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ABSTRACT

Bose–Einstein condensation is a direct consequence of quantum statistical effects. It
occurs in ultradilute gases at very low temperatures: most atoms condense into the
lowest-energy state and behave as a single matter wave. In this thesis, we study
Bose–Einstein condensates (BECs) of dilute and weakly interacting atoms within the
mean-field framework and focus on two topics: anisotropic interactions and self-bound
states.

In ultracold dilute gases, the most common atom–atom interactions are short-range
and isotropic. However, the interactions can also be anisotropic, for instance, when
the gas is either formed of atoms with a large magnetic moment or subject to an
artificial gauge field, exhibiting dipolar and chiral interactions, respectively. The
interacting nature of the system gives rise to two possible solutions that do not require
external confinement: quantum droplets and solitons. Droplets emerge from the
balance between quantum fluctuations and the mean-field interactions, while solitons
are localized excitations sustained by the competition between the dispersion and
nonlinearity of the medium.

We begin the thesis by developing the theoretical framework. First, we present single
andmulticomponent BECs, the mean-field regime and its constraints, and the conditions
of existence for droplets and solitons. Then, we introduce dipolar interactions, their
effect on the stability and geometry of the system, and how dipolar droplets, as well
as crystals of droplets, may form due to the stabilizing effect of quantum fluctuations.
Last, we present BECs coupled to artificial density-dependent gauge potentials, which
have effective interactions that are chiral (i.e., depend on the direction of motion of the
atoms).

The first system under consideration is a BEC confined in a shell-shaped potential in
the presence of gravitational sag. We explore both the dipolar and nondipolar cases and
study the interplay between the anisotropy of the dipolar interactions (or the lack thereof)
and the privileged direction set by gravity. We study the ground-state configurations
of the system and the dynamics when changing perturbatively the orientation or the
strength of the gravitational force.

Afterward, wemove to binarymixtures of nondipolar and dipolar BECs to investigate,
respectively, the formation of solitons and droplets. In the first case, we consider a
quasi-1D bosonic mixture within the immiscible regime. We examine the dynamics
of a dark soliton moving through the domain wall between components, which may
generate, in some cases, a dark–bright soliton. The resulting dark–bright soliton follows
a harmonic-like trajectory. Concerning the dipolar case, we propose a two-component
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BEC with antiparallel dipoles, which forms self-bound structures when unconfined. In
the presence of confinement in the dipole direction, the mixture can form incoherent
stripes if the interactions are symmetric and droplet crystals if they are asymmetric.
These droplet crystals are composed of an array of incoherent droplets in one component
surrounded by an interstitial superfluid in the other. In both cases, the resulting
structures are self-bound in the transversal plane.

To study the effect of chiral interactions, we regard a quasi-1D BEC confined in a
rotating ring geometry and coupled to a density-dependent gauge potential, which
produces chiral currents. We give an analytical description of the general stationary
states of the system (plane waves and solitons) and test their dynamical stability. Finally,
we split the system into two components employing a double-well potential to obtain
a 1/2-spinor condensate. Besides the linear coupling between the two spin states, the
system also presents an effective spin–orbit coupling due to the chiral nature of the
interactions. The solutions of the scalar case are also solutions of the spinor case, but
now the system also supports states that may have nonzero polarization, leading, for
instance, to Josephson vortices.

* * *

La condensació de Bose–Einstein és una conseqüència directa dels efectes de l’estadística quàntica.
Té lloc en gasos ultradiluïts a temperatures molt baixes: els àtoms condensen a l’estat de mínima
energia i es comporten com una única ona de matèria. En aquesta tesi estudiem condensats de
Bose–Einstein diluïts d’àtoms amb interaccions febles dins del formalisme de camp mitjà, i ens
centrem en dos temes: interaccions anisotròpiques i estats autolligats.

En gasos ultrafreds diluïts, les interaccions interatòmiques més comunes són de curt abast i
isotròpiques. Tanmateix, les interaccions també poden ser anisotròpiques, per exemple, quan el
gas està format per àtoms altament magnètics o bé quan està sotmès a un camp de gauge artificial,
de manera que les interaccions són dipolars o quirals, respectivament. El caràcter interactuant
del sistema dona lloc a dues possibles solucions que no requereixen un confinament extern: gotes
quàntiques i solitons. Les gotes es formen gràcies al balanç entre les fluctuacions quàntiques i les
interaccions de camp mitjà, mentre que els solitons són excitacions localitzades que mantenen la
seva forma a causa de la competició entre la dispersió i la no-linealitat del medi.

Comencem la tesi desenvolupant el marc teòric. Primer de tot, presentem els condensats
formats per una o més components, el règim de camp mitjà i les seves limitacions, i les condicions
sota les quals les gotes i els solitons poden existir. Seguidament, introduïm les interaccions de
tipus dipol–dipol, el seu efecte en l’estabilitat i la geometria del sistema, i com l’efecte estabilitzant
de les fluctuacions quàntiques permet que es formin gotes dipolars així com cristalls de gotes. Per
acabar, presentem condensats acoblats a potencials de gauge artificials que depenen de la densitat,
els quals tenen unes interaccions efectives que són quirals (és a dir, interaccions que depenen de
la direcció en què es mouen els àtoms).
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El primer sistema que considerem és un condensat confinat en un potencial amb forma de
closca sota l’efecte de la gravetat. Explorem tant el cas dipolar com el no-dipolar, i estudiem el joc
entre l’anisotropia de les interaccions dipolars (o la seva absència) i la direcció privilegiada que
dicta la gravetat. Estudiem les configuracions de l’estat fonamental del sistema i la dinàmica
quan es pertorba l’orientació o la magnitud de la força de la gravetat.

A continuació, ens centrem en barreges binàries de condensats no-dipolars i dipolars per
investigar, respectivament, la formació de solitons i gotes. En el primer cas, considerem una
barreja bosònica quasi-1D dins del règim immiscible. Examinem la dinàmica d’un solitó fosc que
es mou a través de la interfase entre les dues components, que pot donar lloc, en alguns casos, a
un solitó fosc–brillant. El solitó que en resulta descriu una trajectòria harmònica. Respecte al cas
dipolar, proposem un condensat de dues components amb dipols antiparal·lels, que pot donar lloc
a estructures autolligades sense confinament extern. Quan el sistema està confinat al llarg de la
direcció dels dipols, la barreja pot formar franges incoherents si les interaccions són simètriques i
cristalls de gotes si són asimètriques. Aquests cristalls de gotes estan formats per una xarxa de
gotes incoherents en una de les components envoltada per un superfluid intersticial a l’altre. En
ambdós casos, les estructures que en resulten són autolligades en el pla transversal.

Per estudiar l’efecte de les interaccions quirals, considerem un condensat quasi 1D confinat
en una geometria rotant tipus anell i acoblat a un potencial de gauge depenent de la densitat, de
manera que els corrents persistents que es produeixen esdevenen quirals. Donem una descripció
analítica dels estats estacionaris generals del sistema (ones planes i solitons), i comprovem la seva
estabilitat dinàmica. Finalment, separem el sistema en dues components a través d’un potencial
de doble pou per obtenir un condensat espinor 1/2. A part de l’acoblament lineal entre els dos
estats d’espí, el sistema presenta a més un acoblament espí–òrbita efectiu per la naturalesa quiral
de les interaccions. Les solucions del cas escalar són també solucions del cas espinor, però ara el
sistema suporta a més estats que poden tenir una polarització no-nul·la, donant lloc, per exemple,
a vòrtexs de Josephson.
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1
INTRODUCTION

Bose–Einstein condensation occurs when cooling down a gas of identical bosons to
fractions of microkelvins. At such low temperatures, quantum statistics govern the
behavior of the system: the thermal de Broglie wavelength becomes of the order of the
interparticle distance such that the individual wavepackets of the atoms overlap with
each other, and a notable fraction of the gas condenses into the same lowest-energy
state (Dalfovo et al., 1999; Leggett, 2001; Pethick and Smith, 2008; Pitaevskii and Stringari,
2016;Ueda, 2010). This transitionwas predicted a century ago byBose (1924) andEinstein
(1924, 1925) and was thus later named Bose–Einstein condensation. However, several
decades had to pass for laser-based cooling and trapping methods to reach maturity. In
general, the standard procedure to Bose-condense an atomic gas involves laser cooling,
magnetic or optical trapping, and subsequent evaporative cooling (see for instance
Ketterle and Van Druten, 1996; Metcalf and Van der Straten, 1999). The developments
of these cooling and trapping techniques earned Chu (1998), Cohen-Tannoudji (1998),
and Phillips (1998) the 1997 Nobel Prize.

It was not until the mid-1990s that the phenomenon of Bose–Einstein condensation
was finally observed in alkali atoms, which have an internal structure suitable for the
lasers that were available at the moment. The first Bose–Einstein condensates (BECs)
were achieved with ultradilute gases of rubidium (Anderson et al., 1995), sodium (Davis
et al., 1995), and lithium (Bradley et al., 1995, 1997a,b). Some years later, Ketterle
(2002), Cornell and Wieman (2002) won the 2001 Nobel Prize for observing for the first
time Bose–Einstein condensation in a weakly interacting and ultradilute gas of alkali
atoms. Since then, research on BECs has expanded theoretically and experimentally,
weaving into the fields of atomic physics, quantum optics, and condensed matter.

1.1 Bose–Einstein condensates

Although BECs of ultracold gases are very dilute, the extremely low temperatures
enhance the effect of the interactions. In such dilute gases, the leading atom–atom
interactions are two-body collisions. In alkali atoms, these interactions are short-range
and isotropic, and may be repulsive or attractive. Three-body processes are infrequent
but may still occur, and constitute the main loss mechanism of BECs and limit their
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lifetimes in experiments. As three-body losses grow rapidly with the atomic density, the
distance between atoms must be much larger than the typical range of the interactions
to reduce their probability.

When the interactions are weak and the number of atoms is sufficiently large, one can
tackle the many-body problem of very dilute ultracold gases with a mean-field approach
in which each atom is surrounded by an effective potential that conveys the effect of all
the other particles. Quantum fluctuations are negligible under these conditions and, as
long as the temperature is well below the critical temperature for condensation, almost
all the atoms condense into the lowest-energy state. The particles in the condensate then
behave as a giant matter wave that is characterized by a macroscopic wavefunction, and
the Gross–Pitaevskii equation (GPE) gives a good description of the static and dynamic
properties of the system. The GPE is a Schrödinger-like equation with a nonlinearity
term that incorporates the atom-atom interactions.

Superfluidity is a noteworthy feature of condensates that stems from the fact that
# atoms populate all the same state with the same wavefunction (Dalfovo et al., 1999;
Pitaevskii and Stringari, 2016) and it refers to the ability of the system to flow with no
viscosity. Such a frictionless flow does not dissipate energy and is characterized by the
so-called speed of sound, which is the velocity at which a sound wave may travel through
the condensate. Quantized vortices (Gross, 1961; Pitaevskii, 1961) are a clear signature
of the superfluid character of quantum systems and, in rotating multiply-connected
geometries (such as a ring or a torus), these vortices (Schulte et al., 2002; Sinha and
Castin, 2001) produce persistent currents (Abad, 2016; Abad et al., 2014; Andersen et al.,
2006; Beattie et al., 2013; Cominotti et al., 2014, 2015; Gallemí et al., 2015; Kumar et al.,
2018; Muñoz Mateo et al., 2015; Pecci et al., 2023; Polo et al., 2019; Ryu et al., 2007;
Smyrnakis et al., 2014; Wu et al., 2015). Collective excitations of the system (Hutchinson
and Zaremba, 1998; Jin et al., 1996; Mewes et al., 1996) and the presence of the scissors
mode (Guéry-Odelin and Stringari, 1999; Maragò et al., 2000), for instance, are also a
consequence of its superfluidity.

Since the particles in the BEC behave as a single matter wave, they can be described
by a macroscopic wavefunction with a well-defined phase and exhibit coherent phenom-
ena (Glauber, 1963). For two trapped BECs, when one removes the confinement, the
condensates expand and overlap, forming interference patterns (Andrews et al., 1997).
Phase coherence can also manifest as the Josephson effect (Anderson and Rowell, 1963;
Josephson, 1962), which is the coherent transport of particles between two superfluid
components. Josephson dynamics have been extensively studied in bosonic Josephson
junctions (Albiez et al., 2005; Ferrini et al., 2008, 2010; Levy et al., 2007; Melé-Messeguer
et al., 2011; Raghavan et al., 1999; Shin et al., 2005; Smerzi et al., 1997), which can
be realized using a double-well potential. Bosonic Josephson junctions differ from
superconducting Josephson junctions in that the nonlinearity of the contact interactions
gives rise to a new dynamical regime, called macroscopic quantum selftrapping, where the
population locks in one of the two sides of the junction.

Ultracold bosonic gases offer highly tunable experimental platforms: for example,
one can externally control their geometry and atom–atom interactions, and induce
light–matter interactions by coupling the atoms to external laser fields. For instance,
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one can implement exotic potentials that result in curved geometries, such as rings
and shells of atoms. In particular, ring potentials provide a simple yet versatile system
for atomtronic devices (see Amico et al., 2021, 2022, and references therein). Shell-
shaped BECs (Garraway and Perrin, 2016; Harte et al., 2018; Perrin and Garraway, 2017;
White et al., 2006; Zobay and Garraway, 2001, 2004) can be obtained by employing
radiofrequency-dressed adiabatic potentials to a conventional magnetic trap such that
the atoms are confined to an ellipsoidal surface (see also Tononi and Salasnich, 2023,
and references therein). Ring potentials, on the other hand, can be implemented using
time-averaged adiabatic potentials (Arnold, 2012; Bell et al., 2016; Sherlock et al., 2011),
painted potentials (Henderson et al., 2009; Schnelle et al., 2008), magnetic traps (Gupta
et al., 2005; Morizot et al., 2006; Ryu et al., 2007), or Laguerre–Gauss beams (Wright
et al., 2000), among other techniques.

Although this thesis focuses on the continuum description of ultracold bosonic
gases, it is worth mentioning that ultracold atoms can also be confined in periodic
potentials to form optical lattices (Bloch et al., 2008; Fisher et al., 1989; Greiner et al., 2002;
Grimm et al., 2000; Jaksch et al., 1998; Lewenstein et al., 2012). In this case, the effective
interactions can be much stronger than the contact interactions in regular ultracold
gases such that the system reaches the strongly correlated regime. Thus, optical lattices
present a promising platform for quantum simulation (Bañuls et al., 2020; Feynman,
1982; Georgescu et al., 2014; Gross and Bloch, 2017).

The interatomic interactions can be tuned by employing optical (Fedichev et al., 1996;
Theis et al., 2004; Thomas et al., 2018) and magnetic (Cornish et al., 2000; Pollack et al.,
2009) Feshbach resonances (Chin et al., 2010). Controlling the atom–atom interactions
opens the possibility to either enhance the nonlinearity of the system or, in gases with
a non-negligible dipolar moment, reduce the contact interactions such that dipole–
dipole interactions dominate. Condensates with attractive contact interactions are
also accessible by changing the sign of the B-wave scattering length through scattering
resonances.

The landscape gets even richer when not all the atoms are identical. Bosonic mixtures
can be heteronuclear mixtures, formed by atoms from various species (Grimm et al., 2000;
Hall et al., 1998; Modugno et al., 2002; Mosk et al., 2001; Pires et al., 2014; Schäfer et al.,
2022); isotopic mixtures, with different isotopes of the same atomic species (Ferrier-Barbut
et al., 2014; Papp and Wieman, 2006; Schreck et al., 2001); or spin mixtures, which
comprise atoms of the same species and isotope but in different spin states (Becker et al.,
2008; Katsimiga et al., 2020; Kawaguchi and Ueda, 2012; Myatt et al., 1997; Stamper-Kurn
and Ueda, 2013; Stamper-Kurn et al., 1998; Stenger et al., 1998). In all these mixtures,
the interactions within each component and between them may be asymmetric, and
depending on the interplay between interactions, bosonic mixtures may be miscible,
immiscible, or unstable (Timmermans, 1998; Trippenbach et al., 2000). In spin mixtures,
also known as spinor condensates, there can be a population transfer between components,
which may be coupled either through light–matter interactions or by trapping the
system in an external double-well potential. This coupling can be a coherent coupling
between the wells or internal states (Matthews et al., 1999) or a spin–orbit coupling (Lin
et al., 2011). In all cases, spinor condensates offer an excellent playground to explore
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coherence effects such as Josephson dynamics (for more details, see Abad and Recati,
2013; Recati and Stringari, 2022, and references therein).

In addition, by tuning the light–matter interactions one can engineer artificial
gauge potentials in ultracold gases where the internal states of the atoms are optically
coupled (Chisholm et al., 2022; Edmonds et al., 2013a; Frölian et al., 2022), thus simulating
electromagnetic effects with particles that are charge neutral (Dalibard, 2016; Dalibard
et al., 2011; Goldman et al., 2014; Spielman, 2009). The system acquires a geometrical
phase during the adiabatic path of the light-dressed states (Berry, 1984; Dum and
Olshanii, 1996), which results in the emergence of these artificial gauge fields.

1.2 Anisotropic interactions

The most common atom–atom interactions in ultracold gases are short-range and
isotropic. As a result, they can be characterized by a single parameter, the contact B-wave
scattering length. The leading scattering processes only occur at small distances, and
the mean interactions are equivalent in any direction. However, the behavior of the
system can be markedly different with dipole–dipole interactions or when the effective
contact interactions are chiral.

In gases of atoms with a high dipolar moment, the interactions acquire a long-range
character and become anisotropic. The dipoles then behave analogously to magnets, and
their orientation determines the strength of the interactions and whether the neat effect
is attractive or repulsive. Due to this anisotropy and the long-range nature, dipolar gases
present new phenomena as compared to nondipolar gases (Baranov, 2008; Baranov et al.,
2002, 2012; Chomaz et al., 2022; Defenu et al., 2023; Góral et al., 2000; Lahaye et al., 2009).

The dipole moment can be either electric or magnetic. Electric dipole moments are
not permanent and can be induced, for instance, using ultracold molecules (Bohn et al.,
2017; Carr et al., 2009; Moses et al., 2017) and Rydberg atoms (Löw et al., 2012; Saffman
et al., 2010). In this thesis, we will focus instead on atoms with non-negligible magnetic
dipole moments, which are permanent. Alkali atoms have a small magnetic moment and
thus are not very well suited to study dipolar physics, so one needs to consider atoms
with a higher magnetic moment. The highly magnetic atoms most used in experiments
are chromium (Beaufils et al., 2008; Griesmaier et al., 2005), erbium (Aikawa et al., 2012;
McClelland and Hanssen, 2006), and dysprosium (Lu et al., 2010b, 2011), which have
a dipole moment of 6�B, 7�B, and 10�B, respectively (�B is the Bohr magneton). The
first dipolar BEC was obtained with chromium atoms (Griesmaier et al., 2005). Some
years later, erbium (Aikawa et al., 2012) and dysprosium (Lu et al., 2010b) BECs were
experimentally realized, which spiked the interest in the field of ultracold dipolar gases.
Other possible candidates among the lanthanide atoms are thulium (4�B, Sukachev
et al., 2010), holmium (9�B, Miao et al., 2014), and europium (9�B, Inoue et al., 2018).
Mixtures of highly magnetic atoms (Bisset et al., 2021; Lee et al., 2021; Smith et al., 2021)
have also been realized experimentally very recently (Durastante et al., 2020; Politi et al.,
2022; Trautmann et al., 2018).

One can also obtain short-range anisotropic interactions from a contact interacting
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system in the presence of artificial gauge fields, as could occur in optically coupled
condensates, for instance. In this situation, a gauge potential that depends on the local
atomic density can result in a system whose effective interactions become sensitive to
the moving direction of the atoms. Such interactions are said to be chiral, as motion in
different directions is not equivalent.

Aglietti et al. (1996) formulated a chiral theory for a 1D system in which the
nonlinearity of the system comes from the current density instead of the number
density due to the presence of a density-dependent gauge potential. Almost two
decades later, Edmonds et al. (2013a) proposed optically coupled BECs as a good
candidate for inducing density-dependent gauge potentials by tuning the light–matter
interactions. Very recently, this proposal was further developed by Chisholm et al. (2022)
and experimentally realized by Frölian et al. (2022) in a condensate with two Raman-
coupled components and asymmetric scattering lengths. Artificial gauge potentials
have also been realized for instance in trapped ions (Martinez et al., 2016) and in optical
lattices (Clark et al., 2018; Görg et al., 2019; Yao et al., 2022).

Ultracold gases in the presence of these artificial vector potentials (Dalibard et al.,
2011; Goldman et al., 2014) present different properties than their nonchiral counter-
parts (Edmonds et al., 2013a, 2015; Xu et al., 2023). Some of the new phenomena
comprises spin–orbit coupling (Lin et al., 2009, 2011; Yang et al., 2021) and, in the case
of density-dependent gauge potentials (Edmonds et al., 2013a; Greschner et al., 2014),
vortices and collective modes with unusual properties (Butera et al., 2015, 2016; Chen
and Zhai, 2012; Edmonds et al., 2015; Zhang et al., 2012; Zheng et al., 2015).

1.3 Self-bound states

Usually, BECs must be externally trapped because repulsive interactions lead the system
to expand otherwise. However, under some circumstances, ultracold gases may support
quantumdroplets and solitons, which can exist in the absence of an external confinement.
Both types of solutions can only arise in interacting systems, but the origin of their
binding mechanism is fundamentally different.

In the regime where the mean-field description predicts a collapse of the condensate,
the system may be stabilized by quantum fluctuations and give rise to self-bound
quantum droplets (Böttcher et al., 2021; Chomaz et al., 2022). For this to occur, the small
repulsion due to quantum fluctuations must counterbalance the contribution of the
effective mean-field interactions, which must be attractive and small. This can happen in
systems which have two independent interparticle interactions that result in a reduced
mean-field contribution, such as dipolar condensates (Bisset et al., 2016; Böttcher et al.,
2019b; Chomaz et al., 2016; Ferrier-Barbut et al., 2016a,b, 2018a; Kadau et al., 2016;
Saito, 2016; Schmitt et al., 2016; Wächtler and Santos, 2016a,b), which have both contact
and dipole–dipole interactions, and nondipolar mixtures (Cabrera et al., 2018; Cheiney
et al., 2018; D’Errico et al., 2019; Ferioli et al., 2019, 2020; Guo et al., 2021; Naidon and
Petrov, 2021; Petrov and Astrakharchik, 2016; Rakshit et al., 2019; Semeghini et al., 2018;
Tengstrand and Reimann, 2022), where the interactions have a competition between
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intracomponent and intercomponent forces. The theory that describes quantumdroplets
in the continuum includes a beyond mean-field (or Lee–Huang–Yang) correction to
the mean-field formalism to account for the effect of quantum fluctuations, and was
first developed for dipolar droplets by Lima and Pelster (2011, 2012) and soon after
for nondipolar bosonic mixtures by Petrov (2015). Droplets were first experimentally
realized with dipolar atoms (Ferrier-Barbut et al., 2016a; Kadau et al., 2016), and later
with bosonic mixtures (Cabrera et al., 2018).

Here we focus on dipolar droplets, where the mean-field contribution is reduced by
the balance between the contact and dipole–dipole interactions within the condensate.
One feature of these droplets is that they can self-assemble into coherent arrays that
are the ground state of the system (Baillie and Blakie, 2018; Cinti and Boninsegni, 2017;
Macia et al., 2016; Wenzel et al., 2017). The interplay between the binding mechanism
of droplets and the trapping geometry governs the formation of such crystals. The
confinement along the dipole (axial) directionmay be too strong for the system to sustain
a single droplet, which instead breaks into several droplets that arrange in a crystalline
structure. The resulting crystals hold together by the transversal confinement and may
present supersolid features, i.e., a density-modulated profile (as in a solid) and phase
coherence (as in a superfluid). Supersolid properties in dipolar gases were first observed
experimentally in 2019 (Böttcher et al., 2019a; Chomaz et al., 2019; Tanzi et al., 2019a).
The excitations and rotational properties of these highly dipolar systems have been
extensively studied since then (Gallemí et al., 2020; Hertkorn et al., 2019; Šindik et al.,
2022; Klaus et al., 2022; Norcia et al., 2022; Petter et al., 2019; Recati and Stringari, 2023;
Roccuzzo et al., 2020, 2022; Sohmen et al., 2021; Tanzi et al., 2021; Tengstrand et al., 2021,
2023). Condensates with spin–orbit coupling may also present supersolid properties (Li
et al., 2017; Martone et al., 2014; Putra et al., 2020; Recati and Stringari, 2022), although
in that case, the density modulation does not originate from the intrinsic interactions of
the system but from the light–matter coupling.

Solitons are localized perturbations that propagate without dispersion and which are
stable solutions of 1D gases (Ablowitz et al., 2004; Barenghi and Parker, 2016; Carr et al.,
2000c; Frantzeskakis, 2010; Kevrekidis et al., 2010, 2015; Scott et al., 1973; Shamailov
and Brand, 2018; Weinstein, 1983). The binding mechanism of solitons comes from
the balance between the dispersion of the medium and its nonlinear character. There
are essentially two types of solitons, dark and bright, depending on the sign of the
nonlinearity, which is determined by the contact interactions.

Bright solitons are the ground state of the system when the interactions are attrac-
tive (Carr and Castin, 2002; Cornish et al., 2006; Donley et al., 2001; Gammal et al., 2001;
Gerton et al., 2000; Khaykovich et al., 2002; Ma and Huang, 2013; Marchant et al., 2013;
Pérez-García et al., 1998; Roberts et al., 2001; Strecker et al., 2002). They present as
self-bound wavepackets with a free-particle behavior. Dark solitons, on the other hand,
are excited states of repulsive-interacting systems that show as a localized density dip
with a phase jump across it, are not self-bound, and present awave-like nature (Anderson
et al., 2001; Brazhnyi and Konotop, 2003a,b; Burger et al., 1999; Denschlag et al., 2000;
Dutton et al., 2001; Ginsberg et al., 2005; Gredeskul and Kivshar, 1989; Gredeskul et al.,
1990; Konotop and Vekslerchik, 1994; Muryshev et al., 2002; Proukakis et al., 2004). In
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general, solitons are unstable in higher dimensions (Dalfovo et al., 1999; Leggett, 2001;
Sulem and Sulem, 2007), but stable dark and bright solitons can be achieved with tightly
confined geometries in one and two dimensions (Brand and Reinhardt, 2001; Carr et al.,
2000c; Feder et al., 2000; Muryshev et al., 1999). Modulational instability may also lead
to the formation of soliton trains in a condensate (Everitt et al., 2017; Nguyen et al., 2017;
Sanz et al., 2022).

Solitons have been extensively studied in multicomponent optical systems (Akhme-
diev et al., 1998; Desyatnikov et al., 2002; Hioe, 1999; Kivshar and Turitsyn, 1993;
Manakov, 1973; Mitchell and Segev, 1997; Park and Shin, 2000; Pelinovsky and Kivshar,
2000; Skryabin, 2000; Zakharov and Manakov, 1975; Zakharov and Schulman, 1982),
where soliton pairs, such as dark–dark, dark–bright and bright–bright solitons, can be
realized (Afanasyev et al., 1989; Buryak et al., 1996; Chen et al., 1997; Radhakrishnan
and Lakshmanan, 1995). In two-component BECs (Becker et al., 2008; Hall et al., 1998;
Katsimiga et al., 2020; Kiehn et al., 2019; Morera et al., 2018; Morera-Navarro et al.,
2018; Myatt et al., 1997; Pu and Bigelow, 1998; Timmermans, 1998), new solitonic states
have been experimentally realized, for instance, dark–dark solitons (Hoefer et al., 2011),
dark–bright solitons (Achilleos et al., 2011; Alotaibi and Carr, 2019; Becker et al., 2008;
Busch and Anglin, 2001; Hamner et al., 2011; Middelkamp et al., 2011; Romero-Ros
et al., 2022; Yan et al., 2015), and vortex–bright-soliton configurations (Anderson et al.,
2000; Law et al., 2010; Richaud et al., 2020). The so-called magnetic solitons, which are
localized perturbations of the spin density, appear in the particular case of mixtures
with asymmetric interactions (Bresolin et al., 2023; Pitaevskii, 2016; Qu et al., 2016).
Other peculiar solitonic solutions are Josephson vortices, which arise due to the presence
of coherent coupling between components (Kaurov and Kuklov, 2005, 2006). Finally,
chiral solitons can be observed in systems subject to current-density interactions (Aglietti
et al., 1996; Bhat et al., 2021; Cheiney et al., 2018; Dingwall and Öhberg, 2019; Dingwall
et al., 2018; Edmonds et al., 2013a; Gao et al., 2022; Griguolo and Seminara, 1998; Jia
et al., 2022b; Öhberg and Wright, 2019).

1.4 Outline of the thesis

Bose–Einstein condensates (BECs) are the throughline of this thesis. We employ the
theoretical three-dimensional description of weakly interacting and ultradilute gases in
the continuum within the mean-field regime and explore two main themes.

First, we investigate how interactions that are not isotropic as the usual contact
interactions affect the static and dynamic properties of BECs. In particular, we consider
long-range dipolar interactions and short-range chiral interactions. Second, we study
self-bound states such as droplets and solitons; for the first case, we add a beyond
mean-field correction to the mean-field description, and for the second case, we reduce
the system to 1D by tightly confining it along the other two directions.

In what follows, we give a brief summary of the remaining chapters of the thesis.
In Chapter 2, we present the phenomenon of Bose–Einstein condensation from a

quantum statistics perspective, characterize the atom–atom interactions, and introduce in
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detail the mean-field description. Within this formalism, the Gross–Pitaevskii equation
is a standard treatment to study the static and dynamic properties of weakly interacting
and ultradilute systems, and we employ it to analyze the ground state and excitations of
BECs. Then, we discuss the stabilizing effect of quantum fluctuations against the mean-
field collapse and how to include them as a beyond-mean-field correction. Afterward,
we introduce two types of self-bound solutions that one can find in BECs: droplets
and solitons. We first introduce bosonic binary mixtures, which can form self-bound
droplets, and we then discuss their binding mechanism and main properties. Finally,
we move to quasi-1D condensates and discuss the formation of solitonic solutions as a
balance between the nonlinearity of the system and the dispersion.

Chapter 3 deals with the dipole–dipole interactions between highly magnetic atoms,
thoughmost of the discussion is general to dipolar systems, be it magnetic atoms, electric
atoms, or polar molecules. We begin the chapter by reviewing the dipolar interactions
and how to include them in the mean-field formalism, and we discuss their effect on
the ground state and stability of the system. We also examine how the anisotropy of
the interactions combines with the geometry of the confinement, and we explore the
elementary excitations and instabilities of dipolar condensates, which present a more
complicated picture than in nondipolar condensates. In particular, we introduce the
roton instability, which appears in quasi-2D condensates andmay be the onset of density
modulations in the system. Later, we introduce quantum fluctuations and discuss the
formation of self-bound dipolar droplets. In the presence of an external confinement,
dipolar droplets can break into several droplets, forming crystals. These crystals may
keep the superfluid character of a regular BEC while presenting a periodic structure, a
phenomenon known as supersolidity.

Chapter 4 centers on the topic of chiral interactions. We first introduce artificial
gauge fields and how one can design them in cold atoms by engineering geometric
phases. In particular, we discuss gauge fields that depend on the local density of atoms
(density-dependent potentials), which may result in chiral interactions. To explain
the origin of these interactions, we focus on the simulation of artificial gauge fields in
condensates with light–matter coupling. We first consider the simple case of a two-level
atom to explore the main ideas. Then, we move to a two-component condensate
where the asymmetry in the interparticle interactions and the coupling to an external
space-dependent field results in a system with effective interactions that are chiral.
At this point, we are ready to introduce the current-density interaction theory, which
describes a quasi-1D system coupled to a density-dependent gauge potential such that
the resulting interactions depend on the current density (i.e., they are chiral). We derive
with some detail the equations of motion and conserved quantities of the system and
finally particularize them to a ring potential described as a 1D system with periodic
boundary conditions. We finish with a discussion about the constraints of the geometry
and the stationary states supported by the system.

In Chapter 5, we investigate Bose–Einstein condensates in bubble trap potentials
subject to a small gravity (Arazo et al., 2021b). In particular, we focus on thin shells and
study dipolar and nondipolar condensates. We first explore the effects of the anisotropic
nature of the dipolar interactions, which are already significant in the absence of gravity
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and are enhanced when the polarization axis of the dipoles and the gravity are slightly
misaligned. Then, in a setup with a small gravity, we investigate the dynamics of
perturbative oscillations of these thin shell-shaped condensates triggered either by an
instantaneous tilting of the gravity direction or a sudden change of the gravity strength.

Chapter 6 deals with immiscible binary mixtures of BECs with repulsive contact
interactions (Arazo et al., 2021a). We study the dynamics of a dark soliton in 1D and
analyze the reflection and transmission of such a soliton when it travels through the
domain wall. We show that a dark–bright soliton can be generated dynamically by the
interaction of the dark soliton with the domain wall and that this phenomenon occurs
outside the regime of parameters of known stationary solutions. The dynamics of this
dark–bright soliton are harmonic-like, with a numerical frequency that agrees well with
the predictions of a semianalytical model.

In Chapter 7, we study the formation of self-bound droplet crystals in binary dipolar
mixtures with antiparallel dipoles (Arazo et al., 2023a). In the absence of confinement,
antiparallel dipolar mixtures form 3D self-bound droplet-ring structures. If one confines
the system along the direction of the dipoles, it can form droplet crystals or stripe
patterns depending on whether the intracomponent interactions are asymmetric or
symmetric. These crystals are held together by the mutual attraction between the two
components, unlike in crystals of scalar dipolar condensates. As in the case of ionic
crystals in solid-state physics, the system has a genuine cohesive energy and remains
self-bound with no need for an external trapping.

In Chapter 8, we study persistent currents in quasi-1D BECs, which become chiral
in the presence of current-density interactions (Arazo et al., 2023b). We explore this
phenomenon in ultracold atoms loaded in a rotating ring geometry and find analytical
current-carrying stationary states that generalize the previously known solutions to
the mean-field equations of motion. The dynamical stability of these states is tested
through numerical simulations, which allows us to find stable currents for states with
both constant and modulated density profiles. Decaying currents, on the other hand,
appear only beyond a unidirectional velocity threshold.

In Chapter 9, we then generalize the previous study to spinor condensates, which
present an effective spin–orbit coupling since the interactions come from the current
density and are thus chiral (article in preparation). First, we analyze plane waves and
their stability, which reveal a more nuanced picture due to the linear coupling between
components. Then, we also consider nonlinear states such as solitons and Josephson
vortices. The latter do not appear in scalar condensates and arise due to the current
between spin components.

In Chapter 10, we present the global conclusions by summarizing the main results of
this thesis, and we explore the future perspectives of these lines of research.





2
SELF-BOUNDSTATES INBOSE–EINSTEINCONDENSATES

A Bose–Einstein condensate (BEC) is a state of matter that can arise when cooling a con-
fined, ultradilute and weakly interacting bosonic gas to very low temperatures, close to
the absolute zero. In an ideal Bose gas, all particles collapse into the lowest-energy quan-
tum state and thus Bose–Einstein condensation is a macroscopic quantum phenomenon.
Bose–Einstein condensates were first experimentally realized in 1995 (Anderson et al.;
Davis et al.) with alkali atoms.

In this chapter, we will introduce Bose–Einstein condensation and the mean-field
formalism, and then we will describe the limits of this framework and extend it to
include beyond mean-field effects (Section 2.1). The two last sections will focus on
particular solutions of homogeneous systems that are self-bound: quantum droplets
(Section 2.2), which arise in bosonic mixtures from the interplay between competing
mean-field interactions and quantum fluctuations; and solitons (Section 2.3), that are
stable solutions of one-dimensional (1D) condensates and originate from the balance
between the nonlinearity and dispersion of the system.

2.1 Bose–Einstein condensates in themean-field regime

The transition from a gas to a BEC, as well as the main features of condensation and
the basic assumptions to describe such systems, are discussed in Subsection 2.1.1.
Subsection 2.1.2 presents the mean-field framework, which is the theoretical foundation
for the work developed in this thesis1. Subsection 2.1.3 closes this section by discussing
the effect of quantum fluctuations and how one can extend the mean-field formalism to
include them. This extension will be useful for the description of quantum droplets (see
Section 2.2) and their dipolar counterparts (Chapters 3 and 7).

1For more details on the topics covered in Subsections 2.1.1 and 2.1.2, see the books by Foot (2004),
Pethick and Smith (2008), Ueda (2010), and Pitaevskii and Stringari (2016); and the reviews by Dalfovo
et al. (1999) and Leggett (2001).

11
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2.1.1 Bose–Einstein condensation
The origin of Bose-Einstein condensation lies in the wave nature and the indistinguisha-
bility of identical bosons, as we will see first. Later, we will introduce the concepts
of condensate fraction and depletion, and discuss the metastable nature of BECs and
the effect of dimensionality on condensation. Finally, we will consider three- and
two-body interactions, of which the later ones dominate, and introduce the contact
pseudopotential that effectively describes the atom–atom interactions.

Spin–statistics connection for identical particles

Quantum particles that are identical (i.e., that have the same mass, charge and intrinsic
spin) cannot be distinguished uponmeasurement of their properties if their wavepackets
overlap. In classical mechanics, one can tell identical particles apart by the trajectories
they describe through phase space. Yet in quantum mechanics such concept of trajectory
does not exist, given the intrinsic uncertainty in position and momentum, so identical
particles become indistinguishable under certain circumstances.

The relation between the spin of a particle and the statistics it obeys was first
formulated by Fierz (1939) and Pauli (1940), and later Schwinger (1951) developed
it further. This spin–statistics connection states the following: identical particles
with integer (in multiples of ℏ) or zero spin are called bosons and abide by Bose–
Einstein statistics; on the other hand, particles with a half-integer spin are known
as fermions and follow Fermi–Dirac statistics. As a result of indistinguishability, the
probability associated to a system of identical particles must remain the same under the
interchange of any two particles, and the two different statistics restrict the corresponding
wavefunction to be either symmetric for bosons or antisymmetric for fermions.

Consider for instance a system of two particles, which can be described by the
wavefunction #(r1, r2), where r8 is the position of each particle, and we are assuming
there is no hyperfine degree of freedom for simplicity. The interchange of particles
1 and 2, in general, swaps the labels of the two particles and adds a global phase
to the wavefunction, 4 8#(r2, r1). After a second exchange, since the particles are
indistinguishable, one should recover the original wavefunction, #(r1, r2) = 4 82#(r1, r2),
from where  is either 0 or �, rendering the wavefunction symmetric in the first case
(bosons) or antisymmetric in the second one (fermions)2.To understand better the effect
of these symmetry constraints, we define the wavefunction that describes two identical
particles as

#(r1, r2) =
1√
2

[
)(r1, r2) ± )(r2, r1)

]
, (2.1)

where )(r1, r2) solves the Schrödinger equation for two particles labeled 1 and 2, with
r8 the spatial coordinates of particle 8. We have frozen the spin degree of freedom,
but the argument holds if also considering a spin coordinate �8 . The wavefunction

2In two-dimensional systems, however, one can have quasi-particles for which  is neither 0 nor �
and, consequently, behave very differently from bosons or fermions and follow intermediate fractional
statistics. Such quasi-particles are known as anyons (Wilczek, 1982).
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#(r1, r2) is then symmetrized (+) for bosons and antisymmetrized (−) for fermions,
and the probability of finding two identical particles at the same point r1 = r2 = r is
|#(r, r)|2 = 2|)(r, r)|2 for bosons and |#(r, r)|2 = 0 for fermions. From these results one
can extract two key concepts: that fermions cannot occupy the same quantum state, as the
Pauli exclusion principle tells us; while bosons do not have such occupation restrictions
and instead tend to cluster with a probability that is twice that of the distinguishable
case. Bose–Einstein condensation therefore can only arise in gases of identical bosons.

The clustering of bosons magnifies as the number of bosons increases: the sym-
metrized wavefunction for # bosons can be written as

#(r1, r2, . . . , r# ) =
1√
# !

∑
(81 ,...,8# )

)(r81 , r82 , . . . , r8# ) , (2.2)

such that the probability of finding all # bosons at the same point is |#(r, r, ..., r)|2 =
# !|)(r, r, ..., r)|2. This effect, however, only occurs when the particles are indistinguish-
able so their wavepackets overlap.

Quantum e�ects at low temperatures

The size of the wave packets that describe the particles is given by the thermal de Broglie
wavelength associated to the gas at a given finite temperature ),

�dB =
ℎ

?
=

ℎ√
2�< :�)

, (2.3)

where ℎ and :B are Planck and Boltzmann constants, < is the mass of a boson and
? its momentum; �dB grows with decreasing temperature and gives an idea of how
delocalized the particles of a gas are.

At high, ordinary temperatures, the average interatomic distance 3 = =−1/3, where =
is the average density of the gas, is much larger than the de Broglie wavelength, �dB � 3.
Thus, the particles of the gas scatter throughout the container that holds them and
behave as billiard balls, following Boltzmann statistics. In this regime, quantum effects
are negligible, and the gas can be described classically.

As the temperature lowers, the de Broglie wavelength increases and one has to
describe particles using quantum mechanics. At a critical temperature )2 , the de Broglie
wavelength becomes of the order of the distance between particles, �dB ∼ 3, such that
the wave packets start to overlap and quantum effects become noticeable. This point
is the onset of Bose–Einstein condensation: the particles coalesce into a single wave
packet and become indistinguishable. Since the probability |# |2 grows with an # ! factor
due to the bosons’ tendency to cluster, below )2 a large number of particles start to
condense into a single-particle state such that condensation becomes macroscopic when
# is very large. Eventually, in a noninteracting system at ) = 0, all the bosons constitute
a coherent cloud of atoms that occupy all the same lowest-energy state, forming a pure
BEC (ideal gas) that behaves as a giant matter wave.
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The critical temperature )2 for Bose–Einstein condensation does not depend on the
atomic interactions, which illustrates that condensation stems purely from quantum
statistics3. It does depend though on the confining geometry and the dimensionality.

Condensate fraction, quantum depletion and dimensionality

The condensate fraction characterizes the fraction of atoms that occupy the lowest energy
state, and decreases with increasing temperature. For a noninteracting gas of # atoms,
the condensate fraction is

#0
#

= 1 −
(
)

)2

)
, (2.4)

where #0 = # − #) is the number of atoms in the condensate and #) is the number of
atoms in excited states. In three dimensions, the parameter  is 3/2 for a box potential
and 3 for a harmonic oscillator, so the dependence on the critical temperature is stronger
in a harmonically confined gas.

The atomic interactions canpromote particles from the condensate to excited states, an
effect known as quantum depletion. This depletion of the condensate4 due to interactions
is typically 1% or less for most experiments in weakly interacting gases. Therefore,
quantum depletion is usually neglected and, close to zero temperature, one can consider
all the atoms to have the same single-particle wavefunction.

Condensation is always possible at ) = 0 and in three-dimensions (3D), but a
reduced dimensionality and the geometry of the confinement will determine whether
condensation at a given temperature ) < )2 is possible or not, as thermal fluctuations
may destabilize the condensed phase (Giorgini et al., 1997). In the thermodynamic limit,
Bose–Einstein condensation only occurs at a finite temperature ) for a uniform gas in 3D,
while trapped gases can have condensation in either 2D or 3D (Lewenstein et al., 2012).
However, in those cases where condensation does not occur at ) ≠ 0, for a finite # one
can still have a large condensate fraction for low enough temperatures that are available
experimentally. In these reduced dimensionalities, further increasing the temperature
can give rise to quasi-condensate phases, which do not possess off-diagonal long-range
order5, one of the main characteristics of BECs.

To reduce the dimensionality of the system, one should remove the condition that
the temperature of the gas is much larger than the zero-point energy6 in one or two

3The origin of Bose–Einstein condensation is statistical, but repulsive interactions can further enhance
condensation in weakly interacting gases.

4The quantum depletion is defined as ∼ (=03
B )1/2, where = is the average density of the gas and 0B is the

scattering length that characterizes the two-body interactions (which will be discussed further later on).
5An important feature of BECs is that they exhibit off-diagonal long-range order (Yang, 1962), which

can be understood from the indistinguishability of the particles. The one-body density matrix is
defined as �1(r, r′) = 〈#̂†(r)#̂(r′)〉, with #̂†(r) and #̂(r) the particle creation and annihilation operators.
Usually, �1 decreases with the distance and eventually vanishes. In the presence of Bose–Einstein
condensation, however, �1 approaches a finite value instead, since particles at positions r and r′ are no
longer distinguishable due to their wave packets overlapping. When this happens, one says that the
system keeps spatial coherence over long distances.

6The zero-point energy is the energy of the lowest mode in the system (i.e., the ground state energy), a
residual energy that arises from the Heisenberg uncertainty principle. In a harmonic-oscillator potential
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dimensions (see Section 2.3 for the 1D case).

Metastability and three-body losses

The Bose–Einstein condensed phase is actually metastable: at the usual pressure
conditions and low temperatures of BECs, the equilibrium configuration corresponds to
a solid phase, in which case the effects of the interactions increase significantly. For a
gas to crystallize, two atoms need to form a molecule, and the most probable way for
this to happen is by a third atom participating in the process to eliminate the binding
energy of the molecule. Therefore, the dominant recombination processes that may
bring the system to the crystal phase at very low temperatures are three-body events,
which are crucial to the destabilization of BECs and are also their main loss mechanism
of atoms (Burt et al., 1997; Kagan et al., 1985).

The rate loss for three-body processes is given by 3=/3C = −!=3, where ! is the rate
coefficient and = is the average density (Pethick and Smith, 2008). The dependence with
=3 indicates that it is a three-body event, since the probability of three atoms being
close goes with the third power of =. For this reason, BECs have to be very dilute to
suppress three-body recombination and ensure a lifetime large enough for experiments.
However, BECs can still be in kinetic equilibrium with respect to two-body processes.

Atom–atom interactions

At the usual temperatures and densities of dilute BECs, three-body interactions are rare
processes, so the dominant atom–atom interactions are two-body collisions. In such
events, the most important parameters are the relative position of the atoms involved
and the initial relative kinetic energy. In addition, the separation between particles is
larger than the length scale associated with the atomic interactions by around an order
of magnitude.

The interatomic potential for alkali-like atoms has two clear regimes: a strong
electrostatic repulsion between the atoms at short distances due to the overlapping of
the two electronic clouds, and an attraction caused by the van der Waals interaction at
large distances. The van der Waals interaction originates from the electric dipole–dipole
interaction between atoms, and goes with the interatomic distance A as −1/A6 with a
coefficient that is very large for alkali atoms. The key parameter for characterizing the
interactions then will be the distance between the atoms.

Therefore, we can model the potential as a hard-sphere potential for small distances
with a van der Waals tail for long distances, where A2 is the radius of the hard core and
determines the range of the potential:

*(A) =
{
∞ A ≤ A2
− 
A6 A > A2

. (2.5)

For a weakly interacting and dilute system, the low-energy scattering processes will
be the most relevant ones. Therefore, interactions between atoms will only occur when

of frequency $ho, the zero-point energy is ℏ$ho/2.
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the two atoms are close together and the energy of the scattering event is very low. Due
to this, the interatomic potential is effectively short-range, which justifies that one can
approximate the atom–atom interaction between two atoms at positions r and r′ by a
contact pseudopotential with the following form:

+(r − r′) = 4�ℏ2

<
0B �(r − r′) , (2.6)

with � the Dirac delta function and 0B the B-wave scattering length7, which is the leading
contribution to the low-energy scattering between two atoms. It is useful to introduce
here the coupling constant

6 =
4�ℏ20B
<

, (2.7)

which characterizes the strength of the interactions and their character: repulsive for
6 > 0 and attractive for 6 < 0. The condensate will then present a different behavior
depending on the sign of the scattering length.

This pseudopotential (2.6) described solely by the B-wave scattering length will
be enough to describe the mean-field interactions of BECs. From now on we will
refer to these interactions as simply contact interactions (see Subsection 2.1.2 for the full
formalism).

Feshbach resonances

The sign and magnitude of the effective contact interactions can be controlled in experi-
mental settings by means of optically or magnetically tuned Feshbach resonances (Chin
et al., 2010). These resonances occur when the energy of a scattering process between
two atoms comes close to the energy of a bound state of the interatomic potential; this
resonant coupling may be adjusted through an external magnetic field that modifies the
energy of the bound state.

The following expression describes the behavior of the scattering length with the
magnetic field � (Moerdĳk et al., 1995):

0B(�) = 0bg

(
1 − Δ

� − �0

)
, (2.8)

with 0bg the background scattering length (i.e., the value far from resonance), Δ the
width of the resonance and �0 the resonance position where 0B diverges (Chin et al.,
2010).

Figure 2.1 shows the behavior of the scattering length with the magnetic field. At
some values of the external magnetic field �, the scattering length diverges, which is
where the Feshbach resonances occur; on either side of the divergence the scattering
length changes sign and, at some point, crosses zero. Through Feshbach resonances it is
then possible to tune the scattering length to very small values or even zero, which will
be particularly useful for condensates of magnetic atoms to enhance the effect of the
dipole–dipole interactions (see Chapter 3).

7In the typical BECs, the scattering lengths are usually two orders of magnitude larger than 00, the
Bohr radius, which sets the scale of the atomic size.
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Figure 2.1: Scattering length 0B in a magnetically tuned Feshbach resonance (2.8) as a
function of the magnetic field �. The scattering length 0B diverges in the vicinity of
the resonance, �0 (shaded area) and changes sign at either side of the resonance. The
parameter Δ is the width of the resonance, and corresponds to the value of � − �0 for
which the scattering length becomes zero. The value of the scattering length far from
resonance is 0bg.

2.1.2 Mean-field formalism
In this subsection we present a mean-field description of BECs and overview their main
static and dynamic features. We will first derive the Gross–Pitaevskii equation (GPE),
treating the interactions within a mean-field framework in a way that is analogous to the
Hartree–Fock method employed in fermionic systems. After that, we will discuss the
relevant length scales of trapped and untrapped systems and present a dimensionless
version of the GPE in terms of such length scales. Finally, we will sketch the main static
properties of weakly interacting and very dilute BECs and comment on elementary
excitations to set the foundations for more complicated systems.

This mean-field treatment of BECs captures very well their main static and dynamic
properties, but it fails to describe, for instance, the correlations between particles.
However, this approach will be enough for the topics covered in this thesis, with some
corrections that will be discussed in Subsection 2.1.3, Section 2.2 and, later on, in
Chapters 3 and 4.

Gross–Pitaevskii equation

The #-body Hamiltonian for a gas of # identical trapped bosons at ) = 0 is8

� =

#∑
8=1

[
−
ℏ2∇2

8

2< ++ext(r8)
]
+ 1

2

#∑
8=1

∑
9≠8

+(r8 − r9) , (2.9)

8This is the general Hamiltonian for identical particles, and thus it is valid both for fermions and
bosons. Here we will focus on bosons from now on.
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where ℏ is the reduced Planck constant and < is the mass of an atom. The bosons are
trapped in a generic external potential+ext(r), and+(r8 − r9) is the interatomic potential9,
which accounts for the two-body interactions. Since the particles are indistinguishable,
the Hamiltonian that describes the system is invariant under the interchange of spatial
coordinates between two particles.

Finding the exact ground state of this Hamiltonian (2.9) is, in general, a complex prob-
lem; instead, we will find an approximate solution by considering a trial wavefunction
Ψ(r1, r2, . . . , r# ) for the ground state and minimizing the energy

�[Ψ] = 〈Ψ|� |Ψ〉〈Ψ|Ψ〉 . (2.10)

In a noninteracting gas, all the bosons occupy the ground state of the external
potential; thus, including interactions will modify the ground state of the system.
Although the atom–atom interactions are usually difficult to characterize, we are dealing
with dilute gases where the interactions are weak, so we can apply a Hartree approach10

and assume that all the bosons are in the same single-particle state: the condensate.
Therefore, we write the total wavefunction as a symmetrized product of single-particle
wavefunctions,

Ψ(r1, r2, . . . , r# ) =
#∏
8=1

)(r8) , (2.11)

with 〈) |)〉 =
∫
|)(r)|2 3r = 1 such thatΨ(r1, . . . , r# ) is also normalized to 1.

Using this state Ψ (2.11) and the many-body Hamiltonian � (2.9), the energy
functional defined in Eq. (2.10) then reads

�[), )∗] = #

∫
3r)∗(r)

(
−ℏ

2∇2

2< ++ext(r)
)
)(r)

+#(# − 1)
2

∫ ∫
3r 3r′ )∗(r))∗(r′)+(r − r′))(r))(r′) , (2.12)

where the first two terms are the kinetic and external potential contributions to the
energy, and the last one corresponds to the atom–atom interactions.

Now, to minimize the energy (2.12) with the constraint of normalization 〈Ψ|Ψ〉 = 1,
we introduce a Lagrange multiplier � and set the variations with respect to ) and )∗ to
zero,

�
�)∗

[
�[), )∗] − �〈Ψ|Ψ〉

]
= 0 . (2.13)

Introducing Eq. (2.12) into Eq. (2.13) gives

#

∫
3r �)∗(r)

{[
−ℏ

2∇2

2< ++ext(r) + (# − 1)
∫

3r′+(r − r′) |)(r′)|2
]
)(r) − �)(r)

}
= 0 ,

(2.14)
9The 1/2 factor that goes with the potential is included to avoid double counting.

10In such a mean-field approximation one assumes that each particle moves independently in an
effective potential that encompasses the average effect of the interactions between this particle and the
other # − 1 particles.
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and, since �)∗ is arbitrary, yields[
−ℏ

2∇2

2< ++ext(r) + (# − 1)
∫

3r′+(r − r′) |)(r′)|2
]
)(r) = �)(r) , (2.15)

which is a nonlinear Schrödinger-like equation. The Lagrange multiplier � corresponds
to the chemical potential11, i.e., the energy necessary for adding a particle to the system,
and is usually denoted by �.

Assuming that # � 1 such that # − 1 ' # , and introducing the condensate
wavefunction #(r) =

√
#)(r), which is normalized to # , then Eq. (2.15) becomes the

well-known time-independent version of the Gross–Pitaevskii equation (GPE),[
−ℏ

2∇2

2< ++ext(r) +
∫

3r′+(r − r′) |#(r′)|2
]
#(r) = �#(r) . (2.16)

Finally, replacing the interatomic potential +(r − r′)with an effective contact pseu-
dopotential (2.6), one gets[

−ℏ
2∇2

2< ++ext(r) + 6 |#(r)|2
]
#(r) = �#(r) , (2.17)

where 6 is the coupling constant that characterizes contact interactions (2.7) and the
number density of the gas is given by the density of the condensate12,

=(r) = |#(r)|2 . (2.18)

Equation (2.17) is the time-independent GPE. The energy of the system, assuming# � 1
and introducing the contact pseudopotential (2.6) into the energy functional (2.12), is
then given by

�[#] =
∫

3r
[
ℏ2

2< |∇#(r)|
2 ++ext(r)|#(r)|2 +

1
2 6 |#(r)|

4
]
. (2.19)

The evolution of the condensate is governed by the time-dependent GPE,

8ℏ
%#(r, C)

%C
=

[
−ℏ

2∇2

2< ++ext(r) + 6 |#(r, C)|2
]
#(r, C) , (2.20)

which is theGross–Pitaevskii equation in itsmost ubiquitous form. The time-independent
version of the GPE (2.17) can be obtained by introducing the ansatz

#(r, C) = #(r) 4−8 �C/ℏ (2.21)

11Assuming that )(r) does not vary when removing an atom and that # � 1, then one can calculate
the energy (2.12) of the system with # − 1 atoms, �#−1, and compare it to the energy of the full system
�# , which gives �# − �#−1 = �. This is actually the chemical potential � = %�/%# , which corresponds to
the energy required to add a particle to the system while keeping the total number constant.

12This is valid because we are neglecting the condensate depletion due to quantum and thermal
fluctuations, an assumption that we will discuss later (see Subsection 2.1.3).
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into Eq. (2.20).
Here we have derived the GPE (2.17) following a Hartree–Fock-like approach.

However, one can address the many-body problem using the second quantization
formalism as well (see, for instance, Pitaevskii and Stringari, 2016), and Chapter 4
presents an alternative derivation of the GPE from the quantum action using variational
equations.

Relevant length scales

So far, we have seen that, at zero temperature, the B-wave scattering length and
the interparticle distance provide suitable scales to characterize the interactions and
the density of the gas13 (Leggett, 2001). The interactions and the confinement (for
harmonically trapped gases) also bring in two other length scales relevant to the
description of the system: the healing length and the oscillator length.

For a system trapped in an anisotropic three-dimensional harmonic-oscillator poten-
tial (Pethick and Smith, 2008),

+ho(r) =
1
2<

(
$2
GG

2 + $2
HH

2 + $2
II

2
)
, (2.22)

the lengths associated to each frequency $8 are 0ho,8 =
√
ℏ/(<$8). One can then define

the characteristic oscillator length for the geometric mean of the frequencies, $ho =
($G$H$I)1/3, as

0ho =

√
ℏ

<$ho
. (2.23)

The oscillator length can be understood as ameasure of thewidth that the ground state of
a single particle would have in this trap, as given by the Schrödinger equation. Therefore,
it gives an idea of the length scale of the system due to the harmonic confinement.

