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Chapter HI: Monoresolution Segmentation

CHAPTER in

MONORESOLUTION SEGMENTATION

This chapter is devoted to the presentation of a new monoresolution
technique for segmenting still, gray level images. This algorithm uses a
compound random field as image model. The model is formed by a Strauss
process at the lower level and by a set of white Gaussian Random Fields (GRFs)
at the upper level. The chosen segmentation approach relies on Maximum a
Posteriori (MAP) criteria and on deterministic relaxation techniques.

This segmentation technique sets the basis of a multiresolution approach
which will be discussed in chapter IV. Therefore, it has to be seen as a first
step towards a final algorithm rather than as a solution to the segmentation
problem on itself. Besides, it has to be noticed that, within the algorithm, some
assumptions are made having in mind its application for coding purposes.
Nevertheless, when such assumptions are made, they are clearly underlined
in order not to mix the general discussion with this special application.
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Chapter III: Monoresolution Segmentation

ULL.- The image model

The chosen image model is a compound random field, whose upper level
is a set of white GRFs whereas the lower level is a non-homogeneous Strauss
process. Both models are discussed in the sequel.

m.1.1.- The upper level random field

The choice of white GRFs is owing to an intend of circumventing, as
much as possible, the parameter estimation problem as well as that of
reducing the computational load. A white GRF is totally characterised by its
mean and variance ((A, O). Therefore, only two parameters per region have to be
computed. Note that, the minimum number of samples necessary to obtain
non-zero estimates is two (of course, very poor estimates are obtained with such
a little amount of samples). Furthermore, the fact of using simple white GRFs
not only leads to more reliable estimates, but also speeds up the estimation
procedure. The estimation of a white GRF can be performed by visiting only
once each site in the random field, which is the optimum case.

The major problem when using white GRFs is that they cannot describe
the spatial information of random fields. This shortcoming arises owing to the
whiteness assumption (see Section II. 1). However, when using white GRFs to
characterise the upper level of a compound random field, this problem is
partially overcome. Indeed, spatial information is introduced in the model by
the underlying process. As it has been corroborated by several authors [56, 57,
61], this partial spatial information is enough in order to have fairly good
image models.

Note that, when considering separately the upper level of the model, the
realisation of the random field which maximises its probability function is the
realisation that assigns to every pixel in the image a different label. That is, the
probability is maximised when each single pixel is a region. In this case, the
expression defining the probability of each GRF (see Section II. 1) takes its
maximum value. Given that the upper level of a compound random field is
assumed to be formed by a set of independent random fields, its probability
function is the product of the probability functions of its independent random
fields. Therefore, in the above case, the global probability for the whole upper
level is also maximum.
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Chapter III: Monoresolution Segmentation

III.1.2.- The lower level random field

A Strauss process for the lower level of the model has been chosen for the
following reason: as it has been highlighted in Section II.2.6, the "colour-
blindness" characteristic of these processes makes them very suitable for
modelling labelled images and partitions. Furthermore, studies carried out by
other researchers [56, 57, 64] confirm this idea. These studies also report that a
second-order neighbourhood system is large enough to characterise the
behaviour of labelled images. Therefore, a non-homogeneous second-order
Strauss process has been chosen for the lower level random field. Non-
homogeneity has been introduced for avoiding boundary problems.

However, it should be emphasised that, in this work, the clique potentials
of the Strauss process are not defined as usual; that is, pi is not taken to be
equal to p2- The parameters of the Strauss process have been chosen trying to
control the behaviour of the region boundaries rather than the switching
between regions. This idea comes from the work presented in [56]. There, the
lower level random field is seen as a "line process" which can characterise
contours of regions.

In order to visualise this concept, region boundaries are defined over a
new lattice whose sites are situated midway between each vertical or horizontal
pair of sites in the image lattice. Elements in this boundary lattice are set to
zero if they are between two pixels with equal label (that is, if they are between
two pixels belonging to the same region). In Figure III.l, the relation between
these two lattices, as well as an example of realisation, is shown. Sites
represented by circles belong to the image lattice, whereas sites represented by
lines belong to the boundary one (darker boundary sites represent sites with
non-zero value).

i i
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;O:0iO:Q:_O;
":o:oïo:o:o:

;O;O;O!O;O;

Fig. III.1.- Illustration of image and boundary lattices and example of realisation
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Chapter III: Monoresolution Segmentation

Therefore, only cliques containing elements with different values (that
is, belonging to different regions) are useful for characterising contours. As a
result, instead of the usual definition given in Section II.2.6, zero potentials are
assigned to cliques with equal value elements (homogeneous cliques). Note that
single-site cliques are a special case of homogeneous cliques and, thus, have
also zero potential (a = 0). Non-homogeneous cliques have associated potentials
whose values vary depending on the kind of clique c. In this way, (11.15)
becomes

0
Vc (x) =

if all xij in c are equal

otherwise.
(III.l)

Such a model has been used before in a contour relaxation technique [65].

In order to assign values to the clique potentials, the relation between
cliques has to be studied. Since second-order neighbourhood systems t|2 are
assumed, there are ten different clique configurations (see Figure II.4). From
this set, zero potential has been already assigned to single-site cliques.
Moreover, the potential definition should be invariant by rotation, if isotropy is
assumed. Thus, the nine remaining configurations are classified into four
types. This classification is shown in Figure III.2.

Typel

Type4

Fig. III.2.- Clique classification

Note that, although diagonal cliques may be understood as horizontal or
vertical ones that have been rotated 45 degrees, they have been grouped into two
different types. The reason for separating them is twofold. First, the
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Chapter III: Monoresolution Segmentation

equivalence between rotated cliques of type 1 and diagonal ones depends on the
procedure of discretisation and, actually, the distance between pixels in
diagonal cliques is larger than in cliques of type 1. Secondly, when dealing with
contours, cliques of type 1 represent a different information than diagonal
cliques.

The fact of having cliques of type 1 or 2 has a clear interpretation in the
boundary lattice. In a clique of type 1, two elements from different regions are
one in front of each other. This contact between regions produces a boundary
element in the boundary lattice. On its turn, a clique of type 2 is produced by a
diagonal difference. This kind of difference does not produce, by itself, any
boundary element but marks the presence of a corner in some contour
configurations. The combined behaviour of these two kinds of cliques is shown
in the example of Figure III.3.

