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Presentation

This thesis is divided into two parts. The first one is devoted to an algorithm to
compute the rotation interval of circle maps. The other one deals with semi-analytic
methods to compute the regularity of Strange Nonchaotic Attractors (SNAs). The
first part is completely contained in Chapter 1. On the other hand the second part
is much longer, spanning Chapters 2, 3, 4, and 5. It also includes an introduction
and conclusions of its own, as well as an annex.

In the first part, we present the development of an algorithm to compute the
rotation interval of circle maps of degree one. The core of the algorithm is to
compute the rotation number of non-decreasing circle maps of degree one that
have a constant section. From this, the rotation interval of any circle map can be
easily computed, since it is given by the rotation number of the upper and lower
functions (sometimes called water functions), which are non-decreasing and have
constant sections provided the original map is not non-decreasing. Hence, this
algorithm fills the role of computing rotation intervals for cases that previously
where out of reach. Mostly because the vast majority of existing algorithms rely
on the differentiability of the map. The algorithm relies heavily in the relation
between the existence of periodic points and the rotation number. Intuitively, it
uses the constant section as a catching net for finding periodic points, which can
then be used to compute rotation numbers.

The second part is an extension of the research started by Alsedà, Mondelo
and Romero in [AMR16], and was later expanded in David Romero’s PhD thesis
[RiS15]. The main idea is to use the rich existing theory of wavelets as basis of
function spaces to extract information from invariant objects, in particular attrac-
tors, in quasi-periodic forced skew products. That is families of maps on S1 ×R of
the form

Fσ,ε : S1 × R −−−−−−−→ S1 × R
(θ, x) 7−−−−−−−→ (Rω(θ), Fσ,ε(θ, x)),

where ω ∈ R\Q and Rω(θ) = θ+ω mod 1. In this case we consider that the map F
might have some parametric dependence on σ and ε, and part of our goal is to study
how a change of parameters might affect the properties of the attractor by studying
its wavelet expansion. We will mostly centre our attention in the computation of
the regularity of the invariant object. This is mostly due to the fact that quasi-
periodic forced skew products serve as toy models for finding strange nonchaotic
attractors (or SNA). These are exactly what they name implies, attractors of a
nonchaotic system that despite having regular dynamics have a very complicated
geometry. The first SNA was published in 1984 in [GOPY84]. Since then, SNAs
have been object of study, with some analytical results proving their existence
[Kel96, AM08]. However, there exists many systems in which existence of SNA
is suspected just from numerical approximations [Kan84, NK96].

There exist some results that allow us to compute regularity of functions from
their wavelet expansion. We want to use this measure of regularity as a (flawed)
way to detect wether or not an attractor might be strange. We will use the systems
with known behaviour as a proof of adequacy of our algorithm, and then we will

ix
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try to use the same method to try to understand the behaviour of systems with
suspected strangeness, in particular the one found in [NK96].

For a more in depth explanation we refer the reader to the introduction found
in each part.



Part 1

An algorithm to compute Rotation
Numbers of circle maps





CHAPTER 1

An algorithm to compute Rotation Numbers for
Circle Maps

1.1. Introduction

The rotation interval plays an important role in combinatorial dynamics. For
example Misiurewicz’s Theorem [Mis82] links the set of periods of a continuous
lifting F of degree one to the set M :=

{
n ∈ N : kn ∈ Rot(F ) for some integer k

}
,

where Rot(F ) denotes the rotation interval of F. Moreover, it is natural to com-
pute lower bounds of the topological entropy depending on the rotation interval
[ALMM88]. In any case, the knowledge of the rotation interval of circle maps of
degree one is of theoretical importance.

The rotation number was introduced by H. Poincaré to study the movement
of celestial bodies [Poi85], and since then has been found to model a wide variety
of physical and sociological processes. In the physical sense, it has been recently
applied to climate science [MSG20]. In the sociological one, the application to
voting theory [JO19, MO15] is specially surprising in this context.

The computation of the rotation number for invertible maps of degree one
from S1 onto itself is well studied, and many very efficient algorithms exist for
its computation [Her79, Pav95, SV06, Vel88]. However, there is a lack of an
efficient algorithm for the non-invertible and non-differentiable case.

In this chapter, we propose a method that allows us to compute the rotation
interval for the non-invertible case. Our algorithm is based on the fact that we can
compute exactly the rotation number of a natural subclass of the class of continuous
non-decreasing degree one circle maps that have a constant section and a rational
rotation number. From this algorithm we get an efficient way to compute exactly the
rotation interval of a large subset of the continuous non-invertible degree one circle
maps by using the so called upper and lower maps, which, when different, always
have a constant section. When dealing with maps outside the aforementioned class,
the algorithm will return an arbitrarily precise rational aproximation of the rotation
number.

To check the efficiency of our algorithm we will use it to compute some classical
results such as a Devil’s Staircase. When doing so, we will compare the efficiency
of our algorithm with the performance of some other algorithms that have been
traditionally used under the hypothesis of non-invertibility. On the other hand, we
will also compute the rotation interval and Arnold tongues for a variety of maps,
in the same comparing spirit. These maps include the Standard Map and some
of its variants but have issues either with the differentiability, or even with the
continuity. Of course these variants are not well suited for algorithms that strongly
use differentiability.

The chapter is organised as follows. In Section 1.2 the theoretical background
will be set. In Section 1.3 the algorithm will be presented, and, finally in Section 1.4
we will provide the mentioned examples of the use of the algorithm.

3
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0 1

1

2

F
∣∣
[0,1]

Figure 1.1. An example of a map from L1 which can be consid-
ered as a toy model for the elements of that class. The picture
shows F

∣∣
[0,1]

, and F is globally defined as F (x) = F
∣∣
[0,1]

(
{{x}}

)
+

⌊x⌋.

1.2. A short Survey on Rotation Theory and the Computation of
Rotation Numbers

We will start by recalling some results from the rotation theory for circle maps.
To do this we will follow [ALM00].

The floor function (i.e. the function that returns the greatest integer less than
or equal to the variable) will be denoted as ⌊ · ⌋. Also the decimal part of a real
number x ∈ R, defined as x− ⌊x⌋ ∈ [0, 1) will be denoted by {{x}}.

In what follows S1 denotes the circle, which is defined as the set of all complex
numbers of modulus one. Let e : R −→ S1 be the natural projection from R to S1,
which is defined by e(x) := exp(2πix).

Let f : S1 −→ S1 be continuous map. A continuous map F : R −→ R is a lifting
of f if and only if e(F (x)) = f(e(x)) for every x ∈ R. Note that the lifting of a
circle map is not unique, and that any two liftings F and F ′ of the same continuous
map f : S1 −→ S1 verify F = F ′ + k for some k ∈ Z.

For every continuous map f : S1 −→ S1 there exists an integer d such that

F (x+ 1) = F (x) + d

for every lifting F of f and every x ∈ R (that is, the number d is independent of the
choice of the lifting and the point x ∈ R). We shall call this number d the degree
of f . The degree of a map roughly corresponds to the number of times that the
whole image of the map f covers S1 homotopically.

In this chapter we are interested studying maps of degree 1, since the rotation
theory is well defined for the liftings of these maps.

