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Abstract
The integration of artificial intelligence into research is propelling progress and dis-
coveries across the entire scientific landscape. Artificial intelligence tools boost the
development of novel scientific insights and theories by processing extensive data
sets, guiding exploration and hypothesis formation, enhancing experimental setups,
and even enabling autonomous discovery. In this thesis, we harness the power of
machine learning, a sub-field of artificial intelligence, to study non-deterministic sys-
tems, which are amongst the hardest to characterize.

On one hand, we address problems inherent to the study of quantum systems
and the development of quantum technologies. Quantum physics presents formidable
challenges due to the associated exponential complexity with the size of the system
at hand, as well as its intrinsic stochastic nature and the presence of intricate correla-
tions between its components. We employ reinforcement learning, a machine learn-
ing technique that excels at dealing with vast hypothesis spaces, to address some of
these challenges. Notably, reinforcement learning has demonstrated super-human
performance in multiple complex games like Go, which present similar characteris-
tics to the problems encountered in the study of quantum physics. We use it to sys-
tematically simplify complex common problems in condensed matter and quantum
information processing tasks, as well as to implement robust calibration schemes for
quantum computers.

On the other hand, we focus on the characterization of complex stochastic pro-
cesses, such as diffusion. Understanding diffusion processes is crucial to unravel the
complex underlying physical and biological mechanisms governing them. This in-
volves extracting meaningful parameters from the analysis of stochastic trajectories
described by tracked particles. However, accurately capturing and analyzing the
trajectories presents multiple challenges, stemming from the combination of their
random nature, complex dynamics, and experimental drawbacks, such as noise. We
develop machine learning algorithms to accurately extract such parameters, even
when they vary with time, and demonstrate their applicability in experimental sce-
narios. Furthermore, we apply similar techniques to study the diffusion of internet
users browsing an e-commerce website, predicting their likelihood to make a pur-
chase before closing the session.
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Resum
La integració de la intel·ligència artificial a la recerca accelera el progrés cap a

nous descobriments en tot l’àmbit científic. Les eines d’intel·ligència artificial con-
tribueixen al desenvolupament de noves teories i coneixements processant grans
quantitats de dades, guiant l’exploració i la formulació d’hipòtesis, millorant els
experiments i, fins i tot, fent possible descobriments automàtics. En aquesta tesi,
aprofitem el poder de l’aprenentatge automàtic (“machine learning”), un camp de
la intel·ligència artificial, per estudiar sistemes no-deterministes, que es troben entre
els més difícils de caracteritzar.

Per una banda, tractem problemes inherents a l’estudi de sistemes quàntics i
del desenvolupament de noves tecnologies quàntiques. La física quàntica planteja
reptes formidables derivats de la complexitat exponencial amb la mida del sistema
considerat, en combinació amb una naturalesa intrínsicament estocàstica i la presèn-
cia de correlacions complexes entre elements del sistema. Per tractar alguns d’aquests
reptes, fem servir aprenentatge de reforç (“reinforcement leraning”), una tècnica de
l’aprenentatge automàtic capaç d’explorar grans espais d’hipòtesis. Per exemple,
empleant aquestes tècniques, s’ha aconseguit superar als millors jugadors del món
en jocs complexes com el Go, que presenten característiques similars a problemes
emergents en l’estudi de la quàntica. En el nostre cas, desenvolupem mètodes per
simplificar problemes complexes comuns en els camps de la matèria condensada i
de la informació quàntica de forma sistemàtica, i disenyem protocols robustos de
cal·libració d’ordinadors quàntics.

Per l’altra banda, ens dediquem a la caracterització de processos estocàstics com-
plexes, com és la difusió. Entendre els processos de difusió és essencial per desco-
brir els mecanismes físics i biològics que els governen, el que comporta l’anàlisi de
trajectòries estocàstiques descrites per partícules per tal d’extruere’n paràmetres sig-
nificatius del sistema. Aquest anàlisi, però, presenta grans reptes des de l’adquisició
de les trajectòries fins al seu estudi posterior que provenen, principalment, de la
combinació de la seva naturales aleatòria, amb la presència de dinàmiques com-
plexes i altres inconvenients experimentals, com ara el soroll. Utilitzant tècniques
d’aprenentatge automàtic, desenvolupem algoritmes per analitzar aquestes trajec-
tòries i extreure’n els paràmetres d’interès acuradament, fins i tot quan aquests can-
vien amb el temps. Després, utilitzem aquests algoritmes per estudiar diferents ex-
periments en sistemes biològics i, també, per estudiar les trajectòries descrites per
usuaris navegant una pàgina de comerç online. En aquest últim cas, en comptes
d’extreure paràmetres físics, inferim si l’usuari farà una compra abans de tancar la
sessió.
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Chapter 1

Introduction

1.1 The scope of this thesis

In this thesis, we focus on currently relevant open research questions and areas of
scientific interest, and identify consistent nuances and limitations therein that hin-
der the scientific progress. The main objective is to develop the necessary tools, in
the form of novel open-source algorithms and methodologies, to overcome these
challenges. Our goal is that these technological advancements serve as catalysts to
push forward the respective areas of research. For this reason, we take special care to
ensure accessibility and a broad impact, carefully packaging our contributions with
abundant teaching material.

With these principles, we not only seek a deeper understanding of nature, but
we also wish to actively contribute to the development of the scientific ecosystem
through tangible technological advancements. Hence, we frame the entire thesis
from this perspective, placing the emphasis on the influential role that emerging
technologies, particularly artificial intelligence (AI), play in science. We illustrate
how we harness the power of machine learning (ML), a sub-field of AI, to overcome
the challenges inherent in in our chosen fields of study: the development of quantum
technologies, and the study of diffusive processes.

1.2 Scientific research and technological development

Why focus on technological development? In our view, scientific and technologi-
cal development exist in a dynamic and symbiotic relationship, each propelling the
other to new heights of discovery and innovation. In scientific research, the for-
mulation of questions and the pursuit of knowledge are intrinsically related to the
available tools and resources. The continuous technological progress provides re-
searchers with increasingly sophisticated instruments and methodologies, expand-
ing the scope of what can be explored. Simultaneously, as science advances, unveil-
ing new phenomena and raising new questions, it motivates the development of in-
novative solutions. Furthermore, the advances of the boundaries of knowledge fuel
the evolution of new technologies. This reciprocal dynamic is particularly evident
at the forefront of research, where cutting-edge investigations require the creation of
novel tools and methodologies.

Throughout history, we encounter multiple prominent examples of such inter-
connection that have shaped the landscape of modern science, medicine, and our
very daily lives. Notably, the mid-20th century witnessed remarkable strides in the
fields of optics and photonics culminating in the birth of the laser [1]. Stemming
from Albert Einstein’s work on stimulated emission of radiation [2], the laser stands
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as one of the most transformative technologies of the past century. Beyond its eco-
nomic impact as a multi-billion dollar industry due to its countless applications, the
laser has been instrumental in groundbreaking scientific discoveries, such as the de-
tection of gravitational waves [3]. Additionally, it has paved the way for the explo-
ration of entirely new research avenues, for instance, enabling research in attosecond
physics [4]. Both examples recently laureated by the Nobel prize in physics in 2017
[5] and 2023 [6], respectively. Lasers also assume a pivotal role in the development of
quantum computers and simulators, as well as in advanced microscopy techniques,
which are of particular relevance for this thesis. Now, a compelling question arises:
what novel technological developments will arise from the insights gained in these
fields?

This interplay between scientific progress and technological innovation echoes
the development of the transistor [7], the cornerstone of modern electronics. Result-
ing from the exploration of semiconductors, and propelled by advances in quantum
and solid-state physics, the transistor catalyzed the development of computational
devices. Ever since their inception, computers have aided scientific research [8],
enabling the simulation of intricate phenomena, modeling complex systems, and
processing vast data sets with unprecedented efficiency. Furthermore, the ongoing
refinement of semiconductor-based technology has not only fueled the exponential
evolution of computers, but has also given raise to hardware accelerators, such as
graphics processing units (GPUs). These advances have been essential for the devel-
opment of the promising field of AI, which is reshaping the world and the scientific
landscape.

This interdependence continues to drive advancements that redefine the possi-
bilities within the scientific realm, as exemplified by the legacies of the laser and the
transistor. In this thesis, draw from the transformative potential that emerges when
scientific curiosity converges with technological ingenuity, designing AI-based tools
to push the frontiers of research across several fields in physics.

1.3 Scientific discovery in the age of artificial intelligence

In the past decade, AI has emerged as a major transformative force in our society. Its
influence extends across a wide range of domains, redefining how we work, com-
municate, and engage with the world. From smart navigation systems and per-
sonalized digital media content, to the advent of autonomous vehicles and virtual
assistants, AI has become an integral part of our daily lives. Beyond our individ-
ual conveniences, AI is revolutionizing entire industrial sectors by streamlining au-
tomation processes and and offering data-driven insights. In medicine, it plays an
ever-increasing role in diagnostics, drug discovery, and the creation of personalized
treatment plans, collectively contributing to improved patient outcomes.

Science is perhaps the domain where AI holds the potential for the most sig-
nificant impact.1 Fundamentally, the development of novel scientific insights and
theories is tied to the collection, processing and comprehension of data. AI plays
a crucial role boosting this kind of scientific progress by processing extensive data
sets, guiding exploration and hypothesis formation, and even providing tools for
autonomous discovery [9].

These techniques transcend scientific disciplines. The impact of AI-driven sim-
ulations reverberates across the scientific landscape, from molecular dynamics in

1Or so I (Borja) like to believe.
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chemistry [10] to climate modeling in environmental sciences [11]. AI-based meth-
ods to automatically collect, annotate, process and visualize massive data sets play
an essential role in fields ranging from astrophysics [12] to biochemistry [13]. AI-
based tools are indispensable to explore vast hypothesis spaces, such as the 1060

drug candidates [14] or the 10180 possible stable materials, to help us design new
molecules [15], identify new particles [16], or formulate new mathematical theories
[17, 18]. A monumental breakthrough in this context has been the development of
AlphaFold for the protein-folding problem [19], providing researchers with a com-
prehensive data base containing hundreds of thousands of protein structures that
includes the entire human proteome [20]. Furthermore, AI algorithms excel at draw-
ing hypotheses from observations to control or even suggest new experiments, for
example, to synthesize new compounds in automatic labs [21], prepare quantum
states [22], or control fusion reactors [23].

The influence of AI extends to the point of creating new paradigms of scientific
discovery. Examining the history of science, the first paradigm dates back thousands
of years ago, and it is based on the direct empirical observation of the patterns of na-
ture. The second paradigm is characterized by the theoretical description of nature
derived from empirical observations. It was consolidated in the seventeenth century
with the formulation of the laws of motion and gravitation by Sir Isaac Newton. Sub-
sequent prominent examples include Maxwell’s equations of electromagnetism in
the nineteenth century, and Schrödinger’s equation in the twentieth century. How-
ever, despite the precision with which these fundamental equations describe nature,
they are only analytically solvable in very simple scenarios. It wasn’t until digital
computers emerged later on that century, that these equations could be solved more
broadly, leading to the third paradigm of numerical computation.

Early in the twenty-first century, we have witnessed the emergence of the fourth
paradigm: data-intensive scientific discovery [24]. This paradigm focuses on devel-
oping technologies to extract scientific insights from vast amounts of data, recog-
nizing that data collection has far outpaced analysis capabilities. ML thrives in this
data-intensive ecosystem. For instance, it serves as an indispensable tool process-
ing hundreds of terabytes generated every second in particle collision experiments
[25], monitoring ecological environments in real-time [26], or even parsing the huge
corpus of scientific publications to identify new research avenues to explore [27] or
evaluate scientific achievements [28].

Currently, we find ourselves at what could potentially be the dawn of a fifth
paradigm [29]. As all the paradigms coexist and complement each other, funda-
mental equations continue to be solved at scale. These numerical solutions, akin to
highly accurate simulations of the natural world, come at a high computational cost.
However, their intermediate steps and details can be leveraged to train ML models
that can perform new calculations orders of magnitude faster with some trade-offs
in accuracy. This allows to, for example, study phenomena at longer time-scales
[30], or it may even enable the creation of hierarchies of simulations to reach previ-
ously unimaginable scales. What possibilities will this technology unfold for us in
the coming future?

AI stands as a vibrant field of research on its own. As it advances, novel tech-
niques gradually permeate the scientific domain from other contexts. For example,
the remarkable AlphaZero algorithm [31], which defeated the world champions in
chess, go and shogi in 2017, lead to the discovery of new matrix multiplication and
sorting algorithms half a decade later [32, 33]. Notable advances such as Google’s
BERT algorithm [34], initially developed to enhance their search engine, are cur-
rently used in protein design [35]. Moreover, similar principles derived from it have
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contributed to a deeper understanding of viral mutations, particularly those leading
to viral escape [36].

In conclusion, AI plays an increasingly important role in scientific discovery,
accelerating, enhancing and enabling research across disciplines. As it continues
to evolve, the synergy between AI and scientific research is poised to drive break-
throughs, shape new paradigms, and propel humanity to an era of unprecedented
knowledge and discovery.

1.4 The structure of this thesis

This thesis is organized in an introductory chapter followed by two main thematic
parts, each encompassing several chapters. In the introductory Chapter 2, we review
the main concepts of ML that lay the foundations to understand the subsequent parts
of the thesis. Starting from the fundamentals, we dive into advanced techniques and
algorithms.

In the first part of the thesis, we explore the application of ML algorithms to the
study of quantum physics and the development of quantum technologies. Start-
ing with Chapter 3, we provide an overview of the primary challenges inherent to
these fields and review notable applications of ML therein. Then, we proceed to in-
troduce our contributions to the field, both based on reinforcement learning (RL). In
Chapter 4, we present a method to systematically simplify and approximate complex
paradigmatic problems in the study of quantum many-body systems and quantum
information processing. In Chapter 5, we implement a scheme to design quantum
gates for superconducting quantum computers that are robust to noise.

The second part of the thesis is dedicated to the application of ML algorithms
in the study diffusion processes. In Chapter 6, we introduce the foundations of
diffusion and anomalous diffusion, as well as the role that ML algorithms play
in the characterization of diffusive trajectories. In Chapters 7 and 8, we present
novel ML methods developed to study diffusion trajectories with constant and time-
dependent properties, respectively. In Chapter 9, we investigate the diffusion pat-
terns of internet users browsing an e-commerce website to predict whether they will
purchase an item before closing the session.

Finally, we conclude with Chapter 10, where we provide an overview of the the-
sis and the conclusions extracted from each of the main parts.
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Chapter 2

Preliminaries

In this chapter, we review the main concepts of machine learning (ML) that are nec-
essary to understand the upcoming chapters of this thesis. We start by introducing
the fundamentals, followed by a few examples of typical learning schemes, to show
what "learning" actually means. We complement these basic concepts with more ad-
vanced ideas of great practical importance, such as what overfitting is and how to
avoid it. We proceed with an introduction to deep learning (DL), motivating its use,
and describing some of the most prominent architectures involved in the follow-
ing chapters. Finally, we finish with an introduction to reinforcement learning (RL),
featuring two prototypical algorithms that are used in Chapters 4 and 5.

Most of the content of this chapter is based on our book on ML for the quantum
sciences, and our practical hands-on ML course, both respectively accessible in Refs.
[37] and [38].

2.1 Fundamentals of machine learning

As science and technology advance, we encounter increasingly complex or abstract
problems that are hard to formalize mathematically. For instance, the problem of
face recognition in images cannot be easily presented in a formal mathematical way,
or tasks such as detecting new phases of matter may not even have a known mathe-
matical formulation. Hence, these types of problems cannot be effectively addressed
using standard hard-coded algorithms.

The field of ML emerges as a new paradigm to develop algorithms that are not
explicitly programmed, but learned from experience instead, typically in the form of
data. Fig. 2.1 provides a visual comparison between traditional programming and
ML. This process heavily relies on applied statistics, emphasizing the use of com-
puters to approximate complex functions. This trend continues with the rise of DL
[39], which employs parametrized hierarchical models to extract intricate patterns
from data, achieving remarkable accuracy across various tasks.

In short, an ML algorithm is an algorithm capable of learning from data. We can
consider a computer program to learn from experience with respect to some class
of tasks and performance measure if its performance in those tasks improves with
experience [40]. Hence, there are a few fundamental ingredients to any learning
algorithm:

A task to solve: Tasks are often defined in terms of how examples or data instances
should be processed. These are usually represented by vectors x ∈ Rn where
every entry is a feature. We show some typical ML tasks in Section 2.1.1.
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TRADITIONAL PROGRAMMING

PROGRAM
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MACHINE LEARNING
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COMPUTATION PROGRAM
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FIGURE 2.1: Comparison between traditional programming and ML. In traditional pro-
gramming, an input task and a program to solve it yield the desired result after some com-
putation. In the ML paradigm, an input task and data instances result in a program to solve

the task. The data can be, for instance, pairs of problem examples and their solutions.

A performance measure: A consistent quantitative measure of the ML algorithm’s
performance on the task. These metrics can range from simple direct com-
parisons between the obtained and expected output, to more involved and
task-specific functions.

Data (experience): A data set containing a collection of data instances, potentially
including the desired output y for each of them {(xi, yi)}. We consider dif-
ferent types of learning depending on the kind of data set the algorithm is
allowed to experience, as detailed in Section 2.1.2.

A model: The structure that encodes the resulting program. This can range from a
parametrized linear function, to a combination of deep neural networks (NNs).

In these terms, the learning process can be described as the iterative maximization
of the model’s performance on the given task and data.

2.1.1 Typical machine learning tasks

The main ingredient in the learning process is a task. It is important to distinguish
the objective task with the learning process itself. The latter is the process through
which the ability to develop the task is acquired. For example, if we would like a
robot to walk, walking is the task [39].

There are very diverse tasks that can be solved with ML. Here, we describe some
of the archetypical ML tasks that are related to the upcoming chapters of this thesis.

Regression: In regression tasks, we typically assume a relationship between two
variables of the form y = f (x). In general, the two variables can be multi-dimensional,
and the objective is to find the function f that relates them.

For example, given satellite images, we may be interested in predicting the tem-
perature of the soil. In this case, f would be a scalar function f : Rn 7→ R that takes
the vector of pixel values x ∈ Rn and outputs the temperature value y. Alternatively,
we may be interested in inferring additional properties from the same images, such
as the relative humidity, the population density, the level of pollution, etc. In this
case, the output is also a vector y ∈ Rm, and f : Rn 7→ Rm is a multi-dimensional
function. We find interesting regression problems in a wide range of fields, such
as sociology (e.g., annual salary as a function of years of working experience), psy-
chology (e.g., perceived happiness relative to wealth), finance (e.g., housing market
prices depending on socioeconomic factors) or in (quantum) physics and chemistry.
In Chapters 7 and 8, we consider regression tasks related to the biophysical charac-
terization of diffusion processes. The ML tasks involved in Chapters 4 and 5 also fall
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within the regression type, although, in these cases, they are components of a larger
ML setup, rather than the main objective.

In practice, we can neither optimize over the set of all possible functions nor
over the entire domain of x. Instead, we resort to a finite data set comprised of
tuples {(xi, yi)} for which we aim to find a model that maps every input xi to its
corresponding target yi. The regression model encoding f is usually predefined up
to some parameters, which imposes certain conditions or assumptions on f . Among
the simplest models, we can assume a linear relationship between the input and the
output, characteristic of linear regression. From there, the model can be extended to
increasingly more complex functions, as detailed in Section 2.2.2.

Classification: In classification tasks, the objective is to learn a function f that as-
signs an input x to a certain category or label y among a finite set of labels. Unlike in
regression tasks, these categories do not need to have a numerical meaning and we
typically assign them an integer index to encode them.

For example, given some movie reviews, we may be interested in telling apart
the positive (y = 0) from the negative (y = 1) ones. This is a binary classification
task in which the goal is to learn the function f : Rn 7→ {0, 1}, where x ∈ Rn is an
encoding of the text. We may be further interested in finding the genre the movies
belong to among k options, with f : Rn 7→ {0, . . . , k− 1}, which would correspond
to a multi-class classification task. We encounter classification tasks across multiple
fields, and they have served as benchmark tasks for the development of new ML
algorithms and models for years. Some prominent examples are the hand-written
digit classification task with the MNIST data set [41], featuring a class for every digit
from zero to nine, or the classification of various objects using the CIFAR [42] or Im-
ageNet [43] data sets, containing from 10 to 1,000 classes. In Chapters 7 and 9 we
respectively tackle multi-class and binary classification tasks related to the study of
sequential data.

While regression and classification tasks stand as the most common and paradig-
matic examples in the field of ML, the zoo of possible tasks is both varied and exten-
sive. Beyond these archetypal tasks, we encounter multiple examples that illustrate
the versatility of ML techniques, such as text translation, text transcription from im-
ages or sounds, imputation of missing values (e.g., image reconstruction), anomaly
detection, and denoising, among others.

2.1.2 Types of learning

Another crucial factor in the learning process is data, and its accessibility often de-
termines the types of learning we can consider. The notions of task, as presented in
the previous section, and data are intertwined: certain tasks can only be solved if
sufficient data is available and richer data enables the seamless transition between
tasks. In the ML field, we typically refer to data in terms of a data set D, containing
a finite amount of data instances often called data points or examples xi. The data set
may exclusively contain the data instances, D = {xi}, or they may also be accom-
panied by predefined labels or targets yi, forming tuples D = {(xi, yi)}. In some
cases, the data points can be organized into a design matrix X, formed by stacking
{xi} either row- or column-wise.

Each element of every data point xi is known as a feature, and it is a descriptor of
a specific aspect of the example. Selecting the right features to characterize the ob-
ject of interest can be challenging: too few might fail to capture all relevant aspects,
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whereas too many can lead to spurious correlations that interfere with the conclu-
sions drawn from the data. Additionally, the data can be arbitrarily processed and
transformed, for instance, subtracting the mean of every feature across the data set
D from each data point prior to any further analysis. Determining the right data
representation is a central problem in ML, as it is essential to perform any task, and
it is the core of the field of representation learning. In Chapter 9, we delve into
this topic, exploring different methods to represent stochastic trajectories of inter-
net users browsing an e-commerce website, and extracting meaningful information
from the engineered features.

In general, the type of available data effectively defines the types of learning our
model can be faced with. These are usually divided into three categories: super-
vised, unsupervised, and reinforcement learning.

Supervised learning: Supervised learning can be understood as a generalized no-
tion of regression and classification. It refers to ML algorithms that learn from labeled
data D = {(xi, yi)}. There exist various approaches to supervised learning, span-
ning from statistical methods to classical ML and DL. In this thesis, we employ
supervised learning throughout Chapters 7 to 9 to address regression and classifi-
cation tasks of stochastic trajectories. In most of these cases, substantial amounts
of data are required for the training process, which entails the accurate labeling of
the data. This is usually considered one of the most significant drawbacks of super-
vised learning, as obtaining perfectly matched labels are not always feasible or may
require the manual addition by humans.

Unsupervised learning: While labeled data may be scarce, we often have access to
large amounts of raw unlabeled data D = {xi}. In this case, we can employ unsu-
pervised learning, which refers to ML algorithms that learn from unlabeled data. Un-
supervised learning can either be used for preliminary pre-processing steps, such as
dimensionality reduction, or for representation learning, as in data clustering. Fur-
thermore, it can be used to learn the underlying probability distribution of the data
and generate entirely new examples. In Chapter 8, we use unsupervised learning
to identify clusters in our predictions, which are related to different diffusive states
of the particles. In Chapter 9, we explore different unsupervised dimensionality re-
duction techniques in our feature analysis. Finally, we show how to learn the data
distribution from text to write new pieces in our open ML course and our tutorial
about language modeling, accessible in Refs. [38] and [44], respectively.

Reinforcement learning. In contrast to the two previous types of learning, some
ML do not rely on a fixed data set D. For instance, in RL, we usually do not even
have a data set available at all from the beginning. Instead, the learning algorithm
interacts with an environment in a feedback loop to accomplish a given task. The data
set is gradually shaped as the learning system collects experiences derived from
these interactions. Different RL algorithms manage the collected data differently,
although it is always leveraged to achieve the objective task. We employ different
RL algorithms in Chapters 4 and 5, which are thoroughly introduced in Section 2.3.
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2.1.3 Learning as an optimization task

The final components of the learning process are the performance measure and the
model. The model encodes the structure of the resulting program, and it is typi-
cally a function of the data, f (x), whose output depends on the task. For example,
it can be a class from a discrete set of possible classes in a classification task, or a
complex-valued tensor in a regression task. Finding the function that provides the
best mapping between the data and the desired outcome for a specific task is at the
heart of ML. The model is usually characterized by a set of parameters θ, and all its
possible parametrizations form the set of functions known as the hypothesis space.

The performance measure objectively quantifies the model’s performance in a
given task. For example, in a classification task, we may consider the accuracy, which
is the proportion of examples for which the model outputs the correct result. We can
obtain the same information with the error rate, which is the proportion of missclassi-
fied examples. In a regression task, we may consider the absolute difference between
the model’s output and the desired value averaged over all data points, known as
the mean absolute error (MAE).

We distinguish between metrics and loss functions. The former are performance
measures that provide valuable information but may not be smooth, such as the
accuracy. Conversely, the latter may not be as informative, but they are always dif-
ferentiable, such as the MAE. Typically, loss functions quantify the errors performed
by the model such that smaller losses translate into better models. For example, in
Chapters 4, 7 and 8, we use the MAE as loss function for the regression tasks tackled
therein, defined as

LMAE =
1
n

n

∑
i
|yi − f (xi)| , (2.1)

where n is the size of the data set and yi is the expected value for each sample xi. For
the classificationt asks involved in Chapters 7 and 9, we use the cross-entropy loss
function:

LCE = − 1
n

n

∑
i

yT
i log( f (xi)) . (2.2)

In these cases, f (xi) is a vector containing the probability that the data point xi be-
longs to each of the possible classes, and yi is the one-hot-encoding vector of the true
class, e.g., yi = [0, 0, 1, 0]T encodes the third class in a four-class classification prob-
lem. The absolute value of LCE does not provide a clear idea of the model’s perfor-
mance, unlike the accuracy, but it is a smooth function in its domain.

Machines “learn” by minimizing the loss function L, over the training data set,
i.e., the data available during the learning process. Formally, the objective is to find
the optimal model parameters θ∗ in the hypothesis space that minimize L. The min-
imization is usually performed by gradient-based techniques, hence the emphasis
on the differentiability of L. Therefore, learning becomes an optimization process.

2.1.4 Capacity, overfitting and underfitting

The central challenge in ML is to ensure the model can generalize well. This means
that the resulting model should perform effectively on new data, never seen during
the learning process. While learning, also known as training, our algorithm has ac-
cess to the training data, as briefly introduced in the previous section. This allows
us to quantify the performance over the so-called training set, obtaining a training
error. To assess the generalization capabilities of the model, we hold out some data
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FIGURE 2.2: Schematic depiction of under- and overfitting. (a) When the model capacity is
too low, it cannot fit the training data. (b) When the model capacity is adequate for the task,
the fitting is optimal. (c) When the model capacity far exceeds the complexity of the task,

the model overfits, resulting in a low training loss at the cost of poor generalization.

from the training process, forming a test set, and measuring the performance on this
previously unseen data. This provides a test or generalization error. What distin-
guishes ML from mere function fitting is that in ML the goal is to keep both the
training and test errors low, ensuring the proper generalization of the model.

Given that the parameter optimization of our model is performed in the train-
ing set, the expected test error is higher or equal than the expected training error.
Their difference is known as the generalization gap, and it persists even when the
training and test data are generated by identical probability distributions. Indeed, it
may only disappear in the limit of infinite data. Hence, the overall performance of
an ML model can be evaluated considering two factors: the training error and the
generalization gap, which should both be as small as possible.

These two factors are related to two main challenges of ML: overfitting and
underfitting. In short, underfitting occurs whenever the training error is not low
enough, meaning that the model is unable to successfully develop the task. Overfit-
ting is characterized by a large generalization gap, which is often the result of a low
training error combined with a high test error. In these cases, the generalization is
hindered by the model learning the specific details of the training data, rather than
capturing the main patterns. Fig. 2.2 shows a schematic depiction of both phenom-
ena.

The tendency of the model to under- or overfit can be tuned by changing the
model’s capacity. The capacity can be loosely understood as the measure of a model’s
ability to fit a wide variety of functions [39]. Models with low capacity may be
unable to fit the training set, resulting in underfitting (Fig. 2.2(a)). On the other
hand, models with a capacity much higher than required for the task tend to overfit
(Fig. 2.2(c)), typically adjusting to the particularities of the training set, which may
not be true for the general distribution. The challenge is to find the capacity that is
“just right” for the task (Fig. 2.2(b)).

To address this challenge, the data set can be further split to include a valida-
tion set, resulting in three subsets: training, validation and test sets. The validation
set serves as pseudo-test set to evaluate the model’s generalization capabilities and
adjust its hyper-parameters, which may impact its capacity. For example, the capac-
ity can be controlled by constraining the model’s hypothesis space. In the case of
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a linear regression model, the hypothesis space contains all linear functions. Gen-
eralizing the linear model to include polynomial functions up to the k-th degree
effectively increases its capacity, as demonstrated in our course [38]. Adjusting the
maximum polynomial degree allows the fine-tuning of the model’s capacity. In DL
architectures, introduced in Section 2.2, the capacity can be adjusted by tuning the
number of neurons and their connections.

Hence, the model learns from the data in the training set, and its hyper-parameters
are tuned based on the generalization gap between the training and validation sets.
This process may involve multiple training iterations as the model is being adjusted.
Finally, the model’s performance is evaluated in the test, providing a real measure
of its performance on unseen data.

2.1.5 Regularization

In the previous section, we have shown that adjusting the model’s capacity can im-
prove its generalization. In general, every modification of the model with the goal
to improve generalization, even if it leads to higher training error, is categorized as
a regularization technique.

Regularization can be conceptualized in terms of Occam’s razor or the principle
of parsimony, which state that among competing hypotheses that explain known ob-
servations equally well, one should choose the simplest one [39]. Besides its philo-
sophical motivation, adhering to this principle often yields better results in practice.
Among models with comparable training performance, the simplest model tends to
generalize the best [45].

A common approach to enforce these principles is by restricting the model’s ca-
pacity. However, rather than enforcing it beforehand, we can introduce a penalty
in the training loss function that is proportional to the magnitude of the model’s
parameters, known as weight decay [46, 47]. This kind of penalty ensures that an in-
crease in model complexity only occurs when justified by a significant performance
improvement. A widely used weight decay technique is L2 regularization, which
introduces a term proportional to the modulus square of the model parameters to
the training loss function:

Lreg = Ltrain + λθTθ , (2.3)

where λ is a hyper-parameter that adjusts the relative strength of the regularization
term. We use this kind of weight decay to train the DL models in Chapters 7 to 9.
Notably, L2 regularization is efficiently implemented as the gradient of the regular-
ization term is directly proportional to the parameter vector itself.

Nevertheless, regularization techniques extend beyond adjusting the model’s ca-
pacity. One example is early stopping, which consists on halting the training process
whenever the validation loss consistently shows signs of increase, indicating a po-
tential overfitting. Shown to be highly effective [48], we leverage early stopping to
train the DL models in Chapter 9.

Other regularization techniques target the way that models process the training
data to enhance their generalization capabilities as well as to make them robust to
the inherent nuances of real-world applications. Data augmentation consists on gener-
ating additional synthetic data by applying diverse affine transformations to every
data point [49]. For example, in computer vision tasks, images can undergo rota-
tions, stretches, crops, zooms, and more. This strategy not only expands the training
data set, but also makes the model robust to such kind of transformations common
in real-world scenarios. Another technique, dropout [50], omits randomly selected
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features from every data point during the training process. This concept can extend
beyond data points to every part of the model itself, such as between layers in DL
architectures. By randomly removing bits of information that propagate through the
model, dropout prevents it from relying on specific patterns in the training data and
improves its resilience to incomplete information. In Chapters 7 and 8, we use both
data augmentation and dropout to train the DL models. The data augmentation is
performed by adding different kinds of noise to the samples during training.

2.2 Deep learning

Deep learning (DL) stands as a specialized branch of ML methods based on repre-
sentation learning. As alluded to in the previous sections, representation learning
comprises the methods that automatically discover the appropriate data representa-
tions to conduct a task. DL methods adopt a hierarchical structure featuring multi-
ple levels of representation. These emerge from the composition of simple yet non-
linear modules that transform the representation at one level into a representation at
a higher, more abstract level. Through the composition of enough such transforma-
tions, DL models can learn very complex functions [51–53].

These abstract representations and transformations can be naturally represented
by neural networks (NNs). The architecture of these NNs dictates the information
flow, which is often organized in layers composed by neurons that do not share con-
nections among themselves. The values of the neurons in a layer, commonly referred
to as activations, encode a representation of the data. Then, the connections between
neurons of a layer with those in adjacent layers encode the transformations applied
to the representations.

2.2.1 Challenges motivating the use of deep learning

One of the main challenges of ML is the generalization to new examples with high-
dimensional data. Indeed, many ML tasks become exceedingly difficult when the
number of dimensions in the data is high, known as the curse of dimensionality [39].

The curse of dimensionality imposes a significant statistical challenge, primar-
ily stemming from the vast number of potential data configurations far surpassing
the available examples. For instance, consider the task of learning the probability
distribution of the data. A straightforward approach consists on build a histogram
partitioning the space into a grid. Given a new data point x, it can be assigned a
probability density based on the grid cell it belongs to within the histogram. While
this approach may be effective for low-dimensional data, there is an exponential de-
cay in the number of samples per grid cell with the data dimensionality, resulting
into sparse histograms with numerous empty cells. As discussed in our ML course
[38], attempting to learn the probability distribution of the MNIST data set [41] com-
posed of 28× 28 images is effectively impossible with this method even in its bina-
rized form (black or white pixels). The 784-dimensional data yield approximately
2784 ≈ 10236 possible configurations. Thus, even if every atom in the observable uni-
verse served as a training sample (estimated around 1080), the resulting histogram
would remain extremely sparse assigning null probability almost everywhere. Re-
markably, DL models overcome the curse of dimensionality, showcasing their ability
to generate high-resolution coloured images and videos [54, 55].
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Traditional ML algorithms typically impose local constancy or smoothness in
the functions they learn, such that f (x) ≈ f (x + ε) for small ε. For instance, the k-
nearest neighbours [56, 57] or random forest (RF) [58] algorithms partition the space
into constant-valued regions, akin to the previous histogram example. Nevertheless,
these approaches usually require order O(m) training examples to discern O(m) re-
gions in the space. This limits their capacity to learn complex functions with more
distinct regions than learning examples and generalize well in high-dimensional
data. In contrast, DL models impose additional explicit or implicit assumptions,
also known as biases, to the functions they represent, which introduce further de-
pendencies between distinct regions. For instance, a typical assumption is that the
data follows a distribution generated by the composition of factors. This allows DL
models to distinguish up to O(exp(m)) regions with only O(m) training examples
[52, 53], enabling their generalization in high-dimensional data. Introducing further
task-specific biases can improve generalization even further. For instance, designing
DL models that respect the symmetries of the problem, such as translational or per-
mutational invariance in convolutional neural networks (CNNs) and transformers,
respectively, introduced in the upcoming Section 2.2.2.

Many ML scenarios only present relevant variations in low-dimensional mani-
folds, despite featuring vast high-dimensional spaces. In the ML terminology, man-
ifolds refer to connected sets of points that can be effectively approximated with a
small number of degrees of freedom in a higher-dimensional space [39]. Typically,
the entire space consists of mostly invalid inputs, except for a few manifolds con-
taining a small subset of points. Meaningful variations in the target function occur
exclusively either along these manifolds or in their intersections. To illustrate it, let
us recover the MNIST example of images of hand-written digits. Among all the
possible pixel combinations, only a few yield sensible images where a digit can be
recognized. Indeed, randomly sampled pixels resemble static noise, which deviates
significantly from the highly structured images encountered in real life and practical
ML applications. Intuitively, we can visualize the manifolds of all possible images
for every digit, and meaningful changes in the output function happen when tran-
sitioning from one manifold to another, as the image label changes accordingly. DL
models excel at capturing and efficiently navigating such low-dimensional mani-
folds [59].

2.2.2 Deep learning architectures

In this section, we present the different NN architectures implemented across the
upcoming chapters of this thesis.

