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A B S T R A C T

In recent years, serverless computing has gained significant attention from academia and industry.

Its execution paradigm allows provisioning resources on-demand, leaving the tedious work of

infrastructure and operational concerns to the cloud provider. This allows users to entirely focus

on their core business logic, decomposing their jobs into small stateless functions to be managed

independently and updated flexibly. In addition, serverless computing attracts many tenants in

today’s cloud environments also for its fundamental principles, including the ‘pay-per-use’ cost

model with fine-grained charge granularity, greater flexibility, and transparent elastic resource auto-

scaling all the way down to zero resources in the absence of requests allowing massive scalability.

Given the success in many simple real-world applications across multiple domains ranging from

web microservices to Internet of Things (IoT) applications in a serverless environment, researchers

in both academia and industry have begun to explore its applicability in more complex data-

intensive analytics workloads. These workloads are usually resource-intensive, highly parallel, and

are characterized by considerable inter-function communications. However, this shift comes with

inherent challenges, making it essential to align the paradigm with this type of application’s specific

needs and constraints. This research area has gained significant interest and is currently considered

one of the most compelling areas of study.

This thesis shows that it is possible to efficiently execute modern data-intensive analytics work-

loads, traditionally deployed in managed cloud clusters, within serverless computing environments

using direct data inter-function communication and optimized performance-cost efficient resource

allocation policies. To demonstrate this thesis, we first build a performance model for serverless

workloads that considers how data is shared between functions, including the volume of data and

the underlying communication technology employed. With a relative error of 5.52%, the proposed

model allows us to evaluate the performance of a representative workload in serverless, analyzing

task granularity and concurrency, data locality, resource allocation, and scheduling policies. We

also explore possible solutions for the data-sharing problem, like using local memory and storage.

Our results indicate that the performance of data-intensive analytics workloads in serverless can

be up to 4.32× faster depending on how these are deployed. Furthermore, this characterization

emphasizes the current state-of-practice centralized object storage inefficiencies and highlights the

primary importance of efficient resource utilization.

We then present Floki, a data forwarding system addressing the centralized object storage bottle-

neck by proactively enabling direct inter-function communication between producer-consumer pairs

of functions through utilizing established and widely adopted fixed-size communication mechanisms.

Floki creates point-to-point data channels for intra-node and inter-node data transmission, allowing

data to be transferred directly from producer to consumer functions in a fully transparent fashion,

minimizing data copying over the network. Floki offers workflow-oriented data communication,

increasing performance while minimizing resource requirements without imposing any constraint on

function placement. Specifically, its flexibility and observability allow creating data channels adapting
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to the specific function scheduling of the underlying orchestration framework. Our experimental

evaluation, focusing on the principal communication patterns in distributed systems, shows that

Floki reduces the end-to-end time up to 74.95×, decreasing the most extensive data sharing time from

12.55 to 4.33 minutes, translating into nearly two-thirds of time-savings. Furthermore, leveraging the

efficiency of the employed fixed-size communication mechanisms, Floki achieves up to 50, 738× of

resource-saving, equivalent to a memory allocation of approximately 1.9MB, vastly outperforming

state-of-practice object storage allocation of 96GB.

This thesis finally investigates how to achieve efficient resource utilization within modern serverless

environments and proposes Dexter, a novel resource allocation manager, fully leveraging serverless

computing elasticity. Dexter continuously monitors application execution, dynamically allocating

resources at a fine-grained level to ensure performance-cost efficiency (optimizing total runtime cost).

Dexter is novel in combining predictive and reactive strategies that fully exploit the resource elasticity

of serverless to enhance the performance-cost efficiency for workflow executions. Unlike black-box

Machine Learning (ML) models, Dexter quickly reaches a sufficiently good solution, prioritizing

simplicity, generality, and ease of understanding. The proposed experimental evaluation, considering

two industry-standard benchmarks and a real-world workload, demonstrates that our solution

achieves a significant cost reduction of up to 4.65×, while improving resource efficiency up to 3.50×,

when compared with the default serverless Spark resource allocation that dynamically requests

exponentially more executors to accommodate pending tasks. Dexter also enables substantial resource

savings, demanding up to 5.71× fewer resources. Finally, Dexter is a robust solution to new, unseen

workloads, achieving up to 2.72× higher performance-cost efficiency thanks to its conservative

resource scaling approach.
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1
I N T R O D U C T I O N

In this chapter, we first provide the context of this thesis and the motivation underlying

the work, highlighting the research challenges we are attempting to address and the thesis

statement (Section 1.1). Then, we present the the main contributions of this thesis, specifying

for each contribution the associated achievements (Section 1.2).

1.1 thesis context and motivation

Representing the long-held dream of computing as a utility [1], the cloud computing

model enables ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources that can be rapidly provisioned and released with minimal

management effort or service provider interaction [2]. However, users still have to make

decisions that can be challenging for many: instance types, cluster size, load balancing

strategy, etc. In this context, serverless computing has received a significant uptick in

attention over the last few years, both in academia and industry. Unlike the traditional cloud

computing model, in the serverless paradigm, the operational concerns of the infrastructure

are fully managed by the cloud provider, completely relieving the user from challenging

management decisions. Serverless computing [3] attracts many tenants in today’s cloud

environments also for its fundamental principles, including transparent elastic resource

scaling allowing massive scalability, ‘pay-as-you-go’ cost model with fine-grained charging

granularity, and hassle-free management. While allowing tenants to focus on their core

logic and run their applications as a set of functions on-demand, saving costs for unused

computing resources, the serverless computing paradigm enables cloud providers to control

the entire development stack and efficiently optimize and manage resources. Today, almost

all major cloud providers offer services to deploy serverless functions through a Function as

a Service (FaaS) computing platform. Examples include AWS Lambda [4], Google’s Cloud

Functions [5], and IBM’s Cloud Functions [6] in commercial clouds, and Open-Lambda [7],

Open-Whisk [8], and Knative [9] in open-source projects.

1
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Given the success in many simple real-world applications across multiple domains ranging

from web microservices to IoT applications, in a serverless environment, academia and

industrial research have begun to explore its usage in more complex resource intensive and

highly parallel applications, characterized by considerable inter-function communications.

This research area has gained significant interest and is currently considered one of the most

compelling areas of study. Researchers have demonstrated how the serverless paradigm

can be successfully exploited in complex applications, including linear algebra tasks [10,

11], video encoding [12–14], deep learning training and inference [15–28], Monte Carlo

simulations [29–32], as well as MapReduce-style [11, 33–36] and SQL-style analytics [37–40].

The serverless market share was valued at USD 8.93 billion in 2022 and is projected to reach

USD 55.24 billion by 2030, with a Compound Annual Growth Rate (CAGR) of 22.45% [41].

Despite these successes, serverless computing exhibits limitations [23, 42–45]. The absence

of network addressability and the lack of efficient data sharing between functions makes

it challenging for a vast number of data-intensive analytics workloads to benefit from

serverless. Not supporting direct inter-function communication, major serverless platforms

[4–6, 46] take disaggregation to an extreme, imposing functions to exchange data only

through shared object storage. Being data-intensive analytics workloads characterized by a

considerable amount intermediate data transfers, shared object storage becomes a bottleneck

for efficient inter-function communication due to its high-latency access. Furthermore, since

data-intensive analytics workloads are typically resource-intensive and inherently parallel,

they highly benefit from the elasticity and the virtually unlimited scalability offered by

serverless platforms. In particular, since early 2022, a prominent effort has been made

towards leveraging serverless platforms to efficiently run big data analytics frameworks,

such as Apache Spark [47], which are traditionally deployed in managed cloud clusters.

GCP Dataproc Serverless [48], Databricks Serverless [49], and IBM Analytics Engine [50]

exemplify this trend. However, auto-allocating resources to complex workflows, such as big

data analytics applications, is complex because the relationship between resource allocation

and performance is complicated and changes over the application runtime [51].

As detailed in the remainder of this chapter, currently serverless comes with limitations,

such as communication through shared object storage and the absence of an optimized

resource auto-scaling mechanism. These limitations are posing several research challenges

when porting data-intensive analytics workloads to serverless platforms.

Research challenge 1: While the desirability and potential advantages of enabling more

complex workloads, such as data-intensive analytics workloads, in serverless environments

are known, we need to fully understand its feasibility and efficiency. This involves identifying

which are the key elements preventing these workloads to completely benefit from serverless

environments. In particular, to understand whether new approaches are necessary, there is

the need to analyze in-depth the performance impact of running more complex workloads on
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serverless platforms. This analysis should focus on various factors, including inter-function

communication latencies, workload parallelisms, and resource requirements.

Although shared object storage enables the complete decoupling of storage and compu-

tation in serverless environments and offers a durable and low-cost data storage solution,

it shows relatively high access latencies, leading to highly inefficient workload executions

when running data-intensive analytics workloads. This brings a new research challenges:

Research challenge 2: While object storage represents a good solution when there is the

need to persist data, letting users to use them over time, we need to have an alternative

data communication mechanism for scenarios where the long-term availability of data is

not a requirement, allowing a high-performance volatile data sharing. Instead of buffering

intermediate results in state-of-practice remote shared storage and exchange data between

functions over the network, it is crucial to explore alternative communication mechanisms that

facilitate rapid and direct intermediate data communication between functions.

Finally, while serverless auto-scaling automatically increases or decreases the number

of workload instances based on the number of incoming requests, when executing more

complex data-intensive analytics workloads it is crucial to accurately adjust resources at

a fine-grained level. This leads us to the final research challenge this thesis attempts to

address.

Research challenge 3: Given their typical resource-intensive and inherently parallel nature,

it is fundamental to comprehend how to dynamically scale the amount of resources (i.e., par-

allelism/scale level), and at which granularity level, to fully leverage the virtually unlimited

scalability offered by serverless platforms. Specifically, we need to dynamically adapt to vari-

ations by setting the level of parallelism to maximize the resource utilization and to achieve

a balance between performance and cost, thereby minimizing the overall monetary cost while

ensuring acceptable runtime performance.

Due to these reasons, this thesis wants to demonstrate the feasibility of the following

statement: It is possible to efficiently execute modern data-intensive analytics workloads,

traditionally deployed in managed cloud clusters, in serverless computing environments

by using direct data inter-function communication and optimized performance-cost

efficient resource allocation policies.
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1.2 thesis contributions

To prove the aforementioned thesis statement, we divided the work into the following three

major research contributions which are summarized as follows:

C1: Workload Scalability and Performance Analysis

C2: Direct Inter-Function Communication Enablement

C3: Automatic Performance-Cost Efficient Resource Allocation

The comprehensive analysis performed in the first contribution identifies and under-

scores research opportunities aimed at optimizing the execution of data-intensive analytics

workloads in serverless environments. The analysis provides strong motivations for the

subsequent second and third contributions, as illustrated in Figure 1.1. The second and

third contributions are independent since they tackle two different problems, but they are

complementary as they are part of one incremental work towards an efficient execution of

data-intensive analytics workloads in serverless environments.

1.2.1 Contribution 1: Workload Scalability and Performance Analysis

This first contribution aims to fully characterize a proper use case data-centric analytics

workload and to assess its performance when executed in current serverless platforms.

Focusing on data communication, we deeply study and model all memory and storage data

exchange mechanisms available in current open-source serverless platforms. In particular,

in this analysis, we consider various function replication scenarios for embarrassingly

parallel functions to optimize the balance between data communication and computation

delays. The workload is then used to analytically demonstrate that directly using existing

serverless platforms would lead to extremely inefficient executions of such workloads.

This analysis allows us to understand which are the most critical key elements preventing

data-intensive analytics workloads to completely benefit from serverless environments, and

thereby indicating whether new approaches are necessary.

Contribution 2
Direct Inter-Function 

Communication EnablementContribution 1
Workload Scalability

and Performance Analysis Contribution 3 
Automatic Performance-Cost 
Efficient Resource Allocation

A B

Res.
Res.
Res.

Figure 1.1: Thesis contributions
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The achievements of this contribution are:

– Workload characterization in terms of execution times, scalability, and data movements.

– Identification of the serverless functions and the parallelism opportunities, showing a

methodology to extract the necessary components to translate a traditional monolithic

application to serverless.

– Development of a performance model capturing the performance of serverless work-

loads involving data exchanges, supporting different configurations and data exchange

mechanisms.

– Evaluation of workload performance impact concerning task granularity and concur-

rency, data locality, resource allocation and scalability, and scheduling policies.

1.2.2 Contribution 2: Direct Inter-Function Communication Enablement

The second contribution has the scope to enable the runtime management of direct inter-

function communication essential to efficiently run data-centric analytics workloads in open-

source serverless environments. Utilizing established and widely adopted communication

mechanisms, we introduce a new point-to-point data sharing communication mechanism

capable to handle arbitrarily complex data structures. This data sharing mechanism enables

proactive and fast data transfers without imposing any constraint on function placement.

In this contribution we address the centralized storage bottleneck by proposing a system

facilitating direct communication between functions, where data exchanges are orchestrated

on a producer-consumer functions pair level, minimizing data copying over the network.

Directly sharing data between functions implies two main advantages. First, the number

of concurrent read/write operations is reduced since resources are shared among a lower

number of functions, i.e., the ones co-placed on a given node, or of exclusive use. Second,

leveraging multi-threading capabilities, a producer function can concurrently send the same

data to multiple consumer functions, while a consumer function can simultaneously receive

data from multiple producer functions.

The achievements of the contribution are:

– Build a proactive workflow-based data forwarding system enabling point-to-point

data transfers without incurring additional overheads, such as state-of-practice storage

overheads.

– Design of a full communication stack between functions, allowing non-colocated

functions to seamlessly exchange data as they are hosted on the same node through

local read and write operations.
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– Build an in-memory mechanism tailored for transferring volatile data, capable of

dealing with arbitrary intermediate data sizes efficiently and scalable on the data

volume.

1.2.3 Contribution 3: Automatic Performance-Cost Efficient Resource Allocation

Finally, the third contribution concerns resource scaling of the different functions composing

a workload. We investigate the performance enhancements and cost implications achieved

by exploiting function parallelism. We leverage the elasticity of serverless computing by

automatically adapting the number of allocated resources at the smallest granularity level,

ensuring optimal performance-cost efficiency. This is achieved through continuous monitor-

ing of application execution, allowing for adaptive responses to changes in performance

and cost. In this last contribution, we provide a sufficiently good solution in real-time,

prioritizing simplicity, generality and ease of understanding, combining predictive and

reactive strategies. This design choice, allows us to feature small enough training delay

to seamlessly execute model retraining on the fly, even within a multi-tenant cloud-like

scenario, in response to a significant workload variation.

The achievements for this last contribution are:

– A performance and cost characterization across various granularities, highlighting

the impact of scaling out and scaling in on execution duration and corresponding

monetary cost.

– Fine-tune the scaling level at the smallest granularity considering at every optimization

step the performance-cost trade-off, enabling more efficient executions in terms of

total runtime cost.

– Provide a standalone an pluggable module that automatically reacts to deviations in

performance-cost efficiency, fully integrated in one of the most prominent big data

processing frameworks.



2
B A C K G R O U N D

This chapter gives to the reader all the background required for understanding this thesis.

Specifically, we first present the serverless computing paradigm (Section 2.1). We then

introduce the Kubernetes container orchestration framework this thesis is based upon, along

with its different layers introducing event-driven and serverless capabilities, namely Knative

and Tekton (Section 2.2). We present Apache Spark data processing framework, describing

its architecture, resource allocation policies, and scheduling mechanisms (Section 2.3). Then,

we briefly introduce the optimization and learning methods used in this thesis (Section 2.4).

Finally, we describe the data analytics applications have been used to evaluate the thesis

work (Section 2.5).

2.1 serverless computing

The serverless paradigm, also known as FaaS, takes advantage of hardware disaggregation,

using the data center as a pool of independent resources connected through high-speed

networks, allowing millisecond latency between computing and storage resources. Disaggre-

gation provides enhanced flexibility and adaptability within the data center infrastructure. In

a disaggregated configuration, when a new application needs to be executed, the data center

dynamically pools the necessary resources into an available node, executes the application,

and upon application completion, the resources are freed, making them available for a new

allocation to another node. This approach solves the lack of resources on individual nodes,

as all nodes can access all the resources distributed across the entirety of the data center.

Breaking the traditional tight coupling between a process and the underlying physical

resources allows abstract serverless functions to span the data center transparently and scale.

Since functions span across the data center, there is no guarantee that functions will be

executed on the same physical machine. Whenever functions are placed on different physical

nodes, fully-managed disaggregated storage (e.g., Amazon S3 [52] and IBM COS [53]) is

used to share the function state and to store data persistently. This naturally leads to a

“Move data to compute" model, where data and state have to be delivered to functions.

7
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A serverless function is a small, discrete unit of code with short duration, typically minutes,

having entirely stateless logic. In this computing paradigm, functions are executed in

response to triggers, represented by events or HTTP requests. Serverless workflows are

represented as Directed Acyclic Graphs (DAGs) in which nodes represent functions and

edges represent input/output dependencies between pairs of nodes, determining the order

of execution and the extent to which functions can be executed in parallel. The associated

ephemeral compute environment is created only when an event, triggering the function, is

received. After the function ends, the environment is left active for a short period of time in

case another request arrives.

Generally, serverless computing can be described by three main principles: 1) No server to

provision or manage, 2) Scales with usage, and 3) Pay for value. First, all the infrastructure

management responsibilities are on the cloud provider, allowing the user to focus solely

on designing, running, and managing the application functionalities with zero concerns

about building and maintaining the back-end infrastructure. Second, the service scales

automatically based on the number of received requests. More precisely, it can scale up

when needed and scale all the way down to zero resources in the absence of demand, thus

avoiding waste of resources. Finally, the user pays in proportion to resources used instead

of resources allocated, implying a zero cost in case of no service requests.

‘Serverless computing’ does not mean servers are not used; instead, it means that users

leave all the operational concerns of managing servers entirely to the cloud provider. This

computing paradigm is attractive not only for consumers for the properties mentioned

above but also for cloud providers. It promotes business growth since making the cloud

easier to use draw in new consumers. Indeed, [54] has found that about 24% of serverless

users were new to cloud computing. Moreover, it allows cloud providers to control the

entire development stack and efficiently optimize and manage resource. For example, the

cloud provider may decide to utilize previous generation machines, as the instance type is

part of the infrastructure management responsibility.

Serverless computing and Platform as a Service (PaaS) backend architecture keep the

entire backend invisible to users, allowing them to concentrate fully on writing and building

applications. However, significant differences exist between these two architectures, particu-

larly regarding scalability and pricing. Serverless architectures exhibit instant, automatic,

and on-demand scalability without requiring extra user-provided configuration. In contrast,

while users can configure PaaS-hosted applications to scale up and down based on demand,

auto-scaling is not an inherent feature of this service. Serverless vendors employ a fine-grain,

pay-as-you-go billing approach, charging users solely for the actual time the functions are

running. Even though some PaaS vendors charge users for application uptime, billing is not

as precise as it is for serverless. Typically, users are usually able to decide the computing
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Figure 2.1: Kubernetes cluster architecture example.

power they are paying only in advance, without the possibility of increasing or decreasing

the usage in real-time.

2.2 kubernetes ecosystem

While there are several available container orchestration frameworks, Kubernetes [55] has

become the leading platform and de-facto cross-cloud standard for automatic management

of containerized applications. Originally created by Google and then donated to the Cloud

Native Computing Foundation (CNCF) in 2016, it provides a standardized and efficient

way to deploy, manage, and scale containerized applications across diverse infrastructure

environments. A Kubernetes cluster consists of a set of nodes, each one map on either

a physical machine or a Virtual Machine (VM) and running a container runtime, like

Docker [56] or containerd [57]. Figure 2.1 shows an example of kubernetes cluster with one

master node and two worker nodes, the first running three pods and the second running

two pods. The cluster is composed by at least one master node and multiple worker nodes. A

master node is responsible for managing and coordinating the overall cluster. It includes

several components: 1) the API server, 2) the scheduler, 3) the controller manager, and

4) the etcd datastore. The API server acts as the entry point for the Kubernetes control

plane and is responsible for processing RESTful API requests. The scheduler assigns work

(containers) to nodes based on resource availability and constraints. The controller manager

maintains the desired state of the cluster by monitoring nodes and responding to changes.

Etcd is a distributed key-value store that stores the configuration data of the entire cluster.

Differently, worker nodes run applications in containers and each worker node has the

following components: 1) the kubelet, 2) the container runtime, and 3) the kube-proxy. The



10 background

Compute Cluster

Kubernetes

Istio

Knative

Figure 2.2: Kubernetes ecosystem enabling event-driven and serverless executions.

kubelet is the agent responsible for communication between the worker and the master(s)

. Moreover, it ensures that one or more containers are running and healthy in a pod, the

smallest deployable unit in Kubernetes, representing a single instance of a running process.

Containers in the same pod share the same network namespace and storage, allowing them

to communicate and share data easily. The container runtime is responsible for loading

container images from a repository, monitoring local system resources, isolating system

resources for use of a container, and managing container lifecycle within the Kubernetes

environment. The kube-proxy communicate with the API server and maintains network

rules to enable communication between Pods across the cluster.

Knative [9], recently accepted as a CNCF incubating project, introduces event-driven

and serverless capabilities for Kubernetes clusters. It provides a set of building blocks

for building, deploying, and managing modern serverless workloads. More specifically, it

abstracts the complexity of dealing with the underlying infrastructure by managing stateless

services by reducing the users effort required for autoscaling, networking, and rollouts, and

it routes events between on-cluster and off-cluster components, allowing users to fully focus

on their core logic. Representing the serverless standard, as shown in Figure 2.2, Knative

has been built on top of Kubernetes thanks to the introduction of Istio service mesh [58],

which simplifies the deployment of microservices by providing a language-agnostic way to

connect, secure, manage, and monitor microservices.