We will denote the set of all liftings of maps of degree 1 by L1. Observe that
to define a map from L1 it is enough to define F

∣∣
[0,1]

(see Figure 1.1) because F
can be globally defined as F (x) = F

∣∣
[0,1]

(
{{x}}

)
+ ⌊x⌋ for every x ∈ R.

Remark 1.1. It is easy to see that, for every F ∈ L1, Fn(x+ k) = Fn(x) + k
for every n ∈ N, x ∈ R and k ∈ Z. Consequently, Fn ∈ L1 for every n ∈ N.
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0
0
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1

F
Fu

Fl

Figure 1.2. An example of a map F ∈ L1 with its lower map Fl
in red and its upper map Fu in blue.

Definition 1.2. Let F ∈ L1, and let x ∈ R. We define the rotation number of
x as

ρ
F
(x) := lim sup

n→∞

Fn(x)− x
n

.

Observe (Remark 1.1) that, ρ
F
(x) = ρ

F
(x+ k) for every k ∈ Z. The rotation set of

F is defined as:

Rot(F ) = {ρ
F
(x) : x ∈ R} = {ρ

F
(x) : x ∈ [0, 1]} .

Ito [Ito81], proved that the rotation set is a closed interval of the real line. So,
henceforth the set Rot(F ) will be called the rotation interval of F .

Proposition 1.3 (Proposition 3.7.11 in [ALM00]). Let F ∈ L1 be non-
decreasing. Then, for every x ∈ R the limit

lim
n→∞

Fn(x)− x
n

exists and is independent of x.

For a non-decreasing map F ∈ L1, the number ρ
F
(x) = limn→∞

Fn(x)−x
n will

be called the rotation number of F , and will be denoted by ρ
F
.

Now, by using the notation from [ALM00], we will introduce the notion of
upper and lower functions, that will be crucial to compute the rotation interval.

Definition 1.4. Given F ∈ L1 we define the F -upper map Fu as

Fu(x) := sup {F (y) : y ≤ x} .
Similarly we will define the F -lower map as

Fl(x) := inf {F (y) : y ≥ x} .
An example of such functions is shown in Figure 1.2.

It is easy to see that Fl, Fu ∈ L1 are non decreasing, and Fl(x) ≤ F (x) ≤ Fu(x)
for every x ∈ R.

The rationale behind introducing the upper and lower functions comes from
the following result, stating that the rotation interval of a function F ∈ L1 is given
by the rotation number of its upper and lower functions.

Theorem 1.5 (Theorem 3.7.20 in [ALM00]). Let F ∈ L1. Then,

Rot(F ) =
[
ρ

Fl
, ρ

Fu

]
.
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Note that this theorem makes indeed sense, since the upper and lower functions
are non-decreasing and by Proposition 1.3 they have a single well defined rotation
number.

Let f : S1 −→ S1 and let z ∈ S1. The f -orbit of z is defined to be the set

Orbf (z) := {z, f(z), f2(z), . . . , fn(z), . . . }.

We say that z is an n-periodic point of f if Orbf (z) has cardinality n. Note that
this is equivalent to fn(z) = z and fk(z) ̸= z for every k < n. In this case the set
Orbf (z) will be called an n-periodic orbit (or, simply, a periodic orbit).

If we have a periodic orbit of a circle map, a natural question that might arise
is how it behaves at a lifting level. This motivates the introduction of the notion
of a lifted cycle.

Given a set A ⊂ R and m ∈ Z we will denote A + m := {x+m : x ∈ A} .
Analogously, we set

A+ Z := {x+m : x ∈ A, m ∈ Z} .

Definition 1.6. Let f : S1 −→ S1 be a continuous map and let F be a lifting
of f. A set P ⊂ R is called a lifted cycle of F if e(P ) is a periodic orbit of f. Observe
that, then P = P + Z. The period of a lifted cycle is, by definition, the period of
e(P ). Hence, when e(P ) is an n-periodic orbit of f, P is called an n-lifted cycle,
and every point x ∈ P will be called an n-periodic (mod 1) point of F .

The relation between lifted orbits and rotation numbers is clarified by the next
lemma.

Lemma 1.7 (Lemmas 3.7.2 and 3.7.3 in [ALM00]). Let F ∈ L1. Then, x
is an n-periodic (mod 1) point of F if and only if there exists k ∈ Z such that
Fn(x) = x+ k but F j(x)− x /∈ Z for j = 1, 2, . . . , n− 1. In this case,

ρ
F
(x) = lim

m→∞

Fm(x)− x
m

=
k

n
.

Moreover, let P be a lifted n-cycle of F. Every point x ∈ P is an n-periodic (mod 1)
point of F, and the above number k does not depend on x. Hence, for every x ∈ P
we have ρ

F
(P ) := ρ

F
(x) = k

n .

Now we can revisit Proposition 1.3:

Proposition 1.3 (Proposition 3.7.11 in [ALM00]). Let F ∈ L1 be non-
decreasing. Then, for every x ∈ R the limit

ρ
F
:= lim

n→∞

Fn(x)− x
n

exists and is independent of x. Moreover, ρ
F

is rational if and only if F has a lifted
cycle.

In the next two subsections we will give a survey of two known algorithms that
have been already used to compute rotation numbers of non-differentiable and non-
invertible liftings from L1. The first one (Algorithm 1) stems automatically from
the definition of rotation number (Definition 1.2); the other one (Algorithm 2) is
due to Simó et al. [JS09].

1.2.1. Algorithm 1: computing the rotation interval from the defini-
tion of rotation number. The first algorithm to compute ρ

F
consists in using

Proposition 1.3 and the following approximation:
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ρ
F
= lim
m→∞

Fm(x)− x
m

≈ Fn(x)− x
n

∣∣∣∣
x=0

=
Fn(0)

n
,

with n ∈ N large enough.
However, a priori we do not
know how good the conver-
gence is. In Lemma 1.8 we
will show that the error is of
order 1/n. The implemen-
tation of the computation of
this approximation to the ro-
tation number can be found
in the side algorithm pseu-
docode.

Algorithm 1
Direct Algorithm pseudocode

procedure Rotation_Number(F , error)
n← ceil

(
1

error
)

x← 0
k ← 0
for i← 1, n do

x← F (x)
s← floor(x)
k ← k + s ▷ k = ⌊Fn(0)⌋
x← x− s ▷ x = {{Fn(0)}}= Fn(0)− k

end for
return k+x

n
end procedure

Since the maps from L1 are defined so that

F (x) = F
∣∣
[0,1]

(
{{x}}

)
+ ⌊x⌋,

we need to evaluate the function floor(·) = ⌊ · ⌋ once per iterate. So, for clarity
and efficiency, it seems advisable to split Fn(0) as {{Fn(0)}}+⌊Fn(0)⌋. The next
lemma clarifies the computation error as a function of the number of iterates. In
particular it explicitly gives the necessary number of iterates to obtain the rotation
number woth a given a desired tolerance.

For every non-decreasing lifting F ∈ L1, and every n ∈ N we set (see Figure 1.3)

ℓF (n) := min
x∈R
⌊Fn(x)− x⌋ = min

x∈[0,1]
⌊Fn(x)− x⌋ .