Fully-connected neural network

Fully-connected NNs, also called feedforward NNs or multi-layer perceptrons rep-
resent the fundamental architecture in DL. These networks are arranged in a se-
quence of layers of neurons, where connections exist only between neurons in adja-
cent layers, as illustrated in Fig. 2.3(a).

We distinguish three types of layers. The input layer contains the data values,
such as pixel values of an image, or the position coordinates of a moving particle.
The output layer contains the final value, which could be a real-valued vector for a
regression task, or the encoding of a set of possible classes in a classification task,
for instance. In practical applications, we mostly interact with the input and output
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FIGURE 2.3: Schematic representation of a fully-connected NN. (a) Typical fully-connected
NN architecture with a single hidden layer. (b) Schematic representation of a single neuron,

showing the computation performed within and the information flow.

layers. Consequently, all the layers between them are known as hidden layers, which
conduct additional computations to produce the desired result in the output layer.

Individual neurons perform simple calculations based on the signals received
from the neurons in the preceding layer, as illustrated in Fig. 2.3(b). Typically, a
neuron conducts a linear transformation followed by a non-linear activation function
ς of the form:

z = wTx + b (2.4)
x = ς (z) . (2.5)

Here, x denotes the values or activations of the neurons in the preceding layer, and
the connection strength with each neuron in that layer is captured by the parameter
vector w, commonly known as the weights. The neuron incorporates a bias b, and
the resulting value of the linear transformation z is known as the logit. Finally, the
resulting activation x of the neuron is determined by applying the non-linear activa-
tion function ς to the logit. This activation is then transmitted to the neurons of the
subsequent layer, where an analogous computation is performed.

The activation function can take the form of any non-linear function. Frequently,
functions that are both computationally efficient and differentiable are preferred.
Two commonly used choices include the rectified linear unit, often abbreviated as
ReLU:

ς(z) = max (0, z) , (2.6)

and the hyperbolic tangent:

ς(z) = tanh(z) =
ez − e−z

ez + e−z . (2.7)

In this thesis, we extensively use the former in all DL models, and the latter in Chap-
ter 5. While these activation functions are common for hidden layers, output layers
typically have activation functions specific to the task. In classification tasks, the
output layer provides a probability distribution over the possible layers, which is
achieved with a softmax activation function:

ς(zi) =
ezi

∑k ezk
, (2.8)

where zi denotes the logit of the i-th neuron in the layer. In regression tasks where
the output is bound within a known range, the sigmoid activation function is very
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convenient, as it can be scaled and offset to match the range:

ς(z) = ∆
1

1 + e−z + c , (2.9)

where ∆ and c are a scale factor and offset pre-determined by the task. We employ
softmax and scaled sigmoid activation functions in Chapters 5, 7 and 8.

The activation of all neurons in layer ℓ can be computed in parallel by organizing
the weights and biases of each neuron into a weight matrix W and bias vector b, and
then applying the activation function element-wise:

x(ℓ) = ς
(

W (ℓ)x(ℓ−1) + b(ℓ)
)

. (2.10)

In typical NN diagrams, such as the one in Fig. 2.3(a), the connections between fully
connected layers encode such a linear transformation. Consequently, these layers are
also commonly referred to as linear layers, despite the posterior non-linear activation
assumed to occur in the neurons themselves.

We employ small fully-connected NNs in Chapters 4, 5 and 9. However, the
modular nature of NNs enable the combination of different kinds of layers in the
same architecture. Fully-connected NNs serve as key components to other archi-
tectures, typically used in the final parts to produce the output layer, as we do in
Chapters 7 and 8.

Convolutional neural network

Convolutional neural networks (CNNs) [60] are a special kind of NNs with restricted
connectivity between neurons in adjacent layers. Importantly, the majority of the
weights are shared, forming the so-called filters or kernels of a fixed size. Every fil-
ter is characterized by a learnable weight pattern that is replicated along the entire
preceding layer. This design leads to a highly local connectivity as well as a reduc-
tion in the number of weights compared to the fully-connected NNs, as illustrated
in Fig. 2.4(a). Notably, the number of weights is independent of the layer size, which
includes the size of the data, and it is solely determined by the number of filters and
their size.

The outcome is akin to convolving these filters with the activations from the
previous layer, thereby giving the network its name. We present an illustrative
representation of the activations resulting from applying a 2-dimensional filter in
Fig. 2.4(b). Typically, the activations of every individual filter are combined together
such that the following layer receives as many activations as filters. In practice,
the different filters typically specialize in recognizing specific patterns, such as the
upper-left corner in the example from Fig. 2.4(b). The activation of the filter is max-
imal whenever it encounters the same pattern in the preceding layer’s activations.
While filters are typically small relative to the size of the data, and thus are restricted
to detect simple and small patterns, the composition of multiple such convolutions
enables the detection of increasingly complex patterns [42].

CNNs usually feature different layer combinations, and a prominent technique
is the incorporation of residual paths [61]. Rather than sequentially processing the
data directly from one layer to another, we establish two parallel paths for the infor-
mation to propagate through the network: a convolutional path, where the convo-
lutions are performed, and a so-called identity path, where the operations are kept
at a minimum. The identity path allows the unrestricted information flow through
the network, which enables the use of deeper architectures [62]. Every few layers,



16 Chapter 2. Preliminaries

(b) (c)

KERNEL

=

(a)

Conv 3

Conv 3
Conv 1

INPUT

OUTPUT

FIGURE 2.4: Convolutional neural networks. (a) Schematic representation of a single filter
of size 3 with weights w = [w0, w1, w2]. The green neurons contain the activations of the
filter replicated along the previous layer. (b) Illustration of a 2-dimensional convolution.
The filter or kernel, is a 3 × 3 weight matrix that scans the input with stride 2, meaning
that there is a separation of 2 points between consecutive steps, as exemplified by the red
and green squares. The filter activation is maximal when the input presents a pattern that
resembles its own. In this case, it is in the red square. (c) Schematic representation of a
residual block. The input data follows two parallel paths: the convolutional path (left) with
two consecutive convolutions, and the identity path (right), which performs a convolution
with a 1-dimensional filter to match the output dimension from the convolutional path. The

outcome of both paths is finally added together.

the outcome of both paths are combined, and we call the collection of layers be-
tween consecutive additions a block. We show an illustration of the residual blocks
employed in Chapters 7 and 8 in Fig. 2.4(c). The convolutional path contains two
consecutive convolutional layers with filters of size 3 and an activation function in
between. In contrast, the identity path involves a single convolution with filters of
size 1, capable of only rescaling the data. However, it serves as a mechanism to
match the shape of the convolutional path for the posterior addition. At the end of
the block, there is another activation function following the addition.

Recurrent neural network

Recurrent neural networks (RNNs) are class of NNs designed to process data se-
quentially. RNNs are autorregressive models, meaning that they have connections
that form directed cycles, allowing them to preserve information from previous time
steps as they advance through the data. This strcture allows them to capture tempo-
ral dependencies and learn patterns that evolve over time. Therefore, these networks
are particularly well-suited to develop tasks that involve sequential data, such as
time-series analysis or natural language processing (NLP), as we show in the exam-
ple of Fig. 2.5.

At every time step, RNNs generate a hidden vector besides the regular output
dedicated to the task, as illustrated in Fig. 2.5. The hidden vector is autorregressively
fed back into the network to be processed along the input data in the subsequent
time step. This mechanism enables the model to retain a memory of past time steps.
In its simplest form, the RNN consists of a single linear layer that takes the current
data xt and the previous hidden vector ht−1 as input, and produces a new hidden
vector ht and an output ot for the task.[

ht
ot

]
= ς

(
W
[

ht−1
xt

]
+ b

)
. (2.11)

Here, the hidden vectors are concatenated with the data and the output in flattened
vectors. Notice that the model parameters W and b remain constant with time.
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FIGURE 2.5: Pictorial representation of an RNN. The RNN sequentially processes the input
data "May the Force be". At every step, it outputs the probability that word “W” is the
next word conditioned the all the previous words. Additionally, the RNN outputs a hidden
vector ht that is used in the next time step, together with the next bit of input data, to perform
the following prediction. The RNN carries the memory of the past time-steps in the hidden

vectors that are fed autorregressively at every time-step.

While traditional RNNs provide a mechanism for capturing sequential patterns,
they often face challenges in learning long-term dependencies. To address this is-
sue, more advanced RNN architectures, such as long short-term memories (LSTMs)
[63] and gated recurrent units (GRUs) [64], have been developed. LSTMs introduce
memory cells and gating mechanisms that allow the network to selectively store
and retrieve information over longer sequences. GRUs incorporate similar simpler
gating mechanisms to control the flow of information, providing a balance between
model complexity and effectiveness in capturing long-range dependencies. While
both yield superior performance, there are no evident differences between both
models [65]. In Chapter 7, we implement both LSTMs and GRUs, and, given no sig-
nificant performance differences, we choose to work with GRUs due to their lower
complexity. Conversely, we extensively employ LSTMs in Chapter 9.

Transformer

Transformers are a type of NN architecture that relies on a self-attention mechanism
to capture dependencies between the different parts of the input data [66]. The self-
attention, also known as scaled dot-product attention, allows the model to weigh
the importance of different elements in the input data point relative to a particular
element. These elements are features of the input data, which can range from the
value at every time-step in a time series, to pixel patches in images. The model
associates three vectors to every element: a key, a query, and a value, which are
stored in the K, Q, and V matrices respectively. These vectors are typically extracted
by processing every element with a different shallow trainable NN for each. The
query vector of every element is compared with the key of the rest via a dot product
to measure how much weight should be put in those relative to the current element.
The value associated to this element is the weighted sum of the values based on the
query-key similarities. All the similarities and weighted sums can be performed at
once with the following expression:

Attention(Q, K, V) = Softmax
(

QKT
√

dk

)
V , (2.12)

where dk is the size of the key vectors. This mechanism allows transformers to cap-
ture patterns at all scales in the input data, unlike CNNs that are limited to local
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FIGURE 2.6: Transformer encoder architecture. The transformer encoder block is formed by
two residual components followed by a layer normalization. The first one performs a multi-
head attention on the input, and the second one applies an element-wise fully-connected

NN, meaning that every element receives the same transformation.

correlations, and RNNs that struggle with long-range correlations.
The original transformer architecture consists of two main parts: an encoder and

a decoder. Nevertheless, they can be used as elements of other DL architectures,
as well as in encoder- and decoder-only models that can tackle different tasks. In
this thesis, we focus on the encoder, illustrated in Fig. 2.6 as originally introduced
in [66], which we use in Chapter 8 in combination with CNNs. The encoder block
starts with a multi-headed attention layer in parallel with an identity path, similar
to the residual networks from Fig. 2.4(c). The multi-headed attention layer performs
multiple parallel executions of the self-attention mechanism from Eq. (2.12) with
different parameters and concatenates the outputs together. The output is added to
the identity path and the result is normalized. Finally, the result is processed by a
point-wise fully-connected NN with the same residual scheme, which applies the
same transformation to every element in the upcoming data. We refer to our hands-
on live tutorial [44] for a thorough introduction on the transformer decoder and
decoder-only language models, such as generative pre-trained transformers (GPTs)
[67].

2.3 Reinforcement learning

Among the three types of learning introduced in Section 2.1.2, reinforcement learn-
ing (RL) [68] stands out as the most unique in multiple aspects. While typical super-
vised or unsupervised ML scenarios involve extracting significant patterns from the
data to, e.g., infer labels, predict certain values or identify clusters, RL focuses on the
idea of learning strategies.

The supervised learning framework can be envisioned as a scenario where a
student learns from a teacher who possesses the knowledge to all correct answers
within a given domain. However, this setup has inherent limitations, as the student
can never surpass the teacher’s expertise or tackle questions beyond its domain. To
overcome these limitations, RL removes the figure of the teacher and allows the stu-
dent explore and learn from the resulting experience. We refer to the student as the
agent, as it can actively take actions. Just like us, humans, the agent learns from the
interaction with an environment, understands the consequences of its actions, and
formulates strategies to accomplish specific tasks.

Framing problems as games to discover strategies on holds great potential across
multiple applications. This approach naturally fits control problems, although we
can design games to accomplish more abstract tasks, from designing new quantum
experiments [22] to faster matrix multiplication or sorting algorithms [32, 33]. In
this section, we introduce the basic formalism of RL and the main algorithms used
in Chapters 4 and 5.
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FIGURE 2.7: Overview of the basic RL setting. The agent receives an observation from the
environment. Given the observation, it chooses to perform an action according to its policy.
The environment determines the outcome of the action, and it returns an observation to the

agent consisting of the new state and a potential reward.

2.3.1 Foundations of reinforcement learning

The general setting of any RL problem consist of two main elements: an agent, and
an environment that it interacts with, as illustrated in Fig. 2.7. The environment con-
tains all the information defining the problem at hand, e.g., the rules of a game, and
it provides the agent with observations and feedback according to its actions. The
environment defines the set of all possible states, S , which can range from an empty
set, in the case of a stateless environment, to a multi-dimensional continuous space.
For example, these could be all the possible configurations of a board game or all the
possible combinations of joint angles in a robot.

The agent can observe (sometimes only partially) the state s of the environment,
and it can choose to perform an action a, which may include the possibility to re-
main idle. The action is chosen from the set of possible actions, a ∈ A, defined by
the environment and can be state-dependent. For instance, the action of pushing
forward a pawn in chess is only possible if there is a free position in front of it. The
actions may alter the state in which the environment is found, and they can have
deterministic or stochastic outcomes. In the chess example, all the actions are de-
terministic. In contrast, in the case of a walking robot, the action to move forward
may have different results: it can succeed in doing so, the robot may trip, or it may
even remain idle with a certain probability due to a hurdle or malfunctioning. This
information is encoded in the environment, and the agent may not have access to it.

Nevertheless, every time the agent performs an action, the environment provides
it with an observation of the new state together with a feedback signal called reward,
r. The reward can take any numerical value, and it may depend on the previous
state, the new state, and the action that was taken. The main purpose of the agent
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is to maximize the obtained rewards through its actions. Hence, the agent obtains
higher rewards when accomplishing the objective task or progressing toward the
goal, e.g., winning a game, while it might receive penalties when performing harm-
ful or bad actions, e.g., losing a game.

More precisely, the agent aims to maximize the discounted return, and it is there-
fore the quantity that defines the RL task. The return is the weighted sum of the
collected rewards. At a given discrete time t, the agent observes a state st, and per-
forms an action at. This leads to a new state st+1 and a reward rt+1. The discounted
return from time t is the weighted sum of future rewards until the final time T:

Gt =
T−t−1

∑
k=0

γkrt+k+1, (2.13)

where the discount factor γ ∈ [0, 1] weights the rewards according to their tempo-
ral separation, penalizing those that are obtained far into the future. This concept
draws inspiration from human psychology, and it mimics our daily observation that
far-term rewards, even if high, are less desired than near-term ones, e.g., we favor
procrastinating instead of reading this thesis. We can distinguish two limits: for a
small discount factor, γ → 0, the return becomes myopic and immediate rewards
predominate over any other possible future ones. On the other hand, large discount
factors, γ → 1, result in equal weights for early and late rewards, which encourage
long-term oriented strategies.

The central objective of any RL problem is to learn the optimal policy, π∗, that
maximizes the discounted return. A policy, π, dictates which actions to take given
the observations, and thereby defines the strategy followed by the agent. In general,
the policy can take any form, as we show in forthcoming sections. For example, it
can be a table assigning the best possible action to every possible state or an ML
model that, given a state, provides a probability distribution over all the possible
actions. In all cases, the learned policy is specific to the task, and it strongly depends
on the reward function and the discount factor.

Markov decision processes

RL is mostly formulated with the underlying mathematical structure of Markov de-
cision processes (MDPs). MDPs provide a general framework for modeling environ-
ments where a sequentiality notion exists between states. In such environments, the
Markov property holds, meaning that the future is independent of the past given the
present. In essence, this property asserts that the current state is a sufficient statistic,
containing all the required information relevant to the possible evolution of the envi-
ronment. In particular, the Markov property implies the absence of memory effects
from previously visited states. Formally, at any time step t,

p(st+1|s0, . . . , st) = p(st+1|st). (2.14)

Mathematically, an MDP is a tuple (S ,A, p, G, γ), respectively denoting the state
space S , the action space A, the dynamics p, the set of total returns G, and the dis-
count factor γ. In this formalism, the return G, together with the discount factor γ,
determines the objective, and p describes the environment dynamics,

p(s′, r|s, a) = p(st+1 = s′, rt+1 = r|st = s, at = a) , (2.15)
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which corresponds to the joint probability of observing a new state s′ and obtaining
a reward r by performing action a in state s. In fully deterministic environments,
p(s′, r|s, a) is either zero or one.

From Eq. (2.15) we can derive all the relevant information about the environ-
ment. For instance, state-transition probabilities are a central quantity in many RL
algorithms:

p(s′|s, a) = ∑
r

p(s′, r|s, a) . (2.16)

Furthermore, it allows us to determine the reward functions. In the most general
form, the reward is jointly determined with the state s′, as shown in Eq. (2.15).1 How-
ever, in many cases, we may need to consider the expected rewards for state−action
pairs and state−action−next-state triplets:

r(s, a) = ∑
r

∑
s′∈S

rp(s′, r|s, a) , (2.17)

r(s, a, s′) = ∑
r

r
p(s′, r|s, a)
p(s′|s, a)

. (2.18)

In the iterative interaction between agent and environment, the agent chooses
the actions according to a policy. In its most general form, the policy is a mapping
from state to the probability of performing each possible action. In the limit of de-
terministic policies, π(a|s) is one for a single action and zero for the rest. During
the learning process, the policy is improved based on the experience gathered from
the interaction with the environment to achieve the goal. This interaction generates
trajectories of the form

s0, a0, r1, s1, a1, r2, s2, a2, . . . , sT ,

where all states, actions and rewards are random variables. This way, the agent
performs a trajectory through the state-action space τ = a0, s1, a1, . . . , sT with proba-
bility

p(τ) =
T−1

∏
t=0

p(st+1|st, at)π(at|st) , (2.19)

starting from an initial state s0. We denote the discounted return associated to the
trajectory as G(τ) = ∑T−1

t=0 γtrt+1.
This entire formalism holds assuming the Markov property from Eq. (2.14), which

implies that the environment is memory-less. However, we may encounter situa-
tions in which the environment has certain memory effects. In these cases, we may
recover the Markov property by considering an extended state space that already
includes the memory. In return, this implies that even deterministic Markovian dy-
namics on the full state space can give rise to non-deterministic and non-Markovian
dynamics on the smaller state space.

Value functions and Bellman equations

As we mention in the previous sections, the goal in RL is to find the optimal policy
π∗ that maximizes the return, introduced in Eq. (2.13). Such a clear objective allows
us to define value functions that estimate how convenient it is for the agent to be in
a given state or to perform a certain action to accomplish the task. For instance,

1In stochastic environments, the reward can be inherently sampled from a probability distribution.
Consider the game of blackjack: with the same hand (state) the action of settling may have different
rewards depending on the opponent’s hand (environment). Hence, the reward is stochastic.
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consider the case in which we are looking for a treasure on a map. Being one step
away from the treasure is, overall, much better than being ten steps away. However,
not all actions in the close position are equally good, provided that one leads to the
treasure but the others move away from it. This is quantified by the expected future
return that the agent may obtain given the current conditions. However, given that
the future rewards strongly depend on the actions that the agent will take, value
functions are defined with respect to the policy.

The state-value function, Vπ(s), of a state s under the policy π is the expected
return when starting at state s and following the policy π thereafter. We formally
define it as

Vπ(s) = E [Gt|st = s, π] = E

[
T−t−1

∑
k=0

γkrt+k+1

∣∣∣∣∣st = s, π

]
(2.20)

In a similar way, the action-value function, Qπ(s, a), is the expected return when start-
ing at state s, performing action a, and then following the policy π:

Qπ(s, a) = E[Gt|st = s, at = a, π] =

= E

[
T−t−1

∑
k=0

γkrt+k+1

∣∣∣∣∣st = s, at = a, π

]
(2.21)

The advantage, Aπ(s, a), is the additional expected return obtained by following
an action a at state s, over the expected policy behavior:

Aπ(s, a) = Qπ(s, a)−Vπ(s) . (2.22)

The value functions fulfill a recursive relationship that is exploited by many RL
algorithms, which stems from the recursive nature of the return Gt = rt+1 + γGt+1.
This allows us to write the state-value function Vπ(s) as a function of the next states

Vπ(s) = E[Gt|st = s, π] = E[rt+1 + γGt+1|st = s, π]

= ∑
a

π(a, s)∑
s′,r

p(s′, r|s, a)
(
r + γ E[Gt+1|st+1 = s′, π]

)
= ∑

a
π(a, s)∑

s′,r
p(s′, r|s, a)

(
r + γVπ(s′)

)
= E[rt+1 + γVπ(st+1)|st = s, π] .

(2.23)

We can do the analogous derivation for the action-value function Qπ(s, a)

Qπ(s, a) = E[Gt|st = s, at = a, π] = E[rt+1 + γGt+1|st = s, at = a, π]

= ∑
s′,r

p(s′, r|s, a)
(
r + γ E[Gt+1|st+1 = s′, π]

)
= ∑

s′,r
p(s′, r|s, a)

(
r + γVπ(s′)

)
= E[rt+1 + γVπ(st+1)|st = s, at = a, π] ,

(2.24)

from which the relationship Vπ(s) = ∑a π(a|s)Qπ(s, a) becomes evident. These are
the Bellman equations for the value functions, and they lie at the core of RL as they
define the relation between the value of a state s and its successors s′, recursively
capturing future information.
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These concepts introduce the notion of partial ordering between policies. A pol-
icy π is better than another policy π′ if it yields a higher return. Hence, π > π′ if
and only if Vπ(s) > Vπ′(s) ∀s ∈ S . Therefore, the optimal policy π∗ is such that it
is better than or equal to all the other possible policies. 2 Hence, the optimal policy
maximizes the value function. Taking the Bellman equations, Eqs. (2.23) and (2.24),
π∗ is such that

Vπ∗(s) = max
a

E[Gt|st = s, at = a, π∗]

= max
a

E[rt+1 + γVπ∗(st+1)|st = s, at = a, π∗]

= max
a

Qπ∗(s, a) .

(2.25)

Notice that in this new Bellman equation there is a maximization over the first ac-
tion, as opposed to the expectation over actions from Eq. (2.23). This is because the
value of a state under the optimal policy must be equal to the expected return for
the best action. In a similar way, we can find the Bellman equation for the action-
value function Qπ(s, a) for an optimal policy π∗. Together, they define the set of the
Bellman optimality equations:

Vπ∗(s) =max
a ∑

s′,r
p(s′, r|s, a)

[
r + γVπ∗(s′)

]
Qπ∗(s, a) =∑

s′,r
p(s′, r|s, a)

[
r + γ max

a′
Qπ∗(s′, a′)

] (2.26)

These equations fulfill

Qπ∗(s, a) = max
π

Qπ(s, a)

Vπ∗(s) = max
π

Vπ(s) = max
a

Qπ∗(s, a) .
(2.27)

We can define the optimal policy π∗(a|s) and action a∗ at a given state s as:

π∗ = arg max
π

Vπ∗(s)

a∗ = arg max
a

Qπ∗(s, a) .
(2.28)

The optimal policy π∗ corresponds to the deterministic choice of the best action a∗

for a given state s according to the optimal action-value function Qπ∗(s, a). Due to
the recursive nature of the value functions, a greedy action according to Vπ∗ or Qπ∗

is optimal in the long term.
The Bellman optimality equations Eq. (2.26) are, indeed, a system of equations

with one for every state. In order to solve them directly, we need to explicitly use
p(s′, r|s, a).3 This is typically unknown and, therefore, we need additional methods
to solve them, such as the ones we introduce in the following sections.

2The ordering operator is not always defined between policies. Two policies π, π′ cannot be ordered
iff ∃ s, s′ ∈ S : Vπ(s) > Vπ′ (s), Vπ(s′) < Vπ′ (s′). However, for MDPs there always exist an optimal
policy π∗ s.t. π∗ ≥ π ∀π [68].

3Due to the maximization step in Eq. (2.26), this is a nonlinear optimization problem.
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2.3.2 Value-based methods

In value-based RL, the goal is to obtain the optimal policy π∗(a|s) by learning the
optimal value functions, as in Eq. (2.28). Starting with initial estimation of the value
function for every state, Vπ(s), or state−action pairs, Qπ(s, a), they are progressively
updated based on the experience gathered by the agent following its policy.

Since the value functions are defined with respect to a policy, we need to de-
fine a fixed policy for this family of algorithms. A common choice is an ε-greedy
policy, with which the agent follows a deterministic greedy policy, e.g., choosing
a = arg maxa Qπ(s, a), and taking random actions with probability ε. This is a nat-
ural choice provided that the optimal policy is greedy with respect to the optimal
value function. Hence, learning the value function for such policy provides us with
the optimal one in the greedy limit (ε→ 0).

One of the most straightforward and naive approaches to learn the value func-
tion is to sample trajectories τ ∼ p(τ) (Eq. (2.19)), and then use the return Gt to
update the value function estimation4 for every visited state st along the way:

Vπ(st) = Vπ(st) + η(Gt −Vπ(st)) , (2.29)

where η is a learning rate that controls the size of the update. We can do an analo-
gous process for every visited state and action along the trajectory to learn Qπ(s, a)
instead.

However, with this approach we can only learn at the end of each trajectory,
also known as episodes, which can be very inefficient in problems involving long
episodes, or even infinite ones. On the contrary, temporal-difference (TD) algorithms
exploit the recursive nature of the value functions, Eqs. (2.23) and (2.24), to learn at
every time step:

Vπ(st) = Vπ(st) + η (rt+1 + γVπ(st+1)−Vπ(st)) . (2.30)

Notice that, while Vπ(st) is an estimate, Vπ(st+1) is also an estimate. This is known as
a bootstrapping method, as the update is partially based on another estimate. Never-
theless, it is proven to converge to a unique solution. The term in brackets is known
as TD error.

The algorithm implementing Eq. (2.30) is known as TD(0), which is a special case
of the TD(λ) algorithms [69]. The analogous algorithm for the action-value function
is known as SARSA [70, 71]:

Qπ(s, a) = Qπ(s, a) + η
(
r + γQπ(s′, a′)−Qπ(s, a)

)
, (2.31)

where we have recovered the notation s′, a′, r to denote the next state, action and
reward. Replacing the term Qπ(s′, a′) by an expectation over the next possible ac-
tions, such as ∑a′ π(a′|s′)Qπ(s′, a′), we obtain the expected SARSA algorithm [72].
If, instead, we take a maximization, as in Eq. (2.32) below, we obtain the Q-learning
algorithm [73]. We devote the following Section 2.3.2 to the latter.

Q-learning

Q-learning is one of the most widely used TD algorithms due to its desirable prop-
erties [73]. Most of the TD algorithms that we introduce in the previous section

4The return is an unbiased estimator for the expectation Vπ(st) = E[Gt|st, π] from Eq. (2.20). This
is known as a sample update, as we only use a single sample to determine the expectation.
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learn the value functions for their given policies, mainly ε-greedy policies. These
include exploratory random actions that have an impact on the learned value func-
tions. Therefore, the policy determines the result, and we must adjust ε during the
training process to ensure their proper convergence toward the optimal value func-
tions. However, Q-learning always learns the optimal action-value function regard-
less of the policy followed during the training.5

The goal is to directly learn the optimal Q-values, Qπ∗(s, a), hence the name
Q-learning, in order to obtain π∗(s|a) by performing greedy actions over them, as
in Eq. (2.28). We start by arbitrarily initializing our estimates Qπ(s, a) ∀s ∈ S , a ∈ A,
which are typically stored in a table (see Section 2.3.2 for an implementation with
NNs). Then, we sample trajectories τ ∼ p(τ) according to the policy to progres-
sively update our estimates with the relation

Qπ(s, a) = Qπ(s, a) + η

(
r + γ max

a′
Qπ(s′, a′)−Qπ(s, a)

)
. (2.32)

We illustrate the process in Algorithm 1.

Algorithm 1 Q-learning

Require: learning rate η, maximum time T, policy parameter ε
Initialize Q(s, a) ∀s ∈ S , a ∈ A
while not converged do

Initialize s0
for t = 0 to T − 1 do

ξ ← uniform∈ [0, 1]
a← uniform a if ξ ≤ ε else arg maxa Qπ(s, a) ▷ ε-greedy policy
Move to next state s′ and obtain reward r
Q(s, a)← Q(s, a) + η (r + γ maxa′ Q(s′, a′)−Q(s, a)) .

end for
end while
return Q(s, a) ▷ Optimal action-value function for all states and actions

This method is guaranteed to converge to the optimal action-value function as
long as all possible state−action pairs continue to be updated. This is a necessary
condition for all the algorithms that converge to the optimal behavior and it can
become an issue for fully deterministic policies. However, with Q-learning, we can
have an ε-greedy policy with ε ̸= 0 that ensures that this condition is fulfilled.

The key element is that, while the policy determines which states and actions
are visited by the agent, the Q-value update is performed over a greedy next ac-
tion, as shown in Eq. (2.32). This way, the learned Q-values are those corresponding
to the greedy policy over them, which is the one fulfilling the Bellman optimality
equations Eq. (2.26).

Double Q-learning

Most of the TD algorithms suffer from a maximization bias that results in an overes-
timation of the Q-values, which can harm the performance. Specially, in Q-learning,
we encounter two maximizations: one in the ε-greedy policy and one in the greedy

5Q-learning is an off-policy algorithm, which means that the policy it learns (optimal π∗(a|s)) is
different from the one it follows in the training episodes. Algorithms like SARSA are on-policy, and
learn the value function that corresponds to the policy with which they generate the training data.
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target policy (Eq. (2.32)). This way, we use a maximum overestimated value (see be-
low) to update the maximum Q-value, which corresponds to the greedy action taken
by the policy, potentially incurring into a significant positive bias for Qπ(s, a).

The maximization over next possible actions in Eq. (2.32) is a sample estimate for
the maximum expected value maxa′ E[Qπ(s′, a′)]. However, it is a positively biased
estimator, provided that the sample estimate actually corresponds to the expected
maximum value E[maxa′ Qπ(s′, a′)] [74]. In Ref. [68] they provide a simple example
to develop intuition on the matter: suppose that the true Q-values for all actions in
a state are zero and that our estimates Qπ(s, a) are distributed around them taking
positive and negative values. The maximum value is positive and, hence, it is an
overestimation. The overestimation of the Q-values can prevent the algorithm from
learning the optimal policy [75].

We overcome this issue with double Q-learning [76]. This way, instead of learn-
ing a single set of Q-values, we learn two: QA

π (s, a), and QB
π(s, a). However, in or-

der to update one, we use the other to estimate the value of its corresponding next
greedy action:

QA
π (s, a) = QA

π (s, a)− η

(
r + γQB

π

(
s′, arg max

a′
QA

π (s
′, a′)

)
−QA

π (s, a)

)
, (2.33)

where A, B are interchangeable. This approach avoids using the same estimate to
determine both the maximizing action and its value, yielding an unbiased estimate.

We learn both sets of values by randomly updating one at a time at every time
step. The only additional difference with respect to standard Q-learning is that we
take actions following an ε-greedy policy that combines the information of both
QA

π (s, a) and QB
π(s, a), e.g., using their sum or mean. With double Q-learning, we

overcome a major limitation of Q-learning at the price of doubling the memory re-
quirements.

Double deep Q-learning

In Q-learning, as introduced so far, we need to explicitly store the Q-values, Qπ(s, a),
for every possible state−action pair. This approach allows us to find the exact op-
timal action-value function. However, it is only viable for small problems, as the
memory requirement quickly becomes unfeasible for moderately large ones.

In these cases, we must rely on an efficient way to represent Qπ(s, a) ∀s ∈ S , a ∈
A. NNs are a prominent candidate to approximate the action-value function, as
introduced in Ref. [77], with significantly less parameters than state−action pairs.
Using DL models to learn the Q-values is known as deep Q-learning and the imple-
mented NN is commonly referred to as a deep Q-network (DQN). DQNs take a
representation of state in the input layer ϕ(s), and have as many neurons as possible
actions in the output layer, which encode Qπ(s, a; θ) ∀a ∈ A. Here, θ denotes the
set of trainable parameters of the neural network. This way, the DQN provides the
Q-value of all possible actions given a state.

Nevertheless, DQNs may become highly unstable when directly applying Algo-
rithm 1 with an update rule for the network parameters:

θ = θ+ η

(
r + γ max

a′
Qπ(s′, a′; θ)−Qπ(s, a; θ)

)
∇θQπ(s, a; θ) , (2.34)
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which is analogous to a regression problem in which we minimize the mean squared
error between the target, r + γ maxa′ Qπ(s′, a′; θ), and the prediction, Qπ(s, a; θ),
through gradient descent. The instabilities are mainly due to correlations in consec-
utive observations along the trajectories, correlations between target and prediction,
and significant changes in the data distribution due to small variations in the pa-
rameters. The latter happen because the agent follows an ε-greedy policy, and small
changes in the parameters may change the actions that have the maximum Q-value
for the states, abruptly altering the course of the trajectories. 6 We overcome these
limitations with experience replay [78], and introducing a target network.

With experience replay, instead of learning at every time step, we store the ex-
perience gathered along the episodes in a memory, which keeps the information of
every transition (s, a, r, s′). Then, once the agent has gathered enough experience, it
replays a randomly sampled batch of transitions in its memory to compute the loss
and update the DQN parameters. This way, the agent alternates between episodes to
gather experience and replaying it to perform the learning process. This technique
removes the correlation between training samples and mitigates the sudden changes
in data distribution. Furthermore, it allows the agent to reuse the experience to pre-
vent forgetting and re learning, which is particularly valuable when the experience
is costly to obtain. For instance, if a robot receives severe damage, having a memory
allows it to keep learning from the situation without receiving further injuries.

In order to remove the correlation between target and prediction, we consider a
target network, which is a clone of the DQN that we update at a different rate. While
we update the DQN parameters, θ, at every learning iteration, we only update the
parameters of the target network, θ−, copying θ every few iterations. Then, we
use it to predict the target term maxa′ Qπ(s′, a′; θ−), hence the name of the network.
This ensures that the prediction, Qπ(s, a; θ), and the target are uncorrelated. Addi-
tionally, we can go a step further and use the target network for double Q-learning
(see Section 2.3.2) in order to prevent the DQN from overestimating the action-value
function, as introduced in Ref. [79].

Thus, the overall implementation consists on gathering experience by following
an ε-greedy policy on the Q-values, Qπ(s, a; θ). Then, the agent replays randomly
selected transitions from the experience to compute the mean squared error between
the target and the prediction, while using a target network to perform double Q-
learning:

L =
1
n

n

∑
i=1

(
ri + γQπ

(
s′i, arg max

a′
Qπ(s′i, a′; θ); θ−

)
−Qπ(si, ai; θ)

)2

, (2.35)

where i denotes the index in a batch of n randomly sampled transitions from the
memory. Then, we perform a gradient descent step over the loss in Eq. (2.35) to
update θ. Finally, every few iterations, we update the target network θ− ← θ. We
use double deep Q-learning in Chapter 4.

6Consider the case of two separate paths that lead to different treasures. We initialize the Q-values
arbitrarily, and the ε-greedy policy mainly takes the path with the highest one, while casually following
the other with small probability ε. However, if the second one leads to a bigger treasure, its Q-value
will eventually become the highest, and the data distribution will suddenly change to mainly sample
this path and casually take the other.
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2.3.3 Policy gradient methods

The main goal of policy gradient algorithms is to obtain the optimal policy π∗(a|s)
by proposing a parametrized ansatz πθ(a|s) and optimizing its parameters θ to max-
imize the objective. Hence, finding the optimal policy π∗(a|s) is equivalent to find-
ing the optimal set of parameters θ∗ that best approximates it πθ∗(a|s) ≈ π∗(a|s).
This parametrization can take several forms, such as a NN, and controlling the shape
of the policy may allow us to leverage prior knowledge about the task to obtain bet-
ter results. Furthermore, the policies are stochastic, which have a natural exploratory
character and the flexibility to also approximate deterministic policies.

In order to optimize the parameters, we use an objective function Oπ that we
aim to maximize. This can be any figure of performance, such as the state-value
function Vπ, the action-value function Qπ, or the return G. Having continuous para-
metrized policies, the objective function changes smoothly with changes in the pa-
rameters, which allows us to compute their derivatives. We approach the optimiza-
tion by a gradient ascent method: we compute the gradient of the expectation value
∇θ E[Oπ|πθ], and perform a small update of the parameters θ. The expectation value
is taken over the trajectories τ sampled according to the policy (recall Eq. (2.19)).