The interacting nature of the system, on the other hand, can be characterized by the
so-called healing length. In a homogeneous system of constant density =, the healing
length � can be calculated as the distance for which the two energy contributions in
Eq. (2.19) balance: the kinetic energy, defined as ℏ2/(2<�2), and the interaction energy,
which is 6=. Thus, the healing length,

� =
ℏ√

2< |6 |=
, (2.24)

is the minimum distance over which the density can change from 0 to = (its bulk value)
without the kinetic energy term (i.e., the quantum pressure) diverging (Bongs and
Sengstock, 2004). It describes then the distance over which the condensate adjusts or
heals to restore equilibrium when subjected to perturbations or due to local collisions.
Since � grows with |6 |−1/2, systems with stronger interactions will have a shorter healing
length. If the healing length is of the order of the size of the system, though, the
boundary conditions affect the whole system (Pitaevskii and Stringari, 2016). For

13The thermal de Broglie wavelength (2.3) at the critical temperature is also a relevant length scale.
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trapped systems, the healing length is evaluated at either the central density of the
condensate =0 or at the average density instead (Dalfovo et al., 1999). The healing length
is useful when studying soliton solutions (see Section 2.3) and superfluidity; in this last
case, for example, it provides the typical size of the core of quantized vortices that form
in the condensate under rotation (Gross, 1961; Pitaevskii, 1961).

One can use any of these length scales to rewrite the time-dependent Gross–Pitaevskii
equation (2.20) in dimensionless units. Introducing the unit length ; (either 0ho, 0B or
�), the unit energy is defined as & = ℏ2/(<;2), and the unit time as � = ℏ/& = <;2/ℏ.
Denoting the dimensionless variables by a tilde (e.g., G = G̃ ;), the time-dependent GPE
can be written as

8%C̃#̃ =

(
−1

2∇
2
Ã
+ +̃ext + 4�0̃B |#̃ |2

)
#̃ . (2.25)

For example, in the case of an isotropic harmonic oscillator, $G = $H = $I = $ho, the
unit length is ; = 0ho and the dimensionless potential is +̃ext = Ã

2/2:

8%C̃ )̃ =

(
−1

2∇
2
Ã
+ 1

2 Ã
2 + 4�# 0B

0ho
|)̃ |2

)
)̃ , (2.26)

where we have redefined the wavefunction as #̃ =
√
# )̃ such that )̃ is normalized to 1.

Ground state

The shape of a condensate of noninteracting bosons trapped in a harmonic-oscillator
potential (2.22) is a Gaussian function of width 0ho (2.23), and its peak density (i.e., the
density at the center of the trap) will be proportional to the total number of atoms # , as
described by the appropriately normalized Schrödinger equation.

The atom–atom interactions will modify the ground state of the noninteracting
case according to the sign of the effective interactions and their strength, which can be
characterized by the dimensionless parameter from Eq. (2.26), # |0B |/0ho (Pethick and
Smith, 2008; Pitaevskii and Stringari, 2016). The effect of the interactions on the ground
state of the system can be seen very clearly if one considers the ground state energy of a
uniform (untrapped) gas of constant density =, which from Eq. (2.19) reads

�0
#
=
6=

2 . (2.27)

For repulsive interactions, the energy (2.27) is minimized by decreasing the density, so
the gas expands, while for attractive interactions the system collapses. In the general
(trapped) case, this translates into the two following behaviors.

1. Repulsion between the atoms (6 > 0) causes the gas to expand14 and reduce its
peak density. If the interaction is very large, # |0B |/0ho � 1, one can neglect the
kinetic term in the GPE (2.20). In this situation, know as the Thomas–Fermi limit, the
size of the cloud increases enough that the density profile becomes very smooth.

14Without harmonic confinement, the gas expands uniformly, so in general we will need an external
trapping to avoid the free expansion.
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2. On the other hand, if the interaction is attractive (6 < 0), the condensate has to
increase its central density to reduce the interaction energy. For small interactions,
the zero-point kinetic energy compensates this effect and stabilizes the system in a
confined system. However, if the interaction is too strong then the kinetic energy
is not enough to overcome the attraction between atoms and the gas collapses. The
critical number of atoms above which the condensate is unstable is of the order of
0ho/|0B |.

It is worth noting here that the collapse described in the attractive case occurs for 3D
and 2D systems. In 1D, however, the condensate does not collapse but instead decays
into a bright soliton, which is the ground state of the system in this case (see Section 2.3).

Elementary excitations

Up to now we have discussed the ground state of the system within the mean-field
regime. To study its dynamical behavior under linear excitations, we introduce the
ansatz (Dalfovo et al., 1999; Pethick and Smith, 2008; Pitaevskii and Stringari, 2016)

#(r, C) = 4−8�C/ℏ
)0(r) +

∑
9

[
D9(r)4−8$9 C + E∗9(r)4+8$ 9 C

] , (2.28)

which defines the perturbed state as the ground state )0(r) plus a collection of excitation
modes (i.e., the perturbation). These modes, labeled 9, are plane waves with frequency
$ 9 and complex amplitudes D9 and E 9 . We then introduce#(r, C) into the time-dependent
GPE (2.20) and linearize, since we want to study small oscillations15. Equating terms
with the same exponent and identifying the time-independent GPE (2.17) for )0(r), we
obtain the Bogoliubov equations (Bogoliubov, 1947). These equations can be written in
matrix form as(

(�̂0 − �) + 26 |)0 |2 6 )2
0

6 ()∗0)2 −
[
(�̂0 − �) + 26 |)0 |2

] ) (
D(r)
E(r)

)
= ℏ$

(
D(r)
E(r)

)
, (2.29)

where we have defined the single-particle energy operator �̂0 = −ℏ2∇2/(2<) ++ext(r)
and dropped the index 9 for simplicity.

For a uniform gas (+ext = 0), the density of the condensate (2.18) is constant, =(r) = =0,
and the chemical potential is simply � = 6=0. In this case, the translational symmetry
of the system allows us to choose plane-wave solutions for the excitation modes with
wavevector k,

D(r) = D 4 8 k·r and E(r) = E 4 8 k·r . (2.30)
The Bogoliubov equations (2.29) then lead to the dispersion relation

(ℏ$)2 = ℏ2:2

2<

(
ℏ2:2

2< + 26=0

)
, (2.31)

15Only the terms up to first order in the perturbation amplitudes D9 and E 9 will be relevant, so higher
orders can be neglected.
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that gives the spectrum of the excitations. These frequencies have to be real to be
solutions of the Bogoliubov equations; complex frequencies will indicate a dynamical
instability. For real frequencies, the perturbation to the ground state for a given mode is
D4−8$C + E4+8$C , which are sinusoidal oscillations with small amplitudes D and E. If the
frequency $ is complex, however, the 4−8$C term will decay with time, but 4+8$C will
instead give oscillations that grow exponentially and eventually destabilize the system.
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Figure 2.2: Excitation spectrum of a uniform gas (2.31). The energy of the excitations ℏ$
is given in units of the interaction energy 6=0, and the momentum ℏ: in units of <2,
where 2 is the speed of sound. Excitations behave as free particles for large momenta,
with energy ℏ2:2/(2<), and as phonons at low momenta, with energy ℏ:2. The transition
between these two regimes is determined by : = 1/� (dotted line), where � is the healing
length (2.24). The solid line corresponds to the excitation energy given by Eq. (2.31) and
the dashed lines are the phonon and free-particle limits.

The excitation spectrum (see Fig. 2.2) shows two clear behaviors: for large momenta,
it shows the dispersion of a free particle, with energy ℏ2:2/(2<), while for low momenta
(: → 0), it tends to the phonon dispersion with frequency $ = 2: and 2 =

√
6=0/< the

speed of sound. Note that 2 acquires an imaginary part if 6 < 0, when the system is
predicted to collapse.

The transition between the linear (phonon) and quadratic (free particle) behaviors
occurs when the kinetic energy ℏ2:2/(2<) and the interaction energy 6=0 become similar.
This corresponds to a wavenumber that is the inverse of the healing length (2.24), which
in terms of the speed of sound can be written as � = ℏ/(

√
2<2). This indicates that for

length scales above the healing length � the particles show a collective behavior, while
at length scales below � they behave as free particles (Pitaevskii and Stringari, 2016).

2.1.3 The role of quantum fluctuations
The Gross–Pitaevskii equation (2.20) is only valid within the mean-field regime and
under the assumption that # � 1 such that a small variation in the number of atoms
is irrelevant and # − 1 ' # . Furthermore, the mean-field regime requires two main
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conditions that are also implicit in the derivation of the equation. First, the gas must
be dilute and weakly interacting, i.e., = |0B |3 � 1 with = the average density, such that
quantum fluctuations are negligible. This is known as the diluteness condition. Secondly,
it has to be cooled to very low temperatures, ) � )2 (i.e., few tens of nK), so thermal
fluctuations become negligible too. Both conditions are essential for the mean-field
approximation and the Hartree approach employed to remain applicable.

When these two conditions hold, the quantum depletion of the condensate is
negligible and the condensate fraction is #0/# ≈ 1. In this case, we can assume that
mostly all atoms occupy the lowest-energy state (i.e., the condensate) and describe them
with a single macroscopic wavefunction.

In what follows we will still assume that the gas is very close to ) = 0, but we will
consider stronger interactions (or higher densities) so that quantum fluctuations become
relevant.

Beyondmean-field correction

When the diluteness and weakly interacting condition (= |0B |3 � 1) does not hold any
more, quantum fluctuations contribute to the system significantly. Mostly all the atoms
of the system are still on the condensate, but a small fraction will populate the excited
states due to quantum fluctuations, which increases the energy of the system. In
this situation, one can consider the first correction to the mean-field approximation,
which leads to a shift to the ground state energy of the system that accounts for the
quantum fluctuations of the collective modes in the BEC (i.e., the zero-point energy of
the Bogoliubov excitations). This correction term was first calculated in 1957 by Lee,
Huang, and Yang (Lee and Yang, 1957; Lee et al., 1957), and it is hence known as the
Lee–Huang–Yang (LHY) correction.

For the uniform gas, the corrected energy per particle of the ground state reads
�0
#
=
6=

2

[
1 + 128

15
√
�

(
=03

B

)1/2
]
. (2.32)

The first term in the energy per particle (2.32) corresponds to themean-field energy (2.27)
and the second term is the LHY correction16. The LHY correction increases with the
density = and the interaction strength 6, and has a stronger dependence17 on the density
than the mean-field energy.

From this corrected ground-state energy (2.32), the chemical potential � = %�0/%#
is then modified as

� = 6=

[
1 + 32

3
√
�

(
=03)1/2

]
. (2.33)

Introducing the beyond mean-field correction to � [second term in Eq. (2.33)] into the
time-dependent GPE (2.20), one obtains the extended Gross–Pitaevskii equation that
takes into account quantum fluctuations.

16This correction has been calculated for a homogeneous system, so to include it in a trapped system
one has to consider the local density approximation, which assumes that the density of the system does not
vary much in terms of the length scales of the system.

17The mean field term goes with |# |2 and the LHY term with |# |3.
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Equation (2.32) also reveals that, in conditions that lie well within the mean-field
regime, the LHY correction is indeed very small, so one can neglect the effect of quantum
fluctuations and make use of the standard Gross–Pitaevskii and mean-field formalism
to obtain a good description of the system.

E�ect of quantum fluctuations

The mean-field approximation predicts a collapse of the system when the interactions
are attractive; however, a repulsive LHY correction can compensate this effect. Therefore,
quantum fluctuations can stabilize the system against collapse, which will be crucial for
the formation of quantum droplets (see Section 2.2 and Petrov, 2015).

BECs can form droplets when the mean-field contribution to the energy alone would
lead to the collapse of the system, and droplets emerge when the mean-field interactions
and the LHY correction are balanced. Since the density of the system is limited by
three-body losses, the LHY correction is usually very small. Then, for droplets to
form there must be competing interactions within the condensate so the mean-field
contribution is strongly reduced. Systems with such competing interactions are, for
instance, mixtures of two condensates, where the inter- and intracomponent interactions
can be attractive and repulsive, respectively (see Section 2.2). Dipolar condensates
of highly magnetic atoms can also form droplets, since they exhibit both dipolar and
contact interactions (see Chapter 3). Finally, one can also have droplet formation in
dipolar mixtures, where all the interactions mentioned above participate in the balance
(see Chapters 3 and 7).

2.2 Self-bound droplets in binary mixtures

Confinement is crucial to the existence of BECs: if 6 > 0 the gas expands without
an external trap, while for 6 < 0 the gas collapses except for very weak interactions,
where the presence of a confining potential can counterbalance the attraction. Quantum
droplets, on the other hand, are self-bound, as they exist without external confinement.

Tuning the mean-field interactions such that their contribution is small and attractive
can lead to the formation of droplets instead of collapse due to the effect of quantum
fluctuations. This stabilizing mechanism occurs when the mean-field attraction is
counterbalanced by the repulsive beyond mean-field effects, which are small. For the
mean-field contribution to be small as well, there have to be competing interactions
within the system. In mixtures of condensates, self-bound droplets can form due to the
balance between inter- and intracomponent interactions, which results in an attractive
mean-field contribution that the quantum fluctuations can stabilize.

Wewill start with the basicmean-field theory for bosonicmixtures on Subsection 2.2.1
and discuss their stability and excitations. Later, in Subsection 2.2.2, we will introduce
the common beyond mean-field treatment for self-bound droplets in binary mixtures,
which constitutes a simplified yet powerful single-component model, and the regimes
and conditions in which droplets can be studied. Finally, Subsection 2.2.3 points out
the main properties of self-bound droplets. These will serve as a reference for dipolar
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droplets (see Chapter 3), where the anisotropy of the interaction leads to a more nuanced
behavior. We will end this section with a brief comment about the connection between
droplets and another type of self-bound solution, bright solitons, that will be explored
in detail in Section 2.3.

2.2.1 Bosonic binary mixtures
A bosonic mixture of two condensates (either two completely different atomic species,
two different isotopes, or the same species in different hyperfine states) can be de-
scribed within the mean-field regime by two coupled time-dependent Gross–Pitaevskii
equations (Pitaevskii and Stringari, 2016):

8ℏ
%#�(r, C)

%C
=

[
−ℏ

2∇2

2<�
++ext(r) + 6�� |#�(r, C)|2 + 6��′ |#�′(r, C)|2

]
#�(r, C) . (2.34)

Each component, labeled � = 1, 2 (with �′ ≠ �), can be described by its ownwavefunction
#�(r) and the corresponding density =�(r) = |#�(r)|2. The total density of the system is
defined as =(r) = =1(r) + =2(r), and the local difference between densities, sometimes
called spin density ormagnetization, is =B(r) = =1(r) − =2(r). The mass <� may be different
for each component, and the total number of atoms in the mixture then is # = #1 + #2.
The intra- (��) and intercomponent (��′) contact interactions are defined by the coupling
constants (2.7)

6�� =
4�ℏ20��
<�

and 612 =
2�ℏ2012
<12

, (2.35)

where 011 and 022 are the scattering lengths that characterize the atom–atom interactions
within each component, 012 the interactions between them (with 012 = 021), and
<12 = <1<2/(<1 + <2) is the reduced mass.

The energy functional of the system can be obtained in a way analogous to the scalar
case (i.e., the single-component case, see Subsection 2.1.2), and reads

�[#1,#2] =
∫

3r

[ ∑
�=1,2

(
ℏ2

2<�
|∇#� |2 ++ext |#� |2 +

1
2 6�� |#� |4

)
+ 612 |#1 |2 |#2 |2

]
,

(2.36)
with ℰ the energy density such that �[#1,#2] =

∫
3r ℰ. The total energy of the system

contains now the energy of each component, as given by Eq. (2.19), plus twice the
interaction energy between them.

Miscibility condition

The sign and magnitude of the parameters 611, 622 and 612 will determine the type of
ground state and the behavior of the system:

• If all the interactions are attractive, i.e., 611,22,12 < 0, the system collapses, as in the
scalar case18.

18At least in 2D and 3D systems. In 1D systems, as with one component, the system may support bright
solitons instead of collapsing (see Section 2.3).
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• If the interactions are repulsive instead, with 611,22,12 > 0, then the mixture is
stable and can either be miscible (the two wavefunctions overlap) or immiscible
(the two components show a phase-separated configuration).

• If the intercomponent interactions are attractive, 612 < 0, but the intracomponent
ones are repulsive, 611,22 > 0, the system can form quantum droplets (see 2.2.3).

The miscible–immiscible phase transition is given by the interplay between the intra-
and intercomponent interactions. To understand this transition, we consider a uniform
gas confined in a box potential in the miscible phase, such that the two components
occupy the same volume and the energy density of the system (2.36) is

ℰ[=1, =2] =
1
2 611 =

2
1 +

1
2 622 =

2
2 + 612 =1=2 . (2.37)

For the system to be miscible and stable (a local minimum in the energy), the Hessian
matrix of ℰ[=1, =2] and its determinant need to be positive (Ao and Chui, 1998; Pethick
and Smith, 2008; Pu and Bigelow, 1998; Timmermans, 1998),

%2ℰ
%=2

1

%2ℰ
%=1%=2

%2ℰ
%=1%=2

%2ℰ
%=2

2

 =
[
611 612
612 622

]
, (2.38)

from where one can find that the intracomponent interactions have to be repulsive,
611,22 > 0, and the following condition:

611622 > 62
12 . (2.39)

This condition (2.39), often called the miscibility condition, allows us to characterize
three possible regimes in terms of the intercomponent interactions (Riboli andModugno,
2002):

1. For |612 | <
√
611622, the system is miscible and stable within this region. For values

of 612 outside this region, however, the miscible mixture is no longer stable and
the sign of the intercomponent interactions 612 will determine the behavior of the
system.

2. For 612 > 0 and 612 >
√
611622, themixture is immiscible. The system spontaneously

breaks the translational symmetry and presents a phase-separated configuration.

3. For 612 < 0 and 612 < −√611622, the attractive interactions drive the system to
collapse.

It is in this last scenario, where the mean-field framework predicts the system to collapse,
that droplets will emerge due to the stabilizing mechanism of quantum fluctuations (see
Section 2.2). These droplets are self-bound because they originate from the competition
between the mean-field energy and the quantum fluctuations, so there is no need of an
external confinement to sustain them.



28 SELF-BOUND STATES IN BOSE–EINSTEIN CONDENSATES | CHAPTER 2

Excitation spectrum

The spectrum of excitations for a binary mixture can be calculated following a procedure
analogous to the scalar case (see elementary excitations in Subsection 2.1.2) by considering
the ansatz in Eq. (2.28) for the wavefunction of each component, such that the complex
amplitudes are D� and E� (with � = 1, 2).

Assuming for simplicity that the two components are miscible, untrapped and
have the same mass <, average density =0/2 and intracomponent coupling constant
611 = 622 = 6, one obtains two dispersion relations by considering excitations that can
be either in phase or out of phase:

D1(r) = D 4 8 k·r , E1(r) = E 4 8 k·r and D2(r) = ± D 4 8 k·r , E2(r) = ± E 4 8 k·r. (2.40)

In-phase excitations, also known as density modes or density excitations, give

(ℏ$3)2 =
ℏ2:2

2<

(
ℏ2:2

2< + (6 + 612) =0

)
, (2.41)

which correspond to the bulk perturbations (i.e., changes in the total density) one finds
in the scalar case (2.31). On the other hand, out-of-phase excitations, called spin modes
or spin excitations, yield

(ℏ$B)2 =
ℏ2:2

2<

(
ℏ2:2

2< + (6 − 612) =0

)
, (2.42)

which are local variations between the densities of each component (i.e., perturbations
to the spin density). The two branches are gapless, i.e., their energies are zero at : = 0.

Figure 2.3 shows the excitation spectrum for a miscible and uniform mixture in the
different stability regimes discussed before. For |612 | < 6 (Fig. 2.3, left panel), the two
branches have real frequencies, so both density and spin excitations are stable. In the
immiscibility regime, where 612 > 0 and 612 > 6 (Fig. 2.3, central panel), the density
branch ℏ$3 is stable but the spin branch ℏ$B becomes unstable (i.e., has a complex
frequency) for low momenta. This instability eventually drives the system to phase
separate, and the two components become immiscible. Finally, in the regime where
612 < 0 and 612 < −6 (Fig. 2.3, right panel), while spin excitations are stable, the density
excitations are not, and destabilize the system to collapse.

As in the scalar case (2.31), the two branches present a free-particle behavior at large
: and a phonon dispersion at low :, which defines the two corresponding sound veloc-
ities, 23 =

√
(6 + 612) =0/(2<) and 2B =

√
(6 − 612) =0/(2<). These two different sound

velocities determine the healing length associated to each branch, �3,B = ℏ/(
√

2<23,B),
which give an idea of the minimum length scales for which density or spin excitations,
respectively, can occur.

Spin mixtures

We have considered so far a general mixture where the two components can either be
different atomic species or the same species (be it different isotopes or the same isotope
in different hyperfine states).
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Figure 2.3: Excitation spectrum of a binary mixture in the miscible and uniform case with
density =0/2 and intracomponent coupling constant 6 > 0 equal for each component.
[As reference, see Eq. (2.31) and Fig. 2.2 for the scalar case.] Solid lines correspond to
the real part of the density (2.41) and spin (2.42) branches, and the dashed lines show
their imaginary parts. (We recall that imaginary frequencies are the onset of instabilities.)
Each panel corresponds to the three regimes described in the text: (left) the miscible
regime, for |612 | < 6, where all excitations are stable; (center) the immiscible regime, for
612 > 6, where the spin excitations are unstable; and (right) collapse, for 612 < −6, where
the density excitations are unstable. The healing lengths �3,B associated to each branch
characterize the length scales of density and spin excitations, respectively.

Aparticular case is that of spin mixtures, also referred to as spinor condensates, in which
the gas is composed of atoms of the same species that occupy two different hyperfine
states so the hyperfine degree of freedom (the spin) becomes relevant as well. This
setup is particularly interesting since, besides the contact intercomponent interactions
of a usual mixture, now the two components can also exchange particles by the coherent
coupling19 of these two states (Abad and Recati, 2013; Matthews et al., 1999).

Coherently coupled condensates will be introduced in Chapter 9, where we will
study mixtures for which the effective interactions come from a density-dependent
gauge potential.

2.2.2 E�ective single-component model
In the present subsection we will see how the LHY correction (introduced in Subsec-
tion 2.1.3) can stabilize the system and allow for the formation of droplets in binary
mixtures (introduced in Subsection 2.2.1), as predicted by Petrov (2015).

The energy functional for a binary mixture that takes into account quantum fluctua-
tions is

�[#1,#2] = �MF +
∫

3r ℰLHY(=1, =2) , (2.43)

19Rabi or Raman coupling are common terms in the literature as well.
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where �MF is the mean-field energy functional (2.36) and ℰLHY is the LHY correction to
the energy density (Fort and Modugno, 2021; Petrov, 2015),

ℰLHY =
8

15�2

(
<1
ℏ2

)3/2
(611=1)5/2 5

(
<2
<1
,
62

12
611622

,
622 =2

611 =1

)
, (2.44)

which comes from the zero-point energy of the Bogoliubov modes (as discussed in
Subsection 2.1.3). The function 5 is dimensionless and positive, and we introduce the
variables G = 62

12/(611622) and H = 622=2/(611=1) to simplify notation. For equal masses,
<1 = <2 = <, the function 5 reduces to

5 (1, G, H) =
∑
±

[
1 + H ±

√
(1 − H)2 + 4GH

]5/2 1
4
√

2
. (2.45)

It is useful to define the parameter �6 = 612 +
√
611622, since �6 < 0 in the region

where the miscible mixture is no longer stable and the mean-field collapse is predicted
to occur (see discussion about miscibility in Subsection 2.2.1). We will focus on the
unstable region but close to the boundary �6 ≈ 0, i.e., when �6 is small compared to 611
and 622 (and both are positive).

From the analysis of this mechanical instability and the competition between the
mean-field and LHY contributions (Petrov, 2015), one can obtain the two following
conditions:

1. It is energetically favorable to minimize [(=1
√
611 − =2

√
622)/
√
611 + 622]2, which

becomes the spin density (i.e., the local difference between densities) when
611 = 622. Therefore, spin excitations are negligible.

2. The quantity [(=1
√
622 + =2

√
611)/
√
611 + 622]2, which is the total density if 611 =

622, should be maximized. This results in both components increasing their
densities and the density ratio =2/=1 being locked to

=2
=1
=

√
611

622
. (2.46)

These conditions allow one to describe the miscible mixture with an effective single-
component model that is valid for low energies, such that both components can be
described by the same spatial mode )(r, C),

#8(r, C) =
√
=8 )(r, C) . (2.47)

This approximation provides a good description of the ground state as well as the
low-energy excitations of the droplet. For simplicity, one can assume that the masses
of the two components are equal to <. Then, the mixture can be described by a single
equation of motion for the wavefunction ) (Böttcher et al., 2021; Cabrera et al., 2018),

8ℏ
%)

%C
=

(
−ℏ

2∇2

2< ++ext + =0 |) |2 + �=3/2
0 |) |

3
)
) , (2.48)
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where =0 = =1 + =2 is the peak density of the mixture. The mean-fied coefficient  is

 =
2
√
622/611(

1 +
√
622/611

)2 �6 , (2.49)

and the LHY term coefficient � is defined as

� =
32

3
√
�

(
<

4�ℏ2

)3/2
( √

622611

1 +
√
622/611

)5/2

5

(
1,

62
12

611622
,

√
622

611

)
. (2.50)

The parameter �6 = 612 +
√
611622 appears in the mean-field coefficient  (2.49).

Therefore, defining the coupling constants such that �6 ≈ 0, one can obtain a small
and attractive mean-field contribution. Regarding the LHY coefficient � (2.50), if � = 0
the system collapses; but if � ≠ 0, then the two terms can balance out each other and
droplets can form. Therefore, droplets will emerge in the region where the miscible
mixture collapses. Since this balance occurs for particular values of 611 and 622, and
their ratio fixes the density ratio (2.46), droplets will need an intrinsic imbalance in the
number of atoms to form.

2.2.3 Quantum droplets
Quantum droplets in binary mixtures were first predicted by Petrov (2015) and observed
both in confined geometries (Cabrera et al., 2018; Cheiney et al., 2018) and in an
unconfined setting (Semeghini et al., 2018). Their dipolar counterparts will be explored
in detail in Chapter 3. Here we will summarize some main properties of droplets
in binary mixtures, which will serve as a basis to understand droplets in dipolar
condensates.

Bindingmechanism and equilibrium density

When the intercomponent interactions are attractive and the intracomponent interactions
are repulsive such that the total mean-field contribution is weakly attractive, a repulsive
beyond mean field contribution can stabilize the system (see schematic representation of
this binding mechanism in Fig. 2.4). This leads to a minimum in the total energy (2.43)
that corresponds to a bound state for a particular value of the density =0, called the
equilibrium density, since it is the density at which droplets will be stable. The equilibrium
density only depends on the interactions in the gas, which are characterized by the
B-wave scattering lengths. Therefore, due to the isotropy of the interactions, these
droplets will be spherically symmetric.

As a result of the balance between energy contributions, quantum droplets are
self-bound, which means that they can be sustained even in the absence of an external
trapping, in contrast to BECs.
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Figure 2.4: Binding mechanism of droplets in a binary mixture. The mean-field (MF)
energy per particle is attractive and proportional to =, while the beyond mean-field (LHY)
energy per particle is repulsive and grows with =3/2, where = is the total density of
the mixture. The energy per particle of the system shows a minimum when the two
contributions balance each other at a density =0 (dotted line), the equilibrium density, at
which the droplet will stabilize.

Three-body losses

Increasing the density of a condensate in the appropiate conditions (see Subsection 2.2.2)
will eventually lead to the formation of a droplet. Therefore, due to the higher densities
of droplets20, their main decay mechanism are three-body losses, which grow with =3.
The density of the droplet will have to be larger than that of the original condensate so
the LHY correction is large enough to overcome the mean-field attraction. This in turn
will increase the rate of three-body losses, which will limit greatly the lifetimes of these
states in experimental settings.

Critical atom number

Quantumdroplets can only be sustainedwhen their number of atoms exceeds a particular
critical number. This critical number of atoms arises from the competition between the
binding mechanism of the droplet and the kinetic energy21. The kinetic energy increases
the energy per particle due to dispersion, and it can dominate over the other energy
contributions if the number of atoms (and thus the density) is too small. In this case, the
dispersion makes the droplet unstable and drives the system to a gas phase. The critical
atom number depends on the strengths of the interactions involved.

20Compared to liquid helium droplets, however, these droplets are much less dense, actually by several
orders of magnitude.

21This situation resembles that of attractive condensates, where the collapse can be stabilized by the
external confinement if the interactions are not too strong.
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Liquid-like saturation

Just as liquid droplets, quantum droplets also exhibit a saturation value of their density.
In general, the shape of a droplet is characterized by two parts: the bulk is the central
region of the droplet, where the density is highest (i.e., the peak density), and the surface
corresponds to the region where the density of the droplet goes from its maximum to
its minimum. For a small number of atoms, the droplet is mostly surface. Increasing the
number of atoms increases the bulk of the droplet. However, at the critical number of
atoms, saturation occurs, and the droplet acquires a flat-top shape. Adding more atoms,
then, only increases the size of the droplet, not its peak density.

Self-evaporation

Self-bound droplets also exhibit self-evaporation22. For a certain regime of atom
numbers, there are no excitation modes below the particle-emission threshold (i.e.,
the chemical potential), such that the only way for the system to get rid of the extra
energy is by expelling particles. This means that, in those conditions, excitations will
cause the droplet to lose particles and stabilize into a droplet with a smaller number of
atoms (Ferioli et al., 2020; Hu and Liu, 2020; Petrov, 2015). For atom numbers outside
this region, the system can sustain excitations.

The self-evaporation effect is usually hard to observe in mixtures of the same atomic
species, where three-body recombination is an important loss mechanism and strongly
limits the lifetime of the droplet (Cabrera et al., 2018; Semeghini et al., 2018). As an
alternative, one can consider a K–Rbmixture, for instance, where the contact interactions
are stronger and allow for smaller densities (Fort and Modugno, 2021), which decreases
the three-body losses.

Bright soliton to droplet transition

Quantum droplets resemble bright solitons in that neither of them are sustained by an
external confinement. Reducing the system to one-dimension, it is possible to form a
self-bound droplet from a bright soliton, as was shown by Cheiney et al. (2018) with
a bosonic mixture confined in an optical waveguide. Bright solitons are localized
perturbations that propagate without deformation and can be the ground state of a
quasi-1D BEC with attractive interactions (more details in Section 2.3).

Both droplets and solitons are self-bound solutions that arise from the interplay of two
competing interactions. However, this balance is fundamentally different: mean-field
interactions and quantum fluctuations give rise to droplets, while attractive interactions
and dispersion to bright solitons. Quantum droplets require a minimum number of
atoms to become self-bound, but bright solitons have instead a maximum number of
atoms above which these solutions are no longer stable. Therefore, the regimes in which
each of them can exist is different, and the strength of the interactions and the number

22This phenomenon does not happen in droplets of single-component dipolar condensates (see
Chapter 3).
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of atoms play a crucial role in determining whether those two states can be smoothly
connected.

2.3 Solitons in quasi-1D condensates

Solitons are exact solutions of the 1D Gross–Pitaevskii equation in the absence of an
external confinement23. We will begin with Subsection 2.3.1 by introducing a reduction
of the GPE (2.20) to 1D that will allow us to describe quasi-1D systems within the
mean-field regime. Then, we will present the basics of solitons and their properties in
Subsection 2.3.2.

The treatment presented here will be extended to binary mixtures (Chapter 6) and
to ring geometries where the interactions originate from a density-dependent gauge
potential (Chapters 4, 8 and 9).

2.3.1 One-dimensional Gross–Pitaevskii equation
To realize a quasi-1D condensate, we consider a strong transversal confinement, $G �
$H , $I , such that the excited states in the H and I directions are not energetically
accessible, i.e., � � ℏ$H , ℏ$I . Then, the condensate wavefunctionΨ(r, C) that describes
the 3D condensate can be factorized as

Ψ(r, C) = #(G, C)!(H, I) . (2.51)

For weak interactions, the transversal modes can be approximated by the ground state
of the harmonic oscillator (i.e., a Gaussian function), since the excited states in such
modes will have a much larger energy. Then, we define

!(H, I) = 1
√
� 0H0I

exp

[
−1

2

(
H2

02
H

+ I
2

02
I

)]
, (2.52)

where 0H and 0I are the harmonic lengths (2.23) in each direction, and !(H, I) is
normalized to

∫
3H

∫
3I !(H, I) = 1.

The relevant physics will occur in the G direction since the degrees of freedom
of the H and I directions are frozen, so one can integrate out the transversal modes.
Therefore, to obtain an effective 1D equation of motion, we introduce the factorized
wavefunction (2.51) into the 3D time-dependent GPE (2.20), project over !∗(H, I) and
integrate for all H and I to get rid of the transversal degrees of freedom. The resulting
1D Gross–Pitaevskii equation reads

8ℏ
%#(G, C)

%C
=

[
−ℏ

2∇2

2< ++ext(G) + 61D |#(G, C)|2
]
#(G, C) , (2.53)

23Or when the trapping potential is uniform.
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where 61D is the 1D coupling constant. It relates to the 3D coupling constant (2.7) and
to the scattering length 0B as

61D =
6

2� 0H0I
=

2ℏ2

<

0B

0H0I
. (2.54)

For a binary mixture, one can obtain the two coupled GPEs in 1D following the same
procedure. Assuming equal masses, the normalized 1D coupling constants are

6
(1D)
��′ =

6��′

2� 0H0I
, (2.55)

where 6��′ denotes (for � = 1, 2), the 3D inter- and intracomponent coupling con-
stants (2.35).

2.3.2 Solitons
Solitons or solitary waves are localized perturbations of the density that propagate
without changing their shape (Barenghi and Parker, 2016; Pethick and Smith, 2008;
Pitaevskii and Stringari, 2016). These density-modulated solutions arise from the
interplay between the nonlinearity of the system (the interactions) and the dispersion
(the quantum pressure). In general, solitons are only stable in 1D geometries, and are
exact analytical solutions of the 1D homogeneous GPE (2.53), which is an integrable
model24. The nature of the interactions lead to two types of solitons, known as dark
solitons for repulsive interactions and as bright solitons for attractive interactions.

Dark solitons

Dark solitons present as a localized depletion in the density, and the phase shows a jump
across its density profile with a large phase variation at the density dip. In general, they
can move at a given velocity that must be below the speed of sound 2 (Frantzeskakis,
2010). The ground state of a homogeneous system has an unmodulated (i.e., constant)
density, while a dark soliton is an excited state. The general solution for a dark soliton
moving at a velocity E is (Pethick and Smith, 2008; Tsuzuki, 1971)

#D(G, C) =
√
=0

{
8
E

2
+

√
1 − E

2

22 tanh

[√
1 − E

2

22
G − EC√

2�

]}
4−8�C/ℏ , (2.56)

where =0 is the density of the homogeneous background. For E = 0, the density goes to
zero at the center of the soliton and the phase has a sharp �-jump, as shown in Fig. 2.5.
Moving dark solitons are often referred to as gray solitons, while the term dark is reserved
for static solitons, but here we will call them dark regardless of their velocity. For larger

24A system is integrable when it has, at least, as many conserved quantities as degrees of freedom. For
the 1D GPE (2.53), conserved quantities of physical relevance would be the norm, the momentum, and
the energy.
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Figure 2.5:Dark solitons moving at different velocities E. The density profile (left panel)
shows a minimum at the center of the soliton, which is zero for a stationary soliton and
increases with the velocity; at E = 2, the solitonmerges with the homogeneous background,
with density =0. The phase (right panel) presents a jump with a large gradient at the
center of the soliton; the jump is sharp for E = 0, and smoothens for increasing velocity.
The healing length � characterizes the size of the soliton.

velocities (see Fig. 2.5), the density at the center departs from zero as =E2/22, the width
of the soliton (which goes with the healing length �) increases with the velocity, and the
phase jump smoothens as 2arcos(E/2).

For small velocities, the soliton can behave as a particle with negative effective mass
<B , which allows one to calculate the soliton energy as that of a free particle, with kinetic
energy <BE

2/2. Note that since the mass is negative, solitons with a higher energy will
move more slowly.

Bright solitons

Bright solitons are solutions of the GPE for attractive interactions, where the uniform
system would be expected to collapse. In this situation, the ground state of the
homogeneous system is instead a bright soliton, where the dispersion of the medium
counterbalances the attractive interactions, so the resulting soliton becomes self-bound.
The general solution is (Pethick and Smith, 2008)

#B(G) =
√
=0 sech

(
G√
2�

)
, (2.57)

where =0 is the central density. The soliton gets narrower as the strength of the
interactions increases, since its size is characterized by the healing length � (2.24), which
goes with |6 |−1/2. As opposed to dark solitons, the height andwidth of bright solitons do
not depend on the velocity of the soliton, and bright solitons do not have any restriction
in terms of velocity as dark solitons do. Like dark solitons, bright solitons also behave
as particles but with a positive mass.



3
DIPOLAR CONDENSATES, SELF-BOUND DROPLETS AND
SUPERSOLIDS

Dipolar Bose–Einstein condensates are governed by long-range and anisotropic inter-
actions. As a result, the behavior and the properties of these systems are much richer
and nuanced than in nondipolar condensates (see Chapter 2). These new phenomena
arise mainly from the interplay between the anisotropy of the dipolar interactions, the
isotropic contact interactions, and the confining potential. Dipolar condensates have
been studied extensively within the mean-field approximation, which provides a good
description of the statics and dynamics of dipolar condensates. However, the mean-field
approach fails at portraying the emergence of two new exotic phases that stem from
quantum fluctuations: droplets and supersolids. Droplets are self-bound states, which
do not require an external confinement to sustain them; supersolids, on the other hand,
are density modulated solutions that show both superfluid and crystalline properties.

Quantum fluctuations come from the probabilistic nature intrinsic to quantum
mechanics. In systems where the mean-field energy is small enough, they enable the
stabilization of self-bound droplets and the emergence of supersolid phases in situations
where the mean field describes a collapse. As we saw on Chapter 2, in the mean-field
formalism one usually neglects quantum fluctuations and assumes that all the atoms of
the gas condense. It is possible however to extend the mean-field framework to account
for quantum fluctuations.

The chapter is organized as follows1. Section 3.1 presents the dipole–dipole in-
teractions and gives an overview of the basic properties of dipolar condensates. In
Section 3.2, we introduce a beyond mean-field correction to describe the effect of quan-
tum fluctuations and study the formation of self-bound droplets. In the presence of an
external confinement, these droplets can arrange in droplet arrays and eventually lead
to supersolids. The formalism studied in this chapter will be extended to dipolar binary
mixtures in Chapter 7.

1The overview presented in this chapter is by no means extensive and focuses mainly on the concepts
that are most relevant to this thesis (for more comprehensive reviews on these topics, see for instance
Böttcher et al., 2021; Chomaz et al., 2022; Lahaye et al., 2009).

37
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3.1 Dipolar condensates

Dipolar condensates have been a highly active field of research, both from theoretical
and experimental perspectives, in the last two decades. Here we will lay out the main
properties of weakly interacting BECs in the presence of dipolar interactions.

We will first discuss in Subsection 3.1.1 the anisotropy and long-range character of
the dipole–dipole interaction and present its standard treatment within the mean-field
regime. Then, in Subsection 3.1.2 we will focus on the static properties of the system
and discuss the conditions under which the system collapses. We will also see that the
presence of an external confinement allows for two new phenomena that one cannot
find in nondipolar BECs: magnetostriction, which is the elongation of the condensate
with respect to the shape of the trap, and the stabilizing effect of the confinement against
collapse in some circumstances. Finally, in Subsection 3.1.3 we will study the elementary
excitations of the system and discuss the origin of the two main instabilities one can
have in a dipolar condensate: the phonon instability, that leads to a global collapse of
the system, and the roton instability, which causes instead a series of local collapses in
the condensate.

3.1.1 Dipole–dipole interactions
Particles that interact via dipole–dipole interactions have either a magnetic dipole
moment � or an electric dipole moment 3 (Chomaz et al., 2022; Lahaye et al., 2009),
which are fundamentally different.

There are no permanent electric dipole moments. Instead, electric dipoles come from
charge displacement in space, so one can tune them by applying an external electric field.
Systems that present such electric dipoles are, for instance, polar molecules, Rydberg
atoms or light-induced dipoles.

On the other hand, permanent magnetic dipoles do exist, since the magnetic dipole
moment comes from the internal structure of the atoms (the total angular momentum,
which comprises the orbital angular momentum and the electronic and nuclear spins).
Therefore, the atomic species determines the magnetic dipole moment. One can
understand the interaction between two particles with a permanent magnetic moment
as the interaction of the spin of one of the particles with the magnetic field that the spin
of the other particle creates. We will focus on magnetic dipoles from now on, although
most results are general for both kinds of dipoles.

Interaction potential between two dipoles

The interaction between two magnetic dipoles -1 and -2 at positions r1 and r2 is given
by

*dd(r) =
�0

4�
(-1 · -2) A2 − 3 (-1 · r)(-2 · r)

A5 , (3.1)

where r = r1 − r2 is the relative position of the dipoles, A their relative distance and �0 is
the permeability of vacuum.
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We consider two polarized identical bosons, such that the dipoles have the same
strength� and are oriented along the same direction. We choose the I axis as polarization
direction, i.e., -1 = -2 = � êI , where êI is the unitary vector in the I direction and the
strength of the dipoles � is determined by the atomic species. Then, the dipole–dipole
potential (3.1) simplifies to

*dd(r) =
�dd
4�

1 − 3 cos2 �

A3 . (3.2)

The angle between the polarization direction êI and the relative position of the particles
r is �, and we have introduced the coupling constant �dd = �0�2 to characterize
the strength of the interaction. For electric dipoles, one obtains a coupling constant
�33 = 3

2/&0, where 3 is the electric dipole moment and &0 is the permittivity of vacuum.
The coupling constant of the dipolar interaction �dd is usually higher for electric dipoles
than magnetic dipoles2.

The dipole–dipole interaction presents two main characteristics that contact inter-
actions do not have. First, it is long range, since the potential (3.2) decays with A−3, in
contrast to the short-range character of the van der Waals (i.e., contact) interactions (2.5),
that we characterized in terms of the B-wave scattering length 0B and decreases with
A−6. Secondly, the potential (3.2) has an angular dependence, which means that the
interactions are anisotropic, unlike contact interactions, that are isotropic. As one can
see from Eq. (3.2), this dependence on the angle implies that the interactions will be
attractive along I (the direction of the dipoles) and repulsive in the GH plane.

The behavior of the interaction potential can be understood by three particular
scenarios that depend on the angle between the polarization direction and the relative
position of the dipoles:

• For � = �/2, the dipoles locate side by side and (1 − 3 cos2 �) = 1, which yields a
repulsive interaction.

• For � = 0, the dipoles are placed in a head-to-tail configuration and (1− 3 cos2 �) =
−2, such that the interaction is attractive and twice as strong as in the side-by-side
configuration.

• For �< = arccos(1/
√

3), which is usually called the magic angle, the interactions
vanish.

For intermediate angles, the interaction is effectively attractive for � < �< and repulsive
for � > �< . The anisotropy of the interactions is a crucial factor in the stability of
confined systems. Since the interactions are no longer spherically symmetric, the

2The electric dipole moment 3 of an atom or a molecule is usually of the order of 400, with 4 the
electron charge and 00 the Bohr radius (for a Rydberg atom, the charge separation is much larger, and so
is the dipole moment). The magnetic dipole moment �, on the other hand, is of the order of the Bohr
magneton �B. Then, comparing the two coupling constants, �0�2/(32/&0) ∼ �0�B&0/(4200) = 2/4, where
 ≈ 10−2 is the fine structure constant, one can see that the electric moment is much larger than the
magnetic moment (Chomaz et al., 2022; Lahaye et al., 2009).
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interplay between the geometry of the confinement and the effective dipolar interaction
plays a determining role, as we will discuss later.

It is worth noting that, due to their anisotropic character, dipolar interactions do
not conserve the orbital angular momentum, which means that there can be inelastic
scattering processes where the angular momentum changes (i.e., spin flips). These
processes are often referred to as dipolar relaxation, which leads to heating and large
atom losses in systems of highly magnetic dipoles (Burdick et al., 2015). Even though
the elastic interactions are the most common, these relaxation processes are thus an
important loss mechanism for strongly dipolar gases.

E�ect on the contact interactions and interatomic pseudopotential

The scattering processes change in the presence of dipole–dipole interactions, which
not only add a long-range behavior but also affect the short-range effective interactions.
Therefore, the scattering length 0B that characterizes the short-range interactions will
depend on the dipolar moment �.

To describe the interactions, one can assume that the van der Waals interactions
dominate at short distances and the dipole–dipole interactions do so at long distances,
such that the interatomic potential can be written as a pseudopotential of the form

+(r − r′) =
4�ℏ2

<
0B �(r − r′) + �dd

4�
1 − 3 cos2 �

|r − r′|3
= 6 �(r − r′) +*dd(r − r′) , (3.3)

The first term in Eq. (3.3) corresponds to the usual short-range contact interactions but
the scattering length 0B is modified by the strength of the dipolar interactions, and 6 is
the coupling constant defined in Eq. (2.7). The second term represents the long-range
interactions, which are characterized by the dipole–dipole potential *dd(r − r′) we
introduced before (3.2). Since wewill consider a given atomic species the dipole moment
is fixed; thus, the dependence of the scattering length on the dipole moment will not play
an important role. Moreover, one can tune the scattering length by means of Feshbach
resonances (see Chapter 2), and decreasing the scattering length will be of particular
interest to enhance the effect of the long-range interactions.

The pseudopotential (3.3) is valid away from scattering resonances (see the original
proposal by Yi and You, 2000, 2001). It works well at the mean-field level, where one
can effectively treat the contact-interacting part (short-range) and the dipolar part (long
range) separately3.

Tuning the dipolar interactions

Consider a gas of bosons fully polarized along the I direction. It is possible to tune
the dipolar interactions by rotating the polarizing magnetic field B around the I

3The fact that the two interactions can eventually be treated separately is not obvious and has been
subject to long debate in the literature (for extensive discussions on the issue, see Chomaz et al., 2022;
Lahaye et al., 2009), though it is now a well established procedure in the mean-field formalism.
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axis4 (Giovanazzi et al., 2002; Tang et al., 2018),

B(C) = �
{
cos! êI + 8 sin!

[
cos(ΩC) êG + sin(ΩC) êH

]}
, (3.4)

where Ω is the rotation angular frequency and ! is the angle with respect to the I axis.
If the frequency Ω is smaller than the Larmor frequency5 but is much larger than the
time scales of the system (given by the trapping frequencies), the dipoles will follow
the external field B(C) adiabatically and precess around the I axis. As a result, the
time-averaged potential provides the relevant physical description:

〈*dd(C)〉 =
�dd
4�

1 − 3 cos2 �

A3

(
3 cos2 ! − 1

2

)
, (3.5)

where the time average is taken over a period 2�/Ω. The last factor is 1 when ! = 0,
takes the value 0 at the magic angle ! = �< , and is −1/2 when ! = �/2 so that the sign
of the dipole–dipole interactions is inverted and the interactions are then referred to
as antidipolar (Kirkby et al., 2023; Mukherjee et al., 2023). As a result, one can vary the
effective interactions by changing the angle !.

Interaction potential in momentum space

The dipolar potential in Fourier space is useful for studying elementary excitations,
provides further insight into the anisotropy of the interactions and is convenient for
numerical calculations.

The dipole–dipole potential (3.2) can be rewritten in terms of the spherical harmonic
.ℓ<(�, !)with ℓ = 2 and < = 0 in spherical coordinates as

*dd(r) = −
�dd
4�

√
16�

5
.20(�, !)

A3 , (3.6)

where � is, as before, the angle between the relative position of the particles and the
polarization direction, and ! is the azimuthal angle (contained in the GH plane), which
plays no role here.

One can define the Fourier transform of*dd(r) as

*̃dd(k) = ℱ [*dd(r)] =
∫
*dd(r) 4−2�8 k·r 3r , (3.7)

with k the wavevector6. One way of calculating the Fourier transform, where we replace
*dd(r) by the potential defined in Eq. (3.6), is by expanding the exponential in Eq. (3.7)
in terms of Bessel functions and spherical harmonics. Then, the angular integrals can be

4In 2D systems, one can also tune the interactions by changing the trap angle with respect to the
polarization angle.

5The Larmor frequency, defined as ��/ℏ, is the frequency at which a magnetic moment � precesses
when subjected to a magnetic field of strength �.

6Note we have introduced the phase 2� for numerical convenience following the FFTW3 algo-
rithm (Frigo and Johnson, 2005).
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calculated using the orthonormal properties of spherical harmonics. To evaluate the
radial integral, one can introduce in the limits of the integral (0 and ∞) a cutoff 1 at
small distances, and a cutoff ' at large distances7 (Lu et al., 2010a; Ronen et al., 2006).
Since the size of the atoms is much smaller than the distance at which interactions occur,
one can set 1 → 0. Then, the Fourier transform of the potential is

*̃dd(k) =
�dd

3
(
3 cos2 �: − 1

) [
1 + 3 cos(2�:')

(2�:')2 − 3 sin(2�:')
(2�:')3

]
, (3.8)

where �: is the angle between the polarization direction and k. For large distances
('→∞), one gets the most common expression,

*̃dd(k) =
�dd

3
(
3 cos2 �: − 1

)
. (3.9)

Finally, the full interaction pseudopotential (3.3) in momentum space is

+̃(k) = ℱ [+(r)] = 6 + *̃dd(k) . (3.10)

For contact-interacting gases, the interaction potential in momentum space (3.10)
depends only on 6, i.e., the strength of the interaction8. For dipolar gases, however, the
potential presents an angular dependence (i.e., with �:) due to the anisotropic character
of the interactions. As a consequence, the anisotropy in momentum space will show
in the dispersion relation of the excitations, which will be then anisotropic. It is worth
noting that neither the contact term nor the dipolar term depend on : in 3D gases, but
that this may not be the case in quasi-2D systems (see Subsection 3.1.3). The fact that
the Fourier transform of the potential may depend on : in lower dimensions could lead
those systems to a new type of instability and exhibit structured excitations.

Mean-field formalism and dipolar Gross–Pitaevskii equation

Here we will discuss the mean-field formalism for a fully polarized dipolar gas of #
bosons at ) = 0. The Gross–Pitaevskii equation can be written in terms of a generic
interatomic potential (2.16) such that in time-dependent form reads

8ℏ
%#(r, C)

%C
=

[
−ℏ

2∇2

2< ++ext(r) +
∫

3r′+(r − r′) |#(r′, C)|2
]
#(r, C) . (3.11)

Replacing +(r − r′)with the pseudopotential (3.3), one gets

8ℏ
%#(r, C)

%C
=

[
−ℏ

2∇2

2< ++ext(r) + 6 |#(r, C)|2 +
∫

3r′*dd(r − r′) |#(r′, C)|2
]
#(r, C) , (3.12)

7The cutoff at large distances is introduced to avoid the different replicas (which arise naturally when
calculating in momentum space) from interacting with each other, since the interaction is long range.
This effect can otherwise be avoided by considering a numerical grid much larger than the condensate.

8Note that the Fourier transform of the contact part is just 6, since *̃B(k) = 6
∫
�(r)4−2�8 k·r 3r = 6.
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where *dd is the dipole-dipole potential (3.2). We recover the GPE from the contact-
interacting gas (2.20) with an additional term that accounts for the dipolar interactions
and that is nonlocal. Introducing a time-dependent ansatz (2.21), #(r, C) = #(r) 4−8�C/ℏ,
one finds the equation for the stationary state #(r),[

−ℏ
2∇2

2< ++ext(r) + 6 |#(r)|2 +
∫

3r′*dd(r − r′) |#(r′)|2
]
#(r) = �#(r) , (3.13)

which is the time-independent Gross–Pitaevskii equation for a dipolar gas.
The GPE, Eqs. (3.12) and (3.13), is now an integro-differential equation due to the

nonlocal term and thus it is, in general, difficult to solve numerically. To facilitate
the calculation, the standard procedure is to compute the dipolar term in momentum
space, where it only has an angular dependence as opposed to its nonlocal character
in real space. Then, one can recover the dipolar term in real space by inverse Fourier
transforming the product of the density and the potential in Fourier space,∫

3r′*dd(r − r′) |#(r′)|2 = ℱ −1 [
=̃ *̃dd(k)

]
. (3.14)

The inverse Fourier transform is denoted by ℱ −1, and *̃dd and =̃ are the Fourier
transforms of the dipolar potential and the density, respectively9. The dipolar potential
*̃dd is given by the analytical expression we introduced earlier (3.9), and the density =̃
can be calculated numerically10.

Finally, the energy functional of the system can be calculated analogously to the case
with only contact interactions (see Section 2.1), and reads

�[#] =

∫
3r

[
ℏ2

2< |∇#(r)|
2 ++ext(r)|#(r)|2 +

1
2 6 |#(r)|

4 (3.15)

+1
2

∫
3r |#(r)|2

∫
3r′*dd(r − r′)|#(r′)|2

]
. (3.16)

Comparingwith the nondipolar case (2.19), the energy is the same butwith an additional
contribution due to the dipolar interactions.

Length scales of the system

The behavior of a dipolar BEC will largely depend on the relative strength between
the dipole–dipole and contact interactions, which affect the stability of the system (see
Subsection 3.1.2). While the contact interactions are governed by the scattering length
0B , the strength of the dipolar interactions can be characterized by the dipolar length,

0dd =
�dd<

12�ℏ2 . (3.17)

9We have used the convolution theorem,
∫
dr′ 6(r′) 5 (r − r′) = 5 ∗ 6 = ℱ −1 [

5̃ (k) 6̃(k)
]
, where 5̃ (k) and

6̃(k) are the Fourier transforms of the functions 5 (r) and 6(r), and 5 ∗ 6 is their convolution product.
10This is why we defined the Fourier transform with the same phase as in the FFTW3 algorithm.
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Then one can define the dimensionless parameter

�dd =
0dd
0B

=
�dd
36 =

6dd

6
, (3.18)

which gives the relative strength of the interactions, and where we have defined
6dd = �dd/3.

In addition, the oscillator length (2.23) will also be a relevant length scale when
confining the system along the polarization direction of the dipoles (see Subsection 3.1.3).
For instance, in quasi-2D systems the oscillator length associated to the tight confinement
will be particularly relevant for the stability and formation of periodic structures in
these systems (see also Section 3.2 and Chapter 7).

3.1.2 Ground-state properties
The interplay between the interactions and the geometry of the trapping potential plays a
crucial role in the stabilization of the system. We will begin by discussing the untrapped
system and its collapse, and then introduce a confinement with cylindrical symmetry
that allows us to calculate the ground state of the system in the Thomas–Fermi limit.
Later we will explore two novel properties of dipolar condensates: magnetostriction
(i.e., the elongation of the gas due to interactions when confined), and the stabilization
effect of the confinement. Comparisons with the nondipolar case (i.e., with only contact
interactions) will be discussed during the whole subsection (see Chapter 2 for reference).

Collapse of a uniform dipolar gas

The anisotropy of the dipole–dipole interactionsmeans that the interactions are attractive
along the I direction (the polarization of the dipoles) and repulsive along the G and H
directions. As a result, a purely dipolar (with no contact interactions) unconfined gas is
unstable, since the attractive part of the interactions drives the system to collapse. This
effect is usually called a global collapse, and originates from the phonon instability (see
discussion on the spectrum of excitations in Subsection 3.1.3). However, the presence
of repulsive contact interactions may stabilize the system if confined, and a trapping
potential in itself may also prevent collapse, as in the nondipolar case. In the last case,
the situation is more nuanced due to the dipole–dipole interactions.

The onset of this mechanical instability, in a uniform gas, is determined by the
parameter �dd, which characterizes the relative strength of the dipolar interactions
compared to the contact interactions. The value �dd = 1 will set the upper limit for
stability. For a larger �dd (i.e., for stronger dipolar interactions), the contact interactions
are not enough to counterbalance the attractive effect of the dipolar interactions and
the system becomes unstable. While here we will assume that quantum fluctuations
are negligible and that the system can be described within the mean-field regime, in
Section 3.2 we will see that in the unstable regime quantum fluctuations can stabilize
the system and lead to the formation of droplets, as occurs with binary mixtures (see
Chapter 2).
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In the following we will focus on dipolar condensates with both contact and dipolar
interactions (unless said otherwise), and we will also confine the system to discuss the
effect of geometry in its ground state and stability.

Anisotropic trapping

Let us consider a general anisotropic confinement to address trapped systems. Given
the symmetry of the dipole–dipole interactions, one can choose cylindrical symmetry
with respect to the I axis (i.e., the direction of the dipoles). We will refer to the GH
confinement as transversal or radial confinement, with frequency $G = $H = $� and
radial coordinate �2 = G2 + H2, and to the I confinement, with frequency $I , as axial
confinement. The trapping potential reads,

+ext(r) =
1
2<

(
$2
��

2 + $2
II

2
)
. (3.19)

The trap anisotropy (or aspect ratio) is usually defined as � = $I/$�, and describes
three possible geometries that determine the shape of a nondipolar BEC:

• For a spherical geometry (� = 1), the condensate is spherically symmetric.

• For an oblate geometry (� > 1), the condensate is pancake-shaped: a disk in the GH
plane, with a tighter confinement along the I direction.

