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1. ABSTRACT 

 
1.1 English 

 

Mosquitoes (Diptera: Culicidae) act as vectors of several pathogens that 

cause serious diseases such as malaria, dengue, yellow fever, Zika, 

chikungunya, or West Nile fever, accounting for hundreds of thousands 

of human deaths every year. Mosquito surveillance allows to gather 

relevant information about the vector (presence, distribution, status, 

abundance, seasonal activity, longevity, pathogen circulation, etc) 

which is crucial to stablish intervention thresholds for vector control 

actions and to evaluate their efficacy. Traditional surveillance methods 

are very labour-intensive and require expert entomologists as well as a 

minimum of laboratory infrastructure. Besides, they do not allow a fine 

time-scale monitoring of mosquito populations.  

Along the present thesis, an optical sensor prototype coupled to the 

entrance of a mosquito trap, was trained with machine learning 

techniques on a large database of mosquito flights from the vector 

species Aedes albopictus and Culex pipiens, at different raising and 

environmental conditions, for different classification tasks: i) the 

identification of mosquito genus and sex in laboratory conditions; ii) the 

identification of mosquitoes over other insects and the classification of 

the genus and sex of those mosquitoes in the field; iii) the estimation of 

mosquito’s age; and iv) the identification of arbovirus-infected 

mosquitoes. The objective was to develop a ready-to-use reliable tool 

for the automated remote monitoring of Aedes and Culex mosquito 
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populations, thus overcoming some of the current limitations of 

traditional surveillance methods and providing accurate relevant 

entomological information with high time resolution. 

The developed classification system was highly accurate to classify 

mosquito genus and sex in laboratory conditions, reporting 94.2% of 

accuracy for genus and 99.4% for sex of Aedes; and 100% for sex of 

Culex. In the field, the system was able to distinguish mosquito species 

from Aedes and Culex genus over other insects that entered the trap 

with 95.5% of balanced accuracy and a low rate of false positives; and 

to classify the genus and sex of those mosquitoes with 88.8% of 

balanced accuracy. Age classification of female Cx. pipiens mosquitoes 

was assessed in the laboratory showing 74.7% of accuracy to distinguish 

between young mosquitoes (2-4 days of age) and older mosquitoes (7-

16 days of age). In this case, also a molecular technique based on gene 

profiling was assessed for age-grading in Cx. pipiens showing a mean 

absolute error of 3.8 days in age prediction. For the arbovirus infection 

assay, the classification system was trained on differentiating Zika-

infected from non-infected Ae.albopictus, showing 63.0% of 

classification accuracy.  

The accuracy of the developed system was dependent on the 

classification task pursued, so as in the number of samples used for 

training the model, and the combination of extracted flight features and 

machine learning algorithms used. Some classification tasks, such as 

genus and sex classification, obtained high accuracy results in both 

laboratory and field conditions, which was a proof of concept of the 

system’s high-performance to monitor Aedes and Culex mosquito 
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populations in the field. Other tasks such as the classification of 

mosquitoes by age or infection status, which were never assessed 

before by the means of optical sensors, would still require more training 

samples to improve their classification accuracy, but promising results 

were obtained. Overall, the present thesis has contributed to improve 

the current state of art of mosquito surveillance and has paved the way 

for future vector biology research.  

 

1.2 Spanish  

 

Los mosquitos (Diptera: Culicidae) actúan como vectores de varios 

patógenos que causan graves enfermedades como la malaria, el 

dengue, la fiebre amarilla, el Zika, el chikungunya o la fiebre del Nilo 

Occidental, y son responsables de cientos de miles de muertes humanas 

cada año. La vigilancia de mosquitos permite recopilar información 

relevante sobre el vector (presencia, distribución, estado, abundancia, 

actividad estacional, longevidad, circulación de patógenos, etc.) que es 

crucial para establecer umbrales de intervención para su control y para 

evaluar la eficacia de dichas intervenciones. Los métodos tradicionales 

de vigilancia son muy laboriosos y requieren entomólogos expertos, así 

como un mínimo de infraestructura de laboratorio. Además, no 

permiten un seguimiento temporal preciso de las poblaciones de 

mosquitos. 
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A lo largo de la presente tesis, un prototipo de sensor óptico acoplado 

a la entrada de una trampa de mosquitos, fue entrenado con técnicas 

de aprendizaje automático sobre una gran base de datos de vuelos de 

mosquitos de las especies vectoras Aedes albopictus y Culex pipiens, en 

diferentes condiciones de cría y ambientales, para diferentes tareas de 

clasificación: i) la identificación del género y sexo del mosquito en 

condiciones de laboratorio; ii) la identificación de mosquitos sobre 

otros insectos y la clasificación del género y sexo de esos mosquitos en 

el campo; iii) la estimación de la edad del mosquito; y iv) la 

identificación de mosquitos infectados por arbovirus. El objetivo era 

desarrollar una herramienta fiable y lista para usar para el seguimiento 

automatizado y remoto de poblaciones de mosquitos Aedes y Culex, 

superando así algunas de las limitaciones actuales de los métodos 

tradicionales de vigilancia y proporcionando información entomológica 

relevante y precisa con una alta resolución temporal. 

El sistema de clasificación desarrollado fue altamente preciso para 

clasificar el género y el sexo de los mosquitos en condiciones de 

laboratorio, con un 94,2% de exactitud para el género y un 99,4% para 

el sexo de Aedes; y un 100% para el sexo de Culex. En el campo, el 

sistema fue capaz de distinguir los mosquitos Aedes y Culex de otros 

insectos que entraron en la trampa con un 95,5% de precisión y una 

baja tasa de falsos positivos; y de clasificar el género y el sexo de esos 

mosquitos con un 88,8% de precisión. La clasificación por edad de las 

hembras de Cx. pipiens fue evaluada en el laboratorio mostrando un 

74,7% de precisión para distinguir entre mosquitos jóvenes (de 2 a 4 

días de edad) y mosquitos mayores (de 7 a 16 días de edad). En este 
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caso, también se evaluó una técnica molecular basada en perfiles 

genéticos para la clasificación por edades en Cx. pipiens, mostrando un 

error absoluto medio de 3,8 días en la predicción de la edad. Para el 

ensayo de infección por arbovirus, el sistema de clasificación se entrenó 

para diferenciar los Ae.albopictus infectados por Zika de los no 

infectados, mostrando un 63,0% de precisión en la clasificación. 

El desempeño del sistema dependió de la tarea de clasificación 

asignada, así como del número de muestras utilizadas para entrenar el 

modelo y de la combinación de variables extraídas del vuelo y 

algoritmos de clasificación utilizados. Algunas tareas, como la 

clasificación de género y sexo, obtuvieron muy buenos resultados de 

clasificación tanto en condiciones de laboratorio como de campo, lo 

que constituyó una prueba de concepto del alto rendimiento del 

sistema para la vigilancia de poblaciones de Aedes y Culex en campo. 

Otras tareas, como la clasificación de mosquitos por edad o estado de 

infección, que nunca se habían evaluado mediante sensores ópticos, 

aún requerirían más muestras de entrenamiento para mejorar su 

precisión, pero los resultados obtenidos fueron prometedores. En 

conjunto, la presente tesis ha contribuido a mejorar el conocimiento 

sobre el estado actual de la vigilancia de mosquitos y ha allanado el 

camino para futuras investigaciones en biología de vectores. 
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1.3 Catalan 

 

Els mosquits (Diptera: Culicidae) actuen com a vectors de diversos 

patògens que causen greus malalties com la malària, el dengue, la febre 

groga, el Zika, el chikungunya o la febre del Nil Occidental, i són 

responsables de centenars de milers de morts humanes cada any. La 

vigilància de mosquits permet recopilar informació rellevant sobre el 

vector (presència, distribució, estat, abundància, activitat estacional, 

longevitat, circulació de patògens, etc.) que és crucial per a establir 

llindars d'intervenció per al seu control i per a avaluar l'eficàcia 

d'aquestes intervencions. Els mètodes tradicionals de vigilància són 

molt laboriosos i requereixen entomòlegs experts, així com un mínim 

d'infraestructura de laboratori. A més, no permeten un seguiment 

temporal precís de les poblacions de mosquits. 

 

Al llarg de la present tesi, un prototip de sensor òptic acoblat a l'entrada 

d'un parany de mosquits estàndard, va ser entrenat amb tècniques 

d'aprenentatge automàtic sobre una gran base de dades de vols de 

mosquits de les espècies vectores Aedes albopictus i Culex pipiens, en 

diferents condicions de cria i ambientals, per a diferents tasques de 

classificació: i) la identificació del gènere i sexe del mosquit en 

condicions de laboratori; ii) la identificació de mosquits sobre altres 

insectes, i la classificació del gènere i sexe d'aquests mosquits en el 

camp; iii) l'estimació de l'edat del mosquit; i iv) la identificació de 

mosquits infectats per arbovirus. L'objectiu era desenvolupar una eina 

fiable per al seguiment automatitzat i remot de poblacions de 
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mosquits Aedes i Culex, superant així algunes de les limitacions actuals 

dels mètodes tradicionals de vigilància i proporcionant informació 

entomològica rellevant i precisa amb una elevada resolució temporal. 

 

El sistema de classificació desenvolupat va mostrar una elevada precisió 

per a classificar el gènere i el sexe dels mosquits en condicions de 

laboratori, amb un 94,2% d'exactitud per al gènere i un 99,4% per al 

sexe de Aedes; i un 100% per al sexe de Culex. En el camp, el sistema va 

ser capaç de distingir els mosquits Aedes i Culex d'altres insectes que 

van entrar en el parany amb un 95,5% de precisió i una baixa taxa de 

falsos positius; i de classificar el gènere i el sexe d'aquests mosquits amb 

un 88,8% de precisió. La classificació per edat de les femelles 

de Cx. pipiens va ser avaluada en el laboratori, mostrant un 74,7% de 

precisió per a distingir entre mosquits joves (de 2 a 4 dies d'edat) i 

mosquits més vells (de 7 a 16 dies d'edat). En aquest cas, també es va 

avaluar una tècnica molecular basada en perfils genètics per a la 

classificació per edats en Cx. pipiens, mostrant un error absolut mitjà de 

3,8 dies en la predicció de l'edat. Per a l'assaig d'infecció per arbovirus, 

el sistema de classificació es va entrenar per a diferenciar 

els Ae.albopictus infectats per Zika dels no infectats, mostrant un 63,0% 

de precisió en la classificació. 

 

La precisió de classificació del sistema va dependre de la tasca de 

classificació assignada, així com del nombre de mostres utilitzades per 

a entrenar el model i de la combinació de variables extretes del vol i 

algoritmes de classificació utilitzats. Algunes tasques, com la 

classificació de gènere i sexe, van obtenir molt bons resultats de 
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classificació tant en condicions de laboratori com de camp, la qual cosa 

va constituir una prova de concepte de l'alt rendiment del sistema per 

a la vigilancia de poblacions de Aedes i Culex en camp. Altres tasques, 

com la classificació de mosquits per edat o estat d'infecció, que mai 

s'havien avaluat mitjançant sensors òptics, encara requeririen més 

mostres d'entrenament per a millorar la seva precisió, però els resultats 

obtinguts van ser prometedors. En conjunt, la present tesi ha contribuït 

a millorar el coneixement sobre l'estat actual de la vigilància de 

mosquits i ha aplanat el camí per a futures recerques en biologia de 

vectors. 
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2. GENERAL INTODUCTION 
 

2.1 The biology of mosquitoes 

 

Mosquitoes (Diptera: Culicidae) are a family of hematophagous insects 

formed by 41 different genera and more than 3,500 recognised species. 

This family falls within the suborder Nematocera and is composed by 

two big subfamilies, Anophelinae and Culicinae, which differ in their 

morphological characteristics (Wilkerson et al., 2021). Mosquitoes can 

be found anywhere there is stagnant water, which is required for the 

development of their aquatic immature stages. They can be found on 

every continent except Antarctica, from below sea level to above tree 

line at heights of 3,000 meters or more. They feed primarily on plant 

nectar and honeydew, which provide them sugar and other non-

carbohydrate nutrients for their survival and sexual maturation. 

However, blood-feeding is, with very few exceptions, an obligated 

condition for females to obtain the necessary proteins to complete their 

gonotrophic cycle (Foster & Walker, 2019).  Hence, mosquitoes have an 

unequivocal ecological role as plant pollinators (Peach & Gries, 2020) but 

also as vectors of pathogens to vertebrate animal and human hosts.  

The holometabolous life cycle of mosquitoes is composed by four life 

stages (egg, larva, pupa and adult), which inhabit different 

environments (aquatic for larvae and pupae and terrestrial for adults) 

(Fig 1). Immature stages develop in a wide range of aquatic habitats, 

from temporary to permanent surface water bodies (e.g., tidal pools in 

salt marshes, rain pools, rock pools, flood water, streams, swamps and 
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lakes) and diverse natural and artificial water-holding containers (e.g., 

tree holes, leaf axils, plant pots, fountain, abandoned pools, tin cans, 

discarded tires or sewers). Adults are much more mobile than 

immatures, but they tend to occupy certain resting, foraging and, in 

some cases, overwintering habitats (Foster & Walker, 2019). 

 

 

 

Fig 1. Mosquito life cycle. Extracted from (Iowa State University, n.d.) 
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Oviposition is made either directly on water or on solid substrates that 

are likely to be inundated. Eggs can be laid individually in the water 

surface such as the subfamily Anophelinae or clumped in a boat-like 

rafts such as several genera from Culicinae subfamily (e.g., Culex, 

Culiseta or Coquillettidia, among others). The tribe Aedini (Culicinae), 

on the contrary, attach their eggs individually on the substrate. Once 

the embryonic development of eggs has been completed (2-7 days after 

oviposition depending on temperature), larvae hatch soon after in 

species that lay their eggs in water. In case of mosquitoes from Aedes 

genus that oviposit on solid substrate, the eggs remain quiescent until 

the substrate become inundated. Abiotic signals such as temperature, 

air moisture or day length also affect hatching inhibition in some Aedes 

such as in the floodwater mosquitoes. When the oxygen levels decrease 

in the breeding site (signal of increase in the content of organic matter 

that will nourish larvae), larvae initiate the shell rupture by pressing the 

so-called egg tooth and emerge.  

Larvae pass through four instars which resemble to each other 

morphologically but differ in size. All four larval stages of culicine and 

aedine mosquitoes are easy to recognize because of the presence of an 

elongate air tube used for breathing. However, anopheline larvae lack 

this are tube and lie parallel to, and just beneath, the surface of the 

water for breathing. Other genera (e.g., Coquilletidia and Mansonia) 

remain submerged in the water column since they possess a siphon 

which is modified for piercing submerged parts of aquatic plants to 

obtain oxygen from the aerenchyma. The larval food consists in small 

particles such as microorganisms, protozoa, algae, invertebrates, and 
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detritus that larvae obtain from filtering, gathering, scraping, shredding, 

and preying. A special case are mosquitoes of Toxorhinchites genus 

which predate other mosquito larvae. Larvae moult 4 times before 

reaching the pupal stage, being the duration of this process 

temperature dependent (Becker et al., 2020). 

Pupae are also aquatic and normally remain in the water surface 

floating motionless unless they are disturbed. They obtain oxygen from 

the outside through their air trumpets present in the cephalothorax, 

which are connected to the forming adult mesothoracic spiracles. Some 

genera like Coquilletidia or Mansonia, these air trumpets are modified 

to penetrate plant tissues and pupa remain submerged in the 

waterbody. Pupal stage usually last 2 days (depending on temperature), 

during which the metamorphosis of the adults takes place. At the end 

of this process, the internal pressure of the pupa increases because of 

forced gas penetration which induces the cephalothoracic cuticle of the 

pupa to split. Then, adult emerges leaving behind the exuvia.   

Adults are small flying midge-like insects with slender bodies, thin legs, 

and narrow elongate wings. Their body surface is covered with scales, 

setae, and fine pile, creating the characteristic marks and colours typical 

of each specie. They have a prominent proboscis projecting anteriorly 

from the head adapted for sucking. Their mouthparts are sexually 

dimorphic responding to different feeding strategies (hematophagy in 

females and phytophagy in males). Females have strong needle-like 

mouthparts with teeth-bearing maxillae for piercing the host skin; while 

the maxillae and mandibles of males are much shorter than the 

proboscis and are considered functionless (Wahid et al., 2002). Sexual 
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dimorphism also applies to the antennae, i.e., long filamentous 

sensorial organs between the eyes involved in sound recognition during 

flight, which have longer fibrillae in males giving a more plumose 

appearance. Also, females have generally a bigger size than males 

(Lorenz et al., 2017).   

Adult mosquitoes remain most part of their time in resting sites such as 

understory vegetation, tree cavities, rock crevices, and other natural 

and artificial shelters (Sauer et al., 2021). Mosquitoes stay active when 

performing tasks of dispersal, foraging, mating, host-seeking, feeding, 

and ovipositing. Each mosquito specie has a characteristic daily activity 

pattern, which is dictated by the endogenous circadian rhythm 

entrained by the light-dark photoperiod, being characterised as 

typically diurnal (e.g., Aedes), nocturnal (e.g., Anopheles) or crepuscular 

(e.g., Culex). Also, seasonal activity patterns are present in temperate 

areas where overwintering mosquitoes may enter a diapause during 

unfavourable environmental conditions 0(Mitchell, 2020).  

Dispersal of adult mosquitoes varies depending on the specie. Some of 

them, stay close (a few tens of metres) from their larval habitats to mate 

and feed, which is the case of domestic species; while others, with 

specific wind-assisted or light-directed dispersal modes, can move 

several kilometres from their origin sites (e.g., floodwater mosquitoes) 

(Verdonschot & Besse-Lototskaya, 2014). This flight behaviour is influenced 

by temperature, humidity, illumination levels, wind velocity and the 

physiological stage (Becker et al., 2020).  
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Mating takes place few days after adult emergence, typically in swarms 

(eurygamy) but also without (stenogamy). Sexual recognition and 

successful copula are mediated by the existence of a harmonic 

convergence between fundamental flight tone of both males and 

females, which is mutually recognised by the acoustic properties of the 

sensorial organs in their antennae (Gibson et al., 2010). Females are 

inseminated once in a lifetime whereas males can inseminate several 

females. From this single mating event, females store sufficient sperm 

to fertilize multiple clutches of eggs during their entire life (Cramer et 

al., 2023). After the copula and usually after sugar-feeding, females seek 

for a host to blood-feed, which is normally an obligated condition for 

egg maturation. Several factors such as host specificity, host 

preference, host availability and host cues (visual, olfactory, and 

thermal) operate in the success of finding a suitable host (Yan et al., 

2021).  

Blood-feeding behaviour is enabled by the female elongated mosquito 

mouthparts adapted for piercing and sucking, which evolved from 

ancient phytophagy or entomophagy of mosquito ancestors (Peach & 

Gries, 2020). When females land on a host and find a capillary, the 

pointed mandibles are used to rupture the skin and allow the rest of the 

stylets in the proboscis (the food and salivary channels) to penetrate 

until the blood vessel. To prevent blood coagulation while ingesting, the 

mosquito injects saliva into the wound which contains anticoagulants 

among many other compounds. This saliva usually stimulates an 

immune response in the host which can cause an inflammatory reaction 

together with irritation, thus leading to the scratching and possible 
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bacterial infection of the wound. Parallelly, if the mosquito was infected 

with a pathogen from a previous blood meal, it can transmit the 

infectious agent via saliva while biting to the next host. Mosquitoes that 

have multiple blood meals, such as some anthropophilic vector from 

Aedes genus, are responsible of an increased risk of pathogen 

transmission (Scott & Takken, 2012).  

 

2.2 Mosquitoes from a One Health perspective. 

 

Mosquitoes can act as vectors of several pathogens (virus and parasites) 

of public and animal health importance, causing diseases such as 

dengue, yellow fever, Zika, chikungunya, West Nile, Rift Valley fever, 

Japanese encephalitis, malaria or lymphatic filariasis. Vector-borne 

diseases (VBD) account for ~17% of all infectious diseases and cause 

~700,000 human deaths every year (WHO, 2020), as well as significant 

losses in farm livestock and wild animals. From a One Health 

perspective, VBD, and specifically mosquito-borne diseases (MBD), 

represent a major concern for medical and veterinary health 

authorities. There is a global burden of MBD emergence and re-

emergence that mostly impacts low-income tropical countries (WHO, 

2014). In the last decades, there has been an extension of the MBD 

outbreak range to temperate regions due to socioeconomic and 

environmental changes that affect the emergence and spread of both 

diseases and vectors (Semenza, 2013).  
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From over 3,500 existing mosquito species belonging to 41 different 

genera, only three of them are involved in MBD transmission: 

Anopheles, Culex, and Aedes (Foster & Walker, 2019). Among these 

genera, the most important vectors belong to the following groups of 

species:  

 

i) Anopheles gambiae complex. An. gambiae s.l. is an African 

complex formed by eight species, two of the most important 

ones are An. gambiae s.s. and Anopheles arabiensis, the 

main widespread vectors of malaria and lymphatic filariasis 

in Africa.  Both show an anthropophilic, endophilic and 

endophagic behaviour, which is more pronounced in An. 

gambiae s.s, making it the primary vector of malaria in the 

continent, a disease that cause over ~400,000 deaths/year, 

most of them children under 5 years old (WHO, 2023).  

ii) Culex pipiens complex.  Cx. pipiens s.l is a ubiquitous group 

with a worldwide distribution, which contains two domestic 

and peridomestic species: the northern house mosquito Cx. 

pipiens s.s., distributed in temperate areas; and the 

southern house mosquito Culex quinquefasciatus, with a 

tropical and subtropical distribution. They commonly 

hybridize at latitudes where their ranges overlap, as in North 

America, Argentina, Madagascar, Japan and South Korea 

(Farajollahi et al., 2011). They are vectors of human and 

animal pathogens such as West Nile virus (WNV), Usutu virus 

(USUV), Rift Valley fever phlebovirus (RVFV), St. Louis 
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encephalitis virus (SLEV), lymphatic filariasis or avian malaria 

parasite. Their opportunistic feeding behaviour on a variety 

of vertebrates hosts makes them play a key role as bridge 

vectors in the transmission cycle dynamics of some 

arboviruses such as WNV (G. L. Hamer et al., 2008). 

iii) Aedes subgenus Stegomyia. Aedes spp. subgenus 

Stegomyia contains several medically important vectors, 

two of the most concerning ones are: the yellow fever 

mosquito (Aedes aegypti), primary vector of dengue (DENV), 

yellow fever (YFV), Zika (ZIKV) and chikungunya (CHIKV) 

viruses, in tropical and subtropical areas; and the Asian tiger 

mosquito (Aedes albopictus), secondary vector of the same 

arboviruses, that was original from Asia but has notoriously 

expanded its geographical distribution throughout the world 

facilitated by human commercial activities. They both 

exhibit a high anthropophilic behaviour with host-seeking 

activity during the daylight hours, which makes them very 

efficient vectors (Kweka et al., 2018). 

 

A mosquito become infected with pathogens mainly during feeding on 

an infected host. The susceptibility of a vector to oral infection and its 

ability to transmit a pathogen efficiently (i.e., the infectious agent 

enters the midgut, replicates within the vector, and disseminates 

thought the saliva) is called vector competence (VC) (Fig 2). 

Experimentally, VC is assessed by estimating the transmission 

efficiency, i.e., the number of transmitting females (with infectious 
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saliva) over the total of females that were exposed to the pathogen. VC 

is a multifactorial property and depends on several intrinsic and 

extrinsic factors such as the midgut and salivary gland barriers, the 

immune vector responses, the vector and pathogen genotype, the 

midgut microbiota, the ambient temperature and humidity, the 

mosquito diet, or the pathogen dose. All these factors contribute to the 

success of pathogen infection, dissemination, and transmission in 

vector populations (Agarwal et al., 2017).  

The time interval between an infectious blood meal and the 

transmission of a pathogen via bite (saliva) is called the extrinsic 

incubation period (EIP). The mean duration of the EIP (which can range 

from several days to a couple of weeks depending on the virus, the 

pathogen, and the temperature) can be relatively long compared with 

the life expectancy of wild mosquito populations, thus compromising 

pathogen transmission (Johnson et al., 2020). A reduction in the EIP of 

several pathogens with increasing temperature has been reported 

(Chan & Johansson, 2012; Dohm et al., 2002; Ohm et al., 2018). However, the 

relationship between the temperature and pathogen transmission is 

not linear, exhibiting upper and lower thermal limits from which the 

transmission does not occur (Mordecai et al., 2019).   
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Fig 2.  Sequential steps required for a female mosquito to transmit a 

pathogen. Extracted from (Azar & Weaver, 2019) . (1) The pathogen is 

imbibed by a female mosquito from an infected host; (2) the pathogen 

infects and replicates in midgut epithelial cells overcoming the midgut 

infection barrier; (3) the pathogen escapes from midgut epithelial cells 

(overcoming the midgut escape barrier) into the mosquito’s 

haemolymph within the hemocoel; (4) the infection disseminates in 

peripheral tissues/organs such as nerves, muscle fibers, or fat body (5) 

the salivary glands become infected (the pathogen overcame the 

salivary gland infection barrier), and (6) the pathogen shedds into the 

apical cavities of the acinar cells and become present in the saliva for 

inoculation into subsequent hosts upon feeding.  
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To fully comprise the transmission potential of vectors, besides VC, the 

vectorial capacity (V) of a vector specie must be considered. V is 

defined as the total number of potentially infectious bites that would 

eventually arise from mosquitoes biting a single infectious host on a 

single day (considering that all mosquitoes become infected when 

biting the host) (Garrett-Jones & Grab, 1964). It is a multifactorial property 

that depends on vector density relative to host density; vector daily 

blood feeding rate; probability of vector daily survival; duration of the 

EIP; and also, VC (Fig 3).  High competent mosquitoes may be poor 

vectors if their frequency of feeding on competent hosts is low or if their 

life expectancy is short compared to the pathogen EIP. Contrarily, a 

poor competent vector can sustain or expand a disease outbreak if it is 

very abundant, its feeding rate is high or the EIP of the pathogen it 

carries is short (Kramer & Ciota, 2015).  
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Fig 3. Vector capacity. Extracted from (Cansado-Utrilla et al., 2021) 

 

Pathogen maintenance and amplification cycles in nature involve 

different strategies, specially: the mentioned horizontal transmission 

(between infected mosquitoes and vertebrate hosts that act as 

reservoirs or dead-end hosts); and vertical transmission (from adult 

females to their offspring) which has been reported for the main groups 

of arboviruses (flaviviruses, alphaviruses and bunyaviruses) pointing 

out the potential relative contribution of this mechanism to virus 

maintenance during unfavourable environmental conditions, when 
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amplifying hosts responsible for horizontal transmission are not 

available (Agarwal et al., 2017; Barker & Reisen, 2018). Other types of 

mechanisms include venereal transmission (between males and 

females during mating), which is considered relatively rare and difficult 

to identify naturally (Barker & Reisen, 2018).   

Understanding vector ecology and the role of vector-host interactions 

in MBD transmission cycles is necessary to assess the risk of potential 

outbreaks (Rizzoli et al., 2019; Thongsripong et al., 2021). Some 

diseases like malaria or dengue have an urban transmission cycle that is 

entirely sustained by an anthropophagic vector that selectively feeds on 

humans. The feeding strategies of these anthropophilic vectors like 

Anopheles gambiae s.l. and Aedes aegypti, which feed preferentially 

and frequently on human blood in domestic and peridomestic areas, 

may result in an increased risk of pathogen transmission (Scott & Takken, 

2012). In other cases, as in WNV, the transmission cycle is enzootic (Fig 

4) and it is sustained by the horizontal transmission between a vector 

and a reservoir animal, mainly wild birds, that act as primary host. 

Humans are not an essential component of the transmission cycle (i.e., 

they do not support a sufficient level of viremia to infect vectors) but 

rather become incidental hosts when levels of enzootic transmission 

escalate and become epizootic (Troupin & Colpitts, 2016). In these cases, 

it may be a spillover from the enzootic cycle to humans as dead-end 

hosts because of tangential transmission by bridge vectors (Figuerola et 

al., 2022; Martínez-De La Puente et al., 2018). The degree to which 

humans are affected may increase if the amplification cycle becomes 
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established among vertebrate animal reservoirs inhabiting urban 

environments (Figuerola et al., 2022).  

 

 

 

Fig 4. Mosquito borne disease transmission cycles. Adapted from 

(Weaver et al., 2018). 
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2.3 Main mosquito vectors in Europe 

 

2.3.1 Aedes albopictus 

Aedes (Stegomyia) albopictus (Skuse) (Wilkerson et al., 2021), also 

known as Asian tiger mosquito, is one of the most concerning vector 

species worldwide. It is a relatively small black mosquito with white 

scale patches typically distributed in their legs, scutum, and other parts 

of the body (Fig 5a). It is an anthropophilic feeder which bites 

aggressively during daylight hours, causing serious nuisance to humans. 

It was original from the tropical forests of South-East Asia but, in the 

last decades, it has undergone a dramatic global expansion due to 

human activities, in particular, the trade of used tyres and the passive 

transportation by ground vehicles (Swan et al., 2022). It is listed as one 

of the top 100 world’s worst invasive alien species by the Invasive 

Species Specialist Group of the International Union for the Conservation 

of Nature (Lowe et al., 2000).  

Originally described from Calcutta (India), it is now present in all 

continents except Antarctica. The first record of importation into 

Europe was in 1979 in Albania and although it became stablished in the 

country, there were no reports in Europe until 1990, when it was found 

in Italy. The mosquito expanded rapidly within Italy and to other 

countries (France, Belgium, Greece, Spain, Balkan countries, and so on) 

in the following years (ECDC, 2016). The species was found for the first 

time in the Iberian Peninsula in 2004 (Aranda et al., 2006). The 

colonization of Europe involved at least three independent 

introductions in Albania, North Italy and Central Italy that subsequently 
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acted as dispersal centres throughout Europe (Sherpa et al., 2019). 

Nowadays, Ae. albopictus is stablished in all Southern Europe (Fig 5b), 

constituting an important public health issue (Schaffner et al., 2013).  

In its original habitat at the edge of the forests, Ae. albopictus used to 

breed in natural spaces such as tree holes, bromeliads, or bamboo 

stumps. It was considered a rural vector until, as a form of ecological 

plasticity, it become adapted to urban and periurban environments. 

There, it started to breed in artificial water-holding containers such as 

tyres, barrels, catch basins, plant pots, and any other element that 

support standing-water. Its ecological plasticity also applies for host-

choice behaviour. Aedes albopictus feeds opportunistically on a wide 

range of hosts (preferentially mammals) depending on their availability 

and environmental conditions. If there is a choice though, they prefer 

to feed on human blood. As a multivoltine specie, it produces several 

generations per season (Bonizzoni et al., 2013). 

Unlike tropical and subtropical populations, which are active 

throughout the year, temperate strains are adapted to cool 

temperatures by developing diapausing eggs which allow them to 

overwinter, supporting their invasion to northern latitudes (Lacour et 

al., 2015). Generally, Ae. albopictus enters diapause when weekly 

temperatures are below 12.5 ºC to a minimum of 9ºC and photoperiods 

range from 14 h to 11.2 h. Spring hatching occurs when weekly 

temperatures are between 10-15 ºC and photoperiods are between 11 

h to 12 h (Petrić et al., 2014). The peak of abundance is reached over 

summer, but the actual timing varies according to eco-climatic 

variables.   
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Fig 6. Aedes albopictus technical sheet. (A) Female of Ae. albopictus 

feeding on a human host. Extracted from (ECDC, 2016); (B) Current 

know distribution of Ae. albopictus in Europe (August 2023). Extracted 

from (ECDC, 2023a). 

SPECIES NAME: Aedes (Stegomya) 
albopictus Skuse, 1894. 

COMMON NAME: Asian tiger 
mosquito. 

ORIGIN:  South-East Asia. 

DISTRIBUTION: Europe, Middle East, Asia 

& Australasia, North America, Central America, 
Caribbean, South America and Africa. 

A 

B 

Aedes albopictus 
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Vector competence studies have shown that Ae. albopictus can 

transmit at least 26 viruses belonging to Flaviviridae, Togaviridae, 

Bunyaviridae, Reoviridae and Nodaviridae families. Some of them 

(DENV, WNV, ZIKV, Japanese encephalitis virus, CHIKV, Eastern equine 

encephalitis virus, Potosi virus, Tensaw virus, Keystone virus, La Crosse 

virus and Jamestown Canyon virus), have been isolated from wild-

caught Ae. albopictus, however their role in transmission is uncertain 

(Paupy et al., 2009). Currently, Ae. albopictus is the primary vector of 

CHIKV, DENV, ZIKV and dirofilariasis in continental Europe (ECDC, 2016).  