Directly evaluating the gradient is not straightforward because it depends on the
stationary distribution of the states, which is inaccessible in the setting considered
here. Hence, it is difficult to estimate the effect of the policy update on the state
distribution. However, the policy gradient theorem [80, 81] provides an analytical form
for the gradient of the objective function that does not involve the derivative over
the state distribution.

Policy gradient theorem: For any differentiable policy πθ(a|s) and objective func-
tion Oπ, the gradient of its expectation value ∇θ E[Oπ|πθ] can be ex-
pressed in terms of derivatives acting exclusively on the logarithmic policy
∇θ log πθ(a|s). The term ∇θ log πθ(a|s) is often referred to as the score func-
tion.

To build some additional intuition on the above theorem, let us consider an ex-
ample with the total return G(τ) as objective function (see [68] for an extended proof
with Vπ(s)). Thus, we are interested in maximizing the expectation value E[G|πθ],
which is performed over the trajectories τ ∼ pθ(τ). We restate Eq. (2.19) to explicitly
show the parameter dependence:

pθ(τ) =
T−1

∏
t=0

p(st+1|st, at)πθ(at|st). (2.36)

Therefore, the expectation can be written as

E[G|πθ] = ∑
τ

pθ(τ)G(τ). (2.37)

In order to take the gradient, let us first recall the property of logarithmic deriva-
tives ∇θpθ = pθ∇θ log pθ, which we apply in the following derivation:

∇θ E[G|πθ] = ∑
τ

G(τ)∇θpθ(τ)

= ∑
τ

G(τ)pθ(τ)∇θ log pθ(τ).
(2.38)
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Then, from Eq. (2.36), we see that the only dependence on θ from pθ(τ) is in the
policy. Therefore,

∇θ log pθ(τ) =
T−1

∑
t=0
∇θ log πθ(at|st), (2.39)

which, combined with Eq. (2.38), we obtain the expression

∇θ E[G|πθ] = ∑
τ

pθ(τ)G(τ)
T−1

∑
t=0
∇θ log πθ(at|st)

= E

[
G(τ)

T−1

∑
t=0
∇θ log πθ(at|st)

∣∣∣∣∣πθ

] (2.40)

The importance of the policy gradient theorem lies in the fact that it yields a closed
form for the gradient as an expectation value. As a consequence, it can be estimated
via Monte-Carlo sampling over different trajectories τ. Furthermore, the gradient of
the objective function is independent of the initial state s0, as it does not depend on
the policy.

REINFORCE

The REINFORCE algorithm [82] is one of the most commonly used policy gradient
algorithms and it uses the return as objective Oπ = G(τ). 7 The main principle
of REINFORCE is to directly modify the policy to favor series of actions within the
agent’s experience that lead to a high return. This way, previously beneficial actions
are more likely to happen the next time the agent interacts with the environment.

Formally, we solve the optimization problem θ∗ = arg maxθ E[G|πθ ]. We find
θ∗ via an iterative update rule in which we compute the gradient ∇θ E[G|πθ] and
perform a gradient ascent step in its direction. In practice, we estimate it by sampling
a batch of n trajectories or episodes τ ∼ pθ(τ) to approximate the expectation value
from Eq. (2.40). This way, at learning iteration k,

∆θk ≈
1
n

n

∑
i=1

G(τi)
Ti−1

∑
t=0
∇θ log πθ(at|st) (2.41)

θk+1 = θk + η∇θk, (2.42)

where η is the learning rate. 8 We illustrate the procedure in Algorithm 2.
However, the trajectory sampling introduces significant fluctuations to the ex-

pected quantities that result in large training variances, which is a general problem
of Monte-Carlo-based approaches. Some episodes may be quite successful whereas
some others could be a complete failure with very low returns. Such high variance
results into unstable policy updates, which increase the convergence time toward
the optimal policy. A common technique to tackle this issue is to introduce a baseline

7In Section 2.3.1 we mention the optimal policy maximizes Vπ(s) ∀s ∈ S . Taking Vπ(s) as objective,
the gradient is ∇θ E[Vπ(s)|πθ] = E[Qπ(s, a)∇θ log πθ(a|s)|πθ] (see [68]). In REINFORCE, Gt acts
as an unbiased estimator of Qπ(at, st) to find the optimal policy, since Qπ(at, st) = E[Gt|st, at, πθ ]
from Eq. (2.21).

8In some cases, it is beneficial to compute the expectation of the gradient as a weighted sum over
the trajectory returns. In this case, rather than dividing by n, we divide by ∑τ G(τ), which makes the
update rule independent of the scale of the returns. This approach disregards trajectories with zero
return, which do not contribute to the gradient and would dilute the information, yielding very small
updates.
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Algorithm 2 REINFORCE

Require: learning rate η, number of trajectories n, maximum time T
Require: randomly initialized differentiable policy πθ(a|s)

while not converged do
for i = 1 to n do

Initialize s0
for t = 0 to T − 1 do

Take action at ∼ πθ(at|st) and store ∇θ log πθ(at|st)
Move to next state st+1 and store reward rt+1

end for
G(i) ← ∑t γtrt+1
z(i) ← ∑t∇θ log πθ(at|st)

end for
∆θ← (1/n)∑i G(i)z(i)

θ← θ+ η∆θ
end while
return θ ▷ Optimal policy parameters

into the returns, which reduces the variance of the method without incurring any
bias, and therefore should always be used.

In order to provide a better description of the baseline, let us first
rewrite Eq. (2.40) in a more convenient way, and omitting the condition E[·|πθ] for
the rest of the chapter:

∇θ E[G|πθ] = E

[(
T−1

∑
t′=0

γt′rt′+1

)
T−1

∑
t=0
∇θ log πθ(at|st)

]

= E

[
T−1

∑
t′=0

γt′rt′+1

t′

∑
t=0
∇θ log πθ(at|st)

]

= E

[
T−1

∑
t=0
∇θ log πθ(at|st)

T−1

∑
t′=t

γt′rt′+1

]

= E

[
T−1

∑
t=0

γtGt∇θ log πθ(at|st)

]
,

(2.43)

where in the first equation we write the explicit form of G(τ). In the second equation
we use the relation

∇θ E[G|πθ] = ∇θ E

[
T−1

∑
t′=0

γt′rt′+1

]
=

T−1

∑
t′=0
∇θ Eτt′

[
γt′rt′+1

]
=

T−1

∑
t′=0

Eτt′

[
γt′rt′+1

t′

∑
t=0
∇θ log πθ(at|st)

]

= E

[
T−1

∑
t′=0

γt′rt′+1

t′

∑
t=0
∇θ log πθ(at|st)

]
,

(2.44)

where Eτt′ denotes expectation over trajectories up to time t′. Then, in the third line
of Eq. (2.43), we rearrange the terms in the summations and we find the explicit form
of Gt offset by a γt factor. In the final expression, it becomes clearer how past rewards
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in the trajectories do not contribute to the gradient of the policy from a given time
onward, which recovers the Markov property.

We can reduce the variance in the gradient by introducing a state-dependent
baseline b(st) in Eq. (2.43) such that

∇θ E[G|πθ] = E

[
T−1

∑
t=0

γt (Gt − b(st))∇θ log πθ(at|st)

]
. (2.45)

Any baseline is appropriate as long as it does not depend on the actions, which
ensures the gradient estimation remains unbiased, given that

E [b(st)∇θ log πθ(at|st)] = Eτt [b(st)Eτt:T [∇θ log πθ(at|st)]]

= Eτt

[
b(st)∑

at

πθ(at|st)∇θ log πθ(at|st) ∑
st+1

p(st+1|st, at)︸ ︷︷ ︸
1

∑
τt+1:T

pθ(τt+1:T)︸ ︷︷ ︸
1

]

= Eτt

[
b(st)∇θ ∑

at

πθ(at|st)︸ ︷︷ ︸
1

]
= Eτt [b(st) · 0] = 0 ,

(2.46)

where τt:T indicates a trajectory from time t until the end T. We move from the
second to the third line using the property of logarithmic derivatives, as in Eq. (2.38).
Notice that the expectation remains unbiased even if the baseline depends on θ.

While the expectation is unaffected, the baseline can have a major impact in the
variance. 9 Let us consider the case of a state-independent baseline. We can find
the optimal baseline that minimizes the variance in the gradient for each parameter.
In order to simplify the notation, let zk and bk be the k-th components of the score
function zk = ∂θk log πθ(a|s) and a state-independent baseline vector, respectively.
Hence, the goal is to minimize the variance of the term (Gt − bk)zk, 10 which is the
argument of Eq. (2.45). Formally, we aim to find b∗k = arg minbk

Var [(Gt − bk)zk],
that is such that ∂b∗k Var [(Gt − bk)zk] = 0. Therefore,

Var [(Gt − bk)zk] = E[((Gt − bk)zk)
2]−E[Gtzk]

2 (2.47)

∂bk Var [(Gt − bk)zk] = −2 E[(Gt − bk)z2
k ] (2.48)

b∗k =
E[Gtz2

k ]

E[z2
k ]

, (2.49)

where in the first equation we have used Eq. (2.46) to remove bk in the second term.
There are several other valid baselines that we can consider, besides the state-

independent example above, with which may yield better results. For instance, an
estimation of the value function V̂π(st) ≈ E[Gt|st] is a common state-dependent
baseline. This can either be learned, either directly from Gt or as we show in Sec-
tion 2.3.4, or it can be estimated through sampling in self-critic schemes (see [83]).
With such baseline, actions that lead to returns higher than expected with the cur-
rent policy are reinforced, while those that lead to lower rewards are penalized.
This is equivalent to weighting the score function by the advantage. Given that

9Recall that Var[x] = E[x2] − E[x]2. Hence, adding a term with null expectation does not affect
the second term but it does have an impact on the first one Var[x − b] = E[(x − b)2] − E[x − b]2 =
E[(x− b)2]−E[x]2.

10In this case, we take the approximation Var [∑t Xt] ≈ ∑t Var [Xt]
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E[Gt|st, at] = E[Qπ(st, at)|st, at], from Eq. (2.21), subtracting a baseline b(st) =
Vπ(st), we obtain the expectation of the advantage (recall Eq. (2.22)). Hence,
∇θ E[G|πθ ] = E

[
∑t γt A(st, at)∇θ log πθ(at|st)

]
. Directly estimating the advantage

provides the least possible variance, see [84] for further reference on this matter.
Another common practice is to whiten the return. This consists of subtracting

the mean of the return along all the time steps of a trajectory and dividing by its
standard deviation Ḡt = (Gt − E[G])/σG. Since this is not exactly a baseline, this
method does introduce a bias.

Deep REINFORCE

The parametrized policy πθ is a central quantity in policy gradient methods and
it can take any form as long as it is differentiable with respect to its parameters.
One of the most common approaches in discrete action spaces is to define action
probabilities according to a softmax distribution:

πθ(a|s) = ex(s,a)

∑a′∈A ex(s,a′)
, (2.50)

where x(s, a) is the action preference for action a in state s.
The simplest way to define action preferences is through a set of linear param-

eters θ applied to a feature representation of the state and action ϕ(s, a), such that
x(s, a) = θTϕ(s, a). However, this approach may lack the expressive power to ap-
proximate the optimal policy π∗ in complex scenarios.

In these cases, we may resort to DL models to parametrize the action preferences.
NNs are a natural generalization of the linear parameter approach that we can tune
to increase the expressive power by, e.g., increasing the number of hidden layers or
their size. This way, the NN parametrizing the policy takes a state representation
in the input layer ϕ(s), and has as many neurons as possible actions in the output
layer, which encode x(s, a) ∀a ∈ A. A softmax activation function in the output layer
provides πθ(a|s) ∀a ∈ A, as in Eq. (2.50).

The training process is analogous to training a supervised classifier on the
experience gathered by the agent. Implementing REINFORCE with gradients
from Eq. (2.45) is equivalent to performing gradient descent with a modified cat-
egorical cross-entropy loss (recall Eq. (2.2)):

L = − 1
n

n

∑
i=1

T−1

∑
t=0

γt(Gti − b(sti)) log πθ(ati|sti) , (2.51)

where i denotes the index in a batch of n trajectories. The procedure is analogous to
training a classifier in which the actions act as state labels. The main difference with
supervised classification problems is that, given a state, we do not know the true
probability distribution of the actions (true labels), as that would be given by the
optimal policy. Instead, we assign the obtained return Gt as true label for the taken
action at.11 Intuitively, in classification problems we aim to enhance the probability

11The standard categorical cross-entropy would be L = − 1
n ∑n ∑k p(ak) log πθ(ak|s), where p(ak)

is the true probability distribution that we want to learn. In standard classification problems, this is
typically 1 for the true label and 0 for the rest. Here, it corresponds to the optimal policy p(ak) =
π∗(ak|s). Since we do not have access to π∗ (it is our goal!), we use the return Gt for the chosen action
in its place, as π∗ would favor actions with high returns. This effectively removes the expectation over
actions, and we make the sum over time explicit in Eq. (2.51).
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that the model provides the right label, whereas here we reinforce the actions with
high returns.

In many situations, actions can take a range of continuous values rather than a
discrete set of categories. For instance, a robotic arm may rotate by a certain angle or
we can tune various continuous parameters in an experimental setup. Sometimes,
we can discretize the action space into small intervals at the cost of a loss in precision
and an increasing amount of actions, as we do in the deep REINFORCE implemen-
tation of Chapter 5. Nevertheless, this may not always be possible depending on the
problem requirements and the resulting number of actions.

In these cases, we model the stochastic continuous actions with a mean µ and a
standard deviation σ, such that

a = µ + σξ , (2.52)

where ξ is a random normal variable with unit variance. Analogously to the action
preferences above, we can parametrize µθ(s), σθ(s) in various ways, ranging from
a set of linear parameters, e.g., µθ(s) = θTϕ(s), to a complex DL model with two
output neurons that determine both µθ(s) and σθ(s) for the given observation. For-
mally,

πθ(a|s) = 1
σθ(s)

√
2π

exp

(
−1

2

(
a− µθ(s)

σθ(s)

)2
)

. (2.53)

In many cases, as the learning advances, and the agent becomes better at taking
the right actions (choosing µθ(s)), the deviations decrease and we obtain a quasi-
deterministic policy.

2.3.4 Actor-critic methods

On the one hand, value-based RL methods excel at dealing with discrete
state−action spaces, and their TD character makes them data efficient and allows
them to tackle continuing tasks (infinite episodes). However, they experience diffi-
culties to deal with large state−action spaces, and can’t deal with their continuous
version. Furthermore, they are bound to implement deterministic greedy policies,
while many problems present stochastic optimal policies. Finally, small changes in
the value functions can cause large variations in the policy, which may cause insta-
bilities in learning.

On the other hand, policy-gradient methods overcome the aforementioned lim-
itations of value-based methods, provided that they can deal with continuous (infi-
nite) state−action spaces, and they are based on continuous stochastic policies. This
ensures smooth changes in the policy throughout the learning process, and can be-
come deterministic when needed. However, the learning happens at the end of the
episodes, once we know the return, which is an issue for long trajectories or contin-
uing tasks.

Actor-critic algorithms combine value-based and policy-based methods in order
to obtain the best of both approaches. We can understand actor-critic methods as the
TD version of policy gradient, with which we retain all its advantages and overcome
its major limitation. It features two main elements: the actor, a parametrized policy
that dictates the decisions, and the critic, a model that evaluates them.

The presence of the critic allows the agent to immediately learn from each ac-
tion without waiting for the outcome at the end of the episode. Evaluating the pol-
icy mainly consists on learning its value functions, which allows the critic to assess
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whether the actions are more or less favorable. In Section 2.3.3, we introduce the
state-value function, Vπ(s), as the optimal baseline to reduce the variance in policy
gradient. Although, in this case, we only look at Vπ(s) of the initial state in in the
transitions, which does not allow us to evaluate the actions.12

However, we sow that, with such baseline, we can compute the gradient in terms
of the advantage A(s, a), defined in Eq. (2.22). The explicit form of the advantage sets
the foundation for actor-critic methods [85–87]:

A(st, at) = E[rt+1 + γVπ(st+1)−Vπ(st)] , (2.54)

which is derived from Eqs. (2.22) and (2.24). This expression lies at the core of TD
algorithms, as it corresponds to the TD error from Eq. (2.30).

In Eq. (2.54), we use Vπ(s) to evaluate both the initial and final states of a given
transition, thus constituting a critic of the action. This allows the agent to learn from
every time step in REINFORCE, processing states, actions and rewards as they oc-
cur, like the TD algorithms from Section 2.3.2. Nevertheless, this advantage comes
as the cost of learning two models: the policy πθ(a|s), and the state-value function
Vπ(s; w), which are usually parametrized with NNs with parameters θ and w, re-
spectively. The NN parametrizing the state-value function takes a feature represen-
tation of the state, ϕ(s), in the input layer, and has a single output neuron encoding
Vπ(s; w). The policy parametrization is the same as in Section 2.3.3. We train both
models simultaneously by following Algorithm 3.

Algorithm 3 Actor-critic

Require: learning rates ηθ, ηw, maximum time T
Require: randomly initialized differentiable policy πθ(s|a)
Require: randomly initialized differentiable state-value function Vπ(s; w)

while not converged do
Initialize s0
for t = 0 to T − 1 do

Take action a ∼ πθ(a|s)
Move to next state s′ and obtain reward r
A← r + γVπ(s′; w)−Vπ(s; w)
θ← θ+ ηθγt A∇θ log πθ(a|s) ▷ Update actor
w← w + ηw A∇wV(s; w) ▷ Update critic

end for
end while
return θ, w ▷ Optimal actor and critic parameters

We train the actor with the methods from Section 2.3.3, and the critic using the
principles from Section 2.3.2. Hence, all the methods in both sections apply to this
algorithm. The parameter updates in Algorithm 3 come from performing gradi-
ent ascent with Eq. (2.45) on the actor, and an analogous update rule to Eq. (2.32)
for the critic, using Vπ(s) instead of Qπ(s, a). The process is equivalent to per-
form gradient descent on the losses Lθ = 1

n ∑n ∑t γt A(st, at; w) log πθ(at|st), and
Lw = 1

n ∑n A(s, a; w)2, respectively, in which we omit the index for the sum over n
samples. They are based on the same principles as the ones in Eqs. (2.35) and (2.51).

12In order to determine the quality of an action, we need to compare the initial and final positions. In
a game, an action that escapes from the brink of a loss toward a less disadvantageous position may be
more valuable than one that moves from an already favorable position to a slightly better one, despite
the latter providing a higher final state-value function.
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This method is often referred to as advantage actor-critic (A2C). It has been fur-
ther enhanced using asynchronous actors, giving raise to the asynchronous advan-
tage actor-critic (A3C) algorithm [88]. Other improvements rely on implementing
more advanced optimization techniques, such as the natural gradient [89], as in nat-
ural policy gradient [90], natural actor-critic [91, 92], or more involved parameter
updates such as trust-region [93, 94] or proximal policy optimization algorithms [95].
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Part I

ML in quantum physics: quantum
many-body systems and quantum

technologies
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Chapter 3

Machine learning in the quantum
sciences

As we discuss in Chapter 1, the far-reaching influence of artificial intelligence (AI)
extends across the whole scientific landscape. In this part of the thesis, we focus on
the impact of machine learning (ML) in the field of quantum many-body physics.
In this introductory chapter, we provide a brief review that spans both foundational
aspects and practical applications, particularly in the domain of quantum compu-
tation. This sets the stage to describe our contributions to the topic in Chapters 4
and 5.

3.1 The quantum many-body problem

According to the postulates of quantum mechanics, the state of an isolated physi-
cal system is captured by a complex entity known as the wave function |ψ⟩ that is
a vector in a Hilbert space. The Born rule provides a probabilistic interpretation
of the quantum state, stating that the probability to find the system in state |s⟩ is
precisely determined by the modulus square |⟨s|ψ⟩|2, where ⟨s|ψ⟩ is known as the
probability amplitude. For instance, for a single isolated particle with two possible
discrete quantum states, like a qubit with states |0⟩ and |1⟩, the wave function takes
the form |ψ⟩ = α|0⟩+ β|1⟩. Here, α, β ∈ C are the probability amplitudes respec-
tively corresponding to α = ⟨0|ψ⟩ and β = ⟨1|ψ⟩. Since they dictate the probability
of the system being in either state, they are subject to the normalization constraint
|α|2 + |β|2 = 1. In general, we can represent the wave function as a complex-valued
vector that contains the probability amplitudes for each state, and it is normalized
in accordance to the L2-norm: ||ψ||2 =

√
∑s |⟨s|ψ⟩|2 = 1.

The Hilbert space contains all the possible states the system can be in, which is
a combinatorial space that grows exponentially with the number of particles. For a
system composed of N qubits, there are 2N possible states, meaning that the wave
function contains 2N coefficients. This exponential complexity makes it extremely
difficult to study quantum systems with more than a few interacting particles. In-
deed, the realization that approximations would be indispensable to address any
significant problem became evident early in the development of quantum theory
[96], and this came to be known as the quantum many-body problem. In any material,
there is a number of particles of the order of the Avogadro number∼ 1023. However,
a system with just about 170 qubits already has a Hilbert space of a size equivalent
to the total number of atoms on Earth, around 1050, and with little more than 500
qubits the many-body wave function has a staggering 10160 probability amplitudes,
nearly the square of all the atoms in the observable universe, approximately 1080.
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The exploration of quantum many-body systems has unfolded along two main
paths: performing extensive numerical simulations, and developing quantum simu-
lators. On one hand, numerically simulating quantum many-body systems relies
heavily on the design of smart algorithms and efficient approximations. Nowa-
days, quantum chemistry simulations consume a significant portion of the world’s
high-performance computing resources to understand the behaviour of electrons in
chemical reactions, which is essential to design new drugs and materials. On the
other hand, the concept of quantum simulator, originally introduced by Feynman
in 1981 [97], involves engineering simple yet highly controllable quantum systems
to emulate the physics of more complex systems of interest. They have proven a
powerful tool to understand quantum physics, from witnessing the quantum phase
transition [98], to providing a better understanding of high-temperature supercon-
ductivity [99]. Interestingly, the term "quantum simulator" is currently reserved for
specialized systems capable of addressing a limited set of problems. Whereas uni-
versal quantum simulators, which are quantum systems capable of emulating any
other physical system in nature, are known as quantum computers [100].

While both numerical and quantum simulation approaches have seen immense
advances in the past decades, their applicability remains limited to relatively modest
systems. To overcome the challenges posed by the quantum many-body problem,
researchers across several domains in quantum physics are increasingly turning to
machine learning (ML) in pursuit of novel techniques to deal with it. In the upcom-
ing sections, we present an overview of some of the most noteworthy applications
of ML in the field of quantum physics.

3.2 Machine learning for quantum many-body physics

ML methods are assuming an increasingly important role in the study of quan-
tum many-body physics, finding countless applications from numerical calculations
to experimental design and result analysis [37, 101, 102]. The quantum many-
body problem, akin to the curse of dimensionality (recall Section 2.2.1), presents
a formidable challenge that can be circumvented with dedicated ML algorithms in
some cases. Furthermore, the intrinsic stochastic nature of quantum mechanics pro-
vides a rich data ecosystem where ML algorithms can thrive.

A prominent application of ML in physics is phase classification. The different
phases of matter are characterized by the collective behaviour of interacting parti-
cles, whose complexity increases exponentially with the number of particles. Hence,
we typically resort to defining appropriate order parameters [103], which describe
just the relevant macroscopic degrees of freedom. However, determining these or-
der parameters for novel phases of matter is an exceptionally challenging task. ML
algorithms have emerged as an alternative approach to identify phases and phase
transitions both in simulated [104–109] and experimental data [110–112]. Leverag-
ing their proficiency in classification tasks afflicted by the curse of dimensionality,
such as image classification [43], ML algorithms are invaluable at unraveling the
tapestry of phases of matter.

In numerical simulations of quantum many-body systems, we need efficient rep-
resentations of the wave function that do not take exponentially-many resources.
Often, the physically-relevant states are confined within a low-dimensional corner
of the Hilbert space, which we attempt to represent with parametrized wave func-
tions. Neural networks (NNs) emerge as particularly well-suited candidates for
this task, being universal approximators, which gives raise to the name: neural
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quantum states (NQSs). Since their introduction by Carleo and Troyer [113], mul-
tiple NN architectures have been explored [114–118], and it has been shown that
they can efficiently encode highly entangled quantum states [119, 120]. Notably,
the quantum states representable by NNs are a superset of those captured by ten-
sor networks [121] – an alternative efficient approach to represent quantum many-
body wave functions [122]. NQSs have found considerable success in the study of
highly-correlated systems in condensed matter [123–125], and addressing challenges
in quantum chemistry [126], with notable models such as the FermiNet [127, 128] and
the PauliNet [129]. We refer to our hands-on tutorial, accessible in Ref. [130], for an
introduction to NQSs.

A direct consequence of the introduction of NQSs has been a remarkable acceler-
ation of Monte Carlo simulations. Traditional Monte Carlo simulations rely on inter-
atively sampling states by performing local modifications to the previous ones [131],
which results in highly-correlated samples. Prior efforts to mitigate these correla-
tions involved ML-based approaches to guide the sampling process [132, 133], and
some even imported ideas from reinforcement learning (RL) [134, 135]. However,
the introduction of generative models as NQSs has solved the correlation problem
by allowing us to draw uncorrelated samples directly from the model in parallel, a
concept that has transcended quantum physics [116, 117, 136, 137]. These advanced
sampling schemes have also been seamlessly integrated into classical optimization
processes, such as simulated annealing, to tackle long-standing challenges like the
study of spin-glasses [138]. Beyond the improved sampling, theoretical advance-
ments in different ML areas, such as RL [139], are reshaping quantum Monte Carlo
algorithms from the foundations leading to faster and more stable simulations [140].
Furthermore, ML tools not only accelerate, but also enhance the accuracy of simula-
tions, as exemplified in molecular dynamics simulations [10, 141, 142].

Exploring new experiments is crucial for the development of science. However,
quantum experiments pose daunting technical and scientific challenges, spanning
from conceptualization, to execution, and subsequent analysis. As the pursuit of
knowlege leads to increasingly complex challenges, the necessary experimental se-
tups also become equally intricate. The design of novel experiments involves the
combination of advanced knowledge with a thorough exploration of the parameter
spaces of the experiments [143]. AI pipelines excel at this task proposing new exper-
imental setups based on iterative feedback [144], with most applications focusing on
quantum optics [22, 145–147]. Furthermore, they also prove invaluable tools to con-
trol the experimental parameters both in offline [148–150] and online [151–153], facil-
itating the development of advanced protocols such as rapid cooling schemes [154,
155]. Given the substantial data output of quantum experiments, ML algorithms
emerge among the best tools for the result analysis. This entails not only drawing
meaningful conclusions, but also certifying the experiment. When evaluating the
experiment’s output, a natural question may arise: is it behaving as intended? We
can attempt to answer it through various means depending on the application, for
instance, performing quantum state tomography [156–158] or Hamiltonian learn-
ing [159–161], which consists on reconstructing the effective Hamiltonian from mea-
surements. Finally, ML aids in drawing conclusions from the results, for example,
clarifying the choice between competing theories [110].

In summary, ML assumes a pivotal role across the entire spectrum of quan-
tum physics research: from purely theoretical applications, to contributing to all
the stages of experimental research. In the upcoming section, we dive into specific
applications of ML in the development of quantum computers and, in Chapter 4, we
detail our contribution with ML to fundamental quantum information research.
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3.3 Machine learning for quantum computing

With the development of novel technologies, there come a myriad of challenges
across multiple levels. ML techniques catalyze the development of quantum com-
putation in all possible facets, from the construction and control of quantum com-
puters, to the design and implementation of quantum algorithms [37, 101, 102].

Nowadays, gate-based quantum circuits are the predominating language to de-
scribe quantum computations [162]. This framework describes the evolution of a
set of qubits through a series of discrete operations known as quantum gates in a
hardware-agnostic fashion. Quantum gates are the quantum analog to the logic
gates used in classical computing, and they are represented by unitary matrices act-
ing on a set of qubits. Quantum algorithms are constituted by the conjunction of
gates, their parameters, and the qubits they act upon. Some renowned examples
include the quantum Fourier transform [163], upon which Shor’s factorization al-
gorithm builds upon [164], Grover’s search algorithm [165], or the HHL algorithm
to solve systems of linear equations [166]. However, these algorithms demand a
substantial amount of gates and qubits for any significant application, rendering
them impractical for the current noisy intermediate-scale quantum (NISQ) comput-
ers [167].

While NISQ devices are constrained to small and shallow circuits, they already
serve as valuable testing grounds for new ideas. A notable application for NISQ de-
vices is in variational quantum algorithms, such as the variational quantum eigen-
solver [168] or the quantum approximate optimization algorithm [169]. These algo-
rithms operate in a quantum-classical hybrid optimization scheme: first, a parame-
trized quantum circuit is used to evaluate a cost function and, subsequently, a clas-
sical optimization scheme updates the circuit’s parameters based on the cost, analo-
gous to the prototypical training loop in ML. Nevertheless, these algorithms suffer
from major shortcomings. Notably, obtaining gradients from the circuit parameters
proves challenging, provided that existing approaches scale poorly with the num-
ber of parameters [170], and the optimization schemes struggle with exponentially-
vanishing gradients, referred to as barren plateaus [171]. Ongoing efforts aim to de-
velop more efficient methods to extract gradients [172], and to better comprehend
and mitigate the optimization issues, drawing inspiration from techniques originally
designed to train and interpret ML models [173, 174]. Furthermore, ML algorithms
can be applied directly to perform the parameter optimization, for example, framing
it as an RL problem [175], or even to find a suitable parameter initialization of the
circuit [176].

ML methods find multiple applications in the development and enhancement
of quantum algorithms. For instance, state preparation, a recurrent task in quantum
computing, can be naturally framed as an RL problem [22, 149, 177, 178]. Even more,
ML algorithms contribute to the design of novel quantum algorithms and subrou-
tines [179, 180], as well as the reduction of the total number of gates in quantum
circuits [181], which is critical for NISQ computers. However, many of these ap-
plications rely on quantum circuit simulators, such as those provided by quantum
computing libraries like PennyLane [182] or Qiskit [183]. As we have introduced ear-
lier, simulating quantum computers is inherently challenging (we would not need
them otherwise!), limiting these applications to just a few qubits. To address these
challenges, ML methods offer tools to simulate quantum circuits [184, 185], similar to
the role they play simulating quantum many-body systems, and provide alternative
approaches to circumvent the simulation requirements, as seen in circuit synthesis
with generative models [186].
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Ultimately, quantum algorithms are meant to run in a quantum computer, pre-
senting additional challenges. Various quantum computing platforms are based on
different qubit technologies, such as superconducting circuits [187], photonic plat-
forms [188, 189], trapped ions [190], or Rydberg atoms in optical tweezers [191, 192].
Each platform provides different interactions and controls that determine the native
gates of the device, which are the operations that can be naturally executed in the
hardware. Consequently the originally hardware-agnostic quantum circuits must
undergo a compilation process, rewritting them in terms of the hardware’s native
gates. The compilation of quantum circuits is based on the Solovay-Kitaev theo-
rem, which asserts the existence of multiple equivalent representations of quantum
circuits using different sets of gates while yielding the same output [193, 194]. Nev-
ertheless, decomposing a circuit in terms of a different set of gates can be very chal-
lenging. Typically, there exists a trade-off between compilation and execution time,
which can be circumvented by framing the compilation process as an RL problem
[195], for instance. We provide a practical introduction to circuit compilation in our
tutorial, accessible in Ref. [196], where we show how to repeatedly perform subtle
transformations to quantum circuits to reduce the amount of gates, and rewrite them
in terms of different gate sets.

Another significant challenge that comes with the quantum hardware is preserv-
ing the quantum information and ensuring that gates are applied flawlessly. Both
quantum and classical computations are susceptible to errors, requiring schemes to
either prevent them or mitigate their impact. Classical error correction schemes,
however, cannot be directly applied to quantum computing due to the no-cloning
theorem [197], which forbids copying quantum states, and the fact that directly mea-
suring them to identify errors erases the superposition. Most quantum error correct-
ing schemes employ quantum codes to encode a logical qubit in the state of mul-
tiple physical qubits [198–200]. Specific measurements can reveal error syndromes,
indicating where errors have occurred, although syndromes themselves are prone
to errors too. Correcting errors based on imperfect syndrome information can be
framed as an RL problem [201, 202], leading to the first-ever error-corrected logical
qubit in a superconducting quantum computer [203]. Additionally, other RL-based
error-correcting schemes focus on finding algorithmic strategies and subroutines to
preserve multi-qubit states [204], or even to design quantum codes [205]. In par-
allel to error correction, error suppression strategies aim to minimize errors rather
than directly fixing them. For instance, Hamiltonian learning is employed to assess
whether error correcting codes are implemented correctly [206]. In a broader con-
text, RL algorithms are used to optimize gate implementations at the hardware level,
considering the specific noise characteristics of the devices [207, 208]. Overall, ML
techniques are integral in nearly every stage of error suppression, even contributing
to the design and optimization of entirely automatic error-suppression pipelines.
These pipelines may involve error-aware quantum circuit compilation, system-wide
gate optimization, circuit-level error cancellation, and measurement error mitiga-
tion, among other strategies [209].

Finally, despite our primary focus lies on the contributions of ML to the devel-
opment of quantum computing, there exists a noteworthy research field dedicated
to enhancing ML algorithms with principles from quantum physics [210, 211]. Al-
though the quantum ML field holds promises for computational advantages [212–
214], it is still in its early stages. A significant research avenue focuses on using pa-
rametrized quantum circuits to evaluate compute-intensive parts of ML algorithms,
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for instance in kernel methods [215, 216] or RL [217, 218]. Concurrently, there are ex-
tensive efforts to characterize quantum ML algorithms at a fundamental level iden-
tifying their strengths and weaknesses [219–222].

In conclusion, ML is essential for the development of new technologies such as
quantum computing at all levels: from the design of quantum algorithms, to the
simulation and optimization of the hardware. In Chapter 5, we detail our imple-
mentation in PennyLane [182] of an experimentally-friendly gate calibration scheme
based on RL.
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Chapter 4

Certificates of many-body quantum
physics assisted by machine
learning

In this chapter, we describe a reinforcement learning (RL) method designed to aid in
the exploration of quantum many-body systems. The approach offers a systematic
framework for the construction of relaxations of complex problems, finding applica-
tions across multiple fields. Especially in the quantum information processing field,
where relaxation methods are at the forefront of research.

The content of this chapter is based on the work we presented in Ref. [223].
Accompanying this work is a Python library, accessible in Ref. [224], containing the
code with comprehensive documentation and tutorials to reproduce the presented
results.

4.1 Approximate methods to study quantum physics

As we discuss in Chapter 3, we frequently encounter computationally intractable
tasks in the exploration of quantum physics, often related to the quantum many-
body problem. To overcome these challenges, we usually rely on methods that offer
accurate approximations to the actual solutions. There exist two main paradigmatic
approaches: the variational ansatz and relaxation methods, illustrated in Fig. 4.1.

On the one hand, the variational ansatz involves parametrizing a family of so-
lutions with the hope that it contains a good approximation to the optimal one, de-
picted in Fig. 4.1(a). This versatile approach has proven remarkable success across
multiple domains in the quantum sciences, for instance, in quantum chemistry [168,
225–227], condensed matter [113, 122, 131, 228–230], and quantum machine learn-
ing [210, 211]. Furthermore, it is the foundational pillar upon which many modern
quantum algorithms rest [168, 169, 187, 230–234]. Indeed, in the previous Chapter 3,
we describe some prominent examples of variational methods in combination with
machine learning (ML) techniques to study quantum systems, such as neural quan-
tum states (NQSs). Variational approaches yield an upper bound (in a minimization
problem) to the optimal solution, although the result strongly depends on the suit-
ability of the ansatz for the particular task. Increasing the complexity of the ansatz
may yield better approximations, although at the expense of increasing the overall
computational cost. Additionally, the distance between the obtained solution and
the optimal one is unknown, in general. Even in the cases when we obtain it, we
need additional methods to prove it is indeed the case.

