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Introduction

In an era characterized by intricate social networks and rapidly evolving informa-

tion landscapes, understanding the mechanisms that underlie human behavior and

decision-making is more critical than ever. This doctoral thesis serves as a compre-

hensive exploration into the realms of social behavior, decision-making, and com-

munication. We present three interrelated chapters that collectively contribute to

the existing literature by offering novel insights into how social networks influence

individual choices and collective outcomes. These chapters, while distinct in their

focus and methodology, are united in their aim to unravel the complexities of social

interactions and their impact on individual and societal decisions.

In the first chapter, we introduce a novel framework to understand the dynamics

of endogenous socialization, particularly focusing on high school friendships. We ar-

gue that the meeting process can be modeled as students’ decisions about the costly

activities they adopt during socialization. Our findings have significant implications

for understanding minority group behavior, as we show that people from minority

groups often coordinate on costly social activities, such as smoking, to meet others

from their own group more frequently. This equilibrium is unique under various

specifications of the cost structure, and we validate our model using Add Health

data on high school students.

The second chapter takes a more applied approach by empirically analyzing

a unique dataset from public family health centers in Izmir, Turkey. We focus
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on the effectiveness of various communication strategies employed by family care

physicians in disseminating vaccine-related information. Our research categorizes

these strategies into two primary classes: “broadcast” and “personalized.” We find

that personalized strategies, such as face-to-face consultations and phone calls, are

more effective in educating individuals about COVID-19 infection and vaccines.

However, we also note that increased information does not necessarily lead to higher

vaccination rates, revealing the nuanced nature of information dissemination and its

impact on public health decisions.

In the third chapter, we delve into the complexities of social learning within

highly connected groups. Building on the existing literature, we scrutinize the condi-

tions under which agents in a highly connected community become stuck in incorrect

beliefs. Our findings indicate that the limitations of this ‘stuckness’ are closely tied

to the model’s assumptions about the simplicity of communication and the binary

nature of states. We also extend the model to consider a discrete number of possible

actions, providing a more generalized view of how communication coarseness affects

social learning.

By synthesizing these chapters, we offer a multi-faceted view of the social and

behavioral aspects that underlie decision-making processes. This thesis serves as

a resource for policymakers, social scientists, and economists interested in leverag-

ing social networks and communication strategies to influence public behavior and

decision-making.
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Chapter 1

Endogenous Socialization with

Costly Behavior

Abstract

We build a simple framework of endogenous socialization that can

account for the observed costly behavior patterns in high school friend-

ships. We show that endogenizing the meeting process can be modeled

as students’ decisions about the costly activities they adopt during so-

cialization. An equilibrium is derived in which people from minority

groups coordinate on a costly social activity – such as smoking – and

can meet with others from their own group more often than they would

at random in the whole population. This equilibrium is unique under

various specifications of the cost structure. We also empirically analyze

friendship networks and costly behavior choices of high school students

from Add Health data and show that people belonging to minority racial

groups in their school adopt costly behavior more, controlling for other

factors.
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1.1 Introduction

Adolescence is commonly viewed as a transitional period between childhood and

maturity when young people experience biological and psycho-social changes and

engage in behaviors that have important implications for health risks and the adop-

tion of healthy lifestyles (Millstein et al., 1994). There is an ongoing focus of public

health literature on why adolescents generally adopt habits like smoking, drinking,

and drug use, which are referred to as risky behavior. These are activities such that

there is no uncertainty or risk in an economic sense so that we can think of them as

costly behaviors. Many attempts in the literature exist to identify and explain the

determinants of adolescent costly behaviors (Beyth-Marom et al., 1993).

A common explanation of adolescents’ costly behavior inclinations is that teens

suffer from peer pressure such that they try to engage in the same activity as their

peers (Clark and Lohéac, 2007; Evans et al., 1992). That is one angle that assumes

a predefined structure of friendships, and people are pressured to do what their

friends do, given the social costs related to ostracism. However, in this paper, we

take the opposite perspective, considering that the structure of friendships itself is

endogenous, and how teenagers build it through costly activity. To be more accurate,

it is not that people first form friendships and their friends force them to smoke;

instead, people force themselves to smoke to form the “correct” type of friends. By

correct, we mean that individuals have differential preferences over types of others’.

It is well-documented that people tend to form ties with those of a similar type,

which is referred to as homophily. Homophily is a prevalent social life phenomenon

concerning various dimensions such as race, gender, religion, age, profession, educa-

tion, and socioeconomic status (McPherson et al., 2001).

Socialization patterns have been studied in network formation models that ac-

count for group identity and homophily (Bramoullé and Rogers, 2009; Bramoullé
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et al., 2012). The seminal paper of Currarini et al. (2009) develops a friendship

formation model that investigates segregation patterns observed in social networks.

Their paper shows that large groups exhibit positive homophily and small groups

exhibit negative homophily. In other words, in their simple model, small groups can

not find each other. But when people’s observed socialization behaviors are ana-

lyzed empirically, there is overwhelming evidence that both the smaller and larger

groups’ friendships have homophily. To match this pattern, the authors are forced

to assume that some “bias in the meetings” must be at work such that all groups

can simultaneously meet their own type at faster rates than the ones implied by

their population shares. However, they fail to provide any foundation for the bias

in the meetings, as the parameter they define to capture the bias has no natural

interpretation. Our research aims to endogenize the meeting process and give a

general and natural characterization of the bias in the matching process, resulting

in inbreeding homophily for both groups.

After biases in meeting processes have been shown to be a critical aspect of

the existence of homophily in social networks, a recent paper by Currarini et al.

(2016) provides a microfoundation of these biases in a discrete choice model. In

their setting, agents have the option to inbreed, which means searching only their

own types, or outbreed which means searching everyone in the population. They

show a threshold equilibrium in which agents choose to outbreed if the total size of

their group is above a threshold level, and they inbreed if it is below the threshold.

Although they can endogenize meeting probabilities, their primary choice of “to

inbreed” or “to outbreed” is not a natural economic/social choice that is to be

determined by agents. Also, the conclusion that the equilibrium choice depends

only on the absolute size of groups is an oversimplification of a rather pervasive and

complicated phenomenon. Accordingly, their setting lacks the necessary realistic

5



properties.

In this paper, we build an endogenous model of socialization that explains the

observed costly behavior patterns in high-school friendships. In this complete in-

formation model, agents choose among two different social activities, which differ

in cost. While doing that activity – such as smoking or drinking – they meet with

others who also choose to do the same activity and form friendships with them.

Each agent belongs to one of two distinct groups with potentially different sizes and

gains utility from the friendships they form by meeting with each other uniformly

within an activity.

We show an equilibrium in which agents from the minority group coordinate on

a costly social activity, and by doing so, they get to meet with people of their own

kind more often than they would do at random in the whole population. We also

show that this equilibrium is a unique one under various specifications of the model.

We also perform comparative statics and show that the time dedicated to costly

activities increases as the group share decreases.

We also analyze the well-known Add Health high-school students’ data, show the

empirical patterns of homophily in students’ racial groups, and analyze their costly

behavior choices. We show that the time engaged in smoking/drinking responds to

the population shares as predicted by the model. The data suggests that people

belonging to minority racial groups in their school adopt costly behavior more on

average relative to the school average, controlling for other factors. More specifically,

we find that when comparing two students from some specific racial group, the

student from a minority group adopts higher levels of costly behavior (i.e., smoking,

drinking, and racing) than the one from a majority group. This result is in line with

what the theoretical model suggests. It implies that policies that aim to tackle the

costly behavior attitudes of racially isolated minority groups of high-school students

6



also have a positive externality on racial segregation in the school.

The organization of the paper is as follows: The theoretical model is introduced

in Section 1.2, we then present its results in Section 1.3. Consequently, in Section

1.4, we analyze the homophily and costly behavior in high-school friendships data

and show the findings. Finally, we discuss and conclude in Section 2.5.

1.2 The Model

Here, we present the general environment of the theoretical model, describe the

matching process that enables the socialization of agents, and mention how ho-

mophily of friendships is measured in this setting. Then we give a simple example

of the simplest case of the model where agents socialize while doing an activity.

1.2.1 General Environment

There is a continuum of agents with two types, which can refer to ethnicity, gender,

age, profession, or some deterministic and observable trait of people. The mass of

type i agents in the population is indicated by Ni for i ∈ {1,2} with N1 < N2, and

the share of group i in the population is wi = Ni

N1+N2
.

Each agent chooses how much time to spend on two different activities, referred

to as A and B, where we denote a generic activity by r. The time choices of agents

are non-negative, and each of them is endowed with one unit of time. So the strategy

of a type i agent is

(tiA, tiB) ∈ R2
+ and tiA + tiB = 1.

Hence we can think of this setting as if individuals were partitioning their day

between two activities, each with an associated cost.

Without loss of generality, it is assumed that activity A is a costly activity, such

7



as smoking or drinking, and from now on activity A will simply be referred to as

smoking.

Agents incur a convex health cost for each unit of time spent in the costly activity,

h
2 t

2
iA where h is a parameter that governs the curvature of the cost. Therefore the

additional harm they cause to their health with an extra unit of time spent smoking

increases with the total amount of time they spend smoking.

While in a particular activity, all agents meet with others who also choose to

do the same activity and form friendships with them uniformly at random. Agents

gain utility from socializing with all types of individuals. The number of the same

type friends of a type i agent is denoted by si, and the number of her other type

friends is di. Notice that s and d are functions of the times the agent spends doing

each activity so we denote them as s(tiA, tiB) and d(tiA, tiB).

The utility of agents is assumed to be a linear function of the number of her

friends, s(tiA, tiB) and d(tiA, tiB), so the total payoff of a type i agent is the following:

U(s(tiA, tiB), d(tiA, tiB)) = s(tiA, tiB) + γd(tiA, tiB) −
h

2
t2iA.

Here, the parameter γ ∈ (0,1) captures the relative bias in preferences between same

and other type friendships, where it is assumed that an agent experiences higher

marginal benefits from same type friendships than from other type friendships, i.e.

γ < 1.

1.2.2 Matching Process

While spending time on a specific activity, agents are assumed to meet with others

who are also doing the same activity in a continuous matching process.

There is a new inflow of type i agents per unit of time, which is Ni. Since doing
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an activity can be thought of as spending time in a particular room with others

who are also choosing that activity, the actual stock of type i agents in Room r is

tirNi. Accordingly, a particular type can increase the stock of their people in a room

either by increasing the time they spend in the matching process of Room r or by

increasing their flow.

Mathematically, the continuous matching process in Room r can be defined by a

2× 2 matrix qr ∈ [0,1] × [0,1] with qrij component signifying the meeting probability

that type i meets a type j agent per unit of time:

qr = F (t1rN1, t2rN2).

We assume that agents meet each other uniformly at random within a certain room.

We call this an unbiased matching process. For a particular Room r and distinct

types i and j, the meeting probability that a type i agent meets with someone from

her own type is

qir =
tirNi

tirNi + tjrNj

.

Accordingly, a type i agent, who spends tir amount of time in Room r, forms a

total of tir friendships. From this, proportion qirtir is with her own type friends,

whereas proportion (1−qir)tir is with the other type. This follows from a mean-field

approximation (Currarini et al., 2009).

Following the mean-field approximation, the total mass of the same type and

other type friends of a type i agent, si and di, can be expressed in terms of the

meeting probabilities within each activity as follows,

s(tiA, tiB) = tiAqiA + tiBqiB,

d(tiA, tiB) = tiA(1 − qiA) + tiB(1 − qiB).

9



It means that, for instance, the mass of the same type of friends of a type i agent is

equal to the sum of the terms tirqir across all possible r activities. The term tirqir

is the expected mass of the same type of friends of a type-i agent when she chooses

to spend tir time in Room r. By using the mean-field approximation, agents take

the expected number of friends as their actual number of friends.

1.2.3 Measuring Homophily

In order to measure how homophilous friendships are in equilibrium, we define the

following measures.

Homophily Index is defined by

Hi =
si

si + di
,

where si = s(tiA, tiB) and di = d(tiA, tiB).

Homophily index Hi simply measures the fraction of type i agents’ friendships

with their own kind.

In the equilibrium, if this fraction of friendships for type i is higher than the

population share of type i, that is wi, it means that type i agents meet more often

than they would normally meet uniformly random in the whole population. In this

case, we say that there is positive homophily for type i. So, if Hi > wi, then type i

has positive homophily. Conversely, if Hi < wi, then it means that the fraction of

friendships is lower than the population share, and type i agents are meeting with

each other less frequently than they would meet uniformly random, i.e., type i has

negative homophily.

Even when every agent meets uniformly random in the whole population, it is

unsurprising that Hi is higher for bigger groups. Since Hi measures the fraction of

10



same-type friendships for type i, if everyone meets at random, they will meet with

the large group members more often than the small group as the population share

of the large group is higher by definition. Hence another measure of homophily is

needed to see how biased the friendships are toward their own types, beyond the

effect of population shares. That is what the following measure captures.

Inbreeding Homophily Index is

IHi =
Hi −wi

1 −wi

.

It measures the amount of bias in friendships with respect to the groups’ “base-

line” homophily level that would be expected under a uniform random meeting that

reflected groups’ population shares.

1.2.4 Simple Example: One Activity

Here we mention one benchmark in this setting where it is assumed that there is

only one activity. This is the case that Currarini et al. (2009) focus on. We show

the calculations in Appendix A.1.

In this case, there are no different activities that agents choose among; in other

words, there is only one room in which they socialize with each other. So a type

i agent now only chooses ti, how much time to spend socializing. For each unit of

time spent, they pay a standard constant cost of socialization c > 0.

Results show that the large group socializes more than the small group. It is

not surprising since there is a bias in preferences toward the same type friendships,

and since the large group has more people, they find socializing more attractive and

choose to spend more time socializing.

Consequently, the stock of the large group in the meeting process is much higher
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than the stock of the small group, which makes it much more likely to be matched

with a large group member in the meeting process. Since within an activity, the

matching is unbiased, it means that it is also very likely - more than what their

population shares would lead to - for a small group member to be matched with

someone from the large group. Therefore, in the equilibrium, we have positive

homophily for the large group and negative homophily for the small group (shown

in Appendix A.1).

1.3 Results

In this section, we first define the solution concept of the model, and then state

a proposition showing the equilibria of the model. Then, we compare the three

equilibria by Pareto-ranking them. Lastly, we present several modifications to the

cost structure and show the unique equilibrium of the model.

1.3.1 Steady-State Equilibrium

As a solution concept for the model, we adopt the concept of Steady-State Equilib-

rium from Currarini et al. (2009).

Definition 1.1 (Steady-State Equilibrium). The profiles (t1A, t1B) and (t2A, t2B)

are a steady-state equilibrium satisfying the following conditions:

• tiA and tiB solve the following optimization problem of agents of type i ∈ {1,2}:

max
tiA,tiB

tiA.qiA + tiB.qiB + γ.(tiA.(1 − qiA) + tiB.(1 − qiB)) −
h

2
t2iA,

where tiA + tiB = 1 for all i ∈ {1,2}.
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• Strategies of agents determine the meeting probabilities of the types (Unbiased

matching process is assumed within rooms). For each r ∈ {A,B}:

q1r =
t1rN1

t1rN1 + t2rN2

,

q2r = 1 − q1r =
t2rN2

t1rN1 + t2rN2

.

1.3.2 Equilibrium of the Model

Proposition 1.1. Assume that N2 > N1 (type-1 is the less numerous group) and

Room A is the costly activity room. If h > 1 − γ (The curvature of the convex health

cost is sufficiently high compared to the marginal change in utility for an increase in

time devoted to the costly activity.), then the model has three steady-state equilibria:

1. t1A = t′ ∈ (0,1) and t2A = 0.

2. t1A = 0 and t2A = t′′ ∈ (0,1).

3. t1A = 0 and t2A = 0.

where it always holds that:

t′ > t′′.

Proof. In Appendix A.2.

This proposition shows an equilibrium in which the smaller group can differen-

tiate themselves from the large group, and get to meet with their own kind more

often, given that the marginal cost of costly activity is higher than the difference

between the marginal utilities of having one more own type and different type friend.

Moreover, this proposition states the three equilibria of the model. More specif-

ically, an equilibrium of the model exists – equilibrium (1) – such that the minority
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group spends a positive amount of time engaged in the costly activity, whereas the

majority group only spends time engaged in the costless activity. In equilibrium (2),

the majority group is the only one who spends a positive amount of time engaged in

the costly activity, while the minority group devotes all of their time to the riskless

activity. Additionally, in these two equilibria the outcome implies that H1 > w1,

H2 > w2, i.e., there is positive homophily for both groups.

Given that the other type is not engaging in the costly activity at all, it is always

optimal for a type to devote some positive amount of time to the costly activity,

although it is costly. In this case, the probability of meeting with their own type

while doing the costly activity is the highest it can be, which is 1. So, in equilibrium

(1) and (2), one of the types chooses to spend some time engaged in the costly

activity, and while doing that activity, they get to meet with people only from their

own group.

Furthermore, this proposition says that the time that the minority group spends

on the costly activity in equilibrium (1) is always more than the time that the

majority group chooses to spend in equilibrium (2). The reason comes from the fact

that in equilibrium (2), the probability of meeting with someone from the minority

group while engaging in the non-costly activity is quite low, not only because the

other group is spending all of their time in the non-costly activity, but also minority

group is fewer in numbers. Hence, the minority group is always more willing to pay

the extra cost of costly activity to differentiate themselves from others.

In Appendix A.2, we consider all the possible cases that can result in equilibrium

and show that the three equilibria stated in Proposition 1 are the only equilibria of

the model.
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1.3.3 Comparison of the Equilibria

Proposition 1 says that the optimal amount of time that the minority group prefers

to do the costly activity in the equilibrium where the minority is the only group

doing the costly activity is higher than the optimal amount of time that the majority

prefers to do the costly activity in the equilibrium where the majority is the only

group doing the costly activity.

