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LA MEVA TESIS 

Aquesta tesis ha estat un camí dins d’un bosc.  

A vegades, una aventura.  

D’altres, un passeig.  

Fins i tot ha pogut arribar a ser una petita cursa contra un mateix.  

D’aquest camí: els arbres.  

La grandesa d’uns éssers que ens son tan aliens que, si nosaltres som de peus a 

Terra, els ocells al cel, i els fongs a la lluna, ells es trobarien ben be a Mart. Tan estranys 

com familiars, doncs han estat i son la nostra casa.  

Han estat la meva casa des de ben petit. M’hi he trobat a gust, tranquil, segur, al 

bosc. I ara, que puc entendre una ínfima part de la seva existència, m’hi trobo despert. 

O més aviat… tot just obrint els ulls.  

D’ aquest camí: la motxilla.  

Porto un bagatge que va creixent a cada passa i en determina la següent. És tan 

gran aquesta bossa que miro enrere i em costa imaginar-me sense ella. M’ha acabat 

definint? Tots els organismes la porten, aquesta bossa. Una bossa que acumula, que 

agafa i que desprèn. Una bossa que, a vegades, fins i tot destria. Aquesta bossa va més 

enllà de l’individu que camina i es remunta fins que tots els camins es troben. Una bossa 

que canvia quan els camins es bifurquen i ens donem el “fare well” emocional, físic, 

ecològic, (filo)genètic... Una bossa que porta l’empremta del passat i és la porta cap al 

que vindrà.  
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D’ aquest camí: els acompanyants.  

Els camins es fan millor en companyia. Una grata companyia ha estat la que jo 

m’he trobat en aquest petit gran viatge. Primer, una ventada quasi aleatòria va portar a 

aquesta petita llavor a terra fèrtil. Els meus directors, Maurizio Mencuccini i Jordi 

Martínez Vilalta, han proporcionat el substrat perfecte per a desenvolupar aquesta 

aventura. Ells han sabut trobar les paraules que guien i sobretot els somriures que 

inspiren. M’han obert les portes a un mon que ara ja és part de mi. Gràcies per 

compartir, per la immensa ajuda, pel bon tracte i les oportunitats. Gràcies. Durant 

aquest camí m’hi he trobat un tercer director de tesi. Ell em va acollir des d’un principi, 

em va aportar la llum necessària que em va guiar cap a una recerca que he acabat sentint 

meva. Gràcies, Kyle Dexter, doncs la teva ajuda i predisposició han estat crucials per a 

la producció d’aquesta petita peça de la que, espero, ens puguem sentir tots ben 

orgullosos. Altres acompanyants han actuat com a facilitadors, fent d’aquest petit viatge 

una aventura transoceànica. Vull agrair especialment a David Ackerly i Todd Dawson 

per la seva hospitalitat, la seva magnífica actitud i la seva dedicació. Gràcies. 

Alguns s’han unit a l’aventura de forma momentània, aportant el que per ells i 

elles segurament ha estat un petit gra de sorra però que per mi s’ha transformat en una 

gran muntanya d’idees i estímuls. Lucy Rowland, Toby Pennington, Ricardo Segovia 

Cortés, Raúl Garcia-Valdés, William Hammond, Teresa Rosas, Miquel Riba, Catherine 

Preece i Joan Pretus, gràcies. Ara, l’aigua. L’aigua que m’ha permès avançar sentint-me 

ple, acompanyat des de dins. Cada una de les gotes que es fan fortes al unir-se, i llavors 

mouen cel i terra. Ens hem fet grans junts, ajudant-nos els uns als altres, compartint 

alegries i decepcions, tristesa i bogeria. Al CREAFuture, a tots i totes vosaltres que ara, 

després d’aquest temps, ja puc considerar molt més que companys i companyes, ja us 

considero amics i amigues. Finalment, res d’això hagués estat possible sense l’arrelament 

que m’ha proporcionat la meva família. Gràcies, mare, pare, germans, germana tiets i 

avis, i a la meva parella, Andreanna, pel vostre suport. 
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ABSTRACT 

Comparative plant ecology seeks to understand the spectrum of different ways 

of making a living, that is, the combinations in which plant traits occur, and the 

incidence of trait constellations in different environments (Ackerly and Donoghue 

1995). However, knowledge on species ecological strategies will not be complete until 

evolutionary causal explanations are elucidated. While the role of evolutionary history 

shaping contemporary ecology has long been of interest, its quantitative examination 

has only been recently possible thanks to methodological innovations together with the 

availability of representative phenotypic and genotypic data (Pagel 1999, Losos 2008, 

Ackerly 2009, Pennell and Harmon 2013). So, we now have the opportunity to enrich 

ecological knowledge by including the evolutionary perspective making use of 

phylogenies, letting us explore which processes have shaped lineage diversification 

(Ackerly and Donoghue 1995). In this dissertation, I present a methodological and 

conceptual framework to study evolutionary patterns in plant functional strategies and 

I elucidate some emerging ecological consequences focusing on plant functional traits 

and drought responses. Results show how functional strategies are generally organized 

in a phylogenetically structured manner and in response to current environmental 

conditions, describing a pattern of phylogenetic niche conservatism (Losos 2008) which 

may emerge from phylogenetically conserved adaptation and the effect of 

environmental filtering on species distribution. Moreover, functional traits show a high 

degree of evolutionary interdependence conforming evolutionary modules, where a 

module indicates a group of coordinated traits that evolve together representing a 

specific functional strategy. These functional strategies are related to life history 

strategies and these relationships present a phylogenetically conserved component. 

Under a scenario of phylogenetic conservatism, individual trait variability is expected to 

be evolutionarily constrained, and then, we do not expect rapid adaptation to happen. 

If this is true, rapid environmental changes could bring populations outside their 

ecological niches, as it has been already observed in some areas where vegetation shows 
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clear signs of stress which eventually can lead to mortality in some cases (Hammond et 

al. 2022). In this thesis I show how including the functional perspective at the 

community-level can be highly informative in relating physiological drought stress and 

drought-induced mortality patterns. More concretely, I show how communities with a 

higher hydraulic risk tend to present higher drought-induced mortality, improving its 

prediction at global scale. This thesis proposes a new evolutionarily explicit framework 

in ecophysiology that can be used to understand evolutionary patterns in functional 

traits, how they relate with ecological strategies and scale them at the community and 

ecosystem levels to better understand vegetation responses to climate. 

IMPACT STATEMENT 

The linkage between evolutionary biology and ecophysiology is crucial to 

elucidate adaptability of plants to climate, understanding specific mechanisms 

influencing individual responses to the environment and the causa ultima of their 

distribution through space and time. Determining which processes are related to fitness 

components (growth, survival and reproduction), measuring them in an efficient way 

(e.g., by using functional traits) and understanding the drivers influencing their 

distribution will allow to improve our knowledge on climate change impacts on 

vegetation at different scales. Here I develop a framework to perform such a linkage, 

applying tools to different sources of data in an integrated way to elucidate evolutionary 

patterns in functional strategies and how they translate into ecological responses to 

environmental forcing. This work can be used to guide ecosystem management by, for 

instance, informing restoration decisions by placing species traits and their changes in 

an evolutionary context and understanding their adaptive capability. 
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1 INTRODUCTION



1   |   INTRODUCTION  
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1.1 PLANT FUNCTIONAL STRATEGIES 

Functional traits are phenotypic characters (e.g., leaf size) influenced by a genetic 

basis related to a strategy of resource uptake and utilization that affects performance 

(e.g., vegetative growth rate), having an impact on fitness and undergoing adaptive 

evolution (Ackerly et al. 2000, Geber and Griffen 2003, Violle et al. 2007). As so, 

functional traits mediate the relationships between organisms and environment, 

responding to external conditions through biochemical, physiological, morphological, 

developmental, or behavioural mechanisms to optimize physiological responses that 

will allow them to persist. Then, functional traits have a central role in the evolutionary 

play, positioning organisms in the ecological scene by defining their responses to the 

environment and directly affecting the fate of their carriers under a given set of 

conditions. 

From a functional perspective, any living organism can be seen as an aggrupation 

of functional traits conforming a strategy that has been selected in favour. This group 

of functional trait values can be referred to as functional trait syndrome (Reich et al. 

2003) (box 1.1). Then, a functional trait syndrome represents a description of a 

successful strategy mediating the relationship between organisms and external 

conditions, understanding “success” as the capability to perpetuate by means of survival 

and reproduction and “failure” as the removal from a given system. Therefore, trait 

syndromes will determine the range of potential physiological responses (e.g., hydraulic 

conductivity) that organisms can display to modulate their functions (e.g., water 

transport to leaves) with external conditions, affecting performance responses (growth, 

reproduction, and survival) that will subsequently determine their life history strategy 

(Grime et al. 1997, Westoby et al. 2002, Reich et al. 2003). In their interaction with the 

environment, these functional strategies will shape the ecological niche of a given 

taxonomic entity, understood as the n-dimensional environmental space where their 

members can survive and evolve (Hutchinson 1957), constraining their distribution and 



1.1   |   PLANT FUNCTIONAL STRA TEGIES  

3 

abundance and then, influencing species assemblage which will affect in turn ecosystem 

properties (Figure 1.1). 

 

Figure 1.1 Representation of the basis and effects of functional traits. Contextualization of 

the genetic origin in the expression of functional traits and their relationship with fitness (Fit.) and 

the environment. Some ecological consequences of trait response to the environment by means 

of natural selection and impacts on fitness is shown by scaling these relationships from individual 

to taxon (e.g., species), community and ecosystem-level. 

Under this premise, an amalgam of different strategies can emerge under a given 

set of environmental conditions, as different combinations of traits may represent 

successful strategies. To illustrate that, let us imagine a plant community situated in a 

location with seasonal drought, being water a potential limiting resource during the dry 

season. Under these conditions, we can find species which tend to escape drought by 

completing their life cycles before the period of scarcity, presenting a functional strategy 

to uptake and use resources rapidly (i.e., acquisitive functional strategy) (Wright et al. 

2004, Reich 2014). However, in this community we can also find some species that are 

adapted to tolerate dry periods and keep functioning during the dry season, which 
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would be stressful for the group of species with an acquisitive functional strategy. These 

species will be adapted to tolerate stress, presenting a slow resource uptake and use 

(Wright et al. 2004, Reich 2014). These contrasted strategies and many others can co-

occur, meaning that even when external conditions are the same, living entities can 

respond in diverse ways to maintain different resource requirements needed to 

perpetuate in space and time. 

The diversity of successful strategies is constrained by environmental conditions, 

acting as environmental filters on a pool of functional syndromes. An extreme resource 

scarcity may constrain the number of successful functional trait syndromes, filtering 

species pools depending on how suitable their functional strategies are to cope with 

environmental conditions (Swenson et al. 2012). For instance, in extremely arid sites 

with a few days of precipitation per year, most species may present a desiccation 

tolerance strategy, which consists in tolerating leaf moisture content equal to ambient 

during long dry periods and revive only during rehydration. Under these extremely arid 

conditions, all other strategies to face drought may be filtered out. As the dry period 

shorten, other drought response strategies may become successful, such as maintaining 

the hydraulic function under dry conditions by presenting a highly resistant xylem able 

to move water to the leaves under high tension (dehydration or drought tolerance) or 

investing in deep roots to uptake water from the water table (dehydration or drought 

avoidance) (Volaire 2018). 

Another constrain on the diversity of strategies present in a given site is the 

evolutionary legacy of species present, as functional strategies are likely to be at least 

partially inherited from ancestors (Cavender-Bares et al. 2016). This is based on the fact 

that different strategies may have appeared in distant lineages (i.e., long time since 

divergence), constraining descendant species strategies when rapid evolution is not 

happening. The appearance of key features can produce a divergence in strategies that 

will differentiate and evolve towards different adaptive optima, strongly influencing the 

functional space that descendant species can explore to conform successful strategies. 
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A clear example of such divergence is the appearance of xylem vessels in angiosperms, 

which allowed an increase in hydraulic conductivity compared to gymnosperms’ 

tracheid (Figure 1.2), acting as evolutionary enablers for other functional possibilities 

such as larger leaf sizes (Sperry et al. 2006). The co-occurrence of angiosperms and 

gymnosperms under a given set of conditions (Jacobsen et al. 2007) demonstrate how 

different strategies can be successful under the same environment and that trait 

syndromes can be strongly constrained by species evolutionary legacy.

 

Box 1.1 Trait terminology 

Physiological response. Variable related to a physiological process (e.g., photosynthesis or water 

transport) that can be measured at the individual level and that present variability within and among 

individuals in space and time (e.g., photosynthetic rates or stem hydraulic conductivity). 

Functional trait. Variable describing individual phenotype under some degree of genetic control 

(i.e., presenting heritability) which is expected to affect individual performance, influencing fitness 

and being under selection. A functional trait is expected to characterize a giving taxonomic entity 

(individual, population, species, genus), so the within-entity variability should be lower than the 

among-entity variability (e.g., maximum photosynthetic rates and maximum hydraulic 

conductivity). 

Performance response. Variable representing a component of individual fitness (i.e., growth, 

reproduction or survival) that can be measured at the individual level and that presents variability 

within and among individuals in space and time (e.g., individual growth rates). 

Demographic response. Variable describing population dynamics that present variability in space 

and time (e.g., mortality rates). 

Life history trait. Variable characterizing performance or demographic responses of a giving 

taxonomic entity (normally, species or supra-specific level). A life-history trait is expected to 

present higher among-entity variability than within-entity variability (e.g., mean mortality rates). 

Functional trait syndrome. Group of functional trait values that co-occur in a given taxonomic 

entity (e.g., individual, population, species or genus) involved in a functional strategy describing 

aspects related to resource uptake and utilization. 

Life history trait syndrome. Group of life-history trait values that co-occur in a given taxonomic 

entity (e.g., individual, population, species or genus) involved in a life-history strategy describing 

aspects related to growth, survival or reproduction. 

Ecological syndrome. Group of traits that co-occur in a given taxonomic entity (e.g., individual, 

population, species or genus) involved in an ecological strategy describing its interaction with the 

environment through space and time. 
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Divergence in function among taxa from different environments and convergence in 

taxa from similar environments has been a central topic in biogeography, ecology, and 

evolution (Grime and Hunt 1975, Ehleringer and Monson 1993, Garnier and Laurent 

1994, Beerling and Kelly 1996, Ackerly and Donoghue 1998, Ackerly and Reich 1999, 

Cunningham et al. 1999, Reich et al. 1999). Understanding the drivers of the 

relationships among functional strategies and environmental conditions is crucial to 

better elucidate constrains on species distributions, impacts of environmental forcing 

on their persistence and the scaling of underlying processes from organs within 

individuals to communities and ecosystems. This knowledge will help us understand 

and predict the distribution of functional strategies, which is expected to be crucial to 

better understand impacts of climate change on vegetation by improving modelling 

frameworks that aim to assess the potential impacts of environmental forcing on 

ecosystem services. In the current thesis I analyse various sources of data covering 

functional traits, phylogeny, environmental conditions, species distributions, life history 

traits, and data on climate change impacts on vegetation to build a framework to study 

the drivers of functional strategies, their spatial distribution, and the ecological 

consequences in terms of vegetation responses to climate. 
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Figure 1.2 Differences in vessel diameter and hydraulic conductivity between angiosperms 

and gymnosperms. Representation of the values and relationship between vessel diameter (Vdia) 

and stem hydraulic conductivity (Ks) in angiosperms and gymnosperms. In this analysis, data from 

an actualized version of the xylem traits global dataset has been used (Hammond et al. 2021). a) 

Genus-level phylogeny for woody plant species with data for both Vdia and Ks, b and c) genus-level 

means for Vdia and Ks, respectively. Mean for each group is displayed. d) Images of xylem conduits 

extracted from Sperry et al. (2006). e) Boxplots representing mean and dispersion for species-level 

values of Ks and Vdia for angiosperms and gymnosperms. Differences and their significance were 

reported by means of a general linear model. f) Scatterplot and linear relationship between Ks and 

Vdia for gymnosperms and angiosperms. R2 represents the variance explained of Ks including Vdia, 

angiosperm-gymnosperm affiliation and their interaction as predictors. N show the number of 

species-level values used in the analysis. 
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1.2 EVOLUTIONARY PATTERNS OF PLANT FUNCTIONAL 

STRATEGIES 

Variation in plant functional traits present a genetic basis that can be inherited 

from ancestors (Ackerly et al. 2000, Pereira and Des Marais 2020). This genetic 

component can be quantified by the heritability of a given trait, which represents the 

amount of variance that can be attributed to genetic effects (i.e., genetic variance, 

VARg) compared to the total variance, which is composed of genetic and 

environmental (VARe) variances.  

𝐻𝑒𝑟𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐻2) =  
𝑉𝐴𝑅𝑔

𝑉𝐴𝑅𝑔 + 𝑉𝐴𝑅𝑒

 

 Functional traits have been shown to present significant levels of heritability, 

meaning that the genetic composition is an important factor determining their values 

compared to developmental determination in response to the environment (i.e., 

phenotypic plasticity) (Geber and Griffen 2003). This is not to say that plasticity is not 

important in functional traits, and in fact, it can be an important component 

determining their values particularly in plants (Sultan 2000). However, the fact that 

some heritability exists in functional traits opens the door to the use of phylogenies as 

a proxy of their evolutionary history, as genes involved in trait values are transmitted 

from ancestors to descendants over evolutionary timescales. 
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1.2.1 Phylogenetic conservatism and evolutionary lability 

in plant functional traits 

At the macroevolutionary level (i.e., species or supra-specific level), we can use the 

phylogenetic signal (box 1.2) as an analogue of heritability. At first sight this might not 

be evident, as the phylogenetic signal is a measure of the tendency for evolutionary 

related organisms to resemble each other (Blomberg and Garland 2002), while 

heritability is related to the genetic component of a given trait which is transferable 

from one generation to the next. However, if we further develop the idea of 

phylogenetic signal, we realize that it can be seen as a measure of the relationship of 

trait values with the evolutionary history of species carrying them. When more than one 

species is considered, shared evolutionary history can be seen as shared evolutionary 

time, which is expected to be related to the overall genetic similarity. Then, phylogenetic 

signal is showing the amount of variance in a trait that is related to broad genetic 

similarity among species (i.e., phylogenetic variance, VARphylo) over total variance 

(VARtotal) (Pagel 1999).  

𝑃ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑠𝑖𝑔𝑛𝑎𝑙 (λ) =  
𝑉𝐴𝑅𝑝ℎ𝑦𝑙𝑜

𝑉𝐴𝑅𝑡𝑜𝑡𝑎𝑙

 

A high phylogenetic signal represents a pattern showing how closely related species 

tend to resemble each other in a given trait. This can be understood as phylogenetic 

conservatism, meaning that values are phylogenetically structured, so there may be 

some constrains on their evolution maintaining ancestral states (Losos 2008) (box 1.2). 

Contrarily, traits with a low phylogenetic signal can present very different values for 

closely related species, pointing that ancestral states do not strongly determine 

descendant ones. In this latter case, we expect traits to present a more labile evolution, 

as they can drastically change their values over short evolutionary times (e.g., within-

genera) (Figure 1.3). Then, from a broad and unifying perspective, phylogenetic signal, 
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as heritability, is a measure of the amount of influence that ancestral values exert on 

descendant values for a given trait or trait syndrome, acting as constrains on their values. 

Phylogenetic conservatism and evolutionary lability appear as contrasted concepts 

describing patterns in functional traits that may arise under different evolutionary 

scenarios (Blomberg and Garland 2002, Blomberg et al. 2003). Then, we expect 

evolutionary processes shaping traits to differ depending on which one of these two 

scenarios is predominant. Phylogenetic conservatism may appear under a scenario of 

lineage-specific stabilizing selection, meaning that mean values of a given trait will be 

maintained and transmitted to descendants (Crisp and Cook 2012). This scenario is 

compatible with a slow evolution of traits and the existence of strong environmental 

filtering determining the environmental space that species occupy (Losos 2008). If 

stabilizing selection and environmental filtering are involved as processes leading to this 

pattern, we would expect phylogenetic conservatism in functional traits to be related to 

environmental variables describing the species ecological niche. In this case, trait values 

will be restricted to those conditions where they conform to successful strategies. Under 

this scenario, we do not expect rapid evolutionary changes in populations adapting to 

new environmental spaces. Instead, closely related species will tend to occupy similar 

ecological spaces and respond to the environment by means of similar functional 

strategies. This pattern of constrained adaptation is referred as phylogenetic niche 

conservatism (Losos 2008, Crisp et al. 2009, Crisp and Cook 2012).  

Phylogenetic conservatism can also arise from processes not related to species 

adaptation. For instance, a lack of genetic diversity in crucial genes involved in trait 

expression can led to evolutionary stasis that can be lineage-specific (lower within 

lineage genetic variability), leading to a relationship between the phylogeny and trait 

values that is not underlined by adaptive processes. Genetic drift can also cause lineages 

to gradually differ in their functional strategies and occupy different ecological spaces 

(Crisp and Cook 2012). This may also lead to phylogenetic conservatism in functional 

traits which can be related to environmental variables but without a causal relationship 
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among them. Genetic correlation among traits could also lead to adaptive traits driving 

values in non-adaptive traits, conforming to a correlation with selective pressures that 

may not be underlined by adaptation. Therefore, it is crucial to have some previous 

knowledge on the physiological meaning of traits under different situations to clarify 

their adaptive meaning before exploring macroevolutionary patterns. 

Evolutionary lability may appear in a scenario where evolution is less constrained 

so trait values of descendants can rapidly diverge from ancestral ones. This scenario is 

compatible with rapid evolution, which can be adaptive, leading to patterns such as 

adaptive radiation when ancestral populations are exposed to different selective 

pressures (Ackerly et al. 2000, Ackerly 2009). For instance, we expect disruptive 

selection in ancestral populations of a given lineage to be a process shaping a pattern of 

evolutionary lability, leading to diversification of trait values in closely related taxa. 

Under this adaptive scenario, we expect traits to be related to environmental variables 

exerting selective pressures in a non-phylogenetically structured way, with closely 

related taxa presenting different strategies that allow them to survive under different 

conditions. 

Ecologists and evolutionary biologists have recently showed substantial interest in 

understanding phylogenetic conservatism and evolutionary lability in functional traits 

(Losos 2008, Ackerly 2009, Crisp and Cook 2012). However, there is still a generalized 

lack of information on the degree of conservatism and lability in functional trait 

syndromes as well as their relationship with environmental components. This may be 

partially due to a lack of a clear conceptual and methodological framework to analyse 

and interpret these patterns, specially from a multivariate perspective. One of the aims 

of this thesis is to fill this gap by providing a unified framework to study phylogenetic 

conservatism and evolutionary lability in trait syndromes specifically focusing on their 

relationship with environmental components related to species niche. This framework 

can be used at the macroecological and macroevolutionary scale but also at the micro-
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ecological and micro-evolutionary scale, seeking to close the gap between these two 

perspectives. 

Figure 1.3 Evolutionary patterns Representation of the two main evolutionary patterns 

studied in this thesis from phylogenetic and functional trait data. 
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Box 1.2 Evolutionary terminology 

Phylogenetic conservatism. Pattern describing closely related taxa resembling each other in a 

given variable or group of related variables. It can be detected by a high degree of phylogenetic 

structure in a given variable variance or covariation among variables. It is related to a maintenance 

of the common ancestor value in one or more variables. 

Phylogenetic niche conservatism. Pattern of phylogenetic conservatism related to the 

environmental space that a given taxonomic entity occupy (ecological niche). 

Evolutionary lability. Pattern describing disparification in closely related for a given variable or a 

group of related variables. It can be detected by phylogenetically independent variance in a given 

variable or covariation among variables. It is related to a low degree of relation between ancestral 

and descendent values. 

Phylogenetic signal. Measure of phylogenetic autocorrelation of a given variable. It represents a 

measure of phylogenetic conservatism. 

Correlated phylogenetic signal. Measure of phylogenetic covariance between two variables 

relative to their individual phylogenetic variance (i.e., magnitude and direction of the shared 

phylogenetically conserved covariance). 

Phylogenetic correlation. Measure of phylogenetic covariance between two variables relative to 

their total variances (i.e., contribution in magnitude and sign of phylogenetic covariance to total 

covariance). 

Evolutionarily labile correlation. Measure of phylogenetically-independent covariance between 

two variables relative to their total variances (i.e., contribution in magnitude and sign of 

phylogenetically independent covariance to total covariance). Labile correlation and phylogenetic 

correlation sum to total correlation. 

Environmental phylogenetic conservatism. Amount of phylogenetic conservatism in a variable 

or a group of related variables that is related to one or more specific environmental variables. It is 

expected to be a component of phylogenetic niche conservatism and then, to be related to a 

phylogenetically conserved pattern of adaptation in response to one or more specific selective 

pressures. 

Non-attributed phylogenetic conservatism. Amount of phylogenetic conservatism in a variable 

or a group of related variables that cannot be attributed to one or more potential selective pressures. 

It may be explained by non-measured causes or by non-adaptive evolutionary processes. 

Evolutionarily labile environmental effects. Amount of evolutionary lability in traits or a group 

of related variables that is related to one or more specific environmental variables. It is expected to 

be related to recent adaptation in response to one or more selective pressures causing disparification 

in closely related taxa with different selective backgrounds. 
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1.2.2 From traits to trait modules: a multivariate 

perspective 

Functional traits can be related because of different underlying structures or 

mechanisms which lead to the existence of a linkage among them, which can be shallow 

or tightly hardwired depending on the nature of the relationship. At the 

macroevolutionary scale, this lead to the existence of a correlation between traits, 

meaning that species can be positioned into an axis or a spectrum describing variation 

in these non-independent traits based on their trait values (Díaz et al. 2016) (box 1.3). 

 

Several underlying processes can lead to a pattern of correlation between traits. 

First, functional traits can be related as a consequence of their physiological 

relationship. For instance, maximum xylem hydraulic conductivity is expected to be 

related to photosynthetic capacity as a higher amount of water supply will allow for a 

higher carbon uptake and a higher productivity of chloroplasts (Reich et al. 2003). Then, 

we do not expect to find high photosynthetic rates in species with low maximum xylem 

hydraulic conductivity due to their physiological coordination (i.e., positive correlation). 

Box 1.3 Trait relationships 

Integration. Pattern that describes the co-dependence among elements measured at a given 

taxonomic level (e.g., traits at the species level). Two traits are integrated at the species level when 

species-level values are not independent, presenting a correlation that may be underlined by a 

phenotypical or genetic basis. 

Trade-off (-+). Pattern of integration represented by a negative correlation among traits involved, 

so lower values in a given trait are related to higher values in another trait at a given taxonomic 

level. 

Coordination (++, --). Pattern of integration represented by a positive correlation among traits 

involved, so higher values in a given trait are related to higher values in another trait or lower values 

in a given trait are related to lower values in another trait at a given taxonomic level. 

Functional module, axis, continuum, or spectra. Group of integrated traits from a network 

perspective (module) or a unidimensional perspective (axis, continuum, or spectra). 
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Functional traits can also be related due to a common phenotypic cause. For instance, 

maximum xylem hydraulic conductivity and its resistance to embolism have long been 

hypothesized to present a trade-off (negative correlation) due to the impact of an 

anatomical feature on both traits: the structure of inter-conduit pit membranes. Xylem 

conduits are connected by pits, which present a central membrane separating them. The 

thicker this membrane, the higher the embolism resistance, as it exerts resistance to the 

spread of air bubbles among connected vessels provoking generalized embolism. 

However, thick membranes are also expected to diminish maximum xylem hydraulic 

conductivity, as they also exert resistance on water flow (Li et al. 2016, Lens et al. 2022). 

Then, we do not expect species presenting xylem with both high maximum hydraulic 

conductivity and embolism resistance at the conduit level (Tyree and Zimmermann 

2002, Venturas et al. 2017), even though at the tissue level, other traits may compensate 

this relationship, weakening the trade-off (Gleason et al. 2016). Finally, traits can also 

be correlated at the genetic level (Etterson and Shaw 2001). Genetic correlation can 

happen, for instance, when different genes impacting different traits are co-selected and 

tend to co-occur or when the same gene is impacting different traits (pleiotropy) 

(Cruzan 2018). As an example, genetic trait co-variance was found in leaf traits in Populus 

trichocarpa, pointing to the fact that they are evolving together due to a relationship at 

the genetic level (Chhetri et al. 2019). 

It has been shown that functional traits are related to fitness through their 

integrated effect on higher-level traits describing performance (Ackerly et al. 2000) 

(Figure 1.1). Then, functional trait syndromes may be integrated with life history 

syndromes describing individual and demographic performance conforming to 

ecological syndromes (box 1.1). Functional traits positively correlated with performance 

are expected to present the same pattern of selection, while negatively correlated traits 

will show opposing patterns of selection. This may lead to the evolutionary integration 

among traits at distinct levels (e.g., functional and life history traits). Then, adaptation 

may happen in a multivariate way, involving trait syndromes at distinct levels that are 
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correlated due to the joint effects of selection. Under this scenario, knowledge of trait 

covariance is essential to predictions of adaptive evolution (Geber and Griffen 2003). 

It is then crucial to understand trait evolution not only individually but also jointly. 

To do so, it may be useful to move beyond the unidimensional perspective of trait 

spectra and continuums, into the more multidimensional perspective provided by trait 

network modules. The elucidation of phylogenetic conservatism, evolutionary lability 

and their relationship with environmental components not only in individual traits but 

also in groups of traits can be very useful to frame the big question of functional 

strategies evolution. This will lead to the identification of integrated adaptation in 

functional traits and the existence of independent modules responding to selective 

pressures. In this thesis, such perspective is developed, presenting novel conceptual and 

methodological tools to study trait syndromes and their drivers, and providing some 

results in this regard. 

1.3 ECOLOGICAL CONSEQUENCES OF EVOLUTIONARY 

PATTERNS IN PLANT FUNCTIONAL TRAITS  

Trait syndromes determine the environmental space that a given living entity 

occupy, affecting its performance in response to external conditions. The combination 

of functional strategies and environmental conditions related to resource availability will 

then affect growth, survival, and reproduction. Then, trait syndromes are expected to 

constrain life history strategies describing individual performance responses (e.g., 

growth rates) and demographic responses (e.g., mortality rates), influencing 

community-level characteristics such as species composition and abundances which are 

crucial in determining ecosystem functioning (Adler et al. 2014, Salguero-Gómez et al. 

2016, Salguero-Gómez 2017). Let us see how functional traits constrain life history by 

retaking a previous example. In a given plant community, different functional trait 

syndromes can coexist leading to the occupation of different ecological niches by 
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different species. Some species may present an acquisitive functional syndrome, 

meaning that they acquire and use resources rapidly (e.g., high hydraulic conductivity 

and photosynthetic capability). This strategy is expected to be related to high and fast 

growth when resources are not scarce and a rapid reproduction which may lead, for 

instance, to a rapid dominance of the community after a disturbance. This is what is 

referred as a fast strategy (Reich 2014) whereby population growth is expected to be 

more influenced by growth and/or fecundity (Adler et al. 2014). Once a canopy is 

established, new micro-environmental conditions appear as shade develops, opening a 

new ecological space with a lower availability of resources (e.g., light). This space may 

be occupied by species with more conservative trait syndromes, with a slow resource 

uptake and use but a higher conservation capability. These species will present a slow 

growth but a higher resistance to resource scarcity (higher stress tolerance), what is 

referred to as a slow strategy, with a higher survival and a delayed reproduction (Reich 

2014). In this case, population growth is expected to be more influenced by survival 

than by growth and fecundity (Adler et al. 2014). Therefore, due to intrinsic constraints 

of plant function on growth, survival and reproduction, a conservative uptake and use 

of resources may constrain life history traits so species cannot present, for instance, 

high growth and rapid fecundity. Consistently, we will not expect acquisitive resource 

uptake and use to present a high stress tolerance (related to a high survival). Even 

though some general frameworks describe the relationship between functional and life 

history strategies (Adler et al. 2014, Reich 2014, Salguero-Gómez et al. 2017), variability 

in functional traits and life history traits can be more complex and several axes of 

variation may appear in different biogeographical regions in relation to environmental 

limiting factors and evolutionary legacies of species present. In this regard, a trait 

network perspective can be useful to better elucidate the relationship between 

functional and life history strategies in a multivariate way. In this thesis, such a 

perspective is taken to elucidate the relationship between functional and life history 

traits in trees from the Amazon Region. 



1   |   INTRODUCTION  

18 

1.3.1 Functional constraints on species distributions and 

species assemblage 

At the species and supra-specific levels, functional trait syndromes can be seen as 

adaptive toolkits that allow species to perpetuate under a given range of conditions. 

Then, we expect individual traits and their relationships to be related to species 

distributions over environmental space (Figure 1.1), which will determine their 

geographical ranges at evolutionary timescales, where dispersion is not expected to 

strongly constrain species distributions (Crisp et al. 2009, Segovia et al. 2020). Some 

functional traits mediating the response to environmental factors such as water 

availability can become crucial in determining the environmental boundaries within 

which a given species can survive and evolve (Stahl et al. 2014, Laughlin et al. 2020, 

Kunstler et al. 2021). This will determine the geographical boundaries of species 

distributions and then, will affect the composition of communities, influencing species 

assemblage by applying environmental filtering on functional strategies. 

Evolutionary processes shaping species functional trait syndromes are expected to 

influence species assemblage patterns. Under a phylogenetic niche conservatism 

scenario, we expect closely related species to occupy areas with similar environmental 

conditions and to respond to them by means of similar strategies (Crisp et al. 2009, 

Crisp and Cook 2012). This phylogenetic structure will not only happen across 

geographical gradients of environmental variables, but also at the within-site level, in 

relation to micro-environmental variation. This would mean that environmental 

filtering is strongly affecting species distributions, as rapid adaptation may not be 

happening, and species will tend to occupy environmental spaces similar to those 

occupied by their ancestors. In this case, phylogenetic diversity of communities will be 

related to functional diversity and to environmental conditions both within and among 

sites (Figure 1.4). This pattern indicates that species may not be able to track drastic 

environmental forcing by changing their functional strategies. Then, community-level 

changes over evolutionary timescales will be more strongly influenced by dispersal of 
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new species which find the new conditions suitable. This pattern has already been 

observed in the case of drought at ecological timescales (Batllori et al. 2020, Trugman 

et al. 2020), but its relationship with underlying evolutionary patterns of functional traits 

are not clear yet. 

 Contrarily, under an evolutionary labile scenario, sister taxa may occupy quite 

different environmental spaces as a consequence of recent and relatively rapid 

adaptation and/or plastic acclimation. In this situation, we do not expect phylogenetic 

diversity to be strongly related to functional diversity either within or among sites 

(Figure 1.4). In this case, species may be more likely to track environmental changes, 

even though their capacity to persist under environmental changes will depend on the 

lability of crucial traits and to the degree of environmental forcing (Trugman et al. 2020). 

Site-specific functional composition and diversity are expected to be related to 

ecosystem functioning, structure and response to environmental forcing (García-Valdés 

et al. 2020, Trugman et al. 2020). Then, elucidating biogeographical patterns in crucial 

functional traits is needed to better assess potential impacts of environmental forcing 

on species persistence. In this thesis, I provide an example illustrating the value of 

including the geographical perspective to better elucidate macroevolutionary patterns 

of functional traits and its effects at community and ecosystem levels. 
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Figure 1.4 Evolutionary patterns and community composition Example of evolutionary 

patterns translation to community characteristics. 
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1.3.2 Function-environment mismatches 

Currently, environmental conditions are rapidly changing in some areas all over 

the globe (IPPC 2022). More concretely, global warming is expected to increase the 

frequency and intensity of drought events and heat waves (Stocker et al. 2013). This 

environmental forcing can push populations outside of the comfort zone of their 

ecological niches, generating mismatches between external conditions and their 

capability to maintain physiological processes that allow individuals to maintain viable 

populations (Parmesan and Yohe 2003, Thomas et al. 2004). This may be specially the 

case under a scenario in which crucial functional traits are evolutionarily constrained 

and then, are not expected to respond to environmental forcing by means of an adaptive 

response. 

Climate change-induced mortality may be preceded by a decrease in growth and 

reproduction driven by a regulation in more labile traits (Niinemets 2010, Mundim and 

Pringle 2018). However, some specific phenomena may impact rapidly on survival 

under strong and/or persistent environmental forcing. This may be the case of 

hydraulic failure, a generalized disruption of plant transport system (xylem) that 

happens when severe drought strikes, interrupting water transport to leaves and 

producing relatively fast mortality in species with a low degree of stress tolerance 

(Hammond 2020, McDowell et al. 2021). Functional traits related to species drought 

tolerance are expected to be crucial to elucidate individual species and communities’ 

response to ongoing environmental forcing (Anderegg et al. 2015, McDowell et al. 

2021). A better characterization of species drought response strategies, its evolution and 

its relationship with the environment is crucial to better understand drought-induced 

mortality events, helping to assess impacts of climate change on vegetation and allowing 

us to anticipate them. In this thesis, I show how evolutionary patterns in crucial 

functional traits can be useful to better understand climate change impacts on 

vegetation. 
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1.4 TOWARDS AN EVOLUTIONARY FRAMEWORK IN PLANT 

FUNCTIONAL ECOLOGY 

The consideration of evolutionary processes when discussing patterns in 

functional traits can be highly insightful to approximate their mechanistic basis and 

upscale their consequences. If functional traits present heritability, these patterns of 

variation emerge, at least partially, from genetic composition, which is then influenced 

by mechanisms related to selective pressures, mutation, gene flow and genetic drift 

shaping their variability at the micro-evolutionary scale (i.e., intraspecific variability). 

This variability is then translated at the macroevolutionary scale, where successful 

strategies can be described from the co-occurrence of functional trait values (i.e., 

functional syndromes). Variation in functional syndromes can be related to 

environmental factors and to evolutionary legacies of species influencing current values. 

As we have seen, the importance of these elements explaining functional diversity can 

be highly insightful to elucidate processes shaping it, which is crucial to better assess 

climate change impacts on ecosystems at different scales. 

Even if methodologies that explicitly consider phylogeny to study patterns in 

functional traits already exist (e.g., independent contrasts, phylogenetic least squares or 

phylogenetic principal component analyses), they are normally focused on defining 

evolutionary relationships as those that are not explained by divergence of lineages 

(Felsenstein 1985, Revell 2009, Blomberg 2016). However, phylogenetic conservatism 

in relationships between traits may bring some insights to determine evolutionary 

patterns in functional strategies and their impact on ecological processes. To my 

knowledge, a clear methodological and conceptual framework to study phylogenetic 

conservatism jointly with evolutionary lability from a multivariate perspective and 

including environmental components is still lacking. This thesis aims to fill this gap by 

providing a new methodology to study trait syndrome diversity and their association 

with phylogenies and environment, seeking to elucidate the degree of phylogenetic 
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conservatism and evolutionary lability in plant functional strategies. This will lead to a 

better understanding of how functional strategies distribute and why, which is of great 

interest to elucidate vegetation responses to climate change. Moreover, disentangling 

potential drivers of plant function may be very useful to improve predictions on 

functional traits and their distributions, which are also increasingly demanded by 

process-based models predicting climate change dynamics and their potential impacts 

on society (De Cáceres et al. 2021a). Finally, such an overview of evolutionary patterns 

in plant physiological strategies may guide next steps focusing on the relationship 

between functional traits and genetic precedence as well as their response to 

environmental conditions and environmental forcing that will help closing the gap 

between plant function, its genetic basis, and its interaction with the environment. 