On the other hand, we find relaxation methods. Any optimization task is char-
acterized by the problem’s constraints. All the points that fulfill them define the
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feasible set, which may be hard to optimize over in many cases. Therefore, to ease
the optimization process, we may consider relaxing some of the constraints, obtain-
ing a relaxed larger set, as illustrated in Fig. 4.1(a). However, the minimum over a
larger set can only be less or equal than the original one, thus resulting in a lower
bound to the problem. Hence, the combination of the two approaches, variational
and relaxations, yields an upper and lower bound that conform an uncertainty in-
terval around the optimal solution, as illustrated in Fig. 4.1(b).

Relaxation techniques are widely used in quantum information processing. In
this field, semidefinite programming (SdP) has been a successful and recurrent tool
to build relaxations [235–237]. Perhaps, the most paradigmatic example in the con-
text of entanglement theory is the Peres criterion, which is a relaxation from the
set of separable states to the set of states that are positive under partial transpo-
sition (PPT) [238]. The membership problem in the separable set is NP-hard [239],
whereas checking the PPT criterion is very simple, yielding one of the simplest ways
to show that a quantum state is entangled. However, not all quantum states in the
PPT set are separable, as the relaxed set contains states that are both entangled and
PPT [240]. Relaxation techniques also play a major role in the device-independent
version of quantum information processing [241]. For instance, in cryptographic
security proofs, we need to consider all possible quantum attacks, which are hard
to characterize, motivating research for supraquantum theories that are analytically
tractable [242, 243]. In the quest to characterize the set of quantum correlations [244],
several operationally simple, outer approximations have been proposed [245–252],
as well as systematic relaxations via SdP [236, 253, 254]. Additionally, relaxation
methods have found a wide range of applications in quantum physics and chem-
istry [255–261]. A recurrent theme is to find solutions that are simple enough to be
understandable and computationally tractable, while being as accurate as possible.

Strongly relaxed problems may be easier to solve, although they may come at
the expense of providing looser bounds. Simultaneously, the effectiveness of relax-
ations may vary, with some featuring a more elegant and smarter design than others,
yielding better bounds while using similar computational resources. The success of
this approach generally relies on the exploitation of useful properties of the system,
such as the existence of symmetries. However, without any prior knowledge about
the problem at hand, or whenever it lacks such appealing properties, efficient relax-
ations may be highly elusive. Hence, it is crucial to devise methods to find, among
all possible relaxations of the original problem, the best trade-off between accuracy
and simplicity. Finding such optimal relaxation is a complex combinatorial opti-
mization problem whose solution can reveal relevant properties of the underlying
system.

In Ref. [223], we propose to harness the power of machine learning (ML) to sys-
tematically obtain optimal relaxations. ML techniques have shown great success at
dealing with combinatorial problems [262], and there are several valid approaches,
from the supervised learning of neural networks (NNs) [263] to unsupervised meth-
ods over graphs [264] and, in particular, RL [265]. While traditional algorithms rely
on heuristics and specific insight about the problem, ML approaches are able to solve
many of them faster and without any prior knowledge or assumption. We combine
RL techniques with SdP to systematically search for optimal relaxations within a
finite computational budget.

In the proposed scheme, an RL agent has access to a black box that computes the
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FIGURE 4.1: Interpretation of exact solutions and bounds obtained through variational
and relaxation methods. (a) Schematic representation of an optimization task. The goal is
to optimize a function over a hard to characterize set (yellow set). The variational approach
allows us to parametrize subsets within the one of interest (different red sets). Different
parametrizations yield different subsets that are more or less convenient depending on the
task. Relaxation techniques can efficiently represent larger sets than the one of interest (dif-
ferent blue sets) exploiting, for instance, convexity or linearity. Neither different variational
approaches nor different relaxations need to be contained into one another, so the sets they
represent are, in general, incomparable. (b) Values of the objective function. In black, the
optimal unknown value. In red, the different minima obtained by variational methods. The
smaller the value, the better the bound. In blue, different minima obtained by relaxation
techniques. The greater the value, the more accurate their associated certificate. In grey, the
uncertainty region where the optimal solution lies, given by the best variational and the best

certificate obtained so far.

relaxation of the problem by solving an SdP1 (see Fig. 4.3(a)). The agent can increase
or decrease the relaxation level and observe an output that depends on both the
associated computational cost and the quality of the obtained bound. Finding useful
relaxations can be seen as a meta-optimization with a wide range of applicability.
Here, we present it in two paradigmatic problems in quantum physics and quantum
information: finding the ground state energy of local many-body Hamiltonians and
building energy-based entanglement witnesses.

4.2 Relaxations with semidefinite programming

In this section, we introduce the methods to systematically build relaxations with
SdP. These relaxations are based on the construction of an SdP, whose optimal solu-
tion constitutes a certificate, as we detail in the following Section 4.2.1. In the interest
of simplicity, we introduce the main concepts applied to the optimization tasks con-
sidered throughout the chapter: finding the ground state energy of quantum local
Hamiltonians and building energy-based entanglement witnesses. The mathemat-
ical formalism of the second task is an extension of the first one. Hence, we show
here how to relax the ground state energy problem and, then, extend it to the entan-
glement witnessing in Section 4.6.1.

1We slightly abuse notation and let SdP denote both “semidefinite programming” and a “semidefi-
nite program”. It is always clear from the context.
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4.2.1 The problem of ground state energy approximation

Consider the optimization task to find the ground state energy, E0, of a quantum
local Hamiltonian

H =
m

∑
i=1

Hi . (4.1)

The Hamiltonian H acts on n qubits, and it is a sum of terms Hi, each of which acts
on at most k = O(1) qubits. The sum Eq. (4.1) has therefore m = O(poly(n)) terms.
The support of Hi, denoted supp(Hi) is the set of qubits where Hi acts non-trivially.
The supports of the different Hi may overlap, such that supp(Hi) ∩ supp(Hj) may
not be empty.

To find E0, a possibility is to directly construct a quantum state that has E0 energy
with respect to H. Therefore, a first possible approach is to parametrize a family
of quantum states |ψ(θ)⟩ exploiting some known properties of H. We can safely
assume the parametrization yields a valid (normalized) quantum state for any value
of the parameters θ. Additionally, by construction, ⟨ψ(θ)|H|ψ(θ)⟩ ≥ E0 for all θ. Let
us denote

γ = min
θ
⟨ψ(θ)|H|ψ(θ)⟩, (4.2)

which satisfies γ ≥ E0 by construction. An example of such a parametrization would
be to describe |ψ(θ)⟩ as a tensor network contraction, which exploits the locality
properties of H, limiting the entanglement present in its ground state [122, 266, 267].

Complexity theory results (in particular, QMA-hardness) strongly suggest that
finding, or even approximating, the ground state energy of a local Hamiltonian is
a hard task, even for a quantum computer [268–270]. Furthermore, this hardness
persists in physically relevant instances [271]. Notice that, even if we happen to find
the actual optimal solution |ψ(θ)⟩, we cannot prove that it is the global minimum
solely from that [272].

It is therefore highly desirable to obtain a bound β from the other side for which
E0 ≥ β can be proven. This guarantees E0 ∈ [β, γ], as illustrated in Fig. 4.1(b),
thus, it can help determine whether it is worth to refine the search depending on
|γ − β| < ε. However, for a proof of the type E0 ≥ β, constructing an example
|ψ(θ)⟩ is not good enough. We need a proof that is satisfied by all valid quantum
states and, possibly, a larger set, as long as it makes the proof simpler. Such a proof
is referred to as a certificate, and it is typically obtained by numerical means. In the
upcoming Sections 4.2.2 and 4.2.3, we show how SdP is a natural tool to obtain such
certificates and how to systematically improve them.

4.2.2 Building a trivial relaxation

A common technique to build relaxations for the local Hamiltonian problem is via
the triangle inequality [255, 273–275]:

min
ρ

Tr[ρH] ≥∑
i

min
ρi

Tr[ρi Ĥi] , (4.3)

where ρ and ρi are density matrices acting on the support of H and Hi respectively.
Note that i refers to a Hamiltonian term and it has nothing to do with the i-th party.
Furthermore, in Eq. (4.3), the Ĥi are sums of some local terms Hj of Eq. (4.1), grouped
so that supp(Ĥi) is as large as possible while still allowing for computation of their
minimal eigenvalue. This size is directly related to the available computational re-
sources.
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Let us observe that the right-hand side in Eq. (4.3) is a sum of minima, where each
minimization is carried out independently. Due to this independence, in general, it
is not the case that different ρi are mutually compatible, i.e., that there exists a global
state ρ such that each ρi is the corresponding partial trace of ρ. The converse is true,
however: every valid quantum state ρ has an associated set of partial traces ρi, but
given a set of ρi, a global ρ may not exist. This is what proves the inequality Eq. (4.3).

The minimization of the right-hand side of Eq. (4.3) is equivalent to solving the
following SdP:

β∅ := min{ρi} ∑i Tr[ρi Ĥi]
s.t. ρi ⪰ 0

Tr[ρi] = 1 .
(4.4)

Since there is no mutual compatibility enforced among the ρi, and each one is
treated independently, the triangle inequality Eq. (4.3) constitutes a trivial relaxation.

4.2.3 Building tighter relaxations

A natural way to strengthen the relaxation resulting from the triangle inequality is
to impose further restrictions on the collection of possible ρi, in such a way that
any quantum state would also satisfy them. The strongest restriction possible is to
directly ask that {ρi} come from a global quantum state. Unfortunately, this is equiv-
alent to finding the value of E0, which is QMA-complete. Furthermore, it is strongly
connected to solving the so-called quantum marginal problem (QMP), which is also
QMA-complete [268–270]. The QMP has been solved completely in very rare in-
stances, such as the global state being symmetric [276] or for the case of one-body
marginals [277–279] Nevertheless, the SdP-based formulation Eq. (4.4) motivates a
hierarchy of relaxations based on solving the QMP up to some degree of compatibil-
ity.

It would be natural to expect that, at least, the partial traces where the supports
from {ρi} intersect match between them. This reduces the space of solutions, pro-
vided that {ρi} must fulfill additional conditions. Since the minimization is over a
smaller set, its result can only be a tighter bound.

Hence, the first level of compatibility we might want to ask for is that ρi and ρj
yield the same reduced density matrix (RDM) on their common support, which we
shall denote ρi∧j:

Trsupp(ρj)c [ρi] = Trsupp(ρi)c [ρj] ≡ ρi∧j . (4.5)

Here, the partial trace TrS(·) denotes that we eliminate subsystem S and the su-
perindex c indicates the complementary set. Thus, TrSc produces the RDM acting on
the subsystem S. Note that the partial trace condition is linear in ρi. Therefore, it can
be naturally imported into Eq. (4.4) and still be formulated in terms of an SdP:

β1 := min{ρi} ∑i Tr[ρi Ĥi]
s.t. ρi ⪰ 0

Tr[ρi] = 1
Trsupp(ρj)c [ρi] = ρi∧j .

(4.6)

Given that the sets of {ρi} that satisfy the constraints of Eq. (4.6) also satisfy the
constraints of Eq. (4.4), we have β∅ ≤ β1 ≤ E0, by construction.

The certificates obtained from Eq. (4.6) can be further strengthened by adding
virtual RDMs. For instance, even if H is 2−local, we might want to ask, for instance,
that the two-body RDMs acting on Alice− Bob and Bob− Charlie are such that they
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both come from a virtual three-body density matrix acting on Alice− Bob− Charlie.
The latter is not strictly necessary in order to compute the energy, for 2−body den-
sity matrices suffice, but this compatibility condition further restricts the set {ρi},
therefore improving the bound. In mathematical jargon, this method is known as
representing the feasible set as a projected spectrahedra [280]. Hence, instead of
solely asking that ρi and ρj yield the same RDM on their intersection, now we might
impose a stronger constraint, which is that ρi and ρj come from a valid density ma-
trix ρi∨j defined on the union of their supports:

β2 := min{ρi∨j} ∑i Tr[ρi Ĥi]

s.t. ρi∨j ⪰ 0
Tr[ρi∨j] = 1

Trsupp(ρi)c [ρi∨j] = ρi.

(4.7)

Note that the constraints imposed in Eq. (4.7) automatically imply those of Eq. (4.6),
so we can omit them, as they became redundant.

We also observe that, although now we have β∅ ≤ β1 ≤ β2 ≤ E0, the cost
of solving Eq. (4.7) is substantially higher than that of Eq. (4.6), because the SdP
variables ρi∨j act on more qubits than ρi and the cost of representing them grows
exponentially in the number of qubits. Similarly, the relaxations from Eq. (4.7) can
be further strengthened by considering compatibility with more regions, yielding a
chain of inequalities β∅ ≤ β1 ≤ β2 ≤ . . . ≤ E0.

In Eq. (4.7), the compatibility constraints are enforced on all possible pairs (i, j).
However, not all the constraints are equally useful. In an extreme case, when
supp(ρi) ∩ supp(ρj) = ∅, adding the variable ρi∨j with its respective constraints
makes no difference. Indeed, since Tr[ρi Ĥi + ρjĤj] = Tr[(ρi⊗ ρj)(Ĥi⊗ 1j + 1i⊗ Ĥj)],
the choice ρi∨j = ρi⊗ ρj is always possible, as it satisfies the rest of constraints, there-
fore not changing β2. We remark this tensor product choice is possible because the
supports do not intersect. However, if we define ρi∨j as a variable in Eq. (4.7), we
increase its computational complexity without improving the bound, thus yielding
a worse certificate.

4.3 The constraint space

In Section 4.2, we have seen how to build relaxations with SdP, and how to
strengthen them by introducing additional constraints to obtain tighter bounds to
the optimal solution of the original optimization problem. However, as we have
shown at the end of the previous section, not all the constraints have the same im-
pact in the final result, with some even exclusively contributing to increase the over-
all computational cost without improving the resulting bound. In this section, we
present the constraint space, which is fundamental for the consistent exploration of
problem relaxations, as we explain in the following Section 4.4.

Continuing with the example of finding the ground state energy of local Hamil-
tonians, let us consider a set of n qubits, labelled from 0 to n − 1, and denote
[n] = {0, . . . , n − 1}. Let P([n]) = {∅, {0}, {1}, . . . , {n − 1}, {0, 1}, {0, 2}, . . . , [n]}
denote the parts of [n], which is the set of all subsets of [n], thus containing 2n ele-
ments.

We can associate a certificate to every subset C ⊆ P([n]) in the following way: for
each element S ∈ C, corresponding to a subset of [n], we consider the RDM acting
on the qubits labelled by the elements in S, which we denote ρS. Let us denote
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ΞC := {ρS}S∈C the collection of RDMs associated to C. By enforcing compatibility
on their overlapping supports, we can define the SdP

βC := minΞC ∑i⟨Hi⟩
s.t. ρS ⪰ 0 ∀S ∈ C

Tr[ρS] = 1
TrRc [ρS] = TrRc [ρS′ ] ∀R ⊆ S ∩ S′, S, S′ ∈ C ,

(4.8)

where the partial trace over the whole system is set to one by convention Tr[n][ρ] = 1.
We have written the objective function as ∑i⟨Hi⟩ for the following reasons: first, C
can be small enough so that there is no S ∈ C such that supp(Hi) ⊆ S. If this is the
case, then we substitute ⟨Hi⟩ by the minimal eigenvalue of Hi, in the same spirit as
the trivial relaxation from Eq. (4.4). Hence, if C = ∅, the cost function of Eq. (4.8)
amounts to the sum of the minimal eigenvalue of each Hi. Otherwise, if ΞC contains
a density matrix ρi whose support contains the support of Hi, we simply compute
⟨Hi⟩ = Tr[ρi Hi]. Note that, in case that multiple density matrices from ΞC could be
used to compute ⟨Hi⟩, the last constraint of Eq. (4.8) guarantees the result is well-
defined and independent of the choice ρi ∈ ΞC. In practice, the last constraint of
Eq. (4.8) rarely needs to be imposed over all the subsets of the intersection, and it
is enough to take R = S ∩ S′ for all pairs S, S′ ∈ C. Regardless of this constraint
enforcement, the SdP yields a valid lower bound.

Furthermore, given a set of constraints C ⊆ P([n]), it is not necessary to define
Eq. (4.8) over all the variables contained in ΞC. If some S ∈ C is contained in another
S′ ∈ C, such that S ⊆ S′, we can simply use ρS′ , as it contains all the information
on ρS. This choice is well-defined due to the constraints in Eq. (4.8) and it naturally
defines a simplification function s : ΞC 7→ s(ΞC), which allows to simplify the SdP
by removing redundant variables.

A fundamental aspect in the optimization of relaxations is to account for a finite
computational budget, which effectively limits which constraints can be considered.
The asymptotic complexity of an SdP with m variables of matrix size k depends on
the method that it is used to solve it. A rough estimate is O(m2k2), without factoring
in the iteration costs of the algorithm [281]. There exist a whole plethora of algo-
rithms displaying different complexities, such as SeDuMi with Õ(m2k5/2 + k7/2) for
large instances and Õ(km3) with optimized algorithms for small matrices [282], or
interior point methods running in Õ(

√
m(m + k3)) [283]. The Õ notation is used to

supress polylog(mn/ε) terms, where ε is the required precision [284, 285]. Interest-
ingly, quantum algorithms have been proposed to solve SdPs [286], and ML methods
have been studied to aid SdP solvers [287]. In light of the whole zoo of algorithms
for SdP and their various complexities, compute time is not a consistent metric to
bound the constraint space. Instead, given computational budget, we determine the
set of maximal (m, k) that are allowed by effectively limiting the size and contents of
Ξ (see Section 4.5.2).

The space of constraints forms a partially ordered set with respect to the follow-
ing partial order relation. Given C, C′ ∈ P([n]), we say C ≼ C′ if, and only if, for
each S ∈ C there exists a S′ ∈ C′ such that S ⊆ S′. The motivation of the partial order
relation ≼ is that C ≼ C′ implies βC ≤ βC′ by construction: every density matrix in
ΞC can be obtained by tracing out some elements of another density matrix in ΞC′ ,
and the constraints in Eq. (4.8) enforce mutual compatibility among all the elements
in ΞC and ΞC′ . In Fig. 4.2 we illustrate such structure, which motivates the definition
of the RL formalism in the upcoming Section 4.4.
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FIGURE 4.2: Poset structure of the constraint space. The different circles represent ΞC for
different C ⊆ P([n]). The arrows represent the partial order relation ≼, so that ΞC ≼ ΞC′

is represented by an arrow from ΞC to ΞC′ . Only the arrows relative to the central node are
drawn. Dashed arrows indicate that there exist many more ΞC′′ arriving/departing from
the central node that are simply not drawn. The orange dashed line separates those ΞC that
fall into the allowed computational budget (green, blue and pink nodes) from those that are
too costly (red). Moving vertically up into the diagram provides better certificates, but at a
higher cost. Since ≼ is a partial order relation, some nodes (e.g., the three at the bottom) are

incomparable.

4.4 Constraint optimization with reinforcement learning

In this section, we propose a method to obtain the best possible certificate within a
certain computational cost by exploring the constraint space described in the previ-
ous Section 4.3. Due to the high amount of structure in this extensive combinatorial
space, we propose to use reinforcement learning (RL), introduced in Section 2.3, with
function approximation. In our proposed framework, it naturally favors lower cost
solutions and can optimize the exploration strategy based on previous experiences.
In such spaces, experience in one region may be useful in others. For instance, in
periodic systems, actions in one domain should be identical to actions in another,
which further allows for easy transfer of learning without explicit analysis of the
model parameters (see Section 4.5.3).

To this end, we frame the optimization problem as a Markov decision process
(MDP). The MDP is defined through a state space, an action space, a transition func-
tion between states given an action, and a reward function, which associates a value
to each state-action-state tuple. We detail all these elements below. A learning agent,
explores the constraint space with the goal to find the set of constraints C∗ ⊆ P([n])
that provides the best possible certificate within a limited computational budget,
while using the least amount of resources. In algorithmic terms, we distinguish two
main independent parts:

i. An environment that hosts the constraint space restricted by the computational
budget, as in Fig. 4.2. It also contains a black box that takes a set of constraints
C as input, computes βC by solving the associated SdP (Eq. (4.8)) and outputs
a reward.
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FIGURE 4.3: Schematic representation of the RL pipeline. (a) Representation of the rein-
forcement learning framework. First, the agent observes the state: a one-hot encoding of the
active constraints. Given the observation, it estimates the Q-values associated to the possible
actions with a deep Q-network (DQN). Then, it decides which action to take according to
an ϵ-greedy policy, bringing the agent to a new state. Finally, the black box solves the SdP
associated to the new state, providing the agent with a reward. (b) Illustration of the reward

components from Eq. (4.9).

ii. A learning agent that navigates the environment’s constraint space (i). At ev-
ery point in the space, it inputs the corresponding set of constraints C into the
black box. The agent can choose to strengthen or loosen the constraints, effec-
tively exploring the constraint space with its actions. In doing so, the agent
obtains different rewards that guide it towards finding the optimal relaxation.
Note that the agent is completely agnostic about the actual physical problem
at hand.

We aim to understand up to which extent such a fully automated approach may help
in studying physical systems. In the following, we connect the MDP components to
our running example. See Fig. 4.3(a) for a schematic depiction.

State space – The state space corresponds to the constraint space introduced in
Section 4.3, in which each state is a set of constraints C ⊆ P([n]) and it is bound by
the computational budget, as illustrated in Fig. 4.2. We represent the states by one-
hot encoding of the active constraints S ∈ C: considering a set of 2n-dimensional
canonical vectors with only a non-zero unit element, each representing an element
S ∈ P([n]), a state vector is the sum of the vectors that encode the components S ∈
C. Equivalently, it identifies the set ΞC = {ρS}S∈C of RDMs that enter as variables
in Eq. (4.8). As shown in the leftmost part of Fig. 4.3(a), the RDMs ρS are ordered
according to their dimension in the state vector. Out of the 2n possible variables,
we need only consider poly(n) of them, effectively reducing the state vector size:
we can ignore the 1-body constraints as well as those ρS whose sole contribution
to the cost of solving the associated SdP would exceed the computational budget.
With a computational budget B, this leaves nO(log(B)) available RDMs to construct
the certificate. If no S ∈ C is such that i ∈ S, the 1-body constraint corresponding to
ρ{i} is added by default. Therefore, the smallest set of constraints that we allow for
is C = {{0}, . . . , {n− 1}}, represented by a state vector of zeros. We take it as the
initial state of the MDP unless stated otherwise.

Actions – An action a consists of either adding or removing a constraint, driving
the agent from one state to another. In practice, actions flip bits in the state vector
corresponding to the encoded constraints. The agent is free to add a constraint of
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any size, as long as the cost associated to the resulting set is within the computational
budget. For instance, the agent can start by adding a 4-body constraint, e.g. ρ0123,
to the initial state. In contrast, removing a constraint has a different effect. In order
to keep the state space exploration consistent, removing a constraint splits it into
its most immediate components of a lower degree. For instance, in 1D, removing
ρ0123 would result in ρ012 and ρ123. Note that a valid action always corresponds to an
arrow (in both directions) in the partially ordered set depicted in Fig. 4.2, remaining
within the boundary (not crossing the orange dashed line).

Transition function – The transition function is a simple deterministic function
implicitly defined above: T(C|a, C′) is a Kronecker delta, attaining unit value if the
constraint configuration C is reached by adding or removing the constraint specified
by the action a from the set of constraints C′.

Reward – We define the reward function to match the overall optimization goal,
provided that the learning agent aims to maximize the obtained reward. The reward
associated to a state C depends on: 1) the energy bound βC, obtained solving its
associated SdP (Eq. (4.8)), and 2) its computational cost. In practice, we take the
amount of free parameters in the SdP, which we denote by p, as a representation of
the computational cost. Note that, in general, given an optimization problem, we
have no prior knowledge about the optimal β∗ and its cost p∗. Therefore, in order
to compute the reward, we rely on a set of references that are updated as the agent
explores. More precisely, we keep track of the best and worst bounds obtained,
βmax and βmin respectively, and the best and worst set of parameters with which
the best bound βmax has been observed, denoted pbest and pworst respectively. We
compute the reward associated to a state by comparing its corresponding β and p to
the reference values:

R(β, p) =
pbest

pworst
·


pworst

p if β = βmax(
β−βmin

βmax−βmin

)d
otherwise,

(4.9)

where d is a fixed exponent that controls the shape of the line (β − βmin)/(βmax −
βmin). We introduce this exponent to provide better discrimination among the higher
bounds, typically d = 5. Notice that pworst ≥ pbest and, therefore, pworst/p ≥ 1.
Thus, the prefactor pbest/pworst ≤ 1 ensures that R(β, p) ∈ [0, 1], ∀ β, p. Fig. 4.3(b)
shows a schematic of the reward function. In summary, the reward function mainly
focuses on the resulting bound β, unless various states provide the maximum possi-
ble bound βmax. In this case, those with higher computational costs are penalized.

The agent – Within the proposed framework, we can perform the constraint
optimization with various methods. As mentioned before, we propose to use RL
with function approximation. The learning program or agent specifies the policy by
which actions are taken with the ultimate goal of maximizing the obtained reward.
More precisely, we use double deep Q-learning, introduced in Section 2.3.2. At each
state C, the agent estimates the Q-values Qπ(C, a) of each possible action a, a mea-
sure of the expected rewards associated with taking each action and then following
the policy π. Then, it selects one according to an ϵ-greedy policy such that

π(C) =

{
arg maxa Qπ(C, a), with probability (1− ϵ)

uniform random a, with probability ϵ.
(4.10)

Fig. 4.3 shows a schematic representation of the whole process. In Section 4.5 we
show that such an approach leads to the optimal relaxation faster compared to other
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classical optimization methods and, sometimes, it is able to find it even where the
other methods fail.

4.5 Ground state energy bounds for the Heisenberg XX
model

We apply the method described in the previous sections to find lower bounds to
the ground state energy of quantum local Hamiltonians. To illustrate the process,
we focus on a paradigmatic condensed matter model: the anti-ferromagnetic 1D
quantum Heisenberg XX model [288], described by the Hamiltonian

H =
n−1

∑
i=0

Ji(σ
x
i σx

i+1 + σ
y
i σ

y
i+1) +

n−1

∑
i=0

Biσ
z
i , (4.11)

where σα, α = x, y, z, are the Pauli matrices, Ji is the antiferromagnetic exchange
interaction between spins and Bi is the strength of the external magnetic field. We
consider periodic boundary conditions, such that σα

n = σα
0 . In the homogeneous case,

Ji = J, Bi = B ∀i, the model presents a quantum phase transition at B = 2J [103] be-
tween an antiferromagnetic and a paramagnetic phase, in which the entanglement
vanishes [289–291]. We will hence refer to these phases as entangled and unentan-
gled, respectively. Although the 1D XX model Eq. (4.11) is efficiently solvable via the
Jordan-Wigner transformation [292], corresponding to a quadratic fermionic Hamil-
tonian [293–295], the agent is oblivious to such information. We emphasize that the
points in the search space have no semantics to the agent, which, moreover, is not
provided with any information about the Hamiltonian in any explicit way. This
guarantees that our approach is as generally applicable as possible.

4.5.1 Optimal relaxations

Here, we present the results applying the RL method to the homogeneous version of
the aforementioned Hamiltonian. For this case, we consider a computational budget
that allows for the allocation of up to half of all the possible 3-body constraints.
With these conditions, we find the best approximation to the ground state across the
whole phase diagram of the Hamiltonian.

Unentangled phase (B/J ≥ 2) – In the unentangled phase, the ground state can
be perfectly described by the set of independent 1-body RDMs. Therefore, we would
expect the optimal set of constraints to be the minimum that the agent can consider
C = {{0}, . . . , {n− 1}}. Nevertheless, this is only true in the extreme case of J = 0.
In a general scenario, with 0 < 2J ≤ B, the optimal set of constraints is made out of
2-body RDMs, as shown in Fig. 4.4 diagram (d). This is to provide support for the 2-
body terms of the local Hamiltonian. Recall that, in our implementation, whenever
a term Hi of the Hamiltonian is not supported by the set of RDMs ΞC = {ρS}S∈C, we
take ⟨Hi⟩ to be its minimal eigenvalue min(σ(Hi)) = −J. With 2-body constraints,
the resulting RDMs are rank-1 projectors, which correspond to pure states such that
⟨Hi⟩ = 0 for the 2-body terms, thus yielding a better energy bound. Increasing the
size of the constraints any further does not improve the energy bound at all.

Entangled phase (B/J < 2) – In the case of the entangled ground state, its exact
energy can only be obtained by considering the system as a whole, corresponding to
C = {[n]}. Therefore, the agent can only provide the best possible approximation to
the exact energy within the allowed computational budget. Just like in the previous
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FIGURE 4.4: Illustrative representation of the optimal constraints. The optimal constraints
C∗ yield the best ground state energy bound with minimal cost for the homogeneous Heisen-
berg XX model in 1D (Eq. (4.11)). Each color represents the support of an RDM (S ∈ C∗) and
we impose compatibility constraints over the overlapping areas. The results are obtained
with a budget that allows for the allocation of up to half of the 3-body RDMs and n = 6
spins (black circles). For this case, the RL algorithm finds four different optimal solutions
across the phase diagram. The expected relaxation is found deep into the entangled phase
(B/J < 2) (a) at B/J < 3/4, displaying two intermediate solutions: (c) and (b), before the
phase transition. The unentangled phase (B/J ≥ 2) is solvable with a trivial relaxation (d)

(see main text).

case, it may seem reasonable to expect the optimal set of constraints to be unique for
the whole phase. Nevertheless, the agent finds three separate regimes as depicted
in Fig. 4.4:

• Deep into the phase, as shown in Fig. 4.4 diagram (a), the best possible cer-
tificate is obtained by evenly distributing all the largest possible constraints
throughout the system. A priori, we would expect this to be the optimal solu-
tion throughout the whole phase.

• In an intermediate regime, as shown in Fig. 4.4 diagram (b), the best possible
certificate is obtained combining the overlap of some of the largest possible
constraints with the inclusion of smaller constraints. It has the same computa-
tional cost as (a) but it provides a higher energy bound.

• Close to the phase transition, the optimal relaxation is obtained by alternating
2-body and 3-body constraints, as shown in Fig. 4.4 diagram (c). The resulting
certificate has a lower computational cost than (a) and (b), but its energy bound
is higher than (a) and the same as (b).

In the entangled phase, the two intermediate optimal relaxations (b) and (c) pro-
vide better bounds than the set of constraints (a) in Fig. 4.4, even with (c) being a
significantly stronger relaxation than the others. In fact, (c) yields the exact same
energy bound as (b) in the 1 ≤ B/J < 2 regime and its therefore optimal due to its
significantly lower computational cost (see the appendix in Ref. [223] for the most
technical details). Similarly, in the entangled phase, they all yield the same bound
and thus the optimal is the simplest one, (d). This simple scenario shows that evalu-
ating the quality of a relaxation beforehand is not a trivial task and it becomes even
less straightforward when considering arbitrary Hamiltonians and computational
budgets. Additionally, the given budget may also allow the allocation of a few 4-
body RDMs, which we take into account in the optimization. However, the agent
finds that it is better to combine several 3-body and 2-body RDMs rather than using
a limited amount of 4-body ones.

Already in such a simple scenario, the agent is able to find a rich set of interme-
diate solutions, which may, at first glance, seem counter-intuitive. The solutions are,
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FIGURE 4.5: Schematic representation of the inhomogeneous XX model with its optimal
relaxations. The figure shows examples for the three main paradigmatic setups using n =
6, 7, 8 spins. The external magnetic field is fixed, Bi = 1 ∀i, and the interaction strength
between spins, Ji = i mod 3, is represented by the intensity of the black line: solid (Ji = 2),
transparent (Ji = 1) and no line (Ji = 0). The support of the RDMs that constitute the optimal

relaxation are depicted in different colours, as in Fig. 4.4.

nevertheless, closely related to the actual entanglement structure of the ground state
of the system [290]. This shows that the agent is able to capture physical proper-
ties of the system, even when various possible solutions are very close in terms of
cost and quality. In Fig. 4.4 we show the solution of a small system of n = 6 sites
for illustrative purposes. In larger systems, we observe that the same optimal pat-
terns remain consistent, suggesting that the qualitative solutions obtained in small
systems can be used for larger ones with similar properties.

As a final remark, notice that the ground state of the unentangled phase is a
product state, meaning that the exact solution lies within the budget with which
the agent is provided. In contrast, in the entangled one, the ground state can only
be exactly described by its full density matrix, meaning that the exact solution falls
outside of the computational budget. With the framework we here present, when
the agent is far from using the whole budget, it may be seen as a strong indication
that the provided result is exact.

4.5.2 Comparison with other optimization methods

As we briefly mention at the end of Section 4.4, the proposed framework allows for
the straightforward application of several optimization algorithms besides RL. In
this section, we evaluate the quality of the RL results in comparison to two infor-
mative points of reference: breadth first search (BFS) [296] and Monte Carlo (MC)
optimization [297].

For the comparison, we consider an inhomogeneous version of the XX Heisen-
berg model from Eq. (4.11) in which we keep a constant magnetic field Bi = 1 ∀i and
tune the interaction strength Ji = i mod 3. This provides us with isolated groups
of three interacting sites. Note that, depending on the system size, there may be
exclusively triplets, triplets and an isolated site or triplets and a pair, as we show in
Fig. 4.5 for the cases of n = 6, 7, and 8, respectively.

Such model allows us to determine the optimal set of constraints beforehand
while posing one of the hardest optimization instances, as it is a unique point in the
constraint space. This way, we can compare the performance of the different algo-
rithms with respect to the optimal solution. As performance metric, we compute the
rewards, as in Eq. (4.9), with full knowledge of βmax, βmin, pbest, pworst. This provides
a measure of distance/similarity to the optimal configuration, obtaining reward 1
when reaching it.
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FIGURE 4.6: Optimization benchmark in the inhomogeneous Heisenberg XX model.
Benchmark of the performance of the three optimization algorithms: BFS, MC and deep
RL. The algorithms are evaluated in two scenarios: allowing up to (a) half of all the 3-body
constraints and (b) all the 3-body constraints. The dashed vertical lines indicate the system
size beyond which the overlapping algorithm was unable to find the optimal state in less

than 4000 visited states.

Note that the algorithms have different ways to explore the state-space. Hence,
in order to compare them in the fairest way, we do not take into account repeated
visits to the states. Contrary to the BFS, both the RL and the MC agents can go
back and forth revisiting the same states. Given that the main computational cost
comes from solving the SdPs, we keep a memory of the solutions obtained during
the exploration, so that revisiting a state implies a negligible computational cost.

Consequently, we evaluate the overall performance tracking the best obtained
reward for every new visited state. In Fig. 4.6, we depict the amount of new states
visited by fifty agents before they reach a reward of 0.95 on average. We repeat the
process for several system sizes, with which the constraint space increases exponen-
tially. We tune the hyper-parameters for the RL and MC optimizations at a system
size of n = 10 and we keep them throughout the whole process.

First, we compare the agent performance with a budget that allows the agents to
allocate half of all the available 3-body constraints. We show the results in Fig. 4.6(a).
For small systems, there are no substantial differences in performance, given that
the state space is reduced. Already at n = 11, the BFS is not able to find the optimal
bound within a reasonable time. While the MC optimization provides better results
for small systems, it is out-performed by the RL agent at n = 16. We hypothesize
that, at this size, the overhead of learning is overcome by the increasing complexity
of the state space.

In order to test this hypothesis, we conduct the same experiment with a larger
computational budget that allows the agents to allocate all the 3-body constraints.
With this, for the same system sizes, the agents encounter significantly larger con-
straint spaces. We show the results in Fig. 4.6(b). In this case, the differences between
the MC and RL optimizations are relatively smaller for smaller systems and the RL
agents outperform the MC optimization earlier on. This means that, for large state
spaces, the learning cost involved in the RL optimization pays off, making it better
than following a simple MC heuristic. In addition, unlike the RL, the MC shows a
strong dependency on a proper hyper-parametrization, e.g., choosing an appropri-
ate inverse temperature, provided that the performance is dramatically affected as
soon as the parameters are not optimised for the specific problem. Proper parameter
tuning is, in itself, a computationally costly task, given the constraint-space size. The
RL scheme, being quite resilient to its hyper-parametrization, provides a significant
advantage in this sense, allowing us to tune it in reduced systems.
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4.5.3 Analysis with transfer learning across the phase space

An interesting feature of the proposed framework is that none of its parts require
prior information about the actual problem. This suggests the possibility of explor-
ing a given constraint optimization problem and its underlying system in a com-
pletely autonomous way. One way to take advantage of this feature is by perform-
ing transfer learning (TL) [298]. In order to do so, we start by training an agent to
solve a system under the action of a Hamiltonian. Then, we leverage the experience
obtained by the agent in the initial task using it as the initial condition to solve a new
problem with a similar Hamiltonian.

