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Abstract
Reinforcement Learning (RL), a subfield of machine learning and artifi-
cal intelligence, is a learning paradigm where an artificial agent learns to
reach a predefined goal by trying to maximize a reward signal while inter-
acting with the environment. In recent years RL has witnesses unprece-
dented breakthroughs, driven mainly by the integration of deep learning
techniques. However, the deployment of RL algorithms in real-world sce-
narios poses challenges, particularly in environments where exploration is
impractical or hazardous, such as autonomous driving or healthcare ap-
plications. Moreover, the current poor theoretical understanding of RL
algorithms poses an additional limit to their usefulness in safety-critical
scenarios.

This thesis focuses on the design of provably efficient algorithms for the
settings of off-policy and offline learning. These paradigm constrain the
agent to learn without directly receiving any feedback for its actions, and
instead observing the rewards obtained by an other policy. In particular,
the task of offline learning consists in learning a near-optimal policy only
having access to a dataset of past interactions.

In summary, the theoretical exploration of off-policy and offline RL not
only contributes to the broader understanding of RL algorithms but also
offers a principled approach to training in scenarios where safety and re-
liability are paramount. The findings presented in this thesis aim to be a
small step towards a broader adoption of RL in high-stakes environments,
underpinned by robust theoretical frameworks and regret bounds.
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Chapter 1

Introduction

Artificial Intelligence (AI, Russell and Norvig 2020) is now ubiquitous. We
use it in our smartphones when we unlock them using face recognition,
or every time we take a picture. We use it when translating text from
one language to an other, or when interacting with a voice assistant such
as Siri, or Alexa. AI algorithms are used even inside modern CPUs ar-
chitectures. Furthermore, AI algorithms found applications in many fields
and industries, such as biology, healthcare, recommender systems, finance,
games, and many more.

The advances in the field of Machine Learning (ML) are at the core of
this rapid expansion. In particular, Deep Learning and Reinforcement
Learning (RL) play an important role in many recent succesess. Machine
learning is a field of AI focused on the development of algorithms that are
able to perform tasks without being explicitly programmed, by learning to
form generalizations from data. Deep learning (LeCun, Bengio, and Hin-
ton 2015) denotes all the algorithmic methods employing multi-layered
(i.e. deep) neural networks, and is the key ingredient to the incredible
generalization capabilities of modern AI algorithms. Reinforcement learn-
ing is one of the three paradigms of machine learning, and focuses on the
development of learning agents, which try to achieve a predefined goal by
maximizing a reward signal, while interacting with their environment. Un-
like most machine learning frameworks, RL considers sequential decision
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making tasks in reactive environments, thus addressing concerns related to
the implementation of learning systems in real-world applications. Specif-
ically, the framework of RL allows modeling the interactions between the
learning system and its environment, and algorithms allow accounting for
long-term effects of decisions made by the learning system.

The strenghts of deep learning and reinforcement learning have been com-
bined to achieve incredible breakthroughs in AI. In particular, deep learn-
ing brought the necessary generalization capabilities to reinforcement learn-
ing to enable learning in problems with very large state spaces. Two of the
most notable examples being DQN (Mnih, Kavukcuoglu, Silver, Graves,
et al. 2013; Mnih, Kavukcuoglu, Silver, Rusu, et al. 2015), a single algo-
rithm that reached human-level performance on a set of 49 different arcade
games by learning directly from the screen pixels, and AlphaGo (Silver et
al. 2016), the first computer program to defeat the world champion of the
acient Chinese game of Go.

However, these algorithms, as powerful and revolutionary as they might
be, have some fundamental limitations. Deep learning techniques are un-
fortunately poorly understood from a theoretical point of view, and usu-
ally require a lot of data, which translates to RL agents requiring a lot
of experience and thus learning very slowly. Furhtermore, Reinforcement
learning agents learn by gathering experience while interacting with an
environment, which inevitably requires making mistakes and performing
suboptimal actions.

These limitations are side-stepped respectively by employing enormous
amounts of compute resources to parallelize the training of algorithms,
and by the use of simulators to avoid training in the real world. In partic-
ular, simulators provide two enormous advantages: they enable to greatly
speed-up learning by increasing the simulation speed, and they completely
eliminate the costs of learning (and thus doing mistakes) in a real-world
environment.

Unfortunately, simulators are not always available, and the fact that in
many real-world scenarios there is a huge cost associated in deploying
a suboptimal policy, only aggravates the situation. A prime example of
this are applications in healthcare, which must rely on historical data
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of patients instead of performing real-time trials due to evident ethical
concerns. Similar concerns may happen in settings making use of robots,
where deploying a bad policy could result in expensive damage to the
equipment.

In this thesis, we try to address some of these limitations by proposing
algorithms with strong theoretical guarantees, which are able to learn in
problems with large state spaces, and where there is no control over explo-
ration. Specifically, we model in a precise mathematical way the problem
of learning an optimal policy in tasks with very large state spaces. These
modeling assumptions, while not completely closing the gap between the-
ory and practical real-world scenarios, enable proving various kinds of
rigorous properties of our algorithms. These are the computational time
and memory complexity, and the sample complexity, which is the amount
of experience required to learn an optimal policy. We are specifically
interested in problems where the learning agent has no control over explo-
ration, because they allow to model scenarios where there is no simulator,
and there is a high cost of failure.

1.1 Thesis Structure
In Chapters 2 and 3 we briefly introduce the fundamental concepts of
Online Learning and Reinforcement Learning. These are the two main
research areas of our contribution.

In Chapter 4 we give a more detailed overviews of the specific settings
studied in this thesis. That is learning in large scale problems, learning
with off-policy feedback, and learning from offline data.

In the next three chapters, we present our main contributions. Concretely,
in Chapter 5 we study the framework of online learning with off-policy
feedback, where the learning agent cannot directly observe the outcome
of its actions, but must instead observe the feedback obtained by another
policy. This allows to model situations where the observations of the
learning agent are unreliable. In Chapters 6 and 7 instead we propose
algorithms for the offline learning setting, in which the learning agent
cannot interact with the environment at all, and must instead learn an
optimal policy using the observations collected by another policy.
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Finally, in Chapter 8 we draw some conclusions for each of the presented
contributions.

Following this, there are some chapters of appendix, dedicated to listing
all the proofs omitted from the main text, and some other details.

1.2 Notation
We denote the set of probability distributions over a measurable set 𝒮 as
Δ(𝒮), and the probability simplex in ℝ𝑑 as Δ𝑑.

We denote the scalar product of 𝑥, 𝑦 ∈ ℝ𝑑 as ⟨𝑥, 𝑦⟩ and use ‖ ⋅ ‖2 to denote
the Euclidean norm.

For a positive semi-definite matrix 𝐴 ∈ ℝ𝑑×𝑑, we write 𝜆min(𝐴) and Tr (𝐴)
to denote respectively its smallest eigenvalue and its trace.

We denote vectors with bold letters, such as 𝐱 ≐ [𝑥1, … , 𝑥𝑑]⊤ ∈ ℝ𝑑, and
use 𝐞𝑖 to denote the 𝑖-th standard basis vector.

We interchangeably denote functions 𝑓 ∶ 𝒳 → ℝ over a finite set 𝒳, as
vectors 𝐟 ∈ ℝ|𝒳| with components 𝑓(𝑥), and use ⪰ to denote element-wise
comparison.

Where possible, we use upper-case letters for random variables, such as
𝑆, and denote the uniform distribution over a finite set of 𝑛 elements as
𝒰(𝑛).
In the context of iterative algorithms, we use ℱ𝑡−1 to denote the sigma-
algebra generated by all events up to the end of iteration 𝑡−1, and use the
shorthand notation 𝔼𝑡[⋅] = 𝔼 [ ⋅| ℱ𝑡−1] to denote expectation conditional on
the history, and ℙ𝑡 [⋅] = ℙ(⋅ | ℱ𝑡−1).
For nested-loop algorithms, we write ℱ𝑡,𝑖−1 for the sigma-algebra gener-
ated by all events up to the end of iteration 𝑖−1 of round 𝑡, and 𝔼𝑡,𝑖[⋅] = 𝔼[⋅|
ℱ𝑡,𝑖−1] for the corresponding conditional expectation.

Finally, we use the convention that ∏𝑗
𝑘=𝑖 = 1 and ∑𝑗

𝑘=𝑖 = 0 when 𝑗 <
𝑖.
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Chapter 2

Online Learning

In this chapter we are going to give a brief introduction to the field of
Online Learning, with particular attention to the Multi-Armed Bandit
problem and its variations.

For a deeper introduction to the topic, see the books of Slivkins (2019)
and Lattimore and Szepesvári (2020).

In the whole manuscript, we are going to assume the existence of a proba-
bility space (Ω, ℱ, ℙ), whose outcomes 𝜔 ∈ Ω encode all required random-
ness.

2.1 Online Learning
The term online learning refers to a large class of sequential decision mak-
ing problems (often also referred to as “games”), where generally an agent
(or learner) needs to repeatedly decide which action to perform, between
a set of alternative choices 𝒜, to maximize its total gain. The frame-
work of online learning has been studied since the fifties and allows to
model learning in a variety of real-world scenarios, such as advertisement,
recommender systems and drug prescription.

In a somewhat general form, the problem can be formulated as follows.
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Definition 2.1.1 (online learning game). A generic online learning prob-
lem is a 𝑛-rounds sequential game between an agent and an adversary,
where at each round, or time-step, 𝑡 ∈ [𝑛]:

• A context (or state) 𝑋𝑡 ∈ 𝒳 is drawn from a possibly unknown
distribution 𝜈 and revelead to the agent

• The adversary chooses a reward function 𝑔𝑡 ∶ 𝒳 × 𝒜 → ℛ, mapping
contexts and actions to a numerical reward (i.e. ℛ ⊆ ℝ)

• The agent picks an action 𝐴𝑡 ∈ 𝒜

• The agent obtains a reward 𝑅𝑡 = 𝑔𝑡(𝑋𝑡, 𝐴𝑡).

The context (or state) represents some side information available to the
agent at time-step 𝑡. For example, in a recommender system the context
could represent the session data (language, location, preferences, etc) of
the user currently using the system.

Definition 2.1.1 is very general, and if we are to design efficient algorithms,
we need to specify some important details. For example, we need to know
if the set of actions is assumed to be finite or infinite; if the agent and the
adversary are allowed to randomize their choices of actions and rewards
respectively; if the agent gets to observe only 𝑅𝑡 or the full function 𝑔𝑡;
and most importantly what is the precise objective of the agent. Different
answers to these question lead to different online learning settings and
different trade-offs in algorithm design. The subset of settings relevant for
this work are detailed in Sections 2.2 to 2.4. However, we anticipate here
that in this thesis we consider actions sets 𝒜 of finite size, and never let
the agent observe the full reward function 𝑔𝑡

We now present some notions that are relevant to all settings considered
in this thesis.

Definition 2.1.2 (observations). Let 𝑂𝑡 represent the sequence consist-
ing of all the quantities observed by the agent up to the moment before
selecting action 𝐴𝑡 in time-step 𝑡; and let 𝒪𝑡 denote the set of all possible
sequence of observations.

6
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Typically, we have
𝑂𝑡 = (𝑋1, 𝐴1, 𝑅1, … , 𝑋𝑡−1, 𝐴𝑡−1, 𝑅𝑡−1, 𝑋𝑡). (2.1)

This definition aligns well with the typical scenario in online learning,
where the agent can observe its own rewards. Nevertheless, this is not
the only possibility. Specifically, this thesis focuses on settings where the
agent lacks direct access to its own rewards. Instead, the agent must
rely on observations gathered by an other policy, either run in parallel
or beforehand. Thus, it is important to keep in mind that 𝑜𝑡 represents
the information available to the agent at time-step 𝑡, and its concrete
definition may vary from the one given above depending on the setting we
consider.

We now give a very general definition of policies and decision rules, bor-
rowed from Puterman (1994). These definitions are more general than
what is strictly useful in the context of this chapter, but they allow us to
give a single definition for these concepts.

Definition 2.1.3 (policies and decision rules). The behavior of an agent is
defined by a sequence of decision rules. This sequence is called the agent’s
policy and is denoted with the letter 𝜋. For a given time-step 𝑡, a decision
rule, is a function 𝜋𝑡 ∶ 𝒪𝑡 → Δ𝒜 mapping the observations of the agent up
to time-step 𝑡 to a distribution over actions. Concretely, we write 𝜋𝑡(𝑎|𝑜𝑡)
to denote the probability of selecting action 𝑎, after observing history 𝑜𝑡.

When a policy is constant with respect to time 𝜋 = (𝜋1, 𝜋1, … , 𝜋1), we say
that it is stationary. However, the agent’s policy is often non-stationary,
meaning that the decision rules are not fixed for all time-steps 𝑡 but they
change over time as the agent learns. Moreover, Puterman (1994) refers
to policies depending only on the last context (or state) as markovian,
while the ones on the whole history (or parts thereof) are named history
dependent.

The fact that a policy can be non-stationary, or a decision rule can depend
on the whole history, is the most general scenario, and does not imply
that this must be always the case. In fact, it is important to point out
that in bandit problems, where the next context is not influenced by the
actions of the learner, it is pointless to consider policies depending on more
information than the current context 𝑥𝑡.

7
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In summary, an agent acts according to a policy, which is possibly im-
proved at every round 𝑡, and it can make use of its previous observations
𝑜𝑡 to derive its current decision rule. Thus, at time-step 𝑡 the agent draws
its action according to 𝜋𝑡(⋅|𝑜𝑡). However, when dealing with random vari-
ables, we often slightly abuse notation and write instead

𝜋𝑡 ≐ 𝜋𝑡(𝑂𝑡).

This is just a convenient way to denote the mapping 𝜋𝑡 ∶ Ω → Δ𝒜 defined
as 𝜔 ↦ 𝜋𝑡(𝑂𝑡(𝜔)), and the tilde is use to emphasize that the resulting
distribution over actions is a random variable. Furthermore, we write 𝜋
to refer to the whole sequence of random variables (𝜋1, … , 𝜋𝑛). We almost
always omit 𝜔 from our derivations, to make the notation lighter.

Intuitively, the objective of the agent is to gather as much reward as
possible over many repeated games. Formally, the performance of the
agent is defined with respect to a stationary comparator policy 𝜋∗ ∈ Δ𝒜,
and is measured in terms of regret, that is, as the difference in expected
return (or value) obtained by the comparator and the agent.

Definition 2.1.4 (return). Let 𝐺𝑡 denote the return of the agent, defined
as the cumulative sum of rewards obtained until time-step 𝑡:

𝐺𝑡 = 𝑅1 + ⋯ + 𝑅𝑡.

Moreover, let 𝜌 denote the mean return obtained by the agent over an
infinite number of games

𝜌𝑡 = 𝔼[𝐺𝑡] = ∫
Ω

𝐺𝑡(𝜔)ℙ(𝑑𝜔)

When we need to distinguish between the actions taken, or the rewards
received by more than one policy, we usually add a superscript 𝜋 to the
relevant quantities (i.e. 𝑎𝜋

𝑡 , 𝑟𝜋
𝑡 ) to denote they correspond to policy 𝜋.

However, we adopt the functional syntax 𝐺𝑛(𝜋) and 𝜌𝑛(𝜋) for the random
return and its expectation, since these quantity appears very often.

Finally, we observe that according to Definition 2.1.1, the adversary is
adaptive. That is, it can observe all the actions played by the agent up
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to the previous round 𝑡 − 1 and use them to choose the reward function
𝑔𝑡 for the current round. This makes the adversary very powerful and
having almost no assumptions on how the rewards are generated makes
it possible to model real-world scenarios where we have no information
about the structure of the rewards or their distribution, and thus enables
the derivation of very broadly applicable algorithms. One may wonder if
giving so much freedom to the adversasry, would make all learning hope-
less, since the adversary could, in principle, always choose “bad” rewards
for all actions. However, this problem is prevented by our definition of the
learning objective. In fact the goal of the agent is not defined as obtaining
“high” reward in absolute terms, but to perform good with respect to a
stationary comparator policy 𝜋∗. This implies that such a strategy would
result in all actions being optimal, and thus the ardversary is required to
implent a smarter strategy, trying to make optimal and suboptimal actions
hard to distinguish, while keeping their reward gap significant.

Definition 2.1.5 (regret). The objective of the agent is to minimize its
regret with respect to a given stationary (non-history-dependent) policy
𝜋∗ ∶ 𝒳 → Δ𝒜. The regret is defined as the difference in value between the
the comparator policy 𝜋∗, and the policy of the agent

ℜ(𝜋; 𝜋∗) = 𝜌𝑛(𝜋∗) − 𝜌𝑛(𝜋).

This definition of regret using the value 𝜌(⋅) is very common, but has the
downside of taking away all randomness, which makes it unsuitable to
prove bounds in high probability.

For this reason, in parts of this thesis we are going to provide bounds on
a version of regret, named pseudo-regret, which takes an expectation only
with respect to some of the randomness involved in the process.

2.2 Multi-armed Bandits
The term Multi-Armed Bandits (MAB) comes from the following scenario,
where a slot machine is referred to as a one-armed bandit:

Consider a gambler who is presented with the opportunity to
play any of 𝑛 one-armed bandit machines. He whishes to allo-
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cate his successive plays amongst these machines to maximize
his expected total-discounted reward. He does this one play at
a time, on the basis of prior information and observations to
date.

— Weber (1992)

This term (sometimes abbreviated to just bandits) is used to refer to all the
variants of the online learning problem where the agent can not observe the
whole reward function, but usually only sees the reward for the action that
was played. This form of feedback is thus called bandit feedback. However,
the term “multi-armed bandits” is also used to refer to the special case
of online learning with bandit feedback and stochastic rewards, which we
are going to describe in this section. To avoid ambiguity we refer to this
latter setting as Stochastic bandits.

Stochastic bandit are a special case of the online learning setting detailed
in the previous section, where there are no contexts and where the reward
functions 𝑔𝑡 are not arbitrary, but realizations of a sequence of independent
and identically distributed random functions 𝑔𝑡 ∶ Ω → ℛ𝒜.

Definition 2.2.1 (Stochastic Bandit). A stochastic bandit is a sequen-
tial game between an agent and the environment. It is denoted by the
tuple (ℛ, 𝒜, ℙ𝑔, 𝑛) consisting of a set ℛ ⊆ ℝ of possible rewards; a set 𝒜
of actions among which the agent can choose; a probability distribution
ℙ𝑔 ∶ Δ(ℛ𝒜) for the reward functions; and a positive integer 𝑛, called the
horizon and denoting the total number of time-steps (or stages) the game
is played for. Moreover, we denote the mean of ℙ𝑔 as ̄𝑔.

The game is played for 𝑛 time-steps. At each time-step 𝑡

• The environment samples a reward function 𝑔𝑡 ∶ 𝒜 → ℛ from ℙ𝑔

• The agent picks an action 𝐴𝑡 ∈ 𝒜

• The agent obtains reward 𝑅𝑡 = 𝑔𝑡(𝑎𝑡)

Notice that mean reward for each action ̄𝑔(𝑎) does not change during
the game. For this reason, in this setting it is common to choose as the
comparator policy, the deterministic policy always playing the action 𝑎∗
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with highest mean reward

𝑎∗ = argmax
𝑎∈𝒜

̄𝑔(𝑎). (2.2)

2.3 Adversarial Bandits
Building on the stochastic bandit setting detailed in the previous section,
the setting of adversarial bandits drops the assumption that the reward
functions are independent and identically distributed.

The agent is not competing anymore against a passive environment, but
is instead facing an adversary that arbitrarily selects the rewards 𝑔𝑡(𝑎) for
each action 𝑎 and time-step 𝑡.
In the most general case, the adversary is assumed to be adaptive. That is,
it is allowed to select the reward function 𝑔𝑡 using all previous information,
including the actions played by the agents in previous rounds. Because
of this dependence on random quantities, in the adaptive case, it may
be necessary to consider the reward functions as realizations of random
variables 𝑔𝑡 sampled from the unknown distributions ℙ𝑔𝑡

.

2.4 Contextual Bandits
Contextual bandits generalize the multi-armed bandit settings seen so far
by introducing a context 𝑋𝑡, observed by the agent at every time-step
𝑡. The role of the context is to model additional side information that is
available to the agent. For example, when trying to design a recommender
system, the context 𝑋𝑡 could represent the information available about
the current user. This in turn enables to design algorithms which select
a context-dependent optimal action, as opposed to the settings of the
previous sections which admit a single global optimal action.

Similarly to the stochastic bandit settings, here the agent plays against a
passive environment, which selects rewards in an i.i.d. fashion according
to a fixed distribution.

Definition 2.4.1 (contextual bandit). A contextual bandit is a sequential-
decision game between an agent and the environment. It is denoted by
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the tuple (ℛ, 𝒳, 𝒜, 𝜈, ℙ𝑔, 𝑛) composed of a set ℛ of rewards; a finite set
𝒜 of actions; a finite but potentially very large set of contexts 𝒳; a prob-
ability distribution 𝜈 ∶ Δ(𝒳) over contexts; a probability distribution
ℙ𝑔 ∶ Δ(ℛ𝒳×𝒜) for the rewards functions; and a positive integer 𝑛, called
the horizon and denoting the total number of time-steps (or stages) the
game is played for. As before, we denote the mean rewards with ̄𝑔.

The interaction protocol, is as follows. At each time-step 𝑡 ∈ [𝑛]
1. A context 𝑋𝑡 is drawn by the environment according to 𝜈 and re-

vealed to the agent.

2. A reward function 𝑔𝑡 ∶ 𝒳 × 𝒜 → ℛ is sampled according to ℙ𝑔

3. The agent picks an action 𝐴𝑡 ∈ 𝒜
4. The agent obtains reward 𝑅𝑡 = 𝑔𝑡(𝑋𝑡, 𝐴𝑡)

In this setting we are interested in finding the optimal action given each
possible context 𝑥 ∈ 𝒳. For this reason we model policies as a function
from the context-space to a distribution over actions, and we write 𝜋(𝑎|𝑥)
to denote the probability of picking action 𝑎 given that the current context
is 𝑥.
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Chapter 3

Reinforcement Learning

Reinforcement Learning (RL) is the activity performed by an agent who
tries to achieve a goal, by maximizing a reward signal, while interacting
with an environment.

As an example, consider the game of Tetris: the agent is whoever is play-
ing the game, either human or an algorithm; the goal is to clear all the
levels; the reward signal to be maximized is the game’s score, and the
environment is the playing field.

In a Reinforcement Learning problem the agent interacts with the en-
vironment by performing some actions, observing what effect they have
both on the environment and reward signal, and using this knowledge to
improve its behavior.

For example, in the game of Tetris, the possible actions are moving the
falling piece sideways, rotating it by ±90°, or waiting for it to fall. There-
fore, an agent who does not have any previous knowledge of the game,
should hopefully notice, after playing more or less randomly for a while,
that when the fallen pieces are aligned to form a horizontal line without
gaps, the score increases. A smart agent will consequentily try to im-
prove its strategy by repeating the actions that led to an increase of the
reward. Effectively using the reward signal as a positive reinforcement of
the desired behaviour.
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For a general introduction to the concepts of Reinforcement Learning see
Sutton and Barto (2018).

3.1 Markov Decision Processes
Markov Decision Processes (MDP, Puterman 1994) are the main math-
ematical abstraction used to model full reinforcement learning problems.
Differently from what happens in contextual bandits the current context
(now called state) influences the probability distribution over the contexts
for the following round. This makes the problem much harder, while at
same time giving us the chance to model problems of greater complex-
ity.

Definition 3.1.1 (Markov Decision Process). A Markov Decision Process
is a discrete-time stochastic process defined by the tuple (𝒳, 𝒜, ℛ, 𝑝, 𝑟, 𝜈0),
composed of a finite, but potentially very large, set of states 𝒳; a finite
set of actions 𝒜; a bounded set of ℛ = [0, 1]; a probability distribution
𝑝 ∶ 𝒳 × 𝒜 → Δ𝒳 over next states, given the current state and action; a
deterministic reward function 𝑟 ∶ 𝒳 × 𝒜 → ℛ assigning a bounded reward
to each state-action pair; and an initial state distribution 𝜈0 ∈ Δ𝒳, used
to sample the initial state of the process.

The process starts at time-step 𝑡 = 0, in a state 𝑋0 sampled from 𝜈0, and
then at each time-step 𝑡

1. the agent observes the current state 𝑋𝑡 and draws an action 𝐴𝑡 from
its current policy 𝜋𝑡(⋅|𝑋𝑡),

2. the agent receives a reward 𝑟(𝑋𝑡, 𝐴𝑡) and is moved to the next state
according to 𝑋𝑡+1 ∼ 𝑝(⋅|𝑋𝑡, 𝐴𝑡)

The transition function 𝑝 is also denoted as the matrix 𝐏 ∈ ℝ|𝒳×𝒜|×|𝒳|

and the reward as the vector 𝐫 ∈ ℝ|𝒳×𝒜|

Differently than all the settings considered in the previous sections, here
we are interested in modeling scenarios where the horizon 𝑛 is potentially
infinite. For this reason, we have to exercise a bit more care in the choice
of our learning objective. Infact definining the return 𝜌𝑡 simply as the
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sums of the rewards, as done in Definition 2.1.4 could lead to the sum
diverging.

For this reason we consider the discounted reward setting. Morevoer, it is
possible to show (Puterman 1994, Section 5.5) that for this setting, it is
sufficient to restrict our attention to markovian policies.

3.1.1 Discounted Reward
In the discounted reward setting the rewards are discounted by a discount
factor, denoted as 𝛾, and assumed to be part of the MDP definition.

Definition 3.1.2 (discounted return). We define the return 𝐺𝑖∶𝑗 of the
agent as the discounted sum of rewards obtained between time-step 𝑖 and
𝑗:

𝐺𝑖∶𝑗 = 𝑅𝑖 + 𝛾𝑅𝑖+1 + ⋯ + 𝛾𝑗−𝑖𝑅𝑗 =
𝑗

∑
𝑘=𝑖

𝛾𝑘−𝑖𝑅𝑘.

When working with MDPs, it is useful to define value functions represent-
ing the expected return (or value) obtained by a policy when starting from
any given state 𝑥.

Definition 3.1.3 (value function). Given any markovian policy 𝜋 ∶ 𝒳 →
Δ(𝒜). Let 𝑣𝜋 ∶ 𝒳 → ℝ denote the expected value obtained by policy 𝜋
after starting from 𝑋1 = 𝑥

𝑣𝜋(𝑥) = 𝔼[𝐺0∶∞ ∣ 𝑋0 = 𝑥] = 𝔼[
∞

∑
𝑡=0

𝛾𝑡𝑅𝑡 ∣ 𝑋0 = 𝑥].

Similarly, it is possible to define the state-action value function, or 𝑄-
function for any policy 𝜋.

Definition 3.1.4. Given any markovian policy 𝜋 ∶ 𝒳 → Δ(𝒜). Let
𝑞𝜋 ∶ 𝒳 × 𝒜 → ℝ denote the expected value obtained by policy 𝜋 after
starting from state 𝑥 and taking action 𝑎

𝑞𝜋(𝑥, 𝑎) = 𝔼[𝐺0∶∞ ∣ 𝑋0 = 𝑥, 𝐴0 = 𝑎].
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As usual when the policy 𝜋 is clear from the context, we are going to omit
the superscript from these quantities.

The value function and 𝑄-function are related as follows

𝑣𝜋(𝑥) = 𝔼[𝐺∞ ∣ 𝑋0 = 𝑥] = 𝔼[𝔼[𝐺∞ ∣ 𝐴0] ∣ 𝑋0 = 𝑠]

= 𝔼[𝑞𝜋(𝑥, 𝐴0) ∣ 𝑋0 = 𝑥] = ∑
𝑎∈𝒜

𝜋(𝑎|𝑥)𝑞𝜋(𝑥, 𝑎). (3.1)

Theorem 3.1.5. Let 𝜋 ∶ 𝒳 → Δ(𝒜) denote any stationary markovian
policy. Then

𝑞𝜋(𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛾 ∑
𝑥′∈𝒳

𝑝(𝑥′|𝑥, 𝑎) ∑
𝑎′∈𝒜

𝜋(𝑎′|𝑥′)𝑞𝜋(𝑥′, 𝑎′)

𝑣𝜋(𝑥) = ∑
𝑎∈𝒜

𝜋(𝑎|𝑥)[𝑟(𝑥, 𝑎) + 𝛾 ∑
𝑥′∈𝒳

𝑝(𝑥′|𝑥, 𝑎)𝑣𝜋(𝑥′)]

Proof.

𝑞𝜋(𝑥, 𝑎) = 𝔼[𝑅0 + 𝛾𝐺1∶∞ ∣ 𝑋0 = 𝑥, 𝐴0 = 𝑎]
= 𝑟(𝑥, 𝑎) + 𝛾 ∑

𝑥′∈𝒳
𝔼[𝐺1∶∞ ∣ 𝑋1]ℙ(𝑋1 = 𝑥′ | 𝑋0 = 𝑥, 𝐴0 = 𝑎)

= 𝑟(𝑥, 𝑎) + 𝛾 ∑
𝑥′∈𝒳

𝔼[𝐺1∶∞ ∣ 𝑋1]𝑝(𝑥′|𝑥, 𝑎)

= 𝑟(𝑥, 𝑎) + 𝛾 ∑
𝑥′∈𝒳

𝔼[𝐺0∶∞ ∣ 𝑋0]𝑝(𝑥′|𝑥, 𝑎)

= 𝑟(𝑥, 𝑎) + 𝛾 ∑
𝑥′∈𝒳

𝑝(𝑥′|𝑥, 𝑎)𝑣𝜋(𝑥′),

In the second equality we used the law of total probability, and in the
second to last, we used the markov property. We use Equation (3.1) to
complete the proof.

Morevoer, it is useful to represent the value function and the state-action
value function as vectors. We use respectively 𝐯 ∈ ℝ|𝒳| and 𝐪 ∈ ℝ|𝒳×𝒜|

for this purpose.

16



i
i

“main” — 2023/12/13 — 23:12 — page 17 — #25 i
i

i
i

i
i

Definition 3.1.6 (optimality). We say that a policy 𝜋∗ is optimal when
it attains the maximum value among all policies, starting from any state.
That is,

𝑣𝜋∗(𝑥) = sup
𝜋

𝑣𝜋(𝑥) ∀𝑥 ∈ 𝒳,

where the supremum is over the set of all markovian policies.

It is possible to show that an optimal policy statisfies the Bellman opti-
mality equations

𝑣∗(𝑥) = max
𝑎∈𝒜

[𝑟(𝑥, 𝑎) + 𝛾 ∑
𝑥′∈𝒳

𝑝(𝑥′|𝑥, 𝑎)𝑣∗(𝑥′)] (3.2)

𝑞∗(𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛾 ∑
𝑥′∈𝒳

𝑝(𝑥′|𝑥, 𝑎) max
𝑎′∈𝒜

𝑞∗(𝑥′, 𝑎′). (3.3)

An other fundamental quantity is the discounted state occupancy measure
of each policy 𝜋, defined as

𝜈𝜋(𝑥) = (1 − 𝛾)𝔼[
𝑛

∑
𝑡=1

𝛾𝑡
1{𝑋𝑡 = 𝑠}], (3.4)

and the state-action occupancy measure, dervied as

𝑝𝜋(𝑥, 𝑎) = 𝜈𝜋(𝑥)𝜋(𝑎|𝑥). (3.5)

These quantities also have a vector representation, respectively as 𝝂𝜋 and
𝐩𝜋.

Finally, in this setting it is convenient to use the normalized expected
return, defined as

𝜌𝜋 = (1 − 𝛾)𝔼[𝐺0∶∞], (3.6)

which, given the above definitions, can be rewritten equivalently as

𝜌𝜋 = (1 − 𝛾)⟨𝝂0, 𝐯𝜋⟩ = ⟨𝐫, 𝐩𝜋⟩. (3.7)
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Chapter 4

Large Scale Off-Policy and
Offline Learning

In this chapter we introduce the concepts of off-policy and offline learning.
We talk about the reasons these settings are interesting and list some appli-
cations. We explain the way in which they are mathematically formalized;
their characteristics (coverage) and challenges (distributional shift); and
some of the most-common approaches (iw estimation, pessimism).

The concepts described in this chapter are broadly applicable and relate
to the contextual bandit as well as the reinforcment learning settings.
Therefore, we interchangeably refer to the information 𝑋𝑡 observed by
the agent at each round 𝑡, as either context or state.

4.1 Online Learning with Off-Policy Feedback
One of the prevalent approaches to Reinforcement Learning is on-policy
learning. The defining characteristic of this learning paradigm is that the
policy guiding the interaction with the environment, usually called be-
havior policy, coincides with the policy we are trying to evaluate, usually
called the target policy. Methods like SARSA that adhere to the Gen-
eralized Policy Iteration scheme (GPI) exemplify this approach. Once
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these methods gather enough observations to estimate the policy’s value
or action-value function, they perform a policy improvement step.

This step, where an improved policy is derived from the current esti-
mate of the value function, is crucial and delicate, due to the exploration-
exploitation dilemma. It requires striking a balance between exploring new
actions to discern their potential benefits, and exploiting known actions to
accumulate immediate reward. Being overly greedy based on the current
understanding of the 𝑄-function might completely eradicate exploration.
For this reason, methods often employ an 𝜀-greedy policy, trying to find
a good balance between exploration and exploitation. While this ensures
continued exploration of all actions, it comes at a significant compromise:
the policy’s optimality is bounded by 𝜀. In other words, by ensuring ex-
ploration, on-policy methods often effectively cap their achievable policy
quality to being the best among the 𝜀-greedy policies, never truly reaching
the overall optimal deterministic policy.

A more flexible alternative, which includes the on-policy case as a special
case, is known as off-policy learning. This paradigm consists in keeping
the behavior policy and the target policy separate, and includes famous
methods such as Q-learning. The main characteristic of off-policy learn-
ing is that the concerns of exploration and exploitation are decoupled and
addressed separately by the behavior and target policy. This enables al-
gorithms such as Q-learning to use a more exploratory 𝜀-greedy behavior
policy to ensure enough exploration is performed, while still learning about
and converging to the optimal deterministic policy.

Off-policy learning is one of the most fundamental concepts in reinforce-
ment learning, concerned with the problem of learning an optimal behavior
policy given sample observations generated by a (most likely suboptimal)
behavior policy. This setting comes with a unique set of challenges arising
from the fact that the learning agent has no influence over the observed
data, and thus classical methods for reducing uncertainty via exploration
do not directly apply. The inability to explore may suggest that off-policy
learning is better approached as a simple “pure exploitation” problem and
can be potentially solved by a greedy approach—however, more thought
reveals that an effective learning method should also attempt to account
for the uncertainty of the random observations. Indeed, the problem set-
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ting comes with multiple layers of uncertainty. One layer is represented
by the potentially random choices made by the behavior policy, and an-
other by the randomness in the observed rewards. The setting of Online
Learning with Off-Policy Feedback presented in this section and studied
in Chapter 5 lets us decouple these two uncertainties and address them
individually. Concretely, we study the problem of online learning against
an adversarial sequence of rewards, with off-policy feedback revealed by a
stationary random policy.

This setting lies in the intersection of two distinct paradigms of sequential
decision making: adversarial online learning and off-policy reinforcement
learning. Formally, we study a sequential decision making problem where
in each round, the learner has to pick one of 𝐾 actions in order to max-
imize its total rewards. The sequence of reward assignments to actions
are decided by an adversary, with each reward function determined the
moment before the learner selects its action. The unique feature of the
setting is that the learner does not get to observe its reward. However,
the learner does observe the reward of another action that has been ran-
domly sampled according to a behavior policy that remains fixed during
the learning process. The goal of the learner is then to gain nearly as
much reward as the best fixed comparator policy.

Definition 4.1.1 (Off-Policy Adversarial Bandits). Concretely, we study
a generalization of the Adversarial Bandit setting presented in Section 2.3,
where the feedback provided to the agent consists of the actions and re-
wards obtained by the behavior policy 𝜇.

At each round 𝑡 ∈ [𝑛]
• The adversary chooses a reward function 𝑔𝑡 ∶ 𝒜 → ℛ, mapping each

action to a numerical reward (i.e. ℛ ⊆ ℝ)

• The agent picks an action 𝐴𝑡 ∈ 𝒜
• The behavior policy samples an action 𝐴𝜇

𝑡 ∈ 𝒜 according to 𝜇
• The agent obtains a reward 𝑅𝑡 = 𝑔𝑡(𝐴𝑡)
• The behavior policy obtains reward 𝑅𝜇

𝑡 = 𝑔𝑡(𝐴𝜇
𝑡 )

• The agent observes 𝐴𝜇
𝑡 and 𝑅𝜇

𝑡
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In this case the observations available to the agent at time-step 𝑡 are
defined as 𝑂𝑡 = (𝐴1, 𝐴𝜇

1 , 𝑅𝜇
1 , … , 𝐴𝑡−1, 𝐴𝜇

𝑡−1, 𝑅𝜇
𝑡−1).

A concrete motivating example is the following. Consider running a large
online advertisement company with a well-established system that is de-
ployed on most of the traffic. The infrastructure of the company allows
real-time measurements of the clickthrough rates generated by this sys-
tem. Now, imagine that the research division is given access to some small
amount of traffic where a new recommendation method can be deployed,
but real-time logging is not reliable due to the lower volume of traffic
assigned for experimentation. Thus, the decisions of the experimental
recommendation system have to be driven by the real-time logs obtained
from the original system on the main traffic, which may have poor cov-
erage of some good actions that the new system can implement. In this
example, the original system corresponds to the behavior policy and the
experimental system corresponds to the policy of the learner.

4.2 Offline Learning
Offline Learning, often also called batch learning, refers to the task of
learning an optimal policy, without being able to directly interact with
the environment during the learning process. Rather, the learner must
rely exclusively on a pre-existing dataset 𝐷, which consists of observa-
tions previously gathered by a behavior policy 𝜇 during its interactions
with the environment. It is common to assume that the learning policy
is known and stationary. However, in real-world scenarios the behavior
policy is often unknown, or it is itself a learning agent thus behaving
non-stationarily.

This approach can be undetrstood as a special case of off-policy learning,
yet with a distinctive constraint: the absolute lack of online interaction.
Every part of the exploration process has been previously carried out
by the behavior policy, which dictates the scope and limitations of the
learning process. The intrinsic challenge in offline learning is making the
best use of this fixed dataset, which may or may not cover the necessary
state-action pair to learn an optimal policy.

Despite its challenges, the setting of offline learning has received a lot
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of recent attention. One reason is that it enables efficient learning in
situations where interactions with the environment can be risky, expen-
sive, or impratical. A prime example of this are applications in health-
care, which must rely on historical data of patients instead of performing
real-time trials due to evident ethical concerns. Similar concerns may
happen in settings making use of robots, where deploying a bad policy
could result in expensive damage to the equipment. Additionally, consid-
ering the abundance of data available today, the ability to tap into vast
datasets to derive near-optimal policies and the possibility to leverage the
advances in supervised-learning techniques made this setting even more
attractive.

Concretely, in Chapter 6 we design algorithms able to produce an 𝜀-
optimal policy given only access to a dataset of the form

𝐷 = (𝑋𝜇
𝑡 , 𝐴𝜇

𝑡 , 𝑅𝜇
𝑡 )𝑛

𝑡=1.

This dataset is collected by a fixed policy 𝜇 ∶ 𝒳 → Δ(𝒜) according to the
contextual bandit protocol outlined in Section 2.4.

As specified in Section 2.4 we are interested in context-dependent policies.
For this reason, an algorithm can be modeled as a function 𝒻 ∶ (𝒳 ×
𝒜 × ℛ)𝑛 → Δ(𝒜)𝒳 taking as input a dataset 𝐷 and returning a single
stationary policy 𝜋 ∶ 𝒳 → Δ(𝒜).

Keeping in mind that in this setting no learning is allowed to happen
online, we can equivalently model an algorithm as a single decision rule
𝜋 ∶ 𝒪𝑛 → Δ(𝒜), where 𝒪𝑛 = (𝒳 × 𝒜 × ℛ)𝑛 × 𝒳. This emphasizes the
fact that at each time-step 𝑡 the agent can only use as observations the
dataset 𝐷 and the current context 𝑋𝑡.

Considering that the output policy is not history-dependent, there is no
reason to test its performance for a number of time-steps 𝑛 > 1. Thus,
using the definitions above and trying to compute 𝜌1(𝜋) according to Def-
inition 2.1.4 we get

𝜌1(𝜋) = 𝔼[𝑅1] = 𝔼[𝑔1(𝑋1, 𝐴1)] = 𝔼[∑
𝑎∈𝒜

𝜋(𝑎|𝐷, 𝑋1) ̄𝑔(𝑋1, 𝑎)]. (4.1)

23



i
i

“main” — 2023/12/13 — 23:12 — page 24 — #32 i
i

i
i

i
i

In the rest of the thesis, to make the notation lighter, we are often going
to drop the superscript 𝜇 from the random variables contained in the
dataset 𝐷. Similarly we are going to simply write 𝜌(𝜋), dropping the 1
subscript.

This setting is extended to Reinforcement Learning, specifically to Linear
MDPs in Chapter 7.

4.3 Large Scale Learning
In this section we direct our attention to the implications that the size of
the context/state space has on the design of algorithms.