• For a prolate geometry (� < 1), the condensate is cigar-shaped, with I the trap’s
long axis.

Unlike nondipolar gases, dipolar gases will not follow exactly the shape of the trap, and
the geometry of the confinement will play a crucial role in the stability of the system.

Before discussing those properties, it is useful to introduce here the Thomas–Fermi
approximation to characterize the effect of magnetostriction, which is the elongation of
the cloud in the presence of anisotropic interactions.

Thomas–Fermi limit

If the number of atoms is very large and the interactions are sufficiently strong, the
quantum pressure term (i.e., the kinetic energy) becomes negligible compared to the
interactions (Pitaevskii and Stringari, 2016). This is known as the Thomas–Fermi limit or
approximation (see Subsection 2.1.2 in Chapter 2). The time-independent GPE (3.13) in
this limit reads

+ext(r) + 6=(r) +
∫

3r′*dd(r − r′) =(r′) = � . (3.20)

While solving this equation for the nondipolar case is straightforward, the GPE is now
nonlocal due to the dipolar interactions. As a consequence, this leads to a transcendental
equation in the Thomas–Fermi limit, with no analytical solution, for the aspect ratio of
the condensate � (Eberlein et al., 2005; O’Dell et al., 2004; Parker and O’Dell, 2008):

�2

�2

[
3�dd 5 (�)

1 − �2

(
�2

2 + 1
)
− 2�dd − 1

]
= �dd − 1 . (3.21)
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The aspect ratio of the condensate (or condensate anisotropy) is defined as � = '�/'I ,
where '� and 'I are the Thomas–Fermi radii in the radial and axial directions and
characterize the widths of the condensate. The function 5 (�) comes from integrating

0.01 0.1 1 10 100
2

1

0

1
f(

)

Figure 3.1: Behavior of 5 (�), defined in Eq. (3.22), as a function of the aspect ratio of
the condensate �. The function is approximately 1 (positive) for � < 1 and tends to −2
(negative) for � � 1. The horizontal axis is in logarithmic scale for clarity.

the angular part of the dipolar potential,

5 (�) = 1 + 2�2

1 − �2 −
3�2 arctanh

√
1 − �2

(1 − �2)3/2
, (3.22)

and, as Fig. 3.1 shows, it decreases monotonically from 5 (�→ 0) = 1 for prolate traps to
5 (�→∞) = −2 for oblate traps, with a zero crossing at � = 1.

Note that in the absence of dipole–dipole interactions, Eq. (3.21) reduces to a very
simple form, �2/�2 = 1 (we recall that � = $I/$�), which corresponds to a BEC with
only contact interactions: the distortion of the condensate follows that of the trap.
In dipolar condensates, however, the aspect ratio � depends on the strength of the
dipolar interactions, so the shape of the condensate inherits the anisotropy of the dipolar
interactions. And, unlike in the nondipolar case, the condensate anisotropy is not only
determined by the confinement, but also by the strength of the interactions.

Similar to the nondipolar case, the ground state in the Thomas–Fermi limit takes the
form of an inverted parabola, but it is distorted by the anisotropy of the interactions.
The solution is characterized by the density

=(�, I) = =0

[
1 −

�2

'2
�

− I2

'2
I

]
, (3.23)

where the central density, =0 = 15#/(8�'2
�'I), is a constant given by normalization.

While the density =(�, I) (3.23) is the same for both nondipolar and dipolar BECs,
the Thomas–Fermi radii 'I and '� (i.e., the widths of the condensate) are different for
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the dipolar case,

'� =

[
156#�

4�<$2
�

{
1 + �dd

(
3
2
�2 5 (�)
1 − �2 − 1

)}]1/5

, (3.24)

and 'I = '�/�.
One can obtain equivalent results (Giovanazzi et al., 2003) for � (3.21) by using

a Gaussian ansatz (see for instance Góral and Santos, 2002; Yi and You, 2000, 2001).
However, both approaches are only useful when describing a ground state with a
maximum density at the center of the trap, which will not always be the case in dipolar
gases (e.g., the red blood cell structure).

Geometric stabilization andmagnetostriction

Trapped dipolar gases present two properties that are not shared by nondipolar systems
(i.e., with only contact interacitons), as we will discuss now.

First, the dipolar interactions tend to elongate the condensate along the direction of
the dipoles due to the attractive part of the interactions (see for instance Góral et al.,
2000; Santos et al., 2000; Stuhler et al., 2005). This effect is known as magnetostriction (or
electrostriction for electric dipoles), and is given by a difference between the aspect ratios
of the condensate � and the trap � (i.e., the condensate is more elongated than the trap),
as one can see from Eq. (3.21), since � ≠ �. This elongation effect can be understood, for
example, by considering the dipolar contribution to the energy in the Thomas–Fermi
limit. Replacing the Thomas–Fermi density (3.23) into the energy functional (3.15), one
finds

�dd = −
15
7
#2ℏ20

<

�dd

'2
�'I

5 (�) = −4
7
=0#

2 �dd 6 5 (�) , (3.25)

where the function 5 (�), Eq. (3.22), captures the anisotropic nature of the interactions
(see Fig. 3.1). One can see from Eq. (3.25) and Fig. 3.1 that the dipolar energy is reduced
by decreasing �, which means elongating the trap along I.

Similarly to nondipolar condensates, the presence of a trapping potential may
stabilize the system against collapse, but for dipolar condensates the geometry of the
confinement is crucial when determining the stability of the system (see for instance
Bohn et al., 2009; Koch et al., 2008). Considering dipoles polarized along the I axis, we
can discuss the stability of the system for the three geometries introduced before:

• Spherical trap (� = 1). The cloud elongates along the direction of the dipoles due
to magnetostriction. The system is stable unless the dipole–dipole interactions
are so strong that the attractive part of the interaction dominates and drives the
system to collapse. In this case, a repulsive contact interaction can compensate the
attractive part and stabilize the system.

• Prolate trap (� < 1). If the trap is cigar-shaped and longer along the polarization
direction, it forces the dipoles to align in a head-to-tail configuration. As a result,
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the dipolar interactions are mainly attractive, and the system collapses towards
the center of the trap unless a strong repulsive contact interaction prevents it.

• Oblate trap (� > 1). The confinement along the direction of the dipoles is tighter
than in the other directions and the trap has the shape of a disk. Confining more
strongly along the polarization direction will cause the dipoles to be mostly side
by side. Then, the effective dipolar interactions are mainly repulsive, and the
system is thus stable in most cases. It can still collapse, however, but it will be a
local collapse instead of a global one caused by the presence of a roton minimum
in the excitation spectrum (see Subsection 3.1.3).

Due to the interplay between the anisotropy of the interactions and the trap, ground
states that exhibit spontaneous symmetry breaking11 emerge for certain aspect ratios of
the trap. An example of such ground states is the biconcave (i.e., red blood cell) structure
one can find in pancake traps (Martin and Blakie, 2012). These exotic ground states
cannot be described within the Thomas–Fermi approximation, and require instead a
numerical approach.

Henceforward, we will consider either spherical or oblate traps (� ≥ 1) such that
the condensate is stable against the global collapse caused by the attractive part of the
interactions.

3.1.3 Elementary excitations and instabilities
In the last subsection we saw that the system can exhibit a global (mechanical) collapse
when the attractive part of the interaction dominates. We also mentioned a second
possible instability due to a tight confinement along the polarization of the dipoles that
may lead to local collapses in the condensate. These two instabilities are often called
phonon and roton instabilities due to their different origin, and we will discuss them
here by analyzing the excitation spectra in different settings.

Phonon instability in a three-dimensional uniform gas

Let us consider first a uniform gas (i.e., with no external confinement) with density =0.
The spectrum of excitations can be calculated by performing the standard Bogoliubov
analysis, as we did in Subsections 2.1.1 and 2.2.1 for the nondipolar scalar case and for
the binary mixture, respectively (Bogoliubov, 1947),

(ℏ$)2 = ℏ2:2

2<

[
ℏ2:2

2< + 2=0+̃(k)
]
. (3.26)

Equation (3.26) is analogous to the nondipolar case (2.31) with the 2=06 term replaced
by 2=0+̃(k), where +̃(k) is the Fourier transform of the whole interaction potential (3.10).

11In other words, with structures that differ from those with a central maximum density, as the
Thomas–Fermi solution or a Gaussian ansatz.
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Then, introducing the Fourier transform of the dipolar interactions *̃(k) as defined by
Eq. (3.9), the spectrum of excitations is (Santos et al., 2000)

(ℏ$)2 = ℏ2:2

2<

[
ℏ2:2

2< + 26=0
{
1 + �dd(3 cos2 �: − 1)

}]
. (3.27)

We recall here that �: is the angle between k (i.e., the direction of the excitations) and
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Figure 3.2: Left: excitation spectrum of a 3D uniform gas with dipole–dipole interactions
and interaction strength �dd = 0.7 (top panel) and �dd = 1.6 (bottom panel). Solid lines
correspond to the excitation energies (3.27) for �: = 0, �/2 and �< as labeled by the legend,
and the dashed line indicates their imaginary part. We recall that the magic angle �<
is the angle at which the dipolar interactions vanish such that the system is effectively
nondipolar (i.e., contact-interacting only). Right: speed of sound as a function of the
parameter �dd for the two limit angles (�: = 0 and �/2) and for the magic angle �< in
solid lines. The dashed line corresponds to the imaginary part of the speed of sound,
which becomes nonzero if �dd > 1 for �: = �/2. The system is stable for �dd < 1, which
shows in the spectrum as the energies of the excitations are real. However, for �dd > 1, the
slowest mode (�: = �/2) acquires an imaginary part at low momenta, which corresponds
to an imaginary speed of sound, and the system becomes unstable (see further discussion
in the main text).

the polarization direction of the dipoles. Thus, even though the system is uniform
(isotropic), the spectrum of excitations is anisotropic due to the interactions, as Fig. 3.2
(left) shows.

We recover the same two regimes in terms of the momenta as in the nondipolar case
(see discussions in Chapter 2). Excitations show a free-particle behavior in the limit
of large momenta and a phononic behavior in the limit of low momenta (see Fig. 3.2,
left). Now, however, the frequency of the phonons is $ = 2(�:) :. Therefore, the angular
dependency of the potential in momentum space implies that the speed of sound has an
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angular dependence too,

2(�:) =
√
6=0

<

√
1 + �dd(3 cos2 �: − 1) , (3.28)

where
√
6=0/< is the speed of sound for the nondipolar case. As a result, the speed

of sound is different for excitations propagating at different angles (see Fig. 3.2, right).
Considering for instance the two limit cases, one can see the following scenarios
(illustrated in Fig. 3.2):

• Excitations that propagate along the direction of the dipoles (�: = 0) have the
highest speed of sound, and their frequency and speed of sound are always real.
They are the most energetic modes and are often called hard modes.

• Excitations that instead propagate perpendicular to the direction of the dipoles
(�: = �/2) have the lowest possible speed of sound. They are the least energetic
ones and are usually referred to as soft modes. These modes can have imaginary
frequencies for some parameters, which destabilize the system.

For the magic angle �< = arccos(1/
√

3), the dipole–dipole interactions vanish and the
system only presents contact interactions.

The speed of sound (3.28) for the slowest excitations (the most unstable, i.e., with
�: = �/2) is zero when �dd = 1 and becomes imaginary for �dd > 1, as shows Fig. 3.2
(right). When the frequencies of these excitations become imaginary, the system is
unstable and a global collapse occurs. Since this instability happens at low momenta
(large wavelengths), it is often called the phonon instablity, as in the case of nondipolar
condensates (see Subsection 2.1.2 in Chapter 2).

The phonon instability then is a mechanical instability that comes from the attractive
part of the interactions, and leads to a global collapse of the system towards the center
of the trap. Here we have studied this instability on an isotropic gas, but the stability
will change significantly when adding in the anisotropy of the confinement. Moreover,
as we will see next, this global collapse will also occur in cigar-shaped condensates with
the dipoles oriented along the large axis.

Collapse in a confined gas

The conditions for the interaction strengths under which mechanical collapse occurs
can also be studied in terms of the ground state energies12. For a condensate confined in
an external potential and in the Thomas–Fermi limit, the kinetic and potential energies
can be neglected, such that the total energy will only have two contributions13: the

12See Koch et al. (2008); they use a Gaussian ansatz instead of a Thomas–Fermi profile as we do here,
but the discussion is the same.

13The mean-field energies scale with #2 (note that =0 ∝ #) while the kinetic and potential energies are
linear with # , and therefore the last two are negligible for large enough # .
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contact and dipolar interactions. Using a Thomas–Fermi profile (3.23), Eq. (3.25) gives
the dipolar energy, which we rewrite here,

�dd = −
2
7=0#6 �dd 5 (�) , (3.29)

and the energy contribution of the contact interactions is

�2 =
2
7=0#6. (3.30)

Then, the total energy is

� =
2
7=0#6

[
1 − �dd 5 (�)

]
, (3.31)

where �dd = 0dd/0B (3.18). We consider the case of 6 < 0, which is the situation that
leads to collapse. The total energy � must be negative to minimize the energy, and this
gives the condition for instability:

0B < 0dd 5 (�) . (3.32)

Depending on the trap anisotropy we can have two different scenarios:

1. For cigar-shaped traps (� < 1), as discussed earlier, the dipoles tend to be head to
tail, which means that � � 1 and thus the dipolar interactions are mostly attractive.
In this case (see Fig. 3.1), 5 (�) ≈ 1, and from the above condition (3.32) we find
that the condensate is stable if 0B > 0dd. Notice that this condition corresponds to
the �dd < 1 condition for stability that we discussed in the unconfined case.

2. In the opposite situation of pancake-shaped traps with � � 1, the attractive part of
the interaction is mostly suppressed by the confinement and the repulsion between
dipoles is twice as strong as is the attractive interaction, 5 (�) ≈ −2 (see Fig. 3.1). In
this case, 0B must fulfill that 0B < −20dd for the condensate to be stable.

We will focus on this last scenario next.

Roton instability in a quasi–two-dimensional condensate

In the 3D homogeneous case, we saw that the dipolar interactions introduce an angular
dependence into the excitation spectrum (3.27). However, in a quasi-2D condensate, the
excitation spectrum may not only depend on the angle �: but also on the modulus of k.
This can happen when the interactions are strong enough that, despite being quasi-2D,
the system starts to feel the 3D nature of the dipolar interactions. The resulting spectrum
is known as roton–maxon spectrum (O’Dell et al., 2003; Santos et al., 2003), and leads to a
new type of instability, the roton instability.

Let us consider a uniform system confined only along the polarization direction
of the dipoles (there is no transversal confinement). The confinement along I is tight
enough such that the system is quasi-2D but the atoms are still allowed to move in the I
direction (the trap’s length scale is much larger than the length scales that characterize
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the interactions). The trap along I introduces a new length scale that becomes relevant
in the physics of the system, which will translate into a favored momentum in the
dispersion relation.

One can reduce the dimensionality of the system to 2Dwhen � � ℏ$I (see Chapter 2)
such that the degrees of freedom that correspond to the I coordinate are frozen. However,
the roton instability occurs for � � ℏ$I (i.e., the Thomas–Fermi regime), where we have
considered a system confined in I, so that the standard approach is no longer valid14.
However, we can still use an effective quasi-2D approach to understand the appearance
of a roton minimum and its associated instability (Lahaye et al., 2009).

To reduce the problem to a quasi-2D regime (see a detailed discussion in Ticknor
et al., 2011), we consider a Gaussian ansatz15 for the I direction,

"(I) = 1
0I
√
�

exp
(
− I

2

02
I

)
, (3.33)

with 0I the oscillator length (2.23), so that the condensate wavefunction can be then
approximately factorized asΨ(r, C) = "(I)#(�, C). Calculating the 2D Fourier transform
of the dipolar potential with the factorized wavefunction yields

*̃dd(:�) =
6dd

0I
√

2�
�2D

(
:�
0I√

2

)
, (3.34)

where k� is the wavevector in the transversal plane (with modulues :�) and 6dd is the
usual 3D dipolar coupling constant, 6dd = �dd/3. The function �2D is given by

�2D(@) = 2 − 3@
√
� exp(@2) erfc(@) , (3.35)

with erfc(@) the complementary error function and q = k� 0I/
√

2 (see Fig. 3.3, top
panel, for more details). Unlike in the 3D homogeneous case (3.9), the 2D Fourier
transform (3.34) depends on the modulus of k�.

With this, the dispersion relation (3.26) reads

(ℏ$)2 =
ℏ2:2

�

2<

[
ℏ2:2

�

2< + 262D =2D

{
1 + �dd�

(
:�
0I√

2

)}]
, (3.36)

14The roton instability appears in different regimes for attractive or repulsive contact interactions in
pancake-shaped condensates. If 6 > 0, it occurs when � � ℏ$I (as stated in the main text) and the
quasi-2D approach is not valid. In this case, the condensate has a Thomas–Fermi density profile along
I, and the instability comes from attractive part of the dipolar interactions at large momenta (i.e., the
system feels the 3D nature of the interaction). If 6 < 0, on the other hand, the roton instability can appear
for � � ℏ$I (so that the usual 2D approach is valid), and the condensate has a Gaussian profile in I.
In this case, this 2D-roton originates from the attractive nature of the contact-interactions, i.e., 6 < 0,
and a stronger dipolar interaction can stabilize the system (for more details, see Lahaye et al., 2009, and
references therein).

15Alternatively, one can also consider a Thomas–Fermi profile instead (see for instance Santos et al.,
2003). The quantitative results depend on the density profile that one chooses for the axial direction, but
the qualitative argument is the same.
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Figure 3.3: Roton–maxon spectrum (bottom panel) and 2D Fourier transform of the dipole–
dipole potential (top panel) for a quasi-2D dipolar gas confined along the polarization
direction I. All quantities are given in units of 0I , the oscillator length associated to the
axial confinement. The Fourier transform �2D (top panel) portrays the behavior of the
interactions, which change sign at :� ≈ 1/0I . The excitation spectrum (bottom) shows the
energy for different strengths of the dipolar interactions, characterized here by the dipolar
coupling constant 6dd = 6̃dd ℏ

20I/<. For illustrative convenience, we have defined the 2D
density as =2D = 1/02

I and the contact coupling constant as 6 = ℏ20I/<. For small values
of the dipolar coupling constant (cases with 6̃dd = 0.8 and 3.5), the dispersion relation has
the usual monotonic shape, with the phonon and free-particle regimes for low and high
momenta, respectively. However, if the dipolar interactions are strong enough (6̃dd = 6
case), the excitation spectrum shows a local maximum followed by a local minimum at a
finite :�, and is thus often referred to as roton–maxon spectrum as in liquid helium. Note
that in this last case the two limits (phonon and free-particle dispersion) are still present.

where =2D is the average 2D density (in the plane) and =0 is the total average density
such that =0 = =2D/(0I

√
2�). The 2D coupling constant is 62D = 6/(0I

√
2�), with 6 the

3D coupling constant.
As in both the dipolar uniform case and the nondipolar case, the excitations behave

as phonons at small momenta and as free particles at large momenta (see Fig. 3.3,
bottom). However, in some cases a minimum appears in the excitation spectrum due to
the Fourier transform (see Fig. 3.3, top) changing its sign: the interaction is repulsive
for :� � 1/0I (low momenta), and it is attractive for :� � 1/0I (large momenta). As
a result, the dipolar interactions increase the energy in the phononic regime, where
the kinetic energy is very small, and reduce it at larger momenta, when the Fourier
transform of the dipolar potential becomes attractive. This causes the roton minimum. At
even larger :�, however, the kinetic energy dominates over the dipolar energy and it
increases the energy again towards the free-particle regime.
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Since the sign of the Fourier transform changes at :� = 1/0I (see Fig. 3.3), the
wavelength of the roton is set by the confinement along the direction of the attractive
part of the dipolar interactions. One can reduce the energy of the roton by increasing
either the density or the strength of the dipolar interactions. Then, the roton instability
appears when the energy becomes zero. The presence of the roton instability will be the
onset of density modulations in the condensate, as we will discuss in the next section.

3.2 Dipolar droplets and supersolids

In the last section we introduced dipolar condensates, where the atoms interact via
both contact and dipole–dipole interactions, and studied their static properties and
stability through a mean-field description. However, similarly to nondipolar gases
(Chapter 2), the mean-field approach may no longer be valid at larger densities or
stronger interactions, when the quantum fluctuations start to be relevant and deplete
the condensate.

Dipolar condensates where beyond mean-field effects are not negligible can be
described by a Gross–Pitaevskii equation extended to include the effect of quantum
fluctuations (Subsection 3.1.1), as in nondipolar condensates (Chapter 2). Quantum
fluctuations can stabilize the system against collapse and give rise to droplets, where
the competing interactions are the repulsive contact interactions and the dipole–dipole
interactions. This results in a small mean-field contribution that counterbalances the
beyondmean-field energy. However, while the stabilizingmechanismof dipolar droplets
is the same as in droplets of nondipolar binary mixtures (see Section 2.2.3), the resulting
states will have different properties due to the distinct nature of the interactions involved
(Subsection 3.1.2).

The presence of an anisotropic external confinement, which has already a crucial
effect in the stability of the system (see Subsections 3.1.2 and 3.1.3), can force the
droplets to assemble into an array and form a droplet crystal, a behavior that droplets of
nondipolar mixtures cannot exhibit. These droplet crystals have no global coherence,
since the individual droplets are isolated (i.e., do not overlap) due to the strong repulsion
with the other droplets. Between the regular BEC regime and the array of isolated
droplets regime, however, there is a region for certain parameters in which the whole
crystal may retain the superfluid character of the condensate while showing at the same
time crystalline properties. This phenomenon is known as supersolidity (Subsection 3.2.3).

3.2.1 LHY correction
The LHY correction comes from the zero-point energy of the excitations (see Chap-
ter 2). Since the presence of dipole-dipole interactions modifies the spectrum of
excitations (3.27), the LHY correction is modified as well. For a dipolar condensate, the
energy functional with a beyond mean-field correction is

�[#] = �MF +
∫

3r ℰLHY , (3.37)
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where �MF is the mean-field energy functional (3.15). The LHY correction to the energy
density (Lima and Pelster, 2011, 2012), calculated for a homogeneous system, is

ℰLHY =
2
5 6LHY =

5/2 , (3.38)

with = the density of the gas. The strength of the correction 6LHY is given by

6LHY =
32

3
√
�
6 0

3/2
B &5(�dd) , (3.39)

where &5(G) is defined as

&5(�dd) =
1
2

∫ �

0
3�: sin�:

[
1 + �dd(3 cos2 �: − 1)

]5/2 ≈ 1 + 3
2�

2
dd . (3.40)

The approximation in Eq. (3.40) is valid for small values of �dd, as shown in Fig. 3.4
(dotted line). The function &5(�dd) is a monotonic function (see Fig 3.4) that comes from
the averaged contribution of the dipole–dipole interactions. As opposed to the mean-
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Figure 3.4:Averaged contribution of the dipole–dipole interactions, given by&5(�dd) (3.40).
The solid line is the real part of the function while the dashed line corresponds to its
imaginary part, which increases with �dd. Note, however, that it is very small, and can be
neglected if �dd . 3. The dotted line indicates the function 1 + 3�2

dd/2, which approximates
&5(�dd) for small values of �dd.

field energy terms,&5 depends on the relative strength of the two competing interactions
(contact and dipolar), �dd = 0dd/0B , and not on their individual contributions. Therefore,
the LHY correction is always repulsive, and note that it grows with a power 5/2 of the
density =, as opposed to the =2 dependence of the mean-field contributions.

The LHY correction to the energy (3.38) is strictly valid only for �dd < 1, since for
larger values the homogeneous system is unstable due to the phonon instability. In this
unstable regime, &5 acquires an imaginary part (see Fig. 3.4). However, for the range of
interactions usually considered (�dd . 3), this imaginary part is very small, and one can
neglect it in the theoretical description and use Eq. (3.38) nonetheless.
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Extended Gross–Pitaevskii equation

Similarly to the nondipolar case (see Chapter 2), the LHY correction (3.38) is calculated
for a homogeneous system and one considers two assumptions to extend the mean-
field description using the corrected energy (3.37). First, that all the atoms are in
the condensate. The correction accounts for the energy shift due to excitations, but
the quantum depletion is still very small and one can neglect it. Second, that the
density varies slowly enough so that one can calculate the energy shift locally, for a
given =(r), which is known as local density approximation (LDA). The LDA is valid even
beyond the instability, and it is a good approximation as long as the droplet remains
elongated (Wächtler and Santos, 2016b). Given these two conditions, the local correction
to the chemical potential reads

�LHY =
%ℰLHY
%=

= 6LHY =
3/2(r) = 6LHY |#(r)|3 . (3.41)

Then, the time-dependent GPE for dipolar gases (3.12) can be extended by including the
�LHY #(r, C) term,

8ℏ
%#(r, C)

%C
=

[
−ℏ

2∇2

2< ++ext(r) + 6 |#(r, C)|2 (3.42)

+
∫

3r′*dd(r − r′) |#(r′, C)|2 + 6LHY |#(r, C)|3
]
#(r, C) .

This formalism allows us to study the main static and dynamic properties of dipolar
self-bound droplets, as we will see next.

3.2.2 Self-bound dipolar droplets
Quantum fluctuations can prevent the collapse predicted by the mean-field formalism.
This stabilizing mechanism is intrinsic to the system and leads to a quantum droplet,
which is much more dilute than an ordinary liquid but denser than a condensate that
is stable in the mean-field regime. Due to the higher density of droplets as compared
with the mean-field condensate, three-body losses are the main decay mechanism and
hugely limit the lifetimes of droplets.

In the last chapter, we reviewed the main properties of quantum droplets in nondipo-
lar binary mixtures (see Section 2.2). Here we will focus on droplets of dipolar
condensates (Böttcher et al., 2021; Chomaz et al., 2022) and remark the main differences
with their nondipolar counterparts.

Dipolar droplets were first observed experimentally with 164Dy atoms (Ferrier-Barbut
et al., 2016a,b; Kadau et al., 2016) and later described theoretically (Bisset et al., 2016;
Wächtler and Santos, 2016a), and are also self-bound solutions, i.e., they exist without
need of confinement (Baillie et al., 2016). One fundamental difference with nondipolar
droplets is that, due to the anisotropy of the dipole–dipole interactions, the binding
mechanism of dipolar droplets is also anisotropic. This results in two important
consequences, as illustrated in Fig. 3.5:
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Figure 3.5: Density of a self-bound dipolar droplet along the radial (�) and axial (I)
coordinates for different atom numbers, calculated by numerically solving the extended
GPE. We considered a gas of # dysprosium atoms with scattering length 0B = 70 00, and
atom numbers ranging from 2000 to 30000. The density along the I direction (left panel)
saturates after a certain number of atoms is reached, but such saturation does not occur
along the � direction (right panel).

1. The droplets are elongated along the axial direction (i.e., the polarization direction),
since the interactions are effectively attractive in that direction, so it is more
favorable for the system to add more particles along the axial direction than in the
transversal directions, where the dipolar interactions are instead repulsive.

2. The liquid-like saturation of the peak density only occurs along the axial direction,
as shown in Fig. 3.5. In the transversal directions, on the other hand, the interactions
are mostly repulsive, and the density does not saturate.

Once saturation occurs in the axial direction, as with nondipolar droplets, increasing
further the number of atoms does not change the peak density but leads to an increase
in the size of the droplet. The saturation value is independent of the number of atoms,
as in nondipolar droplets.

Droplets form at the density for which the mean-field and beyond mean-field
contributions balance. This density is the equilibrium density, and one can define it
by neglecting the kinetic energy and using a Gaussian ansatz (Chomaz et al., 2022;
Ferrier-Barbut et al., 2016a),

=0 =
�

03
B

(
�dd 5 (�) − 1
16&5(�33)

)2
, (3.43)

where 5 (�) is defined by Eq. (3.22). From Eq. (3.43) one can deduce that the droplet
is ultradilute, i.e., =0 0

3
B � 1. This occurs because the effective mean-field interactions

�dd 5 (�) − 1 are very small, and because the beyond mean-field contribution, &5(�33), is
much larger.

The critical (i.e., minimum) atom number that dipolar droplets require to be self-
bound is also determined by the balance between the bindingmechanism and the kinetic
energy, such that it depends on the strength of the interactions. The kinetic energy
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prevents the formation of self-bound droplets if the number of atoms is too small, but for
a large number of atoms the interactions dominate and the effect of the kinetic energy is
negligible.

Finally, in dipolar droplets, there is at least one collective mode below the particle
emission threshold (Baillie et al., 2017; Böttcher et al., 2021) and, as a result, dipolar
droplets do not exhibit self-evaporation16.

3.2.3 Anisotropically confined droplets
The external confinement plays a critical role in the stability and properties of the system
even when quantum fluctuations are negligible (see discussion in Section 3.1). Here we
will discuss the effect of an anisotropic trapping on dipolar droplets when quantum
fluctuations become relevant. Even though dipolar droplets are self-bound objects and
thus do not need an external confinement to exist, the presence of such a trapping may
lead to the emergence of density-modulated states (i.e., crystals of droplets) that, in
some cases, can exhibit supersolid properties. This occurs specially if the confinement
along the polarization direction is tight.

The density of a dipolar droplet shows a weak dependence on the trapping potential:
while a BEC that is stable in themean-field regime adapts to the trap (see Subsection 3.1.2),
dipolar droplets are always markedly elongated. However, the confinement does play
a role in the nature of the transition from a mean-field BEC (a low-density state) to a
self-bound droplet (a high-density state) when changing the scattering length 0B . For a
fixed small atom number # , of the order of 104, and a shallow confinement (Bisset et al.,
2016; Chomaz et al., 2022; Wächtler and Santos, 2016a), the phase diagram in terms of
the scattering length 0B and the aspect ratio of the trap � = $I/$� defines two regions:

• In cigar-shaped traps elongated along the polarization direction (� < 1) and in
slightly oblate traps (� & 1), the BEC and droplet regimes are connected through a
crossover. The transition is smooth because the trap and the elongation (which
is caused by the anisotropy of the dipole–dipole interactions) both favor similar
geometries.

• In pancake-shaped traps (� > 1), this transition is discontinuous and presents an
intermediate bistable region in which both solutions (the BEC and the droplet) are
local minima in the energy.

Therefore, one can explore this transition (and the two regions) by changing the geometry
of the trap (varying thus the aspect ratio �).

Droplet crystals

For systems with more atoms or with a tighter axial confinement, the phase diagram
is different. The bistability region is instead populated by a continuum of density-
modulated states with different number of droplets, i.e., droplet crystals (Kadau et al.,

16As we discussed on Chapter 2, for a particular regime of atom numbers, a droplet of a nondipolar
binary mixture cannot sustain excitations and instead evaporates partially to form a smaller droplet.
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2016), and with a large shot-to-shot variability. This occurs because starting from
a mean-field BEC in the bistable region (above a given critical �) and lowering the
scattering length leads to a modulational instability (Ferrier-Barbut et al., 2018b). Since
the BEC–droplet transition in this region is discontinuous, these states are metastable:
the system cannot follow the ground state and instead breaks into smaller droplets.

However, droplet crystals (i.e., density-modulated states) can in fact be the ground
state of a dipolar gas (Baillie and Blakie, 2018) for a large enough number of atoms.
Compressing an isotropic droplet (either classical or quantum) deforms it to keep the
density constant. In dipolar droplets, however, the binding mechanism is anisotropic,
and compressing the droplet along the polarization direction has a large energy cost
due to the dipolar interactions. This leads to the frustration of the droplet, since it
becomes favorable for the system to break into smaller droplets. Then, the smaller
droplets arrange into crystals17 due to the repulsion between their dipoles, and thus the
ground state of the system can form spontaneous density modulations.

These arrays break the continuous translational symmetryof the systemand, although
each individual droplet is superfluid, the crystals as a whole are incoherent, since the
droplets are isolated (i.e., the density drops to zero between them).

Supersolids

In some cases, the droplets are not fully isolated but have spatial overlap, such that
the system does not lose its global phase coherence. This coherent array of droplets
is known as a supersolid, since it exhibits at the same time the frictionless flow of a
superfluid and the crystal-like periodic density modulation of a solid. In a supersolid,
two continuous symmetries of the system are broken (Boninsegni and Prokof’ev, 2012):
the translational symmetry (by showing a periodic modulation of the density), and the
phase invariance of the condensate (since the system is no longer symmetric under a
phase change, i.e., loses its phase coherence). Supersolidity emerges when the breaking
of these two symmetries comes from the intrinsic interactions of the system. For a tight
axial confinement and a large atom number, supersolid properties exist for a narrow
range of scattering lengths close to the transition between the mean-field BEC and the
incoherent array of droplets (Chomaz et al., 2019; Roccuzzo and Ancilotto, 2019; Tanzi
et al., 2019a). Figure 3.6 shows for comparison the density profiles of a mean-field BEC,
a supersolid and a crystal of droplets.

The system will then be supersolid if it exhibits both spatial order and superfluidity,
but for superfluidity to be present the system needs to have phase coherence. A strong
indication of superfluidity can be obtained by repeated time-of-flight measurements: if
the interference patterns show the interference of multiple droplets, then the system
presents global phase coherence (Böttcher et al., 2019a). This does not happen in an
incoherent array of droplets. However, spatial order and global phase coherence are not
enough to prove superfluidity, and one has to study also the elementary excitations of
the system.

17These crystals are held together by the external confinement. This will not be the case in crystals of
antiparallel dipolar mixtures (see Chapter 7).
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Figure 3.6:Density profiles along the G axis for a mean-field stable BEC (left), a coherent
crystal (center), with supersolid properties, and an incoherent crystal (right), where
the droplets are isolated. Calculated for a gas of # ∼ 30000 dysprosium atoms in an
anisotropic trap such that $G < $H � $I and varying the scattering length 0B ∼ 90 00 to
obtain the three cases. All quantities are in units of 0ho, the oscillator length associated to
the mean frequency of the trap. Note that the isolated droplets (right) have a much larger
density than the mean-field stable BEC (left).

In an axially-confined dipolar system, if the scattering length is small (and thus
�dd is large) the interactions present a momentum dependence that shows in the
spectrum of excitations as a minimum at a finite :, called the roton minimum (see
Subsection 3.1.3). This minimum corresponds to a perturbative density modulation on
top of the condensate. When the roton mode softens (i.e., the roton minimum reaches
zero), the system may transition to an array of droplets, since the roton corresponds to
a privileged length scale determined by the tight confinement along the polarization
direction. In a cigar-shaped condensate, a single roton mode softens, which determines
the wavelength of the modulation; in contrast, the situation is more nuanced in pancake-
shaped condensates, since there are several angular and radial rotons softening at the
same time (Hertkorn et al., 2021a,b; Norcia et al., 2021; Zhang et al., 2021).

Periodic modulations of the density, also referred to as the stripe phase, appear also
in a miscible two-component mixture with spin–orbit coupling (Li et al., 2017). In that
case, however, the modulations are not determined by a favored wavevector as a result
of anisotropic interactions within the system, but by an external field.



4
CHIRAL CONDENSATES IN ROTATING RINGS

The electric and magnetic properties of strongly correlated matter make these materials
valuable for many technological applications. However, the experimental realization
of these systems is very challenging, and one cannot fully control the gauge fields that
emerge naturally in charged systems (e.g., the electron charge is a universal constant).
Ultracold gases, on the other hand, present a great degree of experimental and theoretical
controllability, and so gases of neutral atoms offer an excellent platform for simulating
gauge theories.

In the last decades, there has been a great interest in artificial gauge potentials, which
allow charge-neutral ultracold atoms to behave like charged particles in magnetic fields.
In such settings, one can fully control the gauge fields imposed on the atoms by external
means. Therefore, one can simulate typical effects of electronically charged systems in
weakly interacting neutral atoms. In addition, these low-energy platforms could also
allow one to explore phenomena so far restricted to high-energy systems.

Artificial gauge potentials can arise in neutral particles either by rotating the system
or by engineering geometric phases; the latter one will be the focus of this chapter. In
particular, we are interested in density-dependent gauge potentials, which can emerge
in a weakly interacting condensate due to the optical coupling of the internal states of
the atoms. These gauge fields appear due to the geometrical phases that the system
acquires during the adiabatic path of the resulting dressed states. As a result of the
light–matter interaction, these condensates can present chiral properties, as we will
first introduce in this chapter and then explore in more detail in Chapters 8 and 9. We
will consider the cases of a scalar and a linearly coupled condensate in a rotating ring,
respectively.

In Section 4.1, we will introduce artificial gauge fields and see how one can induce a
density-dependent gauge potential in an ultracold Bose gas by means of light–matter
interactions. The effective interactions of the resulting system come from the current
density and thus present chiral properties. In Section 4.2, we will focus on the 1D
scenario and introduce the 1D chiral theory with a density-dependent gauge potential.
This theory will allow us to study condensates with current-density interactions. Wewill
finish this section by considering the particular case of a quasi-1D condensate confined
on a ring potential, which presents chiral currents and chiral solitons under rotation.
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4.1 Density-dependent gauge potentials in cold atoms

Ultracold atoms are charge neutral and so remain unaffected by electromagnetic fields.
However, one can emulate the dynamics of charged particles by engineering artificial
gauge fields in ultracold atomic systems.

We will start in Subsection 4.1.1 by presenting the concept of gauge fields through
the classical example of electromagnetism. We will then introduce artificial gauge fields
in quantum systems, where artificial potentials can emerge from geometric phases when
the system follows an adiabatic evolution. In the most common examples of gauge fields,
the fields are independent of the properties of matter and are instead imposed externally
on the system. Here, we will consider the case of density-dependent potentials, in
which the emergent gauge fields depend on the local density of particles. One can
engineer these types of gauge potentials in optically coupled ultracold atoms by tuning
the light–matter interactions, as we will discuss in Subsection 4.1.2.

4.1.1 Artificial gauge fields
Gauge theories are essential in the understanding of the interactions between elementary
particles (Goldman et al., 2014; Lancaster andBlundell, 2014; Zee, 2010). In a gauge theory,
the Lagrangian that describes the system is invariant under certain local transformations,
known as gauge transformations. As a result, the states and observables of the system
are also invariant under such transformations (i.e., gauge invariant), which connects
with the concept of gauge symmetries. Unlike global symmetries, gauge symmetries
lead to local conservation laws: they vary from point to point in space and time, and
the conservation ensures gauge invariance locally. Thus, the role of a gauge field is to
preserve the gauge symmetry when particles interact. In electromagnetism, for example,
the gauge field is the electromagnetic potential (the vector and scalar potentials), as
we will discuss next. In a quantized theory, the gauge boson is the quantum of the
gauge field, which mediates the interaction and corresponds to the photon in the case of
electromagnetism. As a result, matter and the gauge field are coupled through these
conservation laws, such as the conservation of the electric charge in electromagnetism.

Electromagnetism

Let us consider the case of electromagnetism as an example (Dalibard, 2016). Elec-
tromagnetism describes the interactions between light (an electromagnetic field) and
matter1.

For a static magnetic field B(r), Gauss’s law for magnetism is ∇ ·B = 0, which directly
implies that magnetic monopoles do not exist. From Gauss’s law, one can define the
vector potential A, the curl of which is the magnetic field B,

∇ ×A = B . (4.1)

1The quantum counterpart of electromagnetism is quantum electrodynamics (QED), in which the
gauge boson is the photon.
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This vector potential is not uniquely defined. Two vector potentials A and A′ defined
such that ∇ × (A − A′) = 0 correspond to the same magnetic field B and result in the
same physical behavior. Therefore, the vector potential A associated to a given system is
not unique. Using that the curl of a gradient is zero, one can add to the vector potential
the gradient of an arbitrary scalar function "(r), also called the scalar potential, which
is not uniquely defined either. Therefore, two vector potentials associated to the same
magnetic field are related by the gauge transformation

A′(r) = A(r) + ∇"(r) . (4.2)

The scalar and vector potentials, " and A, enter the coupling term between electromag-
netic fields and charged matter through the action of the fields2. The choice of A is
called a gauge, and the gauge freedom refers to the redundancy in the gauge choice. The
Lagrangian that describes the system depends on the gauge, since the vector potential
A enters into its definition. However, Lagrangian functions that correspond to different
gauge choices for the same magnetic field B only differ by a total time derivative, and
thus correspond to the same physical system. For a particle with charge @, velocity v
and mass <, the Hamiltonian corresponding to the Lagrangian function that describes
the system is

� =

(
p − @A(r)

)2

2< , (4.3)

where p = <v + @A is the canonical (conjugate) momentum.
In quantum mechanics, the canonical momentum is p̂ = −8ℏ∇ and the kinetic

(mechanical) momentum3 is Π̂ = p̂ − @A(r). The particle is now characterized by its
wavefunction #(r, C), and the Schrödinger equation,

8ℏ
%#(r, C)

%C
=

(
−8ℏ∇ − @A(r)

)2

2< #(r, C) , (4.4)

describes its evolution.
A wavefunction # that is solution of the Schrödinger equation for a given choice of

the vector potential A will not be a solution of the equation for another gauge choice
A′, given by (4.2). Therefore, one has to modify the phase of the wavefunction as well4,
such that a gauge transformation consists in two changes (Dalibard, 2016): Eq. (4.2) for
the vector potential, and

#′(r, C) = #(r, C) exp
(
8@"(r)
ℏ

)
(4.5)

for the wavefunction. With these two substitutions, the wavefunctions # and #′ are each
solution of the Schrödinger equation (4.4) with vector potential A and A′, respectively.

2The coupling itself is the electric charge.
3Note that the canonical momentum p̂ is not gauge invariant, but the kinetic momentum Π̂ is.
4Since A and A′ describe the same system, the probability densities |# |2 and |#′ |2 should also give the

same physics and thus any gauge transformation can only involve changes to the phase.
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In electromagnetism, the gauge field is the vector potential and the local gauge
symmetry is a U(1) Abelian symmetry5. This symmetry reflects that one can change
arbitrarily the phase of the wavefunction of a charged particle without affecting the
physics of the system. As a consequence, the electric charge is conserved locally, which
ensures the U(1) gauge invariance.

Artificial gauge fields

Gauge potentials emerge naturally from electromagnetic fields, which interact with
charged matter, but one can also engineer gauge fields in physical systems that are
charge neutral using ultracold atoms. In that case, then, one usually considers the
behavior of a system coupled to an artificial (or synthetic) gauge field with a vector
potential A that can be described by a Hamiltonian ℋ(p̂ −A) (Aidelsburger et al.,
2018). Artificial gauge fields have many applications. For example, in the particular case
of artificial magnetism, the artificial gauge field is designed to emulate magnetic-like
effects. These fields can be Abelian or non-Abelian; in the last case, the potentials can be
tailored to reproduce spin–orbit effects (Goldman et al., 2014).

The simplest way to create an artificial gauge field is through the rotation of the
system (Cooper, 2008; Fetter, 2009). The Lorentz force that acts on a charged particle is
@v×B, with B a uniformmagnetic field. This resembles the Coriolis force that appears in
a gas under rotation, 2<v ×Ω, where Ω is the angular velocity. Therefore, in analogy to
the electromagnetic case, one can define an effective vector potential and magnetic field
that appear in the rotating frame, which is a noninertial system of reference (Dalibard,
2016; Goldman et al., 2014).

Artificial gauge potentials can also be engineered using laser beams that modify the
light–matter interactions. In this sense, cold atoms are a very good platform for such
gauge potentials, since one can tune experimentally the parameters that determine the
dynamics.

The vector potential associated to either a natural or an artificial gauge field is not
a directly observable quantity. However, a particle moving through such a field can
acquire a geometrical phase that is measurable. We will explore this concept next.

Geometric phases

Let us consider the time evolution of a general quantum system described by the
time-dependent Hamiltonianℋ = ℋ(,), where , = ,(C) is a set of external parameters
that depend on time (Berry, 1984). We will show now that if the state of the system
performs an adiabatic evolution, it can acquire a geometric phase when the external

5The U(1) group is topologically a circle and corresponds to the group of rotations around a fixed axis.
Therefore, the U(1) symmetry means that the wavefunction which describes the system is invariant under
phase rotations such that any measured quantity should not change when the phase of the wavefunction
is arbitrarily varied. The term Abelian refers to symmetry groups where the order in which one applies
the operators and transformations does not matter, and an example of an Abelian group is the U(1) group
(i.e., rotations). In non-Abelian groups, on the other hand, the transformations do not commute.
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parameters , travel along a closed trajectory6 in parameter space, ,(0) = ,(�), with �
the final time (for reference, see for instance Aidelsburger et al., 2018; Dalibard, 2016;
Goldman et al., 2014).

The instantaneous eigenstates and eigenenergies of the system areℋ(,)|!=(,)〉 =
ℰ=(,)|!=(,)〉. We assume that the system |#(C)〉 is initially prepared in the <-th state,
|#(0)〉 = |!<(,)〉, and that the energy ℰ<(,) is well separated from the energies of other
states by a gap along the entire trajectory of the parameters ,(C). If the parameters
evolve slowly enough compared to the frequencies associated to the energy gaps, the
adiabatic theorem predicts that the system remains in the instantaneous ground state
during the whole evolution, |!<(,)〉.

Since the eigenstates can be defined with an arbitrary complex phase factor, we
define the state as

|#(C)〉 = 4 8)(C) |!<(,)〉 , (4.6)

where )(C) is a phase that the state may acquire during the evolution. Introducing the
evolved state (4.6) into the Schrödinger equation, 8ℏ%C |#(C)〉 = ℋ(,)|#(C)〉, yields

−
(
%)(C)
%C

)
|!<(,)〉 + 8

%

%C
|!<(,)〉 =

1
ℏ
ℰ<(,) |!<(,)〉 . (4.7)

Projecting over 〈!<(,)|, the time derivative of the phase becomes

%)(C)
%C

= 8〈!<(,)|
%

%C
|!<(,)〉 −

1
ℏ
ℰ<(,) . (4.8)

We then integrate over time to find the phase at a time �:

)(�) = 8
∫ �

0
〈!<(,)|

%

%C
|!<(,)〉 3C −

1
ℏ

∫ �

0
ℰ<(,) 3C = '(�) + �(�) . (4.9)

The phase (4.9) has two contributions that are both gauge invariant (i.e., that remain
unchanged if one modifies the eigenstates by adding a phase factor) when following a
closed path. The dynamic phase7

�(�) = −1
ℏ

∫ �

0
ℰ<(,) 3C (4.10)

is the phase that the state of the system acquires due to its dynamical evolution and
depends on the duration of the trajectory, �. On the other hand, the geometric phase

'(�) = 8
∫ �

0
〈!<(,)|

%

%C
|!<(,)〉 3C , (4.11)

6The state also acquires a geometric phase when following an open path, but it vanishes with the
appropiate choice of phase for the eigenstates of the instantaneous Hamiltonian.

7This contribution is only gauge invariant if the path followed is a closed trajectory in parameter space.
Otherwise, different phase paths can have different time derivatives.



66 CHIRAL CONDENSATES IN ROTATING RINGS | CHAPTER 4

also called the Berry phase after Berry (1984), is the phase that the state acquires due to
the evolution of , in parameter space. Using that

%

%C
|!<(,)〉 = ∇, |!<(,)〉

3,
3C
, (4.12)

one can rewrite the Berry phase (4.11) as the integration over a closed contour C in
parameter space such that ,(0) = ,(�),

'(�) = 8
∮
〈!<(,)|∇,!<(,)〉 3, =

1
ℏ

∮
A(,) · 3, , (4.13)

where we have introduced the Berry connection,

A(,) = 8ℏ 〈!<(,)|∇,!<(,)〉 . (4.14)

In contrast to the dynamic phase, the Berry phase (4.13) does not depend on the
duration �, only in the path followed by the external parameters ,. Under a local gauge
transformation, the wavefunction |!<(,)〉 is replaced by

|!′<(,)〉 = 4 8�(,) |!<(,)〉 , (4.15)

and, as a result, the Berry connection A (4.14) transforms as

A
′ =A − ∇,�(,) , (4.16)

where �(,) is a scalar function. Thus, when the parameters , follow a closed path in
parameter space, the Berry phase '(�) (4.13) is a gauge-invariant quantity, and the Berry
connection A (4.14) transforms like the vector potential of electromagnetism, @A, under
a gauge transformation. Introducing the Berry curvature,

B(,) = ∇, ×A(,) , (4.17)

and making use of Stokes’ theorem, one can rewrite the Berry phase (4.13) as

'(�) = 1
ℏ

∮
A(,) · 3, = 1

ℏ

∬
S
3S ·B(,) . (4.18)

The Berry curvature B (4.17) is gauge invariant and resembles a magnetic field in
parameter space, where S is the surface delimited by the closed path C in parameter
space.

To sum up, one can engineer artificial gauge fields in quantum systems by designing
vector potentials that provide nonzero Berry curvatures in parameter space. Then, the
system can be described by an effective Hamiltonian, for the case of an atom with some
internal states, of the form

ℋeff =
(p̂ −A)2

2< ++eff , (4.19)
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where +eff comprises any other terms, such as the internal motion of the atoms or the
external confinement. In cold atoms, geometric phases can emerge in particles with
some internal structure due to light–matter coupling, as we will see in Subsection 4.1.2.

These geometric phases can lead to remarkable physical phenomena, such as the
Aharonov–Bohmeffect in the case of electromagnetism. In quantummechanics, a particle
with charge @ acquires a geometric phase, called the Aharonov–Bohm phase (Aharonov
and Bohm, 1959), when travelling along a closed path C. This phase is defined as
� = 2�Φ/Φ0, whereΦ is the magnetic flux through C andΦ0 = ℎ/@ is the flux quantum,
and does not depend on the duration of the trajectory. One could say that the Aharonov–
Bohmphase is related to the vector potential, not to themagnetic field itself, as illustrated
by the Aharonov–Bohm effect.

Consider charged particles that move around an infinite solenoid, such that there is
no magnetic field in the area accessible to the particles. Although the magnetic field
vanishes outside the solenoid, the vector potential does not and, as a result, the particles
moving in that region accumulate a geometric phase when traveling around a closed
contour. This phase is proportional to the magnetic flux inside the solenoid Φ, and thus
can be related to the vector potential that characterizes the magnetic field by

� =
2�
Φ0

∬
S

B(r) · 3S = 1
ℏ

∮
@A(r) · 3r . (4.20)

Therefore, the presence of a vector potential shows in the acquisition of a geometric
phase, and this will be central to the engineering of artificial gauge fields.

The fact that the Aharonov–Bohm phase is related to the potential rather than to
the fields is a common statement in the literature. However, it is important to note
that the vector potential is not an observable and that gauge invariance is actually a
manifestation of this nonobservable character (Jackson and Okun, 2001). Yet, in the
case of the Aharonov–Bohm effect, the geometric phase (4.20) is an observable when
the particle travels around a closed contour. As we have seen, one can write the closed
integral on the vector potential in terms of the magnetic flux by using Stokes’s theorem.
Then, the Aharonov–Bohm phase depends either on the vector potential or (nonlocally)
on the magnetic field but, in any case, the local vector potential is not an observable.

Density-dependent gauge potentials

The artificial gauge potentials studied in cold atoms systems are usually static, so the
time dependence of the gauge field is experimentally controlled. Thus, they depend
only on the external driving parameters (e.g., the light–matter coupling or rotation
frequencies). The gauge fields that emerge from these potentials neither propagate in
vacuum nor are influenced by matter (Goldman et al., 2014).

One can introduce an interaction between matter and the gauge field by designing a
vector potential that depends on the density of the atoms, as A(r, C) ∝ =(r, C), such that
matter affects the vector potential locally and dynamically. The fields that arise from
these density-dependent gauge potentials do not propagate in the absence of matter8.

8As opposed to electromagnetic fields, which can propagate in vacuum.
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The back action between matter and the artificial gauge field may give rise to unusual
properties such as 1D anyons (Keilmann et al., 2011) and chiral solitons (Edmonds et al.,
2013a; Frölian et al., 2022).

The fact that these artificial gauge fields cannot propagate in the absence of matter
allows one to remove the gauge fields from the formalism and reduce it to only thematter
degrees of freedom. Then, the gauge field and matter are coupled through the local
conservation law that ensures the gauge invariance of the model. As a result, designing
a density-dependent gauge potential is equivalent to engineering the matter–matter
interactions (Chisholm et al., 2022), as we will discuss next.

4.1.2 Simulation with optically coupled condensates
Consider the center-of-mass motion of an atom with internal degrees of freedom. One
can generate artificial vector potentials when the internal dynamics of the system
depends parametrically on the atom’s position (Goldman et al., 2014). Light–matter
interactions, for instance, can couple the internal states of the atoms such that the
transitions depend on the center-of-mass position.

We will first discuss the simplest case of a two-level atom with light–matter coupling,
where the system’s state can acquire a geometric phase by adiabatically following one
of the light-dressed states. Then, we will finish this section by outlining how one
can induce density-dependent gauge potentials in ultracold gases by considering a
Raman-coupled two-component condensate with asymmetric scattering lengths.

Two-level atom

Let us consider a two-level atom moving in a monochromatic laser field of frequency
$ (Dalibard, 2016; Dalibard et al., 2011). The system has two degrees of freedom: the
center-of-mass motion, and the internal electronic states coupled by the laser field. The
total Hamiltonian of the atom is

ℋ =

(
p̂2

2< ++
)
I2 +* , (4.21)

with + = +(r) an external trapping potential, I2 the 2 × 2 identity matrix acting on the
internal degrees of freedom, and* = *(r) the Hamiltonian for the internal motion and
the atom–light coupling, which depends on the position of the atom r. The eigenstates
of the bare atom are |1〉 and |2〉, i.e., the two levels of the atom. In the presence of
atom–light coupling, the eigenstates of the internal Hamiltonian are usually referred to
as dressed states (i.e., the states dressed by the atom–light coupling).

The detuning9 between the atomic transition and the laser beam is Δ, and $' is the
Rabi frequency10. To take into account that the detuning is in general nonzero, one

9The detuning is the energy difference between the coupling laser and the atomic transition.
10The Rabi frequency is the oscillation frequency of the population in the two levels.
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defines the generalized Rabi frequency,Ω =
√
Δ2 + |$' |2. Then, the atom–light coupling

* can be written as a 2 × 2 matrix in the basis {|1〉, |2〉}:

* =
ℏ

2

(
Δ $∗

'
$' −Δ

)
=
ℏΩ

2

(
cos  4−8� sin 
4 8� sin  − cos 

)
, (4.22)

where we have introduced the so-called mixing angle  and phase angle �, such that
$' = |$' | 4 8�, cos  = Δ/Ω and sin  = |$' |/Ω.

Diagonalizing * (4.22) gives the eigenvalues �± = ± ℏΩ/2 and the dressed states
(eigenstates of the light-coupled internal Hamiltonian)

|!+〉 = cos(/2)|1〉 + 4 8� sin(/2)|2〉 , |!−〉 = −4 8� sin(/2)|1〉 + cos(/2)|2〉 . (4.23)

If the state of the system follows adiabatically11 one of the dressed states12, for instance
|!+〉 (Dalibard, 2016), the associated vector potential13 or Berry connection, introducing
the dressed state (4.23) into Eq. (4.14), is

A(r) = 8ℏ 〈!+ |∇!+〉 =
ℏ

2 (cos  − 1) ∇� , (4.24)

the effective magnetic field or Berry curvature (4.17) is

B(r) = ∇ ×A =
ℏ

2 ∇ (cos ) × ∇� , (4.25)

and the associated scalar potential is (Dalibard et al., 2011)

�(r) = ℏ2

2<
��〈!− |∇!+〉��2 = ℏ2

8<

[
(∇)2 + sin2 

(
∇�

)2
]
. (4.26)

This scalar potential relates to the kinetic energy associated to the internal motion of the
atom. Note that if the dressed states do not have spatial dependence, i.e., |∇!±〉 = 0,
then A (4.24) and � (4.26) are zero. The spatial dependence of the dressed states can be
achieved by adjusting the coupling parameters such that the coupling laser’s detuning
and phase have a nonzero gradient.

The state of the system is |Ψ〉 = #+(r, C)|!+〉 + #−(r, C)|!−〉. However, we will
consider that the system follows adiabatically the |!+〉 state such that #− ≈ 0. Then,
projecting the Schrödinger equation 8ℏ%C |Ψ〉 = ℋ|Ψ〉 into the |!+〉 state, with ℋ the

11The adiabatic approximation assumes, generally, that a subset < ≤ = of the = dressed states of the
system is energetically well separated from all the other states. Therefore, one can project the dynamics
into the truncated space of the internal states < (Goldman et al., 2014). Here we consider < = 1 and = = 2.

12The adiabatic approximation is not always valid due to temperature-induced transitions. An
alternative setup is to consider a Raman transition instead of a two-level system.

13The vector potential A is Abelian when all its cartesian components commute with each other. If
the system instead evolves following < instantaneous eigenstates (instead of only one), the accumulated
geometric phase is replaced by a < × < matrix that acts on the reduced space of < states. Then, the
corresponding vector potential is also a < × < matrix which is non-Abelian and represents an effective
spin–orbit coupling in parameter space (Aidelsburger et al., 2018).
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full Hamiltonian (4.21), the effective Hamiltonian that describes the system is (Dalibard
et al., 2011)

ℋeff =
(p̂ −A)2

2< ++ + �+ + � , (4.27)

whith + the external potential, �+ the energy of the |!+〉 state and � the scalar
potential (4.26). Then, the evolution of the system is given by the Schrödinger-like
equation

8ℏ
%#

%C
=

[
(p̂ −A)2

2< ++ + �+ + �
]
# , (4.28)

where # = #+ is the amplitude of the dressed state |!+〉. The Berry curvature (4.25)
is nonzero in this reduced atomic dynamics. The two geometric potentials, A and �,
originate from the spatial dependence of the dressed states and appear when the state
|!−〉 is adiabatically eliminated.

