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Abstract 

Deciphering the mechanism of human memory formation and retrieval is one of the still 

unsolved mysteries of neurosciences. Theoretical models of underlying mechanisms of 

memory formation and retrieval have led the memory field for the past decade (Hasselmo, 

Bodelon, & Wyble, 2002). However, with methodological and technological limitations these 

models have yet to been shown in humans, especially deep brain areas such as the 

hippocampus, traditionally not easily recorded with non-invasive techniques.  

 

It has been reported in rodent studies, that theta-gamma interactions modulate memory 

processes and that phase-states and interactions between oscillations may be of importance 

for the successful formation and recall of episodic memories (Manns, Zilli, Ong, Hasselmo, & 

Eichenbaum, 2007). It is well accepted that memory formation relies on the coupling and 

interaction of theta-gamma oscillations (Tort, Komorowski, Manns, Kopell, & Eichenbaum, 

2009) in humans, but phase-preference mechanisms similar to those observed in rodents 

have yet to be found in humans. According to the latest evidence in human studies, memory 

formation of humans may rely on differential communication between brain areas (Griffiths 

et al., 2019) and to different phase states in the hippocampus (Kerren, Linde-Domingo, 

Hanslmayr, & Wimber, 2018).  

 

Here, we are aiming to advance the understanding of how theta-gamma interactions in the 

human hippocampus may be reflective of underlying mechanisms that could differ between 

encoding and recall states, and how they could predict the success of memory formation and 

retrieval.  We conducted an iEEG study on intracranially implanted epileptic patients, in order 

to analyse direct recordings from the hippocampus and relate them to an episodic sequential 

memory task. We believe that the analysis of theta-gamma interactions in the hippocampus 

are key to differentiating mnemonic processes and predicting successful memory retention.  

 

In Study 1, we describe the Mean Opposition Vector Length (MOVI) a new method to analyze 

phase-preference differences between neurophysiological datasets. This method was 

developed during this thesis. We have tested it on simulated synthetic data in order to really 

understand its potential and limitations, and have compared it with the Jensen Shannon 
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Divergence, a more established method of analysis of phase-preference opposition between 

distributions. To assess the validity of our new index, we compared MOVI and JSD using 

Matthew’s Correlation Coefficient (MCC) that aids in determining the accuracy of a test when 

the outcome is known. We found that our new index is more sensitive than the established 

techniques, more resistant to noise, and detects specific variations in the data that other 

methods ignore. In this way we proposed a novel technique of analysis for assessing 

distribution opposition between datasets that can be used in future studies on phase-

preference.  

 

In Study 2, we explored neural signatures of epileptic patients implanted with deep brain 

electrodes. During the recording of their brain activity, they performed a task of encoding and 

recall of series of congruent images to emulate life-like episodic memories.  We first explored 

the specific neural signatures found during encoding and recall in our sequential task by  

analyzing increases and decreases in power via a time-frequency analysis. Then we explored 

relationships between frequencies by analyzing theta-gamma phase-amplitude coupling. 

Finally we explored theta-gamma phase preference during encoding and recall. We have 

shown that theta-gamma interactions in the hippocampus are predictive of memory 

processes and can differentiate between encoding and recall. More importantly, we found 

that this phase-coupling preference was predictive of the successful retention of sequential 

mnemonic traces.  

 

Our results from these two main studies suggest that the study of phase amplitude coupling 

(PAC) and phase opposition is essential to research that focuses on the mechanistic processes 

underlying memory formation and retrieval. Additionally, we bridge the gap with rodent 

studies and show a mechanism underlying mnemonic processes so far never observed in 

humans, but consistent with previous findings on the communication between different brain 

areas. Altogether these findings shed a light on the neural mechanisms that support memory 

formation, early recall, and delayed recall, and on the different analytical methods that can 

be used to assess phase-amplitude interactions. This advances the understanding of human 

memory, of the neurophysiological mechanisms underlying different processes, and on the 

analytical methods used to understand them.  
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Resumen 

Descifrar el mecanismo de formación y recuperación de la memoria humana es uno de los 

misterios aún sin resolver de las neurociencias. Los modelos teóricos de los mecanismos 

subyacentes de formación y recuperación de la memoria han liderado el campo de la memoria 

durante la última década (Hasselmo, Bodelon y Wyble, 2002). Sin embargo, debido a 

limitaciones metodológicas y tecnológicas, estos modelos aún no se han demostrado en 

humanos, especialmente en áreas profundas del cerebro como el hipocampo, que 

tradicionalmente no se registran fácilmente con técnicas no invasivas. 

 

Se ha informado en estudios con roedores que las interacciones theta-gamma modulan los 

procesos de la memoria y que los estados de fase y las interacciones entre las oscilaciones 

pueden ser importantes para la formación exitosa y la recuperación de los recuerdos 

episódicos (Manns, Zilli, Ong, Hasselmo y Eichenbaum, 2007). Es ampliamente aceptado que 

la formación de la memoria depende del acoplamiento y la intera 

cción de las oscilaciones theta-gamma (Tort, Komorowski, Manns, Kopell y Eichenbaum, 

2009) en humanos, pero aún no se han encontrado mecanismos de preferencia de fase 

similares a los observados en roedores. Según la evidencia más reciente en estudios con 

humanos, la formación de la memoria en humanos puede depender de la comunicación 

diferencial entre áreas cerebrales (Griffiths et al., 2019) y de diferentes estados de fase en el 

hipocampo (Kerren, Linde-Domingo, Hanslmayr y Wimber, 2018).  

 

Aquí, nuestro objetivo es avanzar en la comprensión de cómo las interacciones theta-gamma 

en el hipocampo humano pueden reflejar mecanismos subyacentes que podrían diferir entre 

los estados de codificación y recuperación, y cómo podrían predecir el éxito en la formación 

y recuperación de la memoria. Realizamos un estudio de EEG intracraneal en pacientes 

epilépticos con implantes, con el fin de analizar registros directos del hipocampo y 

relacionarlos con una tarea de memoria secuencial episódica. Creemos que el análisis de las 

interacciones theta-gamma en el hipocampo es clave para diferenciar los procesos 

mnemónicos y predecir la retención exitosa de la memoria. 
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En el Estudio 1, describimos la Longitud del Vector de Oposición Media (MOVI) un nuevo 

método para analizar diferencias de preferencia de fase entre conjuntos de datos 

neurofisiológicos. Este método fue desarrollado durante esta tesis. Lo hemos probado en 

datos sintéticos simulados para comprender realmente su potencial y limitaciones, y lo hemos 

comparado con la Divergencia de Jensen Shannon, un método de análisis más establecido de 

la oposición de preferencia de fase entre distribuciones. Para evaluar la validez de nuestro 

nuevo índice, comparamos MOVI y JSD utilizando el Coeficiente de Correlación de Matthew 

(MCC) que ayuda a determinar la precisión de una prueba cuando el resultado es conocido. 

Encontramos que nuestro nuevo índice es más sensible que las técnicas establecidas, más 

resistente al ruido y detecta variaciones específicas en los datos que otros métodos ignoran. 

De esta manera, propusimos una nueva técnica de análisis para evaluar la oposición de 

distribución entre conjuntos de datos que se puede utilizar en futuros estudios sobre 

preferencia de fase. 

 

En el Estudio 2, exploramos las firmas neuronales de pacientes epilépticos implantados con 

electrodos cerebrales profundos. Durante la grabación de su actividad cerebral, realizaron 

una tarea de codificación y recuerdo de series de imágenes congruentes para emular 

recuerdos episódicos similares a la vida. Primero exploramos las firmas neuronales específicas 

encontradas durante la codificación y el recuerdo en nuestra tarea secuencial analizando 

aumentos y disminuciones de potencia a través de un análisis de tiempo-frecuencia. Luego 

exploramos las relaciones entre frecuencias analizando el acoplamiento de fase-amplitud 

theta-gamma. Finalmente exploramos la preferencia de fase theta-gamma durante la 

codificación y el recuerdo. Hemos demostrado que las interacciones theta-gamma en el 

hipocampo son predictivas de los procesos de memoria y pueden diferenciar entre 

codificación y recuerdo. Más importante aún, encontramos que esta preferencia de 

acoplamiento de fase era predictiva de la retención exitosa de trazas mnemónicas 

secuenciales. 

 

Nuestros resultados de estos dos estudios principales sugieren que el estudio del 

acoplamiento de fase y la oposición de fase es esencial para la investigación que se centra en 

los procesos mecanísticos subyacentes a la formación y recuperación de la memoria. Además, 
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cerramos la brecha con los estudios en roedores y mostramos un mecanismo subyacente a 

los procesos mnemónicos que hasta ahora no se había demostrado en humanos, pero que es 

coherente con hallazgos previos sobre la comunicación entre áreas cerebrales. 

 

En conjunto, estos hallazgos arrojan luz sobre los mecanismos neurales que respaldan la 

formación de la memoria, el recuerdo temprano y el recuerdo tardío, y sobre los diferentes 

métodos analíticos que se pueden utilizar para evaluar las interacciones entre fase y amplitud. 

Esto avanza en la comprensión de la memoria humana, de los mecanismos neurofisiológicos 

subyacentes a los diferentes procesos y de los métodos analíticos utilizados para 

comprenderlos. 
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1. Chapter 1: Introduction 

1.1. From neurons to LFP 

The nervous system is the main information processing system in our body. The unit of that 

system is the neuron that exchanges information with other neurons through electrical 

potentials. When networks of neurons continuously exchange information, electrical 

rhythmic patterns arise, what we call brain waves, or neural oscillations. These patterns are 

generated by the collective activity of large groups of neurons firing together in a 

synchronized manner (Varela, Lachaux, Rodriguez, & Martinerie, 2001). 

 

When a single neuron fires an action potential, it generates a brief electrical pulse that 

propagates along its axon, as this potential travels. This electrical potential is then passed to 

other neurons through synapses. When the electrical potential attains the axon, it stimulates 

the release of neurotransmitters in the extracellular space, that activating receptors on the 

dendrite of the next neuron, will induce an electrical potential in the post-synaptic cell. 

Excitatory neurons release neurotransmitters that depolarize the post-synaptic neuron, and 

increase its chances of firing an action potential. Inhibitory neurons on the other hand, release 

neurotransmitters that induce the hyperpolarization of the post-synaptic neuron, and reduce 

its chances of firing an action potential. When an action potential propagates through the 

neuron, it induces a current in the intracellular space, and due to ionic movements within and 

outside the membrane, it also causes a temporary change in the electrical potential of its 

immediate vicinity. This extends into the extracellular space that contains ions such as 

sodium, potassium, chloride and calcium, which can conduct electrical signals. When the 

action potential passes through extracellular space, it induces a redistribution and a 

movement of ions, creating a local and transient electric field. When several neurons fire or 

are active in a certain setting, this local change in potential can be detected by electrodes that 

are placed near the neuron, or neurons of interest. When many neurons fire simultaneously 

or in close succession, the individual electrical fields they generate summate, resulting in a 

larger and measurable potential change in the local extracellular space (Schaul, 1998). 
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The synchronized firing of neurons provides valuable insights into the underlying cellular 

processes, which is crucial in the study of memory formation. Synchronized neural activity –  

when the post-synaptic neuron fires soon after the pre-synaptic neuron - can enhance 

synaptic strength, a phenomenon known as Long Term Potentiation (LTP) (Hebb, 1955; Seung, 

2000). Similarly, when the activity of neurons is desynchronized, it promotes synaptic 

depotentiation, also known as Long Term Depression or LTD (Hebb, 1955; Seung, 2000). Those 

are forms of synaptic plasticity that for a long time were thought to drive neural interactions 

and core functions such as memory formation. We note that recent alternative views showed 

that Hebbian plasticity is not the only one that exists, although non-Hebbian plasticity seems 

to rely on slower homeostatic processes, reliant on different forms of neural activity patterns 

(Park, Jung, & Eun, 2014). 

 

There are roughly 80 billion neurons in the human brain, and an estimated 60 trillion possible 

connections, therefore technologically we lack the tools to analyse each neuron individually 

when studying processes. For this reason, cognitive studies use changes in concentration of 

oxygen in the blood with functional magnetic resonance imaging (fMRI) (Ogawa, Lee, Kay, & 

Tank, 1990; Ogawa et al., 1992) or the study of Local Field Potential (LFP) changes with 

electroencephalography (EEG) (Proekt, 2018), magnetoencephalography (MEG) (Hamalainen, 

1991) or intracortical EEG (iEEG) (Jobst et al., 2020).  LFP has several frequencies and additive 

properties that can be decomposed and analysed (Contreras & Steriade, 1995). Changes in 

the LFP have therefore a power, a frequency and other characteristics that representative of 

the underlying neural activity (Figure 1).  
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The study of LFP is therefore useful to infer on neural mechanisms underlying complex brain 

functions such as memory, and to better understand processes such as memory formation, 

consolidation, and retrieval. Other neuroimaging methods such as functional magnetic 

resonance imaging (fMRI) also allow to study brain activity. However it is an indirect measure 

of brain activity, as it relies on the oxygenation of blood vessels near networks of neurons 

that have an increased activity (Ogawa et al., 1990). Thus, it provides less temporal precision 

than the study of LFPs, and does not allow for the direct study of electrical activity in the brain, 

where frequencies of activity cannot be studied individually. The study of LFPs can be done 

non-invasively with scalp EEG, and invasively with intracortical EEG. The advantage of scalp 

EEG is that it is more accessible data. The helmets for EEG have multiple channels that have 

a pre-determined position, which makes it easier to generalize result found with scalp EEG. 

However scalp EEG relies on the recording of cortical activity mainly, whilst deep brain areas 

are less easily analyzed, except with techniques such as beamforming and source 

reconstruction that still have somewhat elusive characteristics and do not have a unified 

mathematical approach (Westner et al., 2022). This is where invasive methods such as 

 

Figure 1-1: LFP detection and its relationship to neural activity, adapted from (Buzsaki, 
Anastassiou, & Koch, 2012) 

LFP surface represents the observed LFP from a scalp EEG recording. LFP depth represents 

the activity measured with depth electrodes. Intracellular trace measures the spiking 

activity of a single neuron. Changes in the LFP of both intracortical and scalp recordings can 

be linked to changes in spiking activity (Buzsaki, Anastassiou, & Koch, 2012).  
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intracortical EEG (iEEG) shine. Implantation of electrodes in hospitalized patients allows 

access to the recordings of deep brain areas, where electrical variations can be studied with 

a better temporal precision and decomposition of the signal than with fMRI, and with a purer 

signal compared to source reconstruction in sEEG. In this thesis, we focused on the study of 

intracortical LFPs and how they impact memory formation within key areas of the memory 

system.  

 

1.2. The episodic memory system 

Memory is a system essential to survival. We gather information about things and events we 

have seen or experienced and use this information to make predictions about the future 

(Schacter, Addis, & Buckner, 2007). In evolutive terms, that means that individuals who have 

a better way of remembering and interpreting information about the past better survive new 

conditions. On one hand, individuals need to remember information about their surroundings 

which can be behaviors or shapes, sounds, or places, that indicate either danger, reward, or 

safety. On the other individuals also need to remember how to do things, like walking, 

running, hunting, reading, communicating, or simply grabbing a glass of water. Although 

seeming very different, these declarative and non-declarative memory systems respectively, 

both rely on mnemonic functions (Squire & Zola, 1996) and the brain structures that support 

them.  

 

In this thesis, we are going to focus mainly on the declarative aspect of memories, and how 

the events that we see or experience can be translated into a memory trace that we can 

recollect in a meaningful way, and not as a disjointed succession of sensory information.  

 

In fact, memory on its own, as a gathering of seemingly incongruent information about the 

past serves little purpose, but it is the way we link this information together, and the way we 

interpret the past, discerning events, patterns and creating internal models that we can truly 

understand the past, navigate the present and infer about the future. Seemingly, it is this 

interpretation of the world that we end up remembering as memory traces, which might also 

be the reason for the appearance of false memories (Muschalla & Schonborn, 2021). This 
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being said, there is clear evidence that memories and memory traces also contain some vivid 

recollection of sensory events (Kensinger & Schacter, 2007).  

 

All of this speaks to the complex and interconnected nature of memories that need inputs – 

either internal as emotions and states, or external as sensory stimuli – an interpretation that 

can be based on past knowledge – or semantic memories – or links to other memories. For 

example, if I said, “I remember during the pandemic seeing a lot of PhD students that like me 

were burnt-out, which is not surprising as 74% of PhD students experience at least a major 

depressive or anxiety episode during their years of study (Forrester, 2021; Woolston, 2021).” 

The pandemic is the context, students being burnt out is what I remember from the tweets 

and articles I was reading at the time. The exact words in the articles I could not recall, 

however, I remember the message and the main point, and the emotions felt at that moment. 

I remember the interpretation I had of the sensory inputs that I have received. And finally, I 

linked this to my overall state, and to another memory, and fact, that made me interpret that 

singular event slightly differently. In a single sentence, I recollected external sensory inputs, 

their interpretations, internal inputs, and another seemingly disconnected memory that 

helped me understand the first one better. Furthermore, this specific recollection fits the 

criteria for what we call an episodic memory, which is the focus of our study and of my thesis.  

 

Episodic memories are defined as the ability to remember specific events in a highly detailed 

manner. It is a type of long-term memory that allows people to remember detailed 

information about the past including places, people, faces, sensory details and contextual 

information associated with them in a temporal order. It involves a conscious mental “time-

travel” that enables an individual to re-experience events from the past. It is a type of 

declarative memory that is different from semantic information – that can include the 

recollection of facts and repeated events – but can rest on it. (Fossati, 2013; Martinelli, 

Sperduti, & Piolino, 2013; Morris, 2001; Paller & Wagner, 2002; Tulving, 2002; Tulving & 

Markowitsch, 1998). Lesion studies showed that the medial temporal lobe is highly involved 

in the encoding and recall of episodic memories (Gabrieli, Cohen, & Corkin, 1988), but also 

other areas such as the thalamus (Aggleton & Brown, 1999) seem to participate to the 

formation of memories and their recollection.  
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With this framework, and thanks to rodents and human studies, we have reached an 

important understanding of the brain regions involved in memory formation and recall. 

Studies on rodents showed that what seems to happen during memory formation is that the 

layers 2 and 3 of the entorhinal cortex seem to receive processed sensory inputs and send 

them to the hippocampus (Ito & Schuman, 2008; Madronal et al., 2016; Rosen, Cheung, & 

Siegelbaum, 2015; Stone et al., 2011) through the perforant path (PP) to the dentate gyrus 

(DG) and through the temporoamminic pathway (TA) to the Cornu ammonis (CA1). An 

accepted view is that the DG is responsible for pattern regularity (J. E. Lisman & Grace, 2005), 

the CA3 for pattern similarity, and the CA1 for pattern differentiation  (Hainmueller & Bartos, 

2018). The DG then has projections to CA3 that itself has projections back to the CA1 through 

the Schaffer Collateral Pathway (SC) (Nakamura, Flasbeck, Maingret, Kitsukawa, & Sauvage, 

2013), where seemingly contextual and detailed information are gathered as separated 

entities (Ito & Schuman, 2008). This phenomenon seems to be happening because of the 

different neurons involved in the pathways. The TA pathway has direct projections to CA1 

pyramidal cells, while the PP is a disynaptic inhibitory path passing through interneurons 

toward the dentate gyrus (Mori, Abegg, Gahwiler, & Gerber, 2004). Interestingly, the CA1 also 

receives projections from other brain areas, like the ventral tegmental area (VTA) that informs 

on a reward obtained during the memory (J. E. Lisman & Grace, 2005), with dopamine 

impacting the TA-CA1 pathway by disinhibiting it (Ito & Schuman, 2007). It also receives 

information from the amygdala (Kitamura et al., 2017; Kitamura et al., 2015) about the 

salience of a memory, especially important for fear conditioning. The CA1 then has 

projections towards the subiculum for a feedback loop of novelty, salience, and reward (J. E. 

Lisman & Grace, 2005) and the CA3 has projections towards layer 5 of the entorhinal cortex 

that seemingly acts as a switchboard between the hippocampus and other brain areas such 

as the prefrontal cortex, the amygdala, the anterior cingulate cortex (ACC) and the 

retrosplenial cortex (RSC) (Figure 1-2) (Eichenbaum, Sauvage, Fortin, Komorowski, & Lipton, 

2012; Nakashiba, Buhl, McHugh, & Tonegawa, 2009; Susumu Tonegawa, Morrissey, & 

Kitamura, 2018). From the prefrontal cortex and the amygdala, there are also 

communications towards the hippocampal CA1 through the pedicubpontine nucleus (J. E. 

Lisman & Grace, 2005). 
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Neuroimaging studies in humans contributed to further our understanding that memories are 

not set in a specific brain area, but they change, evolve, and are over time integrated in 

different brain regions than when they were first encoded. In fact, there is evidence in both 

rodents (Kitamura et al., 2017; Susumu Tonegawa et al., 2018) and humans (Takashima, 

Jensen, et al., 2006; Takashima, Petersson, et al., 2006) that, over time, memories are 

transferred from the hippocampus towards neocortical areas. This process also seems to be 

heavily mediated by sleep (Cirelli & Tononi, 2017; Genzel, Kroes, Dresler, & Battaglia, 2014; 

Genzel, Spoormaker, Konrad, & Dresler, 2015; Tononi & Cirelli, 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Representation of the connections between brain areas contributing to memory. In blue the 

Hippocampus is central to encoding and recall processes that in this figure are not separated. 

The entorhinal cortex sends sensory inputs from layers 2 and 3 towards the hippocampus 
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Figure 1-2: Simplified summary of the memory system 
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subfields DG, CA1, and CA3, and receives in its layer 5 processed mnemonic information that 

is then reprocessed or transferred to cortical areas. These cortical areas also exert a control 

and modulate how memories are created and at a later time recalled.  

 

1.3. The hippocampus 

The hippocampus (HPC) sits at the apex of the memory system. The importance of the HPC in 

memory formation and retrieval has been especially highlighted by lesion studies (Aggleton 

& Brown, 1999; Eichenbaum, 1992; Mumby, Astur, Weisend, & Sutherland, 1999; Rosenbaum 

et al., 2000; Scoville & Milner, 1957, 2000; Sinnamon, Freniere, & Kootz, 1978) and at a later 

time by optogenetics (Kitamura et al., 2017; Nakashiba et al., 2009; Roy et al., 2016; Susumu 

Tonegawa et al., 2018; S. Tonegawa, Pignatelli, Roy, & Ryan, 2015).  

 

Nevertheless, the HPC does not seem to be strictly necessary for all memory processes, in 

particular those involving the recollection of very remote memories (Bontempi, Laurent-

Demir, Destrade, & Jaffard, 1999; Rosenbaum et al., 2000). The history of patient H.M. 

(Scoville & Milner, 1957) shows us that the removal of most of the medial temporal lobe 

resulted in a severe anterograde amnesia. Although procedural and working memory were 

intact, patient H.M. could not commit new events to his explicit memory. He was also 

impaired in the formation of new semantic knowledge. He was able to remember events up 

to 2 years before his surgery, but after that, he had a complete memory loss. Similarly, patient 

K.C. who had, following a motorcycle accident a lesion to the brain that implicated an almost 

complete bilateral loss of hippocampal function had anterograde amnesia and could not 

remember episodic events of his life. However, his semantic memories and his noetic 

consciousness were preserved (Tulving, Schacter, McLachlan, & Moscovitch, 1988). The 

history of these two patients helped confirm the necessary role of the hippocampus and of 

the temporal lobe in the encoding and recall of especially autobiographical memories. Other 

studies in humans showed that the bilateral resection of the hippocampus prevents or makes 

more difficult the encoding of new memories, and suppresses recent memories (Milner & 

Klein, 2016; Scoville & Milner, 2000) further confirming the idea that the hippocampus is 

necessary for encoding processes, and suggesting that its role in recall may be dependent on 
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the age of the memory. In fact, an fMRI study done over the course of 3 months showed that 

early memories activate preferentially the hippocampus, but that over time the same 

memories activate cortical areas (Takashima, Petersson, et al., 2006).  This shows that the 

hippocampus is necessary for at least initial memory processes, but that over time memories 

become less and less hippocampus dependent. 

 

This being said, the multiple-trace theory (Moscovitch et al., 2005) argues that the 

hippocampus is essential to the initial storage of memories but also is recruited in the 

recollection of a detailed episodic event independently of how distant it is from the present. 

Inversely, it may not be essential  to retrieve memories that do not contain detailed sensory 

information, like general knowledge (for example what is the capital of a certain country) or 

repeated actions that no longer have detailed information (the path one takes every day to 

go somewhere) (Moscovitch, Nadel, Winocur, Gilboa, & Rosenbaum, 2006). This research 

taken together underlies the importance of the hippocampus in the encoding and early 

storage of memories. It also plays an essential part in the early or detailed retrieval of 

memories, making it a central and essential part of the whole mnemonic system. Because of 

this, it is the focal point of this thesis on the encoding and recall of episodic memories.   

 

1.4. From Rodents to Humans 

1.4.1. Theta oscillations and memory 

Theta oscillations represent the “online” state of the hippocampus (Buzsaki, 2002) and is the 

activity that most dominates this area. Consequentially, it has been studied, especially in 

rodents, originally in the context of movement and locomotion (O'Keefe & Dostrovsky, 1971).  

These low-frequency oscillations (4-9Hz) have been found first in rodents and seem to be 

correlated to several memory processes (Landfield, McGaugh, & Tusa, 1972). In the case of 

the study of Landfield and colleagues, they showed that the theta oscillations in the EEG of 

rats during a fear conditioning task were correlated to the degree of subsequent retention. 

The theta rhythm was also central in the research that led to the discovery of place cells 

(O'Keefe & Conway, 1978) showing that theta oscillations also impacted navigation. The 

decrease in theta activity in navigation tasks in rodents also predicted a decrease in memory 
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performance (Winson, 1978). The causal effect of theta on memory performance was found 

in a stimulation study (Staubli & Lynch, 1987) where bursts of pulses were administered in a 

theta pattern and increased memory performance of rodents. The influence of the theta 

rhythm on memory functions seems to happen through the mediation of cellular types within 

hippocampal subfields. The hippocampus contains two main types of cellular types: inhibitory 

granule cells and excitatory pyramidal cells. Granule cells seem to reach their highest 

discharge rates during active exploration in rodents, and during theta-concurrent activities. 

On the other hand, pyramidal cells appear to be active in the form of sharp waves when 

immobility is reached. The two-stage model (Buzsaki, 1989) suggests that during exploratory 

behavior, theta transfers cortical sensory information to the CA3 of the hippocampus causing 

weak and transient potentiation in pyramidal cells. Once the exploratory activity terminates, 

the subgroup of pyramidal cells then initiates a sharp-wave that transmits the information to 

CA1 neurons.  Navigational studies in rodents (O'Keefe, 1993) show that the theta rhythm 

also may serve as a clock-like rhythm to organize cortical sensory information within 

hippocampal networks and modulate the associated mnemonic processes.  

Memory research using a rodent model has yielded remarkable findings, shedding light on 

the complex and interconnected processes involved in episodic memory formation and 

retrieval. However, all these results provide only inferential evidence on how human memory 

formation works. 

 

Human research has also highlighted the significance of the theta rhythm in memory 

formation. For instance, (A. P. Burgess & Gruzelier, 1997) demonstrated an increase in theta 

synchronization and activity during recognition memory tasks. (Tesche & Karhu, 2000) 

revealed that theta activity was correlated with working memory performance. Additionally, 

the duration of the stimulus-locked theta increased with working memory load.  