The first autochthonous MBD in Europe attributed to Ae. albopictus was 

in Italy in 2007, with 205 confirmed cases of CHIKV from an initial 

imported case from India (Rezza et al., 2007). The next cases of 

autochthonous transmission were reported in 2010, first in France (with 

two cases of CHIKV and two of DENV) (Gould et al., 2010) and later in 

Croatia (with more cases of DENV) (Gjenero-Margan et al., 2011). These 

were the first reports of local DENV transmission in Europe since the 

major dengue epidemic of 1927–1928 in Greece where Ae. aegypti was 

the vector (Louis, 2012). Since then, more cases of DENV have arose 

year after year in mainland Europe in France (2013, 2014, 2015, 2018, 

2019, 2020, 2021, 2022, 2023), Spain (2018, 2019, 2022, 2023) and Italy 

(2020, 2023). The number of reports per European country has 

remained at low levels to date, being the outbreak of 2023 the year with 

the major number of autochthonous reported cases (31 in France and 

42 in Italy) (ECDC, 2023c). Also, cases of CHIKV have periodically been 

reported in France (2014, 2017) and a big last outbreak in Italy (2017), 

with 270 confirmed and 219 probable cases (ECDC, 2023b). From the 
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beginning of ZIKV surveillance in Europe in 2016, imported cases from 

returning travellers have been reported year after year. In 2019, two 

cases of autochthonous transmission due to Ae. albopictus were 

registered in France (ECDC, 2021).   

Generally, Ae. albopictus is considered to have a lower vector capacity 

than Ae. aegypti for DENV, CHIKV and ZIKV. However, it is the primary 

vector of these arboviruses in places where Ae. aegypti is absent, 

leading to the occurrence of explosive disease outbreaks in case of 

CHIKV (Charrel et al., 2007). Phylogenetic analysis of viral sequences of 

isolates from these outbreaks revealed an example of rapid (1–2 years) 

convergent evolution between CHIKV and the vector, which resulted 

from a virus mutation associated with improved replication and 

transmission efficiency in Ae. albopictus (De Lamballerie et al., 2008). In 

a global context of expansion of Ae. albopictus, this evolutionary 

convergence between arbovirus and vectors could have serious 

implications for public health.  

Aedes albopictus shows ecological plasticity in different traits such as 

larval breeding sites, feeding behaviour, and climatic adaptation which 

increase their potential for spread and adaptation to new 

environments, and influence their coexistence with other vector 

species. Its anthropophilic behaviour and adaptation to urban 

environments may contribute to amplify the virus transmission cycle. 

Moreover, as opportunistic feeders they have a potential role as bridge 

vectors (Pereira-Dos-Santos et al., 2020). Global change associated with 

movements of goods and humans together with changes in land uses, 
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socioeconomics and climate contribute to expand the range of this 

vector thus amplifying its impact on global health.  

 

2.3.2 Culex pipiens 

Culex (Culex) pipiens Linnaeus, 1758, also known as “Common House 

mosquito” or “Northern house mosquito” is a worldwide distributed 

mosquito, one of the most important disease vectors in temperate 

zones and considered a pest in urban environments. It is a medium-size 

mosquito (4-10 mm), brownish-coloured overall, without any obvious 

specific pattern (Fig 6a). Culex pipiens s.s. is a polytypic species that is 

member of the Cx. pipiens complex and has 3 sibling species: Culex 

quinquefasciatus (tropical distribution), Culex australicus (Australia) 

and Culex globocoxitus (Australia). The taxon has also one subspecies 

(Culex pipiens pallens) and two forms or biotypes (Cx. pipiens f. pipiens 

and Cx. pipiens f. molestus) (Aardema et al., 2022). Culex pipiens s.s is 

native to Africa, Asia, and Europe although nowadays it is widely 

distributed in temperate regions of Europe, Asia, Africa, Australia, and 

North and South America (Fig 6b).  

The ecology and behaviour of Cx. pipiens s.s differ considerably 

depending on the biotype.  Cx. pipiens f. pipiens typically inhabits rural 

and urban habitats aboveground, primarily feeds on birds 

(ornithophilic), mate in swarms in open spaces (eurygamous), require a 

blood meal to synthesize eggs (anautogenous), and enter a 

reproductive diapause in winter (heterodynamic). On the contrary, Cx. 

pipiens f. molestus typically inhabits belowground urban settles, feeds 
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primarily on mammals (mammophilic) and humans (anthropophilic), 

mate in enclosed habitats (stenogamous), do not require a blood meal 

to lay the first clutch of eggs (autogenous) and are active throughout 

the year (homodynamic) (Haba & McBride, 2022).  

The origins of the taxa may have been in East Africa, from a last common 

ancestor of Cx. pipiens s.l. which was probably ornithophilic, 

eurygamous and homodynamic, such as some contemporary 

populations of Cx. pipiens f. pipiens in sub-Saharan Africa. Higher 

altitudes, such as those found in Ethiopia, with colder weather 

conditions may have contributed to the evolution of heterodynamy and 

reproductive diapause. Then, their natural dispersal to cooler climates 

in Europe and Asia may have given rise to the modern form of Cx. 

pipiens f. pipiens. The expansion into the Mediterranean or Near East 

with more stable human settlements and urbanization may have 

promoted the evolution of the form Cx. pipiens f. molestus, adapted to 

stenogamy and mammophily (Aardema et al., 2022).   

Nowadays, both ecotypes coexist in northern Europe and Asia, with two 

reproductively isolated populations of Cx. pipiens f. pipiens 

aboveground and Cx. pipiens f. molestus in human-made belowground 

environments. Gene flow between them increases within a latitudinal 

gradient, with higher hybridisation rates from northern to southern 

latitudes. Hybridization may have important implications for pathogen 

transmission by promoting a more opportunistic feeding behaviour in 

Cx. pipiens s.s. that would enhance its role as bridge vector of some 

arboviruses such as WNV. In fact, feeding preferences has been 

described as one of the most influential parameters driving intensity 
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and timing of WNV infection (Rizzoli et al., 2015). Therefore, the 

occurrence of natural hybrid populations leads to a complex ecological 

mosaic that complicates predictions of vectorial capacity for competent 

arboviruses (Haba & McBride, 2022).   

Culex pipiens s.s. is considered the major vector in Europe of WNV, an 

endemo-epidemic arbovirus with the longest history of circulation in 

the continent. The virus is transmitted among birds within an 

amplification zoonotic cycle via the bite of infected mosquitoes and 

incidentally infects humans and horses when there is a spillover to an 

epizootic cycle. The virus was first isolated in 1937 from a patient with 

fever in the West Nile district of Uganda (Smithburn et al., 1940). Later 

in 1955, an enzootic transmission cycle was identified involving 

indigenous wild birds of the Nile Delta as natural reservoirs for the virus 

and Culex mosquitoes as the primary vector group (Work et al., 1955). 

Since then, many countries from Sub-Saharan and North Africa have 

reported evidence for WNV. The translocation of the virus from Africa 

to northern latitudes is attributed to the migratory behaviour of these 

wild birds travelling north (Brugman et al., 2018).  
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Fig 7. Culex pipiens technical sheet. (A) Female Cx. pipiens laying an egg 

raft on the water surface. Photograph by Sean McCann (B) Current 

know distribution of Cx.pipiens in Europe (August 2023). Extracted from 

(ECDC, 2023b). 

A 

B 

Culex pipiens 

SPECIES NAME: Culex (Culex) pipiens 

Linnaeus, 1758. 

COMMON NAME: Common house 

mosquito, Northern house mosquito. 

ORIGIN: East Africa. 

DISTRIBUTION: Europe, Asia, Africa, 

Australia, and North and South 

America. 
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The first European outbreak of WNV in humans occurred in 1962 in 

France, but the first major epidemic was in Romania in 1996, with 393 

cases and 17 deaths (Sejvar, 2003). During the first decade of the 21st 

century, the number of outbreak detections increased in Europe. It 

remains unclear if it was due to a more frequent annual re-

introduction of WNV, a greater focus on surveillance in the 

Mediterranean Basin, or both. Anyhow, WNV cases have been 

continuously reported in eastern, western and southern Europe, being 

2018 the transmission season with the highest number of cases 

registered to date (1548 locally acquired cases and 166 deaths, mostly 

concentrated in Greece, Italy and Romania)  (ECDC, 2019).  In Spain, 

the first diagnosed human case of WNV was in 2004 (Kaptoul et al., 

2007). Since then, several cases have been annually reported until 

2020 where the largest WNV outbreak was declared in southwest 

Spain with 77 human cases (Macias et al., 2023). The geographic 

expansion of WNV has continued in Europe towards central and 

northern countries (Bakonyi & Haussig, 2020), being detected in 

Germany (in birds and horses in 2018 and in humans in 2019) (Ziegler 

et al., 2020) and Netherlands (with six human cases in 2020) 

(Vlaskamp et al., 2020). The identification of WNV in overwintering 

mosquitoes points out virus persistence in mosquitoes thorough the 

winter season in Europe (Rudolf et al., 2017).   

A related flavivirus transmitted by Cx. pipiens s.s., USUV, has also 

emerged and spread across Europe around the same time as WNV. It 

was first isolated in 1959 in the Usutu River in Swaziland and was 

previously restricted to sub-Saharan Africa until it was introduced in 
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Europe in 1996 (Vilibic-Cavlek et al., 2020). The virus is sustained 

within an enzootic amplification cycle in birds, mainly Passeriformes, 

and have an occasional spillover to humans. USUV has shown to be 

highly pathogenic for several bird species in Europe and it has become 

a potential public health concern given the increasing number of 

reported human infections (Cadar et al., 2017). Although the USUV 

diversity in Europe appeared in the last decade, phylogenetic analysis 

suggests a long-term history of virus circulation in the region, with 

multiple introductions and endemicity in some countries. Migrating 

birds are the most likely mechanism of translocation over long and 

short distances (Brugman et al., 2018).  

Other viruses such as Sindbis virus, Tahyna virus or Batai virus have 

been occasionally identified from naturally infected field caught 

female Cx. pipiens s.s in Europe although they are generally poorly 

reported and their public health importance in Europe is still unknown 

(Napp et al., 2018). Pathogens of veterinary importance such as 

dirofilarial worms or avian malaria parasites that are currently 

circulating in Europe are considered to be transmitted by Culex pipiens 

s.s. as well (ECDC, 2020). 
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2.4 Epidemiology of mosquito borne diseases. 

 

MBD constitute a major threat for public health authorities worldwide. 

According to the International Health Regulations (2005) stablished by 

the World Health Assembly, it is required that all the member states 

have the ability to detect, assess, report, and respond to public health 

events (International Health Regulations (2005), 2008); specially if such 

health events constitute a potential public health emergency of 

international concern, as it was declared for ZIKV in 2016 (Wilder-Smith 

& Osman, 2020). In this regard, the epidemiology plays a key role by 

investigating the factors contributing to disease occurrence in a 

population. 

From a public health point of view, different levels of a disease can be 

identified regarding their prevalence in human populations and their 

geographical and seasonal distribution. Diseases that are always 

present or reappear consistently at a similar level during a specific 

transmission season in a certain location are considered to be endemic 

(Dicker et al., 2006). When the disease levels rise above the expected 

generating an increase, often sudden, in the number of cases within a 

community, an epidemic is declared.  An outbreak carries the same 

definition of epidemic but is often used for a more limited geographic 

area (Dicker et al., 2006). 

The disease status is going to determine the levels of intervention and 

actions carried out by the governments to mitigate the scope of the 

disease. The frontier between endemic and epidemic, however, is not 
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always clear and usually respond to subjective criteria like disease risk 

perception (Medley & Vassall, 2017). For some arbovirus such as WNV, 

even there is virus circulation, institutional measures are not triggered 

until there are confirmed human cases, which evidence a lack of a One 

Health perspective in the management of MBD (Dente et al., 2019). 

The epidemiology of MBD relies on the study of vector-host-pathogen 

dynamics and the environmental factors that affect them. It is difficult 

to elucidate the complex interactions underlying these dynamics since 

they act at different temporal and spatial scales and usually in a 

nonlinear manner (Gallana et al., 2013). Therefore, identifying a single 

key factor or epidemiological determinant responsible of the dynamics 

of a disease is not realistic denoting the need of an integrative approach 

for the study of MBD. 

Herein, lies the utility of mathematical epidemiology, which objective is 

providing models of infectious diseases which reflect the interaction 

between the different components that integrate the whole system 

(Focks & Barrera, 2006). Two relevant insights of it are: the mass action 

principal (W. H. Hamer et al., 1906) which states that the course of an 

epidemic depends on the rate of contact between infectious and 

susceptible individuals; and the threshold theory (Kermack & 

Mckendrick, 1927), which states that that the introduction of a few 

infectious individuals into a community of susceptible hosts will not give 

rise to an epidemic unless the density of infectious exceeds a certain 

critical level.  
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For infectious diseases, such as VBD, the basic reproduction number 

(R0) is a common epidemiological metric used to assess the 

contagiousness or transmissibility of an infectious agent (Macdonald et 

al., 1956). It is described as the number of secondary cases that will 

arise from an infected individual in a completely susceptible population 

(Dietz, 1993); and it depends on the duration of the infectious period, 

the probability of infection during contact between susceptible and 

infectious individuals, and the contact rate. When R0 is greater than 

one, an outbreak it is expected to continue. It must be applied with 

caution since it is affected by numerous biological, socio-behavioural, 

and environmental factors (Delamater et al., 2019).  

Stratifying the risk of VBD within a population is a crucial starting point 

for disease risk assessment. Depending on the presence or absence of 

either pathogens, vectors, or endemic disease cases in humans, five 

VBD contexts can be identified (M. Braks et al., 2011): Endemic disease 

cases in humans arise because of pathogen transmission by indigenous 

vectors; 2) Both the pathogen and the competent vector are present 

but there are not human cases, e.g. there is pathogen circulation 

sustained within a sylvatic cycle but it has not been a spillover to a urban 

cycle; 3) There is a competent vector but the pathogen has not been 

introduced and consequently there are not locally transmitted human 

cases; 4) A pathogen is frequently imported into a location where there 

are not competent vectors, so there is not local transmission between 

humans; and 5) Neither the vector nor the pathogen are present and 

there is not a disease burden. 
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In order to estimate the magnitude of a health problem and 

consequently implement the corresponding measures for prevention 

and control, it is necessary to develop an appropriate surveillance 

program, which must provide quality and timely information to key 

stakeholders for decision-making (WHO, 2017). Given the complexity of 

arboviral transmission, different epidemiological scenarios or VBD 

contexts must require different surveillance strategies, specifically 

designed with all the available information about the ecology of the 

disease (Gu et al., 2008).  

VBD surveillance gathers information from different data sources 

(Barker & Reisen, 2018) that are: pathogen circulation data, which 

focuses on the detection and identification of pathogens in humans, 

animal hosts, and vectors; serological data, that aims to monitor the 

evolution in the immunological responses in human and vertebrate 

animal hosts that have been exposed to a pathogen; clinical data, that 

usually refers to the passive surveillance in medical and veterinary 

institutions from humans and animals, which show a clinical syndrome 

of a disease; and risk data, which is based on the detection of risk 

factors for VBD transmission such as the distribution and abundance of 

vector populations, the ratios of vector-host contact, and other 

environmental factors susceptible to affect them. 

Timely analysis of local VBD surveillance data will provide the basis for 

the construction of early-warning systems based on thresholds and 

other alarm signals to give an early response in case of outbreak. 

Relevant early-warning indicators are the identification of a disease 

outbreak in neighbouring areas; the increase in the percentage of 
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positive serology; or the increase in the number of syndromic cases. 

Other alarm signals to be considered are the introduction of new 

predominant serotypes; the identification of clusters of MBD cases 

through geographical information systems; climatic changes in rainfall, 

temperature and humidity; and the increase in the vector presence 

(WHO, 2016).  

Since VBD require, by definition, a vector for pathogen transmission, it 

seems unquestionable that the eradication or control of vector 

populations is essential for VBD management, particularly for diseases 

for which vaccines or specific treatment are not available. Mosquito 

control activities can be based on: source reduction, a traditional 

reliable tool that consists in the elimination of potential breeding sites 

by removing standing water and modifying habitats to make them 

unsuitable for mosquitoes to breed; chemical control, which has been 

broadly applied to fight neglected MBD and consists in the application 

of larvicides (mineral oils, insect growth regulators, organophosphates) 

and adulticides (specially pyrethroids);  biological control, as an 

alternative to chemical control, based on the introduction of predator 

species (e.g., fish and aquatic invertebrates that feed on mosquito 

larvae), entomopathogenic fungi,  pathogenic microorganisms (e.g., the 

bacterium Bacillus thuringiensis var. israeliensis, used extensively in 

larval control) or Wolbachia endosymbiont bacteria (Huang et al., 

2017); and new approaches based on genetic control, such as the 

release in the nature of sterilised males and transgenic mosquitoes 

(with dominant lethality or gene drives) that will produce unviable 

offspring (G. H. Wang et al., 2021).   
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The reduction of vector populations through mosquito control 

interventions has been the principal method of preventing MBD for 

over 100 years and remains highly effective in present, contributing to 

decrease the global burden of many diseases (Wilson Id et al., 2020). 

However, the widespread development of insecticide resistance in 

mosquitoes due to the massive spray of chemicals for their control have 

resulted in the reemergence of MBD in many parts of the world (N. Liu, 

2015). Also, the effect of global change regarding land uses, 

socioeconomics and climate has an impact on MBD by altering the 

distribution of competent vectors (Franklinos et al., 2019).   

Therefore, it becomes clear the necessity of an effective and 

environmentally sensitive approach to mosquito management that 

relies on a combination of common-sense and innovative practices 

through a comprehensive understanding of mosquito biology, 

mosquito life cycle and pathogen transmission cycles (Fouet & Kamdem, 

2018). The basic components of this integrated mosquito management 

include surveillance, measures for personal protection to prevent 

mosquito bites, actions of source reduction, an integrated control of all 

mosquito life-stages, insecticide resistance testing, public education, 

community involvement and evaluation of the actions taken (CDC, 

2020).  

From an operational perspective, an integrative approach to MBD 

management requires all the actors involved (medical and veterinarian 

entomologists and public health professionals) to work coordinately to 

strengthen the preparedness and response towards health threats (M. 

Braks et al., 2011). VBD surveillance plans, properly design according to 
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the context, will provide the basis to stratify the risk of a disease and 

give a proactive response. Early-warning systems with evidence-based 

action thresholds (based on epidemiological or entomological data) are 

essential for public health agencies to initiate or intensify control 

activities aiming at reducing mosquito populations (Aryaprema et al., 

2023). Moreover, to measure the effect of vector control, indicators on 

the presence/absence and abundance of the vector in a given location 

are necessary, which are also obtained through the implementation of 

mosquito surveillance plans.  

 

2.5. The role of mosquito surveillance. 

 

Mosquito surveillance consists in monitoring mosquito populations 

over a temporal or spatial gradient with the objective of determining 

the presence/absence or abundance of certain species, identifying the 

presence of pathogen circulation among vector species, and 

characterizing certain biological, ecological, or behavioural traits of 

mosquitoes. Mosquito surveillance programs are essential to guide 

vector-control operations and inform communities and policy-makers 

against the spread of MBD, highlighting the need of high-quality data 

(Caputo & Manica, 2020).   

The design of an appropriate mosquito sampling program can be a 

complex task and must be ideally guided by the vector species targeted, 

the specific environmental characteristics of the surveyed site and the 

objective or ecological problem that is intended to be assessed (Silver, 
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2008). All this will define the attributes of the sampling such as: timing 

and duration; geographical coverage; spatial or habitat variability; 

sampling methods; sampling effort; or sample size. However, sampling 

design is often more dictated by practical constraints like time 

availability, resources, and budget limitations, which may limit the 

quality of the data obtained. 

With the aim to support the implementation of a harmonised 

surveillance of mosquito species of medical and veterinary importance 

in Europe, the European Centre for Disease Prevention and Control has 

developed two reference guidelines for the surveillance of both native 

and invasive mosquito species (ECDC, 2012; Schaffner et al., 2014). 

These guidelines respond to three specific objectives: assessment of 

nuisance and disease risks to human and animal health; 

implementation of mosquito control measures and evaluation of their 

efficacy; and in case of invasive species, early detection of their 

introduction to new territories, and survey of its possible establishment 

and spread. 

There are two basic approaches to mosquito surveillance: active 

surveillance, which is performed by professionals and refers to 

sampling methods specifically selected to collect the targeted species 

at the sites where they may occur, according to the available data or 

scientific knowledge about the ecology of the mosquitoes; and passive 

surveillance, which refers to data gathered by existing databases and in 

latest years, submission of reports from non-professionals usually 

through citizen science platforms. Lately, community-based approaches 

for passive mosquito surveillance through citizen science initiatives 
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have gained popularity across Europe (Kampen et al., 2015) and can be 

a good complement of targeted surveillance (Palmer et al., 2017), which 

remain the main official approach to mosquito sampling, allowing a 

carefully selected sampling design applied to a specific aim and context. 

Active surveillance is deployed by a broad range of sampling methods 

which include mainly the use of physical traps to attract host-seeking or 

gravid female mosquitoes, but also the use of aspirators for human 

landing collections and resting mosquitoes, or dippers to sample larvae 

and pupae at mosquito breeding sites (Farlow et al., 2020; Q.-M. Liu et 

al., 2023). Depending on the required entomological information 

(presence/absence, distribution, abundance and seasonality, biting 

behaviour, adult resting behaviour, larval habitats, flight range and 

dispersal, longevity, pathogen screening, etc) one sampling method 

would be more suitable than others (Table 1). The capture efficacy of 

the different methods in targeting certain mosquito species would 

depend on its ecology and behaviour (habitat, host-preferences, daily 

activity patterns, etc).  
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Table 1 Recommended mosquito collection methods with trapping 

frequency and trapping period by required entomological information. 

Adapted from (ECDC, 2014). 
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 Traditional taxonomical identification of the field collected specimens 

is based on the existence of recognisable morphological differences 

between species. It requires the expertise of trained entomologists with 

access to laboratory facilities fully equipped, especially with optical 

tools such as stereoscopic microscopes. Several morphological 

identification keys for adults and larvae are available but usually 

restricted to specific geographic areas and genera. In Europe, efforts 

have been made to develop some reference keys to guide the 

taxonomical identification of European mosquitoes based on 

descriptive dichotomous choices as in (Becker et al., 2020), computer-

aided pictorical keys based on images as in (Schaffner et al., 2001) or 

(Gunay et al., 2018) and reverse identification keys as in (ECDC, 2022).   

Since female mosquitoes are the ones that are involved in pathogen 

transmission, many mosquito sampling strategies are designed to 

target them and consequently, a big part of the taxonomical 

identification efforts are focused on adult mosquitoes. The main 

diagnostic features for species identification in adult mosquitoes are 

the shape of the scutum in the thorax, the pattern of bands in the dorsal 

part of the abdomen, and the presence and distribution of pale bands 

in the hind legs, among others (Fig 8). To identify the sex, the main 

features are the relative length of the palps with respect to proboscis, 

the amount of antennal hair, and the genitalia. 
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Fig 8. Body parts of an adult mosquito. Extracted from CDC, 2023 

 

When captured in the field, specimens got usually damaged by the 

sampling procedure and eventually loose part of their scales or entire 

body parts such as legs, compromising the task of identification. Fresh 

specimens are always preferred, especially if they are being latter used 

for pathogen screening and isolation. However, this is not always 

feasible during routine monitoring, where samples are frequently 

collected from traps each 7 to 15 days, thus assuming a certain degree 

of sample damage due to desiccation, predation and/or climatic events. 
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In this case, so as in others where the morphological classification 

through visual clues is not possible, e.g., there are sibling species from 

a species complex that are morphologically indistinguishable, it 

becomes necessary a molecular analysis approach. These molecular 

techniques require well-equipped laboratory and skilled personnel, 

which is costly, particularly in large-scale studies.  

Novel approaches for mosquito surveillance point towards the use of 

machine learning (ML) techniques and a variety of sensing devices for 

the automated remote classification of mosquitoes through the so-

called intelligent sensors (Joshi & Miller, 2021; Santos et al., 2019). In the 

recent years, there has been an upward trend of works that include the 

use of these new technologies for mosquito management with 

emphasis in Aedes mosquitoes and to a lesser extent, to Culex and 

Anopheles genera (Joshi & Miller, 2021). These new techniques, based on 

image (J. Park et al., 2020), acoustic ((Vasconcelos et al., 2019) and 

pseudo-acoustic systems (Genoud et al., 2018), offer high accuracy 

results for mosquito classification mainly in laboratory conditions. 

These intelligent sensors have the potential to overcome some of the 

major disadvantages of traditional surveillance methods; thus, related 

with the costs in terms of time and resources involved in the tasks of 

trap setting, sample collection, labelling, transportation, preservation, 

manual inspection for taxonomical identification and process of the 

results. Besides, with the expansion of the internet of things (IoT), they 

offer the possibility of gather data about vector populations in real-time 

which may contribute to a more time accurate MBD assessment (Nayak 

et al., 2023).   
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Currently, there are very few studies that have tested the performance 

of these devices in field conditions (Day et al., 2020; Lai et al., 2022) 

where there are uncontrolled environmental variables which may affect 

their efficacy. The progress in the field of remote automated mosquito 

surveillance requires to perform field tests to evaluate if the accuracy 

classification results obtained in the laboratory can be extrapolated to 

a field-work scenario with the ultimate objective of being further 

implemented into the routine of entomological surveillance.  
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3. OBJECTIVES 

The main objective of the present thesis is to develop a ready-to-use 

reliable tool for the automated remote monitoring of Aedes and Culex 

mosquito populations in real-time. This novel technological approach, 

based on an entomological optical sensor coupled to a mosquito trap 

and trained with machine learning, aims to overcome the current 

limitations of traditional mosquito surveillance by reducing the 

associated operational costs (time, personnel, and resources) and 

providing accurate relevant entomological information with an 

unprecedented time resolution. With this goal, five specific objectives 

have been defined and are listed below:  

1. To stablish a conceptual framework about the use of novel 

technologies applied to mosquito surveillance based on 

machine learning techniques, with a focus on optical sensing 

systems. To that purpose, a review of the current scientific 

literature was performed, comparing traditional versus novel 

approaches for mosquito surveillance. This objective was 

assessed in the Chapter 1 of the present thesis. 

2. To train a new optical sensor prototype with machine 

learning techniques to differentiate the genus and sex of Aedes 

and Culex mosquitoes in laboratory conditions. To that end, the 

flight features extracted from mosquito flight recordings made 

by the sensor were trained with different machine learning 

algorithms to find the best classification accuracy for genus and 
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sex. This goal was evaluated in the Chapter 2 of the present 

thesis. 

3. To evaluate the efficacy of a new sensor system for the 

automatic counting and identification of the genus and sex of 

Aedes and Culex mosquitoes in field conditions. To do so, the 

performance of the sensor for mosquito monitoring was 

compared to the manual inspection performed by 

entomologists in two field sites. This aim was addressed in the 

Chapter 3 of the present thesis. 

4. To determine the chronological age of Culex pipiens 

mosquitoes. Two approaches were employed for this aim: i) the 

transcriptional age grading technique based on the differential 

expression of age-related genes; and ii) the use of an optical 

sensor for the automated discrimination of mosquito age based 

on differences in the flight pattern. This objective was assessed 

in the Chapter 4 of the present thesis. 

5. To automatedly identify Aedes albopictus infected with Zika 

virus using an optical sensor system. To that end, the sensor 

was trained on a dataset of infected and non-infected 

mosquitoes to build a machine learning model for the 

automated classification. This objective was assessed in the 

Chapter 5 of the present thesis.
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4. CHAPTERS 

4.1 CHAPTER 1: Novel technologies for 

mosquito surveillance 

The use of artificial intelligence and automatic 

remote monitoring for mosquito surveillance 

(González et al., 2022). 
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Abstract 

Mosquito surveillance consists in the routine monitoring of mosquito 

populations: to determine the presence/absence of certain mosquito 

species; to identify changes in the abundance and/or composition  of  

mosquito  populations;  to  detect  the  presence  of  invasive  species;  

to  screen  for  mosquito-borne pathogens; and, finally, to evaluate the 

effectiveness of control measures. This kind of surveillance is typically 

performed by means of traps, which are regularly collected and 

manually  inspected  by  expert  entomologists  for  the  taxonomical  

identification  of  the  samples.  The main problems with traditional 

surveillance systems are the cost in terms of time and human resources 

mailto:*Correspondence:%20sandra.talavera@irta.cat
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and the lag that is created between the time the trap is placed and 

collected. This lag can  be  crucial  for  the  accurate  time  monitoring  

of  mosquito  population  dynamics  in  the  field,  which  is  determinant  

for  the  precise  design  and  implementation  of  risk  assessment  

programs.  New  perspectives  in  this  field  include  the  use  of  smart  

traps  and  remote  monitoring  systems,  which  generate  data  

completely  interoperable  and  thus  available  for  the  automatic  

running  of  prediction  models;  the  performance  of  risk  assessments;  

the  issuing  of  warnings;  and  the  undertaking of historical analyses of 

infested areas. In this way, entomological surveillance could be done 

automatically with unprecedented accuracy and responsiveness, 

overcoming the problem of manual inspection labour costs. As a result, 

disease vector species could be detected earlier and with greater 

precision, enabling an improved control of outbreaks and a greater 

protection from diseases, thereby saving lives and millions of Euros in 

health costs. 

Keywords: mosquito monitoring, remote surveillance, acoustic 

sensor, optical sensor, intelligent sensor, smart trap, machine learning, 

Internet of Things (IoT). 

 

 

 

 

 



Chapter 1: Novel technologies for mosquito surveillance 

 

65 
 

Mosquito surveillance and traditional monitoring methods 

Mosquitoes  (Diptera,  Culicidae)  are  responsible  for  the  transmission  

of  diverse  medically  and  veterinary important disease agents (viruses, 

protozoans and other parasites) which cause serious diseases in 

humans and animals, such as malaria, dengue, Zika, yellow fever, 

chikungunya, West Nile virus, Eastern equine encephalitis or avian 

malaria. Entomological surveillance plays a key role in human and 

veterinary disease surveillance within the framework of the ‘One 

Health’ concept, where  interdisciplinary  collaboration  and  

communication  in  healthcare  is  crucial  (ECDC, 2012; Schaffner et al., 

2014; WHO, 2017). A paradigmatic example of this ‘One Health’ 

approach would be the West Nile Virus (WNV) surveillance. This implies 

a coordinated strategy of Public Health actors that carry out the 

diagnoses of possible infected horses and humans that are dead end 

hosts of the pathogen; the monitoring of Culex mosquitoes that may act 

as vectors in the areas with WNV cases; and the detection of possible 

infected birds which may act as reservoirs of the virus. 

Mosquito  surveillance  methods  should  provide  clear  and  meaningful  

information  for  program  managers and policy-makers for the purpose 

of: (1) determining and quantifying the composition of mosquito 

populations which are present in a specific area; (2) monitoring changes 

in mosquito populations; (3) identifying the presence of new invasive 

mosquito species which can act as disease vectors;  (4)  detecting  

mosquito-borne  diseases;  (5)  determining  which  control  measures  

need  to be conducted; (6) performing the quality assessment of control 

measures; and (7) designing accurate risk assessment programs in order 
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to prevent and manage potential disease outbreaks (Flores, 2015; 

Schaffner et al., 2014). 

Mosquito surveillance can be understood as a task involving the routine 

monitoring of immature stages and adult mosquito populations over 

the course of an entire mosquito season (Flores, 2015; Silver, 2008). 

Several methodologies have been developed to sample and analyse 

different stages of  the  biological  cycle  of  mosquitoes  (egg,  larvae  

and  adults),  although  most  of  them  mainly  target adults since only 

adult female mosquitoes are responsible for disease transmission 

(Focks, 2003; Sivagnaname & Gunasekaran, 2012). Thus, with the exception 

of pathogen monitoring in immature stages to investigate vertical 

transmission, adult mosquito surveillance is probably the most precise 

approach to properly monitor mosquito populations for vector-borne 

disease (VBD) risk  assessment.  While  some  methodologies  focus  on  

resting  mosquitoes,  such  as  aspiration  in  vegetation that is 

performed with entomological aspirators, most have been developed 

to catch flying mosquito females when seeking hosts for blood feeding 

or gravid females when seeking oviposition sites (Becker et al., 2020; 

Service, 1993). 

To allow standardised monitoring of adult mosquito populations, many 

types of traps have been developed  to  attract  different  target  species.  