Knative communication infrastructure follows the CloudEvents [59] specification and is

based on a switchboard model connecting events to interested services. Knative offers two

communication patterns: a more basic Channels and Subscriptions pattern, and a more

advanced Broker and Trigger pattern. The first decouples the event producer and consumer,

allowing the producer to send an event to a specific Channel which than forwards the event

to all consumers that are subscribed to it. Differently, in the Broker and Trigger based pattern,

events are sent to Brokers, which represent the event delivery system controlling accesses

and ingress policies and storing events in Channels, and then the Trigger filters and delivers

the events to the consumers. The Channel messaging layer, used in both communication

patterns, is optimized for small messages of about 1KB in size, even though up to some MB
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messages are allowed by modifying some configuration options. Knative offers a default

channel mechanism aiming to ease the usability of the system, but it also supports other

channel types, such as Apache Kafka [60] and Google Cloud Pub/Sub [61].

Knative is composed by two key components: Serving and Eventing. The Serving compo-

nent is responsible for deploying and serving containerized applications, called services, on

Kubernetes. It enables autoscaling, handles traffic splitting, and supports revisions of your

applications. The Eventing component allows the user to build event-driven architectures by

providing a set of primitives. Currently, this component provides a sequential and a parallel

functions invocation. The former defines an in-order list of functions that will be invoked at

each event, while the latter defines a list of branches, each one receiving the same event.

Knative currently lacks a more complete pipeline structure implementation. To fill this

gap, Tekton [62] has been proposed to allow users to design and run event-driven workflows

in an automated way. Even though Tekton has been originally developed for Continuous

Integration and Continuous Delivery (CI/CD) building chains, it has been demonstrated

its value also in other domains [63]. Tekton pipeline object is represented by a set of tasks.

Each task is a single unit of work and is composed of a certain number of sequential

steps. A step is the smallest unit of work in a task and performs a specific actions, such

as building a container, running tests, or deploying an application. Steps exchange data

either through parameters exploiting the underlying channel messaging layer or through

Kubernetes volumes. Each task is deployed as a single pod, being a Pod the smallest

deployable units of computing. Tekton workspaces automatically mount volumes within

the tasks containers and only supports two types of volumes, namely Persistent Volumes

(PVs) and emptyDir volumes. The first is backed persistently on one of the cluster nodes,

representing a good choice for intra-tasks communications, while the second holds a

temporary storage space that only lives for the task execution time, making it more suitable

for intra-steps communication. By default, the Tekton pipeline controller, namely the Affinity

Assistant, enforces the co-placing of all the tasks sharing a workspace. Data dependencies

and user predefined execution orders are used to define the pipeline workflow in the form

of a DAG.

2.3 apache spark

Apache Spark [47] represents one of the most prominent multi-purpose, multi-language,

in-memory big data processing frameworks. It is designed to process and analyze large-scale

datasets and supports various data processing workloads, like batch processing, real-time

streaming, machine learning, and graph processing. To manage and coordinate distributed

processing, Spark follows a Master-Worker model: while the master coordinates the cluster,

the workers perform the actual data processing. Spark distributes data across a cluster of



12 background

machines relying on its fundamental Resiliant Distributed Dataset (RDD) data structure.

An RDD represents an immutable, distributed collection of objects that can be processed

in parallel. Each RDD is divided into logical partitions across the cluster and thus can be

operated in parallel, on different nodes of the cluster.

When a Spark parallel data processing application is submitted, the resource manager

starts the driver, running the main() method of the application and generating both the

logical and physical execution plans. More precisely, Spark converts the application into

one or more jobs based on the presence of actions in the code. At a high level, each job is

represented by a logical execution plan abstracting all the transformation steps, encoded as a

DAG. A DAG consists of a set of 1) nodes representing computational stages, delimited by

operations requiring data shuffling, comprising by one or more parallel tasks that apply

the same operation over a different data partition, and 2) edges representing input/output

dependencies between pairs of nodes, determining the order of execution and the extent to

which stages can be executed in parallel. Many Spark applications often consist of tens or

hundreds of stages characterized by a different number of parallel tasks with high volatility

in duration and amount of data that they process. From the logical execution plan, Spark

driver derives the the physical plan, a plan describing how the logical plan is going to be

executed on the cluster. The driver directly coordinates with the cluster manager to request

executors, representing computing processes, and schedule the execution of one or multiple

tasks on each executor. The cluster manager usually spawns the executors within container-

ized Java Virtual Machines (JVMs) on the worker nodes. During the initialization phase,

known as cold start, each executor’s setup involves the following steps: 1) Downloading the

container image if not present on the designated node, 2) Launching a new container, and

then 3) Performing all the JVM-related operations, such as bytecode loading, heap allocation,

and internal threads creation. The first task is launched as a thread once the JVM is ready.

The driver includes several components, including the DAG Scheduler, the Task Scheduler,

and the Backend Scheduler, all responsible for translating user-written code into jobs that are

executed on the cluster. The default allocation strategy is to assign all available executors

to stages in a First In First Out (FIFO) manner: given a queue of runnable stages, the first

stage gets priority on all available resources, then the second stage gets priority, and so on.

The number of executors held by each stage depends on the number of stage’s tasks. If a

stage has fewer tasks than available executors, the scheduler allocates part of the available

executors, allowing multiple independent stages to be executed concurrently. Contrarily, if a

stage has more tasks than there are executors, all executors are assigned to the stage, and

tasks are executed in multiple “waves”. The Spark scheduler faces two main scheduling

decisions: 1) Deciding which stage(s) to run next from a set of runnable stages and 2)

Deciding how many executors to assign to each runnable stage. Then, upon completion of a

stage, the dependent child stages becomes runnable and are considered for scheduling. With
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Figure 2.3: Application (a) sample execution schedule with dynamic allocation over a maximum of 5

executors, featuring two vCPUs each with a one-to-one core-task mapping (cold start are depicted in
gray and the number of tasks are reported in parentheses), and (b) most time-consuming job DAG
reporting the average job’s stages duration on 5 sequential runs with different circle sizes.

default allocation, during the course of application execution, the framework requests in real-

time exponentially more executors in case of pending tasks waiting to be scheduled. If the

queue of schedulable tasks is not drained in one second (default backlog timeout), then new

executors are requested. If the queue persists for another second, then more new executors

are requested, and so on. At each round the number of requested executors increases

exponentially from the previous round until the upper bound, defined by the autoscaling

property, is reached. The rationale for the exponential increase is twofold. First, executors

should be initially added slowly in case the number of extra executors needed is small.

Otherwise, more executors than the necessary ones could be requested, possibly leading

to some executors not performing any work. Second, executors should be added quickly

over time in case the maximum number of executors is very high. Otherwise, ramping up

under heavy workloads will take a long time. While this exponential increase can facilitate

the completion of an unexpected number of tasks, a notable latency exists in responding to

additional executor requests, often requiring multiple requests before attaining the intended

executor allocation. This circumstance raises the risk of either belated allocation or an

exponential surplus beyond the required resources. Additionally, exponentially requesting

new executors implies an increasing number of parallel application image downloads, which

can lead to a lower image transfer speed due to increased network load.

An example of application execution schedule, with the default dynamic allocation

scheduling stages in FIFO fashion, is illustrated in Figure 2.3a. Initially, the scheduler assigns

1 executor (minimum set) and then scales out to 5 executors (maximum set) when tasks
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become backlogged. Among the executors, while the remaining executors experience an

actual cold start, E4 executor experiences a warm start since the application image is

cached because the application driver has been previously placed on the same node. The

application example comprises a small single-stage single-task job at the beginning, followed

by a big time-consuming job (highlighted by vertical red lines in Figure 2.3a). As shown in

Figure 2.3b, this most time-consuming job features a complex DAG composed of 13 stages

with a variable number of tasks and duration.

2.4 optimization and learning methods

In this section we present the optimization and Machine Learning (ML) methods used in this

thesis, helping the reader to understand the last thesis contribution (Chapter 5). We consider

the hill climbing search method and four ML methods, namely Linear Regression (LR),

Bayesian Ridge Regression (BRR), Boosted Decision Stumps (BDS), and Dropouts Additive

Regression Tree (DART) [64], to embrace historical knowledge to improve the heuristic search.

Since the last contribution aims to provide real-time responses, we use the aforementioned

four methods since they provide good tradeoff between response time and predictive

performance.

2.4.1 Hill Climbing

The hill climbing algorithm is a widely used local search optimization method. The idea

behind the method is to start at an initial neighbour and to attempt to improve the current

solution (climbing the hill) by iteratively moving to neighbours that enhance the current

solution until an optima is reached. The initial neighbour can be generated randomly or

chosen based on some heuristic. Once a local optima is reached, no further improvement

can be made with the current set of moves. The selection of the initial neighbour affects

both the solution quality and the number of search steps needed to find the local optima

solution. Hill climbing only guarantees optimal solutions for convex problems. In contrast,

only local optima is guaranteed for the rest of the problems. Even though, in the context of

this thesis, hill climbing only guarantees local optima solutions, it is a simple, effective, and

intuitive algorithm that is easy to understand and represents a good choice for problems

where a sufficiently good solution is needed quickly.



2.4 optimization and learning methods 15

2.4.2 Linear Regression

Linear regression is a fundamental statistical method used for modeling the relationship

between quantitative variables. It identifies a linear relationship between one or more input

variables (observed values) and the output variable (predicted value). The graphical intuition

of linear regression is to find the best-fitting straight line through the known points that

minimize the sum of the squared difference, called residuals of error, between the observed

and predicted values. Thus, the model equation can be formalized as follows:

y = β0 + β1x1 + · · ·+ βkxk (2.1)

Here, y represents the output variable the model tries to predict, {x1, · · · , xk} are the input

variables the model observes, β0 is y-axis intercept, and {β1, · · · , βk} coefficients are known

as the regression coefficients and they represent the contribution of each input variable to

the output value y. In the case of a single input variable, Equation (2.2) simplifies to the

following linear equation:

y = β0 + β1x1 (2.2)

Linear regression is one of the simplest and most widely used techniques in predictive

analysis in both ML and statistics.

2.4.3 Bayesian Ridge Regression

In traditional linear regression, the primary goal is to identify a set of parameters that

minimize the sum of squared differences between the predicted and actual values. Thus, this

method inevitably inherits the uncertainties in parameters estimation, potentially arising

from data errors. BRR model addresses this inherent instability in the estimated coefficients

and associated uncertainty in the model - commonly referred to as the multicollinearity

problem - by incorporating a Bayesian approach. This model characterizes the distribution of

the regression coefficients, typically opting for a Gaussian (normal) distribution, in contrast

to the linear relationship between them assumed in classical linear regression. Consequently,

the BRR model provides a more flexible and robust solution, particularly useful in scenarios

with limited or noisy data.

2.4.4 Boosted Decision Stumps

Gradient Boosting (GB) [65] regression is an ensemble learning technique where multiple

weak learners are combined to construct a strong learner. During the training phase, weak
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learners are added in an iterative process wherein the ensemble error guides the subsequent

models’ creation. In other words, further iterations of the ensemble try to correct previous

errors to produce more accurate estimates. This process iterates until a maximum number

of iterations (models) is reached. Differently from GB, which typically employs decision

trees as the weak learners, the BDS model utilizes decision stumps [66]. A decision stump

is a simplified form of a decision tree, constrained to a single decision node and two leaf

nodes containing the output values. Each decision stump tests a single input feature against

a threshold, deciding the output value based on the test result. The training of each weak

learner occurs sequentially, with increasing importance on misclassified instances from the

previous iteration. Each decision stump is associated with a weight throughout the training

process, giving more influence to decision stumps that perform well (with higher accuracy)

on the training data. The boosting process continues for a specified number of iterations

or until a certain level of accuracy is achieved. The final model prediction is determined

through a weighted voting scheme, where each decision stump contributes to the final

prediction in proportion to its assigned weight.

2.4.5 Dropouts Additive Regression Tree

The DART model is an extension of GB model, designed to address the problem of over-

specialization. This problem arises when trees added at later iterations tend to impact

the prediction of only a few instances, thereby making a negligible contribution to the

final prediction of all the remaining instances. This makes the ensemble very sensitive to

the decision made by the few, initially added trees. To deal with the over-specialization

problem, the DART model adapts the dropout technique [67], originally proposed in the

context of learning deep neural networks to mute random neurons to prevent overfitting, to

an ensemble of decision trees. Specifically, at training time, DART introduces randomness

by muting a random subset of weak learners, dropping out at least one complete tree

when creating the model. This randomness results in a more robust ensemble, effectively

mitigating errors introduced by previous trees.

2.5 applications

To evaluate the thesis a diverse set of applications ranging from real-wold workloads to

standard benchmarks that are representative for data analytics frameworks have been used.
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2.5.1 Tesseract

The Tesseract Optical Character Recognition (OCR) engine [68] is a highly accurate open-

source OCR solution developed by Google. Originally created by Hewlett-Packard in the

1980s and later open-sourced in 2005, Tesseract has emerged as one of the most popular and

widely used OCR engines globally, representing the current open-source state-of-the-art. It is

designed to recognize printed text in images and convert it into a machine-readable format.

Input images include scanned documents, photographs, and screenshots including text

even with complex fonts and layouts. Document digitalization, data extraction, archiving

and document management, and automated text recognition are examples of Tesseract

use cases. With support for a multitude of languages — over 100 and expandable through

language-specific training data — Tesseract proves to be a versatile tool for text recognition

across diverse linguistic contexts.

2.5.2 TPC-H

The TPC-H [69] is an industry-standard decision support benchmark, featuring a set of

business oriented ad-hoc queries and concurrent data modifications. The 22 queries and the

data populating the database aim for broad industry-wide relevance, showcasing decision

support systems, such as data warehouses, database, and Big Data systems, handling

large volumes of data volumes to address to critical business questions. The benchmark

randomly generates eight relational tables with a schema reflecting a typical data warehouse

involving sales, customers, and suppliers. The benchmark employs relatively straightforward

queries, suitable for sharding, avoiding tables pre-join and aggregation, utilizing single-

column indexes. Noteworthy, TPC-H has shortcomings include the linear scaling of non-fact

tables, homogeneous data distribution, use of Third Normal Form (3NF) rather than a star

schema (common in this type of analytical workloads [70]), and the non-comparability of its

handcrafted queries with the auto-generated queries of actual workloads [71]. Despite these

limitations, the TPC-H benchmark remains widely cited, with hundreds of annual reference

in the literature.

2.5.3 TPC-DS

The TPC-DS [72] is another industry-standard decision support benchmark, involving much

complex queries using much wider tables when compared to previous TPC decision support

benchmarks, such as TPC-H. More precisely, its tables are composed of up to 39 columns

with domains ranging from integer, float (with various precisions), char, varchar (of various



18 background

lengths) and date. Combined with a large number of tables (total of 25 tables and 429

columns) the schema gives both the opportunity of a realistic and challenging query set

as well as an opportunity for innovative data placement algorithms and other schema

optimizations, such as complex auxiliary data structures. Furthermore, the introduction of

NULL values into any column except the primary keys opens yet another dimension of

complexity compared to TPC-H benchmarks. TPC-DS generalized query model utilizes 99

query templates testing the interactive and iterative nature of On-Line Analytical Processing

(OLAP) queries, the extraction of queries for data mining tools, ad-hoc queries, and the more

planned behavior of well known reporting queries. The benchmark queries feature advanced

SQL features, extensive filter predicates and functions, and diverse data scans.

2.5.4 Terasort

Terasort [73] is a widely recognized benchmark used to assess the performance of sorting

large volumes of data in Big Data processing frameworks, especially within distributed

computing settings. It was introduced as part of the Apache Hadoop project and has since be-

come a standard benchmark for evaluating the efficiency and scalability of systems handling

massive datasets. Terasort is specifically designed for execution on distributed computing

frameworks like Apache Spark. The sorting of substantial datasets is a foundational task in

data processing. In Big Data scenarios, efficient sorting massive datasets is crucial for a range

of analytical, data mining, and processing tasks. Terasort operates on semi-structured data,

consisting of key-value pairs, where keys are structured as strings while values are often

unstructured or irrelevant to the sorting operation. An example of use case is a large-scale

e-commerce company generating massive amounts of log data daily, which needs to sort

this data based on timestamps to gain insights into customer behavior.
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W O R K L O A D S C A L A B I L I T Y A N D P E R F O R M A N C E A N A LY S I S

This chapter describes the first contribution of this thesis. This contribution analyzes the

data exchange mechanisms between functions in current open-source serverless platforms,

considering function levels of parallelism, and proposes a performance model capturing the

behavior of serverless workloads (Section 3.2). Furthermore, we present the use case and

validation workload, along with its characterization, showing a methodology to extract the

necessary components to translate a traditional monolithic application to a serverless appli-

cation (Section 3.3). Then, we perform a bandwidth characterization of the different available

communication mechanisms and evaluate the accuracy of the proposed performance model

(Section 3.4). Finally, thanks to the flexibility of the proposed model, we investigate the

performance impact on the use case workload of the following key factors: task granularity

and concurrency, data locality, resource allocation, and scheduling policies (Section 3.5).

3.1 introduction

The stateless nature of serverless computing initially limited its applicability to a subset of

workloads, primarily encompassing simple real-world applications, e.g., web microservices

and IoT applications. Nevertheless, the intrinsic resource-intensive and inherently parallel

characteristics of data-intensive analytics applications suggest that this type of applications

could highly benefit from the elasticity and the virtually unlimited scalability offered by

serverless platforms. However, while the desirability and advantages of enabling more

complex workloads in serverless environments are known, its feasibility and efficiency

still remain unclear. There is a need to fully understand 1) data exchange mechanisms

between functions in current serverless platforms, and whether new approaches are needed,

and 2) data flows of these workloads, considering their levels of parallelism and resource

requirements. Furthermore, being able to evaluate the data sharing impact on the workload

execution and to choose the best storage configuration ahead of the actual porting, would

save time and increase the overall workload performance. Aiming to understand the possible

19
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data exchange solutions and the impact of complex data flows in serverless environments,

the main contributions of this work are:

– A performance model capturing the performance characteristics of serverless work-

loads with data exchanges, supporting different configurations and models of exchang-

ing data.

– A complete characterization of a data-intensive workload, showing a methodology to

extract the necessary components to translate a traditional application to serverless.

– A comprehensive evaluation of data-intensive workloads in serverless environments,

exploring parallelism, data exchange, resource allocation, and scheduling policies.

3.2 performance model

The goal of the proposed model is to estimate the end-to-end performance of a non-trivial

workload with data dependencies between the pipeline tasks, as if it was running in a

data center on top of a Knative-based serverless environment. Since there is a significant

emphasis on data, the model allows for different exchange mechanisms, including local

memory, local storage, and remote storage. While some of these may not be supported or are

limited in current serverless implementations, they can still be used to evaluate alternative

solutions. The inputs of the model are: 1) hardware platform description, 2) scheduling

strategy, 3) workload input, 4) workload graph, and optionally 5) bandwidth characterization.

The hardware platform description (1) input provides the necessary information about the

cluster machines’ memory and storage. For memory, it specifies the speed [MegaTransfers/s]

and the data width [bits] necessary to compute the theoretical memory bandwidth (i.e.,

speed × data_width/8) [Mbps], while for storage, the maximum transfer rate [Mbps] is

reported. We have retrieved this information from the datasheets or, in the case of memory,

inspecting the underlying system from the CLI (e.g., Linux dmidecode command). The

scheduling strategy (2) input specifies the task-node assignments. The workload (3) input

defines the input dimension, the total execution time, and the amount of data it contains.

The workload graph (4) input specifies for each task its name, predecessor tasks names,

inputs/outputs object names, compute time or profiling real percentage, parallelisms object

with their possible degree of parallelism. With degree of parallelism we denote the number

of concurrent task executions for a specific parallelism. Finally, the optional bandwidth

characterization (5) input provides, for a set of data dimensions, the median read/write

bandwidths for the three accounted data exchange mechanisms. If this last input is provided,

the model returns a more realistic estimation; otherwise, it provides a best-case prediction

by using the theoretical bandwidths. Given a pipeline composed of n tasks, each i-th task

total time is composed of: the time necessary to read the input data Tr
i , the compute time Tc

i ,
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and the time necessary to write the output data Tw
i . Given the i-th task exploits m levels of

parallelism, for each j-th level of parallelism, we denote with xi,j the number of sequential

computations in case of no task replication and with pi,j the degree of parallelism. Therefore,
xi,j
pi,j

represents the actual number of computations the task has to perform. In case of no

concurrent execution, the model considers pi,j = 1. Thus, we derive the end-to-end pipeline

time Ttot as:

Ttot =
n

∑
i=1

[(
m

∏
j=1

⌈
xi,j

pi,j

⌉)
(Tr

i + Tc
i + Tw

i )

]
(3.1)

where:

Tr
i =

3

∑
k=1

(
ni

∑
s=0

Ds

BWr
k (Ds)

)
(3.2)

Tw
i =

3

∑
k=1

(
no

∑
u=0

Du

BWw
k (Du)

)
(3.3)

For example, in a text recognition workload, given a 6 pages input (xi,1 = 6) with an

average of 40 text lines (xi,2 = 40) each, if the i-th task has to perform its computation for each

input page text line, it inherits m=2 levels of parallelism. With a sequential execution, the i-th

task total number of actual computations amounts to ( 6
1 ×

40
1 ) = 240, since pi,1 = pi,2 = 1.

Differently, with a parallel execution computing 2 pages (pi,1 = 2) and 5 text lines (pi,2 = 5)

concurrently, implying 2 × 5 = 10 i-th Task replicas, the model only considers the total

number of actual computations of a single parallel replicas, i.e., ( 6
2 ×

40
5 ) = 24.