 

These findings taken together with findings on fear-conditioning tasks and recognition tasks 

in humans suggest that the theta rhythm is necessary to the sensory processing of cortical 

information sent to the hippocampus, and perhaps to its organization. Although several 

theoretical models arose from literature on rodents, it is important to test these models on 
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humans too to generalize the results found in mice, which is what we tried to achieve in this 

thesis.   

1.4.2. Gamma activity and memory 

Gamma activity (30-120Hz) indicates the fast activity of neuronal assemblies firing together. 

It is another particularly important rhythm in the study of memory formation. One of the 

reasons gamma power appears to be so important is because of its link with plasticity 

mechanisms. Gamma oscillations appear to drive spike-timing dependent plasticity (Bliss & 

Collingridge, 1993; Sjostrom, Turrigiano, & Nelson, 2001) by being beneficial to synaptic 

potentiation among stimulated neurons (Li, Liang, & Zhou, 2021). This may explain why 

successful memory formation occurs when neuronal firing is coupled with ongoing gamma 

oscillation (Roux et al., 2022). In fact studies in rodents (Bragin et al., 1995; Buzsaki & Wang, 

2012; Headley & Weinberger, 2011) and humans (Griffiths et al., 2019; Lam, Schoffelen, 

Udden, Hulten, & Hagoort, 2016; Lin, Umbach, Rugg, & Lega, 2019; Staresina et al., 2016) 

indicate that increases in gamma power predict successful memory formation, or retrieval.  

 

In addition to plasticity mechanisms, successful encoding and retrieval of memories is also 

based on the effective communication between brain areas. Incoming information in sensory 

cortices needs to activate the relevant cell assemblies in the hippocampus to ensure 

associative binding. Similarly, during retrieval neural communication between areas ensures 

that the reactivation of hippocampal networks induces neocortical activity to allow 

reinstatement of an episode (Staresina et al., 2016). A prominent theory that binds gamma 

activity to information transfer is the “communication through coherence” theory (Fries, 

2005). It proposes that information is relayed from one brain region to another when gamma 

oscillations in the two regions synchronize and input from the “sender” arrives at the 

“receiver” when is at its most excitable phase, and therefore most likely to induce plastic 

changes. This theory is supported by experimental evidence in non-human primates (Csorba, 

Krause, Zanos, & Pack, 2022) and humans (Fell et al., 2006). Additionally, when humans 

successfully recall a memory, gamma-band coherence between areas predicts the degree of 

reinstatement of the reactivated memory (Pacheco Estefan et al., 2021). However, if gamma 

band connectivity is involved in relaying both new and old information, interference may arise 

during this communication. One suggestion based on empirical observations is that distinct 
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gamma bands support these two mechanisms. It was proposed that a fast gamma oscillation 

(60-100Hz) facilitates encoding of information, while a slower gamma oscillation (30-50Hz) 

facilitates retrieval, by allowing traces to propagate from CA3 to CA1 (Colgin, 2015a). This 

model is supported by experimental evidence in both rodents (Bieri, Bobbitt, & Colgin, 2014; 

Zheng, Bieri, Hsiao, & Colgin, 2016) and humans (Griffiths et al., 2019; Vivekananda et al., 

2021). That said, in both humans and rodents, measurements of “slow” gamma may be 

disrupted by theta harmonics (Zhou et al., 2019). Given the importance of the theta rhythm 

in memory formation as discussed in the above section, it is difficult to disentangle what 

effects exactly can be attributed to theta or its harmonics and what can be attributed to 

“slow” gamma.  

 

It comes to question, however, how gamma-band coherence can support communication 

over distances of >1cm, given mechanical factors such as axonal conduction delay (Ray & 

Maunsell, 2015). This long-range communication seems to be better supported by slower 

(e.g. theta) oscillations (Solomon et al., 2017). These concerns can be addressed by 

considering cross-frequency coupling phenomena, in which fast gamma oscillations are 

nested within a slower oscillating rhythm (Bonnefond, Kastner, & Jensen, 2017). When the 

low-frequency oscillations of two distant regions become coherent, and local gamma activity 

locks to a specific phase of the ongoing lower rhythm, gamma coupling becomes more precise 

than what would happen based on long-range gamma communication. In sum, it is suggested 

that theta and gamma oscillations interact to facilitate communication between areas and to 

facilitate plasticity processes that underlie memory formation and retrieval.  

 

1.5. Theta-gamma interactions and memory 

Memory processes rely partly on the interaction of neurophysiological oscillations of different 

frequencies interacting with one another (Hyafil, Giraud, Fontolan, & Gutkin, 2015; Jensen & 

Colgin, 2007; Tort, Komorowski, Eichenbaum, & Kopell, 2010). Among the various forms of 

coordination, Phase-Amplitude Coupling (PAC) seems to stand out the most as the interaction 

between the phase of the low-frequency oscillation and the power of the high-frequency one. 

It can be detected in animal studies (Jensen & Lisman, 1996; Pavlides, Greenstein, Grudman, 
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& Winson, 1988; Tort et al., 2009; Tort et al., 2008) and human brain recording using 

magnetoencephalography (MEG) (Fuentemilla, Penny, Cashdollar, Bunzeck, & Duzel, 2010), 

intracortical LFP recordings (iEEG) (Axmacher et al., 2010; Canolty et al., 2006; Saint Amour di 

Chanaz et al., 2023; Tort et al., 2009) and recordings of single units (Rutishauser, 2019; 

Rutishauser, Ross, Mamelak, & Schuman, 2010).  

 

Studies on memory show that an increase in PAC also reflects an increased success of memory 

processes (Canolty et al., 2006; Lega, Burke, Jacobs, & Kahana, 2016; Tort et al., 2010), which 

could be a reflection of the increased communication between areas. During encoding 

sensory inputs are more clearly communicated to the hippocampus, and during recall, 

mnemonic traces are sent to neocortical areas (Griffiths et al., 2019). This directionality could 

rely on PAC mechanisms where gamma activity nested within lower frequencies increases 

communication between areas (Bonnefond et al., 2017). However, this explanation still does 

not elucidate how a continuous stream of sensory information is processed and stored 

coherently so that when we recall a memory we also recall the order of the events that 

happened.  

 

One possible explanation is phase-precession which also relies on theta-gamma interactions. 

Studies on rodents have shown that during navigation, cell assemblies that code for a 

particular place or position are locked to distinct phases of theta as a function of how the rat 

moves in two dimensions (Jensen & Lisman, 1996; O'Keefe & Burgess, 2005). These findings 

suggest that gamma activity codes for the temporal order or spatial position of a particular 

memory by locking itself to a distinct phase of theta. Subsequent studies on rodents (Huxter, 

Senior, Allen, & Csicsvari, 2008; Oliva, Fernandez-Ruiz, Buzsaki, & Berenyi, 2016) showed that 

this neural code in fact predicted the position of the rat in two dimensions and that the 

interaction of theta with gamma activity within the CA1, CA2 and CA3 differentially coded for 

sequences of discrete events and position. In humans, phase precession was observed in 

temporal coding, where distinct items during sequence encoding were locked to slightly 

different theta phases (Heusser, Poeppel, Ezzyat, & Davachi, 2016) suggesting that theta-

gamma interactions also code for the order of discrete events within a sequence, and add the 
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temporal dimension to episodic memories (Reddy et al., 2021) dependent on cortico-

hippocampal communication (Robinson et al., 2017).  

Taken together these findings suggest that theta-gamma coupling underlies communication 

between areas that promotes encoding or recall, and organize continuous sensory inputs into 

discrete sequential events within an episode. It is still unclear however, how encoding and 

recall can coexist while they seemingly rest on similar neural mechanisms within the same 

areas. The theory stating that encoding and recall processes avoid overlapping by relying on 

two distinct gamma bands, (Colgin, 2015a) can be explored in humans by priming a behavior 

during observation: Asking participants specifically to either encode an item or a sequence or 

to recall one. However, in rodent studies, this is more complicated, as encoding and recall 

often can overlap (Igarashi, Lu, Colgin, Moser, & Moser, 2014) and make the story more 

complex.  

 

An alternative explanation was proposed by (Hasselmo et al., 2002) suggesting that encoding 

and recall were primed by theta states. The model suggested that high phases of theta 

promoted directional communication between the entorhinal cortex and CA1 and CA3 

subfields of the hippocampus, while during low phases of theta pyramidal CA3 cells 

preferentially communicated with CA1 that communicated back to cortical areas. It proposed 

that theta acted as a switch between encoding and recall states, modulating local activity as 

a function to projections from other areas (Figure 3).  

 

Figure 1-3: Model of hippocampal network during encoding and recall, adapted from 
(Manns, Zilli, Ong, Hasselmo, & Eichenbaum, 2007) 
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During Encoding the entorhinal cortex sends information to the hippocampus to the CA1 

and CA3, and the communication between CA3 and CA1 is suppressed. During Recall, CA3 

sends information to the CA1 that then sends it back to the entorhinal cortex.  

 

 

Although this model seems to have been observed in rodents during navigational tasks 

(Manns et al., 2007), it is not yet generalizable to humans, and to episodic memory, hence 

the question arises of whether this phenomenon can be observed in the human 

hippocampus during episodic memory processing, and if the methods that we have at our 

disposal are sufficient to analyze these mechanisms.  

 

1.6.  Studying Phase coupling and phase opposition 

When talking about the study of phase-amplitude interactions the question we are asking is 

whether a population of neurons preferentially fires during some phases of an ongoing 

rhythm. If local populations of neurons fire during certain phases of an ongoing rhythm, it 

means that those populations of neurons are preferentially selected by this ongoing rhythm 

that acts as a “switch” between encoding and recall, or at the very least that theta phases 

induce optimal states for selective populations of neurons, that as a result have a higher 

probability of firing during those phase-states. An electrophysiological study by Hyman and 

colleagues (Hyman, Wyble, Goyal, Rossi, & Hasselmo, 2003) showed that the stimulation of 

CA1 pyramidal cells during up phases of the theta rhythm induced LTP, while the stimulation 

of the same neurons during the low phase of CA1 induced LTD. This shows that the 

populations of neurons firing during specific phases of the theta rhythm might induce lasting 

changes in the local plasticity of the hippocampus. In the model of (Hasselmo et al., 2002) it 

was proposed that encoding happens preferentially at high phases of the theta rhythm, and 

these electrophysiological findings, along with the rodent findings by (Manns et al., 2007) 

seem to support this idea. Given that studies were able to discern phase-amplitude coupling 

phenomena between theta and HFA activity in the hippocampus in the study of item-context 

associations (Tort et al., 2009) and of within-context temporal coding (Heusser et al., 2016), 

we believe that it is possible to find a way to discriminate encoding and recall processes in 
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the human hippocampus, based on their phase-amplitude interactions. These findings taken 

together are also coherent with the idea that phase selectivity plays a role in memory 

processes, and speaks to the need of finding appropriate techniques to discern phase-

coupling and phase preference. 

 

PAC analyses the degree of coupling between high-frequency activity and a low oscillation. 

Within an ongoing time series, PAC determines how consistently HFA is nested within specific 

angles of low oscillations. This is reflected in neurophysiological data by a power increase of 

HFA, locked to a consistent phase of a lower oscillation. Several analytical methods allow to 

observe PAC strength, the two most used being the Mean Vector Length (MVL) (Canolty et 

al., 2006) and the Modulation Index (MI) (Tort et al., 2010). These methods merely measure 

the degree of coupling, but not necessarily inform on the angle of preference, or on the 

consistency of this preference across conditions or trials, should there be any.  

 

The angle of preference can be observed when summarizing the data by binning it. This means 

separating the phase time-series into equal bins. For example if phase is separated into 18 

bins, each bin will represent a 20o area in polar space. If we were to talk in degrees instead of 

radians, this means that, for example, bin 1 would go from -180o to -160o, bin 2 from 160o to 

140o, and so on. To then obtain a binned distribution, we extract the gamma amplitude 

information that corresponds to each phase bin by relating it to time points within the phase 

and amplitude time series. For example, if the phase time series exhibits an angle between -

180o and -160o for time points 1 to 40 and then 176 to 198, then we extract the average 

amplitude for those same time points. We obtain a distribution where each bin has a phase 

information given by the bin order, and an amplitude information given by the mean 

amplitude per phase bin.  

 

The analytical aspects that allow to determine phase preference and to compare phase 

preferences across conditions or datasets are discussed in General Methods and Study 1.  
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2. Chapter 2: Research Aims 

The main goal of the current thesis is to advance the understanding of the mechanistic 

underpinning of the formation and retrieval of human episodic memory, and how the study 

of phase-amplitude interactions and the methods associated may be associated with memory 

formation. In what follows, I argue the objectives in more detail:  

 

 

2.1. Objective 1: To understand and develop methodologies 

that allow the study of phase-amplitude interactions 

(Study 1) 

Given that phase amplitude coupling and phase preference processes appear to underlie 

mnemonic processes, adequate techniques of analysis to distinguish these unique features in 

neurophysiological data are needed. We explore the different methodologies linked to the 

study of phase-coupling and phase-preference processes, in order to understand on a deeper 

level what the analyses mean in terms of neurophysiological underpinnings. We will discuss 

what questions and methods are used to study phase-coupling and phase-preference 

processes answer, and which one to use as a function of the experiment, model, available 

data, and hypothesis. We also will focus on the creation and use of synthetic data to better 

understand how the steps we take in the processing of data for phase-coupling analyses affect 

the data, and what are the signatures that end up being extracted.  

 

Then, we will present a new method to analyze phase-preference differences between two 

conditions, explaining what parameters this novel method allows to explore, and in what 

cases it is preferable to other existing and validated analytical methods. We will test this new 

method on synthetic data and compare it with an existing one, testing its sensitivity and 

selectivity, and discussing its possible uses in noisy neurophysiological data.  
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2.2. Objective 2: To examine how phase-amplitude 

interactions mediate different memory processes (Study 

2) 

Much work in rodents and humans provided evidence that theta-gamma interactions play an 

important role in the formation and retrieval of episodic memory (Griffiths et al., 2019; 

Heusser et al., 2016; Manns et al., 2007; Tort et al., 2009). Encoding and recall of memories 

in fact appear to rely on similar coupling mechanisms (Axmacher et al., 2010; Lega et al., 

2016), but it is still unclear how these two mechanisms are separated in the hippocampus to 

avoid interference. One model proposed that encoding and recall rely on two distinct gamma 

bands (Colgin, 2015a). Another proposed that theta oscillations are instead a switch between 

encoding and recall, and inform on how different brain areas communicate (Hasselmo et al., 

2002). Although evidence in rodents supports this model (Manns et al., 2007), it remains 

unclear in humans if the phase preference of theta-gamma interactions predict memory 

processes and their success. Here, we ask whether phase-coupling interactions occur with a 

preferential theta phase state as a function of different memory processes, i.e., if encoding, 

or recall rest on different phase-coupling mechanisms. By analyzing iEEG recordings from the 

human hippocampus, we specifically explore phase-coupling processes during encoding and 

recall, and as a function of memory retention, to see if they differ in terms of strength, or 

frequencies, and explore whether phase preference is predictive of memory processes, and 

of retention.  
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3.  Chapter 3: General Methods 

1.1. Epileptic patients as a model 

The use of the brain of epileptic patients as a model in the study of neural processes other 

than the epilepsy itself started in the 1940s by Dr Albert Grass who conducted research with 

his colleagues to investigate brain activity related to perception. Because of the advances in 

technology such as electrode construction, surgery techniques, and improved signal 

amplifiers, intracortical electroencephalography (iEEG) has taken a more important place in 

neurophysiological research and has lately been used to assess cognitive processes not 

related to epilepsy.  

 

This allows high temporal resolution research that focuses on brain areas that are normally 

inaccessible with non-invasive techniques such as EEG, MEG, and the investigation of 

cognitive processes that involve those brain areas. One of those areas is the hippocampus, 

and thanks to epilepsy patients and iEEG we can investigate memory processes with data that 

directly comes from brain areas that we know are involved in memory formation and 

retrieval.  

 

Because of their epilepsy, patients are implanted with depth electrodes, traditionally with 

several recording contacts each. Implantation and the contacts, or channels of each electrode 

are strategically placed around the brain area where neurologists believe the epileptic locus 

comes from. Patients stay in the hospital for 1 to 3 weeks in function of the hospital’s 

procedures in the hopes that with the recordings from within the brain and epileptic crises, 

the technical team will be able to identify where the locus – or starting point – of the epilepsy 

is. During this time, researchers can come and present patients with cognitive tasks while 

their brain activity is recorded, and the recordings matched to triggers corresponding to 

different events of the cognitive task allows us to correlate brain activity to processes. This is 

what we did, presenting a mnemonic cognitive task to epileptic patients, and then focused on 

their hippocampal recordings.  
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Data included in this thesis were recorded from patients from two hospitals: the Hôpital Pitié-

Salpétrière in Paris (France) and the Hospital Clínic - IDIBAPS in Barcelona (Spain). Electrode 

placement was exclusively guided by the clinical needs of localizing the seizure onset zone in 

and consider the indications and feasibility of ulterior surgical resections. Participant selection 

was based on the following inclusion criteria: 1) normal IQ; 2) electrodes implanted in the 

hippocampus contralateral to or outside of the epileptogenic region were included for the 

analysis of neurophysiology signals. The studies were conducted according to the Declaration 

of Helsinki and approved by the local ethics committee, and all patients provided written 

informed consent. 

 

The experiment was conducted in the hospital, with participants sitting upright in a 

comfortable chair or on their bed. The stimuli were presented on a 13-inch portable 

computer, placed on an over-bed table at approximately 60 cm distance in front of the 

patients. Patients used the keyboard of the laptop to complete the behavioral task, and their 

responses were recorded internally. Trial onsets and offsets TTL triggers were sent to the EEG 

amplifier via a parallel port or an Arduino simulating a parallel port, each trigger 

corresponding to a different event. In Paris, the recordings were performed using the ATLAS 

amplifier (Atlas, Neuralynx®, Inc., Bozeman, MO; 160 channels at 4096 Hz; bandpass filter 

between 0.1 Hz and 1000 Hz). The macro electrodes (AdTech®, Wisconsin) used consisted of 

4-12 platinum channel electrodes with a diameter of 1.12 mm and length of 2.41 mm, with 

nickel-chromium wiring. The distance between the centres of 2 contacts was 5 mm. In 

Barcelona at the Hospital Clinic, recordings were performed using a clinical EEG system (Natus 

Quantum LTM Amplifier) with a 1024Hz sampling rate and an online bandpass filter from 

0.1Hz to 4000Hz. Intracerebral electrodes (Microdeep, DIXI Medical) were used for 

recordings. Each multielectrode had 8 to 18 contacts, spaced 5 mm and 1 to 2 mm long with 

a diameter of 0.8 mm. Verbal recalls were recorded with an external audio recorder placed 

on the over-bed table next to the laptop computer used for the task. Responses were given 

in native languages: In French in Paris and Spanish or Catalan in the Hospital Clinic. These 

verbal responses were then listen to and the behavioral output of memory accuracy was 

manually introduced in a table used subsequently for Behavioural analyses.  
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3.1. Structural processing and electrode localization 

For the surgical procedure, patients must undergo a T1 MRI scan before electrode 

implantation, and a CT scan afterward in order to make sure the electrodes (figure 3-2 A) are 

in the target areas. With these structural scans we can also identify where contacts are and if 

they are within our regions of interest (ROI). In order to do this we used the fieldtrip 

(https://www.fieldtriptoolbox.org/) pipeline for analyzing human ECoG and iEEG recordings 

that involved the following steps.  

 

First we determined the coordinate system we wanted to use for the T1 and decided to use 

the acpc coordinate system, and realigned the T1 scan interactively using the anterior and 

posterior commissures, an interhemispheric location at the top of the brain, and an 

interhemispheric location on the right of the brain. The volume was then realigned to these 

new axes and coordinate systems.   

 

We extracted cortical and subcortical surfaces running a parcellation and segmentation of the 

T1 scans using Freesurfer (Fischl, 2012; Fischl, Sereno, & Dale, 1999) 

(https://surfer.nmr.mgh.harvard.edu/). We controlled the correct automated extraction of 

cortical and subcortical surfaces using Freeview (Figure 3-2 B) and when necessary applied 

correction points manually to re-extract structures that might not have been taken into 

account the first time.  

 

We then imported the CT scan and converted its coordinates to acpc, realigning it manually 

as we did with the T1. For the CT however, we were using the left and right preauricular points 

(just in front of the ear canals) and an interhemispheric location at the top of the brain.  

We then aligned and fused the CT with the MRI using the spm12 toolbox (Statistical 

Parametric Mapping, https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). We examined 

the accuracy of the fusion with a visual inspection making sure the CT and MRI were correctly 

co-registered.  

https://www.fieldtriptoolbox.org/
https://surfer.nmr.mgh.harvard.edu/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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A: Picture of an intracortical electrode used to implant epileptic patients in the Hospital 

Pitié-Salpetrière in Paris, adapted from (Amengual, Vernet, Adam, & Valero-Cabre, 2017).  

B: Superposition of the pre-operatory T1 MRI of a patient with the localization of the 

hippocampus and amygdala of the aparc-aseg2009 atlas generated after freesurfer 

automatic parcellation of cortical and subcortical structures.  

C: Example of superposition of the pre-operatory T1 MRI of a patient, a CT scan with 

hippocampal channels and the aparc-aseg2009 localization of the hippocampus and the 

amygdala of that patient after automatic parcellation and segmentation of brain structures 

via Freesurfer. The red cross indicates the mouse that is over the second channel of the 

electrode within the Amygdala. This is how manual electrode localization was done.  

 

Finally, we imported the labels and names of the electrodes and channels and manually 

placed the labels of the channels on each channel (Figure 3-2.C) using the notes taken during 

surgery and the pre-implantation plan in order to carefully and successfully localize the right 

electrodes. Once this step was done a further verification was done by realigning the post-

operatory T1 to the preoperatory T1 and by making sure the visible channels on the CT scans 

(in white) were aligned to the “holes” seen in the post-operatory T1.  

A C 

B 

Figure 3-1: Implantation and electrode localization 
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Finally, we extracted the coordinates of the localized channels and assigned each channel to 

a brain area using the aparc-aseg2009 atlas of each patient in native space to increase 

accuracy.  

 

For the figures presented in our published manuscript, we realigned each patient’s scans and 

electrode placements to MNI space using the fieldtrip and spm12 toolboxes. This allowed to 

see all patient’s electrodes in the same space, but this step can also create a slight distortion 

in electrode coordinates in function of each individual’s brain structure and differences, which 

is why the initial localization and electrode selection was done in native space.  

 

3.2. iEEG Processing  

After acquisition, iEEG data has to be processed. First of all, we passed all of the datasets to 

BIDS format and down-sampled the raw data to 1000Hz in order for datasets from both 

hospitals to have the same sampling rate. We identified contacts of interest after Electrode 

placement and structural processing of each patient. From those contacts, we then extracted 

epochs for each stimulus from -2 seconds to 4 seconds and performed artifact detection in 

the following way:  

1. We used Fieldtrip 2020 to visualize each trial and all channels for the visual detection 

of noise or epileptic activity.  

2. With the help of an epileptologist we identified trials that contained epileptic activity 

or noise from a first observation of raw data. In this case, epileptic spikes were of high 

amplitude and lasted for no longer than 200ms but were disruptive of ongoing brain 

activity. Some more sustained epileptic activity was also identified, with high-

amplitude repetitive patterns that were disruptive of previously ongoing brain activity.  

3. We referenced each contact to the next one starting with the deepest contact in the 

brain (bipolar referencing) and we then proceeded to a second visual inspection of the 

data. Here we identified trials high frequency epileptic spikes that were disruptive of 

ongoing brain activity. 
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4. A Time-frequency decomposition was performed on each trial to control for missed 

epileptic spikes that may not have been visible during the first two steps of Artifact 

Rejection but would impact spectral power.  

5. Trials with epileptic activity were removed from subsequent analyses.  

6. Patients with too much epileptic activity were discarded.  

We kept a single bipolar channel for each patient, ROI, and each event in order to perform 

analyses of activity related to our cognitive task. In the case of our study, we focused mainly 

on two brain areas: the Hippocampus, and the Middle Temporal Gyrus. 

Temporal cortex was generally used for control analyses in order to assess Hippocampal 

specificity of effects on memory. Channels in the Temporal cortex were selected based on 

noise, epileptic activity, and other artifacts. All channels that had the label 

“middletemporal_cx” on the aseg_aparc2009 atlas of freesurfer were eligible for the control 

analyses. For each event, ROI, and all patients we could analyze a minimum of 15 trials per 

condition and patient.  

 

3.3. Electrode Selection 

Depth electrodes were implanted stereotaxically targeting sites of the temporal lobe. The 

presence of electrodes in the hippocampus was assessed with the examination of a computed 

tomography (CT) and (post-electrode removal) Magnetic Resonance Imaging (MRI) T1 scans. 

Cerebral atlases of each patient were obtained with the parcellation of the preoperatory T1 

using Freesurfer (https://surfer.nmr.mgh.harvard.edu). The CT was then co-registered to the 

T1 and contact tags and names were placed manually using fieldtrip toolbox for ECoG and 

sEEG recordings (https://www.fieldtriptoolbox.org/). Confirmation of contact placement was 

then obtained with a co-registration of the post-operatory and post-electrode removal T1 to 

the preoperatory T1 and via superposition of the electrode placement matrix to the realigned 

post-operatory T1, and manual correction of the misplaced contact tags.  

The selection of channels was done in native space to prevent errors due to distortions while 

converting in MNI space. MNI space conversion was then done to have a generalized view of 

the patient’s channels of interest. Since channels were referenced to the adjacent more distal 

contact along the electrode (bipolar referencing) channels of interest for each ROI were 

https://surfer.nmr.mgh.harvard.edu/
https://www.fieldtriptoolbox.org/tutorial/human_ecog/
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selected based on three main criteria (in this order of decreasing importance): (1) the channel 

of interest or the referenced one had to be in the hippocampus; (2) if more than one channel 

was eligible, hence fulfilled the prior criterion, to avoid using white matter references hence 

limit noise from other brain areas we privileged the channel that had an adjacent distal 

referencing contact also in the hippocampus (Michelmann et al., 2018) Finally, (3) if more 

than one pair of adjacent channels were eligible, we selected those that had the least amount 

of epileptic activity according to an Artifact Rejection procedure (please see section below for 

details).  

To visualize the selected contacts across our sample, we normalized each participant’s post-

implantation MRI along with their co-registered pre-implantation MRI to MNI space using 

SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). To facilitate the visualization of contacts across 

the group, a 5-mm-radius sphere was created around each contact’s center point and overlaid 

across participants (Figure 3-3 A, B). We used the map Aseg_aparc_2009 to select our areas 

of interest, included in the Freesurfer toolbox.  

 

A: Representation in MNI space of the selected hippocampal channels for each patient for a 

whole brain. Each sphere represents a contact, here we show 2 contacts because since we 

processed our data with bipolar referencing, the resultant signal represents a virtual 

channel that is channel 1- channel 2. 

B: Representation in MNI space of the channels in the hippocampus only.  

