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“ ‘Do you understand what’s going on?’
‘Not at all,’ he shouted back. ‘I can
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coordinates?’ ”
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Abstract

This thesis is dedicated to the complex wave structure arising in hydrodynamics of
relativistic scenarios when considering realistic fluids with a rich thermodynamics. The
equation of state is a constitutive relation encoding the thermodynamic properties of a
fluid and, in compressible fluid dynamics, it is needed to close the evolution equations. A
nonconvex equation of state is a candidate for inducing complex wave dynamics. With the
purpose of studying nonconvex Special Relativistic Hydrodynamics (SRHD), the thesis is
divided in two parts. The first one is devoted to the study of nonconvex SRHD from
the point of view of the solution of the evolution equations, which consist of a nonlinear
hyperbolic system of conservation laws. The second part put the stress on the modeling
of realistic fluids taking into account the implications on the dynamics studied in the first
part.

On the one hand, we present an exact Riemann solver for nonconvex SRHD, extending
its applicability to the case of nonzero tangential velocities. The Riemann problem is an
initial condition for the system, the fundamental test in hydrodynamics. Its solution
contains all the elements present in more complicated scenarios and allows to understand
the wave dynamics that may arise. By providing the exact solution, we enhance the
understanding of the intricate dynamics at play in nonconvex relativistic systems. We
particularize the solver for a phenomenological nonconvex equation of state and provide
the exact solution for a series of standard problems including relativistic blast waves. We
employ the exact solutions obtained to validate numerical methods used to solve SRHD
equations initialized with complex initial conditions. We measure the accuracy of two
of the most commonly used methods in the field and analyze their performance in the
presence of complex wave structure.

We continue our analysis focusing on neutron stars as astrophysical objects composed
by a fluid that undergo relativistic hydrodynamics evolution. Realistic models for this
matter lead to tabulated equations of state, comprising detailed mycrophysical effects but
representing a computationally inefficient option for numerical simulations. We concen-
trate on the modeling of this tabulated data with a simple analytic expression that gives
special consideration to phase transitions, a phenomena of the matter with the potential
to make the equation of state nonconvex. We analyze the implications of our model in
the stellar properties of the neutron star and its hydrodynamic evolution, comparing the
results with current analytic models employed in simulations.
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Chapter 1

Introduction

1.1 Context and motivation

The theory of General Relativity, proposed by Albert Einstein in 1915, offered a new way
of understanding the Universe. New discoveries and observations through the years have
confirmed predictions of this theory of gravitation (for example [52, 123, 4]). The increa-
sing sensibility of experimental instrumentation and the computational power achieved in
supercomputers are opening an era where the subtle intricacies of General Relativity can
be explored. In the case of the study of massive objects, Einstein field equations need to be
coupled with the corresponding hydrodynamic equations [127]. The first system dictates
the evolution of the spacetime metric. The second one governs the evolution of matter.
The whole coupled system of equations has been extensively studied, as well as each set
of equations on their own [92, 113, 48, 21, 65, 22, 120, 34, 35]. The differential equations
that model relativistic hydrodynamics are genuinely nonlinear, in contrast to the Einstein
field equations which can be formulated as a quasi-linear system of differential equations.
From this observation it can be affirmed that the equations of relativistic hydrodynamics
for high densities present an additional difficulty from the analytical and computational
point of view. The wave dynamics arising from the hydrodynamic evolution alone remains
an ongoing area of research. To focus on this issue without introducing the additional
complexity of a dynamic metric, we study the evolution of matter under the framework of
Special Relativity Hydrodynamics (SRHD).

Our interest relies on understanding the complex wave dynamics in SRHD in realistic
scenarios.

Fluid dynamics is based on nonlinear hyperbolic systems of conservation laws (HSCL)
closed with a constitutive relation represented by an equation of state (EoS) defining the
equilibrium thermodynamics properties of the considered matter.

Let us consider a system of N conservation laws

∂u
∂t

+ ∂f(u)
∂x

= 0, u(x, t) ∈ U , t > 0, x ∈ R (1.1.1)

where U ⊂ RN is an open set, f : U → RN is a smooth function representing the flux of
the system and u is the vector of conserved magnitudes. The Cauchy problem prescribes
an initial condition u(x, 0) = u0(x).

The system (1.1.1) is strictly hyperbolic if the Jacobian of the flux admits N distinct
real eigenvalues λk(u) with corresponding right rk(u) and left lk(u) eigenvectors. The
pair (λk, rk) defines the k-characteristic field of the system of equations.
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The characteristic fields are classified [62] according to the sign of the nonlinearity
factor η as linearly degenerated if

η := ∇λk(u) · rk(u) = 0, ∀u ∈ U

and as genuinely nonlinear when

η := ∇λk(u) · rk(u) 6= 0, ∀u ∈ U . (1.1.2)

A field is non-genuinely nonlinear if it presents isolated zeros of the nonlinearity factor
[62].

The solutions of system (1.1.1) can develop discontinuities in finite time. However,
there are functions that satisfy the system (1.1.1) in the sense of distributions. A solution
u is a weak solution of (1.1.1) with initial condition u0 if∫ ∫

(wtu + wxf)dx dt+
∫

w(0, x)u0(x)dx = 0

holds for every test vector w with continuous first derivatives that vanishes outside a
bounded region [62].

In the context of weak solutions, linearly degenerated fields develop contact disconti-
nuities. These are transition waves that unite the dynamics of the other fields. Genuinely
nonlinear fields induce elementary waves in the dynamic of the fluid, which are rarefactions
and shocks. Rarefaction waves are viscid solutions that change smoothly. Shock waves
are jump discontinuities across which the entropy of the solution increases. Non-genuinely
nonlinear fields may result in complex dynamics with composite waves formed by more
than one elementary wave.

A HSCL induces convex dynamics if all characteristic fields are either linearly degene-
rated or genuinely nonlinear. This is, if all fields maintain the sign of the nonlinearity
factor for all states. The notion of convexity is inherited from the scalar case, where the
the second derivative of the flux correspond in systems to the gradient of the eigenvalue
multiplied by the right eigenvector. The system develops nonconvex dynamics if it presents
non-genuinely nonlinear fields. This is, if the nonlinearity factor changes sign on any
nonlinear field.

The material properties strongly influence the structure and dynamics of waves by
means of the EoS [80]. The properties can be studied through thermodynamic quantities:
the sound speed, the adiabatic exponent and the fundamental derivative.

The sound speed of a fluid is defined as

c2
s = ∂P

∂ρ

∣∣∣∣
s

(1.1.3)

where s stands for entropy, P for the pressure and ρ for the density.
The adiabatic exponent is expressed

γ = −V
P

∂P

∂V

∣∣∣∣
s

= ρ

P

∂P

∂ρ

∣∣∣∣
s

(1.1.4)

with V = 1/ρ the specific volume.
The fundamental derivative [124] is defined as

G = −1
2V

∂2P
∂V 2

∣∣∣
s

∂P
∂V

∣∣∣
s

. (1.1.5)
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It measures the convexity of isentropic lines through the second derivative of the pressure.
For many materials the fundamental derivative is generally positive and therefore the

isentropes (lines of constant entropy) are strictly convex. This render the name of convex
EoS. If the fundamental derivative changes sign the EoS is nonconvex.

In the context of Newtonian hydrodynamics (Euler equations) the nonlinearity factor
of the system, η, is proportional to G [124]. Most studies have been carried out using the
ideal gas EoS [64, 129, 116]. The ideal gas EoS is convex (G(u) > 0 ∀u) and induces convex
dynamics in the system (η(u) 6= 0∀u), leading to expansive rarefactions and compressive
shock waves [124]. Nonconvex dynamics in Euler equations (η(u) = 0 for some u) is
developed when considering nonconvex EoSs (G(u) = 0 for some u). In this case there are
composite waves related to the change of sign of η and expansive shocks and compressive
rarefactions in the regions of negative fundamental derivative [14, 39, 125, 106, 111].

In this research we focus on the HSCL representing Special Relativistic Hydrodyna-
mics (SRHD). The system describes the movement of a test particle with a relativistic
speed and/or relativistic energy in a background static metric of weak gravitational field.
This situation applies to many astrophysical scenarios, such as the morphology and dyna-
mics of astrophysical jets and the modeling of gamma-ray bursts [76]. Special relativistic
flows are also involved in nuclear physics, where heavy-ion collision experiments of parti-
cle accelerators propel the particle beams to a large fraction of the speed of light [117].
Moreover, SRHD can be used to study the fundamental hydrodynamics phenomena that
would take place in General Relativistic hydrodynamics under strong gravitational fields
and a dynamic metric.

The system of SRHD has been subject of intensive research by mean of numerical
simulations, which allow to confront theoretical models with observations and experimental
results [34, 27, 76, 67, 77, 73, 98, 136, 137]. The design and validation of numerical schemes
has been traditionally performed using the ideal gas EoS. The knowledge of realistic EoSs
describing the thermodynamical properties of high density matter is an open issue in
astrophysics [90, 42, 40, 17, 54].

In this thesis we aim to study the complex dynamics of SRHD when considering realistic
EoSs. In the first part of the thesis we analyze the exact solution of the SRHD system of
equations closed with a nonconvex EoS. In the second part we attempt the modeling of
realistic EoSs for high density matter presenting phase transitions.

The first part is organized as follows. In Chapter 2 we present an exact Riemann
solver for nonconvex SRHD. The Riemann problem [101] is the fundamental test problem
in hydrodynamics. It is defined as an initial condition for the system where two constant
states are separated by a jump discontinuity. Godunov’s method [38], the base of modern
high resolution numerical schemes, is based in the solution of Riemann problems. As
a consequence, the exact solution of the Riemann problem is a key ingredient in the
development of reliable numerical schemes. Besides its use in the construction of the
schemes, validation against the exact solution tests the accuracy of the methods.

In Chapter 3 we extend the study to the exact solution of the Riemann problem in non-
convex SRHD with tangential velocities, which can be used to validate multidimensional
schemes.

In Chapter 4 we employ the presented exact solutions to analyze the behavior of
two well-known and widely used numerical schemes for SRHD in one and two spatial
dimensions.

The second part of the thesis is devoted to the modeling of relativistic EoSs containing
phase transitions.

The EoS establishes the degree of realism of the physical system. Over the years its
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description in a relativistic context has become more complex, adding microphysical effects
that shape the thermodynamics. The need of an accurate modeling of the matter has
become explicit in many astrophysical scenarios such as stellar evolution [57, 94], treatment
of interstellar medium [68, 118] or envelopes of young planets [104, 25]. Besides, the recent
detection of gravitational waves (GWs) by the LIGO-Virgo-KAGRA collaboration has
pushed the need of obtaining numerical simulations as realistic as possible.

GWs are ripples in spacetime due to the change in the quadrupolar momentum of
compact objects [127]. The first direct detection [4], in 2015, was related to the merger of
two black holes. Two years later, the GW from the coalescence of two neutron stars (NSs)
[5] opened a new window to the study of high density matter. To identify the properties
of the source of a GW detected by the laser interferometer, the signal is compared to a
waveform catalog built from numerical simulations of different events. As a consequence,
an appropriate description of NS matter is fundamental to the study of future detections.

The core of NSs reaches densities above nuclear saturation density. This regime cannot
be replicated on Earth and the description of such matter is restricted to theory. The
current more realistic EoSs for NS matter are provided in tables. The tabulated EoSs
contain sparse values of pressure, density and internal energy of the fluid throughout the
star.

These tabulated EoSs require interpolation and numerical derivatives to be used in
hydrodynamics. Apart from computationally costly, this way of calculating quantities is
not unique. Analytic, simple relations are used to fit the tabulated data and provide com-
putationally efficient EoSs. One of the most used analytic fits is the piecewise polytropic
EoS [95]. These fits have allowed the computation of challenging simulations in realistic
scenarios (see for example [26, 113]). Still, significant thermodynamics effects that ap-
pear in the tables, such as phase transitions of matter, cannot be replicated with a broad
purpose model. The aim for simplicity of the analytic models may provoke that relevant
features of the tabulated EoSs are not properly captured.

We analyze this phenomenology in the second part of the thesis.
In Chapter 5 we design a strategy to locate phase transitions in tabulated EoSs. In this

Chapter we also study the computation of the stellar properties that depend completely
on the EoS.

In Chapter 6 we attempt to model phase transitions and present a new class of analytic
EoS models which enables nonconvex dynamics.

1.2 Special relativistic hydrodynamics equations

The motion of a relativistic fluid is described by the conservation of rest-mass and energy
momentum

(ρuµ);µ = 0 (1.2.1)
Tµν;ν = 0 (1.2.2)

with Greek indices varying from 0 to 3, latin indices henceforward from 1 to 3 and using
natural units where the light speed and the gravitational constant equal to one. Quantity
ρ is the rest-mass density, uµ the 4-velocity of the fluid and the semicolon denotes the
covariant derivative. The stress-energy tensor Tµν contains the matter information and
its coupling to the background metric. We consider a perfect fluid, thus

Tµν = ρhuµuν + Pgµν ,
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with gµν Minkowski metric with sign convention {−,+,+,+}. The pressure P relates to
the specific enthalpy h through the specific internal energy ε and the rest-mass density as

h = 1 + ε+ P

ρ
. (1.2.3)

The equations (1.2.1)-(1.2.2) with the considerations above, written in conservation
form [34] lead to

∂u
∂t

+
∑
i

∂Fi(u)
∂xi

= 0 (1.2.4)

where xµ = (t, x, y, z), u is the vector of conserved quantities and Fi(u) their corresponding
fluxes. In this system the conserved quantities are the rest-mass, momentum and total
energy densities measured in the laboratory frame u = (D,Si, τ). We can express these
quantities in terms of the primitive variables measured in the local rest frame of the fluid
(ρ, υi, P ) as

D = ρw

Si = ρhw2υi

τ = ρhw2 − P − ρw.

Here υi = ui/w is the i-component of the velocity of the fluid and w the Lorentz factor,
w = (1− υ2)−1/2 with υ2 = δijυ

iυj . Then, the fluxes are

Fi(u) =
(
Dυi, Siυj + Pδij , S

i −Dυi
)
.

The system of partial differential equations is closed with an EoS P = P (ρ, ε). The
relativistic sound speed is defined dividing the classic definition of the sound speed of the
fluid (1.1.3) by the specific enthalpy (1.2.3)

c2
s = 1

h

∂P

∂ρ

∣∣∣∣
s

= 1
h

(
∂P

∂ρ
+ P

ρ2
∂P

∂ε

)
.

The HSCL (1.2.4) is hyperbolic when the EoS is causal (c2
s < 1) and thermodynamically

consistent (c2
s > 0) [13].

For SRHD, the nonlinearity factor is defined by Ibáñez et al. in [53] as

η = cs
ρ

(
G − 3

2c
2
s

)
, (1.2.5)

being G the fundamental derivative.
Notice that a nonconvex EoS (an EoS where G changes sign) implies nonconvex SRHD.

Moreover, a convex EoS could lead to nonconvex SRHD due to purely relativistic effects,
according to the sign of the term G − 3c2

s/2.
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Part I

Exact Riemann solver for
nonconvex Special Relativistic

Hydrodynamics
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Chapter 2

The exact solution of the Riemann
problem in nonconvex SRHD

The Riemann problem [101] is a classic test problem in computational fluid dynamics.
Usually considered in one spatial dimension, it allows to study the solution of hyperbolic
partial differential equations describing the evolution of a fluid. It is defined as an ini-
tial condition for system (1.1.1) consisting in two constant states separated by a jump
discontinuity

u(0, x) =
{

uL if x < ζ
uR if x ≥ ζ

where uL and uR are states in the open set U ⊂ RN separated at an arbitrary point in
space ζ.

The Riemann problem is the simplest yet non-trivial initial condition. Its solution
contains the fundamental physical and mathematical character of the equations. Further-
more, every other initial condition can be seen as a nonlinear superposition of Riemann
problems. Therefore, it is the building block for understanding the dynamics arising in
more complex scenarios.

The solution of a Riemann problem is the weak entropy solution of the hyperbolic
system. In compressible hydrodynamics, it consists of rarefactions, viscid waves where the
solution changes smoothly, and shock waves that satisfy the Rankine-Hugoniot condition,
jump discontinuities across which the entropy increases. The waves arise from the initial
discontinuity and move towards the boundaries of the domain. They coincide at a third
type of wave, the contact discontinuity, where two new constant states originate. Solving
a Riemann problem involves finding the two intermediate states that arise and defining
the waves which connect them to the initial states.

At the contact discontinuity, the pressure and velocity of the waves to the left and the
right coincide in what is called the equilibrium state [60]. As a consequence, the solution of
the Riemann problem is studied in a phase space defined as the velocity-pressure plane. In
this space a curve unite each initial state to the equilibrium one. These curves are known
as wave curves, since they are related to waves in the spatial domain. The Riemann
problem is solved when the two wave curves are traced and their intersection is found,
defining the equilibrium state.

The nonlinear wave structure depends on the convexity of the dynamics induced by
the system. When the nonlinearity factor η (1.2.5) has the same sign over all the solution,
there is convex dynamics. A single elementary wave develops for each characteristic field of
the system. When η > 0 shock waves are compressive and rarefaction waves are expansive.
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If η < 0 the nature of the waves is interchanged [124]. As η does not change sign, the
behavior of the waves is the same for the whole solution. When the nonlinearity factor
changes sign, the system presents nonconvex dynamics. Nonlinear fields may develop
composite waves formed by more than one elementary wave and the nature of shocks and
rarefactions can change along the solution.

In convex dynamics, the wave propagation speed is monotone along the wave curves.
To solve the Riemann problem, the wave curves are selected depending on the initial
states and the equilibrium is found equating velocity and pressure. Mart́ı and Müller in
[75] present the exact solution of the Riemann problem in SRHD closed with the ideal
gas EoS. In this case the system is convex and the solution consists of two waves, both
either shocks or rarefactions, traveling in opposite directions with a contact discontinuity
in between.

In nonconvex dynamics the wave propagation speed might not be monotone along the
wave curves. As we explain along this Chapter, the change of monotony may terminate the
curves. In Newtonian hydrodynamics this phenomena is known to induce composite waves
[134, 135, 100, 80]. Their occurrence in general system of conservation laws was studied
by Liu [70], who introduced a new type of wave curve which allows the continuation of
wave curves in phase space.

The existence of the solution of the Riemann problem depends on the asymptotic
properties of the EoS modeling the fluid. In general, any EoS motivated by physics has
these properties [80] and therefore there exist solutions to a given Riemann problem.

The uniqueness of the solution depends on the monotony of the wave curves in phase
space. In Newtonian and relativistic hydrodynamics, it is straightforward to prove that
the wave curves associated to the rarefaction waves are always monotonic (see [80] for the
Newtonian case). However, this is not the case for the curves associated to shock waves.

In [70], Liu establishes main results to determine the uniqueness of the solution of the
Riemann problem for general hyperbolic systems of conservation laws. The hypothesis of
the theorems have to be proved for every particular problem. He shows an application to
Newtonian hydrodynamics with differentially close initial states. The uniqueness of the
solution of the Riemann problem for arbitrary initial conditions is an open problem, even
in Newtonian hydrodynamics. In this work we assume that the wave curves are monotone
and therefore the solution of the problem is unique. This is a common practice in literature
[75, 84, 36, 129].

In this Chapter we present the exact solution of the Riemann problem for nonconvex
SRHD. We aim to understand the complex phenomena arising in a nonconvex relativistic
context and provide a tool to test numerical methods when composite waves are present.

First, we study the wave curves that may appear in phase space in nonconvex SRHD.
Then, we analyze the way that the wave structure is built to solve the Riemann problem.
We detail the expressions for a particular nonconvex EoS and describe the strategy used
for the calculation of the presented curves.

2.1 Wave curves for nonconvex SRHD

The construction of wave curves in nonconvex Newtonian hydrodynamics was studied by
Müller and Voss [84]. In this Chapter we delve in nonconvex SRHD following a similar
approach, adequating their ideas for the relativistic case. We trail the formulation of the
convex scenario in [75].

The three types of wave curves present in nonconvex dynamics are Hugoniot curves,
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related to shock waves, integral curves, related to rarefaction waves and mixed curves, a
subordinate Hugoniot curve introduced by Liu [70] for nonconvex dynamics.

2.1.1 Hugoniot curves

Hugoniot curves are wave curves in the velocity-pressure plane associated to shock waves.
They are calculated using the relativistic Rankine-Hugoniot conditions [121] applied to
the hyperbolic system (1.2.1)-(1.2.2) :

[ρuµ]nµ = 0
[Tµν ]nν = 0,

where uµ is the unit normal to the hypersurface across which there is the jump disconti-
nuity. We have used the notation [q] = qa − qb where a and b are the states ahead and
behind the discontinuity.

If the shock is moving at velocity υs along the x-axis then uµ = ws(−υs, 1, 0, 0), with
ws the corresponding Lorentz factor. Let f be the fluxes of the SRHD system of equations
(1.2.4) and u the conserved variables. Considering one spatial dimension the conditions
can be summarized as

[f ] = υs[u]. (2.1.1)

In order to calculate a Hugoniot curve from an origin state ua, a relation between
the pressure and velocity of the fluid is needed for all states ub behind the discontinuity.
Given ua = (Da, Sa, τa) with pressure value Pa the origin state of the shock we obtain
an expression υb = υ(Pb) for each ub = (Db, Sb, τb) state with pressure Pb behind of the
shock, jumping from ua by imposing the Rankine-Hungoniot conditions (2.1.1) between
both states,

Dbυb −Daυa = υs(Db −Da) (2.1.2)
Sbυb + Pb − Saυa − Pa = υs(Sb − Sa) (2.1.3)
Sb −Dbυb − Sa +Daυa = υs(τb − τa). (2.1.4)

From (2.1.2) we obtain the (invariant) mass flux across the shock

j = wsDa(υs − υa) = wsDb(υs − υb). (2.1.5)

In what follows, positive values of j determine waves traveling to the right, and negative
values do for those traveling to the left, as in [121, 13, 75]. The shock speed then reads

υ±s = ρ2
aw

2
aυa ± j2√1 + (ρa/j)2

ρ2
aw

2
a + j2 (2.1.6)

with the same sign criteria.
Rewriting (2.1.2)-(2.1.4) using the mass flux invariant (2.1.5), we obtain

υb − υa = − j

Ws

( 1
Db
− 1
Da

)
(2.1.7)

Pb − Pa = j

Ws

(
Sb
Db
− Sa
Da

)
(2.1.8)

υbPb − υaPa = j

Ws

(
τb
Db
− τa
Da

)
. (2.1.9)
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From relation S = υ(τ +P +D) and plugging (2.1.7) and (2.1.9) into (2.1.8) we obtain
the flow velocity at state b as a function of the pressure Pb and the invariant j [75]

υb =
[
haWaυa + Ws(Pb − Pa)

j

] [
haWa + (Pb − Pa)

(
Wsυa
j

+ 1
ρaWa

)]−1
. (2.1.10)

Multiplying the conservation of the stress energy tensor by a unit normal nµ [75], we
get

j2 = Pa − Pb
hb
ρb
− ha

ρa

, (2.1.11)

which relates the pressure with the mass flux, rest-mass density and enthalpy of the fluid.
A relation for the enthalpy between the states ahead and behind the shock can be

derived from the Taub adiabat [126]

h2
b − h2

a =
(
hb
ρb

+ ha
ρa

)
(Pb − Pa)

which is a parabola in hb,

h2
b + hb

Pb − Pa
ρb

−
(
h2
a + (Pb − Pa)

ha
ρa

)
= 0,

where the quadratic coefficient is positive. As density and enthalpy are strictly positive,
the independent term is always negative: if Pb > Pa then the two terms are positive and
so is their sum, to which we change the sign. If Pb < Pa then we can divide by ha and
check that

ha >
Pa − Pb
ρa

, as ha = 1 + εa + Pa
ρa

⇒ 1 + εa > −
Pb
ρa
.

Thus the parabola always have two roots and only one of them is positive, therefore with
a physical meaning

hb =
Pb−Pa
ρb

+
√

(Pb−Pa)2

ρ2
b

+ 4
(
h2
a + ha

ρa
(Pb − Pa)

)
2 . (2.1.12)

In order to complete the relations to calculate the flow velocity (2.1.10) as a function
of the post-shock pressure Pb, the density behind the shock is also needed. Once ρb is
derived from the EoS, enthalpy is obtained from (2.1.12) and (2.1.11) can be evaluated.
Selecting the sign of j by the direction of the wave then the flow velocity (2.1.10) is defined
for every state in the Hugoniot curve.

Termination and continuation of Hugoniot curves

Hugoniot curves are admissible while Liu entropy condition is satisfied [70]. The condition
states that the shock speed should be monotone along the Hugoniot curve.

Let H(ua) be the Hugoniot curve with origin in ua. Therefore a shock uniting states
(ua,ub) with ub ∈ H(ua) and speed υs(ua,ub) is admissible if υs(ua,ub) < υs(ua,u)
for waves going to the left, υs(ua,ub) > υs(ua,u) for waves going to the right, for any
u ∈ H(ua) between ua and ub.
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If the monotony of the shock speed changes then its derivative vanishes in between.
Liu also states that υ′s = 0⇔ υs = λk, with λk the characteristic speed of the correspon-
ding characteristic field. The calculation of states of a Hugoniot curve is summarized in
Algorithm 2.1.1, including a check for admissibility of every new state. We introduce the
value P∗ to reference the pressure value that the Hugoniot curve has to continue. This
value will be referred to in later Sections.

When Liu condition is violated, the Hugoniot curve terminates to ensure admissibility
of the corresponding shock wave. In phase space, the wave curves sequence is continued
by an integral curve. The terminated wave is a sonic shock.

Algorithm 2.1.1 Calculation of a Hugoniot curve from initial known state a.
while not intersection with opposite wave curve do

Pb = P∗ + δP
ρb = obtain through EoS using Pb
hb = hb(Pb, ρb) eq(2.1.12)
j2 = j2(Pb, hb, ρb) eq(2.1.11)
if wave moving left then

j = −
√
j2

else
j =

√
j2

υb = υb(Pb, j) eq(2.1.10)
υs = υs(j2) eq(2.1.6)
λk = eigenvaluek(ub)
if υs = λk then

break
P∗ = Pb

2.1.2 Integral curves

Integral curves are wave curves associated to rarefaction waves, which are smooth and
self-similar solutions of the hyperbolic system of conservation laws [64].

The self-similar solution of the form u(ξ), where ξ = x
t , of system (1.1.1) simplifies to

a system of ordinary differential equations

−ξdu
dξ + f ′(u)du

dξ = 0 (2.1.13)

where f ′ is the Jacobian of the fluxes.
Following Taub’s general analysis, we can derive a relation between the velocity and

the pressure of the fluid from the equations of self-similar solutions of the SRHD system
[122].

We consider system (1.2.4) written in terms of the derivatives with respect to the
self-similar variable ξ using ∂

∂x = 1
t
∂
∂ξ and ∂

∂t = − ξ
t
∂
∂ξ

(υ − ξ)dρ
dξ + ρ(w2υ(υ − ξ) + 1)dυ

dξ = 0 (2.1.14)

υ(υ − ξ) d
dξ (ρhw2) + (υ − ξ)ρhw2 dυ

dξ + ρhw2υ
dυ
dξ + dP

dξ = 0 (2.1.15)

ξ
dP
dυ + (υ − ξ) d

dξ (ρhw2) + ρhw2 dυ
dξ = 0. (2.1.16)
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Multiplying equation (2.1.16) by the flow velocity υ and subtracting the result to
equation (2.1.15) we can reduce it to

(1− υξ)dP
dξ + (υ − ξ)ρhw2 dυ

dξ = 0. (2.1.17)

Following the principle of conservation of entropy along fluid lines and rewriting in
terms of the self-similar variable we have that

c2
s = 1

h

dP
dρ

∣∣∣∣
s

= 1
h

dP
dρ ⇒ dP

dξ = hc2
s

dρ
dξ . (2.1.18)

The system formed by equations (2.1.14), (2.1.17) and (2.1.18) is simplified to

(υ − ξ)dρ
dξ + ρ(w2υ(υ − ξ) + 1)dυ

dξ = 0 (2.1.19)

h(1− υξ)c2
s

dρ
dξ + ρhw2(υ − ξ)dυ

dξ = 0 (2.1.20)

by substituting (2.1.18) in (2.1.17).
The new system (2.1.19)-(2.1.20) admits the trivial solution (dρ/dξ = 0,dυ/dξ = 0).

Non null solutions are obtained by imposing that the determinant of the matrix of the
system vanishes

ρhw2((υ − ξ)2 − c2
s(1− υξ)2) = 0,

where we have used that w2υ(υ − ξ) + 1 = w2(1− υξ). The equation is satisfied when

cs = ± υ − ξ
1− υξ , (2.1.21)

having that the + (−) signs refer to rarefactions propagating to the left (right).
Substituting (2.1.21) in (2.1.20) we have

w2dυ ± cs
ρ

dρ = 0.

Its primitive is the Riemann invariant

J± = 1
2 ln

(1 + υ

1− υ

)
±
∫
cs
ρ

dρ,

which is constant along integral curves [121]. Given two states a (ahead) and b (behind)
of an integral curve, with i a state in between we have the identity

1
2 ln

(1 + υa
1− υa

)
±
∫ ρi

ρa

cs
ρ

dρ = 1
2 ln

(1 + υb
1− υb

)
±
∫ ρi

ρb

cs
ρ

dρ

and then
1
2

(
ln
(1 + υa

1− υa

)
− ln

(1 + υb
1− υb

))
= ±

∫ ρi

ρb

cs
ρ

dρ∓
∫ ρi

ρa

cs
ρ

dρ = ∓
∫ ρb

ρa

cs
ρ

dρ.

Let us denote the last term

∓Xb
a = ∓

∫ ρb

ρa

cs
ρ

dρ. (2.1.22)
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When a state a is known then the flow velocity at a posterior state b is given by

υb =

1 + υa
1− υa

e∓2Xb
a − 1

1 + υa
1− υa

e∓2Xb
a + 1

. (2.1.23)

Quantity Xb
a (2.1.22) needs to be solved for a specific EoS determining the expression

for the sound speed. Once solved, υ(Pb) is defined for every state in the integral curve.