# Boundary el. : 13
# Cliques type 1: 13
# Cliques type 2: 12

# Boundary el. : 9
# Cliques type 1: 9
# Cliques type 2: 8

I I I I I I
I I I I I I

# Boundary el. : 5
# Cliques type 1: 5
# Cliques type 2: 8

Fig. IIL3.- Behaviour of boundary elements and cliques of type 1 and 2

Three different realisations of a contour are shown in Figure III.3. As it
can be seen, the smoother the contour, the lower the number of cliques of type 1
and the lower the number of boundary elements. Actually, when performing
global analyses, the number of boundary elements is equal to the number of
cliques of type 1. However, cliques of type 2 do not behave exactly the same,
since the minimum amount of this kind of cliques is reached in a contour that
is not the smoothest one (it does not present the lower number of boundary
elements). Nevertheless, the number of cliques of type 2 does not increase when
decreasing the number of boundary elements: it decreases or remains the
same.
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Chapter III: Monoresolution Segmentation

Comparing the behaviour of these two kind of cliques, diagonal cliques
can appear to be useless for characterising contours, since the information
provided by cliques of type 1 seems enough for such a task. Although this
statement is true when dealing with the whole realisation of a boundary lattice
(global analyses), this is not the case when handling only small zones of the
lattice (local analyses). This is a relevant situation since, as it has been
emphasised in chapter II, the MRF-GD equivalence allows performing global
optimisation by carrying out local computations.

In Figure III.4, a local analysis of two similar situations is shown. In
this figure, sites marked with a solid dot belong to the same region, while sites
marked with a grey circle belong to other regions. In these cases, a local
analysis relying on the neighbourhood of the central site based only on cliques
of type 1 leads to the same result in both cases. However, a study taking into
account diagonal cliques shows that both configurations are rather different.
In this case, the more compact the region, the lower the number of boundary
elements and the lower the number of diagonal cliques. Hence, the importance
of keeping information about cliques of type 2.

Oi
sí::

iPiQK); _ _» 1

O!
Q Oi

# Boundary el. : 6
# Cliques type 1: 2
# Cliques type 2: 4

# Boundary el. : 4
# Cliques type 1: 2
# Cliques type 2: 1

Fig. III.4.- Example of the usefulness of cliques of type 2

The usefulness of non-homogeneous cliques of type 3 and 4 for defining
boundaries turns out to be not so clear. When dealing with a whole boundary
lattice realisation, cliques of type 1 give enough information for characterising
the boundaries and, therefore, cliques of type 3 and 4 are not necessary.
Furthermore, when performing local analyses, their interpretation in terms of
boundaries is not straightforward. These kinds of cliques may come from
different configurations in the image lattice and, therefore, may describe
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Chapter III: Monoresolution Segmentation

different boundary behaviours. In order to give an interpretation, the
information of these kinds of cliques has to be analysed jointly with the
information provided by the presence of cliques of type 1 and 2. However, the
way of mixing this information is not very intuitive and leads to cumbersome
algorithms.

Problems arising from the analysis of the presence of cliques of type 3
and 4 in local configurations are shown in the example of Figure III.5. Two
different cases are presented in this figure, both dealing with the local analysis
of two configurations with equal number of cliques of type 1 and 2, but differing
in the amount of cliques of type 3 and 4. In both cases, first configuration
contours are smoother than those of the second configuration.

# Boundary el. : 3
# Cliques type 1:1
# Cliques type 2: 1
# Cliques type 3: 5
# Cliques type 4: 2

# Boundary el. : 5
# Cliques type 1: 1
# Cliques type 2: 1
# Cliques type^S: 6
# Cliques type 4: 3

# Boundary el. : 6
# Cliques type 1: 2
# Cliques type 2: 0
# Cliques type 3: 8
# Cliques type 4: 4

# Boundary el. : 6
# Cliques type 1: 2
# Cliques type 2: 0
# Cliques type 3: 7
# Cliques type 4: 3

Fig. ni.5.- Examples of the behaviour of cliques of type 3 and 4
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Although, in the first case, the number of cliques of type 3 and 4 is lower
in the first configuration, the situation is the inverse in the second case. In the
second case, the number of boundary elements is equal in both configurations.
However, the configuration with higher number of cliques of type 3 and 4
represents a contour simpler than that of less number of cliques. Therefore, a
contour characterisation relying on the number of cliques of type 3 and 4
contained in each configuration does not provide any clear information. A
method for characterising contours based on the relationship between the
different amounts of cliques of each type present in the boundary may be
possible. Nevertheless, the way of mixing this information is rather
complicated and does not lead to any clear improvement.

It has been shown that a model only accounting for cliques of type 1 and 2
can provide with an intuitive and useful characterisation of contours. On the
other hand, the use of cliques of type 3 and 4 does not seem to improve the
performance of the model but, on the contrary, makes its computation much
more complicated. Thus, cliques containing more than 2 sites (type 3 and 4)
have been withdrawn (that is, their potentials have been set to zero). Further
analyses on the performance of this image model will be performed in the
following sections.

Note that, when taking separately the lower level of the model, the
realisation of the random field which maximises the probability is the
realisation which assigns a single region to the whole image. In this case, the
whole image creates no cliques (the only boundary is the image itself).
Therefore, independently of the potential values, the realisation has maximum
probability.