The second equality holds because F has degree 1, and hence ℓF (n) is well defined.
See Figure 1.3 for an intuitive representation of what ℓF (n) means.

Lemma 1.8. For every non-decreasing lifting F ∈ L1 and n ∈ N we have
(a) either Fn(z) = z + ℓF (n) + 1 for some z ∈ R, or

x+ ℓF (n) ≤ Fn(x) < x+ ℓF (n) + 1 for every x ∈ R;
(b) ℓF (n)

n ≤ ρ
F
≤ ℓF (n)+1

n ; and

(c)
∣∣∣ρF
− Fn(x)−x

n

∣∣∣ < 1
n for every x ∈ R.

Proof. We will prove the whole lemma by considering two alternative cases.
Assume first that Fn(z) = z + ℓF (n) + 1 for some z ∈ R. Then (a) holds trivially,
and Proposition 1.3 and Lemma 1.7 imply that ρ

F
= ℓF (n)+1

n . So, Statement (b)
also holds in this case. Now observe that from the definition of ℓF (n) we have

(1.1) ℓF (n) ≤ ⌊Fn(x)− x⌋ ≤ Fn(x)− x
for every x ∈ R. Moreover, there exists k = k(x) ∈ Z such that x ∈ [z+k, z+k+1)
and, since F is non-decreasing, so is Fn. Thus,

Fn(x)− x ≤ Fn(z + k + 1)− x = Fn(z) + k + 1− x =

ℓF (n) + 1 + (z + k + 1− x) < ℓF (n) + 2,

by Remark 1.1. Consequently,

ρ
F
− 1

n
=
ℓF (n)

n
≤ Fn(x)− x

n
< ρ

F
+

1

n
;

which proves (c) in this case.
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Now we consider the case

Fn(x) ̸= x+ ℓF (n) + 1

for every x ∈ R. In view of the definition of ℓF (n),
we cannot have

Fn(x)− x > ℓF (n) + 1

for every x ∈ R. Hence, by the continuity of
Fn(x)− x and (1.1),

(1.2) ℓF (n) ≤ Fn(x)− x < ℓF (n) + 1

for every x ∈ R. This proves (a).
Now we prove (b). We consider the functions:

x 7−→ ℓF (n) + x, Fn, and x 7−→ ℓF (n) + 1 + x.
They are all non-decreasing and, by Remark 1.1,
they belong to L1. Hence, by Proposition 1.3,
[ALM00, Lemma 3.7.19] and (1.2),

ℓF (n) = ρ
x7→ℓF (n)+x

≤ ρ
Fn ≤

ρ
x 7→ℓF (n)+1+x

= ℓF (n) + 1.

Consequently,
ℓF (n)

n
≤ ρ

F
=
ρ

Fn

n
≤ ℓF (n) + 1

n
,

and (b) holds. Moreover, (1.2) is equivalent to
ℓF (n)

n
≤ Fn(x)− x

n
≤ ℓF (n) + 1

n
,

which proves (c).

0 1

Fn(x)

Fn(x)

x
+
ℓF
(n
) +

1

x
+
ℓF
(n
)

Figure 1.3. Plot of x +
ℓF (n) x + ℓF (n) + 1, and
Fn(x) for two arbitrary non-
decreasing maps F ∈ L1 that
fit in the two cases of the
lemma.

□

1.2.2. Algorithm 2: the Simó et al. algorithm to compute the rota-
tion interval. First of all, it should be noted that even though the authors propose
an algorithm to compute the rotation interval for a general map F ∈ L1, we will
only use it for non decreasing maps. A priori this algorithm is radically different
from Algorithm 1 and it gives an estimate of ρ

F
by providing and upper and a

lower bound of the rotation number (rotation interval in the original paper) of F.
Moreover, it is implicitly assumed that ρ

F
∈ [0, 1] (in particular that F (0) ∈ [0, 1)

— this can be achieved by replacing the lifting F by the lifting G := F − ⌊F (0)⌋,
if necessary). The algorithm goes as follows:

(Alg. 2-1) Decide the number of iterates n in function of a given tolerance.
(Alg. 2-2) For i = 0, 1, 2, . . . , n compute ki = ⌊F i(x0)⌋ and αi = F i(x0) − ki (i.e.

αi is the fractionary part of F i(x0)).
(Alg. 2-3) Sort the values of ki and αi so that αi0 < αi1 < · · · < αin (this can be

achieved efficiently with the help of an index vector).
(Alg. 2-4) Initialise ρmin = 0 and ρmax = 1.

(Alg. 2-5) For j = 0, 1, 2, . . . , n− 1 set ρj =
kij+1

−kij
ij+1−ij , and

• if ij+1 > ij set ρmin = max{ρmin, ρj}; otherwise,
• if ij+1 < ij set ρmax = min{ρmax, ρj}.

(Alg. 2-6) Return ρmax and ρmin as upper and lower bounds of the rotation number
of F, respectively.

The real issue in this algorithm consists in dealing with the error. If the rotation
number ρ

F
satisfies a Diophantine condition

∣∣∣ρF
− p

q

∣∣∣ ≤ cq−ν , with c > 0 and ν ≥ 2,
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Algorithm 2 Simó et al. ([JS09]) Algorithm in pseudocode

procedure Rotation_Number(F, n)
index[] ←
x← 0
ρmin ← 0
ρmax ← 1
for i← 0, n do

x← F (x)
ki ← floor(x)
αi ← x− ki
index[i]← i

end for
sort α[index[i]] by rearranging index[]
for i← 0, n− 1 do

ρaux ← kindex[i + 1]−kindex[i]
index[i+ 1]−index[i]

if index[i+ 1] > index[i] then
ρmin ← max{ρmin, ρaux}

else
ρmax ← min{ρmax, ρaux}

end if
end for
return ρmin, ρmax

end procedure

then the error verifies

ε <
1

(cnν)
1

ν−1

.

Note that this error depends strongly on the chosen number n of iterates, and that
n must be chosen before knowing what the rotation number could possibly be. Hence
Algorithm 2 it is not well suited to compute unknown rotation numbers of L1 maps.
However, it is excellent in continuation methods where the current rotation number
gives a good estimate of the next one.

Remark 1.9. The original aim of the algorithm is to determine the existence
of closed invariant curves on dynamical systems on the plane rather than the com-
putation of rotation numbers of a given map of the circle. The rationale of the
algorithm is that if, after computing ρmin and ρmax, we find that ρmin > ρmax then
the computed orbit cannot lay on a closed invariant curve. This explains most of
the limitations we have encountered, such as the lack of an a priori estimate of the
error, or the fact that the algorithm is suited only for rotation numbers ρ ∈ [0, 1].

1.3. An algorithm to compute rotation numbers of non-decreasing
maps with a constant section

The diameter of an interval K which, by definition is equal to the absolute
value of the difference between their endpoints, will be denoted as diam(K). We
say that an interval K is a non-degenerate subinterval if diam(K) > 0. In particular,
a non-degenerate interval is different from a point, i.e it has non-empty interior.

