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Chapter V: Seed Extraction by Morphological Tools

CHAPTER V

SEED EXTRACTION BY MORPHOLOGICAL
TooLs

As stated in the previous chapters, both -the monoresolution and the
multiresolution segmentation approaches fail when coping with interior
regions, An interior region has been defined as a region such that its contour
does not touch the contours of other regions at any point. The reason for this
failure is owing to the procedure for selecting, from an initial segmentation,
new possible states (see Section III.2). This procedure is based on the label
change of pixels laying on the boundaries of current regions. That is, a new
state is reached by giving to a pixel the label of one of its neighbours. Therefore,
if an interior region has been overlooked in the initial segmentation, the labels
of its pixels will not change throughout the whole procedure. This drawback is
mitigated by the use of multiresolution approaches, given that their global
analysis leads to better initial segmentations. Nevertheless, even when such
approaches are used, some interior regions are not detected.
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V.1.- Necessity of using seeds

The first trial to overcome this drawback relies on varying the procedure
for selecting new states. The new procedure of selection should allow pixels of
interior regions to change their label. That is, labels of pixels laying on the
interior of the current regions should be checked. In this way, the possibility of
directly creating new regions is introduced in the algorithm. Therefore, new
states are reached by giving to a pixel the label of any of its neighbours or a new
label different from the current labels in the partition.

V.1.1.- Creation of new regions

The direct application of this procedure results in several problems. Note
that new regions, which only contain a single pixel, can be created. As it has
been emphasised in precedent chapters, parameter estimations performed on
small amounts of data are not reliable. In this case, the variance estimation for
the new region will be zero. Such a value is not allowed for computing the
conditional probabilities as proposed in (II1.9). This problem can be
circumvented by assuming a very low, positive value as variance of one pixel
regions. Nevertheless, this solution implies to introduce an ad hoc value in the
procedure.

A second problem appears in relation to textured areas. The basic
monoresolution algorithm presented in Chapter III performs a local analysis
in order to maximise the joint probability. The fact of being local prevents for
correctly coping with textured areas. Hence, the necessity of using
multiresolution approaches for segmenting such areas (see Chapter IV). In
the multiresolution approach, local analyses at different resolutions are only
allowed relying on the information provided by the coarsest levels. That is, fine
level segmentations are mainly based on coarge level contour refinements.
However, if the algorithm is allowed to carry out a local analysis at every point
of each level, the global viewpoint supplied by the multiresolution approach is
useless. This kind of local analyses leads to oversegmented textured areas,
since small homogeneous zones forming the textured are detected as single
regions.

In addition, checking whether every point within the image may form a
new region or not can double the computational load of the algorithm. For
instance, an image as the Cameraman contains, at most, 23.000 pixels laying
on its boundaries (this is the maximum number found in the segmentations
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presented in Chapter III and Chapter IV), while the whole image contains
65536 pixels.

These effects can be illustrated by the segmentations of the Cameraman
image presented in Figure V.1. The first segmentation (236 regions) has been
obtained by using the unsupervised approach presented in Chapter IV
(actually, it is the segmentation of Figure IV.19). On its turn, the second
segmentation (1024 regions) has been achieved by the same algorithm, but
allowing the direct creation of new regions. In this algorithm, once a new
region has been created, its parameters are computed and introduced in the
image model. Therefore, this new region can be expanded by the algorithm.
That is, a single-pixel new region can act as a seed for the whole interior
region to be detected.

Fig. V.1.- Effect of allowing the dlrect creation of new regions

As it can be seen in Figure V.1, several details, overlooked in the first
segmentation, appear in the second one (e. g.: the right stick of the tripod or
some details in the face of the man and in the camera). However, some of these
details, which should be detected as single regions, have been oversegmented
(e.g.: the right stick of the tripod or details in the camera). This
oversegmentation is owing to the fact that more than one single-pixel region
has been created in the area corresponding to a unique interior region. The
reason for having this multiple seed effect is owing to the scanning of the
image as well as to the shape of interior regions. For instance, an interior
region having a U-like shape may yield two different new regions with a
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normal raster scanning. In addition, textured areas appear clearly
oversegmented in the second image (e.g.: the grass). Furthermore, the
computational load of the second segmentation is 2.4 times that of the first
case.

Two main ideas result from this example. First, the possibility of
allowing the algorithm to directly create new regions can solve the problem of
detecting interior regions. However, new regions must not be create at any
location within the image, in order not to spoil the multiresolution approach
improvements. Thus, some external information should guide the algorithm to
the locations where new regions can be created, while forbidding the creation
in other places. That is, the algorithm should be provided with a set of seeds
aiming at the points at which creation of new regions is feasible. The
information contained on this set of seeds can be represented by a binary
image.

In addition, some mechanism should be introduced in the algorithm to
prevent the creation of several small regions in a zone which could be gathered
in a single one. Thus, in the optimum case, only one seed should mark the
possible existence of a single interior region.

V.1.2.- The error image

To analyse the presence of non-detected interior regions within an
image, given a segmentation, the error image is built. This image contains the
difference between the original image and the mosaic representation of the
segmentation. It should be recalled that a mosaic image is a representation of
the partition of an image with each region filled by its mean value. Therefore,
the error image represents the difference between the image model and the
original image, withdrawing the variance information. In a following section,
the use of the variance information will be discussed.