When designing an algorithm for a given learning problem, we are gen-
erally also interested in proving some kind of performance guarantees.
Specifically, this is accomplished by demonstrating that our algorithms
are able to find an approximatively optimal (i.e. 𝜀-optimal) solution using
a polinomial amount of memory (memory complexity), processing time
(time complexity), and interactions with the environment (sample com-
plexity).

It is very important to specify with respect to which quantities these
bounds have to be polynomial. The size of the context space, in bandits,
or the state space, in reinforcement learning, is one such important quan-
tity. In some cases the size of the state space may be deemed small enough
to be fitted into memory and to be explicitly iterated upon. Thus, we may
be willing to accept a polynomial dependency on its size in our bounds.
This set of assumptions is referred to as the tabular setting.

However, in many real-world scenarios the context space is too large to be
efficiently processed or stored in memory. Imagine, for example, a movie
recommender system using as context the last 10 movies seen by the user.
Assuming there are 1024 movies in the catalog, we obtain 2100 possible
contexts, which would require 247 petabytes to be stored.

In these cases, we cannot have any quantity depending linearly (or worse)
on the size of the state space |𝒳|. Specifically, neither the sample com-
plexity, the space complexity, nor the computational complexity should
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have a worse-than-linear dependence on |𝒳|. This means that a logarith-
mic dependence is usually accepted (as 100 is a much smaller constant
than 2100).

In Sections 4.3.1 and 4.3.2, we discuss two popular assumptions, which
are also used as the basis in our contributions, to enable learning in very
large state spaces.

4.3.1 Learning with Linear Rewards
One way to make it possible to design efficient algorithms while respecting
this constraint, is to make assumptions on the structure of the rewards.
Concretely, it is very common to assume that the mean rewards are linear
and of the form

̄𝑔(𝑥, 𝑎) = ⟨𝜃∗, 𝜑(𝑥, 𝑎)⟩ ∀𝑥, 𝑎 (4.2)

where 𝜃∗ ∈ ℝ𝑑 is an unknown 𝑑-dimensional vector, and 𝜑 ∶ 𝒳 × 𝒜 → ℝ𝑑

is a known feature map, mapping every state-action pair to a lower 𝑑-
dimensional space. With this assumption, we can design algorithms de-
pending on the feature dimension 𝑑, which is assumed to be much smaller
than the dimension of the state space |𝒳|.

4.3.2 Learning with a Policy Class and a Computational
Oracle

In this section we present an alternative learning framework, which does
not require making structual assumptions about the environment. Indeed,
making assumptions on the structure of the rewards, or the transition
function may be convenient to prove bounds. However, the applicability
of such assumptions is sometimes not easy to verify in practice.

For this reason, a common alternative (Dudı́k et al. 2011; Agarwal et al.
2014; L. Wang, Krishnamurthy, and Slivkins 2023) is to assume access to a
policy class Π ⊆ {𝜋 ∶ 𝒳 → Δ(𝒜)} and a computational oracle. The policy
class may be very large but it is usually assumed to be finite. Precisely,
we assume that the cardinality |Π| of the policy class is too large to have a
linear dependence on it in our bounds. However, as before, a logarithmic
dependence is deemed acceptable.
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There are ways to deal with infinite policy classes, by having bounds that
depend on the covering number (Swaminathan and Joachims 2015) or
the Natarajan dimension (Y. Jin, Ren, et al. 2022) of the policy class.
In Chapter 6, we extend our work to infinite policy classes making use
of PAC-Bayesian generalization bounds (McAllester 1998; Audibert 2004;
Catoni 2007).

Having a finite policy class significantly simplifies proving sample com-
plexity bounds, because union bounds covering the whole policy class
become possible. However, since the policy class is too big to be iterated
on, the computational aspect, both in terms of memory and time, is not
immediately simplified by this assumption.

Langford and T. Zhang (2007); Dudı́k et al. (2011) and the line of works
that followed, managed to tackle the issue by reducing the problem to a
series of well-studied supervised learning problems, which can be solved
efficiently. Precisely, Dudı́k et al. (2011) show how to reduce the offline
contextual bandit problem to cost-sensitive classification, by making use
of the following oracle.

Definition 4.3.1 (𝒜ℳ𝒪 Oracle). For a set of policies Π, an argmax oracle
(𝒜ℳ𝒪 for short), is an algorithnm, which for any sequence {(𝑥𝑡, 𝑦𝑡)}𝑛

𝑡=1,
where 𝑥𝑡 ∈ 𝒳 and 𝑦𝑡 ∈ ℝ|𝒜|, computes

argmax
𝜋∈Π

𝑛
∑
𝑡=1

𝑦𝑡(𝜋(𝑥𝑡)).

Their definition works for deterministic policies only. Moreover, the policy
returned by the oracle can be seen as the optimal cost-sensitive classifier
on the given data, when interpreting the rewards of each action as negative
costs associated with misclassification errors.

In this thesis we make use of a slightly generalized version of the previous
oracle, which allows stochastic policy classes.

Definition 4.3.2 (CSC oracle). We assume access to a computational
oracle that can return optimal policies given an appropriately defined in-
put dataset. Precisely, the oracle takes as input a dataset {𝑥𝑡, 𝑦𝑡}

𝑛
𝑡=1 with
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contexts 𝑥𝑡 ∈ 𝒳 and gains 𝑦𝑡 ∈ ℝ𝒜, and returns

argmax
𝜋∈Π

𝑛
∑
𝑡=1

∑
𝑎

𝜋(𝑎|𝑥𝑡)𝑦𝑡(𝑎).

We used the notation 𝑦𝑡 for the rewards passed as input to the oracle,
to avoid confusion with the rewards associated to the current bandit in-
stance.

4.4 The Naïve Approach
A natural approach for off-policy and offline learning, is to define an esti-
mator ̂𝑣(𝜋) for the value 𝜌(𝜋) of each policy 𝜋, and to find and return the
policy ̂𝜋 that maximizes it.

Let us assume that for every policy 𝜋 ∈ Π we can bound in high probability
the error of our estimator as

𝜌(𝜋) − ̂𝑣(𝜋) ≤ 𝐴(𝜋) (underestimation error, 4.3)
̂𝑣(𝜋) − 𝜌(𝜋) ≤ 𝐵(𝜋) (overestimation error, 4.4)

Then, our algorithm can be defined as

̂𝜋 = argmax
𝜋∈Π

̂𝑣(𝜋). (naïve algorithm, 4.5)

We can then prove the following result.

Lemma 4.4.1 (Regret of the naive algorithm). Given any comparator
policy 𝜋∗ ∈ Π, the expected regret of the naive algorithm can be bounded as

𝜌(𝜋∗) − 𝜌( ̂𝜋) ≤ 𝐴(𝜋∗) + max
𝜋∈Π

𝐵(𝜋).

Proof.
𝜌(𝜋∗) ≤ ̂𝑣(𝜋∗) + 𝐴(𝜋∗)

≤ ̂𝑣( ̂𝜋) + 𝐴(𝜋∗)
≤ 𝜌( ̂𝜋) + 𝐴(𝜋∗) + 𝐵( ̂𝜋𝑛)
≤ 𝜌( ̂𝜋) + 𝐴(𝜋∗) + max

𝜋∈Π
𝐵(𝜋)
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The first inequality is follows from the underestimation error bound of
Equation (4.3); the second follows from the definition of the algorithm
in Equation (4.5), and the third from the overestimation error bound of
Equation (4.4).

Notice that we cannot significantly improve the last step, where we bounded
𝐵( ̂𝜋) with max𝜋∈Π 𝐵(𝜋), because it is always possible to construct a prob-
lem instance where the two terms coincide.

To explain why this bound is not very satisfying, in the following section
we will study a concrete instance of the estimator ̂𝑣(𝜋) for the setting
introduced in Section 4.3.2.

4.4.1 Importance-Weighted Estimation
The simplest possible estimator one can think of is the importance-weighted
(IW) value estimator (Horvitz and Thompson 1952) defined for each policy
𝜋 as

̂𝑣IW(𝜋) = 1
𝑛

𝑛
∑
𝑡=1

𝜋(𝐴𝑡|𝑋𝑡)
𝜇(𝐴𝑡|𝑋𝑡)

⋅ 𝑅𝑡. (IW, 4.6)

This estimator is also known as the inverse-probability weighting estima-
tor (L. Wang, Krishnamurthy, and Slivkins 2023) or inverse-propensity
weighted estimator (Y. Jin, Ren, et al. 2022), both abbreviated as IPW.

It can be easily shown that this estimator is unbiased

𝔼[ ̂𝑣IW(𝜋)] = 𝔼[ 1
𝑛

𝑛
∑
𝑡=1

𝜋(𝐴𝑡|𝑋𝑡)
𝜇(𝐴𝑡|𝑋𝑡)

⋅ 𝑔𝑡(𝑋𝑡, 𝐴𝑡)]

= 𝔼[ 1
𝑛

𝑛
∑
𝑡=1

∑
𝑎∈𝒜

𝜇(𝑎|𝑋𝑡)
𝜋(𝑎|𝑋𝑡)
𝜇(𝑎|𝑋𝑡)

⋅ ̄𝑔(𝑋𝑡, 𝑎)] = 𝔼[∑
𝑎∈𝒜

𝜋(𝑎|𝑋1) ̄𝑔(𝑋1, 𝑎)]

We can use this estimator for the naïve algorithm of Equation (4.5), and
compute the output policy using an oracle, such as the one of Defini-
tion 4.3.2. It is sufficient to make a single call the oracle with the dataset
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{𝑋𝑡, ̃𝑦𝑡}𝑛
𝑡=1, where the reward vectors are defined as

𝑦𝑡(𝑎) = 1{𝐴𝑡 = 𝑎}
𝜇(𝐴𝑡|𝑋𝑡)

𝑅𝑡.

The fact that the two objectives are the same can be verified with a simple
calculation:

𝑛
∑
𝑡=1

∑
𝑎∈𝒜

𝜋(𝑎|𝑋𝑡)𝑦𝑡(𝑎) =
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

1{𝐴𝑡 = 𝑎} 𝜋(𝑎|𝑋𝑡)
𝜇(𝐴𝑡|𝑋𝑡)

𝑅𝑡

=
𝑛

∑
𝑡=1

𝜋(𝐴𝑡|𝑋𝑡)
𝜇(𝐴𝑡|𝑋𝑡)

𝑅𝑡 = ̂𝑣IW(𝜋).

To use Lemma 4.4.1 to obtain a regret bound, we first need to bound
in high probability the error of our estimator ̂𝑣IW. We can accomplish
this by using some concentration inequalities, such as Bernstein’s, which
is reported here for convenience.

Lemma 4.4.2 (Bernstein’s corollary). Let 𝑍1, … 𝑍𝑛 be a collection of 𝑛
idependent and identically distributed random variables. Assume that all
the random variables are bounded by a constant 𝛼 > 0

sup
𝑖

|𝑍𝑖| ≤ 𝛼 a.s.

Then, for any 𝛿 ∈ (0, 1), the difference between the sample mean and its
expected value can be bounded with probability at least 1 − 𝛿 as

∣𝔼[𝑍1] − 1
𝑛

𝑛
∑
𝑡=1

𝑍𝑡∣ ≤ √2𝕍[𝑍1] log(1/𝛿)
𝑛 + 2𝛼 log(1/𝛿)

3𝑛 .

For convenience, let us define ̂𝑟𝑡(𝜋) ≐ 𝑅𝑡 ⋅ 𝜋(𝐴𝑡|𝑋𝑡)/𝜇(𝐴𝑡|𝑋𝑡). Then, using
Lemma 4.4.2 with 𝑍𝑡 = ̂𝑟𝑡(𝜋) gives us a symmetric error bound for our
estimator ̂𝑣𝑛(𝜋)

𝐴(𝜋) = 𝐵(𝜋) = √2𝕍[ ̂𝑟1(𝜋)] log(1/𝛿)
𝑛 + 2𝛼 log(1/𝛿)

3𝑛 .

Finally, using an union bound over the class of policies Π and applying
Lemma 4.4.1 yields the following guarantee.
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Theorem 4.4.3 (naive). Let 𝛿 ∈ (0, 1) and 𝜋∗ ∈ Π be any comparator
policy. Then, the regret of the naïve algorithm, using the IW estimator
can be bounded with probability at least 1 − 𝛿 as

𝜌(𝜋∗) − 𝜌( ̂𝜋𝑛) ≲ √2𝛽 log(|Π|/𝛿)
𝑛 + 2𝛼 log(|Π|/𝛿)

3𝑛 ,

where we denoted with 𝛼 and 𝛽 respectively

𝛼 = sup
𝑥,𝑎

1
𝜇(𝑎|𝑥) 𝛽 = sup

𝜋∈Π
𝕍[ ̂𝑟1(𝜋)].

The problem with this result lies exactly in the quantities 𝛼 and 𝛽 ap-
pearing in the bound. For large policy classes and state spaces, those
quantities are to be considered unbounded, for all practical purposes. It
is sufficient that the behavior policy 𝜇 does not visit a single state for the
whole bound to lose meaning.

4.5 The Pessimism Principle
In recent years, a range of ideas have been proposed to improve the naïve
approach presented above. The most widely adopted approach, first pro-
posed by Swaminathan and Joachims 2015, and later elaborated on in a
variety of contexts by works like (London and Sandler 2019; Y. Jin, Z.
Yang, and Z. Wang 2021; Rashidinejad, B. Zhu, et al. 2021; Y. Jin, Ren,
et al. 2022; G. Li, Ma, and Srebro 2022), involves selecting a pessimistic
policy with the goal of reducing the random fluctuations.

As before, this approach requires designing an estimator ̂𝑣(𝜋) with bounded
error (Equations (4.3) and (4.4)). Usually this property is required to hold
in high probability, and is achieved through the use of standard concen-
tration inequalities such as Bernstein’s.

However, they key difference from the naïve approach is that now the
algorithm computes and returns the best pessimistic policy

̂𝜋 = argmax
𝜋∈Π

( ̂𝑣(𝜋) − 𝐵(𝜋)). (pessimistic algorithm) (4.7)
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We call this pessimistic, because the overstimation bound (Equation (4.4))
guarantees that ̂𝑣(𝜋) − 𝐵(𝜋) is smaller than the true value 𝜌(𝜋) for any
policy 𝜋.

We are now ready to bound the regret of the pessimistic algorithm (Equa-
tion (4.7)) with respect to any comparator policy 𝜋∗.

Lemma 4.5.1 (bound for the pessimistic algorithm). Given any compara-
tor policy 𝜋∗ ∈ Π. The regret of the pessimistic algorithm (Equation (4.7))
can be bounded as

ℜ( ̂𝜋; 𝜋∗) ≤ 𝐴(𝜋∗) + 𝐵(𝜋∗).

Proof.

𝜌( ̂𝜋) ≥ ̂𝑣( ̂𝜋) − 𝐵( ̂𝜋) ≥ ̂𝑣(𝜋∗) − 𝐵(𝜋∗) ≥ 𝜌(𝜋∗) − 𝐴(𝜋∗) − 𝐵(𝜋∗)

Where in the first and last step we used Equation (4.4), and for the second
step we used the definition of the algorithm (Equation (4.7)).

This result is a big improvement with respect to Lemma 4.4.1, because we
got rid of the maximum over the whole policy class on the right-hand side,
and the bound now only depends (in principle) with quantities depending
on the comparator policy 𝜋∗.

4.6 Exploration and Coverage
We have seen in the previous sections that results often depend on the
comparator 𝜋∗ and the behavior policy 𝜇, and on the subset of the state-
action space that they explore.

Infact, the quality of the observed data is of fundamental importance to
guarantee the optimality of the learned policy. However, different algo-
rithms pose different requirements on the structure of the data.

These requirements are commonly posed in terms of the “overlap” (or
coverage) between the comparator policy and the behavior policy. There
are many different defintions of coverage in the literature. Here we give
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a general definition, and then show how to instantiate it to recover the
quantities of interest.

Definition 4.6.1 (coverage ratio). Given a weight vector 𝐰 ∈ ℝ|𝒳||𝒜|, and
a positive constant 𝑝 ∈ ℝ∪{∞}. We define the generalized policy coverage
ratio between any policy 𝜋 and the behavior policy 𝜇 as a weighted norm
between their state-action occupancy measures

𝒞𝐰,𝑝(𝜋) = (∑
𝑥,𝑎

𝐰(𝑥, 𝑎) (𝑝𝜋(𝑥, 𝑎)
𝑝𝜇(𝑥, 𝑎))

𝑝
)

1/𝑝

= ∥𝑝𝜋

𝑝𝜇 ∥
𝐰,𝑝

The coverage ratio can be seen as a notion of similarity between 𝜋 and 𝜇:
it is minimized when the two policies are equal, and otherwise grows to
infinity as the two policies drift apart.

Some common specializations of Definition 4.6.1 are given below. The first
is dervied by setting 𝐰 to be equal to the state-action occupancy measure
𝑝𝜋 of policy 𝜋1

𝐶(𝜋) ≐ 𝒞𝑝𝜋,1(𝜋) = 𝔼𝑋,𝐴∼𝑝𝜋[𝑝𝜋(𝑋, 𝐴)
𝑝𝜇(𝑋, 𝐴)]. (4.8)

Other two common variations are derived by setting 𝐰 respectively pro-
portional to the state occupancy measure of 𝜋, and the one vector 𝟏

𝐶⋄(𝜋) ≐ 𝒞𝜈𝜋,1(𝜋) = 𝔼𝑋∼𝜈𝜋[∑
𝑎∈𝒜

𝑝𝜋(𝑋, 𝑎)
𝑝𝜇(𝑋, 𝑎)] (4.9)

𝐶†(𝜋) ≐ 𝒞𝟏,1(𝜋) = ∑
𝑥,𝑎

𝑝𝜋(𝑥, 𝑎)
𝑝𝜇(𝑥, 𝑎) (4.10)

We assigned a name to these quantities to refer to them easily later. One
important difference between them, is that the first reduces to 1 when
the two policies coincide, while the other two reduce to |𝒜| and |𝒳||𝒜|
respectively.

1In the contextual bandit setting 𝑝𝜋 reduces to 𝜈(𝑥)𝜋(𝑎|𝑥).
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Let us now have a look at what those quantities reduce to in the setting
of contextual bandits:

𝐶(𝜋) = 𝔼𝐴∼𝜋(⋅|𝑋)[
𝜋(𝐴|𝑋)
𝜇(𝐴|𝑋)], 𝐶⋄(𝜋) = 𝔼[∑

𝑎∈𝒜

𝜋(𝑎|𝑋)
𝜇(𝑎|𝑋)], 𝐶†(𝜋) = ∑

𝑥,𝑎

𝜋(𝑎|𝑥)
𝜇(𝑎|𝑥) .

Here we assumed that the context 𝑋 is sampled according to the context
distribution 𝜈.

In the stochastic bandit case (i.e. in the absence of contexts) we are going
to consider

𝐶⋄(𝜋) = 𝐶†(𝜋) = ∑
𝑎∈𝒜

𝜋(𝑎)
𝜇(𝑎) .

An other very important version of the coverage ratio, is the L-∞ coverage
ratio between policy 𝜋 and 𝜇, and is defined by setting 𝐰 to the vector of
all ones 𝟏 and 𝑝 to ∞

𝐶∞(𝜋) = 𝒞𝟏,∞(𝜋) = sup
𝑥,𝑎

𝑝𝜋(𝑎|𝑥)
𝑝𝜇(𝑎|𝑥) , (4.11)

where the range of the sup is to be intended restricted to the support of 𝜋.
In the contextual bandit case this quantity reduces to the ratio between
the two policies, and it is also referred to as the worst-case density ratio
(L. Wang, Krishnamurthy, and Slivkins 2023) between 𝜋 and 𝜇.

One common assumption is to require the behavior policy to sufficiently
explore all the possible states and actions (B. Zhang et al. 2012; Y. Zhao
et al. 2012; Swaminathan and Joachims 2015; Y.-Q. Zhao et al. 2015; X.
Zhou et al. 2017; Kallus 2018; Kitagawa and Tetenov 2018; Athey and
Wager 2021; R. Zhan et al. 2021; Z. Zhou, Athey, and Wager 2023). This
assumption, called uniform (or full) coverage, guarantees that the learner
can correctly estimate the value of any action for any state. It can be
stated as follows.

Assumption 4.6.2 (uniform coverage). We assume that the worst-case
density ratio between any policy 𝜋 ∈ Π and the behavior policy 𝜇 is
upper-bounded by a constant 𝛼 ∈ ℝ. That is

∃𝛼 ∈ ℝ s.t. ∀𝜋 ∈ Π sup
𝑥,𝑎

𝜋(𝑎|𝑥)
𝜇(𝑎|𝑥) ≤ 𝛼.
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However, this assumption is considered to be very strong, and is hardly
satisfied in practice, because policies, especially those close to optimality,
tend to concentrate on a subset of “good” actions and states.

Another, more desirable, assumption is called partial coverage and re-
quires the behavior policy to only explore the subset of states and actions
visited by the policies we want to compete with (typically, the optimal
policy).

Assumption 4.6.3 (partial coverage). Given a comparator policy 𝜋∗ ∈ Π
of interest, the coverage ratio between 𝜋 and 𝜇 is bounded. That is,

𝐶(𝜋∗) < ∞.

They key difference with the uniform coverage assumption is that only the
coverage with respect to the comparator needs to be bounded, as opposed
to requiring a bound on the coverage of all policies. The specific coverage
used in the assumption is slightly less important. Here we used 𝐶(𝜋),
but one can have a partial coverage assumption using any of the other
definitions (e.g. 𝐶⋄, 𝐶†, 𝐶∞).

The quantities appearing in these assumptions, such as 𝛼, 𝐶(𝜋∗) and
𝐶∞(𝜋∗) are often found in the regret bounds of algorithms. Having a
bound that scales with 𝐶(𝜋) or a similar coverage measure, is ideal be-
cause the bound automatically adapts to the quality of the data, giving
better guarantees against well-covered policies. On the other hand, having
a bound scaling with 𝛼 is not great, and should be avoided, especially if
we assume the context space to be very large.

It should also be noted that having a bound depending on 𝐶∞(𝜋∗) in
a setting where the context/state space is assumed to be very large or
infinite should really be avoided.

4.7 Coverage Definitions with Linear Rewards
All these definitions and assumptions can be translated to settings making
assumptions on the structure of the environment, such as the linear bandit
setting discussed in Section 4.3.1, or the linear MDP setting.
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Equation (4.8) or Equation (4.11) could be used in this case as well. How-
ever, these quantities become unbounded when there exists even a tiny set
of contexts where the two policies have no overlap. Intuitively, it should
be possible to learn a good policy even when there are states where the
policies pick different actions, as long as they are aligned in the feature
space in an appropriate sense. To make this intuition formal, we will
showcase and compare different notions of “feature coverager ratios” used
in the state of the art.

We start by introducing the matrix 𝚲𝜋 ∈ ℝ𝑑×𝑑 for each policy 𝜋, which is
a very common quantity in this line of works:

𝚲𝜋 = 𝔼𝑋,𝐴∼𝑝𝜋(⋅|𝑋)[𝜑(𝑋, 𝐴)𝜑(𝑋, 𝐴)T]. (4.12)

We can then show our first definition of coverage for the linear setting

𝐶†(𝜋) = 𝔼𝑋,𝐴∼𝑝𝜋[𝜑(𝑋, 𝐴)T𝚲−1
𝜇 𝜑(𝑋, 𝐴)] = Tr(𝚲−1

𝜇 𝚲𝜋), (4.13)

where last equality follows from the property of trace ⟨𝑎, 𝑏⟩ = Tr(𝑏𝑎T).
This is one of the definitions we use in Chapter 5, and an other way to
write it is

𝐶†(𝜋) = 𝔼𝑋,𝐴∼𝑝𝜋[‖𝚲−1
𝜇 𝜑(𝑋, 𝐴)‖2

2].
We denoted this quantity with 𝐶†, because it is equivalent to Equa-
tion (4.10) when reducing the linear reward setting to the tabular setting,
by taking 𝑑 = |𝒳||𝒜| and 𝜑(𝑥, 𝑎)𝑖 = 1{𝑥, 𝑎 = 𝑖}.

Similarly, we can define the notion of coverage we use in Chapter 7.

Definition 4.7.1 (generalized feature coverage ratio). Let 𝑐 ∈ {1/2, 1}.
We define the generalized coverage ratio as2

𝐶𝜑,𝑐(𝜋) = 𝜑̄⊤
𝜋 𝚲−2𝑐

𝜇 𝜑̄𝜋 = Tr(𝚲−2𝑐
𝜇 𝜑̄𝜋𝜑̄T

𝜋).
where 𝜑̄𝜋 ≐ 𝔼𝑋,𝐴∼𝑝𝜋 [𝜑(𝑋, 𝐴)].
Notice how this definition is equivalent to 𝐶(𝜋) when using 𝑐 = 1/2.

We compare in detail these definitions of coverage, and others used in the
state of the art, in Section 8.3 and Section 7.5.

2When 𝚲𝜇 is not invertible but 𝜑̄𝜋∗ is in the column space of 𝚲𝜇, we can define the
coverage ratio using the Moore-Penrose pseudoinverse, and set it to +∞ otherwise.
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4.8 Main Contributions

In Chapter 5 we present our first contribution. We study the problem of
online learning in adversarial bandit problems under off-policy feedback.
In this sequential decision making problem, the learner cannot directly ob-
serve its rewards, but instead sees the ones obtained by another unknown
policy run in parallel (behavior policy). Instead of a standard exploration-
exploitation dilemma, the learner has to face another challenge in this set-
ting: due to limited observations outside of their control, the learner may
not be able to estimate the value of each policy equally well. To address
this issue, we propose a set of algorithms that guarantee regret bounds
that scale with a natural notion of mismatch between any comparator
policy and the behavior policy, achieving improved performance against
comparators that are well-covered by the observations. We also provide an
extension to the setting of adversarial linear contextual bandits, and verify
the theoretical guarantees via a set of experiments. Our key algorithmic
idea is adapting the notion of pessimistic reward estimators that has been
recently popular in the context of off-policy reinforcement learning.

In Chapter 6 we study the problem of offline policy optimization in stochas-
tic contextual bandits. The goal is to learn a near-optimal policy based
on a dataset of decision data collected by a suboptimal behavior policy.
Rather than making any structural assumptions on the reward function,
we assume access to a given policy class and aim to compete with the
best comparator policy within this class. In this setting, a standard ap-
proach is to compute importance-weighted estimators of the value of each
policy, and select a policy that minimizes the estimated value up to a
“pessimistic” adjustment subtracted from the estimates to reduce their
random fluctuations. In this thesis, we show that a simple alternative ap-
proach based on the “implicit exploration” estimator of Neu (2015) yields
performance guarantees that are superior in nearly all possible terms to all
previous results. Most notably, we remove an extremely restrictive “uni-
form coverage” assumption made in all previous works. These improve-
ments are made possible by the observation that the upper and lower tails
importance-weighted estimators behave very differently from each other,
and their careful control can massively improve on previous results that
were all based on symmetric two-sided concentration inequalities. We also

36



i
i

“main” — 2023/12/13 — 23:12 — page 37 — #45 i
i

i
i

i
i

extend our results to infinite policy classes in a PAC-Bayesian fashion, and
showcase the robustness of our algorithm to the choice of hyper-parameters
by means of numerical simulations.

Finally, in Chapter 7 we present our third contribution. We study the
problem of offline learning in the context of Reinforcement Learning. This
problem has attracted a lot of attention recently, but most existing meth-
ods with strong theoretical guarantees are restricted to finite-horizon or
tabular settings. In contrast, few algorithms for infinite-horizon settings
with function approximation and minimal assumptions on the dataset are
both sample and computationally efficient. Another gap in the current
literature is the lack of theoretical analysis for the average-reward set-
ting, which is more challenging than the discounted setting. In this thesis,
we address both of these issues by proposing a primal-dual optimization
method based on the linear programming formulation of RL. Our key con-
tribution is a new reparametrization that allows us to derive low-variance
gradient estimators that can be used in a stochastic optimization scheme
using only samples from the behavior policy. Our method finds an 𝜀-
optimal policy with 𝑂(𝜀−4) samples, while being computationally efficient
for infinite-horizon discounted and average-reward MDPs with realizable
linear function approximation and partial coverage. Moreover, to the best
of our knowledge, this is the first theoretical result for average-reward
offline RL.
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Chapter 5

Online Learning with
Off-Policy Feedback

In this chapter, we study the setting of online learning with off-policy
feedback as outlined in Chapter 4, and in particular in Section 4.1.

Our main contribution is an online learning algorithm that guarantees
a total expected regret against any comparator policy 𝜋∗ that is of or-
der √𝑛 ⋅ 𝐶†(𝜋∗) = √𝑛 ⋅ ∑

𝑎∈𝒜

𝜋∗(𝑎)
𝜇(𝑎) ,

where 𝜇 is the behavior policy and 𝜋(𝑎) denotes the probability that policy
𝜋 plays action 𝑎. Our method makes use of a slight pessimistic adjustment
to the classic importance-weighted reward estimators commonly used in
the adversarial bandit literature. We refer to the problem-dependent fac-
tor appearing in the bound as the coverage ratio and denote it by 𝐶†(𝜋∗).
The coverage ratio quantifies the overlap between the comparator and
behavior policies: it is of order |𝒜| when the two policies closely match
each other, but it blows up quickly as the two policies start to differ.
Notably, our bounds can be orders of magnitude better than what one
would obtain by adapting a standard adversarial bandit method without
adjustments. For instance, a naïve analysis of the classic Exp3 method
only gives a regret bound of order √𝑛/ min𝑎 𝜇(𝑎) against all comparator
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policies—even against ones that are actually well covered by the behavior
policy. Besides providing theoretical results, we also confirm empirically
that the performance of these two methods can be quite different, and in
particular that Exp3 can indeed fail to take advantage of the comparator
policy being well covered by the behavior policy.

Moreover, our contributions naturally fit in the broader context of on-
line learning under partial monitoring, which generally considers situa-
tions where the observations made by the learner are decoupled from its
rewards (Rustichini 1999; Bartók et al. 2014; Lattimore and Szepesvári
2019). In a general partial monitoring scenario, the learner receives an
observation that depends on its action but may be insufficient to recon-
struct the obtained reward. A well-studied special case of partial monitor-
ing problems is online learning with feedback graphs (Mannor and Shamir
2011; Kocák, Neu, Valko, and Munos 2014; Alon, Cesa-Bianchi, Dekel,
et al. 2015; Kocák, Neu, and Valko 2016; Alon, Cesa-Bianchi, Gentile,
et al. 2017). In this setting, the set of observations associated with each
action are given by a directed graph whose nodes are the actions: if ac-
tions 𝑎 and 𝑎′ are connected with an arc pointing from 𝑎 to 𝑎′, the learner
observes the reward of action 𝑎 when it plays action 𝑎′. The graph may
not have self-loops for every action, which allows the possibility that the
learner will not observe its own reward. Clearly, our setting can be em-
bedded in this class of problems by considering a sequence of randomly
generated star graphs where the action taken by the behavior policy is
connected with all other actions. However, the graph does not contain
self-loops which renders all existing methods for this problem unsuitable
for our problem. In this sense, our contribution sheds some new light on
the hardness of learning with feedback graphs without self-loops, and can
potentially inspire future work in this domain.

Another line of work closely related to ours is the literature on offline
reinforcement learning, where the learner cannot interact with the en-
vironment and has instead only access to a fixed dataset gathered by a
behavior policy (Levine et al. 2020). In this context, the idea of of em-
ploying some form of pessimism has been extremely popular in the last
few years, and pessimism has been purported to come with many desir-
able properties (Buckman, Gelada, and Bellemare 2021; Y. Jin, Z. Yang,
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and Z. Wang 2021; Rashidinejad, B. Zhu, et al. 2021; Uehara and Sun
2021; Xie, C. Cheng, et al. 2021). One of these is that pessimistic offline
RL methods can overcome the typical limitation of requiring the behav-
ior policy to sufficiently explore the whole state-action space, which many
previous results suffer from (Antos, Szepesvári, and Munos 2008; Munos
and Szepesvári 2008; J. Chen and Jiang 2019; Xie and Jiang 2021). This
assumption is very strong and often not verified in practice. However, a
series of recent works show that, via an appropriate use of pessimism, it
is possible to obtain bounds which scale with the coverage with respect
to a comparator policy, instead of the whole state-action space. Many of
these results are surveyed in the work of Xiao et al. (2021), who show that
pessimistic policies are minimax optimal with respect to a special objec-
tive that weighs problem instances with a notion of inherent difficulty of
estimating the value of the optimal policy. On the other hand, they show
that without such weighting, pessimism is in fact only one of many possi-
ble heuristics that are all minimax optimal when considering the natural
version of the optimization objective. This highlights that pessimism may
not necessarily play a special role in offline optimization, and that the
quest to understand the complexity of offline reinforcement learning is far
from being over.

While our results definitely do not settle the debate of whether or not
pessimism is the best way to deal with off-policy observations, they do
provide some new insights. Most importantly, our findings highlight
that pessimism remains an effective method for obtaining comparator-
dependent guarantees. Such guarantees have attracted quite some inter-
est in the literature on online learning with fully observable outcomes
Chaudhuri, Freund, and Hsu 2009; Koolen 2013; Koolen and Erven 2015;
Luo and Schapire 2015; Orabona and Pál 2016; Cutkosky and Orabona
2018. One common building block of parameter-free methods in this con-
text is the Prod algorithm of Cesa-Bianchi, Mansour, and Stoltz (2007),
used, for instance, in the algorithm designs of Gaillard, Stoltz, and Er-
ven (2014); Sani, Neu, and Lazaric (2014); Koolen and Erven (2015).
Interestingly, our analysis also leans heavily on the tools developed by
Cesa-Bianchi, Mansour, and Stoltz (2007). When it comes to the bandit
setting, comparator-dependent results are apparently much more sparse
and in fact we are only aware of the work of Lattimore 2015 that studies
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the possibility of guaranteeing better performance against certain com-
parators. As for our specific problem, we are not aware of any existing
method that would be able to guarantee meaningful instance-dependent
performance bounds.

5.1 Preliminaries
We study the off-policy adversarial bandit game introduced in Defini-
tion 4.1.1, assuming that the rewards are bounded as ℛ = [0, 1].
Notably, the learner does not get to observe its own reward 𝑅𝑡 but has to
make do with the reward 𝑅𝜇

𝑡 gained by the behavior policy. We allow the
adversary to be adaptive in the sense of being able to take into account
all past actions of the learner and the behavior policy when selecting the
reward function. Also, the learner is allowed to use randomization for
selecting its action.

Precisely, in this setting the total information revelead up to the end of
round 𝑡 is given by

ℱ𝑡 = 𝜎(𝐴1, 𝐴𝜇
1 , 𝑔1, … , 𝐴𝑡, 𝐴𝜇

𝑡 , 𝑔𝑡).

Notice that ℱ𝑡 denotes the full-information, while 𝑂𝑡 denotes the infor-
mation available to the agent. These two differ because the agent has no
access to 𝑔𝑡, but only to 𝑅𝜇

𝑡 .

Moreover, we remind that 𝔼𝑡[⋅] = 𝔼 [ ⋅| ℱ𝑡−1] and ℙ𝑡 [⋅] = ℙ(⋅ | ℱ𝑡−1).
The objective of the learner is to minimize the expected regret, with respect
to any time-invariant comparator policy 𝜋∗ ∈ Δ𝒜, defined as

ℜ(𝜋∗) = 𝔼[
𝑛

∑
𝑡=1

∑
𝑎

(𝜋∗(𝑎) − 𝜋𝑡(𝑎))𝑔𝑡(𝑎)]. (5.1)

The expected regret measures the expected gap between the total rewards
gained by the learner and the amount gained by a fixed comparator policy
𝜋∗.

The most common definition of regret compares the learner’s performance
to the optimal policy 𝜋∗ that selects the action 𝑎∗ = argmax𝑎 ∑𝑛

𝑡=1 ̄𝑔𝑡(𝑎).
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However, it is easy to see that this comparator strategy may be unsuit-
able for measuring performance in the setting we consider. Specifically,
it is unreasonable to expect strong guarantees against the optimal policy
when the behavior policy selects the optimal actions very rarely. Specif-
ically, the adversary can take advantage of the behavior policy covering
the action space only partially, and hide the best rewards among the least-
frequently sampled actions. In the most extreme case, the behavior policy
may not select some actions at all, which clearly makes it impossible for
the learner to compete with the optimal policy. Thus, we aim to achieve
regret guarantees that scale with the level of mismatch between the be-
havior and comparator policies, capturing the intuition that comparator
strategies that are well covered by the data should be easier to compete
with. Concretely, we aim to provide regret bounds that scale with 𝐶†

(Equation (4.10)). The intuitive significance of this coverage ratio is that
it roughly captures the hardness of estimating the value of the comparator
policy 𝜋∗ using only data from 𝜇. Indeed, a simple argument reveals that
the estimation error of the total reward of any given action 𝑎 scales as
√𝑛/𝜇(𝑎) in the worst case. Thus, we set out to prove regret guarantees
against each comparator 𝜋∗ that scale proportionally to the worst-case
estimation error of order √𝐶†(𝜋∗)𝑛.

This section presents our main contributions: a set of algorithms for online
off-policy learning and their comparator-dependent performance guaran-
tees that scale with the coverage ratio between the comparator policy and
the behavior policy. For the sake of clarity of exposition, we first describe
our approach in a relatively simple setting where the number of actions
is finite and the behavior policy is known. We then extend the algorithm
to be able to deal with unknown behavior policies in Section 5.3 and to
linear contextual bandit problems in Section 5.4.

5.2 Known Behavior Policy

Let us first consider the case where the learner has full prior knowledge of
𝜇. The algorithm we propose is an adaptation of the Exp3-IX algorithm
first proposed by Kocák, Neu, Valko, and Munos (2014) and later analyzed
more generally by Neu (2015). At each time-step 𝑡 the algorithm computes
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the weights

𝑤1(𝑎) = 1,

𝑤𝑡(𝑎) = 𝑤𝑡−1(𝑎) exp (𝜂 ̂𝑟𝑡−1(𝑎)) = exp (𝜂
𝑡−1
∑
𝑘=1

̂𝑟𝑘(𝑎)) ,

and the normalization factors 𝑊𝑡 = ∑𝑎∈𝒜 𝑤𝑡(𝑎), and uses them to draw
the action 𝐴𝑡 according to

𝜋𝑡(𝑎) = 𝑤𝑡(𝑎)
𝑊𝑡

.

Here, 𝜂 is a positive learning-rate parameter and ̂𝑟 is the Implicit eXplo-
ration (IX) estimate of the reward function 𝑔𝑡, modified to use the rewards
obtained by the behavior policy 𝜇, since the learner cannot see its own
rewards:

̂𝑟𝑡(𝑎) = 𝑅𝜇
𝑡 1{𝐴𝜇

𝑡 = 𝑎}
𝜇(𝑎) + 𝛾𝑡

= 𝑔𝑡(𝑎)1{𝐴𝜇
𝑡 = 𝑎}

𝜇(𝑎) + 𝛾𝑡
, (5.2)

where 𝛾𝑡 ≥ 0 is an appropriately chosen parameter. The full algorithm is
shown as Algorithm 1 .

Input: learning rate 𝜂, IX parameters (𝛾𝑡)
𝑛
𝑡=1

for 𝑡 ← 1, … , 𝑛 do
compute 𝑤𝑡(𝑎) = exp(𝜂 ∑𝑡−1

𝑘=1 ̂𝑟𝑘(𝑎)) ∀𝑎 ∈ 𝒜
play 𝐴𝑡 according to 𝜋𝑡(⋅) = 𝑤𝑡(⋅)/ ∑𝑎∈𝒜 𝑤𝑡(𝑎)
observe 𝐴𝜇

𝑡 and 𝑅𝜇
𝑡

compute ̂𝑟𝑡(𝐴𝜇
𝑡 ) = 𝑅𝜇

𝑡 / (𝜇(𝐴𝜇
𝑡 ) + 𝛾𝑡)

end
Algorithm 1: Exp3-IX for Off-Policy Learning

When setting 𝛾𝑡 = 0, ̂𝑟𝑡 is clearly an unbiased estimator of 𝑔𝑡 since
𝔼𝑡[1{𝐴𝜇

𝑡 = 𝑎}] = 𝜇(𝑎). Otherwise, for 𝛾𝑡 > 0, the estimator is biased
towards zero which can be seen as a pessimistic bias in the sense that it
underestimates the true rewards:

𝔼𝑡[ ̂𝑟𝑡(𝑎)] ≤ 𝑔𝑡(𝑎).
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This property is crucially important to achieve our goal to obtain perfor-
mance guarantees that scale with the mismatch between 𝜋∗ and 𝜇. We
believe that this use of the IX estimator with positive rewards is novel. In
previous work, the IX estimator has been used with losses, resulting in an
optimistic bias, exploited, for example, by the high-probability analysis of
Neu (2015). It is far from obvious that our alternative usage of the IX
estimator would induce the right notion of pessimism needed for achieving
coverage-dependent results in the off-policy setting. This is established in
the following:

Theorem 5.2.1. For any comparator policy 𝜋∗, the expected regret of
Exp3-IX initialized with any positive learning rate 𝜂 and 𝛾𝑡 = 𝜂

2 , is
bounded as

ℜ(𝜋∗) ≤ log |𝒜|
𝜂 + 𝔼[𝜂

2
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

𝑔𝑡(𝑎)𝜋∗(𝑎)
𝜇(𝑎) + 𝜂

2
]. (5.3)

Setting the learning rate to 𝜂 = √ log |𝒜|
𝑛 and to 𝜂 = √ log |𝒜|

𝐶†(𝜋∗)𝑛 respectively
gives

ℜ(𝜋∗) ≤ √𝑛 log |𝒜| (1 + 1
2𝐶†(𝜋∗)) (5.4)

ℜ(𝜋∗) ≤ √2𝐶†(𝜋∗)𝑛 log |𝒜|. (5.5)

The proof is based on a set of small but important changes made to the
standard Exp3 analysis originally due to Auer et al. (2002), and is deferred
to Section 5.5. The bound above successfully achieves our goal of guar-
anteeing better regret against comparator policies that are well-covered
by the behavior policy. In particular, the first bound of Equation (5.4)
provides a bound that holds uniformly for all behavior policies without
requiring prior commitment to any coverage level, whereas the second
bound guarantees improved guarantees against policies with a given cov-
erage level at the price of using a learning-rate parameter that is specific
to the desired coverage. Notably, the coverage ratio is of the order |𝒜|
when the comparator policy closely matches the behavior policy, but the
actual bound of Equation (5.3) can be much smaller when there are many
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actions that the behavior policy selects with probability much smaller than
𝛾.