For this task, we consider an homogeneous version of the Heisenberg XX model
(Eq. (4.11)). As we have seen, while this Hamiltonian presents a unique quantum
phase transition at B/J = 2, it has four different optimal relaxations across the phase
diagram (see Section 4.5.1). We train an agent to find the optimal constraints deep
in one phase, with B/J = 5. Then, we use the resulting trained agent to find the
optimal relaxations for the rest of the phase space. In Fig. 4.7(a) we show the ratio
between the time it takes the algorithm to converge with TL tTL and the time it takes
with a cold start t0, i.e., starting from scratch. Hence, with tTL/t0 < 1 there is favor-
able TL and with tTL/t0 > 1 there is negative transfer. We obtain the convergence
time averaging the training results of fifty independent agents, shown in Fig. 4.7(b).

We observe that TL in the same phase is significantly favorable. Indeed, for this
particular problem, the optimal set of constraints is the same across the whole phase,
including the critical point (cases (i) and (ii) in Fig. 4.7, respectively). When applied
across phases, the advantage of TL diminishes sharply. Close to the phase transition
(case (iii)), there appears a local minimum in which some agents get stuck and, under
the given conditions, it takes them hundreds of training episodes to correct it. In this
regime, the TL still provides an advantage regarding convergence, although it does
not help avoiding the sub-optimal relaxation. Deep into the opposite phase (case
(iv)), even though TL barely affects the performance, as tTL/t0 ≃ 1, it has a slightly
negative impact.

The vertical lines of Fig. 4.7(a) show the phase transition (solid) and the inter-
mediate points in which the optimal set of constraints changes (dashed), according
to Fig. 4.4. The results suggest that losing the convergence advantage from TL can
be indicative of changes in the ground state of the system, such as phase transi-
tions. Hence, this approach can be used to infer properties of the physical system
in a completely autonomous way by exploiting the failure of the method, such as in
Refs. [105, 108].

4.6 Entanglement witnesses from the Heisenberg XX model

Here, we show how to apply the presented framework in the context of entangle-
ment detection [299]. In particular, we address the task of building energy-based
entanglement witnesses from local Hamiltonians [300, 301], a paradigmatic problem
in quantum information processing. We illustrate how our constraint optimization
framework benefits from being agnostic to the problem it is solving, as we only need
to adapt the black box module that handles the SdP optimization from Eq. (4.8).
Once we have that, we can readily apply the entire pipeline to the new problem.
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FIGURE 4.7: Transfer learning results for an ensemble of fifty independent agents. (a)
Convergence time ratio between transfer learning and cold start as function of the parameter
B/J (recall Eq. (4.11)). The pre-trained models are taken from B/J = 5 and they are used
as starting point in the optimization for different values of the parameter. The vertical lines
indicate qualitative changes in the optimal solution, with the solid line corresponding to the
phase transition. (b) Average reward obtained at the final state of an evaluation episode,

which is performed after each training episode, with TL and a cold start (CS).

4.6.1 Energy-based entanglement witnesses from local Hamiltonians

Entanglement is a fundamental property of quantum mechanics and it plays a key
role in quantum information processing applications. However, characterizing or
detecting entanglement in experimental applications can be hard due to the limited
available information about the quantum state. A way to detect entanglement is
through entanglement witnesses, which are observables whose expectation value
can certify whether the state measured is entangled.

We can construct entanglement witnesses by choosing the observable to be the
Hamiltonian itself. Let ∆E = ⟨H⟩ − Esep be our witness, where ⟨H⟩ is the expected
energy of our state and Esep is the minimum energy of the Hamiltonian in the set of
separable states. This way, if ∆E < 0, the quantum state lies outside of the separable
set and, thus, it is entangled. Note, however that if ∆E ≥ 0, the witness does not
decide.

To find Esep, we need to solve a global optimization task of ⟨H⟩ over the set of
separable states. The search can be restricted to pure product states via a convex roof
argument, although that does not simplify the complexity of the optimization. here-
fore, we need to enforce that the global quantum state ρ is fully separable in Eq. (4.8).
Nonetheless, even though the RDMs of a fully separable ρ are also separable, decid-
ing membership to the set of separable quantum states is NP-hard [239], even in
simpler instances [302–304].

We can relax this problem by considering the set of states that are PPT, which
contains the set of separable states. These states are easy to characterize, as member-
ship in the PPT set can be checked efficiently. However, they include some entangled
states, thus being a relaxation of the set of separable states. Hence, we can modify
Eq. (4.8), including the PPT constraints, to yield a lower bound on the separability
bound of a local Hamiltonian H:
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FIGURE 4.8: Separability bounds obtained for the Heisenberg XX model. (a) Resulting
bounds for the homogeneous Hamiltonian in 1D compared to the exact ones across the phase
space. (b) Separability bounds obtained by fifty independent agents with a random Hamil-
tonian and three different budgets: allowing 7, 8 and 9 3-body RDMs. The solid lines show

the best bound among all agents and the dashed lines show their mean.

β
full−sep
C := minΞC ∑i⟨Hi⟩

s.t. ρS ⪰ 0 ∀S ∈ C
ρΓA

S ⪰ 0 ∀A ⊆ S
Tr[ρS] = 1

TrRc [ρS] = TrRc [ρS′ ] ∀R ⊆ S ∩ S′, S, S′ ∈ C,

(4.12)

where the superscript ΓA indicates that the partial transposition (1Ac ⊗ TA) is ap-
plied to the elements of S = A ∪ Ac. Note that this is a linear operation since it sim-
ply permutes elements of ρS. Thus, any quantum state satisfying Tr[ρH] < β

full−sep
C

must contain some entanglement.
We can further tighten the optimization in Eq. (4.12) in several directions. For

instance, we can consider symmetric extensions [235] to improve the approxima-
tion of the PPT set to the separable set. In some cases, we can ask that the bound
detects a higher degree of entanglement, yielding a k-producibility bound. In this
direction, there have been proposed device-independent witnesses of entanglement
depth [305, 306], based on relaxations of the quantum marginal problem via an SdP.
In these cases, we can tighten the relaxation by imposing compatibility with larger
quantum states.

4.6.2 Optimal separability bounds

We start by considering an homogeneous version of the Heisenberg XX model in 1D,
as in Section 4.5.1. In this case, there is an analytical expression for the separability
bound, which corresponds to the mean-field ground state energy for negative J in
cubic lattices [307]. We use this case as reference to validate our results. With the RL
method, we find that we can recover the exact separability bound using exclusively
2-body RDMs, as we show in Fig. 4.8(a). Notice the separability bounds obtained in
the unentangled phase (B/J ≥ 2) coincide with the ground state energies obtained
in Section 4.2.1, proving that the ground state is, indeed, separable.

Then, we consider an heterogeneous version of the Hamiltonian in a graph with
random parameters, Ji, Bi ∼ uniform[0, 1). In Fig. 4.9(a), we show a schematic repre-
sentation of the system. Unlike in the homogeneous case, here, there are no apparent
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FIGURE 4.9: Pictorial representation of the results obtained with a random Hamiltonian.
(a) Representation of the random Hamiltonian parameters. The line transparency and the
circle radius respectively indicate the relative values of Ji and Bi. (b) Representation of the
best constraints found by the agents. Each color represent the support of an RDM considered
in the relaxation, as in Fig. 4.4. (c) Histogram of the terms contained in the best constraints
of the top ten performing agents. The line transparency represents the term frequency nor-

malized by the maximum.

properties of the system that we can exploit to obtain an expression for the separa-
bility bound. Furthermore, we cannot even devise a strategy to build an efficient
relaxation, as we do in Section 4.5.2.

We search for the optimal relaxation with fifty independent RL agents with three
different budgets: allowing seven, eight and nine 3-body constraints. We show the
results in Fig. 4.8(b), where we see that we reach a higher bounds with every addi-
tional 3-body RDM. However, as the constraint space grows, it takes longer to reach
the best configuration.

We depict the best obtained relaxation in Fig. 4.9(b), where we can see that the
agent has significantly favoured some regions in detriment of others. For example,
using a 2-body RDM in sites 3 and 7 despite having enough budget to span the whole
system with 3-body RDMs. To see this more clearly, in Fig. 4.9(c), we represent the
frequency with which each connection in the graph appears in the best constraints
found by the top ten performing agents. This result highlights a few clear key ele-
ments to obtain better bounds, even though some of them may not seem relevant a
priori given the Hamiltonian, such as the {2, 5} term, which has a weak interaction
with strong fields on both sites. Looking further into these agents we found that the
3-body terms {0, 1, 2}, {2, 5, 8}, and {3, 4, 5} are significantly overrepresented with
respect to the rest, as they span the regions with the strongest interactions in the
system.

4.7 Conclusion

In this chapter, have discussed a novel approach to construct optimal relaxations
to obtain certificates of quantum many-body properties. We have proposed an ML
approach, based on deep RL, to systematically find such certificates given a finite
computational budget. Here, we have illustrated its properties in the context of ap-
proximating the ground state energy and the separability bounds of quantum local
Hamiltonians.

We have studied the validity of the method in the well-known Heisenberg XX
model, showing that the agent is able to correctly characterize the ground state
across the phase diagram without any kind of information about the physical sys-
tem at hand. Indeed, we have shown how the certificates found by the agent change
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according to the ground state, as the structure of the constraints that suffice for a
good approximation correlates with the system’s phase and the entanglement prop-
erties of the ground state. Nonetheless, unravelling their precise relation is a matter
deserving future investigation.

Already in small systems, we observe that the agent can capture the complex-
ity of the system of study and go beyond more trivial relaxations, even when these
are close in terms of the objective function. We have also shown that the agent is
able to solve the opposite case, in which simpler certificates provide better bounds
than more complex ones. Besides, in Ref. [223], we show that the qualitative re-
laxations obtained in reduced systems can be generalized to larger ones, as these
remain consistent for any size. Hence, the constraint optimization can be performed
in a reduced version of the original problem in order to minimize the computational
workload.

Additionally, the RL approach handles large optimization spaces rather success-
fully, outperforming other classical optimization algorithms. Furthermore, we have
shown how to take advantage of transfer learning, positively impacting scalability.
Moreover, we have characterized its behaviour to find that it may be indicative of
variations in the nature of the ground state of the system of study, some of which
due to phase transitions. Hence, constituting an autonomous method to explore the
system’s phase diagram.

Finally, we have applied our framework in the context of entanglement detec-
tion. We have shown that we can efficiently recover the analytical solutions for
simple cases and, as a final result, we apply our method to the case of a random
Hamiltonian, to which there is no easy solution. The presented framework can be
readily extended to other tasks in quantum information that are based on finding
good outer approximations of convex sets that are hard to describe.

As future work, it remains open the question of which properties of the Hamil-
tonian have led to better bounds with simpler certificates. Furthermore, transfer
learning can be used to analyze common patterns between different Hamiltonians.
Besides, the architecture of the reinforcement learning agent can be adapted to al-
low for the transfer learning between problems of different sizes. As an additional
step, it would be interesting to study how introducing explicit information about the
Hamiltonian may affect the optimization process. For instance, whether a RL agent
can help in designing better adiabatic schedules [234] or whether better certificates
can be built by combining RL following an adiabatic path.
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Chapter 5

Calibrating quantum computers
with reinforcement learning

“This chapter is dedicated to Tom, Korbinian, and the Xanadu residents ’23, who gifted
me a wonderful summer understanding quantum computing and canoeing around Canada.”

In this chapter, we introduce a reinforcement learning (RL) method to calibrate
gates in quantum computers. This experimentally-friendly approach enables the
consistent execution of high-fidelity quantum gates resulting directly from the in-
teraction with the quantum computer. Therefore, it does not require any explicit
modeling of the device, and is inherently scalable to large scale quantum computers
and simulators, independently of their nature.

The content of this chapter is based on the implementation of a protocol inspired
by Ref. [208]. Our contribution is detailed in a hands-on tutorial implementing the
method in PennyLane [182] and JAX [308], accessible in Ref. [309].

5.1 Gates in superconducting quantum computers

Gate-based quantum circuits are the most common representation of quantum com-
putations [162], as briefly introduced in Section 3.3. The circuits provide an abstrac-
tion layer that enables the research and development of quantum algorithms with-
out delving into the specifics of the hardware in charge of the execution. However,
each different quantum platform offers a unique set of interactions and controls that
define the natural kinds of operations that can be executed in the hardware. These
are commonly known as the native gates of the device, and they constitute the funda-
mental building blocks of any quantum algorithm executed in the device. Therefore,
it is essential that such operations are executed as accurately as possible, which re-
quires the careful tuning of the hardware’s controls.

Here, we illustrate the process of finding the optimal control parameters using
superconducting quantum computers as a case of study. Nevertheless, we note that
the method presented in the following Section 5.2 is entirely hardware agnostic.

5.1.1 Single-qubit gates

In modern superconducting quantum computers, the qubits are coupled to wave
guides that allow them to be selectively targeted by microwave pulses [310]. These
pulses change the state of the qubits, effectively performing operations such as
single-qubit rotations, which is usually referred to as driving the qubit.

Superconducting qubits are commonly modelled as a harmonic oscillators ca-
pacititatively coupled to a drive line [311]. Typically, only the first two levels of the
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oscillator are considered and they are assigned to the computational basis states |0⟩
and |1⟩. These states have energies E0 and E1, respectively, resulting in a natural
frequency of the qubit ωq = (E1− E0)/h̄. On the other hand, the driving microwave
pulse can be written, without loss of generality, as a sinusoidal wave with time-
dependent phase and amplitude Ω(t) sin(ωdt + ϕ(t)). Here, Ω(t) and ϕ(t) denote
the time-dependent amplitude and phase, respectively, and ωd represents the fre-
quency of the pulse.

Collectively, the dynamics of a driven qubit are captured by the time-evolution
of an effective Hamiltonian with a constant or drift term H0, and a time-dependent
drive term Hd:

H(t) = −
ωq

2
σz︸ ︷︷ ︸

H0

+Ω(t) sin(ωdt + ϕ(t))σy︸ ︷︷ ︸
Hd

, (5.1)

where σx,y,z denote the Pauli operators. The drift term, H0, indicates that the qubit is
rotating around its axis at constant frequency ωq. Therefore, it is helpful to change
to a frame of reference that rotates along with the qubit in order to better understand
the effect of the drive, Hd. The drive term in the rotating frame is

Ĥd = Ω(t) sin(ωdt + ϕ(t))(cos(ωqt)σy − sin(ωqt)σx) . (5.2)

Rewriting sin(ωdt + ϕ(t)) = cos(ϕ(t)) sin(ωdt) + sin(ϕ(t)) cos(ωdt), and letting
I = cos(ϕ(t)) and Q = sin(ϕ(t)) denote the in-phase and out-of-phase components,
respectively, we obtain:

Ĥd = Ω(t)(I sin(ωdt) + Q cos(ωdt))(cos(ωqt)σy − sin(ωqt)σx) . (5.3)

Finally, proceeding with the multiplication, and removing the fast rotating terms
that contain ωq + ωd (known as the rotating wave approximation),

Ĥd =
1
2

Ω(t) ((−I cos(δωt) + Q sin(δωt))σx + (I sin(δωt)−Q cos(δωt))σy) , (5.4)

where δω = ωq − ωd is the frequency detuning between the qubit and the driving
field. In the case of a resonant drive δω = 0, the expression is greatly simplified

Ĥd = −1
2

Ω(t) (Iσx + Qσy) , (5.5)

from where it becomes clear that controlling the pulse’s phase ϕ(t), which deter-
mines I and Q, changes the axis around which the qubit is rotated by the pulse.

In Fig. 5.1(a), we simulate the time-evolution of a single-qubit superconducting
quantum computer driven by different resonant pulses of the same duration. This
allows us to illustrate the precise impact of the pulse’s amplitude and phase on the
resulting single-qubit rotation. On the one hand, increasing the amplitude with a
fixed phase causes the the rotation axis to sweep vertically along the Bloch sphere,
starting from the north pole at zero amplitude.1 On the other hand, varying the
phase at constant amplitude causes the rotation axis to spin around the Bloch sphere.
Therefore, the interplay of both parameters enables the execution of any single-qubit
rotation operation.

1In Fig. 5.1(a) and (b), we draw the positive eigenvectors of the resulting unitary operation, thus
always remaining in the north hemisphere of the Bloch sphere. Nevertheless, the rotation axes traverse
the entire sphere (negative and positive directions of the vector).
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FIGURE 5.1: Single- and two-qubit gates in superconducting quantum computers. (a, b)
Effect of the microwave pulse amplitude and phase, respectively, in the rotation axis of single
qubit gates. (c) Energy spectrum diagram of two weakly interacting qubits. (d) Schematic
representation of the train of pulses targeting the control qubit in an echoed CR gate. The

colors indicate the frequency as in (c).

5.1.2 Two-qubit gates

Some qubits are connected to others via coupling buses, enabling the execution of
entangling two-qubit gates between directly connected qubits. Among these, the
cross-resonance (CR) gate [312, 313] is the most widely used in superconducting
quantum computers provided that it operates exclusively with microwave pulses,
and it is a precursor for the CNOT gate.

The CR gate capitalizes on a σzσx-type interaction that emerges between two
weakly coupled qubits. For this reason, the CR gate is also known as the ZX or RZX
gate. The gate is performed by shining a pulse on the first qubit (the control) at the
second qubit’s (the target) frequency. Depending on the state of the control, the target
is rotated around the x-axis in the Bloch sphere in either the positive or negative
direction. This behaviour becomes clear when inspecting its unitary matrix:

CR(θ) = exp(−i
θ

2
σzσx) =

(
RX(θ)

−RX(θ)

)
(5.6)

=


cos(θ/2) −i sin(θ/2) 0 0
−i sin(θ/2) cos(θ/2) 0 0

0 0 cos(θ/2) i sin(θ/2)
0 0 i sin(θ/2) cos(θ/2)

 (5.7)

For θ = π/2, the CR gate is a maximally entangling operation.
This phase acquired by the target qubit stems from the hybridization of the

single-excitation energy levels, as shown in Fig. 5.1(c). Consider a control and
a target qubit with frequencies ωc and ωt, respectively, resulting in a detuning
∆ = ωc − ωt. These qubits are weakly coupled at a rate g ≪ ∆, causing drives
on the control qubit to be able to excite transitions in both the control and the tar-
get qubits. However, the drive amplitude on the target is damped by a factor g/∆,
resulting in intermediate hybrid states:

|1̃0⟩ ∝ |10⟩ − g
∆
|01⟩ (5.8)

|0̃1⟩ ∝ |01⟩+ g
∆
|10⟩ . (5.9)

The frequencies of the coupled qubits also shift accordingly with respect to their non-
interacting frequencies resulting in ω̃c, ω̃t. This sign difference caused by the shift of
the energy levels in opposite directions by g2/2∆, is the origin of the negative phase
when the control qubit is driven at the target’s frequency ω̃t [313], indicated by (+)
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and (−) in Fig. 5.1(c).
Nevertheless, there are multiple additional effects happening besides the σzσx

interaction between the qubits during the pulse [314]. For instance, while the control
qubit receives an off-resonant pulse, it still induces a degree of single-qubit rotation
in it, as it can be seen in Eq. (5.4). However, we can exploit the nature of the σzσx

interaction to isolate it. Instead of performing a single CR(θ) pulse, we split it into
two pulses that rotate half the angle. Between the two CR pulses, we flip the state
of the control qubit with a NOT gate, which is a rotation around the x-axis RX(π)
performed with a resonant pulse. Then, we proceed with a negative second pulse,
as shown in Fig. 5.1(c). Because the rotation direction in the target qubit depends
on the state of the control qubit, flipping the control and applying the subsequent
negative pulse is equivalent to performing a single full pulse. However, the second
negative pulse “echoes out” the other unwanted interactions, such as the rotation in
the control qubit [208, 314]. Hence, the name echoed CR. Finally, we apply a second
NOT gate to the control to compensate for the previous one.

5.2 Gate calibration as a reinforcement learning problem

Superconducting quantum computers can perform single-qubit rotations and CR-
type two-qubit operations, such as the CNOT, using microwave pulses. The execu-
tion of these gates relies on the careful selection of the pulse parameters: amplitude
Ω(t), phase ϕ(t), frequency ωd, and duration, which we collectively refer to as a
pulse program. However, each qubit in the device has distinct properties, such as the
frequency and the connectivity. These differences cause the same pulse programs to
produce different operations for every qubit, even in the absence of noise. Conse-
quently, every gate must be carefully calibrated for each individual qubit or qubit
pair in the hardware.

A widely used strategy to derive the optimal pulse programs for quantum de-
vices involves the detailed modelling of the system, enabling the gate optimization
through analytical and numerical techniques [315]. Nevertheless, developing such
a model requires an exhaustive characterization of the hardware. Even with com-
prehensive hardware knowledge, accounting for unknown transient Hamiltonian
terms [316] or non-linear distortions of the drive fields and their couplings [317, 318]
supposes a challenge. Furthermore, it is unfeasible to develop such highly accurate
models for moderately large quantum computers, in practice, and simulations are
restricted to relatively small systems, as discussed in Chapter 3.

An alternative approach to obtain the optimal pulse programs is through the di-
rect interaction with the device, refraining entirely from deriving any explicit model
of the system. Taking inspiration from the method proposed in Ref. [208], we frame
qubit calibration as an RL problem. In this setting, an RL agent learns to calibrate
the qubits in the quantum computer by tuning the control parameters and observing
the qubits’ responses. Through this process, the agent implicitly learns an effective
model of the device, as it faces all the experimental nuances associated with the pro-
cess, such as the effect of the most relevant noise sources.

A fundamental aspect of a robust calibrator its ability to react to the unique char-
acteristics of each qubit and adjust the pulse parameters accordingly. To achieve this,
the agent needs information about the intermediate states of the qubit(s) involved in
the gate along the pulse. Since observing the qubit(s) states at any point during the
pulse destroys the quantum state, we implement the following scheme:
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FIGURE 5.2: RL calibration scheme and results. (a, b) Schematic depiction of the main RL
protocol steps. The numbers (from 3 to 6) correspond to the points in the protocol introduced
in the main text. (c) Learning curve of an RL agent to calibrate an RX(π/2) gate. (d) Rotation
axis of the resulting gate in the Bloch sphere. (e, f) Resulting piecewise constant (PWC) Ω(t)

and ϕ(t) for the specific qubit.

1. Fix the pulse duration and split it into segments with constant parameters,
commonly known as a piecewise constant (PWC) pulse.

2. Reset the qubit(s) involved in the gate.

3. Perform quantum tomography of the qubit(s) to determine the state.

4. Based on the information, the agent chooses the parameters of the next seg-
ment in the PWC pulse.

5. Reset the qubit and execute the pulse up to the last segment with fixed param-
eters.

6. Repeat steps 3 to 5 until the end of the pulse is reached and evaluate the aver-
age gate fidelity.

Fig. 5.2(a) and (b) show a schematic representation of the main points in the proto-
col. In Fig. 5.2(a), the first two pulse segments (dark blue) are executed as a shorter
pulse than the final result. This is repeated several times to perform quantum state
tomography of the state, whose result is used to determine the parameters of the
next pulse segment (light blue). Afterwards, the system is reset and the first three
segments are executed, which leads to Fig. 5.2(b). There, the steps are repeated in the
same order, evolving the qubit with the first three segments several times to charac-
terize their effect and determine the parameters of the fourth segment, reaching the
end of the pulse. Given that all the pulse segments are now fixed, we proceed with
the evaluation of the pulse with respect to the target gate that we wish to execute.
Overall, the agent iteratively builds a PWC pulse that is tailored to the specific qu-
bits. Even though this protocol involves multiple intermediate tomography steps,
the overall cost is relatively low provided that it is only for the qubits involved in
the gate, typically one or two.
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In RL terms, the environment is the actual quantum computer the agent interacts
with. The states can be any information about the intermediate qubit states after
each segment of the PWC pulse, from a direct reconstruction of the state with full
tomography, to a collection of relevant observables.

The actions adjust the pulse program parameters. Out of those, point 1 in the
protocol fixes the maximum pulse length, and we always consider resonant pulses
with the target qubit, thus fixing ωd. This allows the agent to tune the amplitude
Ω(t) and the phase ϕ(t) for every segment. For simplicity, we consider a discrete set
of values for both and let every action denote a combination of phase and amplitude
values. Hence, given an observation, the agent’s action directly determines the pulse
parameters for the next segment. However, it is worth noting that this approach has
strong limitations in the amount of discrete values that can be considered for every
parameter and, in some cases, it may be more convenient to consider continuous
actions.

Finally, the reward is a function of the average gate fidelity. We sample several
initial random states and apply the pulse program several repeated times. Then,
we compute the average fidelity between the resulting intermediate and final states
from our pulse, and the expected states from the target gate. Finally, we take the
weighted average of all the fidelities, giving more relevance to the initial gate ap-
plications. This process of repeatedly applying the pulse programs accumulates the
errors, making our reward function more sensitive to them. This allows the agent
to better refine the pulse programs as other error sources, such as measurement er-
rors, become less relevant with more repetitions. While we have mostly focused on
the simulation of ideal quantum computers, the reward can incorporate additional
terms to obtain better results in experimental scenarios, such as a penalty for driving
the qubits beyond the first excited state (e.g. reaching |2⟩).

We train the agent with the REINFORCE [82] algorithm using the optimal state-
independent baseline, as introduced in Section 2.3. Every episode is a full pulse pro-
gram execution and evaluation, building the PWC pulse segment by segment from
the qubit initialization. In Fig. 5.2(c) to (f), we show the results of training a calibra-
tor for an RX(π/2) gate (or

√
X) in a single-qubit device. Even though the average

training reward plateaus around 0.986, the final average gate fidelity is 0.993, re-
spectively shown in Fig. 5.2(c) and (d). The pulse program has eight segments and
a total duration of 22.4 ns, significantly shorter than the standard 36 ns pulses [319].
Fig. 5.2(e) and (f) show the resulting PWC values for Ω(t) and ϕ(t), respectively,
whose intricate interplay enable the realization of shorter pulses with high fidelity.
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Part II

ML for diffusion: from proteins in
cells to internet users
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Chapter 6

Machine learning for diffusive
processes

In this second part of the thesis, we focus on the applications of machine learn-
ing (ML) techniques to study stochastic processes. In this introductory chapter,
we provide an introduction to the fundamental concepts of diffusion, as well as an
overview of ML applications to the field. Then, we introduce our contributions to
the topic in Chapters 7 to 9.

6.1 Normal and anomalous diffusion

Random walks describe a trajectory formed by random steps in a mathematical
space [320]. They are employed to describe phenomena across diverse scales and sci-
entific domains, such as the motion of atoms in periodic potentials [321] or molecules
and proteins in cells [322–324], the navigation patterns of animals in their habitat
[325], the dynamics of stock prices [326], or even the evolution of our personalities
over time [327].

A quintessential example of a random walk is Brownian motion, which describes
the movement of particles suspended in a medium. This phenomenon was origi-
nally observed by Robert Brown as he studied the motion of pollen particles in wa-
ter early in the nineteenth century [328]. Nearly a century later, Einstein and Smolu-
chowski formalized the movement of the particle as a result of its collision with the
smaller surrounding particles of the medium [329–331]. Attempting a determinis-
tic description of this phenomenon would require to account for an overwhelming
amount of degrees of freedom, on the order of the Avogradro’s number ∼ 1023.
Consequently, Brownian motion was formalized as a stochastic process where the
probability of finding the particle in position x at a given time t follows the diffusion
equation:

∂

∂t
P(x, t) = D

∂

∂x2 P(x, t) . (6.1)

Here, D is the diffusion coefficient, a parameter that encompasses all the relevant phys-
ical properties of the system, including the temperature, the medium viscosity, and
the mass, size, and nature of the diffusing particle. Considering that the particle
starts at the origin, the solution to Eq. (6.1) yields a Gaussian probability density
function with zero mean and standard deviation σ =

√
2Dt:

P(x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
. (6.2)

This distribution implies a null first moment E [x(t)] = 0, indicating the particle
has an equal probability of moving in any direction. However, the second moment
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grows linearly with time
E
[
x2(t)

]
∝ 2Dt . (6.3)

This is known as the mean squared displacement (MSD), and it provides an intuition
of the space the particle has explored over time. Its linear temporal dependence is
characteristic of normal diffusion.

In an experimental setting, the position of a particle x(t) is typically sampled at a
finite frequency, resulting in a succession of random displacements ∆x separated by
constant time intervals. In these cases, we recover the probability density function
from Eq. (6.2) by the central limit theorem, assuming the displacements are inde-
pendent and identically distributed with finite variance, and the time intervals have
finite mean [332, 333]. This formulation in terms of displacements and time intervals
is very convenient to analyze the trajectories and develop theoretical models to de-
scribe them, as we illustrate in the upcoming Section 6.2. Indeed, the probability of
performing a displacement ∆x in a time interval ∆t is analogous to the probability
of observing the particle at position x at time t from Eq. (6.2).

However, in many physically-relevant situations, the central limit theorem may
not apply due to long time correlations, fat tails in their distributions, heterogeneity
in the system, or waiting times with diverging mean [334]. These factors lead to
deviations from normal diffusion, known as anomalous diffusion, which may result in
non-Gaussian probability density functions and/or a non-linear MSDs dependence
with time:

E
[
x2(t)

]
∝ 2Dαtα , (6.4)

where α is the anomalous diffusion exponent, and Dα is an effective diffusion coeffi-
cient. We encounter two main regimes depending on α: subdiffusion with 0 < α < 1,
and superdiffusion with 1 < α < 2. For α = 1, we recover normal diffusion, and
the extreme cases of α = 0 and 2 correspond to immobile and ballistic trajectories,
respectively.

Traditionally, the most common way to characterize normal and anomalous dif-
fusion is by fitting the MSD over time. For normal diffusion trajectories, the slope is
proportional to D. Analogously, in anomalous diffusion trajectories, α corresponds
to the slope in logarithmic space log(MSD) ∝ α log(t).

To estimate the MSD, we can consider an ensemble of N independent realizations
of the random walk, and compute the average displacement made by the particle in
a time window tlag:

EA-MSD(tlag) =
1
N

N

∑
i=1

xi(t′ + tlag)− xi(t′) . (6.5)

This is known as the ensemble-averaged MSD (EA-MSD) and, in practice, we often
take t′ = 0. However, we may not always have access to sufficient realizations of
the same random walk. For example, it is common that individual trajectories in the
same experiment display different behaviours. In these cases, we can consider the
displacement averaged along the individual trajectories. For a trajectory composed
of T frames, the so-called time-averaged MSD (TA-MSD) would be computed as:

TA-MSD(tlag) =
1

T − tlag

T−tlag

∑
t′=0

x(t′ + tlag)− x(t′) . (6.6)

Here, we let T, t′ and tlag denote the number of time frames. To estimate D and
α, we evaluate either the EA-MSD or TA-MSD for different time windows tlag, and
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proceed with a linear fitting of the result.
Finally, the combination of both EA-MSD and TA-MSD provides insights into

the ergodicity of the underlying process. The ergodic theorem, introduced by Boltz-
mann [335], states that a process is ergodic if a single realization can explore all
the possible configurations of the system. Ergodicity breaking is usually related to
the existence of mutually inaccessible domains with effectively-infinite barriers that
separate the phase space. In these cases, a single trajectory cannot faithfully de-
scribe the properties of the system, provided that it has only visited a limited set of
states. However, when those mutually exclusive regions are all accessible, an en-
semble of trajectories can explore the entire phase space resulting in weak ergodicity
breaking [336]. This results in a discrepancy between the EA-MSD and the TA-MSD,
which is no longer a valid measure of the properties of the system [334].

6.2 Theoretical models to describe anomalous diffusion

Given the predominant presence of anomalous diffusion across a wide variety of
fields, there have been considerable efforts to unveil and describe its underlying
mechanisms [334]. In this section, we briefly introduce five prominent anomalous
diffusion models, each capturing different phenomenologies.

6.2.1 Continuous time random walk

The continuous time random walk (CTRW) [337] is a model particularly well-suited
to describe the motion of particles susceptible of being trapped or immobilized [338].

In its discrete version, the diffusing particle waits a random amount of time ∆ti
before performing each step ∆xi. When the time arrives, the steps are instantaneous
and their size is independent of the waiting time. The waiting times are sampled
according to a distribution ψ(t), and our focus in this thesis is on cases where ψ(t)
exhibits a long tail, such as a power-law, introducing a non-zero probability of an
infinite waiting time. This results in subdiffusive behaviour with weak ergodicity
breaking, provided that a particle with an infinitely long waiting time will never
explore the entire space.

The anomalous diffusion exponent α is directly determined by the waiting time
distribution:

ψ(t) ∝ t−α−1 (6.7)

for 0 ≤ α ≤ 1. Notably, this model converges to Brownian motion for α = 1.

6.2.2 Lévy walk

Lévy walks (LWs) [339] are similar to CTRWs, although, in this case, the size of the
displacements is correlated with the waiting times. They find multiple applications
in physics, biology, and optimal search strategies [340], such as those followed by
foraging animals [325].

In contrast to CTRWs, where the particles instantly jump once the waiting time
is over, LWs take the path into account.1 In their simplest form, the particles move
in a straight line at constant velocity v for the entire waiting time ∆t, covering a
distance ∆x = v∆t. At the end of the excursion, the particles randomly choose

1Lévy flights are analogous to CTRW in the sense that they also feature discrete jumps after each
waiting time. However, unlike CTRWs their displacement size is correlated to the waiting time, just
like Lévy walks.
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another direction and move for another random period of time ∆t ∼ ψ(t) ∝ t−σ−1 at
the same speed. This results in a coupled transition probability:

Ψ(∆x, ∆t) =
1
2

δ (|∆x| − v∆t)ψ(∆t) , (6.8)

where the Dirac delta δ indicates the particle stops to change its velocity direction
only when the flight time ∆t is over and it has covered a |∆x| distance.

With this formulation, α = 2 for 0 < σ < 1, and α = 3 − σ for 1 < σ < 2,
making the model inherently superdiffusive. Furthermore, as there can be infinite
flight times, LWs show weak ergodicity breaking as well.

6.2.3 Annealed transit-time model

The annealed transit-time model (ATTM) [341] aims to mimic the spatio-temporal
heterogeneities inherent in biological environments [324].

With this goal, ATTM describes the motion of a Brownian particle whose diffu-
sion coefficient D undergoes random changes over time. The particle initiates its
motion with a random D, which remains constant for a random dwell time τ. Then,
it transitions to another random D′ and continues to diffuse for another dwell time
τ′. This process is repeated throughout the whole trajectory changing diffusion co-
efficient after each dwell time. The diffusion coefficients are sampled according to a
probability distribution that follows a power-law behaviour P(D) ∼ Dσ−1, σ > 0 for
D → 0, and a fast decay for D → ∞. The dwell times for each D are sampled from a
conditional probability distribution with expectation value E [P(τ|D)] = D−γ.

Even though the particle undergoes normal diffusion at short time scales, the
diffusion is anomalous and weakly non-ergodic at long time scales. The anomalous
diffusion exponent α is directly determined by the the probability distributions P(D)
and P(τ|D). In the regime that we consider in this thesis, with σ < γ < σ+ 1, ATTM
is subdiffusive with α = σ/γ.

6.2.4 Fractional Brownian motion

Fractional Brownian motion (FBM) [342, 343] can describe the motion of particles
that exhibit long-time correlations, from confined particles, to actively-moving ones
[344, 345].

It can be derived from the Langevin equation [346], which stems from Newton’s
second law, in the presence of fractional Gaussian noise2 ξ f Gn:

dx(t)
dt

= ξ f Gn (t). (6.9)

The noise has zero mean and power-law self-correlation function:

E
[
ξ f Gn(t1)ξ f Gn(t2)

]
= α(α− 1)Dα|t1 − t2|α−2 , (6.10)

for t1 ̸= t2, which results in correlated displacements:

E [∆x(t1)∆x(t2)] = Dα (tα
1 + tα

2 − |t1 − t2|α) . (6.11)

2Brownian motion can be derived in the same way using white noise, as an alternative to Eq. (6.1).
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The factor (α− 1) indicates the noise is persistent for 1 < α < 2, and anti-persistent
for 0 < α < 1. The former results in positively correlated displacements, character-
istic of directed motion, that lead to superdiffusion. Meanwhile, the latter produces
anti-correlated displacements, characteristic of bouncing particles, that lead to sub-
diffusion. In the limit of α = 1, the noise becomes uncorrelated, resulting in standard
Brownian motion.