In the equilibrium where the minority is the only group that taking part in the

costly activity, the optimality condition for t1A = t′ ∈ (0,1) of type 1 implied by the

First-Order Condition of her maximization problem is

(q1A − q1B)(1 − γ) = ht1A.

Plugging in the meeting probabilities induced by the choices of agents, q1A = 1 and

q1B = (1−t′)N1

(1−t′)N1+N2
, the condition becomes

(1 − (1 − t′)N1

(1 − t′)N1 +N2

)(1 − γ) = ht′. (1.1)

Symmetrically, in the other equilibrium where the majority is the only group

taking part in the costly activity, the optimality condition for t2A = t′′ ∈ (0,1) of

type-2 is

(1 − (1 − t′′)N2

(1 − t′′)N2 +N1

)(1 − γ) = ht′′. (1.2)

The plot 1.1 depicts the comparison between the two optimal solutions t′ and

t′′, fixing the values of parameters γ,N1 and N2.
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Figure 1.1: General Optimality Condition

y = f(tiA)

t1A, t2A

f(t2A) = (1−γ)N1

N1+(1−t2A)N2

f(t1A) = (1−γ)N2

N2+(1−t1A)N1

htiA

t′′ t′ 1

Here, the horizontal axis is the time spent in the costly activity for both types.

The dashed line is the right-hand side of either of the equations (1.1) and (1.2),

and it shows the marginal cost of increasing the time devoted to costly activity for

possible levels of time choices. The solid curve is the left-hand side of equation (1.1),

which shows the marginal gain in the utility of type 1 agents coming from choosing

an incrementally longer time spent in the costly activity. The dotted curve is the

left-hand side of equation (1.2), which demonstrates the similar marginal gain in

utility for type 2.

Notice that the closed-form solution of t′ is the solution for equation (1.1), and

it is determined at the intersection of the dashed line and the solid curve. Similarly,

the closed-form solution t′′ of equation (1.2) is depicted at the intersection of the

dashed line and the dotted curve.

Because of the fact that N2 > N1, i.e., type 1 agents are the minority group in

the population, the value of t′ always lies above the value of t′′. In other words, the
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time devoted to the costly activity is always higher for the minority group than for

the majority group, given that the other group is not engaging in the costly activity.

As a consequence of the differences in the population shares of different types, the

minority group always finds engaging in costly activity more profitable to socialize

more frequently with members of their smaller group.

Comparative Statics

Here, we do comparative statics exercises in order to demonstrate how the endoge-

nous variables of the model, t′ and t′′ change as a result of the changes in the

parameters of the model: the bias in the preferences γ, and the mass of agents N1

and N2. The derivations are presented in Appendix A.3.

Time choices of both groups devoted to the costly activity, t′ and t′′, are decreas-

ing in their own group’s mass of agents and increasing in the other group’s mass of

agents. This result is not surprising as the main motive of agents for engaging in

the costly activity is to differentiate themselves from the other group and improve

the probability of meeting with someone from their own group. An increase in one’s

own group’s mass of people leads to a rise in their meeting probability, making them

reduce their costly activity. In contrast, an increase in other group’s mass of people

actually worsens their meeting probability, so they want to engage in the costly

activity more than before.

More interestingly, this result also means that as the difference between N2 and

N1 gets larger (either by an increasing N2 or decreasing N1), i.e., the size of the

minority group gets smaller relative to the majority, the time choice of both groups

will be more differentiated from each other, i.e., the difference between t′ and t′′ gets

larger. Hence in a population where the group sizes are significantly differentiated

from each other, we would expect to have two disparate time choices engaging in
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costly activity from the two types in the two equilibria where the costly activity

choice of the minority group is always higher than the other.

As the preference bias of agents toward their own type increases – as γ decreases

–, the choices of time devoted to costly activity for both types increase. Hence,

now that people value their own type of friendship relatively much more than their

friendships with the other type, they are more willing to pay the extra cost and

engage in costly activity more.

Lastly, as h, which is the curvature of the convex health cost, increases, time

choices of both types decrease. Agents choose a lower level of time to engage in the

costly activity now that each positive level of time devoted to the costly activity

costs more.

1.3.4 Pareto-Ranking of Equilibria

Proposition 1.2. The equilibrium where only the minority engages in the costly

activity (equilibrium (1)) strictly Pareto Dominates both of the equilibria where only

the majority engages in the costly activity (equilibrium (2)) and no one engages in

the costly activity (equilibrium (3)) if and only if 2N1 < N2.

Proof. In Appendix A.4.

This proposition states that if the population is extensively more populated by

the majority group relative to the minority group, both types are strictly better off

in the equilibrium where only the minority engages in costly activity, than the other

two possible equilibria.

The fact that the majority group is better off in the equilibrium where the

minority group is the only group engaging in the costly activity is not surprising

since the majority does not have to pay the extra health cost, and all of the members
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of their crowded group are doing the same activity while socializing with everyone

from their own group who they get marginally higher utility from socializing with.

On the other hand, for the minority group, their meeting probability in the

equilibrium where only the majority engages in costly activity is very low, not only

because the minority has a lower number of people in general but also because the

majority is spending a greater amount of time engaged in the non-costly activity,

i.e., 1 − t′ < 1 − t′′ since t′ > t′′. This would mean that even if the minority pays

the extra health cost in the equilibrium where only the minority engages in costly

activity, they are better off given that 2N1 < N2, the minority is a substantially

smaller group of people relative to the majority.

1.3.5 Extension: Modifications on the Cost Structure

In this section, we consider two different modifications to the cost structure of the

model and show that the equilibrium where the small group is engaging in the costly

activity is the unique equilibrium under several specifications of the cost function.

The common property of the specified cost function modifications is that they

both have a discontinuous jump from tiA = 0 to some small tiA = ϵ > 0, and they

are continuous, strictly increasing, and convex for the interval tiA ∈ (0,1). Given

that the cost function holds these properties, the equilibrium where the minority

is engaging in the costly activity can be sustained as the unique equilibrium with

some restrictions on the parameters. Here, we present two such examples.

Fixed Cost

Here, consider the case where the total cost of activity A for any tiA > 0 is the

following:

Total Cost (tiA) = R +
h

2
t2iA
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where R > 0 is the fixed cost of the costly activity. This fixed cost is a lump sum

cost of the activity that the individual must pay for the first marginal unit of time

devoted to the costly activity. In the context of smoking and teenagers, it can be

interpreted as the social cost of smoking that the teenager has to bear, coming from

the guilt that she feels when she acts against her family’s wishes.

Proposition 1.3. If h > 1 − γ and R satisfies

N1

N2

G(N1,N2, h, γ) < R <
N2

N1

G(N1,N2, h, γ)

where G(N1,N2, h, γ) > 0 is a function of N1,N2, h and γ, the model has two equi-

libria:

• t∗1A ∈ (0,1) and t∗2A = 0.

• t∗1A = 0 and t∗2A = 0.

Proof. In Appendix A.5.

Proposition 3 shows that if the cost function has a fixed cost component as an

addition to the convex part, there exists an interval for fixed cost R where only the

equilibrium where the minority is engaging in the costly activity survives, aside from

the pathological equilibrium where no one is engaging in the costly activity.

The intuition is that given the additional cost is high enough, the only type that

accepts to pay the cost is the minority. Because in the case where they do not pay

this cost, they would face very low meeting probabilities while doing the costless

activity B. Hence, their threshold of not accepting to pay for the costly activity is

always higher than the threshold of more numerous type 2.

Moreover, conditional on all possible values of R, the equilibria of the model are

shown in Figure 1.2.
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Figure 1.2: Depiction of the Existence of Equilibria

0
R

N1

N2
G(N1,N2, h, γ) N2

N1
G(N1,N2, h, γ)

t∗1A = 0, t∗2A = 0
t∗1A = 0, t∗2A ∈ (0,1)
t∗1A ∈ (0,1), t∗2A = 0

t∗1A = 0, t∗2A = 0
t∗1A ∈ (0,1), t∗2A = 0

t∗1A = 0, t∗2A = 0

In general, given that R is sufficiently high, i.e., R > N2

N1
G(N1,N2, h, γ), no one

agrees to pay for the costly activity, so only the equilibrium where no one is devoting

time to activity A exists. Also, for sufficiently low R, i.e., R < N1

N2
G(N1,N2, h, γ),

all three of the original model’s equilibria survive because both types are willing

to pay the fixed cost of activity A. But, a possible moderate level of R exists,

where the equilibrium where the minority is engaging in the costly activity exists

and the equilibrium where the majority is engaging in the costly activity does not

exist anymore.

Moreover, as the population share of the small group decreases (by decreasing

N1 or increasing N2), the interval of R for which the only type spending time in

costly activity is the small group - the area in between- increases.

Linear Quadratic Cost

An alternative way to obtain the same result is to let the total cost of activity A

be, for any tiA > 0,

Total Cost (tiA) = rtiA +
h

2
t2iA

where r, h > 0 are parameters of the cost function.

Proposition 1.4. If h+r > 1−γ, and N1

N2
< (1−γ)−rr < N2

N1
, the model has two equilibria:

• t∗1A ∈ (0,1) and t∗2A = 0.
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• t∗2A = 0 and t∗1A = 0.

Proof. In Appendix A.6.

Proposition 4 shows that if the cost function is a convex function with this

specific form, such that the discontinuity of the marginal cost function at 0, which

is governed by r, lies within an interval depending on the population shares, only

the equilibrium where the minority is engaging in the costly activity survives, aside

from the pathological equilibrium where no one is engaging in the costly activity.

In this case, the optimality condition is shown in Figure 1.3.

Figure 1.3: Optimality Condition - Linear Quadratic Cost

y = f(tiA)

t1A, t2A

f(t2A) = (1−γ)N1

N1+(1−t2A)N2

f(t1A) = (1−γ)N2

N2+(1−t1A)N1

htiA + r

t′new 1

This plot is very similar to the Figure 1.1. The only difference is the marginal

cost function’s upward shift by r. If the shift amount is high enough that the

marginal cost line does not cross the marginal benefit curve of type 2 within the

(0,1) interval, there is no equilibrium in which the majority is engaging in the costly

activity.
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Since the marginal benefit curve of the small group lies above the marginal

benefit curve of the large group, we can always find a range for r such that there

exists an equilibrium where the minority is engaging in the costly activity, which is

now depicted by the time level t′new.

1.4 Empirical Analysis

1.4.1 Data

This paper uses the data from Wave I of the National Longitudinal Study of Ado-

lescent Health (Add Health). It is a longitudinal, school-based adolescent survey

collected over several years since 1994. Using an implicit stratification procedure

(stratified by region, urbanicity, ethnic mix, and size), researchers selected a nation-

ally representative sample of private and public high schools in the United States,

alongside their largest feeder school, typically middle school or junior high. This

selection procedure resulted in a national sample of 142 schools for which network

information as well as demographic and behavioral data exists.

The network data for each school is based on the reports of friendships by each

student. In total, 90118 students provided global network information for each

school. Each student received a list of students in their own school. Students were

permitted to identify up to five female and five male friends, in total ten friends,

from this roster. Although the maximum number of nominations is limited to ten,

this constraint affects a few students. In the total data set, only 3% of students

nominate ten in-school friends, 23% nominate five females, and 24% nominate five

male friends. Since friendship nominations were recorded by student identification

numbers located in rosters, it is possible to link together most students in schools to

create a social network. In the network we constructed from this data, a tie between
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two subjects is present if either student nominates the other as a friend.

The ethnicity/race data is a self-defined choice by respondents from a listing

of five categories – white, African-American, Asian, Native American, and other –

alongside another question identifying those with Hispanic origin.

The costly behavior variables available in the data are questions about smoking,

drinking alcohol, getting drunk, and, racing. They are answers to the questions

”During the past 12 months, how often did you smoke cigarettes?”, “... drink beer,

wine, or liquor?”, “... get drunk?”, “... race on a bike, skateboard, or car?”. The

answers have seven categories varying as “never,” “once or twice,” “once a month

or less,” “2 or 3 days a month”, “once or twice a week,” “3 to 5 days a week” and

“nearly every day”; aimed to capture the intensity of costly habits.

1.4.2 Patterns of Homophily in High-School Friendships

Here we introduce the results of the empirical analysis of friendship patterns of high

school students using Add Health data.
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Figure 1.4: Friendship Network in a US High-School from Add Health

Figure 1.4 shows an example of a network of friendships constructed for one of

the high schools from Add Health. Every node represents a particular student, and

the node is colored based on the student’s ethnicity. The size of nodes is adjusted

based on their degree so that more popular students are shown with a larger node.

In this network, there is highly noticeable positive homophily in friendships, as

the students from black and white groups form two distinct communities. Hence,

their friendships have high levels of positive homophily. On the other hand, the

other people from sporadic minority groups fail to form a distinct community, and

they integrate more with other races, which implies that there is negative homophily

for them.

To see the homophily patterns in the whole data set of 142 high schools with six

different racial categories that the students can choose, we form a variable about the

measure of homophily of a specific racial group in their corresponding school. To do

that, we look at the ratio of the number of a student’s friends from her racial group
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to her total number of friends, following the definition of homophily in Section 1.2.3.

As this ratio approaches from zero to one, her level of homophily increases. Then we

construct a variable by taking an average of the homophily measure of each student

belonging to a particular racial group in their corresponding school.

Figure 1.5: Patterns of Homophily by Population Share of Racial Groups

Table 1.1: Output for Regression of Homophily on Population Shares

Homophilyi Coefficient Std. Error

Popsharei 0.76∗∗ 0.00
constant 0.27∗∗ 0.00

** p < 0.001

Figure 1.5 shows the patterns of homophily for each observation, which is a racial

group of a school. The vertical axis is the relative homophily index of a group i in

its school, and the horizontal axis corresponds to the share of that particular group

in the overall population in its school. It indicates that for most racial groups,

the measure of homophily is greater than the corresponding population fraction. It
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means that most high school students form more friendships with their own racial

group. Relative homophily is an omnipresent phenomenon in high-school friendship

networks in Add Health data.1 It can also be seen that the majority groups have

higher levels of homophily, as shown by the positive and statistically significant

coefficient from the regression of homophily measure on population shares in Table

1.1.

As expected, homophily increases with the share of the racial group in the school

population. To see the excess level of homophily of racial groups, we also plot the

Inbreeding Homophily measure of groups. The measure of Inbreeding Homophily

is plotted in Figure 1.6. There is a significant and distinct pattern of inbreeding

homophily as a function of relative group size. Table 1.2 presents the regression

output of inbreeding homophily on a quadratic form of population sizes. As can be

seen, the coefficient of the squared term is negative and statistically significant.

Figure 1.6: Patterns of Inbreeding Homophily by Population Share of Racial Groups

1Echenique et al. (2006) develop another segregation measure- called Spectral Index - and test
it with the same data. Their figure also implies very similar results.
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Table 1.2: Output for Regression of Inbreeding Homophily on Population Shares

InbreedHomophilyi Coefficient Std. Error

Popsharei 2.19∗∗ 0.00
Popshare2i −2.37∗∗ 0.00
constant 0.04∗∗ 0.00

*** p < 0.001

Two clear patterns can be seen in Figure 1.6. Firstly, there is inbreeding ho-

mophily for most of the racial groups. Furthermore, there is a nonlinear and non-

monotone relationship as the inbreeding homophily is at its maximum in the middle-

sized race groups. In contrast, it is distinctively smaller for extremely large or small

ones.

1.4.3 Costly Behavior

Here we demonstrate the relation between high-school students’ racial group shares

in their school population and their costly behavior adoption choices. We use the

following regression model for estimation:

CostlyBehaviori = βPopulationSharei +∑
j

αjXj
i + ϵi,

where we regress the costly behavior choice of student i on the population share of

i’s racial group in her school, and on other controlling factors that may have affected

the costly behavior choice of student i.

In the model, CostlyBehaviori is defined as the following: it takes the value of

smokingi = 1 if student i reported smoking on one or more days in the past 30 days,

and 0 otherwise. Hence, the students who reported smoking on one or more days in

the past 30 days were considered current smokers, whereas all other students were

considered non-current smokers. The latter group also includes people who never
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smoked and past smokers.2 As robustness checks, we alternatively define costly

behavior more precisely: student i is said to be a smoker if she smokes every week

or daily. We follow the same procedure for drinkingi, drunki and racingi.

PopulationSharei is the relative share of the racial group of student i in her

school population. We alternatively use Minorityi, a dummy variable taking 1 if

student i belongs to a minority race group in her school and 0 otherwise.

Xj’s are the set of controls that we include as other factors that may affect the

costly behavior choice of students. Here we have schooli as school identification to

control for school-fixed effects. We also include racei, a categorical variable that

shows a student’s ethnicity, agei and genderi, which is 1 for male students and 0

for females. As a proxy for economic status, we include parenteduci, the highest

educational attainment by either parent.

We expect that the population share of the student’s racial group has a negative

effect on the costly activity of that student, as our central hypothesis is that students

from small groups use these costly activities to socialize with their same kind friends.

So we expect the coefficient β to be statistically significant and negative.

Estimation

We estimate using a Linear Probability Model and Probit regression since the de-

pendent variable can take only two values: being a smoker or non-smoker.

The detailed tables of regression outputs for the dependent variables smoking,

drinking, getting drunk, and racing are included in Appendix A.7. We summarize

the essential points in Table 1.3.

