II.1, the assumption of a Gaussian
random field (GRF) with a region of support in which the samples are
correlated leads to the concept of MRF's. Therefore, any GRF can be defined and
studied as a specific case of MRF (even the case of white gaussian random
fields if the neighbourhood system is reduced to the zero site case 10). Actually,
several authors have proposed and studied different Gaussian image models
which are special cases of MRFs. In this way, Gauss-Markov Fields are
discussed in [46], Auto-normal Processes in [48] and Spatial Markov Processes
in [49].

The probability density function of a Gaussian random field is given in
(I1.3). By assuming zero mean (U = 0) for simplicity, the exponent of this
expression reduces to a function of ( xT C -1 x ). Note that the rows of the matrix
have zeros everywhere except in a few locations. Actually, in a generic i-th
row, these non-zero elements correspond exactly to the locations of the
neighbours of the i-th pixel in the neighbourhood system 1. This analysis
allows to write the conditional probability of an element in a GRF, given the
value of the other sites in 8, as [45]:

X" V'- . X 2
P (X;i/ Xi, (k, D e Q):——(z—;)—; exp{-( ’J+22;12"“ k1) } (I1.12)
2

where Q is defined as in (I1.7) and the summation is performed on (k, 1) € nj;.
Note that (II.12) satisfies (I1.7) and, therefore, the statement saying that any
GRF is a special case of MRF's is true. This kind of MRF is called a Gaussian
Markov Random Field (GMRF).

I1.2.5.- Auto-binomial models

From the class of MRFs called auto-models [48], auto-binomial models
are one of the most utilised subclasses. It is easier to specify them in terms of
their conditional probabilities, rather than in terms of the clique potentials.
The model assumes that the conditional probability is binomial with parameter
6 and number of tries G-1 [41]. Moreover, each random variable Xj; within the
random field can take values in the set {0, 1, 2, ..., G-1}, where, in the image
modelling case, G is the number of possible gray levels. Therefore, the
expression for the conditional probability is
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P Xjj =m /Xy, k, 1) e njj) = (Gn;ll )9 m(1.g)Glm  (I1.13)
where 0 = 1—?‘5}—{;1(),—1,—) , T being a function of nj;. For a neighbourhood of first
order, n 1,
T = o+ B1 (-1 + X4, j+1) + B2 (%i-1,j + Xir1, j) - (I1.14)

For higher order neighbourhood systems, the parameter T follows an
analogous expression. The main interest of auto-binomial models is that the
values of their parameters (o, By, B2, ...) provide with an easy tool to control the
main directions of the texture that they are modelling. For instance, in the first
order system, PB; controls clusterings in the vertical direction whereas B2
performs the horizontal control.

I1.2.6.- Strauss processes

First, it has to be underlined that the name given to this kind of random
fields is not universally accepted. The same kind of models is sometimes
referred as Multi-Level Logistic models, Generalised Ising models or used
without giving any name to it. In this model, the clique potentials are defined
depending on the homogeneity of the cliques; that is, given a non-single-site
clique c

B1 if all x; in ¢ are equal
Ve ) = (11.15)
-B2 otherwise ,

where, usually, B1 = B2. Potentials of single-site cliques are defined separately:
V) = o. ~

In the case of binary-valued functions, Strauss processes, as well as
auto-binomial models, are equivalent to the Ising model [48]. The main feature
of Strauss models is that clique potentials only rely on whether all values
within the clique are the same or not; that is, they do not take into account the
actual values of Xjjs. This characteristic (sometimes referred as "colour-
blindness") makes Strauss processes very suitable for modelling labelled
images and Hidden Markov processes.
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I1.2.7.- On applying MRF's to image processing

In this section, an historical overview on the applications of MRFs
within the framework of image processing is presented. Since the results
obtained in different disciplines (mainly estimation, segmentation and
synthesis) have interacted, this overview is not restricted to the segmentation
case.

GMRFs are widely used in image processing, being first applied to the
frameworks of image restoration, coding, estimation and synthesis [42]. As it
has been highlighted in Section II.1, the main problem arises when trying to
choose or to estimate the parameters of such models. In [50], studies on the
optimum neighbourhood and estimation method for GMRFs are performed.
The work is carried out by analysing several synthetic (Gaussian and non-
Gaussian) texture images (each image containing a realisation of a random
field). The estimates are verified by comparing the quality of the results
analytically as well as visually.