Two-component BEC with asymmetric interactions

Herewe consider the case of aweakly interacting Bose gas of two components coupled by
an external space-dependent electromagnetic field, where each component corresponds
to the population in the two available hyperfine states of the atoms. The single-particle
Hamiltonian for the noninteracting system is Eq. (4.21). The light–matter coupling term
* between the two components is given by

* =
ℏΩ

2

(
0 4−8�

4 8� 0

)
, (4.29)

where now Ω is the two-photon Rabi frequency that characterizes the light–matter
coupling, � = �(r) is the phase of the coupling laser, and we have set the detuning Δ
from the two-photon Raman resonance to zero for simplicity14.

Similarly to the case of a two-level atom, an artificial gauge potential can emerge
due to the atom–light coupling when the gradient of the detuning is nonzero. We
will see now how the mean-field interactions between atoms can induce an effective
density-dependent detuning (Goldman et al., 2014).

A binary mixture of # interacting two-level atoms can be described by two coupled
Gross–Pitaevskii equations [Eqs. (2.34), see Chapter 3 for more details]. Then, the
mean-field Hamiltonian (Edmonds et al., 2013a) is

ℋ =

(
p̂2

2< ++
)
I2 +* +Vint , (4.30)

14Raman transitions can be used to couple two sublevels of the atomic ground state by using two
counterpropagating laser beams. These transitions involve two photons: one beam induces transitions
from one of the hyperfine states to an excited state (that plays no role in the dynamics), and the second
beam de-excites the atoms to the other hyperfine state.
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withVint the atom–atom mean-field interactions,

Vint =

(
611 |#1 |2 + 612 |#2 |2 0

0 622 |#2 |2 + 612 |#1 |2
)
, (4.31)

where =� = |#� |2 is the density of each component (� = 1, 2) such that the total density
=1 + =2 is normalized to # and 6��′ characterizes the inter- and intracomponent contact
interactions. We will assume there is no external confinement (+ = 0) for simplicity.

If the energy of the mean-field interactions 6��′=� is much smaller than the light–
matter coupling ℏΩ (i.e., the system is weakly interacting), one can calculate the dressed
states perturbatively15 (Edmonds et al., 2013a):

|!±〉 = |!(0)± 〉 ±
611 − 622

8ℏΩ =± |!(0)∓ 〉, (4.32)

where |!(0)± 〉 =
(
|1〉 ± 4 8� |2〉

)
/
√

2 are the dressed states for the noninteracting case (4.23)
and =± = |#± |2 are the densities of the dressed states. Then, the corresponding vector
potentials (4.14) are

A± =A
(0) ± a1=±(r) , (4.33)

where A
(0) = −(ℏ/2)∇� is the vector potential (4.24) for the unperturbed case. The

strength of the density dependence a1 is defined as

a1 =
611 − 622

8Ω (∇�) . (4.34)

For asymmetric interactions (611 ≠ 622), the vector potential depends linearly on the
density, which introduces a back action between matter and the (artificial) gauge field.
The mean-field atom–atom interactions induce an effective detuning (i.e., shift the
electronic levels of the atoms), as one can see from Eq. (4.32), which results in an artificial
vector potential.

All the parameters involved in the strength of the density-dependent vector potential
(i.e., the Rabi frequency, the gradient of the phase ∇� and the difference in scattering
lengths 011 − 022 ∝ 611 − 622) can be tuned experimentally by adjusting the light–
matter coupling through the laser parameters and the scattering lengths via Feshbach
resonances (Chin et al., 2010).

As in the single-particle case, one can eliminate one of the dressed states such that
the system follows the other dressed state adiabatically16. The geometric vector and
scalar potentials are revealed when one projects the full system into one of the dressed
states. We choose |!+〉, redefine the corresponding vector potential A =A+ (4.33) and
denote with # the wavefunction of the dressed state, with density = = =+. The evolution
of the system then can be described by an effective Gross–Pitaevskii equation analogous

15Since 6��′=� � ℏΩ, one can treat the atom–atom interactions Vint as a small perturbation to the
light–matter interaction* .

16The adiabatic approximation requires that any induced detuning (i.e., the energy associated to the
eigenstate |!+〉) must be small compared to the Rabi frequencyΩ such that the recoil energy of the atoms
is much smaller than the energy associated to the Rabi frequency.
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to Eq. (4.28) that includes the density-dependent gauge potential (see Edmonds et al.,
2013a, for a detailed derivation):

8ℏ
%#

%C
=

[
(p̂ −A)2

2< + a1 · J(#,#∗) + 6= + �
]
# , (4.35)

where J is the current density,

J(#,#∗) = ℏ

2<8

[
#

(
∇ + 8

ℏ
A

)
#∗ − #∗

(
∇ − 8

ℏ
A

)
#

]
, (4.36)

which arises due to the presence of a nonzero vector potential. The effective contact
coupling constant 6 is 6 = (611 + 622 + 2612)/4, and the scalar potential �, defined by
Eq. (4.26), is given by

� =
1

2< |A
(0) |2 . (4.37)

Here, two terms contribute to the nonlinearity of the GPE (4.35): the usual term 6= and
also the term with the current J. In 1D, as we will see with more detail in Section 4.2,
this term describes effective interactions that, due to the current-density dependence,
are chiral (i.e., moving in one direction or the other is not equivalent).

We are interested in particular in the 1D case. The GPE (4.35) can be reduced
to 1D by setting the phase of the incident laser to � = :G and using the ansatz17

#(r, C) = )(G, C)4−8:G/2 (Edmonds et al., 2013a) such that the GPE becomes

8ℏ
%)

%C
=

[ (?̂ − 01=)2
2< + 01 � + 6 = + �1

]
) , (4.38)

with 01 = :(611−622)/(8Ω(C) the strength of the current nonlinearity (with (C the effective
transversal area) and �1 = (ℏ:)2/(8<) the 1D scalar potential. Note however that this
equation (4.38) is not gauge invariant. To obtain a gauge-invariant equation, one can
eliminate the vector potential from the kinetic term by transforming the wavefunction
by (4.5), which in turn modifies the current (as we will see in Subsection 4.2.1).

This 1D equation is equivalent to the chiral theory proposed by Aglietti et al. (1996)
and supports chiral solitons (which propagate only in one direction), as we will discuss
in the following section and Chapters 8 and 9. Besides chiral solitons, the 1D system
with periodic boundary conditions presents persistent currents in which the ground
state changes from one rotational state to another at a given critical density18.

In this system, coupling matter to a gauge potential that depends linearly on the
density is equivalent to engineering chiral interactions. As we have discussed in this
section, such chiral interactions can be realized in a two-component BECwith asymmetric
interactions controlled with coherent coupling (Edmonds et al., 2013a) and coupling the
momentum and internal state of the atoms via two-photon processes (Chisholm et al.,
2022; Frölian et al., 2022).

17We are assuming that the laser is a plane wave propagating along G, such that its phase is � = :G,
with : the wavevector in the G direction. Thus, the motion of the atoms is restricted to the G direction.

18In a usual (i.e., nonchiral) ring BEC under rotation, the onset of current is given by the rotation
frequency, not the number of particles.
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4.2 Current-density interaction theory

In the late 1990s, the quest for the description of 1D anyons in the continuum (Rabello,
1995, 1996) led to the development of a gauge theory, which we will refer to as chiral
theory, with a nonlinearity that emerges from the current density and that supports
chiral solitons (Aglietti et al., 1996). The theory is chiral in nature because it breaks
Galilean invariance, i.e., motion in one direction or the other is not equivalent. This
theory is a reduction to 1D of the Chern–Simons theory, which describes anyons in
2D (Zhang et al., 1989).

Chiral interactions naturally emergewhen describing a light-coupled two-component
BEC with asymmetric contact interactions (see Section 4.1). The chiral theory can be
reduced to a model where the atoms have interactions that, to leading order, depend
linearly on the current density and thus are chiral. As we discussed in Subsection 4.1.2,
this reduction was experimentally and theoretically proposed for a weakly interacting
BEC with two internal states (and asymmetric interactions) that are optically cou-
pled (Chisholm et al., 2022; Frölian et al., 2022). The coupling can be implemented, for
instance, using two counterpropagating lasers in a Raman configuration such that the
atoms acquire momentum along the propagation direction of the lasers. As a result, the
scattering properties of the dressed states depend on the momentum of the atoms, i.e.,
they are chiral. In such a system, designing a density-dependent gauge potential is, as
we saw in Section 4.1, equivalent to engineering chiral interactions between the atoms.

In this section, we will explore the theoretical tools to introduce a density-dependent
gauge potential in a quasi-1D weakly interacting BEC. In Subsection 4.2.1, we will
introduce a vector potential that depends linearly on the density and explicitly derive
the Gross–Pitaevskii-like equation with chiral interactions following Aglietti et al. (1996)
and Jackiw (1997) from an action principle. This approach is complementary to the
Hartree-like method employed in Chapter 2, and allows one to identify the energy as
a conserved quantity. Later, in Subsection 4.2.2, we will reformulate the model in the
rotating frame, which will be the theoretical foundations for Chapters 8 and 9.

4.2.1 Equation of motion with a current-density nonlinearity
Let us consider a quasi-1D weakly interacting Bose gas within the mean-field regime,
characterized by a wavefunction )(G, C) that is normalized to the number of atoms # ,
and with number density =(G, C) = |)(G, C)|2. The Lagrangian density ℒ(G, ), %G)) that
describes the system is

ℒ = 8ℏ)∗
%)

%C
− ℰ , (4.39)

where ℰ is the energy density (Jackiw, 1997),

ℰ = 1
2<

�� (?̂ −A)
)
��2 + 62 |) |4 , (4.40)

with ?̂ = −8ℏ%G the momentum operator, 6 the 1D coupling constant of the atom–atom
interactions andA(G, C) a gaugepotential. In particular, we consider a density-dependent
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vector potential of the form

A(G, C) = −ℏ�2 |)(G, C)|
2 , (4.41)

where � is a dimensionless constant that we define positive for simplicity and which
characterizes the strength of the density dependence. Then, the Lagrangian density (4.39)
reads:

ℒ = 8ℏ)∗
%)

%C
− 1

2<

����(−8ℏ %

%G
+ ℏ�2 |) |

2
)
)

����2 − 62 |) |4 . (4.42)

To obtain the equations of motion from the Lagrangian density (4.42), we employ
the variational equation

%ℒ
%)∗
− %

%G

[
%ℒ

%(%G)∗)

]
= 0 . (4.43)

Replacing ℒ (4.42) into Eq. (4.43) yields

8ℏ
%)

%C
=

1
2<

(
−8ℏ %

%G
+ ℏ�2 |) |

2
)2
) + 6 |) |2) + ℏ�2 �) , (4.44)

where � = �(G, C) is the current density,

� = − 1
2<

[
)

(
?̂ +A

)
)∗ − )∗

(
?̂ −A

)
)
]
=
ℏ

<
Im

[
)∗

(
%

%G
+ 8�2 |) |

2
)
)

]
. (4.45)

Equation (4.44) is equivalent to the 1DGPE for an optically coupled BECwith asymmetric
interactions [Eq. (4.38) in Subsection 4.1.2] and differs only in the �1 term of Eq. (4.38),
which corresponds to an energy shift. To avoid confusion, here we will refer to �(G, C) as
current density and to =(G, C) = |)(G, C)|2 as number density.

Chiral Gross–Pitaevskii equation

A gauge-invariant description can be obtained by eliminating the density dependence
from the kinetic term in Eq. (4.45) such that one obtains the equation of motion with
only current-density interactions. We perform the Jordan–Wigner transformation to the
wavefunction (Aglietti et al., 1996; Edmonds et al., 2013a; Frölian et al., 2022),

#(G, C) = )(G, C) exp
[
8
�
2

∫ G

|)(H, C)|2 3H
]
= )(G, C) exp

[
− 8
ℏ

∫ G

A(H, C) 3H
]
, (4.46)

where the lower limit of the integral can be an arbitrary value 0 < G, since it only affects
the phase of#. The number density is unchanged, =(G, C) = |)(G, C)|2 = |#(G, C)|2, and so
is the vector potentialA(G, C) (4.41). Using Eq. (4.46), the current density � = �(G, C) (4.45)
transforms as

� =
ℏ

2<8

(
#∗

%#

%G
− #

%#∗

%G

)
=
ℏ

<
Im

[
#∗

%#

%G

]
. (4.47)



Section 4.2 | Current-density interaction theory 75

The continuity equation in 1D,
%=

%C
+ %�

%G
= 0 , (4.48)

ensures the conservation of the particle number and links the number and current densi-
ties. Then, using the transformed wavefunction (4.46) and the continuity equation (4.48),
the time derivative of ) can be written as

%)

%C
=

(
%#

%C
− 8�2#�

)
exp

[
−8�2

∫ G

|#(H)|2 3H
]
. (4.49)

Introducing Eqs. (4.46) and (4.49) into the equation of motion (4.44) gives

8ℏ
%#

%C
= − ℏ

2

2<
%2#

%G2 +
(
6= + ℏ��

)
# , (4.50)

which yields a gauge-invariant description of the system. Equation (4.50) is a Gross–
Pitaevskii-like equation where the nonlinearity comes from two sources: the usual
contact interactions and the chiral (i.e., current-density) interactions characterized by
the strength parameter �. Therefore, the system can be described by the mean-field
Hamiltonian

ℋ =
?̂2

2< + 6= + ℏ�� . (4.51)

Current-density interactions

Although the usual GPE (2.53) in 1D is integrable, the chiral GPE (4.50) is nonintegrable
in general due to the presence of the nonlinear current term. In addition, unlike the usual
GPE, Eq. (4.50) supports chiral solitons (Aglietti et al., 1996; Griguolo and Seminara,
1998; Jackiw, 1997) as a result of breaking the Galilean invariance.

The physical consequences of the current-density interactions can be examined by
writing the wavefunction in terms of the density and its phase, #(G, C) =

√
=(G, C)4 8�(G,C),

such that the current density (4.47) simplifies to

� = =
ℏ

<

%�

%G
. (4.52)

Then, one can write the chiral GPE (4.50) as

8ℏ
%#

%C
= − ℏ

2

2<
%2#

%G2 + 6eff = # , (4.53)

where the effective coupling constant is

6eff = 6 + � ℏ
2

<

%�

%G
, (4.54)

and is modulated by the phase variations. Therefore, the interplay between the contact-
interacting term 6= and the current-density term ℏ�� will lead to bright solitons when
the effective interactions (4.54) are attractive and to dark solitons when they are repulsive.
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Conserved energy

Here we will derive the expression for the energy of the system, which is conserved due
to the time-translation invariance of the system (Jackiw, 1997). We start from the energy
density ℰ (4.40) for the density-dependent vector potentialA (4.41), which reads

ℰ = 1
2<

����(?̂ + ℏ�2 |) |2) )����2 + 62 |) |4 . (4.55)

Rewriting the wavefunction by means of the Jordan–Wigner transformation (4.46) and
introducing the momentum operator ?̂ one gets(

?̂ + ℏ�2 |) |
2
)
) =

(
?̂#

)
exp

[
−8�2

∫ G

|#(H)|2 3H
]
, (4.56)

such that the energy density becomes

ℰ = 1
2<

��?̂#��2 + 62 |# |4 . (4.57)

One obtains the energy by spatial integration of ℰ (4.57),

� =

∫
ℰ 3G = 1

2<

∫
|?̂# |2 3G +

6

2

∫
|# |4 3G . (4.58)

Using that
∫
|?̂# |2 3G =

∫
#∗?̂2# 3G, we rewrite the conserved energy as

� =
1

2<

∫
#∗?̂2# 3G +

6

2

∫
|# |4 3G . (4.59)

Notice that the conserved (total) energy does not include any explicit contribution from
the current-density interactions, it only includes the kinetic energy and the contact
interaction energy. We will use the conserved energy (4.59) to identify the ground states
of the system in Chapters 8 and 9.

4.2.2 Chiral currents in ring potentials
In this subsection we will focus on a ring geometry under rotation, where a superfluid
system can support persistent currents (states with vorticity). In the presence of current-
density interactions, these currents become chiral. This system will be further studied
with a single BEC with chiral interactions (Chapter 8) and a two-component BEC with
coherent coupling (Chapter 9).

Equation of motion in the rotating frame

Here we will generalize the chiral equation of motion (4.50) to include rotation. For
a system that rotates around the I axis with angular velocity Ω = Ω êI , a general
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static Hamiltonianℋ transforms to the rotating frame (Cooper, 2008; Fetter, 2009) as
ℋΩ = ℋ −Ω · L̂, with L̂ = r × p̂ the angular momentum operator. In 1D, Ω · L̂ = Ω!̂I ,
where !̂I = −8ℏ%! is the I-component of the angular momentum operator and ! is the
rotation angle. Then, a 1D Hamiltonianℋ in the rotating frame is

ℋΩ = ℋ −Ω!̂I , (4.60)

where the term −Ω!̂I favors states with positive angular momentum. For the particular
case of the chiral GPE (4.53) derived in Subsection 4.2.1, we rewrite the angular
momentum operator as !̂I = (%!G) ?̂, add an energy shift <E2/2 to account for the
rotation energy19 and replaceℋ by the Hamiltonian of the chiral GPE (4.51). Then, the
Hamiltonian in the rotating frame reads

ℋΩ =
?̂2

2< + 6= + ℏ�� − Ω
%G

%!
?̂ + 1

2<E
2 . (4.61)

Considering a ring of radius ' (i.e., imposing periodic boundary conditions) and
using polar coordinates such that G = !' and E = Ω', we rewrite the Hamiltonian in
the rotating frame (4.61) as

ℋΩ =
(
?̂ − <Ω'

)2

2< + 6= + ℏ�� . (4.62)

One can obtain the equation of motion by replacing Eq. (4.62) into the Schrödinger equa-
tion, 8ℏ%C# = ℋΩ#, and introducing the mechanical (kinetic) momentum operator20,

Π̂ = ?̂ − <Ω' . (4.63)

Then, the equation of motion in the rotating frame is

8ℏ
%#

%C
=

(
Π̂2

2< + 6= + ℏ��
)
# . (4.64)

This equation corresponds to the nonrotating version (4.50)with themomentumoperator
?̂ replaced by the kinetic momentum operator Π̂, and will be the basis of the theoretical
model we will use in Chapter 8 to study stationary states in rotating rings with current-
density interactions. Therefore, the conserved energy is analogous to the one of the
nonrotating case (4.59),

�Ω =
1

2<

∫
#∗Π̂2# 3G +

6

2

∫
|# |4 3G , (4.65)

as it includes Π̂ instead of ?̂.
19We shift the energy by this constant value for convenience such that the equation of motion can be

written in a more simplified form [see Eq. (4.62)].
20Using classical mechanics, one can see that the (canonical) momentum operator ?̂ is the same in both

the laboratory and rotating frames.



78 CHIRAL CONDENSATES IN ROTATING RINGS | CHAPTER 4

Note that imposing periodic boundary conditions on the system affects the Jordan–
Wigner transformation (4.46) we performed to remove the vector potentialA from the
equation of motion, since both the phase and the density of the wavefunction on such
a ring geometry are quantized. As a result, mapping the density-dependent gauge
potential into a Gross–Pitaevskii equation with chiral interactions (4.64) will only be
possible for certain densities. This issue will be discussed with detail in Chapter 8.

Stationary states and chiral solitons

The chiral GPE (4.64) supports states that are stationary in the rotating frame, such as
plane waves and solitons, which exhibit chiral properties. We cover this topic in more
detail in Chapter 8, while Chapter 9 generalizes the study to a two-component BEC with
coherent coupling between the components.

For open boundary conditions (i.e., the infinite case), one can describe solitons
analytically by means of hyperbolic functions [see Eqs. (2.56) and (2.57) in Chapter 2].
However, these functions are not valid for periodic boundary conditions (i.e., the ring
geometry), as we will discuss in Chapter 8, and one needs to use Jacobi elliptic functions
instead. See Appendix A for an introduction to these functions and their main properties,
which we will use in Chapter 8.



5
DIPOLAR AND NONDIPOLAR SHELL-SHAPED CONDEN-
SATES UNDER GRAVITY

Shell-shaped BECs, which are thin shells of atoms (i.e., BECs that are empty on the
inside), can be realized using radiofrequency-dressed potentials. In these systems, the
atoms are confined in a quasi-2D curved geometry. Thus, although the system is still 3D,
the confinement restricts the motion of the atoms to a 2D closed surface. Such curved
geometries present new features that flat geometries lack: for instance, the system has
periodic boundary conditions and a local curvature (for more details on the topic, see
review by Tononi and Salasnich, 2023, and references therein).

In BECs, the geometry of the confinement plays a vital role in the static and dynamic
properties of the system, as we already discussed for nondipolar and dipolar systems in
Chapters 2 and 3, respectively. Therefore, shell-shaped condensates provide a way to
investigate condensation, superfluidity, and other phenomena of BECs in topologies
with a connected and closed surface (Bereta et al., 2019; Móller et al., 2020; Tononi and
Salasnich, 2019; Tononi et al., 2022) instead of the usual open surface of a flat condensate.
The effect of the shell-shaped geometry has been studied, for instance, in the transition
from a full, spherical BEC to a thin shell of atoms (Rhyno et al., 2021), where the new
boundary modifies the collective modes of the system1 (Lannert et al., 2007; Merloti
et al., 2013; Padavić et al., 2018; Sun et al., 2018). The critical temperature changes
with the geometry as well, being lower in shells than in full condensates (Tononi et al.,
2020). Vortex formation (Bereta et al., 2021), in turn, is affected too by the curvature
since the simplest vortex configuration allowed on a 2D shell is the vortex–antivortex
pair (Padavić et al., 2020) instead of the single vortex. Finally, ellipsoidal shells have
a nonuniform density due to the anisotropy of the confinement, and this results in a
complex dynamical behavior (Bereta et al., 2021; Caracanhas et al., 2022).

Radiofrequency-dressed potentials (Garraway and Perrin, 2016; Harte et al., 2018;
Perrin and Garraway, 2017; White et al., 2006; Zobay and Garraway, 2001, 2004) arise
by applying a radiofrequency magnetic field to a gas of cold atoms with different spin
states confined in a conventional harmonic magnetic trap. The resulting dressed states
are position-dependent, i.e., the dressed potential forms a double well along any axis.

1The collective modes in particular and the overall behavior of shells are also affected by the presence
of gravity, which we will introduce later.

79
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Consequently, the atoms are trapped in an ellipsoidal 3D surface. The first hollow
condensate was realized in 2004 (Colombe et al.). However, this condensate was not a
closed shell due to the gravitational sag, which depletes the shell; due to Earth’s gravity,
the atoms sag to the bottom of the trap, and shell-shaped BECs are destroyed. For this
reason, to experimentally obtain shell-shaped condensates, one needs microgravity
conditions, meaning that the effect of gravity is small enough to neglect it. The first fully
shell-shaped BEC was realized very recently (Carollo et al., 2022) using a microgravity
environment.

Besides radiofrequency-induced adiabatic potentials, one can also achieve shell-
shaped BECs by means of an optically trapped binary heteronuclar mixture in the
immiscible regime (Wolf et al., 2022), which was experimentally done also in 2022 (Jia
et al.). This setup allows one to study shells on Earth2, but it has the limitation that one
needs two immiscible components and thus the core of the shell is filled by the other
component. This experimental proposal may provide a good alternative for dipolar
systems, where the dipolar relaxation could limit the lifetime of shell-shaped BECs.
However, here we will focus on adiabatic potentials, which will be introduced with
more detail later. Then, to realize these shells, one needs to reduce the effect of gravity.

Microgravity experimentswith cold atoms have been carried out, for instance, in drop
towers (Müntinga et al., 2013; van Zoest et al., 2010), suborbital launch vehicles (Becker
et al., 2018), Einstein elevators (Condon et al., 2019) and, more recently, in the NASACold
Atom Laboratory (CAL) on the International Space Station (Aveline et al., 2020; Elliott
et al., 2018; Frye et al., 2021; Lundblad et al., 2019). The proposal for an experimental
framework to realize shell-shaped BECs at CAL (Lundblad et al., 2019) lead to further
interest in these hollow condensates under microgravity conditions (Meister et al., 2019;
Tononi and Salasnich, 2019; Tononi et al., 2020).

Yet, in this chapter, we are interested in the effect of a small gravity in shell-shaped
BECs. Then, to guarantee that shells are not destroyed by the gravitational sag, we
consider values of gravity larger than microgravity to study its effect but still smaller
than the terrestrial gravity by some orders of magnitude. This restricted range of
gravities holds for the particular parameters we used in the numerical calculations (see
Sections 5.2 and 5.3). However, one can extend this range to other values (see Section 5.4)
by considering a different set of parameters as long as both the mean-field regime and
the thin-shell limit hold (we will discuss those conditions in Section 5.1).

Theoretical work on shell-shaped BECs has focused mostly on contact-interacting
atoms (i.e., nondipolar condensates). For atoms with a non-negligible magnetic moment,
dipole–dipole interparticle interactions are also relevant (see Chapter 3). Dipolar shell-
shaped BECs have been studied in the limit of a thin shell (Diniz et al., 2020) and under
rotation (Adhikari, 2012). Whereas contact interactions are short-range and isotropic, the
interaction between atoms with a dipolar moment is long-range and anisotropic (Lahaye
et al., 2009). Due to these features of dipole–dipole interactions, dipolar BECs are
specially sensitive to the geometry of the trapping potential. Moreover, the fact that
the dipole polarization introduces a privileged direction in the system may endow

2In this case, one still needs to counterbalance the gravitational sag to avoid the displacement of the
center of mass of each component, which is not the same due to the different masses.
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dipolar BECs with additional sensitivity to tiny changes in orientation, such as gravity
perturbations.

Ourmotivation in this chapter is to explore the effects of the dipole–dipole interaction
in thin shell-shaped condensates. Additionally, since experiments in microgravity con-
ditions may suffer gravity perturbations, we analyze the dynamics of small oscillations
in small-gravity conditions, both for dipolar and nondipolar condensates, which could
yield to identify small changes in the direction or magnitude of the gravity.

The chapter is organized as follows. In Section 5.1, we introduce the theoretical
framework and shell-shaped potentials. Section 5.2 explores the ground-state configura-
tions in the presence of gravitational sag both for dipolar and nondipolar BECs. Two
cases for the gravity are then considered: when it is parallel to the I-axis (which is the
polarization direction of the dipoles in dipolar BECs), and when it is slightly misaligned.
In Section 5.3, we analyze the dynamics of small oscillations due to a tiny variation in
either the direction or strength of gravity. Section 5.4 extends our study to other sets of
parameters and ranges of gravity. Finally, in Section 5.5 we summarize our results.

5.1 Shell-shaped BECs

We consider a dilute and weakly interacting gas of # dipolar bosons at zero temperature.
As we discussed in Chapter 3, the Gross–Pitaevskii equation (3.12) accurately describes
such a dipolar BEC within the mean-field framework3 in the absence of gravity:

8ℏ
%#(r, C)

%C
=

[
−ℏ

2∇2

2< ++ext(r) + 6 |#(r, C)|2 ++dd(r)
]
#(r, C) , (5.1)

with the condensate wavefunction #(r, C) normalized to the total number of atoms
# and where < is the mass of the atoms. The atom–atom mean-field interaction is
characterized by the contact interaction through the coupling constant (2.7)

6 =
4�ℏ20B
<

, (5.2)

where 0s is the B-wave scattering length, and by the dipole–dipole interaction

+dd(r) =
∫

3r′*dd(r − r′) |#(r′, C)|2 . (5.3)

3For the mean-field approximation to hold, one assumes that both quantum and thermal fluctuations
are negligible (see Chapter 2 for more details). In the present chapter, we do not include any beyond
mean-field correction, as the mean-field approximation is enough to describe the interplay between
the dipolar interactions and the gravitational sag. Outside this regime, however, shell-shaped dipolar
BECs may eventually form supersolid structures in highly dipolar systems due to the stabilizing effect
of quantum fluctuations (Sánchez-Baena et al., 2023a). The emergence of supersolidity in such systems
depends both on the interactions and on the parameters of the trapping potential and, unlike dipolar
shells in the mean-field regime, the resulting supersolids remain almost unaffected by the gravitational
sag (Ciardi et al., 2024). Thermal fluctuations may also facilitate the formation of supersolids in such
systems, as was observed very recently for dipolar BECs (Sánchez-Baena et al., 2023b).
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For a sample of dipolar atoms fully polarized along the I-axis with dipolar moment
- = � êI , the dipolar potential (3.2) is

*dd(r − r ′) = �dd
4�

1 − 3 cos2 �

|r − r ′|3 . (5.4)

We recall that |r − r ′| is the relative distance between particles, � is the angle between
r − r ′ and the direction of polarization, and �dd is �0�2 (32/&0) for a magnetic (electric)
dipole moment.

Contact interactions are characterized by the B-wave scattering length 0B . Similarly,
one can introduce an effective length for the dipole–dipole interactions (3.17),

0dd =
�dd<

12�ℏ2 . (5.5)

Then, the relative strength of the interactions is given by the ratio of these two character-
istic lengths �dd = 0dd/0B (3.18).

5.1.1 Shell-shaped potentials
Shell-shaped BECs can be realized experimentally by using time-dependent, radio-
frequency induced adiabatic potentials within a conventional magnetic trap (as was
originally proposed by Zobay and Garraway, 2001, 2004).

In atoms with some internal states, the potentials that determine the center-of-mass
motion of the atoms depend on these internal states. When two or more of the internal
states are coupled by a radiofrequency external field, the motion of the atoms is no
longer determined by the bare potentials but by the so-called dressed (or adiabatic)
potentials. The resulting adiabatic potentials4 are widely tunable.

These bubble (or shell-shaped) potentials can be written as (Rhyno et al., 2021; Zobay
and Garraway, 2001, 2004)

+bubble(r) =
1
2<$2

00
2
ho

√
1
4 (A

2 − Δ)2 +Ω2 , (5.6)

where 0ho =
√
ℏ/(<$ho) is the harmonic oscillator length, with $ho the frequency of the

bare harmonic confinement, and $0 is the single-particle frequency of small oscillations.
The dimensionless parameters Δ and Ω control the radius and width of the shell, and
physically correspond to the effective detuning between the applied radiofrequency
field and the energy of the internal states (Δ) and to the Rabi coupling between those
energy states (Ω). One can study the transition from a filled spherical BEC to a hollowed
BEC, which implies a change in topology, by tuning these parameters.

4The term adiabatic then comes from the fact that these potentials emerge from an adiabatic deformation
of a conventional magnetic trap. See review by Perrin and Garraway (2017) for more details on
radiofrequency-dressed adiabatic potentials.
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If the thickness of the shell is small compared to its radius, the bubble trap poten-
tial (5.6) can be approximated by a radially-shifted harmonic trap (Padavić et al., 2018;
Sun et al., 2018):

+ext(r) =
1
2<$2 (A − A0)2 ; (5.7)

this situation is the so-called thin-shell limit5. This potential (5.7) defines a spherically
symmetric shell6 of radius A0, with effective frequency $ = $G = $H = $I and radial
coordinate A2 = G2 + H2 + I2.

5.2 Ground states: interactions and gravity

Let us consider from now on a typical dipolar BEC within the mean-field regime, e.g.,
# = 10000 164Dy atoms polarized along the I-axis with magnetic dipolar moment
� = 10�B, scattering length 0s = 120 00, and mass < = 164 amu. The relative strength of
the interactions is �dd = 1.11 in this case.

In this section, we will characterize the ground state of the system in the absence of
gravity with and without dipolar interactions (Subsection 5.2.1) and then analyze the
effect of the gravitational sag for both cases (Subsection 5.2.2). We obtain the ground
state wavefunction for the 3D spherical-shell geometry described above by numerically
solving the time-independent GPE7 (5.1) with the imaginary-time propagation method.

Both for the results presented in this section and those in Section 5.3, we have verified
that the numeric results do not change when changing the number of points or the size
of the numerical grid. Regarding the density profiles plotted along the chapter, the size
of the 3D box we show in the figures is 16 �m × 16 �m × 16 �m. As in the other chapters,
we will refer to condensates with only contact interactions as nondipolar and to those
with both contact and dipolar interactions as dipolar.

5.2.1 Dipole–dipole interactions
Due to the anisotropic character of the dipole–dipole interactions, the density of the
ground state elongates along the polarization direction to minimize the energy of the
system. This effect, known as magnetostriction, combines with the geometry of the
trapping potential to bring in new configurations that are not present in nondipolar

5The thin-shell limit occurs for large values of the detuning Δ. Since the bubble trap potential (5.6) has
a minimum at A = A0 =

√
Δ, the thin-shell limit is applicable for shells with a large radius.

6One should consider ellipsoidal traps, as in the experiments, for a more realistic description of the
system. However, we will consider spherical shells for simplicity since the ellipsoidal geometry results in
shells with a nonuniform density, which adds more complexity to the system.

7As discussed in Chapter 3 when introducing the mean-field formalism for dipolar condensates, we
recall here that the dipolar term turns the GPE into a nonlocal and integro-differential equation that is, in
general, more complicated to solve. To facilitate calculations, one can evaluate the dipolar interaction
integral using Fourier transform techniques (see Abad et al., 2009, and references therein); in particular,
we use the FFTW package by Frigo and Johnson (2005).
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Figure 5.1: Bose–Einstein condensate confined in a spherical shell-shaped potential with
frequency $ = 2� × 100 Hz and radial shift A0 = 3

√
3 �m. (a) Nondipolar and (b) dipolar

BEC with &dd = 1.11. The dipoles have a magnetic moment � = 10�B and are oriented
parallel to the I-axis. The left (right) panel of each case represents the 2D density profile
in the GH (HI) plane for a spherical shell-shaped BEC. Each plane shows a view of 16 �m
× 16 �m. The color scale corresponds to the density and ranges from 0 (black) to 45 �m−3

(yellow). All the following figures of this chapter use the same color scale and numerical
grid. For reference, the peak density is (a) 17.48 �m−3 and (b) 26.97 �m−3.

systems8.
Figure 5.1 shows the 2D contour plots of the density in the GH plane (left panels)

and HI plane (right panels) for a BEC confined in a shell-shaped potential (5.7). The
plots correspond to a nondipolar condensate (a), and a dipolar condensate with the
dipoles aligned with the I-axis (b). The BEC is shell-shaped and has a hollow core
due to the confinement. Note that the density distribution for the nondipolar case is
isotropic [see Fig. 5.1(a): both left and right panels are equivalent]. In the presence
of dipole–dipole interactions, on the other hand, the density accumulates around the
equatorial region of the shell [see right panel of Fig. 5.1(b)]. In the equator of the shell,
the dipoles sit mostly head to tail such that the effective interaction is attractive, while in
the polar region, the dipoles lie in a side-by-side configuration instead, which results in
a repulsive interaction.

This anisotropy in the ground state of the system, which comes from the anisotropic
character of the dipolar interactions, has already been observed in spherical shell-
shaped potentials (Adhikari, 2012; Diniz et al., 2020) and appears as well in toroidal
condensates (Abad et al., 2010). Although the density profiles in the GH plane are almost
the same for the dipolar and nondipolar cases [compare left panels on Fig. 5.1(a) and (b)],
the peak density (i.e., its maximum value) is higher when dipole-dipole interactions are
present than when the system presents only contact interactions. This asymmetry in the
density profile increases with the relative strength between the interactions �dd (Abad
et al., 2010; Adhikari, 2012), as one may expect.

8In the first dipolar condensates, for instance, this effect was already observed as the appearance
of novel structured ground states for some values of the strength of the dipolar interactions and the
trap anisotropy (Lahaye et al., 2009). Later on, this feature led to the proposal of a self-induced bosonic
Josephson junction in a dipolar condensate confined in a toroidal trap (Abad et al., 2011, 2015).
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Figure 5.2: Same case as plotted in Fig. 5.1 but in the presence of a small gravity of
strength 0.005 6E and aligned with the I-axis, with 6E = 9.8 m s−2 the terrestrial gravity.
(a) Nondipolar BEC. (b) Dipolar BEC, where dipoles have magnetic moment � = 10.0�B
and are aligned with the I-axis. The color scale and box size are the same as in Fig. 5.1.
For reference, the peak density is (a) 38.91 �m−3 and (b) 29.26 �m−3.

5.2.2 Gravitational sag
One can account for the effect of gravity by including an additional potential term to the
GPE (5.1), which we will refer to the gravitational sag potential +6 (Sun et al., 2018). To
study the effects of the anisotropy of the dipole–dipole interactions, we consider that
the direction of gravity is in general not aligned with any of the axes of the trap but lies
instead in the GI plane. Then, the gravitational sag potential reads

+6(r) = <6 (G sin' + I cos') , (5.8)

where ' is the angle between the direction of gravity and the I-axis (i.e., the polarization
direction). If the gravity is alignedwith the I-axis (' = 0), the gravitational sag simplifies
to +6(I) = <6I, which is equivalent to displacing the center of the trap vertically (Jezek
et al., 2004; Sun et al., 2018).

In this Subsection, we investigate the effect of gravity in the spherical shell-shaped
dipolar and nondipolar condensates that we considered previously (see Subsection 5.2.1).
We will limit our study to small strengths of gravity, i.e., values larger than microgravity
but still smaller than Earth’s gravity by some orders of magnitude, since the terrestrial
gravity destroys shell-shaped condensates (Lundblad et al., 2019).

Gravity aligned with the z-axis

Let us first consider a gravity aligned with the I-axis which, for dipolar BECs, is parallel
to the polarization direction. Figure 5.2 shows the numerical results [see Fig. 5.1 for
comparison without gravity]. As one can see in the HI plane (right panel) of the
nondipolar case [Fig. 5.2(a)], the atoms fall to the bottom of the shell-shaped potential.
Due to the axial symmetry of the system (confinement, gravity, and polarization), the
density distribution in the GI plane is the same as in the HI plane. The deformation
of the trap results in a partially filled shell and is a clear signature of the gravitational
sag (Frye et al., 2021; Sun et al., 2018).

In the presence of dipole–dipole interactions [Fig. 5.2(b)], the interplay between
their anisotropic character, the confining potential, and the gravitational sag leads to
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Figure 5.3: Same as Fig. 5.2 but with an angle ' = −0.2 rad between the gravity and the
I-axis such that gravity lies in the GI plane. (a) Nondipolar BEC. (b) Dipolar BEC with
dipoles polarized along the I-axis. The green arrow in the GI plane indicates the direction
of gravity.

a partially filled shell as in the nondipolar case, but now with a density depletion in
the bottom region. As we discussed in the situation with no gravity, the repulsive
interaction between two parallel dipoles significantly reduces the density at the bottom
of the condensate [see the right panel of Fig. 5.2(b)]. Then, the maximum-density band
lies slightly below the equatorial region, depending on the balance between the gravity
and the dipolar moment of the atoms.

Misaligned gravity

We now explore a more general situation where the gravity and polarization direction
are not aligned. Instead, gravity forms an angle ' with the I-axis and lies in the GI
plane. We show in Fig. 5.3 the 2D contour density plots in the three planes: GH (left), HI
(middle), and GI (right). Figure 5.3(a) corresponds to a nondipolar BEC, and Fig. 5.3(b)
to a dipolar one. For a nondipolar BEC, the density profile in the HI plane remains
almost unaltered as compared to Fig. 5.2(a), but the maximum of the density in the GI
plane tilts in the direction of gravity, which is marked with a green arrow in the right
panels of Figs. 5.3(a) and (b). As one can see in the GH plane, this tilting also produces
an accumulation of particles on the right side of the bottom region of the shell.

The situation becomes more complex for dipolar BECs, when the gravity and the
dipoles are not aligned, since the polarization axis fixes a privileged direction that
breaks the symmetry. As a result, the density profiles in the GI and HI planes are now
different from the nondipolar case [see Fig. 5.3(b)]. The density configuration in the HI
plane is similar as well to the density profile when the gravity is parallel to the I-axis
[see the right panel of Fig. 5.2(b)]. However, changes in the density in the GI plane are
more significant now: the maximum of the density lies in the right lobe of the shell
and, compared to the direction of gravity, has a larger tilting angle. Within this region,
the dipoles mostly lie head to tail, which results in an effective attractive interaction,
whereas in the bottom of the shell the atoms sit side by side and thus the net interaction
is repulsive.

Note that this symmetry-breaking phenomenon that shows in the GI plane is an
effect of the anisotropic character of the dipole–dipole interactions and depends both on
the tilting angle ' and on the strength of gravity. In Fig. 5.4, we plot the density profiles
in the three planes (GH, HI and GI) for a condensate confined in the same shell-shaped
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Figure 5.4: Same as Fig. 5.3 with an angle ' = −0.1 rad between the gravity and the
I-axis. (a) Nondipolar BEC. (b) Dipolar BEC, with dipoles polarized along the I-axis. The
strength of gravity for each case, from top to bottom, is 0.001 6E, 0.003 6E, and 0.006 6E.

potential and for different (small) values of the gravity (0.001 ≤ 6/6E ≤ 0.007), which is
tilted an angle ' = −0.1 rad from the I-axis. Figure 5.4(a) shows the numerical results
for a nondipolar BEC, and Fig. 5.4(b) for a dipolar BEC. For small values of the strength
of gravity (below 0.003 6E), the condensate forms a full shell that has a higher density
on the bottom. Increasing the strength (above 0.004 6E), the system is no longer a full
shell due to the sag effect of the gravity, which depletes the top of the trap such that the
shape of the condensate is a hollow half shell. In the presence of dipolar interactions,
their anisotropic character counterbalances the effect of gravity. Then, as a result, the
hole that appears at the top of the shell is small compared with the nondipolar case.

5.3 Dynamics of small oscillations

This section explores the dynamical response of the system when subjected to gravity
perturbations. In particular, we trigger the dynamics by instantaneous changing either
gravity’s strength or its tilting angle. To obtain the real-time evolution of the system, we
solve the GPE (5.1) numerically9.

First, in Subsection 5.3.1, we consider gravity can be tilted forming a small angle '

9We have calculated some cases with longer evolution times to check the numerical value of the
frequencies and determine the precision with which we obtain them. For example, for a nondipolar BEC
with gravity strength 6 = 0.005 6E and angle variation of 0.1 rad [see Figs. 5.5(a) and 5.6(a)] we obtain the
frequency 15.80 Hz for an evolution time Cf = 0.3 s, and 15.82 Hz for Cf = 1.0 s. We have also checked for
other cases that the results start to vary at the second decimal digit. Therefore, the estimated error of the
frequencies given in Subsections 5.3.1 and 5.3.2 is ±0.05 Hz.
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Gravity Frequency (Hz)
Angle (rad) Strength (6E) Nondipolar Dipolar

Variations in
the angle

Half shell −0.1→ 0.0 0.005 15.80 10.71
Full shell −0.1→ 0.0 0.002 15.87 10.62

Variations in
the strength

Half shell 0.0 0.005→ 0.006 24.69 25.12
Full shell 0.0 0.003→ 0.002 16.10 22.20

Table 5.1: Summary of numerical frequencies obtained from the oscillation of the center
of mass for the particular cases studied in Subsections 5.3.1 and 5.3.2. We indicate the
angle with the I-axis and the strength of gravity, and which of them is changed to trigger
the dynamics. For each situation, we give the frequency for both nondipolar and dipolar
BECs, and we indicate if the shape of the ground state is a half shell or a full shell. The
frequency associated to variations in the angle (see Subsection 5.3.1) is calculated from the
oscillation of 〈G(C)〉. For variations in the strength (see Subsection 5.3.2), we calculate the
frequency from the oscillation of 〈I(C)〉.

with the I-axis but is still contained in the GI plane. Then, we suddenly align it with the
I-axis at C = 0. Later, in Subsection 5.3.2, the gravity is parallel to the I-axis (' = 0), and
we investigate the dynamics by slightly changing its strength from 60 to 6. To avoid large
oscillations and more complex dynamics, we constrain our study to small variations.
Table 5.1 provides a summary of all the particular cases discussed in this section.

5.3.1 Variations in the orientation of gravity
We consider ' = −0.1 rad for all the results presented here. For a given strength
of gravity, we have checked that the dynamics are the same regardless of the sign
and magnitude of the initial tilting angle as long as the angle is small. We begin
this subsection by studying two particular cases (with 6 > 0.004 6E and 6 < 0.004 6E,
respectively) to discuss the effect that the shape of the ground state has on the dynamics.
The results we present for discussion are the oscillations of the center of mass (Fig. 5.5,
see numerical frequencies in Tab. 5.1) and snapshots of the density for selected times
within the first period of the evolution (Fig. 5.6). Finally, we analyze how the oscillation
frequency depends on the strength of gravity (see Fig. 5.7).

Particular cases

We start with a gravity of strength 6 = 0.005 6E such that the system resembles a half
shell, as we discussed in Section 5.2. First, we consider a nondipolar shell-shaped BEC.
In Fig. 5.5(a), we present the time evolution of the coordinates of the center of mass:
〈G(C)〉, 〈H(C)〉, and 〈I(C)〉. Since we prepare the condensate with a slight misalignment of
the gravity, the sudden alignment with the I-axis forces the system to bounce back and
forth in the GI plane around the new equilibrium position, the I-axis. This behavior
shows as a sinusoidal-like oscillation of 〈G(C)〉 as a function of time, while the other
coordinates remain almost unaltered. The sinusoidal fit of the numerical evolution of
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Figure 5.5: Numerical evolution of the center-of-mass coordinates. Gravity is initially
tilted an angle ' = −0.1 rad with the I-axis. We consider the two possible static regimes
described in the text: a half shell for 6 = 0.005 6E in a (a) nondipolar and (b) dipolar
condensate, and a full shell for 6 = 0.002 6E in a (c) nondipolar and (d) dipolar condensate.
The black dashed lines indicate the sinusoidal fits of the numerical results for 〈G(C)〉, from
where we obtain the oscillation frequencies: (a) 15.80 Hz, (b) 10.71 Hz, (c) 15.87 Hz, and
(d) 10.62 Hz. See summary of numerical frequencies in Tab. 5.1.

〈G(C)〉 gives a frequency of 15.80 Hz10. Figure 5.6(a) displays a few snapshots of the
2D density profiles in the two planes where the oscillations are observable, GH and
GI. The times shown in the plot cover a whole period of the oscillation. Since the
shell-shaped BEC is 3D, the oscillatory behavior of 〈G(C)〉 [see Fig. 5.5(a)] produces
symmetric rearrangements of the density in the other directions, as one can see in the
GH plane of Fig. 5.6(a).

Figure 5.5(b) shows the numerical evolution of the center of mass for a dipolar
condensate with an initial tilting angle of gravity ' = −0.1 rad. As we discussed before
[see Section 5.2 and Fig. 5.4(b)], the filled region of the shell-shaped potential appears at
a larger tilting angle in a dipolar condensate than in a nondipolar one. This feature of
the anisotropy of the dipole–dipole interactions results in a larger oscillation amplitude
of 〈G(C)〉 in dipolar BECs. The sinusoidal fit of the numerical evolution of 〈G(C)〉 gives a
frequency of 10.71 Hz; as in the nondipolar case, the other components of the center of
mass of the system, 〈H(C)〉 and 〈I(C)〉, show practically no variations. When the gravity is
suddenly aligned, the system oscillates around the I-axis as expected. However, unlike

10We checked that the frequency of oscillation is close to this value when the initial angle |'| is
approximately below 0.15 rad.
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Figure 5.6: Snapshots of the 2D density profiles in the GH (left panels) and GI (right panels)
planes at different times of the evolution. We do not show the HI planes because the
densities remain unchanged there, as the variation in gravity is constrained to the GI
plane. The initial tilt of the gravity is ' = −0.1 rad, and we study the same two situations
as in Fig. 5.5: a half shell for 6 = 0.005 6E in either (a) a nondipolar BEC or (b) a dipolar
BEC, and a full shell for 6 = 0.002 6E in (c) a nondipolar BEC and (d) a dipolar BEC. In
both dipolar cases, the dipoles have magnetic moment � = 10�B. The green arrow shows
the initial direction of gravity, which is later aligned with the I-axis to start the dynamics.
See summary of cases in table 5.1.

in the nondipolar case, the atoms do not cross over the bottom region of the half shell,
where the net dipolar interaction is repulsive: their movement is instead constrained
to the high-density band that appears below the equatorial region. One can see this
behavior in Fig. 5.6(b), which shows a few snapshots covering one period in the GH and
GI planes.

Finally, we study the situation where the gravity is small enough that the BEC still
retains its full shell shape. In particular, we consider 6 = 0.002 6E. From Fig. 5.5(c)
and (d), one can see that the oscillations of 〈G(C)〉 are broader and slower in the dipolar
BEC than in the nondipolar one, as in the previous case. The oscillation frequencies we
obtain from the fit are 15.87 Hz (nondipolar BEC) and 10.62 Hz (dipolar BEC), which
resemble those from the previous case. If we compare these oscillations [Fig. 5.5(c) and
(d)] with those obtained for a heavier gravity [Fig. 5.5(a) and (b)], we observe that the
frequencies are similar in both the nondipolar and the dipolar BECs, but the amplitudes
of the oscillations are much lower now. From the snapshots of the density we show
in Fig. 5.6(c) and (d), one can see that in the case of a smaller gravity, as expected, the
atoms can move around the whole shell (not just the lower part), which could explain
why the oscillations of the center of mass are more restricted in the G direction. We will
explore in more detail the effect of gravity in the dynamics in the following subsection.

The role of gravity

Here, we study the dynamics of small oscillations due to variations in the tilting angle
(initially ' = −0.1 rad in all the cases) for different strengths of gravity. In Fig. 5.7, we
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Figure 5.7:Oscillation frequency of 〈G(C)〉 as a function of the gravity for a nondipolar (red)
and dipolar (green) BEC, where the gravity has an initial tilting angle ' = −0.1 rad. We
obtain the oscillation frequency by fitting a sinusoidal function to the numerical data. The
panels on both sides show the 2D density profiles of the initial state in the GI plane (which
contains gravity) for the different values of the gravity labeled from (a) to (f), both for the
nondipolar BEC (left panels) and the dipolar one (right panels). The green arrow, as in
the previous figures, marks the direction of gravity. Lines between data points are added
to guide the eye. The dashed line indicates the frequency of a mathematical pendulum,√
6/A0, with fixed length A0.

show the oscillation frequency of the G coordinate of the center of mass, 〈G(C)〉, as a
function of the strength of gravity. We consider both nondipolar and dipolar BECs.
As Fig 5.7 shows, the oscillation frequency depends on the strength of gravity, and
two different behaviors arise: first, starting from the lowest gravity studied here, the
frequency decreases as 6 increases until it reaches a particular value (between 0.003 6E
and 0.004 6E); then it increases again. These two behaviors are related to the two distinct
shapes that can be observed in the ground states of the system for different values of
gravity, as we show in Fig. 5.4 and discussed in Section 5.2: when the strength of gravity
is small, the ground state of the system is a full shell, while for heavier values of gravity
it resembles a half shell.

At small strengths of gravity, the condensate is a full shell with a higher density at the
bottom of the trap. Then, an increase in gravity drags more atoms to the bottom of the
trap, which leads to a decrease in the oscillation frequency. When considering dipolar
interactions, though, their anisotropic nature compensates for the effect of gravity; as
a result, the oscillation frequency becomes almost invariant to small changes in the
strength of gravity.

On the other hand, at larger values of 6, the system is no longer a full shell but a
half shell, and the oscillation frequency increases as the strength of gravity does. The
angular frequency of a mathematical pendulum is related to gravity 6 and its length ;
by

√
6/;. For the nondipolar case, in particular, we can see that for 6 > 0.004 6E, the

frequency approaches this behavior as 6 grows. For comparison, we show in Fig. 5.7 the
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frequency for a pendulum (see dashed line) assuming a fixed length ; ∼ A0 = 3
√

3�m.
In the dipolar case, the frequency also grows with gravity for 6 > 0.005 6E. However,
now the system does not behave like a mathematical pendulum. The atoms bounce
from the right to the left lobe, but they never cross the bottom region of the shell since
they can only move around the high-density band, as we show in Fig. 5.6 and discuss in
the accompanying text. Therefore, the classical pendulum analogy fails in this case.

5.3.2 Variations in the strength of gravity
In the previous subsection, we discussed the dynamics due to variations in the angle of
gravity. Here we fix the angle of gravity with the I-axis to zero (' = 0) and study the
system’s response to variations in the strength of gravity. As before, we constrain our
study to small oscillations, which now translates to small variations in the strength of
gravity. We start by preparing the system under a gravity 60 aligned with the I-axis,
and then, at C = 0, we change 60 to 6.

In the first part of this subsection, we study in detail two cases: first, when 6, 60 >
0.004 6E, so the corresponding ground states resemble a half shell, as discussed in
Section 5.2; then, we set 6, 60 < 0.004 6E, with both values of gravity laying in the
regime where the system is still a full shell. See Tab. 5.1 for a summary of the numerical
frequencies obtained and Fig. 5.8 for some snapshots of the evolution. For these cases,
we choose a large change in gravity (|6 − 60 | = 0.001 6E) to see the system’s dynamics
well. In the second part, we fix a smaller value of the variation (|6 − 60 | = 0.0001 6E) to
study small oscillations and compare the frequencies of oscillation obtained for different
values of the final gravity 6 (see Fig. 5.9).

Particular cases

In the first case of our study, the initial strength of gravity is 60 = 0.005 6E, and the
evolution starts when we abruptly increase it to 6 = 0.006 6E. Within these values of the
gravity, the ground state of the system resembles a half shell, as we already mentioned
(see the last row in Fig. 5.4). In Fig. 5.8(a) and (b), we plot the densities at different
times to show the dynamics of both the nondipolar and dipolar cases (the snapshots
cover a whole period of the oscillation). In the nondipolar case [Fig. 5.8(a)], the atoms
are mainly located at the bottom of the shell, occupying a region that shrinks and
grows periodically due to the increase in gravity. This behavior resembles a spring
that oscillates vertically. Here, though, the movement of the atoms is confined to the
surface of the shell. In the dipolar case [Fig. 5.8(b)], instead, the band of maximum
density appears below the equatorial region. Then, the sudden change in gravity causes
this band to oscillate along the I direction. Since the gravity is parallel to the I-axis,
we study the oscillation frequency of the I coordinate of the center of mass through a
sinusoidal fit to the numerical results for 〈I(C)〉. We obtain a frequency of 24.69 Hz for
the nondipolar BEC and 25.12 Hz for the dipolar one. Unlike in Subsection 5.3.1, here
we find that both frequencies are similar.

For the second case, where the gravity is small enough that the system has the shape
of a full shell, we decrease the initial gravity 60 = 0.003 6E to 6 = 0.002 6E. The dynamics



Section 5.3 | Dynamics of small oscillations 93

(a) xy

0.8 ms

xz

20 ms

40 ms

(b) xy

1 ms

xz

19 ms

38 ms

(c) xy

0.8 ms

xz

43 ms

87 ms

(d) xy

1 ms

xz

22 ms

44 ms

Figure 5.8: Snapshots of the 2D density profiles in the GH (left) and GI (right) planes at
different times of the evolution. Gravity is parallel to the I-axis, and we vary its strength
from 60 to 6 at C = 0. Since the densities in the GI and HI planes are equivalent, we
do not show the HI planes. First case, half shell: 60 = 0.005 6E and 6 = 0.006 6E, for
(a) a nondipolar and (b) a dipolar condensate. Second case, full shell: 60 = 0.003 6E
and 6 = 0.002 6E, also for (c) a nondipolar and (d) a dipolar BEC. The dipole moment,
� = 10�B, is the same for all the cases with dipolar interactions. See summary of cases
in Tab. 5.1. Note that the density accumulation that appears in case (c) at the top of the
shell, the right panel, of the last row: it comes from considering such a large change in
gravity, |6 − 60 | = 0.001 6E. To avoid this, we study the effect of gravity on the oscillation
frequency (Figs. 5.7 and 5.9) with smaller variations.

are very similar to the previous case, as one can see in Fig. 5.8(c) and (d). In this case,
however, the oscillation frequencies of 〈I(C)〉 for the nondipolar and dipolar BECs are
more different; in particular, we find 16.10 Hz for the nondipolar BEC and 22.20 Hz for
the dipolar one.

The oscillations of the center of mass in both frequency and amplitude depend on the
strength of gravity. These results match those found in Subsection 5.3.1. In nondipolar
BECs, when the gravity is light and the system is a full shell, we find that the oscillations
are slow and broad since the atoms can move around the whole shell. For a heavier
gravity, the atoms drop to the bottom of the trap. Then, the amplitude of the oscillation
decreases while its frequency increases. The differences found in dipolar BECs come
from the anisotropic nature of the dipolar interactions, which counterbalances gravity.
The band of maximum density is no longer at the bottom region but below the equator.
Therefore, compared to the nondipolar case, the oscillations change much less when
one considers different strengths.