The information stored in error images is similar to that contained in
the levels of the Laplacian pyramid (see Chapter IV). Assuming that
segmentations used for computing error images have been correctly performed
(they have correctly located their regions), error image information should be
mainly related to textures in the original image and non-detected interior
regions. Actually, some contour information appears in the error image, as
well. The reason for having this information is the zone of uncertainty present
around all contours in an image (see Chapter I). However, to remove this
information from the error image is an easy task since the location of contours
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in the segmented image is known. Therefore, the main task when extracting
the seeds from the error image is to discriminate between texture and non-
detected interior region information.

Classical thresholding techniques cannot be used for such a goal. The
information about the absolute value of pixels in the error image is not enough
to discriminate between both classes of information. That is, textured areas
may yield pixels in the error image with larger absolute values than those
produced by non-detected interior regions. Furthermore, the number of seeds
per region depends very much on the chosen threshold. Finally, the situation of
having a non-detected interior region embedded in a low gradient region is not
correctly solved by a simple thresholding.

To illustrate the above concepts, the error image of the Cameraman and
the first segmentation of Figure V.1 is shown in Figure V.2. In order to avoid
representing negative numbers, an offset has been added to the whole image.
That is, zero differences are represented by a gray level value of 128 in the
image. After adding the offset, the image has been clipped so that its pixel
values can be represented with one byte.

Fig. V.2.- Example of error image

Several details appear clearly marked in this error image; for instance,
the right stick and the left leg of the tripod, some parts of the camera and the
face of the man or the aerials of the large building. Note that contour
information is also present in the error image. This information can be clearly
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seen in the transitions between the region of the coat or the head and that of the
sky. In addition, texture fluctuations appear due to the grass zone. It should be
noticed that the absolute gray level values of these fluctuations can be quite
high.

In order to detect overlooked interior regions, the segmentation method
of Chapter IV may be applied to the error image. However, this approach
arises some problems. Note that this segmentation cannot take advantage of
the multiresolution analysis performed for segmenting the original image.
That is, the segmentation of the error image produced at level (1) of the
decomposition cannot be used to guide the segmentation of the error image at
level (I-1). The reason for this statement is that, if the error image at a given
level (1) is used to refine the final segmentations at this level (1), two consecutive
error images should present very little similarity.

Therefore, a new multiresolution segmentation should be carried out,
taking the error image at the bottom of the pyramid as basis of the
decomposition. In this case, the computational load for the whole procedure is,
at least, twice that of the method presented in Chapter IV. Furthermore, after
performing both segmentations, information obtained in each one has to be
gathered into a single result. This final step is not a simple task since some
contours may be represented in both results. Given that segmentations have
been carried out on different images with different model parameters (note that
the Laplacian pyramid is different for each segmentation), related contours are
not equal. Thus, a contour matching technique is necessary.

Simpler techniques for extracting seeds from non-detected interior
regions should be sought. Image contrast turns out to be a useful information
to determine whether a non-detected interior region may be present or not. In
addition to this information, and towards the goal of distinguishing between
textured zones and non-detected interior regions, homogeneity of contrasted
areas can be used. That is, homogeneous contrasted areas are more likely
related to interior regions than non-homogeneous one. Since morphological
tools are well know to be very efficient for detecting contrasted, nearly flat
regions, techniques relying on such tools have been studied.
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V.2.- Morphological tools

Mathematical Morphology (MM) is a very wide field which has multiple
applications in the signal processing framework. This section is aimed at
giving only a brief overview of the morphological tools used in this work, rather
than an exhaustive study of the whole field. Furthermore, the analysis of such
tools is mostly restricted to the scope of the current application; that is the
detection of interior regions. For a complete discussion on the topic, the reader
is referred to [14, 77].

The different operators discussed on this section can be defined as
dealing with N dimensional signals. However, for simplicity, only the one and
two dimensional cases are taken into account. Whichever the case, signals are
denoted by wj, xj and y;. In addition, this study is only related to morphological
operators using flat structuring elements. Flat structuring elements are very
used since they lead to operators which preserve edges, commute with some
modifications of the gray level scale and allow fast implementations [78]. In the
sequel, a flat structuring element of size n is denoted by Sy.

In order to illustrate the properties of the different operators, the signal
plotted on Figure V.3 is used. This signal has been generated following the
behaviour of error images. That is, it has contrasted, nearly flat zones of both
signs (similar to interior regions) and areas with rapid, contrasted
fluctuations (similar to textured zones). In all the examples performed with
this signal, a symmetric, flat structuring element of size 21 is used.
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Figure V.3.- Original monodimensional signal
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In the current application, a correct discrimination among the different
kinds of information appearing in this signal should isolate both the positive
and negative large peaks while removing the rapid fluctuations. In addition,
peaks should be detected as single items. That is, a unique, connected zone
should mark the presence of each peak. In this way, the possibility of
introducing more than one seed per peak is avoided.

V.2.1.- Erosion and dilation

Erosion and dilation are the basic operations of mathematical
morphology and most of the morphological tools are based on them [14]. Their
definition, in the case of discrete signals and flat structuring elements, can be
given by:

¥i = €n (x1) = Min { xj4x, k € Sy } (V.1)
¥i = On (%) = Max { i, ke Sy} (V.2)

where €, and 0, stand for the erosion and the dilation performed with the
structuring element S, respectively. The main properties of these operators
are that they are increasing

if wicx; then € (wip)ce(x;) andd (w;)cd (x;) (V.3)

and, if the centre of the structuring element is contained in the structuring
element itself, they are anti-extensive and extensive respectively,

e(xp)cxi and x;cO(xy). (V.4)
This last property can be observed in the example of Figure V 4.