Summarising, the chosen image model is a compound random field.
The upper level of the model is composed of a set of white Gaussian random
fields, while the lower level is a Strauss process. This MRF is defined on a
second-order neighbourhood system and only non-homogeneous two-sites
cliques have potentials different from zero. It is worth noticing that each
random field maximises its own probability at opposite situations: the upper
level when each pixel within the image is a region and the lower level when the
whole image is a single region. However, the compound random field
maximises its probability at a midway situation which yields the sought
segmentation of the image.
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Chapter III: Monoresolution Segmentation

IEL2.= Segmentation algorithm

In order to segment images, the previous stochastic modelling can be
used. That is, the image to be segmented can be assumed to be a realisation of
the upper random field (X = x) and, the segmentation is performed by looking
for the realisation of the lower random field (Q = q) which, more likely, has
produced x. This idea can be expressed as a maximum a posteriori estimation
P (Q = q / X =x) that, by Bayes' rule, results in (11.17), which is reproduced here

As it has been pointed out, maximising (III. 2) leads to the same result as
maximising the joint probability

P(Q = q,X = x)= P(Q = q)P(X = x/Q = q) . (III.3)

Thus, (III. 3) is maximised since the procedure is simpler. Given that Q is a
Markov random field and that X is formed by a set of independent, white GRFs,
(III.3) can be written as

R•n

where Rn is the n-th region within the partition q, { In } is the set of elements in
the image belonging to Rn, and |ln and Cfn are the mean and the variance of the
set { In }, respectively. Assuming the potential definition given in Section III.l
and developing the expression for P (X = x / Q = q), (III. 4) results in

P(Q = q,X = x) =

Rn n < j

where ki and k2 are the number of cliques of type 1 and type 2 (respectively)
present in the partition q, N is the number of elements in the set { In }, and the
summation is performed over this set of pixels { In }.
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m.2.1.- Deterministic approach

In order to maximise (III.5) mainly two different techniques can be
applied: stochastic and deterministic relaxation. When using stochastic
relaxation approaches, the optimum solution is ensured to be reached.
However, this kind of methods are computationally very demanding. On the
other hand, although deterministic relaxation approaches may get trapped in
local maxima or minima, they may achieve good quality results and in a
feasible amount of time. The quality of the obtained results mainly depends on
the initial conditions of the algorithm. Therefore, in this work, a deterministic
approach has been chosen, having in mind the importance of setting the
correct initial conditions.

The deterministic approach is a special case of the algorithm presented
in [48] called iterated conditional modes (ICM). This algorithm seeks the
optimum value of a function by introducing small changes in a given state,
which is taken as starting solution. That is, at each step, a possible solution is
devised by slightly changing some parameters in the former state. The new
state is verified to be closer to the optimum than the former one. If this is the
case, the new solution is assumed and the algorithm is re-applied. If not, other
possible states are tried (that is, other small changes are performed in the
former solution). This algorithm is repeated until no change improves the
current solution and, thus, an optimum state is reached. Therefore, this
algorithm performs the optimisation in a deterministic and iterative manner.

ICM can be seen as the last step in a simulated annealing (SA) process
[62]. When finishing an annealing schedule (T = 0), SA carries out these
changes in the solution which guarantee that the new state is closer to the
optimum than the former one. In the SA case, the annealing schedule having
been correctly performed, the global optimum is ensured to be reached. In the
ICM case, the algorithm must be initialised with the right starting conditions
in order not to get trapped in local optimum solutions.

It should be noticed that, in ICM, the way of selecting a new state from a
given solution is very important: this selection marks the degree of optimality
of the final solution. The final solution is said to be optimal when no other state,
which can be reached from the current solution by means of small changes,
improves the current result. Hence, the importance of correctly defining which
"small changes" are allowed.
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III.2.2.- Basic algorithm

In the case discussed here, the function to be maximised is the joint
likelihood function of (III.5). In order to maximise this expression, the states
that are checked correspond to different realisations of the lower level process
(Q = q). The method for generating new states from a given partition must
guarantee that the reached state is still a partition. This has been performed by
means of the following procedure:

Given an initial partition ( Q = q' )
Select an element of the image (i, j)
Change its label by that of a neighbour (q^ = qkl : (k, 1) e TJJJ)

Note that by changing the label of an element by one of the labels of its
neighbours, the basic constraints of a partition are still fulfilled, specially the
connectivity of the regions. Therefore, the new state can be taken as a step
towards the solution of the maximisation problem. It should be noticed that
this method only changes labels of pixels lying on the boundary of regions
(pixels belonging to, at least, one clique with potential different from zero). A
pixel lying on the interior of a region has all its neighbours belonging to the
same region and, therefore, to change its label leads to the original situation.
Moreover, since a pixel can only get the label of one of its neighbours, new
labels (that is, new regions) cannot be directly introduced by this procedure.
However, the method is able to create new regions indirectly by splitting in two
a former single region. This situation is illustrated in Figure III.6.

• r
;'
• i-

»:>¡
' r

i

Fig. III.6.- Creation of a new region by splitting an initial one

This procedure for obtaining new possible states may seem very simple
(it only checks pixels lying on the boundary of regions) and too constrained to
the initial conditions (it is not able to generate directly new regions). However,
as it will be shown latter, its iterative application allows reaching good local
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optimum states even when initialising the procedure with poor conditions.
This is, in part, owing to the indirect creation of regions, which is, in most of
the cases, good enough to overcome the possible drawbacks of the initial
conditions. Furthermore, this procedure requires a low computational load,
since only neighbour pixels are involved. Given that only neighbour pixels are
used, only local computations are necessary for checking whether a new state
must be either accepted or withdrawn.

Once an element of the image has been chosen to produce the new state,
the procedure for selecting its new label is the following:

Given an initial partition ( Q = q' )
Compute its joint likelihood function ( P' )
Select an element of the image (i, j)
For all the neighbours of this pixel ((k, 1) € rjy):

Change the label of the selected point ( qy = qkl )
Compute the new joint likelihood function ( Py )

If ( vp¿ > P' ) change the label (qy = qkl) ( => Q = q")

where v stands for the max, P' = P ( Q = q' , X = x) and P" = P ( Q = q" , X = x).

The computation of the joint likelihood functions can be easily performed
since it is not necessary to compute the whole expression, but only the parts
that have changed from one situation to another. That is, by changing the label
of a single pixel, only the clique configuration of its neighbourhood changes.
Furthermore, in the product of (III.4) only two conditional probabilities have
changed: those of the regions related to the former and to the current labels.
Therefore, instead of calculating and comparing both probabilities (P1 and P"),
its ratio (P'/P") can be computed and compared to one. After removing the
terms that do not change from one situation to another, the expression to check
is:

(III.6)

where ki and k£ stand for the number of cliques of type 1 and 2, respectively,
that there are in the neighbourhood of the selected pixel at each situation.
Thus, only local computations are involved in the selection of new solutions for
the optimisation problem.
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In the above procedure for selecting a new solution there are still two
steps which need further explanation. These steps are the computation of the
joint likelihood of a given partition and the mechanism for selecting an
element within the image so that the procedure is applied to it. This last step is
very related to the way of performing the iteration of the algorithm.

m.2.3.- Computing the joint likelihood function

In Section III. 2. 2, it has been shown that rather than computing the
whole joint likelihood function of (III. 5), it is only necessary to calculate some
of its terms, which are shown in (III.6). Terms dealing with the lower level of
the model can be calculated directly since the number of cliques of type 1 and 2
(ki and k2, respectively) can be exactly computed from the current realisation.
The problem of giving values to the clique potentials and the temperature
(Vi,V2 and T) will be discussed latter in this chapter.

