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Introduction 

1. Overview of the circadian clock function 

The circadian clock is cellular mechanism found in almost all organisms. It confers 24h 

rhythms on processes ranging from gene expression to behavior, by synchronizing with the 

environmental changes caused by the rotation of earth. Environmental signals act as a 

zeitgeber time (ZT) (from the German for “time givers”) to reset the clock every day. This 

synchronization is an active process called entrainment (Roenneberg et al., 2007). 

Circadian clocks are autonomous, producing robust 24h circadian rhythms even in the 

absence of daily environmental transitions (i.e., under constant light and/or temperature 

conditions). Circadian rhythms in the absence of the entraining signals are called free-

running rhythms. A diurnal rhythm is not circadian if it does not persist under constant 

environmental conditions (Vitaterna et al., 2001). The circadian clock control of biological 

processes ensure that these processes take place at appropriate times of the day (Vitaterna 

et al., 2001). Disruption of the biological rhythms can impair fitness, health, and well-being 

of organisms (Finger and Kramer, 2021). 

Conceptually, the circadian clock system consists of three functional modules: input 

pathways, central oscillator, and output pathways (Figure 1). The input pathways perceive 

and transmit environmental cues to entrain the central oscillator. Synchronizing cues 

include variation in light quality, light quantity, temperature and even humidity. All the 

external environmental cues that convey the time information to the central oscillator can 

be considered as input pathways. The central oscillator is composed of core clock 

components that reciprocally regulate each other through interlocked feedback loops (Bell-

Pedersen et al., 2005). Output pathways refer to the biological processes whose rhythms 

are controlled by the central oscillator (Yakir et al., 2007). Thus, environmental signals 

perceived and transduced via input pathways are responsible for entraining the central 

oscillator, which generates rhythmic output pathways enabling a vast of biological 

processes to occur at appropriate times during the day and night cycle (Greenham and 

McClung, 2015).  
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Figure 1. A simplified schematic view of the circadian clock system. Inputs (top), 

Central oscillator (center), and Outputs (bottom). Created by using BioRender.  

Circadian rhythms are described with mathematical terms including period, phase, and 

amplitude (Harmer, 2009). Circadian period refers to the duration of one full cycle. Under 

free-running conditions, the period of circadian rhythms sustain similar (albeit not exactly) 

period as the entraining condition. Amplitude refers to half of the difference between the 

peak and trough of a given rhythm while phase refers to the state of a rhythm oscillation 

relative to the state of the entraining time (Parsons et al., 2020). 

Plasticity of the circadian period appears to be a conserved property from mammals to 

plants (Azzi et al., 2017; Hotta et al., 2007; Scheer et al., 2007). The increased intensity of 

the light input to the oscillator shortens the period of the circadian clock under continuous 

light (LL) conditions (Aschoff, 1979; Devlin and Kay, 2000). In addition, higher 

temperature and sucrose also shorten the circadian period (Frank et al., 2018; Gould et al., 

2006; Haydon et al., 2013b; Mehra et al., 2009; Salomé et al., 2010a; Shin et al., 2017). 
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Conversely, the circadian period is longer with lower light intensities or lower temperature 

(Aschoff, 1979; Devlin and Kay, 2000; Salomé et al., 2010a). Another remarkable property 

of the circadian system is a phenomenon known as “gating”, whereby the same-strength 

stimuli applied at different times of the day can result in different responses. Circadian 

gating may enable plants to respond better to the wide range and intensities of 

environmental signals that they are constantly exposed to (Hotta et al., 2007). The circadian 

clock can also sustain robust rhythms with a period close to 24h over a broad range of 

physiological temperatures, which is termed temperature compensation (Gould et al., 

2006). Nutritional compensation is also documented as the circadian period remains stable 

over different nutritional applications (Iwasaki and Kondo, 2000). 

In many multicellular organisms, circadian clocks generate cell-autonomous oscillations 

(Doherty and Kay, 2010; Jolma et al., 2010). These cellular circadian rhythms are 

integrated into the tissue or organismal level to achieve coordinated physiological 

responses. In mammals, this has been documented as hierarchical and tissue-specific 

function of networked circadian clocks. The circadian clock in the suprachiasmatic nucleus 

(SCN) in the brain is known as a master clock, whereas clocks in peripheral tissues, such 

as liver, are termed peripheral oscillators. Similarly, a hierarchical multi-oscillator network 

orchestrates the Arabidopsis circadian system (Takahashi et al., 2015). The circadian clock 

at the shoot apex functions as a master oscillator influencing the circadian activity in roots. 

Studies on specific plant organs and tissues are uncovering both the circadian autonomy of 

some organs (Bordage et al., 2016; Endo et al., 2014; James et al., 2008; Thain et al., 2000; 

Thain et al., 2002; Wenden et al., 2012; Yakir et al., 2011b) as well as the coupling and 

coordination of rhythms within the plant (Chen et al., 2020; Endo et al., 2014; Gould et al., 

2018; Greenwood et al., 2019; Takahashi et al., 2015). Therefore, the plant circadian system 

comprises autonomous tissue-specific rhythms complemented with cell-to-cell coupling 

and long-distance coordination (Nakamichi, 2020; Sorkin and Nusinow, 2021).  

2. The plant circadian system 

The plant circadian clock regulates a significant fraction of the transcriptome and 

participates in the regulation of many processes including among others, physiology, 
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development, and metabolism (Caldeira et al., 2014; Footitt et al., 2017; Haydon et al., 

2013a; Mwimba et al., 2018a). Having an appropriate functional circadian clock confers a 

higher fitness and adaptive advantages to plants (Green et al., 2002). Indeed, plants 

matching their internal clock period with the 24h period of the environment contain more 

chlorophyll, fix more carbon, grow faster, and survive better than plants with clock periods 

differing to that of the environment (Dodd, 2005). Rather than being a single perfectly 

synchronized timer, the clock can be sensitive to different cues, run at different speeds, and 

drive distinct processes in different cell types and tissues (Greenwood and Locke, 2020). 

In Arabidopsis thaliana, two different circadian clocks are distinguished having different 

sensitivities to external temperature (Michael et al., 2003). Stomatal guard cells have a 

different period from the surrounding epidermal and mesophyll leaf cells (Yakir et al., 

2011a). By comparing transcript levels in guard cells with whole plants, differences in the 

expression of some oscillator genes are identified (Yakir et al., 2011b), which underlies 

cell-specific differences in clock properties. This flexibility of the plant clock might help 

plants regulate such a wide range of developmental and physiological processes. 

Arabidopsis thaliana, as the model plant, has been extensively used to explore the 

molecular mechanisms of the circadian clock function. About 30% of the Arabidopsis 

transcriptome is regulated by the circadian clock (Covington et al., 2008; Harmer et al., 

2000). Circadian clocks also control a similar proportion of the transcriptome in rice (Oryza 

sativa) (Filichkin et al., 2011), papaya (Carica papaya) (Zdepski et al., 2008), maize (Zea 

mays) (Hayes et al., 2010; Khan et al., 2010), soybean (Glycine max) (Marcolino-Gomes 

et al., 2014), and poplar (Populus trichocarpa) (Filichkin et al., 2011; Hoffman et al., 2010). 

Currently, circadian-related studies are increasingly conducted with crops, highlighting the 

potential of applying the circadian clock gene variation into marker-assisted breeding 

programs in crops (Campoli et al., 2012; Lee et al., 2022; Li et al., 2020; Lou et al., 2011; 

Yang et al., 2013). The studies suggest that circadian alleles can be crucial for global 

adaptation of crops to a broad range of latitudes. Consistent variation in circadian period 

along a latitudinal gradient in annual populations of the wild plants and the selectively bred 

crop, provide novel evidence of natural and artificial selection for circadian performance 

(Greenham et al., 2017).  
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2.1. The Arabidopsis central oscillator 

The Arabidopsis central oscillator is composed of three main interacting transcription–

translation regulatory modules: the morning, the central, and the evening loops (Figure 2). 

The PSEUDO-RESPONSE REGULATOR known as the TIMING OF CAB 

EXPRESSION1 (TOC1/PRR1) and two single MYB transcription factors, CIRCADIAN 

CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), play 

pivotal roles at the central oscillator. CCA1 and LHY repress their own expression as well 

as the expression of their repressor TOC1 (Alabadı́ et al., 2001). TOC1 directly binds to 

promoters of CCA1 and LHY through the CCT domain of TOC1 (Gendron et al., 2012). 

This core loop is further connected with other PSEUDO-RESPONSE REGULATOR 

family members (i.e., PRR5, PRR7 and PRR9) comprising the morning loop, as well as 

with the evening loop including LUX ARRHYTHMO (LUX), EARLY FLOWRING 3 

(ELF3), and EARLY FLOWERING 4 (ELF4) and GIGANTEA (GI) to create the complex 

architecture of the plant circadian clock (Adams et al., 2015).  

The PRR9, PRR7, and PRR5 proteins are expressed throughout the day, and physically 

associate with the CCA1 and LHY promoters and repress their transcription (Nakamichi et 

al., 2010b). All of these loops are connected with the Evening Complex (EC), formed by 

ELF3, ELF4, and LUX, that directly represses PRR9, PRR7, GI, and LUX expression 

(Herrero et al., 2012b). In addition to CCA1 and LHY, TOC1 also represses the expression 

of the morning-expressed (CCA1, LHY and PRRs) and the evening-expressed (LUX, ELF4 

and GI) genes (Gendron et al., 2012; Huang et al., 2012). Additional key clock components 

are expressed at other times during the day or night ensuring smooth shapes of the 

oscillatory waves and fine-tuning the precision of the clock (Nohales and Kay, 2016). 

Altogether, the complex regulatory circadian network at the core of the clock ensures that 

the morning and evening clock transcripts precisely peak at their corresponding phases 

during the day and night cycle.  
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Figure 2. A schematic diagram showing the transcriptional regulatory network at the 

core of the clock in Arabidopsis thaliana. The sequential expression of each clock main 

component during a light-dark 24h cycle is shown from left to right. The black and red 

lines ending in vertical dashes represent repression of transcription. Modified from 

(Nohales and Kay, 2010) using BioRender.  

Over-expression or mutation of the main core clock components affect the circadian 

rhythms altering the circadian period by the clock (Table 1). For instance, constitutive over-

expression of CCA1 (CCA1-ox) abolishes circadian rhythmicity of genes expressed at 

different phases (Matsushika et al., 2007; Wang and Tobin, 1998). cca1-1 mutant plants 

show a short-period phenotype (Alabadı́ et al., 2002; Green and Tobin, 1999) while the 

double mutants cca1-1lhy-R plants are unable to sustain oscillations (Alabadı́ et al., 2002). 

However, cca1-1lhy-R plants sustain circadian oscillations under entraining cycles, 

suggesting that the Arabidopsis circadian clock is also dependent on other clock 

components (Alabadı́ et al., 2002). Both prr7 and prr9 mutant plants show longer period 

than WT under LL conditions, whereas their circadian periods are very similar to WT under 

constant darkness (DD) (Farré et al., 2005). PRR7 and PRR9 play a partially redundant 

role in sustaining the Arabidopsis circadian clock as circadian rhythms in prr79 double 

mutant plants display longer period than single mutants (Farré et al., 2005; Nakamichi et 

al., 2007). The rhythms are also severely perturbed in the prr57 double mutant plants 

showing a very short circadian period with markedly reduced amplitude (Nakamichi et al., 

2005) while the prr579 triple mutant plants are arrhythmic (Nakamichi et al., 2005). 
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Analyses of evening-expressed clock mutant plants such as the toc1 mutant show a shorter 

period length under LL (Más et al., 2003; Millar et al., 1995) while over-expression of 

TOC1 (TOC1-ox) leads to arrhythmia (Más et al., 2003). The mutation of elf3 also shows 

arrhythmia. Mutant plants lacking the other components of the EC are also arrhythmic 

(Doyle et al., 2002; Hazen et al., 2005) suggesting an indispensable role of these clock 

components sustaining circadian oscillations. 

Table 1. Circadian period of Arabidopsis clock mutants 
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2.2. Circadian input pathways 

As mentioned above, the plant circadian clock is highly sensitive to environmental stimuli 

and can be entrained or modulated by light, temperature, and changes in humidity 

(Gutiérrez et al., 2008; McClung, 2006; Mwimba et al., 2018b). Among those, light and 

temperature are the main central environmental stimuli entraining the circadian rhythms. 

Under simulated natural conditions, humidity oscillation also increases the amplitude of 

the circadian clock and improves plant fitness-related traits (Mwimba et al., 2018b).  

2.2.1. Light sensing  

As one of the central environmental stimuli entraining circadian rhythms, light has a 

profound impact on the circadian clock function. Light quality and light quantity change at 

varying rates along the day and night cycle, and these changes affect the phase and period 

of the clock. As mentioned above, the period of the clock decreases as the intensity of light 

to the oscillator increases (Aschoff, 1979). In plants growing under DD conditions, a light 

pulse changes the phase of the rhythms by varying degrees depending on the length and 

intensity of light. The time of day that the light signal is given also determines whether the 

circadian phase will advance or delay (Millar, 2004).  

Plants have evolved a set of photoreceptors that precisely monitor the light conditions 

(Galvão and Fankhauser, 2015). In Arabidopsis, 5 groups of photoreceptors are responsible 

to the detection of light signals. They are phytochromes, cryptochromes, phototropins, the 

ZEITLUPE (ZTL) family of proteins, and UVR8 protein. These photoreceptors sense light 

quality and quantity (Möglich et al., 2010). Overall, phytochromes perceive red (R) and 

far-red (FR) light (660-730) (Franklin and Quail, 2010), cryptochromes perceive blue light 

and UV-A radiation (300-500nm) (Christie et al., 2015), phototropins perceive blue light 

(Briggs and Christie, 2002; Christie et al., 2015), the ZTL family of proteins perceive blue 

light (Christie et al., 2015), and the UVR8 protein perceives ultraviolet B-radiation (UV-

B) (Tilbrook et al., 2013).  

Photoreceptors in the phytochrome family (PHYA–E in Arabidopsis) detect R/FR light and 

transmit this information to the central circadian oscillator. A delayed phase and lower 
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amplitude in the rhythmic expression of CHLOROPHYLLA/B-BING PROTEIN 2 is 

observed in phyB mutant plants (Salomé et al., 2002), while the circadian rhythms in phyA 

mutant are not reset under low fluence red or blue light (Somers et al., 1998a). PHYA and 

PHYB act additively in red light input to the clock (Devlin and Kay, 2000). The OUT OF 

PHASE 1(oop1) mutation, which is a nonsense mutation of PHYB, shows a strong defect 

in the perception of red light and exhibits an altered circadian phase that similar to the 

characteristic of phyB mutants (Salomé et al., 2002). A longer period is observed in the 

phyCDE triple mutant compared to wild-type (WT) plants across a range of red light 

fluences (Devlin, 2002; Jones et al., 2015). phyABCDE quintuple mutant is nearly unable 

to perceive red light. Under red light conditions, phyABCDE mutants show a shorter period 

at low fluence rates but show a longer period at higher red light fluence rates, which 

indicates that other components might also contribute to sustain circadian period by the 

clock under red light conditions (Hu et al., 2013). Altogether, the results indicate that 

phytochrome family act as photoreceptors that perceive and transmit red light to the central 

oscillator.  

Regarding cryptochromes, CRY1 mediates high-intensity blue light input signals for period 

length control (Somers et al., 1998a) whereas CRY2 transmits the low-intensity blue light 

cues into the clock (Somers et al., 1998a). The cry1 cry2 double mutant plants also show 

longer periods than the WT plants at all fluences of blue light and low fluences of red light 

(Devlin and Kay, 2000; Somers et al., 1998a). Consistently, different sets of photoreceptors 

interact to regulate the overall light input to the clock. For example, PHYA and CRY1 act 

together to perceive and transmit low-fluence blue light to the clock (Devlin and Kay, 2000; 

Somers et al., 1998a)(Somers et al., 1998; Devlin et al., 2000) while PHYB interacts with 

CRY2 in nuclear speckles that are important for proper control of circadian period by the 

clock (Más et al., 2000). Evidence for the interaction between CRYs and PHYs in 

regulating circadian clock input is provided by the synchronization of their expression 

pattern (Más et al., 2000; Tóth et al., 2001). For instance, a requirement of CRY1 for PHYA 

signaling to the clock in both red and blue light is identified (Devlin et al., 2000). Further 

studies are required to elaborate the complete molecular and functional interconnections 

between these two families of photoreceptors.  
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2.2.2. Temperature input to the clock 

Temperature is another well-known input signal to the circadian clock, with the warm/cold 

diurnal cycles serving as environmental cues entraining the clock (Boikoglou et al., 2011; 

Hazen et al., 2005; McClung and Davis, 2010; McWatters et al., 2000; Michael et al., 2003; 

Somers et al., 1998b). Interestingly, even 4ºC fluctuations within a day can reset the clock 

(Somers et al., 1998b). Somehow counterintuitively, the circadian clock also shows the 

property known as temperature compensation, which allows the clock to sustain a stable 

circadian period over a broad range of physiological temperatures (McClung and Davis, 

2010).  

Several studies have shown that temperature signals are integrated into the circadian clock 

through both transcriptional and post-transcriptional mechanisms. For example, CRY1 and 

CRY2 differentially control circadian period and sustain rhythmicity across the 

physiological temperature range (Gould et al., 2013). PHYB is also found to participate in 

temperature sensing through its temperature-dependent reversion from the Pfr form to the 

Pr form (Jung et al., 2016; Legris et al., 2016). Thermal reversion provides a unique 

temperature sensing property of PHYB that is independent of light (Huang et al., 2019; 

Jung et al., 2016; Legris et al., 2016). The thermomorphogenic response is not completely 

lost in the phyb mutant but it is in the quintuple phyabcd mutant, suggesting that other 

phytochromes are also important for temperature sensing (Jung et al., 2016). Although 

PHYs are considered important integrators of temperature signals, whether these molecules 

can integrate temperature signals into circadian clock have not been explored yet. The 

PHYTOCHROME INTERACTING FACTOR 4 (PIF4) protein, a downstream target of 

PHYB (Pedmale et al., 2016), can be activated by high temperature (Proveniers and van 

Zanten, 2013). Meanwhile, the expression of PIF4 is tightly regulated by the clock via the 

EC (Nusinow et al., 2011).  

It has been proposed that PRR5, PRR7 and PRR9 are also involved temperature input to 

the clock (Farré et al., 2005; Nakamichi et al., 2005; Salome and McClung, 2005). In 

addition, temperature cues might intersect with the circadian clock through the EC complex, 

providing rhythmicity and temperature responsiveness to growth (Box et al., 2015; Mizuno 
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et al., 2014a; Nusinow et al., 2011). The EC complex regulates expression of PRR9 and 

PRR7 in response to a range of physiologically relevant temperatures (Mizuno et al., 2014b; 

Salomé et al., 2010b). Further studies show that ELF3 also functions in thermocycle 

entrainment independently from the other EC genes (Nusinow et al., 2011; Zhu et al., 2022). 

The temperature sensing of ELF3 is dependent on a variable length polyQ repeat region 

located within a prion-like domain in ELF3 protein. The length of the polyQ repeat 

correlates with thermal responsiveness, which is responsible for the temperature-dependent 

liquid-liquid phase separation of ELF3. The results show that temperature rapidly shifts 

ELF3 between active and inactive states (Jung et al., 2020).  

2.3. Circadian output pathways 

The circadian clock pervasively regulates essential biological processes in plants (Gehan 

et al., 2015). As mentioned above, about 30% of the Arabidopsis transcriptome (Covington 

et al., 2008; Harmer et al., 2000), 23% of the maize transcriptome (Hayes et al., 2010; Khan 

et al., 2010), 16% of the poplar transcriptome (Filichkin et al., 2011; Hoffman et al., 2010), 

24.6% of the rice transcriptome (Filichkin et al., 2011), and 21% of the soybean 

transcriptome (Locke et al., 2018) are regulated by the circadian clock.  

The circadian-controlling transcriptome participates in the regulation of multiple biological 

processes (e.g. leaf movement, hypocotyl elongation, photosynthesis, flowering time as 

well as petal opening) (Singh and Mas, 2018; Xu et al., 2022), through modulating cell 

proliferation, phytohormone signaling, cell cycle progression, reactive oxygen species 

homeostasis (Fung-Uceda et al., 2018; Jiménez et al., 2021; Li et al., 2019a; Yang et al., 

2021).  

