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Abstract

Schottky barrier field-effect transistors (SBFETs) and other devices based on Schottky barrier
formation are a stable but also a niche technology in electronic applications. However, SBFETs
and other devices based on this technology are still promising for a wide spectrum of future
applications. While in recent research SBFETs have been proven to be a good candidate for
deep cryogenic temperature applications, new type of devices like the reconfigurable field-effect
transistor (RFET) which use and improve several characteristics of SBFETs are currently under
investigation. In this work a physics-based and closed-form compact model is derived which
is used to calculate the DC current of SBFETs. The presented compact model comes with
different variations and can be used for room temperature and for deep cryogenic temperature
environmental applications. The model can be applied to regular SBFETs, as well as to
programmed RFETs. In addition, the DC compact model includes several second order effects
like channel resistance in RFETs and the band tail effect at deep cryogenic temperatures. The
model verification is done on measurements of the devices and on numerical TCAD simulations,
performed with TCAD Sentaurus.
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V0,limit Limiting voltage parameter of the empirical accumulation
charge function
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Vb,d Potential bending from the channel to the drain side contact [V]

Vb,s Potential bending from the channel to the source side contact [V]

Vcg Control gate voltage [V]

Vd Applied drain potential [V]

Vds Drain-source voltage [V]

Vfb Flatband voltage [V]

Vg Applied gate potential [V]

Vgd Gate-drain voltage [V]
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[V]

Vgs Gate-source voltage [V]

Vgs,bound Boundary gate-source voltage of the cryogenic saturation
model
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Vgs,eff,TFET Effective gate-source voltage of the TFET model [V]

Ṽgs,MOS Averaged gate-source voltage of the channel MOSFET for
RFETs
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Vgs,sat saturated gate-source voltage of the cryogenic saturation model [V]

Vgs,eff Effective gate-source voltage [V]

V ′
gs Flatband voltage corrected Gate-source voltage [V]

Vlimit Limiting voltage of the empirical accumulation charge function [V]

Vpg Program gate voltage [V]

Vs Applied source potential [V]

VT0 Threshold voltage of the MOSFET model [V]

Vϑ Thermal voltage [V]
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W0 Principal branch of the Lambert W [−]
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y Room coordinate in y-direction [m]
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α Accumulation charge blending factor [−]

αi Vertex angle of vertex i in the w-plane of the Schwarz Christof-
fel Transformation

[−]

αts Band tail states penetration depth parameter [−]

γMOS Smoothing parameter of the channel MOSFET model [−]

γn Fitting parameter for the slope of the electron field emission
current

[−]

γp Fitting parameter for the slope of the hole field emission
current

[−]

γsat Smoothing parameter of the cryogenic saturation model [−]

γVg,eff Smoothing parameter of the empirical accumulation charge
function

[−]

∆ Laplace operator [−]

∆Vbound Boundary voltage fitting parameter of the cryogenic saturation
model

[V]

ε Permittivity [A s V−1 m−1]

εox Oxide permittivity [A s V−1 m−1]

εr,ox Relative oxide permittivity [−]

εr,sc Relative semiconductor permittivity [−]

εsc Semiconductor permittivity [A s V−1 m−1]

ϑ temperature [K]

κung Ungated channel factor [−]

λ Natural length [nm]

µ Charge carrier mobility [cm2 V−1 s−1]

µn Electron mobility [cm2 V−1 s−1]

µtn Electron tunneling mobility [cm2 V−1 s−1]

µp Hole mobility [cm2 V−1 s−1]

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF SCHOTTKY BARRIER AND RECONFIGURABLE FIELD-EFFECT TRANSISTORS 
Christian Römer 



xxv

µtp Hole tunneling mobility [cm2 V−1 s−1]

ρ Space charge [A s cm−3]
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φ0 Initial phase for the quantum oscillation model [−]

Φ2D Potential calculated by the 2D potential model [V]

Φ2D,d Drain-related potential calculated by the 2D potential model [V]

Φ2D,s Source-related potential calculated by the 2D potential model [V]

Φbar Potential barrier [V]

Φbi Built-in potential [V]

Φbks Backside potential of the quasi 2D potential model [V]

ΦB,n Schottky barrier height for electrons [V]
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ΦB,n0 Initial Schottky barrier height for electrons [V]

ΦB,p Schottky barrier height for holes [V]

ΦB,p0 Initial Schottky barrier height for holes [V]

Φbs Bulk potential of the quasi 2D potential model [V]

Φcen Center potential [V]

Φcen,p Center potential at position p [V]

φcomp Compact potential [V]

Φconst Constant potential [V]

Φconst,Drain Constant potential boundary drain [V]

Φconst,Gate1 Constant potential boundary gate 1 [V]

Φconst,Gate2 Constant potential boundary gate 2 [V]

Φconst,Source Constant potential boundary source [V]

Φfrs Frontside potential of the quasi 2D potential model [V]

Φlin,Oxide1 Linear potential boundary along the oxide 1 [V]

Φlin,Oxide2 Linear potential boundary along the oxide 1 [V]

Φm Metal’s work function [V]

Φq2D Potential calculated by the quasi 2D potential model [V]

Φsur Surface potential [V]

Φsur,p Surface potential at position p [V]
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Φsur,bound Boundary surface potential of the cryogenic saturation model [V]
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CHAPTER 1

Introduction

In the year 2023 the transistor celebrated its 75. anniversary. An invention in the field of
electronics that impacted economy, society, and research. The transistor has probably been one
of the most impactful inventions since today, as it is part of nearly every electronic device like
computers, smartphones, TVs and much more. The first transistor was a bipolar point-contact
transistor invented by John Bardeen, Walter Brattain, and William Shockley in 1947 at the Bell
Telephone Laboratories. This transistor type was improved to the bipolar junction transistor
(BJT) in the following year, which quickly became state-of-the-art in the field of electronics.
While the BJT technology still has its fields of application, especially in digital circuits it has
been mainly replaced by the complementary metal–oxide–semiconductor (CMOS) technology,
coming up in the 1960s. This CMOS technology consists of p-type and n-type field-effect
transistors (FETs), mostly metal–oxide–semiconductor field-effect transistors (MOSFETs) with
symmetric characteristics. In this technology, p- and n-type MOSFETs are integrated into
small chips to build up logical functions (e.g. "NOT", "NAND" or "NOR"). While the transistor
in general started as a single electronic device, today’s electronic hardware components can
have billions of FETs integrated in a single chip.

1.1 Metal–Oxide–Semiconductor Field-Effect Transistor Technology

The FET technology goes back to Julius Edgar Lilienfeld who patented the first FET in [1].
The main FET technology used for decades in the history of electronics was the MOSFET,
which consists of a doped semiconductor (usually silicon) bulk, a metallic gate electrode and an
oxide that isolates the semiconductor from the metallic gate. The source and drain contacts are
attached to reversely-doped semiconductor regions, which are located at the opposing fringes
of the bulk. A schematic MOSFET structure is shown in Fig. 1.1. The doping profile at the
source-bulk-drain regions determines the type of MOSFET. An n-p-n doping profile leads to an
n-type MOSFET which conducts a positive drain current Ids in case of positive gate-source

1
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2 1 Introduction

Figure 1.1: Schematic slice of a MOSFET. The dark gray sections are metallic contacts, and
the light gray sections are isolating parts. The bulk (red) consists of a p-type semiconductor
in this case, which is attached to the n-type semiconductor regions at the source and drain
contacts (blue), making this device an n-type MOSFET. The figure is taken from [2].

Vgs and drain-source Vds voltages. A p-n-p doping profile leads to a p-type MOSFET which
conducts a negative drain current Ids in case of negative gate-source Vgs and drain-source Vds

voltages [2].

Since the invention of the MOSFET, its further development of shrinking a single device’s
geometries and its power consumption in order to increase the integration density has been
mainly determined by improving fabrication methods [2, 3].

In 1965 Gordon Moore (co-founder of Intel Corporation) predicted a doubling of the number
of FETs (or more general ’components’) that can be integrated on the same size of chip every
two years [4]. As his prediction has shown to be very accurate, this statement - "Moore’s
Law" - became famous and is still omnipresent in today’s technological discussions about FETs.
During this era of microelectronics, the main idea was to scale down the MOSFET’s geometries
(channel length, channel width and oxide thickness), as well as the supply voltage, leading to
reduced feature sizes and power consumption.

1.2 Transition from Microelectronics to Nanoelectronics

The down-scaling effectiveness of the MOSFET geometries gradually became more inefficient
by the time feature sizes approached nanometer scale. While shrinking down geometries
further in the scale of nanometers, short channel effects (SCEs) are appearing and getting
more dominant. Those SCEs are mainly caused by quantum mechanical effects. Especially, the
quantum mechanical tunnel effect (see Sec. 2.3) causes leakage currents in device operation
modes at which a device should be switched off, leading to an increased power usage of circuits.
Another SCE that can appear in short-channel device’s is the so-called drain-induced barrier
lowering (DIBL) effect. This effect appears in case the electrostatic coupling of the drain on
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1.3 Schottky Junctions and Devices Based on Them 3

the potential in the center of the transistor’s channel cannot be neglected any more. In this
case the MOSFET’s threshold voltage changes with the drain voltage, leading to a reduced
gate control of the device [2, 5, 6].

The field or era of electronics which are impacted by SCE’s is called nanoelectronics. In
the era of nanoelectronics, the scaling rules used in microelectronics can no longer be used
to improve the transistors characteristics. New technologies had to emerge instead. Some
technologies, like the already established FinFET technology, shall counter out the SCE’s by
increasing the electrostatic gate coupling on the transistors channel. Other technologies try to
abuse the quantum mechanical effects appearing in the field of nanoelectronics, like the tunnel
field-effect transistor (TFET) [2].

The field of nanoelectronics, including the challenge of scaling down device’s or coming
up with new technologies, still is a global research field and important for future electronic
applications.

1.3 Schottky Junctions and Devices Based on Them

This work focuses on several types of transistors that are based on Schottky barriers (SBs),
named after Walter Hans Schottky. SBs are energy / potential barriers for charge carriers that
can lead to similar current blocking mechanisms as pn-junctions of MOSFETs. Those SBs
form at metal-semiconductor junctions (Schottky junctions). While SBs can potentially lead
to unwanted parasitic resistances in semiconductor devices in case they are not considered
properly, their mechanisms are particularly abused for example in Schottky diodes [2]. Their
formation and physical description are explained in Sec. 2.4.

There are some devices based on SBs that can act as good candidates for replacing MOSFETs
in certain fields of application. This device family, which is also the main topic of this work,
are transistors based on charge transport over SBs. Unlike in MOSFET application, where a
device’s current blocking and letting pass mechanisms are determined by doped regions and
the resulting pn-junctions and potential barrier in the transistor’s channel, in SB devices these
mechanisms are mainly given by Schottky junctions between metal and semiconductor regions
leading to the formation of SBs [2].

The simplest electronic device abusing the effects of the SB formation is the Schottky diode,
which consists of a single metal-semiconductor junction. The Schottky diode works similar to a
pn-diode, but compared to pn-diodes, the Schottky diode supports higher operation frequencies
and works at higher power [2, 7]. Beside the Schottky diode, which is a metal-semiconductor
junction based diode structure, there are several transistor types that are based on SBs. The
two most important types for this work are introduced in the following sections.
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4 1 Introduction

1.3.1 Schottky Barrier Field-Effect Transistor

A basic transistor type that is based on SBs is the SBFET (Schottky barrier field-effect transistor
or also often referred to as SB-MOSFET). Compared to a regular MOSFET, in this device
the source and drain regions consist of metal, while the channel / bulk region is still made of
semiconductor but does not necessarily need to be doped. This material combination leads
to the formation of SBs at the source-channel and drain-channel interfaces which lead to the
current control mechanism, instead of the pn-junctions in regular MOSFETs [2, 6]. A more
detailed physical description of SBFETs is given in Chapter 3.

Since SBFETs are usually outperformed by other transistor types, their field of application
is more restricted. However, in emerging technologies those kinds of transistors are promising
candidates for new fields of application. In several modern technical applications (e.g. quantum
computing, superconductor, biomedical applications) a deep cryogenic temperature environment
of only a few kelvins is necessary, where the SBFET has been proposed as good candidate
for electronic applications in this environment [8–11]. At cryogenic temperatures, the SBFET
benefits from a leakage / off-current reduction, due to the reduced thermal energy, which
improves the device’s subthreshold behavior [9, 11]. Additionally, compared to regular MOSFET
application, the SBFET does not rely on doping and is not affected by dopant freeze-out effects.

There are several other devices and applications based on the SBFET technology [7]. For
example, there are reported SBFETs rearranged as source-gated transistors, that are based on
organic materials reported in [12, 13]. SBFETs or SB devices based on 2D channel materials
are shown for example in [14–16]. The principle of ferroelectric SBFETs with a memory effect,
possibly used in neuromorphic computing application is demonstrated in [17, 18]. Although
these devices and technologies are not directly covered by the modeling approach of this work,
the introduced compact model still might be a good basis for further extension.

1.3.2 Reconfigurable Field-Effect Transistor

Another field of application, where the SBFET is used as a basis, is the reconfigurable field-effect
transistor (RFET), which is also covered by this work. RFETs are usually based on SBFETs
and exist in several variations [19]. These transistors have at least one additional gate which
is used to change the device’s polarity during runtime, so the transistor can switch between
p-type and n-type device behavior. Although RFETs have a bigger device footprint due to the
additional gate compared to SBFETs, the goal of using RFETs is to increase the functionality
of a single device and therefore, reduce the complexity of the electronic circuit [19–22]. In
[21, 22] it is shown that RFETs can be used in order to create reconfigurable logic circuits
that can change their functionality, in the given example from NAND to NOR logic by using
four RFETs. Dependent on the application, the usage of RFETs can potentially reduce the
logical effort of circuits and increase their performance [21, 22]. Another discussed use case
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1.4 Simulation and Modeling 5

scenario of RFETs is the hardware security application for protecting intellectual properties
(IPs), by using RFETs for logic locking mechanisms [23–25]. A more detailed introduction of
the RFET’s working principle is given in Chapter 3.

1.4 Simulation and Modeling

Modern integrated circuits (ICs) may consist of more than thousands of electronic components
(transistors, resistors, capacitors, etc.) which need to work properly, so the IC can fulfill its
purpose. Therefore, even before production a proper planning of the IC must be done. In
modern days such planning processes cannot be done on test boards anymore, due to the
number of devices and the different physical effects in highly integrated circuits. That is why
hardware planning and testing is done theoretically and computer-aided with the help of various
models that are capable of describing the hardware behavior. There are different variations and
levels of such mathematical models. In this work, a compact model for the SBFET devices is
mathematically derived, which is a device-level model, because it describes the characteristics
of a single device. Such a device model can be used to simulate an entire circuit, by creating
a circuit-level model. This can be done by using a circuit simulator, like SPICE (Simulation
Program with Integrated Circuit Emphasis), to simulate the entire circuit numerically. There
are various electrical properties of devices that can be modeled and simulated. The model
that is derived in this work focuses on the direct current (DC) behavior of the investigated
transistors, so the steady-state device current dependents on the applied voltages. Additional
properties that can be investigate are for example the alternating current (AC) or the noise
behavior of such devices [26, 27].

In order to understand the physics behind certain electronic devices and to create compact
device level models, simulations on that level can be performed. In this work device-level
simulations of SB devices are performed and shown which are done using the technology
computer-aided design (TCAD) software TCAD Sentaurus (Synopsys, Inc.). This simulator
uses the finite element method (FEM) to solve numerical equation inside electronic devices to
calculate relevant variables (e.g. charges, potentials, and currents) [28].

1.5 Compact Modeling

The aim of this work is to provide a compact model for SBFETs and RFETs that is physics
based and mathematically solvable in closed form. Physics based relates to the origin of the
model equations being as close as possible to real device physics. This physics-based approach
shall make the compact model scalable with device parameters, like the geometries for example,
since a physics-based model is supposed to consider the impact of the device parameters on
its characteristics. Additionally, often physics-based models can be also extended or adapted
to include other physical effects (e.g. adapting silicon-based models to organic transistors or
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6 1 Introduction

include short channel effects into MOSFET equations), and they fulfill an academia aspiration.
In contrast to the physics-based model, there are other model variants like a table model which
uses measured or simulated device characteristics as a base, requiring a lot of data for accurate
device behavior predictions. There is also the empirical model that uses empirical mathematical
equations which match the device’s characteristics, but don’t have physical parameters or
relations. Empirical model often come with several fitting parameters for the model to be
fitted to measured data. It shall be mentioned that the presented compact model of this work
also uses smoothing functions and fitting parameters at some positions, since several physical
equations cannot be solved in closed form.

A closed-form model relates to the model equation being mathematically solvable in closed
form. This leads to a set of equations which can successively be used for calculating a bias
point of the device. In contrast to the closed-form model is the numerical model (for example
TCAD simulations) using basic physical relations, which do not need to be solved analytically
or simplified and solves them with numeric methods. These models can be more precise in
their results (depending on their configuration) and can be more easily extended with other
physical relations. However, since they are using numerical methods for solving, they take a
much higher effort for the calculation and therefore, much more time consumption to calculate
a single bias point, making them nearly impossible to use for the simulation of bigger circuits.
Due to the numerical methods, in some cases it can also happen that the numerical model is
not converging and does not lead to a conclusion at all.

1.6 Outline of This Work

This document focuses on the physics-based compact modeling of SBFETs and RFETs consid-
ering the main DC injection current over the devices’ SBs, as well as some second order effects
of the devices, which can appear in some circumstances.

For the better understanding of the physical background of the investigated devices and the
discussed compact modeling approaches, Chap. 2 briefly summarizes the basic physical effects
and models, like the tunnel effect and thermionic emission model. Additionally, some basic
models that are used in later chapters are summarized, like the used potential models or a
current transport model in MOSFETs.

Chapter 3 explicitly explains the structure, working principle and the characteristics of the
SBFETs and RFETs which are under investigation in this work, underpinned by simulation
results performed with TCAD Sentaurus. In this chapter there is also a discussion about the
device variation and the state-of-the-art in compact modeling of those devices.

The compact modeling approaches are separated into three chapters, each covering a
different variation of the model. Chap. 4 explains the derivation of the physics-based compact
model, used for the DC injection current of SBFETs in room temperature environment. This
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1.6 Outline of This Work 7

chapter also presents the inclusion of additional effects like the SBFET’s drain-side SB and
the channel resistance of long channel devices. The compact model is validated using TCAD
simulation results.

While the first part of the compact modeling approach focuses on SBFETs at room
temperature, the second major part of the compact model, described in Chap. 5, explicitly
derives an injection current model for SBFETs at deep cryogenic temperatures (for ϑ ≈ 0 K).
Here, the changes to the room temperature model are discussed and some second order effects
that are appearing at this temperature environment are mentioned and included into the model.
The compact model results are validated using measurements which are performed at about
4...6 K.

The last modeling chapter - Chap. 6 - uses the room temperature model for the SBFETs
and translates the model for the usage as a RFET compact model. In this chapter, the model
usage to describe the characteristics of programmed RFETs is shown. In addition, the inclusion
of a second gate and the inclusion of long channel / ungated channel effects are described. This
part of the model is also verified using measurements and TCAD simulation results.

Finally, Chap. 7 concludes this work by summarizing the field of application and status of
the described compact model and shows some possibilities for future extensions of the model.
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CHAPTER 2

Physical Effects and Basic Models

The compact modeling approaches shown in this work are all physics-based and rely on basic
mathematical and physical models. This chapter aims to introduce the important physical
effects, as well as the basic models that are used or strongly related to the compact models of
the main modeling chapters.

This chapter starts with the introduction of two potential models in Sec. 2.1, based on either
Poisson’s or Laplace equation. Section 2.2 covers basic transport mechanisms in field-effect
transistors and shows a closed-form compact model for those. Section 2.3 explains the basics
of the quantum mechanical tunneling effect and derives some equations to calculate tunnel
current densities. Finally, Sec. 2.4 explains the formation and physical effects coming to the
fore at SBs.

2.1 Potential Model

In the physics of semiconductor, or rather in electronics in general, the physical parameters
like voltages V , currents I, charges q, etc. are all related to each other. This relation is often
given by differential equations. In contrast to this, for a compact model it is desired to have
simple and analytically solvable equations. It is a common practice to divide one mathematical
problem into minor parts that are easier manageable. For example, there are many compact
modeling approaches for various transistor types that calculate a closed-form potential Φ inside
of a transistor in a first step (for example [29–32]). This closed-form potential is then used in
order to calculate other physical parameters, for example the DC drain current Ids, without
any recursions (Vgs,Vds → Φ → . . . → Ids).

The described compact model of this work is also based on potential models. This section
describes the basics of the used potential models, starting with the fundamental Poisson’s
and Laplace equation in Sec. 2.1.1. There are two potential models that are used in different

9
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10 2 Physical Effects and Basic Models

model extensions and which are introduced in this section, where the first one is a 1D potential
model described in Sec. 2.1.2. The second potential model is based on the conformal mapping
technique where its working principle is explained in Sec. 2.1.3, followed up by a special
conformal mapping method that is called Schwarz Christoffel transformation in Sec. 2.1.4.
Finally, a closed-form 2D potential model from [31–33] is introduced in Sec. 2.1.5 and an
addition for considering accumulated charges in the channel is presented in Sec. 2.1.6.

2.1.1 Poisson’s and Laplace Equation

One of the fundamental equations of the electrostatics is the Poisson equation which is given
by:

∆Φ(r⃗) = −ρ(r⃗)
ε
, (2.1)

and describes the relation between the electrostatic potential Φ(r⃗) and the space charge ρ(r⃗),
both dependent on the position vector r⃗. In a 3D system the position vector can be represented
by its three room coordinates r⃗ = (x,y,z). In Eq. (2.1), the parameter ε is the material’s
permittivity and ∆ is the so-called Laplace operator, which in case of 3D system and applied
to an arbitrary function f(r⃗), is defined as:

∆f(r⃗) = ∂2

∂x2 f(x,y,z) + ∂2

∂y2 f(x,y,z) + ∂2

∂z2 f(x,y,z). (2.2)

In case the Poisson equation is applied to a space charge free room (ρ = 0), Eq. (2.1) can be
simplified into:

∆Φ(r⃗) = 0, (2.3)

which is called Laplace equation (not to be confused with the Laplace operator).

Additionally, the electric field inside a region is defined as:

E⃗(r⃗) = −∇Φ(r⃗) = −




∂

∂x

∂

∂y

∂

∂z



Φ(x,y,z), (2.4)

where ∇ is the nabla operator, defined as the derivation of the scalar field Φ to all three room
coordinates.

All equations, Eq. (2.1), Eq. (2.3), and Eq. (2.4) are essential for calculating the electrostatic
Potential or the electric field inside semiconductor devices and are used in upcoming sections.
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2.1 Potential Model 11

2.1.2 Closed-Form Analytical 1D Potential

This firstly described potential model is a 1D / quasi 2D potential model which is summarized
from the work of [34, 35]. This approach is done for 2D structures, like shown in Fig. 2.1 and
uses the Poisson equation Eq. (2.1) for two dimensions. However, it neglects accumulated
charge carriers and uses the doping concentration NA (acceptors in this case) only as space
charge, which results in:

∆Φq2D(x,y) = ∂2

∂x2Φq2D(x,y) + ∂2

∂y2Φq2D(x,y) = qNA

εsc
. (2.5)

It uses a parabolic approximation of the potential in the y-direction (bulk-gate direction),

Channel

Oxide

Box

S D

Gate

tox

Lch
x

-y

0

0

tch

tbox

Figure 2.1: Primary transistor structure where the 1D potential model is derived for [34].

given by:
Φq2D(x,y) ≈ c0(x) + c1(x) · y + c2(x) · y2, (2.6)

where ci are functions that are only x dependent. Additional assumptions are made for the
boundary conditions in the derivation, given as the front-side (oxide-semiconductor interface)
potential Φfrs at y = 0:

Φq2D(x,0) = Φfrs(x) = c0(x), (2.7)

the electric field at y = 0 which is determined by the gate-source voltage V ′
gs = Vgs − Vfb:

∂

∂y
Φq2D(x,y)

∣∣∣∣
y=0

= εox

εsc
·
Φfrs(x) − V ′

gs

tox
= c1(x), (2.8)

and the electric field at the bottom of the bulk:

∂

∂y
Φq2D(x,y)

∣∣∣∣
y=tsc

= εox

εsc
· Φbs − Φbks(x)

tbox
= c1(x) + 2tch · c2(x) ≈ 0, (2.9)
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12 2 Physical Effects and Basic Models

with Φbks as the backside (buried oxide-semiconductor interface) potential, Φbs as the bulk
potential, and tbox as the oxide layer thickness. As a simplification, the bulk is supposed to
be floating so that Eq. (2.9) is set to zero. Using the Eq. (2.7), Eq. (2.8), and Eq. (2.9) with
Eq. (2.6) and Eq. (2.5) leads to:

Φq2D(x) = Φfrs(x) − V ′
gs + qNA

εsc
· λ2, (2.10)

and:
∂2

∂x2Φq2D(x) − 1
λ2 · Φq2D(x) = 0, (2.11)

with:
λ =

√
εsc

εox
· toxtch. (2.12)

The parameter λ is called natural length and depends on the device’s structure. Equation (2.12)
is an expression for a bulk MOSFET.