Regardless of α, FBM is ergodic, unlike the rest of the anomalous diffusion mod-
els presented throughout this Section 6.2. As a final remark, FBM is commonly stud-
ied in terms of the Hurst exponent H = α/2.

6.2.5 Scaled Brownian motion

Scaled Brownian motion (SBM) [347, 348] describes the motion of particles whose
diffusivity changes smoothly with time. This can capture spatio-temporal hetero-
geneities of the environment, such as temperature changes over time, or the presence
of concentration gradients and molecular crowding [349–351].

SBM can be derived from the Langevin equation, similar to how FBM is for-
mulated from Eq. (6.9). This time, however, in the presence of white noise with a
time-dependent variance:

dx(t)
dt

=
√

2D(t)ξ(t) , (6.12)

where ξ(t) is uncorrelated Gaussian noise with zero mean and unit variance, such
that E [ξ(t1)ξ(t2)] = δ(t1− t2). The diffusion coefficient follows a power-law depen-
dence with time D(t) ∝ Dαtα−1.

For α < 0, the diffusion coefficient decays steadily, resulting in an ever-slower
motion that leads to subdiffusion and weak ergodicity breaking. Conversely, α > 1
results in an accelerated motion that leads to superdiffusion. In the case where α = 1,
the diffusion coefficient remains constant and we recover the standard Brownian
motion.

6.3 Machine learning to study anomalous diffusion

Characterizing diffusion processes is crucial to understand the complex underly-
ing physical and biological mechanisms governing them. This characterization of-
ten involves a thorough analysis of experimental data obtained from single-particle
tracking experiments. In these experiments, individual tracers are monitored for
a period of time over which they describe trajectories in their medium. As men-
tioned earlier, the tracers can take multiple forms, from animals to more abstract el-
ements such as stock values. Studying their trajectories, we can extract meaningful
parameters, such as the diffusion coefficient D or the anomalous diffusion exponent
α, that provide valuable insights into the inherent characteristics of the tracers and
their medium. Additionally, we can assess which diffusion model, such as those in-
troduced in Section 6.2, best describes the observations to gain further information
about the phenomenology of the system.

However, accurately capturing and analyzing the trajectories presents several
challenges at multiple levels. The combination of their stochastic nature with sev-
eral experimental challenges, such as imaging noise or the tracer’s photophysics, is
added on top of the complex dynamics characteristic of anomalous diffusion [334,
352]. In Section 6.1, we have introduced the EA-MSD and TA-MSD to character-
ize diffusion processes. While fitting the MSD offers an optimal way to estimate
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D for trajectories undergoing Brownian motion in many circumstances [353, 354],
as we show in Chapter 8, studying anomalous diffusion trajectories is inherently
more challenging and prone to artifacts associated to the presence of experimental
noise [355]. For these cases, fitting the EA-MSD can provide a faithful estimation for
α when we have access to an ensemble of trajectories [356]. In the case where the
ensemble presents heterogeneous behaviours, the individual information of each
trajectory can be obtained fitting the TA-MSD, although it is limited to ergodic and
sufficiently long trajectories [357], as presented earlier. Nevertheless, estimating α
from the MSD can introduce significant errors and biases. The accuracy of the esti-
mation is very vulnerable to stochastic fluctuations, requiring large amounts of data
to compensate, either in the form of more or longer trajectories. Acquiring long tra-
jectories is especially important, as the asymptotic behaviour of the MSD may differ
from that at short times, requiring large tlag in Eqs. (6.5) and (6.6) to obtain a correct
estimation of α [334]. However, access to such large amounts of data is typically re-
stricted due to experimental constraints. Furthermore, the estimation of α is biased
by noise, such as the localization precision of the experiment [355, 358]. Therefore,
the experimental noise needs to be characterized in parallel in order to correct the
final value [357].

Among the plethora of alternative methods, such as those based on the power
spectral density [359, 360] or Bayesian estimation [361], ML-based approaches stand
out as powerful and flexible tools to study diffusion processes in a wide variety of
cases [362]. Already the first approaches, developed between 2019 and 2020, showed
that these models not only provide accurate estimates for α, but they also enable the
classification of the trajectories into the phenomenological models that best describe
them [363–366]. The radical differences between approaches, stemming from the
sheer amount of possibilities offered by the field of ML, motivated the organization
of the AnDi Challenge [367]. As we detail in the upcoming Chapter 7, the AnDi chal-
lenge is a competition to characterize anomalous diffusion that provides a common
ground to develop and compare different methods. Even though there was no ab-
solute winner of the challenge, methods based on deep learning (DL) applied either
directly to the raw data, or in combination with feature engineering, dominated the
competition [368–372]. This competition has instigated the research for the devel-
opment of new DL-based techniques, mostly employing convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs), which have already proven
instrumental for the analysis of complex phenomena in different experimental set-
tings [373, 374]. Further developments focus on the research of reliable and inter-
pretable methods that provide a measure of uncertainty for the estimates [375], or a
better understanding of the underlying physics [376]. Other research avenues strife
to incorporate the latest advances in the field of ML to the analysis of diffusion pro-
cesses [377, 378]. Finally, despite our focus on the analysis of trajectories, there is a
noteworthy effort in the development of ML algorithms to improve the quality of
the acquired data, from designing better experimental hardware [147], to enhancing
particle-tracking algorithms [379].

Thus, ML techniques play an increasingly important role in the analysis of diffu-
sion processes. In Chapter 7, we detail our contribution to the AnDi challenge, and
we introduce a novel method to study diffusion processes in Chapter 8. Finally, in
Chapter 9, we illustrate an industrial application analyzing the trajectories of users
in the action-space of the web browsing.
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Chapter 7

HYDRA: characterizing anomalous
diffusion

In this chapter, we will dive into a specific machine learning (ML) method designed
to characterize anomalous diffusion at a single-trajectory level. This method consti-
tutes our contribution to the first edition of the AnDi challenge [367], where it was
presented as part of the efforts of the Anomalous Unicorns team. The code with de-
tailed explanations can be found in Ref. [380]. Furthermore, we have contributed to
the development of the andi_datasets python library [381], which is used to gener-
ate the data sets in the AnDi challenge and it currently stands as a valuable resource
for ongoing research on the field.

7.1 The AnDi Challenge

The AnDi challenge [367] is a competition dedicated to finding the most effective
methods for the analysis of anomalous diffusion processes. The challenge provides
an even testing field to develop and compare methods in physically relevant sce-
narios, fostering a communal effort that allows the research community to collec-
tively advance the field. The inaugural edition of the AnDi challenge, held in 2020
[367], concentrated on the theoretical exploration of anomalous diffusion, putting
the models introduced in Section 6.2 at the center. The forthcoming second edition,
scheduled for 2024 [382], shifts the focus to phenomenological models, emphasizing
the discovery and characterization of diffusion changes, aligned with the topics we
present in Chapter 8.

Here, we focus on the first edition of the challenge. The challenge proposes three
different tasks to characterize anomalous diffusion at the single-trajectory level:

Task 1 Infer the anomalous diffusion exponent α.

Task 2 Infer the anomalous diffusion model that best describes it.

Task 3 Find a unique change point in the trajectory and provide α and the diffusion
model for each part.

All the trajectories in the challenge were simulated based on the anomalous diffusion
models detailed in Section 6.2. Consequently, the tasks involving a classification of
the models need to output one of these five models. Additionally, every task is
further subdivided into three categories, corresponding to trajectories in one, two,
and three dimensions, resulting in a total of nine tasks.

The challenge received contributions from multiple teams emplying a wide spec-
trum of different strategies. The most traditional approaches focused on extract-
ing meaningful features from the data [383], and performing Bayesian inference of
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the motion parameters [384, 385]. However, most teams leaned towards ML-based
approaches. DL methods were predominantly applied directly to raw data [369–
371], while other ML schemes, such as extreme learning machines or gradient boost-
ing, relied on feature engineering [386, 387]. Notably, the combination of both ap-
proaches yielded remarkable results results [368, 372]. Even though there was not a
clear overall winner of the competition, DL-based solutions provided the best results
overall.

The outcome of the AnDi challenge has not only influenced the research of meth-
ods to study anomalous diffusion, but it also has established itself as a community-
driven benchmark for the evaluation of novel algorithms, exemplified by Ref. [388]
or our contribution discussed in Chapter 8. Furthermore, the python package to sim-
ulate anomalous diffusion trajectories developed for the challenge, andi_datasets
[381], serves as a valuable a tool to aid the research on the field [375, 378, 388, 389].

7.2 HYDRA: a modular feature extractor

As we detail in Section 7.1, the central objective of the AnDi challenge is to character-
ize anomalous diffusion trajectories at a single-trajectory level. Within the context of
the challenge, this mainly involves two aspects: determining the anomalous diffu-
sion exponent α (Task 1), and identifying the diffusion model that best describes the
trajectory (Task 2). Our contribution to the challenge focussed on addressing these
two tasks for 1-dimensional trajectories. Interestingly, Task 3 of the challenge, which
centers around finding changes in diffusion properties along trajectories, served as
an inspiration for the work presented in Chapter 8.

From the perspective of ML, inferring α can be directly formulated as a regression
task. Conversely, finding the anomalous diffusion model that best describes the tra-
jectory can be framed as a classification task. Since all the trajectories in the compe-
tition are simulated with the andi_datasets library [381], this involves determining
the diffusion model used to generate the trajectory. The potential models include:
annealed transit-time model (ATTM) [341], continuous time random walk (CTRW)
[337], fractional Brownian motion (FBM) [342, 343], Lévy walk (LW) [339], and scaled
Brownian motion (SBM) [347], all of which are detailed in Section 6.2.

The diffusion models exhibit different characteristics, which can lead to signifi-
cant differences in the generated trajectories between one another, with their main
features manifesting in different forms and time-scales. Building upon the previ-
ous success of recurrent neural networks (RNNs) and convolutional neural net-
works (CNNs) in the characterization of anomalous diffusion [363–365], we pro-
pose a modular architecture with various feature extractor heads that converge into
a single body, hence the name HYDRA. The main building block is a two-headed
HYDRA, featuring an RNN and a CNN feature extractors that converge into a fully-
connected block, illustrated in Fig. 7.1(a). This design allows the model to capture
both long- and short-range correlations in the trajectories, which enables it to iden-
tify the specific characteristics inherent to the anomalous diffusion models. These
bi-headed modules can be stacked in parallel to conform multi-headed HYDRAs, as
we detail in the subsequent Section 7.3.

More precisely, the RNN blocks employ regularized gated recurrent unit (GRU)
layers [64] that process the input trajectory sequentially, as explained in Section 2.2.2.
The CNN components are built using XResNet blocks [61], as detailed in Sec-
tion 2.2.2. This architecture enables the model to handle trajectories of variable
lengths, a crucial feature for any real-world experimental scenario. In the challenge,
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FIGURE 7.1: Hydra architecture. (a) Bi-headed HYDRA architecture. The input is processed
in parallel by a CNN and an RNN, whose outputs are concatenated and passed through
a fully-connected NN. (b) Mulit-headed hydra employed for the anomalous diffusion ex-
ponent regression. The architecture features 6 bi-headed HYDRAs (BHH in the figure): a
classifier, and an expert for each of the 5 anomalous diffusion models. Their outputs are

concatenated and processed by a fully-connected NN.

this is reflected by generating trajectories with between 10 to 1000 points in total.
Given the potentially large length disparities between trajectories, we sample the tra-
jectory batches pseudo-randomly during training to ensure that trajectories within
the same batch have similar lengths, thereby substantially speeding up the training
process by minimizing wasted computation. Finally, the resulting models for both
the trajectory classification and regression are ensembles of ten HYDRAs. These en-
sembles consist of independent models trained for the same task that make joint
decisions: for regression, we calculate the mean prediction of all the models, and for
classification, we perform a majority vote for the class breaking ties randomly.

The models and training process are implemented in python using the PyTorch
[390] and Fastai [391] libraries. We use PyTorch to build the architecture, and Fastai
to find an appropriate learning rate and handle the training loop with a one-cycle
policy [392, 393] and an Adam optimizer [394]. As mentioned before, the code can
be found in the repository from Ref. [380].

7.3 Results

As we have mentioned earlier, the various anomalous diffusion models exhibit very
distinguished characteristics. Therefore, we first address the trajectory classification
problem (Task 2 of the challenge) using our HYDRA model. This task is evaluated in
terms of the F1-score metric, computed as a function of the true positives (TP), false
positives (FP), and false negatives (FN):

F1 =
2TP

2TP + FP + FN
. (7.1)

We train an ensemble of ten bi-headed HYDRAs for the task that achieved an F1-
score of 0.83 in the last phase of the challenge.

Subsequently, we tackle the regression of α (Task 1 in the challenge), which is
evaluated with the mean absolute error (MAE):

MAE = |αtrue − αpred| . (7.2)
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Given that every anomalous diffusion model deviates from normal diffusion in a dif-
ferent way, their respective α values are associated to different specific phenomena
for every model. For instance, α is related to the waiting time distribution of CTRWs,
but it dictates the power-law dependence of the diffusion coefficient in SBM trajec-
tories. For this reason, we train a specialized bi-headed HYDRA to infer α for each
anomalous diffusion model, resulting in five HYDRAs. Then, we combine the spe-
cialized HYDRAs with the classifier from Task 2 in a unified HYDRA with 12 heads:
2× 5 experts plus 2 from the classifier. With this design, a final fully-connected block
incorporates the opinion of each expert along with the classifier output, which as-
sesses which expert should be trusted, as illustrated in Fig. 7.1(b). Following this
strategy, we build an ensemble of ten 12-headed HYDRAs that achieved a MAE of
0.29 in the final phase of the competition.

We refer to Ref. [367] for a comprehensive analysis of the overall AnDi challenge
results and alternative proposals to study anomalous diffusion.
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Chapter 8

STEP: extracting pointwise
diffusion properties

In this chapter, we explore how machine learning (ML) techniques can be used
to study diffusion processes that feature time-dependent properties. In particular,
we will demonstrate the utility of a ML method, STEP, for the study of changes in
anomalous diffusion, and its emergence from changes in normal diffusion. We begin
by introducing the method and validating it using simulated data. Then, we proceed
to apply it to investigate the diffusion properties of membrane proteins in cells.

This chapter is based on the work we presented in Ref. [389]. We provide an
accompanying library in Ref. [395], containing the code and extensive tutorials to
reproduce the results.

8.1 Changes of diffusion

Advances in optical imaging enable the direct observation of single molecules in
living biological systems [396]. By combining these imaging techniques with par-
ticle tracking algorithms, it becomes possible to trace the movement of individual
elements with nanometric precision, from molecules and viruses to organelles, en-
abling the study of transport mechanisms in complex biological environments. As
we have presented in Chapter 6, the biophysical characterization of these trajectories
allows us to extract meaningful parameters to describe physical and biological pro-
cesses. However, accurately quantifying the trajectories remains a challenge [352].

Nowadays, there exists a plethora of methods to characterize diffusive processes.
As discussed in Sections 6.1 and 6.3, even though the techniques based on the estima-
tion of the mean squared displacement (MSD) may result in optimal estimators for
the diffusion coefficient D in certain scenarios [353, 354], they suffer from major limi-
tations in the study of anomalous diffusion. Even the alternative methods presented
throughout Section 6.3 and Chapter 7, which are based in extracting meaningful
information from the trajectories, performing Bayesian estimation, or using ML al-
gorithms, are mostly limited to study trajectories with constant diffusive properties.

In cellular systems, time-dependent changes of motion are a prevalent aspect of
diffusion [397]. Typically, these changes are associated with transient interactions
with other components [398–400] resulting in the sudden variation of a parameter,
such as D, that may switch between a discrete [401], or continuous set of levels [324,
351, 402]. Furthermore, they can induce smooth changes such as those associated
with the spatio-temporal heterogeneity of the environment [348]. Examples of tra-
jectories undergoing changes of diffusion are schematically depicted in Fig. 8.1A.

Trajectories with time-dependent diffusion properties pose an additional chal-
lenge to characterize the motion of individual particles, which has been tackled with
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is fed to the architecture, which consists of a stack of convolutional layers, a transformer
encoder, and a pointwise feedforward layer. The model’s output is the pointwise prediction

of the diffusion parameter of interest (in this case D).

different approaches. For trajectories displaying abrupt changes, the combination
of statistical methods with segmentation algorithms [397, 403, 404] are a valuable
strategy but cannot deal with long-range correlations and often offer limited time
resolution due to temporal averaging. On the other hand, model-dependent meth-
ods such as the hidden Markov model have been quite successful in describing het-
erogeneous diffusion [405–407], although they require prior knowledge about the
diffusive states involved and their kinetic scheme. Recently, data-driven approaches
have shown remarkable capabilities to extract information from individual stochas-
tic trajectories, even in the presence of changes of diffusion properties [374, 378, 408,
409].

In Ref. [389], we propose STEP, a method based on state-of-the-art deep learn-
ing (DL) architectures to extract pointwise diffusion features from individual trajec-
tories without any prior information (see Fig. 8.1B). This allows STEP to overcome
many of the presented methods’ limitations, making it suitable for a wide range of
applications. As we detail in the upcoming sections, STEP features the most recent
advances in sequence-to-sequence learning [410], which have shown impressive re-
sults in natural language processing tasks and beyond [67, 411, 412], and allow STEP
to achieve remarkable performance in a wide range of scenarios.

8.2 Methods

8.2.1 The STEP architecture

Recently, we have witnessed an enormous effort in the development of DL ap-
proaches to study diffusive processes, as we have introduced in Section 6.3. Previous
works usually focused on characterizing diffusive properties of single trajectories by
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predicting an overall or average diffusive parameter for each of them [363–366, 375],
which has already proven to be a valid approach to study complex phenomena in
some experimental scenarios [373, 374].

With STEP, we propose a sequence-to-sequence approach [410] that translates
position coordinates into the diffusion properties of interest at every time step of the
input trajectory, as illustrated in Fig. 8.1B. In this way, the input and the output of the
model have the same length. While it is effectively impossible to characterize diffu-
sion from a single displacement due to its stochastic nature, STEP uses the whole
trajectory as context to perform the prediction at every point.

This approach allows us to study trajectories whose diffusion properties can vary
over time with different patterns: from trajectories with constant diffusive properties
to trajectories that sharply switch between different diffusive states, or with diffusive
parameters that change continuously over time (see Fig. 8.1A for examples). Unlike
previous works, where expert input is needed in order to choose an appropriate
method, STEP can be seamlessly applied to any diffusive data. Importantly, it does
not rely on prior assumptions, such as the number of changepoints [368, 369] or the
properties of the expected diffusive states [413].

In diffusion phenomena, we deal with complex statistical signals that can exhibit
various types of time correlations. Furthermore, we often encounter trajectories with
very different lengths, even in the same experiment. Hence, it is crucial that the ML
models are length-independent and able to capture correlations at different time scales
to ensure that they are as applicable as possible. In Section 6.3, we have seen that
many state-of-the-art architectures for diffusion characterization rely on very differ-
ent approaches, although combinations of convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) are the most prevalent. We propose an ar-
chitecture for STEP combining CNNs with self-attention mechanisms. Interestingly,
similar strategies have been adopted in recent works for novel supervised [378, 388]
and unsupervised [377] methods.

First, the input trajectory is processed by a series of convolutional layers that
we build following the XResNet architecture [61]. This expands the trajectory di-
mension to provide a richer representation based on local features. Then, the result
follows through a transformer encoder [66], which can capture global correlations.
Finally, we use a pointwise fully-connected layer of non-linear neurons to obtain
the desired output dimension containing the diffusion properties, as we illustrate
in Fig. 8.1B. We refer to Section 2.2.2 for details about the different blocks, and to
Appendix A for technical details about the proposed architecture, such as the num-
ber of layers and their sizes.

8.2.2 Training procedure

We train two models: one to infer the diffusion coefficient D, and another for the
anomalous diffusion exponent α. Each model is trained on simulated noisy trajec-
tories that feature abrupt changes in their respective diffusion properties (D or α),
and the goal is to predict those properties at every time step of the input trajectories.
In the following Section 8.2.3, we provide details about the data used to train and
validate the models.

We follow a standard gradient-based training procedure for both of them, and
the only differences arise from the training data and how we process it. The main
training loop consists on:

i. Predict the values over a batch of training data.
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ii. Compute the loss function with respect to the true values.

iii. Update the model parameters based on the loss gradient.

We use batches containing 128 trajectories and the L1 loss function, which corre-
sponds to the mean absolute error (MAE). Formally,

LMAE(x) =
1

N ∑i Ti

N

∑
i=1

Ti

∑
t=1
|yi,t − f (xi)t| , (8.1)

where f (xi)t denotes the prediction of the i-th trajectory at the time step t in a batch
of N trajectories. yi,t denotes its true label for the same time and trajectory, and Ti
denotes its total length.

The whole procedure is implemented using the PyTorch [390] and Fastai [391]
python libraries. To perform the parameter update, we use an Adam [394] optimizer.
We choose the learning rate with the learning rate finder tool of the Fastai library,
which typically is of the order of 10−4. Then, we implement a schedule over the
training batches both in the learning rate and its momentum, following the one-cycle
policy introduced in Refs. [392, 393]. We train our models until the performance in
the validation set stabilizes, typically between ten to twenty epochs.

To further prevent overfitting and enhance the model’s generalization capabili-
ties, we use dropout [50] and weight decay [46, 47]. Additionally, we add Gaussian
localization noise at different intensities to the trajectories as a form of data augmen-
tation to make the models robust to noise characteristic of experimental settings.

8.2.3 Data

We generate multiple data sets in order to train and properly evaluate STEP. We use
a dedicated data set to train each of the models, one to infer D and the other to
infer α, and the rest are used to test them on unseen scenarios, which we design to
evaluate different aspects of the models.

In Appendix A, we provide the details about the data sets that we use to train,
validate and test our models. These data sets contain simulated trajectories with
their corresponding labels at each time step. We have two main approaches to sim-
ulate the trajectories depending on whether we deal with normal or anomalous dif-
fusion. Below, we explain how we generate the data for both cases. However, there
are common factors for both approaches: the trajectories have piecewise constant
diffusion properties, every segment has a minimum length of 10-time steps, and all
the trajectories are 2-dimensional.

Brownian motion – We simulate Brownian motion trajectories by taking uncor-
related Gaussian noise as the trajectory displacements. We control the diffusion co-
efficient at each time step with the standard deviation of the Gaussian noise, which
corresponds to

√
2D. This way, we can easily generate segments of arbitrary lengths

with a constant diffusion coefficient, D, along the trajectories. Finally, we perform
the cumulative sum of the displacements to obtain the trajectory coordinates and we
subtract the initial position such that they start at the origin.

We consider diffusion coefficients across six orders of magnitude D ∈ [10−3, 103].
However, we take its logarithm as labels for the regression task, such that yi ∈ [−3, 3]
at every time step. This greatly simplifies the problem and allows us to keep a con-
sistent performance across all orders of magnitude.

Additionally, we can simulate experimental localization noise by adding Gaus-
sian noise with standard deviation σnoise. We use this as a form of data augmentation
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during training and to study the model’s resilience to noise. See Table A.1 for further
details.

Anomalous diffusion – To simulate anomalous diffusion trajectories, we con-
sider the five diffusion models introduced in Section 6.2. We generate full trajec-
tories for each model following the same procedure detailed in the Supplementary
Material from Ref. [367] and using the andi_datasets python library [381]. Then,
in order to obtain heterogeneous trajectories, we split them into segments, shuffle
them, and recombine combine them together. We impose the condition that two con-
secutive segments must differ, at least, either in the diffusion model or α. Then, we
add Gaussian localization noise, with standard deviation σnoise. Finally, we normal-
ize the resulting displacements by their standard deviation and subtract the initial
position to ensure that the trajectory starts at the origin.

Therefore, we have two labels at each time step: the anomalous diffusion expo-
nent and α with which the corresponding segment was generated. This allows us to
use the same data for both a regression task in the α and a classification task in the
diffusion model. However, we mainly focus on the first one. Furthermore, we bal-
ance all the data sets such that there is an even representation of both the anomalous
diffusion exponents and diffusion models throughout all the time steps.

8.2.4 Baselines

STEP provides pointwise diffusion properties for input trajectories, which, to the
best of our knowledge, is a distinct task from that addressed by any existing method.
In this context, it is challenging to perform a straightforward and equitable compar-
ison of STEP with these methods, particularly considering that typical approaches
involve the combination of various methods to achieve similar results.

Thus, instead of creating complex benchmarks, we compare STEP to the best al-
ternatives proposed so far for the extraction of diffusion properties such as D and
α. Since these methods cannot deal with time-dependent changeds of diffusion, we
apply them to trajectories pre-segmented according to the ground truth. For cal-
culating D from Brownian trajectories, we employ the fitting of the time-averaged
MSD (TA-MSD), which is the optimal estimator for D in most cases [353]. For esti-
mating α from trajectories undergoing anomalous diffusion, we employ the TA-MSD
fit in logarithmic space and leverage CONDOR [368], recognized as the leading ap-
proach for this task in the AnDi Challenge [367]. While these methods benefit of a
significant advantage due to the pre-segmentation, STEP typically achieves compa-
rable performance (see Fig. 8.2).

8.3 Results

8.3.1 Pointwise prediction of diffusion properties

We first validate STEP on the task of inferring the pointwise diffusion coefficient
from simulated trajectories reproducing transient Brownian motion with abrupt
changes of diffusion coefficient. The diffusion coefficient can randomly vary in the
range D ∈ [10−3, 103] and the dwell time in each diffusion coefficient is drawn
from an exponential distribution between 10 and 190 (mean 57) time steps. A
2D histogram of the ground truth versus the predicted diffusion coefficient shows
that STEP can precisely determine the diffusion coefficient across its whole range
(Fig. 8.2A) with an overall relative error |Dtrue − Dpred|/Dtrue = 0.226.
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Table A.1.

To further explore the performance of STEP, we calculate the relative error as a
function of the segment length, i.e., the dwell time for each D (blue line in Fig. 8.2B).
The error increases for shorter segments, meaning that STEP needs sufficient statis-
tics from surrounding points with similar properties to accurately predict the dif-
fusive properties of a given point. Comparing these results with the TA-MSD’s
prediction on pre-segmented trajectories, STEP is close to the optimal target per-
formance (blue vs yellow lines in Fig. 8.2B). Notably, when STEP is provided with
pre-segmented trajectories, we observe a further improvement, with a nearly 2-fold
reduction of the error at short segment lengths (red line in Fig. 8.2B), demonstrating
outstanding prediction capabilities. However, it is outperformed by the TA-MSD
baseline in long segments.

We take closer look at this performance trade-off between STEP and the TA-MSD
estimator of D, which is the optimal estimator in these conditions [353]. We as-
sess the prediction uncertainty of the different methods as a function of the seg-
ment length and compare it to the Cramér-Rao lower bound (CRLB), as shown in
Fig. 8.3(a). The TA-MSD fit is, indeed, the optimal unbiased estimator for D, as it
aligns perfectly with the CRLB (yellow and dashed black lines). Conversely, STEP
consistently violates the CRLB (blue and red lines below the dashed black line), sug-
gesting a degree of bias in its estimation.

Several factors can contribute to introducing bias in the resulting model. For ex-
ample, STEP estimates the logarithm of D, which typically leads to lower variance
estimators at the cost of introducing a potential bias. It is also essential to note that
the resulting model heavily depends on both the training data and the loss function
employed during training. In this specific case, the distribution of segment lengths
in the training data set follows an exponential function, resulting in a higher pro-
portion of shorter segments. From the perspective of minimizing the loss, there is a
tendency to prioritize the performance for the shorter segments, even if it comes at
the expense of the longer ones.



8.3. Results 89

10 50 100 150 190
Segment length

10 1

100
st

d
(D

)/
D

(a)

STEP
STEP + segments
TA-MSD + segments
CRLB

2 6 10
Number of segments

0.20

0.25

0.30

0.35

R
e
la

ti
ve

 e
rr

o
r

(c)

2 6 10
Number of segments

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ja
cc

a
rd

 I
n
d
ex

(h)

Length 20
Length 40
Length 60

10 3 10 1 101

noise/D

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
ve

 e
rr

o
r

(b)

ATTM CTRW FBM LW SBM
0.0

0.1

0.2

0.3

0.4

M
A
E

(d)

10 3 10 1 101

noise

0.2

0.4

0.6

0.8

1.0

1.2
(e)

STEP
TA-MSD + segments
CONDOR + segments

10 3 10 2 10 1 100

noise

(f)

ATTM
CTRW
FBM
LW
SBM

0.0 0.5 1.0 1.5 2.0

Fr
e
q
u
e
n
cy

 (
a
. 
u
.)

(g)

Points
Trajectories

FIGURE 8.3: STEP performance deep dive for D (top row) and α (bottom row) (a) Predic-
tion uncertainty for D comparing all the methods to the CRLB. (b) Relative error in D as
a function of the ratio between the localization noise’s standard deviation σnoise and D. (c)
Relative error of STEP as a function of the number of segments at three different segment
lengths. (d) Prediction MAE by diffusion model. (e) MAE as a function of the localization
noise for STEP, TA-MSD, and CONDOR, the last ones with with known segments. (f) MAE
as a function of the localization noise separated by diffusion models. The blue line in (e) cor-
responds to the average of the lines presented in this panel. (g) Prediction of α for Brownian
motion trajectories. The blue distribution shows the pointwise prediction for the trajectories,
while the red one shows the mean prediction over trajectories. The distributions have been
normalized to have the same maximum value. (h) Changepoint detection performance as a
function of the number of segments at three different segment lengths. For details about the

data used in each panel, see Table A.1.

Then, we consider additional factors that may impact the performance, such as
the number of changepoints or the presence of noise. In experimental scenarios, tra-
jectories are affected by localization noise, which is usually modeled as Gaussian
noise of variance σ2

noise added to the trajectories. Since we consider diffusion coeffi-
cients at very different scales along the trajectories, in Fig. 8.3(b), we plot the error as
a function of the ratio between the noise’s standard deviation and the diffusion co-
efficient. We see that STEP strongly outperforms the TA-MSD approach with known
segments even well beyond the noise levels present in relevant experimental scenar-
ios (usually σnoise/D < 10−1). However, the presence of noise increases the difficulty
of accurately finding the boundaries between segments, thus hindering the overall
performance of STEP (blue line).

Finally, in order to investigate the effect of the number of changes on the char-
acterization of the trajectories, we fix the segment length and generate trajectories
with one to eleven segments (zero to ten changepoints), resulting in trajectories with
very different lengths (see Appendix A for details). In Fig. 8.3(c), we see a slight
increase of the relative error with the number of segments, although it has a much
lesser impact than the segment length. For instance, it is harder to characterize a sin-
gle segment of twenty points than eight consecutive segments of 40 time steps each.
Importantly, even in the presence of 10 changepoints, STEP still heavily outperforms
the TA-MSD approach applied to segments (no changes) of the same size, e.g., the
whole curve for a segment length of 20 in Fig. 8.3(c) is well below the TA-MSD point
for a segment length of 20 in Fig. 8.2(b).

We then examine the ability of STEP to predict the anomalous diffusion exponent
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α. We consider trajectories composed of segments following the same length distri-
bution as in the Brownian motion case. Each segment is simulated using a different
anomalous diffusion model and α ∈ [0.05, 2]. The 2D histogram of the ground truth
vs the predicted α in Fig. 8.2(c) shows that STEP successfully predicts the anomalous
diffusion exponent. We obtain a MAE |αtrue − αpred| = 0.271, which is in line with
the top-scoring approaches for this task [369, 370] in the AnDi challenge [367]. As
most methods in the challenge, STEP is prone to errors for α ∼ 1. In addition, since
several models are inherently only sub- or super-diffusive and the method tends to
predict values of α within the training range, we observe a discontinuous behavior
in the histogram for α ∼ 1.

In Fig. 8.2(d), we report the MAE for α as a function of the segment length. STEP
strongly outperforms the TA-MSD approach and shows a performance comparable
to CONDOR. For this task, providing pre-segmented data to STEP marginally im-
proves its performance for long segments, whereas it even reduces it for short ones.
This result suggests that segment length is more important than the exact knowledge
of the segment edges and STEP effectively combines local and global information.

Given the sheer differences between anomalous diffusion models, we evaluate
the performance of STEP segregated by diffusion model. We report the MAE over
all segments belonging to each anomalous diffusion model in Fig. 8.3(d). We observe
clear differences between models, with continuous time random walk (CTRW), frac-
tional Brownian motion (FBM), and Lévy walk (LW) segments holding the lowest er-
rors. The MAE over scaled Brownian motion (SBM) segments is significantly larger
than in the other models. This has already been observed in previous works (see for
instance Fig. 2d of Ref. [367]), although the differences here are larger. A detailed
inspection shows that the biggest errors come from shorter segments, in agreement
with the results from Fig. 8.2(d). This is reasonable since the aging in SBM is the
source of the anomalous diffusion [334] and therefore it requires longer segments to
be correctly characterized. STEP displays a clear tendency to predict α ≈ 0.8 for SBM
segments, which is enhanced by the presence of noise. This behaviour suggests that
the model struggles to identify any clear behavior in short segments and defaults to
a prediction that minimizes the overall possible errors.

Interestingly, we find a similar trend in CTRW segments, where the model has
a tendency to predict α ≃ 0.25, corresponding to nearly immobile particles. As we
have introduced in Section 6.2.1, CTRW trajectories are characterized by jumps at
random times, resulting in segments in which the particle does not move. Hence,
many CTRW segments in our heterogeneous trajectories do not display any move-
ment due to their short lengths, corresponding to a waiting time window. Therefore,
it is impossible for the model to correctly predict α, as it does not have any informa-
tion to work with.

To a lesser extent, we also find that the model predicts α ∼ 1 for low anomalous
diffusion exponents in annealed transit-time model (ATTM) segments. In ATTM
trajectories with small α, we encounter very long segments with low diffusion co-
efficients. Similar to the CTRW case, we encounter parts of these long segments in
our heterogeneous trajectories containing a unique diffusion coefficient. Thus, they
effectively behave like Brownian motion along the observed time window, justifying
the predictions α ∼ 1 in these cases.

We proceed to study the resilience of the method to localization noise, as we have
done for the case of D. We present the MAE as a function of the noise’s standard de-
viation σnoise in Fig. 8.3(e). We observe a consistent performance of all the methods
until reaching considerable levels of noise. Again, STEP is comparable to CONDOR
despite the latter having the advantage of knowing the segments beforehand. In
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Fig. 8.3(f), we show the impact of localization noise for each diffusion model. As we
have seen throughout this section, characterizing some diffusion models is harder
than others, and the localization noise has a different impact on them. While increas-
ing the noise level has an overall negative effect, the performance on LW segments
suffers the most, while the performance on CTRW segments is barely affected. Over-
all, the errors start to increase significantly beyond σnoise ∼ 2× 10−1, which would
correspond to harsh experimental conditions. Interestingly, ATTM segments see a
drop in MAE with increasing noise for a limited range.

To conclude the performance analysis, we use the model trained to characterize
anomalous diffusion to predict α for the Brownian motion trajectories with random
diffusion changes from Fig. 8.2(a) & (b). We show the results in Fig. 8.3(g). The point-
wise prediction (blue distribution) averages to α = 1.02, which aligns closely with
the expected value of 1. This outcome gains further credibility when we compute the
average predicted α across the entire trajectory (red distribution), since it shows that
all trajectories are consistently predicted to have α ≈ 1. Although these trajectories
closely resemble ATTM trajectories, characterized by random changes in D, STEP
correctly discerns that the trajectories in question do not exhibit anomalous diffu-
sion. This determination is based on the fact that the distribution of D and dwell
times τ do not satisfy the conditions outlined in Section 6.2.3, which are necessary
to induce anomalous behavior.