Termination and continuation of integral curves

In order to determine the continuation and termination of integral curves we analyze their
existence as self-similar solutions of system (1.1.1). The corresponding system, (2.1.13),
can be written in matrix form as

(−ξI + f ′(u))du
dξ = 0.

If du
dξ 6= 0, the system can be solved by means of the corresponding characteristic

equation. Therefore there exists a characteristic field k ∈ {1, · · · , N} and a scalar factor
a(ξ) ∈ R such that if rk(u(ξ)) is the right eigenvector associated to field k and λk(u(ξ))
the corresponding eigenvalue, then

du
dξ = a(ξ)rk(u(ξ)) and ξ = λk(u(ξ)).

By calculating the derivative of the latest equation with respect to ξ we obtain

1 = a(ξ)∇λk(u(ξ)) · rk(u(ξ)),

which allows to determine a(ξ) = 1
∇λk(u(ξ))·rk(u(ξ)) when ∇λk(u(ξ)) · rk(u(ξ)) 6= 0. The

system becomes
du
dξ = rk(u(ξ))

∇λk(u(ξ)) · rk(u(ξ)) .

Therefore, an integral curve is a smooth solution u(ξ; u0) of the initial value problem

du
dξ = rk(u(ξ))

∇λk(u(ξ)) · rk(u(ξ)) , u(ξ0) = u0 (2.1.24)

with ∇λk(u0) · rk(u0) 6= 0 and wave speed λk(u(ξ)).
The term in the denominator is the nonlinearity factor η in equation (1.1.2), which

determines the convexity of the system. Notice that (2.1.24) presents a singularity wher-
ever the nonlinearity factor vanishes, η(u) = 0. If this happens along an integral curve, it
is terminated because is no longer defined.

In Algorithm 2.1.2 we summarize the calculation of states within an integral curve,
which should take into account the termination at vanishing η.

In order to continue integral curves in phase space, which last state u comes from the
limit η(u) → 0 over the curve, we use a particular type of a subordinate Hugoniot curve
known as mixed curve.
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Algorithm 2.1.2 Calculation of an integral curve from initial known state a.
while not intersection with opposite wave curve do

ρb = ρa + δρ
calculate Xb

a eq(2.1.22) with EoS defining cs
υb = υb(Xb

a) eq(2.1.23)
if η(ub) = 0 then

break
ρa = ρb

2.1.3 Mixed curves

A third type of wave curve is introduced by Liu in [70] for nonconvex dynamics. Mixed
curves are subordinate Hugoniot curves that continue integral curves when they are no
longer defined at η(u) = 0.

Following Liu’s definition a mixed curve α♦ associated to the integral curve α is the
set of states u where, for any u ∈ α♦ there exists u♦ ∈ α such that u is in the Hugoniot
curve with origin in u♦ and with shock speed υs(u♦,u) = λk(u♦).

Therefore a mixed curve is composed by the states u that solve the Rankine-Hugoniot
conditions with origin state u♦ and shock speed υs = λk(u♦) = λ♦

λ♦(u♦ − u) = f(u♦)− f(u) (2.1.25)

for different, consecutive points of the previous integral curve. The construction starts from
the termination point of the integral curve and the states considered advance towards its
origin.

Termination and continuation of mixed curves

Mixed curves are formed by states belonging to Hugoniot curves, hence they correspond
to shock waves. As integral curves extend in regions where the sign of the convexity is
constant, their speed, this is the corresponding eigenvalue, is monotone. Thus the shock
speed in a mixed curve is also monotone, ensuring that this type of shocks are always
admissible according to Liu entropy condition.

We terminate a mixed curve, however, if the shock speed is equal to the characteristic
speed. We may not have the condition υ′s = 0 because of the artificial construction of the
curve, although [70] establishes that both are equivalent. In this case, as in the termination
of Hugoniot curves, the wave curves sequence in phase space is continued with an integral
curve. The corresponding terminated wave is a sonic shock.

Algorithm 2.1.3 Calculation of a mixed curve from known previous integral curve
store integral curve from beginning u♦

0 to u♦
N , such that η(u♦

N ) = 0
while not intersection with opposite wave curve and u♦ 6= u♦

0 do
take next point u♦ from the end of the integral curve
solve system (2.1.25) to obtain u
λk = eigenvaluek(u)
if λk = λ♦ then

break

Moreover, a mixed curve can end because of its own construction method. The states
of the mixed curve are related to subsequently prior states of an integral curve. Thus if
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its beginning is reached, the mixed curve ends. The jump discontinuity associated has to
be prolonged through a Hugoniot or a mixed curve, depending of the origin of the wave.
We summarize the calculation of states in a mixed curve in Algorithm 2.1.3, attending to
both termination conditions.

2.2 Construction of sequence of wave curves

In the evolution of a Riemann problem, the waves are born from the initial discontinuity
present in all characteristic fields (linear and nonlinear). The nonlinear waves start from
the contact discontinuity and move towards the initial states at the domain boundaries,
which are ahead of the waves, in opposite directions. New constant states are created at
both sides of the contact discontinuity, where the nonlinear waves coincide in pressure and
fluid velocity.

In convex dynamics a single wave curve connects every initial state to the equilibrium
one, resulting in an elementary wave moving in each direction. In nonconvex dynamics,
wave curves may terminate and be continued in phase space. From each initial state there
is a sequence of wave curves connecting it to the equilibrium state. This can lead to
composite waves moving in each direction.

In the following we describe the procedure for determining the sequence of wave curves
in the phase space that lead to the solution of the Riemann problem. We start with the
first wave curve and detail the criteria to continue each of the successive ones.

2.2.1 First wave

The wave curves are constructed from the initial states and develop through the phase
space until their intersection at the intermediate state.

The first wave is determined by its compressible character and the convexity of the
system [13]. When the nonlinearity factor is positive, η > 0, shocks are compressive
(pressure increases across them) and rarefactions are expansive (pressure decreases). The
nature of the waves is interchanged when η < 0. The first wave is selected by knowing if
the pressure will decrease or increase from the initial state. Depending on the sign of the
nonlinearity factor at the boundary state we can declare it a rarefaction or a shock. The
selection criteria is gathered in table 2.1 referring to the curves in phase space.

Pa > Pb Pa < Pb

ηa > 0 Integral curve Hugoniot curve
ηa < 0 Hugoniot curve Integral curve

Table 2.1: Determination of the first wave type for nonconvex SRHD.

The procedure to follow in an arbitrary Riemann problem for which the expected
behavior of the pressure is unknown is the following. We take into account that the
two wave curves, one from each boundary state, have to intersect. Therefore, progressive
states of a wave curve should get closer to the other wave curve. For the first wave, the left
(right) wave curve is just the left (right) initial state. From initial left state (υL, PL) we
set Pb = PL + δP with δP a differential increment of pressure. Then calculate υb = υ(Pb)
using the relation of a Hugoniot or an integral curve. Both are valid as their tangent is the
same at the initial states [70]. If state (υb, Pb) is closer to the initial right state (υR, PR)

23



than the left initial state, then the relation Pb > PL is the appropriate one and using table
2.1 we can declare the first wave curve a Hugoniot or an integral curve. If it is further,
then we should have Pb < PL instead. To decide which wave goes to the right the process
is analogous. The increasing or decreasing tendency of the pressure found for the first
curve maintains for the rest of the wave curves sequence since it is assumed monotone in
phase space.

2.2.2 Continuation of curves and origin state

The first wave curve from each side, either Hugoniot or integral curve, is calculated with
origin in the corresponding initial state. It may terminate along its path in the phase
space following the termination conditions described in the previous section, which are
summarized in table 2.2.

Termination condition Next wave
Hugoniot curve (H) υs = λ I
Integral curve (I) η = 0 M
Mixed curve (M) υs = λ I

Start of I reached H/M

Table 2.2: Termination conditions for the different wave curves and how to continue them.

The sequence of wave curves forms a continuous curve in phase space. Given a state
(υi, Pi) belonging to a wave curve, it is continued by a new state (υi+1, Pi+1), which is
obtained following the relations of the type of wave curve it belongs to. For integral
curves, Pi+1 is obtained from ρi+1 = ρi + δρ through the EoS. For Hugoniot curves we
take Pi+1 = Pi + δP .

However, it is necessary to clearly differentiate between the origin of the wave curve
and the value that is continuing in phase space. For the integral curves, the latest state
calculated, which the curve has to continue, is taken as origin. This is not the general case
for Hugoniot and mixed curves.

In Hugoniot curves the origin state a remains fixed throughout the calculation of the
curve. The pressure value P∗ that is continued in phase space moves with every new
calculated state.

When the calculation of a Hugoniot curve starts for the first time then P∗ = Pa. Once
a new state Pb = P∗ + δP (see Algorithm 2.1.1) is calculated, P∗ = Pb updates while Pa
remains the same. A Hugoniot curve is terminated when it does not satisfy the entropy
condition in order to ensure the admissibility of the corresponding shock wave, but the
wave curve is defined beyond this state. If a subsequent wave reaches the speed of the
shock where the curve was terminated then this is resumed in a new region of phase space
where the entropy condition is again satisfied.

In this case, the origin of the Hugoniot curve is again state a, while the pressure value
P∗ that it continues is the latest in the wave curves sequence, where the shock speed was
reached.

Mixed curves behave similarly, as they are a kind of Hugoniot curves. The first point
calculated has P1 continuing the pressure P♦

N of the last state of the previous integral
curve (the superscript ♦ here is compliant with notation in Section §2.1.3). For subsequent
states, Pi continues from Pi−1 rather than the pressure of the origin state, P♦

N−i.
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In the case of a terminated mixed curve that last jumped from integral curve state
u♦
M , let us suppose that the shock speed is reached again at a wave curve state (υi, Pi).

Then the calculation is resumed with origin in the next state backwards of the integral
curve, u♦

M−1, continuing pressure Pi, not P♦
M−1.

If there are multiple terminated shocks along a wave curve sequence, the order of
continuation can be seen as a stack, where the last broken wave is resumed first and then
removed from the stack. This follows the concept presented in [84].

To settle this idea we use an example illustrated in figure 2.1. A Hugoniot curve starts
at initial state u0, which is its origin. Therefore Pa = P0 and the pressure to continue is
P∗ = Pa. The shock speed reaches a maximum and to ensure admissibility we terminate
the wave curve. We push the shock speed at state u1 in the stack. The sequence of wave
curves is continued by an integral curve. It terminates when η(u2) = 0 and it is followed
by a mixed curve. The speed profiles are symmetric for these two curves because the shock
speed during a mixed curve is the characteristic speed during the rarefaction. When the
mixed curve reaches state u3, calculated from the first point of the rarefaction u1, the
wave speed is equal to the shock speed stored in the stack. Therefore, the first Hugoniot
curve is continued with origin still in u0, Pa = P0, but using pressure values continuing
u3, P∗ = P3.

Figure 2.1: Schematic representation of a configuration of wave curves. At the left, beha-
vior of the wave speed along the wave curves. At the right, their appearance in the phase
space.

These instructions, an extension of those in the works of [70, 84], allow for the cons-
truction of wave curves yielding the solution of a Riemann problem for general systems of
hyperbolic conservation laws. With the wave curves drawn in the velocity-pressure plane
the equilibrium state can be found and the solution is complete. Once solved, it can be
represented in the spatial domain.

2.2.3 From wave curves to waves in the spatial domain

The wave structure originates from the initial discontinuity of the Riemann problem at
xinit.discont. and therefore time t does not change the intermediate states, only the position
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of the waves. Their location is determined by the wave speed υw as

xw = xinit.discont. + t · υw. (2.2.1)

Hugoniot and mixed curves are shock waves, a jump discontinuity from the origin state
of the wave curve until its final state, which determines the shock speed. Integral curve
states are rarefaction states moving with characteristic speed.

The waves in each wave curves sequence are considered from the one starting at the
initial condition until the last calculated, which reaches the equilibrium state. Due to its
spatial location by (2.2.1), a wave may be at a position that a posterior wave overtakes.
As a result, the criteria for determining whether a wave related to a wave curve is present
in the spatial domain is if the wave curve is faster than the subsequent wave curves in
the sequence. It is important to note that wave speeds for waves moving to the left are
typically negative.

The overtaking of waves is inherent to integral curves that break and are continued with
a mixed curve. By definition, the mixed curve has the same wave speed than its associated
integral curve but in reverse order, and therefore every calculated state overtakes the origin
state from the rarefaction. If all the points in the integral curve are used for calculating the
mixed curve, then the rarefaction is completely overtaken and just the jump discontinuity
appears in the spatial plane. If the mixed curve is terminated, the related integral curve
shows until the last state used for the mixed curve, attached to a jump discontinuity thus
appearing as a composite wave in the spatial plane. Due to the overtaking, it is usual
to have more wave curves in the phase space that waves in the spatial domain. All wave
curves are necessarily part of the wave structure.

Figure 2.2: Schematic representation of a configuration of wave curves. At the left, beha-
vior of the wave speed along the wave curves. At the right, their corresponding waves in
the spatial domain.

We exemplify the overtaking of waves in the spatial domain in figure 2.2. Let u0 be
the initial state of an integral curve which is terminated at u1 due to η(u1) = 0. Then, a
mixed curve continues. Let us consider first the case where the mixed curve is calculated
using all states of the integral curve until u2. As the mixed curve has the same speed
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that the integral curve and the mixed curve is posterior in the wave curve sequence, it
overtakes the whole integral curve and there is just a jump discontinuity from u0 to u2 in
the spatial domain. On the other hand, let us consider that we stop calculating the mixed
curve at state u3 if, for instance, it reaches the equilibrium state at this point. Then, the
mixed curve is faster than the integral curve states from u1 to u♦

3 , but not the previous
ones. Therefore, in the spatial domain we can find first the integral curve connecting the
initial state u0 to u♦

3 , and a jump discontinuity from this origin state until the state u3
behind the shock.

2.3 Application to a nonconvex EoS

The solution of the Riemann problem requires the use of a specific EoS. In order to
exhibit the challenges that may arise based on the specific shape of the EoS, we consider
the phenomenological Mie-Grüneisen type EoS [54, 74], referred to as Gaussian Gamma
Law (‘GGL’) EoS. It is defined as

P = (γ(ρ)− 1)ρε, (2.3.1)

with
γ(ρ) = γ0 + (γ1 − γ0)e−(ρ−ρ0)2/σ2

0 . (2.3.2)
The parameters γ0, γ1 are such that 1 < γ0 < γ1 < 2. The parameter σ has to be

chosen so the EoS is causal and thermodynamically consistent [74] and ρ0 is a scale factor
for the density. This EoS is smooth and can exhibit nonconvex regions depending on the
values of the parameters, therefore it is a suitable EoS for nonconvex SRHD.

The thermodynamic quantities needed for constructing the solution are the sound
speed

c2
s = ε

h

(
γ(ρ)(γ(ρ)− 1) + ργ′(ρ)

)
(2.3.3)

and the fundamental derivative

G = 1 + γ(ρ)
2 + ρ

2
2γ(ρ)γ′(ρ) + ργ′′(ρ)

γ(ρ)(γ(ρ)− 1) + ργ′(ρ) .

Notice that along the wave curves the density related to a pressure value is sometimes
needed. With the GGL EoS this inverse relation cannot be solved analytically and thus
this example also allows to show techniques that may be used in these situations.

2.3.1 Hugoniot curves with GGL EoS

In the description of Hugoniot curves in Section §2.1.1 the EoS is needed to obtain a
density ρb given a pressure value Pb for a new state. Due to the exponential fashion of the
adiabatic index (2.3.2) on the density for the GGL EoS, the variable ρ cannot be isolated
and should be obtained numerically.

From (2.3.1) and enthalpy definition h = 1 + ε+ P
ρ we have

P = (γ(ρ)− 1)ρ(h(ε, ρ)− 1)
γ(ρ) .

Considering the post-shock pressure Pb, having a known state a and using (2.1.12) as
expression for the enthalpy, we obtain an implicit equation on ρb

Pb = (γ(ρb)− 1)ρb(hb(Pb, ρb)− 1)
γ(ρb)

. (2.3.4)
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An approximation of ρb can be obtained with the Newton method, considering as initial
guess the latest density value in the wave curve. Once ρb is calculated, pressure, enthalpy
and density are available to evaluate (2.1.11). By selecting the sign of j according to the
direction of the wave, we can evaluate the shock speed (2.1.6) and flow velocity (2.1.10).

2.3.2 Integral curves with GGL EoS

Following the procedure to calculate integral curves in Section §2.1.2, the EoS is needed to
particularize the expression of the sound speed that determines the integral Xb

a (2.1.22).
Expressing the sound speed (2.3.3) in terms of the density and the internal energy, we

have that Xb
a reads

Xb
a =

∫ ρb

ρa

cs
ρ

dρ =
∫ ρb

ρa

1
ρ

√
ε (γ(ρ)(γ(ρ)− 1) + ργ′(ρ))

1 + ερ
dρ. (2.3.5)

The internal energy is related to the density through the pressure in the EoS. We
explicit their relation using that self similar solutions are isentropic. First law of thermo-
dynamics with constant entropy states

dε = P

ρ2 dρ,

that for GGL EoS reads
dε = γ(ρ)− 1

ρ
dρ.

If we consider a known state a of the integral curve that is followed by a state b, we
get

εb = εa

(
ρb
ρa

)γ0−1
e(γ1−γ0)Y (2.3.6)

where Y is an integral that comes from the exponential term of the adiabatic index,

Y =
∫ ρb

ρa

e
−(ρ−ρ0)2

σ2
0

ρ
dρ. (2.3.7)

The relation between density and internal energy is not analytic for this EoS due to
the exponential term in the adiabatic index. Therefore, (2.3.5) does not count with a
primitive expression and needs a numerical resolution for every new state in the integral
curve. A process suggested for the integration of (2.3.5) is summarized in Algorithm 2.3.1.

Algorithm 2.3.1 Calculation of (2.1.22) for the GGL EoS from a known state a.
1: ρb = ρa + δρ
2: select {ρj}j=Nj=1 , ρa < ρ1 < .. < ρN = ρb

3: calculate {Yj}j=Nj=1 eq(2.3.7) from ρa to ρj
4: calculate {εj}j=Nj=1 eq(2.3.6) using Yj , ρj
5: calculate Xb

a eq(2.3.5) numerically using intermediate values {ρj}j=Nj=1 , {εj}
j=N
j=1
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2.3.3 Mixed curves with GGL EoS

When calculating mixed curves defined in Section §2.1.3 the EoS is needed at applying
the Rankine-Hugoniot conditions, as the pressure and the specific enthalpy appear in the
equations. Expanding the system (2.1.25) in terms of the primitive variables we obtain

υρw −D♦υ♦ − λ(ρw −D♦) = 0 (2.3.8)
w2υ2ρ(1 + εγ) + (γ − 1)ρε− S♦υ♦ − P♦ − λ(ρυw2(1 + εγ)− S♦) = 0 (2.3.9)
w2υρ(1 + εγ)− wυρ− S♦ +D♦υ♦ − λ(ρ(1 + εγ)w2 − (γ − 1)ρε− ρw − τ♦) = 0

(2.3.10)

where the superscript ♦ indicates that the quantity belongs to an integral curve. We have
written λk(u♦) = λ, γ(ρ) = γ for readability. The unknowns of this system are the density,
the internal energy and the velocity, (ρ, ε, υ). Recall that u♦, integral curve state, is a
trivial solution of the system.

From (2.3.8) we obtain a conservation equation

ρw(υ − λ) = D♦(υ♦ − λ). (2.3.11)

Substituting this in (2.3.9) and (2.3.10) we respectively obtain

(γ − 1)ρε+ w(1 + γε)υD♦(υ♦ − λ) = S♦(υ♦ − λ) + P♦ (2.3.12)
λ(γ − 1)ρε+D♦(υ♦ − λ)(w(1 + γε)− 1) = S♦ −D♦υ♦ − λτ♦. (2.3.13)

Some terms cancel out by subtracting λ(2.3.12) from (2.3.13)

w(1 + γε)(1− λυ) = w♦h♦(1− λv♦) (2.3.14)

and υ(2.3.13) from (2.3.12)

ρε(γ − 1)(1− λυ) = P♦(1− λυ) +D♦w♦h♦(υ♦ − λ)(υ♦ − υ), (2.3.15)

where we have made simplifications using the definition of the conserved variables. Now
the system is formed by equations (2.3.11), (2.3.14) and (2.3.15).

From (2.3.11) we can obtain the velocity as a function of the density only

υ(ρ) =
λ+ D♦(υ♦−λ)

ρ

√
1− λ2 +

(
D♦(υ♦−λ)

ρ

)2

1 +
(
D♦(υ♦−λ)

ρ

)2 , (2.3.16)

where the sign of the root has been selected with the criteria that υ(ρ♦) = υ♦ must hold.
The two other equations are linear in the internal energy. We can rewrite them as

ε =
(
w♦h♦(1− λυ♦)
w(1− λυ) − 1

)
1
γ

(2.3.17)

ε = P♦(1− λυ) +D♦w♦h♦(υ♦ − λ)(υ♦ − υ)
ρ(γ − 1)(1− λυ) . (2.3.18)
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Equating expressions (2.3.17), (2.3.18) and using the equation (2.3.16) for the fluid
velocity, we obtain an implicit equation in ρ whose zeros are density solutions of the
system

g(ρ) = w(1−λυ)(γP♦ + (γ− 1)ρ) +h♦w♦
(
γwD♦(υ♦ − λ)(υ♦ − υ)− (γ − 1)ρ(1− λυ♦)

)
.

(2.3.19)
The equation g(ρ) (2.3.19) has to be solved numerically and the Newton method is

a viable option. However, as the density in the rarefaction ρ♦ is always a solution, it is
necessary to fine-tune the initial guess in order to converge to a different root. Liu states in
[70] that the correct value for the density that belongs to the mixed curve is the root that
is closest to, yet different from, ρ♦. We have observed that when a mixed curve develops
into a sonic shock, as we get closer to the final state of the curve several roots of the
equation become increasingly close to each other. This invokes the need of high numerical
accuracy in the resolution process and a criterion for distinguishing the appropriate root
for convergence.

Once the density is known we can evaluate the internal energy through (2.3.17) or
(2.3.18) and the velocity with (2.3.16).

2.4 A practical methodology to calculate wave curves

We have defined the three types of wave curves arising in nonconvex SRHD and specified
the equations associated with these curves that depend on the EoS for the GGL model.
In what follows we provide a comprehensive overview of our calculation strategy and the
challenges encountered during the resolution process.

Recall that when a shock is terminated to ensure admissibility we store its wave speed
and origin state in a stack. If the speed is reached again during a posterior wave curve,
we say the curve has been reached by stack and it has to be terminated to continue the
stacked wave. The curve that is continued is pushed out of the stack. This kind of structure
ensures that the latest wave that was terminated is the first one that can be continued.

2.4.1 Practical calculation of a Hugoniot curve

To calculate a Hugoniot curve one should define first the origin state a, which is the start
of the jump discontinuity. Following Algorithm 2.1.1 we also define the pressure value P∗
that the curve has to continue in phase space. For calculating a new state in the curve we
move the pressure value Pb = P∗+δP and apply the Rankine-Hugoniot conditions to solve
the rest of the quantities. In particular we use δP = 0.00051 to progress slowly along the
curve. Once the pressure of the new state is defined, we find the related density through
Newton iterations of equation (2.3.4). We use a tolerance of 10−12 for convergence. For
the initial guess of the Newton method we use the density of the previous state in the
sequence of wave curves.

Once the shock speed and the fluid velocity are calculated from the pressure and
density values we check for termination conditions. First we need to check if the curve
has been reached by stack and thus it should be terminated to continue a previous wave
curve. We do this by monitoring the sign of the difference between the shock speed and
the speed in the stack through iterations. If it changes sign, then the Hugoniot curve was
reached by the wave in the stack.

1All tolerances and increments provided in this section are defined to work with an EoS that takes
density values of O(1).
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If the Hugoniot curve was not reached by stack while getting to this new state, we
check if it violated the entropy condition. That would happen if there is a zero of the
derivative of the shock speed from the previous state to the new one. In this case we look
for changes of sign of the difference between the new shock speed and the previous one:
(υi)s − υi−1)

s ) · (υi−1)
s − υi−2)

s ) < 0. If there is a change of sign, the curve terminates.
In both cases above, if a change of sign is detected we restore the previous state

calculated and decrease δP by half. In this way we can get to the state where the Hugoniot
curve ends more accurately. We consider we have the final state when we reach it using
δP < 10−12.

2.4.2 Practical calculation of an integral curve

In an integral curve the origin state a in the calculation of a new state b is always the latest
calculated state. Following Algorithm 2.1.2 we set the new state density ρb = ρa + δρ,
where we use δρ = 0.0005. To obtain a good accuracy in the calculation of integral curves
with the GGL EoS it is important to select a small increment of the density, since the
next step is to solve equation (2.3.5) numerically and the error increases with the distance
between the integration limits.

We choose Simpson 3/8 rule to calculate integral (2.3.5). Denoting by r(ρ, ε) the
integrand and using a = ρa and b = ρb for readability, then the formula for the integral is

Xb
a ≈

b− a
8

(
r(a, εa) + 3r

(
c = 2a+ b

3 , εc

)
+ 3r

(
d = a+ 2b

3 , εd

)
+ r(b, εb)

)
.

Therefore, for this integration, we also need to calculate εb, εc and εd from (2.3.6).
First we need to solve (2.3.7) from state a to b, c and d respectively. As the limit states
are closer because they are subdivisions of the original interval of integration, we use the
simpler Simpson 1/3 rule

Y x
a ≈

x− a
6

(
q(a) + 4q

(
a+ x

2

)
+ q(x)

)
for x ∈ {b, c, d} and being q(x) the integrand of (2.3.7).

Using ρb and εb we can evaluate the nonlinearity factor η (1.2.5) at the new state. If
ηa · ηb < 0 then there is a zero of the nonlinearity factor between both states, marking the
termination of the wave curve. Despite the fact that an integral curve is not defined at the
zero of the nonlinearity factor, it can be calculated at both sides of it. Once we delimit
where the zero takes place, we look for the termination state with a bisection method on
the nonlinearity factor imposing a tolerance of 10−12.

If ηa · ηb > 0 the integral curve can continue. We calculate the fluid speed using Xb
a

and the pressure from the EoS.

2.4.3 Practical calculation of a mixed curve

The states of a mixed curve solve the Rankine-Hugoniot conditions with origin in a state
of a previous integral curve, which is known when calculating the mixed curve. Therefore
we can store states along it to use in the calculations. In particular we use 1000 points
equidistant in density.

Following Algorithm 2.1.3 we select the first point from the last of the integral curve
that has not been used before as origin state for the mixed curve. Given this state we
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can solve equation g(ρ) = 0, (2.3.19), to obtain the density of the state belonging to the
mixed curve. The rest of quantities follow from analytic relations.

Equation g(ρ) can be solved with the Newton method, which we use with a tolerance of
10−12. However the selection of the initial guess can be challenging. The density value in
the integral curve, ρ♦, is always a trivial solution of the equation but not the one belonging
to the mixed curve. Therefore, the initial guess has to avoid the convergence basin of ρ♦.

When the equation has more than two solutions, Liu [70] specifies that the density
value belonging to the mixed state is the closer one to ρ♦. Therefore we need to converge
to that solution and identify the case if we have not.

In our study we have found that, in general, g(ρ) takes the schematic shapes in figure
2.3 depending on the origin integral curve state. Therefore, as initial guess we take a
perturbation of ρ♦ and increase the perturbation in case of convergence to the trivial
solution.

Figure 2.3: Schematic representation of the shape of function g(ρ) (2.3.19).

However, if the mixed curve becomes a sonic shock, the shape of equation g(ρ) changes
resembling those in figure 2.4 some states before the final one. Two roots grow increasingly
closer and the root-finder may jump to the second root. We identify the roots by the sign
of the derivative of g(ρ) in them. Therefore if we find the further one, we take it as initial
point to start a bisection method moving towards ρ♦ and locate the root described by
Liu. As we approach the final state of the mixed curve, the roots are closer and the local
extreme between them takes a value that goes to zero.

Beyond the integral curve state that serves as origin to the final state of the mixed
curve, the only solution of g(ρ) is the trivial one. In this case, where we cannot find a
different solution, we calculate new integral curve states between this latest state and the
previous one that gave a non trivial solution. In this way we can refine the location of the
last state of the sonic mixed curve. We locate the termination state with an accuracy of
|λ− λ♦| < 10−5 at least.

During the calculation of the mixed curve we also check if the curve has been reached
by stack in a similar fashion as we do in the Hugoniot curves.
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Figure 2.4: Schematic representation of the shape of function g(ρ) (2.3.19) when the mixed
curve is close to its final state as sonic shock.

2.4.4 Intersection of wave curves

In convex dynamics, the type of wave reaching the equilibrium state from each side can be
determined from the initial states since it depends only on the behavior of the pressure.
Therefore, to calculate the intersection, one needs to solve the equation that arises from
making the fluid velocity of the two coincident curves equal [75].

In nonconvex dynamics, however, the two initial wave curves may terminate and be
continued by a sequence of other wave curves, making it impossible to know a priori which
type of wave curve will reach the equilibrium state from each side. In this case, the two
sequences have to be calculated and checked for intersection as they progress in phase
space.

One method for determining a potential interval of intersection is by tracking the
difference in pressure ∆Pi = PLi − PRi and velocity ∆υi = υLi − υRi along the curves. If
the curves intersect, these differences will change sign with respect to their values at the
initial condition. These differences are calculated at the termination point of each wave
curve. If a wave curve is not broken by its termination condition, limits in the pressure
and density are applied for the calculations. These limits are extended if the intersection
does not occur.

Given a possible intersection interval [a, b] (in fluid velocity if PL = PR, in pressure if
υL = υR, either of them if the initial conditions are different in P and υ), the equilibrium
state is located using inverse parabolic interpolation. The process is outlined in Algorithm
2.4.1. The method involves defining a set of fixed, equally spaced abscissas {xi}Ni=0 and
taking as their ordinate values the difference between the value of the two curves at each
abscissa {∆y = yL(xi)− yR(xi)}Ni=0. A change of sign in two consecutive ∆y points indi-
cates the presence of an intersection of the curves. A parabola is then used to interpolate
the abscissa value at which the intersection occurs. The interpolation is called inverse as
∆y is used as the abscissas and x as the ordinates. Evaluating at zero yields the original
abscissa value where the curves coincide.

