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Abstract 

In recent years, there has been a significant increase in the growth of electricity demand. This 

electricity demand requires retrofitting of lines or exploiting the maximum capacity of existing 

power lines. In addition, substation connectors are the critical components of power systems since 

the failure of substation connectors can lead to serve power outages and significantly affect the 

power transmission efficiency. Therefore, it is vital to have real-time information on key elements 

of electrical systems, such as connectors and conductors, in order to ensure the reliability and 

efficiency of power transmission systems. To this end, the Smartconnector project aims to 

combine ICT (Information and Communication Technologies), IoT (Internet of Things) and data-

driven technologies to estimate the state of health of substation connectors and take advantage of 

the maximum capacity of lines. Over the past few years, several research projects have been 

carried out to develop a smart high voltage connectors prototype, Smartconnector, in order to 

collect and wirelessly transmit information from power connectors in real time. Moreover, a 

prediction model has been proposed to utilize the collected data to separately predict the 

remaining useful life of connectors. However, improvements, experimental validation and field 

application are still needed to verify the reliability and feasibility of the Smartconnector prototype. 

In addition, field application of the IoT device is required for both connectors and conductors. 

This thesis is dedicated to the development, improvement, and experimental validation of the 

IoT prototype and the extension of its application to further increase the efficiency of power 

transmission systems. It is divided into two cores, which include the optimization of the 

Smartconnector prototype, and the extension of its application. This thesis improves the power 

management system, which helps to prolong the lifetime of the device. This improvement is based 

on thermal energy harvesting together with the energy balance strategy. Also, it develops 

statistical filtering algorithms for data processing. The proposed algorithms are finally 

implemented on the embedded system of the Smartconnector device, ensuring the accuracy of the 

continuous measurements. This thesis also focuses on the application of the Smartconnector for 

the dynamic monitoring of the line capacity considering weather conditions. In conclusion, this 

thesis aims to provide improvements and developments for the Smartconnector, as well as to open 

its application to other fields.  
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Resumen 

En los últimos años se ha producido un aumento significativo del crecimiento de la demanda de 

electricidad. Este crecimiento requiere el reequipamiento de las líneas o el aumento de la 

capacidad de las líneas eléctricas existentes. Además, los conectores de subestación son 

componentes críticos, ya que su fallo de los conectores puede provocar cortes de servicio y afectar 

significativamente a la eficiencia de la transmisión de energía. Por lo tanto, es vital disponer de 

información en tiempo real sobre elementos clave de los sistemas eléctricos, como conectores y 

conductores, para garantizar la fiabilidad y eficiencia de los sistemas de transmisión de energía. 

Con este fin, el proyecto Smartconnector pretende combinar las TIC (Tecnologías de la 

Información y la Comunicación), el IoT (Internet of Things) y las tecnologías basadas en datos 

para estimar el estado de salud de los conectores de las subestaciones y aprovechar al máximo la 

capacidad de las líneas. En los últimos años, se han llevado a cabo varios proyectos de 

investigación para desarrollar un prototipo de conectores inteligentes de alta tensión, 

Smartconnector, con el fin de recopilar y transmitir de forma inalámbrica información de los 

conectores de potencia en tiempo real. Además, se ha propuesto un modelo de predicción que 

utiliza los datos recogidos para predecir por separado la vida útil restante de los conectores. Sin 

embargo, aún son necesarias mejoras, validación experimental y aplicación sobre el terreno para 

verificar la fiabilidad y viabilidad del prototipo Smartconnector. Además, es necesaria la 

aplicación sobre el terreno del dispositivo IoT tanto para los conectores como para los 

conductores. 

Esta tesis está dedicada al desarrollo, mejora y validación experimental del prototipo IoT y la 

extensión de su aplicación para aumentar aún más la eficiencia de los sistemas de transmisión de 

energía. Esta tesis se divide en dos partes, que incluye la optimización del prototipo 

Smartconnector y la extensión de su aplicación. Esta tesis mejora el sistema de gestión de energía, 

lo que ayuda a prolongar la vida útil del dispositivo. Dicha mejora, se basa en la captación de 

energía térmica junto con la estrategia de balance energético. Asimismo, esta tesis presenta 

desarrollos de algoritmos de filtrado estadístico para el procesamiento de datos. Los algoritmos 

propuestos se implementan finalmente en el sistema integrado del dispositivo Smartconnector, 

asegurando la precisión de las medidas continuas. Esta tesis también se centra en la aplicación del 

Smartconnector para la monitorización dinámica de la capacidad de la línea teniendo en cuenta 

las condiciones meteorológicas. En conclusión, esta tesis pretende aportar mejoras y desarrollos 

para el Smartconnector, así como abrir su aplicación a otros campos. 
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1. Introduction 

Utilities around the world are facing challenges such as the rising demand for electric energy, 

aging, etc. To meet these challenges, substations must have sufficient power transmission capacity 

and robustness to allow the power to flow where and when it is needed. 

Dynamic  line rating (DLR) offers a promising solution to increase the power transmission 

capacity. The allowable conductor temperature limits the load or current capacity of the power 

line, so the operating temperature must be restricted to below the allowable operating temperature 

to limit the ground clearance of the conductors [1]. DLR can solve this problem because it is a 

smart and cost-effective solution for utilizing the ampacity or maximum current capacity of 

transmission lines [2], which differs from Static Line Rating (SLR), the conventional and simple 

approach, based on conservative criteria that represent severe or worst-case weather conditions 

[3]. SLR calculates the ampacity of the line using deterministic or probabilistic methods to 

determine the atmospheric operating conditions, that have a strong influence. SLR often results 

in a conservative rating because it determines the same ampacity limit throughout the year; it is a 

static value, regardless of current weather conditions. Conversely, DLR is based on measuring the 

weather variables, so the maximum allowable current of the line is dynamically calculated to 

ensure that the line operates within safe operating limits.  

Moreover, it is crucial to ensure the stability and reliability of power transmission systems. 

Substation power connectors are the joints that connect power transmission lines and substation 

conductors. They are also key elements of an electrical system, as the failure of any connector 

can result in severe power outages or shutdowns of parts of substations. The electrical contact 

resistance (ECR) of the connector is a critical indicator to estimate the health status of connectors 

Thus, to minimize the power outage as well as reduce the cost and time in installation of new 

connectors, it is fundamental to measure or estimate the contact resistance to monitor the health 

condition of connectors in real time and prevent the failure in advance. 

The Internet of Things (IoT) makes it possible to measure physical variables and collect data in 

places that were impossible just a few years ago, such as transmission lines and electrical 

substations. With the widespread development of sensors, communication technologies, control 

and signal processing algorithms, the IoT under the guideline of smart grid is becoming a 

promising solution to enhance power supply reliability, reduce power losses, energy achieve 

energy independence, and integrate renewable energy sources [4]. To this end, the Smartconnector 

project aims to incorporate sensors through wireless links that can transmit information in real 

time that can be integrated with the prediction model to make a diagnosis of their state of health, 

etc., to facilitate predictive maintenance. 

The Smartconnector project can be specified in two main phases: the initial phase and the 

optimization phase, as shown in Figure 1-1. In the initial phase, a prototype was developed [5], 

including, 

1. A sensing system (current, voltage and temperature sensors). 

 

2. An energy harvesting system (thermal energy harvesting). 

 

3. Wireless communication capability via Bluetooth Low Energy 5.0. 

This prototype can measure some critical parameters using electronic sensors and estimate the 

electrical contact resistance of connectors. Besides, several prediction models have also been 

developed to predict the remaining useful life (RUL) and state of health (SoH). However, 
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improvements and experimental validation are still needed to optimize the measurement 

accuracy, improve the power management system, etc. To enable the Smartconnector prototype 

to monitor or predict the failure of the connectors, it is imperious to integrate the prediction model 

into the Smartconnector prototype. In the past few years, the Smartconnector project has made 

significant progress, and the initial phase has already been fulfilled. Hence, this thesis is focused 

on the optimization phase, which will improve the power management system and develop the 

data processing algorithm of the IoT device. Besides, this thesis also presents how the developed 

IoT prototype can be applied to power transmission lines, thus improving the power transmission 

efficiency of electrical systems. 
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Figure 1-1. Smartconnectors project framework. 

 

1.2  Topics and justification  

1.2.1  Substation connectors and conductors 

Electrical connectors are mechanical and electrical joints for electrical conductors that provide an 

electrical path for the power transmission system. They are simple components, but possibly the 

weakest components in the power transmission system. Failure of such components can cause 

server consequences such as power outages. Therefore, it is a must to ensure the safety of 

substation connectors. Figure 1-2 displays three types of substation connectors from SBI 

Connectors España catalogue. 



 Thesis 

  

3 

 

                

Figure 1-2. Examples of substation connectors from SBI Connectors catalogue. 

Meanwhile, with the growing demand of electric vehicles, electric and electronic technologies, 

there is steady need to increase the current-carrying capacity of power lines. Power line 

conductors can be of different types, as shown in Figure 1-3. In recent years, various solutions 

have been proposed, such as reconductoring or increasing the capacity of existing lines by 

replacing conventional power cables with new ones of larger cross-sectional diameter. 

Nevertheless, these solutions require more space and are expensive. Dynamic Line Rating is an 

emerging approach that allows the existing power cables to operate closer to their limit by 

continuously monitoring key parameters such as weather conditions, wind speed, solar radiation, 

etc.  

This thesis focuses on the development and optimization of a smart device to solve the 

abovementioned issues. 

                 

   a)          b)           c) 

Figure 1-3. a) All aluminum stranded conductors b) Aluminum conductor steel-reinforced (ACSR) 

cables  c) A HTLS conductor with carbon-glass epoxy composite core from Sicame Group catalogue. 

 

1.3  Objectives 

The main objective of the proposed thesis is " Development and experimental validation of the 

future generation of smart high voltage connectors and related components for substations, with 

energy autonomy and wireless data transmission, in order to monitor the connector behavior and 

diagnose its status”. 

In order to achieve the proposed overall objective, the Smartconnector project has been divided 

into three specific objectives as described below: 

1. Power management system optimization 
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This section presents the development of a power management system for the IoT device, 

which includes improvements of the thermoelectric modules and DC-DC converters, the 

analysis of the power consumption of the IoT device and the application of the energy 

balance for the IoT device. 

 

2. Digital signal processing 

This part focuses on the study of digital signal processing techniques to purify the output 

signal obtained by the electronic sensors. Several digital signal processing algorithms 

should be studied and implemented to improve measurement accuracy.  

 

3. Applications extension 

This objective describes the extension of the IoT concept to other fields such as power 

transmission lines. It is proven that the use of smart devices for dynamic line rating 

estimation can significantly increase the capacity of overhead lines. 

 

Figure 1-4. Proposed flow of this thesis. 

As mentioned above, this research work will be divided into three parts, as shown in Figure 1-4, 

corresponding to the main objectives of the study, the main tasks of these objectives are specified 

as follows. 

1. Objectives of power management system optimization  

1.1    Literature review of energy harvesting technology. 

1.2    Selection of thermoelectric modules and DC-DC converters.  

1.3    Test the new energy harvesting system in a high-current laboratory.  

1.4    Analysis of power consumption of the IoT device in different cases. 

1.5    Application of energy balance strategy to the IoT device. 

2. Objectives of digital signal processing  

2.1    Literature review of digital signal processing algorithms.  

2.2    Development of digital signal processing algorithms on a desktop platform to purify 

signals acquired from sensors. 



 Thesis 

  

5 

 

2.3    Implementation of the DSP algorithms on the embedded system of the IoT device. 

2.4    Experimental validation of the signal processing approach. 

3. Objectives of extension of applications 

3.1 Literature study of dynamic line rating and electrical contact resistance. 

3.2    Selection of the electronic system for the application. 

3.3    Experimental validation for the proof of applications. 
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2. Power management system optimization
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Power management plays an important role in extending the lifetime of IoT devices. IoT devices, 

having the ability to sense the fundamental physical variables and transmit the sensed data to a 

gateway, need a power supply to provide energy for electronic sensors and communication units. 

Smartconnector is a battery-powered IoT device that allows to monitor different physical 

variables, enabling real-time state of health monitoring methods to be applied. It is known that 

electrical power connectors are often placed in remote or inaccessible locations, making it a 

challenging task to frequently replace batteries for Smartconnector [5] . 

Therefore, to ease predictive maintenance for substation connectors, human intervention has to 

be minimized due to the existing constraints. For this purpose, Smartconnector has been designed 

with energy autonomy. In [7], it is summarized that there exist different energy harvesting 

technologies such as thermal, solar photovoltaic, magnetic field/electric field, etc. The most 

suitable technique for Smarconnector application is thermal energy harvesting considering several 

features such as AC/DC system compatibility, the capability of working both indoors and outdoors, 

etc.  

The thermal energy harvesting system has been proposed as shown in Figure 2-1. The current in 

an energized tubular bus bar results in a temperature difference due to Joule losses, which can be 

used by the thermoelectric generator to convert the heat into electrical energy. It is worth noting 

that in the busbar situation, a low-temperature difference is generated, even with a large current, 

so the energy harvested is not sufficient to supply the electronic system. Thus, a suitable heat sink 

and a power converter that can step up the voltage from mV to V were proposed.  

Thermal 
energy 

harvesting

 DC-DC 
converter

Sleep/Standby

Advertising init

Communication stages

Advertising start

Transmission

Delay

Battery storage 

Energy harvesting 

Sensors
Communications 

module

Smartconnector with the different subsystems

 

Figure 2-1. Energy flow of the proposed energy harvesting system [8]. 

Additionally, to ensure the long-term operation of Smartconnector, it is important to achieve the 

energy balance of the entire system which allows to determine the maximum data transfer rate 

(DTRmax).  

DTRmax is the maximum number of communication cycles (data transfer) permitted without 

draining the batteries. For this purpose, the energy input and output of the battery must be tested 

and recorded in a real condition. Therefore, to determine the DTRmax, it is necessary to know: 

1. Energy input (harvested energy) considering the energy harvesting efficiency.   

 

2. Energy output (energy consumption) taking into account the efficiency of energy storage. 

 

3. Energy balance of the entire system. 

 

This section analyzes the energy harvested, stored and consumed by Smartconnector, in order to 

implement the energy balance strategy, considering the efficiencies of each phase, respectively. 

Smartconnector includes a thermal energy harvesting system, an energy storage unit, a 

microcontroller, a communication module, and several electronic sensors (temperature, current 
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and voltage drop) to estimate the electrical contact resistance of power connectors used in high-

voltage substations.  

2.2  Energy harvesting and its efficiency 

Thermoelectric modules (TEMs) or generators (TEGs) offer a reliable solution to achieve the 

energy autonomy for IoT devices, transferring thermal energy from a temperature gradient 

directly into electrical energy [9]–[12]. TEG materials must have high electrical conductivity to 

minimize the Joule effect, a large Seebeck coefficient for maximum conversion of heat into 

electrical energy, and low thermal conductivity to minimize thermal conduction through the 

material [13]. When applied to power lines or substation busbars, there is very little temperature 

gradient between the environment and the busbar, typically a few degrees Celsius. This is a 

challenging application that has hardly been analyzed in the technical literature since most TEG 

applications focus on high-temperature gradients [13].  

It is known that the existing thermal energy harvesting technique applied in Smartconnector can 

only start to scavenge energy when the temperature difference between the hot side and cold side 

of the thermoelectric generator is more than 15˚C. In some situations, this temperature difference 

is difficult to be reached. Thus, the selection of a new thermal energy harvesting system is based 

on several features, such as ultra-low temperature difference, efficiency, MPPT capability, etc., as 

shown in Figure 2-2. 

 

 

 

 

 

 

 

2.2.1  The Seebeck effect  

The Seebeck effect, also known as the thermoelectric effect, is due to the movement of charge 

carriers, where a temperature difference between two dissimilar conductive materials creates an 

electrical voltage. 

Based on the Seebeck effect, Seebeck generators or TEGs are devices used to convert a 

temperature difference directly into electrical energy. Semiconductors, ceramics, and polymers 

are commonly used as materials to fabricate TEGs [14], while semiconductor materials are 

particularly appropriate for thermoelectric applications due to their high Seebeck coefficient [15]. 

Figure 2-3 illustrates the basic principle of semiconductor TEGs, which transfer thermal energy 

into electricity. Due to the temperature gradient between the hot and cold sides of a TEG, the 

electrons surrounding the metal atoms on the hot side have more kinetic energy, so they diffuse 

from the hot side to the cold side of the semiconductor. Eventually, the cold side of the TEG 

becomes negatively charged and the hot side becomes positively charged because the hot electrons 

move towards the cold end faster than the cold electrons travel towards the hot end. To boost the 

voltage and current generated, commercial TEGs contain many pairs of n-type and p-type couples 

Thermal 
energy 

harvesitng 
system

Ultta low 
temperature 

difference

Efficiency
MPPT 

capability

Commercial 
availability

Figure 2-2. Main features for the improvement of 

thermal energy system.  
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connected in series and/or parallel to generate the desired electrical voltage and current. The 

couples are typically placed between two parallel ceramic plates that provide a flat surface, 

structural rigidity, and an insulating layer to prevent short circuits [13]. 
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Figure 2-3. (a) Principle of thermoelectric generation, adapted from [16]. (b) Series connections of 

different thermoelectric couples, adapted from [17]. 

 

The Seebeck coefficient S is defined from the voltage ∆V produced due to a small temperature 

gradient (∆T = Thot − Tcold, between the two sides of the TEG) between the two semiconductor 

materials at the junction under open-circuit conditions [13], [18], [19] as, the Seebeck coefficient 

is defined as, 

S = ‒ΔV/ΔT = ‒(Vhot − Vcold)/(Thot − Tcold) (1) 

The voltage difference ∆V is due to the difference in the electrochemical potentials of the two 

contacting semiconductor materials [19]. Therefore, the Seebeck coefficient measures the 

magnitude of the thermoelectric voltage induced due to a temperature difference between the two 

materials. In general, the Seebeck coefficient depends on the molecular structure of the materials 

and on the absolute temperature.                           

2.2.2  The efficiency of energy harvesting  

A thermoelectric generator (TEG) is used to capture energy from the thermal gradient existing 

between a substation busbar and the environment. Substation busbars, typically hollow aluminum 

tubular conductors, are common connection nodes for multiple circuits. The electrical current 

injected into a substation busbar causes the generation of heat  due to the Joule effect, thus 

providing a temperature gradient between the busbar and ambient that can be exploited by TEGs 

to generate electrical energy.  

Nonetheless, due to this low-temperature gradient, special care must be taken to select the most 

suitable TEG. This unfavorable condition forces the TEG to generate a very low voltage, some 

fractions of a volt, which requires an appropriate DC-DC converter to charge the battery and 
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power the sensors and the communication module. Therefore, the energy harvesting system 

consists of a TEG module and a DC-DC converter with a very low input voltage range. Many 

research works have been carried out on the application of thermal energy harvesting systems 

[20]–[22]. However, there is a scarcity of works on the implementation of  thermal energy 

harvesting (TEH) systems on substation conductors or power lines, except for [23], which 

analyzes four different TEG+DC/DC converter settings installed in a tubular busbar found in 

electrical substations. In this work, the performance and efficiency of thermoelectric harvesting 

systems are analyzed by determining the input/output power of TEG modules and DC/DC 

converters. The power produced by a TEG can be expressed as [13], 

 TEG transfer TEGP P =   (2) 

Wher e ηTEG is the efficiency of the TEGs and Ptransfer [W] is the rate of heat transfer between the 

two sides of the TEG. 

According to IEEE Std. 605 [24], which describes the design of busbars in air-insulated 

substations, indoors and under steady state conditions, the heat gain per unit length due to Joule 

losses must compensate the terms for heat loss per unit length due to convective and radiative 

cooling as,  

2 ( )    [W/m]RMS ac c rI R T p p= +  (3) 

Where, 

 IRMS (A) is the current through the busbar,  

 Rac(T) [Ω/m] is the ac resistance of the conductor per unit length at the operating 

temperature T,  

  pc [W/m] is the cooling term due to natural convection, 

  pr [W/m] is the cooling term due to radiation. 

The ac resistance per unit length of the conductor, Rac [Ω/m], was measured according to the 

method described in [25], [26]. This method requires the measurement of the voltage drop ∆V1m 

[V] between two points on the conductor surface distanced by 1 m, the ac current I [A] flowing 

through the conductor, the phase shift  [rad] between the voltage drop and the current, and the 

conductor temperature T [°C],  

1m( ) cos     [ /m]ac

V
R T

I


D
=    (4) 

To calculate the efficiency of the entire system, including the TEG and the DC/DC converter, 

ηTEG+DC/DC, the individual efficiencies of the TEG, ηTEG, and the DC/DC converter, ηDC/DC, are 

needed. The efficiency of the TEG ηTEG can be calculated as the ratio between the electrical power 

generated by the TEG, Pelectric,TEG [W], and the Joule heat generated by the conductor in the area 

of the TEG, PJoule,TEG-area [W], as, 

,

,

electric TEG

TEG

Joule TEG area

P

P


−

=  (5) 

PJoule,TEG-area  can be calculated as, 
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, ,     [W]TEG
Joule TEG area Joule conductor

Conductor

A
P P

A
− =   (6) 

Where, 

ATEG [m2] is the area of the outer surface of the TEG, 

AConductor [m2] is the area of the outer surface of the conductor,  

PJoule,conductor [W] is the heat generated in the conductor. 

Moreover, the efficiency of the DC/DC converter is also needed, which can be expressed as,  

/
out out

DC DC

inp inp

V I

V I



=


  [-] (7) 

where Vout, Iout, Vinp, and Iinp are, respectively, the output and input voltages and currents of the 

DC/DC converter. 

2.3  The efficiency of energy storage and consumption  

Nowadays, rechargeable batteries play a key role in energy storage for IoT applications. Different 

approaches have been proposed to estimate or predict the lifetime and the health condition of 

batteries, which can be based on fast impedance measurements [27], or on health indicators such 

as the internal resistance of batteries, since it is strongly affected by aging [28], or on the battery 

capacity level [29] among others. 

In [30] it is stated that nickel metal hydride (Ni-MH) batteries cannot be fully charged without 

overcharging owing to side reactions. Ni-MH batteries are applied in many crucial applications 

such as wearable electronic devices and hybrid vehicles due to their high cycle life and robustness 

[31], [32]. For Smartconnector, a pack of two serially connected Ni-MH batteries is used to store 

the energy from TEH system and power electronic sensors and a communication module.  

Since additional energy is required as a result of energy loss in battery operation, battery energy 

efficiency is a relevant factor in battery economics and power management. Battery energy 

efficiency characterizes the utilization rate during energy conversion from chemical energy to 

electrical energy [33]. In order to minimize the energy losses in the batteries and to evaluate the 

energy efficiency of the entire thermal energy harvesting system, it is necessary to analyze the 

efficiency of batteries at a very low current rate, since the analyzed application is characterized 

by very low current rates.  

Since the Smartconnector has a very low power consumption, battery efficiency is studied at low 

current rates. The efficiency has three components, i.e, 

1. Charge efficiency ƞCharge. 

 

2. Discharge efficiency ƞDischarge. 

 

3. Overall efficiency ƞBattery. 

Given the nonlinear characteristics of a rechargeable battery, it is quite challenging to obtain its 

accurate efficiency. In recent years, several methods have been proposed to estimate the effiency 

of a battery. In [34], an electrical-thermal model was developed to evaluate the overall efficiency 

of the battery considering auxiliary losses. In [35], a battery efficiency calculation formula was 
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proposed based on the internal resistance of a battery, which significantly affects the performance 

of a battery. Since the difficulty in calculating the battery efficiency is to determine the chemical 

energy stored in the battery to obtain the net energy, [33],[30] proposed a method to calculate 

efficiencies based on open-circuit voltage as a function of state of charge (SoC) to compute the 

net energy under low current rates, which minimizes the dynamics excited in the cells. [30]  

defined energy storage efficiency under charging conditions as the ratio between the chemical 

energy gained by the battery during the charging cycle DEBattery input [J] and the energy extracted 

from the power source (the net energy) DEPower source [J]. 

  
 

 

 

arg

 Battery input Bat

s

tery input

l

Ch e

Power sou t CBa tery irce ha in  p gu rg nt os

E E

E E E


D D
= =

D D+D
 (8) 

Where,  

DECharging loss [J] is the energy loss in the battery during the charge or discharge cycles due to Joule 

heating and the electrochemical reaction process [30], [36].  

DEBattery input [J] is the chemical energy stored in the battery, i.e., the net energy.  

The recharged energy and the net energy are not the same, because the recharged electric energy 

cannot be completely transformed into chemical energy [33]. 

The energy extracted from the power source, DEPower source [J], can be expressed as [33], 

  
0 0

( )

 arg arg arg
( )

    [J]
t SoC t

Power source Ch e Ch e Ch e n
t SoC t

E V I dt V C dSoCD = =   (9) 

The net energy gained by the battery during the charge cycle, DEBattery input, can be expressed as 

[33], 

  
( )

 
(0)

( )     [J]
SoC t

Batttery input OCV n
SoC

E V SoC C dSoCD =   (10) 

Where, 

SoC(t0) [-] is the initial state of charge,  

SoC(t) [-] is the final state of charge,  

VCharge [V] is the battery voltage, 

ICharge [A] is current during the charge process,  

VOCV [V] is the open circuit voltage, 

Cn [Ah] is the rated capacity of the battery. 

The state of charge (SoC) of the battery can be calculated as [33], 

  
0 0

0 arg 0 arg

1 1
( ) ( )       or    ( ) ( )  

t t

ch e disch e
t t

n n

SoC t SoC t I dt SoC t SoC t I dt
C C

= + = − 
 

(11) 

According to the IEC 61427-2 standard [37], the capacity of a battery expressed in [Ah] is 

defined as the amount of electric charge that it can deliver under specified discharge conditions 

and the state of charge (SOC) is the energy expressed in [Wh] in a cell related to the rated 

capacity Cn or energy content expressed as percentage. The rated capacity Cn can be determined 

according to the IEC 61982 standard [37]. 
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The efficiency of energy consumption or the energy efficiency under discharge conditions [30] is defined 

as the ratio between the energy consumed by the battery during the discharge DELoad [J], and the net energy 

of the battery DEBattery output [J], which can be determined as, 

 

   (12) 

The energy consumed from the battery during the discharge, DELoad, can be expressed as,  

0 0

( )

arg arg arg
( )

    [J]
t SoC t

Load Disch e Disch e Disch e n
t SoC t

E V I dt V C dSoCD = = 
   

(13) 

where VDischarge [V] is the voltage of batteries during the discharge process. 

Finally, the overall battery efficiency during the charge and discharge cycle [30] is determined as 

the ratio between DELoad andD EPower source, 

 

Load

Battery

Power source

E

E


D
=

D
   (14) 

 

2.4  Energy balance of the entire system  

The energy balance of a device is defined as the energy harvested being equal to the energy 

consumed over a period of time. In this case, it means that the energy input and output into the 

battery, DEBattery input and DEBattery output, are equal, which can be expressed as,  

  Battery input Battery outputE E=    (15) 

The equations expressed in the previous section define the battery efficiency if the current rate is 

constant under charge or discharge conditions. Nevertheless, in practical applications such as the 

Smartconnector, the charge and discharge rates of batteries vary significantly depending on 

several factors, as shown in Figure 2-4.  
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Figure 2-4. Current consumed by the IoT device (Smartconnector) during different phases in one 

communication cycle. 
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Figure 2-4 shows the different phases during a communication cycle for the Smartconnector. In 

summary, it can be divided into two main modes, that is, data transfer mode (advertisement 

initialization, advertisement start, transmission, delay) and sleep mode. Each mode has different 

current rates which makes it difficult to characterize the maximum data transfer rate per hour 

(DTRmax). Thus, there is a need to measure the energy input and output of the battery in a real 

situation. 

In this situation, the energy harvesting unit (thermoelectric generators and DC/DC converter 

combination) charges the battery to supply the load (sensors and communication module) and the 

output energy from the battery by the load, so that the energy input and output into the battery can 

be calculated as,  

 _ arg     [J]Battery input out DC DC Ch eE E −=     (16) 

 

arg

    [J]Load
Battery output

Disch e

E
E


=    (17) 

where, Eout_DC-DC and Eload are the electrical output energy of the DC-DC converter and the energy 

consumed by the electronic sensors and communication modules of the Smartconnector, 

respectively, 

Charge and Discharge can be determined using equations expressed in (8) and (12), respectively. 

Performing the energy balance to the battery for one hour, results in,  

max ,1 communication cycle,1 h

 ,1 h  ,1 h

arg arg

DTR ( )Load sleepLoad

Battery input Battery output

Disch e Disch e

E EE
E E

 

+
= = =    (18) 

Finally, the maximum data transfer rate DTRmax is calculated as, 

 ,1 h _ ,1 h

max arg arg arg

,1 communication cycle ,1 communication cycle

DTR
Battery input out DC DC

Disch e Ch e Disch e

Load sleep Load sleep

E E

E E E E
  

−
= =

+ +

 
(19) 

where ELoad,1 communication cycle and Esleep are the energy consumed in data transfer phases 

(initialization, start, transmission and delay) and energy consumed in sleep mode, which are 

shown in Figure 2-4. 

2.5  Publications 

The techniques and methodologies presented in this chapter have been exposed and published in 

the articles detailed in this section. These articles, therefore, mainly deal with energy harvesting 

systems, efficiency of different systems and energy balance. They present case studies to evaluate 

the feasibility of the proposed methodologies for the Smartconnector. A complete version of the 

first and second articles can be found in chapter 5.   

 Y. Liu, J. Riba, M. Moreno-Eguilaz, and J. Sanllehí, “Application of Thermoelectric 

Generators for Low-Temperature-Gradient Energy Harvesting,” Appl. Sci. 2023, 13, 

2603. https://doi.org/ 10.3390/app13042603.. 

This article presents a case study on the application of thermoelectric modules in 

aluminum substation conductors. As the substation conductors heat up as a result of 

electrical current passing through due to Joule effect, a small temperature gradient 

between the conductor and environment is generated, which can be used to convert into 
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electrical energy. This article assesses the performance of different TEGs designed for 

low thermal gradient applications. 

 

• Y. Liu, J. Riba, and M. Moreno-Eguilaz, “Energy Balance of Wireless Sensor Nodes 

Based on Bluetooth Low Energy and Thermoelectric Energy Harvesting,” Sensors 2023, 

23, 1480. https://doi.org/10.3390/s23031480.  