As shown in Equation (3.2) and Equation (3.3), to account for the three data exchange

mechanisms, the model computes the read time Tr
i and the write time Tw

i as the sum of the

ni inputs and no outputs partial communication latencies, computed by dividing the amount

of data to be read/written D by the specific mechanism bandwidth BW. Bandwidths BW

are functions of the amount of data D. If the bandwidth characterization input is given

and the target data dimension D is not present in the set of benchmarked dimensions,

the bandwidth BW is estimated by applying the linear interpolation method between the

two data dimension points defining the interval containing the target data dimension,

as described in Equation (3.4). More specifically, the method approximates the output

bandwidth ˆBW by generating a straight line between the bottom point (Db, BWb) and the

top point (Dt, BWt), with Db < D < Dt, and taking the corresponding bandwidth value:

ˆBW(D) = BWb + (D − Db)
BWt − BWb

Dt − Db
(3.4)
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3.3 use case and validation workload

To validate the proposed performance model we characterize and study Google’s Tesseract

OCR engine, representing the current open-source state-of-the-art. It is an interesting use

case study because it represents a more traditional workload with non-trivial computational

and data graphs, not currently well supported in serverless environments. Tesseract features

smaller data transfers compared to more I/O-intensive workloads; however, it involves

a significant amount of data at scale. For example, financial institutions processing large

amounts of documents.

3.3.1 Description of Tesseract

Given an input image, Tesseract requires converting the image to the Tagged Image File

Format (TIFF) file format. The OCR engine output consists of a simple text file containing

only the image text content. The computation follows a traditional step-by-step pipeline

in which, at a high level, three different phases can be identified, namely pre-processing,

processing and post-processing. The pre-processing phase involves image manipulation

steps, allowing to extract text lines and words features from the input components. The

processing phase exploits Long Short Term Memory (LSTM)-based Neural Network (NN)

classifier to recognize the input words, whose architecture is illustrated in Figure 3.1. Given

a text line as model input, the NN output matrix reports the specific language characters

probabilities for each time-step, being a time-step a slice of the model input. The NN output

matrix is then decoded into text by using the Beam Search algorithm. The processing phase

proceeds as a two-pass process. In the first pass, each word is predicted through the classifier,

and, in the case of satisfactory recognition, it is used by the classifier as training data. This

allows the classifier to be more accurate on the next recognition. A second pass is run over

the words that were not recognized well enough in the first pass. Our tests on the English

language show that the number of words accessing this second pass is negligible. The final

post-processing phase identifies paragraphs based on page margins and text indentation.

Tesseract offers a multi-threaded execution with up to four threads used, while processing

a page, to perform the NN computations based on Single Instruction Multiple Data (SIMD)

instructions.

3.3.2 Methodology

Transforming a traditional application like Tesseract into a serverless workload requires

understanding its internal computational graph, and splitting the application into smaller
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Figure 3.1: Tesseract LSTM-based NN architecture. The model takes in input a text line and returns
all the associated time-steps language probabilities. The layer type and the related matrix size is
reported above each layer.

computational units. Obtaining the computational graph involves profiling the application

to extract a detailed call-graph representing the workload call chains using tools like the

Valgrind profiler along with Callgrind [74]. The call-graph gives a clear view of the Tesseract

computational paths, and it allows to identify the most time-consuming functions as well as

possible levels of parallelism.

Since the code base of applications like Tesseract can be very large, it would not be

feasible to map every application function into an independent serverless function. Hence

we simplify the call-graph by grouping functions into computational units called macro-nodes.

These macro-nodes can be further evaluated by instrumenting the application code, and

using memory-profiling tools like Valgrind and Massif [74] to gather detailed information

of the workload’s footprint and the heap and stack memory allocations of each function.

Even though Massif gives an in-depth view of the application’s memory allocations, such

tool do not provide any information on the correlation between memory allocations and

variables/objects to which the memory belongs. To extract this correlation we build a set

of custom tools to trace the average dimension of each macro-node’s inputs and outputs.

Finally, to highlight data exchanges, we create a dataflow graph where nodes represent

macro-nodes and arcs represent data channels. Macro-nodes with small cost-times and

trivial data movements are merged with neighboring macro-nodes.

3.3.3 Tesseract Characterization

To characterize Tesseract, we evaluate the execution time and the data dimensions of two

single-page documents, DataSetA and DataSetB, that present different page structure and

number of lines. These documents have features similar to financial documentation, with

two columns, figures, tables, and text with different font sizes. To evaluate the scalability,

datasets are replicated generating increasingly bigger inputs, from 1 to 128 pages with a

power of two increment. For every dataset and input page combination, tests are repeated
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Table 3.1: Tesseract simplified call-graph

Macro-node
Percentage [%]

Parallelism
Granularity

Inclusive Real CG FG

main 99.97 0.28 - 1 1

ProcessMultipageTIFF 99.69 1.56 - 1 1

Recognize 98.13 0.60 Page 2 2

FindLines 12.54 0.01 Page 2 2

ExtractThresholds 2.33 2.33 Page 2 2

SegmentPage 10.20 0.01 Page 2 3

AutoSegmentation 8.13 0.01 Page 2 3

SetupSegCorOrient 4.18 4.18 Page 2 3

FindBlocks 3.94 3.94 Page 2 4

MakeTextlinesWords 2.06 2.06 Page, Block 2 5

RecogAllWords 83.82 0.20 Page 3 6

LSTMRecogWords 83.62 0.01 Page, Textline 3 7

GetLineImage 2.60 2.60 Page, Textline 3 7

RecognizeLine 81.01 0.04 Page, Textline 3 8

LSTM-NN 79.65 79.65 Page, Textline 3 8

DecodeNNOutput 1.32 1.32 Page, Textline 3 9

DetectParagraphs 1.17 1.17 Page 4 10

ten times in single and multi-threaded configurations exploiting up to four CPU threads1.

All the experiments are executed on an Intel Xeon Silver 4114 CPU running at 2.20GHz.

Table 3.1 presents the simplified Tesseract call-graph, where the macro-node real percent-

age is computed by subtracting the children inclusive percentages from its inclusive value.

We emphasize that when a macro-node computation can be parallelized, all the macro-nodes

belonging to the sub-tree having the given macro-node as root are parallelized as well. The

three main Tesseract phases, namely pre-processing, processing and post-processing, are

identified by the FindLines, RecogAllWords and DetectParagraph macro-nodes, taking 12.54%,

83.82%, and 1.17% over the total execution time, respectively. The processing phase is the

most time-consuming, mainly due to the LSTM-based NN computation featuring an inclusive

percentage of 79.65%. The workload is characterized by three levels of parallelism: at page,

block, and textline-level. More precisely, the initial Recognize macro-node computation can

be fully parallelized on the number of pages. Moreover, each concurrent page computation

can be further parallelized in its pre-processing phase on the number of page blocks when

searching for text lines and words in the macro-node MakeTextlinesWords, as well as in the

processing phase on the number of words when computing the sub-tree with the LSTM-

RecognizeWords macro-node as a root. This second parallelization opportunity is the most

relevant since it embraces the NN computation. The last outlined level of parallelism, related

to the NN output decoding, can not be exploited because there is a strong dependency

between subsequent Beam Search algorithm time-step computations.

1 Tesseract offers a multi-threaded execution with up to four threads used, while processing a page, to perform
the NN computations based on SIMD instructions.
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Figure 3.2: Scalability analysis of the (a) initial TIFF conversion phase and (b) text recognition phase.

Considering the initial TIFF conversion, we find that the amount of time necessary to

convert the input scales linearly with the number of input pages and is strongly dependent

on the page dimension, as shown in Figure 3.2a. In particular, a single PDF page in A4

format takes 1.19s to be converted. Similarly, as shown in Figure 3.2b, both single- and multi-

threaded workload execution times scales linearly with the number of input pages. Figure 3.3

shows the average per page execution times of the different configurations. DataSetA

execution times are approximately 2s slower than DataSetB ones. The multi-threaded

implementation of both inputs datasets only achieves a 15% of performance improvement

over the corresponding single-threaded implementation. This small performance gain is

due to the way in which Tesseract benefits from multi-threading: differently from what was

expected, i.e., computing one page per thread, multiple threads are used to perform the NN

computation based on SIMD instructions.

Last, we analyze the workload memory footprint and we highlight the input and output

dimensions of the initial conversion step and of each workload macro-node. The memory

footprint is up to 150MiB, with a short peak of 166.9MiB, in the first two-thirds of the

workload execution and up to 90MiB in the last one-third. Massif reveals a new macro-node

representing the Tesseract initialization step, loading all the necessary data to perform the

computation, such as the NN weights and biases. For the initial conversion step, a page

of roughly 40KB is converted into a 8.7MB image, and grows linearly with the number of

pages, so a 128 pages input takes 1.09GB. Figure 3.4 shows the dataflow graph, reporting the

input and output data dimensions for each macro-node. By analyzing the dataflow graph,

we observe that data movements are in the order of tens of . While this seems relatively

small, data transfers could become prohibitive when exploiting the per-page, per-block, and

textline-level of parallelism, highlighted with p1, p2, and p3. Indeed, considering the coarse-

grained scenario, computing n pages in parallel would increase by n times the number of

read and write requests of the involved macro-nodes. The number of requests becomes even
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Figure 3.3: Tesseract per-page average execution times exploiting one and four threads (1T and 4T).
The horizontal red lines identify the averages over all the number of pages.

higher when making use of the other levels of parallelism in the fine-grained scenario. In

the previous example, computing m lines of text in parallel would imply n × m requests.

To evaluate Tesseract in serverless environments, in this work we provide two scenarios

with different task granularity, which defines at what level code functions are grouped

to become serverless tasks. Accounting with the initial TIFF conversion step, the Coarse-

Grained (CG) scenario consists of bigger groups for a total of 5 tasks, while the Fine-Grained

(FG) scenario consists of smaller groups for a total of 11 tasks. Table 3.1 shows the mapping

between macro-nodes and tasks of the two different scenarios.

3.4 evaluation of the model

In this section, we first perform a bandwidth characterization of the different communication

mechanisms considered in this work. Then we conduct end-to-end experiments to conduct

an accuracy analysis of the proposed performance model.

3.4.1 Experimental Setup

Experiments are executed on a virtualized Kubernetes cluster composed of one master,

representing the Kubernetes control-plane, and three worker nodes on which Tasks are

deployed, along with an Network File System (NFS) server inside the same infrastructure.

The master runs in a PV with 32GB of memory and 16 vCPUs, while the three workers and

the NFS server run in a PV with 32GB of memory, 8 vCPUs, and 50GB of disk space each.

The Kubernetes cluster and the NFS server are mapped on five physical nodes residing in

the same rack and featuring an Intel®Xeon Silver 4114 CPU running at 2.20GHz connected

to four Seagate®ST2000NM0033-9ZM via a Fujitsu PRAID EP400i Controller, and a network

interface composed of an Emulex Engine™(XE)100 Series NIC and an Intel®82599ES 10Gbps
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Figure 3.5: Memory and disk characterization. First and Next keywords highligh the first and
subsequent local/remote disk bandwidths, while Remote Disk SN refers to remote operations with
producer and consumer placed on the same node.

Ethernet Controller. Physical nodes are connected through a 10Gbps Brocade VDX6740

network switch. The memory, the raid controller, and the disk feature 17GBps, 1.6GBps, and

175MBps of maximum transfer rate, respectively.

3.4.2 Model: Bandwidth Characterization

One of the model inputs is the characterization of the different communication mechanisms,

i.e., local memory, local storage, and remote storage. In this characterization we want to

capture the performance of the same complete stack that can be found in a serverless

platform, and not just the performance of the devices. The experiments are based on two

kinds of tasks: producer tasks writing data, and consumer tasks reading data. Focusing on

solutions inside the same infrastructure, data can be shared by either using a local PV (local

memory and storage), or a remote PV map on the NFS server (remote storage). The latter can

also be used to simulate an environment similar to that of major public serverless providers.

While it would be possible to run directly against a Google Cloud Storage or Amazon

S3 bucket, it is not considered in this characterization because the focus is on storage

solutions inside the same infrastructure. We evaluate data exchanges of different sizes,

ranging from 1KB to 1GB with a 4× increment. Figure 3.5 shows the sequential bandwidths

of the considered data exchange mechanisms. For both read and write operations, the

local memory and the local disk (First) solutions exhibit similar performance. Thanks to

the disk buffering computing infrastructure optimization, allowing to buffer data in main

memory buffer cache space, the local disk read and write bandwidths reach a maximum of



3.4 evaluation of the model 29

535MBps and 602MBps, which are much higher than the 175MBps disk maximum transfer

rate reported by the vendor. When a Task reads or writes data on a PV map on local

disk, data are buffered in main memory buffer cache space, allowing to benefit from higher

bandwidths compared to the disk ones. The actual dump on the disk is done periodically in

background from the operating system. Differently, the remote data requests are handled by

communicating directly with the disk. The only exception is when two tasks are co-placed:

the producer task writes the data on the remote disk, while the consumer task reads from

the memory buffer cache. We notice that in both local and remote solutions, when a task

reads/writes multiple times sequentially on the same PV, e.g., a task collecting multiple data

in input from various producers, the first operation and the following ones exhibit different

bandwidths. More precisely, the subsequent local and remote read and write bandwidths are

up to 4.41× and 2.14×, and 3.34× and 1.88× higher when compared to the first operations

bandwidths, accordingly. The local disk bandwidth increase is due to caching, while, being

the data read/written sequentially, the subsequent remote operations take advantage of the

sequential locality at the hard disk level.

Since the model is meant to handle many tasks running and sharing data at the same time,

we also evaluate the performance degradation with concurrent requests. We characterize

concurrent read and write bandwidths by manually enforcing the synchronization of the

executed tasks. As expected, by increasing the number of concurrent requests, the single

task bandwidth decreases, especially with high data dimensions. More specifically, with

30 concurrent tasks, the read and write bandwidth experience the highest performance

degradation with a decrease of up to 4.60× and 5.98×, and to 26.72× and 38.55×, for local

and remote operations, accordingly.

3.4.3 Model: Accuracy

To validate and measure the accuracy of the proposed model, we compute the average rela-

tive error of the inter-function I/O time prediction with respect to the actual communication

overhead of 100 Tesseract-like deployment runs over two different input datasets, featuring

1 and 10 pages, respectively. Following a classical black-box approach, with Tesseract-like

deployment we mean a deployment where each task performs the same data exchanges

described in 3.3.3, and sleeps during the specified time. To be fairer in the results, since

compute time is constant and significantly larger than inter-function I/O time, we consider

only the I/O time in the measurements. We run the Tesseract-like computations in two

configurations: the first co-places all the tasks on a single node following the default Kna-

tive/Tekton strategy, while the second maps the tasks on the worker nodes in a round-robin

fashion. These two configurations are referred to as local and remote.
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Table 3.2: Model accuracy.

KPI
Coarse-grained Fine-grained

1 page 10 pages 1 page 10 pages

Lo
ca

l Avg I/O Time [s] 0.324 2.890 0.670 7.362

Pred I/O Time [s] 0.319 2.753 0.750 7.055

Avg Rel Error [%] 3.09 4.21 7.70 5.64
R

em
ot

e Avg I/O Time [s] 1.189 9.303 5.388 49.938

Pred I/O Time [s] 1.099 9.283 5.579 53.813

Avg Rel Error [%] 6.90 3.64 5.61 7.42

To validate our model, we only consider sequential executions, representative of several

real-world serverless applications [75, 76]. We run exhaustive experiments with varying

data dimensions and number of operations, and compare the I/O times with the model

predicted values. In particular, we run the coarse-grained and fine-grained Tesseract-like

workloads exploiting both local and remote storage configurations. As shown in Table 3.2,

our model predicts communication latency with an average relative error of 5.52%, which

we believe is accurate enough to analyze the I/O time impact when porting a workload to

Knative/Tekton.

3.5 evaluation of data-aware serverless

Thanks to the flexibility of the proposed model, we investigate the performance impact on

the use case workload of the following key factors: task granularity and concurrency, data

locality, resource allocation, and scheduling policies.

3.5.1 Task Granularity and Concurrency

Task granularity and concurrency are two relevant factors that could highly increase or

reduce performance in terms of number of deployed task-instances and overall end-to-

end time. Finding the optimal task granularity and concurrency becomes crucial when

moving to serverless. Figure 3.7 shows the effect of different granularities and concurrencies

on the number of deployed task-instances and the end-to-end time in local and remote

deployments on a 10 pages input with 100 text lines each. As shown in Figure 3.6, given

the three levels of parallelism, i.e., at per-page, per-block, and per-textline level, we find

that the page parallelism always improves the end-to-end time, while the block parallelism

negligibly impacts the performance and the text line parallelism have similar end-to-end

times for concurrency ranging from 25 to 100. For this reason, while the coarse-grained (CG)

solution exploits page parallelism, the fine-grained (FG) solution exploits different degrees of

parallelism at per-page level, no block parallelism, and up to a degree of parallelism of 25%
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Figure 3.6: End-to-end time speedup versus the sequential execution, achieved by applying the three
different levels of parallelism.

for the text line parallelism. The fully-parallelized coarse-grained deployment increases the

number of task-instances from 5 to 32 and achieves an end-to-end time speedup of 4.57× and

3.44×, for local and remote deployments, respectively. The fully-parallelized fine-grained

deployment significantly increases the number of task-instances from 11 to 812, achieving a

speedup of 6.79× and 4.24×, accordingly. For similar configurations (depicted as circles in

Figure 3.7), coarse-grained deployment outperforms fine-grained deployment, especially

in the remote configuration where it achieves up to 1.55× of performance increase. On the

other hand, fine-grained executions achieve higher speedups, but at the expense of number

of tasks and I/O. This needs to be considered because the number of tasks may be limited

in local configurations, and I/O may become a bottleneck in remote configurations. In the

remote configuration, the network load changes substantially: with fully-parallelized coarse-

grained deployment it reaches 1.4GB, while it grows up to 15.6GB with fully-parallelized

fine-grained deployment.

3.5.2 Data Locality

The local deployment outperforms its equivalent remote deployment in both coarse-grained

and fine-grained scenarios, as shown in Figure 3.7. However, fully local deployments are

not realistic for many applications, particularly in large clusters where remote deployments

may be more flexible and improve overall throughput and resource usage.

A shortcoming of existing serverless frameworks is that tasks that are co-placed on

the same node and share the same inter-function data (e.g. functions that read the same

input) do not currently benefit from data reuse. That is, each instance of a function on the

same node will fetch the same inter-function input data. Enabling data-intensive serverless

workloads will likely require some optimizations in this regard. Creating a local memory

or disk buffer holding the shared input data might be a simple way to benefit from data

locality, decreasing requests for remote data, and improving its performance.
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Figure 3.7: End-to-end time speedups versus the sequential execution, achieved by exploiting page-
and textline-level of parallelism (p, t), and Task-instances number. (a) highlights the local deployment,
while (b) highlights the remote deployment reporting network load impact with increasingly bigger
symbol sizes.

3.5.3 Resource Allocation

In an ideal serverless environment, the user should not need to provide any resource

configuration. However, existing frameworks still allow customizing expected resource

usage for improved performance and cost. In case of no customization, frameworks usually

default new tasks with predefined amount of CPU and memory (i.e., 100m of CPU and

128MiB of memory), leaving the Task to use more resources if available, up to the default

limits (i.e., 2CPU and 1GiB of memory). With the default resource allocation, tasks under-

utilizing the assigned resources could prevent other tasks from being scheduled, leading

to worse overall system throughput. This is particularly relevant for many data-intensive

workloads since tasks belonging to the same pipeline may have significantly different

resource requirements, and these can also change depending on the input.

For example, focusing exclusively on memory for the sake of simplicity, we get approx-

imately 31GiB of allocatable memory in each one of the worker nodes in the evaluation

environment. Each Tesseract execution amounts to 150MiB on average, with a peak of

167MiB, in the first two-thirds of its execution and 90MiB in the last one-third. In a coarse-

grained scenario, and allocating the same peak memory of 167MiB (see Section 3.3.3) to

all 5 tasks, we would be able to fit up to 38 Tesseract deployments per node. With a more

accurate allocation of 150MiB, 167MiB, 150MiB, 90MiB, 90MiB for each one of the five tasks,

we would be able to fit up to 49 Tesseract deployments.

3.5.4 Scheduling Policies

Most of the schedulers proposed in the literature consider properties such as CPU usage,

memory utilization, job execution time, and job deadline. Another essential factor to consider
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when optimizing data-intensive task placement is the effect on the network. By leveraging

on the proposed model, we highlight the primary importance of data locality in reducing

communication overheads by showing the impact on the overall end-to-end time of four

different scheduling strategies: (1) random, (2) round-robin, (3) consolidating, and (4) data-

centric. The first two are self-explanatory. The consolidating strategy places tasks at per-node

level in a sequential fashion, saturating the resources available for each node. The data-centric

strategy aims to reduce inter-node data movements, considering the number and amount of

data to be shared and exchanged between functions. For the use case workload, the data-

centric strategy maps for the coarse-grained scenario the processMultipageTIFF, Pre-Processing

and Processing tasks on the same node. For the fine-grained scenario, instead, the set of

tasks computing the same page and belonging to the pre-processing and processing phase

are co-placed, while spreading the remaining ones randomly. This allows to reduce the

communication overhead by exploiting the higher local bandwidths for the most relevant

data movements, and to reduce the number of remote data exchange.