Note that, given the anti-extensive (extensive) property, the eroded
(dilated) signal is a kind of inferior (superior) envelope of the original signal.
Moreover, erosion (dilation) expands the negative (positive) peaks of the signal,
while shrinking, or even removing, the positive (negative) ones. Therefore,
none of these operators is self-dual. That is, they handle in a different way
positive and negative samples.

Although the eroded (dilated) signal is simpler than the original one and
highlights the negative (positive) peaks, it cannot be used as detector for
interior regions. Note that, after transforming, all peaks are either removed or
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expanded. That is, these operators do not discriminate between textured areas
and interior regions. On the contrary, they cope with both informations in a
similar way. Furthermore, since negative (positive) peaks are expanded, their
actual boundaries are lost. This effect does not allow to locate correctly the
zones related to peaks. Therefore, more elaborated transforms have to be used.
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Figure V4.- Examples of erosion and dilation
V.2.2.- Open and close

Two transforms can be defined by composition of the operators above
given. In this way, morphological open and close are defined as [14]:

Yn=0n€p, and @,=¢,0,, (V.5)

where Y and @ stand for open and close, respectively. Both transforms share
the properties of being increasing and idempotent. This last propierty means
that, if the transform is composed with itself (applied twice), the result is the
same as if applied only once

Y=YY ¢=06¢. (V.6)

Increasing and idempotent transforms are called morphological filters. Note
that, besides these properties, open is anti-extensive while close is extensive.
Therefore, both are not self-dual. The behaviour of these filters is illustrated in
Figure V.5.
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Since the open transform is anti-extensive (extensive), the opened
(closed) signal is also an inferior (superior) envelope of the original signal.
However, in this case, the filtered signal conforms better to the original signal
and specially to its negative (positive) peaks. Note that, as commented above,
edges are well preserved owing to the use of flat structuring elements.
Therefore, it may be said that filtered signals are simplified versions of the
original signal from which positive (negative) peaks not fitting within the
structuring element have been removed.
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Figure V.5.- Examples of open and close

Note that, although peaks of the original signal have been highlighted
and fluctuations have been removed after filtering, a detection of peaks carried
out directly on the filtered signal is not possible. Peaks, rapid fluctuations and
slow gradients may yield similar values, and, therefore, a basic detection (e.g.:
thresholding) cannot be applied.

V.2.3.- Residues with open and close

Another kind of transforms can be obtained by computing the difference
between morphological filters. This kind of morphological transforms are the
so-called residues. By computing the difference between the identity and an
open or a close filter, two different residues are achieved. These residues are
denoted by the name of white and black Top Hat, respectively [79]. These
transforms are given by:
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white TopHat=1-Y (=>yi=x;-Y &)
black TopHat=9-1 (=2y;=? (x)-x%;) > (V.6)

where I stands for the identity operator. These transforms are neither
increasing nor extensive or anti-extensive but they are idempotent. The white
(black) Top Hat isolates the elements in the original signal removed by the open
(close) filter. An example of the application of the white Top Hat is plotted in the
graphic of Figure V.6. In this case, the graphic shows the original signal, the
opened signal and the result of the white Top Hat transform. In order to show
these signals in the same graphic, an offset (300) has been subtracted from the
Top Hat result.
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Figure V.6.- Example of white Top Hat

Slow variations have been removed from the original signal, given that
the transformation is a residue of a filter following them. However, since the
open (close) filter is anti-extensive (extensive), it yields an inferior (superior)
envelope of the signal, which removes the rapid positive (negative) fluctuations.
Therefore, these fluctuations appear in the resulting residue. On the other
hand, it is worth noticing that white (black) Top Hat preserves the shape of
positive (negative) peaks.
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Although residues are a big step towards the detection of interior
regions, white and black Top Hat do not provide with an efficient tool for such a
task. The main problem results from the fact that rapid fluctuations (textures)
are strongly represented in the final result. Moreover, since the filters are not
self-dual, informations obtained from both transformations has to be merged in
a single result. This merging procedure may lead to some problems. Hence,
the necessity of using other kind of filters as basis for the residue
transformation.

V.2.4.- Close_open and open_close

By composing open and close filters, a few new filters can be created [80].
These filters, in spite of not being self-dual, cope with both positive and negative
samples in a more similar way than the basic open and close filters. The
definition of these filters is as follows:

close_open = QY open_close_open = Y Y
open_close =Y P close_open_close = @ Y@ . V.7)

Note that, due to the idempotence property, these are all the filters which can
be built by composition of open and close. As filters, they are idempotent and
increasing. However, in this case, they are neither extensive nor anti-
extensive. This is the reason why they are closer to being self-dual than open
and close filters. In Figure V.7, examples of close_open and open_close
filterings are shown.
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Figure V.7.- Examples of close_open and open_close
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It is worth noticing that, since they are neither extensive nor anti-
extensive, none of both filters generates an envelope of the original signal.
However, close_open (open_close) filters lead to a sort of inferior (superior)
envelope of the small peaks, while removing large negative (positive) peaks.