1.5 RESEARCH AIMS AND OUTLINE 

In this thesis I aim to elucidate macroevolutionary patterns in plant functional 

traits including the evolutionary perspective using phylogenies. Then, I aim to relate 

these patterns to ecological consequences such as performance related to growth, 

survival and reproduction. Finally, I aim to elucidate some potential effects of function 

and environment mismatches. To do so, I defined specific objectives addressed in each 

one of the chapters introduced below. 

In the second chapter, I aim to elucidate the degree of phylogenetic niche 

conservatism in plant hydraulic traits, their relationship and in their response to 

environmental conditions related to water availability. I report that hydraulic traits show 

a pattern of phylogenetically conserved integrated adaptation. I also show how 

hydraulic traits conform to two hardwired modules: the drought exposure-tolerance 

coordination and the conductivity-allocation to sapwood relative to leaf trade-off. 
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In the third chapter, I aimed to develop a conceptual and methodological 

framework to study functional trait syndromes and predict missing values. In this 

framework, evolutionary patterns in individual traits and their relationships are 

elucidated, considering potential drivers related to environmental conditions and 

evolutionary legacies. Then, this information is used to inform a newly derived machine 

learning algorithm which implements predictions on functional trait missing values 

based on the previously presented relationship with phylogeny, environment, and other 

traits. This methodology is applied to the relationship between leaf economics spectrum 

(Wright et al. 2004) and plant hydraulics, showing a pattern of phylogenetic niche 

conservatism in the integration among leaf economics and hydraulics. 

In the fourth chapter, I aimed to elucidate the relationship between some 

functional traits and performance traits describing life history strategies in tropical trees, 

focusing on clarifying the degree of evolutionary lability and phylogenetic conservatism 

in these individual traits and their relationship. I show how functional and life history 

traits are evolutionarily integrated conforming to two main axes. The first one 

represented the relationship between resource use, reproduction, and mortality, and it 

showed to be phylogenetically conserved. The second axis represented the relationship 

between size and growth and showed to be partially phylogenetically conserved and 

partially evolutionarily labile. 

In the fifth chapter, I aimed to relate patterns of functional strategies to 

ecological consequences related to environmental forcing effects on vegetation. To do 

so, I focused on drought exposure-tolerance coordination to estimate and map species 

assemblage hydraulic risk, which is shown to present a positive relationship with 

drought-induced mortality.  
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2 ADAPTATION AND COORDINATED EVOLUTION 

OF PLANT HYDRAULIC TRAITS 

Sanchez-Martinez, P., Martínez-Vilalta, J., Dexter, K. G., Segovia, R. A., & Mencuccini, M. 

(2020). Adaptation and coordinated evolution of plant hydraulic traits. Ecology Letters, 23(11), 

1599–1610. https://doi.org/10.1111/ele.13584 
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2.1 ABSTRACT 

Hydraulic properties control plant responses to climate and are likely to be under 

strong selective pressure, but their macroevolutionary history remains poorly 

characterized. To fill this gap, I compiled a global dataset of hydraulic traits describing 

xylem conductivity (Ks), xylem resistance to embolism (|P50|), sapwood allocation 

relative to leaf area (Hv) and drought exposure (|Pmin|) and matched it with global seed 

plant phylogenies. Individually, these traits present medium to high levels of 

phylogenetic signal, partly related to environmental selective pressures shaping lineage 

evolution. Most of these traits evolved independently of each other, being co-selected 

by the same environmental pressures. However, a correlated phylogenetic signal 

between |P50| and |Pmin| and between Ks and Hv show signs of deeper evolutionary 

integration because of functional, developmental, or genetic constraints, conforming to 

deep evolutionary modules. We do not detect evolutionary integration between 

conductivity and resistance to embolism, rejecting a hardwired trade-off for this pair of 

traits. 

2.2 INTRODUCTION 

Water transport in plants occurs under negative pressure and is driven by the 

process of transpiration at the leaf-atmosphere interface, which generates a water 

potential gradient throughout the plant (cohesion-tension theory) (Dixon 1914). A key 

source of vulnerability for the water transport system is the formation of xylem 

embolism, resulting from the breakage of the water columns caused by cavitation (the 

phase change from liquid water to gas), which reduces hydraulic conductivity and may 

lead to plant death through hydraulic failure (Tyree and Zimmermann 2002). This 

process is more likely to occur during drought events, as low water availability results 

in low soil plant water potentials, and becomes more pronounced also with high 
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temperatures, which provoke an increase in atmospheric evaporative demand (Venturas 

et al. 2017). A wealth of research over the last decades has established that hydraulic 

failure is a principal mechanism triggering tree mortality under drought (Adams et al. 

2017). Therefore, drought and high temperatures, together with other important 

sources of selection such as freezing temperatures (Zanne et al. 2014), have been 

considered among the primary forces shaping plant evolution by acting directly on 

hydraulic traits (Maherali et al. 2004). However, global patterns in the evolution of 

hydraulic traits remain only partly characterized and their relationship with relevant 

environmental selective pressures poorly identified. 

Species differ greatly in their exposure to low water potentials and in their 

capacity to operate under such conditions. The actual hydraulic risk is normally 

represented by the hydraulic safety margin (HSM) (Choat et al. 2012). HSM integrates 

both drought stress exposure at the tissue level, measured as the minimum leaf water 

potential registered for a given species (referred as an absolute value, |Pmin|), and 

resistance to embolism, quantified as the water potential that causes a 50% reduction in 

stem hydraulic conductivity (referred as an absolute value, |P50|) (HSM = Pmin - P50). 

Plants with low (or even negative) safety margins experience large amounts of embolism 

(Choat et al. 2012, 2018b). |Pmin| emerges from the balance between soil water 

availability, the rate of water loss, and the capacity of the plant transport system to 

supply water to leaves, and it is thus determined by plant functional properties such as 

rooting strategy, leaf phenology and stomatal control as well as by abiotic factors such 

as soil water availability and atmospheric evaporative demand (Bhaskar and Ackerly 

2006). Meanwhile, |P50| is primarily explained by xylem anatomical features (Venturas 

et al. 2017). |P50| and |Pmin| are known to co-vary, leading to relatively invariant HSMs 

at the global scale and to respond to similar environmental selective pressures related 

to water availability (Choat et al. 2012, Maherali 2004). For instance, stem |P50| has 

been reported to be negatively related with precipitation for 10 conifer species from 

different habitats (Brodribb and Hill 1999) and for the gymnosperm genus Callitris 

(Larter et al. 2017) and |Pmin| has been negatively related to variables determining water 
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availability (Bhaskar & Ackerly 2006) and positively to soil particle size during drought 

for Great Basin shrubs (Sperry and Hacke 2002). Since the risk of hydraulic failure is 

likely to be under greater selective pressure than |Pmin| and |P50| per se, these two latter 

traits are expected to be integrated over the evolutionary history of lineages, specifically 

meaning that they evolve in a coordinated fashion (i.e., non-independently from each 

other), representing an evolutionary module. 

Xylem conductive capacity is another key determinant of hydraulic function, 

usually quantified as the maximum, stem-specific hydraulic conductivity (Ks). This 

property has been reported to be positively related to temperature and precipitation at 

a global scale (He et al. 2020b). Because the structural properties of xylem conduits and 

pit membranes associated with increased embolism resistance (quantified here as |P50|) 

are also expected to reduce conductive capacity, a trade-off between |P50| and Ks has 

long been hypothesized (often referred to as the hydraulic safety-efficiency trade-off) 

(Tyree & Zimmermann 2002). According to this hypothesis, evolutionary processes 

associated with frequent drought occurrence would have driven an increase of xylem 

resistance to embolism, allowing taxa to bear lower water potentials and maintain water 

transport at the expense of xylem conductive capacity. In contrast, increased xylem 

conductivity could have evolved in wetter and warmer environments, where higher 

water transport was adaptive and selective pressures favouring expensive safety features 

were weaker (Maherali et al. 2004). Although this trade-off has been shown to be 

relatively weak across species (Maherali et al. 2004, Gleason et al. 2016), it remains 

unknown whether it reflects independent responses of each trait to similar selective 

pressures related to climate conditions and soil properties, or a deeper evolutionary 

integration. 

The role of hydraulic conductivity is more nuanced when considered at the 

whole plant level, where transport capacity needs to match water demand, which is in 

turn strongly influenced by leaf area (Mencuccini et al. 2019b). Consequently, xylem 

conductive capacity is frequently expressed in a relativized manner as a measure of 
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hydraulic sufficiency (leaf-specific hydraulic conductivity; Kl, Kl = Ks * Hv, see below) 

(Tyree & Zimmermann 2002). From this perspective, plants may adapt to drought 

stress prioritizing supply over demand by reducing the ratio of leaf area relative to cross-

sectional sapwood area (i.e., increasing its inverse, the Huber value; Hv) and thus 

ensuring the maintenance of hydraulic sufficiency under water scarcity. Contrarily, 

lineages not exposed to drought stress and with no restriction to evolve towards a more 

conductive xylem may be able to supply water to a higher leaf area by using a relatively 

low sapwood area, potentially allowing for higher productivity (Mencuccini et al. 

2019b). Therefore, we would also expect xylem conductivity and sapwood-to-leaf 

allocation to be integrated over evolutionary timescales, evolving in a coordinated 

manner to maintain hydraulic sufficiency (Reich et al. 2003). 

In this study, I aim to elucidate the global macroevolutionary patterns of 

hydraulic traits, disentangling (1) the degree to which trait values are phylogenetically 

conserved, (2) the extent to which trait conservatism is related to environmentally 

driven selection and (3) whether traits evolve in a correlated manner because of their 

responses to environmental conditions or because of a deeper integration. I hypothesize 

that closely related species will have similar trait values (Losos 2008) and that this 

phylogenetic conservatism will be partly explained by environmental selection (Figure 

2.1). In addition, I hypothesize that some pairs of traits will show signs of a deep 

evolutionary relationship (evolutionary modules) reflecting a deep functional, 

developmental or genetic integration. Specifically, I expect to find three deep 

evolutionary modules consistent with previously hypothesized trait integration (namely, 

|P50|/|Pmin|, |P50|/Ks, Ks/Hv) (Figure 2.1). 
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Figure 2.1 Hypotheses Lines represent potential correlation involving key hydraulic traits. Red 

dashed lines represent negative correlations and solid green lines represent positive correlations. 

Hydraulic safety margin (HSM) is the relationship between |Pmin| and |P50|, and hydraulic 

sufficiency (Kl) which is the relationship between Ks and Hv. Hypothesised coordination between 

traits are specifically referred (a, b and c). 
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2.3 MATERIALS AND METHODS 

2.3.1 Data sources 

We extracted detailed hydraulic trait data from a database covering 2,027 species 

(1,888 angiosperms and 139 gymnosperms), representing 817 genera from 161 families. 

The data come from previously published databases (Liu et al. 2019a, Mencuccini et al. 

2019b). Species names were matched against accepted names in The Plant List using 

the taxonstand R package (Cayuela et al. 2012). Then, the taxonlookup R package (Pennell 

et al. 2016) was used to complete species information at the genus, family, order and 

major evolutionary affiliation (angiosperms vs. gymnosperms) levels. The database 

covers all major biomes (Figure S2.1 in appendix 8.1.1).  

I used data of four hydraulic traits that were represented across sufficiently large 

numbers of species (N > 550): (1) maximum stem-specific hydraulic conductivity (Ks, 

kg m-1 MPa-1 s-1) as a measure of xylem conductive capacity; (2) stem water potential at 

50% loss of hydraulic conductivity measured in terminal branches (referred as an 

absolute value, |P50|, MPa) as a measure of xylem resistance to embolism; (3) branch-

based Huber value (Hv; cm2 m-2), defined as the sapwood cross-sectional area to leaf 

area ratio, as a measure of allocation; and (4) minimum midday leaf water potential 

recorded for species (referred as an absolute value, |Pmin| MPa) as a measure of 

exposure to drought stress at the tissue level. I also included two additional variables 

integrating two pairs of the four selected traits, specifically, (5) maximum leaf-specific 

hydraulic conductivity (Kl, kg m-1 MPa-1 s-1) as the hydraulic capacity per unit leaf area 

(Ks * Hv) and (6) the hydraulic safety margin (HSM, HSM = Pmin – P50) (Table S2.1). 

When multiple measures for one species were available, mean values were used for all 

traits, except for |Pmin|, where the absolute minimum was used (c.f. Choat et al. 2012). 

For all variables, I excluded data from seedlings and studies in greenhouses or 

experimental gardens, data obtained on roots and leaves (Liu et al. 2019; Mencuccini et 
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al. 2019b) and |P50| values corresponding to extreme, r-shaped vulnerability curves, 

following previously used criteria (Choat et al. 2012). 

I note that all study traits are subject to methodological uncertainty in their 

determination and in aggregation to species level, and sample sizes differ among species. 

Estimates of species-specific |Pmin | in particular are sample-size dependent and likely 

biased to an unknown extent for some species. It is likely that the sampling period will 

miss droughts with a long return interval at some sites. It is also likely that long-lived 

species (e.g. several gymnosperms) will encounter more severe drought events 

throughout their lives with consequently greater biases. HSM combines uncertainties in 

both |P50| and |Pmin| determination, which is problematic because of direct 

methodological issues in the case of |P50| (Jansen et al. 2015) and because of the 

inherent difficulty in characterizing extreme values in the case of |Pmin| (Head et al. 

2012). Finally, in the case of Ks, although it is normalized by sapwood area, it might still 

depend upon stem size to some degree. 

Sixteen environmental variables were compiled (11 related to climate and five to 

soil properties) (Table S2.1). Climatic variables were extracted from WorldClim (Fick 

and Hijmans 2017) (www.worldclim.org; accessed on February 2019) except for 

Moisture Index, which was extracted from the global aridity and potential 

evapotranspiration (PET) database (Trabucco & Zomer 2019) (www.cgiar-csi.org, data 

accessed on February 2019) at a resolution of 30 arcsec. Soil data were extracted from 

SoilGrids (Hengl et al. 2017) (www.soilgrids.org, accessed on February 2019) at the 

same resolution. Occurrences for all species were obtained from the Global Biodiversity 

Information Facility (www.gbif.org, accessed on February 2019) and the Atlas of Living 

Australia (www.ala.org.au, accessed on February 2019) using the rgbif (Chamberlain et 

al. 2023) and the ALA4R (Westgate et al. 2023) R packages, respectively. Potentially 

incorrect species occurrence records where filtered using the CoordinateCleaner R 

package (Zizka et al. 2019). 
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2.3.2 Phylogeny 

I used a genus-level phylogeny instead of a species-level one to avoid issues with 

species misidentifications, which are particularly common in the tropics (Baker et al. 

2017), and from where a considerable amount of our hydraulics data come. The genera 

in the phylogeny covered a greater number of species present in our database than the 

best-sampled species-level phylogeny available (Smith and Brown 2018). Some models, 

however, were also fitted using a species-level phylogeny (Smith and Brown 2018) to 

assess the robustness of our results to the taxonomic resolution of our phylogenetic 

data. To construct the genus-level phylogeny, sequences of the rbcL and matK plastid 

gene for 707 angiosperm tree genera were obtained from Genbank 

(www.ncbi.nlm.nih.gov/genbank) building on previous efforts (Dexter & Chave 2016; 

Neves et al. 2020; Segovia et al. 2020). Sequences were aligned using the MAFFT 

software (Katoh and Standley 2013). “Ragged ends” of sequences that were missing 

data for most genera were manually deleted from the alignment. The two chloroplast 

markers were concatenated, and a maximum likelihood phylogeny for the genera was 

estimated in the RAxML v8.0.0 software (Stamatakis et al. 2008), on the CIPRES web 

server (www.phylo.org), using General Time Reversible (GTR) + categorical Gamma 

(G) model of sequence evolution. The tree was constrained following order-level 

relationships proposed by the angiosperm Phylogeny Group IV (Chase et al. 2016). 

Sequences of Nymphaea alba (Nymphaeaceae) were included as an outgroup.  

The resulting maximum likelihood phylogeny for angiosperms was temporally 

calibrated using the software treePL (Smith and O’Meara 2012). Age constraints for 

internal nodes were implemented for most families and orders (Magallón et al. 2015). 

The rate smoothing parameter (lambda) was set to 10 based on a cross-validation 

procedure. Finally, the newly-derived angiosperm phylogeny was fused with an existing 

gymnosperm phylogeny (Leslie et al. 2018). I manually added the genera Gnetum and 

Ginkgo according to ages found in the literature, 174 Ma for the Gnetales (Ran et al. 

2018) and 265.2 Ma for Ginkgoaceae (Tank et al. 2015). 
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2.3.3 Statistical analyses 

All analyses were carried out in R (3.6.0) (R Core Team 2020). Some variables 

were transformed to achieve normality (using absolute values in the case of P50 and 

Pmin) (Table S2.1). A Principal Components Analysis (PCA) on the 16 variables was 

performed using the R package stats (R Core Team 2020) to reduce the number of axes 

summarizing environmental variation. The first principal component (PC1) explained 

51% of the variance in the environmental data, representing variation in water 

availability and some related variables such as soil pH, soil clay content, soil water 

content and temperature seasonality, with high values characterizing more humid 

locations with leached acidic soils characteristic of non-seasonal wet tropical habitats. 

The second principal component (PC2) explained 20% of the variance, representing 

variation in energy input, with high values characterizing low solar irradiation, low 

maximum temperatures and low atmospheric water demand. Finally, the third principal 

component accounted for 9% of the variance and largely reflected soil depth and, to a 

lower extent, wind velocity, with high values indicating deeper soils with low sand 

content and low maximum wind velocities (Table S2.2, Figure S2.2 and Figure S2.3). 

The remaining components explained a low proportion of variance (<7%), so the first 

three axes were used to characterize the environmental niches of species in the 

following analyses. 

Uni-response and bi-response Bayesian phylogenetic mixed models, alternatively 

including or excluding fixed effects of environmental principal components, major 

evolutionary affiliation (angiosperm vs. gymnosperm) and their interactions were fitted 

using the MCMCglmm R package (Hadfield 2010a) (see Table S2.3 for models 

description). All models accounted for the occurrence of multiple measurements in 

each genus by the inclusion of genus identity as a random effect. Moreover, genus-level 

phylogenetic relationships were taken into account as a second random effect using the 

previously presented phylogeny. The inclusion of these random effects allowed us to 

partition the residual variance from models into three components: the inter-generic 
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variance caused by phylogenetic relationships; the non-phylogenetic, inter-generic 

variance; and the intra-generic variance. The inter-generic phylogenetic variance 

quantifies the variability explained by the relationships among taxa as given by our 

phylogenetic hypothesis and, when divided by the total variance, gives a measure of the 

phylogenetic signal (λ) (Lynch 1991). Non-phylogenetic inter-generic variance (γ) 

accounts for the proportion of among-genus variability not explained by the phylogeny, 

and the intra-generic variance (ρ) provides a measure of the proportion of variability 

caused by intra-generic trait variation (plus any residual error) (Hadfield and Nakagawa 

2010) (see appendix 8.1.2 for a more formal description).  

To partition variances of phylogenetic and non-phylogenetic components, I 

implemented uni-response models without fixed effects for the six selected hydraulic 

traits and for the three environmental PCA axes as response variables (Table 2.1, Table 

S2.4 to see non-phylogenetic model variance partitions). To identify relationships 

between hydraulic traits and environmental PCA axes, I then ran uni-response models 

with hydraulic traits as response variables and single environmental principal 

components as fixed effects, both accounting and not accounting for phylogenetic 

relationships affecting the response trait. To examine the effect of the major split 

between angiosperms and gymnosperms, additional models included a binary variable 

describing major evolutionary affiliation and the interaction between affiliation and 

environment, allowing us to detect statistical differences between angiosperms and 

gymnosperms in the overall mean values of traits and in their relationships with 

environmental axes. For each group of nested models, the best fitting one in terms of 

DIC (Deviance Information Criterion) was selected (Table S2.5 to see DIC values). 

Models within 4 DIC units of each other were considered equivalent in terms of fit, and 

the simplest one was selected.  

Subsequently, to characterize phylogenetic covariation between the hydraulic 

traits and between each hydraulic variable and the three environmental principal 

components, bi-response models were used. In these models, two response variables 
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and their phylogenetic structure were considered simultaneously, resulting in a variance-

covariance matrix from which the correlated phylogenetic signal (see box 1.2) between 

the two variables could be calculated (see supplementary methods in appendix 8.1.2). 

Correlated phylogenetic signal was calculated for all combinations of trait pairs, 

including, and excluding the three environmental components, evolutionary affiliation, 

and their interactions as fixed effects (Figure S2.1 shows data coverage for each 

combination of traits). Finally, I also estimated correlated phylogenetic signal between 

traits and single environmental principal components including and excluding 

evolutionary affiliation as a fixed effect (Table S2.6 to see all correlations). Bi-response 

models were also implemented using a species-level phylogeny (Smith and Brown 2018) 

and available in the R package V.PhyloMaker (Jin and Qian 2019), to ensure consistency 

with genus-level results (see appendix 8.1.3). As data availability for the species-level 

phylogeny was lower due to the coverage of the phylogeny, I replicated the bi-response 

genus-level models using the same reduced dataset to ensure that potential differences 

between results were not due to different species coverage. I also performed analyses 

using the species-level phylogeny pruned at the genus-level, to ensure that potential 

differences between results were not explained by differences in the topologies of our 

custom-made genus-level phylogeny and the available species-level phylogeny (see 

appendix 8.1.4). 

Models were specified to achieve convergence while minimizing correlation 

between iterations (appendix 8.1.2). Marginal variance explained (R2m, variance 

explained by the fixed effects) and conditional variance explained (R2c, variance 

explained by both fixed and random effects) were calculated for the uni-response 

models (Nakagawa and Schielzeth 2013). P-values were calculated for correlated 

phylogenetic signals using a previously published methodology (Makowski et al. 2019). 

Finally, reconstructions of the six traits and the three environmental principal 

components evolution under a Brownian motion model were mapped along the 

phylogeny using maximum likelihood ancestral state reconstructions (Schluter et al. 

1997) by means of the Phytools R package (Revell 2013).  
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 Table 2.1 Variance partitioning for six hydraulic traits and three environmental principal components. N: number of species used in each case, 
phylogenetic variance (phylogenetic signal, λ), non-phylogenetic intergeneric variance (γ) and intra-generic variance plus measurement error (ρ). Mean 
and lower and upper 95% credible intervals (HPD) are shown for each component. 

variable N λ Lower HPD Upper HPD γ Lower HPD Upper HPD ρ Lower HPD Upper HPD 

Embolism  
resistance, 
ln(|P50|) 

868 0.484 0.305 0.697 0.225 0.085 0.360 0.291 0.205 0.368 

Drought 
exposure, 

ln(|Pmin|) 

541 0.745 0.572 0.874 0.066 0.000 0.179 0.189 0.129 0.273 

Hydraulic 
conductivity, 

ln(Ks) 

1026 0.515 0.363 0.680 0.086 0.000 0.174 0.399 0.303 0.493 

Sapwood/leaf 
allocation, 

ln(Hv) 

1271 0.446 0.291 0.594 0.191 0.097 0.294 0.363 0.276 0.449 

Hydraulic safety 
margin, HSM 

326 0.449 0.201 0.722 0.163 0.000 0.339 0.388 0.246 0.546 

Hydraulic 
sufficiency, 

ln(Kl) 

827 0.432 0.244 0.592 0.036 0.000 0.113 0.532 0.399 0.675 

Water    
availability       

PC1 

1911 0.820 0.767 0.870 0.063 0.030 0.099 0.117 0.093 0.139 

Energy input               
PC2 

1911 0.686 0.599 0.766 0.028 0.000 0.069 0.286 0.230 0.341 

Soil depth               
PC3 

1911 0.841 0.798 0.876 0.007 0.000 0.027 0.152 0.124 0.182 
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2.4 RESULTS 

2.4.1 Phylogenetic signal in hydraulic traits 

All six selected traits showed a significant phylogenetic signal. The proportion 

of variance that was explained by the inter-generic phylogenetic structure (λ) ranged 

from 0.432 (Kl) to 0.745 (|Pmin|) (Table 2.1). This means that 43.2-74.5% of trait 

variances can be attributed to relatively deep evolutionary differences among genera, 

with the rest being attributed to non-phylogenetic inter-generic (γ) and intra-generic (ρ) 

variances. Intra-generic variances (ρ) ranged from 0.189 (|Pmin|) to 0.532 (Kl), being 

the second most important variance component in all cases except Kl (where it was the 

most important), indicating that trait diversification within genera is a substantial part 

of global trait variability. Analyses using the species-level phylogeny confirmed that 

variation within genera also had strong phylogenetic patterns (see analysis using a 

species-level phylogeny in the appendix 8.1.3). Finally, inter-generic, non-

phylogenetically related variances (γ) ranged from 0.036 (Kl) to 0.225 (|P50|) and 

accounted for the lowest proportion of the variance in all cases (Table 2.1). Phylogenetic 

mapping of hydraulic traits qualitatively confirmed the findings reported above, 

showing more gradual changes in highly conserved traits such as |Pmin| and changes 

more concentrated at the tips of the phylogeny for variables showing a lower 

phylogenetic signal, such as Hv, which also showed higher intra-generic variance 

(Figure 2.2, Figure 2.3 and Figure S2.4). 

Importantly, the phylogenetic signal of the three environmental principal 

components was also very high, particularly for PC1, representing water availability 

(0.820) and PC3, mainly represented by soil depth (0.841) (Table 2.1, Figure S2.5)
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Figure 2.2 and 2.3 Phylogenetic reconstruction of hydraulic traits 
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2.4.2 Environmental drivers of hydraulic traits 

In models that accounted for phylogenetic structure, all hydraulic traits showed 

significant relationships with at least one of the three environmental axes defined by 

the PCA (Figure 2.4). Conditional explained variances (R2c) were notably higher than 

marginal explained variances (R2m), indicating that accounting for the phylogenetic 

relationships was crucial to improve model fit (Figure 2.4). Consistent with the fact that 

environmental axes were highly phylogenetically conserved, we also found that the 

phylogenetic signal of traits (Table 2.1) diminished when accounting for environmental 

effects (Figure 2.4, lambdas (λ)), thus indicating that environmental conditions explain 

part of the phylogenetic variance. 

Xylem resistance to embolism (|P50|) was only negatively related to PC1 (water 

availability). Minimum water potential at midday (|Pmin|) was negatively related to PC1 

and PC2 (declining energy input) and positively to PC3 (soil depth). However, the 

relationship with PC1 was only significant for angiosperms. Xylem conductivity (Ks) 

was found to be positively related to PC1 and PC3, being negatively related with PC2 

only in non-phylogenetic models. Sapwood to leaf area ratio (Hv) was negatively related 

to PC1 and PC3. The hydraulic safety margin (HSM) was positively related to PC1 and 

PC2 only for angiosperms and the relationship between HSM and PC3 was only 

significant (and negative) for non-phylogenetic models. Finally, Leaf-specific 

conductivity (Kl) was only related to PC2 (negatively) in phylogenetic models, but a 

positive relationship with PC3 was also found when using non-phylogenetic models 

(Figure 2.4). 
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Figure 2.4 Environment-trait relationships Grey-dashed lines represent the 

significant global relationship without accounting for the phylogenetic structure and 

black-, and red-solid lines significant relationship once phylogenetic structure is 

considered for all the data and angiosperms (only when statistical differences with 

gymnosperms where reported). Residual phylogenetic signal (λ) of hydraulic traits once 

environmental effects are accounted for in each case is reported when relationships are 

significant. R2m is the variance explained by the fixed effects and R2c by the fixed and 

random effects for the phylogenetic mixed models. Signif. codes: “***”: P < 0.001; 

“**”: P < 0.01; “*”: P < 0.05 “.”: P < 0.1 “ ”: P> 0.1. 
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2.4.1 Correlated phylogenetic signal  

Significant correlated phylogenetic signal was reported between |Pmin| and 

|P50| (positive), Ks and Hv (negative), Hv and |P50| (positive) (Figure 2.5). These 

correlated phylogenetic signals were confirmed when the species-level phylogeny was 

used, which also showed a significant correlated phylogenetic signal between |P50| and 

Ks (negative), |Pmin| and Hv (positive) and Ks and |Pmin| (negative) (Figure S2.6). The 

emergence of these correlated phylogenetic signal was not explained by the lower 

number of species available for the species-level phylogeny compared to the genus-level 

one, nor by differences in topology between phylogenies (appendix 8.1.4), so it is likely 

due to the large amount of phylogenetic covariance between traits within genera. Only 

two correlated phylogenetic signals between traits remained once environmental factors 

and major evolutionary affiliation of species were accounted for, coinciding with two 

of the three hypothesized evolutionary modules. These were the ones involving |P50| 

and |Pmin| (positive correlation) and Ks and Hv (negative correlation) (Figure 2.5, 

Figure S2.6). While |P50| and |Pmin| presented a highly conserved covariation pattern, 

the evolutionary integration between Ks and Hv was less strong. The latter was 

marginally significant when using the genus-level phylogeny (Figure 2.5), but clearly 

significant when intra-generic phylogenetic covariation between traits was additionally 

considered by using the species-level phylogeny (Figure S2.6).  

Consistent correlated phylogenetic signals were also observed between certain 

hydraulic traits and environmental principal components in the bi-response models: Ks 

was positively correlated with PC1 (water availability), and PC3 (soil depth) while its 

relationship with PC2 (energy input) was only significant at the genus-level and 

disappeared when considering major evolutionary affiliation. Hv was negatively 

correlated with PC1 and PC3; and both |P50| and |Pmin| were negatively correlated 

with PC1 (Figure 2.5). 
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Figure 2.5 Correlated phylogenetic signals Correlated phylogenetic signals involving species-

level hydraulic traits and environmental principal components using a genus-level phylogeny. 

Environmental variables represent orthogonal PC axes and as such are not correlated. Lines 

represent significant correlated phylogenetic signals. Red dashed lines represent negative 

correlations and green solid lines indicate positive correlations. Significant correlation coefficients 

are shown in italics and are proportional to the thickness of the line. Significant correlation 

coefficients between traits including environmental components and evolutionary affiliation as 

fixed effects are shown in bold (in the case of the relationships between environmental axes and 

traits, only evolutionary affiliation was considered as a fixed effect). P-values are also displayed for 

each coefficient. Pie charts represent phylogenetic signal (dark), intergeneric (medium) and intra-

generic (light) variances reported in Table 2.1. Signif. codes: “***”: P < 0.001; “**”: P < 0.01; “*”: 

P < 0.05 “.”: P < 0.1 “ ”: P > 0.1. 
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2.5 DISCUSSION 

2.5.1 Phylogenetically conserved adaptation in hydraulic 

traits 

I found a clear pattern of phylogenetic conservatism for hydraulic traits, 

suggesting that the legacy of traits found in species’ evolutionary ancestors is an 

important determinant of trait values in extant species. While we cannot formally rule 

out Brownian motion evolution operating over long evolutionary timescales as the 

source of present-day trait variability on the basis of our single trait variance partitioning 

(Revell et al. 2008), our finding of correlated phylogenetic signals of traits with 

environmental variables indicates a key role for non-neutral evolutionary processes. 

Consistently, environmental components explained part of traits’ phylogenetic variance 

when accounted for as fixed effects (Figure 2.4). Therefore, our analyses indicate that 

adaptive processes have driven the diversification of hydraulic traits, but the prevalent 

pattern of phylogenetic niche conservatism suggests that evolutionary constraints have 

limited the range of trait values within lineages. Thus, lineages have been largely tracking 

environments similar to those their ancestors were already adapted to, retaining 

ancestral traits because of stabilizing selection (Ackerly 2009), while occasionally 

adapting to novel environmental conditions. 

We do observe a wide range of trait values across lineages (including among 

genera), indicating that they adaptively diverged in deep evolutionary time (Figure 2.2, 

Figure 2.3, Figure S2.4 and Figure S2.5). Further, substantial trait variation can also arise 

over shorter evolutionary timescales (i.e., in recent evolutionary time) via species 

adapting to environmental changes, as supported by the significant degree of trait 

variance at the intra-generic level (Table 2.1), which also appears to have a phylogenetic 

component (Figure S2.6). As a result, lineages that have been evolving in dry habitats 

have adapted to a higher exposure to drought stress by increasing their xylem resistance 
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to embolism, being able to maintain water transport at low water potentials (Choat et 

al. 2012). These species are also selected to ensure water supply to leaves by using a 

relatively high sapwood area with a low hydraulic conductivity (Mencuccini et al. 

2019b). As water become less limiting, lineages are less exposed to low water potentials 

and are not selected to increase xylem resistance to embolism, while switching their 

allocation priority to a high leaf area maintained by a smaller area of highly conductive 

sapwood (Figure 2.4). 

However, substantial variability in species exposure to drought stress within a 

given environment reflects the fact that plant characteristics such as stomatal control 

(Brodribb and McAdam 2017), deciduousness (Wolfe et al. 2016) or rooting depth 

(Canadell et al. 1996) are also determining hydraulic trait evolution. This may explain 

the lack of a clear relationship between PC1 (water availability) and |Pmin| and HSM in 

gymnosperms, a clade mainly represented by Pinaceae and Cupressaceae (Figure S2.7) 

that are known to adopt contrasting strategies under drought. While Pinaceae avoid 

exposure to low water potentials by closing their stomata and possibly disconnecting 

from the soil (Poyatos et al. 2018a), Cupressaceae tolerate them by presenting a high 

resistance to embolism (Brodribb et al. 2014). Differences between angiosperms and 

gymnosperms could also be due to an underestimation of drought stress exposure for 

long-lived gymnosperms, especially in the case of the highly stress resistant 

Cupressaceae, for which the observation window may not have been long enough to 

adequately capture |Pmin|. Therefore, different evolutionary processes may be 

dominant depending on the taxon studied. For instance, xylem embolism resistance  has 

been reported to be extremely labile for the genus Callitris (Larter et al. 2017) and to be 

conserved for Juniperus (Willson et al. 2008), while showing a high canalization for Pinus 

species (Lamy et al. 2014). It is also worth noting that our global eco-evolutionary 

overview may be limited by the availability of hydraulic data and its methodological 

uncertainties, as well as by the difficulty of upscaling traits at the whole-plant level, 

which remains a challenge (Mencuccini et al. 2019a). 
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2.5.2 Evolutionary modules in hydraulic traits  

Traits can evolve in an integrated fashion conforming to evolutionary modules 

because of their response to similar selective pressures, but relationships between them 

may also arise from functional, developmental, or genetic constraints. We found two 

sets of traits for which an evolutionary correlation cannot be explained by similar 

responses to environmental conditions or by fundamental differences between 

angiosperms and gymnosperms. These sets of traits represent a deeper evolutionary 

integration. The first evolutionary module involves species exposure to drought and 

resistance to embolism (|P50|/|Pmin|), and it is strongly conserved over evolutionary 

scales. The second one involves xylem conductivity and sapwood to leaf area allocation 

(Ks/Hv), the integration of which appears stronger when quantified in more recent 

evolutionary time (c.f. results for genus- vs. species-level phylogenies in Figure 2.5 and 

Figure S2.6). The third evolutionary module we hypothesized (Ks/|P50|) appears to be 

explained exclusively by separate trait responses to similar selective pressures, 

confirming previous results (Maherali et al. 2004). Therefore, a direct evolutionary 

trade-off between Ks and |P50| can be rejected based on available data, further 

indicating that Ks and |P50| cannot be determined by a single common anatomical 

feature (e.g., the size distribution of pores in the inter-conduit pit membranes) at the 

tissue level (Baas et al. 2004). I suggest that Ks and |P50| depend on several anatomical 

properties that may be coordinated under strong selective pressures, but do not 

necessarily co-evolve when pressures are relaxed over evolutionary timescales. Our 

results likely reflect the fact that some species may present strategies that do not rely on 

maximizing xylem conductivity or resistance to embolism, especially when water is not 

the most limiting resource and survival does not depend on fast resource use (Reich 

2014). However, the detailed structural and physiological conditions allowing the 

independent evolution of these two traits remains to be elucidated.  
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Traits involved in the same evolutionary module are likely to be functionally, 

developmentally, or genetically integrated. Deep functional integrations over 

evolutionary timescales can be explained by the need to optimize HSM and Kl under a 

given environmental context, as the maintenance of positive safety margins and a 

sufficient hydraulic supply to leaves are likely to be closely linked to survival (Choat et 

al. 2018a) and under a strong stabilizing selection. Therefore, events of coordinated 

selection on the involved trait pairs described above might take place over evolutionary 

times in order to maintain HSM and Kl values close to the adaptive peak. 

Integration might also be influenced by phylogenetic conservatism in underlying 

physiological processes and anatomical features. For example, conservatism in stomatal 

control (Brodribb and McAdam 2017) and leaf phenology (Davies et al. 2013) might 

explain the evolutionary covariation between |Pmin| and |P50| beyond environmental 

forcing, with some lineages being able to avoid low water potentials by rapid stomatal 

closure (Martin-StPaul et al. 2017) or drought-deciduousness (Kolb and Davis 1994).  

Finally, these functional and developmental integrations may be underpinned by 

genetic integration, specifically meaning that processes such as genetic correlation  

(Etterson and Shaw 2001), linkage disequilibrium and pleiotropy (Cheverud 1996) 

might be affecting the anatomical and structural determinants of the traits involved, 

leading to the observed evolutionary integration. As a result, the evolution of traits in 

the same module might be genetically constrained (Wagner 1996). Further work on the 

causes and consequences of the evolutionary integration of hydraulic traits, and the 

meaning of their conservatism through evolutionary time, will be crucial to characterize 

global trait syndromes and assess species adaptive potential under changing 

environmental conditions. 
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2.6 CONCLUSION 

Diversity in species level hydraulic traits appear to be largely determined by deep-

time evolutionary changes driven by adaptation to divergent environmental conditions, 

potentially limited by evolutionary constraints. I have found evidence for evolutionary 

integrations not explained by common environmental drivers, conforming to two 

hardwired evolutionary modules: the xylem resistance-exposure module 

(|Pmin|/|P50|), which is highly conserved over evolutionary scales, and the 

conductivity-allocation module (Hv/Ks), which is more evident in recent evolutionary 

timescales. Results do not support a hardwired module describing the resistance-

conductivity trade-off (Ks/|P50|). The underlying mechanisms shaping these 

evolutionary modules and their role in species functional and evolutionary 

diversification remain to be elucidated. More phylogenetically explicit studies of 

individual clades (including intraspecific genetic, anatomical, and functional variation) 

under different environmental contexts will allow further characterization of plant trait 

syndromes as a network of integrated units that respond to natural selection. 
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3.1 ABSTRACT 

The evolution of traits does not happen in isolation but often as part of 

integrated trait syndromes, yet the relative contribution of environmental effects and 

evolutionary history on traits and their integration is not easy to resolve. In this chapter, 

I develop a methodological framework to elucidate eco-evolutionary patterns in 

functional trait syndromes. I do so by separating the amount of variance and covariance 

related to the phylogeny and environmental variables (environmental phylogenetic 

conservatism), only the phylogeny (non-attributed phylogenetic conservatism) and 

only to the environmental variable(s) (evolutionarily labile environmental effects).  Variance-

covariance structures are displayed as networks. Then, I use this framework to guide a 

newly derived imputation method based on machine learning models that predict trait 

values for unsampled taxa, considering environmental and phylogenetic information as 

well as trait covariances. TrEvol is presented as an R package providing a unified set of 

methodologies to study and predict multivariate trait patterns and improve our capacity 

to impute trait values. To illustrate its use, I use both simulated data and data on traits 

of woody angiosperm species related to hydraulics and the leaf economics spectrum. 