It is worthwhile to compare this result with what one would obtain by a
straightforward adaptation of a standard adversarial bandit algorithm like
Exp3 (Auer et al. 2002)—which essentially corresponds to our algorithm
with the choice 𝛾 = 0. A standard calculation shows that the regret of
this strategy can be upper bounded by

ℜ(𝜋∗) ≤ log |𝒜|
𝜂 + 𝜂

𝑛
∑
𝑡=1

∑
𝑎∈𝒜

𝔼[𝜋𝑡(𝑎)
𝜇(𝑎) ].

Notice that the right-hand side of this bound does not depend on the
comparator policy, which suggests that this method is not quite suitable
for achieving our goal. Even worse, the only way to bound the second term
in the bound seems to be by 𝑛/ min𝑎 𝜇(𝑎), which scales inversely with the
coverage of the least well-covered action. A pessimistic interpretation of
this argument suggests that Exp3 may have huge regret when some actions
are not covered appropriately. A more charitable reading is that Exp3
may not be able to take advantage of situations where the comparator
policy is well-covered by the behavior policy. We set out to understand
this phenomenon empirically in Section 5.6.

The results of Theorem 5.2.1 could be extended to deal with a nonsta-
tionary sequence of behavior policies, and the regret bound can be shown
to scale with the average of the coverage ratios, as long as the behavior
policies are revealed to the learner.

5.3 Unknown Behavior Policy

In the previous section we assumed to have full prior knowledge of the
behavior policy 𝜇 in order to compute our reward estimator ̂𝑟𝑡. In this
section, we show that this is not an inherent limitation of our technique
and that it can be easily addressed by using a simple plugin estimator ̂𝜇𝑡
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of the behavior policy, which is then used in the definition of ̂𝑟𝑡:

̂𝜇1(⋅) = 0, ̂𝜇𝑡(𝑎) = 1
𝑡 − 1

𝑡−1
∑
𝑘=1

1{𝐴𝜇
𝑘 = 𝑎}, (5.6)

̂𝑟𝑡(𝑎) = 𝑔𝑡(𝑎)1{𝐴𝜇
𝑡 = 𝑎}

̂𝜇𝑡(𝑎) + 𝛾𝑡
. (5.7)

We then feed these reward estimates to the exponential-weights procedure
described in the previous section. As the following theorem shows, the re-
sulting algorithm satisfies essentially the same regret bound as the method
that has full knowledge of 𝜇.

Theorem 5.3.1. For any comparator policy 𝜋∗, the expected regret of
Exp3-IX with learning rate 𝜂 = √log(|𝒜|)/𝑛 and parameter sequence
𝛾1 = 1 + 𝜂

2 , 𝛾𝑡 = 𝜂
2 + √log(|𝒜|(𝑡 − 1)2)/(2𝑡 − 2), and estimates as in

Equation (5.6), is bounded as

ℜ(𝜋∗) = 𝒪 (𝐶†(𝜋∗)√𝑛 log(|𝒜|𝑛)) . (5.8)

The parameter tuning achieving the above bound is similar to what is
used in the previous theorem, and does not require the learner to have any
problem-specific information that would be difficult to acquire. Details are
relegated to Appendix A.2 along with the proof of the theorem.

5.4 Linear Contextual Bandits
We now switch gears and provide an extension to a significantly more
advanced setup: that of adversarial linear contextual bandits, first stud-
ied by Neu and Olkhovskaya (2020). This combines the online learning
with off-policy feedback setting introduced in Section 4.1 and studied in
the previous sections, with the linear rewards assumption introduced in
Section 4.3.1.

In each round 𝑡 of this sequential game, the learner first observes a context
𝑋𝑡 before making its decision, and the reward function 𝑔𝑡 is assumed to
be an adversarially chosen function of the context 𝑋𝑡 and the action 𝐴𝑡
taken by the learner. In particular, the adversary chooses a reward vector
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𝜃𝑡 ∈ ℝ𝑑 at each step, which determines the rewards for each context-action
pair as

𝑔𝑡(𝑥, 𝑎) = ⟨𝜃𝑡, 𝜑(𝑥, 𝑎)⟩,

where 𝜑 ∶ 𝒳 × 𝒜 → ℝ𝑑 is a feature map known to both the learner and
the adversary. We assume that the contexts live in an abstract space 𝒳
and are drawn i.i.d. according to a fixed probability distribution for all
𝑡. On the other hand, the adversary has full freedom in choosing the
reward functions, as long as it only depends on past observations and
in particular does not depend on 𝑋𝑡 or 𝐴𝑡. The only restriction we put
on the adversary is that we continue to require the rewards to be in the
interval [0, 1]. Moreover, as in the previous section the learner is not
allowed to see its own rewards, but only the ones of an other policy 𝜇
running in parallel. In this setting, a policy 𝜋 is a mapping from contexts
to probability distributions over the space of actions.

The objective of the learner is to minimize the regret defined with respect
to any time-invariant comparator policy 𝜋∗ ∶ 𝒳 → Δ𝒜 as:

ℜ(𝜋∗) = 𝔼[
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

(𝜋∗(𝑎 ∣ 𝑋𝑡) − 𝜋𝑡(𝑎 ∣ 𝑋𝑡)) 𝑔𝑡(𝑋𝑡, 𝑎)].

Our algorithm for this setting is a combination of the context-wise expo-
nential weights method proposed by Neu and Olkhovskaya (2020) with
the ideas developed in the previous section. The algorithm design is com-
plicated by the fact that the implicit exploration estimator is not very
straightforward to extend to this setting, which necessitates an alterna-
tive, but closely related, approach. In particular, we will define an unbiased
estimator of the reward vector 𝜃𝑡 and feed the resulting reward estimates
to calculate policy updates via the Prod update rule proposed by Cesa-
Bianchi, Mansour, and Stoltz (2007) (see also Cesa-Bianchi and Lugosi
(2006), Section 2.7).

Concretely, following the algorithm design of Neu and Olkhovskaya (2020),
we define the estimator

̂𝜃𝑡 = 𝚲−1
𝜇 𝜑(𝑋𝑡, 𝐴𝜇

𝑡 ) ⋅ 𝑅𝜇
𝑡 , (5.9)
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where 𝚲−1
𝜇 is defined according to Equation (4.12). Since 𝜑(𝑋𝑡, 𝐴𝜇

𝑡 )𝑅𝜇
𝑡 =

𝜑(𝑋𝑡, 𝐴𝜇
𝑡 )𝜑(𝑋𝑡, 𝐴𝜇

𝑡 )T𝜃𝑡, it is easy to see that ̂𝜃𝑡 is an unbiased estimator of
𝜃𝑡. These estimators are then used to update a set of weights 𝑤𝑡 defined
for each context-action pair as

𝑤𝑡(𝑥, 𝑎) =
𝑡−1
∏
𝑘=1

(1 + 𝜂⟨ ̂𝜃𝑘, 𝜑(𝑥, 𝑎)⟩), (5.10)

𝑊𝑡(𝑥) = ∑
𝑎

𝑤𝑡(𝑥, 𝑎), (5.11)

and the policy is then given as 𝜋𝑡(𝑎|𝑥) = 𝑤𝑡(𝑥,𝑎)
𝑊𝑡(𝑥) . Notice that this policy

can be also seen as another form of pessimistic reward estimation. In-
fact, letting ̂𝑟𝑡 be an unbiased reward estimator, the Prod-style update
of Equation (5.10) can be seen as an Exp3 update with the modified re-
ward estimator ̃𝑟𝑡 = 1

𝜂 log(1+𝜂 ̂𝑟𝑡), which clearly lower bounds the original
reward estimator throught the inequality log(1+𝑧) ≤ 𝑧, corresponding to a
form of pessimism. Moreover, the policy can be easily implemented with-
out explicitly keeping track of the weights for all (𝑥, 𝑎) pairs, as they are
well-defined through the sequence of reward-estimate vectors ̂𝜃1, … , ̂𝜃𝑡−1.
For simplicity1, we assume that the matrix 𝚲𝜇 is known for the learner
and has uniformly lower-bounded eigenvalues so that its inverse exists.
Following the naming convention of Neu and Olkhovskaya (2020), we call
the resulting algorithm LinProd and show its pseudocode in Algorithm 2.

Similarly to the previous sections, we are aiming for a comparator-dependent
performance guarantee that depends on the mismatch of the comparator
and the behavior policy. However, this quantity is not straightforward
to define in the case that we consider, due to the fact that we consider
a potentially infinite space of contexts. In particular, the natural idea of
considering

𝔼 [∑
𝑎

𝜋∗(𝑎|𝑋𝑡)
𝜇(𝑎|𝑋𝑡)

]

1These restrictions can be removed using the techniques developed in the previous
section, although at the price of a significantly more technical analysis. We opted to
preserve clarity of presentation instead.
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Input: learning rate 𝜂
for 𝑡 ← 1, … , 𝑛 do

observe 𝑋𝑡
compute 𝑤𝑡(𝑋𝑡, ⋅) = ∏𝑡−1

𝑘=1(1 + 𝜂⟨ ̂𝜃𝑘, 𝜑(𝑋𝑡, ⋅)⟩)
draw 𝐴𝑡 from 𝜋𝑡(⋅ ∣ 𝑋𝑡) = 𝑤𝑡(𝑋𝑡, ⋅)/ ∑𝑎 𝑤𝑡(𝑋𝑡, 𝑎)
observe 𝑅𝜇

𝑡 and 𝜑(𝑋𝑡, 𝐴𝜇
𝑡 )

compute ̂𝜃𝑡 as in Equation (5.9)
end

Algorithm 2: LinProd for off-policy learning

as a measure of mismatch is problematic as it can blow up when there
exists even a tiny set of contexts where the two policies have no over-
lap.

Intuitively, it should be possible to estimate the reward vector even when
there are states where the policies pick different actions, as long as they are
aligned in the feature space in an appropriate sense. To make this intuition
formal, we will consider the following alternative notion of feature coverage
ratio:

𝐶†(𝜋∗) = Tr(𝚲−1
𝜇 𝚲𝜋∗). (5.12)

This notion of coverage appropriately measures the extent to which the
feature vectors 𝜑(𝑋𝑡, 𝐴∗

𝑡) generated by the comparator policy line up with
the features excited by the behavior policy. Similar distribution-mismatch
measures are common in the offline RL literature, and in particular the
results of Y. Jin, Z. Yang, and Z. Wang (2021) are stated in terms of
the same quantity. The following theorem gives a performance guarantee
stated in terms of this measure of distribution mismatch.

Theorem 5.4.1. Let 𝜂 be any positive learning rate and suppose that it
is small enough so that 𝜆min(𝚲𝜇) ≥ 2𝜂 sup𝑥,𝑎 ‖𝜙(𝑥, 𝑎)‖2

2 holds. Then, for
any comparator policy 𝜋∗ the expected regret of LinProd is upper-bounded
by

ℜ(𝜋∗) ≤ log |𝒜|
𝜂 + 𝜂𝑛𝐶†(𝜋∗),

Setting 𝜂 = √ log |𝒜|
𝑛 and 𝜂 = √ log |𝒜|

𝐶†(𝜋∗)𝑛 and supposing that 𝑛 is large
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enough so that 𝜂 satisfies the condition, the regret can be further bounded
respectively as

ℜ(𝜋∗) ≤ √𝑛 log |𝒜| (1 + 𝐶†(𝜋∗)) ,

ℜ(𝜋∗) ≤ 2√𝐶†(𝜋∗)𝑛 log |𝒜|.

The bound mirrors the qualities of Theorem 5.2.1, and in particular it
implies good performance when the comparator policy is well-covered by
the behavior policy. Under ideal conditions where these policies are close
enough, the coverage ratio is of order 𝑑, which essentially matches the
rate proved by Neu and Olkhovskaya (2020) for the case of standard ban-
dit feedback. The bound then degrades as the two policies drift apart.
We recover the best-known bounds for the stochastic setting (Y. Jin, Z.
Yang, and Z. Wang 2021). The latter were stated for the setting of off-
policy learning in linear MDPs, which includes the stochastic version of
our problem as a special case. Note that our algorithm requires knowledge
of 𝚲𝜇. However, provided that the context distribution is known, it is pos-
sible to use instead an estimate based on matrix geometric resampling, as
proposed by Neu and Olkhovskaya 2020.

5.5 Analysis
This section provides the key ideas required for proving our main results.
Due to space restrictions, we will only prove Theorem 5.2.1 here and defer
the proof of the other two theorems to Appendices A.2 and A.3.

For the analysis, it will be useful to define the unbiased reward estima-
tor

̂𝑟IW
𝑡 (𝑎) = 𝑔𝑡(𝑎)1{𝐴𝜇

𝑡 = 𝑎}
𝜇(𝑎) ,

which essentially corresponds to the biased IX estimator ̂𝑟𝑡 when setting
𝛾𝑡 = 0. One of the most important properties of the IX estimator that we
will repeatedly use is stated in the following inequality:

𝑔𝑡(𝑎)1{𝐴𝜇
𝑡 = 𝑎}

𝜇(𝑎) + 𝛾𝑡
≤ 1

2𝛾𝑡
log (1 + 2𝛾𝑡 ̂𝑟IW

𝑡 (𝑎)) . (5.13)
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The result follows from a simple calculation in the proof of Lemma 1 of
Neu (2015) that we reproduce here for the convenience of the reader.

Let 𝑐 ∈ ℝ+ be any non-negative constant. Then,

𝑔𝑡(𝑎)1{𝐴𝑡 = 𝑎}
𝜇(𝑎) + 𝑐 ≤ 𝑔𝑡(𝑎)1{𝐴𝑡 = 𝑎}

𝜇(𝑎) + 𝑐 𝑔𝑡(𝑎) = 1{𝐴𝑡 = 𝑎}
2𝑐 ⋅ 2𝑐 𝑔𝑡(𝑎)/𝜇(𝑎)

1 + 𝑐 𝑔𝑡(𝑎)/𝜇(𝑎)
≤ 1

2𝑐 log(1 + 2𝑐 ̂𝑟IW
𝑡 (𝑎))

where the first step follows from 𝑔𝑡(𝑎) ∈ [0, 1] and the last one from the
inequality 𝑥

1+𝑥/2 ≤ log(1 + 𝑥), which holds for all 𝑥 ≥ 0.

Notably, the term on the right hand side can be thought of as a reward
estimator itself. Combining this reward estimator with the exponential
weights policy with 𝜂 = 𝛾 gives rise to the Prod algorithm of Cesa-
Bianchi, Mansour, and Stoltz (2007), which is a fact that some of our
proofs will implicitly take advantage of. This observation also motivates
our algorithm design for the contextual bandit setting in Section 5.4.

The proof of Theorem 5.2.1 The proof builds on the classical analysis
of exponential weights algorithm originally due to Vovk (1990), Littlestone
and Warmuth (1994) and Freund and Schapire (1997), and its extension
to adversarial bandit problems by Auer et al. (2002). In particular, our
starting point is the following lemma that can be proved directly with
arguments borrowed from any of these past works:

Lemma 5.5.1.

𝑛
∑
𝑡=1

∑
𝑎∈𝒜

𝜋∗(𝑎) ̂𝑟𝑡(𝑎) ≤ log |𝒜|
𝜂

+ 1
𝜂

𝑛
∑
𝑡=1

log ∑
𝑎∈𝒜

𝜋𝑡(𝑎) exp (𝜂 ̂𝑟𝑡(𝑎)) .

We include the proof for the sake of completeness in Appendix A.1. To pro-
ceed, notice that the above bound can be combined with Equation (5.13)
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to obtain
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

𝜋∗(𝑎) ̂𝑟𝑡(𝑎) ≤ log |𝒜|
𝜂

+ 1
𝜂

𝑛
∑
𝑡=1

log ∑
𝑎∈𝒜

𝜋𝑡(𝑎) exp ( 𝜂
2𝛾 log (1 + 2𝛾 ̂𝑟IW

𝑡 (𝑎)))

= log |𝒜|
𝜂 + 1

𝜂
𝑛

∑
𝑡=1

log ∑
𝑎∈𝒜

𝜋𝑡(𝑎) (1 + 𝜂 ̂𝑟IW
𝑡 (𝑎))

≤ log |𝒜|
𝜂 +

𝑛
∑
𝑡=1

∑
𝑎∈𝒜

𝜋𝑡(𝑎) ̂𝑟IW
𝑡 (𝑎), (5.14)

where we used the choice 𝛾 = 𝜂/2 in the second line and the inequality
log(1 + 𝑥) ≤ 𝑥 that holds for all 𝑥 > −1 in the last line.

It remains to relate the two sums in the above expression to the total
reward of the learner and the comparator policy. To this end, we first
notice that for any given action 𝑎, we have

𝔼𝑡[ ̂𝑟𝑡(𝑎)] = 𝔼𝑡[
𝑔𝑡(𝑎)1{𝐴𝜇

𝑡 = 𝑎}
𝜇(𝑎) + 𝛾 ]

= 𝑔𝑡(𝑎)𝜇(𝑎)
𝜇(𝑎) + 𝛾 = 𝑔𝑡(𝑎) − 𝛾 ⋅ 𝑔𝑡(𝑎)

𝜇(𝑎) + 𝛾 .
(5.15)

Via the tower rule of expectation, this implies

𝔼[
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

𝜋∗(𝑎) ̂𝑟𝑡(𝑎)]

= 𝔼 [
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

𝜋∗(𝑎)𝑔𝑡(𝑎) − 𝛾
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

𝜋∗(𝑎)𝑔𝑡(𝑎)
𝜇(𝑎) + 𝛾 ] .

Similarly, since 𝔼𝑡[ ̂𝑟IW
𝑡 (𝑎)] = 𝑔𝑡(𝑎), we also have

𝔼 [
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

𝜋𝑡(𝑎) ̂𝑟IW
𝑡 (𝑎)] = 𝔼 [

𝑛
∑
𝑡=1

∑
𝑎∈𝒜

𝜋𝑡(𝑎)𝑔𝑡(𝑎)] .

Putting these two facts together with Equation (5.14), we obtain the result
claimed in the theorem.

53



i
i

“main” — 2023/12/13 — 23:12 — page 54 — #62 i
i

i
i

i
i

0 0.2 0.4 0.6 0.8 1

500

1,000

1,500

2,000

2,500

α

T
ot
a
l
R
eg
re
t

EXP3 EXP3-IX

Figure 5.1: Total regret after 1000 steps for different values of the in-
terpolation parameter 𝛼. Thick lines represent the mean regret over 100
independent runs, while the shaded area represents the interval between
the 25% and 75% quantiles.

5.6 Empirical Results

The goal of this section is to compare the performances of Exp3 and
Exp3-IX under different levels of coverage, and verify if indeed our method
outperforms Exp3 in situations where the behavior policy is well-aligned
with the comparator, as the theory suggests. As pointed out earlier, a
naïve analysis of Exp3 suggests that its regret may scale as √𝑛/ min𝑎 𝜇(𝑎)
in the worst case, and therefore may not be able to take advantage of
situations where the behavior policy is well aligned with the comparator.
Our proposed method, instead, should be able to do so since it enjoys
comparator-dependent bounds.

We instantiate a 100-armed bandit, with Bernoulli rewards for all arms.
By default, all rewards have mean 0.5. However, for the first half of the
game (𝑡 ≤ 𝑛/2), we change the mean reward of the last arm to 0.8, and
for the remaining half, the mean of the first arm to 1. Suboptimal arms
always have the default mean reward of 0.5. This means that arm 100 is
the best for the first half of the game, but eventually gets outperformed
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by arm 1. We set the number of rounds 𝑛 to 10000, the learning rate
𝜂 of both algorithms to the recommended √log(|𝒜|)/𝑛 and 𝛾𝑡 = 𝜂/2.
We repeat the game for a range of behavior policies defined for each 𝛼
as 𝜋𝐵,𝛼(𝑖) ∝ (1 − 𝛼) 𝑖

|𝒜| + 𝛼(1 − 𝑖−1
|𝒜| ), for 𝑖 ∈ [0, … , |𝒜|], where 𝛼 varies

from 0 to 1. Hence, 𝛼 closer to 1 means the behavior policy puts large
probability mass on the first action, which we use as the comparator in our
experiment. We plot the results of the experiment on Section 5.6.

The results clearly match the intuitions that one can derive from our per-
formance guarantees: the regret of Exp3 indeed deteriorates as min𝑎 𝜇(𝑎)
approaches 0 at the two extremes 𝛼 = 0 and 𝛼 = 1. In particular, Exp3
fails to take advantage of the favorable case where the optimal policy is
well covered, while Exp3-IX performs significantly better in the latter
case, as predicted by our theory.

Moreover, it is worth to note that Exp3-IX was originally proposed, in
the adversarial bandit literature, as a variant of Exp3 with lower vari-
ance, allowing to bound regret with high probability instead of merely
in expectation. This variance reduction effect clearly carries over to our
setting. However, we were not able to establish high-probability bounds
for the adversarial-off-policy setting so far, and leave this question open
for future research.
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Chapter 6

Importance-Weighted
Offline Learning

Offline Policy Optimization (OPO) is the problem of learning a near-
optimal policy based on a dataset of historical observations. This problem
is of outstanding importance in real-world applications where experiment-
ing directly with the environment is costly, but otherwise large volumes
of offline data is available to learn from. Such settings include problems
in healthcare (Murphy 2003; Kim et al. 2011; Bertsimas et al. 2017; Rehg,
Murphy, and Kumar 2017), advertising (Bottou et al. 2013; Farias and
A. A. Li 2019), or recommender systems (L. Li, Chu, et al. 2011; Schnabel
et al. 2016).

A popular approach for this setting is importance-weighted offline learn-
ing, where one optimizes an unbiased estimate of the expected reward,
obtained through an appropriately reweighted average of the rewards in
the dataset (L. Li, Chu, et al. 2011; Bottou et al. 2013). To deal with
unstable nature of these estimators, the influential work of Swaminathan
and Joachims (2015) proposed an approach called “counterfactual risk
minimization”, which consists of adding a regularization term to the op-
timization problem to down the fluctuations, thus preventing the opti-
mizer to overfit to random noise. Their work has inspired a number of
follow-ups that either refined the regularization terms to yield better the-
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oretical guarantees (Y. Jin, Ren, et al. 2022; L. Wang, Krishnamurthy,
and Slivkins 2023), or developed practical methods with improved em-
pirical performance in large-scale problems London and Sandler (2019);
Sakhi, Alquier, and Chopin (2023). In this paper, we contribute to this
line of work by studying a simple and robust variant of the standard
importance-weighted reward estimators used in past work, and showing
tight theoretical performance guarantees for it.

Our main contribution is showing that the so-called implicit exploration
(IX) estimator (originally proposed by Kocák, Neu, Valko, and Munos
2014 and Neu 2015 in the context of online learning) achieves a mas-
sive variance-reducing effect in our offline learning setting, and using this
observation to derive performance guarantees that are both significantly
tighter and easier to interpret than all previous results in the literature.
In particular, we formally show that the regularization effect built into
the IX estimator is strong enough so that no further regularizer is re-
quired to stabilize the performance of policy optimization. This result is
perhaps surprising for the reader familiar with past work on the subject,
especially since several of these works made use of IX-like variance re-
duced estimators without managing to drop the additional regularization.
The key observation that allows us to prove our main results is that the
tails of importance-weighted estimators are asymmetric, which allows us
to tightly control the two tails separately via specialized concentration
inequalities. This is to be contrasted with previous results that all rely on
symmetric confidence intervals that turn out to be needlessly conservative.
This new perspective not only allows us to obtain better results but also
to simplify the analysis: both of the concentration inequalities we use for
the two tails can be derived using elementary techniques in a matter of a
few lines1.

More concretely, our main result is a regret bound that scales with the
degree of “overlap” between the comparator policy and the behavior pol-
icy, demonstrating better scaling against policies that are covered better
by the observed data. Unlike virtually all previous work, our guarantees

1In fact, both results are readily available in the literature: one is the main result
of Neu (2015) regarding the upper tail of the IX estimator, and another is stated as an
exercise in Boucheron, Lugosi, and Massart (2013).
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do not require the unrealistic condition that action-sampling probabilities
be bounded away from zero for all contexts. Our algorithm can be im-
plemented efficiently using a single call to a cost-sensitive classification
oracle, thus effectively reducing the offline policy optimization problem
to a standard supervised learning task (which feature is in high regard
thanks to the influential works of Langford and T. Zhang 2007; Dudı́k
et al. 2011; Agarwal et al. 2014 in the broader area of contextual bandit
learning). For simplicity of exposition, we prove our main result for finite
policy classes and show that the regret scales logarithmically with the size
of the class. We also provide some extensions to the simple algorithm
achieving these results, namely a version that trades oracle-efficiency for
a better scaling with the quantity measuring the mismatch between the
target and behavior policies, and a “PAC-Bayesian” variant that can make
use of prior information on the problem and also works for infinite pol-
icy classes. This extends the recent works of London and Sandler (2019);
Flynn et al. (2023); Sakhi, Alquier, and Chopin (2023) by providing bet-
ter generalization bounds and introducing a new family of PAC-Bayesian
regret bounds that apparently have not existed so far in the literature.
We also illustrate our theoretical findings with a set of experiments con-
ducted on real data, and empirically verify the robustness of our method
as compared to some natural baselines.

It is worth mentioning a parallel line of work on contextual bandits that
starts from the assumption that the reward function belongs to a known
function class, and thus a near-optimal policy can be learned by identi-
fying the true reward function within the class up to sufficient accuracy.
This perspective has been adopted by Y. Jin, Z. Yang, and Z. Wang (2021)
(as well as a sequence of follow-up works on offline reinforcement learning)
who considered function classes that are linear in some low-dimensional
features of the context-action pairs. These works provide simple algo-
rithms with strong theoretical performance guarantees, but they are all
limited by the strong assumptions that need to be made about the reward
function (and it is unclear how sensitive they are to model misspecifica-
tion). In contrast, the setting we consider assumes access to a policy class
and allows the development of algorithms that perform nearly as well as
the best policy within the class without requiring that the rewards have
a simple parametric form. This setting comes with its own set of trade-
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offs: the statistical complexity of learning in this setting depends on the
complexity of the policy class, and hard problems will evidently require
large classes of policies to accommodate best-in-class policies with satis-
fying performance. Our results in this paper highlight some further open
questions in this setting regarding computational-statistical trade-offs—
the discussion of which we relegate to Section 8.2.

6.1 Preliminaries
We study the problem of offline learning in stochastic contextual bandits
detailed in section Section 4.2.

For simplicity, we suppose that the behavior policy 𝜇 is fixed and known,
and only note here that extension to adaptive behavior policies is straight-
forward.

The goal is to use the available data to produce a policy ̃𝜋𝑛 achieving
the highest possible expected reward. The performance will be measured
in terms of regret (or excess risk) with respect to a comparator policy
𝜋∗.

We assume to have access to a policy class Π ⊆ {𝜋 ∶ 𝒳 → Δ𝒜} and aim
to provide regret bounds against all policies within the class. For most
of our contributions, we will work with finite policy classes and assume
access to a computational oracle that can return optimal policies given
an appropriately defined input dataset. This is the setting described in
Section 4.3.2, and the oracle we employ is the one of Definition 4.3.2.

We are interested in developing algorithms that access the oracle a small
constant number of times while providing formal performance guarantees
on the quality of the output policy.

6.2 Pessimistic importance-weighted offline learn-
ing in contextual bandits

The generic recipe for offline learning with pessism, detailed in Section 4.5,
has been combined with the IW estimator, defined in Equation (4.6),
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by Swaminathan and Joachims (2015), Y. Jin, Ren, et al. (2022) and L.
Wang, Krishnamurthy, and Slivkins (2023). This “pessimistic importance-
weighted offline learning” approach, which we abbreviate as PIWO learn-
ing, has several downsides, depending on the choice of 𝐵(𝜋). First, as
pointed out recently by (L. Wang, Krishnamurthy, and Slivkins 2023),
̂𝑣(𝜋) − 𝐵(𝜋) may not be necessarily be of the form required by a practi-

cal optimization oracle. Even more concerningly, a conservatively chosen
adjustment 𝐵(𝜋) may not only result in loose theoretical guarantees, but
also poor empirical performance. Indeed, notice that setting 𝐵(𝜋) too
large may overwhelm the data-dependent value estimates, thus resulting
in a policy that effectively ignores the observed data from policies that
are relatively poorly covered. In extreme cases, this approach may even
favor policies that have never been observed to yield any reward what-
soever over policies with positive estimated reward but high estimated
uncertainty.

The cleanest results for this PIWO learning approach have been derived
by L. Wang, Krishnamurthy, and Slivkins (2023), who used the adjust-
ment

𝐵(𝜋) = 𝛽
𝑛

∑
𝑡=1

∑
𝑎

𝜋(𝑎|𝑋𝑡)
𝜇(𝑎|𝑋𝑡)

.

Their regret bounds are stated in terms of the coverage ratio 𝐶⋄, defined
in Equation (4.9). Assuming that the worst-case density ratio (Equa-
tion (4.11)) between the two policies is uniformly upper-bounded by 𝛼, L.
Wang, Krishnamurthy, and Slivkins (2023) obtain, for their oracle-efficient
algorithm, a regret bound of the form

ℜ𝑛(𝜋∗) = 𝒪 (𝐶⋄(𝜋∗)√ log (|Π|/𝛿)
𝑛 + 𝛼 log(|Π|/𝛿)

𝑛 ) . (6.1)

This bound has the appealing property that its leading term scales as
𝐶⋄(𝜋∗)/√𝑛, thus guaranteeing good performance when the comparator
policy 𝜋∗ is well-covered by the behavior policy. The bound can be im-
proved to scale with √𝐶⋄(𝜋∗) instead of 𝐶⋄(𝜋∗) if one has prior knowledge
of the coverage ratio against the target policy 𝜋∗. On the negative side,
the result effectively requires the strong uniform coverage condition which
ensures that all actions are sampled at least a constant 𝛼 fraction of times
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in the data set. This condition is typically not met in realistic applications
for reasonable values of 𝛼, and in particular the bound becomes completely
void of meaning if there exists one single context 𝑥 where some action 𝑎
is selected with zero probability.

The original algorithm by Swaminathan and Joachims 2015 suffered from
the same issue. Recently, Y. Jin, Ren, et al. 2022 were able to relax this
uniform-coverage condition by developing a sophisticated concentration
inequality that only requires the third moment of the importance weights
∑𝑎

𝜋∗(𝑎|𝑋𝑡)
𝜇(𝑎|𝑋𝑡) to be bounded. Eventually, their bounds only apply to de-

terministic policies that map each context 𝑥 to a single action 𝜋∗(𝑥), and
depend on the quantity 𝛼∗ = inf𝑥 𝜇(𝜋∗(𝑥)|𝑥). Their most clearly stated
result is Corollary 4.3, where they effectively show

ℜ𝑛(𝜋∗) = 𝒪 (√ log (|Π|𝑇 )
𝛼∗𝑛 ⋅ (log (1

𝛿 ))
3/2

) .

This bound still remains vacuous if there is one single context where
𝜇(𝜋∗(𝑥)|𝑥) is zero. A further downside of their method pointed out by
L. Wang, Krishnamurthy, and Slivkins (2023) is that the proposed algo-
rithm is not directly implementable with a CSC oracle due to the form of
the adjustment 𝐵𝑛 they use. In the following section, we will develop an
algorithm that eliminates all these limitations.

6.3 Pessimism and Variance Reduction via Im-
plicit Exploration

Our main contribution is addressing the limitations of the PIWO learning
framework in the previous section by studying a very simple adjustment to
the standard IW estimator. Concretely, we adapt the so-called “Implicit
eXploration” (IX) estimator of Neu 2015 defined as

̂𝑣𝑛(𝜋) = 1
𝑛

𝑛
∑
𝑡=1

𝜋(𝐴𝑡|𝑋𝑡)
𝜇(𝐴𝑡|𝑋𝑡) + 𝛾 ⋅ 𝑅𝑡, (6.2)

where 𝛾 ≥ 0 is a hyperparameter of the estimator that we will sometimes
refer to as the “IX parameter”. This adjustment implicitly acts like mixing
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the behavior policy with a uniform exploration policy, thus reducing the
random fluctuations of the IW estimator (and justifying the name “implicit
exploration”). The price of this stabilization effect is that the estimates
are biased towards zero to an extent that can be controlled using the IX
parameter 𝛾. Indeed, as a simple calculation shows, the IX estimator
satisfies

𝔼 [ ̂𝑣𝑛(𝜋)] = 𝜌(𝜋) − 𝛾𝐶𝛾(𝜋),

with the bias term 𝐶𝛾(𝜋) given as

𝐶𝛾(𝜋) = 𝔼 [∑
𝑎∈𝒜

𝜋(𝑎|𝑋)
𝜇(𝑎|𝑋) + 𝛾 ⋅ 𝑔(𝑋, 𝑎)] . (6.3)

Since the rewards are assumed to be non-negative, this bias can be in-
terpreted as a pessimistic adjustment to an otherwise unbiased estimator,
and it is thus reasonable to expect it to have the same effect as the ad-
justments used in the general PIWO framework2.

Note that 𝐶𝛾(𝜋) is closely related to the policy coverage ratio 𝐶⋄(𝜋) as
defined in Equation (4.9), up to the two differences that i) it replaces
𝜇(𝑋, 𝑎) by 𝜇(𝑋, 𝑎) + 𝛾 in the denominator and (ii) it is scaled with the
rewards 𝑔(𝑋, 𝑎). Both of these adjustments make it strictly smaller than
𝐶⋄(𝜋) as long as 𝛾 > 0, and notably it always remains bounded as 𝐶𝛾(𝜋) ≤
1
𝛾 , no matter how small 𝜇(𝑎|𝑥) gets. Furthermore, due to the scaling with
the rewards, 𝐶𝛾(𝜋) is small for policies with low expected reward, and in
particular it equals zero for a policy with zero expected reward. In what
follows, we will refer to 𝐶𝛾 as the smoothed coverage ratio.3

Our algorithm consists of simply selecting the policy that maximizes the
IX value estimates:

̂𝜋𝑛 = arg max
𝜋∈Π

̂𝑣𝑛(𝜋).

2In fact, the pessimistic bias of the IX estimators has been recently pointed out and
utilized by Gabbianelli, Neu, and Papini (2023) in the vaguely related context of online
learning with off-policy feedback.

3We use this term in the sense of the Laplace smoothing of estimators, not to be
confused with the smoothed analysis of algorithms (Spielman and Teng 2001) applied
to contextual bandits by Krishnamurthy et al. 2019.
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We refer to this algorithm as PIWO-IX, standing for “Pessimistic Importance-
Weighted Offline learning with Implicit eXploration”. Note that PIWO-
IX can be implemented via a single call to the CSC oracle with the gain
vectors defined as

𝑦𝑡(𝑎) = 1{𝐴𝑡=𝑎}𝑅𝑡/(𝜇(𝐴𝑡|𝑋𝑡)+𝛾).

The following theorem states our main result regarding PIWO-IX.

Theorem 6.3.1. With probability at least 1 − 𝛿, the regret of PIWO-IX
against any comparator policy 𝜋∗ ∈ Π satisfies

ℜ𝑛(𝜋∗) ≤ log (2|Π|/𝛿)
𝛾𝑛 + 2𝛾𝐶𝛾(𝜋∗).

Furthermore, by setting 𝛾 to √ log(2|Π|/𝛿)
𝑛 , the bound becomes

ℜ𝑛(𝜋∗) ≤ (2𝐶𝛾(𝜋∗) + 1) √ log (2|Π|/𝛿)
𝑛 .

The bound improves on the results of L. Wang, Krishnamurthy, and
Slivkins (2023) stated as Equation (4.6) along several dimensions. Most
importantly, our result removes the need for the behavior policy to be
bounded away from zero, and as such completely does away with the
uniform coverage assumptions needed by all previous work on the topic.
Another improvement is that our bound tightens the dependence on the
coverage ratio from 𝐶⋄(𝜋∗) to the potentially much smaller 𝐶𝛾(𝜋∗). A
small practical improvement is that PIWO-IX calls the CSC oracle with
a sparse input vector which can be computed slightly more efficiently than
the dense inputs used by L. Wang, Krishnamurthy, and Slivkins (2023).
This sparsity also leads to the practical advantage that PIWO-IX does
not output policies that have never been observed to yield nonzero rewards
(as long as there are alternatives that do receive positive rewards). We
provide further comments on the tightness of the bound above and other
properties of PIWO-IX in Section 8.2.

The key idea behind the proof of Theorem 6.3.1 is noticing that the tails
of the IX estimator are asymmetric: since ̂𝑣𝑛 is a nonnegative random
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variable, its only extreme values are all going to be positive. More formally,
this means that its lower tail will always be lighter than its upper tail, and
thus a tight analysis needs to handle the two tails using different tools.
Below, we state two lemmas that separately characterize the lower and
upper tails of the IX Equation (6.2). The first of these bounds the upper
tail along the lines of Lemma 1 (and Corollary 1) of Neu 2015:

Lemma 6.3.2. With probability at least 1 − 𝛿, the following holds simul-
taneously for all 𝜋 ∈ Π:

̂𝑣𝑛(𝜋) − 𝜌(𝜋) ≤ log (|Π|/𝛿)
2𝛾𝑛 .

The proof is provided in Appendix B for completeness, but is otherwise
lifted entirely from Neu 2015. The second lemma provides control of the
lower tail of ̂𝑣𝑛:

Lemma 6.3.3. With probability at least 1 − 𝛿, the following holds simul-
taneously for all 𝜋 ∈ Π:

𝜌(𝜋) − ̂𝑣𝑛(𝜋) ≤ log(|Π|/𝛿)
2𝛾𝑛 + 2𝛾𝐶𝛾(𝜋).

The proof follows from the observation that, since the rewards are non-
negative, ̂𝑣𝑛 is a non-negative random variable, and as such its lower tail is
well-controlled by its second moment (see, e.g., Exercise 2.9 in (Boucheron,
Lugosi, and Massart 2013)). The full proof is included in Appendix B for
completeness. With the above two lemmas, we can easily prove our main
theorem.

Proof of Theorem 6.3.1 The statement follows from combining the
two lemmas via a union bound, and exploiting the definition of the algo-
rithm:

𝜌( ̂𝜋𝑛) ≥ ̂𝑣𝑛( ̂𝜋𝑛) − log (2|Π|/𝛿)
2𝛾𝑛 ≥ ̂𝑣𝑛(𝜋∗) − log (2|Π|/𝛿)

2𝛾𝑛
≥ 𝜌(𝜋∗) − log (2|Π|/𝛿)

𝛾𝑛 − 2𝛾𝐶𝛾(𝜋∗).
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Concretely, the first of these inequalities follows from Lemma 6.3.2, the
second one from the definition of the algorithm, and the third one from
Lemma 6.3.3. This concludes the proof.

6.4 A PAC-Bayesian extension
Our previously stated results require the policy class Π to be finite, and
scale with log |Π|. While this is a common assumption in past work on
the subject (e.g., in (Dudı́k et al. 2011; Agarwal et al. 2014; L. Wang,
Krishnamurthy, and Slivkins 2023)), it is of course not satisfied in most
practical scenarios of interest. Several extensions have been proposed in
previous work, mostly based on the idea of replacing the union bound
over policies by more sophisticated uniform-convergence arguments: for
instance, Swaminathan and Joachims (2015) and Y. Jin, Ren, et al. (2022)
respectively show bounds that depend on the covering number and the
Natarajan dimension of the policy class. In this section, we provide an
extension that makes use of so-called PAC-Bayesian generalization bounds
(McAllester 1998; Audibert 2004; Catoni 2007) that hold for arbitrary
policy classes and often lead to meaningful performance guarantees even in
large-scale settings of practical interest. We refer to the recent monograph
of Alquier (2021) for a gentle introduction into the subject.