The role of gravity

Finally, we study the dynamics of small oscillations induced by a variation in the strength
of gravity and how these results differ depending on whether the value of gravity is
relatively small (and the ground state resembles a full shell) or large (when the system
becomes a half shell). We choose |6 − 60 | = 0.0001 6E to ensure small oscillations. For
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Figure 5.9:Oscillation frequency of 〈I(C)〉 as a function of the final gravity 6, with initial
gravity 60 = 6 + 0.0001 6E. The red line corresponds to the nondipolar case, and the green
line to the dipolar interacting BEC. As before, we obtain the oscillation frequency by fitting
a sinusoidal function to the numerical data. Lines are added to guide the eye.

these values of 6 − 60, the results we obtain for a given 6 are equivalent in frequency
and amplitude either if 6 > 60 or 6 < 60. Therefore, we define from now on 60 such
that 60 = 6 + 0.0001 6E.

In Fig. 5.9, we plot the frequency of oscillation of 〈I(C)〉 as a function of the final
gravity 6. The results resemble those from Fig. 5.7. The frequency increases with the
final gravity for large values of the gravity (when the system is a half shell), while
it decreases with the final gravity for smaller values (when the system resembles a
full shell). Since the dipolar interaction compensates for the gravity, the effect of the
variation in strength is more noticeable in the nondipolar BEC than in the dipolar BEC
(as in Subsection 5.3.1) for small final gravities.

Comparing the results obtained for the nondipolar BEC either with changes in
strength (see Fig. 5.9, red line) and orientation (see Fig. 5.7, red line), we can see that the
frequencies lie within a similar range of values in both cases. The frequencies we obtain
now for the dipolar BEC, however, are faster. This increase in frequency is an effect of
the anisotropy of the dipolar interactions. In the first scenario (see Fig. 5.7, green line)
the center of mass moves mainly along the G-axis, and all the dipoles point towards
the I-axis. Then, an atom that moves in that direction feels a net repulsive interaction
from its neighbors, which reduces the frequency of oscillation. In the second scenario
(see Fig. 5.9, green line) the center of mass moves instead around the I-axis. Since the
resulting interaction between dipoles along the direction of motion is attractive and
twice as large as in the previous case, the frequency of the oscillation is much larger.
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5.4 Extension to other systems

We write the time-dependent Gross-Pitaevskii equation (5.1) in dimensionless units in
the usual way11: using the oscillator length 0ho =

√
ℏ/(<$) as the unit length, $−1 as the

unit time, and ℏ$ as the unit energy. Then, one can define three dimensionless constants,
which are the coefficients of the gravitational, contact-interacting and dipolar terms of the
dimensionless equation: � = 6/(0ho$2), � = 4�#0s/(0ho), and� = #<�0�2/(4�ℏ20ho).
We also define the dimensionless radius �0 = A0/0ho.

Thus, the system can be scaled in terms of these dimensionless constants. In our
configuration, the numerical values are: � = 31.62 6̃, � = 1016.46, � = 268.27 and
�0 = 6.62, where we introduce the gravity in units of the terrestrial gravity 6̃ = 6/6E for
convenience, and we also fix �dd = 1.11. With these values, one can translate the same
physics to another set of parameters that are experimentally accessible in 52Cr (Koch
et al., 2008; Lahaye et al., 2007), 164Dy (Lu et al., 2011), or 168Er (Aikawa et al., 2012).

For example, we consider a condensate of 168Er with # = 104 atoms, which has
a dipolar moment of 7�B. One can obtain the configuration proposed with our
dimensionless constants by choosing a scattering length 0s ∼ 60 00 and a trap frequency
$ ∼ 2� × 390 Hz. Then, the radius of the resulting shell is A0 ∼ 2.6�m, and the range of
valid gravities (large enough that its effect is noticeable but does not destroy the system)
is, in this case, between 0.008 6E and 0.050 6E.

More generally, we can use these dimensionless constants and state that our study
can be extended to values of gravity between 0.003 6E and 0.023 6E in units of 0ho $2.
Consequently, it is possible to explore a different range of gravities by considering
another set of parameters for the system.

For instance, going back to the system we consider in this chapter (164Dy), one could
study a range of gravities closer to microgravity by increasing the number of atoms
and the radius of the shell, and reducing the frequency of the trap. Particularly, with
# ∼ 3 × 104, $ ∼ 2� × 11 Hz and A0 ∼ 15.6�m, the range of valid gravities lies between
4 × 10−5 6E and 26 × 10−5 6E.

5.5 Summary of results

In the present chapter, we have studied the statics and dynamics of nondipolar and
dipolar shell-shaped condensates in the presence of a small gravity. We have constrained
our study to gravity values above microgravity (and thus non-negligible) and below
terrestrial gravity, which destroys shells.

First of all, we have analyzed the ground states of the system in three cases: without
gravitational sag, with gravity parallel to the I-axis (which is the polarization direction
we considered for dipolar BECs), and with a small gravity misaligned with the I-axis
and contained in the GI plane. We have discussed the effect of the dipolar interactions
in either of the three cases. Next, we have done a more general analysis of the ground
states to examine the effect of gravity’s strength. Observing the shape that the system

11See derivation of Eq. (2.26) in Chapter 2 for more details
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displays, we have defined two regimes: a full shell for small gravities and a half shell for
larger gravities. These two regimes play a relevant role in the dynamical behavior of the
system.

Later, we have studied the dynamics of small oscillations due to changes in the
orientation and strength of gravity. For each of those two scenarios, and comparing
the full shell and half shell regimes, we have studied two particular cases and we have
analyzed, more generally, the effect that gravity has in the behavior of the oscillations
when the variation (in angle or strength) is fixed and very small. With this, we have
seen how the two static regimes translate into two distinct dynamical behaviors: the
oscillation frequency increases with gravity for large values of gravity (half shell) while
it decreases for smaller values (full shell). Additionally, we have compared the results
obtained for nondipolar BECs with those obtained for their dipolar counterparts. We
have discussed that dynamics due to changes in angle or strength are equivalent in
the nondipolar BECs, but the dynamical behavior differs in dipolar BECs due to the
anisotropic nature of their interactions, which counterbalances the effect of gravity.
We have shown that even though the dipolar interaction adds a privileged direction
to the one already defined by gravity, the resulting shells with gravitational sag and
dipolar interactions present a configuration that, compared to the nondipolar one, is
less sensitive to misalignments and perturbations in the gravitational sag.

Finally, we have extended our study to other systems, and we have seen that the
range of valid gravities depends on the particular system in consideration. Therefore,
one could choose a set of parameters (namely the mass, the frequency, and the number
of atoms) such that the gravitational effects are neither negligible nor destructive at
much smaller gravities than the ones we have studied here. We want to stress that the
physics of shell-shaped condensates under gravitational sag is not limited to dysprosium
BECs, as we have considered here. It can also be exported to other condensates with
controllable contact interactions, either with and without dipolar interactions.

The atomic cloud in this system is not only sensitive to changes in its orientation, but
it is also sensitive to small gravitational variations, either in its direction or strength.
However, one cannot discern directly from our results (especially in the nondipolar
case) if the cause of the oscillations is a change in gravity’s orientation or its strength.
Studying instead a more simplistic configuration, such as a ring-shaped BEC, may shed
some light on how to discriminate between these two situations. In any case, these
findings could pave the way to the experimental realization of a gravity or accelerometer
sensor intended for small gravity conditions. Monitoring gravity and its changes from
space in satellite missions (see Migliaccio et al., 2019, and references therein) is another
possible application of this system. To conclude, we want to point out the experimental
feasibility of the proposed system. We have used values for the experimental parameters
that are currently available in laboratories.



6
DYNAMICAL GENERATION OF DARK–BRIGHT SOLITONS
IN IMMISCIBLE MIXTURES

A homogeneous quasi-1D Bose gas can be described within the mean-field framework
by the 1D Gross–Pitaevskii equation (GPE), as in Eq. (2.53),

8ℏ
%#(G, C)

%C
=

[
−ℏ

2∇2

2< ++ext(G) + 61D |#(G, C)|2
]
#(G, C) . (6.1)

This equation sustains soliton solutions (also calledmatter waves) if the external potential
+ext(G) is either zero or uniform, as we discussed in Chapter 2 (see Section 2.3). For a
harmonically confined system with a tight confinement along the H and I directions,
the 1D coupling constant 61D relates to the 3D coupling constant 63D as (2.54),

61D =
63D

2� 0H0I
=

2ℏ2

<

0B

0H0I
, (6.2)

where 0H,I are the oscillator lengths in the H and I directions (the frozen directions) and
0B is the B-wave scattering length. The coupling constant characterizes the strength of
the atom–atom interactions, which add a nonlinear term to the equation, 61D |# |2 #. In
Chapter 8, we will study an analogous system where the nonlinearity comes instead
from the current density. We already introduced solitons in Chapter 2, but we will recall
here their main properties.

Solitons are localized excitations that result from the competition between the
nonlinearity and the dispersion of the system (Pitaevskii and Stringari, 2016). A key
feature of solitons is that they propagate without changing their shape; such solutions
that are robust against perturbations are often referred to as topological states. The sign
of the coupling constant yields two different types of solitons in BECs (Frantzeskakis,
2010; Kevrekidis et al., 2010; Shamailov and Brand, 2018): dark (for 6 > 0) and bright
(for 6 < 0) solitons.

Dark solitons exist when the interactions are repulsive, and are density dips charac-
terized by a phase jump across the density profile. These solitons can be analytically

97
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described1 by

#D(G) =
√
=0 tanh

(
G√
2�

)
, (6.3)

where =0 is the density of the homogeneous background and � = ℏ/
√

2< |6 |=0 is the
healing length (2.24). Bright solitons, which appear for attractive interactions, are
self-bound wavepackets of the form (2.57)

#B(G) =
√
=0 sech

(
G√
2�

)
. (6.4)

Bright solitons are the ground state of the system in 1D when the interactions are
attractive; in higher dimensions, however, the condensate collapses due to attraction.
In general, both dark and bright solitons are unstable in two- and three-dimensional
systems.

Binary mixtures of condensates (Pu and Bigelow, 1998; Timmermans, 1998) provide
a more complex scenario to study solitonic states (see Subsection 2.2.1 in Chapter 2).
These mixtures can be composed of two hyperfine states, two isotopes of the same
atomic species, or two completely different species. For generality, therefore, we
will use the term component instead of species. The interplay between the inter- and
intracomponent interactions, each characterized by the corresponding coupling constant,
leads to different regimes: within the mean-field approximation, a miscible mixture
can be stable, phase separate, or collapse. In addition, the competition between the
two types of atom–atom interactions leads to novel solitonic states, such as dark–dark
solitons (Hoefer et al., 2011) or dark–bright solitons (Becker et al., 2008; Hamner et al.,
2011; Middelkamp et al., 2011). This last case will be the main focus of the present
chapter.

Dark–bright (DB) solitons occur in a binary mixture with only repulsive interactions.
Yet the bright component can exist now due to the density dip of the dark soliton in the
other component, which plays the role of a confining potential. As a result, the dark
soliton in one of the components traps atoms of the other, which forms a bright soliton.
For simplicity, we will usually refer to the component with the bright soliton as the
bright component and to the other, with a dark soliton, as the dark component. These DB
solitons are solutions of the two-component 1D system in the so-calledManakov limit,
i.e., when all the interactions are of the same strength (see Kevrekidis and Frantzeskakis,
2016, and references therein). In the general case, analytic solutions only exist for a
restricted range of the interaction strengths (Yan et al., 2015). However, one can still find
numerical solitonic solutions, such as DB soliton trains, outside those limits.

Solitons are solutions of the homogeneous system, either untrapped or confined
in a uniform potential. Nevertheless, they can also exist in the presence of harmonic
confinement. In this case, the soliton is stable but its profile is deformed due to the
changing background density (Barenghi and Parker, 2016). A dark soliton in a single-
component condensate oscillates with a frequency that is 1/

√
2 times the frequency

of the trap (Busch and Anglin, 2000). In a two-component system, a DB soliton in

1See Eq. (2.56) for a more general situation in which the soliton can move.
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a harmonic trap oscillates with a different frequency (Becker et al., 2008; Busch and
Anglin, 2001; Middelkamp et al., 2011). The bright component that fills the core of the
dark component slows down the soliton due to the increased mass, which results in an
oscillation frequency that is smaller than the oscillation of a single dark soliton.

In the present chapter, we will consider a harmonically trapped bosonic binary
mixture in the immiscible regime. In equilibrium, the mixture phase separates, and each
component occupies a different domain. The interface or domain wall is the region where
the two components overlap. The propagation of a dark soliton in such an immiscible
mixture has been investigated by Öhberg and Santos (2001a,b) and, for a particular set
of parameters, by Zheng et al. (2019).

Our motivation in this chapter is to investigate the reflection and transmission of
solitonic states in an immiscible and weakly interacting binary mixture. In particular,
we focus on the effect of the domain wall for a wide range of the interaction parameters
within the immiscible regime. Wewill consider general values for the coupling constants,
since the scattering lengths can be tuned using Feshbach resonances (see Chapter 2). The
atom–atom interactions determine the shape and features of the domain wall. Thus, the
system will present different dynamical behaviors when a moving soliton encounters
the domain wall depending on the strength of the interactions. We will show that the
reflection and transmission of a dark soliton through the domain wall in an immiscible
mixture can generate a DB soliton. This DB soliton emerges dynamically due to the
interaction with the domain wall and exists in a region of interaction parameters where
one cannot obtain static analytical solutions (Yan et al., 2015).

The chapter is organized as follows. In Section 6.1, we introduce bosonic binary
mixtures and the theoretical mean-field framework that we use to describe this system.
In Section 6.2, we present the numerical results obtained by solving the two-coupled time-
dependent GPEs for an immiscible mixture. In particular, we fix the intracomponent
interactions and vary the intercomponent interactions within the immiscibility regime.
As the initial state, we imprint a dark soliton to one of the components of the system.
Then, we analyze its reflection or transmission through the domain wall. We see that,
due to the interaction of the dark soliton with the domain wall, one can generate a DB
soliton for a wide range of intracomponent interactions. In Section 6.3, we study the
dynamics of the DB soliton and provide a semianalytical expression for its oscillation
frequency that agrees with the frequency calculated numerically. Finally, Section 6.4
gathers the results presented throughout the chapter.

6.1 Immiscible binary mixtures

To reduce the system to 1D, we assume that it is harmonically confined, and that the
frequencies in the transversal2 (H and I) directions, $⊥ = $H = $I , are much larger
than the frequency in the longitudinal (G) direction $G . Since $G � $⊥, the motion

2Note that the convention used here for the term transversal is different to that used in Chapter 3 (and
later in Chapter 7) when describing quasi-2D systems, where the transversal directions (G and H) are
instead those with a shallower confinement, while the axial direction (I) refers to the tight confinement.
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in the transversal directions is frozen and the excited states in those directions are not
accessible (see discussion in Subsection 2.3.1, Chapter 2, for more details). Then, one
can describe the system effectively by the 1D GPE we introduced in Eq. (6.1).

We consider a two-component BEC within the mean-field regime confined in an
elongated harmonic potential. The system can be described by two coupled GPEs3:

8ℏ
%#�(G, C)

%C
=

[
− ℏ2

2<�

%2

%G2 +
1
2<�$

2
GG

2 + 6�� |#�(G, C)|2 + 6��′ |#�′(G, C)|2
]
#�(G, C) ,

(6.5)
where the wavefunctions of each component, #�(G, C) (with � = 1, 2), are normalized to
1. The number of atoms in each component is #�, and 6��′ denote the inter- (��′) and
intracomponent (��) 1D coupling constants, respectively.

Assuming that the two components have the same mass < = <1 = <2, the 1D
coupling constants [see Eqs. (6.2) and (2.35)] are given by

6��′ = 2#�′
ℏ2

<

0��′

02
⊥
, (6.6)

where 0��′ are the B-wave scattering lengths that characterize the atom–atom interactions
within each component (011 and 022) and between components (012). We further assume
for conceptual clarity that the two components have the same atomnumber# = #1 = #2
and intracomponent interactions 011 = 022 = 0B , such that the intracomponent coupling
constants are also equal, 611 = 622 = 6.

6.1.1 Dimensionless Gross–Pitaevskii equations
One can write the coupled GPEs (6.5) in harmonic oscillator units [see Eq. (2.26) and its
derivation for more details]:

8
%#�

%C
=

[
−1

2
%2

%G2 +
1
2G

2 + 6 |#� |2 + 612 |#�′ |2
]
#� , (6.7)

where #�, G and C are now dimensionless4. We have used the longitudinal oscillator
length 0G = [ℏ/(<$G)]1/2 as the unit length, ℏ$G as the unit energy, and $−1

G as the unit
time. From now on, all quantities will be given in dimensionless units unless stated
otherwise. Then, the effective 1D coupling constants have units of ℏ2/(<0G), such that

6 = 2# $⊥
$G

0B

0G
and 612 = 2# $⊥

$G

012
0G

(6.8)

are now dimensionless.
Finally, we consider repulsive interactions, 6 > 0 and 612 > 0, such the mixture

is immiscible5 when 012 >
√
011022 = 0B (Pu and Bigelow, 1998; Timmermans, 1998).

Therefore, we will focus on the regime where 612 > 6 > 0.

3See Eq. (2.34) in Subsection 2.2.1 for a 3D version.
4We have kept the same notation for all the quantities as in the original GPEs (6.5) for simplicity, but

they are given in different units.
5See Subsection 2.2.1 for the miscibility condition (2.39) and discussion of the different regimes. For
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6.1.2 Initial state and imprinted dark soliton
In equilibrium conditions, a two-component BEC under the conditions we described
above phase separates. We choose to denote component 1 as the one located on the left
(!) side of the trap and component 2 as the component on the right (') side. Throughout
this chapter, we may label the two components as 1 and 2 or, alternatively, as ! and '.

The domain wall is initially situated at the center of the trap, G = 0. Both the ratio of
the interaction strengths 612/6 and the motion of a soliton influence the position and
shape of the domain wall, as we will discuss later. Although the mixture is immiscible,
a tiny fraction of atoms from component 1 inhabits the right side of the trap as well
(and equivalently for component 2). As we will see below, this small overlap between
components in the vicinity of the domain wall is essential to generate DB solitons
dynamically.

Imprinted dark soliton

We imprint a dark soliton at rest (6.3) in component 2 (') at G = G0. Then, one can
describe the initial state by the trial wavefunction (Pitaevskii and Stringari, 2016; Tsuzuki,
1971)

#1(G) = #1
(0)(G) and #2(G) = #2

(0)(G) tanh
(
G − G0√

2 �

)
, (6.9)

where #1
(0)(G) and #2

(0)(G) are the ground state wavefunctions of each component and
� = 1/(2�0)1/2 is the dimensionless healing length. The chemical potential �0 = 6=0 is
also dimensionless and corresponds to the chemical potential of a scalar (i.e., single-
component) and uniform condensate with density =0 = |#2

(0)(G0)|2.
We prepare the initial state numerically by evolving in imaginary time the ansatz (6.9).

To imprint the dark soliton at position G0, we first calculate the ground state of the
system via imaginary-time evolution for a given value of the intercomponent interaction
strength 612. As indicated in the trial wavefunction (6.9), we multiply the resulting
wavefunction of component 2 by a dark-soliton profile and let the system evolve again in
imaginary time until the calculation converges with a reasonable tolerance (Modugno
et al., 2003).

6.2 Generation of a dark–bright soliton

Let us fix fromnowon the dimensionless intracomponent coupling constant to 6 = 3×103

such that the repulsion between components is strong enough. This parameter could
be realized, for example, in a two-component BEC of # = 25000 87Rb atoms in each
component with an intracomponent B-wave scattering length 0B ' 100 00, where 00 is the
Bohr radius, and confined in an elongated harmonic trap of frequencies $G = 2� × 1.5

012 < −
√
011022 with attractive intercomponent interactions (612 < 0), on the other hand, the system

collapses in the mean-field regime but can sustain self-bound droplets if beyond mean-field effects are
taken into account (see Section 2.2).
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Figure 6.1: Evolution of the density profiles obtained by numerically solving the two
coupled GPEs (6.7). Parameters for each panel: 612/6 = 1.01 (left, top) and 612/6 = 2
(right, top), 612/6 = 3 (left, bottom) and 612/6 = 4 (right, bottom). The point-dashed
yellow line corresponds to the sinusoidal oscillation of a dark soliton in a scalar condensate,
which has a frequency of $0 = 1/

√
2 (Konotop and Pitaevskii, 2004; Pitaevskii and Stringari,

2016). The straight lines represent phonon trajectories, which travel at the speed of sound.
We have only highlighted in red those generated at the first collision with the domain
wall (see discussion in the main text). The dotted vertical line marks the time C = 4.2
considered in Fig. 6.2.

Hz and $⊥ = 2� × 150 Hz (Katsimiga et al., 2020). The phenomena explored in this
chapter will similarly occur as well for other parameter ranges as long as the mixture
remains in the immiscible regime and the trap is effectively quasi 1D.

In this section, with the aim of studying the dynamics of the soliton in different
scenarios, we perform numerical calculations of the two coupled GPEs (6.7) for different
values of the intercomponent coupling constant with 612/6 ∈ (1, 4], i.e., within the
immiscibility regime. We will begin by studying the first collision with the domain
wall (Subsection 6.2.1), when the soliton can either transmit of reflect, and describe the
trajectory of the soliton in terms of the intercomponent repulsion. Afterwards, we will
discuss the second collision with the domain wall (Subsection 6.2.2).

Without loss of generality, we start by imprinting the dark soliton at position G0 = 6
and letting it evolve freely as described by Eq. (6.7). Due to the harmonic confinement,
the density around G0 has a local gradient that induces an initial velocity to the dark
soliton. Then, the soliton follows the same trajectory of a dark soliton in a scalar
condensate as it approaches the domain wall (Kivshar and Yang, 1994; Konotop and
Pitaevskii, 2004); the effect of the second component will only be relevant once the
soliton encounters the domain wall. One can see this behavior in Fig. 6.1, which shows
the density profiles of each component as a function of time for different values of the
ratio 612/6. The evolution of the position of the density depletion (i.e., the center of the
soliton) defines the trajectory of the soliton and corresponds to the curved black line
with a piece-wise sinusoidal shape (see Fig. 6.1).
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Figure 6.2:Density profiles for different values of 612/6 at time C = 4.2, which corresponds
to the dotted vertical lines in Fig. 6.1. The solid green (purple) line represents the density
of the right (left) component. The dashed yellow line corresponds to the initial state
configuration of the right component with the dark soliton imprinted at G0 = 6. The inset
shows a close-up plot of the region close to the dark–bright soliton. The tiny density dip
at G ' −20 in the bottom panels indicates an emitted phonon.

6.2.1 First collision with the domain wall
Before encountering the domain wall, the motion of the soliton follows the harmonic
trajectory of a dark soliton in a single component. One can see this clearly in Fig. 6.1,
where we plot the trajectory obtained numerically and the horizontal line at G = 0
corresponds to the domain wall. The point-dashed yellow line represents the harmonic
trajectory of a dark soliton moving in a scalar, harmonically confined 1D BEC, which
oscillates with a dimensionless frequency $0 = 1/

√
2 (Konotop and Pitaevskii, 2004;

Pitaevskii and Stringari, 2016).
Once the dark soliton reaches the domain wall, one can find two different behaviors

depending on the ratio of the interaction strengths 612/6, as the top and bottom panels
of Fig. 6.1 show. These two distinct situations are, respectively, transmission (top
panels) and reflection (bottom panels). These two scenarios agree with those described
by Öhberg and Santos (2001a,b) and Zheng et al. (2019), which were obtained for fixed
values of the interaction strengths and for different initial positions (i.e., initial velocity)
of the dark soliton imprinted on the system. We will illustrate and discuss these two
different behaviors next.

Transmission

Figure 6.2 shows the density profiles of both components at C = 4.2, after the dark soliton
encounters the domain wall for the first time. The panels correspond to the same values
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of 612/6 we considered in Fig. 6.1. The dashed yellow line indicates the initial density
profile of the right component, with the dark soliton imprinted at position G0 = 6. In the
top panels of Fig. 6.2, the soliton is transferred from the right to the left component once
it reaches the domain wall. If 612/6 ' 1, the interface is smooth and the soliton transmits
to the other component with a mostly unaltered trajectory (see Fig. 6.1, top left panel).
However, if the intercomponent strength slightly increases, such that 1.5 . 612/6 . 2
(top right panel in Fig. 6.2), when the soliton is transmitted through the domain wall it
also drags some atoms from the right component and forms a DB soliton.

The number of atoms dragged by the dark soliton, which we may call the bright
component from now on, increases with the intercomponent strength 612/6. This can
be seen from the numerical results obtained by solving the system for different values
of 612/6. We will discuss this dependence in Section 6.3 (see also Fig. 6.5). The effective
mass of the moving soliton increases as it fills with atoms of the bright component.
Therefore, a DB soliton moves more slowly than a dark soliton, which results in a
reduction of the slope of the soliton trajectory (see Fig. 6.1, top panels).

Reflection

The domain wall becomes sharper and behaves as a hard wall when the intercomponent
repulsion increases further, i.e., 612/6 & 2.5. The dark soliton does not have enough
energy to be transmitted and, once it collides with the domain wall, it drags some
atoms of the left component through the domain wall and then it is reflected back to the
initial component as a DB soliton (see bottom panels of Fig. 6.2, which show the density
profiles of the reflected DB soliton). Although the two components have a very small
overlap in the domain wall due to the strongly repulsive intercomponent interaction,
the density dip of the reflected soliton behaves as an effective potential and drags some
atoms of the left component to the right component.

Dark–bright analytical solutions are available explicitly for 612 ≤ max(611, 622)
(Frantzeskakis, 2010; Yan et al., 2015). However, these DB solitons can be dynamically
generated outside this regime of parameters, as we have just seen. They are dynamically
generated due to the interaction of the dark soliton with the domain wall. Such DB
solitons have not been observed before for the range of interaction parameters considered
byÖhberg and Santos (2001a,b). Later, Zheng et al. (2019) showed that, for some values of
the interaction parameters, the dark soliton can drag some atoms of the other component,
although they did not analyze this fact further.

The initial position of the soliton G0 onlymodifies the values of 612/6 that characterize
the different dynamical behaviors; independently of the initial position of the soliton,
one finds the same dynamical regimes. For instance, considering G0 = 2 instead of
G0 = 6, the transition between the two regimes (transmission and reflection) takes place
at values of the intercomponent interaction strength 612/6 ' 1.14, which is smaller since
the soliton velocity (i.e., the initial position) is now lower.
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Phonon emission

Either if the soliton is transmitted or reflected, it emits phonons as a result of the
interaction with the domain wall. These excitations are known as phonons since they
travel at the speed of sound 2 = √6 =0 (Muñoz Mateo et al., 2015), and are indicated in
Fig. 6.1 as the tiny density perturbations (light-gray lines) that appear and propagate in
each component once the soliton first collides with the domain wall. The first phonon
trajectories are marked with dashed red lines. In the bottom panels of Fig. 6.2, the
density depletion that corresponds to the phonon excitation can be seen, in the density
profiles, close to the left boundary. Then, the phonon excitation is reflected back towards
the center of the condensate once it reaches the boundary of the system.

The gray lines in Fig. 6.1 correspond to excitations that propagate from left to right
(negative slope) and from right to left (positive slope). Note that the speed of the soliton
(indicated by the line slope) is slower than the speed of phonons (the speed of sound).
The emission of phonons leads to an acceleration of the soliton (Öhberg and Santos,
2001a,b) that is stronger when the soliton collides with a harder domain wall, as one can
see in Fig. 6.1 (see also Fig. 6.3) by comparing the cases for 612/6 = 3 and 4.

6.2.2 Second collision with the domain wall
The soliton may be transmitted or reflected when it reaches the interface for the first
time. Afterward, it moves towards the boundary of the system. The soliton slows down
as it gets closer to the boundary until it eventually stops, and then it travels back to the
domain wall. During this journey towards a second encounter with the interface, the
velocity of the soliton decreases again, following a harmonic motion (we will discuss
this oscillatory behavior with more detail in Section 6.3). The harmoniclike trajectories
shown in Fig. 6.1 clearly depict this behavior.

Let us now discuss the second collision with the domain wall. In Fig. 6.3, we show
the evolution of the center of the soliton G0(C) for different values of the intercomponent
interaction strength 612/6 and initial position G0 = 6. We plot with a solid red line the
trajectory of a dark soliton in a 1D scalar condensate confined in a harmonic potential
for reference. For values of the intercomponent interaction (612/6 = 1.01) close to the
Manakov limit, where the intra- and intercomponent interactions are equal, the dark
soliton transmits to the other component through the domain wall. As we discussed
before, the trajectory of the soliton after the first and second collision follows a harmonic
trajectory in both components with frequency $0 ' 1/

√
2. In this limiting case, the

domain wall slightly perturbs the trajectory of the transmitted dark soliton in the other
component, but otherwise its presence is negligible. We will thus refer to this case as
the unperturbed case from now on.

The dynamics of the soliton after the second collision with the domain wall follows,
in general, the same behavior as it did after the first collision. When the DB soliton
reaches the interface for the second time, its interaction with the domain wall leads to the
emission of phonons, and then the soliton is either transmitted or reflected. However,
in some particular cases, the perturbations generated in the domain wall considerably
affect the dynamics such that the soliton is transmitted instead of reflected as in the
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Figure 6.3: Evolution of the soliton center as a function of time for a dark soliton initially
imprinted at G0 = 6. The unlabeled solid red line corresponds to the trajectory of a dark
soliton in a scalar condensate confined in a 1D harmonic trap (unperturbed case).

first collision (or vice versa). For example, the trajectory for 612/6 = 4 in Fig. 6.3 shows
that the soliton is reflected after the first collision, while it is transferred to the other
component after the second collision. We have checked that one cannot explain this
behavior in terms of the critical velocity argument proposed by Öhberg and Santos
(2001a,b), which indicates that the density deformations that occur in the domain wall
may also play a crucial role in the dynamics after the second collision. We will discuss
this point with more detail in what follows.

Interaction with the domain wall

Figure 6.4 shows a close-up of the density profile in the vicinity of the domain wall
at different times, around C ' 7.5. We consider two similar values of the interaction
strength, 612/6 = 1.90 (yellow lines) and 612/6 = 1.91 (blue lines). The solid lines
indicate the left component and the dashed lines represent the right component. In that
figure, one can see that when the domain wall and the DB soliton interact, the domain
wall induces a back action into the soliton that alters its dynamics. In particular, the
soliton is reflected back to the right component for 612/6 = 1.90, while it is transferred
to the left component for 612/6 = 1.91. The first case, however, is an exception to the
behavior we observed in the range considered, 1.5 . 612/6 . 2. In addition, notice that
there is no appreciable emission of phonons in both cases.

Finally, we have observed that, under certain conditions, the domain wall may trap
the soliton for some time before it is either transmitted or reflected (a similar effect is
discussed by Öhberg and Santos, 2001b). This behavior suggests that the interaction of
the soliton with the domain wall deserves a more thorough analysis.
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Figure 6.4: The DB soliton travels from the left component towards the domain wall.
Snapshots of the density profile in the vicinity of the domain wall, for 612/6 = 1.90 (1.91)
plotted with yellow (blue) lines. Solid (dashed) lines indicate the left (right) component.
The snapshots correspond, respectively, to times C = 7.3, 7.5 and 7.6. The DB soliton is
reflected (transmitted) for 612/6 = 1.90 (1.91). Arrows indicate the direction in which
the dark soliton is moving. The domain wall is initially located at the center of the trap.
Notice, however, that the position of the domain wall sightly varies depending on the
position of the soliton. The density is given in arbitrary units.

6.3 Dynamics of the dark–bright soliton

In the previous section (Section 6.2), we observed that when the dark soliton reaches
the domain wall for 612/6 . 2, it is transmitted to the other component and forms a
DB soliton due to the interaction with the domain wall. The resulting DB soliton then
performs a harmonic oscillation in the left component until it goes back to the interface,
with which it interacts again and either transfers to the right component or, in some
particular cases, is reflected back to the left component.

In this section, we will focus on the scenario where the dark soliton is transmitted
after the first encounter with the domain wall, and we will investigate with more detail
the oscillatory behavior of the DB soliton. One can accurately fit the trajectory of the DB
soliton with a sinusoidal function; we show its characteristic frequency in Fig. 6.5.
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Figure 6.5:Oscillation frequency of the DB soliton transmitted to the left component as a
function of the intercomponent interaction strength 612/6 (red points). The oscillation
frequency is obtained from the numerical solution of the coupled GPEs (6.7). The
horizontal dashed line indicates as reference the result for the unperturbed case, which
oscillates at a frequency $0 = 1/

√
2 as a dark soliton in a scalar condensate does. The

dash-dotted line corresponds to the analytical prediction given by Eq. (6.12). The inset
shows the rescaled number of atoms #B in the bright soliton (blue points) as a function of
the intercomponent interaction strength 612/6. The red dashed line represents a fit of the
data of the form  (612/6)�, with  ' 3.8 × 10−3 and � ' 3.3.

6.3.1 Oscillation frequency

Close to the Manakov case (here 612/6 ' 1), the dark soliton is transmitted to the left
component unperturbed and oscillates as a dark soliton in a scalar condensate, with
a frequency $0 = 1/

√
2 (see horizontal line in Fig. 6.5). For an interaction strength

612/6 > 1.4, the frequency of the soliton starts to depart from this unperturbed result.
This signals the presence of a significant drag of atoms in the bright component, which
slows down the oscillation.

Semianalytical model

We recall here that these DB solitons are dynamically generated for a regime of parame-
ters, 612 > max(611, 622), inwhich explicit analytical solutions do not exist (Frantzeskakis,
2010). Then, to compare the numerical oscillation frequency with an analytical estimate,
we assume that the effect of the bright component can be treated as a perturbation of
the dark soliton frequency $0.

To construct our ansatz, we use the fact that, in the Manakov limit (612 = 6 = 1), the
frequency of the DB soliton is given by the following expression (Busch and Anglin,
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2001; Yan et al., 2015):

$2
M '

1
2

[
1 −

#B/6
4
√
� + (#B/46)2

]
, (6.10)

where #B is the rescaled number of atoms6 in the bright soliton,

#B =

∫
|#B(G)|2 3G , (6.11)

#B(G) is the density profile of the bright soliton (the total density is normalized to one
as before), and � is the chemical potential. The factor 1/6 that rescales the number of
atoms in the bright soliton comes from the fact that, in our formulation, the densities
are not rescaled by 611 = 6 as in the work by Yan et al. (2015).

Then, we make a continuation to 612/6 > 1 by assuming that the correction to $2
DB,

which depends on the intercomponent interactions, has to be proportional (to lowest
order) to 612:

$2
DB '

1
2

[
1 −

(612/6)#B

4
√
� + (#B/46)2

]
. (6.12)

Note that the number of dragged atoms #B also depends on 612.

Number of dragged atoms

One can approximate the behavior of #B(612) by fitting the bright-soliton density profile
to a function of the form (Busch and Anglin, 2001; Yan et al., 2015)

|#B(G)|2 =
�#B

2 sech2 [�(G − G0)] . (6.13)

The width of the bright soliton is denoted by � ' √�, and G0 is the position of the DB
soliton. This numerical fit starts to fail for 612/6 & 2, since for a large enough 612/6 the
bright component can no longer be treated as a perturbation. We have observed that,
once the DB soliton forms, both #B and � do not show any significant dependence on
time (until the soliton is eventually reabsorbed at the domain wall) and the DB soliton
propagates across the left region of the trap without losing its shape.

The inset in Fig. 6.5 shows the behaviour of the number of dragged atoms #B
as a function of the interaction strength 612/6. One can see in Fig. 6.5 that, for
612/6 & 1.4, atoms from the left component start to fill the core of the dark soliton in the
right component due to the interparticle repulsion. This produces a reduction of the
oscillation frequency of the soliton.

Combining Eq. (6.12) with the above results, we obtain the semianalytical expression
for the DB soliton frequency $DB, which we plot in Fig. 6.5 as a dashed line. For
1 ≤ 612 . 2.3, this simple ansatz accurately reproduces the oscillation frequency
obtained from the numerical simulation of the coupled GPEs (6.7).

6We refer to #B as rescaled because the wavefunction of each component #� is normalized to 1, not to
the total number of atoms.
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6.4 Summary of results

In this chapter, we have studied the transmission and reflection of a dark soliton through
the domain wall of a quasi-1D immiscible binary mixture. Depending on the interaction
strength, a dark–bright (DB) soliton is created when the initially imprinted dark soliton
moves across the domain wall. We remark that such DB solitons are dynamically
generated outside the regime of parameters where explicit analytical solutions exist,
which opens an interesting perspective for producing DB solitons in this new dynamical
regime, as it should be easily accessible in experiments with ultracold atoms (Katsimiga
et al., 2020; Lee et al., 2016). Once the dark soliton reaches the domain wall and forms a
DB soliton, the soliton follows a harmoniclike trajectory. The resulting DB soliton can
either be transferred or reflected when it collides the domain wall for a second time.

We have shown that one can obtain a semianalytical expression for the DB soliton
oscillation frequency by continuation for 612/6 & 1 of the Manakov case discussed
by Anderson et al. (2000) and Yan et al. (2015). To obtain this approximation, we have
assumed that the effect of the bright component can be treated as a perturbation to
the dark component. Finally, we have seen that the oscillation frequency of the DB
soliton that we obtain numerically by solving the GPE is in good agreement with the
predictions of this semianalytical model.

We will also investigate solitonic states in Chapter 8, where we consider a rotating
quasi-1D condensate in which the effective interactions come from the current density
(instead of the number density) and thus present chiral properties. Later, in Chapter 9,
we will extend this study to spinor mixtures with two coherently coupled components.



7
ANTIPARALLEL DIPOLAR MIXTURES AND SELF-BOUND
DROPLET CRYSTALS

Quantum droplets are self-bound states that emerge from the stabilizing effect of
quantum fluctuations against the mean-field collapse1. For droplets to arise, the system
needs to have competing interactions within the condensate such that the effective
mean-field contribution is attractive and small enough to compensate for the repulsion
due to quantum fluctuations. Systems with competing interactions are, for instance,
bosonic binary mixtures and condensates of dipolar atoms.

In systems with strong dipole–dipole interactions, besides quantum droplets, this
binding mechanism allows for the formation of crystals and supersolids. When the
system is confined along the polarization direction of the dipoles, the droplets can
self-assemble into arrays and, in some cases, form a supersolid, which presents both
superfluid properties and a crystalline structure given by the modulation of the density.
The dipolar interaction between such droplets is repulsive, so these crystals unravel in
the absence of external confinement. In this chapter we will explore how one can obtain
droplet crystals that are self-bound in antiparallel dipolar mixtures, where the dipoles
in one component are antiparallel to those of the other component.

Solid-state crystals, for instance, present different forms of attractive and repulsive
interactions between their components. The interplay between these forces binds the
crystal (Kittel, 2004). The cohesive or binding energy of the crystal is a finite energy that
results from the balance between these forces, and is defined as the energy that one
must add to the crystal to separate its constituents infinitely apart. When the system
is externally confined, crystals may still form even if they lack a genuine cohesion.
Trapped ions are a good example of this effect: the combination of repulsive Coulomb
interactions and the external trapping can lead to the formation of crystals (Thompson,
2015). But ion Coulomb crystals do not have a cohesive energy, and thus unravel in the
absence of confinement.

The same happens for crystals of droplets in scalar dipolar condensates (Böttcher
et al., 2021; Chomaz et al., 2022), as we already mentioned above. The quasi-cancellation

1We already introduced self-bound droplets in Chapters 2 and 3, but we will recall here the key points
as a reminder. For more details of droplets in nondipolar binary mixtures, see Section 2.2. Regarding
dipolar droplets, see Section 3.2; and see Subsection 3.2.3 for the particular case of droplet crystals.

111
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of contact and dipolar interactions counterbalances the repulsive effect of quantum
fluctuations, which results in self-bound droplets (Chomaz et al., 2016; Kadau et al., 2016;
Petrov, 2015; Schmitt et al., 2016). These droplets elongate along the dipole direction due
to the anisotropy of the dipole–dipole interactions. If the system is confined along the
polarization direction (the axial direction), the droplet minimizes its energy by breaking
into multiple smaller droplets. If the system is also confined in the plane perpendicular
to the dipole direction (the transversal directions), the resulting droplets arrange into a
crystal (Wenzel et al., 2017) that may present supersolid properties (Bland et al., 2022b;
Böttcher et al., 2019a; Chomaz et al., 2019; Guo et al., 2019; Natale et al., 2019; Norcia
et al., 2021; Tanzi et al., 2019a,b). However, these droplets repel each other, as in the
case of ion Coulomb crystals. Therefore, the droplet crystal has no genuine cohesive
energy (and neither does any other possible density pattern, see for instance Hertkorn
et al., 2021b; Poli et al., 2021; Zhang et al., 2019, 2021), and the transversal trap is crucial
to keep it bound.

Dipolar binary mixtures have been recently observed in experiments (Durastante
et al., 2020; Politi et al., 2022; Trautmann et al., 2018). Due to the competition between
intra- and intercomponent contact and dipolar interactions, dipolar mixtures present
richer physics than their nondipolar counterparts, such as immiscible droplets (Bisset
et al., 2021; Lee et al., 2022; Smith et al., 2021), doping-induced droplet nucleation (Politi
et al., 2022; Scheiermann et al., 2023), two-fluid supersolidity (Scheiermann et al., 2023),
and the formation of alternating-domain supersolids (Bland et al., 2022a; Kirkby et al.,
2023; Li et al., 2022). If the dipoles of the two components are antiparallel, the inter- and
intracomponent interactions have opposite sign (Bland et al., 2022a), as we will discuss
later.

Our motivation in this chapter is to study the formation of crystals in an antiparallel
dipolar mixture (ADM). In the absence of any confinement, an ADMmay form an immis-
cible three-dimensionally self-bound mixture, as in the case of parallel mixtures (Bisset
et al., 2021; Smith et al., 2021). However, the resulting configurations present a different
topology than in the case of parallel mixtures; for instance, one of the components
(i.e., the least dipolar one) may eventually form a ring around a droplet of the other
component. As we mentioned before, a confinement along the polarization direction
results in the formation of crystals. As opposed to the cases of single-component
dipolar condensates and binary mixtures with parallel dipoles, the crystals that an
ADM can form have a genuine cohesive energy. Then, these crystals remain self-bound
in the absence of transversal confinement due to the mutual attraction between the
components. This situation is similar to what occurs in ionic solid-state crystals: ions of
opposite charge arrange in an intertwined crystalline structure and are held together
by their mutual electrostatic interaction (Kittel, 2004). Self-bound ADMs, however, are
not the result of two intertwined arrays of droplets. Here we will explore two possible
configurations. In symmetric ADMs, where the intracomponent interactions strengths
are similar, the system forms self-bound stripe/labyrinthic density patterns. If the ADM
is sufficiently asymmetric instead, one of the components (i.e. the more dipolar one)
forms a incoherent crystal of droplets that has an approximate triangular structure,
while the second component (the least dipolar one) remains superfluid and fills in the
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interstitials of the crystal2.
The structure of the chapter is as follows. We introduce dipolar binary mixtures and

the corresponding equations with a beyond mean-field correction in Section 7.1. Then,
in Section 7.2 we particularize the system to the antiparallel dipolar configuration and
its three-dimensionally self-bound solutions. Section 7.3 is devoted to the formation
of self-bound droplet crystals in the presence of a confinement along the polarization
direction, and we also discuss the interstitial superfluid and the possibility of observing
crystal sublimation. In Section 7.4, we study the effect of an asymmetry in the contact
interactions and explore the formation of self-bound stripe and labyrinthic phases.
Finally, Section 7.5 gathers a summary of the conclusions and main results presented
throughout the chapter.

7.1 Binary mixtures of dipolar atoms

A dipolar binary mixture can be described, as we saw in previous chapters, by two
coupled Gross–Pitaevskii equations that include each a dipolar term that is nonlocal and
long-range3. To account for the effect of quantum fluctuations, one can add a beyond
mean-field correction to the equation.

7.1.1 Coupled Gross–Pitaevskii equations with LHY correction
The physics of the mixture is well captured by the following coupled extended GPEs (Bis-
set et al., 2021; Smith et al., 2021):

8ℏ
%#�(r, C)

%C
=

[
− ℏ

2∇2

2< ++ext(r) +
∑
�′
6��′ |#�′(r, C)|2 + �(�)LHY[=1,2(r, C)]

+
∑
�′

∫
3r′* (��

′)
dd (r − r′) |#�′(r′, C)|2

]
#�(r, C) , (7.1)

where � = 1, 2 labels the components, +ext(r) is a generic external potential4, and we
have considered equal masses5 for the atoms, <1 ≈ <2 ≈ <. As usual, #�(r, C) is the
condensate wavefunction of component � and =� = |#� |2 its density. The atoms may be
confined along the I direction by a harmonic potential

+ext(r) =
1
2<$2

II
2 (7.2)

2This situation resembles, to some extent, the case of superfluid helium in porous media (Reppy, 1992)
3See Eq. (2.34) for a nondipolar binarymixture and Eq. (3.42) for a single-component dipolar condensate

with a beyond mean-field correction
4We will not need any external confinement to study the ground state configurations of the mixture in

Section 7.2, since the mixture is self-bound, but it will be useful later for a more general case of a system
confined along the polarization direction (Sections 7.3 and 7.4).

5This assumption is valid for most available dipolar mixtures, since they are composed either of
isotopes of the same atom or by different species, in which case the species that are commonly used in
dipolar experiments (erbium and dysprosium) have very similar masses. Then, one can consider the
mass of two components in a mixture to be equal to the average of both masses.
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that we consider to be time-independent. The atom–atom contact interactions are
characterized by the coupling constants 6��′ = 4�ℏ20��′/<, with 0��′ the B-wave
scattering lengths for the intra- (011 and 022) and intercomponent (012) interactions. The
dipole–dipole interaction is given by the potential (3.2)

*
(��′)
dd (r) = ����′

�0

4�
1 − 3 cos2 �

A3 , (7.3)

where �� is the dipole moment of component � and � is the angle between r and the
direction of the dipoles (the I-axis).

To account for the effect of quantum fluctuations and study droplets in dipolar
mixtures6, one can add the Lee–Huang–Yang (LHY) correction, which is given by

�(�)LHY[=1,2(r, C)] =
%ℰLHY
%=�

, (7.4)

where ℰLHY is the correction to the energy density,

ℰLHY =
8

15
√

2�

(
<

4�ℏ2

)3/2 ∫ �

0
3�: sin�:

∑
�=±

+
5/2
� (�:) . (7.5)

The function +±(�:) contains the dependence on all the interactions and the densities of
both components,

+±(�:) =
∑
�=1,2

���=� ±
√
(�11=1 − �22=2)2 + 4�2

12=1=2 , (7.6)

where �: is the angle between k and the I-axis and

���′ = 6��′ + 6(��
′)

dd (3 cos2 �: − 1) , (7.7)

with 6(��
′)

dd = �0����′/3. Note that the energy correction (7.5) reduces to that of a single
component (3.38) in the proper limit (i.e., when one of the densities is zero).

Finally, the total energy of the system is

�[#1,#2] = �MF +
∫

3r ℰLHY , (7.8)

where �MF is the usual mean-field energy.

6In dipolar binary mixtures, one can study the formation of droplets in the immiscible regime, which
is not available for nondipolar mixtures [see Subsection 2.2.2 in Chapter 2 for more details]. Here droplets
can remain self-bound due to the dipole–dipole interaction between the two components. In addition, a
self-bound droplet may bind a second component that would not be stable by itself. One last remarkable
difference with nondipolar mixtures is that the ratio between densities is no longer locked for dipolar
mixtures, so one can study the effect of the atom imbalance as well as fully balanced mixtures.
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Numerical considerations

The integrals in both �(�)LHY and ℰLHY depend on the densities of each component. For
numerical convenience, however, one can write them in terms of the total density
=(r, C) = =1(r, C) + =2(r, C) by introducing the dimensionless parameter � such that
=1 = �= and =2 = (1−�)=, with � ∈ [0, 1]. Then, the correction to the energy density is

ℰLHY =
8

15
√

2�

(
<

4�ℏ2

)3/2
=5/2(r, C) �ℰ[�(r)] , (7.9)

and the correction to the chemical potential, using Eq. (7.4), reads

�(�)LHY[=(r, C), �(r)] =
8

15
√

2�

(
<

4�ℏ2

)3/2 5
2=

3/2(r, C) �(�)� [�(r)] . (7.10)

With this transformation, one can factorize the total density such that the angular
integrals do no longer contain the density and depend only on the parameter �(r):

�ℰ =

∫
3�: sin�:

∑
�=±

[
+
(�)
� (�:)

]5/2
, (7.11)

and

�
(�)
� =

∫
3�: sin�:

∑
�=±

[
+
(�)
� (�:)

]3/2 ©«��� ±
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with

+
(�)
± (�:) = ��11 + (1 − �)�22 ±

√[
��11 − (1 − �)�22

]2 + 4�(1 − �)�2
12 . (7.13)

To simplify notation, we have introduced the function 5� for each component as

51 = ��
2
11−(1−�)�11�22+2(1−�)�2

12 and 52 = (1−�)�2
22−��11�22+2��2

12 . (7.14)

Since the value of � is bound between 0 and 1, one can calculate the integrals �ℰ (7.11)
and ��(�) (7.12) for the whole range of � once at the beginning of the simulation and
then interpolate for the appropriate value of � at any given density =(r, C).

In general, both integrals are complex. However, as with the single-component
dipolar case7, the imaginary part is very small for the strengths of the dipolar interactions
usually considered and thus one can neglect it.

7.2 Antiparallel dipolar mixtures

We consider a bosonic ADM with the dipoles oriented, respectively, parallel and
antiparallel to the I axis. As in nondipolar mixtures, the components may belong to

7For more details, see Chapter 3: Eq. (3.40), Fig. 3.4 and discussion in the main text.
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Figure 7.1: Dipole–dipole interactions in an antiparallel dipolar mixture (ADM). (a) In an
ADM, intracomponent interactions are attractive when the particles are head to tail, and
repulsive when they are side by side (see gray arrows); the situation is the opposite for
intercomponent interactions. (b) Dipole–dipole interaction*1→2

dd (r) = 2�0�2
1/(3�;2I ) *̃1→2

dd
that component 1 exerts on component 2 in the impurity limit (#1 � #2) as a function
of I and the radial coordinate �, given by �2 = G2 + H2. We have assumed for simplicity
a Gaussian droplet 4−I2/;2I 4−�

2/2;2 , and the dashed line qualitatively indicates the half-
width-at-half-maximum of the droplet. The intercomponent dipolar interaction results in
an energy minimum on the GH plane at a given radius �0 well outside the droplet (see
dark-blue region).

the same atomic species or to two different ones. To illustrate the possible physics of
the system, we consider a dysprosium mixture with magnetic dipoles �1 = 10�B and
�2 = −10�B, where �B is the Bohr magneton. The B-wave scattering lengths 011, 022 and
012 characterize the short-range interactions, as we mentioned in the previous section,
and we assume the three of them to be different.

Since the dipole moments of the components are antiparallel, the effect of the dipole–
dipole interaction between components is reversed: the intercomponent dipolar potential
is repulsive when the dipoles are in a head-to-tail configuration and attractive when
the dipoles are side by side [see Fig. 7.1(a)]. As a result, the dipolar interaction strongly
favors immiscibility, and one needs a very large and negative 012 to drive the system to
the miscible phase. From now on, we fix the strength of the contact intercomponent
interactions arbitrarily to 012 = 150 00 without loss of generality, since the actual value is
irrelevant as long as the intercomponent overlapping remains negligible. All the cases
we will consider in this chapter are thus fully immiscible mixtures.

We will see next how the intercomponent interactions allows for the formation of
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Figure 7.2: Three-dimensionally self-bound ADMs. Ground-state configuration as a
function of the total number of atoms # and of 022, for fixed 011 = 50 00 and #1,2 = #/2
(balanced mixture). Component 1 always forms a single elongated droplet, but component
2 can acquire different topologies. We characterize the different configurations using the
center-of-mass separation ΔACM between two components (color code). The insets show
the possible topologies, where we depict the column density (integrated over I) of each
component. Red indicates component 1, and blue component 2.

self-bound droplets, so we consider first the case of a fully unconfined mixture, i.e., with
$I = 0.

7.2.1 Three-dimensional self-binding
An immiscible ADM may present a three-dimensionally self-bound solution, as in
the case of parallel dipolar mixtures (Bisset et al., 2021; Smith et al., 2021), but of a
very different nature (see insets in Fig. 7.2). To understand the effect of the interaction
between components, let us consider the impurity limit (#1 � #2) and assume that
component 1 (the majority component) forms a self-bound droplet with density =1(r).
This droplet induces a dipolar potential on component 2 of the form

*1→2
dd (r) =

∫
3r′* (12)

dd (r − r′) =1(r′) . (7.15)

As one can see in Fig. 7.1(b), where we plot*1→2
dd (r) in terms of the axial and transversal

directions (I and �), this potential presents a marked minimum at a given radius �0 that
is well outside the droplet. Then, the atoms in component 2 (the minority component)
are trapped in this mexican-hat potential.
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The argument remains valid if the mixture is more balanced (#1 ∼ #2), but now
component 2 also exerts a similar potential *2→1

dd (r) on component 1. Therefore, the
two components confine each other mutually on the GH plane, which results in self-
bound ADMs. Figure 7.2 illustrates these self-bound solutions for balanced mixtures
(#1,2 = #/2) with the intracomponent interactions of component 1 fixed8 to 011 = 50 00
and different values of 022 and # . If the intracomponent interactions are asymmetric
and 011 < 022, component 1 remains a compact droplet while the second component
accommodates on the ring potential around the droplet. On the other hand, for low
enough 022 (such that 011 ∼ 022), the system minimizes the energy by also forming a
single droplet in component 2. Then, for growing # and 022, the droplet on component
2 spreads around the mexican-hat minimum until it eventually forms a ring-like
configuration. Note that, for intermediate values of 022, there is a second possible
topology where two droplets of component 2 sit at opposite sides of the ring potential.

7.3 Self-bound droplet crystals

In unconfined mixtures (i.e., when $I = 0), increasing the number of atoms # elongates
the droplet along the I direction. As occurs for scalar (single-component) dipolar
condensates (Böttcher et al., 2021), the presence of an axial trap along I ($I > 0)
frustrates the elongation of the droplet, which breaks into multiple droplets. These
droplets repel each other, but a transversal confinement on the GH plane allows for the
creation of 2D droplet crystals (Bland et al., 2022b; Norcia et al., 2021). However, the
resulting crystals have no intrinsic cohesion, and thus unravel in the absence of the
in-plane (GH) confinement.

This is not the case in an ADM. Droplet crystals of ADMs do no longer need any
transversal confinement since the intercomponent interaction is attractive and binds the
two components together. From now on, we will consider an ADM confined along the
polarization direction ($I > 0) but unconfined in the transversal plane ($G = $H = 0).
Then, in this section we will study how a 3D self-bound mixture may form a self-bound
crystal by increasing the axial frequency $I . We will denote all lengths in units of 0I ,
the harmonic oscillator length associated with $I , unless when stated otherwise.

7.3.1 Three-dimensionally self-bound ADMs to self-bound crystals
Figure 7.3(a) shows the phase diagram of ground-state configurations in terms of the
atomnumber# and axial frequency 5I = $I/(2�) for a balancedmixture#1 = #2 = #/2
with asymmetric intracomponent interactions, 011 = 50 00 and 022 = 70 00. Figures 7.3(b–
g) illustrate some particular cases. The three-dimensionaly self-bound solution, with a
single droplet in the first component9, remains valid for a low enough $I [see Fig. 7.3(b)].

8We consider this particular value to ensure that component 1 is “dipolar enough” such that it forms a
droplet regardless of the intracomponent interaction strength of component 2.

9Note that in the phase diagram [Fig. 7.3(a)] we only show the number of droplets of the first component.
Close to the untrapped case (in the region of #� = 1), however, the second component may either
form one or two droplets, or a ring-like structure around the droplet in the first component, as in the
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Figure 7.3: Self-bound droplet crystals. (a) Phase diagram as a function of the atom
number # and the axial trap frequency 5I = $I/(2�) for 011 = 50 00 and 022 = 70 00. The
colors correspond to configurations with a different number of droplets #� in component
1. Figures (b–g) show the column magnetization =1 − =2 (integrated along I) of the
lowest-energy solution for selected cases and are indicated with the corresponding symbol
in Fig. (a). Component 1 populates the red regions, and 2 the blue ones.
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Increasing the frequency, there is a critical $I that depends on the number of atoms# for
which the droplet splits into two. Each of the droplets induces a mexican-hat potential
on the second component, which gets trapped in the combined energy minimum. At
the same time, the second component glues the two droplets together and thus the
system forms a self-bound ADM [see Fig. 7.3(c)]. If one increases $I further [see
Fig. 7.3(d–g)], the number of droplets of the first component grows, and the resulting
crystal is surrounded by a bath of the second component. In scalar condensates, each
individual droplet requires a minimal number of atoms to remain self-bound; otherwise,
the kinetic energy unbinds it. This limits drastically the total number of droplets in a
scalar condensate. In an ADM, on the other hand, the droplets remain confined due to
the intercomponent interactions, such that droplets can have a much smaller number of
atoms (Bland et al., 2022a; Li et al., 2022). Then, as a result, the 2D crystals that form for
increasing $I contain much more droplets than scalar condensates with the same total
atom number would have.

Note that the distance between droplets is approximately 3 0I , where 0I is the
oscillator length associated with $I [see for instance Figs. 7.3(e–g)]. This feature
indicates that the roton instability may be the origin of these density modulations, as
we will revisit again later in Subsection 7.3.2.