The direct detection of interior regions from the result of an close_open
or open_close filter is not possible. Note that these filters remove both the
texture and interior region information. However, these filters supply with a
very useful tool as basis for residue transforms.

V.2.5.- Residues with close_open and open_close

An extension of the Top Hat transform is defined by using close_open
and open_close filters as basis for computing the residue [81]. These residues
are not obtained directly by subtracting the original image and the result of the
filtering, but a second operator is introduced in the definition. In this way, two
different contrast extractors are given by:

Positive contrast extractor: I-Min (Y, 1)
Negative contrast extractor: Max (P Y, I) -1 (V.8)

where I stands for the identity operator. Note that the operator Min (YO, I)
(Max (? v, I)) is increasing, anti-extensive (extensive) and idempotent. Thus, it
is an algebraic open (close). On its turn, contrast extractors are idempotent
transforms. An example of these operators is plotted in Figure V.8 where an
offset (300) has been subtracted from the positive contrast extractor in order to
show it jointly with the original signal and the Min (Y @, I) result.

Residues obtained by using algebraic open (close) based on Min (Max)
operators and open_close (close_open) filters nearly remove all information not
dealing with peaks in the original signal. In addition, the remaining
information coping with rapid fluctuations of the original signal extends in
small zones and presents values smaller than in the original signal.

The extraction of both positive and negative contrasted areas can be
performed by combining both residue informations. This combination turns
out to be the absolute value of the residue of the identity operator and the
morphological centre of the close_open, the open_close and the identity
operator itself. Thus, the contrast extractor can be defined as:
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Contrast extractor: |I - centre (Y®, ¢ 7Y, D | , vV.9)

where the centre operator stands for

centre (Y @, @ Y, I) = Min (Y @, Max (Q Y, I)) (V.10)
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Figure V.8.- Example of positive contrast extractor

The centre operator is a self-dual transform. Its residue deals therefore
in a symmetric way with both positive and negative peaks. Hence, the necessity
of the absolute value in the definition of the residue. Figure V.9 illustrates the
properties of the transforms defined above. As in the previous examples, an
offset (300) has been subtracted from the residue signal in order to show all the
results within the same graphic.

Owing to the self-dual property of the centre transform, its residue with
the identity detects positive and negative contrasted peaks. Some rapid
fluctuations of the original signal may also appear in the resulting signal.
Nevertheless, as in the previous case, the range of fluctuation values is
reduced by the transform. Furthermore, fluctuations appear very localised and -
extend through small areas comparing with peaks. The extraction of seeds
marking interior regions can therefore be performed easily by means of this
transform.
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Figure V.9.- Example of centre and contrast extractor

V.3.- Use of the seed image

Some points have to be considered when applying the morphological
contrast extractor to the error image for creating the seed image. Seeds
indicate the locations where the segmentation algorithm is allowed to create
new regions. Recall that seeds should mark non-detected interior regions
while avoiding textured areas. In addition, each interior region should have
related as few seeds as possible. That is, in the optimum case, the seed image
should present only one connected component (or seed) for each non-detected
interior region.

V.3.1.- On the choice of structuring element

In the previous section, the reasons for choosing a flat structuring
element have been stated. In addition, two more features should be fixed in
order to totally describe the structuring element: its shape and its size. Given
that interior regions may present any kind of shape, no a priori information
can be introduced in the choice of the structuring element. Hence, an
assumption of isotropy is made. That is, square structuring elements are used.
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Regarding the size of the structuring elements, it has to be noticed that
only homogeneous regions smaller than the structuring element would be
detected, as can be observed in Figure V.9. However, the use of large
structuring elements would lead to the detection of regions actually being in
the given segmentation besides interior regions. Note that transitions between
actual regions may be marked in the error image (see Figure V.2). Hence, the
size of the structuring element should guarantee the detection of all interior
regions while being as small as possible.

In order to fix the size of the structuring element, the way of producing
non-detected interior regions has to be studied. A non-detected interior region
is a region that, being completely embedded in other region, is so small that it
has been overlooked in the segmentations performed at previous levels of the
multiple resolution decomposition. A square, homogeneous region of size 16x16
pixels or larger, present at the bottom of the decomposition, will, very likely, be
present at the top level (1 = 4). Note that, due to the decimation procedure, a
pixel at the top of the pyramid is related to a square block of 16x16 pixels at the
bottom image. Given that the top level segmentation algorithm is driven by an
initial segmentation which assumes that each pixel is a region, such regions
will be detected at this point of the procedure. Therefore, interior regions
should be smaller than this size, in order not to be detected.

However, as it has been emphasised in Chapter IV, final segmentations
performed at the top of the pyramid are close to initial ones; that is, only a few
refinements are carried out. Thus, initial segmentations at level (1 = 3) are
close to be totally formed by square regions of size 2x2. Note that, with square
regions of this size, no interior region can be defined. That is, a region cannot
be in the interior of a 2x2 pixels region but only lay on its contour. Given that,
level (1 = 3) is taken as the reference level and the size of the largest possible
non-detected interior region at the bottom level is 8x8 pixels. Actually,
structuring elements of size 7x7 pixels are large enough to detect interior
regions at the bottom level. In an analogous way, 5x5 structuring elements are
used at level (1 = 1) and 3x3 ones at level (I = 2). Following a conservative policy,
contrast extraction is also carried out at level (I = 3) with a 3x3 structuring
element. Note that this step implies the filtering of a 32x32 pixels image, which
requires very little computational load.