 

This article implements an energy balance strategy to Smartconnector prototype, 

considering the energy harvesting system, the battery, the electronic sensors and a 

communication module. Also, this article presents a conventional instrumentation to 

measure the very low energy consumed during the data acquisition and transfer process. 

The efficiency of the energy harvesting and the effiency of the battery are also taken into 

consideration to apply an accurate energy balance model of the battery. 

2.6  Conclusions 

This chapter has presented the thermal energy harvesting system for low temperature gradient 

application and its efficiency, energy storage efficiency and energy balance strategy. As mentioned 

in the previous section, to optimize the power management of the Smartconnector, case studies 

have been analyzed and the results have been published in the exposed articles. These case studies 

have analyzed different energy harvesting systems to characterize each system for high-voltage 

applications characterized by low thermal gradients. As the tubular busbars heat up due to the 

Joule effect, a small temperature gradient is generated between the bus bar and the environment, 

which can be converted into electrical energy by the TEGs to power the Smartconnector using a 

DC/DC converter. The results presented in the articles show that if a temperature gradient of 5 K 

between the hot and cold sides of the TEGs can drive wireless sensors can be powered by two 40 

mm x 40 mm generators.  

Besides, the efficiencies of energy storage during both charge and discharge states have been 

analyzed. The results indicated a significant correlation between the current rate under charge-

discharge conditions and the battery charge and discharge efficiencies, Charge and Discharge. The 

discharge efficiency Discharge, for example, can reach 96% at discharge rate of 0.007C and drop to 

83% at 0.5C discharge rate. This is due to that the battery pack cannot be fully charged under high 

charge or discharge rate [33]. The study also illustrates that the overall efficiency of the Ni-MH 

battery can be as high as 93%, demonstrating its suitability for the Smartconnector application. 

The power management system of the Smartconnector is optimized using a detailed energy 

balance strategy considering the characterized thermal energy harvesting system and the 

efficiency of the whole system. This research work demonstrates the possibility of measuring the 

very low energy consumed by electronic sensors and different modes of a communication module, 

using conventional instrumentation devices. Finally, the maximum data transfer rate per hour has 

been estimated based on energy harvesting, consumption, and energy balance of the battery to 

ensure the long-live operation of the battery that prolongs its lifespan.  
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3. Digital signal processing 
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The inherent interference stemming from substation busbars, including electromagnetic 

interference (EMI) [38], radio frequency interference [39] and harmonic and transients [40], could 

significantly affect the measurement signals of electronic sensors, ultimately disrupting current 

and voltage waveforms. As shown in Figure 3-1, the Smartconnector includes electronic sensors 

to measure key parameters such as current, voltage drop between two points of the connector and 

conductor temperature, as well as a microcontroller and a communication unit. It was designed to 

monitor the health condition of high-voltage substation connectors by measuring indirectly the 

electrical contact resistance (ECR). Nevertheless, as the Smartconnector needs to be placed on 

the power connectors, its measurements suffer greatly from the abovementioned interferences, 

resulting in inaccurate measurements.  

 

Figure 3-1. Electronic printed circuit board of the Smartconnector. 

For these reasons, this chapter presents a signal processing approach that is implemented on the 

microcontroller of the Smartconnector to address the abovementioned issues. An overview of the 

filter-based online ECR measurement approach is presented in Figure 3-2. Initially, electronic 

sensors are used to measure the key parameters such as voltage and conductor current and 

temperature. These measurements will pass the prior statistical filter to denoise the original signals. 

Next, these denoised signals are sent to the nearby gateway to compute the electrical contact 

resistance. The process to determine the ECR has been presented in section 6.1. 

The following sections detail the process of performing online ECR estimation using voltage, 

conductor current and temperature measurements. Additionally, multiple statistical filtering 

algorithms have been developed to process the current and voltage waveforms under the high-

current environment in order to obtain accurate ECR measurements. In this research work, we 

implement these algorithms to recover the signals. Our aim is not to provide a filter that 

outperforms the other filters in just one aspect, but rather to give a comprehensive analysis 

between several signal processing methods for the high-voltage substations application. 

 

Figure 3-2. Proposed online filter-based ECR measurement method. 
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3.1  Electrical contact resistance 

Electrical power connectors guarantee reliable electrical connections between conductors, serving 

as the critical components in power transmission systems. Nonetheless, such components may be 

among the least durable components in power transmission systems, and their failure can trigger 

severe power outages, with catastrophic consequences [41]. Hence, there is an imperious need to 

monitor the health condition of these connectors to avoid power network failures. 

Contact resistance in electrical connectors, or electrical contact resistance, refers to the resistance 

to current flow, due to surface conditions and other causes when contacts are touching one another. 

For most substations, the connectors must be repaired or replaced when the contact resistance 

exceeds a threshold value. Owing to this fact, the contact resistance is defined as a reliable 

indicator to determine the health condition of high-voltage power connectors [42].  

Remaining useful life (RUL) strategies reduce maintenance costs due to unscheduled downtimes, 

whileavoiding major power system faults [43]. Therefore, in order to apply predictive 

maintenance plans for power connectors, several RUL and health condition monitoring strategies 

have been proposed, using electrical contact resistance as health indicator [43]–[46]. In [44], an 

approach for an on-line diagnosis of the health condition of power connectors has been developed 

to estimate early failures in the connectors. This approach determines a degradation model of 

connector resistance by means of the Markov chain Monte Carlo stochastic algorithm. In [43], 

using the autoregressive integrated moving average (ARIMA) algorithm, an on-line approach to 

determine the RUL of power connectors was proposed. From the resultsit was shown that by 

implementing RUL strategies, it is feasible to anticipateincipient failures. In [45], three simple 

and effective algorithms were tested and compared for the state of health diagnosis of power 

connectors.  

These health condition monitoring strategies are effective and feasible to ease the predictive 

maintenance of power connectors. To do so, it is a must to acquire the contact resistance data in 

real time. There are two methods to obtain electrical contact resistance, namely direct 

measurement and indirect measurement.  

The standard Kelvin 4-wire approach is one of the most accepted methods to perform the direct 

measurement of the ECR[25],[47],[48]. It is based on measuring the voltage ∆𝑉𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 across 

the connector to calculate the total electrical resistance of the connector Rconnector, while a stabilized 

DC current IDC is injected [25], 

 connector
connector

DC

V
R

I
D

=  (20) 

Nevertheless, this method can just estimate the contact resistance in DC system since a known 

DC current IDC is injected into the electrical circuit. Also, in ac systems, the 4-wire method 

measures the impedance instead of the resistance. Under ac supply, due to the existence of the 

reactance, the impedance of the connector Zmeasured is calculated as, 

connector
measured

AC

V
Z

I
D

=  (21) 

It is seen from equation (21) that when dividing the voltage drop across the connector ∆𝑉𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 

by the ac current IAC passing through the loop, the impedance Zmeasured is obtained. Hence, to 

acquire the resistance component under ac supply, a suitable approach is still needed to obtain the 

ECR data in both dc and ac electrical systems. 

In [49],[25], an online measurement method was proposed to estimate the contact resistance in 

real time under both dc and ac supply systems. It is shown that based on the abovementioned 
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simultaneous current and voltage measurements, the ac resistance of the connector Rconnector can 

be estimated from the phase difference φ between the current IAC and the voltage drop across the 

connector, as,  

𝑅𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 =
∆𝑉𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟

𝐼𝐴𝐶
∗ 𝑐𝑜𝑠𝜑 (22) 

Finally, the ac resistance of the connector at the standard temperature of 20 ℃ Rconnector,20℃  can be 

calculated as, 

𝑅𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟,20℃ = 𝑅𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟/[1 + 𝛼(𝑇𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 − 20)] (23) 

Where α is the temperature coefficient of the resistance and the Tconnector is the temperature of the 

connector.  

3.2  Statistical filtering algorithms 

Due to high voltage restrictions and the placement of substation connectors in inaccessible areas, 

human intervention should be restricted. The Smartconnector includes an instrumentation 

amplifier to amplify the weak voltage signal across the connector, a Hall effect sensor to measure 

the current flowing through the electrical loop, and a temperature sensor to record the bus bars 

temperature. The electrical contact resistance is also recorded and transmitted wirelessly [5] 

according to equation (22).  

Smartconnector is a novel IoT solution and the accuracy of ECR measurements has been proven 
experimentally under high-current conditions. However, weak electrical signals can be disrupted 
by the unwanted electromagnetic (EM) noise caused by bus bars or power transmission lines [50], 
[51], asshown in Figure 3-3. Moreover, due to the non-linear characteristisc of power electronic 
devices, the presence of harmonic noise is inevitable [52]. This signal noise leads to inaccurate 
ECR measurements, making it impossible to apply predictive maintenance strategies in certain 
circumstances, especially at low current operation.  
 

 

Figure 3-3. Electromagnetic noise in the electrical signal of data acquisition.  

Recently, some research groups have intended to develop statistical filtering algorithms to deal 

with the abovementioned issues. Statistical filtering algorithms have attracted worldwide attention 

in recent years due to the significant growth in IoT applications. They play an important role in 

signal processing, providing solutions to filter noisy signals, thus helping to obtain more accurate 

responses from IoT devices [53].   
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From the literature review, it is found that many digital filtering algorithms haven been proposed 

for condition monitoring purposes such as Kalman filter, moving average, harmonic filtering, 

proportional integral differential (PID), machine learning, autoregressive moving average, etc 

[54]–[60]. In [59], a detailed review of the techniques implemented in the vibration feature 

extraction has been concluded. In this review, the signal processing algorithms have been divided 

into two main streams, namely time-domain techniques and frequency-domain techniques. The 

advantages and disadvantages of each method are summarized to facilitate the selection of a 

suitable algorithm. In [54], a discrete Fourier transform filtering algorithm was used to remove 

the DC component and harmonics of signals obtained. In [55], vibration and current signals are 

processed to diagnose faults of induction motors. In [60], a Kalman filter framework was proposed 

to recover the real electrocardiogram signal.  

Although many digital filtering algorithms have been developed and tested as mentioned above, 

they are generally implemented on desktop platforms where there are no computational 

constraints. However, there is a scarcity of works implementing these filtering algorithms on 

embedded systems applied in a very high-current environment to improve the electrical contact 

resistance measurements. To this end, this research work proposed to test and compare several 

filters on the desktop platform and the most suitable algorithm should be implemented for the 

embedded system of the Smartconnector. 

In this chapter, due to the limited computational ability of the microcontrollers of cost-effective 

IoT devices, three filtering algorithms (Kalman-, Sinusoidal- and Moving average filter), which 

require relatively low computational cost, were developed and discussed.  

3.2.1  Kalman filter  

The Kalman filter (KF) is one of the most important and widely accepted filtering algorithms in 

real-time applications due to its low computational resource requirement, excellent recursive 

properties, and optimal estimator functionality [61]–[63]. The KF has been applied to topics such 

as online estimation of state-of-charge for lithium-ion batteries [63]–[66], processing biomedical 

signals [67], and estimating the velocity and position of 2D-moving objects [68]. 

k

 

Figure 3-4. An example of the KF implementation on substation signals. 

Although the conventional KF is ideal for estimating optimal state for linear Gaussian state space 

models, many issues found in practical applications are governed by non-linear systems. Hence, 

several improvements have been achieved during a period of time for non-linear dynamic systems 
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such as the Extended Kalman filter (EKF) [69],[70], the Robust Kalman filter (RKF) [71],[72],  

the Unscented Kalman filter (UKF)[73],[74], the Cubature Kalman filter (CKF) [75]. 

For the Smartconnector application, due to its limited computational resources, a simple linear 

KF is proposed. To model the KF system, there are two important steps: 

1. Predict the future state. 

 

2. Update the current state.  

The process is illustrated in . Firstly, it is necessary to predict future states ˆ
ky−  using the current 

state 
1

ˆ
ky+

−
  at time-step k – 1, and then update the current state ˆ

ky+   at time-step k with the 

experimental measurements zk.  

To achieve the prediction of future states, the first step is to compute the prediction of the 

estimated covariance ˆ
kp− and the covariance of innovation ˆ

ks−  as [76], 

1
ˆ ˆ

k k kp p Q− +

−= +  (24) 

ˆ ˆ
k k ks p R− −= +  (25) 

where
1

ˆ
kp+

−
  is the covariance of the estimation error at time-step k - 1 in the one-dimensional 

Kalman filter, whereas the system process noise covariance Qk and the covariance of 

measurements noise R are set to be constant, being Qk = Q and Rk = R, respectively.  

Next, the Kalman gain G can be obtained using equations (24) and (25), 

ˆ ˆ/k kG p s− −=  (26) 

The prediction of the future state ( ˆ
ky− ) at time-step k is completed by taking the state vector of 

the previous time-step k-1 [76] as, 

1
ˆ ˆ

k k ky F y− +

−=  (27) 

where 
1

ˆ
ky+

−
is the current state at time-step k – 1 and Fk is the state-transition model. Finally, the 

update of current states at time-step k is performed as, 

ˆ ˆ ˆ( )k k k ky G z y y+ − −=  − +  (28) 

where zk is the experimental measurement at time-step k, ˆ
ky+ is the updated current state at time-

step k, ˆ
ky−  is the prediction of the future state at time-step k , and G is the Kalman gain. 

Next, the update of the covariance of the estimation error ˆ
kp+  is calculated as, 

ˆ ˆ (1 )k kp p G+ −=  −  (29) 

where ˆ
kp−  is the prediction of the estimated covariance at time-step k. 
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0ŷ+

0p̂+

3. Prediction of  convariance of innovation at time-step k  

 4. Computation of Kalman gain G  

5. Prediction of future states from previous states k-1   

6. Update of current states at time-step k  

7. Update of the estimated covariance  at time-step k   

1
ˆ ˆ

k kp p Q− +

−= +

ˆ ˆ
k ks p R− −= +

ˆ ˆ/k kG p s− −=

1
ˆ ˆ

k ky y− +

−=

ˆ ˆ ˆ( )k k k ky G z y y+ − −=  − +

ˆ ˆ (1 )k kp p G+ −=  −

Delay k     k-1 

1. Initialization                       Q  R

2. Prediction of estimated convariance at time-step k 

 

Figure 3-5. Block diagram of proposed Kalman filter modelling process. 

 

It is noted that the initialization of the Kalman filter is indispensable in the modeling the Kalman 

filter system, so the most suitable seed values of the current state 
0ŷ+  , the estimation of the 

covariance 
0p̂+  , the covariance of the system process noise Qk, and the covariance of the 

measurement noise Rk are predetermined according to the best knowledge of the author. In this 

research work, it is assumed that Qk = Q and Rk = R are constant values. Note that it is necessary 

to initialize the values for variables 
0ŷ+  , 

0p̂+ , Q, R according to the best knowledge of the specific 

application.  

In conclusion, the Kalman filter modeling process is detailed in Figure 3-5. 
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3.2.2  Sum of Sine filter 

A discrete cosine transform (DCT) was first developed by Ahmed for signal processing [77]. It is 

widely accepted in digital filtering applications because of its simplicity, fast convergence speed, 

and ability to extract the correct information. In [78],[79], the harmonic filtering method was used 

to correct CoRoT light curves. Meanwhile, [80] employed a sine and cosine form algorithm to 

process the remaining unevenly spaced data. In [81], a sine filtering formula was used to reduce 

the impact of residual noise for the power frequency estimation.  

Knowing that the Smartconnector takes measurements of 6 sinusoidal periods [5], this research 

work proposed to use a sinusoidal model to approximate the sample signal to a sine function in 

order to minimize the impact of the noise. According to [57], harmonic filtering is a sum of sine 

and cosine functions used to describe a periodic signal. The functional form of the sinusoidal filter 

can be expressed as [80], 

0

1 1

ˆ ( ) cos( ) sin( )
N N

i i
k i k k

k k

t k t k
y t a a b

D D

 

= =

= + +   (30) 

where a0 is the DC offset in the signal, ak and bk are amplitude variables of the model, D is the 

length of the time series for each calculation cycle, ti are time stamps of the data under analysis, 

N is the number of harmonic terms in the series. Since this form does not include phase terms, it 

is a linear expression to variables ak, bk, which facilitates the use of weighted linear minimization 

to compute the variables [80].  

In this research work, a discrete series of sine functions similar to the harmonic filter described in 

[80] is proposed. It includes phase terms to get a more compact model, although the non-linear 

method should be used to compute the equation variables. The proposed function is called sum of 

sine filter (SoSF), since real signal can be considered as the summation of sine waves [82]. Its 

functional form can be written as,  

1

ˆ sin( )
N

i k k i k

k

y a b x c
=

= +  (31) 

where k is the order of sine terms, with k = 1, ... N, N is the total number of sine terms included 

in the sinusoidal model, xi is the sample at time-step i, ˆ
iy is the output estimation at time-step i 

with i = 1, …, n, n being the total number of samples in the signal to be regressed. The amplitude 

ak, fundamental frequency bk and phase shift ck are determined using the nonlinear least square 

(NLS) approximation method [83]. For the Smartconnector application, based on the author’s 

experience, N is set to 2, which means that two sinusoidal waves are used to fit the regression 

model.  

 

3.2.3  Moving Average Filter 

The moving average algorithm is a promising solution for digital signal processing applications 

[84][85][86][87]. It is a recursive filter that can be used to smooth out the short-term fluctuations 

in the data. This technique permits reducing the signal noise with low processing power, making 

it a suitable approach for embedded systems, since the main concern of these systems is 

computational resources. 
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Depending on the application, different types of moving average algorithms have been developed, 

which can be divided into: 

1. Simple moving average (SMA): The simple moving average algorithm is featured as its 

simplicity and effectiveness to smooth the time-series data. It calculates the average of a fixed 

moving window of sample points and slides the window through the sensed [85],[87].  

 

2. Weighted moving average (WMA): Weighted moving average algorithms allow 

assigning different weights to recent sample points, focusing on recent experimental 

measurements. By regulating the assigned weights, it permits to smooth the fluctuations of signals 

[88]. 

 

3. Exponential weighted moving average (EWMA): Similar to the WMA, the exponential 

moving average algorithm assigns weights to the last sample points, whereas the decrease of the 

weighting factors of EWMA is exponential instead of consistent [89]. 

In [85], a simple moving average technique was used as a low-pass filter to remove the random 

noise that existed in the raw sampled waveform. Due to the existence of distortion at the endpoints 

and jumps while the moving average was applied, [86] developed an adaptive moving average 

filtering (AMA) algorithm to purify experimental signals, the results show that the AMA has 

better performance and recover the signal with higher signal-to-noise-ratio.  

With respect to the application of Smartconnector, the SMA was implemented to smooth out the 

noise generated in sensed signals. This filter requires especially less memory and computational 

power compared to other filters, making it an appropriate filter for the embedded system of 

Smartconnector. The SMA calculates the average of the last k sample as,  

1

1
ˆ( )

n

k

k

y t y
n =

=   (32) 

where ˆ( )y t is the output bias at time t, n is the total number of points considered in the fixed 

moving window, and yk is the sample at point k. 

Nevertheless, increasing the value of n reduces the dynamic response of the system measurement, 

which rejects the actual system measured response due to disturbances as noise [76]. Hence, 

careful analysis is required to choose a suitable moving window k. In this thesis, to balance the 

noise reduction and dynamic response, we have applied and analyzed the implementation of 

SMAF filter with moving window k = 2, 5, 8 on ECR measurements, respectively. 

3.3  Publications 

This section presents the publications regarding the developments of statistical filtering 

algorithms for signal processing purposes. The papers include studies of three filtering algorithms 

and an analysis conducted to compare them in terms of measurement accuracy and computational 

time required to identify the most suitable algorithm. Moreover, this paper also details the 

experimental setup implemented to acquire the electrical signals. Chapter 5 includes the full 

version of this publication.  

 

• Y. Liu, J. Riba, and M. Moreno-Eguilaz, “Denoising of Online Resistance Measurements of 

Power Connectors for IoT Applications,” Proc. IECON 2023 - 49th Annu. Conf. IEEE Ind. 

Electron. Soc, Singapore, 2023. 
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This paper presents the developments of three filtering algorithms, namely by the simple 

moving average filter (SMAF), Kalman filter (KF), and sum of sine filter (SoSF), on the 

desktop platform. These filters are used to reduce signal noise from an IoT device located in 

a high-current laboratory. The study compares the three algorithms according to the 

measurement accuracy and computational time required to select the most suitable filter for 

this specific IoT application. 

 

3.4  Conclusions 

This chapter has addressed the signal noise problem existing in electrical contact resistance 

measurements under low-current circumstances. Given the limited computer power of common 

IoT devices, this thesis aims to design a simple but effective filter. So, a careful analysis was 

conducted to compare these algorithms based on their performance and computational efficiency. 

In the first experiment, three different filtering methods were proposed and initially tested on a 

desktop platform with the real signal obtained from a high-current laboratory.  

The obtained results indicate that the objective was achieved. By applying these algorithms, the 

electrical signals obtained from the electronic sensors were filtered, which helps the IoT device 

to acquire highly accurate ECR data at current levels as low as approximately 150 ARMS. For 

example, it was found with 312ARMS current injected into the electrical loop, the error of 

measurement was 12.1% with the raw signal and 1.9%, 3.4%, and 2.1% using SMAF with moving 

window equal to 8, KF and SoSF, respectively. Furthermore, the SoSF filter exhibits the best 

performance at the lowest current applied,150 ARMS, providing as low as 3.8% deviation from the 

standard DAQ reference data. However, this filter also tends to require more computational time 

than other filters due to its regressing process for each iteration, requiring 0.253 seconds in one 

data-acquisition process for SoSF calculation and 0.0055 seconds, 0.0054 seconds, 0.0054 

seconds, 0.0070 seconds for SMAF with moving window equal to 8 and, respectively. Also, since 

the SMAF filters demonstrated great performance from 312ARMS, resulting in less than 5% error 

of measurements, the SMAF was considered to be the most appropriate filter for the 

Smartconnector application. 

To evaluate the feasibility of the selected SMAF filtering algorithm, second experiment was 

conducted. The algorithm was implemented on the built-in system of the Smartconnector and 

tests were carried out under five different current levels (140 ARMS, 310 ARMS, 500 ARMS, 700 ARMS 

and 900 ARMS) for continuous ECR measurements. The experimental results have proven the 

accuracy of the Smartconnector with the filtering algorithm. Compared to the ECR measurements 

taken by the IoT device without applying the filter, the proposed filter has significantly increased 

the accuracy of the measurements, especially at low currents. For instance, when about 150 ARMS 

were injected, the error with the filter is 4.8%, while the error without the filter is 31%.  

The proposed signal filtering framework is useful for the industrial sector, particularly for real- 

time monitoring applications, enabling them to acquire more accurate key measurements, thereby 

facilitating predictive maintenance. 
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4. Extension of applications
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Dynamic  line rating (DLR) offers a solution to take advantage of the maximum current capacity 

of power transmission lines [90]. It differs from static line rating (SLR), the conventional and 

simple approach, which is based on conservative criteria [90] that represent severe or worst-case 

weather conditions [91]. 

Various DLR approaches are presented in the technical literature. As stated in [92], DLR methods 

can be broadly categorized into indirect and direct methods. Indirect methods determine the 

thermal line rating through weather data collected from weather stations or forecasted data, which 

serve as the primary input for the approach. These approaches estimate the required thermal rating 

by solving the heat balance equation of the conductor, as outlined in Cigré [93], IEEE [90], or 

IEC [91]. In contrast, direct DLR methods involve the direct measurement of physical variables 

of power lines, including conductor temperature and current, mechanical tension, conductor sag, 

or ground clearance, as detailed in [3]. Since there is no need to install weather measuring devices 

on the line and since they offer reliability at relatively low-cost, indirect methods are considered 

more straightforward and cost-effective compared to direct methods, making them suitable for 

lightly loaded power lines. In comparison to direct methods, indirect methods are less precise, as 

the conductor temperature and maximum line capacity are indirectly estimated using theoretical 

models [94]. Conversely, direct methods rely on field data, allowing for greater accuracy, as they 

eliminate the need for any relationship between conductor temperature and data obtained from 

indirect methods [92].  

In recent years, rapid advancements in communication systems, sensors, and control algorithms 

have led to the development of smart grids that integrate distributed energy resources, loads, 

energy storage, and control systems. They offer substantial benefits, including improved power 

supply reliability, reduced power losses, energy independence, and the integration of renewable 

energy sources [4]. In pursuit of these goals, smart grids employ information technology to share 

power data in real-time for the efficient management of the power demand, thus maximizing 

power efficiency. As a result, DLR methods play an important role for smart grid development 

[95]–[101]. Recent research has suggested that IoT solutions can not only boost smart grid 

reliability but also greatly enhance their capacities [102]–[105].  

For these reasons, this chapter presents an extension of the Smartconnector application, called 

Smartconductor, which allows real-time estimation of the DLR rating of power lines by 

integrating the weather data from weather stations and line data recorded by the Smartconductor. 

This approach is a practical application under the guideline of smart grid, as the proposed DLR 

approach facilitates power lines to operate at their peak capacities by adjusting the rating based 

on real-time weather conditions.  

Given that the DLR rating is significantly influenced by the local wind speed and since the wind 

speed has an important cooling effect, it plays a much more prominent role than that of ambient 

temperature and solar radiation in determining the DLR rating [92]. This chapter presents a novel 

method to estimate the wind speed instead of using anemometers to measure it directly. Moreover, 

this chapter exposes a method to determine the core losses in ACSR conductors from the 

alternating current resistance (Rac) measured. The Rac of the conductor is a crucial parameter to 

accurately estimate the maximum current capacity of power lines [106], and the Joule and core 

losses represent the main heat source of the conductor and can be determined from the alternating 

current (ac) resistance Rac [26], [107].  

The following sections detail the process of estimating the DLR in real-time by means of the 

measurements from Smartconductor and nearby weather stations and studies of the effect of core 

losses in determining the DLR of ACSR conductors.  
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4.1  Core losses determination in ACSR conductors  

ACSR conductors comprise several aluminum strands and galvanized steel strands, as illustrated 

in Figure 4-1. Adjacent aluminum layers are wound in opposite directions around the steel core 

[108]. While the steel core provides the mechanical strength, the highly conductive aluminum 

strands provide the current pathway [109]. The flow of electric current tends to spiral along the 

aluminum strands. The contact resistance between adjacent strands is much higher than the 

internal resistance of the strands. This results in generating an axial component of the magnetic 

field. Under ac supply, the axial magnetic flux within the core generates eddy currents and 

hysteresis losses in the core, modifying the distribution of the current density in the aluminum 

layers. This redistribution depends greatly on the strength of the magnetic field within the core, 

so it varies with the intensity of the electric current passing through the strands and the lay length 

(the distance that the strand needs to complete one revolution around the diameter of the conductor) 

[110]. As a result, due to the magnetic induction, the steel core increases the ac resistance of the 

conductor [109].  

Due to the opposite winding directions of adjacent aluminum layers, the axial components of the 

magnetic field produced by the currents in adjacent layers have opposite directions, thereby 

leading to a reduction in the overall magnetic field. The cancellation of magnetic field is most in 

conductors comprising two aluminum layers, with this effect being less marked in conductors 

containing an odd number of layers than in conductors with an even number of aluminum layers 

[109]–[111]. This means that ACSR conductors with an even number of aluminum layers result 

in reduced magnetic core losses [108].  

 

Figure 4-1. Cross section of a three-layer ACSR conductor. 

The distribution of current density, the internal temperature and the magnetic properties of the 

steel core affect the ac resistance of conductors. As stated in [112], the ac resistance of ACSR 

conductors can be expressed as the sum of three terms: the dc resistance, the resistance arising 

from eddy currents, and the component due to hysteresis losses. This means that core losses, 

including hysteresis and eddy current losses, as well as any temperature rise, contribute to the 

increase in the effective ac resistance of the conductor [113]–[115]. Consequently, the combined 

effects of eddy current, hysteresis losses and the transformer effect increase the ac resistance Rac 

of the conductor above the dc resistance value, denoted as Rdc, at the same temperature. In 

conclusion, a higher ratio of Rac/Rdc  increases the energy losses in the conductor [114]. 

Based on the experimental results obtained in [6], the conductors with an odd number of 

aluminum layers exhibit higher resistance ratios Rac/Rdc, whereas the conductors with an even  
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          c) 

Figure 4-2. Rac versus temperature measured in a high-current laboratory. a) single-layer ACSR 

conductor b) two-layer ACSR conductor c) three-layer ACSR conductor. 
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number of aluminum layers exhibit lower resistance ratios, as displayed in . This is due to that the 

magnetic field cancellation of the axial component has less effect on conductors with an odd 

number of aluminum layers, resulting in the conductors with one aluminum layer having the 

highest resistance ratios [113]. Nevertheless, the internal inductance of ACSR conductors increase 

with electric current up to a maximum level where the steel cores become magnetically saturated 

[115].Afterwards, any further increase in electric current reduces the internal inductance [113] 

due to the decrease of the magnetic permeability, thus reducing the resistance ratios.  

According to the international standard IEC 60287-1-1 [116], the ac resistance can be expressed 

as, 

(1 + )ac dc s pR R y y= +  [Ω/m] 
(33) 

where ys and yp are the skin and proximity effect factors, respectively. The ds resistance 

considering the effect of temperature can be expressed as, 

0 20[1 ( 20)]dcR R T= + −    [Ω/m] 
(34) 

where T is the operating conductor temperature, R0 the dc resistance measured at 20 °C and α20 

the temperature coefficient at 20 °C.  

In the majority of ACSR applications, the skin effect is negligible when compared to the 

transformer effect. However, in cases requiring low electric currents, large-size conductors or high 

frequency operation, this difference reduces. Similarly, the proximity effect is negligible when 

distances between adjacent conductors are greater than ten diameters[114]. While equation (33) 

is simple to apply, it is exclusively applicable to nonferromagnetic conductors up to 5 kV [116]. 

Furthermore, it overlooks crucial parameters associated with stranding, including the direction 

and lay length, as it considers the stranded conductor as a solid conductor [106]. 

Under dc supply, there is no explicit equation to determine the internal resistance of ACSR 

conductors, whereas under ac supply, several researchers have proposed formulas, although they 

are not precise due to the complex behavior of the magnetic flux generated in the steel core. 

Hence, considering the nonlinearity and complexity of these effects, the most effective way is to 

determine the ac resistance and the internal reactance of an ACSR conductor through experimental 

measurements. 