By using two additional boundary conditions for x = 0 and x = Lch, as:

Φq2D(0) = Vs = Φbi − V ′
gs + qNA

εsc
· λ2, (2.13)

and:
Φq2D(Lch) = Vd = Vds + Φbi − V ′

gs + qNA

εsc
· λ2. (2.14)

The boundary conditions use either the applied source Vs or drain voltage Vd. The device’s
built-in potential Φbi, used in the equations, is caused by source-channel or drain-channel
material junction, and is explained in Sec. 2.4.1 for SBFETs. Using these conditions Eq. (2.13)
and Eq. (2.14) with Eq. (2.11), solves to the final equation:

Φq2D(x) = V ′
gs + Vb,s · p(Lch − x) + Vb,d · p(x)

p(Lch) , (2.15)

with:
p(x′) = exp

(
x′

λ

)
− exp

(
−x′

λ

)
, (2.16)

and the source / drain potential bending Vb,s/d = Φbi − V ′
gs + Vs/d. Besides the natural length

given by Eq. (2.12), there are additional λ for other device structures. For example, [34]
presents a solution for the natural length of a gate-all-around (GAA) structure, given as:

λ =
√

εsc

2εox
· tox · 2RNW. (2.17)

The solution Φq2D(x) of Eq. (2.15) is used in Chapter 5. A more detailed derivation of this
potential model can be found in [34].
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2.1 Potential Model 13

2.1.3 Conformal Mapping

There are various well-known solutions for electrostatic problems which can be applied on
simplified or symmetric problems, like a plated capacitor, point charges in a room, or a very
long cylindrical cable. However, in most applications the problem that has to be solved is not
symmetrical and takes more effort to solve (in case it is analytically solvable at all). Figure 2.2
shows a schematic cross-section of a double gate (DG) transistor with three different potentials
at the device’s boundaries.

Figure 2.2: DG transistor structure represented in a complex plane, showing the applied bias
potentials at the boundaries. The electrostatic potential inside the device is a function of the
geometry and all applied bias potentials.

The shown problem is partially symmetric but solving it in a closed-form expression is still
challenging. In order to solve a (full) 2D electrostatic potential (Φ2D(x,y)) within such a device,
the conformal mapping method can be used [36, 37]. In this method, the axes of a 2D problem
(e.g. the transistor from Fig. 2.2) are represented in a complex plane, called the z-plane, with
z = x+ iy, where i is the imaginary unit [36]. The goal of the conformal mapping method is
to find another complex 2D plane, the w-plane with w = u+ iv, at which the mathematical
problem is solvable, as well as a transformation method f , with f(z) = w [36].

2.1.4 Schwarz Christoffel Transformation

A special conformal mapping method has been worked on by Schwarz [38] and Christoffel
[39, 40], which is often referred to as Schwarz Christoffel Transformation (SCT) and summarized
in [36]. The SCT is a systematic transformation method which is used to map the inside region
of a polygon described in a 2D plane z = x + iy to the upper half of a w = u + iv plane.
Therefore, the outer edges of the polygon, traversed counterclockwise, are "opened up" on the
u-axis of the z-plane. An example illustration is shown in Fig. 2.3. The SCT is mathematically
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14 2 Physical Effects and Basic Models

i

(a)

i

(b)

Figure 2.3: Example of a polygon, which is opened to the left side, (a) represented in the
complex z-plane and (b) transformed on the u-axis of the complex w-plane. The images are
taken from [33].

described by

z = f(w) = C1 ·
∫ n∏

i=1

(w − wi)− αi
π dw + C2. (2.18)

In Eq. (2.18), every vertex of the z-plane polygon is represented by one factor, where n is the
number of vertices. The coefficient wi is the position of the vertices on the w-plane, αi is the
corresponding counterclockwise angle change. The coefficient C2 is the offset of the z-plane and
in case that the mapped polygon has two parallel edges which start / end at ∞ (see Fig. 2.3),
C1 can be expressed as:

C1 = z′′
k − z′

k
iπ

, (2.19)

which is an important special case.

The SCT is used in the 2D potential model described in the upcoming section. An in-depth
investigation of the SCT and the conformal mapping method is beyond the scope of this work.
The author would kindly ask to refer to [36] for a more extensive view on this topic.

2.1.5 Closed-Form Analytical 2D Potential

This section briefly summarizes the closed-form 2D potential from [29, 33, 41, 42] by using the
theory from Sec. 2.1.1, Sec. 2.1.3, and Sec. 2.1.4 as basis. A more detailed model derivation can
be found in the mentioned references. The potential model presented in this section is derived
for 2D DG device structures, as shown in Fig. 2.4(a), although a derivation for other structures
(e.g. single gate devices) would be possible as well. It calculates a 2D potential Φ2D(x,y) inside
the device’s channel region (including the gate oxide regions), dependent on the coordinates x
and y. The coordinate x is the source-to-drain direction, with x = 0 as source-channel junction
and x = Lch as drain-channel junction and y is the gate-to-gate direction, with y = 0 at one
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2.1 Potential Model 15

gate to y = tch at the opposing gate. The algorithm for obtaining Φ2D can be divided into four
different steps which are explained one by one.

In a first step, the DG device is split up in the middle of the channel (at x = Lch/2),
which results in two partial devices - the source side and the drain side. This is represented in
Fig. 2.4(a). Both partial devices have a fixed starting point on the x-axis and for the calculation
they are supposed to have an infinite length in the opposing x direction. This step, which is a
good approximation in case of Lch ≫ tch, leads to a reduction of the calculations complexity
when applying the SCT in a later step, because instead of an enclosed polygon with four corners
(four-corner problem), the mathematical problem is split up into two polygons with two corners
and open in one direction (two-corner problem). The upcoming two steps are solved for each
partial device individually.

The second step is the equalization of the oxide’s permittivity, which means that the
permittivity for the oxide εox is equalized to the semiconductor’s permittivity εsc. This is done
by calculating a transformed oxide thickness t′ox by:

t′ox = εsc

εox
· tox, (2.20)

which is illustrated in Fig. 2.4(b). This equalization leads to a uniform distribution of the
electric field and therefore, the electrostatic potential inside the device and prevents the necessity
of a further device split up into oxide and channel regions.

In the third step, the SCT from Sec. 2.1.4 is applied, which is illustrated in Fig. 2.4(c). In
this special case of the two-corner device structure, as shown in Fig. 2.4(c), the SCT Eq. (2.18)
and Eq. (2.19) become:

z(w) = ∆y

π
cosh−1(w) = 2t′ox + tch

π
cosh−1(w), (2.21)

where ∆y is the distance of the two horizontal edges. Translated to the DG transistor it can
be represented by ∆y = 2t′ox + tch. By reversing the transformation of Eq. (2.21) as

w(z) = f−1(z) = cosh
(
π(x + iy)
2t′ox + tch

)
, (2.22)

an expression for the given two-corner problem for an arbitrary point which is at (x|y) inside
the channel (tox ≤ y ≤ tox + tch) can be stated as:

ws(x,y) = cosh
(
π(x + iy)
2t′ox + tch

)
, (2.23)

in the corresponding w-plane of the source-side transformation, and:

wd(x,y) = cosh
(
π(Lch − x + iy)

2t′ox + tch

)
, (2.24)
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16 2 Physical Effects and Basic Models

(a)

(b)

(c)

Figure 2.4: Various steps of the 2D potential model. (a): The transistor is split into two par-
tial problems - a source and a drain related case, each represented in the complex z-plane. (b):
The oxide thickness is adjusted, so the permittivity of the oxide matches the semiconductor’s
permittivity. (c): The partial devices are transformed, using the SCT, so the potential solution
can be calculated in the complex w-plane.
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2.1 Potential Model 17

for the drain-side transformation. With Eq. (2.22) the positions 1′, 1′′, 2 to 5 shown in
Fig. 2.4(c) can be mapped and described by their x and y coordinates, as:

u′
1′ = cosh

(
π(3Lch + i(2t′ox + tch))

2t′ox + tch

)
, (2.25)

u′
2 = cosh

(
π(0 + i(2t′ox + tch))

2t′ox + tch

)
, (2.26)

u′
3 = cosh

(
π(0 + i(t′ox + tch))

2t′ox + tch

)
, (2.27)

u′
4 = cosh

(
π(0 + it′ox)
2t′ox + tch

)
, (2.28)

u′
5 = cosh

(
π(0 + i0)
2t′ox + tch

)
, (2.29)

and:
u′

1′′ = cosh
(
π(3Lch + i0)

2t′ox + tch

)
. (2.30)

The term 3Lch in Eq. (2.25) and Eq. (2.30) indicates that the point is far over Lch and is used
instead of ∞.

The actual potential inside the w-plane is calculated by the Poisson integral:

Φ(u,v) = 1
π

∞∫

−∞

v

(u− u′)2 + v2 · Φbnd(u′) · du′, (2.31)

where Φbnd(u′) is the Dirichlet boundary condition along the edge between two u′
i. These

boundary conditions must be defined at the device’s edges that are transformed onto the u-axis.
Two types of boundary conditions are used. For constant boundary conditions, Φbnd(u′) = Φconst

is used, leading to the Poisson integral:

Φconst(u,v) = 1
π

∞∫

−∞

v

(u− u′)2 + v2 · Φconst · du′, (2.32)

which solves to:

Φconst(u,v) =


−

Φconst · tan−1
(

u−u′

v

)

π




ub

ua

. (2.33)

For linear boundary conditions, using the electric field component Ey, the Poisson integral
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18 2 Physical Effects and Basic Models

becomes:

Φlin(u,v) = 1
π

∞∫

−∞

v

(u− u′)2 + v2 · Ey
∆y

π
· cosh−1(u) · du′, (2.34)

which needs to be simplified and solved. For the solution of Eq. (2.34) please refer to [29].

After applying the SCT and set up the equations for the potentials, the actual boundary
conditions have to be defined at the device’s edges in the next step. At these edges, boundary
conditions are used, which are shown in Fig. 2.5. These boundaries are given as:

Gate 1 (1” to 2): Vg − Vfb (constant)
Oxide 1 (2 to 3): linear function from Gate 1 to Source/Drain
Source/Drain (3 to 4): Vs/d + Φbi (constant)
Oxide 2 (4 to 5): linear function from Source/Drain to Gate 2
Gate 2 (5 to 1’): Vg − Vfb (constant)

In case of both gate boundaries, the applied gate voltage Vg minus the gate material induced
flatband voltage Vfb is used. The source or drain boundary uses either the applied source Vs

or drain voltage Vd plus the device’s built-in potential Φbi, which is caused by source-channel
or drain-channel material junction. The potential Φbi for SBFETs is explained in Sec. 2.4.1.
Finally, for the oxide regions a linear potential drop is expected, which leads to a linear function
as boundary condition, connecting the potential of the gates to the potential of the source/drain
region.

Figure 2.5: Boundary potentials along the red path c at the device’s edges, showing the con-
stant and linear boundaries.

The last step performed in the 2D potential algorithm is superposing the calculated potentials.
This is done by using Eq. (2.33) and Eq. (2.34) with the defined boundary conditions. First,
the potentials per terminal / partial device are superposed, as:

Φ2D,s(x,y) = Φconst,Gate1 + Φconst,Source + Φconst,Gate2 + Φlin,Oxide1 + Φlin,Oxide2, (2.35)
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2.1 Potential Model 19

for the source-related case and:

Φ2D,d(x,y) = Φconst,Drain + Φlin,Oxide1 + Φlin,Oxide2, (2.36)

for the drain-related case. Both partial potential solutions are then added together, as

Φ2D(x,y) = Φ2D,s(x,y) + Φ2D,d(x,y), (2.37)

for the final 2D potential. This superposition leads to the enclosed device solution and adds
the impact of the drain terminal to the source side, as well as the source terminal to the
drain side. By using Eq. (2.37) and the coordinates of an arbitrary point inside the device
(x|y), 0 ≤ x ≤ Lch, tox ≤ y ≤ tox + tch, the potential at this point Φ2D can be determined. A
more extensive derivation and discussion about this model can be found in [29].

2.1.6 Consideration of Accumulated Charges

At high gate voltage charges will be accumulated inside a transistors channel, which lead to
the transistor’s charge-carrier transport, but also affect the potential inside the channel. These
charges are usually (in case of a transistor using doped regions) referred to as inversion charges,
but in case of SBFETs using intrinsic or lightly doped silicon as channel material, are more
accurately named as accumulated charges, since the carrier type is not inverting in this case.

Accumulated charges inside the device’s channel at the semiconductor-oxide interface lead
to a reduction of the surface potential. However, the 2D potential model from Sec. 2.1.5 is
based on the Laplace equation, neglecting space charges. Therefore, the accumulated charges
need to be considered for a correctly behaving model at all bias voltages. For this, a model
addition has been included which is introduced and described in the tunnel field-effect transistor
model from [33], following and using approaches from [43–46].

For a proper integration of the accumulation effects into the 2D potential model, an
expression for an effective gate-source voltage Vgs,eff,TFET is obtained, which replaces the actual
gate-source voltage when using this model. This voltage Vgs,eff,TFET must be equal to Vgs at
small biases, but saturate at about Vgs > Vds, and is expressed as:

Vgs,eff,TFET(Vgs,Vds) = kbϑ

q
· us,3, (2.38)

with the Boltzmann constant kb, the temperature ϑ and the elementary charge q. The coefficient
us,3 is the normalized surface potential, which cannot be obtained analytically, but is calculated
using the Newton method on a proposed 1D Poisson equation, performing three iteration steps.
The entire method is beyond the scope of this work. For the full derivation and discussion of
this method, the author would like to refer to [33].
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20 2 Physical Effects and Basic Models

2.2 Charge-Based MOSFET Model

The current flowing through a SBFET is mainly dominated by the carrier injection over the
device’s SBs. However, in some cases it is necessary to consider the carrier transport inside
a device’s channel. This section introduces a simple MOSFET model that is needed for the
SBFET/RFET model in later chapters.

In literature, there are a lot of different MOSFET compact models. A good overview of
various models for undoped DG MOSFETs can be found in [47]. The model that is used in
this work is a charge-based MOSFET model, given by:

IDGMOSFET = 2µWch

Lch
·
[
Vϑ ·

(
Q′

s −Q′
d
)

+ Q′2
s −Q′2

d
2 · C′ox

]
, (2.39)

using the device geometries Wch and Lch, the carrier mobility µ (µn in case of electrons and µp

in case of holes), the oxide capacitance per gate area Cox, and the thermal voltage Vϑ = kbϑ/q

[47, 48]. The charge densities per gate area can be calculated, according to [48], by:

Q′
s = S

ln(10) · C′
ox ·W0

(
exp

(
Vgs − VT0

S/ln(10)

))
, (2.40)

for the source-related charge density and:

Q′
d = S

ln(10) · C′
ox ·W0

(
exp

(
Vgd − VT0

S/ln(10)

))
, (2.41)

for the drain-related charge density. The given charge densities are dependent on the corre-
sponding voltages, which are either Vgs as the gate-source voltage or Vgd as the gate-drain
voltage. The parameter S and VT0 are used as fitting parameters, which are the subthreshold
swing S and the threshold voltage VT0 of the device. The function W0(x) is the principal
branch of the Lambert W function, which is implicitly defined as:

W0(x) · exp (W0(x)) = x, W0(x) ≥ −1, (2.42)

and approximated in this work, by:

W0(x) ≈ ln(1+x) ·
(

1 − ln(1 + ln(1 + x))
2 + ln(1 + x)

)
, (2.43)

according to [49]. An extensive mathematical study on the Lambert W function can be found
in [49].

The presented model is used in the document’s main chapter for modeling the SBFETs’
and RFETs’ channel resistances.
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2.3 Tunnel Effect

One of the most important charge carrier transport mechanisms that is part of the SB devices’
working principle is the so-called tunneling effect, which is an effect appearing in quantum
mechanics. This section introduces some basics about quantum mechanics, the tunnel effect and
discusses basic models for a mathematical description of carrier transport through tunneling.
The following sub-sections are summarized from [50, 51] in case it is not noted differently.

2.3.1 Wave Function and Schrödinger Equation

In 1926 the physicist Erwin Schrödinger published his postulated wave equation [52, 53]. This
equation, which got famous under the term of Schrödinger equation was a milestone in the field
of theoretical quantum mechanics and has proven to be a valid approach for solving problems
in the field of quantum mechanics until today. The Schrödinger equation can be represented in
various forms. A common form of this equation is:

iℏ ∂
∂t
Ψ(r⃗,t) =

(
− ℏ2

2m∆+ U(r⃗,t)
)
Ψ(r⃗,t), (2.44)

which describes a particle’s behavior as wave function Ψ(r⃗,t) dependent on the 3D position
vector r⃗ = (x,y,z)T and the time t. In Eq. (2.44), ℏ is the reduced Planck constant, m
is the particle’s mass, and ∆ is the Laplace operator given as the squared nabla operator
∆ = ∇ · ∇, which is ∇ = (∂/∂x, ∂/∂y, ∂/∂z)T in the 3D Cartesian coordinate system. U(r⃗,t)
is the environmental potential where the particle exists in (e.g. gravitational potential or
electrostatic potential) and i is the imaginary unit (with i2 = −1). The wave function can be
used to determine the probability of the particle being located at a certain position in a volume
V at a certain time t, in case the normalization condition is met, given as:

Pparticle in V =
∫

V

|Ψ(r⃗)|2 · d3r = 1. (2.45)

A simple application of the Schrödinger equation is the description of a free particle in a
potential free environment (U(r⃗,t) = 0). In this case, the common form of the wave function,
given as

Ψ(r⃗,t) = A0 · exp
(
i(k⃗ · r⃗ − ωt)

)
, (2.46)

with the wave function’s amplitude A0, the wave vector k⃗, and the angular frequency ω, it can
be used to solve Eq. (2.44). Therefore, Eq. (2.46) can be derived as:

∂

∂t
Ψ(r⃗,t) = −A0 · iω · exp

(
i(k⃗ · r⃗ − ωt)

)
, (2.47)
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and
∆Ψ(r⃗,t) = −A0 · |⃗k|2 · exp

(
i(k⃗ · r⃗ − ωt)

)
. (2.48)

Using Eq. (2.47) and Eq. (2.48) in Eq. (2.44) leads to |⃗k|2 = 2m · ω/ℏ, which matches the de
Broglie relations for the particle’s impulse p⃗ = ℏ · k⃗ and energy E = ℏ · ω = |p⃗|/(2m).

2.3.2 Tunneling Probability

One essential mechanism for the device’s discussed in this work is the quantum mechanical
tunnel effect, which can only be explained by quantum physics. Since most of the tunneling
problems that need to be discussed in this work deal with tunneling in only one direction (for
transistors the source-drain direction), it is a legit simplification to describe the problem only
in one dimension, so instead of r⃗ only x is used. In classical particle physics, it would be
only possible for a particle to overcome an energy barrier in case the particles energy E was
higher that the barrier U0 or be reflected from the barrier in case of E < U0. By describing
particles as waves, the wave theory offers the possibility that an incoming wave ψi partially
passes an energy barrier (transmission), leading to a reduced amplitude of the transmitted wave
ψt, and a second wave that is the reflected wave ψr in the opposing direction of the incoming
wave with the "missing" amplitude. This is demonstrated in Fig. 2.6. Figure 2.6 breaks the

ψi

ψr

ψt

Figure 2.6: Particle as incoming plane wave ψi hitting an energy barrier, which results in a
reflected wave ψr and a transmitted wave ψt. The image is taken from [33].

x-axis into the two regions I and II with their corresponding wave functions ψI = ψi + ψr and
ψII = ψt. According to the normalization condition of Eq. (2.45), the absolute squared wave
function is measure of probability to find the described particle at a certain position. With this
dependency, a coefficient can be expressed that describes the probability of a single particle
described as wave to tunnel through an arbitrary energy barrier, as

T = |ψt|2

|ψi|2
. (2.49)
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In this case T is called the tunneling probability or transmission probability, which is dependent
on the shape and height of the energy barrier and the initial particle’s energy.

For a mathematical description, Eq. (2.44) is used again, but in a simplified version. The
equation: (

− ℏ2

2m
∂2

∂x2 + U(x)
)
ψ(x) = E · ψ(x), (2.50)

is the one-dimensional and time-independent Schrödinger equation, with E as the particle’s
initial energy and ψ(x) as the time-independent part of the wave function with the relation
Ψ(x,t) = ψ(x) · exp(−iEt/ℏ). This results in the corresponding time-independent wave equation
for a free particle (in case of U(x) = 0):

ψ(x) = A0 · exp (ik · x) , (2.51)

where k is the wave number, representing a scalar parameter instead of a vector, given as:

k =
√

2m · E
ℏ2 . (2.52)

2.3.2.1 Tunneling Through Rectangular Barriers

An analytically solvable example of the tunneling probability is a tunneling process through
a rectangular energy barrier, as shown in Fig. 2.7. In order to obtain an expression for the

ψi

ψt

ψb

ℰ

ℰ

Figure 2.7: Particle as wave with the energy E tunneling through a rectangular energy barrier
with the height U0 and the thickness W . The image is taken from [33].

tunneling probability at the rectangular barrier Trect, Eq. (2.49) is used with the incoming
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plane wave given as ψi(x) = Ai ·exp (ik1 · x), the reflected wave ψr(x) = Ar ·exp (−ik1 · x), and
the transmitted wave given as ψt(x) = At · exp (ik1 · x), according to Eq. (2.51) and Eq. (2.52).
The wave function inside the barrier ψb (between regions I and II) needs to be described by
the Schrödinger equation Eq. (2.50), as

(
− ℏ2

2m
∂2

∂x2 + (U0 − E)
)
ψb(x) = 0, (2.53)

where U0 is the constant barrier height. In case of E < U0, the equation:

ψb(x) = C1 · exp (k2 · x) + C2 · exp (−k2 · x) , (2.54)

with:

k2 =
√

2m · (U0 − E)
ℏ

, (2.55)

is a solution of Eq. (2.53)

With the discussed partial wave functions in both regions ψI = ψi + ψr and ψII = ψt, as
well as ψb inside the energy barrier, a total wave function can be expressed, as:

ψ(x) =





Ai · exp (ik1 · x) +Ar · exp (−ik1 · x) , x < x1

C1 · exp (k2 · x) + C2 · exp (−k2 · x) , x1 < x < x2

At · exp (ik1 · x) , x > x2

. (2.56)

In order to find a way to determine the tunneling probability Trect using Eq. (2.49), as:

Trect = |ψt|2

|ψi|2
= |At · exp (ik1 · x) |2

|Ai · exp (ik1 · x) |2 = |At|2

|Ai|2
, (2.57)

the coefficients Ai, Ar, C1, C2, At of Eq. (2.56) need to be related to each other. This is done
by fulfilling the steadiness conditions of ψ(x) and dψ(x)/dx at x = x1 and x = x2.

This calculation is not performed here but can be found in various publications (e.g. [50]).
Following [50], Eq. (2.57) solves into:

Trect = 1
1 + 1

4η
2sinh2(k2 ·W )

, (2.58)

with
η = k2

k1
− k1

k2
. (2.59)

2.3.2.2 Tunneling Through Triangular Barriers

In the previous section, an exact and analytical way of calculating the tunneling probability for a
rectangular barrier is shown. This however is only possible due to the simplicity of the barrier’s
shape. Usually, it is not possible to find a closed-form solution without any approximation for
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more complex barrier shapes than the rectangular shape. Figure 2.8 shows an example for
a tunneling process through a triangular barrier. A very commonly used approximation to

ℰ

ℰ

ψi

ψt

ψb

Figure 2.8: Particle as wave with the energy E tunneling through a triangular energy barrier.
The image is taken from [33].

calculate the tunneling probability through non-rectangular barriers is the approach by Kramers
[54], using the work from Wentzel [55] and Brillouin [56], which is commonly be referred to as
Wentzel-Kramers-Brillouin (WKB) approximation. The basic idea of this approximation is to
use the solutions Eq. (2.54), Eq. (2.55) from the rectangular barrier in Eq. (2.50) and treat
the potential U0 as it was (almost) constant. In this approach, the wave number inside the
tunneling barrier is represented by:

k2(x) =
√

2m · (E − U(x))
ℏ

, (2.60)

and it is estimated that the wave’s argument can be described in infinitesimally small phase
parts, which lead to the integral:

ψb(x) = ψb(x0) · exp


±i

x0∫

x

k2(x′)dx′


 , (2.61)

Since it makes no sense that a wave’s wavelength λ = 2π/k changes (quickly) along the x-axis,
the WKB approximation is only valid in case that the potential Ux and therefore, the wave
number k varies very slowly so the condition:

∣∣∣dλ
dx

∣∣∣ ≪ 1, (2.62)
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is fulfilled [50]. A mathematical derivation of the WKB approximation is not discussed further
in this work but can be found for example in [51].