Studies in crops have also shown the importance of the circadian clock controlling 

flowering time, tiller growth and panicle development in rice (Liang et al., 2021; Wang et 

al., 2020), as well as plant height, internode length, flowering time, seed weight, yield and 

stress tolerance in soybean (Cheng et al., 2019; Qin et al., 2023; Sun et al., 2023). Other 

examples include the regulation of anthocyanin content of tuber skin and tuberization time 

in potato (Solanum tuberosum) (Niu et al., 2022; Odgerel et al., 2022), and the heading 

date, plant height and grain weight in wheat (Triticum aestivum) (Sun et al., 2020). Recent 
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studies using natural accessions of tomato (Solanum lycopersicum L.), soybean, oilseed 

rape (Brassica napus L.) have also revealed that altering circadian timing due to natural 

variation in circadian clock genes could contribute to their adaptation to local environments 

and maximize yield (Greenham et al., 2017; Lu et al., 2017; Müller et al., 2018; 

Yarkhunova et al., 2016), which further emphasizes the importance of the circadian clock 

for its potential application to improve agricultural production. 

2.3.1. Photoperiodic regulation of flowering time by the circadian clock 

Flowering time, a transition from vegetative to reproductive development, is a key factor 

determining the yield and quality for agricultural production (Reganold and Wachter, 2016). 

Several regulatory pathways such as photoperiod, age, gibberellins and vernalization are 

involved in controlling flowering time (Peer et al., 2021). The photoperiodic regulation of 

flowering time is regulated by the circadian clock (Gendron and Staiger, 2023). In many 

plant species, flowering time largely depends on the seasonal changes in the expression of 

the FLOWERING LOCUS T (FT) gene, which encodes a mobile florigen that is synthesized 

in leaves and moves to the shoot apex to induce flowering. The mechanism of 

photoperiodic flowering induced by FT is well studied in Arabidopsis thaliana, which is a 

facultative long-day plant that flowers earlier under long-day than under short-day 

conditions. In Arabidopsis, high expression of FT induced under long-days accelerates 

flowering, whereas short-day conditions lead to low expression of FT (Kobayashi et al., 

1999). The day-length-dependent induction of FT is governed by activator CONSTANS 

(CO) (Samach et al., 2000; Song et al., 2012; Valverde et al., 2004), whose expression is 

also controlled by the circadian clock. In addition, TEMPRANILLO (TEM) acts as a 

repressor that directly repress the expression of FT(Castillejo and Pelaz, 2008). Therefore, 

the expression level of FT is determined by the quantitative balance between TEM and CO 

proteins (Castillejo and Pelaz, 2008). 

The length of the darkness period is a crucial factor determining the formation of plant 

flowers. Far-red and blue light stabilize CO protein so CO protein accumulates in the 

nucleus in daytime but it is degraded in the dark (Valverde et al., 2004). Under long-day 

conditions, the accumulation of CO under light outweigh its degradation in dark and the 
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gradually accumulated CO protein activates the transcription FT (Samach et al., 2000). In 

contrast, under short day conditions, the accumulation of CO protein during daytime is 

almost completely degraded during the night in long-day plants (Suárez-López et al., 2001). 

Precise clock control of the timing of CO expression leads to high expression of CO during 

daytime only in long-day conditions, which is critical for daylength discrimination 

(Yanovsky and Kay, 2002). Interestingly, the components involved in the photoperiodic 

regulation of flowering pathway are conserved, even in plants having different 

developmental responses to day-length. For instance, the CO homolog (Hd1) in rice, a 

typical short-day plant, also functions through the integration between the circadian clock 

and day-length signals. However, under long-day conditions, accumulation of Hd1 protein 

represses FT homolog (Hd3a) instead of activating it (Hayama et al., 2003; Kojima et al., 

2002), thus delays the heading date of rice. 

Some core clock components regulate the timing of flowering by modulating the 

accumulation of the CYCLING DOF FACTOR (CDF) family members (CDF1–CDF5) 

(Gendron et al., 2012; Ito et al., 2008; Nakamichi et al., 2010a; Nakamichi et al., 2007), 

which function as repressors of flowering time through direct repression of CO 

transcription in the morning (Imaizumi et al., 2005; Rosas et al., 2014; Sawa et al., 2007). 

Highly elevated CO expression in the morning in cdf1cdf2cdf3cdf5 quadruple mutant 

cannot distinguish changes in day-length (Fornara et al., 2009). The core clock components 

CCA1 and LHY induce CDF1 expression in the morning (Nakamichi et al., 2007; Schaffer 

et al., 1998; Wang and Tobin, 1998) while PRRs repress CDF transcription through the 

direct binding of PRR5, PRR7, and PRR9 proteins to the promoters of the CDFs (Gendron 

et al., 2012; Nakamichi et al., 2010a; Nakamichi et al., 2012).  

3. Arabidopsis floral organs  

The successful establishment of angiosperms on land is in part determined by their floral 

design. Because plants cannot move to find the ideal mate, they have developed a high 

variety of flowers to provide different mechanisms of pollen release, pollen transfer, and 

deposition of the pollen from the male (anther) to the female (pistil) sexual organs. 

Pollination ensures the maintenance of the species, but it is also a means to increase genetic 
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diversity and, with it, the potential to adapt to new environments (Sanchez et al., 2004). 

The position and morphology of the anthers and the pistil have often coevolved with the 

mode of pollen dispersal and pollen receipt, aided either by wind or by animals. 

Nevertheless, pollination can fail at various points during these processes, causing the 

extinction of rare plants and lower crop yields (Wilcock and Neiland, 2002).  

When Arabidopsis grows to the flowering stage, the shoot apical meristem (SAM) converts 

into an inflorescence meristem, which produces floral meristems on its flanks in an 

organized pattern (Alvarez-Buylla et al., 2010). Each floral meristem produces one flower. 

Arabidopsis flowers show the typical structure of the Brassicaceae, which consist of four 

sepals, four petals, six stamens, and one gynoecium (Figure 3). The four sepals arise in the 

outermost whorl and these leaflike organs enclose the flower bud during its development. 

Four white petals arise in the second whorl, in positions that alternate with the sepals. Six 

stamens, which consist of a filament and an anther at the tip that produces the pollen, arise 

in the third whorl. The gynoecium, the female reproductive structure, contains two fused 

carpels, and generates from the central fourth whorl (Drews et al., 1991; Sablowski, 2015; 

Weigel, 1995; Wellmer et al., 2014). The two fused carpels are separated by a false septum 

that divide the ovary into two compartments (Herrera-Ubaldo and de Folter, 2022; Zúñiga-

Mayo et al., 2019). The ovules develop into seeds after pollination.  
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Figure 3. The Arabidopsis Flower. (A) Cartoon depicting an Arabidopsis plant at the 

flowering stage. (B) Mature flower at anthesis with organ types are indicated. (C) Cartoon 

diagram showing the relative placement of floral organs. Modified from (Irish, 2010) using 

BioRender..  

3.1. Circadian gating of flower activities  

Many plant species exhibit diurnal flower opening and closing, which is an adaptation 

influenced by the lifestyle of pollinators and herbivores (Kessler et al., 2010). The activity 

of pollinators on floral organs enable to transfer pollen to stigmas, thereby inducing plant 

fertilization. Since the rhythmically active properties of pollinators, movement of floral 

organs in many plants is gated by the circadian clock (Bai and Kawabata, 2015; Kaihara 

and Takimoto, 1979; Kessler et al., 2010; Muroya et al., 2021). The regulation by the 

circadian clock allows the synchronization of flower opening and closing with the diurnal 

activity of pollinators (Hasegawa et al., 2006; Kessler and Chautá, 2020; Kessler et al., 

2010; Kessler et al., 2008). In Arabidopsis, the time duration of flower opening or closing 

also appears to be controlled by the circadian clock (Muroya et al., 2021). Indeed, the 

opening duration of WT flowers sustains around 0.7-1.4h under long-day conditions. 

However, the prr975 mutant flowers remain open during the whole cycle (Muroya et al., 

2021).  
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The coordination of light-signaling pathways and the circadian clock generates 

heliotropism in the common sunflower (Helianthus annuus) (Atamian et al., 2016). 

Differential elongation on opposite sides of stems confers the solar tracking in young 

sunflower, showing an INDOLE-3-ACETICACID19–like (IAA19-like) gene more highly 

expressed on the west side at night and a SMALLAUXIN-UPREGULATED 50)–like 

(SAUR50–like) gene, whose proteins promote cell elongation (Farquharson, 2014), more 

highly expressed on the east side during the day (Atamian et al., 2016). Furthermore, 

mature sunflowers exhibit eastward orientation to warm up the floral organs through 

increased morning interception of solar radiation that enhances the attractiveness to 

pollinators (Atamian et al., 2016).  

The circadian clock may also function in the development of floral organs. The rhythmic 

expression of LONG NON-CODING RNAs (lncRNAs) is involved in floral development 

(Yadav et al., 2022). The circadian clock controls the temporal and spatial patterns of floral 

development in sunflower (Marshall et al., 2023). Senescence is a tightly controlled process 

during which nutrients in plants are remobilized from senescing organs to developing 

organs (Rogers and Munné-Bosch, 2016; Rogers, 2006; Schippers et al., 2015; van Doorn 

and Woltering, 2004). Petal senescence in rose flowers is regulated by the circadian-

controlled PIF8-BBX28 module that governs mitochondrial ROS homeostasis at night 

(Zhang et al., 2021). These findings open the way for further exploration of the molecular 

mechanisms controlling the timing in flower opening and closing, floral development, and 

senescence of floral organs.  

3.2. The Arabidopsis female reproductive organ 

3.2.1. Pistil in Arabidopsis 

Pistil is the floral female reproductive organ, which is also termed as gynoecium. At stage 

6 of flower development in Arabidopsis, a rim in the central dome of the flower primordium 

grows upward to produce an oval and hollow tube, which is the pistil (Smyth et al., 1990). 

Arabidopsis pistils are composed of stigma, style, and ovary (Figure 4). The ovary of pistils 

is divided longitudinally into two chambers by a septum (Ferrándiz et al., 1999). The two 
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ovary wall regions of the ovary are valves, and the external part of the septum is the replum. 

At the apical end of the ovary are the style and the stigma (Balanzà et al., 2014). When the 

style is elongating, transmitting tissue within the hollow cylinder of the style is formed 

(Balanzà et al., 2014). The style is then crowned by stigmatic papillae, which functions in 

receiving and inducing germination of pollen grains. The pollen tubes grow through the 

transmitting tract and reach the ovules in the mature gynoecium (Alvarez and Smyth, 2002; 

Bowman et al., 1999; Roeder and Yanofsky, 2006; Sundberg and Ferrándiz, 2009).  

The pollen tube is responsible for delivering the two sperm cells to the ovule, where double 

fertilization takes place (Johnson et al., 2019). This process requires a very complex and 

coordinated communication between pollen tubes and the different tissues of the pistil. 

After fertilization, the fruit elongates synchronically as the seed develops. Stigmatic 

papillae degenerate, and the valve margin are matured (Ferrándiz, 2002; Marsch‐Martínez 

et al., 2012). Arabidopsis gynoecium is transformed into an elongated bilocular fruit called 

silique. Siliques open at maturity to release the seeds along four dehiscence zones defined 

by longitudinal furrows of smaller cells on either side of the replum. The lignification of 

specific cells in these zones contributes to the dehiscence process (Ferrándiz, 2002). 

 

Figure 4. Pistils of Arabidopsis. (A) Representative photograph of a pistil. (B) Scanning 

electron micrographs of the Arabidopsis pistil. (C) Bright-field photomicrographs of 

longitudinal sections of the Arabidopsis pistil. Modified from (Gasser and Robinson-Beers, 
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1993). 

Phytohormones play important role in the development of the carpel marginal tissues. 

Mutations in YUCCA (YCA) and TRYPTOPHAN AMINOTRANSFERASE OF 

ARABIDOPSIS (TAA) genes, involved in the auxin biosynthesis, alter gynoecium 

development and patterning, showing obvious defects in marginal tissues (Cheng et al., 

2006; Stepanova et al., 2008). Ovules produce low IAA concentrations, and free auxin will 

boost in the developing embryos after fertilization (Aloni et al., 2006). Clear defects in 

marginal tissues are also found in plants lacking the auxin efflux transporter PINFORMED 

(PIN) genes (Benková et al., 2003; Okada et al., 1991), or the AUXIN RESPONSE 

FACTOR (ARF) transcription factors (Crawford and Yanofsky, 2011; Sessions and 

Zambryski, 1995).  

In addition, mutations in components involved in Brassinosteroids (BRs) and Cytokinins 

(CKs) pathways indicate their participation in marginal tissue development. The 

gynoecium in plants lacking CYP85A2, a cytochrome P450 required for the BRs 

biosynthesis, shows split apex and horn-like protuberances (Nole-Wilson et al., 2010). 

Conversely, altering cytokinin catabolism of Arabidopsis by knock outing CYTOKININ 

OXIDASE/DEHYDROGENASES (CKXs) produce more seeds owing to the increased 

activity of the placenta that leads to more ovules (Ashikari et al., 2005; Bartrina et al., 

2011). CKs affect the differentiation of the reproductive meristems cells and regulate the 

activity of the placenta (Bartrina et al., 2011). CKs also play important roles in fruit 

patterning and morphogenesis (Marsch‐Martínez et al., 2012). A moderate increase in style 

length and stigma width is observed in the quintuple mutant of the Arabidopsis DELLA 

transcriptional repressors of gibberellin (GA) signaling, which may be caused by the 

alternation in cell elongation instead of carpel marginal tissue development (Fuentes et al., 

2012). In some cases, combined mutations of phytohormones pathways are required to 

produce altered phenotypes, which suggests the redundant functions of genes involved in 

these pathways in controlling pistil development. 
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3.2.2 Silique and seed in Arabidopsis 

After fertilization, pistils develop into siliques and ovules in pistils form seeds (Vivian-

Smith and Koltunow, 1999). The expansion, division, and differentiation of cells form the 

exocarp, mesocarp, structural sclerenchyma and endocarp of the silique (Vivian-Smith and 

Koltunow, 1999). Silique dehisces along the replum carpel-valve boundary to release 

mature seeds (Meinke and Sussex, 1979). Mature seeds consist of the embryo, endosperm, 

and the seed coat (Demonsais et al., 2020). After double fertilization, the fertilized egg cell 

(zygote) divides and differentiates progressively through several stages including four cell 

stage, globular stage, heart stage, torpedo stage, walking-stick stage, curled cotyledon stage, 

and green cotyledon stage to form embryo (Becerra et al., 2006), in the process known as 

embryogenesis. The endosperm and seed coat arises from the differentiation of ovular 

integuments (Demonsais et al., 2020).  

The development of siliques and seeds are highly coordinated processes that involve 

development of embryogenesis and endosperm, as well as the maternal of the seed coat 

and siliques hulls (de Folter et al., 2004; Hennig et al., 2004). Silique development in 

Arabidopsis depends on fertilization (Chaudhury et al., 1997), as the carpel of the 

unfertilized pistil expands slightly in length following a terminal senescence phase instead 

of tissue differentiation (Vivian-Smith et al., 2001). Even though the development of seed 

is initiated in the absence of fertilization, the seeds are abortive or inactive because of the 

lack of a functional embryo (Grossniklaus et al., 1998). However, developmental processes 

that have been previously described in developing Arabidopsis fruits also occur in the 

unfertilized pistils (Carbonell-Bejerano et al., 2010). Analyses of the FERTILISATION 

INDEPENDENT SEED (FIS) Arabidopsis mutants show that seed and fruit development 

are uncoupled from fertilization (Spillane et al., 2000).  

3.3. The Arabidopsis male reproductive organ 

Stamens, which are composed of a filament and an anther (Figure 5A), are subject to a 

specific developmental process (Ma, 2005; Regan and Moffatt, 1990; Sanders et al., 1999; 

Smyth et al., 1990). Pollen grains develop in the stamen and, once they mature, they are 
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released from the anthers and interact with the stigma. Filament connects the anther to the 

rest of the flower, providing physical support, water, nutrients, and signals. Before the 

flower opens, there is a fast filament elongation to support the anther releasing viable 

pollens onto the stigma where they hydrate and eventually germinate, generating the pollen 

tube (Edlund et al., 2004). Disruptions of stamen development will lead to male sterility 

(Ge et al., 2010; Sanders et al., 1999).  

3.3.1. Arabidopsis anthers and pollen  

The Arabidopsis anther is a bilaterally symmetrical four-lobed structure (Figure 5B) for 

pollen production. Each lobe develops from successive divisions of sub-epidermal 

archesporial cells formed in the anther primordium that give rise to three morphologically 

distinct cell layers, including endothecium, middle layer, and tapetum. The pollen mother 

cells in anther lobe undergo meiosis and thereby form the haploid microspores (Sanders et 

al., 1999). Mature pollens are released along with the process of anther dehiscence, which 

is essential to ensure the proper fertilization. Anther dehiscence involves a switch of anther 

cells from cell differentiation to cell degeneration program. The process of anther 

dehiscence has three steps (Figure 5C): (i) lignification of endothecium cells; (ii) 

degradation of septum cells leading to a bi-locular anther; and (iii) rupture of the stomium, 

which is made from modified epidermal cells (Goldberg et al., 1993). Endothecium 

lignification is necessary for anther breakage because lignification of endothecium 

generates the tension which is responsible for stomium breakage (Bonner and Dickinson, 

1989; Keijzer, 1987; Mitsuda et al., 2005; Yang et al., 2007). 

Inside the anthers, sporogenous, the reproductive cell that is also named as pollen mother 

cell, finally develops into pollen. The development of pollen grain includes 

microsporogenesis and microgametogenesis stages. During microsporogenesis stage, the 

pollen mother cells firstly generate tetrads of haploid microspores by meiosis (Borg et al., 

2009; Sanders et al., 1999). Microsporogenesis stage is completed when individual 

microspores are released after the degeneration of the callose wall surrounding tetrads 

(Borg et al., 2009; Sanders et al., 1999). Microspores further go through two rounds of 

mitotic divisions. Firstly, the microspore divides asymmetrically to produce a large 
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vegetative and a small generative cell. Then, a second mitosis produces two twin sperm 

cells enabling double fertilization to produce the embryo and endosperm. The non-

reproductive cells in anther differentiate into tapetum, which is one of the specialized tissue 

layers that surround the pollen mother cell (Sanders et al., 1999; Scott et al., 2004). 

Tapetum provides essential nutrients and structural components for microspore expansion. 

The programmed cell death (PCD) of tapetum as the pollen matures emits tapetal contents 

to help the formation of a pollen coat (Sanders et al., 1999). Defects in tapetum result in 

abnormal pollen formation that causes male sterility (Ye et al., 2010).  

3.3.2. Arabidopsis filaments 

The filament has a simple radicalized structure with a single vascular strand, through which 

conduct water and nutrients to the anther (Cardarelli and Cecchetti, 2014). Filaments also 

provide structural support to the anther and anchors the stamen to the receptacle that the 

floral organs are attached to (Cardarelli and Cecchetti, 2014). The differentiation of 

filaments and anthers emerge around at stage 7 of flower development (Smyth et al., 1990). 

The filaments exhibit fast elongation during stages 10 to stage13 of flower development, 

which is coordinated with anther dehiscence (Cardarelli and Cecchetti, 2014; Smyth et al., 

1990). Under continue light conditions, the growth of filament between stage 10 to stage 

13 consists of three exponential phases (Tashiro et al., 2009). During the second 

exponential phase, the growth rate of stamen filaments is about 10 times greater than the 

growth rates in the other two phases (Tashiro et al., 2009).  
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Figure 5. The Arabidopsis male reproductive organ. (A) A mature stamen including one 

filament and one anther. (B) Cartoon of a stamen at a stage after meiosis (left) and of the 

stamen transverse section, at the level of the anther, with differentiated tissues indicated in 

different colors (right). (C) Transverse sections of late anther development stages that 

represent key steps in the anther dehiscence program. St, Stomium. Modified from 

(Dinneny et al., 2004; Wilson et al., 2011; Sanders et al., 2000). 

3.4. Coordination between pistil and stamen for fertilization 

Precisely coordinated growth of stamens and pistils determines the fertility of Arabidopsis 

(Song et al., 2014; Tashiro et al., 2009). Fertilization involves a continuous and active 

communication between female and male tissues over several steps: pollen hydration, 

pollen germination, pollen tube growth, pollen tube attraction to the ovule, pollen tube 
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reception, sperm cell delivery and gamete activation (Cascallares et al., 2020). Appropriate 

stage of stigma development is crucial for receptivity. For example, on immature stigmas 

of pear flowers, mature pollen can adhere but do not hydrate and germinate. On a 

degenerating stigma, pollen can adhere, hydrate, and germinate, but pollen tube growth 

arrests abruptly (Sanzol et al., 2003).  

The coordinated elongation between the stamen filament and pistil is also required for self-

pollination (Cecchetti et al., 2008; Nagpal et al., 2005). Pistil growth consists of a single 

exponential growth, while stamen growth consists of three exponential phases. During the 

second exponential phase, the growth rate of stamen filaments is much higher than the 

growth rates in the other two phases. Consequently, stamens finally draw level with pistils 

or exceed pistils in length, thus supporting the release of pollen grains on the stigma 

(Tashiro et al., 2009).  