In order to determine the per unit length values of the impedance, ac resistance Rac and reactance 

X of the conductor expressed in Ω/m, according to [26], [110], [113], it is necessary to measure 

the instantaneous values of the voltage drop per unit length ΔV, the electric current I and the phase 

shift φ between themas,  

V
Z

I

D
=    [Ω/m] 

(35) 

cosac

V
R

I


D
=     [Ω/m] 

(36) 

𝑋 =
𝛥𝑉

𝐼
⋅ sin𝜑   [Ω/m] (37) 

When considering the effect of the temperature, Rac can be described as, 

, ,0 0[1 ( )]ac T ac acR R T T= + −    [Ω/m] 
(38) 
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where Rac,0 is the ac component of the resistance at a given temperature T0, usually 20˚C, and ac 

is the temperature coefficient of the ac resistance. It is worth noting that Rac,0 is a measured value, 

that includes the effect of magnetic saturation, as stated in [117]. 

 

4.2  Dynamic  line rating estimation  

Nowadays, dynamic  line rating (DLR) is a trending topic due to the fast development of accurate, 

compact, and low-cost sensors, the widespread use of different communication systems suitable 

for high-voltage applications, the need to increase power transmission capacity, and the capability 

of DLR to ensure the maximum current capacity of power lines,. 

I. Albizu [107] proposed a new sag-tension ampacity monitoring approach based on direct 

measurements of key parameters such as current, temperature and mechanical tension of the 

conductor, as well as weather conditions such as solar radiation and ambient temperatura. Sag-

tension methods need accurate state change relations between conductor temperature and sag-

tension [118]. A. H. Wijethunga [119] proposed to determine the DLR rating using a cost-effective 

sensing probe to measure the temperature of conductors and transmit the data through wireless 

communication. Nevertheless, the current flowing through the line was not acquired in real time, 

which plays a crucial role in determining the DLR [118]. In [120], an energy-autonomous high-

voltage sensor was proposed to measure the conductor temperature, current, voltage, the active 

and reactive power to estimate the SLR and DLR ratings. This approach also needs environmental 

measurements such as air pressure or wind speed and direction from nearby weather stations. 

However, it is known that the average wind speed and direction obtained from local weather 

stations is often inaccurate, as the wind speed changes with terrain topography. In [121], the wind 

speed is estimated using a reverse equation together with measurements of line current and 

temperature, solar radiation and ambient temperature, but this paper does not present a method to 

estimate DLR ratings. 

In this research work, a low-cost, real-time monitoring model to estimate the DLR rating using 

the Smartconductor was proposed. The procedure is detailed in Figure 4-3. The DTLR estimation 

has been divided into two stages: the wind speed estimation stage and the DTLR calculation stage. 

Since the constants, B1 and n depend on surface roughness and Reynolds number, which are not 

available, the author proposes to set their initial values as B1 = 0.641 and n = 0.471, which are 

taken from [93]. In the first main stage, the Smartconductor takes the measurements of line current 

and temperature, and the Reynolds number is determined for the wind speed estimation. 

Afterwards, the wind speed is estimated. In the second main stage, the maximum current capacity 

(ampacity) can be estimated, considering the estimated wind speed.  
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Figure 4-3. A flowchart of the DLR determination approach. 
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Figure 4-4. Thermal balance in a conductor.  

Figure 4-4 shows the diagram of the heating balance within a conductor. According to the CIGRE 

standard [93], a non-steady-state thermal balance equation can be expressed as, 

𝑃𝐽 + 𝑃𝑀 + 𝑃𝑆 = 𝑃𝑐  + 𝑃𝑟 + 𝑚𝑐
𝑑𝑇𝑐

𝑑𝑡
 [W/m] (39) 

where 𝑃𝐽 , 𝑃𝑀 , 𝑃𝑆  are the heating gain terms through Joule effect, magnetic effect, and solar 

radiation, respectively;  𝑃𝑐  and 𝑃𝑟  are the convective and radiative heating loss terms, 

respectively; m is the mass of the conductor in kg/m, c is the specific heat capacity of the 

conductor in J/(𝑘𝑔°𝐶), and 𝑇𝑐 is the average temperature of the conductor in °C. 

The heat capacity c of the ACSR conductor can be calculated as, 

{
𝑚𝑐 = 𝑚𝐴𝑙𝑐𝐴𝑙 + 𝑚𝑠𝑐𝑠𝑡𝑒𝑒𝑙

𝑐(𝑇) = 𝑐20°C[1 + 𝛽(𝑇𝑐 − 20)]
   (40) 

where mAl and cAl represent the mass per unit length and the specific heat capacity of the aluminum 

component, respectively, whereas msteel and csteel represent the mass per unit length and specific 

heat capacity of the steel component, respectively. The values of the temperature coefficient 𝛽 are 

3.8×10−4 °C−1 for pure Al, 4.5×10−4 °C−1 for the Al alloy and 1.0×10−4 °C−1 for steel, according to 

[93]. 

As stated in [107], the heating gains due to Joule and magnetic effects can be combined into only 

one equation, as, 

𝑃𝐽 + 𝑃𝑀 = 𝐼2𝑅𝑎𝑐 (41) 

where I is the root mean square (RMS) value of the electrical current passing through the 

conductor, and 𝑅𝑎𝑐 is the ac resistance of the conductor per unit length at the operating average 

conductor temperature Tc. The calculation of the ac resistance of the conductor Rac is a challenging 

task due to the skin, proximity and core loss effects [110]. The author proposes to measure this 

value according to the procedure described in [115] or in [25]. 

Therefore, the ac resistance of the conductor Rac (Tc) was measured in the laboratory by measuring 

the temperature of the conductor, the voltage drop between two points of the conductor surface 
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spaced by 1 m, and the ac current passing through the conductor. Next by applying (42), the ac 

resistance was calculated as 

𝑅𝑎𝑐 = 𝛥𝑉𝑐𝑜𝑠𝜑/𝐼   (42) 

As described in [93], equations (43-48) are used to determine the heat loss due to convective 

cooling: 

𝑃𝑐 =  𝜋𝜆𝑓(𝑇𝑐 − 𝑇𝑎)𝑁𝑢 [W/m] (43) 

where λf in W/(m °C) is the thermal conductivity of air,  𝑇𝑐  is the surface temperature of the 

conductor, 𝑇𝑎  is the ambient temperature. 

Equation (43) applies to both natural and forced convective cooling, the difference between both 

situations is found in the way to allow the calculation of the de Nusselt number Nu. 

In the case of forced convection, the Nusselt number is calculated as 

𝑁𝑢 = 𝐵1(𝑅𝑒)𝑛 [−]   (44) 

where the Reynolds number is calculated as 

𝑅𝑒 = 𝜌𝑟𝑉
𝐷

𝜈𝑓
 [−]  (45) 

where V (m/s) is the wind speed, 𝜌𝑟  (−) and 𝜈𝑓  (m2/s) are the relative density and kinematic 

viscosity of air, respectively, D (m) is the diameter of the conductor, and B1 and n are constants 

depending on the Reynolds number Re and conductor surface roughness, respectively. It is worth 

noting that the wind speed can be estimated by applying (45), as described in Figure 4-3. 

In case of natural cooling, the Nusselt number is obtained from the Grashof (Gr) and Prandtl (Pr) 

numbers as follows: 

Nu = A2(GrPr)m
2 (46) 

Pr = 0.715−2.5×10−4Tf (47) 

Gr = D3(Tc − Ta)g/(Tf + 273)vf
2 (48) 

where g = 9.807 m/s2 and the values of A2 and m2 can be found in [93]. 

Since in this research work, we propose to estimate the wind speed instead of taking direct 

measurements, the wind speed is not known. Therefore, both forced and natural cooling equations 

are applied. If the power loss due to forced convection is greater than the power loss due to natural 

convection, it is assumed that the wind speed is not null, and the Nusselt number Nu is calculated 

by applying (44); otherwise, it is calculated from (46). Nevertheless, in virtually all situations 

found in outdoor environments, the Nusselt number should be calculated from (44). 

The heat gain due to the solar radiation can be calculated using the global solar radiation S (W/m2), 

as seen in [93]: 

𝑃𝑠 =  𝛼𝑠𝑆𝐷 [W/m] (49) 

where αs (-) is the solar absorptivity of the conductor surface, and D (m) is the external diameter 

of the conductor. 

Finally, radiative heating losses can be described as [93]: 

𝑃𝑟 = 𝜋𝜀𝐷𝜎𝐵[(𝑇𝑐 + 273)4 − (𝑇𝑎 + 273)4] [W/m] (50) 
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where 𝜀 is the emissivity factor, which depends on the conductor surface, and σB = 5.6697×10−8 

W/(m2K4) is the Stefan–Boltzmann constant. 

Finally, the DLR rating is calculated when the conductor temperature reaches it maximum value 

under thermal equilibrium, so from (39) and (41), it results in [5,28]: 

𝐼𝑚𝑎𝑥 = √
𝑃𝑐(𝑇𝑐,𝑚𝑎𝑥) + 𝑃𝑟(𝑇𝑐,𝑚𝑎𝑥) − 𝑃𝑠

𝑅𝑎𝑐(𝑇𝑐,𝑚𝑎𝑥)
 (51) 

 

4.3  Publications 

This section presents the publications related to the developments exposed in this chapter of the 

thesis, detailing the methodological framework for the estimation of the dynamic  line rating in 

real time. In these articles, experiments are carried out to evaluate the accuracy of the proposed 

methodologies and techniques for power transmission lines. Chapter 5 includes the full version 

of them.  

• Y. Liu, J. R. Riba, M. Moreno-Eguilaz, and J. Sanllehí, “Analysis of a smart sensor based 

solution for smart grids real-time dynamic thermal line rating,” Sensors, vol. 21, no. 21, 

pp. 1–17, 2021, doi: 10.3390/s21217388. 

 

This article proposes a real-time approach to determine the DLR rating of ACSR 

conductors. The proposed method requires a thermal transient model of the line to 

determine the real-time values of the solar radiation and the ambient temperature, which 

can be acquired from weather stations placed near the analyzed conductors as well as the 

temperature and the current of the conductor, which can be measured directly with a smart 

device and can be transmitted wirelessly to a nearby gateway. Also, it is known that the 

wind speed shows important fluctuations, even in nearby areas, and since it plays a crucial 

role in determining the DLR, it is significant to estimate this parameter accurately at the 

location where the conductors are placed. This article presents a method to estimate the 

wind speed and the DLR rating of the analyzed conductor. Experimental tests have been 

conducted to evaluate the accuracy of the proposed approach based on ACSR conductors. 

 

• Riba, J.-R.; Liu, Y.; Moreno-Eguilaz, M.; Sanllehí, J. On-Line Core Losses Determination 

in ACSR Conductors for DLR Applications. Materials 2022, 15, 6143. 

https://doi.org/10.3390/ ma15176143 

 

Since DLR approaches require determining the ac resistance of the power transmission 

lines, which is a main parameter that enables it to determine Joule and core losses. This 

paper presents an approach for an on-line alternating current (ac) resistance estimation of 

ACSR conductors for the determination of the DLR rating of such conductors from real-

time conductor and meteorological parameter measurements. For this purpose, 

conductors with one, two and three layers of aluminum strands are analyzed in detail. 

Based on the experimental results presented in this paper, two possible approaches are 

proposed. 
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4.4  Conclusions 

This chapter presents an extension of the Smartconnector to determine the DLR rating in real time 

for power lines, called the Smartconductor. To do so, the real values of the solar radiation and 

ambient temperature are needed, which can be acquired from a nearby weather station, whereas 

the line current and temperature can be measured directly by using a Smartconductor. Moreover, 

due to the local fluctuations of the wind speed, this thesis proposes a cost-effective approach to 

estimate the wind speed accurately. Once the wind speed is estimated, it is possible to estimate 

the DLR rating of the ACSR conductor based on a thermal transient model. To evaluate the 

accuracy and the performance of the exposed in this chapter, different case studies have been 

conducted in the high-current laboratory based on ACSR conductors by controlling and measuring 

the solar radiation, ambient temperature, line temperature and current. The experimental results 

exposed in the paper [58] prove that the real-time method presented in this article is able to 

estimate both the local wind speed and the DLR rating accurately and with low computational 

cost, so that the estimations can be performed in low-capacity microcontrollers used in low-cost 

devices that are needed for global deployment of smart grids. Thus, the findings made in this 

article prove the feasibility of the extension of the Smartconnector for the determination of the 

maximum current capacity of power transmission lines.  

The ac resistance determines Joule and core losses, so it is a main parameter to determine the 

DLR. Therefore, the article [6] proposed two approaches to determine the ac resistance of ACSR 

conductors. The first and more accurate method is based on the simultaneous measurements of 

the voltage drop per certain length of the conductor, the current, the phase shift between the 

voltage drop and the current, as well as the conductor temperature. Several case studies have been 

conducted for single-, two- and three-layer conductors. Experimental results show that for two-

layer and three-layer conductors, the ac resistance is almost independent of the electrical current 

flowing through the conductors, whereas, for single-layer conductors, the variation of the current 

level has a great impact on the value of the ac resistance. Based on these experimental 

observations, the second method was proposed, and it avoids measuring the voltage drop and the 

phase shift, thus simplifying installation and measurement requirements, although it requires prior 

laboratory experiments to determine the required parameters Rac,0 and ac. 

The methodology exposed in this chapter is useful as it presents a practical way to improve the 

capacity of overhead lines, thus enhancing the reliability of power transmission systems. The 

proposed DLR method allows power lines to perform at their peak by adjusting the ratings of 

power lines based on the weather conditions in real time, making it a smart solution for future 

smart grids.  
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5. Compendium of publications

5.1  Energy Balance of Wireless Sensor Nodes Based on Bluetooth Low 

Energy and Thermoelectric Energy Harvesting 

Reference: 

Liu, Y.; Riba, J.-R.; Moreno-Eguilaz, M. Energy Balance of Wireless Sensor Nodes Based 

on Bluetooth Low Energy and Thermoelectric Energy Harvesting. Sensors 2023, 23, 

1480. Under a CC BY 4.0 license. https://doi.org/10.3390/s23031480. 

Publication framework: 

This article shows that using conventional instrumentation, it is feasible to measure the energy 

consumed in the different phases of a communication cycle of a substation IoT device. It proposed 

a detailed energy balance of the battery during charge and discharge cycles, as well as 

communication modes, from which the maximum allowable data transfer rate is calculated. The 

methodology presented herein can be applied to many other smart grid applications. 

Main contributions: 

• Development of conventional instrumentation method to measure the energy

involved in different modes of communication cycles of a low-cost IoT device.

• Application of thermal energy harvesting system for very low-temperature

gradients application.

• Development of a detailed energy balance strategy to determine the maximum data

transfer rate.

Key words: 

energy harvesting; thermoelectric generator; high voltage; substation connector; battery 

efficiency; power consumption  
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Article 

Energy Balance of Wireless Sensor Nodes Based on Bluetooth 

Low Energy and Thermoelectric Energy Harvesting 

Yuming Liu 1,2, Jordi-Roger Riba 1,* and Manuel Moreno-Eguilaz 1 

1 Electrical and Electronics Engineering Departments, Universitat Politècnica de Catalunya, Rambla Sant 

Nebridi 22, 08222 Terrassa, Spain 
2 SBI Connectors, Sant Esteve Sesrovires, Albert Einstein, 5, 08635 Sant Esteve Sesrovires, Spain 

* Correspondence: jordi.riba-ruiz@upc.edu; Tel.: +34-937-398-365 

Abstract: The internet of things (IoT) makes it possible to measure physical variables and acquire 

data in places that were impossible a few years ago, such as transmission lines and electrical sub-

stations. Monitoring and fault diagnosis strategies can then be applied. A battery or an energy har-

vesting system charging a rechargeable battery typically powers IoT devices. The energy harvesting 

unit and rechargeable battery supply the sensors and wireless communications modules. Therefore, 

the energy harvesting unit must be correctly sized to optimize the availability and reliability of IoT 

devices. This paper applies a power balance of the entire IoT device, including the energy harvesting 

module that includes two thermoelectric generators and a DC–DC converter, the battery, and the 

sensors and communication modules. Due to the small currents typical of the different communi-

cation phases and their fast-switching nature, it is not trivial to measure the energy in each phase, 

requiring very specific instrumentation. This work shows that using conventional instrumentation 

it is possible to measure the energy involved in the different modes of communication. A detailed 

energy balance of the battery is also carried out during charge and discharge cycles, as well as com-

munication modes, from which the maximum allowable data transfer rate is determined. The ap-

proach presented here can be generalized to many other smart grid IoT devices. 

Keywords: energy harvesting; thermoelectric generator; high voltage; substation connector; battery 

efficiency; power consumption 

 

1. Introduction 

Wireless sensor nodes (WSNs) enable connecting things to the internet through a 

gateway interfacing the internet and the WSNs. WSNs allow collecting sensed data and 

send this information to the gateway using a one-way or two-way communication proto-

col [1]. Internet of things (IoT) devices allow the monitoring of different physical objects 

[2,3] while enabling real-time health condition approaches to be applied. It is known that 

electrical connections are among the critical points in power systems, often being placed 

in remote or inaccessible locations, so they deserve special attention [4]. It is interesting to 

provide the connections with the ability to measure fundamental physical variables, as 

well as to communicate, in order to determine their state of health and remaining useful 

life (RUL) [5,6]. With the development of IoT technology, today this goal is within reach. 

Devices designed for this purpose must include an energy harvesting unit, specific sen-

sors, and a communication module to acquire the key physical variables and send this 

information wirelessly to the cloud to be analyzed in real time to apply predictive mainte-

nance approaches [7]. The required energy and communication capabilities are critical 

factors, which are highly influenced by factors such as data transfer rate and distances to 

be covered [8]. In any case, the energy harvesting unit plays a key role. The energy har-

vesting unit converts the energy from the environment into electrical energy [9], being the 

unit in charge of supplying the required energy to the IoT system at the right time. Energy 
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harvesters also enable prolonging the life of battery-powered WSNs, as they allow the 

battery to be recharged [10] and minimize maintenance costs [11]. 

Transmission systems are a fundamental part of today’s electrical grid. To ensure 

stable and reliable power grid operation, key parameters of transmission systems need to 

be measured, monitored, and analyzed in real time. They can operate in both direct and 

alternating current power systems. WSNs have a key role in meeting this need, since they 

are the devices in charge of measuring basic data and sending this information to the gate-

way. Based on the analysis of this information, predictive maintenance approaches can be 

applied to optimize the reliability, availability, and stability of the electrical grid. This 

strategy also makes it possible to minimize human intervention in the data acquisition 

process, which is especially important in remote and difficult-to-access areas [4], where 

human intervention can be very expensive and even unsafe. Therefore, self-powered 

WSNs can be very useful for monitoring transmission systems [12]. 

This paper performs an energy balance of the SmartConnector, an IoT device that in-

cludes a thermoelectric energy harvesting system, an energy storage unit, and different 

electronic sensors (current, voltage drop and temperature) to estimate the electrical con-

tact resistance of the connector, a microprocessor, and a communications module. There 

is a shortage of works that perform an energy balance of the full system, so this work 

contributes to this area. The SmartConnector is a challenging project because these elec-

tronic modules must be added to aluminum substation connectors, which operate out-

doors at voltage levels up to 550 kV. The SmartConnector can measure in situ and in real-

time different parameters of the high-voltage substation connector, which can be used to 

determine the state of health or the remaining useful life. The data are transmitted wire-

lessly to a nearby gateway, which sends the data to the cloud for further visualization and 

analysis. 

Figure 1 schematizes the main modules of an IoT-WSN for substation connectors, 

here called SmartConnector. Due to the limited amount that the energy harvesting unit can 

generate, WSs usually operate in an intermittent on-off pattern [4,13], so communication 

protocols typically have different phases. The energy harvesting unit analyzed in this pa-

per is based on a solid-state thermoelectric generator (TEG), which transforms a temper-

ature difference into useful electrical energy. 

Thermal 
energy 

harvesting

 DC-DC
converter

Sleep/Standby

Advertising init

Communication phases

Advertising start

Transmission

Delay

Battery storage 

Energy harvesting 

Sensors
Communications 

module

SmartConnector

Figure 1. Diagram of the wireless SmartConnector device. 

This paper applies an energy balance of the entire SmartConnector device, including 

the energy harvesting module, DC–DC converter, battery and sensors, and communica-

tion modules. Due to the small currents that intervene in the different phases of the com-

munications and the fast-switching pulses that characterize these currents, special care 

must be taken when measuring the energy in each phase. Therefore, very specific and 

expensive instrumentation is required. This paper shows that using conventional instru-

mentation it is also possible to measure the energy involved in each phase of the commu-

nications. Since the SmartConnector is installed on large tubular aluminum busbars, there 

is a small temperature gradient between the ambient and the busbar. This work also fo-

cuses on a challenging problem, the thermoelectric energy harvesting under very low tem-

perature gradients, which has been poorly studied in the technical literature. Due to these 



Sensors 2023, 23, 1480 

unfavorable conditions, thermoelectric generators produce a very low voltage, which re-

quires a suitable DC–DC converter. In addition, a detailed energy balance of the thermo-

electric energy harvesting unit and the battery is also carried out during the charge and 

discharge cycles, as well as during the communication phases, this being a novelty of this 

work. The energy balance allows determining the maximum data transfer rate (DTRmax), 

that is, the maximum communication cycles per hour the SmartConnector can do without 

draining the batteries. Although the results presented in this paper have been applied to 

a particular IoT device, the SmartConnector, the approach presented here can be general-

ized to many other smart grid IoT devices incorporating energy harvesting units, such as 

triboelectric or piezoelectric nanogenerators. These results could potentially contribute to 

improve the energy management and lifetime of WSNs. 

2. System Efficiency

This section describes the system to determine the efficiency of the entire system 

comprising the energy harvesting system (TEGs + DC–DC converter), the battery, and the 

sensors and communication modules. 

2.1. Energy Harvesting Efficiency 

A thermoelectric generator (TEG) is used to capture energy from the thermal gradient 

existing between a substation busbar and the environment. Substation busbars, usually 

hollow cylindrical aluminum tubes, are common connection nodes for multiple incoming 

and outgoing circuits. Due to the low temperature gradient between the busbar and the 

environment, special care must be taken to select the most appropriate TEG. This unfa-

vorable condition forces the TEG to generate a very low voltage, some fractions of a volt, 

requiring a suitable DC–DC converter to charge the battery and supply the sensors and 

the communications module. Therefore, the energy harvesting system consists of a TEG 

module and a DC–DC converter with a very low input voltage range. 

The specific efficiencies of the TEG, TEG, and of the DC–DC converter,  DC/DC, must 

be calculated to determine the efficiency of the entire energy harvesting system (TEG + 

DC–DC converter), TEG+DC/DC. 

The steady state heat transfer equation in a busbar can be expressed as [14], 

2 ( )  = 0  [W/m]RMS ac c rI r T p p− − (1) 

IRMS [A] being the electric current flowing in the busbar, rac(T) [/m] the per unit length ac 

resistance of the busbar at the operating temperature T [˚C], and pc [W/m] and pr [W/m] 

being the cooling terms due to natural convection and radiation, respectively. 

The resistance term rac [/m] can be measured as [5,15] 

1m( ) cos     [ /m]ac

V
r T

I



=  (2) 

where V1m [V] is the voltage drop measured between two points of the busbar separated 

by 1 m, I [A] is the ac current flowing through the busbar,   [rad] is the phase shift be-

tween the voltage drop and the current, and T [°C] is the temperature of the busbar. 

The efficiency of the TEG is calculated as 

, ,

, ,

out TEG electric TEG

TEG

inp TEG Joule TEG area

P P

P P


−

= = (3) 

where Pelectric,TEG [W] is the electric power generated by the TEG, and PJoule,TEG-area [W] is the 

Joule heat generated by the busbar in the area of the TEG (80 mm × 40 mm), which can be 

calculated as 

, ,     [W]TEG
Joule TEG area Joule conductor

Conductor

A
P P

A
− = (4) 
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where ATEG [m2] and AConductor [m2] are, respectively, the area of the outer surfaces of the 

TEG and conductor, and PJoule,conductor [W] is the power loss in the busbar due to the Joule 

effect. 

Finally, the energy efficiency of the DC–DC converter is calculated as the ratio be-

tween the output and input electrical powers as 

_

_

out DC DC out out
DC DC

inp DC DC inp inp

P V I

P V I


−

−

−

= = [-] (5) 

Vout, Iout, Vinp, and Iinp being the output and input voltages and currents of the DC–DC con-

verter. 

2.2. Battery Efficiency 

Today, rechargeable batteries play a leading role in energy management for IoT ap-

plications. Various methods have been proposed to estimate battery lifetime and the state 

of health, which can be based on fast impedance measurements [16], or on health indica-

tors based on the internal resistance because it is greatly impacted by ageing [17], or on 

the capacity level [18] among others. 

It is known that, as a result of energy loss in battery operation, additional energy is 

required, so battery energy efficiency is a relevant factor of battery economy. Battery en-

ergy efficiency characterizes the utilization rate during energy conversion from chemical 

energy to electrical energy [19]. In order to minimize the energy losses in the batteries and 

to evaluate the energy efficiency of the entire thermal energy harvesting system, this pa-

per analyzes the efficiency of the batteries under a very low current rate, since the ana-

lyzed application is characterized by very low current rates. 

In [20] it is concluded that for nickel metal hydride (Ni-MH) batteries, full charge 

cannot be reached without overcharging due to side reactions. Ni-MH batteries are ap-

plied in many crucial applications such as wearable electronic devices and hybrid vehicles 

due to the high cycle life and robustness [10,21]. This paper analyzes a pack of two series 

connected Ni-MH batteries. It is important to determine the energy loss in the batteries 

and the input and output energies in the batteries during the charge and discharge cycles 

to characterize their efficiency and energy behavior. 

Since the IoT device analyzed in this paper has a very low power consumption, bat-

tery efficiencies under low current rates are studied. These efficiencies have three compo-

nents, that is, charge efficiency ƞcharge, discharge efficiency ƞdischarge, and overall efficiency 

ƞBattery. 

The energy efficiency under charging conditions [20] is the ratio between the chemi-

cal energy gained by the battery during the charge cycle EBattery input [J] and the energy 

extracted from the power source EPower source [J]. 

 

 

 

arg

 Battery input Bat

s

tery input

l

Ch e

Power sou t CBa tery irce ha in  p gu rg nt os

E E

E E E


 
= =

 +
(6) 

where ECharging loss [J] is the energy loss in the battery during the charging cycles due to 

Joule heating and electrochemical reaction processes [20,22]. EBattery input is the chemical 

energy stored in the battery, i.e., the net energy. The recharged energy and the net energy 

are not the same because the recharged electric energy cannot be completely transformed 

into chemical energy [19]. 

The energy extracted from the power source, EPower source [J], can be determined as [19]: 

0 0

( )

 arg arg arg
( )

    [J]
t SoC t

Power source Ch e Ch e Ch e n
t SoC t

E V I dt V C dSoC = =  (7) 

The net energy gained by the battery during the charge cycle, EBattery input, can be ex-

pressed as [19] 
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( )

 
(0)

( )     [J]
SoC t

Batttery input OCV n
SoC

E V SoC C dSoC =  (8) 

where SoC(t0) [-] is the initial state of charge, SoC(t) [-] is the final state of charge,VCharge 

[V], and ICharge [A] are the battery voltage and current during the charge process, respec-

tively, VOCV [V] is the open circuit voltage, and Cn [Ah] is the rated capacity of the battery. 

The state of charge (SoC) of the battery can be calculated as [19]: 

0 0
0 arg 0 arg

1 1
( ) ( )       or    ( ) ( )  

t t

ch e disch e
t t

n n

SoC t SoC t I dt SoC t SoC t I dt
C C

= + = −  (9) 

The rated capacity Cn [Ah] of the battery plays a major role in calculating the net 

energy Enet and in determining the SoC. The method for determining Cn is described in 

Section 4.2. 

The energy efficiency under discharge conditions [20] is the ratio between the energy 

extracted from the battery during the discharge ELoad [J] and the net energy of the battery 

EBattery output [J], which can be expressed as 

 

arg

  

Battery output Discharging lossLoad

Disch e

Battery output Battery output

E EE

E E


 − 
= =

 
(10) 

where EDischarging loss [J] is the energy loss in the battery during the discharging cycles. 

The energy extracted from the battery during the discharge, ELoad, can be determined 

as 

0 0

( )

arg arg arg
( )

    [J]
t SoC t

Load Disch e Disch e Disch e n
t SoC t

E V I dt V C dSoC = =  (11) 

where VDischarge [V] is the battery voltage during the discharge process. 

Finally, the overall energy efficiency of the charge and discharge cycle [20] is deter-

mined as the ratio between EPower source and ELoad, 

 

Load

Battery

Power source

E

E



=


(12) 

2.3. Proposed Method to Determine the Energy Balance of the Battery 

The efficiencies in (6)‒(12) are generally determined for constant charge and dis-

charge rates. However, in practical applications, the charge and discharge rates are not 

constant. To determine the maximum data transfer per hour (DTRmax), that is, the number 

of communication cycles that the IoT device can perform each hour without draining the 

battery, the energy input and output of the battery must be measured in a real situation. 

In this case, the energy harvesting unit supplies the load (sensors and communication 

modules) through the battery, so it must be accomplished 

 _ arg  [J]Battery input out DC DC Ch eE E −= (13) 

where Eout_DC–DC is the electrical energy at the output of the DC–DC converter, the power 

source in this case, and Charge is given by (6). 

The output power delivered by the battery can be calculated as 

 

arg

 [J]Load
Battery output

Disch e

E
E


= (14) 

where ELoad is the energy consumed by the IoT device (sensors and communication mod-

ules), the load of the analyzed circuit, and Discharge is given by (10). 

Finally, the energy balance is reached when the energy harvested is equal to the en-

ergy consumed by the load 
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  Battery input Battery outputE E= (15) 

Applying the energy balance to the battery for 1 h results in: 

max ,1 communication cycle,1 h

 ,1 h  ,1 h

arg arg

DTR ( )Load sleepLoad

Battery input Battery output

Disch e Disch e

E EE
E E

 

+
= = = (16) 

Finally, the maximum data transfer rate DTRmax is obtained as 

 ,1 h _ ,1 h

max arg arg arg

,1 communication cycle ,1 communication cycle

DTR
Battery input out DC DC

Disch e Ch e Disch e

Load sleep Load sleep

E E

E E E E
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−
= =

+ +
(17) 

where ELoad,1 communication cycle and Esleep are shown in Figure 2. 
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Figure 2. Power consumed by the IoT device (SmartConnector) during multiple BLE communication 

cycles separated by sleep mode periods. 