Figure 3.8 shows the performance achieved by the four strategies when simulating the

execution of 50 pages input on a 100 nodes cluster, with a degree of parallelism of 50% and

100%. It is noticeable that the random and round-robin performance are similar, and that

they are outperformed by both the consolidating and data-centric strategies. In particular,

the consolidating strategy achieves an I/O time speedup of 4.32× and 3.40× in the coarse-

grained scenario, and of 1.49× and 1.16× in the fine-grained scenario, for 50% and 100%

degrees of parallelism, respectively. The data-centric solution gains an I/O time speedup of

2.62× and 2.35× in the coarse-grained scenario, and of 1.84× and 1.48× in the fine-grained

scenario, for 50% and 100% degree of parallelism accordingly. The coarse-grained workload

deployment is composed of 77 and 152 tasks for 50% and 100% degrees of parallelism,

respectively; its consolidating placement performs better than the data-centric solution

because it relies on fewer nodes, i.e., one or two. Differently, the fine-grained workload

deployment comprises a much higher number of tasks, i.e., 2027 and 4052; therefore, the

data-centric solution impact on the network load is lower than the consolidating solution.

More specifically, the data-centric achieves a 1.23× and 1.27× of performance improvement

versus the consolidating strategy, for 50% and 100% degrees of parallelism, respectively.

While the consolidating solution sequentially maps tasks, the data-centric one efficiently

places all the tasks characterized by the page-level parallelism as a unit, reducing the

communications over the network.

3.6 related work

A big challenge when deploying data-intensive workloads on serverless computing plat-

forms is efficiently sharing data between tasks. Several works in the literature have proposed
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relaxing disaggregation to favor performance. [77] proposes the “fluid multi-resource disag-

gregation” concept, where the platform can fall back on disaggregation as needed, but can

also move resources around to enhance proximity, meaning co-locating code with the data

it accesses. Similarly, [78] proposes the so-called “fluid code and data placement” in which the

infrastructure should have the ability to selectively co-locate code and data on the same side

of a network boundary, whether done via caching/prefetching data near computation or

pushing computation closer to data. The same work claims that this feature is not provided

in a meaningful way by today’s serverless frameworks.

In the past years, there have been many proposals to orchestrate distributed computing

running on serverless [79–83], but only a few focusing on storage [37, 84, 85]. The majority of

the works present in the literature are built on top of AWS Lambda, as the two discussed in

the following, which more relate to the proposed work. In [37], the authors propose Locus, a

serverless model for the most general all-to-all shuffle scenario that combines cheap but slow

storage with fast but expensive storage, achieving 4×-500× performance improvements

over baseline, and at the same time being close to or beating Spark’s query completion

time by up to 2×. The work shows that, with only slow storage, sorting 100TB of data, a

hash-based shuffle would be 500× slower than the current record, while with only fast

storage, supporting a much higher throughput, the cost would become prohibitive. Locus

accurately predicts shuffle performance, with an average error of 15.9%. When compared to

Locus, being much more general, our model predicts, with higher accuracy, the performance

of an entire workload deployment, exploiting fast local storage as much as possible. [84]

highlights the relevance of efficiently communicate data between functions via a shared

data store in analytics workloads on serverless platforms. The work analyzes three different

storage systems, i.e., a disk-based managed object storage service, an in-memory key-value

store, and a Flash-based distributed storage system. In particular, the authors show that S3

has significant overhead, particularly for small requests, achieving a throughput of up to
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70MBps for requests of 10MB or larger. Similarly, by characterizing an NFS-based remote

shared storage, we show that it also introduces significant overheads for small requests

while achieving higher throughput at scale. To be in line with the serverless abstraction, in

this work, we only account for fully-managed storage solutions, as in-memory key-value

stores and flash-based storage would require the user to either select instance types with

the appropriate memory, compute and network resources, or to manually configure and

scale their storage cluster resources, respectively.

To the extent of our knowledge, our work is the first analyzing the storage solutions and

modeling the data-sharing performance within the serverless Kubernetes-base ecosystem.

3.7 summary

This work analyzes in detail the feasibility and efficiency of running more complex work-

loads, such as data-intensive analytics workloads, within serverless environments. More

precisely, we fully understand data exchange mechanisms between functions in current open-

source serverless platforms, emphasizing that communication latency through shared object

storage represents the main bottleneck in scenarios involving more complex workloads.

To address this, we introduce a performance model accurately predicting the data-sharing

performance with an average relative error of 5.52%. This performance model accounts for

how data is shared between functions, considering not only the amount of data but also

the underlying technology employed. Such model enables the assessment of data-intensive

analytics workloads in terms of task granularity and concurrency, data locality, resource

allocation, and scheduling policies. Our evaluation shows that task granularity and con-

currency are pivotal factors that could highly reduce or increase performance in terms of

overall end-to-end time and number of deployed task-instances. For similar configurations,

coarse-grained deployment outperforms fine-grained deployment, achieving an end-to-end

time speedup of up to 1.55×. On the other hand, when considering varying parallelism

configuration, fine-grained executions achieve higher speedups (from up to 4.57× to up to

6.79×), but at the expense of number of tasks (from 11 to 812 tasks) and I/O (from 1.4GB to

15.6GB). We also show that, when fixing the amount of resources, a more accurate resource

allocation strategy allows to fit 49 workload instances per worker node, an increase of 11

instances compared to the default resource allocation. Finally, we show that the data-sharing

time for such complex workloads can reach a speedup of up to 4.32×, depending on how

the workload is deployed and scheduled. This work gave us valuable insights on research

directions towards optimizing the performance of serverless environments when executing

complex data-intensive analytics workloads.
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D I R E C T I N T E R - F U N C T I O N C O M M U N I C AT I O N E N A B L E M E N T

This chapter describes the second contribution of this thesis. This contribution tackles the

problem of centralized object storage, leading to highly inefficient workload executions

when directly using serverless platforms to run data-intensive analytics workloads. To

cope with this, we propose Floki, a system enabling direct data communication between

non-colocated functions, allowing to efficiently run data-centric analytics workloads in

open-source serverless environments (Section 4.2). We prototype our proposed solution and

our experimental evaluation (Section 4.3) shows the effectiveness of the proposed solution

to overcome state-of-practice shared object storage high latency accesses and to execute

data-intensive analytics workloads efficiently in terms of end-to-end latencies and resource

usage impact.

4.1 introduction

Major serverless platforms [4–6, 46] take disaggregation to an extreme, imposing functions to

exchange data only through shared object storage. In the context of data-intensive analytics

workloads, represented as DAGs and characterized by a considerable intermediate data trans-

fers, shared object storage becomes a bottleneck for efficient inter-function communication

due to its high-latency access. Indeed, as demonstrated in [37], directly using a serverless

platform for data-intensive workloads leads to highly inefficient executions. The slow data

transfers between functions make the CloudSort benchmark [87] to be up to 500× slower

when executed on AWS Lambda [4] with S3 instead of on a cluster of VMs.

Recent studies tackle this problem by implementing optimized exchange operators [4, 38],

using multi-tier storage combining slow with fast storage or solely remote in-memory storage

[37, 85, 88], exploiting per-node caches [89, 90], co-locating functions on a single container

[91–94], handling external storage on long-running VMs [16, 95, 96], or circumventing the

network constraints [97]. However, these methods either use domain-specific optimizations,

require two copies of data over the network, are not fully transparent to the user, break the

advantage of fine-grained scaling, or use non-serverless components.

37
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In this work, we present Floki, a system enabling direct inter-function communication

in Kubernetes-based environments. It creates point-to-point data channels exploiting con-

ventional volumes, pipes and Transmission Control Protocol (TCP) sockets, for intra-node

and inter-node data transmission, allowing data to be transferred directly from producer

to consumer functions in a fully transparent fashion, minimizing data copying over the

network. Floki offers workflow-oriented data communication, increasing performance while

minimizing resource requirements without imposing any constraint on function place-

ment. Specifically, its flexibility and observability allow creating data channels adapting to

the specific function scheduling of the underlying orchestration framework. We envision

Floki to be leveraged by container-based platforms and users for high-performance volatile

intermediate data exchange, as an alternative solution for message passing.

In summary, the main contributions of this work are:

– A proactive workflow-based data forwarding system enabling point-to-point data

transfers without additional overheads, such as state-of-practice storage overheads.

– The design of a full communication stack, allowing non-colocated functions to share

data as they are hosted on the same node through local read-write operations.

– An in-memory mechanism for transferring volatile data, capable of dealing with

arbitrary intermediate data sizes efficiently and scalable on the data volume.

– A complete benchmark of Floki on the principal communication patterns in distributed

systems, i.e., one-to-one, fan-out, fan-in, and all-to-all, with data transfers between

1MB and 16GB. Floki improves end-to-end time performance up to 74.95×, reducing

the largest data sharing time from 12.55 to 4.33 minutes, while requiring up to 50, 738×
fewer disk resources, with up to roughly 96GB disk space release.

The remainder of this chapter is organized as follows: Section 4.2 describes the proposed

architecture. Section 4.3 reports the experimental setup and evaluates the results. Section 4.4

discusses potentials, limitations, and future research directions. Section 4.5 reviews the main

related work. Finally, Section 4.6 summarizes the work.

4.2 system design

As introduced in Section 4.1, the shared remote storage represents the main bottleneck when

deploying data-intensive workloads in serverless environments. In this section, we tackle

the shared object storage bottleneck problem by presenting Floki, a system that proactively

enables faster point-to-point data sharing by exploiting local resources and TCP socket

connections. The system requires two inputs: First, the DAG describing the workflow where

nodes represent functions and arcs represent data dependencies between functions; Second,
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Figure 4.1: Floki’s architecture.

the mapping between functions and cluster nodes. In the current version of Floki, we assume

the two inputs are given, and the user containers read/write data sequentially. We further

discuss these assumptions in Section 4.4. In Floki, we achieve the following design goals: 1)

Deal with arbitrary complex data structures, 2) Proactive data transfer between functions, 3)

Fast and direct inter-function communication, 4) No constraint on functions placement. We

highlight how we achieve these specific design goals in the remainder of this section.

Floki’s architecture transmits data in a fully volatile manner relying on pipes and TCP

sockets, widely used for Inter Process Communication (IPC) for their efficiency, for intra-node

and inter-node data transmission, respectively. Figure 4.1 provides an overview of Floki’s

architecture allowing a volatile sharing of data. In Floki functions run concurrently, while

with the naïve shared object storage communication functions run sequentially based on

data dependencies (the consumer function is deployed only when all the producer functions

end writing intermediate data). Data is transmitted and stored as byte arrays, allowing

Floki to deal with arbitrary complex data structures independently of the programming

language (Goal 1). Floki’s architectures solve the centralized storage bottleneck by offer-

ing direct communication between functions, where data exchanges are managed on a

producer-consumer functions pair level, minimizing data copying over the network. Direct

communication between functions implies the following advantages. First, the number of

concurrent read/write operations is reduced as resources are shared among a lower number

of functions, i.e., the ones co-placed on a given node, or of exclusive use. Second, the I/O

and CPU usage are lower. Finally, thanks to multi-threading, a producer function data can

be sent in parallel to multiple consumer functions, and a consumer function can receive

concurrently multiple data.
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4.2.1 Key Components

Floki’s architectures consider five key components: the data- and sync-pipe, the client and

server sockets, and the forwarding agent. To proactively transfer data between producer-

consumer function pairs, based on the specific workload DAG and function-node mappings,

Floki creates all the necessary components and relative connections immediately after

workload submission and before its deployment (Goal 2).

4.2.1.1 Data- and sync-pipe

The two pipes, exposed on a local PV, allow exchanging data between the user container and

the local forwarding process. While the data-pipe represents the data communication channel,

the sync-pipe synchronizes Floki with the user container letting the forwarding agent to write

on the data-pipe only when the user container is ready to receive. This prevents the write

operation from receiving a broken pipe signal when the read file descriptor referring to the

pipe read end is not opened.

4.2.1.2 Client and server sockets

These are the key components in charge of transmitting data between pairs of nodes. We

choose to implement TCP sockets guaranteeing features such as error checking, ordered

data delivery, and enabling uniquely identified connections between two endpoints, i.e.,

combining client and server sockets.

4.2.1.3 Forwarding agent

This component, instantiated into a process in the host namespace, represents Floki’s

architecture core component. At a high level, the primary purpose of this component is

to drive inter-node communication, forwarding data directly from the producer to the

consumer function (Goal 3). More precisely, its role is threefold. First, it creates and sets

up the required TCP connections. Second, it supplies the necessary input data to the user

container. Third, it forwards the data produced by the user container to the following

functions in the chain. Since the forwarding agent mainly performs write/read memory

buffers operations, we expect its overhead to be negligible. To proactively set up the

communication infrastructure for the specific workflow, it internally stores the function

name to which it refers and the ordered lists of data object names to receive/send for each

of the previous/following functions in the workflow. In addition, it stores the mapping

between the following functions in the workflow and the IP address of the nodes to which

they have been scheduled to account for the underlying scheduler functions placement
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Algorithm 1 Floki’s forwarding agent algorithm.
1: procedure recvData(sSocket, listObjsToRecv)
2: AquireLock(dataPipe)
3: for all objName ∈ listObjsToRecv do
4: dataSize = RecvAndWriteSize(sSocket, dataPipe)
5: RecvAndWriteData(sSocket, dataPipe, dataSize)
6: end for
7: ReleaseLock(dataPipe)
8: end procedure
9: procedure sendData(cSocket, listObjsToSend)

10: for all objName ∈ listObjsToSend do
11: if currentObjName == objName then
12: SendDataSize(cSocket, sizeBuffer)
13: for k = 1 to ⌈outDataSize/packetSize⌉ do
14: SendDataPacket(cSocket, dataBuffer)
15: end for
16: end if
17: end for
18: end procedure
19: procedure ForwardingAgent( )
20: producers = GetSocketsProducersNames(sSockets)
21: SendOwnName(cSockets)
22: WaitReady(syncPipe)
23: for i = 1 to #sSockets do
24: thsIn[i] = thread(recvData, sSockets[i], listObjsToRecv)
25: end for
26: WaitThreadsEnd(thsIn)
27: for j = 1 to #cSockets do
28: thsOut[j] = thread(sendData, cSockets[j], listObjsToSend)
29: end for
30: for all outObjName ∈ outObjsNames do
31: currentObjName = outObjName
32: outDataSize = ReadDataSize(dataPipe, sizeBuffer)
33: for k = 1 to ⌈outDataSize/packetSize⌉ do
34: ReadDataPacket(dataPipe, dataBuffer)
35: end for
36: end for
37: WaitThreadsEnd(thsOut)
38: end procedure
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(Goal 4). Based on this information, it automatically derives the necessary number ofserver

and client socket connections, i.e., #sSockets and #cSockets.

Algorithm 1 shows the pseudo-code of the forwarding agent, whose top-function is repre-

sented by the ForwardingAgent procedure. Once the #sSockets server and #cSockets client

socket connections are opened and set up, the forwarding agent receives producer functions’

names getting the correspondence with the server socket connections (line 20). Storing for

each producer the list of data object names to receive allows the forwarding agent to know

the number and the names of the data objects transmitted on each server socket. Then, the

forwarding agent sends the related function name on all client sockets (line 21). Since the

forwarding agent starts before the workflow is deployed, to respect the coordination of the

pipe operations, the forwarding agent waits for the user container ready signal eventing that it

is running and ready to read data from the data-pipe (line 22). Once received, the forwarding

agent creates the #sSockets input threads (lines 23-25). The input threads alternately write on

the data-pipe, sending first the data size (line 4) and then the data content read in a packet-

based fashion from the corresponding server socket (line 5). The input threads’ data-pipe write

operations follow the order declared in the stored list of data objects to receive. To handle

data-pipe contention, the threads’ write operations are synchronized by acquiring (line 2)

and releasing (line 7) a lock. When all input threads finish (line 26), the output threads,

sending the user container-produced data on the client sockets, are created (lines 27-29).

For each produced data object, the forwarding agent reads the data object size outDataSize

(line 32) and the data object content from the data-pipe (lines 33-35). To guarantee output

threads access to both data object size and content, the forwarding agent read operations store

them in sizeBu f f er and dataBu f f er shared memory buffers. Finally, each output thread

sends the buffers on the client socket (lines 12-15) if the current received data object, i.e.,

currentObjName, belongs to its list of objects to send (line 11).

4.2.2 Execution Lifecycle

Figure 4.2 illustrates how Floki works step-by-step with a simple example of a two functions

workflow. The first function reads the workflow input stored in the centralized object

storage and creates the intermediate output outA. In contrast, the second function reads

the intermediate data object outA and computes the workflow output out, saving it in the

object storage. For data transferred in a packet-based fashion, in Figure 4.2 we highlight the

operations performed multiple times with circular arrows. First, the two forwarding processes

are created and started, and then the two functions, represented by PodA and PodB, are

deployed and started concurrently. While the first function reads the workflow input from

the object storage (step 1), the second function sends the ready signal on the sync-pipe to

the local forwarding agent (step 2), eventing it is up and running and waiting to read data
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Figure 4.2: A step-by-step example of Floki.

on the local data-pipe. During the intermediate data object OutA computation (step 4), the

forwarding agent on the second node reads the ready signal (step 3) from the sync-pipe and

waits for the first packet on the server socket. Once the first function ends to compute the

intermediate data object outA, it first writes outA size packet and then iteratively writes outA

content in packets on the local data-pipe (step 5). The local forwarding agent reads the packets

from the data-pipe (step 6) and sends them to the client socket (step 7). On the consumer side,

packets are read from the forwarding agent (step 8) and written to the local data-pipe (step

9). Finally, packets are read from the second function (step 10), which, once received outA,

computes the workflow output out (step 11) and stores it in the object storage (step 12).

4.3 experimental results

To evaluate our approach, we first analyze the impact of different pipe and socket buffer

sizes on data communication latencies to find the optimal sizes balancing performance and

resource usage. Then, we evaluate Floki in terms of performance and resource usage impact,

considering four of the most common distributed systems communication patterns, i.e.,

one-to-one, fan-out, fan-in, and all-to-all.

4.3.1 Experimental Setup

To prevent us from benchmarking cloud vendors’ specific environments, the experiments

are run on an on-premise cloud-prepared environment. Experiments are executed on a

virtualized Kubernetes cluster composed of one master, representing the Kubernetes control-

plane, and 7 worker nodes on which functions are deployed. Given the current absence

of a built-in pipeline structure within Knative, as introduced in Section 2.2, we leverage

Tekton for serverless capabilities. A MinIO server [98], a widely used high-performance
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object storage, outside the Kubernetes cluster but inside the infrastructure, is considered

in the experiments as shared storage. In-memory key-value stores, such as Redis [99] and

Memcached [100], are not considered since they require users to select instance types in

terms of network, compute, and memory resources to satisfy their application requirements,

and to explicitly provision resources. This requirement breaks the serverless hassle-free

management fundamental principle. Furthermore, these in-memory storage solution usually

re-introduce always-on infrastructure, severely limiting the benefits of serverless. Finally,

while cloud providers offer in-memory storage instances based on Memcached or Redis,

they are not fault tolerant and do not auto-scale as do serverless computing platforms

(not matching the real flexibility demands of such platforms [3, 82]. The master runs in a

Linux-based VM with 32GB of memory, 16 virtual cores, and 100GB of disk space, while the

workers run in a Linux-based VM with 128GB of memory, 16 virtual cores, and 200GB of disk

space each. The MinIO server runs bare-metal on a node featuring an Intel®Xeon E5-2620

CPU running at 2.00GHz, interfacing with two 1.6TB Intel®DC P3608 SSDs through NVMe.

The VMs are synchronized in the millisecond range. The Kubernetes cluster is mapped on

8 physical nodes residing in the same rack and featuring either an Intel®Xeon Silver 4114

CPU running at 2.20GHz or an Intel®Xeon E5-2630 v4 CPU running at 2.20GHz. In the

first case, nodes are connected to four Seagate®ST2000NM0033-9ZM; in the second case,

nodes are connected to four Seagate®ST2000NM0055-1V4104. Physical nodes are connected

through a 10Gbps Brocade VDX6740 network switch. Memories and disks feature 17GBps,

19GBps, 175MBps, and 249MBps of maximum transfer rate, respectively. The experimental

evaluation reports average results computed over 10 sequential runs for reliability.

4.3.2 Pipe and Socket Buffer Sizes Analysis

In this analysis, we want to analyze the impact of different buffer sizes on fixed-size data

communication over pipes and sockets and find the optimal buffer sizes. The experiments

are based on two types of functions: a producer function writing data in packets on a channel



4.3 experimental results 45

and a consumer function reading data in packets from a channel. The evaluation considers

different buffer sizes, ranging from 1 system page, i.e., 4KB, to 128 system pages, i.e., 512KB,

with the kernel imposed constraint of a power-of-two increment1. The lower range limit, i.e.,

1 system page, represents the size for which the kernel guarantees pipe writes operations to

be atomic. Within Floki, a data-pipe is of exclusive use of a single producer at a time; thus,

the pipe buffer size can be increased without affecting writes operations atomicity.

Figure 4.3 shows the average transfer times of a 16GB data object with different pipe and

socket buffer sizes, and the related resource usage. Note that the socket resource usage is

always twice the corresponding buffer size: TCP allocates twice the requested buffer size

and uses the extra space for administrative purposes and internal kernel structures. While

the difference between the pipe and socket transfer times is significant for small buffer

sizes, the transfer times are comparable for big buffer sizes. In particular, as highlighted

in Figure 4.3, 16 system pages buffer size, i.e., 64KB, represents the optimal size, reducing

and balancing the pipe and socket transfer times. Increasing the buffer size would provide

comparable transfer times while using more resources. Therefore, the following experiments

and evaluations consider a buffer size of 16 system pages.

4.3.3 Performance Evaluation

We conduct a series of experiments to evaluate the performance of Floki in terms of end-

to-end times. Targeting data-intensive analytics workloads, the evaluation considers data

sizes ranging from 1MB to 16GB with a 2× increment. The object storage end-to-end

time, representing the baseline, considers two time components: the function time to write

data from the object storage, and the function time to read data from the object storage.