A constant section of a lifting F of a circle map is a closed non-degenerate
subinterval K of R such that F

∣∣
K

is constant. In the special case when F ∈ L1, we
have that F (x+ 1) = F (x) + 1 ̸= F (x) for every x ∈ R. Hence, diam(K) < 1.



10 1. AN ALGORITHM TO COMPUTE ROTATION NUMBERS FOR CIRCLE MAPS

The algorithm we propose is partly based on Lemma 1.8. However, it is the
following simple proposition which allows us to compute the exact rotation num-
ber of a non-decreasing lifting from L1 that has a constant section, provided that
Fn(K) ∩ (K + Z) ̸= ∅. In this sense, Proposition 1.10 has a completely different
approach of the problem. Instead of trying to (costly) estimate the rotation number
as Algorithm 3 and Lemma 1.8 do, it seeks to find the exact rotation number. The
contribution of Lemma 1.8 is still important, since it will allow us to have a fail
safe in case Proposition 1.10 cannot be applied.

Proposition 1.10. Let F ∈ L1 be non-decreasing and have a constant section
K. Assume that there exists n ∈ N such that Fn(K) ∩ (K + Z) ̸= ∅, and that n is
minimal with this property. Then, there exists ξ ∈ R such that Fn(K) = {ξ} ⊂
K + m with m = ⌊ξ − minK⌋ ∈ Z, ξ is an n-periodic (mod 1) point of F, and
ρ

F
= m

n .

Proof. Since K is a constant section of F, F (K) contains a unique point, and
hence there exists ξ ∈ R such that Fn(K) = {ξ}. Then, the fact that Fn(K)∩(K+
Z) ̸= ∅ implies that ξ ∈ K +m with m = ⌊ξ −minK⌋ ∈ Z.

Set ξ̃ := ξ − m ∈ K. Then,
{
Fn
(
ξ̃
)}

= Fn(K) =
{
ξ̃ + m

}
. Moreover, the

minimality of n implies that F j
(
ξ̃
)
− ξ̃ /∈ Z for j = 1, 2, . . . , n − 1. So, Lemma 1.7

tells us that ξ̃ (and hence ξ) is an n-periodic (mod 1) point of F. Thus, ρ
F
= m

n by
Proposition 1.3. □

As already said, Proposition 1.10 is a tool to compute exactly the rotation
numbers of non-decreasing liftings F ∈ L1 which have a constant section and have
a lifted cycle intersecting the constant section (and hence having rational rotation
number). In the next subsection we shall investigate how restrictive are these
conditions, when dealing with computation of rotation numbers.

1.3.1. On the genericity of Proposition 1.10. First observe that the fact
that Proposition 1.10 only allows the computation of rotation numbers of non-
decreasing liftings F ∈ L1 which have a constant section is not restrictive at all.
Indeed, if we want to compute rotation intervals of non-invertible continuous circle
maps of degree one, Theorem 1.5 tells us that this is exactly what we want.

Clearly, one of the real restrictions that cannot be overcome in the above
method to compute exact rotation numbers is that it only works for maps having
a rational rotation number. Hence, for maps with non-rational rotation number we
can only hope to get a rational approximation like the one given by Algorithm 1,
which can be archieved with arbitrary precision. However, as stated by Theo-
rem 1.16, it is not easy to find maps with irrational rotation number, even harder
to do so with floating point aproximation.

On the other hand, we also have the formal restriction that Proposition 1.10
requires that the map F has a lifted cycle intersecting the constant section (indeed
this is a consequence of the condition Fn(K) ∩ (K + Z) ̸= ∅). A natural question
is whether this restriction is just formal or it is a real one. In the next example we
will see that the restriction is not superfluous since there exist maps which do not
satisfy it.

Consequently, Proposition 1.10 is useless in computing the rotation numbers
of non-decreasing liftings in L1 which have a constant section and either irrational
rotation number or rational rotation number but do not have any lifted cycle inter-
secting the constant section. The only reasonable solution to these problems is to
use an iterative algorithm to estimate the rotation number with a prescribed error,
such as Algorithm 1, Algorithm 2 or others.
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Example 1.11. There exist non-decreasing liftings in L1 which have a constant
section and rational rotation number but do not have any lifted cycle intersecting
the constant section: Let F ∈ L1 be the map such that F (x) = F

∣∣
[0,1]

(
{{x}}

)
+ ⌊x⌋

for every x ∈ R, and let

F
∣∣
[0,1]

(x) :=



x+ 0.2 if x ∈ [0, 0.1],
x
2 + 0.25 if x ∈ [0.1, 0.3],
7x− 1.7 if x ∈ [0.3, 0.4],
x
4 + 1 if x ∈ [0.4, 0.8],
1.2 if x ∈ [0.8, 1].

0 0.1 0.3 0.8 10.4
0

0.3

0.4

1

1.1

1.2

0.2

F
∣∣
[0,1]

Figure 1.4. Example of a non-decreasing lifting in L1 with a constant section and
rational rotation number which does not verify the assumptions of Proposition 1.10.

The map F is a non-decreasing lifting from L1, having a constant section K =
[0.8, 1] and rotation number 1

3 given by the 3-lifted cycle P = {0.1, 0.3, 0.4} + Z
(c.f. Lemma 1.7 and Proposition 1.3).

Now let us see that F does not have any lifted cycle intersecting the constant
section. First, observe that

F 3(K) = F (F (F (K))) = F (F ({1.2})) = F ({1.35}) = {1.75} ̸⊂ K + Z.

Hence, there is no lifted cycle of period 3 intersecting K. On the other hand, again
by Lemma 1.7, we have that if x is an n-periodic (mod 1) point of F then there
exists k ∈ Z such that Fn(x) = x+ k and

1

3
= ρ

F
= lim
m→∞

Fm(x)− x
m

= ρ
F
(x) =

k

n
.

Moreover, since F is non-decreasing, we know by [ALM00, Corollary 3.7.6] that n
and k must be relatively prime. Thus, any lifted cycle of F has period 3, and from
above this implies that there is no lifted cycle intersecting K.

1.3.2. Algorithm 3: A constant section based algorithm arising from
Proposition 1.10. From the last paragraph of the previous subsection it becomes
evident that Proposition 1.10 does not give a complete algorithm to compute rota-
tion numbers of non-decreasing liftings in L1 which have a constant section. Such
an algorithm must rather be a mix-up of Proposition 1.10, and Algorithm 1 to be
used when we are not able to determine whether we are in the assumptions of that
proposition. As we did for Algorithm 1, we will split Fn(0) as {{Fn(0)}}+⌊Fn(0)⌋.
The goal is twofold, on the one hand splitting helps minimizing the truncation er-
rors. On the other hand, thanks to the splitting we can apply Proposition 1.10
more efficiently, since it requires the computation of m as an integer part. Note
that here we are denoting the constant section by K and assuming that 0 ∈ K,
which will be justified later. Then, observe that the computations to be performed
are exactly the same in both cases (meaning when we can use Proposition 1.10, and
when alternatively we must end up by using Algorithm 1); except for the condition-
als that check whether there exists n ≤ max_iter such that Fn(K) ∩ (K + Z) ̸= ∅
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Algorithm 3 Constant Section Based Algorithm
For a non-decreasing map F ∈ L1 parametrised so that
[−tol, β + tol] is a constant section of F

define tol ← ▷ Procedure parameter that bounds the round-
ing errors in the computation of Fn(0)

procedure Rotation_Number(F , β, error)
max_iter← ceil

(
1

error
)