This conceptual framework can be employed to examine issues ranging from the 

evolution of trait adaptation at different phylogenetic resolutions to within-species trait 

variation. 
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3.2 INTRODUCTION 

Functional traits can be defined as morpho-physio-phenological attributes which 

impact fitness indirectly via their effects on individual performance (Violle et al. 2007). 

As such, they are likely to undergo adaptive evolution in response to environmental 

drivers (Ackerly et al. 2000). The functional significance of any one trait depends on 

coordination with others, creating functional strategies referred as trait syndromes that 

contribute to success under different environmental conditions (Reich et al. 2003, 

Wright et al. 2004, Sanchez-Martinez et al. 2020). Then, a trait syndrome is a 

combination of functional trait values that occur in a given taxonomic unit (e.g., a 

species) and that can be shared with others (e.g., group of species). Variability in 

functional strategies can lead to the conformation of trait modules (also referred as trait 

axes or trait spectra), which are groups of traits that covary potentially responding to 

environmental conditions and may be influenced by evolutionary legacies (Reich et al. 

2003, Cavender-Bares et al. 2016). While the relationships among some functional traits 

(e.g., Wright et al. 2004, Mencuccini et al. 2019), their relationship with environmental 

variables (e.g., Bhaskar and Ackerly 2006, Flo et al. 2021) and trait phylogenetic 

conservatism (e.g., Ackerly 2009, Flores et al. 2014) have been widely studied, to my 

knowledge, a unified framework to study trait syndromes from an eco-evolutionary 

perspective is still lacking. I posit that a phylogenetically explicit framework describing 

the multivariate structure of traits and their relationship with environmental variables 

will improve our capacity to understand the ecological and evolutionary nature of trade-

offs and coordination regulating trait syndromes. In turn, this framework may be used 

to predict plant functional trait values for unsampled taxa, which can help in 

determining vegetation responses to environmental changes (Choat et al. 2018b, 

Anderegg et al. 2021), particularly in the common situation where sparse trait data 

undermine the ability to make predictions in understudied locations or vegetation types 

(e.g., Trugman et al. 2020, García-Valdés et al. 2021). 
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Variation in environmental conditions underlies adaptive variation in trait 

syndromes (Reich et al. 2003). This adaptive variation can be phylogenetically 

conserved, describing a pattern of phylogenetic niche conservatism, which arises when 

ecological opportunities are occupied by species that are already adapted to similar 

conditions (Losos 2008). As a result, adaptive evolutionary change may be limited over 

short evolutionary timescales leading to closely related species retaining similar 

functional and ecological characteristics that are highly constrained by common 

ancestry. I refer to this pattern as the environmental phylogenetic conservatism of 

a given trait or trait syndrome in response to one or more environmental axis related to 

species ecological niche. In contrast, environmental variation can be related to 

functional traits and their covariation in a phylogenetically independent manner, 

describing a scenario where closely related species are not constrained to occupy similar 

environmental spaces and functional strategies (Ackerly 2009). I refer to this pattern as 

evolutionarily labile environmental effect of one or more environmental axis of the ecological 

niche on trait syndromes. 

A patter of phylogenetic conservatism in trait variation and covariation can also 

appear as a product of evolutionary constraints that are un-related to environmental 

variables. These potentially non-adaptive processes can lead to a slow and constrained 

evolution as a result of genetic correlation, linkage disequilibrium, pleiotropy, lack of 

genetic variability or homogenizing gene flow, among others (Ackerly 2009). This 

conservatism may also be related to lineage-specific biophysical constraints on trait 

values or unmeasured environmental axes, although one would generally aim to include 

the environmental variables that are expected to be relevant to the traits under study. 

Therefore, I suggest referring to this conservatism in the data that is not related to a 

given set of measured environmental effects of interest as non-attributed 

phylogenetic conservatism (in relation to one or more environmental axes) (Figure 

3.1). 
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Figure 3.1 Traits’ variance-covariance conceptual framework Variance and 

covariance partition into the different components related to non-attributed phylogenetic 

conservatism, environmental phylogenetic conservatism, labile environmental effects and residual. 

Note how non-attributed phylogenetic conservatism and environmental phylogenetic 

conservatism sum to TOTAL PHYLOGENETIC CONSERVATISM and environmental 

phylogenetic conservatism and labile environmental effect sum to TOTAL ENVIRONMENTAL 

EFFECT. Examples representing two traits in each case are presented as networks (showing 

variance results as pie charts in nodes and covariance as edges). At the bottom, examples for 

different traits showing extreme cases maximizing each one of the components are shown as 

scatterplots, representing two different hypothetical traits in each case and the phylogeny relating 

different points, showing the phylogenetic group for each terminal taxon value (different shapes 

for different major lineages) and an environmental variable as the filling colour. We can see how 

in the non-attributed phylogenetic conservatism scenario only the phylogeny is related to 

variance and covariance patterns; in the environmental phylogenetic conservatism one, both 

the phylogeny and the environmental variable are related to the variance and covariance patterns 

and in the labile environmental effect one, only the environmental gradient is related to the 

variance and covariance patterns. 
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A better knowledge on functional trait relationships and their drivers can 

improve predictive power to infer unmeasured trait values. Previous methodologies 

allow one to predict missing values by using phylogenetic information (Swenson 2014) 

and statistical covariation among traits and environmental variables (Poyatos et al. 

2018b). However, in some cases, traits and their relationship are highly phylogenetically 

conserved, such that phylogeny is highly informative in predicting missing values, while 

in other cases traits present a more labile relationship in response to environmental 

variables, and these variables are better predictors of missing functional trait values. In 

addition, the organization of traits in modules (i.e., groups of tightly related traits) 

indicates that not all traits are equally informative for inferring the values of other traits. 

In this chapter, I propose an imputation method that implements a data-driven 

procedure to select which predictors to include in each case, based on trait covariation 

and relationships with phylogeny and environmental data. 

The methodology described here uses phylogenetic mixed models to separate 

the contribution of environmental phylogenetic conservatism, non-attributed 

phylogenetic conservatism, and labile environmental effect to trait variances and 

covariances, helping to elucidate their relative importance in shaping patterns in 

comparative data. Then, this methodology is used to optimize the use of available data 

in a newly derived machine learning algorithm that predicts missing values for 

functional traits, and which I compare with alternative imputation methods. The 

reliability of this framework is first tested using simulated data, and it is then applied to 

a real dataset hydraulic and leaf economics spectrum (LES) traits (Wright et al. 2004) 

covering woody angiosperm species. The methodology presented here is implemented 

in an accompanying R package named TrEvol (from Traits Evolution).  
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3.3 MATERIALS AND METHODS  

The proposed method consists of two separate elements. The first one consists 

of characterizing variance-covariance structures of pairs of traits by elucidating their 

association with environmental factors as well as their phylogenetic structure. I 

represent these results as trait networks to describe the partition of trait variance-

covariance structures for a given set of traits, differentiating environmental 

phylogenetic conservatism, non-attributed phylogenetic conservatism, and labile 

environmental effects. Then, network metrics can be calculated for each case, which can 

prove helpful to efficiently elucidate the multivariate nature of evolutionary patterns in 

trait syndromes. The second component consists of an imputation algorithm which 

uses the previously described variance-covariance structures to make the most accurate 

prediction of missing values using available information on the phylogeny, the 

environment and traits. 

3.3.1 Trait Variance-covariance partition 

I developed a framework to estimate trait variance-covariance related to a set of 

measured environmental variable(s) and to the phylogeny so that the individual 

contribution of these elements (i.e., labile environmental effect and non-attributed 

phylogenetic conservatism, respectively) as well as their combined contribution 

(environmental phylogenetic conservatism) can be calculated. To do so, I used 

multi-response phylogenetic mixed models implemented in the MCMCglmm R package 

(Hadfield 2010b). For a given list of traits, the computeVarianceCovariancePartition function 

selects all pairwise combinations between traits and a single given environmental 

variable and builds models including them as response variables (i.e., tri-response 

models, two traits and one environmental component). When more than two traits are 

included, the function iterates and does all possible pairwise combinations between 

different traits. For each trait-trait-environmental variable combination, the model 
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estimates the amount of phylogenetically dependent (u) and phylogenetically 

independent (e) variances and covariances. Given two traits (T1 and T2) and a 

continuous environmental variable (E), the model structure is the following: 

(𝑇1, 𝑇2, 𝐸) ~ 𝑢 + 𝑒 

 From this model, the following two variance-covariance matrices are estimated:  

𝑴𝒂𝒕𝒓𝒊𝒙 𝒖 (𝒑𝒉𝒚𝒍𝒐𝒈𝒆𝒏𝒆𝒕𝒊𝒄𝒂𝒍𝒍𝒚 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕) 𝑇1 𝑇2 𝐸

𝑇1 𝑉𝐴𝑅𝑢
𝑇1 𝐶𝑂𝑉𝑢

𝑇1,𝑇2 𝐶𝑂𝑉𝑢
𝑇1,𝐸

𝑇2  𝑉𝐴𝑅𝑢
𝑇2 𝐶𝑂𝑉𝑢

𝑇2,𝐸

𝐸   𝑉𝐴𝑅𝑢
𝐸

 

𝑴𝒂𝒕𝒓𝒊𝒙 𝒆 (𝒑𝒉𝒚𝒍𝒐𝒈𝒆𝒏𝒆𝒕𝒊𝒄𝒂𝒍𝒍𝒚 𝒊𝒏𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕) 𝑇1 𝑇2 𝐸

𝑇1 𝑉𝐴𝑅𝑒
𝑇1 𝐶𝑂𝑉𝑒

𝑇1,𝑇2 𝐶𝑂𝑉𝑒
𝑇1,𝐸

𝑇2  𝑉𝐴𝑅𝑒
𝑇2 𝐶𝑂𝑉𝑒

𝑇2,𝐸

𝐸   𝑉𝐴𝑅𝑒
𝐸

 

The elements of these matrices are used to calculate the environmental 

phylogenetic variance (VARenv,phylo), the non-attributed phylogenetic variance 

(VARphylo), the labile environmental variance (VARenv) and the residual variance 

(VARres). Then, these variance components can be aggregated to calculate Total 

Phylogenetic Variance (VARtotal_phylo), Total Environmental Variance 

(VARtotal_env) and Total Variance (VARtotal) for a given trait (e.g., T1), as follows (in 

bold, aggregation of variance estimates): 

1. 𝑉𝐴𝑅𝑒𝑛𝑣,𝑝ℎ𝑦𝑙𝑜 
𝑇1 = [

𝐶𝑂𝑉𝑢
𝑇1,𝐸

𝑉𝐴𝑅𝑢
𝐸 ]

2

𝑉𝐴𝑅𝑢
𝐸 

2. 𝑉𝐴𝑅𝑝ℎ𝑦𝑙𝑜 
𝑇1 = 𝑉𝐴𝑅𝑢

𝑇1 −  𝑉𝐴𝑅𝑒𝑛𝑣,𝑝ℎ𝑦𝑙𝑜 
𝑇1  

3. 𝑉𝐴𝑅𝑒𝑛𝑣
𝑇1  = [

𝐶𝑂𝑉𝑒
𝑇1,𝐸

𝑉𝐴𝑅𝑒
𝐸 ]

2

𝑉𝐴𝑅𝑒
𝐸 

4. 𝑉𝐴𝑅𝑟𝑒𝑠
𝑇1  = 𝑉𝐴𝑅𝑒

𝑇1 − 𝑉𝐴𝑅𝑒𝑛𝑣
𝑇1  

5. 𝑽𝑨𝑹𝒕𝒐𝒕𝒂𝒍_𝒑𝒉𝒚𝒍𝒐
𝑻𝟏 = 𝑽𝑨𝑹𝒑𝒉𝒚𝒍𝒐 

𝑻𝟏 +  𝑽𝑨𝑹𝒆𝒏𝒗,𝒑𝒉𝒚𝒍𝒐 
𝑻𝟏  

6. 𝑽𝑨𝑹𝒕𝒐𝒕𝒂𝒍_𝒆𝒏𝒗
𝑻𝟏 =  𝑽𝑨𝑹𝒆𝒏𝒗

𝑻𝟏 + 𝑽𝑨𝑹𝒆𝒏𝒗,𝒑𝒉𝒚𝒍𝒐 
𝑻𝟏  



3.3   |   MATERIALS AND METHODS  

59 

7. 𝑽𝑨𝑹𝒕𝒐𝒕𝒂𝒍
𝑻𝟏 =  𝑽𝑨𝑹𝒖

𝑻𝟏 + 𝑽𝑨𝑹𝒆
𝑻𝟏 =  𝑽𝑨𝑹𝒕𝒐𝒕𝒂𝒍_𝒆𝒏𝒗

𝑻𝟏 +  𝑽𝑨𝑹𝒑𝒉𝒚𝒍𝒐 
𝑻𝟏 +  𝑽𝑨𝑹𝒓𝒆𝒔

𝑻𝟏  

The same applies to trait 2. Similarly, elements of the two matrices were used to 

calculate environmental phylogenetic covariance (COVenv,phylo), non-attributed 

phylogenetic covariance (COVphylo),  labile environmental covariance (COVenv), and 

residual covariance (COVres) between all pairwise combinations of traits. Then these 

covariance components can be aggregated to calculate Total Phylogenetic 

Covariance (COVtotal_phylo), Total Environmental Covariance (COVtotal_env) and 

Total Covariance (COVtotal) for a given pair of traits (e.g., T1 and T2), as follows (in 

bold, aggregation of variance estimates): 

8. 𝐶𝑂𝑉𝑒𝑛𝑣,𝑝ℎ𝑦𝑙𝑜 
𝑇1,𝑇2 =

𝐶𝑂𝑉𝑢
𝑇1,𝐸𝐶𝑂𝑉𝑢

𝑇2,𝐸

𝑉𝐴𝑅𝑢
𝐸  

9. 𝐶𝑂𝑉𝑝ℎ𝑦𝑙𝑜 
𝑇1,𝑇2 = 𝐶𝑂𝑉𝑢

𝑇1,𝑇2 − 𝐶𝑂𝑉𝑒𝑛𝑣,𝑝ℎ𝑦𝑙𝑜 
𝑇1,𝑇2

 

10. 𝐶𝑂𝑉𝑒𝑛𝑣
𝑇1,𝑇2 =

𝐶𝑂𝑉𝑒
𝑇1,𝐸𝐶𝑂𝑉𝑒

𝑇2,𝐸

𝑉𝐴𝑅𝑒
𝐸  

11. 𝐶𝑂𝑉𝑟𝑒𝑠
𝑇1,𝑇2 = 𝐶𝑂𝑉𝑒

𝑇1,𝑇2 − 𝐶𝑂𝑉𝑒𝑛𝑣
𝑇1,𝑇2

 

12. 𝑪𝑶𝑽𝒕𝒐𝒕𝒂𝒍_𝒑𝒉𝒚𝒍𝒐
𝑻𝟏,𝑻𝟐 =  𝑪𝑶𝑽𝒑𝒉𝒚𝒍𝒐 

𝑻𝟏,𝑻𝟐 +  𝑪𝑶𝑽𝒆𝒏𝒗,𝒑𝒉𝒚𝒍𝒐 
𝑻𝟏,𝑻𝟐  

13. 𝑪𝑶𝑽𝒕𝒐𝒕𝒂𝒍_𝒆𝒏𝒗
𝑻𝟏,𝑻𝟐 =  𝑪𝑶𝑽𝒆𝒏𝒗,𝒑𝒉𝒚𝒍𝒐 

𝑻𝟏,𝑻𝟐 + 𝑪𝑶𝑽𝒆𝒏𝒗
𝑻𝟏,𝑻𝟐 

14. 𝑪𝑶𝑽𝒕𝒐𝒕𝒂𝒍
𝑻𝟏,𝑻𝟐 =  𝑪𝑶𝑽𝒖

𝑻𝟏,𝑻𝟐 +  𝑪𝑶𝑽𝒆
𝑻𝟏,𝑻𝟐 =  𝑪𝑶𝑽𝒕𝒐𝒕𝒂𝒍_𝒆𝒏𝒗

𝑻𝟏,𝑻𝟐 +  𝑪𝑶𝑽𝒑𝒉𝒚𝒍𝒐
𝑻𝟏,𝑻𝟐 +  𝑪𝑶𝑽𝒓𝒆𝒔

𝑻𝟏,𝑻𝟐 

When no environmental effect is specified, the function calculates Total 

Variance and Covariance and Total Phylogenetic Variance and Covariance, the 

difference being the Total non-phylogenetic Variance and Covariance. The function 

allows for representation of variances and covariances in absolute or relative terms. 

When showRelativeResults = TRUE (which is the default), the proportion of explained 

variance from the total variance is reported and covariation is reported as correlations: 

𝐶𝑜𝑟𝑟 =
𝐶𝑂𝑉𝑇1,𝑇2

√𝑉𝐴𝑅𝑇1 ∗ 𝑉𝐴𝑅𝑇2
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The function retrieves a list containing a table with the variance results and a 

table with the covariance results jointly with individual model outputs. As MCMCglmm 

uses a Bayesian framework, values shown in the tables are means of posterior 

distributions of estimates. The list also contains posterior distributions for each estimate 

from which convergence, effective sample sizes and autocorrelation can be elucidated. 

From these posterior distributions, p-values corresponding to the probability of the 

credible intervals to contain 0 are calculated using the bayestestR  package (Makowski et 

al. 2019). The TrEvol package also includes an alternative methodology that allows for 

consideration of more than one environmental variable at the same time and also can 

account for non-continuous environmental variables by means of the 

computeVariancePartition and the computeCovariancePartition functions, for variance and 

covariance, respectively (see supplementary methods). 

These three functions to compute variance and covariance partitions share the 

same input structure. Inputs needed are: 

 traits: character vector containing the names of the traits to be considered. 

 environmental.variables: character vector containing the names of the continuous 

environmental variables to be considered (if using the alternative methodology, 

it can be of length > 1 and does not need to be continuous; see supplementary 

methods in 8.2.2). These variables need to be in the dataset. 

 dataset: data frame containing traits, environmental variables, and taxon names 

(e.g., species or genus names). 

 phylogeny: phylo object containing species present in the dataset. The function 

matches internally the dataset with the phylogeny, so it allows missing values in 

the data frame and some species present or absent in the phylogeny. The 



3.3   |   MATERIALS AND METHODS  

61 

function will use complete cases for each pair of traits, so only data with 

complete phylogenetic and environmental observations will be used. 

3.3.2 Networks 

To optimize the representation of the multivariate structure, variance-covariance 

structures can be plotted as networks by the function plotNetworks included in the TrEvol 

package, which shows trait explained variance (i.e., variance related to the environment, 

phylogeny or their combination) in each case as pie charts and correlations as edges for 

each one of the pairs of traits included. A given network represents the structure related 

to environmental phylogenetic conservatism, non-attributed phylogenetic 

conservatism or labile environmental effect. 

The function also calculates and displays network metrics described in (He et al. 

2020a) and performed by the igraph R package (Csardi and Nepusz 2006). These 

measures are the number of modules (NM) showing how many independent groups of 

intercorrelated traits exist; edge density (ED) describing the proportion of actual 

connections among nodes out of all possible connections; maximum absolute 

correlation (|r|max) and mean absolute correlation (|r|mean). In this framework, NM 

represents the number of trait modules, high ED represents high coordination between 

all traits and high |r|max and |r|mean represent networks with a higher dependence 

among related traits. At the node level, degree (i.e., number of connections per node) 

can be also calculated and displayed as node size when the argument 

displayDegreeAsNodeSize is set to TRUE, which is the default. Traits with a higher degree 

(i.e., higher node size in the visualisation) are considered hubs.  



3   |   A  UNIFIED FRAMEW ORK TO  STUDY AND PREDICT F UNCTIONAL TRAIT SYNDROMES  

62 

3.3.3 Imputation algorithm 

The package presented here includes an imputation algorithm performed by the 

function imputeTraits which uses the previously described variance-covariance structures 

to guide the trait imputation process. Inputs needed are: 

 dataset: a data frame containing traits with missing values and optionally 

environmental factors for a set of terminal taxa. The dataset must contain a 

column named “taxon” which indicates the name of the taxon (e.g., species 

names). Note that more than one observation per taxon can be included (intra-

taxon variability). 

 Phylogeny: a “phylo” object including all terminal taxa present in the dataset (or a 

tree representing populations genetic structure variability at the intraspecific 

level).  

 imputationVariables: character vector indicating the name of the variables to be 

imputed as they appear in the dataset. 

 predictors: character vector indicating the list of environmental factors included in 

the dataset (without missing values) that may be considered as potential 

predictors (see below). 

Phylogenetic information is included as predictors by calculating phylogenetic 

coordinates for each terminal taxon. To calculate phylogenetic coordinates, the 

algorithm first calculates the phylogenetic distance matrix by means of the cophenetic.phylo 

function and then calculates principal coordinates by means of the pcoa function, both 

from the ape package (Paradis and Schliep 2019). Phylogenetic coordinates are stored 

internally so the algorithm does not need to calculate them each time that it is run for 

a given dataset, which can be time consuming specially for big datasets. However, it will 

recalculate them if the argument forceRun is set to “TRUE”. All principal coordinates 
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explaining more than one per cent of the variance are subsequently considered as 

predictors (see below). However, users can also control the number of phylogenetic 

coordinates to be considered as predictors by using the numberOfPhyloCoordinates 

argument (which must be lower than the number of phylogenetic axes explaining more 

than one per cent of the variance). Note that all terminal taxa present in the input dataset 

need to be also present in the phylogeny. 

The algorithm included in the imputeTraits function uses trait relationship as well 

as the phylogenetic structure and, optionally, environmental factors to predict missing 

values by performing three chained imputation rounds. In the first round, individual 

trait missing values are predicted by using complete data on environmental variables 

and phylogeny as predictors when they are informative (i.e., when they present 

statistically significant relationship with trait variance). In the second round, individual 

trait missing values are predicted using environmental variables, phylogeny, and other 

traits (including values imputed in the first round) as predictors when they are 

informative. In the third round, individual trait missing values are predicted using 

environmental variables, phylogeny and other traits (imputed in the second round) as 

predictors when they are informative (Figure 3.2). Preliminary analyses showed that 

imputation performance improved in some cases if a third round of imputation was 

performed, and it was thus implemented. To elucidate which variables are informative 

and thus included as predictors in each case, computeVarianceCovariancePartition function 

is computed internally to calculate phylogenetic and environmental effects for each trait 

as well as the covariance between the traits to be imputed. Users can also include the 

results of the computeVarianceCovariancePartition manually using the varianceResults and the 

covarianceResults arguments. 

In each imputation round, imputation of trait missing values is performed for 

each one of the traits of interest. Each imputation model is iterated several times 

(controlled by the numberOfIterations argument, set to 10 by default). From each 

imputation round, an imputed matrix is obtained by calculating the mean for all 
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iterations for each predicted value. Standard deviations of predicted values and 

individual model results are also reported. 

The algorithm uses random forests models to predict missing values by means 

of the randomForest function of the randomForest R package (Liaw and Wiener 2002). 

These models calculate out of bag errors (OOB), which are supplied also as a measure 

of imputation error reported as the normalized root mean square error (NRMSE). 

Moreover, the developed algorithm calculates cross validation R2 values by randomly 

creating NAs in the traits to be imputed, predicting values, and then comparing 

predictions with observed values. The proportion of NAs that are randomly created to 

calculate cross validation R2 is controlled by the prodNAS argument of the function 

(between 0 and 1, set to zero by default). When prodNAS = 0, cross validation R2 is not 

calculated. Parallel processing is enabled in the function, when the parallelization 

argument is set to “TRUE”, which is the default. The parallelization method is based 

on previous implementations of random forests in R programming (Stekhoven and 

Bühlmann 2012), so users can set the number of clusters that they want to use in the 

clustersNumber argument, set to two by default. 

Figure 3.2 Imputation algorithm scheme 
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3.3.4 Application 

To test the methodology, I first applied it to 10 simulated traits, each one with 

100 observations (simulated species) with a known variance-covariance structure 

(Figure 3.3, Table S3.1). I also simulated a pure-birth stochastic phylogeny using the 

pbtree function of the phytools package (Revell 2012) for the 100 simulated species. Five 

traits were simulated to present a phylogenetic component in their variance-covariance 

structure by means of simulate_bm_model function of the R package castor (Louca and 

Doebeli 2018) including the simulated phylogeny and the variance-covariance matrix 

(Table S3.1) as the diffusion matrix. The remaining five traits were simulated using the 

same variance-covariance matrix (Table S3.1) to present a variance-covariance structure 

not-explicitly related to the phylogeny by using the function rnorm_multi of the R 

package faux (DeBruine Lisa 2021). 

Traits conformed to four trait modules (i.e., traits presenting correlation among 

them but not with others). The first correlation module (M1) was constituted by Phylo 

Trait 1, Phylo Trait 2, the variance-covariance structure of which was expected to be 

related to the phylogeny and to the simulated environmental variable Phylo Env (i.e., 

environmental phylogenetic conservatism due to Phylo Env). The second 

correlation module (M2) was constituted by Phylo Trait 3 and Phylo Trait 4, whose 

variance-covariance was also expected to be related to the phylogeny but not to traits 

in M1 nor to the environmental variable Phylo Env (i.e., non-attributed phylogenetic 

conservatism given Phylo Env). The third correlation module (M3) was constituted by 

Non Phylo Trait 1, Non Phylo Trait 2, whose variance-covariance was not expected to be 

related to the phylogeny but was expected to be related to Non Phylo Env (i.e., labile 

environmental effect). The fourth correlation module (M4) was constituted by Non Phylo 

Trait 3 and Non Phylo Trait 4, whose variance-covariance was also not expected to be 

related to the phylogeny nor to the previously presented environmental variables (i.e., 

expected to be detected as residual variances and covariance) (Figure 3.3). Note that 

“Env” variables were considered as environmental effects but the procedure to obtain 
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them was not different from the one implemented with the rest of the simulated 

variables. The expectations for results were summarized a priori (Table S3.2, Figure 3.3). 

Trait simulations were performed by using the simulateDataSet function of the R package 

presented here, which by default produces the simulated data used in this study. 

 

Figure 3.3 Simulated data structure Scheme representing the expected relationships 

between simulated traits linking it to the presence or absence of phylogenetic structure. Scatterplot 

for simulated traits for 5 species following the simulation structure described in the text is also 

shown, coloured by the simulated environmental variable of interest in each case. 
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Next, I applied the methodology to real data on woody-plant species functional 

traits related to hydraulic function and the leaf economics spectrum. I used data 

covering seven leaf traits for woody plant angiosperms coming from a previously 

published dataset (Mencuccini et al. 2019b). Functional traits included were specific leaf 

area (cm2 g-1, SLA, number of species = 1,183), leaf nitrogen (mg g-1, number of species 

= 930), maximum photosynthetic rate per area as a measure of photosynthetic capacity 

(micromole CO2 m-2 s-1, Aarea, number of species = 206), leaf lifespan (months, LL, 

Number of species = 198), midday leaf xylem tension as a measure of drought exposure 

(Martínez‐Vilalta et al. 2021) (MPa, |Pmin|, number of species = 636), xylem tension at 

the turgor loss point as a measure of drought tolerance (Delzon 2015) (MPa, |Ptlp|, 

number of species = 556) and leaf-specific maximum hydraulic conductivity as a 

measure of hydraulic sufficiency (Kg m-1 MPa-1 s-1, Kl, number of species = 878). To 

test for the effects of one potential selective pressure on trait phylogenetic patterns I 

considered the aridity index (AI), obtained from CGIAR (Trabucco and Zomer 2018) 

in a previously published analyses (Sanchez-Martinez et al. 2020). Note that low values 

of AI represent regions with low water availability and high atmospheric water demand. 

All variables were transformed by calculating the natural logarithm of absolute values, 

as it improved their normality. 

As a unique predictor was considered (AI), results are reported by the 

computeVarianceCovariancePartition function described in the main text. Total correlation 

networks and partitioned traits networks for simulated data and for LES traits were 

obtained. Then, the imputation method was implemented both for simulated and for 

LES traits, considering environmental effects described in each case as potential 

predictors as well as the phylogeny. In the real data case, a species level phylogeny was 

built using the V.PhyloMaker R package (Qian and Jin 2016). The rest of the arguments 

of the function imputeTraits were maintained as default. 

To compare results obtained by imputeTraits with existing imputation 

methodologies, we performed a cross validation procedure by using 80-20% and 50-
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50% (Figure S3.2) of the data to test and train, respectively, for each one of the 

methodologies, including imputeTraits. These methodologies include mean imputation 

(i.e., mean for each one of the traits to be taken as imputed values); MICE imputation 

(van Buuren and Groothuis-Oudshoorn 2011), which uses the covariation of multiple 

traits to be imputed as well as other complete environmental variables to predict missing 

values; and a phylogenetic imputation by means of the phylopars R package, which uses 

trait phylogenetic variance-covariance to predict missing values (Goolsby et al. 2017). 

Thus, predictive performance results reported are not the ones reported internally by 

the imputeTraits function but calculated outside the algorithm in order to use the same 

cross validation data for all the imputation methods compared. The cross-validation 

process was iterated ten times in each case.  

 

Figure 3.4 Total correlation among variables a) Total correlation among simulated 

variables and b) total correlation among plant functional traits. Pink represents environmental 

variables and blue represent traits. 
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3.4 RESULTS 

3.4.1 Variance covariance partition results  

Results obtained by applying the described methodology for a set of simulated 

traits matched those expected given the variance-covariance matrix used to simulate 

data, detecting the four hypothesized modules (Table S3.1 and Figure 3.3, Figure 3.4a). 

The methodology successfully detected the amount of variance and covariance related 

to the phylogenetic structure of the data, as is the case for the covariance between Phylo 

Trait 1 and Phylo Trait 2, between Phylo Trait 3 and Phylo Trait 4 and their variances (edges 

and pie charts in Figure 3.5 and 3.6). Moreover, it successfully detected the 

independence between these two modules of phylogenetically correlated traits. The 

methodology also successfully separated the variance and covariance that is uniquely 

attributed to shared evolutionary heritage (non-attributed phylogenetic 

conservatism) from environmental phylogenetic conservatism due to Phylo Env 

(Figure 3.5 b and c). Finally, the methodology successfully detected the labile 

environmental effect (i.e., phylogenetically independent effect) of Non Phylo Env on 

variances of Non Phylo Trait 1 and Non Phylo Trait 2 traits as well as on their covariance 

(Figure 3.6 d), while the correlations not related to the phylogenetic structure nor to the 

given environmental variables were placed within the unexplained or residual 

component of the covariance (Figure 3.5 e and 3.6 e). Networks presenting a higher 

contribution to the covariation pattern had higher edge density (ED); those presenting 

a strong relationship between connected nodes showed a high maximum absolute 

correlation (|r|max) and mean absolute correlation (|r|mean) and the number of modules 

relatd to each one of the components was also successfully detected by the 

methodology (NM) (Figure 3.5 and 3.6).  

When applied to the dataset of traits of woody angiosperms species, I found that 

leaf economics traits and leaf hydraulic traits conformed to two main modules (Figure 
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3.7a), that trait variances and covariances were mainly phylogenetically conserved and 

that this conservatism was partially due to aridity (Figure 3.4b, Figure 3.7b, c, d and e). 

The first module relates the leaf resource uptake and use strategies (i.e., leaf economics) 

with drought exposure (quantified as the absolute value of the minimum water potential 

measured in the xylem, |Pmin|) and tolerance (quantified as the absolute value of the 

water potential at stomatal turgor loss point, |Ptlp|). This module represents variation 

in an axis describing acquisitive leaves with low drought exposure-tolerance to leaves 

with conservative resource uptake and use with high drought exposure and tolerance 

(specific leaf area is positively related to nitrogen content, negatively related to leaf 

lifespan and negatively related to drought exposure and tolerance). This module 

presents phylogenetic conservatism and part of this conservatism is due to aridity, 

which is specially related to correlations involving drought exposure and tolerance 

(Figure 3.7c). Contrarily, most of the phylogenetic conservatism in leaf economic traits 

and their relationship (specific leaf area, nitrogen content and leaf lifespan) is not 

attributed to aridity (Figure 3.7b). The second module relates hydraulic sufficiency with 

photosynthetic capacity (higher maximum hydraulic conductivity related to higher 

photosynthetic capacity). This module showed phylogenetic conservatism which was 

not attributed to aridity (Figure 3.7b).  

The two modules described showed to be integrated in response to aridity 

(Figure 3.7c). More concretely, specific leaf area showed to be positively related to 

hydraulic sufficiency and negatively related to photosynthetic capacity and drought 

exposure showed to be negatively related to hydraulic sufficiency. Then, the integration 

between these two modules is mediated by specific leaf area and xylem drought 

exposure, which show a high degree (number of connections presented by a node) and 

function as hubs of plant functional trait syndromes in woody angiosperm species. 

These correlations are related to aridity in a phylogenetically structured manner, 

describing a pattern of environmental phylogenetic conservatism due to aridity in 

the integration between plant hydraulics and leaf economics. 
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Trait networks supported the predominant pattern of phylogenetic conservatism 

in functional traits of woody angiosperm species. Networks representing non-

attributed phylogenetic conservatism and environmental phylogenetic 

conservatism due to aridity showed higher values of edge density (ED), maximum 

absolute correlation (|r|max) and mean absolute correlation (|r|mean) compared to the 

labile environmental effect of aridity. The number of modules proved to be useful to 

detect the number of independent groups of correlated traits, showing the integration 

of the two modules in response to aridity (Figure 3.7c). The higher ED in the 

phylogenetic part of trait relationships indicates that most of trait correlations are 

phylogenetically conserved. The higher |r|max and |r|mean in these networks indicates 

that phylogenetically conserved relationships are stronger (Figure 3.7b and c). 
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Figure 3.5 and 3.6 Simulated trait networks Simulated data networks considering 

phylogenetically conserved and independent environmental variables (Phylo Env and 

Non Phylo Env). Pie charts represent the variance and edges represent the covariance 

related to each one the components (non-attributed phylogenetic conservatism, 

environmental phylogenetic conservatism, labile environmental effect and residual). 

Green-solid edges represent positive correlations and red-dashed ones negative 

correlations with a width proportional to the correlation coefficient. Node size is 

proportional to node degree (number of connections). Network metrics are also shown 

in each case. 
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Figure 3.7 Plant functional trait networks Trait networks considering aridity (aridity index, 

AI) as the environmental variable of interest. Pie charts represent the proportion of the variance 

for each variable related to each one of the components (non-attributed phylogenetic 

conservatism, environmental phylogenetic conservatism, labile environmental effect and residual) 

and edges represent the covariance related to each one of these components shown as correlations 

(green-solid lines represent positive correlations and red-dashed line represent negative 

correlations with a width proportional to the correlation coefficient). Node size is proportional to 

node degree (number of connections). Network metrics are also shown. 



 

75 

3.4.2 Imputation results 

The predictive performance of the presented imputation algorithm improved 

when informative imputed traits were considered as shown by the higher cross-

validation R2 and lower cross-validation NRMSE of the second and third imputation 

rounds compared to results obtained using only phylogenetic and environmental data 

(first round) (Figure S3.1). The imputeTraits algorithm outperformed previously 

described imputation procedures in the case of the mean imputation and the MICE 

imputation using all environmental and traits covariation and performed similarly to 

phylopars imputation using all environmental and traits phylogenetic covariation when 

traits show phylogenetic structure. The new algorithm outperformed phylopars approach 

when the correlation among simulated data was not phylogenetically structured and 

when applied to real data (Figure 3.7). Thus, across all simulation scenarios, the new 

algorithm proposed here was the most effective, especially when imputing real data. 
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Figure 3.7 Imputation performance Predictive performance of the imputation framework. 

Results for mean imputation (red), MICE imputation (blue), phylopars imputation (green) and 

imputeTraits imputation (purple) are shown. a) and b) show normalized root mean square error 

(NRMSE) for simulated and leaf traits, respectively. b) and d) show R2 for simulated and leaf traits, 

respectively. NRMSE and R2 were calculated from a cross validation procedure using 80% of the 

data to train models and 20% to test.
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3.5 DISCUSSION 

3.5.1 A new framework to study functional syndromes 

evolution 

In this chapter, I developed a new methodological framework to study eco-

evolutionary patterns in multiple functional traits. This methodology allows to separate 

variances and covariances related to the phylogeny from those that are phylogenetically 

independent, complementing previous methods such as phylogenetic independent 

contrasts and phylogenetic least squares, which allowed to control by the phylogenetic 

structure when analysing trait relationships (Felsenstein 1988, Blomberg 2016). By using 

this methodology, evolutionary patterns can be elucidated not only from 

phylogenetically independent contrasts results as done in previous studies (e.g., Ackerly 

and Reich 1999, Maherali et al. 2004, Zheng et al. 2019), but also from the 

phylogenetically conserved component of evolutionary relationships (Sanchez-

Martinez et al. 2020). Furthermore, our methodology allows testing whether 

phylogenetically conserved and phylogenetically independent structures are related to 

potentially driving environmental variables. Therefore, this method allows quantifying 

which part of trait variance and covariance is related only to the phylogeny given 

environmental variable(s) (non-attributed phylogenetic conservatism), only to these 

environmental variable(s) (labile environmental effect) and to the phylogenetically conserved 

environmental effect (environmental phylogenetic conservatism). The latter 

represents (co)variation that is related to both environment and phylogeny. These three 

components show patterns reflecting different evolutionary processes which cannot be 

distinguished using previously published frameworks, which were not able to consider 

multiple traits, their phylogenetic structure, and their relationship with environment all 

at once, as done here. This approach also allows partitioning networks and calculating 

network metrics such as number of module (NM), edge density (ED), maximum 
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absolute correlation (|r|max) and mean absolute correlation (|r|mean) for each 

component, showing how the multivariate structure is related to the phylogeny and to 

the environment. 

Even if it is beyond the scope of the current work, the proposed methodology 

also allows further elucidation of patterns at the intraspecific scale. The usage of within 

species variability in future works will better allow quantification of the extent to which 

variability within species is phylogenetically structured and related to specific 

environmental axis. It is also worth to note that even if here we are interested in 

environmental variables related to trait syndromes, other variables could be included to 

test for phylogenetic patterns in their relationship with trait syndromes. 

3.5.1 Leaf economics and hydraulic traits conform to two 

phylogenetically conserved modules integrated in 

response to aridity 

Implementing the new methodological approach allows to show how the leaf 

economics spectrum and plant hydraulics are evolutionarily integrated, conforming to 

two evolutionary modules across species at global scale. The first module describe the 

trade-off between xylem drought exposure-tolerance (Sanchez-Martinez et al. 2020) and 

leaf acquisitiveness (Wright et al. 2004). The second module describe the coordination 

between hydraulic sufficiency and photosynthetic capacity (Scoffoni et al. 2016). Our 

results show how these two modules are integrated following a pattern of 

environmental phylogenetic conservatism due to aridity. This integration is mainly 

mediated by specific leaf area and drought exposure, which act as functional hubs 

relating the two modules previously presented in response to aridity. However, some 

phylogenetic conservatism in individual trait variability, the integration among leaf 

economic traits and the integration between hydraulic sufficiency and photosynthetic 

capacity was not attributed to a response to macroevolutionary patterns of aridity. Then, 
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these functional traits and their integration may be related to other environmental 

components of species niche or may be caused by hardwired relationships at the 

phenotypical or genetic level. 