2The way of defining smokers as people who smoked in the last 30 days is a conventional
definition of smoking or substance use in public health literature (Alexander et al., 2001; Steuber
and Danner, 2006).
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Table 1.3: Regression Output of Population Share of High-School Racial Groups
with Students’ Costly Behavior

Dependent Variable: Smoking Dependent Variable: Drinking

Linear Prob. Model Probit Linear Prob. Model Probit

Variable Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Population
Share

−0.04∗∗∗ 0.01 −0.19∗∗∗ 0.04 −0.02∗ 0.01 −0.09∗∗ 0.04

Minority
Dummy

0.007 0.005 0.05∗∗ 0.02 0.002 0.7 0.01 0.02

Dependent Variable: Getting Drunk Dependent Variable: Racing

Linear Prob. Model Probit Linear Prob. Model Probit

Variable Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Population
Share

−0.02∗∗ 0.003 −0.14∗∗∗ 0.05 −0.04∗∗∗ 0.00 −0.12∗∗∗ 0.04

Minority
Dummy

0.00 0.00 0.03 0.02 0.017∗∗∗ 0.00 0.06∗∗∗ 0.02

* p < 0.1, ** p < 0.05, *** p < 0.01

Our findings indicate that relative shares of students’ racial groups within schools

are essential in understanding adolescent costly behavior patterns. Specifically, be-

longing to a smaller racial group increases the likelihood of the student adopting

a costly behavior. More precisely, if we take two black students from two different

schools, the one from a school where black students are a minority is more likely to

smoke than the one from a school where black students are a majority.

The regressions in which we use stricter definitions of the costly behavior also

give a statistically significant and negative coefficient of population share, so the

negative effect of population share of a racial group on the costly behavior of the

students is permanent. The regression outputs are included in Appendix A.8.
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1.5 Conclusion

In this paper, we propose a friendship formation model that can explain the social

patterns observed in Figure 1.6 in which most groups, no matter what size, have

inbreeding homophily. For that, we consider a continuum population of individuals

composed of two different communities that can be categorized according to some

exogenous factor such as race. Individuals decide how to allocate their time to two

different social activities in which they get to meet with people of their own group

and the other group.

Our finding is that there is an equilibrium in which agents from the minority

group can differentiate themselves from others through the rather costly social ac-

tivity to meet with their own kind and have homophilous friendships as a result.

This equilibrium is shown to be unique under several specifications of the cost struc-

ture. We also empirically analyze friendship networks and costly behavior patterns

of high-school students from Add Health and show that students belonging to mi-

nority racial groups in their school adopt costly behaviors more, controlling for other

factors.

Our main contribution is to show that the mechanism in our setting – including

social activities in the friendship formation model – induces endogenous and asym-

metric socialization behaviors of a particular type, resulting in an equilibrium that

matches the empirical socialization patterns. Here, our result does not mean that

socialization always leads to the segregation of two types such that the minority

group exhibits the costly behavior, and the larger group does not. Instead, we argue

that these patterns can emerge in some circumstances due to society. Indeed, the

empirical results from Add Health data show a variety of real-world compositions,

and therefore it is reasonable that the theoretical model exhibits a multiplicity of

equilibria.
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Another contribution of this paper is to show that one aspect of high-school stu-

dents’ smoking/drinking problem is that teenagers use this costly activity to meet

with others they prefer to be friends with. This result emphasizes the possibility of

using extracurriculars as a strategically substitutable activity for smoking or drink-

ing among high school students. Providing them with the option of several different

activities can be seen as a policy tool to tackle these harmful behavior patterns of

adolescents.
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Chapter 2

Impact of Information

Dissemination Strategies on

Vaccine Decision:

Empirical Evidence from Turkey

Abstract

In this paper, we empirically analyze a unique data set obtained from

public family health centers in the city of Izmir in Turkey, focusing on atti-

tudes and information sources regarding COVID-19 vaccines. By leveraging

various communication strategies employed by family care physicians —from

distributing informational pamphlets to one-to-one consultations and phone

calls— we examine their effectiveness in disseminating vaccine-related infor-

mation. In particular, the study categorizes these communication strategies

into two primary classes: “broadcast” and “personalized.” We find that “per-

sonalized” information dissemination strategies, such as face-to-face consul-

tations and phone calls, are more effective in educating individuals about

COVID-19 infection and vaccines. However, more information does not di-

rectly translate into higher vaccination rates. Nevertheless, some types of per-

sonalized modes are shown to be effective in generating desired actions only

within some subgroups of patients. Specifically, for patients who trust social

sources of information, one-to-one in-person meetings with a nurse demon-

strate a statistically significant impact on driving vaccination, compared to

broadcasting strategies.
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2.1 Introduction

The COVID-19 pandemic has altered normalcy in almost every facet of human

life, creating an urgent need for effective public health strategies. Central to this

struggle is the challenge of vaccine dissemination and acceptance. While vaccines

serve as a cornerstone for pandemic control, vaccine hesitancy remains a significant

barrier. This research aims to elucidate the role of public health officials’ information

dissemination strategies in shaping knowledge and consequent vaccination decisions.

Public health campaigns have historically relied on many information channels,

ranging from mass media campaigns to personalized physician consultations. Yet,

the efficacy of these diverging strategies in a global pandemic remains a pivotal

yet under-explored area of research. We specifically address two channels of im-

pact: the influence of personalized vs. broadcast strategies on the patient’s level of

information, and their impact on the vaccination decision.

To conduct this empirical analysis, we leverage a unique data set from family

health centers in Izmir, Turkey. The data offers insights into various attitudes and

sources of information concerning COVID-19 vaccines. We differentiate between

communication strategies such as distributing pamphlets, one-to-one meetings, and

phone calls, categorizing them between the classes of “broadcasting” and “word-of-

mouth/seeding,” to determine the most effective.

Our research employs rigorous statistical methods to analyze the data set, aiming

to isolate the influence of dissemination strategies from confounding variables. This

approach allows us to identify the most effective strategies and explore other non-

informational aspects that may affect vaccination decisions.

The study builds upon the existing body of literature in behavioral economics,

public health, and information theory. Specifically, Liester (2021) reviews several

methods that public health professionals consider to combat low vaccination rates.
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These methods vary from education and persuasion to stricter types such as in-

centivization and coercion. Our research intersects with the strands of persuasion

and education designed to mitigate COVID-19 vaccine hesitancy by exploring the

impacts of different information dissemination strategies on vaccination decisions.

The role of communication strategies in influencing health decisions has garnered

increasing academic attention. An early yet burgeoning literature focuses explicitly

on the strategies to overcome vaccine hesitancy. There is no clear consensus in

the literature on which public health intervention methods are effective. For in-

stance, Bahety et al. (2021) delve into the effectiveness of text-based interventions

in COVID-19 preventive behaviors in India, and finds that an SMS-based informa-

tion campaign broadcasted to the general population has no evident positive impact

on knowledge or adoption of preventive health behavior. On the other hand, the

empirical evidence suggesting that face-to-face information or education may im-

prove vaccination status or knowledge, is weak and non-conclusive, as shown by the

meta-analysis made in Kaufman et al. (2018). More generally, Bavel et al. (2020)

synthesize social and behavioral science findings from prior literature on topics rel-

evant to pandemics, including work on social and cultural influences on behavior,

and science communication.

The mechanisms through which information flows in social and professional net-

works have significant implications on the behaviors and decisions of individuals.

Seminal work by Banerjee et al. (2018) offers experimental evidence highlighting

the nuances of information dissemination during India’s demonetization. Making a

distinction between seeding and broadcasting the news about the demonetization’s

official rules widely, they show that the performance of the two types of communica-

tion depends on whether the identity of the initially informed was publicly disclosed

or not. Within this line, a large-scale messaging campaign is shown to increase the
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health-preserving behavior of the people (Banerjee et al., 2020) and another large-

scale set of interventions to increase demand for immunization shows that SMS

reminders combined with incentivization perform the best among other alternatives

(Banerjee et al., 2021). Furthermore, research by Breza and Chandrasekhar (2019)

investigates the role of social networks in fostering reputational and commitment

effects, contributing to our understanding of how these networks may potentially in-

fluence health behaviors. The current study situates itself within these discussions

by examining the effectiveness of various dissemination strategies in the specific

context of vaccine information.

This paper concentrates on an empirical analysis using a unique data set obtained

from public family health centers in the city of Izmir in Turkey, focusing on atti-

tudes and information sources regarding COVID-19 vaccines. By leveraging various

communication strategies employed by family care physicians —from distributing

informational pamphlets to one-to-one consultations and phone calls— we examine

their effectiveness in disseminating vaccine-related information. In particular, the

study categorizes these communication strategies into two primary classes: “broad-

casting” and “personalized.” This categorization serves as the analytical framework

for evaluating which method most effectively influences both the level of information

received by patients and their subsequent vaccination decisions.

The results show that different communication strategies impact the level of

information and decisions related to the COVID-19 vaccine. We find that “person-

alized” modes of information dissemination, such as face-to-face consultations and

phone calls, are more effective in educating individuals about COVID-19 disease

and vaccines. However, more information does not directly translate into desired

actions, such as higher vaccination rates. We show that there is a general lack of

empirical evidence on personalized information dissemination strategies being able
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to nudge people into the right action or to move the needle. Interestingly, some

types of personalized modes are shown to be effective in generating desired actions

only within some subgroups of patients. Specifically, for patients who trust social

(or non-professional) sources of information, personalized one-to-one meetings with

a nurse demonstrate a more substantial influence on driving people to vaccinate.

The organization of the paper is as follows. The data is introduced and explained

in detail in Section 2.2, and then the empirical model and estimation methods are

presented in Section 2.3. Afterward, in Section 2.4, we show the findings of the

empirical analysis and discuss the results. Finally, we conclude in Section 2.5.

2.2 Data

Here we give information on the data set we used in our analysis, mentioning the data

collection methodology and sample selection. Also, we explain how we construct our

metric of vaccine hesitancy which is used in our analysis below.

2.2.1 Research Design and Setting

This study uses a cross-sectional analytical framework to explore the vaccine hesi-

tancy landscape in Izmir. The study was conducted in seven selected public health

centers within the healthcare domain. These units are a representative sub-sample

of the 1102 family medicine centers permeating the city of Izmir.

2.2.2 Population and Sample Selection

The encompassing population for this study was drawn from the patients attending

the 1102 family medicine centers in Izmir. The sample, however, was more refined.

Individuals who seek medical services from the pre-selected seven family medicine
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units during the earmarked time frame which is between January and February

2022, form the sample.

Eligibility for participation hinged on several criteria. First, individuals aged

between 20 and 45 years were given primacy. Their engagement with the designated

family medicine units during the study window and willingness to participate in the

research were also crucial. On the other hand, individuals facing literacy challenges,

those with communication barriers, or those diagnosed with psychotic disorders or

dementia-related conditions were systematically excluded from the study.

With precision and rigor, the sample size was calibrated to 387. This number

was predicated on achieving a confidence interval of 95%, with an underlying 50%

prevalence and a 5% margin of error. The sampling strategy, rooted in convenience

sampling, was purposefully designed to encapsulate a broad spectrum of willing

participants. The research eventually progressed with a total of 197 participants,

each meticulously satisfying the criteria mentioned.

2.2.3 Data Collection Methodology and Instruments

The data collection process focuses on a comprehensive face-to-face interview, me-

diated through a structured questionnaire. The questionnaire consists of two main

parts aiming for clarity and depth of information. The translated version of the

detailed survey form is included in Appendix B.1.

The initial part is demographic-centric, obtaining information about partici-

pants’ age, gender, marital status, educational background, occupations, health

center affiliations, chronic disease, and medication dependencies.

The latter section adopts a more thematic approach, aimed at exploring the

multifaceted realm of COVID-19. It probes into participants’ past encounters with

the virus, vaccination records, and motivations, experiences within their close circles,
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habitual healthcare behaviors, and their informational ecosystem regarding the virus

and vaccination. This section is particularly exhaustive, drawing from qualitative

and quantitative strands of inquiry, all designed based on the prevailing literature.

The descriptive properties of the data are included in Appendix B.2.

2.2.4 Vaccine Hesitancy

In our data, we used the definition of vaccine hesitancy provided by the World Health

Organization (WHO) and widely accepted in the medicine literature, which describes

it as “the delay in acceptance or refusal of vaccination despite the availability of

vaccination services,” SAGE Working Group (2014). To determine the baseline for

vaccine compliance, we consulted official records to pinpoint the timeline of vaccine

availability for different age groups.1 From our investigation, it was clear that by

the survey date, all survey respondents (aged between 20-45) should have received

three doses of the COVID-19 vaccine. We thus developed a categorical variable to

capture this phenomenon as follows:

• If the respondent had taken three or more doses, she was assigned a value of

2, which indicates adherence to the recommended vaccine schedule.

• If she had not taken the minimum number of doses but had received some

positive number of doses, she received a value of 1, indicating hesitancy or

delay.

• If she had not taken any dose, she received a value of 0, which indicates

rejection.

1Public records of vaccine availability in Turkey by date and age groups are available at
https://turcovid19.com/etkinlikler/turkiye-covid19-asilama-gruplari-asi-uygulama-tarihleri/
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2.3 Estimation

This part explains the empirical model of the paper, focusing on the two model

equations. It also mentions several methods used for estimating the model.

2.3.1 Regression Equation

To see the impact of various information dissemination strategies adopted most fre-

quently by doctors on the level of information received by the patient, the following

regression equation is used:

LevelofInformedi = βInfoStrategyi + αDoctorIDi +∑
j

αjXj
i + ϵi (2.1)

Similarly, for the impact of information dissemination strategies on the resulting

vaccine decision of the patient, the following equation is used:

VaccineHesitancyi = βInfoStrategyi + αDoctorIDi +∑
j

αjXj
i + ϵi (2.2)

where control variables Xj
i ’s include age, gender, employment status, chronic

illness, the number of consultations with the doctor, if she ever had COVID-19 if

anyone close to her ever died due to COVID-19. The DoctorIDi is an anonymized

identification of the family physician who is assigned to the patient by the public

health system.

Our primary focus is on the variable InfoStrategyi which defines the most frequent

communication method between the patient and the family physician about the

COVID-19 disease and vaccine. It is a self-reported measure by the patient, chosen

among the options: face-to-face, phone, with nurse, information pamphlet, SMS and

others. Following the focus of this paper, different information strategies are grouped
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into two strategy classes: Personalized and Broadcasting strategies. Whereas the

options of face-to-face, phone and nurse are regarded as Personalized because of

their interactional, one-to-one and personalized nature, information pamphlet, SMS

and others are grouped in Broadcasting strategies as in these, everyone received

standardized and identical information about the COVID-19 pandemic.

The LevelofInformedi is a 0-9 scaled measure reported by each patient respondent

on the level of COVID-19-related information supplied by the family physician. We

consider three different topics of such information and deploy each one of them in

separate regressions. These topics of information are the following: severity and

course of COVID-19 disease, information about the COVID-19 vaccine, and where

to get COVID-19 vaccine.

For the VaccineHesitancyi variable, we use several different measures to capture

the vaccine hesitancy level of the patients in Equation 2.2. The initial measure

is the number of COVID-19 vaccinations received by the patient. This number is

disclosed by the patients themselves in the survey form. Alternatively, we also define

a binary measure of Vaccine Hesitancy indicating if the patient is vaccine-hesitant

(0) or vaccinated (1). The detailed construction method of this measure is explained

in Section 2.2.4 above.

2.3.2 Estimation Methods

Different methods of estimation have been applied to the regression equations below.

For Equation 2.1, we use Ordinal Logistic Regression, since the level of information

is regarded as an ordered nominal variable, varying between levels 0 and 9.

For Equation 2.2, we use Poisson regression when we use the number of vaccines

as the dependent variable. Additionally, when the vaccine hesitancy measure is used

as the dependent variable specified in Equation 2.2, a Probit regression is used as
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an estimation method.

2.4 Results and Discussion

In this part, we show the results of our empirical analysis. Firstly, we report the

regression results regarding the effect of information dissemination strategies on

the patients’ information level about the COVID-19 pandemic and the vaccination

decision. Lastly, we mention how some of the results change when we put our

focus on specific characteristics of people, for instance, trust in unprofessional social

sources of information.

2.4.1 Information Strategy and Level of Information

Here, we present our findings from the regression of information dissemination strate-

gies on the patients’ information level, explained by the Equation 2.1. We summarize

the results in Table 2.1, where the dependent variables are information level about

COVID-19 disease and vaccine. For the sake of brevity, we report the findings of

the dependent variable where to get COVID-19 vaccine in Table B.6 in Appendix

B.3.2

Moreover, for each dependent variable, we present four different regression model

specifications to check the robustness of our point estimates. Each specification

varies across the control variables that are included in the estimation.

Looking at Table 2.1, the most prominent observation is the following: across

all different regression model specifications, personalized information dissemination

strategies are better than broadcasting ones in generating higher levels of infor-

mation in patients. This is evident by the positive and statistically-signification

2The findings in Table B.6 are in line with the main findings we report in this part.