Figure V.10 shows the contrast extraction performed with a square, 7x7,
flat, structuring element on two different images. These images are the error
image of Figure V.2 for the Cameraman image, and the error image obtained
with the segmentation of Miss America image shown in Figure IV.19. The

143



Chapter V: Seed Extraction by Morphological Tools

gray level values have been inverted in such a way that zero values after
contrast detection are represented by a gray level value of 255.

Fig. V.10.- Examples of contrast extraction

Note that all the details of the error image are presented after the
~ contrast extraction. Moreover, information regarding textured areas (e. g.: the
grass in the Cameraman image or the hair in the Miss America image) is
mainly represented by a few isolated elements of small value. Therefore, the
extraction of non-detected interior regions can be easily performed from this
result.

V.3.2.- Cleaning the seed image

Three different cleaning steps have to be performed on the contrast
extractor result in order to obtain the seeds. The seed usefulness is to mark the
positions within the image where the segmentation algorithm may create new
regions but it has not been allowed to. Thus, seeds should not be related to
pixels laying on the region boundaries of the given segmentation, since these
positions are already checked by the segmentation algorithm. Given that, a
first step removing all components laying on the region boundaries is carried
out.

The second cleaning step relies on the gray level information of the

elements detected by the contrast extractor. As shown in the previous section,
low valued elements correspond to textured areas whereas elements with high
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values are more likely related to interior regions (see Figure V.9). Hence, a
threshold is applied so that small valued texture elements are removed. Both
dynamic and global thresholding have been studied. When using dynamic
thresholding, the information of the estimated variance of each region within
the given segmentation has been used to adapt the threshold locally to the
characteristics of the error image. Note that the variance of a region in the
segmentation and in the error image are the same.

Results obtained with both techniques are very alike, global thresholding
requiring much less computations than dynamic one. Furthermore, final
results are very robust to the choice of global thresholds. However, a
conservative threshold has to be chosen in order not to split information
dealing with a single interior region into several seeds. A threshold value of 20
has been used in this work. In this way, the creation of more than one seed for
each region is prevented.

The last cleaning step is based on the size of the detected elements. Small
elements in the contrast extraction are more likely related to textured areas
rather than to actual interior regions (see Figure V.9 and Figure V.10). Hence,
the removal of small elements. However, final elements will act in the
segmentation as possible seeds for new regions. That is, the segmentation
algorithm can expand or shrink the given seed, relying on whether the new
region leads to a realisation of the hierarchical model increasing the joint
likelihood or not. Thus, and following the above conservative policy, only very
small elements are removed from the seed image, leaving the final decision to
the basic segmentation algorithm itself.

Components having one or two connected pixels are therefore removed.
The removal is carried out by using a directional open filter with a line
segment of size 3 as structuring element. Four different opens are performed
in this filter, using for each one a different orientation of the structuring
element (0%, 45° 90° and 135°% respectively). The final result is obtained by
taking the superior of the four previous results.

The whole procedure for obtaining the set of seeds is illustrated in the
block diagram of Figure V.11. Note that all steps in the procedure have been
grouped in a single block. In the sequel, the whole procedure will be
represented by this block.

Examples of final seed images obtained after applying the whole
cleaning procedure are shown in Figure V.12. Regarding the Cameraman
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image, it is worth noticing that very few seeds have been found in the grass.
That is, the algorithm for extracting seeds performs a correct discrimination
between interior region and texture information. Moreover all relevant details
in the error image are correctly represented in the seed image. Every interior
regions have related a unique, connected seeds.

Original
Image

Error Image Contrast Cleaning Seeds
Computation Extraction Procedure

Current
Partition

Fig. V.11.- Block diagram of the seed extraction

An analogous analysis can be made with respect to the Miss America
seed image. It should be highlighted that no seeds appears in the zones of the
background or in the pullover. All seeds are devoted to mark lacks of detail in
the face and the hair.
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Fig. V.12.- Examples of final seed image

146




Chapter V: Seed Extraction by Morphological Tools

V.3.3.- Using the seeds in the multiresolution segmentation procedure

Two different techniques have been studied for introducing the seed
information within the segmentation procedure. In both cases, seeds are
introduced at each decomposition level in order to refine the previous
segmentation. That is, the error image at level (1) is computed by the difference
between the original image at this level (1) and the segmentation supplied by
the final algorithm presented in Chapter IV.

The first technique uses the seeds as a set of marks to guide the
segmentation algorithm to the positions where new regions can be created.
That is, the segmentation method proposed in Section V.1 is restricted to
perform label changes in pixels either laying on the boundary of regions or
contained in the seed image. Although the quality of the segmentation results
improves, this technique arises some problems, as pointed out in Section V.1.

New regions are created starting from a single pixel. As it has been
emphasised through the different chapters, parameter estimations performed
on few samples are not reliable. In this case, the situation worsens since the
variance estimation of Chapter III yields a zero value when it is carried out on
only one sample. Therefore, to determine whether a new region has to be
created or not relying on such estimations may lead to erroneous decisions.

Another drawback of this technique is that, in spite of having each
interior region detected as a single, connected seed, these regions can be
eventually oversegmented. That is, each single pixel in a seed can generate a
new region. As pointed out in Section V.1, this multiple seed effect depends on
the shape of the interior region and on the scanning procedure.