From these results we can better understand the generalities of angiosperms 

woody plants adaptation to aridity. Angiosperm lineages exposed to low water potential 

and  high evaporative demand will tend to present a higher capability to maintain 

stomata open under low water potentials, allowing maintenance of leaf growth and 

plant productivity under dry conditions (i.e., anisohydic strategy), presenting a higher 

drought exposure in the xylem in consequence (Volaire 2018). These lineages will tend 

to present an embolism resistant xylem that will allow maintaining water transport 

under low water potentials (see the second chapter, Sanchez-Martinez et al. 2020). 

Drought resistant lineages will tend to have smaller and/or thicker leaves as an 

adaptation to tolerate water stress (Wright et al. 2017), with lower nitrogen content and 

higher leaf lifespan, conforming to a conservative strategy of resource acquisition and 

processing (Wright et al. 2004, Reich 2014). Importantly, these lineages will also tend 

to present a relatively higher photosynthetic capacity in response to aridity, pointing 

that even if there is a phylogenetically conserved coordination between conductivity 

and productivity, this coordination may disappear when focusing on the 

macroevolutionary response to aridity. This means that under dry conditions, lineages 

with a lower specific leaf area may tend to present a higher photosynthetic capacity 

independently of their hydraulic sufficiency as an adaptation to maintain productivity 

per unit area under low water availability. Then, a drought resistant functional strategy 

may compensate for the lower hydraulic sufficiency and the lower leaf area by increasing 

its photosynthetic capacity. This result contradicts lineage specific results reporting that 

hydraulic sufficiency is evolutionarily coordinated with photosynthetic capacity in 

response to aridity (Scoffoni et al. 2016) but supports other evidence pointing that 

photosynthetic capacity may increase under dry conditions (Ramírez-Valiente and 

Cavender-Bares 2017, Green et al. 2020). However, these traits presented the lowest 

data availability from all the combination of traits used (118 species with both traits), 
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which may limit the capability to extract global patterns from them. Then, future work 

on the integration of photosynthetic capacity with other functional traits is needed to 

further elucidate its adaptive role. 

The reported results show that leaf economic and hydraulic traits are not 

evolving independently and that their evolution may be constrained, leading to a pattern 

of phylogenetic conservatism where closely related species tend to present similar 

functional strategies. These constraints are at least partially related to species niche 

characterization, specifically to aridity, leading to a pattern of phylogenetic niche 

conservatism (Losos 2008). Based on these results, we expect adaptation in leaf and 

hydraulic trait syndromes of woody angiosperms to happen in a slow and conserved 

manner, maintaining their relationships and multivariate structure, with closely related 

species tending to occupy similar ecological and functional spaces (i.e., similar trait 

syndromes). It seems likely that environmental filtering related to variables related to 

water availability constrains the set of trait syndromes that can be present under a given 

set of conditions and a hardwired relationship between traits constrain individual trait 

variation at the macroevolutionary scale. Elucidating the directionality of these 

relationships in future works will help better understand which traits are responding to 

selective pressures directly and which are indirectly related to them as a result of trait 

integration.  
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3.5.1 Using information on traits evolution to perform data 

imputation 

The presented statistical framework also enables new approaches to imputation and 

achieved high predictive performance, especially when trait covariances are considered. 

The proposed imputation methodology optimizes the usage of available data by 

including phylogenetic, environmental, and functional trait data as predictors when they 

show a significant relationship with the variable to be imputed. This method provides 

a framework for users that are not familiarized with phylogenetic methods, internally 

testing for the importance of the phylogenetic structure, and including it when 

informative. Moreover, it allows the consideration of multiple environmental variables 

which will only be included when informative. Finally, it allows for the consideration of 

functional traits data with missing values as predictors by performing imputation on 

them and then including them in predictive models, when informative.  

This methodology outperformed mean and MICE imputations while performing 

similar to phylopars in most cases, outperforming it in non-phylogenetically conserved 

simulated traits and in most of the plant functional traits. However, it slightly 

underperformed phylopars in simulated phylogenetically conserved traits. This may be 

due to the fact that we include phylogenetic data by means of a low number of principal 

components describing most of the phylogenetic structure, which may lead to relatively 

lower predictive performance in highly phylogenetically structured traits compared to 

methods that include the whole phylogeny such as phylopars. Across scenarios, we show 

how the presented methodology is a good option, especially when using real data, which 

may be more complex than the data simulated in this study. 

The fact that this methodology uses widely available information such as 

phylogenetic and environmental data will allow it to be widely applicable, particularly 

given the generalized scarcity of functional data at global scales. Finally, it is important 

to note that the macroevolutionary perspective may be undermining the within-species 
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variability. Even if it is beyond the scope of the current work, it is worth mentioning 

that this methodology allows one to include within species variability in environmental 

data and functional traits. Thus, the application of the current framework by including 

intraspecific variability will be of great interest to better characterize species adaptive 

capability and should be considered as soon as data availability increases at the global 

scale.  
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Plant functional traits are evolutionarily coordinated with life history traits in the Amazon basin. 
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4.1 ABSTRACT 

Plants functional traits describing resource acquisition and processing are related 

to life history traits describing growth, reproduction, and survival strategies, but the 

evolutionary nature of these relationships is largely unknown. In this study, I shed light 

on the degree of phylogenetic conservatism and evolutionary lability in these traits and 

their relationships for tree genera across environmental gradients in the Amazon 

Region. Functional and life history traits are aligned primarily along two main axes of 

variation representing the integration between (1) functional acquisitiveness, longevity, 

and reproductive strategy and (2) size and growth. Leaf and wood economics conform 

a phylogenetically conserved module with reproduction and survival, meaning that 

closely related genera tend to present similar economic, reproduction and survival 

strategies, suggesting a constrained, integrated evolution. Contrarily, the relationship 

between size and growth presents a more labile evolutionary pattern, with both 

characteristics changing jointly over evolutionary time. These results clarify the 

evolutionary interdependence of functional and life history strategies, illuminate the 

principal ecological strategies for tropical trees and serve to elucidate general patterns 

of adaptation in woody plants of the Amazon Region. 
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4.2 INTRODUCTION 

Life history theory predicts functional traits describing resource uptake, use and 

storage to be related with life history traits describing growth, survival and reproduction 

following the fast-slow continuum (Stearns 1999, Reich 2014). At one end, acquisitive 

species will prioritize fecundity over survival, presenting productive leaves and fast-

growing wood with rapid turnover. This strategy will generally imply a lighter wood 

with lower resistance to disturbances that may lead to a higher mortality (Chave et al. 

2009). This strategy is often linked to rapid and cheap reproduction where a high 

number of small seeds are produced (Poorter et al. 2008, Adler et al. 2014). In the 

tropics, species presenting this characteristics are identified as the pioneers, with a high 

capability to reach and colonize disturbed areas, and a low tolerance to stress (Turner 

2001). At the other end, conservative species will prioritize survival over fecundity, 

presenting well-defended leaves and wood long lifespan and revenue stream, but which 

can constrain growth rates (Adler et al. 2014). A slower growth will ultimately produce 

denser wood which will be resistant to disturbances (Chave et al. 2009) and then these 

species will reach big sizes by presenting a high lifespan.  These species are often linked 

to a higher investment per unit of seed which constrains the amount of seeds that a 

given individual can produce, but increasing the seed and seedling’s probability to 

survive (Moles and Westoby 2006). This strategy is identified as the stress-tolerant 

strategy in the tropics (Turner 2001). 

Previous studies have shown that this general theory may not always hold in the 

tropics, where different combinations between functional and life history traits may 

appear. For instance, the coordination between leaf economics (Wright et al. 2004) and 

wood economics (Chave et al. 2009) may not always hold for tropical species (Baraloto 

et al. 2010, Fortunel et al. 2012). Then, species with a slow return on investment of 

nutrients and dry mass in leaves will not always present a stress-resistant dense wood 

with slow water transport and species with a fast return on investment in leaves will not 

be constrained to present stress-vulnerable light wood with fast water transport. 
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Similarly, it has been shown that species presenting a fast strategy can also reach big 

sizes (Poorter et al. 2008). Other studies show reproductive strategy to be independent 

to the fast-slow continuum describing the growth-survival trade-off (Salguero-Gómez 

et al. 2016) and may instead be related to stature, describing a stature-recruitment axis 

(Rüger et al. 2018). Evolutionary processes leading to patterns in ecological strategies 

in the tropics may lead to some degree of independence between different functional 

and life history axis of variation. 

Functional traits are often good predictors of life history traits, which suggests 

that functional strategies are important in determining which life history strategies 

species can adopt (Adler et al. 2014). However, whether these relationships are fully 

explained by common ancestry, or they appear multiple times in closely related species 

remains unknown. Both functional traits (Flores et al. 2014, Sanchez-Martinez et al. 

2020) and life history traits (Coelho de Souza et al. 2016) have been reported to present 

phylogenetic conservatism. This phylogenetic conservatism in individual traits indicate 

that there may be some processes constraining their evolution. However, whether these 

processes are independent for each trait or shared among traits cannot be elucidated 

from individual trait patterns. To face this issue, it may be useful to quantify 

phylogenetic conservatism in traits relationship, which will shed light on the 

independence of potential processes constraining traits evolution. Related traits are co-

evolving, and when their relationship is phylogenetically structured, it may be 

underlined by the same processes constraining their evolution. Contrarily, when trait 

relationships are independent of the phylogeny, processes leading to their covariation 

may be acting in more recent evolutionary timescales (e.g., within taxonomic families), 

pointing to a more labile evolution. 

Phylogenetic conservatism in functional and life history traits and their 

relationship describe a pattern of closely related species presenting similar functional 

and life history strategies. This in turn means that ancestral trait syndromes are 

constraining descendent ones, pointing to a slow evolution that may not be able to 
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undergo relatively rapid changes in response to selective pressures (Losos 2008). Under 

this scenario, closely related species will tend to occupy similar ecological spaces and 

changes in the distribution of ecological strategies in response to environmental forcing 

will be mainly influenced by changes in lineage composition (understanding lineage as 

closely evolutionarily related taxa), and not to rapid adaptation of the species present in 

a given area. Contrarily, if ecological strategies present evolutionary lability, rapid 

changes may happen over evolutionary timescales (e.g., disparification within families). 

This will lead to a pattern of closely related taxa presenting a higher variability in 

functional and life history strategies (Ackerly et al. 2000). Under this scenario, we expect 

species to be more capable to modulate their ecological strategies, with closely related 

species occupying different ecological spaces. In this case, changes in the distribution 

of ecological strategies may be more influenced by the evolution of species present in a 

given site in response to changes in selective pressures. 

To my knowledge, a quantification of the phylogenetic conservatism and 

evolutionary lability in integrative ecological strategies, which we define to include 

functional and life history strategies and their relationships, is still lacking. In this 

chapter, I explore the relationships among a range of functional and life history traits 

across hundreds of Amazon tree taxa within an evolutionarily explicit framework. First, 

I describe the general strategies that emerge from available data, quantifying 

phylogenetic conservatism in functional, life history and integrative (i.e., functional and 

life history) axes of variation. Then, I further explore the degree of phylogenetic 

conservatism and evolutionary lability in trait-trait correlations. This knowledge will be 

crucial to understand and predict ecological strategies of tropical species, an important 

step forward that will lead to better understand vegetation changes in the Amazon 

basin, which are expected to have important impacts on carbon and water cycles from 

regional to global scales (Bonan 2008, Hilker et al. 2014). 
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4.3 MATERIALS AND METHODS  

4.3.1 Data 

I compiled species-level data on plant functional traits and demographic rates 

from previous publications (Coelho de Souza et al. 2016, Kattge et al. 2020). I then 

calculated genus-level mean trait values, and matched them with a previously published 

genus-level phylogeny (Neves et al. 2020) by using the ape R package (Paradis and 

Schliep 2019). Overall, I obtained trait values for 1,036 genera which were represented 

in the phylogeny (Table S4.1 to see the number of genera with data for each trait). 

Functional traits included in the present study were specific leaf area (m2 kg-1, 

SLA), leaf nitrogen, phosphorous and carbon content (mg g-1, N, P and C, respectively), 

wood density (g cm-3, WD) and maximum diameter as a proxy of whole plant size (cm, 

Dmax). Life history traits were characterized in the present study by maximum growth 

rate (cm yr-1, GRmax), mortality rate (% year-1, MR) and seed mass (g, SM) as a proxy of 

reproductive strategy. The later was obtained as an ordinal categorical variable, and we 

treated it as a quasi-continuous variable. I acknowledge that seed mass could be 

classified as a functional trait instead of a life history trait, but given the lack of data on 

reproductive strategies, I decided to use it as a proxy of reproductive strategy based on 

its widely reported positive relationship with seedling emergence and successful sapling 

recruitment (Mazer 1990, Westoby et al. 1996, Henery and Westoby 2001, Moles and 

Westoby 2006). All variables were checked for normality, and mortality rate, maximum 

growth rate and maximum diameter were subsequently log-transformed to improve 

normality.  
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4.3.2 Principal components analyses 

I implemented principal component analyses on functional traits (SLA, N, P, C, 

WD and Dmax) and life history traits (GRmax, MR and SM) separately and jointly using 

the prcomp function of the stats R package (R Core Team 2020) (Figure 4.1 to see biplots 

showing the two first principal components in each case, generated by using the 

factoextra R package (Alboukadel Kassambara and Fabian Mundt 2020)). Principal 

component analyses were conducted using those genera with complete observations 

for all the variables (N = 197). 

4.3.3 Phylogenetic signal calculation 

I calculated the phylogenetic signal (λ) of principal components and individual 

traits. To do so, I used the computeVarianceCovariancePartition function of the package 

TrEvol (see chapter 3), which uses Bayesian phylogenetic mixed models (BPMMs) from 

the MCMCglmm R package (Hadfield 2010a) to estimate phylogenetic variance (Vphylo, 

amount of variance related to the phylogenetic structure) and residual variance (Vres, 

non-phylogenetically related variance). Phylogenetic signal (λ) is described as the 

amount of variance for a given variable that is related to the phylogeny, divided by the 

total trait variance, and is calculated as it follows: 

𝜆 =  
𝑉𝑝ℎ𝑦𝑙𝑜

𝑉𝑝ℎ𝑦𝑙𝑜 +  𝑉𝑟𝑒𝑠
 

As the Bayesian framework operates with posterior distributions of estimates, I 

calculated the phylogenetic signal for the posterior distributions of the variance 

components, obtaining a distribution for each phylogenetic signal from which mean 

and credible intervals were calculated. P-values related to the probability that the 

distribution contained zero were calculated in TrEvol package (see chapter 3) importing 

functions from the BayesR R package (Makowski et al. 2019). 
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4.3.4 Correlations calculation 

I calculated total correlation among variables, which was decomposed into a 

phylogenetic correlation and an evolutionarily labile correlation. The phylogenetic 

correlation refers to the proportion of the total correlation that is phylogenetically 

structured, while the evolutionarily labile correlation is the proportion of the correlation 

which is independent of the phylogenetic structure. The phylogenetically conserved and 

phylogenetically independent correlations components sum to the total correlation. To 

calculate these coefficients I used the computeVarianceCovariancePartition function of the 

TrEvol package, which uses BPMMs from the MCMCglmm R package (Hadfield 2010a) 

to partition the amount of variance-covariance on pairwise traits related to the genus-

level phylogeny (Neves et al. 2020). Correlation coefficients are calculated as it follows: 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
𝐶𝑂𝑉𝑝ℎ𝑦𝑙𝑜

𝑇1,𝑇2+ 𝐶𝑂𝑉𝑟𝑒𝑠
𝑇1,𝑇2

√(𝑉𝑝ℎ𝑦𝑙𝑜
𝑇1 ∗ 𝑉𝑝ℎ𝑦𝑙𝑜

𝑇2 )+(𝑉𝑟𝑒𝑠
𝑇1 ∗ 𝑉𝑟𝑒𝑠

𝑇2 ) 
                        

𝑃ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
𝐶𝑂𝑉𝑝ℎ𝑦𝑙𝑜

𝑇1,𝑇2

√(𝑉𝑝ℎ𝑦𝑙𝑜
𝑇1 ∗ 𝑉𝑝ℎ𝑦𝑙𝑜

𝑇2 )+(𝑉𝑟𝑒𝑠
𝑇1 ∗ 𝑉𝑟𝑒𝑠

𝑇2 ) 
      

𝐿𝑎𝑏𝑖𝑙𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
𝐶𝑂𝑉𝑟𝑒𝑠

𝑇1,𝑇2

√(𝑉𝑝ℎ𝑦𝑙𝑜
𝑇1 ∗ 𝑉𝑝ℎ𝑦𝑙𝑜

𝑇2 )+(𝑉𝑟𝑒𝑠
𝑇1 ∗ 𝑉𝑟𝑒𝑠

𝑇2 ) 
  

Where COVphyloT1,T2 and COVresT1,T2 are phylogenetic and non-phylogenetic 

(residual) covariances between two traits (T1 and T2), Vphylo and Vres are phylogenetic 

and non-phylogenetic (residual) variances for each trait. As with the analyses of 

phylogenetic signal, I obtained a distribution of correlation estimates in each case from 

which mean and credible intervals were calculated as well as a p-value related to the 

probability of the distribution containing zero as described before by using the 

BayestestR package (Makowski et al. 2019). Note that even if phylogenetic and labile 

correlations sum to the total correlation, they can be significant even when the total 

correlation is not. Correlation coefficients were calculated for each pair of traits as well 
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as for each pair of principal components coming from different principal component 

analyses. 

I used the plotData function of the TrEvol R package to plot principal 

components on the phylogeny. I used the plotVcv and the plotNetworks functions of the 

TrEvol package to display phylogenetic signal and correlation results. In the latter case, 

the function calculates network metrics (He et al. 2020a). These measures are the 

number of modules (NM); edge density (ED) describing the proportion of actual 

connections among nodes out of all possible connections; the maximum absolute 

correlation coefficient (|r|max) and mean absolute correlation (|r|mean) as measures of 

the strength of the correlation among traits in a given network. In this framework, high 

NM will represent a high modularity pointing to the existence of independent groups 

of correlated traits; high ED represents high coordination between all traits and high 

|r|max and |r|mean represent networks with a higher dependence among related traits 

(i.e., higher maximum and mean correlation among related traits, respectively). At the 

node level, degree (i.e., number of connections per node) is displayed as node size. 

Traits with a higher degree value (i.e., higher node size in the visualisation) are 

considered hubs. 
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4.4 RESULTS 

4.4.1 Functional and life history conform to two main axes 

of variation 

The first two functional principal components explained more than the 60% of 

the variance in the six functional traits considered (specific leaf area, SLA; leaf nitrogen, 

N; leaf phosphorous, P; leaf carbon, C; wood density, WD and maximum diameter, 

Dmax). The first functional principal component, explaining 40% of the variance 

represented the coordination between the leaf economic spectrum (Wright et al. 2004) 

and the wood economic spectrum (Chave et al. 2009), with higher values representing 

genera with lower SLA, leaf N and P, and higher WD (conservative) and low values 

presenting genera with higher SLA, N and P and lower WD (acquisitive). The second 

functional principal component explained 20% of the functional variance and was 

mainly related to Dmax and leaf C, with low values indicating larger-sized genera and 

high leaf C and high values indicating smaller-sized genera with low leaf C values (Figure 

4.1). 

The two first life-history principal components explained 82% of the variance in 

the three life history traits (mortality rate, MR; maximum growth rate, GRmax and seed 

mass, SM). The first life history principal component, explaining 55% of the variance, 

was mainly related to the seed mass/mortality trade-off, with low values representing 

genera with lower seed mass and higher mortality (R strategy hereafter) and high values 

representing genera with higher seed mass and lower mortality (K strategy hereafter) 

(MacArthur and Wilson 1967, Pianka 1970). The second life history principal 

component, explaining 27% of the variance was interpreted as a growth axis, with low 

values representing genera with higher maximum growth rates and higher values 

representing genera with lower maximum growth rates. (Figure 4.1). 
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When considered altogether in the same principal component analysis, 

functional traits and life history traits represented variation in plant ecological strategy 

through two main axes referred to hereafter as integrative principal components. The 

first axis represented the trade-off between resource acquisitiveness, longevity, and 

investment per seed (explaining 31% of the variance) and the second axis represented 

the coordination between individual growth capability (GRmax) and size (Dmax) 

(explaining 20% of the variance). Ecological strategies of tropical tree genera were 

broadly characterized by the four extremes described by these two axes, and represented 

as the four corners of the biplot shown in Figure 4.1c. At the top left corner (i.e., 

negative values for PC1 and positive for PC2), genera were characterized by an 

acquisitive function (A), short lifespan and seed mass (R strategy), big size (B) and fast 

growth (FG), represented by genera such as Ficus, Ceiba and Sapium (A R – B FG). At 

the top right corner (i.e., positive values for both PC1 and PC2), genera were 

characterized by a conservative function (C), high lifespan and seed mass (K strategy), 

big size (B) and fast growth (FG), represented by genera such as Manilkara, Hymenea 

and Couma (C K – B FG). At the bottom left corner (i.e., negative values for both PC1 

and PC2), genera were characterized by an acquisitive function (A), an R strategy, small 

size (S) and slow growth (SG), represented by genera such as Quararibea, Lunania and 

Lindackeria (A R – S SL). Finally, at the bottom right corner (i.e., positive values for PC1 

and negative values for PC2), genera were characterized by a conservative function (C),  

K strategy, small size (S), and slow growth (SG), represented by genera such as Psidium, 

Myrcia and Cheiloclinium (C K – S SG). However, note that these groups represent the 

extremes of the combination of the two main axis and then, intermediate strategies are 

more common. 
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Figure 4.1 Functional, life history and integrative axis of variation First principal 

components using functional traits (a), life history related traits (b) and all traits (c). Only genera 

with complete data for all variables are represented (197 genera). Variable contributions are shown 

as arrows. Principal axis interpretation is shown in bold letters. Phylogenetic signal (ʎ) and amount 

of variance explained by each axis in percentage are shown for each axis. 
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4.4.2 Phylogenetic signal in functional and life history 

strategies 

Functional, life history and integrative axes presented significant phylogenetic signal 

(Figure 4.1, Figure 4.2a diagonal). The first functional axis describing variability in leaf 

and wood economics presented a phylogenetic signal of 0.45, meaning that 45% of its 

variance is related to the phylogenetic structure. The second functional axis describing 

variability in plant size presented a phylogenetic signal of 0.51 (i.e., 51% of its variance 

was phylogenetically structured) (figure 4.1a). The first life history axis representing the 

reproduction-survival trade-off (R-K strategies) presented a phylogenetic signal of 0.42 

(i.e., 42% of its variance was phylogenetically structured). The second life history axis 

describing variability in growth presented a phylogenetic signal of 0.51 (i.e., 51% of its 

variance was phylogenetically structured) (figure 4.1b). Finally, the first and second 

integrative traits representing variability in functional and life history strategies 

presented a phylogenetic signal of 0.61 and 0.51, respectively (61% and 51% of their 

variance was phylogenetically structured, respectively) (figure 4.1c). Individual traits also 

presented significant phylogenetic signal, ranging from 0.30 (mortality rates, MR) to 

0.79 (seed mass, SM) being the most important source of variation (i.e., >50% of 

variation) in 4 out of 9 traits. Then, evolutionary lability of individual traits was the most 

important source of variation in 5 out of 9 traits analysed (Figure 4.2b diagonal, Figure 

4.3b and c, pie charts, Table S4.1). 
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4.4.1 Phylogenetic conservatism and evolutionary lability 

in functional and life history traits integration 

Phylogenetic correlation was the main component of total correlation in 24 out 

of 27 significant total correlations found (Figure 4.2, Table S4.3), consistent with the 

phylogenetic conservatism of the previously presented principal components.  

 

Figure 4.2 Correlation and phylogenetic signal Significant total correlation (colour and 

size, values between -1 and 1) and contribution of phylogenetic conservatism (filled) to significant 

total correlations (pie chart, values between 0 and 1) for PCs (a) and traits (b). Phylogenetic signal 

is also displayed in the diagonal pie charts (values between 0 and 1). Contributions are represented 

as the proportion of the total correlation that is related to phylogeny (dark colour of pie charts). 
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We complemented the principal components perspective by means of a trait 

network perspective. By doing so, we show how functional and life history traits 

conform to one unique module (Figure 4.3). Thus, even if traits may present different 

degrees of correlation leading to the conformation of the previously described main 

axis of variation, there may be some traits acting as links between these axes leading to 

a relatively hardwired pattern of covariation.  

Leaf traits present a high and consistent coordination describing the leaf 

economics spectrum (LES) (positive correlation between specific leaf area, leaf nitrogen 

and phosphorous) (Wright et al. 2004). These correlations showed both a 

phylogenetically conserved and an evolutionarily lability component (Figure 4.3). LES 

showed a phylogenetic correlation with the wood economics spectrum (WES, 

represented by wood density), describing how lineages with acquisitive leaves tend to 

present low wood density while those with conservative leaves tend to present a high 

wood density. This relationship was not evident in the evolutionarily labile component. 

LES and WES relationships with life history traits were also mainly phylogenetically 

conserved, describing how lineages presenting acquisitive leaves and light wood tend to 

present higher mortality rates (MR), lower seed mass (SM) and higher growth rates 

(GRmax) (Figure 4.3b). However, some degree of evolutionary lability was also patent in 

some of these correlations. LES present an evolutionarily labile positive correlation with 

seed mass, while WES present evolutionary labile negative correlations with mortality 

and growth rates (Figure 4.3c). 

Plant size showed a positive correlation with maximum growth rate, and this 

relationship presents both phylogenetically structured and evolutionarily labile 

components. These results point that plants that reach high stature tend to present high 

maximum growth rates, and this pattern is not fully explained by common ancestry. 

Contrarily, the negative correlation between plant size and mortality rates is fully 

explained by the phylogenetic component, describing how lineages with higher stature 

tend to present lower mortality rates. It is also worth mentioning that in our study, no 
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correlation between wood density and maximum size was detected. Instead, both 

functional traits are consistently correlated to maximum growth rates, so lineages with 

higher maximum growth rates tend to present lighter wood and higher sizes. These 

correlations present both a phylogenetically conserved and an evolutionarily labile 

component. 

 

Figure 4.3 Variance-covariance networks Edges represent total correlation (a), 

phylogenetic correlation (a) and labile correlations (c). Solid greed and dashed red lines represent 

statistically significant positive and negative correlation coefficients, respectively. Line width is 

proportional to the absolute value of the correlation coefficient. Pie charts in b and c represent 

trait phylogenetic signal, and circles are coloured by trait type (i.e., functional traits are light blue, 

life history traits are pink). Node size is proportional of the number of connections per node.  
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Relationships between life history traits present both phylogenetic conservatism 

and evolutionary lability. The negative correlation between seed mass and mortality 

presents both phylogenetically structured and evolutionarily labile components, 

describing how lineages with higher seed mass tend to have a lower mortality. However, 

the positive correlation between mortality rates and maximum growth rates is fully 

explained by the labile component, describing how species that grow fast tend to have 

higher mortality, and that closely related taxa can present different growth-survival 

strategies. Finally, seed mass and maximum growth rate appear to vary independently, 

being indirectly related through other traits. 

Most of the significant phylogenetic and labile correlations maintain the same 

direction. As a result, a phylogenetic principal component analysis was not extremely 

different from the one reported here, meaning that the direction of the relationships 

was consistent both in the phylogenetically conserved and the evolutionarily labile 

components (Figure S4.1). However, wood density appeared to be more orthogonal to 

leaf economic spectrum in the phylogenetic principal component analysis, consistent 

with the fact that their relationship may be mainly driven by common ancestry. Even if 

it was not the norm, in some specific cases, the direction of the phylogenetically 

conserved and evolutionarily labile components of the correlation changed. For 

instance, leaf phosphorous (P) and SM show a negative correlation (Figure 4.3a) which 

is consistent with the phylogenetic component (Figure 4.3b), its main driver, but a 

positive evolutionarily labile correlation was discovered between these traits (Figure 

4.3c). 

  



4   |   PLANT FUNCTIONAL TRAI TS ARE EVOLUTIONARILY COORDINATED W ITH L IFE HISTORY 

TRAITS IN THE AMAZON BASIN  

100 

We also tested for phylogenetic conservatism and evolutionary lability in the 

relationships between functional and life history principal components. We reported 

that the first functional component (acquisitive to conservative economics) is correlated 

to the first life history component (R to K strategy) and that the second functional 

component (big to small statured) is correlated to the second life history component 

(high to low growth). The correlation between the first functional component and the 

first life history principal component was completely phylogenetically structured. In 

contrast, the correlation between the second functional component and the second life 

history component, was as much due to evolutionary lability as to phylogenetic 

conservatism (Figure 4.4). 
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Figure 4.4 Functional and life history axis correlations Total, phylogenetic and labile 

correlations between functional and life history principal components. Phylogenetic signal λ is also 

shown and represented as pie charts for each principal component. Values for genera with 

complete observations are plotted on the genus-level phylogeny. Bars are coloured by taxonomic 

order and the most important taxonomic order names are shown. Signif. codes: “***”: P < 0.001; 

“**”: P < 0.01; “*”: P < 0.05 “.”: P < 0.1 “ns”: P > 0.1.  
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4.5 DISCUSSION 

4.5.1 Leaf acquisitiveness is integrated with survival and 

reproduction and stature is integrated with growth  

In this chapter, I show that functional traits and life history traits are broadly 

aligned along two axes of variation representing diversity in ecological strategies across 

Amazonian tree genera. The first axis showed the integration between leaf economics 

(Wright et al. 2004) and reproductive and survival strategies. This axis describes how 

genera with acquisitive leaves have a higher probability to suffer mortality potentially 

related to their lower stress tolerance, while presenting a fast and cheap reproduction 

(low seed mass). Contrarily, genera with conservative leaves will have lower mortality 

rates potentially related to their higher stress tolerance (see the relationship between 

SLA and drought tolerance in chapter 3), while presenting a higher investment per seed 

(Adler et al. 2014).  The second axis represents the coordination between maximum 

growth rates and maximum size, showing how species with a higher maximum growth 

capability tend to reach higher stature independently of their resource use strategy, 

lifespan, or reproductive strategy. These results suggest that functional traits related to 

leaf and wood economics (Wright et al. 2004, Chave et al. 2009) may be constraining 

life-history traits related to survival and reproduction, while they are relatively 

independent of an axis related to size and growth. Then, these results are not aligned 

with the existence of a plant economic spectrum (Reich 2014) in Amazon trees at the 

genus level, as growth rates are disconnected from leaf acquisitiveness, reproduction 

and mortality, even though there is a weak link between these axis mediated by leaf 

nitrogen. 

Following these two axes of variation describing variability in integrative 

ecological strategies, tropical tree genera can be broadly characterized by their position 

in reference to four different ecological extremes regarding functional acquisitiveness, 
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reproduction, survival, growth, and size. The first group is characterized by an 

Acquisitive R strategy with Big size and Fast Growth (AR-BFG) and can be identified 

as a big-pioneer strategy (e.g., Ceiba). The second group presents a Conservative K 

strategy with Big size and Fast Growth (CK- BFG) and can be identified as a big stress-

tolerant strategy (e.g., Manilkara). The third group displays an Acquisitive R strategy 

with Small size and Slow Growth (AR-SSG) and can be identified as a small-pioneer 

strategy (e.g., Quararibea). Finally, the fourth group shows a Conservative K strategy 

with Small size and Slow Growth (CK-SSG) and can be identified as a small stress-

tolerant strategy (e.g., Psidium). Note that these groups represent extreme relationships 

as describe by the two integrative axis and then, intermediate strategies are common. 

These results correspond partially to the previously reported shade-tolerance and size 

axis (Turner 2001) and to the fast-slow continuum (Stearns 1999). However, in the 

present study, I show how the fast (pioneer) to slow (stress-tolerant) continuum is 

mainly decoupled from maximum growth rate and maximum size, the latter of which 

are in turn correlated. Note that we characterized size as maximum size (i.e., adult size), 

related to access to light in the reproductive stage, which may not be always a good 

predictor of juvenile growth (Needham et al. 2022). We do not detect an independence 

of the reproductive strategies from fast-slow continuum as previously reported 

(Salguero-Gómez et al. 2016, Rüger et al. 2018). However, we acknowledge that the 

characterization of reproductive strategies in our study is limited and may not be 

representing all its variability. 

Trait-to-trait relationships support the described main axes of variation, but 

further show how these two axes are connected by means of the positive relationship 

between growth rates and leaf nitrogen and by a negative relationship between growth 

rates and wood density. Then, higher nitrogen in leaves is related to higher growth rates 

which lead to lower wood density, acting as a link between the main axes described 

above. 
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4.5.1 Leaf acquisitiveness, survival and reproduction 

integration is phylogenetically conserved and 

independent of size-growth integration, which 

presents evolutionary labil ity 

The first axis related to leaf acquisitiveness, reproduction and survival is strongly 

phylogenetically structured. This suggests that the relationship between leaf economics 

strategies, survival and reproduction may be evolutionarily constrained by common 

factors or by their interdependence. As a result, their covariation is conserved through 

evolutionary time leading to a pattern of phylogenetic conservatism that involves 

functional and life history components of the ecological strategy. Under this scenario, 

lineages may not be able to rapidly change their functional and life history strategies 

related to reproduction and survival, leading closely related species to present similar 

strategies (Losos 2008). This pattern may emerge from conserved and slow adaptation 

in response to environmental variables (Crisp and Cook 2012), leading to a predominant 

effect of environmental filtering influencing the distribution of these strategies over 

environmental gradients (among and within sites, the latter being light availability 

gradients). As a result, phylogenetic position is expected to be informative on resource 

economics, survival and reproductive strategies in Amazonian trees. 

Contrarily, the relationship between size and growth presents a higher 

evolutionary lability, with closely related genera presenting different values along this 

axis. This pattern suggests that the evolution of different maximum growth rates and 

size are not strongly evolutionarily constrained. Then, lineages may be able to adapt to 

different conditions by diversifying in their growth rate, which is related to variability 

in maximum size in a non-phylogenetically conserved manner. However, maximum size 

showed a relatively high phylogenetic signal, meaning that it may be evolutionarily 

constrained by other factors influencing its values. One of these factors may be its 

relationship with mortality rates, which is negatively phylogenetically correlated with 
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maximum size. Then, phylogenetic conservatism in maximum size may also be 

influenced by its phylogenetically conserved relationship with lifespan or to some 

underlying mechanisms leading to this pattern, describing how closely related species 

presenting a lower mortality will tend to present a higher maximum size, even when 

presenting low growth rates.  

Overall, these results suggest that the distribution of leaf and wood economics, 

survival and reproductive strategies over environmental gradients has likely been 

constrained by environmental filtering both in the present and over evolutionary 

timescales. In contrast, changes in growth rates may allow species to adjust to various 

levels of resource availability, mediating events of rapid adaptation to different 

conditions over evolutionary times, being mainly disconnected from leaf economics. 

From these results we can see how traits are interconnected and how their variability is 

potentially determined by multiple processes, leading to a mixed pattern where 

evolutionary lability and phylogenetic conservatism coexist. The quantification of the 

contribution of each one of these components in individual traits and their relationship 

as done here is crucial to better elucidate patterns of adaptation and hypothesize 

potential processes shaping them. 

4.5.1 The meaning of evolutionary lability and 

phylogenetic conservatism in ecological strategies 

Even though evolutionary lability is evident in some individual traits’ evolution 

such as specific leaf area or mortality rates, phylogenetic conservatism was the main 

pattern emerging from the analyses of relationship among traits in this study. This 

points that trait syndromes may evolve in a phylogenetically conserved manner, 

meaning that relationships among traits are conserved even though individual traits may 

present some degree of evolutionary lability. Traits pairs for which their correlation is 

entirely phylogenetically structured may not actually have a direct functional 
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relationship (Felsenstein 1988). Instead, this correlation may appear as an effect of 

common factors constraining evolution of the two traits, leading to phylogenetic 

autocorrelation in trait syndromes. This may be the case for the relationship between 

leaf economics and wood economics, the relationship of leaf economics with survival 

and reproduction and the relationship between wood economics and seed mass. 

However, this phylogenetic conservatism in traits relationship could also be the output 

of a conserved pattern in adaptation if it is itself related to common environmental 

factors influencing their values (i.e., phylogenetic niche conservatism) (Sanchez-

Martinez et al. 2020). Future studies should consider the potential environmental axes 

explaining these patterns of phylogenetic conservatism to shed additional light on their 

adaptive meaning. This is a challenge of course as the most impactful environmental 

gradients that tree species experience in the Amazon Region are likely in edaphic and 

light conditions, and it would be a massive undertaking to consistently quantify these 

conditions across many tree species over the entire region. 

Some relationships among traits appear to consistently have both 

phylogenetically structured and evolutionarily labile components, such as within the leaf 

economics spectrum or the relationship between wood economics and growth rates. 

These traits relationship may present a hardwired relationship potentially underlined by 

adaptive processes. Then, these traits may present some slow adaptation related to the 

general characterization of species ecological niche, but also more recent adaptation 

related to more subtle changes in environmental conditions. A lower number of trait 

correlations appear only in the evolutionary labile component, although one notable 

case is the relationship between growth rates and mortality. This evolutionary labile 

relationship may indicate that taxa with high mortality and high growth rates appear in 

multiple lineages and that closely related species are not constrained to present similar 

values for these traits. 
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4.5.1 Caveats and future directions 

The current study has some caveats, such as the usage of genus-level data, which 

may be underestimating intra-generic functional and life history diversity as well as 

phylogenetic structure. Moreover, our data on maximum growth rates may be strongly 

influenced by tree size. In future works, using relative growth rates may complement 

results shown here. Also, characterizing reproductive strategies by means of seed mass 

is an oversimplification due to a lack of reproductive data for Amazon tree taxa. In 

future works, the inclusion of other important axis of variation determining 

reproductive strategies such as number of seeds or recruitment may help better 

characterize them. Nevertheless, this work has helped to quantify the phylogenetic 

conservatism in tropical tree taxa, where high resolution data is still lacking, in a 

continuous and multivariate way. By doing so, it improved our knowledge of life history 

evolution, with important implications for their macroevolutionary patterns of 

adaptation. The inclusion of environmental data in future works will help elucidate the 

adaptive meaning of the strategies described. Finally, the phylogenetic relationships 

described in the present work can be used to predict and impute trait values for those 

species without measured data, potentially helping parameterise land surface models in 

the Amazonian Region (Swenson et al. 2017, Anderegg et al. 2021), which in turn may 

help with the current data scarcity for both functional and life history traits in this 

biome. 
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5.1 ABSTRACT 

Predicting drought-induced mortality (DIM) of woody plants remains a key 

research challenge under climate change. Here, I integrate information on species’ 

edaphoclimatic niches, phylogeny, and hydraulic traits to estimate the hydraulic risk of 

woody plants globally. I also combine these models with species distribution records to 

produce the first global maps projecting the hydraulic risk faced by local species 

assemblages and to test for its relationship with observed DIM. Our results show that 

local assemblages modelled as having higher hydraulic risk present a higher observed 

probability of DIM, and that metrics characterizing this hydraulic risk improve DIM 

predictions globally, relative to models accounting only for environmental predictors or 

broad functional groupings. The methodology I present here allows wall-to-wall 

mapping of functional trait distributions and elucidation of global macroevolutionary 

and biogeographical patterns, improving our ability to predict potential global impacts 

on vegetation. 