Some  rely  solely  on  a  conventional  incandescent  filament light bulb 

as the main source of attraction or use an ultra-violet light source while 

others add CO2 or chemical attractants to the light source. Various 

models are commercially available. The most popular are adapted 

models of CDC mosquito light-traps, EVS trap (Fig 1) and in the last 
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decade, BG sentinel traps (Fig 2) with different combinations of light, 

CO2 and chemical lure (EMCA, n.d.). Other traps include the Reiter trap 

for gravid females, and even types developed not just for mosquito 

sampling but for mosquito control as well, such as the Mosquito 

Magnet™, among  others.  Despite  these  methodologies,  during  the  

first  decade  of  the  21st  century  the  need became evident for a much 

greater effort to develop, manufacture and market new tools that  

would  be  effective  for  different  species  and  environmental  

conditions  and  that  could  be  standardised in different countries in 

order to obtain more significant and comparable data (Qiu et al., 2007). 

Several studies have compared the efficacy of different commercial 

trapping devices, reporting differences  in  both  performance  and  

efficacy  depending  on  the  target  mosquito  species,  the  type of 

attractant and other environmental factors (Brown et al., 2008; Y. Li et 

al., 2016; Lühken et al., 2014; Roiz et al., 2012). Generally, BG-traps have 

shown better, or at least a similar performance, compared to CDC, EVS 

or MM traps (Y. Li et al., 2016; Lühken et al., 2014), but the results have 

been dependent on multiple factors and varied from one study to other. 

It is important to consider, as pointed out by Brown et al. (2008), that 

differences between traps could affect the estimations of species 

abundance and composition. 
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Fig 1. Classic EVS mosquito trap baited with a container with CO 2 

pellets. 

 

 

Fig 2. BG sentinel trap. 
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Traditional surveillance methods have two main limitations. The first is 

the cost in terms of time and professionals involved in the surveillance 

(trap placement, sample collection and transport of the sample to the 

laboratory for the counting and identification of captured mosquitoes). 

The second  limitation  is  the  inevitable  time  lag  between  the  

moment  that  the  trap  is  placed  in  the  field and the moment the 

sample is collected. This lag can be crucial, potentially resulting in the 

dynamics of mosquito populations in the field not being accurately and 

timely monitored (Focks, 2003). 

In this scenario, artificial intelligence (AI) is forging a path in improving 

traditional entomological surveillance  methods  by  generating  new  

techniques  for  the  automated  remote  monitoring  of  mosquito  

populations.  These  new  approaches  include  the  emergence  of  

automated  electronic  devices which remotely classify mosquitoes 

based on the analysis of their flight pattern (Potamitis, 2014; Santos et 

al., 2019). 

In  addition,  the  use  of  the  ‘Internet  of  Things’  (loT)  is  enabling  

that  the  information  collected  remotely in the field could be sent 

wirelessly to a cloud server in real time (P. Eliopoulos et al., 2018; Geier, 

Weber, Rose, Gordon, et al., 2016; Potamitis et al., 2017). Thus, 

eliminating the gap between trap installation and collection, 

representing mosquito population dynamics much more accurately. 
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New technological approaches for remote mosquito 

surveillance through the perspective of artificial intelligence 

Acoustic sensing technology 

Mosquito flight tones have been extensively studied since the first half 

of the 20th century, mainly through the use of acoustic methods such 

as microphones (Kahn & Offenhauser, 1949). Mosquito flights produce a 

tone as a side effect of wing movement. This tone is also a 

communication signal that is frequency-modulated during courtship 

and can be detected by other mosquitoes thanks to certain properties 

of their antennae including Johnston’s organ at the base of each 

antenna (Cator et al., 2009; Gibson et al., 2010). Rapid frequency 

modulation flight in males occurs as a response to  female  wing  beat  

frequency  and  is  likely  to  represent  a  pre-copulatory  controlled  

flight  to  maintain a close-range position while attempting to seize and 

engage terminalia with the female (Simões et al., 2016). Females have 

the ability to reject or accept the male mating attempt. In the event  

that  the  interaction  between  male-female  pairs  is  successful,  

copulation  will  take  place  preceded by an acoustic harmonic 

convergence (Aldersley et al., 2016; Aldersley & Cator, 2019). 

With  these  acoustic  properties  in  mind,  entomologists  have  been  

pursuing  the  control  of  mosquitoes by means of sound traps for many 

decades (Kahn & Offenhauser, 1949) and continue to  do  so  (Diabate & 

Tripet, 2015; Rohde et al., 2019).  Sound  traps,  such  as  the  Sound  Gravid  

Aedes Trap (SGAT), the Male Aedes Sound Trap (MAST) (Staunton, 

Crawford, et al., 2020), or other modified commercial traps with an 
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acoustic basis, are nowadays being used as cost-effective alternatives 

for field use in areas with sterile male mosquito rear-and-release 

programs (Johnson & Ritchie, 2016; Rohde et al., 2019; Staunton, Rohde, et 

al., 2020). 

The  acoustic  detection  of  insects  is  a  highly  active  research  field,  

especially  in  its  application  to  food  crops  and  stored  grain  pests 

(Eliopoulos et al., 2016; Hagstrum et al., 2012; Potamitis et al., 2009) 

but also with respect to pests of medical importance, such as 

mosquitoes (Salim et al., 2017; Vasconcelos et al., 2019). In recent 

years, so-called deep learning techniques have become widely  used  in  

bioacoustic  classification  tasks  based  on  the  analysis  of  mosquito  

wing  beat frequency.  However,  since  mosquitoes  from  different  

species  can  actually  have  overlapping  frequency distributions, it 

seems insufficient to use the fundamental wing beat frequency as the 

sole distinguishing characteristic between species (Chen et al., 2014). 

To improve the classification method,  metadata  such  as  time  or  place  

of  recording  can  be  used  as  additional  features  to  differentiate 

between mosquitoes with varying circadian activity or geographic 

distribution. 

Current approaches for mosquito wing-beat analysis and classification 

through acoustic sensors include  the  use  of  mobile  phones  as  an  

easily  available  tool  for  entomological  surveillance  (Fernandes et al., 

2021; Y.Li et al., 2017; Mukundarajan et al., 2017). Mobile phones offer 

the advantage of automatically registering time and location stamps for 

acoustic data and allow the collection of other metadata such as 

photographs which can support identification. Studies based on mobile 
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phone-based bioacoustics demonstrate that even low-cost 

smartphones are capable of accurately recording mosquito wing-beat 

frequencies, enabling continuous and large-scale data mapping which 

can be particularly useful in resource-constrained areas (Mukundarajan 

et al., 2017). In this sense, there are some open data platforms that rely 

on the participation of non-expert volunteers to  record  the  wing-beat  

sound  of  the  mosquitoes.  Two  of  the  most  popular  ones  are  

‘ABUZZ’  (Mukundarajan & …, 2019) and ‘Humbug Zooniverse’ (Kiskin et 

al., 2020). 

The  inconvenience  of  acoustic  methods  is  the  limitation  to  the  

quality  of  the  microphone  recordings  of  the  insects  in  field  

conditions.  Many  mosquito  bioacoustics  experiments  are  

undertaken in unnatural conditions with tethered individuals or in 

acoustically isolated spaces, thus leading to difficulties to apply these 

models in in field conditions (Arthur et al., 2014). Given this  difficulty  

in  microphone-sourced  field  recordings,  classification  models  based  

on  machine  learning algorithms commonly suffer from scarce and 

poor-quality data. 

Chen  et  al.  (2014)  reported  a  ‘lack  of  progress’  in  acoustic  

technology  applied  to  the  automatic  classification  of  insects.  This  

can  be  attributed  to  limitations  of  the  microphones  themselves.  

One such limitation is microphone sensitivity. The sound attenuates 

with the distance from the microphone according to an inverse squared 

law, which means that if an insect is flying three times more distant 

from the microphone, the sound intensity will drop to one ninth. When 

increasing the microphone sensitivity to mitigate this effect, any 
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surrounding noise will saturate the signal. Filtering  insect  detection  

can  then  become  a  complex  task,  as  well  as  requiring  more  system  

processing  power.  Besides,  systems  based  on  a  microphone  and  

recorder  set  spend  the  entire  experiment running time making 

recordings, thus increasing power consumption. 

The foremost challenges for acoustic sensing approaches are related to 

dealing with the problem of  the  signal-to-noise  ratio  of  recorded  

audio  and  power  consumption.  As  a  result,  optical  approaches  for  

remote  sensing  and  automatic  classification  have  gained  in  

popularity  as  they  offer significant performance advantages (Potamitis 

& Rigakis, 2015; Santos et al., 2018, 2019a).  

 

Optical sensing technology 

Optical  technology  for  mosquito  wing  beat  analyses  dates  back  to  

the  second  half  of  the  20thcentury  when  the  first  photoelectric  

cell  was  discovered  to  detect  the  light  modulation  of  a  flying  insect  

crossing  its  field  of  detection (Richards, 1955). This  was  the  starting  

point  for  the  implementation  of  numerous  studies  on  the  use  of  

optical  sensors  to  monitor  mosquito  flight  patterns which continue 

to the present day (Gibson et al., 2010; Kirkeby et al., 2016; Ouyang et al., 

2015; Potamitis, 2014; Potamitis & Rigakis, 2016).  

The diverse light source options for optical sensing include laser and LED 

(light emitting diodes). Potamitis and Rigakis (2015) developed a novel 

noise-robust optical sensor to record insect wing beats and analysed 

the recording performance of both types of light sources, comparing 
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them to the recordings of an acoustic sensor . The results showed that 

both performed as well or even better than  the  acoustical  sensing  

approach  in  any  ambient  light  condition.  Unlike  acoustic  sensors,  

optoelectronic  sensors  only  record  when  triggered  by  flying  insects,  

allowing  large  savings  in  power  consumption.  In  addition,  

optoelectronic  sensors  are  capable  of  modulating  the  optical  signal  

at  high  frequencies,  thus  eliminating  major  optical  interference  

sources  and  increasing  sensor efficiency without further data 

processing requirements (Santos et al., 2018).  

Optical sensors basically comprise an optical emitter (a laser beam or a 

LED array) and an optical receiver  (a  phototransistor,  mainly  

photodiodes)  creating  a  FOV  (field  of  view).  When  an  insect  crosses 

the FOV, fluctuations in light intensity (caused by the partial occlusion 

of the light from the  wing’s  movement)  are  perceived  by  the  optical  

receiver.  The  signal  containing  information  on the detected insect’s 

wing beat frequency is then amplified, filtered, and demodulated in an 

audio signal (G. E. A. P. A. Batista et al., 2011; Potamitis & Rigakis, 2016b). 

The conversion of the optical signal into audio data allows comparison 

of the results obtained with those available in the literature for acoustic 

systems. 

The  practical  applications  of  these  new  findings  involve  extending  

the  use  of  optical  sensors  from  laboratory  tests  to  the  production  

of  massive  datasets  and  the  creation  of  smart  insect  traps  that  

can  count,  recognise,  and  alert  for  the  presence  of  insects  of  

economic  and  public  health  importance  (Potamitis et al., 2018). Novel  

optoelectronic  sensor  prototypes  are  being  trained  with  several  
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machine  learning  algorithms,  mainly  Bayesian  classifiers,  to  learn  

how  to  distinguish  between  mosquito  species  and  mosquito  gender  

(male  and  female)  based  on  their  wing  beat  frequency  (G. E. A. P. A. 

Batista et al., 2011; Genoud et al., 2018, 2019; Ouyang et al., 2015; Potamitis 

& Rigakis, 2016b). While high accuracy values in gender discrimination 

are now commonly obtained, classification  to  species  level  is  still  

challenging  (Genoud et al., 2018), although  the  use  of  deep  learning 

techniques has shown promising levels of precision (Fanioudakis et al., 

2018).  

The biggest difficulty appears when trying to distinguish two different 

mosquito species from the same genus as they may have overlapping 

frequency spectrums. This suggests that the fundamental wing beat 

frequency alone, although it may be sufficient to distinguish the 

mosquito genus or gender, it may be insufficient on its own to properly 

classify mosquito species. This inefficacy will be even more apparent in 

the context of field measurements, where plenty of mosquito species, 

Diptera and other insects may be present. A common way to improve 

identification accuracy is to add other predictor variables in addition to 

fundamental wing beat frequency (G. E. A. P. A. Batista et al., 2011; 

Chen et al., 2014; Genoud et al., 2019). For instance, Genoud et al. 

(2019) proposed the use of the depolarisation ratio of the mosquito 

body together with the wing-beat frequency to distinguish gravid from 

non-gravid females, which reported high accuracy results. 

Another option to increase the accuracy of automated taxonomical 

classification of mosquitoes in field studies may be the use metadata 

(Chen et al., 2014): meteorological features (temperature, humidity, 
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and air pressure), spatiotemporal features (distance from freshwater, 

land cover type, human/livestock  population  density,  local  

agricultural  type,  time  of  year,  time  of  day,  etc.)  and  circadian  

rhythms.  Certain  species  are  more  adapted  to  survive  in  particular  

environmental  conditions, e.g. many mosquitoes are native to tropical 

and subtropical regions, where the climate is typically warm and wet. 

The ambient temperature can be determinant in insect classification 

since it influences insect metabolism, leading to an increase in the wing 

beat frequency. Villarreal et al. (2017) reported an increase of 8-13 Hz 

per degree Celsius (°C) in females of Aedes aegypti, revealing  a  highly  

dependent  relationship  between  these  factors(Villarreal et al., 2017).  

Circadian  rhythm  is  also  an  important feature to be considered since 

mosquitoes have different peaks of activity throughout the day which 

can be of help to distinguish between species. However, circadian 

rhythm cannot be used without at least a rough estimate of the 

population of each considered species (Genoud et al., 2019). If a species 

with a small population has an activity peak at the same time as another 

with a much larger population but with lower activity, although their 

probability of interaction with the sensing instrument may be equal, the 

classification system will consider the former to be much more likely, 

thus inducing a bias in the results. 

New  optoelectronic  devices  for  remote  sensing  include,  in  addition  

to  insect  counts  and  classification,  the  use  of  IoT  technology.  This  

allows  that  the  entire  information  that  is  being  registered  remotely  

in  the  field,  is  also  being  transmitted  wirelessly  to  a  central  

monitoring  agency in real time for risk assessment analysis. In this way, 



Chapter 1: Novel technologies for mosquito surveillance 

 

77 
 

novel optoelectronic sensors can be self-organised  in  networks  that  

collectively  report  data  at  local,  regional,  country,  continental,  and  

global  scales.  The  emergence  of  so-called  e-traps  has  the  potential  

to  profoundly  impact  entomological surveillance and pest control 

(Potamitis et al., 2017).  

 

Smart trap technology 

Novel  smart  traps  entail  the  possibility  of  automating  everything  

that  is  still  presently  done  manually (collecting insect information in 

the field, processing that information, and sending it to vector control 

technicians) thanks to the use of IoT technology. The development of 

IoT solutions using  conventional  approaches  is  complex  and  time  

consuming  due  to  the  lack  of  common  architectures and languages, 

and the widespread use of non-standard, proprietary interfaces and 

sensor data formats. Numerous developers, companies and R&D 

groups have been using state-of-the art commercial platforms like 

Arduino (Italy), Raspberry Pi (UK) or BeagleBone (USA), which are  

capable  of  prototyping  straightforward  sensor  applications  with  low  

technology  readiness  levels  (TRL)  of  between  1  and  4.  However,  

such  platforms  may  be  insufficient  if  advances  are  to  be  made  to  

TRL  5  prototyping  and  above,  especially  if  dealing  with  sensors  that  

are  not  off-the-shelf. This implies that off-the-shelf platforms offer 

limitations to reach TRL 9 (go-to-market), where manufacturers will be 

fighting issues of functionality, cost, power consumption, scalability, 
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margin, manufacturability, testability, packaging, mechanical 

robustness and working conditions (e.g. temperature, humidity), etc. 

To address this, IRIDEON (Spain) has developed SENSCAPE®, a 

disruptive, modular, standards-based framework for the development 

of fast IoT time-to-market solutions. There are several advantages to 

developing an IoT application with SENSCAPE: (1) ready-made hardware 

platforms – static and mobile;  (2)  standards  based,  (3)  

interoperability;  (4)  scalability;  (5)  low  power  consumption;  (6)  

reduced  costs;  (7)  smartphone  integration;  (8)  customisation  and  

(9)  cloud-ready.  The  general  idea  is  to  use  SENSCAPE®  as  the  

platform  to  combine  a  sensor  capable  of  capturing  physical  

information from flying insect, with two emerging disruptive 

technologies: IoT and AI. 

The  IoT  refers  to  systems  of  physical  devices  that  receive  and  

transfer  data  through  wireless  networks without human intervention, 

while AI refers to the combination of algorithms developed to have 

machines reasoning like human beings. The combination of these 

various elements could lead to a solution where each trap acts as an 

interconnected device that can remotely analyse each captured flying 

insect, just as a professional entomologist would do. 

For the moment, only one optical sensor product designed for the 

remote monitoring of mosquito populations  is  commercially  available,  

the  Biogents  BG-Counter  (Germany)  (Geier, Weber, Rose, Gordon, et 

al., 2016). This device is able to distinguish between mosquitoes and 

other different insects, and to count mosquitoes, but does not provide 
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further information on mosquito species, sex or other attributes. In  

parallel,  there  is  another  optoelectronic  sensor  prototype  that  has  

been  created  by  IRIDEON  (Spain), which is already capable of 

distinguishing between species, sex and age of mosquitoes in laboratory 

conditions (Brosa, 2018). The mosquito sensor is an optoelectronic 

device comprising an emitter, an array of LEDs, and an array of 

phototransistors acting as photoreceptors connected in parallel. This 

optical setup generates a light field. The sensor constantly captures the 

input from the  sensor  but  only  processes  the  samples  when  a  

triggering  event  occurs,  i.e.  when  there  is  a  perturbation of the light 

field. Optical sensor, microprocessor, and wireless communications are 

integrated into the electronics module. 

Smart  trap  stations  can  be  deployed  as  a  wireless  sensor  network  

(WSN)  with  bidirectional  management  of  data  between  sensors  and  

a  cloud  application  framework.  When  an  insect  is  drawn into the 

trap equipped with a sensor, its characteristic wing flapping modulates 

the light field. Captured signals are sampled at a rate sufficient to 

resolve the fundamental frequency of the  wing-flap  as  well  as  several  

overtones.  The  light  field  is  also  perturbed  by  other  physical  

elements  associated  to  the  flying  insect:  the  kinetics  of  flight  

(speed,  direction,  and  trajectory)  and  morphology  (body/wing  size  

and  shape).  Each  of  these  physical  elements  of  flying  insects  that 

cause a perturbation of the light field leads to a species-specific 

signature. The signal of this signature is filtered, amplified, acquired and 

processed using a combination of AI methods (e.g. rule-based systems, 

genetic algorithms, artificial neural networks and fuzzy models). 
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Depending on the tests performed, these methods can be used to count 

each event that perturbs the light volume, determine if the event is 

caused by a flying insect, analyse if the flying insect is a mosquito or not, 

classify the genus of the insect, identify the species, identify the sex and 

estimate the age in days (Fig  3 and Fig 4). 

These assets have been benchmarked by experts and judged to be at 

TRL 7 for genus (accuracy 90-92%), species (accuracy 75-80%) and sex 

classification (accuracy 93-99%) of Aedes albopictus, Ae. aegypti and 

Culex pipiens. The sensor also achieved TRL 5 for age classification of 

each of these species  (accuracy  61-95%),  giving  an  overall  TRL  6  

(Brosa,  2018).  Further  work  is  being  done  to  improve the overall 

accuracy of the solution to reach TRL 9 by 2022. 
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Fig 3. Vector control technician installing a trap with IRIDEON's smart 

mosquito sensor. 

 

 
 
Fig 4. Dashboard of the software cloud application of the smart 

mosquito sensor. 

 

 

 

 

 



Chapter 1: Novel technologies for mosquito surveillance 

 

82 
 

How intelligent traps can improve mosquito monitoring and arbovirus 

control programs 

Integrated pest management (IPM) relies on the accuracy of pest 

population monitoring (Freier & Boller, 2009). Without gathering 

information of population dynamics, and related ecological factors,  it  

is  almost  impossible  to  execute  an  appropriate  control  at  the  right  

place  and  time.  Mosquitoes  are  usually  spread  across  large  areas  

and  boundaries,  and  the  use  of  traditional  surveillance methods 

which are strongly dependent on human labour is unsuitable for 

efficient large-scale monitoring (BiPRO & EC, 2009). Fully automated 

remote monitoring could be the key in this context. 

 

Earth observation service for preventive control of insect disease 

vectors – the VECTRACK project 

Obtaining high quality field information is notoriously costly and time 

consuming. The amount of money required can significantly be reduced 

by combining cost-efficient sampling strategies, remote sensing, and 

spatial modelling techniques to compute risk maps of vector presence 

and abundance, as well as maps indicating high-risk zones for the 

establishment of exotic species at local or regional level. Such maps 

could then serve as a basis for targeted surveillance and VBD risk 

assessments. To address this, IRIDEON is heading a Horizon 2020 

(H2020) project called VECTRACK, in collaboration with AVIA-GIS 

(Belgium), the IRTA-CReSA research institute (Spain) and the public 

health  institute  CEVDI/INSA  (Portugal).  VECTRACK  constitutes  a  
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novel  and  unique  opportunity,  integrating the added value of Earth 

observation (EO), spatial-positioning and information and 

communications technology (ICT) technologies: Copernicus data + 

operational vector mapping with  spatial  modelling  +  IoT  ground  

sensors  +  IoT  smart  mosquito  traps  +  IoT  interoperable  disease  

vector  data  cloud  application.  The  proposed  innovation  is  a  service  

platform  for  which  Copernicus is a critical part of the solution. The 

main objective is to develop and validate a new Copernicus-based  EO  

service  to  monitor  disease  vectors,  associated  to  a  novel  ground  

wireless  sensor network comprising miniaturised nodes measuring 

micro-environmental data (T °C, %RH, etc.), together with a smart trap 

station acting as a gateway. 

Earth observation platform can measure land surface temperature and 

vegetation, which act as the main drivers of vector population (C3S 

2020). Given the importance of the evolution of the meteorological 

parameters, the technical requirements for these satellites are: (1) high 

temporal resolution (1 day); (2) medium spatial resolution (1 km); and 

(3) measurement in the visible/near infrared part of the 

electromagnetic spectrum for derivation of vegetation indices and in 

thermal infrared for temperature. 

In  this  context,  it  is  important  to  mention  the  contribution  of  AVIA-

GIS  in  their  development  of  VECMAP,  a  seamless  system  and  

service  that  integrates  the  entire  process  of  producing  risk  maps  

into  a  single  package  that  supports  all  the  steps  required  to  map  

and  model,  at  various  scales,  the  distribution  of  vectors  and  to  

plan  surveillance  and  control  programs.  This  system  provides all the 
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satellite data required to obtain the risk maps, however, is limited by 

the fact that it uses data from periodical manual trap inspections. This 

value proposition is strengthened by IRIDEON’s smart IoT ground 

sensors, deployed in the field integrated with standard commercial 

mosquito  traps.  With  the  combination  of  all  approaches,  it  is  finally  

possible  to  remotely  and  automatically acquire near real-time ground 

data on mosquito counts, sex, species, age and local micro-

environmental parameters. This data is invaluable as an automatic and 

direct input to feed mosquito-borne epidemic models. 

 

Future approaches 

With  the  use  of  novel  smart  traps,  new  challenges  will  appear;  the  

automated  identification  of  different  mosquito  species  should  be  

improved  to  the  same  level  as  when  it  is  performed  by  a  skilled  

entomologist  and  should  be  supervised  until  this  degree  of  accuracy  

is  reached.  New  maintenance and logistic protocols will need to be 

developed, as traps will go from being mobile and temporary to fixed 

and permanent. 

With new methodologies, surveillance and control programs can be 

significantly affected as they require important scientific and logistic 

efforts for the management of large amounts of mosquito traps and 

collected samples. With the use of remote monitoring systems, once 

the system has been developed, these efforts can be redirected to other 

areas and most of the classification work would be done in an automatic 

way, but always with an accurate quality control system. The data will 
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be completely interoperable and thus available for the automatic 

running of prediction models, the  performance  of  risk  assessments,  

the  issuing  of  warnings  and  the  undertaking  of  historical  analyses  

of  infested  areas.  In  this  way,  vector  control  professionals  could  

establish  automatic  surveillance programs with unprecedented 

accuracy and responsiveness, overcoming the labour costs of manual 

inspections. As a result, disease vector species will be detected earlier 

with greater precision, enabling improved control of outbreaks and a 

lower risk of disease transmission. 
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4.2 CHAPTER 2: Training the sensor in 

laboratory conditions 

A novel optical sensor system for the automatic 

classification of mosquitoes by genus and sex with 

high levels of accuracy (González-Pérez et al., 

2022). 
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Abstract 

Background 

Every year, more than one billion people are infected and almost one 

million die due to vector borne diseases mainly transmitted by 

mosquitoes. Vector surveillance plays a major role in the control of 

these diseases that includes, as a key factor, a suitable and rapid 

taxonomical identification. New approaches for mosquito surveillance 
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include the use of acoustic and optical sensors in combination with 

machine learning techniques, to provide an automatic classification of 

mosquitoes based on their flight characteristics, including wingbeat 

frequency. The development and application of these methods could 

enable the remote monitoring of mosquito populations in the field, 

which could lead to significant improvements in vector surveillance. 

Methods 

A novel optical sensor prototype coupled to a commercial mosquito 

trap was tested in laboratory conditions for the automatic classification 

of mosquitoes by genus and sex. Recordings of more than 4300 

laboratory-reared mosquitoes of Aedes and Culex genera were made 

using the sensor. Five features were extracted from each recording in 

balanced datasets and used for the training and evaluation of five 

different machine learning algorithms to achieve the best model for 

mosquito classification. 

Results 

The best accuracy results achieved using machine learning were: 94.2% 

for genus classification; 99.4% for sex classification of Aedes; and 100% 

for sex classification of Culex. The best algorithms and features were; 

for genus classification: deep neural network with spectrogram; for 

Aedes sex classification: logistic regression with spectrogram or Mel 

Frequency Cepstrum Coefficients and gradient boosting with Mel 

Frequency Cepstrum Coefficients; for Culex sex classification: various 

features and algorithms gave the best performance. 
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Conclusions 

To our knowledge, this is the first time a sensor coupled to a standard 

suction trap provides automatic classification of mosquito genus and 

sex with high accuracy using a large number of unique samples with 

class balance. This system represents an improvement of the state of 

the art in mosquito surveillance and encourages future use of the 

sensor for remote, real-time characterization of mosquito populations. 

Keywords 

Mosquito trap, automatic classification, optical sensor, machine 

learning, deep learning, Aedes, Culex, genus and sex classification, 

mosquito surveillance.  
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Background 

Approximately 80% of the world’s human population lives with the risk 

of one or more vector-borne diseases (VBDs), and every year > 700,000 

people die as a result (WHO, 2020).In an increasingly connected world, 

travel and trade contribute to the spread of VBDs. Furthermore, a global 

warming scenario may lead to more favourable conditions for the 

survival and life cycle completion of the vectors (Rossati, 2017) and may 

affect their abundance and distribution (Khasnis & Nettleman, 2005). 

Mosquitoes (Diptera: Culicidae), particularly those belonging to Aedes, 

Anopheles and Culex genera, are one of the deadliest vectors 

worldwide. Mosquito species can transmit diseases such as malaria, 

dengue, yellow fever, West Nile fever, Zika, Chikungunya and others 

(WHO, 2014). According to World Health Organization directives (ECDC, 

2014) and European Centre for Disease Prevention and Control 

guidelines (ECDC, 2012, 2018) appropriate surveillance methods and 

indicators are needed to: determine the composition and monitor 

changes in mosquito populations, identify the presence of new invasive 

species, monitor mosquito-borne diseases, quantify the transmission 

potential of vectors and enable the design of accurate control 

programs. 

A range of insect trap types and methods are used in regular monitoring 

and surveillance of immature and/or adult mosquito populations (Focks, 

2003; Romero-Vivas & Falconar, 2005). Although immature stage 

monitoring can be easier to set up, it is not useful for estimating adult 

abundance due to the lack of correlation between egg, larval and pupal 

density indices, and adult indices (Romero-Vivas & Falconar, 2005). 
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Studies show that the seasonal variation in mosquito abundance is 

better represented by adult trap monitoring than by other indices (e.g. 

House Index) based on immature stages (Codeço et al., 2015). 

Therefore, adult mosquito surveillance is generally the most widely 

applicable and accurate solution, especially for VBD risk assessment 

(Krökel et al., 2006). Many adult mosquito monitoring systems rely on 

traps using light, chemical attractants or CO2 as a bait. Most traps 

include a suction fan to draw approaching insects into a catch bag 

within the trap, and such types have been successfully used in many 

studies (Farajollahi et al., 2009; Lühken et al., 2014). However, they 

require the catch bag to be periodically collected in the field, followed 

by a time-consuming process of identification of the collected 

specimens by entomologists. The time delay between insect trapping 

and analysis may limit the correct characterization of the temporal 

dynamics of mosquito populations. Such delays may also result in 

degradation of the insects in the catch bag because of desiccation or 

predation. New approaches for entomological surveillance include 

novel optical sensors to sense the characteristics of flying mosquitoes 

and analysis methods including machine learning methods to enable 

classification of mosquitoes in near real-time (Chen et al., 2014; Genoud 

et al., 2018, 2020; Potamitis, 2014; Potamitis et al., 2015; Santos et al., 

2019), which is crucial for surveillance programs. 

Since the 1940s, microphones have been used to sense the audible 

flight tones emitted by flying mosquitoes which may be associated with 

a particular mosquito genus, species, or sex (Offenhauser & Kahn, 1949). 

Acoustic methods are still employed today in applications such as sound 
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traps which emit species and sex specific sound frequencies to attract 

mosquitoes (Johnson et al., 2018)and in classification systems such as 

those in which citizen scientists use their mobile phones to record 

mosquitoes (Li et al., 2017; Mukundarajan et al., 2017). However, it is 

hard to obtain acceptable quality audio recordings of free flying insects 

in the field due to the presence of background noise (Chen et al., 2014). 

To address this, optical methods have been employed, in which a light 

source is used to illuminate the flying insect and a light sensor is used 

to detect the light reflected and scattered, or attenuated, by the insect 

in flight (Brydegaard & Lazzari, 2015; Kirkeby et al., 2016; Mullen et al., 2016; 

Ouyang et al., 2015; Potamitis & Rigakis, 2016a, 2016b; Song et al., 2019). The 

use of optical methods in this field began in 1955 when a photoelectric 

cell was used to detect the light modulation produced by a flying insect 

crossing its field of view (Richards, 1955). In recent years, several 

optoelectronic sensors have been developed and used in conjunction 

with machine learning techniques to classify flying mosquitoes, with 

promising levels of accuracy (G. E. A. P. A. Batista et al., 2011; 

Fanioudakis et al., 2018; Genoud et al., 2018, 2020; Silva et al., 2015).   

Variables known to condition mosquito wingbeat fundamental 

frequency or its detection include taxonomy, sex, parity status, size, and 

environmental temperature (Genoud et al., 2019; Gibson et al., 2010; 

Staunton et al., 2019; Villarreal et al., 2017). Historically, wingbeat 

frequency has been used as the only predictor variable for mosquito 

classification, but it appears insufficient on its own to differentiate 

between mosquito species, especially those of the same genus (Chen et 

al., 2014). This could limit field applications, where different mosquito 
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species can coexist, with the possibility of overlap in wingbeat 

frequency distributions (Kim et al., 2021). Efforts have been made in 

recent years to improve classification methods to distinguish among 

mosquito species, sex and even parity status (Genoud et al., 2018, 2019, 

2020). In some cases, more advanced optical approaches have been 

used, for example to determine insect body and wing depolarization 

ratio, to improve the accuracy of classification (Genoud et al., 2020).  

In addition to the selection of the proper predictor variables and 

machine learning algorithms, the use of metadata such as the climatic 

conditions, the spatiotemporal localization and other ecological 

features accompanying mosquito captures may also be relevant for 

remote mosquito classification in the field (Chen et al., 2014; 

Fanioudakis et al., 2018),  since different mosquito species have 

different behaviour and ecological needs (geographical distribution, 

climatic range, circadian rhythm, peaks of activity, etc.). According to 

new paradigms of remote mosquito surveillance, wingbeat sensor 

information and metadata could be sent wirelessly in real-time to a 

server using Internet of Things (IoT) technology (Eliopoulos et al., 2018; 

Geier, Weber, Rose, Obermayr, et al., 2016; Potamitis et al., 2017) with 

the potential to improve entomological surveillance.  