The dialogue between pollen and pistil is critical in the earlier stages because the desiccated 

pollen grain on the stigma needs water and other components required for hydration, 

germination, and pollen tube entry into the stigma barrier (Doucet et al., 2016; Johnson et 

al., 2019; Rozier et al., 2020). Subsequently, the pollen tube elongates through the densely 

packed tissue of the female reproductive to the adjacent of an unfertilized ovule (Elleman 

et al., 1992; Johnson et al., 2019). These processes require the tight communication 

between the pollen grain/tube and the surrounding pistil tissues to confer compatible pollen 

grains germination and the penetration in pistil barriers, as well as precise pollen tube 

navigation that would eventually lead to the release of the sperm cells in the ovule.  
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Objectives 

The general aim of this Doctoral Thesis is to elucidate the circadian function and the 

transcriptional network at the core of the pistil clock. We also aim to identify the role of 

the circadian clock controlling pistil and stamen growth and seed production. This 

general objective will be accomplished through different specific aims: 

1. To understand the circadian function in buds and flowers. We will perform 

bioluminescence analyses using core clock reporter lines to analyze the phase, 

period, and amplitude of circadian rhythms in buds and flowers excised from plants 

at different developmental stages. 

2. To examine circadian rhythms in different floral organs. We will perform 

bioluminescence analyses using core clock reporter lines to analyze the phase, 

period, and amplitude of circadian rhythms in sepals, petals, stamens, and pistils 

excised from the flower.  

3. To elucidate the role of the circadian clock in the control of pistil growth and 

seed production. We will use a battery of clock mutants and over-expressing lines 

to examine if proper circadian function is important in the control of pistil 

elongation and plant productivity.  

4. To uncover the transcriptional regulatory network at the core of the pistil clock. 

We will use a battery of clock mutants and over-expressing lines to examine clock 

gene expression by RT-QPCR to identify organ-specific transcriptional regulatory 

functions of the pistil clock. 

5. To identify functional hierarchies within the repressive modules at the core of 

the pistil clock. We will perform genetic interaction studies with plants over-

expressing a clock component in a mutant background of another clock gene 

expressed at a similar phase. We will examine their repressive regulatory function 

on target clock genes and identify the dominance of their repressive function. 
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6. To examine the developmental and circadian coordination of pistil and stamen 

growth. We will use clock mutants and over-expressing lines to examine the effect 

of light: dark cycles and the circadian clock on the coordination of pistil and stamen 

growth. We will also examine the developmental changes of pistil and stamen 

growth. 
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Results 

1. Self-sustained circadian rhythms in detached buds and flowers 

To investigate the circadian function in floral organs, we first performed bioluminescence 

analyses of plants expressing the morning-phased (CCA1) and the evening-phased TOC1 

and GIGANTEA (GI) gene promoters fused to the LUCIFERASE (LUC). Samples from 

plants synchronized under light: dark (16h: 8h) cycles at 22ௗ°C were transferred to 96-well 

plates and released into continuous light (LL) at 22ௗ°C. Bioluminescent rhythms of 

promoter activities in buds and flowers at different developmental stages (Figures 5A-D) 

were examined in a luminometer. The waveforms of CCA1 promoter activity displayed 

robust circadian rhythms with high amplitude in young and mature buds (Figure 6A, C). 

Similarly, young buds also sustained high-amplitude and robust circadian rhythms of 

TOC1::LUC and GI::LUC with circadian periods close to 24-hour (Figure 6B, C).  

 

Figure 5. Representative photographs of buds and flowers at different developmental 

stages. (A) Young buds, (B) Mature buds, (C) Mature flowers, (D) Open flowers. 
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Figure 6. Self-sustained circadian rhythms in buds. (A) Luminescence of 

CCA1::luciferase (LUC) rhythms simultaneously measured in young buds (n=16) and 

mature buds (n=4). (B) Luminescence of TOC1::LUC (left axis) (n=30) and GI::LUC 

(right axis) (n=14) rhythms measured in young buds. (C) Period, and relative amplitude 

error estimates of CCA1::LUC (n=16), TOC::LUC (n=24) and GI::LUC (n=9) in young 

buds. Data are presented as the mean ± SEM. At least two biological replicates were 

performed per experiment. 

Circadian rhythms of CCA1 promoter activity were also analyzed in mature and open 

flowers under both free-running (LL) and entraining (light: dark, LD) conditions. The 

analyses showed that CCA1:LUC in mature and open flowers sustained circadian rhythms 

under both conditions (Figure 7A, B). Consistent with the bioluminescence results, the 

rhythmic messenger RNA (mRNA) accumulation assayed by RT-qPCR (reverse 

transcription-quantitative polymerase chain reaction) confirmed the circadian expression 

of CCA1 in open flowers (Figure 7C). Analyses of the evening-phased reporter GI::LUC 

in mature and open flowers also showed high-amplitude rhythms under LL (Figures 8A-

B). Altogether, our results showed that buds and flowers detached from the plant are able 

to autonomously sustain circadian rhythms. 
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Figure 7. Self-sustained circadian rhythms in flowers. (A) Luminescence of 

CCA1::LUC oscillation measured in open flowers (n=15). (B) CCA1:LUC rhythms 

measured in mature flowers (n=16) under entraining light: dark cycles (16h light: 8h dark). 

(C) Circadian time-course analyses of CCA1 mRNA expression in wild-type (WT) open 

flowers. Data are presented as the mean ± SEM. At least two biological replicates were 

performed per experiment. 

 

Figure 8. Circadian rhythms in WT flowers. (A) Luminescence of GI::LUC oscillation 

measured in mature flowers (n=6). (B) Luminescence of GI::LUC oscillation measured in 

open flowers (n=6). Data are presented as the mean ± SEM. At least two biological 

replicates were performed per experiment. 
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2. Detached pistils show precise and robust rhythms 

We next examined the circadian oscillation of CCA1::LUC in sepals, petals, stamens, and 

pistils excised from the flower (Figure 9A-D). In WT sepals, bioluminescence rhythms 

were robustly sustained, albeit with a shorter period than 24 h (Figure 10A, D) (Okada et 

al., 2022). Rhythms in WT petals and stamens also showed short circadian periods for 3 or 

4 days, dampening low afterward (Figure 10B, C, E, F) (Okada et al., 2022). In contrast, 

the circadian waveforms in pistils robustly oscillated for more than 5 days, with a circadian 

period close to 24 h (Figure 10A-F) (Okada et al., 2022). Similarly, GI::LUC in pistils also 

sustained high-amplitude robust circadian rhythms (Figure 11A) whereas rhythms of 

GI::LUC in stamens were sustained for few days, dampening low afterwards (Figure 11B). 

PRR9::LUC also exhibited robust circadian rhythms in pistils and dampening rhythms in 

stamens (Figure 11C). 

 

Figure 9. Representative photographs of floral organs from open flowers. (A) sepal, 

(B) petal, (C) stamen, and (D) pistil. 
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Figure 10. Robust circadian oscillations in pistils. Luminescence of CCA1::LUC 

rhythms simultaneously measured in pistils (right axis) and sepals (left axis) (A), petals 

(left axis) (B), stamen (left axis) (C). Period, and relative amplitude error estimates of 

CCA1::LUC in pistils and sepals (D), petals (E), stamen (F). Data are presented as the mean 

± SEM. At least two biological replicates were performed per experiment (This work was 

done by Dr. Okada). 

 

Figure 11. Robust circadian oscillations in pistils. (A) Luminescence of GI::LUC 

rhythms measured in pistils (n=7). (B) Luminescence of GI::LUC rhythms measured in 

stamens (n=10). (C) Comparative waveform analyses of PRR9::LUC rhythms in WT 

pistils (left axis) (n=8) and stamens (right axis) (n=16). Data are presented as the mean ± 

SEM. At least two biological replicates were performed per experiment.  
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CCA1::LUC rhythms in toc1-2 sepals were similar to those observed in WT sepals for the 

first 3 days, albeit with slightly reduced amplitude in toc1-2 (Figure 12A, B). Thus, the 

characteristic short-period phenotype of toc1-2 observed in seedlings (Más et al., 2003) 

and buds was only evident in sepals after several days under LL (Figure 12A, B). We 

observed a similar trend in toc1-2 petals and stamens, although the dampened rhythms 

precluded a clear view of the possible period shortening over time (Figure 12C-F). 

Analyses of rhythms at early time points before dampening showed that the circadian 

period of toc1-2 sepals and petals was not significantly different from WT, whereas the 

circadian period of toc1-2 stamens was significantly longer than WT. In pistils, the short-

period oscillation observed during the first day rapidly transitioned to very-low-amplitude 

rhythms (Figure 12G, H), following a similar trend to that observed in whole flowers 

(Okada et al., 2022). The comparative analyses of rhythms in the different floral organs 

revealed the organ-specific behavior of toc1-2 mutant. 
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Figure 12. Distinct phenotypes of toc1-2 mutant in sepals, petals, stamens, and pistils. 

In vivo luminescence assays of CCA1::LUC rhythms in WT and toc1-2 (A) sepals, (C) 

petals, (E) stamens, and (G) pistils. Period and relative amplitude error estimates of 

CCA1::LUC rhythms in WT and toc1-2 (B) sepals, (D) petals, (F) stamens, and (H) pistils. 

Data are presented as the mean ± SEM. At least two biological replicates were performed 

per experiment (This work was done by Dr. Okada). 
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3. The circadian clock controls pistil growth and seed production 

To explore the physiological role of the circadian clock in the regulation of pistil function, 

we used plants over-expressing CCA1 (CCA1-ox) in which the clock does not run properly. 

Our analyses showed that pistil length of CCA1-ox plants examined at different stages of 

development were significantly shorter than those of WT (Figure 13A). The number of 

siliques per plant was also significantly reduced in CCA1-ox plants compared to WT 

(Figure 13B). The results indicate that the circadian clock affects pistil growth and 

development. CCA1-ox plants also showed shorter siliques (Figure 14A), less seeds per 

silique (Figure 14B), and smaller seed size, including smaller sectional area and smaller 

seed weight than WT plants (Figure 15A-C). The inspection of seeds in siliques also 

suggested developmental defects, with an increased number of abortive ovules in CCA1-

ox (Figure 14C).  

 

Figure 13. Over-expression of CCA1 affects pistil elongation and silique productions. 

(A) analysis of pistil lengths in WT and CCA1-ox (n=6). (B) Analysis of silique number 

per plant of WT and CCA1-ox (n=10). Two-tailed Student’s t-test analyses were performed 

using the GraphPad Prism software. Data is presented as mean ±SEM. (**** p-

value<0.0001; ** p-value < 0.001; * p-value<0.05). At least two biological replicates were 

performed per experiment. 
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Figure 14. Over-expression of circadian CCA1 affected seeds production. (A) Analysis 

of silique lengths in WT and CCA1-ox (n=100). (B) Analysis of seed number per silique 

of WT and CCA1-ox (n=100). (C) Representative photographs of mature silique from WT 

and CCA1-ox. Two-tailed Student’s t-test analyses were performed using the GraphPad 

Prism software. Data is presented as mean ±SEM. (**** p-value<0.0001; ** p-value < 

0.001; * p-value<0.05). At least two biological replicates were performed per experiment. 
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Figure 15. Altered expression of circadian genes affects seed size. (A) Representative 

photographs of full developed seeds from WT and CCA1-ox. (B) Analysis of seed sectional 

area in WT and CCA1-ox (n=100). (C) Analysis of seed weight of WT and CCA1-ox (n=8). 

Two-tailed Student’s t-test analyses were performed using the GraphPad Prism software. 

Data is presented as mean ±SEM. (**** p-value<0.0001; ** p-value < 0.001; * p-

value<0.05). At least two biological replicates were performed per experiment. 

To examine whether the effects are restricted to CCA-ox, or the circadian function is overall 

important for pistil growth and seed production, we examined mutant plants of different 

clock components in which the clock is still running, although at a faster or slower pace 

than in WT. Our analyses showed that pistil length of the prr mutant plants was also 

shortened, particularly in double mutants, displaying significantly reduced pistil length 

compared with that observed in WT (Figure 16A). Mutation and over-expression of TOC1 

led to reduced and increased pistil length, respectively, and the phenotypes were sustained 

at different stages of pistil development (Figure 16B). The gradual increase in pistil length 
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observed in the prr mutant plants correlated well with a gradual increment in silique length 

and seed weight (Figure 17A, B). Altogether, the results indicate that proper function of 

the circadian clock is important for pistil and silique growth as well as for seed weight and 

production. 

 

Figure 16. Altered expression of circadian genes affected pistil elongation and seeds 

production. (A) Analysis of pistil lengths in WT, toc1-2 and TOC1-ox (n=6). (B) Analysis 

of pistil lengths in different Arabidopsis lines (n=6). Two-tailed Student’s t-test analyses 

were performed using the GraphPad Prism software. Data is presented as mean ±SEM. 

(*** p-value<0.0001; ** p-value < 0.001; * p-value<0.05). At least two biological 

replicates were performed per experiment. 
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Figure 17. Altered expression of circadian genes affected silique length and seeds 

production. (A) Analysis of silique lengths in different Arabidopsis lines (n=100). (B) 

Analysis of seed weight per plant in different Arabidopsis lines (n=8). Two-tailed Student’s 

t-test analyses were performed using the GraphPad Prism software. Data is presented as 

mean ±SEM. (*** p-value<0.0001; ** p-value < 0.001; * p-value<0.05). At least two 

biological replicates were performed per experiment. 

4. Transcriptional regulatory network at the core of the oscillator in 

pistils 

To understand the circadian regulatory network in pistils, we analyzed clock gene 

expression of clock mutants and over-expressing lines and performed chromatin 

immunoprecipitation (ChIP) assays of key clock components. Similar to seedlings, the 

over-expression of CCA1 down-regulated the expression of TOC1 and the EC genes 

(Figure 18A-C), suggesting that CCA1 acts as repressor of evening-expressed clock genes 

in pistils. Repression might occur through the direct binding of CCA1 to the gene 

promoters as showed by ChIP assays in pistils (Figure 18D). Moreover, cca1/lhy double 

mutants led to a marked down-regulation of PRR7 and PRR9 expression in pistils (Okada 

et al., 2022). In turn, an up-regulation of CCA1 expression was observed in the prr79 

mutant (Figure 19A), suggesting a direct repression of CCA1 by PRR9 and PRR7, similar 

to previous results in seedlings (Nakamichi, 2020). The evening-expressed genes were up-

regulated during the subjective day but down-regulated during the subjective night in the 
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prr79 mutant (Figure 19B-E) suggesting a complex direct and indirect regulation during 

the subjective day and subjective night. 

 

Figure 18. Regulatory network at the core of the pistil oscillator in clock mutants. 

Time-course analyses of TOC1 mRNA expression (A), ELF4 mRNA expression (B), and 

LUX mRNA expression (C) in WT and CCA1-ox pistils. (D) ChIP assays were performed 

with CCA1::CCA1-YFP pistils collected at ZT3. Data are presented as the mean ± SEM. 

At least two biological replicates were performed per experiment. 
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Figure 19. Regulatory network at the core of the pistil oscillator in clock mutants. 

Time-course analyses of CCA1 mRNA expression (A), TOC1 mRNA expression (B), PRR5 

mRNA expression (C), ELF4 mRNA expression (D), and LUX mRNA expression (E) in 

WT and prr79 pistils. Data are presented as the mean ± SEM. At least two biological 

replicates were performed per experiment. 

Over-expression of the EC component ELF3 led to down-regulation of the morning genes 

PRR9 and PRR7 (Figure 20A, B) but up-regulation of CCA1 (Figure 20C) suggesting that 

in pistils ELF3 represses the expression of PRR9 and PRR7 and, directly or indirectly, 

activates the expression of CCA1, as in seedlings (Chow et al., 2012). However, and 

contrarily to seedlings and roots, the mutation of the EC component ELF4 did not lead to 

a relevant activation of PRR9 expression (Figure 20D), which suggests that ELF4 might 

not be part of the EC in the repression of PRR9 or that an additional function of ELF4 

overcomes its EC-dependent regulation of PRR9. Consistent with the gene expression 

results, the ChIP assays showed a significant binding of ELF3 and LUX to the promoters 

of the PRR9 and PRR7 genes in pistils, whereas ELF4 was not significantly enriched on 

these promoter regions of the PRR9 and PRR7 genes (Figure 21A, B). Analyses of the toc1-

2 mutation led to a reduced accumulation of CCA1 (Figure 22A) but an increased 

expression of PRR7 (Figure 22B). The evening-expressed genes were up-regulated in 
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pistils of toc1-2 mutant (Figure 22C, D), similarly to the expression patterns observed in 

the ec mutants (Figure 20D).  

 

Figure 20. Regulatory network at the core of the pistil oscillator in ELF3 

overexpressing line. Time-course analyses of PRR9 mRNA expression (A), PRR7 mRNA 

expression (B), and CCA1 mRNA expression (C) in WT and ELF3-ox pistils. (D) Time-

course analyses of PRR9 mRNA expression in WT, elf3-2, lux-2, and elf4-2 pistils (Okada 

et al., 2022). Data are presented as the mean ± SEM. At least two biological replicates were 

performed per experiment. 
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Figure 21. Different enrichment of EC complex components in the promoters of PRRs. 

(A) Comparative analyses ChIP assays that performed with ELF3-ox-YFP and ELF4-ox-

YFP pistils collected at ZT15. (B) Comparative analyses ChIP assays that performed with 

LUX::LUX-YFP and ELF4-ox-YFP pistils collected at ZT15. Data are presented as the 

mean ± SEM. At least two biological replicates were performed per experiment. 

 

Figure 22. Regulatory network at the core of the pistil oscillator in clock mutants. 

Time-course analyses of CCA1 mRNA expression(A), PRR7 mRNA expression (B), PRR5 

mRNA expression (C), LUX mRNA expression (D in WT and toc1-2 pistils. Data are 

presented as the mean ± SEM. At least two biological replicates were performed per 

experiment. 
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5. Genetic interaction studies on the repressive function of oscillator 

components 

5.1. Genetic interaction studies of evening-phased clock components in 

pistils 

To further understand the circadian regulatory network at the core of the circadian clock in 

pistils, we generated plants over-expressing a clock component in a mutant background of 

a clock gene expressed at a similar phase. We first analyzed clock gene expression in pistils 

of TOC1-ox/elf3-2 plants. The studies using TOC1-ox pistils showed a highly repressing 

function of the PRR genes (Figures 23A-C and 25A, B). Comparative analyses using 

TOC1-ox/elf3-2 pistils showed that over-expression of TOC1 was still able to down-

regulate the PRR genes even in the absence of ELF3 (Figure 23A-C). Thus, TOC1 

repression of the PRR genes does not require a functional ELF3. A dominance of TOC1-

ox repressive function on PRRs over the EC might explain these results. Comparative 

analyses using whole seedlings showed that repression of the PRR genes by TOC1 was 

alleviated by the elf3 mutation (Figure 24A-C). Furthermore, CCA1 gene expression in 

pistils was fully repressed in TOC1-ox/elf3-2 resembling the phenotype observed in elf3-2 

mutant, although CCA1 was still repressed in TOC1-ox (Figure 25A). Similarly, ELF4 

expression more closely resembled that observed in elf3-2 mutant (Figure 20D) than that 

in TOC1-ox (Figure 25B), which suggests an elf3-2 dominant phenotype and a possible 

hierarchy of the EC auto-repression over the repressing function of TOC1-ox. It is also 

possible that TOC1 requires ELF3 for full repression of the EC. The expression pattern of 

ELF4 and CCA1 in TOC1-ox/elf3-2 seedlings (Figure 26A, B) were similar to those 

observed in TOC1-ox/elf3-2 pistils (Figure 25A, B).  
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Figure 23. Genetic interaction analyses of the transcriptional repressive networks at 

the core of the pistil oscillator. Comparative analyses of PRR9 mRNA expression (A), 

PRR7 mRNA expression (B), and PRR5 mRNA expression(C), in WT, TOC1-ox, and 

TOC1-ox/elf3-2 pistils. Data are presented as the mean ± SEM. At least two biological 

replicates were performed per experiment. 

 

Figure 24. Genetic interaction analyses of the transcriptional repressive networks at 

the core of the seedling oscillator. Comparative analyses of PRR9 mRNA expression (A), 

PRR7 mRNA expression (B), and PRR5 mRNA expression (C), in WT, TOC1-ox, and 

TOC1-ox/elf3-2 seedlings. Data are presented as the mean ± SEM. At least two biological 

replicates were performed per experiment. 



61 
 

 

Figure 25. Genetic interaction analyses of the transcriptional repressive networks at 

the core of the pistil oscillator. Comparative analyses of CCA1 mRNA expression (A) and 

ELF4 mRNA expression (B) in WT, TOC1-ox, and TOC1-ox/elf3-2 pistils. Data are 

presented as the mean ± SEM. At least two biological replicates were performed per 

experiment. 