To evaluate the wave curves at a set of fixed abscissas, they are first calculated at con-
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Algorithm 2.4.1 Finding the intersection between wave curve branches
Locate interval [a, b] where curves may intersect
Subdivide interval and define equiespaced {xi}i=Ni=0 , x0 = a, xN = b
Calculate corresponding left wave curve in the interval and get points in phase space
(αLj , βLj )
Interpolate left wave curve yL = parabola(x = αL, y = βL, eval = x)
Calculate corresponding right wave curve in the interval and get points in phase space
(αRj , βRj )
Interpolate right wave curve yR = parabola(x = αR, y = βR, eval = x)
Consider {(xi,∆yi = yLi − yRi )}i=Ni=0
if ∆y changes sign between index i and i+ 1 then

xeq = parabola(x = ∆y, y = x, eval = 0)
return xeq

if ∆y keeps sign ∀i then
break, no intersection

venient values. Then, for every fixed abscissa, we perform a local parabolic reconstruction
of the wave curve.

2.5 Examples

We calculate the exact solution of four Riemann problems proposed in [74], where the
authors explore numerically the wave dynamics arising from the GGL EoS. They use two
set of parameters gathered in table 2.3, yielding EoSs with different nonconvex regions. We
label them GGL1 and GGL2, as they will be referred to henceforward. These values ensure
that the EoSs are causal and thermodynamically consistent. Therefore, they represent
physically valid fluids and the hydrodynamic system of equations is hyperbolic [13].

Model γ0 γ1 ρ0 σ0

GGL1 4/3 5/3 1 0.6
GGL2 4/3 1.9 1 1.1

Table 2.3: GGL EoS parameters.

The Riemann problems proposed, see table 2.4, include strong blast wave problems
and highly relativistic gas slabs [85].

ρL υL PL ρR υR PR

Blast Wave 1 GGL1 (BW1-GGL1) 1 0 1000 0.125 0 0.01
Blast Wave 2 GGL2 (BW2-GGL2) 5 0 1000 0.125 0 0.01
Expanding Slabs GGL1 (ES-GGL1) 1.8 -0.8 20 1.8 0.8 20
Colliding Slabs GGL2 (CS-GGL2) 0.05 0.999 0.05 0.05 -0.999 0.05

Table 2.4: Riemann problems solved using GGL1 and GGL2 EoSs, proposed in [74].
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We consider the spatial domain x ∈ [0, 1] with initial discontinuity located at x = 0.5.
For each problem we present the wave curves obtained and detail their termination values
for reference. The evolution of the wave speed along the different curves is shown to
determine which waves appear in the spatial domain, where we draw the solution profiles
for density, pressure, and velocity at t = 0.4.

2.5.1 Blast wave 1 GGL1

This blast wave problem features a jump of pressure of five order of magnitude in the initial
conditions. According to the behavior of this type of Riemann problems, the arising waves
should make the higher pressure decrease and the lower one increase. The first wave is
therefore known for this scenario, but we exemplify the calculations to do for an unknown
case. Following Section §2.2.1 we increase slightly the pressure from the initial conditions
to get new points in phase space. For the new state Pb = PI + δP being I ∈ {L,R}, we
take δP = 0.0005. We could calculate the corresponding velocity using an integral or a
Hugoniot curve. We choose the latest as we can impose a final pressure easily. To know
if the curves grow closer in phase space we use the Euclidean distance.

In this Riemann problem, from the initial left condition (υ = 0, P = 1000) we get the
state (−2.449 · 10−7, 1000.0005). As it is further from the initial right condition (0, 0.01),
the pressure of the waves to the left must decrease. On the right side, the resulting state
is (0.0102, 0.0105), which is closer to the initial left state and, therefore, the wave to the
right increase the pressure.

We evaluate the nonlinearity factor (1.2.5) at the initial conditions and obtain η(uL) < 0
and η(uR) > 0. According to the results obtained, following table 2.1 we have that a Hugo-
niot curve starts to the left as an expansive shock and another Hugoniot curve starts to
the right as a compressive shock.

The process to dictaminate the first waves for the other Riemann problem examples
is analogous. We indicate the behavior of the pressure and the sign of the nonlinearity
factor.

Wave curves obtained

The wave curves calculated in phase space are shown in figure 2.5. We present separately
the wave curves moving to the left and the right and an additional plot with the two
sequences together focusing on the intersection. In the legend we denote for L (left) and
R (right) the direction of the movement of the curve followed by the type of wave curve
it represents (H for Hugoniot, I for integral and M for mixed curves).

Origin state Termination state
w. curves υ P ρ υ P ρ υω
H 0 1000 1.000 0.2085 627.5 0.7834 -0.8393
I 0.2085 627.5 0.7834 0.9794 4.922 0.0378 0.9196

Table 2.5: Origin and termination states of the wave curves moving to the left in BW1-GGL1.

We gather the details about the origin and termination state of the left wave curves
sequence in table 2.5, where the wave speed is denoted as υω. The sequence starts with a
Hugoniot curve with origin in the initial state. It is terminated as a sonic shock, located
when |υi)s − υ

i−1)
s | ≈ 5.13 · 10−14 and, therefore, its speed is pushed to the stack. An
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Figure 2.5: Wave curves for BW1-GGL1 in phase space. Left picture depicts the sequence of
wave curves moving to the left. Right picture shows the sequence of wave curves moving
to right. Bottom picture displays the intersection of the wave curves, determining the
equilibrium state.

integral curve continues. There are no more changes of convexity along the curve (η 6= 0)
and the wave speed never reaches the speed in the stack. Thus, the integral curve is not
terminated. This is a case where we make use of a limit in density to stop the calculations.

The details of origin and termination of the right wave curves sequence are displayed
in table 2.6. It starts with a Hugoniot curve that becomes sonic. We locate the final state
when |υi)s − υi−1)

s | ≈ 3.23 · 10−14 and push the shock speed to the stack. The wave curves
sequence is continued by an integral curve that terminates at η ≈ 9.58 ·10−13 and a mixed
curve follows. This curve uses all the rarefaction states for the calculation and in the last
one it reaches the shock speed of the first terminated Hugoniot curve. The first Hugoniot
curve resumes and continues the sequence. It does not cross any other change of convexity
hence we also make use of the practical limit in pressure to stop the calculations. In table
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2.6 we label H1 the two Hugoniot curves appearing because they are the same curve.

Origin state Termination state
w. curves υ P ρ υ P ρ υω
H1 0 0.0100 0.1250 0.9566 2.642 1.272 0.9848
I 0.9566 2.642 1.272 0.9617 2.833 1.613 0.9669
M - - - 0.9731 3.727 2.416 0.9848
H1 0 0.0100 0.1250 0.9794 4.922 2.733 0.9885

Table 2.6: Origin and termination states of the wave curves moving to the right in
BW1-GGL1.

The equilibrium state is found as the intersection of the integral curve to the left and
the resumed Hugoniot curve to the right. The fluid velocity is υ = 0.9794 where both
curves give a pressure of P = 4.922, with an error of 3.82 · 10−10. We can observe the
jump in density at the final state of the two curves.

Translation to spatial domain

Once the wave curves and their point of intersection have been calculated, we can identify
the waves present in the spatial domain. In figure 2.6 we show the evolution of the wave
speeds along the curves, although the wave speeds listed in tables 2.5, 2.6 are enough to
deduce the waves appearing in the spatial domain.

The wave curves to the left begin with a Hugoniot curve. The speed of the associated
shock is the wave speed at the final state. As there is no posterior faster wave to the left
(notice that speeds moving to the left are negative), there will be a shock wave uniting the
initial condition to the final state of the wave curve. The next curve, an integral curve,
displays states with negative and positive velocities, indicating a rarefaction wave with a
head moving to the left and a tail moving to the right. It unites the end of the shock wave
with the new constant equilibrium state.

In the wave curves to the right, the fastest wave is the Hugoniot curve resumed after
the mixed curve. This means that only a shock wave is observed connecting the initial
state to the equilibrium state.

The exact solution can be drawn at any time of the evolution knowing the type of waves
that appear, their boundaries and wave speeds, and the new constant states that emerge
on both sides of the contact discontinuity. We plot density, pressure and velocity in figure
2.7. We use points to represent the key states calculated for the jumps discontinuities. We
also use points in the rarefactions to highlight their curvature. All points are connected
with lines for readability.

In the spatial domain, see figure 2.7, a composite wave displays moving to the left
formed by a shock wave and a rarefaction fan. A single shock wave moves to the right.
We remark that although we observe a single wave to the right, it is due to four wave
curves in phase space.

Perturbation analysis of the initial condition

For this particular Riemann problem we show that in nonconvex dynamics, little pertur-
bations of the initial conditions can lead to quite different wave structure in the spatial
domain, although the sequence of wave curves in phase space is similar.

37



Figure 2.6: Wave speeds for the wave curves solution of BW1-GGL1. Left picture shows
wave speed of the curves towards the left, right picture wave speed of the curves towards
the right. Bottom picture displays an enlargement of the latest.

To perturb the initial data, we slightly modify the density of the initial right state as
shown in table 2.7.

ρL υL PL ρR υR PR

BW1-GGL1 1 0 1000 0.125 0 0.01
Perturbation 1 1 0 1000 0.084 0 0.01
Perturbation 2 1 0 1000 0.090 0 0.01
Perturbation 3 1 0 1000 0.096 0 0.01

Table 2.7: Perturbations proposed for the right initial condition of BW1-GGL1.
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Figure 2.7: Solution profiles for density, pressure and velocity for BW1-GGL1 at t = 0.4.

The sequence of wave curves to the left is the same for all perturbed Riemann problems,
since the initial condition remains unchanged.

The right sequence exhibits the same types of wave curves as in the original problem: a
Hugoniot curve that becomes sonic followed by an integral curve that terminates, a mixed
curve and, finally, a continuation of the first Hugoniot curve.

However, modifying the initial density causes the first Hugoniot curve to terminate
sooner or later in its progression through phase space. This leads to a different intersection
point with the left sequence in each case. The wave curves corresponding to all perturbed
problems can be seen in figure 2.8.

The density solution profile for the considered perturbations is shown in figure 2.9
focusing specifically on the density shell since the left wave remains the same.

In Perturbation 1, the first Hugoniot curve to the right reaches the middle state re-
sulting in a shock wave in the spatial domain moving towards the right. In Perturbation
2, the first shock wave becomes sonic and is attached to a slower rarefaction fan producing
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Figure 2.8: Wave curves for perturbations of BW1-GGL1 focusing on the intersection.

a composite shell front in the spatial domain. In Perturbation 3, the integral curve termi-
nates and is followed by a mixed curve which reaches the equilibrium state. The solution
in the spatial domain is therefore comprised of the first shock wave from the Hugoniot
curve, the states in the rarefaction that were not used in the calculation of the mixed
curve and the shock wave from the mixed curve jumping to the equilibrium state.

Looking at the problem in phase space allows to see that all the perturbations indeed
lead to similar solutions. The wave curves sequence constructed is the same, interrupted
when intersecting the waves to the left at different states. However, the solution in the
spatial domain depicts different wave structure.

Knowing how to construct the exact solution of the Riemann problem let us understand
the underlying structure and the development of the waves.
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Figure 2.9: Density shells of perturbations of BW1-GGL1, depicting different wave structure
at the front.
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2.5.2 Blast wave 2 GGL2

This blast wave problem features a jump in pressure of five orders of magnitude as
BW1-GGL1 and also a higher density jump. Both initial conditions are situated in a convex
region of the EoS, with η(uL) > 0 and η(uR) > 0. As a result, the first wave is consistent
with a typical blast wave problem, with an expanding rarefaction moving to the left and
a compressive shock moving to the right.

Wave curves obtained

The wave curves calculated in phase space for this problem are shown in figure 2.10. As
in the previous example, we separate the plots for the curves moving to the left and to
the right and then show the region of intersection.

The origin and termination of the wave curves of the left sequence are described in
detail in table 2.8. The sequence begins with an integral curve that is calculated until it
terminates, when η ≈ 8.15 · 10−13. This is followed by a mixed curve that becomes sonic.
The final state is located where |λ♦ − λ| ≈ 9.49 · 10−7. The final shock speed is pushed to
the stack and the wave curves sequence continues. The following integral curve reaches the
equilibrium state. Since this last curve does not encounter any changes in the convexity,
the calculation is stopped by the density limit.

Origin state Termination state
w. curves υ P ρ υ P ρ υω
I1 0 1000 5.00 0.3394 494.3 2.266 0.2939
M - - - 0.9200 50.76 0.4424 -0.0861
I2 0.9200 50.76 0.4424 0.9863 7.438 0.1583 0.8635

Table 2.8: Origin and termination states of the wave curves moving to the left in BW2-GGL2.

The origin and termination states of the wave curves moving towards the right are
presented in table 2.9. The sequence begins with a Hugoniot curve, which becomes sonic.
The last state is located when |υi)s −υi−1)

s | ≈ 7.33 ·10−15. The shock speed is pushed to the
stack and the sequence continues with an integral curve. This terminates at a zero of the
nonlinearity factor, found as η ≈ 2.88 · 10−13. A mixed curve follows and it is calculated
using all states in the integral curve. After ending this curve we find that the intersection
with the left sequence takes place along it and therefore no more curves are calculated.

Origin state Termination state
w. curves υ P ρ υ P ρ υω
H 0 0.0100 0.1250 0.9780 5.635 1.457 0.9958
I 0.9780 5.635 1.457 0.9843 6.992 2.266 0.9857
M - - - 0.9863 7.438 2.902 0.9907

Table 2.9: Origin and termination states of the wave curves moving to the right in
BW2-GGL2.

The equilibrium state is found at υ = 0.9863, where the intersecting integral curve
moving to the left and mixed curve moving to the right present a pressure value of P =
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Figure 2.10: Wave curves for BW2-GGL2 in phase space. Left picture depicts the sequence
of wave curves moving to the left. Right picture shows the sequence of wave curves
moving to right. Bottom picture displays the intersection of the wave curves determining
the equilibrium state.

7.438, with error 4.53 · 10−8. We also observe the jump in density between the left and
right waves characterizing the density shell.

Translation to spatial domain

We show the wave speed along the wave curves in figure 2.11. This Riemann problem
features the same number of waves in the spatial domain than wave curves in phase space.

The left branch of wave curves starts with an integral curve representing a rarefaction
wave. This wave has a head that moves to the left with negative speed and a tail that
moves to the right with positive speed. However, it is partially overtaken by the subsequent
mixed curve, which becomes sonic and therefore does not overtake the whole rarefaction.
As a result, the rarefaction shows until the state used as origin for the final state of the
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mixed curve. The head and tail of the rarefaction both move to the left and are attached to
a shock wave that stems from the mixed curve. The following integral curve starts behind
the jump discontinuity. Its head moves to the left attached to the previous structure,
while its tail moves to the right and reaches the equilibrium state.

The curves moving to the right start with a Hugoniot curve, which terminates as the
fastest wave of the sequence. Although the subsequent integral curve is followed by a
mixed curve, this one reaches the equilibrium state before using the whole integral curve
for its calculation. As a result, a portion of the rarefaction wave appears in the spatial
domain and is attached to a shock wave that reaches the equilibrium state.

Figure 2.11: Wave speeds for the wave curves solution of BW2-GGL2. Left picture shows
wave speed of the curves towards the left. Right picture wave speed of the curves towards
the right. Bottom picture displays an enlargement of the latest.

The density, pressure and velocity profiles are depicted in the spatial domain in figure
2.12, and an enlargement of the contact discontinuity area is included to provide a clearer
view of the composite wave moving towards the right.
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Figure 2.12: Solution profiles for density, pressure and velocity for BW2-GGL2 at t = 0.4.

2.5.3 Expanding slabs GGL1

This problem features two gas slabs moving away from each other. This kind of initial
condition can produce vacuum solutions between the moving gas slabs if their speed is
high enough.

The solution to this Riemann problem is symmetric with respect to the vertical axis
passing through the origin in phase space. The reason is that pressure and density are
equal across the initial discontinuity while velocities are equal but with opposite signs. As
a result, the solution is the same towards both sides and we only describe one.

The initial pressure and density lie in a convex region of the EoS and therefore the
first wave is an expansive rarefaction.
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Wave curves obtained

The wave curves moving to the left and the right are symmetrical, with equal values but
opposite sign of the speeds. We present the curves in phase space in figure 2.13 and detail
their origin and termination in tables 2.10 and 2.11.

Figure 2.13: Wave curves for ES-GGL1 in phase space. The problem is symmetrical with
respect to a vertical axis that passes through υ = 0.

The first integral curve terminates very close to the initial condition in phase space,
when η ≈ 5.49 · 10−14. A mixed curve follows. The integral curve that serves as origin
is short and the mixed curve ends at the state that jumps from the start of the integral
curve. Therefore the jump discontinuity has to be prolonged with the same origin. A
Hugoniot curve follows with origin in the initial state. After traversing a change of the
convexity, it becomes sonic and the last state is found when |υi)s − υi−1)

s | ≈ 1.00 · 10−10.
The shock speed is pushed to the stack. An integral curve follows and we make use of
the limit in density to stop its calculation. The intersection of the wave curves sequences
takes place during this last integral curve.

Origin state Termination state
w. curves υ P ρ υ P ρ υω
I -0.8000 20.00 1.800 -0.7940 19.80 1.613 -0.8212
M - - - -0.7529 17.88 1.217 -0.8756
H -0.8000 20.00 1.800 -0.3562 4.817 0.5713 -0.9136
I -0.3562 4.817 0.5713 0.0000 1.917 0.3508 -0.7071

Table 2.10: Origin and termination states of the wave curves moving to the left in ES-GGL1.

The equilibrium state is found at P = 1.917, where the integral curves yield a velocity
of υ = 0, with error 5.97 · 10−9.
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Origin state Termination state
w. curves υ P ρ υ P ρ υω
I 0.8000 20.00 1.800 0.7940 19.80 1.613 0.8212
M - - - 0.7529 17.88 1.217 0.8756
H 0.8000 20.00 1.800 0.3562 4.817 0.5713 0.9136
I 0.3562 4.817 0.5713 0.0000 1.917 0.3508 0.7071

Table 2.11: Origin and termination states of the wave curves moving to the right in
ES-GGL1.

Translation to spatial domain

The wave speed along the wave curves is shown in figure 2.14. The speeds are equal but
of opposite sign, as the waves move in opposite directions.

The first integral curve is completely overtaken by the subsequent mixed curve. Its
related jump discontinuity does not show in the spatial domain, since it is prolonged by
the next Hugoniot curve. The shock related to this wave curve is the fastest wave and
appears in the spatial domain, originating from the initial condition. Attached to this
shock wave is a rarefaction, which arises due to the subsequent integral curve reaching the
equilibrium state.

Figure 2.14: Wave speeds for the wave curves solution of ES-GGL1. Left (right) picture
shows wave speed of the curves towards the left (right).

We plot the density, pressure and velocity profiles in the spatial domain in figure 2.15.
We can see the symmetric composite wave and the point locating the contact discontinuity
at the position of the initial discontinuity of the problem, as it has speed zero and therefore
it does not move.
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Figure 2.15: Solution profiles for density, pressure and velocity for ES-GGL1 at t = 0.4.

2.5.4 Colliding slabs GGL2

This Riemann problem involves a fluid with low pressure and density that collides against
the initial discontinuity at a very high velocity with Lorentz factor of 22.37. This collision
results in the formation of waves that propagate towards both left and right. At the center
of the collision there is a high pressure and high density region that remains at rest. The
initial conditions are in a convex region of the EoS and therefore the pressure increases
with a compressive shock wave. The solution of this problem is also symmetric thus we
detail only one side.

Wave curves obtained

We present the symmetric wave curves in phase space in figure 2.16, and detail their origin
and termination in tables 2.12 and 2.13. The values are equal, except for the velocities
that have opposite sign.
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Figure 2.16: Wave curves for CS-GGL2 in phase space. The problem is symmetrical with
respect to a vertical axis that passes through υ = 0.

The first Hugoniot curve becomes sonic. We locate its final state where |υi)s − υi−1)
s | ≈

1.43 · 10−13 and its speed is pushed to the stack. It is continued by an integral curves that
breaks when η ≈ 4.05 · 10−14. A mixed curve follows and intersects the opposite sequence
of curves.

Origin state Termination state
w. curves υ P ρ υ P ρ υω
H 0.999 0.050 0.050 0.5920 43.49 1.226 -0.5378
I 0.5920 43.49 1.226 0.3508 68.62 2.266 0.3060
M - - - 0.0000 122.0 4.308 -0.3162

Table 2.12: Origin and termination states of the wave curves moving to the left in CS-GGL2.

Origin state Termination state
w. curves υ P ρ υ P ρ υω
H -0.999 0.050 0.050 -0.5920 43.49 1.226 0.5378
I -0.5920 43.49 1.226 -0.3508 68.62 2.266 -0.3060
M - - - 0.0000 122.0 4.308 0.3162

Table 2.13: Origin and termination states of the wave curves moving to the right in
CS-GGL2.

The equilibrium state is found at P = 122.0, where both mixed curves have a velocity
υ = 0, with error 3.78 · 10−9.
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Translation to spatial domain

We present the wave speed along the wave curves in figure 2.17. Notice that both sequences
have the same speed with opposite sign.

The Hugoniot curve is the fastest curve, so its associated shock wave appears in the
spatial domain. The following integral curve is partially overtaken by the subsequent
mixed curve, although not completely because the latest reaches the equilibrium state
before going over the whole integral curve. Therefore, the wave structure is a composite
wave of a shock originating at the initial condition attached to a small rarefaction wave
that is continued by another shock reaching the equilibrium state.

Figure 2.17: Wave speeds for the wave curves solution of CS-GGL2. At the left (right),
the waves moving to the left (right).

The density, pressure and velocity profiles in figure 2.18 show this wave structure. The
symmetric waves move towards the boundaries of the domain leaving the fluid at rest in
between.
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Figure 2.18: Solution profiles for density, pressure and velocity for CS-GGL2 at t = 0.4.
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Chapter 3

The exact solution of the Riemann
problem in nonconvex SRHD with
nonzero tangential velocities

Realistic astrophysics scenarios involve three spatial dimensions (3D). In the context of
SRHD, 3D not only accounts for highly relativistic fluids. The presence of tangential
velocities make the equations tightly coupled through the Lorentz factor w and the specific
enthalpy h. As a result, the limit to classical dynamics, when w ≈ 1, does not coincide
with the Newtonian hydrodynamic formulation [91]. Thus, even for slow fluids, if the
thermodynamics is relativistic (h > 1), SRHD must be used in more than one spatial
dimension.

A Riemann problem in 3D can be simplified considering the reference frame such that
the initial hypersurface of discontinuity is normal to the x-axis. The decay of the discon-
tinuity takes place in this axis and while the hydrodynamics equations have components
in the three dimensions, the resolution of the Riemann problem is analogous to the 1D
case. The wave curves solving the Riemann problem coincide at the equilibrium state in
the υx − P plane.

The exact solution of a Riemann problem is an important tool for studying the wave
phenomena arising in a given hydrodynamic context and testing numerical methods that
will be used to solve more complex initial conditions. Although 1D validations are a
necessary first step, realistic simulations require 3D space, making multidimensional codes
essential for more complex scenarios. As a consequence, exact solutions can be particularly
useful for checking the accuracy in multiple dimensions. To this end, in [91, 99] the authors
extended the solution for convex SRHD developed in [75] to include tangential velocities.
Analogously, in this second Chapter we extend the exact solution for nonconvex SRHD
with nonzero tangential velocities.

Firstly, we present the wave curves that arise in 3D nonconvex SRHD, namely Hugo-
niot, integral and mixed curves. However, the relationships between pressure and velocity
differ from those already presented. Then we particularize the expressions for a nonconvex
phenomenological EoS, the GGL EoS [54] and detail how we perform the calculations that
are different from the 1D case. Finally, we provide examples of the exact solution for the
blast wave problems presented in the previous Chapter with the addition of tangential ve-
locities. We demonstrate how the wave curves and solutions in the spatial domain change
in the presence of tangential speeds.
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3.1 Wave curves for nonconvex SRHD in 3D

While the definition of the wave curves presented in the previous Chapter is general, the
SRHD equations change with the number of spatial dimensions. In what follows we revisit
the three types of wave curves and detail the differences that arise in 3D nonconvex SRHD
as compared to the 1D case.

3.1.1 Hugoniot curves

Hugoniot curves are calculated through the relativistic Rankine-Hugoniot conditions, de-
rived first by Taub in [121]. Let nµ be the unit vector normal to the hypersurface
across which there is the discontinuity. Since we select this to be the x-axis, then
nµ = ws(υs, 1, 0, 0). The conditions read

[ρuµ]nµ = 0 (3.1.1)
[Tµν ]nν = 0. (3.1.2)

The Greek indices run from 0 to 3.
From equation (3.1.1) we can define the invariant mass flux, analogous to the one in

1D. It contains the x-component of the velocity instead of the modulus:

j = wsDa(υs − υxa) = wsDb(υs − υxb ).

We still consider j > 0 (j < 0) for waves traveling to the right (left).
Expanding (3.1.2) and writing the equations in terms of the invariant j, one can get

([91])

[υx] = −j
ws

[ 1
D

]
(3.1.3)

[P ] = j

ws
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D

]
(3.1.4)[
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D

]
= 0 (3.1.5)[

Sz

D

]
= 0 (3.1.6)

[υxP ] = j
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τ

D

]
. (3.1.7)

From the mass flux invariant one can deduce the shock speed

υ±s = ρ2
aW

2
aυ

x
a ± |j|

√
j2 + ρ2

aw
2
a(1− (υxa)2)

ρ2
aw

2
a + j2 (3.1.8)

and from equations (3.1.3), (3.1.4) and (3.1.7), analogously to the 1D case, we can isolate
the x-velocity of the fluid after the shock

υxb =
[
hawaυ

x
a + ws(Pb − Pa)

j

] [
hawa + (Pb − Pa)

(
wsυ

x
a

j
+ 1
ρawa

)]−1
. (3.1.9)

We can use (2.1.11), derived for 1D, to relate the mass flux invariant, pressure and
enthalpy, given that the hypersurface of discontinuity is normal to the x-axis. Additionally,
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since thermodynamic quantities are independent of spatial dimensions, we can employ the
Taub adiabat to obtain the expression for enthalpy (2.1.12).

Equations (3.1.5)-(3.1.6) determine the tangential speed behind the shock. Assuming
state a is known, and once υxb has been calculated, from (3.1.5) we have

hawaυ
y
a = hbυ

y
b√

1− (υxb )2 − (υyb )2 − (υzb )2
.

Isolating the y-velocity we get

(υyb )2 = h2
aw

2
a(υya)2(1− (υxb )2 − (υzb )2)
h2
b + h2

aw
2
a(υ

y
a)2 . (3.1.10)

and analogously for the z-velocity, from (3.1.6) we get

(υzb )2 = h2
aw

2
a(υza)2(1− (υxb )2 − (υyb )2)
h2
b + h2

aw
2
a(υza)2 . (3.1.11)

We introduce notation (υt)2 = (υy)2 + (υz)2. Then, inserting (3.1.11) into (3.1.10) for
the y component and viceversa for the z component, after some algebra we have

(υy,zb )2 = h2
aw

2
a(υy,za )2(1− (υxb )2)
h2
b + h2

aw
2
a(υta)2 .

The tangential speed after the shock is

(υtb)2 = h2
aw

2
a(υta)2(1− (υxb )2)
h2
b + h2

aw
2
a(υta)2 . (3.1.12)

The termination and continuation of Hugoniot curves remain unchanged with spatial
dimensions. Therefore, to calculate Hugoniot curves with nonzero tangential speed, one
could follow Algorithm 2.1.1 using (3.1.8) to evaluate the shock speed, (3.1.9) to obtain
υxb and include the calculation of the tangential speed behind the shock υtb using equation
(3.1.12).

3.1.2 Integral curves

We choose the discontinuity of the Riemann problem to be normal to the x-axis. There-
fore, the integral curves correspond to self-similar solutions of the hyperbolic system with
respect to the variable ξ = x

t . Upon changing the variables of the system ut + f(u)x = 0
to ξ, we can eliminate the derivatives in y and z and obtain the following equations

− ξ ∂(ρw)
∂ξ

+ ∂(ρwυx)
∂ξ

= 0 (3.1.13)

− ξ ∂(hρw2υx)
∂ξ

+ ∂(hρw2(υx)2 + P )
∂ξ

= 0 (3.1.14)

− ξ ∂(hρw2υy)
∂ξ

+ ∂(hρw2υxυy)
∂ξ

= 0 (3.1.15)

− ξ ∂(hρw2υz)
∂ξ

+ ∂(hρw2υxυz)
∂ξ

= 0 (3.1.16)

− ξ ∂(hρw2 − ρw − P )
∂ξ

+ ∂(hρw2υx − ρwυx)
∂ξ

= 0. (3.1.17)
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Using ∂w/∂υi = υiw3∂υi/∂ξ, equation (3.1.13) can be written as

∂ρ

∂ξ
(υx − ξ)+∂υx

∂ξ

(
ρ+ ρw2υx(υx − ξ)

)
+∂υy

∂ξ

(
ρw2υy(υx − ξ)

)
+∂υz

∂ξ

(
ρw2υz(υx − ξ)

)
= 0.