 

 

Figure 3-2: MNI representation of the selected Hippocampal channel 

A B 
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3.4. Artifact Rejection 

Artifact Rejection was done visually using the fieldtrip toolbox. A first round of rejection was 

done in order to select only the relevant and the selected channels (as specified in the 

previous section) thanks to the function ft_rejectvisual. In this step, we only selected channels 

that were within the hippocampus and an additional one to account for the bipolar 

referencing. After this first step, the selected channels were visually inspected with the 

function ft_databrowser for each trial, and epileptic activity was manually selected. Epileptic 

activity classification as overseen by an epileptologist that helped us recognize the signatures 

of an interictal spike (epileptic spike) or of sustained epileptic activity. The following 

characteristics were taken into account when performing the visual inspection.  

 

Interictal spikes were detected when they were high in amplitude, lasted less than 200 ms, 

and were disruptive of an ongoing rhythm. Sustained epileptic activity was detected when it 

was a sudden change from any ongoing neural activity, disrupted the ongoing rhythm, and 

had a high amplitude.  

 

After a first visual inspection where trials containing epileptic activity were removed, we 

performed a bipolar re-referencing of the channels (Channel1-Channel2, Channel2-Channel3, 

etc…). After referencing we inspected visually the data again, since some epileptic spikes can 

be undetected when looking at raw data. We inspected the data again and removed the trials 

where epileptic activity was detected.  

 

Finally, since visual inspection can miss some epileptic activity, we performed a time-

frequency decomposition on the data for high frequencies, and inspected each trial to see if 

there was a significant increase of gamma power in some trials that were not frequency-

specific and largely exceeded the increase in power of other trials (twice the standard 

deviation). In the few cases where missing epileptic spikes were detected, the trials were 

manually removed. After artifact rejection, a file containing the trial numbers of all 

compromised trials was saved to avoid repeating these steps. This inspection was carried out 

for all events that were used during our studies.  
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3.5. Power Analysis 

3.5.1. Event-Related Potential (ERP) 

We performed a time-locking analysis on the data to detect Event-Related changes in the 

Local Field Potential (LFP). To this end, we used the pre-processed, artifact-rejected data and 

applied the fieldtrip function ft_timelockanalysis on the data of each patient. The function 

corrected the data by subtracting the mean value of the baseline (-0.5 sec to 0 sec relative to 

stimulus onset) to the data. With this, we obtained an average change of potential relative to 

baseline for each patient. Patient data was averaged over trials and the event-related 

potential was observed across patients. We computed the ERP of all events of interest and 

separated trials by accuracy. Results are provided in Study 1.  

 

3.5.2. Time Frequency Analysis (TFA)  

Time-frequency spectral analysis is used to assess the increase or decreases in power by 

various frequencies as a function of a task. The analysis of frequency decomposition allows 

for a better understanding of neurophysiological underpinnings when it comes to brain 

activity. An increase in power is associated with the synchronized activity of several neurons 

in the same place, and the frequencies determine the nature of that synchronization.  

 

Data analysis of spectral power was performed using Fieldtrip and standard MATLAB 

functions. Power analysis was computed for each individual and at the trial level for EEG 

epochs of -2 to +4 seconds from stimulus onset (trigger). After artifact rejection, frequency 

decomposition of the data was performed via Fourier analysis based on convolution and with 

a sliding time window (moving forward with 10 ms increments). We applied for low 

frequencies (4-29Hz) a hanning taper and the time window decreased relatively to frequency 

(time window = freq / 7, in seconds). For the analysis of high frequencies (30-140Hz), we 

applied seven orthogonal Slepian tapers and a fixed time window of 50ms, resulting in a 

spectral smoothing of ~  10Hz. The resulting power maps were decibel corrected relative to 

a baseline (-0.5 secs to 0 secs relative to stimulus onset). Given that we did not have enough 

time during the baseline to compare baseline activity to post-onset activity, to test for 

significance we used a time-shuffling procedure where each frequency of each trial was time-
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shuffled. This means that we randomly selected a point in the frequency time-series creating 

two pieces of time series. These two data chunks had their orders inverted (the last one 

became the first and the first became the last), and this procedure was repeated for all trials 

before baseline correction. We then averaged the time-frequency maps over trials, thus 

creating a time-frequency map that had a variance, and a mean around 0. This allowed us to 

perform a non-parametric cluster-based permutation test (Maris & Oostenveld, 2007) using 

the function permutest (Gerber, 2023). The p-threshold for cluster detection was set as 5% 

and the test was a two-way test.  

 

3.6. Phase Amplitude coupling 

3.6.1. What is phase-amplitude coupling? 

Cross-Frequency coupling informs us on how neurons not only behave reacting to an external 

environment, but also to each other, and how they modulate or self-regulate their activity. 

An increase in power informs on the synchronization of neuronal activity, but this 

synchronization may be modulated not only by external environmental factors, but also by 

internal physiological factors. For example, it is usually considered that slow waves in the 

brain are more spread out and that high-frequency waves are more local. In this framework, 

we consider that high-frequency activity may be modulated by low-frequencies. In a 

neurophysiological perspective, that can happen because a general increase in power and 

potential mediated by low frequencies, might give an increased probability of firing to a 

subset of neurons that are rendered more sensitive by the increased general potential. Or on 

the contrary, some neurons whose inhibition might be mediated by a general increase in 

potential might become more sensitive when the local potential is lower.  

 

Since low-modulating frequencies are oscillatory, their power (TFA) can be studied, but also 

their angle. We can then study the interaction of high-frequency oscillations, supposed to be 

local, with the angle of low-frequency waves. Like-this, we can try to understand if high-

frequency activity is more likely to happen only during certain phases of lower frequency and 

be therefore modulated, or if instead an increase or decrease in power is independent of 

lower frequencies. This allows us to assess and understand the interaction of neural activity 
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with internal physiological changes on top of environmental ones – or the ones relative to the 

task at hand – and the interaction between these two things.   

 

This involves filtering the signal (Figure 3-4.A) and separating low frequencies (Figure 3-4.B) 

and high frequencies (Figure 3-4. D). Then we extract the angle (in radians) of the Hilbert 

transform of the filtered phase (Figure 3-4. C) and the square of the Hilbert transform of the 

amplitude signal (Figure 3-4. E). For a clearer representation of the coupling between low and 

high frequencies, we can separate the phase angle into 18 equal bins and calculate the mean 

amplitude per phase bin (Figure 3-4. F).  Coupling strength is calculated based on the binned 

distribution (Tort et al., 2010; Tort et al., 2009) with the Modulation Index (MI), or with the 

Mean Vector Length (MVL) (Saint Amour di Chanaz et al., 2023). MVL can also directly be 

calculated on the angle and the amplitude (Canolty et al., 2006) but this can bias the results 

and in the case of calculating the MVL directly on the phase and amplitude steps must be 

taken to ensure that the resulting MVL is unbiased (van Driel, Cox, & Cohen, 2015). In our 

case, we decided to use the MVL because it detects only unimodal distributions (Tort et al., 

2010) and we used it on a normalized binned distribution to avoid biases.  
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Figure 3-3: Steps in the computation of phase amplitude coupling: 
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The raw signal (A), here obtained by simulating Cross-Frequency Coupled data (CFC- see study 

2) is filtered at the phase (B), and its angle is extracted (C). Then the signal is filtered at the 

amplitude (D), Hilbert transformed, and the resulting signal is squared (E). The coupling is 

calculated based on the binned distribution (F).   

 

To perform this analysis we first filtered epochs with the function ‘eegfilt’ from the EEGLab 

toolbox of Matlab. Low frequencies (4-12Hz) were filtered with a window of 0.4 times the 

frequency of interest, centered on each frequency step. For example the filtering window of 

the frequency of interest 4Hz was between 3.2 Hz and 4.8 Hz, centred on 4Hz. Similarly, high 

frequencies (30-140Hz) were filtered with a window of 0.7 times the frequency of interest. 

This allowed for better sensitivity and allowed Δ(hf) to be always bigger than the twice the 

central low frequency (low frequency *2).  

 

For example if we wanted to assess the coupling between 12 Hz and 40Hz the window of 

filtering for low frequencies would be from 9.8 Hz to 14.2 Hz, and for high frequencies the 

delta would be of 28Hz. If we take the delta of high frequencies (Df) as 28Hz (the width of the 

frequency window for filtering high frequencies), it is bigger than the double of the phase of 

interest (12 Hz). Because Lf*2 = 24 and Df = 28Hz, hence Df > Lf*2.  

This filtering process allows for better precision and avoids biases towards lower modulating 

frequencies. There are several methods for avoiding such biases. One is to determine the 

window of interest as a multiplication of the central frequency, like we did, ensuring that the 

factor of multiplication is lower for low frequencies than for high frequencies. The other is to 

have a fixed window for low-frequencies and then create the window for high frequencies as 

a function of the central low frequency, defining it with high_freq-lowfreq to 

highfreq+lowfreq to always ensure that delta highfreq (Df) is at least the double of the low 

frequency of interest.  

 

The paper of Aru and colleagues (Aru et al., 2015) underlines the importance of bandwidth, 

and argues that a fixed bandwidth is not always the best option as it can easily create biases 

towards lower modulating frequencies. In our case and with the fixed factor of multiplication, 

we ensured a variable bandwidth of filtering that always respected the delta(hf) > 2*lf rule.  
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Once we filtered the data, we z-normalized each filtered trial by the mean of all trials in order 

to avoid having effects driven by spectral increases in power and ERPs. We then extracted the 

angle of the Hilbert transformation of low frequencies and the square of the absolute value 

of the Hilbert transform of high-frequency data 

 

Once this was done we binned data: this means that we calculated for each trial the mean 

amplitude of high frequency for 18 frequency bins of 20 degrees each, thus obtaining a 

distribution of mean amplitude per phase for each trial. Since we were interested in 

unidirectional modulations for an event or a task, we averaged the distributions over trials, 

thus obtaining an average distribution for each patient. We then calculated the Modulation 

index using the Mean Vector Length method (Canolty et al., 2006) described below. 

 

3.6.2. Choice of Modulation Index 

There are many ways to calculate modulation and coupling in a distribution or in a dataset, 

but there are two main methods that stand out and are more used than the others: The Mean 

Vector length and the Modulation index by using an adaptation of the Kullback-Leibler 

Divergence using Shannons’s Entropy formula (Tort et al., 2010; Tort et al., 2009). In the case 

of the MI by Tort in 2009, it is a clever adaptation of the Kullback Leibler Divergence. This 

formula is usually used to assess the distance between two probabilistic distributions (P and 

Q whose sum =1 

 

𝐷𝐾𝐿 (𝑃: 𝑄) =  ∑ p(x) ∗ log 
𝑝(𝑥)

𝑞(𝑥)
 

 

But in the case of the Modulation index, it uses Shannon’s entropy formula to compare the 

experimental distribution P to a uniform distribution whose sum =1 and for which each bin 

has an amplitude equal to 1 over the number of bins. The KL distance formula resembles the 

definition of Shannon’s entropy (H) of a distribution P, defined as such:  
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𝐻(𝑋) =  − ∑ 𝑃(𝑥𝑖) ∗ log 𝑃(𝑥𝑖)

𝑖

 

 

DKL is related to Shannon’s entropy by the following formula:  

 

𝐷𝐾𝐿(𝑃: 𝑈) = log(𝑁) − 𝐻(𝑃) 

 

Where U is the uniform distribution. Log(N) is the maximal entropy value, which happens 

precisely for the uniform distribution, or when we have P(j) = 1/N for all bins. Therefore, 

because H(P) < log(N), the modulation index is the DKL distance of the distribution P from the 

uniform distribution divided by the log of the number of observations N:  

 

𝑀𝐼 =  
𝐷𝐾𝐿(𝑃: 𝑈)

log (𝑁)
 

 

In the case of the MVL, we transform the distribution of mean amplitude per phase bins into 

complex polar vectors. Then the sum of these vectors in polar space creates a resultant vector 

with a unique direction and magnitude. The direction of the polar coordinates of this vector 

determines the circular angle preference of a distribution. The absolute value of the mean 

vector is its length, and the mean vector length is predictive of the modulation of a 

distribution. This is described by the formula below where 𝜃 is the angle (in Radians) 

corresponding to the bin number, 𝑛 is the bin number, 𝑎𝑚𝑝 is the mean amplitude for the 

bin 𝑛, and 𝑁 is the number of bins.  

 

𝑀𝑉𝐿 =  |
∑ 𝑎𝑚𝑝

𝑛
∗ 𝑒(𝑖∗𝜃𝑛)

𝑁
| 

 

We decided to use the MVL because the following analysis we performed on most of our data 

also used vectorization of distributions to assess phase preference (See MOVI section), but 
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also because during simulation of data for Study 2 we noticed that KLD could give results that 

were biased for lower modulating frequencies.  

 

A non-uniform distribution can be unimodal (with a single phase preference) or multimodal 

(with multiple phase preferences). For the way it is computed, the MVL can detect only 

unimodal phase preferences, as multimodal phase preferences will shift the weight of the 

mean vectors towards the center and thus reduce its length, and thus the MVL.  

 

On the other hand, DKL is able to pick up on non-uniformity that is multimodal and has various 

angles of preference. This can be an advantage in some cases, because phase-amplitude 

coupling can happen at multiple phases for a single event. However, it can also bias results 

towards lower modulating frequencies. During the simulations done for Study 2, we simulated 

bimodal distributions by multiplying the frequency of the modulatory sin wave by 2. In this 

case the resulting distribution can originate from a bimodal coupling to a lower frequency, or 

to a unimodal coupling of the double of that same frequency. As there is no way to distinguish 

between the unimodal coupling lf1 *2 and a bimodal coupling of lf, we decided to only look 

at unimodal couplings. In Study 2, we computed the MVL of the mean distributions for each 

patient and for each pair of frequency within our interest (phase 4-12Hz, amplitude 30-

140Hz).  

 

3.6.3. Single trial PAC and averaging over trials  

In the study of Phase-Amplitude Coupling, we saw various types of analysis. One of them is to 

analyze PAC for each trial and then to average the values of coupling over trials. The other, 

the one we used, is to average the distributions over trials and then obtain a single PAC value.  

 

These two methods are both valid but they are aimed to explore different questions. On one 

hand, we explore the coupling of each single trial, therefore the hypothesis is not linked to a 

particular or common phase preference of the data, but only to a coupling mechanism that 

can happen with any phase.  

 



35 

 

This distinction is important, because we can obtain significant results of PAC by studying 

individual trials if all trials exhibit a significant coupling but are coupled to a different phase. 

In this case, it means there is a phase-amplitude coupling mechanism going on but no 

common phase preference. If we analyzed the same data with the other method, we would 

likely find no significant coupling, because the average distribution would have no clear phase 

preference, although all trials exhibit PAC individually.  

 

If we are interested in common effects, and the hypothesis, as in the case of our study, is that 

trials are coupled on average to the same phase, then looking at an average distribution 

makes more sense. If however, we are interested only in coupling effects and their 

functioning, independently of the phase preference, the first method is better.  

 

In our case, we chose to average over trials the distributions prior to the calculation of the 

modulation index, because our hypotheses included a common directionality and phase 

preference of the effect.  

 

3.6.4. PAC Summary 

For our data in Study 1 and to study PAC we filtered low frequencies adding or subtracting 0.2 

times the low frequency of interest, and for high frequency adding or subtracting 0.7 times 

the frequency of interest. We then binned the data into 18 equal bins of 20 degrees obtaining 

a distribution of mean amplitude per phase bin, and averaged over trials. Then we extracted 

the mean vector length of the resulting distribution. We corrected our modulation index with 

time-shuffled surrogate trials.  

 

3.7. Phase Opposition and phase preferences 

3.7.1. Studying phase opposition: existing methods 

When studying phase coupling we also wondered about common phase preferences. 

Coupling of high frequencies to different phases of theta, could underlie different mnemonic 

mechanisms (Heusser et al., 2016), or be reflective of a particular communication between 

brain areas (Bonnefond et al., 2017). In this case, several methods can detect angular 
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differences in distributions or in datasets. One way to analyze differences in phase preference 

is to use Circular statistics (Berens, 2009), and the study of frequency of angles. This technique 

works much like a t-test but for angular distributions on a polar plane. It takes the frequency 

of apparition of an angle for a subset of subjects or trials and tests whether the average 

angular preference of two conditions differ. The disadvantages of this method is that it relies 

heavily on the number of trials or occurrences of a specific event or condition, and therefore 

this analysis can create false negatives for experiments with a low number of trials. 

Additionally, it only has the angle component, which means that each trial or occurrence is 

summarized to its angle of preference, without taking into account coupling strength. This 

means that trials with a very low coupling can show a phase preference that could be solely 

explained by random or common factors in the data.  

 

Another possible method of analysis is Pairwise Phase Consistency (PPC) (Vinck, van 

Wingerden, Womelsdorf, Fries, & Pennartz, 2010). This method is usually used to measure 

the consistency of phase consistency or relationship across brain regions but can be used in a 

variety of ways. It studies the consistency of phase relationships, but in the way that it is 

calculated, it brings similar challenges than circular statistics. Trials are prepared by 

transforming them into vectors, and then are unit normalized, meaning that the amplitude of 

each trial vector becomes unified or equal to 1. By doing so, we suppress again the coupling 

characteristic of the data.  

 

Similarly, Inter-Trial Coherence (ITC) (VanRullen, 2016) examines the consistency of phase 

synchronization of oscillatory brain activity across trials or repetitions. But this technique too 

focuses solely on the phase component, and although it gives a very enlightening insight on 

the consistency of phase preference across trials, it does not consider coupling strength. This 

means that it can be used on datasets where experimenters know already that there is a 

strong coupling happening, but it cannot be used in an exploratory way.  

Similarly, Phase-Amplitude-Coupling Opposition Index (PACOI) (Costa et al., 2022) uses an 

adaptation of the PPC to assess the difference in phase preference between two conditions. 

PACOI is calculated as such:  
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𝑃𝐴𝐶𝑂𝐼 = 𝑃𝑃𝐶(𝐴) + 𝑃𝑃𝐶(𝐵) − 2 ∗ 𝑃𝑃𝐶(𝐴 + 𝐵) 

 

Since PPC evaluates the phase consistency of a subset of trials, if datasets A and B have similar 

phase preferences, then the joint dataset (A+B) will also have a similar phase preference, and 

PACOI will be closer to 0. On the other hand, if A and B have distinct phase preferences, 

PPC(A+B) will be closer to 0, and by extension, PACOI will have a higher value.  

 

This technique is very elegant, and is stable with a lower number of trials, because of the 

properties of PPC (Vinck et al., 2010), but it also does not take into account PAC strength, and 

is adapted to datasets where we already know coupling is strong, or alternatively, adapted to 

hypotheses where coupling strength and phase preference are not necessarily connected.  

 

We wanted to study opposition of phase preferences in a way that took into account PAC 

strength, we developed a method, underlined in Study 2 that answers this problem: The Mean 

Opposition Vector Index (MOVI), which we used in Study 1.  

 

3.7.2. MOVI and the study of phase Opposition 

In the case of our study and the way we computed PAC, we were interested not only in the 

modulation of our data, and in the study of non-uniformity, but also in the phase preference. 

The Hasselmo Model (presented in the introduction) states that memory processes might 

exhibit a gamma-theta phase preference in function of Encoding or Recall.  

 

We aimed at testing this model in humans, and therefore wanted to see if the phase 

preference of the non-uniform distributions of Encoding had a different phase preference 

than the non-uniform distribution found during recall processes. To this end, we wanted to 

find an index that would allow us to explore this hypothesis but that took into account also 

coupling and non-uniformity of both datasets. We found several ways of comparing the 

angular preference of distributions but none of them were satisfactory to our goals (see 

above).  
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We explored a last method that seemed to reunite several of the criteria we wanted, 

divergence between two distributions while taking into account PAC strength: The Kullback-

Leibler Divergence (KLD). Kullback-Leibler divergence is one of the most widely used methods 

to assess the distance between two probabilistic distributions and was used to compute the 

Modulation index (Tort et al., 2010). It calculates the distance between two distributions in 

the following way: 

 

𝐷𝐾𝐿 (𝑃: 𝑄) =  ∑ p(x) ∗ log 
𝑝(𝑥)

𝑞(𝑥)
 

 

Where p(x) is the value of each bin of distribution P, q(x) is the value of each bin of the 

distribution Q.  

 

This measure, however, is asymmetrical, meaning that the distance between P and Q is not 

the same as the distance between Q and P, and it is possible to make it symmetrical 

considering the Jeffrey’s Divergence with the following formula:  

 

𝐷𝐾𝐿𝑠𝑦𝑚 =
𝐷𝐾𝐿(𝑃: 𝑄) + 𝐷𝐾𝐿 (𝑄: 𝑃)

2
 

 

This symmetrisation however has been shown to have numerical issues where resulting 

values were either too high or too low (Nielsen, 2019) and an alternative way to make the 

measure symmetrical was found.  

 

The Jansen-Shannon Divergence uses DKL formulas to estimate the distance of each 

distribution to the average between the two distributions in the following way:  

 

𝐽𝑆𝐷 =
𝐷𝐾𝐿 (𝑃: 

𝑃 + 𝑄
2 ) + 𝐷𝐾𝐿 (𝑄:

𝑃 + 𝑄
2 )

2
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Where 
𝑃+𝑄

2
 is the average distribution of P and Q. This distance can be interpreted as the total 

divergence from the average distribution. The important property of the Jensen-Shannon 

divergence compared to the Jeffrey Divergence is that this distance is always bounded 0 ≤

𝐽𝑆𝐷 ≤ 𝑙𝑜𝑔2 and solves possible numerical problems given by the symmetrical DKL. In the 

case of iEEG data and neurophysiological signals we tested JSD (see Study 2) (Nielsen, 2019). 

 

 

We therefore developed our own index for calculating opposition that relies on an intuitive 

functioning and that we called Mean Opposition Vector Index (MOVI).  

 

In the case of MOVI, we took the two distributions A and B and created an alternative 

distribution of amplitude per phase bin based on the difference between the two original 

distributions with the following formula:  

 

𝐷𝑎𝑙𝑡 =  
(𝐷𝐴 − 𝐷𝐵 +

2
𝑛𝑏𝑖𝑛𝑠

)

2
 

 

 

Where 𝐷𝐴 is distribution A, 𝐷𝐵 is distribution B and nbins is the number of bins (18 in this 

case). We then applied the MVL (Canolty et al., 2006; Cohen, 2008) measure to the alternative 

distribution to assess the strength of opposition between the two distributions for each trial 

with:  

 

𝑀𝑉𝐿 =  |
∑(𝑎𝑚𝑝(𝑥) ∗ 𝑒𝑖∗𝜃(𝑥))

𝑁
| 

 

Where amp(x) is the amplitude of each phase bin (x), 𝜃(x) being the phase of each bin (x) and 

N the number of bins. This vectorized each phase bin and extracted the absolute value of the 

mean vector which gives the vector length. The longer the vector, the higher the coupling, or 

in the case of MOVI, the opposition.  
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We added twice the value of the uniform distribution (
2

𝑛𝑏𝑖𝑛𝑠
) to avoid having negative values 

and then divided everything by 2 to have an alternative distribution  𝐷𝑎𝑙𝑡 that had a 

magnitude of peak to through difference that was the average of the peak to through distance 

of both distributions. In the case of an opposition of phase preference, the alternative 

distribution would have a non-uniformity score equal to the sum of the MVL of both 

distributions, by dividing the alternative distribution by 2 we ensure that the MVL magnitude 

of this alternative distribution is instead between the MVL of both distributions. This way, we 

ensure that PAC strength is taken into consideration and we lower the risk of having false 

positives by not increasing the peak to through difference.  

 

We hypothesized that if two distributions have opposed phase preference the alternative 

distribution will be unidirectional and non-uniform and will exhibit a strong MVL. On the other 

hand, if two distributions have the same phase preference, the alternative distribution will be 

flat and the MVL will be 0. Finally, we ensure to avoid false positives and to take PAC into 

account because with a lower PAC of both or either distribution, the alternative distribution 

will also lose in non-uniformity and the MVL will be lower. Finally, MOVI alone could still 

detect false positives, so we compared its experimental value to surrogate trials. The 

advantage of using surrogate trials with either MOVI or JSD is that it gets rid of common 

effects that may be due to an ERP or to phase reset mechanisms, when using a label shuffling 

procedure (See section on surrogate trials). In this sense, it picks up on opposition of 

distributions that is specific to the dataset, more so than previously described methods. For 

the study of phase opposition, we also used surrogate trials. To do so we computed the 

surrogate trials of each distribution separately and then compared the two surrogate 

distributions in the same way as the experimental one.  
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4.                   Chapter 4: Study 1 

 

 

 

 

 

Measuring phase-amplitude coupling 

opposition in neurophysiological signals with 

the Mean Opposition Vector Index (MOVI) 

 

 

 

 

 

 
 

 

 

 

 

Please Note: This study has been published on BioRxiv on the 4th of August 2023 

https://www.biorxiv.org/content/10.1101/2023.08.04.551929v1 
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4.1. Abstract 

Background: The phase–amplitude coupling (PAC) opposition between distinct neural 

oscillations is critical to understanding brain functions. Available methods to assess phase-

preference differences between conditions rely on density of occurrences. Other methods 

like the Kullback-Leibler Divergence (DKL) assess the distance between two conditions by 

transforming neurophysiological data into probabilistic distributions of phase-preference and 

assessing the distance between them. However, these methods have limitations such as 

susceptibility to noise and bias. 

 

New Method: We propose the “Mean Opposition Vector Index” (MOVI), a parameter-free, 

data-driven algorithm for unbiased estimation of PAC opposition. MOVI establishes a unified 

framework that integrates the strength of PAC to account for reliable unimodal differences in 

phase-specific amplitude coupling between neurophysiological datasets. 

 

Results:  We found that MOVI accurately detected phase opposition, was resistant to noise, 

and gave consistent results with a low or asymmetrical number of trials, therefore in 

conditions more similar to experimental studies. 

 

Comparison with existing methods: MOVI outperformed Jensen-Shannon Divergence (JSD), 

an adaptation of the DKL, in terms of sensitivity, specificity, and accuracy to detect phase 

opposition.  

 

Conclusions: MOVI provides a novel and useful approach to the study of phase-preference 

opposition in neurophysiological datasets. 
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4.2. Introduction 

Neurophysiological data exhibits oscillations of different frequencies, which may co-occur and 

also interact with one another (Hyafil et al., 2015; Jensen & Colgin, 2007; Tort et al., 2010). 

Among the various forms of coordination, phase-amplitude coupling (PAC) stands out as the 

most widely acknowledged as it can be detected throughout the brain in animal studies 

(Jensen & Lisman, 1996; Pavlides et al., 1988; Tort et al., 2008) and human brain recordings, 

using techniques such as electroencephalography  (EEG) (Axmacher et al., 2010; Canolty et 

al., 2006; Tort et al., 2009), magnetoencephalography (MEG) (Fuentemilla et al., 2010) and 

local field potential (LFP) recordings (Rutishauser et al., 2010; Saint Amour di Chanaz et al., 

2023). PAC involves the interaction between the phase (the timing) of low-frequency brain 

oscillations and the amplitude (the strength) of higher-frequency oscillations and outlines 

that information coding in the brain involves more than just individual neuron action potential 

firing, but the brain's extracellular field potential oscillations serve as temporal reference to 

aid efficient information processing by the spiking activity of the neural ensembles.  