3. Experimental Setup

This section describes the experimental setup required to determine the energy effi-

ciency of the entire IoT device and to determine the DTRmax. 

3.1. Energy Harvesting System 

As explained, in the analyzed application, there is a small temperature gradient be-

tween the busbar and the environment, so the selection of the most appropriate TEG is 

critical. Due to the low temperature difference, the TEG generates a very low voltage of a 

few fractions of a volt, thus requiring a DC–DC converter with a very low input voltage 

range. 

The GM250-157-14-16 TEG from European Thermodynamics (Kibworth, Leicester-

shire, United Kingdom) was selected due to its ability to handle small temperature gradi-

ents. The dimensions of this TEG are 40 mm × 40 mm × 4.1 mm. 

The selected DC–DC converter is the LTC3108 from Analog Devices (Wilmington, 

Massachusetts, USA), which is linked to an ADEH harvesting board based on maximum 

power point tracking (MPPT) technology and a high efficiency boost converter with an 

input voltage range of 50‒400 mV and an output voltage output range of 2.35−5.0 V. 

Figure 3 shows the experimental setup used to test the energy harvesting test, which 

is composed of a conductor loop. This loop was exposed to heating and cooling cycles. 
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The low impedance loop consists of a stainless-steel tubular busbar with an inner diameter 

of 120 mm and a wall thickness of 0.4 mm, connected to the output of a high current trans-

former. The energy harvesting unit includes two TEGs (thermoelectric generators) con-

nected in series and a DC–DC converter. A Ni-MH battery pack composed of two cells in 

series was also used for power management purposes. In order to test the energy harvest-

ing system in a realistic situation, the TEGs and the DC–DC converter were installed on 

the top of the tubular busbar, which was exposed to the heat cycle tests, as shown in Figure 

3. 

NI-9211 DAQ

TEMs + 
Heat sink

T-type thermocoupleT-type thermocouple

T-type thermocouple

Ammeter Ammeter

DC-DC converter

Ni-MH battery pack

NI USB-6210

High-current
transformer

Tubular busbar

A

Figure 3. Experimental setup to test the behavior of the energy harvesting system mounted on a 

tubular busbar. 

Regarding the measurement systems, two Fluke 289 data logger multimeters (Fluke, 

Everett, Washington, DC, USA) were used in ammeter mode to measure the output cur-

rents of the TEGs and the DC–DC converter. Simultaneously, a NI USB-6210 data acqui-

sition system (National Instruments, Austin, TX, USA) was used to acquire the output 

terminal voltages of the TEGs and DC–DC converter. Three T-type thermocouples to-

gether with a NI-9211 temperature measurement system (National Instruments, Austin, 

TX, USA) were used to measure the environment temperature and the temperatures of 

the hot and cold sides of the TEGs. A Python code programmed by the authors of this 

work was used to synchronize all measurement systems. 

3.2. Energy Storage 

Rechargeable Ni-MH batteries are widely used in consumer electronics, such as dig-

ital cameras or portable electronic devices [23]. Therefore, we proposed to use a Ni-MH 

pack of two rechargeable battery cells to store the energy generated by the energy har-

vesting system (TEG + DC–DC converter) for the IoT device (BM2000C1450AA2S1PATP, 

GlobTek, Northvale, New Jersey, USA). Table 1 shows the main characteristics of the bat-

tery pack analyzed in this work. 
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Table 1. Main characteristics of the analyzed battery pack of two cells from GlobTek. 

Parameters Values 

Rated capacity, Cn 2000 mAh 

Nominal voltage 2.4 V (1.2 V per cell) 

Cut-off voltage 2.0 V (1.0 V per cell) 

Standard charge current 200 mA (0.1 C), 16 h 

Trickle charge current * 60 mA–100 mA (0.03 C–0.05 C) 

Rapid charge current 1 A (0.5 C) 

Internal impedance <30 mΩ (upon fully charged) 
* Trickle charging means charging a fully charged battery cell at a rate equal to its self-discharge

rate, enabling the battery to keep fully charged.

As shown in Table 1, the two series connected rechargeable Ni-MH batteries used in 

this application generate around 2.4 V. Ni-MH batteries were selected because this voltage 

level is directly compatible with that required by the electronic sensors and the microcon-

troller that includes an inbuilt BLE module (see Section 3.3), which is between 1.8 V and 

3.0 V. 

The electronics incorporated in the SmartConnector IoT device consume very little 

power, in the milliwatt range [4]. Therefore, to analyze the behavior of the Ni-MH battery 

used in this IoT application, the charge and discharge profiles of the batteries analyzed in 

this paper require very low C rates, the unit to measure the speed at which a battery 

charges or discharges. For example, a charge cycle at a C rate of n−1 C means that the bat-

tery is charged from 0% to 100% in n hours. 

Figure 4 shows the experimental setup implemented in this work to analyze the be-

havior of the rechargeable battery pack. The charge and discharge experiments were per-

formed using a bidirectional regenerative power system (IT-M3632, 800 W, 60 V, 30 A, 

ITECH,  New Taipei City, Taiwan) connected to the two terminals of the battery pack. 

This instrument measures and records voltage and current with an accuracy of ±0.1% and 

0.1% + 0.1% FS, respectively. Simultaneously, a battery tester (IT-5101, ITECH, New Taipei 

City, Taiwan) was used to measure the voltage and internal impedance of the battery with 

an accuracy of ±(0.01% + 0.01% FS) and ±(0.4% + 0.05% FS), respectively. The measure-

ments of the voltage and impedance of the battery from the tester were synchronized with 

a computer using a Python code programmed by the authors of this work. 

IT-5101 battery tester 
Voltage and impedance 

measurement

Bidirectional regenerative 
power system IT-M3632

and current measurement

m

Figure 4. Experimental setup used for battery charge–discharge cycle tests. 

3.3. IoT Device 

The IoT device analyzed in this work consists of the energy harvesting system de-

scribed in Section 3.1, the energy storage unit described in Section 3.2, three sensors, tem-

perature (Pt-1000 sensor, PTFC102T1G0, TE Connectivity, Schaffhausen, Switzerland), 

voltage drop (AD627 instrumentation amplifier from Analog Devices, Wilmington, MA, 

USA), and current (DVR5053VA Hall effect sensor, Texas Instruments, Dallas, Texas, 
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USA), as well as a Bluetooth low energy (BLE) communications module (nRF52832 micro-

controller from Nordic Semiconductors mounted on Sparkfun breakout board that in-

cludes an inbuilt BLE module). 

This section presents two systems to measure the very low energy consumption of 

the analyzed IoT device. Since this device communicates cyclically with a gateway, the 

energy consumption has a cyclic profile consisting of five modes, advertising parameter 

initialization, advertising start, transmission, delay, and sleep, as shown in Figure 5. 

1 2 3 4 5 6 7
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0

20

40

60

80

100

ADV_init
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Delay Sleep
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u

rr
e

n
t 

[m
A
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Figure 5. Experimental current versus time profile of the communications cycle. 

The SmartConnector was programmed to enter low power mode during the sleep 

phase, drawing a few microamps [4]. However, it is very difficult and expensive to acquire 

current probes for oscilloscopes compatible with this range, being a challenging task to 

determine the energy consumption of the IoT device. A lab-design data acquisition system 

was designed for this purpose and assembled, as shown in Figure 6a. It consists of a pre-

cision current sense resistor (SR10, 0.02 Ω, ±1%, 1W, Caddock Electronics, Roseburg, OR, 

USA) and two instrumentation amplifiers (AD620, Analog Devices, Wilmington, MA, 

USA) connected in cascade that were used to amplify the output voltage. Simultaneously, 

a wired DAQ module (NI USB-6210, National Instruments, Austin, TX, USA) was con-

nected to the output terminals of the amplifiers and to the power supply to measure both 

voltages. 

To evaluate the accuracy of the measurements made with the lab-design system, a 

current waveform analyzer (CX3324A, 1 GSa/s, 14/16-bit, 4 Channels, Keysight Technolo-

gies, CA, USA) with two current probes (CX1102A Dual Channel, ±12 V, 100 MHz, 40 nA–

1 A, Keysight Technologies, Santa Rosa, CA, USA) and one passive voltage probe 

(N2843A, Keysight Technologies, Santa Rosa, CA, USA) was also used to measure the 

energy consumed by the SmartConnector, which is shown in Figure 6b. 
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Figure 6. Experimental setup to determine the energy consumption of the IoT device. (a) Lab-design 

system. (b) CX3324A current waveform analyzer. 

Finally, the energy consumed by the IoT device in one communication cycle, ELoad, 1 

communication cycle, can be calculated as 

, 1  
0

( ) ( )   [J]Load communication cycl

t

t
e

T

V t I t dtE
=

=
=  (18) 

where V(t) and I(t) are, respectively, the instantaneous value of the voltage and current 

measured by the lab-design or CX3324A waveform analyzer, and T is the duration of the 

communication cycle. 

4. Experimental Results

4.1. Energy Harvesting System 

This section shows the results of the experimental tests carried out indoors at an am-

bient temperature of 20 °C to determine the energy generated by the energy harvesting 

system under different operating conditions. 

As already explained, the energy harvesting system is installed on top of a tubular 

busbar. It consists of two TEGs connected in series, which are connected to a DC–DC con-

verter. The busbar was heated until reaching the steady state temperature by applying cur-

rents of different intensities, whose values are summarized in Table 2. After reaching the 

steady state temperature, the system was cooled to room temperature by natural convec-

tion. Therefore, different heating tests were carried out. The powers and efficiencies of the 

different heat cycle tests summarized in Table 2 are based on Equations (1)–(5). It is noted 
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that THot-Ambient is the temperature gradient between the hot side of the TEG and the ambi-

ent, while THot-Cold is the temperature gradient between the hot and cold sides of the TEG.

Table 2. Power and efficiency of the TEGs and DC–DC converter when the busbar reaches the 

steady state temperature. 

4.2. Battery Efficiency 

4.2.1. Experimental Determination of Cn and VOCV 

To determine the efficiency of the battery (charge, discharge and charge-discharge 

cycles), the rated capacity Cn and the open circuit voltage VOCV are required, as described 

in Equations (6)‒(12). The following paragraphs explain how they were determined from 

experimental tests. 

According to the IEC 61434 standard [24], the reference current of the test is It = Cn/(1 

h) [A], and all charge and discharge currents must be expressed as fractions or multiples

of It. The pack of two rechargeable Ni-MH cells has a rated capacity Cn = 2 Ah (see Table

1), so It = 2 A. The end-of-charge voltage per cell was set to 1.75 V, while the end-of-dis-

charge voltage (cut-off voltage) per cell was set to 1.0 V (see Table 1).

The rated capacity Cn [Ah] of the battery pack was calculated according to the proce-

dure described in the IEC 61982 standard [25]. First, the cells were discharged at 25 °C ± 2 

°C at a constant current of 0.333It (corresponding to 0.67 A) down to 2 V, the end-of-dis-

charge voltage of the two cells specified by the manufacturer. After 1 h of rest, the cells 

were charged at a constant rate of 0.1It (corresponding to 0.20 A) for 16 h at 25 °C ± 2 °C. 

After another 1 h rest, the batteries were discharged at a constant rate of 0.333It (corre-

sponding to 0.67 A) down to 2 V, the end-of-discharge voltage of the two cells. The rated 

discharge capacity was found to be Cn = 1.75 Ah, as shown in Figure 7. 

As shown in Figure 7, the two cells were discharged at a constant rate of 0.333It, from 

an initial voltage of around 2.45 V down to 2.0 V. They were then rested for 1 h, and then 

charged at a constant current rate of 0.1It for 16 h (the charging time specified by the man-

ufacturer, as shown in Table 1) to around 3 V. After another rest of 1 h, the rated dis-

charged capacity Cn was obtained by discharging the cells at a constant rate of 0.333It to 

reach the end-of-discharge voltage (2 V). 

0
0.333   =1.75  [Ah]

EoDt

n t
t

C I dt
=

=  (19) 

where tEoD is the time required to reach the cut-off or end-of-discharge voltage. 

Current 

(Arms) 

THot-Ambient 

(˚C) 

THot-Cold 

(˚C) 

pJoule,conductor 

(W/m) 

PJoule,TEG-area 

(W) 

Pelectric,TEG

(mW) 

Pout_DC–DC 

(mW) 

TEG 

(%) 

DC–DC 

(%) 

TEG+DC/DC

(%) 

136 20.7 3.35 99.5 0.845 1.24 0.21 0.15 17.0 0.025 

169 26.1 3.85 155.6 1.321 2.50 0.34 0.19 13.6 0.026 

194 31.7 4.46 207.5 1.76 4.47 0.48 0.25 10.7 0.027 

226 37.7 5.05 284.0 2.41 7.34 0.66 0.30 9.0 0.027 

254 43.7 5.67 362.7 3.08 11.2 0.84 0.36 7.5 0.027 
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Figure 7. Determination of the rated discharge capacity Cn when the two batteries were discharged 

at a rate of 0.333It = 0.67 A from 3 V to 2 V (end-of-discharge voltage). 

It is observed that the obtained value of the rated discharge capacity Cn = 1.75 Ah 

corresponds to 87.5% of the maximum capacity specified by the manufacturer, which is 

2.0 Ah. This is because Cn is highly dependent on how the Ni-MH battery is charged, so it 

cannot reach the maximum capacity of 2.0 Ah without overcharging due to side reactions 

[26,27]. Therefore, this study considers the rated capacity Cn of the cells instead of the 

maximum capacity. 

The open circuit voltage VOCV of each cell can be obtained from measurements, aver-

aging the charge and discharge curves obtained at very low charge and discharge rates as 

a function of the SoC. In this way, the effects of hysteresis and ohmic resistance are mini-

mized [19,28]. The method developed by Plett [28] was applied to obtain the VOCV shown 

in Figure 8. First, the cells were fully charged at 0.05 C. They were then discharged to the 

end-of-discharge voltage (2 V) at a rate of 0.007 C (0.007 C = 0.007 × 2 A = 0.014 A). Once 

discharged, they were charged at a rate of 0.007 C until fully charged. Next, the VOCV curve 

was obtained by averaging the charge and discharge curves at a rate of 0.007 C, as shown 

in Figure 8. 

Figure 8. Open circuit voltage VOCV versus SoC obtained by averaging the terminal battery voltage 

during an entire charge and discharge cycle at 0.007 C. 

The charge and discharge rate was fixed at 0.007 C for two main reasons. First, this 

discharge rate is similar to the average current consumed by the SmartConnector. Second, 

it is a very low rate, which helps to minimize the influence of hysteresis and Ohmic re-

sistance. 
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4.2.2. Battery Efficiencies during the Charge, Discharge and Charge-Discharge Cycles 

Knowing the rated capacity Cn and the VOCV–SoC curve, it is possible to determine the 

efficiency of the battery during the charge and discharge cycles, as well as the overall ef-

ficiency from (6), (10) and (12), respectively. To acquire the curves shown in Figures 9 and 

10, the cells were first fully charged or discharged at a rate of 0.05 C, and then discharged 

or charged at different C rates to obtain the voltage curves as a function of the SoC. Figure 

9a shows the battery voltage versus SoC during the charge cycle, while Figure 9b shows 

the charge efficiency versus the C rate. 

(a) 

0.007C
0.02C

(b) 

Figure 9. Battery pack performance during the charge cycle. (a) Voltage curves as a function of SoC. 

(b) Battery charge efficiencies at different current rates.

Figure 9a shows that the terminal voltage behavior of the battery pack is highly de-

pendent on the SoC during the charge cycle. At relatively small C rates, such as 0.02 C, 

0.05 C, or 0.1 C, the voltage is always below 3 V for SoC = 100%. Otherwise, under moder-

ate C rates (0.333 C and 0.5 C), the voltage level rises significantly above 3 V when the 

cells are fully charged. The charge efficiency ƞCharge shown in Figure 9b was calculated ac-

cording to (6). 

Figure 10a shows the battery voltage versus SoC during the discharge cycle, while 

Figure 10b shows the discharge efficiency versus the C rate. 
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(a) 

0.007C
0.02C

(b) 

Figure 10. Battery pack performance during the discharge cycle. (a) Voltage curves as a function of 

SoC. (b) Battery discharge efficiencies at different current rates. 

Figure 10a shows that the terminal voltage behavior of the battery pack is highly de-

pendent on the SoC during the discharge cycle. According to these results, ƞDischarge obvi-

ously decreases at high C rates because the cells cannot fully discharge at higher C rates 

[19]. 

Figure 10b shows the discharge efficiency ƞDischarge versus SoC. The ƞDischarge characteris-

tic has been calculated according to (19). These results show that ƞDischarge also decreases 

drastically at higher C rates. 

Finally, Figure 11 shows the charge and discharge energy efficiency of the battery 

pack. It is seen that the overall battery efficiency can be as high as 93% at a rate of 0.007 C, 

thus decreasing at higher C rates. In this case, the overall efficiency during the charge and 

discharge cycles has been calculated from (12). 

0.007C
0.02C
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Figure 11. Battery pack efficiency during charge and discharge cycles at different C rates. 

The results presented in Figure 11 show that, due to the low level of current gener-

ated by the energy harvesting system of the SmartConnector and the low current required 

to supply the sensors and communication modules, the battery will be used efficiently. 

4.3. Energy Consumption of the IoT Device (Sensors and Communications Module) 

This section measures the power and energy consumed by the SmartConnector. To 

this end, the Smartconnector was programmed to send data to a nearby gateway every 

seven seconds. 

Figure 12 shows the current consumed by the SmartConnector when supplied with a 

fixed voltage of 2.55 V. It was measured with the sophisticated CX3324A current wave-

form analyzer and with the lab-design system. 

(a) 

(b)
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(c) 

Figure 12. Current consumed by the SmartConnector. (a) Measured with the CX3324A current wave-

form analyzer during one entire BLE communication cycle. (b) Measured with the CX3324A current 

waveform analyzer during the sleep mode. (c) Measured with the lab-design system during 20 BLE 

communication and sleep cycles. 

Table 3 summarizes the results obtained with the two measuring devices in the dif-

ferent phases of power consumption of the BLE communication cycle. These results show 

that the differences obtained with the CX3324A current waveform analyzer and the lab-

design system are very low in all the consumption modes, always less than 5%, which 

validates the proposed lab-design system. 

Table 3. Current consumption of the IoT device during the different BLE communication modes. 

Communication 

Modes 

Supply Voltage 

[V] 

Average Current Measured 

with the CX3324A 

Waveform Analyzer [mA] 

Average Current Measured  

with the Lab-Design System 

[mA] 

Difference

[%] 

Advertising param-

eters initialization 
2.55 5.02 4.97 1.0 

Advertising start 2.55 7.44 7.46 0.3 

Transmission 2.55 11.42 11.43 0.1 

Delay 2.55 4.90 4.89 0.2 

Sleep 2.55 0.00510 0.00535 4.9 

4.4. Energy Balance of the Entire System 

This section calculates the energy balance of the SmartConnector, from which the 

DTRmax is obtained by applying (17). For this, the energy outputted by the DC–DC con-

verter in 1 h Eout_DC–DC,1 h, the energy consumed by the IoT device during 1 communication 

cycle ELoad, 1 communication cycle, and the efficiencies of the battery during the charge and discharge 

cycles, Charge and Discharge, respectively, were determined. 

Table 4 summarizes the energy consumption measured with the lab-design system 

and the CX3324A current waveform analyzer shown in Figure 12 and Table 3. The results 

presented in Table 4 have been calculated by averaging the energy consumption of 20 BLE 

communication cycles, resulting in ELoad, 1 communication cycle = 0.110 J for the lab-design system 

and ELoad, 1 communication cycle = 0.113 J for the high-performance CX3324A current waveform an-

alyzer, the total energy consumption in one communication cycle. 

Table 4. Energy consumption of the IoT device in one BLE communication cycle. 

Communication Modes 
Voltage 

[V] 

Time

[s] 

Average 

Current 

[mA] 

Energy Consumption of 

Each Mode

[J]



Sensors 2023, 23, 1480 

Lab-design 

Advert. param. initialization 2.55 0.41 4.97 0.005 

Advertising start 2.55 1.18 7.46 0.023 

Transmission 2.55 2.17 11.43 0.064 

Delay 2.55 1.45 4.89 0.018 

Total cycle BLE consumption * 2.55 5.21 8.20 0.110 

Sleep 2.55 1.00 5.35·× 10−3 13.64 × 10−6 

CX3324A 

Advert. param. initialization 2.55 0.58 5.02 0.007 

Advertising start 2.55 1.32 7.44 0.025 

Transmission 2.55 2.17 11.42 0.063 

Delay 2.55 1.45 4.90 0.018 

Total cycle BLE consumption * 2.55 5.52 8.10 0.113 

Sleep 2.55 1.00 5.10 × 10−3 13.01 × 10−6 

* The energy consumed in one BLE communication cycle is the sum of the consumptions in each

mode (advertising initialization phase, advertising start phase, transmission phase and delay).

Table 5 shows the data required to determine the DTRmax under different operating 

conditions defined by different temperature gradients between the environment and the 

busbar. Since the IoT device consumes a few mA (see Table 4), the battery efficiency has 

been determined at a current rate of 0.007 C, which corresponds to 14 mA. According to 

the results presented in Figure 11, the charge and discharge energy efficiency of the bat-

tery pack is ƞChargeƞDischarge = 0.93 at a rate of 0.007 C. The maximum data transfer rate DTRmax 

has been determined from (17). 

Table 5. Determination of the maximum data transfer rate for the IoT device. 

TBusbar_ambient 

[˚C] 

Pout_DC–DC

[mW] 

Eout_DC–DC, 1 h 

[J] 

Baterry Efficiency 

ƞChargeƞDischarge  
DTRmax [Communications/h] 

Lab-Design 

20.7 0.21 0.756 0.93 6 a 

26.1 0.34 1.224 0.93 10 a 

31.7 0.48 1.728 0.93 14 a 

37.7 0.66 2.376 0.93 19 a 

43.7 0.84 3.024 0.93 25 a 

CX3324A 

20.7 0.21 0.756 0.93 5 b 

26.1 0.34 1.224 0.93 9 b 

31.7 0.48 1.728 0.93 13 b 

37.7 0.66 2.376 0.93 19 b 

43.7 0.84 3.024 0.93 24 b 
a DTRmax calculations assume ELoad,1 communication cycle = 0.110 J and Esleep = 13.64·× 10−6 J/s. b DTRmax calcu-

lations assume ELoad,1 communication cycle = 0.113 J and Esleep = 13.01 × 10−6 J/s. 

The results presented in Table 5 show a great similitude between the DTRmax pre-

dicted by the Las-design system and the high performance CX3324A current waveform 

analyzer. These results also show that even with a temperature difference between the 

environment and the busbar of only 20 °C, the energy harvesting system allows generat-

ing enough energy to sustain a minimum of 5 communications per hour. 

5. Conclusions

Due to the great expansion of IoT applications, there is a growing interest in devel-

oping wireless devices capable of acquiring and transmitting data in transmission lines 

and electrical substations. This paper has analyzed the behavior of the energy harvesting 

system, composed of two thermoelectric generators and a DC–DC converter, a recharge-

able battery and the sensors and wireless communications modules. Based on experi-

mental tests, an energy balance of the entire IoT device has been carried out, from which 
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the maximum data transfer rate per hour has been determined. The fast switching nature 

and the small values of the currents of the different communication phases make this 

measurement challenging. This work has shown that using conventional instrumentation 

makes it possible to measure the energy involved in the different modes of communica-

tion. A detailed energy balance of the battery has also been carried out during charge and 

discharge cycles, from which the maximum permissible data transfer rate has been deter-

mined. It has been shown that, even with small temperature gradients between the envi-

ronment and the cold side of the thermoelectric generator, it is possible to make several 

communications per hour. The approach presented here can be generalized to many other 

smart grid IoT devices. 
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Abstract: Thermoelectric generators (TEGs) convert a temperature difference into useful direct cur-
rent (DC) power. TEGs are solid-state semiconductor devices that are generating a lot of interest for 
energy harvesting purposes in Internet of Things (IoT) applications. This paper analyzes the behav-
ior of state-of-the-art TEGs designed for low temperature gradient operation, with special emphasis 
on IoT systems for health monitoring for high-voltage alternating current (AC) and DC applications. 
In such applications, the energy harvesting unit plays a leading role in supplying wireless sensors 
(WSs). An application example is also presented with the aim to monitor the health condition of 
devices installed in the tubular busbars found in electrical substations. Since substation busbars heat 
up due to the Joule effect, there is a small thermal gradient between the busbar and the ambient, so 
the TEG can convert this heat flow into useful DC energy to supply low-power WSs. This paper 
assesses the performance of different TEG devices for this application, where very low temperature 
gradients are expected. The results presented show that with temperature gradients as low as 5 °C 
it is possible to supply WSs. 

Keywords: energy harvesting; power systems; solid-state thermoelectric generator; wireless sensors 
 

1. Introduction 
Transmission and distribution lines are the highways of today’s electrical systems, 

so it is vital to maximize their reliability, efficiency, and stability, due to the enormous 
economic and social impacts they have. Transmission lines are found in semi-urban areas 
but also in remote regions, where regular inspections can be expensive and complex. 
These inspections are necessary to minimize the risk of transmission line failures due to 
the impact of different environmental factors such as ice, rain, wind or extreme tempera-
tures on their operational performance. Therefore, self-powered wireless sensors can be 
of great help for real-time monitoring of transmission lines [1]. To supply these sensors, 
an energy harvesting unit is required, that is, a device for converting energy from the 
environment or other sources into electrical energy [2]. Energy harvesters allow extending 
the lifetime of battery-powered sensors because in many applications they minimize or 
avoid battery replacement and maximize the duration of their use [3]. In some cases, such 
as in battery-less autonomous systems, energy harvesters allow battery usage to be elim-
inated [4]. Therefore, energy harvesters minimize or eliminate battery replacement and 
associated maintenance costs [5]. 

In the case of overhead power lines, the temperature gradient between the ambient 
and conductor is limited, because overhead line conductors (OHLC) rating is typically 75 
°C for conventional aluminum-conductor steel-reinforced conductors [6], while the max-
imum allowable temperature is about 90 °C [7]. The operating temperature and thus ther-
mal stress of OHLCs are restricted to limit vertical sag clearance, elongation and creep, 
tensile loss, and maximize conductors’ lifespan [6]. Instead of conductors, the substations 
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use aluminum tubular busbars, whose maximum operating temperature is lower than 
that of OHLCs [8,9]. Therefore, temperature gradients in the conductors and busbars of 
transmission systems are reduced.  

IoT devices allow us to monitor different devices [10,11], thus facilitating the deter-
mination of their health condition. Today, there is an urgent need to have a better control 
of high-voltage transmission and distribution systems. It is accepted that by introducing 
low-cost wireless sensors (WSs) in this field, we can increase their stability, availability 
and reliability while allowing predictive maintenance strategies to be applied. Further-
more, transmission systems are found in remote areas [12], where human intervention is 
very difficult and expensive, so IoT-based solutions can be very useful. Thus, there is an 
increasing demand to monitor the health condition of such systems [13]. WSs found in IoT 
solutions typically include an energy harvesting unit, dedicated sensors and a communi-
cation module. It makes it possible to acquire the key parameters and send the information 
wirelessly to the cloud, where it can be monitored and analyzed in real time to facilitate 
the application of predictive maintenance plans [14]. A key element in WSs for IoT appli-
cations is the energy harvesting unit, which allows reduction of the carbon footprint by 
minimizing battery replacement and enabling the deployment of electronic sensors in in-
accessible or hostile places [15]. Due to the lack of a time-varying magnetic or electric field, 
the development of energy harvesting systems for DC systems is more challenging, mak-
ing the use of TEGs a necessity.  

Due to the ohmic resistance, conductors are heated by the action of an electric current, 
which generates a temperature difference between the conductor and the environment 
[16]. This temperature gradient produces a heat flow that allows energy to be harvested 
[17]. When applied to power conductors or substation busbars, TEGs convert the temper-
ature gradient between the environment and the conductor into electric energy, which can 
be used to supply autonomous sensors [18]. It is a recognized fact that due to the lack of 
a time-varying magnetic or electric field, in direct current (DC) systems it is more difficult 
to develop energy harvesting systems. However, due to their nature, TEGs allow us to 
bypass this difficulty, since heat is generated by the Joule effect in both DC and AC sys-
tems. Therefore, TEGs allow the design of energy harvesting units compatible with both 
DC and AC systems. Most commercial transmission line products are supplied by batter-
ies and/or electromagnetic energy harvesters, so there are several works using TEGs for 
such applications. In [16], the possibility of using a TEG wrapped around the conductor 
to harvest the energy of the heat flux between the conductor and the environment is de-
scribed. However, a heat exchanger connected to the cold side of the TEG is required to 
maximize the temperature gradient between the hot and cold ends. A similar approach 
was applied in [12] to power a wireless system mounted on a substation cylindrical bus-
bar, which was composed of different sensors (voltage drop, current and temperature).  

When applied to power lines, the intensity of the current has a profound impact on 
the temperature of the conductor. As in the case of other energy harvesting approaches, 
i.e., solar or wind, thermoelectric energy harvesting depends on environmental variables.
Therefore, it is difficult to generate a stable supply of electrical power [19], as it is neces-
sary to apply specific energy management strategies to ensure a stable and reliable gener-
ation of electrical energy [20].

This paper presents an experimental study of the generated power and the efficiency 
of TEG devices installed in tubular busbars, which are characteristic of electrical substa-
tions. Due to their large diameters, there is very little temperature gradient between the 
ambient and the busbar, generally a few degrees Celsius. This is a challenging application 
that has hardly been analyzed in the technical literature, since most TEG applications are 
focused on high temperature gradients [21]. Under such unfavorable conditions, the TEGs 
generate very low voltage, so a suitable DC/DC converter is required to supply the sensors 
and communications module. This work analyzes four different combinations of TEG–
DC/DC converters, which are tested under realistic operating conditions and their effi-
ciencies are analyzed. 
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This article is organized as follows. Section 2 reviews the basic principles of thermo-
electric generators including aspects such as efficiency or their use in energy harvesting 
systems for transmission lines. Section 3 selects the most suitable TEG + DC/DC converter 
combination for this application from among four candidate options. Section 4 analyzes 
in depth the experimental behavior of the most appropriate TEG + DC/DC combination. 
Finally, Section 5 develops the conclusions of this work. 