(3.1.18)
The other four equations, (3.1.14)-(3.1.17), can be reduced to three. Introducing

(3.1.13) into (3.1.17) we get

ξ
∂P

∂ξ
+ ∂(ρhw2)

∂ξ
(υx − ξ) + ∂υx

∂ξ
ρhw2 = 0, (3.1.19)

and then subtracting (3.1.14)-υx(3.1.19), (3.1.15)-υy(3.1.19) and (3.1.16)-υz(3.1.19) we
have

ρhw2(υx − ξ)∂υ
x

∂ξ
+ (1− υxξ)∂P

∂ξ
= 0 (3.1.20)

ρhw2(υx − ξ)∂υ
y

∂ξ
− υyξ ∂P

∂ξ
= 0 (3.1.21)

ρhw2(υx − ξ)∂υ
x

∂ξ
− υzξ ∂P

∂ξ
= 0. (3.1.22)

Finally for the last equation of the system we consider the conservation of entropy
along fluid lines. At constant entropy it holds that ∂P/∂ρ = hc2

s and therefore

∂P

∂ξ
= hc2

s

∂ρ

∂ξ
. (3.1.23)

Equations (3.1.18), (3.1.20)-(3.1.23) are the system of ordinary differential equations
describing integral curves. It admits non trivial solutions only if the determinant is zero,
which leads to condition

ξ = υx(1− c2
s)±

√
(1− υ2)[1− υ2c2

s − (υx)2(1− c2
s)]

1− υ2c2
s

where + (−) signs refer to integral curves propagating to the left (right).
After some algebra, the system of five equations reduces to

ρhw2(υx − ξ)dυx + (1− υxξ)dP = 0 (3.1.24)
hwυy = constant (3.1.25)
hwυz = constant. (3.1.26)

Following [99], conditions (3.1.25)-(3.1.26) state that between two states a and b in
the integral curve we have hawaυ

y
a = hbwbυ

y
b and hawaυ

z
a = hbwbυ

z
b . Summing both

expressions squared we obtain a quantity A that remains constant along integral curves

A = hwυt. (3.1.27)

It is then straightforward to see that

(υt)2 = A2(1− (υx)2)
h2 +A2 (3.1.28)

and
w2 = h2 +A2

h2(1− (υx)2) . (3.1.29)
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Equation (3.1.24) needs to be solved imposing the conservation of A (3.1.27). To do
so, we rewrite the equation as

dυx
dP = 1

ρhw2
(1− ξυx)
(ξ − υx) . (3.1.30)

The right hand side can be written in terms of A.
First we rewrite ξ by expanding the terms in the square root and substituting every

tangential velocity by (3.1.28)

ξ = υx(1− c2
s)(h2 +A2)± csh(1− (υx)2)

√
h2 +A2(1− c2

s)
A2(1− c2

s) + h2(1− c2
s(υx)2) .

Then

1− ξυx = A2(1− (υx)2)(1− c2
s) + h2(1− (υx)2)∓ cshυx(1− (υx)2)

√
h2 +A2(1− c2

s)
A2(1− c2

s) + h2(1− c2
s(υx)2)

and
ξ − υx = −h

2c2
sυ
x(1− (υx)2)± csh(1− (υx)2)

√
h2 +A2(1− c2

s)
A2(1− c2

s) + h2(1− c2
s(υx)2) .

All together we obtain

dυx
1− (υx)2 = ±

√
h2 +A2(1− c2

s)
h2 +A2

dP
ρcs

.

The left hand side can be solved analytically ([99])∫ dυx
1− (υx)2 = 1

2 log
(1 + υx

1− υx
)

= tanh−1(υx).

Denoting by

X =
∫ Pb

Pa

√
h2 +A2(1− c2

s)
h2 +A2

dP
ρcs

(3.1.31)

the integral yet to solve depending only on the EoS, we obtain that the x-velocity in the
new state of the integral curve is

υxb = tanh
(1

2 log
(1 + υxa

1− υxa

)
±X

)
(3.1.32)

using the + (-) sign for waves traveling to the right (left).
To calculate an integral curve with non-zero tangential speed, we can follow a procedure

similar to Algorithm 2.1.2 for the 1D case. The modifications include the calculation of
the constant expression A (3.1.27) from the known state a, solving integral (3.1.31) for
the new state and evaluating υxb using (3.1.32).

Although the self-similar solution leads to a different expression for the x-component
of the velocity behind the wave than in the 1D case, the system can still be written as
equation (2.1.2). Therefore, integral curves terminate when they traverse a zero of the
nonlinearity factor and are continued with a mixed curve.
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3.1.3 Mixed curves

Mixed curves are Hugoniot curves that continue a terminated integral curve by using the
states in the integral curve as the origin for the Rankine-Hugoniot conditions.

In 3D nonconvex SRHD, the jump conditions for mixed curves involve a larger number
of equations than in 1D, tightly coupled through the Lorentz factor because of the presence
of tangential velocity. However, the termination and continuation of mixed curves follow
the same procedure as in 1D.

To calculate a mixed curve with non-zero tangential speed, one can follow Algorithm
2.1.3 and solve the system of Rankine-Hugoniot conditions with three velocity components.

3.2 Application to a nonconvex EoS

We detail the equations for the GGL phenomenological model [54]
P = (γ(ρ)− 1)ρε,

with
γ(ρ) = γ0 + (γ1 − γ0)e−(ρ−ρ0)2/σ2

0 .

For more details about its parameters and related thermodynamic quantities, refer to
its previous definition in Section §2.3.

3.2.1 Hugoniot curves with GGL EoS

In order to build the Hugoniot curves we need to provide ρb given a pressure value Pb
for the GGL EoS. Since the EoS is independent of the spatial domain, we can apply the
Newton method described for the 1D case to solve the implicit equation (2.3.4).

3.2.2 Integral curves with GGL EoS

The integral curves can be solved when particularizing integral (3.1.31) for an EoS. The
integration is indicated with respect to pressure although the integrand contains density
and internal energy terms. However, the exponential shape of the GGL EoS does not
allow to isolate density in terms of pressure, requiring a change of variable in the integral.
For the sake of readability, we use γ(ρ) = γ.

For the GGL EoS, first law of thermodynamics with constant entropy reads

dε = γ − 1
ρ

dρ.

Deriving the pressure and applying this equality we get
dP = ε(γ + ργ′ − 1)dρ+ (γ − 1)ρdε = ε(γ′ρ+ γ(γ − 1))dρ,

where the apostrophe means derivative with respect to density.
Changing the integration variable for the density, expanding h = 1 + εγ and using the

expression of the relativistic sound speed (2.3.3), the integral becomes

X =
∫ ρb

ρa

√
(1 + εγ)3 +A2(1 + ε(2γ − γ2 − ργ′))

(A2 + (1 + εγ)2)ρ
√
ε(γ(γ − 1) + ργ′)

ε(γ′ρ+ γ(γ − 1))dρ. (3.2.1)

The integral has to be solved numerically. From a state a we can approximate (3.2.1)
to a state ρb, using at any intermediate point the value of the internal energy given by
(2.3.6). Once calculated we obtain the flow velocity using (3.1.32). The pressure is given
by the EoS using the internal energy and the density.
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3.2.3 Mixed curves with GGL EoS

To calculate states on a mixed curve, we use the Rankine-Hugoniot conditions (3.1.3)-
(3.1.7) and jump from a known state in a previous integral curve, which we mark with
the subscript ♦. The shock speed is equal to the characteristic speed at the integral curve
state υs = λ♦ = λ. We omit the ♦ here for readability.

From (3.1.3) we have
D♦(υx♦ − λ)︸ ︷︷ ︸

M

= ρw(υx − λ),

where we label as M the known term. From (3.1.5) and (3.1.6) the quantity A = hwυt is
conserved. Expanding the Lorentz factor and using A to replace the tangential speed by
(3.1.28), we get

(υxb )2
(

1 +
(
M

ρ

)2 h2

A2 + h2

)
− 2λυxb + λ2 −

(
M

ρ

)2
(

1− A2

A2 + h2

)
= 0.

Solving for the x-velocity, we obtain

υxb (ρ, ε) = λ+
√
K
√

1− λ2 +K

1 +K
(3.2.2)

with
K =

(
M

ρ

)2 (1 + εγ)2

(1 + εγ)2 +A2 , (3.2.3)

where the sign of the square root is taken such that υx(ρ♦, ε♦) = υx♦. In the 1D case the
velocity depended just on the density. Here the internal energy appears coupled through
the specific enthalpy.

Using the definition of the invariant mass flux, (3.1.4) recasts as

P♦ − P = Sx♦(λ− υx♦)− Sx(λ− υx).

Introducing (3.1.3), the EoS and substituting h = 1 + εγ we get

ρε(γ − 1) + (1 + εγ)wυxbD♦(υx♦ − λ) = Sx♦(υx♦ − λ) + P♦. (3.2.4)

Similarly, from (3.1.7) we can get to

D♦(υx♦ − λ)((1 + εγ)w − 1) + ερ(γ − 1)λ = −λτ♦ + Sx♦ −D♦υ
x
♦. (3.2.5)

The equations can be simplified further by substracting λ(3.2.4)−(3.2.5) and υx(3.2.5)
− (3.2.4). The result is a system of two equations with two unknowns, the density ρ and
the specific internal energy ε:

f ≡ (1 + εγ)(1− υxλ)w − h♦w♦(1− υx♦λ) = 0, (3.2.6)
g ≡ ρε(γ − 1)(1− λυx)− P♦(1− λυx)−D♦w♦h♦(υx♦ − υx)(υx♦ − λ) = 0, (3.2.7)

where υx is to be replaced by expression (3.2.2).
Calculating a state of a mixed curve involves solving the nonlinear system (3.2.6)-

(3.2.7) to get ρ and ε, then evaluating (3.2.2) to obtain υx and finally getting the tangential
speed through (3.1.28).
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3.3 A practical methodology to calculate wave curves

The wave curves are computed using the same methodology as in the 1D case, employing
the formulas derived for tangential velocities. The calculation procedure, the termination
criteria and the tolerances for root finding are those detailed in Chapter 2.

However, in the case of mixed curves, there is a significant difference. In 1D, finding the
density of a new state belonging to a mixed curve involves solving an implicit equation.
The addition of tangential velocities results in a nonlinear system of equations (3.2.6)-
(3.2.7). This system can be expressed in the form of a matrix equation

G(x) = 0 where x =
(
ρ
ε

)
, G =

(
f
g

)
.

The trivial solution (ρ♦, ε♦) always satisfies the system. Liu [70] establishes that the
density in the mixed curve is the nontrivial solution of the system with density closest to
ρ♦. In the 1D case, the presence of a single equation allowed us to distinguish between
roots by examining the sign of the derivative. However, with a system of equations, this
approach is not viable. Instead of using the Newton method with quadratic convergence,
which might miss the first nontrivial root, we solve the system using a fixed point iterative
method. Although the linear convergence of this method makes it slower, it guarantees
monotonicity and therefore convergence to the desired root.

The method reads

xk+1) = xk) − α ·m ·G(xk))
where m = J−1(x0)) and initially α = 1.

The parameter 0 < α ≤ 1 controls the step of the method. The matrix J is the
Jacobian of the system,

J =

a11 = ∂f

∂ρ
a12 = ∂f

∂ε

a21 = ∂g

∂ρ
a22 = ∂g

∂ε

 ,
whose components are

∂f

∂ρ
= (1− υxλ)

(
(1 + εγ)∂w

∂ρ
+ wεγ′

)
− w(1 + εγ)λ∂υ

x

∂ρ

∂f

∂ε
= (1− υxλ)

(
(1 + εγ)∂w

∂ε
+ wγ

)
− w(1 + εγ)λ∂υ

x

∂ε
∂g

∂ρ
= (1− λυx)(ε(γ − 1) + ρεγ′) + ∂υx

∂ρ

(
D♦w♦h♦(υx♦ − λ) + λP♦ − λρε(γ − 1)

)
∂g

∂ε
= (1− λυx)(γ − 1)ρ+ ∂υx

∂ε

(
D♦w♦h♦(υx♦ − λ) + λP♦ − λρε(γ − 1)

)
.

Using the definition (3.1.29) for the Lorentz factor its derivatives read

∂w

∂ρ
=
−A2(1− (υx)2εγ′ + (1 + εγ)υx((1 + εγ)2 +A2)∂υx∂ρ

(1 + εγ)3(1− (υx)2)2

∂w

∂ε
=
−A2(1− (υx)2γ + (1 + εγ)υx((1 + εγ)2 +A2)∂υx∂ε

(1 + εγ)3(1− (υx)2)2 .
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We derive υx from expression (3.2.2) by the factor K (3.2.3) to obtain its derivatives
using the chain rule

∂υx

∂K
= −2λ

√
K(1− λ2 +K) + 1 + λ2(K − 1) +K

2(1 +K)2
√
K(1− λ2 +K)

∂K

∂ρ
=

2D2
♦(υx♦ − λ)2

ρ2
1 + εγ

A2 + (1 + εγ)2

(
A2εγ′

A2 + (1 + εγ)2 −
1 + εγ

ρ

)
∂K

∂ε
=

2D2
♦(υx♦ − λ)2

ρ2
2(1 + ερ)γA2

(A2 + (1 + εγ)2)2 .

The Jacobian is evaluated at the initial guess of the method. This is selected as a
perturbation of the solution of the last system solved, or a perturbation of the integral
curve state for the first point of the mixed curve. Fixing the evaluation point of the
Jacobian ensures that the solution is searched in a fixed direction that points towards the
first root. Inverting the matrix analytically we can write explicitly the method(

ρ
ε

)k+1)

=
(
ρ
ε

)k)

− α

a11a22 − a12a21
·
(
a22 · f(x0))− a12 · g(x0))
−a21 · f(x0)) + a11 · g(x0))

)
.

When solving the state where the mixed curve becomes sonic, the derivatives in the
Jacobian become very steep in the last steps and two nontrivial solutions are very close
(analogous to the 1D case shown in figure 2.4), making the root finder unstable. In some
cases, the solution may blow up after a few iterations since G(x) increases drastically far
from the solution, or the method may converge to the second root because both are very
close. To overcome this issue, we decrease α for a smaller step that can converge to the
desired root.

3.4 Examples

The methodology for constructing the solution of the Riemann problem described in Sec-
tion §2.2 can be applied in any number of spatial dimensions, since the solution is deter-
mined in a phase space. The same rules for pushing terminated shocks to the stack that
can be continued later in the sequence apply in all dimensions. The only difference is that,
when solving for a new state b of a curve, its corresponding tangential velocity must also
be calculated.

Therefore, we can proceed to present examples using EoSs GGL1 and GGL2 to solve
the blast wave problems BW1-GGL1 and BW2-GGL2 presented in Section §2.5. In this Section,
we prescribe three different initial tangential speeds at both sides, i.e., 0, 0.9, and 0.99,
in the same fashion as [91]. We provide the exact solution of the Riemann problems and
analyze the effects of additional velocity components.

The different combinations of initial tangential speeds considered are gathered in table
3.1 and henceforth, we use the labeling in this table for the different cases.

The presence of tangential velocity in the fluid reduces the velocity component normal
to the initial discontinuity, resulting in a modified intersection of the wave curves in phase
space. This change affects not only the equilibrium state but also the development of
wave curves. The left and right sequences of wave curves depend solely on the left and
right initial conditions, respectively, which means that fixing an initial condition also fixes
the corresponding wave curves sequence. However, changes in one sequence may cause it

61



Case υtL υtR

C1 0 0
C2 0.9 0
C3 0.99 0
C4 0 0.9
C5 0 0.99
C6 0.9 0.9
C7 0.9 0.99
C8 0.99 0.9
C9 0.99 0.99

Table 3.1: Labeling of the different initial conditions for the tangential speed prescribed
to blast wave Riemann problems.

to intersect the opposite wave curves sequence earlier, thereby altering the overall wave
structure.

We present the wave curves in phase space, demonstrating how they advance less in the
x-velocity as we prescribe more tangential velocity. We also provide tables detailing the
origin and termination of waves for reference and depict the profiles for density, velocity
and pressure in the spatial domain.

3.4.1 Blast wave 1 GGL1 with tangential speed

This blast wave problem in 1D shows a composite wave moving to the left, formed by a
shock and a rarefaction. To the right, it presents a shock wave, although the wave curves
were four: a Hugoniot curve, an integral curve, a mixed curve and the Hugoniot curve
resumed which reaches the equilibrium state.

Since the nonlinearity factor only depends on the EoS, η(uL) < 0 and η(uR) < 0 as
in the 1D problem for all initial tangential speed configurations. Therefore, the first wave
curve is a Hugoniot curve both to the left and the right.

Wave curves obtained

The wave curves calculated in phase space are shown in figure 3.1. From left to right, the
tangential speed in the right initial condition changes from 0, to 0.9 and 0.99 respectively.
From top to bottom, we do the same for the tangential speed of the left initial condi-
tion. We can see major changes in the wave structure when the left initial state presents
tangential speed.

The details of the origin and termination states of the wave curves are gathered in
table 3.2 for the waves to the left and table 3.3 for the waves to the right.

In the wave curves sequence moving to the left, there is always a Hugoniot curve
followed by an integral curve. The pressure and density at which the Hugoniot curve
terminates remain the same, as they depend on the nonlinearity factor. The shock speed at
this point, as well as the x-velocity of the fluid, decrease as the tangential speed increases.
The variation in υtR displaces the equilibrium state along the integral curve since it modifies
the right sequence of wave curves and, consequently, the intersection point.

The wave curves sequence moving to the right presents four wave curves when υtL = 0,
and just the first Hugoniot curve otherwise. This is because the left sequence of curves is
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Figure 3.1: Wave curves for BW1-GGL1 with tangential speed in phase space. From left
to right υtR = 0, 0.9, 0.99. Top to bottom υtL = 0, 0.9, 0.99.

slower in phase space and intersects the first Hugoniot curve to the right before it becomes
sonic. We could find the value of υtL such that the curves intersect in each of the wave
curves of the right sequence, similarly to what we did in the perturbation analysis in
Section §2.5.1 for the 1D case.

Translation to spatial domain

In all cases presented, the wave moving to the left is composed by a shock moving to the
left attached to a rarefaction whose tail is moving to the right (see wave speed column
in table 3.2). The wave moving to the right is always a shock. This is either because
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Case w. Origin state Termination state
curves υx P ρ υx P ρ υt υω

C1 H 0 1000 1.000 0.2085 627.5 0.7834 0 -0.8393
I 0.2085 627.5 0.7834 0.9794 4.922 0.0378 0 0.9196

C2 H 0 1000 1.000 0.0522 627.5 0.7834 0.9262 -0.5583
I 0.0522 627.5 0.7834 0.3990 0.0597 0.0015 0.9165 0.3801

C3 H 0 1000 1.000 0.0140 627.5 0.7834 0.9929 -0.2128
I 0.0140 627.5 0.7834 0.1240 0.0179 0.0006 0.9926 0.1193

C4 H 0 1000 1.000 0.2085 627.5 0.7834 0 -0.8393
I 0.2085 627.5 0.7834 0.9560 11.85 0.0714 0 0.8304

C5 H 0 1000 1.000 0.2085 627.5 0.7834 0 -0.8393
I 0.2085 627.5 0.7834 0.8826 38.25 0.1624 0 0.5606

C6 H 0 1000 1.000 0.0522 627.5 0.7834 0.9262 -0.5583
I 0.0522 627.5 0.7834 0.3840 0.2376 0.0041 0.9225 0.3565

C7 H 0 1000 1.000 0.0522 627.5 0.7834 0.9262 -0.5583
I 0.0522 627.5 0.7834 0.3452 2.110 0.0204 0.9358 0.2941

C8 H 0 1000 1.000 0.0140 627.5 0.7834 0.9929 -0.2128
I 0.0140 627.5 0.7834 0.1223 0.0356 0.0010 0.9925 0.1167

C9 H 0 1000 1.000 0.0140 627.5 0.7834 0.9929 -0.2128
I 0.0140 627.5 0.7834 0.1167 0.1890 0.0034 0.9931 0.1079

Table 3.2: Origin and termination states of the wave curves moving to the left in BW1-GGL1
with tangential speed.

a Hugoniot curve is the only wave curve in the sequence originating at the right initial
condition, or because the latest Hugoniot curve is the fastest wave of the sequence (see
wave speed column in table 3.3).

We present the profiles of density, pressure and x-velocity in the spatial plane in figure
3.2. When fixing the initial tangential speed at the left, the pressure and density of the
equilibrium state increase with υtR, due to the higher inertia of the fluid moving to the
right. Alternatively, when fixing υtR and increasing υtL, the equilibrium is reached at
smaller pressure and density values as the rarefaction wave stretches.
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Case w. Origin state Termination state
curves υx P ρ υx P ρ υt υω

C1 H1 0 0.0100 0.1250 0.9566 2.642 1.272 0 0.9848
I 0.9566 2.642 1.272 0.9617 2.833 1.613 0 0.9669
M - - - 0.9731 3.727 2.416 0 0.9848
H1 0 0.0100 0.1250 0.9794 4.922 2.733 0 0.9885

C3 H 0 0.0100 0.1250 0.3990 0.0597 0.3552 0 0.5891
C3 H 0 0.0100 0.1250 0.1240 0.0179 0.1852 0 0.3757
C4 H1 0 0.0100 0.1250 0.8150 2.642 1.272 0.2200 0.9271

I 0.8150 2.642 1.272 0.8339 2.833 1.613 0.2058 0.8534
M - - - 0.8777 3.727 2.416 0.1677 0.9271
H1 0 0.0100 0.1250 0.9560 11.8515 4.0495 0.0604 0.9758

C5 H1 0 0.0100 0.1250 0.3914 2.642 1.272 0.7479 0.6248
I 0.3914 2.642 1.272 0.4216 2.833 1.613 0.7316 0.4565
M - - - 0.5022 3.727 2.416 0.6794 0.6248
H1 0 0.0100 0.1250 0.8826 38.25 6.999 0.1736 0.9343

C6 H 0 0.0100 0.1250 0.3840 0.2377 0.5625 0.7102 0.5493
C7 H 0 0.0100 0.1250 0.3452 2.110 1.081 0.7868 0.5947
C8 H 0 0.0100 0.1250 0.1223 0.0356 0.2774 0.8738 0.2383
C9 H 0 0.0100 0.1250 0.1167 0.1890 0.5280 0.9687 0.1846

Table 3.3: Origin and termination states of the wave curves moving to the right in
BW1-GGL1 with tangential speed.
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Figure 3.2: Solution profiles for density, pressure and velocity for BW1-GGL1 considering
tangential speed, at t = 0.4. From left to right υtR = 0, 0.9, 0.99. Top to bottom υtL =
0, 0.9, 0.99. Pressure in green dashed line, x-velocity in red dashdotted line, and density
in blue solid line.
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3.4.2 Blast wave 2 GGL2 with tangential speed

This blast wave problem presents composite waves moving to the left and the right in 1D.
When adding tangential speed, we find that some waves are no longer in the solution, as
it happened in the previous example. We find two cases where new wave curves develop.

As in 1D, η(uL) > 0 and η(uR) > 0. Therefore, an integral curve starts to the left
decreasing the pressure and a Hugoniot curve starts to the right, increasing it.

Wave curves obtained

Figure 3.3: Wave curves for BW2-GGL2 with tangential speed in phase space. From left
to right υtR = 0, 0.9, 0.99. Top to bottom υtL = 0, 0.9, 0.99.

67



We show the wave curves in phase space in figure 3.3. From left to right, the tangential
speed in the right initial condition changes from 0, to 0.9 and 0.99 respectively. From top
to bottom, we do the same for the tangential speed of the left initial condition. The
number of waves in the structure depends mostly on υtL being zero or not, and in that
case then υtR plays a role.

We gather the origin and termination state of wave curves in table 3.4 for the left
branch, and table 3.5 for the right one.

Case w. Origin state Termination state
curves υx P ρ υx P ρ υt υω

C1 I1 0 1000 5.000 0.3394 494.3 2.266 0 0.2939
M - - - 0.9200 50.76 0.4424 0 -0.0861
I2 0.9200 50.76 0.4424 0.9863 7.438 0.1583 0 0.8635

C2 I1 0 1000 5.000 0.1242 494.3 2.266 0.9197 0.1055
M - - - 0.3381 50.76 0.4424 0.9293 -0.0445
I2 0.3381 50.76 0.4424 0.4184 0.0669 0.0089 0.9082 0.4063

C3 I1 0 1000 5.000 0.0387 494.3 2.266 0.9922 0.0327
M - - - 0.1056 50.76 0.4424 0.9933 -0.0149
I2 0.1056 50.76 0.4424 0.1337 0.0192 0.0041 0.9910 0.1310

C4 I1 0 1000 5.000 0.3394 494.3 2.266 0 0.2939
M - - - 0.92003 50.76 0.4424 0 -0.0861
I2 0.92003 50.76 0.4424 0.9706 16.91 0.2499 0 0.6557

C5 I 0 1000 5.000 0.3394 494.3 2.266 0 0.2939
M - - - 0.9134 50.76 0.4424 0 -0.0861

C6 I1 0 1000 5.000 0.1242 494.3 2.266 0.9197 0.1055
M - - - 0.3381 50.76 0.4424 0.9293 -0.0445
I2 0.3381 50.76 0.4424 0.4118 0.2998 0.0229 0.9110 0.3902

C7 I1 0 1000 5.000 0.1242 494.3 2.266 0.9197 0.1055
M - - - 0.3381 50.76 0.4424 0.9293 -0.0445
I2 0.3381 50.76 0.4424 0.3906 3.354 0.0997 0.9192 0.3283

C8 I1 0 1000 5.000 0.0387 494.3 2.266 0.9922 0.0327
M - - - 0.1055 50.76 0.4424 0.9933 -0.0149
I2 0.1055 50.76 0.4424 0.1330 0.0411 0.0066 0.9911 0.1295

C9 I1 0 1000 5.000 0.0387 494.3 2.266 0.9922 0.0327
M - - - 0.1055 50.76 0.4424 0.9933 -0.0149
I2 0.1055 50.76 0.4424 0.1304 0.2644 0.0211 0.9914 0.1233

Table 3.4: Origin and termination states of the wave curves moving to the left in BW2-GGL2
with tangential speed.

When υtL = 0, the left branch of wave curves is the same that the one described for
the 1D case: an integral curve that terminates followed by a mixed curve that becomes
sonic and is continued by a new integral curve. This curve reaches the equilibrium state.

As υtR increases, the right branch of wave curves is slower in phase space. Therefore,
although the curves terminate at the same density and pressure values because the non-
linearity factor depends on the EoS, they do it at smaller x-velocities. Consequently, the
curves extend further in phase space.

In the case υtR = 0.9 the mixed curve to the right terminates when reaching the origin
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of the previous integral curve and is followed by a Hugoniot curve. This is the first wave
curve of the sequence, resumed as the wave speed of the mixed curve is reached by stack.
In the case υtR = 0.99 this Hugoniot curve is resumed earlier in phase space and its pressure
grows enough to intersect the left sequence at the mixed curve before it becomes sonic.

In the cases υtL 6= 0 the wave curves to the left slow down in phase space and therefore
intersect the right sequence of curves at much lower x-velocity, before the first Hugoniot
curve to the right becomes sonic.

Case w. Origin state Termination state
curves υx P ρ υx P ρ υt υω

C1 H 0 0.0100 0.1250 0.9780 5.635 1.457 0 0.9958
I 0.9780 5.635 1.457 0.9843 6.992 2.266 0 0.9857
M - - - 0.9863 7.438 2.902 0 0.9907

C2 H 0 0.0100 0.1250 0.4184 0.0669 0.3146 0 0.6546
C3 H 0 0.0100 0.1250 0.1337 0.0192 0.1801 0 0.4282
C4 H1 0 0.0100 0.1250 0.8956 5.6345 1.4570 0.1113 0.9785

I 0.8956 5.6345 1.4570 0.9235 6.9924 2.266 0.0888 0.9301
M - - - 0.9609 12.50 4.315 0.0538 0.9785
H1 0 0.0100 0.1250 0.9706 16.91 4.957 0.0404 0.9841

C5 H 0 0.0100 0.1250 0.5083 5.635 1.4570 0.5682 0.8382
I 0.5083 5.635 1.4570 0.5935 6.992 2.266 0.5062 0.6172
M - - - 0.7425 12.50 4.315 0.3738 0.8382
H1 0 0.0100 0.1250 0.9134 50.76 8.314 0.1286 0.9526

C6 H 0 0.0100 0.1250 0.4118 0.2998 0.4929 0.6592 0.6496
C7 H 0 0.0100 0.1250 0.3906 3.3542 1.0825 0.6868 0.7840
C8 H 0 0.0100 0.1250 0.1330 0.0411 0.2601 0.8660 0.2838
C9 H 0 0.0100 0.1250 0.1304 0.2644 0.4763 0.9578 0.2490

Table 3.5: Origin and termination states of the wave curves moving to the right in
BW2-GGL2 with tangential speed.

Translation to spatial domain

We present the profiles of density, pressure and x-velocity in the spatial plane in figure
3.4.

From the study of the wave curves, we know there is always a composite wave moving
to the left formed by two rarefactions separated by a shock. The shock is located very
close to the initial discontinuity. The wave to the right is a shock due to a single Hugoniot
curve except for the cases with υtL = 0. In these cases, the wave to the right is a shock
because the final Hugoniot curve is the fastest wave and overtakes the previous ones.

The composite front of the shell appearing in the υtL = υtR = 0 case does not occur
with the other tangential speed configurations.
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Figure 3.4: Solution profiles for density, pressure and velocity for BW2-GGL2 considering
tangential speed, at t = 0.4. From left to right υtR = 0, 0.9, 0.99. Top to bottom υtL =
0, 0.9, 0.99. Pressure in green dashed line, x-velocity in red dashdotted line, and density
in blue solid line.
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Chapter 4

Numerical approximation of
nonconvex SRHD

The evolution of a fluid in relativistic hydrodynamics (RH) is governed by several highly
nonlinear coupled partial differential equations, which cannot be solved analytically for
complex astrophysical systems. As a result, numerical simulations have become an essen-
tial tool for the study of RH.

However, the reliability of the simulations hinge on the trustworthiness of the nume-
rical methods used to solve the equations. Therefore, validating numerical methods is a
critical step in ensuring the accuracy of simulations of astrophysical phenomena. Achie-
ving accurate numerical simulations of RH necessitates the use of high-resolution schemes
capable of capturing the complex dynamics that arise in these scenarios.

In this Chapter, we focus on high-resolution shock-capturing (HRSC) schemes, based on
the conservation form of the evolution equations. We present the validation of two widely
used numerical schemes, the Marquina flux formula (MFF) and the Harten-Lax-van Leer
(HLL) scheme.

MFF [27] is known for its compressible character and for providing enough dissipation
to avoid the carbuncle phenomenon [93]. It has been employed in several astrophysical
scenarios, such as relativistic jets [78, 79], ultrarelativistic flow in 1D and 2D dimensions
[79], and have been implemented in 3D General Relativity hydrodynamic codes [11, 35, 2,
71, 82]. The scheme is versatile and it has been used in other contexts such as granular
gases [109, 108] and Newtonian magnetohydrodynamics [110, 111, 106].