▷ Maximum number of iterates allowed
(to estimate the rotation number with
the prescribed error when reached)

x← 0
m← 0

for n← 1, max_iter do
x← F (x)
s← floor(x)
m← m+ s ▷ m = ⌊Fn(0)⌋
x← x− s ▷ x = {{Fn(0)}}= Fn(0)−m
if x ≤ β then

return m
n ▷ Exact rotation number: Proposition 1.10 holds assum-

ing that the rounding error of Fn(0) is smaller than tolend if
end for
return m+x

max_iter ▷ We do not know whether we are in the assump-
tions of Proposition 1.10. So, we iteratively es-
timate the rotation number as in Algorithm 1.
The error bound is given by Lemma 1.8

end procedure

is verified (that is, whether the assumptions of Proposition 1.10 are verified) before
exhausting the max_iter iterates determined a priori.

In what follows F̃n(0) will denote the computed value of Fn(0) with rounding
errors for n = 1, 2, . . . , max_iter.

The algorithm goes as follows (see Algorithm 3 for a full implementation in
pseudocode, and see the explanatory comments below):

(Alg. 3-1) Re-parametrize the lifting F so that it has a maximal (with respect
to the inclusion relation) constant section of the form [−tol, β + tol],
where tol is the pre-defined rounding error bound.

(Alg. 3-2) Set the inputs of the algorithm:
• β as in step 1,
• F , the map from which we want the rotation number,
• error, the maximum error we want our approximation to have.

(Alg. 3-3) Decide the maximum number of iterates max_iter = ceil
(

1
error

)
to

perform in the worst case (i.e. when Proposition 1.10 does not work).
(Alg. 3-4) Initialize x = 0 and m = 0.

(Alg. 3-5) Compute iteratively x = {{F̃n(0)}} and m =
⌊
F̃n(0)

⌋
(so that F̃n(0) =

x+m) for n ≤ max_iter.
(Alg. 3-6) Check whether x ≤ β. On the affirmative we are in the assumptions of

Proposition 1.10, and thus, ρ
F
= m

n . Then, the algorithm returns this
value as the “exact” rotation number.

(Alg. 3-7) If we reach the maximum number of iterates (i.e. n = max_iter) with-
out being in the assumptions of Proposition 1.10 (i.e. with x > β for
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every x) then, by Lemma 1.8, we have∣∣∣∣ρF
− m+ x

max_iter

∣∣∣∣ =
∣∣∣∣∣ρF
− F̃n(0)

max_iter

∣∣∣∣∣ ≈
∣∣∣∣ρF
− Fn(0)

max_iter

∣∣∣∣ < 1

max_iter
,

and the algorithm returns m+x
max_iter as an estimate of ρ

F
with 1

max_iter
as the estimated error bound.

Remark 1.12. The fact that we can only check whether the assumptions of
Proposition 1.10 are verified before exhausting the max_iter = ceil

(
1

error
)

it-
erates determined a priori does not allow to take into account that F may have
a lifted cycle intersecting the constant section but of very large period, i.e. with
period larger than max_iter. In practice this problem is totally equivalent to the
non-existence (or rather invisibility) of a lifted cycle intersecting the constant sec-
tion, and it can be considered as a new (algorithmic) restriction to Proposition 1.10.
It is solved in (Alg. 3-6) in the same manner as the two other problems related
with the applicability of Proposition 1.10 that have already been discussed: by
estimating the rotation number as in Algorithm 1.

In the last part of this subsection we are going to discuss the rationale of
(Alg. 3-2) (and, as a consequence of (Alg. 3-5)). The necessity of this tuning of
the algorithm comes again from a challenge concerning the application of Proposi-
tion 1.10, which turns to be one of the most relevant restrictions in the use of that
proposition. We will begin by discussing how we can efficiently check the condition
ξ = Fn(0) ∈ K + Z (or equivalently Fn(K) ∩ (K + Z) ̸= ∅) by taking into account
that the computation of F (x) is done with rounding errors, and thus we do not know
the exact values of Fn(0) for n = 1, 2, . . . , max_iter. The next example shows the
problems arising in this situation.

Example 1.13. F̃n(0) ∈ K + Z but Fn(K) ∩ (K + Z) = ∅, and this leads to a
completely wrong estimate of ρ

F
.

Let F ∈ L1 be the map such that F (x) = F
∣∣
[0,1]

(
{{x}}

)
+ ⌊x⌋ for every x ∈ R, and

let

F
∣∣
[0,1]

(x) :=

{
4
3x+ µ if x ∈

[
0, 34

]
,

1 + µ if x ∈
[
3
4 , 1
]
,

with µ = 819
3124 − 10−16.

0 0.75 1
0

0.262

1

1.262

F
∣∣
[0,1]

For this map F we have K =
[
− 3

4 , 0
]

and (see Figure 1.5) the graph of F 5 lies
above the graph of x 7−→ x+ 1 and below the graph of x 7−→ x+ 2, but very close
to it at five F -preimages of x = 3

4 . On the other hand,

F 5(0) = 1.74999999999999887 · · · /∈ K + Z

but the distance between F 5(0) and K+Z is 7
4 −F

5(0) ≈ 1.138 · 10−15. Should the
computations be done with rounding errors of this last magnitude, we may have
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0 0.75 1

1.749

2

2.749

3

Figure 1.5. The graph of F 5. It lies below the graph of x 7−→ x+2
but very close to it at five F -preimages of x = 3

4 .

F̃ 5(0) ⪆ 7
4 , and accept erroneously that F 5(0) ∈ K + Z. This would lead to the

conclusion that ρ
F
= 2

5 but, as it can be checked numerically, ρ
F
≈ 0.3983 which

is far from 2
5 .

At a first glance this seems to be paradoxical but, indeed, it can be viewed
in the following way: The graph of F 5 does not intersect the diagonal (modulo 1)
x+ 2, but there is a map G close (at rounding errors distance) to F such that the
graph of G5 intersects that diagonal, and this gives a lifted periodic orbit of period
5 and rotation number 2

5 for G. On the other hand, nothing is granted about the
modulus of continuity of ρ

F
as a function of F (notice that that everything here is

continuous including the dependence of the rotation number of F on the parameter
µ), and this example explicitly shows that it may be indeed very big. In short,
close functions can have very different rotation numbers.

The most reasonable solution to the problem pointed out in the previous ex-
ample consists in restricting the size of K depending of an a priori estimate of the
rounding errors in computing F̃n(0) for n = 1, 2, . . . , max_iter. Thus, we denote
by tol an upper bound of these rounding errors, so that∣∣∣Fn(0)− F̃n(0)∣∣∣ ≤ tol holds for n = 1, 2, . . . , max_iter,

and, given a maximal (with respect to the inclusion relation) constant section K
such that 0 ∈ K we write K := [α− tol, β+ tol]. Then observe that the condition
F̃n(0) ∈ [α, β] +m for some n ∈ N and m ∈ Z implies ξ = Fn(0) ∈ K +m, and
ρ

F
= m

n by Proposition 1.10.
In practice, this “rounding errors free” version of the algorithm imposes a new

restriction to the applicability of Proposition 1.10 (in the sense that it reduces
even more the class of functions for which we can get the “exact rotation num-
ber”). However, as before, the rotation numbers of the maps in the assumptions of
Proposition 1.10 for which we cannot compute the “exact rotation number” can be
estimated as in Algorithm 1.