Shot-to-shot variability

We obtained the numerical results presented in this chapter by evolving the extended
GPE (7.1) in imaginary time with initial random conditions10. For the droplet crystals
shown in Fig. 7.3, we found many possible solutions for each case all with very similar
energy and which only differ in the exact number of droplets and their arrangement.
Therefore, we expect a similar shot-to-shot variability in experiments, similarly to what
has been experimentally observed recently with 2D supersolids (Norcia et al., 2021).

We illustrate this large shot-to-shot variability of the exact number of droplets and
their arrangement in the droplet crystal in Fig. 7.4. We consider 011 = 50 00, 022 = 70 00,
$I/2� = 1200 Hz, and #1,2 = 5 × 104, and show different configurations obtained for
those parameters. All the states we obtain have an energy per particle �/# ' 0.22 ℏ$I
which differs by less than 1%, and their number of droplets ranges from 23 to 31.

Note that the arrangement of droplets is only approximately triangular. The actual
distribution is in general nonuniform and may significantly depart from a triangular
lattice. The structure of the interstitial component reflects this nonuniformity as well,
which shows in a distorted momentum distribution, as we will discuss in the next
subsection (7.3.2). Finally, we observed also a similar shot-to-shot variability in the
stripe/labyrinthic phase of Section 7.4.

three-dimensionaly self-bound solution (see Fig. 7.2).
10In particular, we start from Gaussian functions with a small amount of noise that is seeded randomly

such that it differs in each realization. To determine the ground-state configuration for a given set of
parameters, we perform several realizations and keep the state with the lowest energy.
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Figure 7.4: Shot-to-shot variability. Different droplet-crystal configurations obtained for
the same parameters: 011 = 50 00, 022 = 70 00, $I/2� = 1200 Hz, #1,2 = 5 × 104. As usual,
the plots show the column magnetization, with red indicating component 1 and blue
component 2.

7.3.2 Interstitial superfluid and crystal sublimation
The droplets of the crystal are mutually incoherent (i.e., their densities do not overlap),
but the component that fills the crystal interstitials may form a superfluid11. This
behavior resembles, to some extent, the case of helium in a porous medium; in the
system we consider, though, the droplets of the first component do not form a rigid
structure.

11One may expect this from the seminal work of Leggett (1970), which provides a clear correlation
between the superfluid fraction and the possibility that two points in the fluid may be linked without
crossing a region of zero density (i.e., that the fluid remains connected). In the mixture we are considering,
the bath (component 2) contains holes that are induced by the presence of the droplets (component 1),
but still remains connected. A thorough analysis of superfluidity of the interstitial component is beyond
the scope of this chapter, though one would expect the bath to present a large superfluid fraction.
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Figure 7.5: [(a,b)] Single-shot realizations of the column magnetization for 011 = 50 00,
022 = 70 00, #1,2 = 5×104 and $I/2� = 1300 Hz. Red regions are populated by component
1, and blue ones by component 2. [(c,d)] Corresponding momentum distribution for the
second component =̃2(:G , :H) in the :I = 0 plane, for the cases of (a) and (b), respectively.
(e) Momentum distribution =̃2(:G , :H) averaged over 10 different realizations.

Thedroplets of component 1 present an approximately triangular crystalline structure
that the interstitial component 2 inherits as well. Then, the resulting system forms a
peculiar form of supersolid. Time-of-flight measurements may reveal the coherence
and spatial density modulation of component 2. In Fig. 7.5 we show the momentum
distribution =̃2(:G , :H) in the :I = 0 plane.

The approximate triangular structure in real space [see Fig. 7.5(a)] translates to an
hexagonal pattern in momentum space [see the momentum distribution =̃2 in Fig. 7.5(c)].
However, there is a significant shot-dependent distortion in the momentum distribu-
tion due to the shot-to-shot variability of the exact arrangement of the droplets [see
Figs. 7.5(b,d)] that we mentioned in the previous subsection. Note also that, since the
system is not confined in the GH plane, the patterns spontaneously break the polar
symmetry and, as a result, experience a random rotation from shot to shot.

As one may expect from the theory of roton immiscibility (Bland et al., 2022a; Lee
et al., 2022; Wilson et al., 2012), the oscillator length 0I =

√
ℏ/<$I fixes the interdroplet

distance '. In particular, for the case of Fig. 7.3, the interdroplet distance is ' ' 3 0I
for all values of the atom number # and the axial frequency $I . One can also see this
periodicity in the average of the momentum distribution over many realizations, which
shows a ring at 1/' [see Fig. 7.5(e)].

Evaporation of the droplet crystal

For very large crystals, the interstitial component may evaporate partially or even totaly.
Figure 7.6 illustrates this effect: for scattering lengths12 011 = 50 00 and 022 = 70 00, and

12The particular values we consider for 011 and 022 are small and thus give a mean-field contribution
that is very negative, so the density has to be large to stabilize the system. This may result in peak densities
for the droplets that are too high to lie within the experimental possibilities because high densities reduce
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Figure 7.6: Energy per particle (blue circles) as a function of the axial trap frequency
5I = $I/2� for 011 = 50 00, 022 = 70 00 and #1,2 = 5 × 104. The dashed line corresponds
to the energy per particle (ℏ$I/2) for a mixture infinitely spread on the GH plane and
marks the border between self-bound and unbound solutions. The red squares are the
proportion of atoms of component 2 that evaporate, with #0 the initial number of atoms.

atom number #1,2 = 5 × 104, we plot the energy per particle of the system and the ratio
of particles lost by the second component as a function of the axial frequency.

For a fixed total number of atoms, the cohesive energy |�/# | decreases when the
droplet number grows (i.e., when the frequency grows). This occurs because increasing
the number of droplets reduces the density, which in turns lowers the intercomponent
dipolar attraction. Then, if the cohesive energy decreases enough, the self-bound
solution eventually unbinds.

At a critical frequency $cr
I , the crystal unbinds and both components evaporate;

for the case we show in Fig. 7.6, this frequency is $cr
I /2� ' 1400 Hz13. One can

approximately determine this critical value as the frequency for which the energy per
particle reaches ℏ$I/2, which corresponds to the energy of an infinitely spread solution

drastically the lifetime of the system due to three-body losses. However, one could avoid this problem by
considering larger values of the scattering length (for instance, 011 = 70 00 and 022 = 90 00), which results
in equivalent physics but with lower peak densities.

13This value corresponds to the case with #/2 = 5 × 104 but, in general, if the total number of atoms
# is large enough, then the threshold between the self-bound and unbound regimes does not change
significantly with # . The energy per particle is approximately independent of # ; what changes instead
is the number of droplets, since the peak density of the droplet is fixed for the interaction parameters.
Therefore, increasing # results in more droplets, but the critical frequency should be approximately the
same.
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on the GH plane14 (with axial confinement).
Note that when the frequency $I approaches the critical frequency $cr

I , the mutual
attraction between components may still be enough to maintain a stable crystal, but
insufficient to bind the whole interstitial superfluid. In this case, the second component
partially evaporates15, as we show in Fig. 7.6 (red line): the proportion of the interstitial
component that evaporates grows with increasing frequency, as one may expect. On the
opposite limit of very low frequencies, the cohesive energy is very large and there is no
evaporation.

The situation is a bit more nuanced in imbalanced mixtures (#1 ≠ #2). The mixture
is fully self-bound for low enough frequencies: neither component evaporates, so the
mixture keeps the original imbalance. In the vicinity of $cr

I , however, the component
with a higher population may lose particles16 and the mixture stabilizes into a smaller
imbalance. Above $cr

I , the whole system unbinds, as in balanced mixtures.

7.4 Self-bound stripe/labyrinthic patterns

Thus far, we have considered a mixture with significantly asymmetric intracomponent
interactions. However, the mixture arranges in a different form of self-bound pattern
when the interactions are almost symmetric (011 ' 022).

In this section, we will begin by considering the case of strictly symmetric mix-
tures (Subsection 7.4.1) and then study more generally the effect of the asymmetry in
the possible ground-state configurations of the system (Subsection 7.4.2).

7.4.1 Symmetric mixtures
When the interactions are symmetric17 (011 = 022), the mixture forms stripes18 in both
components that are incoherent19. Figure 7.7 shows three selected cases of the scattering

14We do not find well defined self-bound solutions in our simulations beyond that value. However, one
can still find numerically self-bound solutions above the critical frequency due to finite size effects. This
happens because, for a finite-size box, the energy of the homogeneous solution may be much larger than
ℏ$I/2.

15To take into account this partial evaporation of the crystal, we add absorbing boundary conditions
in our imaginary-time simulations. We fix a radius �2 on the GH plane such that the crystal lies well
within a circle of radius � < �2 . Then, we consider as evaporated all particles that reach � > �2 during
the imaginary-time evolution. In the unbound regime, the whole mixture eventually leaves (in imaginary
time) this region � < �2 .

16We have seen, for instance, that in the case when #1 > #2, it may be the first component (the droplet
crystal) that evaporates partially until the imbalance is small enough to sustain a self-bound mixture.

17Note that 011 = 022 when one considers a mixture of two maximally stretched magnetic states of the
same atomic species.

18Actually, the system forms incoherent patterns when all the interactions, including the dipole–dipole
interactions, are identical.

19We recall here that, while the droplets of the crystals we previously considered are incoherent as well
(there is no overlap between them), the interstitial component is superfluid (and thus coherent). This is
not the case in self-bound stripes.
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Figure 7.7: Self-bound stripe phase in a symmetric mixture (011 = 022) for #1,2 = 5 × 104

(balanced mixture) and axial frequency $I/2� = 180 Hz. As in previous figures, we
plot the column magnetization (integrated along I) such that the red and blue regions
correspond to component 1 and 2, respectively. For these low frequencies, the mixture
shows a well-defined stripe phase.

lengths 011 = 022 for a balanced mixture with #1,2 = 5 × 104 atoms for each component
and axial confinement with frequency $I/2� = 180 Hz.

For very small values of the scattering length and when the dipolar interactions are
dominant, the formation of droplets is more favorable for the system (see Fig. 7.7, left
panel). Increasing the scattering length (and thus reducing the relative strength of the
dipolar interactions) favors the formation of stripes instead. Therefore, the system will
form more stripes the larger the scattering lengths are (see Fig. 7.7, central and right
panels).

The axial frequency also affects the pattern in which the stripes arrange. In the case
of droplet crystals (see Section 7.3), low frequencies result in well-defined crystals with
a given number of droplets that depends on the frequency and the number of atoms.
For large frequencies, on the other hand, we found a huge variability in the possible
configurations that increases further with the axial confinement. This also happens for
symmetric mixtures: for low frequencies, the stripes are well defined (see Fig. 7.7), but
large frequencies will result in more complex configurations, as we will discuss in the
next subsection.

7.4.2 Self-bound droplet crystals to self-bound stripes
To discuss with more detail the effect of the asymmetry in the interactions, we show
in Fig. 7.8(a) the phase diagram in terms of the scattering lengths, 011 and 022, for a
balanced mixture with #1,2 = 5 × 104 and an axial frequency $I/2� = 1200 Hz that is
much larger than the one we considered previously.

For a large enough asymmetry |011 − 022 |, we obtain the droplet crystals from
Section 7.3 [see Fig. 7.8(a), inset with the yellow square]. As we mentioned before,
the interstitial component of these crystals partially evaporates in the vicinity of the
unbinding threshold. When the interactions are similar (011 ' 022), in contrast, the
system arranges in a labyrinthic phase that also has a large shot-to-shot variability. In
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Figure 7.8: Droplet crystals and stripe/labyrinthic phases for #1,2 = 5 × 104. (a) Phase
diagram for$I/2� = 1200Hz. We find two different self-bound solutions: a droplet crystal
(D-CRYSTAL), illustrated in the inset for 011 = 50 00 and 022 = 70 00 (yellow square), and a
stripe/labyrinthic (STR-LAB) phase, illustrated in the inset for 011 = 55 00 and 022 = 60 00
(green circle). (b) Transition from droplet crystal to stripe phase for $I/2� = 180 Hz, with
the scattering lengths indicated in the labels. The red and blue regions, as before, are
populated respectively by components 1 and 2.

this phase, the stripes present different orientations [see Fig. 7.8(a), inset with the green
circle].

The phase diagram is similar for lower frequencies but, in this case, the ground-state
configuration presents a well-defined stripe crystal, as we discussed in the previous
subsection. In Fig. 7.8(b), we show selected cases in the vicinity of the droplet-crystal–
stripe transition for a small frequency $I/2� = 180 Hz (the same as in Fig. 7.7). These
cases illustrate how the ground-state configuration may range from a droplet crystal
(for markedly asymmetric mixtures) to a stripe crystal (for symmetric mixtures) with
intermediate situations. In addition, independently of how strong the axial confinement
is, both components form mutually incoherent domains in the labyrinthic/stripe phase.

Finally, the effect of an imbalance in the number of atoms is similar to what we
observed in droplet crystals. Starting fromamixturewith#1 ≠ #2, the system eventually
stabilizes into a mixture with almost no imbalance (#1 ∼ #2) after some evaporation.
We observed in our calculations that this effect is more pronounced for high frequencies.
For lower frequencies, as in the case of droplet crystals, unbalanced mixtures may be
stable as long as they are well below the unbinding threshold.
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7.5 Summary of results

In this chapter, we have studied antiparallel dipolar mixtures and how they can form
self-bound crystals20 when confined along the polarization direction. These crystals
differ from those of parallel mixtures in that they have a genuine cohesive energy and
thus remain self-bound in the absence of a transversal trap. The mutual confinement
between components comes from the intercomponent interactions, which are attractive.
As a result, the system can form incoherent stripe/labyrinthic crystals in mixtures with
symmetric intracomponent interactions, and self-bound droplet crystals in asymmetric
mixtures. In the last case, one of the components forms an array of incoherent droplets
that arranges in an approximately triangular structure, while the other component
remains superfluid and fills in the interstitials. Thus, the whole mixture forms a peculiar
form of supersolid that could be probed using time-of-flight measurements. We have
considered the particular case of a dysprosium mixture, but the results presented in
this chapter could be extended to other antiparallel (either magnetic or electric) dipolar
mixtures including, for instance, mixtures of polar molecules.

Creating such self-bound dipolar crystals opens new avenues for future studies. For
instance, analyzing the character of lattice excitations, which may remain self-bound or
result in phonon evaporation21; proving the superfluidity of the interstitial superfluid
by, for example, vortex formation; or exploring, in general, the dynamics of self-bound
crystals.

20One could address antiparallel dipolar mixtures experimentally in a dysprosium gas, for example.
For that, one should first create a dipolar condensate in the magnetic state |< = −8〉, and then transfer
part of the atoms to the |< = 8〉 state using, for instance, optical pumping, Raman or STIRAP techniques.
Finally, after some time, one would remove the transversal trapping to prove the self-bound nature of the
mixture.

21Similar to the self-evaporation observed in the case of nondipolar mixtures (Petrov, 2015).





8
CHIRAL STATES INROTATINGBOSE–EINSTEIN CONDEN-
SATES WITH CURRENT-DENSITY INTERACTIONS

The chiral theory proposed by Aglietti et al. (1996) describes a system with effective
current-density interactions, as we explored in Subsection 4.2 (Chapter 4). These
interactions have chiral properties and can emerge from a gauge potential such as
A(G, C) = − (ℏ�/2) =(G, C) (4.41), which depends linearly on the number density =(G, C)
with a strength �. The theory has been experimentally realized in ultracold atoms in the
last years (Clark et al., 2018; Frölian et al., 2022; Görg et al., 2019; Yao et al., 2022) using
light-induced density-dependent gauge potentials (Chisholm et al., 2022; Dalibard et al.,
2011; Edmonds et al., 2013a; Goldman et al., 2014).

One can map this theory into a 1D Gross–Pitaevskii-like equation where the nonlin-
earity comes from the number density, as usual, but also from the current density �(G, C).
The effective GPE that describes the system is

8ℏ
%#

%C
=
?̂2

2< # +
(
6= + ℏ��

)
# , (8.1)

where 6 is the coupling constant of themean-field contact interactions and� characterizes
the strength of the current-density interactions. We derived this equation in detail in
Chapter 4 [see Eq. (4.50) and Section 4.2] for a system where, in general, both current-
density and contact interactions can be present. In this chapter, we will consider the
theory as originally proposed (Aglietti et al., 1996; Jackiw, 1997), with the current-
density term in the interactions replacing the number-density term. The effective contact
interactions may not be negligible in realistic settings, but here we will assume 6 = 0 to
isolate the effect of the current-density interactions. We will use as a reference the case
with only contact interactions (i.e., 6 ≠ 0 and � = 0) to discuss the results presented in
this chapter as well as in Chapter 9, and we will refer to it as the nonchiral case from now
on.

The chiral properties of Eq. (8.1) can be observed in current-carrying states (Edmonds
et al., 2013a, 2015; Xu et al., 2023) and, more particularly, in chiral solitons (Aglietti
et al., 1996; Bhat et al., 2021; Dingwall and Öhberg, 2019; Dingwall et al., 2018; Gao
et al., 2022; Griguolo and Seminara, 1998; Jia et al., 2022b), as already discussed in
Chapter 4. Setting 6 = 0, the equation supports dark-soliton solutions for ℏ�� > 0 and
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bright-soliton solutions for ℏ�� < 0. These solitons can be analytically described by
means of hyperbolic functions [see, for instance, Eqs. (6.3) and (6.4) in Chapters 2 and 6],
with the proper normalization.

We will consider a system with periodic boundary conditions and under rotation,
i.e., a quasi-1D gas trapped in a ring potential that rotates around its symmetry axis
at a frequency Ω. BECs confined in ring geometries present persistent currents (i.e.,
quantized vortices) when rotating as a result of their superfluid character. The aim of
this chapter is to explore how these currents become chiral when the nonlinearity of
the system comes from a density-dependent gauge potential (so that the interactions
depend on the current-density) and which types of stationary solutions these systems
may support.

Kanamoto et al. (2009) presented a detailed study of the families of solutions and their
dynamical stability for the nonchiral case. In particular, they study how the different
branches of stationary states (i.e., plane waves and solitons) connect when varying the
rotation frequency, both for a fixed attractive and repulsive contact-interaction strength.
The resulting diagrams of energy as a function of rotation for a given interaction strength
are symmetric with respect to the rotation frequencyΩ as a result of the symmetry with
respect to Galilean transformations. However, this is not the case in a chiral condensate.

In the presence of current-density interactions, the Galilean symmetry is broken
and thus the strength and nature of the interactions is determined by the modulus and
sign of the rotation rate Ω: clockwise or counterclockwise rotations are not equivalent,
and increasing rotation rates translate into increasing interaction strengths. As a result,
the energy diagrams are no longer symmetric with Ω and unexpected trajectories
appear in the dispersion relations. The two characters of the interactions (attractive
and repulsive) will then appear in the same diagram due to the chiral properties of the
system: the interactions will be attractive for negative rotation rates, and repulsive for
positive rotation rates. Therefore, one can already anticipate that, in such a situation,
the nonrotating case (Ω = 0) becomes a singular point where the effective interactions
change sign due to the chiral nature of the system.

In this chapter, we will focus on the general solutions to the equation of motion in a
ring geometry and generalize what has been done for the nonchiral case (Kanamoto
et al., 2009) to a system with current-density interactions. The differences between
the chiral and nonchiral cases are observable in the density profiles as well as in the
trajectories of the stationary states. In general, soliton-like branches connect with plane
waves for varying rotation rates. However, for negative rotation frequencies above
(in modulus) a velocity threshold, some bright-soliton families may detach from the
expected path and follow instead the dispersion of a free particle. We will analyze the
stability of these stationary states for a particular case both by linearizing the GPE as
well as by performing a nonlinear time evolution.

The chapter is structured in four sections. In Section 8.1, we introduce the equations
of motion and conserved quantities in a ring geometry that describe the system for a
ring geometry. We also discuss plane-wave solutions and particular solitonic states. In
Section 8.2, we derive more general solutions to the equations of motion that allow us
to connect different stationary states. In Section 8.3, we consider a particular case and
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analyze the different families of solutions available, the parameters for their existence
and their dynamical stability. Finally, in Section 8.4, we summarize all the results
presented throughout the chapter.

8.1 Chiral condensates in a ring geometry

In this section, we present the theoretical model that describes the system1. We first intro-
duce the equation of motion of the system and the conserved energy, as well as discuss
the ring units and other particularities of this geometry (Subsection 8.1.1). Afterwards,
we explore the simplest sationary states that the system supports (Subsection 8.1.2) to
prepare the ground for the study of more general stationary states in Section 8.2.

8.1.1 Gross–Pitaevskii equation in the rotating frame
Consider a quasi-1D ring of radius' (i.e., a 1D systemwithperiodic boundary conditions)
rotating at an angular frequency Ω around its perpendicular axis. The generalized 1D
chiral GPE (8.1) translates to the rotating frame as (4.64)

8ℏ
%#

%C
=

(
Π̂2

2< + ℏ��
)
# , (8.2)

where < is the mass of the atoms and #(G, C) is the condensate wavefunction, with
=(G, C) = |#(G, C)|2 its (number) density. We recall that the momentum operator in the
rotating frame is defined as Π̂ = ?̂ − <Ω' (4.63), where ?̂ is the canonical momentum
operator.

The current-density interactions have a (dimensionless) strength �, and depend on
the current density �(G, C)measured in the laboratory frame (4.47),

� =
ℏ

2<8

(
#∗

%#

%G
− #

%#∗

%G

)
. (8.3)

From now on, we set � > 0 for simplicity and consider both positive and negative
rotation rates.

The current density can be rewritten in terms of the canonical momentum ?̂ as
� = [#∗?̂# + (#∗?̂#)∗]/(2<). Then, the average canonical momentum 〈?̂〉 is defined as

〈?̂〉 =
∮

#∗?̂# 3G = <

∮
� 3G . (8.4)

The number density is related to the current density (8.3) by means of the continuity
equation (4.48),

%=

%C
+ %J

%G
= 0 , (8.5)

1For more details on the derivation of the equation of motion and conserved quantities, see Subsec-
tion 4.2.2 in Chapter 4.
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where J = � − =Ω' is the current density in the rotating frame: we will naturally
obtain this expression from the usual 1D continuity equation when looking for general
solutions in Section 8.2.

The wavefunction is normalized to the number of atoms # in the condensate,
# =

∮
3G |# |2, and the average number density is =0 = #/(2�'). We also introduce the

wavenumber associated with rotation,

:Ω =
< |Ω|'
ℏ

, (8.6)

for notational convenience.
To rewrite the equations of motion and physical quantities that describe the system

in dimensionless units, one refers to the characteristic scales of the system. Due to the
absence of external trapping and the periodic boundary conditions we are considering,
a natural choice of unit length is the ring radius ', such that the unit energy is
ℏ2/(<'2). Then, we can introduce the dimensionless quantity =̃ = =0 ' for the density
and Ω̃ = Ω<'2/ℏ for the angular rotation frequency.

Conserved energy

From the chiral GPE (8.2) one can identify the nonlinear Hamiltonian operator that
effectively describes the system in the rotating frame [see Eq. (4.62)],

ℋ =
Π̂2

2< + ℏ�� , (8.7)

and thus 8ℏ %C# = ℋ# gives the evolution of the system. The expectation value of the
first term ofℋ (8.7) gives the conserved energy (4.65),

� =
1

2<

∮
#∗Π̂2# 3G . (8.8)

As we discussed in Chapter 4, the conserved energy � (8.8) does not depend on the
current-density interactions (Aglietti et al., 1996; Jia et al., 2022b).

Constraint of the ring geometry

Before discussing the stationary states of the system, let us remark an important
consequence of the periodic boundary conditions on the elimination of the density-
dependent gauge potential.

In open geometries, the chiral model can be mapped into a theory with a density-
dependent gauge field such asA(G, C) = −(ℏ�/2) =(G, C). However, as we anticipated in
Chapter 4 (see Subsection 4.2.2 and discussion therein), the ring geometry may frustrate
the mapping between the density-dependent gauge equation into the GPE with chiral
interactions. Since the density has a single value in both theories and the density profile
has to be the same, the periodic boundary conditions impose a 2�; phase jump when
winding around the ring (; is an integer).
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This constraint affects the Jordan–Wigner-like transformation (4.46) that one performs
to eliminate the gauge from the equation of motion,

#(G, C) = !(G, C) exp
[
8
�
2

∫ G

|!(H, C)|2 3H
]
, (8.9)

where G is now bounded as G ∈ [0, 2�']. The wavefunction for the current-density
interaction theory (i.e., the transformed wavefunction) is #(G, C), with phase �(G, C) =
arg[#(G, C)], and the wavefunction for the gauge-dependent theory (i.e., the nontrans-
formed wavefunction) is !(G, C), with phase '(G, C) = arg[!(G, C)]. Then, using Eq. (8.9),
the phase of the transformed wavefunction can be written as

�(G, C) = '(G, C) + �
2

∫ G

|!(H, C)|2 3H , (8.10)

and the phase difference for a given time C when winding around the ring, Δ� =

�(2�') − �(0), is given by

Δ� = Δ' + �
2

∮
|!(H)|2 3H = Δ' + �#

2 , (8.11)

with Δ' = '(2�') − '(0). Since the periodic boundary conditions impose that both
Δ� = 2�; and Δ' = 2�;′, where ; and ;′ are integers, �#/2 has to jump in integer
multiples of 2� as well. Thus, the mapping between theories is only allowed for
quantized values of the total number of particles,

# =
4�
�
9 , (8.12)

where 9 is an integer.
This feature of the ring geometry will be particularly relevant when comparing

results obtained for each theory, since the mapping between the two theories exists only
when the quantization condition (8.12) is satisfied.

8.1.2 Stationary states

The stationary states of the system#(G, C) = )(G) exp(−8�C/ℏ) fulfill the time-independent
equation

ℋ ) = � ), (8.13)

where � is the energy eigenvalue of the Hamiltonian operatorℋ (8.7). Note that this
eigenenergy is not the conserved energy of the system (8.8). From the corresponding
definitions, one can see that the energy eigenvalue � and the conserved energy � are
related by

� =
�

#
+ ℏ� 〈�〉

#
, (8.14)

where 〈�(G, C)〉 =
∮
3G �(G, C) |)(G, C)|2 is the expectation value of the current (8.3).
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Plane-wave solutions

Due to the translational invariance of the system, the time-independent equation (8.2)
admits plane-wave solutions

#@(G, C) =
√
=0 4

8@G 4−8�@ C/ℏ , (8.15)

where @ is the wavenumber, which is quantized and, in dimensionless units, takes
integer values (@' = 0,±1,±2, . . .). The current density (8.3) is constant,

�@ =
ℏ

<
@=0 , (8.16)

such that 〈�@〉 = �@ # . Using that Π̂2 #@ = (ℏ@ − <Ω')2 #@ and substituting the current
density �@ from Eq. (8.16), the energy eigenvalue �@ (8.14) is

�@ =
(ℏ@ − <Ω')2

2< +
ℏ2@�=0

<
. (8.17)

Comparing with the noninteracting system (� = 0), the energy eigenvalue for plane
waves �@ (8.17) has an energy shift of |ℏ2@�=0/< | that increases with the average number
density =0.

Quasi-linear states for the nonrotating case

For the particular case of Ω = 0, the equation of motion (8.2) reduces to

8ℏ
%#

%C
=

(
?̂2

2< + ℏ��
)
# , (8.18)

which becomes linear for a vanishing current, � = 0. Other than plane waves, which
have a zero current for @ = 0, the system admits the same solutions as the Schrödinger
equation, which are standing waves such as sin(@G) and cos(@G). Therefore, linear
superpositions of these states with real coefficients are a solution of the equation (8.18)
as well. In addition, complex superpositions with a general nonvanishing current �, of
the form cos(@G) + 8 sin(@G), are also a solution at Ω = 0. One can write these complex
superpositions as

#@(G, C) =
1
2
√
=

[
(1 − )4−8@G + (1 + )4 8@G

]
4−8�@ C/ℏ , (8.19)

where  is a real number. The current (8.3) of these quasi-linear states (8.19) is

�@ =
ℏ

<
@= , (8.20)

and the eigenenergy �@ (8.14) is

�@ =
(ℏ@)2
2< + 

ℏ2@�=
<

. (8.21)
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Asymptotic soliton solutions

Besides plane waves and their superpositions, one can also find in the literature (Aglietti
et al., 1996) dark- and bright-soliton solutions described in terms of hyperbolic functions
(see Chapters 2, 4 and 6). We denote these solutions by #D and #B, respectively, and
rewrite them here for a ring rotating with angular velocity Ω as approximate stationary
states when their characteristic lengths, �D and �B, are small compared to the radius.
Thus, these asymptotic solutions are only exact for infinite rings, i.e., �D,B � �'.

For positive rotation rates (Ω > 0), the equation of motion (8.2) admits dark-soliton
solutions:

#D(G, C) ≈
√

#

2(�' − �D)
tanh

(
G

�D

)
4 8:ΩG 4−8�DC/ℏ . (8.22)

The normalizing prefactor can be obtained by normalization of #D to the number of
atoms # , and assuming that �D � �' such that tanh(�'/�D) ≈ 1. We recall that
:Ω = < |Ω|'/ℏ (8.6) is the wavenumber related to rotation. Similarly, bright solitons are
solution of the equation for negative velocities (Ω < 0) instead:

#B(G, C) ≈
√

#

2�B
sech

(
G

�B

)
4−8:ΩG 4−8�BC/ℏ . (8.23)

The characteristic lengths of the solitons are

�D =
�B
2

[√
1 + 4�'

�B
− 1

]
and �B =

2
�#:Ω

, (8.24)

and the energy eigenvalues, assuming �D,B � �', are

�D ≈
ℏ2

<�2
D
=

ℏ�'
�' − �D

�Ω'=0 =
�#
2

ℏΩ'

�' − �D
, (8.25)

and

�B ≈ −
ℏ2

2<�2
B
= −<(�')

2

2 (�Ω'=0)2 = −
(
�#
2

)2
<(Ω')2

2 . (8.26)

Note that the energy eigenvalues show a different scaling: �D (8.25) varies linearly with
�Ω'=0, while �B (8.26) scales quadratically with �Ω'=0.

Dark and bright solitons differ as well in their domains of existence. In the regime
we are considering, the bright soliton exists for arbitrary values of Ω (with Ω < 0), as
occurs for a classical particle. However, the dark soliton (with Ω > 0) in the ring has to
fulfill a particular boundary condition: dark solitons are characterized by a �-phase
jump across their profile. Therefore, the background constant velocity Ω' has to cancel
this �-phase jump,

<Ω'

ℏ
2�' = � + 2�; , (8.27)
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with ; = 0,±1,±2, . . . an integer that labels, in units of 2�, the phase difference acquired
as winding around the ring. As a result, the possible rotation rates are restricted to

ΩD =

(
1
2 + ;

)
ℏ

<'2 . (8.28)

This constraint denotes the wave character of the dark soliton, as opposed to the particle
nature of the bright soliton.

In the next section (Section 8.2), we will consider a given average density =0 (or
particle number #) and search for analytical stationary solutions to the equation of
motion (8.13) that generalize the solutions we have explored so far: Eqs. (8.15), (8.22)
and (8.23). The last two correspond to the asymptotic limit for large rings; before moving
to more general solutions, we will next give particular dark- and bright-soliton solutions
that are exact for a ring geometry.

Soliton solutions for generic rings

Equations (8.22) and (8.23) give approximate solutions for a large ring of radius' (�D,B �
�'), but one can make them exact for generic rings using Jacobi elliptic functions. As we
mentioned on Chapter 4 (Subsection 4.2.2; for details, see Appendix A), Jacobi elliptic
functions are periodic functions that generalize the trigonometric functions (Abramowitz
and Stegun, 1968), which allows one to account for the periodic boundary conditions of
a ring geometry when describing solitonic states.

In particular, we will consider the Jacobi sine and cosine functions, sn(G/�,m) and
cn(G/�,m) [see Eq. (A.1)], with characteristic width � and parameterm ∈ [0, 1]. IfΩ > 0,
the function sn(G/�,m) generalizes the dark-soliton solution (8.22),

#sn(G, C) =
√

m

� �2:Ω
sn

(
G

�
, m

)
4 8:ΩG 4−8�snC/ℏ . (8.29)

On the other hand, if Ω < 0, the function cn(G/�,m) generalizes the bright-soliton
solution (8.23),

#cn(G, C) =
√

m

� �2:Ω
cn

(
G

�
, m

)
4−8:ΩG 4−8�cnC/ℏ . (8.30)

The characteristic length � is the same for both #sn (8.29) and #cn (8.30), and the
corresponding eigenergies are

�sn =
ℏ2

2<�2 (1 +m), (8.31)

if Ω > 0, and

�cn = −
ℏ2

2<�2 (2m − 1), (8.32)

if Ω < 0. The phase ±:ΩG [see Eqs. (8.29) and (8.30)] is linear with the position and
follows the motion of the ring in both cases, and thus the current density vanishes in
the co-moving reference frame.
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ñ= 0.5

0

1

2

−π 0 π

x/R

−π

0

π

= 1

g= 1

Figure 8.1: Stationary solitonic states defined by Eqs. (8.29) and (8.30) for rotating rate
|Ω| = 0.5 ℏ/(<'2). Top panels: states with a low =0 = 0.5/' (left panels) versus high
=0 = 2.5/' (right panels) number density; they correspond to the black solid symbols
in Fig. 8.3. Bottom panels: comparison with equivalent states of the nonchiral case
with =0 = 0.5/' and obtained with a contact interaction of dimensionless strength 6

that corresponds to the same interaction strength, i.e., |6 | = � = 1; dark soliton with
Ω = 0.5 ℏ/(<'2) (left panel) and bright soliton with Ω = −0.5 ℏ/(<'2) (right panel). The
labels Ω̃ and =̃ indicate the dimensionless values of Ω and =0, with units ℏ/(<'2) and
1/', respectively.

Figure 8.1 (top panels) shows as an example the stationary states given by Eqs. (8.29)
and (8.30) for a single node (one soliton) along the ring, rotation rate |Ω| = 0.5 ℏ/(<'2),
and two different values of the average number density: =0 = 0.5/' (left panels) and
=0 = 2.5/' (right panels). As one can see in the figure, increasing the number of particles
(such that the interactions increase) translates to narrower solitons. For a given average
density and rotation rate, these states are clearly different from the stationary states that
are solution of the usual Gross–Pitaevskii equation with only contact interactions (i.e.,
the nonchiral case), as we show in the bottom panels of Fig. 8.1. This occurs because the
effective interactions that result from the current density are not constant but depend on
the position, unlike the contact interactions in the nonchiral case.
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The parameter m is bound between 0 and 1, which gives the two limits of the elliptic
functions (see Appendix A for more details). The wavefunctions (8.29) and (8.30) tend
to the hyperbolic functions, (8.22) and (8.23), respectively, for m→ 1. In the opposite
limit, m→ 0, one recovers the trigonometric functions sin(G/�) and cos(G/�).

The complete elliptic integral of the first kind K = K(m) (A.4) gives the spatial period
of the elliptic functions (Abramowitz and Stegun, 1968). The functions sn and cn have
a period of 4K, but the period of the squared functions is 2K, which is what we use
to define the solitonic solutions. Then, since the period of these functions has to be a
divisor of the ring length (2�'), it fulfills that

9K(m) � = �' , (8.33)

where 9 = 1, 2, 3, . . . is a positive integer that labels the number of nodes (solitons) in the
ring.

Equation (8.33) also defines the characteristic length � of the corresponding nonlinear
wave. Finally, imposing that the phase has to be periodic, one finds the possible rotation
rates where these solutions can exist:

|Ω| =
9

2
ℏ

<'2 . (8.34)

This condition is obtained as a generalization of the expression for the asymptotic dark
soliton in an infinite ring (8.28) with ; = 0.

Normalizing the dark-soliton wavefunction #sn (8.29) and using the condition for
the period (8.33) gives an implicit equation for the parameter m,

#sn
2�' :Ω =

L(m)
��2 , (8.35)

and equivalently for the bright soliton, #cn (8.30),

#cn
2�' :Ω =

m − L(m)
��2 . (8.36)

We have defined the function L(m) = 1−E(m)/K(m), where E(m) is the complete integral
of the second kind [see Eq. (A.5) and discussion in Appendix A]. L(m) takes values in
the range [0, 1]when m varies in [0, 1].

8.2 General current-carrying states

In the present section we will look for more general solutions to the equation of
motion (8.2) that interpolate between plane waves (8.15) and soliton-like states [(8.29)
and (8.30)]. We consider generic stationary states,

#(G, C) =
√
=(G) 4 8�(G) 4−8�C/ℏ , (8.37)
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where the phase �(G) and number density =(G) are given in terms of the system
parameters {', #,Ω, �}. The current density in the laboratory frame (8.3) can be written
in terms of the phase and the density as (4.52)

�(G) = =(G) ℏ
<

%�(G)
%G

. (8.38)

8.2.1 Phase and density equations
Introducing the generic state (8.37) into the chiral GPE (8.2), one can separate the real
and imaginary parts and obtain two equations. The imaginary part yields the stationary
continuity equation in the moving reference frame [Eq. (8.5) with %C= = 0],

%

%G
(� − =Ω') = 0 , (8.39)

where J = � − =Ω' is the current in the rotating frame. Using Eq. (8.38), the continuity
equation (8.39) relates the phase of the condensate with its number density, and gives
rise to a constant current density

J = =

(
ℏ

<

%�

%G
−Ω'

)
, (8.40)

since %GJ = 0. Note that the current in the rotating frame vanishes (i.e., J = 0) for
plane waves (8.15) with ℏ@ = <Ω' and also for the particular soliton solutions [(8.29)
and (8.30)].

After replacing #(G, C) by the stationary state (8.37) and using Eq. (8.40), the real part
of the chiral GPE (8.2) gives an equation for the density,

� = − ℏ
2

2<
%2
G

√
=

√
=
+ <2

(
J
=

)2
+ �ℏ (J +Ω'=) . (8.41)

Premultiplying Eq. (8.41) by %G
√
= gives

%

%G

[
2=

(
� − ℏ�J

)
+ ℏ

2

<

(
%G
√
=
)2
+ <J

2

=
− ℏ�Ω'=2

]
= 0 , (8.42)

and subsequent integration brings the density equation (8.41) to the form

(%G=)2 =
4<
ℏ2

[
ℏ�Ω'=3 − 2

(
� − ℏ�J

)
=2 − 2�= − <J2] , (8.43)

where � is an integration constant with units of energy per unit length.
The right-hand side of the density equation (8.43) is a cubic polynomial in the

density. The formal, complex general solution of this equation is the Weierstrass ℘
function (Abramowitz and Stegun, 1968). However, to obtain solutions that are real and
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normalizable, one can write the Weierstrass function in terms of Jacobi elliptic functions
by means of the transformation

=(G) =  + � 5 2(G) , (8.44)

where  and � are constants, and the constraint2

<J2 − 2�ℏ2J −
(
�ℏΩ'3 − 2�2 − 2�

)
= 0 , (8.45)

as we will discuss next.

8.2.2 Solutions as Jacobi elliptic functions
Transforming the density as Eq. (8.44), the density equation (8.43) in terms of the
function 5 (G) takes the form(

%

%G
5

)2
=

<�Ω'�

ℏ
5 4 − 2<

ℏ2

(
� − ℏ�J − 3ℏ�Ω'

2

)
5 2

−4<

ℏ2�

(
� − ℏ�J + �

2 −
3ℏ�Ω'

4

)
(8.46)

as long as the condition in Eq. (8.45) is fulfilled. We follow Carr et al. (2000a,b)
and Kanamoto et al. (2009), and choose the Jacobi dn(I,m) function, which satisfies the
differential equation[

%

%I
dn(I,m)

]2
= (m − 1) + (2 −m)dn2(I,m) − dn4(I,m) . (8.47)

Then, 5 (G) = dn(G/�,m), with characteristic width �, argument G/� and parameter m.
Comparison between Eqs. (8.46) and (8.47) eventually gives that the dn(G/�,m)

Jacobi elliptic function solves the generalized GPE (8.2) when the parameters of the
system satisfy the following expressions for the characteristic width,

� =
ℏ√

<�ℏ|Ω� |'
, (8.48)

for the current in the rotating frame,

J = ±
ℏ�

<�

√
(m − 1)

�
+ (m − 2)

2

�2 −
3

�3 , (8.49)

for the eigenenergy,

� =

(
m − 2 − 3

�

)
ℏ2

2<�2 + �ℏJ , (8.50)

2This constraint comes from introducing the density transformation (8.44) into the density equa-
tion (8.43) and setting 5 = 0. The sum of the constant terms that remain should be zero, which imposes
that � fulfills Eq. (8.45).
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and for the integration constant,

� =
ℏ2�

2<�2

[
1 −m + 2(2 −m)

�
+ 3

2

�2

]
. (8.51)

The rotation rate Ω and the parameter � should also satisfy that Ω� < 0 for the general
solution to give dark-soliton (bright-soliton) solutions for positive (negative) velocities,
as we will discuss in Subsection 8.2.3 with more detail.

Combining the condition for the periodicity of the density (8.33) that we introduced
for particular soliton solutions, 9K(m) � = �', with the equation for the characteristic
width � (8.48) yields

|� | =
(
9K(m)
�'

)2 1
�:Ω

, (8.52)

where 9 = 1, 2, 3, . . . corresponds, as before, to the number of solitons along the ring.
In addition, one can find the relation between the coefficients  and � by normalization,

 + [1 − L(m)] � = =0 , (8.53)

with =0 the average density.
From the equation for the current in the rotating frame (8.40), one finds %G� =

sgn(Ω) :Ω + <J/(ℏ=) such that the phase is

�(G) = sgn(Ω) :Ω G +
<J
ℏ

∫ G

0

3G′

 + � dn2(G′/�,m)
. (8.54)

We write the last integral in terms of the incomplete elliptic integral of the third kind
P(�; G/�,m) [see Eq. (A.7), and Abramowitz and Stegun (1968)], where � = m�/( + �).
Then, the phase can be written as

�(G) = sgn(Ω) :Ω G +
<�J
ℏ ( + �) P(�; G/�,m) . (8.55)

The elliptic integral is complete P(�;m) for G = 2�', and the phase becomes periodic
in the ring, �(G) = �(G+2�')+2�;, where ; is an integer. Imposing the phase periodicity
to Eq. (8.55) gives

29 <�J
ℏ ( + �) P(�;m) + sgn(Ω) :Ω 2�' = 2�; . (8.56)

Introducing into Eq. (8.56) the expressions for � (8.48),  (8.53), � (8.52), � (8.50)
and J (8.49) results in an implicit equation for the parameter m. Then, substituting
backwards one can obtain all the constants in Eqs. (8.37) and (8.44).

Finally, the conserved energy (8.8) per particle of these general solutions is

�

#
=

ℏ2

2<�2

{
m − 2L(m) − 

�
−

2�
3=0

[
m − 2 (m + 1)L(m) + 3L2(m)

]}
. (8.57)

We recall that L(m) = 1 − E(m)/K(m) such that L(m) ∈ [0, 1].
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8.2.3 General solutions

To summarize, we write the density as =(G) =  + � 5 2(G) (8.44) and choose 5 (G) =
dn(G/�,m) such that the wavefunction for the general solution is

#(G, C) =
√
 + � dn2(G/�,m) 4 8�(G)4−8�C/ℏ . (8.58)

As we saw in the previous subsection, it has a characteristic width � that satisfies
Eq. (8.48) and the phase �(G) is defined by Eq. (8.55). From the expression for the period
of the wavefunction (8.33) one can determine �, which is implicit in �, and then obtain
 from the normalization of the wavefunction [see Eqs. (8.52) and (8.53)]. With these
two coefficients, one obtains the energy eigenvalue � by means of Eq. (8.50), which
resembles (and, in the proper limits, reduces to) the eigenenergies obtained for the
particular soliton solutions [(8.31) and (8.32)], and the constant current density J as
Eq. (8.49). Finally, the periodicity of the phase results in an implicit equation for the
parameter m in terms of the system quantities {', #,Ω, �}.

In them→ 0 limit, the functiondn(G/�,m) tends to 1 such that thewavefunction (8.58)
approaches plane-wave solutions (8.15). On the opposite limit (m → 1), dn(G/�,m)
tends to sech(G/�) and thus the wavefunction can approach the solitonic solutions
[Eqs. (8.22) and (8.23)] depending on the values of the coefficients  and �. Particularly,
the general solution (8.58) gives dark-soliton states (Ω > 0) for � < 0 and bright-soliton
states (Ω < 0) for � > 0, and thus Ω� < 0 for all cases.

Figure 8.2 shows the density profile of Eq. (8.58) for these two limit cases of the
parameter m. Using the general solution (8.58), one can smoothly connect soliton
solutions (m→ 1) with plane waves (m→ 0) by adjusting the value of the parameter
m. In addition, we plot two different situations with different sign for the coefficient �
to show how the general solution describes dark solitons if � < 0 (Fig. 8.2, right) and
bright solitons if � > 0 (Fig. 8.2, left). Due to this, since dark solitons exist only for a
positive rotating rate Ω and bright solitons for a negative one, the condition �Ω < 0 has
to be fullfiled in both cases.

The general solution (8.58) leads to soliton states only ifΩ ≠ 0. When the rotation rate
approaches zero, the length scale � associated with the soliton grows infinitely, and so
the general solution only gives plane-wave solutions. The Weierstrass ℘ function is the
formal solution as Ω→ 0, but it diverges in this case, and such a solution with infinite
density has no physical meaning. In any case, the nonrotating scenario is actually a
singular case of the density equation (8.43), since the cubic term of the equation vanishes
for Ω = 0 and the Weierstrass and Jacobi elliptic functions are no longer its solution.
However, as we show later (and discussed in the previous section), one can always find
solutions to the resulting linear equation with J = 0.

8.3 Case study

To analyze the general solutions introduced in Section 8.2, we focus here on a particular
case with number density =0 = 0.5/' and current-density interaction strength � = 1.
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Figure 8.2: Schematic density profile of the general solution for a single node with different
values of the parameter m and the coefficient . The two values of m correspond to the
hyperbolic limit (m→ 1), which yields solitonic-like solutions, and to the trigonometric
limit (m→ 0), where one recovers plane waves. The sign of the coefficient � allows one to
obtain dark solitons if � < 0 (right) and bright solitons if � > 0 (left). The density is given
in arbitrary units for clarity, and the G coordinate is in units of the ring radius '. We also
set the number of nodes to 9 = 1 for simplicity.

We already showed in Fig. 8.1 how changing the average density =0 on the particular
soliton solutions [(8.29) and (8.30)] modifies the width of the resulting soliton, and such
change will have a similar effect in the states described by the general solution. Similarly,
varying the strength of the current-density interactions � alters the shape and phase
gradient of the soliton, since it modifies the strength of the nonlinearity, as we will
discuss later.

In Subsection 8.3.1, wewill study the stationary states that the equation ofmotion (8.2)
supports and how these states connect when changing the rotation rateΩ. To understand
the different families of trajectories and compare with the nonchiral case, we consider
the following quantities: the eigenenergy � [(8.14) and (8.50)], the conserved energy
per particle �/# [(8.8) and (8.57)] and the average (canonical) momentum per particle
〈?̂/#〉 (8.4). Finally, in Subsection 8.3.2 we will discuss the dynamical stability of these
states by means of a linear excitation analysis as well as a nonlinear time evolution.

8.3.1 Stationary states
Figure 8.3 collects the energy eigenvalue � (8.14), the average momentum per particle
〈?̂/#〉 = (</#)

∮
� 3G (8.4) and the energy per particle �/# (8.8), as a function of the

angular velocityΩ. The states shown in the plot are plane waves (thick lines) and soliton
states (thin lines with symbols); dark and bright solitons belong to trajectories with
positive and negative angular velocities, respectively.

All the trajectories show bifurcation points that interconnect families of plane-wave
and soliton states. Generally, in contrast to nonchiral systems (i.e., with only contact
interactions), these connections are not smooth and give rise to tangent trajectories. This
occurs because neither � nor 〈?̂〉 retain here their usual meaning of chemical potential
and conserved momentum, respectively. However, the trajectories do connect smoothly
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Figure 8.3: Energy eigenvalues � (top panel), average momentum per particle 〈?̂/#〉
(middle panel) and energy per particle �/# (bottom panel), as a function of the angular
frequency Ω̃, for plane-wave states (thick lines) with wavenumbers @ ∈ [−2, 2] × 1/', and
dark (DS) and bright (BS) soliton-like states (thin lines with symbols) in a rotating ring
with number density =0 = 0.5/' and current-density interaction strength � = 1. We also
show the isolated states #sin ∝ sin(@G) (crosses) at Ω = 0. The states labeled as DS × 2
(BS × 2) have two dark (bright) solitons. Note that in the energy diagram (bottom panel),
the trajectories of solitonic states (thin lines with symbols) connect smoothly with the
plane-wave trajectories (thick faded lines).
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in the energy versus rotation plot, which is a conserved quantity of the system.

Families of solutions and trajectories

Plane-wave solutions (8.15), with eigenenergy � (8.17) and conserved energy defined
as �/# = (ℏ@ − <Ω')2/(2<), trace parabolas centered at Ω/(ℏ/<'2) = @'. In the
eigenenergy graph (Fig. 8.3, top panel), these parabolas have an energy shift of �ℏ2@=0/<
due to the current-density interactions. This asymmetry stems from the chirality of the
system and shows as well in the soliton trajectories3.

Regarding solitons, families of states with one or two dark solitons connect two
plane-wave trajectories whose dimensionless wavenumbers, @', differ in one or two
units, respectively. For positive angular velocities (Ω > 0), for example, the one-dark-
soliton family (thin line with circles) makes the connection between plane waves that
have @' = 0 and those with @' = 1, while the two-dark-soliton family (thin lines with
right-pointing triangles) connects @' = 0 and @' = 2. Thus, in general, solutions
with 9 solitons connect plane-wave states with a difference of 9 in the dimensionless
wavenumber @', as one may expect. The filled circle in Fig. 8.3 corresponds to the
particular solution (8.29), which only exists for Ω = 0.5 ℏ/(<'2).

For negative angular velocities (Ω < 0), one would expect bright solitons to play a
similar connecting role. We show in Fig. 8.3 the trajectories for states with one bright
soliton (thin line with squares) and two bright solitons (thin line with left-pointing
triangles). As one can see in the plot, the two-soliton family indeed connects plane
waves with @' = 0 and @' = −2. However, the single-soliton trajectory shows a different
behavior: instead of connecting the cases with @' = 0 and @' = −1, it detaches from the
expected path as |Ω| increases (i.e., as the interaction becomes more attractive). The
filled square corresponds to the particular solution (8.30) for Ω = −0.5 ℏ/(<'2). Then,
for high rotating rates, the one-soliton trajectory behaves as a free particle, with energy
and momentum that vary quadratically and linearly, respectively, with the angular
velocity. This free-particle behavior does not happen for the two-soliton trajectory, in the
present case, because the total attractive interaction (or number of particles) is not large
enough for each soliton to attain free-particle features, but this may eventually occur
with a different choice of parameters. Therefore, the threshold velocity (and interaction)
above which bright-soliton states show a free-particle dispersion will mainly depend on
the number of solitons and on the particular parameters of the system, i.e., the number
density and the strength of the current-density interactions.

Nonzero current in the rotating frame

Figure 8.4 shows the typical details of the general solitonic states (8.58). We plot the
density and phase profiles of two selected positive and negative values of the rotation
frequency for a state with one soliton (left panels) and two solitons (right panels). As
opposed to the particular solutions plotted in Fig. 8.1, which do not have current in

3Note that the conserved energy �/# (Fig. 8.3, bottom panel), on the other hand, does not show this
asymmetry since it does not depend on the current-density interactions.
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Figure 8.4: General solitonic states (8.58), which have a nonzero current J ≠ 0 in the
rotating frame. One-soliton (left panels) and two-soliton states (right panels) with a
number density =0 = 0.5/' and two different rotating rates (positive for dark solitons and
negative for bright solitons). We consider the interaction strengths � = 1 (top panels) and
� = 2 (bottom panels). See Fig. 8.5 for the spectrum of linear excitations of some cases
from the top panels.

the rotating frame, the general states present a nonvanishing constant current in the
rotating frame.

The constant current density J can be written in terms of the average momentum
〈?̂〉 (8.4) using Eq. (8.40) so that

2�'J =
〈?̂〉
<
−Ω'# . (8.59)

From the central panel of Fig. 8.3, and by means of Eq. (8.59), one can see that the
current J vanishes for a family of 9 solitons for the particular solitonic solutions [(8.30)
and (8.29)] and also once a bright-soliton family reaches the free-particle dispersion, as
occurs to the one-bright-soliton family in the case considered here. Departing from these
particular cases, the current in the rotating frame J decreases (increases) for increasing
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(decreasing) rotation frequency when Ω is positive (negative). This fact reflects the
production of backflow currents in response to the soliton phase jumps.

One can see the effect of the strength of the interactions by comparing the top (� = 1)
and bottom (� = 2) panels of Fig. 8.4. As the interaction increases, the density profiles
narrow (as we show in Fig. 8.1 for the particular solitonic solutions with different
densities), and the phase gradient becomes also steeper, which increases the constant
current density J (8.40).

Nonrotating case

In the absence of rotation (Ω = 0), the system supports plane-wave solutions as well
as the isolated, sinusoidal solutions #sin ∝ sin(@G) and #cos ∝ cos(@G). These solutions
correspond to the crosses in Fig. 8.3 and, due to the absence of current, are degenerate
solutions of the Schrödinger equation4. Therefore, superpositions of these states with
real amplitudes are also possible solutions. Aswe discussed before (see Subsection 8.2.3),
the general solution that we considered in this chapter (8.58) gives plane waves when
Ω = 0 and the more general solution (the Weierstrass ℘ function) is not physically valid.

This means that one cannot connect plane-wave families with wavenumbers of
different signs, @' > 0 and @' < 0, as doing so would provide a means of adiabatically
changing the chirality of the states. As opposed to nonchiral systems, where one can
connect plane-wave trajectories of positive and negative wavenumber, this path does
not exist in the presence of current-density interactions, and the sinusoidal solutions
that should be part of it (at Ω = 0) remain unconnected as isolated states.

8.3.2 Dynamical stability
We have performed the analysis of linear excitations and the nonlinear time evolution
of the stationary states to check their dynamical stability. For the linear analysis, we
have solved numerically the Bogoliubov equations for the linear excitations of solitonic
states and searched for complex excitation frequencies that may point to dynamical
instabilities. For the nonlinear analysis, we have simulated numerically Eq. (8.2) to
obtain the time evolution of the system.

One can calculate the linear excitation modes �# 9 = [D9 , E 9]) of a given stationary
state # as solutions to the Bogoliubov equations5. These equations are obtained by
introducing the perturbed state

#(G, C) = 4−8�C/ℏ
)(G) +

∑
9

[
D9(G) 4−8$9 C + E∗9(G) 4

8$∗
9
C
] , (8.60)

4If both � = 0 andΩ = 0, the chiral Gross–Pitaevskii equation (8.2) reduces to the Schrödinger equation
and thus supports its usual solutions.

5In Chapter 2, we obtained the Bogoliubov equations for the nonchiral case. See Eq. (2.29) and
discussion for more details.
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where 9 now indexes the excitation modes, into the GPE (8.2). This yields the following
system of equations:

�̂ �# 9 = ℏ$ 9 �# 9 . (8.61)

The Bogoliubov operator is defined as

�̂ =

(
ℋ − � 0

0 −ℋ ∗ + �

)
+ ℏ�2<

(
)

[
)∗?̂ − (?̂ )∗)

]
−)

[
) ?̂ − (?̂ ))

]
−)∗

[
)∗?̂ − (?̂ )∗)

]
)∗

[
) ?̂ − (?̂ ))

] ) , (8.62)

where ℋ is the energy operator in Eq. (8.13) and ?̂ is the momentum operator. The
dynamical instabilities correspond to modes with complex frequencies, i.e., Im($ 9) ≠ 0.

Linear analysis of plane waves

For the excitation modes of plane waves with wavenumber @, we choose plane-wave
solutions of the form

D(G) = D 4 8 (:+@) G and E(G) = E 4 8 (:−@) G , (8.63)

where : is the wavenumber of the excitation. Then, the dispersion relation for the linear
excitation modes of plane waves has the analytical expression

$: =
ℏ:

<

[
@ + �=0

2 ±
√
@�=0 +

(�=0)2 + :2

4 − sgn(Ω) :Ω

]
. (8.64)

All positive values of @ lead to real frequencies; however, negative values of @ for which
|@ | > �=0/4 give complex frequencies and are thus unstable. For the parameters we are
considering, this threshold corresponds to |@ |' > 1/8. Therefore, for this case, all the
plane waves with negative wavenumber are unstable.

This result indicates that solitonic states connecting plane-wave familieswith negative
wavenumber may also contain unstable states, at least close to the connection points of
the corresponding trajectories in the � versus Ω diagram.

Stable and unstable states

We have not found unstable modes in the spectrum of excitations neither for solitonic
states with positive rotation rate (i.e., dark solitons) nor for the family of one-bright-
soliton states (with negative rotation rate). We show in Fig. 8.5 two typical examples
of the corresponding dispersion of such cases, which present only real frequencies.
Regarding one-bright-soliton states, our results for the ring geometry agree with the
findings of Dingwall and Öhberg (2019); despite the model being nonintegrable, their
results also account for contact interactions on their stability against small perturbations.