HLL [46] is a simple, fast scheme widely used for its computational efficiency. It has
been utilized in many astrophysical complex scenarios, such as multidimensional hydro-
dynamics along neutrino transport in the context of supernovae and neutron star mer-
gers [12, 56] and 3D General Relativity magnetohydrodynamic codes including neutrinos
[58, 2, 71, 82].

We focus on two different reconstruction techniques that enable the numerical schemes
to achieve third-order accuracy.

Using the exact solution of the Riemann problem for nonconvex SRHD described in
Chapters 2 and 3 we validate both methods, MFF and HLL, and measure their accuracy
on scenarios including composite waves. Through our analysis of these schemes we aim to
provide insights into their strengths and limitations and contribute to the development of
more accurate and efficient numerical methods for RH simulations.
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4.1 Numerical fluxes

Solving nonlinear hyperbolic systems of conservation laws numerically presents many cha-
llenges including instabilities triggered by nonlinear terms and convergence towards an
unphysical solution (see e.g. [66]). To overcome these difficulties various numerical me-
thods have been developed, each of them with its own advantages and disadvantages. In
this work, we focus on HRSC methods, which are formulated in conservation form.

Lax-Wendroff theorem [63] states that if a scheme in conservation form converges, the
solution obtained is guaranteed to be a weak solution of the conservation law.

To simplify our analysis, let us consider a scalar hyperbolic conservation law in one
spatial dimension, given by the equation

∂u

∂t
+ ∂f(u)

∂x
= 0, (4.1.1)

where u is the unknown quantity and f is a known flux function. To obtain a numerical
solution, we introduce a discretization of time step ∆t and cell width ∆x, such that the
solution is evaluated at the points (tn, xj) = (t0 + n∆t, x0 + j∆x).

A numerical method is said to be in conservation form if the solution at a given spatial
position is advanced in time in the form

Un+1
j = Unj −

∆t
∆x

[
F
(
Unj−p, U

n
j−p+1, · · · , Unj+q

)
− F

(
Unj−p−1, U

n
j−p, · · · , Unj+q−1

)]
(4.1.2)

where Unj is the numerical approximation of u at the point (tn, xj), and F is a function
of p + q + 1 arguments, known as the numerical flux. This function should be consistent
with the flux in (4.1.1) (F (u, · · · , u) = f(u)).

If we consider Unj to be the numerical approximation of the cell average

ūnj ≡
1

∆x

∫ xj+1/2

xj−1/2

u(x, tn)dx,

and we take p = 0, q = 1 to simplify notation, one can see that F (Uj , Uj+1) plays the role
of an average flux through the cell interface xj+1/2 over the time interval [tn, tn+1]:

F (Uj , Uj+1) ≈ 1
∆t

∫ tn+1

tn
f(u(xj+1/2, t))dt.

The convergence of the scheme depends on its total variation stability [66]. It is con-
sidered stable if its total variation is bounded for any initial data. Schemes in conservation
form are constructed to ensure that this condition is satisfied and therefore are named total
variation diminishing schemes [45]. Additionally, to obtain physically consistent solutions,
the weak solution must also satisfy the entropy condition, which corresponds to the limit
of vanishing viscosity. This condition is guaranteed if the numerical flux is monotone [66].

HRSC schemes are based on Godunov’s method [38]. This paradigm uses the informa-
tion about the characteristics of the hyperbolic equation to advance the solution in time.
At every cell interface, the approximated solution u describes a Riemann problem. Its
exact solution provides information on the propagation of the characteristics. The solu-
tion u can be advanced to the next time step by averaging the solution of the Riemann
problem over the cell space. This process leads to a scheme in conservation form (4.1.2),
as the solutions of the Riemann problem are solutions to the conservation law and hence
conservative solutions.
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To prevent the information of a Riemann problem from influencing a non-neighboring
cell, the Courant-Friedrichs-Lewy (CFL) condition relates the time step and cell width to
the maximum speed of propagation of the information in the problem.

In practice, solving the Riemann problem exactly at every cell interface is compu-
tationally very expensive. Moreover, the fine structure is lost in the spatial averaging.
Therefore it is more common to use an approximate Riemann solver.

The specific calculation of the fluxes in (4.1.2) may vary for different hyperbolic sys-
tems. Schemes used for Newtonian hydrodynamics have been adapted to relativistic fluids.
In this work we focus on MFF [28] and HLL [46, 31] methods, extended to RH in [27] and
[105] respectively.

Another commonly used method for RH is the Roe solver [103]. This method linearizes
the problem by considering the Jacobian of the flux evaluated at an average state. Roe
averages have been calculated for Newtonian dynamics [103] and SRHD [33]. However
it is known [32] that Roe linearization can lead to unstable schemes for highly energetic
fluids by predicting non-physical states. In particular we found that the method is not
stable for nonconvex dynamics. Therefore, in this work we do not use Roe method.

In HRSC methods, numerical fluxes are used to advance the conserved quantities in
time. Typically, the physical variables required to compute these fluxes must be ob-
tained from the updated conserved quantities at each new time step. However, in RH,
the relation between conserved and physical variables is nonlinear, requiring an iterative
numerical method to obtain the physical variables from the conserved quantities. We use
the combined fixed point and Newton iterations strategy proposed in [74].

HRSC methods can be extended to higher spatial dimensions using a dimension-by-
dimension approach [27], where the one-dimensional method is applied separately to each
dimension before combining the results. For example, in a two-dimensional grid with an
additional spatial interval ∆y, the conservative scheme can be written as:

Un+1
j,l = Unj −

∆t
∆x

[
F
(
Unj−p,l, U

n
j−p+1,l, · · · , Unj+q,l

)
− F

(
Unj−p−1,l, U

n
j−p,l, · · · , Unj+q−1,l

)]
− ∆t

∆y
[
F
(
Unj,l−p, U

n
j,l−p+1, · · · , Unj,l+q

)
− F

(
Unj,l−p−1, U

n
j,l−p, · · · , Unj,l+q−1

)]
.

4.1.1 Marquina Flux Formula scheme

The fundamental idea of this method is to solve the fluxes appearing in the scheme in
conservation form (4.1.2) along the characteristic fields of the system.

Let us consider once again a general hyperbolic system of conservation laws

∂u
∂t

+ ∂f(u)
∂x

= ut + A(u)ux = 0 (4.1.3)

where A(u) is the Jacobian of the fluxes. Because the system is hyperbolic A(u) is
diagonalizable, with a complete set of linearly independent eigenvectors. The right and
left eigenvectors can be written as matrices, R(u) and L(u) respectively. And so

L(u) ·A(u) ·R(u) = Λ(u),

where Λ(u) is the diagonal matrix of eigenvalues. The eigenvectors are chosen such that
rilj = δij , and so L(u) = R−1(u).

Each eigenvalue is a characteristic speed of the system. We can define the characteristic
variables by v = L(u) · u. Multiplying equation (4.1.3) by L(u) we obtain the decoupled
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system
vt + Λ(u)vx = 0. (4.1.4)

The equations in (4.1.4) are linearly independent scalar conservation laws. Once the
solution for the characteristic variables is obtained, the original conserved quantities are
recovered multiplying by the corresponding right eigenvector [66].

The MFF flux splitting strategy [27] consist in performing this decomposition locally
at every cell interface, to its left and right. Therefore the MFF computes two different
linearizations of the system for every interface.

The resolution of the decoupled scalar hyperbolic equations is done with the entropy-
fix numerical flux introduced in [115]. An entropy-fix scheme uses an upwind flux, with
better resolution of discontinuities, if the characteristics move the information in a single
direction. This happens if the characteristic velocity, λk for the decoupled characteristic
field, maintains its sign during the computational cells considered. If this is not the case
the interface is called sonic and an upwind flux would not be monotone, hence not ensuring
that the numerical solution satisfies the entropy condition. In sonic interfaces the Lax-
Friedrichs flux is applied, which results in a bigger smearing of discontinuities although it
is always monotone.

The numerical flux for scalar conservation laws can be applied to the characteristic
variables. Defining the scalar quantities

ωpL = lp(uL) · uL ωpR = lp(uR) · uR (4.1.5)
φpL = lp(uL) · F(uL) φpR = lp(uR) · F(uR) (4.1.6)

with p = 1..N the dimension of the system, the problem is translated to the characteristic
space.

For every characteristic field, the characteristic numerical fluxes ψp± are defined for
the left and right interface of a computational cell. If the characteristic speeds maintain
their sign across the cell boundary, an upwind flux can be used and the fluxes are equal
to φpL,R defined above. If the interface is sonic, the Lax-Friedrichs flux is used to preserve
monotonicity and the numerical fluxes read ψp± = 0.5(φpL,R ± αω

p
L,R). The viscosity α is

taken as the maximum absolute value of the characteristic speeds across the considered
cells.

The numerical flux has to be consistent with the coupled system of conservation laws.
By multiplying the characteristic numerical flux with the right eigenvectors we can recover
the conserved quantities, obtaining Marquina flux formula [28]:

FMFF(uL,uR) =
m∑
p=1

(
ψp+rp(uL) + ψp−rp(uR)

)
. (4.1.7)

To handle changes of convexity in the system across a cell interface, the numerical
flux is modified according to [74]. In these cases, the Lax-Friedrichs flux is used with
increased viscosity to stabilize the method against large gradients in the solution. The
viscosity is taken as the mean in L2 norm between the maximum absolute value of the
characteristic speeds and one, which is the maximum possible speed (since the speed of
light is normalized). This approach allows the MFF to handle the complex dynamics that
may arise in the solution.

In Algorithm 4.1.1 we present the procedure for the calculation of MFF in SRHD
given the conserved variables u and v of two adjacent computational cells, with additional
viscosity prescribed for nonconvex interfaces.
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Algorithm 4.1.1 Calculation of first order MFF for nonconvex SRHD in 1D taken from
[74]

function MFF(u,v)
for p = 1, p ≤ 3 do

ωpL = lp(u) · u
ωpR = lp(v) · v
φpL = lp(u) · F(u)
φpR = lp(v) · F(v)
if η(u) · η(v) ≤ 0 then . Non-convex interface

αp = max(|λp(u)|, |λp(v)|)
αp =

√
1 + (αp)2/2

ψp+ = 1
2(φpL + αpωpL)

ψp− = 1
2(φpR − αpω

p
R)

else if λp(u) · λp(v) ≤ 0 then . Sonic interface
αp = max(|λp(u)|, |λp(v)|)
ψp+ = 1

2(φpL + αpωpL)
ψp− = 1

2(φpR − αpω
p
R)

else . Upwind
if λp(u) > 0 then

ψp+ = φpL
ψp− = 0

else
ψp+ = 0
ψp− = φpR

return
∑m
p=1

(
ψp+rp(u) + ψp−rp(v)

)
This numerical flux requires explicit expressions of the eigenvalues and eigenvectors of

the Jacobian of the flux. We write here the full decomposition for the 1D case, while the
expressions for the 3D case can be found in [27].

The eigenvalues read

λ1 = υ − cs
1− υcs

λ2 = υ λ3 = υ + cs
1 + υcs

,

and can be seen as the Lorentz addition of the flow and sound speeds.
In order to write the eigenvectors in a compact form we define the Grüneisen coefficient

Γ = Pε/ρ, with the subindex denoting partial derivative, and the parameterK = Γ/(Γ−c2
s).

Then the right eigenvectors are:

r1(u) =

 1
hw(υ − cs)

hw(1− υcs)− 1

 r2(u) =

 K/hw
υ

1−K/hw

 r3(u) =

 1
hw(υ + cs)

hw(1 + υcs)− 1

 ,
and the biorthonormal set of left eigenvectors with ∆ = h3w(K − 1)(1− υ2)2cs read :

l1(u) = h2

∆
(
K(υ + cs)− υ − hwcs(1− υ2) 1−K(1 + υcs) K(υ + cs)− υ

)
l2(u) = w

K − 1 (h− w wυ − w)

l3(u) = −h
2

∆
(
K(υ − cs)− υ + hwcs(1− υ2) 1−K(1− υcs) K(υ − cs)− υ

)
.
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The advantages of this numerical flux are its compressive nature, that allows to capture
very thin structure, and its generality for any type of dynamics.

The main disadvantage is the need of explicit expressions for the eigenvectors of the
Jacobian of the flux. Their evaluation and the change to characteristic variable for the
calculations make the method computationally costly. Also as the interfaces are treated
very locally, the method is very sensitive to the type of high order reconstruction, blowing
up if the reconstruction is not very smooth and stable.

4.1.2 Harten-Lax-van Leer scheme

The HLL method constructs the solution of the Riemann problem at every cell interface.
Therefore it needs an estimate of the characteristic velocities to propagate the solution.
The scheme is usually named HLLE, as Einfeldt in [31] proposed the estimates for New-
tonian dynamics. This method is not based on characteristic decomposition hence it does
not use the eigenvectors of the Jacobian of the fluxes.

The solution of the Riemann problem is composed of four constant states, namely the
two initial and the two middle constant states separated by a jump discontinuity. The
original HLL solver of [46] considers only three:

U(x, t;UL, UR) =


UL for x < ξ−t
ULR for ξ−t ≤ x ≤ ξ+t
UR for x > ξ+t

(4.1.8)

where ξ+ and ξ− are estimates of the characteristic velocities to the left and the right
arising during the problem.

This formulation, although simple and entropy satisfying, disregards the contact dis-
continuity, causing the smearing of the solution around it. To address this issue, the HLLC
solver proposed in [130, 81], where the C stands for contact, introduces a fourth state.
Nevertheless the construction of the new state requires further information for the system
and in this work we use the simpler HLL instead.

The intermediate state ULR in (4.1.8) is obtained as a solution consistent with the
integral conservation equations over the computational cell

ULR = ξ+UR − ξ−UL − f(UR) + f(UL)
ξ+ − ξ−

.

This leads to the HLL flux [46]:

FHLL(uL,uR) = ξ+f(uL)− ξ−f(uR) + ξ+ξ−(uR − uL)
ξ+ − ξ−

. (4.1.9)

The velocity estimates ξ+ and ξ− play a crucial role in the HLL method providing the
viscosity of the scheme. If they are chosen to be excessively high, the method is stable
but also becomes too diffusive smearing out discontinuities. On the other hand, if they
are chosen to be below the actual characteristic speeds, the scheme becomes unstable and
can introduce entropy-violating shocks. Therefore, an appropriate choice of the velocity
estimates is necessary for the HLL method to achieve both accuracy and stability.

For the relativistic case, the authors in [105] propose to use

ξ+ = max(0, λ+(uR), λ̄+)
ξ− = min(0, λ−(uL), λ̄−) (4.1.10)
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where λ± refers to the fast and slow characteristic fields of the system. The estimate λ̄±
is the characteristic speed calculated at an average state between the two computational
cells. In the non-relativistic case, Einfeldt [31] proposed to use the eigenvalues of the
linearized Roe matrix as average estimates for the characteristic speeds. In RH, the
average of conserved quantities can result in an unphysical state. To overcome this issue
the authors of [105] propose a different approach where an intermediate fluid velocity value
ῡ = (υL+υR)/2 and intermediate sound speed c̄s = (csL+ csR)/2 are calculated and then
employed to calculate a characteristic speed estimate λ̄±.

While the HLL method described works satisfactorily for convex SRHD problems,
it is unestable when using the GGL EoS near sonic and nonconvex interfaces. When
the estimated speeds are set to their maximum possible values ξ+ = 1, ξ− = −1, this
is, estimating that characteristics move at light speed, the scheme becomes stable. This
suggests that estimates (4.1.10) may not accurately capture the characteristic speeds when
they do not behave monotonically.

We propose new velocity estimates that can handle nonconvex dynamics. Instead of
using an intermediate eigenvalue, in (4.1.10) we consider the eigenvalues at the left and
right states, allowing for better capture of the behavior of the characteristic fields even
when their monotonicity is inverted. Additionally, we consider all characteristic fields to
obtain the larger estimate of the speed.

Once the initial estimate of the characteristic speeds is selected, we follow the approach
of MFF in Subsection §4.1.1 and increase the numerical viscosity when the interface is
either sonic or nonconvex to allow for the formation of complex dynamics. In the case of
nonconvex interfaces, the new estimate is obtained as the square root of the mean of the
estimate with the maximum possible value (i.e., the speed of light). This average is greater
than the usual when the value of the estimate is below one, providing additional viscosity
for composite waves. Sonic interfaces are detected when the eigenvalues change sign,
resulting in one of the estimates being zero according to (4.1.10). To increase the viscosity
in these cases, we can either follow the same strategy as in MFF nonconvex interfaces and
select the mean in L2 norm of the estimate with the light speed (

√
1 + 0/2 = 0.5), or we

can impose the same value as the other estimate, which is different from zero.
After conducting several numerical tests, we found that both of the proposed a-

pproaches were effective in handling nonconvex SRHD, although each of them tended
to smear out different types of discontinuities. Thus, we adopted a hybrid approach in
which we take the minimum of the two estimates since both approaches provide sufficient
viscosity. This new hybrid approach results in sharper discontinuities compared to either
of the individual estimates.

In algorithm 4.1.2 we present the procedure for the calculation of HLL in nonconvex
SRHD given the conserved variables u and v of two adjacent computational cells, already
considering our own velocity estimates for nonconvex dynamics.

The advantages of this numerical flux include its simplicity, that leads to very fast
calculations. An appropriate selection of the estimates reduces its viscosity and ensures
stability even for higher order versions. Additionally, it does not require eigenvectors of
the Jacobian of the flux.

However, there are some drawbacks to this method. Numerical experiments have shown
that it smears contact discontinuities and does not resolve highly nonlinear phenomena
sharply.
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Algorithm 4.1.2 Calculation of first order HLL for nonconvex SRHD in 1D
function HLL(u,v)

ξ+ = max(0, λp(u), λp(v)) for p = 1, 2, 3
ξ− = min(0, λp(u), λp(v)) for p = 1, 2, 3
if η(u) · η(v) ≤ 0 then . Non-convex interface

ξ+ =
√

(1 + ξ+)/2
ξ− = −

√
(1 + |ξ−|)/2

else if ξ+ = 0 then . Sonic right interface
ξ+ = min(0.5, |ξ−|)

else if ξ− = 0 then . Sonic left interface
ξ− = −min(0.5, ξ+)

return ξ+f(u)− ξ−f(v) + ξ+ξ−(v − u)
ξ+ − ξ−

4.2 High order reconstructions

Schemes in conservation form (4.1.2) provide first order accurate solutions. To achieve
the sharp solutions characteristic of HRSC schemes, the solution at every time step must
be updated with a high-order numerical flux. This is accomplished by interpolating the
constant states in the cells to reconstruct a more accurate value of the solution at cell
interfaces.

Total variation diminishing (TVD) methods [88] use reconstruction procedures up to
the desired order of accuracy without introducing local extrema in the data [47, 114, 115,
55, 107]. According to [115], if there exists a reconstruction function g(x) such that

f(u(x)) = 1
∆x

∫ xj+1/2

xj−1/2

g(y)dy

for the exact solution u(x), then the derivative of the flux of the hyperbolic equation is

∂f(u(x))
∂x

=
g(xj+1/2)− g(xj−1/2)

∆x .

Therefore, a high order reconstruction g(x) provides a numerical flux of the same order of
accuracy.

To achieve high-order accuracy in HRSC schemes, the variables used for the evaluation
of the numerical flux are reconstructed at high order from the cell averages. When con-
sidering a cell interface, the reconstructed values at both sides are used instead of the cell
averages. For instance, instead of computing F (uj−1, uj) and F (uj , uj+1) to advance the
value uj in time, the reconstructed values at the two interfaces are used: F (u−j−1/2, u

+
j−1/2)

and F (u−j+1/2, u
+
j+1/2).

In RH, it is very important to reconstruct the primitive variables, not the conserved
ones, when evaluating the numerical flux at high order. Reconstructed conserved variables
do not necessarily correspond to physically valid states with existing primitive variables.
Instead, the physical variables are reconstructed and the conserved ones can be computed
at high order from them if they are needed in the flux.

The evolution in time also needs to be done at a high order of accuracy. For this, we
use the Shu-Osher third-order TVD Runge-Kutta method [115]. If L(u) denotes the time
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iteration of a conservative scheme, where L(u) = u − ∆t/∆x(Fj+1/2 − Fj−1/2), then to
advance the solution in high order in time

u1) = L(un)

u2) = 3
4u

n + 1
4L(u1))

un+1 = 1
3u

n + 2
3L(u2)).

In this work we discuss two different interpolation techniques, both of which are third-
order accurate. The first technique is the ENO parabolas [114, 115], which use second-order
polynomials to interpolate values at interfaces. The second technique is the piecewise
hyperbolic method (PHM) [72], which uses hyperbolas. Both reconstruction methods
have adaptive stencils that extract information from smooth regions of the solution while
avoiding high gradients whenever possible [88].

In order to use high-order MFF (4.1.7), the left and right eigenvectors are evaluated at
reconstructed primitive variables. However, the first-order version of the these quantities,
i.e., the constant value in each cell, is used whenever a primitive variable is needed inside
the flux. In addition, the quantities ω (4.1.5) and φ (4.1.6) are not evaluated at a single
position j on the grid. To make the method more robust, these quantities are evaluated
at several stencil points. Then they are used to reconstruct a higher order version of the
characteristic numerical flux at the cell interfaces. While this approach makes the MFF
method highly compressive and sharp at discontinuities, it also increases its computational
cost.

For HLL numerical flux (4.1.9), the reconstructed primitive variables are used to e-
valuate the flux of the system and compute the right and left states of the conserved
variables. Still, the evaluation of the eigenvalues that lead to the speed estimates is done
using the first order primitive variables instead. This approach yields a more general
value of the characteristic speed over the cell and can better capture the movement of the
solution. High-order estimates can lead to numerical instability and spurious oscillations,
especially in the presence of strong gradients.

While a comprehensive discussion of these techniques can be found in the existing
literature, our focus is on presenting a practical review for their implementation.

4.2.1 Essentially non oscillatory parabolic method

The ENO method with parabolic reconstruction uses a second-order polynomial to inter-
polate the value of a given quantity at a cell interface.

To interpolate the value at the interfaces from the cell average uj , a total of five con-
secutive data points are needed. All possible numerical first and second order derivatives
involving uj are calculated, hence the extensive numerical stencil. The minmod slope limi-
ter [132] is used to select the smaller first derivative in absolute value, and then the related
smaller second derivative. The derivatives and uj determine a parabola that ensures the
least variation, avoiding when possible the introduction of local extrema. In the presence
of discontinuities, the method decays to a first order approximation.

4.2.2 Piecewise hyperbolic method

The PHM method employs hyperbolas to interpolate data and achieve third-order accu-
racy. However, since hyperbolas are monotonic functions, the reconstruction may degrade
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to second-order accuracy if the derivative of the solution changes sign across a cell inter-
face.

From [72] we consider the reconstruction that is local total variation bounded, which
ensures stability for nonlinear fluxes. To interpolate values at the interfaces of the cell
of uj it uses a compact stencil of three points. The method considers first derivatives to
both sides of uj and chooses the smaller one in absolute value. In nonsmooth regions, this
reconstruction reduces the derivative by using the harmonic mean of the derivatives at
both sides of the cell.

The compact stencil makes PHM a more local reconstruction than ENO parabolas.
This can help to the overall method stability in regions of steep gradients.

4.3 Comparison with exact solution

In this Section, we evaluate the performance of MFF and HLL numerical fluxes using
third-order ENO and PHM reconstruction procedures solving a set of Riemann problems
for nonconvex SRHD. The exact solution of the Riemann problems computed in Chapters
2 and 3 allows to quantify the error of the approximation obtained with these numerical
methods. Notice that we code our own implementation of the methods from scratch.

For the one dimensional case we use the blast wave problems in Chapter 2. The blast
wave Riemann problem, first proposed by Norman and Winkler [85], is a well-known test
problem for numerical schemes due to the thin, high-density shell that arises because of
relativistic effects.

In addition, we test the numerical schemes using the colliding and expanding slabs
problems in the same Chapter to evaluate their stability for high Lorentz factors and
oscillations at rest states.

To test the accuracy of the methods in higher dimensions, we implement both schemes
in 2D. We solve the blast wave problems with different initial tangential speed prescriptions
presented in Chapter 3 and compare the error with the exact solution along a transverse
cut of the numerical solution.

4.3.1 One dimensional examples

We solve the Riemann problems BW1-GGL1, BW2-GGL2, CS-GGL2 and ES-GGL1 gathered
in table 2.4. The spatial domain is x ∈ [0, 1] with initial discontinuity at x = 0.5. We
integrate until a final time of tf = 0.4.

We evaluate the accuracy of the numerical solutions by computing the mean L1-norm
error of the physical variables. The spatial grid for the blast wave problems consists of
6000 points, while for the colliding and expanding slabs it consists of 3000 points. The
corresponding error values for BW1-GGL1, BW2-GGL2, CS-GGL2 and ES-GGL1 problems are
presented in tables 4.1, 4.2, 4.3 and 4.4, respectively.

The numerical error is consistent across all problems, methods and reconstructions.
The pressure exhibits higher errors due to its larger values except for ES-GGL1, where the
pressure decreases and so does the error. However, HLL flux with ENO reconstruction fails
when attempting to solve the CS-GGL2 problem. A fluid speed greater than the speed of
light is reconstructed during integration, preventing from obtaining a numerical physically
consistent solution. Nonetheless, other authors [51] have reported similar superluminal
speeds with high-order reconstructions and have reverted to lower-order reconstructions
in such cases.
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Scheme Reconstruction ||E(P )||1 ||E(υ)||1 ||E(ρ)||1
MFF ENO3 3.2379e-01 1.6444e-03 4.1033e-03
MFF PHM 1.5965e-01 2.0915e-03 4.8524e-03
HLL ENO3 6.0884e-01 3.5536e-03 8.2299e-03
HLL PHM 1.4913e-01 2.9541e-03 7.6074e-03

Table 4.1: L1-norm mean error in the physical quantities for BW1-GGL1, with a spatial
resolution of 6000 points.

Scheme Reconstruction ||E(P )||1 ||E(υ)||1 ||E(ρ)||1
MFF ENO3 2.5594e-01 2.4546e-03 6.7945e-03
MFF PHM 1.8216e-01 2.2937e-03 6.3260e-03
HLL ENO3 2.3389e-01 3.0792e-03 7.7297e-03
HLL PHM 1.5512e-01 2.7678e-03 7.3208e-03

Table 4.2: L1-norm mean error in the physical quantities for BW2-GGL2, with a spatial
resolution of 6000 points.

Scheme Reconstruction ||E(P )||1 ||E(υ)||1 ||E(ρ)||1
MFF ENO3 1.9497e-01 1.5326e-03 6.3286e-03
MFF PHM 1.2267e-01 8.8395e-04 3.9880e-03
HLL ENO3 - - -
HLL PHM 2.3500e-01 1.9759e-03 6.4581e-03

Table 4.3: L1-norm mean error in the physical quantities for CS-GGL2, with a spatial
resolution of 3000 points.

Scheme Reconstruction ||E(P )||1 ||E(υ)||1 ||E(ρ)||1
MFF ENO3 6.3559e-02 3.1787e-03 5.6769e-03
MFF PHM 5.2727e-02 2.1986e-03 4.5485e-03
HLL ENO3 7.4699e-02 4.2147e-03 6.8602e-03
HLL PHM 5.0680e-02 2.0261e-03 4.4956e-03

Table 4.4: L1-norm mean error in the physical quantities for ES-GGL1, with a spatial
resolution of 3000 points.

Since the main challenge for the numerical approximation is the density shell of the
blast wave problems we perform a deeper analysis of these regions. According to [76], the
analysis of a blast wave problem can be reduced to the accuracy of the density shell. The
main three features that the numerical scheme has to capture are the compression of the
fluid that happens at the contact discontinuity, the width of the shell and the maximum
density that is reached in it.

The compression ratio σ is defined as the ratio of the densities before and after the
contact discontinuity C

σ = ρafter C
ρbefore C

.

For the exact solution, ρafter C and ρbefore C correspond to the density values in the
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equilibrium state from each side. In the numerical solution, we take ρbefore C as the
density from where the density starts increasing to form the shell. For ρafter C, we take
the maximum value that is achieved along it. We compute the percentage error in the
compression ratio as (1− σnum/σexact)100. A positive value indicates that the numerical
compression was lower than in the exact solution.

Scheme ∆x error σ % width (times exact) undershoot %

MFF-PHM

1
6000 0.99 2.76 7.85

1
18000 -0.72 1.62 -0.44

1
32000 -2.84 1.58 -2.30

MFF-ENO

1
6000 1.43 3.38 1.34

1
18000 -0.37 2.06 -0.20

1
32000 -0.31 1.66 -0.13

HLL-PHM

1
6000 6.69 5.09 9.55

1
18000 -3.36 1.83 -4.08

1
32000 -2.63 1.54 -2.78

HLL-ENO

1
6000 14.26 3.87 15.87

1
18000 -3.86 2.10 -4.03

1
32000 -2.29 1.77 -2.15

Table 4.5: Error of parameters of density shell BW1-GGL1 with scheme and resolution.

The width of the density shell at time t is calculated as (υfront− υcontact)t. If the front
of the shell is composed of several waves, we use the wave speed of the fastest one to
calculate the front speed, which determines the maximum width of the shell. To obtain
the fraction of the integration domain occupied by the shell, we divide the width of the
shell by the length of the spatial domain.

To calculate the width of the shell in the numerical approximation, we take the position
of ρbefore C as the beginning of the shell. We select as the end of the shell the first position
after the contact discontinuity not affected by the evolution. This interval indicates the
number of points used to solve the shell. Dividing this number by the total number of
points in the grid gives us the fraction of the numerical domain that the shell occupies.
We present the quantity wnum/wexact, which shows how many times the numerical width
is greater than the exact width of the shell.

Finally we calculate the difference of the higher density of the shell, ρafter C. The high
order reconstructions may introduce spurious oscillations yielding local extrema near the
high gradient of the contact discontinuity. This effect can introduce both an overshoot or
an undershoot of the density in the shell. Following [76] we measure the relative difference
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percentage as (1 − ρmaxnum/ρafter C)100 and name the quantity undershoot. Notice that a
negative value means that there is an overshoot.