5.2 INTRODUCTION 

A substantial number of woody plant communities worldwide are experiencing 

increased mortality due to rising drought severity and temperature (termed drought-

induced mortality, DIM), driven by anthropogenic climate change (Allen et al. 2010, 

Hartmann et al. 2018, Hammond et al. 2022). Such mortality modifies ecosystem 

composition, structure and functioning (Batllori et al. 2020), with large potential 

impacts on biodiversity and biogeochemical cycles  (Bonan 2008, Brodribb et al. 2020). 

Generally, DIM is triggered by hydraulic failure (Anderegg et al. 2012, Rowland et al. 

2015, Adams et al. 2017, McDowell et al. 2021), a physiological process causing loss of 

functionality of the plant conductive tissue (xylem), eventually leading to desiccation 
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and death. Previous studies have shown that plant hydraulic traits have the potential to 

improve our capacity to understand and predict DIM (Anderegg et al. 2016) and 

drought impacts on ecosystem fluxes (Anderegg et al. 2018a, Eller et al. 2020), as well 

as the community dynamics (Trugman et al. 2020, García-Valdés et al. 2021) emerging 

from these processes. Accordingly, hydraulic schemes are being incorporated into 

forest vulnerability assessments (Lecina-Diaz et al. 2020, Peters et al. 2021) and 

vegetation models, from the regional (Venturas et al. 2020, De Cáceres et al. 2021b) to 

the global (De Kauwe et al. 2020) scale. However, these models’ predictive capacity is 

still poor (Venturas et al. 2020, Rowland et al. 2021, Trugman et al. 2021), potentially 

reflecting lack of high-quality hydraulic data or insufficient understanding of the 

mechanisms involved. 

Hydraulic dysfunction happens when drought stress exceeds the capability of the 

xylem to tolerate low water potentials, leading air emboli in conduit lumens to disrupt 

water flow. This disruption can lead to hydraulic failure if embolism propagates (Tyree 

and Zimmermann 2002).  The probability of suffering hydraulic failure (i.e., hydraulic 

risk) (Anderegg et al. 2016, Choat et al. 2018b) is commonly quantified with the 

hydraulic safety margin (HSM), which is the difference between the minimum water 

potential in the xylem (Pmin, a measure of drought exposure reflecting plant hydraulic 

regulation at the tissue level) and the water potential causing 50% or the 88% of 

hydraulic conductivity loss (P50 and P88, measures of vulnerability to xylem embolism) 

(Choat et al. 2012, Delzon and Cochard 2014, Hammond et al. 2019). HSM is thus an 

individual- and site-specific physiological metric which is likely to be associated with 

drought induced mortality. However, data availability of Pmin and P50 at broad spatial 

scales is sparse both across and especially within species, and available values frequently 

do not reflect local conditions. Not surprisingly, species-level HSM is generally a poor 

predictor of mortality, only marginally improving existing models (Venturas et al. 2020, 

Rowland et al. 2021). 
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The distribution of HSM values within woody plant assemblages has been shown 

to relate to responses to extreme drought events (Skelton et al. 2015, Anderegg et al. 

2018b) and to the maintenance of productivity under increasing drought (García-Valdés 

et al. 2021). This functional variability is likely explained by the variety of existing 

species-specific mechanisms to cope with drought (Kannenberg et al. 2021), influenced 

in turn by environmental filtering and evolutionary legacies present in any species 

assemblage (Cavender-Bares et al. 2016). Here, I posit that our capacity to predict where 

mortality is more likely to occur will be improved by considering the variability of 

hydraulic risk at the local level (assemblages of potentially co-occurring species), and 

not only the average hydraulic risk of individual species in the assemblage. Currently, 

P50 and Pmin data are available for 1,678 and 819 woody plant species, respectively, 

representing less than 1.5% of the world’s estimated number of woody plant species. 

Nonetheless, I have recently shown that Pmin and P50 are phylogenetically conserved to 

a significant degree and are related to edaphoclimatic affiliations (see chapter 2) 

(Sanchez-Martinez et al. 2020). Including phylogenetic and edaphoclimatic information 

is therefore likely to improve the trait imputations required to provide global trait 

coverage. These results, together with increased availability of plant distribution data, 

pave the way towards predictions of hydraulic risk metrics that cope with the data 

scarcity problem, moving from individual species predictions to analyses of species 

assemblages at global scales. 

Here, I use a newly global database of hydraulic traits (Hammond et al. 2021) and 

edaphoclimatic and phylogenetic information coupled with random forest modelling to 

predict xylem minimum water potentials (Pmin) and xylem embolism vulnerability (P50), 

and hence hydraulic safety margins (HSM) as a measure of hydraulic risk, for 44,901 

woody plant species. I georeferenced these predictions using existing data on species 

distributions (Serra-Diaz et al. 2017) and map aggregated hydraulic metrics for species 

assemblages at a 5-km resolution, globally. Then, I use linear models to test which 

metrics of hydraulic risk characterization (species assemblage mean and minimum 
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HSM, its variability and the number of species with high hydraulic risk) can predict 

observed drought induced mortality, using precisely georeferenced records on its 

occurrence (Hammond et al. 2022). Finally, I use maxent models (Phillips and Dudık 

2008) to project drought induced mortality occurrence probability worldwide using 

different environmental predictors and the newly derived hydraulic metrics. I 

hypothesize that species-assemblage hydraulic risk will predict drought induced 

mortality occurrence, reflecting both the fact that species with lower hydraulic safety 

margin incur greater mortality risk and that assemblages with a higher number of species 

at hydraulic risk will experience more mortality. I also expect that measures of hydraulic 

risk of the entire species assemblage will outperform the species-level metrics of 

hydraulic risk in predictive models, as the former leverages information contained in 

spatial differences among species assemblage distributions and the associated 

phylogenetic patterns. By applying this framework, I provide the first global projection 

of woody plant hydraulic risk and associated drought induced mortality. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Low hydraulic safety margins are widespread in 

woody plant species 

Random-forest models, considering phylogenetic data jointly with edaphoclimatic 

affiliations and trait covariation, had substantial predictive power for species-specific 

minimum water potential in the xylem (Pmin) and its embolism vulnerability (P50) values 

with a cross-validation R2 of 0.60 ± 0.10 and 0.54 ± 0.12, respectively (mean and 

standard deviation, Table S5.1, see methods). Hydraulic safety margins (HSM) 

estimated at the species level was related to observed HSM values, with an R2 of 0.51. 

Overall, 7,024 out of 44,901 species (15.5%) presented negative HSM values, 66.2% of 

all species had HSM < 0.5 MPa, and 95.9% of all species had HSM < 1 MPa (Figure 
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5.1a, Figure S5.1 and Figure S5.2). These results generalize previous studies (Choat et 

al. 2012) indicating convergence towards low HSM in woody plants, pointing to a 

prevalent strategy of maximizing the usage of available water at the expense of 

increasing hydraulic risk. Negative HSM implies that species may experience embolism 

levels above 50%, which are expected to be stressful, especially for gymnosperms 

(Hammond et al. 2019). Some species (particularly angiosperms) may be adapted to 

recover from embolism by refilling conduits, resprouting from branch nodes below 

dead tissues or radial growth following drought relief (Anderegg et al. 2016), even 

though a significant loss of hydraulic conductivity can also lead them to mortality 

(Anderegg et al. 2015, 2016). When using P88 instead of P50 for angiosperms, which may 

be a more realistic hydraulic failure threshold for species in this group (P50/88 results 

hereafter) (Hammond et al. 2019), only 165 species out of 44,901 species (0.37%) 

presented negative HSM50/88 values (i.e., HSM calculated using P50 for gymnosperms 

and P88 for angiosperms, Figure S5.3). 

 

Figure5.1 Phylogenetic distribution of the data Phylogenetic distribution of observed 

and imputed hydraulic traits for species with observed data for xylem minimum water potential 

(Pmin) and/or xylem embolism vulnerability (P50). In red, species with observed mortality and in 

green species without observed mortality. he most important order names are shown with size 

proportional to the number of species represented. The total number of species with trait data is 

shown in black and the number in red is the number of those species that have an observed 

mortality event. The number and percentage of species showing hydraulic safety margin (HSM) 

values below zero, 0.5 and 1 are also shown. 
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5.3.2 Species-level hydraulic risk is a poor predictor of 

species-level drought induced mortality 

I did not find significant relationships (p > 0.3) between species-level HSM or 

HSM50/88 and species-level drought-induced mortality (DIM) occurrence. This result 

supports the lack of a strong relationship at broad spatial scales between species’ mean 

hydraulic risk and their probability to suffer mortality (Venturas et al. 2020). However, 

I found significant negative relationships between species-level HSM (slope = -0.16, 

standard error = 0.03, p < 0.001) and HSM50/88 (slope = -0.34, standard error = 0.02, 

p < 0.001) with the number of recorded DIM events per species. These relationships 

were significant for both angiosperms and gymnosperms, even though their predictive 

power was low (pseudo-R2 < 0.15 and AUC < 0.57 in both cases). Equivalent results 

were obtained when using only observed HSM values (i.e., excluding imputed values). 

These results suggest that even though species with low HSM tend to present a higher 

number of recorded DIM events, this information is not sufficient to predict with 

reasonable accuracy the probability that a species will suffer DIM. This may be due to 

the fact that not only mean species hydraulic risk, but also its intraspecific variability 

and local environmental conditions are playing a crucial role in determining DIM risk. 

Then, incorporating a geographical perspective may improve predictive capacity of 

DIM occurrence. 

5.3.3 Using information from species assemblages to 

characterize site-specific hydraulic risk 

I aggregated imputed (i.e., observed and predicted) data for species xylem minimum 

water potential (Pmin) and embolism vulnerability (P50 and P88) into species assemblages 

in 5 km x 5 km grid cells using species distribution data (Figure S5.4a and b) (Serra-

Diaz et al. 2017) (see Methods). Areas with drought incidence such as the Mediterranean 

basin, SW of Africa, SW of USA, and SW Australia presented species assemblages with 
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lower vulnerability to embolism (i.e., lower mean P50) but not necessarily lower 

hydraulic risk (constant mean hydraulic safety margin, HSM) (in Figure 5.2b and c, note 

that hydraulic risk is represented as negative hydraulic safety margin so higher values 

represent higher risk). This pattern underlines the importance of tissue-level drought 

exposure (Pmin, Fig. S5.5) in determining hydraulic risk, as species can converge towards 

similar HSM even when being exposed to very different levels of climatic drought or 

present very different HSM under the same conditions depending on their functional 

strategies (Bhaskar and Ackerly 2006). 

Maintaining a reasonably high HSM can imply very different strategies, including 

high embolism resistance, but also deep roots, tight stomatal regulation, or drought 

deciduousness to limit Pmin. The implications of these strategies may not be equivalent, 

which is a matter that requires further study. For example, in the case of stomatal and 

leaf area regulation, the carbon balance is also impacted directly, which could potentially 

result in indirect effects on the hydraulic system that could promote dehydration in the 

longer term or carbon starvation (McDowell et al. 2008, 2021, Sala et al. 2012). Even 

though carbon starvation has been shown to be not as important as hydraulic 

dysfunction in determining drought induced mortality (Rowland et al. 2015, Choat et 

al. 2018a), consideration of this process by including drought length and intensity in 

future studies would be useful to deepen our understanding of the consequences of 

changing drought intensities. 

The functional richness of species assemblages was further characterized by 

estimating the variability of strategies in a community (trait variance at the grid cell 

level). The highest variability for both P50 and HSM was found in species assemblages 

occurring in grid cells with relatively high drought incidence (e.g., the Mediterranean 

basin, W USA, N Mexico, S Australia, Turkey, and S Red Sea in Figure 5.2d, e). This 

result generalizes previous results found at regional scales (Martínez-Vilalta et al. 2002, 

Choat et al. 2003, Jacobsen et al. 2007, Johnson et al. 2018). We observed a spatial 

decoupling at the global scale between hydraulic trait variability and species richness 
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(Figure S5.4). While species richness peaks in highly favourable habitats without water 

limitations (Weiser et al. 2007) (Figure S5.4), hydraulic trait variability is higher where 

water scarcity leads to different physiological solutions to cope with drought in different 

plant lineages, resulting in a wide range of hydraulic trait values (Martínez-Vilalta et al. 

2002, Jacobsen et al. 2007). These results are in contrast with the favourability 

hypothesis (Fischer 1960) and previous results showing a higher functional diversity 

towards the equator in some traits (Swenson et al. 2012), but are aligned with other 

results showing that evolutionary, and potentially functional, diversity peaks under 

intermediate precipitation (Neves et al. 2020). Then, functional richness may increase 

in sites with some degree of resource limitation that in turn allows the coexistence of 

lineages presenting variable drought-coping strategies (e.g., the case of the coexistence 

of gymnosperms such as Pinus spp. and angiosperms such as Quercus spp. in 

Mediterranean forests, with their divergent hydraulic strategies) (Martínez-Vilalta et al. 

2002, Martinez-Vilalta et al. 2004). However, this particular result may be influenced by 

a higher sampling in these areas with higher drought and needs to be confirmed by 

further studies. 

I further characterized the hydraulic risk of species assemblages by calculating the 

number of species presenting HSM < 0, which was considered to be a justified hydraulic 

risk threshold. The number of species with high hydraulic risk was highly variable 

(Figure 5.2f), showing a great potential to characterize species-assemblage hydraulic 

risk. This metric represents the number of species expected to experience hydraulic 

dysfunction, potentially providing meaningful information on the likelihood of a site 

experiencing drought induced mortality (DIM). Projections showed that species 

assemblages with a high number of species with HSM < 0 occur both in dry and mesic 

places (e.g., Mexico and W Amazonia, respectively). However, species presenting the 

highest hydraulic risk were found in places with high drought incidence (e.g., the 

Mediterranean basin, W USA, Mexico, SW Australia, S Africa, Figure 5.2g), reflecting 

that in these places some species are prone to experience high levels of embolism. The 
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occurrence of invariant minimum values over some large areas likely results from 

species with particularly low HSM values having widespread distributions. However, in 

some cases these results may be influenced by limited data availability (e.g., boreal 

forests in Russia).  

Results based on HSM50/88 projections were similar but, as expected, showed a 

lower total number of species with negative values. HSM50/88 results show lower 

hydraulic safety margins in boreal forests, which may be due the dominance of 

gymnosperms in this biome and that P50 (the value used for gymnosperms for 

HSM50/88) may be easier to surpass compared to P88 (the value used for angiosperms) 

(Figure 5.6). 

 Figure 5.2 Global distribution of species-assemblage hydraulic metrics a) example 

on the hydraulic risk composition for a given species assemblage, from which the plotted metrics 

are calculated. b) mean P50 and c) hydraulic risk represented as negative hydraulic safety margin; d) 

and e) P50 and HSM variance; f) the number of species with negative HSM and g) maximum 

hydraulic risk represented as negative minimum HSM. The distribution of species-level values for 

a sample of three representative pixels are shown in histograms in b) and c). Lateral scatterplots in 

b) to g) show the distribution of pixel values by latitude in grey, and absolute minimum and 

maximum values by latitude as red and blue, respectively. 
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5.3.4 Species-assemblage hydraulic risk is positively 

related to drought-induced mortality occurrence 

I found significant relationships (p < 0.01) between species-assemblage hydraulic 

risk metrics and drought-induced mortality (DIM) occurrence (Figure 5.3). Compared 

to species-level hydraulic safety margins, species-assemblage hydraulic risk metrics had 

higher predictive power for DIM occurrence (pseudo-R2 between 0.14 and 0.36, AUC 

between 0.68 and 0.84) and far outperformed the predictive power of a climatic aridity 

index, annual precipitation, and maximum temperature (pseudo-R2 < 0.02, AUC < 0.6) 

(Table S5.2). The relationships of species assemblages’ hydraulic metrics with DIM 

occurrence remained significant even after the climatic aridity index was included in the 

models as a covariate (Table S5.3 and S5.4). These results indicate that metrics related 

to the hydraulic risk of local species assemblages incorporate meaningful information 

beyond the local drought status. The relationships between DIM occurrence and 

species assemblage’s hydraulic risk metrics were highly consistent across different 

biomes and plant functional types (PFTs) (Figure 5.3, Figure S5.7, Table S5.3, Table 

S5.4, Table S5.6). 

Overall, sites comprising species assemblages with higher hydraulic risk (i.e., lower 

mean and minimum HSM and higher number of species with HSM < 0) exhibited 

higher DIM occurrence probability. In the case of the relationship between the number 

of species with HSM < 0, the effect remained significant when species richness was 

included as a covariate. In fact, species richness itself was not a strong predictor of DIM 

occurrence. Thus, the relationship between the number of species with HSM < 0 and 

DIM occurrence was not driven by species number per se, but by the relationship 

between the number of species with high hydraulic risk and DIM. I show that places 

with higher HSM variance tend to present higher DIM occurrence. This pattern was 

largely explained by the strong correlation between HSM variance and minimum HSM, 

the latter being related to DIM probability. Our results show that species with the 

highest hydraulic risk of an assemblage may be under a higher mortality risk. Their 
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removal could generate directional functional changes (Pérez‐Navarro et al. 2021), 

decreasing site-specific functional richness and potentially amplifying negative effects 

on ecosystem functioning (García-Valdés et al. 2018, Esquivel-Muelbert et al. 2019, 

Batllori et al. 2020). 

Figure 5.3 Relationship between drought-induced mortality occurrence and 

species-assemblage hydraulic metrics a) and b) mean HSM, c) and d) minimum HSM, e) and 

f) HSM variance and g) and h) the number of species with HSM < 0 excluding and including their 

interaction with biome (top and bottom rows, respectively). Results summarize 100 iterations of 

each model. In each iteration, a different random set of background points was sampled. In the 

top row, boxplots show species-assemblage metrics values for pixels with mortality compared to 

background locations. In the bottom row, mean response curves for individual species-assemblage 

metrics for each biome. 
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5.3.5 Spatial patterns in the probability of DIM occurrence  

I built on our significant predictive models described above to estimate DIM 

occurrence probability worldwide with maximum entropy models (Phillips and Dudık 

2008). Our results supported the usefulness of the newly derived hydraulic risk metrics 

at the species assemblage level to predict DIM occurrence, increasing predictive 

performance compared to models based only on environmental variables, biome, and 

broad plant functional types (PTFs) (Figure 5.4). The number of species with HSM < 

0 was the most important explanatory variable in these models. Results showed that 

high DIM risk is predicted in e.g., the Mediterranean Basin, southern Australia, western 

North America and western tropical South America. Models including hydraulic risk 

metrics better constrained DIM occurrence probability in places with abundant 

mortality information (e.g., the Iberian Peninsula), limiting the environmental space 

where mortality is predicted to occur by considering the functional characterization of 

species assemblages. However, differences between models are more difficult to 

interpret in regions where mortality data are scarce or absent (Figure S5.4c), such as the 

African continent and Russian boreal forests. In these cases, the inclusion of the 

functional perspective may be over-constraining the model, leading to an 

underestimation of the probability of DIM occurrence. 

These results show the capability of functional data to improve the predictive 

capacity for vegetation responses to climate change at broad spatial scales. By 

considering geographical variability in functional composition, physiological 

mechanisms involved in species responses to the environment can be characterized and 

the vulnerability of communities can be better assessed. 
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Figure 5.4 Projection of drought-induced mortality occurrence probability Model’s 

performance (test AUC), variables contribution and their permutation importance are displayed. 

Predictors used in each case are indicated (see methods). 
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5.3.6 Future directions 

Future efforts to improve the monitoring of observed drought-induced mortality 

(DIM) as well as the characterization of hydraulic risk under different climate change 

scenarios will enable better assessments of when and where high mortality is to be 

expected, and the corresponding impacts on ecosystem composition, structure, and 

function. Better knowledge on eco-evolutionary relationships among functional traits 

will improve predictive models, leading to lower imputation error and a better 

functional characterization of species assemblages. Furthermore, inclusion of 

intraspecific variability is clearly important to better assess geographical patterns in 

functional traits and associated environmental responses. Including data on species 

abundances will also lead to a more realistic characterization of the hydraulic safety 

margin (HSM) distribution within each species assemblage. In fact, results obtained here 

substantially differed from HSM projections using community weighted means for a 

smaller region (USA) (Trugman et al. 2020), even though they were reasonably 

consistent for P50 mean projections as well as for metrics that are not based on 

abundances, such as trait ranges (Figure S5.9). In addition, HSM can be considered a 

static proxy for hydraulic risk at a given site, but any temporally explicit prediction of 

DIM risk would need to consider the characteristics of specific droughts in terms of 

duration and intensity, and their impact on tissue-level exposure. Finally, considering 

additional ecological and historical factors such as the likelihood of biotic attacks, land 

use change, extreme event legacies, and microclimatic conditions (McDowell et al. 2008, 

Trugman et al. 2021) should further improve predictions of DIM probability.  

In conclusion, I show that species assemblage hydraulic metrics are related to DIM 

and improve DIM prediction at the global scale, particularly compared to species-level 

mean values or projections based on climate and coarse functional classifications. I 

show that locations with higher numbers of species with high hydraulic risk tend to 

present higher DIM. The approach presented here also represents a step forward in 

predicting plant functional trait values, providing continuous multi-layer maps that 
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supplement environmental and coarse plant functional type characterisations. Further, 

the geographical characterization of functional trait distributions provided here is likely 

of broad interest to improve the parametrization of terrestrial biosphere models (De 

Kauwe et al. 2020, Eller et al. 2020), and complements other recent efforts using model 

inversion to predict hydraulic traits at the global scale (Liu et al. 2020). However, the 

mortality projections presented are limited by the availability of spatially explicit 

hydraulic and mortality data as well as tree abundance data and should be seen as a 

starting point to improve global-scale mortality projections.  

5.4 MATERIALS AND METHODS  

5.4.1 Species distribution data 

Spatially-explicit alpha-hull terrestrial range distributions of 44,901 species derived 

from compilations of species presence records (Serra-Diaz et al. 2017) were used to 

determine species assemblages within 5 km grid cells. Species nomenclature was 

standardized using the Taxonstand R package (Cayuela et al. 2012) and species taxonomy 

was filled using the taxonlookup R package (Pennell et al. 2016), both following The Plant 

List nomenclature.  

5.4.2 Hydraulic data 

I extracted values from the recently updated xylem traits database (Hammond et al. 

2021) for minimum water potential recorded in the xylem (Pmin) and water potential at 

the 50% and 88% loss of conductivity (P50 and P88) for 685, 1,376 and 735 species, 

respectively, measured in stems of mature individuals. P50 and P88 included only 

observations with values < -0.5MPa that originated from S-shaped vulnerability curves. 

Taxonomic standardization was conducted as described above. 
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Pmin estimated as the absolute minimum xylem water pressure recorded for a given 

species can be prone to biases (Martínez‐Vilalta et al. 2021), so I tested for its 

relationship with soil minimum water availability and maximum vapour pressure deficit 

within the distribution of the species, which were considered to be among the main 

environmental drivers of its variation. Soil minimum water potential (Pmin soil) was 

calculated and projected worldwide at 5 km resolution using the minimum soil water 

content at 0-100cm depth over the last 40 years from ERA5-Land monthly averaged 

data (Muñoz-Sabater et al. 2021), soil texture information for the same depth layers 

(Hengl et al. 2017) and following Saxton & Rawls (Saxton and Rawls 2006) using the 

medfate R package (De Cáceres et al. 2021b). Then, Pmin soil values were extracted for all 

pixels using species distributions and summarized by calculating mean values per 

species. The cross-species relationship between soil and plant minimum water 

potentials was positive and significant (R2 = 0.12; Figure S5.10). The large scatter 

around this relationship likely reflects differences in rooting depth (and hence explored 

soil volume) across species, as well as substantial methodological uncertainties for both 

Pmin estimation approaches. Pmin also showed a significant relationship with maximum 

vapour pressure deficit (VPDmax), as expected, with more negative minimum water 

potentials under a higher atmospheric water demand (R2 = 0.20, Figure S5.10).  

5.4.3 Environmental data 

To characterize edaphoclimatic affiliations for all the species for which we had 

range distributions, I downloaded global layers describing climatic variables from 

Worldclim v2 (Fick and Hijmans 2017) and soil characteristics variables from SoilGrids 

(Montzka et al. 2017) at a resolution of 2.5 arcmin. I then extracted the values for each 

species using species range distributions data and the sf and raster R packages (Pebesma 

2018, Hijmans 2021). Environmental variables were selected based on their importance 

in a previous study (Sanchez-Martinez et al. 2020). The following layers describing 

species’ historical climate (averaged values for 1970-2000) (Fick and Hijmans 2017) 
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were considered: mean annual temperature (ºC), minimum temperature of the coldest 

month (ºC), mean temperature of the wettest month (ºC), mean temperature of the 

driest month (ºC), isothermality (unitless), temperature seasonality (ºC), annual 

precipitation (mm), precipitation of the wettest month (mm), precipitation of the driest 

month (mm), precipitation seasonality (mm), precipitation of the warmest quarter 

(mm), precipitation of the coldest quarter (mm), mean solar radiation (kJ m-2 day-1), 

mean vapour pressure (kPa) and mean wind speed (m s-1). I also extracted monthly 

maximum temperature values and the vapour pressure for the same months to calculate 

maximum vapour pressure deficit (kPa) for each species distribution using the SVP 

function from the humidity R package (Cai 2019). Layers describing soil characteristics 

were absolute depth to bedrock (cm), soil water content at 200 cm depth (percentage), 

cation exchange capacity at 30 cm depth (cmolc/kg), clay content at 30 cm depth 

(percentage), organic carbon at 30 cm depth (permille) and pH at 30 cm depth (pH). 

Mean values for each species range were calculated for each environmental variable 

and were transformed to achieve normality when needed (ln or square root-

transformed). To summarize environmental information, I implemented a principal 

component analysis on species mean values for the whole set of variables using the 

princomp function from the stats R package (R Core Team 2020). The first five principal 

components explained 82.3% of the variance and were used in further analyses.  

Additional environmental information required in some analyses (see the last two 

methods sections below) was downloaded separately. This included the aridity index 

(Trabucco and Zomer 2018), historical maximum temperature for 1970-2000 (Fick and 

Hijmans 2017), as well as biome identity (Dinerstein et al. 2017) and pixel-level plant 

functional type (ERA Copernicus 2019 land cover version 2.1.1) (Muñoz-Sabater et al. 

2021). All these environmental layers were aggregated to a 5 km2 resolution for further 

use with the raster R package (Hijmans 2021). 
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5.4.4 Mortality database 

I used a global database on forest die-off events related to drought and/or heat 

(Allen et al. 2010, Hammond et al. 2022), which is an updated and geographically 

referenced version of the Allen et al. (2010) dataset. This new database was a spatial 

points data frame covering 1,303 mortality events records (Figure S5.4c), with 

documented affected species in each instance (> 400 tree species worldwide). 

Taxonomic standardization was conducted for species in the mortality database as 

described above. 

5.4.5 Phylogenetic information 

To include species phylogenetic information, I used a newly-derived genus-level 

phylogeny covering 3,488 genera (Segovia et al. 2020) to construct a phylogenetic 

distance matrix between taxa using the cophenetic.phylo function of the ape R package 

(Paradis and Schliep 2019). The distance matrix was used to calculate phylogenetic 

principal coordinates values for each genus using the pcoa function of the ape R package 

(Paradis and Schliep 2019). Then, coordinate values were assigned to each species. 

Overall, I generated a dataset covering 44,901 species with complete environmental and 

phylogenetic data and some sparse data on hydraulic traits distributed throughout the 

phylogeny. I also constructed a species-level phylogeny using the V.PhyloMaker R 

package (Jin and Qian 2019) matching our species list. I used the species-level 

phylogeny only for plotting purposes because it contained many polytomies and 

because genus-level approaches can be considered more reliable, especially for tropical 

clades where species misidentification can be an issue (Baker et al. 2017). 
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Figure 5.5 Methodology Scheme of the methodology implemented, and the data used in 

each case. The data used is shown in black circles. The main results obtained in each step are also 

referred in red boxes.  

 

5.4.6 Hydraulic traits predictions using phylogenetic and 

edaphoclimatic data 

I used random forest models as implemented by the missForest R package 

(Stekhoven and Bühlmann 2012) to predict and impute species-level Pmin and P50 values 

for the 44,901 woody plant species with available distribution data. Before performing 

the imputations, I tested the predictive performance of a set of models including 

different combinations of phylogenetic principal coordinates, environmental principal 

components and including or excluding major evolutionary affiliation (angiosperms vs 

gymnosperms). I built models that predicted one trait at a time, or both (Pmin and P50), 

within the same model (in the latter case, trait covariation was explicitly considered). To 

do so, I used the subset of species for which hydraulic measurements were available 

and calculated R2 values following a 10-fold cross-validation procedure using different 
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proportions of train and test observations in each case (from 10 to 70% of data used to 

test and the remaining to train). Each model was iterated 100 times using a random 

selection of training and test points, maintaining the proportions in each case. I 

calculated the mean R2 and its standard deviation in each case (Table S5.1), and the 

model with the highest mean R2 was subsequently used to predict trait values with all 

available data as training data and was iterated 100 times. The best predictive model 

included the first five phylogenetic principal coordinates and the first five 

environmental principal components, while considering the covariation between traits 

and major evolutionary affiliation, reaching mean R2 of 0.60 ± 0.10 and 0.54 ± 0.12 for 

Pmin and P50, respectively (Table S5.1, see Figure 5.5 for a schematic description of the 

process leading to the results presented in the main text). As some studies have pointed 

out that P88 may be a better hydraulic failure threshold for angiosperm species 

(Hammond et al. 2019), I also performed predictions using P88 instead of P50 for 

angiosperms (P50/88 and HSM50/88 hereafter).  

Imputed values were summarized at the species level, calculating the mean and the 

standard deviation from the 100 iterations of the predictive model, and HSM values 

were calculated from imputed mean-hydraulic trait values in each case (HSM = Pmin – 

P50). Imputed values were plotted on a species-level phylogeny (Figure 5.1 shows 

hydraulic traits imputation at the species-level for those species with at least one trait 

with observed values) as well as on the genus-level phylogeny (by averaging values per 

genera) (Figure S5.1 and Figure S5.2 to see mean and standard deviation of data 

aggregated at the genus level, respectively). To assess model uncertainty related to the 

identity and number of species used to train the predictive model, I repeated it 100 

times, randomly excluding 20% of species with observed data each time and calculating 

the standard deviation of the predicted values for each species. 

The predictive framework was also implemented using P50 values for gymnosperm 

species and P88 values for angiosperm species (P50/88), calculating HSM50/88 (Figure 

S5.3). I obtained a lower predictive performance, reaching a mean R2 of 0.43 ± 0.12 
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(mean and standard deviation for P50/88 from the previously described cross-validation 

procedure), probably because of a higher error in P88 estimates and lower data 

availability compared to P50. Given the lower performance of HSM50/88 models, the 

lower data availability for P50/88 compared to P50 and considering that P88 was highly 

related to P50 (R2 = 0.69, Figure S5.10), I used P50 and standard HSM to report the main 

results. 

5.4.7 Geographical projection of hydraulic traits and 

calculation of pixel-level species assemblages 

hydraulic metrics 

In order to plot hydraulic metrics for species assemblages, I first spatially referenced 

species-level imputed data for 44,901 species using their spatial range distribution 

(Serra-Diaz et al. 2017) (Figure S5.4a and b to see species range distribution coverage 

for imputed and observed traits data, respectively). Spatial projections were 

implemented by assuming fixed trait values at the species level (as I expect intraspecific 

variability to be much lower than interspecific variability for hydraulic traits) (Anderegg 

2015, Rosas et al. 2019, Skelton et al. 2019). Then, I aggregated trait values for species 

with overlapping distributions at the pixel level by calculating their mean, minimum, 

and variance as a measure of functional variability by using the fasterize function of the 

fasterize R package(Ross n.d.), and the rasterize function of the raster R package (Hijmans 

2021) in the case of the variance. By doing so, I obtained 5 km2 raster layers for P50 and 

HSM mean and their variability (Figure 5.2), minimum HSM (Figure 5.2), Pmin mean 

and its variability (Figure S5.5), P50/88 and HSM50/88 mean and their variability (Figure 

S5.6). Note that mean HSM and minimum HSM were reported as negative HSM so 

higher values represent higher hydraulic risk. This was performed for consistency with 

P50 plots, as higher P50 represents higher embolism vulnerability. These maps should be 

interpreted as predicted values, and then will only be relevant in areas with woody plant 

vegetation. 
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I also spatially aggregated cross-species P50 and HSM standard deviations by 

calculating the mean from the 100 iterations of the predictive model including all species 

(Figure S5.8a, c and e) and excluding the 20% of species with observed trait data in each 

iteration (Figure S5.8b, d and f). Then, I report two measures of model uncertainty 

aggregated at the spatial scale: the first one showing the uncertainty of the predictive 

model at the species level and the second one the uncertainty linked to the identity of 

the species represented in the training data used. The uncertainty due to the identity of 

the species used to train models is higher than the model uncertainty (Figure S5.8). For 

HSM and HSM50/88 spatially referenced values, I also calculated the number of species 

with negative values per pixel at 5 km2 resolution using the same approach (Figure 5.2 

and Figure S5.6 for HSM and HSM50/88, respectively). 

In order to better visualize variability in raster plots, I restricted values using the 

clamp function from the raster R package (Hijmans 2021), setting the 0.05 quantile as the 

lower value  and the 0.95 quantile as the upper value. 

5.4.8 Assessing the predictive capacity of hydraulic risk 

against mortality records 

First, I tested the relationship between imputed species-level HSM values and the 

presence-absence of observed mortality as well as the number of mortality events 

recorded per species as reported in the global mortality database (Hammond et al. 

2022). I used generalized linear models through the glm function of the stats R package 

(R Core Team 2020), setting the family parameter to binomial in the first case and to 

Poisson in the second one. To see the effects of angiosperm-gymnosperm affiliation in 

this relationship, I included the major evolutionary affiliation as an explanatory factor 

interacting with HSM. As the number of species without observed mortality was much 

higher than the number with observed mortality, I randomly selected the same number 

of species without observed mortality events to match the number of species with 
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mortality events (i.e., 482). I repeated this procedure 100 times and averaged the results 

in both cases. 

To explore the relationship between the spatial projection of hydraulic metrics and 

mortality occurrence as reported by the global DIM database (Hammond et al. 2022), I 

used binomial generalized linear models with the glm function of the stats R package (R 

Core Team 2020). I kept one mortality event per square kilometre, reducing the number 

of geographical points with observed DIM from 1,303 to 882 to avoid over-

representing areas with a higher sampling effort. In order to assess the degree of spatial 

autocorrelation of models, I performed Mantel tests on all models' residuals using the 

function mantel.rtest of the Ade4r package (Dray and Dufour 2007). The spatial 

autocorrelation was <0.06 in all cases. The response variable in our models was 

mortality occurrence (1 for pixels with at least one mortality event observed and 0 for 

the same number of randomly sampled pixels without observed mortality). 

Backgrounds could include some presences, so to deal with the lack of absence points 

I repeated models 100 times randomly changing background points and averaged 

results. The explanatory variables included HSM-derived variables related to the 

hydraulic risk of species assemblages (pixel mean, minimum, variance, and number of 

species with HSM < 0), as well as their interaction with biome and plant functional type 

(e.g., broadleaf deciduous, broadleaf evergreen, needle leaved, etc.) (Figure 5.3, Figure 

S5.7). An aridity index, annual precipitation and maximum temperature were also 

included as predictors in a separate model to assess their individual predictive power 

(Table S5.2). Biome and functional type categories were reclassified to maintain as many 

observations per category as possible (Table S5.5). I included biome and functional type 

as factors in the models to check for changes in the magnitude and direction of the 

relationships between species-assemblage hydraulic metrics and DIM as well as to 

improve predictions by better representing broad vegetation types (e.g., see the Amazon 

Basin in Figure 5.4). Note that our data have a low number of observations in some 

biome and functional type groups, so no firm conclusions were drawn from the 

differences among factor levels.  
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The number of species per pixel was also included as a covariate in a model using 

the number of species with HSM < 0 to check for the effect of species number on its 

relationship with DIM occurrence. HSM variance and HSM minimum as well as their 

interaction were also considered together in the same model to better understand their 

non-independent relationship with DIM occurrence. Trend significance was tested by 

using the emmeans R package (Lenth 2021) (Table S5.6). Each model was run 100 times 

using a different set of background points and pseudo-R2 values were calculated using 

the rml R package (Harrel 2020) (Table S5.2). Test AUC values were also calculated 

using the dismo R package (Hijmans et al. 2017) following a cross-validation procedure 

with 80% of the data to train and 20% to test. All models were re-run including aridity 

index values extracted from mortality and background points as a co-variate to test 

whether trait effects remained significant when the climate was considered, which was 

the case. To check for variable significance, I implemented ANOVA tests using the 

anova function from the stats R package (R Core Team 2020) (Table S5.3 and S5.4 to see 

the mean results calculated from 100 iterations in each case for models excluding and 

including aridity index as a covariate, respectively). As a further check, I repeated the 

same procedures but I was more restrictive in aggregating mortality data to avoid over-

representing areas with higher sampling intensity (W USA, SW Australia and Europe) 

(Varela et al. 2014). When I kept only one mortality occurrence per 10 km2 (Varela et 

al. 2014), reducing the number of occurrences from 1,303 to 517, the results did not 

differ. 
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5.4.9 Projecting mortality risk using maximum entropy 

models 

I used maximum entropy models (Phillips and Dudık 2008) as implemented by the 

dismo R package (Hijmans et al. 2017) to predict and project drought-induced mortality 

(DIM) probability at the global scale. I used this methodology instead of the previous 

binomial generalized linear models as it accounts better for presence/background point 

data under a predictive framework. This allowed us to better characterize the 

background by including more background points than presences, a procedure not 

recommended with generalized linear models (Elith et al. 2006). Moreover, this 

technique presents higher predictive performance than generalized linear models 

because of its capability to account for non-linearities and multiple interactions between 

predictors (Merow et al. 2013). Three types of models were run: (a) using only 

functional type and biome distributions as predictors, (b) as in “a” plus continuous 

environmental variables and (c) as in “b” plus the projected hydraulic metrics as 

predictors. In order to maximise predictive performance while keeping the lowest 

number of predictors, only continuous variables with high predictive power that 

presented Pearson cross-correlation coefficients among themselves lower than 0.75 

were included in models “b” and “c”. These variables were maximum temperature, 

aridity index, soil sand and clay content for models including environmental variables 

and the number of species with HSM < 0, HSM variance, maximum temperature and 

aridity index for models including both hydraulic traits and environmental variables. In 

all cases, biome and functional type were included as predictive factors. Note that none 

of the environmental variables used to predict mortality was included in the 

environmental principal components used to predict species-level hydraulic traits from 

which species assemblage hydraulic metrics were calculated. Models “b” and “c” were 

constructed to contain the same number of predictors in order to facilitate their 

comparability. 
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In this instance, mortality data was aggregated to keep one occurrence per 10 km2 

to avoid overfitting (Varela et al. 2014) (N occurrences = 517) while standardizing the 

spatial resolution with the layers used as predictors. Models were trained using the hinge 

option (similar to GAM) with 10,000 randomly sampled background points (but models 

were also trained using 1,000 and 50,000 randomly sampled background points to assess 

model consistency). To evaluate model performance, each model was trained using 80% 

of the data and tested using the remaining 20%, and this procedure was repeated 100 

times in each case (randomly changing training and test data points) and test AUC 

values were calculated and summarized by calculating their mean and standard deviation 

to assess performance (Figure 5.4). I made sure to include both points with observed 

mortality and background points in all cases by sampling the 80% and the 20% in each 

of these groups separately and then unifying the datasets, following previous 

implementations (Sanchez-Martinez et al. 2021). Finally, a single model trained using all 

observations was implemented for model types “a”, “b” and “c” (see above) and used 

to project mortality occurrence probability geographically (Figure 5.4). Variable 

importance was assessed by its relative (percentage) contribution to the fit of the models 

as generated by the maxent jack-knife procedure, which compares the training gain for 

each variable in isolation to the training gain of the model with all variables (Figure 5.4). 