As one may expect from the analysis of plane waves discussed above, we have
found that, for negative rotation rates, the states with two bright solitons have excitation
modes with complex frequencies when |Ω̃| ≥ 1 and thus are linearly unstable, while
states in the same family are stable when |Ω̃| < 1. Figures 8.6 and 8.7 show the results
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Figure 8.5: Spectrum of linear excitations for one-bright-soliton (left) and two-dark-soliton
(right) states with � = 1 and frequency $ in units of ℏ/(<'2). The dispersion relations
only present real frequencies, which indicates that both cases are linearly stable. Density
and phase profiles of these two cases are shown in the top panels in Fig. 8.4.

of the linear analysis and the nonlinear time evolution, respectively, for two of these
two-bright-soliton states. We have obtained the nonlinear evolution after seeding a
perturbative amount of white noise on the initial stationary states. One can see in Fig. 8.7
that the equilibrium configuration is preserved for a long time when Ω̃ = −0.9 (left
panel). However, when Ω̃ = −1.25, the real-time evolution shows the decay of the initial
state with two solitons (right panel). These results agree with the predictions of the
linear analysis.

8.4 Summary of results

In this chapter, we have studied persistent currents in quasi-1D Bose–Einstein conden-
sates loaded in a rotating ring trap,which become chiral in the presence of current-density
interactions. The current-carrying states that this chiral system supports, plane waves
and soliton-like states, show clear differences with respect to nonchiral systems (i.e.,
with the usual contact interactions between the particles).

The eigenenergy versus rotation rate diagram is asymmetric against the direction
of the rotation rate Ω. Then, due to this asymmetry, there are no solitonic trajectories
that cross Ω = 0, so it is not possible to adiabatically connect plane-wave states with
different chirality.

Concerning the dynamical stability of the stationary states, we have seen that the
predictions obtained from the linear analysis of excitations agree with the nonlinear
analysis. In our tests of dynamical stability, we find stable currents for positive-velocity
states with both constant and modulated density profiles, while decaying currents
appear only beyond a unidirectional (negative) velocity threshold. This last instability
points to alternative stable states (i.e., moving and strongly localized bright solitons)
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Figure 8.6: Stable (left panels) and unstable (right panels) states with two bright solitons.
Top: initial stationary states and final states after a nonlinear time evolution; see Fig. 8.7
for more details. Bottom: spectra of linear excitations. Note that the state with rotating
frequency |Ω̃| > 1 is unstable, as discussed in the main text.

Figure 8.7:Nonlinear time evolution in the rotating frame of the two-bright-soliton states
from Fig. 8.6, for two different rotating rates: Ω̃ = −0.9 (left), which is stable, and Ω̃ = −1.25
(right), which is unstable. We perform the time evolution after adding a perturbative
amount of white noise over the initial stationary state that changes the energy a 2%.
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whose dynamics resemble the energy and momentum features of classical particles.
These results open prospects of newwork in the search of equivalent current-carrying

states within the 3D framework of the recently realized effective 1D chiral theory (Frölian
et al., 2022). They also broaden the phenomenology of BEC dynamics in ring geometries,
which lies at the basis for the exploration of atomtronic technologies. Finally, we will
generalize this study to a BEC with two coherently coupled components in Chapter 9.





9
SPINORBOSE–EINSTEINCONDENSATESWITHCURRENT-
DENSITY INTERACTIONS

In this chapter, we extend the study of Chapter 8 to spinor condensates in the presence
of current-density interactions1. BECs of ultracold gases subject to interactions that
are proportional to the local atomic current density were experimentally realized very
recently (Frölian et al., 2022), as we discussed in Chapters 4 and 8. Obtaining these
condensates involves systems of neutral atoms coupled to laser fields that give rise to
artificial electromagnetism. The gauge fields that emerge in such systems turn out to
be the effect of geometrical phases accumulated in the adiabatic path of the optically
dressed atomic states (see for more details Chapter 4 and Dalibard et al., 2011; Edmonds
et al., 2013a). Then, the resulting systems exhibit chiral properties (Chisholm et al.,
2022) when restricted to their lowest energy bands and when they can be described by
an effective Hamiltonian that includes a current-density term and operates on a scalar
order parameter. This theoretical model can be mapped into a density-dependent gauge
theory, and was predicted to host chiral solitons (Aglietti et al., 1996; Jackiw, 1997) that
were later observed experimentally (Frölian et al., 2022).

Our aim is to implement a spinor system2 from the effective chiral scalar condensate in
a ring geometry and explore a long Josephson bosonic junction with chiral properties. To
this end, we consider a double-well potential across the direction transverse to the chiral
axis3, such that one can model an effective two-component, linearly coupled system, as
realized in regular extendedbosonic junctions (Pigneur et al., 2018; Schweigler et al., 2017).
In this setting, as a generalization of a chiral point-like Josephson junction (Edmonds
et al., 2013b), we study the Josephson dynamics of extended chiral states.

The chapter is organized as follows. We begin in Section 9.1 by presenting the
equations of motion and conserved quantities of the system as well as the different types
of stationary solutions that one can find. In Section 9.2, we analyze in detail plane-wave
solutions and their superpositions, as well as the dynamical stability of linear excitations.

1A spinor condensate is a two-component BEC with particle exchange between components due to a
linear coupling (see Chapter 2).

2For more details on the nonchiral case, see review by Recati and Stringari (2022) and references
therein.

3The rotation axis of the ring.
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We consider nonlinear excited states with density- and phase-modulated profiles in
Section 9.3, which can be the regular solitons we discussed in previous chapters or
Josephson vortices, that are particular to spinor systems. Finally, we conclude with a
summary of results in Section 9.4.

9.1 Chiral spinor condensates in a ring geometry

In this section, we provide the theoretical description of spinor condensates with
current-density interactions. We begin by defining the equations of motion of the
system and other quantities (Subsection 9.1.1). Then, we introduce the general equations
for the linear excitations of stationary states (Subsection 9.1.2), and finally we discuss
the type of solutions that the system supports (Subsection 9.1.3). We may point out
relevant differences with both the chiral scalar case (Chapter 8) and the nonchiral spinor
case (Abad and Recati, 2013; Recati and Stringari, 2022) when needed.

9.1.1 Coupled Gross–Pitaevskii equations
Let us consider a linearly (i.e., coherently) coupled, two-component BEC in a ring
geometry of radius ' rotating with angular velocity Ω. We label each component by
↑ and ↓, and both of them are subject to the same (intracomponent) current-density
interaction of dimensionless strength �. As we did in Chapter 8, here we assume � > 0
without loss of generality and, to isolate the effect of the current-density interactions,
we assume as well that there are no contact interparticle interactions in the system,
6↑↑ = 6↓↓ = 6↑↓ = 0.

The system can be effectively described by the mean-field Gross–Pitaevskii-like
equation

8ℏ
%Ψ

%C
=

©«
Π̂2

2< + ℏ��↑ −�

−� Π̂2

2< + ℏ��↓

ª®®¬Ψ (9.1)

for the pseudospin-1/2 wavefunctionΨ = [#↑, #↓]) . As usual, < is the atomic mass,
Π̂ = ?̂ − <Ω' is the mechanical momentum operator in the frame rotating with angular
velocityΩ, and ?̂ = −8ℏ%G is the canonical momentum operator. The energy of the linear
coupling is � (with � > 0), and the current density for each component measured with
respect to the laboratory frame [see Eq. (8.3) for the scalar case] is

�� =
ℏ

2<8

(
#∗�

%#�

%G
− #�

%#∗�
%G

)
, (9.2)

where � =↑, ↓ labels the component. Similarly, the (number) density for each component
is given by =� = |#� |2.

As for the scalar case, we introduce for further use the average number density
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=0 = #/(2�'), with # the total number of atoms, the rotation wavenumber4 :Ω =

<Ω'/ℏ, and the normalized interaction strength �̃ = �=0' = �#/(2�). In addition, we
use as length, time, and energy units the ring units: ', 1/Ω0 = <'2/ℏ and ℏΩ0. All
dimensionless quantities are denoted by tildes.

The wavefunctionΨ is normalized to the total number of atoms # =
∮
Ψ†Ψ 3G in

the ring and, as we discussed in the scalar case (see Chapter 8), is quantized due to the
periodic boundary conditions. The number of atoms # is a conserved quantity of the
system, and so is the total energy �, as we discuss next.

Conserved energy

The energy density for a condensate with two coherently coupled components5 with no
interparticle interactions is (Son and Stephanov, 2002)

ℰ = 1
2<

[
|Π̂#↑ |2 + |Π̂#↓ |2

]
− �

[
#∗↑#↓ + #

∗
↓#↑

]
. (9.3)

Writing the wavefunctions #� in terms of their densities and phases, =� and ��, the
energy density (9.3) reads

ℰ = 1
2<

[��Π̂#↑��2 + ��Π̂#↓��2] − 2�√=↑=↓ cos! , (9.4)

where ! = �↑ − �↓ is the relative phase.
Integration of Eq. (9.4) gives the total energy of the system. Using

∮
|?̂#� |2 3G =∮

#∗ ?̂2# 3G, the energy is

� =
1

2<

∮
3G

[
#∗↑

(
Π̂2#↑

)
+ #∗↓

(
Π̂2#↓

) ]
− 2�

∮
3G
√
=↑=↓ cos! . (9.5)

As in the scalar case, � (9.5) is the conserved energy and does not depend explicitly on
the interaction strength �. This total energy corresponds to the energy contribution of
each component, as given by the expression for the scalar case (8.8), with the extra term

ℰ! = −2�√=↑=↓ cos! = −2�Re [#∗↑#↓] , (9.6)

which is the Josephson energy. The scaling of ℰ! with the cosine of the relative phase !
reflects the pendulum-like dynamics of the junction.

4The notation now is slightly different and :Ω includes the sign of Ω for clarity (we defined it as
:Ω = < |Ω|'/ℏ in Chapter 8).

5The energy is a conserved quantity in the scalar case, as we discussed in Chapters 4 and 8 (see in
particular Chapter 4 for a detailed derivation). Therefore, the energy of the spinor system is a conserved
quantity as well, since now we start from the chiral scalar case (Chapter 8) and split the system into two
coherently coupled condensates by means of a double-well potential. The expression we give here for the
energy assumes that the double well removes the nonlinear terms (which come from the current density)
in the potential barrier such that only the linear coupling remains.
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Continuity equations

Premultiplying the GPE (9.1) for each component by #∗� and subtracting from each other
its complex conjugate gives

28ℏRe
[
#∗�

%#�

%C

]
=
8

<
Im

[
#∗� Π̂

2#�

]
− 28� Im

[
#∗� #�′

]
. (9.7)

Then, we write the wavefunction of each component in terms of its density and phase,
#� =

√
=� exp(8��), such that the current density (9.2) is

�� = =�
ℏ

<

%��
%G

. (9.8)

As a result, Eq. (9.7) gives two coupled equations:

%=�
%C

= − %

%G
(�� − =�Ω') +

2�
ℏ

√
=�=�′ sin (�� − ��′) . (9.9)

Adding the two Eqs. (9.9) for � =↑ and � =↓, one gets the continuity equation
for the total number density =(G, C) = =↑(G, C) + =↓(G, C) and the total current density
�(G, C) = �↑(G, C) + �↓(G, C),

%=

%C
+ %

%G
(� − =Ω') = 0 . (9.10)

Equation (9.10) guarantees the conservation of the total number of particles # =∮
=(G, C) 3G in the ring.
Similarly, one can find a second continuity equation by subtracting the two Eqs. (9.9)

for each component. Introducing the spin number density, =B(G, C) = =↑(G, C) − =↓(G, C),
which is the local population imbalance between components, and the spin current
density, �B(G, C) = �↑(G, C) − �↓(G, C), these densities fulfill the continuity equation

%=B
%C
+ %

%G
(�B − =BΩ') =

4�
ℏ

√
=↑=↓ sin! . (9.11)

We rewrite the right-hand side of Eq. (9.11) as

ℐ! =
4�
ℏ

√
=↑=↓ sin! , (9.12)

where ℐ! is twice the Josephson current flowing between components (Barone, 1982).
In the spinor case, it is not possible to find general analytical solutions to the coupled

equations as we did in Chapter 8 due to the fact that the right-hand side of Eq. (9.11) is,
in general, nonzero6.

6In this case, one cannot remove the phase dependency on the equations of motion and write the
equations for the density, as we did for the scalar case.



Section 9.1 | Chiral spinor condensates in a ring geometry 157

Stationary states

The steady states of the system,Ψ(G, C) = Φ(G) exp(−8�C/ℏ), satisfy the time-independent
equation

ℋ Φ = �Φ (9.13)
with energy eigenvalue �, whereℋ is the nonlinear Hamiltonian matrix in the coupled
GPEs (9.1). These states also fulfill the stationary versions of the continuity equa-
tions [(9.10) and (9.11) with %C= = 0 and %C=B = 0, respectively]. The first continuity
equation (9.10) gives the total current in the rotating frame,

J = � − =Ω' , (9.14)

which is always constant. From the second equation (9.11), %G (�B − =BΩ') = ℐ!, one can
find a second current,

JB = �B − =BΩ' , (9.15)
that is constant only when ! = 9� (where 9 is an integer) such that ℐ! = 0.

9.1.2 Bogoliubov equations of linear excitations

To calculate the linear excitations of the stationary statesΨ = [#↑, #↓]) , we follow the
standard procedure and introduce the perturbed state

#�(G, C) = 4−8�C/ℏ
)�(G) +

∑
9

[
D9�(G) 4−8$9 C + E∗9�(G) 4

8$∗
9
C
] (9.16)

in the GPE (9.1), where 9 indexes the excitations modes and � the component. Note
that � is the same for both components because the total number of atoms is con-
served. The amplitudes of the linear excitation modes, which we write as the vector
�# 9 = [D9↑, E 9↑, D9↓, E 9↓]) , are solution of the Bogoliubov equations7:(

�̂↑ −��I
−��I �̂↓

)
�# 9 = ℏ$ 9 �# 9 , (9.17)

where �I is the Pauli matrix,

�I =

(
1 0
0 −1

)
, (9.18)

and �̂� is the 2 × 2 Bogoliubov operator,

�̂� =

(
ℋ� 0
0 −ℋ ∗�

)
+ ℏ�2<

(
)� C()∗� , ?̂) −)� C()� , ?̂)
−)∗� C()∗� , ?̂) )∗� C()� , ?̂)

)
. (9.19)

The single-component energy operator is ℋ� = Π̂2/(2<) + ℏ��� − �, and we have
introduced the operator C()� , ?̂) = )� ?̂ − (?̂)�) to simplify notation.

As in the scalar case, pure real modes �# 9 are stable excitations, while complex
modes will signal instabilities.

7See Chapters 2 and 8 for the nonchiral and scalar cases, respectively.
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9.1.3 Types of solutions

One can write the nonlinear Hamiltonianℋ of the GPE (9.1) in terms of the total and
spin current densities, � and �B , using that �↑ = (� + �B)/2 and �↓ = (� − �B)/2. Then,

ℋ =

(
Π̂2

2< +
ℏ��

2

)
I2 +

ℏ��B
2 �I − � �G , (9.20)

where �8 are the Pauli matrices, �I (9.18) and

�G =

(
0 1
1 0

)
, (9.21)

and I2 is the 2 × 2 identity matrix. Besides the coherent-coupling term, −��G , this
Hamiltonian also includes an effective spin–orbit coupling, which is the term that goes
with �I . This spin–orbit-coupling term shifts the energies of the spin components
according to �B , the axial (orbital) current. Then, one can find two different types of
stationary states depending on whether �B = 0 or �B ≠ 0.

States with no spin current

If �B = 0, the Hamiltonian (9.20) commutes with the Pauli matrix �G , [ℋ , �G] = 0, and
one can find common eigenstates that satisfy #↓(G, C) = ±#↑(G, C), i.e., solutions with the
same density for each component (=↑ = =↓) and a relative phase ! of either 0 or �. Then,
the coupled equations in Eq. (9.1) reduce into a single equation:

8ℏ
%#↑
%C

=

(
Π̂2

2< + ℏ��↑ ∓ �
)
#↑ . (9.22)

In this case, the two components have equal currents �↑ = �↓ = �/2 and one recovers
all the stationary states known for a single-component condensate (see Chapter 8 and
Arazo et al., 2023b). Particularly, the general solution (8.37) in terms of the Jacobi dn
function now reads

#↑(G, C) =
√
 + � dn2(G/�,m) 4 8�↑(G)4−8�C/ℏ , (9.23)

with phase (8.55)

�↑(G) = sgn(Ω) :ΩG +
<�J

2ℏ ( + �) P(�; G/�,m) , (9.24)

where J (9.14) is the total current in the rotating frame. We recall that the function
dn(G/�,m) depends on the parameter m ∈ [0, 1] and has a characteristic length (8.48)
� = ℏ/(<�ℏ|Ω� |')1/2. In addition, the incomplete elliptic integral of the third kind
P(�; G/�,m), with � = m�/( + �), is complete P(�;m) for G = 2�'.
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Then, one determines the real parametersm,  and � self-consistently for a particular
system with a given ', # and Ω (see Subsection 8.2.2 in Chapter 8). The energy
eigenvalues �,

� =

(
m − 2 − 3

�

)
ℏ2

2<�2 +
ℏ�J

2 ∓ � , (9.25)

are now shifted with respect to the scalar case (8.50) by ∓� due to the coherent coupling.

States with spin current

In the general case with �B ≠ 0, one has to deal with the full Hamiltonian (9.20) that
includes an effective spin–orbit coupling, which yields the two coupled GPEs (9.1). Then,
one finds a double degeneracy in the energy eigenvalue � for a given |�B | depending on
the sign of the spin current.

However, in the limit of � → 0, the �I symmetry (which results from [ℋ , �I] = 0)
is just slightly broken by a very small coherent coupling � ≠ 0. In this situation, one
expects the stationary states to approach the eigenstates of �I and realize a population
self-trapping, i.e., with #� ≈ 0 for one of the components. We will show later that our
numerical simulations depict this scenario.

9.2 Plane-wave states

As for the scalar case [Chapter 8, see Eq. (8.15)], the system is translationally invariant
and thus plane waves of the form

Ψ@(G, C) =
( √

=0↑
±√=0↓

)
4 8@G 4−8�@ C/ℏ (9.26)

are solutions of the coupled GPEs (9.1). Each component has a constant density =0�,
and the ± sign accounts for the relative phase ! between components, which can be
either 0 or � (Abad and Recati, 2013). The common wavenumber @ is quantized in the
ring and, in dimensionless units, takes integer values (@' = 0,±1,±2, . . .).

The component current density in the laboratory frame (9.2) is �� = (ℏ/<) @=0�, such
that the total and spin current densities are constant as well,

�@ =
ℏ

<
@=0 and �@B =

ℏ

<
@=0B , (9.27)

with =0 = =0↑ + =0↓ and =0B = =0↑ − =0↓ the total and spin densities, as before. Note that
the currents relate as

�@

=0
=
�@B

=0B
=
ℏ

<
@ . (9.28)
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9.2.1 Polarized and unpolarized cases
Introducing the ansatz forΨ@ (9.26) into the equations of motion (9.1) and multiplying
each of the coupled equations by

√
=0� gives the following two equations:

�@=0� =

[ (ℏ@ − <Ω')2
2< + ℏ���

]
=0� ∓ �

√
=0�=0�′ , (9.29)

for � =↑, ↓. After some manipulation, one eventually gets(
ℏ�

�@B

=0B
± �
√
=0↑=0↓

)
=0B = 0 , (9.30)

which, for convenience, we rewrite as

ℏ��@B = ∓�
=0B√
=0↑=0↓

. (9.31)

Equation (9.30) admits two possible solutions, as we already anticipated: waves with
or without a local population imbalance between components. The imbalance or spin
density =0B is also known as polarization, so we will refer to the solutions without
population imbalance (=0B = 0), which thus have no spin current (�@B = 0), as the
unpolarized (or balanced) states, and to the more general solutions with imbalance
(=0B ≠ 0 and �@B ≠ 0) as the polarized (or imbalanced) states.

Unpolarized states

In the absence of imbalance and spin current8, =0B = 0 and �@B = 0, the two components
have the same density =0↑ = =0↓ = =0/2 and current density �↑ = �↓ = �@/2. Then, using
Eq. (9.29), one can find the eigenenergies

�(∓)@ =
(ℏ@ − <Ω')2

2< +
ℏ��@

2 ∓ � , (9.32)

whichdescribe twodifferent branches of thedispersion, and the corresponding conserved
energy (9.5) per particle is

�
(∓)
@

#
=
(ℏ@ − <Ω')2

2< ∓ � . (9.33)

These balanced states exist for any (integer) value of @', unlike in the polarized case, as
we will see next.

8These states are particular cases of the general solution (9.23) when m = 0 (i.e., when the general
solution tends to plane-wave solutions).
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Figure 9.1: Spin density (9.37) of stationary plane waves with wavenumber @ in a ring trap
of radius ' for two values of the linear coupling � [in units of ℏ2/(<'2)] at Ω = 0 and for
�=0 = 1/'. Unpolarized states exist for |�@ | < 1 (see discussion in the main text). Within
the shaded region, however, only the balanced states are available. We recall that the
wavenumber @ is quantized on the ring and only integer values of @' are valid.

Polarized states

In the presence of spin current, to find the eigenenergies one can divide Eq. (9.29) by
=0�, add the two resulting equations (for each component), and relate the component
densities to the total and spin densities by 4=0↑=0↓ = =

2
0 − =2

0B , which gives

�(B)@ =
(ℏ@ − <Ω')2

2< +
ℏ��@

2 ∓ �=0√
=2

0 − =2
0B

. (9.34)

Then, using Eq. (9.31) and that the total and spin currents are related as Eq. (9.28), one
finally gets

�(B)@ =
(ℏ@ − <Ω')2

2< + ℏ��@ . (9.35)

The energy (9.5) per particle in this case is

�
(B)
@

#
=
(ℏ@ − <Ω')2

2< ∓ �

√
1 −

(
=0B
=0

)2
. (9.36)

Then, for the polarized states one finds two degenerate energy branches [see
Eq. (9.35)] for opposite signs of the polarization =0B . Equations (9.31) and (9.28) give the
polarization or spin density9 =0B and the spin current �@B ,

=0B = ±=0

√
1 − �2

@ and �@B = ±�@
√

1 − �2
@ , (9.37)

9Note that the spin density =0B [see Eq. (9.37)] depends on �, � and, particularly, in the wavenumber @,
which is quantized in the ring. See Fig. 9.1 for more details.
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where the parameter �@ contains the ratio between the linear coupling and the interac-
tions,

�@ =
2�
ℏ��@

. (9.38)

This overlap is however not trivial. Equation (9.31) can be rewritten as

ℏ�
�@

=0
= ∓ �
√
=0↑=0↓

, (9.39)

such that �/√=0↑=0↓ is always positive. Then, since we set � > 0, �@ ∝ @ and @ is the only
parameter that may change sign, the values of @ for which polarized states exist are
restricted: states with a negative @ exist only in the in-phase branch (which corresponds
to the “−” sign), while states with a positive @ do so in the out-of-phase branch (the “+”
sign).

The existence of the polarized states is further limited by the parameter �@ , which
marks the transition between polarized and unpolarized solutions. While balanced
(unpolarized) states can exist for arbitrary values of �@ , the polarized solutions exist
only for high interactions, |�@ | < 1 [see Eq. (9.37), where 1 − �2

@ ≥ 0]. This implies that,
for @ ≠ 0, the wavenumber @ must fulfill the condition that

|@ | > 2�<
ℏ2�=0

. (9.40)

One can thus think of the polarized states as nonlinear bifurcations of the unpolarized
states at |�@ | = 1. Note from Eq. (9.40) that the range of possible wavenumbers @ is
reduced as the coherent coupling � increases. Figure 9.1 shows the polarization =0B as a
function of the wavenumber @ for two different values of the coherent coupling, � = 0.2
and 0.8, to illustrate this point.

Ground state of the system

To compare the two different types of solutions, we plot in Fig. 9.2 the energy eigenvalues
[top panel, Eqs. (9.32) and (9.35)] and the conserved energies per particle [bottom panel,
Eqs. (9.33) and (9.36)] of plane waves in the absence of rotation (Ω = 0).

In the nonchiral case (with only contact interactions), the ground state of the system
can either be balanced or polarized depending on the relative strength of the coherent
coupling compared to the interactions (Abad and Recati, 2013). This is not the case in
coherently coupled BECs with only current-density interactions. Here, the polarized
states are never the ground state (when they exist at |�@ | < 1), since the current-density
interactions do not contribute to the conserved energy in the chiral case.

Introducing the parameter �@ (9.38), we rewrite here the conserved energies of
polarized (9.36) and unpolarized (9.33) states as

�
(∓)
@

#
= &@ ∓ � and

�
(B)
@

#
= &@ ∓ � |�@ | , (9.41)
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Figure 9.2: Energy eigenvalue (top) and energy per particle (bottom) of stationary plane
waves with wavenumber @ in a ring trap of radius ' for two values of the linear coupling �
[in units of ℏ2/(<'2)] at Ω = 0 and for �=0 = 1/', as in Fig. 9.1. The solid circles indicate
the bifurcation points of states with nonvanishing spin current density �B (thick dot-dashed
lines), so that they do not exist within the region limited by the vertical dashed lines. Note
that @ is quantized on a ring and only the integer values of @' exist.

where &@ = (ℏ@ − <Ω')2/2< is the energy per particle in the absence of coherent
coupling (� = 0). Since |�@ | < 1 for the polarized states to exist, one can see by
comparing both expressions in Eq. (9.41) that the splitting due to the coherent coupling
� will always be larger for the unpolarized states. Despite the fact that the energy
eigenvalue �@ (B) of states with nonvanishing spin current density may become the lowest
for negative wavenumbers (see Fig. 9.2, top panel), the conserved energy does not (see
Fig. 9.2, bottom panel), and hence the polarized states are not the ground state of the
system.
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9.2.2 Stability of plane waves
Let us now consider the linear excitations of plane waves (9.26) to analyze their stability.
As the unperturbed state Φ(G), we consider plane waves with wavenumber @ and
in-phase components,

Φ@(G) =
(√
=0↑√
=0↓

)
4 8@G , (9.42)

since the out-of-phase states will be unstable10. Independently of the relative phase
between components of the unperturbed state, which we set to zero, the excitation
modes for each component may also be in or out of phase, which will result in two
dispersion branches11.

As we introduced in Subsection 9.1.2, the amplitudes of the linear excitations12
�# = [D↑, E↑, D↓, E↓]) are solution of the Bogoliubov equations (9.17). Due to the
translational invariance of the system, one can choose the amplitudes D�(G) and E�(G) to
be plane-wave solutions of the form,

D↑(G) = D↑ 4 8(:+@) G , E↑(G) = E↑ 4 8(:−@) G and D↓(G) = ± D↓ 4 8(:+@) G , E↓(G) = ± E↓ 4 8(:−@) G ,
(9.43)

where the ± sign accounts for the relative phase between components of the excitations.
Here we will first consider the simpler case of unpolarized states, where the

Bogoliubov equations reduce to two equations that one can solve analytically in a way
similar to the scalar case. Later, we will calculate the dispersion relations numerically
for the more general case of polarized states13.

Unpolarized plane waves

For unpolarized plane waves with wavenumber @, which have =0↑ = =0↓ = =0/2, one can
find linear excitations with equal phase, D↑ = D↓ = D and E↑ = E↓ = E, known as density
modes, and out-of-phase excitations, D↑ = −D↓ = D and E↑ = −E↓ = E, or spin modes. The
dispersion relation for the density modes is

$(d): =
ℏ:

<

(
@ + �=0

4

)
±

√(
ℏ:

<

)2 [(�=0
4

)2
+

2�=0@ + :2

4

]
−Ω': , (9.44)

and for the spin modes it is

$(s): =
ℏ:

<

(
@ + �=0

4

)
±

√(
ℏ:

<

)2 [(�=0
4

)2
+

2�=0@ + :2

4

]
+ 2�

(
:2 + �=0@

<
+ 2�
ℏ2

)
−Ω': .

(9.45)
10The stability of the system resembles that of a pendulum: while both in-phase (! = 0) and out-of-phase

(! = �) states are stationary, the out-of-phase case is not stable against perturbations.
11For more details, see Chapter 2, Subsection 2.2.1, where we discuss the excitations of a nonchiral

binary mixture. Regarding excitations in nonchiral spinor condensates, see for instance the works by Abad
and Recati (2013) and by Cominotti et al. (2022).

12We drop the index of the excitations 9 from now on for simplicity.
13One can also find the dispersion relations for polarized states analytically, but the procedure is much

less straightforward.
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Introducing the energy term

ℏ$@ =
(ℏ�=0)2

4< + 2�ℏ�@ (9.46)

and the wavenumber associated to rotation, :Ω = <Ω'/ℏ, the energies of the density
modes (9.44) and of the spin modes (9.45) read

ℏ$(d): =
ℏ2:

<

(
@ + �=0

4 − :Ω ±
1
2

√
:2 +

<$@

ℏ

)
, (9.47)

and

ℏ$(s): =
ℏ2:

<

(
@ + �=0

4 − :Ω
)
±

√
ℏ2:2

2<

(
ℏ2:2

2< +
ℏ$@

2 + 4�
)
+ 4�2

(
1 + 1

�@

)
. (9.48)

The dispersion relation of the density modes, $(d)
:

(9.47), does not depend on the
coherent coupling � and reproduces the linear excitations of the scalar case (see Chapter 8
and Arazo et al., 2023b). For low wavenumbers, $(d)

:
is linear in :, while it tends to zero

in the : → 0 limit. On the other hand, the dispersion of spin modes, $(s)
:

(9.48), shows
an energy gap14 due to the presence of the coherent coupling �. This gap appears (not
at : = 0, in general, but) at the wavenumber that solves %:$(s): = 0.

The spectrum associated with $(d)
:

(9.47) and $(s)
:

(9.48) contains unstable modes15
when either $@ < 0 and/or �@ ∈ [−1, 0]. Both types of instabilities appear only
for negative wavenumbers: $@ < 0, as in scalar condensates, produces modulation
instabilities of the total density if @ < −�=0/8, while the spin-density instabilities arise
for states that present 2� < �ℏ|�@ |. The last condition is the same as for the existence of
polarized plane waves (with negative wavenumber @), whose bifurcation point occurs
at �@ = −1. This value also indicates the first crossing of the two dispersion branches
[Eqs. (9.47) and (9.48)] at : = 0, while further crossings take place in the dispersion of
unstable states16 (i.e., for −1 < �@ < 0) at

ℏ: = ±

√
−2<�

(
1 + 1

�@

)
= ±

√
−<

(
2� + ℏ��@

)
. (9.49)

The fact that spin-density instabilities are associated with the existence of polarized
plane waves seems an intriguing feature, since these states have higher energy than the
unpolarized plane waves, as we show in Fig. 9.2 (see discussion in the main text as well).

Figure 9.3 shows the excitation spectra of plane waves with @' = −1 and interaction
parameter �̃ for two values of the coherent coupling �, where we have introduced

14If � = 0, one recovers the expression for $(d)
:

[see Eq. (9.47)], since only density excitations exist.
15For the density modes, setting : = 0 in the equation for $(d)

:
(9.47) gives the condition that $@ < 0 for

$(d)
:

to become imaginary. Similarly for the spin modes, one can see in the dispersion relation $(s)
:

(9.48)
for : = 0 that the modes will be unstable when 1 + 1/�@ < 0, which means both that �@ < 0 and �@ > −1
for $(s)

:
to be imaginary.

16There are no crossings for �@ > 0.
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Figure 9.3: Excitation spectrum of unpolarized plane waves with dimensionless wavenum-
ber @' = −1 for two different values of the coherent coupling � as given by Eqs. (9.47)
and (9.48). The interaction parameter is �# = 2� (top) and �# = 20� (bottom). The
coherent coupling � has the usual units of energy, ℏ2/(<'2), and the interaction parameter
labelled in the plots is �̃ = �=0', where =̃0 = =0' is dimensionless and we recall that
=0 = #/(2�').

the interaction parameter �̃ = �=0' and the dimensionless coherent coupling energy
�̃ = �<'2/ℏ2.

Let us first focus on the case of a low interaction parameter, �̃ = 1 (top panels), for
which $@ = −1.75 ℏ/(<'2) and �@ = −2�̃, such that $@ < 0 for any value of �. At a
high coupling �̃ = 0.6 (left panel), the unstable spin modes are suppressed; note that
�@ < −1 for these parameters. However, there are unstable density modes, since $@ < 0,
as the existence of complex frequencies Im[$(d)

:
] ≠ 0 (open circles) indicates. For lower

couplings such as �̃ = 0.2 (right panel), both types of instabilities occur, since �@ = −0.4
(�@ > −1) in this case.

Due to the constant energy term (ℏ�=0)2/(4<) in ℏ$@ (9.46), high densities17 can
suppress the unstable density modes. We illustrate this point in the bottom panels of
Fig. 9.3, which show the dispersion of plane waves with @' = −1 and �̃ = 10 for two
different values of the coherent coupling. However, unstable spin modes can still appear
if the coherent coupling is not high enough, as depicted in the left panel at �̃ = 4.9.

Polarized plane waves

For the general, polarized plane waves with wavenumber @, the states have a nonzero
imbalance and spin current (=0B ≠ 0 and �@B ≠ 0) and thus one has to diagonalize
the full 4 × 4 matrix in the Bogoliubov equations (9.17). We solve the system of

17We have defined �̃ = �=0', so high densities translate to a higher interaction parameter �̃.
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equations numerically, although these equations still support analytical solutions as in
the unpolarized case but of a more complex nature.

Figure 9.4: Excitation spectrum of polarized plane waves with dimensionless wavenumber
@' = −1 for two different values of the coherent coupling �, which we obtain by solving
the Bogoliubov equations (9.17) numerically. As for the unpolarized case (see Fig. 9.3), we
consider two strengths of the interactions: �# = 2� (top) and �# = 20� (bottom). The
dimensionless coherent coupling is �̃ = �<'2/ℏ2, and we have defined the interaction
parameter as �̃ = �=0'. We recall that =̃0 = =0' is dimensionless, with the average density
given by =0 = #/(2�'). The imbalance or spin density is =0B and |=0B | ∈ [0, =0].

Polarized states present notable differences in the dispersion of linear excitations
with respect to the unpolarized states. Now, the splitting between total-density and
spin-density branches is not meaningful in general cases. For negative wavenumbers,
however, low number densities trigger instabilities that closely resemble those of the
density modes in unpolarized states, while instabilities similar to those of the spin
modes are suppressed. Thus, we keep here the notation from the unpolarized case and
refer to the two possible instabilities as the density or spin modes.

In Fig. 9.4, we plot the dispersion charts of polarized plane waves with dimensionless
wavenumber @' = −1 for two interaction parameters, �̃ = 1 and 10, and two different
values of the coherent coupling � for each �̃.

For a low interaction parameter such as �̃ = 1 (see top panels in Fig. 9.4), the density
modes are unstable while spinmodes are stable for all possible values of � (see top panels
in Fig. 9.4), which means �̃ ≤ 0.5 for the parameters considered here. The threshold
value �̃ = 0.5 corresponds to the bifurcation point between polarized and unpolarized
states, |�@ | = 1, and has zero imbalance (=0B = 0). If �̃ ≥ 0.5, the polarized states can
no longer exist, since |�@ | > 1. When the coherent coupling is very strong and close to
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the bifurcation, �̃ ≈ 0.5, the spin density is almost zero, =0B ≈ 0, and one recovers the
excitation spectrum for a balanced mixture (see top right panel in Fig. 9.4). The spin
density =0B then increases as the coherent coupling � decreases. Eventually, when the
coherent coupling is weak enough, such as �̃ = 0.1, the system presents population
self-trapping, with =0B ≈ =0 (see top left panel in Fig. 9.4).

The disctinctive feacture of polarized states appears at higher densities, and it is
related to instabilities (for @ < 0) produced by the collision of excitation branches at
: ≠ 0. For an interaction parameter �̃ = 10 (see bottom panels in Fig. 9.4), both density
and spin modes are now unstable for the whole possible range of �, which for the
parameters considered corresponds to �̃ ≤ 5. Exceptionally, all modes are stable in the
two extreme situations of a very strong or weak coherent coupling. In the self-trapping
limit, �̃ → 0 and |�@ | → 0, and all the population locates in one of the components,
=0B ≈ =0 (see bottom left panel in Fig. 9.4). On the other hand, in the balanced case,
�̃→ 5 and |�@ | → 1, such that =0B ≈ 0, and one recovers the excitation spectrum of the
unpolarized states (see bottom right panel in Fig. 9.4; for reference, see bottom panels in
Fig. 9.3).

In the unpolarized case, we discussed that a high density (or interaction) could
prevent the density modes from being unstable. Although the same argument applies
to the polarized states, the collision of the different dispersion branches gives rise to
new instabilities, so there are always unstable modes for higher densities. Note however
that one could choose the system parameters in a way that these instabilities appear
exclusively for noninteger values of the dimensionless wavenumber @'. Since only
integer values of @' are valid for the ring geometry, all the excitation modes in this case
would be stable.

9.2.3 Quasi-linear states for the nonrotating case
Although the equation of motion (9.1) is a nonlinear equation due to the current-density
term, it becomes linear when the current density for each component vanishes, �� = 0.
Then, it admits the same solutions as the free Schrödinger equation for a spin-1/2 particle;
for the nonrotating case (Ω = 0), the usual standing waves sin(@G) and cos(@G) fulfill this
condition. Thus, as we discussed in Chapter 8 [see Eq. (8.19)], linear superpositions of
these waves with real coefficients are also stationary states, and complex superpositions
with nonzero current,

#@(G, C) =
( √

=↑
±√=↓

) [
1 − 

2 4−8@G + 1 + 
2 4 8�4 8@G

]
4−8�@ C/ℏ , (9.50)

with  and � real numbers and @ the wavenumber, solve the GPE as well. These states
have the constant component current density (8.20) �� = (ℏ/<) @=�, and total current
density

� =
ℏ

<
@= =

2
1 + 2 �@ , (9.51)
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with �@ the total current for plane-wave states (9.27). Normalization to the total number
of atoms # gives

= = =↑ + =↓ =
2=0

1 + 2 . (9.52)

As for plane waves, one can find solutions of the type of Eq. (9.50) with either zero
or nonzero spin current, �B = 0 and �B ≠ 0. For the unpolarized states (�B = 0), the
energy eigenvalue18 is

�(∓)@ =
ℏ2@2

2< +


1 + 2 ℏ��@ ∓ � . (9.53)

There is no restriction for  other than normalization, and the conserved energy is

�
(∓)
@

#
=
ℏ2@2

2< ∓ �
2

1 + 2 , (9.54)

such that one recovers the energy of plane waves with the same wavenumber @, as given
by Eq. (9.33), for  = ±1. For polarized states (�B ≠ 0), the imbalance =B = =↑ − =↓ is
given by

=B = ±=0

√(
2

1 + 2

)2
−

(�@


)2
. (9.55)

Unlike in the case of balanced states, the value of  is now constrained since =B has to
be real, which leads to the condition that

| | ∈
[
1 −

√
1 − �2

@ , 1 +
√

1 − �2
@

]
1
|�@ |

. (9.56)

The energy eigenvalue in this case is

�(B)@ =
ℏ2@2

2< +
2

1 + 2 ℏ��@ , (9.57)

and the conserved energy is
�
(B)
@

#
=
ℏ2@2
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|�@ |


. (9.58)

Figure 9.5 shows two examples for the same linear coupling � = 0.3 ℏ2/(<'2) and
interaction parameter �# = 20�: an in-phase, unpolarized state with  = 0.8 (left panel),
and a polarized state with  = 6 and a �-relative phase.

9.3 Nonlinear excited states

Superpositions of plane waves present a non-homogeneous density profile and constant
current densities, aswediscussed in Subsection 9.2.3. Besides plane-wave superpositions,
one can also find generic nonlinear excited states with modulated density and current
profiles; we will thus refer to such states as solitonic states.

18The energy eigenvalue of these complex superpositions have the same expression as those for
plane-wave solutions (9.32) with the total current �@ replaced by �.
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Figure 9.5: Linear superpositions of plane waves with (dimensionless) linear coupling
�̃ = 0.3 and interaction parameter �̃ = 10 in the absence of rotation (Ω = 0), as given by
Eq. (9.50). We show two different cases: unpolarized state with wavenumber @' = 1,
vanishing spin current �B = 0 and coefficient  = 0.8 (left); and polarized state with
wavenumber @' = 2, nonvanishing spin currrent �B ≠ 0 and coefficient  = 6 (right). We
recall that the dimensionless parameters are �̃ = �=0' and �̃ = �<'2/ℏ2.
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Figure 9.6: Nonlinear state with one dark soliton in a chiral spinor condensate with
interaction parameter �# = 20�, linear coupling �̃ = 0.5 and relative phase ! = � at
rotation rate Ω̃ = 0.5.

9.3.1 Solitons
The simplest of these states replicates the solutions of the scalar (chiral) system in the
spinor system, as we already introduced in Subsection 9.1.3 [see Eq. (9.23)]. We illustrate
this case in Fig. 9.6 for unpolarized, out-of-phase (#↑ = −#↓) dark solitons19 at rotating
rate Ω = 0.5Ω0. The usual hyperbolic functional form for infinite systems, tanh(G/�),
transforms to a ring trap into the Jacobi sn(G/�,m) function, which is a particular case
of Eq. (9.23) (see Chapter 8).

The spinor system allows also for more complex structures involving dark solitons.
As an example, in Fig. 9.7 we show a two-soliton state with a strong polarization at
rotation rate Ω = Ω0. In this case, the density profile of the minority component is
highly irregular (see inset), and is sustained by sudden � jumps in the phase profile.

19Dark solitons are characterized by a density dip and a �-phase jump across their profile.
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These phase jumps produce alternate regions of either in-phase (! = 0) or out-of-phase
(! = �) spin components.
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Figure 9.7: Nonlinear state with two dark solitons in a chiral spinor condensate with
interaction parameter �# = 20�, linear coupling �̃ = 0.5 at rotation rate Ω̃ = 1 in a highly
imbalanced state with non-constant relative phase. The inset zooms in the density of the
minority component.

9.3.2 Josephson vortices
In spinor condensates, in general, one can have two types of solitonic states, as in
nonchiral systems: regular (dark and bright) solitons, and Josephson vortices20 (Kaurov
and Kuklov, 2005). Soliton solutions do not have Josephson currents and are well known
in scalar condensates (see for instance Pitaevskii and Stringari, 2016). Josephson vortices,
however, are characterized by the presence of Josephson currents and appear only in
spinor systems (Baals et al., 2018; Qadir et al., 2012; Shamailov and Brand, 2018). In
nonchiral systems with repulsive contact interparticle interactions, dark solitons and
Josephson vortices can be considered as domain walls of the total and relative phase with
corresponding healing lengths � = ℏ2/(<�) and �� = ℏ2/(4<�), respectively (Son and
Stephanov, 2002), and the interconversion between them takes place at � = �� (Kaurov
and Kuklov, 2005, 2006).

Figure 9.8 shows our numerical results for a stationary Josephson-vortex state in
a chiral spinor system with the same parameters as for the dark solitons shown in
Fig. 9.6. The total density profile resembles the dark-soliton state, but the 2� jump in
the relative phase stands out as the main signature of the Josephson vortex (see central
panel). Additionally, the nonvanishing Josephson current ℐ! [defined in Eqs. (9.11)

20Josephson vortices have a density profile similar to two overlapped dark solitons (one in each
component) but with a nonzero density at the core.
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Figure 9.8: Josephson-vortex state in a chiral spinor condensate. Density profiles (top),
phase profiles (middle), and currents (bottom) for a system with interaction parameter
�# = 20�, linear coupling �̃ = 0.5, and rotation rate Ω̃ = 0.5, as in Fig. 9.7.

and (9.12)] changes sign around the vortex core, as the density minimum reflects (see
bottom panel). The current densities that we represent are measured with respect to the
rotating frame, J� = �� − =�Ω', and show opposite directions as measured with respect
an average nonzero current. Regular (nonchiral) Josephson vortices are analytically
described as (Kaurov and Kuklov, 2005)

#↑,↓ ∝ tanh (G/��) ± 8
�

cosh (G/��)
. (9.59)

An important difference in chiral spinor condensates is the uneven spin density profiles,
which arise from differences in the effective interactions induced by the chiral currents,
and are closer to those of regular moving Josephson vortices (Shamailov and Brand,
2018).

Regarding states with multiple Josephson vortices, configurations with co- and
counter-rotating vortices are possible. Figure 9.9 shows a state with two co-rotating
Josephson vortices, which have smooth 2� jumps in the relative phase for each vortex
(see central panel), and with a nonzero density at the vortex core (see top panel). Note
that these cores are located in the junction at the spatial position of the density minima
of both spin components, and that the Josephson current changes sign (vanishes) also at
half distance between them. The situation is more involved however for counter-rotating
Josephson vortices, as we show in Fig. 9.10. Although one can identify the sign change
of Josephson currents around the vortex cores, which are now signaled by minima in
the total density, the relative phase presents just � (opposite) jumps across them. These
� jumps are caused by staggered dark-soliton-like phase profiles in the spin components.
The features of counter-rotating Josephson vortices are in sharp contrast with the case
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Figure 9.9: Co-rotating Josephson vortices in a chiral spinor condensate with interaction
parameter �# = 20� at Ω̃ = 1 and �̃ = 0.5. We plot the density profiles (top), the phase
profiles (middle), and the currents (bottom).

Figure 9.10: Counter-rotating Josephson vortices in a chiral spinor condensate with interac-
tion parameter �# = 20� at Ω̃ = 1 and �̃ = 0.2. As in Fig. 9.9, we plot the density profiles
(top), the phase profiles (middle), and the currents (bottom).

of static counter-rotating Josephson vortices in regular spinor condensates (Qiu et al.,
2021), and present common features with other moving solitonic structures, such as
staggered dark solitons or Manakov solitons (see for instance Shamailov and Brand,
2018).
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9.4 Summary of results

In this chapter, we have studied the stationary states of quasi-1D spinor condensates in
a rotating ring geometry with current-density interactions. The two spin components
can exchange particles due to the linear coupling, which we implement by considering a
double well in the direction transversal to the chiral axis.

The Hamiltonian that describes the system contains a coherent coupling term, but
it also includes an effective spin–orbit coupling that does not appear in equivalent
nonchiral spinor condensates. This additional term originates from an axial current
between the spin components. Thus, we find that the absence or presence of a spin
current determines the two possible types of solutions that the system supports.

As for the chiral scalar case, the most simple possible solutions are plane waves.
Then, depending on whether the spin current is nonzero, the system may present
either unpolarized (with zero spin current) or polarized (with nonzero spin current)
plane-wave solutions analogously to the nonchiral spinor case. In particular, we have
analyzed the regime of parameters in which polarized states can exist. A distinct feature
of polarized states in the chiral spinor system is that now polarized states are never the
ground state of the system, as opposed to nonchiral spinor condensates, where states
with a nonvanishing spin current may be the ground state for the appropriate values of
the interparticle interaction strength.

We have also studied the stability of plane waves (with negative wavenumber) by
analyzing their linear excitations. The excitation spectra of unpolarized states (without
spin current) show two branches of excitations, called spin or density modes, as for
the nonchiral case. We have studied the effect of the number density on the stability
of plane waves since a high density (i.e., a strong interaction) may suppress density
modes that are unstable at lower densities. Polarized states present a similar situation
at low densities as unpolarized states. For higher densities, however, the polarized
states present instabilities that arise by the collision of excitation branches at nonzero
momenta.

Besides plane waves, the system also supports complex superpositions of plane-wave
solutions, which have constant currents and spatially modulated density and phase
profiles. We have finally studied more general solutions with space-dependent profiles,
namely nonlinear excited states, which we refer to as solitonic states. Among these states,
one can find similar states as those we already discussed in the scalar case (see Chapter
8), which are regular dark and bright solitons that can now appear with or without spin
currents. Interestingly, we have seen that the system may also host Josephson vortices,
a particular feature of spinor condensates, which present Josephson currents flowing
between components.
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CONCLUSIONS

Bose–Einstein condensation of ultradilute and weakly interacting gases has been the
leitmotiv of this thesis. We have employed a theoretical mean-field description of Bose–
Einstein condensates (BECs) and explored two main interconnected themes: anisotropic
interactions and self-bound solutions. First, we have dealt with long-range dipolar
interactions, which may dominate in systems of highly magnetic atoms, and with the
effective short-range chiral interactions that can emerge in a condensate when subject to
an artificial gauge field. Second, we have focused on two types of states that self-bind
due to the interacting nature of the system: quantum droplets, stabilized by quantum
fluctuations, and solitons, which owe their existence to the dispersion of the medium.

In the present chapter, we summarize the main results of this work and examine the
possible future lines of research that may derive from this thesis.

The initial part of this thesis was devoted to the development of the theoretical
foundations of the subsequent research, and was detailed in Chapters 2, 3, and 4.

In Chapter 2, we reviewed the fundamental concepts behind Bose–Einstein conden-
sation. First, we introduced basic ideas such as the quantum statistical origin of this
transition, the condensate fraction, quantum depletion, the role of dimensionality, and
two-body interactions. Since BECs are generally weakly interacting and very dilute,
one can deal with the many-body problem using a mean-field approach that yields
the Gross–Pitaevskii equation (GPE). However, when these conditions are not met, the
mean-field approach is no longer valid, and quantum fluctuations start to contribute
significantly. We gave an overview of both the mean-field treatment and the beyond-
mean correction that takes into account these quantum fluctuations. Second, we moved
to bosonic binary mixtures and discussed their stability and excitations. In particular,
we introduced the effective single-component model commonly used to study quantum
nondipolar droplets. Later, we discussed the binding mechanism of such droplets and
outlined their main properties, such as the critical number of atoms, saturation, and
self-evaporation. Finally, we reduced the GPE to 1D and introduced the formalism that
describes solitonic solutions, focusing, in particular, on dark and bright solitons and
their main features.

In Chapter 3, we focused on BECs of atoms with a high dipolar moment. First, we
described the dipole–dipole interactions and themean-field formalism for dipolar atoms,
which adds a nonlocal term to the GPE. We discussed the effect of these interactions on
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the ground state, and then we examined the excitations and instabilities of the system,
especially the roton instability. Second, we introduced a beyond mean-field correction to
the dipolar GPE to include the effect of quantum fluctuations and studied the formation
of self-bound droplets. We discussed the role of confinement in such droplets, which
may break into several droplets when the confinement along the dipole direction is
strong enough. We concluded by discussing how these smaller droplets can form
crystals due to the in-plane confinement and that, in some cases, the resulting crystals
may exhibit supersolid properties.

In Chapter 4, we dealt with current-density interactions, which are chiral. First,
we introduced artificial gauge fields and density-dependent gauge potentials, which
give rise to the chiral interactions we considered. Then, we explored how these
density-dependent gauge potentials could be obtained in optically coupled condensates,
starting from the simple case of a two-level atom to develop the main ideas and later
discussing a two-component condensate with asymmetric contact interactions. Second,
we presented the current-density theory in 1D by deriving its equation of motion, which
has a nonlinear term that comes from the current density and results in effective chiral
interactions. Finally, we added periodic boundary conditions to the system to write the
chiral GPE for a rotating ring and discussed the possible states of the system.

The remaining chapters of this thesis explored ultracold bosonic gases in different
configurations within the mean-field framework. In particular, we studied shell-shaped
BECs (Chapter 5), bosonic binary mixtures (Chapters 6 and 7), and BECs in a rotating
ring (Chapters 8 and 9).

In Chapter 5, we studied the ground-state configurations and dynamical behavior of
shell-shaped BECs under a small gravitational force. We considered nondipolar and
dipolar condensates and used gravities above microgravity but well below terrestrial
gravity, which would drag all the atoms to the bottom of the trap. First, we examined the
static properties of the system both in the absence of gravity andwith a tiny gravitational
sag and compared the nondipolar and dipolar cases. Also, we considered both the
case of complete alignment between the gravitational axis and the dipoles and the case
of a small misalignment. Then, we described how the strength of the gravitational
force determines the ground-state shape of the condensate, a full or half shell, and thus
critically affects the dynamics of the system. Second, we characterized the dynamical
oscillations when varying perturbatively the orientation or the strength of gravity.
We showed how the two ground-state regimes result in two different behaviors: the
oscillation frequency increases (decreases) with the strength of gravity for the half shell
(full shell). Finally, we discussed that oscillations, whether from variations in angle or
magnitude, are similar in nondipolar condensates, but they show distinct behaviors in
dipolar BECs since the dipolar interactions counterbalance the gravitational sag and
reduce its effect. As a result, dipolar shells are much more robust against perturbations
to gravity.

We explored in depth the sensitivity of both dipolar and nondipolar condensates to
variations in the angle and the strength of gravity, and found that one cannot discern the
origin of the oscillations from the dynamics alone. A potential line of inquiry would be
to reduce the geometry and study instead a toroidal BEC (Guo et al., 2022), where it may
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be possible to distinguish between the two effects. Additionally, one could explore the
effect of quantum fluctuations, as recently done in dipolar shell-shaped BECs (Ciardi
et al., 2024; Sánchez-Baena et al., 2023a), and study the formation of droplet arrays and
supersolids.

In Chapter 6, we considered a quasi-1D immiscible mixture of two nondipolar
components, and we characterized the transmission and reflection of a dark soliton
through the domain wall that separates them. First, we saw that a dark soliton imprinted
in one of the components may generate a dark–bright (DB) soliton when crossing the
domain wall depending on the strength of the interactions. The resulting DB solitons
are generated dynamically outside the regime of parameters for which explicit analytical
solutions exist. Once the DB forms, it follows a harmonic-like trajectory; when it
reaches the domain wall again, it is transferred or reflected. Second, we obtained a
semianalytical expression for the oscillation frequency of the DB soliton by treating
the bright component, which is the minority component, as a perturbation to the dark
component. We finally checked that this semianalytical prediction agrees with the
numerical frequency obtained by solving the GPE.

A natural extension of this work would be to examine the interaction and back-
action between the DB soliton and the domain wall to understand better their interplay.
Furthermore, one could consider the case of higher dimensions (Aioi et al., 2012), in
which case a more complex picture and instabilities due to the dimensionality would
arise.

In Chapter 7, we dealt with binary dipolar mixtures with antiparallel dipoles. First,
we observed that the mixture can form three-dimensionally self-bound structures, while
confinement along the polarization (axial) direction can give rise to the formation
of droplet crystals. These crystals are self-bound in the transversal plane since the
intercomponent interactions are attractive and the two components confine each other.
Then, we analyzed these crystals, where one of the components forms an array of
droplets and the other fills in the interstitials of the crystal. We argued the incoherent
nature of the droplets, observed how they arrange in an approximately triangular
structure, and discussed that the superfluidity of the interstitial component may be
probed using time-of-flight measurements. Finally, we also examined the effect of the
contact interactions and showed that the system may form stripe/labyrinthic crystals or
droplet crystals when the intracomponent interactions are symmetric or asymmetric,
respectively.

This work leaves several open questions. For example, one could study the excitations
of the system, and investigating wether they evaporate would be a possible course to
follow. Additionally, one could also explore the formation of quantized vortices in the
interstitial component as a means to prove its superfluid character. Lastly, one could
also explore the dynamical formation of these crystals by starting with a single dipolar
component and adiabatically transferring population to the other component.

In Chapter 8, we moved to quasi-1D BECs confined in a rotating-ring trap and subject
to current-density interactions. Persistent currents become chiral in such a system, and
the stationary states of the system (plane waves and solitonic states) are also markedly
different compared to the nonchiral case. First, we showed that the eigenenergy is
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asymmetric in the angular frequency; thus, solitonic trajectories cannot cross the non-
rotating case. Second, we analyzed the dynamical stability of the stationary states and
started by verifying that the time evolution agrees with the predictions of the linear
analysis of excitations. For a positive velocity, we found stable currents with either
constant or modulated density profiles. For a negative velocity, on the other hand,
we observed unstable currents above a velocity threshold. This instability indicates
that moving and strongly localized bright solitons, which behave as classical particles
regarding their energy and momentum, may be stable instead.

In Chapter 9, we generalized the system of Chapter 8 to a 1/2-spinor condensate
resembling a long Josephson junction and studied the stationary states of the system. To
split the condensate into two components, we proposed using a double-well potential
in the direction transversal to the chiral axis such that there can be an interchange
of particles between components due to the linear coupling. First, we examined the
Hamiltonian of the system, which contains, besides a coherent coupling term, an effective
spin–orbit coupling. We discussed that this new term does not appear in nonchiral
spinor condensates since it comes from the current between spin components. Then,
we saw that the two possible types of solutions depend on the absence or presence
of spin current. Second, we analyzed plane-wave solutions thoroughly and discussed
the two scenarios that arise in the absence or presence of a spin current: unpolarized
or polarized plane waves. We analyzed the conditions of the existence of polarized
states, and we pointed out that, unlike in nonchiral spinor condensates, the polarized
states in the chiral case cannot be the ground state. Later, we examined the stability
of plane-wave solutions via linear analysis of excitations for both the unpolarized and
the polarized cases. We showed that the unpolarized states present two excitation
branches and that high densities may suppress unstable density modes, while polarized
states exhibit instabilities stemming from the collision of different branches. Third,
we studied solitonic-like solutions of the system, which are more general solutions
and, in contrast to plane waves, present a modulated density profile. In particular, we
considered solitons, which were already solutions of the scalar case, and Josephson
vortices, which are distinctive of spinor condensates since they emerge from the current
between components.