Scheme ∆x error σ % width (times exact) undershoot %

MFF-PHM

1
6000 33.67 2.85 31.98

1
18000 4.18 1.84 4.19

1
32000 0.80 1.54 0.81

MFF-ENO

1
6000 30.85 3.29 29.22

1
18000 4.27 2.08 3.80

1
32000 2.28 1.74 1.82

HLL-PHM

1
6000 39.99 3.25 37.60

1
18000 14.85 2.05 14.06

1
32000 1.97 1.68 1.72

HLL-ENO

1
6000 43.86 3.73 41.13

1
18000 22.23 2.25 20.89

1
32000 6.75 1.82 6.62

Table 4.6: Error of parameters of density shell BW2-GGL2 with scheme and resolution.

We perform the analysis for consequently thinner grids to observe the convergence of
the numerical solution to the exact one as the spatial discretization reduces. The results for
the described quantities related to the density shells in problems BW1-GGL1 and BW2-GGL2
are in tables 4.5 and 4.6 respectively. The density shell of BW2-GGL2, due to its composite
front wave, is a difficult test for both numerical fluxes and reconstructions.

For the shell in BW1-GGL1, see table 4.5 , the error in the compression σ decreases in
absolute value with increasing resolution for all methods. The increased error of MFF-
PHM with the higher resolution is due to an oscillation at the top of the shell. The width
error also decreases with the resolution, and the undershoot of the maximum density
drops fast. Notice that for thin discretizations the undershoot becomes negative, meaning
that there are oscillations causing overshooting. For small spatial interval, all fluxes and
reconstructions lead to similar error values in all measured quantities. Among the methods,
MFF-ENO achieves better compression and maximum density value, while HLL-PHM
provides a thinner shell.

The composite shell in BW2-GGL2, errors in table 4.6, yields larger errors for the sparser
discretization. These erros reduce when increasing the resolution. In this table, there are
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no negative values, indicating that the methods could not reach the high compression
and maximum density. For this problem, where the thin shell has a complex structure (a
composite wave), MFF-PHM outperforms the other alternatives. The more local character
of the PHM reconstruction, together with the efficient local treatment of the flux at the
cell interface of the MFF, provides a much more accurate approximation. In the case of
the HLL flux, PHM reconstruction leads to significantly better results than ENO in terms
of compression and undershoot of the density. At steep gradients like those presented in
this shell, the more local reconstruction (PHM) can reduce the smearing.

Finally we display the plots of the physical variables for the four Riemann problems
solved. For the blast waves we select the numerical solution of 18000 points. We exhibit
the profiles using PHM reconstruction since it has shown to provide less smeared solutions.
They are displayed in figures 4.1 and 4.2.

Figure 4.1: Velocity, pressure and density profiles for BW1-GGL1 using 18000 points in the
spatial domain. Comparison of MFF and HLL numerical fluxes with PHM reconstruction.
Bottom right, a zoom of the density shell.
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Figure 4.2: Velocity, pressure and density profiles for BW2-GGL2 using 18000 points in the
spatial domain. Comparison of MFF and HLL numerical fluxes with PHM reconstruction.
Bottom right, a zoom of the density shell.

Figures 4.3 and 4.4 display the solution for the expanding and the colliding slabs,
respectively. We also compare the fluxes using PHM reconstruction. In the expanding
slabs, the typical density oscillation at the center of the domain (a known numerical issue
of this type of Riemann problem, see it for example in [93]) has a bigger amplitude with the
HLL flux. Otherwise both solutions are very similar. On the other hand, in the colliding
slabs problem, MFF present a density oscillation at the center of the domain, that is not
present with HLL. But HLL oscillates after the shocks of the composite waves, while MFF
remains more stable.
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Figure 4.3: Velocity, pressure and density profiles for ES-GGL1 using 3000 points in the
spatial domain. Comparison of MFF and HLL numerical fluxes with PHM reconstruction.

4.3.2 Examples with tangential speed

In our analysis of the Riemann problem with tangential velocities we choose two test cases.
For these problems, we compute the numerical approximation using a 2D numerical scheme
with 6000 points in the direction of the evolution of the Riemann problem and 600 points
in the perpendicular axis in the spatial domain [0, 1]× [0, 0.1].

Our first test case is BW1-GGL1, where we prescribe an initial tangential speed of
υtL = υtR = 0.9. In the wave curves of the exact solution displayed in figure 3.1, we
can see that this initial tangential speed is a representative example of the case where the
highly relativistic tangential flow prevents the formation of complex wave structure in the
perpendicular direction.

We compute the L1-norm mean error of the numerical approximation for the physical
variables, including the tangential speed. We present the results in table 4.7. The errors
remain similar for different fluxes and reconstructions and overall present the same order
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Figure 4.4: Velocity, pressure and density profiles for CS-GGL2 using 3000 points in the
spatial domain. Comparison of MFF and HLL numerical fluxes with PHM reconstruction.

of magnitude that in the 1D test case.

Scheme Reconstruction ||E(P )||1 ||E(υx)||1 ||E(υt)||1 ||E(ρ)||1
MFF ENO3 2.8712e-01 1.0765e-02 9.0563e-03 2.1059e-02
MFF PHM 1.6624e-01 8.5090e-03 7.1542e-03 1.6867e-02
HLL ENO3 3.9425e-01 8.6085e-03 7.2561e-03 1.7580e-02
HLL PHM 1.5439e-01 7.8592e-03 6.4327e-03 1.5956e-02

Table 4.7: L1-norm mean error in the physical quantities for 2D BW1-GGL1, for a spatial
resolution of 6000×600 points.

In figure 4.5 we display the numerical solution for the two different fluxes considering
PHM reconstruction. Both solutions agree in the overall structure and represent sharply
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the shock waves.

Figure 4.5: Density, pressure, x-velocity and tangential velocity profiles for 2D BW1-GGL1
using a grid of 6000×600 points. Comparison of MFF and HLL numerical fluxes with
PHM reconstruction.

We notice that the location of the shell is slightly shifted. Aiming to discard that
both methods, MFF-PHM and HLL-PHM, are capturing an entropy-violating shock, we
compute the solution for finer grid resolutions. The result is presented in figure 4.6. We
observe that the numerical solution converges to the right position of the density shell as
the numerical resolution increases. This finding highlights the difficulty of RH when there
are more than one spatial dimensions.

We test the BW2-GGL2 problem prescribing initial tangential speed υtL = 0, υtR = 0.99.
The wave curves of the exact solution analyzed in figure 3.3 show that this is a good
example of how the tangential speed can affect the wave structure of one side even if it is
prescribed just on the other side.

We gather the error of the solution in table 4.8. Although the error in pressure for
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Figure 4.6: Convergence to the right position of the density shell for 2D BW1-GGL1 problem
for increasing spatial resolution.

this problem is larger, the results still resemble those of the 1D case. In this scenario
MFF-ENO3 encounters the same unphysical reconstructions that we face in the 1D case
with HLL-ENO3 for CS-GGL2 and therefore we do not obtain a numerical approximation
of the solution.

Scheme Reconstruction ||E(P )||1 ||E(υx)||1 ||E(υt)||1 ||E(ρ)||1
MFF ENO3 - - - -
MFF PHM 1.0804e+00 2.9285e-03 1.2757e-03 2.3151e-02
HLL ENO3 1.1976e+00 3.2007e-03 1.5273e-03 2.6973e-02
HLL PHM 1.1446e+00 2.9257e-03 1.3993e-03 2.6759e-02

Table 4.8: L1-norm mean error in the physical quantities for 2D BW2-GGL2 Riemann
problem, for a spatial resolution of 6000×600 points.

We display the solution profiles in figure 4.7. The density shell location is more accurate
for this problem. We can observe some oscillation of the solution after the shock of the
composite wave to the left for HLL flux, and oscillations of the pressure at the contact
discontinuity position for MFF.
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Figure 4.7: Density, pressure, x-velocity and tangential velocity profiles for 2D BW2-GGL2
using a grid of 6000×600 points. Comparison of MFF and HLL numerical fluxes with
PHM reconstruction.
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Part II

Modeling of equations of state for
high density matter
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Chapter 5

Equation of state for high density
matter

Our study of Special Relativistic Hydrodynamics (SRHD) is focused on the understanding
and correct resolution of the wave structure that a test fluid with relativistic speed can
develop. The fluid is taken as the matter that compose astrophysical objects aiming to
replicate realistic scenarios that could be of interest in General Relativistic Hydrodynamics
(GRHD) simulations. In particular, in this research we focus on neutron stars (NSs).

The properties of the fluid are encoded in the equation of state (EoS), which is needed
to close the hydrodynamic system of equations. Nevertheless, the information about the
insides of NSs is limited to astrophysics theory. The EoS is constructed using physical
principles (thermodynamics, nuclear and particle physics) for the higher density regions,
while the lower density parts can benefit also from experimental data.

A NS can be divided into a thin atmosphere and an interior. The latest is made up
of a crust and a core, where each of these regions is composed of an inner and an outer
layer [43]. We describe the star from the outside and advance towards its center. For the
purposes of this analysis the atmosphere is neglected since the properties of the NS are
determined by the denser regions.

The outer crust, which extends up to densities of around 4 · 1011 g/cm3 , is composed
of ions and electrons. As the density increases the energy of the electron gas also raises,
leading to the neutron enrichment of the nuclei. When the particles can no longer be held
they begin to drip, forming a neutron gas. The inner crust begins after the neutron drip
and extends up to densities of around 1014 g/cm3 . As density augments, the neutrons
become closer together and the repulsive force between them provide support to the interior
of the star against gravity. The nuclei begin to deform until they disappear at the interface
with the core.

The outer core extends to densities of around 5 · 1014 g/cm3 and consists of a liquid
mixture of neutrons, protons, electrons and muons that are in a state of electric neutrality
and β-equilibrium (a state of balance between the decay and creation of neutrons). In
massive NSs, an inner core may also be present, reaching up to densities of 4 · 1015 g/cm3

at the center. Matter at such high densities is unknown since it cannot be replicated on
Earth. The components are theoretical.

The EoS of the NSs is constructed from the modeling of the matter inside each region.
Then all parts are put together to form a physically consistent model.

The behavior of the outer crust can be deduced from the known properties of nuclei
and is commonly constructed using shells of different elements. It is then connected to
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an EoS for the inner crust which is computed using effective neutron-neutron interactions
and where the deformation of nuclei is model dependent. In the outer core, the EoS of the
plasma is calculated using microscopic models of many-body theory for strongly interacting
particles, although the accuracy of these models decreases with increasing density. For
the inner core, the EoS is determined using a theory for matter at densities above nuclear
density and typically depends on many unknown parameters. The global EoS reflects the
change of properties of the fluid along the NS interior, with a softer EoS at the neutron
drip (more compressible) that stiffens towards the core.

In a NS in equilibrium the thermal effects can be neglected. Therefore, the EoS is
considered to be cold and is formulated as a relation between pressure and density, P (ρ).
This simplification is applied in the thermodynamic modeling of each part of the structure
and the resulting equations are solved numerically to obtain a sparse set of pressure values
for densities throughout the star.

The EoS of a NS is typically presented as a table of density, pressure, and internal e-
nergy per baryon values at a temperature of zero and in β-equilibrium. The EoS model may
concentrate on the outer or inner core, selecting an approach to describe the interactions
and properties of the components. There are many different tables, depending on the
focus of the model and the techniques and parameters used for the resolution of the
thermodynamics. For example, the EoS of matter in the outer core can be calculated u-
sing the ground-state energy of nucleons, which can be determined using various methods
such as the Brueckner-Bethe-Goldstone theory, Green’s function technique, the variational
method or relativistic mean field theory [43].

Tabulated EoS are currently the best approximation to the behavior of the interior
of NSs. However, for numerical relativity (NR) simulations, the EoS and its derivatives
have to be evaluated at arbitrary values of density. Using tabulated data for the EoS
has several disadvantages, including the need for interpolation and the lack of derivatives,
both of which are affected by the sparsity of the data points.

Interpolation of a set of points is not unique and the results depend on the selected
technique. It can also introduce thermodynamically inconsistent behavior, such as local
extrema. While there is not a one-size-fits-all solution for this issue, it is common to
use the interpolation method proposed in [119], which preserves a correct thermodynamic
behavior and is implemented in many numerical codes. Furthermore, it can be challenging
to accurately calculate the derivatives of the EoS due to the sparsity and the varying
density of points in different regions, which can introduce a non-negligible and variable
error.

Given these issues and the computational cost of working with tabulated data, analytic
models are generally preferred for simulations. These models should be expressed as
simple equations that can be easily derived and evaluated while accurately reproducing
the tabulated data and maintaining consistent thermodynamics without introducing any
artificial effects.

In this Chapter, we describe some of the current sources of tabulated EoS for NSs and
how to interpret their data. Among their features we focus on phase transitions (PTs),
as they can strongly influence the hydrodynamics. We present some continuous models
that are currently used in numerical simulations and compare them with their tabulated
counterparts by computing the stellar properties that they induce. We also discuss the
effects of PTs in these properties.
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5.1 Tabulated equations of state

We consider tables of cold EoSs from two different catalogs: CompOSE [1, 131, 86] and
Arizona University Neutron Star EoS catalog [3]. Both provide pressure and density values
at β-equilibrium and can include other thermodynamic quantities.

The CompOSE project [1] comprises both hot and cold EoSs from nuclear physics.
These EoS tables provide sparse points of baryon number density (nb) and corresponding
pressure values. From this catalog, we attain the EoSs used in the analysis of gravitational
waves (GWs) from NSs made by the LIGO-Virgo-KAGRA collaboration in [7]. In parti-
cular, we obtain the tables at the nb points listed for each of these EoS and included the
pressure P and scaled internal specific energy ε1. We convert the baryon number density
to rest-mass density and change the units of the pressure to work with the quantities
described in previous Chapters and in cgs units (centimeters-grams-seconds).

The other database is Arizona University Neutron Star EoS catalog [3] (cited as Ari-
zona henceforward). A set of tabulated cold EoSs for NSs is provided with three columns
already in cgs units: density, pressure and energy density ε. We transform the latest into
dimensionless internal energy.

The rest of this Chapter uses the information of pressure P and density ρ in g/cm3

and the dimensionless internal energy ε from the tables described above2.

5.1.1 Phase transitions

As density and pressure grow within a NS, matter undergoes a series of transformations
to increasingly unknown states. These alterations may be smooth or they may involve a
sudden change in the properties of the matter. The change from one state of matter to
another, such as from solid to liquid or from gas to plasma, is referred to as a phase tran-
sition (PT). PTs are characterized by an abrupt change in the thermodynamic properties
of matter and involve the coexistence of two or more pure phases in a mixed phase that
has the properties of neither.

At fixed temperature, pressure is constant with density within a PT . Therefore, quan-
tities defined by the change of pressure with density ∂P/∂ρ undergo a large change in
their behavior. These are the sound speed c2

s (1.1.3), the adiabatic exponent γ (1.1.4) and
the fundamental derivative G (1.1.5). In pure phases, G > 1 and γ is a smooth function
that increases slowly, implying that the sound speed is monotone. Along a PT, the adia-
batic exponent experiments a kink (discontinuity of first derivative) and the fundamental
derivative may become negative. In this scenario, the sound speed is no longer monotonic
and its value is smaller than in pure phases [80].

When constructing a cold tabulated EoS that includes a PT, there are two main
approaches that can be considered [43]. The first approach, known as the Maxwell cons-
truction, imposes local electric neutrality of the matter and allows for a jump in density
at constant pressure. By definition, the adiabatic exponent and sound speed are zero in
this region and the fundamental derivative is not defined. These zero values for main ther-
modynamic quantities can introduce errors in the calculation other physical magnitudes.

1The quantities included in the EoSs for the analysis correspond to magnitudes 1 and 7 of Table 7.1 in
the CompOSE manual v2.

2A NS EoS is often the result of combining a well-established crust model with a new approach for
the core matter. This stitching together of two parts of the EoS may lead to unphysical values at the
transition, such as decreasing pressure with density and negative internal energy. We find this phenomena
in some of the studied tables. To address these issues, before using the tables we use linear interpolation
to correct the pressure values and recalculate the internal energy using the first law of thermodynamics.
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Therefore, this approach is generally not preferred.
The second approach, the Gibbs construction, imposes global electric neutrality on the

matter resulting in a decrease of the slope of pressure with density. Therefore, the sound
speed decreases although it does not reach zero. This smoother construction is most
commonly used in the tables we study although it can mitigate other thermodynamic
implications of the PT.

Given that the fundamental derivative determines the convexity of the EoS and there-
fore affect the hydrodynamics [80], we study how many PTs are present in realistic tabu-
lated EoS and how strong they are.

5.1.2 Locating phase transitions on a tabulated equation of state

When matter undergoes a PT, more than one phase coexist and the thermodynamic
properties deviate from their usual behavior along pure phases. As mentioned previously,
the sound speed decreases reaching smaller values than in a pure phase, the fundamental
derivative is below one and the adiabatic exponent is no longer smooth. If the table was
constructed using the Maxwell approach the pressure would be constant with density.
To identify a PT in a tabulated EoS we look for these changes in the thermodynamic
quantities.

Getting the thermodynamic quantities

The magnitudes affected by a PT are related to derivatives of the pressure. We use
definition (1.1.3) for c2

s and (1.1.4) for γ. The fundamental derivative (1.1.5) is rewritten
in terms of the sound speed as

G = 1 + ∂ ln cs
∂ ln ρ ,

in order to calculate it from the values of c2
s. We tackle the first disadvantage of using a

tabulated EoS since we need to perform numerical derivatives to study its properties.
We use the derivative of a three-point Lagrangian interpolation, as it allows for un-

evenly spaced data. Given consecutive abscissa points [x0, x1, x2] with corresponding
[y0, y1, y2] ordinate values then

∂y

∂x
≈ y0

(2x− x1 − x2)
(x0 − x1)(x0 − x2) − y1

2x− x0 − x2
(x0 − x1)(x1 − x2) + y2

2x− x0 − x1
(x0 − x2)(x1 − x2) .

To calculate the derivative at x = x1 the previous and next points in the table are
needed. For the first point in the table, the derivative is evaluated at x = x0 instead and
for the last point it is evaluated at x = x2. This allows us to extend the tabulated EoS to
also include the values of c2

s, γ and G for the tabulated densities.
One of the features used to identify a PT in a tabulated EoS is the presence of a

kink in the adiabatic exponent. While it is possible to determine the discontinuities in
the derivative of this parameter if it is described by a known equation, it can be more
challenging to do so using discrete values. Deciding when a change in value represents a
kink rather than a result of discretization requires an ad-hoc, case-dependent threshold
value. Additionally, it is important to bear in mind that the points in a tabulated EoS are
calculated numerically and therefore contain an intrinsic error. This can lead to oscillations
in one or more quantities that need to be distinguished from actual properties of the fluid.
We have observed this particular issue in the tables obtained from CompOSE [1].
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Identifying phase transitions using discrete values

To summarize, the main features that can be used to identify a PT in a tabulated EoS
include: at the start of the PT, the sound speed no longer increases leading to a kink in
the adiabatic exponent; at the end of the PT, the sound speed starts to increase smoothly
again. At the beginning of the mixed phase the fundamental derivative is smaller than
one, which is a consequence of the decreasing sound speed.

The challenges come from detecting a kink in the discrete adiabatic exponent and
determining that the sound speed is varying smoothly after the PT. For this purpose we
introduce the use of the total variation (TV).

The TV is a measure of oscillatory behavior. For a set of discrete values {ui}mi=0 it is
defined as

TV (u) =
m−1∑
i=0
|ui+1 − ui|.

A strategy to detect kinks, used in [72], is to define the local total variation (LTV) of
n points at the value of index j as

TV n
j (u) =

j+n∑
i=j
|ui+1 − ui|. (5.1.1)

This quantity measures how much the magnitude u is changing around the point of
index j. If the magnitude varies smoothly the value of TV n

j (u) is similar for consecutive
j and fixed n. If there is an abrupt change like a kink in the magnitude then the LTV
increases.

In order to detect a kink in the adiabatic exponent we compute TV 3
j (γ) for every point

in the table except for the last two (we safely assume that there is no PT at the extremes
of the EoS). The selection n = 3 is made to keep the study very local, as PTs extend
for small regions of density and including more points can mix them with pure phases
covering up their effects. A kink introduces a local maximum in the sequence of LTVs.

For a tabulated EoS including the sound speed and adiabatic exponent, which can
be calculated from the pressure and density values as specified above, we propose the
following criteria to identify a PT.

PT extreme Criteria

Starts at ρj
c2
sj local maximum
c2
sj > c2

sj+1 > c2
sj+2

TV 3
p (γ) local maximum, p ∈ {j − 1, j, j + 1}

Ends at ρq
c2
sq ≥ c2

sj

TV 3
q (c2

s) ≤ TV 3
j (c2

s)

Table 5.1: Criteria used to identify a PT in a tabulated EoS.

A PT starts at ρj if the corresponding value of the sound speed is a local maximum.
To avoid misclassifying oscillations, we require that the sound speed decreases for at least
two consecutive data points. In addition, the start of the PT must induce a kink in the
adiabatic exponent, which implies a local maximum in its LTV. This maximum can occur
at index j − 1, j or j + 1. The position of the kink may be shifted depending on how the
numerical derivatives were calculated during the construction of the table hence we allow
for three possible positions of the maximum.
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A PT finishes at ρq if the sound speed is greater or equal than the value it had at
the beginning of the PT, since the sound speed is always larger in pure phases than in
mixed phases. Also, c2

s should increase monotonically and smoothly. We require TV 3
q (c2

s)
to be less or equal than TV 3

j (c2
s), implying that the sound speed is smoother than when

it suddenly changed at the start of the PT. The criteria is summarized in table 5.1.

Dealing with oscillations

Imposing the coincidence of a kink in the adiabatic index with a local maximum of the
sound speed is a useful strategy to prevent identifying small and irrelevant oscillations in
the data as PTs. However, this tactic may not always be effective, particularly when the
data is highly oscillatory. In such cases, the approach can result in multiple short and
closely spaced PTs being detected which are not genuine PTs of the fluid.

To address this issue, we have implemented a filter for oscillatory data in our analysis.
When a PT is identified with the criteria presented above, we examine the data surroun-
ding it. For the results presented below, we have selected 10 points in each direction. If a
change in the monotony of the adiabatic index is observed within these points, the data
is deemed to be oscillatory and the identification of the PT is discarded.

While this approach may result in the removal of some actual PTs that occur in regions
where the data is slightly oscillatory, we consider it to be a worthwhile trade-off in order
to avoid the introduction of ad-hoc threshold values for the oscillation amplitude and to
maintain the generality of the method.

When applying the oscillation filter to the Arizona tables [3], it removes some thin
PTs identified at the crust of the stars. Conversely, when applied to the more oscillatory
Compose tables [1] the filter discards PTs as noise throughout the whole star.

Example of application

We apply the method described to locate PTs in tabulated EoS to the tables taken from
Arizona [3]. Once the oscillation filter is applied, the EoSs that present at least one PT
are: PS [89], GS1-GS2 [37], BGN1H1 [16], H4-H7 [59] and ALF1-2 [10]. The left and right
extremes of the PTs are gathered in table 5.2.

PT1 PT2 PT3 PT4
EoS ρL ρR ρL ρR ρL ρR ρL ρR
PS 3.6453 7.4578
GS1 4.3160 9.5566
GS2 4.6480 8.5872
BGN1H1 6.1420 11.620
H4 5.0132 6.1088 6.8392 7.3704 11.388 12.018 14.475 17.297
H5 5.5112 7.0716 7.9348 8.6320 15.836 16.567
H6 4.8472 6.3412 6.7728 7.6028 10.790 12.284
H7 5.7768 7.2044 8.3664 8.8976 16.135 16.567
ALF1 3.7350 7.0906
ALF2 4.2097 6.3504

Table 5.2: Density values of the extremes of the PTs located in EoS tables from Arizona
[3]. Density is presented in 1014g/cm3.
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The PTs located lie at the transition between the crust and the core of the NS, repre-
senting the change from solid to liquid matter. The EoS models H4-H7 present additional
PTs deep into the core related to the progressive addition of hyperon species.

When used with the tables from CompOSE [1] mentioned in [7], our method finds at
least a PT in models KDE0V [8], KDE0V1 [8], SK255 [9], SKI2-6 [97], SKMP [20], SKOP
[96], SLY2 [23], SLY230A [24] and SLY9 [23]. We present the extremes in table 5.3.

These PTs are found at the crust of the star and are thinner than those located in the
Arizona tables. The PTs are related to the different elements shells appearing in the crust
and the deformation of the nuclei at increasing densities. These EoSs do not present a PT
to the core of the NS.

PT1 PT2
EoS ρL ρR ρL ρR
KDE0V 5.201255 5.297953
KDE0V1 6.856589 8.557214
SK255 6.167484 6.698859
SKI2 5.835903 6.210098
SKI3 6.224552 6.843252
SKI4 5.944400 7.014561
SKI5 5.889902 6.208720
SKI6 6.253283 7.189042
SKMP 5.971838 6.520224
SKOP 3.909381 4.000442 6.110941 6.690441
SLY2 6.920032 8.759473
SLY230A 7.380880 9.632543
SLY9 6.369540 7.784298

Table 5.3: Density values of the extremes of the PTs located in EoS tables from CompOSE
[1]. Density is presented in 1013g/cm3.

5.2 Equations of state for simulations

The main analytic models of EoS for NSs [15] are the spectral parametrization [69] and
the piecewise polytropic (PP) [95]. These models are employed to fit tabulated data with
continuous functions using as few parameters as possible while minimizing the error. A
key requirement is that they accurately reproduce the stellar properties that depend on
the EoS (such as mass and radius) obtained from the tabulated version.

The spectral parametrization described in [69] expresses the logarithm of the adia-
batic index as a polynomial of pressure. The coefficients of the polynomial serve as free
parameters of the model. By optimizing the polynomial to closely reproduce the mass
and radius of several stars obtained from a tabulated EoS, this method can accurately
approximate the EoS with just 2-3 parameters. The spectral parametrization allows for
the use of observed stellar configurations to reconstruct an EoS that accurately reproduces
real NSs. However, it cannot replicate abrupt changes along the EoS, such as PTs, which
cannot be inferred from a few mass and radius points. There are also open questions re-
garding the need for a better optimization method to determine the parameters given the
observed stars and how the construction may be affected by the uncertainty and dispersion
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of observational data.
The PP model proposed by [95] utilizes polytropes to relate pressure values with den-

sity. In order to capture the changing behavior of the fluid throughout the star, different
polytropes are employed for different regions while ensuring the continuity of the overall
EoS. In the next Subsection we delve into the details of this analytic EoS.

To the extent of our knowledge, EoSs constructed using spectral parametrization have
not yet been used in gravitational waves simulations. The first numerical simulation of a
binary neutron star (BNS) merger used polytropes instead [113]. The current reference
catalog of waveforms from BNS mergers is the CoRe database [26], which uses different
EoSs to explore and demonstrate the influence of the matter model on the signal. The
catalog includes two polytropes, nine PP models with an additional thermal term for the
evolution, and five tabulated hot EoSs. Since PP EoSs have already been used to simulate
mergers and are implemented in many NR codes we focus on this type of modeling.

5.2.1 Piecewise polytropic model

The PP approach developed in [95] fits the relation between pressure and density in the
tabulated data with polytropes. A polytropic EoS has the form

P (ρ) = κρΓ (5.2.1)

with κ and Γ free parameters, the latest representing the adiabatic index. The authors
divide the star interior in density intervals and fit a different polytrope for each of them.
As the crust of a NS barely influences the stellar properties, they fix four polytropes for
the lower densities to reduce the number of free parameters of the whole model. These
replicate the tabulated SLy EoS [29], commonly accepted as an appropriate EoS for the
crust.

The high density region is fitted with three polytropes which mimic different tabulated
data. Since the pressure function has to be continuous, the values κ of each piece are used
to equal the polytropes at their common extremes. Therefore each EoS model has four free
parameters: the adiabatic indices of the three high density polytropes and the pressure
value where the first of them meets the low density fit. The authors analyze the parameter
space for the adiabatic indices that keep the EoS causal and the derived stellar properties
within observational constraints.

In [95] the authors provide the parameters that model 34 of the tabulated EoS from
Arizona [3]. In the previous Section we identified PTs in several of these EoSs. In what
follows we analyze how the PP models behave in these regions.

From the pressure expression of a polytrope (5.2.1) we can obtain the adiabatic expo-
nent, sound speed and fundamental derivative:

γ = Γ, c2
s = ΓκρΓ−1, G = Γ + 1

2 .

Along each polytrope, the sound speed is always increasing for Γ > 1. The adiabatic
exponent and fundamental derivative are constant. Therefore, the features of a PT are
not possible to replicate using this model.

However, the shape of the PP model introduces artificial PTs that do not represent ac-
tual properties of the fluid. When the model changes the polytrope parameters at selected
densities there is a jump in Γ. This induces a jump discontinuity in the thermodynamics
quantities above. While the fundamental derivative always remains positive, the sound
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speed can decrease and its local maximum coincides with a kink in the adiabatic exponent.
This artificial PT is a known issue of the PP model [95].

The strengths of a PP EoS are its simple expression, the reduced number of free
parameter and the great accuracy far from joint densities between polytropes. On the
other hand, it introduces artificial PTs not present in the fluid while not allowing for the
real ones. Since they have been used for simulations, we analyze next how well the PP
EoSs represent the stars arising from the corresponding tabulated models.

5.3 Stellar properties

When constructing an EoS for NSs, one must consider a theory for matter beyond nuclear
density, a method to solve the thermodynamics and values for the parameters in the
equations. The resulting EoS describes the properties of the star’s matter, which should
be consistent with observations. A stiff EoS corresponds to less compressible matter
allowing the star to have a larger mass without collapsing under its own gravity. On
the other hand, a soft EoS corresponds to more compressible matter, which leads to less
massive stars.

One of the most commonly used parameters for evaluating an EoS against observations
is the maximum mass it can support, since the observation of a more massive star than
this would contradict the EoS. Previously, estimates of the masses and radii of NSs based
on electromagnetic radiation from pulsars were compared with theoretical EoSs. The
detection of GWs has also provided an additional parameter that depends on the EoS:
the tidal deformability, that quantifies the ease with which the star deforms under the
influence of gravitational forces. We state the mass of NSs in solar masses (M�), the
radius in kilometres km and the tidal deformability as a dimensionless quantity.