On the other hand, the procedure for creating new regions relying on the
seed information has to be emphasised. The few possible seeds related to
textured areas are overlooked by the algorithm. That is, either the algorithm
does not create any region at these locations or, if it creates some, they are not
expanded. Therefore, they remain small and are eventually removed by the
segmentation algorithm. On the contrary, an interior region may be
oversegmented but the pixels in its seed are expanded up to covering, at least,
the whole initial seed.

The above observations lead to a second technique for introducing the

seed information in the segmentation procedure. Given that the algorithm
expands the chosenpixels in the seeds up to covering the whole seed, seeds
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could be introduced directly as new regions in the previous segmentation. In
this way, the segmentation algorithm is allowed to decide whether this new
region should be expanded, shrunk or removed.

This technique leads to carrying out twice the same segmentation
algorithm at each level. In the second stage, the algorithm is driven by the an
initial partition resulting from adding the information obtained from the
previous segmentation and the information obtained from the seed image.
However, very few label changes are performed in this second stage, mainly
related to refinements on new region contours. That is, the segmentation
procedure mainly looks for the actual shape of regions coming from the seed
information. Typically, this segmentation stage only needs one scanning in
order to finish the whole procedure.

A study has been performed on testing if the direct introduction of new
regions in the segmentation leads to partitions with higher likelihood. It has
been seen that almost all seeds, when added to the previous segmentation, lead
to a realisation of the model with higher probability than that of the previous
segmentation. Moreover, in the cases where a new region leads to a lower
probability realisation, the algorithm removes this region and recovers the
initial state. '

The second technique for introducing the seed information in the
segmentation algorithm has been therefore assumed. In this way, the
proposed final multiresolution segmentation scheme is illustrated as a block
diagram in Figure V.13. In this figure, the notation followed in Chapter IV is
used. In addition, the set of seed images has been denoted by MP().

Note that the block devoted by Monolevel Segmentation is driven, in a first
stage (a), by the segmentation provided by the previous level and, in a second
stage (b), by the information generated by the Seed Extraction block and the
Monolevel Segmentation block itself. Therefore, the Seed Extraction and the
Monolevel Segmentation blocks do not create a recursive loop, but a path which
is followed only once. The introduction of the Seed Extraction block in the
procedure translates into increasing the computational load of the whole
method in less than 10%. Segmentations are therefore obtained in a feasible
amount of time.

The segmentation scheme of Figure V.13 is further illustrated in Figure

V.14, where the different steps of the segmentation of the Cameraman image
are shown. In the first column, the set of seed images -MP(1)- is shown as well
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as the mosaic images of the segmentation of the four highest levels of the
pyramid. In the second column, the contour images of the whole
decomposition are shown as well as the four highest levels of the original
pyramid.

Seed
Extraction

Computation
of T*(2)

Pyramids
Level =2

Monolevel

Segmentation SP2
GP2
Seed
Extraction
Pyramids Computation
Level = *
evel = 1 of T*(1) Monolevel
Segmentation SP1
Seed
Extraction
Pyramids Computation
= *
Level=0 of T*(0) Monolevel
Segmentation » SPO

Original Image Final Segmentation

Fig. V.13.- Final multiresolution segmentation scheme

High level seed images contain zero (1 = 4, 1 = 3) or very few seeds (only
three in 1 = 2). Moreover, almost no components are detected in textured areas.
Note that there are only four texture components in the lowest level seed image
(two at the left side of the tripod left leg and two at the bottom, right side corner)
and zero in the rest of seed images. Furthermore, from this set of seeds, only
one of them is expanded and forms a region on the final segmentation. That is,
the other three components are shrunk and eventually removed from the final
segmentation.
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Fig. V.14.- Example of seed image and segmentation

V4.- Segmentation results

This section is devoted to the presentation of final segmentation results
achieved on a large set of images. Each example is illustrated by means of a
figure containing the whole Gaussian pyramid of the original image as well as
the segmentation pyramid presented as a set of contour images. Finally, the
mosaic image of segmentation at the bottom of the decomposition is shown. For
each case, the computational load of the whole procedure is given. This load is
quantised in terms of CPU time in a Sun Sparc II workstation.
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V.4.1.- Cameraman image

The final segmentation presented in Figure V.15 contains 353 regions
and has required a computational load of 30 seconds. It is worth noticing that
almost all relevant details in the image are preserved in the segmentation,
while gathering the textured areas in a few regions. As commented in
previous chapters, the correct segmentation of textured areas is owing to the
use of a multiple resolution approach. Nearly all the regions forming the
textured areas are already present in the segmentation of the highest levels of
the decomposition. Moreover, note the high quality in the reconstruction of the
different parts of the camera where no main feature has been overlooked.

Fig. V.15.- Final segmentation of the Cameraman image
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V.4.2.- Miss America image

The final segmentation presented in Figure V.16 contains 180 regions
and has required a computational load of 22 seconds. The quality of this final
segmentation has also improved with respect to that of Figure IV.19. Details
which are not detected in the segmentation of Figure IV.19 have been
separately segmented in this image (e. g.: the the teeth and the left eye).
Moreover, the bright zones on the right side of the hair are correctly
reproduced. In addition, the hair and the background are still segmented into
different regions.