 

The best studied-example is the coupling of the ongoing theta (3-8Hz) and the amplitude of 

gamma oscillations (>30Hz) (Bragin et al., 1995; Buzsaki, 2002; Tort et al., 2008) Theta-gamma 

PAC has been reported in a variety of species, brain regions and experimental conditions 

(Axmacher et al., 2010; Giraud & Poeppel, 2012; J. E. Lisman & Jensen, 2013), and theoretical 

work has suggested hippocampal theta-gamma PAC supports a neural coding regime to 

support mnemonic operations (Colgin, 2015b) and spatial navigation (Huxter et al., 2008; 

Jensen & Lisman, 1996; O'Keefe & Burgess, 2005; Tsodyks, Skaggs, Sejnowski, & McNaughton, 

1996). The importance of theta-gamma PAC is that the mechanisms behind it provide valuable 

insights into how the brain processes and represents information. For example, influential 

computational models, supported by empirical findings in rodents (Bragin et al., 1995; Colgin 

et al., 2009) and in humans (Kunz et al., 2019; Pacheco Estefan et al., 2021) posit that theta-

nested gamma oscillations may allow the hippocampal network to temporally organize 

sequences of events within each theta cycle (J. Lisman, 2005; J. E. Lisman & Idiart, 1995; J. E. 

Lisman & Jensen, 2013; O'Keefe & Recce, 1993) Other models, also supported by empirical 

data in rodents (Bieri et al., 2014; Colgin et al., 2009; Douchamps, Jeewajee, Blundell, Burgess, 
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& Lever, 2013; Fernandez-Ruiz et al., 2017; Lever et al., 2010; Manns et al., 2007; Pavlides et 

al., 1988; Poulter, Lee, Dachtler, Wills, & Lever, 2021) and in humans (Saint Amour di Chanaz 

et al., 2023), propose that gamma couples to opposed-phase states of the ongoing 

hippocampal theta rhythm activity during memory encoding and during retrieval (Hasselmo 

et al., 2002). Together, these findings underscore that neural oscillations have broader 

implications than just PAC alone. Taking the phase preference of PAC into account is critical, 

as it significantly influences the organization and processing of mnemonic information in the 

brain. Therefore, it becomes essential to incorporate analytical tools that can effectively 

characterize differences in phase preference within PAC across neural states. 

 

There are several quantitative approaches to identifying phase preference within PAC and 

how phase preference within PAC differs or opposes across neural states or experimental 

conditions. Some of these methods rely on the existence of PAC and aim at detecting phase-

preference differences between two conditions. Analytically, these methods, such as the 

Inter-Trial Phase Coherence (ITPC); (VanRullen, 2016), are used to estimate the average 

angular degree of incidences in which each trial is summarized into a single vector with a 

phase preference and then the angles of the vectors are compared to a uniform polar 

distribution or to another subset of trials. These methods rely, therefore, on density of 

occurrences. An important limitation in the context of detecting phase preference within PAC, 

however, is that these approaches do not consider coupling strength of angle preference as 

each trial, or observation is summarized into a unit-normalized vector. Thus, while these 

methods are suitable to quantify phase clustering across trials or observations, they 

undermine the possibility that phase preference could be brought by weak or even non-

meaningful amplitude modulations. In these cases, these indexes could still provide non-

random phase clustering values but that would compromise the interpretability of the 

underlying neural mechanisms. 

 

Neurophysiological data can also be analyzed using PAC methods implemented separately 

into equal phase bins. In PAC analysis, phase bins are used to divide the phase values of low-

frequency oscillations (e.g., theta) into equal intervals or segments. These intervals represent 

different phase angles that cover the entire 360-degree range of a circular distribution. For 
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each bin, the mean amplitude is calculated, resulting in a distribution of amplitude per phase. 

This process combines the time series of phase and amplitude into a single distribution of 

amplitude per phase, capturing both components without losing information about the 

variability of amplitude phase-preference. The method involves taking the time-series of the 

filtered amplitude and phase, identifying time-points corresponding to specific phase ranges 

based on the number of bins, and then averaging the amplitude time-points to obtain a single 

average amplitude measure for each phase bracket. The distributions obtained from the data 

can be studied using different methods, such as the Kullback-Leibler Divergence (DKL). DKL is 

a commonly used method in fields like genetics (Akhter et al., 2017) and engineering (Ji et al., 

2022) to measure the distance between two probabilistic distributions. However, a limitation 

of DKL is that it is not symmetric in comparing distributions (Nielsen, 2019). This means that 

the distance between distribution A to B is not the same as the distance from distribution B 

to A, which can lead to asymmetrical results when comparing distributions using DKL. 

 

The Jensen-Shannon Divergence (JSD) overcomes the asymmetry limitation of the DKL by 

providing a symmetrical measure (Nielsen, 2019). It calculates the distance between the 

mean distribution of two datasets (A and B) and then compares each dataset to the mean 

distribution, resulting in a symmetrization of the DKL. However, JSD uses a logarithmic 

transformation, making it more suitable for detecting average differences between 

distributions rather than those driven by a single-phase preference. Another shortcoming of 

JSD is it has the capability to detect multimodal differences in phase preference, which can 

be problematic. If one or both distributions exhibit multiple peaks of phase preference 

(multimodal), JSD might identify a difference even in situations where it may not reflect a 

clear phase preference. For example, if high-frequency activity is coupled to 8Hz at one 

specific phase (unimodal), JSD may erroneously indicate a bimodal coupling at 4Hz with two 

peaks of phase preference. This sensitivity to multimodal distributions is not ideal when 

assessing phase-preference differences, as it can lead to misinterpretations and biases, 

especially towards lower modulating frequencies. 

To address the limitations of the JSD in assessing uniform and unimodal opposition in phase 

preference, we developed a new algorithm that uses the Mean Vector Length (MVL) measure 

(Canolty et al., 2006) and creates an alternative distribution from the difference of the two 
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distributions being compared. By applying the MVL to this new distribution, we can detect a 

uniform and unimodal opposition in phase preference while considering phase-amplitude 

coupling strength. We refer to this index as Mean Opposition Vector Length (MOVI), and we 

will detail below its premises, assumptions, and usefulness when working with 

neurophysiological data. In this study, we will compare MOVI against JSD, which encompasses 

most of the criteria we wanted to assess phase-opposition by considering coupling strength, 

not risking having abnormally high or low numerical values like Jeffrey’s Divergence, and 

symmetry in the sense that the distance between A and B would be the same as the distance 

between B and A. We will contrast their differences in terms of sensitivity and specificity 

(Trevethan, 2017), calculate their predictive value, and assess accuracy and Matthews 

Correlation Coefficient (MCC) (Chicco, Totsch, & Jurman, 2021) on simulated data, where we 

will manipulate different variables and parameters that can be found in neurophysiological 

data such as PAC strength, noise, opposition angle, number of trials, and inter-trial phase 

coherence. Matlab scripts to produce the simulations and perform the analyses described in 

this paper are available at Github: https://github.com/DMFresearchlab/MOVICode 
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4.3. Material and Methods 

4.3.1. Synthetic data generation 

We simulated datasets containing two phase-coupled trial distributions. For both 

distributions, we simulated a time series of coupled low and high frequencies. The frequency 

sampling of these time-series was of 1000 Hz and we simulated 2500 time points, or the 

equivalent of 2.5 sec epochs. When generating our datasets we simulated each trial 

independently using the formulas provided by (Tort et al., 2010) and adding variable 

parameters to control for coupling angle for each distribution. We simulated a baseline of 50 

trials, and each trial was composed of a pair of frequencies, a frequency for phase (𝑓(𝑝)) and 

a frequency for amplitude (𝑓(𝑎)). We also took into account the filtering parameters, and 

hence simulated the central frequencies of interest (f) as well as the low and high limits of the 

frequency window 𝑓(𝑎) ± 𝑓(𝑎) ∗ 0.35  for amplitude and 𝑓(𝑝) ± 𝑓(𝑝) ∗ 0.2 for phase. All 

trials were simulated in the following way:  

 

𝑅𝑎𝑤 𝐷𝑎𝑡𝑎 = 𝑆𝑖𝑔𝑛𝑎𝑙(𝑝) + 𝑆𝑖𝑔𝑛𝑎𝑙(𝑎𝑚𝑝) ∗ 𝑆𝑖𝑔𝑛𝑎𝑙(𝑚𝑜𝑑) + 𝑛𝑜𝑖𝑠𝑒𝑝ℎ𝑦 + 𝑝𝑖𝑛𝑘𝑛𝑜𝑖𝑠𝑒 

where  

𝑆𝑖𝑔𝑛𝑎𝑙(𝑝) = 𝑓(𝑝) ∗ sin (𝐴𝑛𝑔𝑠𝑡𝑎𝑟𝑡(𝑝) + 2 ∗ 𝜋 ∗ 𝑓(𝑝) ∗ 𝑡𝑖𝑚𝑒) 

and 

𝐴𝑛𝑔𝑠𝑡𝑎𝑟𝑡 = 𝐴𝑠 + 𝑅𝑎[𝑎𝑙: 𝑎ℎ] 

 

The starting angle of each frequency was determined by the sum of a fixed starting angle 𝐴𝑠 

and a random angle 𝑅𝑎 between a lower limit 𝑎𝑙 and a higher limit 𝑎ℎ. The random angle 

made each trial slightly different within each condition but within a fixed angle range.  We 

wilfully introduced this noise to have a similar phase preference across trials and to try to 

replicate real neurophysiological data where different trials do not have the exact same 

characteristics. It also helped to ensure that each trial was different to justify correction by 

surrogate trials. Without the random angle, all trials would have been identical, and averaging 

over trials would be the same as having one single trial. In this case, the correction by 

surrogate trials would also have been unnecessary.  
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𝑆𝑖𝑔𝑛𝑎𝑙(𝑎𝑚𝑝) was generated in the same way as 𝑆𝑖𝑔𝑛𝑎𝑙(𝑝) but with a beginning angle 

specific to amplitude 𝐴𝑛𝑔𝑠𝑡𝑎𝑟𝑡(𝑎𝑚𝑝). 

𝑆𝑖𝑔𝑛𝑎𝑙(𝑚𝑜𝑑)) is the modulatory signal of amplitude responsible for cross-frequency coupling 

mechanisms and it was defined in the following way:  

 

𝑆𝑖𝑔𝑛𝑎𝑙(𝑚𝑜𝑑) =
sin(𝐴(𝑝) + 𝐴𝑛𝑔𝑠𝑡𝑎𝑟𝑡(𝑚𝑜𝑑) + 2 ∗ 𝜋 ∗ 𝑓(𝑝) ∗ 𝑡𝑖𝑚𝑒) ∗ (1 − 𝜒) + 1 + 𝜒

2
 

 

where 𝐴(𝑝) is the fixed starting angle for phase to ensure that the modulation of the signal is 

locked to the phase for each trial. 𝐴𝑛𝑔𝑠𝑡𝑎𝑟𝑡(𝑚𝑜𝑑) is the starting angle specific to modulation 

and relative to the phase angle where the modulation can happen in phase or out of phase 

with the low frequency. 𝜒 is a coupling factor between 0 and 1, where 1 is no coupling and 0 

is perfect coupling. The modulatory sin wave always ranges between 0 and 1 and by 

multiplying the amplitude time series with the modulatory time series we ensure that we 

obtain a high frequency coupled to the frequency of the modulatory wave.   

Noise adding uncoupled low and high frequencies to simulate as closely as possible noise that 

is likely to be found in real neurophysiological data. First, we ensured that the raw signal was 

slightly different for every trial by adding a low-frequency wave with a random starting angle, 

and a non-modulated high frequency wave. Then, pink noise (van Driel et al., 2015) was added 

with an amplitude of the noise signal being equivalent to the amplitude of the coupled high-

frequency signal. We then computed MOVI and JSD on simulated data with these 

characteristics 100 times, which emulated an experiment with 100 synthetic participants, 

each with the same number of trials and the same settings. Knowing beforehand the degree 

of coupling and opposition allowed us to know the ground truth and benchmark the different 

methods used to assess for opposition. Since within the settings, there was randomness 

added with a random starting angle within a fixed angle window or with physiological-like 

noise it ensured that each synthetic participant was different. This allowed us to have a 

distribution of the MOVI and JSD scores to assess also how much variability there was in the 

indexes and if any factor or setting particularly influenced sensitivity or specificity.  When the 

degree of angle opposition was not parametrically manipulated, the two datasets had an 
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opposition of 0o (non-opposed) or 180o (completely opposed). When not manipulated, PAC 

strength of both distributions was average and fixed, both distributions had 50 trials and each 

trial had a randomness of inter-trial coherence of 180o, meaning that all trials had a phase 

preference that was within ±90 degrees from the manually determined angle of coupling.  

 

4.3.2. Pre-processing of the signal 

Each trial of raw data was filtered using the eegfilt function of EEGlab (Delorme & Makeig, 

2004).  The window of the frequency of interest (f) was determined as well as 𝑓(𝑎) ± 𝑓(𝑎) ∗

0.35  for amplitude and 𝑓(𝑝) ± 𝑓(𝑝) ∗ 0.2 for phase. Filtering was done on longer epochs 

that were then cut to fit the desired number of time points, removing any filtering artifacts. 

The filtering window increased with frequencies for both phase and amplitude extraction in 

order to avoid biases toward lower modulating frequencies and ensuring that the window of 

filtered high frequencies was always superior to twice the phase of locking: ∆𝑎𝑚𝑝 >  2 ∗

𝑝ℎ𝑎𝑠𝑒 (Aru et al., 2015). Then we extracted angles of phases for low-frequencies, and we 

extracted the absolute value of the square of the Hilbert envelope of amplitudes for high 

frequencies.  Epochs were then binned in 18 equal bins of 20° (Tort et al., 2010). Each trial 

was then converted to a probabilistic distribution where sum = 1 by dividing the amplitude of 

each bin by the sum of all bins. Subsequently, we used these bins to calculate JSD and MOVI 

between different trial conditions. 

 

4.3.3. JSD calculation 

JSD requires the extraction of the DKL index, which is described as follows:  

𝐷𝐾𝐿 (𝑃: 𝑄) =  ∑ p(x) ∗ log 
𝑝(𝑥)

𝑞(𝑥)
 

where 𝑝(𝑥) is the value of each bin of distribution 𝑃, 𝑞(𝑥) is the value of each bin of the 

distribution 𝑄. This measure, however, is asymmetrical, in the sense that 𝐷𝐾𝐿 (𝑃: 𝑄) is 

different than 𝐷𝐾𝐿 (𝑃: 𝑄). This is problematic in the sense that to assess distance or 

opposition of angles it is important that the choice of comparison order (distance from 𝑃 to 

𝑄 or from 𝑄 to 𝑃) does not alter the results. It is possible to make DKL symmetrical considering 

Jeffrey’s Divergence (Nielsen, 2019) with the following formula:  
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𝐷𝐾𝐿𝑠𝑦𝑚 =
𝐷𝐾𝐿(𝑃: 𝑄) + 𝐷𝐾𝐿 (𝑄: 𝑃)

2
 

 

This symmetrization, however, has been shown to have numerical issues where resulting 

values were either too high or too low (Nielsen, 2019) and an alternative approach to make 

the measure symmetrical was developed using the Jensen-Shannon Divergence. The Jansen-

Shannon Divergence uses DKL formulas to estimate the distance of each distribution to the 

average between the two distributions in the following way:  

 

𝐽𝑆𝐷 =
𝐷𝐾𝐿 (𝑃: 

𝑃 + 𝑄
2 ) + 𝐷𝐾𝐿 (𝑄:

𝑃 + 𝑄
2 )

2
  

 

where 
𝑃+𝑄

2
 is the average distribution of 𝑃 and 𝑄. This distance can be interpreted as the total 

divergence from the average distribution. The important property of the Jensen-Shannon 

divergence compared to the symmetrical DKL is that this distance score is always bounded 

0 ≤ 𝐽𝑆𝐷 ≤ 𝑙𝑜𝑔2 and reduces biased opposition estimated given by the symmetrical DKL.  

 

4.3.4. MOVI calculation 

To calculate MOVI, like in JSD, we used the MVL on an alternate distribution made with the 

distributions A and B as explained below. First, we averaged the trial distributions of A and B 

to have a single distribution that was descriptive of common PAC effects and that shared a 

common direction. By doing so, if all trials exhibited strong PAC but each of them had their 

amplitude coupled to a different phase of low frequencies, the average distribution was flat, 

and no PAC would be detected. Measuring PAC on the average distributions instead of doing 

it at the trial level allows for a measure of phase-amplitude coupling across trials that share a 

direction preference and prevent sensitivity to spurious trial-level PAC that might not 

systematically rely on the same phase preference. In sum, averaging over trials is important 

because MOVI aims to detect phase-preference opposition between two conditions, and we 

need common directional effects of two distributions to assess opposition. For MOVI to be 

significant there needs to be a consistency in phase preference across trials (ITC) but also a 
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consistency of coupling strength (PAC), and that this be the case for both compared 

distributions. If all trials are strongly coupled but each to a different phase in one or both 

distributions, MOVI will not be significant. Similarly, if all trials have a consistent phase 

preference in both distributions but a weak coupling, MOVI will also not detect opposition.  

We performed these steps for two distributions that had either similar or opposed angles of 

phase preference. Both averaged distributions were then converted to a probabilistic 

distribution (sum = 1) before comparing them with the different techniques.  

To compute MOVI, we took the two distributions A and B obtained after the implementation 

of pre-processing stage and created an alternative distribution (𝐷𝑎𝑙𝑡)of amplitude per phase 

bin based on the difference of the two original distributions with the following formula:  

𝐷𝑎𝑙𝑡 =  
(𝐷𝐴 − 𝐷𝐵 +

2
𝑛𝑏𝑖𝑛𝑠

)

2
 

 

where 𝐷𝐴 is the distribution of A trials, 𝐷𝐵 is the distribution of B trials and 𝑛𝑏𝑖𝑛𝑠 is the 

number of bins (18 in this case).  

 

 

We then obtained the MVL measure (Canolty et al., 2006; Cohen, 2008) to the alternative 

distribution 𝐷𝑎𝑙𝑡 to assess the strength of opposition between the two distributions averaged 

over trials.  

𝑀𝑉𝐿 =  |
∑(𝑎𝑚𝑝(𝑥) ∗ 𝑒𝑖∗𝜃(𝑥))

𝑁
| 

where 𝑎𝑚𝑝(𝑥) is the amplitude of each phase bin (𝑥), 𝜃(𝑥)  being the phase of each bin (𝑥)  

and 𝑁 the number of bins. This process vectorized each phase bin and extracted the absolute 

value of the mean vector, which gives the vector length. The longer the vector, the higher the 

coupling, or in the case of MOVI, the opposition.  

We added twice the value of the uniform distribution (
2

𝑛𝑏𝑖𝑛𝑠
) to avoid having negative values 

and facilitate the normalization of the distribution into a probabilistic one (sum = 1). Then, we 

divided everything by 2 to have an alternative distribution 𝐷𝑎𝑙𝑡 that had a peak to through 

difference magnitude equivalent to either distribution. In the case of opposition in phase 
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preference, 𝐷𝑎𝑙𝑡 would have a non-uniformity score equal to the sum of the MVL of both 

distributions, by dividing the alternative distribution by 2 we ensure that the MVL magnitude 

of this alternative distribution is instead between the MVL of both distributions. This way, we 

ensure that PAC strength is taken into consideration, and we lower the risk of having false 

positives by not increasing the peak to through difference.  

We hypothesized that if A and B distributions have opposed phase preferences, the 

alternative distribution would be unidirectional and non-uniform and would exhibit a strong 

MVL (Figure 4-1 A). On the other hand, if distributions A and B have the same phase 

preference, the alternative distribution would be flat and the MVL would be 0 (Figure 4-1 B). 

In the case of both A and B distributions showing a weak PAC, even in conditions where the 

phase preferences were opposed between two, MOVI would be small. MOVI, therefore, 

ensures that phase opposition would be statistically significant only when the two 

distributions showed a solid phase opposition and a strong PAC.  

 

Figure 4-1: Schematic representation of MOVI 

(A) Distributions A and B exhibit high PAC and opposed phase preference. The alternate 

distribution exhibits a strong preference. The high MVL value of the alternative distribution 

indicates opposition of phase preference between distributions A and B. (B) Distributions A 

and B exhibit high PAC but the same phase preference. The alternate distribution thus shows 

no phase preference and is flat. MOVI has a low value and indicates that distributions A and 

B are not opposed.  
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4.3.5. Statistical analyses 

The statistical assessment of MOVI and JSD involves constructing a null distribution employing 

surrogate trials, which are alternative trial distributions with shared variance. These surrogate 

trials are utilized to consider any common effects observed in the experimental data. This 

non-parametric approach results in surrogate trials having a MOVI or JSD score that is 

normally distributed around a mean. The assessment of the significance of the experimental 

value is done by comparing that experimental value to the distribution of the surrogate 

values. 

For each comparison of A and B using either MOVI or JSD, where a comparison is made for 

every specific set of variables (angle, PAC strength, frequency, ITC, etc) we computed 1000 

surrogate trials for each condition A and B. Surrogate trials may be calculated in two ways. 

First, label shuffling, which consists of shuffling the labels of amplitude trials before binning. 

Label shuffling creates a surrogate distribution that corrects for neural responses not 

necessarily related to phase-amplitude coupling (e.g., ERPs or phase resetting) but loses 

individual coupling that is more specific to each trial. Second, time-shuffling, which involves 

the random division of each amplitude trial into two segments, with the subsequent inversion 

of the order of the time-series chunks within the trial. This way a random coupling would be 

created. However, this method is less conservative, as it does not account for effects that 

might be driven by an ERP or a phase reset mechanisms. In general, both of these surrogate 

trial creation methods yield highly comparable outcomes, and the decision to prefer one over 

the other primarily depends on the extent to which one desires or requires control over ERP 

or phase-reset driven effects. Although we did not expect to observe results driven by phase-

reset in synthetic data, we here used the label-shuffling method as this would control for 

these effects on real neurophysiological data. Therefore, we shuffled the labels of amplitude 

trials and randomly matched them with phase trials before binning and averaging the binned 

distributions over trials. Once an average null distribution was generated for each of the two 

experimental conditions, we calculated the MOVI and JSD index in the same way as for the 

non-shuffled trials.  
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When conducting a test for MOVI or JSD statistical significance for a single pair of frequencies, 

we compared the experimental value of MOVI or JSD to the respective distributions of 

surrogate scores. We considered a test to be significant if the experimental score was higher 

than 95% of the surrogate scores. The p-value was calculated as 1 minus the proportion of 

surrogates lower than the experimental value. We computed this for 100 artificial subjects to 

see consistency of testing and false alarm or false negative rate when varying parameters in 

the simulation like PAC strength, or opposition angle.  

4.3.6. MOVI and JSD comparison 

Using synthetic data is useful to quantify the efficacy of MOVI against the JSD approach 

because it allows us to predefine the ground truth (i.e., opposition or not) and objectively 

estimate the difference in sensitivity (proportion of positive tests for truly opposed 

distributions) and specificity (percentage of negative tests for non-opposed distributions) for 

both methods of analysis as a function of different parameter manipulations.   We compared 

MOVI and JSD by calculating the proportion of hits (significant opposition when actual 

opposition exists) and the proportion of false alarms (significant opposition when no actual 

opposition exists), as a function of the manipulation of i) PAC strength of both or either 

distribution, ii) angle of opposition between the two distributions, iii) a number of trials, iv) 

inter-trial coherence, and v) noise strength.  

Results are displayed using a 2D matrix that shows the proportion of how often a test is 

significant given a specific set of variables for both MOVI and JSD. To estimate the sensitivity 

of a measure, we quantified how well MOVI or JSD identified true positives (characterizing 

type I error). To quantify the specificity, we quantified how well MOVI or JSD identified true 

negatives, or the absence of false positives (characterizing type II error). In other words, when 

we observe false positives, specificity decreases and type II error increases. The hits and false 

alarms matrices were then compared to see if there was a significant difference in sensitivity 

and specificity between both opposition measures using a binomial test. P-values were 

obtained for each combination of variables (PAC, Angle, number of trials, etc.). A p < 0.05 was 

used to threshold statistical significance. However, we used a Bonferroni correction to 

compensate for multiple comparisons, and showed only the values that survived the 
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correction. In the results section we report the minimum and maximum significant t and p-

values in each matrix. 

We also computed the average Positive Predictive Value (PPV) of the matrices for each index 

and generated a PPV and a Negative Predictive Value (NPV) matrix for each index and taking 

as observation the individual voxels of each matrix. We then compared these values with a t-

test with the degrees of freedom being equal to the number of voxels per matrix -1 (in this 

case df = 24). PPV is the ratio of true positives over the number of total positive tests. It 

ensures that an increase in sensitivity in a test that likely induces more false positives does 

not result in a too steep decrease in specificity (Trevethan, 2017). PPV is the probability of 

having a real effect if the test is positive. For example, a PPV of 0.97 states that a positive test 

has a 97% chance of being a true positive rather than a false positive. PPV is linked with the 

false discovery rate (FDR) as FDR = 1-PPV and PPV = 1-FDR, where FDR is the ratio of true 

positives overall positive tests.  

The PPV is calculated as:  

𝑃𝑃𝑉 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

The average PPV was calculated for both each value of the 2D result matrices that resulted 

from MOVI and JSD approach and then compared with a repeated measures t-test. Similarly, 

we calculated the NPV that assesses the probability of an effect being truly negative given a 

negative test. NPV is linked with the False Omission Rate (FOR) as NPV = 1-FOR and FOR = 1- 

NPV, where FOR is the ratio of False Negatives overall negative tests. To assess how a test 

correctly identifies positive and negative outcomes, we also calculated the Accuracy as:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

Where TP are true positives, TN are true negatives, P are all positive tests and N are all 

negative tests. Finally, we can assess an index performance with Matthews Correlation 

Coefficient (MCC) (Chicco et al., 2021) that has a value between -1 and 1. Since MCC is a 

measure that encompasses performance and bias, a value of 1 would mean that the test 
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detects all the effects with no bias, while a value of -1 would be a test that does not detect 

effects at all and has only biases or false discoveries. MCC is calculated as follows: 

𝑀𝐶𝐶 =  
𝐶𝑜𝑣(𝑐, 𝑙)

𝜎𝑐 ∗ 𝜎𝑙
=

𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
 

 

where 𝐶𝑜𝑣(𝑐, 𝑙) is the covariance of true classes 𝑐  and predicted labels 𝑙, and 𝜎𝑐 and 𝜎𝑙 are 

their standard deviations, respectively. The MCC is related to the other measures we 

explained below as:  

𝑀𝐶𝐶 =  √𝑃𝑃𝑉 ∗ 𝑇𝑃𝑅 ∗ 𝑇𝑁𝑅 ∗ 𝑁𝑃𝑉 − √𝐹𝐷𝑅 ∗ 𝐹𝑁𝑅 ∗ 𝐹𝑃𝑅 ∗ 𝐹𝑂𝑅 

where TPR is the true positive rate, TNR true negative rate, FNR is the false negative rate, FPR 

false positive rate (Chicco et al., 2021).  

 

4.4. Results 

We simulated different conditions that typically happen and constrain the capacity to detect 

phase opposition by inflating Type I or Type II error rates in experimental setups, like the 

number of total trials per condition and the asymmetry of number of trials between 

conditions. Additionally, we simulated different conditions by manipulating simulation 

parameters to affect PAC strength, noise strength, and angle of opposition.  