Permutation importance was also calculated for each environmental variable by 

randomly permuting presence and background values, re-evaluating the model and 

calculating the resulting drop in training AUC, normalized as a percentage (Figure 5.4). 
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6.1 INSIGHTS FROM AN EVOLUTIONARILY EXPLICIT 

FRAMEWORK IN ECOPHYSIOLOGY 

In this thesis, I demonstrate the insightful results that can be obtained by 

considering phylogenies to estimate the effect of evolutionary histories in the current 

diversity of plant functional strategies and their relationship with species niche. The 

novelty of the framework presented resides in the capability to separate phylogenetically 

conserved and evolutionary labile patterns in functional traits individually, as well as in 

their relationship and in their individual and integrated response to environmental 

conditions. By doing so, the evolution of functional trait syndromes can be better 

understood, and this information can be used to scale functional aspects from species 

to communities and ecosystems. 

Previous methodologies focused on the so-called evolutionary correlations, which 

are relationships among functional traits that are not explained by major lineage 

divergences and then, are hypothesized to present a functional cause (Felsenstein 1988). 

Evolutionary correlations are based in the cladistic perspective, where only derived 

characters are related to adaptation and any inherited ancestral state needs no further 

explanation (Hansen 1997). Under this framework, trait coordination and trade-offs will 

appear as a result of an optimization of plant function in response to selective pressures. 

Then, deviations from the optimal value of traits can be attributed to evolutionary 

inertia (sensu Blomberg, (Blomberg and Garland 2002)) of lineages, understood as the 

lineage-specific contingencies that is adding noise to adaptation patterns and needs to 

be factored out. This perspective has showed to be highly insightful in a number of 

studies showing how phylogenetically corrected traits relate (Ackerly and Reich 1999, 

Maherali et al. 2004, Martínez-Vilalta et al. 2014). However, this methodology 

undermines the effect of stabilizing selection and environmental filtering, which are 

important processes shaping species adaptive response (Hansen 1997). These two 

processes can lead to a pattern of phylogenetic conservatism in adaptation. Then, the 
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phylogenetic structure of functional traits syndromes can be of interest by itself to 

elucidate which processes are leading to species adaptation under different conditions. 

In this thesis, I propose and apply a complementary method to the evolutionary 

correlation framework that can provide extra insights on the evolution of functional 

strategies. 

Under an evolutionary perspective, species can achieve different adaptive optima 

in response to the same conditions, as diversification of lineages and disparification of 

traits can lead to different successful strategies. Then, trait values will be not only 

affected by external conditions but also by the evolutionary history of a given taxa, 

describing the evolutionary paths taken by ancestors which constrain the adaptive 

options that are available for descendants. In fact, one could hypothesize that, if 

functional syndromes evolution is constrained (e.g., traits under stabilizing selection), 

the weight of evolutionary history of trait syndromes on the conformation of adaptive 

optima may be higher than that of environmental conditions. If this is true, most species 

inhabiting a given community will rarely reach the hypothetical optima expected from 

their relationship with the environment. Instead, these species will adopt suboptimal 

functional traits values that allowed them to survive and reproduce under a given set of 

conditions, but that cannot fully reach the optima due to evolutionary constraints. The 

integration between traits can itself be constraining the optimization of a given trait, 

diminishing its degrees of freedom by limiting the potential values that it can take based 

on other trait values. Under suboptimal conditions, functional trait values may not be 

able to maximize performance responses related to growth, reproduction and survival 

and then, their life history will be modulated accordingly. In this scenario, eco-

evolutionary processes shaping community functional composition will be quite 

different compared to the scenario where environmental conditions are the main 

drivers of traits variation. In this thesis, I provided insights on which evolutionary 

scenarios are more plausible by elucidating the importance of phylogenetic 

conservatism and evolutionary lability in functional strategies and their relationship with 

environmental conditions. 
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The eco-evolutionary perspective of this thesis has proven to be valuable to better 

understand ecological processes related to species assemblage, ecological strategies, and 

responses to environmental forcing. First, elucidating that phylogenetic conservatism 

in ecological strategies (here, including functional strategies and life history strategies) 

can be very useful to assess adaptive capability of species under a changing climate. 

Second, moving from a taxon-based community ecology and biogeography to a one 

based on functional syndromes can be highly insightful to close the gap between 

mechanisms and observed patterns in species distributions and abundances. Finally, a 

unified framework will serve to bring ecophysiologists and evolutionary biologists into 

a common field, seeking to better understand living systems from an integrated 

perspective and across scales, from the micro evolutionary at local scale to the 

macroevolutionary at global scale. 

6.2 PHYLOGENETIC NICHE CONSERVATISM IN 

FUNCTIONAL SYNDROMES  

Our results show a predominant pattern of phylogenetic conservatism in 

functional trait syndromes which is related to the abiotic niche. This points that 

functional syndromes evolution is constrained and slow, leading to a pattern where 

closely related taxa tend to resemble each other in their functional strategies (Losos 

2008). The fact that this conservatism is generally related to environmental conditions 

describing species abiotic niche suggests that adaptation under stabilizing selection may 

underlie macroevolutionary variability in trait syndromes (Hansen 1997). However, 

phylogenetic conservatism may indicate that even if adaptation occurs it may be not the 

only process shaping species assemblages. Being adapted to survive under a given set 

of conditions is a prerequisite determining species distributions and then, 

environmental filtering may be crucial to determine which species are present under a 

given set of conditions. Contrarily, in a scenario where evolutionary lability plays a more 

important role, we would expect rapid adaptation or plasticity to allow species to survive 
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under new conditions, with a lower importance of lineage-specific environmental 

filtering on species distributions. 

Results reported in this thesis do not completely discard evolutionary lability, as 

phylogenetic conservatism in individual traits is not maximized. Some traits, such as 

photosynthetic capability present a labile evolution leading to rapid adaptation, while 

others, like embolism resistance, are more evolutionarily constrained. The underlying 

causal phenotype related to structural and physiological determinants of each trait may 

play an important role in determining to what degree traits can vary at different scales. 

For instance, embolism resistance depends on the structure and anatomy of the xylem, 

which is expected to be rather canalized (Lamy et al. 2014, Lobo et al. 2018, Pritzkow 

et al. 2020). This may contribute to the slower adaptive response of this trait, while 

other traits such as photosynthetic capacity can be modulated by the expression in living 

cells which are expected to be more responsive to external conditions related to 

resource availability. It is important to note that the macroecological perspective taken 

in this thesis (i.e., working at the species or supra-specific levels) may be undermining 

the role of local adaptation and plasticity, as a good representation of within-species 

variability is not included. Then, the take home message in this regard would be that 

trait syndromes present a significant degree of phylogenetic conservatism that can be 

highly informative and should not be overlooked. However, future work is needed to 

expand this framework by including within-species variability to better quantify 

evolutionary lability at smaller scales in time and space (e.g., local adaptation and 

phenotypic plasticity). 
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Importantly, the novel multivariate perspective taken in the current thesis 

elucidates how trait correlations may present a strong phylogenetic component. These 

patterns suggest that traits may be integrated into different modules that respond to 

selective pressures, maintaining the underlying trait relationships. Then, some traits may 

be tightly hardwired and may evolve together responding to external conditions, which 

would constrain the potential values that individual traits can take. This pattern may be 

underlined by a causal relationship between traits, constraining each other’s values. In 

this case, evolutionary history takes a key role in shaping functional patterns, potentially 

producing deviations from the optimal relationship between individual traits and 

environmental conditions (keeping other trait values constant) that would not maximize 

performance but allow for survival and reproduction leading to successful strategies in 

a specific evolutionary context. In fact, the relationship between functional traits and 

environmental conditions has been shown to be rather weak (Anderegg 2022), while its 

relationship with phylogenies as shown in this thesis is generally strong. 

Evolutionary history has shown to be highly informative when predicting traits at 

the species level, in line with previous findings (Swenson 2014, Anderegg et al. 2021). 

Moreover, by finding patterns in data, one can make decisions on which of the potential 

predictors may work better to predict missing values in functional traits. In the present 

thesis I present an algorithm that automatises this process of selection and performs 

predictions using phylogenetic, environmental, and functional data available. This will 

allow to impute traits at different scales, helping to address the functional data scarcity 

problem (see chapter 3). In addition, this approach has great potential to elucidate how 

functional syndromes distribute and using the resulting, spatially explicit information to 

better assess climate change impacts on vegetation. 
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6.3 ECOLOGICAL CONSEQUENCES OF FUNCTIONAL 

STRATEGIES EVOLUTION  

Once we better understand functional traits evolutionary patterns, it is then 

worth to see how they translate into ecological consequences affecting species 

performance, their distributions, and their response to environmental conditions. In his 

thesis I report the relationship between functional traits and life history traits from an 

evolutionary explicit perspective (chapter 4). Then, I show an example on the scaling 

from evolutionary patterns in trait syndromes to ecological consequences by exploring 

the spatial relationship between physiological hydraulic risk of species assemblages and 

drought-induced mortality at the global scale (chapter 5). 

6.3.1 Functional strategies relationship with life history 

strategies 

In this thesis I report that functional traits and life history traits are evolutionarily 

related in a case study for Amazon trees. I show how depending on the traits and the 

aspect of life history, relationships can be evolutionarily constrained and/or 

evolutionarily labile. Results showed how species with acquisitive leaves tend to be 

evolutionarily constrained to present a lower investment per unit offspring and lower 

survival, while species with conservative leaves are evolutionarily constrained to present 

a higher investment per unit offspring and higher survival. I show how size and growth 

conform to another module which presented a higher evolutionary lability. These 

patterns indicate that species performance may be at least partially determined by their 

functional trait syndromes, which then influence life history evolution, conforming to 

ecological strategies which are partially phylogenetically conserved, suggesting some 

degree of evolutionary constrains. 
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Labile modules may be able to rapidly respond to environmental changes over 

evolutionary timescales, while conserved ones may be more strongly determining the 

ecological niche, having a higher impact on species distributional ranges and 

abundances. This is showed in this thesis by the phylogenetic conserved relationships 

between functional trait syndromes and environmental conditions characterizing 

species niches. In a first case, I showed how hydraulic trait syndromes are related to 

variables describing water availability (chapter 2). In a second case I showed how 

functional trait syndromes representing leaf economics and hydraulics are related to 

aridity (chapter 3), both in a phylogenetically conserved manner. In contrast to most of 

the functional traits studied in this thesis, life history traits such as maximum growth 

rate present a lower phylogenetic conservatism, being likely to be more responsive to 

environmental changes at short evolutionary timescales (i.e., within genera), having an 

impact on community structure by influencing, for instance, species size distributions 

(chapter 4). 

In this thesis I report how acquisitive species will occupy environmental spaces 

that meet their higher resource demand (e.g., higher water availability), rapidly 

producing a high quantity of relatively small seeds, related to a colonizer and fast 

behaviour referred as a pioneer strategy (Turner 2001). Conservative species will present 

a higher capability to tolerate stress and then, higher lifespan, with a delayed 

reproduction and a higher degree of investment per unit seed (chapter 4). According to 

these results, woody plant species are not expected to drastically change their functional 

strategies as quantified by leaf economic traits. Instead, they will respond to the 

environment by modulating those traits that present a higher lability, such as growth 

rates, which are disconnected from leaf economics. Then, under stressful conditions, 

species are expected to evolve to present a lower growth capability, which will have an 

impact on the maximum size that they can reach. When pushed towards its 

physiological limit, a stop in growth may happen as a consequence of a function-

environment mismatch. When stress is beyond the physiological limits and/or is 
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maintained through time, these species are prone to present higher levels of mortality 

as a result of a dysfunction of some physiological processes (Hammond 2020).  

Knowledge on functional strategies evolution can help elucidate how species will be 

able to respond to environmental forcing, especially when contextualized in a 

framework that relates physiology with performance. Scaling from the organ-specific 

physiological measures to effects at the whole-plant, population, community, and 

ecosystem-level has been shown to be a challenge (Mencuccini et al. 2019a). In this 

regard, understanding how functional traits are related and how they affect performance 

from an evolutionary perspective can pave the ground for future frameworks 

determining how function-environment mismatches are likely to affect species 

capability to maintain viable populations under different environmental scenarios and 

the ecological effects that may emerge. 

6.3.2 Effects of functional strategies on vegetation 

responses to climate 

Finally, in this thesis I attempt to develop a geographically explicit framework 

relating function-environment mismatches with species persistence. Here, I focus on a 

widely reported phenomena as it is global drought-induced mortality (DIM) in woody 

plants, specifically focusing in a well-known underlying physiological threshold related 

to hydraulic disfunction (Hammond 2020) (see chapter 5). The rationale behind this 

framework is the following: (1) drought-induced mortality has been mainly attributed 

to hydraulic failure, (2) we can characterize the risk to suffer hydraulic failure (hydraulic 

risk) of species by using functional traits, (3) functional traits determining hydraulic risk 

are phylogenetically conserved and related to species abiotic niche (see chapter 2) so we 

can successfully predict them for a high number of species, (4) we can calculate site-

specific hydraulic metrics describing species-assemblage hydraulic risk by 

geographically referencing species-level hydraulic traits, (5) we expect communities with 
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a higher number of species under hydraulic risk to present a higher DIM when drought 

and heat waves strike, as these species will be more vulnerable to a decrease in water 

availability and rapid adaptation in functional traits determining hydraulic risk is not 

expected. In this thesis, I show how this rationale is confirmed and that newly derived 

hydraulic risk metrics predict spatial patterns of DIM at the global scale. By doing so, I 

demonstrate how functional traits can be aggregated from the organ to the community 

level and its usage improve our capability to understand and predict climate change 

impacts on vegetation worldwide. 

Adaptive capability of crucial functional traits determining species responses to 

stress will strongly influence the fate of organisms, populations, and species under a 

changing world (Hammond 2020, McDowell et al. 2021). In this thesis, I have shown 

how woody plant functional strategies present a rather constrained evolution at the 

species level. I also showed how functional trait syndromes are related to a broad 

characterization of species niche, so plant function, and more concretely the hydraulic 

function, may be crucial in determining the environmental space that species can 

occupy, being under stabilizing selection, which leads to a predominant pattern of 

phylogenetic niche conservatism. If environmental conditions change, mismatches with 

hydraulic function could push some species outside the environmental space under 

which they can survive. This will have an impact on community- and ecosystem-level 

properties, such as a decrease in biodiversity which is expected to have negative impacts 

on ecosystem functioning and structure (Batllori et al. 2020, García-Valdés et al. 2020). 

Due to the dependence of human societies on living systems, it is of great urgency to 

further study how environmental changes will affect ecosystems, understanding the 

causal mechanisms and the causa ultima of their occurrence to better manage endangered 

ecosystems to ensure their persistence under future conditions. 
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6.4 CONCLUSIONS 

I conclude that: 

1. Hydraulic trait syndromes are phylogenetically conserved and related to 

water availability, pointing to a pattern of phylogenetic niche conservatism 

potentially underlined by stabilizing selection and environmental filtering. 

2. Hydraulic traits are integrated with leaf economics in a phylogenetically 

conserved way and in response to aridity, pointing that aridity levels may act 

as an important selective pressure promoting the integration of different 

plant functions at the macroevolutionary scale. 

3. Functional traits of Amazonian tree taxa describing resource uptake and 

process are integrated with life history traits describing growth, survival, and 

reproduction in a phylogenetically conserved way, while growth and size 

conform to an independent axis of variation which is more evolutionary 

labile. 

4. Species-assemblages hydraulic risk is positively related with drought induced 

mortality at the global scale, Improving its prediction. 

5. Implementing the proposed methodological framework can help elucidate 

the evolutionary basis of plant functional strategies and their ecological 

consequences at macroevolutionary and macroecological scales. 
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6.5 FUTURE DIRECTIONS 

This thesis is mainly focused on a species- and supra-specific levels, and hence, 

it is based on a macroevolutionary and macroecological perspective. The study of 

specific lineages can complement results obtained in this thesis by specifically testing 

whether patterns reported here are universal or whether some exceptions may exist 

under specific evolutionary and ecological contexts. I acknowledge that working at the 

species and supra-specific levels present some drawbacks and that within-species 

variability can certainly buffer some of the patterns shown under the current framework 

by including local adaptation and phenotypic plasticity under different environmental 

conditions. These two aspects of trait syndromes variability are crucial to inform the 

current macroecological and macroevolutionary perspective with some micro-

evolutionary insights at the local scale. Currently, there is not enough data available to 

include these aspects at global scale. However, meaningful examples already exist. For 

instance, recent studies showed how variability in vulnerability to embolism is mainly 

allocated at the interspecific level, being very low at the intra-specific level for the 

Quercus genera (Lobo et al. 2018, Skelton et al. 2019) and Pinus genera (Martínez-Vilalta 

et al. 2009, López et al. 2016). In fact, vulnerability to embolism has been shown to 

present a low genetic variability and phenotypic plasticity in Pinus pinaster, which points 

that this highly meaningful trait may be strongly canalized (Lamy et al. 2014). In 

contrast, specific leaf area and leaf size has been shown to present meaningful variability 

within species related to local adaptation to rainfall in the Mediterranean oak Quercus 

suber (Ramírez-Valiente et al. 2010). Then, further work on the characterization of 

intraspecific variability in trait suits will be of great interest to better understand 

vegetation responses to the environment, complementing the macroevolutionary 

perspective taken here. 

  



6.5   |   FUTURE DIRECTIONS  

151 

Focusing on a micro-evolutionary perspective at local scale will also allow to 

close the gap between physiology and genetics. This is a challenging research field, as 

the expression of physiology is expected to have a complex genetic basis. However, 

recent advances in eco-physiology and genetics pave the ground for such studies and 

efforts in this direction are becoming more common (Pereira and Des Marais 2020). 

The determination of the phenotypical basis (i.e., biological structures resulting from 

genetic expression) of some crucial functional traits related, for instance, to drought 

tolerance and avoidance strategies could be a first step in this direction. Then, once the 

phenotypical basis of a given functional trait is well-known, the genetic basis may be 

easier to determine. With this knowledge, ecosystem management will have the tools to 

understand species responses to the environment in a more holistic and integrated way, 

understanding the mechanisms (physiology) impacting performance, their causal 

explanation (biological structures and specific genes) and their evolutionary background 

(phylogenetic structure of these functional traits and their phenotypic and genetic basis). 
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8.1 CHAPTER 2 

8.1.1 Supplementary tables and figures 

 

Figure S2.1 Whittaker diagrams for all observations available (once matched with the phylogeny) and 

observations used for each one of the evolutionary correlations calculations (which has been restricted 

to those species with complete observations for the two traits and with genus-level phylogenetic 

information available). 
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Figure S2.2 Species-mean coordinates are plotted for each species coloured by their 

environmental principal components mean values. Thus, some coordinates fall into the sea 

(presumably species present in both the Palearctic and the Nearctic realms). However, note 

that environmental variables were calculated for each occurrence of each species separately 

and then averaged to the species level. 

 

Figure S2.3 PCA biplots showing the contributions of the 10 most important environmental variables 

to the first two principal components, PC1 and PC2 (a) and to PC1 and PC3 (b), colouring species as 

angiosperms (red circles) or gymnosperms (light blue triangles). Environmental variance explained for 

each principal component is shown in percentage. log(TS): temperature seasonality (log. transformed); 

pH: soil pH measured at 60 cm; VPDmax: maximum vapour pressure deficit; Tmax: mean of the 

monthly maximum temperatures; MAT: mean annual temperature; Clay: clay content in percentage 

measured at 60cm, log(Wet P): Precipitation of the wettest month (log. Transformed); AP: annual 

precipitation; AI: aridity index (which is actually a moisture index); sqrt(DQ P): dry quarter 

precipitation (square root transformed); Soil depth: absolute depth to bedrock, SWC: soil water 

content at 200cm, Windmax: mean of the monthly maximum wind velocity. 
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Figure S2.4 and S2.5 Phylogenetic reconstruction of ln-transformed hydraulic traits 

and environmental principal components, respectively. Families with more than one genus 

are shown in grey (gymnosperms) and black (angiosperms). 
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Figure S2.6 Correlated phylogenetic signals involving species-level hydraulic traits and 

environmental principal components using a species-level phylogeny. Environmental variables 

represent orthogonal PC axes and as such are not correlated. Lines represent significant evolutionary 

correlations. Red dashed lines represent negative correlations and green solid lines indicate positive 

correlations. Significant correlation coefficients are shown in italics and are proportional to the 

thickness of the line. Significant correlation coefficients between traits including environmental 

components and evolutionary affiliation as fixed effects are shown in bold (in the case of the 

relationships between environmental axes and traits, only evolutionary affiliation was considered as a 

fixed effect). P-values are also displayed for each coefficient. Pie charts represent phylogenetic signal 

(dark) and non-phylogenetic variance (light). Signif. codes: ‘***”: P < 0.001; “**”: P < 0.01; “*”: P < 

0.05 “.”: P < 0.1 “ ”: P > 0.1. 
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Figure S2.7 Gymnosperms observations for the relationships between HSM and Pmin with PC1 and the one between 

HSM and PC2. Species with HSM and Pmin data available are shown coloured by family. PC1 refers to 

the environmental principal component mainly explained by water availability, PC2 refers to the 

principal component mainly explained by decreasing energy input. 
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Table S2.1 Environmental variable and hydraulic traits nomenclature and number of whole dataset and major evolutionary affiliation 

observations. In the “Transformation” column, data transformations are specified when implemented. 

 

Variable Transformation Abbreviation Total 
observations 

Angiosperms Gymnosperms 

Potential at the 50% loss 
of conductivity 

Logarithmic of 
the absolute 
value 

ln(|P50|) 894 771 123 

Maximum stem-specific 
hydraulic conductivity 

Logarithmic ln(Ks) 1051 951 100 

Leaf-specific hydraulic 
conductivity 

Logarithmic ln(Kl) 845 769 76 

Huber value (sapwood 
area:leaf area ratio) 

Logarithmic ln(Hv) 1298 1223 75 

Minimum water potential 
recorded 

Logarithmic of 
the absolute 
value 

ln(|Pmin|) 553 505 48 

Hydraulic Safety Margin 
(ψmin-P50) 

 
HSM 336 294 42 

Precipitation warmest 
quarter 

Square root sqrt(WQ P) 1937 1808 129 

Precipitation wettest 
month 

Logarithmic ln(Wet P) 1937 1808 129 

Mean of the monthly 
maximum temperature 

 Tmax 1937 1808 129 

Temperature seasonality Logarithmic ln(TS) 1937 1808 129 

Annual precipitation  AP 1937 1808 129 

Precipitation driest 
quarter 

Square root sqrt(DQ P) 1937 1808 129 

Mean annual temperature  MAT 1937 1808 129 

Aridity index (which is 
actually a moisture index) 

 AI 1937 1808 129 

Solar radiation  srad 1937 1808 129 

Mean of the monthly 
maximum wind velocity 

 windmax 1937 1808 129 

Maximum vapour 
pressure deficit 

 VPDmax 1937 1808 129 

Absolute depth to bed 
rock 

 Soil depth 1937 1808 129 

pH measured at 60cm  pH 1937 1808 129 

Clay content in 
percentage measured at 
60cm 

 Clay 1937 1808 129 

Sand content in 
percentage measured at 
60cm 

 Sand 1937 1808 129 

Soil water content at 
200cm 

 SWC 1937 1808 129 
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Table S2.2 Contribution of environmental variables to the three environmental principal components. The highest contribution is 

highlighted for each variable. Sqrt(WQ P): Precipitation warmest quarter (square root transformed); log(Wet P): Precipitation wettest 
month (log. Transformed); Tmax: Mean of the monthly maximum temperature; log(TS): Temperature seasonality (log. Transformed); 
AP: Annual precipitation; sqrt(DQ P): Precipitation driest quarter (square root Transformed); MAT: Mean annual temperature; AI: 
Aridity index (which is actually a moisture index); srad: Solar radiation; Windmax: Mean of the monthly maximum wind velocity; 
VPDmax: Maximum vapour pressure deficit; Soil depth: Absolute depth to bedrock; pH: pH measured at 60cm; Clay: Clay content in 
percentage measured at 60cm; Sand: Sand content in percentage measured at 60cm; SWC: Soil water content at 200cm. 

 

 
Variable 

Contribution Correlation 

PC1 PC2 PC3 PC1 PC2 PC3 

sqrt(WQ P) 7.200 2.273 0.125 0.766 0.269 0.042 

log(Wet P) 10.192 0.121 0.031 0.912 0.062 -0.021 

Tmax 5.261 16.947 0.022 0.655 -0.734 -0.018 

ln(TS) 7.906 2.624 2.283 -0.803 0.289 0.181 

AP 11.069 0.502 0.588 0.950 0.126 -0.092 

sqrt(DQ P) 6.551 5.256 2.105 0.731 0.409 -0.174 

MAT 6.749 12.733 0.041 0.742 -0.636 -0.024 

AI 8.932 4.820 0.173 0.853 0.391 -0.050 

srad 0.077 20.291 11.520 -0.079 -0.803 -0.406 

Windmax 5.767 3.142 17.055 -0.686 0.316 -0.495 

VPDmax 1.986 19.722 0.920 -0.402 -0.792 0.115 

Soil Depth 0.942 1.405 48.430 0.277 -0.211 0.833 

pH 8.843 2.569 0.873 -0.849 -0.286 0.112 

Clay 6.636 6.592 2.668 0.736 -0.458 -0.196 

Sand 4.496 0.825 10.945 -0.606 -0.162 -0.396 

SWC 7.393 0.178 2.220 0.776 0.075 -0.178 

 

  



   
 

197 

Table S2.3 Reference table for all the models reported in the main text. All models were implemented with and without accounting 

for the phylogeny. In the fixed structure column, variables to the right of the “~” symbol are response variables, those to the left are 
predictors. Abbreviations: “env”(1): individual environmental principal component; env(3): three main environmental principal 
components; trait: individual hydraulic trait; Affiliation: major evolutionary affiliation (angiosperm or gymnosperm), “1” refer to the 
intercept. 

 

 

 

Table S2.4 Non-phylogenetic model’s variance partition. Mean non-phylogenetic inter-generic (γ) and non-phylogenetic intra-

generic (ρ) variance in non-phylogenetic models without fixed effects. Note that phylogenetic variance (λ) is 0, as the phylogenetic effect 
was not considered. 

 

variable Phylogenetic (λ) Inter-generic (γ)  Intra-generic (ρ) 

HSM 0 0.490 0.510 

Ln(Hv) 0 0.514 0.486 

Ln(Kl) 0 0.280 0.720 

L(Ks) 0 0.459 0.541 

Ln(|Pmin|) 0 0.621 0.379 

Ln(|P50|) 0 0.636 0.364 

PC1 0 0.787 0.213 

PC2 0 0.483 0.517 

PC3 0 0.641 0.359 

 

  

Fixed structure Description 
Phylogeny 
used 

Number of response variables 

env(1) ~ 1  
Phylogenetic signal 

Genus-level Uni-response 
trait ~ 1 Genus-level Uni-response 
trait ~ env(1)  

 
Uni-response environment models 

 Genus-level Uni-response 
trait ~ env(1) + Affiliation  Genus-level Uni-response 
trait ~ env(1) * Affiliation  Genus-level Uni-response 
 trait , env(1) ~ 1 

 
 
 
 
Evolutionary correlations  

 Genus-level Bi-response 
  trait , env(1) ~ 1 + Affiliation  Genus-level Bi-response 
 trait ,  trait ~ 1  Genus-level Bi-response 
trait ,  trait ~ 1 + Affiliation  Genus-level Bi-response 
 trait ,  trait ~ 1 + env(3)  Genus-level Bi-response 
 trait ,  trait ~ 1 + env(3) + Affiliation  Genus-level Bi-response 
 trait ,  trait ~ 1 + env(3) *  Affiliation  Genus-level Bi-response 
env(1) ~ 1  

Phylogenetic signal 
Species-level Uni-response 

trait ~ 1 Species-level Uni-response 

  trait , env(1) ~ -1 

 
 
 
Evolutionary correlations 

 Species-
level 

Bi-response 

  trait , env(1) ~ -1 + Affiliation 
 Species-
level 

Bi-response 

trait ,  trait ~ -1 
 Species-
level 

Bi-response 

trait ,  trait ~ -1 + env(3) *  Affiliation 
 Species-
level 

Bi-response 
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Table S2.5 Uni-response models description. DICs and explained variances for phylogenetic and non-phylogenetic uni-response 

models. The fixed formula is shown in each case. DICs for the phylogenetic models are shown. “NP” refer to non-phylogenetic models 
(i.e., only including genus contingency as random effect) explained variances. R2

c refer to the conditional and R2
m refers to the marginal 

explained variances. Abbreviations: Ks: Xylem conductivity; P50: xylem resistance to embolism; Hv: sapwood allocation relative to leaf 
area; Pmin: drought exposure, HSM: hydraulic safety margin; Kl: and sufficiency; PC1: water availability; PC2: energy input and PC3: soil 
depth; Affiliation: evolutionary affiliation (angiosperm or gymnosperm). 

 

Fixed effects formula DIC R2
m R2

c NP R2
m NP R2

c 

HSM ~ 1 1181 0 0.612 0 0.49 

HSM ~ PC1 * Affiliation 1133 0.253 0.657 0.301 0.554 

HSM ~ PC1 + Affiliation 1138 0.211 0.647 0.268 0.535 

HSM ~ PC1 1139 0.065 0.625 0.026 0.519 

HSM ~ PC2 * Affiliation 1133 0.246 0.623 0.28 0.509 

HSM ~ PC2 + Affiliation 1142 0.184 0.658 0.237 0.54 

HSM ~ PC2 1143 0.035 0.619 0.031 0.495 

HSM ~ PC3 * Affiliation 1146 0.172 0.624 0.23 0.542 

HSM ~ PC3 + Affiliation 1147 0.176 0.634 0.235 0.541 

HSM ~ PC3 1150 0.006 0.618 0.02 0.528 

ln(Hv) ~ 1 3147 0 0.641 0 0.514 

ln(Hv) ~ PC1 + Affiliation 3013 0.166 0.549 0.187 0.479 

ln(Hv) ~ PC1 3013 0.155 0.536 0.184 0.477 

ln(Hv) ~ PC1 * Affiliation 3014 0.168 0.551 0.188 0.478 

ln(Hv) ~ PC2 * Affiliation 3058 0.028 0.662 0.014 0.51 

ln(Hv) ~ PC2 3060 0.002 0.646 0.001 0.509 

ln(Hv) ~ PC2 + Affiliation 3060 0.028 0.657 0.013 0.509 

ln(Hv) ~ PC3 + Affiliation 3066 0.045 0.615 0.04 0.477 

ln(Hv) ~ PC3 3066 0.022 0.601 0.032 0.48 

ln(Hv) ~ PC3 * Affiliation 3068 0.045 0.614 0.043 0.475 

ln(Kl)~ 1 2348 0 0.47 0 0.28 

ln(Kl)~ PC1 * Affiliation 2250 0.067 0.482 0.077 0.299 

ln(Kl)~ PC1 2252 0.002 0.447 0.002 0.282 

ln(Kl)~ PC1 + Affiliation 2254 0.069 0.463 0.077 0.296 

ln(Kl)~ PC2 2250 0.016 0.41 0.033 0.254 

ln(Kl)~ PC2 * Affiliation 2251 0.089 0.439 0.093 0.283 

ln(Kl)~ PC2 + Affiliation 2251 0.084 0.434 0.088 0.276 

ln(Kl)~ PC3 2250 0.002 0.454 0.008 0.297 

ln(Kl)~ PC3 + Affiliation 2252 0.072 0.462 0.077 0.304 

ln(Kl)~ PC3 * Affiliation 2253 0.075 0.47 0.077 0.304 

ln(Ks)~ 1 2795 0 0.608 0 0.459 

ln(Ks)~ ln(Hv) 2079 0.116 0.614 0.181 0.494 

ln(Ks)~ ln(Hv) * Affiliation 2081 0.166 0.64 0.23 0.506 

ln(Ks)~ ln(|P50|) 1581 0.041 0.634 0.074 0.499 

ln(Ks)~ ln(|P50|) * Affiliation 1583 0.111 0.666 0.118 0.51 
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ln(Ks)~ PC1 2670 0.028 0.603 0.042 0.475 

ln(Ks)~ PC1 + Affiliation 2670 0.084 0.631 0.089 0.479 

ln(Ks)~ PC1 * Affiliation 2670 0.091 0.635 0.09 0.479 

ln(Ks)~ PC2 2694 0.003 0.602 0.01 0.447 

ln(Ks)~ PC2 + Affiliation 2694 0.057 0.623 0.055 0.453 

ln(Ks)~ PC2 * Affiliation 2696 0.058 0.625 0.056 0.456 

ln(Ks)~ PC3 2685 0.01 0.59 0.028 0.462 

ln(Ks)~ PC3 + Affiliation 2685 0.063 0.618 0.069 0.462 

ln(Ks)~ PC3 * Affiliation 2687 0.062 0.617 0.07 0.463 

ln(|Pmin|) ~ 1 828 0 0.812 0 0.621 

ln(|Pmin|) ~ ln(|P50|) 431 0.279 0.738 0.299 0.71 

ln(|Pmin|) ~ ln(|P50|) * Affiliation 432 0.29 0.738 0.314 0.703 

ln(|Pmin|) ~ PC1 * Affiliation 688 0.228 0.788 0.303 0.686 

ln(|Pmin|) ~ PC1 692 0.211 0.763 0.302 0.679 

ln(|Pmin|) ~ PC1 + Affiliation 692 0.229 0.781 0.302 0.68 

ln(|Pmin|) ~ PC2 * Affiliation 724 0.099 0.854 0.107 0.692 

ln(|Pmin|) ~ PC2 725 0.055 0.843 0.094 0.691 

ln(|Pmin|) ~ PC2 + Affiliation 725 0.099 0.854 0.104 0.687 

ln(|Pmin|) ~ PC3 + Affiliation 793 0.07 0.841 0.047 0.649 

ln(|Pmin|) ~ PC3 793 0.016 0.827 0.036 0.644 

ln(|Pmin|) ~ PC3 * Affiliation 795 0.072 0.841 0.051 0.65 

ln(|P50|) ~ 1 1426 0 0.71 0 0.636 

ln(|P50|) ~ PC1 * Affiliation 1396 0.193 0.635 0.23 0.605 

ln(|P50|) ~ PC1 1397 0.069 0.617 0.097 0.588 

ln(|P50|) ~ PC1 + Affiliation 1397 0.194 0.636 0.231 0.606 

ln(|P50|) ~ PC2 * Affiliation 1402 0.116 0.725 0.148 0.635 

ln(|P50|) ~ PC2 + Affiliation 1403 0.108 0.719 0.141 0.631 

ln(|P50|) ~ PC2 1403 0.001 0.694 0.002 0.623 

ln(|P50|) ~ PC3 * Affiliation 1394 0.107 0.728 0.141 0.637 

ln(|P50|) ~ PC3 + Affiliation 1397 0.105 0.725 0.144 0.636 

ln(|P50|) ~ PC3 1397 0.003 0.699 0.002 0.628 

PC1 ~ 1 6985 0 0.891 0 0.787 

PC2 ~ 1 6723 0 0.697 0 0.483 

PC3 ~ 1 4707 0 0.85 0 0.641 
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Table S2.6 Mean of the evolutionary correlation (EC), credible interval (lower and upper HPD) and p-value reported by bi-response 

models. The fixed formula is shown in each case. Models are ordered by DIC values (from lower to higher) for each set of nested 
models (same response variables). Statistically significant evolutionary correlations are highlighted in bold and marginally significant in 
italics. Abbreviations: Ks: Xylem conductivity; P50: xylem resistance to embolism; Hv: sapwood allocation relative to leaf area; Pmin: 
drought exposure; PC1: water availability; PC2: energy input and PC3: soil depth; Affiliation: evolutionary affiliation (angiosperm or 
gymnosperm). 