43



T
ab

le
2.
1:

R
es
u
lt
s
on

In
fo
rm

at
io
n
L
ev
el

D
ep

en
d
en
t
va
ri
ab

le
:

In
fo
.
L
ev
el

ab
ou

t
C
O
V
ID

-1
9
di
se
as
e

In
fo
.
L
ev
el

ab
ou

t
C
O
V
ID

-1
9
va
cc
in
e

(1
)

(2
)

(3
)

(4
)

(1
)

(2
)

(3
)

(4
)

In
fo

st
ra
te
gy

cl
as
s
(r
ef
:
B
ro
ad

ca
st
in
g)

P
er
so
n
al
iz
ed

2.
98
1∗
∗
∗

2.
92
9∗
∗
∗

2.
52
6∗
∗
∗

2.
58
5∗
∗
∗

3.
18
8∗
∗
∗

3.
12
6∗
∗
∗

3.
07
4∗
∗
∗

2.
99
2∗
∗
∗

(0
.5
88
)

(0
.5
93
)

(0
.8
06
)

(0
.8
20
)

(0
.5
98
)

(0
.6
02
)

(0
.8
42
)

(0
.8
54
)

D
o
ct
or

ID
Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

A
ge

(r
ef
:
ag
e
20
-2
5
ye
ar
s)

25
-3
0
ye
ar
s

0.
06
9

-0
.5
25

0.
19
3

-0
.2
48

(0
.7
64
)

(0
.8
73
)

(0
.7
89
)

(0
.8
99
)

30
-3
5
ye
ar
s

0.
23
8

-0
.2
34

0.
72
7

0.
60
7

(0
.7
75
)

(0
.9
06
)

(0
.8
04
)

(0
.9
27
)

35
-4
0
ye
ar
s

0.
37
4

0.
23
8

0.
51
6

0.
52
5

(0
.7
73
)

(0
.8
80
)

(0
.7
97
)

(0
.9
02
)

41
-4
5
ye
ar
s

-0
.5
09

0.
03
4

-0
.1
18

0.
56
5

(1
.1
70
)

(1
.3
45
)

(1
.1
71
)

(1
.3
53
)

M
al
e

-0
.0
34

0.
19
6

0.
18
1

0.
53
4

(0
.3
44
)

(0
.4
27
)

(0
.3
42
)

(0
.4
27
)

U
n
em

p
lo
ye
d

-0
.2
63

-0
.3
79

0.
01
8

0.
04
8

(0
.3
51
)

(0
.4
27
)

(0
.3
47
)

(0
.4
25
)

C
h
ro
n
ic

il
ln
es
s

0.
69
5∗

0.
50
1

0.
77
0∗
∗

0.
44
8

(0
.3
91
)

(0
.4
90
)

(0
.3
91
)

(0
.4
94
)

H
ad

C
O
V
ID

-1
9

0.
13
7

0.
08
5

0.
32
3

0.
30
7

(0
.3
75
)

(0
.3
87
)

(0
.3
71
)

(0
.3
86
)

C
lo
se

d
ea
th

fr
om

C
O
V
ID

-1
9

0.
71
2∗
∗

0.
05
4

0.
59
0∗

0.
32
6

(0
.3
58
)

(0
.4
86
)

(0
.3
44
)

(0
.4
77
)

N
u
m
b
.
of

co
n
su
lt
at
io
n
s

0.
35
8∗
∗
∗

0.
34
9∗
∗
∗

0.
26
4∗
∗
∗

0.
27
9∗
∗
∗

(0
.1
23
)

(0
.1
19
)

(0
.0
98
)

(0
.0
98
)

O
b
se
rv
at
io
n
s

17
3

16
8

13
1

12
7

17
3

16
8

13
1

12
7

N
ot
e:
∗
p<

0.
1;
∗
∗
p<

0.
05
;
∗
∗
∗
p<

0.
01

44



coefficients of the personalized strategy class, compared to the reference level of the

broadcasting strategy class.

The interpretation of the coefficients is not entirely straightforward since we

employ an ordered logistic regression. That is why the odds ratios are calculated in

Table 2.2.

Table 2.2: Odd Ratios - Results on Information Level

(1) (2) (3) (4)
Dep. variable: Info. Level about COVID-19 disease

Info strategy class (ref: Broadcasting)
Personalized 19.71 18.71 12.50 13.26

Dep. variable: Info. Level about COVID-19 vaccine

Info strategy class (ref: Broadcasting)
Personalized 24.24 22.78 21.63 19.93

Let us look at specification (1). As the reference level of strategy classes is

broadcasting, the interpretation of the coefficient is as follows: For patients who

received information in personalized ways, the odds of having more information

about COVID-19 disease is 19.7 times that of patients who received broadcasting

information. Similarly, their odds of having more information about COVID-19

vaccine is 24.2 times that of others.

It is an intuitive finding as the personalized information dissemination strategies

employed by the doctors may have an external positive impact on building trust

and making the conversation relevant to the patients, even though the content of

the message is probably the same across different strategy types. This finding aligns

with the importance of interpersonal communication in healthcare on increasing

health-related information in patients (Chichirez and Purcărea, 2018; Berry et al.,

2003; Kreuter and Wray, 2003). As a result of this positive impact, patients form a

subjective belief that they are more informed about some aspects of the conversation,
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in this case about COVID-19 disease and vaccination.

Another insight from the results in Table 2.1 is that people with chronic ill-

nesses feel more informed by their physicians regarding COVID-19, evident by the

statistically significant positive estimate in the specification (2) of both of the de-

pendent variables. This may be because people with chronic illnesses are regarded

in high-risk group of the population regarding the COVID-19 pandemic, which is a

widely-documented fact in medicine literature. (Williamson et al., 2020; Rosenthal

et al., 2020; Hacker et al., 2021; Laires et al., 2021). This may lead their family

physicians - or patients- to provide or seek more detailed information on this topic.

When we include the number of consultations as an exploratory variable to the

equation - done in the specification (4) - we observe the statistically significant

positive impact of the sheer quantity of interaction on the resulted information level

of the recipient. For instance, for the patients who had one more consultation with

their doctors, their odds of having more information about the COVID-19 vaccine

is 1.32 times more than others, keeping everything else constant. This is intuitive

since more consultations with their family physicians mean more opportunities to

discuss COVID-19-related health matters. Moreover, we see that the statistically

significant coefficient of chronic illness in the specification (2) becomes more minor

and insignificant in specification (4) after including the number of consultations in

the equation. It can be because people with chronic diseases visit the doctor more

often. When we add the term for the sheer number of visits, it clears out the effect

of frequent visits from chronic illnesses and reduces its coefficient, even though the

resulting coefficient remains positive.

A further observation from the results is the impact of the personal life expe-

riences of the patient on their information level on COVID-19. For instance, the

coefficient of the binary variable capturing the information on whether anyone close
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to the patient had died because of COVID-19 appears positive and statistically sig-

nificant. Particularly, holding everything else constant, the people who experienced

the death of a person that is familiar to them, have odds of having more information

about COVID-19 disease 2.04 times more than that of others who had not expe-

rienced a close person’s death. This result makes sense as someone who has gone

through such a loss due to COVID-19 may seek more information about this disease

and receive more information from their family physician.

As a last remark, there is no clear and statistically significant pattern on the

impact of patient’s age and gender differences on their information level of COVID-

19 disease and vaccine. However, the coefficients of older age groups appear primarily

positive. This may signal an increased information level for older patients. Still,

because the coefficients all appear non-significant, we can conclude that age has no

apparent impact on this matter.

2.4.2 Information Strategy and Vaccine Decision

In the former part, we show that personalized information dissemination strategies

of family physicians positively impact people’s information level regarding COVID-

19 matters such as the disease itself and vaccination. However, a further question

can be the following: Do the personalized strategies impact people’s decision to have

the COVID-19 vaccine or not? Providing people with as much correct information

as possible is one thing, but the ultimate aim of health professionals is to steer

people into the correct health behavior choice, in this case, to vaccinate.

With this aim, in this part, we show the findings from the regression of infor-

mation dissemination strategies on the patients’ vaccination decisions, formulated

in Equation 2.2. We summarize the results in Table 2.3, where the dependent

variables are the vaccine hesitancy measure and the total number of COVID-19 vac-
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cines. Similar to the part above, for each dependent variable, we have four different

specifications of the model where they differ on the control variables included.

Focusing on Table 2.3, the first observation is that personalized information dis-

semination strategies have statistically insignificant and negative coefficients across

all specifications of the models and two different dependent variables of vaccine de-

cision. It shows the lack of evidence for our initial question on the effectiveness of

personalized interventions of healthcare professionals. The odds ratios are reported

in Table 2.4 to make interpreting the results easier.

Table 2.4: Odd Ratios - Results on Vaccine Decision

(1) (2) (3) (4)

Dep. variable: Vaccine Hesitancy

Info strategy class (ref: Broadcasting)
Personalized 0.62 0.66 0.54 0.80

Dep. variable: Number of COVID-19 vaccine

Info strategy class (ref: Broadcasting)
Personalized 0.88 0.89 0.81 0.89

Looking at the coefficient of a binary variable showing if the person had COVID-

19 before or not, having had COVID-19 (compared to not having had) decreases the

odds of being more vaccinated. It may be because having had the disease already

makes them immunized to the virus, and they are not advised to get the vaccine for

some period after their initial infection.

Furthermore, the results show that being unemployed (compared to the employed

reference) decreases the odds of being more vaccinated although the coefficient re-

mains insignificant in all specifications. This is reasonable as workers are arguably

more exposed to social interactions hence the virus, compared to unemployed ones.

It may lead them to be fully vaccinated in more frequent cases. Also, having a close
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one die due to COVID-19 increases the odds of being fully vaccinated, which makes

sense as it can make people more aware of the risks and complications of the virus

leading them to take precautions against it such as vaccination.

In any case, we can circumspectly say that the insignificant and negative co-

efficients of personalized strategies imply that physicians’ personalized information

dissemination techniques do not have an evident positive impact on the consequent

vaccine decision of patients. It is in line with several papers in the literature men-

tioning there is no firm evidence of any specific intervention’s ability to affect vaccine

hesitancy/refusal (Dubé et al., 2015; Nyhan et al., 2014).

2.4.3 Information Strategy and Vaccine Decision by Most

Trusted Information Source

In this part, we explore the possibility of seeing the impact of information dissem-

ination strategies on people’s vaccination decisions by focusing on a sub-sample of

people who are more prone to non-professional sources of COVID-19-related infor-

mation. It is a relevant distinction because the overall sample may mainly consist of

people who regularly see their family physicians (as the questionnaire was conducted

at the entrance of family medicine centers), highly trust their doctors, and follow

their instructions on health behavior. On the other hand, focusing on the subgroup

of the population who claim to have trust in other non-medical social sources may

give a more accurate idea of the effectiveness of different medical information dis-

semination strategies as these people will be the relevant group of focus in a possible

health-related public intervention.

Based on this argument, we re-run our estimation shown in Equation 2.2, but

now focusing only on the sample of people who trust social (and non-professional)

sources of information on the COVID-19 pandemic. This is done by using one
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question in the survey, asking people to pick out their most trusted three sources of

information about the COVID-19 vaccine.

As can be seen in Table B.4, most of the responses are professional sources of

information such as scientists or doctors. The people who reported at least one

of the social sources of information (more specifically, the options internet, social

media, TV/newspaper, family, friends, and neighbors) as their most trusted source

are grouped in a sub-sample. The regression output is reported in Table 2.5. 3

The main interesting observation is the following: across all different specifica-

tions of the regression model, each personalized information dissemination strategy

has different impacts on people’s vaccination decisions, compared to the broadcast-

ing strategies. Specifically, we see that meeting with a nurse and phone-call are

better than broadcasting strategies in generating higher levels of vaccination, across

all model specifications. Moreover the estimate of meeting with a nurse remains

statistically significant.

Table 2.6: Odd Ratios - Most trusted social media

(1) (2) (3) (4)

Dep. variable: Vaccine Hesitancy

Info strategy class (ref: Broadcasting)
Face-to-face 0.50 0.24 0.55 0.77
Nurse 3.54 4.42 3.63 3.09
Phone 1.35 1.57 1.45 1.15

Looking at the odds ratios in Table 2.6, in the specification (1), the results show

that for patients who received information by meeting with a nurse, the odds of

being more vaccinated against COVID-19 disease are 3.54 times that of patients who

3Similar estimation is done for the subgroup of people who report at least one professional
source of information as their most trusted source. In this case, the estimates are almost identical
to the ones done with the whole sample as almost all of the sample remained in this subgroup.
Therefore, we omit reporting these regression outputs for the sake of brevity.
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received broadcast information. Likewise, for the patients who received information

over a phone call with the physician, the odds of being more vaccinated are 1.35

times that of others who received information via broadcasting.

Nurses often serve as the front-line health professionals in various settings, mak-

ing them the primary point of contact for patients. Their accessibility, approach-

ability, and perceived relatability often facilitate more open, candid conversations

about health concerns. This ease of communication may be especially valuable in ad-

dressing vaccine hesitancy, where misunderstandings and misbeliefs can significantly

influence decisions. As trusted medical professionals who are often less intimidating

than physicians, nurses may have a better capacity to engage with patients in a

manner that encourages dialogue rather than mere dissemination of information,

especially when there is skepticism about vaccine effectiveness or lack of trust in

those recommending the vaccination.

2.5 Conclusion

Our empirical study set out with dual objectives: firstly, to examine the impact of

different communication strategies—namely “broadcasting” and “personalized”—in

information dissemination about COVID-19 vaccines, and secondly, to understand

how these strategies influence individual vaccination decisions. The research lever-

aged a unique data set collected from public family health centers in Izmir, Turkey,

yet aimed to offer insights of broader relevance.

Our findings underscore that personalized modes of communication, such as

one-to-one consultations and phone calls, are more powerful in enhancing individu-

als’ informational levels about COVID-19 and vaccines. However, a critical nuance

emerges where increased information does not necessarily correlate with an uptick
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in vaccination rates. While personalized strategies effectively educate individuals,

they do not uniformly catalyze action toward vaccination. Interestingly, subgroups

exist where personalized interactions were highly influential; notably among those

who trust social or non-professional information sources, one-to-one consultations

with nurses were particularly effective in promoting vaccination.

This research illuminates the complex relationship between information dissem-

ination and vaccine hesitancy and nuances of the effectiveness of personalized com-

munication, thereby aiming to provide a richer framework for public health strategy

formulation of policy-makers.

Ultimately, vaccine hesitancy is not solely a byproduct of insufficient or inef-

fective communication; it is influenced by numerous determinants, ranging from

cultural beliefs and past medical experiences to trust in healthcare systems. While

communication strategies, whether personalized or broadcast, are essential elements,

they are part of a larger ecosystem of factors that influence health behaviors.
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Table 2.5: Results - Most trusted social media

Dependent variable: Vaccine Hesitancy

(1) (2) (3) (4)

Info strategy (ref: broadcasting)
Face-to-face -0.699 -1.428 -0.601 -0.266

(0.820) (1.001) (0.888) (1.047)
Nurse 1.263∗∗∗ 1.486∗∗∗ 1.290∗∗∗ 1.128∗∗

(0.250) (0.379) (0.297) (0.401)
Phone 0.300 0.451 0.369 0.140

(0.919) (1.051) (0.942) (1.243)
Doctor ID Yes Yes Yes Yes
Age (ref: age 20-25 years)

25-30 years 1.682
(1.513)

30-35 years 1.991
(1.559)

35-40 years 2.327
(1.581)

40-45 years -1.034
(2.943)

Male -1.218∗

(0.689)
Unemployed -0.030

(0.699)
Chronic illness 0.216

(0.743)
Had COVID-19 0.480

(0.696)
Close death from COVID-19 0.214 0.740

(0.605) (0.801)
Numb. of consultation 0.009

(0.143)

Observations 71 70 70 58

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 3

Social Learning and Degree of

Coarseness in Communication

Abstract

In this paper, we explore the impact of the quality of communica-

tion—referred to as its ‘coarseness’—on social learning within connected

groups. Building on the existing literature, we scrutinize the conditions

under which agents in a highly connected community become stuck in in-

correct beliefs. We find that the limitations of this ‘stuckness’ are closely

tied to the model’s assumptions about the simplicity of communication

and the binary nature of states. Additionally, we show the equivalence

of a clan and 1/2-cohesiveness. We also state the true generalization of

the ‘stuckness’ condition to the case with a discrete number of possible

actions (more than two), and show how it breaks down in the limit.
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3.1 Introduction

Social ties are major channels of transmitting information, behavior, and opinions.

They convey information by observing other individuals’ decisions together with

the conversations. The information flow through social networks has a major role in

various types of phenomena, such as product choice (Trusov et al., 2009), job search

(Montgomery, 1991), financial planning (Duflo and Saez, 2003), voting (Beck et al.,

2002) and criminal activity (Ballester et al., 2006). Because of this, it is crucial

to understand how the information flows through social ties, how private beliefs

and behaviors evolve over time, how this depends on the network structure, whose

opinions are particularly influential, and whether or not society can aggregate the

dispersed information efficiently.

In social learning literature, the earliest attempts have been made to explain

the extensive conformity within a group, i.e., herding behavior. Both Banerjee

(1992) and Bikhchandani et al. (1992) construct models such that agents take actions

sequentially, referred to as sequential social learning models. Agents observe the

history of actions and a personal (private) signal before choosing their actions. The

previous actions of others give information about which action is the correct one to

the agent, even though the payoff of an agent is independent of the actions made

before. This fact stands as a positive externality of information. They analytically

show that people usually prefer to ignore their private information and rather imitate

the crowd. In this instance, agents’ choices stop presenting novel information to the

newcomers, and the herding may happen on a wrong action. Several variations of

this idea have been studied in many contexts, such as fads, fashions, and stock price

bubbles. (see an overview in Chamley (2004)). Due to the restrictions of sequential

social learning models, many fundamental issues about the dynamics of individual

opinions and choices in a context where agents make many decisions and repetitively
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influence each other cannot be studied. These restrictions force a departure from

this framework and deem it necessary to study this subject in a network setting.

In the network framework, two approaches exist that differ in how they presume

how people process the information they hear from each other. Assuming their

particular specification on how people process the information that they receive

in each period of time, with both approaches, the literature focused on answering

crucial questions such as whether society as a whole converges to a unique belief in

the long run, (if so) whether this is the true belief, and how fast should we expect

this convergence.

One of these approaches which models the dynamics of repeated updating of

beliefs assumes that people act myopic in each stage. Given the prohibitively com-

plex form that social networks are often shaped in, it can be quite challenging for

the agents involved to update beliefs properly, considering the repeated transfers of

information among large numbers of individuals in many stages. This is the main

assumption of the DeGroot Model developed by DeGroot (1974). DeMarzo et al.

(2003) is the first paper that discussed it in detail in a microeconomic context. In

their setting, agents update their beliefs or attitudes in each period simply by tak-

ing weighted averages of their neighbors’ opinions from the previous period, possibly

placing some weight on their own previous beliefs. The agents in their scenario are

boundedly rational, failing to adjust correctly for repetitions and dependencies in

the information they hear multiple times over the communications. This charac-

terization allows us to use Markov chains’ properties to find the system’s long-run

behavior. As long as some sufficiency conditions on the network hold, there exists a

long-run consensus (Meyer and Stewart, 2023) in which the influence of each agent’s

initial signal on consensus can be expressed in terms of their centralities (Golub and

Jackson, 2010).
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Formally, Golub and Jackson (2010) derive conditions on the listening structure

such that convergence to the truth - wisdom of the crowds - occurs. They show that

all opinions in a large society converge to the truth if and only if the influence of the

most influential agent vanishes as the society grows. They also identify obstructions

to asymptotic learning, including excessively influential groups interrupting the long-

run efficiency.