Before providing this extension, we will require some additional defini-
tions. In this section, we will consider randomized algorithms that out-
put a distribution 𝑄𝑛 ∈ ΔΠ over policies, and we will be interested in
the performance guarantees that hold on expectation with respect to the
random choice of ̂𝜋𝑛 ∼ 𝑄𝑛, but still hold with high probablity with re-
spect to the realization of the random data set. We overload our nota-
tion slightly by defining 𝜌(𝑄) = ∫ 𝜌(𝜋)d𝑄(𝜋), ̂𝑣𝑛(𝑄) = ∫ ̂𝑣𝑛(𝜋)d𝑄(𝜋),
𝐶𝛾(𝑄) = ∫ 𝐶𝛾(𝜋)d𝑄(𝜋), and ℜ𝑛(𝑄) = ∫ ℜ𝑛(𝜋)d𝑄(𝜋), which all cap-
ture relevant quantities evaluated on expectation under the distribution
𝑄 ∈ ΔΠ.

In the context of offline learning, several works have applied PAC-Bayesian
techniques to provide concentration bounds for the importance-weighted
estimator ̂𝑣𝑛(𝑄), characterizing its deviations from its true mean 𝜌(𝑄)
uniformly for all “posteriors” 𝑄—we refer to the recent work of Sakhi,
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Alquier, and Chopin (2023) and the survey of Flynn et al. (2023) for an
extensive overview of such results. One common feature of these works
is that they all provide concentration bounds derived from PAC-Bayesian
versions of standard bounds like Hoeffding’s or Bernstein’s inequality, and
as such suffer from the same limitations as the results described in ??. The
biggest such limitation is that all bounds require a uniform coverage as-
sumption inf𝑥,𝑎 𝜇(𝑎|𝑥) ≥ 𝛼, or work with biased estimates of 𝜌(𝑄) without
quantifying the effect of the bias on the learning performance. Instead
of deriving regret bounds from the concentration bounds, the focus in
these works is to derive implementable algorithms from the concentration
bounds and test them extensively in large-scale settings.

Here, we provide a natural extension of PIWO-IX that is derived from
PAC-Bayesian principles. For defining our algorithm, we let 𝑃 ∈ ΔΠ be an
arbitrary “prior” over the policy class Π and define the output distribution
as

𝑄𝑛 = arg max
𝑄∈Δ𝜋

{ ̂𝑣𝑛(𝑄) − KL (𝑄‖𝑃)
𝜆 } ,

where KL (𝑄‖𝑃) = ∫ log d𝑄
d𝑃 d𝑄 is the Kullback–Leibler divergence (or

relative entropy) between the distributions 𝑄 and 𝑃 , and 𝜆 > 0 is a
regularization parameter. It is well known that this distribution (often
called the Gibbs posterior) has a closed-form expression with d𝑄𝑛

d𝑃 (𝜋) =
𝑒𝜆𝑣̂𝑛(𝜋)

∫ 𝑒𝜆𝑣̂𝑛(𝜋′)d𝑃(𝜋′) . For practical purposes, we will simply choose 𝜆 = 2𝛾𝑛 be-
low. The following theorem establishes a regret guarantee for the resulting
algorithm that we call PAC-Bayesian PIWO-IX.

Theorem 6.4.1. With probability at least 1−𝛿, the regret of PAC-Bayesian
PIWO-IX against any distribution 𝑄∗ ∈ ΔΠ over comparator policies
satisfies

ℜ𝑛(𝑄∗) ≤ KL (𝑄∗‖𝑃 ) + log(1/𝛿)
𝛾𝑛 + 2𝛾𝐶𝛾(𝑄∗).

Furthermore, by setting 𝛾 = √1/𝑛, the bound becomes

ℜ𝑛(𝑄∗) ≤ 2𝐶𝛾(𝑄∗) + KL (𝑄∗‖𝑃 ) + log(1/𝛿)√𝑛 .
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This bound inherits the key strength of PAC-Bayesian generalization bounds:
it holds uniformly for all competitors 𝑄∗ without requiring a union bound
over policies. We warn the reader familiar with PAC-Bayesian bounds
though that the role of 𝑄∗ here is different from what they may expect:
instead of being a data-dependent “posterior”, it is a “comparator” distri-
bution that the learner wishes to compete with. Thus, the bound expresses
that distributions 𝑄∗ that are closer to the “prior” 𝑃 in terms of relative
entropy are “easier” to compete with. As before, the bound scales with
the smoothed policy coverage ratio 𝐶𝛾(𝑄∗), only this time associated with
the comparator distribution 𝑄∗. Just like in the bound of Theorem 6.3.1,
the bound requires no uniform coverage condition, and in particular con-
tinues to hold even if inf𝑥,𝑎 𝜇(𝑎|𝑥) approaches zero. To our knowledge,
this is the first regret bound for offline learning of such a PAC-Bayesian
flavor, and in any case the first PAC-Bayesian bound for this setting that
does not require uniform coverage.

The proof of Theorem 6.4.1 relies on the following generalizations of Lem-
mas 6.3.2 and 6.3.3:

Lemma 6.4.2. With probability at least 1 − 𝛿, the following holds simul-
taneously for all 𝑄 ∈ ΔΠ:

̂𝑣𝑛(𝑄) − 𝜌(𝑄) ≤ KL (𝑄‖𝑃) + log (1/𝛿)
2𝛾𝑛 .

Lemma 6.4.3. With probability at least 1 − 𝛿, the following holds simul-
taneously for all 𝑄 ∈ ΔΠ:

𝜌(𝑄) − ̂𝑣𝑛(𝑄) ≤ KL (𝑄‖𝑃) + log (1/𝛿)
2𝛾𝑛 + 2𝛾𝐶𝛾(𝑄).

The statements follow from combining the proofs of Lemmas 6.3.2 and 6.3.3
with a so-called “change-of-measure” trick commonly used in the PAC-
Bayesian literature. We relegate the proofs to Appendix B.3 and only
provide the very simple proof of Theorem 6.4.1 here.

Proof of Theorem 6.4.1 The statement follows from combining the
above two lemmas via a union bound, and exploiting the definition of the
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algorithm:

𝜌(𝑄𝑛) ≥ ̂𝑣𝑛(𝑄𝑛) − KL(𝑄𝑛∥𝑃 ) + log(1/𝛿)
2𝛾𝑛 ≥ ̂𝑣𝑛(𝑄∗) − KL (𝑄∗‖𝑃 ) + log(1/𝛿)

2𝛾𝑛
≥ 𝜌(𝑄∗) − KL (𝑄∗‖𝑃 ) + log(1/𝛿)

𝛾𝑛 − 2𝛾𝐶𝛾(𝑄∗).

Concretely, the first of these inequalities follows from Lemma 6.4.2, the
second one from the definition of the algorithm, and the third one from
Lemma 6.4.3. This concludes the proof.

6.5 Adaptivity to the coverage
One shortcoming of the result in Theorem 6.3.1 is that it scales linearly
with 𝐶𝛾(𝜋∗) even though prior results suggest that a scaling with √𝐶0(𝜋∗)
should be possible (Swaminathan and Joachims 2015; L. Wang, Krishna-
murthy, and Slivkins 2023). This improvement can be trivially achieved
by setting 𝛾 = √ log(|Π|/𝛿)

𝐶0(𝜋∗)𝑛 , but this requires prior knowledge of 𝐶0(𝜋∗)
which is of course unavailable in practice (at least in the most interesting
case where 𝜋∗ is the optimal policy).

This limitation can be addressed by defining the following non-uniformly
scaled version of the IX estimator:

̂𝑣†
𝑛(𝜋) = 1

𝑛
𝑛

∑
𝑡=1

𝜋(𝐴𝑡|𝑋𝑡)
𝜇(𝐴𝑡|𝑋𝑡) + 𝛾𝜋

⋅ 𝑅𝑡 − log (|Π|/𝛿)
2𝛾𝜋

. (6.4)

Here, 𝛾𝜋 > 0 is a policy-dependent IX parameter that is potentially dif-
ferent for each policy 𝜋. Using this estimator, we define a variant of our
main algorithm called coverage-scaled PIWO-IX that outputs

̂𝜋𝑛 = arg min
𝜋∈Π

̂𝑣†
𝑛(𝜋).

Notice that, unlike PIWO-IX, this algorithm cannot be directly imple-
mented using a standard optimization oracle due to the policy-dependent
IX parameters 𝛾𝜋. The following theorem is straightforward to prove using
our previously established Lemma 6.3.2 Lemma 6.3.3:
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Theorem 6.5.1. With probability at least 1 − 𝛿, the regret of coverage-
scaled PIWO-IX against any comparator policy 𝜋∗ ∈ Π satisfies

ℜ𝑛(𝜋∗) ≤ log (2|Π|/𝛿)
𝛾𝜋∗𝑛 + 2𝛾𝜋∗𝐶𝛾𝜋∗ (𝜋∗).

Furthermore, by setting 𝛾𝜋 = √ log(2|Π|/𝛿)
2𝐶0(𝜋)𝑛 for each 𝜋, the bound becomes

ℜ𝑛(𝜋∗) ≤ √8𝐶0(𝜋∗) log (2|Π|/𝛿)
𝑛 .

Proof. First observe that the statements of Lemmas 6.3.2 and 6.3.3 can
be trivially adjusted to show that the bounds

0 ≤ 𝜌(𝜋) − ̂𝑣†
𝑛(𝜋) ≤ log(2|Π|/𝛿)

𝛾𝜋𝑛 + 2𝛾𝐶𝛾𝜋
(𝜋).

hold simultaneously for all policies with probability at least 1 − 𝛿. Then,
by the definition of the algorithm, we obtain

𝜌( ̂𝜋𝑛) ≥ ̂𝑣†
𝑛( ̂𝜋𝑛) ≥ ̂𝑣†

𝑛(𝜋∗) ≥ 𝜌(𝜋∗) − log (2|Π|/𝛿)
𝛾𝜋∗𝑛 − 2𝛾𝜋∗𝐶𝛾𝜋∗ (𝜋∗).

This concludes the proof of the first claim. The second claim can be
verified by noticing that 𝐶𝛾(𝜋∗) ≤ 𝐶0(𝜋∗) for all 𝛾 > 0 and plugging in
the choice of 𝛾𝜋 stated in the theorem.

6.6 Experiments
In this section we provide a set of simple experiments that illustrate our
theoretical findings, and in particular to empirically validate the robust-
ness of our algorithm to hyper-parameter selection. We compare our
method (PIWO-IX) to the method of L. Wang, Krishnamurthy, and
Slivkins (2023) (here referred to as PIWO-PL), and follow an experimen-
tal setup that is directly inspired by theirs. Besides PIWO-PL, we also
include a commonly used variant of our algorithm that uses the clipped
importance weights (CIW) estimator defined as

̂𝑣𝑛(𝜋) = 1
𝑛

𝑛
∑
𝑡=1

𝜋(𝐴𝑡|𝑋𝑡)
max {𝜇(𝐴𝑡|𝑋𝑡), 𝛾} ⋅ 𝑅𝑡.
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Figure 6.1: The performance of PIWO-IX, PIWO-Clip, and the algo-
rithm of L. Wang, Krishnamurthy, and Slivkins (2023) as a function of the
softmax parameter of the behavior policy. Different curves correspond to
different hyperparameters for the algorithms, with lighter tones represent-
ing smaller hyperparameters and darker tones representing larger ones.

We refer to this metod as PIWO-Clip.

We use the Letter (OpenML ID 2474) classification dataset to simulate an
offline contextual bandit instance. The dataset contains one milion entries,
each consisting of 16 features and a true label, representing one of the
𝐾 = 26 letters of the alphabet. To simulate a contextual bandit instance,
we consider the feature vectors as contexts and the true labels as the
corresponding optimal actions. To simulate the rewards we build a reward
matrix 𝑀 ∈ ℝ𝐾×𝐾 with entries on the diagonal set to 1 and the rest of
them uniformly sampled from the [0, 1) interval, and we keep these random
parameters fixed for all repetitions. We then set the reward distribution
𝑝(⋅|𝑥, 𝑎) for each context-action pair (𝑥, 𝑎) as a Bernoulli distribution with
parameter 𝑀𝑎,𝑎∗(𝑥), where 𝑎∗(𝑥) denotes the optimal action associated
with context 𝑥.

The cost-sensitive classification oracle is implemented by fitting a multi-
variate ridge regressor, with one target for each action5. Given any context
𝑥, the regressor can be queried to predict the reward for each arm, and a
max or softmax can be used to construct a policy to select the best arm.
In order to generate a range of behavior policies, we retain 10% of the

4https://www.openml.org/search?type=data&status=active&id=247
5The choice of the regularization parameter 𝛼 did not seem to impact significantly

the result of the experiments.
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data to train an estimator of the reward for each arm using the regressor
described above with the true mean rewards as labels. We then use the
predicted rewards to construct 20 softmax behavior policies, by varying
the inverse temperature parameter as logspace(-1, 3, 20).

We then collect an offline dataset using each of the behavior policies and
train our method PIWO-IX, its variation PIWO-Clip, and the algorithm
of L. Wang, Krishnamurthy, and Slivkins (2023), using the CSC oracle
described above with an argmax to select the optimal action, and varying
their hyper-parameter over a wide range (i.e. logspace(-10, 0, 20)).
Finally we compute the expected reward for each combination of behavior
policy and hyper-parameter, and show the result in Figure 6.1. It can be
observed how most choices of hyper-parameters result in good performance
for PIWO-IX and PIWO-Clip, while the same cannot be said for PIWO-
PL, which is very sensitive to small probabilities in the behavior policy
and needs to compensate them with a very careful choice of its hyper-
parameter. In particular, we note that in some experiments with large
softmax parameters, 𝜇(𝑎|𝑥) can be as low as 10−100 for some context-
action pairs, and thus even a seemingly negligible regularization parameter
like 𝛽 = 10−20 can result in massive pessimistic adjustments. In contrast,
PIWO-IX is robust to the presence of such small observation probabilities
and continues to work well for a broad range of hyperparameter choices.
As expected, PIWO-Clip performs very similarly to PIWO-IX due to
the close similarity between these two methods. More details about the
experiments are provided in Section 6.7.

6.7 Further details on the experiments
In this section we give more detail on all the experiments we ran. The first
step we performed was to use 10% of the data to fit a multivariate ridge
regressor reg(𝑥, 𝑎) to predict the expected reward of each action, given
any context. For each context 𝑥 and each corresponding optimal action
𝑎∗ in the data, we selected 𝑀⋅,𝑎∗ as the label vector (having one entry for
each possible action).

We then used the reamining 90% of the data to perform two sets of ex-
periments. In the first set, which is the one described in the main text
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(Section 6.6), we considered 20 softmax behavior policies, varying their in-
verse temperature parameter 𝜂 as logspace(-1, 3, 20). That is,

𝜋𝜂(𝑎|𝑥) ∝ exp(𝜂 reg(𝑥, 𝑎)).

We repeated each set of experiments 10 times (𝑖 ∈ [10]), using a 10-fold
validation procedure. That is, the data was first partitioned into 10 non
overlapping folds. On each repetition 𝑖, 9 folds are used to generate the
training data for the algorithms, by simulating the interaction of each be-
havior policy 𝜋𝜂 and the bandit instance. The resulting training dataset
𝒟𝜂,𝑖 was used to train each algorithm for each possible hyper-parameter
choice ℎ ∈ logspace(-10, 0, 20)). Finally, each trained algorithm
𝔄𝜂,𝑖,ℎ is evaluated using the data in the remaining fold, by computing
the expected regret using the true mean rewards.

This set of experiments was then repeated for a different set of “bad”
behavior policies, which were defined as

𝜋𝜂(𝑎|𝑥) ∝ exp(−𝜂 reg(𝑥, 𝑎)).

The results for the two sets of experiments are shown respectively in Fig-
ures 6.2 and 6.3. On each figure, the first row of plots shows the expected
reward as a function of the inverse temperature parameter 𝜂. Each plot on
the row is for one of the three different algorithms, and it contains a line
for each possible hyper-parameter. The lines are colored using a gradient
from lighter to darker to represent increasing hyper-parameter values. In
orange we highlighted the learning rate corresponding to √𝑑/𝑛, which
we use as a crude approximation of the hyper-parameter recommended
by theory, √log |Π|/𝑛. In addition, values of the hyper-parameters much
smaller than √𝑑/𝑛 are represented with a dashed line. All lines (exclud-
ing for clarity of the representation the dashed ones) have a shaded region
representing the standard deviation over the 10 runs. The second row of
plots shows the expected regret as a function of the hyper-parameter ℎ.
Thus, we can observe a line for each different behavior policy parameter
𝜂. Here the lines are lighter for smaller values of 𝜂, and darker for bigger
values of 𝜂.
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From the plots, we can infer that PIWO-IX performs well when the behav-
ior policy is “good” and 𝛾 is set in a broad proximity of its theoretically
recommended value. This behavior appears to be robust as we vary the
degree of “goodness” of the policy modulated by the softmax parameter 𝜂,
and in particular performance stays good even as 𝜂 approaches its higher
extremes and the behavior policy gets more and more deterministic. As
expected, PIWO-Clip behaves comparably. In comparison PIWO-PL is
a lot less robust in this case and its performance decays as 𝜂 increases, most
likely due to the more and more extreme values of the importance weights
arising from some sampling probabilities approaching zero. We note that
the the case of “good” behavior policies is the most practical use case, and
our experiments suggest that our algorithm performs excellently in this
scenario for a wide range of hyperparameters.

In comparison, the picture changes when considering the case of “bad”
behavior policies. In this case, PIWO-IX and performs worse and worse
as 𝛾 is increased, especially for large values of 𝜂 corresponding to partic-
ularly bad behavior policies. This is not surprising given that the policy
coverage ratio blows up in this extreme, as less and less mass is put on
well-performing actions. Also notice that increasing the regularization pa-
rameter 𝛾 forces the algorithm to be more and more pessimistic and thus
stay closer and closer to the behavior policy, which again results in de-
caying performance. The performance of PIWO-PL is less consistent in
this case, and it is hard to read out patterns that are well-predicted by
theory.
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Figure 6.2: Results of PIWO-IX, PIWO-Clip, and PIWO-PL with good
behavior policies.
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Figure 6.3: Results of PIWO-IX, PIWO-Clip, and PIWO-PL with bad
behavior policies.
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Chapter 7

Offline Learning in Linear
Markov Decision
Processes

In this chapter, we study the setting of Offline Reinforcement Learning,
where the goal is to learn an 𝜀-optimal policy without being able to in-
teract with the environment, but only using a fixed dataset of transitions
collected by a behavior policy. Learning from offline data proves to be
useful especially when interacting with the environment can be costly or
dangerous (Levine et al. 2020).

In this setting, the quality of the best policy learnable by any algorithm is
constrained by the quality of the data, implying that finding an optimal
policy without further assumptions on the data is not feasible. Therefore,
many methods (Munos and Szepesvári 2008; Uehara, Huang, and Jiang
2020) make a uniform coverage assumption, requiring that the behavior
policy explores sufficiently well the whole state-action space. However, re-
cent work (Liu et al. 2020; Rashidinejad, B. Zhu, et al. 2022) demonstrated
that partial coverage of the state-action space is sufficient. In particular,
this means that the behavior policy needs only to sufficiently explore the
state-action pairs visited by the optimal policy.
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Moreover, like its online counterpart, modern offline RL faces the problem
of learning efficiently in environments with very large state spaces, where
function approximation is necessary to compactly represent policies and
value functions. Although function approximation, especially with neural
networks, is widely used in practice, its theoretical understanding in the
context of decision-making is still rather limited, even when considering
linear function approximation.

In fact, most existing sample complexity results for offline RL algorithms
are limited either to the tabular and finite horizon setting, by the uniform
coverage assumption or by assuming access to a (convex) optimization
oracle — see the top section of Table 7.1 for a summary. Notable ex-
ceptions in terms of computational efficiency are the works of Xie, C.
Cheng, et al. (2021) and C.-A. Cheng et al. (2022), who provide a compu-
tationally efficient version of their method for infinite-horizon discounted
MDPs under realizable linear function approximation and partial coverage
assumptions. Despite being some of the first concrete implementations,
the practical versions of those algorithms differ significantly from their
information-theoretic counterparts, and thus the sample-complexity guar-
antees proven in the corresponding papers do not immediately carry over
to them.

More similar to our work are those of W. Zhan et al. (2022), and Rashidine-
jad, H. Zhu, et al. (2023) who also consider a linear programming approach
to offline learning in infinite-horizon discounted MDPs. Yet, like many
works which consider the broader general function approximation setting,
their method may remain oracle-efficient even in the simpler linear MDP
setting – see the caption of Table 7.1. Moreover, all methods referenced
so far only work in the finite-horizon or infinite-horizon discounted set-
ting, which is inappropriate for modeling practical problems where it is
hard to pre-specify a fixed decision-making horizon. This issue is read-
ily addressed by the average-reward framework, which however is known
to be much more difficult to handle using techniques familiar from the
discounted-reward setting. For example, methods based on approximate
dynamic programming like H. Zhu, Rashidinejad, and Jiao (2023) make
crucial use of the contractive property of the discounted Bellman opera-
tors, which does not generally hold in the average-reward setting (espe-
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cially not under the general assumptions we make in our work). Therefore,
this work is motivated by the following research question:

Can we design a linear-time algorithm with polynomial sample complexity
for the discounted and average-reward infinite-horizon settings, in large
state spaces under a partial-coverage assumption?

We answer this question positively by designing a method based on the
linear-programming (LP) formulation of sequential decision making (Alan
S Manne 1960). Albeit less known than the dynamic-programming for-
mulation (Bellman 1956) that is ubiquitous in RL, it allows us to tackle
this problem with the powerful tools of convex optimization. We turn in
particular to a relaxed version of the LP formulation (Mehta and S. P.
Meyn 2009; Bas-Serrano et al. 2021) that considers action-value functions
that are linear in known state-action features. This allows to reduce the
dimensionality of the problem from the cardinality of the state space to
the number of features. This relaxation still allows to recover optimal
policies in linear MDPs (L. Yang and M. Wang 2019; C. Jin et al. 2020),
a structural assumption that is widely employed in the theoretical study
of RL with linear function approximation.

Our algorithm for learning near-optimal policies from offline data is based
on primal-dual optimization of the Lagrangian of the relaxed LP. The use
of saddle-point optimization in MDPs was first proposed by M. Wang and
Y. Chen (2016) for planning in small state spaces, and was extended to
linear function approximation by Y. Chen, L. Li, and M. Wang (2018);
Bas-Serrano and Neu (2020), and Neu and Okolo (2023). We largely take
inspiration from this latter work, which was the first to apply saddle-point
optimization to the relaxed LP. However, primal-dual planning algorithms
assume oracle access to a transition model, whose samples are used to es-
timate gradients. In our offline setting, we only assume access to i.i.d.
samples generated by a possibly unknown behavior policy. To adapt the
primal-dual optimization strategy to this setting we employ a change of
variable, inspired by Nachum and Dai (2020), which allows easy compu-
tation of unbiased gradient estimates.
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Algorithm Partial
Coverage

Sample
Comp.

Comput.
Comp.

Function
Approx.

Infinite Horizon
𝛾 Avg

PEVI (Y. Jin,
Z. Yang, and

Z. Wang 2021)
3 𝑂(𝜀−2) 𝑂(𝑛) general 7 7

FQI (Munos
and Szepesvári

2008)
7 𝑂(𝜀−2) oracle

based general 3 7

PSPI, practical
(Xie, C. Cheng,

et al. 2021)
3

𝑂(𝜀−5) /
𝑂(𝜀−3)

oracle
based

general /
linear 3 7

PRO-RL
(W. Zhan et al.

2022)
3 𝑂(𝜀−6) oracle

based general 3 7

ALMIS
(Rashidinejad,
H. Zhu, et al.

2023)

3 𝑂(𝜀−2) oracle
based general 3 7

A-CRAB
(H. Zhu,

Rashidinejad,
and Jiao 2023)

3 𝑂(𝜀−2) oracle
based general 3 7

PDOR (ours) 3 𝑂(𝜀−4) 𝑂(𝑛) linear 3 3

Table 7.1: Comparison of selected methods for offline RL. The table shows
some of the most relevant works for offline RL, and their characteristics.
It is important to notice that many of these methods are designed for the
general function approximation setting, while we focus on the easier setting
of linear MDPs. However, most existing methods make use of oracles,
which makes their computational complexity difficult to estimate, and
while an efficient implementation can be derived by replacing the oracles
appropriately, it is usually not immediate to prove sample complexity
results for these practical versions.
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7.1 Preliminaries
Our work is based on the linear programming formulation due to Alan
S. Manne (1960) (see also Puterman (1994)) which transforms the rein-
forcement learning problem into the search for an optimal state-action
occupancy measure, obtained by solving the following Linear Program
(LP):

maximize ⟨𝐫, 𝐩⟩
subject to 𝐄T𝐩 = (1 − 𝛾)𝝂0 + 𝛾𝐏T𝐩

𝐩 ⪰ 0
(7.1)

where 𝐄 ∈ ℝ|𝒳×𝒜|×|𝒳| denotes the matrix with components 𝐄(𝑥,𝑎),𝑥′ ≐
1{𝑥 = 𝑥′}. The constraints of this LP are known to characterize the
set of valid state-action occupancy measures. Therefore, an optimal so-
lution 𝐩∗ of the LP corresponds to the state-action occupancy measure
associated to a policy 𝜋∗ maximizing the expected return, and which is
therefore optimal in the MDP. This policy can be extracted as 𝜋∗(𝑎 ∣ 𝑥) ≐
𝑝∗(𝑥, 𝑎)/ ∑𝑎̄∈𝒜 𝑝∗(𝑥, ̄𝑎). However, this linear program cannot be directly
solved in an efficient way in large MDPs due to the number of constraints
and dimensions of the variables scaling with the size of the state space
𝒳. Therefore, taking inspiration from the previous works of Bas-Serrano
et al. (2021); Neu and Okolo (2023) we assume the knowledge of a feature
map 𝜑, which we then use to reduce the dimension of the problem. More
specifically we consider the setting of Linear MDPs (L. Yang and M. Wang
2019; C. Jin et al. 2020).

Definition 7.1.1 (Linear MDP). An MDP is called linear if both the
transition and reward functions can be expressed as a linear function of a
given feature map 𝜑 ∶ 𝒳 × 𝒜 → ℝ𝑑. That is, there exist 𝜓 ∶ 𝒳 → ℝ𝑑 and
𝜽𝑟 ∈ ℝ𝑑 such that, for every 𝑥, 𝑥′ ∈ 𝒳 and 𝑎 ∈ 𝒜:

𝑟(𝑥, 𝑎) = ⟨𝝋(𝑥, 𝑎), 𝜽𝑟⟩, 𝑃 (𝑥′ | 𝑥, 𝑎) = ⟨𝝋(𝑥, 𝑎), 𝝍(𝑥′)⟩.

We assume that for all 𝑥, 𝑎, the norms of all relevant vectors are bounded
by known constants as ‖𝝋(𝑥, 𝑎)‖2 ≤ 𝐷𝝋, ∥∑𝑥′ 𝝍(𝑥′)∥2 ≤ 𝐷𝝍, and ‖𝜽𝑟‖2 ≤
𝐷𝜽𝐫

. Moreover, we represent the feature map with the matrix 𝚽 ∈
ℝ|𝒳×𝒜|×𝑑 with rows given by 𝝋(𝑥, 𝑎)T, and similarly we define 𝚿 ∈ ℝ𝑑×|𝒳|

as the matrix with columns given by 𝝍(𝑥).
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With this notation we can rewrite the transition matrix as 𝐏 = 𝚽𝚿. Fur-
thermore, it is convenient to assume that the dimension 𝑑 of the feature
map cannot be trivially reduced, and therefore that the matrix 𝚽 is full-
rank. An easily verifiable consequence of the Linear MDP assumption is
that state-action value functions can be represented as a linear combina-
tions of 𝜑. That is, there exist 𝜽𝜋 ∈ ℝ𝑑 such that:

𝐪𝜋 = 𝐫 + 𝛾𝐏𝐯𝜋 = 𝚽(𝜽𝑟 + 𝚿𝐯𝜋) = 𝚽𝜽𝜋. (7.2)

It can be shown that for all policies 𝜋, the norm of 𝜽𝜋 is at most 𝐷𝜽 =
𝐷𝜽𝑟

+ 𝐷𝝍
1−𝛾 (cf. Lemma B.1 in C. Jin et al. (2020)). We then translate the

linear program Equation (7.1) to our setting, with the addition of the new
variable 𝝀 ∈ ℝ𝑑, resulting in the following new LP and its corresponding
dual:

maximize ⟨𝜽𝑟, 𝝀⟩
subject to 𝐄T𝐩 = (1 − 𝛾)𝝂0 + 𝛾𝚿T𝝀

𝝀 = 𝚽T𝐩
𝐩 ⪰ 0,

(7.3)

minimize (1 − 𝛾)⟨𝝂0, 𝐯⟩
subject to 𝜽 = 𝜽𝑟 + 𝛾𝚿𝐯

𝐄𝐯 ⪰ 𝚽𝜽.
(7.4)

It can be immediately noticed how the introduction of 𝝀 did not change
neither the set of admissible 𝐩s nor the objective, and therefore did not
alter the optimal solution. The Lagrangian associated to this set of linear
programs is the function:

𝔏(𝐯, 𝜽, 𝝀, 𝐩) = (1 − 𝛾)⟨𝝂0, 𝐯⟩ + ⟨𝝀, 𝜽𝑟 + 𝛾𝚿𝐯 − 𝜽⟩
+ ⟨𝐩, 𝚽𝜽 − 𝐄𝐯⟩ (7.5)

= ⟨𝝀, 𝜽𝑟⟩ + ⟨𝐯, (1 − 𝛾)𝝂0 + 𝛾𝚿T𝝀 − 𝐄T𝐩⟩
+ ⟨𝜽, 𝚽T𝐩 − 𝝀⟩. (7.6)

It is known that finding optimal solutions (𝝀⋆, 𝐩⋆) and (𝐯⋆, 𝜽⋆) for the
primal and dual LPs is equivalent to finding a saddle point (𝐯⋆, 𝜽⋆, 𝝀⋆, 𝐩⋆)
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of the Lagrangian function (Bertsekas 1982). In the next section, we will
develop primal-dual methods that aim to find approximate solutions to
the above saddle-point problem, and convert these solutions to policies
with near-optimality guarantees.

7.2 Algorithm and Main Results
This section introduces the concrete setting we study in this paper, and
presents our main contributions.

We consider the offline-learning scenario where the agent has access to
a dataset 𝐷 = (𝑊𝑡)𝑛

𝑡=1, collected by a behavior policy 𝜇, and composed
of 𝑛 random observations of the form 𝑊𝑡 = (𝑋0

𝑡 , 𝑋𝑡, 𝐴𝑡, 𝑅𝑡, 𝑋′
𝑡). The

random variables 𝑋0
𝑡 , (𝑋𝑡, 𝐴𝑡) and 𝑋′

𝑡 are sampled, respectively, from the
initial-state distribution 𝜈0, the discounted occupancy measure of the be-
havior policy, denoted as 𝑝𝜇, and from 𝑃(⋅ | 𝑋𝑡, 𝐴𝑡). Finally, 𝑅𝑡 de-
notes the reward 𝑟(𝑋𝑡, 𝐴𝑡). We assume that all observations 𝑊𝑡 are
generated independently of each other, and will often use the notation
𝝋𝑡 = 𝝋(𝑋𝑡, 𝐴𝑡).
Our strategy consists in finding approximately good solutions for the
Equations (7.3) and (7.4) using stochastic optimization methods, which
require access to unbiased gradient estimates of the Lagrangian (Equa-
tion (7.6)). The main challenge we need to overcome is constructing
suitable estimators based only on observations drawn from the behavior
policy.

We address this challenge by using the matrix 𝚲𝜇, defined in Equa-
tion (4.12) (supposed to be invertible for the sake of argument for now),
and rewriting the gradient with respect to 𝝀 as

∇𝝀𝔏(𝝀, 𝐩; 𝐯, 𝜽) = 𝜽𝑟 + 𝛾𝚿𝐯 − 𝜽
= 𝚲−1

𝜇 𝚲𝜇 (𝜽𝑟 + 𝛾𝚿𝐯 − 𝜽)
= 𝚲−1

𝜇 𝔼 [𝝋(𝑋𝑡, 𝐴𝑡)𝝋(𝑋𝑡, 𝐴𝑡)T (𝜽𝑟 + 𝛾𝚿𝐯 − 𝜽)]
= 𝚲−1

𝜇 𝔼 [𝝋(𝑋𝑡, 𝐴𝑡) (𝑅𝑡 + 𝛾𝐯(𝑋′
𝑡) − ⟨𝜽, 𝝋(𝑋𝑡, 𝐴𝑡)⟩)] .

This suggests that the vector within the expectation can be used to build
an unbiased estimator of the desired gradient. A downside of using this
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estimator is that it requires knowledge of 𝚲𝜇. However, this can be
sidestepped by a reparametrization trick inspired by Nachum and Dai
(2020): introducing the parametrization 𝜷 = 𝚲−1

𝜇 𝝀, the objective can be
rewritten as

𝔏(𝜷, 𝐩; 𝐯, 𝜽) = (1 − 𝛾)⟨𝝂0, 𝐯⟩ + ⟨𝜷, 𝚲𝜇(𝜽𝑟 + 𝛾𝚿𝐯 − 𝜽)⟩
+ ⟨𝐩, 𝚽𝜽 − 𝐄𝐯⟩.

This can be indeed seen to generalize the tabular reparametrization of
Nachum and Dai (2020) to the case of linear function approximation.
Notably, our linear reparametrization does not change the structure of
the saddle-point problem, but allows building an unbiased estimator of
∇𝜷𝔏(𝜷, 𝐩; 𝐯, 𝜽) without knowledge of 𝚲𝜇 as

𝜿̂𝜷,𝑡 = 𝝋(𝑋𝑡, 𝐴𝑡) (𝑅𝑡 + 𝛾𝐯(𝑋′
𝑡) − ⟨𝜽, 𝝋(𝑋𝑡, 𝐴𝑡)⟩) .

In what follows, we will use the more general parametrization 𝜷 = Λ−𝑐𝜆,
with 𝑐 ∈ {1/2, 1}, and construct a primal-dual stochastic optimization
method that can be implemented efficiently in the offline setting based
on the observations above. Using 𝑐 = 1 allows to run our algorithm
without knowledge of 𝚲𝜇, that is, without knowing the behavior policy
that generated the dataset, while using 𝑐 = 1/2 results in a tighter bound1,
at the price of having to assume knowledge of 𝚲𝜇.

Our algorithm (presented as Algorithm 3) is inspired by the method of
Neu and Okolo (2023), originally designed for planning with a generative
model. The algorithm has a double-loop structure, where at each iteration
𝑡 we run one step of stochastic gradient ascent for 𝜷, and also an inner
loop which runs 𝐾 iterations of stochastic gradient descent on 𝜽 making
sure that ⟨𝝋(𝑥, 𝑎), 𝜽𝑡⟩ is a good approximation of the true action-value
function of 𝜋𝑡. Iterations of the inner loop are indexed by 𝑘. The main
idea of the algorithm is to compute the unbiased estimators 𝜿̂𝜽,𝑡,𝑘 and 𝜿̂𝜷,𝑡
of the gradients ∇𝜽𝔏(𝜷𝑡, 𝐩𝑡; ⋅, 𝜽𝑡,𝑘) and ∇𝜷𝔏(𝜷𝑡, ⋅; 𝐯𝑡, 𝜽𝑡), and use them
to update the respective variables iteratively. We then define a softmax

1By “tighter bound” we refer to dependence on the coverage ratio introduced in
Definition 4.7.1. We give more details on this in Section 8.3.
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policy 𝜋𝑡 at each iteration 𝑡 using the 𝜽 parameters as

𝜋𝑡(𝑎 ∣ 𝑥) =
exp (𝛼 ∑𝑡−1

𝑖=1⟨𝝋(𝑥, 𝑎), 𝜽𝑖⟩)
∑𝑎′ exp (𝛼 ∑𝑡−1

𝑖=1⟨𝝋(𝑥, 𝑎′), 𝜽𝑖⟩)
The other higher-dimensional variables (𝐩𝑡, 𝐯𝑡) are defined symbolically in
terms of 𝜷𝑡, 𝜽𝑡 and 𝜋𝑡, and used only as auxiliary variables for computing
the estimates 𝜿̂𝜽,𝑡,𝑘 and 𝜿̂𝜷,𝑡. Specifically, we set these variables as

𝑣𝑡(𝑥) = ∑
𝑎∈𝒜

𝜋𝑡(𝑎 ∣ 𝑥)⟨𝝋(𝑥, 𝑎), 𝜽𝑡⟩, (7.7)

𝑝𝑡,𝑘(𝑥, 𝑎) = 𝜋𝑡(𝑎 ∣ 𝑥)((1 − 𝛾)1{𝑋0
𝑡,𝑘 = 𝑥}

+ 𝛾⟨𝝋𝑡,𝑘, 𝚲𝑐−1
𝜇 𝜷𝑡⟩1{𝑋′

𝑡,𝑘 = 𝑥}). (7.8)

Finally, the gradient estimates can be defined as

𝜿̂𝜷,𝑡 = 𝚲𝑐−1
𝜇 𝝋𝑡 (𝑅𝑡 + 𝛾𝑣𝑡(𝑋′

𝑡) − ⟨𝝋𝑡, 𝜽𝑡⟩) , (7.9)
𝜿̂𝜽,𝑡,𝑘 = 𝚽T𝐩𝑡,𝑘 − 𝚲𝑐−1

𝜇 𝝋𝑡,𝑘⟨𝝋𝑡,𝑘, 𝜷𝑡⟩. (7.10)

These gradient estimates are then used in a projected gradient ascent/descent
scheme, with the ℓ2 projection operator denoted by Π. The feasible sets of
the two parameter vectors are chosen as ℓ2 balls of radii 𝐷𝜃 and 𝐷𝛽, de-
noted respectively as 𝔹(𝐷𝜃) and 𝔹(𝐷𝛽). Notably, the algorithm does not
need to compute 𝑣𝑡(𝑥), 𝑝𝑡,𝑘(𝑥, 𝑎), or 𝜋𝑡(𝑎|𝑥) for all states 𝑥, but only for
the states that are accessed during the execution of the method. In partic-
ular, 𝜋𝑡 does not need to be computed explicitly, and it can be efficiently
represented by the single 𝑑-dimensional parameter vector ∑𝑡

𝑖=1 𝜽𝑖.

Due to the double-loop structure, each iteration 𝑡 uses 𝐾 samples from the
dataset 𝐷, adding up to a total of 𝑛 = 𝐾𝑇 samples over the course of 𝑇
iterations. Each gradient update calculated by the method uses a constant
number of elementary vector operations, resulting in a total computational
complexity of 𝑂(|𝒜|𝑑𝑛) elementary operations. At the end, our algorithm
outputs a policy selected uniformly at random from the 𝑇 iterations.

7.2.1 Main result
We are now almost ready to state our main result. Before doing so, we first
need to discuss the quantities appearing in the guarantee, and provide an
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Input: Learning rates 𝛼, 𝜁, 𝜂, initial points
𝜽0 ∈ 𝔹(𝐷𝜃), 𝜷1 ∈ 𝔹(𝐷𝛽), 𝜋1, and data 𝐷 = (𝑊𝑡)𝑛

𝑡=1
for 𝑡 = 1 to 𝑇 do

Initialize 𝜽𝑡,1 = 𝜽𝑡−1
for 𝑘 = 1 to 𝐾 − 1 do

Obtain sample 𝑊𝑡,𝑘 = (𝑋0
𝑡,𝑘, 𝑋𝑡,𝑘, 𝐴𝑡,𝑘, 𝑋′

𝑡,𝑘)
𝐩𝑡,𝑘 = 𝜋𝑡 ∘ [(1 − 𝛾)𝐞𝑋0

𝑡,𝑘
+ 𝛾⟨𝝋(𝑋𝑡,𝑘, 𝐴𝑡,𝑘), 𝚲𝑐−1

𝜇 𝜷𝑡⟩𝐞𝑋′
𝑡,𝑘

]
𝜿̂𝜽,𝑡,𝑖 = 𝚽T𝐩𝑡,𝑘 − 𝚲𝑐−1

𝜇 𝝋(𝑋𝑡,𝑘, 𝐴𝑡,𝑘)⟨𝝋(𝑋𝑡,𝑘, 𝐴𝑡,𝑘), 𝜷𝑡⟩
𝜽𝑡,𝑘+1 = Π𝔹(𝐷𝜃)(𝜽𝑡,𝑘 − 𝜂𝜿̂𝜽,𝑡,𝑖) // Stochastic gradient
descent

end
𝜽𝑡 = 1

𝐾 ∑𝐾
𝑘=1 𝜽𝑡,𝑘

Obtain sample 𝑊𝑡 = (𝑋0
𝑡 , 𝑋𝑡, 𝐴𝑡, 𝑋′

𝑡)
𝐯𝑡 = 𝐄T(𝜋𝑡 ∘ 𝚽𝜽𝑡)
𝜿̂𝜷,𝑡 = 𝚲𝑐 − 1𝝋(𝑋𝑡, 𝐴𝑡)(𝑅𝑡 + 𝛾𝐯𝑡(𝑋′

𝑡) − ⟨𝝋(𝑋𝑡, 𝐴𝑡), 𝜽𝑡⟩)
𝜷𝑡+1 = Π𝔹(𝐷𝛽)(𝜷𝑡 + 𝜁𝜿̂𝜷,𝑡) // Stochastic gradient ascent
𝜋𝑡+1 = 𝜎(𝛼 ∑𝑡

𝑖=1 𝚽𝜽𝑖) // Policy update
end
Output: 𝜋𝐽 with 𝐽 ∼ 𝒰(𝑇 )

Algorithm 3: Primal-Dual Offline RL (PDOR)

intuitive explanation for them.