Instead of the long Josephson junction of Chapter 9, one could consider a point-like
junction (Edmonds et al., 2013b), with the double-well potential along the chiral axis.
It would be worth doing a thorough analysis of how the current-density interactions
affect the Josephson dynamics of the system and checking the validity of the two-mode
approximation by performing full 3D mean-field calculations.

Connecting with the previous lines of research discussed through this thesis, another
natural extension of the scalar chiral model would be to consider a dipolar condensate
in a 1D geometry with open boundary conditions (or in a very large ring). First, one
should consider the experimental feasibility of a dipolar condensate with these effective
chiral interactions, since dipolar relaxation may limit the lifetime of the system. Then,
one could study the interplay between the orientation of the dipoles and the short-range
chiral interactions, and explore the ground-state configurations and excitations of the
system.
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Other possible continuations to the 1D chiral case would be to include the effect
of quantum fluctuations to study the formation of droplets when the interactions are
chiral. For instance, one could consider a 1D nondipolar and miscible mixture with
current-density interactions, whichmay be achieved bymixing two chiral condensates of
different atomic species. The beyond mean-field correction to the mean-field formalism
would now have a chiral nature as well, and as a result, the binding mechanism of
the droplets would also show a dependence on the motion of the atoms. Droplets of
nondipolar (and nonchiral) mixtures exist only for a particular ratio of the components’
densities. For this reason, this setup raises the question of whether such chiral droplets
could exist or a moving droplet would evaporate to reach a new density ratio as the
effective interactions change due to chirality.

Finally, building on the last two scenarios, one could explore the effect of quantum
fluctuations in a 1D chiral scalar condensate with dipole–dipole interactions. In this
system, when quantum fluctuations are no longer negligible, droplets and supersolids
with chiral properties could emerge.





A
JACOBI ELLIPTIC FUNCTIONS

The Jacobi elliptic1 functions allow one to generalize the hyperbolic functions to a
geometry with periodic boundary conditions (see Abramowitz and Stegun, 1968, for
more details). There are twelve elliptic functions denoted as pq(G,m), with p and q any
of the letters c, s, n and d2. However, all twelve of them can be derived and expressed in
terms of the three main functions: cn(G,m), sn(G,m) and dn(G,m) (see Fig. A.1), which
are defined as

sn(G,m) = sin(+) , cn(G,m) = cos(+) , dn(G,m) =
√

1 −m sin2 + . (A.1)

The angle + is called the amplitude, and is the angle for which the cartesian coordinate G
can be written in integral form as

G =

∫ +

0

(
1 −m sin2 '

)−1/2
3' . (A.2)

The first variable in these functions is, in our case, the spatial coordinate G; the second
variable is the parameter m3, which is a real scalar. The value of m is bounded between
0 and 1, which leads to two limiting cases:

• Trigonometric limit. The functions sn(G, 0) and cn(G, 0) yield the trigonometric
functions sin(G) and cos(G), respectively, while dn(G, 0) = 1 (see Fig. A.1, left).

• Hyperbolic limit. The elliptic functions cn(G,m→ 1) and dn(G,m→ 1) tend both to
the hyperbolic function sech(G), while sn(G,m→ 1) tends to tanh(G) instead (see
Fig. A.1, right).

1The term elliptic refers to the fact that these functions are defined with the ellipse as reference, while
the trigonometric and hyperbolic functions use instead the circle and the hyperbola, respectively.

2When the two letters are the same, for instance p, the corresponding function pp(G,m) is set to unity
for completeness.

3The notation used to characterize the elliptic functions is not particularly uniform in the literature:
the first variable can also be given in terms of the amplitude +, and the second variable is sometimes
expressed in terms of the elliptic modulus :, with m = :2. The cartesian coordinate and the amplitude are
usually denoted in the literature by D and !, but here we will use G and + instead to avoid confusion.
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Figure A.1: Jacobi elliptic functions sn(G,m), cn(G,m) and dn(G,m) [see (A.1)] as a function
of G for the trigonometric limit (left) and the hyperbolic limit (right). The spatial coordinate
G is given in units of K = K(m) (A.4), the integral of the first kind. In the right panel, dotted
and dashed lines correspond to the hyperbolic functions tanh(G) and sech(G), respectively.

The usual trigonometric identity sin2 G + cos2 G = 1 generalizes to elliptic functions as

− dn2(G,m) + (1 −m) = −m cn2(G,m) = m sn2(G,m) −m , (A.3)

such that, in the m = 0 case, one recovers the trigonometric expression sn2(G, 0) +
cn2(G, 0) = 1. Similarly, one gets the hyperbolic relation sech2(G) = 1 − tanh2(G) in the
m→ 1 limit.

The period of the elliptic functions is given in terms of the complete elliptic integral
of the first kind,

K = K(m) =
∫ �/2

0

(
1 −m sin2 '

)−1/2
3' , (A.4)

which corresponds to Eq. (A.2) with amplitude + = �/2. Then, as one can see by plotting
the elliptic functions (Fig. A.1), the period of sn(G,m) and cn(G,m) is 4K, while dn(G,m)
has a period of 2K when m ≠ 0.

The stationary soliton solutions that we study in Chapters 8 and 9 are given in terms
of these elliptic functions. To calculate the norm and phase of these solutions, we need
to introduce the incomplete elliptic integrals. The incomplete elliptic integral of the
second kind is defined as

E(G,m) =
∫ G

0
dn2(D,m) 3D , (A.5)

which becomes complete when G = K, which we denote as E(m) = E(K,m), and has the
property

E(G + 0K,m) = E(G,m) + 0E(m) , (A.6)
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where 0 is an integer. Lastly, we introduce the incomplete integral of the third kind4,

P(�; G,m) =
∫ G

0

[
1 − � sn2(G,m)

]−1
3D , (A.7)

where �may be complex and take on any value. As we did for the integral of the second
kind, we now define the complete integral as P(�;m) = P(�; K,m).

4The elliptic integral of the third kind is usually denoted by Π in the literature and most numerical
libraries, but here we will use P to differentiate it from the momentum operator in the rotating frame, Π̂,
which we use in Chapters 8 and 9.





BIBLIOGRAPHY

M. Abad. Persistent currents in coherently coupled bose-einstein condensates in a ring
trap. Physical Review A, 93:033603, Mar 2016. doi: 10.1103/PhysRevA.93.033603. URL
https://link.aps.org/doi/10.1103/PhysRevA.93.033603. (Cited on page 2.)

M. Abad and A. Recati. A study of coherently coupled two-component Bose-Einstein
condensates. The European Physical Journal D, 67:1–11, Jul 2013. doi: 10.1140/epjd/
e2013-40053-2. URL https://doi.org/10.1140/epjd/e2013-40053-2. (Cited on
pages 4, 29, 154, 159, 162, and 164.)

M. Abad, M. Guilleumas, R. Mayol, M. Pi, and D. M. Jezek. Vortices in Bose-Einstein
condensates with dominant dipolar interactions. Physical Review A, 79(6):063622,
Jun 2009. doi: 10.1103/PhysRevA.79.063622. URL https://link.aps.org/doi/10.
1103/PhysRevA.79.063622. (Cited on page 83.)

M. Abad, M. Guilleumas, R. Mayol, M. Pi, and D. M. Jezek. Dipolar condensates
confined in a toroidal trap: Ground state and vortices. Physical Review A, 81(4):043619,
Apr 2010. doi: 10.1103/PhysRevA.81.043619. URL https://link.aps.org/doi/10.
1103/PhysRevA.81.043619. (Cited on page 84.)

M.Abad,M.Guilleumas, R.Mayol,M. Pi, andD.M. Jezek. Adipolar self-inducedbosonic
Josephson junction. Europhysics Letters, 94(1):10004, Apr 2011. doi: 10.1209/0295-5075/
94/10004. URL https://dx.doi.org/10.1209/0295-5075/94/10004. (Cited on
page 84.)

M. Abad, A. Sartori, S. Finazzi, and A. Recati. Persistent currents in two-component
condensates in a toroidal trap. Physical Review A, 89:053602, May 2014. doi: 10.
1103/PhysRevA.89.053602. URL https://link.aps.org/doi/10.1103/PhysRevA.
89.053602. (Cited on page 2.)

M. Abad, M. Guilleumas, R. Mayol, F. Piazza, D. M. Jezek, and A. Smerzi. Phase slips
and vortex dynamics in Josephson oscillations between Bose-Einstein condensates.
Europhysics Letters, 109(4):40005, Feb 2015. doi: 10.1209/0295-5075/109/40005. URL
https://dx.doi.org/10.1209/0295-5075/109/40005. (Cited on page 84.)

M. J. Ablowitz, B. Prinari, and A. D. Trubatch. Discrete and continuous nonlinear
Schrödinger systems, volume 302. Cambridge University Press, 2004. doi: 10.1017/
CBO9780511546709. URL https://doi.org/10.1017/CBO9780511546709. (Cited on
page 6.)

185

https://link.aps.org/doi/10.1103/PhysRevA.93.033603
https://doi.org/10.1140/epjd/e2013-40053-2
https://link.aps.org/doi/10.1103/PhysRevA.79.063622
https://link.aps.org/doi/10.1103/PhysRevA.79.063622
https://link.aps.org/doi/10.1103/PhysRevA.81.043619
https://link.aps.org/doi/10.1103/PhysRevA.81.043619
https://dx.doi.org/10.1209/0295-5075/94/10004
https://link.aps.org/doi/10.1103/PhysRevA.89.053602
https://link.aps.org/doi/10.1103/PhysRevA.89.053602
https://dx.doi.org/10.1209/0295-5075/109/40005
https://doi.org/10.1017/CBO9780511546709


186

M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas,
graphs, and mathematical tables, volume 55. US Government printing office, 1968. ISBN
9780486612720. (Cited on pages 136, 138, 139, 141, and 181.)

V. Achilleos, P. G. Kevrekidis, V. M. Rothos, and D. J. Frantzeskakis. Statics and
dynamics of atomic dark-bright solitons in the presence of impurities. Physical
Review A, 84:053626, Nov 2011. doi: 10.1103/PhysRevA.84.053626. URL https:
//doi.org/10.1103/PhysRevA.84.053626. (Cited on page 7.)

S. K. Adhikari. Dipolar Bose-Einstein condensate in a ring or in a shell. Physical
Review A, 85(5):053631, May 2012. doi: 10.1103/PhysRevA.85.053631. URL https:
//link.aps.org/doi/10.1103/PhysRevA.85.053631. (Cited on pages 80 and 84.)

V. Afanasyev, Y. S. Kivshar, V. Konotop, and V. Serkin. Dynamics of coupled dark and
bright optical solitons. Optics letters, 14(15):805–807, 1989. doi: 10.1364/OL.14.000805.
URL https://opg.optica.org/ol/abstract.cfm?uri=ol-14-15-805. (Cited on
page 7.)

U. Aglietti, L. Griguolo, R. Jackiw, S.-Y. Pi, andD. Seminara. Anyons and chiral solitons on
a line. Physical Review Letters, 77(21):4406–4409, Nov 1996. doi: 10.1103/PhysRevLett.
77.4406. URL https://link.aps.org/doi/10.1103/PhysRevLett.77.4406. (Cited
on pages 5, 7, 72, 73, 74, 75, 129, 132, 135, and 153.)

Y. Aharonov and D. Bohm. Significance of electromagnetic potentials in the quantum
theory. Physical Review, 115(3):485–491, Aug 1959. doi: 10.1103/PhysRev.115.485. URL
https://link.aps.org/doi/10.1103/PhysRev.115.485. (Cited on page 67.)

M. Aidelsburger, S. Nascimbene, and N. Goldman. Artificial gauge fields in materials
and engineered systems. Comptes Rendus Physique, 19(6):394–432, Nov 2018. doi:
10.1016/j.crhy.2018.03.002. URL https://doi.org/10.1016/j.crhy.2018.03.002.
(Cited on pages 64, 65, and 69.)

K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino. Bose-
Einstein condensation of erbium. Physical Review Letters, 108(21):210401, May 2012.
doi: 10.1103/PhysRevLett.108.210401. URL https://link.aps.org/doi/10.1103/
PhysRevLett.108.210401. (Cited on pages 4 and 95.)

T. Aioi, T. Kadokura, and H. Saito. Penetration of a vortex dipole across an interface
of Bose-Einstein condensates. Physical Review A, 85(2):023618, Feb 2012. doi: 10.
1103/PhysRevA.85.023618. URL https://link.aps.org/doi/10.1103/PhysRevA.
85.023618. (Cited on page 177.)

N. Akhmediev, W. Królikowski, and A. W. Snyder. Partially coherent solitons of variable
shape. Physical Review Letters, 81:4632–4635, Nov 1998. doi: 10.1103/PhysRevLett.81.
4632. URL https://link.aps.org/doi/10.1103/PhysRevLett.81.4632. (Cited on
page 7.)

https://doi.org/10.1103/PhysRevA.84.053626
https://doi.org/10.1103/PhysRevA.84.053626
https://link.aps.org/doi/10.1103/PhysRevA.85.053631
https://link.aps.org/doi/10.1103/PhysRevA.85.053631
https://opg.optica.org/ol/abstract.cfm?uri=ol-14-15-805
https://link.aps.org/doi/10.1103/PhysRevLett.77.4406
https://link.aps.org/doi/10.1103/PhysRev.115.485
https://doi.org/10.1016/j.crhy.2018.03.002
https://link.aps.org/doi/10.1103/PhysRevLett.108.210401
https://link.aps.org/doi/10.1103/PhysRevLett.108.210401
https://link.aps.org/doi/10.1103/PhysRevA.85.023618
https://link.aps.org/doi/10.1103/PhysRevA.85.023618
https://link.aps.org/doi/10.1103/PhysRevLett.81.4632


187

M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler.
Direct observation of tunneling and nonlinear self-trapping in a single bosonic
josephson junction. Physical Review Letters, 95:010402, Jun 2005. doi: 10.1103/
PhysRevLett.95.010402. URL https://link.aps.org/doi/10.1103/PhysRevLett.
95.010402. (Cited on page 2.)

M. O. D. Alotaibi and L. D. Carr. Scattering of a dark-bright soliton by an impurity.
Journal of Physics B: Atomic, Molecular and Optical Physics, 52(16):165301, Jul 2019. doi:
10.1088/1361-6455/ab2cfb. URL https://dx.doi.org/10.1088/1361-6455/ab2cfb.
(Cited on page 7.)

L. Amico, M. Boshier, G. Birkl, A. Minguzzi, C. Miniatura, L.-C. Kwek, D. Aghamalyan,
V. Ahufinger, D. Anderson, N. Andrei, et al. Roadmap on Atomtronics: State of the
art and perspective. AVS Quantum Science, 3(3):039201, 08 2021. ISSN 2639-0213. doi:
10.1116/5.0026178. URL https://doi.org/10.1116/5.0026178. (Cited on page 3.)

L. Amico, D. Anderson, M. Boshier, J.-P. Brantut, L.-C. Kwek, A. Minguzzi, and W. von
Klitzing. Colloquium: Atomtronic circuits: From many-body physics to quantum
technologies. Rev. Mod. Phys., 94:041001, Nov 2022. doi: 10.1103/RevModPhys.94.
041001. URL https://link.aps.org/doi/10.1103/RevModPhys.94.041001. (Cited
on page 3.)

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D.
Phillips. Quantized rotation of atoms from photons with orbital angular momentum.
Physical Review Letters, 97:170406, Oct 2006. doi: 10.1103/PhysRevLett.97.170406. URL
https://link.aps.org/doi/10.1103/PhysRevLett.97.170406. (Cited on page 2.)

B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell. Vortex precession in
Bose-Einstein condensates: Observations with filled and empty cores. Physical Review
Letters, 85(14):2857–2860, Oct 2000. doi: 10.1103/PhysRevLett.85.2857. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.85.2857. (Cited on pages 7 and 110.)

B. P. Anderson, P. C. Haljan, C. A. Regal, D. L. Feder, L. A. Collins, C. W. Clark, and
E. A. Cornell. Watching dark solitons decay into vortex rings in a bose-einstein
condensate. Physical Review Letters, 86:2926–2929, Apr 2001. doi: 10.1103/PhysRevLett.
86.2926. URL https://link.aps.org/doi/10.1103/PhysRevLett.86.2926. (Cited
on page 6.)

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell.
Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269(5221):
198–201, 1995. doi: 10.1126/science.269.5221.198. URL https://www.science.org/
doi/abs/10.1126/science.269.5221.198. (Cited on pages 1 and 11.)

P. W. Anderson and J. M. Rowell. Probable observation of the josephson supercon-
ducting tunneling effect. Physical Review Letters, 10:230–232, Mar 1963. doi: 10.1103/
PhysRevLett.10.230. URL https://link.aps.org/doi/10.1103/PhysRevLett.10.
230. (Cited on page 2.)

https://link.aps.org/doi/10.1103/PhysRevLett.95.010402
https://link.aps.org/doi/10.1103/PhysRevLett.95.010402
https://dx.doi.org/10.1088/1361-6455/ab2cfb
https://doi.org/10.1116/5.0026178
https://link.aps.org/doi/10.1103/RevModPhys.94.041001
https://link.aps.org/doi/10.1103/PhysRevLett.97.170406
https://link.aps.org/doi/10.1103/PhysRevLett.85.2857
https://link.aps.org/doi/10.1103/PhysRevLett.85.2857
https://link.aps.org/doi/10.1103/PhysRevLett.86.2926
https://www.science.org/doi/abs/10.1126/science.269.5221.198
https://www.science.org/doi/abs/10.1126/science.269.5221.198
https://link.aps.org/doi/10.1103/PhysRevLett.10.230
https://link.aps.org/doi/10.1103/PhysRevLett.10.230


188

M. Andrews, C. Townsend, H.-J. Miesner, D. Durfee, D. Kurn, and W. Ketterle. Observa-
tion of interference between two bose condensates. Science, 275(5300):637–641, 1997.
doi: 10.1126/science.275.5300.637. URL https://www.science.org/doi/10.1126/
science.275.5300.637. (Cited on page 2.)

P. Ao and S. T. Chui. Binary Bose-Einstein condensate mixtures in weakly and strongly
segregated phases. Physical Review A, 58(6):4836–4840, Dec 1998. doi: 10.1103/
PhysRevA.58.4836. URL https://link.aps.org/doi/10.1103/PhysRevA.58.4836.
(Cited on page 27.)

M. Arazo, M. Guilleumas, R. Mayol, and M. Modugno. Dynamical generation of dark-
bright solitons through the domain wall of two immiscible Bose-Einstein condensates.
Physical Review A, 104(4):043312, Oct 2021a. doi: 10.1103/PhysRevA.104.043312. URL
https://link.aps.org/doi/10.1103/PhysRevA.104.043312. (Cited on pages xv
and 9.)

M.Arazo, R.Mayol, andM.Guilleumas. Shell-shaped condensateswith gravitational sag:
contact and dipolar interactions. New Journal of Physics, 23(11):113040, nov 2021b. doi:
10.1088/1367-2630/ac37c9. URL https://dx.doi.org/10.1088/1367-2630/ac37c9.
(Cited on pages xv and 8.)

M. Arazo, A. Gallemí, M. Guilleumas, R. Mayol, and L. Santos. Self-bound crys-
tals of antiparallel dipolar mixtures. Physical Review Research, 5(4):043038, Oct
2023a. doi: 10.1103/PhysRevResearch.5.043038. URL https://link.aps.org/doi/
10.1103/PhysRevResearch.5.043038. (Cited on pages xv and 9.)

M. Arazo, M. Guilleumas, R. Mayol, V. Delgado, and A. Muñoz Mateo. Chiral currents
in Bose-Einstein condensates subject to current-density interactions. Physical Review
A, 108(5):053302, Nov 2023b. doi: 10.1103/PhysRevA.108.053302. URL https:
//link.aps.org/doi/10.1103/PhysRevA.108.053302. (Cited on pages xv, 9, 158,
and 165.)

A. S. Arnold. Extending dark optical trapping geometries. Optics letters, 37(13):2505–
2507, 2012. doi: 10.1364/OL.37.002505. URL https://opg.optica.org/ol/abstract.
cfm?uri=ol-37-13-2505. (Cited on page 3.)

D. C. Aveline et al. Observation of Bose–Einstein condensates in an Earth-orbiting
research lab. Nature, 582:193–197, Jun 2020. URL http://www.nature.com/articles/
s41586-020-2346-1. (Cited on page 80.)

M. C. Bañuls, R. Blatt, J. Catani, A. Celi, J. I. Cirac, M. Dalmonte, L. Fallani, K. Jansen,
M. Lewenstein, S. Montangero, et al. Simulating lattice gauge theories within
quantum technologies. The European physical journal D, 74:1–42, 2020. doi: 10.1140/
epjd/e2020-100571-8. URL https://link.springer.com/article/10.1140/epjd/
e2020-100571-8. (Cited on page 3.)

https://www.science.org/doi/10.1126/science.275.5300.637
https://www.science.org/doi/10.1126/science.275.5300.637
https://link.aps.org/doi/10.1103/PhysRevA.58.4836
https://link.aps.org/doi/10.1103/PhysRevA.104.043312
https://dx.doi.org/10.1088/1367-2630/ac37c9
https://link.aps.org/doi/10.1103/PhysRevResearch.5.043038
https://link.aps.org/doi/10.1103/PhysRevResearch.5.043038
https://link.aps.org/doi/10.1103/PhysRevA.108.053302
https://link.aps.org/doi/10.1103/PhysRevA.108.053302
https://opg.optica.org/ol/abstract.cfm?uri=ol-37-13-2505
https://opg.optica.org/ol/abstract.cfm?uri=ol-37-13-2505
http://www.nature.com/articles/s41586-020-2346-1
http://www.nature.com/articles/s41586-020-2346-1
https://link.springer.com/article/10.1140/epjd/e2020-100571-8
https://link.springer.com/article/10.1140/epjd/e2020-100571-8


189

C. Baals, H. Ott, J. Brand, and A. Muñoz Mateo. Nonlinear standing waves in an array
of coherently coupled Bose-Einstein condensates. Physical Review A, 98(5):053603,
Nov 2018. doi: 10.1103/PhysRevA.98.053603. URL https://link.aps.org/doi/10.
1103/PhysRevA.98.053603. (Cited on page 171.)

D. Baillie and P. B. Blakie. Droplet crystal ground states of a dipolar bose gas. Physical
Review Letters, 121(19):195301, Nov 2018. doi: 10.1103/PhysRevLett.121.195301. URL
https://link.aps.org/doi/10.1103/PhysRevLett.121.195301. (Cited on pages 6
and 59.)

D. Baillie, R. M. Wilson, R. N. Bisset, and P. B. Blakie. Self-bound dipolar droplet: A
localized matter wave in free space. Physical Review A, 94(2):021602, Aug 2016. doi:
10.1103/PhysRevA.94.021602. URL https://link.aps.org/doi/10.1103/PhysRevA.
94.021602. (Cited on page 56.)

D. Baillie, R. M.Wilson, and P. B. Blakie. Collective excitations of self-bound droplets of a
dipolar quantum fluid. Physical Review Letters, 119(25):255302, Dec 2017. doi: 10.1103/
PhysRevLett.119.255302. URL https://link.aps.org/doi/10.1103/PhysRevLett.
119.255302. (Cited on page 58.)

M. Baranov. Theoretical progress in many-body physics with ultracold dipolar gases.
Physics Reports, 464(3):71–111, 2008. ISSN 0370-1573. doi: https://doi.org/10.1016/
j.physrep.2008.04.007. URL https://www.sciencedirect.com/science/article/
pii/S0370157308001385. (Cited on page 4.)

M. Baranov, L. Dobrek, K. Góral, L. Santos, and M. Lewenstein. Ultracold dipolar gases –
a challenge for experiments and theory. Physica Scripta, 2002(T102):74, jan 2002. doi:
10.1238/Physica.Topical.102a00074. URL https://dx.doi.org/10.1238/Physica.
Topical.102a00074. (Cited on page 4.)

M. A. Baranov, M. Dalmonte, G. Pupillo, and P. Zoller. Condensed matter theory of
dipolar quantum gases. Chemical Reviews, 112(9):5012–5061, 2012. doi: 10.1021/
cr2003568. URL https://doi.org/10.1021/cr2003568. (Cited on page 4.)

C. F. Barenghi and N. G. Parker. A primer on quantum fluids. Springer, 2016. doi:
10.1007/978-3-319-42476-7. URL https://doi.org/10.1007/978-3-319-42476-7.
(Cited on pages 6, 35, and 98.)

A. Barone. Physics and Applications of the Josephson Effect. John Wiley and Sons, Ltd,
1982. ISBN 9783527602780. doi: 10.1002/352760278X.ch10. URL https://doi.org/
10.1002/352760278X.ch10. (Cited on page 156.)

S. Beattie, S. Moulder, R. J. Fletcher, and Z. Hadzibabic. Persistent currents in spinor
condensates. Physical Review Letters, 110:025301, Jan 2013. doi: 10.1103/PhysRevLett.
110.025301. URL https://link.aps.org/doi/10.1103/PhysRevLett.110.025301.
(Cited on page 2.)

https://link.aps.org/doi/10.1103/PhysRevA.98.053603
https://link.aps.org/doi/10.1103/PhysRevA.98.053603
https://link.aps.org/doi/10.1103/PhysRevLett.121.195301
https://link.aps.org/doi/10.1103/PhysRevA.94.021602
https://link.aps.org/doi/10.1103/PhysRevA.94.021602
https://link.aps.org/doi/10.1103/PhysRevLett.119.255302
https://link.aps.org/doi/10.1103/PhysRevLett.119.255302
https://www.sciencedirect.com/science/article/pii/S0370157308001385
https://www.sciencedirect.com/science/article/pii/S0370157308001385
https://dx.doi.org/10.1238/Physica.Topical.102a00074
https://dx.doi.org/10.1238/Physica.Topical.102a00074
https://doi.org/10.1021/cr2003568
https://doi.org/10.1007/978-3-319-42476-7
https://doi.org/10.1002/352760278X.ch10
https://doi.org/10.1002/352760278X.ch10
https://link.aps.org/doi/10.1103/PhysRevLett.110.025301


190

Q. Beaufils, R. Chicireanu, T. Zanon, B. Laburthe-Tolra, E. Maréchal, L. Vernac, J.-C.
Keller, and O. Gorceix. All-optical production of chromium bose-einstein condensates.
Physical Review A, 77:061601, Jun 2008. doi: 10.1103/PhysRevA.77.061601. URL
https://link.aps.org/doi/10.1103/PhysRevA.77.061601. (Cited on page 4.)

C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Krön-
jager, K. Bongs, and K. Sengstock. Oscillations and interactions of dark and dark–
bright solitons in Bose–Einstein condensates. Nature Physics, 4:496–501, 2008. doi:
10.1038/nphys962. URL https://doi.org/10.1038/nphys962. (Cited on pages 3, 7,
98, and 99.)

D. Becker,M.D. Lachmann, S. T. Seidel, H.Ahlers, A.N.Dinkelaker, J. Grosse, O.Hellmig,
H.Müntinga, V. Schkolnik, T.Wendrich, et al. Space-borne Bose–Einstein condensation
for precision interferometry. Nature, 562(7727):391–395, 2018. (Cited on page 80.)

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis,
T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop. Bose–einstein condensation in
large time-averaged optical ring potentials. New Journal of Physics, 18(3):035003, mar
2016. doi: 10.1088/1367-2630/18/3/035003. URL https://dx.doi.org/10.1088/
1367-2630/18/3/035003. (Cited on page 3.)

S. J. Bereta, L. Madeira, V. S. Bagnato, andM. A. Caracanhas. Bose–Einstein condensation
in spherically symmetric traps. American Journal of Physics, 87(11):924–934, Nov 2019.
ISSN0002-9505. doi: 10.1119/1.5125092. URLhttps://doi.org/10.1119/1.5125092.
(Cited on page 79.)

S. J. Bereta, M. A. Caracanhas, and A. L. Fetter. Superfluid vortex dynamics on a
spherical film. Physical Review A, 103(5):053306, May 2021. doi: 10.1103/PhysRevA.103.
053306. URL https://link.aps.org/doi/10.1103/PhysRevA.103.053306. (Cited
on page 79.)

M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proceedings of the
Royal Society of London. A. Mathematical and Physical Sciences, 392(1802):45–57, Mar
1984. doi: 10.1098/rspa.1984.0023. URL https://royalsocietypublishing.org/
doi/10.1098/rspa.1984.0023. (Cited on pages 4, 64, and 66.)

I. A. Bhat, S. Sivaprakasam, and B. A. Malomed. Modulational instability and soliton
generation in chiral Bose-Einstein condensates with zero-energy nonlinearity. Physical
Review E, 103(3):032206, Mar 2021. doi: 10.1103/PhysRevE.103.032206. URL https:
//link.aps.org/doi/10.1103/PhysRevE.103.032206. (Cited on pages 7 and 129.)

R. N. Bisset, R. M. Wilson, D. Baillie, and P. B. Blakie. Ground-state phase diagram
of a dipolar condensate with quantum fluctuations. Physical Review A, 94(3):033619,
Sep 2016. doi: 10.1103/PhysRevA.94.033619. URL https://link.aps.org/doi/10.
1103/PhysRevA.94.033619. (Cited on pages 5, 56, and 58.)

https://link.aps.org/doi/10.1103/PhysRevA.77.061601
https://doi.org/10.1038/nphys962
https://dx.doi.org/10.1088/1367-2630/18/3/035003
https://dx.doi.org/10.1088/1367-2630/18/3/035003
https://doi.org/10.1119/1.5125092
https://link.aps.org/doi/10.1103/PhysRevA.103.053306
https://royalsocietypublishing.org/doi/10.1098/rspa.1984.0023
https://royalsocietypublishing.org/doi/10.1098/rspa.1984.0023
https://link.aps.org/doi/10.1103/PhysRevE.103.032206
https://link.aps.org/doi/10.1103/PhysRevE.103.032206
https://link.aps.org/doi/10.1103/PhysRevA.94.033619
https://link.aps.org/doi/10.1103/PhysRevA.94.033619


191

R. N. Bisset, L. A. P. n. Ardila, and L. Santos. Quantum droplets of dipolar mixtures.
Physical Review Letters, 126(2):025301, Jan 2021. doi: 10.1103/PhysRevLett.126.025301.
URL https://link.aps.org/doi/10.1103/PhysRevLett.126.025301. (Cited on
pages 4, 112, 113, and 117.)

T. Bland, E. Poli, L. A. P. n. Ardila, L. Santos, F. Ferlaino, and R. N. Bisset. Alternating-
domain supersolids in binary dipolar condensates. Physical Review A, 106(5):053322,
Nov 2022a. doi: 10.1103/PhysRevA.106.053322. URL https://link.aps.org/doi/
10.1103/PhysRevA.106.053322. (Cited on pages 112, 120, and 122.)

T. Bland, E. Poli, C. Politi, L. Klaus, M. A. Norcia, F. Ferlaino, L. Santos, and R. N.
Bisset. Two-dimensional supersolid formation in dipolar condensates. Physical
Review Letters, 128(19):195302, May 2022b. doi: 10.1103/PhysRevLett.128.195302.
URL https://link.aps.org/doi/10.1103/PhysRevLett.128.195302. (Cited on
pages 112 and 118.)

I. Bloch, J. Dalibard, and W. Zwerger. Many-body physics with ultracold gases. Rev.
Mod. Phys., 80:885–964, Jul 2008. doi: 10.1103/RevModPhys.80.885. URL https:
//link.aps.org/doi/10.1103/RevModPhys.80.885. (Cited on page 3.)

N. Bogoliubov. On the theory of superfluidity. J. Phys, 11(1):23, 1947. doi: 10.
1016/B978-0-08-015816-7.50020-1. URLhttps://www.sciencedirect.com/science/
article/pii/B9780080158167500201. (Cited on pages 22 and 48.)

J. L. Bohn, R. M. Wilson, and S. Ronen. How does a dipolar Bose-Einstein condensate
collapse? Laser Physics, 19:547–549, Apr 2009. doi: 10.1134/S1054660X09040021. URL
https://doi.org/10.1134/S1054660X09040021. (Cited on page 47.)

J. L. Bohn, A. M. Rey, and J. Ye. Cold molecules: Progress in quantum engi-
neering of chemistry and quantum matter. Science, 357(6355):1002–1010, 2017.
doi: 10.1126/science.aam6299. URL https://www.science.org/doi/abs/10.1126/
science.aam6299. (Cited on page 4.)

K. Bongs and K. Sengstock. Physics with coherent matter waves. Reports on Progress
in Physics, 67(6):907, may 2004. doi: 10.1088/0034-4885/67/6/R03. URL https:
//dx.doi.org/10.1088/0034-4885/67/6/R03. (Cited on page 20.)

M. Boninsegni and N. V. Prokof’ev. Colloquium: Supersolids: What and where are they?
Reviews of Modern Physics, 84(2):759–776, May 2012. doi: 10.1103/RevModPhys.84.759.
URL https://link.aps.org/doi/10.1103/RevModPhys.84.759. (Cited on page 59.)

S. N. Bose. Plancks gesetz und lichtquantenhypothese. Zeitschrift für Physik, 26(1):
178–181, 1924. (Cited on page 1.)

F. Böttcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T. Langen, and T. Pfau.
Transient supersolid properties in an array of dipolar quantum droplets. Physical
Review X, 9(1):011051, Mar 2019a. doi: 10.1103/PhysRevX.9.011051. URL https:
//link.aps.org/doi/10.1103/PhysRevX.9.011051. (Cited on pages 6, 59, and 112.)

https://link.aps.org/doi/10.1103/PhysRevLett.126.025301
https://link.aps.org/doi/10.1103/PhysRevA.106.053322
https://link.aps.org/doi/10.1103/PhysRevA.106.053322
https://link.aps.org/doi/10.1103/PhysRevLett.128.195302
https://link.aps.org/doi/10.1103/RevModPhys.80.885
https://link.aps.org/doi/10.1103/RevModPhys.80.885
https://www.sciencedirect.com/science/article/pii/B9780080158167500201
https://www.sciencedirect.com/science/article/pii/B9780080158167500201
https://doi.org/10.1134/S1054660X09040021
https://www.science.org/doi/abs/10.1126/science.aam6299
https://www.science.org/doi/abs/10.1126/science.aam6299
https://dx.doi.org/10.1088/0034-4885/67/6/R03
https://dx.doi.org/10.1088/0034-4885/67/6/R03
https://link.aps.org/doi/10.1103/RevModPhys.84.759
https://link.aps.org/doi/10.1103/PhysRevX.9.011051
https://link.aps.org/doi/10.1103/PhysRevX.9.011051


192

F. Böttcher, M. Wenzel, J.-N. Schmidt, M. Guo, T. Langen, I. Ferrier-Barbut, T. Pfau,
R. Bombín, J. Sánchez-Baena, J. Boronat, and F. Mazzanti. Dilute dipolar quantum
droplets beyond the extended gross-pitaevskii equation. Physical Review Res., 1:033088,
Nov 2019b. doi: 10.1103/PhysRevResearch.1.033088. URL https://link.aps.org/
doi/10.1103/PhysRevResearch.1.033088. (Cited on page 5.)

C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of bose-einstein
condensation in an atomic gas with attractive interactions. Physical Review Letters, 75:
1687–1690, Aug 1995. doi: 10.1103/PhysRevLett.75.1687. URL https://link.aps.
org/doi/10.1103/PhysRevLett.75.1687. (Cited on page 1.)

C. C. Bradley, C. A. Sackett, and R. G. Hulet. Analysis of in situ images of bose-einstein
condensates of lithium. Physical Review A, 55:3951–3953, May 1997a. doi: 10.1103/
PhysRevA.55.3951. URL https://link.aps.org/doi/10.1103/PhysRevA.55.3951.
(Cited on page 1.)

C. C. Bradley, C. A. Sackett, and R. G. Hulet. Bose-einstein condensation of lithium:
Observation of limited condensate number. Physical Review Letters, 78:985–989, Feb
1997b. doi: 10.1103/PhysRevLett.78.985. URL https://link.aps.org/doi/10.1103/
PhysRevLett.78.985. (Cited on page 1.)

J. Brand and W. P. Reinhardt. Generating ring currents, solitons and svortices by stirring
a bose-einstein condensate in a toroidal trap. Journal of Physics B: Atomic, Molecular
and Optical Physics, 34(4):L113, feb 2001. doi: 10.1088/0953-4075/34/4/105. URL
https://dx.doi.org/10.1088/0953-4075/34/4/105. (Cited on page 7.)

V. A. Brazhnyi and V. V. Konotop. Evolution of a dark soliton in a parabolic poten-
tial: Application to Bose-Einstein condensates. Physical Review A, 68(4), Oct 2003a.
doi: 10.1103/PhysRevA.68.043613. URL http://dx.doi.org/10.1103/PhysRevA.68.
043613. (Cited on page 6.)

V. A. Brazhnyi and V. V. Konotop. Publisher’s note: Evolution of a dark soliton in a
parabolic potential: Application to bose-einstein condensates [physical review a 68,
043613 (2003)]. Physical Review A, 68:059902, Nov 2003b. doi: 10.1103/PhysRevA.
68.059902. URL https://link.aps.org/doi/10.1103/PhysRevA.68.059902. (Cited
on page 6.)

S. Bresolin, A. Roy, G. Ferrari, A. Recati, and N. Pavloff. Oscillating solitons and ac
josephson effect in ferromagnetic bose-bose mixtures. Physical Review Letters, 130:
220403, May 2023. doi: 10.1103/PhysRevLett.130.220403. URL https://link.aps.
org/doi/10.1103/PhysRevLett.130.220403. (Cited on page 7.)

N. Q. Burdick, K. Baumann, Y. Tang, M. Lu, and B. L. Lev. Fermionic suppression
of dipolar relaxation. Physical Review Letters, 114(2):023201, Jan 2015. doi: 10.1103/
PhysRevLett.114.023201. URL https://link.aps.org/doi/10.1103/PhysRevLett.
114.023201. (Cited on page 40.)

https://link.aps.org/doi/10.1103/PhysRevResearch.1.033088
https://link.aps.org/doi/10.1103/PhysRevResearch.1.033088
https://link.aps.org/doi/10.1103/PhysRevLett.75.1687
https://link.aps.org/doi/10.1103/PhysRevLett.75.1687
https://link.aps.org/doi/10.1103/PhysRevA.55.3951
https://link.aps.org/doi/10.1103/PhysRevLett.78.985
https://link.aps.org/doi/10.1103/PhysRevLett.78.985
https://dx.doi.org/10.1088/0953-4075/34/4/105
http://dx.doi.org/10.1103/PhysRevA.68.043613
http://dx.doi.org/10.1103/PhysRevA.68.043613
https://link.aps.org/doi/10.1103/PhysRevA.68.059902
https://link.aps.org/doi/10.1103/PhysRevLett.130.220403
https://link.aps.org/doi/10.1103/PhysRevLett.130.220403
https://link.aps.org/doi/10.1103/PhysRevLett.114.023201
https://link.aps.org/doi/10.1103/PhysRevLett.114.023201


193

S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov,
and M. Lewenstein. Dark solitons in bose-einstein condensates. Physical Review
Letters, 83:5198–5201, Dec 1999. doi: 10.1103/PhysRevLett.83.5198. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.83.5198. (Cited on page 6.)

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E.
Wieman. Coherence, correlations, and collisions: What one learns about Bose-
Einstein condensates from their decay. Physical Review Letters, 79(3):337–340, Jul
1997. doi: 10.1103/PhysRevLett.79.337. URL https://link.aps.org/doi/10.1103/
PhysRevLett.79.337. (Cited on page 15.)

A. V. Buryak, Y. S. Kivshar, and D. F. Parker. Coupling between dark and bright solitons.
Physics Letters A, 215(1-2):57–62, 1996. doi: 10.1016/0375-9601(96)00208-3. URL https:
//www.sciencedirect.com/science/article/abs/pii/0375960196002083. (Cited
on page 7.)

T. Busch and J. R. Anglin. Motion of dark solitons in trapped Bose-Einstein condensates.
Physical Review Letters, 84(11):2298–2301, Mar 2000. doi: 10.1103/PhysRevLett.84.
2298. URL https://link.aps.org/doi/10.1103/PhysRevLett.84.2298. (Cited on
page 98.)

T. Busch and J. R. Anglin. Dark-bright solitons in inhomogeneous Bose-Einstein
condensates. Physical Review Letters, 87(1):010401, Jun 2001. doi: 10.1103/PhysRevLett.
87.010401. URL http://dx.doi.org/10.1103/PhysRevLett.87.010401. (Cited on
pages 7, 99, 108, and 109.)

S. Butera, M. Valiente, and P. Öhberg. Quantized vortices in interacting gauge theories.
Journal of Physics B: Atomic, Molecular and Optical Physics, 49(1):015304, dec 2015. doi:
10.1088/0953-4075/49/1/015304. URL https://dx.doi.org/10.1088/0953-4075/
49/1/015304. (Cited on page 5.)

S. Butera, M. Valiente, and P. Öhberg. Vortex dynamics in superfluids governed by
an interacting gauge theory. New Journal of Physics, 18(8):085001, aug 2016. doi:
10.1088/1367-2630/18/8/085001. URL https://dx.doi.org/10.1088/1367-2630/
18/8/085001. (Cited on page 5.)

F. Böttcher, J.-N. Schmidt, J. Hertkorn, K. S. H. Ng, S. D. Graham, M. Guo, T. Langen,
and T. Pfau. New states of matter with fine-tuned interactions: quantum droplets
and dipolar supersolids. Reports on Progress in Physics, 84(1):012403, dec 2021. doi:
10.1088/1361-6633/abc9ab. URL https://dx.doi.org/10.1088/1361-6633/abc9ab.
(Cited on pages 5, 30, 37, 56, 58, 111, and 118.)

C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell.
Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science, 359(6373):
301–304, 2018. doi: 10.1126/science.aao5686. URL https://www.science.org/doi/
abs/10.1126/science.aao5686. (Cited on pages 5, 6, 30, 31, and 33.)

https://link.aps.org/doi/10.1103/PhysRevLett.83.5198
https://link.aps.org/doi/10.1103/PhysRevLett.83.5198
https://link.aps.org/doi/10.1103/PhysRevLett.79.337
https://link.aps.org/doi/10.1103/PhysRevLett.79.337
https://www.sciencedirect.com/science/article/abs/pii/0375960196002083
https://www.sciencedirect.com/science/article/abs/pii/0375960196002083
https://link.aps.org/doi/10.1103/PhysRevLett.84.2298
http://dx.doi.org/10.1103/PhysRevLett.87.010401
https://dx.doi.org/10.1088/0953-4075/49/1/015304
https://dx.doi.org/10.1088/0953-4075/49/1/015304
https://dx.doi.org/10.1088/1367-2630/18/8/085001
https://dx.doi.org/10.1088/1367-2630/18/8/085001
https://dx.doi.org/10.1088/1361-6633/abc9ab
https://www.science.org/doi/abs/10.1126/science.aao5686
https://www.science.org/doi/abs/10.1126/science.aao5686


194

M. A. Caracanhas, P. Massignan, and A. L. Fetter. Superfluid vortex dynamics on
an ellipsoid and other surfaces of revolution. Physical Review A, 105(2):023307, Feb
2022. doi: 10.1103/PhysRevA.105.023307. URL https://link.aps.org/doi/10.
1103/PhysRevA.105.023307. (Cited on page 79.)

R. A. Carollo, D. C. Aveline, B. Rhyno, S. Vishveshwara, C. Lannert, J. D. Murphree,
E. R. Elliott, J. R. Williams, R. J. Thompson, and N. Lundblad. Observation of
ultracold atomic bubbles in orbital microgravity. Nature, 606(7913):281–286, May
2022. doi: 10.1038/s41586-022-04639-8. URL https://www.nature.com/articles/
s41586-022-04639-8. (Cited on page 80.)

L. D. Carr and Y. Castin. Dynamics of a matter-wave bright soliton in an expulsive
potential. Physical Review A, 66:063602, Dec 2002. doi: 10.1103/PhysRevA.66.063602.
URL https://link.aps.org/doi/10.1103/PhysRevA.66.063602. (Cited on page 6.)

L. D. Carr, C. W. Clark, andW. P. Reinhardt. Stationary solutions of the one-dimensional
nonlinear schrödinger equation. i. case of repulsive nonlinearity. Physical Review A, 62
(6):063610, Nov 2000a. doi: 10.1103/PhysRevA.62.063610. URL https://link.aps.
org/doi/10.1103/PhysRevA.62.063610. (Cited on page 140.)

L. D. Carr, C. W. Clark, andW. P. Reinhardt. Stationary solutions of the one-dimensional
nonlinear schrödinger equation. ii. case of attractive nonlinearity. Physical Review A,
62(6):063611, Nov 2000b. doi: 10.1103/PhysRevA.62.063611. URL https://link.aps.
org/doi/10.1103/PhysRevA.62.063611. (Cited on page 140.)

L. D. Carr, M. A. Leung, and W. P. Reinhardt. Dynamics of the bose-einstein condensate:
quasi-one-dimension and beyond. Journal of Physics B: Atomic, Molecular and Optical
Physics, 33(19):3983, oct 2000c. doi: 10.1088/0953-4075/33/19/312. URL https:
//dx.doi.org/10.1088/0953-4075/33/19/312. (Cited on pages 6 and 7.)

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye. Cold and ultracold molecules: science,
technology and applications. New Journal of Physics, 11(5):055049, may 2009. doi:
10.1088/1367-2630/11/5/055049. URL https://dx.doi.org/10.1088/1367-2630/
11/5/055049. (Cited on page 4.)

P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell. Bright soliton
to quantum droplet transition in a mixture of Bose-Einstein condensates. Physical
Review Letters, 120(13):135301, Mar 2018. doi: 10.1103/PhysRevLett.120.135301. URL
https://link.aps.org/doi/10.1103/PhysRevLett.120.135301. (Cited on pages 5,
7, 31, and 33.)

Z. Chen and H. Zhai. Collective-mode dynamics in a spin-orbit-coupled bose-einstein
condensate. Physical Review A, 86:041604, Oct 2012. doi: 10.1103/PhysRevA.86.041604.
URL https://link.aps.org/doi/10.1103/PhysRevA.86.041604. (Cited on page 5.)

Z. Chen, M. Segev, T. H. Coskun, D. N. Christodoulides, and Y. S. Kivshar. Cou-
pled photorefractive spatial-soliton pairs. JOSA B, 14(11):3066–3077, 1997. doi:

https://link.aps.org/doi/10.1103/PhysRevA.105.023307
https://link.aps.org/doi/10.1103/PhysRevA.105.023307
https://www.nature.com/articles/s41586-022-04639-8
https://www.nature.com/articles/s41586-022-04639-8
https://link.aps.org/doi/10.1103/PhysRevA.66.063602
https://link.aps.org/doi/10.1103/PhysRevA.62.063610
https://link.aps.org/doi/10.1103/PhysRevA.62.063610
https://link.aps.org/doi/10.1103/PhysRevA.62.063611
https://link.aps.org/doi/10.1103/PhysRevA.62.063611
https://dx.doi.org/10.1088/0953-4075/33/19/312
https://dx.doi.org/10.1088/0953-4075/33/19/312
https://dx.doi.org/10.1088/1367-2630/11/5/055049
https://dx.doi.org/10.1088/1367-2630/11/5/055049
https://link.aps.org/doi/10.1103/PhysRevLett.120.135301
https://link.aps.org/doi/10.1103/PhysRevA.86.041604


195

10.1364/JOSAB.14.003066. URL https://opg.optica.org/josab/abstract.cfm?
uri=josab-14-11-3066. (Cited on page 7.)

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga. Feshbach resonances in ultracold gases.
Reviews of Modern Physics, 82(2):1225–1286, Apr 2010. doi: 10.1103/RevModPhys.82.
1225. URL https://link.aps.org/doi/10.1103/RevModPhys.82.1225. (Cited on
pages 3, 16, and 71.)

C. S. Chisholm, A. Frölian, E. Neri, R. Ramos, L. Tarruell, and A. Celi. Encoding a one-
dimensional topological gauge theory in a raman-coupled Bose-Einstein condensate.
Physical Review Research, 4(4):043088, Nov 2022. doi: 10.1103/PhysRevResearch.
4.043088. URL https://link.aps.org/doi/10.1103/PhysRevResearch.4.043088.
(Cited on pages 4, 5, 68, 72, 73, 129, and 153.)

L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino.
Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a
macrodroplet in a dipolar quantumfluid. Physical Review X, 6(4):041039, Nov 2016. doi:
10.1103/PhysRevX.6.041039. URL https://link.aps.org/doi/10.1103/PhysRevX.
6.041039. (Cited on pages 5 and 112.)

L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G. Durastante,
R.M.W. van Bĳnen, A. Patscheider, M. Sohmen, M. J. Mark, and F. Ferlaino. Long-lived
and transient supersolid behaviors in dipolar quantum gases. Physical Review X, 9(2):
021012, Apr 2019. doi: 10.1103/PhysRevX.9.021012. URL https://link.aps.org/
doi/10.1103/PhysRevX.9.021012. (Cited on pages 6, 59, and 112.)

L. Chomaz, I. Ferrier-Barbut, F. Ferlaino, B. Laburthe-Tolra, B. L. Lev, and T. Pfau.
Dipolar physics: a review of experiments with magnetic quantum gases. Reports
on Progress in Physics, 86(2):026401, Dec 2022. doi: 10.1088/1361-6633/aca814. URL
https://dx.doi.org/10.1088/1361-6633/aca814. (Cited on pages 4, 5, 37, 38, 39,
40, 56, 57, 58, and 111.)

S. Chu. Nobel lecture: The manipulation of neutral particles. Rev. Mod. Phys., 70:685–706,
Jul 1998. doi: 10.1103/RevModPhys.70.685. URL https://link.aps.org/doi/10.
1103/RevModPhys.70.685. (Cited on page 1.)

M. Ciardi, F. Cinti, G. Pellicane, and S. Prestipino. Supersolid phases of bosonic particles
in a bubble trap. Physical Review Letters, 132(2):026001, Jan 2024. doi: 10.1103/
PhysRevLett.132.026001. URL https://link.aps.org/doi/10.1103/PhysRevLett.
132.026001. (Cited on pages 81 and 177.)

F. Cinti and M. Boninsegni. Classical and quantum filaments in the ground state
of trapped dipolar bose gases. Physical Review A, 96:013627, Jul 2017. doi: 10.
1103/PhysRevA.96.013627. URL https://link.aps.org/doi/10.1103/PhysRevA.
96.013627. (Cited on page 6.)

https://opg.optica.org/josab/abstract.cfm?uri=josab-14-11-3066
https://opg.optica.org/josab/abstract.cfm?uri=josab-14-11-3066
https://link.aps.org/doi/10.1103/RevModPhys.82.1225
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043088
https://link.aps.org/doi/10.1103/PhysRevX.6.041039
https://link.aps.org/doi/10.1103/PhysRevX.6.041039
https://link.aps.org/doi/10.1103/PhysRevX.9.021012
https://link.aps.org/doi/10.1103/PhysRevX.9.021012
https://dx.doi.org/10.1088/1361-6633/aca814
https://link.aps.org/doi/10.1103/RevModPhys.70.685
https://link.aps.org/doi/10.1103/RevModPhys.70.685
https://link.aps.org/doi/10.1103/PhysRevLett.132.026001
https://link.aps.org/doi/10.1103/PhysRevLett.132.026001
https://link.aps.org/doi/10.1103/PhysRevA.96.013627
https://link.aps.org/doi/10.1103/PhysRevA.96.013627


196

L. W. Clark, B. M. Anderson, L. Feng, A. Gaj, K. Levin, and C. Chin. Observation of
density-dependent gauge fields in a Bose-Einstein condensate based on micromotion
control in a shaken two-dimensional lattice. Physical Review Letters, 121(3):030402, Jul
2018. doi: 10.1103/PhysRevLett.121.030402. URL https://link.aps.org/doi/10.
1103/PhysRevLett.121.030402. (Cited on pages 5 and 129.)

C. N. Cohen-Tannoudji. Nobel lecture: Manipulating atoms with photons. Rev.
Mod. Phys., 70:707–719, Jul 1998. doi: 10.1103/RevModPhys.70.707. URL https:
//link.aps.org/doi/10.1103/RevModPhys.70.707. (Cited on page 1.)

Y. Colombe, E. Knyazchyan, O. Morizot, B. Mercier, V. Lorent, and H. Perrin. Ultracold
atoms confined in rf-induced two-dimensional trapping potentials. Europhysics
Letters, 67(4):593–599, Aug 2004. doi: 10.1209/epl/i2004-10095-7. URL https:
//dx.doi.org/10.1209/epl/i2004-10095-7. (Cited on page 80.)

M. Cominotti, D. Rossini, M. Rizzi, F. Hekking, and A. Minguzzi. Optimal persistent
currents for interacting bosons on a ring with a gauge field. Physical Review Letters,
113:025301, Jul 2014. doi: 10.1103/PhysRevLett.113.025301. URL https://link.aps.
org/doi/10.1103/PhysRevLett.113.025301. (Cited on page 2.)

M. Cominotti, M. Rizzi, D. Rossini, D. Aghamalyan, L. Amico, L. C. Kwek, F. Hekking,
and A. Minguzzi. Optimal scaling of persistent currents for interacting bosons on
a ring. The European Physical Journal Special Topics, 224:519–524, 2015. doi: 10.1140/
epjst/e2015-02381-3. URL https://link.springer.com/article/10.1140/epjst/
e2015-02381-3. (Cited on page 2.)

R. Cominotti, A. Berti, A. Farolfi, A. Zenesini, G. Lamporesi, I. Carusotto, A. Recati, and
G. Ferrari. Observation of massless and massive collective excitations with faraday
patterns in a two-component superfluid. Physical Review Letters, 128(21):210401, May
2022. doi: 10.1103/PhysRevLett.128.210401. URL https://link.aps.org/doi/10.
1103/PhysRevLett.128.210401. (Cited on page 164.)

G. Condon, M. Rabault, B. Barrett, L. Chichet, R. Arguel, H. Eneriz-Imaz, D. Naik,
A. Bertoldi, B. Battelier, P. Bouyer, and A. Landragin. All-optical Bose-Einstein
condensates in microgravity. Physical Review Letters, 123(24):240402, Dec 2019.
doi: 10.1103/PhysRevLett.123.240402. URL https://link.aps.org/doi/10.1103/
PhysRevLett.123.240402. (Cited on page 80.)

N. Cooper. Rapidly rotating atomic gases. Advances in Physics, 57(6):539–616, 2008. doi:
10.1080/00018730802564122. URL https://doi.org/10.1080/00018730802564122.
(Cited on pages 64 and 77.)

E. A. Cornell and C. E. Wieman. Nobel lecture: Bose-einstein condensation in a dilute
gas, the first 70 years and some recent experiments. Rev. Mod. Phys., 74:875–893,
Aug 2002. doi: 10.1103/RevModPhys.74.875. URL https://link.aps.org/doi/10.
1103/RevModPhys.74.875. (Cited on page 1.)

https://link.aps.org/doi/10.1103/PhysRevLett.121.030402
https://link.aps.org/doi/10.1103/PhysRevLett.121.030402
https://link.aps.org/doi/10.1103/RevModPhys.70.707
https://link.aps.org/doi/10.1103/RevModPhys.70.707
https://dx.doi.org/10.1209/epl/i2004-10095-7
https://dx.doi.org/10.1209/epl/i2004-10095-7
https://link.aps.org/doi/10.1103/PhysRevLett.113.025301
https://link.aps.org/doi/10.1103/PhysRevLett.113.025301
https://link.springer.com/article/10.1140/epjst/e2015-02381-3
https://link.springer.com/article/10.1140/epjst/e2015-02381-3
https://link.aps.org/doi/10.1103/PhysRevLett.128.210401
https://link.aps.org/doi/10.1103/PhysRevLett.128.210401
https://link.aps.org/doi/10.1103/PhysRevLett.123.240402
https://link.aps.org/doi/10.1103/PhysRevLett.123.240402
https://doi.org/10.1080/00018730802564122
https://link.aps.org/doi/10.1103/RevModPhys.74.875
https://link.aps.org/doi/10.1103/RevModPhys.74.875


197

S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman. Stable
85Rb bose-einstein condensates with widely tunable interactions. Physical Review
Letters, 85:1795–1798, Aug 2000. doi: 10.1103/PhysRevLett.85.1795. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.85.1795. (Cited on page 3.)

S. L. Cornish, S. T. Thompson, and C. E. Wieman. Formation of bright matter-wave
solitons during the collapse of attractive bose-einstein condensates. Physical Review
Letters, 96:170401, May 2006. doi: 10.1103/PhysRevLett.96.170401. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.96.170401. (Cited on page 6.)

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari. Theory of Bose-Einstein
condensation in trapped gases. Reviews of Modern Physics, 71(3):463–512, Apr
1999. doi: 10.1103/RevModPhys.71.463. URL https://link.aps.org/doi/10.1103/
RevModPhys.71.463. (Cited on pages 1, 2, 7, 11, 21, and 22.)

J. Dalibard. Introduction to the physics of artificial gauge fields. In Proceedings of the
International School of Physics “Enrico Fermi”, Course 191 “Quantum Matter at Ultralow
Temperatures”, 2016. doi: 10.3254/978-1-61499-694-1-1. (Cited on pages 4, 62, 63, 64,
65, 68, and 69.)
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