The second approach to modeling how people update beliefs is the Bayesian

approach (Gale and Kariv, 2003). Agents are assumed to be fully rational, they

are aware of the network and they update information via Bayes’ rule. A central

intuition is that each agent’s belief allows her neighbors to infer what that player

could have seen last period, narrowing down the set of possible states. When this

process stops, it is common knowledge between any pair of neighbors what their

beliefs are (Mueller-Frank, 2013, 2014). Gale and Kariv (2003) finds that if the

network satisfies a connectedness assumption, the initial diversity resulting from di-

verse private information is eventually replaced by the uniformity of actions, though

not necessarily of beliefs, in finite time with probability one. A more recent paper,

Mossel et al. (2015), also studies a model of repeated interaction with fully rational

expectations playing a Perfect Bayesian game, but with discounting future payoffs.

They characterize the general class of networks such that players can learn the true

state almost surely. Their condition of L-local-connectedness requires that no agent

is excessively influential, with a similar intuition as its myopic-model counterparts.

Apart from the theoretical analysis, whether people in reality behave as if they

are boundedly rational or fully rational is another essential question. There has been

a recently growing literature on experiments on testing learning models. The labo-

ratory experiments (Corazzini et al., 2012; Battiston and Stanca, 2014) show that

people fail to consider the repetition of information even with small networks. Also,
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other papers show that the actual learning patterns of people are well approximated

by the naive-learning approach of DeGroot (Grimm and Mengel, 2020).

On the other hand, it is only natural to consider that agents may be heteroge-

neous in their sophistication or naivete about how they engage in social learning.

Particularly, they can vary in how well they can assess how much independent infor-

mation is contained among their social connections, along with whether they account

for the naivete of those connections. Mueller-Frank (2014) analyzes such a model

of social networks among agents with differing degrees of sophistication and where

agents can transmit their posterior beliefs to each other. He shows that at least one

Bayesian agent in a strongly connected network is sufficient for perfect information

aggregation.

There also exists a recent paper by Chandrasekhar et al. (2020) that considers

the possible heterogeneity of agents in their sophistication of learning in a specified

manner. They propose an incomplete information model of social learning with

coarse communication and binary states on a network where agents can potentially

be Bayesian or DeGroot. Coarse communication means that agents cannot or do

not transmit their beliefs or information sets to their friends to a fine degree. They

are constrained to process coarse information from their friends when they engage

in learning. It can be because communication is very complex, detailed information

is very costly or agents cannot do so. In this setting, coarse communication means

agents observe that their friends believe the true state is 0 or 1. As a result, the

paper identifies a few behavioral patterns in the learning behavior of two different

types of agents and focuses on some features of the network that lead to the failure

of asymptotic learning. They single out one incident where a clan of DeGroot agents

remains stuck with the wrong action.

In our research, we focus on the learning properties of networks with highly
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clustered groups that consist of individuals with dense friendship patterns internally

and sparse friendships externally. We begin by investigating how general the result

from Chandrasekhar et al. (2020) about agents in a highly connected group getting

stuck in the wrong state, leading to the failure of true learning in society. By

using that paper as a starting point, we examine how the degree of coarseness of

communication translates into social learning.

We show that the result of DeGroot agents from a clan being stuck in the wrong

state is highly related to the assumptions of coarse communication and the binary

state of the model. If we vary either of these assumptions slightly, agents in a clan

do not get stuck in the wrong state. Indeed, the concept of a clan is equivalent to

the q-cohesiveness which is already a well-recognized condition of clustering in social

networks. We show this equivalence and we identify the condition where a clan may

choose a wrong action forever when the discrete number of possible actions is more

than two. Finally, it is shown that as we make communication finer by increasing

the number of possible actions that people may take in each period, the case where

people in a clan choose the wrong action forever becomes impossible in the limit.

The paper’s organization is as follows: Section 3.2 presents the theoretical model.

In Section 3.3, it is shown that the modifications we have made to show that “the

stuckness of the clan” can not be generalized to different settings. Also, we show the

equivalence of a clan and 1/2-cohesiveness. Then we state the true generalization

of the “stuckness” condition, and show how it breaks down in the limit. In Section

3.4, we summarize the research.
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3.2 Model

In this section, we describe the social learning model. We use the theoretical setting

from Chandrasekhar et al. (2020) as a starting point in our results in the follow-

ing section, but we generalize the coarse communication environment from binary

actions to k number of possible actions. Apart from that, the structure used is as

follows.

Let us consider an undirected, unweighted graph G = (V,E) where V indicates

the set of nodes/agents and E is the edge list of n = ∣V ∣ agents. Ni = {j ∶ Gij = 1}

denotes the neighborhood of i and N⋆i = Ni ∪ {i}.

It is a model of incomplete information as all agents are either DeGroot(D)

or Bayesian(B) where type ηi ∈ {D,B}. Types are identically and independently

distributed, and the distribution of types is standard information whereas no one

knows the type of others in the network. The type describes how an agent processes

information, either by using DeGroot or Bayesian updating.

Agents try to learn and correctly guess the world’s underlying state θ ∈ {0,1}.

Time is discrete so t ∈ N. At the beginning of time, everyone receives an initial infor-

mative signal about the true state that is independently and identically distributed

such that si = θ with some probability p ∈ (1/2,1).

A crucial assumption of the model is that communication is coarse. That is, in

each period t, each agent i takes an action ati ∈ {0,1} simultaneously which reflects

his best guess about the state of the world, observes the guesses of his neighbors in

the network, and updates his guess accordingly in the next period.

DeGroot agents follow the standard DeGroot updating process in a binary envi-

ronment, meaning they follow most of their own guesses and their friends’ guesses in

the prior period. Bayesian agents try to infer what other agents could have observed

last period by looking at their neighbors’ choices at each period, and therefore nar-
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row down the set of possible states. Because of the incomplete information setting,

they also try to learn about the types of all other agents while learning about the

state to make the most informed guess in every period.

To state their main result, mentioning the concepts of a clan and stuckness is

necessary. Let di be the degree of agent i. A group of agents, C ⊂ V is said to be

a clan if ∀i ∈ C, di(C) ≥ di(V ∖ C) where ∣C ∣ ≥ 2. A clan is a set of nodes that

are more connected among themselves than to those outside the group. An agent i

is said to be stuck on the wrong state if there exists some time period t such that

at+mi = 1 − θ for all m ∈ N. In words, i is stuck on the wrong action, if after some

point in time, he always chooses that action from then on.

With these concepts defined, their central theoretical result says that if a clan

consisting of all DeGroot agents agrees on the wrong state of the world at any point

in time, then all the agents in the clan are forever stuck in the wrong state.

In the subsequent example, we demonstrate how a clan gets stuck in the wrong

state.

3.2.1 An Example

Let there be 7 DeGroot-type agents. Let the initial signals be distributed such that

Mr. 1, 3, and 6 receive a signal of 1 (indicated with a blue node) and Mr. 2, 4, 5, and

7 receive 0 (indicated with a white node). As most of the initial signals distributed

are White and initial signals are assumed to be informative, the actual state of the

world is White. Since the private signal is the only information they have obtained,

all agents play according to their private signal in the first period. So the network

in t = 1 is the following:
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Figure 3.1: Actions at t=1

Notice that Mr. 2, 3, and 6 form a clan as all of the neighbors of Mr. 2 and

6 and half of Mr. 3’s neighbors are inside this set. Let us assume that all those

agents are DeGroot type. As Mr. 2 observes 2 Blue and 1 White in the first period,

the majority of actions he observes are Blue and this means that he will choose the

action Blue in the following period. Similarly, since Mr. 3 observes 3 Blue and 2

White, he will also continue with the action Blue in the next period. With this

process followed by all agents, in t = 2, the choices become the following:

2

6

3

1

4

7

5

Figure 3.2: Actions at t=2

After that point, this clan remains stuck with the action Blue, seeing that most

of each one’s neighbors also choose Blue. Hence, they choose Blue for all t ≥ 2 which

is the wrong state.

3.3 Results

In this section, we first show our modifications to the example from the previous

section and demonstrate how the clan does not get stuck in the wrong state in
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each case. Then, we mention the equivalence of a clan and a q-cohesive group and

show how the “stuckness of clan” result breaks down as the number of possible

actions increases. Then, we give the true condition on the “stuckness of clan” using

q-cohesiveness.

3.3.1 Modifications on the Example

In order to show that the result of the “stuckness of clans” depends very much

on the particular setting of the model - namely, coarse communication and binary

state - we make three separate modifications to these assumptions of the model and

demonstrate that agents in the clan do not get stuck with the wrong state anymore.

Particularly, using the network configuration from the previous example, the cases

are considered where

• the updating rule of agents is to choose ati = 1 if their posterior belief that the

state is 1 is greater than 2/3,

• there are more than 2 possible states/actions,

• agents can share their posterior beliefs about the states.

Firstly, we consider the case where the updating rule of agents is to choose a

particular action of the two possibilities when the posterior belief about that state

being the correct one is different than 1/2, for example, 2/3. It may be because one

of the states is perceived to be very unlikely, so agents need a higher posterior belief

about that state being the truth to take that action. In this case, it is shown that

the clan can avoid getting stuck in the wrong state. The details of this case are

presented in Case I of Appendix C.1.1.

Secondly, we focus on the case where the state is not binary - namely, 0 or 1 -

but has more than 2 possible states. Notably, it is assumed that there are 5 different
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possible actions/states. We show that after all the members in the clan agree on

some wrong action, they do not get stuck on this wrong action; instead, one of them

can get out of that wrong state since the communication itself becomes finer with

the increased number of states in the interval. This modification is shown in Case

II of Appendix C.1.2.

Lastly, we concentrate on the case in which agents conduct perfectly fine com-

munication, meaning they can transmit the posterior beliefs about the states to

each other at each period. Again in this case, we show that agents can get out of

the wrong state by using the results of the long-run consensus of continuous DeG-

root models of Golub and Jackson (2010). The steps are explained in Case III of

Appendix C.1.3.

To sum up, by considering various modifications to the model’s assumptions,

we show that the stuckness result depends very much on the model’s binary action

and coarse information assumptions. In fact, if we modify the setting slightly, the

central result of the paper breaks down.

3.3.2 Equivalence of a Clan and Q-Cohesiveness

As an observation, we argue that the notion of a clan seems arbitrary. To be more

specific, it is identical to q-cohesiveness which is a well-accepted concept of clustering

made by Morris (2000). In his paper, Morris conceptualizes that a set of nodes S is

q-cohesive concerning network G if

min
i∈S

∣Ni(G) ∩ S∣
∣Ni(G)∣

≥ q

Intuitively, S is q-cohesive if each node in S has at least a fraction q of their neighbors

also in S. Hence, it is precisely what a clan is according to the definition of clan in
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the previous section, if we take q = 1
2 . Proposition 1 states this observation.

Proposition 3.1. A set of agents C is a clan if and only if they are 1
2-cohesive.

Proof: See Appendix C.2.1.

3.3.3 Breakdown of “Stuckness” Result

Another observation is that the result saying that clans that consist of all DeGroot

agents may get stuck in the wrong state is not related to the incomplete information

setting which was argued as the novelty of Chandrasekhar et al. (2020). Instead, it

is related to the coarse communication assumption.

In fact, if we were to increase the number of possible actions, but still keep it

discrete, the case where clans get stuck on some given state becomes increasingly

unlikely. In the extreme case, where the number of actions goes from two to infinity,

the result of clans getting stuck vanishes. This is what we state in the following

proposition.

Proposition 3.2. Let k be the number of possible states/actions. As the number of

possible actions/states k increases, the “stuckness of clans” result disappears in the

limit.

Proof: See Appendix C.2.2.

The detailed proof is presented in Appendix C.2.2, but the idea of the proof is as

follows: for a given k, we define an interval i⋆ such that an agent chooses a specific

action if and only if his updated belief that he forms observing his neighbors, is

located at most i⋆ distance away from that action. After that, we show that as

k → ∞, i⋆ → 0, the incident where agents get stuck at some given action becomes

impossible.
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3.3.4 Generalization of “Stuckness” Condition to the Case

with k Possible Actions/States

Previous results are specific to the setting where the agent can communicate only

two possible states/actions (k = 2). In this section, we also generalize the result of

agents in a clan getting stuck at the wrong state and characterize the condition for

the number of possible actions k ≥ 2.

Proposition 3.3. Assume all agents in a (1− 1
2(k−1))-cohesive group S are DeGroot

and there exist t ≥ 1 and some fixed action a such that for all i ∈ S, ati = a. Then

at+τi = a for all i ∈ S and τ ∈ N.

Proof: See Appendix 2.3.

I should emphasize that the threshold cohesiveness level of a group depends on

i⋆ for an arbitrary k. When k = 2, it corresponds to the 1/2-cohesiveness, as before.

As k increases, this threshold converges to 1 very fast, which corresponds to an

unrealistically high level of cohesiveness of the group. It means a group gets stuck

in the wrong state if they are highly clustered, which is very restrictive and unlikely.

3.4 Conclusion

This study has delved into the complexities of social learning within highly con-

nected groups, particularly examining how the quality of communication impacts

the formation and persistence of beliefs. By extending the work of Chandrasekhar

et al. (2020), we have shown that the phenomenon of agents becoming ‘stuck’ in in-

correct beliefs is not merely a byproduct of their social environment but is intricately

tied to the limitations of coarse communication and binary states.
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We introduced the concept of “1/2-cohesiveness” to provide a nuanced under-

standing of the unity within these groups. Furthermore, we expanded the scope

of the ‘stuckness’ condition to include scenarios with a discrete number of possible

actions, revealing how this condition breaks down in the limit.

Our findings have broader implications for studying social networks, belief for-

mation, and information dissemination. They highlight the need for more nuanced

models to capture human interaction and learning complexities. Future research

could focus on how different types of networks or varying degrees of communication

coarseness could impact social learning. Additionally, empirical studies could be

conducted to validate the theoretical models presented here.

A natural next step would be to focus on coarse communication but with more

than two possible actions and attempt to find general conditions that give rise to

asymptotic learning, in which the beliefs of all agents in the social network converge

over time and agents take correct actions. We should emphasize that stuckness is

only one of the conditions that would disrupt the asymptotic learning, there can

still be other obstacles that stop people from converging to a true consensus.

For instance, let us assume that we eliminate the cases in which agents get

stuck in some wrong state. Agents still need to have enough friends to observe

information from a sufficient number of sources. It is crucial because it would lead

them to update their beliefs smoothly enough toward the correct action (which is

also the most common signal in the whole network), despite the granularity of the

action set. Hence, we infer that there is a condition for asymptotic learning on the

number of connections that depend on k (cardinality of action set).

Another aspect would be how convergence speed depends on the cardinality

of the action set as discussed earlier. Intuitively, we expect the convergence to

happen faster as the number of possible actions increases. The reason is that as
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the cardinality of the action set increases, its granularity decreases and it becomes

easier for agents’ actions to move toward the true choice.
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Appendix A

Endogenous Socialization with

Costly Behavior

A.1 Solution of One Activity Example

In this example, we assume that agents have an increasing and concave utility func-

tion because there is no convex health cost. Since there is only a constant marginal

cost of socializing, a concave utility function is needed to obtain an interior optimal

solution. So we assume the utility function as ui = (si + γdi)α where α ∈ (0,1). The
problem of a type 1 agent is

max
s1,d1
(s1 + γd1)α − c.t1

Using si = tiAqiA+ tiBqiB and di = tiA(1−qiA)+ tiB(1−qiB), the optimization problem

can be rewritten as:

max
t1
(t1q1 + γt1(1 − q1))α − ct1

The optimization leads to the FOC:

[t1] ∶ α((1 − γ)q1 + γ)(α−1)(q1 + γ(1 − q1)) − c = 0

tα−11 = c

α
(q1(1 − γ) + γ)−α

t1 = (
α

c
) 1

1−α (q1(1 − γ) + γ)
α

1−α (A.1)
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Similarly, from type 2’s problem, FOC yields

t2 = (
α

c
) 1

1−α (q2(1 − γ) + γ)
α

1−α (A.2)

We know the meeting probabilities are

q1 =
N1t1

N1t1 +N2t2

q2 = 1 − q1 =
N2t2

N1t1 +N2t2

(A.3)

Parametrizing α = 0.5, γ = 0.5, N1 = 100 and N2 = 200, the equations (3), (4) and
(5) are solved simultaneously to get the following solutions:

q1 = 2 −
√
3 q2 = −1 +

√
3

t1 =
3 −
√
3

8c2
t2 =
√
3

8c2

Notice that for the large group, it results in

H2 =
s2

s2 + d2
= q2t2
q2t2 + (1 − q2)t2

= q2 = −1 +
√
3 > 0.66 = 200

200 + 100
= w2

which means the large group has positive homophily.

For the small group, it results in

H1 =
s1

s1 + d1
= q1t1
q1t1 + (1 − q1)t1

= q1 = 2 −
√
3 < 0.33 = 100

200 + 100
= w1

which means the small group has negative homophily.

A.2 Solution of the Model

In this part, we consider all the possible situations that can arise as an equilibrium

of the system. Since there are many cases to consider, we first classify them as the

following, based on how integrated/segregated the groups are:

• Perfectly-Segregated cases where groups are perfectly segregated into two sep-

arate rooms.

• Perfectly-Integrated cases where groups spend all of their time together.
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• Semi-Integrated cases where groups spend some part of their time together.

In this proof, we focus on each case individually and show that the only possible

equilibria are those stated in Proposition 1.