Currently there is only one commercial optical sensor product available 

for the remote monitoring of mosquito populations (Geier, Weber, 

Rose, Obermayr, et al., 2016). It is called the BG-Counter (Biogents, 

Germany), which according to the company, can distinguish mosquitoes 

from other insects and count mosquitoes. However, the sensor does 
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not provide information about mosquito genus, species, sex or other 

attributes. 

In this study, we present the results of a prototype optical sensor, which 

is coupled to the entrance of a commercial mosquito trap. The trap is of 

a type widely used for mosquito surveillance in the field and contains a 

suction fan. The fan causes the mosquitoes to pass through the sensor 

more quickly and with a more perturbed wingbeat compared to free 

flight conditions as described in another work (J. Wang et al., 2020). For 

the present work, 4335 flights from mosquitoes of Aedes and Culex 

genus were recorded using the sensor. The three species for the 

study, Aedes albopictus, Aedes aegypti and Culex pipiens, were chosen 

because they are major vectors of arboviruses, have a significant impact 

on public health and are a focus of vector surveillance and control 

programs in many parts of the world. A set of features were extracted 

from each recording and used to train a series of machine learning 

algorithms to determine which combination of feature and algorithm 

gave the best performance in classifying mosquitoes by genus and sex. 

Whilst the scope of this work is limited to the classification of genus 

(Aedes/Culex) and sex (female/male), the inclusion of the 

two Aedes species in this study improves the genetic variability and 

permits future work on species classification using the data set from the 

present work. 
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Methods 

Mosquito rearing conditions 

Three species of mosquitoes, from two genera, were used to generate 

the dataset: 

i. Culex pipiens, population of Gavà (2012), Barcelona, Spain 

(41.3000º, 2.0167º) 

ii. Aedes albopictus, population of Sant Cugat del Vallès (2005), 

Barcelona, Spain (41.4667º, 2.0833º) 

iii. Aedes aegypti, population of Paea (1994), Tahiti, French 

Polynesia (-17.6889°, -149.5869°) 

 

The mosquito populations were all reared under controlled 

environmental conditions in a climatic chamber at a temperature of  

28 ºC and a relative humidity of 80%, with a light:dark photoperiod of 

12:12 hours, except for Cx. pipiens (with a light:dark photoperiod of 

11:11 hours plus 1h of dusk and 1h of dawn). Culex pipiens and Ae. 

albopictus were reared in biosafety level 2 (BSL2) laboratory and Ae. 

aegypti in a biosafety level 3 (BSL3) laboratory at IRTA-CReSA facilities. 

Larvae were maintained in plastic trays with 750 ml of dechlorinated 

tap water (renewed three times per week) and were fed with fish 

pellets (Goldfish Sticks-TETRA, Melle, Germany) ad libitum. Pupae, upon 

appearance, were immediately placed in insect cages (BugDorm-1 

Insect Rearing Cage W30 x D30 x H30 cm, MegaView Science, Talchung, 

Taiwan). After metamorphosis, adults were fed with sucrose solution 

(10%) ad libitum. Females were not fed with blood to avoid any body-
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size or flight variation. For Aedes females, the sucrose solution was 

removed 24 hours before the sensor tests. For Cx. pipiens females, this 

was done 48 hours before, to improve their affinity for the attractant 

used in the trap. 

 

Sensor and trap description 

The prototype sensor was designed and produced by Irideon S.L. 

(Barcelona, Spain) and was coupled to the entrance of a commercial BG-

Mosquitaire suction trap from Biogents AG (Regensburg, Germany), as 

shown in Fig 1a.  

The trap coupled to the sensor was placed in an insect rearing cage 

(BugDorm-4S4590 W47.5 x D47.5 x H93.0 cm, MegaView Science, 

Talchung, Taiwan). The trap was fitted with a sachet of BG-Sweetscent 

chemical attractant from Biogents AG. The air flow generated by the fan 

was approximately three metres per second in the downward direction. 

When a mosquito flies close to the entrance funnel of the sensor, it is 

sucked in by the fan, detected by the sensor and trapped in the catch 

bag inside the body of the trap. 
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Fig 1. a. Prototype sensor (top) fitted to a BG-Mosquitaire trap (bottom). b. Side 

view diagram of sensor and trap to illustrate operation. The exterior of the sensor 

unit (1) is formed by an inlet tube with a diameter of approximately 100 mm (2), 

sensor housing (3) and outlet tube (4). The housing contains an optical emitter (5), 

which projects collimated beams of light through the transparent flight tube (6) and 

onto an optical receiver (7) to create a sensing zone (8) within the flight tube. The 

trap (9) contains a suction fan (10), a removable catch bag (11) made of textile mesh 

and a perforated lid (12). The fan produces a flow of air downward through the inlet 

tube, flight tube and catch bag and upward through the perforated lid as indicated 

by the blue arrows. An insect (13) which flies close to the entrance of the inlet tube 

may then be sucked downwards through the sensing zone where it will be recorded 

and then trapped in the catch bag. As the mosquito passes through the sensing zone 

it casts a shadow upon the optical receiver according to the so-called optical 

extinction mode of operation. As the insect flaps its wings within the sensing zone, 

the light falling on the optical receiver is modulated, giving rise to changes in the 

amplitude in the recorded waveform. 
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The sensor contains an optical emitter panel and an optical receiver 

panel which face each other through a transparent flight tube with a 

diameter of 105 mm. The optical emitter comprises a two-dimensional 

(2D) array of 940 nm wavelength infrared light emitting diodes (LEDs); 

and the optical receiver comprises a 2D array of 940 nm photodiodes. 

The optical sensor has an active length of 70 mm in the downward 

direction. The basic operating principle of the optical sensor is 

illustrated in Fig 1b.  

The output of the optical sensor is amplified and acquired by an analog 

to digital converter (ADC) with a sampling frequency of 9603 samples 

per second. When a mosquito enters the sensing volume, it 

automatically triggers a recording of up to 1024 samples, i.e., of up to 

107 milliseconds duration. The duration of a typical mosquito flight is 

around 50 milliseconds. The sensor automatically adds a timestamp to 

each recording, along with the measured ambient temperature. 

 

Data acquisition process 

Mosquitoes from Aedes and Culex genera were anesthetized with 

carbon dioxide 48 and 72 h respectively before each experiment. They 

were separated into groups by species (Cx. pipiens, Ae. 

albopictus and Ae. aegypti) and sex (male, female). 

Culex pipiens and Ae. albopictus were introduced into the insect rearing 

cage in batches of 20 individuals to reduce the chance of multiple 

mosquitoes passing through the sensor simultaneously. Batches of ten 

individuals were used for Ae. aegypti because of their greater affinity to 
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the attractant. All mosquitoes were introduced at a distance of 20 to 

30 cm from the entrance of the sensor to ensure that they could fly 

freely until they approached it and were sucked in, to approximate field 

conditions. 

Each recording corresponds to a different mosquito, i.e. trapped 

mosquitoes were not re-used to generate more recordings. Wingbeat 

files were tagged with species and sex class by the operator. After each 

experiment, the wingbeat recordings were downloaded from the 

sensor and processed using a Python script to produce playable and 

viewable audio files, as depicted in Fig 2a. Wingbeat recordings were 

examined manually, and those deemed to be invalid, such as recordings 

containing more than one mosquito or where a mosquito may have hit 

the wall of the flight tube, were excluded from the dataset. The 

excluded recordings represented 2.3% of the data.  

The resulting dataset contained 4335 wingbeat recordings, comprising 

2472 of Aedes genus (882 Ae. aegypti and 1590 Ae. albopictus) and 

1863 of Culex genus (all Cx. pipiens). There were 1211 Aedes females, 

1261 Aedes males, 964 Culex females and 899 Culex males. Females 

were in an age range of 2 to 16 days old and males were in an age range 

of 2 to 9 days old. These age ranges provide a representative variety in 

the dataset. 

All recordings took place with the sensor and trap located in the 

laboratory facilities of IRTA-CReSA during daylight hours. The average 

ambient temperature measured was 25.8 (standard deviation = 1.2 °C). 

 

https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05324-5#Fig2


Chapter 2: Training the sensor in laboratory conditions 

101 
 

Feature extraction 

 

 

Fig 2. a. Example of a recorded mosquito flight with ADC sample number (0 

to 1023) on the x-axis and amplitude on the y-axis, scaled to a range of [− 1, 

1], which equates to the full-scale range of the ADC. A high pass filter in the 

optical receiver attenuates frequencies < 300 Hz to remove electronic 

offsets and low-frequency noise, which also attenuates the signal due to the 

body of the insect. Baseline correction has been applied by subtracting the 

average value of the recording from each data point in the 

recording. B. Power spectral density (PSD) plot of a typical mosquito flight. 

The wingbeat fundamental peak is labelled as f1. The fundamental 

frequency is indicated by the vertical arrow and the fundamental peak 

power by the horizontal arrow. The various peaks to the right of f1 are 

harmonics of f1, i.e. at frequencies of 2*f1, 3*f1, etc. The power density has 

units of (units2/Hz) on a logarithmic (dB) scale. A level of 0 dB/Hz 

corresponds to a white noise signal time domain signal with a power density 

of 1.0 unit2/Hz. The fundamental peak power density levels in this study are 

typically < − 40 dB/Hz, i.e. < 1 × 10–4 units2/Hz. The noise floor of the system, 

i.e. with sensor active but with no insect in the sensing zone, is < − 85 dB/Hz 

from 0 to 300 Hz and < − 90 dB/Hz from 300 Hz. 
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The following five features were extracted from each wingbeat 

recording via the application of digital signal processing methods: 

• The power spectral density (PSD) shows the power of the signal 

at different frequencies. It is calculated using Welch’s method 

(Villwock & Pacas, 2008), in which the wingbeat recording is 

divided into several overlapping segments. A windowing 

function is applied to each of the segments and a series of 

periodograms is obtained by calculating the power spectrum of 

each windowed segment. Finally, the periodograms are 

averaged to give the PSD (Bisina & Azeez, 2017). A PSD plot of a 

typical mosquito recording is shown in Fig 2b.  

• Wingbeat fundamental frequency in Hertz [Hz] is determined 

from the PSD using a peak search method. The wingbeat 

fundamental frequency is the frequency at which a mosquito 

flaps its wings. It is characteristic of mosquito taxonomy and sex, 

and varies depending on intrinsic variables of mosquito biology 

(size, age, parity status, mating behaviour) (Genoud et al., 2019, 

2020; Gibson et al., 2010; Staunton et al., 2019) and 

environmental variables such as temperature (Villarreal et al., 

2017). The typical range of mosquito wingbeat fundamental 

frequencies is 300 to 900 Hz (Kim et al., 2021). 

• The fundamental peak power density [dB/Hz] (hereafter 

referred to as fundamental peak power) is also determined from 

the PSD as shown in Fig 2b and represents the peak power 

density of the sensor output at the wingbeat fundamental 

frequency. It is equivalent to the intensity of the sound 

https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05324-5#Fig2
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produced by a flying mosquito, typically ranging from 40 to 

80 dB (Dou et al., 2021; Menda et al., 2019). 

• The spectrogram is a series of spectra calculated from multiple 

overlapping segments of the wingbeat recording. Each spectrum 

is generated by applying a Fourier transform to the segment to 

provide information about the amplitude of the various 

frequency components in the segment. The spectrogram 

represents the variations of the frequency content of the signal 

over time, rather than an average for the whole signal as given 

by the PSD (Oppenheim, 1970). 

• Mel Frequency Cepstral Coefficients (MFCCs) are calculated by 

converting the frequencies of a spectrogram to the Mel scale 

and applying overlapping triangular filter banks before 

calculating the cepstrum, by transforming the spectra to a 

logarithmic scale, and then applying an inverse Fourier 

transform (Zhu, 2011). Please refer to Additional file 1: Text S1 

and Fig S1 for further details. 

 

The PSDs have 257 values, generated using a window length of 512 

samples. The spectrograms and MFCCs are obtained using nine 

segments of 512 samples; then, 16 Mel filter banks are applied to each 

spectrum to give a total of 144 values. All the MFCC coefficients are 

used. Each individual feature and one combined feature (fundamental 

frequency and fundamental peak power) were used for the machine 

learning models. 

https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05324-5#MOESM1
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A scatter plot of the wingbeat fundamental frequency and peak power 

features is shown in Fig 3a for the entire dataset, in Fig 3b for 

all Aedes samples and in Fig 3c for all Culex samples. In Fig 3a, which is 

coloured by genus, a high degree of overlap between the genera is 

observed. In Fig 3b and Fig 3c, which are coloured by sex, two clearly 

separated clusters are observed. The distributions of the two single-

value features, fundamental frequency and fundamental peak power, 

for the three classifications are shown in Additional file 1: Fig S2. 

 

Machine learning 

The goal of the machine learning process was to compare the 

performance of five selected machine learning algorithms using the 

features described above, in classifying mosquito genus and sex. A 

labelled dataset consisting of the feature set was used to train, 

evaluate, and compare the classification models. The following five 

machine learning algorithms were used: logistic regression (LR), 

gradient boosting (GB), random forests (RF), support vector machines 

(SVM), and a fully connected deep neural network (DNN). These 

algorithms were chosen due to their widespread usage and good 

performance (Schmidhuber, 2014). A brief overview of each algorithm 

is given in Additional file 1: Text S2. Of these algorithms, the more 

complex ones, such as DNN or RF, were also used with the single-value 

features (fundamental frequency and fundamental peak power) 

because they can model nonlinearities, unlike LR. 

 

 

https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05324-5#Fig3
https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05324-5#Fig3
https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05324-5#Fig3
https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05324-5#Fig3
https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05324-5#Fig3
https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05324-5#MOESM1
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Fig 3. a. Scatterplot of wingbeat fundamental frequency and peak power for the full 

dataset showing Aedes genus in red and Culex in blue. b Scatter plot of wingbeat 

fundamental frequency and peak power for Aedes genus showing females in red and 

males in blue. c Scatter plot of wingbeat fundamental frequency and peak power 

for Culex genus showing females in red and males in blue. 
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Three classification tasks were performed: one genus classification 

(Aedes/Culex) and two sex classifications (male/female), one for each 

genus (sex of Aedes, sex of Culex). The logic of the classification process 

is shown in Additional file 1: Fig S3. 

Balanced datasets, i.e., datasets that contained an equal number of 

samples in each class were used to make an unbiased assessment. They 

were obtained by randomly undersampling the classes which had a 

higher number of available samples. 

Model performance was assessed using the accuracy metric, which is 

calculated by dividing the number of correct predictions by the total 

number of predictions. The accuracy metric is a simple evaluation 

metric, which makes it easy to interpret, and is appropriate when using 

balanced datasets. 

The typical machine learning process consists of training, validation and 

testing. In the training phase, the model is fitted to the data with 

different configurations of the algorithm determined by 

hyperparameters, which can have a significant impact on performance. 

In the validation phase, the performances of the models trained with 

the different configurations are compared and the best one is selected. 

The testing phase assesses how well the model generalizes on 

previously unused data. A schematic overview of the training, validation 

and testing approach employed in this work is shown in Additional file 

1: Fig S4. 
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Seventy-five percent of the recordings in each dataset were chosen 

randomly to create a training set for use in the training and validation 

phase. Training and validation were done using fourfold cross-

validation, in which the training set is split into four parts of equal size 

and the model being optimized is trained on three of the four parts and 

validated on the fourth part. This process is done four times using a 

different part of the training set for the cross-validation in each 

iteration. The final cross-validation score was obtained by averaging the 

four cross-validation results. The model with the best crossvalidation 

score was then selected for testing. The remaining 25% of each dataset, 

i.e. that part which was not allocated to training and validation, was 

used to test the performance of the trained model. Since the data in the 

test set are completely new to the model, accuracy results for the test 

set are an indication of how well the model generalizes on new data, 

and good results cannot be attributed to overfitting of the model. 

Error analysis consists of analysing the training and validation 

accuracies obtained during the training and validation phase. If the 

training accuracy is considerably higher than the validation accuracy, it 

indicates overfitting, so more samples could help to improve the model. 

If, on the other hand, training and validation accuracies have a similar 

low score, it indicates that the model is too simple and that more 

training data would probably not help. In this case, the model could 

possibly be improved by using a different algorithm which is able to 

learn more complex relationships or to use more features. 

Programming was done in Python (Phyton software foundation, 

n.d.).For model generation, scikit-learn (Scikit-learn developers, 
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n.d.),TensorFlow (TensorFlow developers, n.d.)and XGBoost (XGBoost 

developers, n.d.)were used. Regarding execution times, training of the 

models took days to weeks, but once done, each new sample was 

classified in under 1 s. 

 

Results 

Genus classification 

In the genus classification, mosquitoes were classified into Aedes and 

Culex genus. A total of 2688 samples were used comprising: 1344 Aedes 

(672 Ae. albopictus and 672 Ae. aegypti) and 1344 Culex (all Cx. pipiens) 

with an equal number of males and females was used. The dataset was 

split 75%/25% into the training data set (2016 samples) and the test set 

(672 samples). The accuracy results for genus classification on the test 

set are shown in Table 1, with the best performing algorithm for each 

feature shown in bold. The best result for genus classification was 

obtained for the DNN algorithm trained on the spectrogram feature, 

with an accuracy of 94.2%. 
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Table 1: Genus classification accuracy results, with best results per 

feature in bold. 

 Algorithm 

Feature LR GB RF SVM DNN 

Fundamental frequency 55.2% 67.3% 65.9% 65.5% 66.1% 

Fundamental peak power 68.9% 70.1% 69.6% 69.8% 70.0% 

Fundamental freq. & 

peak power 
70.1% 77.7% 77.2% 77.2% 77.8% 

PSD 84.8% 92.3% 89.0% 90.5% 90.3% 

Spectrogram 90.5% 93.2% 91.2% 93.4% 94.2% 

MFCC 89.3% 93.2% 90.2% 93.0% 93.2% 

 

Sex classification of Aedes 

In this classification, mosquitoes of the Aedes genus were classified into 

males and females. A total of 1344 samples were used, comprising 672 

females and 672 males, with each sex group comprising 336 Ae. aegypti 

and 336 Ae. albopictus. The dataset was split 75%/25% into the training 

data set (1008 samples) and the test set (336 samples).The results for 

this classification on the test set are shown in Table 2. The best 

performing algorithms for sex classification of Aedes were logistic 

regression trained on spectrogram and MFCC, and gradient boosting 

trained on MFCC, with an accuracy of 99.4% in each case.  
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Table 2: Results of sex classification for Aedes, with best results per 

feature in bold. 

 Algorithm 

Feature LR GB RF SVM DNN 

Fundamental frequency 95.5% 95.5% 95.5% 95.5% 95.5% 

Fundamental peak power 86.9% 89.5% 89.5% 89.2% 89.3% 

Fundamental freq. & 

peak power 
98.2% 96.7% 97.0% 98.5% 97.9% 

PSD 97.0% 98.8% 97.9% 98.8% 98.2% 

Spectrogram 99.4% 98.8% 98.8% 99.1% 98.8% 

MFCC 99.4% 99.4% 98.8% 98.8% 98.8% 

 

Sex classification of Culex 

In this classification, mosquitoes of the Culex genus (all Cx. pipiens) were 

separated into males and females. A total of 1560 samples were used 

comprising 780 females and 780 males. The dataset was split 75%/25% 

into the training data set (1170 samples) and the test set (390 samples). 

The results for this classification on the test set are shown in Table 3. 

For Culex sex classification, an accuracy of 100% was achieved by all five 

algorithms trained on MFCC; by logistic regression, SVM and DNN 

trained on spectrogram; and by SVM trained on PSD. 
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Table 3: Results of sex classification for Culex, with best results per 

feature in bold. 

 Algorithm 

Feature LR GB RF SVM DNN 

Fundamental frequency 98.0% 98.0% 98.0% 98.0% 98.0% 

Fundamental peak power 83.4% 81.3% 81.5% 83.1% 83.6% 

Fundamental freq. & 

peak power 
98.7% 98.7% 98.5% 98.7% 98.7% 

PSD 99.7% 99.2% 99.2% 100% 99.7% 

Spectrogram 100% 99.7% 99.7% 100% 100% 

MFCC 100% 100% 100 % 100% 100% 

 

 

Summary of the best model performance results 

A summary of the classification results, which includes the best 

performing algorithms and features for each classification, is given in 

Table 4 in which training and validation accuracies are also listed, with 

an indication of how the results might be improved. The corresponding 

hyperparameters are listed in Additional file 1: Table S1. 

The best accuracy results were 94.2% for genus classification, 99.4% for 

sex classification of Aedes and 100% for sex classification of Culex.  

For genus, the training accuracy was 100% and the cross-validation 

accuracy was significantly lower (95%), which indicates that the model 

https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05324-5#MOESM1
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overfits slightly and its performance could possibly be improved with 

more training samples.  

For Aedes sex classification, although the best models gave a near 

perfect accuracy, the training accuracy and cross-validation accuracy 

are similar (99.5%), which indicates that the model could possibly be 

improved with a more complex algorithms and/or features, rather than 

with more training samples. In case of Culex sex classification the 

accuracy was 100%, so no error analysis was necessary. 

 

Table 4: Summary of machine learning classification results. 

Classification 
task 

Best 

accuracy 
Best feature 

Best 
algorithm 

No. of 
samples 

Training 
accuracy 

Cross-
validation  
accuracy 

Error 
analysis 

indication 

Genus 94.2% Spectrogram DNN 2688 100% 95% 
more 

training 
samples 

Sex Aedes 99.4% 

Spectrogram LR 

1344 99.5% 99.5% 

more 
complex 

features or 
algorithm 

MFCC LR, GB 

Sex Culex 100% 

PSD SVM 

1560 100% 100% No error. Spectrogram 
LR, SVM, 

DNN 

MFCC All  
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Discussion 

In the present study, 4335 mosquito flights were recorded using a novel 

optical sensor. The sensor was attached to the entrance of a 

commercial mosquito suction trap inside an insect rearing cage, with 

mosquitoes flying freely within the cage until they were sucked in by 

the trap, through the sensor and into the catch bag within the trap. Each 

flight recording made by the sensor corresponded to a different 

mosquito. Five features were extracted from each recording and used 

with five different machine learning algorithms for classification of 

mosquito genus and sex. 

One of the features used was wingbeat fundamental frequency, which 

has been used in many studies for insect characterization and 

classification (Cator et al., 2011; Genoud et al., 2018, 2019; Mukundarajan et 

al., 2017; Potamitis & Rigakis, 2016c; Santos et al., 2019; Staunton et al., 2019). 

Differences in reported values of wingbeat frequency between studies 

can be due to intrinsic and/or extrinsic variables such as size, parity 

status, age and ambient conditions (Dou et al., 2021; Genoud et al., 

2018; Gibson et al., 2010; Potamitis et al., 2017; Silva et al., 2015). In 

this study, the wingbeat fundamental frequency feature gave a high 

accuracy in sex classification in both Aedes (95.5%) and Culex (98%), 

but it scored lower (67.3%) in genus classification. These results are 

consistent with the fundamental frequency histograms in Additional 

file 1: Fig S2, which show very little overlap between the distributions 

of males and females, especially for Culex (Additional file 1: Fig S2c) 

and considerable overlap between genera (Additional file 1: Fig S2a). In 

the fundamental peak power histograms of Additional file 1: Fig S2b, c, 

https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05324-5#MOESM1
https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05324-5#MOESM1
https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05324-5#MOESM1
https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05324-5#MOESM1
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a higher degree of overlap is observed between the distributions of 

males and females, especially for Culex, which helps explain why the 

accuracy for sex using this feature alone (89.5% for Aedes and 83.6% 

for Culex) was lower than that of fundamental frequency alone. 

As other studies have indicated (Chen et al., 2014; Genoud et al., 2018; 

Kim et al., 2021; Wang et al., 2020), the use of the wingbeat frequency 

alone as a feature to differentiate between taxonomical classes or other 

attributes of mosquito biology can be challenging because of overlap in 

wingbeat frequency distributions. . To address this, other authors have 

used additional features (i.e., depolarization ratio) (Genoud et al., 

2018)or metadata (i.e., localization, environmental variables, and 

circadian rhythm) (Chen et al., 2014) in combination with fundamental 

frequency to improve their classification methods. In the present work, 

we have tested several features apart from or in combination with the 

fundamental frequency to better classify mosquito genus and sex. 

The use of both fundamental frequency and fundamental peak power, 

yielded better performance in sex and genus classification than 

fundamental frequency alone. Although the effect of signal intensity or 

power has been investigated in mosquito mating and courtship 

behavioural experiments (Dou et al., 2021; Menda et al., 2019), to the 

best of our knowledge, fundamental peak power has not been used as 

a feature in mosquito classification studies. In other sensor systems, the 

reported signal intensity or power may depend on the position and 

orientation of the flying mosquito with respect to the sensor (Arthur et 

al., 2014), whilst our optical setup was designed to measure wingbeat 
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power relatively independently of the position and orientation of the 

mosquito within the sensing volume.  

Despite the better results obtained in this work using the fundamental 

frequency and power features compared with fundamental frequency 

alone, the more complex spectrogram and MFCC features provided the 

best performance for genus and sex classification. MFCCs are normally 

used in applications such as speech recognition (Ganchev et al., 2005) 

or music information retrieval (Müller, 2007) and although MFCCs are 

based on human perception of pitch, they have given good results in 

sound recognition studies with mosquitoes and other insects (Lukman 

et al., 2017; Noda et al., 2019; Silva et al., 2015; Zhu, 2011).  

The classification of mosquito genus achieved a high accuracy of 94.2% 

while the classification of sex achieved 99.4% and 100% 

for Aedes and Culex respectively. The training and validation accuracies 

indicate that genus classification could possibly be improved with more 

training samples. 

In this study, the best performing machine learning algorithm depended 

on the classification task. For genus classification, DNN showed the best 

performance, with an accuracy of 94.2%, trained on the spectrogram 

feature. In another work (Fanioudakis et al., 2018), DNN also gave the 

best performance for genus classification between Aedes and Culex. For 

sex classification, the best performing algorithms and features were: LR 

with spectrogram or MFCC and GB with MFCC. Different machine 

learning algorithms were also compared for mosquito classification in a 

previous study (Genoud et al., 2020) and it was concluded that the best 



Chapter 2: Training the sensor in laboratory conditions 

116 
 

algorithm for complex classification tasks was SVM. In our study, SVM 

had an accuracy of 93.4% for genus, although DNN, which was not 

studied in (Genoud et al., 2020), performed slightly better (94.2%).The 

classification of mosquito genus achieved a high accuracy of 94.2% 

while the classification of sex achieved 99.4% and 100% for Aedes and 

Culex respectively. Learning and validation accuracies in this work 

indicate that genus classification could possibly be improved with more 

training samples.  

Other studies have successfully achieved automatic classification of 

genus (Potamitis & Rigakis, 2016b) and sex (Genoud et al., 2018; Ouyang 

et al., 2015) using machine learning with relatively large datasets (Silva 

et al., 2015) and placing emphasis on class balance (Genoud et al., 

2020). However, only a small number of sensor studies have been done 

using a mosquito suction trap, either without an automatic 

classification system (J. Wang et al., 2020) or with only mosquito and 

non-mosquito counting and without differentiating mosquito genus 

and sex (Day et al., 2020). 

To our knowledge, we present the first sensor system for use with a 

commercial mosquito suction trap, which provides automatic 

classification of genus and sex with high performance, based on a large 

number of training samples, with class balance. further work includes 

the study of species classification, study of age groups, training of 

models with more features and feature combinations, and testing of the 

system in the field. 
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Conclusions 

In this work, we have presented the results of a novel sensor system for 

genus and sex classification of Aedes and Culex mosquitoes captured by 

a commercial suction trap in laboratory conditions. The obtained results 

are encouraging for the use of the sensor with standard suction traps in 

the field, for the remote surveillance and classification of genus and sex 

of Aedes and Culex mosquitoes.  
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Supplementary information 

Text S1. Mel spectrogram and MFCC generation process. 

The Mel scale is a perceptual scale which relates sound frequency in 

Hertz to the pitch perceived by the human auditory system (Stevens et 

al., 1937). For the filter banks, the minimum frequency is taken as 0 Hz 

and the maximum frequency is taken as the Nyquist frequency of the 

sampling system, i.e., 
9603 Hz

2
= 4801.5 Hz, and these are converted 

from Hertz (𝑓) to Mel (𝑚) using the following formula (Arias-Vergara et 

al., 2020):  𝑚(𝑓) = 1125𝑙𝑛 (1 +
𝑓

700
).  This span (in Mels) is divided 

into “n” bands of equal width where “n” is the number of filters applied, 

and the end points of each filter are converted to Hertz using the 

following formula:  𝑓 = 700(10m/2595 − 1). The resulting values, form 

the base of each triangular filter in the frequency domain in which the 

base of each triangle is at zero and the peak is at one, giving values 

between zero and one along the legs of each triangle. Within each filter 

band, the values of the frequency spectra are multiplied by the 

corresponding value of the leg of the triangle and the results are then 

summed to give one value of the Mel spectrum. As such, the Mel 

spectrum consists of “n” values. Each Mel spectrum is converted to a 

logarithmic scale and joined to form a Mel spectrogram (Virtanen et al., 

2018). An inverse Fourier transform is then applied to generate the 

MFCC. 

The process of generating the MFCC feature is represented in Fig S1. 
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Fig S1. Diagram to illustrate MFCC generation 
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Text S2. Description of the machine learning algorithms used in this 

work. 

The following provides a brief description of the machine learning 

algorithms employed in this work. 

• LR fits a sigmoid function to the observations (predictor 

variables and labels) to generate a classification model 

(Kleinbaum & Klein, 2010; Peng et al., 2002).  

• GB uses the decision trees ensemble model which consists of 

different classification and regression trees (CART). In GB, the 

ensemble building is done incrementally so that each new tree 

helps correct the error of the previous tree (Chen & Guestrin, 

2016; Friedman, 2001). The optimized XGBoost library was used 

(XGBoost developers, n.d.). 

• RF also uses the decision tree ensemble method, but it grows 

the different trees simultaneously from a randomly chosen 

subset of the predictor variables and then they vote on the 

outcome (Breiman, 2001). Another method of randomization 

used in RF is bootstrapping where a subset of the samples of the 

training set is randomly chosen for each tree (Lee et al., 

2020)which allows for non-linear models when using one or 

more predictor variables. 

• SVM works by plotting the training samples in an n-dimensional 

space (where n is the number feature values used) and 

generating a hyperplane or hyperline that separates the 

different classes. The best hyperplane is chosen by maximizing 
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the distance of the hyperplane to the closest samples of either 

class. These samples form the support vectors. For non-linear 

models, different kernel functions exist which transform non-

linear spaces into linear-spaces (Burges, 1998).  

• DNNs mimic the structure of the human brain and consist of 

multiple layers of relatively simple processing units that receive 

input and give output. The use of multiple layers and non-linear 

activation functions allows for non-linearity between predictor 

variables and outputs (Schmidhuber, 2014; Zhang, 2016).  

The logic of the machine learning classification process is shown in Fig 

S3. 

 

Fig S3. Representation of the machine learning classifications (in bold 

text), with their respective classes immediately below and indicated by 

the arrow heads. 

 



Chapter 2: Training the sensor in laboratory conditions 

123 
 

Fig S4. Schematic overview of the training, validation and testing approach. 

1 Dataset is randomly separated into training and test sets, accounting for 

75% and 25% of the whole dataset respectively.  2 Training set is separated 

using 4-fold cross-validation into four folds with an equal number of 

samples in each fold. 3 Four iterations of training and validation take place 

using a different fold for validation in each iteration. 4 Model with best 

average validation score, obtained by averaging the four cross-validation 

results, is selected. 5 Model is evaluated using test set (containing data 

which was previously unused) to obtain test score.   
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Table S1. Hyperparameters of the trained models which achieved the 

highest accuracies. 

Classification task Best feature 
Best 
algorithm 

Hyperparameters 

Genus Spectrogram DNN 
layers: 4 

epochs: 1400 

Sex Aedes 

Spectrogram LR 
penalty: L2 

C: 2.8 

MFCC 
LR 

penalty: L2, 

C: 1.0 

GB estimators: 200 

Sex Culex 

PSD SVM 
kernel: RBF 

C: 2.8 

Spectrogram 

LR 
penalty: L2 

C: 1.0 

SVM 
kernel: RBF 

C: 1.0 

DNN 
Layers: 3 
epochs: 1500 

MFCC 

LR 
penalty: L2 

C: 1.0 

GB estimators: 450 

RF estimators: 100 

SVM 
kernel: RBF 

C: 1.0 

DNN 
layers: 3 

epochs:1500 
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4.3 CHAPTER 3: Evaluation of the 

sensor performance in field conditions. 