In order to calculate the conditional probabilities, the values of the mean
and the variance of each region have to be known. As it has been emphasised
in the previous chapters, assuming the a priori knowledge of the exact number
of regions within the image is a pure academic case. This situation is even less
realistic if the values of the parameters of the model characterising each one of
the regions are assumed to be known as well. Therefore, they have to be
estimated, which is one of the main problems of these segmentation
techniques.

In this work, since each region is characterised by a white Gaussian
random field, the problem of estimating the model parameters is not so
difficult. White GRFs are totally defined by means of two parameters, which
can be estimated even with two samples from the random field (of course, in
this case, a poor estimate of the model parameters is achieved). Furthermore,
the parameter estimation can be performed using only once the value of each
sample, which speeds up the estimation procedure. A maximum likelihood
criterion has been used for carrying out the estimations:

= Tí E - n) * = Xij
R R

where N is the number of point of the region. Note that these estimations can be
easily updated if the data change. Actually, very simple algorithms for
updating the estimations based on the recursive introduction (elimination) of
single data can be used.
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Making use of the expression of the conditional probabilities of (III. 5)
and introducing the estimations of (III. 7), these conditional probabilities can be
written as:

A A

2(an):

Taking into account the definition of (an) given in (III.7), (III.8) results in:

<m-9)

Now, the conditional probabilities of (III.6) can be substituted by the
expression given in (III.9). It should be noticed that, going from the situation
(q1) having ( R^, R^ ) to (q") having (R^, R^ ), the total number of pixels has not
changed. That is, N'+ M' = N"+ M", where M is the number of elements in Rm.
Thus, (III.6) can be written as:

p- r i i (o:)N"(o")M"
•t J- r /•• ' -, "VIT f-, < , 'KT7- -i V H' ^ m / /TTT 1f\\-pTT = exp í- m [ (% - kJVj + (ko - koíVo J \ • A, „, A, ,,. . (III. 10)P I T i i i -2 -2 2 j ((Jn)N (0m)M

Actually, instead of computing the ratio between probabilities, the logarithm of
this ratio can be computed. The decision whether the new state should be
accepted or not is performed by checking the sign of the logarithm. In this way,
the expression to be calculated is:

- [ (ki - kl)Vl + <k¿-k£)V2] + NTn O¡ + M"ln

- N'ln [ an ] - Mln [ am ] . (III.ll)

As mentioned above, the computation of terms related to the lower level
of the model is very easy to carry out.. In addition, the estimation of the
variances can also be performed in a very fast way. Since from the initial state
(q1) to the final one (q") only one pixel has changed its label, the estimation of
the parameters at the final state can be performed very quickly in an iterative
way relying on the parameters of the initial state. If the new state is accepted
(that is, it represents a realisation which increases the joint likelihood), the
updating of the model parameter estimation does not imply any new
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computation. Indeed, parameters of state (q") have already been estimated
when checking its validity.

Therefore, the proposed method leads to a fast algorithm for verifying the
goodness of the new state. This characteristic of the algorithm not only comes
from the fact that only local changes are allowed but also from the kind of
model and from the parameter estimation criterion.

m.2.4.- Selection of elements from the image

From the basic algorithm presented in Section III.2.2, the step dealing
with the way for selecting elements (that is, pixels) from the image has still to
be discussed. This step is very related to the manner of performing the iteration
of the algorithm, as well as to the precise moment in which the updating of the
estimations is carried out. The selecting mechanism, in order to converge to a
local optimum solution, has to ensure that all elements in the image will be
checked at least once. Depending on the procedure for visiting each of the
pixels, algorithms may present different characteristics. Here, three different
procedures are discussed.

Best choice algorithm

Given an initial partition of the image, all the possible label changes for
all the points are first checked. Records of the joint likelihood increments
representing each one of these changes are kept. Once the whole image has
been visited, the change of label which increases the most the joint likelihood
function is performed. After carrying out the label change, the estimates of the
model parameters are updated and the list of increments resorted. This
procedure is iterated until convergence. The convergence of the method is
guarantied, since only label changes increasing the joint likelihood function
are performed.

Note that this algorithm seeks the label change that most increases the
joint likelihood function in the whole image at each step. Thus, this method
uses the procedure for checking if a new state should be accepted when
selecting the point that has to be visited. Given that, no new checking step has
to be performed after a point has been selected. However, since initially the
whole image has to be tested and, at each step, a list of increments has to be
sorted, the method is very slow.
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Non-recursive (parallel) algorithm

For a given partition, all its points are selected at the same time. Thus,
all label changes, initially increasing the joint likelihood function, are
performed. After the label changing step, model parameters are updated.
Since the convergence of this method is not guarantied, it must be iterated only
a fixed number of times. Convergence is not guarantied given that label
changes that do not increase the current likelihood may occur. Label changes
decreasing the joint probability happen owing to the fact that model parameters
are only updated after the whole set of changes is performed. Therefore,
changes that isollately increase the joint probability function, may decrease it
when performed together. This decrease can either be fixed in the following
iteration or result in an oscillation.

This algorithm seeks the set of label changes that increases the joint
likelihood in a given step. Therefore, its main advantage is that is highly
parallel. Since a label change is carried out without taking into account the
rest of the labels, different processors can be assigned to different zones within
the image. Note that this method implemented in a sequential machine is
rather slow, as, for approaching the local optimum state, several iterations
have to be done.

Recursive (sequential) algorithm

In the recursive algorithm, pixels are selected by a scanning procedure.
The image is scanned line by line, from top to bottom and from left to right
(normal raster procedure). After each label change, model parameters are
updated. The algorithm is iterated until no label change is performed in a
whole scanning. Given that only label changes increasing the joint probability
function are performed and that model parameters are updated after each
label change, the recursive algorithm ensures convergence. In addition, since
the selecting mechanism is performed by a simple scanning, the algorithm is
very fast.