A.2.1 Perfectly-Segregated Possible Equilibria

Let us consider the possible cases of equilibria where the groups are perfectly segre-

gated. These are the cases where one group spends all of their time available doing

one of the activities, whereas the other group spends all of their time doing the other

activity.

These are the two possible cases of corner solutions

a) t1A = 1 and t2A = 0.

b) t1A = 0 and t2A = 1.

We show that none of these cases constitute an equilibrium, given that h > 1,

because the type that spends all their time in the costly activity always wants to

deviate from the choice of tiA = 1.
Recall the optimization problem of type 1 agent is

max
t1A

t1Aq1A + (1 − t1A)q1B + γ(t1A(1 − q1A) + (1 − t1A)(1 − q1B)) − h
2 t

2
1A

s.t. t1A − 1 ∈ [0,1]

The constraint t1A ∈ [0,1] is actually divides into the two following constraints:

t1A − 1 ≤ 0
−t1A ≤ 0

The Kuhn-Tucker conditions coming from the maximization problem of type 1

agents are
∂L
∂t1A

= (q1A − q1B)(1 − γ) − ht1A − λ1 + λ2 = 0 (A.4)

t1A − 1 ≤ 0 λ1 ≥ 0 λ1(t1A − 1) = 0

−t1A ≤ 0 λ2 ≥ 0 λ2(−t1A) = 0
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Consider when λ1 > 0 and λ2 = 0. Since λ1 > 0, t1A = 1 should be true. Using

t1A = 1 in (6):

(q1A − q1B)(1 − γ) − h = λ1 > 0

should be true by assumption. But notice that, since γ ∈ (0,1) and −1 < (q1A−q1B) <
1, (q1A − q1B)(1 − γ) − h is negative for sure if h > 1.

Hence, if h > 1, t1A = 1 is never a solution.

The same argument can be used for type 2 and their choice of t2A = 1, which

means that, no matter what the meeting probabilities are, t2A = 1 is never a solution

for h > 1. So it is shown that the cases considered here can never be an equilibrium,

assuming h > 1.

A.2.2 Perfectly-Integrated Possible Equilibria

Now we consider the cases in which both groups spend all of their time together,

either in one of the activities or in both of the activities simultaneously.

These are the three possible cases where

a) t1A ∈ (0,1) and t2A ∈ (0,1).

b) t1A = 0 and t2A = 0.

c) t1A = 1 and t2A = 1.

In here, we show that only the case in the second item constitutes an equilibrium,

which is the equilibrium (i) of Proposition 1.

a) Consider the first case where t1A ∈ (0,1) and t2A ∈ (0,1).
Notice that in order to have such an interior solution for both types of agents,

both of the First-Order Conditions coming from the optimization problems of both

types should be satisfied. The First-Order Condition of type 1 is

(q1A − q1B)(1 − γ) = ht1A

Symmetrically, the First-Order Condition of type 2 is

(q2A − q2B)(1 − γ) = ht2A
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Because of the unbiased matching process, notice that

q2A − q2B = (1 − q1A) − (1 − q1B) = −(q1A − q1B)

Then the First-Order Condition of type 2 becomes

−(q1A − q1B)(1 − γ) = ht2A

Combining the two of them, we get the optimality condition of

t2A = −t1A

which can not be since the choices of time should be non-negative. Hence it is not

an equilibrium.

b) Consider the second case where t1A = 0 and t2A = 0.
For this to be an equilibrium, there should not exist any profitable deviation.

Without loss of generality, let us consider a possible deviation for type 1 from

t1A = 0 to some t1A = ϵ > 0. The change in her payoff is

[ϵq1A + (1 − ϵ)q1B + γ(ϵ(1 − q1A) + (1 − ϵ)(1 − q1B)) −
h

2
ϵ2] − [q1B + γ(1 − q1B)]

reorganizing it

ϵ(q1A − q1B)(1 − γ) −
h

2
ϵ2 < 0

For this deviation to be non-profitable, the expression above should be negative.

Since it is assumed that individuals’ unilateral deviations will not affect the meeting

probabilities, q1A = 0. So the expression is always negative. Hence, there is no

profitable deviation of type 1. The same arguments can be applied to type 2 as well.

So this constitutes an equilibrium.

c) Consider the third case where t1A = 1 and t2A = 1.
Following the same arguments from the Kuhn-Tucker conditions in section 1 of

Appendix B, both types of agents have incentives to deviate from spending all of

their time in the costly activity room, assuming h > 1.
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A.2.3 Semi-Integrated Possible Equilibria

Lastly, we consider the cases in which both groups spend some of their time together

in one of the rooms, whereas the other room is occupied only by one type.

These are the four possible cases where

a) t1A ∈ (0,1) and t2A = 1.

b) t1A = 1 and t2A ∈ (0,1).

c) t1A ∈ (0,1) and t2A = 0.

d) t1A = 0 and t2A ∈ (0,1).

Here, we show that the cases in part (c) and (d) constitute equilibria, which are

the equilibria (ii) and (iii) of Proposition 1.

For the cases in (a) and (b), it can be shown that they are not equilibrium using

the same arguments from the Kuhn-Tucker conditions in section 1 of Appendix B.

c) Consider the third case where t1A ∈ (0,1) and t2A = 0.
This situation can be visualized using the picture below which contains boxes

with different colors showing the different types of people spending time in rooms

A and B. The pink boxes show the stock of type 1 agents in each room, and the

yellow box shows the stock of type 2 agents in room B.

t1AN1 = t′N1

Smoking Room - A

t2BN2 = N2

t1BN1 = (1 − t′)N1

Non-Smoking Room - B

Remember that the optimization problem of type 1 agent is

max
t1A

s1 + γd1 −
1

2
h2t1A − ct1A − c(1 − t1A)

or equivalently

max
t1A

t1Aq1A + (1 − t1A)q1B + γ(t1A(1 − q1A) + (1 − t1A)(1 − q1B)) −
1

2
h2t1A
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Notice that if we want the choice of t1A ∈ (0,1) for a type 1 agent to constitute

an equilibrium, we should ensure that it satisfies the optimality condition of type 1.

However, for type 2, the similar optimality condition does not need to be satisfied

as t2A = 0 is a corner choice. As long as we ensure that a type 1 agent does not want

to make a unilateral deviation, we would be safe to argue that it is an equilibrium.

The optimality condition for t1A = t′ ∈ (0,1) of type 1 comes from the First-Order

Condition of the maximization problem of type 1:

(q1A − q1B)(1 − γ) = ht1A

Notice that the meeting probabilities in this situation are

q1A =
t′N1

t′N1 + 0
= 1

q1B =
(1 − t′)N1

(1 − t′)N1 +N2

Using these, the optimality condition becomes

(1 − (1 − t′)N1

(1 − t′)N1 +N2

)(1 − γ) = ht′

When we solve this equation for t′, we get two distinct solutions:

√
h(N1 +N2) ±

√
4N1N2(γ − 1) + h(N1 +N2)2

2N1

√
h

Notice that the second solution
√
h(N1+N2)+

√
4N1N2(γ−1)+h(N1+N2)2

2N1

√
h

is always higher than

1 as N2 > N1, so it is not a possible solution. Therefore, we focus only on the other

root of the system.

t′ =
√
h(N1 +N2) −

√
4N1N2(γ − 1) + h(N1 +N2)2

2N1

√
h

A few remarks on this solution:

• Assuming that h > 1 − γ, t′ is a real number.

4N1N2(γ − 1) + h(N1 +N2)2 > 0
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• t′ is always positive since

h(N1 +N2)2 > 4N1N2(γ − 1) + h(N1 +N2)2

0 > 4N1N2(γ − 1)

always true as γ − 1 < 0.

• Assuming h > 1 − γ, t′ < 1 holds.

√
h(N1 +N2) −

√
4N1N2(γ − 1) + h(N1 +N2)2 < 2N1

√
h

√
h(N1 +N2 − 2N1) <

√
4N1N2(γ − 1) + h(N1 +N2)2

√
h(N2 −N1) <

√
4N1N2(γ − 1) + h(N1 +N2)2

h(N2 −N1)2 < 4N1N2(γ − 1) + h(N1 +N2)2

4(1 − γ)N1N2 < 4hN1N2

(1 − γ) < h

d) Consider the fourth case where t1A = 0 and t2A = t′′ ∈ (0,1).
Again we visualize the situation with the picture below containing boxes with

different colors showing the different types of people spending time in rooms A and

B. The yellow boxes show the stock of type 2 agents in each room, and the pink box

shows the stock of type 1 agents in room B.

t2AN2 = t′′N2

Smoking Room - A

t1BN1 = N1

t2BN2 = (1 − t′′)N2

Non-Smoking Room - B

Similar to the equilibrium above, the optimization problem of the type 2 agent

is

max
t2A

s2 + γd2 −
1

2
h2t2A
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or equivalently

max
t2A

t2Aq2A + (1 − t2A)q2B + γ(t2A(1 − q2A) + (1 − t2A)(1 − q2B)) −
1

2
h2t2A

Again, the choice t2A ∈ (0,1) for a type 2 agent to constitute an equilibrium

should satisfy the optimality condition of type 2. However, for type 1, the similar

optimality condition does not need to be satisfied as t1A = 0 is a corner choice.

The optimality condition for t2A = t′′ ∈ (0,1) of type 2 comes from the First-Order

Condition of the maximization problem of type 2:

(q2A − q2B)(1 − γ) = ht2A

Now, the meeting probabilities become

q2A =
t′′N2

t′′N2 + 0
= 1

q2B =
(1 − t′′)N2

(1 − t′′)N2 +N1

Using these, the optimality condition becomes

(1 − (1 − t′′)N2

(1 − t′′)N2 +N1

)(1 − γ) = ht′′

Solving this equation for t′′, we get two distinct solutions:

√
h(N1 +N2) ±

√
4N1N2(γ − 1) + h(N1 +N2)2

2N2

√
h

Notice that the second solution
√
h(N1+N2)+

√
4N1N2(γ−1)+h(N1+N2)2

2N2

√
h

is higher than 1 as-

suming that h > 1 − γ, so it is not a possible solution. Therefore, as we did in the

previous part, we focus only on the other root of the system.

t′′ =
√
h(N1 +N2) −

√
4N1N2(γ − 1) + h(N1 +N2)2

2N2

√
h

A few remarks on this solution:
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• Assuming that h > 1 − γ, t′′ is a real number.

4N1N2(γ − 1) + h(N1 +N2)2 > 0

• t′′ is always positive.

h(N1 +N2)2 > 4N1N2(γ − 1) + h(N1 +N2)2

0 > 4N1N2(γ − 1)

always true as γ − 1 < 0.

• t′′ < 1 is always true.

√
h(N1 +N2) −

√
4N1N2(γ − 1) + h(N1 +N2)2 < 2N2

√
h

−
√
4N1N2(γ − 1) + h(N1 +N2)2 <

√
h(N2 −N1)

which is always true.

A.3 Comparative Statics

• Using the closed-from solutions of t′ and t′′, the partial derivative of t′ with

respect to N1 is

∂t′

∂N1

=
N2((h − 2(1 − γ))N1 + hN2 −

√
h
√
h(N1 +N2)2 − 4(1 − γ)N1N2)

2
√
hN2

1

√
h(N1 +N2)2 − 4(1 − γ)N1N2

.

As the denominator is always positive, we focus only on the nominator:

(h − 2(1 − γ))N1 + hN2 −
√
h
√
h(N1 +N2)2 − 4(1 − γ)N1N2) ≶? 0

(h − 2(1 − γ))N1 + hN2 ≶?
√
h
√
h(N1 +N2)2 − 4(1 − γ)N1N2)

Notice that both sides of the inequalities are positive when N2 > N1 and

h > 1 − γ is assumed. So taking the square of both sides does not change the

sign of the inequality:

h2(N1+N2)2+4(1−γ)2N2
1−4(1−γ)hN1(N1+N2) ≶? h2(N1+N2)2−4(1−γ)hN1N2
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Simplifying it:

N1((1 − γ) − h) < 0

is always true as h > 1 − γ is assumed. So ∂t′

∂N1
< 0 is true.

• Following the same steps as above, it is also true that ∂t′′

∂N2
< 0.

• The partial derivative of t′ with respect to N2 is

∂t′

∂N2

= 1

2N1

√
h
(
√
h − 2h(N1 +N2) − 4(1 − γ)N1

2
√
h(N1 +N2)2 − 4(1 − γ)N1N2

)

= 1

2N1

√
h
(
2
√
h(N1 +N2)2 − 4(1 − γ)N1N2 − 2h(N1 +N2) + 4(1 − γ)N1

2
√
h(N1 +N2)2 − 4(1 − γ)N1N2

).

Focusing only on the nominator, as the denominator is always positive,

√
h2(N1 +N2)2 − 4h(1 − γ)N1N2 − h(N1 +N2) + 2N1(1 − γ) ≶? 0

√
h2(N1 +N2)2 − 4h(1 − γ)N1N2 ≶? h(N1 +N2) − 2N1(1 − γ).

Notice that taking the square of both sides of the inequality above does not

change the direction of the inequality as both sides are always positive. More

specifically, the right-hand side of the inequality above is always positive, as

we assumed h > 1 − γ:
h > 2(1 − γ) − h

Multiplying the left-hand side by N2 and the right-hand side by N1, inequality

still remains

hN2 > (2(1 − γ) − h)N1.

Hence

h(N1 +N2) − 2(1 − γ)N1 > 0.

So, we continue by taking the square of the former inequality:

h2(N1+N2)2−4h(1−γ)N1N2 ≶? h2(N1+N2)2+4(1−γ)2N2
1−4h(1−γ)N1(N1+N2)

4h(1 − γ)N2
1 ≶? 4(1 − γ)2N2

1

Since it is assumed that h > 1 − γ, it is always true that ∂t′

∂N2
> 0.
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• The partial derivative of t′′ with respect to N1 is

∂t′′

∂N1

= 1

2N2

√
h
(
√
h − 2h(N1 +N2) − 4(1 − γ)N2

2
√
h(N1 +N2)2 − 4(1 − γ)N1N2

)

= 1

2N2

√
h
(
2
√
h(N1 +N2)2 − 4(1 − γ)N1N2 − 2h(N1 +N2) + 4(1 − γ)N2

2
√
h(N1 +N2)2 − 4(1 − γ)N1N2

).

As we have shown above that

√
h2(N1 +N2)2 − 4h(1 − γ)N1N2 > h(N1 +N2) − 2N1(1 − γ)

and because of the fact that N2 > N1:

√
h2(N1 +N2)2 − 4h(1 − γ)N1N2 > h(N1+N2)−2N1(1−γ) > h(N1+N2)−2N2(1−γ).

So, both the numerator and denominator of the partial derivative is positive,

and ∂t′′

∂N1
> 0 is true.

• The partial derivative of t′ with respect to γ is

∂t′

∂γ
= − 4N1N2

4N1

√
h
√
h(N1 +N2)2 − 4(1 − γ)N1N2

< 0

which is always true, so ∂t′

∂γ < 0.

• Following the same steps as above, it is also true that ∂t′′

∂γ < 0.

• The partial derivative of t′ with respect to h is

∂t′

∂h
= −(1 − γ)N1N2

N1h
√
h2(N1 +N2)2 − 4(1 − γ)hN1N2

< 0

which is always negative as the denominator is positive. Hence, ∂t′

∂h < 0.

• Symmetrically, it is true that ∂t′′

∂h < 0.
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A.4 Pareto-Ranking

In this part, we Pareto-rank the three equilibria found in Appendix B, which are

the following:

1. t1A = 0 and t2A = 0.

2. t1A = t′ ∈ (0,1) and t2A = 0.

3. t1A = 0 and t2A = t′′ ∈ (0,1).

the closed-form solutions for t′ and t′′ are indicated in Appendix B.

Let us denote the payoff of a type-i agent in the equilibrium described in section-k

below for k =∈ {1,2,3} as Uk
i .

A.4.1 Equilibrium where no one smokes

Notice that in the case of t1A = 0 and t2A = 0, there will not be socialization in

Room A, and the meeting probability of agents in Room B is governed only by the

population shares:

q1B =
t1BN1

t1BN1 + t2BN2

= N1

N1 +N2

q2B = 1 − q1B =
t2BN2

t1BN1 + t2BN2

= N2

N1 +N2

Plugging the meeting probabilities into the payoff of agents, the resulting payoff of

a type 1 agent:

U1
1 = s1 + γd1 −

h

2
t21A

= t1Aq1A + (1 − t1A)q1B + γ(t1A(1 − q1A) + (1 − t1A)(1 − q1B)) −
h

2
t21A

= q1B + γ(1 − q1B) =
N1

N1 +N2

+ γ(1 − N1

N1 +N2

) = N1 + γN2

N1 +N2
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and for type 2 agent:

U1
2 = s2 + γd2 −

h

2
t22A

= t2Aq2A + (1 − t2A)q2B + γ(t2A(1 − q2A) + (1 − t2A)(1 − q2B)) −
h

2
t22A

= q2B + γ(1 − q2B) =
N2

N1 +N2

+ γ(1 − N2

N1 +N2

) = N2 + γN1

N1 +N2

A.4.2 Equilibrium where only minority smokes

In the case where t1A = t′ ∈ (0,1) and t2A = 0, only type 1 agents are in Room A, so

their meeting probability there will be 1, whereas in Room B, there is a mixture of

both types:

q1A = 1

q1B =
(1 − t′)N1

(1 − t′)N1 +N2

Plugging the meeting probabilities into the payoff of agents, the resulting payoff of

a type 1 agent:

U2
1 = s1 + γd1 −

h

2
t21A

= t1Aq1A + (1 − t1A)q1B + γ(t1A(1 − q1A) + (1 − t1A)(1 − q1B)) −
h

2
t21A

= t′ + (1 − t′) (1 − t′)N1

(1 − t′)N1 +N2

+ γ((1 − t′)(1 − (1 − t′)N1

(1 − t′)N1 +N2

)) − h

2
t′2

= (1 − t
′)N1 + ((1 − γ)t′ + γ)N2

(1 − t′)N1 +N2

− h

2
t′2

and for type 2 agent:

U2
2 = s2 + γd2 −

h

2
t22A

= t2Aq2A + (1 − t2A)q2B + γ(t2A(1 − q2A) + (1 − t2A)(1 − q2B)) −
h

2
t22A

= q2B + γ(1 − q2B) =
N2

(1 − t′)N1 +N2

+ γ(1 − N2

(1 − t′)N1 +N2

) = N2 + γ(1 − t′)N1

(1 − t′)N1 +N2

where t′ is the optimal time choice in the smoking room of type 1 agents derived in

Appendix B.