The computational efficiency of the algorithm strongly depends on how we
check the condition F̃n(0) ∈ K + Z. Taking into account the above considerations
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and improvements of the algorithm, this amounts checking whether α+ℓ ≤ F̃n(0) ≤
β+ℓ for some ℓ ∈ Z, and we have to do so by using x = {{F̃n(0)}} and m =

⌊
F̃n(0)

⌋
instead of F̃n(0) = x+m, which is the algorithmic available information. Checking
whether α + ℓ ≤ F̃n(0) ≤ β + ℓ for some ℓ ∈ Z is problematic since it requires
at least two comparisons, and moreover in general ℓ ̸= m (and thus we need some
more computational effort to find the right value of ℓ). A very easy solution to this
problem is to change the parametrization of F so that α = 0. In this situation we
have

m = m+ α ≤ F̃n(0),m+ β < m+ 1

because diam(K) < 1, and m =
⌊
F̃n(0)

⌋
. Consequently, α+ ℓ ≤ F̃n(0) ≤ β+ ℓ for

some ℓ ∈ Z is equivalent to

ℓ = m and x ≤ β.
Thus, by “tuning” F so that α = 0 we get that ℓ = m and we manage to determine
whether F̃n(0) ∈ [α, β] +m just with one comparison (x ≤ β).

To see how we can change the parametrization of F (that is step Alg. 3-1) so
that α = 0 consider the map G(x) := F (x+α)−α. Clearly, F and G are conjugate
by the rotation of angle α: x 7−→ x+α. Then, obviously, G is a non-decreasing map
in L1, has a constant section [− tol, β − α+ tol], and ρ

F
= ρ

G
. So, every lifting

can be replaced by one of its re-parametrizations with the same rotation number
and constant section [− tol, β + tol], where β < 1− 2 tol.

1.4. Testing the Algorithm

In this section we will test the performance of Algorithm 3 by comparing it
against Algorithms 1 and 2 when dealing with different usual computations concern-
ing rotation intervals. First we will compare the efficiency of the three algorithms
in computing and plotting Devil’s Staircases. Afterwards we will plot rotation in-
tervals and Arnold tongues for two bi-parametric families that mimic the standard
map family. In the latter two cases, we will try to compare our algorithm with
Algorithms 1 and 2 whenever possible.

1.4.1. Computing Devil’s staircases. In this subsection we will perform
the comparison of algorithms by computing and plotting the Devil’s staircase for
the parametric family

{
Fµ
}
µ∈[0,1]

⊂ L1 defined as

Definition 1.14.

Fµ(x) = Fµ
∣∣
[0,1]

(
{{x}}

)
+ ⌊x⌋,

where (see Figure 1.1)

(1.3) Fµ
∣∣
[0,1]

(x) =

{
4
3x+ µ if x ≤ 3

4

µ+ 1 if x > 3
4

.

Before doing this we shall remind the notion of a Devil’s Staircase, and why
typically exist for such families. To this end we will first recall and survey on the
notion of persistence of a rotation interval.

Definition 1.15. Given a subclass A of L1, we say that F ∈ A has an A-
persistent rotation interval if there exists a neighbourhood U of F in A such that

Rot(G) = Rot(F )

for every G ∈ U.
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Table 1.1. Performance of the three algorithms studied for a variety of problems.
The cells marked with N/A in blue remark that Algorithm 2 does not work in gen-
eral for ρ /∈ [0, 1]. The ones marked with N/A in red denote that the computation
lasted more than a 100 processor hours and thus was terminated before it ended.

Problem Function Family Time taken by algorithm (s)
Classic Simó et al. Proposed

Devil’s Staircase Fµ (Def. 1.14) 2425.25 210.648 0.1413

Rotation Interval
Standard 354.868 N/A 3.2874
PWLSM (Def. 1.20) 110.892 N/A 0.4737
DSM (Def. 1.21) 63.588 N/A 0.2463

Arnol’d Tongues
Standard N/A N/A 14948.41
PWLSM N/A N/A 9729.17
DSM N/A N/A 4562.75

We can now state the Persistence Theorem (c.f. [Mis89]):

Theorem 1.16 (Persistence Theorem). Let A be a subclass of L1. Then the
following statements hold:
(a) The set of all maps with A-persistent rotation interval is open and dense in A

(in the topology of A).
(b) If F has an A-persistent rotation interval, then ρ

Fl
and ρ

Fu
are rational.

Remark 1.17. If we apply Theorem 1.16 to our family
{
Fµ
}
µ∈[0,1]

which ver-
ifies that the rotation number of Fµ exists for every µ ∈ [0, 1], we have that the set
of parameters µ ∈ [0, 1] for which we have irrational rotation number has measure
0. Furthermore, for any κ ∈ Q such that there exists µ with ρ

Fµ
= κ, there exists

an interval [α, β] ∋ µ such that for all η ∈ [α, β], ρ
Fη

= κ.

The so-called Devil’s staircase is the result of plotting the rotation number as
a function of the parameter µ. By Theorem 1.16 we have that this plot will have
constant sections for any rational rotation number, hence the "Staircase" in the
name.

To test the algorithms, a µ-parametric grid computation of ρ
Fµ

with µ ranging
from 0 to 1 with a step of 10−5 has been done. For Algorithms 1 and 3 the error
has been set to 10−6. For Algorithm 3 the tolerance has been set to 10−10. For
Algorithm 2 we have arbitrarily set the number of iterates to 1000.

In Figure 1.6 we show a plot of the Devil’s Staircase computed with Algorithm 3,
and the plots of the differences between ρ

Fµ
computed with Algorithms 3 and 1,

and the differences between ρ
Fµ

computed with Algorithms 3 and 2.
Table 1.1 shows the times1 taken by each of the three algorithms in computing

the whole Devil’s staircase using the three algorithms studied.
We remark that in the computation of the Devil’s Staircase, Algorithm 3 has

been reduced to Algorithm 1 only for µ = 0 and for µ = 1, as one would expect,
since these cases follow the pattern of Example 1.13.

As a part of the testing of the algorithms we have also considered the inverse
problem: Given a value ρ ∈ R\Q and a tolerance ε > 0 find the value µ = µ(x) such
that ρFµ ∈ [ρ − ε, ρ + ε]. This problem has turned to be extremely ill-conditioned:
by choosing ρ to be any irrational number. We have tried to use algebraic numbers

1The simulations have been done with an Intel® Core™ i7-3770 CPU @3.4GHz.
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Figure 1.6. The Devil’s Staircase associated to the family (1.3) computed with
Algorithm 3 (upper picture). The lower pictures show the plots of the differences
between the value of ρ

Fµ
computed with Algorithm 3 and the value of ρ

Fµ
com-

puted with Algorithm 1 (left picture), and with the value of ρ
Fµ

computed with
Algorithm 2 (right picture).

such as the golden mean or 1/
√
2 and transcendental numbers such as π/4 or

e/3. In any studied case, the continuity module of the function µ 7→ ρFµ
around

µ(ρ) was estimated to be at least 1025, making any attempt to solve the problem
unfeasible. Note that this is coherent with Theorem 1.16, since the values of µ that
give non-rational values are nowhere dense.