Nowadays the requirements imposed to an EoS to be in agreement with observations
[5, 6] are that the maximum mass supported is bigger than 1.97M� but does not exceed
2.2M� (2.3M� for a conservative approach [112]) and that the tidal deformability for a
1.4M� star is between 290 and 580. The high density region of the EoS will be constrained
further by future measurements of NSs above 2M� while lower densities can be constrained
by observations of 1.7-1.85M� NSs [133].

If the stars built from an EoS obey the constraints obtained through observations, then
the EoS is a suitable candidate for NSs interior. In this Section we recap how the observa-
tionally constrained parameters (mass, radius and tidal deformability) are calculated for a
given EoS. The motivation is to compare the differences in the properties of NSs obtained
from tabulated EoSs and PP models. The latest should not generate NS configurations
that are inconsistent with those obtained from the tabulated EoSs, nor should it discard
valid configurations. We focus on static, spherically symmetric stars. In this scenario we
can develop our own numerical code, which gives us flexibility on the type of EoS that is
used.

We devote the rest of this Chapter to present the equations that describe the mass,
radius and tidal deformability of NSs. We solve them with the PP models proposed in
[95] and with their corresponding tabulated EoSs, finding the effects related to PTs and
stability described in [138, 139].

5.3.1 Mass-radius curve

Mass and radius are stellar properties that can be calculated from theory which depend
completely on the EoS. From a theoretical point of view, a star is a solution of the Einstein
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field equations corresponding to an equilibrium distribution of a perfect fluid.
Using the stress energy tensor of a perfect fluid and the conservation of baryonic

number to obtain an equation for the pressure, one can obtain the Tolman-Oppenheimer-
Volkoff (TOV) equations [128, 87]

dP
dr = −G

(
ρ(1 + ε) + P

c2

)
m+ 4πr3P/c2

r(r − 2Gm/c2) (5.3.1)

dm
dr = 4πr2ρ(1 + ε), (5.3.2)

that describe the change of mass and pressure inside the star given an EoS. Both magni-
tudes depend only on the radius because we consider spherically symmetric stars.

We denote by m = m(r) the gravitational mass [61] comprised inside a sphere with
radial coordinate r. The equations also involve pressure P , density ρ and internal specific
energy ε, all of them related through the EoS. We write the gravitational constant G and
the light speed in vacuum c explicitly to change the units of the equations. This will be
particularly useful when using tabulated EoSs.

Note that we preset two of the three TOV equations. We omit the one that is needed
to solve the metric inside the star but does not affect the mass and radius since we are only
interested in these magnitudes. This is a common practice in literature when computing
stellar properties [43].

Numerical solver

The TOV system (5.3.1)-(5.3.2) is formed by two coupled ordinary differential equations
(ODEs) that depend on the radius. For the numerical solution an ODE solver is required.
We use a fourth order Runge-Kutta (RK4), with ∆r = 1cm. Given that the star radius
is often expressed in kilometres this step keeps the error negligible. A reasonable level of
numerical accuracy like this is typically sufficient to obtain the properties of a star within
acceptable margins of error. However, higher precision may be necessary when solving
the TOV equations in order to obtain the initial conditions for a system to be evolved
numerically. In particular, the temporal component of the metric and the total baryon
number of the star must satisfy a constraint equation exactly in order for the star to be
stable. We verify that this condition is satisfied within the error described in literature
[43].

Along the integration process, the solution value of pressure is known at each evaluation
of the equations. The corresponding density is also required. When using a tabulated
EoS, the density is interpolated from the table. A simple interpolation is sufficient for
obtaining mass and radius [43], although thermodynamically consistent interpolations
[119] are recommended for higher accuracy. For an analytic EoS, the function must be
inverted. The method for obtaining density values for different types of EoSs is discussed
in detail at the end of this Subsection.

Stopping criteria and initialization

The integration is performed from the center of the star (r = 0) until its surface (r = R).
Since there is no matter beyond the surface, P (r ≥ R) = 0 and ρ(r ≥ R) = 0, making
m(r ≥ R) = M the total gravitational mass of the star. Therefore, a natural stopping
criteria is reaching P = 0. However, to achieve this numerically using a tabulated EoS is
unfeasible because the tables are defined up to a certain low density and pressure, but not
zero. Then extrapolation outside the defined region is needed.
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The common approach to this problem is to select an arbitrary nonzero value to be
the surface pressure of the star. This is a valid consideration as long as the value is much
smaller than the central pressure of the NS. However, we have found that the solution for
the radius of the star depends strongly on the pressure value selected.

On the other hand, when the matter outside the radius causing the surface pressure
is negligible, the mass value saturates. We define our stopping criteria based in this
phenomena. The matter that may remain outside the total radius can be considered as
an atmosphere and the pressure values at the surface of the star typically remain within
the ranges of the tabulated EoSs. The specific stopping criteria used in this study is
(m(r + ∆r)−m(r))/m(r) < 10−12, where m(r) is in grams along the integration.

The initial conditions are set at the center of the star with a radius of r = 0 and mass
m = 0, since there is no mass contained within a radius of zero. It is worth noting that
the equation for pressure (5.3.1) has a singularity at this initial state and therefore it is
enforced to zero. This value is settled from the series expansion around the singular point.
A central density is also prescribed, which corresponds to a central pressure through the
EoS. This density determines a specific star and solving the TOV equations for a range of
central densities determines the stars sequence that can be described by a particular EoS.

Calculating density from pressure values

Solving the TOV equations requires calculating the density associated to a pressure value
obtained as solution for every integration step.

In the case of a tabulated EoS, the density has to be interpolated. We are not aiming
to produce initial conditions for evolution, therefore a simple interpolation should suffice
[43]. We compare two different methods calculating their accuracy for a known function.

The first proposal is linear interpolation. Given a set of data points {(xi, yi)}Ni=0, and
a value x ∈ [x0, xN ] where we want to interpolate, x ∈ (xi, xi+1) for some i ∈ {0, .., N−1},
then

y(x) = yi+1 − yi
xi+1 − xi

(x− xi).

Following [43] we also consider logarithmic interpolation. With the same assumptions
that before, in this case

m = log(yi+1)− log(yi)
log(xi+1)− log(xi)

(log(x)− log(xi)),

y(x) = 10m. (5.3.3)

To evaluate the effectiveness of both interpolation methods in a scenario similar to
their intended application, we define a two-piece polytrope as the known function,

f(x) = ajx
bj , (5.3.4)

where j = {0, 1} and we change piece at some value xp. We use a0 = 0.5, b0 = 1.3, and
b1 = 1.8. We calculate a1 such that the function is continuous at xp.

To sample the space in the same fashion that a tabulated EoS we take 40 consecutive
points from BGN1H1 at high densities and normalize them by the first value. We obtain
points in x ∈ [1, 17.35]. The corresponding y values for the data points are obtained
applying our function (5.3.4). We select xp = 12.84 and therefore a1 ≈ 0.1395. Then we
produce 100 evenly spaced points in x between the extremes of the interval and obtain
the corresponding y values with the two interpolation methods presented.
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We calculate the error of an interpolation method as the 2-norm of the difference in
value with respect to the exact solution. With the linear interpolation we obtain an error
of 4.7 · 10−2 while the logarithmic interpolation yields an error of 4.1 · 10−14.

Logarithmic interpolation (5.3.3) shows to be more accurate when fitting a relation
similar to that of density with pressure. This result is justified due to the wide span of the
variables density and pressure across multiple orders of magnitude. As such, a logarithmic
representation is better suited to accurately capture the underlying behavior as opposed
to a linear fit. Therefore, for our solver we use logarithmic interpolation every time a
quantity from the table is needed.

In the case of using a polytrope as the EoS model for the NS, the relation between
pressure and density (5.2.1) can be inverted

ρ = (P/κ)1/Γ (5.3.5)

and we can obtain the density for any given value of the pressure.
When using a PP EoS we first have to find the polytropic piece to invert. As the

pressure increases monotonically with density, the dividing densities also imply dividing
pressures that we can use to locate in which polytrope is the pressure we want the density
from.

5.3.2 Tidal deformability

The EoS determines the tidal deformability λ, which relates the quadrupole moment that
a star induces to an external tidal field to linear order through the radius of the star and
the k2 Love number [49]

λ = 2
3Gk2R

5.

Henceforward we work instead with the dimensionless tidal deformability Λ [6]

Λ = 2
3k2

(
Rc2

MG

)5

= Gλ

(
c2

MG

)5

= 2
3k2C

−5, (5.3.6)

which also involves the mass of the star. It can be written in terms of the dimensionless
compactness of the star C, where

C = MG

Rc2 .

Notice that C = 1/2 for an spherical compact object having the Schwarzschild radius.
The Love number k2 can be obtained [50] as

k2 = 8C5

5 (1− 2C)2(2 + 2C(y − 1)− y) · [2C (6− 3y + 3C(5y − 8)) +

+4C3
(
13− 11y + C(3y − 2) + 2C2(1 + y)

)
+

+3(1− 2C)2 (2− y + 2C(y − 1)) ln(1− 2C)
]−1

where y

y = Rβ(R)
H(R) −

4πR3ε(R)
m

,

is the result of evaluating two additional functions H(r) and β(r).
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These functions are defined by two coupled ODEs in the star radius that are solved
along the TOV system

dH
dr =β (5.3.7)

dβ
dr =2

(
1− 2mG

c2r

)−1
H

[
−2πG

c2

(
5ε+ 9P

c2 + dε
dP c

2(ε+ P

c2 )
)

+ 3
r2 +

+2
(

1− 2mG
c2r

)−1 (mG
r2c2 + 4πr P

c2
G

c2

)2
]

+

+ 2β
r

(
1− 2mG

rc2

)−1 [
−1 + mG

rc2 + 2πr2G

c2

(
ε− P

c2

)]
, (5.3.8)

where ε = ρ(1 + ε) is the total energy density. The integration starts right outside the
center, where the approximations H(r) = a0r

2 and β(r) = 2a0r are valid. The constant
a0 cancels out in the expression for the Love number. We choose a0 = 1 and start the
integration at r = ∆r considering that the density is still equal to the chosen central
density.

Note the derivative dε/dP in equation (5.3.8). When using a tabulated EoS, to cal-
culate this derivative at a pressure P ∈ (Pi, Pi+1), where Pi is in the table, we obtain the
discrete derivatives at Pi and Pi+1 as

dε
dP

∣∣∣∣
P=Pi

≈ εi+1 − εi
Pi+1 − Pi

.

We use logarithmic interpolation (5.3.3) to obtain the value of the derivative at the
desired pressure P by interpolating between the two previously computed derivative values.

When using an analytic EoS in terms of the density and internal energy, we can recast
the derivative as

dε
dP =

(dP
dε

)−1
=
(dP

dρ
dρ
dε

)−1
=
(

dP
dρ

(dε
dρ

)−1
)−1

=

=
(dP

dρ

)−1 (
1 + ε+ ρ

dε
dρ

)
.

In particular, for a polytrope we have

dε
dP = 1 + ε+ κρΓ−1

κΓρΓ−1 .

5.3.3 Stability

The solutions of the TOV equations represent stellar configurations in static equilibrium.
Still, they can be unstable and decay over time. A star is stable if the outwards force of
the pressure of the fluid balance the gravitational pull inwards. Broadly, a massive NS,
with mass above the maximum mass supported by the EoS, would collapse to form a black
hole.

The quantity that determines the mass and radius of a NS for a given EoS is the
central density. It is chosen from the estimated density range of the NS core, broadly from
1014g/cm3 to 4 · 1015g/cm3. The density range yielding stable configuration depends also
on the EoS.
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The stability is studied adding perturbations in the fluid elements of the star [43].
The whole analysis can be reformulated in the so called static stability criterion, which
requires that the mass of the star increases with increasing central density [140, 44]. This
condition is necessary but not sufficient. While solutions of decreasing mass with density
are certainly unstable, the full criteria for stability involves considering the behavior of
the radius with the central density [44].

Only stable solutions can be considered to study NSs. Therefore the stellar parameters
are calculated for a wide range of central densities and then the branches of decreasing
mass with density are discarded. The extremes are the minimum and maximum stellar
masses supported by the EoS and the values in between conform the mass-radius curve
of stable stars. In particular, we calculate the central densities that lead to the maximum
mass up to a precision of 1012g/cm3 .

Nevertheless, PTs in the EoSs can introduce unstable branches along the main curve
due to the jump in density produced in the region of constant pressure [43]. This phe-
nomena can also arise in the artificial PTs introduced by the jump in the adiabatic index
in PP models [95].

5.3.4 Comparison of piecewise polytropic and tabulated EoS properties

We integrate the augmented system of the TOV equations (5.3.1)-(5.3.2), (5.3.7)-(5.3.8)
to obtain mass, radius and tidal deformability (through (5.3.6)) of sequences of NSs.
Tabulated EoSs and their corresponding PP fit provided in [95] are used.

Although the central density of the NS is taken in the core region, during the integration
of the TOV equations the EoS has to be used until the star surface. The tables for EoSs
MS2 [83], GS1-GS2 and H4-H7 provide information only for the core of the star, thus it
is necessary to add a description of the crust before the integration.

For MS2, GS1 and GS2 we can add the SLy EoS, conveniently as in the PP model
the crust is designed to always fit this table. On the other hand, the type of calculations
for EoSs H4-H7 do not allow to consider a SLy crust since there would be a region of
decreasing pressure at the matching densities. Therefore, we propose to use another crust,
the HP EoS [42]. In this reference the EoS is constructed from the stitching of smaller
tables. Following their procedure, we take BPS EoS [19] for densities below 108 g/cm3

and match it with the crust until the neutron drip with the original HP EoS table [41].

Mean RPD Max RPD Min RPD
Mass 2.17 8.78 (ALF2) 0.26 (SLy)
Radius 1.50 3.69 (MS2) 0.29 (GNH3)
Tidal def. 21.22 44.33 (ALF2) 6.06 (H4)

Table 5.4: Summary of the relative percent difference (RPD) in mass, radius and tidal
deformability calculated from tabulated EoS and its respective PP model. Stellar config-
urations are calculated for central densities varying from the one that gives the maximum
mass to the one that surpasses a radius of 16km (whatever model reaches it first). In
parenthesis, the name of the EoS that gives the presented difference.

We find that the difference of the maximum mass between the tabulated and the PP
model of the EoSs is consistent with the results presented in [95]. In order to further
compare the stellar configurations, we compute the star sequence from the minimum to
the maximum mass for each tabulated EoS. We observe that the radius of the NS increases
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rapidly and differently for smaller central densities. According to literature (see for exam-
ple [102, 30]), the maximum possible radius of a NS is 16km and therefore we restrict the
comparison to this value.

Figure 5.1: RPD of mass, radius and tidal deformability when comparing the PP model
with its corresponding tabulated EoS. Notice the different scale of the y axis for each
quantity.

The mean, maximum and minimum relative percent differences (RPDs) along the se-
quence, (average|XPP /Xtab − 1|)100, for the three calculated quantities are summarized
in table 5.4. It is noteworthy that the PP model leads to significantly different results for
the tidal deformability as previously anticipated by [50].

In figure 5.1 we represent the RPD of the mass, radius and tidal deformability for all
PP EoSs. The different scale of the graphic for every quantity indicates that each of them
present a different magnitude of the error. The mass reaches an outlier error of around 9%
but the error clusters around 2% RPD. This indicates that overall the mass curve is well
approximated although there can be some significant deviations. In general, the radius is
quite well approximated, with a maximum error below 4% and an average error around
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the 1%. This quantity is the best approximated by the PP model. The tidal deformability,
on the other hand, presents quite a poor representation. The error average is around 20%
and all EoSs presents a significant deviation.

We explore the influence of PTs in the stellar properties and in their approximation by
the PP model by displaying the mass, radius and tidal deformability against the central
density. We show the graphics for SLy and BGN1H1 EoSs. The first one is an example of
an EoS without PTs very well approximated by its PP model. The second one represents
the EoSs with quite a wide PT in the transition from the crust to the core of the NS.

Figure 5.2: Mass, radius and tidal deformability for SLy EoS using the tabulated and
the PP model.

The results for SLy EoS are presented in figure 5.2. While this EoS exhibits the least
deviation in the mass curve between the tabulated and the PP model, we can observe that
radius and tidal deformability are also very consistent between the two models.

In figure 5.3 we show the results for BGN1H1. We shadow the PT region found in
Section §5.1.2. We can see that the curves coming from the tabulated and the PP EoS
grow apart along the PT in the mass and tidal deformability graphics. Matter behaves
differently in this region and the PP model, not being able to capture the different ther-
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modynamics, departs from the tabulated result. At least in this example, the PT does
not appear to have a major influence in the radius of the star.

Figure 5.3: Mass, radius and tidal deformability for BGN1H1 EoS using the tabulated
and the PP model. Vertical dashed lines mark the start and end of a PT, shadowed.

According to this analysis we conclude that the PTs of an EoS can affect the stellar
properties of those stars whose central density is inside the PT, modifying the slope of
the mass, radius and tidal deformability curves. In [139] the authors derive the analytical
formula for the change of slope in the radius, energy and momentum of inertia (which
can translate in changes in mass and tidal deformability) due to PTs at the core of NSs.
Furthermore, the presence of PTs can determine the stability of the star.

In [138] the authors study the implications of PTs with Gibbs construction in the stabi-
lity. They find that a PT can lead to NSs completely stable but also generate instabilities.
In the cases analyzed before, where all the tabulated EoS present Gibbs constructions in
the PTs, we find stable configurations although the slope of the quantities is modified.

In [139] the authors find that a PT with Maxwell construction introduce a unstable
branch of NSs. It separates two stable branches representing stars with a core of the two
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different phases separated by the PT. To observe this effect described in the literature
we use HQC18 EoS [18], one of the EoSs considered for NSs interior in [6]. This model
contains two Maxwell PTs and one of them is in the range of central densities for NSs. In
figure 5.4 we depict the slightly decreasing mass with central density that separates the
two stable branches.

Figure 5.4: Mass, radius and tidal deformability for HQC18 EoS, a tabulated model with
two Maxwell PTs. Vertical dashed lines mark the start and end of a PT, shadowed.

On a final analysis of the fidelity of representation of the PP model with respect to
the tabulated EoSs, we confront the PP results against the observational constraints on
maximum mass (1.97M� < Mmax < 2.3M�) and tidal deformability (290 < Λ1.4M� < 580)
[5, 6, 112]. We identify three PP EoSs that could explain NSs interior according to this
criteria: SLy with Mmax = 2.05 and Λ1.4M� = 295.7, ENG with Mmax = 2.24 and
Λ1.4M� = 370.1 and ALF2 with Mmax = 1.98 and Λ1.4M� = 571.0. Still, when we compare
the same parameters for the corresponding tabulated EoSs we find that although the
maximum mass is within the given interval, the tidal deformability is not. From the set
of analyzed EoSs none of the tabular models could explain observational data.
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Chapter 6

Modeling thermodynamically
consistent equations of state

Analytic fits of tabulated EoSs such as the spectral parametrization [69] or the piecewise
polytropic (PP) [95] present a fair representation of the pressure throughout neutron stars
(NSs) interior. However, the aim for simplicity and efficiency of these models make them
unable to capture exceptional thermodynamic behavior in small regions such as phase
transitions (PTs). The thermodynamic properties of the EoS affect not only the shape of
the pressure but also the hydrodynamic behavior of the fluid (through the convexity of
the EoS) and the stellar properties [138, 139]. The influence is noticeable even for thin
PTs.

Modeling the pressure of a star along its whole interior requires defining a expression
(or several in the piecewise approximations) that captures the general behavior of the
quantity. Therefore, particular small regions with different behavior, PTs, cannot be
mimicked accurately. PTs should be addressed aside from the global pressure definition
to be consistent with the thermodynamic of the tabulated EoSs.

We consider the modeling of PTs and the modeling of the pressure outside them as
different tasks. By doing so, we aim to obtain analytic representations of tabulated EoSs
that retain their thermodynamic properties.

In this Chapter we present a model for PTs that is calibrated using the tabulated
EoS. As it only takes care of the EoS inside these regions, it needs to be inserted in an
expression for the pressure that models the rest of the star. Given that the total EoS
has to be continuous, our PT model has to conform to the pressure values at the outer
extremes of the PT (ρL, PL), (ρR, PR). Therefore, the PT model is sensitive to the analytic
EoS that we use for the rest of the star through the values PL and PR.

Consequently, we examine two distinct expressions for pressure outside the PTs. On
the one hand, we maintain the PP approximation and incorporate our PT model into the
appropriate locations. Therefore, the values at the extremes PL and PR are given by the
corresponding polytropic piece. This approach preserves the good properties of the PP
EoS outside the PTs. However, the polytropes of the PP are calibrated to capture the
general behavior of the pressure, which may lead to less accuracy in the vicinity of the
PT where the pressure behaves differently. This divergence from the tabulated data at PL
and PR can significantly impede the accuracy of our model, which is calibrated using such
data. We name the EoS resulting from inserting our PT model into the PP approximation
thermodynamically consistent piecewise polytropic EoS (TCPP EoS).

On the other hand, we consider an alternative approach for the general expression of
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the pressure. Building upon the idea of the PP model, we create new polytropes that are
fitted to the tabulated data outside of the PTs. This method enables the polytropes to
capture the normal behavior of pressure and avoids being influenced by the altered slope
during the PTs. The result is obtaining extremes PL and PR that are, in general, closer to
the tabulated data in the vicinity of the PT favoring the accuracy of the PT model. The
densities where the different polytropic pieces are defined are given by the thermodynamic
behavior of the tabulated EoS, hence we name the resulting model thermodynamically
adaptive slope piecewise polytropic EoS (T-ASPP EoS).

First we formulate a model for PTs depending on the values of PL and PR. We
subsequently analyze the results considering the TCPP EoS and the T-ASPP EoS. We
compare how the different models approximate the stellar properties determined by the
tabulated EoSs. We also show some example of the influence on the hydrodynamics of the
PTs by comparing the results of the PP model with the TCPP and T-ASPP models.

6.1 Modeling phase transitions

To tackle this problem, the first step is to locate the PTs present in tabulated EoSs. We
follow the procedure presented in Section §5.1.2.

Aiming to capture the thermodynamics of the located PTs, instead of relying on the
pressure we opt to model a different thermodynamic quantity that displays a more re-
presentative behavior along PTs. As we have previously discussed, potential candidates
include the adiabatic exponent, the fundamental derivative and the classical sound speed.
Our ultimate objective is to obtain an analytic expression for pressure, which would then
enable us to derive the internal energy. Therefore, the quantity we model must allow for
these expressions, imposing limitations on the magnitudes we may use.

In a cold EoS the entropy is constant and therefore first law of thermodynamics leads
to

ε(ρ) =
∫
P

ρ2 dρ,

imposing that P (ρ)/ρ2 should have a primitive expression.
We can study the viability of modeling each of the stated thermodynamic quantities

from their definitions [80]. They are usually given in terms of the specific volume V = 1/ρ
and therefore we perform a change of variable in every definition.

The adiabatic exponent is

γ = −V
P

∂P

∂V

∣∣∣∣
s

= ρ

P

∂P

∂ρ
.

Let γ(ρ) be the curve that we obtain modeling this quantity during a PT of a tabulated
EoS. Then the expression for the pressure from an initial state (ρi, Pi) is

P (ρ) = Pi exp
(∫ ρ

ρi

γ(ρ)
ρ

dρ
)

and the internal energy would involve the integral of exp(f(ρ))/ρ2, where f(ρ) is a function
of the density obtained from the integral above. As this definition of the energy will hardly
provide an analytic expression, the adiabatic exponent is not an appropriate quantity to
model for our purpose.
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The fundamental derivative in terms or the density can be written as

G = 1 + 1
2
ρ2

γP

∂2P

∂ρ2

∣∣∣∣∣
s

= 1 + P ′′ρ

2P ′

with the apostrophe denoting derivative with respect to ρ. Integrating the pressure from an
initial state (ρi, Pi) and letting G(ρ) be the curve we obtain from modeling the fundamental
derivative, then

P (ρ) = Pi +
∫ ρ

ρi

P ′i exp
(∫ ρ

ρi

2(G(x)− 1)
x

dx
)

dρ.

We would need an initial value for the derivative of the pressure, therefore conditioning
the slope which is exactly what changes differently during a PT. Also the expression will
hardly be integrable, even less the internal energy. Moreover, using the fundamental
derivative would require second derivatives of the tabulated EoS. For all these reasons,
the fundamental derivative is not an appropriate quantity to model for our goal.

Finally we have the sound speed

c2
s = ∂P

∂ρ

∣∣∣∣
s

.

Let C(ρ) be the curve we obtain modeling the sound speed from the tabulated EoS.
Then from an initial state (ρi, Pi) we have

P (ρ) = Pi +
∫ ρ

ρi

C(t)dt. (6.1.1)

and
ε(ρ) = εi +

∫ ρ

ρi

P (t)
t2

dt. (6.1.2)

Choosing a curve C(ρ) that is simple enough, integrals (6.1.1) and (6.1.2) have an
analytic solution. We choose to model this thermodynamic quantity.

The sound speed presents a very distinctive behavior along PTs. In these intervals
c2
s starts decreasing, reaches a minimum and then increases again. This shape could be

modeled, for example, with a rotated hyperbola or logarithm. Nevertheless, in order to
ensure the integrability of the curve and to make the analytic expression of the EoS simple
we propose a polynomial model.

To simplify notation we use x := ρ. The model suggested is

gn(x) =
n∑
i=0

ai

(
x

xm

)i
,

where we consider n ∈ {2, 3, 4}. A linear approximation (n = 1) does not allow for the
change of monotony during the PT and higher degree (n > 4) may introduce unrealistic
behavior to the model as we describe further on. The quantity xm is a scale factor for
the density. We set its value to be the density where the minimum of the sound speed is
reached along the PT. Finally, ai are the free parameters of the model.

Pressure must remain a continuous function when we add our model to an expression
of the pressure for the rest of the star, here labeled as fit. Given an interval for the PT
[xL, xR], the pressure is continuous at xL by taking ρi = xL, Pi = PL = Pfit(xL) in (6.1.1).
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The continuity at xR is imposed by equating Pfit(xR) = Pgn(xR):

Pfit(xR) = PR = Pgn(xR) = PL +
n∑
i=0

ai
(i+ 1)xim

(xi+1
R − xi+1

L ).

We enforce this condition to our model fixing one of the free parameters, a0:

a0 = PR − PL
xR − xL︸ ︷︷ ︸

d

−
n∑
i=1

ai
xim

xi+1
R − xi+1

L

(i+ 1)(xR − xL)︸ ︷︷ ︸
θi

.

The internal energy is continuous at the left of the interval by taking the initial state
εi = εL = εfit(xL). Then it is continuous at the right by taking as internal energy initial
value for the next part of the general EoS εR = εgn(xR).

Our model, when including continuity of pressure, has an independent term d given
by the extremes of the PT and a constant factor θi multiplied by each of the rest free
parameters of the model:

gn(x) =
n∑
i=1

ai
xim

(
xi − θi

)
+ d. (6.1.3)

It contains n free parameters. Pressure and internal energy values are obtained
straightforwardly

P (x) = PL +
n∑
i=1

ai
xim

(
xi+1 − xi+1

L

i+ 1 − θi(x− xL)
)

+ d(x− xL)

ε(x) = εL +
n∑
i=1

ai
i(i+ 1)ximx

(
ixi+1
L − (i+ 1)xiLx+ xi+1 + (i+ 1)iθi(x ln(xL/x) + x− xL)

)
+ d

(
ln(x/xL) + xL − x

x

)
− PL(xL − x)

xLx
.

Once gn(x) is completely defined assigning a value to its parameters, we have an
expression for the EoS.

It is not convenient to introduce n new free parameters for each PT in an EoS model
and therefore we determine the ai values by the features of the PT.

When we localize a PT, we have the density values of its extremes xL, xR and the
values of the sound speed in them, cL and cR respectively. Within the interval we can also
find the location of the minimum of the sound speed xm and its value cm. We know that
in xL there is a local maximum of the sound speed, as the start of the PT is marked by
its change of monotony. At xm there is a local minimum. We can impose these pairs of
values and local extrema to our model for determining the parameters.

We have a total of five conditions (three pair of values, two extrema). We can impose a
maximum of n of them to each model at the same time. This gives a set of parametrizations
from where we can choose the more appropriate one. Notice, however, that for n = 2 our
model is a parabola and thus, from the two extrema, it only makes sense to impose
the minimum as its vertex. In tables 6.1, 6.2 and 6.3 we gather the labeling of the
parametrizations for each of the studied values of n and detail which conditions we impose
in each of them.

Given a tabulated EoS and the location of a PT, we calculate all parametrizations for
n = 2, 3, 4. We remove those that are not causal and thermodynamically consistent. In
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Model Parametrization Conditions imposed

g2(x)

g2o1 g2(xL) = cL, g2(xm) = cm

g2o2 g2(xL) = cL, g2(xR) = cR

g2o3 g2(xm) = cm, g2(xR) = cR

g2o4 g2′(xm) = 0, g2(xL) = cL

g2o5 g2′(xm) = 0, g2(xm) = cm

g2o6 g2′(xm) = 0, g2(xR) = cR

Table 6.1: Possible analytic conditions that determine the parameters of the g2(x) PT
model.

order to check consistency we verify that the value at the minimum is positive. This is
straightforward as the local extrema of the three models can be found analytically. To
check causality, we calculate the specific enthalpy using the expressions of pressure and
internal energy to evaluate the relativistic sound speed at the maxima and check that is
below the light speed in vacuum.

Once we have those models that do not contradict a physically valid EoS, we discard
those whose shape contradicts the behavior of the sound speed along a PT. This means
that we allow only models with exactly one local extrema that is, indeed, a minimum.
This filter of the models is the reason why we do not consider higher order polynomials,
as they tend to have more extrema along the PT interval. As a matter of fact, in most of
the PTs studied all g4(x) models are discarded for this reason.