A-14



A.4.3 Equilibrium where only the majority smokes

In the case where t1A = 0 and t2A = t′′ ∈ (0,1), only type 2 agents are in Room A, so

their meeting probability there will be 1, whereas in Room B, there is a mixture of

both types:

q1A = 0

q1B =
N1

N1 + (1 − t′′)N2

Plugging the meeting probabilities into the payoff of agents, the resulting payoff of

a type 1 agent:

U3
1 = s1 + γd1 −

h

2
t21A

= t1Aq1A + (1 − t1A)q1B + γ(t1A(1 − q1A) + (1 − t1A)(1 − q1B)) −
h

2
t21A

= q1B + γ(1 − q1B) =
N1

N1 + (1 − t′′)N2

+ γ(1 − N1

N1 + (1 − t′′)N2

) = N1 + γ(1 − t′′)N2

N1 + (1 − t′′)N2

and for type 2 agent:

U3
2 = s2 + γd2 −

h

2
t22A

= t2Aq2A + (1 − t2A)q2B + γ(t2A(1 − q2A) + (1 − t2A)(1 − q2B)) −
h

2
t22A

= t′′ + (1 − t′′) (1 − t′′)N2

N1 + (1 − t′′)N2

+ γ((1 − t′′)(1 − (1 − t′′)N2

N1 + (1 − t′′)N2

)) − h

2
t′′2

= (1 − t
′′)N2 + ((1 − γ)t′′ + γ)N1

N1 + (1 − t′′)N2

− h

2
t′′2

where t′′ is the optimal time choice in the smoking room of type 2 agents derived in

Appendix B.

Using the solutions of t′ and t′′, we can compare the utilities of each group in

each case. Notice that for the minority group, the difference between their utility in

the equilibria where only the minority smokes and only the majority smokes is:

U2
1 − U3

1 =
(N2 − 2N1)(1 − γ)(h(N1 +N2) −

√
h(4(γ − 1)N1N2 + h(N1 +N2)2))

2N1(h(N1 +N2) +
√
h(4(γ − 1)N1N2 + h(N1 +N2)2))

This difference is strictly positive if and only if 2N1 < N2.
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The same difference for the majority group is the following:

U2
2 − U3

2 =
(2N2 −N1)(1 − γ)(h(N1 +N2) −

√
h(4(γ − 1)N1N2 + h(N1 +N2)2))

2N2(h(N1 +N2) +
√
h(4(γ − 1)N1N2 + h(N1 +N2)2))

which is always strictly positive.

Similarly, for the minority group, the difference in their utility in the equilibria

where only the minority smokes and no one smokes is:

U2
1 − U1

1 =
(N2 −N1)(1 − γ)N1(h(N1 +N2) −

√
h(4(γ − 1)N1N2 + h(N1 +N2)2))

2N1(h(N1 +N2) +
√
h(4(γ − 1)N1N2 + h(N1 +N2)2))

This difference is always strictly positive.

The same difference for the majority group is the following:

U2
2 − U1

2 =
N2(1 − γ)(h(N1 +N2) −

√
h(4(γ − 1)N1N2 + h(N1 +N2)2))

(N1 +N2)(h(N1 +N2) +
√
h(4(γ − 1)N1N2 + h(N1 +N2)2))

which is always strictly positive as well.

A.5 Modification on Cost Structure I

Here we show that, given that an additional fixed cost component R in the total cost

of activity A is within some interval, there exists a unilateral profitable deviation

for type 2 agent from t2A = t′′ ∈ (0,1) to t2A = 0, but there is no unilateral profitable

deviation for type 1 agent from t1A = t′ ∈ (0,1) to t1A = 0, given the closed form

solutions of t′ and t′′.

So, here are the conditions we have to satisfy:

U2(t2A = 0) − (U2(t2A = t′′) −R) > 0

meaning that deviating from t2A = t′′ to t2A = 0 is profitable for type 2 in equilibrium

(ii) is now profitable.

U1(t1A = 0) − (U1(t1A = t′) −R) < 0

which says that the unilateral deviation from t1A = t′ ∈ (0,1) to t1A = 0 is not
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profitable for type 1 agent in equilibrium (i).

Here, the utility of playing t2A = 0 when other type 2 agents play t2A = t′′ and
type 1 agents play t1A = 0 is the following:

s2 + γd2 = t2Aq2A + (1 − t2A)q2B + γ(t2A(1 − q2A) + (1 − t2A)(1 − q2A))

= q2B + γ(1 − q2B) =
(1 − t′′)N2

N1 + (1 − t′′)N2

+ γ N1

(1 − t′′)N2 +N1

The payoff of type 2 agent from playing t2A = t′′ when other type 2 agents play

t2A = t′′ and type 1 agents play t1A = 0 is:

= t′′ + (1 − t′′)((1 − t
′′)N2 + γN1

N1 + (1 − t′′)N2

) − h

2
t′′2 −R

In the same manner, the utility of playing t1A = 0 when other type 1 agents play

t1A = t′ and type 2 agents play t2A = 0 is the following:

s1 + γd1 = t1Aq1A + (1 − t1A)q1B + γ(t1A(1 − q1A) + (1 − t1A)(1 − q1A))

= q1B + γ(1 − q1B) =
(1 − t′)N1

N2 + (1 − t′)N1

+ γ N2

(1 − t′)N1 +N2

The payoff of type 1 agent from playing t1A = t′ when other type 1 agents play

t1A = t′ and type 2 agents play t2A = 0 is:

= t′ + (1 − t′)((1 − t
′)N1 + γN2

N2 + (1 − t′)N1

) − h

2
t′2 −R

Using these expressions, the first inequality above becomes:

(1 − γ)N1(h(N1 +N2) −
√
h(4(γ − 1)N1N2 + h(N1 +N2)2))

2N2(h(N1 +N2) +
√
h(4(γ − 1)N1N2 + h(N1 +N2)2))

< R

and the second inequality becomes:

R <
(1 − γ)N2(h(N1 +N2) −

√
h(4(γ − 1)N1N2 + h(N1 +N2)2))

2N1(h(N1 +N2) +
√
h(4(γ − 1)N1N2 + h(N1 +N2)2))

As the ratios in both inequalities are always positive, such an interval exists for R

such that equilibrium (ii) is not an equilibrium anymore but equilibrium (i) is still
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an equilibrium. Moreover, this interval, for the sake of brevity, is denoted as:

N1

N2

G(N1,N2, h, γ) < R <
N2

N1

G(N1,N2, h, γ)

and

G(N1,N2, h, γ) =
(1 − γ)(h(N1 +N2) −

√
h(4(γ − 1)N1N2 + h(N1 +N2)2))

2(h(N1 +N2) +
√
h(4(γ − 1)N1N2 + h(N1 +N2)2))

If R is within this interval, then only equilibrium (i) survives (ignoring the patho-

logical one - equilibrium (iii)). If R is smaller than the lower bound, then all three

of the equilibria survive. If R is even higher than the upper bound, we only have

the pathological equilibrium where no one chooses to do any costly activity.

A.6 Modification on Cost Structure II

Taking the total cost function as:

Total Cost (tiA) = rtiA +
h

2
t2iA

where r, h > 0,

• Notice that there is no fully-interior solution where both tiA’s are in (0,1). In
any fully-interior solution, the optimality conditions for both types need to be

satisfied:

(q1A − q1B)(1 − γ) = r + ht1A

−(q1A − q1B)(1 − γ) = r + ht2A

Assume that there exists a t1A that satisfies the condition above. Then

(q1A − q1B)(1 − γ)
h

= t1A +
r

h
> 0

But then
−(q1A − q1B)(1 − γ)

h
− r

h
= t2A < 0

since r, h > 0 and −(q1A−q1B)(1−γ)
h > 0. So there is no fully interior solution.

• From the Kuhn-Tucker conditions, for tiA = 1 to be a solution, the following
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expression should be positive:

(q1A − q1B)(1 − γ) − r − htiA

Then notice that if r + h > 1 − γ, tiA = 1 is never a solution.

• Following the same rationale of proof of equilibria of the original model, t1A = 0
and t2A = 0 is an equilibrium.

• For the equilibria in which one type is not engaging in the costly activity at

all, but the other does, following the same steps as in the original model, now

we have two solutions:

– t1A = t′new =
h(N1+N2)−N1r−

√
(N1(h+r)+N2h)2−4h(1−γ)N1N2

2hN1
and t2A = 0.

– t1A = 0 and t2A = t′′new =
h(N1+N2)−N1r−

√
(N1(h+r)+N2h)2−4h(1−γ)N1N2

2hN2
.

where both t′new and t′′new are real numbers that are always smaller than 1,

given that h + r > 1 − γ.After some calculations, it can easily be shown that

t′new is greater than 0 if and only if:

N1

N2

< (1 − γ) − r
r

and r < (1 − γ). Given that these conditions hold, t′′new is always less than 0,

so t′′new is not a solution to the problem.
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A.7 Regression Output

Table A.1: Dependent Variable: Smoking

(1) (2) (3) (4)
Linear Linear Probit Probit

Prob. Model Prob. Model

Population Share
(0.01) (0.043)

Minority dummy 0.0074
(0.005) (0.024)

Parent Education
(0.003) (0.003) (0.013) (0.013)

Age
(0.001) (0.001) (0.005) (0.005)

Gender
(0.003) (0.003) (0.013) (0.013)

School Dummy Y es Y es Y es Y es

Race Dummy Y es Y es Y es Y es

Adjusted R2 0.06 0.06
Number of Obs. 54255 54255 54255 54255

. p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
Note: Standard errors are in parentheses.
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Table A.2: Dependent Variable: Drinking

(1) (2) (3) (4)
Linear Linear Probit Probit

Prob. Model Prob. Model

Population Share −0.020. −0.093∗
(0.010) (0.042)

Minority dummy 0.002 0.017
(0.732) (0.023)

Parent Education −0.012∗∗∗ −0.012∗∗∗ −0.054∗∗∗ −0.054∗∗∗
(0.003) (0.000) (0.014) (0.014)

Age 0.046∗∗∗ 0.046∗∗∗ 0.173∗∗∗ 0.173∗∗∗

(0.001) (0.000) (0.005) (0.000)
Gender 0.043∗∗∗ 0.043∗∗∗ 0.166∗∗∗ 0.166∗∗∗

(0.003) (0.000) (0.013) (0.013)
School Dummy Yes Yes Yes Yes

Race Dummy Yes Yes Yes Yes

Adjusted R2 0.03 0.03
Number of Obs. 54163 54163 54163 54163

. p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
Note: Standard errors are in parentheses.
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Table A.3: Dependent Variable: Getting Drunk

(1) (2) (3) (4)
Linear Linear Probit Probit

Prob. Model Prob. Model

Population Share −0.017∗ −0.137∗∗
(0.03) (0.050)

Minority dummy 0.0008 0.025
(0.004) (0.028)

Parent Education −0.008∗∗ −0.007∗∗ −0.054∗∗ −0.053∗∗
(0.004) (0.002) (0.016) (0.001)

Age 0.031∗∗∗ 0.031∗∗∗ 0.172∗∗∗ 0.172∗∗∗

(0.000) (0.001) (0.006) (0.006)
Gender 0.041∗∗∗ 0.041∗∗∗ 0.240∗∗∗ 0.241∗∗∗

(0.000) (0.002) (0.015) (0.015)
School Dummy Y es Y es Y es Y es

Race Dummy Y es Y es Y es Y es

Adjusted R2 0.06 0.06
Number of Obs. 54163 54163 54163 54163

. p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
Note: Standard errors are in parentheses.
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Table A.4: Dependent Variable: Racing

(1) (2) (3) (4)
Linear Linear Probit Probit

Prob. Model Prob. Model

Population Share −0.035∗∗ −0.117∗∗
(0.001) (0.038)

Minority dummy 0.017∗∗ 0.055∗∗

(0.006) (0.021)
Parent Education 0.008∗ 0.008∗ 0.029∗ 0.029∗

(0.003) (0.003) (0.013) (0.001)
Age −0.021∗∗∗ −0.021∗∗∗ −0.072∗∗∗ −0.073∗∗∗

(0.001) (0.001) (0.005) (0.005)
Gender 0.215∗∗∗ 0.216∗∗∗ 0.696∗∗∗ 0.696∗∗∗

(0.003) (0.003) (0.012) (0.012)
School Dummy Yes Yes Yes Yes

Race Dummy Yes Yes Yes Yes

Adjusted R2 0.06 0.06
Number of Obs. 54163 54163 54163 54163

. p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
Note: Standard errors are in parentheses.
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A.8 Different Thresholds of Costly Behavior

A.8.1 Weekly Threshold

Dependent Variable: Smoking Dependent Variable: Drinking

Linear Prob. Model Probit Linear Prob. Model Probit

Variable Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Population
Share

−0.040∗∗∗ 0.009 −0.253∗∗∗ 0.040 −0.018∗∗ 0.008 −0.126∗∗ 0.049

Minority
Dummy

0.008 0.005 0.06∗∗ 0.025 0.002 0.004 0.024 0.027

Dependent Variable: Getting Drunk Dependent Variable: Racing

Linear Prob. Model Probit Linear Prob. Model Probit

Variable Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Population
Share

−0.016∗∗∗ 0.006 −0.175∗∗∗ 0.06 −0.027∗∗∗ 0.01 −0.104∗∗ 0.041

Minority
Dummy

0.002 0.003 0.035 0.034 0.011∗∗ 0.005 0.044∗∗ 0.022

* p < 0.1, ** p < 0.05, *** p < 0.01
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A.8.2 Daily Threshold

Dependent Variable: Smoking Dependent Variable: Drinking

Linear Prob. Model Probit Linear Prob. Model Probit

Variable Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Population
Share

−0.040∗∗∗ 0.007 −0.353∗∗∗ 0.05 −0.009∗∗∗ 0.003 −0.255∗∗∗ 0.095

Minority
Dummy

0.007∗ 0.004 0.09∗∗∗ 0.032 0.001 0.001 0.055 0.056

Dependent Variable: Getting Drunk Dependent Variable: Racing

Linear Prob. Model Probit Linear Prob. Model Probit

Variable Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Population
Share

−0.008∗∗∗ 0.002 −0.283∗∗ 0.114 −0.019∗∗∗ 0.007 −0.129∗∗ 0.052

Minority
Dummy

0.001 0.001 0.055 0.06 0.006∗ 0.003 0.039 0.028

* p < 0.1, ** p < 0.05, *** p < 0.01
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Appendix B

Impact of Information

Dissemination Strategies on

Vaccine Decision: Empirical

Evidence from Turkey

B.1 Survey Form

Here we show the English-translated version of the questionnaire form.
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B.2 Descriptive Statistics

B.2.1 Health Care Units and Physicians

The sample consists of people who are assigned to eight different family physicians

from five different family healthcare centers, and the assignment is done randomly

by the government.

Variable Levels n (%)
Health Center balcova6 16 8.1

buca35 52 26.4
buca36 50 25.4
gazi10 44 22.3
gazi11 35 17.8
Total 197 100.0

DoctorID 126 23 11.8
127 27 13.8
129 26 13.3
130 24 12.3
24 16 8.2
31 33 16.9
34 20 10.3
35 26 13.3
Total 195 100.0

Table B.1: Healthcare Centers and Doctors

Demographics

The sample consists of 197 people in total, of which %61.9 are women and %38.1 are

men. People’s age varies between 20 and 45. Also, apart from the smaller portion

of only literate people (%3.5), the rest is almost equally distributed between middle

school, high school, and university or above.
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Variable Levels n (%)
Sex female 122 61.9

male 75 38.1
Total 197 100.0

Age Groups 20-25 11 5.7
25-30 66 34.0
30-35 48 24.7
35-40 60 30.9
41-45 9 4.6
Total 194 100.0

Marital Status single 49 25.0
married 147 75.0
Total 196 100.0

Education literate 7 3.5
middleschool 55 27.9
highschool 67 34.0
college 68 34.5
Total 197 100.0

Employment employed 108 55.1
unemployed 88 44.9
Total 196 100.0

Table B.2: Demographics

Medical Info

Variable Levels n (%)
Chronic Illness no 156 79.6

yes 40 20.4
Total 196 100.0

Medication no 152 77.5
yes 44 22.4
Total 196 100.0

Had Covid no 138 70.0
yes 59 29.9
Total 197 100.0

Table B.3: Medical Information
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#times Percentage Percentage
Variable Levels mentioned based on based on

responses (%) cases (%)
Most trusted info international organisa-

tions
91 18.6 50

source about the scientists 93 19.1 51.1
COVID-19 vaccine internet 31 6.4 17

social media 12 2.5 6.6
TV/newspaper 31 6.4 17
vaccine companies 4 0.8 2.2
family 14 2.9 7.7
friends 7 1.4 3.8
neighbors 4 0.8 2.2
doctors 99 20.3 54.4
my family physician 79 16.2 43.4
my nurse 14 2.9 7.7
pharmacists 5 1 2.7
other 4 0.8 2.2
Total 488 100.0 268.1

Least trusted info international organisa-
tions

15 3.2 8.5

source about the scientists 12 2.6 6.8
COVID-19 vaccine internet 61 13 34.5

social media 96 20.5 54.2
TV/newspaper 68 14.5 38.4
vaccine companies 61 13 34.5
family 6 1.3 3.4
friends 33 7.1 18.6
neighbors 85 18.2 48
doctors 9 1.9 5.1
my family physician 7 1.5 4
my nurse 3 0.6 1.7
pharmacists 8 1.7 4.5
other 4 0.9 2.3
Total 468 100.0 264.4

Table B.4: Information Source Questionnaire
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#times Percentage Percentage
Variable Levels mentioned based on based on

responses (%) cases (%)
Which health family health center 170 33.7 87.6
institution do you public hospitals 159 31.5 82
apply most fre-
quently

public university hospi-
tals

69 13.7 35.6

when you have a public polyclinics 15 3 7.7
health problem? private polyclinics 19 3.8 9.8

private hospitals 60 11.9 30.9
private practices 10 2 5.2
other 2 0.4 1
Total 504 100.0 259.8

Table B.5: Most frequently visited health institution
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B.3 Regression Output

The following table shows the output of the regression made to assess the impact of

information dissemination strategies on the information level of the patients about

where/how to get the COVID-19 vaccine.