1.4.2. Rotation intervals for standard-like maps. In this subsection we
test our algorithm by efficiently computing the rotation intervals and some Arnol’d
tongues for three bi-parametric families of maps: the standard map family and two
piecewise-linear extensions of it; one continuous but not differentiable, and another
one which is not even continuous.

We emphasize that the usual algorithms such as the ones from [BS98, Pav95,
SV06, Vel88] cannot be used for these last two families while the one we propose
here it works very well indeed.

First we will recall the notion of Arnol’d tongue.

Definition 1.18 (Arnol’d Tongue [Boy86]). Let
{
Fa,b

}
(a,b)∈P be a biparamet-

ric family of maps in L1 for which the rotation interval Rot
(
Fa,b

)
is well defined

for every possible point (a, b) ∈ P in the parameter set. Given a point ϱ ∈ R we
define the ϱ−Arnold Tongue of

{
Fa,b

}
(a,b)∈P as

Tϱ =
{
(a, b) ∈ P : ϱ ∈ Rot

(
Fa,b

)}
⊂ P.
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-0.5 0 1 1.5
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1.5

2

Figure 1.7. The standard map with a = 2π and Ω = 0, with its lower map in
blue and its upper map in red.

Next we introduce each of the three families that we study and, for each of
them we show the results and we explain the performance of the algorithm.

Definition 1.19 (Standard Map). SΩ,a ∈ L1 is defined as (see Figure 1.7):

(1.4) SΩ,a(x) := x+Ω− a

2π
sin(2πx).

To compute the rotation intervals of SΩ,a we will use Theorem 1.5, together
with Algorithm 3. To this end, first we will compute

(
SΩ,a

)
l
and

(
SΩ,a

)
u

(that is,
the lower and upper maps of SΩ,a), and then we will use Algorithm 3 to compute
the rotation numbers ρ

(SΩ,a)
l

and ρ
(SΩ,a)u

of these maps.
Note that SΩ,a is non-invertible for a > 1. Hence, in this case,

(
SΩ,a

)
l

and(
SΩ,a

)
u

do not coincide and have constant sections. However, the characterization
of these constants sections is not straightforward, since their endpoints have to be
computed numerically. This is the reason why the computations of the rotation
intervals and Arnol’d tongues for the standard map have been the slowest ones.

In Figure 1.8 we show some graphs of the rotation interval and Arnol’d tongues
for the Standard Map. The graphs of the rotation intervals are plotted for three
different values of Ω as a function of the parameter a.

Definition 1.20 (Piecewise-linear standard map). We start by defining a con-
venience map
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(c) Rotation interval
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the Golden Mean.

(d) 0−Arnol’d tongue. (e) Tϱ Arnol’d tongue
for ϱ = 0.5.

(f) Tϱ for ϱ equal to
the Golden Mean.

Figure 1.8. Graphs of the rotation interval and Arnol’d tongues for the Standard
Map SΩ,a. The graphs of the rotation intervals are plotted as a function of the
parameter a.

τ : [0, 1] −→ [−1, 1] as follows:

(1.5) τ(x) =


4x when x ∈

[
0, 14

]
,

2− 4x when x ∈
[
1
4 ,

3
4

]
, and

4(x− 1) when x ∈
[
3
4 , 1
]
.

Then, the piecewise-linear standard map TΩ,a ∈ L1 is defined
by (see Figure 1.9):

(1.6) TΩ,a(x) = x+Ω− a

2π
τ
(
{{x}}

)
,

which corresponds to the standard map but using the τ wave
function instead of the sin(2πx) function. 0 11

4
3
4

-1

0

1

The upper and lower maps for this family are very easy to compute. Moreover,
TΩ,a is non-increasing for a > π

2 and hence, in this case, the upper and lower maps
do not coincide and have constant sections.

To compute the rotation intervals and Arnol’d Tongues of TΩ,a we proceed as
for the Standard Map by using Theorem 1.5 and Algorithm 3.

In Figure 1.10 we show some graphs of the rotation interval and Arnol’d tongues
for the piecewise-linear standard map. The graphs of the rotation intervals are
plotted for three different values of Ω as a function of the parameter a.
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Figure 1.9. The piecewise-linear standard map TΩ,a with a = 5π
2 and Ω = 0. The

lower map of TΩ,a is drawn in blue, and the upper map in red.
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Figure 1.10. Graphs of the rotation interval and Arnol’d tongues for the
piecewise-linear standard map TΩ,a. The graphs of the rotation intervals are plot-
ted as a function of the parameter a.
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Definition 1.21 (The Discontinuous Standard Map). DΩ,a ∈ L1 is defined as
(see Figure 1.11):

(1.7) DΩ,a(x) := x+Ω+
a

2π
{{x}}.

-0.5 0 1 1.5

0

0.5

1

1.5

2

Figure 1.11. The discontinuous standard map with a = 2π and Ω = 0 with its
lower map in blue and its upper map in red.

The map DΩ,a, being discontinuous, belongs to the so called class of old heavy
maps [Mis86] (the old part of the name stands for degree one lifting — that is,
DΩ,a ∈ L1). A map F ∈ L1 is called heavy if for any x ∈ R,

lim
y↘x+

F (y) ≤ F (x) ≤ lim
y↗x−

F (y)

(in other words, the map “falls down” at all discontinuities).
Observe that for the class of old heavy maps the upper and lower maps in the

sense of Definition 1.4 are well defined and continuous. Moreover, the whole family
of water functions (c.f. [ALM00]) is well defined and continuous. So, the rotation
interval of the old heavy maps is well defined [Mis86, Theorem A] and, moreover,
Theorem 1.5 together with Algorithm 3 work for this class. Hence, to compute
the rotation intervals and Arnol’d Tongues of DΩ,a we proceed again as for the
Standard Map.

As for the piecewise-linear standard maps the upper and lower maps are very
easy to compute, and have constant sections for a ̸= 0.

In Figure 1.12 we show some graphs of the rotation interval and Arnol’d tongues
for the discontinuous standard map. The graphs of the rotation intervals are plotted
for three different values of Ω as a function of the parameter a.
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Figure 1.12. Graphs of the rotation interval and Arnol’d tongues for the discon-
tinuous standard map DΩ,a. The graphs of the rotation intervals are plotted as a
function of the parameter a.

The times taken for all the computation related with the rotation intervals and
the Arnol’d Tongues for each of the families studied using Algorithms 1, 2 and 3
can be found in Table 1.1.