 

Variable 1 Variable 2 Fixed formula EC Lower HPD Upper HPD p-value DIC 

ln(Hv) ln(|Pmin|) (ln(Hv), ln(|Pmin|)) ~ 1 + (PC1 + PC2 + PC3) * :Affiliation -0.094 -0.681 0.436 0.752 1403 

ln(Hv) ln(|Pmin|) (ln(Hv), ln(|Pmin|)) ~ 1 + PC1 + PC2 + PC3 -0.100 -0.636 0.486 0.736 1403 

ln(Hv) ln(|Pmin|) (ln(Hv), ln(|Pmin|)) ~ 1 + Affiliation + PC1 + PC2 + PC3 -0.117 -0.624 0.462 0.664 1404 

ln(Hv) ln(|Pmin|) (ln(Hv), ln(|Pmin|)) ~ 1 +  Affiliation 0.222 -0.405 0.801 0.494 1571 

ln(Hv) ln(|Pmin|) (ln(Hv), ln(|Pmin|)) ~ 1 0.217 -0.405 0.798 0.509 1571 

ln(Hv) PC1 (ln(Hv), PC1) ~ 1 -0.796 -0.913 -0.662 0.000 7475 

ln(Hv) PC1 (ln(Hv), PC1) ~ 1 + Affiliation -0.792 -0.910 -0.657 0.000 7475 

ln(Hv) PC2 (ln(Hv), PC2) ~ 1 + Affiliation 0.145 -0.160 0.462 0.397 7296 

ln(Hv) PC2 (ln(Hv), PC2) ~ 1 0.156 -0.141 0.473 0.363 7296 

ln(Hv) PC3 (ln(Hv), PC3) ~ 1 + Affiliation -0.558 -0.747 -0.363 0.000 5971 

ln(Hv) PC3 (ln(Hv), PC3) ~ 1 -0.565 -0.737 -0.367 0.000 5972 

ln(Ks) ln(Hv)  (ln(Ks)_ln(Hv)) ~ 1 + PC1 + PC2 + PC3 -0.423 -0.805 -0.016 0.077 3843 

ln(Ks) ln(Hv)  (ln(Ks)_ln(Hv)) ~ 1 + Affiliation + PC1 + PC2 + PC3 -0.423 -0.795 -0.005 0.079 3843 

ln(Ks) ln(Hv) cbind(ln_(Ks)_ln(Hv)) ~ 1 + (PC1 + PC2 + PC3) * Affiliation -0.421 -0.827 -0.012 0.085 3853 

ln(Ks) ln(Hv) (ln(Ks), ln(Hv)) ~ 1 -0.600 -0.868 -0.271 0.008 4058 

ln(Ks) ln(Hv) (ln(Ks), ln(Hv)) ~ 1 + Affiliation -0.588 -0.879 -0.247 0.010 4059 

ln(Ks) ln(|Pmin|) (ln(Ks), ln(|Pmin|)) ~ 1 + (PC1 + PC2 + PC3) * Affiliation 0.019 -0.538 0.566 0.934 1571 

ln(Ks) ln(|Pmin|) (ln(Ks), ln(|Pmin|)) ~ 1 + Affiliation + PC1 + PC2 + PC3 -0.013 -0.535 0.569 0.966 1572 

ln(Ks) ln(|Pmin|) (ln(Ks), ln(|Pmin|)) ~ 1 + PC1 + PC2 + PC3 0.008 -0.512 0.555 0.970 1572 

ln(Ks) ln(|Pmin|) (ln(Ks), ln(|Pmin|)) ~ 1 -0.080 -0.683 0.487 0.785 1768 

ln(Ks) ln(|Pmin|) (ln(Ks), ln(|Pmin|)) ~ 1 + Affiliation -0.066 -0.675 0.507 0.823 1768 

ln(Ks) ln(|P50|) (ln(Ks), ln(|P50|)) ~ 1 + Affiliation + PC1 + PC2 + PC3 -0.046 -0.517 0.399 0.851 2489 

ln(Ks) ln(|P50|) (ln(Ks), ln(|P50|)) ~ 1 + PC1 + PC2 + PC3 -0.098 -0.510 0.324 0.648 2489 

ln(Ks) ln(|P50|) (ln(Ks), ln(|P50|)) ~ 1 + (PC1 + PC2 + PC3) * Affiliation -0.019 -0.475 0.408 0.917 2495 

ln(Ks) ln(|P50|) (ln(Ks), ln(|P50|)) ~ 1 -0.317 -0.665 0.055 0.114 2596 

ln(Ks) ln(|P50|) (ln(Ks), ln(|P50|)) ~ 1 + Affiliation -0.274 -0.639 0.165 0.211 2596 

ln(Ks) PC1 (ln(Ks), PC1) ~ 1 + Affiliation 0.339 0.093 0.578 0.010 6343 

ln(Ks) PC1 (ln(Ks), PC1) ~ 1 0.351 0.110 0.594 0.009 6343 

ln(Ks) PC2 (ln(Ks), PC2) ~ 1 + Affiliation -0.275 -0.570 0.003 0.069 6315 

ln(Ks) PC2 (ln(Ks), PC2) ~ 1 -0.292 -0.576 -0.007 0.048 6315 

ln(Ks) PC3 (ln(Ks), PC3) ~ 1 + Affiliation 0.412 0.144 0.683 0.008 5216 

ln(Ks) PC3 (ln(Ks), PC3) ~ 1 0.426 0.185 0.706 0.005 5216 

ln(|Pmin|) PC1 (ln(|Pmin|), PC1) ~ 1 + Affiliation -0.776 -0.908 -0.624 0.000 2636 

ln(|Pmin|) PC1 (ln(|Pmin|), PC1) ~ 1 -0.784 -0.907 -0.620 0.000 2636 
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ln(|Pmin|) PC2 (ln(|Pmin|), PC2) ~ 1 -0.232 -0.566 0.129 0.214 2744 

ln(|Pmin|) PC2 (ln(|Pmin|), PC2) ~ 1 + Affiliation -0.249 -0.594 0.124 0.195 2745 

ln(|Pmin|) PC3 (ln(|Pmin|), PC3) ~ 1 + Affiliation 0.115 -0.236 0.452 0.539 1916 

ln(|Pmin|) PC3 (ln(|Pmin|), PC3) ~ 1 0.126 -0.208 0.480 0.471 1917 

ln(|P50|) ln(Hv) (ln(|P50|), ln(Hv)) ~ 1 + PC1 + PC2 + PC3 0.060 -0.423 0.507 0.818 1834 

ln(|P50|) ln(Hv) (ln(|P50|), ln(Hv)) ~ 1 + Affiliation + PC1 + PC2 + PC3 0.061 -0.413 0.511 0.779 1835 

ln(|P50|) ln(Hv) (ln(|P50|), ln(Hv)) ~ 1 + (PC1 + PC2 + PC3) * Affiliation 0.053 -0.404 0.531 0.831 1843 

ln(|P50|) ln(Hv) (ln(|P50|), ln(Hv)) ~ 1 0.414 0.052 0.790 0.070 1927 

ln(|P50|) ln(Hv) (ln(|P50|), ln(Hv)) ~ 1 + Affiliation 0.385 -0.043 0.777 0.121 1927 

ln(|P50|) ln(|Pmin|) (ln(|P50|), ln(|Pmin|)) ~ 1 + (PC1 + PC2 + PC3) * Affiliation 0.571 0.213 0.860 0.015 745 

ln(|P50|) ln(|Pmin|) (ln(|P50|), ln(|Pmin|)) ~ 1 + Affiliation + PC1 + PC2 + PC3 0.552 0.168 0.863 0.030 751 

ln(|P50|) ln(|Pmin|) (ln(|P50|), ln(|Pmin|)) ~ 1 + PC1 + PC2 + PC3 0.556 0.168 0.833 0.015 751 

ln(|P50|) ln(|Pmin|) (ln(|P50|), ln(|Pmin|)) ~ 1 + Affiliation 0.702 0.428 0.917 0.000 834 

ln(|P50|) ln(|Pmin|) (ln(|P50|), ln(|Pmin|)) ~ 1 0.683 0.386 0.914 0.006 834 

ln(|P50|) PC1 (ln(|P50|), PC1) ~ 1 + Affiliation -0.725 -0.885 -0.537 0.000 4476 

ln(|P50|) PC1 (ln(|P50|), PC1) ~ 1 -0.714 -0.875 -0.524 0.000 4477 

ln(|P50|) PC2 (ln(|P50|), PC2) ~ 1 0.050 -0.316 0.460 0.803 4487 

ln(|P50|) PC2 (ln(|P50|), PC2) ~ 1 + Affiliation 0.015 -0.344 0.400 0.978 4488 

ln(|P50|) PC3 (ln(|P50|), PC3) ~ 1 + Affiliation -0.110 -0.456 0.208 0.570 3677 

ln(|P50|) PC3 (ln(|P50|), PC3) ~ 1 -0.097 -0.426 0.229 0.573 3678 
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8.1.2 Supplementary methods 

8.1.2.1 Phylogenetic mixed model description 

Phylogenetic mixed models are commonly used in quantitative genetics (the so called “animal” model), 

being useful for comparative analyses as they allow to incorporate a range of variance structures for 

the random effects, including shared ancestry through a phylogeny (Housworth et al. 2004).  The 

general model structure is defined as follows: 

𝑦 =  𝜇 +  𝛽𝑥 + 𝑝 + 𝑔 + 𝑒                        (1) 

Were μ is the grand mean, interpreted as the root ancestor state, β is the slope for the covariate x 

(fixed effect, in green), p and g are the variability caused by the genus-level phylogeny and the genus 

contingency effects (random effects, in red), and e is the residual error (Housworth et al. 2004; 

Villemereuil & Nakagawa 2014). Both fixed (β) and random (r, which is p + g) effects and the residuals 

(e) are expected to come from a multivariate normal distribution as it follows: 

[
𝛽
𝑟
𝑒

] ~  𝑁 ([
𝛽0

0
0

] , [
𝐵 0 0
0
0

𝐺
0

0
𝑅

])      (2) 

Where β is the fixed effect parameter to estimate, β0 is the prior means for the fixed effects with prior 

(co)variance matrix B, and G and R are the expected (co)variances of the random effects and the 

residuals respectively (Hadfield 2010a, Hadfield and Nakagawa 2010). G and R are unknown, and 

must be estimated from the data by assuming they are structured in a way that can be parametrized by 

few parameters, as it has been exemplified below for the G case: 

𝐺 =  [
𝑉𝐺1

⊗ 𝐴𝐺1
0

0 𝑉𝐺2
⊗  𝐴𝐺2

]      (3)  

Were the (co)variance matrices (V) are matrices with one parameter to be estimated per response 

variable and the structured matrices (A) refer to the phylogenetic structure (AG1) and genus 

contingency (AG2). The Kronecker product (⊗) allows for possible dependence between random 

effects (Hadfield 2010a, Hadfield and Nakagawa 2010). 

In multi-response models, the (co)variance matrix of the previous equation is reformulated including 

the covariance estimates in the off-diagonal and the respective variances in the diagonal as follows: 
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  𝑉𝐺1 =  [
𝜎𝑢1

2 𝜎𝑢1,𝑢2

𝜎𝑢2,𝑢1
𝜎𝑢2

2 ]                (4)  

Where 𝜎2
u1 is the variance for the first response variable (V1) and σ2

u2 the variance for the second 

response variable (V2), while σu1,u2 and σu2,u1 are the same covariance estimate (C). 

8.1.2.2 Phylogenetic indexes calculation 

The phylogenetic signal or phylogenetic heritability it is calculated as follows (Villemereuil & 

Nakagawa 2014): 

𝜆 =  
𝜎𝑝

2

𝜎𝑝
2+ 𝜎𝑔

2+ 𝜎𝑒
2                (5) 

Where 𝜎𝑃
2 is the variance of the phylogenetic effect (VG1), 𝜎𝑔

2 is the variance of the cross-genus effect 

(VG2)  and  𝜎𝑒
2 is the residual error (Villemereuil & Nakagawa 2014). Cross-genera variance (i.e. non-

phylogenetic variation among genera or genus lability) has been calculated as follows: 

𝛾 =  
𝜎𝑔

2

𝜎𝑝
2+ 𝜎𝑔

2+ 𝜎𝑒
2               (6) 

And finally, intra-genus variability including measurement error has been calculated as follows: 

𝜌 =  
𝜎𝑒

2

𝜎𝑝
2+ 𝜎𝑔

2+ 𝜎𝑒
2               (7) 

Note also that γ +  ρ + λ = 1 (Housworth et al. 2004). The three indexes were calculated for the whole 

Markov chain random effects and residual samples (once burned and thinned), so the output is a 

statistical distribution from which the mean and 95% credible intervals can be calculated.  
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8.1.2.3 Phylogenetic covariation calculation 

From the phylogenetic variances and covariance in equation 4, the evolutionary correlation between 

response variables can be calculated as follows (Villemereuil 2012): 

𝑟𝑒𝑣 =  
𝜎𝑢2,𝑢1

√𝜎𝑢1
2 · 𝜎𝑢2

2
         (8)                                        

8.1.2.4 Model specifications 

MCMCglmm implements a Bayesian approach, estimating the posterior distribution 

of parameters, from which 95% credible intervals can be obtained (Hadfield 2010a). I set 

independent normal prior distributions for fixed effects and non-informative Inverse-

Gamma prior distributions for random effects and residual variances (Villemereuil & 

Nakagawa 2014). Less informative expanded priors were also used, and highly similar 

results were obtained. 

Uni-response models random effects variance priors were set as V = 1, nu = 0.002. 

For bi-response models, the random effects variances priors were set as V = diag(2)/2, nu 

= 2. To achieve convergence, each model was run for 8,000,000 iterations with a 1,000,000 

burn-in and a thinning interval of 4,000, reaching an effective sample size between 1,000 

and 2,000 in all estimated parameters. When models did not converge, I increased the 

number of iterations until convergence were achieved. Thinning intervals and the final 

number of iterations were progressively increased until autocorrelations between samples 

were found to be <0.1. Convergence of all models was assessed by plots of chain mixing 

and by the Heidenberg stationary test as a diagnostic. All reported models had a low degree 

of autocorrelation between iterations and passed the convergence diagnostic, both for 

fixed and random effects (i.e., the sampled chains were stationary). 
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8.1.3 Analyses using a species-level phylogeny 

Species-level phylogeny was obtained by pruning the phylogenetic tree reported by Smith & Brown 

(2018) available in the R package V.PhyloMaker (Jin and Qian 2019) by using the ape R package (Paradis 

and Schliep 2019) only keeping species with hydraulic data available in each case, obtaining the same 

number of observations compared to the genus-level analyses. Some bi-response models implemented 

using the genus-level phylogeny were also conducted using the species-level phylogeny. As I had only 

one value per specie, no extra random effect was included, so variance partition was reduced to 

phylogenetic signal calculation.  

Table S2.7 Phylogenetic signal results Variance partitioning for the six hydraulic traits and three environmental principal 

components related to water availability (PC1), energy input (PC2) and soil depth (PC3). Legend: N: number of species used in each 
case (for which both phylogenetic and hydraulic data were available), phylogenetic variance (phylogenetic signal, λ) and non-phylogenetic 
intraspecific variance plus measurement error (ρ). Mean and lower and upper 95% credible intervals (HPD) are shown for each 
component. 

 

variable N λ λ Lower HPD λ Upper HPD ρ ρ Lower HPD ρ Upper HPD 

HSM 195 0.456 0.228 0.680 0.544 0.320 0.772 

Ln(Hv) 842 0.654 0.539 0.774 0.346 0.226 0.461 

Ln(Kl) 616 0.610 0.456 0.753 0.390 0.247 0.544 

Ln(Ks) 763 0.681 0.569 0.792 0.319 0.208 0.431 

Ln(|Pmin|) 358 0.876 0.799 0.940 0.124 0.060 0.201 

ln(|P50|) 693 0.709 0.594 0.817 0.291 0.183 0.406 

PC1 1329 0.963 0.951 0.975 0.037 0.025 0.049 

PC2 1329 0.845 0.796 0.889 0.155 0.111 0.204 

PC3 1329 0.907 0.882 0.934 0.093 0.066 0.118 
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Table S2.8 Evolutionary correlations results. Mean of the evolutionary correlation (EC), credible interval (lower and upper HPD) 

and p-value reported by bi-response models. In the fixed structure column, variables to the right of the “~” symbol are response 
variables, those to the left are predictors. Abbreviations: “env” (1): individual environmental principal component; env(3): three main 
environmental principal components; trait: individual hydraulic trait; Affiliation: major evolutionary affiliation (angiosperm or 
gymnosperm).  

Fixed structure Variable 1 Variable 2 EC Lower HPD Upper HPD p-value 

trait, trait ~ 1 + env(3) *  Affiliation5 ln(Hv) ln(|Pmin|) 0.134 -0.365 0.695 0.641 

trait, trait ~ 1 ln(Hv) ln(|Pmin|) 0.607 0.261 0.915 0.014 

trait, env(1) ~ 1 log(Hv) PC1 -0.807 -0.908 -0.699 0.000 

trait, env(1) ~ 1 + Affiliation log(Hv) PC1 -0.816 -0.922 -0.714 0.000 

trait, env(1) ~ 1 log(Hv) PC2 -0.090 -0.334 0.191 0.495 

trait, env(1) ~ 1 + Affiliation log(Hv) PC2 -0.092 -0.376 0.164 0.501 

trait, env(1) ~ 1 + Affiliation ln(Hv) PC3 -0.492 -0.689 -0.304 0.000 

trait, env(1) ~ 1 ln(Hv) PC3 -0.493 -0.691 -0.304 0.000 

trait, trait ~ 1 + env(3) *  Affiliation ln(Ks) ln(Hv) -0.630 -0.851 -0.359 0.000 

trait, trait ~ 1 ln(Ks) ln(Hv) -0.589 -0.815 -0.348 0.000 

trait, trait ~ -1 + env(3) *  Affiliation ln(Ks) ln(|Pmin|) -0.217 -0.663 0.226 0.349 

trait, trait ~ 1 ln(Ks) ln(|Pmin|) -0.366 -0.703 0.012 0.090 

trait, trait ~ -1 + env(3) *  Affiliation ln(Ks) ln(|P50|) -0.236 -0.579 0.172 0.223 

trait, trait ~ 1 ln(Ks) ln(|P50|) -0.420 -0.674 -0.104 0.015 

trait, env(1) ~ 1 ln(Ks) PC1 0.225 0.000 0.421 0.043 

trait, env(1) ~ 1 + Affiliation ln(Ks) PC1 0.225 0.006 0.452 0.067 

trait, env(1) ~ 1 +  Affiliation ln(Ks) PC2 -0.185 -0.434 0.065 0.160 

trait, env(1) ~ 1 ln(Ks) PC2 -0.196 -0.439 0.092 0.155 

trait, env(1) ~ 1 +  Affiliation ln(Ks) PC3 0.106 -0.132 0.350 0.395 

trait, env(1) ~ 1 ln(Ks) PC3 0.105 -0.147 0.338 0.423 

trait, env(1) ~ 1 +  Affiliation ln(|Pmin|) PC1 -0.734 -0.861 -0.599 0.000 

trait, env(1) ~ 1 ln(|Pmin|) PC1 -0.743 -0.868 -0.590 0.000 

trait, env(1) ~ 1 +  Affiliation ln(|Pmin|) PC2 -0.266 -0.573 0.041 0.127 

trait, env(1) ~ 1 ln(|Pmin|) PC2 -0.254 -0.567 0.040 0.118 

trait, env(1) ~ 1 +  Affiliation ln(|Pmin|) PC3 0.215 -0.032 0.462 0.101 

trait, env(1) ~ 1 ln(|Pmin|) PC3 0.223 -0.032 0.453 0.097 

trait, trait ~ -1 + env *  Affiliation log(|P50|) ln(Hv) 0.211 -0.256 0.663 0.429 

trait, trait ~ 1 ln(|P50|) ln(Hv) 0.622 0.370 0.839 0.001 

trait, trait ~ -1 + env(3) *  Affiliation ln(|P50|) ln(|Pmin|) 0.773 0.582 0.926 0.000 

trait, env(1) ~ 1 ln(|P50|) ln(|Pmin|) 0.794 0.636 0.923 0.000 

trait, env(1) ~ 1 +  Affiliation ln(|P50|) PC1 -0.466 -0.658 -0.254 0.000 

trait, env(1) ~ 1 ln(|P50|) PC1 -0.465 -0.661 -0.257 0.000 

trait, env(1) ~ 1 +  Affiliation ln(|P50|) PC2 0.022 -0.250 0.305 0.902 

trait, env(1) ~ 1 ln(|P50|) PC2 0.032 -0.225 0.343 0.837 

trait, env(1) ~ 1 +  Affiliation ln(|P50|) PC3 -0.147 -0.417 0.102 0.262 

trait, env(1) ~ 1 ln(|P50|) PC3 -0.144 -0.390 0.118 0.279 
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8.1.4 Evolutionary correlations reported by genus-level 

phylogenetic models using observations available for 

the species-level phylogeny and evolutionary 

correlations reported by species-level phylogeny 

pruned at the genus level.  

For bivariate models including two traits as response variable, only models without 

fixed effects and models including the three environmental components and its interaction 

with major evolutionary affiliation (angiosperm or gymnosperm) were implemented. 

Table S2.9 Significant evolutionary correlations (i.e., when the credible interval for the estimated correlation do not include zero) 

reported by models using a genus-level phylogeny including only observations available for the species-level phylogenetic analyses to 
check for effects of the different species coverage between phylogenies. Mean of the evolutionary correlation (EC), credible interval 
(lower and upper HPD) and p-value reported by bi-response models. In the fixed structure column, variables to the right of the “~” 
symbol are response variables, those to the left are predictors. Abbreviations: “env”(1): individual environmental principal component; 
env(3): three main environmental principal components; trait: individual hydraulic trait; Affiliation: major evolutionary affiliation 
(angiosperm or gymnosperm). 

 

Fixed structure var1 var2 EC Lower HPD Upper HPD p-value 

trait, env(1) ~ 1 + Affiliation ln(Hv) PC1 -0.779 -0.926 -0.634 0.000 

trait, env(1) ~ 1 ln(Hv) PC1 -0.787 -0.921 -0.647 0.000 

trait, env(1) ~ 1 + Affiliation ln(Hv) PC3 -0.499 -0.749 -0.250 0.001 

trait, env(1) ~ 1  ln(Hv) PC3 -0.510 -0.749 -0.260 0.001 

trait, trait ~ 1 ln(Ks) ln(Hv) -0.501 -0.850 -0.101 0.049 

trait, trait ~ 1 + env(3) * Affiliation ln(Ks) ln(Hv) -0.603 -0.861 -0.297 0.003 

trait, trait ~ 1 ln(Ks) ln(|P50|) -0.394 -0.709 -0.022 0.054 

trait, env(1) ~ 1 + Affiliation ln(Ks) PC2 -0.316 -0.602 -0.011 0.049 

trait, env(1) ~ 1 ln(Ks) PC2 -0.341 -0.618 -0.056 0.024 

trait, env(1) ~ 1 + Affiliation ln(Ks) PC3 0.350 0.045 0.633 0.031 

trait, env(1) ~ 1  ln(Ks) PC3 0.355 0.065 0.651 0.021 

trait, env(1) ~ 1 + Affiliation ln(|Pmin|) PC1 -0.779 -0.926 -0.623 0.000 

trait, env(1) ~ 1 ln(|Pmin|) PC1 -0.783 -0.928 -0.621 0.000 

trait, trait ~1 ln(|P50|) ln(Hv) 0.495 0.126 0.816 0.014 

trait, trait ~ 1 ln(|P50|) ln(|Pmin|) 0.485 0.065 0.836 0.054 

trait, trait ~ 1 +env(3) * Affiliation ln(|P50|) ln(|Pmin|) 0.598 0.233 0.888 0.008 

trait, env(1) ~ 1 + Affiliation ln(|P50|) PC1 -0.628 -0.863 -0.394 0.000 

trait, env(1) ~ 1 ln(|P50|) PC1 -0.618 -0.831 -0.374 0.001 
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Table S2.10 Significant evolutionary correlations (i.e., when the credible interval for the estimated correlation do not include zero) 

reported by models using a species-level phylneny pruned at genus-level to check for effects of differences in the topology between 
phylogenies. Mean of the evolutionary correlation (EC), credible interval (lower and upper HPD) and p-value reported by bi-response 
models. In the fixed structure column, variables to the right of the “~” symbol are response variables, those to the left are predictors. 
Abbreviations: “env”(1): individual environmental principal component; env(3): three main environmental principal components; trait: 
individual hydraulic trait; Affiliation: major evolutionary affiliation (angiosperm or gymnosperm). 

 

Fixed structure Variable 1 Variable 2 EC Lower HPD Upper HPD p-value 

trait, env(1) ~ 1 + Affiliation ln(Hv) PC1 -0.817 -0.924 -0.685 0.000 

trait, env(1) ~ 1 ln(Hv) PC1 -0.824 -0.936 -0.696 0.000 

trait, env(1) ~ 1 + Affiliation ln(Hv) PC3 -0.439 -0.705 -0.158 0.008 

trait, env(1) ~ 1  ln(Hv) PC3 -0.451 -0.711 -0.159 0.012 

trait, trait ~ 1 ln(Ks) ln(Hv) -0.535 -0.844 -0.178 0.018 

trait, trait ~ 1 + env(3) * Affiliation ln(Ks) ln(Hv) -0.626 -0.877 -0.330 0.002 

trait, trait ~ 1 ln(Ks) ln(|P50|) -0.398 -0.749 -0.016 0.069 

trait, env(1) ~ 1 + Affiliation ln(Ks) PC2 -0.326 -0.626 -0.013 0.046 

trait, env(1) ~ 1 ln(Ks) PC2 -0.332 -0.688 -0.037 0.068 

trait, env(1) ~ 1  ln(Ks) PC3 0.334 0.005 0.647 0.045 

trait, env(1) ~ 1 + Affiliation ln(|Pmin|) PC1 -0.774 -0.924 -0.614 0.000 

trait, env(1) ~ 1 ln(|Pmin|) PC1 -0.783 -0.933 -0.619 0.000 

trait, trait ~1 ln(|P50|) ln(Hv) 0.505 0.131 0.814 0.024 

trait, trait ~ 1 ln(|P50|) ln(|Pmin|) 0.493 0.066 0.858 0.054 

trait, trait ~ 1 +env(3) * Affiliation ln(|P50|) ln(|Pmin|) 0.591 0.177 0.906 0.034 

trait, env(1) ~ 1 + Affiliation ln(|P50|) PC1 -0.609 -0.856 -0.349 0.001 

trait, env(1) ~ 1 ln(|P50|) PC1 -0.595 -0.831 -0.342 0.001 
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8.2 CHAPTER 3 

8.2.1 Supplementary tables and figures 

 

Figure S3.1 Predictive performance imputeTraits different rounds.-Predictive performance of 

the three rounds of the imputation framework for simulated traits. a) and b) Normalized root mean 

square, c) and d) R2. 
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Figure S3.2 Predictive performance cross validation 50-50%. Predictive performance of the 

imputation framework. Results for mean imputation (red), MICE imputation (blue), phylopars 

imputation (green) and imputeTraits imputation (purple) are shown. a and c) normalized root mean 

square error (NRMSE) for simulated and leaf traits, respectively. B, d) R2 for simulated and leaf traits, 

respectively. NRMSE and R2 were calculated from a cross validation procedure using 50% of the data 

to train models and 50% to test. 
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Table S3.1 Variance-covariance matrix used to simulate traits covariation (either phylogenetic 

or non-phylogenetic). Off diagonal elements represent expected total correlation between traits. The 

diagonal refers to the phylogenetic signal of traits simulated under a Brownian motion model (“Phylo” 

traits). This matrix was used to simulate both Phylo and Non Phylo traits (the first one, simulated to 

show the correlation in a phylogenetically structured way). 

  Trait 1 Trait 2 Env Trait 3 Trait 4 

Trait 1 1 0.9 0.8 0 0 

Trait 2 0.9 1 0.8 0 0 

Env 0.8 0.8 1 0 0 

Trait 3 0 0 0 1 0.9 

Trait 4 0 0 0 0.9 1 

 

Table S3.2 Simulated data characteristics and expectations. “Phylo” stands for traits expected 

to present phylogenetic signal, “Non Phylo” stands for traits not expected to present phylogenetic 

signal. “Env” indicate those traits that were used as if they were environmental predictors. 

 
Expected 

phylogenetic 

signal 

Expected strong 

correlation with 

Expected type of 

correlation 

Expected to be partially 

explained by 

Phylo Trait 1 Yes Phylo Trait 2, Phylo Env Phylogenetic Phylo Env 

Phylo Trait 2 Yes Phylo Trait 1, Phylo Env Phylogenetic Phylo Env 

Phylo Trait 3 Yes Phylo Trait 4 Phylogenetic  

Phylo Trait 4 Yes Phylo Trait 3 Phylogenetic  

Non Phylo Trait 1 No Non Phylo Trait 2, Non 

Phylo Env 

Non-Phylogenetic 

Non Phylo Env 

Non Phylo Trait 2 
No Non Phylo Trait 1, Non 

Phylo Env 
Non-Phylogenetic 

Non Phylo Env 

Non Phylo Trait 3 
No 

Non Phylo Trait 4 
Non-Phylogenetic  

Non Phylo Trait 4 
No 

Non Phylo Trait 3 
Non-Phylogenetic  

Phylo Env 
Yes Phylo Trait 1, Phylo Trait 2 Phylogenetic  

Non Phylo Env 
No Non Phylo Trait 1, Non 

Phylo Trait 2 
Non-Phylogenetic  
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8.2.2 Supplementary methods 

To include more than one environmental variable or one or more non-continuous environmental 

variables into the presented framework I compare mixed linear models including the phylogeny as a 

random effect with models including the phylogeny as a random effect and the environmental factors 

as fixed effect. I do not include multiple environmental variables as response variables as in the 

methodology presented in the main text because the computation of the variance covariance matrix 

with more than three variables can be challenging and a high number of observations is needed (J. 

Hadfield, personal communication). Under this framework, I use uniresponse models to report 

variance results and biresponse models to report covariance results. Uniresponse models allow to 

estimate the phylogenetic variance (VARu), the non-phylogenetic variance (VARe) (which sum to total 

variance, VARt). Biresponse models allow to estimate, for a pair of traits (response variables, T1 and 

T2) the phylogenetic covariance (COVu
T1, T2), the non-phylogenetic covariance (COVe

T1, T2). Then, 

specific environmental variables expected to be related with traits are included in the previous models 

as fixed effects. By doing so, I can estimate the non-attributed phylogenetic variance (VARphylo) and 

covariance (COVphylo) (i.e., not related to the environmental variables considered and related to the 

phylogeny) as well as the residual variance (VARres) and covariance (COVres) (i.e., not related to the 

phylogeny nor to the environmental variables considered). Then, from these estimates and the ones 

calculated by the initial uni- and biresponse models, I can calculate the amount of variance and 

covariance related only to phylogeny (non-attributed phylogenetic conservatism), only the 

environmental variables (labile environmental effect) and to both the phylogeny and environmental 

variables (environmental phylogenetic conservatism) as follows: 

1. 𝑵𝒐𝒏 − 𝒆𝒏𝒗𝒊𝒓𝒐𝒏𝒎𝒆𝒏𝒕𝒂𝒍 𝒑𝒉𝒚𝒍𝒐𝒈𝒆𝒏𝒆𝒕𝒊𝒄 𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 =
𝑽𝑨𝑹𝒑𝒉𝒚𝒍𝒐

𝑻𝟏

𝑽𝑨𝑹𝒕𝒐𝒕𝒂𝒍
        

2. 𝑵𝒐𝒏 − 𝒆𝒏𝒗𝒊𝒓𝒐𝒏𝒎𝒆𝒏𝒕𝒂𝒍 𝒑𝒉𝒚𝒍𝒐𝒈𝒆𝒏𝒆𝒕𝒊𝒄 𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 =
𝑪𝑶𝑽𝒑𝒉𝒚𝒍𝒐

𝑻𝟏,𝑻𝟐

√𝑽𝑨𝑹𝒕𝒐𝒕𝒂𝒍
𝑻𝟏  ∗ 𝑽𝑨𝑹𝒕𝒐𝒕𝒂𝒍

𝑻𝟐
    

3. 𝑳𝒂𝒃𝒊𝒍𝒆 𝒆𝒏𝒗𝒊𝒓𝒐𝒏𝒎𝒆𝒏𝒕𝒂𝒍 𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 =
𝑽𝑨𝑹𝒆

𝑻𝟏 − 𝑽𝑨𝑹𝒓𝒆𝒔
𝑻𝟏

𝑽𝑨𝑹𝒕𝒐𝒕𝒂𝒍
𝑻𝟏        

4. 𝑬𝒏𝒗𝒊𝒓𝒐𝒏𝒎𝒆𝒏𝒕𝒂𝒍 𝒑𝒉𝒚𝒍𝒐𝒈𝒆𝒏𝒆𝒕𝒊𝒄 𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 =
𝑽𝑨𝑹𝒖

𝑻𝟏−𝑽𝑨𝑹𝒑𝒉𝒚𝒍𝒐
𝑻𝟏

𝑽𝑨𝑹𝒕𝒐𝒕𝒂𝒍
𝑻𝟏       

5. 𝑬𝒏𝒗𝒊𝒓𝒐𝒏𝒎𝒆𝒏𝒕𝒂𝒍 𝒑𝒉𝒚𝒍𝒐𝒈𝒆𝒏𝒆𝒕𝒊𝒄 𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 =
𝑪𝑶𝑽𝒖

𝑻𝟏,𝑻𝟐−𝑪𝑶𝑽𝒑𝒉𝒚𝒍𝒐
𝑻𝟏,𝑻𝟐  

√𝑽𝑨𝑹𝒕𝒐𝒕𝒂𝒍
𝑻𝟏  ∗ 𝑽𝑨𝑹𝒕𝒐𝒕𝒂𝒍

𝑻𝟐
    

Variance partition is performed by the function computeVariancePartition. The same approach is then 

applied to covariances by the function computeCovariancePartition (see methods in chapter 3). 
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8.3 CHAPTER 4 

8.3.1 Supplementary tables and figures 

Table S4.1 Number of observations per trait and phylogenetic signal values for individual 

traits and principal components. 

Trait N Phylogenetic signal P-value 

Specific leaf area (SLA) 483 0.351 <0.001 

Wood density (WD) 483 0.771 <0.001 

Leaf N content (N) 481 0.760 <0.001 

Leaf P content (P) 418 0.417 <0.001 

Leaf C content (C) 391 0.451 <0.001 

Maximum diameter (Dmax) 445 0.592 <0.001 

Maximum growth rate (GRmax) 368 0.434 <0.001 

Mortality rate (MR) 219 0.301 <0.001 

Seed mass (SM) 533 0.787 <0.001 

Functional PC1 197 0.450 <0.001 

Functional PC2 197 0.507 <0.001 

Life history PC1 197 0.422 <0.001 

Life history PC2 197 0.507 <0.001 

Integrative PC1 197 0.607 <0.001 

Integrative PC2 197 0.506 <0.001 
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Table S4.2 Correlation results. See table S1 for traits abbreviations. 

Trait   
1 

Trait 
2 

N Total 
correlation 

Phylogenetic 
correlation 

Labile 
correlation 

P-value total 
correlation 

P-value phylogenetic 
correlation 

P-value labile 
correlation 

SLA WD 483 -0.324 -0.316 -0.007 0.000 0.000 0.867 

N WD 481 -0.228 -0.237 0.009 0.002 0.005 0.688 

P WD 418 -0.352 -0.328 -0.024 0.000 0.000 0.556 

C WD 391 -0.088 -0.058 -0.030 0.287 0.570 0.447 

Dmax WD 445 -0.074 -0.022 -0.051 0.362 0.835 0.121 

GRmax WD 368 -0.448 -0.274 -0.174 0.000 0.005 0.000 

MR WD 219 -0.428 -0.244 -0.184 0.000 0.030 0.005 

SM WD 533 0.191 0.176 0.015 0.007 0.042 0.513 

N SLA 483 0.627 0.327 0.301 0.000 0.000 0.000 

P SLA 416 0.576 0.334 0.242 0.000 0.000 0.000 

C SLA 391 0.029 0.007 0.022 0.719 0.961 0.662 

Dmax SLA 389 -0.167 -0.171 0.004 0.021 0.055 0.907 

GRma
x 

SLA 332 0.194 0.066 0.128 0.005 0.771 0.070 

MR SLA 212 0.325 0.298 0.027 0.000 0.007 0.722 

SLA SM 438 -0.362 -0.322 -0.040 0.000 0.000 0.401 

P N 421 0.678 0.490 0.188 0.000 0.000 0.000 

C N 393 0.013 -0.097 0.110 0.875 0.298 0.002 

Dmax N 390 -0.150 -0.174 0.024 0.075 0.096 0.498 

GRmax N 335 0.273 0.237 0.036 0.002 0.016 0.442 

MR N 212 0.359 0.372 -0.012 0.000 0.004 0.742 

N SM 435 -0.309 -0.309 0.000 0.000 0.000 0.952 

C P 385 0.284 -0.025 0.309 0.000 0.765 0.000 

Dmax P 352 -0.058 -0.078 0.020 0.515 0.501 0.649 

GRmax P 313 0.236 0.184 0.052 0.005 0.093 0.343 

MR P 208 0.441 0.521 -0.079 0.000 0.000 0.188 

P SM 383 -0.218 -0.313 0.095 0.007 0.002 0.006 

C Dmax 334 0.157 0.160 -0.003 0.065 0.133 0.940 

C GRma
x 

302 -0.051 -0.035 -0.016 0.520 0.704 0.766 

C MR 202 -0.191 -0.190 0.000 0.027 0.059 0.998 

C SM 358 0.117 0.032 0.085 0.195 0.748 0.015 

Dmax GRmax 368 0.596 0.330 0.266 0.000 0.001 0.000 

Dmax MR 219 -0.435 -0.366 -0.070 0.000 0.001 0.334 

Dmax SM 416 0.172 0.148 0.023 0.042 0.161 0.499 

GRmax MR 212 0.280 -0.039 0.319 0.002 0.679 0.001 

GRmax SM 355 -0.235 -0.176 -0.058 0.003 0.097 0.180 

MR SM 219 -0.511 -0.336 -0.175 0.000 0.013 0.007 

Funcit
onal 
PC1 

Funcit
onal 
PC2 

197 -0.059 -0.147 0.088 0.542 0.219 0.158 

Funcit
onal 
PC1 

Life 
history 
PC1 

197 0.449 0.432 0.017 0.000 0.000 0.896 

Funcit
onal 
PC1 

Life 
history 
PC2 

197 -0.047 -0.102 0.055 0.630 0.400 0.389 
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Funcit
onal 
PC1 

Integra
tive 
PC1 

197 0.919 0.524 0.396 0.000 0.000 0.000 

Funcit
onal 
PC1 

Integra
tive 
PC2 

197 0.146 0.129 0.016 0.144 0.303 0.830 

Funcit
onal 
PC2 

Life 
history 
PC1 

197 -0.089 -0.243 0.154 0.288 0.013 0.029 

Funcit
onal 
PC2 

Life 
history 
PC2 

197 0.722 0.407 0.315 0.000 0.000 0.000 

Funcit
onal 
PC2 

Integra
tive 
PC1 

197 -0.076 -0.196 0.120 0.450 0.126 0.047 

Funcit
onal 
PC2 

Integra
tive 
PC2 

197 -0.858 -0.454 -0.404 0.000 0.000 0.000 

Life 
history 
PC1 

Life 
history 
PC2 

197 -0.107 -0.287 0.180 0.338 0.029 0.022 

Life 
history 
PC1 

Integra
tive 
PC1 

197 0.733 0.431 0.302 0.000 0.000 0.000 

Life 
history 
PC1 

Integra
tive 
PC2 

197 0.051 0.329 -0.278 0.605 0.013 0.000 

Life 
history 
PC2 

Integra
tive 
PC1 

197 -0.064 -0.200 0.136 0.536 0.141 0.024 

Life 
history 
PC2 

Integra
tive 
PC2 

197 -0.928 -0.486 -0.442 0.000 0.000 0.000 

Integra
tive 
PC1 

Integra
tive 
PC2 

197 0.089 0.193 -0.104 0.381 0.146 0.078 
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Figure S4.1 Phylogenetic PCA. 
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8.4 CHAPTER 5 

8.4.1 Supplementary tables and figures 
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Figure S5.1 Hydraulic trait means values calculated from imputation results obtained by 

iterating the predictive model 100 times. Values were aggregated at genus level by calculating the mean 

for genera with more than one species. In red, genera with observed mortality. Order names are shown 

proportional to the number of species and marked in the phylogeny by different colours at the tips. 
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Figure S5.2 Hydraulic trait standard deviation calculated from imputation results obtained by 

iterating the predictive model 100 times. Values are aggregated at the genus level by calculating the 

mean for genera with more than one species. In red, are species with observed mortality. Order names 

are shown proportional to the number of species and marked in the phylogeny by different colours at 

the tips. 
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Figure S5.3 Phylogenetic distribution of observed and imputed hydraulic traits for species 

with observed data for Pmin and/or P50/88. Imputed values represent the mean of 100 predicted values 

per species resulting from 100 iterations of the predictive model. In red, species with observed 

mortality and in green species without observed mortality. The most important order names are shown 

with size proportional to the number of species represented. The total number of species with trait 

data is shown in black and the number in red is the number of those species that have an observed 

mortality event. The number and percentage of species showing hydraulic safety margin (HSM50/88) 

values below zero, 0.5 and 1 are also shown. 
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Figure S5.4 Geographical coverage of species range distribution data for: a) the number of 

species for which imputation was implemented and b) for species with observed traits data. c) 

Mortality points distribution and one of the background sets used in generalized linear models (red 

and green, respectively) plotted on HSM mean map. 
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Figure S5.5 Geographical distribution of projected species-assemblage Pmin means and range 

and latitudinal patterns (a and b, respectively). Scatterplots show pixel values per latitude as circles and 

absolute minimum and maximum values by latitude (i.e., accounting for all species-level values present 

in a pixel) as red and blue triangles in a. Trend lines for pixel values and absolute maximum and 

minimum values in a are shown following a GAM methodology.  
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Figure S5.6 Geographical distribution of projected species-assemblage hydraulic metrics and 

corresponding latitudinal patterns. a, b: Mean P50/88 and HSM50/88, respectively and c: number of species 

with negative HSM50/88 values. The distribution of species-level values from which metrics are 

calculated for a sample of three representative pixels is shown in histograms in a and b. Scatterplots 

show the distribution of pixel values by latitude using circles, absolute minimum and maximum values 

by latitude (i.e., accounting for all species-level values present in a pixel) as red and blue triangles, 

respectively. Trend lines for pixel values and absolute maximum and minimum values for scatterplots 

in a and b are shown following a GAM methodology.  
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Figure S5.7 Relationship between drought-induced mortality occurrence and species-

assemblage hydraulic metrics representing a) mean HSM; b) minimum HSM; c) HSM variability and 

d) number of species with HSM < 0 including their interaction with functional type distribution. 