The tunneling probability of the WKB method can be written as:

TWKB = |ψt|2

|ψi|2
=

∣∣∣∣∣∣∣∣∣∣∣∣

exp


i

x2∫

−∞

k2(x′)dx′




exp


i

x1∫

−∞

k2(x′)dx′




∣∣∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
exp


i

x2∫

x1

k2(x′)dx′




∣∣∣∣∣∣

2

= exp


2i

x2∫

x1

k2(x′)dx′


 = exp


− 2

ℏ

x2∫

x1

√
2m · (U(x′) − E)dx′


 ,

(2.63)

In the next step, the WKB approximation is applied on a triangular energy barrier, as
shown in Fig. 2.8. This barrier is mathematically described as:

U(x) = −U(x1) − E
x2 − x1

· (x − x2) + E. (2.64)

Using Eq. (2.64) in Eq. (2.63) and solving the integral leads to:

TWKB(E) = exp
(

− 4
3ℏ ·

√
2m · (U(x1) − E) · (x2 − x1)

)

= exp
(

− 4
3ℏ ·

√
2m · (U0 − E) · (ttun(E))

)
,

(2.65)

valid at E < U0, with the maximum barrier height U0 at x1, and the tunneling thickness at the
given particle energy ttun(E).

2.3.3 Tunneling of Charge Carriers

In the previous sections the tunneling probability was determined for arbitrary particles which
are described by wave functions. For electronic devices that rely on the tunnel effect as
transport mechanism, like SBFETs, the tunneling particles are electrons or holes, which make
up the charge-carrier current. This section shows two basic models that use the tunneling
probability of an arbitrary barrier in order to calculate a tunneling current density. Additionally,
Sec. 2.3.3.3 qualitatively describes a wave-based numerical method used to calculate the current
transmission through energy barriers.
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2.3.3.1 Tsu-Esaki Tunnel Equation

The Tsu-Esaki tunnel model approach [57, 58] can be used to determine a current density given
by tunneling charge carriers from a region I to a second region II. For the derivation shown in
this section, both [33, 59] are used as references.

The tunneling current density Jtun is described as a balance of charge carriers tunneling
from region I to region II (JI→II) and those tunneling backwards (JII→I), as:

Jtun = JI→II − JII→I. (2.66)

As shown in [59], the current components can be represented as:

JI→II = 4π · q ·m∗

h3 ·

Emax∫

Emin

T (E) · dE ·
∞∫

0

fI(Etot) (1 − fII(Etot)) · dEρ , (2.67)

and:

JII→I = 4π · q ·m∗

h3 ·

Emax∫

Emin

T (E) · dE ·
∞∫

0

fII(Etot) (1 − fI(Etot)) · dEρ , (2.68)

respectively, with the effective mass of the charge carrier m∗, the elementary charge q and
the Planck constant h. In the given equations, E is the transversal energy component (in
direction of the tunnel process). The carriers’ longitudinal energy Eρ is the energy component
related to the longitudinal wave-components of the carrier, where the total carrier’s energy can
be expressed as Etot = E + Eρ. The inner integral over all longitudinal energies contains the
product of the Fermi distribution functions, describing the filled electron states in region I as
fI(Etot) and the free electron states in region II as (1 − fII(Etot)). The outer integral contains
the tunneling probability T (E), which can be calculated for example by using Eq. (2.63). The
boundaries Emin and Emax are the minimum and maximum energies of the tunneling barriers
(e.g. the top and the bottom of a SB).

By using Eq. (2.67) and Eq. (2.68) in Eq. (2.66), it can be expressed as:

Jtun = 4π · q ·m∗

h3 ·

Emax∫

Emin

T (E) · dE ·
∞∫

0

(fI(Etot) − fII(Etot)) · dEρ . (2.69)

The changed inner integral of Eq. (2.69) is called supply function N(E), written as:

N(E) =
∞∫

0

(fI(Etot) − fII(Etot)) · dEρ . (2.70)
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Using the Fermi distribution function:

f(E) = 1

1 + exp
(E − Ef

kbϑ

) , (2.71)

the Eq. (2.70) can be solved to:

N(E) = kϑ · ln




1 + exp
(

−E − Ef,I

kbϑ

)

1 + exp
(

−E − Ef,II

kbϑ

)


 , (2.72)

with Ef,I and Ef,II as the Fermi energy levels in the two regions, the Boltzmann constant kb

and the temperature ϑ.

With the supply function the Tsu-Esaki tunneling equation can be stated as:

Jtun = 4π · q ·m∗

h3 ·

Emax∫

Emin

T (E) ·N(E) · dE . (2.73)

For a more detailed derivation of the equation, please refer to [33, 59].

2.3.3.2 Sze-Chang Tunnel Equation

The tunnel current model proposed by Sze and Chang, which is described in [6, 60], is used to
describe the tunneling charge carriers through SBs. The model is proposed as:

JI→II = A∗∗ϑ2

kbϑ
·

Emax∫

Emin

fI(E) · T (E) · [1 − fII(E)] · dE , (2.74)

where only one tunneling direction (from region I to region II) is considered in the equation. The
boundaries Emin and Emax are the minimum and maximum energies of the tunneling barriers,
fI(E) represent the filled electron states in region I and (1 − fII(E)) represent the free electron
states in region II. The constant kb is the Boltzmann constant, ϑ is the temperature and A∗∗

is, dependent on the used model variation, either the Richardson constant or an expression
from the thermionic-emission-diffusion theory by Crowell and Sze [6, 61].

Although, this approach neglects some parts compared to the Tsu-Esaki approach from
Sec. 2.3.3.1, for example the backwards current JII→I or the longitudinal energy components, it
has been shown in [6, 29, 62] that the approach can be used for a compact model description
of the tunneling current at SBs.
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2.3.3.3 Non-Equilibrium Green’s Function Method

Another method used to describe the transmission of charge carriers through a transistor,
also considering tunneling barriers, is the so-called non-equilibrium Green’s function (NEGF)
Method. This method is a wave-based approach which separates the simulated device into
different regions, where the so-called Hamiltonian of any region is represented in a matrix
[63]. The resulting system is solved with the Green’s function in order obtain a transmission
coefficient TNEGF, which can be used to calculate the device current [63]. The NEGF method
is not used for calculations in this work, but it is used to explain the approach in Sec. 5.3.1, so
a more in-depth discussion on the topic is omitted. For more details on the mathematical and
physical details of the NEGF method the author would like to refer to [63–65].

2.4 Physical Description of Schottky Barriers

In the last section of this chapter, the physics of SBs are discussed. A SB is an energy barrier
for charge carriers that forms as a result of a metal to semiconductor junction. This section
explains the formation of SBs and the charge carrier injection mechanisms and reviews some of
the well-known physical descriptions.

2.4.1 Band Diagram Construction

An energy band diagram of this junction for a material combination of nickel silicide (as
metal) and silicon (as semiconductor) is shown in Fig. 2.9. In the state of Fig. 2.9(a) both

(a) (b)

Figure 2.9: Band diagram of a material junction between nickel silicide as metal and silicon
as semiconductor. (a) shows the band diagrams of the individual materials without contact. (b)
shows band diagram of both materials in contact and in thermal equilibrium.

materials without contact are shown, with the metal’s Fermi energy Ef = Ef,m at the left
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side and the semiconductor with its band diagram parameters at the right side. Ef = Efi

is the semiconductor’s intrinsic Fermi energy, EC and EV are the conduction and valence
band energies, respectively, and the band gap Eg denotes their distance. Evac is the vacuum
energy level with qΦm = Evac − Ef,m as the metal’s work function and qχ = Evac − EC as the
semiconductors electron affinity. As they are contacting each other (shown in Fig. 2.9(b)),
the material combination reaches the thermal equilibrium and therefore, the Fermi energy Ef

is constant along the entire structure. The steadiness condition of the Evac leads to a space
charge region (tscr) close to the metal-semiconductor junction and a band bending inside that
region. The band bending results in the shown SB heights for electrons q · ΦB,n0 and for holes
q · ΦB,p0, respectively. The SB heights can be calculated by using the material parameters, as:

qΦB,n0 = qΦm − qχ, (2.75)

for electrons and:
qΦB,p0 = Eg − qΦB,n0, (2.76)

for holes. The built-in potential Φbi determines the potential change over the space charge
region and can be determined by:

qΦbi = (EC − Ef) − qΦB,n0 ≈ Eg

2 − qΦB,n0. (2.77)

2.4.2 Charge Carrier Transport over Schottky Barriers

The existence of a SB inside a device results in a blocking mechanism for charge carriers.
Figure 2.10 shows the Schottky junction of Fig. 2.9(b) with a positive applied voltage at the
semiconductor region (Fig. 2.10). There are two ways for charge carriers to pass a SB. Charge
carriers with a reasonably high thermal energy can overcome the SB, which is shown as purple
arrow in Fig. 2.10. This transport mechanism is called thermionic emission (TE). A second way
for charge carriers to pass the barrier is by tunneling through it, in case the thickness of the
barrier is thin enough. This transport mechanism is called field emission (FE) and is indicated
by the green arrow in Fig. 2.10. There is also the possible combination of both mechanisms
where carriers with high thermal energy can tunnel through the barrier above the metal’s work
function (thermionic field emission).

2.4.2.1 Thermionic Emission

The TE theory, which can be found for example in [2, 6, 7], is a state-of-the-art theory used to
describe a charge carrier transport over an energy/potential barrier. Due to the thermal energy
of a charge carrier and the Fermi statistics, it can overcome an arbitrary potential barrier Φbar,
if the temperature is bigger than zero Kelvin and the barrier height is much bigger than kbϑ.
The amount of the carriers overcoming the barrier is exponentially dropping with the barrier
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Figure 2.10: Biased SB with a positive potential difference from semiconductor to metal
region. The injection electron currents from metal into the semiconductor are shown, where
JTE,n is the electron thermionic emission current and JFE,n is the electron field emission cur-
rent. The currents from the semiconductor into the metal region are neglected in this figure.
Normally, in the space charge region, the Fermi energy would split up into two quasi-Fermi
energies for each carrier type. To keep the graphic simple, this has been neglected.

height Φbar. The shape of the energy does not matter, as long as the barrier width reasonably
small, so the carrier’s drift-diffusion behavior inside the barrier region can be neglected.

The TE current density for a charge carrier overcoming an energy barrier from one region
into another in a device’s thermal equilibrium condition can be expressed by:

JTE,0 = A∗ · ϑ2 · exp
(

−q · Φbar

kbϑ

)
. (2.78)

In thermal equilibrium it needs to be considered that the TE current density from one region I
to second region II over an energy barrier needs to be as big as the reverse current density
(JTE,0 = JTE,0,I→II = JTE,0,II→I), in order to prevent a net current flow. The parameter A∗ in
Eq. (2.78) is the Richardson constant, given as:

A∗ = qm∗k2
b

2π2 · ℏ3 . (2.79)

The coefficients of Eq. (2.78) and Eq. (2.79) are the Boltzmann constant kb, the temperature
ϑ, the elementary charge q, the reduced Planck constant ℏ and the charge carriers’ effective
mass inside the material m∗.

As soon as an external voltage V is applied over the energy barrier, the current density
increases exponentially with the applied voltage, by:

JTE = JTE,0 · exp
(
q · V
kbϑ

− 1
)
. (2.80)

Equation (2.80) is a well-known equation that is used to calculate the current density for
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Schottky diodes, for instance. It can also be used to calculate the TE current for SBFETs,
which will be part of the modeling chapters.

2.4.2.2 Field Emission

The FE current contribution is the part of the total injection current that is made up by
charge-carriers tunneling through the SB. The FE current is shown as green arrow in Fig. 2.10.
In contrast to the TE current from Sec. 2.4.2.1, there is no closed-form mathematical expression
for the FE current contribution. In order to calculate the FE current contribution, either an
approach like those shown in Sec. 2.3.3 can be used and solved numerically (this is part of the
work in [62]), or some simplifications and approximations have to be done for being able to
solve the equations analytically. The second method is one of the main parts of this work’s
compact modeling attempts and is discussed in the main modeling chapters 4 to 6.

In some works, there is a distinction between the FE current given as direct tunneling
process at the metal’s Fermi energy level Ef,m and a mixed thermionic field emission current as
a term for tunneling carriers which have a higher thermal energy than Ef,m. This distinction is
not made in this work, so every current contribution related to a tunneling process through the
SB is called FE current.

2.4.3 Image-Force Lowering

Although the effect is not used in the compact model discussed in this work, as an additional
effect at SBs, the Schottky barrier lowering (SBL) or image-force lowering effect shall be briefly
discussed in this section, according to [6]. In case of the presence of an electric field over a SB,
causing electrons to be injected over the SB in the semiconductor, a positive image charge will
accumulate at the SB on the metal surface. The force (called image force) between the electron
and the image charge causes an additional electric field E⃗img which counteracts the external
field. This electric field causes a potential drop ∆Φ over the SB, which leads to a reduced SB
height and a change of the SB’s curvature. As derived in [6], the SB height reduction can be
expressed as:

∆Φ =

√
q · |E⃗img|

4πεsc
, (2.81)

leading to a reduced SB height of:

ΦB,n = ΦB,n0 −∆Φ, (2.82)

in case of electrons. This effect works similarly for holes. Since the SBL effect has been
neglected in this work, ∆Φ = 0 for this work, resulting in ΦB,n = ΦB,n0. For a further analysis
and more information of the SBL effect, please refer to [6].
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CHAPTER 3

Device Working Principles

After the fundamentals, presented in the previous chapters, this chapter introduces the covered
devices and their working principle in more detail. The given explanations in this chapter are
supported by TCAD device simulation results that have been performed on these transistors.
The simulations and used parameters are briefly described in Sec. 3.1. After this, the SBFET is
discussed in Sec. 3.2. In Sec. 3.3, using the basics of the SBFET, the RFET is introduced and
explained. Finally, Sec. 3.4 shortly describes and reviews several compact models for SBFETs
or RFETs.

3.1 TCAD Simulation Parameters

The explanation in this chapter is supported by a TCAD simulation studies of SBFET / RFET
devices. The results of these simulations are shown as figures containing device characteristics
or energy band diagrams. For running the simulation with TCAD Sentaurus, the devices use
silicon as channel material with an oxide made of SiO2, nickel silicide as source and drain metal
and titanium as gate electrode material. The performed simulations are calibrated to the results
of [66, 67], so some default parameters like metal work functions and tunnel masses haven been
slightly adjusted, as shown in Tab. 3.1. In the simulation the device is simulated as cylindrical
nanowire and the Nonlocal Mesh (NLM) together with the NLM tunneling model are used at
the source and drain side of the device, in order to simulate tunneling charge carriers through
the SB [28]. The simulation parameters can be found in Tab. 3.1, which is valid for all shown
results in this chapter unless it is noted differently in some sections. If a parameter is not
mentioned in the table, it is kept as default (see [28]).

The parameter LCG/PG refers to the control gate and program gate lengths and is only
applicable to the simulated RFETs.

33
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34 3 Device Working Principles

Table 3.1: Parameters used in the TCAD simulations

Parameter Value
Lch [nm] 220
RNW [nm] 6
tox [nm] 8
LCG/PG [nm] 50
µn [cm2 V−1 s−1] 1417
µp [cm2 V−1 s−1] 471
µtn [cm2 V−1 s−1] 0.05
µtp [cm2 V−1 s−1] 0.05
mn [-] 0.252
mp [-] 0.202
Eg,Si [eV] 1.16964
Φm,Ti [V] 4.63
Φm,NiSi [V] 4.65

3.2 Schottky Barrier Field-Effect Transistor Working Principle

With the knowledge of SBs, their properties and working principle, discussed in the previous
chapter, the SBFET is an electronic device that is relying on the existence on those. In classic
MOSFET application, a transistor’s (drain) current is controlled by pn-junctions, blocking
the current flow in the device’s off-state, and a conductive accumulation/inversion channel
occurring in the device’s on-state. Unlike this MOSFET working principle, the SBFET uses
SBs at the source and drain side of the device in order to block the device current in the
off-state. By biasing the device’s gate electrode, the SBs become thinner due to the band
bending and therefore, more conductive. This section explains the structure, working principle
and electrical properties of SBFETs.

3.2.1 Device Structure

The SBFET consists of a metal-semiconductor-metal material combination in source-drain
direction. The metallic source and drain regions connecting to the semiconductor channel
lead to a SB at the source-channel and the drain-channel interface. The SBFET’s channel
is covered by an oxide and the gate electrode, that controls the current flow. The form of
how the gate covers the channel is generally not predefined, which means that a SBFET can
have a single top gate (as in classic MOSFET application), a double gate structure (which
is a more theoretical device), or a structure with a higher gate control, similar to FinFET
or gate-all-around nanowire structures. Figure 3.1(a) shows a schematic 2D-cross-sectional
structure of a SBFET and Fig. 3.2 shows a 3D example of a SBFET. The compact model for
SBFETs, which is introduced in Chap. 4, uses a DG structure device (see Fig. 3.2(a)), while
real devices usually are GAA nanowire or similar structures [11, 68].
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3.2 Schottky Barrier Field-Effect Transistor Working Principle 35

Figure 3.1(b) shows the band diagram of the simulated SBFET in source-to-drain direction
with no bias voltages applied. The given figure shows the most important band diagram related
parameters of the device. Eg is the bandgap of the channel’s semiconductor material, ΦB,n is the
SB height for electrons and ΦB,p is the SB height for holes. In the shown example of Fig. 3.1(b)
the slight initial band bending is caused by the SBs’ built-in potential (see Sec. 2.4.1).
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Figure 3.1: (a) schematic cross-section of a nanowire or double gate SBFET with its geomet-
ric parameters, and (b) example band diagram of the SBFET in thermal equilibrium (unbi-
ased).

(a) (b)

Figure 3.2: Possible schematic 3D shapes of the SBFET showing the different regions. The
S/D are the source and drain regions and G is the gate electrode. The brown colored regions
are the oxide regions and yellow is the semiconductor channel. (a) shows a DG structure which
is extended in the width-direction. This structure is used in the compact model of Chapter 4,
but usually not for real devices. (b) shows the source-side section of a gate-all-around nanowire
SBFET, which is a more realistic device structure.
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36 3 Device Working Principles

3.2.2 Working Principle and Characteristics

The I/V-characteristics of a SBFET can be split into three parts. An example transfer curve is
shown in Fig. 3.3. The given transfer curve shows such a transistor for Vds > 0 V which means
it operates in n-type mode during the device’s on-state. Fig. 3.4 shows the source-to-drain
band diagram along the channel at the three different states shown in Fig. 3.3. These can be
used in order to explain the SBFETs operation states and the characteristics.

• Figure 3.4(a) describes the SBFET’s off-state at the given drain voltage. In the off-state
the drain current of the device is the lowest and it is supposed to be switched off. For the
given material combination with almost equally high SB heights for electrons and holes,
this operation mode is given at the gate voltage where the gate-source and the drain-gate
potential differences are about equally high, as it can be seen in the figure. In this state
electrons can be injected at the source side of the device, as well as holes can be injected
at the drain side through TE and FE. However, for the given material combination, the
SBs at both sides are thicker compared to the other operation modes which leads to a
reduced FE current, since this current contribution depends exponentially on the barrier
thickness. Because of this dependency, the device’s off-state is also dependent on the
applied drain voltage.

• Figure 3.4(b) shows the device’s on-state (where the SBFET is supposed to be switched
on). In this operation state the conduction band is bent down due to the high gate
voltage, so that the source-side SB is very thin and even a direct tunneling can occur.
The drain-side hole current contribution is gone in this state; however, the source-side
electron FE current is even higher by several decades.

• Figure 3.4(c) shows the ambipolar operation mode of the SBFET. This mode is usually
unwanted, because in this state the device’s drain current is increasing again, although
Vgs is lower than the off-state gate voltage. In the ambipolar state, the drain-side SB has
become very small and therefore, an increasing hole FE current is flowing from the drain
to the source terminal1.

As the previously shown band diagrams (Fig. 3.1(b) and Fig. 3.4) demonstrate, in the
example SBFET of this section the SB heights for electrons ΦB,n and for holes ΦB,p are almost
equally high. This device can also be used as a p-type device with Vds < 0 V. This is shown
as an example transfer curve in Fig. 3.5. The characteristics in this case are similar to the
n-type characteristics but with negative voltages and currents. The absolute current values
of p- and n-type operation mode are not exactly similar (even if ΦB,p and ΦB,n were exactly

1 It shall be noted here that usually, the transistor’s source is the terminal where electrons or holes are
injected into the device and the transistor’s drain is the terminal where the carriers flow out of the device.
While in the ambipolar case this rule does not apply, the author keeps the terminal descriptions the
same, because the ambipolar operation mode is an unwanted mode, and in order to avoid the confusion of
changing the transistors terminals.
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Figure 3.3: Single transfer curve of the simulated SBFET at the drain voltage Vds = 1 V,
showing the total drain current Ids and its current’s components in logarithmic scale. Ids,TE,n
and Ids,TE,p are the TE current contributions fo electrons and holes, respectively. Ids,n and
Ids,p are the TE and FE current contributions of electrons and holes, respectively, that deter-
mine the on-current or ambipolar currents. (a), (b) and (c) refer to Fig. 3.4 marking the bias
conditions at which the band diagrams are captured.

same), because the injected current over the SB not only depends on the SB height, but also on
the charge carrier properties (injected electrons or holes), as it is demonstrated in Sec. 2.3.2.2.
Figure 3.6 shows the different operation states in the p-type mode which are the off-state (a),
the on-state (b), and the ambipolar state (c).

For a better overview of the SBFETs characteristics, Fig. 3.7 shows the device’s transfer
characteristics for multiple drain voltages, used as p-type (a) or n-type (b) device. The shown
characteristics demonstrate the symmetry for the simulated SBFET, which is important for
the RFET application explained in Sec. 3.3. Also, clearly visible in the shown characteristics
is the device’s absolute off-state current increasing and the off-state itself shifting to a higher
absolute Vgs with an increasing absolute drain voltage Vds. This is the case, because the lowest
injection currents of the device flow in the state, where the surface potential (and therefore, the
gate voltage) is almost exactly between the source and the drain potential, so at Vgs ≈ Vds/2,
which is shown in the band diagrams of Fig. 3.4(a) and Fig. 3.6(a).

Figure 3.8 shows the output characteristics of the simulated SBFET at the n-type operation
mode on-state (Vds > 0 V), where Fig. 3.8(a) focuses on applied gate voltages from 0.7 V to 1.3 V
and Fig. 3.8(b) shows the applied gate voltages from 1.4 V to 2.0 V. In the shown characteristics
of Fig. 3.8(a) it can be observed that, in case of the lowest gate voltages, the drain current
suddenly starts to increase at about Vds > 1.5 V. This is caused by the device reaching the
ambipolar operation state at Vds ≫ Vgs, which means that holes start to be injected at the
drain side and the hole current surpasses the source-side electron current. Another typical

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF SCHOTTKY BARRIER AND RECONFIGURABLE FIELD-EFFECT TRANSISTORS 
Christian Römer 



38 3 Device Working Principles

JTE,s,n

JTE,d,p

JFE,s,n

JFE,d,p

EC

EV

S DChannel

(a)

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0

E
[eV

]

-50 0 50 100 150 200 250
x [nm]

JTE,s,n

JTE,d,p

JFE,s,n

EC

EV

S DChannel

(b)

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0

E
[eV

]

-50 0 50 100 150 200 250
x [nm]

JTE,s,n

JTE,d,p

JFE,d,p

EC

EV

S DChannel

(c)

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0

E
[eV

]

-50 0 50 100 150 200 250
x [nm]

Figure 3.4: Band diagrams matching the markings of the simulated transfer curve from
Fig. 3.3, showing the current contributions that are injected at the device’s SBs. JFE,s,n and
JTE,s,n are the source-side FE and TE electron current densities. JFE,d,p and JTE,d,p are the
drain-side FE and TE hole current densities.
(a) shows the device’s off-state band diagram. In this state all listed current densities are con-
tributing to the total current, however, their total value is the lowest possible at the given
drain voltage.
(b) shows the device’s on-state band diagram. In this state, the TE contributions are still
present, but the dominating on-current contribution is given by the source-side FE electron
current density (JFE,s,n).
(c) shows the device’s ambipolar state band diagram, which is usually an unwanted device
state. In this state, the TE contributions are also still present, but the dominating current
contribution is given by the drain-side FE hole current density (JFE,d,p).
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Figure 3.5: Single transfer curve of the simulated SBFET at the drain voltage Vds = −1 V,
showing the total drain current Ids and its current’s components on a negative and logarithmic
scaled y-axis. Ids,TE,n and Ids,TE,p are the TE current contributions fo electrons and holes,
respectively. Ids,n and Ids,p are the TE and FE current contributions of electrons and holes,
respectively, that determine the on-current or ambipolar currents. (a), (b) and (c) refer to
Fig. 3.6 marking the bias conditions at which the band diagrams are captured.

SBFET effect is the s-shape effect which can be observed in all curves, which describes the
behavior of the curve of slowly increasing (in the range of 0 V < Vds < 0.5 V), before reaching
the linear and finally, the saturation region with increasing Vds. The initial s-shape effect,
in case of the simulated device, is likely being caused by the drain-side SB which acts as an
additional energy barrier, blocking electrons at low Vds, but vanishes at higher Vds.