Due to the updating procedure, during the scanning, new labels are
checked taking into account the label changes that have been performed until
this moment. Thus, priority is given to changes performed in the direction of
the scanning. This situation is illustrated in Figure III.7, where three
partitions, representing three consecutive steps in the optimisation procedure,
are shown. For this example, model parameters are assumed to allow label
changes if the neighbourhood of the pixel under study contains five or more
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pixels with labels different from that of the central pixel. The initial state
differs from the final one (which is supposed to be the partition with maximum
likelihood) in only 5 pixels. Note that after the first scanning (second state), all
label changes in the scanning direction have been performed. That is, all
possible solid dots have been removed. On the contrary, in order to carry out the
label changes related to gray dots, a new scanning is necessary. Note that, if
the scanning is carried out in the opposite direction (from bottom to top and
right to left) label changes related with gray dots are performed in the first
scanning. However, in order to perform the label changes associated with solid
dots, three different scannings are necessary.

First state Second state Third state

Fig. III.7.- Example of penalising of the scanning direction

To speed up the algorithm, instead of iterating the procedure after each
scanning, four different scannings are used. Once the normal raster
procedure is performed, the inverse scanning is carried out. That is, the image
is scanned from bottom to top and from right to left. Analogous scannings are
performed from top to bottom and right to left as well as from bottom to top and
from left to right. In this way, the priority given to a direction is reduced.
However priorities are not totally removed, since the direction of the scanning
carried out in the last place is still penalised with respect to the others.

This four-scanning scheme requires an iterative procedure a little bit
more complicated than the former ones. It would be useless to keep the
procedure going on if, after one of the scannings, no label change had been
performed. Therefore, after each single scanning, the procedure has to be
allowed to stop. On the other hand, after completing the four scannings, the
algorithm has to be able to repeat the whole procedure again. The final
algorithm is depicted in Figure III.8. Throughout the sequel, when referring
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to the recursive algorithm, the term will refer to the whole system shown in
this figure.

ŝ>,̂  "P'Cy? "-P1"

Fig. III.8.- Block diagram of the recursive algorithm

IIL3.- Study of the basic segmentation algorithm

There are several features of the segmentation algorithm presented in
Section III.2 which need further study. For instance, the best method for
selecting pixels to create new states, the way of setting values to the lower level
model parameters (Vi, ¥2 and T) or the algorithm limitations (its robustness
with respect to the initial segmentation or the range of images on which the
algorithm can be applied).

To illustrate the results of this study, the image called Cameraman will
mainly be used (see Figure III.9). This image has been chosen for pedagogical
purposes but the results and conclusions are general. It contains very different
kinds of regions in both shape and interior: textured areas (as the grass), soft
gradients in large areas (as the sky), small but relevant gradients (as the
pocket of the coat or the small building), small details (as the face or the
camera), square regions (as the buildings), thin and large regions with
different main directions (as the tubes or the legs of the tripod).

Regarding the initial segmentations that will be used throughout this
study, it has to be emphasised that they have been obtained by using different
segmentation algorithms. At each moment, the most adequate segmentation
technique has been chosen in order to highlight some desired features of the
algorithm. Nevertheless, a bottom-up algorithm for obtaining good initial
segmentations has been proposed in [66].
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Fig. III.9.- The original test image Cameraman (256x256 pixels)

In the three following sections, the initial segmentation of Cameraman
shown in Figure III.10 has been used. This segmentation contains 662 regions.
The main characteristics of this segmentation is that it presents large
overgrown regions (as the sky, which has been detected as a single region), as
well as small ones (for instance, regions in the grass which have taken pixels
from the tripod). In addition, there are oversegmented areas, as the grass, and
some details have been blurred or overlooked, as in the face.

From this segmentation, as well as from the rest of the segmented
images that are shown in this work, regions containing few pixels have been
removed. This cleaning step has been done mainly for two reasons. Regions
containing few pixels do not usually represent real objects or zones of the
image but noisy areas. Moreover, the visual quality of the segmentation does
not improve when these small regions are kept in the final result (they are
unnoticeable).

When aiming at coding purposes, these regions increase the amount of
bits necessary to code the image, while not increasing the quality of the final
result. An example of the effect of small regions is illustrated in Figure III. 11,
where a segmentation of Cameraman is shown, before and after removing all
the regions smaller than 10 pixels. As it can be seen in the mosaic images,
their visual quality is almost the same.
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Fig. III.10.- Initial segmentation (contours and mosaic) of Cameraman: 662 regions

Note that in the example of Figure III. 11, the number of final regions is
less than half the number of regions before the cleaning step. This large
amount of initial regions is mainly related to isolated, single pixel regions
which are located beside real contours. The basic algorithm does not directly
remove this kind of regions, since the computation of the parameters estimate
in a single pixel region cannot be performed. That is, the variance estimation
of (III.7) performed on a single element is always zero and, thus, the
computation of the ratio between probabilities of (III. 11) cannot be carried out.
Therefore, the removal of these regions has to be performed in a posterior
cleaning step.
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Fig. IIL11.- Example of cleaning step: top 1356 regions, bottom 605 regions

IIL3.1.- Comparison among the selecting element techniques

The performance of the techniques presented in Section III.2.4 (best
change, parallel and sequential) will be now compared. Results obtained by
means of these three techniques, when using the same parameters and the
same initial segmentation, are very alike (see Figure III. 12). However, the
computational load of these algorithms in a sequential machine is rather
different. Giving a unitary computational load to the sequential algorithm, the
"best change" algorithm would have 100 as computational load, whereas the
parallel algorithm would have 5. This feature discards the use of the "best
change" algorithm.
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Fig. 111.12.- Initial segmentation and results applying the three selecting techniques:

best choice, parallel and sequential algorithms
h

On its turn, the parallel algorithm presents a convergence problem.
Since label changes that do not increase the current likelihood can be
performed, convergence is not guarantied. However, it has been observed that
although single label changes may not increase the conditional likelihood
function, the whole set of changes does increase it. Not having the convergence
guarantied means, in this context, that the algorithm may oscillate. In the
experiments performed, oscillations have only appeared in a few cases, being
noticeable at the very end of the optimisation procedure. Therefore, when the
likelihood values oscillate, the algorithm has already achieved a good
segmentation.
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The behaviour of the parallel algorithm for the result shown in Figure
III. 12 is illustrated in Figure III. 13. A graphic showing, at each iteration, the
number of label changes and the evolution of the conditional likelihood is
presented. The vertical axis of the graphic is scaled with respect to the number
of label changes. Oscillations can be better observed in the label changes curve
than in the likelihood graphic, given that oscillations on the likelihood values
are of very small amplitude. Oscillations can therefore be detected and the
procedure stopped at this point.