 

Figure 26. Genetic interaction analyses of the transcriptional repressive networks at 

the core of the seedling oscillator. Comparative analyses of CCA1 mRNA expression (A) 

and ELF4 mRNA expression (B) in WT, TOC1-ox, and TOC1-ox/elf3-2 seedlings. Data 

are presented as the mean ± SEM. At least two biological replicates were performed per 

experiment. 
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5.2. Genetic interaction studies of morning-phased clock components in 

pistils 

We also generated CCA1-ox/prr97 plants to examine the circadian regulatory network in 

pistils and seedlings. Analyses of CCA1-ox in pistils also showed a repressing function of 

CCA1 that was not effectively overcome by the prr79 mutation in the regulation of TOC1 

expression (Figure 27A). However, the repression of TOC1 expression by CCA1 was 

effectively overcome by the prr79 mutation in seedlings (Figure 27B), showing a similar 

expression pattern as in prr79 seedlings (Farré et al., 2005). The results suggest that CCA1 

might require functional PRR9 and PRR7 for repression of TOC1 in seedlings but not in 

pistils. However, in both pistils and seedlings, ELF4 in CCA1-ox/prr79 showed an up-

regulation during the subjective day like the one observed in prr79 mutant (Figure 19D) 

but not in CCA1-ox (Figure 27C, D). The results suggest that CCA1 might require 

functional PRR9 and PRR7 for repression of ELF4 in both seedlings and pistils or that the 

lack of (direct or indirect) repressing function of the PRRs can overcome the repression by 

CCA1-ox.  

Notably, an evident accumulation of PRR9 expression was observed in CCA1-ox/prr7 

(Figure 28A), suggesting that PRR7 might function as a repressor of PRR9 expression. 

However, there was no up-regulation of PRR5 expression in CCA1-ox/prr7 (Figure 28B), 

which indicates that the repression by PRR7 is specific for PRR9 and not for other closely 

related PRR genes.  
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Figure 27. Genetic interaction analyses of the transcriptional repressive networks at 

the core of the pistil oscillator. Comparative analyses of TOC1 mRNA expression in WT, 

CCA1-ox, and CCA1-ox/prr79 pistils (A) and seedlings (B). Comparative analyses of 

ELF4 mRNA expression in WT, CCA1-ox, and CCA1-ox/prr79 pistils (C) and seedlings 

(D). Data are presented as the mean ± SEM. At least two biological replicates were 

performed per experiment. 

 

Figure 28. Genetic interaction analyses of the transcriptional repressive networks at 

the core of the pistil oscillator. Comparative analyses of PRR9 mRNA expression (A) and 

PRR5 mRNA expression (B) in WT and CCA1-ox/prr7 pistils. Data are presented as the 

mean ± SEM. At least two biological replicates were performed per experiment. 
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6. The circadian clock affects the distribution pattern of pistil length 

We next examined in further detail the diurnal regulation of pistil length and its circadian 

control. To that end, we analyzed pistil length of buds and flowers from primary 

inflorescences during the day (ZT3) and at night (ZT19) from plants growing under long 

day (LgD) (16h light: 8h dark) conditions. Overall, around five hundred buds and flowers 

from primary inflorescences of 6-7-weeks-old plants were sampled and used to measure 

the pistil length. Experiments were performed following the scheme shown in Figure 29. 

The analyses showed that the WT pistil population at ZT3 displayed a peak around 1.8±0.2 

mm length that progressively decreased to reach a minimum at 2.5±0.2 mm length (Figure 

30A), which is consistent with previous studies (Tashiro et al., 2009). The distribution of 

pistil population at ZT19 was similar to that observed at ZT3 (Figure 30A). Analyses of 

the CCA1-ox pistil population also showed a peak around 1.8±0.2 mm length, but more 

rapidly decreased to a minimum of 2.5±0.2 mm length (Figure 30B, C). A more rapid 

decrease from peak to afterward in CCA1-ox pistil population was observed at ZT19 

compared that at ZT3 (Figure 30B, C). However, a considerable proportion of pistils in 

TOC1-ox at ZT3 clustered in the group of 1.3 to 2.3mm, after which decreased slowly to 

the minimum of 2.5±0.2 mm length (Figure 30D). In contrast, a peak enrichment of pistils 

round 1.6±0.1mm, following a progressive decrease, was observed at ZT19 in TOC1-ox 

plants (Figure 30D, E). The results suggest that proper circadian function might be 

important in the control of pistil length during the day and night. 
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Figure 29. Schematic diagram depicting the population pattern of pistils assays in 

Arabidopsis thaliana. About 100 primary inflorescences were selected at ZT3 or at ZT19 

(1) and were separated into about 500 buds and flowers at different developmental stages 

(2), then lengths of stamens or pistils were measured using Image J software (3). Analyses 

of distribution pattern of stamen population or pistil population by statistic category of 

stamens or pistils lengths within 1mm intervals (4). 

 

Figure 30. Distribution of pistil lengths in different circadian lines. (A) The distribution 

of pistil lengths in WT at ZT3 and at ZT19. (B) The distribution of pistil length in CCA1-

ox at ZT3. (C) The distribution of pistil length in CCA1-ox at ZT19. (D) The distribution 

of pistil length in TOC1-ox at ZT3. (E) The distribution of pistil length in TOC1-ox at 

ZT19. About 100 primary inflorescences including around 500 buds and flowers were 

obtained from 6-7week-old plants. Pistils from buds and flowers were measured and those 

flowers with pistils longer than 3 mm were excluded. Pistil length was determined as the 

distance from the base of the pistil to the tip of the stigma papillae. Data are presented as 

the mean. At least two biological replicates were performed per experiment. 
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7. Kinetics of stamen and pistil growth 

Based on the observed length distribution, we next analyzed the kinetics of both stamen 

and pistil growth in buds and flowers at different developmental stages (from stage11 to 

stage14 according to Smyth et al., 1990) of plants growing under LgD (16h light: 8h dark) 

cycles. Our studies showed that stamens were shorter than pistils at stages 11 and 12, while 

stamens rapidly grew afterwards (stage13) reaching a similar length than pistils (stages 13-

14) (Figure 31A, B). The results suggest that stamens have different growth rates at 

different developmental stages, as previously described (Chae et al., 2012). Pistil growth 

from stages 11 to 14 followed a constant growth rate (Figure 31A, C), which is also 

consistent with previous results (Tashiro et al., 2009).  
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Figure 31. The elongation of stamen and pistil in WT flowers. (A) Wild-type flowers at 

stages 11–14. Top, whole flower; bottom, sepals and petals removed to show stamen and 

pistil length. Scale bar = 0.5 mm. (B) Stamen length in wild-type flowers at stages 11–14. 

(C) Pistil length in wild-type flowers at stages 11–14. Stamen length was determined as the 

distance from the base of the stamen filament to the tip of the anther. Pistil length was 

determined as the distance from the base of the pistil to the tip of the stigma papillae. 
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8. Circadian coordination of stamen and pistil elongation 

Based on the different growth rates during development and to examine the possible role 

of the circadian clock in the coordination of stamen and pistil elongation, we analyzed the 

coordinated growth of stamens and pistils at ZT3 and ZT19. Experiments were conducted 

following the experimental design schematically depicted in Figure 32. About five hundred 

buds and flowers from one hundred primary inflorescences were selected and lengths of 

the stamens and pistils were measured. The coordination of stamen and pistil length was 

analyzed by comparing the frequency of stamens longer than pistils. Our results showed 

that in WT plants, more than 33% stamens around 2.4 ±0.2 mm long, exceeded pistil length 

in samples analyzed at ZT3 (Figure 33A, C). In contrast, only 13% of stamens were longer 

than pistils at ZT19 (Figure 33B, C). The results suggest that the elongation of stamens and 

pistils relative to each other might vary between the day and night.  

 

Figure 32. Schematic diagram depicting the coordination of stamen and pistil length 

in Arabidopsis thaliana. About 100 primary inflorescences were selected at ZT3 or at 

ZT19 (1) and were separated into about 500 buds and flowers at different developmental 

stages (2), then lengths of stamens and pistils were measured using Image J software (3). 

Comparing the lengths between stamens and pistil (4). 
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Figure 33. The coordination of stamen and pistil length in WT buds and flowers 

changed among day and night. Correlation between stamen length and pistil length in 

WT at ZT3 (A), and at ZT19 (B). (C) The percentage of stamens longer than pistils in WT 

at different time points. Note: a thin line is drawn in (A-B) panels, having a slope of 45o 

and passing through the origin. Stamen and pistil lengths were measured in each flower 

whose pistil was longer than 1.0mm. About 500 buds and flowers were obtained from 100 

primary inflorescences of 6-7week-old plants. All the obtained flowers were measured and 

those flowers with pistils longer than 3 mm or shorter than 1.0 mm were excluded. Data is 

presented in (C) as mean ±SEM. (**** p-value<0.0001; ** p-value < 0.001; * p-

value<0.05). At least two biological replicates were performed per experiment. 

We also used CCA1-ox and cca1-1lhy-20 mutant plants to compare stamen and pistil length 

at ZT3 and ZT19. CCA1-ox plants showed a significant higher percentage of stamens 

longer than pistils at ZT3 compared to that at ZT19 (Figures 34A-C), similarly to WT. 

Meanwhile, cca1-1lhy-20 plants also showed more stamens exceeding pistils in length at 

ZT3 than at ZT19 (35A-C). The comparative analyses of stamen and pistil length in WT 

and CCA1-ox plants at ZT3 showed that the CCA1-ox plants had a significant lower 

percentage of stamens longer than pistils compared to WT (Figure 36A) while no 

significant difference was observed in cca1-1lhy-20 mutant plants (although the high 

variability precluded reaching a clear conclusion) (Figure 36A). At ZT19, CCA1-ox plants 

also showed a reduced number of stamens longer than pistils compared to WT (Figure 36B), 

while a similar percentage in WT and cca1-1lhy-20 mutant plants was observed at ZT19 

(also showing high variability in the cca1-1lhy-20 samples) (Figure 36B).  
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Figure 34. The coordination of stamen and pistil length in CCA1-ox buds and flowers 

changed among day and night. Correlation between stamen length and pistil length in 

CCA1-ox at ZT3 (A), and at ZT19 (B). (C) The percentage of stamens longer than pistils 

in CCA1-ox at different time points. Note: a thin line is drawn in (A-B) panels, having a 

slope of 45o and passing through the origin. Stamen and pistil lengths were measured in 

each flower whose pistil was longer than 1.0mm. About 500 buds and flowers were 

obtained from 100 primary inflorescences of 6-7week-old plants. All the obtained flowers 

were measured and those flowers with pistils longer than 3 mm or shorter than 1.0 mm 

were excluded. Data is presented in (C) as mean ±SEM. (**** p-value<0.0001; ** p-value 

< 0.001; * p-value<0.05). At least two biological replicates were performed per experiment. 
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Figure 35. The coordination of stamen and pistil length in cca1-1lhy-20 buds and 

flowers changed among day and night. Correlation between stamen length and pistil 

length in cca1-1lhy-20 at ZT3 (A), and at ZT19 (B). (C) The percentage of stamens longer 

than pistils in cca1-1lhy-20 at different time points. Note: a thin line is drawn in (A-B) 

panels, having a slope of 45o and passing through the origin. Stamen and pistil lengths were 

measured in each flower whose pistil was longer than 1.0mm. About 500 buds and flowers 

were obtained from 100 primary inflorescences of 6-7week-old plants. All the obtained 

flowers were measured and those flowers with pistils longer than 3 mm or shorter than 1.0 

mm were excluded. Data is presented in (C) as mean ±SEM. (**** p-value<0.0001; ** p-

value < 0.001; * p-value<0.05). At least two biological replicates were performed per 

experiment. 
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Figure 36. CCA1 affects the coordination of stamen and pistil length. (A) Comparative 

analyses of the percentage of stamens longer than pistils in WT, CCA1, and cca1-1lhy-20 

flowers at ZT3. (B) Comparative analyses of the percentage of stamens longer than pistils 

in WT, CCA1, and cca1-1lhy-20 flowers at ZT19. Data is presented as mean ±SEM. (**** 

p-value<0.0001; ** p-value < 0.001; * p-value<0.05). At least two biological replicates 

were performed per experiment. 

Similar analyses in TOC1-ox and toc1-2 flowers showed more stamens exceeding pistil 

length at ZT3 than at ZT19 for both TOC1-ox and toc1-2 flowers (Figures 37A-C, 38A-C). 

Comparative analyses of stamen and pistil length between WT and TOC1-ox showed a 

significant higher percentage of stamens exceeding pistil length at ZT3 in TOC1-ox 

compared WT (Figure 39A), but a significantly smaller number of stamens exceeding pistil 

length in TOC1-ox than in WT at ZT19 (Figure 39B). The reverse phenotypes were 

observed for toc1-2, particularly at ZT3 (Figure 39A, B). Altogether, our results suggest 

that the circadian clock components CCA1 and TOC1 are important for the diurnal 

coordination of stamen and pistil growth. 
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Figure 37. The coordination of stamen and pistil length in TOC1-ox buds and flowers 

changed among day and night. Correlation between stamen length and pistil length in 

TOC1-ox at ZT3 (A), and at ZT19 (B). (C) The percentage of stamens longer than pistils 

in TOC1-ox at different time points. Note: a thin line is drawn in (A-B) panels, having a 

slope of 45o and passing through the origin. Stamen and pistil lengths were measured in 

each flower whose pistil was longer than 1.0mm. About 500 buds and flowers were 

obtained from 100 primary inflorescences of 6-7week-old plants. All the obtained flowers 

were measured and those flowers with pistils longer than 3 mm or shorter than 1.0 mm 

were excluded. Data is presented in (C) as mean ±SEM. (**** p-value<0.0001; ** p-value 

< 0.001; * p-value<0.05). At least two biological replicates were performed per experiment. 
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Figure 38. The coordination of stamen and pistil length in toc1-2 buds and flowers 

changed among day and night. Correlation between stamen length and pistil length in 

toc1-2 at ZT3 (A), and at ZT19 (B). (C) The percentage of stamens longer than pistils in 

toc1-2 at different time points. Note: a thin line is drawn in (A-B) panels, having a slope 

of 45o and passing through the origin. Stamen and pistil lengths were measured in each 

flower whose pistil was longer than 1.0mm. About 500 buds and flowers were obtained 

from 100 primary inflorescences of 6-7week-old plants. All the obtained flowers were 

measured and those flowers with pistils longer than 3 mm or shorter than 1.0 mm were 

excluded. Data is presented in (C) as mean ±SEM. (**** p-value<0.0001; ** p-value < 

0.001; * p-value<0.05). At least two biological replicates were performed per experiment. 

 

Figure 39. TOC1 affects the coordination of stamen and pistil length. (A) Comparative 

analyses of the percentage of stamens longer than pistils in WT, TOC1, and toc1-2 flowers 

at ZT3. (B) Comparative analyses of the percentage of stamens longer than pistils in WT, 

TOC1, and toc1-2 flowers at ZT19. Data is presented as mean ±SEM. (**** p-

value<0.0001; ** p-value < 0.001; * p-value<0.05). At least two biological replicates were 

performed per experiment. 
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Discussion 

Knowledge about environmental adaptations and biological rhythms in plants is helpful for 

ensuring a more sustainable agriculture within climate change and resource scarcity 

scenarios. When the rhythmic physiological processes in crops are taken into account in 

agriculture, more efficient and cost-effective management practices can be designed for 

food production. In medicine, chronotherapy is used to increase drug efficacy, reduce 

toxicity, and understand the health effects of circadian clock disruption. Meanwhile, 

circadian agriculture, also known as agro-chronobiology, agricultural chronotherapy, or 

chronoculture (Belbin et al., 2019; Gottlieb, 2019; Steed et al., 2021), can be used for food 

production through coordinating the advantages of circadian biology with agricultural 

practices. For instance, recent studies have focused on the manipulation of the circadian 

system to improve plant productivity (reviewed in Steed et al., 2021). Flowers, produced 

from the reproductive shoot apical meristem (SAM), known as the inflorescence meristem, 

form seeds after fertilization and are central for crop yield. Understanding the circadian 

determinants in flowers will provide insightful clues for future applications in 

chronoculture.  

Regarding the circadian system, several studies on specific organs and tissues are 

uncovering both the circadian autonomy of some organs (Bordage et al., 2016; Endo et al., 

2014; Fukuda et al., 2012; James et al., 2008; Thain et al., 2002; Wenden et al., 2012; Yakir 

et al., 2011b) as well as the coupling and coordination of rhythms within the plant (Chen 

et al., 2020; Gould et al., 2018; Greenwood et al., 2019; Takahashi et al., 2015). Therefore, 

the plant circadian system comprises autonomous tissue-specific rhythms complemented 

with cell-to-cell coupling and long-distance coordination (Nakamichi, 2020; Sorkin and 

Nusinow, 2021). Despite this knowledge, the components and regulatory mechanisms of 

clock architecture and function in flowers remain to be elucidated. Similarly, there is little 

information about the direct participation of the circadian clock in reproductive floral 

organs, such as pistils and stamens, as well as on seed production. Therefore, understanding 

the circadian clock function in pistils and stamens, and its role in the regulation of 

pollination and seed production might be useful for improvement of plant productivity.  
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Our studies have shown that buds and flowers detached from the rest of the plant display 

rhythmic oscillations, which indicates the presence of self-sustained functional clocks. The 

rhythmic differences in buds and open flowers may be due to differences in sensitivities to 

environmental cues for different organs (Atamian et al., 2016). Under the same conditions, 

other excised organs, for example roots, also sustain rhythms but with a long period and 

delayed phase compared with shoots (Chen et al., 2020; Takahashi et al., 2015). Notably, 

excised pistils showed self-sustained rhythms with precise 24-h oscillations. These results 

indicate that the circadian clock in pistils is able to precisely run without signals from the 

rest of the plant. In other floral organs, the dampened rhythms could be due to reduced 

viability or lack of energy after excision from the flower.  

The circadian clock plays an important role controlling hypocotyl length in Arabidopsis 

and other crops (Li et al., 2020; Wang and Tobin, 1998). Our studies showed that proper 

circadian function is also essential for pistil and silique growth as well as for seed quality 

and production. The circadian factors and regulatory mechanisms controlling growth 

appear to be organ-specific, judging by the opposite hypocotyl and pistil length phenotypes 

observed in plants miss-expressing clock components. For instance, CCA1-ox plants 

displayed a long hypocotyl (Wang and Tobin, 1998), but produced shorter pistil compared 

to WT. TOC1 miss-expressing plants also regulate both pistil and hypocotyl lengths but 

show reverse roles in these two organs. Our study showed longer pistil in TOC1-ox and 

shorter pistils in toc1-2 mutant plants compared to WT. In contrast, TOC1-ox showed short 

hypocotyl, and toc1-2 displayed longer hypocotyls than the WT (Más et al., 2003). The 

circadian clock regulates hypocotyl elongation by modulating among others, the 

expression of PIF4 and PIF5 (Niwa et al., 2009). The EC binds to the promoters of PIF4 

and PIF5 to repress their expression at night (Nusinow et al., 2011). CCA1 represses ELF3 

by binding to its promoter and acts upstream of ELF3, mediating the repression of PIF4 

and PIF5 in the regulation hypocotyl elongation (Lu et al., 2012). In CCA1-ox plants, the 

PIF4 and PIF5 expression are elevated throughout the night owing to the low expression 

of ELF3, leading to long hypocotyls (Lu et al., 2012; Niwa et al., 2009; Nozue et al., 2007). 

In addition, TOC1 is also able to interact with PIF4 to repress the hypocotyl elongation 

(Yamashino et al., 2003; Zhu et al., 2016). CYCLING DOF FACTOR (CDF) transcription 

factors CDF5 controls hypocotyl elongation by promoting cell elongation through 
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regulating expression of IAA19 and cell-wall-related genes (Martín et al., 2018). The CDF5 

protein is antagonistically targeted by the interplay between PRRs (including TOC1) and 

PIFs to restrict growth of hypocotyl (Martín et al., 2018). It would be interesting to 

determine the molecular mechanisms and downstream signaling pathways by which the 

circadian clock regulates pistil growth and function. Other circadian mutant lines with 

altering the expression of circadian genes also showed diverse roles of circadian genes in 

the regulation of hypocotyl and pistil elongations (Table 2).  