2. Basic Principles of Thermoelectric Generators
Thermoelectric energy harvesting is typically based on thermoelectric generators 

(TEGs), which, based on the Seebeck effect, directly convert a temperature gradient be-
tween their hot and cold ends into electrical energy [4,22]. As will be detailed in the next 
subsection, due to the inherent limitations of the thermoelectric conversion process, the 
efficiency of TEGs is always low, usually below 8–9%, and much less for small tempera-
ture gradients, since the efficiency is governed by the Carnot cycle [17]. 

2.1. The Seebeck Effect 
Seebeck generators or thermoelectric generators (TEGs) are semiconductor devices 

designed to convert heat flow or a temperature gradient directly into DC electrical energy 
through the Seebeck effect. The Seebeck effect, which is due to the motion of charge carri-
ers within semiconductors, produces an electromotive force (emf) across two points of a 
conductive material when there is a temperature gradient between these points.  

Semiconductors are particularly appropriate for thermoelectric applications because 
the concentration of charge carriers can be changed by doping the material. In an n-type 
doped semiconductor, the charge carriers are mostly free electrons, while in a p-type 
doped semiconductor, the charge carriers are free holes, i.e., missing electrons in the va-
lence band. The thermocouple (consisting of a p-type and an n-type semiconductor con-
nected in series by a metal strip) is the basic building block of a TEG. Due to the tempera-
ture gradient, the charge carriers of the hot side have higher kinetic energy, so they diffuse 
from the hot to the cold side of the semiconductor. Eventually, the cold end of the TEG 
becomes positively (p-type semiconductor) or negatively (n-type semiconductor) 
charged, and the hot end negatively (p-type semiconductor) or positively (n-type semi-
conductor) charged [23]. Charges build-up at the cold end, creating an electromotive force 
(∆V or Seebeck voltage) [24] between the n-type and p-type hot ends of the semiconduc-
tors that is directly proportional to the temperature difference ∆T = Thot − Tcold between the 
hot and cold ends of the semiconductors, as shown in Figure 1. To boost the voltage and 
current generated, commercial TEGs include many pairs of n-type and p-type couples [21] 
connected in series and/or parallel to generate the desired electrical voltage and current. 
The couples are typically placed between two parallel ceramic plates, which provide a flat 
surface, structural rigidity, and an insulating layer to prevent short circuits. 

TEGs offer several advantages, including reliability and quiet operation, since they 
are solid-state devices with no moving parts, are compact, do not emit greenhouse gases, 
can be mounted in any orientation, are scalable from μW to kW, and directly convert heat 
into electrical energy. 
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Figure 1. (a) Schematics of a thermoelectric generator indicating the charge carriers, adapted from 
[25]. (b) Series connections of different thermoelectric couples, adapted from [26]. 

2.2. The Seebeck Coefficient 
The Seebeck coefficient S is defined from the voltage ∆V produced due to a small 

temperature gradient (∆T = Thot − Tcold, between the two sides of the TEG) between the two 
semiconductor materials at the junction under open circuit conditions [21,27,28] as,  

S = ‒ΔV/ΔT = ‒(Vhot − Vcold)/(Thot − Tcold) (1)

The voltage difference ∆V is due to the difference in the electrochemical potentials of 
the two semiconductor materials in contact [28]. Therefore, the Seebeck coefficient 
measures the magnitude of the thermoelectric voltage induced due to a temperature dif-
ference between the two materials. In general, the Seebeck coefficient depends on the mo-
lecular structure of the materials and on the absolute temperature. 

For most semiconductor materials, the voltage ∆V generated due to the Seebeck effect 
is very low, on the order of a few tens or hundreds of μV/K. For example, for the com-
monly used Bi2Te3 semiconductor, the Seebeck coefficient S is 160 μV/K for p-type mate-
rial and −170 μV/K for n-type material [29]. 

TEG materials must have high electrical conductivity to minimize the Joule effect, a 
large Seebeck coefficient for maximum conversion of heat to electrical energy, and low 
thermal conductivity to minimize thermal conduction through the material [21]. These 
properties are combined into a z-metric, the figure of merit, which quantifies the overall 
output of the TEG, and is defined as [30], 

z = S2ρ−1κ−1 [K−1] (2)

where ρ is the electrical resistivity and κ the thermal conductivity. The Seebeck coefficient 
S is typically determined over a 5–10 K range, so the figure of merit z is valid only for a 
small temperature difference [31]. The dimensionless figure of merit zT is commonly used 
to characterize TEG’s behavior [30], 

zT = S2ρ−1κ−1T [‒] (3)

where T = (Thot + Tcold)/2 is the average temperature. 
When assuming a one-dimensional steady state heat transfer process and no heat loss 

through the heat exchanger wall [32], uniform temperature distribution across each sur-
face of the material [31], a rough estimation of the maximum thermo-electrical conversion 
efficiency of the TEG is determined by [30,31,33–35], 

( )
( )

1/ 2

TEG,max
1/ 2

1 1

1

Thot cold

coldhot
T

hot

zT T
TT z
T

η
+ −−= ×

+ +
(4)

where the term (Thot ‒ Tcold)/ Thot is the Carnot efficiency. 
According to (4), the efficiency of a TEG depends on the hot and cold junction tem-

peratures and on the thermoelectric properties of the material through the merit factor zT. 
However, (4) only predicts ηmax accurately for small temperature differences ∆T = Thot − 
Tcold, or for materials with zT almost constant over a wide temperature range [36]. In prac-
tical scenarios, the efficiency of a TEG can be more complex when considering the thermal 
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and electrical resistances, heat leakage, Thompson effect, and the temperature gradient in 
the heat sinks at the hot and cold ends of the TEG [37].  

From (3) and (4), it is evident that the efficiency of TEGs depends on the properties 
of the internal semiconductor materials through the figure of merit and the temperature, 
so to improve the efficiency, materials with a high figure of merit are required. TEGs are 
mostly based on three semiconductor materials, i.e., Bi2Te3, PbTe and SiGe. The election 
of the material depends on the heat source characteristics, cold sink and TEG design. Ac-
cording to [38], the zT of most currently available thermoelectric materials is at most 1, 
although the bulk alloy of bismuth–antimony–telluride yields a p-type zT = 1.4 at 100 °C 
[31]. For example, in the case of Bi2Te3, the most used thermoelectric material, zT is in the 
range of 0.5–0.8. According to (3), the efficiency at ∆T = 300 K is 6.6–9.4%, for zT = 0.5 and 
zT = 0.8, respectively, whereas at ∆T = 10 K, the efficiency reduces to 0.34–0.49%, respec-
tively, as shown in Figure 2. It should be noted that both tellurium and bismuth are rela-
tively plentiful in the Earth’s crust [39]. Different solid-state thermoelectric materials are 
still being investigated to increase TEG efficiency, but have not been commercialized. 

Temperature difference (ΔT = Thot 
_ Tcold, K)

0 5 10 15 20

Ef
fic

ie
nc

y 
( η

, %
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

zT = 0.5

z T =
 0.8

z T =
 1.0

Figure 2. Efficiencies calculated from (4) for different figures of merit zT versus the temperature 
difference between the hot and cold sides of the TEG, assuming Tcold = 20 °C and Thot = Tcold + ∆T. 

The power generated by the TEG can be calculated as [21], 

 TEG transfer TEGP P η= × (5)

where Ptransfer [W] is the rate of heat transfer between the two sides of the TEG, which can 
be expressed as [35], 

hot cold
transfer

TEG

T TP
R
−= (6)

where RTEG [°C/W] is the thermal resistance of the TEG. 
According to [35], the maximum power that the TEG can generate corresponds to the 

point with half the short circuit current Isc and half the open circuit voltage Voc, thus result-
ing in, 

, 2 2
oc sc

TEG max
V IP = × (7)

Equation (7) is demonstrated in Figure 6. 

3. Selection of the Best TEG + DC/DC Converter Combination
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As explained, TEGs generate very low voltage under small temperature gradients, so 
a suitable DC/DC converter is required to supply the sensors and communications mod-
ule in WSs. This section analyzes two TEGs specially designed for low temperature gra-
dients and two DC/DC converters designed for very low input voltage. The performance 
of the four possible combinations between the selected TEGs and the DC/DC converters 
summarized in Table 1 under very low temperature gradients is also studied. The results 
obtained will allow selection of the most appropriate combination to supply the low 
power WSs electronics.  

Table 1. Combinations of TEGs and DC/DC converters. 

Combination Devices Involved
1 TEG #1 + DC/DC converter #1 
2 TEG #1 + DC/DC converter #2 
3 TEG #2 + DC/DC converter #1 
4 TEG #2 + DC/DC converter #2 

3.1. Experimental Setup 
After a careful literature review, two commercial low-temperature TEGs and two 

commercial DC/DC converters were selected, which are compared in this paper. As the 
output voltage generated by the TEGs is in the range of some mV, two DC/DC converters 
with extreme low startup voltage were selected to amplify the voltage from the millivolt 
range to the volt range to supply WSs.  

Tables 2 and 3 present the main characteristics of the TEGs and DC/DC converters. 

Table 2. Analyzed TEG modules. 

TEG Modules TEG #1 TEG #2 
Model GM250-157-14-16 TG12-8

Manufacturer European Thermodynamics Marlow Industries 
Dimensions (mm) 40 × 40 40 × 40 
Thickness (mm) 4.1 3.6 

Matched load resistance (Ω) 3.65 3.46
Hot side temperature (℃) 250 230
Cold side temperature (℃) 30 50

Optimum output voltage (V) 5.05  5.25 
Optimum output power (W) 6.99 7.95 

Table 3. Analyzed DC/DC converters. 

DC/DC Converters DC/DC #1 DC/DC #2 
Model LTC3108 LTC3109

Manufacturer  Analog devices Analog devices 
Harvesting board Adaptive ADEH Demo circuit 1664 A 

Input voltage range 50−400 mV 30−500 mV 
Voltage regulation 2.35−5.00 V 2.30−5.10 V 
MPPT technology * Yes No 

* MPPT stands for maximum power point tracking.

To compare the behavior of the different TEGs, they were placed on the top of a flat 
aluminum busbar, which was exposed to heat cycle tests. To this end, six resistances (HS50 
1R F from ARCOL,1 Ω, 50 W) connected in series to a BK9205 power supply (BK Electron-
ics, Southend On Sea, England) were used, jointly with two TEGs connected in series, as 
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shown in Figure 3. A rechargeable BM2000C1450AA2S1PATP Nickel battery from Glob-
Tek (GlobalTek, Miami, FL, USA) was also used to store the energy generated by the TEGs 
and converted by the DC/DC converter.  

NI-6210

Harvesting board 
including DC/DC

Fluke 289

Rechargeable 
battery

Power supply

TEGs with heat 
sink

NI-9211

Fluke 289

Heating 
resistances

Figure 3. Experimental setup to compare the performance of TEGs and DC/DC converters. 

To study the performance and efficiency of thermoelectric energy harvesting sys-
tems, it is necessary to determine the input/output power of TEG modules and DC/DC 
converters. Two Fluke 289 data-logger multimeters (Fluke, Everett, WA, USA) were used 
in ammeter mode to measure the value of the small currents generated by the TEGs (mi-
croamp to milliamp range) due to the low temperature gradients analyzed. An NI USB-
6210 data acquisition system (National Instruments, Austin, TX, USA) was used to acquire 
the voltages from the output terminals of the TEG module and the DC/DC converter. 
Three T-type thermocouples together with an NI-9211 thermocouple acquisition module 
(National Instruments, Austin, TX, USA) were used to measure the ambient temperature 
and the temperatures of the hot and cold sides of the TEGs. To ensure a simultaneous 
acquisition, the Fluke multimeters, the NI USB-6210 and NI-9211 modules were synchro-
nized using a Python code programmed by the authors of this work. 

A thermal joint compound (120-SA, Wakefield-Vette, NH, USA) was used to ensure 
good thermal contact between the heat source, TEG and heat sink. This compound fills 
the tiny air gap between mating surfaces with a grease-like paste containing zinc oxide in 
a silicone oil carrier. It is used for several reasons such as its ability to fill the air gap be-
tween different surfaces, its high thermal conductivity and its adhesive ability. 

3.2. Experimental Tests 
The tests were carried out indoors at an ambient temperature of about 20 °C. The 

TEGs were mounted on a flat rectangular aluminum busbar that was heated from room 
temperature to approximately 50 °C using a power supply and heating resistors, as shown 
in Figure 3. Next, to determine the performance of the devices during the cooling phase, 
the power supply was disconnected, whereby the aluminum bar cooled by natural con-
vection. The electrical output power of the TEGs and DC/DC converters was determined 
by multiplying the respective voltages and currents.  

Figure 4 shows the performance of TEG #1 combined with DC/DC converter #1. Ac-
cording to Figure 4b,c, with the same temperature difference between the busbar and the 
ambient, more power is generated during the heating cycle than during the cooling cycle. 
This hysteresis response is mainly due to the delayed thermal diffusion from the ceramic 
plate to the hot junction of the TEGs [40].  
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Figure 4. TEG #1 combined with DC/DC converter #1. (a) Ambient, hot and cold side temperatures 
measured by T-type thermocouples. (b) Output power of TEG #1 and DC/DC converter #1 versus 
the temperature difference between the hot and cold sides of TEG #1. (c) Output power of the ana-
lyzed TEGs and DC/DC converter versus the temperature difference between the hot and cold sides 
of the TEG #1. 

Figure 5 shows the experimental performance of each TEG, DC/DC converter and the 
different combinations of TEG + DC/DC converter. It is noted that the TEG #1 + DC/DC 
converter #1 combination has a better performance than the others, this being the most 
suitable combination for applications with very low temperature gradients. Therefore, the 
next sections take a closer look at the TEG #1 + DC/DC converter #1 combination. 
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Figure 5. Combined performance of TEGs #1 and #2 combined with DC/DC converters #1 and #2. 
(a) Power generated by the analyzed TEG modules versus the temperature difference between the
busbar and the ambient during the heating and cooling cycles. (b) Output power of the different
combinations of TEG + DC/DC converter versus the temperature difference between the busbar and
the ambient during the heating cycle.

3.3. Characterization of TEG #1 
First, the characteristic voltage—current and power—current curves of TEG #1 were 

obtained by heating the busbar. The hot and cold side temperatures of the TEG were 67.7 
°C and 57.8 °C, respectively, with an ambient temperature of 21.5 °C. This corresponds to 
a temperature gradient ∆T = Thot − Tcold ≈ 10 °C between the hot and cold sides of the TEG. 
During the tests, a variable resistor was connected between the terminals of TEG #1, and 
the voltage V and current I flowing through its terminals were measured. These values 
are shown in Figure 6 together with the P − I fit, where P = V·I. 
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Figure 6. Characteristic TEG curves, V − I and P − I. The quadratic fit obtained is P (mW) = 
−0.008014·I2 + 0.7995·I − 0.1176. The parameters related to goodness of fit are R2 = 0.9992, SSE = 0.676, 
and RMSE = 0.2373. 

Table 4 summarizes the main parameters of the test performed to determine the V − 
I and P − I characteristics of TEG #1.  

Table 4. Parameters of the analyzed TEG module. 

Parameters Measured Values
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Ambient temperature (°C) 21.5 
Cold side temperature (°C) 57.8 
Hot side temperature (°C) 67.7 
Open circuit voltage (V) 0.79 

Short-circuit current (mA) 99.56 
Maximum power point voltage (V) 0.40 

Maximum power point current (mA) 50.39 
Resistance at the maximum power point (Ω) 6.00

Maximum power (mW) 20.25 

The results presented in Figure 6 and Table 4 show that the power that can be drawn 
from the TEG is highly dependent on the resistance of the load, so the use of a DC/DC 
converter that includes a maximum power point tracker (MPPT) could be beneficial.  

4. Efficiency Determination of the Best Combination of TEG + DC/DC Converter
This section discusses in detail the efficiency of the best combination of TEG + DC/DC 

converter, that is, TEG #1 + DC/DC converter #1. For this, the assembly shown in Figure 7 
is analyzed, which corresponds to a realistic situation. The TEG #1 + DC/DC converter #1 
combination is mounted on a stainless steel tubular hollow conductor with an inner di-
ameter of 120 mm and a wall thickness of 0.4 mm. Using this configuration, the steady-
state performance of TEG #1 + DC/DC converter # 1 is studied. 

To calculate the efficiency of the entire TEG #1 + DC/DC converter #1 system 
ηTEG+DC/DC, the individual efficiencies of the TEG ηTEG and the DC/DC converter η DC/DC are 
required. According to IEEE Std. 605 [41] describing the design of busbars in air insulated 
substations, indoors and under steady state conditions, the heat gain per unit length due 
to Joule losses must compensate the terms of heat loss per unit length due to convective 
and radiative cooling as, 

2 ( )    [W/m]RMS ac c rI r T p p= +  (8)

where IRMS (A) is the current through the busbar, rac(T) [Ω/m] is the ac resistance of the 
conductor per unit length at the operating temperature T, and pc [W/m] and pr [W/m] are, 
respectively, the losses due to natural convection and radiation. 

The ac resistance per unit length of the conductor, rac [Ω/m], was measured according 
to the method described in [7,13]. This method requires measuring the voltage drop ∆V1m 
[V] between two points of the conductor surface separated by 1 m, the ac current I [A]
flowing through the conductor, the phase shift ϕ  [rad] between the voltage drop and
the current, and the conductor temperature T [°C],

1m( ) cos     [ /m]ac
Vr T
I

ϕΔ= × Ω  (9)

To calculate the efficiency of entire system, including the TEG and the DC/DC con-
verter, ηTEG+DC/DC, the individual efficiencies of the TEG, ηTEG, and the DC/DC converter, 
ηDC/DC, are needed. The efficiency of the TEG ηTEG can be calculated as the ratio between 
the electrical power generated by the TEG, Pelectric,TEG [W], and the Joule heat generated by 
the conductor in the area of the TEG (80 mm × 40 mm), PJoule,TEG-area [W], as, 

,

,

electric TEG
TEG

Joule TEG area

P
P

η
−

= (10)

PJoule,TEG-area can be calculated as, 

, ,     [W]TEG
Joule TEG area Joule conductor

Conductor

AP P
A− = ×  (11)
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where ATEG [m2] and AConductor [m2] are the area of the outer surfaces of the TEG and con-
ductor, respectively, while PJoule,conductor [W] is the heat generated in the conductor. 

The efficiency of the DC/DC converter can be calculated as, 

/
out out

DC DC
inp inp

V I
V I

η ×=
×

  [-] (12)

where Vout, Iout, Vinp, and Iinp are, respectively, the output and input voltages and currents 
of the DC/DC converter. 

Figure 7. Experimental setup to characterize the performance of TEG #1 + DC/DC converter #1 
mounted on a tubular conductor. 

Figure 7 also shows the heat sinks (height = 25 mm, base length = 38 mm, top fin field 
length = 65 mm, and width = 40 mm) attached to each TEG.  

4.1. Steady State Performance of TEG #1 
Using the setup shown in Figure 7, a second experiment was carried out on the 120 

mm diameter tubular conductor to characterize the steady state performance of TEG #1. 
Five levels of current (136 A, 169 A, 194 A, 226 A and 254 A) were injected to heat the 
tubular conductor to steady state.  

Figure 8a shows the evolution of the temperature with time of the hot side and the 
cold sides of TEG #1, while Figure 8b shows the evolution with time of the output electri-
cal power of TEG # 1 and DC/DC converter #1. 
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Figure 8. (a) Hot side, heat sink and ambient temperatures measured by T-type thermocouples. (b) 
Electrical output power of TEG and DC/DC converter, and temperature difference between hot side 
and ambient. 

To determine the 2 ( )RMS acI r T  Joule heating in (8), rac as a function of temperature is 
required. For this purpose, an offline experiment was carried out, measuring the voltage 
drop, the current flowing throng the tubular conductor, the conductor temperature and 
cosφ. The results obtained are summarized in Table 5.  
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Table 5. Dependence of rac with the temperature of the tubular conductor. 

T (°C) ∆V1m (VRMS) Current (ARMS) cosφ rac (µΩ/m) 
25 1.4735 280 0.9997 5267
30 1.4845 279 0.9997 5319
35 1.4913 277 0.9997 5378
40 1.5085 277 0.9997 5441
45 1.5148 275 0.9997 5501
50 1.5200 274 0.9997 5545
55 1.5290 273 0.9997 5591
60 1.5313 271 0.9997 5635
65 1.5353 271 0.9997 5657

Table 6 summarizes the results obtained with the entire system, including the tubular 
bus bar, TEG #1 and DC/DC converter #1. It shows that when current applied is, for ex-
ample, I = 254 Arms, the steady state temperature difference between the hot side of TEG #1 
and the ambient is ∆THot-Ambient = 43.7 °C, while the temperature difference between the hot 
and cold sides of TEG #1 is ∆THot-Cold = 5.67 °C. In this steady-state condition, the output 
power of TEG #1 and DC/DC converter#1 are, respectively, Pelectric,TEG = 11.2 mW and PDC/DC= 
0.84 mW. They correspond to efficiencies of TEG #1, ηTEG, and TEG#1 + DC/DC #1, 
ηTEG+DC/DC, of 0.36% and 0.027%, respectively. Although the overall efficiency is quite low, 
the output power of the whole system, which is in the order of 0.84 mW for ∆THot-Cold = 5.67 
°C, is enough to supply low power WSs. According to a previous study [12], and suppos-
ing a communication cycle of 5 s using a Bluetooth low energy module and three sensors 
(temperature, current and voltage), on average, each communication cycle consumes an 
energy of 0.16 J. Therefore, according to Table 6, when ∆T = 5.05 °C, PDC/DC = 0.66 mW, so 
in 1 h, about 2.4 J are harvested, so, this energy is enough for 10–15 communication cycles 
per hour. This is not a problem in many applications, because WSs typically operate in an 
intermittent on–off pattern [42]. 

Table 6. Steady-state performance results of the entire system. 

Current 
(Arms) 

rac

(µΩ/m) 
∆THot-Ambient 

(°C) 
∆THot-Cold 

(°C) 
pJoule,conductor

(W/m) 
PJoule,TEG-area

(W) 
Pelectric,TEG

(mW) 
PDC/DC

(mW) 
RTEG 

(°C/W) 
ηTEG 

(%) 
ηTEG+DC/DC

(%) 
136 5380 20.7 3.4 99.5 0.85 1.24 0.21 3.964 0.15 0.025
169 5448 26.1 3.9 155.6 1.32 2.50 0.34 2.914 0.19 0.026 
194 5512 31.7 4.5 207.5 1.76 4.47 0.48 2.534 0.25 0.027 
226 5560 37.7 5.1 284.0 2.41 7.34 0.66 2.095 0.30 0.027 
254 5622 43.7 5.7 362.7 3.08 11.2 0.84 1.841 0.36 0.027 

4.2. Cold Starting 
Conventional circuits are based on active circuits that require some level of energy to 

operate. In the cold start scenario, there is not enough stored energy to supply the circuit 
components, so the system cannot harvest energy and is stuck in a shutdown state. Cir-
cuits with cold starting capability allow scavenging energy in these critical situations, 
when the storage element is completely depleted. Cold start situations can occur after 
manufacturing, when the circuit has never been powered on, or when the storage element 
is completely depleted after prolonged periods of power shortage. 

This paper also analyzes the cold start capability of the proposed energy harvesting 
solution by charging a battery pack with two NiMH cells in series 
(BM2000C1450AA2S1PATP nickel battery, GlobTek) that were discharged during a pre-
vious experiment. The initial voltage between the terminals of the two cells was 1.85 V, or 
0.925 V per cell, which corresponds to a discharged condition, since NiMH batteries are 
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considered discharged below 1 V per cell [43]. Figure 9 shows the output voltage gener-
ated by TEG #1 and the battery voltage during a cold start situation, where it can be seen 
that the system is capable of charging the batteries. 
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Figure 9. Voltage generated by TEG #1 and the voltage across the battery during a cold start situa-
tion using the TEG #1 + DC/DC converter #1 combination. 

5. Conclusions
IoT devices with data acquisition and processing capabilities offer solutions for 

health condition monitoring, which require on-line data monitoring. However, in high-
voltage substations applications, as they are often in remote locations and due to harsh 
environments, the application of these smart devices remains a challenging task. There-
fore, a proper and maintenance-free energy harvesting system is required. Thermal en-
ergy harvesting has become a hot topic due to the minimal maintenance required, com-
pactness, and solid-state nature. This research work has analyzed different thermal energy 
harvesting systems and has conducted several experiments to characterize the behavior 
of each system for high-voltage transmission applications characterized by very low tem-
perature gradients. This work has analyzed the performance of state-of-the-art of TEGs 
designed to operate with low temperature gradients intended for IoT systems to be ap-
plied in AC and DC tubular busbars found in high-voltage substations. Since the tubular 
busbars are heated by the Joule effect, there is a small temperature difference between the 
busbar and the ambient, so the TEG converts this heat flow into useful energy, which is 
used to supply low-power WSs by means of a DC/DC converter. The results presented in 
this paper have shown that if a temperature difference of around 5 K can be maintained 
between the hot and cold sides of the thermoelectric power generation modules, it will 
drive WSs using two 40 mm × 40 mm modules. 
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5.3  Denoising of Online Resistance Measurements of Power Connectors 

for IoT Applications  
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This article implements the simple moving average filter (SMAF), the Kalman filter (KF), and 

the sum of sine filter (SoSF) on the desktop platform and conducts an analysis using these three 

filtering algorithms to reduce signal noise existing in an IoT device mounted in a high-current 

laboratory. Next, the most appropriate algorithm is chosen and implemented in the IoT device to 

ease the real-time signal processing task and obtain accurate ECR measurements. 

Main contributions: 

• Review of statistical filtering algorithms for real-time monitoring applications.

• Development and implementation of filtering algorithms on the desktop platform.

• Selection and implementation of the most suitable algorithm on the embedded

system of an IoT device.
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Abstract— The increasing development of the Internet of 

Things (IoT) allows the acquisition of key parameters to develop 

health monitoring strategies for power transmission systems. 

These IoT devices need to incorporate sensors for data acquisition. 

However, noise is often present in the signals, especially in AC 

systems, making it a challenging task to obtain an accurate 

response from the deployed sensors. This paper develops simple 

moving average filter (SMAF), kalman filter (KF), and sum of sine 

filter (SoSF) on desktop platform, and analyzes these three 

filtering algorithms used to reduce signal noise from an IoT device 

mounted in a high-current laboratory. The IoT device can 

estimate the electrical contact resistance (ECR) in real time using 

smart sensors. Then, the most suitable algorithm is selected and 

implemented in the IoT device to facilitate the real-time signal 

processing task and obtain accurate ECR measurements. The 

experimental results have proven the feasibility and suitability of 

the proposed approach as it allows to extract useful information 

from the signals, thus facilitating the predictive maintenance task. 

The experimental results show that with the help of filtering 

algorithms, the error of raw signal is significantly reduced. For 

instance, when 312Arms is injected into the electrical loop, 

measurement error is 12.1% with raw signal and 1.9%, 3.4%, 

2.1% using SMAF with moving window equal to 8, KF and SoSF, 

respectively. Furthermore, it is shown that with the approriate 

application of the filter, the IoT device is able to obtain highly 

accurate ECR measurements even at relatively low current. 

Keywords—filter, power connector, electrical contact resistance 

I. INTRODUCTION  

 There is an increasing demand for stability and reliability in 
power systems. Therefore, minimizing power outages or 
potential power system failures is critical. Power connectors are 
perhaps the weakest components in power transmission systems, 
and failure of these elements can lead to severe power outages 
with costly and catastrophic consequences [1]. Therefore, there 
is an increasing need to monitor the health of thses connectors 
in order to apply a predictive maintenance plan to avoid network 
failures. 
 Electrical contact resistance (ECR) is considered to be the 
health indicator of substation connectors [2]. Hence, the real-
time acquisition of ECR data is a reliable solution for predictive 
maintenance. However, it is a challenging task to directly 
measure this parameter because it is in the order of a few micro-

ohms. In [3], a novel method was proposed to obtain ECR in real 
time by measuring the main parameters. However, since the 
power connectors are usually located in remote places and due 
to high voltage limitations, human intervention should be 
minimized. Thus, a low-cost IoT solution was developed to 
perform the data acquisition of ECR wirelessly. It is a promising 
solution that provides experimentally proven accuracy of ECR 
measurements to enable predictive maintenance.  However, the 
unwanted electromagnetic (EM) noise from power transmission 
lines or busbars can interfere with the weak electrical signal 
obtained from the line [4], [5]. In addition, since power 
electronic devices are non-linear, the presence of harmonic noise 
is inevitable [6]. This signal noise leads to inaccurate ECR 
measurements, making it impossible to apply the predictive 
maintenance in extreme conditions.  
 However, some research groups have attempted to address 
the above issues by using signal filtering methods. With the 
increasing development of IoT applications, digital filtering 
algorithms have attracted worldwide attention in recent years. 
They play a key role in signal processing, providing solutions to 
extract useful information from noisy signals, thus helping to 
achieve more accurate responses from IoT devices [7]. Although 
many filtering algorithms have been developed for condition 
monitoring purposes, such as Kalman filter, moving average, 
harmonic filtering, proportional integral differential (PID), etc 
[8]–[10], they are usually implemented on desktop platforms 
where computational resources are not an issue. Nevertheless, 
there is a lack of work implementing these filters on the 
embedded system in a very specific high-current environment to 
optimize ECR measurements. 
 Motivated by the above limitations, this paper proposes to 
investigate a simple but effective and easily implemented 
filtering algorithm to perform online ECR measurements. To 
this end, three different filtering algorithms were first tested on 
a desktop platform to clean or denoise the acquired noisy signal. 
Their performance was compared and analyzed in terms of 
computational time (CT) and accuracy of ECR measurements. 
Next, the most suitable filter was selected to be implemented on 
the embedded system of the IoT device to validate the feasibility 
for real-time online ECR measurements.  

Fig. 1 shows the main components of the filter-based online 
ECR measurement method proposed in this paper, which 
includes several sensors to determine the main parameters, 



filters implemented on the embedded system for signal 
processing, and a communication module to transmit the filtered 
data to the cloud for further processing.  

 
 Fig. 1. Proposed online filter-based ECR measurement method.   

II. ONLINE RESISTANCE MEASUREMENTS 

    ECR is the main health indicator of the substation connector 

[11]. However, since the ECR is in the order of micro-ohms, it 

is a challenging task to measure the ECR of the power 

connectors online for real-time health monitoring. In [12], a 

novel method was proposed to obtain the ECR under AC supply 

by simultaneously measuring the voltage across the connector 

and the current flowing through the busbar [13],  
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where R20°C is the electrical contact resistance at a standard 

temperature of 20 °C, ΔVconnector is the voltage drop across the 

two terminals of the substation connector, Ibusbar is the current 

flowing through the busbar, α is the temperature coefficient of 

the resistance and Tconnector is the temperature of the connector 

and  φ is the phase angle between the current (Ibusbar) and voltage 

drop (ΔVconnector) signals, which can be estimated as [13], 
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where
_connector acV and 

_current acV are the AC output 

components of the voltage drop and current sensors, 

respectively.   