10 4_
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Label changes
Likelihood

10 20 30
Iterations

Fig. 111.13.- Behaviour of the parallel algorithm

Given the above comments, the parallel algorithm can be a good choice if
a parallel machine is available. However, the recursive algorithm has been
always used in this work, given that both algorithms achieve similar results
and that all the algorithms have been implemented in a serial machine.

IIL3.2.- Study of the influence of the temperature

As it has been emphasised throughout this and the anterior chapter, the
estimation of the model parameters is a difficult task that, when possible,
should be circumvented. In the upper level case, this problem has been
partially overcome by assuming white GRFs, whose parameters estimation
can be easily performed. For the lower level case, some studies on the model
behaviour characterisation when changing the parameter values have been
performed. These studies are aimed at the possibility of not having to estimate
the parameters while performing the segmentation but fixing them before
hand for the whole procedure.
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The three parameters describing the Strauss process defined for
modelling the lower level (T, Vi, ¥2) can be reduced to two (T*, V*), given that:

(111.12)

where both parameters can take values from the [0, °°) interval. In this section,
the influence of T* is analysed and some experiments are carried out, using,
for all of them, the same conditions. That is, the initial segmentation of Figure
III. 10, the recursive algorithm and potential ratio V* = 0.5. The choice of this
value for V* will be justified in the following section.

The parameter T* controls the relative importance between both levels
(upper and lower) within the whole compound random field. When T*
increases (decreases), the term related to the lower level in the joint likelihood
losses (gains) importance in front of the term related to the upper level. Thus,
the maximum of the likelihood function moves towards the maximum of the
upper (lower) level model. In this case, the compound random field takes more
(less) into account gray level information than contour information and
therefore, the final segmentation contains more (less) regions. However, there
is a large range of values for this parameter yielding similar good results. This
behaviour can be seen in Figure III. 14 where the variation of the final number
of regions with respect to different values of T* is plotted. It can be seen how, as
the value of T* increases, so does the number of regions.
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Fig. 111.14.- Final number of regions versus T*
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Figure III. 15 shows some segmentation results achieved with the same
algorithm using different values of T*. These values are presented in Table
III.l, whose first row shows the location of the images within the figure. Note
that contours become smoother and regions become more square-like as T*
increases. For small values of T*> the importance of the texture model is so big
that the algorithm even splits the sky into several regions.

Fig. III. 15.- Segmentations obtained by varying the value of T

On the other hand, when T* increases, the relative importance of the
contour model makes the highest building appear with rectangular shape,
losing the original oscillations of its contours. It has to be highlighted that,
even for the smallest and the largest values of T* in this set, final
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segmentations improve with respect to the initial segmentation. In all of them,
details in the man and in the camera, as well as the real shape of the tripod,
are recovered.

(U)

T*
# Reg.

(0,0)
50
852

(0,1)
25
831

(0,2)
10
786

(1,0)
5
764

(1,1)
1
605

(1,2)
0.2
601

(2,0)
0.1
587

(2,1)
0.04
586

(2,2)
0.02
586

Table III.L- Data from segmentations of Figure 111.15

It has also to be noticed that the variation of the segmentation results is
not linear with respect to T*. When T* -> 0, the importance of the lower level
with respect to the upper level saturates and segmentation results remain
stable. A similar effect happens when T* —» °°, but the saturation is slower
(note that in the data of Table I, saturation is not still reached). However,
saturation states do not correspond with the expected optimum points
(segmentations with only a region when T* —» 0, or segmentations where each
pixel is a single region when T* -> oo).

The reason for the algorithm not reaching these optima is different in
each case. For small values of T*, the algorithm gets trapped in local optima,
due to its deterministic basis. That is, the algorithm depends on the initial
conditions. For large values of T*, the final state does not present single pixel
regions given that the algorithm is not allowed to create new regions directly.

Similar experiments have been carried out with different images.
Comparing these data, it has been concluded that best results are achieved
when the value of the parameter T* is set around 1. Therefore, for the following
experiments, T* = 1 is used.

rn.3.3.- Study of the influence of the potential ratio

The parameter V* of (III. 12) controls the relation between potentials of
cliques of type 1 and cliques of type 2 ( V* = ¥2 / Vi ). To change this relation
results in giving priority or penalising some kind of contours with respect to
others. V* —» 0 is the case presented in Section III. 1.2 (Figure III.4) in which
cliques of type 2 are not taken into account. As it has been pointed out, in a
global analysis this situation does not arise any problem. However, when
performing local analyses, this choice of potentials leads to overlooking some
contour configurations. That is, the local compactness of regions is not
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checked. Therefore, regions having zones of small width are more likely to
appear.

The case of V* -> «> translates into a reduction of the importance of
cliques of type 1. This situation corresponds with the case discussed in Section
III. 1.2 (Figure III.3). There, it has been shown that to give priority to cliques of
type 2, withdrawing the information of cliques of type 1, results in a model
producing wringing contours. In order to build a model for smooth contours,
both potentials should have similar values, and the main importance of cliques
of type 1 has to be taken into account. That leads to V* € [0.25, 1].

The variation of the final number of regions with respect to the value of
V* is plotted in the graphic of Figure III. 16. The range of variation of the
vertical axis has been taken equal to that of Figure III. 14. In this way, the
small dependence of the final number of regions with respect to V* comparing
with with respect to T* is illustrated. It can be seen how, as the value of V*
changes, the number of regions does not vary very much, having, in this case,
its minimum value around V* = 1.
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Fig. 111.16.- Final number of regions versus V*

These different situations can be observed in Figure III. 17, where the
results yielded by the same algorithm when varying the value of V* are
depicted. Data from these images can be seen in Table III.2. Note that for the
whole range of values of V*, resulting segmentations improve very much the
initial segmentation. As in the previous study, small details and complicated
shapes that are not present in the initial segmentation are recovered.
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Fig. 111.17.- Segmentations obtained by varying the value of V*

(i,j)
V*

f Reg.