Table 2. Summary view of circadian roles of clock genes hypocotyl and pistil lengths  

 

The size of seeds, a key factor in grain yield of crops, is determined by the integrated 

signals of maternal and zygotic tissues, which control the coordinated growth of the 

embryo, endosperm, and seed coat (Li et al., 2019b). The ubiquitin-proteasome pathway, 

G-protein signaling, mitogen-activated protein kinase (MAPK) signaling, phytohormone 

perception and homeostasis, and some additional transcriptional regulators participate in 

the determination of seed size (Li et al., 2019b). Our results showed that plants miss-

expressing clock components displayed altered seed size and seed abortion. The role of the 

circadian clock in the control of seed production also opens interesting possibilities for 

biotechnological application by improving seed yield, arguably one of the most important 

traits for plant breeding.  
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Our studies have focused on elucidating the transcriptional regulatory network at the core 

of the pistil clock. The analyses of mutant and over-expressing lines point out to a complex 

regulatory network. Our data provides a pattern in which CCA1 represses the expression 

of the evening-phased genes, and in turn, these components repress PRR9 and PRR7. TOC1 

also represses the expression of the EC genes, whereas PRR9 and PRR7 components 

repress CCA1. The marked up-regulation of CCA1 in ELF3-ox pistils is likely the 

consequence of the reduced accumulation of the morning-phased repressor genes PRR7 

and PRR9. Similarly, the analyses of the prr79 mutant suggest that PRR9 and PRR7 might 

repress (directly or indirectly) the evening-phased gene expression during the subjective 

day. The down-regulation of evening-phased gene expression during the subjective night 

might be a consequence of the up-regulation of CCA1 in the prr79 mutant. Thus, the 

analyses of the mutants and over-expressing lines suggest that many of the clock 

components that function as repressors also shape the oscillations by repressing other 

repressors.  

Altogether, the analyses of mutants, over-expressing lines and the genetic interaction 

studies show a complex regulatory circuitry in pistils (Figure 40) with CCA1-ox repressing 

TOC1 over the morning PRRs (1), PRR7 repressing PRR9 over CCA1-ox (2), morning 

PRRs repressing CCA1 (3), and EC (4) over CCA1-ox. Within the evening-expressed 

components, TOC1-ox represses the PRRs over the EC (5), the EC auto-represses itself 

over TOC1-ox (6), and the EC activates CCA1 over TOC1-ox (7). Current models of the 

Arabidopsis clock in seedlings include the reciprocal regulation of morning and evening 

oscillator genes that results in their time-of-day specific peak of expression (Avello et al., 

2021). The highly repressive interactions between circadian components, autoregulation 

patterns, and three-node feedback loops configure a circadian network using data from 

whole seedlings (Avello et al., 2021) that differs from the one observed in pistils. Other 

models also group several circadian components together to explore the clock responses to 

various light cues as well as clock control in hypocotyl growth (Avello et al., 2021; De 

Caluwé et al., 2016). We proposed that the particular circadian architecture that we found 

in pistils might provide robustness to the pistil clockwork (Figure 40).  
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Figure 40. The transcriptional repressive network at the core of the pistil oscillator. 

Circadian regulatory network comprising dominant regulatory functions (thick black lines) 

as inferred by the genetic interaction studies. Arrows indicate activation and lines ending 

in perpendicular dashes indicate repression. See the Results (section 4 and section 5) for a 

further explanation. 

Clock repressors and activators have specific regulatory functions in pistils. In sepals, 

petals, and stamens, the toc1-2 mutant showed similar waveforms than WT at least for the 

first days under LL. These results suggest that the lack of a functional TOC1 can be 

overcome for few days. In pistils, on the other hand, the short-period phenotype was 

evident from the initial days, but the rhythms dampened low over time. Thus, TOC1 

circadian function is different in the floral organs, with a prevalent role in pistils. We also 

observed that gene expression of TOC1 (and also ELF3) didn’t sustain robust high-

amplitude circadian rhythms in pistils (Okada et al., 2022). Translational and/or post-

translational mechanisms of regulation might contribute to the rhythmic oscillation of clock 

protein activity. For example, TOC1 protein is regulated by degradation through the 

proteasome pathway, thus providing a mechanism for controlling TOC1 protein oscillation 

and period length by the clock (Más et al., 2003). The degradation of TOC1 protein requires 

a functional ZTL protein as mutation of ZTL results in constitutive accumulation of TOC1 

protein (Más et al., 2003). In addition, GI protein also participates in increasing the 

amplitude of the daily TOC1 protein oscillation by stabilizing ZTL protein (Kim et al., 

2007). The B-BOX family of protein 19 (BBX19), a critical protein fine-tuning circadian 

rhythms (Yuan et al., 2021), reduces ELF3 protein stability without altering the 

transcriptional levels of ELF3 expression (Wang et al., 2015). It would be interesting to 
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examine if these mechanisms of regulation for TOC1 and ELF3 proteins are also observed 

in pistils. 

Compared with pistils, rhythms in stamens displayed a short-period phenotype, with an 

advanced phase. It would be interesting to determine the biological relevance of such phase 

variation between the reproductive organs. Similar differences were reported between 

hypocotyls and cotyledons, showing earlier rhythmic peaks in hypocotyls compared to 

cotyledons (Gould et al., 2018). The rhythms of hypocotyls also peaked earlier than the 

rhythms in upper roots (Gould et al., 2018). These results suggest that the Arabidopsis 

clock may have multiple coordination points (Gould et al., 2018). Circadian differences in 

reproductive organs are not exclusive of plants. For instance, the expression of core clock 

genes is also rhythmic in ovarian tissues (Kennaway et al., 2012), and female and male rats 

show sex differences in daily rhythms and in responses to endogenous and exogenous cues 

(Bailey and Silver, 2014). The sex-dependent circadian differences are relevant to humans 

in many areas, most notably those related to reproduction and overall health (Bailey and 

Silver, 2014). Understanding the circadian differences in reproductive organs in flowers 

may prove essential for optimizing plant reproduction and productivity.  

Several studies performed in Arabidopsis hypocotyls and petioles have been informative 

for understanding the circadian function in the regulation of elongation in plant organs 

(Favero et al., 2021). Analogously, our work also suggests a role for the circadian clock in 

the coordinated regulation of stamen and pistil elongation. Light and temperature are two 

key external signals inducing the elongation of plant organs, but the mechanisms of 

elongation in various organs are quite different (Ichihashi et al., 2011). For instance, 

hypocotyl elongation occurs mostly through cell expansion (Gendreau et al., 1997). 

However, petiole elongation relies on the correct spatial regulation of the proliferative 

region of leaf primordia (Ichihashi et al., 2011).  

Previous studies focusing on stamen and pistil growth revealed three growth phases for 

stamens while pistils displayed a single exponential growth under LL conditions (Tashiro 

et al., 2009). The stamens with length around 1.6 to 2.0 mm grew fastest to catch up with 

pistils or extend above pistils. Our studies of pistil length populations showed that the 
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frequency of pistil length gradually decreased over development under LgD conditions. 

However, the relative frequency of pistil length in each group would be inversely 

proportional to the growth rate as the relative frequency of pistils in each group is 

proportional to the time during which a pistil grows from the lower end point to the upper 

end point of the group, if production of flowers is in a steady state (Tashiro et al., 2009). 

Together, our results indicate that the growth rate of pistil gradually increased with the 

development of pistil, showing a single exponential growth as previously described 

(Tashiro et al., 2009). However, this characteristic distribution pattern of WT pistils was 

slightly altered in both CCA1-ox and TOC1-ox plants, suggesting a role for the circadian 

clock in the regulation of pistil elongation.  

The kinetics of stamen and pistil growth showed that stamens were shorter than pistils at 

stages 11 and 12, while at a later stage, stamens rapidly grew reaching a similar length than 

pistils. Previous studies also showed that at floral stages 12-13, filaments elongated rapidly 

to facilitate pollination and subsequent fertilization (Marzi et al., 2020; Smyth et al., 1990; 

Tashiro et al., 2009). Coordination of stamen and pistil length is essential for fertilization 

in Arabidopsis. Viable pollens from dehisced anthers cannot be properly released onto the 

stigma if stamen or pistil growth are not properly coordinated (Sanders et al., 1999). 

Understanding the molecular mechanism whereby the circadian clock controls stamen and 

pistil elongation would be important to elucidate how the plant coordinate reproduction in 

synchronization with the environment. 

The involvement of the circadian system in the regulation of flowering time have been 

extensively reported (Shim et al., 2017). Recent studies also showed that flower opening 

is redundantly regulated by the circadian clock and an unknown light-sensing pathway, 

whereas flower closing relies exclusively on circadian control (Muroya et al., 2021). The 

activities of pollinators on floral organs transfer pollen to stigmas, thereby inducing plant 

fertilization. In order to adapt the activities of pollinators, the circadian rhythms of 

movements of floral organs (Bai and Kawabata, 2015; Kaihara and Takimoto, 1979; 

Muroya et al., 2021) synchronize with the rhythms of activities of pollinators (Hasegawa 

et al., 2006). For instance, mature sunflowers exhibit eastward orientation to warm up the 

floral organs through increased morning interception of solar radiation that enhances the 
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attractiveness to pollinators (Atamian et al., 2016). Flower opening and closure are 

important for pollen removal to complete pollination process (van Doorn and Van Meeteren, 

2003). As a self-pollinating plant, precisely coordinated growth of stamens and pistils 

determines the fertility in Arabidopsis plants (Song et al., 2014).  

Under LgD conditions, our studies showed that there are more stamens longer than pistils 

at ZT3 than at ZT19, suggesting a different coordination between stamen and pistil 

elongation during the day. Altering circadian components impact the coordination of 

stamen and pistil length. CCA1-ox showed significant lower percentage of stamens longer 

than pistils and cca1-1lhy-20 had more stamens longer than pistil at both day and night 

compared to WT. However, TOC1-ox showed significant higher percentage of stamens 

longer than pistils at day and significant lower percentage of stamens longer than pistils at 

night compared to WT. These results may be explained by the repression by TOC1 of 

stamen elongation at later developmental stages preferably during the day. The 

coordination between stamen and pistil length is surely regulated by many internal and 

external factors (Huang et al., 2014; Marciniak and Przedniczek, 2019). It would be 

interesting to identify all these factors and their interplay with the circadian clock. 

Altogether, our studies have identified the circadian transcriptional network at the core of 

the pistil clock, showing that pistils can autonomously sustain organ-specific circadian 

rhythms. The circadian clock controls the coordination of stamen and pistil lengths and 

consequently, proper circadian function is important for pistil and silique growth as well as 

seed production.  
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Conclusions 

In this Doctoral Thesis, we have elucidated the circadian function and the transcriptional 

network at the core of the pistil clock. We have also identified a role of the circadian 

clock controlling pistil and stamen growth and seed production. The specific 

conclusions are summarized in Figure 41 and briefly described below:  

1. A functional circadian clock sustains rhythms in buds and flowers detached 

from the rest of the plant, although the rhythmic oscillations appeared more robust 

in buds than in flowers. 

2. Detached pistils from the plant show precise and robust rhythms and display 

organ-specific circadian autonomy. The robust circadian oscillations in pistils 

require a functional TOC1. 

3. Proper circadian function is important in the control of pistil and silique growth 

and seed weight and production, which altogether opens up new avenues for agro-

chronobiology in crops of agronomical relevance. 

4. Clock repressors show distinctive organ-specific regulatory functions in pistils 

and define a particular regulatory network at the core of the pistil clock.  

5. An organ-specific hierarchy of clock repressing activities might provide 

robustness, and precision to the pistil clock. 

6. Diurnal and developmental regulations are essential for the coordinated control 

of pistil and stamen growth.  
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Figure 41. Schematic diagram depicting the main conclusions in this Doctoral Thesis. 
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Summary 

The circadian clock is an endogenous timekeeping mechanism that generates biological 

rhythms with a period of 24-hours. In plants, the circadian system regulates many essential 

processes including among many others, flowering time, and petal movement. In this 

Doctoral Thesis, we have focused on how the circadian clock functions in Arabidopsis 

thaliana flowers, specifically, in pistils, the female reproductive organ. When detached 

from the rest of the flower, pistils sustain highly precise rhythms, indicating organ-specific 

circadian autonomy. In contrast, stamens, and other floral organs, display a short circadian 

period or dampening rhythms over time. Analyses of clock mutants and chromatin 

immunoprecipitation assays show distinct expression patterns and specific regulatory 

functions for clock repressors in pistils. Genetic interaction studies also suggest a hierarchy 

of the repressing activities that might provide robustness and precision to the pistil clock. 

Analyses of clock mutant and over-expressing lines indicate that proper circadian function 

is important for the coordinated regulation of pistil and stamen growth, which is essential 

for effective pollination. Consequently, clock mutant plants show alterations in seed 

production. Understanding the circadian intricacies in reproductive organs may prove 

useful for optimizing plant reproduction and productivity, opening new avenues for 

manipulation of clock function in crops of agronomic relevance. 
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Resumen  

El reloj circadiano es un mecanismo celular endógeno que genera ritmos biológicos con un 

período de 24 horas. En las plantas, el sistema circadiano regula muchos procesos 

esenciales, incluidos, entre otros, el tiempo de floración y el movimiento de los pétalos. En 

esta Tesis Doctoral nos hemos centrado en cómo funciona el reloj circadiano en las flores 

de Arabidopsis thaliana, concretamente en los pistilos, el órgano reproductor femenino. 

Cuando se separan del resto de la flor, los pistilos mantienen ritmos circadianos muy 

precisos, lo que indica su autonomía circadiana específica. Por el contrario, los estambres 

y otros órganos florales muestran o bien un período circadiano corto o bien una pérdida de 

amplitud con el tiempo. Los análisis de mutantes de reloj y ensayos de inmunoprecipitación 

de cromatina muestran patrones de expresión distintos y funciones reguladoras específicas 

para los principales represores de reloj en los pistilos. Los estudios de interacción genética 

también sugieren una jerarquía de las actividades represoras que podrían proporcionar 

robustez y precisión al reloj en pistilos. Los análisis de líneas mutantes de reloj y de sobre-

expresión indican que la función circadiana adecuada es importante para la regulación 

coordinada del crecimiento del pistilos y el estambres, lo cuál es esencial para una 

polinización eficaz. En consecuencia, las plantas con mutaciones en componentes 

importantes del reloj circadiano muestran alteraciones en la producción de semillas. 

Comprender las complejidades circadianas de los órganos reproductivos puede resultar útil 

para optimizar la reproducción y la productividad de las plantas, abriendo así nuevas vías 

para la manipulación de la función del reloj circadiano en cultivos de relevancia 

agronómica. 
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Materials and Methods 

1. Plant material, growth conditions and organ dissection 

Seedlings were grown on half-strength Murashige and Skoog (MS) agar medium without 

sucrose, and synchronized under light:dark cycles (LgD, 16h light:8h dark) with 60-100 

μmol m−2s−1 of cool white fluorescent light at 22°C for about 7-10 days (unless otherwise 

specified). For experiments using flowering plants, seedlings were transplanted to soil and 

cultivated throughout the reproductive stage under light:dark cycles (LgD, 16h light:8h 

dark) with 150-200 μmol m−2s−1 of white light emitting diodes (LEDs) at 22°C. The 

CCA1::LUC (Salome and McClung, 2005), TOC1::LUC (Perales and Más, 2007) and 

GI::LUC (Wu et al., 2008) reporter lines as well as the CCA1-ox (Wang and Tobin, 1998), 

TOC1-ox (Huang et al., 2012), and toc1-2/CCA1::LUC (NASC, N2107710) (Cervela-

Cardona et al., 2021), cca1-1 lhy-20 (Nitschke et al., 2016), prr5-11/CCA1::LUC, prr57, 

prr59 (Nakamichi et al., 2005), prr79 (Farré et al., 2005), ELF3-ox-YFP (Herrero et al., 

2012a), YFP-ELF4-ox (Herrero et al., 2012a), LUX-GFP (LUXpro::LUX-GFP lux-4) 

(Ezer et al., 2017), CCA1-HA-EYFP/cca1-1 (Yakir et al., 2009) lines were described 

elsewhere. All the lines are in Columbia (Col-0) background. Matching WT backgrounds 

were used for each mutant line. The TOC1-ox/elf3-2 lines were generated by crossing the 

TOC1-ox plants (Huang et al., 2012) with the elf3-2 mutant (Hicks et al., 1996). The 

CCA1-ox/prr lines were generated by transforming the CCA1-ox construct into the prr79 

plants and by crossing the CCA1-ox plants (Wang and Tobin, 1998) with the prr7 mutant 

plants (Farré et al., 2005). For the luminescence assays (see below) and for the RT-QPCR 

(Reverse Transcription Quantitative Polymerase Chain Reaction) analysis of floral organs, 

sterile dissecting forceps were used to carefully excise young buds, mature buds, mature 

flowers, and open flowers from flowering plants. Similarly, sepals, petals, stamens, and 

pistils were carefully excised from open flowers. 
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2. In vivo luminescence assays  

Buds, flowers or floral organs from luciferase-expressing plants synchronized under 

light:dark cycles (LgD, 16h light:8h dark) with 150-200 μmol m−2s−1 of white LEDs at 22℃ 

were excised and immediately placed in 96-well microplates with half-strength MS liquid 

medium with 1% sucrose and 290µM D-luciferin (Biothema). Bioluminescence rhythms, 

were examined as previously described (Okada and Mas, 2022) under constant light (LL) 

conditions or entraining Light:Dark cycles (LgD, 16h light:8h dark) as specified for each 

experiment. A microplate luminometer LB-960 (Berthold Technologies) and the software 

Microwin, version 4.34 (Mikrotek 2 Laborsysteme) were used for the bioluminescence 

analyses. Amplitude, period, and relative amplitude error (RAE) were estimated with the 

fast Fourier transform non-linear least squares (FFT-NLLS) method (Zielinski et al., 2014). 

The analyses were performed in the statistical environment of R 3.3.2. Data from samples 

that appeared damaged or that eventually died in the wells were excluded from the analyses. 

Three biological replicates were performed per experiment. 

3. Gene expression analysis by RT‐QPCR 

About 5-6 seedlings (12-day old) or about 6-8 flowers were collected, snap-frozen and 

ground using TissueLyser II (QIAGEN). About 6-8 pistils were collected, snap-frozen and 

ground using plastic grinding pestles. RNA from seedlings, flowers, and pistils was isolated 

using the Maxwell RSC Plant RNA kit (Promega). Single strand cDNA was synthesized 

using iScript™ Reverse Transcription Supermix for RT-qPCR (BioRad) following the 

manufacturer recommendations. For QPCR analysis, cDNAs were diluted 30-50-fold with 

nuclease-free water and QPCR was performed with Brilliant III ultrafast SYBR qRT-PCR 

Master Mix (Agilent) in a 96-well CFX96 Touch Real-Time PCR Detection System 

(BioRad). The IPP2 gene (Fung-Uceda et al., 2018) was used as control in seedlings and 

PP2AA3 (AT1G13320) (Takahashi et al., 2015) was used as control in pistils and flowers. 

A list of primers used for gene expression analyses is shown in Table 4. Three biological 

replicates were performed per experiment. 
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4. Phenotypic analyses of pistils, siliques, and seeds 

For pistil analyses, at least 5 pistils for each genotype were selected at stages 11, 12 and 13 

(Müller, 1961; Smyth et al., 1990), and pictures were taken with a stereo microscope 

(SZX16, Olympus) after careful removal of petals and sepals. Measurements of pistil 

length was performed using the software package Image J. For silique and seed analyses, 

100 fully developed siliques from the main inflorescences (starting at the fifth silique from 

the bottom) were collected and photographed using a stereo microscope (SZX16, 

Olympus). Seeds from each silique were spread on white paper and photographs were taken. 

Silique length and seed number per silique were quantified using the software package 

Image J. For seed size and weight analyses, seeds were harvested and sieved to remove 

plant debris. Following incubation at 25°C for 7 days, randomly selected groups of seeds 

for each line were weighted (W). Seed number (N), sectional area, length and width were 

quantified using the software package Image J. The grain weight was calculated as: 1000-

grain weight (g)= W /N *1000. Two-tailed Student’s t-test analyses were performed using 

the GraphPad Prism software. 

5. Phenotypic analyses of pistil and stamen length 

5.1. Analyses of the distribution of pistil and stamen length  

For the circadian coordination between stamen and pistil analyses, we used about 100 

primary inflorescencs from 6-7 weeks old plants growing under LgD conditions (16h 

light:8h dark). Samples were collected at ZT3 and ZT19 and fixed in 70% ethanol for 7-10 

days to remove pigments. About 500 buds and flowers at different developmental stages 

were collected from the fixed inflorescences and stored in a clearing solution (chloral 

hydrate/glycerol/water=100g/10g/25ml) for 3 days. Pictures of buds and flowers immersed 

in clearing solution were taken using a stereo microscope (SZX16, Olympus). 

Measurements of the length of four long stamens and the pistil was performed by software 

package Image J. Stamen length was determined as the distance from the base of the stamen 

filament to the tip of the anther. Pistil length was determined as the distance from the base 

of the pistil to the tip of the stigma papillae.  
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5.2. Kinetics of stamen or pistil growth. 

For pistil and stamen growth kinetic analyses, 50 flowers or buds from about 10 plants 

growing under LgD conditions (16h light:8h dark) were collected at different stages (from 

stage 11 to stage14) (Smyth et al., 1990). Pictures were taken with a stereo microscope 

(SZX16, Olympus) after careful removal of petals and sepals. Measurements of pistil and 

four long stamens length were performed by using the software package Image J why 

sometimes you use italics and sometimes not?.  