Field evaluation of an automated mosquito 

surveillance system which classifies Aedes and 

Culex mosquitoes by genus and sex (submitted). 
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Abstract 

Background 

Mosquito-borne diseases are a major concern for public and veterinary 

health authorities, highlighting the importance of effective vector 

surveillance and control programs. Traditional surveillance methods are 

labour-intensive, and do not provide high temporal resolution which 

may hinder a full assessment of the risk of mosquito-borne pathogen 

transmission. Emerging technologies for automated remote mosquito 

monitoring have the potential to address these limitations, however, 

very few studies have tested the performance of such systems in the 

field. 

Methods 

In the present work, an entomological optical sensor coupled to the 

entrance of a standard mosquito suction trap was used to record 14,067 

mosquito flights of Aedes and Culex genus at four temperature regimes 

in the laboratory, and the resulting dataset was used to train a machine 

learning (ML) model. The trap, sensor, and ML model, which form the 

core of an automated mosquito surveillance system, was tested in the 

field for two classification purposes: to discriminate Aedes and Culex 

mosquitoes from other insects that enter the trap and to classify the 

target mosquitoes by genus and sex. The field performance of the 

system was assessed using balanced accuracy and regression metrics by 

comparing the classifications made by the system with those made by 

the manual inspection of the trap. 
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Results 

The field system discriminated the target mosquitoes (Aedes and Culex 

genus) with a balanced accuracy of 95.5% and classified the genus and 

sex of those mosquitoes with a balanced accuracy of 88.8%. An analysis 

of the daily and seasonal temporal dynamics of Aedes and Culex 

mosquito populations was also performed using the time-stamped 

classifications from the system. 

Conclusions 

This study report results for automated mosquito genus and sex 

classification using an entomological sensor coupled to a mosquito trap 

in the field with high balance accuracy. The compatibility of the sensor 

with commercial mosquito traps enables the sensor to be integrated 

into conventional mosquito surveillance methods to provide accurate, 

high temporal resolution, automatic monitoring of Aedes and Culex 

mosquitoes, two of the most concerning genera in terms of arbovirus 

transmission.  

Keywords 

Aedes; Automated classification; Culex; Field study; Machine learning; 

Mosquito surveillance; Optical sensor. 
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Background 

Mosquitoes (Diptera: Culicidae) act as vectors of several pathogens 

such as malaria parasite, dengue (DENV), Zika (ZIKV), yellow fever (YFV), 

chikungunya (CHIKV) and West Nile (WNV) viruses that cause diseases 

which result in hundreds of thousands of human deaths per year 

worldwide, primarily in tropical countries of Africa, East and South-East 

Asia, and South America (WHO, 2014). In Europe, autochthonous vector 

species such as Culex pipiens, and invasive vector species such as Aedes 

albopictus, are responsible for the transmission of endemic (e.g., WNV, 

Usutu, Sindbis, Tahyna and Batai viruses, lymphatic filariasis and avian 

malaria), and imported (CHIKV, DENV and ZIKV) pathogens respectively, 

and pose a threat to public and veterinary health in the continent 

(Calzolari, 2016). To mitigate the impact of mosquito borne diseases 

(MBD), surveillance programs for both native and invasive species are 

used by public health organizations worldwide to monitor trends in 

vector populations and to assess the effectiveness of control 

programs(ECDC, 2012; Schaffner et al., 2014). The availability of high-

quality surveillance data is essential for these tasks and to model the 

risk of MBD (Caputo & Manica, 2020). 

Traditional entomological methods for mosquito monitoring generally 

entail the use of physical traps, which primarily target adult mosquitoes 

as a proxy for pathogen transmission risk (Silver, 2008). These methods 

are very costly in terms of the human resources involved in the tasks of 

sample collection in the field, taxonomical identification of the samples, 

and data processing. Furthermore, the time lag between the time of 

capture and the analysis of the samples and processing of the results 
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may hinder a full understanding of the real-time dynamics of mosquito 

populations. This delay can limit the proper assessment of disease 

transmission risk and the timely application of control measures. 

Consequently, the application of new technologies, including machine 

learning (ML), to the automated and remote real-time characterization 

of mosquito populations may have a positive impact in the state of the 

art in entomological surveillance (Joshi & Miller, 2021; Santos et al., 2019).  

Over recent years, there has been an increasing number of studies 

aimed at taxonomically classifying mosquitoes and other attributes of 

mosquito biology using either acoustic (Mukundarajan et al., 2017; 

Sinka et al., 2021; Su Yin et al., n.d.; Vasconcelos et al., 2020) or optical 

sensors (Fanioudakis et al., 2018; Genoud et al., 2018, 2019, 2020; González-

Pérez et al., 2022; Potamitis & Rigakis, 2016a; Silva et al., 2015) which take 

advantage of insect bioacoustic properties. The study of these 

properties, especially the mosquito flight tone or wing beat frequency, 

has been used for mosquito characterization and classification purposes 

since the 1940’s (Kahn et al., 1945; Offenhauser & Kahn, 1949). However, 

the existence of overlapping frequency distributions among different 

mosquito species (Chen et al., 2014; Genoud et al., 2018) led to the 

exploration of other predictor variables such as spectrograms, power 

spectral density, Mel frequency cepstral coefficients or optical 

depolarization ratio, which provide better classification results 

(Fanioudakis et al., 2018; Genoud et al., 2020; González-Pérez et al., 

2022). In addition to the choice of features, the choice of ML algorithm 

and its configuration parameters has been shown to contribute to the 
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overall classification accuracy (Fanioudakis et al., 2018; Genoud et al., 

2020; González-Pérez et al., 2022).  

Despite the growth of research in automated remote mosquito 

surveillance (Joshi & Miller, 2021), there are very few published papers 

which describe the evaluation of solutions in the field (Day et al., 2020; 

Lai et al., 2022; Mukundarajan et al., 2017). Technical constraints such 

as interference from ambient noise in the case of acoustic sensors 

(Chen et al., 2014); the presence of heavy rain during the sampling 

period (Geier, Weber, Rose, Obermayr, et al., 2016); the proportion of 

mosquitoes relative to other flying insects in the capture (Day et al., 

2020); the capture efficiency of the sampling devices (Lai et al., 2022) 

or the ambient environmental temperature which is known to affect 

mosquito flight tone (Villarreal et al., 2017)may limit the usage of these 

systems for field monitoring of mosquito populations. The only example 

of a commercial mosquito sensor, with reported results, is the BG-

Counter (Biogents, Regensberg, Germany) (Geier, Weber, Rose, 

Obermayr, et al., 2016) which is claimed to distinguish mosquitoes from 

other insect species, and whose performance was shown to have a high 

rate of misclassifications when the proportion of non-mosquitoes was 

significant (Day et al., 2020). 

In this contribution, we present the results of a field study of an 

automated mosquito surveillance system, in which an entomological 

optical sensor coupled to the entrance of a standard mosquito suction 

trap automatically differentiates target mosquitoes (Aedes and Culex) 

from other insects that enter the trap; and identifies the genus and sex 

of these target mosquitoes. We previously reported high levels of 
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accuracy for genus and sex classification of Aedes and Culex mosquitoes 

in the laboratory using the same technology (González-Pérez et al., 

2022). In the current study, a new ML dataset was built with 14,067 

mosquito flights in the laboratory, corresponding to a wider range of 

larval density and ambient temperature conditions to cover the 

morphological variability and ambient temperature range of the target 

genera in nature.  A new ML model was trained using this dataset. The 

sensor and trap were deployed and assessed in the field during periods 

of mosquito activity at two different locations in a Mediterranean 

climate area with a predominance of Cx. pipiens and Ae, albopictus, 

potential vectors of imported and endemic arboviruses.  

 

Material and methods 

Entomological optical sensor 

The optical sensor (Irideon, Barcelona, Spain) comprises a light grey 

waterproof enclosure (W25.5 x D18 x H13 cm), with a black inlet tube 

of 10 cm diameter at the top of the unit, and a light grey outlet tube on 

the underside. The sensor contains an optical emitter, comprising a 

rectangular array of 940 nm wavelength light emitting diodes (LEDs) 

which together, emit a collimated beam (W10.5 x H7 cm) of near 

infrared light towards an optical receiver formed by a corresponding 

array of photodiodes. The emitter and receiver face each other through 

a transparent circular tube of 10.5 cm diameter which traverses the 

enclosure from top to bottom, to create a sensing zone with a volume 

of 600 cm3. The sensor was placed on the entrance of a BG-Mosquitaire 
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mosquito trap (Biogents, Regensburg, Germany). The trap contains a 

suction fan, a removable catch bag, and a flap valve which automatically 

opens when the fan is powered. The suction fan creates a downward 

flow of air through the inlet tube of the sensor and into the trap. When 

an insect flies close to opening of the inlet tube, it is likely to be sucked 

into the tube, and down through the sensing zone, and through the flap 

valve, and into the catch bag. As the flying insect passes through the 

sensing zone, it casts a fast-changing shadow upon the optical receiver 

due to the modulation of the light beam by the wing flap of the insect, 

and this signal is recorded by the sensor. Two cables exit the sensor: 

one is connected to a 12 VDC power supply, such as the supply included 

with the BG Mosquitaire trap, and the other is connected to the trap to 

power the fan.  

Two variants of the sensor were used in the present work: a laboratory 

version , which was used to record mosquito flights in the laboratory to 

build the ML dataset; and a field version, which was used to record 

mosquito flights in the field for automated mosquito classification using 

the ML model previously trained with the laboratory data. The two 

variants differ only by their method of data communication, which was 

via USB to a laptop computer for lab use, or wireless communication via 

the mobile phone network to a server for field use. Further detail about 

the sensor was reported in our previous work (González-Pérez et al., 

2022). 
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Mosquito rearing conditions for the creation of the dataset  

Two populations of Ae. albopictus and one population of Cx. pipiens 

were reared in the laboratory from immature stages (eggs and larvae 

respectively) collected in the field: Ae. Albopictus, population of Rubí 

(2020), Barcelona, Spain (41.50674, 2.00778); Ae. albopictus, 

population of Vilamoura (2020-2022), Algarve, Portugal (37.08546, 

8.11929); and Cx. pipiens, population of Bellaterra (2020, 2022), 

Cerdanyola del Vallés, Barcelona, Spain (41.49903, 2.10872). The 

mosquito strains obtained in Barcelona were reared in the insectarium 

facilities of IRTA-CReSA (Campus of the Autonomous University of 

Barcelona, Cerdanyola del Vallès, Barcelona, Spain). The Ae. albopictus 

strain obtained in Portugal was reared in the insectarium facilities of 

CEVDI/INSA (Águas de Moura, Setúbal, Portugal).  

Larvae were maintained in plastic trays with two larval density regimes 

(50 and 250 larvae/tray) in 750 mL of dechlorinated tap water, renewed 

three times per week, and fed with fish food pellets (Goldfish Sticks-

TETRA, Melle, Germany). Pupae were placed in plastic cups inside insect 

rearing cages with dimensions of 30 x 30 x 30 cm (BugDorm-1 Insect 

Rearing Cage, MegaView Science, Talchung, Taiwan). Adults were fed 

with 10% sucrose solution ad libitum, which was removed 24 hours 

before the flight assays of the females to increase their appetite and 

host seeking activity and likelihood of entering the trap. All females 

used in the experiment were nulliparous and their age ranged from 2-

16 days. The age of the males ranged from 2-9 days. 
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Each development stage of the mosquito life cycle took place inside a 

climatic chamber at controlled environmental conditions of: 28°C 

temperature; 80% relative humidity; and a light:dark photoperiod of 

12:12 hours for Ae. albopictus and 11:11 hours (plus 1 hour of dusk and 

1 hour of dawn) for Cx. pipiens. All mosquito colonies were maintained 

until a maximum of 15 generations to minimize any changes to flight 

characteristics due to the adaptation of wild populations to prolonged 

confinement. 

 

Flight assays in the laboratory and training of the machine learning 

model  

The sensor and trap were placed in an insect cage (BugDorm-4S4590 

W47.5 × D47.5 × H93.0 cm, MegaView Science, Talchung, Taiwan) 

inside a climatic chamber. The trap was fitted with a sachet of BG-

Sweetscent chemical attractant (Biogents, Regensberg, Germany) to 

attract mosquitoes towards the sensor and trap. Flight assays were 

performed at different temperatures to cover the range of temperature 

at which the assayed mosquito species are known to have flight activity: 

~15-35°C for Aedes (Reinhold et al., 2018)and ~15-30°C for Culex 

(Ruybal et al., 2016). 

Before the flight assays, mosquitoes were anesthetized using carbon 

dioxide and separated in small cardboard boxes sorted by genus (Aedes 

or Culex) and sex (female or male). All mosquitoes were held in the 

climatic chamber at the designated ambient temperature for 24 hours 

prior to the start of the assay to acclimatize them. They were then 
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released into the insect cage containing the sensor in batches of 25 

individuals every 15 minutes. Ae. albopictus and Cx. pipiens were 

assayed at 18°C, 23°C and 28°C in the facilities of IRTA-CReSA (in a 

climatic chamber: CCK-0/5930m, Dycometal, Barcelona, Spain). Ae. 

albopictus was also assayed at 33°C in the facilities of CEVDI/INSA (in a 

climatic chamber: FITOCLIMA S600, Aralab, Rio de Mouro, Portugal). 

They were released at 30 cm from the entrance of the sensor to ensure 

that they could fly freely before being sucked into the sensor, and to 

minimize the possibility of multiple insects passing through the sensor 

at the same time. Mosquitoes that did not enter the trap during the 

assay were removed from the insect cage with an electronic 

entomological aspirator (IA-INSECT02USB, Infoagro Systems, Madrid, 

Spain). After each flight assay, the catch bag was collected and the 

specimens inside were frozen and then counted.  

After each laboratory assay, the recordings were downloaded from the 

sensor to a laptop computer and then processed using a Python script 

to produce playable and viewable audio files. Each recording was 

examined manually, and those considered to be invalid were excluded 

from the dataset, e.g., recordings containing double flights or those 

where the mosquito was deemed to have hit the wall of the flight tube 

inside the sensor. A machine learning model was generated using the 

methodology described in our previous work (González-Pérez et al., 

2022).The gradient boosting algorithm using the XGBoost library 

(XGBoost developers, n.d.) was trained with 4-fold cross-validation on 

the extracted spectrograms of a balanced sub-dataset.  A test set was 
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previously separated from the dataset to evaluate the trained model on 

unused data.  

 

Field trial of the automated mosquito surveillance system 

The sensor and trap were deployed in the municipalities of El Prat de 

Llobregat in 2021 (field trial 1) and Rubí in 2022 (field trial 2), in the 

province of Barcelona (Catalunya, Spain). These locations have a 

Mediterranean climate, typified by hot dry summers, mild rainy winters 

and variable temperatures in autumn and spring. The specific location 

of the sensor and trap at each site (Fig 1) was selected to provide shade, 

nearby vegetation, shelter from rain and wind, and access to electrical 

power, in a place where mosquitoes are known to be present. 

The field trials were performed in the months of peak mosquito activity. 

Field trial 1 ran from July to October 2021 and used collection cycles 

(the time between catch bag placement and sample collection) of 24 

hours. Field trial 2 ran from June to September 2022 and used collection 

cycles of 24 to 72 hours. In each trial, dry ice was used as a source of 

carbon dioxide to attract mosquitoes to the trap. Samples were frozen 

at -20°C shortly after collection and inspected by a trained entomologist 

to taxonomically classify and count the content. 

The flying insects that entered the trap were automatically detected 

and recorded by the sensor. Each recording includes the sensor GPS 

coordinates; and the date and time (time stamp), measured ambient 

temperature and relative humidity at the time of capture. The field 

sensor sent batches of sensor recordings via the mobile phone network 
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to the server every 30 minutes, where classification was done by the ML 

pipeline. The mosquito classification results, with the associated 

capture time stamps and environmental data were downloaded from 

the server as .csv file and used for the analysis in this work. 

 

Data analysis of sensor classification in the field 

Two main functions of the mosquito surveillance system were assessed: 

i) target mosquito detection, i.e., the ability of the system to 

discriminate Aedes and Culex target mosquitoes from non-target 

insects which also enter the trap; and ii) mosquito genus and sex 

classification, i.e., the ability of the system to correctly classify the 

Aedes female, Aedes male, Culex female and Culex male classes.  

The relationship between the sensor count (mosquitoes counted by the 

sensor) and the manual count (mosquitoes counted by manual 

inspection) was assessed by correlation analysis and linear regression 

analysis; and was visualized using a time series plot and a scatter plot of 

manual count versus sensor count per collection cycle. Pearson 

correlation coefficient (r) and p-value for significance were obtained to 

analyze how both variables were related. Regression coefficients, i.e., 

the R2 coefficient of determination and the linear slope and intercept, 

were calculated to indicate how well the regression predictions based 

on sensor count approximated the manual count. A regression slope of 

greater/less than one, would indicate that overall, sensor counts were 

greater/lower than the manual counts.  
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Fig 1. a. Field trial 1: The sensor and trap were installed near Can Comas, a 19th century 

country house located in the Baix Llobregat Agrarian Park in the municipality of El Prat 

de Llobregat, Barcelona, Spain (41.341286, 2.078259). The Park is a protected natural 

and rural space located in the alluvial plains of the delta and the lower basin of the 

Llobregat river. Land use in the area includes rainfed and irrigated agricultural crops 

(mainly fruit and vegetables); livestock (primarily sheep); and the Barcelona-El Prat 

international airport. b. Field trial 2: The sensor and trap were installed in the backyard 

of a private house in a residential area of Rubí, Barcelona, Spain (41.472816, 2.032258). 

The area is a typical peri-urban area, comprising detached houses with a garden or small 

sparsely planted orchard, some green areas with playgrounds and sport zones, roads, 

and services such as petrol stations and supermarkets. The neighborhood is bounded 

by two creeks which are tributaries of the Llobregat river. 
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A further evaluation metric used in this work was balanced accuracy 

(BA). This metric was determined by using the number of True Positives 

(TP), True Negatives (TN), False Positives (FP) and False Negatives (FN), 

using the manual classification as the reference. TP and TN are the 

numbers of positive and negative cases respectively that the system 

classified correctly. FP is the number of negative cases that the system 

incorrectly classified as positive, and FN is the number of positive cases 

that the system incorrectly classified as negative. To calculate TP, TN, 

FP and FN for a particular class, this class was defined as the positive 

class and the other class(es) were defined as the negatives. For the 

positive class, TP equals the minimum common value of the sensor and 

manual count. If the sensor count was greater than the manual count 

then the difference was taken as FP, otherwise FP equals zero. If the 

sensor count was less than the manual count, then the difference was 

taken as FN. TN is calculated by subtracting FP from the manual counts 

for the negatives. BA gives equal weighting to the proportion of 

positives and negatives that are correctly classified, and it is appropriate 

when classes are imbalanced (Brodersen et al., 2010), as is the case for 

the field captures in this work. The equation for BA is 𝐵𝐴 =
𝑆𝑒+𝑆𝑝

2
 

(where Se refers to sensitivity and Sp refers to specificity). Sensitivity, 

also known as true positive rate or recall, indicates the proportion of 

positives that are correctly classified by the system (𝑆𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
). 

Specificity, also known as true negative rate, indicates the proportion 

of negatives that are correctly classified by the system (𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
).  
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The daily and seasonal temporal dynamics of Aedes and Culex 

mosquitoes were also analysed by descriptive statistics using the time-

stamped classification results in which the sensor genus counts per hour 

were averaged for each month over the length of each trial.  

 

Results 

Performance of the machine learning model using the laboratory data  

A total of 15,208 mosquito flights were recorded in the laboratory, of 

which 7.5% were rejected in the pre-processing to yield 14,067 valid 

flights. The valid flights were randomly under-sampled to obtain a 

balanced dataset from which 1,000 flights were set aside as the test set. 

The trained ML model achieved an average balanced accuracy of 93.9% 

for the classification of Aedes female, Aedes male, Culex female and 

Culex male flights in the test set. The BA results per class were: 91.0% 

for Aedes female, 93.4% for Aedes male, 96.7% for Culex female and 

94.4% for Culex male. The same ML model was then used to classify the 

recordings from the sensor in the field.  

 

Manual classification of the field samples 

A total of 53 samples (catch bags) were collected from the traps and 

underwent manual inspection: 32 in field trial 1 and 21 in field trial 2. 

Of these, seven showed signs of significant mosquito depredation 

and/or degradation and were excluded from the analysis due to the 

impact it would have on the manual count. A further two samples were 
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also excluded due to mobile network connectivity issues during those 

collection cycles. As a result, a total of 44 samples were inspected and 

used in the analysis: 29 from field trial 1 and 15 from field trial 2.  

In total, 3,634 mosquitoes were classified manually (1,665 in field trial 

1 and 1,969 in field trial 2) comprising the following species in 

decreasing order of number: Cx. pipiens, Ae.  albopictus, Culiseta 

longiareolata, Aedes caspius and Coquillettidia richiardii (Table 1). Cx. 

pipiens, Ae. albopictus and Cs. longiareolata were found in both trials, 

while Ae. caspius was only found in field trial 1 during September and 

early October. Only one specimen of Cq.  richardii was found, in field 

trial 1 

 

Table 1: Total number of mosquitoes and other insects by manual 

inspection of the samples in each field trial.   

 
 

Sample composition 
Field trial 

1 
Field trial 

2 

Mosquitoes 

Target 

Culex Culex pipiens 1261 1387 

Aedes 
Aedes albopictus 270 543 

Aedes caspius 39 0 

Non-
target 

Other  
genus 

Culiseta 
longiareolata 

94 39 

Coquilletidia 
richiardii 

1 0 

Other 
insects 

Non-
target 

- 
Non-culicidae 

insects 
3188 2125 
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The mean proportion of target mosquitoes (Aedes and Culex) compared 

to total insects in the samples was 32.4% in field trial 1 and 47.1% in 

field trial 2 with the non-target group mostly comprising 

Phlebotominae, Chironomidae and a wide variety of small dipterians. 

The proportions of each genus and sex class within the target 

mosquitoes, from highest to lowest were: Culex female (76.6% in field 

trial 1 and 67.1% in field trial 2), Aedes female (15.0% in field trial 1 and 

18.9% in field trial 2), Aedes male (4.6% in field trial 1 and 9.2% in field 

trial 2), and Culex male (3.8% in field trial 1 and 4.8% in field trial 2). 

 

Automated target mosquito detection in the field   

There was a strong positive correlation between the number of target 

mosquitoes counted by the sensor and by manual inspection in both 

field trials (r = 0.983, p-value = 0.000 in field trial 1 and r = 0.915, p-value 

= 0.000 in field trial 2). This good agreement between manual and 

sensor counts is shown in Fig 2, even when the manual count changed 

significantly from one collection cycle to the next due to natural 

conditions. Linear regression analysis indicated a good fit of the linear 

regression line to manual count versus sensor count (R2 = 0.984, p-value 

= 0.000), as shown in Fig 3a. The linear regression equation (y = 0.924x 

+ 3.219) indicated that sensor count was typically 7.6% lower than the 

manual count.  

The average BA for target mosquito detection per collection cycle was 

95.9% in field trial 1 and 94.8% in field trial 2. Since the distribution of 

BA was skewed towards high values, the median, interquartile range 
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(IQR) and first and third quartiles (Q1, Q3) are given, in Table 2. The 

correlation between the BA of target mosquito detection, and the 

proportion of target mosquitoes in each collection cycle was not 

significant (r= 0.009, p-value = 0.956) and this is also apparent in Fig 3b, 

i.e., the BA of target detection was not dependent on the proportion of 

target mosquitoes in the samples. Furthermore, the correlation 

between the BA of target mosquito detection and the duration of each 

collection cycle (24 hours in field trial 1 and 24-72 hours in field trial 2) 

was not significant (r = 0.033, p-value = 0.834). 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Evaluation of the sensor performance in field conditions 

 

146 
 

 
Fig 2. Time series plots representing the number of target mosquitoes (sensor count 

and manual count), per collection cycle for each field trial. The x-axis indicates the 

date of start of each collection cycle. Collection cycles lasted 24 hours in field trial 1, 

and 48 hours in field trial 2 except those marked with * (= 24 h) or ** (= 72 h). 
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Fig 3. a. Scatter plot and linear regression of sensor count versus manual count for 

target mosquito detection per collection cycle, showing the regression line equation 

(slope and y-intercept) and coefficient of determination, R2. b. Scatter plot and linear 

regression of balanced accuracy of target mosquito detection per collection cycle 

versus the proportion of target mosquitoes in the catch, showing the regression line 

equation (slope and y-intercept) and coefficient of determination, R2. 
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Automated mosquito genus and sex classification in the field 

There was a strong positive correlation (r = 0.846, p-value = 0.000 in 

field trial 1 and r = 0.903, p-value = 0.000 in field trial 2) between sensor 

counts and manual counts for the four mosquito classes (Aedes female, 

Aedes male, Culex female and Culex male) in both field trials, and this 

agreement can be observed in Fig 4. Linear regression analysis indicated 

a good fit linear regression line to the data points of manual counts 

versus sensor counts per collection cycle (R2 = 0.972, p-value = 0.000) as 

shown in Fig  5. The regression equation (y = 0.856x + 2.142), indicates 

that the sensor count for genus and sex was typically 14.4 % lower than 

the manual count.  

The BA, calculated over the collection cycles, for each genus and sex 

class were calculated for both field trials. In field trial 1, the BA results 

per class were: 88.8% for Aedes female, 93.7% for Aedes male, 88.9% 

for Culex female and 80.5% for Culex male. In field trial 2, the BA results 

were: 93.3% for Aedes female, 95.0% for Aedes male, 87.8% for Culex 

female and 85.7% for Culex male. The average BA of the four genus and 

sex classes was 88.0% in field trial 1 and 90.5% in field trial 2. Since the 

distribution of BA was skewed towards high values, the median, IQR, Q1 

and Q3 are given, in Table 2. The BA for genus and sex was not 

correlated with the proportion of target mosquitoes in the samples (r = 

0.153, p-value = 0.321), nor to the proportion of Aedes (r = 0.262, 

p-value  =  0.086), Culex (r = 0.146, p-value = 0.345), females (r = -0.048, 

p-value = 0.756), or males (r = 0.037, p-value = 0.810) among the target 

mosquitoes 



Chapter 3: Evaluation of the sensor performance in field conditions 

 

149 
 

 
Fig 4. Time series plots representing the number of target mosquitoes 

(sensor count and manual count) for each genus and sex class, per 

collection cycle for each field trial. The x-axis indicates the date of 

start of each collection cycle. Collection cycles lasted 24 hours in field 

trial 1, and 48 hours in field trial 2 except those marked with * (= 24 

h) or ** (= 72 h). 
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Fig 5. Scatter plot and linear regression of manual count versus sensor 

count for genus and sex detection per collection cycle, showing the 

regression line equation (slope and y-intercept) and coefficient of 

determination, R2. 

 

Table 2: Overall balanced accuracy results for target mosquito 

detection and for genus and sex classification for each field trial and 

for both field trials combined.  

 

 

 Target mosquito detection Genus and sex classification 

 
Field 
trial 1 

 
Field 
trial 2 

Field trial 
1 & 2 

combined 

 
Field 
trial 1 

 
Field 
trial 2 

Field trial 
1 & 2 

combined 

Average 95.9% 94.8% 95.5% 88.0% 90.5% 88.8% 

Median 97.1% 95.8% 96.7% 89.4% 90.6% 90.0% 

IQR 5.7% 6.4% 5.9% 10.3% 5.4% 7.9% 

Q1 93.1% 91.6% 92.8% 84.1% 87.9% 85.7% 

Q3 98.8% 98.1% 98.6% 94.3% 93.3% 93.6% 
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Time resolution of the automated mosquito surveillance system 

The daily and monthly/seasonal activity of Aedes and Culex mosquitoes 

for each field trial are represented in Fig 6. In both field trials, the peak 

hourly counts for Culex mosquitoes (Cx.  pipiens) are higher than that of 

Aedes (mostly Ae. albopictus but also Ae. caspius during September and 

October in field trial 1). 

There is a noticeable difference in the activity of Culex between the two 

sites. Regarding the daily activity of Culex, in field trial 1 there was a high 

and pronounced peak of activity in the morning, after sunrise, and a 

lower and less pronounced peak in the evening, at sunset. The morning 

peak was at 06:00 – 08:00 in July, which shifted to 07:00 – 08:30 in 

August, 07:30 – 09:00 in September, and 08:00 – 09:30 in October, but 

with very low counts. The evening peak was at 21:30 – 23:00 in July and 

August and at 20:00 – 21:00 in September. In field trial 2, Culex activity 

was apparent only during the dark photoperiod, starting around 21:00, 

just before sunset in the first and second months of summer (June and 

July) and continuing overnight until sunrise at around 07:00 although 

the overnight counts were much lower in late summer and early 

Autumn (August and September) than in June and July.  

Regarding the daily activity of Aedes, there were generally two peaks of 

activity per day in both field trials: one in the early morning and one in 

the evening before the sunset. In field trial 1, the morning peak was at 

06:00 – 07:00 in July, and 07:30 – 8:30 in August and September, and 

the evening peak was at 18:00 – 21:00 in August and at 19:00 in 

September. In field trial 2, the morning peak was at 06:00 – 07:00 in 
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June and July (being more pronounced in July) and at 07:00 – 08:00 and 

10:00 – 11:00 in September; with an evening peak between 18:00 and 

20:00 from June to September.  

 

 
 

Fig 6. Time series plots of average hourly sensor count per month for 

the target mosquito genera. 
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Discussion 

The present work tested the performance of an automated mosquito 

classification system in the field. The system comprises a commercial 

mosquito suction trap, an entomological optical sensor, and an ML 

pipeline, enabling target mosquitoes (Aedes and Culex) to be 

discriminated from other insects which entered the trap, and the genus 

and sex of the target mosquitoes to be classified. The data provided by 

the system also enables the real-time dynamics of the target mosquito 

populations to be determined with a time resolution as fine as one 

second. The ML model was trained using recordings from thousands of 

mosquitoes raised in the laboratory which flew through the sensor 

under different ambient temperature regimes. 

The system distinguished the designated target mosquitoes (Aedes and 

Culex) from other flying insects that entered the trap with a BA of 95.5% 

for the two field trials combined, meaning that the total number of 

target mosquitoes counted by the sensor was very similar to the 

number of mosquitoes counted manually. This suggests that the system 

would be suitable for a range of mosquito surveillance and control 

activities such as: i) identifying the start and end of a mosquito activity 

season; ii) monitoring seasonal tendencies of endemic vectors to 

prioritize geographical areas of intervention; iii) doing quality control 

checks of control measures aimed at reducing mosquito populations; or 

iv) identifying the arrival of invasive mosquitoes due to changes in land 

use, the effects of globalization, or due to climate change.  



Chapter 3: Evaluation of the sensor performance in field conditions 

 

154 
 

The BA results for mosquito target detection were not correlated with 

the proportion of target mosquitoes in the catch. This is in contrasts 

with the results presented in Day et al (2020), where the mean daily 

accuracy of the BG-Counter sensor ranged from 9.4% to 80.1% across 

sites, and was highly dependent on the proportion of mosquitoes in the 

catch, giving high levels of accuracy only in one site when the mean daily 

proportion was high (89%), and leading the authors to conclude that the 

accuracy of the BG-Counter was “context-dependent”. In our work, the 

overall proportion of target mosquitoes was 39.8% and the BA for 

target mosquito detection was high (from 92.9% to 100%) for all 

collection cycles, even with a proportion of target mosquitoes as low as 

3%. These results indicate that the present system performs target 

mosquito detection with a low rate of false positives. This result can be 

advantageous in routine mosquito surveillance programs in which 

carbon dioxide is usually substituted by a more cost-effective attractant 

such as a chemical lure, which leads to a lower proportion of 

mosquitoes in the catch (Claudel et al., 2022). 

In this work, we also describe the automated classification of target 

mosquitoes by genus and sex in the field, which represents an advance 

in the state of the art. The system classified Aedes females, Aedes 

males, Culex females and Culex males with an average BA of 88.8%. The 

genus and sex classification feature can be very useful for public health 

agencies and biological research in order to: i) detect possible 

introductions of Aedes invasive mosquitoes in new areas; ii) evaluate 

the effectiveness of control strategies based on mosquito modification 

such as the Sterile Male Technique or Wolbachia infection, that target 
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a specific mosquito genus; or iii) monitor population dynamics of Aedes 

and Culex mosquitoes as an indicator of their vectorial capacity for 

arboviruses. The fact that the BA for genus and sex in the field (88.8%) 

is only slightly below the result obtained in the laboratory (93.9%) 

indicates that the ML model, which was developed under controlled 

laboratory conditions, has generalized well to mosquitoes in the field 

and validates the methodology developed to train the model. 