3.2.2.1 Symmetrical vs. Unsymmetrical Device Characteristics

The characteristics of Fig. 3.7 show a device that is nearly symmetrical for electrons and
for holes, which means that the absolute drain current is nearly equally high when reversing
the gate and drain voltage (switching between p-type and n-type operation). The symmetric
behavior is mainly determined by the semiconductor’s doping and the source / drain metal work
function Φm but can also be fine-tuned by adjusting the semiconductor’s lattice parameters by
straining it, as proposed in [66]. The metal work function impact can be observed in the shown
band diagrams of this chapter (e.g. Fig. 3.1(b), Fig. 3.4 and Fig. 3.6), where the SB height
for electrons ΦB,n is almost equally high to the SB height holes ΦB,p. Using a device with
symmetric characteristics is useful in case that the device is planned to be used as switchable
between p-type or n-type operation mode in later application, as for example the RFET.

In case that a SBFET shall be used only for one single operation type (either n-type or
p-type operation), it can make sense to use a material combination that pronounces the on-state
carrier type and suppresses the ambipolar one. Figure 3.9 shows a simulated example transfer
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Figure 3.6: Band diagrams matching the markings of the simulated transfer curve from
Fig. 3.5, showing the current contributions that are injected at the device’s SBs. JFE,s,p and
JTE,s,p are the source-side FE and TE hole current densities. JFE,d,n and JTE,d,n are the
drain-side FE and TE electron current densities.
(a) shows the device’s off-state band diagram. In this state all listed current densities are con-
tributing to the total current, however, their total value is the lowest possible at the given
drain voltage.
(b) shows the device’s on-state band diagram. In this state, the TE contributions are still
present, but the dominating on-current contribution is given by the source-side FE hole cur-
rent density (JFE,s,p).
(c) shows the device’s ambipolar state band diagram, which is usually an unwanted device
state. In this state, the TE contributions are also still present, but the dominating current
contribution is given by the drain-side FE electron current density (JFE,d,n).
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Figure 3.7: Transfer characteristics of the simulated SBFET at the given drain voltages show-
ing the total drain current Ids in logarithmic scale. (a) shows the p-type operation state with
negative drain-voltages and a negative scaled y-axis. (b) shows the n-type operation state with
positive drain-voltages.
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Figure 3.8: Output characteristics of the simulated SBFET at the given gate voltages show-
ing the total drain current Ids in linear scale. The characteristics show the n-type operation
mode only. (a) shows the lower gate voltages from 0.7 V to 1.3 V. (b) shows the higher gate
voltages from 1.4 V to 2.0 V.
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Figure 3.9: Single transfer curve of the simulated SBFET at the drain voltage Vds = 2 V,
compared to simulated devices with varying source / drain metal work functions Φm, showing
the total drain currents Ids in logarithmic scale. The red lines are simulations using lower
work functions and the green dotted line uses a higher work function. The used metal work
functions are presented in the legend. Besides the one from the blue curve, they are chosen for
demonstration purposes only, without any relation to real metals.

curve of the already investigated transistor which is used in the previous sections (blue line).
This single transfer curve is compared to other simulated curves of the same device, which only
uses a different metal work function, as shown in the figure. The used work functions do not
necessarily relate to realistic metals, they are just randomly chosen by increasing or reducing
the used Φm in 0.5 V steps. All curves are simulated in the n-type operation mode’s on-state,
using the same drain voltage of Vds = 2 V. As it can be seen in the simulation, reducing the
metal work function Φm (red lines), which leads to a reduced SB height for electrons ΦB,n

and an increased SB height for holes ΦB,p, results in a better conductivity for electrons and
a higher suppression of holes. Increasing the metal work function (green line), leads to the
opposite effect and makes the on-state of the simulated n-type device worse. However, the
green curves material combination, which increases the hole currents, would be preferable for
p-type SBFETs.

The compact model presented in this work focuses completely on devices with a symmetric
behavior, since it is also made for modeling RFETs. Therefore, the unsymmetrical characteristics
that is demonstrated in the examples of Fig. 3.9 will not be discussed further.

3.2.2.2 Channel Length Impact

Usually in SBFET devices, when considering the working principle of current passing and
blocking mechanisms, the injection over a transistor’s SB is considered, because the SB is
supposed to have the highest resistance inside the device. However, it needs to be considered
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44 3 Device Working Principles

that the SBFET’s channel consists of a semiconductor material (in this work it intrinsic or
lightly doped silicon) covered up by a gate, which leads to a classic MOSFET-like structure.
A MOSFET’s current characteristic in the on-state follows the rule Ids ∼ 1/Lch, so in case
that a SBFET’s channel is long, and the SB is conductive due to the applied gate voltage, the
resistance of the internal channel MOSFET can get to the same order of magnitude than the
SB’s resistance. In this case, the characteristics in the SBFET’s on-state is affected by the
channel length. This effect needs to be considered, especially for RFETs, since those devices
generally have a bigger footprint. For the SBFET’s investigated in this work, it has been found
that a channel resistance should be considered for devices with Lch > 1 µm. Figure 3.10 shows
the transfer curve of the simulated 220 nm device at Vds = 2 V (blue curve), compared to longer
channel devices. It can be observed that, especially in the on-state the drain current reduction
increases with longer channel lengths.
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Figure 3.10: Single transfer curve of the simulated SBFET at the drain voltage Vds = 2 V,
compared to simulated devices with increased channel lengths Lch, showing the total drain
currents Ids in logarithmic scale. The used channel lengths are shown in the legend.

3.2.2.3 Temperature Dependencies

The FE current and especially the TE current of the SBFET are temperature dependent. Both
current contributions are expected to increase with an increasing environmental temperature,
however, due to the increasing phonon scattering events inside the transistors’ channels, the
semiconductor’s conductivity also supposed to decrease with higher temperatures. Since the
TE current in SBFETs is also a leakage current and the subthreshold swing reduces with
lower temperatures, the usage of SBFETs at lower temperatures can be advantageous in some
applications. In [11] a temperature study has been done by measuring a nanowire SBFET in
a range of room temperature (ϑ = 300 K) down to deep cryogenic temperatures (ϑ = 5.5 K).
A measured subthreshold swing reduction from 62 mV/dec. to 4.2 mV/dec. has been reported
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[11]. The fact that SBFETs do not necessarily rely on doping and show good characteristics at
deep cryogenic temperatures, make them a good candidate for electronic applications in this
temperature environment. Both temperature regions (room temperature and deep cryogenic
temperature) have been modeled in this work in Chapter 4 and Chapter 5, respectively. A
TCAD studies of SBFETs at deep cryogenic temperatures is not done in this work, due to
convergence issues of the simulations.

3.3 Reconfigurable Field-Effect Transistor Working Principle

The second type of device covered in this work is the RFET. More specific, this work mostly
covers the dually gated RFET variation shown in [20]. It shall be noted here, that term RFET
is ambiguous, because this term describes a device behavior (of being reconfigurable) and not a
clear device structure. Some RFET variations are discussed in this section. In this work, unless
specified otherwise, the term RFET refers to the dually gated variant described in Sec. 3.3.1
and that is mainly used in the modeling approach later. The band diagrams and characteristics
shown in this section are created by using TCAD. The same device as in Sec. 3.2, but modified
to a RFET, is used.

3.3.1 Structure of the Dually-Gated Reconfigurable Field-Effect Transistor

The basic idea of the dually gated RFET derives from the SBFET and extends that device in a
certain way. Since a SBFET is mainly determined by the carrier injection over the transistor’s
SBs (if the channel resistance impact can be neglected), it is mandatory that the device’s
gate electrode covers the SBs themselves, but not necessarily the entire device channel. The
(dually gated) RFET uses this SBFET property, by not having a single gate covering the entire
channel, but having two gates, where each gate covers one SB. A schematic cross-section of
such a RFET is shown in Fig. 3.11. The reconfigurability of the device is given by the property,
that each gate can be biased independently, so it is a four-terminal device instead of having
the usual three terminals. The source-side (injection-side) gate is called control gate (CG) and
the drain-side is the program gate or polarity gate (PG). The device property of having an
additional gate, in general, leads to a bigger device’s footprint, because of the space requirement
of this second gate and the necessity to contact it. However, the main achievement for this
device is to increase the complexity of that single transistor, instead of just reducing a device’s
size.

3.3.2 Working Principle and Operations Modes

The two gates of the RFET differ in their purposes. The CG serves as the "regular" gate like
for MOSFETs or SBFETs. It is biased in order to control the injection-side SB to steadily
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Figure 3.11: Schematic cross-section of a nanowire or double gate RFET with its geometric
parameters.

determine the drain current flow. The second gate (PG) at the drain side is usually biased
constantly, either positively or negatively. This sets the drain-side SB in a state where it is
only passable by either electrons (in case it is biased positively) or holes (in case it is biased
negatively), independent of the CG bias.

In Fig. 3.12 and Fig. 3.13, different operation modes of the RFET are shown. Figure 3.12
shows the p-type configuration, where the program gate voltage Vpg, as well as the drain voltage
Vds are smaller than zero volt. In this configuration, the PG’s SB is only passable by holes.
Figure 3.12(b) shows the device’s off-state, caused by a control gate voltage of Vcg = 0 V. In
this state, neither electrons nor holes can be injected at the source side SB, besides a small
leakage current. An increasing negative CG voltage leads to the on-state in p-type mode. This
is shown in Fig. 3.12(a), where holes can pass both SBs and flow from source to drain. In the
third case, starting from a CG voltage of Vcg = 0 V and increasing the voltage would have led
to the ambipolar state, if the device was a SBFET. However, due to the RFET’s negatively
biased PG, shown in Fig. 3.12(c), electrons are blocked by the drain-side SB and an ambipolar
current is suppressed. In this state the current is even lower than in the Vpg = 0 V state,
because in this opposite polarity mode of CG and PG each gate suppresses one type of carrier.
The result of the described p-type operation mode is shown as transfer curve in Fig. 3.14(i)
with references to the discussed band diagrams shown in the figure.

The n-type configuration of the RFET works similarly and is shown in Fig. 3.13. In this
case Vpg and Vds are bigger than zero volt and only an electron current flow is possible through
the device. Figures 3.13(a) and 3.13(b) show the device’s off-state, because in these states the
CG voltage does not fit to the PG’s voltage. By increasing the CG voltage, device switches
on, which is shown in Fig. 3.13(c). In this state, electrons can pass both SBs and flow from
source to drain. A transfer curve of the n-type characteristics is shown in Fig. 3.14(ii), which
also shows the references to the states of Fig. 3.13. The output characteristics of the device in
p-type operation mode (Vds < 0 V) is not shown at this point, since it shows similar effects as
the n-type characteristics, but with negative voltages and drain current.
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Figure 3.12: Various operations modes of a RFET in p-type operation mode, with Vpg =
Vds = −2 V. (a) shows the on-state of the transistor with Vcg = −2 V. (b) and (c) show the
off-state regions of the device with Vcg = 0 V and Vcg = 2 V, respectively. In these states
the source-side injection current is blocked by the CG and the drain-side injection current is
blocked by the PG.
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Figure 3.13: Various operations modes of a RFET in n-type operation mode, with Vpg =
Vds = 2 V. (a) and (b) show the off-state regions of the device with Vcg = −2 V and Vcg = 0 V,
respectively. In these states the source-side injection current is blocked by the CG and the
drain-side injection current is blocked by the PG. (c) shows the on-state of the transistor with
Vcg = 2 V
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Figure 3.14: Single transfer curve of the simulated RFETs at the different operation modes,
showing the total drain current Ids, as well as the electron (Ids,n) and hole (Ids,p) cur-
rent components in logarithmic scale. (i) shows one curve at p-type operation mode, with
Vpg = Vds = −2 V. The markers (a), (b) and (c) refer to the bias conditions at which the
band diagrams of Fig. 3.12 are captured. (ii) shows one curve at n-type operation mode, with
Vpg = Vds = 2 V. The markers (a), (b) and (c) refer to the bias conditions at which the band
diagrams of Fig. 3.13 are captured.
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50 3 Device Working Principles

The discussed operation modes of the RFET enable a configurability of the device as
either p-type or n-type transistor. This is also schematically demonstrated in Fig. 3.15. This
reconfigurability can be used, for example, to create at runtime switchable logic circuits, as
described in [21, 22].

Figure 3.15: Schematic demonstration of the RFET being substituted to either a p-type
transistor in case of Vpg ≪ 0 V or n-type transistor in case of Vpg ≫ 0 V.

3.3.2.1 Device Characteristics

Compared to SBFET’s characteristics, the RFET has no ambipolar current. This leads to an
improved on/off ratio of the device and a drain voltage independent off-state position on the
Vgs (or rather Vcg) axis. For further demonstration, Fig. 3.16 shows that comparison. The
transfer characteristics of the simulated device is shown with a fixed PG voltage (blue lines)
and in case that Vpg = Vcg (orange lines). That second case leads to a SBFET-like behavior of
the RFET, since both gates have the same bias then as it was one single gate. Figure 3.16(a)
shows the characteristics for p-type and (b) for n-type operation mode.

Finally, a part of the n-type mode output characteristics is shown in Fig. 3.17. These
characteristics correspond to the lower voltage output characteristics of the SBFET, shown in
Fig. 3.8(a). The difference in Fig. 3.17 is that the RFET is programmed to the n-type operation
mode with Vpg = 2 V, which leads to a suppression of the ambipolar current contributions from
Fig. 3.8(a). The characteristics for higher Vcg are not shown, because there is no difference
compared to the results of Fig. 3.8(b).

3.3.2.2 Gate-to-Gate Distance

In general, RFETs have a bigger footprint than SBFETs, because they need at least two
independent gates covering the transistor’s channel. This results in an ungated region between
the CG and the PG, which further reduces the electrostatic coupling of the two gates on
the device’s ungated channel. Figure 3.18 shows the simulation results for the accumulated
electrons directly along the semiconductor-oxide interface. The first kink in the results (between
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Figure 3.16: Transfer characteristics of the simulated RFET at the given drain voltages show-
ing the total drain current Ids in logarithmic scale. The blue lines show the device in fixed
programmed state with a constant Vpg. The orange lines show the device characteristics with
Vpg = Vcg, similarly used as a SBFET (see Fig. 3.7). (a) shows the p-type operation mode with
negative drain-voltages, a negative scaled y-axis and Vpg = −2 V for the blue curves. (b) shows
the n-type operation mode with positive drain-voltages and Vpg = 2 V for the blue curves.
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Figure 3.17: Output characteristics of the simulated RFET at the given CG voltages and at
Vpg = 2 V (n-type operation mode) showing the total drain current Ids in linear scale.
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Figure 3.18: Electron density n along the simulated RFET’s channel-oxide interface at Vds =
Vpg = Vcg = 2 V (n-type operation mode) in logarithmic scale. The gray labels show the
different regions inside the device. The results of the first 20 nm (especially the first kink) are
incorrect, which is caused by the TCAD tunneling model, and can be ignored [28].

0 nm and 20 nm) is caused by the simulation specific tunnel generation rate and can be ignored
[28]. For a device with one continuous gate, a nearly uniform distribution of the accumulated
charges, dropping towards the drain side, would be expected. In case of the simulated RFET,
the biggest drop in the carrier concentration is inside the ungated region, which is caused by the
worse electrostatic coupling, and which leads to less electrons available for the current transport.
This effect needs to be considered in the compact model and is discussed in Sec. 6.1.2.
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3.3 Reconfigurable Field-Effect Transistor Working Principle 53

3.3.3 Other RFET Structures and Concepts

There are several possible RFET structures based on the SB injection besides the dually-gated
version, which is the mainly used structure in this work. A good overview of the technology and
the structures can be found in [19]. Figure 3.19 shows two example RFET variations besides
the dually-gated variant.
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Figure 3.19: Examples of other RFET variations as schematics, according to [19]. (a) shows a
top gate / bottom gate RFET. (b) shows a Three gate RFET.

The first variation is the top gate / bottom gate RFET shown in Fig. 3.19(a). The top
of this device is similar to a SBFET, but it comes with an additional bottom gate below the
substrate, which is used as PG. This structure is not feasible with GAA nanowire structures
but can be manufactured e.g. as silicon-on-insulator (SOI) technology, where the PG is located
underneath the substrate [19]. The advantage of this structure is the reduced length demand
in the channel length direction of the transistor, since only one gate has to be deposited on top
of the device. One disadvantage of the device is the demand for a much higher PG voltage
since the electrostatic coupling of the PG to the SBs is worse in this structure.

The second variation, shown in Fig. 3.19(b), is the three-gate RFET. This device has its
PG split up into two PGs, each covering one SB of the device, while the CG is located in the
middle of the channel. The advantage of this structure is that the two PGs can be biased
individually, leading to a three independent gates RFET (TIG-RFET), which further enhances
the functionality of the single transistor. For example, the TIG-RFET can change some device
parameter (like the threshold voltage or subthreshold swing), by just changing the biased gates.
A disadvantage of this device is the increased device footprint, compared to the dually gated
RFET, since the three gated variant needs to have all three gates integrated in the device
structure side by side.

There are many other RFET concepts discussed in research. In [69–71] various RFET
structures based on alternative materials are discussed, like Aluminum-Silicon junctions for the
SBs, or germanium / germanium-silicon compound as semiconductor, demonstrating symmetric
RFET characteristics. The concept of RFETs based 2D materials (e.g. black phosphorus or
molybdenum disulfide) are discussed in [15, 16, 72, 73]. It shall be noted that most of the
mentioned technologies are beyond the scope of this modeling work.
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3.4 State-of-the-Art Compact Models

This section shortly describes and reviews several compact models for SBFETs or RFETs.

The first model presented in this section is a DC compact model developed for DG SBFETs
and published in [30, 62, 74]. This model is the basis of the room temperature SBFET / RFET
model, which is derived in Chapter 4 and Chapter 6, so its derivation is part of Sec. 4.2.1. It is
based on the FE current model approach of Sze, Chang, and Crowell from Sec. 2.3.3.2, as well
as the TE model from Sec. 2.4.2.1, and it uses the described 2D potential model, introduced in
Sec. 2.1.5.

In [75] a DC compact drain current model is introduced which specifically models the behavior
of a RFET with three gate terminals, like those shown in Fig. 3.19(b). As a simplification of
the tunneling current calculation, this model uses an effective SB height, similar to suggestions
in [6]. In order to obtain the total device current, this model numerically combines the injection
current over the SB with the drift-diffusion current controlled by the central gate, which is not
efficient for circuit simulation.

A similar model is proposed in [76] where the injection current of a dually-gated RFET is
calculated by using an effective SB height and the TE current contribution. This model also
uses a numerical approach to combine the injection and the channel current contributions.

The DC model from [77] is made for the three gate RFET. This model specifically focuses
on an effect called impact ionization and uses this effect to calculate the RFET’s drain current.
This model shows the dependency of the device’s subthreshold slope to the applied drain-source
voltage, caused by the described impact ionization. However, this model uses several empirical
parameters to obtain a closed-form equation and it strictly relies on the impact ionization
effect.

The work of [78] presents a model which focuses on the potential calculation inside dually-
gated RFETs and its current calculation is based on the approach from Kane [79]. The model
is used for comparison to TCAD results.

In the work of [80] the behavior of logic-gates based on RFETs is investigated, especially
regarding their power consumption and time responses. For this investigation, some standard
MOSFET equations are fitted to measured data. This procedure allows the investigation of
characteristic parameters for various circuit concepts but cannot be used for exact circuit
simulation with a continuous voltage range.
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CHAPTER 4

Compact Modeling of Schottky Barrier Field-Effect transistors

This chapter describes the modeling approach of the compact model for SBFETs in detail
which has been published in [81–83]. The presented closed-form and physics-based DC compact
model is applicable on DG SBFETs and tested at room temperature environment (ϑ ≈ 300 K).
It needs the device’s geometric and material parameters as model inputs, as well as some fitting
parameters and the applied bias conditions. With the described input parameters, the model
calculates the device’s DC-current by performing the following steps:

• The potential inside of the device’s channel is calculated, in order to reconstruct the band
diagram in that region. (See Sec. 4.1)

• The current components at the source-side SB are calculated by using the reconstructed
potential / band diagram at the SB. The current components consist of the TE-current
(charge-carriers overcoming the SB) and FE-current (charge-carriers tunneling through
the SB). (See Sec. 4.2)

• By adding both current types and using a balancing model, the total injection current of
the device is calculated. (See Sec. 4.3)

• As an addition for devices with a non-negligible channel resistance (long-channel devices)
a MOSFET equation is used in order to limit the current and the channel resistance
current is combined with the SB injection current. (See Sec. 4.4)

In the upcoming sections 4.1 to 4.4 the modeling approach is explained in detail. Finally,
Sec. 4.5 shows and discusses some results of the model, compared to TCAD simulations.

4.1 Potential Model Simplification and Band Diagram Reconstruction

Section 2.1 introduces a 2D analytical closed-form potential model based on the nonlinear
transformation method by Schwarz and Christoffel and applicable on 2D double gate FET-
structures. In a first step, the electrostatic potential in the device’s channel region is calculated
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56 4 Compact Modeling of Schottky Barrier Field-Effect transistors

and thereto the band diagram and the electric field close to the junctions. The determination of
the potential is split into two steps. First, an adapted version of the 2D analytical closed-form
potential model, described in Sec. 2.1.5, is used to calculate the electrostatic potential at some
auxiliary points close to the Schottky junctions and in the middle of the channel. This model
uses the SCT method to calculate the potential inside a DG FET structure, like the one shown
in Fig. 3.1(a) [29, 31]. However, this potential model does not consider accumulated charges in
the channel at higher gate-source voltages Vgs.

4.1.1 Effective Gate-Source Voltage

In order to increase the accuracy of this calculation even for higher Vgs, an effective gate-source
voltage Vgs,eff is calculated, which shall include the effect of accumulated charges in the device’s
channel. There are two methods that have been proven as useful in different cases, depending
on the channel length, or rather depending on the inclusion of the channel resistance model
introduced in Sec. 4.4.

Vgs,eff for short channel devices

For the shorter channel devices, the effective gate-source voltage Vgs,eff,TFET is adapted,
according to the model from Sec. 2.1.6, which is used in the tunnel field-effect transistor model
from [32, 33]. However, compact model comparisons to measurements and TCAD simulations
showed that Vgs,eff = Vgs,eff,TFET (see Eq. (2.38)) is not fully applicable on the tested SBFET
devices for all used bias conditions. Therefore, an empirical equation was included, given by

Vgs,eff = [α · Vgs,eff,TFET + (1 − α) · (Vgs − Vfb)] , (4.1)

where α is a fitting parameter to increase or reduce the effect of the Vgs,eff saturation and Vfb

is the flatband voltage which is defined by the gate materials work function and compensates
the band bending at Vgs = 0 V.

Vgs,eff for long channel devices

In case of longer channel lengths and the inclusion of the channel resistance, it has been found
that the Vgs,eff-calculation from Eq. (4.1) does not lead to a sufficient solution. Therefore, a set
of empirical equations have been implemented, dependent on the gate-source and drain-source
voltage, given as:

Vlimit =
[
exp(Vds · 1 V−1) − 1

]
· 1 V + V0,limit, (4.2)
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and:
Vgs,eff = Vlimit

γVg,eff

√
1 +

(
Vlimit

Vgs

)γVg,eff
. (4.3)

Vlimit marks a drain-source voltage dependent limiting point towards which the effective gate
voltages saturate in case the applied gate voltages are getting high compared to the drain-source
voltage. The parameters V0,limit and γVg,eff are empirical fitting parameters which are used to
control the behavior of the drain current, mainly in the region of Vgs > Vds.

4.1.2 Potential Simplification

Using the effective gate-source voltage Vgs,eff from either Eq. (4.1) or Eq. (4.3) and the applied
drain-source voltage Vds, the 2D potential can be calculated by Eq. (2.37). The obtained
potential Φ2D(x,y) can be calculated for each point inside the SBFET’s channel, but there are
only few regions which are interesting for the injection current calculation.

For the y-coordinate (gate-to-gate direction), there are two values of interest, which are the
surface potential and the center potential. The surface potential, given as

Φsur(x) = Φ2D(x,y = 0) , (4.4)

is located along the oxide-semiconductor interface of one gate. This potential is especially of
interest in the transistor’s on-state at high Vgs, since this potential is mostly affected by band
bending. The center potential, given as

Φcen(x) = Φ2D(x,y = tch/2) , (4.5)

is located in the middle of the channel and is used mainly for the off-state current. It shall be
mentioned that in a DG device structure there is a second surface potential along the second
gate’s oxide-semiconductor interface at y = tch. However, due to the device symmetry this
potential is equal to the other surface potential Φsur(x) = Φ2D(x,y = 0) = Φ2D(x,y = tch), so
this potential does not have to be calculated again.