(0,0)
0
653

(0,1)
0.1
636

(0,2)
0.5
605

(1,0)
1
601

(1,1)
2
601

(1,2)
10
621

(2,0)
20
620

(2,1)
100
619

(2,2)
oo

629

Table IIL2.- Data from segmentations of Figure IIL17

However, the local form of contours varies from one segmentation to
another. In the first results (small values of V*), several regions present
elongations of one pixel width (see regions in the coat, the grass and the small
building), whereas in the last ones (large values of V*), contours are less
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smooth and in some places rather wrung. It is worth noticing that this effect
not only appears in regions that may not have a clear contour (regions within
the coat or the grass) but also in regions that should have a very smooth shape
(the clearest case is the right hand-side of the highest building).

To illustrate this behaviour, two parameters have been computed on the
above set of segmentations. The first parameter measures the compactness of
regions. This parameter is the amount of elongations of one pixel width
appearing in the different regions. The second parameter measures the local
smoothness of the boundaries. This feature has been quantified by computing
the amount of three pixel length straight contours. Both parameters are plotted
in the graphic of Figure III. 18. Values plotted for the second parameter are the
real values divided by ten, in order to make the dynamic of both parameters
similar.
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Fig. IIL18.- Compactness and smoothness parameters versus V*

In order to fix the value of V*, two different concepts can be applied.
First, boundaries of regions should conform to the boundaries of natural
objects. Secondly, when using image segmentations for coding purposes,
contours should be as easy as possible to code. Both concepts leads to a smooth
contour solution without thin elongations. This kind of contours can be
achieved by giving to the parameter V* a value into the above range. Several
experiments performed with a large set of images show that a good choice for
this parameter is V* = 0.5.
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ÜL3.4.- Study of the influence of the initial segmentation

In the former sections (especially in Section III.3.2), the proposed image
model and segmentation algorithm have been shown to achieve good results.
Furthermore, the quality of the final results always improves that of the initial
segmentations. However, it has been also highlighted that the quality of final
segmentations is constrained by the initial segmentation. Here, different initial
situations are studied so that their influence in the final result is analysed.

In the first row of Figure III. 19, three different initial segmentations are
shown. These segmentations have been carried out with an algorithm which
has a tendency to produce vertical regions. Moreover, the algorithm uses a very
simple region model, which results in segmentations with overgrown regions
as well as oversegmented areas. The difference among the three examples is
that, in each case, the algorithm has been tuned to yield a different number of
regions (see Table III.3). In the second row of Figure III. 19 the contour image
of the final segmentations achieved with T* = 1 and V* = 0.5 can be observed.
Note that, in all cases, final results improve the quality of initial
segmentations. For instance, objects that are not present in initial
segmentations, do appear in final segmentations (e. g.: the domes or the hand
of the man).

Figure 111.19.- Examples of wrong initial segmentations
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Column

Init. # Reg.

Final # Reg.

1st
502
315

2nd
1841
424

3rd
4069

631

Table 111,3.- Data from segmentations of Figure 111.19

Furthermore, zones wrongly oversegmented (that is, with too many
regions and wrongly located) are recovered with their correct regions (e. g.: the
coat). In this case, the importance of this result is even more noticeable. Initial
regions have very smooth contours (almost rectangular), which are associated
with very likely realisations of the lower level of the model. Moreover, their
gray levels are very uniform, which leads to similar probabilities whichever
the contour configuration is. Hence, the importance of performing correctly the
initial segmentation of such zones.

On the other hand, it is important to emphasise the problems that a
wrong initial segmentation arises. Note that the algorithm has not been able to
recover some regions that do not appear in the initial segmentation or it has
recovered them only partially (small and large building, respectively, in the
two first examples). Since new states in the algorithm are obtained by checking
contour points, recovering interior regions that the initial segmentation has
totally overviewed is almost impossible. An interior region is a region such that
its contour does not touch at any point the contour of another region. Thus, if
an interior region has not been detected in the initial segmentation, the
algorithm is almost unable to recover it.

The only mechanism for detecting interior regions is by expanding a
spurious region that may happen to be close to the interior one. Spurious
regions are regions appearing in homogeneous zones without corresponding
with any obvious area of the image. Since they are located within homogeneous
zones, their boundaries do not conform to any clear shape and their textures
are very similar to those of neighbour regions. Therefore, their evolution when
applying the segmentation algorithm is rather erratic. This is the case of
regions that achieve to detect part of the large building in the two first
examples.

The effect of having spurious regions in homogeneous zones within the
initial segmentation is very difficult to control. As it can be seen in the first
example of Figure III. 19, a spurious region going from the camera down to the
columns has allowed the algorithm to partially recover the large building, but
it has not been able to totally recover it. Moreover, in the third example, a
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rectangular-like region above the shoulder of the man in the initial
segmentation has expanded yielding a wrongly located region and with a very
complicated shape.

Even if such spurious regions happen to expand correctly, their
expansion slows down the algorithm. Actually, low quality initial
segmentations result in a much slower algorithm convergence. In terms of
computational load, results presented in Figure III. 19 are, in average, four
times more expensive than those shown in Figure III. 12 or III. 15.

A good summary of the main drawbacks arising when using a poor
initial segmentation as well as a fair demonstration of the power of the joint
use of the image model and the segmentation algorithm is the experiment
illustrated in Figure III.20. In this experiment, the image Cars has been
initially segmented (first image in Figure 111.20 shows the original picture,
while the second image is the contour image of its segmentation obtained with
the algorithm presented in the previous sections). This result has been used as
initial segmentation for the Cameraman image. The algorithm yields the
result shown in the third image of Figure 111.20 as a contour image and in the
fourth one as a mosaic image.