The daily activity patterns of Aedes and Culex mosquitoes were 

monitored in this study taking advantage of the high time resolution of 

the mosquito surveillance system. A bimodal activity coinciding with the 

daylight hours was identified for Aedes mosquitoes in both field trials 

as previously reported for this species [24]. Culex exhibit a typical 

endogenous night activity in field trial 2 but showed an unexpected 

peak just after sunrise in field trial 1. This plasticity in behaviour could 

be explained by factors such as host availability, environmental 

conditions, predator inactivity or bioform type (Fritz et al., 

2014).Moreover, seasonality can have a considerable impact on vector 

feeding preferences which may drive the transmission of zoonotic 

pathogens to humans amplifying the scope of an epidemic (Kilpatrick et 

al., 2006). In our study, we observed a progressive shift of the early 

morning activity peak of Aedes and Culex to later hours over the 

duration of each trial from early summer to early autumn coinciding 

with the sunrise. Since most pathogen transmission by vectors occurs 

during the peaks of feeding activity, a proper characterization of daily 

dynamics of local vector species may be of value for risk assessment and 

control programs.  
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Overall, the system presented here provides several advantages with 

respect to conventional manual surveillance methods: i) it significantly 

reduces the manual effort to gather and inspect each catch bag, 

especially when target mosquitoes must be sorted from a large number 

of non-target insects, and to manually record the results; ii) it provides 

classification results much earlier than what is possible in routine 

monitoring programs with collection cycles of 7 to 15 days, enabling a 

faster epidemiological response when needed; iii) it is not subject to the 

effects of predation and degradation of the sample; iv) it associates a 

time of capture stamp to each classification result, enabling the activity 

dynamics of the target insects to be determined with time resolutions 

down to one second; v) the server provides automated results in the 

form of tables and graphs which may be downloaded or visualized on 

the server itself and may feed risks maps, via the application 

programming interface. 

The system also provides the following advantages compared to 

alternative automated mosquito classification systems: i) it provides 

classification of target mosquito genus and sex in the field, which has 

not been reported in the scientific literature to date; ii) it provides good 

classification accuracy results for the target Aedes and Culex mosquito 

species over the range of ambient temperatures in which these species 

are known to be active, independently of the proportion of mosquitoes 

in the catch; and iii) it may be used with existing commercial mosquito 

traps used in routine entomological surveillance, allowing manual 

collection and inspection if needed.  
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Further work to improve the possibilities of the developed system in the 

field should include the use of additional environmental variables and 

biological traits when training the system, as well as addressing other 

vector species of interest such as Aedes aegypti or Anopheles gambiae 

complex to enable the system to be applied in a broader range of 

geographic regions with these and other vector species. 

 

Conclusions 

This work describes the field evaluation of a new entomological optical 

sensor which operates with commercial mosquito traps routinely used 

in entomological surveillance. This approach enables the sensor to be 

integrated into conventional mosquito surveillance methods to provide 

automatic, high temporal resolution monitoring of populations of Aedes 

and Culex mosquitoes; two of the most concerning genera in terms of 

arbovirus transmission. The system automatically discriminates these 

target mosquitoes from non-target insects in the catch and classifies the 

target mosquitoes according to genus and sex, which overcomes the 

manual effort associated with conventional methods to periodically 

visit the trap and to manually classify the contents of the catch. The 

system evaluated in the field in the present work, therefore represents 

a significant improvement in the state of the art of mosquito 

surveillance. 
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Abstract 

The age of a mosquito population is a major determinant of its vectorial 

capacity. To contribute to disease transmission, a competent mosquito 

vector, carrying a pathogen, must live longer than the extrinsic 

incubation period of that pathogen to be able to transmit it to a new 

host. As such, determining the age of wild-caught female mosquitoes is 

of significant interest for research in vector biology, and for vector 

surveillance and control programs. In this contribution, two methods 

were developed to classify the age of Culex pipiens, the primary vector 

of West Nile virus and other pathogens of medical and veterinary 
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importance. The methods are: i) a transcriptional age-grading 

technique, based on the differential expression of age-responsive 

genes; and ii) an automated system comprising an optical wingbeat 

sensor, whose output signal is applied to a machine learning model to 

classify mosquitoes by age. Models for age classification were 

developed for each method. The gene profiling method had a mean 

absolute error (MAE) of 1 day for mosquitoes ≤ 4 days old and a MAE of 

5 days for mosquitoes ≥ 5 days. The sensor-based method classified 

mosquitoes into two groups (≤ 4 days old, and ≥ 7 days old) with an 

accuracy of 74.7%. When integrated into vector surveillance programs, 

each of these methods should allow young mosquitoes (≤ 4 days old) to 

be discriminated from older mosquitoes which may act as vectors of 

arboviruses. In this work, the gene profiling method was applied to 

Culex mosquitoes for the first time, using a simpler and more cost-

effective methodology than previously reported for other mosquito 

species. The sensor-based method is designed to enable automated age 

classification of flying mosquitoes in the field, to complement the 

mosquito genus and sex classification capability of the same system, 

reported in our previous work. 

 

Author summary 

Mosquitoes are a global health concern because they act as vectors of 

pathogens which cause serious diseases in humans and animals. The 

age of a female mosquito vector is a determining factor in disease 

transmission, since to transmit the pathogen to a host, the mosquito 
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must live longer than the period required for the pathogen to replicate 

in its gut and reach the saliva. In this paper, we assessed two methods 

for age grading of female Culex pipiens mosquitoes, which are one of 

the main vector species worldwide: i) a method based on the analysis 

of genes with age-related expression, and ii) an automated fieldable 

method, which includes an optical sensor system to detect the 

wingbeat properties of a flying mosquito, used to classify its age using 

machine learning. Each of these methods successfully differentiated 

between mosquitoes which are too young for the pathogen 

transmission, and older mosquitoes which may spread the pathogen. 

Our aim is that with further work, the methods developed in this work 

will be applied to vector surveillance and control programs to reduce 

the incidence of mosquito-borne diseases.  

 

 

 

 

 

 

 

 

 

Background 
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Culex (Culex) pipiens Linnaeus, 1758, also known as the “Common 

house mosquito” or “Northern house mosquito” is a polytypic species 

that is member of a species complex with a worldwide distribution. It is 

native to Europe where it is the primary vector of important human and 

animal pathogens such as West Nile virus (WNV), Usutu virus, Sindbis 

virus, Tahyna virus, lympathic filariasis and avian malaria (ECDC, 2020). 

Females of Cx. pipiens feed on a variety of vertebrate hosts, 

contributing to the amplification of the enzootic cycle of arboviruses, 

such as WNV, which is mainly sustained among wild birds, and to the 

occasional spill-over to humans (Figuerola et al., 2022). Preventing the 

spread of mosquito-borne diseases (MBD) and responding to outbreaks 

is a priority for public health authorities, which are developing 

coordinated strategies to strengthen vector control programs 

worldwide (WHO, 2017). 

The age of a mosquito population is a key determinant of its vectorial 

capacity (V), which indicates the efficiency of a vector to transmit a 

pathogen (Kramer & Ciota, 2015). To become a vector, an adult female 

mosquito must live longer than the combined period of non-feeding 

activity (around two first days after emergence) and the extrinsic 

incubation period (EIP) of the pathogen, which ranges from several days 

to a couple of weeks depending on factors such as vector population, 

pathogen, pathogen load and ambient temperature. For example, the 

EIP of WNV in Cx. pipiens is typically greater than 7 days at 18 to 27ºC 

(Anderson et al., 2008; Kilpatrick et al., 2008; Vogels, Göertz, et al., 

2017a, 2017b)  As such, the impact of MBD can be reduced by vector 
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control strategies which target adult mosquitoes and adult mosquito 

lifespan (Cook et al.,2008).  

The importance of vector survivorship as a key component of the 

epidemiology and control of MBD was first described in the 1960’s for 

malaria reproduction rate and Anophelinae (Macdonald, 1957). 

Following this, the concept of V was introduced, incorporating vector 

longevity as one of the major contributors to pathogen transmission 

(Garrett-Jones & Grab, 1964). The V is calculated as  𝑉 =
𝑚𝑎2 𝑏𝑝𝑛

−ln (𝑝)
 where 

‘m’ is the vector density relative to host density; ‘a’ is the probability a 

vector feeds on a host in one day; ‘b’ is the competence of the vector 

for a particular virus, ‘p’ is the daily probability of the vector survival, 

and ‘n’  is the EIP in days. A linear reduction in ‘p’ leads to an exponential 

reduction in V, which highlights the impact of vector longevity on V 

(Johnson et al., 2020).  

Several methods have been described in the literature to estimate 

mosquitoes’ age (Johnson et al., 2020). One of the oldest and most 

established methods is based on the examination of changes in the 

ovarian morphology of female mosquitoes according to their 

reproductive status, such as the ovary tracheation method or the 

determination of sequential egg laying events (Hugo et al., 2008).  More 

recent analytical methods rely on age-related changes in biochemical 

signals such as the pteridines or the cuticular hydrocarbons present in 

different mosquito tissues, quantified by chromatography (L. E. Hugo et 

al., 2006). Other recent approaches include transcriptional profiling, 

based on differences in the expression levels of age-responsive genes 
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(Cook et al., 2007), and near-infrared spectroscopy, based on changes 

in the absorption spectra of organic compounds in the exoskeleton 

(Lambert et al., 2018). Despite decades of research, only a few methods 

based on ovarian dissection and cuticular hydrocarbons have been 

developed for Culex (de Meillon & Khan, 1967; Kardos & Bellamy, 1961; 

Samarawickrema, 1967). These current available methods are either 

labour-intensive, require high level of expertise, high equipment and 

processing, or do not directly provide an estimation of chronological 

age (calendar days) (Johnson et al., 2020).  

To address these limitations, two approaches to the age-grading of 

female Cx. pipiens mosquitoes were developed and assessed in the 

present work: i) a transcriptional age grading technique, based on the 

differential expression of age-related genes; and ii) a system, 

comprising an optical wingbeat sensor with machine learning (ML) to 

classify mosquitoes by age. Both methods were developed and assessed 

with a view to their future application vector biology research and in 

mosquito surveillance and control programs.  

 

 

 

 

 

 

Material and methods 
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Age classification by transcriptional age-grading technique 

Mosquito sampling  

An established laboratory colony of Culex pipiens, population of 

Bellaterra (2020), Cerdanyola del Vallés, Barcelona, Spain (41.499035, 

2.108717) was used for the experiment. Mosquitoes were maintained 

in insect rearing cages (BugDorm-1 Insect Rearing Cage W30 × D30 × 

H30 cm, MegaView Science, Talchung, Taiwan) inside a climatic 

chamber (Telewig, Barcelona, Spain) at 22-26ºC, 80% relative humidity 

and a light:dark photoperiod of 14:10 hours. They were fed with 10% of 

sucrose solution, with no blood meals.   

Eleven age categories were used in this study: 1, 2, 3, 4, 5, 9, 13, 17, 21, 

25 and 29 days old. At each time-point, female mosquitoes were 

aspirated from the insect rearing cage with an electronic aspirator (IA-

INSECT02USB, Infoagro Systems, Madrid, Spain) and anesthetized with 

carbon dioxide on a plate (Flowbuddy flow regulator, 59-122BC, 

Flystuff, California, USA). Six females from each age category were 

collected and preserved individually in an Eppendorf tube containing 

500 µL of TRIzol Reagent (Invitrogen, Thermo Fisher Scientific, 

Massachusetts, USA) with soda-lime glass beads (2 mm of diameter). 

Samples were homogenized at 30 Hz for 1 minute (Tissuelyser II Bead 

Mill Sample Disruption Preparation Unit, Qiagen, Denmark) and stored 

at -80ºC until analysis.  

 

RNA extraction and cDNA synthesis 
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RNA extraction was performed in a laboratory fume cupboard 

(Köttermann, Uetze, Germany) using TRIzol Reagent and following the 

manufacturer’s instructions. The RNA of 66 mosquito samples was 

extracted (6 samples of 1 individual mosquito each per time point) and 

resuspended in 30 µL of nuclease free water. Total RNA yield of each 

sample was quantified by spectrophotometric absorbance readings 

(BioDrop, Biochrom Ltd, Cambridge, United Kingdom). Five hundred ng 

of RNA were treated with 1 µL of HL-dsDNAsa (ArticZymes technologies, 

Tromsø, Norwey) to eliminate dsDNA. Samples were incubated for 10 

minutes at 37ºC and 5 minutes at 58ºC in a thermocycler (GeneAmp 

PCR System 9700, Applied Biosystems, Thermo Fisher Scientific, 

Massachusetts, USA). A mix of 1 µL of oligo (dT) (Invitrogen, 

Massachusetts, USA) and 1 µL of dNTPs 10 mM (BioTools, Madrid, 

Spain) was added to each DNase treated sample and they were first 

incubated for 5 minutes at 65ºC and later put in ice for at least 1 minute. 

Samples were then mixed with SuperScript Reverse Transcriptase III 

(Invitrogen, Massachusetts, USA) to generate cDNA by following the 

manufacturer’s protocol and incubating at 50ºC for 50 minutes and 

85ºC for 5 minutes. To remove RNA, the final cDNA volume of 20 µL was 

treated with 1 µL of RNase H (Invitrogen, Massachusetts, USA) and 

incubated at 37ºC for 20 minutes.  

 

 

 

Primer design for age-related and reference genes  
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The reference genome for primer design was a partially sequenced 

genome from Culex pipiens spp. pallens, now completely sequenced 

(GenBank Ref: GCA_016801865.2). Three candidate genes were 

selected based on showing strong age-related expression trends in Ae. 

aegypti (Cook et al., 2006)and Ae. albopictus (Chathurika Weeraratne 

et al., 2021) In Cx. pipiens, these genes were found by similarity, 

performing BLAST searches in NCBI databases. The three candidate 

genes were: i) endocuticle structural glycoprotein ABD-4-like (GenBank 

Ref: XM_039582691.1), hereafter referred to as CUT; ii) sarcoplasmic 

calcium-binding protein 1 (GenBank Ref: XM_039575963.1), hereafter 

referred to as SCP; and cell division cycle protein 20 homolog (GenBank 

Ref: XM_039574874.1), hereafter referred to as CELL. One reference 

gene, 40S ribosomal protein S17 (RpS17) (GenBank Ref: 

XM_039582846.1), was used to normalize the gene expression of age-

related genes, according to existing protocols for Ae. aegypti (Cook et 

al., 2007). Gene-specific primer sets (Table 1) were designed using 

PrimerExpress version 3 (Applied Biosystems). 
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Determination of transcript abundance using qPCR 

Transcript abundance of the three candidate genes (CUT, SCP and CELL) 

and the RpS17 housekeeping gene was determined for individual 

mosquitoes. Quantitative real-time polymerase chain reaction (qPCR) 

was performed on the Applied Biosystems™ 7500 Fast Real-Time PCR 

Systems (Applied Biosystems, Thermo Fisher Scientific, Massachusetts, 

USA) by using SYBR Green (Thermofisher) following the manufacturer’s 

Table 1. List of reference and age-related candidate genes used for age prediction.  

 

 
 

Gene 

NCBI        
Reference 
sequence 
(GenBank) 

Putative function 
(Gene Ontology) 

Primer sequence 
Amplicon  
size 

RpS17 XM_039582846.1 

Structural 
ribosomal 
protein S17 
(GO:0003735) 

FW 5' CGAGAAGTACTACACCCGGC  
RV 5' ACGCTTCATCAGATGCGTCA 

130 bp 

CUT XM_039582691.1 

Endocuticle 
structural 
glycoprotein 
(GO:0008010) 

FW 5' TTGACAAGACGAGCGGTGAA 
RV 5' GCGGTCACCAGAAGTAGCTC 

129 bp 

SCP XM_039575963.1 

Sarcoplasmic 
calcium-binding 
protein 
(GO:0005509) 

FW 5' GTCTTCGACGGGAGTTGGTT 
RV 5' TTGTCCAGGAAGCCGTTGTT 

147 bp 

CELL XM_039574874.1 

Cell 
cycle/physiology 
(GO:0010997, 
GO:1990757) 

FW 5' GCGGYAGAACGACCAGAACA  
RV 5' TTCGCCATCCAGCGTMATGA 

144 bp 
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protocols. Each reaction mixture (20 μl) was prepared using 2.5 μl cDNA 

(diluted to 1/10), 7.5 μl Fast SyBr Green master mix, 2.5 μl of each 

primer (10 mM), and 5 μl nuclease-free water. The thermal cycling 

conditions of the 7500 Fast system were 95ºC for 20 sec for enzyme 

activation, followed by 40 cycles of 3 s at 95°C for melting and 30 s at 

60°C, for annealing and extension. Reaction specificity was assessed by 

melting curve analysis and later confirmed by primer sequencing. Cycle 

threshold (Ct) values were obtained from amplification curves as a 

measure of transcript abundance. The efficacy of the different qPCRs 

assayed was assessed by performing five 10-fold serial dilutions.  

 

Age prediction model 

Fold change (FC) of age-responsive genes at each time point was 

calculated, relative to the 1-day-old mosquitoes using the 2−ΔΔCT method 

(Livak & Schmittgen, 2001). Relative changes in gene expression for each 

individual mosquito were calculated as log contrasts (LogC) following 

current validated protocols (Cook et al., 2007). To determine any 

significant variation in the expression (LogC) of the candidate genes 

across age categories, Kruskal-Wallis tests and pairwise Wilcoxon tests 

with Benjamini-Hochberg procedure were performed.   

To calibrate age prediction models, regression analyses were 

performed with age as explicative variable and LogC of the candidate 

genes as the response variable. As a measure of goodness of fit, the 

coefficient of determination was calculated: using adjusted R2 for linear 
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regression; and pseudo R2 for non-linear regression (R: Pseudo R2 

Statistics, n.d.).  

To estimate mosquito age from LogC values of age-responsive genes, a 

predictive model was developed by reverse regression, in this case with 

LogC as the predictor variable and age as the response. First, a 

polynomial regression was performed to determine the linear and/or 

polynomial components of age-responsive genes that are significant for 

age prediction. Then, a regression tree was built on the selected 

candidate genes to set up significant cut-off points for age classification. 

To assess the fit of the segmented regression, a generalised least square 

model with a variance weighting function was fitted. Finally, a leave one 

out cross-validation procedure was used to estimate the performance 

of the model on the dataset, i.e., how well predictions made by the 

model (predicted age) match the observed data (actual age). Age 

estimations were represented with 95% confidence intervals and the 

mean point was presented as the likely estimated age for a given actual 

age category. The difference between the predicted and the actual age, 

i.e., the mean absolute error (MAE), was used to assess the accuracy of 

the model.  

All analyses were performed using RStudio (R version 4.3.1).  
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Age classification by the optical sensor system  

Mosquito rearing conditions 

One colony of Cx. pipiens, population of Bellaterra (2020, 2022), 

Cerdanyola del Vallés, Barcelona, Spain (41.49903, 2.10871), was 

reared in the laboratory from larvae collected in the field. Larvae were 

maintained in plastic trays with two larval density regimes (50 and 250 

larvae/tray) in 750 mL of dechlorinated tap water, renewed three times 

per week, and fed with fish food pellets (Goldfish Sticks-TETRA, Melle, 

Germany). Pupae were placed in plastic cups inside insect rearing cages 

(BugDorm-1 Insect Rearing Cage W30 × D30 × H30 cm, MegaView 

Science, Talchung, Taiwan) until adult emergence. Adult female 

mosquitoes were anesthetised with carbon dioxide in a plate 

(Flowbuddy flow regulator, 59-122BC, Flystuff, California, USA) and 

sorted by age in three groups: 2-4 days, 7-9 days, and 14-16 days of age. 

They were fed with 10% sucrose solution ad libitum, which was 

removed 24 hours before the flight assays.  

The mosquito life cycle took place inside a climatic chamber (Telewig, 

Barcelona, Spain) at 28ºC; 80% relative humidity; and with a light:dark 

photoperiod of 11:11 hours (plus 1 hour of dusk and 1 hour of dawn). 

Colonies were maintained until a maximum of 15 generations to 

minimize any changes in their flight characteristics due to prolonged 

confinement. All female mosquitoes used in the experiment were 

nulliparous. 

 

 



Chapter 4: Determination of the age of Culex pipiens mosquitoes 

 

176 
 

Flight assays using the optical sensor and trap 

An optical wingbeat sensor (Irideon, Barcelona, Spain) was coupled to 

the entrance of a BG-Mosquitaire trap (Biogents, Regensburg, 

Germany) which contains a suction fan. The sensor comprises an optical 

emitter formed by a two-dimensional array of light emitting diodes 

which emits a collimated beam of light (940 nm) towards an optical 

receiver formed by a two-dimensional array of photodiodes, with a 

sensing zone formed between them. When a mosquito flies close to the 

entrance of the sensor, it is likely to be sucked into the sensor by the 

airflow of the fan and pass through the sensing zone where it casts a 

fast-changing shadow upon the optical receiver due to the modulation 

of the light beam by the wingbeat of the mosquito in flight. A detailed 

description of the sensor is provided in our previous work (González-

Pérez et al., 2022). The sensor and trap were placed in an insect cage 

(BugDorm-4S4590 W47.5 × D47.5 × H93.0 cm, MegaView Science, 

Talchung, Taiwan) inside a climatic chamber (CCK-0/5930m, Dycometal, 

Barcelona, Spain), where the flight assays took place. The trap was 

fitted with a sachet of BG-Sweetscent (Biogents, Regensberg, Germany) 

to attract mosquitoes towards the sensor. During each flight assay, 

female mosquitoes belonging to a particular age group were released 

into the insect cage. Flight assays were performed at ambient 

temperatures of 18ºC, 23 ºC and 28ºC, and mosquitoes were 

acclimatized in the climatic chamber for 24 hours prior to the start of 

the assay.   
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Machine learning model for age classification 

The sensor recordings were downloaded to a laptop computer after 

each flight assay and were then processed using a Python script to 

produce playable and viewable audio files. Pre-processing of data 

included the manual examination of each recording and the exclusion 

of those considered to be unrepresentative, e.g., single recordings with 

two mosquitoes or recordings where the mosquito was deemed to have 

hit the wall of the transparent flight tube inside the sensor. The 

resulting labelled data was randomly under-sampled to obtain a 

balanced dataset which was split, with 75% used to train the supervised 

ML model, with 4-fold cross validation; and the remaining 25% used to 

test the classification performance of the model. Spectrogram, power 

spectral density (PSD) and Mel Frequency Cepstral Coefficients (MFCC) 

features were extracted from the sensor recordings and were used to 

train the ML model with the XGBoost gradient boosting algorithm( Chen 

& Guestrin, 2016) using the methodology described in our previous 

work (González-Pérez et al., 2022). The performance of the ML model 

was assessed using the accuracy metric, which was calculated by 

dividing the number of correct predictions by the total number of 

predictions.  
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Results 

Transcriptional age-grading technique 

The FC in the expression of age-responsive genes related to 1-day-old 

mosquitoes are represented in Fig 1. Generally, there was an 

underexpression in CUT and SCP with age, however, the expression 

levels of CUT showed a slight increase in days 2 and 3. FCs for CUT and 

SCP were more pronounced from day 5 onwards in comparison to 1-day 

old mosquitoes, being the highest FC in days 13 and 17 respectively. The 

lowest FCs for CUT and SCP were in days 2 and 3 in both cases. In case 

of CELL, there was a discrete increase in its levels of expression with 

age, being the FC values quite similar among age categories. 

The LogC of Ct values for the three age-responsive genes are 

represented in Fig 2. LogC are inversely proportional to the expression 

levels of the mentioned genes meaning that an increase in LogC values 

reflect an increase in Ct values and a decrease in the levels of expression 

of these genes.  In CUT and SCP, the distribution of LogC seemed to fit 

a sigmoid function or S-shaped curve with an initial lag phase of growth 

in the first 3 days, and exponential phase between days 3 and 5 (which 

may be extended to day 9 or 13 in SCP), and a plateau from day 5 

onwards. In case of CELL, the distribution of LogC values seemed to fit 

a constant function with no pronounced differences across age 

categories.  
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Fig 1. Fold-change in gene expression relative to day 1 mosquitoes 

calculated by the 2^ ∆∆Ct method.  
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Kruskal-Wallis tests showed that only CUT and SCP genes exhibited a 

significant change in LogC values between age categories (p-value < 

0.05) and were therefore suitable candidates for age prediction. On the 

contrary, CELL did not exhibit any significant change in their levels of 

expression with age (p-value > 0.05) and was therefore excluded from 

latter analysis. Post-hoc comparisons in CUT and SCP revealed 

differences between age classes (S1 Table). From 1 to 3 days of age, 

there were no statistically significant differences between age classes 

for both CUT and SCP, thus constituting a homogeneous group which 

was different from the rest of ages. LogC values of CUT and SCP in 4-

day-old mosquitoes were also significantly different from the other age 

classes. In case of CUT, from 5 days onwards, mosquitoes did not show 

any significant differences in the distribution of LogC, except between 

9 and 13 age classes. In case of SCP, 5-day-old mosquitoes were 

significantly different from the other age classes (except the 9-day 

class); and the 9-day class was different from the rest, except 5- and 21-

day classes. From day 13 onwards some specific differences between 

age classes could be identified for SCP as shown in S1 Table. 

Regression analyses were performed for those genes that showed age-

related expression (i.e., CUT and SCP) with age as the explicative 

variable for calibration. Linear regression R2 values were low: 0.44 for 

CUT, and 0.66 for SCP (S1 Fig). Since data suggested a non-linear fit and 

showed a sigmoidal shape curve, a logistic regression analysis was used, 

with R2 = 0.91 for CUT and 0.93 for SCP (Fig 3). 
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Fig 2. Relative changes in LogC values of age-related genes with age. 
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Fig 3. Logistic regression between age and LogC of CUT (A) and SCP 

(B). 
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Reverse regression was then performed to predict age from LogC values 

of age-responsive genes, with age as the response variable for 

prediction. A polynomial regression model was tested for CUT and SCP 

together, revealing that only the linear and polynomial (quadratic and 

cubic) components of SCP were significant to explain the variance in age 

(p-value < 0.05). Therefore, SCP was selected as the sole predictor 

variable for the age prediction model.  

Since the LogC values of SCP seemed to be clustered into different 

groups, a regression tree was applied to the dataset to determine 

significant thresholds for a posterior segmented regression. Two 

significant break points in the distribution of SCP and three relevant 

groups of observations were identified (S2 Fig): i) LogCs of SCP < 0.052, 

with 41% of the observations (N=27) and an average age of 2.8 days old; 

ii) LogCs of SCP > 0.052 and < 0.072, with 15% of the observations 

(N=10) and an average age of 11 days old; and iii) LogCs of SCP > 0.079, 

with 44% of the observations (N=29) and an average age of 20 days old. 

The R2 of the regression tree was 0.74. Once the break points were 

determined, the dataset was partitioned into three intervals and a 

generalised least squares model with weighted variances was fitted (R2 

= 0.84). Then, a leave-one-out cross validation was performed on the 

dataset, yielding an R2 of 0.71, a MAE of 3.8 days in age prediction and 

a root-mean-square error (RMSE) of 5.1 days in age prediction. The 

model is plotted in Fig 4, showing the mean value and the 95% 

confidence intervals for age prediction.   
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The MAE between the actual and the predicted age classes was not 

homogeneously distributed and depended on the age class. For 

mosquitoes with ages ≤ 4 days old, the MAE was 1 day, and the 

confidence intervals were between 0 and 5.6 days old. For mosquitoes 

with ages ≥ 5 days old, the MAE for age prediction was 5.0 and the 

confidence intervals ranged from -3.7 to 24.9 in the intermediate age 

classes and from 7.0 to 33.9 in the older age classes. The mean 

predicted age values and the lower and upper limits of confidence 

intervals at each actual age class are presented in S2 Table.  

 
 

 
 
Fig 4. Age prediction model for Cx. pipiens based on LogC values of SCP gene. Black 

dots indicate the actual observations. The mean value for predicted age (blue line) is 

shown with 95% confidence intervals (red dashed lines). In the plot, the lower limit 

for age prediction was set to 1 day old.  
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Automated age classification system 

The balanced dataset used for training and test contained a total of 

2088 recordings of female Cx. pipiens  from the three age groups (2-4, 

7-9 and 14-16 days).  

An exploratory analysis of the data was performed using descriptive 

statistics for the wingbeat frequency (WBF) which showed a significant 

difference in the mean of the WBF between the younger (2-4 day) and 

the old (14-16 day) classes. At 18ºC and 23ºC, the young and the middle 

(7-9 day) classes were significantly different from each other, but they 

were not different at 28ºC. The middle and the old classes only differ 

significantly from each other at 28ºC. Generally, there was a high 

overlap in the frequency distributions among the different age classes 

(Fig 5).  

A first ML model was trained to classify mosquitoes into the three age 

classes: young (2-4 days), middle (7-9 days) and old (14-16 days). The 

best performing feature was MFCC, which gave an accuracy of 60.1%. 

The spectrogram feature and the PSD feature gave an accuracy of 57.5% 

and 58.6% respectively. The confusion matrix indicated higher 

confusion between the middle and old age classes (Fig 6A).  

Considering these results, with the confusion between the middle and 

old age classes, a second training was performed in which the middle 

(7-9 days) and old (14-16 days) age groups were combined into a single 

“older” class (7-16 days). In this case, the balanced dataset contained a 

total of 1392 recordings and the best performing feature was the PSD, 

with a classification accuracy of 74.7%. In this case, the spectrogram and 
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the MFCC features gave an accuracy of 72.1% and 70.9% respectively. 

The proportion of correctly classified age groups was superior to the 

previous model according to the confusion matrix (Fig 6B). A training 

score of 100% indicated that results could improve using more training 

data. 

 

 

Fig 5. Distribution of the WBF (in Hz) across age categories at different 

temperature regimes. Significant differences in the distribution of 

WBF between age classes according to the Wilcoxon test is indicated 

with an asterisk.   
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Fig 6. Confusion matrix showing model performance in A. Model 

based on three age classes (2-4, 7-9 and 14-16 days old); and B. Model 

based on “young” (2-4 days old) and “old” (7-16 days old) age classes.  

 
 

 

Discussion 

In this contribution, two methods were described to predict the age of 

Cx. pipiens mosquitoes, one of the major vector species worldwide. The 

first method was a transcriptional age-grading technique, a molecular 

method based on the analysis of the differential expression of age-

responsive genes across age categories, which has been applied to Cx. 

pipiens for the first time in this work. The second method was the novel 

use of an optical wingbeat sensor with ML to discriminate age classes 

based on mosquito wingbeat properties. To the best of our knowledge 
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this is the first time, age classification results have been published for 

an automated entomological sensor.  

Previous transcriptional profiling studies in An. gambiae (Cook & Sinkins, 

2010), Ae. aegypti (Cook et al., 2006) and Ae. albopictus (Chathurika 

Weeraratne et al., 2021), demonstrated that the expression of several 

genes displayed large variation across age categories in adult 

mosquitoes and identified CUT, SCP and CELL  as being the most 

informative for age prediction (Cook et al., 2006). In the present study, 

these three genes were tested for Cx. pipiens, although only CUT and 

SCP had a significant change with age.  

The strong drop in the expression of CUT and SCP observed from day 1 

to day 5 led to the inclusion of intermediate age categories (2, 3 and 4 

days), to allow more accurate characterization of gene expression at 

these early ages. This contrasts to previously described protocols which 

did not consider these intermediate age classes (Cook et al., 2007). 

Post-hoc comparisons, which were also not assessed in previous 

studies, showed that differences in gene expression only occurred 

between certain age classes. In fact, from day 5 onwards no differences 

between age classes were observed for CUT, and from day 13 onwards, 

there was no consistent trend observed for SCP. 

The general downregulation of CUT and SCP with age relative to 1-day-

old Cx. pipiens, which was previously reported for Aedes mosquitoes 

(Chathurika Weeraratne et al., 2021; Cook et al., 2006a), is probably 

related to the putative function of their codifying proteins (endocuticle 

structural protein and sarcoplasmic calcium-binding protein, 
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respectively), which are known to be downregulated in post-moulting 

stages in other invertebrate species (Gao et al., 2006; Zhao et al., 

2018)As indicated in Hugo et al. (L. Hugo et al., 2010), which introduced 

the idea of age assessment based on total RNA yield, high transcription 

levels in newly emerged adults are probably a residual effect of high 

transcription rates during metamorphosis and these levels later 

stabilize at older ages. 