For the x-coordinate (drain-to-source direction), the interesting regions to calculate the
potential are close to the source and drain-side SBs, as well as the center of the device in
x-direction. The center in x-direction is estimated to be at least affected by the source and
drain potentials and therefore, the potential at this position is mostly determined by Vgs. These
potentials can be calculated as surface potential:

Φsur,L/2 = Φsur(x = Lch/2) , (4.6)

and as center potential:
Φcen,L/2 = Φcen(x = Lch/2) . (4.7)
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58 4 Compact Modeling of Schottky Barrier Field-Effect transistors

The potentials close to the transistor’s SBs are used to describe the form of the SB. For the
source-side SB the potential directly at the Schottky junction is used as:

Φcen,S1 = Φcen(x = 0) , (4.8)

and a second auxiliary potential is calculated slightly inside the channel, as:

Φcen,S2 = Φcen(x = ∆x) . (4.9)

The second point is needed for the upcoming simplification of the potential. For the drain-side
SB the potentials are calculated similarly, as:

Φcen,D1 = Φcen(x = Lch) , (4.10)

and
Φcen,D2 = Φcen(x = Lch −∆x) . (4.11)

With the same procedure the corresponding surface potentials are calculated as:

Φsur,S1 = Φsur(x = 0) , (4.12)

Φsur,S2 = Φsur(x = ∆x) , (4.13)

Φsur,D1 = Φsur(x = Lch) , (4.14)

and:
Φsur,D2 = Φsur(x = Lch −∆x) . (4.15)

With the auxiliary points from Eq. (4.8) to Eq. (4.15), similar to [32], in a second step a
compact analytical expression (φcomp) for the potential along the channel is introduced:

φcomp(x) = k

x− l
+m . (4.16)

This expression is evaluated at the oxide-channel interface for each Schottky junction (source
and drain), where the x-direction is the source-drain direction. The parameters k, l and m

are reconstructed by using the auxiliary potentials φcomp(0) = Φsur,S1, φcomp(∆x) = Φsur,S2

and φcomp(Lch/2) = Φsur,L/2. For the reconstruction, a value of ∆x ≈ 10 nm has shown to be
useful. With this expression for the compact potential, it is possible to calculate the electric
field in x-direction along the channel by

Ex(x) = −dφcomp(x)
dx

= k

(x− l)2 . (4.17)

and the band diagram by adding or subtracting the band parameters ΦB,n or ΦB,p. Figure 4.1(b)
shows the 2D analytical closed-form potential model as well as the compact potential compared
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Figure 4.1: Electrostatic potential of the device from Sec. 3.3 at Vds = Vpg = Vcg = 2 V.
(a) device structure with the simulated 2D potential along the channel. The 2D potential was
simulated using TCAD Sentaurus. (b) potential along the cut line shown in (a) and comparison
of the TCAD simulated value (blue) to the result of the 2D analytic closed-form potential
model (orange) and the compact potential solution (green) from Eq. (4.16). The dashed box
shows a zoom of the potential at the SB. Although, the shown device is a RFET, the potential
at the SB of a SBFET looks similarly.

to TCAD Sentaurus simulations at the given bias conditions for the device from Sec. 3.3. The
shown transistor is a RFET, but the SBFET’s potential directly at the SB looks similarly.
This comparison shows that both potential models have a deviation compared to the TCAD
simulation between the source-channel junction and the control gate, which is most likely caused
by the influence of the accumulated charges in the channel at the given bias condition, due to
their empirical consideration. However, the most important part is close to the source-channel
junction in order to estimate the SB thickness correctly for the tunneling process. In this region
the potentials calculated by the compact model show an acceptable agreement to the TCAD
simulation.
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60 4 Compact Modeling of Schottky Barrier Field-Effect transistors

4.2 Injection Current Modeling Approach

Unlike in MOSFET application where the device behavior is dominated by the charge-carrier
accumulation in a device’s channel, the main current blocking / controlling mechanism in
SBFETs is the injection-side SB. In this section, the compact modeling approaches of both
injection current sources, FE (Sec. 4.2.1) and TE (Sec. 4.2.2) are introduced. The model
derivation in this section is done for the injection of electrons but works similarly for holes.

4.2.1 Field Emission Injection Current

The FE current is given by charge carriers tunneling through the SBs. For this case the bands
have to be sufficiently bent so the thickness of the barrier becomes small enough, as it is shown
in the left part of Fig. 4.2. In order to find a way to describe the FE current density (JFE)
analytically, an approach from [30] is used, which is based on the approach from Sec. 2.3.3.2.
In this approach the equation:

JFE = qµtnNC

kbϑ
·

E0∫

Emin

fm(E)[1 − fch(E)]

×|E⃗(E)| · T (E) · dE ,

(4.18)

|Ex| T

|Ex(0)|

fm (1-fch)

1/4

( xf | Efs )

( xmin | EC,min )

( 0 | )

S Channel

EC

Efs

-0.5

0.0

0.5

E
[eV

]

0
x [nm]

E0

JFE,n

Figure 4.2: Visualization of the tunneling equation components at the source-side SB for
tunneling of electrons. The figure shows some important variables of the compact model, as
well as the components of Eq. (4.18) as a function of the energy E, which are the electric field
multiplied with the tunneling probability (green) and the product of the Fermi functions (red).
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4.2 Injection Current Modeling Approach 61

that describes the tunneling process through the SB is used as a calculation basis [30]. In this
equation q is the elementary charge, NC is the effective density of states in the conduction
band (for tunneling holes the effective density of states in the valence band NV is used), kb is
the Boltzmann constant and ϑ is the temperature. The tunneling mobility µtn for electrons
(or µtp for holes) is used as an adjustable fitting parameter of the model, which is part of
Eq. (4.18), because this equation combines tunneling with drift-diffusion effects. The first part
of the integral in Eq. (4.18) is the product of the Fermi functions and represents the occupation
probability fm(E) for electrons in the source region at energy E and [1 − fch(E)] for holes in
the channel region [6, 30].

The problem with Eq. (4.18) for a compact model is the integral which contains the product
of the Fermi distribution functions in the metal fm(E) and in the channel fch(E), as well as the
tunneling probability T (E) and the electric field |E⃗(E)|. In Eq. (2.65) a possibility is shown
which can be used to calculate the tunneling probability through triangular barriers, which is
a good approximation for SBs. However, due to the general form of this equation it cannot
be solved analytically in an integral. Therefore, following the proposal of [30], Eq. (4.18) is
approximated by a similar approach, as:

JFE ≈ qµtnNC

kbϑ
·

E0∫

Emin

1
4exp

(
− a

γn
(E − Ef,n)2

)

×b · exp(−c(E0 − E)) · dE .

(4.19)

In the approximation from Eq. (4.19) the first part of the integral is replaced by a Gaussian
distribution shaped function 1/4 · exp(−a/γn(E −Ef,n)2), where Ef,n is the quasi Fermi energy
level for electrons [30]. It is estimated in this approach that the device is in the on-state and
the injection-side SB is highly conductive, leading to almost no change in the quasi Fermi level
for electrons Ef,n through the SB. This results in fm(E) ≈ fch(E), which leads to a maximum
of the product fm(E)[1 − fch(E)] at E = Ef,n. This maximum of 1/4 is represented in Gaussian
part of Eq. (4.19). The second part of the integral in Eq. (4.18) is the electric field multiplied
with the tunneling probability |E⃗(E)| · T (E), which is approximated by an exponential function
b · exp(−c(E0 − E)) in Eq. (4.19).

The Fermi energy level Ef,n that is used for the tunneling calculation is equal to the Fermi
level of the (source-side) metal Efs. The x-position where the bent conduction band EC (or the
valence band EV in case of tunneling holes) reaches the metal’s Fermi level is called xf . This
position is estimated to have the highest FE-current contribution per energy level, as shown in
Fig. 4.2. The relation between Ef,n and xf is expressed by using Eq. (4.16), as:

Ef,n = −q · φcomp(xf) + q · ΦB,n , (4.20)

in case of tunneling of electrons where the conduction band is bent below Ef,n. For tunneling of
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62 4 Compact Modeling of Schottky Barrier Field-Effect transistors

holes the valence band is relevant for the tunneling process and −q · ΦB,p is used in Eq. (4.20)
instead of +q · ΦB,n. If the conduction band is not bent below the metal’s Fermi level, xf will
be limited to Lch/2.

The upper boundary of the integrals (E0) is the highest energy value where tunneling can
occur, which is the top of the SB (see also E0 in Fig. 4.2). The lower limit of the integrals in
Eq. (4.18) and Eq. (4.19) is positioned in the middle of the channel, so it can be expressed as:

Emin = −q · Φsur,L/2 + Eg

2 . (4.21)

This lower boundary is the lowest energy value where tunneling charge carriers are theoretically
possible. However, due to the increasing tunneling lengths, the tunneling current contributions
lower than Ef,n are decreasing rapidly, so that Emin is a formal minimum.

The parameters a, b and c of Eq. (4.19) are energy independent coefficients, which are
reconstructed similar as shown in [30]. For parameter a, the integral over the Fermi function
product of Eq. (4.18) and the integral over the Gaussian function of Eq. (4.19) are set equal to
achieve a normalization between the two parts. This is given by:

∞∫

−∞

fm(E)[1 − fch(E)]dE =
∞∫

−∞

1
4exp

(
− a

γn
(E − Ef)2

)
dE . (4.22)

The left-hand side of Eq. (4.22) can be solved with the mentioned approximation fm(E) ≈ fch(E)
as: ∞∫

−∞

fm(E)[1 − fch(E)]dE =
∞∫

−∞

dE

2 + exp
(

E−Ef,n
kbϑ

)
+ exp

(
− E−Ef,n

kbϑ

) , (4.23)

with the substitution u, given as:

u = E − Ef,n

kbϑ
,
du

dE = 1
kbϑ

, (4.24)

to:
∞∫

−∞

fm(E)[1 − fch(E)]dE = kbϑ ·
∞∫

−∞

exp(u)
(exp(u) + 1)2 du (4.25)

= kbϑ ·
[

− 1
exp(u) + 1

]∞

−∞
= kbϑ . (4.26)

The right-hand side of Eq. (4.22) can be solved by a substitution z, which is given as:

−1
2z

2 = − a

γn
(E − Ef,n)2,

dz

dE =
√

2 a
γn

. (4.27)
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4.2 Injection Current Modeling Approach 63

The right-hand side of Eq. (4.22) with Eq. (4.27) lead to a standard normal distribution in
z-space. This can be solved as:

1
4

∞∫

−∞

exp
(

− a

γn
(E − Ef,n)2

)
dE =

√
γn

4 ·
√

2a
·

∞∫

−∞

exp
(

−1
2z

2
)
dz (4.28)

= 1
4 ·

√
γn · π
a

. (4.29)

Using the results Eq. (4.25) and Eq. (4.28) in Eq. (4.22), leads to the expression:

kbϑ = 1
4 ·

√
γn · π
a

, (4.30)

so, a can be given, as:
a = γn · π

16 · (kbϑ)2 . (4.31)

For obtaining the coefficients b and c, the exponential parts of Eq. (4.18) and Eq. (4.19)
are set equal at the two different prominent energy levels E0 and Ef,n:

|E⃗(E)| · T (E)
∣∣∣∣
E=E0,Ef,n

= b · exp(−c(E0 − E))
∣∣∣∣
E=E0,Ef,n

. (4.32)

For E = E0, Eq. (4.32) becomes:

|E⃗(E0)| · T (E0) = b · exp(−c · 0) = b . (4.33)

By considering that T (E0) is the tunneling probability directly at the top of the SB at x = 0
(see: Fig. 4.2) where the barrier has a thickness of 0, T (E0) must be 1. Therefore, the coefficient
b can be expressed as:

b = Ex(0) · T (0) = Ex(0) . (4.34)

For the second auxiliary point E = Ef,n, Eq. (4.32) becomes:

|E⃗(Ef,n)| · T (Ef,n) = b · exp(−c(E0 − Ef,n)) , (4.35)

which can be rearranged into the final expression of c, as:

c = ln
(1
b

· Ex(Ef,n) · T (Ef,n)
)

· 1
(Ef,n − E0) . (4.36)

Ex(x) is the compact electric field in x-direction from Eq. (4.17) and T (x) is the tunneling
probability at position x. The fitting parameter γn for electrons (or γp for holes) is in the range
of 0 . . . 1 and shall compensate the error for low V ′

gs caused by the Gaussian approximation
from Eq. (4.19). The tunneling probability T (x = 0) must be 1, because x = 0 is exactly the
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64 4 Compact Modeling of Schottky Barrier Field-Effect transistors

top of the barrier where the tunneling thickness is zero. The tunneling probability at x = xf ,
which is at the peak of the Gaussian distribution (see Fig. 4.2), is calculated by a modified
version of the WKB approximation for triangular tunneling barrier shapes from Eq. (2.65),
that is given by:

TWKB(xf) = exp
(

−4
3 ·

√
2qm∗ · (∆Φ(xf))3/2

ℏ · |Ex(0)|

)
. (4.37)

Here, ℏ is the reduced Planck’s constant and m∗ is either the electron (mn ·m0) or the hole
(mp · m0) tunneling mass, which are both used as fitting parameters in the compact model.
The parameter ∆Φ is the height of the barrier to be tunneled through by charge carriers,
which is either given as the potential difference ∆Φ(xf) = φch(xf) − φch(0), in case ∆Φ(xf) is
bigger than ΦB,n, or it is fixed to ΦB,n otherwise. Although, Eq. (4.37) is calculated at the
position xf , the electric field, that is used is |Ex(0)|, directly at the Schottky junction. Since
the approximated SB has a 1/x curvature and Eq. (4.37) is used for triangular energy barriers,
some approximations have to be made. Using the electric field |Ex(xf)| would be too small for
a correct calculation. There are other possible methods, like an average electric field or an area
equivalent method, as proposed in [84]. However, it has proven to be a good approximation to
use the electric field |Ex(0)| in the WKB equation.

Finally, with the equations Eq. (4.31)-Eq. (4.37) the FE current density JFE can be
calculated. As it is demonstrated in [30], the integral of Eq. (4.19) can be solved to:

JFE ≈ qµtnNC

8kbϑ
· b

√
π√
a

· exp
(
c(Ef − E0) + c2

4a

)

× [jerfc(E0) − jerfc(Emin)] ,
(4.38)

with:

jerfc(E) = erfc
(

−2a(E − Ef) + c

2
√
a

)
, (4.39)

where erfc(x) is the complementary error function. This equation for the FE current density is
valid for electrons, tunneling through SBs at the conduction band. The FE current density for
holes works similarly, but with the correspondent hole transport parameters.

4.2.2 Thermionic Emission Injection Current

The TE current consists of the charge carriers which overcome the energy barriers, instead of
tunneling through them. In case of electrons, it is calculated according to Eq. (2.80) (in reverse
direction), by:

JTE = A∗ϑ2 · exp
(

−qΦbar

kbϑ

)
·
[
1 − exp

(
−qVds

kbϑ

)]
, (4.40)
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Figure 4.3: Energy barriers for the electron TE current at the source-side SB. The blue line
shows the device in the on-state. In this state, Φbar is as high as the SB height. The purple
line shows the device with negative gate bias. In this state Φbar equals the highest potential in
the channel.

where A∗ is the effective Richardson constant (see Eq. (2.79)) and Φbar is the calculated barrier
height that charge carriers have to overcome. The gate voltage in Eq. (4.40) is considered in
terms of the parameter Φbar, as demonstrated in Fig. 4.3. If a SB forms where the charge carriers
can tunnel through, the barrier height Φbar will be given by ΦB,n itself (see q · Φbar(Vgs > 0) in
Fig. 4.3). In case of a reversed electric field at the interface, it is given by the potential barrier
in the channel (see q · Φbar(Vgs < 0) in Fig. 4.3), which corresponds to the potential Φcen,L/2

calculated with Eq. (4.7). For the TE current of holes an equation similar to Eq. (4.40) is
defined.

4.3 Current Balancing Model

The so far described current components (FE and TE current) are both contributing to the
total device current (Ids). While the previous sections mainly focus on the FE and TE current
calculations at the source junction, those currents also appear at the drain junction. In n-type
operation mode there is an electron current at the source side and a hole current at the drain
side of the device and vice versa for p-type operation mode. While the TE current, given by
Eq. (4.40), depends on the drain-source voltage Vds, the FE current according to Eq. (4.19)
is independent of Vds. This means that even for low Vds high FE currents would be possible,
in case of high gate voltages Vgs. In order to prevent this effect and bring a Vds dependency
into the expression for the FE current, a current balancing model is included at the drain side.
In case that the drain potential is bigger than the potential in the middle of the channel (see
Fig. 4.4(a)), both FE current contributions are included regularly into the total current. In
case that the potential in the channel of the device is bigger than the drain potential, a virtual
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Figure 4.4: Example band diagrams at different bias conditions to demonstrate the total
FE current calculation. (a) device state that allows an electron FE current (JFE,s,n) at the
source side and a hole FE current (JFE,d,p) at the drain side. Both currents are contributing
to the total FE current (JFE,tot). (b) device state with a SB for electrons on both sides. In the
compact model, a virtual drain-side FE current (JFE,d,n) is calculated and subtracted from the
source-side injection current (JFE,s,n), to calculate the total FE current (JFE,tot).

FE current is calculated which gets subtracted from the source current (see Fig. 4.4(b)). So, if
Vds = 0 and a gate voltage was applied, the source FE current and the virtual drain FE current
would be equally high and cancel out each other. For the total FE current density of the device
this results in:

JFE,tot =





JFE,s,n − JFE,d,n, Ex(x = Lch) < 0
JFE,s,n, Ex(x = Lch) = 0
JFE,s,n + JFE,d,p, Ex(x = Lch) > 0

, (4.41)

in the n-type operation mode and the on-state and similarly for other operation modes.
Ex(x = Lch) is the electric field in x-direction at the drain-channel junction.

The total TE current density is calculated with the TE current contributions from electrons
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and holes, given by:
JTE,tot = JTE,n + JTE,p . (4.42)

Considering both total current densities from Eq. (4.41) and Eq. (4.42) the total drain current
of the DG SBFET is calculated by:

Ids,inj = Wch · tch(JFE,tot · teff,FE + JTE,tot · teff,TE) , (4.43)

where Wch is the channel width and tch is the channel thickness of the DG structure (see
Fig. 3.2(a)). The channel width Wch is needed, because the used potential model from Sec. 4.1
works with a 2D planar structure. Therefore, instead of calculating a nanowire structure, the
model calculates the currents inside the planar structure from Fig. 3.2(a), which gets stretched
in the third dimension by Wch. To consider the fact that the FE current is the main on-current
where the current flow is mostly located at the channel-oxide interface and the TE current flows
mainly in the center of the device, two effective thicknesses (teff,FE and teff,TE) are introduced
in Eq. (4.43), each in the range of 0 . . . 1. Equation (4.43) describes the total SB injection drain
current which can be used to describe the SBFET characteristics as long as the channel of the
transistor can be neglected.

4.4 Channel Resistance Model Addition

The channel resistance is modeled as a second-order effect of SBFETs. As an unwanted effect in
those devices, this effect can get significant at higher biases and for devices with longer channel
lengths and does not need to be considered for all devices. The approach in this model is to
treat the channel of the SBFET as a regular MOSFET, which can accumulate negative charges
and show an n-type behavior in case of a positive gate bias, and which can accumulate positive
charges and show a p-type behavior in case of a negative gate bias. For the mathematical
description of the channel MOSFET, a well-known charge-based model is used, that has been
introduced in Sec. 2.2, given by:

IMOS = 2µn
Wch

Lch
·
[
kbϑ

q
·
(
Q′

s −Q′
d
)

+ Q′2
s −Q′2

d
2 · C′ox

]
. (4.44)

The coefficients of Eq. (4.44) are the carrier mobility of electrons µn, the device geometries
Wch and Lch and the oxide capacity per gate area C′

ox. Both charge densities of Eq. (4.44) are
defined as:

Q′
s = S

ln(10) · C′
ox ·W0

(
exp

(
Vgs,MOS − VT0

S/ln(10)

))
(4.45)

and
Q′

d = S

ln(10) · C′
ox ·W0

(
exp

(
Vgd,MOS − VT0

S/ln(10)

))
, (4.46)
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68 4 Compact Modeling of Schottky Barrier Field-Effect transistors

with the gate-drain voltage Vgd,MOS = Vgs,MOS − Vds of the channel MOSFET, the coefficients
S which is the subthreshold swing and the threshold voltage Vth of the channel MOSFET model
that can be used as fitting parameters. The function W0(z) used in Eq. (4.45) and Eq. (4.46)
is the principal branch of the Lambert W function (See Eq. (2.42)).

The given Eq. (4.44) to Eq. (4.46) are valid for an n-type transistor, or rather in case that
the channel of the SBFET is conductive for electrons. Since the injection model from Sec. 4.2
also supports an ambipolar and p-type mode, a p-type behavior also needs to be implemented.
In this case, p-type transistor is calculated by using Eq. (4.44), but with the hole mobility
µp instead of µn and with reversed voltages in the charge equations (Vgs,MOS → Vgd,MOS and
Vgd,MOS → Vgs,MOS). In case of the SBFET, the gate voltage for the channel MOSFET is set
to Vgs,MOS = Vgs − Vfb.

To combine the channel resistance model with the SB injection model, there are multiple
options. The most accurate model would be implementing both models independently in a
circuit simulator and use them together as a macro model, so the circuit simulator could find
the best operating point between both model parts. However, this is not a closed-form compact
solution and would require additional computation effort during runtime. Therefore, a compact
approach has been chosen which is used to combine both models together. The idea is that the
total current of both models is mainly dominated by the model that leads to the lower current.
For an on-state n-type SBFET that would result in:

Ids =

{
Ids,inj, Ids,inj ≪ IMOS

IMOS, Ids,inj ≫ IMOS
, (4.47)

which however, is not steady or rather not even defined in a state where Ids,inj and IMOS are in
the same order of magnitude. To keep the idea of using the smaller current and also have a
steady, smooth, and adjustable transition between both models, the equation:

Ids = IMOS

γMOS

√
1 +

(
IMOS
Ids,inj

)γMOS
, (4.48)

is used. This equation combines both currents of Eq. (4.43) and Eq. (4.44) by emphasizing the
lower of the two currents. The parameter γMOS is a fitting parameter which is used to smooth
and fit the transition between both parts of the model.

4.5 Model Results

In this section, the results of the room temperature SBFET compact model are shown. These
results are compared to TCAD simulations, in case of a short channel device in Sec. 4.5.1
and a longer channel device, including the channel resistance model, in Sec. 4.5.2. There are
additional results compared to simulations and measurements for the room temperature model
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which are RFET results and will be discussed in Chapter 6.

4.5.1 Model Results of the Injection Model

In this first result from [81] an ideal test case for the injection SBFET model is used, which
provides a 2D DG structure and a very short channel length of Lch = 40 nm. The model
results have been obtained by using the injection model only (Eq. (4.43)), while neglecting
the channel resistance. For this calculation, the 2D potential model in combination with the
effective gate-source voltage according to Eq. (4.1) is used. Figure 4.5 shows the model results
compared to the 2D TCAD simulations of a SBFET with an intrinsic silicon channel. The S/D
contacts are made of nickel silicide and the gate material is titanium, which leads to a flatband
voltage of Vfb ≈ 1 V. The nickel silicide to silicon material junction leads to almost equally
high SBs for electrons and holes and therefore, very symmetric characteristics. The geometry
used in the simulation is a DG structure and Lch, tch and tox are in a scale to match the model
constraints well. The channel width Wch of this DG structure is normalized to 1 µm, and the
model’s fitting parameters have been adapted manually in order to obtain the best agreement
with the simulated data.

The distinctive property of the SBFET is the on-state and the ambipolar-state in the
transfer characteristics which is clearly visible and covered by the compact model. The results
of the model show a good agreement to the simulated current for all simulated bias conditions.

Table 4.1: Device parameters of the SBFET under investigation in Fig. 4.5

Parameter TCAD SBFET
Lch [nm] 40
Wch [nm] 1000
tch [nm] 10
tox [nm] 2
teff,FE [-] 0.2
teff,TE [-] 0.8
εr,ox [-] 3.9
εr,SC [-] 11.7
Eg [eV] 1.155
ΦB,n [V] 0.660
ΦB,p [V] 0.495
mn [-] 0.749
mp [-] 0.288
µtn [cm2 V−1 s−1] 378
µtp [cm2 V−1 s−1] 20
γn [-] 1.0
γp [-] 1.0
α [-] 0.6
Vfb [V] +1

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF SCHOTTKY BARRIER AND RECONFIGURABLE FIELD-EFFECT TRANSISTORS 
Christian Römer 



70 4 Compact Modeling of Schottky Barrier Field-Effect transistors

V
ds =

2.5
V

V
ds =

2.0
V

V
ds =

1.5
VV

ds = 1.0 V

0.0

0.5

1.0

1.5

I d
s

[m
A

]

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Vgs [V]

Compact
TCAD

(a)

Vds = 2.5 V

Vds = 2.0 V

Vds = 1.5 V

Vds = 1.0 V

10−3

10−6

10−9

I d
s

[A
]

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Vgs [V]

Compact
TCAD

(b)

Figure 4.5: Model results compared to TCAD simulations. The blue dots represent the re-
sults of the TCAD simulations, and the red lines are the compact model results. The results
are presented in (a) linear and (b) logarithmic scale. The used model parameters can be found
in Tab. 4.1.
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There are only slight deviations in the ambipolar region for higher drain voltages. The full set
structural and model parameters that were used can be found in Tab. 4.1.