 

4.4.1. Testing distance measures sensitivity as a function of PAC and noise 

strength 

In our first simulation, we explored the effect of PAC strength and the strength of pink noise. 

In our first simulation, we calculated MOVI and JSD on a continuous scale of PAC strength and 

pink noise ranging from the no PAC to a strong PAC. Figure 4-2 shows the number of 

significant hits over 100 simulated participants in case of opposed or non-opposed datasets.   

With perfectly opposed distributions, MOVI is significantly more sensitive, and detects more 

easily opposed distributions than JSD. MOVI is capable of detecting opposition at lower levels 

of PAC compared to JSD.  
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Figure 4-2: Hits and false alarms for MOVI and JSD in function of PAC and Pink Noise 
strength in Opposed and non-opposed distributions 

 (A) Proportion of Hits for MOVI on opposed distributions as a function of PAC strength and 

Pink Noise Strength. (B) Proportion of Hits for JSD on opposed distributions as a function of 

PAC strength and Pink Noise strength. (C) Difference in sensitivity between MOVI and JSD. 

A Binomial test was performed, and p-values were corrected with a Bonferroni correction. 

Threshold of p-values was a 0.05. For Opposed Distributions, MOVI is significantly more 

sensitive than JSD for the settings within the cluster delimited by the dark line. (D) 

Proportion of False Alarms for MOVI for non-opposed distributions as a function of PAC 

strength and pink noise strength. (E): Proportion of False Alarms for JSD for non-opposed 

distributions as a function of PAC strength and pink noise strength. (F): Difference in 

Specificity (1-False Alarms) between MOVI and JSD. No significant difference was detected 

between the two indexes.  

 

 

We observed that both MOVI and JSD detected opposition with strong PAC with low noise 

and opposition (Figure 4-2A and B) but not when the distributions have the same phase 

preference (Figure 4-2D and E). However, MOVI outperformed JSD to detect phase opposition 

at smaller PAC strength values and continued detecting phase opposition in conditions of 
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larger noise values. MOVI exhibited a significantly higher sensitivity than JSD in those higher 

noise conditions as shown by the black line delimiting the cluster of values that survived 

correction depicted in Figure 4-2C (within cluster, binomial test, tmin = 3.49, p = 0.018, tmax = 

6.04, p < 0.01).    Furthermore, we calculated the average Positive Predictive Value of both 

indexes (see Methods) and across the matrices both indexes did not differ significantly in the 

average PPV (average PPV for MOVI = 0.94, average PPV for JSD = 0.97, t-test: t = -1.5, p = 

0.11, df = 24). However, MOVI had a significantly higher NPV (MOVI NPV = 0.81, JSD NPV = 

0.72, t-test: t = 7.24, p < 0.01, df = 24), thereby indicating it detected less false negatives than 

JSD. The accuracy of MOVI and JSD was 0.84 and 0.75 respectively, meaning that MOVI was 

more accurate in the detection of true positives and true negatives than JSD. The MCC of 

MOVI and JSD was 0.80 and 0.70 respectively. In these simulated conditions, a result from 

MOVI is more likely to detect a real effect and is less biased than JSD.  

 

4.4.2. Testing distance measures sensitivity as a function of angle difference 

and noise strength 

In the previous test, we showed that MOVI was more sensitive in identifying phase opposition 

compared to JSD with lower levels of PAC and at lower signal-to-noise ratio. Here, we 

examined whether these two methods differed in their sensitivity to phase opposition as a 

function of the degree of angle difference between two distributions and noise.  To test this 

issue, we fixed PAC strength at a value of 0.4 where MOVI and JSD had a sensitivity and 

specificity that did not significantly differ (Figure 4-2C and F) and took angle difference as a 

variable. We generated various datasets by simulating angle differences in steps of 45 

degrees, ranging from 0 to 180. Consequently, when the angle difference was 0, the 

distributions exhibited an identical phase preference, whereas with an angle difference of 

180, the distributions displayed an opposite phase preference.  

Results are depicted in Figure 4-3, where statistically significant differences (p < 0.05, 

corrected) between MOVI and JSD are outlined with a black line. Our results showed that 

MOVI was significantly better than JSD in detecting phase opposition, particularly when the 

angles of difference were smaller and in conditions of greater noise in the signals (within 

cluster, tmin = 3.39, p = 0.017, tmax = 5.25, p < 0.01, df = 24). Neither MOVI nor JSD detected 
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phase opposition when there was none (Figure 4-3A and B), but JSD required less noisy data 

and greater angle difference between the distributions to detect phase opposition (Figure 4-

3C). For higher noise values and phase preference differences starting at 90 degrees, MOVI 

exhibited greater sensitivity compared to JSD.  In this test, we refrained from calculating the 

PPV, NPV, Accuracy, and MCC of the indexes. This decision was based on the difficulty of 

determining what constitutes a true positive or a true negative in the context of angle 

opposition variations. For instance, when the distance is 90 degrees, it is not possible to 

definitively classify the distributions as opposed or non-different. 

 

 

Figure 4-3: Hits for MOVI and JSD in function of angle difference between two 
distributions. 

(A) Proportion Of positive tests for MOVI as a function of angle difference between the two 

distributions and pink noise strength. (B) Proportion Of positive tests for JSD as a function 

of angle difference between the two distributions and pink noise strength. C: Difference in 

sensitivity between MOVI and JSD. A Binomial test was performed and p-values were 

corrected with a Bonferroni correction. Threshold of p-values was set at 0. For Opposed 

Distributions, MOVI is significantly more sensitive than JSD for the settings within the cluster 

delimited by the dark line that are higher noise strength and lower angle differences. 

 

4.4.3. Are the number of trials important for MOVI and JSD?  

We examined whether the sensitivity of MOVI and JSD changed as a function of number of 

trials. We simulated datasets with an increasing number of trials in both conditions (from 10 

to 50 with increments of 10 trials) and calculated MOVI and JSD accordingly.  
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Results are depicted in Figure 4-4, where statistically significant differences at the cluster level 

(p < 0.05, corrected) between MOVI and JSD are outlined with a black line.  Our findings 

revealed that MOVI was capable of detecting phase opposition even with a smaller number 

of trials (Figure 4-4A), whereas JSD necessitated a higher number of trials in both conditions 

to detect phase opposition (Figure 4-4B). However, both indexes faced challenges in detecting 

phase opposition when both distributions consisted of only 10 trials. This implies that despite 

the superior sensitivity of MOVI compared to JSD, a substantial number of trials is still 

necessary to conduct the test effectively with MOVI. This observation could be attributed to 

the increased significance of factors like noise and random coupling between low and high 

frequencies, which are less likely to be mitigated through the computation of surrogate trials. 

Here too MOVI exhibits a significantly higher sensitivity than JSD (Figure 4-4C) as shown by 

the black line delimiting the cluster of values that survived correction (within cluster, tmin = 

3.22, p = 0.031, tmax = 6.58, p < 0.01).  In this case too, PPV did not differ significantly between 

MOVI and JSD (mean PPV for MOVI = 0.81, mean PPV for JSD = 0.87, t-test: t = -1.69, p = 0.10, 

df = 24). MOVI however had a significantly higher NPV than JSD (MOVI NPV = 0.57, JSD NPV = 

0.52, t-test: t = 4.95, p < 0.01, df = 24), meaning that MOVI produced fewer false negatives 

(Figure 4-4D, E and F). Additionally, the Accuracy of MOVI was 0.61 and the accuracy of JSD 

was 0.53. The MCC of MOVI and JSD was respectively 0.40 and 0.21, showing that MOVI was 

more likely to detect a real effect than JSD.  
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Figure 4-4: MOVI and JSD as a function of number of trials and noise. 

(A) Proportion of Hits for MOVI on opposed distributions as a function of number of trials 

and Pink Noise Strength. (B) Proportion of Hits for JSD on opposed distributions as a function 

of number of trials and Pink Noise strength. (C) Difference in sensitivity between MOVI and 

JSD. A binomial test was performed, and p-values were corrected with a Bonferroni 

correction. Threshold of p-values was a 0.05. For Opposed Distributions, MOVI is 

significantly more sensitive than JSD for the settings within the cluster delimited by the dark 

line, where MOVI has a lower false omission rate even with a lower number of trials. (D) 

Proportion of False Alarms for MOVI for non-opposed distributions as a function of number 

of trials and pink noise strength. (E) Proportion of False Alarms for JSD for non-opposed 

distributions as a function of number of trials and pink noise strength. (F) Difference in 

Specificity (1-False Alarm Rate) between MOVI and JSD. No statistically significant 

difference was detected between the two indexes (all, p > 0.05). 

 

4.4.4. Does asymmetrical number of trials between conditions influence 

MOVI and JSD? 

In the previous test, we assessed both indexes using a symmetrical number of trials for each 

condition, ensuring that both conditions had an equal number of trials. However, we also 

wanted to investigate whether the indexes could detect opposition when there was an 
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uneven number of trials between conditions. Furthermore, we sought to determine the 

extent to which this asymmetry could impact the sensitivity of both indexes. To this end, we 

varied the number of trials of only one distribution (between 10 and 50 with steps of 10) and 

the other distribution had a fixed number of 50 trials and a fixed PAC strength of 0.4.   

 

Results are depicted in Figure 4-5, where statistically significant differences (p < 0.05, 

Bonferroni corrected) between MOVI and JSD are outlined with a black line (Figure 4-5C).  

What is observed is that it is generally not advised to work with a very low number of trials 

where false alarms appear in both MOVI and JSD for less than 20 trials in a single condition 

(Figure 4-5D, E, and F) as this could account for false positives. Overall, MOVI showed higher 

sensitivity than JSD with an uneven number of trials (within cluster, Binomial test, tmin = 3.48, 

p = 0.012, tmax = 6.52, p < 0.01). Through the calculation of the mean PPV, we found that a 

positive test result using JSD was more likely to be a true positive compared to MOVI (MOVI 

PPV = 0.85, JSD PPV = 0.92), and that this difference was statistically significant (t-test: t = -

3.31, p = 0.01, df = 24). Additionally, we computed the average NPV for both indexes (MOVI: 

NPV = 0.65; JSD: NPV = 0.56) and found that MOVI was significantly less prone to false 

negatives (t-test: t = 8.27, p < 0.01, df = 24). we obtained an Accuracy value of 0.70 for MOVI 

and 0.59 for JSD, while their MCC were 0.57 and 0.41, respectively. Once again, in this test, 

MOVI demonstrated a greater likelihood of detecting genuine effects compared to JSD. 
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Figure 4-5: MOVI and JSD as a function of asymmetrical number of trials. 

(A) Proportion of Hits for MOVI on opposed distributions as a function of number of trials in 

only one distribution (asymmetrical number of trials) and Pink Noise Strength. (B) 

Proportion of Hits for JSD on opposed distributions as a function of number of trials for one 

distribution and Pink Noise strength. (C) Difference in sensitivity between MOVI and JSD. A 

Binomial test was performed, and p-values were corrected with a Bonferroni correction. 

Threshold of p-values was set at 0.05. For Opposed Distributions, MOVI was significantly 

more sensitive than JSD for the settings within the cluster delimited by the dark line, where 

MOVI has a lower false omission rate even with a lower number of trials in only one 

condition. (D) Proportion of False Alarms for MOVI for non-opposed distributions as a 

function of number of trials and pink noise strength. (E) Proportion of False Alarms for JSD 

for non-opposed distributions as a function of number of trials and pink noise strength. (F) 

Difference in Specificity (1-False Alarm Rate) between MOVI and JSD. No significant 

difference was detected between the two indexes, although one value almost survived 

Bonferroni correction with pink noise = 1 and 10 trials in only one condition (binomial test: 

t = 3.32, p = 0.063). 

 

4.4.5. Does inter-trial coherence affect MOVI and JSD? 

Here, while keeping the Phase-Amplitude Coupling (PAC) strength fixed, we assessed whether 

different degrees of coherence in phase preference for each individual trial influenced MOVI 
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and JSD indexes. Thus, in this analysis, every trial is expected to display PAC, albeit with 

varying levels of inter-trial phase preference. Consequently, in scenarios where there is a high 

variability in inter-trial phase preference, measuring the coupling strength of each individual 

trial would likely yield significant coupling. However, if we were to average the distributions 

of all trials and then measure the coupling strength of the average, it is probable that we 

would not observe significant coupling. This distinction is relevant, for example, in cases 

where experimenters preferred to test PAC on each trial individually (Axmacher et al., 2010).  

Results are depicted in Figure 4-6, where statistically significant differences at cluster level (p 

< 0.05, corrected) between MOVI and JSD are outlined with a black line. Our findings revealed 

that both MOVI and JSD detected shared and consistent differences in phase preference 

(Figure 4-6A, B, D, and E) However, MOVI exhibited greater sensitivity in cases of higher inter-

trial variability in angle preference and higher levels of pink noise (Figure 4-6C) (within cluster, 

binomial test, tmin = 3.20, p = 0.034, tmax = 5.84, p < 0.01). We also found that although MOVI 

showed slightly more false positives this decrease in specificity was not significant compared 

to JSD (Figure 4-6F). Additionally, we calculated the average PPV of both indexes (PPV for 

MOVI = 0.90, PPV for JSD = 0.96) and compared them. This analysis determined that a positive 

test result with JSD was more likely to represent a true positive compared to MOVI under 

these simulation conditions (t-test, t= -3.75, p = 0.01, df = 24).  

We computed the NPV for both indexes, resulting in an NPV of 0.65 for MOVI and 0.55 for 

JSD. A direct comparison of the two showed that a negative result by MOVI was significantly 

(t-test, t = 9.65, p < 0.01, df =24) more likely to be truly negative, while JSD exhibited a 

significantly higher rate of false negatives. Average Accuracy for MOVI was 0.70 and for JSD 

0.59. The MCC for MOVI was 0.59, and for JSD it was 0.40. In sum, these results demonstrate 

that MOVI displayed superior accuracy in detecting real positive or negative effects and 

produced fewer false results compared to JSD. 
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Figure 4-6: MOVI and JSD as a function of Inter-Trial phase-preference variability 

(A) Proportion of Hits for MOVI on opposed distributions as a function of Inter-trial 

coherence of angle preference and Pink Noise Strength. (B) Proportion of Hits for JSD on 

opposed distributions as a function of Inter-trial coherence of angle preference and Pink 

Noise strength. (C) Difference in sensitivity between MOVI and JSD. A binomial test was 

performed, and p-values were corrected with a Bonferroni correction. Threshold of p-values 

was a 0.05. For Opposed Distributions MOVI is significantly more sensitive than JSD for the 

settings within the cluster delimited by the dark line, where MOVI has a lower false omission 

rate with higher inter-trial variability in angle preference. (D) Proportion of False Alarms for 

MOVI for non-opposed distributions as a function of Inter-trial coherence of angle 

preference and pink noise strength. (E) Proportion of False Alarms for JSD for non-opposed 

distributions as a function of Inter-trial coherence of angle preference and pink noise 

strength. (F) Difference in Specificity (1-False Alarm Rate) between MOVI and JSD. No 

significant difference was detected between the two indexes. 
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4.5. Discussion 

Phase-amplitude coupling (PAC) is a widely studied phenomenon in the brain, and its 

mechanisms offer insights into how the brain processes and represents information. 

Computational models propose that nested gamma oscillations within theta cycles may 

organize sequences of events, while other models suggest gamma couples to opposed-phase 

states during memory encoding and retrieval. Characterizing differences in phase preference 

in PAC analysis between neural states or experimental conditions is crucial for understanding 

neural coding and mnemonic operations. In the current study, we presented MOVI, an 

analysis method for detecting phase preference difference within PAC between two datasets. 

Using synthetic data, we showed that MOVI is more tolerant to low signal-to-noise ratio, 

lower levels of angle differences and trial number asymmetry between conditions than other 

robust phase-opposition indexes like JSD.  

We found that MOVI is more sensitive than JSD in detecting phase opposition. MOVI can 

detect phase differences even when PAC is weaker, with fewer or unevenly distributed trials, 

and smaller angle variations between distributions. It is also more resilient to noise and 

variations in angle preference across trials. While this higher sensitivity may lead to more false 

negatives, it does not significantly impact the overall accuracy of the Matthews Correlation 

Coefficient (MCC), a measure of performance in binary classification tasks. In fact, in all tests 

conducted, MOVI consistently outperformed JSD in terms of accuracy and MCC, 

demonstrating its superior sensitivity to real differences and its ability to effectively detect 

true positive and negative effects, primarily by reducing the number of false negatives 

compared to JSD. These findings highlight the advantages of using MOVI over JSD for 

quantifying phase opposition in neurophysiological data, particularly when dealing with 

complex and noisy signals. MOVI's ability to detect smaller phase differences and handle 

varying trial conditions makes it a valuable tool for understanding phase-preference patterns 

and phase-amplitude coupling in the brain. 

While MOVI proves highly effective in detecting phase opposition and capturing phase-

amplitude coupling patterns, it may not be the ideal choice for analyzing event occurrences 

like spiking frequency (Rutishauser, 2019; Rutishauser et al., 2010) or ripple counts (Norman 
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et al., 2019) These scenarios involve instances that do not necessarily follow a probabilistic 

distribution shape, and circular statistics (Berens, 2009) PPC (Vinck et al., 2010), ITC 

(VanRullen, 2016), or PACOI (Costa et al., 2022) might offer more suitable alternatives. These 

methods consider different aspects of neural activity and are better suited to address specific 

research questions where the distribution shape might not be appropriate for MOVI analysis. 

However, one key advantage of MOVI compared to other methods is its adaptability to 

studying phase-amplitude phenomena without the need to summarize the power dimension 

of amplitude as unit-normalized vectors. MOVI and JSD both allow the treatment of amplitude 

data without any loss of information by modifying the neurophysiological data into another 

form. However, MOVI stands out as being more sensitive and capable of accurately 

discriminating phase-preference opposition or its absence within PAC between conditions. 

Another beneficial aspect of MOVI is that it generates an index of opposition for each 

observation or subject. This feature facilitates a smoother transition to second-level statistics, 

where experimental MOVI values can be compared to surrogate MOVI values. Consequently, 

MOVI can serve as an effective exploratory method in the study of phase opposition within 

PAC distributions, enabling researchers to investigate previously unknown interactions 

between mechanisms in neurophysiology and experimental settings or neural states.  

One limitation of our study is that we evaluated the MOVI and JSD methods using a 2.5s 

segment of artificial data. While this segment is suitable for most task-induced research in 

humans and animals, it may not fully capture the dynamics of neural activity during extended 

periods or other types of research focusing on phase-preference within PAC over longer time 

frames. For instance, in animal studies, researchers often record neural activity over extended 

periods to capture a comprehensive view of brain dynamics while navigating in a maze or 

during states of quiescence. Similarly, during sleep studies, neural data is typically recorded 

over hours to observe the brain's activity during different sleep stages. Nevertheless, while 

our study did not specifically test MOVI for long time segments, we believe that MOVI, given 

its sensitivity to phase-preference opposition and its adaptability to various data lengths, 

would still be a valid approach to assess phase preference differences in such scenarios.  
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In conclusion, MOVI stands out as a powerful and versatile tool in the neuroscientific field. Its 

unique ability to combine coupling strength and opposition measures makes it an attractive 

choice for analyzing complex neural interactions and mechanisms in neurophysiology signal 

datasets. Unlike other indexes, MOVI does not necessitate additional verification of coupling 

strength, allowing for a more straightforward exploration of phase-preference differences 

between datasets. Furthermore, the user-friendly nature of MOVI makes it intuitive and easy 

to use, providing a comprehensive summary of unidirectional phase-preference differences 

between datasets. Overall, MOVI's capabilities make it a valuable addition to the 

neuroscientific toolbox, facilitating the exploration of phase-preference patterns and the 

investigation of neural dynamics in diverse experimental settings. 

 

4.6. Conclusions 

In this paper, we introduced a novel method to analyze phase-preference variations within 

PAC in neurophysiological data: the Mean Opposition Vector Length Index.  Our approach 

involved creating an alternate distribution and measuring its non-uniformity using the Mean 

Vector Length method. Through synthetic experiments, we demonstrated that MOVI showed 

superior sensitivity compared to a conventional measure (JSD) in various settings. We suggest 

that MOVI offers greater flexibility and adaptability to neurophysiological data and practical 

experiments. It proved to be more robust against low number of trials, noise, and 

asymmetrical numbers of trials that commonly occur in experimental conditions and 

neurophysiological recordings. We conclude that MOVI is well-suited for real-world research 

scenarios, enabling more accurate and comprehensive analysis of phase-preference 

differences within PAC patterns between diverse neurophysiological datasets. 
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5.                      Chapter 5: Study 2 

 

 

 

 

Gamma amplitude is coupled to opposed 

hippocampal theta-phase states during the encoding 

and retrieval of episodic memories in humans 

 

 

 

 

 

 

Please Note: This study was published in Current Biology on the 14th of April 2023 
https://www.cell.com/current-biology/pdf/S0960-9822(23)00393-7.pdf 

https://www.cell.com/current-biology/pdf/S0960-9822(23)00393-7.pdf
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5.1. Summary 

Computational models and in vivo studies in rodents suggest the emergence of gamma 

activity (40-140Hz) at memory encoding and retrieval is coupled to opposed phase states of 

the underlying hippocampal theta rhythm (4-9Hz) (Bieri et al., 2014; Colgin et al., 2009; 

Fernandez-Ruiz et al., 2017; Hasselmo et al., 2002; Manns et al., 2007). However, direct 

evidence for whether human hippocampal gamma-modulated oscillatory activity in memory 

processes is coupled to opposed phase states of the ongoing theta rhythm remains elusive. 

Here we recorded local field potentials (LFP) directly from the hippocampus of ten epileptic 

patients with in-depth implanted electrodes. We used a memory encoding and retrieval task 

whereby trial unique sequences of pictures depicting real-life episodes were presented and 

24h later, participants were asked recalled them upon the appearance of the first picture of 

the encoded episodic sequence. We found hippocampal-specific theta-to-gamma cross-

frequency coupling during the encoding and retrieval of episodic memories. We also showed 

that during encoding gamma oscillations were coupled to the peak of the ongoing theta 

rhythm, while at retrieval, gamma was coupled to the trough of the hippocampal theta. 

Furthermore, we found that the degree of theta-gamma phase opposition between encoding 

and recall was associated with participants’ memory performance so that those episodes that 

were successfully recalled showed greater theta-gamma phase opposition than forgotten 

ones. The current results are the first direct empirical evidence in support of hippocampal 

theta-gamma phase opposition models in human long-term memory and provide 

fundamental insights into mechanistic predictions derived from computational and animal 

work, thereby contributing to establishing similarities and differences across species. 

 

5.1.1. Results 

Ten participants (6 females, age 29.5 ± 11.7 years - mean  SD) with drug-resistant epilepsy 

participated in a 2-day encoding and recall episodic memory task (Figure 5-1A). Participants 

studied a series of 60 different episodes of 4 picture image sequences each depicting a 

plausible succession of instances of a real-life episode that they had to recall immediately 

(recall day 1), and then again 24 hours later (recall day 2), cued with the first image of each 

episode. Memory accuracy was assessed by counting the number of pictures from each 
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episode that were correctly included in the recall phase (3 being the maximum value to reach 

per episodic series). We then obtained a memory score for each episode that ranged from 0 

(i.e., no pictures included in the recall) to 3 (i.e., all pictures included in the recall), given that 

the recall of the first picture was non-informative of memory retrieval as it was always 

displayed as a cue during the recall. The total number of recalled pictures for each episode 

was then used to categorize whether that episode was remembered or forgotten. We 

categorized episodes that included 2 or 3 pictures in their recall as “remembered” and when 

participants recalled 0 or 1 pictures from the episode, we categorized those as “forgotten”. 

As expected, participants remembered on average more episodes in the recall task on day 1 

(mean  SD, 64.9%  18.1%) than in the recall task on day 2 (mean  SD, 53.2%  16.5%) 

(paired t-test, t(9) = 2.89, p = 0.02) (Figure 5-1B; Supplemental Results; Table 5-1). We also 

observed that the number of cases in which pictures from an episode were recalled in an 

incorrect order or when these included pictures from other episodes was infrequent, both in 

the recall day 1 (6.0%  4.10%) and at the recall day 2 test (5.83 %  2.97%), and the number 

of errors in their recall did not differ between the two tests (t(9) = 0.16, p = 0.87), thereby 

indicating that participants were accurate in their remembered episodes.  
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 (A) On day 1, participants were presented with 3 blocks of 20 different picture series each 

including 4 pictures depicting a plausible succession of instances of a real-life episode 

(encoding phase). Participants were informed that memory of the encoded episodes would 

be tested after each encoding block on the same day (recall day 1) and again 24h later (recall 

day 2). Participants were informed that the recall phase consisted of the presentation of the 

first picture of each of the series and that they should verbally recall the pictures associated 

with each of them. They were asked to be as specific and precise as possible, and to try to 

recall the events in order, mentioning the first image as the beginning of their story. (B) 

Participants’ proportion of episodes that were successfully remembered in the day 1 and 

day 2 recall tests. In the box plots the central mark is the median, and the edges of the box 

Figure 5-1: Experimental design and recording locations. 
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are the 25th and 75th percentiles. Each dot on both plots represents a single participant. 

Dashed lines on the boxplot connect the value of an individual in the two conditions. (C) 

Hippocampal electrode localizations from all the participants, shown on a three-

dimensional hippocampus model. Each pair of color dots indicate the two electrodes from 

the participants used for this study, which was used for bipolar referencing, resulting in one 

trace per patient. 

 

While participants performed the task, we recorded direct hippocampal activity via implanted 

depth-electrodes (Figure 5-1C), thereby allowing us to examine hippocampal 

neurophysiological mechanisms that supported episodic memory encoding and retrieval in 

humans. Previous work using intracranial electroencephalographic (iEEG) recordings from 

human hippocampus revealed increases in high-frequency gamma power (~ 40 - 120 Hz), an 

established correlate of firing rates of individual neurons (Hirabayashi et al., 2014; Jacobs, 

Kahana, Ekstrom, & Fried, 2007; Manning, Polyn, Baltuch, Litt, & Kahana, 2011), increases 

during encoding (Sederberg et al., 2007) and retrieval, either in recognition (Staresina et al., 

2016) or in recall (Burke, Long, et al., 2014; Burke, Sharan, et al., 2014) memory tasks. We 

thus carried out a single-trial time-frequency analysis on hippocampal EEG data during the 

encoding of episodes and at their recall on day 2 and computed the relative gamma power 

increases and decreases corrected with respect to a 0.5 s baseline window (see Methods). 

This analysis revealed marked gamma band (~ 40 – 140 Hz) power increase from ~ 0.3 to 1.3 

s during memory encoding and recall (Figure 5-2A and Figure 5-5) which proved to be 

statistically significant (cluster statistics at encoding: tsum = 1699.1, tpeak = 5.97, p = 0.002; 

cluster statistics at recall: tsum = 2503.0, tpeak = 6.8, p = 0.006) after correcting for multiple 

comparisons using a cluster-based non-parametric method (Figure 5-2B; see Methods). 