For the current measurement, a non-contact Hall effect 

sensor was used in the IoT device. According to the Biot-Savart 

law, the Hall effect sensor detects the magnetic field generated 

by the AC current injected into the busbar and converts it into 

a proportional output voltage of the sensor which is linearly 

related to the current flowing in the busbar [12]. Thus, when a 

relatively small current is injected into the busbar, the small 

magnetic field generated results in a large amount of signal 

noise from the sensor. 

For the voltage measurement, an instrumentation amplifier 

was used to amplify and measure the voltage drop across the 

connector, as the expected voltage is in the order of mV. Similar 

to the Hall effect sensor, although the instrumentation amplifier 

connector can reduce the common mode noise, there is still 

residual noise due to the low level of voltage being measured, 

which can significantly affect the accuracy of the voltage 

measurement. In addition, according to equation (2), the phase 

shift (φ) estimation is based on the electrical signals from the 

current and voltage sensors, so the signal noise could lead to an 

inaccurate phase angle estimation. 

III. FILTERING ALGORITHMS  

A. Simple Moving Average Filter  

The simple moving average filter (SMAF) is a linear 

recursive filter that can be used to smooth out the short-term 

fluctuations in the data. This filter requires significantly less 

memory and computational resources than other filtering 

methods, which is the main concern for the embedded system 

applications. It calculates the average of the last k samples as,  

1

1
ˆ( )

n

k

k

y t y
n 

                          (3) 

where ˆ( )y t is the output bias at time t, n is the number of points 

considered in the moving window, and yk is the sample at point 

k. 

    However, increasing the number of n reduces the dynamic 

response of the system measurement, which rejects the actual 

system measured response due to disturbances as noise [14]. 

Therefore, careful analysis is required to select the suitable 

moving window k. In this research work, to balance the noise 

reduction and dynamic response, we have applied and analyzed 

the SMAF filter with moving window k = 2, 5, 8 on ECR 

measurements, respectively.  

B. Kalman Filter 

The Kalman filter (KF) is one of the most important and 

widely used filtering algorithms in real-time applications due to 

its small memory requirement, excellent recursive properties, 

and optimal estimator functionality [15], [16]. Therefore, due 

to the limited computational resources of IoT devices, a linear 

KF is proposed in this paper. To implement the KF, it is 

necessary to model the system, predict future states ˆ
ky

 using 

the current state 
1

ˆ
ky


 at time-step k – 1 and update the current 

state ˆ
ky

 at time-step k with the experimental measurements zk. 

The process is ilustrated in Fig. 2.   

 
Fig. 2. Kalman filtering implementation.  

The design of KF includes two steps, i.e., prediction of future 

states and updating of current states.  

The first step is to compute the prediction of the estimated 

covariance ˆ
kp and the covariance of innovation ˆ

ks  as [14], 
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where 
1

ˆ
kp


 is the covariance of the estimation error at time step 

k - 1 in the one-dimensional Kalman filter, while the system 

process noise covariance Qk and the covariance of 

measurements noise R are set to be constant, being Qk = Q and 

Rk = R, respectively.  

    Next, the Kalman gain G can be calculated as using equations 

(4) and (5), 

ˆ ˆ/k kG p s                                  (6) 

    The prediction of the future state ( ˆ
ky

) is done by taking the 

state vector of the previous time step (k-1) [14] as, 

1
ˆ ˆ

k k ky F y 

                                 (7) 

where 
1

ˆ
ky


is the current state at time step k – 1 and Fk is the 

state-transition model. Next, the system update is performed as, 

ˆ ˆ ˆ( )k k k ky G z y y                            (8) 

where zk is the experimental measurement at time-step k, ˆ
ky

is 

the updated current state at time-step k, ˆ
ky

 is the prediction of 

the future state at time-step k , and G is the Kalman gain. 

Next, the update of the covariance of the estimation error ˆ
kp  

is calculated as, 

ˆ ˆ (1 )k kp p G                                 (9)                       

where ˆ
kp  is the prediction of the estimated covariance at time-

step k. 

It is worth noting that the initialization of the Kalman filter 

plays a key role in the modelling of the Kalman filter, so the 

most appropriate seed values of the current state 
0ŷ

, the 

estimation of the covariance 
0p̂ , the covariance of the system 

process noise Qk, and the covariance of the measurement noise 

Rk are predetermined according to the best experience of the 

author. In this paper it is assumed that Qk = Q and Rk = R are 

constant values. The initial value of the state vector 
0ŷ

 is 

chosen to be 0.02, in the order of magnitude of the waveform 

to be filtered (see Fig. 2), while a higher initial value is given to 

0p̂
= 1, since it represents the covariance of the estimation 

error. Finally, the system process noise covariance Q is set to 

0.001 and the measurement noise covariance R is set to 0.003. 

Finally, the state-transition model Fk is set to 1. Note that Q and 

R are set to 0.001 and 0.003 respectively to the best knowledge 

of the author.  

Thus, the final algorithm is as follows, 

1.- Initialization of 
0ŷ

= 0.02, 
0p̂ = 1, Q = 0.001 and R = 0.003.  

2.- 
1

ˆ ˆ
k kp p Q 

         

3.- ˆ ˆ
k ks p R        

4.- ˆ ˆ/k kG p s   

5.- 
1

ˆ ˆ
k ky y 

  

6.- ˆ ˆ ˆ( )k k k ky G z y y       

C. Sum of Sine Filter 

Harmonic filtering has been widely used in digital filtering 

applications because of its simplicity, low computational cost, 

and ability to extract the correct information. It is a sum of sine 

and cosine functions used to describe a periodic signal. The 

functional form of the harmonic filter can be written as [10], 
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where a0 is the DC offset in the signal, ak and bk are variables 

of the model, D is the length of the time series for each 

calculation cycle, ti are time stamps of the data under analysis, 

N is the number of harmonic terms in the series. The variables 

are computed by means of weighted linear minimization.  

However, in (10) a phase term is missing, which could 

increase the compactness of the filtering algorithm. Therefore, 

in this article, a discrete series of harmonic sine functions 

similar to the harmonic filter form proposed in [10] is proposed, 

which is called sum of sine filter (SoSF), since real signals can 

be considered as summation of sine waves [17]. Its functional 

form can be described as, 
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where k is the number of sine terms considered with k = 1, ... N, 

where N is the number of sine terms.  xi is the sample at time-

step i, ˆ
iy is the output estimation at time-step i with i = 1, …, n, 

n being the total number of samples in the signal to be filtered. 

The amplitude ak, fundamental frequency bk and phase shift ck 

are determined using the nonlinear least square (NLS) 

approximation method [18]. In this paper, based on the author’s 

experience, N is set to 2, which means that two sinusoidal 

waves are used to fit the regression model.  

IV. EXPERIMENTAL SETUP 

    To evaluate and validate the feasibility and performance of 
the proposed filters, several experiments were performed in a 
high current laboratory. First, the filters were implemented on a 
desktop platform with the instantaneous measurements of the 
IoT device to select the most suitable filter for this application. 
Next, the selected filter algorithm was implemented in the 
embedded system of the IoT device to perform the online 
measurements of the contact resistance. 
    The experimental setup is shown in Fig. 3. To perform the 
tests in the high-current laboratory, two cylindrical busbars (Al 
alloy 6063-T5, length = 2000 mm, thickness = 6 mm) 
electrically connected by the analyzed substation straight 
connector (A356.0 alloy, length = 230 mm, inner diameter = 120 
mm) were used to form an electrical loop. 
    Since the contact resistance of the substation connector is in 
the order of micro-ohms, it is a challenging task to perform on-
line measurements of such a low value. As described in Section 
Ⅱ, it is necessary to measure the current, the voltage across the 
connector, and the temperature of the connector to perform the 
on-line contact resistance measurements  For this purpose, the 
IoT device includes a contactless current sensor (DRA5053 
analog bipolar Hall effect sensor, Texas Instruments, Dallas, 



TX, USA), an instrumentation amplifier (AD627) to amplify the 
voltage drop signal across the connector, a PT1000 temperature 
sensor (PTFC102T1G0, Schaffhausen, Switzerland) with an 
accuracy of ±0.1 °C to obtain the temperature measurements. 

 

Fig. 3.   Experimental setup in high current laboratory.  

    In addition, a low-power nRF52832 microcontroller unit 
(Nordic Semiconductor, Trondheim, Norway) with a built-in 
BLE module and ADC converter was used. This microchip 
allows the implementation of the filtering algorithm and the 
built-in BLE module allows the transmission of the data 
collected from the sensors to the nearby gateway Raspberry Pi.  
    To evaluate the accuracy of the online measurements 
provided by the filter-based IoT device, a wired DAS (data 
acquisition system) was used, including a data acquisition 
module (NI USB-6343 DAQ, National Instruments, Dallas, TX, 
USA) and a thermocouple module (NI-9211, National 
Instruments, Dallas, TX, USA). The data acquisition module is 
connected to the two end terminals of the connector and a 
Rogowski coil (CWT500LFxB from PEM, Nottingham, UK) 
with a sensitivity of 0.06mV/A is used to obtain the voltage drop 
and current measurements, respectively. At the same time, a T-
type thermocouple is connected to the thermocouple module to 
measure the busbar temperature. 

V. EXPERIMENTAL RESULTS 

The experiment consists of two stages to validate the 

effectiveness of the proposed methodology. The first stage 

involves filtering the real signals from the smart sensor with 

different algorithms. In the second stage, the most appropriate 

filtering algorithm is used for the continuous online ECR 

measurements. 

A. Performance evaluation 

    This section evaluates the performance and efficiency of the 

different filtering algorithms used to process the electrical 

signals obtained in the high-current laboratory with the IoT 

device. The IoT device was set to debug mode to acquire 

instantaneous samples from the sensors.  

For simplicity, the analysis is performed on a desktop platform 

using a 2.10 GHz Xeon(r) CPU E5-2620 with 64Mb RAM 

memory, 64-bit WIN10 operating system, and MATLAB 

2021b. The measurements of DAS are used to evaluate the 

filtering accuracy, and the filtering efficiency is evaluated 

according to the computational time (CT). 
    As shown in Fig. 4, when the current flowing through the 
busbar is as low as 150 ARMS , the output signals from the current 
and voltage sensors suffer significantly from noise. This is due 

to the very low output values generated by the sensors. 
Therefore, a suitable filtering algorithm is required. Filters are 
used to purify the signal. This helps to extract the true signals 
from the sensors, thereby increasing the accuracy of the 
measurements.   
    On the other hand, the signal noise almost disappears in the 
high current application (around 900 ARMS), as shown in Fig. 5. 
In this case, the filtering algorithms may not play a dominant 
role since the IoT device can already provide raw measurements 
with an average error as low as 3.7%, as shown in Table I. 

Table I summarizes the results of the comparison between 
different filters at five power levels. It can be seen that without 
the implementation of filters, the IoT device tends to provide 
very inaccurate raw ECR measurements, with 37.1% and 12.1% 
at around 150 ARMS and 310 ARMS, respectively. In particular, 
when 150 ARMS is injected into the loop, a large amount of noise 
remains in the signal even with SMAF 2, SMAF 5, and KF, 
while SMAF 8 and SoSF can successfully help the IoT device 
keep an error of ECR measurements below 5% at all five current 
levels. In conclusion, the SMAF provides more accuracte 
measurements than SoSF and KF in most cases. This is due to 
the fact that the SoSF and KF are highly dependent on the 
knowledge of the raw measurements, for instance, it is important 
to know the system process noise and measurement noise 
beforehand to build KF model. 

TABLE I 

COMPARISON BETWEEN FILTERING ACCURACY AND EFFICIENCY 

Current  154A 312A 480A 684A 920A 

ECR (DAS) 8.48 µΩ 8.45 µΩ 8.45 µΩ 8.43 µΩ 8.43 µΩ 

ECR (RAW) 5.33 µΩ 7.43 µΩ 8.10 µΩ 8.23 µΩ 8.74 µΩ 

ECR (SMAF 2) 6.51 µΩ 7.93 µΩ 8.12 µΩ 8.14 µΩ 8.58 µΩ 

ECR (SMAF 5) 7.64 µΩ 8.17 µΩ 8.65 µΩ 8.21 µΩ 8.61 µΩ 

ECR (SMAF 8) 8.12 µΩ 8.61 µΩ 8.34 µΩ 8.31 µΩ 8.56 µΩ 

ECR (KF) 7.11 µΩ 8.18 µΩ 8.23 µΩ 8.20 µΩ 8.62 µΩ 

ECR (SoSF) 8.16 µΩ 8.63 µΩ 8.25 µΩ 8.27 µΩ 8.67 µΩ   

Error (RAW) 37.1 % 12.1 % 4.1 % 2.4 % 3.7 % 

Error (SMAF 2) 23.2 % 6.2 % 3.9 % 3.4 % 1.8 % 

Error (SMAF 5) 9.9 % 3.3 % 2.4 % 2.6 % 2.1 % 

Error (SMAF 8) 4.2 % 1.9 % 1.5 % 1.4 % 1.5 % 

Error (KF) 16.2 % 3.2 % 2.6 % 2.7 % 2.3 % 

Error (SoSF) 3.8 % 2.1% 2.4 % 1.9% 2.8 % 

CT (SMAF 2) 0.0055 s 0.0048 s 0.0055 s 0.0053 s 0.0053 s 

CT (SMAF 5) 0.0054 s 0.0049 s 0.0054 s 0.0051 s 0.0056 s 

CT (SMAF 8) 0.0054 s 0.0049 s 0.0058 s 0.0051 s 0.0053 s 

CT (KF) 0.0070 s 0.0064 s 0.0065 s 0.0063 s 0.0065 s 

CT (SoSF) 0.2532 s 0.2719 s 0.1836 s 0.1543 s 0.3113 s 

    * SMAF 2, 5 and 8 means that the moving window is equal to 2, 5 and 8, respectively. 

    In terms of filtering efficiency, the SoSF has a CT that is 

significantly higher than the CT of other methods, which means 

that the SoSF algorithm requires complex computational 

resources. This is due to the complex Fourier series calculation 

for each iteration required by the SoSF method. As the both 

SMAF and KF are recursive algorithms, they are relatively 

simpler and require less computational resources. Moreover, as 

shown in Table I, the CT of SMAF method has almost the same 

computational time due to its simplicity. 



B. Online contact resistance measurements 

 To verify the feasibility of the proposed filtering algorithm, 
the IoT device with the filtering algorithm implemented on the 
built-in system was tested under five different current levels 
(140 ARMS, 310 ARMS, 500 ARMS, 700 ARMS and 900 ARMS) for 
continuous ECR measurements.        
 Prior to applying electric current to the loop, the DC contact 
resistance was measured as a reference value using the 4-wire 
method [12] with a calibrated micro-ohmmeter. 
 Next, the DAS and the IoT device with and without the 
filtering algorithm were used to take the continuous ECR 
measurements simultaneously.  
 Fig. 6 shows the results of the continuous measurements. It 
can be seen that the IoT device with and without the filter 
provides fluctuating ECR measurements at low current levels 
(140 ARMS, 310 ARMS), while this fluctuation decreases as the 
increase of current injected. Nevertheless, the IoT device 

without filter can only provide high accuracy measurements 
above 500 ARMS, while after implementing the filter, high 
accuracy measurements above 140 ARMS can be obtained. 

 
Fig. 6.  Continuous electrical contact resistance measurements 

using the DC Micro-Ohmmeter, DAS and the IoT device. 

 

 

 

 

 

 

 

 

 
Fig. 4.  Raw and filtered signals with a current of 150 ARMS. (a), 

(b) and (c) Signals processed using SMAF with moving window 

= 2, 5 and 8, respectively.  (d) Signals processed with the KF 

algorithm. (e) Signals processed with the SoSF algorithm. 

 Fig. 5.  Raw and filtered signals with a current of 920 ARMS. (a), 

(b) and (c) Signals processed using SMAF with moving window 

= 2, 5 and 8, respectively. (d) Signals processed with the KF 

algorithm. (e) Signals processed with the SoSF algorithm. 



VI. CONCLUSION 

Three different filtering algorithms were proposed and 

initially tested on the desktop platform with the data obtained 

from the high current laboratory. By using these algorithms, the 

electrical signals from the sensors were purified and the IoT 

device can obtain highly accurate ECR measurements at the 

current level as low as approximatelt 150 ARMS.  

Due to the limited computational resources of common IoT 

devices, the design goal of this paper is simplicity. Therefore, 

after carefully comparing these three algorithms in terms of 

performance and computational efficiency, the SMAF was 

considered to be the most suitable filter for this application. 

Next, this filter was implemented on the embedded system of 

the IoT device for continuous online ECR measurements to 

validate its effectiveness. The results obtained show that the 

objective was achieved. Compared to the ECR measurements 

taken by the IoT device without applying the filter, the 

proposed filter has significantly increased the accuracy of the 

measurements, especially at low currents. For example, when 

about 150 ARMS were injected, the error with the filter is 4.8%, 

while the error without the filter is 31%. It is worth noting that 

the proposed filtering algorithms can also be applied to many 

other signal processing applications affected by noisy acquired 

signals.    
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5.4  Analysis of a Smart Sensor Based Solution for Smart Grids Real-

Time Dynamic Thermal Line Rating 

Reference: 

Liu, Y.; Riba, J.-R.; Moreno-Eguilaz, M.; Sanllehí, J. Analysis of a Smart Sensor Based 

Solution for Smart Grids Real-Time Dynamic Thermal Line 

Rating. Sensors 2021, 21, 7388. Under a CC BY 4.0 license. https://doi.org/10.3390/s21217388. 

Publication framework: 

This article presents a novel approach to determining the dynamic thermal line rating of aluminum 

conductor steel-reinforced conductors. The proposed method needs a thermal model of the power 

line that requires the real-time values of the solar radiation and the environment temperature, 

which can be acquired from nearby weather stations as well as the temperature and the current of 

the conductor, which can be measured directly with a Smartconductor device and can be 

transmitted wirelessly to a nearby gateway. Also, this paper proposed a method to estimate the 

wind speed and the DLR rating of the studied conductor. Experimental tests have been carried out 

to evaluate the accuracy of the proposed method for ACSR conductors. 

Main contributions: 

• Development of Smartconductor device for the measurement of temperature and

current of the conductor in real time.

• Estimation of the wind speed based on a thermal model of the conductor to avoid

using a wind speed sensor.

• Estimation of Joule and magnetic losses of the analyzed conductor from the

measured ac resistance of the conductor.

Key words: 

wind speed; dynamic thermal line rating; ACSR conductor; real-time monitoring; wireless 

communications 
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Abstract: Dynamic thermal line rating (DTLR) allows us to take advantage of the maximum trans-
mission capacity of power lines, which is an imperious need for future smart grids. This paper pro-
poses a real-time method to determine the DTLR rating of aluminum conductor steel-reinforced 
(ACSR) conductors. The proposed approach requires a thermal model of the line to determine the 
real-time values of the solar radiation and the ambient temperature, which can be obtained from 
weather stations placed near the analyzed conductors as well as the temperature and the current of 
the conductor, which can be measured directly with a Smartconductor and can be transmitted wire-
lessly to a nearby gateway. Real-time weather and overhead line data monitoring and the calcula-
tion of DTLR ratings based on models of the power line is a practical smart grid application. Since 
it is known that the wind speed exhibits important fluctuations, even in nearby areas, and since it 
plays a key role in determining the DTLR, it is essential to accurately estimate this parameter at the 
conductor’s location. This paper presents a method to estimate the wind speed and the DTLR rating 
of the analyzed conductor. Experimental tests have been conducted to validate the accuracy of the 
proposed approach using ACSR conductors. 

Keywords: wind speed; dynamic thermal line rating; ACSR conductor; real-time monitoring; wire-
less communications 

1. Introduction
With the widespread deployment of heat pumps, electric vehicles, and different elec-

tric and electronic technologies, the consumption of electrical power is increasing steadily, 
so there is a need to increase the capacity of existing power lines. However, any increase 
of the transmission capacity must not compromise safe operation, supply security, and 
reliability [1]. 

High-voltage overhead transmission lines typically use aluminum conductor steel-
reinforced (ACSR) cables [2]. It is known that due to the steel core, ACSR conductors have 
a larger ac/dc resistance ratio compared to all-aluminum conductors due to the magnetic 
induction in the steel core. This magnetic induction causes power losses due to the in-
duced eddy currents and the hysteresis effect and redistributes the current in the alumi-
num wires layers [3]. 

The allowable conductor temperature limits the load or current capacity of the power 
line, so the operating temperature must be restricted to below the allowable operating 
temperature to limit the ground clearance of the conductors [4]. Dynamic thermal line 
rating (DTLR) offers a solution to this problem because it is a smart and cost-effective 
solution for utilizing the maximum ampacity or ampere capacity of transmission lines [5], 
which differs from static line rating (SLR), the conventional and simple approach, which 
is based on conservative criteria [5] that represent severe or worst case weather conditions 
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[6]. SLR calculates the ampacity of the line from deterministic or probabilistic methods to 
determine the atmospheric operating conditions, which have a heavy influence. SLR often 
results in a conservative rating because it determines the same ampacity limit for the 
whole year; it is a static value, regardless of current weather conditions. Conversely, DTLR 
is based on measuring the weather variables, so the maximum allowable current of the 
line is dynamically calculated to ensure that the line operates within safe operation limits. 
Therefore, DTLR requires the current and temperature of the line and the weather varia-
bles in the vicinity of the power line to be monitored online using specific sensors and 
weather stations [1]. By applying a DTLR approach, the maximum rating or ampacity can 
be calculated from the mathematical line models that can be found in [7,8], with the results 
being greatly influenced by the current weather conditions. The current carrying capacity 
or ampacity of overhead power conductors can be affected by many factors such as wind 
speed, wind direction, solar radiation, and ambient temperature. Among these factors, 
wind speed is significant in terms of ampacity calculation [9,10]. 

Different DTLR approaches can be found in the technical literature. According to [9], 
DTLR methods can be roughly classified into indirect and direct methods. Indirect meth-
ods estimate the thermal line rating from the weather data gathered from weather stations 
or that have been forecasted, representing the main inputs of the method. These methods 
determine the required thermal rating based on solving the conductor heat balance equa-
tion, as detailed in Cigré [7], IEEE [8], or IEC [11]. Direct methods for dynamic line rating 
directly measure physical power line variables, including conductor temperature or/and 
current, line mechanical tension, conductor sag, or ground clearance, as described in [6]. 
Since there is no need to install weather measuring devices on the line and since they are 
reliable and not very expensive, indirect methods are simpler and present lower costs 
compared to direct methods, so indirect methods are indicated for power lines that are 
relatively light load. Compared to direct methods, indirect methods are less accurate be-
cause the conductor temperature and line ampacity are estimated indirectly using theo-
retical models [12]. Conversely, direct methods rely on field data; thus, they can be more 
accurate since no relationship between conductor temperature and the measured data 
from indirect methods is needed [9]. 

The fast progress made in the development of communication systems, sensors, and 
control algorithms has led to the development of smart grids, which integrate distributed 
energy resources, loads, energy storage, and control systems. They present substantial 
advantages, such as enhanced power supply reliability, reduced power losses, energy in-
dependence, and the integration of renewable energy sources [13]. To this end, smart grids 
integrate information technology to share power data in real-time for the efficient man-
agement of the power demand to maximize power efficiency, so DTLR methods represent 
a key element for smart grid development [14–20]. Recent studies have suggested that IoT 
solutions allow smart grid reliability to be enhanced while also remarkably improving 
their capacity of [21–24]. 

Nowadays, DTLR is a hot topic because of the widespread use of accurate, reduced-
size, and cost-effective sensors; the development of several communication systems that 
are compatible with high-voltage applications; the need to expand power transmission 
capability; and the fact that DTLR allows the ampacity of overhead power lines to be im-
proved through the measurement of the line and weather variables. 

In [25], wind speed and DTLR ampacity are estimated by measuring different pa-
rameters such as the conductor current, temperature, and mechanical tension; ambient 
temperature; and solar radiation and by applying the sag-tension method. Sag-tension 
monitoring methods require precise state change equations to relate the conductor tem-
perature to the sag-tension [26]. In [27],the DTLR rating of a distribution line was calcu-
lated using a low cost sensing probe to measure the conductor temperature and to trans-
mit the data wirelessly. However, the line current was not measured in real-time, which 
is an important parameter in this application [26]. In [28], a self-powered high-voltage 
sensor is presented that measures line temperature, voltage, current, and the active and 
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reactive power to determine the SLR and DTLR ratings. It also requires environmental 
data such as average wind speed and direction or air pressure from local weather stations. 
Nevertheless, the average wind speed taken from nearby weather stations is often not 
accurate, as wind speed changes with terrain topography and vegetation. In [29], a reverse 
calculation is presented to estimate the wind speed from an online conductor current and 
temperature, solar radiation, and ambient temperature measurements, but the paper does 
not present estimates of the DTLR rating. 

This paper presents an approach to estimate the DTLR rating of power lines based 
on ACSR conductors, combining the real-time monitoring of weather and line data. It is a 
practical smart grid application since the proposed DTLR approach allows the power lines 
to operate at their maximum capacity by adapting the rating according to the current real-
time weather conditions. Solar radiation and ambient temperature are important variables 
that can be used to determine the maximum allowable power transmission conductor cur-
rent. Nevertheless, in this paper, they are not directly measured. Instead, such variables 
are obtained from a nearby weather station. The principal reason for this is because of the 
similarities between the ambient temperature and the solar radiation measured by the 
weather station and the local values at the conductor’s surface. Secondly, there is a need 
to simplify the system with the purpose of reducing the power consumption and the cost 
of the sensors installed in the high-voltage conductors. Finally, wind speed plays a much 
more significant role than that of ambient temperature and solar radiation in terms of 
DTLR calculation [9]. The proposed method presents several novelties and contributions. 
First, it develops the Smartconductor prototype, which measures the current and tempera-
ture of the conductor in real-time. Second, it requires reduced computational resources 
and presents a low computational burden to minimize the hardware requirements for 
compatibility, only requiring inexpensive devices global smart grid deployment. Third, 
the proposed method estimates the wind speed; thus, there is no need to use a wind speed 
sensor. Since the DTLR rating depends heavily on the local wind speed and since the wind 
speed has an important cooling effect, it is estimated based on a reverse calculation by 
applying a thermal model of the ACSR conductor. Once the wind speed has been esti-
mated, the DTLR rating is calculated from the thermal model. Fourth, the proposed 
method estimates the joule and magnetic losses of the ACSR conductor from the measured 
ac resistance of the conductor, this being another contribution of the paper. The proposed 
approach has been validated under different operating conditions by means of experi-
mental tests by considering different controlled wind speeds. 

The experimental results prove that the real-time approach presented in this paper 
can predict both the value of the local wind speed and the DTLR rating with accuracy and 
with a reduced computational burden, so the calculations can be implemented in the low-
power microprocessors that are used in inexpensive devices that are required for global 
smart grid deployment. Therefore, the developments made in this paper contribute the 
research area focusing on smart grids. The proposed DTLR approach allows us to take 
advantage of the maximum transmission capacity of power lines by adapting the rating 
of the line according to the current weather conditions in real-time, making it a smart 
solution of paramount importance in future smart grids. 

Section 2 describes the Smartconductor device, including its sensors and wireless com-
munications. Section 3 details the equations required to estimate the wind speed and the 
dynamic thermal line rating. Section 4 outlines the strategy applied to estimate the wind 
speed and the dynamic thermal line rating and includes a flow chart detailing the full 
process. Section 5 describes the experimental setup, including the power source, conduc-
tors, sensors, and measuring devices. Section 6 presents and explains the results that were 
attained, and finally, Section 7 concludes the study. 

2. Smartconductor. Sensors and Wireless Communications
This section describes the sensors used in the Smartconductor device as well as the 

wireless communications approach that is applied. 
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2.1. Current Sensor 
Different sensor technologies can be applied to measure the current flowing through 

a conductor, such as giant magneto resistive, Rogowski coils, current transformers, or Hall 
effect sensors [30]. The Hall effect sensor was selected for the Smartconductor because this 
technology offers miniaturization, low power consumption, high linearity, and the possi-
bility of sensing high magnetic fields. This sensor measures the magnetic flux density B 
that is generated by the conductor and generates an output voltage VHall that is propor-
tional to the measured magnetic flux density as described in (1):  𝑉ு௔௟௟ = 𝑘𝐵 [V] (1)

where k [V/T] is the sensitivity constant. 
According to the Biot–Savart law[31], the magnetic flux density detected by a sensor 

placed on the top of a cylindrical conductor can be expressed as 𝐵 = ఓబூଶగ(௥ା௛) [T] (2)

where μ0 = 4π10−7 H/m is the permeability of air, I (A) is the current in the conductor, r (m) 
is the radius of the conductor, and h (m) is the radial distance between the outer surface 
of the conductor and the sensor. 

Hence, when placing the sensor on the surface of the conductor, the position r + h (m) 
is known as well as the magnetic flux density B in Equation (1), so the current I (A) through 
the conductor can be obtained as 𝐼 = ௏ಹೌ೗೗(௥ା௛)௞×ଶ×ଵ଴షళ  [A]  (3)

2.2. Temperature Sensor 
Since the conductor temperature is considered to be an essential parameter in deter-

mining the dynamic thermal line rating [32], it is of paramount importance to use a suita-
ble temperature sensor. It should be considered that the maximum allowable temperature 
of the tested ACSR conductor for continuous operation is 90 °C [33]. Therefore, the tem-
perature sensor should reach this range. When focusing on the expected linearity and ac-
curacy and by taking the high current application into account, a positive temperature 
coefficient (PTC) resistor is a suitable choice, so a Pt1000 sensor was selected. When deal-
ing with Pt1000 platinum sensors, each temperature value corresponds to exactly one re-
sistance value, the correspondences can be tabulated in the EN 60,751 standard [34] as 
follows  𝑅் = 𝑅଴(1 + 𝑎𝑇 + 𝑏𝑇ଶ) for T >  0 °C (4)𝑅் = 𝑅଴(1 + 𝑎𝑇 + 𝑏𝑇ଶ + 𝑐(𝑇 − 100)𝑇ଷ) for 𝑇 <  0 °C  (5)

where 𝑎 = 3.9083 × 10ିଷ °Cିଵ, 𝑏 = −4.183 ×  10ି଻ °Cିଵ, 𝑐 = −4.183 ×  10ିଵଶ °Cିଵ, 𝑅଴ =10ଷ Ω, and 𝑅் is the resistance of the temperature sensor at the measured temperature in 
ohms. 