Similarly to previous work, we capture the partial coverage assumption
by expressing the rate of convergence to the optimal policy in terms of
a coverage ratio that measures the mismatch between the behavior and
the optimal policy. Several definitions of coverage ratio are surveyed by
Uehara and Sun (2022). In this work, we employ the notion of feature
coverage ratio for linear MDPs defined in Definition 4.7.1.

We defer a detailed discussion of this ratio to Section 8.3, where we com-
pare it with similar notions in the literature. We are now ready to state
our main result.

Theorem 7.2.1. Consider a linear MDP (Definition 7.1.1) such that
𝜽𝜋 ∈ 𝔹(𝐷𝜽) for all 𝜋 ∈ Π. Further, suppose that 𝐶𝜑,𝑐(𝜋∗) ≤ 𝐷𝜷. Then, for
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any comparator policy 𝜋∗ ∈ Π, the policy output by Algorithm 3 satisfies:

𝔼 [⟨𝐩𝜋∗ − 𝐩𝝅out , 𝐫⟩] ≤
2𝐷2

𝜷
𝜁𝑇 + log |𝒜|

𝛼𝑇 + 2𝐷2
𝜽

𝜂𝐾 +
𝜁𝐺2

𝜷,𝑐
2 + 𝛼𝐷2

𝜽𝐷2
𝝋

2 +
𝜂𝐺2

𝜽,𝑐
2 ,

where:
𝐺2

𝜽,𝑐 = 3𝐷2
𝝋 ((1 − 𝛾)2 + (1 + 𝛾2)𝐷2

𝜷 ∥𝚲𝜇∥2𝑐−1
2 ) , (7.11)

𝐺2
𝜷,𝑐 = 3(1 + (1 + 𝛾2)𝐷2

𝝋𝐷2
𝜽)𝐷2(2𝑐−1)

𝝋 . (7.12)
In particular, using learning rates

𝜂 = 2𝐷𝜽
𝐺𝜽,𝑐

√
𝐾

, 𝜁 = 2𝐷𝜷
𝐺𝜷,𝑐

√
𝑇

, 𝛼 = √2 log |𝒜|
𝐷𝝋𝐷𝜽

√
𝑇

,

and setting

𝐾 = 𝑇 ⋅
2𝐷𝜷2𝐺2

𝜷,𝑐 + 𝐷2
𝜽𝐷2

𝝋 log |𝒜|
2𝐷2

𝜽𝐺2
𝜽,𝑐

we achieve 𝔼 [⟨𝐩𝜋∗ − 𝐩𝝅out , 𝐫⟩] ≤ 𝜖 with a number of samples 𝑛𝜖 that is

𝑂 (𝜖−4𝐷4
𝜽𝐷4

𝝋𝐷4
𝜷 Tr(𝚲2𝑐−1

𝜇 ) ∥𝚲𝜇∥2𝑐−1
2 log |𝒜|) .

By Remark 7.2.2 below, we have that 𝑛𝜖 is simply of order
𝑂 (𝜀−4𝐷4

𝜽𝐷8𝑐
𝝋 𝐷4

𝜷𝑑2−2𝑐 log |𝒜|) .

Remark 7.2.2. When 𝑐 = 1/2, the factor Tr(𝚲2𝑐−1
𝜇 ) is just 𝑑, the feature

dimension, and ∥𝚲𝜇∥2𝑐−1
2 = 1. When 𝑐 = 1 and 𝚲𝜇 is unknown, both

∥𝚲𝜇∥2 and Tr(𝚲𝜇) should be replaced by their upper bound 𝐷2
𝝋. Then,

for 𝑐 ∈ {1/2, 1}, we have that Tr(𝚲2𝑐−1
𝜇 ) ∥𝚲𝜇∥2𝑐−1

2 ≤ 𝐷8𝑐−4
𝝋 𝑑2−2𝑐.

The main theorem can be simplified by making some standard assump-
tions, formalized by the following corollary.

Corollary 7.2.3. Assume that the bound of the feature vectors 𝐷𝝋 is
of order 𝑂(1), that 𝐷𝜽𝑟

= 𝐷𝝍 =
√

𝑑 and that 𝐷𝜷 = 𝑐 ⋅ 𝐶𝜑,𝑐(𝜋∗) for
some positive universal constant 𝑐. Then, under the same assumptions of
Theorem 7.2.1, 𝑛𝜀 is of order

𝑂(𝑑4𝐶𝜑,𝑐(𝜋∗)2 log |𝒜|
𝑑2𝑐(1 − 𝛾)4𝜀4 ).
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7.3 Analysis
This section explains the rationale behind some of the technical choices of
our algorithm, and sketches the proof of our main result.

First, we explicitly rewrite the expression of the Lagrangian (Equation (7.6)),
after performing the change of variable 𝝀 = 𝚲𝑐

𝜇𝜷:

𝔏(𝜷, 𝐩; 𝐯, 𝜽) = (1 − 𝛾)⟨𝝂0, 𝐯⟩ + ⟨𝜷, 𝚲𝑐
𝜇(𝜽𝑟 + 𝛾𝚿𝐯 − 𝜽)⟩

+ ⟨𝐩, 𝚽𝜽 − 𝐄𝐯⟩ (7.13)
= ⟨𝜷, 𝚲𝑐

𝜇𝜽𝑟⟩ + ⟨𝐯, (1 − 𝛾)𝝂0 + 𝛾𝚿T𝚲𝑐
𝜇𝜷 − 𝐄T𝐩⟩

+ ⟨𝜽, 𝚽T𝐩 − 𝚲𝑐
𝜇𝜷⟩. (7.14)

We aim to find an approximate saddle-point of the above convex-concave
objective function. One challenge that we need to face is that the variables
𝐯 and 𝐩 have dimension proportional to the size of the state space |𝒳|,
so making explicit updates to these parameters would be prohibitively
expensive in MDPs with large state spaces. To address this challenge, we
choose to parametrize 𝐩 in terms of a policy 𝜋 and 𝜷 through the symbolic
assignment 𝐩 = 𝐩𝜷,𝜋, where

𝑝𝜷,𝜋(𝑥, 𝑎) ≐ 𝜋(𝑎|𝑥)[(1 − 𝛾)𝜈0(𝑥) + 𝛾⟨𝝍(𝑥), 𝚲𝑐
𝜇𝜷⟩].

This choice can be seen to satisfy the first constraint of the primal Equa-
tion (7.3), and thus the gradient of the Equation (7.14) evaluated at 𝐩𝜷,𝜋
with respect to 𝐯 can be verified to be 0. This parametrization makes
it possible to express the Lagrangian as a function of only 𝜽, 𝜷 and 𝜋
as

𝑓(𝜽, 𝜷, 𝜋) ≐ 𝔏(𝜷, 𝐩𝜷,𝜋; 𝐯, 𝜽)
= ⟨𝜷, 𝚲𝑐

𝜇𝜽𝑟⟩ + ⟨𝜽, 𝚽T𝐩𝜷,𝜋 − 𝚲𝑐
𝜇𝜷⟩. (7.15)

For convenience, we also define the quantities 𝝂𝜷 = 𝐄T𝐩𝜷,𝜋 and 𝑣𝜽,𝜋(𝑠) ≐
∑𝑎 𝜋(𝑎|𝑠) ⟨𝜽, 𝝋(𝑥, 𝑎)⟩, which enables us to rewrite 𝑓 as

𝑓(𝜽, 𝜷, 𝜋) = ⟨𝚲𝑐
𝜇𝜷, 𝜽𝑟 − 𝜽⟩ + ⟨𝐯𝜽,𝜋, 𝝂𝜷⟩

= (1 − 𝛾)⟨𝝂0, 𝐯𝜽,𝜋⟩
+ ⟨𝚲𝑐

𝜇𝜷, 𝜽𝑟 + 𝛾𝚿𝐯𝜽,𝜋 − 𝜽⟩. (7.16)
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The above choices allow us to perform stochastic gradient / ascent over
the low-dimensional parameters 𝜽 and 𝜷 and the policy 𝜋. In order to
calculate an unbiased estimator of the gradients, we first observe that the
choice of 𝑝𝑡,𝑘 in Algorithm 3 is an unbiased estimator of 𝑝𝜷𝑡,𝜋𝑡

:

𝔼𝑡,𝑘[𝑝𝑡,𝑘(𝑥, 𝑎)] = 𝜋𝑡(𝑎 ∣ 𝑥)((1 − 𝛾)ℙ(𝑋0
𝑡,𝑘 = 𝑥)

+ 𝔼𝑡,𝑘[1{𝑋′
𝑡,𝑘 = 𝑥}⟨𝝋𝑡, 𝚲𝑐−1

𝜇 𝜷𝑡⟩])

= 𝜋𝑡(𝑎 ∣ 𝑥)((1 − 𝛾)𝜈0(𝑥)

+ 𝛾 ∑
𝑥̄,𝑎̄

𝑝𝜇( ̄𝑥, ̄𝑎)𝑃 (𝑥 ∣ ̄𝑥, ̄𝑎)𝝋( ̄𝑥, ̄𝑎)T𝚲𝑐−1
𝜇 𝜷𝑡)

= 𝜋𝑡(𝑎 ∣ 𝑥)((1 − 𝛾)𝜈0(𝑥) + 𝛾𝝍(𝑥)T𝚲𝜇𝚲𝑐−1
𝜇 𝜷𝑡)

= 𝑝𝜷𝑡,𝜋𝑡
(𝑥, 𝑎),

where we used the fact that 𝑃(𝑥 ∣ ̄𝑥, ̄𝑎) = ⟨𝝍(𝑥), 𝝋( ̄𝑥, ̄𝑎)⟩, and the defi-
nition of 𝚲𝜇. This in turn facilitates proving that the gradient estimate
𝜿̂𝜽,𝑡,𝑘, defined in Equation (7.10), is indeed unbiased:

𝔼𝑡,𝑘[𝜿̂𝜽,𝑡,𝑘] = 𝚽T𝔼𝑡,𝑘[𝐩𝑡,𝑘] − 𝚲𝑐−1
𝜇 𝔼𝑡,𝑘[𝝋𝑡,𝑘𝝋T

𝑡,𝑘]𝜷𝑡
= 𝚽T𝐩𝜷𝑡,𝜋𝑡

− 𝚲𝑐
𝜇𝜷𝑡 = ∇𝜽𝔏(𝜷𝑡, 𝐩𝑡; 𝐯𝑡, ⋅).

A similar proof is used for 𝜿̂𝜷,𝑡 and is detailed in Appendix C.3.

Our analysis is based on arguments by Neu and Okolo (2023), carefully
adapted to the reparametrized version of the Lagrangian presented above.
The proof studies the following central quantity that we refer to as dynamic
duality gap:

𝒢𝑇 (𝜷∗, 𝜋∗; 𝜽∗
1∶𝑇 ) ≐ 1

𝑇
𝑇

∑
𝑡=1

(𝑓(𝜷∗, 𝜋∗; 𝜽𝑡) − 𝑓(𝜷𝑡, 𝜋𝑡; 𝜽∗
𝑡)).

Here, (𝜽𝑡, 𝜷𝑡, 𝜋𝑡) are the iterates of the algorithm, 𝜽∗
1∶𝑇 = (𝜽∗

𝑡)𝑇
𝑡=1 a se-

quence of comparators for 𝜽, and finally 𝜷∗ and 𝜋∗ are fixed comparators
for 𝜷 and 𝜋, respectively. Our first key lemma relates the suboptimality
of the output policy to 𝒢𝑇 for a specific choice of comparators.
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Lemma 7.3.1. Let 𝜽∗
𝑡 ≐ 𝜽𝜋𝑡, 𝜋∗ be any policy, and 𝛽∗ = 𝚲−𝑐

𝜇 𝚽⊤𝐩𝜋∗.
Then, 𝔼 [⟨𝐩𝜋∗ − 𝐩𝝅out , 𝐫⟩] = 𝒢𝑇 (𝜷∗, 𝜋∗; 𝜽∗

1∶𝑇 ).

The proof is relegated to Appendix C.1. Our second key lemma rewrites
the gap 𝒢𝑇 for any choice of comparators as the sum of three regret
terms:

Lemma 7.3.2. With the choice of comparators of Lemma 7.3.1

𝒢𝑇 (𝜷∗, 𝜋∗; 𝜽∗
1∶𝑇 ) = 1

𝑇
𝑇

∑
𝑡=1

(⟨𝜽𝑡 − 𝜽∗
𝑡 , 𝑔𝜽,𝑡⟩

+ ⟨𝜷∗ − 𝜷𝑡, 𝑔𝜷,𝑡⟩
+ ∑

𝑠
𝜈𝜋∗(𝑠) ∑

𝑎
(𝜋∗(𝑎|𝑠) − 𝜋𝑡(𝑎|𝑠))⟨𝜽𝑡, 𝝋(𝑥, 𝑎)⟩),

where 𝑔𝜽,𝑡 = 𝚽⊤𝐩𝜷𝑡,𝜋𝑡
− 𝚲𝑐

𝜇𝜷𝑡 and 𝑔𝜷,𝑡 = 𝚲𝑐
𝜇(𝜽𝑟 + 𝛾𝚿𝑣𝜽𝑡,𝜋𝑡

− 𝜽𝑡).
The proof is presented in Appendix C.2. To conclude the proof we bound
the three terms appearing in Lemma 7.3.2. The first two of those are
bounded using standard gradient descent/ascent analysis (Lemmas C.3.1
and C.3.2), while for the latter we use mirror descent analysis (Lemma C.3.3).
The details of these steps are reported in Appendix C.3.

7.4 Extension to Average-Reward MDPs
In this section, we briefly explain how to extend our approach to offline
learning in average reward MDPs, establishing the first sample complex-
ity result for this setting. After introducing the setup, we outline a re-
markably simple adaptation of our algorithm along with its performance
guarantees for this setting. The reader is referred to Appendix E for the
full details, and to Chapter 8 of Puterman (1994) for a more thorough
discussion of average-reward MDPs.

In the average reward setting we aim to optimize the objective 𝜌𝜋(𝑥) =
lim inf𝑇 →∞

1
𝑇 𝔼𝜋[∑𝑇

𝑡=1 𝑟(𝑥𝑡, 𝑎𝑡) | 𝑥1 = 𝑥], representing the long-term av-
erage reward of policy 𝜋 when started from state 𝑥 ∈ 𝒳. Unlike the
discounted setting, the average reward criterion prioritizes long-term fre-
quency over proximity of good rewards due to the absence of discounting
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which expresses a preference for earlier rewards. As is standard in the
related literature, we will assume that 𝜌𝜋 is well-defined for any policy
and is independent of the start state, and thus will use the same no-
tation to represent the scalar average reward of policy 𝜋. Due to the
boundedness of the rewards, we clearly have 𝜌𝜋 ∈ [0, 1]. Similarly to
the discounted setting, it is possible to define quantities analogous to the
value and action value functions as the solutions to the Bellman equa-
tions 𝐪𝜋 = 𝐫 − 𝜌𝜋𝟏 + 𝐏𝐯𝜋, where 𝐯𝜋 is related to the action-value func-
tion as 𝑣𝜋(𝑥) = ∑𝑎 𝜋(𝑎|𝑥)𝑞𝜋(𝑥, 𝑎). We will make the following standard
assumption about the MDP (see Section 17.4 of S. Meyn and Tweedie
(1996)):

Assumption 7.4.1. For all stationary policies 𝜋, the Bellman equations
have a solution 𝐪𝜋 satisfying sup𝑥,𝑎 𝑞𝜋(𝑥, 𝑎) − inf𝑥,𝑎 𝑞𝜋(𝑥, 𝑎) < 𝐷𝑞.

Furthermore, we will continue to work with the linear MDP assumption of
Definition 7.1.1, and will additionally make the following minor assump-
tion:

Assumption 7.4.2. The all ones vector 𝟏 is contained in the column
span of the feature matrix 𝚽. Furthermore, let 𝝔 ∈ ℝ𝑑 such that for all
𝑥 ∈ 𝒳 and 𝑎 ∈ 𝒜, ⟨𝝋(𝑥, 𝑎), 𝝔⟩ = 1.

Using these insights, it is straightforward to derive a linear program akin
Equation (7.1) that characterize the optimal occupancy measure and thus
an optimal policy in average-reward MDPs. Starting from this formulation
and proceeding as in Sections 7.1 and 7.3, we equivalently restate this
optimization problem as finding the saddle-point of the reparametrized
Lagrangian defined as follows:

𝔏(𝜷, 𝐩; 𝜌, 𝐯, 𝜽) = 𝜌 + ⟨𝜷 , 𝚲𝑐[𝜽𝑟 + 𝚿𝐯 − 𝜽 − 𝜌𝝔]⟩
+ ⟨𝐩 , 𝚽𝜽 − 𝐄𝐯⟩.

As previously, the saddle point can be shown to be equivalent to an opti-
mal occupancy measure under the assumption that the MDP is linear in
the sense of Definition 7.1.1. Notice that the above Lagrangian slightly
differs from that of the discounted setting in Equation (7.13) due to the
additional optimization parameter 𝜌, but otherwise our main algorithm
can be directly generalized to this objective. We present details of the
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derivations and the resulting algorithm in Appendix E. The following the-
orem states the performance guarantees for this method.

Theorem 7.4.3. Given a linear MDP (Definition 7.1.1) satisfying As-
sumption 7.4.2 and such that 𝜽𝜋 ∈ 𝔹(𝐷𝜽) for any policy 𝜋. Assume that
the coverage ratio is bounded 𝐶𝜑,𝑐(𝜋∗) ≤ 𝐷𝜷. Then, for any comparator
policy 𝜋∗, the policy output by an appropriately tuned instance of Algo-
rithm 4 satisfies

𝔼 [⟨𝐩𝜋∗ − 𝐩𝝅out , 𝐫⟩] ≤ 𝜀
with a number of samples 𝑛𝜖 that is

𝑂 (𝜀−4𝐷4
𝜽𝐷12𝑐−2

𝝋 𝐷4
𝜷𝑑2−2𝑐 log |𝒜|) .

As compared to the discounted case, this additional dependence of the
sample complexity on 𝐷𝝋 is due to the extra optimization variable 𝜌. We
provide the full proof of this theorem along with further discussion in
Appendix E.

7.5 Detailed Computations for Comparing Cov-
erage Ratios

In this section, after reviewing the different versions of coverage ratio dis-
cussed in the paper, we prove several inequalities that hold between them.
For ease of comparison, we only consider discounted linear MDPs (Defi-
nition 7.1.1).

Definition 7.5.1. Recall the following definitions of coverage ratio given
by different authors in the offline RL literature:

1. 𝐶𝜑,𝑐(𝜋∗) = 𝔼𝑋,𝐴∼𝑝∗ [𝝋(𝑋, 𝐴)]⊤ 𝚲−2𝑐
𝜇 𝔼𝑋,𝐴∼𝑝∗ [𝝋(𝑋, 𝐴)] (Ours)

2. 𝐶†(𝜋∗) = 𝔼𝑋,𝐴∼𝑝∗ [𝝋(𝑋, 𝐴)T𝚲−1
𝜇 𝝋(𝑋, 𝐴)] (e.g., Y. Jin, Z. Yang,

and Z. Wang (2021))

3. 𝐶⋄(𝜋∗) = sup𝑦∈ℝ𝑑
𝑦T𝔼𝑋,𝐴∼𝑝∗ [𝝋(𝑋,𝐴)𝝋(𝑋,𝐴)T]𝑦
𝑦T𝔼𝑋,𝐴∼𝑝𝜇 [𝝋(𝑋,𝐴)𝝋(𝑋,𝐴)T]𝑦 (e.g., Uehara and Sun

(2022))

4. 𝐶ℱ,𝜋(𝜋∗) = max𝑓∈ℱ
‖𝑓−𝒯𝜋𝑓‖2

𝑝∗

‖𝑓−𝒯𝜋𝑓‖2
𝑝𝜇

(e.g., Xie, C. Cheng, et al. (2021)),
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where 𝑐 ∈ {1, 2}, 𝚲𝜇 = 𝔼𝑋,𝐴∼𝑝𝜇 [𝝋(𝑋, 𝐴)𝝋(𝑋, 𝐴)T] (assumed invert-
ible), ℱ ⊆ ℝ𝒳×𝒜, and 𝒯𝜋 ∶ ℱ → ℝ defined as (𝒯𝜋𝑓)(𝑥, 𝑎) = 𝑟(𝑥, 𝑎) +
𝛾 ∑𝑥′,𝑎′ 𝑝(𝑥′ ∣ 𝑥, 𝑎)𝜋(𝑎′ ∣ 𝑥′)𝑓(𝑥′, 𝑎′) is the Bellman operator associated
to policy 𝜋.

In the following, we construct a problem instance where 𝐶† can be arbi-
trarily larger than 𝐶𝜑,𝑐, regardless of the value of 𝑐, thanks to the single-
direction property of our coverage ratio discussed in Section 8.3.

Proposition 7.5.2. There exists a linear MDP with two states, two ac-
tions and feature dimension 𝑑 = 3, such that, for every 𝜖 ∈ (0, 1), there
exists a behavior policy 𝜇, such that 𝐶𝜑,𝑐(𝜋∗) is bounded by a constant
independent of 𝜖 for all 𝑐 ∈ {1/2, 1}, while 𝐶†(𝜋∗) = Ω(𝜖−1), where 𝜋∗ is
the unique deterministic optimal policy of the MDP.

Proof. Let |𝒳| = {𝑥1, 𝑥2} and 𝒜 = {𝑎1, 𝑎2}. Consider the following 3-
dimensional feature map where 𝝋𝑖𝑗 is short for 𝝋(𝑥𝑖, 𝑎𝑗):

𝝋11 = [4, 0, 1]⊤, 𝝋12 = [1, 1, 1]⊤,
𝝋21 = [0, 4, 1]⊤, 𝝋22 = [−1, −1, 1]⊤.

Following the notation of Definition 7.1.1, let 𝝍(𝑥1) = 𝝍(𝑥2) = [0, 0, 1/2]⊤
and 𝜽𝑟 = [1, 1, 0]⊤, obtaining 𝑝(𝑥𝑘|𝑥𝑖, 𝑎𝑗) = 1/2 for all 𝑖, 𝑗, 𝑘 ∈ [2], and the
following reward function:

𝑟(𝑥1, 𝑎1) = 4, 𝑟(𝑥1, 𝑎2) = 2,
𝑟(𝑥2, 𝑎1) = 4, 𝑟(𝑥2, 𝑎2) = −2.

Finally, let 𝜈0(𝑥1) = 𝜈0(𝑥2) = 1/2. It is easy to see that, for any discount
factor 𝛾 > 0, the MDP admits a unique deterministic optimal policy,
𝜋∗(𝑥1) = 𝜋∗(𝑥2) = 𝑎1, with optimal value 𝜌∗ = 4(1 − 𝛾). The state-action
occupancy measure induced by this optimal policy is

𝑝∗(𝑥1, 𝑎1) = 𝑝∗(𝑥2, 𝑎1) = 1
2, 𝑝∗(𝑥1, 𝑎2) = 𝑝∗(𝑥2, 𝑎2) = 0.

Now fix an 𝜖 ∈ (0, 1). Let the behavior policy be

𝜇(𝑎1|𝑥1) = 𝜖, 𝜇(𝑎2|𝑥1) = 1 − 𝜖,
𝜇(𝑎1|𝑥2) = 𝜖, 𝜇(𝑎2|𝑥2) = 1 − 𝜖.
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The state-action occupancy measure induced by the behavior policy is

𝑝𝜇(𝑥1, 𝑎1) = 𝜖
2, 𝑝𝜇(𝑥1, 𝑎2) = 1 − 𝜖

2 ,

𝑝𝜇(𝑥2, 𝑎1) = 𝜖
2, 𝑝𝜇(𝑥2, 𝑎2) = 1 − 𝜖

2 .

The feature covariance matrix under 𝜇 is then

𝚲𝜇 = 𝔼𝑋,𝐴∼𝑝𝜇 [𝝋(𝑋, 𝐴)𝝋(𝑋, 𝐴)⊤] =
⎡
⎢⎢⎢
⎣

1 + 7𝜖 1 − 𝜖 2𝜖
1 − 𝜖 1 + 7𝜖 2𝜖

2𝜖 2𝜖 1

⎤
⎥⎥⎥
⎦

,

from which we obtain the coverage ratio

𝐶†(𝜋∗) = 𝔼𝑋,𝐴∼𝑝∗ [𝝋(𝑋, 𝐴)T𝚲−1
𝜇 𝝋(𝑋, 𝐴)] = 1 + 9𝜖

𝜖(1 + 4𝜖) = Ω(𝜖−1). (7.17)

To compute 𝐶𝜑,𝑐(𝜋∗), note that the expected feature vector under 𝜋∗ is

𝝋(𝜋∗) = 𝔼𝑋,𝐴∼𝑝∗ [𝝋(𝑋, 𝐴)] = [2, 2, 1]⊤.

Hence:

𝐶𝜑,1/2(𝜋∗) = 𝝋(𝜋∗)⊤𝚲−1
𝜇 𝝋(𝜋∗) = 5

1 + 4𝜖 ≤ 5, (7.18)

𝐶𝜑,1(𝜋∗) = 𝝋(𝜋∗)⊤𝚲−2
𝜇 𝝋(𝜋∗) = 3

(1 + 4𝜖)2 ≤ 3 < 5. (7.19)

The previous proof admits a simple geometric interpretation: for 𝜖 → 0,
the span of the features visited by the behavior policy degenerates to
span({𝝋12, 𝝋22}), which belongs to a 2-dimensional subspace of ℝ3, while
the optimal features span the whole ℝ3. So, according to the notion of
coverage from Y. Jin, Z. Yang, and Z. Wang 2021, the data fail to cover the
span of the optimal features. However, the average optimal feature 𝝋(𝜋∗)
belongs to the very same subspace covered by the data, which is enough
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according to our notion of coverage. In particular, 𝝋(𝜋∗) = 3/2𝝋12 −
1/2𝝋22.

The following is a generalization of the low-variance property discussed in
Section 8.3.

Proposition 7.5.3. Let 𝕍 [𝑍] = 𝔼[‖𝑍 − 𝔼 [𝑍]‖2] for a random vector 𝑍.
Then, for any pair of policies 𝜋∗, 𝜇

𝐶𝜑,𝑐(𝜋∗) = 𝔼𝑋,𝐴∼𝑝∗ [𝝋(𝑋, 𝐴)T𝚲−2𝑐
𝜇 𝝋(𝑋, 𝐴)] − 𝕍𝑋,𝐴∼𝑝∗ [𝚲−𝑐

𝜇 𝝋(𝑋, 𝐴)] .

In particular, 𝐶𝜑,1/2(𝜋∗) ≤ 𝐶†(𝜋∗) for all 𝜋∗, 𝜇.

Proof. We just rewrite 𝐶𝜑,𝑐 from Definition 7.5.1 as

𝐶𝜑,𝑐(𝜋∗) = ∥𝔼𝑋,𝐴∼𝑝∗ [𝚲−𝑐
𝜇 𝝋(𝑋, 𝐴)]∥2 .

The result follows from the elementary property of variance 𝕍 [𝑍] = 𝔼[‖𝑍‖2]−
‖𝔼[𝑍]‖2. The second statement follows from the non-negativity of the vari-
ance, but can also be obtained directly via Jensen’s inequality.

Proposition 7.5.4. 𝐶⋄(𝜋∗) ≤ 𝐶†(𝜋∗) ≤ 𝑑𝐶⋄(𝜋∗).

Proof. Let (𝑋∗, 𝐴∗) ∼ 𝑝∗ and 𝚲∗ = 𝚲𝜋∗ . First, we rewrite 𝐶† as

𝐶†(𝜋∗) = 𝔼 [𝝋(𝑋∗, 𝐴∗)T𝚲−1
𝜇 𝝋(𝑋∗, 𝐴∗)]

= 𝔼 [Tr(𝝋(𝑋∗, 𝐴∗)T𝚲−1
𝜇 𝝋(𝑋∗, 𝐴∗))]

= 𝔼 [Tr(𝝋(𝑋∗, 𝐴∗)𝝋(𝑋∗, 𝐴∗)T𝚲−1
𝜇 )] (7.20)

= Tr(𝚲∗𝚲−1
𝜇 ) (7.21)

= Tr(𝚲−1/2
𝜇 𝚲∗𝚲−1/2

𝜇 ), (7.22)

where we have used the cyclic property of the trace (twice) and linearity of
trace and expectation. Note that, since 𝚲𝜇 is positive definite, it admits a
unique positive definite matrix 𝚲1/2

𝜇 such that 𝚲𝜇 = 𝚲1/2
𝜇 𝚲1/2

𝜇 . We rewrite
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𝐶⋄ in a similar fashion

𝐶⋄(𝜋∗) = sup
𝑦∈ℝ𝑑

𝑦T𝚲∗𝑦
𝑦T𝚲𝜇𝑦

= sup
𝑧∈ℝ𝑑

𝑧T𝚲−1/2
𝜇 𝚲∗𝚲−1/2

𝜇 𝑧
𝑧T𝑧 (7.23)

= 𝜆max(𝚲−1/2
𝜇 𝚲∗𝚲−1/2

𝜇 ), (7.24)
where 𝜆max denotes the maximum eigenvalue of a matrix. We have used
the fact that both 𝚲∗ and 𝚲𝜇 are positive definite and the min-max the-
orem. Since the quadratic form 𝚲−1/2

𝜇 𝚲∗𝚲−1/2
𝜇 is also positive definite,

and the trace is the sum of the (positive) eigenvalues, we get the desired
result.

Proposition 7.5.5 (cf. the proof of Theorem 3.2 from (Xie, C. Cheng,
et al. 2021)). Let ℱ = {𝑓𝜽 ∶ (𝑥, 𝑎) ↦ ⟨𝝋(𝑥, 𝑎), 𝜽⟩ ∣ 𝜽 ∈ Θ ⊆ ℝ𝑑} where 𝜑
is the feature map of the linear MDP. Then

𝐶ℱ,𝜋(𝜋∗) ≤ 𝐶⋄(𝜋∗),
with equality if Θ = ℝ𝑑.

Proof. Fix any policy 𝜋 and let 𝒯 = 𝒯𝜋. By linear Bellman complete-
ness of linear MDPs (C. Jin et al. 2020), 𝒯𝑓 ∈ ℱ for any 𝑓 ∈ ℱ. For
𝑓𝜽 ∶ (𝑥, 𝑎) ↦ ⟨𝝋(𝑥, 𝑎), 𝜽⟩, let 𝒯𝜽 ∈ Θ be defined so that 𝒯𝑓𝜽 ∶ (𝑥, 𝑎) ↦
⟨𝝋(𝑥, 𝑎), 𝒯𝜽⟩. Then

𝐶ℱ,𝜋(𝜋∗) = max
𝑓∈ℱ

𝔼𝑋,𝐴∼𝑝∗ [(𝑓(𝑋, 𝐴) − 𝒯𝑓(𝑋, 𝐴))2]
𝔼𝑋,𝐴∼𝑝𝜇 [(𝑓(𝑋, 𝐴) − 𝒯𝑓(𝑋, 𝐴))2]

(7.25)

≤ max
𝜽∈ℝ𝑑

𝔼𝑋,𝐴∼𝑝∗ [⟨𝝋(𝑋, 𝐴), 𝜽 − 𝒯𝜽⟩2]
𝔼𝑋,𝐴∼𝑝𝜇 [⟨𝝋(𝑋, 𝐴), 𝜽 − 𝒯𝜽⟩2] (7.26)

= max
𝑦∈ℝ𝑑

𝔼𝑋,𝐴∼𝑝∗ [⟨𝝋(𝑋, 𝐴), 𝑦⟩2]
𝔼𝑋,𝐴∼𝑝𝜇 [⟨𝝋(𝑋, 𝐴), 𝑦⟩2] (7.27)

= max
𝑦∈ℝ𝑑

𝑦T𝔼𝑋,𝐴∼𝑝∗ [𝝋(𝑋, 𝐴)𝝋(𝑋, 𝐴)T] 𝑦
𝑦T𝔼𝑋,𝐴∼𝑝𝜇 [𝝋(𝑋, 𝐴)𝝋(𝑋, 𝐴)T] 𝑦 , (7.28)

where the inequality in Equation (7.26) holds with equality if Θ = ℝ𝑑.
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Chapter 8

Conclusions

8.1 Online Learning with Off-Policy Feedback
We introduced a new online learning setting where the learner is only al-
lowed to observe off-policy feedback generated by a fixed behavior policy.
We have proposed an algorithm with comparator-dependent regret bounds
of order 𝐶†(𝜋∗)√𝑛, depending on a naturally defined coverage ratio pa-
rameter 𝐶†(𝜋∗) that characterizes the mismatch between the behavior and
the comparator policies. Many questions remain open regarding the po-
tential tightness of this result. First, we have shown that the bounds can
be improved to 𝑂(√𝐶†(𝜋∗)𝑛), if one wishes to restrict their attention to
comparators whose coverage level is at a fixed level 𝐶†(𝜋∗). However, the
tuning required for achieving this result depends on the desired coverage
level. It is an interesting open problem to find out if this requirement can
be relaxed, and bounds of order √𝐶†(𝜋∗)𝑛 can be simultaneously achieved
for all comparators 𝜋∗ by a single algorithm. We conjecture that this ques-
tion can be addressed by a careful adaptation of existing techniques for
adaptive online learning, and in particular we believe that adapting the
methodology of Koolen and Erven (2015) should be especially suitable for
achieving this goal.

Questions regarding the best achievable performances for our newly de-
fined problem are even more exciting. As an adaptation of the results
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of Xiao et al. (2021) show via an online-to-batch reduction, the minimax
regret of any algorithm for this setting has to scale as √𝑛/ min𝑎 𝜇(𝑎), sug-
gesting that our naïve adaptation of Exp3 is already minimax optimal. In
our view, this makes it all the more interesting to identify characteristics
of individual problem instances that make faster learning possible, and we
believe that comparator-dependent regret bounds scaling with the cover-
age ratio are only one of many possible flavors of adaptive performance
guarantees. One concrete question that we are particularly interested in
is a better understanding of the “Pareto regret frontier” of achievable re-
grets, roughly corresponding to the set of comparator-dependent regret
bounds that are achievable by any algorithm. Clearly, the bounds we
achieve are just singular elements of this set. We conjecture that bounds
of order √𝐶†(𝜋∗)𝑛 are indeed on the regret frontier. Whether this is
indeed true or if there are other distinguished entries on the Pareto fron-
tier with desirable properties remains to be seen. All in all, our results
highlight that off-policy learning is a field of study that’s ripe with open
questions that can be interesting for the online learning community that
is typically very keen on instance-dependent analysis.

A more ambitious question for future research is if our techniques can be
extended to more challenging settings, and especially online learning in
Markov decision processes (Even-Dar, Kakade, and Mansour 2009; Neu,
György, and Szepesvári 2010; Neu, György, Szepesvári, and Antos 2014).
We think that an extension to this setting would be particularly valuable,
given the recent flurry of interest in offline reinforcement learning. In this
context, we could potentially exploit the unique feature of our algorithm
design that, unlike all other methods, it does not rely on explicit uncer-
tainty quantification for calculating its pessimistic updates. This could
mean a major advantage over traditional off-policy RL methods that rely
on uncertainty quantification to build confidence sets over abstract ob-
jects (like the entire transition function of the Markov process), which is
a notoriously hard problem, especially in the infinite-horizon setting. In
contrast, as our results in Section 5.4 highlight, the pessimistic nature of
our method is realized through an update rule that is slightly more con-
servative than the standard exponential-weights update rule. We believe
that this insight can be very useful for developing new methods for offline
RL, even more so since they appear to be directly compatible with the
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primal-dual off-policy learning methods of Nachum, Chow, et al. (2019);
Nachum, Dai, et al. (2019); Uehara, Huang, and Jiang (2020).

8.2 Importance-Weighted Offline Learning
We now provide some additional discussion on our results, related work,
and open problems.

No more uniform coverage. The bounds we have proved are tighter
than any that are known in the literature, and they have the particu-
lar strength that they do not require the action probabilities to be strictly
bounded away from zero. Virtually all previous bounds require this “uniform-
coverage” assumption, largely due to their excessive reliance on textbook
concentration results like Bernstein’s, Bennett’s, or Freedman’s inequali-
ties. The only result we are aware of that does not explicitly suffer from
this limitation is by Y. Jin, Ren, et al. (2022), who rely on a very so-
phisticated new proof technique which eventually does not yield easily
interpretable performance bounds due to the appearance of some higher
moments of the importance weights. The key to our stronger results is the
observation that the tails of importance-weighted reward estimators are
asymmetric: their lower tails are always light, and thus one only has to
tame the upper tails via pessimistic adjustments. This simple observation
allows us to derive very tight bounds using a few lines of elementary deriva-
tions. If there is any moral to this story, then it is that one should always
avoid using two-sided concentration inequalities for importance-weighted
estimators (at least as long as the rewards are positive).

Implicit exploration and clipped importance weighting. A per-
haps more traditional way to control the tails of importance-weighted
estimators is the clipped importance weighting (CIW) estimator we have
defined in Section 6.6. Variants of this estimator have been studied at
least since the work of Ionides (2008) and vigorously applied in the offline
learning literature (Bottou et al. 2013; Flynn et al. 2023; Sakhi, Alquier,
and Chopin 2023). Interestingly, despite its broad usage, we are not aware
of any work in this context that has worked out expressions for the bias
of the CIW estimator, much less derived a regret bound for the resulting
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offline learning scheme. We believe that our results for the closely related
IX estimator should essentially all apply to the CIW estimator and indeed
our experiments show that they behave nearly identically in the settings
we have tested. Nevertheless, we suspect that analyzing this estimator
would end up being considerably more involved than our own analysis,
but of course we would love to be proved wrong by future work.

Reward-scaled coverage ratios. A subtle improvement of our bounds
as opposed to the ones of L. Wang, Krishnamurthy, and Slivkins (2023)
is that they depend on the reward-scaled version of the coverage ratio.
This implies that bounds expressed in terms the scaled ratio 𝐶𝛾(𝜋∗) can
be much tighter than ones expressed in terms of 𝐶(𝜋∗) when the rewards
of the comparator policy 𝜋∗ “tend to be small” in an appropriate sense.
Note that this is a significant improvement in practical applications like
online recommendation systems, where expected rewards correspond to
clickthrough rates, which are very close to zero even for the very best
ad campaigns. In the special case where rewards are negatively correlated
with the importance weights (which may intuitively happen if the behavior
policy is “reasonably good” in the sense that it puts larger weights on good
actions), the coverage ratio against the optimal deterministic policy 𝜋∗

can be shown to satisfy 𝐶𝛾(𝜋∗) ≤ 𝜌(𝜋∗)𝐶(𝜋∗), thus improving greatly over
standard bounds that depend on 𝐶(𝜋∗). Bounds that improve for small
expected rewards are known in the bandit literature at least since the work
of Auer et al. (2002), and we are curious if guarantees like the above can
be proved under more general conditions for offline learning as well.

Lower bounds. The “optimality” of pessimistic offline learning meth-
ods is a contentious topic that we prefer not to discuss here in much detail.
In particular, even in the simplest case of offline learning in multi-armed
bandits, Xiao et al. (2021) have shown that a large range of algorithms in-
cluding pessimistic, greedy, and optimistic methods satisfies the standard
notion of minimax optimality, and there is thus nothing special about
pessimistic methods in these terms. Putting this alarming concern aside,
pessimistic algorithms tend to have the property that their regret scales
with the minimax sample complexity of estimating the value of the com-
parator policy (Y. Jin, Z. Yang, and Z. Wang 2021; Xiao et al. 2021). In
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our case, it is not entirely clear if this statement continues to be true. In
the special case of multi-armed bandits with binary rewards and a deter-
ministic comparator policy, our bound matches the lower bound proved
by L. Li, Munos, and Szepesvári (2015) (up to a log 𝐾 factor). That said,
already in the case of stochastic comparator policies, our upper bounds no
longer match the minimax sample complexity of estimation. Finding out
if better algorithms with matching regret guarantees can be developed is
a very interesting research question that we leave open for now.

Computational-statistical tradeoffs. As we show in this paper, it is
possible to develop oracle-efficient algorithms with good statistical guar-
antees. However, these algorithms don’t seem to demonstrate the correct
scaling with the problem complexity unless prior knowledge of problem
parameters is provided to the algorithm. This limitation can be bypassed
by a more involved algorithm we describe in Appendix 6.5, but the re-
sulting method cannot apparently be implemented via a single call to the
optimization oracle. Whether or not this computational-statistical trade-
off is inherent to the problem is unclear at this point and warrants further
research.