4.5.2 Model Results Including Channel Resistance

In this section, the model is applied to a long-channel SBFET device with a channel length of
5 µm which is also simulated with TCAD Sentaurus [83]. This TCAD simulation is performed
as a 2D simulation of the device’s cross-section combined with the cylindrical mode, in order
to simulate a full nanowire gate-all-around structure [28]. The used material parameters of
the TCAD simulation are equal to those from Sec. 3.1. The used geometric, material, and
fitting parameters used for the compact model can be found in Tab. 4.2. For obtaining these
model results the channel resistance model from Sec. 4.4 is used, together with the effective
gate-source voltage calculation according to Eq. (4.3). The fitting parameters have been
adapted manually to the simulated data. It shall be mentioned that the device geometries Wch

and tch have been chosen to approximately fit the circumference and diameter, respectively of
the simulated device, which has a nanowire channel radius of RNW = 15 nm. However, these
model parameters are still not completely comparable to the nanowire’s radius but used to
fit the calculated characteristics. Especially, the channel width Wch is roughly about four
times smaller than expected. An explanation for this reduced channel width, could be the
different physical behavior between the simulated gate-all-around structure and the modeled 2D
double gate structure, as well as the fact that the TCAD simulation uses a high-field saturation
mobility model, that reduces the carrier mobility at high electric fields, which is impactful for
MOSFETs at higher bias voltages [28]. This second effect using a dynamic mobility is not
considered in the current implementation of the compact model, but can lead to the recognized
deviation, compensated by the channel width. All other geometric parameters correspond to
the simulation. The results are shown in Fig. 4.6, which consist of transfer characteristics in
linear and logarithmic scale and Fig. 4.7 which are the corresponding output characteristics.
The compact model results show a good agreement to the given TCAD simulations, besides a
slight deviation in the output characteristics.
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Figure 4.6: Device characteristics of the SBFET calculated from the compact model (solid
red lines) and compared to TCAD simulations (blue dots). The geometries of the simulated
device are Lch = 5.0 µm, RNW = 15 nm and tox = 6.5 nm. The compact model parameters can
be found in Tab. 4.2. (a) shows the transfer characteristics for various positive drain voltages in
linear scale and (b) shows similar results in logarithmic scale.
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Figure 4.7: Device output characteristics of the SBFET calculated from the compact model
(solid red line) and compared to TCAD simulations (blue dots). The geometries of the simu-
lated device are Lch = 5.0 µm, RNW = 15 nm and tox = 6.5 nm. The compact model parameters
can be found in Tab. 4.2.

Table 4.2: Device parameters of the SBFET under investigation in Fig. 4.6 and Fig. 4.7
Parameter SBFET (TCAD)

Lch [µm] 5.0
Wch [nm] 13
tch [nm] 30
tox [nm] 6.5
teff,FE [-] 0.2
teff,TE [-] 0.8
εr,ox [-] 3.9
εr,sc [-] 11.7
Eg [eV] 1.1696
ΦB,n [V] 0.5800
ΦB,p [V] 0.5896
Vlimit [V] 1.65
γVg,eff [-] 2.10
mn [-] 0.26
mp [-] 0.27
µtn [cm2 V−1 s−1] 415.35
µtp [cm2 V−1 s−1] 1352.00
γn [-] 0.20
γp [-] 0.20
VT0 [V] 1.11
S [mV/dec.] 150
γMOS [-] 0.5
µn [cm2 V−1 s−1] 1440
µp [cm2 V−1 s−1] 450
Vfb [V] 0
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CHAPTER 5

Model Additions for Deep Cryogenic Temperatures

This chapter describes the model for SBFETs that is adjusted for a deep-cryogenic temperature
environment of ϑ ≈ 0 K. This compact model has been published in [85, 86]. Although
the SBFET compact model described in Chapter 4 has a temperature dependency in its
equations, it is made for room temperature environment, specifically. This means that the room
temperature model is not scalable to the temperature and needs to be re-fitted for different
temperatures. It is also not capable of capturing certain physical effects occurring at deep
cryogenic temperatures.

For this SBFET compact model at deep cryogenic temperatures, the equations are further
developed and solved in this temperature environment. For an easier model derivation, a
temperature of ϑ → 0 K is estimated. The compact model for deep cryogenic temperatures
uses a different approach to obtain the potential inside the transistors channel, compared to
the room temperature model. This approach is described in Sec. 5.1. In case of a temperature
of ϑ → 0 K, there is no TE current expected to be injected at the devices’ SBs. Therefore, the
main injection current is the FE current which is derived in Sec. 5.2. Section 5.3 describes the
inclusion of second order effects that can be observed in measurements at the given temperature
environment. Those are quantum oscillations, band tail effect and the channel resistance.
In Sec. 5.4 the total drain current equation is given, which includes the FE current and
the mentioned second order effects. Finally, Sec. 5.5 shows the model results compared to
measurements of SBFETs that are measured at temperatures of about 5 K. The cryogenic
SBFET measurements have been provided by Forschungszentrum Jülich GmbH.

5.1 Potential Model Adjustments at Absolute Zero

For the cryogenic SBFET model the used potential model has been replaced, by the quasi 2D
potential model introduced in Sec. 2.1.2. The replacement has two reasons. First, the quasi 2D
model is temperature independent and the doping concentration used in this model can be

75

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF SCHOTTKY BARRIER AND RECONFIGURABLE FIELD-EFFECT TRANSISTORS 
Christian Römer 



76 5 Model Additions for Deep Cryogenic Temperatures

ignored, since the dopants are supposed to be frozen out. Second, at temperatures of ϑ → 0 K,
there is no thermal energy and therefore, no TE current expected to be flowing. Without the
TE current it is not necessary to calculate the potential in the center y-position of the device’s
channel. In this case, only the surface potential is of interest, which can be calculated with less
effort by the quasi 2D potential model.

For a proper usage of the quasi 2D potential model, even at high bias voltages, a saturation
model has to be included to counteract the neglect of accumulated charges in the potential
model. Section 5.1.1 introduces a potential saturation model that is derived specifically for the
case ϑ → 0 K which calculates an effective gate-source voltage Vgs,eff . The following Sec. 5.1.2
describes the usage of the basic potential model including the saturation model, and the
reconstruction of important band diagram parameters with the potential model.

5.1.1 Saturation at High Gate Voltages

Since the potential model that is used for the cryogenic SBFET model is based on Poisson’s
equation, but neglects accumulated charges inside the channel, it is working fine for lower gate
voltages, but overestimates the device’s surface potential at higher gate voltages. In order to
work around this problem, appearing at higher gate voltages, a surface potential saturation
model applicable for temperatures of ϑ → 0 K is introduced which calculates an effective gate
voltage Vgs,eff . The given derivation is done for accumulated electrons (positive gate voltages)
but works similarly with holes. For the derivation of this model, the standard approach for
the calculation of the electron density n inside a 3D semiconductor according to [2, 6] is used,
given as:

n =
∞∫

EC

gC3D(E) · fn(E) · dE , (5.1)

where gC3D is the semiconductor’s density of states and fn is the Fermi distribution function,
both dependent on the energy level E. In a temperature environment that is estimated to be
ϑ → 0 K, the Fermi distribution function can be simplified to:

fn(E) = lim
ϑ→0


 1

1 + exp
(E − Ef,n

kbϑ

)




=

{
0, E > Efn

1, E < Efn
,

(5.2)

resulting in a piece-wise defined step function with a full occupation of states for energy levels
lower than the quasi-Fermi energy level for electrons (Efn) and no occupation for states on
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energy levels higher than Efn. Using Eq. (5.2) in Eq. (5.1), the integral can be simplified to:

n =
Efn∫

EC

gC3D(E) · 1 · dE +
∞∫

Efn

gC3D(E) · 0 · dE , (5.3)

with gC3D as density of states, according to [2, 6], which can be written as:

n = vn · (2m∗
n) 3

2

2π2ℏ3 ·

Efn∫

EC

√
E − EC · dE . (5.4)

This integral solves to:

n = vn · (2m∗
n) 3

2

2π2ℏ3 ·
[2

3 · (E − EC)
3
2

]Efn

EC
, (5.5)

which leads to an expression for the electrons in the conduction band, given as:

n =
√

8vnm
3/2
me

3π2ℏ3 (Efn − EC)
3
2 . (5.6)

Equation (5.6) shows the relation of the electron density to the energy difference of Efn and the
conduction band energy EC. The constants of Eq. (5.6) are the number of equivalent minima in
the conduction band vn, the density-of-state effective mass for electrons mme, and the reduced
Planck’s constant ℏ [2, 6]. Equation (5.6) shows that, in case of ϑ → 0 K, the quasi Fermi
energy level for electrons Ef,n must be higher than the conduction band energy EC in order to
have existing free electrons that can contribute to the current flow.

The accumulated carriers (or rather the carrier density) at the device’s channel surface also
depends on the applied gate voltage. At high gate voltages, it is estimated that almost all
accumulated carriers are close to the channel surface and the major voltage drop of the flatband
voltage corrected gate-source voltage V ′

gs = Vgs − Vfb is at the oxide. This is represented by:

V ′
gs = qsur

C
′
ox

= n · q · tsur

C
′
ox

, (5.7)

with qsur as the accumulated surface charge and C
′
ox as oxide capacitance per gate area. In

the second step of Eq. (5.7), qsur is replaced by n · q · tsur, where tsur is an average thickness
that contains the accumulated electron concentration n and is estimated to be constant in this
approach. Finally, using Eq. (5.6) in Eq. (5.7), leads to:

V ′
gs =

√
8qtsurvnm

3/2
me

3C′
oxπ2ℏ3 · (Efn − EC)

3
2 . (5.8)

This equation describes the dependency between V ′
gs and (Efn −EC) in case of saturation of

the channel potential. For a simplification and better usage in the algorithm, a constant Ksat
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is introduced and defined as:

Ksat =
√

8qtsurvnm
3/2
me

3C′
oxπ2ℏ3 · q

3
2 , (5.9)

which replaces the constants in Eq. (5.8). In the next step, the energies are represented as
potentials, with Φsur,sat = −q−1 ·(EC−Eg/2) as the saturated surface potential and Φfn = Ef,n/q

as the quasi Fermi potential for electrons, which can only be in range of Vs to Vd. Using both
potentials and Eq. (5.9) in Eq. (5.8) leads to the equation:

V ′
gs = Ksat · (Φsur,sat − Eg

2q − Φfn)
3
2 . (5.10)

The energy-to-potential conversion term q
3
2 has been included in the constant Ksat. Equa-

tion (5.10) is the key equation for the upcoming calculations.

In order to incorporate the saturated channel potential from Eq. (5.10) into the used
potential model with an effective gate-source voltage Vgs,eff , an algorithm is used which is
explained in the following steps.

Establish Boundary Condition

First, a boundary condition at which the saturation process starts, needs to be defined. The
idea is to find a boundary surface potential Φsur,bound and a corresponding boundary gate-source
voltage Vgs,bound, where V ′

gs > Vgs,bound leads to a saturation of the surface potential, due to
accumulated charges in the channel. As Eq. (5.6) demonstrates, the electron accumulation
happens as soon as the quasi-Fermi energy of electrons Ef,n is higher than the conduction band
energy EC. This state is shown in Fig. 5.1(a), which shows the band diagram of a SBFET
reconstructed by the potential model of Eq. (2.15) (See Sec. 2.1.2). This condition is shown
in Fig. 5.1(a) in the calculated band diagram. In case that the boundary condition is met or
surpassed, it is assumed, that the quasi-Fermi energy for electrons drops linearly from source
to drain. Therefore, the quasi-Fermi potential in the middle of the channel can be written as:

Φfn,L/2 = Φfn

(
Lch

2

)
≈ Vd − Vs

2 , (5.11)

so the value of Φfn,L/2 is exactly in between of the source and drain potentials. A useful
condition for switching over to the saturation model is at:

Φsur,bound = Vd − Vs

2 + ΦB,n +∆Vbound , (5.12)

which represents the boundary potential in the middle of the channel at which the conduction
band hits the approximated value of Φfn,L/2, minus an additional voltage ∆Vbound, that serves
as an adjustable fitting parameter (see Fig. 5.1(a)).
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Figure 5.1: Band diagram of an arbitrary device, demonstrating the surface potential sat-
uration model. The blue line is the conduction band energy, the orange line is the valence
band energy, and the red dashed line is the estimated quasi-Fermi energy for electrons in the
on-state. (a) shows the saturation condition, given by Eq. (5.12). (b) shows an example of a
higher gate bias and the difference between a saturated (solid lines) and an unsaturated (dot-
ted lines) surface potential. The unsaturated case leads to a huge difference between Efn and
EC and therefore, to an unrealistically high number of accumulated electrons, according to
Eq. (5.4).
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After the boundary potential Φsur,bound for the given drain voltage has been calculated, the
needed gate-source voltage Vgs,bound for reaching that boundary state can be obtained, using
the potential model Eq. (2.15) in reverse, as:

Vgs,bound = Φsur,bound −
[
Vb,s · p(Lch − x) + Vb,d · p(x)

p(Lch)

]

x= Lch
2

, (5.13)

with p(x) given as Eq. (2.16).

Determine the Saturation Constant

In a second step, it is assumed that for an applied gate-source voltage of V ′
gs > Vgs,bound, the

accumulated charges in the channel can no longer be neglected and therefore, the saturation
equation Eq. (5.10) needs to be used in order to describe the dependency between gate-source
voltage and surface potential. Using Eq. (5.10) at the saturation boundary, with V ′

gs = Vgs,bound

and Φsur,sat = Φsur,bound, Ksat can be calculated as:

Ksat = Vgs,bound · (Φsur,bound − Eg

2q − Φfn,L/2)− 3
2 , (5.14)

which is estimated to be constant for all V ′
gs > Vgs,bound.

Calculate the Saturated Potential and Gate-Source-Voltage

In the previous steps the boundary condition for the saturation and the saturation constant
Ksat have been defined. Now, for gate-source voltages of V ′

gs > Vgs,bound the constant Ksat and
Φfn,L/2 can be used in Eq. (5.10) again, in order to calculate the saturated surface potential
Φsur,sat, as:

Φsur,sat =
(
V ′

gs

Ksat

) 2
3

+ Eg

2q + Φfn,L/2 . (5.15)

Finally, Eq. (5.15) leads to an expression that could be used as saturated surface potential,
but only at the position x = Lch/2. For a completed surface potential, the Laplace function
based potential model adjusted in Eq. (5.13) can be used again, but this time to calculate from
Φsur,sat the corresponding saturated gate-source voltage Vgs,sat, as:

Vgs,sat = Φsur,sat −
[
Vb,s · p(Lch − x) + Vb,d · p(x)

p(Lch)

]

x= Lch
2

. (5.16)

This voltage, as replacement for V ′
gs in the initial potential model of Eq. (2.15), results in the

same surface potential Φsur(Lch/2) = Φsur,sat as from the saturation model Eq. (5.10), which is
necessary for the last step.
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Expression for all Bias Regions

In the last step, a distinction needs to be made at which the applied (model input) gate-source
voltages V ′

gs the saturation model should be used or not. For this case an effective gate-source
voltage Vgs,eff is introduced that replaces the actual input voltage V ′

gs. The easiest way for this
distinction would be conditional, as:

Vgs,eff =

{
V ′

gs, V ′
gs ≤ Vgs,sat

Vgs,sat, V ′
gs > Vgs,sat

, (5.17)

which would be steady and considers both operation regions. For compact modeling it is
preferable to have smooth functions that are differentiable for all input voltages Vgs’. For
this smooth transition between the unsaturated and the saturated region, instead of using
Eq. (5.17), a smoothing function is defined to calculate the effective gate-source voltage, as

Vgs,eff =
(

γsat

√
V ′−γsatgs + V −γsat

gs,sat

)−1

, (5.18)

where γsat is a fitting parameter to adjust the transition region between the saturated and the
unsaturated model. Finally, the resulting effective gate voltage Vgs,eff from Eq. (5.18) can be
used in the initial potential model Eq. (2.15) for calculating the surface potential for the entire
gate-source voltage range.

Figure 5.1(b) demonstrates the differences between using Vgs,eff (solid lines), where the
surface potential (and therefore, the conduction band) depends on the distance to the quasi
Fermi potential Φfn, and using V ′

gs, leading to an unbound surface potential (dashed lines) and
an overestimated band bending. Even though the modeled band diagram does not show a
linear voltage drop along the trace from source to drain as it is to be expected in a real device,
the described saturation model prevents an over-bending of the bands. Figure 5.2 shows Vgs,eff

calculated by Eq. (5.18) vs the applied V ′
gs using the parameters from Fig. 5.11(b).

5.1.2 Basic Potential Model and Band Diagram Reconstruction

As discussed in the previous section, the used potential model for the cryogenic SBFET model
is the 1D / quasi 2D potential model from [34], which has been introduced in Sec. 2.1.2. This
model is used to calculate and give the dependency between the surface potential Φsur and the
x-location along the semiconductor-oxide interface, from source (x = 0) to drain (x = Lch).
Using the effective gate voltage form Eq. (5.18), for a proper saturation at all bias voltages,
with Eq. (2.15), it is given as:

Φsur(x) = Vgs,eff + Vb,s · p(Lch − x) + Vb,d · p(x)
p(Lch) , (5.19)
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Figure 5.2: Plot that shows Vgs,eff and Vgs,sat vs Vgs calculated by the surface potential satu-
ration model. The shown curves belong to the model verification shown in Fig. 5.11(b).

with
p(x′) = exp

(
x′

λ

)
− exp

(
−x′

λ

)
. (5.20)

Vb,s and Vb,d are the potential bendings at the source and drain side, respectively, which are
calculated using the built-in potential Φbi = ΦBn −Eg/(2q) as Vb,s/d = Φbi −Vgs,eff +Vs/d, with
the channel material’s band gap Eg, the SB height for electrons ΦBn, and the source/drain
potential Vs/d.

Similarly to the approach of Chapter 4, the potential model is used to reconstruct the band
diagram and the SB thickness xf at E = Ef,m (shown in Fig. 5.3). Unlike the 2D potential
model used in the approach of Chapter 4, the model from Eq. (5.19) is already a closed-form
and very simple equation, so there is no need for a further simplification. The band diagram
energies can be calculated as:

EC = −q · Φsur(x) + Eg

2 , (5.21)

and:
EV = −q · Φsur(x) − Eg

2 . (5.22)

The parameter xf can be calculated analytically by using Eq. (5.19) and Eq. (5.20) and
rearranging the equations for x = xf , which results in:

xf = λ · ln

[
Ef,m

q
· p(Lch) ±

√
dxf

2 · Vb,d − 2 · Vb,s · exp
(
− Lch

λ

)
]

, (5.23)

with:
dxf = Ef,m

q

2
· p(Lch)2 − 4 · Vb,s · Vb,d · p(Lch) − 4 · V 2

b,s − 4 · V 2
b,d . (5.24)

Equation (5.23) is only solvable in case xf exists, which means that EC must be smaller as
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Ef,m due to band bending (see Fig. 5.3).

5.2 Injection Current for SBFETs at Deep Cryogenic Temperatures

With the reconstructed band diagram at the SBs, the FE injection currents can be calculated.
Although the approach is similar to Chapter 4, there are some changes in the derivation. In this
section, the basic approaches for the tunneling equation and tunneling probability are shown
(see Sec. 5.2.1), as well as the usage and simplification of the supply function (see Sec. 5.2.2).

5.2.1 Tunneling Equation and Tunneling Probability

The expression for the electron (similar for hole) FE current density is derived based on a
modified version of the Tsu-Esaki formula, which has been introduced in Sec. 2.3.3.1, as:

JFE,n = q ·m∗

2π2ℏ3 ·BPAT ·

Efs∫

EC,min

T (E) ·N(E) · dE , (5.25)
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Figure 5.3: Band diagram at the source-side Schottky junction (left-hand side). The solid
blue line is the conduction band of the channel, and the blue dashed line shows the metal’s
Fermi energy level. The right-hand side subplot shows the approximated tunneling probability,
which is exponentially increasing with the energy, as dashed red line. The green arrow marks
the tunneling region. In this energy region electrons are allowed to tunnel through the SB, due
to Fermi statistics.
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where q is the elementary charge, m∗ is the charge carrier’s effective tunneling mass (mn ·m0

for electrons or mp · m0 for holes), used as fitting parameter, and ℏ is the reduced Planck’s
constant. T (E) and N(E) denote the tunneling probability and supply function at the energy E ,
respectively. In cryogenic environment it is estimated that the metal source and drain regions
have all energy states completely filled which are lower than the metal’s Fermi energy level
(Efs for the source and Efd for the drain) and those states with higher energy levels than the
metal’s Fermi energy level are completely empty. This leads to the upper integration limit of
Eq. (5.25) since there are no electrons available for tunneling at E > Efs. The lower integration
limit is the minimum energy level carriers can tunnel to, which is estimated to be the lowest
conduction band energy value EC,min in the channel. This is determined by using the value
directly in the middle of the device’s channel (Lch/2). Figure 5.3 illustrates the tunneling
process at the source-side SB and shows the integration boundaries.

The tunneling probability in Eq. (5.25) assumes direct tunneling, i.e. tunneling charge
carriers will keep their momentum, or rather k⃗ wave vector in x direction (coherent tunneling)
[6]. Although, tunneling through a SB may require a change in momentum by phonon scattering
(phonon-assisted tunneling, PAT) [6]. At room temperature, due to the presence of excited
phonons, this effect is usually neglected in compact modeling. However, at deep cryogenic
temperatures the phonon scattering events are massively reduced, so tunneling events can almost
only occur, if both materials at the tunneling junction (the SB) have overlapping k-spaces [87].
In order to represent this in the compact model, we introduce the fitting parameter BPAT in
Eq. (5.25) with a value between 0 and 1 that is used to describe the reduced tunneling current
density.

For the calculation of the tunneling probability, the same approximation is used as in the
room temperature model from Sec. 4.2.1. Instead of using the WKB approximation for the
tunneling probability TWKB (from Eq. (2.65)) directly in Eq. (5.25) which would lead to an
unsolvable integral, the tunneling probability is approximated by an exponential function, given
as:

Tcryo,0(E) = exp (−c · (E0 − E)) . (5.26)

In this approximation, c is obtained similarly as in Eq. (4.35) by using:

c = ln (TWKB(xf))
(Efs − E0) . (5.27)

TWKB(xf) is the tunneling probability calculated at position xf by using the WKB method, as
in Eq. (4.37). E0 is the conduction band energy EC directly at the source-channel Schottky
junction, marking the energy barrier height. The parameters xf , Efs and E0 are indicated in
Fig. 5.3.
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5.3 Inclusion of Second Order Effects 85

5.2.2 Supply Function Simplification

The supply function of the tunneling process from Eq. (2.72), is given by:

N(E) =
∞∫

0

(fs(Etot) − fd(Etot)) · dEρ , (5.28)

N(E) = kϑ · ln




1 + exp
(

−E − Efs

kϑ

)

1 + exp
(

−E − Efd

kϑ

)


 , (5.29)

with the source and drain side Fermi distribution functions fs and fd. The carrier’s total energy
Etot = E + Eρ is the sum of its longitudinal E and transversal Eρ energy components [59]. The
supply function depends on the temperature, as it can be seen in Eq. (5.28). At the deep
cryogenic temperature environment (ϑ → 0), the equation Eq. (5.29) can be simplified to:

lim
ϑ→0

N(E) ≈ lim
ϑ→0

kϑ · ln




exp
(

−E − Efs

kϑ

)

1


 (5.30)

≈ Efs − E , (5.31)

This simplification can be used in Eq. (5.25), to solve the integral.

5.3 Inclusion of Second Order Effects

There are some second order effects that are considered in the cryogenic SBFET model. First,
in [8] oscillations in the curves have been found in the measured transfer characteristics.
Section 5.3.1 presents an empirical modeling approach for the inclusion of quantum oscillations
into the tunneling probability expression.

As a second included effect, it has been shown in [11] that some devices show a subthreshold
swing that is shallower as it would be expected at ϑ ≈ 0 K. The worse slope has been attributed
to the existence of band tail states inside the semiconductors band gap region, which are notable
at deep cryogenic temperatures [11]. Section 5.3.2 shows an approach to include a band tail
current by assuming an exponential band tail states distribution into the semiconductor’s band
gap, that affect the SBFET’s subthreshold swing.

Although the potential saturation model has been included and described in Sec. 5.1.1,
this model part does not directly limit the current at high biases. As in room temperature
environment, it can also happen at cryogenic temperatures that the channel resistance for
longer channels at higher bias voltages can no longer be neglected. So, as a last included
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effect the channel resistance model introduced in Sec. 4.5.2 is included into the model, which is
described in Sec. 5.3.3.

5.3.1 Empirical Model for Quantum Oscillations

In some measured characteristics of SBFETs at deep cryogenic temperatures, it can be noticed
that the measured current is oscillating while increasing the applied voltage. This phenomenon
has been reported in [8] and can be seen in some measured characteristics that are presented in
Sec. 5.5. Although, it cannot be stated for sure where this effect comes from, a possible answer
can be given by the NEGF approach, described in Sec. 2.3.3.3. In [88] it is shown, by using a
compact NEGF method from [88, 89], that this wave-based approach leads to local minima
and maxima in the density of states along the energy axis at the source-side SB. The simulated
local density of states using the compact NEGF approach for a 50 nm SBFET is illustrated
in Fig. 5.4(a). The corresponding tunneling probability at the source-side SB is shown in
Fig. 5.4(c), where the oscillating tunneling probability is notable. The NEGF approach-based
results with the shown local density of states is only valid at temperatures of ϑ ≈ 0 K, since
it neglects phonon scattering events inside the device. At higher temperatures the density of
states would blur together, making the oscillations in the tunneling probability vanish.