Table B.6: Results - Information level on where/how to get COVID-19 vaccine

Dependent variable: Info Level on where/how to get vaccine

(1) (2) (3) (4)

Info strategy class (ref: Broadcasting)
Personalized 3.056∗∗∗ 3.029∗∗∗ 2.587∗∗∗ 2.556∗∗∗

(0.595) (0.603) (0.838) (0.868)
Doctor ID Yes Yes Yes Yes
Age (ref: age 20-25 years)

25-30 years 0.787 0.461
(0.772) (0.869)

30-35 years 0.980 1.040
(0.782) (0.912)

35-40 years 0.754 0.744
(0.777) (0.880)

41-45 years 0.029 0.844
(1.175) (1.382)

Male 0.106 0.258
(0.355) (0.450)

Unemployed 0.009 0.053
(0.362) (0.451)

Chronic illness 0.775∗ 0.314
(0.411) (0.520)

Had covid-19 0.109 0.135
(0.389) (0.401)

Close death from covid-19 -0.651 -0.704
(0.483) (0.498)

Numb. of consultations 0.350∗∗∗ 0.337∗∗∗

(0.124) (0.120)

Observations 171 167 129 126

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix C

Social Learning and Degree of

Coarseness in Communication

C.1 Modifications on the Example

C.1.1 Case I: Changing the Updating Rule

Let us assume that in Degroot model, the updating rule of agent i is to choose ait = 1
if the posterior> 2

3 .

In t = 1, everyone plays their initial private signal:

2

6

3

1

4

7

5

For t = 2, agents update as the following:

For Mr.2:
0 + 1 + 1

3
= 2

3
so a22 = 0

For Mr.3:
0 + 0 + 1 + 1 + 1

5
= 3

5
so a23 = 0

For Mr.4:
0 + 1 + 1 + 0 + 0

5
= 2

5
so a24 = 0

Hence the actions are:
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2

6

3

1

4

7

5

For t=3, agents update as:

For Mr.2:
0 + 1 + 0

3
= 1

3
so a32 = 0

For Mr.1:
0 + 0 + 1

3
= 1

3
so a31 = 0

Hence the actions are:

2

6

3

1

4

7

5

Notice that true learning happens! No agents get stuck in the wrong state.

Remark: Any posterior > 3
5(which is the updating of Mr.3 at period 2) will end up

with true learning.

C.1.2 Case II: Changing the Number of Possible Actions

Now let us assume that in DeGroot model, there are 5 possible states/actions:

{0, 14 ,
2
4 ,

3
4 ,1}

In t=2, agents update as

For Mr.2:
0 + 1 + 1

3
= 2

3
is closest to a22 =

3

4

For Mr.3:
0 + 0 + 1 + 1 + 1

5
= 3

5
is closest to a23 =

2

4

For Mr.4:
0 + 1 + 1 + 0 + 0

5
= 2

5
is closest to a24 =

2

4

Hence the actions are:
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3/4

3/4

2/4

3/4

2/4

0

0

For t=3, the updatings are as follows

For Mr.2:
3/4 + 3/4 + 2/4

3
= 2

3
is closest to a32 =

3

4

For Mr.3:
2/4 + 2/4 + 3/4 + 3/4 + 3/4

5
= 13

20
is closest to a33 =

3

4

For Mr.4:
3/4 + 2/4 + 2/4 + 0 + 0

5
= 7

20
is closest to a34 =

1

4

Hence the actions are:

3/4

3/4

3/4

2/4

1/4

1/4

1/4

In t=4, agents update as

For Mr.3:
2/4 + 1/4 + 3/4 + 3/4 + 3/4

5
= 12

20
is closest to a43 =

2

4

For Mr.4:
3/4 + 2/4 + 1/4 + 0 + 0

5
= 6

20
is closest to a44 =

1

4

The actions are
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3/4

3/4

2/4

2/4

2/4

1/4

1/4

As can be seen from the two graphs above, through the 3rd to 4th period, the

opinion of Mr.3 has changed from 3
4 to 2

4 even though he is in the clan {2,3,6} and
the clan has the same action of 3

4 in the 3rd period. ⇒ Violation of the proposition

about “Stuckness of Clan”.

C.1.3 Case III: Fine Communication

Assume that now agents can share their posterior beliefs, specifically agent i shares

his updated belief about the probability that θ = 1, Pit(θ = 1), and he takes the

action 1 if Pit(θ = 1) > 1/2.
Given that initial signals are distributed as before, agents take the following actions

at t = 1:

2

6

3

1

4

7

5

their posterior beliefs are

P11(θ = 1) = 1 P51(θ = 1) = 0

P21(θ = 1) = 0 P61(θ = 1) = 1

P31(θ = 1) = 1 P71(θ = 1) = 0

P41(θ = 1) = 0
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As everyone shares their posterior beliefs with their neighbors, they update their

beliefs via DeGroot. For instance, as agent 1 is friends with agents 3 and 4:

P12(θ = 1) =
∑i∈{1,3,4}Pi

3
= 1 + 1 + 0

3
= 2

3

and since this is greater than 1/2, agent 1 takes action 1, not 0. Similarly, the

updated beliefs of others are

P22(θ = 1) =
2

3
P52(θ = 1) = 0

P32(θ = 1) =
3

5
P62(θ = 1) =

2

3

P42(θ = 1) =
2

5
P72(θ = 1) = 0

So the actions at t = 2:

2

6

3

1

4

7

5

As the posterior beliefs are shared continuously, we can make use of the long-run

properties of the Markov matrices (following Golub and Jackson (2010)), and calcu-

late the long-run social influence vector to see what is the consensus belief of agents.

It is

[ 12
100

12
100

20
100

20
100

12
100

12
100

12
100
]

So the long-run consensus belief of agents are

1.
12

100
+ 0. 12

100
+ 1. 20

100
+ 0. 20

100
+ 0. 12

100
+ 1. 12

100
+ 0. 12

100
= 44

100
< 1

2

Hence for all i, a∞i = 0. Then if we compare the actions in the 2nd period and in the

∞-time, we can see that the clan {2,3,6} does not get stuck in the wrong state.
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C.2 Proofs

C.2.1 Proof of Proposition 3.1

⇒ If a group C is a clan, then C is 1
2 -cohesive.

Assume that a group C ∈ V is a clan. By definition of a clan, for all i ∈ C,

di(C) ≥ di(V /C) (C.1)

where di(C) is the degree of node i ∈ C counted only among neighbors within C and

di(V /C) is the degree of node i counted only among outside of group C.

If we add di(C) to the both sides of inequality (1):

2di(C) ≥ di(V /C) + di(C)

Notice that di(V /C) + di(C) is the total degree of agent i.

2di(C) ≥ di(V )
di(C)
di(V )

≥ 1

2

By definition,

di(C) = ∣Ni(V ) ∩C ∣:number of neighbors of i that lies in set C

di(V ) = ∣Ni(V )∣:number of i’s neighbors

Then the above inequality can be rewritten as

∣Ni(V ) ∩C ∣
∣Ni(V )∣

≥ 1

2

Since this holds for any i ∈ C, the following should also be true

min
i∈C

∣Ni(V ) ∩C ∣
∣Ni(V )∣

≥ 1

2

which is the definition of 1
2 -cohesiveness.

⇐ If C is 1
2 -cohesive, then C is a clan. Assume that a set of agents C ∈ V is
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1
2 -cohesive. Then by definition

min
i∈C

∣Ni(V ) ∩C ∣
∣Ni(V )∣

≥ 1

2
(C.2)

Since the inequality holds for the agent i that gives the minimum value of the ratio,

it should hold for all i ∈ C. We can pick an arbitrary i ∈ C, and the inequality (2)

becomes

2∣Ni(V ) ∩C ∣ ≥ ∣Ni(V )∣

Notice that since Ni(V ) ∩ C and Ni(V )/C are two disjoint sets, we can write

∣Ni(V )∣ = ∣Ni(V ) ∩C ∣ + ∣Ni(V )/C ∣. Then the above inequality becomes

2∣Ni(V ) ∩C ∣ ≥ ∣Ni(V ) ∩C ∣ + ∣Ni(V )/C ∣

∣Ni(V ) ∩C ∣ ≥ ∣Ni(V )/C ∣

Notice that

∣Ni(V ) ∩C ∣ = di(C)

∣Ni(V )/C ∣ = di(V /C)

following the notation of the paper by Chandrasekhar et al. (2020). Then the last

inequality becomes

di(C) ≥ di(V /C)

which is the definition of the clan. ∎

C.2.2 Proof of Proposition 3.2

For an arbitrary number of actions/states k, let us define the possible action set

A = {0, 1

k − 1
, ........

k − 3
k − 1

,
k − 2
k − 1

,1}

where ∀t, ∀i, ati ∈ A. Figure 1 shows the representation of k different actions/states

on the line segment [0,1].

C-44



0 11
k−1

k−3
k−1

k−2
k−1...

Figure C.1: Set of Possible Actions

Agent i holding the belief bti ∈ [xj−1, xj] (where xj−1 and xj corresponds to any two

consecutive elements of set A) choose his action ait as

ati =
⎧⎪⎪⎨⎪⎪⎩

xj if ∣bti − xj ∣ > ∣bti − xj−1∣
xj−1 if ∣bti − xj ∣ < ∣bti − xj−1∣

⎫⎪⎪⎬⎪⎪⎭
(C.3)

The interval i⋆ = 1− k−2
k−1

2 = 1
2(k−1) can be defined for a given k such that the agent

chooses a specific action if and only if his belief lies within the i⋆ interval of that

action.

1k−2
k−1

k−3
k−1

i⋆i⋆i⋆

Figure C.2: Defining the interval

Using the definition of i⋆ and the rule for choosing the actions (3), we can restate

the rule as follows:

Claim:

∣bti − xj ∣ < i⋆ ⇐⇒ ati = xj

Proof of Claim:

⇒ Assume ∣bti − xj ∣ < i⋆ is true. That is
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∣bti − xj ∣ <
1

2(k − 1)

Case 1: For bit > xj

bti − xj <
1

2(k − 1)

We know that for any consequent xj and xj+1, xj+1 − xj = 1
(k−1) is true. Then

substituting it into the above inequality:

bti − (xj+1 −
1

(k − 1)
) < 1

2(k − 1)

bti − xj+1 < −
1

2(k − 1)

Since the right-hand side of the inequality is negative, the left-hand side should also

be negative. That is, bti < xj+1. As bti > xj and bti < xj+1 is shown, bti is between xj

and xj+1 on the line segment [0,1]. Negating the inequality above:

−(bti − xj+1) >
1

2(k − 1)

Also since bti < xj+1, ∣bti − xj+1∣ = −(bti − xj+1) which means

∣bti − xj+1∣ >
1

2(k − 1)
(C.4)

Combining the assumption that ∣bti − xj ∣ < 1
2(k−1) and (4):

∣bti − xj+1∣ > ∣bti − xj ∣

Then by the rule (3):

ati = xj
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Case 2: For bti < xj

−(bti − xj) <
1

2(k − 1)

It is true for any consequent xj−1 and xj, xj −xj−1 = 1
(k−1) is true. Then substituting

it into the inequality

−(bti −
1

(k − 1)
− xj−1) <

1

2(k − 1)

−(bti − xj−1) < −
1

2(k − 1)

(bti − xj−1) >
1

2(k − 1)

Since the right-hand side of the inequality is positive, the left-hand side should also

be positive. That is, bti > xj−1, which means ∣bti−xj−1∣ = bti−xj−1. Then we can restate

the above inequality as

∣bti − xj−1∣ >
1

2(k − 1)
(C.5)

Combining the assumption that ∣bti − xj ∣ < 1
2(k−1) and (5):

∣bti − xj ∣ < ∣bti − xj−1∣

Then by the rule (3):

ati = xj

⇐ Assume ati = xj is true. Since actions are taken via rule (1), it should be true that

agent i has a belief such that

∣bti − xj ∣ < ∣bti − xj−1∣ (I)

∣bti − xj ∣ < ∣bti − xj+1∣ (II)
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where the belief bti ∈ [xj−1, xj].

Case 1: For bti > xj

From inequality (II) above

bti − xj < −(bti − xj+1)

where xj+1 − xj = 1
(k−1) . Substituting inside

2bti − xj <
1

k − 1
+ xj

bti − xj <
1

2(k − 1)

As bti > xj, it means ∣bti − xj ∣ < 1
2(k−1) which is what we needed to show.

Case 2: For bti < xj

From inequality (I) above

−(bti − xj) < bti − xj−1

where xj − xj−1 = 1
(k−1) . Substituting inside

xj <
1

k − 1
− xj + 2bti

2xj − 2bti <
1

(k − 1)

−bti + xj <
1

2(k − 1)

As bti < xj, it means ∣bti − xj ∣ < 1
2(k−1) which is what we needed to show to prove the

claim. ◻

For an arbitrary agent i, let him have

• c number of clan member friends who all hold the opinion p.

• e number of friends outside of the clan holding some opinion d1, d2, ...de such

that all dk < p, ∀k ∈ {1, ...e}.

• g number of friends outside of the clan holding some opinion f1, f2, ...fg such

that all fl > p, ∀l ∈ {1, ...g}.
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where c ≥ e + g.

Let us focus on what the next period belief of agent i be when he is observing the

opinions p of c clan members, d1, d2, ...de opinions of e and f1, f2, ...fg of g outside

neighbors.

bi =
(c + 1)p +∑k∈{1,...e} dk +∑l∈{1,...g} fl

c + e + g + 1

Following the claim that we have proved above, it is true that to show that ai = p
as k →∞, it is enough to show that ∣bi − p∣ ≥ i⋆ always holds.

∣bi − p∣ = ∣
(c + 1).p +∑k∈{1,...e} dk +∑l∈{1,...g} fl

c + e + g + 1
− p∣

= ∣
(∑k∈{1,...e} dk +∑l∈{1,...g} fl) − (e + g)p

c + e + g + 1
∣

Notice that this ratio does not depend on k at all, whereas

lim
k→∞

i⋆ = lim
k→∞

1

2(k − 1)
= 0

Then it is clearly true that as k →∞

∣
(∑k∈{1,...e} dk +∑l∈{1,...g} fl) − (e + g).p

c + e + g + 1
∣ ≥ 1

2(k − 1)
Ð→ 0

surely holds since the left-hand side is always positive. ∎

C.2.3 Proof of Proposition 3.3

Let there be k possible actions/states located on the unit line as:

A = {0, 1

k − 1
, ........

k − 3
k − 1

,
k − 2
k − 1

,1}
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Suppose that there is a group of agents S ∈ G, such that S is (1 − 1
2(k−1))-cohesive.

It means:

min
i∈C

∣N⋆i (G) ∩C ∣
∣N⋆i (G)∣

≥ (1 − 1

2(k − 1)
) (C.6)

which means for every agent in S, at least (1− 1
2(k−1)) fraction of his friends belongs

to group S as well.

Also, suppose that all agents in group S are DeGroot type, and they hold the

same action a at some period of time t: ati = a for all i ∈ S.

I need to show that an agent with at least (1 − 1
2(k−1)) fraction of his friends

choosing the same action a will keep choosing the action a, even if the remaining

fraction 1
2(k−1) of his friends choose some different action. Hence it is enough to show

that he will choose the action a even when the action a and the others’ actions are

located at the furthest away possible from each other because in any other case, it

would be easier for the updated belief to be close enough to the action held by the

group.

In other words, we will consider the case in which the action of (1 − 1
2(k−1))-

cohesive group is located at 1, and all other friends of agent i choose the action

located at 0. We will show that even in this extreme case, the next period action of

agent i is 1 again which means he gets stuck on the state = 1, even if it may be the

wrong state.

Let agent i have c number of friends belonging to the (1− 1
2(k−1))-cohesive group,

all choosing at = 1 and d number of friends from outside of the group, all choosing

at = 0. Notice that since i ∈ S, it is true for i that

∣N⋆i (G) ∩C ∣
∣N⋆i (G)∣

= c + 1
c + 1 + d

≥ (1 − 1

2(k − 1)
) (C.7)

Remember from the proof of the previous proposition, every agent i ∈ G at each
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period of time chooses an action in a way that for all x ∈ A:

at+1i = x ⇐⇒ ∣bt+1i − x∣ <
1

2(k − 1)

Hence, in order to show that at+1i = 1 it is enough to show that ∣bt+1i −1∣ < 1
2(k−1) where

bt+1i is the belief of agent i that he forms while observing the actions of c number of

friends from set S, and d number of friends outside of set S.

∣bt+1i − 1∣ = ∣
(c + 1).1 + 0.d

c + d + 1
− 1∣ = ∣ −d

c + d + 1
∣ = d

c + d + 1

From the assumption of (1 − 1
2(k−1))-cohesiveness, we have inequality (7):

c + 1
c + 1 + d

≥ (1 − 1

2(k − 1)
)

If we subtract 1 from both sides

−d
c + 1 + d

≥ −1
2(k − 1)

d

c + 1 + d
≤ 1

2(k − 1)

which was needed to be shown. ∎
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