Results summarize 100 iterations of each model from which R2, and test AUC mean and standard 

deviation were calculated. In each iteration, a different set of background points was sampled. Mean 

response curves for individual species-assemblage metrics for each functional type and performance 

of multiple generalized linear models are shown. 
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Figure S5.8 Mean of standard deviations resulting from 100 iterations of the predictive 

models (left column) and from 100 iterations of the predictive models randomly excluding 20% of the 

species with observed traits in each case (right column) for Pmin (first row), P50 (second row) and HSM 

(third row). 
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Figure S5.9 Comparison between P50 and HSM mean and range projections calculated here 

with previous results including plot-level data(Trugman et al. 2020) for the United States of America. 

Linear regressions coefficients and R2 are shown. 
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Figure S5.10 Relationship between variables as calculated by linear models including 

evolutionary affiliation as a factor (angiosperms and gymnosperms) for: a) water potential at 50% loss 

of conductivity (P50) and minimum xylem water potential  (Pmin) (ln-transformation of the absolute 

values), b) P50 and water potential at 88% loss of conductivity (P88) (ln-transformation of the absolute 

values), c) Pmin and estimated minimum soil water potential (Pmin soil) and d) Pmin and maximum vapour 

pressure deficit.
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Table S5.1 Random forest models performance. R2 results for different combinations of predictors and different percentages of data 

used to train and test models. Model refers to the model tested indicating the variable predicted (bi when both are predicted at the same 

time), the number of climate (climate_n) and phylogenetic predictors (phylo_n) and whether evolutionary affiliation (angiosperms vs. 

gymnosperms) was included as an explanatory factor (group), in this order. In bold, the models used for the final prediction. 

Model Variable N 
environmental 
PCs 

N 
phylogenetic 
PCs 

Evolutionary 
affiliation 

Hydraulic 
trait 
covariance 

R2 
(10% 
test) 

R2 sd 
(10% 
test) 

R2 
(20% 
test) 

R2 sd 
(20% 
test) 

R2 

(30% 
test) 

R2 sd 
(30% 
test) 

R2 
(50% 
test) 

R2 sd 
(50% 
test) 

R2 
(70% 
test) 

R2 sd 
(70% 
test) 

P50_climate_3 P50 3 0 No No 0.11 0.055 0.106 0.038 0.102 0.029 0.095 0.021 0.084 0.017 

Pmin_climate_3 Pmin 3 0 No No 0.369 0.094 0.35 0.064 0.355 0.052 0.334 0.032 0.318 0.03 

bi_climate_3 Pmin 3 0 No Yes 0.512 0.123 0.469 0.092 0.441 0.066 0.364 0.051 0.281 0.058 

bi_climate_3 P50 3 0 No Yes 0.304 0.123 0.277 0.081 0.25 0.072 0.183 0.05 0.116 0.038 

P50_climate_10 P50 10 0 No No 0.154 0.071 0.154 0.046 0.143 0.032 0.136 0.025 0.12 0.02 

Pmin_climate_10 Pmin 10 0 No No 0.415 0.096 0.377 0.06 0.375 0.052 0.364 0.037 0.335 0.03 

bi_climate_10 Pmin 10 0 No Yes 0.544 0.102 0.499 0.074 0.465 0.061 0.399 0.047 0.337 0.043 

bi_climate_10 P50 10 0 No Yes 0.35 0.122 0.309 0.087 0.263 0.067 0.198 0.047 0.133 0.035 

P50_phylo_5 P50 0 5 No No 0.473 0.088 0.465 0.059 0.453 0.053 0.433 0.031 0.402 0.027 

Pmin_phylo_5 Pmin 0 5 No No 0.333 0.108 0.3 0.084 0.297 0.061 0.249 0.05 0.191 0.04 

bi_phylo_5 Pmin 0 5 No Yes 0.457 0.137 0.422 0.099 0.4 0.071 0.311 0.058 0.237 0.049 

bi_phylo_5 P50 0 5 No Yes 0.5 0.108 0.471 0.102 0.45 0.066 0.387 0.053 0.332 0.048 

P50_phylo_20 P50 0 20 No No 0.474 0.097 0.461 0.064 0.451 0.051 0.438 0.034 0.409 0.028 

Pmin_phylo_20 Pmin 0 20 No No 0.341 0.134 0.313 0.082 0.306 0.058 0.267 0.049 0.206 0.038 

bi_phylo_20 Pmin 0 20 No Yes 0.438 0.131 0.428 0.095 0.396 0.082 0.338 0.049 0.258 0.047 
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bi_phylo_20 P50 0 20 No Yes 0.485 0.159 0.464 0.093 0.454 0.071 0.397 0.052 0.349 0.045 

P50_phylo_50 P50 0 50 No No 0.455 0.106 0.475 0.062 0.462 0.047 0.44 0.038 0.411 0.028 

Pmin_phylo_50 Pmin 0 50 No No 0.345 0.13 0.311 0.077 0.31 0.067 0.271 0.047 0.206 0.041 

bi_phylo_50 Pmin 0 50 No Yes 0.439 0.14 0.42 0.096 0.387 0.088 0.336 0.047 0.269 0.041 

bi_phylo_50 P50 0 50 No Yes 0.485 0.123 0.481 0.091 0.44 0.063 0.398 0.047 0.352 0.038 

P50_phylo_100 P50 0 100 No No 0.487 0.088 0.482 0.058 0.461 0.052 0.452 0.03 0.425 0.026 

Pmin_phylo_100 Pmin 0 100 No No 0.341 0.126 0.318 0.077 0.304 0.069 0.264 0.038 0.206 0.032 

bi_phylo_100 Pmin 0 100 No Yes 0.44 0.119 0.412 0.105 0.373 0.068 0.326 0.05 0.249 0.042 

bi_phylo_100 P50 0 100 No Yes 0.456 0.132 0.429 0.097 0.429 0.073 0.395 0.044 0.357 0.043 

P50_climate_3_phylo_5_group P50 3 5 Yes No 0.573 0.101 0.558 0.068 0.556 0.054 0.535 0.029 0.498 0.028 

Pmin_climate_3_phylo_5_group Pmin 3 5 Yes No 0.467 0.115 0.468 0.086 0.456 0.06 0.43 0.039 0.401 0.031 

bi_climate_3_phylo_5_group Pmin 3 5 Yes Yes 0.588 0.122 0.559 0.082 0.525 0.066 0.475 0.056 0.399 0.049 

bi_climate_3_phylo_5_group P50 3 5 Yes Yes 0.551 0.123 0.528 0.1 0.515 0.071 0.459 0.055 0.399 0.046 

P50_climate_5_phylo_5_group P50 5 5 Yes No 0.567 0.101 0.564 0.063 0.563 0.047 0.532 0.035 0.507 0.026 

Pmin_climate_5_phylo_5_group Pmin 5 5 Yes No 0.489 0.101 0.491 0.076 0.485 0.052 0.457 0.039 0.425 0.029 

bi_climate_5_phylo_5_group Pmin 5 5 Yes Yes 0.594 0.118 0.581 0.079 0.551 0.061 0.496 0.051 0.44 0.04 

bi_climate_5_phylo_5_group P50 5 5 Yes Yes 0.547 0.13 0.537 0.091 0.526 0.069 0.476 0.054 0.403 0.045 

P50_climate_10_phylo_10_group P50 10 10 Yes No 0.579 0.094 0.575 0.057 0.57 0.046 0.538 0.035 0.509 0.021 

Pmin_climate_10_phylo_10_group Pmin 10 10 Yes No 0.483 0.108 0.485 0.069 0.464 0.059 0.458 0.036 0.422 0.031 

bi_climate_10_phylo_10_group Pmin 10 10 Yes Yes 0.575 0.117 0.564 0.078 0.559 0.062 0.505 0.046 0.434 0.046 

bi_climate_10_phylo_10_group P50 10 10 Yes Yes 0.558 0.139 0.541 0.087 0.521 0.071 0.489 0.044 0.411 0.038 

P50_climate_10_phylo_20_group P50 10 10 Yes No 0.569 0.094 0.557 0.066 0.56 0.056 0.542 0.037 0.501 0.028 

Pmin_climate_10_phylo_20_group Pmin 10 20 Yes No 0.491 0.101 0.47 0.08 0.47 0.06 0.443 0.043 0.406 0.037 
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bi_climate_10_phylo_20_group Pmin 10 20 Yes Yes 0.578 0.126 0.578 0.105 0.544 0.067 0.492 0.048 0.435 0.041 

bi_climate_10_phylo_20_group P50 10 20 Yes Yes 0.551 0.129 0.54 0.087 0.517 0.068 0.458 0.05 0.405 0.04 

P50_climate_10_phylo_50_group P50 10 50 Yes No 0.572 0.103 0.567 0.067 0.556 0.051 0.533 0.035 0.496 0.026 

Pmin_climate_10_phylo_50_group Pmin 10 50 Yes No 0.473 0.13 0.463 0.077 0.459 0.059 0.436 0.045 0.39 0.04 

bi_climate_10_phylo_50_group Pmin 10 50 Yes Yes 0.547 0.134 0.528 0.093 0.511 0.077 0.478 0.048 0.411 0.046 

bi_climate_10_phylo_50_group P50 10 50 Yes Yes 0.534 0.128 0.507 0.098 0.492 0.071 0.452 0.053 0.391 0.04 

P50_climate_10_phylo_100_group P50 10 100 Yes No 0.557 0.101 0.557 0.062 0.546 0.051 0.524 0.039 0.49 0.025 

Pmin_climate_10_phylo_100_group Pmin 10 100 Yes No 0.467 0.111 0.45 0.079 0.449 0.064 0.414 0.046 0.373 0.045 

bi_climate_10_phylo_100_group Pmin 10 100 Yes Yes 0.545 0.118 0.512 0.098 0.496 0.07 0.457 0.052 0.389 0.042 

bi_climate_10_phylo_100_group P50 10 100 Yes Yes 0.497 0.132 0.49 0.097 0.469 0.076 0.441 0.048 0.385 0.039 
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Table S5.2 Prediction of DIM occurrence. Pseudo-R2 test AUC mean and standard 

deviation and mean model AIC (summary of 100 iterations with different background points) for 

logistic models with mortality occurrence as a response variable (binary). In the model column, 

model formula is shown. 

Model Mean 
R2 

R2 standard 
deviation 

Mean test 
AUC 

Test AUC standard 
deviation 

AIC 

p ~ ln(aridity index) 0.011 0.006 0.590 0.042 1384.7
80 

p ~ annual precipitation 0.016 0.006 0.555 0.036 1381.3
21 

p ~ maximum temperature 0.019 0.008 0.594 0.045 1378.8
93 

p ~ HSM mean 0.067 0.014 0.683 0.032 1341.2
26 

p ~ HSM mean * biome 0.346 0.024 0.772 0.038 1116.2
17 

p ~ HSM mean * functional type 0.189 0.017 0.683 0.036 1268.1
88 

p ~ HSM min 0.264 0.022 0.750 0.033 1171.3
12 

p ~ HSM min * biome 0.369 0.022 0.793 0.030 1091.8
91 

p ~ HSM min * functional type 0.340 0.019 0.766 0.029 1125.8
60 

p ~  sqrt(Number spp. HSM<0) 0.357 0.017 0.817 0.020 1865.1
68 

p ~  sqrt(Number spp. HSM<0) * biome 0.434 0.020 0.826 0.025 1022.7
07 

p ~  sqrt(Number spp. HSM<0) * 
functional type 

0.470 0.014 0.836 0.019 1680.7
22 

p ~ ln(HSM variance) 0.236 0.019 0.751 0.033 1197.9
21 

p ~ ln(HSM variance) * biome 0.343 0.022 0.779 0.033 1118.9
53 

p ~ ln(HSM variance) * functional type 0.460 0.010 0.828 0.021 1699.9
35 
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Table S5.3 Relationship of hydraulic risk and mortality. Variables significance (mean of ANOVA test results for 100 models with different 

background points in each case) for logistic models with mortality occurrence as a response variable (binary). In the column “variable”, interaction is 

shown by “:”. Significance codes: “***”: p < 0.0001; “**”: p < 0.001, “*”: p < 0.05; NS: non-significant.  

Model Variable df Deviance 
mean 

Resid. df 
mean 

Resid. dev 
mean 

Pr. Chi 
mean 

Devianc
e sd 

Resid 
dev sd 

Pr. Chi 
sd 

Pr. Chi mean 
significance 

p ~ HSM mean HSM mean 1 51.841 1000 1337.226 0 10.68 10.68 0 *** 

p ~ HSM mean *  biome  biome 6 224.773 994 1112.043 0 18.204 22.217 0 *** 

p ~ HSM mean *  biome HSM mean 1 52.251 1000 1336.816 0 15.478 15.478 0 *** 

p ~ HSM mean *  biome HSM mean: biome 6 23.826 988 1088.217 0.003 6.522 24.153 0.005 * 

p ~ HSM mean * functional type functional type 7 32.082 993 1303.737 0.001 7.046 10.295 0.003 ** 

p ~ HSM mean * functional type HSM mean 1 53.248 1000 1335.819 0 9.469 9.469 0 *** 

p ~ HSM mean * functional type HSM mean:functional type 7 67.549 986 1236.188 0 11.375 14.468 0 *** 

p ~ HSM min HSM min 1 221.755 1000 1167.312 0 20.287 20.287 0 *** 

p ~ HSM min *  biome  biome 6 92.65 994 1074.169 0 12.602 21.822 0 *** 

p ~ HSM min *  biome HSM min 1 222.248 1000 1166.818 0 20.534 20.534 0 *** 

p ~ HSM min *  biome HSM min: biome 6 10.278 988 1063.891 0.21 4.536 22.378 0.211 NS 

p ~ HSM min * functional type functional type 7 15.65 993 1149.341 0.081 5.166 18.708 0.118 NS 

p ~ HSM min * functional type HSM min 1 224.076 1000 1164.991 0 19.102 19.102 0 *** 

p ~ HSM min * functional type HSM min:functional type 7 55.481 986 1093.86 0 12.066 19.581 0 *** 

p ~sqrt(Number spp. HSM<0) ln(Number spp. HSM<0) 1 539.894 1730 1861.168 0 29.675 29.675 0 *** 

p ~sqrt(Number spp. HSM<0) *  
biome 

 biome 6 205.52 1724 1659.295 0 18.323 27.404 0 *** 

p ~sqrt(Number spp. HSM<0) *  
biome 

sqrt(Number spp. HSM<0) 1 536.247 1730 1864.815 0 27.112 27.112 0 *** 

p ~sqrt(Number spp. HSM<0) *  
biome 

sqrt(Number spp. HSM<0): 
biome 

6 58.909 1718 1600.386 0 10.15 28.109 0 *** 

p ~sqrt(Number spp. HSM<0) * 
functional type 

functional type 7 46.522 1723 1817.921 0 8.821 26.094 0 *** 

p ~sqrt(Number spp. HSM<0) * 
functional type 

sqrt(Number spp. HSM<0) 1 536.619 1730 1864.443 0 26.715 26.715 0 *** 

p ~sqrt(Number spp. HSM<0) * 
functional type 

sqrt(Number spp. 
HSM<0):functional type 

7 169.199 1716 1648.722 0 19.237 27.167 0 *** 
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p ~ ln(HSM variance) ln(HSM variance) 1 195.146 1000 1193.921 0 17.592 17.592 0 *** 

p ~ ln(HSM variance) *  biome  biome 6 81.35 994 1112.946 0 14.655 20.848 0 *** 

p ~ ln(HSM variance) *  biome ln(HSM variance) 1 194.77 1000 1194.297 0 17.899 17.899 0 *** 

p ~ ln(HSM variance) *  biome ln(HSM variance): biome 6 21.994 988 1090.953 0.006 5.394 22.255 0.014 * 

p ~ ln(HSM variance) * functional 
type 

functional type 7 111.59 1723 1820.328 0 15.037 24.614 0 *** 

p ~ ln(HSM variance) * functional 
type 

ln(HSM variance) 1 469.144 1730 1931.918 0 23.493 23.493 0 *** 

p ~ ln(HSM variance) * functional 
type 

ln(HSM variance):functional 
type 

7 152.393 1716 1667.935 0 16.624 20.322 0 *** 
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Table S5.4 Relationship of hydraulic risk and mortality including aridity index as a covariable. Variables significance (mean of the ANOVA test 

results for 100 models with different background points in each case) for logistic models with mortality occurrence as a response variable (binary) 

including a climate index as predictor (aridity index). I n the column “variable”, interaction is shown by “:”. Significance codes: “***”: p < 0.0001; “**”: 

p < 0.001, “*”: p < 0.05; NS: p > 0.05. 

Model Variable df Deviance 
mean 

Resid. df 
mean 

Resid. dev 
mean 

Pr. Chi 
mean 

Devian
ce sd 

Resid 
dev sd 

Pr. 
Chi sd 

Pr. Chi mean 
significance 

p ~ HSM mean + ln(aridity index) HSM mean 1 53.534 1000.000 1335.533 0.000 10.598 10.598 0.000 *** 

p ~ HSM mean + ln(aridity index) ln(aridity index) 1 3.053 999.000 1332.480 0.223 2.994 10.306 0.214 NS 

p ~ HSM mean * biome + ln(aridity index) biome 6 211.323 994.000 1125.997 0.000 18.644 18.498 0.000 *** 

p ~ HSM mean * biome + ln(aridity index) HSM mean 1 51.746 1000.000 1337.321 0.000 9.426 9.426 0.000 *** 

p ~ HSM mean * biome + ln(aridity index) HSM mean:biome 6 21.390 987.000 1103.398 0.005 4.441 18.717 0.006 * 

p ~ HSM mean * biome + ln(aridity index) ln(aridity index) 1 1.210 993.000 1124.787 0.434 1.390 18.695 0.283 NS 

p ~ HSM mean * functional type + ln(aridity 
index) 

functional type 7 32.952 993.000 1303.902 0.001 7.681 11.205 0.002 ** 

p ~ HSM mean * functional type + ln(aridity 
index) 

HSM mean 1 52.213 1000.000 1336.854 0.000 9.682 9.682 0.000 *** 

p ~ HSM mean * functional type + ln(aridity 
index) 

HSM mean:functional type 7 61.136 985.000 1232.568 0.000 11.531 15.708 0.000 *** 

p ~ HSM mean * functional type + ln(aridity 
index) 

ln(aridity index) 1 10.198 992.000 1293.704 0.014 5.132 10.846 0.036 . 

p ~ ln(HSM variance) + ln(aridity index) ln(aridity index) 1 7.026 999.000 1188.284 0.038 3.566 15.967 0.078 . 

p ~ ln(HSM variance) + ln(aridity index) ln(HSM variance) 1 193.757 1000.000 1195.310 0.000 16.515 16.515 0.000 *** 

p ~ ln(HSM variance) * biome + ln(aridity 
index) 

biome 6 81.768 994.000 1110.967 0.000 12.346 20.381 0.000 *** 

p ~ ln(HSM variance) * biome + ln(aridity 
index) 

ln(aridity index) 1 1.393 993.000 1109.574 0.425 1.661 20.705 0.298 NS 

p ~ ln(HSM variance) * biome + ln(aridity 
index) 

ln(HSM variance) 1 196.332 1000.000 1192.735 0.000 16.900 16.900 0.000 *** 

p ~ ln(HSM variance) * biome + ln(aridity 
index) 

ln(HSM variance):biome 6 21.237 987.000 1088.337 0.009 5.625 23.029 0.017 * 

p ~ ln(HSM variance) * functional type + 
ln(aridity index) 

functional type 7 112.556 1723.000 1823.255 0.000 15.843 24.798 0.000 *** 
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p ~ ln(HSM variance) * functional type + 
ln(aridity index) 

ln(aridity index) 1 0.883 1722.000 1822.372 0.534 1.235 24.904 0.296 NS 

p ~ ln(HSM variance) * functional type + 
ln(aridity index) 

ln(HSM variance) 1 465.251 1730.000 1935.811 0.000 26.478 26.478 0.000 *** 

p ~ ln(HSM variance) * functional type + 
ln(aridity index) 

ln(HSM 
variance):functional type 

7 152.823 1715.000 1669.549 0.000 15.838 22.053 0.000 *** 

p ~ HSM min + ln(aridity index) HSM min 1 220.492 1000.000 1168.575 0.000 19.283 19.283 0.000 *** 

p ~ HSM min + ln(aridity index) ln(aridity index) 1 0.646 999.000 1167.930 0.564 0.830 19.157 0.271 NS 

p ~ HSM min * biome + ln(aridity index) biome 6 92.926 994.000 1074.115 0.000 14.567 21.186 0.000 *** 

p ~ HSM min * biome + ln(aridity index) HSM min 1 222.026 1000.000 1167.041 0.000 19.720 19.720 0.000 *** 

p ~ HSM min * biome + ln(aridity index) HSM min:biome 6 10.618 987.000 1062.268 0.168 3.806 22.782 0.164 NS 

p ~ HSM min * biome + ln(aridity index) ln(aridity index) 1 1.228 993.000 1072.887 0.460 1.554 21.716 0.301 NS 

p ~ HSM min * functional type + ln(aridity 
index) 

functional type 7 16.154 993.000 1151.774 0.069 5.272 18.874 0.092 NS 

p ~ HSM min * functional type + ln(aridity 
index) 

HSM min 1 221.139 1000.000 1167.928 0.000 19.708 19.708 0.000 *** 

p ~ HSM min * functional type + ln(aridity 
index) 

HSM min:functional type 7 57.426 985.000 1093.693 0.000 10.881 18.582 0.000 *** 

p ~ HSM min * functional type + ln(aridity 
index) 

ln(aridity index) 1 0.655 992.000 1151.119 0.540 0.761 19.016 0.256 NS 

p ~ sqrt(Number spp. HSM<0) + ln(aridity 
index) 

ln(aridity index) 1 41.829 1729.000 1824.266 0.000 12.322 30.667 0.000 *** 

p ~ sqrt(Number spp. HSM<0) + ln(aridity 
index) 

sqrt(Number spp. HSM<0) 1 534.967 1730.000 1866.095 0.000 29.005 29.005 0.000 *** 

p ~ sqrt(Number spp. HSM<0) * biome + 
ln(aridity index) 

biome 6 208.016 1724.000 1654.678 0.000 21.649 27.566 0.000 *** 

p ~ sqrt(Number spp. HSM<0) * biome + 
ln(aridity index) 

ln(aridity index) 1 10.868 1723.000 1643.811 0.014 5.655 29.018 0.038 . 

p ~ sqrt(Number spp. HSM<0) * biome + 
ln(aridity index) 

sqrt(Number spp. HSM<0) 1 538.368 1730.000 1862.694 0.000 24.858 24.858 0.000 *** 

p ~ sqrt(Number spp. HSM<0) * biome + 
ln(aridity index) 

sqrt(Number spp. 
HSM<0):biome 

6 54.857 1717.000 1588.953 0.000 11.422 29.192 0.000 *** 

p ~ sqrt(Number spp. HSM<0) * functional 
type + ln(aridity index) 

functional type 7 46.839 1723.000 1813.096 0.000 8.278 28.769 0.000 *** 

p ~ sqrt(Number spp. HSM<0) * functional 
type + ln(aridity index) 

ln(aridity index) 1 39.652 1722.000 1773.444 0.000 10.485 27.221 0.000 *** 

p ~ sqrt(Number spp. HSM<0) * functional 
type + ln(aridity index) 

sqrt(Number spp. HSM<0) 1 541.126 1730.000 1859.935 0.000 30.292 30.292 0.000 *** 

p ~ sqrt(Number spp. HSM<0) * functional 
type + ln(aridity index) 

sqrt(Number spp. 
HSM<0):functional type 

7 138.170 1715.000 1635.274 0.000 18.109 27.114 0.000 *** 
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Table S5.5 Biome reclassification and number of mortality observations per biome and per functional type. 

Aggregated biome Biomes included Number of total mortality 
points (1 per km2) 

Number of aggregated mortality 
points (1 per 10km2) 

Boreal Tundra, Boreal Forests/Taiga, 39 34 

Desert and xeric Deserts & Xeric Shrublands 44 20 

Mediterranean Mediterranean Forests, Woodlands & Scrub,  292 139 

Others Montane Grasslands & Shrublands,  Flooded Grasslands & Savannas, Mangroves,  4 4 

Temperate Temperate Grasslands, Savannas & Shrublands, Temperate Conifer Forests, Temperate Broadleaf & Mixed 
Forests 

357 223 

Tropical and 
subtropical dry 

 Tropical & Subtropical Grasslands, Savannas & Shrublands, Tropical & Subtropical Dry Broadleaf Forests, 
Tropical & Subtropical Coniferous Forests 

73 42 

Tropical and 
subtropical moist 

Tropical & Subtropical Moist Broadleaf Forests,  73 55 
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Table S5.6 Trends in the relationship between species assemblages hydraulic metrics and DIM occurrence as reported by applying the emmeans 

R package(Lenth 2021) to generalized linear models results. 

Model Factor Trend 
mean 

St error mean P value mean Trend 
sd 

St error sd P value sd Mean p value significance 

p ~ HSM mean * biome Boreal -0.345 0.772 0.616 0.391 0.057 0.250 NS 

p ~ HSM mean * biome Desert and xeric -0.029 0.312 0.695 0.157 0.026 0.200 NS 

p ~ HSM mean * biome Mediterranean -1.395 0.689 0.174 1.089 0.126 0.263 NS 

p ~ HSM mean * biome Others 1.412 1.483 0.421 1.170 0.492 0.203 NS 

p ~ HSM mean * biome Temperate -2.473 0.338 0.000 0.307 0.014 0.000 *** 

p ~ HSM mean * biome Tropical and subtropical dry -1.886 0.922 0.068 0.531 0.066 0.084 NS 

p ~ HSM mean * biome Tropical and subtropical moist -0.869 0.812 0.349 0.534 0.053 0.268 NS 

p ~ HSM mean * functional type Broadleaved deciduous -2.257 0.823 0.014 0.595 0.091 0.021 . 

p ~ HSM mean * functional type Broadleaved evergreen -6.622 0.936 0.000 0.866 0.090 0.000 *** 

p ~ HSM mean * functional type Crops and Grassland -1.489 0.334 0.000 0.275 0.021 0.001 ** 

p ~ HSM mean * functional type Mixed forest -1.321 1.363 0.383 1.014 0.188 0.255 NS 

p ~ HSM mean * functional type Mosaic 0.686 0.388 0.095 0.163 0.030 0.068 NS 

p ~ HSM mean * functional type Needleleaved -8.505 0.953 0.000 0.936 0.106 0.000 *** 

p ~ HSM mean * functional type Others -1.338 0.616 0.050 0.423 0.082 0.047 . 

p ~ HSM mean * functional type Shrubland -1.117 0.516 0.075 0.418 0.054 0.102 NS 

p ~ HSM min * biome Boreal -0.416 0.288 0.202 0.168 0.023 0.153 NS 

p ~ HSM min * biome Desert and xeric -0.493 0.134 0.003 0.152 0.017 0.009 * 

p ~ HSM min * biome Mediterranean -1.043 0.282 0.022 0.351 0.041 0.082 . 

p ~ HSM min * biome Others 0.209 0.576 0.688 0.203 0.158 0.161 NS 

p ~ HSM min * biome Temperate -0.705 0.076 0.000 0.048 0.003 0.000 *** 

p ~ HSM min * biome Tropical and subtropical dry 0.085 0.073 0.294 0.035 0.002 0.202 NS 

p ~ HSM min * biome Tropical and subtropical moist -0.323 0.070 0.000 0.029 0.001 0.000 *** 

p ~ HSM min * functional type Broadleaved deciduous -0.422 0.138 0.008 0.130 0.016 0.011 * 

p ~ HSM min * functional type Broadleaved evergreen -0.248 0.068 0.016 0.071 0.003 0.070 . 

p ~ HSM min * functional type Crops and Grassland -0.139 0.064 0.070 0.046 0.002 0.099 NS 

p ~ HSM min * functional type Mixed forest -1.279 0.431 0.007 0.405 0.101 0.010 * 

p ~ HSM min * functional type Mosaic -0.120 0.094 0.285 0.064 0.005 0.237 NS 

p ~ HSM min * functional type Needleleaved -2.108 0.236 0.000 0.232 0.035 0.000 *** 

p ~ HSM min * functional type Others -0.442 0.118 0.001 0.098 0.011 0.002 ** 

p ~ HSM min * functional type Shrubland 0.004 0.073 0.574 0.059 0.003 0.262 NS 

p ~ sqrt(N spp. HSM < 0) * biome Boreal 1.058 0.321 0.003 0.192 0.016 0.004 * 

p ~ sqrt(N spp. HSM < 0) * biome Desert and xeric 0.656 0.170 0.000 0.095 0.011 0.001 ** 

p ~ sqrt(N spp. HSM < 0) * biome Mediterranean 1.526 0.296 0.000 0.270 0.035 0.000 *** 

p ~ sqrt(N spp. HSM < 0) * biome Others 0.133 2.281 0.790 0.804 16.627 0.182 NS 
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p ~ sqrt(N spp. HSM < 0) * biome Temperate 0.832 0.080 0.000 0.039 0.002 0.000 *** 

p ~ sqrt(N spp. HSM < 0) * biome Tropical and subtropical dry 0.251 0.098 0.023 0.051 0.002 0.045 . 

p ~ sqrt(N spp. HSM < 0) * biome Tropical and subtropical moist 1.449 0.280 0.000 0.141 0.023 0.000 *** 

p ~ sqrt(N spp. HSM < 0) * functional type Broadleaved deciduous 0.755 0.157 0.000 0.090 0.009 0.000 *** 

p ~ sqrt(N spp. HSM < 0) * functional type Broadleaved evergreen 2.381 0.324 0.000 0.196 0.021 0.000 *** 

p ~ sqrt(N spp. HSM < 0) * functional type Crops and Grassland 0.397 0.078 0.000 0.046 0.002 0.000 *** 

p ~ sqrt(N spp. HSM < 0) * functional type Mixed forest 1.367 0.415 0.002 0.342 0.088 0.002 * 

p ~ sqrt(N spp. HSM < 0) * functional type Mosaic 0.346 0.138 0.028 0.075 0.005 0.052 . 

p ~ sqrt(N spp. HSM < 0) * functional type Needleleaved 2.280 0.264 0.000 0.137 0.018 0.000 *** 

p ~ sqrt(N spp. HSM < 0) * functional type Others 0.641 0.155 0.000 0.087 0.007 0.000 ** 

p ~ sqrt(N spp. HSM < 0) * functional type Shrubland 0.332 0.109 0.011 0.082 0.004 0.023 . 

p ~ ln(HSM variance) * biome Boreal 0.649 0.248 0.014 0.104 0.013 0.013 . 

p ~ ln(HSM variance) * biome Desert and xeric 1.032 0.414 0.031 0.302 0.046 0.053 . 

p ~ ln(HSM variance) * biome Mediterranean 2.817 0.561 0.000 0.457 0.070 0.000 *** 

p ~ ln(HSM variance) * biome Others 2.198 1.300 0.104 0.612 0.210 0.050 NS 

p ~ ln(HSM variance) * biome Temperate 1.406 0.159 0.000 0.080 0.004 0.000 *** 

p ~ ln(HSM variance) * biome Tropical and subtropical dry 0.008 0.130 0.704 0.061 0.007 0.183 NS 

p ~ ln(HSM variance) * biome Tropical and subtropical moist 1.172 0.266 0.000 0.103 0.008 0.000 *** 

p ~ ln(HSM variance) * functional type Broadleaved deciduous 1.181 0.290 0.000 0.153 0.019 0.000 ** 

p ~ ln(HSM variance) * functional type Broadleaved evergreen 3.604 0.436 0.000 0.175 0.017 0.000 *** 

p ~ ln(HSM variance) * functional type Crops and Grassland 0.552 0.129 0.000 0.069 0.004 0.000 ** 

p ~ ln(HSM variance) * functional type Mixed forest 3.790 1.361 0.009 1.251 0.378 0.012 * 

p ~ ln(HSM variance) * functional type Mosaic 0.704 0.254 0.013 0.152 0.015 0.021 . 

p ~ ln(HSM variance) * functional type Needleleaved 3.036 0.359 0.000 0.182 0.016 0.000 *** 

p ~ ln(HSM variance) * functional type Others 0.869 0.281 0.003 0.103 0.015 0.003 * 

p ~ ln(HSM variance) * functional type Shrubland 0.121 0.138 0.416 0.101 0.007 0.275 NS 



 

244 

 


	EJEMPLAR_TESIS_0.pdf
	1 Introduction
	1.1 Plant functional strategies
	1.2 Evolutionary patterns of plant functional strategies
	1.2.1 Phylogenetic conservatism and evolutionary lability in plant functional traits
	1.2.2 From traits to trait modules: a multivariate perspective

	1.3 Ecological consequences of evolutionary patterns in plant functional traits
	1.3.1 Functional constraints on species distributions and species assemblage
	1.3.2 Function-environment mismatches

	1.4 Towards an evolutionary framework in plant functional ecology
	1.5 Research aims and outline

	2 Adaptation and coordinated evolution of plant hydraulic traits
	2.1 Abstract
	2.2 Introduction
	2.3 Materials and methods
	2.3.1 Data sources
	2.3.2 Phylogeny
	2.3.3 Statistical analyses

	2.4 Results
	2.4.1 Phylogenetic signal in hydraulic traits
	2.4.2 Environmental drivers of hydraulic traits
	2.4.1 Correlated phylogenetic signal

	2.5 Discussion
	2.5.1 Phylogenetically conserved adaptation in hydraulic traits
	2.5.2 Evolutionary modules in hydraulic traits

	2.6 Conclusion

	3 A unified framework to study and predict functional trait syndromes
	3.1 Abstract
	3.2 Introduction
	3.3 Materials and methods
	3.3.1 Trait Variance-covariance partition
	3.3.2 Networks
	3.3.3 Imputation algorithm
	3.3.4 Application

	3.4 Results
	3.4.1 Variance covariance partition results
	3.4.2 Imputation results

	3.5 Discussion
	3.5.1 A new framework to study functional syndromes evolution
	3.5.1 Leaf economics and hydraulic traits conform to two phylogenetically conserved modules integrated in response to aridity
	3.5.1 Using information on traits evolution to perform data imputation


	4 Plant functional traits are evolutionarily coordinated with life history traits in the Amazon basin
	4.1 Abstract
	4.2 Introduction
	4.3 Materials and methods
	4.3.1 Data
	4.3.2 Principal components analyses
	4.3.3 Phylogenetic signal calculation
	4.3.4 Correlations calculation

	4.4 Results
	4.4.1 Functional and life history conform to two main axes of variation
	4.4.2 Phylogenetic signal in functional and life history strategies
	4.4.1 Phylogenetic conservatism and evolutionary lability in functional and life history traits integration

	4.5 Discussion
	4.5.1 Leaf acquisitiveness is integrated with survival and reproduction and stature is integrated with growth
	4.5.1 Leaf acquisitiveness, survival and reproduction integration is phylogenetically conserved and independent of size-growth integration, which presents evolutionary lability
	4.5.1 The meaning of evolutionary lability and phylogenetic conservatism in ecological strategies
	4.5.1 Caveats and future directions


	5 Increased hydraulic risk in assemblages of woody plant species predicts spatial patterns of drought-induced mortality
	5.1 Abstract
	5.2 Introduction
	5.3 Results and discussion
	5.3.1 Low hydraulic safety margins are widespread in woody plant species
	5.3.2 Species-level hydraulic risk is a poor predictor of species-level drought induced mortality
	5.3.3 Using information from species assemblages to characterize site-specific hydraulic risk
	5.3.4 Species-assemblage hydraulic risk is positively related to drought-induced mortality occurrence
	5.3.5 Spatial patterns in the probability of DIM occurrence
	5.3.6 Future directions

	5.4 Materials and methods
	5.4.1 Species distribution data
	5.4.2 Hydraulic data
	5.4.3 Environmental data
	5.4.4 Mortality database
	5.4.5 Phylogenetic information
	5.4.6 Hydraulic traits predictions using phylogenetic and edaphoclimatic data
	5.4.7 Geographical projection of hydraulic traits and calculation of pixel-level species assemblages hydraulic metrics
	5.4.8 Assessing the predictive capacity of hydraulic risk against mortality records
	5.4.9 Projecting mortality risk using maximum entropy models


	6 General discussion and conclusions
	6.1 Insights from an evolutionarily explicit framework in ecophysiology
	6.2 Phylogenetic niche conservatism in functional syndromes
	6.3 Ecological consequences of functional strategies evolution
	6.3.1 Functional strategies relationship with life history strategies
	6.3.2 Effects of functional strategies on vegetation responses to climate

	6.4 Conclusions
	6.5  Future directions

	7 References
	8 Appendixes
	8.1 Chapter 2
	8.1.1 Supplementary tables and figures
	8.1.2 Supplementary methods
	8.1.2.1 Phylogenetic mixed model description
	8.1.2.2 Phylogenetic indexes calculation
	8.1.2.3 Phylogenetic covariation calculation
	8.1.2.4 Model specifications

	8.1.3 Analyses using a species-level phylogeny
	8.1.4 Evolutionary correlations reported by genus-level phylogenetic models using observations available for the species-level phylogeny and evolutionary correlations reported by species-level phylogeny pruned at the genus level.

	8.2 Chapter 3
	8.2.1 Supplementary tables and figures
	8.2.2 Supplementary methods

	8.3 Chapter 4
	8.3.1 Supplementary tables and figures

	8.4 Chapter 5
	8.4.1 Supplementary tables and figures




	Títol de la tesi: PLANT FUNCTIONAL TRAIT COORDINATION: 
EVOLUTIONARY CAUSES AND ECOLOGICAL CONSEQUENCES
	Nom autor/a: PABLO SANCHEZ MARTINEZ