Since the NEGF method is a numerical approach, it cannot be used directly in a closed-form
compact model. In order to mimic the behavior of the NEGF-based tunneling probability from
Fig. 5.4(c), an empirical approach is chosen using a sin2-function. This term is incorporated into
the expression of the tunneling probability from Eq. (5.26), leading to an adjusted tunneling
probability Tcryo, which includes the oscillations:

Tcryo(E) = Tcryo,0(E) · sin2 (ωE · E + φ0) (5.32)

= exp (−c · (E0 − E)) · sin2 (ωE · E + φ0) . (5.33)

This empirical addition comes with the two fitting parameters ωE and φ0, used for adjusting
the model’s oscillation of the tunneling probability. They provide a possibility to change the
oscillation’s phase shift and frequency (i.e. the spacing between resonances with energy and
therefore Vgs) and allow fitting to the measurement. Both parts of Eq. (5.32) are illustrated in
Fig. 5.5.

Combining Eq. (5.25) with Eq. (5.32) for the tunneling probability and Eq. (5.28) for the
supply function results in

JFE,n,0 = q ·m∗ ·BPAT

2π2ℏ3 ·

Efs∫

EC,min

exp (−c · (E0 − E))

×sin2 (ωE · E + φ0) · (Efs − E) · dE ,

(5.34)
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Figure 5.4: Compact NEGF simulation results performed on a 50 nm SBFET, which is de-
scribed in Sec. 5.5.1. The results are taken from [88]. (a) qualitatively shows the calculated
local density of states, along the channel (x-axis) and per energy (y-axis). The light blue
to yellow regions indicate the presence of states. This figure is simulated at Vds = 1 V and
Vgs = 0.5 V. (b) and (c) show the calculated tunneling probability per energy for the source-
side SB in logarithmic (b) and linear scale (c), calculated at ϑ = 5.4 K and Vds = Vgs = 1 V.
The result in (c) shows the most important tunneling region directly below the metal’s Fermi
energy at 0 eV, where the oscillations show a nearly asymptotic behavior to an exponential
function.
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Figure 5.5: Band diagram at the source-side Schottky junction (left-hand side). The
solid blue line is the conduction band of the channel, and the blue dashed line shows the
metal’s Fermi energy level. The right-hand side subplot shows the tunneling probability from
Eq. (5.26), with the exponential part (red line) and the total probability, including the oscilla-
tions (green line).

as expression to calculate the electron FE current (the hole FE current works similarly). The
integral of Eq. (5.34) can be solved in closed form, to:

JFE,n,0 = q ·m∗ ·BPAT

2π2ℏ3 · [jcryo(Efs) − jcryo(EC,min)] , (5.35)

with:

jcryo(E) = exp(−c(E0 − E))
2 (c3 + 4cω2

E)2 ·
[
2c2ωE · (c2(Efs − E) + 4ω2

E · (Efs − E) + 2c)

·sin(−2ωEE + 2φ0) + (c2 + 4ω2
E)2 · (c(Efs − E) + 1) − c2(c3(Efs − E)

+4cω2
E · (Efs − E) + c2 − 4ω2

E) · cos(−2ωEE + 2φ0)
]

.

(5.36)

5.3.2 Modeling of Band Tail States

As an addition to the injection current from Eq. (5.34), in this model the band tail effect is
added, which is a second order effect and supposed to enable carrier injection even into the
band gap region, leading to a worse slope of the devices [11]. To consider the band tail effect in
the equations, first, a distribution of the band tail states needs to be introduced. Since the
compact model does not use any term of a density of states in its equations, the distribution
used in this case is considered as a unit less factor between zero and one, where one means
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that a full current density is possible, and zero means that no states are available for charge
transport. This band tail states distribution gts is assumed to start at one, directly at the
conduction band edge EC and decreases exponentially inside the band gap region. It given by:

gts(E) = exp
(

−EC,min − E
Ets,fit

)
, (5.37)

with E < EC,min. Here, Ets,fit is a fitting parameter for adjusting the argument of the exponential
function and therefore, the subthreshold swing of the resulting device transfer characteristics.
The band tail current density JFE,n,ts, which consists of carriers tunneling into the band tail
states, is calculated with the approach of Eq. (5.25), including the tail states distribution
Eq. (5.37) and changing the integration boundaries, as:

JFE,n,ts = q ·m∗

2π2ℏ3 ·BPAT ·

EC,min∫

Ets,min

T (E) · (Efs − E) · gts(E) · dE . (5.38)

The band tail states distribution, and its boundaries are visualized in Fig. 5.6. The lower
integration boundary is given by Ets,min = EC,min − αts · Eg, where αts is an adjustable fitting
parameter in a range of zero to one and limits the tunneling depth inside the band gap.
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Figure 5.6: Band diagram at the source-side Schottky junction (left-hand side). The solid
blue line is the conduction band of the channel, and the blue dashed line shows the metal’s
Fermi energy level. The right-hand side subplot shows the band tail states distribution, ac-
cording to Eq. (5.37), which is used in the model. The tail states distribution is used at energy
levels below EC,min in the band gap. A constant value of one above EC,min indicates, that
there are no band tail states, but the full tunneling process happens instead.
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Equation Eq. (5.38) can be solved with the existing model solutions by incorporating the
tail states distribution Eq. (5.37) into the tunneling probability Tcryo(E), given as:

Tts(E) = Tcryo(E) · gts(E) = exp
(
−c′ · (E ′

0 − E)
)

, (5.39)

with:

Tts(E) = exp (−c · (E0 − E)) · exp
(
−E−1

ts,fit · (EC,min − E)
)

(5.40)

= exp
(
−c · E0 + c · E − E−1

ts,fit · EC,min + E−1
ts,fit · E

)
(5.41)

= exp
(
−c · E0 − E−1

ts,fit · EC,min + (c+ E−1
ts,fit) · E

)
(5.42)

= exp
(

(c+ E−1
ts,fit) ·

(
c · E0 + E−1

ts,fit · EC,min

c+ E−1
ts,fit

− E
))

(5.43)

= exp
(
−c′ · (E ′

0 − E)
)

. (5.44)

So, the rearranging leads to:
c′ = c+ 1

Ets,fit
, (5.45)

and:

E ′
0 =

c · E0 + EC,min

Ets,fit

c+ 1
Ets,fit

. (5.46)

Since Eq. (5.39) has the same shape as the exponential part of Eq. (5.32), it can be used in
the closed form solution Eq. (5.35), but with c′ instead of c, E ′

0 instead of E0 and the adjusted
boundaries (Ets,min instead of EC,min and EC,min instead of Efs). With the inclusion of the tail
states, the total injection current density can be expressed as

JFE,n = JFE,n,0 + JFE,n,ts . (5.47)

The result of the modeled band tail effect on the calculated characteristics can be seen in
Fig. 5.11(a) from the results section. In this figure the solid red lines show the results including
and the dotted red lines show the results excluding the modeled band tail effect.

5.3.3 Inclusion of Channel Resistance

In the SBFET model for room temperature environment, a channel MOSFET addition is added
in Sec. 4.4 which leads to a drain current saturation at high bias voltages. For a validation of
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measured output characteristics, this addition has been used for the cryogenic SBFET model
with the adjusted equation from Eq. (4.44), as:

IMOS = 2µWch

Lch
· lim

ϑ→0

[
kbϑ

q
·
(
Q′

s −Q′
d
)

+ Q′2
s −Q′2

d
2 · C′

ox,ˇ

]
(5.48)

= 2µWch

Lch
· Q

′2
s −Q′2

d
2 · C′

ox,ˇ
, (5.49)

which takes out the diffusion current component from the MOSFET equation. For the charges
Q′

s and Q′
d, Eq. (4.45) and Eq. (4.46) are used.

5.4 Total Current of the Cryogenic SBFET

In order to calculate the total device current, not only the injection side (source side), but also
the drain side is considered. For the calculation of the total current density, the method from
Sec. 4.3 has been used which is given by:

JFE,tot =

{
JFE,s,n − JFE,d,n, Ex(x = Lch) < 0
JFE,s,n + JFE,d,p, Ex(x = Lch) ≥ 0

. (5.50)

In this case the injection current density JFE,s,n is calculated by Eq. (5.47) at the source side
and JFE,d,n/p is the injection current density at the drain side, consisting either of electrons for
a permeable SB at the conduction band, or holes for a permeable SB at the valence band.

Finally, with the device geometries the total device’s drain current Ids is determined by:

Ids = Wch · tch · teff,FE · JFE,tot , (5.51)

for DG structures, with the channel width Wch and thickness tch. For nanowire structures it is
given as:

Ids = CNW ·RNW · teff,FE · JFE,tot, (5.52)

using the nanowire’s circumference CNW and the averaged radius RNW. The parameter teff,FE

is the effective thickness in which the on-current is supposed to be flowing.

5.5 Model Results

The compact model results from the cryogenic SBFET model are compared to measurements,
in this section [85]. The results are separated into a model comparison to measurements
of ultra-thin body and buried oxide SOI SBFETs from [85] in Sec. 5.5.1 and a comparison
to measurements of nanowire SBFETs from [86] in Sec. 5.5.2. TCAD studies on devices at
ϑ ≈ 0 K are not presented here, because of convergence problems of the simulations in the
given temperature environment.

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF SCHOTTKY BARRIER AND RECONFIGURABLE FIELD-EFFECT TRANSISTORS 
Christian Römer 



92 5 Model Additions for Deep Cryogenic Temperatures

5.5.1 Model Results Compared to SOI SBFETs

Figure 5.8 and Fig. 5.9 show the compact model compared to p-type measurements performed
on ultra-thin body and buried oxide SOI SBFETs from [8], of which a schematic cross-section is
presented in Fig. 5.7. The devices consist of source and drain regions made of nickel silicide and
a lightly p-doped silicon channel (NA = 1 × 1015 cm−3) [8]. The channel doping of the devices
is neglected in the compact model at deep cryogenic temperatures because the dopants are
expected to be frozen out. The gate oxide has a thickness of about tox = 5 nm made of HfO2,
and the gate material is TiN [8]. All measured devices have a channel width of Wch = 800 nm,
a channel thickness of tch = 12 nm and vary in their channel length Lch.

The presented compact model is compared to measurements for devices with a channel length
of Lch = 30 nm (transfer characteristics, Fig. 5.8(a)), Lch = 70 nm (transfer characteristics,
Fig. 5.8(b)), and Lch = 50 nm (transfer and output characteristic, Fig. 5.9(a), and Fig. 5.9(b)).
The used model parameters (geometrical, material, and fitting parameters) are listed in
Tab. 5.1. In this first modeling attempt for cryogenic SBFETs, originally presented in [85],
the 2D potential model from Sec. 4.1 is used for the model, instead of the simplified potential
model from Sec. 5.1. Additionally, the impact of the band tail states has been neglected. The
fitting parameters have been adapted manually in order to obtain the best agreement with the
measurement data. Since the measured devices have a single-gate structure and the compact
model is made for DG devices, the compact model was calculated with twice the channel
thickness and the resulting current was halved.

The results of the model for the three devices show a good agreement with the measurements.
Only the curvature and slope in the subthreshold region of the characteristics show a slight
deviation, where the model’s slope is too steep, and the curvature is not exactly fitting to the
measured data.

As it can be seen in Tab. 5.1, for the 50 nm device, the model parameter for the oxide
thickness was slightly increased, which has the effect to reduce that steepness and fit the
model’s slope to the measurements, since the band tail effect is not included here. Additionally,
the band gap (Eg) has been increased to provide a better fit between model and measurement

tox

Lch

tch

Gate

Channel

Oxide

S D

Box + Substrate

Figure 5.7: Schematic cross-section of the measured devices. The relevant geometrical param-
eters are shown. Values of the devices under investigation are presented in Tab. 5.1
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Table 5.1: Device parameters of the devices under investigation in Fig. 5.8 and Fig. 5.9

Parameter 30 nm Dev. 50 nm Dev. 70 nm Dev.
Lch [nm] 36 50 70
Wch [nm] 800 800 800
tch [nm] 12 12 12
tox [nm] 5.00 5.65 5.00
teff,FE [-] 0.2 0.2 0.2
εr,ox [-] 22.0 22.0 22.0
εr,sc [-] 11.7 11.7 11.7
Eg [eV] 1.1696 1.2281 1.1696
ΦB,n [V] 0.5800 0.6090 0.5800
ΦB,p [V] 0.5896 0.6191 0.5896
mp [-] 0.900 0.810 0.900
BPAT [-] 1.7 × 10−3 5.0 × 10−4 6.2 × 10−6

Vfb [V] −0.20 0.00 −0.47
ωE/(2π) [eV−1] 20 20 20
φ0 [-] 0 0 0
α [-] 0.7 0.7 0.7

in the subthreshold region. An increasing band gap of silicon for cryogenic temperatures has
also been reported in [9, 90]. It is also notable that the channel length for the 30 nm device
was calculated by the model using 36 nm. A further reduction of the channel length leads to an
impact on the used 2D potential model, as the potential profile of the drain-side’s SB interacts
with the source side. Additionally, the 2D potential model gets more inaccurate, the more the
channel length approaches the channel thickness [29, 31, 82].

The resonance effect, caused by the sin2-addition in Eq. (5.26), is mostly pronounced at
low drain voltages, as it can be seen in Fig. 5.8(b) at Vds = −0.01 V. The harmonic oscillation
of the model does not entirely fit to the measured curves but is still a useful method to include
quantum oscillations. However, it can also be observed that in certain cases (for example in the
measurement of Fig. 5.9(a), Vds = −0.1 V and Vgs ≈ −2.0 V) there are oscillations occurring
at higher voltages, which are not covered by the model and might be attributed to other
phenomena, which have not been included yet into the model.

The output characteristics (Fig. 5.9(b)) in the given bias range also show a good agreement
of the compact model compared to the measured curve. However, for this set of measurements
only one output curve is available.
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Figure 5.8: P-type device characteristics of SBFETs with various channel lengths and drain
voltages calculated with the compact model (solid red lines) and compared to measurements
(dashed blue lines) in linear and logarithmic scale. The devices’ back gate voltage is Vbg = 0 V
in the measurements. It is neglected in the compact model, which in agreement to [8] has a
negligible influence on the device current for deep cryogenic temperatures. (a) SBFET transfer
characteristics with a channel length of Lch = 30 nm, measured at ϑ = 5.3 K. (b) SBFET
transfer characteristics with a channel length of Lch = 70 nm, measured at ϑ = 5.3 K.
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Figure 5.9: P-type device characteristics of SBFETs with various channel lengths and drain
voltages calculated with the compact model (solid red lines) and compared to measurements
(dashed blue lines) in linear and logarithmic scale. The devices’ back gate voltage is Vbg = 0 V
in the measurements. It is neglected in the compact model, which in agreement to [8] has a
negligible influence on the device current for deep cryogenic temperatures. (a) SBFET transfer
and (b) output characteristics with a channel length of Lch = 50 nm, measured at ϑ = 5.6 K.

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF SCHOTTKY BARRIER AND RECONFIGURABLE FIELD-EFFECT TRANSISTORS 
Christian Römer 



96 5 Model Additions for Deep Cryogenic Temperatures

5.5.2 Model Results Compared to Nanowire SBFETs

In this section the compact model is compared to measurements of nanowire SBFETs [86].
The devices are lightly-doped silicon elliptical-shaped nanowire SBFETs with nickel silicide
as source/drain materials and a HfO2/SiO2 oxide stack, followed up by a TiN gate [11]. The
important device geometries and the used model parameters can be found in Tab. 5.2. The
compact model results are obtained by using the potential model from Sec. 5.1 and all of the
discussed second order effects form Sec. 5.3. The model’s fitting parameters have been adapted
manually for a good agreement with the measured data. A schematic slice of a nanowire
SBFET is shown in Fig. 5.10. The channel doping of the devices is neglected in the compact
model at deep cryogenic temperatures because the dopants are expected to be frozen out.

Fig. 5.11(a) shows the results of a p-type SBFET as transfer characteristics for Vds =−0.1 V
and −0.4 V. The total device current is normalized to the approximated nanowire circumference.
As it can be seen in the results, the compact model results show a good agreement to the
measurements. The subthreshold part of the characteristics is fitted using the band tail model
from Sec. 5.3.2. The difference between the model with and without band tail addition is
shown in Fig. 5.11(a) (solid vs dotted lines). The oscillations, that are provided by the model
and that are especially notable in the linear characteristics, are not entirely in phase with the
oscillating measurements. It can be seen that for Vds = −0.1 V and −1.1 V > Vgs > −0.8 V the
oscillations are in phase, while they are drifting apart for higher (negative) gate voltages. Also,
at Vds = −0.4 V the model’s oscillations are overpronounced. This shows that the simplified
oscillation model cannot capture the effects entirely, yet, but gives a good approximation to
measured effects.

Figure 5.11(b) shows the result of the n-type SBFET as transfer and Fig. 5.12 as output
characteristics at various bias conditions. Both characteristics also show a good agreement, in
general. Since for this case there is not a huge number of oscillations (at least in the transfer
curves), the model was fitted so it also barely shows oscillations. In the output characteristics
of Fig. 5.12(a) slight deviations are visible for lower Vds. This could indicate ohmic contact
resistances which are not covered by the compact model, yet.

tox

Lch

RNW

CNW

Gate

Channel

Oxide

S D

Figure 5.10: Schematic slice of one half of the nanowire SBFET which is used for compact
modeling and is similar to the measured devices. The relevant geometric parameters are shown.
CNW corresponds to the nanowire channel’s circumference. Values of the devices under investi-
gation are shown in Tab. 5.2.
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Figure 5.11: Compact model result (solid red lines) vs measurements (dashed blue lines) of
nanowire SBFETs, performed at ϑ = 5.5 K. The device geometries and model parameters can
be found in Tab. 5.2. The shown transfer characteristics are presented in linear and logarithmic
scale for the given drain voltages The current is normalized to the nanowire’s circumference
CNW. (a) n-type transfer characteristics of the Lch = 70 nm device (from [11]). (b) p-type
transfer characteristics of the Lch = 100 nm device
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Figure 5.12: Compact model result (red solid lines) vs n-type measurement (blue dashed
lines) of the Lch = 70 nm n-type nanowire SBFET, performed at ϑ = 5.5 K. The device
geometries and model parameters can be found in Tab. 5.2. The output characteristics are
shown for the given gate voltages. The current is normalized to the nanowire’s circumference
CNW. (a) presents a lower Vds section of the characteristics which is calculated by the injection
model only. (b) presents the full measured Vds range using the same Vgs values as in (a). In
this result the red dotted lines are calculated using the injection model only. The red solid lines
show the results including the channel resistance addition from Sec. 5.3.3.
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Finally, Fig. 5.12(b) shows the model results of the n-type nanowire measurement with an
extended Vds range up to 1.2 V. In this part the channel resistance model from Sec. 5.3.3 is
included (solid red lines) and compared to using the injection model only (dotted red lines).
The parameters for the channel resistance model are shown in the lower section of Tab. 5.2. As
it can be seen in the results, using only the injection model is not sufficient to capture the entire
Vds range, because it overestimates the current. In contrast to this, the Channel MOSFET
addition limits the calculated drain currents very well. Although, it has to be noticed that the
electron mobility for the channel needed to be reduced in order to fit the characteristics. This
reduction does not fit to the reported intrinsic semiconductor behavior [91], but it has been
shown that the mobility for doped silicon close to absolute zero can get massively reduced,
due to ionized impurity scattering [92]. So, reasons for the reduced electron mobility could be
the ionized impurity scattering or quantum confinement effects, due to the small nanowire’s
diameter.

Table 5.2: Device parameters of the devices under investigation in Fig. 5.11 and Fig. 5.12

Parameter P-type Dev. N-type Dev.
Lch [nm] 70 100
RNW [nm] 2.6 2.3
CNW [nm] 16.5 14.1
tox [nm] 5.5 5.5
teff,FE [-] 0.2 0.2
εr,ox [-] 17.1 17.1
εr,sc [-] 11.7 11.7
Eg [eV] 1.1696 1.1696
ΦB,n [V] 0.5800 0.5800
ΦB,p [V] 0.5896 0.5896
λ [nm] 2.18 2.18
∆Vbound [V] 0.1 0.1
γsat [-] 10 10
mp/n [-] 0.081 0.081
BPAT [-] 7.43 × 10−3 3.15 × 10−4

Vfb [V] −0.095 0.420
ωE/(2π) [eV−1] 18 20
φ0 [-] 0 0
Ets,fit [meV] 5.0 66.7
αts [-] 0.50 0.11
VT0 [V] - 0.38
S [mV/dec.] - 60
γMOS [-] - 4
µn [cm2 V−1 s−1] - 1.26
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CHAPTER 6

Compact Modeling of Reconfigurable Field-Effect Transistors

In this section the adaption of the room temperature compact model, introduced in Chapter 4, to
a compact model covering RFETs is explained. The difficulty of modeling RFETs compared to
SBFET is the introduction and inclusion of (at least) one additional gate electrode. Additional
electrodes lead to an increased complexity of the model equation, since for all possible bias
conditions the model needs to output a valid result, while fulfilling the basic rules for compact
models.

Another point that needs to be considered is the type of RFET that shall be described by
the model. As it is shown in Sec. 3.3.3, there are multiple different structures that are called
RFET. All of these devices have a similar goal of using an additional gate as polarity gate, but
they vary in the way this goal is achieved and can also vary in their characteristics. This means
that a compact model that offers a very detailed physical description of a certain RFET type
A, might be very inaccurate on another type B.

This chapter is split into two main sections. The first section (Sec. 6.1) focuses only on
compact modeling of the dually-gated RFET variation, while keeping a constant polarity
gate voltage [81–83]. The second part (Sec. 6.2) discusses some approaches for other device
structures and more than one steady gate.

6.1 Compact Model for Fix-Programmed Dually-Gated RFETs

This section describes the adaption of the room temperature compact model to fix-programmed
RFETs. The devices covered by this model addition are the dually-gated RFETs, which are
introduced in Sec. 3.3.1. The contents and results of this section is published in [81–83].

The first step of the model adaption is to split up the one gate of the SBFET model into
two gates of the dually-gated RFET - the source-side and the drain-side gate, and considering
the impact on the potential model. This is described in Sec. 6.1.1.
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102 6 Compact Modeling of Reconfigurable Field-Effect Transistors

In the next step, described in Sec. 6.1.2, the channel resistance addition from Sec. 4.4 is
extended for the RFET, in order to consider the channel resistance of the ungated region in
the covered devices.

Section 6.1.3 explains the calculation of the final device current, considering either a
charge-carrier type suppression by the second gate, or the usage of the RFET as SBFET.

Finally, the model results compared to TCAD simulations and measurements are shown and
discussed in Sec. 6.1.4. The RFET measurements have been provided by Technische Universität
Dresden and NaMLab gGmbH.

6.1.1 Injection Model Extension for two Independent Gates

The dually-gated RFET variation, as described in Sec. 3.3, has a similar structure to a SBFET,
but with the single gate split up into a source-side and a drain-side gate, which leads to an
additional input voltage for the compact model. When running a RFET in the on-state, the
injection side for the main charge-carrier type (either electrons or holes) is the source side of
the device, where the source-side gate is considered to be the CG, with the applied Vcg voltage.
The second gate (drain-side gate) with its applied PG voltage Vpg is used to suppress the other
carrier type, when programmed to a fixed voltage of Vpg ≫ 0 for suppressing a hole current
and Vpg ≪ 0 for suppressing an electron current.

For the implementation of both gates, the 2D potential model used in the model, which is
introduced in Sec. 2.1.4 and used in Sec. 4.1, is adjusted for the second gate. In the potential
model of Sec. 2.1.5, the gate voltage is considered as boundary condition in the source-related
potential Eq. (2.35) and the drain related potential Eq. (2.36). In case of the RFET, the source
and drain related cases are considered by using the corresponding gate voltage, so Vcg for
ϕ2D,s(x,y) and Vpg for ϕ2D,d(x,y). In the 2D potential model for the SBFET the two calculated
potentials are added together in the last step (Eq. (2.37)), which supports potential overlapping
in short channel SBFETs. In case of the RFET, it is not expected to have a comparably short
channel device, since both gate of the device need to have a certain distance from each other.
Therefore, the step from Eq. (2.37) is left out in the RFET model and the next step, which
are the auxiliary potentials from Eq. (4.8) to Eq. (4.15) are calculated using Eq. (2.35) for the
source side or Eq. (2.36) for the drain side instead.

The current calculation for the RFET model works similar to the SBFET model. It needs
to be considered that, due to the potential model adjustments, there is an unsteadiness in the
channel potential at Lch/2, which leads to two solutions for the potentials Φcen,L/2 and Φsur,L/2

in the middle of the device. This needs to be considered in the TE current calculation, so Φbar

of Eq. (4.40) considers the maximum of the source or drain-related case, now.