Differently, Floki end-to-end time considers three time components: the function time to

write on the local buffer on the producer side, the time to transmit the data on the network,

and the function time to read data from the local buffer on the consumer side. To measure

the end-to-end times, we register the timestamp before each producer function starts to

write data and the timestamp after each consumer function finishes reading data. Thus,

given N producers and K consumers functions with TSpi and TScj as their timestamps, we

derive the end-to-end time TE2E as:

TE2E = max(TSc1 , .., TScK)− min(TSp1 , .., TSpN ) (4.1)

1 A power-of-two increment is a constraint set by the kernel when allocating the pipe buffer size: given a requested
buffer size x, the kernel allocates the next higher power-of-two page-size multiple of x.
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As Equation (4.1) shows, the end-to-end time TE2E accounts for possible not fully concurrent

operations by considering the minimum of the producers timestamps TSpi and the maximum

of the consumers timestamps TScj .

Analyzing Floki end-to-end time components, i.e., write, network, and read times, we find

that the network component dominates the end-to-end time. More specifically, local write

and read times are in the tens of milliseconds range, while the network times are in the range

of hundreds of milliseconds. As writers and readers functions are sequentially executed, the

network component is highly affected by the underlying orchestrator overhead of creating,

scheduling, and initializing the readers functions pods. With the data size increase, this

almost constant overhead becomes negligible because the read and write time components,

ranging from tens to thousands of seconds, tend to dominate the end-to-end time. While the

overhead is visible in the one-to-one pattern, it is hidden in the remaining patterns by the

object storage performance degradation. With multiple writers and readers, in the proposed

volume-based solution, each writer/reader exclusively operates on its local PV; instead, with

object storage, the writers/readers access the shared storage

Contrarily to a naïve solution relying on shared object storage, producers and consumers

functions are deployed and run concurrently. The benefits of the volatile data share are

more visible with small data sizes, i.e., from 1MB to 256MB, for which a higher perfor-

mance increase is obtained. It is worth noting that, since data objects are read sequentially

from the consumer functions, with multiple producers, functions using Floki gain smaller

performance than those achieved with a single producer. Floki reduces the end-to-end

time up to: 74.95× in the one-to-one pattern; 25.34×, 15.83×, and 24.83× in the fan-out

pattern; 10.11×, 10.18×, and 7.49× in the fan-in pattern; 9.99× and 8.11× in the all-to-all

pattern. Overall, considering the impact of Floki in terms of end-to-end time, the most

significant time-savings are reached with a data size of 16GB, featuring the largest data

transfer latency. In particular, the higher time reductions are achieved in the 1to6 pattern,

where communication latencies are reduced from 753s to 260s on average. In other words,

Floki allows saving 8.22 minutes on data sharing latency over the object storage baseline

requiring 12.55 minutes.

4.3.4 Resource Usage Evaluation

Resource usage is crucial in serverless environments, where resources are billed with a

pay-as-you-go model. We want to estimate and compare the resource usage of Floki to

the object storage solution, representing the baseline, in the four considered patterns, i.e.,

one-to-one, fan-out, fan-in, and all-to-all. To assess the gap of resource requirements between

varying data sizes, we choose two extreme cases just for comparison, i.e., 1MB and 16GB. In

the following, DS represents the data size, T the total amount of functions composing the
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Figure 4.4: Floki’s end-to-end speedups over the object storage solution in the analyzed distributed
systems patterns.

specific pattern, P and C the number of producers and consumers functions, and PBD and

SBD the pipe and socket local buffer sizes (i.e., 64KB and 128KB), accordingly. The object

storage resource usage estimation does not consider the necessary internal buffers to write

and read the data object/file since their sizes are negligible compared with the analyzed

data sizes. Being the object storage shared among the different functions, we derive the

related resource usage RUObjStorage as:

RUObjStorage = (P ∗ DS)D (4.2)

The required disk space is proportional to the number of producers functions P. Therefore,

from a resource usage perspective, there is no difference among the patterns composed
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Table 4.1: Resource usage and saving on 16GB data size.

Num. Producers Num. Consumers
Object Storage Floki

Usage [GB] Usage [KB] Saving

1 1 16 384 43,691

1 2 16 704 23,831

1 4 16 1,344 12,483

1 6 16 1,984 8,456

2 1 32 704 47,663

4 1 64 1,344 49,932

6 1 96 1,984 50,738

2 2 32 1,280 26,214

3 3 48 2,688 18,725

of the same number of producers and a different number of consumers. For instance, the

fan-in pattern with three producers and one consumer would require the same disk space as

the all-to-all pattern with three producers and three consumers. Differently, Floki represents

a significantly less expensive resource usage solution. Considering only the memory space

needed to hold the local buffers to perform the pipe and socket operations, we derived Floki

resources usage RUFloki as:

RUFloki = (T ∗ PBD + 2 ∗ P ∗ C ∗ SBD)M (4.3)

We evaluate Floki resource usage following the presented analysis. By applying Equa-

tions (4.2) and (4.3), the resource-saving is evaluated by dividing the resource usage of the

object store baseline for the Floki resource usage. For example, when sharing 1MB, Floki

saves 1MB
384KB = 2.67× of resources compared to the baseline. As Table 4.1 shows, Floki always

demands a significantly lower amount of resources compared to the object storage solution.

More precisely, each function composing the workflow only requires 64KB of memory for the

pipe buffer (PBD) and 128KB for each client/server socket buffer (SBD), allowing significant

resource-saving scaling linearly with the data size increase. For example, considering the

simple one-to-one pattern (P = 1 and C = 1) on 16GB, while the object storage requires

16GB of disk space, Floki only requires 2 ∗ 64KB + 2 ∗ 1 ∗ 1 ∗ 128KB = 384KB of memory

space, allowing a 16GB/384KB = 43, 691× of resource-saving. The achieved resource-saving

on 16GB differs from the corresponding 1MB saving by a factor of 16, 384×, equivalent

to the difference between the two data sizes. Overall, Floki achieves up to 50, 738× of

resource-saving, translating into a memory allocation of roughly 1.9MB instead of an object

storage allocation of 96GB.
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4.4 discussion

Envisioning Floki as part of Knative and Kubernetes-based workflows frameworks, we

discuss the made assumptions and their integration limitations. In particular, the missing

features relate with interfaces, fault-tolerance, multi-tenancy, data recovery, and integration

with such frameworks.

4.4.1 Assumptions

Floki requires two inputs: the functions-nodes mapping and the workload DAG describing

the workload pipeline. In the currently available computation frameworks, the workload

DAG is provided by the user in the form of a configuration file (e.g., JSON file) [101, 102], in

the form of a high-level description [103], or derived by the framework [104–106]. In our

scenario, an immediate solution requires the user to supply the workload DAG. However,

this could be a solution for coarse-grained pipelines with a small number of functions

but challenging for complex pipelines with a large number of functions. Further steps are

required to either facilitate the DAG specification or to remove the user from the loop. Instead,

the mapping between functions and cluster nodes can be easily retrieved by inspecting the

Kubernetes scheduler.

4.4.2 Interface and Application Data Endpoints

Floki currently requires the application to write data into a local binary “file” or a pipe.

Given the current POSIX write function implementation, writing a file in a local file system

is a straightforward process for the application, while writing a pipe requires reading

and writing data in batches. Adapting an application would require substituting such

write functions with looped writes, where a simple library function provided as API could

interface such change without changing the programming model. Furthermore, processing

data batches is performed sequentially, while enhanced write functions could perform the

operations both in a sequential and a parallel fashion, increasing throughput. Finally, in

scenarios where data is processed as streams, additional write functions could be provided for

transmitting and computing concurrently, processing batches upon arrival at the consumer.

4.4.3 Fault-Tolerance, Multy-Tenancy, and Data Recovery

Fault-Tolerance, multi-tenancy, and data recovery represent crucial attributes of cloud and

serverless computing. Floki needs more effort to be fault-tolerant. Hard multi-tenancy,
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enforcing strict tenant isolation, in Kubernetes environments can be achieved through

complex namespaces, resource quotas, access control, and virtual cluster configuration, and

Floki indirectly guarantees security in a multi-tenant environment. Concerning data recovery,

in case of a component failure, intermediate data must be re-computed by re-running the

entire workflow. However, in data-intensive workloads, re-computing data would imply

an additional overhead, which scales linearly with the function computation complexity.

Re-computing only failed functions could lower the overhead; thus, we believe per-function

data recovery deserves further investigation.

4.4.4 Porting on Kubernetes-based Workflow Frameworks and Knative

Even though Floki is currently at its first maturity stage, we target to port the proposed

solution to Kubernetes-based workflows frameworks and Knative. To integrate Floki with

Knative, two main features are required. First, following the underlying orchestration

platform feature, it is necessary to enable Knative functions to mount local volumes. Second,

on top of the existing Knative Custom Resource Definitions (CRDs) providing sequential and

parallel functions invocations, a more general workflow CRD has to be built. While porting

Floki to Knative is more complex, the porting on Kubernetes-based workflows frameworks,

e.g., Argo, would only require to automatically create the system components.

4.5 related work

As we previously introduced, efficient intermediate data sharing between functions rep-

resents a key challenge for chained function execution, especially when dealing with

data-intensive workloads [7, 16, 19, 23, 85, 95].

In recent years, different approaches have been proposed to optimize data exchange

in serverless workflows. Lambada [34] and Starling [38] are serverless distributed data

processing frameworks reducing the remote shared storage overhead by implementing

exchange operators specifically optimized for cloud object storage. However, these works

focus solely on database analytics, using domain-specific optimizations.

Locus [37] is an analytics system combining cloud object storage with managed in-memory

storage to overcome the performance limitations of shared storage while remaining cost-

efficient. The system applies a performance model to guide users in selecting the type and

the amount of storage to achieve the desired cost-performance trade-off. Pocket [85] provides

specialized and autoscaled distributed data stores for intermediate data sharing combining

three storage tiers: a DRAM, a Flash, and an HDD tier. The authors show how the key goals

of low-latency/high-throughput, storage resource sharing, and resource elasticity can be

achieved by strictly decoupling control, metadata, and data planes. However, technologies
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like Locus and Pocket leverage per-workload resource demand information, provided by

the user at submission time, to allocate and reserve resources for the workload lifetime.

Different from these works, our pipe-based solution does not need any information on

resource demand. As shown in [37, 88, 107], intermediate data sizes can consistently vary

during the workload execution, resulting in the well-understood problem of potential

performance degradation and/or resource under-utilization [108, 109]. To cope with this,

Jiffy [88] is an elastic far-memory system allocating memory resources at the granularity

of small fixed-size memory blocks—multiple memory blocks store intermediate data for

individual tasks within a job. All these works involve indirect communication, demanding

two serial data copies over the network in the critical path: one from producer function

to shared storage and one from shared storage to consumer function. Contrarily, Floki

always requires only one data copy for each inter-function communication (from source to

destination node).

Crucial [89] improves inter-function data sharing in highly-concurrent applications by

building a Distributed shared objects (DSOs) layer implemented on top of a modified

Infinispan [110] in-memory data grid. Cloudburst [90] achieves logical disaggregation and

physical co-location of computation and state by exploiting per-node data caches interacting

with a specialized key-value store service [111, 112]. Unfortunately, the authors do not

provide details on how the node caches are provisioned and sized, which indicates the

necessity of manual/static provisioning of per-node cache resources. Similarly, OFC [113]

exploits the co-location of functions and states to benefit from per-node caches and proposes

an in-memory caching system distributed over the cluster nodes, leveraging RAMCloud

[114]. However, it relies on a storage backend service and focuses on objects of 10MB or

less. SAND [91] reduces data sharing latency by executing multiple functions in a workload

as separate processes within long-lived containers where data are shared using a message-

passing service exploiting data locality. SONIC [115] is a data-passing manager selecting

the optimal data sharing method for each inter-function communication. It adopts a hybrid

approach by sharing files within a VM (VM-Storage), copying files across VMs (Direct-Passing),

or sharing files through shared storage (Remote-Storage). Even though our volume-based and

SONIC’s Direct-Passing data-passing methods are similar, we proactively start copying data

from source to destination node immediately after producer function termination, while

SONIC waits for consumer function to be scheduled to start copying data.

While works mentioned above allow workload functions to span across multiple nodes,

Faasm [92] and Nightcore [93] co-locate workload functions on a single container to minimize

data sharing latency thanks to shared memory access. The difference between these two

works relates to the isolation strategy they leverage to provide private memory partitions.

Following the same approach, Faastlane [94] also executes workload functions as threads

within a single process of a container instance. It further identifies opportunities for function
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parallelism and concurrently executes parallel functions in fork processes or new container

instances. While OFC, SAND, SONIC, and Faastlane represent fully transparent solutions,

Crucial, Cloudburst, Faasm, and Nightcore require modifications at the application level.

Even though container sharing systems improve data sharing efficiency, memory over-

provisioning is necessary to ensure containers run multiple functions and extra services

for concurrent executions during peak usage. Moreover, posing restrictions on function

placement affects the advantage of fine-grained scaling of serverless.

Other works [16, 95, 96] rely on long-running VMs to handle external storage. For example,

Cirrus [16] is an end-to-end framework specialized for ML training in serverless cloud

infrastructures using large VM instances to run a custom storage backend through which

intermediate results are shared. These works require additional infrastructure using non-

serverless components and add complexity and cost to scale the VMs to match elasticity and

function parallelism.

Finally, the work which most relates to Floki is Boxer [97]. Boxer has recently improved

Lambada [37] by enabling inter-function direct network communication using conventional

TCP connections. The authors overcome the limit preventing functions to accept incoming

connections by deploying with the function code the Boxer sub-systems, executed alongside

each function, establishing connections by exploiting the sequential and parallel TCP hole

punching protocols [116, 117]. Differently, Floki establishes TCP connections on the host

namespace; therefore, it does not require deploying additional connection-specific compo-

nents in the serverless platform. Besides, Boxer sends buffers asynchronously, while Floki

sends buffers synchronously.

4.6 summary

In this work, we presented Floki, a data forwarding system tackling the shared object stor-

age problem by implementing direct inter-function communication between non-coplaced

functions. Floki proactively establishes point-to-point communication channels between

producer-consumer pairs of functions through fixed-size memory buffers, pipes and sockets.

The designed memory mechanism’s resource utilization scales linearly with the data volume

increases, allowing to effectively deal with arbitrary data sizes within a paradigm where

resources are billed with a pay-as-you-go model. Even though Floki is currently in its initial

stage of maturity, with this work we demonstrate that direct inter-function communication

is crucial for executing data-intensive analytics workloads in serverless platforms. We bench-

mark Floki on the principal distributed systems communication patterns, i.e., one-to-one,

fan-out, fan-in, and all-to-all, considering data transfers from 1MB to 16GB. The evaluation

reveals remarkable improvements achieved by Floki over the object storage solution. In

particular, Floki shows up to 74.95× of end-to-end time performance increase, reducing the
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largest data sharing time from 12.55 to 4.33 minutes. Moreover, Floki requires up to 50, 738×
fewer disk resources, which translates into a memory allocation of roughly 1.9MB instead

of an object storage disk space allocation of 96GB. These findings underscore the potential

of Floki to significantly enhance the end-to-end time performance and resource utilization

efficiency when executing data-intensive analytics workloads in serverless environments.
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The contents of this contribution are summarized in the publication:

[118] Anna Maria Nestorov, Josep Lluís Berral, Claudia Misale, Chen Wang, David Carrera,

and Alaa Youssef. 2022. “Floki: a proactive data forwarding system for direct inter-function

communication for serverless workflows.” In Proceedings of the 8th International Workshop on

Container Technologies and Container Clouds (WoC ’22). Association for Computing Machinery,

New York, NY, USA, 13–18. 10.1145/3565384.3565890
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AU T O M AT I C P E R F O R M A N C E - C O S T E F F I C I E N T R E S O U R C E

A L L O C AT I O N

This chapter describes the third and last contribution of this thesis. This contribution analyses

the impact, at different granularities, of dynamically scaling resources on performance and

monetary cost metrics (Section 5.2). Furthermore, we propose a resource allocation manager,

called Dexter, specifically designed to constantly monitor each application execution and

automatically allocate just the right amount of resources at the smallest fine-grained level,

guaranteeing performance-cost efficiency in terms of total runtime cost (Section 5.3). We

implemented our proposed solution in the form of a pluggable module, toughly coupled

with Spark, one of the most prominent multi-purpose, multi-language, in-memory big data

processing frameworks (Section 5.4). Our experimental evaluation (Section 5.5) demonstrates

the efficiency of our solution in reacting to variability of number of tasks and duration

and the capability to trade-off performance and cost, significantly increasing the number

of spawned workload instances, when compared with the current default serverless Spark

dynamic resource allocation.

5.1 introduction

Being typically resource-intensive and inherently parallel, data-intensive analytics appli-

cations highly benefit from the elasticity and the virtually unlimited scalability offered

by serverless platforms. In particular, since early 2022, a prominent effort has been made

towards leveraging serverless platforms to efficiently run large-scale data analytics frame-

works, such as Apache Spark, which are traditionally deployed in managed cloud clusters.

GCP Dataproc Serverless [48], Databricks Serverless [49], and IBM Analytics Engine [50]

exemplify this trend. One key factor for both tenants and cloud providers is efficient uti-

lization of resources: even minor improvements in utilization can save millions of dollars

at scale [119]. However, auto-allocating resources to complex workflows, such as big data

analytics applications, is challenging because the relationship between resource allocation

and performance is complicated and changes over the application runtime [51].

55
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To optimize their resource utilization and enhance performance-cost efficiency, it is crucial

to set the right level of parallelism (how many tasks can run in parallel) for each stage. This

involves allocating more resources to highly parallelizable stages with large-chunk input

data, while limiting resources to stages with little inherent parallelism or running on small-

chunk input data. In current serverless Spark frameworks, dynamic resource allocation,

with FIFO mappings between stages and resources, represents the default behavior. The

framework constantly monitors the number of pending tasks and scales resources, in case

of backlog of pending tasks, up to a predefined upper bound. For instance, in the case

of Dataproc Serverless, the default maximum number of resources is set to 1000, and the

user has the option to control it by setting the respective autoscaling property. If the user

does not set this upper bound, with small tasks the default setting can: 1) waste a lot of

resources due to executor allocation overhead, as some executor might not even perform

any work, and 2) see diminishing returns or even performance degradation at a higher

cost. However, with fewer parallelizable tasks, the default setting can: 1) Waste a lot of

resources due to executor allocation overhead, as some executors might not even perform

any work, and 2) See diminishing returns or even performance degradation at a higher cost.

The authors in [51] show that 75% of applications are over-provisioned (even at their peak),

with 20% of them with over 10× more additional resources than necessary. On the other

hand, setting the appropriate amount of resources is non-trivial even for an expert user.

Mis-configuration can lead to severe performance and cost issues due to resource under- or

over-provisioning [51].

Given the serverless fine-grained elasticity and the pivotal role of cluster resource alloca-

tion managers in modern computing environments, the specific research problem we target

in this work is: Given a highly parallel data analytics workload, how should we dynamically scale the

amount of resources (i.e., parallelism/scale level) at per-stage granularity to balance the performance-

cost tradeoff, minimizing the overall cost while providing acceptable runtime performance?

Currently, cluster schedulers rely either on general heuristics, such as simple packing

strategies, or on modern and complex ML techniques [39, 120–122]. These approaches di-

verge in their fundamental principles, prioritizing opposite objectives. The former prioritizes

generality and straightforward understanding, making them widely used in practice, but

neglect potential performance optimization based on inherent workload characteristics. The

latter captures cluster- and workload-specific features, but sacrifices interpretability and

explainability and usually require a time-consuming training phase (may need millions

of samples and take dozens of hours), making their adoption in real-world cloud clusters

challenging. To bridge the gap between the two approaches, previous work designed more

sophisticated heuristics built on performance models considering cluster and workload char-

acteristics [51, 123–128]. Yet the trade-off between performance and costs is not considered

in these heuristics.
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The efficient use of resources in modern serverless big data processing systems poses

several challenges. With serverless workloads, we potentially have limited or no historical

data available. While approximately 40% of applications in production environments are

recurring [129], conducting an initial profiling phase is not always feasible as some appli-

cations may not be used often enough to accumulate a sufficient number of samples for

analysis. Second, abstracting the high diversity and scale in typical production environments,

where hundreds of thousands of applications per day are executed over petabytes of data,

is challenging. Third, existing resource allocation approaches targeting the cloud comput-

ing paradigm do not fit well with serverless Spark. Most literature focuses on optimizing

resource allocation within a fixed-size cluster, aiming to optimize applications’ resource

sharing effectively. Differently, serverless environments are characterized by dynamic re-

source availability; therefore, each compute unit can scale independently. Ultimately, the

performance of the same application may vary over time, influenced by changes in input or

intermediate data sizes, or external factors like a surge in shared storage access.

In this work, we present Dexter aimed to increase resource efficiency in serverless data

analytics through better resource management. Dexter monitors each stage execution,

and it allocates resources to reach the performance saturation point, accounting for the

correlated monetary cost. The proposed solution dynamically copes with performance-cost

changes by automatically adapting the number of allocated resources at the fine-grain

level, guaranteeing resource efficiency. Dexter is motivated by the lack of a serverless Spark

solution, incorporating both performance and cost in the decision-making when allocating

resources at the per-stage level. We integrated Dexter with Spark, and our evaluation shows

that, compared with the current default serverless Spark dynamic resource allocation, our

solution achieves a significant cost reduction, while improving performance-cost efficiency.

Furthermore, Dexter enables a substantial resource saving, allowing to place a significantly

higher number of workload instances on a fixed amount of resources. Finally, the proposed

work provides an accurate and robust solution to new unseen workloads, achieving higher

performance-cost efficiency thanks to its conservative resource scaling approach.