Further refinements. Our results can be extended in a number of
straightforward ways by building on previous developments in the liter-
ature. For instance, the dependence on log |Π| appearing in our main
results can be most likely replaced by other complexity measures like cov-
ering numbers or the Natarajan dimension of the policy class, by adapt-
ing the techniques of either Swaminathan and Joachims (2015) or Y. Jin,
Ren, et al. (2022). Similar bounds can be recovered by our PAC-Bayesian
guarantees presented in Section 6.4 by building on techniques of Audib-
ert (2004); Catoni (2007) (see also (Grünwald, Steinke, and Zakynthinou
2021)). Another very simple generalization that our framework can readily
handle is the case of adaptive behavior policies, where each sample point
(𝑋𝑡, 𝐴𝑡, 𝑅𝑡) can be generated by a different behavior policy 𝜇𝑡 that may
potentially depend on all past observations. The concentration bounds of
Lemmas 6.3.2 and 6.3.3 can be very easily adapted to deal with such ob-
servations, and accordingly a version of our main result can be proved with
the quantity 𝔼 [ 1

𝑛 ∑𝑛
𝑡=1 ∑𝑎

𝜋∗(𝑎|𝑋𝑡)
𝜇𝑡(𝑎|𝑋𝑡)+𝛾 ⋅ 𝑔(𝑋𝑡, 𝑎)] taking the role of 𝐶𝛾(𝜋∗).
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We hope that the simplicity of our techniques will enable further progress
on the topic of importance-weighted offline learning, and in particular that
further interesting extensions will be uncovered by future work.

8.3 Offline Learning in Markov Decision Processes
In this section, we compare our results with the most relevant ones from
the literature, with a particular focus on discussing the relations between
the coverage ratios used in our work and the ones used in related litera-
ture. Our Table 7.1 can be used as a reference. As a complement to this
section, we refer the interested reader to the recent work by Uehara and
Sun (2022), which provides a survey of offline RL methods with their cov-
erage and structural assumptions. Detailed computations can be found in
Appendix 7.5.

An important property of our method is that it only requires partial cov-
erage. This sets it apart from classic batch RL methods like fitted Q-
iteration (Ernst, Geurts, and Wehenkel 2005; Munos and Szepesvári 2008;
J. Chen and Jiang 2019), whose analysis requires a stronger uniform-
coverage assumption. Interestingly, our results defy the common wisdom
in the related literature that suggests that obtaining guarantees under
weaker partial-coverage assumptions requires the use of pessimistic ad-
justments (e.g., (Y. Jin, Z. Yang, and Z. Wang 2021; Xie, C. Cheng, et al.
2021))—indeed, notice that our algorithm does not implement any form
of explicit pessimism. In fact, as we argue below, the notion of coverage
that our guarantees depend on is in many senses much weaker than the
most commonly used notions appearing in the literature.

Let us review some existing notions of coverage and contrast them to our
notion. Y. Jin, Z. Yang, and Z. Wang (2021) (Theorem 4.4) rely on a
feature coverage ratio which can be written as

𝐶†(𝜋∗) = 𝔼𝑋,𝐴∼𝜇∗ [𝝋(𝑋, 𝐴)T𝚲−1
𝜇 𝝋(𝑋, 𝐴)] . (8.1)

By Jensen’s inequality, our 𝐶𝜑,1/2 (Definition 4.7.1) is never larger than
𝐶†, and more precisely one can show that

𝐶𝜑,1/2(𝜋∗) = 𝐶†(𝜋∗) − 𝕍𝑋,𝐴∼𝜇∗ [𝚲−1/2
𝜇 𝝋(𝑋, 𝐴)] ,
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where 𝕍 [𝑍] = 𝔼[‖𝑍 − 𝔼 [𝑍]‖2] for a random vector 𝑍. Furthermore, a
simple geometric argument shows that the difference can be very large. A
boundedness condition on 𝐶†(𝜋∗) requires the column space of 𝚲𝜇 to span
the subspace of ℝ𝑑 spanned by optimal features, span{𝝋(𝑥, 𝑎) ∣ 𝜇𝜋∗(𝑥, 𝑎) >
0}. In contrast, our coverage assumption only requires 𝝋(𝜋∗) ∈ range(𝚲𝜇).
Intuitively, we only require the behavior policy to witness a single direc-
tion in feature space (the average feature vector under 𝜋∗) compared to
a whole, potentially 𝑑-dimensional, subspace. This can make a big dif-
ference, especially when 𝑑 is large. Although it is not true in general
that 𝐶𝜑,1 is smaller than 𝐶†(𝜋∗), the single-direction property continues
to hold for 𝑐 = 1. In Appendix 7.5, we show an example where 𝐶† can be
arbitrarily larger than both 𝐶𝜑,1/2 and 𝐶𝜑,1.

This kind of coverage ratio has appeared in the literature before, but
only for finite-horizon problems. Concretely, Zanette, Wainwright, and
Brunskill (2021) propose a computationally intense algorithm that demon-
strates a regret bound scaling with a quantity essentially equivalent to our
𝐶𝜑,1/2. Uehara and Sun (2022) and X. Zhang et al. (2022) use a coverage
ratio that is conceptually similar to Equation (8.1),

𝐶⋄(𝜋∗) = sup
𝑦∈ℝ𝑑

𝑦T𝚲∗
𝜇𝑦

𝑦T𝚲𝜇𝑦 , (8.2)

where 𝚲∗
𝜇 = 𝔼𝑋,𝐴∼𝜇∗ [𝝋(𝑋, 𝐴)𝝋(𝑋, 𝐴)T]. Some linear algebra shows that

𝐶⋄ ≤ 𝐶† ≤ 𝑑𝐶⋄. Therefore, chaining the previous inequalities we know
that 𝐶𝜑,1/2 ≤ 𝐶† ≤ 𝑑𝐶⋄. It should be noted that the algorithm from Ue-
hara and Sun (2022) also works with unknown features, at the cost of
being computationally inefficient. The algorithm from X. Zhang et al.
(2022) instead is limited to the finite-horizon setting.

We can gain some further insight from the special case of tabular MDPs, al-
though it is hard to compare our ratio with existing ones there, because in
this setting, error bounds are commonly stated in terms of sup𝑥,𝑎 𝜇∗(𝑥,𝑎)/𝜇𝐵(𝑥,𝑎),
often introducing an explicit dependency on the number of states (e.g.,
Liu et al. 2020). However, looking at how the coverage ratio specializes
to the tabular setting can still provide some insight. First, 𝐶𝜑,1/2(𝜋∗) =
∑𝑥,𝑎

(𝜇∗(𝑥,𝑎))2/𝜇𝐵(𝑥,𝑎), which of course is smaller than the more standard
𝐶†(𝜋∗) = ∑𝑥,𝑎

𝜇∗(𝑥,𝑎)/𝜇𝐵(𝑥,𝑎). Interestingly, 𝐶𝜑,1/2(𝜋∗) = 1 + 𝒳2(𝜇∗‖𝜇𝐵),
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where 𝒳2 denotes the chi-square divergence, a crucial quantity in off-
distribution learning based on importance sampling Cortes, Mansour, and
Mohri 2010. An analogous quantity was used by L. Li, Munos, and
Szepesvári (2014) to characterize the sample complexity of off-policy pol-
icy evaluation. Unfortunately, 𝐶𝜑,1(𝜋∗) = ∑𝑥,𝑎(𝜇∗(𝑥,𝑎)/𝜇𝐵(𝑥,𝑎))2 is non-
comparable with 𝐶† in general, and larger than 𝐶𝜑,1/2. A similar quan-
tity to 𝐶𝜑,1 was used by Lykouris et al. (2021) in the context of RL with
adversarial corruptions.

The most directly comparable works to ours are those of Xie, C. Cheng,
et al. (2021) and C.-A. Cheng et al. (2022), which are the only known prac-
tical methods to consider function approximation in the infinite-horizon
setting, with minimal assumptions on the dataset. They both use the
coverage ratio 𝐶ℱ(𝜋∗) = max𝑓∈ℱ ‖𝑓−𝒯𝑓‖2

𝜇∗/‖𝑓−𝒯𝑓‖2
𝜇𝐵

, where ℱ is a func-
tion class and 𝒯 the Bellman operator. This can be shown to reduce to
Equation (8.2) for linear MDPs (cf. Appendix 7.5). However, the spe-
cialized bound of Xie, C. Cheng, et al. (2021) (Theorem 3.2) scales with
the potentially larger ratio from Equation (8.1). Both their algorithms
have superlinear computational complexity and a sample complexity of
𝑂(𝜀−5). While the authors make plausible arguments in their paper that
their method can be efficiently implemented in the linear setting and may
obtain a sample complexity of order of order 𝜀−2, these statements are
not supported with rigorous proofs. Hence, our result is technically the
first provably computationally effective method that achieves a rate bet-
ter than 𝑂(𝜀−5), with the additional benefit of using a single-direction
coverage ratio as discussed in the above paragraphs.

The above discussion outlines two major open problems that we leave
open for future work. First, we highlight that so far, no computationally
efficient algorithm exists for our setting that achieves the minimax optimal
sample complexity rate of 𝑂(𝜀−2) (Xiao et al. 2021; Rashidinejad, B. Zhu,
et al. 2022). Regarding our own algorithm, it is clear that the extra 𝑂(𝜀−2)
factor in our bounds is due to the nested-loop structure of the algorithm.
How to remove this component from our algorithm design is currently
unclear, but we suspect that that borrowing ideas from the literature
on optimistic descent methods (Korpelevich 1976; Rakhlin and Sridharan
2013) or two-timescale stochastic approximation (Borkar 1997) may bring
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us closer to an answer. A second limitation of our contribution is that, in
order to scale with 𝐶𝜑,1/2, our method requires prior knowledge of 𝚲𝜇. We
believe that this limitation can be relaxed at the price of a significantly
more involved analysis, for instance by setting aside some fraction of the
data set to estimate 𝚲𝜇 (or directly 𝚲−1

𝜇 , using techniques from (Neu
and Olkhovskaya 2020; Neu and Olkhovskaya 2021)). We opted to focus
on this slightly stylized scenario to maintain the clarity of our technical
contribution. That said, as long as one is happy with a bound that scales
with 𝐶𝜑,1, a simple and elegant version of our algorithm can provide such
bounds without prior knowledge of Λ. Whether or not a it is possible to
unify the advantages of the two versions of our algorithm is an exciting
question for future research.
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Appendix A

Proofs for Chapter 5

A.1 The proof of Lemma 5.5.1
We study the evolution of the potential function 1

𝜂 log 𝑊𝑛+1
𝑊1

. On the one
hand, we have for any action ̄𝑎 that

1
𝜂 log 𝑊𝑛+1

𝑊1
= 1

𝜂 log ( 1
|𝒜| ∑

𝑎∈𝒜
𝑤𝑛+1(𝑎)) ≥ 1

𝜂 log ( 1
|𝒜| 𝑤𝑛+1( ̄𝑎)) (A.1)

=
𝑛

∑
𝑡=1

̂𝑟𝑡(𝑎) − log |𝒜|
𝜂 .

Multiplying this bound with 𝜋∗( ̄𝑎) and summing up over actions gives the
lower bound

1
𝜂 log 𝑊𝑛+1

𝑊1
≥

𝑛
∑
𝑡=1

∑
𝑎∈𝒜

𝜋∗(𝑎) ̂𝑟𝑡(𝑎) − 1
𝜂 log |𝒜|. (A.2)

On the other hand, the potential can be rewritten as follows:
1
𝜂 log 𝑊𝑛+1

𝑊1
= 1

𝜂
𝑛

∑
𝑡=1

log 𝑊𝑡+1
𝑊𝑡

= 1
𝜂

𝑛
∑
𝑡=1

log
∑𝑎∈𝒜 𝑤𝑡(𝑎)𝑒𝜂 ̂𝑟𝑡(𝑎)

𝑊𝑡
= 1

𝜂
𝑛

∑
𝑡=1

log ∑
𝑎∈𝒜

𝜋𝑡(𝑎)𝑒𝜂 ̂𝑟𝑡(𝑎).

Putting the two expressions together concludes the proof.
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A.2 The proof of Theorem 5.3.1
In this proof, we have to face the added challenge of having to account
for the possible inaccuracy of our estimator of 𝜇. To this end, we de-
fine a sequence of “good events” under which the policy estimate is well-
concentrated and analyze the regret under this event and its complement,
using that the good event should hold with high probability. Concretely,
we define the failure probability 𝛿𝑡 ∈ (0, 1), the tolerance parameter 𝜀𝑡,
and the 𝑡-th good event as follows:

𝜀1 = 1 , 𝜀𝑡 = √ log(|𝒜|/𝛿𝑡)
2(𝑡 − 1) 𝐸𝑡 = {| ̂𝜇𝑡(𝑎) − 𝜇(𝑎)| ≤ 𝜀𝑡 (∀𝑎 ∈ 𝒜)}.

(A.3)

TODO: resume from here

An application of Hoeffding’s inequality shows that 𝐸𝑡 holds with prob-
ability at least 1 − 𝛿𝑡. Now, setting 𝛾𝑡 = 𝜀𝑡 + 𝜂/2, we can observe that
under event 𝐸𝑡, we have

̂𝑟𝑡(𝑎) = 𝑔𝑡(𝑎)1{𝐴𝜇
𝑡 = 𝑎}

̂𝜇𝑡 + 𝛾𝑡
≤ 𝑔𝑡(𝑎)1{𝐴𝜇

𝑡 = 𝑎}
𝜇(𝑎) + 𝜂/2 ≤ 1

𝜂 log(1 + 𝜂 ̂𝑟IW
𝑡 (𝑎)). (A.4)

We proceed by noticing that the bound of Lemma 5.5.1 continues to apply,
and that we can bound the term appearing on the right-hand side as
follows:

𝔼𝑡[
1
𝜂 log ∑

𝑎∈𝒜
𝜋𝑡(𝑎) exp (𝜂 ̂𝑟𝑡(𝑎))]

≤ 1{𝐸𝑡}𝔼𝑡[
1
𝜂 log ∑

𝑎∈𝒜
𝜋𝑡(𝑎) exp (𝜂 ̂𝑟𝑡(𝑎))] + 1{𝐸𝑡}

2
𝜂

≤ 1{𝐸𝑡}𝔼𝑡[∑
𝑎∈𝒜

𝜋𝑡(𝑎) ̂𝑟IW
𝑡 (𝑎)] + 1{𝐸𝑡}

2
𝜂 ≤ ∑

𝑎∈𝒜
𝜋𝑡(𝑎)𝑔𝑡(𝑎) + 1{𝐸𝑡}

2
𝜂 ,

where in the first line we used that 𝑒𝜂 ̂𝑟𝑡(𝑎) ≤ 𝑒𝜂/𝛾𝑡 ≤ 𝑒2 and in the sec-
ond line we used the bound of Equation (A.4), the fact that 𝐸𝑡 is ℱ𝑡−1-
measurable, that 𝔼𝑡[ ̂𝑟IW

𝑡 (𝑎)] = 𝑔𝑡(𝑎), and finally upper bounded the indi-
cator 1{𝐸𝑡} by one. Taking marginal expectations and summing up for
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all 𝑡, we get

𝔼 [1
𝜂

𝑛
∑
𝑡=1

log ∑
𝑎∈𝒜

𝜋𝑡(𝑎) exp (𝜂 ̂𝑟𝑡(𝑎))] ≤ 𝔼 [
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

𝜋𝑡(𝑎)𝑔𝑡(𝑎)] + 2
𝜂

𝑛
∑
𝑡=1

𝛿𝑡,

where we used 𝔼 [1{𝐸𝑡}] ≤ 𝛿𝑡.

It thus remains to relate the term on the left-hand side of the bound of
Lemma 5.5.1. To do this, we similarly write

𝔼𝑡[ ̂𝑟𝑡(𝑎)] ≥ 1{𝐸𝑡}𝔼𝑡[ ̂𝑟𝑡(𝑎)] = 1{𝐸𝑡}𝔼𝑡[
𝑔𝑡(𝑎)1{𝐴𝜇

𝑡 = 𝑎}
̂𝜇𝑡(𝑎) + 𝛾𝑡

]

≥ 1{𝐸𝑡} ⋅ 𝑔𝑡(𝑎)𝜇(𝑎)
𝜇(𝑎) + 𝜀𝑡 + 𝛾𝑡

≥ 1{𝐸𝑡}𝑔𝑡(𝑎) − 𝜀𝑡 + 𝛾𝑡
𝜇(𝑎) ,

where in the first inequality we exploited that ̂𝑟𝑡(𝑎) is nonnegative, in the
second one we used that 𝐸𝑡 is 𝜎(ℎ̃𝑡)-measurable and the defining property
of the good event, and in the last one we simplified some expressions.
Thus, we have

𝔼 [
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

𝜋∗(𝑎)𝑔𝑡(𝑎)]

≤ 𝔼 [
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

𝜋∗(𝑎) ( ̂𝑟𝑡(𝑎) + (1 − 1{𝐸𝑡})𝑔𝑡(𝑎) + 𝜀𝑡 + 𝛾𝑡
𝜇(𝑎) )]

= 𝔼 [
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

𝜋∗(𝑎) ̂𝑟𝑡(𝑎)] +
𝑛

∑
𝑡=1

𝛿𝑡 + ∑
𝑎∈𝒜

𝜋∗(𝑎)
𝜇(𝑎)

𝑛
∑
𝑡=1

(2𝜀𝑡 + 𝜂
2) ,

where in the last line we recalled that 𝛾𝑡 = 𝜀𝑡 + 𝜂/2. Putting the two
bounds together, we arrive to

𝔼 [
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

(𝜋∗(𝑎)𝑔𝑡(𝑎) − 𝜋𝑡(𝑎)𝑔𝑡(𝑎))]

≤ log |𝒜|
𝜂 + (1 + 2

𝜂)
𝑛

∑
𝑡=1

𝛿𝑡 + (𝜂𝑛
2 + 2

𝑛
∑
𝑡=1

𝜀𝑡) ∑
𝑎∈𝒜

𝜋∗(𝑎)
𝜇(𝑎)
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Finally, we set 𝛿1 = 0 , 𝛿𝑡 = (𝑡 − 1)−2 so that we have ∑𝑛
𝑡=1 𝛿𝑡 = 𝜋2/6 ≤ 2

and we can write
𝑛

∑
𝑡=1

𝜀𝑡 = 1 +
𝑛−1
∑
𝑡=1

√ log(|𝒜|𝑡2)
2𝑡 ≤ 2√𝑛 log(|𝒜|𝑛),

where we also used the standard upper bound ∑𝑛
𝑡=1 1/

√
𝑡 ≤ 2√𝑛. Putting

everything together, we finally get

𝔼 [
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

(𝜋∗(𝑎)𝑔𝑡(𝑎) − 𝜋𝑡(𝑎)𝑔𝑡(𝑎))]

≤ 16 + log |𝒜|
𝜂 + (𝜂𝑛

2 + 2√𝑛 log(|𝒜|𝑛)) 𝐶†(𝜋∗) + 2. (A.5)

Setting 𝜂 = √ log |𝒜|
𝑛 concludes the proof.

A.3 The proof of Theorem 5.4.1
The proof combines ideas from the previous two proofs with ideas from
Neu and Olkhovskaya (2020) to deal with the contextual aspect of the
problem setting. In the following, let ̂𝑟𝑡(𝑥, 𝑎) = ⟨ ̂𝜃𝑡, 𝜑(𝑥, 𝑎)⟩. As a starting
point, we fix a context 𝑥 ∈ 𝒳 and define the estimated regret in context
𝑥 against comparator 𝜋∗ as

ℜ̂(𝜋∗, 𝑥) =
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

(𝜋∗(𝑎 ∣ 𝑥) − 𝜋𝑡(𝑎 ∣ 𝑥)) ̂𝑟𝑡(𝑥, 𝑎). (A.6)

The following lemma gives a bound on the above quantity:

Lemma A.3.1. Suppose that 𝜂 ̂𝑟𝑡(𝑥, 𝑎) ≥ −1/2 holds for all 𝑥, 𝑎. Then,
for any fixed 𝑥 and 𝜋∗,

ℜ̂(𝜋∗, 𝑥) ≤ log |𝒜|
𝜂 + 𝜂

𝑛
∑
𝑡=1

  ∑
𝑎∈𝒜

𝜋∗(𝑎 ∣ 𝑥) ( ̂𝑟𝑡(𝑥, 𝑎))2 . (A.7)

The proof follows from a careful combination of techniques by Cesa-
Bianchi, Mansour, and Stoltz (2007) and Neu and Olkhovskaya (2020),
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and is deferred to Appendix A.4.1. We proceed by noting that for any
fixed 𝑥, the second term in the bound can be bounded as follows:

𝔼𝑡[ ̂𝑟𝑡(𝑥, 𝑎)2]
= 𝔼𝑡[(𝑅𝜇

𝑡 )2 𝜑(𝑥, 𝑎)T𝚲−1
𝜇 𝜑(𝑋𝑡, 𝐴𝜇

𝑡 )𝜑(𝑋𝑡, 𝐴𝜇
𝑡 )⊤𝚲−1

𝜇 𝜑(𝑥, 𝑎)]
≤ 𝜑(𝑥, 𝑎)⊤𝚲−1

𝜇 𝚲𝜇𝚲−1
𝜇 𝜑(𝑥, 𝑎)

= 𝜑(𝑥, 𝑎)T𝚲−1
𝜇 𝜑(𝑥, 𝑎)

= Tr(𝚲−1
𝜇 𝜑(𝑥, 𝑎)𝜑(𝑥, 𝑎)T),

(A.8)

where we have used 𝑅𝜇
𝑡 ≤ 1 in the inequality. Furthermore, in order to

use the lemma, we first need to verify that its precondition is satisfied. To
this end, notice that

| ̂𝑟𝑡(𝑥, 𝑎)| = ∣𝑅𝜇
𝑡 𝜙(𝑥, 𝑎)T𝚲−1

𝜇 𝜙(𝑋𝑡, 𝐴𝜇
𝑡 )∣ ≤

sup𝑥,𝑎 ‖𝜙(𝑥, 𝑎)‖2
2

𝜆min(𝚲𝜇) ,

which follows from a straightforward applicaiton of the Cauchy–Schwarz
inequality. Thus, the condition on 𝜂 we impose in the theorem guarantees
that 𝜂| ̂𝑟𝑡(𝑥, 𝑎)| ≤ 1/2. Now we are in position to invoke Lemma A.3.1,
albeit with a specific choice for the context 𝑥. Specifically, we let 𝑋0 be
a “ghost sample” drawn independently from the context distribution for
the sake analysis, and apply Lemma A.3.1 to obtain

ℜ̂(𝜋∗, 𝑋0) ≤ log |𝒜|
𝜂 + 𝜂

𝑛
∑
𝑡=1

  ∑
𝑎∈𝒜

𝜋∗(𝑎 ∣ 𝑋0) Tr(𝚲−1
𝜇 𝜑(𝑋0, 𝑎)𝜑(𝑋0, 𝑎)T).

(A.9)
Then, a straightforward calculation inspired by the analysis of Neu and
Olkhovskaya (2020) shows that the left-hand side is related to the expected
regret as

𝔼 [ℜ̂(𝜋∗, 𝑋0)] = 𝔼 [
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

(𝜋∗(𝑎|𝑋𝑡) − 𝜋𝑡(𝑎|𝑋𝑡)) 𝑔𝑡(𝑋𝑡, 𝑎)] . (A.10)

For completeness, we include this calculation in Appendix A.4. The same
technique can be used to deal with the term on the right-hand side as
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follows:

𝔼 [
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

𝜋∗(𝑎 ∣ 𝑋0) Tr (𝚲−1
𝜇 𝜙(𝑋0, 𝑎)𝜙(𝑋0, 𝑎)T)]

= 𝔼 [
𝑛

∑
𝑡=1

Tr (𝚲−1
𝜇 ∑

𝑎∈𝒜
𝜋∗(𝑎 ∣ 𝑋0)𝜙(𝑋0, 𝑎)𝜙(𝑋0, 𝑎)T)]

= 𝔼 [
𝑛

∑
𝑡=1

Tr (𝚲−1
𝜇 𝚲∗

𝜋)] = 𝑛 ⋅ 𝐶†(𝜋∗).

Thus, taking expectations of both sides of Equation (A.9) and using the
above two results concludes the proof.

A.4 The proof of the regret decomposition of Equa-
tion (A.10)

We start by fixing an arbitrary 𝑥 and defining the following notion of
pseudo-regret in context 𝑥:

ℜ̃(𝜋∗, 𝑥) =
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

(𝜋∗(𝑎 ∣ 𝑥) − 𝜋𝑡(𝑎 ∣ 𝑥)) 𝑔𝑡(𝑥, 𝑎).

We first note that 𝔼[ℜ̂(𝜋∗, 𝑥)] = 𝔼[ℜ̃(𝜋∗, 𝑥)] holds thanks to the unbiased-
ness of ̂𝑟𝑡 and the independence of 𝜋𝑡 and ̂𝑟𝑡. In particular, this follows
from the following derivation:

𝔼[ℜ̂(𝜋∗, 𝑥)] = 𝔼[
𝑛

∑
𝑡=1

𝔼𝑡[∑
𝑎∈𝒜

(𝜋∗(𝑎 ∣ 𝑥) − 𝜋𝑡(𝑎 ∣ 𝑥)) ̂𝑟𝑡(𝑥, 𝑎)]]

= 𝔼[
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

(𝜋∗(𝑎 ∣ 𝑥) − 𝜋𝑡(𝑎 ∣ 𝑥)) 𝔼𝑡[ ̂𝑟𝑡(𝑥, 𝑎)]]

= 𝔼[
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

(𝜋∗(𝑎 ∣ 𝑥) − 𝜋𝑡(𝑎 ∣ 𝑥)) 𝑔𝑡(𝑥, 𝑎)] = 𝔼[ℜ̃(𝜋∗, 𝑥)],
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where we used the tower rule of expectation in the first step, the fact that
𝜋𝑡 is 𝜎(ℎ̃𝑡)-measurable in the second step, and the unbiasedness of the
reward estimator in the last step. To relate 𝔼[ℜ̃(𝜋∗, 𝑥)] and the true ex-
pected Regret ℜ(𝜋∗), we consider the random variable ℜ̃(𝜋∗, 𝑋0) with 𝑋0
being a ghost sample drawn from the context distribution independently
from the history of contexts (𝑋𝑡)𝑛

𝑡=1. Then, we can write the expectation
of this random variable as

𝔼[ℜ̃(𝜋∗, 𝑋0)] = 𝔼[
𝑛

∑
𝑡=1

∑
𝑎∈𝒜

(𝜋∗(𝑎 ∣ 𝑋0) − 𝜋𝑡(𝑎 ∣ 𝑋0)) 𝑔𝑡(𝑋0, 𝑎)]

= 𝔼[
𝑛

∑
𝑡=1

𝔼𝑡[∑
𝑎∈𝒜

(𝜋∗(𝑎 ∣ 𝑋0) − 𝜋𝑡(𝑎 ∣ 𝑋0)) 𝑔𝑡(𝑋0, 𝑎)]]

= 𝔼[
𝑛

∑
𝑡=1

𝔼𝑡[∑
𝑎∈𝒜

(𝜋∗(𝑎 ∣ 𝑋𝑡) − 𝜋𝑡(𝑎 ∣ 𝑋𝑡)) 𝑔𝑡(𝑋𝑡, 𝑎)]] = ℜ(𝜋∗),

where the second line uses the tower rule of expectation and the third one
the fact that 𝑋0 is distributed identically with 𝑋𝑡 given ℎ̃𝑡. This concludes
the proof.

A.4.1 Proof of Lemma A.3.1
The proof is inspired by the classic Prod analysis of Cesa-Bianchi, Man-
sour, and Stoltz (2007), and follows from similar arguments as the proof
of Lemma 5.5.1. The main adjustment we need to these proofs is that now
we have to include contexts in our derivations. To this end, let us fix one
context 𝑥 ∈ 𝒳 and suppose that the condition of the theorem is satisfied:
𝜂 ̂𝑟𝑡(𝑥, 𝑎) ≥ −1/2 for all actions 𝑎 ∈ 𝒜.

As before, we will study the evolution of the potential function 1
𝜂 log 𝑊𝑛+1(𝑥)

𝑊1(𝑥) .
For every action ̄𝑎 ∈ 𝒜 we have:

1
𝜂 log 𝑊𝑛+1(𝑥) = 1

𝜂 log ∑
𝑎∈𝒜

𝑛
∏
𝑡=1

(1 + 𝜂 ̂𝑟𝑡(𝑥, 𝑎)) ≥ 1
𝜂 log

𝑛
∏
𝑡=1

(1 + 𝜂 ̂𝑟𝑡(𝑥, ̄𝑎))

= 1
𝜂

𝑛
∑
𝑡=1

log(1 + 𝜂 ̂𝑟𝑡(𝑥, ̄𝑎)) ≥
𝑛

∑
𝑡=1

( ̂𝑟𝑡(𝑥, ̄𝑎) − 𝜂 ( ̂𝑟𝑡(𝑥, ̄𝑎))2 ),
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where we used our condition on the magnitude of the reward estimates
twice: once to use (1 − 𝜂 ̂𝑟𝑡(𝑥, 𝑎)) ≥ 0 in the first line and once when using
the elementary inequality log(1 + 𝑧) ≥ 𝑧 − 𝑧2 that holds for all 𝑧 ≥ −1/2
in the second line. Moreover, we can upper-bound the potential as

1
𝜂 log 𝑊𝑛+1(𝑥) = 1

𝜂 log 𝑊1 + 1
𝜂 log

𝑛
∏
𝑡=1

𝑊𝑡+1(𝑥)
𝑊𝑡(𝑥)

= log |𝒜|
𝜂 + 1

𝜂
𝑛

∑
𝑡=1

log 𝑊𝑡+1(𝑥)
𝑊𝑡(𝑥)

= log |𝒜|
𝜂 + 1

𝜂
𝑛

∑
𝑡=1

log ∑
𝑎∈𝒜

̂𝑟𝑡(𝑥, 𝑎)
𝑊𝑡(𝑥) (1 + 𝜂 ̂𝑟𝑡(𝑥, 𝑎)) (def. of 𝑊𝑡+1)

= log |𝒜|
𝜂 + 1

𝜂
𝑛

∑
𝑡=1

log ∑
𝑎∈𝒜

𝜋𝑡(𝑎 ∣ 𝑥)(1 + 𝜂 ̂𝑟𝑡(𝑥, 𝑎)) (def. of 𝜋𝑡)

= log |𝒜|
𝜂 + 1

𝜂
𝑛

∑
𝑡=1

log (1 + 𝜂 ∑
𝑎∈𝒜

𝜋𝑡(𝑎 ∣ 𝑥) ̂𝑟𝑡(𝑥, 𝑎))

≤ log |𝒜|
𝜂 +

𝑛
∑
𝑡=1

∑
𝑎∈𝒜

𝜋𝑡(𝑎 ∣ 𝑥) ̂𝑟𝑡(𝑥, 𝑎),

where we used the inequality log(1+𝑧) ≤ 𝑧 that holds for all 𝑧 > −1.

Combining the lower bound and upper bound, we obtain
𝑛

∑
𝑡=1

( ̂𝑟𝑡(𝑥, ̄𝑎) − ∑
𝑎∈𝒜

𝜋𝑡(𝑎 ∣ 𝑥) ̂𝑟𝑡(𝑥, 𝑎)) ≤ log |𝒜|
𝜂 + 𝜂

𝑛
∑
𝑡=1

( ̂𝑟𝑡(𝑥, ̄𝑎))2 .

Multiplying both sides by 𝜋∗( ̄𝑎 ∣ 𝑥) and summing over all actions ̄𝑎 ∈ 𝒜
yields the desired result.
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Appendix B

Proofs for Chapter 6

In this section, we prove our main technical lemmas. To facilitate this
effort, we introduce the shorthand notations

̂𝑟IW
𝑡 (𝜋) = 𝜋(𝐴𝑡|𝑋𝑡)

𝜇(𝐴𝑡|𝑋𝑡)
𝑅𝑡, and ̂𝑟𝑡(𝜋) = 𝜋(𝐴𝑡|𝑋𝑡)

𝜇(𝐴𝑡|𝑋𝑡) + 𝛾 𝑅𝑡,

and note that ̂𝑣IW(𝜋) = 1
𝑛 ∑𝑛

𝑡=1 ̂𝑟IW
𝑡 (𝜋) and ̂𝑣𝑛 = 1

𝑛 ∑𝑛
𝑡=1 ̂𝑟𝑡(𝜋), and also

recall that 𝔼[ ̂𝑟IW
𝑡 (𝜋)] = 𝜌(𝜋) and 𝔼[ ̂𝑟𝑡(𝜋)] = 𝜌(𝜋) − 𝛾𝐶𝛾(𝜋) holds for all

𝑡.

B.1 The proof of Lemma 6.3.2
Fix an arbitrary 𝜋 ∈ Π. We start by using the elementary inequality
log(1 + 𝑦) ≥ 𝑦

1+𝑦/2 that holds for all 𝑦 ≥ 0 to show that

̂𝑟𝑡(𝜋) = 𝜋(𝐴𝑡|𝑋𝑡)𝑅𝑡
𝜇(𝐴𝑡|𝑋𝑡) + 𝛾 ≤ 𝜋(𝐴𝑡|𝑋𝑡)𝑅𝑡

𝜇(𝐴𝑡|𝑋𝑡) + 𝛾𝜋(𝐴𝑡|𝑋𝑡)𝑅𝑡

= 1
2𝛾 ⋅ 2𝛾 ̂𝑟IW

𝑡 (𝜋)
1 + 𝛾 ̂𝑟IW

𝑡 (𝜋) ≤ log (1 + 2𝛾 ̂𝑟IW
𝑡 (𝜋))

2𝛾 .

This implies that

𝔼[𝑒2𝛾 ̂𝑟𝑡(𝜋)] ≤ 𝔼[1 + 2𝛾 ̂𝑟IW
𝑡 (𝜋)] = 1 + 2𝛾𝜌(𝜋) ≤ 𝑒2𝛾𝜌(𝜋),

127



i
i

“main” — 2023/12/13 — 23:12 — page 128 — #136 i
i

i
i

i
i

where the last step follows from the inequality 𝑒𝑦 ≥ 1 + 𝑦 that holds
for all 𝑦 ∈ ℝ. Using the independence of all observations, this implies
𝔼[𝑒2𝛾 ∑𝑛

𝑡=1( ̂𝑟𝑡(𝜋)−𝜌(𝜋))] ≤ 1, and thus an application of Markov’s inequality
yields

ℙ [
𝑛

∑
𝑡=1

( ̂𝑟𝑡(𝜋) − 𝜌(𝜋)) ≥ 𝜀] = ℙ [𝑒2𝛾 ∑𝑛
𝑡=1( ̂𝑟𝑡(𝜋)−𝜌(𝜋)) ≥ 𝑒2𝛾𝜀] ≤ 𝑒−2𝛾𝜀

for any 𝜀 ≥ 0. Setting 𝜀 = log(|Π|/𝛿)
2𝛾 and taking a union bound over all

policies concludes the proof.

B.2 The proof of Lemma 6.3.3
Fix an arbitrary 𝜋 ∈ Π. We start by noting that for any nonnegative
random variable 𝑌 , and for any positive 𝜆, we have

𝔼[𝑒−𝜆𝑌 ] ≤ 𝔼[1 − 𝜆𝑌 + 𝜆2𝑌 2/2] ≤ 𝑒−𝜆𝔼[𝑌 ]+𝜆2𝔼[𝑌 2]/2,

where the first inequality follows from 𝑒−𝑦 ≤ 1 − 𝑦 + 𝑦2/2 that holds for
all 𝑦 ≥ 0 and the second from 𝑒𝑦 ≥ 1 + 𝑦 that holds for all 𝑦 ∈ ℝ. Apply
this inequality with 𝑌 = ̂𝑟𝑡(𝜋) and note that

𝔼[( ̂𝑟𝑡(𝜋))2] = 𝔼[ (𝜋(𝐴𝑡|𝑋𝑡))
2

(𝜇(𝐴𝑡|𝑋𝑡) + 𝛾)2 ⋅ 𝑅2
𝑡 ]

≤ 𝔼[∑
𝑎

𝕀{𝐴𝑡=𝑎}
𝜋(𝑎|𝑋𝑡)

(𝜇(𝑎|𝑋𝑡) + 𝛾)2 ⋅ 𝑔(𝑋𝑡, 𝑎)]

≤ 𝔼[∑
𝑎

𝜋(𝑎|𝑋𝑡)
𝜇(𝑎|𝑋𝑡) + 𝛾 ⋅ 𝑔(𝑋𝑡, 𝑎)] = 𝐶𝛾(𝜋),

where the first inequality used the boundedness of the rewards to show
𝔼 [𝑅2

𝑡 ] ≤ 𝔼 [𝑅𝑡] = 𝔼 [𝑔(𝑋𝑡, 𝑎)] and (𝜋(𝑎|𝑋𝑡))
2 ≤ 𝜋(𝑎|𝑋𝑡), and the second

inequality used that 𝔼 [𝕀{𝐴𝑡=𝑎}∣ 𝑋𝑡] = 𝜇(𝑎|𝑋𝑡).
Using the independence of all observations, this implies

𝔼[𝑒𝜆 ∑𝑛
𝑡=1(𝔼[ ̂𝑟𝑡(𝜋)]− ̂𝑟𝑡(𝜋)−𝜆𝐶𝛾(𝜋)/2)] ≤ 1.
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Recalling that 𝔼[ ̂𝑟𝑡(𝜋)] = 𝜌(𝜋) − 𝛾𝐶𝛾(𝜋), an application of Markov’s in-
equality yields

ℙ [
𝑛

∑
𝑡=1

(𝜌(𝜋) − ̂𝑟𝑡(𝜋) − (𝛾 + 𝜆/2) 𝐶𝛾(𝜋)) ≥ 𝜀] ≤ 𝑒−2𝛾𝜀.

Setting 𝜆 = 2𝛾 and 𝜀 = log(|Π|/𝛿)
2𝛾 , and finally taking a union bound over

all policies concludes the proof.

B.3 The proofs of Lemmas 6.4.2 and 6.4.3
To prove Lemma 6.4.2, let us first fix an arbitrary 𝑄 ∈ ΔΠ, and recall
from the proof of Lemma 6.3.2 that 𝔼[𝑒2𝛾 ̂𝑟𝑡(𝜋)] ≤ 𝑒2𝛾𝜌(𝜋), holds for all
fixed 𝜋. Thus, since 𝑃 is independent of the random observations, we also
have

𝔼 [∫ 𝑒2𝛾 ∑𝑛
𝑡=1( ̂𝑟𝑡(𝜋)−𝜌(𝜋))d𝑃(𝜋)] ≤ 1.

Now, let us introduce the notation 𝜌𝜋(𝑄, 𝑃 ) = log d𝑄
d𝑃 (𝜋) and write

ℙ [∫ (
𝑛

∑
𝑡=1

( ̂𝑟𝑡(𝜋) − 𝜌(𝜋)) − 𝜌𝜋(𝑄, 𝑃 )
2𝛾 ) d𝑄(𝜋) ≥ 𝜀]

≤ 𝔼 [𝑒2𝛾 ∫(∑𝑛
𝑡=1( ̂𝑟𝑡(𝜋)−𝜌(𝜋))− 𝜌𝜋(𝑄,𝑃)

2𝛾 )d𝑄(𝜋)] 𝑒−2𝛾𝜀

≤ 𝔼 [∫ 𝑒2𝛾(∑𝑛
𝑡=1( ̂𝑟𝑡(𝜋)−𝜌(𝜋))− 𝜌𝜋(𝑄,𝑃)

2𝛾 )d𝑄(𝜋)] 𝑒−2𝛾𝜀

= 𝔼 [∫ 𝑒2𝛾(∑𝑛
𝑡=1( ̂𝑟𝑡(𝜋)−𝜌(𝜋))) d𝑃

d𝑄(𝜋)d𝑄(𝜋)] 𝑒−2𝛾𝜀

= 𝔼 [∫ 𝑒2𝛾(∑𝑛
𝑡=1( ̂𝑟𝑡(𝜋)−𝜌(𝜋)))d𝑃(𝜋)] 𝑒−2𝛾𝜀 ≤ 𝑒−2𝛾𝜀.

Here, the first step follows from Markov’s inequality, the second from
Jensen’s inequality for the convex function 𝑦 ↦ 𝑒2𝛾𝑦, the third from
the definition of 𝜌𝜋(𝑄, 𝑃 ), the fourth from the definition of the Radon–
Nykodim derivative d𝑃

d𝑄 , and the last step from the inequality that we
have established above. Noticing that ∫ 𝜌𝜋(𝑄, 𝑃 )d𝑄(𝜋) = KL (𝑄‖𝑃)
and setting 𝜀 = log(1/𝛿)

2𝛾 concludes the proof of Lemma 6.4.2. The proof
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of Lemma 6.4.3 then follows analogously by recalling from the proof of
Lemma 6.3.3 that 𝔼[𝑒2𝛾(𝜌(𝜋)− ̃𝑟𝑡(𝜋)−2𝛾𝐶𝛾(𝜋))] ≤ 1, and then following the
same steps as above.
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Appendix C

Proofs for the discounted
setting of Chapter 7

C.1 Proof of Lemma 7.3.1
Using the choice of comparators described in the lemma, we have

𝜈𝜷∗(𝑠) = (1 − 𝛾)𝜈0(𝑠) + 𝛾⟨𝝍(𝑠), 𝚲𝑐
𝜇𝚲−𝑐

𝜇 𝚽⊤𝑝𝜋∗⟩
= (1 − 𝛾)𝜈0(𝑠) + ∑

𝑠′,𝑎′
𝑃(𝑠|𝑠′, 𝑎′)𝑝𝜋∗(𝑠′, 𝑎′) = 𝜈𝜋∗(𝑠),

hence 𝑝𝜷∗,𝜋∗ = 𝐩𝜋∗ . From Equation (7.15) it is easy to see that

𝑓(𝜷∗, 𝜋∗; 𝜽𝑡) = ⟨𝚲−𝑐
𝜇 𝚽⊤𝐩∗, 𝚲𝑐

𝜇𝜽𝑟⟩ + ⟨𝜽𝑡, 𝚽⊤𝐩∗ − 𝚲𝑐
𝜇𝚲−𝑐

𝜇 𝚽⊤𝐩∗⟩
= ⟨𝑝𝜋∗ , 𝚽𝜽𝑟⟩ = ⟨𝐩∗, 𝐫⟩.