New maximum likelihood estimation methods are proposed in [50] and
compared with the coding estimate proposed in [48] which requires the solution
of a set of non-linear equations. Better results are obtained both in
computational load and in estimation accuracy by these new techniques.
However, these techniques are still cumbersome and difficult to use reliably.
Regarding the choice of neighbourhood system in a GMRF, an algorithm for
estimating the optimum system is presented in [50]. It performs fairly well
when the analysed random field is a GMREF itself, although it is shown that
models with different parameters yield similar results. In the non-Gaussian
case, though no results are shown, it is said that the quality of synthesised
pictures is rather inferior. ‘

A work similar to that in [50] is performed in [51] dealing, in this case,
with auto-binomial models. In this study, natural and synthetic textures are
analysed both in the binary and gray level case. When dealing with gray level
textures, the gray scale is quantised into eight gray levels, given that the
estimation algorithm proposed is very sensitive to the number of gray levels.
Moreover, the largest neighbourhood system studied is of fourth order, since,
the estimation of parameters of larger ones requires too many random field
samples. Actually, the authors claimed that even experiments on third-order
models cannot be reliably performed.
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The results obtained in the estimation and synthesis of binary random
fields are good. However, in the case of gray level images, the results present
some drawbacks. The reason for these drawbacks is mainly twofold. First,
some gray level textures may need higher than third order models to be
characterised [52] and, as it has been before commented, such models cannot
be reliably analysed. Secondly, binomial models have an intrinsic problem
when trying to model sharp transitions. This problem results in blurry
synthesised textures. As it is explained in [51], "The binomial distribution is
unimodal and, as a consequence, values above and below the mean gray value
are highly probable also. This results in a tapering of the gray scale around
maxima and minima. Such a tapering as one moves away from black or white
points has an effect similar to a neighbourhood averaging or low-pass filter."

Summarising, image estimation relying on MRFs (either GMRFs or
other kinds) arises some problems. Parameter estimation techniques are
rather complex even for low order models. In addition, low order models do not
characterise correctly all kinds of data. Finally, when using high order
models, reliable estimations can only be achieved by supplying the algorithm
with large amounts of data.

It is worth noting that, in the segmentation case, the fact of not knowing
the boundaries of the models should be added to this list of problems; that is,
not having a priori the segmentation of the image. Taking into account the
problems when estimating the MRF parameters, the first intent to produce
global maximum likelihood segmentations made use of GMRFs for modelling
images, assuming that the parameters of the texture fields were known, as
well as the number (N) of regions [53]. That is, the problem of estimating the
model parameters is avoided and only the correct location of each model within
the image is sought. '

The algorithm presented in [53]/uses a quadtree data structure and, at
each block of the quadtree representation, a segmentation into two regions is
carried out as a maximum likelihood estimation. That is, each block is
supposed to consist of only two different regions, out of N possible ones,
modelled each one by a GMRF. The sought segmentation of each block is that
which maximises the likelihood of the data. At each level of the quadtree, the
connectivity of regions is preserved as much as possible.

In a posterior extension of this work [54], the case of having GMRFs with
unknown parameters is discussed. This work provides with two possible
solutions for estimating the parameters: if the image is simple enough, to rely
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on edge detectors in order to have a first estimate of the boundaries of the
random fields; for complex images, to perform a rough segmentation and to
estimate the parameters from it. In the case of coloured (non-white) GMRFs,
the author proposes to apply first the algorithm assuming white GMRF's and to
estimate the parameters of the coloured ones on the resulting segmentation.
Then, the algorithm should be re-applied with the new parameters.

Main drawbacks of these algorithms are rather clear. First, in both
cases, the number of regions within the scene has to be known before hand.
Moreover, in order to overcome the problem of looking for the segmentation
maximising the likelihood of the whole data, a two-region partition is assumed
at each block of the quadtree decomposition. This simplification, which can be
acceptable at low levels of the tree, may lead to really erroneous segmentations
at its high levels. Note that, due to the quadtree data structure, mistakes made
when segmenting at high levels cannot be fixed at lower ones. Finally, in the
first algorithm [53], the different model parameters are assumed to be known.
Furthermore, in order to withdraw this assumption in the second algorithm
[564], some boundary information has to be introduced in the procedure. That is,
either a contour detection or a previous rough segmentation has to be carried
out.