When plotting LogC values of CUT and SCP for the different age 

categories, the calibration model fitted a sigmoid function, with an 

exponential growth trend from days 1 to 5, flattening from days 5 to 29 

in CUT and from day 9 to 29 in SCP. This contrasts to the linear 

regression fit of other multivariate calibration models for Ae. aegypti 

and Ae. albopictus (Chathurika Weeraratne et al., 2021; Cook et al., 

2006) where the regressions were performed with the redundancy 

variate (linear combination) of the three candidate genes, and did not 

include the 2-, 3- and 4-day age categories. SCP was the most 

informative gene to explain the variance in age of Cx. pipiens  and was 

used as the sole age predictor variable, which simplifies previous 

approaches based on multivariate analysis (Cook et al., 2007). The final 

cross-validated model showed a MAE of 3.8 days in age prediction. This 

error was not equally distributed between age classes (RMSE = 5.1 days) 

and higher error values were associated with the prediction of older age 

classes. The accuracy was similar to other gene profiling studies based 

on multivariate calibration, such as (Cook et al., 2006), which reported 

a discrepancy of 5 days in age estimations for Ae. aegypti, and 

Weeraratne et al. (Chathurika Weeraratne et al., 2021) which reported 
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a MAE of 2.19 (± 1.66) and 2.58 (± 2.06) days for Ae. aegypti and Ae. 

albopictus respectively. When applied to the field, the transcriptional 

age grading technique reported, in 77% of cases, a difference of 6 days 

in age predictions for Ae. aegypti (L. Hugo et al., 2010). Differences in 

results between studies may be due to differences in methodology, 

including mosquito rearing conditions; the type of samples used for 

RNA extraction (individual mosquitoes in the present study versus 

individual heads and thoraces (Cook et al., 2006; L. Hugo et al., 2010)or 

pools of mosquitoes (Chathurika Weeraratne et al., 2021)); or the 

design of the predictive model. In Weeraratne et al. (Chathurika 

Weeraratne et al., 2021), the ambient temperature at rearing was 

shown to influence age prediction, however in Hugo et al. (L. Hugo et 

al., 2010) no effects on age prediction were attributed to feeding status 

(presence of blood in the midgut), reproductive status (ovary 

development) or body size. Potential sources of variability should be 

investigated to calibrate models for field applications in surveillance 

and control programs.  

Regarding the optical sensor-based approach to age grading developed 

in the present work, we note that the same system was used in a 

previous study of  genus and sex classification of Aedes and Culex 

mosquitoes under laboratory conditions, with high accuracy results 

(González-Pérez et al., 2022). While other wingbeat sensor systems 

were used to taxonomically classify flying insects (by genus, species, , 

sex or parity status) (G. Batista et al., 2011; Fanioudakis et al., 2018; Genoud 

et al., 2018, 2019, 2020; Potamitis & Rigakis, 2016a; Silva et al., 2015)age 

classification has not been assessed previously using such sensors.  
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In many mosquito classification studies, the wingbeat fundamental 

frequency has been a good predictor variable (Santos et al., 2019), 

however, it was demonstrated to be insufficient for certain 

classification tasks (e.g. species classification) where there are 

overlapping frequency distributions (Genoud et al., 2018). In Ae. 

aegypti, the wingbeat fundamental frequency was reported to increase 

significantly with age (Staunton et al., 2019), although this increase only 

took place at young ages and plateaued in older age categories (D. Park 

et al., 2023). In the present study,  due to the high overlap observed in  

in the WBF  distributions between age classes richer features extracted 

from each sensor recording were used, including the spectrogram, PSD 

and MFCC. These features have been used in mosquito classification 

studies based on bioacoustic sensing (Fanioudakis et al., 2018; Su Yin et 

al., n.d.; Vasconcelos et al., 2020; Wei et al., 2022) and were also used 

in our own prior work on mosquito genus and sex classification using 

the same sensor (González-Pérez et al., 2022). In the present study, the 

widely used ML algorithm XGBoost was used because it  has given good 

accuracy results for mosquito species classification in other works 

(Fanioudakis et al., 2018), and in our own prior work on mosquito genus 

and sex [34] and  generally provides a good compromise between 

model performance and execution speed [34]. In the current 

contribution, the best age classification result for the sensor system was 

74.7%, using the MFCC feature to  distinguish young (2-4 day) age from 

older (7-16 day) mosquitoes. As indicated by the training score metric, 

the accuracy could possibly be improved using more training samples. 
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It is important to note that the two different age-grading methods for 

female Cx. pipiens assessed in this work (i.e., the transcriptional age 

grading technique, and the automated classification system) gave 

similar results. They both gave a reasonable level of accuracy for a 

binary classification between young mosquitoes (≤ 4 days old) and older 

mosquitoes. However, they were less accurate when differentiating 

between middle and old age categories due to the lack of change in the 

predictor variables between these classes. In line with vector 

competence studies of Cx. pipiens for WNV (Vogels, Göertz, et al., 

2017a), this binary classification may serve to discriminate between two 

functional groups of non-vector and potential vector mosquitoes which 

are old enough to have overcome the EIP of the virus. The EIP of WNV 

in Cx. pipiens has been mainly reported superior to 7 days at 

temperatures that ranged from 18 to 27ºC (Anderson et al., 2008; 

Kilpatrick et al., 2008; Vogels, Göertz, et al., 2017a, 2017b).  Therefore, 

the capacity to differentiate between two populations of mosquitoes of 

different ages may be useful to assess WNV control interventions 

targeting vector longevity.   

 In the case of the transcriptional age grading technique, a new method 

for age prediction is proposed for Cx. pipiens s.s based on a single 

candidate gene with individual mosquitoes. The one gene approach is 

simpler and more cost-effective to implement than previous 

methodologies developed for other mosquito species based on 

multivariate calibration. Furthermore, the use of whole individual 

mosquitoes avoids the time required to dissect specimens in other 

methods. In the case of the sensor-based system, its characteristics 
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should enable automated age-grading of wild female Culex mosquitoes 

in the field without the need for specialised laboratory material, 

installations, or expert staff, and with potential application to other 

mosquito vectors. Both methodologies used in the present study 

represent an advance in the state of the art in mosquito age grading 

and vector biology, with potential future application in mosquito 

surveillance and control programs.  
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Supporting Information 

 

S1 Table. Pairwise comparisons in the distribution of LogC values 

between age classes using Wilcoxon rank sum exact test for CUT (A) 

and SCP (B). Blue cells indicate significant differences between age 

categories (p-value < 0.05). 

 

 

 

 

 

 

 

A. CUT

Age classes 1 2 3 4 5 9 13 17 21 25 29

1 - - - - - - - - - - -

2 0.102 - - - - - - - - - -

3 0.3223 0.3223 - - - - - - - - -

4 0.0038 0.0038 0.0038 - - - - - - - -

5 0.0038 0.0038 0.0038 0.0038 - - - - - - -

9 0.0038 0.0038 0.0038 0.0038  0,9372 - - - - - -

13 0.0038 0.0038 0.0038 0.0038  0,1020 0.0433 - - - - -

17 0.0038 0.0038 0.0038 0.0038  0,9372 0.7395 0.1347 - - - -

21 0.0038 0.0038 0.0038 0.0038 0.7395 0.5797 0.1347  0,3959 - - -

25 0.0038 0.0038 0.0038 0.0038  0.9372 0.689 0.1347 0.7395 0.3223 - -

29 0.0038 0.0038 0.0038 0.0038  0.9372 0.7395 0.026 0.5797 0.5797 0.32 -

B. SCP

Age classes 1 2 3 4 5 9 13 17 21 25 29

1 - - - - - - - - - - -

2  0.9372 - - - - - - - - - -

3 0.1513 0.5128 - - - - - - - - -

4 0.0035 0.0064 0.0035 - - - - - - - -

5 0.0035 0.0035 0.0035 0.0035 - - - - - - -

9 0.0035 0.0035 0.0035 0.0035 0.0514 - - - - - -

13 0.0035 0.0035 0.0035 0.0035 0.0064 0.0794 - - - - -

17 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0116 - - - -

21 0.0035 0.0035 0.0035 0.0035  0,0340 0.611 0.3405 0.0116 - - -

25 0.0035 0.0035 0.0035 0.0035 0.0035 0.0064 0.1089 0.8333 0.0514 - -

29 0.0035 0.0035 0.0035 0.0035 0.0035 0.0116 0.5128 0.0116 0.2697 0.1 -
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S1 Fig. Linear regression between age and LogC values for CUT (A) and 
SCP (B). 
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S2 Fig. Regression tree for LogC values of SCP. 
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S2 Table. Age predicted values (mean and 95% confidence intervals) obtained from 

the cross-validated model.  

 

 
 

 

 

  

(continuation)

Lower limit Upper limit

1 2.8 0.0 5.6 13 10.6 -3.7 24.9

1 2.8 0.0 5.6 13 20.4 7.0 33.9

1 2.8 0.0 5.6 13 20.4 7.0 33.9

1 2.8 0.0 5.6 13 20.4 7.0 33.9

1 2.8 0.0 5.6 13 20.4 7.0 33.9

1 2.8 0.0 5.6 13 20.4 7.0 33.9

2 2.8 0.0 5.6 17 20.4 7.0 33.9

2 2.8 0.0 5.6 17 20.4 7.0 33.9

2 2.8 0.0 5.6 17 20.4 7.0 33.9

2 2.8 0.0 5.6 17 20.4 7.0 33.9

2 2.8 0.0 5.6 17 20.4 7.0 33.9

2 2.8 0.0 5.6 17 20.4 7.0 33.9

3 2.8 0.0 5.6 21 10.6 -3.7 24.9

3 2.8 0.0 5.6 21 10.6 -3.7 24.9

3 2.8 0.0 5.6 21 20.4 7.0 33.9

3 2.8 0.0 5.6 21 20.4 7.0 33.9

3 2.8 0.0 5.6 21 20.4 7.0 33.9

3 2.8 0.0 5.6 21 20.4 7.0 33.9

4 2.8 0.0 5.6 25 20.4 7.0 33.9

4 2.8 0.0 5.6 25 20.4 7.0 33.9

4 2.8 0.0 5.6 25 20.4 7.0 33.9

4 2.8 0.0 5.6 25 20.4 7.0 33.9

4 2.8 0.0 5.6 25 20.4 7.0 33.9

4 2.8 0.0 5.6 25 20.4 7.0 33.9

5 2.8 0.0 5.6 29 20.4 7.0 33.9

5 2.8 0.0 5.6 29 20.4 7.0 33.9

5 2.8 0.0 5.6 29 20.4 7.0 33.9

5 10.6 -3.7 24.9 29 20.4 7.0 33.9

5 10.6 -3.7 24.9 29 20.4 7.0 33.9

5 10.6 -3.7 24.9 29 20.4 7.0 33.9

9 10.6 -3.7 24.9

9 10.6 -3.7 24.9

9 10.6 -3.7 24.9

9 10.6 -3.7 24.9

9 20.4 7.0 33.9

9 20.4 7.0 33.9

95% confidence intervals
Mean 

Predicted Age

Actual age
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4.5 CHAPTER 5: Assessment of ZIKV 

infection in Aedes albopictus though its 

wing-beat pattern. 

Automated identification of ZIKV infected Aedes 

albopictus by the use of an entomological optical 

sensor trained with machine learning (In 

preparation). 
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Automated identification of ZIKV infected Aedes 

albopictus by the use of an entomological optical 

sensor trained with machine learning 
 
María I. Gonzalez-Perez1,2, Jaume Gardela1,2, Bastian Faulhaber3, Mark 

Williams3, Joao Encarnaçao3, Sandra Talavera1,2, Núria Busquets1,2*. 
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(UAB), Bellaterra, 08193, Catalonia. Spain. 
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Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma 

de Barcelona (UAB), Bellaterra, 08193, Catalonia. Spain. 

3 Irideon S.L., Barcelona, Spain. 

*Correspondence: nuria.busquets@irta.cat 

Abstract 

Zika virus (ZIKV) is an emergent mosquito-borne flavivirus that can 

cause severe malformations and diverse neurological disorders in 

neonates. After several outbreaks in South America, in 2016 it was 

declared a public health emergency of international concern by the 

WHO.  Although the epidemic cycle of ZIKV is mainly sustained by Ae. 

aegypti, Ae. albopictus is also a competent vector that can have a 

primary role in its transmission in temperate areas.  It has been 

reported that ZIKV infection is neurotropic in mosquitoes, leading to 

behavioural changes in the vector, which may influence its vectorial 

mailto:nuria.busquets@irta.cat
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capacity. Here, we hypothesize that ZIKV infection in Ae. albopictus may 

cause an alteration in the mosquito flight pattern due to the ZIKV 

replication in the mosquito’s nervous system; and that the potential 

alteration in the flight performance could be detected by an optical 

sensor, which in combination with machine learning techniques, could 

serve to differentiate infected from non-infected mosquitoes. To test 

this hypothesis, we performed a laboratory assay with a smart-trap 

system formed by an optical sensor coupled to a standard mosquito 

trap, which reported a 63.0% classification accuracy with the power 

spectral density (PSD) feature and the deep neural network (DNN) 

algorithm. This result, although improvable with more training samples, 

is encouraging for future vector biology research and potential 

applications of the smart-trap technology in mosquito and arbovirus 

surveillance and control programs.  
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Introduction 

Zika virus (ZIKV) is an emergent mosquito-borne virus that is a member 

of the Flaviviridae family, which includes other mosquito-borne viruses 

of public health concern such as dengue (DENV), West Nile (WNV), 

Japanese encephalitis or yellow fever  (Plourde & Bloch, 2016) viruses. As 

with other flaviviruses, ZIKV is a small spherical particle of ~50 nm 

containing a positive-sense single-stranded RNA molecule of ~11 kb that 

encodes for three structural proteins and seven non-structural proteins 

(Lindenbach & Rice, 2003). This virus was first isolated in 1947 from a 

febrile rhesus monkey (Macaca mulatta) in the Zika forest (Uganda) and 

a few months later from a pool of Aedes africanus mosquitoes in the 

same forest (GW et al., 1952). According to phylogenetic analyses, there 

are at least two major lineages of ZIKV: the African and the Asian 

(Haddow et al., 2012). Reports of human infections were constrained to 

these continents with very few diagnosed cases (Gubler et al., 2017). It 

was not until 2007 when the global ZIKV awareness began with the first 

large outbreak beyond its known distribution range, in the Yap State 

(Micronesia) (Duffy et al., 2009).  From 2013 onwards, ZIKV outbreaks 

emerged in the Pacific Islands, Africa, Asia, and the Americas (Gubler et 

al., 2017)5. In 2016, the occurrence of clinical cases of microcephaly in 

neonates, congenital nervous system malformations and Guillain-Barré 

syndrome associated with ZIKV infection led the World Health 

Organization to declare ZIKV as a public health emergency of 

international concern (Wilder-Smith & Osman, 2020). 

 



Chapter 5: Assessment of ZIKV infection in Aedes albopictus through its wing-beat 
pattern 

 

204 
 

Zika virus is maintained in nature primarily through a sylvatic cycle 

which includes forest-dwelling Aedes mosquitoes and non-human 

primates, although many other non-primate animals have been 

considered as potential reservoirs (Bueno et al., 2016). Infections in 

humans occur when there is a spillover from the sylvatic cycle and 

humans become incidental hosts or when an epidemic transmission 

cycle becomes established in urban sites with anthropophilic vectors 

feeding preferentially on humans (Gutiérrez-Bugallo et al., 2019). 

Sexual transmission of ZIKV also plays a role in the virus spreading 

among humans (Counotte et al., 2018). Additionally, the confirmation 

of vertical and venereal transmission of ZIKV for several mosquito 

species has been suggested as a mechanism that may ensure the 

maintenance of ZIKV in vector populations during adverse conditions 

for horizontal transmission among vertebrate hosts (Gutiérrez-Bugallo 

et al., 2019).  

Despite that many mosquito species have been found to be naturally 

infected by ZIKV, Aedes aegypti has been pointed out to be the major 

vector in urban areas driving recent epidemics, while other Aedes 

species may contribute to the sylvatic transmission cycle (Boyer et al., 

2018; Epelboin et al., 2017). In temperate areas where Ae. aegypti is 

absent, other human-adapted species such as Aedes albopictus, which 

are also competent to carry and transmit ZIKV (Mckenzieid et al., 2019), 

can contribute to disease epidemics even though Ae. albopictus 

transmission rates for ZIKV are low compared to Ae. aegypti (Obadia et 

al., 2022). An example of this was the autochthonous transmission of 

ZIKV declared in France in 2019 which was attributed to Ae. albopictus 



Chapter 5: Assessment of ZIKV infection in Aedes albopictus through its wing-beat 
pattern 

 

205 
 

(Giron et al., 2019). The highly invasive nature and extensive geographic 

distribution of Ae. albopictus, which tends to predominate over Ae. 

aegypti in habitats where both species are sympatric (M. A. H. Braks et 

al., 2004; O’Meara et al., 1995; Tedjou ID et al., 2019; Zhou et al., 2022), 

suggests that Ae. albopictus has the potential to become a major vector 

of ZIKV globally (Gutiérrez-Bugallo et al., 2019). In addition, its 

ecological plasticity in habitat and host choice, makes it a potential 

bridge vector, thus increasing the risk of spill-over and spill-back events 

(Pereira-Dos-Santos et al., 2020).  

When a mosquito feeds on a viraemic host, the virus is ingested through 

the digestive tract triggering an innate immune response in the vector 

(Samuel et al., 2018). To replicate and disseminate inside the vector, the 

virus needs to overcome this immune response and cross the different 

vector barriers in the midgut and the salivary glands. These biological 

constraints pose an evolutionary pressure on the virus through the 

effect of sequential bottlenecks which challenges viruses to maintain 

diversity and fitness (Forrester et al., 2014). There is a consensus 

assuming that arboviruses infect arthropods without significant 

damage, supporting a persistent infection in their cells without the 

cytopathic effect that characterizes vertebrate cell infections (Y. G. Li et 

al., 2012). However, the effects of arboviral infection on mosquitoes are 

diverse and show a vector-pathogen specificity, which may be a result 

of co-evolutionary processes (Ciota et al., 2011).   

Some flaviviruses exhibit a remarkable tropism for mosquito nervous 

tissues, which appeared to be the primary site of amplification for DENV 

in Ae. aegypti (Linthicum et al., 1996). Neurotropism has also been 
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demonstrated for ZIKV with replication in the central nervous system 

and peripherical sensory organs of Ae. aegypti  (Gaburro, et al., 2018a). 

The costs of infection of different flaviviruses on their competent 

vectors have been published in several studies (Gaburro et al., 2018a; 

Gaburro, Paradkar, et al., 2018; Lima-Camara et al., 2011; Maciel-de-

Freitas et al., 2011; Pedreira Padilha et al., 2018; Platt et al., 1997; 

Vogels, Fros, et al., 2017). Most of them are based on the effects of 

DENV in Ae. aegypti, thus reporting: a decrease in vector survival, 

longevity, and fecundity (Maciel-de-Freitas et al., 2011); alterations in 

the feeding behaviour with longer probing and feeding times (Platt et 

al., 1997); alterations in oviposition olfactory preferences (Gaburro et 

al., 2018); or increases in the locomotor activity (Lima-Camara et al., 

2011. For WNV and Culex pipiens, a decrease in the host-seeking 

response was found in infected mosquitoes but no effects on host 

preferences, blood-feeding propensity, olfactory responses, survival, or 

flight activity were identified (Vogels, Fros, et al., 2017). In the case of 

ZIKV infecting Ae. aegypti, one study found a decrease in their 

locomotor activity (Pedreira Padilha et al., 2018); while another 

reported a hyperexcitation of infected neurons and a significant 

increase in the diurnal locomotion activity (Gaburro et al., 2018a). 

Although there is growing evidence that infected mosquitoes express a 

modified behavioural response, data on the actual flight performance 

of ZIKV-infected mosquitoes are still scarce. 

Here, we hypothesize that the infection with ZIKV of the competent 

vector Ae. albopictus may cause an alteration in the mosquito flight 

pattern due to the ZIKV replication in the mosquito’s nervous system; 
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and this alteration in the flight performance could be registered by an 

optical sensor, which in combination with machine learning (ML) 

techniques, could serve to differentiate infected from non-infected 

mosquitoes. The sensor prototype, which is coupled to a standard 

mosquito suction trap, previously reported high accuracy results for 

genus and sex classification of Aedes and Culex mosquitoes in 

laboratory conditions (González-Pérez et al., 2022). In the present 

contribution, the system is challenged to automatedly differentiate 

ZIKV-infected from non-infected Ae. albopictus through supervised 

learning trained on mosquito flight features. To the best of our 

knowledge, the present study is the first time that an automated 

classification system coupled to a mosquito trap has assessed the 

classification of mosquitoes by their vector status. This opens a whole 

new perspective for the future of mosquito and arbovirus surveillance 

and vector biology research.  

 

Material and methods 

Mosquito colony rearing 

An established laboratory colony of Ae. albopictus, population of Sant 

Cugat del Vallès (2005), Barcelona, Spain (41.4667°, 2.0833°) was used 

to run the experiment. Eggs were hatched with autoclaved water and 

larvae were maintained in plastic trays (density of 250 larvae/tray) with 

dechlorinated tap water, renewed three times per week, and fed with 

fish food pellets (Goldfish Sticks-TETRA, Melle, Germany). Pupae were 

placed in plastic cups inside insect-rearing cages (BugDorm-1 Insect 



Chapter 5: Assessment of ZIKV infection in Aedes albopictus through its wing-beat 
pattern 

 

208 
 

Rearing Cage W30 × D30 × H30 cm, MegaView Science, Talchung, 

Taiwan) until adult emergence. Adult female mosquitoes were 

anesthetised with CO2 (Flowbuddy flow regulator, 59-122BC, Flystuff, 

California, USA) and sorted in groups of 15 individuals in cardboard 

boxes and supplied with 10% sucrose solution administered on soaked 

cotton pledgets. Mosquito life cycle took place inside a climatic 

chamber (Telewig, Barcelona, Spain) at 28ºC; 80% relative humidity 

(RH); and a light:dark photoperiod of 12:12 hours. 

 

Virus production and titration 

The ZIKV Martinique strain from Asian lineage 

(MRS_OPY_Martinique_PaRi_2015, Asian lineage, passage 3, Genbank 

reference: KU647676), which was originally isolated from a human 

serum in 2015, was used in the present study to infect Ae. albopictus 

mosquitoes. Viral production was performed from an original stock and 

was titrated in Vero cells (ATCC, ref. CCL-81) to obtain the plaque 

forming units per mL (PFU/mL).  

 

Experimental infection assay 

Adult female Ae. albopictus of 3-5 days of age were transferred to the 

Biosafety Level 3 facility of IRTA-CReSA, where the experimental 

infection of ZIKV took place. Sucrose supply was removed 24 h before 

the infection assay. Then, females were anesthetised with CO2 in a plate 

(Flowbuddy flow regulator, 59-122BC, Flystuff, California, USA) and 
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were inoculated intrathoracically (IIT) with a microinjector 

(XenoWorks®, Sutter Instrument, Novato, USA). A total of 843 females 

of Ae. albopictus were inoculated: 433 with 1 µL of ZIKV from a viral 

stock of 6.74 log10PFU/mL; and 410 with 1 µL of Dulbecco’s modified 

Eagle’s medium (DMEM) (Lonza Group AG, Basel, Switzerland) as a 

control group.  

After inoculation, 6 individual mosquitoes from the IIT ZIKV group and 

6 from the control group were preserved in separate tubes containing 

500 µL of DMEM (with 2% of Fetal Bovine Serum (FBS) and 1% of 

antibiotic and antimycotic solution), as 0 days-post-infection (dpi) 

samples for later virus detection through RT-qPCR. The rest of the 

mosquitoes were maintained at 28ºC and 80% of RH and fed with 

sucrose ad libitum until 14-16 days of age. At this time point, 7 females 

from the IIT ZIKV group and 6 from the control group were separated as 

a 11-12 dpi samples. Females from the IIT ZIKV group were previously 

anesthetised with CO2 in the FlyStuff plate and the wings and legs were 

removed from the body. Saliva was extracted from each mosquito 

following a capillary technique as described in a previous work 

(Dubrulle et al., 2009)34. The extraction was carried out during 30 min 

with a P20 pipette tip filled with 7 µL of FBS and saliva samples were 

preserved in 193 µL of the same medium described above. Individual 

bodies from these same individuals were preserved in 500 µL of the 

same medium. Females from the control group at 11-12 dpi were not 

dissected and were preserved individually in 500 µL of the same 

medium. Individual bodies were homogenised at 30 Hz for 1 min using 
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TissueLyser (Qiagen GmbH, Stockach, Germany) and then stored at -

75ºC until its processing. 

For immunohistochemistry (IHQ) assays, 6 other females of each group 

(IIT with ZIKV and ITT with DMEM) at 11-12 dpi were preserved in 

formaldehyde.  

The rest of individuals that survived the period of 11-12 dpi (259 from 

the ZIKV IIT group and 271 from the control group) were used for the 

flight assays. The mortality of inoculated mosquitoes was quantified. 

 

Virus detection through real time RT-qPCR 

Viral RNA was extracted from body and saliva samples using 

NucleoSpin® RNA Virus commercial kit (Macherey-Nagel GmbH & Co. 

KG, Düren, Germany) according to the manufacturer’s protocol. 

Reverse transcription quantitative polymerase chain reaction (RT-qPCR) 

for ZIKV was carried out by using the primers and TaqMan probe 

designed in a previous study (Lanciotti et al., 2008)35  and the AgPath-

ID™ One-Step RT-PCR reagents (Applied Biosystems, Thermo Fisher 

Scientific, Massachusetts, USA). The thermal cycling conditions were 

45oC for 10 min; 95oC for 10 min; and 45 cycles of 95oC for 10 s and 60oC 

for 45 s. 
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Virus detection and semi-quantification through IHQ 

The formaldehyde preserved samples of IIT ZIKV and DMEM 

mosquitoes at 11-12 dpi were used for IHQ analyses following standard 

paraffin-embedding histological procedures and haematoxylin and 

eosin staining. A microtome (HistoCore MULTICUT, Leica, Wetzlar, 

Germany) was used to cut 3 µm of mosquito paraffin sections, which 

were then deparaffinized, rehydrated, and incubated with 3% hydrogen 

peroxide in methanol for endogenous peroxidase inhibition. The 

sections were first incubated with Target retrieval solution (DAKO, Ref: 

S1699) and blocked for unspecific staining with bovine albumin (2%) in 

PBS - Tween20. After that, the sections were incubated with the primary 

antibody, a mouse monoclonal [D/2/D6/B7] antibody (MoAb) to 

flavivirus NS1 D2/D6/D7 (Abcam, Ref: ab214337) (1/500). The samples 

were later incubated with a peroxidase labelled polymer conjugated 

goat anti-mouse immunoglobulins (DAKO, Ref: AK4001) secondary 

antibody. Finally, 3′-Diaminobenzidine tetrahydrochloride hydrate 

(DAB, Sigma-Aldrich, Ref: D5637) substrate was added for staining 

reaction followed by counter-staining with Mayer’s haematoxylin. For a 

no primary antibody control, duplicate sections were incubated with 

the antibody diluent without primary antibody, followed by incubation 

with the previous secondary antibody and detection reagents. For the 

isotype control, duplicate sections were incubated with a non-immune 

antibody of the same isotype and at the same concentration as the 

primary antibody, followed by incubation with the secondary antibody 

and detection reagents. Samples were prepared with DPX mounting 
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medium using a fully automated glass coverslipper (Leica, Ref: CV5030) 

and were then examined under the microscope (Motic, Ref: BA410E). 

Mosquito tissues stained in brown revealed the detection of the non-

structural protein 1 (NS1) of ZIKV by the primary antibody (MoAb 

[D/2/D6/B7]) and thus identified as positive for ZIKV infection. Negative 

controls (non-infected mosquitoes) were analysed to determine 

unspecific staining which may lead to misinterpretations, e.g., because 

of chitin content or the presence of artifacts (Chatterjee, 2014)36. A 

semi-quantification of the ZIKV antigen presence in mosquito tissues 

was performed based on a scoring scheme from 0 to 3, in which 0 means 

no cells stained; 1 means few cells stained; 2 means many cells stained; 

and 3 means all cells stained. The central nervous system (head, 

thoracic and abdominal ganglia) so as peripherical structures 

(ommatidia and Johston’s organ) were analysed because of the 

potential affectation of virus neurotropism on mosquito flight 

behaviour (Gaburro et al., 2018a). Scores for each anatomical structure 

were averaged for the set of 6 IIT ZIKV samples. 

 

Flight assays with the sensor 

Female mosquitoes from the IIT ZIKV group and DMEM control group 

were used to perform separate flight assays with an optical sensor 

prototype (Irideon, Barcelona, Spain), which was coupled to the 

entrance of a BG-Mosquitaire trap (Biogents, Regensburg, Germany). 

The inner operational principal of the sensor was described in detail in 

a previous work (González-Pérez et al., 2022). For the flight assays, the 
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sensor and trap system were placed inside an insect-rearing cage 

(BugDorm-4S4590 W47.5 × D47.5 × H93.0 cm, MegaView Science, 

Talchung, Taiwan) in a climatic chamber (Dycometal, CCK-0/5930m, 

Barcelona, Spain) at controlled environmental conditions of 23ºC and 

80% of RH.  Mosquitoes were released in batches of 15-30 individuals 

inside the insect-rearing cage where the sensor was placed. Mosquitoes 

flew freely until they got sucked by the effect of the fan inside the trap, 

passing through the sensing zone of the sensor where their flight got 

recorded. All mosquitoes were held in the climatic chamber at the 

designated ambient temperature for 24 h prior to the start of the assay 

for acclimatization.   

 

Machine learning model 

After the flight assays, the sensor recordings were downloaded to a 

laptop computer and processed using a Python script to produce 

playable and viewable audio files. Pre-processing of data included the 

manual examination of each recording and the exclusion of those 

considered to be invalid, e.g., recordings containing double flights or 

those where the mosquito was deemed to have hit the wall of the flight 

tube inside the sensor. The resulting dataset was split into 75% for 

training the supervised ML model and 25% for testing its performance. 

The power spectral density (PSD) feature was extracted from the flight 

signal and was trained with a deep neural network (DNN) algorithm in 

order to differentiate ZIKV infected from non-infected Ae. albopictus. 

Four-fold cross-validation was performed on the training set in search 
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of the most optimized model which was then used for testing. Model 

performance was assessed using the accuracy metric, which is 

calculated by dividing the number of correct predictions by the total 

number of predictions. Since the data in the test set are completely new 

to the model, accuracy results for the test set are an indication of how 

well the model generalizes on new data. 

 

Results 

ZIKV detection by RT-qPCR  

The presence of ZIKV was confirmed in all mosquitoes (N=6) at 0 dpi, 

which were IIT with ZIKV with a mean Ct value of 28.4. At 11-12 dpi, 

100% of the inoculated mosquitoes presented infection with a mean Ct 

value of 19.7, indicating virus replication within all mosquitoes exposed 

to ZIKV. Among the mosquitoes with infection, three tested positive in 

saliva meaning that 42.8% of the samples (N=7) were transmitting ZIKV 

at 11-12 dpi.  

 

ZIKV detection by IHQ  

The nervous system of Ae. albopictus female mosquitoes supported 

ZIKV replication at 11-12 dpi in both the ganglionic system (head and 

thoracic ganglia) and in peripherical structures (mainly the ommatidia), 

as depicted in Fig 1. According to the developed scoring scheme for 

virus semi-quantification through IQH (Table 1), the most affected 

organs were the compound eyes (ommatidia), whose average score for 
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antigen-staining was 2.7, showing high ZIKV infectivity in the 

photoreceptor cells. The second most affected anatomical structure 

was the ganglionic system of the head and thorax with two clearly 

differentiated regions: the neuropile, formed by non-medullated axons 

located in the inwards of the ganglia; and the cortical layer, formed by 

the nucleus of the neurons (soma) delineating an outline of the 

ganglionic mass. While the neuropile was barely stained (score of 0.5), 

the cortical layer showed high infectivity with an average score of 1.8 

and 2.0 in the head and thoracic ganglia respectively. The microtome 

sections of the sampled mosquitoes did not allow to visualise the 

abdominal ganglia, so scoring data on this structure was not available. 