2.3. Wireless Communications 
The wireless communication of the proposed system is based on the Bluetooth SoC 

(System on Chip) nRF52832 from Nordic Semiconductors (Trondheim, Norway). This 
chip was selected since it contains an inbuilt BLE (Bluetooth Low Energy) module, inbuilt 
ADC converters, and low power consumption modes, and it is also inexpensive. 

With respect to the gateway, after considering several features, such as cost and size, 
the Raspberry Pi 4 module was selected. It is worth noting that a Huawei e3372 LTE 4G 
Wi-Fi dongle was mounted in Raspberry Pi because 4G technology allows it to remotely 
control the Raspberry Pi and send data to the cloud. 
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Figure 1 shows the applied strategy to estimate the ampacity. To this end, the solar 
radiation and ambient temperature values are obtained from a nearby weather station, 
whereas the Smartconductor measures the conductor current and temperature. These val-
ues are sent wirelessly via BLE to the local gateway, which, in turn, sends the data to the 
cloud, where it is stored. The Smartconductor was programmed to connect to the gateway 
and to send the measured line current and conductor temperature values in a packet every 
7 s via Bluetooth. Once the gateway receives the data by means of a python script imple-
mented in the Raspberry Pi, the data that are received are decoded, and the ampacity is 
calculated. The proposed DTLR model takes the ambient temperature and solar radiation 
data from a nearby weather station, whereas the line current and the temperature of the 
conductor are directly measured by the Smartconductor. From these data, in the first stage, 
the wind speed is estimated, and in the second stage, the dynamic ampacity is estimated 
in real-time. Once the calculation is complete, the results are sent to a cloud server via 4G 
communication. 

Current  measurement 

Temperature  measurement 

Gateway

Packet  decodification 

Wind & Ampacity 
estimation 

BLE
Apply proposed DLR 

model 

4 G

Cloud

Real-time monitoring

Store the data

Ambient temperature

Solar radiation

Weather station

Smartconductor measurements

(a) 

• Ambient temperature
• Solar radiation

Weather station
• Conductor current (Hall effect)

• Conductor temperature (Pt1000)

Smartconductor

 Wind speed estimated from (12) considering 
(9)–(17)

DTLR ampacity estimated from (18) considering (9) – (17)

Gateway

(b) 

Figure 1. Proposed strategy to estimate the ampacity. (a) Global strategy. (b) Block diagram of the strategy to determine 
the DTLR rating. 

According to Figure 1b, in the first stage, the wind speed is determined from four 
readings (ambient temperature, solar radiation, conductor current and conductor temper-
ature), and in the second stage, the DTLR rating is determined. 
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3. Dynamic Thermal Line Rating Estimation Method
The CIGRE standard [7] describes a non-steady-state equation using the following 

transient thermal balance equation based, which is expressed as 𝑃௃ + 𝑃ெ + 𝑃ௌ = 𝑃௖ + 𝑃௥ + 𝑚𝑐 ௗ ೎்ௗ௧  [W/m] (6)

where 𝑃௃, 𝑃ெ, 𝑃ௌ are the heat gain terms due to joule, magnetic, and solar heating effects, 
respectively;  𝑃௖ and 𝑃௥ are the heat loss terms due to convection and radiation, respec-
tively; m is the mass of the conductor in kg/m, c is the specific heat capacity of the conduc-
tor in J/(𝑘𝑔°𝐶), and 𝑇௖ is the average conductor temperature in °C. 

The heat capacity c of the ACSR conductor is calculated as follows: ൜ 𝑚𝑐 = 𝑚஺௟𝑐஺௟ + 𝑚௦𝑐௦௧௘௘௟𝑐(𝑇) = 𝑐ଶ଴°େ[1 + 𝛽(𝑇௖ − 20)] (7)

where mAl and cAl refer to the mass per unit length and the specific heat capacity of the 
aluminum part, respectively, whereas msteel and csteel refer to the mass per unit length and 
specific heat capacity of the steel part, respectively. The values of the temperature coeffi-
cient 𝛽 are 3.8×10−4 °C−1 for pure Al, 4.5×10−4 °C−1 for the Al alloy and 1.0×10−4 °C−1 for steel 
[7]. 

According to [25], the joule and magnetic heat gains can be combined in only one 
equation, which appears as follows: 𝑃௃ + 𝑃ெ = 𝐼ଶ𝑅௔௖  (8)

where I is the root mean square (RMS) value of the current, amd 𝑅௔௖ is the ac resistance 
of the conductor per unit length at the operating mean conductor temperature Tc. The ac 
resistance of the conductor Rac includes the skin and proximity effects as well as the core 
losses, which can be calculated according to the method detailed in the Cigré Technical 
Brochure [35], or it can be measured. Measurements can be conducted according to the 
procedure described in [36] or in [31], with the last method being applied in this paper, a 
decision that is based on the previous experience of the authors. 

As the ac resistance Rac is required during the process to determine the joule and 
magnetic heat gains, the conductor characteristic Rac(Tc) was measured in the laboratory 
by measuring the temperature of the conductor, the voltage drop between two points of 
the conductor surface distanced by 1 m, and the ac current flowing through the conductor. 
Next by applying (9), the ac resistance was calculated as 𝑅௔௖ = 𝛥𝑉𝑐𝑜𝑠𝜑/𝐼 (9)

where φ is the phase shift between the voltage drop ΔV and the current I [31]. 
According to [7], Equations (10–15) are used to determine the heat loss due to con-

vective cooling: 𝑃௖ =  𝜋𝜆௙(𝑇௖ − 𝑇௔)𝑁௨ [W/m]  (10)

where λf = 2.42×10−2 + 7.2×10−5·Tf in W/(m °C) is the thermal conductivity of air, 𝑇௖ is the 
conductor surface temperature, 𝑇௔ is the ambient temperature, and Tf is the film tempera-
ture defined as Tf = 0.5(Ta + Tc). 

Equation (9) applies for both natural and forced convective cooling, the difference 
between both situations is found in the way to allow the calculation of the de Nusselt num-
ber Nu. 

In case of forced convection, the Nusselt number is calculated as 𝑁௨ = 𝐵ଵ(𝑅𝑒)௡ [−] (11)

where the Reynolds number is calculated as 𝑅𝑒 = 𝜌௥𝑉 ஽ఔ೑  [−]  (12)
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where V (m/s) is the wind speed, 𝜌௥ (−) and 𝜈௙ (m2/s) are the relative density and kine-
matic viscosity of air, respectively, D (m) is the diameter of the conductor, and B1 and n 
are constants depending on the Reynolds number Re and conductor surface roughness, 
respectively. It is worth noting that the wind speed can be estimated by applying (12), as 
detailed in Figure 2. 

Yes

Wind speed 
calculation stage

DTLR 
calculation stage

Measure conductor temperature 
(Tc) and line current (I)

Calculate 
Pc = PJ +M + PS - Pr - mcpdT/dt

Calculate PJ + m (Rac, I, Tc), PS (S), 
Pr (Tc, Ta), mcpdT/dt

Calculate the Nusselt number 

Calculate the Reynolds number Initial values:
B1 = 0.641 
n = 0.471

Is
102<Re<2.65·103

?

Is
Rf > 0.05

?

Ta , S from 
weather 
station1

Rac (Tc,I) 
measured 

offline

B1 = 0.048 
n = 0.800

B1 = 0.178 
n = 0.633

Nu =B1(Re)n

Re =(Nu/B1)1/n
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Recalculate the Reynolds number 
Re =(Nu/B1)1/n

Calculate wind speed 
V =Revf/(ρrD)

Recalculate heat terms 
Pc (Tc,max), Pr (Tc,max)

Calculate ampacity 
Equation (18)

Is
IHall_effect > Imax

?

No
Conductor current can be raised

Yes

Alarm

Yes

Figure 2. Proposed DTLR calculation method. 
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Table 1 provides the values of the coefficients n and B1, which depend on the Reyn-
olds number and the surface roughness defined as Rf = d/[2(D − d)], where d (m) is the 
diameter of the strands. 

Table 1. Values of constants n and B1 [7]. 

Surface Type Re n B1 
All surfaces stranded 100–2650 0.471 0.641 

Stranded Rf  ≤ 0.05 2650–50,000 0.633 0.178 
Stranded Rf  ≥ 0.05 2650–50,000 0.800 0.048 

In case of natural cooling, the Nusselt number is obtained from the Grashof (Gr) and 
Prandtl (Pr) numbers as follows: 

Nu = A2(GrPr)m2  (13)

Pr = 0.715−2.5×10−4Tf  (14)

Gr = D3(Tc − Ta)g/(Tf + 273)vf2  (15)

where g = 9.807 m/s2 and the values of A2 and m2 are found in Table 2. 

Table 2. Values of the product Gr·Pr [7]. 

Gr·Pr A2 m2 
102–104 0.850 0.188
104–106 0.480 0.250

The procedure described in this paper estimates the wind speed value. Thus, since 
the wind speed is not known, both forced and natural cooling equations are applied. If 
the power loss due to forced cooling is greater than the power loss due to natural cooling, 
it is assumed that the wind speed is not zero, and the Nusselt number Nu is calculated by 
applying (11); otherwise, it is calculated from (13). However, in virtually all situations 
found in outdoor environments, the Nusselt number must be calculated from (11). 

The heat gain due to the solar radiation can be calculated using the global solar radi-
ation S (W/m2), as seen in [7]: 𝑃௦ =  𝛼௦𝑆𝐷 [W/m]  (16)

where αs (-) is the solar absorptivity of the conductor surface whose value is assumed to 
be 0.5 [37], and D (m) is the external diameter of the conductor. 

Finally, radiation heat losses can be described as [7]: 𝑃௥ = 𝜋𝜀𝐷𝜎஻[(𝑇௖ + 273)ସ − (𝑇௔ + 273)ସ] [W/m] (17)

where 𝜀 is the emissivity factor, which depends on the conductor surface, and it is as-
sumed to be 0.5 [4,37], and where σB = 5.6697×10−8 W/(m2K4) is the Stefan–Boltzmann con-
stant. 

Finally, the DTLR rating is determined when the conductor temperature reaches it 
maximum value under thermal equilibrium, so from (6) and (8), it results in [5,28]: 𝐼௠௔௫ = ට௉೎൫ ೎்,೘ೌೣ൯ା௉ೝ൫ ೎்,೘ೌೣ൯ି௉ೞோೌ೎൫ ೎்,೘ೌೣ൯ (18)

4. Proposed Real-Time Method to Determine the Thermal Line Rating
The dynamic thermal line rating can not only be calculated by obtaining real-time 

weather data and load, but it can also be estimated several ways [26]. In this paper, a cost-
effective, real-time monitoring model to calculate the DTLR rating using the Smartconduc-
tor is presented, the steps of which are described in Figure 2. This procedure has two main 
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stages, i.e., the wind speed calculation stage and the DTLR calculation stage. The calcula-
tions associated with both stages are performed by the gateway. As constants B1 and n 
depend on surface roughness and Reynolds number, which are not available, this paper 
proposes setting their values to B1 = 0.641 and n = 0.471 in the initial stage, which are taken 
from [7] and are summarized in Table 1. In the first stage, the Reynolds number is cor-
rected in order to estimate the wind speed. Next, the wind speed can be estimated, and if 
the maximum allowable conductor temperature is known (90 °C in this paper), then the 
ampacity can be predicted. 

Finally, the predicted value of the ampacity (𝐼௠௔௫) provided by (18) is compared to 
the measured current by the Hall effect sensor (𝐼ு௔௟௟ௌ௘௡௦௢௥). In the case where Imax < IHallSensor, 
the current flowing through the line can be increased. Conversely, an alarm signal will be 
activated if 𝐼௠௔௫ > 𝐼ு௔௟௟ௌ௘௡௦௢௥. 

5. Experimental Setup
This section develops the experimental part of this paper to evaluate the accuracy 

and performance of the proposed approach for predicting the thermal line rating of power 
transmission lines. 

The tests were performed in a high-current laboratory (AMBER laboratory from the 
Universitat Politècnica de Catalunya). 

The analyzed ACSR conductor (550-AL1/71-ST1A, HAASE Gesellschaft mbh, Graaz, 
Austria) was supported by wood trestles and was connected to the output of the high-
current transformer, forming a low-impedance loop. 

Figure 3 shows the geometry of the 550-AL1/71-ST1A ACSR conductor that was used, 
including the 7 steel strands and the 54 aluminum strands, whereas Table 3 shows its main 
properties.  

Figure 3 details the geometry of the 550-AL1/71-ST1A ACSR conductor. 

Figure 3. Cross section of the tested conductor. 

Table 3. Parameters of the tested ACSR conductor 550-AL1/71-ST1A. 

Symbol Description Value Unit𝐴஺௟ Area of aluminum 549.7 mmଶ 𝐴௦௧௘௘௟ Area of steel 71.3 mmଶ 𝑁஺௟ Number of aluminum wires  54 - 𝑁ௌ௧௘௘௟ Number of steel wires 7 - 𝐷஺௟, 𝐷௦௧௘௘௟ Aluminum and steel wire diameter 3.6 mm 
D Diameter of conductor 32.4 mm 𝑚஺௅ Mass per unit length of aluminum 1.5183 Kg/m 𝑚௦௧௘௘௟ Mass per unit length of steel 0.5583 Kg/m 𝐶𝑝௔௟௨௠௜௡௨௠ Specific heat of aluminum 897 J/(Kg°C) 𝐶𝑝௦௧௘௘௟ Specific heat of steel 481 J/(Kg°C) 
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𝑅ଶ଴°େ DC resistance of the conductor 0.0526 Ω/km 𝐼௠௔௫ Current carrying capacity 1020 A 

As explained in Section 3, in order to determine the heat gain due to the joule and 
magnetic heating, it is necessary to determine the evolution of the Rac resistance as a func-
tion of the conductor temperature. To this end, an experiment was performed off-line by 
measuring the voltage drop, temperature, cosφ, and current through 1 m of the analyzed 
conductor (550-AL1/71-ST1A ACSR conductor). The results that were obtained are sum-
marized in Table 4. These values are required to evaluate (8). 

Table 4. Dependence of Rac with the temperature of the conductor. 

T (°C) Voltage Drop (VRMS) Current (ARMS) cosφ Rac (µΩ/m) 
30 0.10 1025 0.59 57.7
40 0.10 1022 0.60 60.2
50 0.10 1023 0.62 62.4
60 0.10 1022 0.63 64.8
70 0.10 1026 0.64 67.2
80 0.11 1028 0.65 69.4
90 0.11 1023 0.67 71.6

100 0.14 1305 0.68 74.3
The Rdc resistance at 30°C is 56.7 μΩ/m. 

Since the experiment was conducted indoors, two variable speed fans (V-6020 
ROVEX, 50 W, 65 m3/min) and two dimmable linear led lamps (36 inch, 234 W, AUX-
TINGS, Foshan, China) were used to simulate the effect of wind and solar radiation, re-
spectively. 

The current and temperature of the cable were measured by the Smartconductor by 
means of the Hall effect sensor and the Pt1000 sensor, as described in Sections 2.1 and 2.2, 
respectively. 

Regarding the Hall effect sensor, considering several parameters such the possibility 
of being integrated with microelectronics, performance efficiency, accuracy, cost, and size, 
the DRA5053 analog-bipolar Hall effect sensor from Texas Instruments (Dallas, TX, USA) 
[38] was selected for this application [39–41].

Regarding the Pt1000 sensor, the PTFC102T1G0 sensor from TE connectivity (Schaff-
hausen, Switzerland) is a suitable choice [42] because it has a rated resistance of 1000 Ω to 
provide typical accuracies of ±0.1 °C with a temperature range between −30 °C to 200 °C. 

To measure the wind speed, an anemometer (RH Anemometer Pen 850021, Sper Sci-
entific, Scottsdale, AZ, USA) with a measuring range of 0.4–30 m/s with a resolution of 
0.1m/s and an accuracy of 3% full scale when the wind speed is below 20 m/s was used. 

Finally, to measure the solar radiation, a solar power meter (PCE-SPM1, Professional 
Calibrated Equipments, PCE, Tobarra, Spain) was used. It had a measuring range between 
0–2000 W/m2, a resolution of 0.1 W/m2, and an accuracy of ± 10 W/m2. 

To validate and check the accuracy of the results provided by the Smartconductor, the 
temperature and the current of the conductor were measured using a T-type thermocou-
ple connected to a thermocouple input module (NI-9211, National Instruments, Dallas, 
TX, USA) and a Rogowski coil (500LFxB from PEM, Nottingham, UK with sensitivity 
0.06mV/A) connected to a data acquisition system (NI USB-6356 DAQ, National Instru-
ments, Dallas, TX, USA, with eight differential inputs). For simultaneous acquisition, the 
NI-9211 thermocouple input module and the NI USB-6356 DAQ were synchronized by 
means of a Python code. The data from the two DAQs were synchronized with the data 
from the Smartconductor by means of a MATLAB® code. 
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Figure 4 shows the experimental setup, including the conductor loop, the high-cur-
rent transformer, and the sensors used to validate the method proposed in this paper to 
determine the wind speed and the DTLR rating. 

High-current
transformer

ACSR conductor

Smartconductor
 (I, T measurement)

(a) 

Fans

Linear LEDs

Rogowski 
coil

T-type
thermocouple

Smartconductor

ACSR 
conductor

(b) 

Figure 4. (a) Sketch of the experimental setup; (b) detail of the ACSR conductor and the sensors. 

6. Experimental Results
6.1. First Experiment. Wind Speed and DTLR Estimation 

A first experiment that was conducted to determine the accuracy of the proposed 
method in estimating the wind speed and DTLR of the studied conductor is shown in 
Figure 5. To this end, a current change (from around 600 A to around 1100 A) was applied 
to the loop shown in Figure 4, and four wind speeds were applied (0 m/s, 2m/s, 2.5 m/s 
and 3 m/s) as shown in Figure 5a. During these tests, the solar radiation was set to a con-
stant value of 800 W/m2. 
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(a) 

(b) 

(c) 

Figure 5. (a) Planned current intensity and perpendicular wind speed profiles during the test. (b) Conductor temperature 
measured by the Pt1000 sensor (Smartconductor) and the T-type thermocouple. (c) Currents measured by the Hall effect 
sensor (Smartconductor) and the Rogowski coil. 

Figure 5b shows the temperature measured by the PTC1000 incorporated in the 
Smartconductor and by the laboratory sensor (T-type thermocouple), whereas Figure 5c 
shows the current measured by the Hall effect sensor and the Rogowki coil under the 
conditions established in Figure 5a. These results show that the temperature and current 
measurements made with the Smartconnector sensors and the laboratory measurements 
are very similar, thus validating the accuracy of the Smartconductor measurements. 

The average difference of the temperature measured by the Pt1000 sensor included 
in the Smartconductor compared to the measurement of the laboratory device (T-type ther-
mocouple) is 1.34%, whereas the maximum difference is 3.48%. The average difference of 
the current measured by the Hall effect sensor compared to the measurements of the la-
boratory device (Rogowski coil) is 0.23%, whereas the maximum difference is 1.92%; thus, 
the Smartconductor shows reliable and accurate results. 

0 0.5 1 1.5 2 2.5 3
Time (s) 104

20

40

60

80
Pt1000
T-type thermocouple
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Figure 6 compares the wind speed and the DTLR estimates provided by the Smartcon-
ductor and the laboratory measurements with the theoretical values. These estimates are 
based on the conditions shown in Figure 5. The results presented in Figure 6 show very 
similar results, thus validating the proposed methodology. 

(a) 

(b) 

Figure 6. (a) Theoretical and estimated wind speeds with the Smartconductor (using the Pt1000 and Hall effect sensor) and 
the DAQ (using T-type thermocouple and Rogowski coil); (b) static and theoretical and estimated ampacity values with 
the Smartconductor (using the Pt1000 and Hall effect sensor) and the DAQ (using T-type thermocouple and Rogowski coil). 

It is worth noting that the theoretical rating Imax (red line in Figure 6b) was obtained 
from (18) by taking into account the measured values (real values) of the wind speed. 

Table 5 summarizes the results that were attained. It shows that the estimated wind 
speeds are very close to the applied ones and that the estimated ampacities at the different 
wind speeds are very close to the theoretical values, which were calculated by applying 
(18) and considering the measured values of the wind speed instead of the ones that were
estimated by the method proposed in this work since the differences are below 2.3%.

Table 5. Results of estimated wind speed and ampacity predicted by the proposed approach. 

Current (A) 
(%Static Rat-

ing) 

Theoretical 
Wind Speed 

(m/s) 

Theoretical 
Line Rating 

(A) 

Average Esti-
mated Wind 

Speed (m/s)by 
Smartconduc-

tor 

Average Es-
timated 

Wind Speed 
(m/s)By 

DAQ Sys-
tem 

Average  
Estimated  

Ampacity(A) 
by 

Smartcon-
ductor 

Average Esti-
mated Am-

pacity (A) by 
DAQ 

Error of Line 
Rating Calcu-

lation by 
Smartconduc-

tor 
(%) 

Error of Line 
Rating Calcu-

lation by 
DAQ System 

(%) 

624 (55%) 0 927 0 0 927 927 0.0 0.0 
1088 (97%) 2 1688 1.90 1.99 1648 1670 2.3 1.0 
1088 (97%) 2.5 1833 2.48 2.53 1813 1830 1.0 0.2 
1088 (97%) 3 1969 3.03 3.28 1961 2016 0.2 2.3 

The static rating of the conductor is 1020A. 
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6.2. Second Experiment. Validation of the Accuracy of the Proposed Method to Estimate the 
DTLR 

A second experiment was conducted to validate the accuracy of the DTLR estimation 
method proposed in this paper. To this end, the current and wind speed profiles shown 
in Figure 7a were applied to the analyzed conductor. The values of the applied currents 
were selected so that the equilibrium conductor temperature was 90 °C under the four 
wind conditions (0 m/s, 2 m/s, 2.5 m/s and 3 m/s), i.e., the maximum allowable tempera-
ture of the tested ACSR conductor for continuous operation. Thus, the same laboratory 
setup as the one used in the previous tests was used, and four current levels were injected 
(956 A, 1680 A, 1830 A, and 1980 A, which correspond to the four wind speeds 0 m/s, 2 
m/s, 2.5 m/s and 3 m/s, respectively) to heat the ACSR conductor up to 90 °C. The results 
that were attained are shown in Figure 7. 

(a) 

(b) 

. 

(c) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (s) 104

20

40

60

80

100
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Figure 7. (a) Current and wind speed profiles during the test. (b) Conductor temperature measured by the T-type thermo-
couple and the Pt1000 sensor; (c) Applied and theoretical current values. 

Table 6 summarizes the numerical values corresponding to Figure 7. These results 
show that the difference between the real and estimated currents needed to bring the con-
ductor to the maximum allowable temperature is low and are always below 3.0%, thus 
validating the method proposed in this paper. 

Table 6. Results of steady-state temperature with different currents and wind speeds. 

Currents 
Wind Speed(m/s) 

Steady-State Conduc-
tor Temperature (°C) Applied (A)  Estimated (A) Difference (%) 

956  927 3.0 0.0 Around 90
1680  1688 0.5 2.0 Around 89
1830  1833 0.2 2.5 Around 90
1980  1969 0.6 3.0 Around 89

Regarding the computational requirements of the proposed approach, the estimation 
of the wind speed requires 0.05 ms and the estimation of the DTLR requires 0.07 ms when 
using a Intel(R) Xeon(R) CPU E5-2620 v4 processor with 64 Gb RAM memory 

7. Conclusions
This paper has presented a real-time monitoring system to determine the ampacity 

of ACSR conductors, called a Smartconductor. To this end, the actual values of the ambient 
temperature and solar radiation are required and can be obtained from a nearby weather 
station, whereas the Smartconductor measures the current and temperature of the conduc-
tor. Since the wind speed at the conductor surface greatly depends on its exact location 
and since it has an important cooling effect, it is essential to have an accurate estimation 
of the local wind speed at the conductor. Therefore, a method that accurately estimates 
the wind speed has also been presented. Once this parameter is known, the approach pre-
sented in this paper allows the calculation of the DTLR rating of the analyzed conductor 
based on a thermal model. To validate the accuracy and performance of the approach 
presented in this paper, different situations have been tested in the laboratory using ACSR 
conductors by controlling and measuring the solar radiation, wind speed, local tempera-
ture, conductor temperature, and line current. The proposed approach also includes a 
method to estimate the combined joule and magnetic losses of the ACSR conductor from 
the ac resistance. 

The experimental results presented in this paper prove that the real-time approach 
presented in this paper can predict both the value of the local wind speed and the DTLR 
with accuracy while requiring a reduced computational burden, so the calculations can be 
implemented in low-power microprocessors used in inexpensive devices that are required 
for a global deployment of smart grids. Therefore, the findings in this paper contribute to 
research concerning smart grids. The proposed DTLR approach allows us to take ad-
vantage of the maximum transmission capacity of power lines by adapting the rating of 
the line according to the current weather conditions in real-time, making it a smart solu-
tion that is of paramount importance for future smart grids. 
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Abstract: Dynamic line rating (DLR) is a method that focuses on dynamically determining the
maximum allowable current of power lines, while ensuring they operate within safe limits. DLR
needs to monitor the temperature and current of the line in real-time, as well as the weather variables
in the surroundings of the power line. DLR approaches also require determining the AC resistance
of the power line conductors, which is a key parameter that enables it to determine Joule and core
losses. This paper presents an approach for an on-line alternating current (AC) resistance estimation
of aluminum conductor steel-reinforced (ACSR) conductors to determine the DLR capability of such
conductors from real-time conductor and meteorological parameter measurements. For this purpose,
conductors with one, two and three layers of aluminum strands are analyzed in detail. Based on the
experimental results presented in this paper, two possible approaches are proposed.

Keywords: core losses; aluminum conductor steel-reinforced; ac resistance; dynamic line rating

1. Introduction

Today, renewable power generation sources are reinforcing distribution networks.
The growing demand for electricity is forcing system operators to take full advantage of
the maximum capacity of existing power lines [1]. However, the maximum allowable
temperature of the conductor must not be exceeded, as it defines the current carrying
capacity of the conductor [2]. The ampacity or maximum allowable loading current is
established by the maximum permissible temperature of the conductor [3]. Temperature
has a great influence on the mechanical sag of overhead transmission lines [4,5], which
is a key parameter for power system operation [6]. Overhead power transmission lines
are generally operated below their static line rating (SLR). The SLR is calculated when
the conductor operates at the maximum allowable temperature in conservative weather
conditions. Contrarily, dynamic line rating (DLR) determines the actual ampacity when
conductors are operating at the maximum allowable temperature under actual weather
conditions [7]. DLR can be useful for the integration of intermittent renewable energy
sources into existing power networks [8]. Intermittent renewable energy sources (IRES)
cannot provide constant additional power, making it difficult for system operators to justify
the investment required to expand current transmission lines [9]. Dynamic line rating (DLR)
allows for the maximum utilization of the conductor, that is, to operate at the maximum
ampacity or current that it can withstand without exceeding the upper allowed temperature
of the conductor [10]. Although there are different approaches to DLR, the most common
approach is to measure weather variables, line current and temperature using dedicated
sensors [11]. These measured variables are used to feed mathematical models of conductors,
such as the Cigré TB207 [12] and IEEE [13] models, from which the maximum conductor
rating is dynamically obtained. Results obtained are significantly dependent on weather
conditions, including ambient temperature, wind speed and direction, or solar radiation,
although wind speed significantly affects the resulting ampacity [14,15].
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The alternating current resistance (Rac) of the conductor is a key parameter which
allows the ampacity or maximum current capacity of power conductors to be accurately
estimated. This can increase their effective capability [16], since Joule and core losses
represent the main heat source of the conductor, and can be determined from the alternating
current (AC) resistance Rac [17,18]. Line current, along with ac resistance, are used in some
DLR approaches to estimate the effective wind speed [18]. Therefore, DLR enables the
development of more accurate power flow analysis approaches if the ac resistance, which
changes with temperature, is measured in real time [19].

Stranded aluminum conductor steel-reinforced (ACSR) conductors have been applied
for over 100 years in overhead power lines to transmit electrical power at high voltage [20].
ACSR conductors have multiple layers of aluminum [21] and galvanized steel strands.
The aluminum wires are wound helically around the core formed by the galvanized steel
strands. Adjacent aluminum layers are wound in opposite directions around the steel
core [22]. Whereas the steel core provides the mechanical strength, high-conductivity
aluminum strands provide the current path [23], carrying approximately 98% of the electric
current [24]. Electric current tends to spiral along the aluminum strands because the contact
resistance between adjacent strands is much greater than the internal resistance of the
strands, producing an axial component of the magnetic field. The axial AC magnetic flux
causes eddy currents and hysteresis losses in the core, and forces the current density in the
aluminum layers to redistribute to a greater or lesser extent, depending on the strength
of the magnetic field in the core, and thus, on the intensity of the electric current and the
lay length of the aluminum layers [25]. The lay length is the distance the wire requires to
make a complete revolution around the diameter of the conductor, as shown in Figure 1.
Therefore, due to magnetic induction, the steel core increases the AC resistance of the
conductor [23].
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Due to the opposite stranding directions of adjacent aluminum layers, the axial com-
ponents of the magnetic field generated by the currents from adjacent layers are in opposite
directions, which reduces the total magnetic field. The greatest cancellation of the magnetic
field occurs in conductors with two aluminum layers, this effect being less marked in
conductors with an odd number of aluminum layers than in conductors with an even num-
ber of layers [23,25,26]. Therefore, ACSR conductors with an even number of aluminum
layers have lower magnetic core losses [22]. Under AC supply, the axial component of
the magnetic field generates eddy currents and hysteresis losses, and modifies the current
distribution between the layers. This effect, due to the magnetic coupling of the current in
the aluminum layers through the steel core [3], is known as the transformer effect. The mag-
nitude of the axial magnetic flux largely determines the intensity of the transformer effect,
so it varies with the intensity of the electric current and the magnetic permeability of the
steel core, which in turn depends on the tensile stress of the core and the temperature [27].