In [55], a different approach for image segmentation, relying in
stochastic image model, is presented. The image model is formed by causal
GMRFs (Markov mesh random fields) defined on a second-order
neighbourhood. The work handles the problem of segmenting binary images or
gray level images into two regions. The segmentation is performed seeking the
realisation of the model maximising the a posteriori probability, given the full
initial image. The assumption of causal random fields allows the use of well-
known 1-D techniques for the estimation problem. In spite of this, since the
actual implementation of the algorithm involves prohibitive processing, a
suboptimal approach is suggested. In this suboptimal algorithm, instead of
using the data from the whole image, only the data contained in a small strip
(8 pixel wide) are processed. A second version of the algorithm is also proposed,
in which an iterative procedure is utilised to estimate the a posteriori
probability.

Although the algorithm of [55] yields good results in the case of two-class
images, the computational load of the method is rather prohibitive. This load
increases when the algorithm is extented to more complex problems (for
instance, gray level images to be segmented into more than two regions).
Furthermore, the segmentation results are not very accurate in locating the

41
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region boundaries. This problem is alleviated by a post-processing of the data (a
median filtering is suggested).

Finally, it has to be pointed out that the solution of relying on a first
estimation of the boundaries or of the random fields parameters to help the
algorithm has been already commented in Section I1.1. The problem with such
techniques is that they are either rather ad hoc (case of visibility functions or
similar) or time demanding (case of iterative methods as performing twice the
segmentation). Therefore, it would be better if the information about the
boundaries of the random fields could be included in the model itself.

I1.3.- Compound random fields

In order to introduce boundary information in the image model, a new
kind of random field has been proposed. This random field not only describes
the behaviour of a given texture or zone of the image, but it represents the
whole image. This global characterisation is achieved by using a model with
two different levels, hierarchically distributed.

IL.3.1.- Definition

The model assumes that an image is composed of a set of regions, each
one characterised by an independent random field. The union of these random
fields forms the observed image, named the upper level of the model. The
location of these random fields within the image (position and shape of the
regions) is governed by an underlying random field, named the lower level of
the model. This kind of models are called hierarchical models [56] or
Compound Random Fields (CRFs) [57]. '

e
Definition I1.7: A Compound random field (Q, X) = { Qjj, Xjj} defined on
a lattice S is formed by a lower level Q and a upper level X. The lower
level is a discrete valued random field where each Qj; can take values
from the set {1, ..., M}. The upper level is a random field where each Xj;
can take values from a set of M independent random fields { Xk }, with
k=1,..., M, following

X5 () = )de () if Q;()=k for k=1,...,M. (11.16)

Processes Q and { XK} are mutually independent random fields. ®
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Note that each realisation q of the process Q performs a partition of the
lattice S into M region types. Therefore, in the case of segmented images, a
realisation @ = q can be seen as an image of labels, relating each point to a
region, and each one of the random fields XX as the model for the texture of
region k. In Figure I1.5, this concept is depicted marking only the boundaries
of the partition.

Independent

Random field X ey .:: ..... D - - . random fields

“@——— Random field Q

Fig, IL5.- Example of Compound random field

The usual procedure for dealing with this kind of models in the image
processing framework is by assuming that the image to be processed is a
realisation of the upper random field (X = x). Thus, the objective is to determine
the realisation of the lower random field (Q = q) that has given rise to x. This
objective can be achieved by a maximum a postex"iori (MAP) estimation; that is,
maximising the a posteriori distribution P (Q = q / X = x) for a given x [58].
Using Bayes' rule

PQ=q/X-x-2E=xA=02Q=0) (IL17)

where P (X = x) does not affect the maximisation procedure. Therefore, instead
of maximising P (Q = q/ X = x), since

PQ=q,X=x)=PX=x/Q=PQ=9q), (I1.18)

the joint distribution P (Q , X ) can be maximised, yielding the same result.
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Nevertheless, functions representing these joint probabilities are very
complicated, usually non-linear and multimodal. Therefore, since a brute
force maximisation procedure is absolutely out of question (there are MN1N2
possible configurations), it is desired to find other kind of algorithms for
maximising (I1.17).