The current balancing model from Eq. (4.41) is also still used in the RFET model. However,
it needs to be mentioned that this model only works properly in the programmed case with
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6.1 Compact Model for Fix-Programmed Dually-Gated RFETs 103

Vds ≈ Vpg, or in the SBFET use case with Vcg = Vpg. In case of a different polarity of Vcg and
Vpg, the addition of Sec. 6.1.3 needs to be considered. The current RFET model state does not
fully support a steady variation of the PG.

6.1.2 Modeling of the Ungated Channel Impact

In Sec. 4.4, the channel resistance inclusion into the SBFET model is explained. This unwanted
second-order effect is given by a resistance of the device’s channel at high voltages and high
channel length, so the injection model is not sufficient to describe the transistor’s characteristics.
For RFETs the channel resistance is supposed to be even more impactful, since they have
ungated regions, between the CG and PG, given by the CG-to-PG distance Lung. Within
this ungated region the electrostatic coupling of the channel surface to the gates diminishes
drastically, which leads to less accumulated charge carriers that can contribute to the transistor’s
current flow. This has been investigated in the TCAD simulation shown in Sec. 3.3.2.2. For the
modeled RFET, the equations from Sec. 4.4 are adopted, but with some modifications. First,
Eq. (4.44) is slightly adjusted, as:

IMOS = 2µWch

Lch
·
[
kbϑ

q
·
(
Q′

s −Q′
d
)

+ Q′2
s −Q′2

d
2 · C′ox,κ

]
, (6.1)

where C′
ox is replaced by C′

ox,κ, defined as:

C′
ox,κ = κung · εox

tox
. (6.2)

The parameter κung is a fitting parameter smaller or equal than one representing the missing
gate coverage in RFET devices and therefore, the much higher ungated channel resistance. The
reduced gate coupling in the ungated region is illustrated in Fig. 6.1.

In order to obtain an average gate voltage for a dually gated RFET, a replacing gate voltage
for the modeled channel MOSFET is calculated by:

Ṽgs,MOS = Vcg + Vpg

2 . (6.3)

Both charge densities of Eq. (6.1) are similarly defined as in Eq. (4.45) and Eq. (4.46), but
including the average channel MOSFET gate voltage and C′

ox,κ, as:

Q′
s = S

ln(10) · C′
ox,κ ·W0

(
exp

(
Ṽgs,MOS − VT0

S/ln(10)

))
, (6.4)

and with Ṽgd,MOS = Ṽgs,MOS − Vds

Q′
d = S

ln(10) · C′
ox,κ ·W0

(
exp

(
Ṽgd,MOS − VT0

S/ln(10)

))
. (6.5)
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104 6 Compact Modeling of Reconfigurable Field-Effect Transistors

With this channel resistance model adjustments, this second-order effect can be used for the
RFET model. For the inclusion of this model addition, Eq. (4.48) is used, as for the SBFET
model.

Figure 6.1: Electrostatic impact of the RFET’s gates on the ungated channel. The left-hand
side figure shows the electrostatic coupling of the gates on the ungated channel area, which is
reduced due to the distance to the gates. The right-hand side figure is the compact model’s
used substitution. The reduced C′

ox,κ is represented by an increased oxide thickness in the
figure.

6.1.3 Program Gate Induced Carrier Suppression

One important step of the RFET model that needs to be discussed is the polarity reconfigura-
bility. In order to make the model applicable to RFETs, that have been configured as n-type or
p-type, one of the two charge-carrier types need to get suppressed in the FE current calculation,
depending on the PG bias. This is done by using the total FE injection current Eq. (4.41),
with a modification, as:

JFE,tot =





sn · JFE,s,n − sn · JFE,d,n, Ex(x = Lch) < 0
sn · JFE,s,n, Ex(x = Lch) = 0
sn · JFE,s,n + sp · JFE,d,p, Ex(x = Lch) > 0

. (6.6)

The introduced coefficients sn and sp represent the current programming status of the modeled
device and can have the exact values of 0 or 1, where sn activates or deactivates the electron
current contributions and sp activates or deactivates the hole current contributions. The system
works similarly for holes as main injection current, in case Vds < 0.

There are three different operation modes for the current model implementation. In case
of Vpg ≫ 0 the device is supposed to be in n-type operation mode which results in sn = 1
and sp = 0 in the compact model. In case of Vpg ≪ 0 the device is supposed to be in p-type
operation mode which results in sn = 0 and sp = 1 in the compact model. The third valid
option is setting sn = sp = 1, which results in using the RFET as a regular SBFET, as if
Vpg = Vcg.
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6.1 Compact Model for Fix-Programmed Dually-Gated RFETs 105

6.1.4 Model Results

The model verification is done by a combination of TCAD simulations and measurements [82].
Therefore, the measurement of the device from [66] is used. In order to obtain results for a
SBFET including the symmetric device behavior, the TCAD simulation from [67] is used to
simulate a device with various bias conditions. Tab. 6.1 shows the geometric, material, and
fitting parameters that are used for the compact model. The model results have been obtained
by using the injection model only, while neglecting the channel resistance. For this calculation,
the 2D potential model in combination with the effective gate-source voltage according to
Eq. (4.1) is used. The fitting of the compact model has been done by a manual parameter
variation, as in the previous fits. While the real and the simulated structures are gate-all-around
nanowire structures, the compact model calculates a double gate structure. Therefore, in the
model a channel width Wch is used which is in the same order of magnitude than the nanowire’s
diameter. The discrepancy between those two structures is compensated by the model’s fitting
parameters.

Figure 6.2 shows the device transfer characteristics with the actual measurement, the
corresponding TCAD fit and the model fit, in linear and logarithmic scale. Figure 6.2(a) shows
the p-configured version with a program gate voltage of Vpg = −2 V and a drain voltage of
Vds = −2 V. Figure 6.2(b) shows the n-configured version with a program gate voltage of
Vpg = 2 V and a drain voltage of Vds = 2 V. The model shows a good agreement compared
to the TCAD simulation results. There are slight deviations in the p-type characteristics,
because of the unsteadiness in the measured curve. Figure 6.3 to Fig. 6.4 depict various TCAD
simulation scenarios compared to the model. They show the same transfer characteristics as
Fig. 6.2, but with additional drain voltages. Figure 6.5 shows the results of the RFET used
as SBFET model results. In these two simulations the PG was not fixed but biased similarly
to the CG (Vpg = Vcg), which leads to a device behavior like a SBFET. Figure 6.6 shows one
simulated output characteristics per operation mode (with a fixed PG voltage). Although the
model shows some deviations in the curvature, which may be attributed to the neglected effect
of current control by the channel conductivity, the overall behavior is well captured by the
compact model.
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Figure 6.2: Transfer characteristics of a RFET device calculated from the compact model
(solid red lines) compared to TCAD simulations (blue dots) and measurements (green crosses)
from [66] in linear (left axis) and logarithmic (right axis) scale. (a) p-type operation mode
(Vds = Vpg = −2 V). (b) n-type operation mode (Vds = Vpg = 2 V). The used model parameters
can be found in Tab. 6.1.
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Figure 6.3: Transfer characteristics calculated from the compact model (solid red lines) com-
pared to TCAD simulations (blue dots). (a) p-type operation mode with Vpg = −2 V in linear
and (b) logarithmic scale. The used model parameters can be found in Tab. 6.1.
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Figure 6.4: Transfer characteristics calculated from the compact model (solid red lines) com-
pared to TCAD simulations (blue dots). (a) n-type operation mode with Vpg = 2 V in linear
and (b) logarithmic scale. The used model parameters can be found in Tab. 6.1.
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Figure 6.5: Transfer characteristics calculated from the compact model (solid red lines) com-
pared to TCAD simulations (blue dots). (a) transfer characteristics for various negative drain
voltages and (b) transfer characteristics for various positive drain voltages, while the device is
used in SBFET mode (Vcg = Vpg), in logarithmic scale. The used model parameters can be
found in Tab. 6.1.
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Figure 6.6: Output characteristics calculated from the compact model (solid red lines) com-
pared to TCAD simulations (blue dots). (a) p-type operation mode for various CG voltages
with Vpg = −2 V. (b) n-type operation mode for various CG voltages with Vpg = 2 V. The used
model parameters can be found in Tab. 6.1.
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Table 6.1: Device parameters of the device under investigation in Fig. 6.2 to Fig. 6.6

Parameter Value
Lch [nm] 220
Wch [nm] 12
tch [nm] 12
tox [nm] 8
teff,FE [-] 0.2
teff,TE [-] 0.8
εr,ox [-] 3.9
εr,sc [-] 11.7
Eg [eV] 1.1696
ΦB,n [V] 0.5800
ΦB,p [V] 0.5896
mn [-] 0.10
mp [-] 0.09
µtn [cm2 V−1 s−1] 59.78
µtp [cm2 V−1 s−1] 43.59
γn [-] 0.2
γp [-] 0.2
α [-] 0.5
Vfb [V] 0

The second model calculation (from [83]) is done on measurements of the RFET device
from [93]. The used model parameters can be found in Tab. 6.2. The geometric parameters
are selected to match the measured device as good as possible, so the values of Wch and tch

are chosen to approximately fit the nanowire’s elliptical base area [93]. The length of the
device’s channel is estimated to be about Lch,nw ≈ 2.1 µm, while the ungated channel of this
device can be estimated to be about Lung,nw ≈ 0.7 µm. For obtaining the model results, the
channel resistance model from Sec. 6.1.2 is used, together with the effective gate-source voltage
calculation according to Eq. (4.3). The results of this model comparison, shown in Fig. 6.7 and
Fig. 6.8, contain calculated vs. measured transfer and output characteristics, while all of the
presented cases show the device programmed in p-mode, using negative gate and drain voltages.
In addition, Fig. 6.7(b) shows the compact model results obtained by just using the injection
model (brown dotted lines), which shall demonstrate the necessity of the channel resistance
model of Sec. 4.4 and Sec. 6.1.2. The results show a good agreement between measurements
and the compact model. However, there are slight deviations in the subthreshold slope and
the curve traces of the output characteristics. While observing the deviations in the output
characteristics it is notable that the measurements have a stronger s-shape behavior, which
could be attributed to non-idealities at the device’s Schottky junctions and its simplification in
the model. E.g. the Schottky barrier lowering is neglected.
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Figure 6.7: Device characteristics calculated from the compact model (solid red lines) and
compared to measurements from [93] (green crosses). The geometries of the measured device
are Lch ≈ 2.1 µm, Lung ≈ 0.7 µm, RNW = 3.5 to 16 nm (elliptical shape) and tox ≈ 6.5 nm.
The compact model parameters can be found in Tab. 6.2. (a) shows the transfer characteristics
for various negative drain voltages in linear scale and (b) shows the same results in logarithmic
scale. Additionally, (b) shows the results from using the injection model only (brown dotted
lines). During the transfer characteristics measurement, the PG was fixed to Vpg = −2.8 V.
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Figure 6.8: Output characteristics calculated from the compact model (solid red lines) and
compared to measurements from [93] (green crosses) for various negative gate voltages. During
these measurements the gate voltages are given as Vgs = Vcg = Vpg. The geometries of the
measured device are Lch ≈ 2.1 µm, Lung ≈ 0.7 µm, RNW = 3.5 to 16 nm (elliptical shape) and
tox ≈ 6.5 nm. The compact model parameters can be found in Tab. 6.2.
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Table 6.2: Device parameters of the device under investigation in Fig. 6.7 and Fig. 6.8
Parameter RFET (Meas.)

Lch [µm] 2.1
Wch [nm] 16
tch [nm] 3.5
tox [nm] 6.5
teff,FE [-] 0.2
teff,TE [-] 0.8
εr,ox [-] 3.9
εr,sc [-] 11.7
Eg [eV] 1.1696
ΦB,n [V] 0.5800
ΦB,p [V] 0.5896
Vlimit [V] 1.50
γVg,eff [-] 2.75
mn [-] 0.26
mp [-] 0.27
µtn [cm2 V−1 s−1] 100.0
µtp [cm2 V−1 s−1] 870.0
γn [-] 0.20
γp [-] 0.23
κung [-] 0.13
VT0 [V] 0.38
S [mV/dec.] 60
γMOS [-] 2.0
µn [cm2 V−1 s−1] 1440
µp [cm2 V−1 s−1] 450
Vfb [V] 0
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6.2 Approaches for Further Investigation

The RFET model which has been discussed in the previous sections is based on the SBFET
injection model, while using a charge carrier suppression which depends on the PG voltage.
In case of a transistor characterization with a fixed programming state and a main carrier
injection over the source-side SB, the given compact model is sufficient. In case that a steady
adjustment of the PG is needed for circuit simulation or the investigated device’s CG has a
different working principle (e.g. the TIG-RFET), further adjustments have to be done on the
model.

In the following sections, some approaches are discussed for handling RFET structures
which are not covered by the compact model, so far. The discussed methods have not been
implemented or verified, yet.

6.2.1 Empirical Approach for two Steady Gates

The PG of the RFET is meant to be used for switching between the operation modes of the
device and, in case the device is programmed, it is usually at Vpg ≈ Vds. Cases at which the
PG voltage differs from this rule would be during switching processes.

In Eq. (6.6) it is shown how the RFET compact model suppresses charge carriers in a digital
way, by setting the coefficients sn or sp to either 1 or 0. An empiric way of including a steady
suppression dependent on the CG’s and PG’s bias voltages would be an expression inspired by
the TE current (Eq. (4.40)), given as:

sn = exp
(

−
q · (Φsur,L/2,s − Φsur,L/2,d)

kbϑ

)
, (6.7)

with Φsur,L/2,s ≥ Φsur,L/2,d, or with sn = 1 for Φsur,L/2,s < Φsur,L/2,d. This equation uses the
potential barrier (in this case for electrons) between the two gates, to vary the factor sn between
0 and 1. The two potentials Φsur,L/2,s and Φsur,L/2,d are the same potentials as Eq. (4.6), but
calculated with the source- and drain-related potential model, as described in Sec. 6.1.1. A
similar equation to Eq. (6.7), with reversed potentials, would be needed to calculate sp for
the hole suppression. The expression could be also extended with a fitting parameter in the
exponent to adjust the rate of carrier suppression.

However, testing and fitting such an empirical approach would require several new simulation
or measurement results, demonstrating the impact of a PG sweep, with various fixed drain and
CG voltages, in order to have a proper verification. The approach from Eq. (6.7) would be only
valid for the dually-gated RFET, since in other RFET structures the potential distribution is
different.
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116 6 Compact Modeling of Reconfigurable Field-Effect Transistors

6.2.2 Macro Model Approach

Another approach for simulating RFETs, also covering more complex RFET structures, is by
using a macro model. This could be done by combining the closed-form injection-based SBFET
/ RFET compact model of this work with other circuit elements that can mimic certain parts
of the RFET (e.g. a second gate). Such a macro model could be used in a circuit simulator
(e.g. SPICE) to be solved. However, the usage of a macro model comes with the disadvantage
that it needs much more calculation effort, since it is solved numerically. In addition, it is
likely harder to adjust the model’s fitting parameters since each part of the model has its own
parameters and needs separate adjustments.

Figure 6.9 shows some suggestions to construct a DC macro model for TIG-RFETs (see
Fig. 3.19(b)) using the injection model. The first step (Fig. 6.9(a)) shows a simple version of a
macro model, using the injection SBFET model for the source-side and drain-side gates. The
MOSFET model which represents the CG in the middle of the channel must be a model which
can be used for intrinsic semiconductors and uses accumulation of charge-carriers as conduction
mechanism. This macro model would be able to calculate the RFET current through all three
gates and, in case one gate is switched off, the corresponding part of the model would block
the total current. However, this first suggestion has a design flaw since it does not distinguish
the flowing charge-carrier type. If for example, the source-side injection model calculates an
electron current and the CG transistor is negatively biased and calculated a hole current, the
macro model will still conduct a total current, because after each model part the carrier type
information is dropped, which is important for a real RFET. Therefore, the model of Fig. 6.9(a)
can only be used for one carrier type (one operation mode).

An extension of the simple model is shown in Fig. 6.9(b). In this macro model the injection
SBFET model parts have separate outputs for the electron and hole currents, which would
require minor adjustments to the compact model. Additionally, the CG in the device’s center is
represented by two transistors, now. One transistor is p-type only and is located inside the hole
injection connection and the other transistor is an n-type transistor in the n-type connection.
With this macro model, there is a clear distinction between the carrier types inside the model
and a total current can only flow in case that all model parts are conductive for the same type
of charge carrier. The downside is, compared to the first suggestion, the complexity of the
circuit and therefore the calculation effort has increased.

A further step of this model, which can be used to describe more complex RFET structures
(for example the multi CG RFET, investigated in [71]), is shown in Fig. 6.9(c). This approach
shall demonstrate that the macro model could also be used to model more than just one central
gate, by adding one p- and n-type transistor combination per additional gate, for the cost of
an increased circuit complexity.

It shall be mentioned that this macro modeling approach is not only a way of just being
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(a)

(b)

(c)

Figure 6.9: Macro model circuits for modeling TIG-RFETs by using a combination of the
SBFET injection model and one or more FETs (T) as components. (a) shows a simplified
approach with one channel FET. (b) uses two FETs (one p-type and one n-type) for the CG,
with one FET for each carrier type. (c) is the extension of (b) for multiple CGs, using two
FETs (one p-type and one n-type) per CG.
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118 6 Compact Modeling of Reconfigurable Field-Effect Transistors

able to simulate the given RFET structures. It could also help improving the understanding of
the different device operation modes and also lead to some simplifications of the model. For
example, it could be possible, by some adjustments of the CG voltages and device parameters
to translate the structure from Fig. 6.9(c) to Fig. 6.9(b). Additionally, by characterizing the
central gates, it could also be possible to find a way of extracting a compact expression for
certain device structures, which could be finally included into the channel MOSFET addition
of the compact model, in order to translate the macro model back into a compact model.
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CHAPTER 7

Conclusion

In this work the derivation of a physics-based and closed-form DC compact model is presented
which is applicable on several transistor types working on the principle of SB injection. More
detailed, the model has been derived for SBFETs at room temperature and extended for
SBFETs at deep cryogenic temperatures (ϑ ≈ 0 K), as well as for fix-programmed RFETs at
room temperature. All three model parts are supplemented by the inclusion of second order
effects coming to the fore in their operation environment. The verification of the compact
model has been done on TCAD simulations and measurements, and all of the discussed model
parts generally show a good agreement to the simulated and measured data, while only using a
small number of fitting parameters.

The room temperature SBFET calculates the DC drain current of a SBFET by using
expressions for the TE and FE current contribution. While the TE current, which acts as
off-state or leakage current, already has some closed-form expressions from literature, the FE
current expression is approximated in order to obtain a closed-form current equation. This
approximation of the on-state FE current is done by a simplified tunneling equation using the
WKB approach in order to calculate tunneling charge carriers through the transistor’s SBs.
This model is also extended by including channel resistance effects for long-channel devices, by
using a charge-based MOSFET model for limiting the SBFET’s total drain current.

The room temperature SBFET model is modified in a second step for the usage at deep
cryogenic temperatures, and thereto the compact model is derived estimating a temperature of
about ϑ ≈ 0 K. In this state the TE current is supposed to be non-existent. The FE current
contribution, which is supposed to be the only injection current in this operation environment,
is re-calculated using a simplified expression for the Fermi distribution function. This model
variation also empirically includes second order effects that have been experimentally observed
at these temperatures. The included effects are quantum oscillations which are oscillations of
the drain current in the device characteristics, the band tail effect that flattens the SBFET’s
subthreshold swing, and the channel resistance model similar to the one from the room

119

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF SCHOTTKY BARRIER AND RECONFIGURABLE FIELD-EFFECT TRANSISTORS 
Christian Römer 



120 7 Conclusion

temperature approach.

The model variant for RFETs is also an extension of the SBFET room temperature model.
In this part, the additional PG of the RFET is considered by suppressing one type of charge
carrier, which negates the ambipolar device behavior. This part of the model is also extended
by the channel resistance model as second order effect with the additional impact of the
ungated transistor part. Although, the RFET model is specifically derived for fix-programmed
dually-gated RFETs, there are suggestions made in this work how a steady PG and other
RFET structures can be supported.

In this work, the functionality of the compact model and all of its extensions has been
demonstrated. The model in its current state is implemented in MATLAB (MathWorks, Inc.)
for programming and testing at a single device level. For a proper usage of the model in a circuit
simulator, as a last step it needs to be translated to Verilog-A and tested in this environment,
which has yet to be done. In addition to the transition into a SPICE environment, a studies
and guidance for the model’s fitting parameters has to be done. The fitting process in this work
is performed by a manual variation of the parameters. Some of the model’s fitting parameters
are more dominant in certain voltage regions of the characteristics, and some parameters have
overlapping effects on the model outputs. The different parameters need to be documented with
their impact on the characteristics and reasonable limitations, in order to provide a functional
compact model operation state and a good starting point for model fits.

Moreover, for the compact model there are additional effects that may be considered as
future investigations. Although, there are several cases mentioned throughout the document
which have been neglected in the model derivation, because they have not been relevant in the
specific cases. Some other effects are included empirically. A few points shall be mentioned
at this point which could be interesting to further investigate in the future, depending on the
model’s use case:

• The compact model in all of its extends has been derived and tested for nickel silicide to
(almost intrinsic) silicon SBs, specifically. This junction leads to the symmetric device
characteristics for electron and hole currents. However, the model has not been tested
and verified on SBFETs with unsymmetrical characteristics (see Sec. 3.2.2.1) or other
semiconductor materials like germanium, yet. The model supports several material
parameter adjustments, like changing the semiconductors bandgap Eg, the source / drain
metal work function by adjusting the SB heights ΦB,n and ΦB,p, or the gate’s work
function by adjusting the flatband voltage Vfb. In the current implementation state,
only semiconductor materials with the Fermi energy in the middle of the bandgap are
supported, because some equations like the built-in potential are calculated by estimating
that EC −Ef ≈ Ef −EV ≈ Eg/2. This means that doped silicon cannot be used as channel
material at the moment. In order to add the support for other (doped) semiconductor
materials into the model, some of the equations need to replace the Eg/2-expression by
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accurate values for EC − Ef and Ef − EV, respectively.

• The SBL effect, introduced in Sec. 2.4.3, has been neglected in this work. Although, this
effect is supposed to impact the FE current, its impact on the TE current is higher, since
the TE current is directly exponentially affected by the SB height, while the FE current
has a stronger dependency on the SB thickness. In the model and simulation results, it
can be observed that the TE current contribution can mostly be neglected (in case of
SBFETs) or only describe the off-current (in case of programmed RFETs). By extending
the model towards material combination with lower SB heights, the TE current might be
more impactful again. In this case, adding the SBL effect at least in the TE equations
might lead to improved results.

• The quantum confinement effects have been neglected so far, which is also debatable
in the results of Sec. 5.5.2, since the nanowire diameters are smaller than 10 nm. Even
though the model results show a good agreement to the measurements, the quantum
confinement effects in this case might be just covered by other fitting parameters.

• Especially, in case of the deep cryogenic SBFET modeling, there is the need of additional
studies and model fits. This would be useful for a better characterization of the included
second order effects, as the quantum oscillation and the channel MOSFET addition at
ϑ → 0 K. The model for quantum oscillations is inspired by the local density of states
calculated with the compact NEGF approach, although the measured characteristics seems
to include more oscillation effects. Those might be also caused by resonant tunneling
effects inside the device or through the SB, which has not been clarified, yet, and also
needs some additional experimental studies.

There are also possibilities for longer term investigations of using this work’s compact model
for other device’s or extend the model for other use cases. Some possibilities shall be briefly
discussed:

• The currently implemented compact model is for the DC current calculation only. For a
fully operational compact model that can be used to simulate the switching behavior of
circuits comprising SBFETs or RFETs, it is mandatory to also have a valid AC model
describing the device behavior. For this case, modeling approaches like shown in [94, 95]
could be used.

• The temperature dependency of the model is restricted to room temperature and deep
cryogenic temperatures. Although, the room temperature SBFET model uses the temper-
ature in its equations, due to the approximations done for the derivation, the temperature
dependency is not supposed to be varied steadily and work for all temperatures. It
might be helpful to have a single compact model that is able to describe the transistors’
behavior for all temperatures, by just varying that single parameter. This, however, would
need a more extensive temperature studies of the devices (with TCAD simulations and
measurements) and the derivation of the equations including temperature dependencies,
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which also means a unification of the used potential model and the injection equations.

• In terms of the model adaption towards different types of RFETs, in Sec. 6.2 there
are already some suggestions on how to include a steady PG or a central gate into the
model. Modeling specific types of RFETs close to the device’s physics comes with the
disadvantage that the resulting compact model would be more specialized towards that
certain technology, and less open or flexible towards other type of RFETs. The currently
implemented version of the RFET model, using the carrier type suppression, is applicable
to all SB injection based RFETs. More specific modeling approaches might be just valid
for a certain type of technology, so a further specialization of the model should be done
on demand for it.

• Similarly, the model for SBFETs could be potentially adapted to other SB-based technolo-
gies. As example, the ferroelectric SBFET could be modeled by replacing the constant
oxide permittivity εr,ox by a voltage and time-dependent expression, or it might be used
for source-gated transistors by replacing the potential model.
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