8.3.2 Detecting diffusive changepoints in heterogeneous trajectories

For trajectories undergoing sudden changes of diffusion properties, the exact knowl-
edge of the points at which these changes occur is crucial to infer temporal proper-
ties and kinetic rates of the system and fully characterizing the underlying physical
process. While STEP does not explicitly detect changepoints, its output provides a
precise estimation of the diffusion property which is supposed to change, hence sim-
plifying the task of changepoint detection and location with respect to the use of raw
data. To highlight this capability, we compare the results obtained by a state-of-the-
art kernel changepoint detection (KCPD) method [414, 415] when applied to STEP’s
predictions and to the time series of trajectory displacements. We use the ruptures
Python library [416] for the KCPD implementation. To assess the performance of
the methods, we compute the Jaccard index (JI) considering as a true positive any
changepoint predictions lying within a threshold distance E from the correspond-
ing ground truth. The JI is computed as a function of the true positives (TP), false
positives (FP), and false negatives (FN):

JI =
TP

TP + FP + FN
. (8.2)

We first quantify the performance of the method to detect changes of the dif-
fusion coefficient in heterogeneous Brownian motion trajectories. We use a bench-
mark data set with trajectories of 200 time steps exhibiting a single changepoint and
set E = 5. Applying the KCPD algorithm on the prediction of STEP, we can suc-
cessfully detect the changepoints with high accuracy. The detection improves as the
differences between consecutive segments increase, achieving a nearly-perfect detec-
tion for segments whose diffusion coefficients are just one order of magnitude apart,
as we show in Fig. 8.2E (blue line). Furthermore, the method is robust with respect
to the changepoint position within the trace (Fig. 8.2(f) (blue line)). In contrast, when
we apply KCPD directly over the trajectory displacements (dashed purple lines) we
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observe a decrease in performance over the whole range of diffusion coefficient ra-
tio. On average, STEP produces a 20% reduction in error reaching an average JI of
0.833 compared to 0.796 obtained with the raw displacements.

Similar to Section 8.3.1, we also evaluate the performance as a function of the
number of segments, depicted in Fig. 8.3(h). Detecting changes between short seg-
ments is much harder than between longer ones. However, segment length becomes
less important as they become longer, as the curves for lengths 40 and 60 behave
fairly similarly. STEP achieves a better score for shorter segments when the trajec-
tories are very long (11 segments). This suggests that every additional changepoint
in the trajectory adds a similar amount of error sources which are eventually out-
weighed by the accumulated errors along the trajectory as it gets longer. Nonethe-
less, even in the most challenging cases, STEP correctly detects the vast majority of
the points.

We perform a similar analysis to detect changes in the anomalous diffusion expo-
nent. To ease the analysis, we consider only trajectories undergoing FBM [343] (see
Section 6.2.4 for details). Since the anomalous diffusion exponent is an asymptotic
property that cannot be easily calculated from the raw data, to build our baseline,
we compute α with a linear fit of the TA-MSD on a log-log scale using a sliding win-
dow of 30 time steps, which we then feed into the KCPD algorithm (dashed yellow
lines). Expectedly, the larger the differences between segment parameters, the bet-
ter we can detect the changepoints, as we show in Fig. 8.2G. We obtain a 30% error
reduction by using STEP with respect to the baseline method, achieving an average
JI of 0.515 and 0.297, respectively, with E = 20. However, these metrics show that
finding changes in α is significantly harder than in D. Moreover, we also observe a
performance drop when the changepoints are near the trajectory edges (Fig. 8.2H).
In these cases, we deal with short segments whose anomalous diffusion exponent
can be hard to determine, as they rely on the arising of long-range correlations.

8.3.3 Revealing continuous changes of diffusion properties

When considering heterogeneous trajectories in the biological context, the typical
behavior one expects is represented by particles undergoing diffusion with piece-
wise constant properties that can suddenly change, e.g., as the result of specific in-
teractions with other biological components. However, the presence of molecular
crowding and gradients of concentration can produce a continuous variation of dif-
fusion properties over time [351]. These changes might be challenging to detect due
to the limited spatio-temporal resolution of the experiments or the lack of specific
approaches for trajectory analysis. Since STEP predicts pointwise diffusion proper-
ties in a model-free fashion, it inherently features the capability to perform this kind
of analysis, even without dedicated training.

To evaluate the performance of STEP on smoothly-varying trajectories, we rely
on simulations of SBM [348]. As detailed in Section 6.2.5, SBM trajectories are char-
acterized by a time-dependent diffusion coefficient with a power-law relationship
D(t) ∼ tα−1.

In Fig. 8.4, we show the predictions obtained for the diffusion coefficient at every
time step of trajectories with α = 0.1 and 0.5. The shaded lines represent the STEP
predictions obtained for individual trajectories which, despite the fluctuations, al-
ready indicate the decreasing trend. Averaging over trajectories (round marker) re-
veals the correct power-law scaling (dashed lines). We also obtain the correct scaling
with a linear fit of the TA-MSD on a sliding window of 20 points over the trajectories
(solid lines). As shown, STEP can capture the scaling earlier, since it is not limited by
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FIGURE 8.4: Continuous changes of diffusion properties. Predictions of the time-
dependent diffusion coefficient of two sets of SBM trajectories with α = 0.1 (blue) and 0.5
(red). The bold continuous lines show the average prediction over 3000 trajectories with
STEP and a linear fit of the TA-MSD over a sliding window of 20 points. The thin continu-
ous lines show a few example STEP predictions. The dashed lines indicate the theoretically
expected scaling for every α. The lines have been normalized and shifted to compare their

slopes easily.

the size of the window. Furthermore, the inference of α correctly provides a nearly
constant value throughout the trajectory, as expected.

8.3.4 Characterizing anomalous diffusion from changes of normal diffu-
sive properties

To test the potential of STEP for the analysis of experimental trajectories, we use it to
study the motion of the pathogen-recognition receptor DC-SIGN expressed in Chi-
nese hamster ovarian cells [417]. Previous analysis of these experiments revealed the
occurrence of anomalous diffusion and weak ergodicity breaking as a consequence
of stochastic changes of diffusion coefficient [324]. This behavior was described in
the framework of the ATTM [341], whose main features are schematically summa-
rized in Fig. 8.5A.

As we have introduced in Section 6.2.3, ATTM depicts Brownian diffusion with
random piecewise constant D, whose segment lengths τ depend on the value of
D (Fig. 8.5A, top). This results in anomalous and weakly non-ergodic diffusion,
despite performing Brownian motion at short scales. In the regime of ATTM we
are interested in, D is sampled from a probability distribution with a power-law
behaviour P(D) ∼ Dσ−1 for small D and a fast decay for D → ∞ (Fig. 8.5A, middle).
Moreover, the dwell time τ is correlated to D and it is sampled from a distribution
of the form E [P(τ|D)] = D−γ (inset of Fig. 8.5A, middle), resulting in an effective
α = σ/γ (Fig. 8.5A, bottom). Therefore, the correct characterization of both the
distribution of P(D) and P(τ|D) is crucial to corroborate the compatibility with the
underlying model. In the original work [324], changes of diffusivity were detected
through a changepoint analysis [418] but the sensitivity and the time-resolution of
the method did not allow a thorough investigation of this behavior.

To demonstrate that STEP enables a better characterization of this data, we first
use simulated ATTM trajectories. We set σ = 0.3 and γ = 0.4 (α = 0.75), result-
ing in trajectories with D ∈ (10−6.7, 100) with 18 different segments, on average, for
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FIGURE 8.5: Switch between random diffusive states of the pathogen-recognition receptor
DC-SIGN. (A) Characteristic features of the ATTM model: an exemplary trajectory under-
going changes of diffusion coefficient; a few examples of the distribution of D with different
σi, and an example relation between the diffusion coefficient and the dwell time τ for a fixed
γ; the ensemble-average MSD scaling for the αi = σi/γ that result from each of the previ-
ous σi and a fixed γ. (B) Predictions of the diffusion coefficient obtained by applying STEP
to simulated ATTM trajectories (dots) and the result of applying the changepoint analysis
(black line). (C) Distribution of D obtained through the analysis described in (B), showing
the expected power law behavior at small D. (D) Relation between D and the dwell time τ
obtained through the analysis described in (B), showing the expected power law behavior.
(E) Examples of experimental trajectories of DC-SIGN with the corresponding predictions
obtained for D (dots) and the changepoint analysis (black line). (F) Histogram of the distri-
bution of D obtained for the experimental trajectories. Inset: power-law fit at small D. (G)
2D histogram of D and α obtained for the experimental trajectories. For details about the

data used in each panel, see Table A.1.

trajectories of 200 time steps. We segment the trajectories applying the KCPD al-
gorithm introduced in the previous sections over the STEP predictions of D, as we
show in Fig. 8.5B. Thus, we assign to each segment a single D, taking the average
segment prediction, and a τ. We successfully recover the power-law behavior of D
(Fig. 8.5C) and the power-law relationship between τ and D (Fig. 8.5D). The faint
harmonic in Fig. 8.5D corresponds to 2D−γ, which results from the missed detection
of a changepoint between consecutive segments with very similar D (hence similar
τ). Interestingly, when performing predictions of α, STEP predicts α ∼ 1, as expected
from the properties of the diffusion model (see ??).

Then, we apply this approach to the DC-SIGN trajectories of Ref. [324]. The
results confirm the occurrence of diffusivity changes between segments of nearly-
constant diffusion coefficient and with variable duration, as we show in Fig. 8.5E.
Interestingly, our approach reveals twice as many changepoints as the previous anal-
ysis.

The distribution of D obtained for trajectory segments spans several orders of
magnitude, as we show in the histogram of Fig. 8.5F. For small D, it displays a
behavior compatible with a power-law with exponent σ ≈ 0.37 over nearly three
decades (inset of Fig. 8.5F), compatible with the ATTM. Notably, this behavior could
not be directly verified in the original article. In principle, our method would allow
us to verify the correlation between D and dwell time, as we have shown in the sim-
ulations. However, this task is limited by the variable trajectory length [419] and by
the lack of statistics, in particular for segments at small D.

As a further test, we predict the anomalous diffusion exponent with STEP. We
assign a single α by taking the average prediction of each segment. The results re-
ported in Fig. 8.5G show an interesting correlation between D and α that suggests
a more complex diffusion pattern, involving the occurrence of anomalous diffusion
also at the level of individual segments.
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FIGURE 8.6: Multi-state diffusion of the integrin α5β1. (A) Examples of experimental
trajectories of the integrin α5β1 with the corresponding predictions obtained for D (dots)
and the changepoint analysis (black line). (B) 2D histogram of D and α with the respec-
tive marginal distributions. (C) Scatter plot of the predictions obtained for D and α at the
segment level, color-coded according to a clustering analysis performed with a k-means al-
gorithm. (D) Distribution of the turning angle for the four clusters of segments obtained as
in (C). (E) Distribution of the confinement radius for the clusters showing restrained diffu-

sion. For details about the data in each panel, see Table A.1.

8.3.5 Characterizing multi-state diffusion processes

We use STEP to analyze experimental trajectories of the integrin α5β1 diffusing in the
membrane of HeLa cells. Integrins are transmembrane receptors for the extracellular
matrix (ECM) in focal adhesions, which mechanically link the ECM and actin fila-
ments in the cytoplasm and activate signaling pathways involved in cell migration,
proliferation, or apoptosis [420]. The dynamics of the integrin α5β1 is influenced by
interactions with fibronectin and actin-binding proteins [419, 421]. Its motion has
been reported to switch from fast free-diffusion to slow free-diffusion and immobi-
lization, as well as exhibiting rearward actin-driven movement.

We use STEP to predict both the diffusion coefficient and the anomalous diffu-
sion exponent for the integrin α5β1 trajectories. Then, we segment the trajectories
by applying the KCPD method to both predictions at once. In this way, we assign
every segment a unique D and α by taking the average prediction over the segment.
Examples of the results are shown in Fig. 8.6A and the joint distribution of D and
α in Fig. 8.6B. The visual inspection of Fig. 8.6B reveals two main clusters centered
around (D = 10−6µm2/s, α = 0.25) and (D = 0.1 µm2/s, α = 1). The 2D histogram
of the same parameters calculated at the pointwise level (pre-segmentation) does not
show any major differences with respect to Fig. 8.6B.

Nonetheless, combining the k-means clustering algorithm with the elbow
method [422], we find the data optimally separates in four clusters of segments
(Fig. 8.6C) characterized by different motion features. The first two clusters show
a rather restrained motion, with integrins spending 40% of the time in a state
characterized by D = 1.2 × 10−5µm2/s and α = 0.23, and 14% of the time with
D = 0.06 µm2/s and α = 0.46. For both clusters, the distribution of angles between
successive steps shows a peak centered at 180◦, indicating backward movements
due to reflection at potential boundaries, as we show in Fig. 8.6D. The confinement
radius of the first cluster has a median of 14.9 nm (st. dev. ±13.3 nm), which is
comparable to the localization precision of these experiments. This allows us to as-
sociate it with protein immobilization. The second cluster shows confined motion
within areas with a broad distribution of sizes, as we see in Fig. 8.6E, and a median
radius of 90.4 nm (st. dev. ±98.2 nm). The third cluster represents the 29% of the
total recording and shows minor deviations from Brownian motion with α = 0.88
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and a nearly uniform angle distribution, and has an average D = 0.10 µm2/s, close
to the value typically reported for this protein. Interestingly, the analysis pinpoints
a fourth population, corresponding to a 20% of the total recording, undergoing su-
perdiffusion with α = 1.3 and D = 0.14 µm2/s, and with a persistent direction of
motion between consecutive steps (Fig. 8.6D).

8.4 Conclusion

In Ref. [389], we present STEP, an ML method to predict diffusion properties from
individual trajectories at every time step. The method relies on a combination of
state-of-the-art DL architectures that take into account correlations at different time
scales. The presented approach is especially appealing to analyze trajectories from
particles undergoing heterogeneous motion, where changes in diffusion properties
occur over time. Moreover, it does not require prior knowledge of the underlying
physical process or the temporal resolution at which changes in diffusion occur.

To illustrate the power of STEP, we benchmark it on simulated trajectories un-
der various conditions. We show its ability to predict piecewise constant diffusion
properties, such as the diffusion coefficient or the anomalous diffusion exponent,
in noisy and short trajectories. Furthermore, we demonstrate that STEP boosts the
accuracy of a changepoint detection algorithm to detect the time at which diffusion
changes take place. Importantly, we also prove the suitability of our method to study
continuous changes of diffusion.

To further demonstrate the potential applications of the method, we study trajec-
tories obtained by tracking live-cell single-molecule imaging experiments of proteins
of the plasma membrane. First, we characterize the motion of the pathogen recog-
nition receptor DC-SIGN, which was shown to exhibit random changes in the diffu-
sion coefficient. Our analysis confirms such a hypothesis and improves the accuracy
with which we detect these changes. Moreover, our results suggest the occurrence
of more complex phenomena that need further investigation. Secondly, we study
the diffusion of the integrin α5β1. In agreement with previous works, our analysis
confirms the existence of different diffusion modes and allows their precise classifi-
cation according to the diffusion coefficient, the anomalous diffusion exponent, and
the levels of spatial constraint.

We believe that STEP represents a first step towards a new class of ML algo-
rithms to study dynamic systems through a sequence-to-sequence approach. The
instantaneous prediction of the property of interest enables the characterization of
the trajectories at experimental time resolution without averaging and filtering and
minimizes the prior knowledge needed to perform the analysis. As such, the results
obtained with STEP can provide information about diffusion properties with un-
precedented resolution and thus shed light on the underlying physical processes of
a variety of systems. One of the primary advantages of STEP is its broad applicabil-
ity. However, as demonstrated in the Results section, specialized methods may pro-
duce more accurate results when applied specifically to their intended tasks. Conse-
quently, a significant benefit of STEP is its potential integration with these methods,
facilitating their utilization across a wider spectrum of scenarios, such as enhancing
trajectory segmentation.
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Chapter 9

Customer intent prediction

In this chapter, we dive into an industrial application for the study of diffusion with
machine learning (ML). Throughout Chapters 6 to 8, we have focused on the bio-
physical characterization of diffusion trajectories, extracting parameters such as the
diffusion coefficient or the anomalous diffusion exponent. Here, we illustrate how
similar techniques can be used to study the trajectories described by internet users
in their action space in order to predict the outcome of their browsing session. We
explore two approaches: combining hand-crafted features with classical ML algo-
rithms, and applying deep learning (DL) models directly to the raw data.

This chapter is based on the work presented in Ref. [423]. The data used for the
study is publicly available for research and educational purposes in the repository
in Ref. [424].

9.1 The clickstream prediction problem

Upon landing on exampleshop.com, a user starts browsing through product listings,
raising an intriguing question: will this session culminate in a purchase, or will it
conclude without any transaction? The challenge of predicting whether the out-
come of a user’s browsing session, known as clickstream prediction challenge [425–
429], is relevant to a broad audience, both from a theoretical and practical perspec-
tives. On the theoretical side, it falls under the umbrella of sequence classification
problems [430], akin to those explored in Chapters 7 and 8, the analysis of protein se-
quences [431], or EEG signal processing [432]. However, the combination of the scale
of web inferences, data set characteristics and time constraints make clickstream pre-
diction stand out as a particularly challenging scenario to test statistical tools. On
the practical side, the surge in online retail [433], with approximately 25% of all

FIGURE 9.1: Schematic representation of the clickstream prediction problem. A user
reaches an e-commerce landing page and starts browsing the website. Based on its actions,

is it possible to asses whether it is just perusing or will it buy a product before leaving?
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fashion-related transactions now happening digitally [434], and the connection be-
tween browsing behavior and an entire ecosystem of applied science problems [435],
makes clickstream prediction a very valuable problem to solve.

A shopper browsing an e-commerce website is analogous to a walker navigat-
ing a network enriched with metadata. The shopper generates a trajectory hopping
between nodes, with different waiting times between jumps, reminiscent of the phe-
nomena captured by the continuous time random walk (CTRW) model introduced
in Section 6.2.1. Therefore, the clickstream prediction problem is analogous to the
trajectory characterization tasks addressed in Chapters 6 and 7, where the goal is to
assess whether the trajectory is characteristic of a user that purchases an item or not,
as depicted in Fig. 9.1. The main difference lies in the nature of the trajectories: while
those considered until now traverse the continuous position space, the trajectories
described by shoppers unfold over a discrete categorical space.

In Ref. [423], we extensively study the clickstream prediction problem with a
novel data set accessible in Ref. [424]. This data set contains rich clickstream data
from users browsing a popular fashion e-commerce website. In our study, we con-
sider two main tasks: the classification of clickstream sequences of variable length,
and the early prediction of limited-length sequences. To tackle these tasks, we take
two different strategies: employing classification algorithms on predefined hand-
crafted features, and harnessing the power of DL to automatically learn relevant
feature representations. The former strategy, being computationally efficient, scal-
able and interpretable, combines classical symbolic features, such as k-grams, with
horizontal visibility graph motifs (HVGMs) [436]. HVGMs are based on the network
representation of time series [437], which can be used to study anomalous diffusion
[438]. On the other hand, the latter strategy outperforms the former, although it is
more sophisticated and less interpretable. In this approach, we extend and enhance
state-of-the-art DL models [428] based on recurrent neural networks (RNNs), analo-
gous to the progress in the study of anomalous diffusion [364, 369].

The illustrative example in Fig. 9.2 shows a typical browsing session of a user
on an e-commerce website. As the shopper navigates the site, a plethora of data is
collected in real-time, forming the basis for clickstream prediction. While the data is
rich on metadata, depicted in row B of Fig. 9.2, we focus on using minimal informa-
tion. By removing most of the metadata and symbolizing the trajectories (row C), we
address a pivotal question: do these symbolized trajectories contain enough infor-
mation about the user’s intent, and can it be exploited and understood? Symbolized
trajectories allow us to disentangle the information of clickstream patterns from ad-
ditional factors, such as waiting times between clicks and the network topological
properties of the nodes visited. This approach sets the stage for progressively ex-
panding the research by incorporating more information and evaluating its impact.
Furthermore, validating low complexity pipelines is crucial for real-time implemen-
tations and decision-making processes in online marketing. Such approaches are
less platform-dependent and are, therefore, easier to implement for a broader range
of applications.

Notably, previous research on the clickstream prediction problem suffers from
low external validity [439]. Experiments on online behavior are often conducted
on cases that do not represent the vast landscape of digital shops. For example,
methods developed for large-scale shops with exceedingly high conversion rates
(e.g., 20% [428]), which is known to vary drastically between countries, industries
and even individual shops [440], may not be applicable in more realistic scenarios.
In our study, we consider a case with conversion rates below 5%, which serves as an
example of a more representative and commonplace situation (typically between 1
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FIGURE 9.2: Example session and high-level view of the data. We can distinguish three lay-
ers of representation: A is the actual session that is being monitored; B is the rich meta-data
layer, which comprises, for each interaction between the user and the website, information
about time, location, product properties, etc.; C is a symbolized, minimal information layer,

in which all meta-data about the products is stripped and only event types are retained.

to 5% [440]). This huge disparity not only makes class imbalance worse in realistic
cases, but also challenges the widespread validity of results obtained on privileged
and unusual data sets.

9.2 Data

9.2.1 Raw database

The raw data is provided by Coveo, a North American company providing artificial
intelligence (AI) services to the retail and service industries, and it can be accessed
through Ref. [424]. The raw database consists of browsing data retrieved from a
popular fashion e-commerce website over the course of a two-month period in 2018.
The data is stored and anonymized by removing any individual identifier and acces-
sory metadata, such that it is impossible to match events to neither specific products
nor individual users. Notably, for this study, users get assigned random identifiers
in every session, so it is not even possible to re-identify a user as the same across
different sessions.

During the two-month period, all events in the e-commerce website undergo
a“sessionization” phase. Every new user is assigned a session with the first interac-
tion in the website that lasts a maximum of 30 minutes, which is the industry stan-
dard. All the events produced by the same user during that time span are recorded
in the same session. Any new event produced by the same user happening after
the session time has expired, triggers a new session where subsequent events are
recorded. After sessionization, the trajectories are randomly sampled from the re-
sulting data set to protect the data provider from revealing the total amount of traffic
on the target website. As a result, the final data set comprises 443, 652 anonymized
clickstream trajectories of real customers. The next pre-processing step, symboliza-
tion, strips all but the most basic event information.
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Action Symbol Description
Page view 1 Visit any page

Detail 2 Open product page
Add 3 Add product to cart

Remove 4 Remove product from cart
Purchase 5 Purchase items in cart

Click 6 Select a search query result

TABLE 9.1: Event symbol assignment rule. Trajectories rich in meta-
data are mapped into a simple symbolic sequence according to the

kind of actions taken by the users.

9.2.2 Trajectory symbolization, class definition, and trimming

The raw data containing the user trajectories is rich in metadata. However, as we
have previously introduced, our focus is on using the minimal possible information
to perform the clickstream prediction task. In order to minimize the amount of infor-
mation accompanying each trajectory, we apply a symbolization procedure in which
each event is assigned a category according to the action performed by the user that
triggered it:

Page view: when the final user loads any non-product specific page in the website.
For instance, the home page or different product listings.

Detail: when the user visits a specific product page. This involves actions such as
navigating to a product’s main page, or accessing its details from other pages.

Click: when the user clicks on a specific result from a search query. For example,
searching “shoes” and clicking on one of the returned options.

Add/Remove: when a product is added/removed to/from the cart.

Purchase: when the user buys the products in the cart.

Every action category is assigned a symbol according to Table 9.1.
Hence, the problem of clickstream prediction in a session of L actions trans-

lates into predicting the appearance of symbol 5 in the symbolized trajectories
S = (s1, s2, . . . , sL), where si ∈ {1, 2, . . . , 6}. Therefore, each trajectory is assigned
to one of two possible classes: the conversion class (C) and the non-conversion class
(NC). The conversion class C is assigned to all the trajectories which, at any given
point, contain a Purchase event, that is, trajectories where the symbol 5 appears at
least once. Then, the NC class encompasses all the other trajectories, generated by
customers that navigate the website for some time and abandon the session before
purchasing anything. In the raw data set, out of the 443, 652 trajectories, 9212 (2.08%)
belong to class C and 434, 440 (97.92%) belong to the class NC.

All the class C trajectories are trimmed in order to remove the label information
from the observation, keeping only the initial part of the trajectory that precedes
the first appearance of a Purchase event. As a result, all the trajectories in the pre-
processed data set lack such event, although they are appropriately labeled. Note
that different symbolization rules, or just a permutation of Table 9.1, would yield
different projected trajectories that are equally valid.
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9.2.3 Task-specific data sets

As previously mentioned, we tackle two main prediction tasks: the classification of
whole trajectories as they are, and the early prediction of such trajectories using only
the information provided by the first T actions. We generate different sub-data sets
to perform the necessary conditioning of the clickstreams for each of the tasks.

Data set (A): For the whole trajectory classification, we only keep trajectories
with length L ≥ 5 clicks. This way, we ensure that trajectories are long enough to
provide statistically meaningful information in the extracted features. The resulting
data set contains 203, 080 trajectories: 8, 324 (4.10%) belonging to class C and 194, 756
(95.90%) belonging to class NC.

Data set (B): For the early classification experiment, we, again, consider only
trajectories with length L ≥ 5 clicks. Then, for each early window T to be consid-
ered, we generate a new sub-data set taking the trajectories with length L ≥ T and
trimming them all to length L = T.

In both cases, we also remove excessively long to be considered meaningful or
generated by humans given the limited session time. Thus, we take trajectories with
length L ≤ 155 clicks, which implies a 1% drop of Data set (A).

9.3 Hand-crafted, feature-based classification

In this section we describe the different feature-engineering schemes that are fol-
lowed to extract meaningful information from the trajectories for the posterior clas-
sification. Then, we proceed with the introduction and evaluation of the different
ML models used for the clickstream prediction.

9.3.1 k-grams

The most straightforward feature that can be extracted from a symbolized time se-
ries is the joint distribution of symbols. A k-gram [441] is defined as a block of k
consecutive symbols. As such, isolated symbols are 1-grams, whereas blocks of two
consecutive symbols such as ‘11’, ‘12’, ‘63’ are examples of 2-grams.

In general, the normalized frequency histogram of k-grams is a joint probability
distribution P(s1, s2, . . . , sk). Asymptotically, the set of k-grams distributions {P(s),
P(s1, s2), . . . , P(s1, s2, . . . , sk)} provides all the information of the dynamical process
generating the trajectories. As a matter of fact, the so-called Shannon’s entropy rate
of such a process is defined as the limit

H = lim
k→∞

−1
k ∑

B(k)
P(s1, . . . , sk) log P(s1, . . . , sk),

where B(k) enumerates all blocks of size k, i.e., all possible k-grams. The entropy
rate may be used to estimate the complexity of the process underpinning the ob-
served trajectories. However, this quantity is generally intractable, in practice, as
the number of possible k-grams increases exponentially. For instance, in this case
with five symbols (1, 2, 3, 4 and 6), there is a total of 5k possible different k-grams.
Therefore one would need extremely long trajectories to accurately estimate even
low order approximations to H. For these reasons, given the typical session lengths
in e-commerce applications, we are restricted to short k-grams, usually k = 1, 2.

For parsimony, the first question to address is whether the relative abundance
of isolated symbols (1-grams) is already a good discriminative feature of the two
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FIGURE 9.3: 1-gram distribution by class in Data set (A). (a) Mean normalized frequencies
of 1-grams with error bars denoting the standard deviation. (b,c,d) Intraclass distribution of

frequencies for 1-grams corresponding to view, detail, add, respectively.

classes, as in that case there is no need to look at more sophisticated patterns in the
data. Intuitively, we may expect certain actions to be indicative of the class. For in-
stance, adding products to the cart is a prerequisite for buying, although there may
be trajectories without such action that belong to the C class due to the sessioniza-
tion. Fig. 9.3(a) shows the average abundance of each symbol P(s) in both classes.
These preliminary results suggest that, while some subtle differences seem to be
present for view and detail events, both classes have the same abundance within
error bars; thus, 1-gram statistics are not discriminative.

We explore this aspect in further depth, computing the ensemble distributions of
P(view), P(detail) and P(add) in Figure 9.3(b), (c) and (d), respectively. This finer
analysis confirms that the isolated actions view and detail appear with comparable
frequencies in the two classes and are overrepresented in very short trajectories. On
the other hand, the add action is more abundant in trajectories belonging to the C
class, as expected, meaning that P(add) may potentially be an informative feature.

Accordingly, we extract 1-gram and 2-gram distributions P(s) and P(s1, s2) as
relevant features of the trajectories. However, it is clear from Figure 9.3 that higher
order statistics are needed. Since the length of the trajectories precludes the extrac-
tion of meaningful estimations of higher order k-grams, in the next Section 9.3.2, we
introduce a simple and computationally efficient combinatorial metric devised to
extract higher order patterns from short samples.

9.3.2 Horizontal visibility graph motifs

A time series of N points can be transformed into a so-called horizontal visibility
graph (HVG) of N nodes via the so-called visibility algorithm [437, 442]. This is a
method that enables the characterisation of time series and their underlying dynam-
ics using combinatorics and graph theory.

Definition (HVG): Let S = {x1, . . . , xN}, xi ∈ R be a real-valued scalar time (or oth-
erwise ordered) sequence of N data. Its HVG(S) is defined as an undirected
graph of N nodes, where each node i ∈ {1, 2, . . . , N} is labelled in correspon-
dence with the ordered datum xi. Hence x1 is related to node i = 1, x2 to node
i = 2, and so on. Then, two nodes i, j (assume i < j without loss of generality)
share an edge if and only if xk < min(xi, xj), ∀k : i < k < j.

HVG implements an ordering criterion to transform a time-series into a graph
representation, which is illustrated in Figure 9.4(a) (see Ref. [437] for a convexity cri-
terion that generates ‘natural’ visibility graphs instead). HVGs allow us to harness
the power of graph theory and network science tools [443] to describe the struc-
ture of time series and their underlying dynamics from a combinatorial perspective.
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(a) (b)

FIGURE 9.4: Schematic representation of the generation of HVGMs (a) Extraction of the
HVG from a discrete time series according to the visibility criterion, illustrated in arrows.
(b) Extraction of the sequential HVGMs of order p = 4 from an HVG sliding along the

Hamiltonian path of the graph.

While research on this methodology has been primarily theoretical, elaborating on
mathematical methods [444–447] to extract rigorous results on the properties of these
graphs when associated to canonical models of complex dynamics [438, 448–450],
its practical applications are diverse. In practice, HVGs serve as effective feature ex-
traction tools for statistical learning, finding applications across multiple disciplines
[451–455]. Notably, they have been recently extended from time-series analysis to
image processing [456].

Since the given trajectories are relatively short, local patterns might provide more
information than global metrics. This information is captured by sequential horizon-
tal visibility graph motifs (HVGMs) [436, 457], which assess the abundance of small
combinatorial structures within the time series, reflected in sub-graphs within the
HVG.

Definition (HVGM of order p) Consider an HVG of N nodes, associated to a time
series of N data points, and label the nodes according to the natural ordering
induced by the arrow of time, i.e., the trivial Hamiltonian path. Set p < N
and sequentially consider all the sub-graphs formed by the sequence of nodes
{i, i + 1, . . . , i + p− 1}, with i ∈ [0, N − p], and the edges from the HVG only
connecting these nodes, as illustrated in Fig. 9.4(b). The resulting sub-graphs
are defined as the sequential HVGMs of order p.

However, not all possible graphs with p nodes are indeed sequential HVGMs,
as the lowest non-trivial order is p = 4 [436]. In Table 9.2 we enumerate the six
possible motifs of order 4. For the specific symbolization rule defined in Table 9.1, a
few examples of possible HVGMs are, for instance, View-View-Detail-View (1121)
corresponding to the first motif, Add-View-View-Remove (3114) corresponding to the
second motif, Add-View-Add-Detail (3132) corresponding to the third motif, and so
on. The relation between specific motifs and behavioral patterns strongly depends
on the symbolization rule, which is an issue for all categorical sequences undergoing
a symbolization process.

Remarkably, HVGMs capture high-order patterns in the time series while being
computationally efficient. As a matter of fact, there is no need to extract the full HVG
from the time series for the posterior motif extraction, as in Fig. 9.4. Instead, HVGMs
can be directly extracted in linear time checking an inequality set [436]. In Table 9.2,
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Label Shape Inequality set

Z1
P({∀x0, x1 ≥ x0, x2 < x1, x3 ≤ x2} ∪ {∀(x0, x3), x1 ≥ x0, x2 ≥ x1}
∪ {∀x0, x1 < x0, x2 ≤ x1, x3 ≤ x2})

Z2 P ({∀x0, x1 < x0, x2 = x1, x3 > x2})

Z3 P ({∀x0, x1 < x2 < x0, x3 ≤ x2} ∪ {∀(x0, x3), x1 < x0, x2 ≥ x0})

Z4
P({∀x0, x1 ≥ x0, x2 < x1, x3 > x2}
∪ {∀x0, x1 < x0, x2 < x1, x2 < x3 ≤ x1})

Z5 P ({∀x0, x1 < x0, x1 < x2 < x0, x3 > x2})

Z6 P ({∀x0, x1 < x0, x2 < x1, x3 > x1})

TABLE 9.2: HVGMs of order 4. Enumeration of all the motifs of order 4 extracted from a
discrete-value time series according to a hierarchy of inequalities. The collection of all the

rows provides the motif profile Z.

we provide the inequality sets for order p = 4 motifs extracted from discrete-valued
sequences, see Refs. [436, 457] for additional technical details in the case of real-
valued sequences. This is of utmost importance for the deployment of this type of
feature extraction method with a real-time application.

We consider the motif profile Z as a representative feature of the trajectory. It is
the simplest metric encapsulating the statistics of the HVGMs, defined as the discrete
marginal distribution of the set of HVGMs. We only consider motifs of order p = 4,
hence

Z = [Z1, Z2, . . . , Z6], (9.1)

where Zi denotes the probability of the appearance of motif i. Furthermore, we
compute the entropy of the motif profile to quantify its heterogeneity:

hz = −
6

∑
i=1

Zi log Zi, (9.2)

which increases when the different motifs are uniformly represented, and decreases
whenever a particular motif is overrepresented.

9.3.3 Preface on classifier evaluation

Throughout Sections 9.3 and 9.4, we aim for a qualitative analysis of the tasks at
hand, assessing the trajectory classification viability and focusing on the knowledge
we can extract from the features. Hence, given that the data sets are heavily un-
balanced (recall Section 9.2.3), we generate new balanced sub-data sets taking the
totality of samples from the least represented class (C) and downsampling from the
majority class (NC). This way, we can train and evaluate our classifiers much faster,
and the class balance allows us to perform a qualitative analysis of the differences
between them much more easily. We perform the benchmarking in a more realistic
scenario in Section 9.5.

Then, we split the subdata set into train and test sets with a 80/20 ratio – we train
the classifier on the train set and evaluate the accuracy on the test set. Furthermore,
the classifier undergoes a 3-fold cross-validated (non-exhaustive) grid-search of its
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most relevant parameters during the training. As evaluation metrics, we use F1 score
and area under the ROC curve, which we denote as AUC.

The whole subsampling procedure is repeated 10 times and we report the mean
value of the metrics together with their standard deviation over the repetitions.

9.3.4 Clickstream prediction

We first address the full trajectory classification task using the Data set (A) (see Sec-
tion 9.2.3).

Feature analysis

Before diving into the model performance evaluation, we focus on understanding
the data through the features that we have engineered. We start by training an
extreme gradient boosting (XGB) classifier [458] over several balanced data sets to
compute the feature permutation importances, shown in Fig. 9.5(a). With this, we
can obtain a better understanding of the underlying behavioural patterns that lead
towards purchasing an item.

Given that symbol 3 corresponds to adding a product to the cart, we would ex-
pect its sole presence P(3) to be quite significant, as discussed in Fig. 9.3. However,
it is the combination of two actions add-view (P(3, 1)) that is more relevant for the
classification. Furthermore, this not even the most relevant feature, showing that
web exploration patterns, related with actions view and detail, actually provide
the most important information (P(1, 2)). This is backed up by the importance of
some HVGMs, which show that some of these navigation patterns are, indeed, quite
revealing. This is extremely important, provided that trajectories are mostly com-
posed by these two actions, as shown in Fig. 9.3, meaning that most users jump
from page to page (series of view (1)), product to product (series of detail (2)) and
page to product (view-detail (12) or reverse) but rarely dive into a specific product
straight from a search (click (6)).