In summary, the main contributions of this work are:

– Through a performance and cost characterization study, we highlight the effects, at

different granularities, of scaling out and scaling in on the execution duration and

the corresponding cost, showing that it is crucial to tune resource allocation at the

smallest fine-grained granularity, i.e., per stage level.

– We design Dexter, a resource allocation manager enabling more efficient executions, in

terms of total runtime cost, for serverless data analytics. Dexter leverages historical

knowledge to identify an initial scale level and, considering the price-performance
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trade-off, explores different scale levels during stage execution, converging to the

optimal scale level.

– To demonstrate the applicability of Dexter, we fully integrate it as a standalone and

pluggable module in Spark, building a resilient and fault-tolerant system.

– We extensively evaluate Dexter to assess its effectiveness on two industry-standard

benchmarks, i.e., TPC-H and TPC-DS. Results show that Dexter is an accurate and

robust solution, reducing cost up to 4.65× while providing reasonable performance.

Dexter improves performance-cost efficiency up to 3.50×, allowing up to 5.71× re-

source savings, enabling a higher number of deployed workload instances.

The remainder of this chapter is structured as follows: Section 5.2 explains Dexter’s design

goals motivating this work. Section 5.3 describes Dexter’s architecture. Section 5.4 describes

the implementation details, including the integration with Spark. Section 5.5 presents the

system evaluation, where we validate Dexter through state-of-practice benchmarks and

real-world workloads, assessing its effectiveness for fine-grained resource allocation in

serverless data analytics. Section 5.6 details the main related work to the resource allocation

problem in the context of big data analytics. Finally, Section 5.7 summarizes Dexter.

5.2 granularity and parallelism levels analysis

Automatically adjusting resources to meet the application’s needs represents one of the key

advantages of serverless computing. Making benefit of this key feature, dynamically adapt-

ing application resource parallelism levels in real-time ensures greater resource allocation

flexibility, as well as higher resource efficiency. When an application is given more execu-

tors, while at the beginning performance sees a significant boost, after a saturation point,

adding more resources gives either similar or even lower performance. As also observed by

recent works [130, 131], once the saturation point is reached, increasing parallelism causes

significant overheads due to higher serialization and de-serialization operations, garbage

collection, and intensive shuffle operations on the network. These overheads generate a

higher variance in the task durations and increase the probability of suffering from the

well-known straggle1 problem, delaying the entire stage execution.

Figure 5.1 illustrates how different queries, from TPC-H and TPC-DS benchmarks, scale

differently with parallelism level when running on Spark with an input dataset of 100GB

and each executor featuring two virtual cores and 16GB of memory. Results reveal that

TPC-H q2, q9, and q21 queries exhibit strongly different scalabilities: q2 sees efficient returns

of investment up to 5 executors, while q9 achieves marginal returns with no more than 11

1 A straggler task has been defined by previous works as a task characterized by an execution time lying above
the 75th percentile value among all the tasks in the stage.
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Figure 5.1: Influence of scaling parallelism level on performance and cost at per-query level. Queries
runtimes (bottom) and costs (top). Saturation points are reported with dashed vertical lines.

executors, and q21 only needs 12 executors to be performance-cost efficient. Additionally, the

TPC-DS q72 query shows almost the same scalability of TPC-H q9, but its saturation point

occurs at a parallelism level of 9 executors. It is noteworthy that 1) The saturation point tends

to shift towards higher parallelism levels as the application runtime increases, 2) Even if two

applications show similar curves, slight variations in the respective saturation points can be

observed. All the queries show a common trend in the curves, reflecting the fundamental

characteristic of parallel computing: as the parallelism level increases, the marginal gain in

performance, i.e., runtime, decreases while the cost increment rises. Focusing on queries

and stages runtime, curves follow an “elbow” trend where two different regions can be

distinguished: at low parallelism levels (steepy curve region), runtime exhibits a significant

variation for a small change in the parallelism level, whereas at high parallelism levels

(flattened curve region), increasing the parallelism level reflects in a small or no return of

investment. It is noteworthy to highlight that, even though the runtime can be assumed to be

a monotonically decreasing function, there could be cases where, at high parallelism levels, a

third region with an increasing runtime emerges. However, in all cases, the saturation points

from a performance-cost trade-off perspective, for both the user and the service provider,

stay between the first and second regions.

When moving to the smaller per-stage granularity, similar behaviors and remarks can

be observed. Figure 5.2 shows the runtime and cost curves for the long, medium, and

short running stages of TPC-H q21 query. It is interesting to note that per-stage saturation

points always differ from the one found at application level, i.e., 12 executors. For example,

allocating more than 7 executors to Stage1 yields marginal returns. This difference is more

pronounced in medium time-consuming stages: Stage9 requires at maximum 4 executors,

representing a third of the application-level saturation point. When analyzing the short

running stages, the difference is even more pronounced: Stage4 and Stage12 corresponding
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(a) Long running stages.
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(b) Medium running stages.
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(c) Short running stages.

Figure 5.2: Influence of scaling parallelism level on performance (bottom) and cost (top) at per-stage
level. Red dashed vertical line reports the TPC-H q21 query saturation point, while the remaining
lines reports its stages saturation points.

performance-cost saturate at 1 executor, representing a twelfth of the application-level

saturation point.

Finally, we conduct a task runtime analysis for the most time-consuming stages, to

investigate how the inherited overheads affect runtime when scaling the number of executors.

Figure 5.3 depicts the Cumulative Distribution Function (CDF) of individual tasks for one of

the most time-consuming stages, i.e., Stages1 of TPC-H q21 query. We make two fundamental

observations. First, scaling the number of resources leads to a significant task runtime

increase: while with 1 executor 90% of the tasks complete in less than 3.1s with a maximum

of 6.9s, with 30 executors 90% of the tasks finish within 13.5s, reaching a maximum of 32.4s.

When scaling-out, the shuffle operations and the garbage collection increase, degradating

performance in terms of latency. Moreover, increasing the number of executors implies a

higher number of tasks belonging to the first wave, which usually show a higher task runtime

due to higher transfers of data shared across all stage’s tasks (e.g., broadcast variables and

task binaries), possible initializations and loading of additional libraries. Second, the task

runtime variance significantly increases with the number of executors.

Therefore, fine-tuning the amount of resources at per-stage level is crucial to avoid under-

and over-provisioning, thus preventing waste of resources for negligible performance gains.

This enhances the overall resource efficiency, increasing the number of workload instances

deployable on a fixed amount of resources.

To highlight the effects of varying parallelism levels on runtime and cost and to motivate

the necessity of a fine-grained per-stage resource allocation, we conducted an analysis

of the impact of increasing resources, i.e., number of executors and therefore number of

parallel tasks, at different granularities: at application (Figure 5.1), stage (Figure 5.2), and

task (Figure 5.3) levels. During this analysis, we incrementally compared the runtime and
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Figure 5.3: Influence of scaling parallelism level on performance at per-task level.

cost at sequential parallelism levels and identified the saturation points, or optimal scale

factors, where runtime speedup turns out to be lower than the respective cost increase

beyond the assigned resources.

5.3 system design

This section details Dexter, a resource allocation manager constantly monitoring each

application stage execution and automatically allocating the right amount of resources at a

fine-grained level, guaranteeing efficient resource usage. Dexter is a significant departure

from the majority of the works present in the literature, which rely on either reactive or

predictive approaches. Instead, Dexter combines these approaches to tune the parallelism

level of each application stage independently. Figure 5.4 shows the block diagram of the

proposed system architecture. At a high level, Dexter continuously monitors each stage’s

performance and cost throughout its execution. We emphasize that Dexter is designed

to be performance-cost-centric. Targeting a good Return Of Investment (ROI), if the stage

performance-cost tradeoff deviates, Dexter adjusts the resource allocation, optimizing for

total runtime cost. Furthermore, to increase resource utilization, once the agent assigns

resources to all stages, if there are still free resources, the system reassigns them to the

running stages in order of stage priority.

In what follows, we first detail Dexter’s major components (Section 5.3.1), then we describe

the lifecycle of an application in our optimized serverless Spark system (Section 5.3.2), and

finally we discuss the system fault tolerance (Section 5.3.3).

5.3.1 Key Components

Dexter consists of three major components: the historical module, the search module, and the

custom executor allocation manager. While the first two compose the Dexter’s scaling agent,
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Table 5.1: Models prediction error and error distribution.

KPI BDS DART LR BRR

MAE 1.60 1.64 1.61 1.62

Max Error 6 6 7 7

Error ≤ 2 72.77% 70.50% 75.00% 74.32%
Error ≤ 1 56.59% 53.18% 55.36% 56.45%

which is external to Spark, the last one extends Spark to dynamically allocate and remove

executors based on the scaling agent’s decisions. The proposed enhanced Spark architecture,

highlighting Dexter’s components, is depicted in Figure 5.4.

5.3.1.1 Historical Module

This section details our approach for the historical module as an ML regression problem for

estimating the initial amount of resource allocations for a given application stage. The key

observation for this module is that different Spark application stages may present similar

resource scalability needs (as highlighted in Section 5.2), enabling the use of ML to learn

from past executions to predict the initial resources for the current stage.

The historical module does not require user-provided information and only relies on stage

attributes known up front to the stage execution (compile-time) to optimize the stage

performance cost. We aim for 1) Providing a good enough estimate so the search module can

refine it with minimum iterations (minimizing the total runtime) and 2) Bounded response

times in the order of a few milliseconds for each sample. In this section, we compare four

regression models needing low computation to achieve good enough predictive performance,

namely LR, BRR, BDS, and DART (briefly presented in Section 2.4).

The input to the model is a set of features describing a stage (e.g., total count of tasks,

size of all RDD in bytes, and number of each RDD type). We collected a dataset of 182 input

samples by running all the 22 queries composing the TPC-H benchmark, and we log features

for each query stage along with the optimal number of allocated executors as determined

by Algorithm 2. After cleaning constant input features, the resulting dataset contains the

following six informative features: Number of tasks, Input RDDs total size, Number of

MapPartitionsRDDs, Number of ShuffleRowRDDs, Number of ZippedPartitionsRDDs, and

Number of FileScanRDDs.

Model error drives the model selection since a high error in initial resource allocation

estimations may disturb the search module convergence. We split data at the query level

and use Leave One Out Cross-Validation (LOOCV) to compare the error of each model with

different data partitions. Each cross-validation iteration leaves one query out for testing and

trains the model on the remaining 21 queries. The process is repeated 22 times and ensures

the collection of diverse results for each model. As shown in Table 5.1, the evaluated models
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Figure 5.4: Dexter’s system architecture showing new components in light blue and modified
components with dotted rectangles.

demonstrate comparable performance in terms of Mean Absolute Error (MAE). Given the

limited discriminative power of this metric in model selection, we further examined the

maximum error and the proportion of cases with errors at or below 2 and 1. Despite LR and

BRR achieve better rates of errors ≤ 2, we prefer models with lower maximum error since

they make the search module deviate less from the optimal. Comparing BDS and DART, BDS

provides slightly better percentages of errors ≤ 1. Thus, we deployed BDS to provide initial

resource estimations to the search module, selecting the model tested on TPC-H q8 query

since it represents the query with the highest number of stages.

5.3.1.2 Search Module

The search module is responsible for handling imperfect resource predictions of the historical

module by fine-tuning each stage parallelism level. Specifically, its main target is twofold.

First, it handles imperfect resource prediction of the historical module, potentially leading to

either under- or over-estimation of resources. Second, it constantly monitors each stage’s

performance and cost metrics throughout its execution, and, in case the performance-cost

tradeoff deviates, it adapts the number of allocated resources towards the new optimal

scaling level. Algorithm 2 shows the pseudo-code of the proposed search module, with the

top-function represented by the doSearchStep function. Each TaskSetManager invokes the

search module on a periodic cycle, calling the doSearchStep function, potentially adjusting

the stage allocated resources at each cycle.
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During each function call, the search module compares the optimal solution found so far

(optSL) with the current solution (currSL). More precisely, the module initially estimates the

expected runtime and cost for the current scaling level (lines 22 and 23). Given nMissTasks

missing tasks to compute for a given stage and SL available executors, each one computing

ExvCPUs tasks in parallel, the number of missing task waves tWaves is determined as:

tWaves =

⌈
nMissTasks

SL× ExvCPUs

⌉
(5.1)

The module derives the expected time E[T] by multiplying the number of missing task

waves, computed using Equation (5.1), by the average task runtime observed so far (line

2). The expected cost is then determined by adding up the two costs associated with the

two different components defining each Spark executor, i.e., the allocated amount of vCPUs

ExvCPUs and memory ExGBs resources (line 8). Specifically, to compute each cost component

(lines 6 and 7), the module multiplies the expected time (expressed in hours) by the pricing

per hour for the serverless Spark components, the number of resources, and the number of

executors assigned to the stage. If Dexter is performing the first search step, the search module

gets the the current optimal solution (set to the current scaling level due to reassignment of

free and active executors), the optimal solution predicted by the historical module and the

current solution, and returns a new candidate solution, along with the optimal information

(lines 24-27). Otherwise, it computes the performance (line 28) and cost variation values

(line 29) achieved by the current solution over the optimal one found so far. At this point, in

case we are increasing resources (lines 31-37), the doSearchStep function checks if a good

return of investment characterizes the current solution by comparing the performance and

cost variation values (line 32). Suppose the current solution represents a better neighbouring

solution than the currently known optimum solution (condition in line 32 is true). In this

case, the current solution becomes the new optimum solution (line 33), and the module

updates its expected runtime and cost information (lines 34 and 35). Otherwise, if the

current solution does not represent an improvement, it is rejected, and the optimum solution

remains unchanged. Contrarily, in case we are decreasing resources (lines 37-45), we compute

the performance slowdown and the corresponding cost reduction (lines 38 and 39). If the

performance decrease is smaller than the cost reduction (condition in line 40 is true), the

module sets the new optimum solution to the current solution (line 41) and updates its

expected runtime and cost information (lines 42 and 43). Then, based on the current optimum

solution (newOptSL), the module picks a new candidate neighbour (line 46). When selecting

the new candidate, we consider the possible reassignment of free and active executors aimed

at increasing the overall system resource utilization. Specifically, when we are decreasing

the current amount of allocated resources (condition in line 12 is true), we search in the

lower range with respect to the current solution towards the optimal solution (lines 13-14).
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Algorithm 2 Dexter’s search module algorithm.
1: function computeExpTime(currSL, nMissTasks, avgTaskTime)
2: E[T] =

⌈
nMissTasks

currSL×ExCPUs

⌉
× avgTaskTime

3: return E[T]
4: end function
5: function computeExpCost(currSL, E[T])
6: E[CCPU ] = E[T]

3600 × Price1vCPU/h × ExCPUs × currSL

7: E[CMem] =
E[T]
3600 × Price1GB/h × ExGBs × currSL

8: E[C] = E[CCPU ] + E[CMem]
9: return E[C]

10: end function
11: function getCandidate(newOptSL, optSL, currSL)
12: if |currSL− optSL| > stepSize and optSL < currSL then
13: lowerBound = getMax(1, newOptSL - stepSize)
14: searchRange = [lowerBound, newOptSL− 1]
15: else
16: searchRange = [newOptSL+ 1, newOptSL+ stepSize]
17: end if
18: cand = selectRandValIn(searchRange)
19: return cand
20: end function
21: function doSearchStep(nMissTasks, avgTaskTime, optSL, E[T]opt, E[C]opt, currSL)
22: E[T]curr = computeExpTime(currSL, nMissTasks, avgTaskTime)
23: E[C]curr = computeExpCost(currSL, E[T]curr)
24: if E[T]opt == 0.0 then
25: candSL = getCandidate(currSL, optSL, currSL)
26: return (optSL, E[T]curr, E[C]curr, candSL)
27: end if
28: perfVar = E[T]opt

E[C]curr

29: costVar = E[T]curr
E[C]opt

30: newOptSL = optSL
31: if optSL <= currSL then
32: if perfVar > costVar then
33: newOptSL = currSL
34: E[T]opt = E[T]curr
35: E[C]opt = E[C]curr
36: end if
37: else
38: perfSlowDown = 1 − perfVar
39: costRed = costVar− 1
40: if perfSlowDown < costRed then
41: newOptSL = currSL
42: E[T]opt = E[T]curr
43: E[C]opt = E[C]curr
44: end if
45: end if
46: candSL = getCandidate(newOptSL, optSL, currSL)
47: return (newOptSL, E[T]opt, E[C]opt, candSL)
48: end function
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We then select and return a random value in the selected search range (lines 18 and 19). This

condition is verified when, to increase resource usage, executors previously used in parent

stages that have become free are allocated to the current stage. Contrarily, we randomly

select a value in the upper range (lines 16). This design decision aims to increase resource

utilization: if at the previous search step we have set the candidate to N executors, testing a

smaller number of executors M, i.e., M < N, would imply leaving N − M resources idle,

lowering the overall resource utilization. Finally, the module returns all information related

to the current optimum solution, along with the newly candidate solution (line 47).

5.3.1.3 Custom Executor Allocation Manager

This component dynamically allocates and removes executors based on the scaling agent

decisions. In particular, it maintains a changing target number of executors, periodically

syncing to the underlying cluster manager. Every running stage TaskSetManager checks

the equivalence between the agent-suggested candidate and the current scaling level, and it

requests to increase or decrease the target if necessary. More precisely, increasing the target

number of executors happens when the candidate exceeds the currently allocated executors.

When the target number of executors increases, the amount of requested resources to the

cluster manager can vary. If there are enough available active executors, there is no need

for new resources, and the custom executor allocation manager assigns the missing executors

to the given stage from the pool of free and active executors. Otherwise, it assigns all the

active executors, if any, to the stage and requests the missing ones to the cluster manager.

Differently, decreasing the target number of executors happens when the candidate scaling

level is more than the currently allocated resources, meaning that fewer resources are

sufficient to handle the current load. In this case, even though the target number is lowered,

none of the executors are killed immediately. The executor is killed only if it has been idle

for a certain amount of time, by default 60s, meaning that the current running stages run

efficiently with the currently allocated resources.

5.3.2 Execution Lifecycle

When a new application is deployed, Spark launches the application driver on one of the

cluster nodes. The driver assumes the pivotal role of coordinating the entire application’s

execution across the worker nodes within the cluster.

Among the driver’s components, the DAGScheduler is a crucial element since it represents

the high-level scheduling layer. When presented with a new application (step 1), the

DAGScheduler computes the DAG of stages, keeping track of RDDs, tasks, and stage outputs,
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and submitting stages as TaskSets. Each TaskSet contains a collection of fully independent

tasks computing the same function on different data partitions. Before submitting a stage,

the DAGScheduler sets its initial scale level by inspecting the historical module via a gRPC

call, i.e., getInitialPoint, forwarding the stage main features (step 2), identified as detailed in

Section 5.3.1.1. It receives the predicted optimal scaling level based on historical knowledge

(step 3). It then sets the stage scaling level to the predicted optimal scaling level and

automatically requests resources to the custom executor allocation managerbefore the TaskSet

is run (step 4). In turn, the custom executor allocation manager checks the number of free and

active executors and forwards the request for new resources to the cluster manager only if

there are not enough free resources. Then, the DAGScheduler submits the stage TaskSet to

the TaskScheduler (step 5).

Upon the submission of a new TaskSet with specified stage parallelism N, the TaskSched-

uler assesses the number of free and active executors and takes one of the following two

actions: 1) Assigns N active executors to the TaskSet if there are more than N available,

or 2) In case there are fewer than N active executors, it assigns the available ones (if any)

and submits a request for new executors to the underlying resource manager through the

CoarseGrainedSchedulerBackend (step 6). For every new schedulable TaskSet, and when-

ever the TaskScheduler has tasks ready for scheduling, such as upon task completion, the

TaskScheduler requests the list of active executors (steps 7 and 8) to the CoarseGrained-

SchedulerBackend, charged to coordinate and communicate with the underlying resource

manager. If only one active TaskSet exists, the TaskScheduler makes all active executors avail-

able to that TaskSet. Conversely, if multiple active TaskSets are enqueued, the TaskScheduler

allocates executors following the default stage priority order (step 9).

Every TaskSetManager schedules the tasks within a single TaskSet across the allocated

executors, closely monitoring every task’s progress until all tasks have been completed

successfully, regardless of the number of task attempts. Specifically, it schedules the set of

tasks, assigning them to the set of active executors, and returning pairs in the form of (taskId,

executorId). These pairs mappings are then returned to the CoarseGrainedSchedulerBackend

through the DAGScheduler (steps 10 and 11), which is notified that the subset of tasks has

been started. Finally, the CoarseGrainedExecutorBackend launches tasks on executors as

specified in the pairs mappings (step 12). After the task has been launched, it receives every

task status update from the CoarseGrainedExecutorBackend (step 13).

Throughout the entire stage execution, using a dynamic time interval, function of the

current stage average task runtime, the TaskSetManager calls the proposed search module

through a doSearchStep gRPC call, exploring the search space with an additional step (step

14). The search module carries out this search step and returns the optimal scaling level, with

its related expected runtime and cost information, as well as a new candidate scaling level

(step 15). At this point, the TaskSetManager resets the stage task average runtime to zero
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Figure 5.5: System implementation overview.

and the search module is not called again until all the new executors are up and running and,

starting from this point in time, the optimal time interval is not expired. This allows the

system to collect accurate tasks information about the tasks execution over the new amount

of resources. In case the candidate scaling level, candSL, exceeds the current scaling level,

currSL, it contacts the custom executor allocation manager, which sets the overall target number

of executors accordingly and requests currSL − candSL new executors to the underlying

resource manager (step 16). After resetting the task average runtime, the TaskSetManager

does not call again the search module until all new executors are up and running and within

the optimal time interval, ensuring accurate task execution information collection across the

expanded resources. This allows indirectly Dexter to consider both provisioning latencies

and executors’ cold start times in its decision-making.