Moreover, we also have

𝑣𝜽∗
𝑡,𝜋𝑡

(𝑠) = ∑
𝑎

𝜋𝑡(𝑎|𝑠)⟨𝜽𝜋𝑡 , 𝝋(𝑥, 𝑎)⟩

= ∑
𝑎

𝜋𝑡(𝑎|𝑠)𝑞𝜋𝑡(𝑠, 𝑎) = 𝑣𝜋𝑡(𝑠, 𝑎).
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Then, from Equation (7.16) we obtain

𝑓(𝜽∗
𝑡 , 𝜷𝑡, 𝜋𝑡) = (1 − 𝛾)⟨𝝂0, 𝑣𝜋𝑡⟩ + ⟨𝜷𝑡, 𝚲𝑐

𝜇(𝜽𝑟 + 𝛾𝚿𝐯𝜋𝑡 − 𝜽𝜋𝑡)⟩
= (1 − 𝛾)⟨𝝂0, 𝑣𝜋𝑡⟩ + ⟨𝜷𝑡, 𝚲𝑐−1

𝜇 𝔼𝑋,𝐴∼𝑝𝜇 [𝝋(𝑋, 𝐴)𝝋(𝑋, 𝐴)T(𝜽𝑟 + 𝛾𝚿𝐯𝜋𝑡 − 𝜽𝜋𝑡)]⟩
= (1 − 𝛾)⟨𝝂0, 𝑣𝜋𝑡⟩

+ ⟨𝜷𝑡, 𝚲𝑐−1
𝜇 𝔼𝑋,𝐴∼𝑝𝜇 [[𝑟(𝑋, 𝐴) + 𝛾 ⟨𝑝(⋅|𝑋, 𝐴), 𝐯𝜋𝑡⟩ − 𝐪𝜋𝑡(𝑋, 𝐴)]𝝋(𝑋, 𝐴)]⟩

= (1 − 𝛾)⟨𝝂0, 𝑣𝜋𝑡⟩ = ⟨𝑝𝜋𝑡 , 𝐫⟩,

where the fourth equality uses that the value functions satisfy the Bellman
equation 𝐪𝜋 = 𝐫 + 𝛾𝐏𝐯𝜋 for any policy 𝜋. The proof is concluded by
noticing that, since 𝝅out is sampled uniformly from {𝜋𝑡}𝑇

𝑡=1,

𝔼 [⟨𝐩𝝅out , 𝐫⟩] = 1
𝑇

𝑇
∑
𝑡=1

𝔼 [⟨𝐩𝜋𝑡 , 𝐫⟩] .

C.2 Proof of Lemma 7.3.2
We start by rewriting the terms appearing in the definition of 𝒢𝑇 :

𝑓(𝜷∗, 𝜋∗; 𝜽𝑡) − 𝑓(𝜷𝑡, 𝜋𝑡; 𝜽∗
𝑡) = 𝑓(𝜷∗, 𝜋∗; 𝜽𝑡) − 𝑓(𝜷∗, 𝜋𝑡; 𝜽𝑡)

+ 𝑓(𝜷∗, 𝜋𝑡; 𝜽𝑡) − 𝑓(𝜷𝑡, 𝜋𝑡; 𝜽𝑡)
+ 𝑓(𝜷𝑡, 𝜋𝑡; 𝜽𝑡) − 𝑓(𝜷𝑡, 𝜋𝑡; 𝜽∗

𝑡). (C.1)

To rewrite this as the sum of the three regret terms, we first note that

𝑓(𝜷, 𝜋; 𝜽) = ⟨𝚲𝑐
𝜇𝜷, 𝜽𝑟 − 𝜽𝑡⟩ + ⟨𝜈𝜷, 𝑣𝜽𝑡,𝜋⟩,

which allows us to write the first term of Equation (C.1) as

𝑓(𝜷∗, 𝜋∗; 𝜽𝑡) − 𝑓(𝜷∗, 𝜋𝑡; 𝜽𝑡) = ⟨𝚲𝑐
𝜇(𝜷∗ − 𝜷∗), 𝜽𝑟 − 𝜽𝑡⟩ + ⟨𝜈𝜷∗ , 𝑣𝜽𝑡,𝜋∗ − 𝑣𝜽𝑡,𝜋𝑡

⟩
= ⟨𝜈𝜷∗ , ∑

𝑎
(𝜋∗(𝑎|⋅) − 𝜋𝑡(𝑎|⋅))⟨𝜽𝑡, 𝝋(⋅, 𝑎)⟩⟩,

and we have already established in the proof of Lemma E.2.1 that 𝝂𝜷∗ is
equal to 𝝂𝜋∗ for our choice of comparator.
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Similarly, we use Equation (7.16) to rewrite the second term of Equa-
tion (C.1) as

𝑓(𝜷∗, 𝜋𝑡; 𝜽𝑡) − 𝑓(𝜷𝑡, 𝜋𝑡; 𝜽𝑡) =
(1 − 𝛾)⟨𝝂0, 𝑣𝜽𝑡,𝜋𝑡

− 𝑣𝜽𝑡,𝜋𝑡
⟩ + ⟨𝜷∗ − 𝜷𝑡, 𝚲𝑐

𝜇(𝜽𝑟 + 𝛾𝚿𝑣𝜽𝑡,𝜋𝑡
− 𝜽𝑡)⟩

= ⟨𝜷∗ − 𝜷𝑡, 𝜿𝛽,𝑡⟩.

Finally, we use Equation (7.15) to rewrite the third term of Equation (C.1)
as

𝑓(𝜷𝑡, 𝜋𝑡; 𝜽𝑡) − 𝑓(𝜷𝑡, 𝜋𝑡; 𝜽∗
𝑡) = ⟨𝜷𝑡 − 𝜷𝑡, 𝚲𝑐

𝜇𝜽𝑟⟩ + ⟨𝜽𝑡 − 𝜽∗
𝑡 , 𝚽⊤𝐩𝜷𝑡,𝜋𝑡

− 𝚲𝑐
𝜇𝜷𝑡⟩

= ⟨𝜽𝑡 − 𝜽∗
𝑡 , 𝜿𝜃,𝑡⟩.

C.3 Regret bounds for stochastic gradient de-
scent / ascent

Lemma C.3.1. For any dynamic comparator 𝜽1∶𝑇 ∈ 𝐷𝜽˘, the iterates
𝜽1, … , 𝜽𝑇 of Algorithm 3 satisfy the following regret bound:

𝔼 [
𝑇

∑
𝑡=1

⟨𝜽𝑡 − 𝜽∗
𝑡 , 𝜿𝜃,𝑡⟩] ≤ 2𝑇 𝐷2

𝜽
𝜂𝐾 +

3𝜂𝑇 𝐷2
𝝋 ((1 − 𝛾)2 + (1 + 𝛾2)𝐷2

𝛽 ∥𝚲𝜇∥2𝑐−1
2 )

2 .

Proof. First, we use the definition of 𝜽𝑡 as the average of the inner-loop
iterates from Algorithm 3, together with linearity of expectation and bi-
linearity of the inner product.

𝔼 [
𝑇

∑
𝑡=1

⟨𝜽𝑡 − 𝜽∗
𝑡 , 𝜿𝜃,𝑡⟩] =

𝑇
∑
𝑡=1

1
𝐾 𝔼 [

𝐾
∑
𝑘=1

⟨𝜽𝑡,𝑘 − 𝜽∗
𝑡 , 𝜿𝜃,𝑡⟩]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
regret𝑡

. (C.2)

We then appeal to standard stochastic gradient descent analysis to bound
each term regret𝑡 separately.

We have already proven in Section 7.3 that the gradient estimator for 𝜽
is unbiased, that is, 𝔼𝑡,𝑘[𝜿̂𝜽,𝑡,𝑘] = 𝜿𝜃,𝑡. It is also useful to recall here that
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𝜿̂𝜽,𝑡,𝑘 does not depend on 𝜽𝑡,𝑘. Next, we show that its second moment
is bounded. From Equation (7.10), plugging in the definition of 𝑝𝑡,𝑘 from
Equation (7.8) and using the abbreviations 𝝋0

𝑡,𝑘 = ∑𝑎 𝜋𝑡(𝑎|𝑥0
𝑡,𝑘)𝝋(𝑥0

𝑡,𝑘, 𝑎),
𝝋𝑡 = 𝝋(𝑥𝑡,𝑘, 𝑎𝑡,𝑘), and 𝝋′

𝑡,𝑘 = ∑𝑎 𝜋𝑡(𝑎|𝑥0
𝑡,𝑘)𝝋(𝑥′

𝑡,𝑘, 𝑎), we have:

𝔼𝑡,𝑘[∥𝜿̂𝜽,𝑡,𝑖∥
2]

= 𝔼𝑡,𝑘[∥(1 − 𝛾)𝝋0
𝑡,𝑘 + 𝛾𝝋′

𝑡,𝑘⟨𝝋𝑡𝑘, 𝚲𝑐−1
𝜇 𝜷𝑡⟩ − 𝝋𝑡,𝑘⟨𝝋𝑡𝑘, 𝚲𝑐−1

𝜇 𝜷𝑡⟩∥
2]

≤ 3(1 − 𝛾)2𝐷2
𝝋 + 3𝛾2𝔼𝑡,𝑘[∥𝝋′

𝑡,𝑘⟨𝝋𝑡𝑘, 𝚲𝑐−1
𝜇 𝜷𝑡⟩∥

2] + 3𝔼𝑡,𝑘[∥𝝋𝑡,𝑘⟨𝝋𝑡𝑘, 𝚲𝑐−1
𝜇 𝜷𝑡⟩∥

2]
≤ 3(1 − 𝛾)2𝐷2

𝝋 + 3(1 + 𝛾2)𝐷2
𝝋𝔼𝑡,𝑘[⟨𝝋𝑡𝑘, 𝚲𝑐−1

𝜇 𝜷𝑡⟩2]
= 3(1 − 𝛾)2𝐷2

𝝋 + 3(1 + 𝛾2)𝐷2
𝝋𝜷⊤

𝑡 𝚲𝑐−1
𝜇 𝔼𝑡,𝑘[𝝋𝑡𝑘𝝋⊤

𝑡𝑘]𝚲𝑐−1
𝜇 𝜷𝑡

= 3(1 − 𝛾)2𝐷2
𝝋 + 3(1 + 𝛾2)𝐷2

𝝋 ‖𝜷𝑡‖
2
𝚲2𝑐−1𝜇

.

We can then apply Lemma D.0.1 with the latter expression as 𝐺2, 𝔹(𝐷𝜽)
as the domain, and 𝜂 as the learning rate, obtaining:

𝔼𝑡[
𝐾

∑
𝑘=1

⟨𝜽𝑡,𝑘 − 𝜽∗
𝑡 , 𝜿𝜃,𝑡⟩] ≤

∥𝜽𝑡,1 − 𝜽∗
𝑡 ∥2

2
2𝜂 +

3𝜂𝐾𝐷2
𝝋 ((1 − 𝛾)2 + (1 + 𝛾2) ‖𝜷𝑡‖

2
𝚲2𝑐−1𝜇

)
2

≤ 2𝐷2
𝜃

𝜂 +
3𝜂𝐾𝐷2

𝝋 ((1 − 𝛾)2 + (1 + 𝛾2) ‖𝜷𝑡‖
2
𝚲2𝑐−1𝜇

)
2 .

Plugging this into Equation (C.2) and bounding ‖𝜷𝑡‖
2
𝚲2𝑐−1𝜇

≤ 𝐷2
𝜷 ∥𝚲𝜇∥2𝑐−1

2 ,
we obtain the final result.

Lemma C.3.2. For any comparator 𝜷 ∈ 𝐷𝜷, the iterates 𝜷1, … , 𝜷𝑇 of
Algorithm 3 satisfy the following regret bound:

𝔼 [
𝑇

∑
𝑡=1

⟨𝜷∗ − 𝜷𝑡, 𝜿𝛽,𝑡⟩] ≤
2𝐷2

𝜷
𝜁 + 3𝜁𝑇 (1 + (1 + 𝛾2)𝐷2

𝝋𝐷2
𝜽) Tr(𝚲2𝑐−1

𝜇 )
2 .

Proof. We again employ stochastic gradient descent analysis. We first
prove that the gradient estimator for 𝜷 is unbiased. Recalling the defini-
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tion of 𝜿̂𝜷,𝑡 from Equation (7.9),

𝔼 [𝜿̂𝜷,𝑡 ∣ ℱ𝑡−1, 𝜽𝑡] = 𝔼 [𝚲𝑐−1
𝜇 𝝋𝑡 (𝑅𝑡 + 𝛾𝑣𝑡(𝑋′

𝑡) − ⟨𝝋𝑡, 𝜽𝑡⟩) ∣ ℱ𝑡−1, 𝜽𝑡]
= 𝚲𝑐−1

𝜇 (𝔼𝑡[𝝋𝑡𝝋⊤
𝑡 ]𝜽𝑟 + 𝛾𝔼𝑡[𝝋𝑡𝑣𝑡(𝑋′

𝑡)] − 𝔼𝑡[𝝋𝑡𝝋⊤
𝑡 ]𝜽𝑡)

= 𝚲𝑐−1
𝜇 (𝚲𝜇𝜽𝑟 + 𝛾𝔼𝑡[𝝋𝑡𝑣𝑡(𝑋′

𝑡)] − 𝚲𝜇𝜽𝑡)
= 𝚲𝑐−1

𝜇 (𝚲𝜇𝜽𝑟 + 𝛾𝔼𝑡[𝝋𝑡𝐏(⋅|𝑋𝑡, 𝐴𝑡)𝐯𝑡] − 𝚲𝜇𝜽𝑡)
= 𝚲𝑐−1

𝜇 (𝚲𝜇𝜽𝑟 + 𝛾𝔼𝑡[𝝋𝑡𝝋⊤
𝑡 ]𝚿𝐯𝑡 − 𝚲𝜇𝜽𝑡)

= 𝚲𝑐
𝜇(𝜽𝑟 + 𝛾𝚿𝑣𝜽𝑡,𝜋𝑡

− 𝜽𝑡) = 𝜿𝛽,𝑡,

recalling that 𝐯𝑡 = 𝐯𝜽𝑡,𝜋𝑡
. Next, we bound its second moment. We use

the fact that 𝑟 ∈ [0, 1] and ‖𝐯𝑡‖∞ ≤ ‖𝚽𝜽𝑡‖∞ ≤ 𝐷𝝋𝐷𝜽 to show that

𝔼 [‖𝜿̂𝜷,𝑡‖2
2 |ℱ𝑡−1, 𝜽𝑡 ] = 𝔼 [∥𝚲𝑐−1

𝜇 𝝋𝑡[𝑅𝑡 + 𝛾𝑣𝑡(𝑋′
𝑡) − ⟨𝜽𝑡, 𝝋𝑡⟩]∥

2
2 |ℱ𝑡−1, 𝜽𝑡 ]

≤ 3(1 + (1 + 𝛾2)𝐷2
𝝋𝐷2

𝜽)𝔼𝑡[𝝋T
𝑡𝚲2(𝑐−1)

𝜇 𝝋𝑡]
= 3(1 + (1 + 𝛾2)𝐷2

𝝋𝐷2
𝜽)𝔼𝑡[Tr(𝚲2(𝑐−1)

𝜇 𝝋𝑡𝝋T
𝑡)]

= 3(1 + (1 + 𝛾2)𝐷2
𝝋𝐷2

𝜽) Tr(𝚲2𝑐−1
𝜇 ).

Thus, we can apply Lemma D.0.1 with the latter expression as 𝐺2, 𝔹(𝐷𝜷)
as the domain, and 𝜁 as the learning rate.

Lemma C.3.3. The sequence of policies 𝜋1, … , 𝜋𝑇 of Algorithm 3 satisfies
the following regret bound:

𝔼 [
𝑇

∑
𝑡=1

∑
𝑥∈𝒳

𝜈𝜋∗(𝑥) ∑
𝑎

(𝜋∗(𝑎|𝑥) − 𝜋𝑡(𝑎|𝑥))⟨𝜽𝑡, 𝝋(𝑥, 𝑎)⟩] ≤ log |𝒜|
𝛼 +𝛼𝑇 𝐷2

𝝋𝐷2
𝜽

2 .

Proof. We just apply mirror descent analysis, invoking Lemma D.0.2 with
𝑞𝑡 = Φ𝜽𝑡, noting that ‖𝑞𝑡‖∞ ≤ 𝐷𝝋𝐷𝜽. The proof is concluded by trivially
bounding the relative entropy as ℋ (𝜋∗‖𝜋1) = 𝔼𝑥∼𝜈𝜋∗ [𝒟 (𝜋(⋅|𝑥)‖𝜋1(⋅|𝑥))] ≤
log |𝒜|.
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Appendix D

Auxiliary Lemmas

The following is a standard result in convex optimization proved here
for the sake of completeness—we refer to Nemirovski and Yudin (1983);
Zinkevich (2003); Orabona (2019) for more details and comments on the
history of this result.

Lemma D.0.1 (Online Stochastic Gradient Descent). Given 𝑦1 ∈ 𝔹(𝐷𝑦)
and 𝜂 > 0, define the sequences 𝑦2, ⋯ , 𝑦𝑛+1 and ℎ1, ⋯ , ℎ𝑛 such that for
𝑘 = 1, ⋯ , 𝑛,

𝑦𝑘+1 = Π𝔹(𝐷𝑦) (𝑦𝑘 + 𝜂ℎ̂𝑘) ,

and ℎ̂𝑘 satisfies 𝔼 [ℎ̂𝑘 |ℱ𝑘−1 ] = ℎ𝑘 and 𝔼 [∥ℎ̂𝑘∥2

2
|ℱ𝑘−1 ] ≤ 𝐺2. Then, for

𝑦∗ ∈ 𝔹(𝐷𝑦):

𝔼 [
𝑛

∑
𝑘=1

⟨𝑦∗ − 𝑦𝑘, ℎ𝑘⟩] ≤ ‖𝑦1 − 𝑦∗‖2
2

2𝜂 + 𝜂𝑛𝐺2

2 .
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Proof. We start by studying the following term:

‖𝑦𝑘+1 − 𝑦∗‖2
2 = ∥Π𝔹(𝐷𝑦)(𝑦𝑘 + 𝜂ℎ̂𝑘) − 𝑦∗∥2

2

≤ ∥𝑦𝑘 + 𝜂ℎ̂𝑘 − 𝑦∗∥2

2

= ‖𝑦𝑘 − 𝑦∗‖2
2 − 2𝜂 ⟨𝑦∗ − 𝑦𝑘, ℎ̂𝑘⟩ + 𝜂2 ∥ℎ̂𝑘∥2

2
.

The inequality is due to the fact that the projection operator is a non-
expansion with respect to the Euclidean norm. Since 𝔼 [ℎ̂𝑘 |ℱ𝑘−1 ] = ℎ𝑘,
we can rearrange the above equation and take a conditional expectation
to obtain

⟨𝑦∗ − 𝑦𝑘, ℎ𝑘⟩ ≤
‖𝑦𝑘 − 𝑦∗‖2

2 − 𝔼 [‖𝑦𝑘+1 − 𝑦∗‖2
2 |ℱ𝑘−1 ]

2𝜂 + 𝜂
2𝔼 [∥ℎ̂𝑘∥2

2
|ℱ𝑘−1 ]

≤
‖𝑦𝑘 − 𝑦∗‖2

2 − 𝔼 [‖𝑦𝑘+1 − 𝑦∗‖2
2 |ℱ𝑘−1 ]

2𝜂 + 𝜂𝐺2

2 ,

where the last inequality is from 𝔼 [∥ℎ̂𝑘∥2

2
|ℱ𝑘−1 ] ≤ 𝐺2. Finally, taking

a sum over 𝑘 = 1, ⋯ , 𝑛, taking a marginal expectation, evaluating the
resulting telescoping sum and upper-bounding negative terms by zero we
obtain the desired result as

𝔼 [
𝑛

∑
𝑘=1

⟨𝑦∗ − 𝑦𝑘, ℎ̂𝑘⟩] ≤
‖𝑦1 − 𝑦∗‖2

2 − 𝔼 [‖𝑦𝑛+1 − 𝑦∗‖2
2]

2𝜂 + 𝜂
2

𝑛
∑
𝑘=1

𝐺2

≤ ‖𝑦1 − 𝑦∗‖2
2

2𝜂 + 𝜂𝑛𝐺2

2 .

The next result is a similar regret analysis for mirror descent with the
relative entropy as its distance generating function. Once again, this re-
sult is standard, and we refer the interested reader to Nemirovski and
Yudin (1983); Cesa-Bianchi and Lugosi (2006); Orabona (2019) for more
details. For the analysis, we recall that 𝒟 denotes the relative entropy (or
Kullback–Leibler divergence), defined for any 𝑝, 𝑞 ∈ Δ(𝒜) as 𝒟 (𝑝‖𝑞) =
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∑𝑎 𝑝(𝑎) log 𝑝(𝑎)
𝑞(𝑎) , and that, for any two policies 𝜋, 𝜋′, we define the condi-

tional entropy1 ℋ (𝜋‖𝜋′) ≐ ∑𝑥∈𝒳 𝜈𝜋(𝑥)𝒟 (𝜋(⋅|𝑥)‖𝜋′(⋅|𝑥)).
Lemma D.0.2 (Mirror Descent). Let 𝑞𝑡, … , 𝑞𝑇 be a sequence of functions
from 𝒳×𝒜 to ℝ so that ‖𝑞𝑡‖∞ ≤ 𝐷𝑞 for 𝑡 = 1, … , 𝑇 . Given an initial policy
𝜋1 and a learning rate 𝛼 > 0, define the sequence of policies 𝜋2, … , 𝜋𝑇 +1
such that, for 𝑡 = 1, … , 𝑇 :

𝜋𝑡+1(𝑎|𝑥) ∝ 𝜋𝑡𝑒𝛼𝑞𝑡(𝑥,𝑎).

Then, for any comparator policy 𝜋∗:
𝑇

∑
𝑡=1

∑
𝑥∈𝒳

𝜈𝜋∗(𝑥) ⟨𝜋∗(⋅|𝑥) − 𝜋𝑡(⋅|𝑥), 𝑞𝑡(𝑥, ⋅)⟩ ≤ ℋ (𝜋∗‖𝜋1)
𝛼 + 𝛼𝑇 𝐷2

𝑞
2 .

Proof. We begin by studying the relative entropy between 𝜋∗(⋅|𝑥) and
iterates 𝜋𝑡(⋅|𝑥), 𝜋𝑡+1(⋅|𝑥) for any 𝑥 ∈ 𝒳:

𝒟 (𝜋∗(⋅|𝑥)‖𝜋𝑡+1(⋅|𝑥)) = 𝒟 (𝜋∗(⋅|𝑥)‖𝜋𝑡(⋅|𝑥)) − ∑
𝑎∈𝒜

𝜋∗(𝑎|𝑥) log 𝜋𝑡+1(𝑎|𝑥)
𝜋𝑡(𝑎|𝑥)

= 𝒟 (𝜋∗(⋅|𝑥)‖𝜋𝑡(⋅|𝑥)) − ∑
𝑎∈𝒜

𝜋∗(𝑎|𝑥) log 𝑒𝛼𝑞𝑡(𝑥,𝑎)

∑𝑎′∈𝒜 𝜋𝑡(𝑎′|𝑥)𝑒𝛼𝑞𝑡(𝑥,𝑎′)

= 𝒟 (𝜋∗(⋅|𝑥)‖𝜋𝑡(⋅|𝑥)) − 𝛼 ⟨𝜋∗(⋅|𝑥), 𝑞𝑡(𝑥, ⋅)⟩ + log ∑
𝑎∈𝒜

𝜋𝑡(𝑎|𝑥)𝑒𝛼𝑞𝑡(𝑥,𝑎)

= 𝒟 (𝜋∗(⋅|𝑥)‖𝜋𝑡(⋅|𝑥)) − 𝛼 ⟨𝜋∗(⋅|𝑥) − 𝜋𝑡(⋅|𝑥), 𝑞𝑡(𝑥, ⋅)⟩
+ log ∑

𝑎∈𝒜
𝜋𝑡(𝑎|𝑥)𝑒𝛼𝑞𝑡(𝑥,𝑎) − 𝛼 ∑

𝑎∈𝒜
𝜋𝑡(𝑎|𝑥)𝑞𝑡(𝑥, 𝑎)

≤ 𝒟 (𝜋∗(⋅|𝑥)‖𝜋𝑡(⋅|𝑥)) − 𝛼 ⟨𝜋∗(⋅|𝑥) − 𝜋𝑡(⋅|𝑥), 𝑞𝑡(𝑥, ⋅)⟩ + 𝛼2 ‖𝑞𝑡(𝑥, ⋅)‖2
∞

2
where the last inequality follows from Hoeffding’s lemma (cf. Lemma A.1
in (Cesa-Bianchi and Lugosi 2006)). Next, we rearrange the above equa-
tion, sum over 𝑡 = 1, ⋯ , 𝑇 , evaluate the resulting telescoping sum and

1Technically speaking, this quantity is the conditional entropy between the occu-
pancy measures 𝑝𝜋 and 𝑝𝜋′ . We will continue to use this relatively imprecise terminol-
ogy to keep our notation light, and we refer to Neu, Jonsson, and Gómez (2017) and
Bas-Serrano et al. (2021) for more details.
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upper-bound negative terms by zero to obtain

𝑇
∑
𝑡=1

⟨𝜋∗(⋅|𝑥) − 𝜋𝑡(⋅|𝑥), 𝑞𝑡(𝑥, ⋅)⟩ ≤ 𝒟 (𝜋∗(⋅|𝑥)‖𝜋1(⋅|𝑥))
𝛼 + 𝛼 ‖𝑞𝑡(𝑥, ⋅)‖2

∞
2 .

Finally, using that ‖𝑞𝑡‖∞ ≤ 𝐷𝑞 and taking an expectation with respect to
𝑥 ∼ 𝜈𝜋∗ concludes the proof.
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Appendix E

Details for the
Average-Reward MDP
Setting

This section provides the detailed adaptation of our contributions to the
average-reward MDPs (AMDPs). In the offline reinforcement learning
setting that we consider, we assume access to a sequence of data points
(𝑋𝑡, 𝐴𝑡, 𝑅𝑡, 𝑋′

𝑡) in round 𝑡 generated by a behaviour policy 𝜋𝐵 whose occu-
pancy measure is denoted as 𝐩𝐵. Specifically, we will now draw i.i.d. sam-
ples from the undiscounted occupancy measure as 𝑋𝑡, 𝐴𝑡 ∼ 𝐩𝜇, sample
𝑋′

𝑡 ∼ 𝑃(⋅|𝑋𝑡, 𝐴𝑡), and compute immediate rewards as 𝑅𝑡 = 𝑟(𝑋𝑡, 𝐴𝑡).
For simplicity, we use the shorthand notation 𝝋𝑡 = 𝜑(𝑋𝑡, 𝐴𝑡) to denote
the feature vector drawn in round 𝑡.

Before describing our contributions, some definitions are in order. An
important central concept in the theory of AMDPs is that of the relative
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value functions of policy 𝜋 defined as

𝑣𝜋(𝑥) = lim
𝑇 →∞

𝔼𝜋 [
𝑇

∑
𝑡=0

𝑟(𝑋𝑡, 𝐴𝑡) − 𝜌𝜋∣𝑋0 = 𝑥] ,

𝑞𝜋(𝑥, 𝑎) = lim
𝑇 →∞

𝔼𝜋 [
𝑇

∑
𝑡=0

𝑟(𝑋𝑡, 𝐴𝑡) − 𝜌𝜋∣𝑋0 = 𝑥, 𝐴0 = 𝑎] ,

where we recalled the notation 𝜌𝜋 denoting the average reward of policy
𝜋 from the main text. These functions are sometimes also called the
bias functions, and their intuitive role is to measure the total amount of
reward gathered by policy 𝜋 before it hits its stationary distribution. For
simplicity, we will refer to these functions as value functions and action-
value functions below.

By their recursive nature, these value functions are also characterized by
the corresponding Bellman equations recalled below for completeness

𝐪𝜋 = 𝐫 − 𝜌𝜋𝟏 + 𝐏𝐯𝜋,

where 𝐯𝜋 is related to the action-value function as 𝑣𝜋(𝑥) = ∑𝑎 𝜋(𝑎|𝑥)𝑞𝜋(𝑥, 𝑎).
We note that the Bellman equations only characterize the value functions
up to a constant offset. That is, for any policy 𝜋, and constant 𝑐 ∈ ℝ,
𝐯𝜋 + 𝑐𝟏 and 𝐪𝜋 + 𝑐𝟏 also satisfy the Bellman equations. A key quantity
to measure the size of the value functions is the span seminorm defined
for 𝐪 ∈ ℝ𝒳×𝒜 as ‖𝐪‖sp = sup(𝑥,𝑎)∈𝒳×𝒜 𝑞(𝑥, 𝑎) − inf(𝑥,𝑎)∈𝒳×𝒜 𝑞(𝑥, 𝑎). Using
this notation, the condition of Assumption 7.4.1 can be simply stated as
requiring ‖𝐪𝜋‖sp ≤ 𝐷𝑞 for all 𝜋.

Now, let 𝜋∗ denote an optimal policy with maximum average reward and
introduce the shorthand notations 𝜌∗ = 𝜌𝜋∗ , 𝐩∗ = 𝐩𝜋∗ , 𝝂∗ = 𝝂𝜋∗ , 𝐯∗ =
𝐯𝜋∗ and 𝐪∗ = 𝐪𝜋∗ . Under mild assumptions on the MDP that we will
clarify shortly, the following Bellman optimality equations are known to
characterize bias vectors corresponding to the optimal policy

𝐪∗ = 𝐫 − 𝜌∗𝟏 + 𝐏𝐯∗,

where 𝐯∗ satisfies 𝑣∗(𝑥) = max𝑎 𝑞∗(𝑥, 𝑎). Once again, shifting the solutions
by a constant preserves the optimality conditions. It is easy to see that
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such constant offsets do not influence greedy or softmax policies extracted
from the action value functions. Importantly, by a calculation analogous to
Equation (7.2), the action-value functions are exactly realizable under the
linear MDP condition (see Definition 7.1.1) and Assumption 7.4.2.

Besides the Bellman optimality equations stated above, optimal policies
can be equivalently characterized via the following linear program:

maximize ⟨𝐩, 𝐫⟩
subject to 𝐄T𝐩 = 𝐏T𝐩

⟨𝐩, 𝟏⟩ = 1
𝐩 ≥ 0.

(E.1)

This can be seen as the generalization of the LP stated for discounted
MDPs in the main text, with the added complication that we need to make
sure that the occupancy measures are normalized1 to 1. By following the
same steps as in the main text to relax the constraints and reparametrize
the LP, one can show that solutions of the LP under the linear MDP
assumption can be constructed by finding the saddle point of the following
Lagrangian:

𝔏(𝝀, 𝐩; 𝜌, 𝐯, 𝜽) = 𝜌+⟨𝝀 , 𝜽𝑟 + 𝚿𝐯 − 𝜽−𝜌𝝔⟩ + ⟨𝐮 , 𝚽𝜽 − 𝐄𝐯⟩
= 𝜌[1 − ⟨𝝀, 𝝔⟩] + ⟨𝜽, 𝚽T𝐩 − 𝝀⟩ + ⟨𝐯, 𝚿T𝝀 − 𝐄T𝐩⟩ .

As before, the optimal value functions 𝐪∗ and 𝐯∗ are optimal primal vari-
ables for the saddle-point problem, as are all of their constant shifts. Thus,
the existence of a solution with small span seminorm implies the existence
of a solution with small supremum norm.

Finally, applying the same reparametrization 𝜷 = 𝚲−𝑐
𝜇 𝝀 as in the dis-

counted setting, we arrive to the following Lagrangian that forms the
basis of our algorithm:

𝔏(𝜷, 𝐩; 𝜌, 𝐯, 𝜽) = 𝜌+⟨𝜷 , 𝚲𝑐
𝜇[𝜽𝑟 + 𝚿𝐯 − 𝜽−𝜌𝝔]⟩ + ⟨𝐩 , 𝚽𝜽 − 𝐄𝐯⟩.

We will aim to find the saddle point of this function via primal-dual meth-
ods. As we have some prior knowledge of the optimal solutions, we will

1This is necessary because of the absence of 𝜈0 in the LP, which would otherwise fix
the scale of the solutions.
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restrict the search space of each optimization variable to nicely chosen
compact sets. For the 𝜷 iterates, we consider the Euclidean ball domain
𝔹(𝐷𝜷) = {𝜷 ∈ ℝ𝑑 | ‖𝜷‖2 ≤ 𝐷𝜷} with the bound 𝐷𝜷 > ‖𝚽T𝐩∗‖𝚲−2𝑐𝜇

.
Since the average reward of any policy is bounded in [0, 1], we naturally
restrict the 𝜌 iterates to this domain. Finally, keeping in mind that As-
sumption 7.4.1 guarantees that ‖𝐪𝜋‖sp ≤ 𝐷𝑞, we will also constrain the 𝜽
iterates to an appropriate domain: 𝔹(𝐷𝜽) = {𝜽 ∈ ℝ𝑑 | ‖𝜽‖2 ≤ 𝐷𝜽}. We
will assume that this domain is large enough to represent all action-value
functions, which implies that 𝐷𝜽 should scale at least linearly with 𝐷𝑞.
Indeed, we will suppose that the features are bounded as ‖𝝋(𝑥, 𝑎)‖2 ≤ 𝐷𝝋
for all (𝑥, 𝑎) ∈ 𝒳×𝒜 so that our optimization algorithm only admits para-
metric 𝐪 functions satisfying ‖𝐪‖∞ ≤ 𝐷𝝋𝐷𝜽. Obviously, 𝐷𝜽 needs to be
set large enough to ensure that it is possible at all to represent 𝐪-functions
with span 𝐷𝑞.

Thus, we aim to solve the following constrained optimization problem:

min
𝜌∈[0,1],𝐯∈ℝ𝒳,𝜽∈𝔹(𝐷𝜽)

max
𝜷∈𝔹(𝐷𝜷),𝐩∈ℝ𝒳×𝒜

+
𝔏(𝜷, 𝐩; 𝜌, 𝐯, 𝜽).

As done in the main text, we eliminate the high-dimensional variables
𝐯 and 𝐩 by committing to the choices 𝐯 = 𝐯𝜽,𝜋 and 𝐩 = 𝐩𝜷,𝜋 defined
as

𝑣𝜽,𝜋(𝑥) = ∑
𝑎

𝜋(𝑎|𝑥) ⟨𝜽, 𝝋(𝑥, 𝑎)⟩ ,

𝑝𝜷,𝜋(𝑥, 𝑎) = 𝜋(𝑎|𝑥)⟨𝝍(𝑥), 𝚲𝑐
𝜇𝜷⟩.

This makes it possible to express the Lagrangian in terms of only 𝜷, 𝜋, 𝜌
and 𝜽:

𝑓(𝜷, 𝜋; 𝜌, 𝜽) = 𝜌+⟨𝜷 , 𝚲𝑐
𝜇[𝜽𝑟 + 𝚿𝐯𝜽,𝜋 − 𝜽−𝜌𝝔]⟩ + ⟨𝐩𝜷,𝜋 , 𝚽𝜽 − 𝐄𝐯𝜽,𝜋⟩

= 𝜌+⟨𝜷 , 𝚲𝑐
𝜇[𝜽𝑟 + 𝚿𝐯𝜽,𝜋 − 𝜽−𝜌𝝔]⟩

The remaining low-dimensional variables 𝜷, 𝜌, 𝜽 are then updated using
stochastic gradient descent/ascent. For this purpose it is useful to ex-
press the partial derivatives of the Lagrangian with respect to said vari-
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ables:

𝜿𝜷 = 𝚲𝑐
𝜇[𝜽𝑟 + 𝚿𝐯𝜽,𝜋 − 𝜽−𝜌𝝔]

𝜅𝜌 = 1 − ⟨𝜷, 𝚲𝑐
𝜇𝝔⟩

𝜿𝜽 = 𝚽T𝐩𝜷,𝜋 − 𝚲𝑐
𝜇𝜷

E.1 Algorithm for average-reward MDPs
Our algorithm for the AMDP setting has the same double-loop struc-
ture as the one for the discounted setting. In particular, the algorithm
performs a sequence of outer updates 𝑡 = 1, 2, … , 𝑇 on the policies 𝜋𝑡
and the occupancy ratiositerates 𝜷𝑡, and then performs a sequence of
updates 𝑖 = 1, 2, … , 𝐾 in the inner loop to evaluate the policies and
produce 𝜽𝑡, 𝜌𝑡 and 𝐯𝑡. Thanks to the reparametrization 𝜷 = 𝚲−𝑐

𝜇 𝝀,
fixing 𝜋𝑡 = softmax(∑𝑡−1

𝑘=1 𝚽𝜽𝑘), 𝐯𝑡(𝑥) = ∑𝑎∈𝒜 𝜋𝑡(𝑎|𝑥) ⟨𝜑(𝑥, 𝑎), 𝜽𝑡⟩ for
𝑥 ∈ 𝒳, and 𝑝𝑡(𝑥, 𝑎) = 𝜋𝑡(𝑎|𝑥) ⟨𝝍(𝑥), 𝚲𝑐

𝜇𝜷𝑡⟩ in round 𝑡 we can obtain
unbiased estimates of the gradients of 𝑓 with respect to 𝜽, 𝜷, and 𝜌.
For each primal update 𝑡, the algorithm uses a single sample transi-
tion (𝑋𝑡, 𝐴𝑡, 𝑅𝑡, 𝑋′

𝑡) generated by the behavior policy 𝜋𝐵 to compute
an unbiased estimator of the first gradient 𝜅𝜷 for that round as 𝜿̂𝜷,𝑡 =
𝚲𝑐−1

𝜇 𝝋𝑡[𝑅𝑡 + 𝑣𝑡(𝑋′
𝑡) − ⟨𝜽𝑡, 𝝋𝑡⟩ −𝜌𝑡]. Then, in iteration 𝑖 = 1, ⋯ , 𝐾 of the

inner loop within round 𝑡, we sample transitions (𝑋𝑡,𝑖, 𝐴𝑡,𝑖, 𝑅𝑡,𝑖, 𝑋′
𝑡,𝑖) to

compute gradient estimators with respect to 𝜌 and 𝜽 as:

̃𝑔𝜌,𝑡,𝑖 = 1 − ⟨𝝋𝑡,𝑖, 𝚲𝑐−1
𝜇 𝜷𝑡⟩

̃𝐠𝜽,𝑡,𝑖 = 𝝋′
𝑡,𝑖 ⟨𝝋𝑡,𝑖, 𝚲𝑐−1

𝜇 𝜷𝑡⟩ − 𝝋𝑡,𝑖 ⟨𝝋𝑡,𝑖, 𝚲𝑐−1
𝜇 𝜷𝑡⟩ .

We have used the shorthand notation 𝝋𝑡,𝑖 = 𝜑(𝑋𝑡,𝑖, 𝐴𝑡,𝑖), 𝝋′
𝑡,𝑖 = 𝜑(𝑋′

𝑡,𝑖, 𝐴′
𝑡,𝑖).

The update steps are detailed in the pseudocode presented as Algorithm 4.

We now state the general form of our main result for this setting in The-
orem E.1.1 below.