As it can be seen, even if the segmentation uses such a simple algorithm
with a white Gaussian random field based model, the main regions of
Cameraman have been found. However, initially oversegmented homogeneous
zones are finally obtained as a set of patches (for instance, the sky), and
initially overgrown regions do not help for recovering details or hidden
structures (for instance, the face of the man). However, the segmentation of the
grass is performed better in this example than in the former ones. This
improvement is owing to the fact that, here, the initial segmentation of this
textured zone contains less regions than in the former examples. Since the
algorithm lacks of a general view of the image (computations are only carried
out in a local manner), when textured zones are initially oversegmented, the
algorithm cannot detected the whole zone as a single region.
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Fig. IIL20.- Example of poor initial segmentation

Finally, in order to further highlight the main characteristics of the
algorithm, some examples of its performance on different images are shown in
Figure III.21. At each row, the original image and its segmentation (contour
image as well as mosaic image) are presented. The algorithm used for
obtaining the initial segmentation is the bottom-up technique described in [66],
It has to be emphasised that this algorithm yields initial segmentations with
fairly good quality but it is very computationaly demanding. The final
segmentation has been performed by using the recursive algorithm. The value
of the parameters (T*, V*) has been set to T* = 1 and V* = 0.5.

In the first row, the segmentation is performed on a frame of the so-
called Miss America sequence. The quality of the result (292 regions) can be
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noticed in different zones. For instance, the hair has been segmented apart
from the background whereas small regions have been detected (see the eyes or
the teeth). Nevertheless, three spurious regions appearing in the initial
segmentation have been expanded (left hand-side of the image). These regions
prevent to have the whole background segmented as a single region.

Fig. 111.21.- Some examples of segmentations

An example using a textured image, which will be referred as Aerial, is
presented in the second row. In this example the effect of using bottom-up
techniques for carrying out the initial segmentation is very noticeable. This
kind of techniques do not cope correctly with textured areas, and leads to
oversegmented results. Moreover, given that the algorithm has a local
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viewpoint of scenes, it is not able to improve in this aspect the final
segmentation. Therefore, although the mosaic image (317 regions) reproduces
fairly well the original image, the final segmentation only accounts for gray
level variations, withdrawing the texture concept.

Finally, a quite linear-like image, the so-called Building image, has been
tested. In this example, the validity of the boundary model for handling both
line-like and random contours is illustrated. The mosaic representation of the
image (284 regions) shows that in the segmentation, all the important features
of the image have been preserved.

III.5.- Summary

The image model used in this work has been presented in this chapter.
This model is a compound random field formed by a set of white Gaussian
random fields in its upper level and by a Strauss process in its lower level. The
reason for choosing white GRFs for the upper level is that this kind of model,
when used in a CRF, leads to a good compromise between capability of
characterising regions and computational load. On its turn, a Strauss process
is used for the lower level, given its good performance when modelling labelled
images. Furthermore, Strauss processes can also be utilised for modelling the
behaviour of contour images. The choice of a second-order neighbourhood
system has been justified, as well as the fact of assigning zero potential to all
cliques different from non-homogeneous, two-site cliques.

To perform a segmentation based on this stochastic image model, a
deterministic algorithm has been chosen. This algorithm is a special case of
the method called Iterated Conditional Modes (ICM). The main drawback of
ICM methods is that they do not guarantee reaching global optimum solution.
This kind of algorithms depend very much on its initial conditions and on the
technique for selecting a new state of the system from a given solution. Here,
new states are devised ensuring that they still represent correct partitions of
the image. Although this method does not allow to create directly new regions,
it can create them indirectly by splitting in two a previously found region.

The procedure for checking if a new state of the system can be accepted
(that is, if it increases the joint probability function) has been shown to be
simple and fast. This procedure relies on local computations since both the
image model and the method for producing new states allow such kind of
computations. The complexity of the algorithm has been fairly reduced by
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using maximum likelihood estimation criteria for estimating the parameters
of white GRFs. Regarding the mechanism for selecting pixels to produce new
states, three different methods have been presented. The so-called recursive
algorithm has been chosen, given that its convergence is guarantied, its
computational load in a sequential machine is very small and it yields similar
results to the others.

For overcoming the problem of estimating the parameters of the Strauss
process, studies of the influence of these parameters on the segmentation
results have been carried out. The three parameters characterising the lower
level model have been shown to be redundant and reduced to only two (T*, V*).
The first parameter (T*) controls the importance of the upper level model in
front of the lower level model within the compound random field. That is, when
T* increases, contours are penalised with respect to textures (and vice versa).
However, it has been shown that for a large range of values of T*, resulting
segmentations improve the performance of the initial ones. The best results for
a large set of images have been obtained for a range of values around T* = 1.

The second parameter (V*) controls the relation between cliques of type 1
and type 2. It is worth noticing that, for any possible value of parameter V*, the
result of the algorithm improves the quality of the initial segmentation.
Nevertheless, depending on its actual value, contours within the image present
different characteristics. When V* -» °°, the model gives priority to cliques of
type 2; that is, noisy contours (contours with fast oscillations) are highly likely.
On the other hand, when V* —> 0, the model does not account for region
compactness, which mainly results in not penalising regions with zones of one
pixel width. In order to obtain a model conforming as much as possible to
natural objects, priority has been given to smooth contours. In the experiments
performed on a large set of images, the best results in this sense have been
achieved when using V* € [0.25, 1].

The dependence of the algorithm with respect to the initial segmentation
has also been studied. It has been shown that, given any possible initial
segmentation (even random ones), the final segmentation always improves the
visual quality of the initial one. However, although the algorithm improves the
quality even when selecting a poor initial segmentation, results are seldom of
high quality. This effect is mainly due to three reasons. There is no easy control
on the algorithm behaviour when it deals with spurious regions which may
appear in homogeneous zones: it randomly expands or shrinks them.
Moreover, if the initial segmentation has oversegmented homogeneous zones,
the algorithm is not able to remove spare regions. The main reason for this
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drawback is that the algorithm performs only local computations and,
therefore, it lacks of a general view of the scene. Finally, interior regions that
have not been detected by the initial segmentation cannot be directly recovered
by the algorithm. This problem is owing to the fact that the algorithm builds
new segmentation by acting in the boundaries of the current one.

Another important drawback is the computational load of the whole
method. Using simple techniques for obtaining the initial segmentation
usually leads to poor results. In these cases, the algorithm requires a large
amount of computations in order to reach a local optimum. On the other hand,
techniques providing with good initial segmentation are comparable or even
more expensive in terms of computational load than the algorithm itself.