5.3.3 Resiliency and Fault Tolerance

Failures in large and complex distributed systems are inevitable and can happen for many

reasons, e.g., network unreliability, so fault tolerance plays a crucial role in preventing

system-wide outages. Because Dexter is based on Remote Procedure Call (RPC) offering

built-in features that allow clients to retry failed calls automatically, Dexter is by design

resilient to failures. Therefore, the system is capable of continuing to operate in the face

of outages. Specifically, RPC offers multiple patterns to overcome RPC failures: 1) Retrying

a failed RPC, 2) Rerouting traffic to a healthy service, and 3) Adding a fallback path. We

have instructed the Spark scaling agent client to automatically retry failed gRPC calls with a

maximum number of call attempts of ten, including the original attempt, and a maximum

backoff delay between retry attempts of five seconds.
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5.4 system implementation

We have implemented a complete Spark system integrating Dexter with all components

detailed in Section 5.3.1. Figure 5.5 shows the overall system implementation overview.

Kubernetes, representing the de facto standard for deploying and managing containerized

applications in cloud environments, serves as underlying resource manager for Spark. Our

scaling agent is implemented relying on gRPC[132], a modern, high-performance, open-source

universal RCP framework, accepted to CNCF in 2017.

The scaling agent server side was implemented in approximately 150 lines of Python,

and the client side required roughly 30 lines of Scala. Additionally, the protobuf [133] file

defines the protocol buffer messages and services in around 20 lines. Adaptations to Spark’s

DAGScheduler, TaskScheduler, TaskSetManager, and Stage required roughly 50, 100, 150,

and 50 lines of Scala, respectively. About 1500 lines of Scala were needed to implement the

custom executor allocation manager. To store input and output data, we have deployed a MinIO

server [98], a high-performance Kubernetes-native object storage tailored for large-scale

systems.

5.5 system evaluation

This section presents a comprehensive evaluation of Dexter. After presenting the baseline

algorithms (Section 5.5.1) and the experimental setup (Section 5.5.2), we first analyse the

impact of different search time intervals on the final solution accuracy (Section 5.5.3). Second,

we discuss the end-to-end performance of Dexter, highlighting the performance-cost tradeoff

and the obtained resource usage efficiency (Section 5.5.4). Third, we analyse the accuracy
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Figure 5.7: Optimal time intervals, achieving minimum MAEs, when varying the task runtime.

of our results by picking the real optimal values and comparing them with our results

(Section 5.5.5). Finally, we discuss Dexter’s adaptability to unseen workloads (Section 5.5.6)

and overheads (Section 5.5.7).

5.5.1 Baselines Algorithms

During our evaluation, we compare Dexter’s performance to the following baseline algo-

rithms. First, Spark’s default dynamic allocation scheduling stages in FIFO manner, where

stages are enqueued based on their order of arrival, and they get priority on all available

resources while they have tasks to launch. Second, Spark’s default dynamic allocation with

FAIR scheduling gives an equal share of resources to the different runnable stages in a

round-robin fashion.

5.5.2 Experimental Setup

The system has been evaluated on an on-premise cloud deployment to prevent us from

benchmarking cloud vendors’ specific environments. To run Apache Spark v3.3.0, modified

as described in Section 5.4, we use a virtualized Kubernetes v1.26 cluster, consisting of

one master and 9 worker nodes. The master runs in an Ubuntu 22.04 VM with 16 vCPUs,

120GB of memory, and 500GB of disk, while the workers run in an Ubuntu 22.04 VM with

either 18 or 32 vCPUs, 120GB of memory, and 400GB of disk. While each worker node can

accommodate up to 7 executors featuring 4 vCPUs, 16GB of RAM, and 32GB of disk, the

master node is the control plane, and it accommodates the driver featuring 4 vCPUs, 16GB

of memory, and 128GB of disk. The Kubernetes cluster is mapped on 10 physical nodes

residing in the same rack and featuring either an Intel®Xeon Silver 4114 CPU running at

2.20GHz or an Intel®Xeon E5-2630 v4 CPU running at 2.20GHz.
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We configured Spark to launch executors with the aforementioned amount of resources

to mimic the default configuration of serverless Spark environments. Thus, we can deploy a

maximum of 54 executors on the available worker nodes due to a lack of further resources.

In the remainder of this section, we consider the round number of 50 executors as the upper

bound resource limit. We deploy A MinIO server v2023-10-14T01-57-03Z, a widely used

high-performance object storage, as shared storage. It runs bare-metal on a node featuring

an Intel®Xeon E5-2620 CPU running at 2.00GHz, interfacing with two 1.6TB Intel®DC P3608

SSDs through NVMe. In-memory key-value stores, such as Redis and Memcached, are

not considered since they break one of the serverless advantages by requiring users to

select instance types in terms of network, compute, and memory resources to satisfy their

application requirements. The proposed scaling agent is a gRPC server v1.59.2, implemented

in Python v3.11.1 using pickle-mixin v1.0.2 and lightgbm v4.1.0, and it is deployed in an

Ubuntu 22.04 VM with 16 vCPUs, 32GB of memory, and 100GB of disk. The VM runs on an

Intel®Xeon E5-2630 v4 CPU @2.20GHz. The VMs and the resource allocation agent machine

are synchronized in the millisecond range. Physical nodes are connected through a 10Gbps

Brocade VDX6740 network switch. The experimental evaluation reports average results

computed over 10 sequential runs for reliability and considers the current IBM Analytic

Engine pricing plan of 0.154 USD/Virtual processor core hours and 0.0146 USD/Gigabyte

hours.

5.5.3 Dynamic Time Interval Analysis

In this analysis, we want to assess the influence of varying time intervals on the search

accuracy and determine the optimal time interval for invoking Dexter’s search module,

denoted as the time window between two consecutive calls. This analysis is based on the

observation that the use of static intervals, was sub-optimal within the context of this work.

The average task runtime is a key feature in exploring the search space; therefore, it is

important to select a time interval large enough to guarantee the execution of enough tasks

to get accurate information. In addition, since the average task runtime shows significant

variability not only across stages but also within a given stage due to increasing parallelism

overheads, as shown in Section 5.2, there is the need for an adaptive time interval (varying

accordingly).

The evaluation of the optimal time interval considers different task runtimes, ranging

from some milliseconds up to some seconds, and different statically defined time intervals,

varying from 1s up to 20s with a 1s increment. Figure 5.6 illustrates the MAEs for three distinct

stages characterized by an average task runtime of 0.329s, 1.979s, and 3.091s, respectively.

Notably, each stage exhibits a different optimal time interval - 2s, 12s, and 20s - achieving

an error of 0.6, 0.4, and 0.6 executors, respectively. To define the dynamic time interval as a
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Figure 5.8: End-to-end performance over the two baselines when running TPC-H benchmark.

function of the average task runtime, we include a higher number of stages ranging from

some milliseconds up to roughly 3s. Figure 5.7a and Figure 5.7b depict the optimal time

intervals and their corresponding MAEs, respectively. Although optimal time intervals result

in MAEs lower than 1.4 executors, there is a notable exception, where the MAE reaches 3.8

executors. Closer analysis reveals that the executors in this stage are affected by multiple

long cold starts; therefore, the stage does not have enough time to scale appropriately. In

contrast, another stage with an almost equivalent average task runtime shows a MAE of 0.6

executors. The relationship between the average task runtime and the optimal time interval,

i.e., the one achieving minimum MAE, can be modeled by a linear regression model, as

highlighted in Figure 5.7a. Specifically, given an average task runtime ATR, the dynamic

time interval DTI can be modeled as the linear relationship defined as:

DTI(ATR) = 5.77 × ATR + 1.89 (5.2)

In the following, each stage TaskSetManager calls periodically Dexter with a dynamic time

window defined following Equation (5.2).

5.5.4 End-to-End Performance-Cost Evaluation

In this evaluation, we assess the performance-cost efficiency, and effectiveness of Dexter’s

improved resource utilization compared to the default Spark dynamic resource allocation
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Figure 5.9: Resource allocation patterns for TPC-H q7 query.

strategies assigning resources in a FIFO and FAIR fashion. Differently from other works in

the literature, focusing on optimizing the sharing of a fixed amount of resources among

a set of workloads, we study Dexter’s performance-cost tradeoff under the assumption

that every incoming workload can independently scale. This assumption stems from the

serverless paradigm, where each application can leverage a theoretically unlimited pool

of resources. In our custom implementation of serverless Spark, the gRPC server and the

MinIO object storage represent the two potential primary system bottlenecks. While the

gRPC server can efficiently deal with high loads, distributing the requests optimally across

a set of server instances, object storage has been proved to be a practical but powerful

approach for serverless data analytics when considering optimized versions [37, 134–137].

Therefore, since implementing an optimized object storage is out of the scope of this work,

in this evaluation, we assume that neither the gRPC server nor the MinIO object storage

imposes constraints on system performance.

We assess the effect of dynamically adjusting the amount of resources at each stage by

adopting a hybrid approach that combines predictive with reactive approaches. Precisely,

for each query, we measure two primary metrics: 1) The end-to-end runtime, defined as

the temporal span between the timestamp preceding the first executor request and the

timestamp immediately following the shutdown of the last executor (including executors’

cold start time), and 2) The associated monetary cost, calculated following the serverless

paradigm, accounting solely for executors uptimes while not accounting for cold start. To

derive an unbiased evaluation of the overall performance-cost tradeoff, we introduce a single

composite metric denoted as efficiency, defined as:

E f f iciency =
RuntimeBaseline × CostBaseline

RuntimeDexter × CostDexter
(5.3)

By incorporating both runtime and cost variables, the efficiency metric avoids biased

solutions by reflecting any variation in terms of latency, cost, or a combination of the two.

Figure 5.8 illustrates the results obtained from benchmarking the TPC-H dataset.
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Figure 5.10: Resource provisioning of the two baselines and Dexter, highlighting the resource savings
achieved by Dexter.

Notably, as Dexter exhibits a less aggressive resource scaling compared to the two

baselines, the end-to-end runtime achieved by Dexter is generally comparable or higher in

all queries, increasing the latency by a factor ranging from 1.03× to 2.02× (median: 1.45×,

interquartile range: 1.27× to 1.68×), and from 1.05× to 1.90× (median: 1.47×, interquartile

range: 1.24× to 1.72×) for the two baselines, respectively. Differently, from the pure monetary

cost perspective, Dexter always costs significantly less than the two baselines, achieving

a cost reduction ranging from 2.02× to 4.59× (median: 3.79×, interquartile range: 3.15×
to 4.13×) and from 2.07× to 4.65× (median: 3.71×, interquartile range: 3.19× to 4.07×) on

each baseline. For all analyzed queries, Dexter demonstrates improved performance-cost

efficiency, ranging from 1.50× to 3.50× (median: 2.75×, interquartile range: 2.41× to 2.93×)

with respect to the FIFO baseline and from 1.62× to 3.20× (median: 2.66×, interquartile

range: 2.45× to 2.88×) for the FAIR baseline. An example of resource allocation patterns for

the TPC-H q7 query, showing the maximum efficiency, are illustrated in Figure 5.9. Dexter

has a more conservative approach on scaling resources, achieving comparable or slightly

higher runtime, while using 3.33× fewer resources.

Scaling at fine-grained granularity, i.e., at the per-stage level, allows to allocate just the

right amount of resources for each stage, thereby leaving available resources for concurrent

workload executions. The resource usage of each considered solution is depicted in Fig-

ure 5.10. In contrast to the two baselines, which always use the maximum of 50 executors,

Dexter consistently achieves resource savings ranging from 1.13×to 5.71× (equivalent to 4.8

and 41.3 free executors on average, respectively). Figure 5.9 presents the resources allocated

by the three analyzed solutions in the case of TPC-H q7 query, reaching a resource saving of

3.33×, which translates in using only 15 executors, thus leaving 35 executors free.

Finally, we analyse the number of deployable instances under various constraints, leverag-

ing the three different resource allocation strategies. We constrain three aspects: 1) Amount

of available resources, 2) Time availability, and 3) Monetary budget. Notably, on query q14,

representing the query achieving the most significant resource saving, Dexter enables the
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deployment of
⌊ 100

9

⌋
= 11 concurrent instances with 100 executors, compared to a maximum

of
⌊ 100

50

⌋
= 2 concurrent instances achievable by the baselines, which translates in 5.5× more

deployable workload instances. In the worst case with query q13, our solution deploys⌊ 3600
59.81

⌋
−
⌊ 3600

120.99

⌋
= 60 − 29 = 31 (2.02×) and

⌊ 3600
63.99

⌋
−
⌊ 3600

120.99

⌋
= 56 − 29 = 27 (1.90×) less

instances compared to the baselines. Therefore, when focusing only on the runtime metric,

Dexter deploys fewer instances than the two baselines. This is expected since we are scaling

resources conservatively.

Lastly, when considering a monetary budget constraint of 100$, due to the significantly

higher cost efficiency, Dexter yields a considerable increase in deployable instances. For the

most cost-efficient q1 query, Dexter enables
⌊ 100

0.1124

⌋
−
⌊ 100

0.5161

⌋
= 889 − 193 = 696 (4.60×)

and
⌊ 100

0.1124

⌋
−
⌊ 100

0.5108

⌋
= 889 − 195 = 694 (4.55×) more instances compared to the baselines.

In summary, our fine-grained per-stage scaling approach significantly outperforms the

baselines when constraining the amount of resources and the monetary cost. In contrast,

the baselines perform better when constraining time availability since they scale more

aggressively.

5.5.5 Parallelism Accuracy Analysis

While the individual accuracy of the historical and search module has been provided in

Section 5.3.1.1 and Section 5.3.1.2, we now evaluate the overall system accuracy by analyzing

the absolute error distribution. The analysis reveals a median absolute error of 4, with

the interquartile range spanning from 1 to 8 executors. The minimum and maximum

absolute error are 0 and 18.5 executors, respectively. The reason behind such a maximum

absolute error is due to the free executors’ reassign policy we apply, aiming at increasing

resource utilization. Under this policy, stages get all free resources in priority order. However,

this reassignment speeds up the stage completion, hindering Dexter’s efficient resources

scaling and preventing the search process from converging towards the actual stage optimal

parallelism. Given this distribution of absolute errors, we can conclude that Dexter gives

good accuracy while achieving significantly higher efficiency, as reported in Section 5.5.4.

5.5.6 Input Workload Sensitivity Analysis

We now conduct a sensitivity analysis on the robustness of Dexter when presented with

new unseen input workloads, simulating a workload change. The research question we pose

is: Is our agent trained on the TPC-H benchmark capable of achieving efficient resource allocations

for previously unseen Spark workloads? If the agent provides inefficient resource allocation for

unseen queries, the work would lack of generality. To address this question, we validate

Dexter’s generality by benchmarking TPC-DS and Terasort on 100GB input data. While TPC-
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Figure 5.11: Dexter’s (a) runtime performance, (b) cost savings, (c) performance-cost efficiencies, and
(d) resource savings when running the 99 TPC-DS queries with 100GB input data.

DS involves more complex queries compared to TPC-H ones with advanced SQL features,

extensive filter predicates, and diverse data scans, Terasort represents a real-world workload

used by most of the existing serverless analytics systems [37, 89, 135, 136, 138]. Furthermore,

given the notable diversity in datasets often observed in serverless environments, we extend

our analysis to include Dexter’s adaptability to dataset variations.

Regarding TPC-DS, Figure 5.11 depicts the distribution of Dexter’s runtime performance,

cost savings, performance-cost efficiencies, and resource savings in comparison to the two

baselines. As shown in Figure 5.11a, on the one hand, Dexter presents a median runtime

slowdown of 1.33× (interquartile range: 1.27× to 1.38×) compared to the dynamic FIFO

baseline. Similarly, when compared to dynamic FAIR baseline, Dexter exhibits a median

runtime slowdown of 1.34× (interquartile range: 1.28× to 1.38×). On the other hand, as

shown in Figure 5.11b, Dexter demonstrates notable cost savings compared to the two

baseline. More precisely, when compared to the dynamic FIFO baseline, Dexter enable a

median cost saving of 2.41× (interquartile range: 2.30× to 2.56×). High cost savings are

achieved also in the case of dynamic FAIR baseline, where Dexter allows a median cost saving

of 2.40× (interquartile range: 2.31× to 2.54×). When considering the unbiased composite

performance-cost efficiency metric presented in Figure 5.11c, Dexter achieves a median

efficiency increase of 1.79× (interquartile range: 1.69× to 1.96×). When compared with the

dynamic FAIR baseline, Dexter presents a median efficiency increase of 1.77× (interquartile
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Table 5.2: Runtime and cost of the five most compute-intensive queries from TPC-DS benchmarks.

Query
Dynamic FIFO Dynamic FAIR Dexter

Runtime[s] Cost[$] #Exs Runtime[s] Cost[$] #Exs Runtime[s] Cost[$] #Exs

q14a 140.89 0.5339 50 131.47 0.5521 50 169.56 0.2324 22.5
q23b 153.92 0.6366 50 139.18 0.6283 50 184.91 0.2953 23.3
q67 189.34 0.6717 50 188.09 0.6482 50 207.68 0.2546 14.9
q72 133.94 0.5091 50 124.24 0.4925 50 154.45 0.2459 20.5
q78 126.91 0.5666 50 125.53 0.5621 50 170.72 0.2138 16.7

range: 1.67× to 1.90×). While increasing significantly performance-cost efficiencies, Dexter

allows a median resource saving of 3.40× (interquartile range: 2.99× to 3.73×), as presented

in Figure 5.11d. We selected the top 5 most time-consuming TPC-DS queries, namely, q14a,

q23b, q67, q72, and q78. Table 5.2 shows the end-to-end runtime and cost when running the

five most time-consuming queries with the two considered strategies. The corresponding

performance-cost tradeoff and the achieved resource savings are shown in Table 5.3. While

Dexter slightly increases the runtime by a factor ranging from 1.10× to 1.34×, it achieves

monetary savings ranging from to 2.08× to 2.65×. Similarly to what we have done with TPC-

H queries in Section 5.5.4, we analyze the benefit in terms of additional deployable instances

under various constraints. With 100 executors, the proposed solution deploys from 2.15×
up to 3.36× more query instances than the baseline dynamic resource allocation with FIFO

scheduling, resulting in a maximum of
⌊ 100

19.9

⌋
= 6 deployable instances instead of

⌊ 100
50

⌋
= 2.

When the time window is fixed at one hour, our solution deploys, on average, 1.20× fewer

instances, i.e., 4 less instances, compared to the baseline. Finally, when constrained by a

monetary budget of 100$, Dexter deploys 2.37× more instances of average, which translates

in 233 more workload instances.

When running Terasort, Dexter demonstrates a remarkable enhancement in cost efficiency,

achieving a cost reduction of up to 2.39×. Moreover, the performance-cost efficiency is

significantly increased by up to 1.93×, alongside notable resource savings of up to 2.3×.

These improvements are achieved while observing a slight increase in runtime, with a

maximum factor of 1.26×.

Dataset changes affect runtime and cost, which are considered in Dexter’s decision-making

process. This is evidenced by differences in TPC-H and TPC-DS benchmarks, using different

datasets (8 and 22 tables), with TPC-DS queries exhibiting significant variability in data scan

ranges. Moreover, experiments with Terasort further underscore Dexter’s adaptability to

dataset changes, including shifts in data models, such as from structured relational data

models to semi-structured ones.

Our sensitivity analysis underlines the Dexter adaptability to both workload and dataset

changes, establishing its usefulness in optimizing resource allocation for previously unseen

workloads.
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Table 5.3: Efficiency and resource savings evaluation of the five most compute-intensive queries from
TPC-DS benchmarks.

Query
Dynamic FIFO / Dexter Dynamic FAIR / Dexter

Efficiency Resource Saving Efficiency Resource Saving

q14a 1.91× 2.22× 1.81× 2.22×
q23b 1.79× 2.15× 1.61× 2.15×
q67 2.41× 3.36× 2.28× 3.36×
q72 1.80× 2.44× 1.60× 2.44×
q78 1.97× 2.99× 1.93× 2.99×

5.5.7 System Overhead Evaluation

In this evaluation, we discuss the system overhead in terms of time necessary to fit the

historical module model and to perform the model inference when determining the initial

stage parallelism level. We also discuss the time taken to perform one search step when fine-

tuning the parallelism level during stage computation. The reported times in the remainder

of this evaluation represent end-to-end latency: we compute the latency as the difference

between the registered timestamp prior to each agent call and the timestamp immediately

following the reception of the corresponding response.

Regarding the initial parallelism level prediction, the time needed to fit the parameter

model utilizing BDS on a batch of 182 stages known at compile-time is, on average, 19.12ms

with a single thread. Aiming at understanding the impact of training delay in a multi-tenant

cloud-like scenario, with a dataset scaled up to 18,200 rows (two orders of magnitude larger),

the training would take an average of 19.12ms×102 = 1, 912ms≈ 2s.

We want to emphasize that the training delay is small enough to seamlessly execute model

retraining on the fly, even at per-minute granularity. The time required for the one-time

per-stage prediction of the initial parallelism level averages to 15.87ms. For a single row, the

prediction complexity of using BDS amounts to O(n), where n is the number of decision

stumps, since each decision stump is evaluated in constant time c (O(n ∗ c) = O(n)). In the

search module, the average delay for each search step amounts to 5.65ms. Since the overall

search time for a given stage strictly depends on the number of performed search steps,

which in turn depends on the average task runtime, to assess the impact of search delay

we consider the three different stages discussed in Section 5.5.3, featuring an average task

runtime of 0.329s, 1.979s, and 3.091s, respectively. During stage execution, the agent is

invoked once, twice and four times, translating into a median total search latency of 5.5ms,

6.5ms, and 26.5ms, accordingly.