Fig. V.16.- Final segmentation of the Miss America image
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V.4.3.- Cars image

The final segmentation presented in Figure V.17 contains 505 regions
and has required a computational load of 36 seconds. Note that nearly all the
details in the original image are represented in the final segmentation. In this
case, even the blurred numbers and the central black dot of the wheels have
been detected. A fair part of regions in the final segmentation is devoted to the
blurred background. The blurring introduces a huge amount of uncertainty in
the image and the segmentation needs a large number of regions for coping
with it.
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Fig. V.17.- Final segmentation of the Cars image
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V.4.4.- Building image

The final segmentation presented in Figure V.18 contains 429 regions
and has required a computational load of 33 seconds. It has to be emphasised
that all the windows of the building are correctly represented in this
segmentation. Note that all details in the original image are detected, besides
some parts of the horizontal, dark lines appearing in the column and the wall.
These lines have not been detected mainly given that they are not completely
connected. Therefore, the algorithm detects several small, unconnected
regions which are finally removed.
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Fig. V.18.- Final segmentation of the Building image
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V.4.5.- Peppers image

The final segmentation presented in Figure V.19 contains 374 regions
and has required a computational load of 32 seconds. The main problem when
segmenting this image is the possibility of overgrowing regions due to the
contact between the different elements in the image. Note that this effect
seldom happens and almost every region is contained in a single fruit.
Moreover, in spite of using a texture representation as basic as a constant gray
level per region, the mosaic image correctly represents the volumes of fruits in
the image. However, note that such a simple representation fails in
characterising some shadowed areas.

BT

Fig. V.19.- Final segmentation of the Peppers image
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V.4.6.- Lena image

g The final segmentation presented in Figure V.20 contains 270 regions
? and has required a computational load of 20 seconds. This is a rather
complicated image given that it contains different textures, several details,
homogeneous zones and quite blurred areas. It should be noticed that the most
textured area (the tail of the hat) has been split only into few regions. In
addition, details in the face (as the eyes or the nose) have been correctly
detected. Furthermore, only a small part of the hat has been connected with the
background, in spite of the gray level similarity. As in the Cars image, blurred
areas yield several regions.

Fig. V.20.- Final segmentation of the Lena image
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V.4.7.- Bridge image

The final segmentation presented in Figure V.21 contains 328 regions
and has required a computational load of 39 seconds. As in the previous case,
this is a complex image. It contains very fine structures that can be understood
as textures and, due to the fog, all the image is rather blurred. Note that the
fine structures have been gathered in a few regions. That is, the use of the seed
information has not yield small regions in the area which would have spoiled
the global segmentation. Moreover, small, relevant details on the bridge have
been correctly segmented (e. g.: the cable or the white dot between the bases of
both towers).

Fig.V.21.- Final segmentation of the Bridge image
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V.4.8.- Aerial image

The final segmentation presented in Figure V.22 contains 328 regions
and has required a computational load of 18 seconds. In this case, the final
segmentation is very close to that performed by means of the algorithm
presented in Chapter IV. The use of the seed information has introduced only a
few regions in the forest area associated to shadows of the trees. Furthermore,
the segmentation of the crops is very alike either using seeds or not. That is,
the texture presented in the crop areas has been overlooked by the seed
extraction. '

Fig. V.22.- Final segmentation of the Aerial image
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V.4.9.- Synthetic image

The final segmentation presented in Figure V.23 contains 33 regions and
has required a computational load of 19 seconds. As in the Aerial image case,
the use of seed information does not change the behaviour of the segmentation
algorithm when handling textured areas. The final number of regions is
almost the same in both cases (the segmentation in Chapter IV contains 34
regions).
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Fig. V.23.- Final segmentation of the Synthetic image
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V.4.10.- Table-Tennis image

The final segmentation presented in Figure V.24 contains 75 regions and

| has required a computational load of 17 seconds. Note that the use of seeds has
neither spoiled the segmentation of textured areas in this case. That is, no new
region has appeared in the background. On the contrary, the segmentation of
the hand and the racquet presents more details in this case. Dark regions due
to the shadows of the fingers, as well as a white spot in the handle of the
racquet have appeared.

Fig. V.24.- Final segmentation of the Table-Tennis image
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V.4.11.- Seurat image

The final segmentation presented in Figure V.25 contains 495 regions
and has required a computational load of 105 seconds. The high computational
load as well as the presence of a new level in the decompostion is owing to the
fact that the size of the original image is 512x512 pixels. Several details in the
picture have been correctly segmented (e.g.: the eye of the horse or the scarf in
the right side of the picture), besides the shape of the dancer. This region has
been overlooked since the brush-strokes in the picture produce a soft gradient
conecting the body of the dancer with the background.

Fig. V.25.- Final segmentation of the Seurat image
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V.4.12.- Anevrism image

The final segmentation presented in Figure V.25 contains 756 regions
and has required a computational load of 107 seconds. As in the previous
example, the size of the original image is 512x512 pixels. Note that the main
structures of the image have been correctly segmented. Although the veins are
not detected as a single region, almost all of them are represented in the
mosaic image. Furthermore, small, bright objects in the interior of the dark
area have been extracted.
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Fig. V.26.- Final segmentation of the Anevrism image
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As it has been seen, the segmentation technique of Chapter IV has been
extended to deal with non-detected interior regions. The method for extracting
such regions has been shown to be efficient. Moreover, it does not spoil the
segmentation of textured areas and does not need the introduction of any kind
of information. Thus, the algorithm can be carried out in an unsupervised
way. Furthermore, it has been tested with a large set of very different images
achieving high quality results in all cases in a feasible amount of time (the
average computational load is of 27 seconds for images of 256x256 pixels).