The Johston’s organ located in the antennae did not support high 

positivity neither scoring for ZIKV, showing an average score of 0.5.  
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Table 1. Summary of the ZIKV antigen semi-quantification in the 

anatomical structures of the nervous system of Ae. albopictus 

females at 11-12 dpi. Averages and standard deviations (SD) of the 

scores for all sampled mosquitoes are presented. Abbreviations: Data 

not available (NA). 

 

ZIKV infected mosquitoes 

  1 2 3 4 5 6 Average SD 

Ommatidia 3 3 3 1 3 3 2.7 0.7 

Johston's organ 1 NA 1 0 0 NA 0.5 0.5 

Head ganglia        
 

Neuropile 0 1 1 0 0 1 0.5 0.5 

Cortical layer 2 2 2 2 2 1 1.8 0.4 

Thoracic ganglia        
 

Neuropile NA 0 1 0 1 NA 0.5 0.5 

Cortical layer NA 2 2 2 2 NA 2 0 

Abdominal ganglia        
 

Neuropile NA NA NA NA NA NA NA NA 

Cortical layer NA NA NA NA NA NA NA NA 
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Fig 1. Anatomical structures in head (a-d) and thorax (e-h) of non-infected (a, e) and ZIKV-

infected (b-d, f-h) Ae. albopictus females. Pictures a, b, e, f at 10x (scale bar 300 µm) and 

c, d, g, h at 40x (scale bar 60 µm). Cortical layer (CL), Johnston’s organ (JO), neuropile (NP), 

ommatidia (OM), salivary gland (SG). Red arrows indicate points of antigen-staining. 
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Classification accuracy of the ML model 

From the total of 843 females that were inoculated for the study, 35.8% 

of the IIT ZIKV group and 29.5% of the control group died before 11-12 

dpi, leaving a total of 567 individuals alive. Discounting those that were 

preserved for virus detection, a total of 530 females were finally 

available and were released during the flight assays (259 from the IIT 

ZIKV group and 271 from the control group). Some of the mosquitoes 

that were released in the flight assays showed certain mobility 

problems and were inactive on the floor of the insect cage. In the end, 

212 ZIKV-infected mosquitoes and 209 non-infected mosquitoes 

entered the trap and were counted by the sensor, representing 

respectively 81.8% and 77.1% of the mosquitoes that were originally 

released. During the preprocessing of data, 5.2% of flights were rejected 

leading to a final dataset composed of 399 valid flight recordings (197 

for the IIT ZIKV group and 202 for de control group). The final dataset 

was randomly under-sampled to obtain a balanced dataset which was 

split into a training set and a test set. The training set was used to 

develop the ML classification model with the extracted PSD feature 

trained with DNN, reporting an overall accuracy of 63.0% in classifying 

ZIKV-infected and non-infected Ae. albopictus. A training score of 68.6% 

indicated that with more training data the results could improve. 
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Discussion 

The current study assessed for the first time the automated 

identification of arbovirus-infected mosquitoes captured by a mosquito 

trap by the analysis of their wing-beat flight pattern through supervised 

ML. The developed automated classification system composed of an 

optical sensor coupled to a mosquito trap, appears to be a potentially 

useful tool for the future of entomological and arbovirus surveillance. 

The current classification accuracy of the model is still improvable, and 

a full development of its capabilities would require more extensive work 

that includes more training samples.  

In recent years, the interest in ML approaches for mosquito surveillance 

has skyrocketed with an upward trend of published papers aimed at 

identifying mosquitoes through a variety of sensing devices (Joshi & 

Miller, 2021). Particularly, the use of optical (also called optoacoustical) 

sensors to record the mosquito flying signals has experienced 

considerable growth, attempting different classification tasks regarding 

mosquito taxonomy (e.g., genus and species classification) and other 

attributes of mosquito biology (e.g., gender or parity status) 

(Fanioudakis et al., 2018; Genoud et al., 2018, 2019, 2020; Ouyang et 

al., 2015; Silva et al., 2015)  with free-flying mosquitoes. Other proposals 

include the use of sensors coupled to mosquito traps which record 

mosquitoes under a forced flight while they are being sucked by the fan 

inside the trap and have been designed for mosquito counting (Geier, 

Weber, Rose, Obermayr, et al., 2016; J. Wang et al., 2020), genus and 

sex classification(González-Pérez et al., 2022) or for the recognition of 

certain mosquito species (Lai et al., 2022). However, the automated 
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recognition of mosquitoes based on their infection status through 

optical sensors had not been attempted before, until the present work. 

Our initial hypothesis began on the basis that a disseminated infection 

of ZIKV in the competent vector Ae. albopictus may generate an 

affectation in the nervous system that would lead to an alteration in the 

mosquito behaviour, as previously reported for ZIKV-infected Ae. 

aegypti (Gaburro et al., 2018a; Pedreira Padilha et al., 2018). The IHQ 

analysis confirmed the tropism of ZIKV for Ae. albopictus nervous 

tissues, showing virus replication at 11-12 dpi in the cortical layer of the 

head and thoracic ganglia and in peripherical sensorial structures, 

especially in the ommatidia, as indicated by positive staining. These 

results are in concordance with previous IHQ analysis in Ae. aegypti at 

two weeks post-infection with ZIKV (Gaburro et al., 2018a). The 

attributed scoring values indicated that ommatidia supported higher 

virus replication in comparison with other tissues, suggesting that the 

vision of Ae. albopictus may be affected when infected with ZIKV, thus 

possibly compromising mosquito behaviours mediated by visual stimuli 

such as the optomotor response, landscape navigation, swarming, and 

host-seeking behaviours (Hawkes et al., 2022). These infection-driven 

changes in mosquito rhythmic patterns may have an impact on its 

vectorial capacity, and consequently, on arbovirus transmission (Vieira 

Bruno et al., 2020). 

All the females IIT with ZIKV sustained replication at 11-12 dpi, however, 

not all of them were actually transmitting the virus at that time point, 

which agrees with the transmission rates reported for ZIKV-infected Ae. 

albopictus in other competence studies (Di Luca et al., 2016; Jupille et 



Chapter 5: Assessment of ZIKV infection in Aedes albopictus through its wing-beat 
pattern 

 

221 
 

al., 2016). The high mortality reported at 11-12 days post-inoculation in 

both infected and uninfected groups is likely associated with the 

intrathoracic inoculation technique (Sanchez-Vargas et al., 2021), so is 

the presence of mosquitoes with scarce mobility during the flight 

assays. A shift towards oral infection may solve these problems but 

would generate others possibly related to low feeding and infection 

rates (Yang et al., 2022), hence making it unpractical to apply for this 

kind of assays that require a lot of data.  

Overall, the automated classification system was able to discriminate 

Ae. albopictus mosquitoes with a disseminated ZIKV infection from non-

infected ones with 63.0% of classification accuracy. This result points 

out that ZIKV infection in Ae. albopictus may generate an alteration in 

the mosquito flight pattern that could be identified with an optical 

sensor coupled to a mosquito trap, thus enabling an automated 

classification through an ML model. According to the training score, the 

accuracy of the model could be improved with more training samples 

which encourages further testing in search of better performance. This 

study provides preliminary evidence of how new technologies have the 

chance to enhance the capabilities of mosquito vector surveillance thus 

allowing a timelier disease risk assessment.  

 

Conclusions 

The infection with ZIKV of the competent vector Ae. albopictus modifies 

the mosquito flight pattern possibly due to the amplification of ZIKV in 

its nervous system. This change in flight performance can be registered 
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by means of optical sensors, which in combination with ML, can provide 

classification models for the automated differentiation of infected from 

non-infected mosquitoes. The automated classification system 

presented here, consisting of a sensor coupled to a mosquito trap, was 

able to differentiate ZIKV-infected Ae. albopictus with 63% of accuracy. 

Although further assays are needed to improve the accuracy of the 

model, this work provides preliminary evidence of how this kind of 

technology has the potential to boost the current state of mosquito 

vector monitoring with effortless and timelier surveillance methods.  
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5. GENERAL DISCUSSION 

A great fraction of human’s world population lives at risk of VBD, 

accounting for almost 700,000 human deaths per year and being MBD 

the largest contributors to disease burden (WHO, 2020). In a context 

of global change, the unprecedented increase in travel, trade and 

tourism has promoted the circulation of both pathogens and vectors 

beyond their origin sites (Baker et al., 2022). Moreover, massive 

changes in land uses from natural to human-dominated landscapes 

with growing deforestation, agriculture and urbanization have 

enhanced disease risk by altering the interactions between humans, 

pathogens, vectors, and vertebrate hosts (Franklinos et al., 2019). 

Together with environmental change, socioeconomic factors such as 

poverty index have also been correlated with an increased risk of 

neglected tropical diseases (e.g., dengue and malaria) in low-income 

countries (Magalhães et al., 2023). Altogether, there is increasing 

tendency in the incidence and geographical distribution of MBD which 

are emerging in new areas and re-emerging in regions from which they 

had previously been eradicated, thus constituting a major global 

health issue (WHO, 2014).   

Reducing the incidence of MBD is on the focus of the World Health 

Organization, which in 2017 adopted the Global Vector Control 

Response aimed at reducing the disease burden of VBD by reinforcing 

vector surveillance and control programs though a perspective of 

integrated vector management (WHO, 2017). On one side, mosquito 

control has been demonstrated highly effective against MBD when 
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comprehensively applied and sustained (Wilson Id et al., 2020). On the 

other side, mosquito surveillance gathers important entomological 

information about the vector which allows to stablish intervention 

thresholds for control actions and serves to evaluate the efficacy of 

control measures (Caputo & Manica, 2020). 

In the last decades, Europe has experienced an increasing number of 

imported and indigenous cases of MBD (Calzolari, 2016). Native 

mosquitoes like Cx. pipiens s.s. are behind the transmission of endemic 

pathogens of mandatory declaration for public and animal health such 

as WNV; but are also responsible of the emergence of other neglected 

pathogens that remain present in the continent such as USUV, Tahyna 

or Sindbis virus. Furthermore, native mosquitoes (e.g., Anopheles 

genus) could act as local vectors of already eradicated pathogens (e.g., 

malaria plasmodia) if they are reintroduced. Parallelly, the expansion 

of Aedes invasive species in Europe has led to the circulation of exotic 

pathogens within autochthonous transmission cycles thus leading to 

sporadic disease outbreaks. A proof of this is the increase in the 

number of CHIKV and DENV outbreaks transmitted by Ae. albopictus in 

the Mediterranean area in the last years (ECDC, 2023b, 2023c).   

Appropriate surveillance methods according with the current 

epidemiological contexts are crucial to obtain quality and timely 

information for public health institutions for a rapid disease risk 

assessment and response (M. Braks et al., 2011). The European Centre 

for Disease and Control is the reference institution in this regard and 

promotes the strengthen of preparedness and response nets in front 

of infectious diseases in Europe. One of its goals was the creation of a 
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harmonised framework for vector surveillance among the European 

countries by elaborating reference guidelines for native and invasive 

mosquito species (ECDC, 2012; Schaffner et al., 2014).  

A review of the traditional methods versus novel technological 

solutions for mosquito surveillance was carried out in the chapter 1 of 

the present thesis. The assortment of mosquito collection methods is 

very diverse, and their suitability depend on the targeted species so as 

on the requested information about the vector (e.g., presence, 

distribution, status, abundance, seasonal activity, longevity, etc) 

(ECDC, 2014). Many studies are focused on monitoring adult 

mosquitoes rather than immature stages, probably because they are 

easier to monitor, collect and identify. Also, adult sampling has shown 

to perform better than larval indices for measuring the seasonal 

variation in mosquito abundance (Codeço et al., 2015) and for 

predicting disease risk (Leandro et al., 2022). When searching for 

vector longevity, dispersal, biting behaviour, etc, collection of adult 

mosquitoes is the only option. Active surveillance of adult mosquitoes 

is mainly performed by the means of suction traps (e.g., BG-Sentinel, 

BG-Mosquitaire, CDC trap or EVS trap, among others), normally baited 

with CO2 or chemical attractant. 

In routine mosquito surveillance programs, traps are typically revised 

twice a month during mosquito season and the content of the catch 

bags is periodically sent to the laboratory where it is inspected for 

mosquito classification. The collected samples are usually composed 

by a big amount of non-target insects, which must be manually 

separated from mosquitoes. Mosquitoes are then taxonomically 
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identified until the species level and usually sorted by sex, with the aid 

of identification keys or stereoscopic microscopes if necessary. As 

exposed, traditional methods for mosquito surveillance are very 

labour intensive and require expert entomologists to perform the 

taxonomical classification of the specimens as well as a minimum of 

laboratory infrastructure. The great quantity of samples, which need 

to be timely processed, generates a heavy workload to professionals in 

charge. Besides, the inevitable time lag between the trap is placed and 

the data is processed can affect the accurate representation of the 

true time dynamics of mosquito populations thus compromising a 

rapid response if needed.  

The emergence of new technologies applied to the automated 

classification of mosquitoes have the chance to profoundly impact the 

current state of art of mosquito surveillance by overcoming some of 

the major limitations of traditional methods. Several techniques have 

been described so far to this purpose based on the analysis of the 

acoustical properties of mosquitoes using either acoustical or optical 

sensors and ML models (Santos et al., 2019). Also, new approaches 

based on image-recognition and deep learning have recently arisen for 

the classification of vector mosquitoes (Armin Pataki et al., 2021; 

Kittichai et al., 2023; J. Park et al., 2020).  

In the present thesis, a new classification system based on an optical 

sensor coupled to a mosquito trap and trained with ML was developed 

for the automated remote monitoring of Aedes and Culex mosquitoes. 

In chapter 2, a novel optoelectronic sensor prototype was used to 

record a dataset of 4335 mosquito flights from which five different 
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flight features were extracted and used to train five different ML 

algorithms in search of the best classification accuracy for mosquito 

genus and sex in laboratory conditions.  The system was able to 

classify Aedes and Culex mosquitoes by genus with 94.2% of accuracy 

and to classify their sex with 99.4% of accuracy in Aedes and 100% of 

accuracy in Culex. This is in concordance with other previous studies 

which have attempted genus, sex or species classification of free-flying 

mosquitoes by using optical sensors (Batista et al., 2011; Fanioudakis et 

al., 2018; Genoud et al., 2018, 2020; Ouyang et al., 2015; Potamitis & Rigakis, 

2016a; Silva et al., 2015). 

The use of mosquito bioacoustics for characterization and 

classification purposes has been an active field since the first half of 

the 20th century (Kahn & Offenhauser, 1949), specially by using wing 

beat fundamental frequency (Santos et al., 2019). However, this 

feature has been demonstrated to be insufficient as the only predictor 

variable for complex classification tasks where there are overlapping 

frequency distributions such as species identification (Chen et al., 

2014; Genoud et al., 2018; Kim et al., 2021). In the chapter 2, while 

the wing beat fundamental frequency alone gave high accuracy values 

for sex classification (95.5% in Aedes and 98% in Culex), it scored lower 

for genus classification (67.3%). In this case, the use of more complex 

features such as the spectrogram provided the maximum performance 

for genus classification (94.2%) when trained with DNN algorithm. The 

combination of the spectrogram feature with deep learning 

architectures have also been employed in the literature for species 

classification reporting good accuracy results (Fanioudakis et al., 2018; 
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Fernandes et al., 2021; Khalighifar et al., 2022; Wei et al., 2022). For 

sex classification, the use of other extracted flight features such as the 

spectrogram, the MFCC or the PSD in combination with different ML 

algorithms (LR, GB or SVM, among others) also provided better 

accuracy results for this task in both genera (99.4% for Aedes and 

100% for Culex). 

The main difference of our proposed system with respect to most of 

previous classification studies (Batista et al., 2011; Fanioudakis et al., 

2018; Genoud et al., 2018, 2020; Ouyang et al., 2015; Potamitis & Rigakis, 

2016a; Silva et al., 2015) is that, in our case, the sensor was coupled to a 

standard mosquito trap, and mosquitoes were recorded in a forced 

flight while they were sucked by the fan inside the trap, meanwhile 

the previous studies were performed in free-flight. As reported in 

another study of an automated mosquito counting system coupled to 

a suction trap (J. Wang et al., 2020), the airflow generated by the fan 

makes the mosquitoes pass through the sensing zone of the sensor 

quickly and produces an impact on mosquitoes’ flight, which adds 

certain complexity to the automated classification. Besides, the big 

number of data samples required for ML models and the fact that in 

our system each recorded event corresponded to a single mosquito 

made the data gathering task something labour-intensive. As a 

counterpart, the system’s performance showed its potential 

implementation in routine field mosquito surveillance and offer the 

possibility of capturing the recorded mosquitoes, which is very useful 

for vector surveillance, e.g., to confirm the detected species or for 

pathogen screening.  
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Despite the growing research about automated remote sensing in the 

field of entomology, there are very few available examples of 

automated mosquito classification systems which have been 

specifically tested in the field (Day et al., 2020; Lai et al., 2022). In 

chapter 3, the performance of the automated classification system 

described in chapter 2 was assessed in the field for genus and sex 

classification of Aedes and Culex mosquitoes. In this case, a new 

dataset composed by 14,067 flights recorded in the laboratory at 

different temperature regimes and larval density conditions (to 

simulate the heterogeneity of the field) was used to build a ML model 

with the extracted spectrogram feature and GB algorithm, reporting 

an accuracy of 93.9% in laboratory conditions. Then, the classification 

system composed by the sensor, the trap and the associated ML 

model, was tested in two field sites during periods of mosquito 

activity. The accuracy in the field was evaluated by comparing the 

automated classification results reported by the system with those 

from the traditional inspection of the samples carried out by a trained 

entomologist.  

The developed system tested in the field distinguished the designated 

target mosquitoes (from Aedes and Culex genus) from other flying 

insects that entered the traps with an average BA of 95.5%. This result 

suggests that the system would be suitable for a range of mosquito 

surveillance and control activities such as: i) identifying the start and 

end of a mosquito activity season; ii) monitoring seasonal tendencies 

of endemic vectors to prioritize geographical areas of intervention; iii) 

performing quality control checks of control measures aimed at 
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reducing mosquito populations; or iv) identifying the arrival of invasive 

mosquitoes due to changes in land use, the effects of globalization, or 

due to climate change. A previous work, which analysed the 

performance in the field of an automated mosquito counting system 

(the BG-Counter), reported that the accuracy of mosquito detection 

depended on the relative abundance of mosquitoes in the catch with 

respect to other non-target insects, giving high levels of accuracy only 

when the percentage of mosquitoes in the sample was high (89%) 

(Day et al., 2020) .In our field study, the BA results ranged from 92.9% 

to 100%, even with a proportion of target mosquitos as low as 3%, 

which indicates that the system also performed accurate target 

mosquito detection with a low rate of false positives.  

When the system identified an entering insect as a mosquito, it 

automatically classified it by genus and sex in the following categories 

of Aedes female, Aedes male, Culex female and Culex male with an 

average BA of 88.8%. The fact that this field accuracy was only slightly 

below the one obtained for the laboratory (93.9%) indicates that the 

ML model has generalized well to mosquitoes in the field. These 

results outperformed those from a previous study based on a next-

generation trap (the MS-300) containing an infrared window which 

detected Ae. albopictus and Cx. quinquefasciatus with a mean 

accuracy of 64.9% and 79.4% depending on the sampling location (Lai 

et al., 2022). Our high accuracy results for genus and sex classification 

of Aedes and Culex mosquitoes in the field are of great utility for 

public health agencies and biological research in order to: i) detect 

possible introductions of Aedes invasive mosquitoes in new areas; ii) 
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evaluate the effectiveness of control strategies based on mosquito 

modification such as the Sterile Male Technique or Wolbachia 

infection, that target a specific mosquito genus; or iii) monitor 

population dynamics of Aedes and Culex mosquitoes as an indicator of 

their vectorial capacity for arboviruses. Furthermore, the high time 

resolution of the system allowed the representation of the daily and 

seasonal activity patterns of Aedes and Culex mosquitoes in real-time.   

Overall, the system provides several advantages with respect to 

conventional manual surveillance methods described in chapter 1: i) it 

promises a significant reduction in manual effort to gather and inspect 

each catch bag, especially when target mosquitoes must be sorted 

from a large number of non-target insects, and to manually record the 

results; ii) it provides classification results much earlier than what is 

possible in routine monitoring programs with collection cycles of 7 to 

15 days, enabling a faster epidemiological response when needed; iii) 

it is not subject to the effects of predation and degradation of the 

sample; iv) it associates a time of capture stamp to each classification 

result, enabling the activity dynamics of the target insects to be 

determined with time resolutions down to one second; v) the server 

provides automated results in the form of tables and graphs which 

may be downloaded or visualized on the server itself and may feed 

risks maps, via the application programming interface. Accurate fine-

scale time modelling of vector populations may be crucial for 

forecasting disease risk (Bartlow et al., 2019) so as for designing 

targeted precision control actions (Fouet & Kamdem, 2018), thus 

reinforcing an early warning response in front of MBD. 
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Since the age of mosquitoes is a critical determinant of their VC to 

transmit pathogens (Kramer & Ciota, 2015), targeting age through 

vector control is strategic to reduce the impact of MBD. Then, the 

ability to characterize the age of wild mosquitoes provide 

entomological evidence of the epidemiological impacts of these 

control strategies aimed at reducing vector lifespan (O’Neill et al., 

2008). Despite decades of research in age-grading methods (Johnson 

et al., 2020) and the relevance of Cx. pipiens as a vector (ECDC, 2020), 

there was a lack of updated methods to estimate the age of Cx. 

pipiens. To fulfil this gap, in chapter 4, two techniques were described 

to this purpose:  the transcriptional age-grading technique, a 

molecular method based on the analysis of the differential expression 

of age-responsive genes across age categories; and an automated 

classification system which discriminated between age classes based 

on differences in mosquito flight pattern.  

Previous transcriptional profiling studies in An. gambiae (Cook & 

Sinkins, 2010), Ae. aegypti (Cook et al., 2006)and Ae. albopictus 

(Weeraratne et al., 2021), demonstrated that the expression of several 

genes displayed large variation across age categories in adult 

mosquitoes, signalling three of them (CUT, SCP, and CELL) as the most 

informative for age prediction (Cook et al., 2006). In the present 

chapter, these three genes were tested for Cx. pipiens, although in this 

case only two of them (CUT and SCP) reported significant changes with 

age. Since the SCP was the most informative gene to explain the 

variance in age of Cx. pipiens, it was used as the only predictor variable 

for age prediction, thus simplifying previous approaches based on 
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multivariate analysis (Cook et al., 2007) and making it easier and cost-

effective to be implemented. The cross-validated model generated 

showed a MAE of 3.8 days in age prediction. This error was not equally 

distributed between age classes: for mosquitoes ≤ 4 days old, the MAE 

was 1 day, and the confidence intervals were between 0 and 5.6 days; 

however, for mosquitoes ≥ 5 days old, the MAE was 5.0 and the 

confidence intervals ranged from -3.7 to 24.9 in the intermediate age 

classes and from 7.0 to 33.9 in the older age classes. Higher error 

values for age prediction in older age classes occurred due to the 

inexistence of significant differences in the predictor variables 

between these classes. The accuracy was quite similar to other gene 

profiling studies based on multivariate calibration such as Cook et al. 

(2006) which reported a discrepancy of 5 days in age estimations for 

Ae. aegypti; Weeraratne et al. (2021) which reported a MAE of 2.19 (± 

1.66) and 2.58 (± 2.06) days in age prediction for Ae. aegypti and Ae. 

albopictus, respectively; and Hugo et al. (2010) which reported in 77% 

of cases a difference of 6 days in age prediction for Ae. aegypti in a 

field study.  

Regarding the automated mosquito classification system, while other 

studies based on the analysis of mosquito wing-beat pattern through 

optical sensors have demonstrated to be accurate to taxonomically 

classify mosquitoes and other attributes of their biology in free-flight 

(G. E. A. P. A. Batista et al., 2011; Fanioudakis et al., 2018; Genoud et al., 

2018, 2019, 2020; Potamitis & Rigakis, 2016b; Silva et al., 2015), automated 

age classification had never been assessed before. In the present 

chapter, the system composed of an entomological optical sensor 
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coupled to a mosquito trap (previously assessed in chapters 2 and 3) 

was tested for age classification in Culex pipiens female mosquitoes.  

The extracted MFCC feature was trained with XGBoost, providing a 

mean balanced accuracy of 75% in distinguishing young (2-4 days) 

from older (7-16 days) mosquitoes. XGBoost was already used in our 

previous study reporting the maximum accuracy with MFCC for 

mosquito sex classification (González-Pérez et al., 2022), and also 

reported good accuracy results for mosquito species classification in 

other laboratory works (Fanioudakis et al., 2018). 

Both methods developed in chapter 4 to determine the age of Cx. 

pipiens female mosquitoes (the transcriptional age grading technique 

and the automated classification system) were able to perform a 

major binary classification between young mosquitoes (≤ 4 days old) 

and older mosquitoes with reasonable levels of accuracy. According 

with vector competence studies of Cx. pipiens for WNV (Vogels et al., 

2017a), this binary classification may serve to discriminate between 

two functional groups of non-vector and potential vector mosquitoes 

which are old enough to have overcome the EIP of the virus (mainly 

superior to 7 days at temperatures from 18 to 27ºC)  (Anderson et al., 

2008; Kilpatrick et al., 2008; Vogels, Göertz, et al., 2017a, 2017b). 

Therefore, the capacity to differentiate between two populations of 

mosquitoes of different ages may be useful to assess WNV control 

interventions targeting vector longevity. Further steps to consolidate 

these methodologies should include semi-field studies prior to their 

application into real field work scenario.  
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While in recent years the interest in ML approaches for mosquito 

surveillance has skyrocketed with an upward trend of published 

papers aimed at identifying mosquitoes through a variety of sensing 

devices Joshi & Miller, 2021), the automated recognition of mosquitoes 

based on their infection status through optical sensors had not been 

attempted before, until the present work.  In chapter 5, the 

automated classification of arbovirus-infected mosquitoes captured by 

a mosquito trap was assessed by the analysis of their wing-beat flight 

pattern through an optical sensor trained with ML. The initial work 

hypothesis began on the basis that a disseminated infection of ZIKV in 

the competent vector Ae. albopictus (Mckenzieid et al., 2019) may 

generate an affectation in the nervous system that would lead to an 

alteration in the mosquito behaviour, as previously reported for ZIKV-

infected Ae. aegypti (Gaburro et al., 2018a; Pedreira Padilha et al., 

2018)and this alteration in the flight performance could be registered 

by an optical sensor, which in combination with ML techniques, could 

serve to differentiate infected from non-infected mosquitoes.  

In the experimental infection assay carried out at the BSL3 facilities of 

IRTA-CReSA, a total of 843 females of Ae. albopictus were inoculated 

(433 with ZIKV and 410 with DMEM as a control group). All the ZIKV IIT 

Ae. albopictus females showed a disseminated ZIKV infection at 11-12 

dpi and IHQ analysis confirmed the tropism of ZIKV for Ae. albopictus 

nervous tissues, showing virus replication in the head and thoracic 

ganglia (mainly in the cortical layer) and in peripherical sensorial 

structures (especially in the ommatidia). These results were in 

concordance with previous IHQ analysis in Ae. aegypti at two weeks 
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post-infection with ZIKV (Gaburro et al., 2018a). Virus replication 

found in the central nervous system of Ae. albopictus may disrupt 

neuronal communication and affect mosquito locomotor activity as 

suggested previously for Ae. aegypti (Gaburro et al., 2018). The high 

virus detection in ommatidia suggests that the vision of Ae. albopictus 

may be affected when infected with ZIKV, thus possibly compromising 

mosquito behaviours mediated by visual stimuli such as the 

optomotor response, landscape navigation, swarming, and host-

seeking behaviours (Hawkes et al., 2022). These infection-driven 

changes in mosquito rhythmic patterns may have an impact on its 

vectorial capacity, and consequently, on arbovirus transmission (Vieira 

Bruno et al., 2020). 

The automated classification system (already described in chapters 2-

4) recorded 421 mosquitoes that entered the trap during the flight 

assays (212 infected with ZIKV and 209 from the control group). The 

system was able to discriminate Ae. albopictus mosquitoes with a 

disseminated ZIKV infection from non-infected ones with 63.0% of 

classification accuracy. This result points out that ZIKV infection in Ae. 

albopictus may generate an alteration in the mosquito flight pattern 

that could be identified with an optical sensor thus enabling an 

automated classification through a ML model. According to the 

training score, the accuracy of the model could be improved with 

more training samples which encourages further testing in search of 

better performance. This study provides preliminary evidence of how 

new technologies have the chance to enhance the capabilities of 
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mosquito vector surveillance thus allowing a timelier disease risk 

assessment.  

Along the present thesis, an automated classification system 

consisting of an optical sensor coupled to a mosquito suction trap was 

trained on a large database of mosquito flights from the vector species 

Ae. albopictus and Cx. pipiens at different raising and environmental 

conditions for different classification tasks: i) the identification of 

mosquito genus and sex in laboratory conditions (chapter 2); ii) the 

identification of mosquitoes over other non-Culicidae insects and the 

classification of the genus and sex of those mosquitoes in the field 

(chapter 3); iii) the estimation of mosquito’s age (chapter 4); and iv) 

the identification of arbovirus-infected mosquitoes (chapter 5). The 

accuracy of the system was dependent on the classification task 

pursued, so as in the number of samples used for training the model, 

and the combination of extracted flight features and ML algorithms 

used. Some classification tasks such as genus and sex classification, 

which obtained high accuracy results in laboratory conditions, were 

tested in the field as a proof of concept of the system’s high-

performance results in a real field work scenario. Other tasks such as 

the classification of mosquitoes by age or infection status, which were 

never assessed before by the means of optical sensors, would still 

require more training samples to improve their classification accuracy, 

but promising results were obtained.  
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Overall, the present thesis has contributed to increase the knowledge 

about automated remote monitoring methods for mosquito 

surveillance by developing an automated classification system coupled 

to a mosquito trap which monitors Aedes and Culex mosquitoes in 

near real-time thus enabling a fine-time scale modelling of vector 

populations, which is crucial for MBD assessment, and has paved the 

way for future vector biology research.  
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6. GENERAL CONCLUSIONS 

 

1. The development of new technologies applied for the 

automated remote monitoring of mosquito populations in real-

time represents a great improvement with respect to 

traditional surveillance methods by eliminating the intensive 

workload, the need of experts and providing unprecedented 

time-resolution. 

2. The automated classification system assessed in the present 

thesis, composed by an optical sensor coupled to a mosquito 

trap, is highly accurate to classify the genus and sex of Aedes 

and Culex mosquitoes in laboratory conditions. 

3. The spectrogram feature extracted from mosquito flight 

recordings reported the highest accuracy for genus and sex 

classification in laboratory conditions when trained with dense 

neural networks and logistic regression respectively. MFCC 

provided the best accuracy for sex classification when trained 

with logistic regression and gradient boosting. This supports 

the use of these features and algorithms for future mosquito 

classification tasks. 

4. The automated classification system allows to distinguish 

Aedes and Culex mosquitoes from other non-targeted insects 

also captured by the trap, and to automatically classify them by 

genus and sex in the field with high accuracy, which is a proof 

of concept that this technology is suitable for field applications 

of vector surveillance. 
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5. The accuracy of target mosquito detection in the field is not 

correlated with the proportion of non-target insects that 

entered the trap, meaning that the system is efficient to 

correctly identify mosquitoes over other non-Culicidae insects 

with a low rate of false positives, even when the proportion of 

mosquitoes is very low.  

6. The accuracy of genus and sex classification in the field is very 

similar to the one obtained in the laboratory  at different 

environmental and rearing conditions. This fact indicates that 

the applied ML model generalises well in the field, highlighting 

the importance of integrating biological and environmental 

variability in  mosquito classification studies. 

7. The representation of the daily and seasonal activity patterns 

of Aedes and Culex mosquitoes by the automated classification 

system in the field paves the way to improve the knowledge 

about mosquito behaviour, which may favour the elaboration 

of more accurate prediction models.  

8. The two methodologies developed to estimate the age of Cx. 

pipiens female mosquitoes are useful to distinguish between 

young mosquitoes (≤ 4 days of age) and older ones, which may 

be potential WNV vectors. The capacity to classify mosquitoes 

by the age may be useful to assess the risk of WNV 

transmission and the effectiveness of control interventions 

targeting vector longevity. 

9. ZIKV infection in nervous tissues of Ae. albopictus, especially in 

the cortical layer of the thoracic and head ganglia and the 

ommatidia, is possibly modifying mosquito’s flight, which could 
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be registered by the automated classification system. The 

moderate accuracy achieved to differentiate ZIKV-infected 

from non-infected Ae. albopictus offers promising perspective 

for the future of vector surveillance, although further assays 

are needed to improve the accuracy of the system. 
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