Therefore, we assert that Dexter’s performance-cost effective resource allocation imposes

negligible overhead on the final stage execution time.
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5.6 related work

Resource allocation in modern cloud data centers has been extensively investigated in

the literature. However, directly applying existing work on VMs to serverless Spark is

challenging. The key factors preventing this translation are: 1) The number of instances

spawned is significantly higher in serverless than the one for VMs (10s for VMs, 100s for

serverless), and 2) Fitting the executors following a consolidating strategy goes against the

concept of hardware disaggregation, at the base of the serverless paradigm. Existing cloud

service providers’ production systems, such as Google Borg [139], and open source systems,

such as Google Omega [140], typically provide configuration parameters to control the

resource allocation process. Since the manual configuration setting requirement breaks the

free-of-management serverless principle, we do not consider these solutions in this chapter.

Focusing on the resource allocation problem for big data analytics frameworks, in the

following, we discuss the work related to Dexter, classifying existing solutions into three

main families: analytical model-based, heuristic-based, and ML-based schedulers. A detailed

summary of the existing work is presented in Table 5.4.

5.6.1 Analytical Model-based Schedulers

OptEx [123] builds a closed-form performance model that decomposes the application

completion time into smaller, logically distinct phases, leveraging profiling information.

Based on the performance models, the authors identify the application’s cost-optimal

resource allocation required to satisfy a specific deadline with the minimum number of

resources. Justice [124] estimates the resources that applications need to meet deadlines

from historical application execution traces and implements admission control and resource

allocation. It also automatically adapts to workload variations to provide sufficient resources

for each job to meet the deadline.

5.6.2 Heuristic-based Schedulers

Quasar [125] is a cluster manager that maximizes resource utilization while meeting user-

defined performance and QoS high-level specifications. Given the cluster state at any point

in time, combining a small profile of information from the application itself with historical

data on previously scheduled applications, it applies collaborative filtering to determine

the least amount of available resources necessary to meet such user specifications. In

[51], the authors present Morpheus, a system designed to automatically derive periodic

application SLOs and resource models from resource-usage historical data, relying on
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recurrent reservations and packing algorithms, to place containers, minimizing cluster

resource usage cost. Moreover, Morpheus dynamically adapts to changing conditions

at runtime and reprovisions applications accordingly to mitigate inherent performance

variance due to changes, for example, in application input or failures. AutoPath [126]

leverages the application DAG information to identify parallel paths and adaptively allocates

computing resources to each path during runtime based on the estimated demand. Resource

allocation is triggered every time a new stage is launched. The authors estimate the total

execution time of each path by analyzing runtime statistics of the average transformation

time between RDDs in every parallel path, adjusting resources accordingly. 3Sigma [127]

observes the importance of relying on full distributions of relevant runtime history for

each job, rather than just a point estimate derived from it, to make more robust decisions.

Based on this observation, the authors propose a cluster scheduling framework that

employs Mixed-Integer Linear Programming (MILP) for bin-packing applications on available

resources. AdaptiveConfig [128] is a runtime configuration tuning framework for cloud

cluster schedulers. The framework automatically adapts to workload changes by comparing

performance discrepancies of different configurations and identifying the best configuration

to satisfy the latest mix of jobs’ resource demands.

5.6.3 ML-based Schedulers

ML models interact with the environment to learn the optimal behavior without a priori

knowledge and can solve complex problems, such as resource allocation, accounting with

uncertainty. Decima [120] makes use of Deep Reinforcement Learning (DRL) to automatically

learn application-specific scheduling algorithms. Specifically, it employs a graph neural

network to convert the states’ information concerning the application DAG and cluster

nodes’ status into embedding vectors. These embedding vectors are then used as input

to a policy network to concurrently select the next stage to schedule and the related

application parallelism level. Noteworthy is the authors’ design decision to abstain from

exploiting fine-grained stage-level parallelism. This decision stems from the need to trade-off

between the granularity of control and model training complexity. By restricting parallelism

control at the application level, Decima reduces the action space of scheduling policies

that must be explored and optimized during training. AutoToken [121] predicts the peak

resource usage of recurring big data applications. It first groups applications based on their

recurring signatures and then makes use of different per-signature linear models, one for

each recurring job group identified, to scale resources for each application appropriately.

AutoExecutor [39] predicts the executor counts based on a parametric model analyzing

the price-performance trade-off, trained using Random Forest (RF) regression algorithms.

The features used for the parametric model include characteristics of both the application
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plan and the application inputs. Differently from the majority of the works present in

the literature using runtime statistics and similarly to Dexter, AutoExecutor relies only on

features available at compile-time and before running the application. Differently from the

majority of the works present in the literature using runtime statistics, AutoExecutor relies

only on application features available at compile-time. In a similar fashion, TASQ [122]

also centers its predictions only on compile-time application features. It leverages these

features to train and use graph neural networks to predict the application performance

characteristic curve trend and the optimal application amount of resources. Autoexecutor,

TASQ, and Dexter share a common characteristic: they rely on compile-time features, known

before running the application. The authors introduce a novel data augmentation technique

to tackle training data sparsity. This technique effectively simulates the entire application

performance characteristic curves using solely the information from a single application run

with a single resource instance.

5.7 summary

This work investigates the effect of resource scaling on execution duration and associated

monetary cost, highlighting critical importance of setting the optimal scaling level at the

smallest fine-grained granularity, specifically at the per-stage level. This implies allocating

more resources to highly parallel stages with large-chunk input data, while limiting resource

for stages with little inherent parallelism or processing small-chunk input data. To this

aim, we present Dexter, a robust resource allocation manager designed to continuously

monitor application execution, automatically assigning an optimal amount of resources at a

fine-grained level to maximize resource utilization. Notably, when the stage performance-

cost tradeoff deviates during workload execution, Dexter dynamically adjusts resource

allocation to balance the performance-cost tradeoff, minimizing the overall cost while

providing acceptable runtime performance. Our experimental evaluation shows that on

different analytics workloads, compared with the default serverless resource allocation, our

solution achieves a significant cost reduction of up to 4.65×, while improving resource

efficiency up to 3.50× and substantially reducing resource saving up to 5.71×. This work

shows that dynamically adjusting resources to meet the application’s needs at fine-grain in

real-time ensures greater resource allocation flexibility, as well as higher resource efficiency.

Consequently, we prove that fine-grained per-stage resource allocation significantly enhances

the performance of executing complex data-intensive analytics workloads in serverless

environments.
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5.8 publications

The contents of this contribution are summarized in the following publication:

– [Submitted]. Anna Maria Nestorov, Diego Marron, Alberto Gutierrez-Torre, Chen

Wang, Claudia Misale, Alaa Youssef, David Carrera, and Josep Lluís Berral. “Dex-

ter: A Performance-Cost Efficient Resource Allocation Manager for Serverless Data

Analytics“. In: 25th International Middleware Conference (Middleware ’24).





6
S U M M A RY A N D C O N C L U S I O N S

In recent years, serverless computing has gained significant attention from both academia

and industry. Its fundamental principles, including transparent elastic resource scaling

allowing massive scalability, ‘pay-as-you-go’ cost model with fine-grained charging granular-

ity, and hassle-free management, have attracted many tenants in today’s cloud environments.

However, directly using serverless platforms in more complex data-intensive analytics

applications lead to highly inefficient executions and its adoption comes with inherent chal-

lenges. Given the resource-intensive and highly parallel nature of these applications, these

challenges pose significant obstacles for these applications to benefit from the elasticity and

the virtually unlimited scalability offered by serverless platforms. The dynamic availability

of resources in modern serverless systems further introduce several challenges, making an

efficient usage of resources a key requirement.

In this thesis, we address the aforementioned challenges by exploring several research

paths. Firstly, we comprehensively characterize a proper use case data-intensive analytics

workload and access its performance when executed within serverless platforms. By deeply

studying this use case workload we identify the most critical factors preventing the efficient

execution these complex workloads to fully benefit from serverless environments. In partic-

ular, we find that communication via shared object storage and application-level scalability

are two essential factors limiting the efficient execution of data-intensive analytics workloads

within serverless platforms. Building upon this findings, we introduce a data forwarding

system for direct inter-function communication, called Floki, to overcome the high data

sharing latencies through object storage. Our results demonstrate that Floki significantly

reduces inter-function communication latencies, thereby enhancing the end-to-end time per-

formance and improving overall resource utilization efficiency. Finally, we examine different

scalability granularities, and we propose Dexter as a solution to fine-tune at real-time the

scaling levels at the smallest application granularity. Dexter enables more efficient usage

of resources, in terms of total runtime cost, fine-tuning resource allocations at the smallest

granularity, prioritizing simplicity, generality, and ease of understanding. It dynamically

adapts to performance-cost changes by automatically adjusting the allocated resources.
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In this thesis we demonstrate that it is possible to execute efficiently complex data-

intensive analytics workloads, traditionally deployed in managed cloud clusters, in serverless

platforms.

6.1 summary of results

The main results and contributions of this thesis can be summarized as follows.

6.1.1 Workload Scalability and Performance Analysis

Thanks to the flexibility of the proposed model, we accurately estimate the performance

impact on a use case workload, the Google’s Tesseract OCR engine, of the following key

factors: task granularity and concurrency, data locality, resource allocation, and scheduling

policies. Concerning task granularity and concurrency, our investigation reveals distinct

saturation points for the three workload parallelisms, beyond which increasing the assigned

resources yields negligible performance gains. When varying the task granularity, the coarse-

grained deployment outperforms the fine-grained deployment for similar configurations,

particularly in remote scenarios, achieving a performance boost of up to 1.55×. However,

when considering all application parallelisms and fully unrolled deployments, fine-grained

executions demonstrate higher speedups, moving from 4.57× to 6.79× locally and from

3.44× to 4.24× remotely. This performance increase comes at the cost of significantly higher

number of tasks, rising from 32 to 812, and higher I/O, growing from 1.4GB to 15.6GB.

Regarding resource allocation, a more accurate resource allocation strategy increases the

number of deployed coarse-grained workload instances from 38 to 49, fitting 11 more

instances on the same amount of resources. Finally, we show that the data-sharing time for

such complex workloads can be reduced by a factor of up to 4.32× by efficiently placing

functions considering data locality, thereby minimizing the communication over the network,

and grouping functions with the same parallelisms.

6.1.2 Direct Inter-Function Communication Enablement

We overcome the shared remote storage bottleneck problem by proposing Floki, a system

that proactively enables point-to-point data sharing, reducing the end-to-end time up to

74.95× in the one-to-one pattern, up to 25.34× in the fan-out pattern, up to 10.18× in the

fan-in pattern, and up to 9.99× in the all-to-all pattern. The higher time-saving is reached

with the maximum analyzed data size of 16GB, where communication latency is reduced

from 12.55 to 8.22 minutes, saving more than one-third of the time. From the resource
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usage perspective, Floki represents a significantly less expensive resource usage solution

compared to the state-of-practice shared object storage. More precisely, Floki requires 64KB

of memory for the pipe buffer and 128KB for each client/socket buffer for each function

composing the workload, allowing resource-saving to scale linearly with the increase in

data size. Differently, the shared object storage solution requires a disk space equal to the

total data size. For example, in the case of the simple one-to-one pattern, the 16GB saving

differs from the 1MB saving by a factor of 16, 384×, equivalent to the difference between the

two data sizes. Overall, Floki achieves up to 50, 738× of resource-saving, translating into a

memory allocation of roughly 1.9MB instead of an object storage allocation of 96GB.

6.1.3 Automatic Performance-Cost Efficient Resource Allocation

We propose Dexter, a robust resource allocation manager designed to continuously monitor

application execution, automatically assigning an optimal amount of resources at a fine-

grained level to maximize resource utilization. Dexter outperforms the default serverless

resource allocation on different analytics workloads by achieving a significant cost reduction

of up to 4.65×, while providing reasonable performance. Moreover, thanks to its conservative

approach on scaling resources, Dexter shows comparable or slightly higher runtime, while

using up to 5.71× fewer resources. The significant resource usage reduction allows to place

allows to place up to 5.5× and up to 4.60× more workload instances when constraining

the available amount of resources and the monetary budget. Differently, when focusing

on the the pure runtime metric, Dexter deploys up to 2.02× less workload instances

since the baseline scales resources more aggressively in time while Dexter follows a more

conservative approach. The absolute error distribution analysis reveals that Dexter represents

an accurate solution, achieving a median absolute error of 4 executors. Our sensitivity

analysis underlines that Dexter is highly adaptable to workload variation and provides

performance-cost efficient resource allocations, with an average monetary cost saving of

up to 2.65× while slightly increasing the runtime by a factor up to 1.34×. Finally, Dexter

imposes negligible overheads on the stage execution time since the one-time per stage initial

parallelism level prediction requires on average 15.87ms, while the average delay for each

search step amounts to 5.65ms. The time needed to fit the parameter model utilizing a batch

of 182 stages known at compile-time averages to 19.12ms with a single thread. Projecting this

analysis to a multi-tenant cloud-like scenario, with a dataset scaled up to 18,200 rows (two

orders of magnitude larger), the training would take ≈ 2s on average. This delay is small

enough to seamlessly execute model retraining on the fly, even at per-minute granularity.
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6.2 future work

In the following, we provide an overview of the research directions we consider promising

within the context of the contributions discussed in this thesis.

Exploring Data Locality and Scheduling Policies

The first contribution of this thesis has shown that task granularity and concurrency, data

locality, resource allocation, and scheduling policies are pivotal factors that could signifi-

cantly enhance the performance of executing complex data-intensive analytics workloads

in serverless platforms. While task granularity and concurrency, as well as resource al-

location, have been investigated in the third contribution, data locality and scheduling

policies represent two relevant research directions for future work. In large-scale clusters,

co-placing producer-consumer function pairs featuring the most relevant data movements

would reduce the network load and the communication overhead thanks to the higher

local bandwidths. In this direction, the research community has recently begun to propose

solutions to alleviate the expensive data movement overhead of shared remote storage

through data locality enhancement [141–143]. However, co-placing functions restrict the

resource allocation flexibility, a core characteristic of the serverless paradigm. Therefore,

finding the right balance between function co-location and spreading is fundamental. As a

result, novel scheduling policies exploiting data locality can be explored to increase further

the performance of data-intensive analytics workloads in serverless platforms.

Expanding Floki with Checkpoints

The second contribution of this thesis presented Floki, a system enabling direct inter-

function communication within Kubernetes-based serverless environments by proactively

forwarding data based on the workload pipeline. The architecture has been designed to

be leveraged by serverless platforms and users for high-performance volatile intermediate

data exchange. Even though Floki prototype is completely implemented, we aim to fully

integrate Floki with Knative. Moreover, adopting a fully volatile data transmission approach

significantly enhances end-to-end time performance but at the cost of no data persistency.

In the final integration, in the event of a failure, the absence of data persistence imposes the

re-computation of intermediate data by re-running the entire pipeline. This re-computation

process introduces additional overhead, particularly in data-intensive analytics workloads,

where the overhead scales linearly with the computational complexity of functions. Thus, to

mitigate this overhead, per-function data recovery deserves further investigation. To enhance

resilience and fault tolerance, we envision expanding Floki into a more robust backup and

recovery system capable of recovering reliably from failures or faults. One potential direction

is developing a consistent "point in time" persistence mechanism of function states. This
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extension aims to contribute to the overall efficiency of Floki in executing data-intensive

analytics workloads in serverless environments.

Expanding Dexter with Critical Stages Knowledge and User Objective

The third contribution of this thesis presented Dexter, a resource allocation manager, leverag-

ing serverless computing elasticity, that continuously monitors the execution of applications,

dynamically allocating resources at a fine-grained level to guarantee performance-cost

efficiency. Although our evaluation shows that the proposed solution can achieve higher

efficiencies than the current serverless Spark frameworks (see Section 5.5), Dexter can be

further optimized. Specifically, leveraging DAG knowledge could enable the prioritization of

critical stages during resource allocation. This approach involves allocating more resources

to critical stages initially and subsequently adapting the resources for remaining parallel

stages based on the critical stages estimated time. Adapting dynamically resource allocation

prioritizing critical stages increases further resource utilization, freeing resources by assign-

ing the minimum amount to non-critical stages (possibly even less than the optimal ones).

To this aim, we are currently working towards enhancing Dexter’s architecture with a new

priority module, coordinating with the existing historical module and search module to prior-

itize critical stages. Moreover, expanding Dexter to account with a user-defined objective

represents another interesting research direction. Enabling the user to specify performance

and cost priority factors would guide the optimal scaling factor search towards his/her

preferred objective, rather than maintaining a balanced performance-cost tradeoff. This last

extension aims to increase the system’s flexibility to adapt to diverse user requirements.

6.3 publications

The content of this thesis has been published in the following conference papers:

– [86] Anna Maria Nestorov, Jordà Polo, Claudia Misale, David Carrera and Alaa S.

Youssef, “Performance Evaluation of Data-Centric Workloads in Serverless Environ-

ments.” In Proceedings of the 14th International Conference on Cloud Computing (CLOUD).

IEEE, Chicago, IL, USA, 2021, pp. 491-496, 10.1109/CLOUD53861.2021.00064

– [118] Anna Maria Nestorov, Josep Lluís Berral, Claudia Misale, Chen Wang, David

Carrera, and Alaa Youssef. 2022. “Floki: a proactive data forwarding system for direct

inter-function communication for serverless workflows.” In Proceedings of the 8th Inter-

national Workshop on Container Technologies and Container Clouds (WoC ’22). Association

for Computing Machinery, New York, NY, USA, 13–18. 10.1145/3565384.3565890

– [Submitted - Notification Late February 2024]. Anna Maria Nestorov, Diego Marron,

Alberto Gutierrez-Torre, Chen Wang, Claudia Misale, Alaa Youssef, David Carrera,
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and Josep Lluís Berral. “Dexter: A Performance-Cost Efficient Resource Allocation

Manager for Serverless Data Analytics“. In: 25th International Middleware Conference

(Middleware ’24).

We are currently involved in the advance of our third future work, described in Section 6.2,

extending Dexter’s architecture by incorporating a new module accounting with critical

stages in parallel stage computation. As an extension of Dexter, our plan is to submit this

work to a journal in the upcoming months.

– [In progress]. Anna Maria Nestorov, Diego Marron, Alberto Gutierrez-Torre, Chen

Wang, Claudia Misale, Alaa Youssef, David Carrera, and Josep Lluís Berral. “Dexter: A

Priority-Aware Performance-Cost Efficient Resource Allocation Manager for Serverless

Data Analytics“. In: Future Generation Computer System International Journal.

The following publication has been made in addition to the aforementioned publications.

This publication is not directly included in this thesis because it is not aligned with the thesis

topic. It is an independent study that helped me to understand if to consider heterogeneous

computing during the Ph.D.. The contribution was limited to providing ideas and helping

with the write-up.

– [144] Nils Voss, Tobias Becker, Simon Tilbury, Georgi Gaydadjiev, Oskar Mencer, Anna

Maria Nestorov, Enrico Reggiani, and Wayne Luk. 2020. Performance Portable FPGA

Design. In Proceedings of the 2020 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (FPGA ’20). Association for Computing Machinery, New

York, NY, USA, 324. https://doi.org/10.1145/3373087.3375362

6.4 code repositories

Aside of the aforementioned publications, this thesis has produced two open-source code

repositories with the implementation of the Floki and Dexter components, as well as the

performance evaluation scripts. While Floki code repository is public, the Dexter repository

is currently private since the related paper is currently in the peer review process. Specifically,

the two code repositories are:

– Floki: The public repository contains the Floki codebase and is hosted on Gitlab

(https://gitlab.bsc.es/datacentric-computing/floki-prototype)

– Dexter: The private repository contains the Dexter codebase, as well as our custom ver-

sion of Apache Spark, integrating the client side of the Dexter scaling agent. The source

code is available in Gitlab (https://gitlab.bsc.es/datacentric-computing/dexter).
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6.5 projects

This thesis was financed by the EU-HORIZON programme (grant agreement GA.101092646);

the EU-HORIZON MSCA programme (grant agreement GA.101086248); the Spanish Min-

istry of Science (MICINN), the Research State Agency (AEI), and European Regional Develop-

ment Funds (ERDF/FEDER) (grant agreements PID2021-126248OB-I00, MCIN/AEI/10.13039/

501100011033/FEDER, UE); the Generalitat de Catalunya (AGAUR) (grant agreement 2021-

SGR-00478); the EU-H2020 programme (grant agreement GA.952179); IBM T.J.Watson

Research Center in Yorktown Heights, New York (USA), and IBM Research Laboratory in

Zurich (Switzerland).

6.6 collaborations and visits

During the whole Ph.D., I have collaborated with IBM T.J.Watson Research Center in York-

town Heights, New York (USA). In particular, the collaboration involves IBM’s Container

Cloud Platform team and the Cloud and Cognitive Solutions team. Unfortunately, I was not

able to fulfill the initially scheduled stays (at least 3 months per year) at IBM T.J.Watson Re-

search Center in Yorktown Heights due to unforeseen circumstances related to the ongoing

COVID-19 pandemic. For this reason, to overcome the limitations posed by the COVID-19

pandemic, the collaboration has been held by implementing a consistent and structured

schedule of virtual meetings. These regular virtual meetings have allowed us to stay con-

nected, discuss important matters, and continue our collaborative efforts seamlessly. After

the COVID-19 pandemic started to subside, I started to look for internship opportunities

in Europe, to contribute my skills and gain practical knowledge in an industrial setting.

Fortunately, I found a 6-months internship position in the Hybrid Cloud/Infrastructure-

Software team at the IBM Research Laboratory in Zurich (Switzerland), where I could apply

my expertise and learn from experienced professionals in the field of infrastructure and

resource management in the cloud.
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