V.5.- Summary

This chapter has been devoted to the extension of the multiresolution
segmentation technique presented in Chapter IV to detecting interior regions.
An interior region is a region such that its contour does not touch the contours
of other regions at any point. Interior regions are not detected by the above
technique given that the segmentation is mainly performed as a contour
refinement, without checking pixels in the inside of regions. Therefore, in
order to detect interior regions, the algorithm is allowed to create new regions
at every pixel of the image.

In spite of the success of this method in detecting interior regions, it has
been withdrawn since it arises too many problems. Although interior regions
are detected, the algorithm oversegments them. Moreover, improvements
achieved in segmenting textures by using multiresolution approaches are
spoiled, since priority is given to local analyses of the image when allowing to
create new regions. Hence, the necessity of providing the algorithm with
information marking where the creation of new regions is allowed and where
is not (concept of seed). In addition, interior regions should be related to either
only one seed or as few as possible, in order not.to oversegment them. All this
information is gathered in a binary image called seed image.

Towards the goal of obtaining these seeds, the concept of error image is
used. Error images have been defined with respect to a given segmentation. In
this way, an error image is the difference between an original image and the
mosaic representation of its segmentation. Therefore, assuming that regions
in the segmentation are correctly located, error images contain mainly
information about textures of the original image and about interior regions not
detected by the segmentation. Actually, contour information does appear in
error images owing to the uncertainty present in original images. However,
this information can be easily removed.
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Discrimination between both kinds of information could be performed by
segmenting the error image. However, this approach turns out to result in
cumbersome algorithms which demand, at least, twice the computational load
of the previous multiresolution segmentation technique. A simpler approach
can be used by taking advantage of the fact that interior regions appear in the
error image as nearly flat, contrasted areas, whereas textured information
appears as dense, contrasted fluctuations. Morphological tools are applied for
detecting such areas, given that they are known to efficiently perform in
discriminating between these kinds of information.

Basic morphological tools and their main properties have been analysed.
This analysis has been carried out from the point of view of their application to
the problem of detecting interior region from error images. In this framework,
basic morphological transforms as morphological filters do not solve the
problem and, therefore, more elaborated operators have to be used. In this way,
morphological residues are studied. These operators are defined as being the
difference between two morphological filters.

From the set of different residues that can be defined, the difference
between the original signal and its centre (contrast extraction transform) turns
out to be very efficient for detecting interior regions. The centre is computed
from the open_close, the close_open and the identity operators. The efficiency
of this transform results from the fact that open_close filters yield signals
which mainly remain below positive meaningful peaks (bright interior
regions) and above rapid fluctuations (textured zones). An analogous result
can be stated for close_open filters. Moreover, since a centre transform is used,
the result is self-dual; that is, it deals in a symmetric way with positive and
negative information.

Some points related to the applicatior; of the contrast extraction
transform for obtaining the seeds have been discussed. Regarding the
structuring element, flat, square structuring elements have been chosen. The
reason for chosing flat structuring elements is mainly owing to their capability
for preserving edges and allowing fast implementations. On its turn, the fact of
being square is due to a lack of a priori information about the shape of the
elements to be detected. The size of the structuring element varies depending
on the level of the decomposition at which it is applied. The different sizes have
been chosen satisfying a trade-off between ensuring that any possible interior
region can be detected and that current regions do not generate seeds.
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A three steps cleaning procedure has been presented for obtaining the
final seed image from the result of applying the contrast extraction on error
images. The first step removes all points in the seed image laying on the
boundaries of the original segmentation regions. The second step is a
thresholding devoted to the removal of small valued elements, which are
usually related to textured areas rather than to non-detected interior regions.
Finally, a cleaning step relying on the size of the elements is carried out. This
final step removes small components of the seed image by performing a
directional open filtering. In this way, components formed by one or two pixels
are withdrawn, since they correspond very likely to textured areas.

Once the seed image has been obtained, two techniques have been
analysed to introduce the seed information in the segmentation procedure. In
the first case, seed information guides the algorithm to the locations within the
image where new regions can be created. This technique arises problems
when creating regions, since new regions contain only one pixel and, in such
cases, parameter estimations cannot be carried out reliably. Furthermore,
seeds can be split into more than one region in the final segmentation. This
oversegmentation depends on the shape of the seeds as well as on the scanning
technique.

The second technique introduces directly the seeds in the previous
partition and reapplies the segmentation algorithm using this new partition as
initial one. In this way, the above problems are overcome since new regions
contain a fair amount of pixels and they are created at once. On the other hand,
the direct creation of new regions may result in introducing erroneous regions
in the initial segmentation. However, the algorithm is known to be able to
remove such kind of regions. Therefore, this second technique has been
chosen.

The above segmentation scheme has been tested on very different
images. Several results obtained by means of this final segmentation scheme
have been presented and discussed. Final results show clear improvements
with respect to those presented in Chapter IV. Several details, which are not
detected by means of the segmentation technique of Chapter IV, are extracted
when using the seed information. Moreover, global segmentations of textured
areas are not spoiled owing to the use of seeds for leading local analyses.
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