However, a comparison of the cluster-averaged gamma power increase for episodes that 

were remembered and forgotten revealed that the magnitude of the increase was similar 

between conditions (repeated measures ANOVA, all Fs < 0.5), both during memory encoding 

(paired t-test: t(9) = -0.48, p = 0.64) and recall (t(9) = 1.35, p = 0.21) (Figure 5-2C). Additional 

analysis accounting for picture order within the episode confirmed that gamma power 

increase was consistent throughout encoding and similarly elicited by episodes that would be 
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later remembered or forgotten. This contrasts with earlier findings that showed greater 

hippocampal gamma power response during the encoding of words from a list that were later 

remembered compared to those that were forgotten (Sederberg et al., 2007), or the correct 

identification of a color associated background of a word during a recognition task (Staresina 

et al., 2015). While it would be reasonable to expect performance-dependent hippocampal 

gamma power modulations in our study too, there are important differences between the 

previous and our task design. Here, we asked participants to encode and recall the complete 

sequence of visual pictures depicting the unfolding of a realistic and schema-consistent 

episode, and we distinguished between remembered and forgotten episodes based on the 

participant’s ability to recollect the pictures verbally, remaining agnostic to the likely 

possibility that they successfully recognized the picture cue even in the forgotten trials. Thus, 

our task design may be less sensitive isolating the gamma power differences between 

successful and unsuccessful memory performance revealed in previous studies. 
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(A) Group-averaged changes in spectral power elicited during memory encoding and recall. 

(B) Time-frequency t-value map of gamma power in- and decrease at encoding and at recall. 

Thick black lines depict the cluster that resulted as being statistically significant at encoding 

and at recall (p < 0.05, cluster statistics). (C) Cluster-averaged gamma power at encoding 

and recall for remembered and forgotten episodes. Paired t-test associated p values 

between conditions associated are displayed. For all box plots in (C), the central mark is the 

median, and the edges of the box are the 25th and 75th percentiles. Each dot represents the 

value for an individual participant in each condition. Dashed lines on the boxplots connect 

the value of an individual in the two conditions. 

Figure 5-2: Hippocampal gamma power during memory encoding and recall. 



77 

 

 

We next asked whether the increase in gamma power seen during episodic encoding and 

during recall was coupled to the ongoing hippocampal theta phase states. Hippocampal theta 

oscillations have been related to the dynamics of memory function (Buzsaki, 2002; Huxter et 

al., 2008; Jezek, Henriksen, Treves, Moser, & Moser, 2011; Jones & Wilson, 2005; Kunz et al., 

2019; O'Keefe & Conway, 1978; O'Keefe & Dostrovsky, 1971; Reddy et al., 2021; Tort et al., 

2009), and specifically to the interplay between encoding and retrieval (Hasselmo et al., 2002; 

Kunec, Hasselmo, & Kopell, 2005). In theta-based hippocampal models, the phase of ongoing 

theta oscillations separates encoding and retrieval and determines the different plasticity 

regimes that memory encoding, and retrieval require (Hasselmo et al., 2002). Prior rodent 

studies reported evidence that modulations within the gamma band distinguishing encoding 

from retrieval (Bragin et al., 1995; Colgin, 2015b), and the study of theta on humans showed 

a preferential phase for encoding and recall (Kerren et al., 2018; Rizzuto, Madsen, Bromfield, 

Schulze-Bonhage, & Kahana, 2006; Ter Wal et al., 2021), highlighting the intrinsic property of 

the hippocampus to shift its dynamics towards encoding and retrieval, even when the same 

perceptual experience is present during the two tasks (Long & Kuhl, 2021); however, direct 

evidence of whether human hippocampal gamma-modulated activity in memory processes is 

coupled to opposed phase states of the ongoing theta rhythm remains elusive. 
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 (A) Group-averaged of phase-amplitude comodulogram computed during memory 

encoding and recall. X-axis indicates phases modulating the signal and the Y-axis 

represents the modulated amplitude. (B) Phase-to-amplitude t-value map during 

encoding and recall. Thick black lines depict the cluster that resulted statistically 

significant during encoding and recall (p < 0.05, cluster statistics). (C) Cluster-averaged 

PAC strength for remembered and forgotten episodes during encoding and recall. 

Paired t-test associated p values between conditions associated are displayed. For all 

box plots in (C), the central mark is the median, and the edges of the box are the 25th 

Figure 5-3: Hippocampal theta-gamma phase-amplitude coupling during memory 
encoding and recall. 
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and 75th percentiles. Each dot represents the value for an individual participant in each 

condition. Dashed lines on the boxplots connect the value of an individual in the two 

conditions. 

 

To address this issue, we first examined whether hippocampal gamma oscillations exhibited 

phase amplitude coupling (PAC) with ongoing theta phase during encoding and during 

retrieval in our data. We assessed the existence of theta-gamma PAC by using a 

comodulogram method as described in (Tort et al., 2009), which allows PAC to be scanned 

from several narrow-filtered frequencies within the theta and gamma frequency bands. We 

then quantified the magnitude of PAC in each frequency pair by using the co-called Mean 

Vector Length (MVL) method (Canolty et al., 2006) (see Methods), which has been found to 

be relatively robust to signal-to-noise over time for EEG segments of few seconds (Tort et al., 

2010). The results of this analysis revealed that hippocampal gamma band amplitude during 

memory encoding and during memory recall was modulated by the ongoing theta phase state 

(Figure 5-3A , also see Figure 5-6). Cluster-based statistics confirmed a statistically significant 

theta-gamma PAC cluster, comprising amplitude modulations in the ~ 40 – 110 Hz frequency 

range that were coupled to ~ 4 – 9 Hz phases during encoding (cluster statistics: tsum = 181.7, 

tpeak = 5.51, p < 0.001) and amplitude modulations at ~ 50 – 90 Hz frequency range that were 

coupled to the ongoing theta phases within the ~ 4 – 10 Hz frequency range during recall 

(cluster statistics: tsum = 139.9, tpeak = 5.48, p < 0.001) (Figure 5-3B). Theta-gamma PAC was 

also detected during recall on day 1 (i.e., in the test that took place a few minutes after 

encoding) (Figure 5-12). However, the degree of PAC between memory conditions did not 

differ statistically (repeated measures ANOVA, all Fs < 0.3; encoding: t(9) = 0.49, p = 0.63; 

recall: t(9) = 0.54, p = 0.60) (Figure 5-3C). Additional control analyses showed that theta 

oscillations were present during encoding and recall (Figure 5-5), that encoding theta-gamma 

PAC was similar throughout the sequence of encoded pictures and between memory 

conditions (also see Figure 5-7), that theta-gamma PAC could not be identified in other brain 

regions outside the hippocampus, such as in the middle temporal gyrus (also see Figure 5-9) 

and that the lack of theta-gamma PAC differences could not be explained by signal-to-noise 

properties derived from hippocampal Evoked-Potential Responses elicited during encoding 

and recall in the task (also see Figure 5-8 and Figure 5-10).  
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The results presented thus far show that hippocampal gamma is effectively coupled to the 

ongoing theta phase state, but it is not predictive of episodic memory formation and retrieval. 

Our analysis, however, does not account for the possibility that gamma amplitude modulation 

to theta phases occurs at distinct phases at encoding and at recall, as it would be predicted 

by theta-phase hippocampal models1. To test theta phase opposition, we developed an index, 

the Mean Opposition Vector Index (MOVI), allowing us to statistically assess the existence of 

PAC opposition between two experimental conditions (See Methods). Briefly, MOVI is the 

MVL of an alternate distribution, calculated as the difference between the two compared 

distributions. Each participant had an experimental MOVI value that was tested against 1000 

surrogate values after shuffling across trials. These experimental values were averaged as well 

as the surrogate values and we obtained an experimental MOVI value to test against a 

distribution of surrogates. We z-scored the experimental value and obtained a p-value by 

identifying the fraction of surrogate MOVI values that were smaller than the experimental 

value (see, Methods).  
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Figure 5-4: Hippocampal theta-gamma phase preference and Mean Opposition Vector Index 
(MOVI). 

 (A) Representative example of raw (LFP) and filtered (theta and gamma) hippocampal 

recordings from one of the participants of the study during encoding and at recall. The PAC 

wave shows where on the theta cycle there is an increase in gamma activity for the example 

trial. (B) Polar distribution of averaged gamma amplitude (z) across participants over theta 

phases within the significant cluster of PAC found at encoding and at recall. Error bars 

represent standard error across participants. Grand average across participants is depicted by 

the thick red line. (C) Individual distribution of hippocampal gamma amplitude over a cycle of 

theta at encoding and recall for remembered trials. Participants’ distributions have been 

realigned to the mean angle direction of encoding and the recall distributions have been 

realigned relative to each participant’s encoding distribution for this figure only. (D) Average 

distribution of hippocampal gamma amplitude over theta phase for all patients for 

remembered trials. Shaded area represents the SEM across participants. (E) Experimental 

value of MOVI (red star) compared to surrogate value for all participants for remember trials. 
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(F) Individual distribution of hippocampal gamma amplitude over a cycle of theta at encoding 

and recall for forgotten trials. Participants’ distributions have been realigned to the mean 

angle direction of encoding and the recall distributions have been realigned relative to each 

participant’s encoding distribution for this figure only. (G) Average distribution of hippocampal 

gamma amplitude over theta phase for all participants for forgotten trials. Shaded area 

represents the standard error across participants. Note that the lack of phase preference in 

the plot does not reflect a lack of PAC but the degree of variability in phase preference across 

participants. (H) Experimental value of MOVI (red star) compared to surrogate value for all 

participants for forget trials. 

 

We found significant gamma band activity coupling to opposed theta phase states during 

memory encoding and recall (z = 2.29, p = 0.02) (Figure 5-4A and B; also see Figure 5-13). This 

theta-gamma PAC opposition was statistically significant for remembered episodes (z = 2.85, 

p = 0.004) (Figure 5-4C and D) but not for forgotten episodes (z = 0.98, p = 0.32) (Figure 5-4E 

and F) or for the interaction remembered vs. forgotten (t(9) = 0.76, p = 0.47). This result 

indicates that gamma power was modulated by theta phase for both remembered and 

forgotten trials, though only for remembered trials the dominant theta phase was different 

for encoding and recall trials. 

5.1.2. Discussion 

Taken together, the current study provides evidence in humans that hippocampal gamma 

couples to opposed phase states of the ongoing theta rhythm activity in episodic memory 

during encoding and during retrieval. The present findings thus constitute empirical support 

for the computational models that show that the emergence of gamma oscillations at 

opposed phase states of the underlying theta rhythms may be optimal for acquiring new 

memories and retrieving existing memories (Hasselmo et al., 2002; Hasselmo & Stern, 2014).  

While hippocampal theta-gamma PAC is well documented in task-based mnemonic 

processing in rodents (Bragin et al., 1995; Douchamps et al., 2013; Hasselmo & Stern, 2014; 

Lever et al., 2010; Manns et al., 2007; Poulter et al., 2021; Siegle & Wilson, 2014), evidence in 

humans has been compromised by the limited access to the direct sampling of hippocampal 
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activity with intracranial EEG recordings. Notably though, the existing data converged in 

showing that hippocampal theta phase coding scheme is a core mechanistic conduit in 

memory function (Pacheco Estefan et al., 2021; Rizzuto et al., 2006; Solomon, Lega, Sperling, 

& Kahana, 2019; Ter Wal et al., 2021) and that human hippocampal theta-gamma PAC 

underlies working memory (Axmacher et al., 2010; Bahramisharif, Jensen, Jacobs, & Lisman, 

2018) and the recall of list-words (Lega et al., 2016). The current findings further extend this 

literature by providing novel evidence that human hippocampal gamma activity functionally 

shifts to distinct theta phase states to support episodic encoding or retrieval.   

In line with previous studies examining memory-based hippocampal activity from intracranial 

recordings in humans (Lohnas et al., 2018; Staresina et al., 2016), we found an increase in 

power for a broad high-frequency range (~ 40 – 120 Hz) activity at encoding and at retrieval. 

Rodent research studying the dynamic interaction of the entorhinal cortex and the CA1 and 

CA3 subfields within the hippocampal network identified that encoding and retrieval may, in 

fact, engage two distinct gamma bands, a slow (~ 30 – 50 Hz) and a fast (~ 60 – 100 Hz), each 

of them functionally locked to different theta phase states (Colgin, 2015a). In this study, the 

size of the intracranially implanted electrodes and the rare occasions whereby the entorhinal 

cortex is sampled in clinical settings challenges the possibility of reliably separating slow and 

fast gamma activity within the entorhinal – hippocampal CA1/ CA3 network in humans 

(Griffiths et al., 2019; Wang, Schmitt, Seger, Davila, & Lega, 2021) 

Our findings also point to the possibility that gamma coupled to a lower and a higher 

hippocampal theta rhythm during encoding and recall, respectively (see Figure 5-3).  

Interestingly, human hippocampal theta has been reported to be slower than rodents' theta 

and there may be two functionally and anatomically distinct rhythms, a slower (~ 3 Hz) and 

faster (~ 7 Hz) theta (Goyal et al., 2020; Lega et al., 2016). We explored whether low theta 

was also coupled with gamma at different phases during encoding and recall, but we did not 

find evidence for theta phase-opposition at low theta (Figure 5-12). A recent study has shown 

that, in fact, human hippocampus exhibited oscillations at multiple frequencies within the 

theta range organized along the longitudinal axis, being theta activity slower at the anterior 

and faster at the posterior hippocampus (Goyal et al., 2020). Our study, which included 

hippocampal activity indistinctively from electrodes located at anterior and middle 
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hippocampal regions (see Figure 5-1C) may have, perhaps, blurred together the low and high 

theta oscillations. Nevertheless, the extent to which low and fast theta showed different 

theta-gamma phase-amplitude coupling dynamics in memory would be an interesting 

question to explore in future studies. Addressing this issue adequately, though, would require 

a rich recording sampling of the hippocampus activity along its longitudinal axis. 

5.1.3. Conclusion 

In sum, current findings provide new insights into the functional role of hippocampal theta-

gamma cross-frequency coupling in human episodic memory. We report that gamma 

oscillations are coupled to the peak of the ongoing theta rhythm during memory encoding 

and to the trough of theta at its retrieval. Additionally, we show that the degree of theta-

gamma phase opposition was associated with memory performance. Thus, our findings 

provide the first direct empirical evidence in support of hippocampal theta-gamma phase 

opposition models subtending human long-term episodic memory, bridging an important gap 

between existing computational, rodent, and human evidence. 

 

5.2. Methods 

5.2.1. Experimental Methods and Details 

Ten epilepsy patients (6 females, age 29.5  11.7 years - mean  SD) implanted with depth 

electrodes as part of their diagnostic assessment for pharmaco-resistant focal epilepsy 

participated in our study. Recordings were performed in two hospitals: the Hôpital Pitié-

Salpétrière in Paris (France) and the Hospital Clínic - IDIBAPS in Barcelona (Spain). Electrode 

placement was exclusively guided by the clinical needs of localizing the seizure onset zone 

and consider the indications and feasibility of ulterior surgical resections. Participant selection 

was based on the following inclusion criteria: 1) normal IQ; 2) electrodes implanted in the 

hippocampus contralateral to or outside of the epileptogenic region were included for the 

analysis of neurophysiology signals. The study was conducted according to the Declaration of 

Helsinki and approved by the local ethics committee, and all patients provided written 

informed consent. 
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5.2.2. Data collection 

The experiment was conducted in a sound-attenuated room in the hospital, with participants 

sitting upright in a comfortable chair or on their bed. The stimuli were presented on a 13-inch 

portable computer, placed on an overbed table at approximately 60 cm distance in front of 

the patients. Patients used the keyboard of the laptop to complete the behavioral task, and 

their responses were recorded. Trial onsets and offsets TTL triggers were sent to the EEG 

amplifier via a parallel port or an Arduino simulating a parallel port. In Paris, the recordings 

were performed using the ATLAS amplifier (Atlas, Neuralynx®, Inc., Bozeman, MO; 160 

channels at 4096 Hz; bandpass filter between 0.1 Hz and 1000 Hz). The macroelectrodes 

(AdTech®, Wisconsin) used consisted of 4-12 platinum contact electrodes with a diameter of 

1.12 mm and length of 2.41 mm, with nickel-chromium wiring. The distance between the 

centre of 2 contacts was 5 mm. In Barcelona the recordings were performed using a clinical 

EEG system (Natus Quantum LTM Amplifier) with a 1024Hz sampling rate and an online 

bandpass filter from 0.1Hz to 4000Hz. Intracerebral electrodes (Microdeep, DIXI Medical) 

were used for recordings. Each multielectrode had 8 to 18 contacts, spaced 5 mm and 1 to 2 

mm long with a diameter of 0.8 mm. Verbal recalls were recorded with an audio recorder 

placed on the overbed table next to the laptop computer used to record responses. 

 

5.2.3. Experimental Design 

The experiment was conducted on two consecutive days (Figure 5-1A). On day 1, participants 

were presented with 3 blocks of 20 different episodic sequences each including 4 pictures 

depicting a plausible succession of instances of a real-life episode (encoding phase). 

Participants were instructed to encode the temporally extended episodes, whereby each 

single-exposure episode was itself composed of four discrete and unique picture stimuli 

assembled into an unfolding episode. They were also informed that their memory of each of 

the pictures within the episodes would be tested briefly after each encoding block (recall day 

1) on the same day and again 24h later (recall day 2). 

In the encoding phase, participants were presented with a total of 60 different episodic 

sequences separated into 3 different blocks. Each episode included 4 different pictures 
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presented sequentially. The trial structure was as follows: each trial started with the text 

presentation of “New Episode” for 1 s which marked the start of a new encoding episode. 

Each picture was then sequentially presented on a grey screen for 2.5 s and preceded by a 

black fixation cross in the center of the screen for 1 s. A fixation cross was displayed again for 

2 s after the 4th picture, after which participants were instructed to rate, on a keyboard (keys 

1, 2, 3 and 4), how much the sequence was emotionally salient to them. The emotional 

salience had to be rated on a scale from 1 (no salience or boring) to 4 (very salient). An inter-

trial interval of 2 s was inserted before the start of the next encoding trial.  

After each encoding block of 20 episodes, participants had a short break and started the recall 

phase (day 1). Participants were informed that the recall phase consisted of the presentation 

of the first picture of each of the series and that they should verbally recall the pictures 

associated with each of them. They were asked to be as specific and precise as possible, and 

to try to recall the pictures in the exact same order as they were presented, and to mention 

the first image as the beginning of their recall. Patients answered in their native language 

which was French in the Hôpital Pitié-Salpétrière in Paris and Spanish or Catalan in the 

Hospital Clínic – IDIBAPS in Barcelona. Each recall trial event began with a 1 sec text 

presentation on the screen that depicted “New memory”. After a black fixation cross in the 

centre of the screen for 1 s, the first picture of one of the encoded episodes was presented 

for 3 s, serving as a cue to prompt the verbal recall of the rest of the pictures in that episodic 

sequence. Participants were instructed to withhold their recall of the associated episode until 

the picture image was replaced by a message saying, “Can you recall the episode?”, which 

lasted a maximum of 80 s to allow them to take their time to recall the episode if needed. An 

external recorder positioned on the table adjacent to the laptop was used to record their 

verbal responses; however, since it was not connected to the laptop, the reaction times for 

the answers were not obtainable. Participants could press the spacebar to end the trial when 

they had finished the recall. Participants were instructed beforehand to explicitly say “I do 

not remember” after the picture image disappeared if nothing could be remembered that 

was associated with the picture cue. A short break of 5-10 minutes separated the start of the 

new encoding-recall block.  
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On day 2, participants were instructed that the cued recall task would be repeated (recall on 

day 2) and it would follow the same trial structure as in the recall phase on day 1. All 60 first 

pictures from the encoded series were presented in blocks of 20 trials, which were separated 

by a short 5-10 minutes break.  

The presentation order of the series in the encoding phase was randomized for each 

participant and presented in a shuffled order on each round of recall on day 1. The order of 

the presentation of the picture cues from the 60 episodes was also shuffled for each 

participant. The task was programmed on Matlab R2017b using the Psychtoolbox3 toolbox 

(Brainard, 1997). 

 

5.2.4. Electrode selection 

Based on anatomical and functional criteria, one pair of hippocampal depth electrode 

contacts per participant was selected for analyses. Depth electrodes were implanted 

stereotaxically, and laterally via the temporal lobe. The presence of electrodes in the 

hippocampus was assessed with the examination of a computed tomography (CT) and (post-

electrode removal) Magnetic Resonance Imaging (MRI) T1 scans. Cerebral atlases of each 

patient were obtained with the parcellation of the preoperatory T1 using Freesurfer 

(https://surfer.nmr.mgh.harvard.edu). The CT was then co-registered to the T1 and contact 

tags and names were placed manually using fieldtrip toolbox for ECoG and sEEG recordings 

(https://www.fieldtriptoolbox.org/). Confirmation of contact placement was then obtained 

with a co-registration of the post-operatory T1 to the preoperatory T1 and via superposition 

of the electrode placement matrix to the realigned post-operatory T1, and manual correction 

of the misplaced contact tags. Selection of channels was done in native space to prevent 

errors due to distortions while converting in MNI space. MNI space conversion was then done 

to have a generalized view of the patient’s channels of interest. Since channels were 

referenced to the adjacent more distal contact along the electrode (bipolar referencing) 

channels of interest were selected on the bases of three main criteria (in this order of 

decreasing importance): (1) the channel of interest or the referenced one had to be in the 

hippocampus; (2) if more than one channel was eligible, hence fulfilled the prior criterion, to 

avoid using white matter references, hence limit noise from other brain areas, we privileged 
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the channel that had an adjacent distal referencing contact also in the hippocampus 

(Michelmann et al., 2018); Finally, (3) if more than one pair of adjacent channels were eligible, 

we selected those that had the least amount of epileptic activity according to the Artifact 

Rejection procedure (please see section below for details).  

To visualize the selected contacts across our sample, we normalized each participant’s post-

implantation MRI along with their co-registered pre-implantation MRI to MNI space using 

SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). To facilitate the visualization of contacts across 

the group, a 5-mm-radius sphere was created around each contact’s centre point and overlaid 

across participants (Figure 5-1C). 

 

5.2.5. Data preprocessing and artifact rejection  

We first down-sampled raw EEG data from all participants to 1000 Hz. Then, we extracted 

epochs of EEG data from -2 to +4 s from stimulus onset for all stimuli (picture images) and 

plotted each EEG trial data to perform a visual inspection to identify epileptic activity with the 

help of an epileptologist. We recognized interictal spikes and epileptic activity, characterized 

by high amplitude EEG signals that were disruptive of previously ongoing activity. We then 

plotted each trial’s spectral power (30 – 140 Hz) to evaluate the presence of noise in the time-

frequency domain. Trials containing epileptic activity or noise were removed from further 

analysis. This resulted in 47.8  10.8 (Mean ± SD) trials for image 1, 48.5  10.8 trials for image 

2, 49.6  8.3 trials for image 3, 50.8  8.3 trials for image 4 and 52.9  10.0 trials for recall, 

being kept for analysis on average across patients, for a total of 60 trials per stimulus. We 

then re-referenced each contact to the closest contact on the same electrode (bipolar re-

referencing, details explained above) and performed a second visual inspection of the LFPs 

and the spectral power data to ensure all epileptic spikes had been successfully removed 

throughout our priori Artifact Rejection procedure.  
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5.3. Quantification and Statistical Analysis 

5.3.1. Behavioural Analysis 

Participants’ memory accuracy was assessed by analysing the verbal recall on day 1 and day 

2. For each episode, each picture was counted as remembered or forgotten. A picture was 

counted as remembered when participants mentioned an action or an item that clearly 

depicted the content of the picture. We then obtained a memory score for each episode that 

ranged from 0 (i.e., no pictures included in the recall) to 3 (i.e., all pictures were included in 

the recall), given that the recall of the first picture was non-informative of memory retrieval 

as it was always displayed as a cue during the recall. The total number of pictures correctly 

recalled for each episode was then used to categorize whether that episode was remembered 

or forgotten. We categorized episodes that included 2 or 3 correctly recalled pictures as 

‘remembered’ and ‘forgotten’ when participants recalled either none or a single picture from 

the episode. When pictures were correctly recalled in an episode, we also assigned a number 

from 2 to 4 to each of them to index the correspondence to the order position in the sequence 

at encoding. This allowed us assessing for the possibility that remembered pictures were 

recalled in an incorrect order during the recall (e.g., permutation errors). We also coded if 

pictures from one encoded episode were erroneously recalled in another one at test (e.g., 

false alarms).  

To evaluate the extent to which recalled episodes in the immediate test were consistent to 

those recalled in the delayed test, we performed a linear regression analysis at the individual 

level using the number of pictures recalled in the immediate test as a dependent variable and 

the number of pictures recalled in the delayed test as an independent measure. If the pictures 

recalled in the delay recall test from each of the episodes scaled according to the recalled 

pictures at the immediate test, then the slope of this relationship should be positive and differ 

from 0. This analysis revealed that this was the case, as the slopes were positive (mean  SD, 

0.73  0.16) and significantly above 0 (t(9) = 14.62, p < 0.001). These results indicate that the 

number of recalled images per episode was consistent in the recall test on day 1 and on day 

2. 
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On average, participants rated the encoded episodes as emotionally neutral (mean  SD, 2.46 

 0.69; Participant 9 had to be excluded from this analysis because of with the recording of 

button presses during the encoding phase). Ratings were similar for remembered and 

forgotten episodes as a function of memory accuracy in the immediate (remembered: 2.49  

0.73 and forgotten: 2.46  0.68, paired t-test t(8) = 0.18, p = 0.86) and in delayed recall test 

(remembered: 2.47  0.78 and forgotten: 2.46  0.59, paired t-test t(8) = 0.05, p = 0.96). These 

results indicate that participants’ episodic engagement did not affect successful memory 

accuracy in our experiment.  

5.3.2. Number of iEEG trials included in the analyses 

We quantified the number of trials from each of the 4 pictures at encoding and at recall that 

were included in the iEEG analyses after artifact rejection and have them compared across 

memory conditions for each of the recall tests. We statistically assessed this issue at encoding 

by running a repeated measures ANOVA including two within-subject factors, memory type 

(remembered, forgotten) and picture position (1st, 2nd, 3rd, 4th in the episodic sequence). We 

used a paired-t test at recall as a statistical test for this issue.  

This statistical approach revealed that the number of iEEG trials included in the analysis of the 

immediate recall test was, as expected, greater in the ‘remembered’ than in the ‘forgotten’ 

condition (repeated measures ANOVA, main effect of memory F(1,9) = 5.25, p = 0.048). This 

analysis also showed a statistically significant memory  picture position interaction (F(3,27) 

= 3.81, p = 0.02; but not a main picture position effect F(3,27) = 0.84, p = 0.48), which indicated 

that the difference in the number of iEEG trials between conditions was not homogeneous 

throughout the picture sequence. Similarly, a paired t-test confirmed there were more trials 

in the ‘remembered’ than in the ‘forgotten’ conditions during the recall phase (t(9) = 2.71, p 

= 0.02). For completeness, we detailed the number of trials in the immediate recall test: 

'remembered’ condition: 29.7  10.5 for image 1, 31  12.4 for image 2, 32.2  10.4 for image 

3, 32.6  11.5 for image 4 and 35.6  9.66 for the recall phase. The number of trials included 

in the ‘forgotten’ condition was 18.1  11 for image 1, 17.5  5 for image 2, 17.4  9.9 for 

image 3, 18.2  9.2 for image 4 and 19.1  10.01 for the recall phase. 
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However, the number of iEEG trials included in the analysis in the remember and forget 

condition in the delay recall test showed to be not statistically different (repeated measures 

ANOVA: main effect of memory F(1,9) = 0.39, p = 0.55; main effect of picture order F(3,27) = 

0.84, p = 0.48; interaction memory  picture order F(3,27) = 0.71, p = 0.55). Similarly, the 

number of trials included in the iEEG analysis was equivalent in the recall phase for the 

remember and forget conditions (t(9) = 0.81, p = 0.44). For completeness, here we detail the 

number of iEEG trials in each condition for the delayed recall test: ‘remembered’ condition: 

25.5  11.5 for image 1, 22.3  10.1 for image 2, 27  11 for image 3, 27.4  11.7 for image 4 

and 28.9  11.42 for the delayed recall phase. The number of trials included in the ‘forgotten’ 

condition was 22.3  10.1 for image 1, 22.7  8.7 for image 2, 22.6  9.1 for image 3, 23.4  

8.6 for image 4 and 24  10.16 for the delayed recall phase.  