Theorem E.1.1. Consider a linear MDP (Definition 7.1.1) such that
𝜽𝜋 ∈ 𝔹(𝐷𝜽) for all 𝜋 ∈ Π. Further, suppose that 𝐶𝜑,𝑐(𝜋∗) ≤ 𝐷𝜷. Then, for
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any comparator policy 𝜋∗ ∈ Π, the policy output by Algorithm 4 satisfies:

𝔼 [⟨𝐩𝜋∗ − 𝐩𝝅out , 𝐫⟩] ≤
2𝐷2

𝜷
𝜁𝑇 + log |𝒜|

𝛼𝑇 + 1
2𝜉𝐾 + 2𝐷2

𝜽
𝜂𝐾 +

𝜁𝐺2
𝜷,𝑐

2

+ 𝛼𝐷2
𝜽𝐷2

𝝋
2 + 𝜉𝐺2

𝜌,𝑐
2 +

𝜂𝐺2
𝜽,𝑐

2 ,
where

𝐺2
𝜷,𝑐 = Tr(𝚲2𝑐−1

𝜇 )(1 + 2𝐷𝜽𝐷𝝋)2, (E.2)

𝐺2
𝜌,𝑐 = 2 (1 + 𝐷2

𝜷 ∥𝚲𝜇∥2𝑐−1
2 ) , (E.3)

𝐺2
𝜽,𝑐 = 4𝐷2

𝝋𝐷2
𝜷 ∥𝚲𝜇∥2𝑐−1

2 . (E.4)

In particular, using learning rates 𝜁 = 2𝐷𝜷
𝐺𝜷,𝑐

√
𝑇 , 𝛼 = √2 log |𝒜|

𝐷𝜽𝐷𝝋
√

𝑇 , 𝜉 = 1
𝐺𝜌,𝑐

√
𝐾 ,

and 𝜂 = 2𝐷𝜽
𝐺𝜽,𝑐

√
𝐾 , and setting 𝐾 = 𝑇 ⋅ 4𝐷𝜷2 𝐺2

𝜷,𝑐+2𝐷2
𝜽𝐷2

𝝋 log |𝒜|
𝐺2𝜌,𝑐+4𝐷2

𝜽𝐺2
𝜽,𝑐

, we achieve
𝔼 [⟨𝐩𝜋∗ − 𝐩𝝅out , 𝐫⟩] ≤ 𝜖 with a number of samples 𝑛𝜖 that is

𝑂 (𝜖−4𝐷4
𝜽𝐷4

𝝋𝐷4
𝜷 Tr(𝚲2𝑐−1

𝜇 ) ∥𝚲𝜇∥2(2𝑐−1)
2 log |𝒜|) .

By Remark 7.2.2, we have that 𝑛𝜖 is of order
𝑂 (𝜀−4𝐷4

𝜽𝐷12𝑐−2
𝝋 𝐷4

𝜷𝑑2−2𝑐 log |𝒜|) .

Corollary E.1.2. Assume that the bound of the feature vectors 𝐷𝝋 is of
order 𝑂(1), that 𝐷𝜽𝑟

= 𝐷𝝍 =
√

𝑑 which together imply 𝐷𝜽 ≤
√

𝑑 + 1 +√
𝑑𝐷𝑞 = 𝑂(

√
𝑑𝐷𝑞) and that 𝐷𝜷 = 𝑐 ⋅ 𝐶𝜑,𝑐(𝜋∗) for some positive universal

constant 𝑐. Then, under the same assumptions of Theorem 7.2.1, 𝑛𝜀 is of
order 𝑂 (𝜀−4𝐷4

𝑞𝐶𝜑,𝑐(𝜋∗)2𝑑4−2𝑐 log |𝒜|).

Recall that 𝐶𝜑,1/2 is always smaller than 𝐶𝜑,1, but using 𝑐 = 1/2 in the
algorithm requires knowledge of the covariance matrix 𝚲𝜇, and results in
a slightly worse dependence on the dimension.

The proof of Theorem E.1.1 mainly follows the same steps as in the dis-
counted case, with some added difficulty that is inherent in the more
challenging average-reward setup. Some key challenges include treating
the additional optimization variable 𝜌 and coping with the fact that the
optimal parameters 𝜽∗ and 𝜷∗ are not necessarily unique any more.
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E.2 Analysis
We now prove our main result regarding the AMDP setting in Theo-
rem E.1.1. Following the derivations in the main text, we study the dy-
namic duality gap defined as

𝒢𝑇 (𝜷∗, 𝜋∗; 𝜌∗
1∶𝑇 , 𝜽∗

1∶𝑇 ) = 1
𝑇

𝑇
∑
𝑡=1

(𝑓(𝜷∗, 𝜋∗; 𝜌𝑡, 𝜽𝑡) − 𝑓(𝜷𝑡, 𝜋𝑡; 𝜌∗
𝑡 , 𝜽∗

𝑡)). (E.5)

First we show in Lemma E.2.1 below that, for appropriately chosen com-
parator points, the expected suboptimality of the policy returned by Al-
gorithm 4 can be upper bounded in terms of the expected dynamic duality
gap.

Lemma E.2.1. Let 𝜽∗
𝑡 such that

⟨𝝋(𝑥, 𝑎), 𝜽∗
𝑡⟩ = ⟨𝝋(𝑥, 𝑎), 𝜽𝜋𝑡⟩ − inf

(𝑥,𝑎)∈𝒳×𝒜
⟨𝝋(𝑥, 𝑎), 𝜽𝜋𝑡⟩

holds for all (𝑥, 𝑎) ∈ 𝒳 × 𝒜, and let 𝐯∗
𝑡 be defined as

𝐯∗
𝑡(𝑥) = ∑

𝑎∈𝒜
𝜋𝑡(𝑎|𝑥) ⟨𝝋(𝑥, 𝑎), 𝜽∗

𝑡⟩

for all 𝑥. Also, let 𝜌∗
𝑡 = 𝜌𝜋𝑡, 𝜋∗ be an optimal policy, and 𝜷∗ = 𝚲−𝑐

𝜇 𝚽⊤𝐩∗

where 𝐩∗ is the occupancy measure of 𝜋∗. Then, the suboptimality gap of
the policy output by Algorithm 4 satisfies

𝔼𝑇 [⟨𝐩∗ − 𝐩𝝅out , 𝐫⟩] = 𝒢𝑇 (𝜷∗, 𝜋∗; 𝜌∗
1∶𝑇 , 𝜽∗

1∶𝑇 ).

Proof. Substituting (𝜷∗, 𝜋∗) = (𝚲−𝑐
𝜇 𝚽T𝐩∗, 𝜋∗) in the first term of the dy-

namic duality gap we have

𝑓(𝜷∗, 𝜋∗; 𝜌𝑡, 𝜽𝑡) = 𝜌𝑡+⟨𝚲−𝑐
𝜇 𝚽T𝐩∗ , 𝚲𝑐

𝜇[𝜽𝑟 + 𝚿𝐯𝜽𝑡,𝜋∗ − 𝜽𝑡−𝜌𝑡𝝔]⟩
= 𝜌𝑡+⟨𝐩∗ , 𝑟 + 𝐏𝐯𝜽𝑡,𝜋∗ − 𝚽𝜽𝑡−𝜌𝑡𝟏⟩
= ⟨𝐩∗ , 𝑟⟩ + ⟨𝐩∗ , 𝐄𝐯𝜽𝑡,𝜋∗ − 𝚽𝜽𝑡⟩ + 𝜌𝑡[1 − ⟨𝐩∗, 𝟏⟩]
= ⟨𝐩∗ , 𝑟⟩.

Here, we have used the fact that 𝐩∗ is a valid occupancy measure, so it
satisfies the flow constraint 𝐄T𝐩∗ = 𝐏T𝐩∗ and the normalization constraint
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⟨𝐩∗, 𝟏⟩ = 1. Also, in the last step we have used the definition of 𝐯𝜃𝑡,𝜋∗

that guarantees that the following equality holds:

⟨𝐩∗, 𝚽𝜽𝑡⟩ = ∑
𝑥∈𝒳

𝜈∗(𝑥) ∑
𝑎∈𝒜

𝜋∗(𝑎|𝑥) ⟨𝜽𝑡, 𝝋(𝑥, 𝑎)⟩ = ∑
𝑥∈𝒳

𝜈∗(𝑥)𝑣𝜽𝑡,𝜋∗(𝑥)

= ⟨𝐩∗ , 𝐄𝐯𝜽𝑡,𝜋∗⟩.

For the second term in the dynamic duality gap, using that 𝜋𝑡 is ℱ𝑡−1-
measurable we write

𝑓(𝜷𝑡, 𝜋𝑡; 𝜌∗
𝑡 , 𝜽∗

𝑡) = 𝜌∗
𝑡 + ⟨𝜷𝑡 , 𝚲𝑐

𝜇[𝜽𝑟 + 𝚿𝐯𝜽∗
𝑡,𝜋𝑡

− 𝜽∗
𝑡 − 𝜌∗

𝑡𝝔]⟩
= 𝜌∗

𝑡 + ⟨𝜷𝑡 , 𝚲𝑐−1
𝜇 𝔼𝑡[𝝋𝑡𝝋T

𝑡 [𝜽𝑟 + 𝚿𝐯𝜽∗
𝑡,𝜋𝑡

− 𝜽∗
𝑡−𝜌∗

𝑡𝝔]]⟩
= 𝜌∗

𝑡 + ⟨𝜷𝑡 , 𝔼𝑡[𝚲𝑐−1
𝜇 𝝋𝑡[𝑅𝑡

+ ∑
𝑥,𝑎

𝑃(𝑥|𝑋𝑡, 𝐴𝑡)𝜋𝑡(𝑎|𝑥) ⟨𝝋(𝑥, 𝑎), 𝜽∗
𝑡⟩ − ⟨𝝋(𝑋𝑡, 𝐴𝑡), 𝜽∗

𝑡⟩ − 𝜌∗
𝑡 ]]⟩

= 𝜌𝜋𝑡 + ⟨𝜷𝑡 , 𝔼𝑡[𝚲𝑐−1
𝜇 𝝋𝑡[𝑅𝑡

+ ∑
𝑥,𝑎

𝑃(𝑥|𝑋𝑡, 𝐴𝑡)𝜋𝑡(𝑎|𝑥) ⟨𝝋(𝑥, 𝑎), 𝜽𝜋𝑡⟩ − ⟨𝝋(𝑋𝑡, 𝐴𝑡), 𝜽𝜋𝑡⟩ − 𝜌𝜋𝑡]]⟩

= 𝜌𝜋𝑡 + ⟨𝜷𝑡 , 𝔼𝑡[𝚲𝑐−1
𝜇 𝝋𝑡[𝑟(𝑋𝑡, 𝐴𝑡) + ⟨𝑃(⋅|𝑋𝑡, 𝐴𝑡), 𝑣𝜋𝑡⟩ − 𝑞𝜋𝑡(𝑋𝑡, 𝐴𝑡)−𝜌𝜋𝑡 ]]⟩

= 𝜌𝜋𝑡 = ⟨𝐩𝜋𝑡 , 𝑟⟩ ,

where in the fourth equality we used that

⟨𝝋(𝑥, 𝑎) − 𝝋(𝑥′, 𝑎′), 𝜃∗
𝑡⟩ = ⟨𝝋(𝑥, 𝑎) − 𝝋(𝑥′, 𝑎′), 𝜃𝜋𝑡⟩

holds for all 𝑥, 𝑎, 𝑥′, 𝑎′ by definition of 𝜃∗
𝑡 . Then, the last equality follows

from the fact that the Bellman equations for 𝜋𝑡 imply 𝑞𝜋𝑡(𝑥, 𝑎) + 𝜌𝜋𝑡 =
𝑟(𝑥, 𝑎) + ⟨𝑃 (⋅|𝑥, 𝑎), 𝐯𝜋𝑡⟩.
Combining both expressions for 𝑓(𝜷∗, 𝜋∗; 𝜌𝑡, 𝜽𝑡) and 𝑓(𝜷𝑡, 𝜋𝑡; 𝜌∗

𝑡 , 𝜽∗
𝑡) in the

dynamic duality gap we have:

𝒢𝑇 (𝜷∗, 𝜋∗; 𝜌∗
1∶𝑇 , 𝜽∗

1∶𝑇 ) = 1
𝑇

𝑇
∑
𝑡=1

(⟨𝐩∗ − 𝐩𝜋𝑡 , 𝑟⟩ −𝜌(𝜋𝑡)[⟨𝜷𝑡 , 𝚲𝜇𝝔⟩ − 1])

= 𝔼𝑇 [⟨𝐩∗ − 𝐩𝜋out , 𝑟⟩] .

148



i
i

“main” — 2023/12/13 — 23:12 — page 149 — #157 i
i

i
i

i
i

The second equality follows from noticing that, since 𝝅out is sampled uni-
formly from {𝜋𝑡}𝑇

𝑡=1, 𝔼 [⟨𝐩𝝅out , 𝐫⟩] = 1
𝑇 ∑𝑇

𝑡=1 𝔼 [⟨𝐩𝜋𝑡 , 𝐫⟩]. This completes
the proof.

Having shown that for well-chosen comparator points the dynamic duality
gap equals the expected suboptimality of the output policy of Algorithm 4,
it remains to relate the gap to the optimization error of the primal-dual
procedure. This is achieved in the following lemma.

Lemma E.2.2. For the same choice of comparators (𝜷∗, 𝜋∗; 𝜌∗
1∶𝑇 , 𝜽∗

1∶𝑇 )
as in Lemma E.2.1 the dynamic duality gap associated with the iterates
produced by Algorithm 4 satisfies

𝔼 [𝒢𝑇 (𝜷∗, 𝜋∗; 𝜌∗
1∶𝑇 , 𝜽∗

1∶𝑇 )]

≤
2𝐷2

𝜷
𝜁𝑇 + ℋ (𝜋∗‖𝜋1)

𝛼𝑇 + 1
2𝜉𝐾 + 2𝐷2

𝜽
𝜂𝐾

+ 𝜁 Tr(𝚲2𝑐−1
𝜇 )(1 + 2𝐷𝝋𝐷𝜽)2

2 + 𝛼𝐷2
𝝋𝐷2

𝜽
2 + 𝜉 (1 + 𝐷2

𝜷 ∥𝚲𝜇∥2𝑐−1
2 )

+ 2𝜂𝐷2
𝝋𝐷2

𝜷 ∥𝚲𝜇∥2𝑐−1
2 .

Proof. The first part of the proof follows from recognising that the dy-
namic duality gap can be rewritten in terms of the total regret of the
primal and dual players in the algorithm. Formally, we write

𝒢𝑇 (𝜷∗, 𝜋∗; 𝜌∗
1∶𝑇 , 𝜽∗

1∶𝑇 )

= 1
𝑇

𝑇
∑
𝑡=1

(𝑓(𝜷∗, 𝜋∗; 𝜌𝑡, 𝜽𝑡) − 𝑓(𝜷𝑡, 𝜋𝑡; 𝜌𝑡, 𝜽𝑡))

+ 1
𝑇

𝑇
∑
𝑡=1

(𝑓(𝜷𝑡, 𝜋𝑡; 𝜌𝑡, 𝜽𝑡) − 𝑓(𝜷𝑡, 𝜋𝑡; 𝜌∗
𝑡 , 𝜽∗

𝑡)) .

Using that 𝜷∗ = 𝚲−𝑐
𝜇 𝚽⊤𝐩∗, 𝐪𝑡 = ⟨𝝋(𝑥, 𝑎), 𝜽𝑡⟩, 𝐯𝑡 = 𝐯𝜽𝑡,𝜋𝑡

and that 𝐠𝜷,𝑡 =
𝚲𝑐

𝜇[𝜽𝑟 + 𝚿𝐯𝑡 − 𝜽𝑡−𝜌𝑡𝝔], we see that term in the first sum can be simply
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rewritten as

𝑓(𝜷∗, 𝜋∗; 𝜌𝑡, 𝜽𝑡) − 𝑓(𝜷𝑡, 𝜋𝑡; 𝜌𝑡, 𝜽𝑡)
= ⟨𝜷∗ , 𝚲𝑐

𝜇[𝜽𝑟 + 𝚿𝐯𝜽𝑡,𝜋∗ − 𝜽𝑡−𝜌𝑡𝝔]⟩
− ⟨𝜷𝑡 , 𝚲𝑐

𝜇[𝜽𝑟 + 𝚿𝐯𝜽𝑡,𝜋𝑡
− 𝜽𝑡−𝜌𝑡𝝔]⟩

= ⟨𝜷∗ − 𝜷𝑡 , 𝚲𝑐
𝜇[𝜽𝑟 + 𝚿𝐯𝑡 − 𝜽𝑡−𝜌𝑡𝝔]⟩ + ⟨𝚿T𝚲𝑐

𝜇𝜷∗ , 𝐯𝜽𝑡,𝜋∗ − 𝐯𝜽𝑡,𝜋𝑡
⟩

= ⟨𝜷∗ − 𝜷𝑡 , 𝐠𝜷,𝑡⟩ + ∑
𝑥∈𝒳

𝜈∗(𝑥) ⟨𝜋∗(⋅|𝑥) − 𝜋𝑡(⋅|𝑥), 𝐪𝑡(𝑥, ⋅)⟩ .

In a similar way, using that 𝐄T𝐩𝑡 = 𝚿T𝚲𝑐
𝜇𝜷𝑡 and the definitions of the

gradients 𝜅𝜌,𝑡 and 𝐠𝜽,𝑡, the term in the second sum can be rewritten as

𝑓(𝜷𝑡, 𝜋𝑡; 𝜌𝑡, 𝜽𝑡) − 𝑓(𝜷𝑡, 𝜋𝑡; 𝜌∗
𝑡 , 𝜽∗

𝑡)
= 𝜌𝑡 + ⟨𝜷𝑡 , 𝚲𝑐

𝜇[𝜽𝑟 + 𝚿𝐯𝜽𝑡,𝜋𝑡
− 𝜽𝑡−𝜌𝑡𝝔]⟩ − 𝜌∗

𝑡

− ⟨𝜷𝑡 , 𝚲𝑐
𝜇[𝜽𝑟 + 𝚿𝐯𝜽∗

𝑡,𝜋𝑡
− 𝜽∗

𝑡−𝜌∗
𝑡𝝔]⟩

= (𝜌𝑡 − 𝜌∗
𝑡)[1 − ⟨𝜷𝑡, 𝚲𝑐

𝜇𝝔⟩] − ⟨𝜽𝑡 − 𝜽∗
𝑡 , 𝚲𝑐

𝜇𝜷𝑡⟩ + ⟨𝐄T𝐩𝑡, 𝐯𝜽𝑡,𝜋𝑡
− 𝐯𝜽∗

𝑡,𝜋𝑡
⟩

= (𝜌𝑡 − 𝜌∗
𝑡)[1 − ⟨𝜷𝑡, 𝚲𝑐

𝜇𝝔⟩] − ⟨𝜽𝑡 − 𝜽∗
𝑡 , 𝚲𝑐

𝜇𝜷𝑡⟩ + ⟨𝚽T𝐩𝑡, 𝜽𝑡 − 𝜽∗
𝑡⟩

= (𝜌𝑡 − 𝜌∗
𝑡)[1 − ⟨𝜷𝑡, 𝚲𝑐

𝜇𝝔⟩] + ⟨𝜽𝑡 − 𝜽∗
𝑡 , 𝚽T𝐩𝑡 − 𝚲𝑐

𝜇𝜷𝑡⟩
= (𝜌𝑡 − 𝜌∗

𝑡)𝜅𝜌,𝑡 + ⟨𝜽𝑡 − 𝜽∗
𝑡 , 𝐠𝜽,𝑡⟩

= 1
𝐾

𝐾
∑
𝑖=1

((𝜌(𝑖)
𝑡 − 𝜌∗

𝑡)𝜅𝜌,𝑡 + ⟨𝜽(𝑖)
𝑡 − 𝜽∗

𝑡 , 𝐠𝜽,𝑡⟩) .

Combining both terms in the duality gap concludes the first part of the
proof. As shown below the dynamic duality gap is written as the error
between iterates of the algorithm from respective comparator points in
the direction of the exact gradients. Formally, we have

𝒢𝑇 (𝜷∗, 𝜋∗; 𝜌∗
1∶𝑇 , 𝜽∗

1∶𝑇 ) =
1
𝑇

𝑇
∑
𝑡=1

(⟨𝜷∗ − 𝜷𝑡 , 𝐠𝜷,𝑡⟩ + ∑
𝑥∈𝒳

𝜈∗(𝑥) ⟨𝜋∗(⋅|𝑥) − 𝜋𝑡(⋅|𝑥), 𝐪𝑡(𝑥, ⋅)⟩)

+ 1
𝑇 𝐾

𝑇
∑
𝑡=1

𝐾
∑
𝑖=1

((𝜌(𝑖)
𝑡 − 𝜌∗

𝑡)𝜅𝜌,𝑡 + ⟨𝜽(𝑖)
𝑡 − 𝜽∗

𝑡 , 𝐠𝜽,𝑡⟩) .
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Then, implementing techniques from stochastic gradient descent analysis
in the proof of Lemmas E.3.1 to E.3.3 and mirror descent analysis in
Lemma C.3.3, the expected dynamic duality gap can be upper bounded
as follows:

𝔼 [𝒢𝑇 (𝜷∗, 𝜋∗; 𝜌∗
1∶𝑇 , 𝜽∗

1∶𝑇 )]

≤
2𝐷2

𝜷
𝜁𝑇 + ℋ (𝜋∗‖𝜋1)

𝛼𝑇 + 1
2𝜉𝐾 + 2𝐷2

𝜽
𝜂𝐾

+ 𝜁 Tr(𝚲2𝑐−1
𝜇 )(1 + 2𝐷𝝋𝐷𝜽)2

2 + 𝛼𝐷2
𝝋𝐷2

𝜽
2

+ 𝜉 (1 + 𝐷2
𝜷 ∥𝚲𝜇∥2𝑐−1

2 ) + 2𝜂𝐷2
𝝋𝐷2

𝜷 ∥𝚲𝜇∥2𝑐−1
2 .

This completes the proof

Proof of Theorem E.1.1 First, we bound the expected suboptimality
gap by combining Lemmas E.2.1 and E.2.2. Next, bearing in mind that
the algorithm only needs 𝑇 (𝐾 +1) total samples from the behavior policy
we optimize the learning rates to obtain a bound on the sample complexity,
thus completing the proof.

E.3 Missing proofs for Lemma E.2.2
In this section we prove Lemmas E.3.1 to E.3.3 used in the proof of
Lemma E.2.2. It is important to recall that sample transitions (𝑋𝑘, 𝐴𝑘, 𝑅𝑡, 𝑋′

𝑘)
in any iteration 𝑘 are generated in the following way: we draw i.i.d
state-action pairs (𝑋𝑘, 𝐴𝑘) from 𝐩𝐵, and for each state-action pair, the
next 𝑋′

𝑘 is sampled from 𝑃(⋅|𝑋𝑘, 𝐴𝑘) and immediate reward computed as
𝑅𝑡 = 𝑟(𝑋𝑘, 𝐴𝑘). Precisely in iteration 𝑖 of round 𝑡 where 𝑘 = (𝑡, 𝑖), since
(𝑋𝑡,𝑖, 𝐴𝑡,𝑖) are sampled i.i.d from 𝐩𝐵 at this time step, 𝔼𝑡,𝑖 [𝝋𝑡,𝑖𝝋T

𝑡,𝑖] =
𝔼(𝑥,𝑎)∼𝐩𝐵

[𝝋(𝑥, 𝑎)𝝋(𝑥, 𝑎)T] = 𝚲𝜇.

Lemma E.3.1. The gradient estimator 𝜿̂𝜷,𝑡 satisfies 𝔼 [𝜿̂𝜷,𝑡 |ℱ𝑡−1, 𝜽𝑡 ] =
𝐠𝜷,𝑡 and

𝔼 [‖𝜿̂𝜷,𝑡‖2
2] ≤ Tr(𝚲2𝑐−1

𝜇 )(1 + 2𝐷𝝋𝐷𝜽)2.
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Furthermore, for any 𝜷∗ with 𝜷∗ ∈ 𝔹(𝐷𝜷), the iterates 𝜷𝑡 satisfy

𝔼 [
𝑇

∑
𝑡=1

⟨𝜷∗ − 𝜷𝑡 , 𝐠𝜷,𝑡⟩] ≤
2𝐷2

𝜷
𝜁 + 𝜁𝑇 Tr(𝚲2𝑐−1

𝜇 )(1 + 2𝐷𝝋𝐷𝜽)2

2 . (E.6)

Proof. For the first part, we remind that 𝜋𝑡 is ℱ𝑡−1-measurable and 𝐯𝑡 is
determined given 𝜋𝑡 and 𝜽𝑡. Then, we write

𝔼 [𝜿̂𝜷,𝑡 |ℱ𝑡−1, 𝜽𝑡 ] = 𝔼 [𝚲𝑐−1
𝜇 𝝋𝑡[𝑅𝑡 + 𝑣𝑡(𝑋′

𝑡) − ⟨𝜽𝑡, 𝝋𝑡⟩ − 𝜌𝑡] |ℱ𝑡−1, 𝜽𝑡 ]
= 𝔼 [𝚲𝑐−1

𝜇 𝝋𝑡[𝑅𝑡 + 𝔼𝑥′∼𝑃(⋅|𝑋𝑡,𝐴𝑡) [𝑣𝑡(𝑥′)] − ⟨𝜽𝑡, 𝝋𝑡⟩ − 𝜌𝑡] |ℱ𝑡−1, 𝜽𝑡 ]
= 𝔼 [𝚲𝑐−1

𝜇 𝝋𝑡[𝑅𝑡 + ⟨𝑃(⋅|𝑋𝑡, 𝐴𝑡), 𝐯𝑡⟩ − ⟨𝜽𝑡, 𝝋𝑡⟩ − 𝜌𝑡] |ℱ𝑡−1, 𝜽𝑡 ]
= 𝔼 [𝚲𝑐−1

𝜇 𝝋𝑡𝝋T
𝑡 [𝜽𝑟 + 𝚿𝐯𝑡 − 𝜽𝑡 − 𝜌𝑡𝝔] |ℱ𝑡−1, 𝜽𝑡 ]

= 𝚲𝑐−1
𝜇 𝔼 [𝝋𝑡𝝋T

𝑡 |ℱ𝑡−1, 𝜽𝑡 ] [𝜽𝑟 + 𝚿𝐯𝑡 − 𝜽𝑡 − 𝜌𝑡𝝔]
= 𝚲𝑐

𝜇[𝜽𝑟 + 𝚿𝐯𝑡 − 𝜽𝑡 − 𝜌𝑡𝝔] = 𝐠𝜷,𝑡.
Next, we use the facts that 𝑟 ∈ [0, 1] and ‖𝐯𝑡‖∞ ≤ ‖𝚽𝜽𝑡‖∞ ≤ 𝐷𝝋𝐷𝜽 to
show the following bound:

𝔼 [‖𝜿̂𝜷,𝑡‖2
2 |ℱ𝑡−1, 𝜽𝑡 ] = 𝔼 [∥𝚲𝑐−1

𝜇 𝝋𝑡[𝑅𝑡 + 𝑣𝑡(𝑋′
𝑡) − ⟨𝜽𝑡, 𝝋𝑡⟩]∥

2
2 |ℱ𝑡−1, 𝜽𝑡 ]

= 𝔼 [|𝑅𝑡 + 𝑣𝑡(𝑋′
𝑡) − ⟨𝜽𝑡, 𝝋𝑡⟩| ∥𝚲𝑐−1

𝜇 𝝋𝑡∥
2
2 |ℱ𝑡−1, 𝜽𝑡 ]

≤ 𝔼 [(1 + 2𝐷𝝋𝐷𝜽)2 ∥𝚲𝑐−1
𝜇 𝝋𝑡∥

2
2 |ℱ𝑡−1, 𝜽𝑡 ]

= (1 + 2𝐷𝝋𝐷𝜽)2𝔼 [𝝋T
𝑡𝚲2(𝑐−1)

𝜇 𝝋𝑡 |ℱ𝑡−1, 𝜽𝑡 ]
= (1 + 2𝐷𝝋𝐷𝜽)2𝔼 [Tr(𝚲2(𝑐−1)

𝜇 𝝋𝑡𝝋T
𝑡) |ℱ𝑡−1, 𝜽𝑡 ]

≤ Tr(𝚲2𝑐−1
𝜇 )(1 + 2𝐷𝝋𝐷𝜽)2.

The last step follows from the fact that 𝚲𝜇, hence also 𝚲2𝑐−1
𝜇 , is positive

semi-definite, so Tr(𝚲2𝑐−1
𝜇 ) ≥ 0. Having shown these properties, we appeal

to the standard analysis of online gradient descent stated as Lemma D.0.1
to obtain the following bound

𝔼 [
𝑇

∑
𝑡=1

⟨𝜷∗ − 𝜷𝑡 , 𝐠𝜷,𝑡⟩] ≤ ‖𝜷1 − 𝜷∗‖2
2

2𝜁 + 𝜁𝑇 Tr(𝚲2𝑐−1
𝜇 )(1 + 2𝐷𝝋𝐷𝜽)2

2 .

Using that ‖𝜷∗‖2 ≤ 𝐷𝜷 concludes the proof.
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Lemma E.3.2. The gradient estimator ̃𝑔𝜌,𝑡,𝑖 satisfies 𝔼𝑡,𝑖 [ ̃𝑔𝜌,𝑡,𝑖] = 𝜅𝜌,𝑡
and 𝔼𝑡,𝑖 [ ̃𝑔2

𝜌,𝑡,𝑖] ≤ 2 + 2𝐷2
𝜷 ∥𝚲𝜇∥2𝑐−1

2 . Furthermore, for any 𝜌∗
𝑡 ∈ [0, 1], the

iterates 𝜌(𝑖)
𝑡 satisfy

𝔼 [
𝐾

∑
𝑖=1

(𝜌(𝑖)
𝑡 − 𝜌∗

𝑡)𝜅𝜌,𝑡] ≤ 1
2𝜉 + 𝜉𝐾 (1 + ‖𝜷𝑡‖2

𝚲2𝑐−1𝜇
) .

Proof. For the first part of the proof, we use that 𝜷𝑡 is ℱ𝑡,𝑖−1-measurable,
to obtain

𝔼𝑡,𝑖 [ ̃𝑔𝜌,𝑡,𝑖] = 𝔼𝑡,𝑖 [1 − ⟨𝝋𝑡,𝑖, 𝚲𝑐−1
𝜇 𝜷𝑡⟩]

= 𝔼𝑡,𝑖 [1 − ⟨𝝋𝑡,𝑖𝝋T
𝑡,𝑖𝝔, 𝚲𝑐−1

𝜇 𝜷𝑡⟩]
= 1 − ⟨𝚲𝑐

𝜇𝝔, 𝜷𝑡⟩ = 𝜅𝜌,𝑡.

In addition, using Young’s inequality and ‖𝜷𝑡‖
2
𝚲2𝑐−1𝜇

≤ 𝐷2
𝜷 ∥𝚲𝜇∥2𝑐−1

2 we
show that

𝔼𝑡,𝑖 [ ̃𝑔2
𝜌,𝑡,𝑖] = 𝔼𝑡,𝑖 [(1 − ⟨𝝋𝑡,𝑖, 𝚲𝑐−1

𝜇 𝜷𝑡⟩)2]
≤ 2 + 2𝔼𝑡,𝑖 [𝜷T

𝑡𝚲𝑐−1
𝜇 𝝋𝑡,𝑖𝝋T

𝑡,𝑖𝚲𝑐−1
𝜇 𝜷𝑡]

= 2 + 2‖𝜷𝑡‖2
𝚲2𝑐−1𝜇

≤ 2 + 2𝐷2
𝜷 ∥𝚲𝜇∥2𝑐−1

2 .

For the second part, we appeal to the standard online gradient descent
analysis of Lemma D.0.1 to bound on the total error of the iterates:

𝔼 [
𝐾

∑
𝑖=1

(𝜌(𝑖)
𝑡 − 𝜌∗

𝑡)𝜅𝜌,𝑡] ≤
(𝜌(1)

𝑡 − 𝜌∗
𝑡)

2

2𝜉 + 𝜉𝐾 (1 + 𝐷2
𝜷 ∥𝚲𝜇∥2𝑐−1

2 ) .

Using that (𝜌(1)
𝑡 − 𝜌∗

𝑡)2 ≤ 1 concludes the proof.

Lemma E.3.3. The gradient estimator ̃𝐠𝜽,𝑡,𝑖 satisfies 𝔼𝑡,𝑖 [ ̃𝐠𝜽,𝑡,𝑖] = 𝐠𝜽,𝑡,𝑖
and 𝔼𝑡,𝑖 [‖ ̃𝐠𝜽,𝑡,𝑖‖2

2] ≤ 4𝐷2
𝝋𝐷2

𝜷 ∥𝚲𝜇∥2𝑐−1
2 . Furthermore, for any 𝜽∗

𝑡 with
‖𝜽∗

𝑡‖2 ≤ 𝐷𝜽, the iterates 𝜽(𝑖)
𝑡 satisfy

𝔼 [
𝐾

∑
𝑖=1

⟨𝜽(𝑖)
𝑡 − 𝜽∗

𝑡 , 𝐠𝜽,𝑡,𝑖⟩] ≤ 2𝐷2
𝜽

𝜂 + 2𝜂𝐾𝐷2
𝝋𝐷2

𝜷 ∥𝚲𝜇∥2𝑐−1
2 . (E.7)
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Proof. Since 𝜷𝑡, 𝜋𝑡, 𝜌𝑖
𝑡 and 𝜽𝑖

𝑡 are ℱ𝑡,𝑖−1-measurable, we obtain

𝔼𝑡,𝑖 [ ̃𝐠𝜽,𝑡,𝑖] = 𝔼𝑡,𝑖 [𝝋′
𝑡,𝑖 ⟨𝝋𝑡,𝑖, 𝚲𝑐−1

𝜇 𝜷𝑡⟩ − 𝝋𝑡,𝑖 ⟨𝝋𝑡,𝑖, 𝚲𝑐−1
𝜇 𝜷𝑡⟩]

= 𝚽T𝔼𝑡,𝑖 [𝐞𝑋′
𝑡,𝑖,𝐴′

𝑡,𝑖
⟨𝝋𝑡,𝑖, 𝚲𝑐−1

𝜇 𝜷𝑡⟩] − 𝔼𝑡,𝑖 [𝝋𝑡,𝑖𝝋T
𝑡,𝑖] 𝚲𝑐−1

𝜇 𝜷𝑡

= 𝚽T𝔼𝑡,𝑖 [[𝜋𝑡 ∘ 𝑃 (⋅|𝑋𝑡, 𝐴𝑡)] ⟨𝝋𝑡,𝑖, 𝚲𝑐−1
𝜇 𝜷𝑡⟩] − 𝚲𝑐

𝜇𝜷𝑡
= 𝚽[𝜋𝑡 ∘ 𝚿T𝔼𝑡,𝑖 [𝝋𝑡,𝑖𝝋T

𝑡,𝑖] 𝚲𝑐−1
𝜇 𝜷𝑡] − 𝚲𝑐

𝜇𝜷𝑡
= 𝚽[𝜋𝑡 ∘ 𝚿T𝚲𝑐

𝜇𝜷𝑡] − 𝚲𝑐
𝜇𝜷𝑡

= 𝚽T𝐩𝑡 − 𝚲𝑐
𝜇𝜷𝑡 = 𝐠𝜽,𝑡.

Next, we consider the squared gradient norm and bound it via elementary
manipulations as follows:

𝔼𝑡,𝑖 [∥ ̃𝐠𝜽,𝑡,𝑖∥
2
2] = 𝔼𝑡,𝑖 [∥𝝋′

𝑡,𝑖 ⟨𝝋𝑡,𝑖, 𝚲𝑐−1
𝜇 𝜷𝑡⟩ − 𝝋𝑡,𝑖 ⟨𝝋𝑡,𝑖, 𝚲𝑐−1

𝜇 𝜷𝑡⟩∥2
2]

≤ 2𝔼𝑡,𝑖 [∥𝝋′
𝑡,𝑖 ⟨𝝋𝑡,𝑖, 𝚲𝑐−1

𝜇 𝜷𝑡⟩∥2
2] + 2𝔼𝑡,𝑖 [∥𝝋𝑡,𝑖 ⟨𝝋𝑡,𝑖, 𝚲𝑐−1

𝜇 𝜷𝑡⟩∥2
2]

= 2𝔼𝑡,𝑖 [𝜷T
𝑡𝚲𝑐−1

𝜇 𝝋𝑡,𝑖 ∥𝝋′
𝑡,𝑖∥

2
2 𝝋T

𝑡,𝑖𝚲𝑐−1
𝜇 𝜷𝑡]

+ 2𝔼𝑡,𝑖 [𝜷T
𝑡𝚲𝑐−1

𝜇 𝝋𝑡,𝑖 ∥𝝋𝑡,𝑖∥
2
2 𝝋T

𝑡,𝑖𝚲𝑐−1
𝜇 𝜷𝑡]

≤ 2𝐷2
𝝋𝔼𝑡,𝑖 [𝜷T

𝑡𝚲𝑐−1
𝜇 𝝋𝑡,𝑖𝝋T

𝑡,𝑖𝚲𝑐−1
𝜇 𝜷𝑡] + 2𝐷2

𝝋𝔼𝑡,𝑖 [𝜷T
𝑡𝚲𝑐−1

𝜇 𝝋𝑡,𝑖𝝋T
𝑡,𝑖𝚲𝑐−1

𝜇 𝜷𝑡]
= 2𝐷2

𝝋𝔼𝑡,𝑖 [𝜷T
𝑡𝚲𝑐−1

𝜇 𝚲𝜇𝚲𝑐−1
𝜇 𝜷𝑡] + 2𝐷2

𝝋𝔼𝑡,𝑖 [𝜷T
𝑡𝚲𝑐−1

𝜇 𝚲𝜇𝚲𝑐−1
𝜇 𝜷𝑡]

≤ 4𝐷2
𝝋‖𝜷𝑡‖2

𝚲2𝑐−1𝜇
≤ 4𝐷2

𝝋𝐷2
𝜷 ∥𝚲𝜇∥2𝑐−1

2 .

Having verified these conditions, we appeal to the online gradient descent
analysis of Lemma D.0.1 to show the bound

𝔼 [
𝐾

∑
𝑖=1

⟨𝜽(𝑖)
𝑡 − 𝜽∗

𝑡 , 𝐠𝜽,𝑡⟩] ≤
∥𝜽(1)

𝑡 − 𝜽∗
𝑡∥

2

2
2𝜂 + 2𝜂𝐾𝐷2

𝝋𝐷2
𝜷 ∥𝚲𝜇∥2𝑐−1

2 .

We then use that ∥𝜽∗
𝑡 − 𝜽(1)

𝑡 ∥
2

≤ 2𝐷𝜽 for 𝜽∗
𝑡 , 𝜽(1)

𝑡 ∈ 𝔹(𝐷𝜽), thus concluding
the proof.
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Input: Learning rates 𝜁, 𝛼,𝜉,𝜂, initial iterates 𝜷1 ∈ 𝔹(𝐷𝜷),
𝜌0 ∈ [0, 1], 𝜽0 ∈ 𝔹(𝐷𝜽), 𝜋1 ∈ Π

for 𝑡 = 1 to 𝑇 do
; // Stochastic gradient descent
Initialize: 𝜽(1)

𝑡 = 𝜽𝑡−1; for 𝑖 = 1 to 𝐾 do
Obtain sample 𝑊𝑡,𝑖 = (𝑋𝑡,𝑖, 𝐴𝑡,𝑖, 𝑅𝑡,𝑖, 𝑋′

𝑡,𝑖);
Sample 𝐴′

𝑡,𝑖 ∼ 𝜋𝑡(⋅|𝑋′
𝑡,𝑖);

Compute ̃𝑔𝜌,𝑡,𝑖 = 1 − ⟨𝝋𝑡,𝑖, 𝚲𝑐−1
𝜇 𝜷𝑡⟩;

̃𝐠𝜽,𝑡,𝑖 = 𝝋′
𝑡,𝑖 ⟨𝝋𝑡,𝑖, 𝚲𝑐−1

𝜇 𝜷𝑡⟩ − 𝝋𝑡,𝑖 ⟨𝝋𝑡,𝑖, 𝚲𝑐−1
𝜇 𝜷𝑡⟩;

Update 𝜌(𝑖+1)
𝑡 = Π[0,1](𝜌(𝑖)

𝑡 − 𝜉 ̃𝑔𝜌,𝑡,𝑖);
𝜽(𝑖+1)

𝑡 = Π𝔹(𝐷𝜽)(𝜽(𝑖)
𝑡 − 𝜂 ̃𝐠𝜽,𝑡,𝑖).

end

Compute 𝜌𝑡 = 1
𝐾 ∑𝐾

𝑖=1 𝜌(𝑖)
𝑡 ;

𝜽𝑡 = 1
𝐾 ∑𝐾

𝑖=1 𝜽(𝑖)
𝑡 ;

; // Stochastic gradient ascent
Obtain sample 𝑊𝑡 = (𝑋𝑡, 𝐴𝑡, 𝑅𝑡, 𝑋′

𝑡);
Compute 𝑣𝑡(𝑋′

𝑡) = ∑𝑎 𝜋𝑡(𝑎|𝑋′
𝑡) ⟨𝝋(𝑋′

𝑡, 𝑎), 𝜽𝑡⟩;
Compute 𝜿̂𝜷,𝑡 = 𝚲𝑐−1

𝜇 𝝋𝑡[𝑅𝑡 + 𝑣𝑡(𝑋′
𝑡) − ⟨𝜽𝑡, 𝝋𝑡⟩ − 𝜌𝑡];

Update 𝜷𝑡+1 = Π𝔹(𝐷𝜷)(𝜷𝑡 + 𝜁𝜿̂𝜷,𝑡);
; // Policy update
Compute 𝜋𝑡+1 = 𝜎 (𝛼 ∑𝑡

𝑘=1 𝚽𝜽𝑘).
end
Output: 𝜋𝐽 with 𝐽 ∼ 𝒰(𝑇 )

Algorithm 4: Offline primal-dual method for Average-reward
MDPs
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