I1.3.2.- Image segmentation algorithms using Compound random fields

The first work on image segmentation dealing with CRFs was presented
in [59]. In it, the upper level of the model is formed by a collection of white
Gaussian random fields and the lower level by a Strauss process defined on a
first- or on a second-order neighbourhood system (both possibilities are
studied). Whichever is the chosen system, only cliques containing one or two
pixels have non-zero potential and B1 = 2. The maximisation algorithm is an
extension of the "strip processing” [55] which has been outlined in Section
I1.2.7. That is, the maximisation procedure is performed, by means of a
dynamic programming algorithm, on overlapping strips of small width. This
algorithm requires knowing some boundary conditions, such as the
segmentation of the first row and column.

As in [55], the restrictions of this algorithm are rather strong. The
maximum feasible width for the strips is four pixels and, in order to be
computationally tractable, the algorithm should perform segmentations into
two regions - that is, M = 2 in (I1.16) -. For segmenting the image into more
than two regions (M > 2), the authors proposed to apply the algorithm for 2
regions M-1 times.

On the other hand, the behaviour of the compound model is remarkable.
Disregarding the computational load, the algorithm performs fairly well:
segmentations are accurate and robust to the choice of the p/arameter values. It
has to be highlighted that, while the parameter values of the upper level are
estimate from the data, these of the lower level are set before hand. Extensions
of this work can be found in [60, 61], where the same algorithm is applied using
other image models. However, results are very alike: same improvements with
respect to non-hierarchical models and similar trade-offs in the dynamic
programming algorithm.

A different approach for maximising (II.17) is presented in [56]. This
work, although aimed at the restoration problem, performs an indirect
segmentation of the image. Actually, it would not be worthwhile to present this
work as a simple application of CRFs to image processing problems, given
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that, along with [48], it set the theoretical bases for most of the posterior works
in this field. In [56], the assumed model for the upper level X is formed by a set
of MRF's, being the lower level Q a MRF as well (note that this defines the most
general case). The interpretation of the random field Q is not only given in
terms of a partition of the image, but the concept of "line process" is also
introduced. That is, the process Q is said to characterise the shape of the
regions in the image model. This idea opens the possibility of choosing the
parameters of the model not only in order to control the switching between
regions within the image but also the desired behaviour of the boundaries.

The algorithm used in [56] to perform the MAP estimation relies on a
stochastic relaxation technique called simulated annealing [62]. It has been
demonstrated that, with the proper annealing schedule, this technique can
converge to the global optimum of a function. In [56], an annealing schedule is
proposed, which is proven to lead to the optimum solution. This technique is
interleaved with a maximum likelihood estimation of the random field
parameters. Moreover, an algorithm for generating realisations from a given
MRPF, the so-called Gibbs Sampler, is also presented.

In order to test the performance of the maximising procedure, several
experiments are carried out. In these experiments, Strauss processes defined
on first- and second-order neighbourhoods are used for both the lower and the
upper level models. Clique potentials are also taken as 1 = f2. As in the
previous case, the obtained segmentations are of high quality but they required
around 300 iterations of the algorithm (sometimes, even 1000). This is the main
trade-off of simulated annealing techniques: in order to reach the global
optimum, the schedule has to be much too slow to be practically useful.
Furthermore, if a fast schedule is implemented, the algorithm is more
sensitive to its initial conditions. On the other hand, it has to be emphasised the
clear improvement introduced by the lower level process: some experiments
are performed in the same conditions with and without the line process,
yielding the former clearly better results.

Following these ideas, similar works have been presented. In this way,
the iterative procedure for segmenting and estimating parameters proposed in
- [566] is further elaborated in [63]. Here, experiments are carried out by using
white GRF's for the upper level, while keeping the Strauss process for the lower
level. Results and conclusions are very similar to these of [56].

Trying to overcome the computational load of stochastic relaxation
techniques such as simulated annealing, some authors have faced the
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maximisation problem from a deterministic relaxation viewpoint. These
methods perform the maximisation by changing the pixel classifications in a
deterministic and iterative way. Therefore, although they are faster, they may
get trapped in local maxima. These two techniques are compared in an image
restoration framework in [57]. Image models are defined as second-order
compound random fields: the "line process" of [56] for the lower level and both
a set of causal and a set of non-causal GRFs for the upper level. The
parameters of the lower level process are set heuristically, while the upper
level ones are estimated from the data following the method described in [50].