6. Chromatin immunoprecipitation assays 

Chromatin immunoprecipitation (ChIP) assays were performed as previously described 

(Yamaguchi et al., 2014). About 100 mg of pistils from open flowers were sampled, and 

vacuum infiltrated 3 times for 15 min in 30 ml cross-linking solution (1% formaldehyde in 

1×PBS) at room temperature. The cross-linking reaction was stopped by adding glycine to 

a final concentration of 0.125 M and vacuum infiltrated for 5 min. Samples were washed 

three times with cold deionized water, dried with paper towels and snapped-frozen in liquid 

nitrogen. Samples were ground to fine powder and extracted with 2.5 ml of Nuclei 

extraction buffer. After filtering the samples through Miracloth (475855, Merck), the 

chromatin solution was sonicated until obtaining sheared DNA of about 200-600 bp. 

Soluble chromatin was incubated overnight at 4°C with theAnti-GFP antibody (#A-11122, 

Thermo Fisher Scientific) for the samples of ELF3-ox-YFP, YFP-ox-ELF4, LUX-GFP and 

CCA1-HA-EYFP/cca1-1. Samples were then incubated with Protein G-Dynabeads beads 

(10004D, Thermo Fisher Scientific) for 4 hours at 4°C with rotation. The beads were 

washed thrice with Low salt wash buffer, High salt wash buffer, 250 mM LiCl wash buffer 

and 0.5×TE, respectively. The samples were eluted from the beads with elution buffer by 

incubating for 30 min at 65°C. The purified DNA was diluted 10-fold with nuclease-free 

water and QPCR was performed with Brilliant III ultrafast SYBR qRT-PCR Master Mix 

(Agilent) in a 96-well CFX96 Touch Real-Time PCR Detection System (BioRad). Primers 

used for ChIP-QPCR are shown in Table 4. 
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Table 3. Arabidopsis thaliana lines used in this study. 
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Table 4. A list of primers used in this study 

Gene  Sequence Experiment 

IPP2 
Forward CCAGGACAATGCACTAGGTGTG Expression 

analysis Reverse AGGGAGTGAACTCATCGACTGG 

PP2AA3 
Forward AAGCGGTTGTGGAGAACATGATACG Expression 

analysis Reverse TGGAGAGCTTGATTTGCGAAATACCG 

CCA1 
Forward TCGAAAGACGGGAAGTGGAACG Expression 

analysis Reverse GTCGATCTTCATTGGCCATCTCAG 

LHY 
Forward AAGTCTCCGAAGAGGGTCGT Expression 

analysis Reverse GGCGAAAAGCTTTGAGGCAA 

TOC1 
Forward TCTTCGCAGAATCCCTGTGAT Expression 

analysis Reverse GCTGCACCTAGCTTCAAGCA 

ELF3 
Forward ACCGAGATGGTGGCAAAACT Expression 

analysis Reverse ACTGCCATGACCCTCTTGTG 

ELF4 
Forward AGTTTCTCGTCGGGCTTTCACG Expression 

analysis Reverse TAAGCTCTAGTTCCGGCAGCAC 

LUX 
Forward CGCTACGTGGTGGATCTTCA Expression 

analysis Reverse CGAATCCGATCCAGGACTGC 

PRR5 
 

Forward AATGGTGGTGATGCCCAGAG Expression 
analysis Reverse GCACTCCATCTGTACTGCGT 

PRR7 
Forward AAGTAGTGATGGGAGTGGCG Expression 

analysis Reverse GAGATACCGCTCGTGGACTG 

PRR9 
Forward ACCAATGAGGGGATTGCTGG Expression 

analysis Reverse TGCAGCTTCTCTCTGGCTTC 

TOC1 
Forward ATAAACGAAACGAAGCCGAATC 

ChIP analysis 
Reverse CAAACATATCAAAAGGTCGACAGAA 

ELF3 
Forward GAAGCTTATTGTTGTGAAAGTTGGAG 

ChIP analysis 
Reverse CTTGCAAACTTCTCAAACCCCA 

ELF4 
Forward GACACCGAGGCGAGTAAGTT 

ChIP analysis 
Reverse ACCCAATCACTTCACAGCTTCA 

LUX Forward CTCATCACCGAATCTTTCTCCTC ChIP analysis 
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Reverse CCAAGTCAGCTATTTGTGAGGGT 

PRR7#2 
Forward TTCCTTACCCACCATTACACG 

ChIP analysis 
Reverse CAGAGCGGATATTTCCACATC 

PRR7 
Forward TCAATGGGGCTGGTCTTTAAG 

ChIP analysis 
Reverse GCAAGGACATACACTTTGGCATC 

PRR9 
Forward GTGTTAAGGTGGACCTGCGA 

ChIP analysis 
Reverse CTTCACTGAGCTGACGTGGC 

PRR9#2 
Forward AACGAGCAGCAACCAGGAG 

ChIP analysis 
Reverse GCTTCTGATTCGTTACTGTGGAC 

TA3 
Forward CTGCGTGGAAGTCTGTCAAA 

ChIP analysis 
Reverse CTATGCCACAGGGCAGTTTT 

elf3-2 
control 

Forward TGAGTATTTGTTTCTTCTCGAGC 

Genotyping 
PCR 
 

Reverse CATATGGAGGGAAGTAGCCATTAC 

elf3-2 
Forward TGGTTATTTATTCTCCGCTCTTTC 

Reverse TTGTTCCATTAGCTGTTCAACCTA 

T-DNA LBb1.3 ATTTTGCCGATTTCGGAAC 
Genotyping 
PCR 

prr7-3 LP AGCAAGGACATACACTTTGGC Genotyping 
PCR  RP TGAGAATTCGTCGTTCTTCAAC 

prr9-1 LP TTTCGTGGTTGTGATCGAAAG Genotyping 
PCR  RP AGGATCATCACGCAACTGATC 
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SUMMARY
The plant circadian clock regulates essential biological processes including flowering time or petal move-
ment. However, little is known about how the clock functions in flowers. Here, we identified the circadian
components and transcriptional networks contributing to the generation of rhythms in pistils, the female
reproductive organ. When detached from the rest of the flower, pistils sustain highly precise rhythms, indi-
cating organ-specific circadian autonomy. Analyses of clock mutants and chromatin immunoprecipitation
assays showeddistinct expression patterns and specific regulatory functions for clock activators and repres-
sors in pistils. Genetic interaction studies also suggested a hierarchy of the repressing activities that provide
robustness and precision to the pistil clock. Globally, the circadian function in pistils primarily governs re-
sponses to environmental stimuli and photosynthesis and controls pistil growth and seedweight and produc-
tion. Understanding the circadian intricacies in reproductive organs may prove useful for optimizing plant
reproduction and productivity.
INTRODUCTION

The circadian clock generates 24-h biological rhythms in syn-

chrony with external and internal cues (Young and Kay, 2001).

At its basis, generation of the rhythms relies on a precise rhyth-

mic regulation of clock gene expression and protein function

(Chen and Mas, 2019; Crosby and Partch, 2020; Seo and Mas,

2014; Takahashi, 2017). The circadian molecular network has

been extensively investigated in the model plant Arabidopsis

thaliana, most notably using whole seedlings (Nakamichi,

2020). Recent studies on specific organs and tissues are uncov-

ering both the circadian autonomy of some organs (e.g., Thain

et al., 2000, 2002; James et al., 2008; Yakir et al., 2011;

Fukuda et al., 2012; Wenden et al., 2012; Endo et al., 2014;

Bordage et al., 2016) as well as the coupling and coordination

of rhythms within the plant (Chen et al., 2020; Endo et al.,

2014; Fukuda et al., 2007; Gould et al., 2018; Greenwood

et al., 2019; Takahashi et al., 2015). Therefore, the plant circadian

system comprises autonomous tissue-specific rhythms comple-

mentedwith cell-to-cell coupling and long-distance coordination

(Nakamichi, 2020; Sorkin and Nusinow, 2021).

Transcriptional feedback loops at the core of the Arabidopsis

oscillator delineate a time-of-day specific expression of the main

oscillator genes (McClung, 2019; Nakamichi, 2020; Sanchez and

Kay, 2016). The morning-expressed core clock components

include the single-MYB transcription factors CIRCADIAN CLOCK

ASSOCIATED1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY),
Develo
and the members of the PSEUDO-RESPONSE REGULATOR

(PRR) family, PRR9 and PRR7, which act during the day primarily

to repress clock gene expression (McClung, 2019; Nakamichi,

2020; Sanchez and Kay, 2016). Core clock components ex-

pressed close to dusk or at night include additional members

of the PRR family, such as PRR5 and TIMING OF CAB

EXPRESSION1/PRR1 (TOC1/PRR1) as well as the components

of the evening complex (EC), comprising EARLY FLOWERING 3

(ELF3), ELF4, and LUX ARRHYTHMO/PHYTOCLOCK1 (LUX/

PCL1) (McClung, 2019; Nagel and Kay, 2012; Nakamichi, 2020).

The evening-expressed components function as repressors of

morning genes to ensure that they are repressed during the night.

In addition to the clock repressors, several activators shape

the rhythmic oscillations. Some of the activators include chro-

matin marks contributing to an open chromatin conformation

(Chen and Mas, 2019) and additional clock components such

as LIGHT-REGULATED WD1 and 2 (LWD1 and LWD2) (Wang

et al., 2011; Wu et al., 2008, 2016), or members of the

REVEILLE (RVE) protein family (Farinas and Mas, 2011; Hsu

et al., 2013; Rawat et al., 2011; Shalit-Kaneh et al., 2018). The

RVE proteins form a co-activating protein complex with the

LNK (NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED

GENE) proteins (Ma et al., 2018; Rugnone et al., 2013; Xie

et al., 2014) and activate clock gene expression by timely recruit-

ing the transcriptional machinery to control the rhythms of

nascent RNAs (Ma et al., 2018). Altogether, current models of

the Arabidopsis oscillator depict the transcriptional regulation
pmental Cell 57, 1–13, September 26, 2022 ª 2022 Elsevier Inc. 1
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Figure 1. Self-sustained circadian rhythms in buds and flowers

(A) Representative photographs of buds and flowers at different develop-

mental stages.

(B and D) In vivo luminescence assays of CCA1:LUC rhythms in (B) young and

mature buds and (D) young and mature flowers.

(C and E) Period, and relative amplitude error estimates of circadian rhythms of

(C) young and mature buds and (E) mature and open flowers. Circadian time

course analyses by RT-qPCR of (F) CCA1 and (G) ELF4 mRNA expression in

open flowers. Samples were examined under constant light (LL) following

synchronization under light:dark cycles (16 h light:8 h dark). Data are pre-

sented as themean + SEM. Scale bars, 1mm. At least two biological replicates

were performed per experiment.

See also Figure S1.
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of morning-expressed clock components that specifically regu-

late evening clock genes and vice versa (Avello et al., 2021;

Caluwé et al., 2016).

The time-of-day specificexpressionofoscillator genesandpro-

teins defines the timing of biological processes or outputs

controlled by the clock. The circadian clock intersects with the

function of major organelles and cellular pathways including

among many others, hormonal pathways (Sanchez and Kay,

2016), the cell cycle (Fung-Ucedaet al., 2018), chloroplasts (Atkins

and Dodd, 2014; Flis et al., 2019; Fukushima et al., 2009), or mito-

chondria (Cervela-Cardona et al., 2021; Fukushima et al., 2009;

Sanchez-Villarreal et al., 2013). Consequently, the circadian

system regulates nearly every aspect of development, growth,

metabolism, and responses to biotic and abiotic stresses (Adams

andCarré, 2011; Kinmonth-Schultz et al., 2013; Sanchez andKay,
2 Developmental Cell 57, 1–13, September 26, 2022
2016). The photoperiodic regulation of flowering time has been

firmly established as an important clock output (Shim et al.,

2017).Daily rhythmsof scent emission,pollinator attraction, flower

closing, and orientation have been also documented (Atamian

et al., 2016;Creuxet al., 2021; Fenskeand Imaizumi, 2016; Fenske

etal., 2018;Muroyaetal., 2021).However, there is limited informa-

tion about how the clock actually works in flowers and what spe-

cific molecular and cellular pathways regulates within the flower.

Arabidopsis flowers show the typical structure of the Brassica-

ceae, which consist of concentric whorls, including four sepals,

a corolla of four petals, the androecium with six stamens, and

the gynecium at the center (Drews et al., 1991; Sablowski, 2015;

Weigel, 1995; Wellmer et al., 2014). The gynecium contains two

fused carpels separated by a false septum that divide the ovary

into two compartments (Ferrándiz et al., 1999; Zúñiga-Mayo

et al., 2019). The gynecium allows pollen fertilization of the ovules,

which eventually will develop into seeds. Here, we have studied

the circadian function in flowers and reproductive organs and

identified the specific regulatory network at the core of the clock

in pistils, arguably one of themorecomplex and evolutionary inno-

vative organs of flowering plants (Simonini andØstergaard, 2019).

We found a distinct functional network that confers precision and

robustness to the pistil clock.

RESULTS

Self-sustained circadian rhythms in detached buds
and flowers
To understand the circadian clock function in floral organs,

we examined rhythms in buds and flowers at different develop-

mental stages (Figure 1A). Young and mature buds (stages

6–12) (M€uller, 1961; Smyth et al., 1990) sustained high-amplitude

and robust circadian rhythms of CCA1:LUC activity (CCA1 pro-

moter fused to the LUCIFERASE) with circadian periods close to

24h under constant light (LL) conditions (Figures 1B and 1C).

Mature and fully open flowers (stages 13–15) (M€uller, 1961; Smyth

et al., 1990) also sustained rhythms under both LL (Figures 1D

and 1E) and entraining conditions (Figure S1A). Evening-phased

circadian reporters such as TOC1::LUC and GIGANTEA::LUC

(GI::LUC) also showed high-amplitude rhythms in flowers

(Figures S1B–S1F). Consistent with the bioluminescence results,

reverse transcription-quantitative polymerase chain reaction

(RT-qPCR) analyses confirmed the rhythmic circadian expression

of oscillator genes in flowers (Figures 1F and 1G). Thus, a func-

tional circadian clock sustains rhythms in buds and flowers de-

tached from the rest of the plant, although the rhythmic oscilla-

tions appeared more robust in buds than in flowers.

Analyses of circadian rhythms in toc1-2 mutant showed that

toc1-2 buds sustained the rhythmic oscillations, albeit with a

short period (�20 h) (Figures 2A, 2C and 2E), and thus, displaying

a phenotype similar to that previously reported in seedlings

(Millar et al., 1995). In flowers, toc1-2 showed short-period oscil-

lations only the first 2 or 3 days, dampening low afterward

(Figures 2B, 2D and 2F) (higher relative amplitude error values

indicate weaker rhythms). Comparative analyses confirmed the

altered toc1-2 rhythms in flowers compared with buds

(Figures 2G and 2H). Altogether, the circadian phenotype of

toc1-2 buds resembles that previously reported in seedlings,

but rhythms dampen low after few days in toc1-2 flowers.
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Figure 2. Distinct phenotypes of toc1-2mutant in buds and in flowers

(A–D) In vivo luminescence assays of CCA1:LUC rhythms in WT and toc1-2

(A) young buds, (B) open flowers, (C) mature buds, and (D) mature flowers.

(E and F) Period and relative amplitude error estimates of CCA1:LUC rhythms

in WT and toc1-2 (E) mature buds and (F) open flowers.

(G) Comparative luminescence analyses of CCA1:LUC rhythms in toc1-2

mature buds and open flowers.

(H) Period and relative amplitude error estimates of CCA1:LUC rhythms in

toc1-2 mature buds and open flowers. Samples were examined under LL

following synchronization under light:dark cycles (16 h light:8 h dark). Data are

presented as the mean + SEM. At least two biological replicates were per-

formed per experiment. Data are repeated in different graphs to facilitate

comparisons.
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Detached female reproductive organs show precise
and robust rhythms
Variations of rhythms in the different floral organs can contribute

to the rhythmic dampening in toc1-2 flowers. Thus, we examined

the circadian oscillation in sepals, petals, stamens, and pistils

(Figure 3A). In WT sepals, bioluminescence rhythms were

robustly sustained, albeit with a shorter period than 24 h

(Figures 3B and 3H). Rhythms inWT petals and stamens showed

short circadian periods for 3 or 4 days, dampening low afterward

(Figures 3C, 3D, 3I, S2A, and S2B). In contrast, the circadian
waveforms in pistils robustly oscillated for more than 5 days,

with a circadian period close to 24 h (Figures 3E–3H and 3J).

We observed similar results with different clock reporters

(Figures S2C–S2F). Time course analyses by RT-qPCR also

confirmed the differences observed between stamens and pistils

(Figures S2G and S2H). When we followed individual open

flowers in intact plants that were maintained for several days un-

der LL, we found that apart from pistils, the other floral organs

disappeared very rapidly, indicating that floral organs other

than pistils are short-lived in planta (Figure S2I). Therefore,

reduced viability and/or the lack of energy after excision might

contribute to the dampening of the rhythms that we observed

in the bioluminescence assays. In any case, our results showed

that pistils can survive for several days after excision from the

rest of the flower and that the circadian rhythms in pistils robustly

oscillate. Fertilization appears not to be a major factor contrib-

uting to the robustness of the pistil clock as similar patterns of

gene expression were observed in pistils from flowers before

and after fertilization (Figures S2J–S2M).

In toc1-2 sepals, rhythms were similar to WT for the first

3 days, albeit with slightly reduced amplitude. Thus, the charac-

teristic short-period phenotype of toc1-2 observed in seedlings

and buds was only evident in sepals after several days under

LL (Figures 3B and S3A). We observed a similar trend in toc1-2

petals and stamens, although the dampened rhythms precluded

a clear view of the possible period shortening over time

(Figures 3C, 3D, S3B, and S3C). As mentioned above, the

reduced viability or the lack of energy might contribute to the

dampening of the rhythms. In any case, analyses of rhythms

at early time points before dampening showed that the circadian

period of toc1-2 sepals and petals was not significantly different

from WT, whereas the circadian period of toc1-2 stamens was

significantly longer than WT (p value 0.0003 in samples with

relative amplitude error [RAE] < 0.4). In pistils, the short-period

oscillation observed during the first day rapidly transitioned to

very-low-amplitude rhythms (Figures 3E and S3D), following a

similar trend to that observed in whole flowers. Comparison of

the different floral organs revealed the organ-specific behavior

of toc1-2 mutant (Figures S3E and S3F).

The pistil clock regulates the circadian expression of
genes involved in photosynthesis and responses to
stimuli and controls pistil growth and seed production
We next performed time course analyses by RNA sequencing

(RNA-seq) to obtain a genome-wide view of the circadian tran-

scriptional landscape in pistils. We first verified the reliability of

the RNA-seq data by comparing our dataset with a previously

published analysis of pistil-enriched genes (Klepikova et al.,

2016; Martı́nez-Fernández et al., 2014, GEO: GSM1359146,

GSM1359147). Initial comparisons revealed that the similarities

were high despite the different sampling, growing conditions,

and mode of analyses (Figure S4A). For example, the highest

and lowest expressed genes were highly conserved in both data-

sets (examples in Figure S4B). The trends of expression for many

of the genes was also quite similar (Figures S4C–S4F). We also

found that the expression of genes characteristic of other floral or-

ganswas absent ormuch reduced comparedwith canonical pistil

genes (Figure S4G), suggesting that our dataset was specific and

reliably reflected the transcriptional landscape in pistils.
Developmental Cell 57, 1–13, September 26, 2022 3



A

I J

B C D

E F G

H

Figure 3. Robust circadian oscillations in pistils require a functional TOC1

(A) Representative photographs of sepals, petals, stamens, and pistils.

(B–E) In vivo luminescence assays of CCA1:LUC rhythms in WT and toc1-2 (B) sepals, (C) petals, (D) stamens, and (E) pistils.

(F and G) Comparative waveform analyses of CCA1:LUC rhythms in WT (F) petals and pistils and (G) stamens and pistils.

(H–J) Period and relative amplitude error estimates of circadian rhythms in WT (H) sepals and pistils, (I) stamens and sepals, and (J) stamens and pistils. Samples

were examined under LL following synchronization under light:dark cycles (16 h light:8 h dark). Data are presented as mean + SEM. At least two biological

replicates were performed per experiment. Data are repeated in different graphs to facilitate comparisons among floral organs. Scale bars, 0.5 mm.

See also Figures S2 and S3.
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Analyses of the rhythmic genes in pistils using the

JTK_CYCLE algorithm (Hughes et al., 2010) (adjusted p

value < 0.05) uncovered around 1,000 circadian genes

(Table S1) with a range of amplitudes that were similar or

slightly lower than the ones previously described at the shoot

apex (Takahashi et al., 2015; Figures 4A and 4B). Overall,

low-amplitude rhythmic genes showed lower expression than

high-amplitude genes (Figure S4H). The circadian phases of
4 Developmental Cell 57, 1–13, September 26, 2022
rhythmic genes in pistils expanded across the whole circadian

cycle but were slightly enriched during the day, particularly

at circadian time 4 (CT4) (Figure 4C) as opposed to the

enrichment after subjective dusk observed at the shoot apex

(Takahashi et al., 2015; Figure S4I). In addition to the organ-

specificities, different entrainment regimes (pistils: 16 h

light:8 h dark versus shoot apexes: 12 h light:12 h dark) can

contribute to peak-phase differences.
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Figure 4. Circadian transcriptional landscape in pistils and regulation of pistil growth and seed production

(A) Expression-based heatmap from transcriptomic RNA-seq data at different circadian times.