We dive deeper into the analysis with SHAP’s tree interpreter [459, 460] to see
the effect of each feature in the prediction. In Fig. 9.6, we see the influence of the
most relevant features according to the SHAP values (see Refs. [459, 460] for de-
tails), which are in line with the previous feature importances Fig. 9.5(a). The 2-gram
P(1, 2) corresponding to view-detail is the most relevant feature with high values
indicating that the customer is, most likely, not buying before leaving. Combined
with what we observe for the other features, behaviours such as wandering from
page to page (high view-view P(1, 1)), opening many products (high view-detail
P(1, 2) and detail P(2)) without going straight from one to another (low detail-
detail P(2, 2)) and casually doing some searches (high click P(6)) are indicative
that the customer at hand will end the session without buying. High values of Z1
and low values of the hz indicate that such trajectories are rather monotonic, which is
not surprising when considering about a casual browser looking at what is offered.
An example of a trajectory could be view-view-view-detail-view-detail (111212)
providing high view-view (P(1, 1)), view-detail (P(1, 2)) and detail (P(2)), in-
cludes two Z1 and a Z4, resulting in a moderate hz. This example would correspond
to a customer that scrolls through different pages until it finds a product to look at,
goes back and then checks another product.

On the other hand, behaviours such as visiting few products and many dif-
ferent pages (high view P(1)) but coming from different actions (low view-view
P(1, 1) and high detail-view P(2, 1), add-view P(3, 1)) are indicative that the user
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FIGURE 9.5: Feature importances of an XGB classifier. From left to right there are the
permutation feature importances of the 1-grams, the 2-grams, the HVGMs and their entropy
hz for (a) Data set (A), and (b) Data set (B) for early windows T = 7, 9. For readability we

have omitted the parentheses in P(s), P(s, s′).

will purchase an item before leaving. Other recognisable patterns involve going
straight from one product to another (high detail-detail P(2, 2)), which sug-
gests that these users may take advantage of features such as similar product rec-
ommendations. High values of the HVGM entropy hz also indicate that naviga-
tion patterns are richer. An example of a trajectory with such properties could be
view-add-detail-view-add-view (132131) with low detail P(2) and view-view
P(1, 1), but with high view P(1) and add P(3), as well as add-view P(3, 1) and
detail-view P(2, 1). It contains a Z1, Z3 and Z5, maximizing the pattern entropy
hz. Overall, this is indicative that customers that purchase an item tend to have a
prior idea of what they want.

It remains to be explored whether different symbolizations from the one in Ta-
ble 9.1 may highlight different behavioural patterns in terms of the HVGMs. Z1 is
the motif that contains the most possible patterns and thus it is the most common.
Other HVGMs are more restrictive and represent more specific scenarios, such as Z3
(indicative of class C) and Z4 (indicative of class NC). With other symbolizations,
patterns that are currently compressed in Z1 may fall into other motifs, which might
turn out to be characteristic of one class or another.

Pipeline definition and evaluation

We consider five classifiers: (i) a logistic regression (LR), (ii) a RF [58], (iii) a support
vector machine (SVM) [461], (iv) an XGB [458], and (v) a shallow dense neural net-
work (NN). Each pipeline originally contained an additional pre-processing step,
where we explored using two different types of dimensionality reduction: principal
component analysis (PCA) [462] and uniform manifold approximation and pro-
jection (UMAP) [463], subsequently followed by the classifier. However, we have
found it is best to refrain from any dimensionality reduction for this task, as it hurts
the performance on the validation sets. This removes a significant computational
workload, especially in the case of UMAP, making the whole process much faster.
Between the feature extraction and the classifier, the only pre-processing that is left
is a normalization step subtracting the mean and dividing by the standard deviation
for the NN-based classifier.
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FIGURE 9.6: Influence of the top fifteen features and their SHAP values with an XGB
classifier. Each dot in the plot corresponds to a sample. On the y-axis, features are listed
in order of relevance, from top to bottom. The x-axis indicates the influence of the feature
in the classification of the given sample. The point color indicates the relative value of the
feature for each given sample. Hence, the plot shows how the different values of every

feature contribute to the prediction of every sample: left is NC and right is C.

We report the classification performance metrics in Table 9.3. The best classi-
fiers output F1 scores around 87− 88%. The NN holds a significant advantage in
terms of AUC with respect to the rest, suggesting that it has a much better notion
of separability between the two classes and that most errors come from overlapping
samples of different classes. In principle, since the HVGM profile depends on the
symbolization rule, higher scores could potentially be achieved by finding a rule
that enhances the discrimination between classes. However, we lack a direct way
of finding such optimal configuration a priori, so we simply consider the obtained
classification scores as a lower bound, and we leave the general task of finding the
optimal symbolization rule as an open problem for future research.

Classifier F1 AUC
LR 84.05± 0.61% 84.67± 0.52%
RF 87.65± 0.84% 87.70± 0.82%

SVM 87.46± 0.40% 87.65± 0.38%
XGB 88.08± 0.39% 88.17± 0.35%
NN 88.17± 0.61% 94.53± 0.28%

TABLE 9.3: Full trajectory classification results with feature engi-
neering. Mean F1 score and AUC over 10 subsamplings of Data set

(A) ± standard deviation for the different classifiers.
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parameters. The curves show the mean accuracy over the 5 folds and the shaded area is the

standard deviation for both the train and test sets as function of the amount of data used.

Learning curves

In an industrial application, the database is continuously growing as new data is ac-
quired with customers browsing the online shop. Therefore, it is critical to assess the
performance and correct behaviour of the models under such conditions, in order to
know what can be expected in a near future and, more importantly, whether there is
room for improvement.

In Fig. 9.7, we show the learning curves of two of the best performing classifiers:
the NN and the XGB. The NN performance is barely unaltered with additional data,
displaying a nearly constant gap between train and test scores. In contrast, the XGB
classifier improves continuously with further amounts of data. However, it does so
with diminishing returns, rendering the impact of additional data beyond ∼ 6000
samples insignificant. Furthermore, it comes at the expense of longer training times
for this model.

Both models are stable and benefit from additional training data, even if only
marginally. This means that both models already achieve competitive performances
with small amounts of data, which enables the application of such systems even in
the early stages of e-commerce websites. As a final remark, none of the classifiers is
overfitting despite not using any kind of dimensionality reduction.

9.3.5 Early prediction

In real-time retail applications, early predictability of the user intent plays an essen-
tial role in targeted marketing schemes and other strategies. This involves perform-
ing a trajectory classification task with the limited information gathered as the user
interacts with the website. Given that the feature extraction is scalable and efficient,
finding evidence of early detection opens up the possibility of implementing the
pipeline in real time.

To tackle the early prediction task, we work with Data set (B), in which trajec-
tories cut after the initial T points simulate a user that has only triggered T events
since the beginning of the session. We study the effect of the “earliness" in the detec-
tion by varying the early window T in the range T = 5, . . . , 14. We quantify “how
early" in the trajectories the prediction is performed relative to their lengths with an
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FIGURE 9.8: Early trajectory classification results. (a) Earliness parameter for the data sets
generated for each early window T. (b,c) F1 and AUC (respectively) for each classifier as a
function of the early window T, where only the first T data points of each trajectory are used

to extract the features.

earliness parameter defined as:

Earliness = 100

(
1− T

Ω

Ω

∑
i=1

1
Li

)
, (9.3)

where Li is the size of the i-th trajectory and Ω is the total number of trajecto-
ries. As illustrated in Fig. 9.8(a), when the early observation window T is large,
Earliness→ 0%. As the window shrinks, the earliness parameter increases (the limit
value depends on the actual size of all trajectories Li). More precisely, it provides
the average relative distance between the point at which the prediction is performed
with respect to the length of the trajectories.

While we have seen that navigation patterns are relevant for the classification
of full trajectories, these do not have enough time to emerge clearly in the intrinsi-
cally short trajectories of the early classification. Hence, we expect different features
to become more relevant in their place. Similar to Section 9.3.4, we conduct a brief
feature analysis computing the permutation feature importance for different early
windows T = 7, 9, shown in Fig. 9.5(b). For very short time windows, the relevance
of the features varies significantly between repetitions and the XGB classifier is con-
fused by some of them such as P(1) and P(2, 1). As the observation window grows,
the statistical features can be better estimated and the model can make better use
of them, reflected in the stabilization of the feature importance for T = 9. For such
short early windows, we observe that the most relevant features are the presence of
Add (P(3)) and Remove (P(4)) actions. Intuitively, managing items in the cart early in
the session is very revealing of the user’s intentions.

We show the early classification results in Fig. 9.8(a) and (b), where we find that
early prediction of customer intent is indeed possible. The best models reach F1
scores beyond 60% for T = 5, and go beyond 70% with only T = 9 points. Inter-
estingly, the NN classifier reaches significantly higher AUC than the rest, although
it yields the lowest F1 for the shortest windows. On average, the predictions are
conducted with around 50% anticipation, as we see in Fig. 9.8(a), meaning that the
actual live sessions are, on average, more than twice as long. This provides the sys-
tem with enough time to react to the user’s behaviour.

9.4 From hand-crafted to automatic feature extraction with
deep learning

To complement the previous analysis, we also consider two DL-based approaches
to the clickstream prediction challenge. In this section, we introduce the different
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methods considered here and evaluate them for both tasks: full trajectory classifica-
tion and early classification.

9.4.1 Deep learning models

As is often recognized in the literature [427, 428], there are strong resemblances be-
tween the clickstream prediction problem and standard tasks in the field of natural
language processing (NLP). Mainly, in both cases we consider sequential data com-
prised of discrete abstract concepts. Hence, we draw inspiration from typical solu-
tions derived in the field of NLP to build our models. As a baseline, we implement
a Markov chain classifier, a popular choice for NLP tasks before the DL revolution.
Then, we train two RNNs comprised of LSTM layers [63], introduced in Section 2.2.2:
a generative model that learns the probability distribution of the data, and a purely
discriminative one.

Markov chain classifier

To build our baseline, the trajectories are first separated by class, as an independent
k-gram Markov chain needs to be trained for every class. Then, we extract k-grams
from the trajectories to build a transition by counting how often the last event in a
k-gram co-occurs with the preceding ones in the same k-gram. Normalizing the co-
occurrence frequency counts, we obtain the conditional probabilities of each event
with respect to the previous k points. After a hyper-parameter search, we use k = 5
(see details in Ref. [423]).

The trajectory classification is performed using the Bayes rule. For instance, con-
sider the conversion class C. The probability of finding this class p(C) in the training
corpus is the prior, whereas the conditional probability of observing a given tra-
jectory S under the Markov chain trained on C sequences is the likelihood p(S|C).
Analogously, the conditional probability that the trajectory belongs to the NC class
is p(S|NC). Hence, the posterior reads

p(C|S) = p(S|C)p(C)

p(S|C)p(C) + p(S|NC)p(NC)
. (9.4)

In this way, the classification is performed by evaluating Eq. (9.4) and assigning the
class C whenever the posterior is above a certain threshold value. Here, we set the
threshold to be 0.5, without performing any optimization.

Essentially, we derive two generative models: one for C and one for NC click-
streams. The classification is performed by evaluating the trajectories with both
models and selecting the class corresponding to the one that assigns the highest
probability weighted by the priors. This is also referred as the one which is the least
surprised. Finally, since the prior probability for each class changes as a function of
the sequence length, we compute length-sensitive priors dividing the number of C
trajectories of a certain length by the total number of trajectories of the same length.
In order to prevent sparsity, we bin lengths by one up until L ≤ 50, by ten for lengths
50 < L ≤ 100 and by twenty-five for lengths 100 < L ≤ 150. Lengths longer than
L ≥ 150 fall into the same bin.

Generative LSTM classifier

The state-of-the-art method at the time of conducting the research builds upon the
previous success of the Markov chain approach [427], enhancing it with RNNs [428].
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Classifier F1 AUC
Markov (k = 5) 89.45± 0.61% 95.51± 0.45%
genLSTM 90.21± 0.36% 96.01± 0.36%
discLSTM 91.03± 0.48% 96.83± 0.37%

TABLE 9.4: Clickstream classification results for the DL models.
Mean F1 score and AUC± a standard deviation over 10 subsamplings

of the data set for the different classifiers.

Keeping the same principle, the Markov chains are replaced by LSTMs that provide
the probability distribution over the next possible actions given the previous ele-
ments of the clickstream at every time step. These models are trained in a super-
vised way by predicting the next event at every time step of the training trajectories,
just like a typical language model. Hence, we train one LSTM for each class, as in
the previous case, although we consider two additional events besides the actions
summarized in Table 9.1: a beginning and end of sequence event.

Again, the classification is Bayesian: the trajectories are evaluated by both mod-
els, retrieving the the probabilities of every event along the way, which are used
to evaluate Eq. (9.4). The length-sensitive priors are computed as described in the
previous section.

Discriminative LSTM classifier

We propose a different way to tackle the clickstream problem, inspired by the gener-
ative LSTM method. Rather than training a generative model for every class for the
subsequent Bayesian classification, we directly train a discriminative model from the
beginning. The model uses an LSTM layer to extract meaningful features from the
trajectories by parsing them sequentially. Then, these features based on the LSTM’s
hidden activation are directly fed into a dense feedforward classifier that outputs the
probability that the trajectories belong to either of the classes. This model is trained
as any regular classifier, without attempting to learn the probability distribution of
the data. This approach follows the same principles as the methods used to charac-
terize anomalous diffusion [364, 369] presented in Chapters 6 and 7.

In Ref. [423], we explore two methods to extract the trajectory features with the
LSTM: averaging the hidden activations along the trajectory, and taking the last
hidden state at the end of the trajectory. Both provide similar results, with the latter
being slightly better overall. Therefore, we only show the results for this one in this
thesis.

9.4.2 Clickstream prediction

As in Section 9.3.4, we start by addressing the clickstream prediction problem with
full trajectories.

We train the three methods in Data set (A) (recall Section 9.2.3) and evaluate
their performance in terms of the F1 score and AUC, which are reported in Table 9.4.
Overall, there is a significant performance improvement with respect to the feature
engineering results reported in Table 9.3, with the Markov chain baseline already
outperforming the best feature-engineering pipelines. The generative LSTM model
(genLSTM in the table) does, indeed, improve over the Markov chain, although the
biggest improvement is seen with the proposed discriminative LSTM (discLSTM in
the table), establishing a new stae of the art for the task.
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FIGURE 9.9: Early clickstream prediction with DL methods (a) F1 score and (b) AUC as
function of the early window size for early prediction.

9.4.3 Early prediction

Moving on to the early classification task, as in Section 9.3.5, we train and evaluate
the models using the data in Data set (B). Again, we consider multiple early detec-
tion windows that mostly fall within the first half of the trajectories.

Fig. 9.9(a) and (b) show the F1 score and AUC, respectively, for the different
methods. The results are comparable to the ones obtained with handcrafted fea-
tures shown in Fig. 9.8 and, in fact, the feature-engineering schemes outperform all
the models introduced in this section in terms of F1 score. Only the discriminative
LSTMs achieve similar performance for long windows. Nevertheless, the DL-based
models hold the advantage in terms of the AUC, although the shallow NN feeding
on the features achieves the same AUC or arguably better as we discuss below.

As in the full trajectory classification, the generative LSTMs are outperformed by
the discriminative ones. All models have similar AUC with meaningful differences
only emerging for T > 13, as depicted in Fig. 9.9(b). Interestingly, the curves are
non-monotonic and peak at T = 11, exhibiting a slightly decreasing trend thereafter.
It seems counter-intuitive that providing the models with more information results
in lower performance. One possible explanation may reside in the size of the train-
ing data, which is reduced as the early window increases, since only trajectories of
length L ≥ T are considered in each sub-data set. The observed behaviour may be
explained by the combination of two factors: increasing the trajectory information
and decreasing the amount of training samples. This is not observed in the feature-
engineering models, which exhibit a clear monotonic tendency (Fig. 9.8(c)) and are
robust to the data set size (Fig. 9.7), which is why the AUC obtained by the NN
classifier is arguably better than the ones achieved here.

9.5 Benchmarking on realistic scenarios

In this section, we evaluate the different proposed methods with a more realistic ap-
proach. We consider several sub-data sets with different class balances that range
from the 50:50 (C:NC proportion) balance shown in the previous sections, to the
original data set balance around 4:96. With this approach, we cover a wide spec-
trum of cases, provided that class balance may be a major determinant of model
performance and it is subject to great variability [440]. Unlike in previous cases from
Sections 9.3 and 9.4, the models are trained with whole trajectories and are used
for both the full clickstream and early predictions. This procedure aims to replicate
the requirement that would be involved in a real business setting, in which a single
model is asked to make predictions at different time steps.
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Classifier F1 AUC
LR 40.41± 0.50% 77.43± 1.29%
RF 45.77± 0.63% 73.07± 1.84%

XGB 49.87± 0.58% 79.87± 0.84%
NN 50.78± 0.27% 94.75± 0.07%

TABLE 9.5: Handcrafted-feature-based classifier performance when
trained with 4:96 class balance. Mean F1 score and AUC over 10
train/test partitions of Data set (A) ± standard deviation. The mod-
els are trained and evaluated with the original class balance of 4:96
following a class re-weighting strategy instead of downsampling the
majoritary class. We have refrained from training the SVM as it is

extremely costly for such amount of samples.

To generate the different scenarios, we down-sample the majority class to obtain
the desired class balance in the validation and test sets, but train in balanced data
sets. In Ref. [423] we explore different strategies to perform the training and we find
that downsampling to fully balanced datasets provides the best trade-off between
accuracy and training time. However, the focus here is on the impact of the class
imbalance during the testing, regardless of the training procedure as long as it is
consistent. We perform ten repetitions of the whole process in order to account for
the stochasticity in the down-sampling processes and the models are trained and
evaluated without any hyper-parameter fine-tuning.

9.5.1 Clickstream prediction

We first analyze the different model performances in the classification of full tra-
jectories. Fig. 9.10(a) and (b) show the F1 score and AUC, respectively, for all the
classifiers.

Notably, the discriminative LSTM model provides the best overall performance
in terms of both the F1 and AUC. On the other end, the LR classifier consistently
provides the worst metrics, which suggest that it does not have enough capacity to
fully capture the complexity of the task. The feature-based NN classifier suffers the
most from class imbalance in terms of F1, and the AUC becomes rather unstable for
highly imabalanced data sets. Nevertheless, the sheer discrepancy between F1 and
AUC suggests that it is most likely an issue related to the classification threshold not
being optimized for the test imbalance, given that high AUC values are indicative of
good class separability.

In light of the results, we train the feature-based classifiers with the original class
balance without down-sampling the training set and, instead, we opt for a class re-
weighting strategy. With this, we significantly improve the performance in the 4:96
data set by more than 10% F1 for the XGB and NN classifiers, as shown in Table 9.5.
With this training scheme, the resulting models (barring the LR classifier) outper-
form the generative models. The fact that all models keep a relatively high AUC
throughout the different class imbalances shows that all methods are capable of cor-
rectly separating both classes. Nonetheless, increasing the amount of samples of the
majority class (NC) increases the classification noise at the class boundary, as well as
the amount of duplicate samples in feature space belonging to different classes. The
NN classifier trained with the original class balance reaches a ∼ 90% true positive
rate at about ∼ 10% false positive rate with an AUC of 94.71%. Nonetheless, a 10%
of the majority class is already twice as large as the whole minority class corpus.
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FIGURE 9.10: Benchmark on full clickstream prediction at different class balances. (a) F1
and (b) AUC results across multiple scenarios featuring different class balances C:NC that

are closer to real applications. All models are trained on balanced data sets.

Overall, the discriminative LSTM outperform the rest. For mild class imbalance,
the performance is comparable among all methods, and the differences become more
evident as the class imbalance increases. Among the feature engineering models, the
NN and XGB are the best performing classifiers, which we have shown that outper-
form the generative methods when properly trained even in high class imbalance
cases. This shows that the HVGM features improve a simple 2-gram feature repre-
sentation to the point that it outperforms a statistical language model that leverages
transition probabilities in k-grams up to k = 5. Among the DL models, the discrimi-
native method outperform the rest.

9.5.2 Early prediction

Finally, we address the challenge of early clickstream prediction. In order to simplify
the analysis and prevent cluttering the exposition, we drop the SVM and the RF
classifiers. The RF classifier is consistently outperformed by the XGB one and both
are tree-based methods. The SVM is consistently outperformed by the XGB and NN
classifiers. Hence, we keep the simplest and the two best classifiers, to provide a
sense of the range of performance.

Several different clickstreams can share the same initial sequence of events, while
belonging to different classes. For this reason, we devise an Oracle model that knows
the true distribution of classes assigning the empirical probability that a sequence
belongs to either class to every trajectory in Data set (B). For example, consider a
trajectory that is repeated a total of five times, four belong to class C and one to
class NC, the model will assign it the empirical probability of 0.8 (4/5) to belong
to the C class. For early prediction, the shorter the early window, the higher the
probability of having duplicates, which constitutes one of the major challenges of the
task. This model provides a reference to assess whether the models are performing
close to optimally. Nevertheless, while this model maximizes the accuracy, it does
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FIGURE 9.11: Benchmark on early clickstream prediction at different class balances. (a)
F1 and (b) AUC results on early prediction task in various scenarios with different class
balances (C:NC). All models are trained to perform full trajectory classification on balanced

data sets.

not necessarily maximize the F1 or AUC, as the degree of uncertainty enters into
play and class imbalance heavily affects results. We have refrained from plotting the
Oracle prediction in Fig. 9.10 provided that its AUC is close to one and that F1 ranges
from 96% to 93% with increasing imbalance, meaning that full trajectories are rarely
repeated.

Fig. 9.11 shows the results on early prediction for various class balances. Perhaps
the most noteworthy result is that the discriminative LSTM model that topped the
performance in all the previous studies is, by far, the worst performing method.
This is the model that suffers the most when facing a different task from the one
for which it is optimized (full clickstream classification). The generative LSTM and
Markov chain consistently provide the best results until the highest class imbalance
is reached, where the feature-based approach takes the lead.

These two classifiers seem to suffer less from the discrepancy between the train-
ing objective and the test evaluation, as they do not attempt to learn the relationship
between sequences of events and classes directly, but, rather, they develop a gener-
ative model of how users behave when they aim to purchase and when they do not.
However, these models have their own limitations as well, the main one being that a
separate model needs to be trained for every different class, with MAP classification
on top of it. Therefore, they are appealing when dealing with few classes (as in this
case), but do not scale well to tasks which involve too many of them.



116 Chapter 9. Customer intent prediction

These results highlight a theoretically and practically relevant difference between
generative and discriminative models. The former models are slightly less efficient
but learn to extract more robust representations of the trajectories and, thus, gener-
alize much better to other tasks. Conversely, the latter models are highly special-
ized and provide the best results when evaluated on their target task, at the cost of
poor generalization, which is reasonable. Similar observations have motivated the
biggest breakthroughs in NLP, which come from the combination of training gener-
ative models to extract meaningful information that are then leveraged to perform
downstream tasks [464]. The poor generalization of the discriminative model may
indicate that the most discriminative sequential patterns appearing towards the end
of the clickstreams. The model learns to capture them with full trajectories, achiev-
ing good results but neglecting any other possible relevant information. When faced
with only the initial points of the trajectories, these patterns to not appear and, thus,
the model fails. Nevertheless, the positive results from Fig. 9.9 prove the existence of
discriminative patterns early on, although they are likely to differ from and be less
predictive than the patterns learned on whole sequences.

Overall, the feature-engineered models are more resilient to class proportions
providing the best results in the most realistic scenario with the strongest class ima-
balance. Noticeably, the NN classifier provides the best F1 score (Fig. 9.11(a)) with
some of the lowest AUCs (Fig. 9.11(b)). This resilient behaviour makes feature-
engineerd models appealing for industrial applications. Besides, they are a pow-
erful tool to interpret potentially useful patterns in clickstream sequence that can
help to understand the performance of more efficient and opaque models, such as
the DL-based ones.

Other directions that could be explored would be training the models to predict
at a given early window size and see how they generalize to other inference times,
instead of training them with full trajectories. Furthermore, future research should
investigate whether the strengths of discriminative and generative models can be
combined, for example, using multi-task models which jointly optimize parameters
to predict the next event and the sequence class.

9.6 Conclusion

In Ref. [423], we leverage a new clickstream data set from a popular e-commerce
website to address the clickstream prediction challenge. Our results show that it
is possible to reliably predict conversion based on the most basic information (e.g.
event type) using simple and lightweight features in a variety of scenarios. It is even
possible to do so with the data of just a few user interactions with the website. On
one hand, we provide algorithms that improve upon the state-of-the-art (at the time
of conducting the research) ML systems for the clickstream prediction challenge.
On the other, we draw a general map of this sequence-classification problem, by
providing insights, benchmarks and solid baselines both at the computational and
implementation levels.

We compare different approaches to sequence modelling, and tackle the click-
stream challenge as a full sequence as well as an early prediction scenario. We first
introduce ML pipelines based on feature engineering. Through extensive bench-
marks and model interpretation techniques, we gain insights about behavioural pat-
terns of e-commerce customers. Finally, we provide DL-based methods that pro-
vide consistently positive results for trajectory classification, at the cost of increasing
training time and more complex engineering infrastructure. Since no size fits all, and
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different players have different constraints, our quantitative comparison highlights
precisely the trade-off between the two algorithmic approaches, so that industry de-
cisions can be made with known bounds on performance. Our extensive analysis of
generative and discriminative models in the minimal, symbolized setting produced
not only an “algorithmic recipe” to solve this particular challenge, but also more
general insights on the underlying informational structure, and, possibly, method-
ological considerations to be ported to other challenges involving symbolized se-
quences.

Three directions for future work can be outlined. First, improving performance
by including more information: by using more sophisticated features and/or by
extracting more metadata to build the symbolic sequences. For example, the predic-
tion accuracy is likely to be improved by coupling k-grams and other network struc-
tural properties associated to the location of the trajectory at each time step. While
preliminary experiments with time intervals between events only yielded marginal
accuracy improvements, combinations of product metadata and time intervals are
worthy of further investigation.

Second, extend to other classification problems: predicting purchase is only one
of several user intent prediction problems of relevance for the industry. For instance,
other possibilities include cart abandonment prediction, that is, predicting whether
a user that has loaded the cart with some products will, ultimately, purchase some of
them or leave the session without purchasing anything. This problem is of utmost
relevance and can be readily tackled under our framework by focusing on all the
trajectories where the Add action, corresponding to adding a product to the cart,
appears, at least, once without a Purchase action.

Third, implementing efficient prediction models, such as the ones described in
this paper, for online testing. By doing so, the algorithm could proactively detect
customers which have a high probability of leaving the session without purchas-
ing and, then, for instance, implement targeted marketing strategies to boost their
conversion likelihood.
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Chapter 10

Conclusion

This thesis has been a journey through different scientific disciplines and applica-
tions with machine learning (ML) as a conducting theme. After a thorough intro-
duction of its fundamentals, we have embarked on an exploration of prominent
challenges in quantum physics, both in fundamental studies and in the develop-
ment of cutting edge quantum technologies. Then, we have ventured in the field of
diffusion, where we have tackled some of the main issues in the study of diffusion
processes in both biophysical and industrial applications.

In the first part of the thesis, we have shown how to leverage reinforcement learn-
ing (RL) in the study of quantum many-body physics using examples of paradig-
matic tasks in condensed matter physics and quantum information processing. The
framework we propose in Chapter 4 not only allows the systematic relaxation of
complex problems, but also enables their autonomous exploration with transfer
learning. Furthermore, our general formulation of the constraint space allows the
application of other optimization methods besides RL, which can yield faster results
in some cases. As future work, it remains an open question studying the tight re-
lationship between the optimal relaxation properties and the physical properties of
the system. Additionally, the optimization framework can be most valuable in cases
where there is more than one possible direction to tighten the relaxations, such as
with inflation methods.

Quantum computers bring many promises together with exciting challenges at
multiple levels. In Chapter 5, we showcase another application of RL to quantum
technologies. However, this time, we tackle an engineering task, where the main
goal is to ensure that superconducting quantum computers perform at the best of
their hardware capabilities. To this end, we implement an RL scheme to design
custom controls for every qubit in the device, which results in highly-accurate and
robust gate executions. Such advances enable the use of current noisy intermediate-
scale quantum (NISQ) computers at larger scales to conduct better research on them.
As future work, the proposed framework should be brought from simulations to real
devices to better understand its practical strengths and limitations.

Most of the problems that we have considered in our exploration of the quantum
many-body physics field involve the exploration of vast hypothesis spaces, such as
the constraint space, or all the possible combinations of the quantum computer con-
trols. These are akin, or even dwarfed, by the spaces of all the possible board com-
binations in Go, or the 3-dimensional tensor decompositions in unit rank tensors,
which have been dealt with in outstanding RL applications. The capabilities of RL
to explore and make sense of these vast hypothesis spaces has allowed us to develop
novel methods to consistently overcome common challenges in quantum physics.

In the second part of the thesis, we have shown how to use ML techniques typ-
ical from natural language processing (NLP) and signal processing to characterize
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diffusion processes and the emergence of anomalous diffusion. In Chapter 7, we in-
troduce a method to study anomalous diffusion with constant properties. By incor-
porating further advances in the field of ML, we have evolved the method to process
trajectories with time-dependent diffusion properties in Chapter 8. This allows us to
extract richer information from the data, allowing us to extract biophysical param-
eters from experimental data that were previously inaccessible. Nevertheless, there
is much room for improvement in the field. For instance, the single-trajectory char-
acterization paradigm can be enhanced by considering the experiments with hetero-
geneous trajectories as a whole, using all the trajectories as context to individually
characterize single trajectories, which we leave as future work.

Finally, the study of diffusing particles is not limited to actual physical entities.
In Chapter 9, we study the diffusion of internet users through their action space
for an industrial application. There, we shift our focus to engineering meaningful
features in order to obtain a deeper understanding of the behavioural patterns of
internet users. We show that it can be determined whether a user will make a pur-
chase before closing the session with very few interactions between the user and the
website, and with minimal action information. As future work, it remains to be seen
what additional information can be added that provides the maximum amount of
information, while keeping it at the minimum.

The various ML techniques employed in the analysis of sequential data related
to diffusion have proven essential to successfully conduct the desired tasks. It is
clear that they play a pivotal role in the understanding of diffusion processes, and
they will become even more prominent as more practitioners in the field adopt and
improve them.

Overall, ML and, more generally, artificial intelligence (AI), have demonstrated
to be fundamental research tools that allow us to push the frontiers of what is
deemed possible. The further development of AI, in combination with the adop-
tion of domain specific knowledge, holds the potential to elevate scientific discovery
to new heights. However, while AI plays such an important role, many researchers,
experts in their respective fields, lack the knowledge to understand it and use it. Col-
lective initiatives such as the AnDi challenge, that promote large community efforts
to address remarkable challenges in specific fields, allow researches to be exposed
to new techniques from different fields, bridging the knowledge gap. Nevertheless,
we must not forsake the development of traditional, analytical and domain-specific
techniques.
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Appendix A

STEP architecture and data set
details

In Chapter 8, we propose STEP, a novel machine learning (ML) approach to study
diffusion processes with time-dependent properties. Here, we provide technical de-
tails about STEP’s architecture and the data sets used to train and evaluate the mod-
els.

A.1 Architecture details

We propose to use a model that takes a trajectory x as input and outputs the target
diffusion properties at each time step. The input trajectory is a d-dimensional vec-
tor of arbitrary length T, whose elements, xt, correspond to the particle position at
every time step t. Then, the output is a one-dimensional vector of length T, whose
elements correspond to the diffusion property of interest at every time step, e.g.,
Dt in the case of the diffusion coefficient. See Fig. A.1 for further details about the
dimensions. Throughout this work, we mainly consider trajectories of dimension
d = 2.

The model we propose consists of three main modules: an initial convolutional
part that processes the input trajectory; a self-attention-based part that feeds on the
features extracted by the previous one; a shallow pointwise fully connected feedfor-
ward module that provides the desired output dimensions. The entire architecture
is length independent, which allows us to process trajectories of arbitrary lengths.

Convolutional module – The first main convolutional module allows us to ex-
pand the trajectory dimension with several convolutional filters. This provides the
following layers with a richer embedding based on short-range correlations.

We build it following the XResNet [61] architecture. As we show in Fig. A.1, it
consists of an initial convolutional layer, commonly referred to as the stem, followed
by a series of residual blocks that feature a convolutional layer with a skip connection.
We use one-dimensional convolutions with a kernel size of three and stride one to
preserve the trajectory size. However, we use a kernel size of one in the skip con-
nections, which can act as the identity or a scaling factor whose main purpose is to
match the tensor shapes on both paths of the residual blocks, as we explain below.
This module can take a batch of input trajectories of size [batch_size× T × d] and
output a batch of features of size [batch_size× T × embedding_size].

Throughout the architecture, we add a batch normalization layer directly after
every convolutional layer, and we use the rectified linear unit (ReLU) activation
function by default, except in the last output layer.

To produce the results, we use a single convolutional layer and a ReLU activation
in the stem. We use 64 filters to predict the diffusion coefficient and 32 filters for the
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anomalous diffusion exponent. Then, we have added three residual blocks with 128,
256 and 512 filters, respectively. Hence, embedding_size = 512. In these blocks, the
convolutional paths have two convolutional layers: the first one increases the em-
bedding size and the second one preserves the dimensions. In the skip connection,
we only have one convolutional layer that increases the embedding size to match
the dimensions of the convolutional path. We implement the ReLU activation at the
end of the block, after we add the outcome of both paths.

Self-attention module – We process the features extracted by the convolutional
module with a self-attention mechanism that allows the model to capture long-range
correlations.

More precisely, we implement a transformer encoder [66], as we explain in Sec-
tion 2.2.2. As we illustrate in Fig. A.1, the encoder block has two main parts, both
featuring a skip connection followed by a layer normalization after the sum of both
paths. In the first one, we have a multi-head attention layer that feeds on the input
and, in the second one, we have a couple of pointwise feedforward layers, which
are equally applied to each element in the incoming tensor. Furthermore, we can
add a positional encoding before the first encoder block, which provides informa-
tion about the relative position of each element in the trajectory. This module can
process a batch of embeddings preserving its dimensions. Hence, the input and the
output both have size [batch_size× T × embedding_size].

To produce the results, we use four transformer encoder blocks with eight heads
in the multi-head attention layers. The pointwise feedforward part adds two fully-
connected layers with embedding_size neurons each, i.e, 512 in this case. Interest-
ingly, we have found that, after the convolutions, the positional encoding has very
little impact on the results. Therefore, in the interest of simplicity, we have not used
it to obtain the results reported in this work.

Feedforward module – The last main component is a shallow feedforward fully-
connected network that acts element-wise on the features extracted by the previous
module. We tailor this part to the specific task at hand to achieve the desired output
with the proper dimensions.

For instance, in a regression task, the output dimension is one and we use a
scaled sigmoid activation function at the end to define the output range with some
margin, e.g., log D ∈ (−3.1, 3.1), α ∈ (0, 2.05). This margin allows the sigmoid to
reach the desired values before it saturates. In a hypothetical case of classification
task (as e.g. classifying between diffusion models as done in Ref. [367]), the final
dimension is the number of classes and we use a softmax activation function. Then,
we obtain the predictions by choosing the class with the maximum activation value.
Hence, we can process a feature batch of size [batch_size× T × embedding_size]
and output their predictions with size [batch_size× T × num_class]. In case that
num_class > 1, as in a classification task, we perform an additional post-processing
step to obtain an output of size [batch_size× T × 1] with the corresponding pre-
dictions at each time step.

A.2 Data set details

Throughout Chapter 8, we present a series of results that rely on different sets of
data to evaluate different aspects of STEP. In Table A.1, we provide all the details
about the data sets used to train and generate all the presented results.

There, the [ ] denote closed ranges, and {} denote sets. The values for D and
σnoise are in log10 scale, and we take α intervals of 0.05 within the denoted ranges.
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FIGURE A.1: Machine learning architecture representation

More precisely, we consider different α ranges for every anomalous diffusion model.
We simulate annealed transit-time model (ATTM) [341] with α ∈ [0.05, 1], continu-
ous time random walk (CTRW) [337] with α ∈ [0.05, 1], fractional Brownian mo-
tion (FBM) [343] with α ∈ [0.05, 1.95], Lévy walk (LW) [339] with α ∈ [1.05, 2], and
scaled Brownian motion (SBM) [347] with α ∈ [0.05, 2]. The ranges of D are loga-
rithmically equispaced and we take 1000 unique values unless stated otherwise. All
the data sets with 2 to 5 segments have their lengths sampled according to an ex-
ponential distribution with a minimum length of 10 and a maximum of 190 steps,
with an average of ∼ 57 time steps. All the data is simulated, except for the two ex-
perimental data sets denoted with "(exp)" from which we do not know the ground
truth.
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