The non-uniformity of the current density in the different layers of aluminum due to
the transformer effect is greatest for three-layer ACSR conductors [3]. Experimental results
performed on a three-layer ACSR conductor show that the current density in the central
layer is higher than in the other layers, resulting in a higher Rac/Rdc ratio [28], Rdc being the
direct current (DC) resistance. This is mainly due to the transformer effect [26,27] or current
redistribution among the aluminum layers, and only partially due (to a lesser extent) to the
eddy currents and hysteresis losses that occur in the steel core [28].

This paper presents an approach for an on-line estimation of the AC resistance of
ACSR conductors to determine their DLR capacity from real-time conductor measurements
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and weather parameters, thus presenting several novel findings and making unique contri-
butions in this area. Joule and core losses are determined from an on-line measurement of
the AC resistance, which, due to its low value, makes its on-line measurement under AC
supply a challenging task. The approach proposed here to estimate the AC resistance can
be applied to ACSR conductors with any number of aluminum layers, while considering its
dependence on the line current. This is a novelty in this work, since most of the current DLR
approaches do not take into account the change in the AC resistance of ACSR conductors
with the current level, so they can lead to inaccurate estimates of the AC resistance, and
thus of the DLR ampacity. To this end, two new methods are proposed to determine the
AC resistance. The first one, which is more accurate, is based on measuring temperature,
current, voltage drop and the phase shift between voltage drop and current over a short
length of conductor. The second method only requires measuring the temperature and
current through the conductor, thus avoiding measuring the voltage drop and simplifying
installation and measurement requirements. The proposal presented here is in line with
the current trend of operating power lines at their maximum instantaneous capacity, since
it allows the current rating to be adapted to existing weather conditions in real-time. In
addition, it is simple to apply, requires a low computational burden, and is compatible
with the Internet of Things (IoT), one of the crucial technologies that improves smartness in
many industrial, power line and smart grid applications [29–31], whose basic function is to
connect objects [32], including intercommunicating sensors [33], actuators and other smart
technologies [34].

The experimental results presented in this paper show that the two proposed ap-
proaches are suitable for an on-line determination of the AC resistance of ACSR conductors
to apply DLR strategies, so that it is possible to take advantage of the full transmission
capacity of ACSR-based power lines. The accuracy of the proposed approaches has been
evaluated by analyzing different ACSR conductors, including single-, two- and three-layer
conductors in different working conditions, covering a wide range of operations in different
weather conditions.

This paper is structured as follows: Section 2 describes the theoretical background,
including how to experimentally determine the AC resistance of ACSR conductors, the
equations required to estimate power losses in ACSR conductors, the transient thermal
balance equation for ACSR conductors and the calculation of the DLR ampacity; Section 3
describes the experimental setup used in this paper, including the electrical loop, the ana-
lyzed conductors, the high-current power transformer, the sensors used and the measuring
devices; Section 4 shows the experimental results obtained with the different conductors
and discusses the results attained; and finally, Section 5 concludes the paper.

2. Theoretical Background
2.1. AC Resistance and Reactance of ACSR Conductors

The AC resistance of a conductor is affected by the current density distribution, the
internal temperature and the magnetic properties of the steel core, with the two last
parameters being affected by the intensity of the electric current. According to [35], the
AC resistance of ACSR conductors can be expressed as the sum of three terms, i.e., the
DC resistance, the resistance term due to eddy currents, and the term due to hysteresis
losses. Core losses (hysteresis and eddy current losses) as well as any temperature rises
also increase the effective AC resistance of the conductor [3,20,36]. The combined action
of eddy currents, hysteresis and the transformer effect raises the AC resistance Rac of the
conductor above the DC value Rdc at the same temperature. Higher values of the Rac/Rdc
ratio increase the energy losses in the conductor [20].

Since the cancellation of the axial component of the magnetic field is less effective in
conductors with an odd number of aluminum layers, these conductors will exhibit higher
resistance ratios Rac/Rdc. The highest resistance ratio is expected in conductors with a single
layer of aluminum, whereas the lowest corresponds to conductors with two layers [3]. The
internal inductance of ACSR conductors increases with current up to a maximum value,
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where the steel core becomes magnetically saturated [36], and then any further increase in
current reduces the internal inductance [3] due to the decrease of the magnetic permeability.

According to the international standard IEC 60287-1-1 [37], the AC resistance can be
obtained from the DC resistance as:

Rac = Rdc
(
1 + ys + yp

)
[Ω/m] (1)

where ys and yp are, respectively, the skin and proximity effect factors. The effect of
temperature is considered as:

Rdc = R0[1 + α20(T − 20)] [Ω/m] (2)

where T is the operating conductor temperature, R0 the DC resistance measured at 20 ◦C
and α20 is the temperature coefficient at 20 ◦C.

In most ACSR applications, the skin effect is negligible compared to the transformer
effect, but in applications requiring low currents, large diameter conductors or high fre-
quencies, this difference is reduced. The proximity effect is also negligible when distances
between adjacent conductors greater than ten diameters are assumed [20]. Although (1)
is simple to apply, it only applies to nonferromagnetic conductors up to 5 kV [37], and
it does not consider important parameters such as those related to the stranding, includ-
ing the direction and lay length, as it considers the stranded conductor to be a solid
conductor [16,38].

The DC resistance of the conductor only depends on the temperature of the conductor,
but the AC resistance also depends on the current [3]. According to [25], the AC resistance
of an isothermal ACSR conductor increases with current following a sigmoidal change due
to the change in magnetic field strength and the consequent increase in core losses.

There is no explicit equation to determine the internal inductance of an ACSR conduc-
tor under DC supply. Several authors have proposed formulas for AC supply, although
they are not exact, since it is difficult to model the complex behavior of the magnetic flux in
the steel core. It is known that the per-unit length of the internal AC inductance of ACSR
conductors also increases with current following a sigmoidal curve up to a maximum value
corresponding to the magnetic saturation of the steel core, and then, any further current
increases reduce the inductance [25]. The goodness of the electrical contacts between
aluminum wires in the same layer and between wires in adjacent layers changes with the
tension and degree of oxidation in the conductor. Also, conductors are not isothermal
because they exhibit both radial and sometimes axial temperature gradients [3]. Therefore,
due to the nonlinearity and complexity of these effects, the most effective way to determine
the AC resistance and the internal reactance or inductance of stranded ACSR conductors is
from experimental measurements.

By measuring the instantaneous values of the voltage drop per unit length ∆V, the
electric current I and the phase shift ϕ between them, it is possible to determine the per unit
length values of the impedance [39], AC resistance Rac and reactance X of the conductor
expressed in Ω/m as [3,40]:

Z =
∆V

I
[Ω/m] (3)

Rac =
∆V

I
· cos ϕ [Ω/m] (4)

X =
∆V

I
· sin ϕ [Ω/m] (5)

The next equation describes the dependence of Rac with temperature:

Rac,T = Rac,0[1 + αac(T − T0)] [Ω/m] (6)
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where Rac,0 is the AC value of the resistance at a given temperature T0, usually 20 ◦C, and
αac is the temperature coefficient of the AC resistance. Note that Rac,0 is a measured value,
which already includes the saturation effect, as proved in [19].

2.2. Power Losses in ACSR Conductors

Core losses take into account the effect of eddy currents and hysteresis in the steel
core [3]. These losses, along with current redistribution and the effect of temperature,
are key factors determining the AC resistance of ACSR conductors [41]. Eddy current
and hysteresis losses increase with the square of the strength of the magnetic flux density
and with increasing values of temperature for a constant strength of the magnetic field H.
However, they tend to decrease as the resistivity of the steel core material increases, and
thus, as the temperature rises [20].

According to [17,18,42], the losses due to Joule (PJ), core (PM) and redistribution (Predis,
transformer effect) effects can be expressed as follows:

PJ + PM + Predis = I2Rac (7)

Note that (7) is in agreement with the method for measuring power losses detailed in
IEEE Std. 2772 [43] to measure the power loss of overhead conductors under real simulated
laboratory conditions:

Ploss = PJ + PM + Predis = ∆VIcosϕ (8)

2.3. Transient Thermal Balance Equation for DLR Calculation

The heat balance equation, which must always be satisfied, is the basis for im-
plementing DLR approaches for ACSR conductors [18]. It states that the sum of the
ohmic (PJ + PM + Predis) and solar heat gain must equal the heat loss by convection and
radiation [44].

According to [12], the unsteady-state equation that describes the transient thermal
balance of an ACSR conductor can be expressed as:

PJ + PM + Predis + PS − PC − PR = mc
dT
dt

[W/m] (9)

PJ, PM, Predis and PS being the per unit length heat gain terms of the conductor (Joule,
magnetic/core, transformer effect and solar heating terms, respectively, in W/m). PC and
PR are the per unit length heat loss terms (convective and radiative loss terms, respectively,
in W/m), m is the per unit length mass of the conductor in kg/m, c is the specific heat
capacity of the conductor expressed in J/(kg ◦C), T is the average conductor temperature
expressed in ◦C, and t is the time in s. The heat capacity c of the ACSR conductor is
calculated as the weighted average of the iron strands in the core and the aluminum
strands, and can be expressed as:

c(T) =
mAlcAl,20◦C[1 + βAl(T − 20)] + msteelcsteel,20◦C[1 + βsteel(T − 20)]

mAl,20◦C + msteel,20◦C
[J/(kg◦C)] (10)

where cx is the specific heat capacity of element x (Al = aluminum or steel), mx is its mass
per unit length, and β is the temperature coefficient of the heat capacity, whose values can
be found in [10].

According to [10,18], convective heat losses are calculated as:

PC = π[0.042 + 3.6·10−5(Ta + T)](T − Ta)Nu [W/m] (11)

where Nu is the Nusselt number, which can be calculated as detailed in [18] once the
conductor diameter, surface roughness, local wind speed, local temperature, relative density
and kinematic viscosity of the air are known.
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The heat gain by solar radiation is obtained from the global solar radiation S (W/m2)
as [12]:

PS = αsSD [W/m] (12)

where D [m] is the outer conductor diameter and αs is the dimensionless solar absorptivity
of the conductor surface, where its value is often assumed to be 0.5 [45].

Heat losses due to radiation are calculated as [12]:

PR = πεDσB[(T + 273)4 − (Ta + 273)4] [W/m] (13)

where ε is the emissivity factor of the surface of the conductor (its value is often assumed
to be 0.5 [2,45]) and σB is the Stefan-Boltzmann constant.

The DLR ampacity Imax is calculated at the maximum allowable temperature of the
conductor, assuming that the temperature of the conductor is in thermal equilibrium,
resulting in [10,46]:

Imax =

(
PC(Tmax) + PR(Tmax)− PS

Rac(Tmax)

)1/2

[A] (14)

From (14), it is seen that the AC resistance plays a key role in determining the DLR
ampacity, so an accurate estimate is required for this purpose.

3. Experimental Setup

This section describes the experimental devices and materials used in the laboratory
experiments, including the ACSR conductors, sensors and measuring devices required to
determine the AC resistance of the studied conductors.

3.1. The Analyzed Single-, Two- and Three-Layer ACSR Conductors

As explained in the introduction, ACSR conductors with one, two or three layers
have different behaviors due to the interaction of the axial magnetic flux generated by the
different layers of aluminum strands with the steel core, thus increasing the AC resistance
of the conductor. Since the adjacent aluminum layers are stranded in opposite directions,
the axial component of the resulting magnetic field is reduced. Therefore, this cancellation
effect is greatest in two-layer ACSR conductors, while it is the least impactful in three-
layer conductors, and not present at all in single-layer conductors. Due to the effect of
the steel core, the AC resistance of the conductor is expected to depend not only on the
temperature of the conductor but also on the intensity of the current flowing through
the conductor. However, due to the partial cancellation of the axial component of the
magnetic flux generated by layers of aluminum strands wound in opposite directions, the
AC resistance of two-layer ACSR conductors should be almost independent of current
intensity, while in the case of three-layer ACSR conductors, this dependency should be
very low. It should be at the maximum in single-layer ACSR conductors.

This work analyzes the behavior of the three-layer 550-AL1/71-ST1A ACSR conductor
(HAASE Gesellschaft mbh, Graaz, Austria), and the two-layer 135-AL1/22-ST1A conductor
(EMTA Kablo, Istanbul, Turkey), whose main parameters are summarized in Table 1.

Next, a single-layer ACSR conductor was made from the 135-AL1/22-ST1A two-layer
conductor by carefully removing the outer layer of aluminum strands.

The three-layer conductor includes 7 steel strands that form the core, and three succes-
sive layers with 12, 18 and 24 aluminum strands, respectively, thus being 7/54.

The two-layer conductor includes 7 steel strands in the core and two layers with 10
and 16 aluminum strands, respectively, being 7/26. The single-layer conductor is 7/10.

Figure 2 shows the geometry of the analyzed three-, two- and single-layer ACSR conductors.
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Table 1. Main parameters of the three-layer 550-AL1/71-ST1A ACSR conductor from HAASE
Gesellschaft and the two-layer 135-AL1/22-ST1A ACSR conductor from EMTA Kablo.

Symbol Description Three-Layer Two-Layer Unit

AAl Area of aluminum 549.7 134.9 mm2

Asteel Area of steel 71.3 22 mm2

NAl Number of aluminum wires 54 (12/18/24) 26 (10/16) -
NSteel Number of steel wires 7 7 -
DAl Aluminum wire diameter 3.6 2.57 mm

Dsteel Steel wire diameter 3.6 2.0 mm
D Conductor diameter 32.4 16.3 mm

mAL Mass per unit length of aluminum 1.5183 - kg/m
msteel Mass per unit length of steel 0.5583 - kg/m
R20◦C DC resistance of the conductor 0.0526 0.2038 Ω/km
Imax Current carrying capacity 1020 430 A
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3.2. The High-Current Transformer Used to Test the Conductors

To determine the AC resistance of the conductors, they were tested in the laboratory
under different operating conditions. For this end, a variable high-current transformer
(10 kVA, 380 V/4 V, output current 0–2.5 kA, Transcir, Montcada i Reixac, Spain) was used
to generate the current required to test the conductors. The analyzed ACSR conductors
were connected to the high-current transformer forming a low impedance circular loop,
as shown in Figure 3. To meet the requirements of the Cigré TB345 [3], the length of the
conductor was 5.5 m.
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It is known that wind speed has a stronger impact in terms of DLR rating than ambient
temperature or solar radiation [9], so the effect of wind speed was studied in this paper.
As shown in Figure 3, two SF 0147 fans (variable speed, 50 W, Orbegozo, Murcia, Spain)
were used to simulate variable wind speed conditions. It should be noted that in the
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experiments, a constant wind flow of 5 m/s was applied, which was measured with a Pen
850021 anemometer (0.4–30 m/s measuring range, resolution of 0.1 m/s, accuracy of 3%
full scale, Sper Scientific, Scottsdale, AZ, USA) during the entirety of the experiment under
wind conditions.

3.3. Measuring Devices

In experimental tests involving the loops of ACSR conductors, the current flowing
in the loop, the voltage drop over one meter length of the conductor and the phase shift
between the voltage drop and current was measured.

The current flowing through the test loop was measured by means of a CWT500LFxB
Rogowski coil (sensitivity = 0.06 mV/A, PEM, Nottingham, UK), which was connected to
an NI USB-6210 data acquisition system (National Instruments, Dallas, TX, USA), with a
current accuracy of ±1%.

A T-type thermocouple was used to measure the surface temperature of the conductor.
It was connected to a NI-9211 thermocouple input module (±1 ◦C, National Instruments,
Dallas, TX, USA).

Acquisitions made with the NI-9211 thermocouple input module and the NI USB-6210
data acquisition system were synchronized using Python code programmed by the authors
of this work.

An 850021 RH Pen anemometer was used to measure the wind speed (measuring
range 0.4–30 m/s, 0.1 m/s resolution, 3% full scale accuracy, Sper Scientific, Scottsdale,
AZ, USA).

4. Experimental Results

This section presents the experimental tests carried out with the three ACSR conductors
described in Section 3, which were performed in the AMBER high-current laboratory
facilities of the of the Universitat Politècnica de Catalunya.

4.1. Results Obtained with a Single-Layer ACSR Conductor

The first test was conducted with a single-layer conductor, whose rated current was
about 220 A. The conductor was heated from room temperature by applying the rated
current until reaching the equilibrium temperature, which was about 77 ◦C. Conventional
ACSR conductors usually operate below 90 ◦C [24] except when operating under emergency
contingency conditions [19].

Then, by forcing it to pass the same amount of current, the conductor was cooled
with the help of fans. During both parts of this cycle, the temperature of the conductor,
the voltage drop and the current through the conductor were measured. From these
measurements, the phase shift between the voltage drop and the current was calculated,
and the AC resistance was obtained from (4). This test was repeated with currents of
145 A and 75 A. Figure 4 shows the results of the AC resistance as a function of the
conductor temperature.

Results presented in Figure 4 clearly show the effect of the core on the AC resistance
of the single-layer ACSR conductor. These results proved that the AC resistance of a single-
layer ACSR conductor depended not only on temperature but also on the current flowing
through the conductor. Results in Figure 4 also show that, in the case of strong wind,
the measured surface temperature differs more from that of the interior. Therefore, for a
given conductor surface temperature, the apparent AC resistance measured in strong wind
is higher than when measured in no wind because of the higher temperature difference
between the interior and the surface of the conductor in strong wind conditions (increased
radial temperature gradient). However, this difference is always below 5%.

4.2. Results Obtained with a Two-Layer ACSR Conductor

The second test was carried out with a two-layer conductor, whose rated current
was about 430 A. Due to the opposite stranding directions of the two layers, the axial
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component of the magnetic flux is almost cancelled. Therefore, the AC resistance must be
almost independent of the current intensity because the ferrous core is almost unaffected
by the magnetic flux generated by the aluminum layers.
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As in the previous case, the conductor was heated by applying the rated current
until reaching the equilibrium temperature, which was about 77 ◦C. Then, once again, by
forcing it to pass the same amount of current, the conductor was cooled using fans. During
the course of the experiment, the conductor temperature, voltage drop and current were
measured, so that the AC resistance was calculated from (4). This test was repeated with
currents of 280 A and 130 A, where the results of the AC resistance versus the temperature
of the conductor are displayed in Figure 5.
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From Figure 5, it can be seen that, as expected, the AC resistance of the two-layer
ACSR conductor depended on its temperature, but it was almost independent of the current
level. The effect of a strong wind increased the Rac value below 5%.

4.3. Results Obtained with a Three-Layer ACSR Conductor

The third test was carried out with a three-layer conductor, whose rated current was
around 1080 A. Due to the odd number of layers, the axial component of the magnetic
flux does not completely cancel. Therefore, the AC resistance must depend slightly on the
current intensity because the iron core is somewhat influenced by the axial component of
the magnetic flux generated by the aluminum layers.

The three-layer ACSR conductor was heated by applying the rated current until the
equilibrium temperature was reached, which was about 85 ◦C. Next, by forcing the flow of
the same amount of current, the conductor was cooled using fans. During the experiment,
the temperature of the conductor, the voltage drop and the current were measured, so
that the AC resistance was obtained from (4). The test was repeated twice with current
intensities of 650 A and 310 A, respectively. Figure 6 shows the results of the AC resistance
versus conductor temperature.
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Results in Figure 6 show that the AC resistance of the three-layer ACSR conductor
was almost independent of the current level due to the partial cancellation of the axial
component of the magnetic flux due to the three layers of aluminum. The effect of a strong
wind increased the AC resistance below 2.5%.

4.4. Results Summary

Table 2 shows the Rac,0 and α parameters obtained from a linear fit of the experimen-
tal data shown in Figures 4–6 according to Equation (6), where R2 is the coefficient of
determination of the linear regression.

Results presented in Table 2 clearly show that, in the case of the single-layer conductor,
there was a step change in the AC resistance values Rac,0 measured at 20 ◦C for the three
analyzed current levels. This was due to the effect of the axial component of the magnetic
flux. However, for two- and three-layer conductors, Rac,0 was almost independent of the
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current level. Results presented in Table 2 also prove that the temperature coefficient of the
resistance was almost independent of the current level and the topology of the conductor.

Table 2. Regression coefficients of (6).

Cable Type Current Rac,0 αac R2

Single-layer
220 A 602.4 µΩ 0.0046 ◦C−1 0.9997
145 A 535.2 µΩ 0.0048 ◦C−1 0.9991
75 A 498.5 µΩ 0.0049 ◦C−1 0.9827

Two-layer
430 A 200.8 µΩ 0.0044 ◦C−1 0.9999
280 A 200.2 µΩ 0.0046 ◦C−1 0.9996
130 A 201.9 µΩ 0.0044 ◦C−1 0.9747

Three-layer
1080 A 52.3 µΩ 0.0046 ◦C−1 0.9987
650 A 51.0 µΩ 0.0049 ◦C−1 0.9990
310 A 51.4 µΩ 0.0047 ◦C−1 0.9843

From the experimental results summarized in Table 2, and in the previous subsections,
the following conclusions can be drawn:

• The AC resistance of two- and three-layer ACSR conductors was nearly independent
of the current level, but this simplification cannot be applied to single-layer ACSR
conductors. Therefore, for two- and three-layer ACSR conductors, it can be assumed
that Rac = Rac (T), so that the heat gain due to the conductor losses Ploss only depends
on the conductor temperature, but not on the current level, i.e., Ploss = Ploss (T). In
contrast, for single-layer conductors, Rac depends on both conductor temperature and
current level, i.e., Rac = Rac (T,I), and hence Ploss = Ploss (T,I).

• In DLR applications, the conductor surface temperature is often measured, although it
differs from the temperature of the internal strands. In strong wind conditions, the
temperature difference between the surface of the conductor and the internal parts is
typically greater. Therefore, in this study, for a given conductor surface temperature,
the apparent AC resistance Rac measured in strong winds was larger than when
measured without wind due to the increased radial temperature gradient under strong
wind conditions. However, this difference was always below 5%, so it would not have
a significant effect on the calculation of the DLR rating.

Therefore, based on the results obtained, two possible approaches are proposed below:

• Approach 1, which is valid for ACSR conductors with any number of layers. The
current, conductor temperature, voltage drop and the phase shift between the voltage
drop and the current must be measured, so that, by applying (4), the actual value of
the AC resistance can be determined.

• Approach 2: Two- and three-layer ACSR conductors. For these conductors, the
AC resistance Rac and thus, the heat gain due to conductor losses Ploss, are almost
independent of current level. Therefore, if the parameters Rac,0 and αac are known, it
is possible to measure only the current and the temperature of the conductor, thus
avoiding the need to measure the voltage drop and the phase shift between the voltage
drop and the current. This is advantageous because the voltage drop measurement
has some drawbacks related to the addition of wires placed on the surface of the
high-voltage ACSR conductors, with the consequent problems related to outdoor
environments. Since Rac cannot be measured without measuring the voltage drop, if
Rac,0 and αac are known, Rac can be obtained by applying Rac,T = Rac,0[1 + αac(T − T0)].
According to this equation, the temperature of the conductor, the parameters Rac,0 and
αac can be measured in the laboratory for a sample of the conductor, in a similar way
as has been done in this paper.

• Approach 2: Single-layer conductor. In single-layer conductors, both the AC resistance
Rac and the heat gain due to conductor losses Ploss, depend on the current level and
the temperature of the conductor. In this case it is also possible to avoid measuring
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the voltage drop. According to the values presented in Table 2, αac can be considered
as a constant value, so the current level determines Rac,0. Then, Rac can be obtained by
applying Rac,T = Rac,0[1 + αac(T − T0)]. Once the values of the parameters Rac,0 and αac
summarized in Table 2 are known, they can be interpolated for any current level.

Figure 7 summarizes the two proposed strategies to measure the AC resistance of the
conductor as a function of temperature and current level.
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key factor when applying dynamic line rating (DLR) approaches, as it determines Joule
and core losses. This paper has analyzed the dependence of the AC resistance of ACSR
with the line current, this being a novelty of this work, since most of the current DLR
approaches do not consider this dependency, so they can lead to inaccurate estimates of
the AC resistance, and thus of the DLR ampacity. To this end, single-layer, two-layer and
three-layer conductors have been analyzed. Experimental results showed that while for
two- and three-layer conductors the AC resistance is almost independent of the level of
current passing through the conductors, for single-layer conductors, the AC resistance is
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The first and more accurate method is based on a simultaneous measurement of the
voltage drop along a certain length of the conductor, the current, the phase-shift between
the voltage drop and the current, as well as the temperature of the conductor. However,
this method has the disadvantage of requiring operators to install wires to measure the
voltage drop. The second method avoids measuring the voltage drop and the phase shift,
thus simplifying installation and measurement requirements, although it requires prior
laboratory experiments to determine the required parameters Rac,0 and αac.

The approaches presented in this paper are in line with the current need to operate
power lines at their maximum instantaneous capacity by adapting in real-time the current
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Author Contributions: Conceptualization, Y.L., M.M.-E. and J.-R.R.; methodology, J.-R.R.; software,
Y.L.; validation, Y.L. and J.S.; formal analysis, M.M.-E. and J.-R.R.; investigation, Y.L., M.M.-E. and
J.-R.R.; resources, J.S., M.M.-E. and J.-R.R.; writing—original draft preparation, Y.L. and J.-R.R.;
writing—review and editing, M.M.-E.; supervision, J.S. and M.M.-E. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Generalitat de Catalunya, grant numbers 2017 SGR 967 and
2020 DI 007.



Materials 2022, 15, 6143 13 of 14

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Singh, R.S.; Cobben, S.; Cuk, V. PMU-Based Cable Temperature Monitoring and Thermal Assessment for Dynamic Line Rating.

IEEE Trans. Power Deliv. 2021, 36, 1859–1868. [CrossRef]
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6. Conclusions and future work  

6.1  General conclusions 

The objective of this thesis is to develop and optimize an IoT device, designed to monitor or 

estimate the health condition of substation connectors, and to extend the application of the 

developed IoT device to improve the efficiency of power transmission systems. To make this 

progress, various fields of research areas have been identified, studied, and implemented in this 

thesis to achieve the objective of the project. 

Chapter 1conducts an analysis of various components of power transmission systems. The crucial 

parameters required to be measured for monitoring the health condition of the high-voltage 

substation connectors, as well as the approach that allows power lines to operate closer to their 

limit, were identified. This chapter offered a comprehensive description of the thesis objectives.    

Chapter 2 describes in detail the optimization process for the power management system for 

Smartconnector prototype. Several thermal energy harvesting systems were tested and compared 

to select the most suitable system for the Smartconnector. Next, the energy consumption of the 

Smartconnector was measured. Based on the energy harvested and the measured energy 

consumption, the maximum data transfer rate in an hour can be obtained to reach the energy 

balance of the energy storage of the Smartconnector prototype. The equations required to 

determine the efficiencies of the energy harvesting unit and the battery storage under different 

charging/discharging rates were analyzed. Results show that by applying the energy harvesting 

system, the small temperature difference between the conductor and ambient temperature due to 

Joule effect can be used to produce electrical power. Moreover, the energy balance strategy helps 

extending the lifetime of the energy storage system. 

Chapter 3 stuides diverse signal processing strategies to denoise the signals acquired by the 

Smartconnector. Owing to the inherent characteristics of high-voltage substations, there exist 

different kinds of noise in the signals, which may result in inaccurate measurements. Therefore, 

there is a need to develop an appropriate approach to denoise such signals. From the literature 

review, three filtering algorithms were selected, developed and tested on the desktop platform. 

Next, according to the computational time and the accuracy of the electrical contact resistance 

measurements, the most suitable one was selected to be implemented on the microcontroller of 

the Smartconnector prototype. Experiments concluded that the Smartconnector with the filter 

exhibited better performance than the Smartconnector prototype without the filter, proving the 

feasibility of the filter application.  

Chapter 4 explores an extension of the Smartconnector, called the Smartconductor, to improve 

the current-carrying capacity of power lines. The Smartconductor was developed based on the 

Smartconnector prototype, and it was used to estimate the dynamic line rating (DLR) of power 

transmission lines. Additionally, the magnetic effect on the determination of DLR was also studied. 

Based on experimental results, two approaches were proposed to determine the ac resistance of 

the line. Experimental results also show that the Smartconductor prototype can estimate both the 

wind speed and DLR rating accurately, proving the feasibility of Smartconductor applications for 

power lines. 

Chapter 5 presents the compendium of publications. In total, the full version of four journal papers 

and one conference article are presented. Moreover, the framework and main contributions of 

each article are outlined. 
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These developments have resulted in the following main contributions, directly related to the 

hypothesis of this thesis: 

• Selection and validation of suitable thermal energy harvesting systems for high-voltage 

substation applications. 

• Optimization of the power management system of the Smartconnector considering the 

efficiencies of the energy harvesting system, the battery storage at different 

charge/discharge rates and the measured energy consumption using conventional 

instrumentations. Based on these, an energy balance strategy was applied to the power 

management system, which prolongs the lifetime of Smartconnector prototype. 

• Development and validation of different signal processing algorithms for the signals 

acquired from high-voltage substations based on online data acquisition. These 

algorithms are in line with the development of smart grids, being compatible with the 

Smartconnector requirements. 

• Estimation of dynamic  line ratings of power lines with low- cost electronic devices and 

low-computational effort. This method also proposes to estimate the wind speed, avoiding 

the installation of wind speed sensors and reducing the cost.  

• Implementation of an in-depth study of the core losses of ACSR conductors, in order to 

accurately estimate the dynamic line rating.   

6.2  Future work  

This section exposes future research topics that can be built based on the developments fulfilled 

in this thesis and that can complement it to enhance the availability and reliability of power 

systems.  

• This thesis provides improvements to Smartconnector prototype for real-time data 

acquisition from substation connectors. Nowadays, there are initiatives in data-driven 

methods to utilize the collected data to not only predict the remaining useful life (RUL) 

but also to perform the fault diagnosis for components, which would enhance even more 

the reliability of power systems.  

Therefore, it would be interesting to develop a suitable algorithm to process the received 

data from the Smartconnector prototype and to perform necessary predictions. To avoid 

human intervention and ensure data security, the developed algorithm needs to be 

implemented in the gateway or in the microcontroller. 

 

• This thesis addresses the issue of inaccurate data acquisition by implementing filtering 

algorithms. Nonetheless, more accurate and cost-effective electronic sensors also deserve 

to be studied to face more challenging situations. This area could be explored more in-

depth to improve the initial measurements of electrical contact resistance. 

 

• The effect of the emissivity on the temperature variation of the power lines also can be 

explored since the temperature is a key parameter in determining the dynamic line rating. 

This would foster the thermal model built to estimate the dynamic line rating.  
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