(B and C) Analyses of (B) Relative amplitude and (C) phase estimates of oscillating genes in pistils.

(D) Functional categorization of the main circadian genes in pistils.

(E) Comparative time course analysis of PIL6 gene expression from RNA-seq data in pistils and shoot apex.

(F) Expression-based heatmap from RNA-seq data of the main oscillator genes at different circadian times.

(G and H) Comparative time course analysis of CCA1 and TOC1 gene expression from RNA-seq data in (G) shoot apex and (H) pistils.

(I–K) Analyses of (I) pistil length, (J) silique number, and (K) silique length in WT and CCA1-ox plants.

(L and M) Representative images of seeds in siliques of (L) WT and (M) CCA1-ox plants. Siliques are not displayed in full length to facilitate the visualization of

the seeds.

(N–P) Analyses of (N) seed number per silique, (O) seed weight, and (P) seed sectional area in WT and CCA1-ox plants.

(Q and R) Analyses of pistil length in (Q) the prr mutants and (R) toc1-2 and TOC1-ox plants.

(S and T) Analyses of (S) silique length and (T) seed weight in the prr mutants. Data are presented as mean ± SEM. At least two biological replicates were

performed per experiment. (***p value < 0.0001; **p value < 0.001; *p value < 0.05.) Scale bars, 0.5 mm.

See also Figure S4.
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Functional categorization of the rhythmic genes showed sig-

nificant enrichment in photosynthetic processes, circadian

rhythms, and responses to stimuli, most prominently light and

radiation (Table S1; Figure 4D). Although leaves are the primary

organs for photosynthesis, reproductive organs in many plant

species are also photosynthetically active (Brazel and Ó’Maoiléi-

digh, 2019). The circadian control of photosynthesis in pistils

might ensure the appropriate timing of carbon sources needed

for reproductive success. Analyses of selected genes within

these functional categories confirmed robust oscillations that

were similar to the ones previously observed at the shoot apex

(Figures 4E and S4J–S4L). The rhythmic genes in pistils also

included most of the morning- and evening-expressed core

clock components (Figures 4F and S4M–S4O). The waveforms
oscillated with similar phases and amplitudes to those previously

reported in whole seedlings or shoot apexes (Takahashi et al.,

2015; Figures 4F and 4G). However, the evening-expressed

core clock genes TOC1 and ELF3 showed weaker or no oscilla-

tion (Figures 4H and S4P). Despite the weak rhythms, TOC1 and

ELF3 have a relevant function within the pistil clock (see below),

which suggest that translational and post-translational regula-

tion might be important mechanisms for the circadian activity

of the proteins.

To determine whether the circadian clock is indeed important

for pistil function, we first used arrhythmic plants in which the

clock is not able to properly run due to over-expression of

CCA1 (CCA1-ox). Our results showed that pistil length was

significantly shorter in CCA1-ox compared with WT. The shorter
Developmental Cell 57, 1–13, September 26, 2022 5
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pistil length was sustained at different pistil developmental

stages (11, 12, and 13) (M€uller, 1961; Smyth et al., 1990; Fig-

ure 4I). The results suggest that proper circadian function is

important for pistil growth and that CCA1 over-expression re-

duces the slope of pistil growth. To check whether changes in

clock function also affect silique and seed production, we

analyzed silique and seed number, length, weight, and area.

Our results showed that CCA1-ox produced less siliques that

were significantly shorter than in WT (Figures 4J and 4K). The in-

spection of seeds in siliques also suggested developmental de-

fects, with an increased number of abortive ovules in CCA1-ox

(Figures 4L and 4M). Consistently, the number of seeds per

silique, the seed mass and area were significantly reduced in

CCA1-ox (Figures 4N–4P).

To examine whether the effects were restricted to CCA1-ox or

the circadian function is overall important for pistil growth and

seed production, we examined mutant plants of different clock

components in which the clock is still running, although at

a faster or slower pace than in WT. Our analyses showed that

pistil length was also affected, particularly in double mutants,

displaying reduced pistil size compared with that observed in

WT (Figure 4Q). Mutation and over-expression of TOC1 led to

reduced and increased pistil length, respectively, and the pheno-

types were sustained at different stages of pistil development

(Figure 4R). TOC1miss-expressing plants also regulate hypocot-

yl length but show the reverse phenotypes, with toc1-2 display-

ing long hypocotyls, and TOC1-ox showing longer than WT

hypocotyl length (Mas et al., 2003a), which is in clear contrast

with the pistil length phenotypes of TOC1 miss-expressing

plants. It is worth noting that the gradual increase in pistil length

observed in the prrmutant plants correlated with a gradual incre-

ment in silique length and seed weight (Figures 4S and 4T). Alto-

gether, the results indicate that proper function of the circadian

clock is important for pistil and silique growth as well as for

seed weight and production.

Transcriptional regulatory network at the core of the
oscillator in pistils
To understand the circadian regulatory network in pistils, we

examined gene expression in clock mutants and performed

chromatin immunoprecipitation (ChIP) assays of key clock com-

ponents. As in seedlings, the expression of TOC1 and the EC

genes was upregulated in cca1/lhy double mutant (Figures 5A–

5C), suggesting that CCA1 and LHY act as repressors of

evening-expressed clock genes in pistils. The repression likely

occurs through direct binding to the gene promoters as sug-

gested by ChIP assays in pistils (Figure 5J). cca1 and lhy double

mutation also led to a marked downregulation of PRR7 and

PRR9 expression in pistils (Figures S5A and S5B). In turn, ana-

lyses of the prr79 mutant showed an upregulation of CCA1

expression (Figure 5D), suggesting a direct repression of CCA1

by PRR9 and PRR7, as previously described in seedlings (Naka-

michi, 2020). The evening-expressed genes were upregulated

during the subjective day but downregulated during the subjec-

tive night in the prr79 mutant (Figures S5C–S5F).

Mutation of the EC components ELF3 and LUX resulted in

increased expression of PRR7 and PRR9 (Figures 5E and 5F)

and downregulation of CCA1 (Figure 5G). However, and

contrarily to seedlings and roots, the mutation of ELF4 did not
6 Developmental Cell 57, 1–13, September 26, 2022
lead to a relevant activation of PRR9 expression (Figure 5E),

which suggests that ELF4 might not be part of the EC in the

repression of PRR9 or that an additional function of ELF4 over-

comes its EC-dependent regulation of PRR9. Consistent with

the gene expression data, ChIP assays in pistils confirmed a sig-

nificant binding of ELF3 and LUX to the promoters of the PRR9

and PRR7 genes, whereas ELF4 was not significantly enriched

on these promoter regions (Figure 5K). Evening-expressed

genes were upregulated in the ec mutants (Figures S5G–S5J)

as well as in the toc1-2mutant (Figure S5K). The toc1-2mutation

also led to a reduced expression of CCA1 and LHY (Figures 5H

and S5L) but an increased accumulation of PRR7 (Figure 5I).

Overall, we found that in the absence of functional CCA1

and LHY, the morning-expressed PRR genes are repressed,

whereas the evening-expressed genes are activated. On the

other hand, mutation of evening-expressed genes results in

downregulation of CCA1 and LHY and upregulation of PRR7,

PRR9, and evening-expressed genes.

The data fit a model in which CCA1 represses the expression

of the evening-phased genes, and in turn, these components

repress PRR9 and PRR7. TOC1 also represses the expression

of the EC genes, whereas PRR9 and PRR7 components repress

CCA1. Analyses of mutants also provided interesting clues

about the repressing functions. For instance, mutation of

CCA1 results in the marked downregulation of PRR9 and

PRR7 expression, which is likely the consequence of the upregu-

lation of the evening-phased repressor genes in the mutant.

Similarly, the analyses of the prr79 mutant suggest that PRR9

and PRR7 might repress (directly or indirectly) the evening-

phased gene expression during the subjective day. The downre-

gulation of evening-phased gene expression during the subjec-

tive night might be a consequence of the upregulation of CCA1

in the prr79 mutant. Similarly, by repressing PRR9 and PRR7

expression, the EC components upregulate CCA1 and LHY

expression. Thus, the analyses of the mutants suggest that

many of the clock components that function as repressors also

shape the oscillations by repressing other repressors.

To identify canonical activators of clock gene expression in

pistils, we examined the function of members of the RVE protein

family, previously documented to be activators in whole

seedlings (Ma et al., 2018; Rugnone et al., 2013; Xie et al.,

2014). As previously described (Hsu et al., 2013), we found that

in seedlings, the rve4,6,8 triple mutant showed a clear phase-

shift in the expression of oscillator genes (Figures 6A–6C and

S6A–S6C). However, in pistils, the rve4,6,8 triple mutant showed

veryweak amplitude or arrhythmia and resulted in a predominant

downregulation of PRR5 and TOC1 expression at nearly all time

points (Figures 6D and 6E). Notably, the expression of morning

genes was also clearly affected with downregulation during the

subjective day and slight upregulation during the subjective night

(Figure 6F). Comparative analyses revealed the different effects

of rve4,6,8 triple mutant in seedlings versus pistils (Figures 6G,

6H, and S6D–S6F). The different phenotypes were not due to

the different nature of the two samples as mainly changes in

amplitude were observed in comparisons of WT seedlings

versus WT pistils (Figures S6G–S6I). The expression of RVEs

was also reasonably similar in seedlings and pistils (Figure 6I),

with RVE6 showing low amplitude and RVE8 displaying a

phase-shift in pistils (Figures S6J–S6L). Together, the results



A

I

J K L

B C

D E F

G H

Figure 5. Regulatory network at the core of the pistil oscillator in clock mutants

(A–C) Time course analysis by RT-qPCR of (A) TOC1, (B) ELF4, and (C) LUX gene expression in WT and cca1-1lhy-RNAi pistils.

(D) CCA1 gene expression in WT and prr79 mutant pistils.

(E–G) Time course analysis by RT-qPCR of (E) PRR9, (F) PRR7, and (G) CCA1 gene expression in WT and elf3-2, lux-2, and elf4-2 pistils.

(H and I) Time course analysis by RT-qPCR of (H) CCA1 and (I) PRR7 in WT and toc1-2 pistils.

(J–L) ChIP analyses of (J) CCA1 at ZT3, (K) ELF3, and ELF4 at ZT15, and (L) LUX and ELF4 at ZT15 showing the enrichment (relative to the input) to the target

promoters. For comparative analyses ChIP assays of ELF4 are shown in (K) and (L).

Data are presented as the mean + SEM. At least two biological replicates were performed per experiment.

See also Figure S5.
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Figure 6. Distinct regulatory role of RVEs at the core of the pistil oscillator

Comparative time course analysis by RT-qPCR in WT and rve4,6,8 seedlings (A–C) and WT and rve4,6,8 pistils (D–F).

(A and D) PRR5 gene expression.

(B, E, and G) TOC1 gene expression.

(C, F, and H) PRR9 gene expression.

(G and H) Comparison of (G) TOC1 and (H) PRR9 gene expression in rve4,6,8 seedlings and rve4,6,8 pistils.

(I) Comparison of RVE4 expression in seedlings and pistils. Data are repeated in different graphs to facilitate comparisons. Data are presented as the mean +

SEM. Two biological replicates were performed for the analyses in seedlings, whereas three biological replicates were performed for the analyses in pistils.

See also Figure S6.
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suggest that in pistils, RVEs display a prevalent function control-

ling the expression of oscillator genes.

Genetic interaction studies on the repressive function of
oscillator components
As the oscillator components regulate each other and share

common targets, it is rather difficult to discern their specific

function. To get insights into the morning and evening regulato-

ry network, we performed genetic interaction studies and

analyzed clock gene expression in pistils of TOC1-ox/elf3-2

and in CCA1-ox/prr79 plants. Studies with TOC1-ox pistils

showed a highly repressing function of TOC1-ox (Figures 7A–

7D, S7A, and S7B). Comparative analyses using TOC1-ox/

elf3-2 pistils showed that over-expression of TOC1 was able
8 Developmental Cell 57, 1–13, September 26, 2022
to overcome the upregulation of the PRR genes in elf3-2 mu-

tants (Figures 7A, 7B, and S7B). Thus, TOC1 repression of

the PRR genes does not require a functional ELF3. A domi-

nance of TOC1-ox repressive function on PRRs over the EC

might explain these results. On the other hand, ELF4 expres-

sion more closely resembled that observed in elf3-2 mutant

(see Figure S5H) than that in TOC1-ox (Figure 7C), which sug-

gests an elf3-2 dominant phenotype and a possible hierarchy

of the EC auto-repression over the repressing function of

TOC1-ox. It is also possible that TOC1 requires ELF3 for full

repression of the EC. Similarly, CCA1 gene expression was

fully repressed in TOC1-ox/elf3-2 resembling the phenotype

observed in elf3-2 mutant, although CCA1 was still repressed

in TOC1-ox (Figure 7D).
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Figure 7. Genetic interaction analyses of the transcriptional repres-

sive networks at the core of the pistil oscillator

(A–D) Time course analysis by RT-qPCR of (A) PRR9, (B) PRR7, (C) ELF4, and

(D) CCA1 gene expression in WT, TOC1-ox, and TOC1-ox/elf3-2 pistils.

(E and F) Time course analysis by RT-qPCR of (E) TOC1 and (F) ELF4 gene

expression inWT andCCA1-ox/prr79 pistils. Data are presented as themean +

SEM. Three biological replicates were performed per experiment.

(G) Circadian regulatory network comprising dominant regulatory functions

(thick black lines) as inferred by the genetic interaction studies. See the main

text for a further explanation.

See also Figure S7.
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Analyses of CCA1-ox (Figure S7C) also showed a repressing

function of CCA1 that was not effectively overcome by the

prr79 mutation in the regulation of TOC1 expression (Figure 7E).

However, ELF4 in CCA1-ox/prr79 showed an upregulation during

the subjective day like the one observed in prr79 mutant (Fig-

ure S5E) but not in CCA1-ox (Figure 7F and S7D). The results sug-

gest that CCA1 might require functional PRR9 and PRR7 for

repression of ELF4 or that the lack of the direct or indirect repres-

sing function of PRRs can overcome the repression by CCA1-ox.

Notably, analyses of CCA1-ox/prr7 showed an evident upregula-

tion of PRR9 expression (Figure S7E), suggesting that PRR7 acts

as a repressor of PRR9 expression. Repression by PRR7 is spe-

cific for PRR9, as PRR5 expression was not upregulated in
CCA1-ox/prr7 (Figure S7F). Analyses of clock gene expression

in seedlings reinforced the differences on the regulation of the

morning PRRs by the EC, particularly PRR7 during the subjective

night and of TOC1 and ELF3 by the morning-expressed compo-

nents during the subjective day (compare Figures S7G–S7L

with Figures 7B and 7E). Altogether, the analyses of mutants,

over-expressing lines and the genetic interaction studies

show a complex regulatory circuitry in pistils (Figure 7G) with

CCA1-ox repressing TOC1 over the morning PRRs (1), PRR7 re-

pressing PRR9 over CCA1-ox (2), morning PRRs repressing

CCA1 (3), and EC (4) over CCA1-ox. Within the evening-

expressed components, TOC1-ox represses the PRRs over the

EC (5), the EC auto-represses itself over TOC1-ox (6), and the

EC activates CCA1 over TOC1-ox (7).

DISCUSSION

Studies of the circadian regulatory networks in plants are

increasingly shifting from whole seedlings to specific organs

and tissues (Nakamichi, 2020; Sorkin and Nusinow, 2021).

Key questions arise about the degree of circadian autonomy

of tissues and organs, and the relevance of cell-to-cell coupling

and long-distance circadian communication (Sorkin and Nusi-

now, 2021). Arabidopsis tissues with high cell density such as

those at the shoot and root meristems favor circadian coupling

(Sorkin and Nusinow, 2021). Consistently, the shoot apex and

the tip of the root clocks have been proposed as coordinating

signaling nodes influencing rhythms in other parts of the plant

(Gould et al., 2018; Takahashi et al., 2015). Overall, the results

thus far fit the notion of tissue-specific clocks that also require

cell-to-cell and long-distance coordination for circadian preci-

sion and responses to environmental cues (Nakamichi, 2020;

Sorkin and Nusinow, 2021). To fully understand the circadian

function and communication, it is important to elucidate the

similarities and differences of the circadian regulatory network

in cells, tissues, and organs.

Our studies have shown that buds and flowers detached from

the rest of the plant display rhythmic oscillations, which indicate

the presence of self-sustained functional clocks. The develop-

mental differences (e.g., in buds and open flowers) may be due

to different sensitivities to environmental cues (Atamian et al.,

2016). Under our conditions, other excised organs, for example

roots, also sustain rhythms but with a long period and delayed

phase compared with shoots (Chen et al., 2020; Takahashi

et al., 2015). Notably, excised pistils showed self-sustained

rhythms with precise 24-h oscillations. These results indicate

the presence of a clock that is able to precisely run even in the

absence of signals from the rest of the plant. In other floral or-

gans, the dampened rhythms could be due to reduced viability

or lack of energy after excision from the flower. Future studies

should focus on understanding the circadian regulatory network

in sepals, petals, and stamens as well as on their circadian

robustness after several days under LL. Compared with pistils,

rhythms in stamens displayed a short-period phenotype. It

would be interesting to determine the biological relevance of

such variation between the reproductive organs. Circadian dif-

ferences in reproductive organs are not exclusive of plants. For

instance, the expression of core clock genes is also rhythmic

in ovarian tissues (Kennaway et al., 2012), and female and
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male rats show sex differences in daily rhythms and in responses

to endogenous and exogenous cues (Bailey and Silver, 2014).

The sex-dependent circadian differences are relevant to humans

in many areas, most notably those related to reproduction and

overall health (Bailey and Silver, 2014). Understanding the circa-

dian clockwork in flowers may prove essential for optimizing

plant reproduction and productivity.

Clock repressors and activators have specific regulatory

functions in pistils. For instance, RVE proteins appear to have

a prevalent activating function in pistils. The low amplitude or

arrhythmic phenotypes of the rve4,6,8 triple mutant in pistils

are in sharp contrast with the clear oscillations observed in seed-

lings. In sepals, petals, and stamens, the toc1-2mutant showed

similar waveforms than WT at least for the first days under LL.

These results suggest that the lack of a functional TOC1 can

be overcome for few days. In pistils, on the other hand, the

short-period phenotype is evident from the initial days, but the

rhythms dampened low over time. Thus, TOC1 circadian func-

tion is different in the floral organs, with a prevalent role in pistils.

The expression of oscillator genes in pistils is similar to the one

previously described with some exceptions like ELF3. Transla-

tional and/or post-translational mechanisms of regulation might

contribute to the rhythmic oscillation of clock protein activity. For

example, TOC1 protein is regulated by degradation through the

proteasome pathway, thus providing a mechanism for control-

ling TOC1 protein oscillation and period length by the clock

(Mas et al., 2003b).

Genome-wide analyses of the circadian transcriptional

landscape in pistils showed the importance of the circadian

clock regulating photosynthesis and responses to environmental

signals. Photosynthesis is not exclusive of leaves, as it is also

present in reproductive organs (Brazel and Ó’Maoiléidigh,

2019). It has been suggested that photosynthesis in reproductive

organs may represent and adaptive trait, not only by balancing

the carbon cost of reproduction but also by conferring resistance

to abiotic stresses (Raven and Griffiths, 2015). Some possible

disadvantages of the photosynthetic activity include the

increased DNA damage and the production of reactive oxygen

species. Thus, proper timing of photosynthesis in pistils by the

circadian clock might be beneficial for ensuring enough energy

resources when needed but may also activate responses to

cope with DNA damage. Consistently, the circadian clock in

pistils coordinates responses to radiation, light, and abiotic

stimulus. In humans and animal models, increasing evidence is

pointing out relevant processes controlled by the clock that

show sex differences in daily rhythms including, among others,

the sleep-wake cycle and hormonal and metabolic oscillations

(Mong et al., 2011). Proper circadian function is also important

for pistil and silique growth as well as for seed quality and pro-

duction. It would be interesting to determine the molecular

mechanisms and downstream signaling pathways by which

the circadian clock regulates pistil growth and function. The

circadian factors and regulatory mechanisms controlling growth

appear to be organ-specific, judging by the opposite hypocotyl

and pistil length phenotypes observed in plants miss-expressing

clock components. The circadian clock implication in the control

of seed production opens interesting possibilities for biotechno-

logical application of improving seed yield, arguably one of the

most important traits for plant breeding.
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Analyses of mutant and over-expressing lines point out to a

complex regulatory network for the pistil clock. The transcrip-

tional regulatory activity does not sustain robust amplitude of

TOC1 and ELF3mRNA expression in pistils, as opposed to their

rhythms observed in seedlings. Furthermore, the specific pheno-

types of toc1-2, the different behavior of the ec mutants regu-

lating PRR9 and PRR7 circadian expression, and the clock

gene expression patterns in rve mutant, all indicate some spec-

ificities of the pistil clock. The changeswere also confirmed in the

seedling analyses of the clock over-expressing/mutant lines. The

genetic interaction studies also suggest dominant repressive

phenotypes, able to overcome either the over-expression or

the mutation of other oscillator components. Current models of

the Arabidopsis clock in whole seedlings include the reciprocal

regulation of morning and evening oscillator genes that results

in their time-of-day specific peak of expression (Avello et al.,

2021). Other models also group several circadian components

together (Avello et al., 2021; Caluwé et al., 2016). The particular

circadian architecture that we found in pistils might provide

robustness to the pistil clockwork. Our results pave the way for

a better understanding of the circadian system in the reproduc-

tive organs, which might likely provide biotechnological tools to

manipulate plant reproduction and hence productivity.