These results are important as they ensure that the iEEG findings reported in the current 

study, which compared hippocampus iEEG signals for encoding and delay recall phases, 

cannot be simply explained by the difference in the number of analysed trials between the 

remember and forgotten conditions. 

 

5.3.3. Hippocampal gamma power analysis 

Data analysis of spectral power was performed using Fieldtrip (Oostenveld, Fries, Maris, & 

Schoffelen, 2011) and standard MATLAB functions on the 6 s iEEG epochs selected during the 

preprocessing stage. The 6 s time window included -2 s from picture onset to avoid padding 

on low frequencies in the targeted smaller temporal window of 2.5 s from picture onset in 

subsequent analysis. Frequency decomposition of the data was performed via Fourier analysis 

based on sliding time windows (moving forward in 10 ms increments). We applied a multi-

tapering procedure and a DPSS filter with a fixed window length of 500 ms and seven 

orthogonal Slepian tapers, resulting in a spectral smoothing of ~  10 Hz. The resulting power 

maps were decibel corrected with the average of the -0.5 s prestimulus baseline. For 

statistical analysis of power maps, we used a non-parametric cluster-based permutation 

procedure implemented in FieldTrip (Maris & Oostenveld, 2007; Oostenveld et al., 2011) and 

searched for power fluctuations against artificial data created by time-shuffling the 

experimental data. We tested the experimental data against the time-shuffled data in a 
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cluster-based permutation test where labels of the experimental and artificial data were 

randomly shuffled across participants 1000 times without repetition of combinations. The 

alpha level was set to 5% across analyses, and parametric t-tests were two-tailed (Maris & 

Oostenveld, 2007). Spectral power (but also PAC and MOVI described below) was studied 

within a window of 2.5 s from picture onset. During encoding, the 2.5 s corresponded to the 

time window of each of the pictures in the sequence and, during recall, this time window 

corresponded to the time window where the cue picture was on the screen. This way, the 

results at encoding and recall could be comparable in terms of temporal signal-to-noise 

properties of the iEEG signal and frequency resolution of the analyses.  

5.3.4. Phase-amplitude coupling (PAC) analyses 

For the identification of PAC on EEG data elicited by picture encoding and at recall, we first 

filtered the epochs with the function ‘eegfilt’ from the EEGlab toolbox of Matlab (Delorme & 

Makeig, 2004). Low frequencies (4 – 12 Hz) were filtered with a window of 0.3 times the 

frequency of interest, centred on each frequency step. Similarly, high frequencies (30 – 140 

Hz) were filtered with a window of 0.7 times the frequency of interest. This allowed for better 

sensitivity and allowed Δ(hf) to be always higher than the maximum phase of coupling (low 

frequency + delta (LF)). Variable bandwidth of phase and amplitude has been shown to 

increase sensitivity reducing false negatives. It also maintains the equilibrium between the 

bandwidth of high frequencies needing to be higher than twice the central low frequency, to 

avoid biases toward slow-modulating rhythms (Aru et al., 2015). Filtered data was z 

normalized to trial average to ensure that all observed effects were not driven by an Event-

Related Potential (ERP). After filtering, we extracted the angle of the Hilbert transform of low 

frequencies and calculated the phase. High-frequency amplitudes were calculated by the 

square of the Hilbert envelope.  

To quantify phase-amplitude coupling we calculated the mean amplitude of each high-

frequency per low-frequency phase bin in 18 different bins of 20 degrees each (Heusser et al., 

2016; Pacheco Estefan et al., 2021; Staresina et al., 2015; Tort et al., 2009; Tort et al., 2008) 

for each trial of each patient. Each trial was then transformed into a probabilistic distribution 

(sum = 1) by dividing each bin by the sum of all bins. We then averaged the distributions over 

trials and calculated the Modulation Index (MI) using the Mean Vector Length (MVL) method 
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(Canolty et al., 2006), which takes the absolute value of the mean complex vector of binned 

amplitudes to increase specificity towards unimodal phase-amplitude coupling. Similar results 

were obtained using the Kullback-Leibler Distance with Shannon’s entropy approach as a 

measure of non-uniformity (Tort et al., 2009; Tort et al., 2008). However, we noted that this 

method could create a bias towards lower modulating frequencies by picking up on bimodal 

coupling events that originate from higher modulating phases. Therefore, the data reported 

in our study are the results obtained with the MVL approach. To create surrogate 

distributions, each amplitude trial was cut at a random timepoint –excluding the first and last 

10% of timepoints - and the two obtained amplitude time series were permuted. The time-

shuffled amplitude was then binned with its corresponding non-shuffled phase, hence leading 

to a random phase preference for each trial. The MVL of this random distribution was then 

calculated in the same fashion as for the experimental trials. We repeated this procedure 

1000 times and stored the MVL values of each iteration and participant. We then demeaned 

PAC data, both real and surrogates in order to perform t-scoring and statistical testing. To 

confirm that this normalization procedure did not affect the statistical structure of the data 

we performed a correlation test and observed a rho value of 1 between the original PAC data 

and the demeaned PAC data. 

For statistical testing, we t-scored the real PAC across patients and identified clusters of 

contiguous pair of frequencies that showed to be significant at a threshold set to 2.5%. We 

repeated the process for each surrogate matrix and obtained a distribution of 1000 t-sums 

representing the maximum possible cluster in surrogate data. We only considered significant 

clusters in the empirical data whose summed t-values exceeded 95% of the surrogate 

distribution of t-sums. 

5.3.5. Mean Opposition Vector Index (MOVI) 

To test whether PAC for the memory encoding and memory recall periods rested on different 

phases of theta, we used an adaptation of the MVL approach described elsewhere (Canolty 

et al., 2006) on the difference between two distributions of amplitude per phase bin. We 

denoted 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝐴 and 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝐵 two distributions of amplitude per phase bin. Distributions A 

and B were calculated in the following way: we denoted 𝑓𝐴 and 𝑓𝑝 as the frequencies for 

amplitude and phase respectively of one condition. Within the significant cluster of PAC of 
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the said condition, we filtered data for each pair of frequencies as following the same 

procedure implemented to estimate PAC and created a binned distribution of mean 

amplitude per phase bin, averaged over trials. The distributions of each pair of frequencies 

were normalized to a probabilistic distribution (sum = 1) to avoid having different magnitudes 

of amplitude in function of the different frequencies. Once we had a distribution for each pair 

of frequencies, we averaged all the distributions across frequencies to obtain one single 

distribution with the average phase preference of the PAC cluster. The second distribution 

was obtained the same way but by extracting pairs of frequencies from the PAC cluster of its 

specific condition. In this way, we obtained 2 distributions of mean amplitude per phase bin 

A and B that each represented the mean amplitude per phase bin of their PAC cluster.  

We then calculated MOVI as follows:  

1- First, we calculated the difference between 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝐴 and 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝐵.  

2- We added to this difference twice the mean of a uniform distribution with the same 

number of phase bins noted as: 2 ∗
1

𝑛𝑏𝑖𝑛𝑠
 to have only positive values that were similar to 

a probabilistic distribution (sum = 1). However, since the resultant distribution came from 

the difference between two distributions, if opposed, the difference between the peak and 

the through of this new distribution would have twice the magnitude of either of the 

original distributions A and B.  

3- To correct for this issue, we divided the result by 2 to keep the magnitude of modulation 

of the alternative distribution 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝐷𝑖𝑓𝑓 similar to the magnitude of the two distributions 

it compares. 

The complete formula used to calculate the alternative distribution was: 

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝐷𝑖𝑓𝑓 =
(𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝐴 − 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝐵) + 2 ∗

1
𝑛𝑏𝑖𝑛𝑠

2
 

4- To avoid having false positives and greater effects due to the difference in two 

distributions, the resulting alternative distribution was normalized to a probabilistic 

distribution (sum = 1) by dividing each phase bin by the sum of all bins.  

5- We calculated MOVI as the MVL of the resultant distribution  𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝐷𝑖𝑓𝑓 as follows: 

𝑀𝑂𝑉𝐼 = |
∑ 𝐴𝑚𝑝𝑏𝑖𝑛 ∗ 𝑒𝑖𝜃𝑏𝑖𝑛    

𝑛𝑏𝑖𝑛𝑠
| 
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where 𝐴𝑚𝑝𝑏𝑖𝑛 is the amplitude of each phase bin and 𝜃𝑏𝑖𝑛 is the angle of each phase bin and 

𝑛𝑏𝑖𝑛𝑠 is the number of phase bins and MOVI was the calculated MVL of this distribution. The 

basic premise of MOVI is that if two distributions are opposite, the alternative distribution 

will be a resulting one with higher MVL than either of the original distributions. If two 

distributions are in the same direction, then the resultant distribution should be flat and MOVI 

would be low. And, if one distribution has very low PAC in the surrogate trials, MOVI would 

be similar to the one obtained from the experimental (real) PAC, avoiding, therefore, finding 

false positives due to a one directional PAC amplitude in the data. 

For the statistical analysis of MOVI, we averaged the experimental MOVI value across patients 

and the surrogate distributions over patients and then compared the 1000 surrogate scores 

with the experimental value using a z transformation of the experimental value, which was 

computed as the experimental MOVI value minus the mean of the surrogate MOVI values, 

over the standard deviation of the surrogate MOVI distribution ( [z = (MOVexp - 

mean(MOVIsurr)/std(MOVIsurr)] ). We obtained a p-value associated to the z value by 

identifying the fraction of surrogate MOVI values below the experimental MOVI value. We 

considered significant an experimental MOVI value that was greater than 95% of surrogate 

MOVI values. Surrogates for MOVI were computed independently for each dataset A or B by 

shuffling trial labels 1000 times. 

We used MOVI instead of more traditional methods for measuring distribution distance 

(Berens, 2009; Nielsen, 2019; VanRullen, 2016) because we wanted our measure to be 

dependent on the PAC strength between frequency pairs, and to be sensitive enough to pick 

on amplitude-driven opposition in angle preference. Other phase opposition indexes such as 

inter-trial coherence (ITC) or pairwise phase consistency (PPC) do not take into account PAC 

strength, as they rely on the unit normalization of vectors and might lead to phase opposition 

reports for frequency pairs where PAC is low or even absent, but with phase spuriously 

opposed. Furthermore, from a methodological point of view, methods such as ITC rely on the 

density of occurrences (VanRullen, 2016; Vinck et al., 2010) that does not consider coupling 

strength of angle preference and where each trial is summarized into a single unit-normalized 

vector that does not take into account the overall distribution of amplitude per phase but 

rather only detects the peak, which may compromise the results (i.e., inflating type I and type 
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II errors). Instead, MOVI is a measure that considers the average distribution across trials and 

that relies on common effects in terms of PAC and phase preference such as the Kullback-

Leibler Distance (DKL) and the Jensen-Shannon Divergence (JSD), a symmetrical adaptation of 

the DKL (Nielsen, 2019), thereby improving the sensitivity to study theta-gamma phase 

opposition in task designs like ours. In fact, similar results were obtained using the DKL 

approach. DKL has been commonly used to compute the modulation index during PAC with 

an adaptation of the Shannon entropy formula, comparing an experimental distribution to a 

uniform distribution. However, DKL is used to assess the difference between two distributions 

A and B with the following formula:  

 

𝐷𝐾𝐿(𝐴|𝐵) = 𝐴 ∗ log (
𝐴

𝐵
) 

 

To implement DKL in our data, we filtered and binned the data following the same procedure 

described in the MOVI subsection of the methods section of the main manuscript. However, 

we now directly compared the distributions without passing by an alternate distribution like 

in MOVI. The results using DKL replicated the ones described in the main paper using MOVI. 

More specifically, the use of DKL revealed significant gamma band activity coupling to 

opposed theta phase states during memory encoding and recall (z = 3.48, p = 0.0005) and that 

theta-gamma PAC opposition was statistically significant for remembered episodes (z = 2.97, 

p = 0.003) but not for forgotten episodes (z = 0.51, p = 0.61). These results provide converging 

evidence of theta-gamma phase opposition using two distinct analytical approaches in our 

data. 
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5.4. Supplemental Material 

 

 Day 1  Day 2 

#Participant Remembered Permuted       Remembered Permuted 

S1 85 8.3  46.7 6.7 

S2 76.7 10  55 10 

S3 78.3 1.7  75 6.7 

S4 36.7 6.7  40 8.3 

S5 63.3 1.7  46.7 0 

S6 76.7 10  71.7 6.7 

S7 65 6.7  53.3 6.7 

S8 63.6 11.7  43.6 6.7 

S9 30 0  25 5 

S10 73.3 3.3  75 1.7 

 

Table 5-1. Individual behavioural data.  

Percentage of picture series (i.e., episodes) that that included at least 2 pictures during the 

recall (i.e., remembered) during the test on Day 1 and on Day 2. “Permuted” refers to the 

proportion of recalled episodes that included the recall of the pictures in incorrect order. 
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Figure 5-5: Individual hippocampal gamma power during memory encoding and recall. 

Single-trial time-frequency analysis on hippocampal EEG data during the encoding of 

episodes and at their recall on day 2 for each participant of the sample. Spectral power 

images depict relative gamma power increases and decreases corrected with respect to a 

0.5 s baseline window (see Methods). 

 

 



99 

 

 

Figure 5-6: Individual theta-gamma phase-amplitude coupling (PAC) during memory 
encoding and recall. 

We assessed the existence of theta-gamma PAC by using a comodulogram method as 

described in Tort et al, which allows PAC to be scanned from several narrow-filtered 

frequencies within the theta and gamma frequency bands and quantified the degree of PAC 

in each frequency pair by using the Mean Vector Length (MVL) method (see Methods). Each 

image depicts phase-amplitude comodulogram computed during memory encoding and 

recall on day 2 for each participant of the sample. X-axis indicates phases modulating the 

signal and the Y-axis represents the modulated amplitude. 
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Figure 5-7: Gamma power, theta-gamma PAC and MOVI for 1st/2nd and 3rd/4th 
pictures from the episodic sequences at encoding. 

We examined whether the results obtained when comparing remembered and forgotten 

episodes at encoding were consistent throughout the complete sequence of pictures. To 

address this issue, we calculated changes in gamma power, PAC and MOVI by grouping 

hippocampal iEEG signals elicited at the beginning (1st and 2nd picture) and at the end (3rd 

and 4th picture) of the episodic sequence and have compared the results within the 

significant clusters found with all trials (Figure 5-2B and E). (A) Hippocampal gamma power 

increase for the 1st/2nd and 3rd/4th pictures was similar in magnitude (repeated measures 

ANOVA, main effect of picture order: F(1,9) = 4.18, p = 0.07) and it did not differ for episodes 

that were later remembered or forgotten (main effect of memory: F(1,9) = 0.003, p = 0.96; 

interaction memory x stimulus: F(1,9) = 1.36, p = 0.27). (B) Theta-gamma MVL for the 1st/2nd 

and 3rd/4th pictures was similar in magnitude (repeated measures ANOVA, main effect of 

picture order: F(1,9) = 0.20, p = 0.66) and it did not differ for episodes that were later 

remembered or forgotten (main effect of memory: F(1,9) = 0.18, p = 0.69; interaction 

memory x stimulus: F(1,9) = 1.04, p = 0.33). For all box plots in (A) and (B), in the box plots 

the central mark is the median, and the edges of the box are the 25th and 75th percentiles. 
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Each dot on both plots represents the value for a participant in the corresponding condition. 

Each dashed line on the boxplot connects the value of a participant in two conditions. (C) 

Polar distribution of averaged gamma amplitude (z) across participants over theta phases 

for the 1st/2nd and 3rd/4th pictures. Error bars represent SEM across participants. Grand 

average across participants is depicted by the thick red line. (D) Average distribution of 

hippocampal gamma amplitude over theta phase for all participants for the 1st/2nd and 

3rd/4th pictures. Shades represent standard error of the mean. (E) Experimental value of 

MOVI (red star) compared to surrogate value for all participants when comparing MOVI for 

1st/2nd and 3rd/4th pictures (z = 0.61, p = 0.5). The results showed that gamma amplitude 

was coupled to similar theta phase states in the 1st/2nd and in the 3rd/4th pictures during 

encoding. 

 

 

Figure 5-8: Hippocampal spectral power changes for 2 - 12 Hz during encoding and 
during recall. 

Single-trial time-frequency analysis on hippocampal EEG data during the encoding of 

episodes and at their recall on day 2 for each participant of the sample. To compute the 

time-frequency decomposition of 2 - 12 Hz we used a hanning taper with a variable time 

window equal to 5 over each of the frequencies. The analysis was performed from 2 to 12 

Hz with steps of 1 Hz and from -0.5 s to 2.5 s relative to stimulus onset with steps of 50 ms. 
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The spectral power data was then decibel baseline corrected with a baseline of -0.5 s to 0 s 

relative to picture onset for each patient separately.  

 

 

 

 

 

 

 

Figure 5-9: Gamma power and theta-gamma PAC in the Middle Temporal Gyrus. 

 (A) Gamma power modulation during memory encoding and recall from a participants’ 

(N = 9) electrode located at the middle temporal gyrus and the corresponding time-

frequency t-value map. A cluster-based permutation test identified a cluster of gamma 

power increase during encoding (tsum = 434.1, tpeak = 5.29, p = 0.048) and during recall 

(tsum = 408.05, tpeak = 4.44, p = 0.009). (B) Map of PAC at encoding and at recall from a 

participant’s electrode located in the middle temporal gyrus and the corresponding 

phase-to-amplitude t-value map of MVL. A cluster-based permutation test for each of 

them revealed no statistically significant clusters (all, p > 0.05). 
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Figure 5-10: Hippocampal Event-Related Potentials (ERPs) during encoding and recall. 

Participants’ averaged ERPs from hippocampal electrodes for ‘remembered’ and 

‘forgotten’ episodes during encoding and recall. The shaded area represents SEM across 

participants. A cluster-based permutation test revealed no statistical differences between 

ERPs of the two memory conditions, both during encoding and recall (p > 0.05). 
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Polar distribution of averaged gamma amplitude (z) across trials over theta phases within 

the significant cluster of PAC found at encoding and at recall displayed in Figure 5-2 for each 

participant of the sample. Average across trials is depicted by the thick red line. Each of the 

participants showed consistent phase preference (Rayleigh’s test, all p < 0.05) for all the 

theta-gamma PAC values within the statistically significant clusters depicted in Figure 5-2E). 

 

 

 

Figure 5-11: Individual distribution of gamma amplitude modulation over theta phases 
during encoding and during recall. 
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(A) Averaged gamma power modulations during immediate recall across participants and the 

corresponding PAC t-value map. Thick black lines depict the cluster that reached statistical 

significance (cluster statistics: tsum = 1862.8, tpeak = 8.61, p = 0.005). (B) Map of PAC at 

immediate recall across participants and the corresponding phase-to-amplitude t-value map 

of MVL. Our analysis found a cluster between 4 – 6 Hz for phase and 30 - 45Hz for amplitude 

but failed to survive the statistical comparison to surrogate cluster t-sums (tsum = 19.7, tpeak = 

2.99, p = 0.17).  

 

 

 

Figure 5-12: Hippocampal gamma power and theta-gamma PAC during recall on day 1. 
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Figure 5-13: Low theta (2 – 3 Hz) - gamma phase-amplitude coupling during memory 
encoding and recall. 

 (A) Phase-to-amplitude t-value map during encoding and recall. Thick black solid lines 

depict the PAC cluster that reached statistical significance described in the main manuscript. 

Thick black dashed lines depict the gamma PAC to low theta (2 – 3 Hz) cluster identified 

during encoding (p < 0.05) and gamma PAC to low theta (2 Hz) identified during recall (p = 

0.02). (B) Average distribution of hippocampal gamma amplitude over low theta phase from 

the two theta clusters identified during encoding (2 – 3 Hz) and recall (2 Hz) for all 

participants and for all trials. Shaded area represents the SEM across participants. (C) 

Experimental value of MOVI (red star) compared to surrogate value for all participants for 

low theta. We found that gamma band activity coupling to low theta phase states during 

memory encoding and recall were statistically opposed (z = 1.42, p = 0.15). 
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We used a time-shuffling approach [56] to create surrogates to examine whether the PAC 

findings described in the manuscript, using a label shuffling approach, could be replicated with 

alternative methods described in the literature. To do so, for each trial of the amplitude data 

we cut the time-series pseudo randomly between the first 10% of timepoints and the last 10% 

of timepoints, and then inverted the first and second halves of the trial to have possible 

Figure 5-14: Hippocampal theta-gamma phase-amplitude coupling (PAC) during memory 
encoding and during recall using a time-shuffling approach to create null distributions. 
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coupling mechanisms inverted in the surrogate condition. Labels of trials were kept the same 

in this time-shuffling process. Time-shuffled trials were then binned and then the binned trials 

were averaged over trials as in the label-shuffling condition. We t-scored the experimental 

data across participants and then extracted clusters using a threshold of significance of 5%. 

We did the same with each of the 1000 surrogates and then compared the t-sums of the 

clusters found in the experimental data to the distribution of maximum t-sums found in 

surrogate iterations. We considered a cluster to be significant only if its experimental tsum 

exceeded 95% of surrogate tsums. (Top) Group-averaged of phase-amplitude comodulogram 

computed during memory encoding and recall on day 1 and day 2. (Bottom) Phase-to-

amplitude t-value map during encoding and recall. Thick black lines depict the cluster that 

resulted statistically significant during encoding and recall (p < 0.05). Cluster-based statistics 

confirmed a statistically significant theta-gamma PAC cluster, comprising amplitude 

modulations in the ~ 40 – 110 Hz frequency range that were coupled to ~ 4 – 9 Hz phases 

during encoding (cluster statistics: tsum = 181.7, tpeak = 5.47, p < 0.001) and amplitude 

modulations at ~ 50 – 90 Hz frequency range that were coupled to the ongoing theta phases 

within the ~ 5 – 10 Hz frequency range during recall on day 2 (cluster statistics: tsum = 144.7, 

tpeak = 5.55, p < 0.001).  For recall day 1, the cluster that failed to be significant with label 

shuffling was found significant with the time-shuffling approach (tsum = 26.8, tpeak = 3.02, p = 

0.005). (B) Distribution of hippocampal gamma amplitude over a cycle of theta at encoding 

and recall from day 1 for all trials for each participant. Participants’ distributions have been 

realigned to the mean angle direction of encoding and the recall distributions have been 

realigned relative to each participant’s encoding distribution for this figure only. (C) Average 

distribution of hippocampal gamma amplitude over theta phase for all patients for all trials. 

Shaded area represents the SEM across participants. (D) Experimental value of MOVI (red star) 

compared to surrogate value for all participants for all trials (z = 2.09, p = 0.036).  

 

 

 

 



109 

 

 

 

 

  



110 

 

6. Chapter 6: General Discussion 

6.1. Summary of the results 

The main objective of the two studies included in this thesis is to explore the neural 

mechanisms that supported memory encoding and retrieval in humans, and the methods of 

analysis that allow the quantification those mechanisms in electrophysiological signals. The 

results of the two studies helped advance the understanding of the neural signatures of 

memory formation and recall. In the following, the result of each study will be briefly outlined.  

 

6.1.1. Study 1: Measuring phase-amplitude coupling opposition in 

neurophysiological signals with the Mean Opposition Vector Index 

(MOVI) 

Given that phase amplitude coupling and phase preference processes appear to underlie 

mnemonic processes, adequate techniques of analysis to distinguish these unique features in 

neurophysiological data are needed. Current accepted techniques tend to summarise data 

into unit-normalized vectors, which informs on angle preference of trials or epochs, but 

removes the coupling strength aspect of the data. Because of this, in Study 1, we aimed to 

find a way to measure phase-preference differences between neurophysiological datasets by 

taking into account phase-amplitude coupling strength. We developed a new method, which 

we termed the Mean Opposition Vector Index (MOVI), to analyze phase-opposition and 

compared it to an existing more established method (the Jansen-Shannon Divergence (JSD)). 

We compared both indexes on synthetic data where the parameters of the datasets – such 

as PAC strength, angle of preference, noise – were known previous to the analysis. We 

showed that MOVI had a superior sensitivity distinguishing phase-preference differences and 

adds a coupling-strength dimension that is missing in most traditional analyses studying 

phase-preference difference or opposition. Additionally, we showed that MOVI was more 

adapted to the study of neurophysiological data as it was more resistant to noise than JSD, 

and that it encompassed several settings making it adapted for exploratory studies or 

analyses.  
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6.1.2. Study 2: Gamma amplitude is coupled to opposed theta phases during 

encoding and recall in the human hippocampus.  

In Study 2, we aimed to explore theta-gamma interactions in the hippocampus and sought to 

examine their interaction in the context of encoding and retrieval memory processes. In this 

study, participants encoded sequences of pictures depicting meaningful episodic-like events. 

We applied phase-amplitude coupling analysis and phase-opposition analysis on intracortical 

electroencephalography recordings and the encoding and the recall stage and found evidence 

that gamma activity was coupled to opposed theta phase states during encoding and recall. 

Additionally, we found that this opposition was associated with successful memory encoding 

and recall. Finally, we found that both delayed and immediate recall had shown significant 

opposition in phase-preference with encoding.  

 

Taken together, these results showcase that encoding and recall rest on distinct theta-gamma 

interactions. This is akin to results found in rodents, and compatible with mechanistic models 

of encoding and recall based on rodent literature. Therefore, our studies bridge the gap 

between rodent and human literature.  
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6.2. The Importance of theta-gamma interactions for 

memory processes 

Having shown the relationship between PAC and memory formation and retrieval in Study 2, 

a remaining question is whether phase-amplitude interactions in the human hippocampus 

are similar to those observed in rodents, and whether they can account for a wide range of 

memory processes.  

 

The study of theta-gamma interactions encompasses two main mechanisms: Phase-

amplitude coupling and phase-preference directionality. PAC analyses how high-frequency 

activity is nested within a preferential phase but does not inform on phase preference. Phase-

preference directionality informs on the consistency of phase preference of a nested high-

frequency oscillation but does not inform on the strength of coupling. In order to observe if 

phase-amplitude interactions in the human hippocampus are similar to those observed in 

rodents, we needed to look into analysis methods that encompassed both main mechanisms: 

PAC and phase-preference directionality.  

 

To this end, in Study 1 we looked more closely at the methods and techniques that allow us 

to detect coupling directionality and that helped us understand these underlying 

mechanisms. This study was necessary because we wanted to have a comprehensive 

overview of the phase-coupling mechanisms to be explored in Study 2. Other techniques of 

detection of phase-preference were useful or informative only once other parameters were 

controlled for, and we wanted to find a method to analyze phase-preference mechanisms 

that encompassed several settings such as stability across trials, phase-coupling strength, and 

that still could differentiate between different conditions. 