Model Parametrization Conditions imposed

g3(x)

g3o1 g3(xL) = cL, g3(xm) = cm, g3(xR) = cR

g3o2 g3′(xL) = 0, g3′(xm) = 0, g3(xL) = cL

g3o3 g3′(xL) = 0, g3′(xm) = 0, g3(xm) = cm

g3o4 g3′(xL) = 0, g3′(xm) = 0, g3(xR) = cR

g3o5 g3′(xL) = 0, g3(xL) = cL, g3(xm) = cm

g3o6 g3′(xL) = 0, g3(xL) = cL, g3(xR) = cR

g3o7 g3′(xL) = 0, g3(xm) = cm, g3(xR) = cR

g3o8 g3′(xm) = 0, g3(xL) = cL, g3(xm) = cm

g3o9 g3′(xm) = 0, g3(xL) = cL, g3(xR) = cR

g3o10 g3′(xm) = 0, g3(xm) = cm, g3(xR) = cR

Table 6.2: Possible analytic conditions that determine the parameters of the g3(x) PT
model.

To select the more appropriate model between all remaining alternatives, we evaluate
their fitting accuracy calculating the relative least square error of the sound speed. Still,
as we are providing an expression for the pressure, it is also crucial for this quantity to
closely resemble the data. Hence we also compute the relative error of the pressure.

We determine that the error of a parametrization is the average between the error of
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the pressure and the error of the sound speed. Finally we choose the parametrization with
smaller error. This approach enables us to select among different fittings for the data
without introducing more free parameters into the total EoS model.

Model Parametrization Conditions imposed

g4(x)

g4o1 g4(xL) = cL, g4(xm) = cm, g4(xR) = cR, g4′(xL) = 0
g4o2 g4(xL) = cL, g4(xm) = cm, g4(xR) = cR, g4′(xm) = 0
g4o3 g4′(xL) = 0, g4′(xm) = 0, g4(xL) = cL, g4(xm) = cm

g4o4 g4′(xL) = 0, g4′(xm) = 0, g4(xL) = cL, g4(xR) = cR

g4o5 g4′(xL) = 0, g4′(xm) = 0, g4(xm) = cm, g4(xR) = cR

Table 6.3: Possible analytic conditions that determine the parameters of the g4(x) PT
model.

6.2 Thermodynamically consistent piecewise polytropic EoS

To construct the TCPP EoS we consider that the general expression for the pressure of
the star is given by the PP EoS replaced by our polynomial model at the PTs.

We apply our modeling approach to the PTs identified in table 5.2. The selected models
and their parameters can be found in tables A.1 and A.3, respectively, in the Appendix.
For completeness, we also include in the Appendix the parameters of the studied PP EoSs,
in table A.2.

We find that the most preferred model is the parabola, which is consistent with the
change of monotony of the sound speed. Additionally, we obtain some higher order models.
All of them are causal and thermodynamically consistent and offer a continuous EoS when
stitched to the correspondent PP model.

To illustrate the performance of our model we display the main thermodynamic quan-
tities for the tabulated data, the PP and the TCPP EoSs. We show the parabola that
models the PT in BGN1H1, figure 6.1, the cubic polynomial for H6, figure 6.2, and the
quartic polynomial for ALF1, figure 6.3.

In figure 6.1, depicting BGN1H1 EoS, we can see that the PP EoS has a sound speed
lower that the tabulated data at the onset of the PT. Our PT model mimics a smooth
descend from this value until reaching the minimum. Still, at the end of the PT it sharply
increases beyond both the data and the PP model. This is because the model is parabolic
thus it does not have enough free parameters to fit accurately both the minimum and the
extremes. On the other hand, the TCPP EoS exhibits a nonconvex region (the fundamen-
tal derivative changes sign) similarly to the data. Although the TCPP pressure values
deviate further from the data, their shape is more precise.

Figure 6.2, focused on the third PT of H6 EoS, shows a TCPP model which significantly
deviates from the data. We impose that our model starts with a decreasing region but in
this case the sound speed of the PP model is much lower than the data and the PT model
has to remain almost constant. This shows an example of the high sensitivity of our PT
model to the pressure value at the extremes. Although the pressure values of the PP EoS
are close to the tabulated data in this region, the slope is not accurate with respect to the
table. This has a negative impact in the modeling of the PT.
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Figure 6.1: Main thermodynamic quantities for BGN1H1 EoS during its PT. Tabulated
EoS, PP model and our TCPP model. Vertical dashed lines mark the limits of the PT.

The results for ALF1 EoS are shown in figure 6.3. The TCPP pressure shows better
agreement with the data than the PP model. It also captures the nonconvex region. Fourth
order polynomials like the one used in the fit of this PT lead to a better agreement with
the tabulated EoS due to the higher number of parameters. Nevertheless, they usually
have to be discarded because they introduce artificial local extrema along the PT.

6.3 Thermodynamically adaptive slope piecewise polytropic
EoS

We follow the idea of the PP model of fitting polytropes with tabulated data for cons-
tructing an expression for the pressure outside PTs. Our novel approach is to remove the
PT regions and calibrate a polytrope for each interval of data remaining. Therefore, our
general fit for the high density region has as many polytropes as PTs plus one.
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Figure 6.2: Main thermodynamic quantities for H6 EoS during its third PT. Tabulated
EoS, PP model and our TCPP EoS. Vertical dashed lines mark the limits of the PT.

We focus on the modeling of the EoSs from Arizona database [3] in order to compare
our results with the PP model. As the PTs detected for these EoSs are in the high density
region, for our purposes we can maintain the existing crust of four fixed polytropes from
the PP model. However, our T-ASPP modeling could be applied to the whole star in
order to account for PTs in the crust as those found in the EoSs from CompOSE [1] in
table 5.3.

A first polytrope matches the model of the crust at some density ρ1 and extends
up to the start of the first PT of the EoS. To ensure continuity of the pressure, the
free parameters of this polytrope P = κρΓ are the matching density with the crust last
polytrope P = κcρ

Γ
c , ρ1, and the adiabatic index Γ. The matching density determines

κ = κcρ
Γc−Γ
1 . To fit the relation we minimize the cost function
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Figure 6.3: Main thermodynamic quantities for ALF1 EoS during its PT. Tabulated EoS,
PP model and our TCPP EoS. Vertical dashed lines mark the limits of the PT.

S1 =
√√√√ 1
m

∑
ρi>ρ1

(
log(Pi)− log(κcρΓc−Γ

1 )− Γ log(ρi)
)2

where m is the number of density points above the value ρ1.
Any polytrope defined in the region after a PT does not have continuity conditions

with any other piece and therefore both parameters κ and Γ can be used in the fitting.
The cost function minimized is

S2 =
√√√√ 1
N

∑
ρi

(log(Pi)− log(κ)− Γ log(ρi))2 (6.3.1)

where N is the number of points in the tabulated data.
Given that the high density region of the EoS is adjusted with a number of polytropes

equal to the number of PTs plus one, when there are at least two PTs the pressure is fairly
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well reconstructed. Nevertheless, in the presence of a single PT, one unique polytrope
may not be able to capture correctly the changes of slope of the pressure along the core.
We design a procedure to locate significant changes in the slope of pressure within the
tabulated data. The method is designed to apply to EoSs with a single PT and it focuses
on the region after it.

6.3.1 Locating significant changes of the pressure slope

The pressure in the tabulated data may experiment a significant change of its slope during
the higher density region corresponding to the description of the inner core of the NS.
When trying to fit the whole core with a single polytrope it captures an average slope of
the tabulated points, not being very accurate neither in the outer core or the inner core.

We analyze the sound speed to study the slope of the pressure. We define a significant
change of slope as a jump discontinuity of the sound speed or a decreasing region that
is not a PT. If the sound speed decreases smoothly there is no kink in the adiabatic
exponent and therefore the region is not identified as a PT, although it reduces the slope
of the pressure. We divide the region after the PT in two different polytropes if we find
a significant change of slope in the pressure. Both of the two criteria announced yield a
suggestion for the dividing density.

To locate a decreasing region of the sound speed we look for local maxima in the data.
To remove oscillatory behavior, we impose that the sound speed decreases for at least two
data points after the maximum. If there are more than one maximum, we consider as
dividing density suggestion the one at a smaller density.

To locate a jump discontinuity in the sound speed we use the local total variation
(LTV) defined in (5.1.1), TV 3

j (c2
s). We compute this quantity for the whole region after

the PT. We look for maxima of the LTV, discarding them as oscillatory behavior if the
monotonicity of the LTV changes sign during the three previous or posterior points. We
consider a maximum of the LTV relevant if its value is greater that the mean of the LTV
during the region plus two times the standard deviation. In a Gaussian distribution this
criteria isolates the data outlier from the mean with 95% confidence. We consider that the
notion can be extended to our study and the criteria identifies peaks of the LTV that are
actually significant jumps in the sound speed. If there are more than one peak obeying
this criteria, the dividing density suggestion from this approach is the density value with
the larger LTV.

If none of the criteria above yield a dividing density suggestion it means that the
pressure behaves smoothly along the core of the NS and it can be well captured by a
single polytrope. If just one of the criteria suggests a density, it is taken as the dividing
density between two different polytropes for the NS core.

In the case where the two criteria suggest a dividing density, we select the one coming
from the LTV of the sound speed. We consider that a jump in the slope may introduce a
greater change in the pressure that a smooth region of decreasing sound speed.

When the region after the PT is fitted with two different polytropes, 1 and 2, sepa-
rated at density ρc selected with the method above, then the first polytrope has two free
parameters and is fitted optimizing cost S2 (6.3.1) using densities up to ρc. To ensure
continuity of the pressure at ρc, the second polytrope has a single free parameter, Γ2, and
κ2 = κ1ρ

Γ1−Γ2
c . Therefore the cost function to minimize is

S3 =
√√√√ 1
N

∑
ρi>ρc

(
log(Pi)− log(κ1ρ

Γ1−Γ2
c )− Γ2 log(ρi)

)2
.
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The dividing densities arising from the extremes of the PT and the study of the sound
speed yield this EoS model the name of T-ASPP.

We apply this modeling to the EoSs from Arizona database [3] with PTs located in
table 5.2. The parameters of the fitted polytropes (for EoSs with one and more PTs), the
selected polynomials for the PTs and the coefficients of the PT models obtained can be
found in the Appendix, in tables A.4, A.5 A.6 and A.7 respectively.

Figure 6.4: Main thermodynamic quantities for BGN1H1 EoS during its PT. Tabulated
EoS, PP model and our T-ASPP model. Vertical dashed lines mark the limits of the PT.

To show the performance of the T-ASPP model we present the sound speed, adiabatic
exponent, fundamental derivative and pressure compared to the PP model and the tabu-
lated data of BGN1H1, H6 and ALF1 EoSs. This allows a direct comparison with figures
6.1-6.3, which show the results for the TCPP model.

Figure 6.4 shows BGN1H1 EoS. The fit of the pressure of the T-ASPP model follows the
pressure data accurately both inside and outside the PT, represented by a fourth order
polynomial. All thermodynamic quantities are well captured, including the nonconvex
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region. The sound speed presents a roughly noticeable jump in the left extreme of the PT
and a much smaller jump at the right than the TCPP model.

Figure 6.5: Main thermodynamic quantities for H6 EoS during its third PT. Tabulated
EoS, PP model and our T-ASPP model. Vertical dashed lines mark the limits of the PT.

In figure 6.5 we depict is the third PT of H6 EoS. As with the TCPP model, this EoS
displays how sensitive is our PT model to the pressure values at the extremes. With the
T-ASPP model the pressure fit resembles well the data but it departs from the trend at
the end of the PT. The polynomial selected in this case is a parabola, that adjust the
minimum of the sound speed but increases largely at the end of the PT. This induces a
sudden increase of the slope of the pressure that can be noticed in the graphic. Aside from
this undesired behavior at the end of the PT, we observe that the new approximation of
the EoS outside the PT provides PL and PR values which allow the PT model to capture
the nonconvex region. Despite the inaccurate fit of the parabola towards the end of the
PT, the T-ASPP model captures the thermodynamic properties of the EoS.

Last example, ALF1 EoS in figure 6.6, displays another accurate modeling of the
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thermodynamics. The polytrope used for the pressure at the left of the PT follows well
the tabulated data, leading to a good representation of the slope. Therefore the transition
from the polytrope to the PT model from the left is quite smooth. The polytrope used
after the PT resembles the one from the PP, further from the tabulated data and with
different slope. Thus the sound speed presents a greater jump at the right extreme of the
PT. The change of the pressure at the left with respect to the PP model induces that in
this case the PT is represented with a third order polynomial, instead of the fourth degree
in the TCPP. Still, the nonconvex region is captured.

Figure 6.6: Main thermodynamic quantities for ALF1 EoS during its PT. Tabulated EoS,
PP model and our T-ASPP model. Vertical dashed lines mark the limits of the PT.

6.4 Comparison of stellar properties

We compute the relative percent difference (RPD) of the stellar properties induced by the
different EoS models with respect to the tabulated EoSs to compare the performance in
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the representation of NSs.
The sequence of NSs is constructed from the central density of the maximum mass

star according to the tabulated EoS. The EoS models are compared down to the central
density where the first of them reaches a star of 16km radius.

Results are gathered in table 6.4. The results show that in general no single model
is superior in all scenarios. Given an EoS, the smaller error for each quantity may come
from different analytic models. Noticeably, on GS2 and ALF2 EoSs the T-ASPP model
obtains better results for all stellar properties.

RPD M RPD R RPD Λ
EoS PP TCPP T-ASPP PP TCPP T-ASPP PP TCPP T-ASPP
PS 1.185 2.508 2.187 3.019 2.617 0.7440 9.143 9.623 8.732
GS1 2.133 5.776 2.481 2.429 2.314 1.298 15.61 24.79 18.66
GS2 2.386 3.568 1.621 2.087 1.961 1.046 16.16 19.33 15.84
BGN1H1 3.888 5.048 2.562 0.856 1.249 1.100 26.80 30.10 36.73
H4 1.217 1.183 1.287 3.268 3.279 3.256 6.056 5.962 6.304
H5 1.520 1.481 2.383 1.918 1.927 2.663 28.10 27.99 26.55
H6 1.474 1.457 1.373 1.883 1.883 1.488 32.748 32.68 33.79
H7 1.447 1.404 1.910 3.007 3.016 3.511 26.24 26.11 25.58
ALF1 6.191 5.732 3.810 2.705 2.617 1.053 34.09 29.62 23.00
ALF2 8.783 9.019 6.815 3.268 3.334 3.298 44.33 45.03 31.289

Table 6.4: RPD of stellar properties with respect to the tabulated EoS for the different
EoS models. Colored cells signal the best result for each property and EoS.

In general, the T-ASPP model achieves smaller errors for all quantities in a greater
number of EoSs. We highlight the good results obtained for ALF1 and ALF2. For ALF1
the error in mass is 1.62 times smaller with T-ASPP than with PP, the error in radius
2.57 times smaller and the error in tidal deformability 1.48 times smaller. For ALF2, the
error in the mass is 1.29 times better with T-ASPP than with PP, the error for the radius
is almost the same and the tidal deformability is 1.42 times better with T-ASPP.

We obtain that TCPP model does not improve the error in radius for any EoS, although
it does improve slightly some errors in mass and tidal deformability.

In figure 6.7 we draw the information of table 6.4, depicting the RPD for mass, radius
and tidal deformability for all EoSs studied with PTs. We show the quantities for the
three EoS analytic models. This graphic reveals that the T-ASPP model decreases the
general error in mass and tidal deformability, and perform similarly to the PP model for
the radius.

The average RPD of mass is around 3.02% for the PP model. TCPP increases to
3.72% while T-ASPP reduces the mean error to 2.64%. For T-ASPP the majority of EoSs
have an error around the mean, while the other models present a greater deviation. In
the case of the star radius, the error has a more sparse distribution for the three analytic
models. Still the PP model presents the greater mean error of 2.44%, followed by the
TCPP with 2.42%. The best mean result is again for T-ASPP, with mean RPD for the
radius of 1.95%.

The tidal deformability presents significant errors for the three analytic models. While
the maximum error for PP and TCPP is around 45%, for T-ASPP is below 40%. TCPP
model has the higher mean error of 25.12%. The mean errors for PP, 23.93%, and T-ASPP,
22.65%, are more similar, but again T-ASPP presents the best results.
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Figure 6.7: Comparison of RPD of mass, radius and tidal deformability for the EoS from
[3] with PTs using different EoS analytic models: PP, TCPP and T-ASPP.

In general, we can say that our T-ASPP model improves the representation of the
stellar properties of NSs. Although it may contain more free parameters than the PP
model, in the case of several PTs within the high density region of the EoS, the analytic
expression is equally simple and computationally efficient. It also presents the advantage
of a better representation of the thermodynamics, depicting regions of smooth decrease of
the sound speed and allowing for nonconvex EoS models.

6.5 Influence in hydrodynamics

With the aim of showcasing the impact of PTs on the fluid hydrodynamic evolution, we
use PP, TCPP and T-ASPP models for ALF1 EoS in SRHD. We design two Riemann
problems that reveal the impact of an accurate thermodynamics.

We design an analogous to the blast wave problem presented in Chapter 2 to use
with cold EoSs. We name it cold blast wave. The key difference between the cold blast
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wave and traditional blast waves is the density shell. While pressure and velocity values
remain constant across contact discontinuities, with a hot EoS P (ρ, ε) the wave admits an
arbitrary jump in density resulting in the characteristic high, thin shell. Using a cold EoS,
where the relationship between pressure and density is bijective, means that a constant
pressure results in a constant density across the contact discontinuity eliminating the
density jump.

The Riemann problems suggested, cold blast wave 1 and 2, are gathered in table
6.5. Notice that the initial value for the density implies the initial value of the pressure.
Therefore the initial state of pressure may be different for different modelings of the same
EoS. Using the spatial domain x ∈ [0, 1] with initial discontinuity at x = 0.5, we present
the solution profile for pressure, density, velocity and fundamental derivative at time
tf = 0.2. For the numerical solution we use MFF with PHM reconstruction (see Chapter
4) and divide the domain in 16000 intervals. The graphics are represented in x ∈ [0.4, 0.6],
focused on the waves.

ρL [g/cm3] υL ρR [g/cm3] υR

Cold blast wave 1 8·1013 0 4.3·1014 0
Cold blast wave 2 3.1·1014 0 4.45·1014 0

Table 6.5: Riemann problems designed for ALF1 EoS aiming to exemplify the influence
of PTs in the hydrodynamics.

Cold blast wave 1 is a Riemann problem where the right initial state is inside the PT
of the EoS and the left initial state is at a smaller density outside of it. The change of
piece in a piecewise EoS introduces artificial discontinuities in the sound speed that can
affect the wave dynamics. Thus it is important to identify the change of pieces that the
solution of the problem traverses, allowing to pick out the artificial effects introduced in
the dynamics.

For the PP model the problem develops inside the first polytrope of high density
matter. Due to the addition of the modeling of the PT, with TCPP the problem traverses
the change from the polynomial modeling the PT to the polytrope outside of it. For the
T-ASPP there are two changes of definition: from the PT to a polytrope and from this
polytrope to the crust.

In figure 6.8 we display the solution of the cold blast wave 1 using PP and TCPP
models. The pressure is higher on the right side, causing an expansive wave to move
towards the right decreasing both density and pressure. In the case of the PP model, a
rarefaction moves to the right. For the TCPP the right initial condition is located in a
region of negative fundamental derivative G, leading to a shock wave moving towards the
right. Outside of the PT both EoS models coincide, hence the solution profiles are the
same after the transition from the polynomial to the polytropic piece. In the solution for
the TCPP model we can appreciate a brief constant state after the shock wave moving
to the right connecting it to the rarefaction wave. This is due to the jump in the sound
speed induced by the change from the polynomial to the polytropic definition.

Figure 6.9 shows the solution for the cold blast wave problem 1 using PP and T-ASPP
models. Given that the T-ASPP describes pressure outside the PT differently from the
PP the solutions, although similar, do not overlap. The left initial condition is in a G < 0
region for the T-ASPP model, as it was for TCPP. Therefore, the same composite wave
formed by a shock and a rarefaction appears. The change of definition from the polynomial
of the PT to the polytrope outside it happens at the same density than in the TCPP model
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Figure 6.8: Profiles for cold blast wave 1 using ALF1 EoS with PP and TCPP models.
Left to right, top to bottom: velocity, pressure, density and fundamental derivative.

but in this case there is no artificial constant state between the shock and the rarefaction.
This is because the change of piece is quite smooth in this model as it can be seen in figure
6.6. The change of polytrope between the high density region and the crust of this model
occurs during the shock moving to the left, yielding no artificial effects in the dynamics.

The change of pieces can be appreciated clearly in the fundamental derivative, where
there are jump discontinuities between the different values.

The solution of the T-ASPP model is a fair representation of the wave dynamics that
the tabulated ALF1 EoS would induce.

Cold blast wave 2 problem has the right initial state inside the PT of the EoS. The left
initial state is located at a higher density than in the previous cold blast wave and therefore
in this case the T-ASPP model presents a single change of piece from the polynomial of
the PT to the polytrope outside. For PP and TCPP models, the change of pieces is the
same than with the previous cold blast wave.
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Figure 6.9: Profiles for cold blast wave 1 using ALF1 EoS with PP and T-ASPP models.
Left to right, top to bottom: velocity, pressure, density and fundamental derivative.

We present the solution for the cold blast wave 2 using PP and TCPP models in figure
6.10. The PP presents an expansive rarefaction towards the right and a compressive shock
to the left. This shock wave is the same that appears for the TCPP model as the left
initial condition lies in the polytrope common to both models. The wave to the right
in the TCPP model is another shock wave even when the right initial condition is in a
region of G > 0. To understand the nature of this wave we refer to the study of nonconvex
dynamics performed in Chapter 2.

The right sequence of wave curves associated to this Riemann problem for the TCPP
EoS starts with an integral curve since the initial condition lies in a convex region and
the pressure has to decrease. This curve encounters a zero of the nonlinearity factor, as
we can deduce seeing the change of sign of the fundamental derivative over the solution.
Therefore it is terminated and continued with a mixed curve. As the integral curve is short,
the mixed curve is soon finished and its jump discontinuity is prolonged by a Hugoniot
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Figure 6.10: Profiles for cold blast wave 2 using ALF1 EoS with PP and TCPP models.
Left to right, top to bottom: velocity, pressure, density and fundamental derivative.

curve with origin in the initial state. The associated wave overtakes the previous ones and
we observe a shock wave in the solution profile.

The change of piece from the polynomial to the polytrope takes place during the shock
and does not modify the wave dynamics.

In figure 6.11 we present the solution for the cold blast wave 2 using PP and T-ASPP
models. Following the same reasoning, T-ASPP model yields shock waves both to the left
and the right.
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Figure 6.11: Profiles for cold blast wave 2 using ALF1 EoS with PP and T-ASPP models.
Left to right, top to bottom: velocity, pressure, density and fundamental derivative.
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[74] A. Marquina, S. Serna, and J. M. Ibáñez. Capturing Composite Waves in non-convex
special relativistic hydrodynamics. Journal of Scientific Computing, 81:2132–2161,
2019.

[75] J. M. Mart́ı and E. Müller. The analytical solution of the Riemann problem in
relativistic hydrodynamics. Journal of Fluid Mechanics, 258:317–333, 1994.

[76] J. M. Mart́ı and E. Müller. Numerical hydrodynamics in special relativity. Living
Reviews in Relativity, 6(1):1–100, 2003.

[77] J. M. Mart́ı and E. Müller. Grid-based methods in relativistic hydrodynamics and
magnetohydrodynamics. Living reviews in computational astrophysics, 1(1):1–182,
2015.

[78] J. M. Mart́ı et al. Morphology and dynamics of highly supersonic relativistic jets.
The Astrophysical Journal, 448(2):L105, 1995.

[79] J. M. Mart́ı et al. Morphology and dynamics of relativistic jets. The Astrophysical
Journal, 479(1):151, 1997.

[80] R. Menikoff and B. J. Plohr. The Riemann problem for fluid flow of real materials.
Reviews of Modern Physics, 61:75–130, 1989.

135



[81] A. Mignone and G. Bodo. An HLLC Riemann solver for relativistic flows—I. Hy-
drodynamics. Monthly Notices of the Royal Astronomical Society, 364(1):126–136,
2005.
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Appendix A

Additional tables

EoS PT1 PT2 PT3 PT4
PS g2o6
GS1 g2o6
GS2 g2o6
BGN1H1 g2o5
H4 g2o6 g2o2 g2o6 g3o2
H5 g2o6 g2o4 g2o6
H6 g2o6 g2o2 g3o4
H7 g2o6 g3o2 g2o6
ALF1 g4o1
ALF2 g2o6

Table A.1: Type of polynomial model obtained for each of the PTs located in table 5.2
using TCPP model.

EoS log(P1) Γ1 Γ2 Γ3

PS 34.671 2.216 1.640 2.365
GS1 34.504 2.350 1.267 2.421
GS2 34.642 2.519 1.571 2.314

BGN1H1 34.623 3.258 1.472 2.464
H4 34.669 2.909 2.246 2.144
H5 34.609 2.793 1.974 1.915
H6 34.593 2.637 2.121 2.064
H7 34.559 2.621 2.048 2.006

ALF1 34.055 2.013 3.389 2.033
ALF2 34.616 4.070 2.411 1.890

Table A.2: Parameters of the PP EoSs used in the construction of the TCPP model,
extracted from [95]. Notice that P1, the pressure where the high density region meets the
fit for the crust, is in dyne/cm2.
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PT a1 a2 a3 a4

PS -0.2999434 0.1499717 0 0
GS1 -0.1992662 0.09963312 0 0
GS2 -0.7030000 0.3515000 0 0

BGN1H1 -3.949183 1.974592 0 0
H4 (PT1) -3.311180 1.655590 0 0
H4 (PT2) -10.36376 5.114054 0 0
H4 (PT3) -41.58576 20.79288 0 0
H4 (PT4) 344.9046 -352.4198 119.9783 0
H5 (PT1) -1.558999 0.794997 0 0
H5 (PT2) -5.171105 2.585552 0 0
H5 (PT3) -24.32069 12.16035 0 0
H6 (PT1) -1.197840 0.5989198 0 0
H6 (PT2) -1.292044 0.6332808 0 0
H6 (PT3) 97.41861 -99.21711 3.367187 0
H7 (PT1) -1.494551 0.7472754 0 0
H7 (PT2) 364.9504 -368.5709 124.0638 0
H7 (PT3) -70.27469 35.13734 0 0

ALF1 -9.996823 8.486970 -2.731144 0.2484120
ALF2 -0.5362804 0.2681402 0 0

Table A.3: Parameters obtained for the model of each of the PTs with TCPP model.
The terms θi, d and xm of equation (6.1.3) can be obtained from the given location of the
PT and the evaluation of the PP EoS.

Polytrope 1 Polytrope 2 Polytrope 3
EoS ρ1 Γ κ Γ ρc Γ
PS 5.408342e+13 2.700651 1.678417e-19 2.201028
GS1 7.245427e+13 2.627418 3.029894e-21 2.297987 1.987850e15 2.700192
GS2 6.909353e+13 2.736653 1.898658e-19 2.193692
BGN1H1 9.991575e+13 2.847990 3.671349e-26 2.632914
ALF1 1.390908e+14 2.663749 1.515736e-30 2.925772 1.423560e15 1.493853
ALF2 2.132768e+14 4.466608 2.875044e-20 2.260870 1.156867e15 1.736335

Table A.4: Parameters of the polytropes fitted for T-ASPP model in the case of a single
PT. Parameter ρ1 is the density where the high density fit meets the crust. The presence
of a third polytrope and its dividing density ρc are determined from the behavior of the
sound speed.

Polytrope 1 Polytrope 2 Polytrope 3 Polytrope 4 Polytrope 5
EoS ρ1 Γ κ Γ κ Γ κ Γ κ Γ
H4 8.857179e13 2.904905 3.674223e-21 2.322651 1.082695e-19 2.223440 7.678047e-18 2.100814 4.686073e-13 1.785478
H5 7.403334e+13 2.666776 1.776434e-16 2.000432 2.422123e-15 1.924059 8.959896e-15 1.886911
H6 7.564155+13 2.699506 6.498099e-20 2.231733 1.141858e-19 2.214444 1.569845e-10 1.609401
H7 6.505443e+13 2.530689 4.778496e-17 2.036248 9.280893e-17 2.016653 3.575624e-16 1.978326

Table A.5: Parameters of the polytropes fitted for T-ASPP model in the case of several
PTs. Parameter ρ1 is the density where the high density fit meets the crust.
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EoS PT1 PT2 PT3 PT4
PS g2o5
GS1 g2o6
GS2 g2o6
BGN1H1 g4o2
H4 g2o6 g2o6 g2o1 g4o2
H5 g4o5 g2o6 g4o1
H6 g2o6 g2o6 g2o1
H7 g2o6 g2o6 g2o5
ALF1 g3o1
ALF2 g2o6

Table A.6: Type of polynomial model obtained for each of the PTs located in table 5.2
using T-ASPP model.

PT a1 a2 a3 a4

PS -0.291327 0.145664 0 0
GS1 -0.216637 0.108318 0 0
GS2 -1.017213 0.508607 0 0

BGN1H1 -23.53632 21.61414 -7.821805 0.876630
H4 (PT1) -3.264435 1.632217 0 0
H4 (PT2) -19.41081 9.705403 0 0
H4 (PT3) -148.8775 74.58862 0 0
H4 (PT4) -234.6205 227.1035 -79.04511 4.247607
H5 (PT1) -3.8317865 3.359718 -1.257225 0.221007
H5 (PT2) -12.85180 6.425898 0 0
H5 (PT3) 8248.275 -8235.706 2687.375 40.25310
H6 (PT1) -1.942309 0.971154 0 0
H6 (PT2) -9.298705 4.649353 0 0
H6 (PT3) -50.87276 25.53068 0 0
H7 (PT1) -1.880712 0.940356 0 0
H7 (PT2) -33.41581 16.70790 0 0
H7 (PT3) -1369.555 684.7774 0 0

ALF1 -7.368422 5.477297 -1.275412 0
ALF2 -0.337758 0.168879 0 0

Table A.7: Parameters obtained for the model of each of the PTs with T-ASPP model.
The terms θi, d and xm of equation (6.1.3) can be obtained from the given location of the
PT and the evaluation of the polytropic pieces provided.
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