Limitations of the study
In this study, we have focused on the transcriptional regulatory

network at the core of the pistil clock. However, we have not

elucidated the network in other floral organs including sepals,

petals, and stamens. Floral organs other than pistils are short-

lived in planta so that reduced viability and/or the lack of energy

after excision might contribute to the dampening of the rhythms

that we observed in the bioluminescence assays. We propose

that detailed time course analyses by RT-qPCR will provide use-

ful information about the circadian networks in other floral

organs. We have also not provided evidence of the biological

relevance of the different circadian periods observed in pistils

and stamens. Likewise, we have not identified the molecular

mechanisms responsible for the circadian control of pistil

growth. These interesting aspects are important to fully under-

stand the flower clock in Arabidopsis.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-GFP

antibody (Anti-GFP, IgG)

Invitrogen by Thermo

Fisher Scientific

Cat#A-11122-100uL;

RRID: AB_221569

Bacterial and virus strains

Agrobacterium tumefaciens (strain GV2260) N/A N/A

Chemicals, peptides, and recombinant proteins

D-Luciferin Free Acid 100 mg Bio Thema Cat# BT11-100

Pierce 16% Formaldehyde (w/v), Methanol-free Thermo Scientific Cat#28908

Protein G Dynabeads for Immunoprecipitation Life Technologies Cat#10004D

Lithium chloride Merck Cat#1.05679

Glycine Sigma-Aldrich Cat#200-272-2

Critical commercial assays

Maxwell RSC Plant RNA kit Promega Cat#AS1500

iScript� Reverse Transcription

Supermix for RT-qPCR

BioRad Cat#1708841

Brilliant III ultrafast SYBR

qRT-PCR Master Mix

Agilent Technologies Cat#600883

RNA Nano 6000 Assay Kit Agilent Technologies Cat#5067-1511

NEBNext� UltraTM RNA Library

Prep Kit for Illumina�
NEB Cat#E7530L

USER Enzyme NEB Cat#M5505L

PE Cluster Kit cBot-HS Illumina Cat#PE-401-3001

Deposited data

RNA-seq This study SRA: PRJNA858223

Arabidopsis thaliana: WT Col-0 N/A N/A

Arabidopsis thaliana: WT WS N/A N/A

Arabidopsis thaliana: CCA1:LUC Salomé and McClung, 2005 N/A

Arabidopsis thaliana: TOC1:LUC Perales and Más, 2007 N/A

Arabidopsis thaliana: GI:LUC Wu et al., 2008 N/A

Arabidopsis thaliana: CCA1-ox Wang and Tobin, 1998 N/A

Arabidopsis thaliana: toc1-2;CCA1:LUC NASC; Cervela-Cardona et al., 2021 N2107710

Arabidopsis thaliana: cca1-1/lhy-RNAi Alabadi et al., 2002 N/A

Arabidopsis thaliana: lux-2 Hazen et al., 2005 N/A

Arabidopsis thaliana: elf3-2 Hicks et al., 1996 N/A

Arabidopsis thaliana: elf4-2 Huang et al., 2016 N/A

Arabidopsis thaliana: prr5-11;CCA1:LUC Nakamichi et al., 2005 N/A

Arabidopsis thaliana: prr57;CCA1:LUC Nakamichi et al., 2005 N/A

Arabidopsis thaliana: prr59 Nakamichi et al., 2005 N/A

Arabidopsis thaliana: prr79 Farré et al., 2005 N/A

Arabidopsis thaliana: rve4,6,8 Hsu et al., 2013 N/A

Arabidopsis thaliana: ELF3-ox-YFP Herrero et al., 2012 N/A

Arabidopsis thaliana: YFP-ELF4-ox Herrero et al., 2012 N/A

Arabidopsis thaliana: LUXpro::LUX-GFP lux-4 Ezer et al., 2017 N/A

Arabidopsis thaliana: CCA1-HA-EYFP/cca1-1 Yakir et al., 2009 N/A

Arabidopsis thaliana: TOC1-ox/elf3-2 This study N/A

(Continued on next page)
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Arabidopsis thaliana: TOC1-ox Huang et al., 2012 N/A

Arabidopsis thaliana: CCA1-ox/prr7 This study N/A

Arabidopsis thaliana: CCA1-ox/prr79 This study N/A

Oligonucleotides

Primers for RT-qPCR This study Table S2 N/A

Primers for ChIP This study Table S2 N/A

Software and algorithms

MikroWin 2010, version 5.15 Mikrotek Laborsysteme GmbH https://labsis.de

R, version 3.3.2 The R Project for Statistical Computing https://www.r-project.org

HISAT2 Kim et al., 2019 http://daehwankimlab.github.io/hisat2/

Heatmapper Babicki et al., 2016 http://www.heatmapper.ca

JTK_Cycle Hughes et al., 2010 https://openwetware.org/wiki/

HughesLab:JTK_Cycle

Integrative Genomics Viewer Robinson et al., 2011;

Thorvaldsdóttir et al., 2013

https://software.broadinstitute.org/

software/igv/

DIURNAL database Michael et al., 2008;

Mockler et al., 2007

http://diurnal.mocklerlab.org

PANTHER GENEONTOLOGY http://www.pantherdb.org

BIOMAPS Katari et al., 2010 http://virtualplant.bio.nyu.edu/

cgi-bin/vpweb/

Image J Image J https://imagej.nih.gov/ij/

GraphPad Prism GraphPad Software https://www.graphpad.com/

scientific-software/prism/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Paloma

Mas (paloma.mas@cragenomica.es).

Materials availability
All materials generated in this study will be available upon request from Paloma Mas (paloma.mas@cragenomica.es).

Data and code availability
d The RNA-sequencing data have been deposited at the Sequence Read Archive and are publicly available as of the date of pub-

lication. Accession number is listed in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant material, growing conditions and organ dissection
Seedlings were grown on half-strength Murashige and Skoog (MS) agar medium without sucrose, and synchronized under light:dark

cycles (LgD, 16h light:8h dark) with 60-100 mmol m�2s�1 of cool white fluorescent light at 22�C for about 7-10 days (unless otherwise

specified). For experiments using flowering plants, seedlings were then transplanted to soil and cultivated throughout the reproduc-

tive stage under light:dark cycles (LgD, 16h light:8h dark) with 150-200 mmolm�2s�1 of white light emitting diodes (LEDs) at 22�C. The
CCA1:LUC (Salomé and McClung, 2005), TOC1:LUC (Perales and Más, 2007) and GI:LUC (Wu et al., 2008) reporter lines as well as

the CCA1-ox (Wang and Tobin, 1998), TOC1-ox (Huang et al., 2012), and toc1-2;CCA1:LUC (NASC, N2107710) (Cervela-Cardona

et al., 2021), cca1-1/lhy-RNAi (Alabadı́ et al., 2002), lux-2 (Hazen et al., 2005), elf3-2 (Hicks et al., 1996), elf4-2 (Huang et al.,

2016), prr5-11;CCA1:LUC, prr57, prr59 (Nakamichi et al., 2005), prr79 (Farré et al., 2005), rve4,6,8 (Hsu et al., 2013),

ELF3-ox-YFP (Herrero et al., 2012), YFP-ELF4-ox (Herrero et al., 2012), LUX-GFP (LUXpro::LUX-GFP lux-4) (Ezer et al., 2017),

CCA1-HA-EYFP/cca1-1 (Yakir et al., 2009) lines were described elsewhere. All the lines are in Columbia (Col-0) background except

the cca1-1/lhy-RNAi plants, which are inWassilewskija (WS) background.MatchingWTbackgroundswere used for eachmutant line.
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The TOC1-ox/elf3-2 lines were generated by crossing the TOC1-ox plants (Huang et al., 2012) with the elf3-2 mutant (Hicks et al.,

1996). The CCA1-ox/prr lines were generated by transforming the CCA1-ox construct into the prr79 plants and by crossing the

CCA1-ox plants (Wang and Tobin, 1998) with the prr7 mutant plants (Farré et al., 2005). To follow individual open flowers in intact

plants, inflorescences of open flowers were marked by a black marker at day 0 under LL. Pictures of the selected flowers were taken

with a stereo microscope (SZX16, Olympus) the following days. For the luminescence assays (see below) and for the RT-QPCR

(Reverse Transcription Quantitative Polymerase Chain Reaction) analysis of floral organs, sterile dissecting forceps were used to

carefully excise young buds, mature buds, mature flowers and open flowers from flowering plants. Similarly, sepals, petals, stamens,

and pistils were carefully excised from open flowers.

METHOD DETAILS

In vivo luminescence assays
Buds, flowers or floral organs from luciferase-expressing plants synchronized under light:dark cycles (LgD, 16h light:8h dark) with

150-200 mmolm�2s�1 of white LEDs at 22�Cwere excised and immediately placed in 96-well microplateswith half-strengthMS liquid

medium with 1% sucrose and 290mM D-luciferin (Biothema). Bioluminescence rhythms, were examined as previously described

(Okada and Mas, 2022) under constant light (LL) conditions or entraining Light:Dark cycles (LgD, 16h light:8h dark) as specified

for each experiment. A microplate luminometer LB-960 (Berthold Technologies) and the software Microwin, version 4.34 (Mikrotek

2 Laborsysteme) were used for the bioluminescence analyses. Amplitude, period, and relative amplitude error (RAE) were estimated

with the fast Fourier transform non-linear least squares (FFT-NLLS)method (Zielinski et al., 2014). The analyses were performed in the

statistical environment of R 3.3.2. Data from samples that appeared damaged or that eventually died in the wells were excluded from

the analyses. Three biological replicates were performed per experiment.

Gene expression analysis by RT-QPCR
About 5-6 12-day old seedlings or about 6-8 flowers were collected, snap-frozen and ground using TissueLyser II (QIAGEN). About 6-8

pistils were collected, snap-frozen and ground using plastic grinding pestles. About 70 stamens were collected in homogenization so-

lution (Promega, Z305H), snap-frozen, and ground using plastic grinding pestles. RNA from flowers, stamens and pistils was isolated

using the Maxwell RSC Plant RNA kit (Promega). Single strand cDNA was synthesized using iScript� Reverse Transcription Supermix

forRT-qPCR (BioRad) following themanufacturer recommendations.ForQPCRanalysis, cDNAswerediluted30-50-foldwithnuclease-

freewater andQPCRwas performedwith Brilliant III ultrafast SYBRqRT-PCRMasterMix (Agilent) in a 96-well CFX96 Touch Real-Time

PCRDetection System (BioRad). The IPP2 gene (Fung-Uceda et al., 2018) was used as control in seedlings and PP2AA3 (AT1G13320)

(Takahashi et al., 2015)was usedascontrol in pistil and flowers. A list of primers used for geneexpression analyses is shown inTable S2.

RNA-Seq analysis
Plants were synchronized under LgD conditions (16h light:8h dark) with 150-200 mmol m�2s�1 of white LEDs at 22�C and subsequently

transferred to LL for twodays. About 6-8 pistils fromopen flowerswere collected the third day under LL, every four hours over two circa-

dian cycles. Total RNA was isolated using the Maxwell RSC Plant RNA kit (Promega) following the manufacturer’s recommendations.

Sequencing was performed by Novogene Co., Ltd. RNA purity was checked using a NanoPhotometer� spectrophotometer (IMPLEN,

CA,USA) andRNA integrity andquantitationwere assessed using theRNANano6000AssayKit of theBioanalyzer 2100 system (Agilent

Technologies). A total of 1 mg RNA per sample was used for the RNA sample preparations. Sequencing libraries were generated using

NEBNext� UltraTM RNA Library Prep Kit for Illumina� (NEB) following manufacturer’s recommendations. Index codes were added to

attribute sequences to each sample. mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. Fragmentation

was carried out using divalent cations under elevated temperature in NEBNext First Strand Synthesis Reaction Buffer (5X). First strand

cDNAwas synthesized using random hexamer primer and M-MuLV Reverse Transcriptase (RNase H). Second strand cDNA synthesis

was subsequently performed using DNA Polymerase I and RNase H. Remaining overhangs were converted into blunt ends via exonu-

clease/polymeraseactivities.After adenylationof3’endsofDNA fragments,NEBNextAdaptorwithhairpin loopstructurewere ligated to

prepare for hybridization. In order to select cDNA fragments of preferentially 150�200 bp in length, the library fragments were purified

with AMPure XP system (Beckman Coulter). Subsequently, 3 ml of USER Enzyme (NEB) were used with size-selected, adaptor ligated

cDNA at 37 �C for 15min followed by 5min at 95 �Cbefore PCR. PCRwas performedwith PhusionHigh-Fidelity DNA polymerase, Uni-

versal PCR primers and Index (X) Primer. The PCR products were purified (AMPure XP system) and library quality was assessed on the

Agilent Bioanalyzer 2100 system.

Clustering of the index-coded samples was performed on a cBot Cluster Generation System using PE Cluster Kit cBot-HS (Illu-

mina) according to the manufacturer’s instructions. After clustering, the library preparations were sequenced on an Illumina platform

and paired-end reads were generated. Raw data (raw reads) of FASTQ format were firstly processed through fastp. In this step, clean

data (clean reads) were obtained by removing reads containing adapter and poly-N sequences and reads with low quality from raw

data. At the same time, Q20, Q30 and GC content of the clean data were calculated. All the downstream analyses were based on the

clean data with high quality. Paired-end clean reads weremapped to the reference genome using HISAT2 software (Kim et al., 2019).

HISAT2 uses a large set of small GFM indexes that collectively cover the whole genome. These small indexes (called local indexes),

combined with several alignment strategies, enable rapid and accurate alignment of sequencing reads. Featurecounts was used to

count the read numbers mapped of each gene. RPKM (Reads Per Kilobase of exon model per Million mapped reads) of each gene
e3 Developmental Cell 57, 1–13.e1–e4, September 26, 2022
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was calculated based on the length of the gene and reads count mapped to this gene. RPKM considers the effect of sequencing

depth and gene length for the reads count at the same time and is currently the most commonly used method for estimating

gene expression levels. The web-based tool ‘‘Heatmapper’’ was used to visualize data as heatmaps (Babicki et al., 2016).

The JTK_Cycle algorithm (Hughes et al., 2010) was used to identify oscillating genes (adjusted p-value < 0.05) with a period ranging

from 20 to 28. The Integrative Genomics Viewer (IGV) was used to visualize the data (Robinson et al., 2011; Thorvaldsdóttir et al.,

2013). The phases of circadian expression were analyzed using the publicly available Gene Phase Analysis Tool ‘‘PHASER’’ of

the DIURNAL database (http://diurnal.mocklerlab.org/) (Michael et al., 2008; Mockler et al., 2007). Phase over-representation is

calculated as the number of genes with a given phase divided by the total number of genes over the number of genes called rhythmic

and divided by the total number of genes in the dataset. Circadian genes were classified into broad functional categories using the

PANTHER Over-representation Test (Fisher’s Exact Test, Bonferroni correction) and the web tool ‘‘BIOMAPS’’ (Katari et al., 2010)

(Fisher’s Exact Test, cut-off 0.01), which renders over-represented and significant functional terms (Gene Ontology or MIPS) as

compared to the frequency of the term in the whole genome.

Phenotypic analyses of pistils, siliques and seeds
For pistil analyses, at least 5 pistils for each genotype were selected at stages 11, 12 and 13 (M€uller, 1961; Smyth et al., 1990), and

pictures were taken with a stereo microscope (SZX16, Olympus) after careful removal of petals and sepals. Measurements of pistil

length was performed by using the software package Image J. For silique and seed analyses, 100 fully developed siliques from the

main inflorescences (starting at the fifth silique from the bottom) were collected and photographed using a stereo microscope

(SZX16, Olympus). Seeds from each silique were spread on white paper and photographs were taken. Silique length and seed number

per siliquewere quantified using the software package Image J. For seed size andweight analyses, seedswere harvested and sieved to

remove plant debris. Following incubation at 25�C for 7 days, randomly selected groups of seeds for each linewereweighted (W). Seed

number (N), sectional area, length and width were quantified using the software package Image J. The grain weight was calculated as:

1000-grain weight (g)= W /N *1000. Two-tailed Student’s t-test analyses were performed using the GraphPad Prism software.

Chromatin immunoprecipitation assays
Chromatin immunoprecipitation (ChIP) assays were performed as previously described (Yamaguchi et al., 2014). About 100 mg of

pistils from open flowers were sampled, and vacuum infiltrated 3 times for 15 min in 30 ml cross-linking solution (1% formaldehyde

in 13PBS) at room temperature. The cross-linking reaction was stopped by adding glycine to a final concentration of 0.125 M and

vacuum infiltrated for 5 min. Samples were washed three times with cold deionized water, dried with paper towels and snapped-

frozen in liquid nitrogen. Samples were ground to fine powder and extracted with 2.5 ml of Nuclei extraction buffer. After filtering

the samples through Miracloth (475855, Merck), the chromatin solution was sonicated until obtaining sheared DNA of about

200-600 bp. Soluble chromatin was incubated overnight at 4�C with theAnti-GFP antibody (#A-11122, Thermo Fisher Scientific)

for the samples of ELF3-ox-YFP, YFP-ox-ELF4, LUX-GFP and CCA1-HA-EYFP/cca1-1. Samples were then incubated with Protein

G-Dynabeads beads (10004D, Thermo Fisher Scientific) for 4 hours at 4�Cwith rotation. The beads were washed thrice with Low salt

wash buffer, High salt wash buffer, 250mM LiCl wash buffer and 0.53TE, respectively. The samples were eluted from the beads with

elution buffer by incubating for 30 min at 65�C. The purified DNA was diluted 10-fold with nuclease-free water and QPCR was per-

formed with Brilliant III ultrafast SYBR qRT-PCR Master Mix (Agilent) in a 96-well CFX96 Touch Real-Time PCR Detection System

(BioRad). A list of primers used for ChIP analyses is shown in Table S2.

QUANTIFICATION AND STATISTICAL ANALYSIS

For luminescence assays, data represent means + SEM of n R 3 (Figures 1B, 1D, 2A–2D, 2G, 3B–3G, S1, S2A–S2F, S3E, and S3F).

Periods and relativeamplitudeerrorsofbioluminescence rhythmswereestimatedwith the fast Fourier transformnonlinear least squares

(FFT-NLLS) and plotted with three biological replicates (Figures 1C, 1E, 2E, 2F, 2H, 3H–3J, and S3A–S3D). Statistical analyses were

performedby two-tailedStudent’s t-test to compare period lengths.Quantification of pistil length (Figures 4I, 4Q, and 4R), silique length

(Figures 4K and 4S), seed number (Figure 4N), and seed sectional area (Figure 4P) was performed using ImageJ software. For pistil

length, data represent median ± SEM of n z 15 pistils (Figures 4I, 4Q, and 4R). For silique number, data represent median ± SEM of

n z 15 plants (Figure 4J). For silique length, n z 100 siliques were measured. Data represent median ± SEM (Figure 4K), lengths are

plotted with the means (Figure 4S). For seed number per silique, data represent median ± SEM of n z 70 siliques (Figure 4N). For

1000-grain-weight, more than 500 seeds were weighed, and data represent median ± SEM of n z12 (Figure 4O). For seed sectional

area, areasof nz200seedsareplottedwith thosemeans (Figure4P). For seedweightsperplants, nz30plantswereusedandweights

of seeds from each plant are plotted with those means (Figure 4T). Statistical analyses were performed by two-tailed Student’s t-test

(*** p-value<0.0001; ** p-value<0.001; * p-value<0.05). For gene expression analysis using qPCR (Figures 1F, 1G, 5, 6, 7A–7F, S2G,

S2H, S2J–S2M, and S5–S7), data represent means + SEM of technical duplicates using three biological replicates. Crossing point

(Cp) calculation was used for quantification using the Absolute Quantification analysis by the 2nd Derivative Maximum method.
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