 

Additionally, we aimed to use a method of analysis of phase-preference differences that 

encompassed phase coupling strength, and could observe differences driven by consistent 

preferences and coupling across trials. To this end, when we developed our method, we 

transformed trials into binned distributions, similar to what is done with DKL. By binning each 

trial, it allowed us to average the distributions over trials and obtain an average binned 
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distribution that encompassed the average phase-preference of all trials, and their average 

phase preference. In that sense, if each trial was significantly coupled but each to a different 

angle, the average distribution would have resulted flat. By averaging trials this way, we 

focused on the observation of common preferences across trials.  These binned distributions 

were then vectorized, similarly to the pre-processing of data for the PACOI technique used in 

(Costa et al., 2022). Together, these modifications made for an analysis method that 

encompassed phase-coupling strength with a summarization across trials within two distinct 

datasets. Our index therefore studies the opposition of phase preference between datasets 

that are specific to significantly coupled frequencies.  

 

In Study 1 we explored the validity of this method comparing it with a similar more established 

one on synthetic data. It allowed us to test the limitations and advantages of our method 

compared to others, and to better understand the results we found in Study 2 when using 

this index.  

 

In Study 2, similarly to previous studies on PAC and memory, we found phase-coupling 

mechanisms that were hippocampus specific and that reacted to our encoding and recall task 

(both immediate and delayed). First, we observed a strong coupling between theta and 

gamma during encoding and recall. Both frequency bands exhibited an increase in power as 

shown in the Time-Frequency Analysis (TFA). Neither power nor PAC strength predicted 

successful memory formation or retrieval, measured by accuracy during the recall task. This 

could be due to several factors: Study 2 was a free recall task, and most studies that found 

correlations between PAC strength and memory performance used recognition tasks. In the 

case of recognition tasks, memory is either present, or it is not. Participants usually need to 

discriminate between images or words they already have seen, and new ones. Success in 

distinguishing old from new items measures memory performance. Recognition of old items 

elicits neural responses in the human hippocampus, where gamma power increases during 

successful recognition, as well as PAC strength (Axmacher et al., 2010; Staresina et al., 2016). 

On the other hand, our task was a free recall task of a sequence of pictures. If patients 

recognized the cue as an image they had already seen but were unable to cite the sequence 

of images linked to it, we could still observe neural signatures specific to recognition, but not 
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to recall of linked items, which could explain why we observed increases in gamma power and 

PAC strength that did not significantly differ between remembered and forgotten sequences.  

 

We therefore reasoned that perhaps it was not the strength of coupling that was important, 

but rather the direction, and the phase preference of PAC. In line with this hypothesis, we 

found that gamma power was coupled to opposed phases of theta during encoding and recall. 

These results are coherent with the model of (Hasselmo et al., 2002) based on rodent 

literature. The finding speaks not only on a similarity between rodents and humans, but also 

on underlying mechanisms that are specific to item-context associations and of sequential 

information being stored, much like real-life episodic events.  

 

We found in Study 2 that Encoding and Recall mechanisms rest on different phase-amplitude 

phase preferences. Additionally, this phase-amplitude interaction is not only predictive of 

memory processes (encoding or recall) but also of their success (memory performance). We 

also found that during encoding, all pictures exhibited a consistent phase preference 

regardless of image order. Similarly, we found that both recall tasks exhibited a similar phase 

preference, opposed to encoding. These results suggest that gamma activity is consistently 

nested into opposed phases of theta during encoding and recall processes, regardless of 

consolidation (immediate or delayed recall), or position of the item within the sequence. 

Therefore this phase-preference opposition speaks to cohesive mechanisms that are 

predictive of memory processes.  

 

Altogether, we conclude that hippocampal theta-gamma phase-amplitude coupling is an 

underlying neural mechanism supporting memory formation and retrieval, and that the theta 

rhythm might act as a dynamic switch between those two mechanisms. Although previous 

studies showed that theta-gamma interactions are correlated to specific item encoding within 

a context (Heusser et al., 2016), we do not preclude that our findings speak to a larger 

framework where the study of phase preference in theta-gamma interactions may be the 

reunion of three models of encoding and recall: First the idea that theta oscillations mediate 

communication between the hippocampus and the cortex (Hasselmo et al., 2002) and the 

communication within hippocampal subfields. Secondly, the idea that encoding and recall 
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avoid interfering with each other not solely by relying on different gamma bands (Colgin, 

2015a), but also by nesting gamma within different phases of theta, which ensures a dynamic 

switch between mnemonic modalities to avoid overlap, but still ensure communication. 

Finally, the idea that phase-preference of nested gamma speaks about network 

communication at large, and that PAC preference may inform on the direction of this 

communication (Bonnefond et al., 2017). 

 

6.3. Do hippocampal phase-amplitude coupling findings 

speak about a network interaction?  

Our studies show a local synchronization of oscillations between low and high frequencies. As 

our recordings were limited to the hippocampus, we cannot directly ascertain the extent to 

which this effect is influenced by network activity. However, by drawing upon previous 

studies, we can make inferences regarding the implications of our findings. 

 

Previous studies on humans (Costa et al., 2022; Griffiths et al., 2019) showed that the 

synchronization of high-frequency activity between the hippocampus and other areas is 

relevant to memory formation. For example, successful aversive memory formation was 

found to be directly linked to amygdala-hippocampal communication. Specifically, the phase 

of amygdalar theta at which hippocampal neurons preferentially fired was predictive of 

encoding success (Costa et al., 2022). The conclusion of the study was that amygdala theta 

phase coordinated amygdala-hippocampal communication that facilitated emotional 

memory formation.  

 

Another study (Griffiths et al., 2019) found that decreases in neocortical alpha/beta power 

(8Hz-20hz) preceded hippocampal gamma activity during encoding. Conversely, during recall, 

hippocampal slow-gamma preceded neocortical beta decreases. The study suggested that 

this coupling with opposed directionality during encoding and recall reflected the flow of 

information from the cortex to the hippocampus during encoding, and from the hippocampus 

to the cortex during retrieval.  
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Recent studies using close-loop stimulation (Ezzyat et al., 2017; Ezzyat et al., 2018) found that 

electric stimulations delivered in the lateral temporal lobe were predictive of subsequent 

memory performance when delivered at times where a decoding approach  identified high 

encoding states characterized by an interaction between low and high-frequency bands. The 

high encoding are consistent with patterns of power modulations identified in the human 

hippocampus by (Staresina et al., 2016) that were associated with successful memory 

retrieval. Another study (Titiz et al., 2017) found that theta-burst microstimulation in the 

entorhinal cortex increased the ability of the participants to recognize better images and faces 

in an old/new memory recognition paradigm. In this study, experimenters delivered 

microstimulation in a theta-burst pattern in the entorhinal cortex of 13 neurosurgical patients 

while they performed a recognition task with an old / new paradigm. During the stimulation, 

patients recognized with higher accuracy old images over new ones. Overall, these previous 

findings speak to the fact that hippocampal activity is influenced by its communication with 

other brain areas, mediated by low-frequency oscillations.   

 

Since hippocampal activity and memory processes are mediated by communication with 

other brain areas, processes like encoding and recall may depend on distinct phase state 

preferences. In humans, directionality of communication between the cortex and the 

hippocampus identified by (Griffiths et al., 2019) was predictive of memory processes, where 

cortical activity preceded hippocampal activity during encoding, and the other way around 

during recall. These findings are consistent with previous rodent literature (Pernia-Andrade 

& Jonas, 2014) that links entorhinal-hippocampal communication with local hippocampal LFP 

changes. Locally, this could be reflected by encoding or recall taking place preferentially 

during certain phases of theta. The study of oscillations of (Kerren et al., 2018) found that 

oscillatory patterns of theta oscillations were opposed during encoding and recall states. 

Given that cortical oscillations influence hippocampal activity, the phase preference of 

memory mechanisms could also be reflected in how the activity of the medial temporal lobe 

reacts to theta oscillations. The findings of (Pacheco Estefan et al., 2021), where 

representational signals were clustered to opposed theta cycles during encoding and retrieval 

speak to this idea. Representational signals were extracted with Representational Similarity 

Analysis that extracted patterns of activity during encoding and recall and focused on how 
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much these signals were correlated. In this study, the correlation between high-frequency 

activity patterns was locked to opposed phases of theta during encoding and recall.  

 

In Study 2, we found that hippocampal high-frequency activity was coupled to opposed 

phases of theta during encoding and recall. These findings are consistent with previous 

studies showing that theta oscillations influence local hippocampal LFP. Nested high-

frequency oscillations into distinct theta phase-states may reflect a direction of 

communication between the hippocampus and cortical areas, contributing preferentially to 

either encoding or recall processes.  

 

6.4. Do our studies bridge the gap with rodent studies?  

In Study 2, we found that theta-gamma interactions in the hippocampus supported successful 

encoding and recall of episodic memory. Although these results are coherent with what was 

found in previous rodent studies (Manns et al., 2007; Trimper, Galloway, Jones, Mandi, & 

Manns, 2017) there are still important gaps that exist between humans and rodents. 

 

The main issue revolves around the variation in surgical precision observed during intracranial 

recordings. When working with rodents, an exceptionally precise anatomical localization at 

the micrometer level when implanting electrodes can be achieved. This level of precision is 

unattainable in human studies due to medical considerations. Epileptic patients, for medical 

reasons, undergo electrode implantations, but the placement and path of these electrodes 

are determined by the surgical and medical team based on the patient's medical 

requirements. Consequently, patients are not always implanted in the specific regions of 

interest (ROI) that we are interested in studying. This, combined with the low data acquisition 

rate from epileptic patients (approximately 1 per month per hospital, and not necessarily in 

the ROI), and the potential for surgical inaccuracies (resulting in electrodes not reaching the 

target area), makes it exceedingly challenging to accumulate sufficient data for a 

comprehensive analysis of a single precise region, let alone the interaction between multiple 

regions. Achieving such an analysis would necessitate several patients with electrodes 

implanted in similar combinations of areas, further complicating the research process. 
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Our study uncovered theta-gamma interactions that are consistent with rodent studies 

(Manns et al., 2007) but lacks the spatial precision that would allow for the study of the role 

of hippocampal subfields, or their relationship. Because of this main difference, it is difficult 

to compare studies on rodents where precise analysis of the region of interest is possible and 

studies in humans that have to work around the “randomness” of electrode placement.  In 

Study 2, we included data from hippocampal recordings from 10 patients, but not all in the 

same hippocampus region: 5 of them were implanted in the anterior hippocampus, 4 of them 

in the medial, and 1 of them in the posterior, 5 of them in the left hippocampus and 5 in the 

right.  

 

The second main difference is in the model themselves (rodent and human), in the sense that 

tasks and experimental protocols need to be adapted to the cognitive capabilities of the 

model, and to the responses they can provide. For example, humans can provide verbal 

responses to stimuli, and can give precise feedback. On the other hand, the study of rodents 

relies on the observation of external cues, such as freezing during a fear response, or path 

analysis in maze experiments.  Similarly, tasks done on mice are difficult to do on humans 

because of methodological limitations. In rodents, it is possible to obtain recordings from 

deep brain areas with invasive methods that for ethical reasons cannot be done on humans. 

Most human neuroimaging techniques (e.g., fMRI, sEEG, MEG) require people to remain 

seated and often as still as possible. This limits studies on tasks that require movement or 

navigation. Although recent advances have been made, and it is possible to study how 

navigational skills evolve in virtual environments (Howard et al., 2014), spatial studies on 

humans still cannot compare to studies done on rodents. Additionally, studies on rodents 

often explore spatial navigation (N. Burgess, Maguire, & O'Keefe, 2002; O'Keefe & Burgess, 

1996), fear conditioning (Kitamura et al., 2017) or associative memory (Yamaguchi, Aota, 

Sato, Wagatsuma, & Wu, 2004), while studies on humans also explore episodic memory 

(Piolino, Desgranges, & Eustache, 2009; Silva, Baldassano, & Fuentemilla, 2019; Svoboda, 

McKinnon, & Levine, 2006) or sequential episodes (Heusser et al., 2016). Although these types 

of memories may rely on similar mechanisms, we know that episodic memory differs from 

fear conditioning or spatial navigation. In that sense it is difficult to generalize findings of 
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spatial navigation and fear conditioning in rodents to how episodic memory is formed and 

retrieved in humans. Thus, experiments on humans are essential to better understand human 

cognition, as inference from animal models is limited. Studies with deep electrodes provide a 

unique opportunity to study high-level cognitive mechanisms that provide a meaningful 

insight into memory formation and retrieval. Additionally, studies on humans have the 

advantage that they can be directed. For example, it is easy to instruct humans to purely do 

a recall or encoding exercise (Colgin, 2015a) whereas this distinction in rodents may prove 

more challenging (Igarashi et al., 2014). Nevertheless, several features of neurophysiological 

activity in rodents have been also observed in humans and provide meaningful insight into 

mechanisms of memory formation and retrieval.  

 

The first feature observed in the rodent hippocampus was that of theta dependent memory 

formation and retrieval. The theta rhythm represents the “online” state of the hippocampus 

and is underlying all mnemonic processes (Buzsaki, 2002). Studies on spatial navigation 

(O'Keefe & Dostrovsky, 1971; O'Keefe & Recce, 1993; Wills, Cacucci, Burgess, & O'Keefe, 

2010) underlie the importance of this rhythm in hippocampal dependent mnemonic 

processes. Studies on humans (Cornwell, Johnson, Holroyd, Carver, & Grillon, 2008; Kerren et 

al., 2018) confirmed the important role of hippocampal theta in the encoding and recall of 

memories. Our findings support this idea by showing the presence of theta activity in the 

hippocampus during the encoding and retrieval in our task. Our study, taken together with 

previous literature, underlies the importance of hippocampal theta rhythm in the formation 

and retrieval of memory traces.  

 

The second feature observed in rodents is the role of high-frequency gamma power in the 

encoding of memories. Studies on rodents (Bragin et al., 1995; Buzsaki & Wang, 2012) show 

that increases in gamma power are linked to successful memory formation. These findings 

were replicated in humans (Lam et al., 2016; Lin et al., 2019; Staresina et al., 2016) where 

increases in gamma activity are linked to successful encoding or recall of memories. In our 

study we also observed an increase in gamma power during encoding and recall, however, 

we did not observe significant differences between successful and unsuccessful processes, 

which may be linked to the sequential nature of our study, and to the fact that our retrieval 
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task was a free recall exercise and not a recognition one. In fact, patients in Study 2 said they 

often recognized the cue, even when they did not recall the associated images of the 

sequence. This means that during our recall task, when patients looked at the cue, it could 

have evoked a recognition response, thus increasing gamma activity even for non-

remembered sequences. We can speculate based on our results that an increase in gamma 

activity may therefore inform on the recognition of a cue, rather than the recall of associated 

items.  

 

A third feature identified in rodents when it comes to hippocampal activity and memory, is 

the interaction between theta and gamma oscillations mediating the communication 

between hippocampal subfields (Hyman et al., 2003) and between the hippocampus and 

cortical areas (Pernia-Andrade & Jonas, 2014). For example, a study showed that certain 

phases of theta, which they called “high phases”, corresponded to a higher signal input from 

the entorhinal cortex, while the “low phase” corresponded to a high signal input from 

hippocampal CA3, and high signal output towards the subiculum from hippocampal CA1 and 

CA3 (Hyman et al., 2003). Another study found that during a spatial memory task there was a 

coupling of theta-gamma oscillations in pyramidal cells of the CA1 that corresponded to 

entorhinal gamma activity during high theta and that coincided with CA3 gamma activity 

during descending and low phases of theta (Schomburg et al., 2014). Finally, another study 

(Bragin et al., 1995) showed that entorhinal lesions reduced theta-gamma coding and reduced 

memory performance, especially in the dentate gyrus of the hippocampus. Together this 

literature shows that the memory performance related to theta-gamma oscillations reflects 

the communication between hippocampal subfields and cortical areas.  

 

In our study 2, we were only able to observe the hippocampus as a whole, which limits the 

interpretation and adaptability to models developed around rodent literature (Hasselmo et 

al., 2002). However, we found similar results than in the study conducted by Manns and 

colleagues (Manns et al., 2007) where spiking in the CA1 of the rodent hippocampus was 

coupled to opposed phases of hippocampal theta during encoding and retrieval. 

Comparatively, we managed to show that phase-preference of high-frequency activity was 

not exclusive to spatial navigation processes, but was also present in episodic memory 
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encoding and recall. Additionally, our findings provide evidence that the computational model 

based on rodents of (Hasselmo et al., 2002) proposing that theta phases separate encoding 

and retrieval processes extends to humans as well. It also speaks to the fact that the theta 

rhythm might be coordinating a dynamic communication between the hippocampus and 

other brain areas (Ezzyat et al., 2017; Ezzyat et al., 2018; Griffiths et al., 2019; Manns et al., 

2007) where coupling directionality locally is representative of communication between 

different areas necessary for memory storage.  

 

 

The last feature studied in rodents is how theta-gamma interactions underlie plasticity 

mechanisms necessary to memory formation and retrieval. In the case of our study, we could 

not directly observe LTP and LTD, however, by studying memory performance on the same 

day and on the following, we could infer on how well a sequence was encoded. In rodents, 

theta-gamma interactions were shown to increase plasticity in the hippocampus where 

gamma activity during a phase of theta promoted LTP, and promoted LTD during the opposed 

phase of theta (Hyman et al., 2003). This increase in LTP reflected an increase in memory 

performance, thus suggesting that theta-gamma interactions drive hippocampal plasticity 

mechanisms essential to memory formation. In Study 2, we found that when encoding and 

recall were significantly opposed, patients had a higher memory performance, suggesting that 

theta-gamma phase preference plays a role not only in distinguishing mnemonic mechanisms 

(encoding and recall) but also influences the stability of memory traces, and thus memory 

performance.  

 

Although our findings cannot speak of the network interactions between the hippocampus 

and the cortex, our findings provide the missing element to a comprehensive overview of the 

role of theta-gamma interactions in memory processes in humans. Our results show that 

theta-gamma interactions in the hippocampus predict memory processes (encoding, recall) 

and their success based on subsequent memory performance. These findings are similar to 

neural properties found in rodents, and coherent with the model based on rodents proposed 

by (Hasselmo et al., 2002). Our study thus bridges neural theta-gamma interaction findings 

between the two species.  



122 

 

 

6.5. Limitations and other considerations 

6.5.1. Epilepsy and hospital limitations 

Because our study was conducted on epileptic patients, we had to adapt our design to 

hospital procedures, and to the fact that epileptic patients get tired faster than healthy 

participants. Because of this, we had to significantly shorten our protocol by reducing baseline 

and stimuli times, and by reducing the number of pictures per series from an original 6 

pictures to 4. These limitations reduced the power of our analyses, especially after artifact 

rejection and separation by accuracy.  

 

Additionally, recruitment of epileptic patients is a slow process. We managed to obtain 

recordings in our target area from 10 patients, but analyzed the structural data of 20, where 

we had to discard patients because they were not implanted in temporal areas, or because 

although it was planned for patients to have hippocampal recordings, the electrode never 

made it to the ROI during surgery. Because of this, the number of patients included in the 

final sample of the study reduced the statistical power of our second-level analyses. Normally, 

in the time allocated for the thesis, we could have obtained a larger number of recordings, 

however, the COVID-19 pandemic made it impossible to have access to epileptic patients 

between 2020 and 2022. This significantly reduced the number of patients we otherwise 

could have recorded.  

 

Another limitation previously mentioned by working with epileptic patients is the fact that 

each implantation is different. Therefore, it is difficult to perform network connectivity 

analyses and statistical assessments at the second level.  

 

Finally, working with epileptic patients raises the question of whether epileptic activity 

disrupts in some way memory formation, and if what we observe as gamma activity is not 

epileptic activity. In one way we control for both of these by removing trials that exhibit 

disruptive epileptic activity, it is however possible that non-disruptive epileptic activity is not 

identified and still makes it in the data. To some extent, epilepsy does influence memory 
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formation (Miller, Mothakunnel, Flanagan, Nikpour, & Thayer, 2017) as patients with focal 

epilepsy exhibit a higher forgetting rate for long-term memory. This could have been 

problematic for our study as our experiment lasted 2 days. However, recall performance was 

similar across patients on day 2, although they all had a different locus of epilepsy, suggesting 

that the epileptic locus did not play a role in disrupting memory processes. Additionally, we 

took precautions such as selecting electrodes far from the epileptic locus, and selecting trials 

strictly to ensure there was no disruptive epileptic activity. By doing so we limited the impact 

that epileptic activity could have had on our design, and ensured that our results are reliable 

and inferential to processes happening in healthy people.  

 

6.5.2. Particularity of our experimental task: picture sequence, free recall, 2-

day format 

Our experimental task was different from the ones we usually see in intracranial EEG studies 

that tend to use recognition memory (Staresina et al., 2016), context-item associations (Tort 

et al., 2009) or associative memory (Pacheco Estefan et al., 2021). On the other hand, our task 

involved the encoding of sequential and congruent images and two distinct recall tasks with 

the same cues. These differences in the protocol raise three main concerns:  

 

First, the series in our tasks were episodes. They were composed of several items that were 

congruently encompassed in a similar context. Therefore during encoding patients could 

encode three different aspects of the sequences: First, the contextual aspect, that spoke to 

the overall message of the images, for example a birthday party when the images were a 

balloon, a cake, a piñata, and a game. Second, the items, where each image had to be recalled 

separately, and may have elicited a different response than a context (Silva et al., 2019). Third, 

the temporal aspect, where the temporal sequence of the image had to be recalled in order, 

which could have elicited different neurophysiological mechanisms than associative pairing 

(Heusser et al., 2016).  

 

Additionally, our task included two recall tasks: one right after encoding and one a day after. 

It is unusual to see in intracranial studies 2-day task design due to the difficulty of acquisition 
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of such data, hospital regulations, and possible disruptions caused by epileptic seizures. 

Hence there are several limitations that may arise from this particular protocol. 

First, is the testing effect, where repetitions of a stimulus enhance retrieval likelihood (Polack 

& Miller, 2022) and can also modify memory traces (Diekelmann, Buchel, Born, & Rasch, 

2011). Although recall on day 2 was less precise than on day 1, memory traces seemed to be 

stable according to the verbal recollection given by patients. Despite this, memories on day 2 

may have been affected by the recall task on day 1.  

 

Secondly, on day 2, patients recalled memories that had been consolidated. In other 

experiments (Axmacher et al., 2010; Heusser et al., 2016; Staresina et al., 2016), recall takes 

place shortly after encoding, but in our case 24 hours passed between the first recall task and 

the second. Because of this time-lapse, we observed not only early memory traces but also 

consolidated memory traces, that may rely on slightly different processes. Our analyses, 

however, show that phase-preference opposition between encoding and recall remains 

stable for both recall tasks.  

 

Finally, our task was a verbal cued and free recall, where patients had to recall a whole 

sequence only based on the first image of each. In that sense, one limitation is that we worked 

under the assumption that seeing the cue was sufficient to elicit a memory response of the 

whole sequence. In the case of Study 2, we found that this assumption did not change the 

interpretation of our results, as we were focusing on common phase-coupling mechanisms 

during encoding and recall. Additionally, phase-preference did not change as a function of 

picture order, which further consolidates the idea that picture order did not influence the 

results. However, it would be interesting in the future to specifically look at the amount of 

reinstatement of non-cue images in recall events in order to back up this assumption. One 

way of doing it would be with Representational-Similarity Analysis (RSA) (Pacheco Estefan et 

al., 2021; Silva et al., 2019; Staresina et al., 2016; Wu, Vinals, Ben-Yakov, Staresina, & 

Fuentemilla, 2022) in order to evaluate the similarity of neural signatures between encoding 

and recall of non-cue items.  
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Another limitation comes from the fact that patients did a verbal recall and answers were 

recorded through an external recorder, which means that it would be difficult to examine the 

precise timing associations between neural signals and memory retrieval of the picture 

sequence. In the same way, we measured neural responses during cue presentation during 

recall, which means that there could have been many factors interacting at that moment 

given the nature of the task and the recall. There is still much to explore in that sense in order 

to disentangle recognition of a context from the association to other items.  

 

6.5.3. Data Simulation compared to real electrophysiological data 

In Study 1, we simulated data only for a pair of coupled frequencies (5Hz for low frequency 

and 80Hz for high frequencies). Several studies have simulated data using sine functions 

(Cohen, 2008; Tort et al., 2010) using several settings, but the one that seems more elusive is 

the simulation of neurophysiological noise. On one hand, we consider that there is random 

noise, which explains our use of pink noise (Cohen, 2017), on the other hand, the 

interconnected nature of the human brain makes it that several mechanisms happening in 

other regions of the brain will inevitably influence ongoing local oscillations in ways that we 

cannot yet predict. For this reason, we also added a noise function that generates random 

coupling between low and high frequencies. Finally, there are other oscillations happening in 

the studied range that may or may not explain the observed mechanisms, but disentangling 

the exact function of these frequencies and these oscillations is still challenging. For this 

reason, simulated neurophysiological data has still different properties than real 

electrophysiological data, and although we are getting closer to simulating more accurately 

LFP signals, we have to take into consideration that when testing a new analysis or technique 

on neurophysiological data, we are testing them on data that is much “cleaner” than the one 

we can observe in real-life situations, and does not include the several interactions that we 

know happen in brains. This can be specifically seen in the memory network, where for 

example the CA1 subfield of the hippocampus receives projections from several cortical areas, 

from within other hippocampal subfields, and from reward / novelty loops at the same time. 

In this case, even though we can analyze LFP in concomitance with a behavioral output, 

disentangling the different mechanisms and accurately representing them in a simulation is 

still challenging.  
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7. Chapter 7: Conclusions 

 Hippocampal activity elicited during encoding and cue presentation is stable and 

drives an increase in high-frequency power and a decrease in low-frequency power, 

similar to previous studies on the matter. Such activation did not quantify memory 

success, but was specific to the hippocampus and time-locked to memory functions.  

 Hippocampal phase-amplitude coupling is associated with memory functions and 

seems to be essential to memory formation, but not necessarily to the retrieval of 

sequences. It is elicited specifically in the hippocampus and in a stable manner across 

all items within a sequence, and during cue presentation during recall.  

 Phase-preference of coupled gamma power to theta phase appears to be essential to 

memory encoding and recall, and direction of phase preference seems to be predictive 

not only of memory function but also of the presence of memory traces for sequential 

episodic information. This phase preference appears to be an underlying mechanism 

that speaks to the interconnected nature of the memory system and to how different 

areas involved in mnemonic processes interact and communicate.  

 Phase preference between recall processes seems to be stable between day 1 and day 

2, and phase preference across item-encoding also appears to be stable, suggesting 

that this phase preference during coupling is not due only to item-specific neural 

signatures but to general mechanisms happening during these two memory functions.  

 Techniques and analyses used to study phase-coupling and phase-preference 

mechanisms are varied, and a specific interest should be given to the choice of these 

analyses in order to accurately answer a question and solve a problem, as all analyses, 

although similar, give slightly different insights into underlying coupling mechanisms 

essential to memory processes and functions.  

 Simulation of electrophysiological data can be used to test and compare different 

analysis techniques, but confirmation of these comparisons on real data is needed 
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because of the intrinsic differences still existing between simulations and real 

neurophysiological data. 
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