Results show that there are no main differences between causal and
non-causal models. On the contrary, the choice of compound versus simple
random fields is of major importance. When comparing stochastic with
deterministic techniques (simulated annealing versus iterated conditional
modes), it is shown that better results are yield by stochastic ones. However, the
difference in computational load is really relevant: while the order of 200
iterations are required in the first case, only around 25 are needed in order to
reach a maximum in the second one. It has to be noticed that deterministic
techniques usually depend very much on their initial conditions. This trade-off
is not noticeable in [63] since the work deals with a restoration problem.
However, when coping with segmentation, the importance of the initial
estimate increases.

Finally, the work presented in [64] should be commented. In it, the
image is assumed to be a compound random field consisting in a Strauss
‘process for the lower level and a collection of auto-binomial models for the
upper level. First, a supervised segmentation algorithm is proposed based on a
previous knowledge of the random field parameters and a simulated annealing
technique. An unsupervised algorithm is also proposed in wl}ich the value of
the parameters of the lower level are set before hand. On their turn, lower level
parameters are estimated from a coarse segmentation of the image performed
by splitting it into a set of disjoint blocks. Although the assumptions for the
unsupervised algorithm seem rather strong, both algorithms yield good quality
results, being both kind of segmentations very alike.



Chapter II: Image Models

I1.4.- Summary

In this chapter, the main stochastic models used in image processing
have been presented; namely, Gaussian random fields, Markov random fields
and Compound random fields. GRFs and MRFs share the characteristic of
being non-hierarchical. Furthermore, GRFs have been demonstrated to be a
special case of MRFs. Both models have been defined and their advantages, as
well as their drawbacks, pointed out. It has been shown that a random field, in
order to be a MRF, must have associated a Gibbs distribution. This relation
does not represent a serious constraint since, by choosing correctly the
potentials defining a GD, a wide set of models can be obtained. Moreover, the
MRF-GD equivalence allows algorithms to yield global maximum likelihood
segmentations while dealing only with local computations.

It has been suggested that when using algorithms based on MRF's image
models some problems arise. The estimation of the parameters characterising
the models is not an easy task. In order to estimate them, large sets of data are
required. Furthermore, the existing algorithms are rather cumbersome and
little reliable. The situation worsens in the segmentation framework, since the
boundaries of the random fields are not known a priori. In this case, rough
information about the location of boundaries is usually introduced in the
algorithms, which leads to rather ad hoc and/or time demanding techniques.
Another problem comes from the fact that, in order to obtain global maximum
likelihood segmentations, functions that are neither linear nor unimodal have
to be maximised. This maximisation has to be carried out by means of very
elaborated techniques, which imply a huge computational load, or suboptimal
methods, which reduce the range of application of the methods and do not
ensure global maxima.

Towards the goal of introducing boundary information in the algorithm,
compound image models are defined. These models contain themselves the
boundary information. Compound models consist of two different random
fields, disposed in a hierarchical manner: the lower level (hidden random
field) governs the upper level (observable random field) which is, on its turn,
composed of several independent random fields. Given this kind of models, the
segmentation problem can be formulated as a MAP estimation: assuming the
original image as a realisation of the upper level of the model, the realisation of
the lower model maximising the a posteriori probability is sought.

Several algorithms based on this MAP criterion and using compound
random fields have been presented. The lower level of the CRF is usually
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chosen to be a Strauss process whereas, for the upper level, different
possibilities have been suggested (mainly GRFs, auto-binomial models and
Strauss processes). The use of CRFs for modelling images have turned out to be
a very powerful tool, yielding, in all cases, better results that using usual non-
hierarchical models. Finally, it has been pointed out that results are fairly
insensitive to the choice of the sort of random fields assumed to form the upper
level.

Regarding the algorithms, mainly three techniques are used, namely:
dynamic programming, stochastic relaxation (simulated annealing) and
deterministic relaxation (iterated conditional modes). The first kind of
techniques are very time consuming. Therefore, only suboptimal methods
dealing with very simple cases and not ensuring a global maximum are
feasible. Moreover, they depend on the initial conditions of the algorithm. On
its turn, simulated annealing algorithms do converge to the global optimum.
However, there exists a trade off between the computational load (the
annealing schedule) and the sensitivity with respect to the initial conditions. In
any case, simulated annealing techniques remain a computationally intensive
method for optimisation. Finally, deterministic relaxation algorithms do not
ensure convergence to the optimum maximum and are very dependent on the
initial conditions. Nevertheless, they are computationally very efficient and
may yield results of comparable quality to these obtained by stochastic
relaxation techniques.