1.5. Conclusions

The proposed algorithm clearly outperforms all the other tested algorithms,
both in precision and speed even though the “exact” (and quick) part of the algo-
rithm does not work for all the non-decreasing liftings in L1 which have a constant
section (and hence the rotation number of these “bad” cases has to be computed
with the much more inefficient classical algorithm). For all natural examples for
which it has been tested, the computational speed and precision were unparalleled.
Moreover, the set of functions becomes very general when one considers the fact
that the upper and lower functions inherently have constant sections for any F that
is not strictly increasing. Hence, the algorithm becomes a crucial tool to compute
rotation intervals for general functions in L1 and, therefore, to find the set of peri-
ods of such maps [ALM00].
Moreover, a deeper study has been done on the dependence of the rotation number
on the parameters. Our preliminary results have found that for irrational rotation
numbers, the dependence of the parameters around them is extremely sensitive,
with continuity module being at least 1025. This agrees with Theorem 1.16, which
says that non-persistent functions have measure zero.
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Introduction

As mentioned in the Preface, this part is the longer half of the thesis. It is an
extension of the research started by Alsedà, Mondelo and Romero in [AMR16],
and was later expanded in David Romero’s PhD thesis [RiS15]2. We will devote
ourselves to the study of attractors on quasi-periodically forced skew products.
That is, systems of the form

Fσ,ε : S1 × R −−−−−−−→ S1 × R
(θ, x) 7−−−−−−−→ (Rω(θ), Fσ,ε(θ, x)),

where ω ∈ R\Q and Rω(θ) = θ+ω mod 1. Note that F has a dependence on σ and
ε, which can be used to study bifurcations within the system. One particular case
is the change from a regular nonchaotic attractor to an strange one. What we call
Strange Non-chaotic attractors (or SNAs) [AC09] are, with some nuance, exactly
what they name implies, attractors of a nonchaotic system that despite having
regular dynamics have a very complicated geometry. In particular, we would like
to obtain a semi-analytic method that allows us to deal with the strangeness of
these attractors. We would like to remark the semi-analicity of the method, since
for SNAs there exist very few analytical results proving their existence. In fact, most
of the current proofs of existence are done for a particular system [GOPY84] or for
very limited families of systems [Kel96, AM08, Bje09]. This stems mainly from
the fact that these systems are extremely different from one another. Moreover,
there exist systems in which the strangeness is suspected but not proven, mainly
because the approximation to the problem has been purely numerical [Kan84,
NK96, Har05].

To this end, we will seek to obtain the truncated wavelet expansion of an attrac-
tor (for example [AM08, Kel96, NK96]) using a periodized Daubechies wavelet
basis. That is, we want to approximate an attractor φ using a periodized wavelet
basis of L 1(S1) ψPER

−j,n:

φ ≈ d0 +
N∑
j=0

2j−1∑
n=0

dj,nψ
PER

−j,n.

The reasons we might be interested in this expansion are manyfold. On one
hand, in modern analysis, wavelet basis are considered building blocks of functions,
allowing us to obtain information about the behaviour of φ via inclusion to various
functional spaces [Tri92, Tri06, Tri10, Jaf91]. In particular, we hope to obtain
information on the strangeness of φ through it belonging to some regularity space.
We are well aware that this measure is not perfect or complete, but it serves as
a good measure to understand whether one can expect the geometry to be com-
plicated or not. Another reason to use wavelets is that they are very well suited
for approximating functions with very complicated geometry, which is the case for
SNAs.

2[AMR16] has a later publishing date due to the time it takes to publish a peer-review paper
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In fact, the two reasons mention above answer the natural question that of
why the need for such a complicated basis of L 1(S1) and not use the Fourier
basis. For example, some of the attractors we will study are upper semi-continuous
functions that are discontinuous on a dense set. In this situation, wavelets truly
shine, since they are much more adaptable to sudden jumps in the functions they
are approximating, unlike the sine or the cosine.

In Chapter 2, there is an introduction to the dynamical problem, showing some
interesting examples of (suspected) strange non-chaotic attractors and the general
dynamical tools we are going to use through the rest of the chapters. In particular
we will give the definition of the invariance equation and give a method to compute
the vertical Lyapunov exponent of hyperbolic attractors in quasi-periodically forced
skew products.

In Chapter 3 we introduce the general theory of wavelets, sketching the ob-
tention of the Daubechies wavelet family. Moreover, we will show how the wavelet
expansion of a function might allow us to compute its regularity (or lack thereof
in the case of strangeness). However, through some examples we will show the
limitations of this framework as a measure for strangeness.

In Chapter 4 we use the results from the previous chapters to find a general nu-
merical method that allows us to obtain truncated wavelet expansions of attractors
of quasi-periodically forced skew products. The core of this chapter is the matricial
form of the invariance equation, in which the Wavelet Matrices are used to sim-
plify the calculations. The chapter ends with the application of the method to the
systems presented in Chapter 2. The ones for which there exist analytical results
are used as a proof of concept. Finally, we give some results for the Nishikawa-
Kaneko system [NK96] that we believe might shed some light to the behaviour of
its attractor.

Finally, in Chapter 5 we give a comprehensive explanation of how we have been
able to generate the Wavelet Matrices from the previous chapter. In this sense we
have been able to obtain very efficient computational implementations through a
smart use of the Daubechies-Lagarias algorithm [DL91, DL92]. This is probably
the most technical part of the thesis, since no amount of detail is spared.



CHAPTER 2

Setting up the Dynamical Problem

This chapter serves as an introduction to the dynamical problem we are in-
terested in, strange non-chaotic attractors (SNAs) in quasi-periodically forced skew
products. In particular, we will start by giving a formal definition of strange non-
chaotic attractor, followed by some of the examples that we will study in this thesis.
Furthermore, we will present some of the existing analytical results we know. More-
over, we will introduce the crucial notion of the invariance equation. The goal of
this equation is to rephrase the existence of an invariant object of a Dynamical
system in terms of an easy to use functional equation. Finally, we will give an
algorithm to compute the Lyapunov exponent of the maps we are interested in.

2.1. Strange non-chaotic attractors

Strange non-chaotic attractors or SNAs first appeared as an object of study in
1984 in a paper by Grebogi, Ott, Pelikan and Yorke (or the GOPY paper)[GOPY84].
The same year Kaneko [Kan84] published his first fractalization of torus paper,
in which he gave inconclusive numerical evidence of the existence of an SNA, even
though he labeled the object a fractal. Some time later him and Nishikawa [NK96]
would return to this problem with some more tools and understanding of SNAs,
but the results are still considered inconclusive. Since then, SNAs have become an
object of interest in the field of dynamical systems, with many (mostly numerical)
papers appearing on the topic [Kan84, NK96, Har05]

The name of this objects is self describing, however each of the parts need
some considerations. First of all there is strangeness, which is a reference to the
geometry of the attractor. This is probably the hardest to define. The first instance
of strangeness where reported by Ruelle and Takens in [RT71], where they detected
chaotic attractors with very complicated geometry. In particular these attractors
where locally the product a Cantor set and a two dimensional manifold. In 1984 two
papers considering (possible) SNAs appear. In [GOPY84] strangeness is defined
as "not being a finite set of points nor piecewise differentiable". On the other
hand in [Kan84] (and later in [NK96]), the strangeness is argued in terms of the
(perceived) fractal geometry of the object. Finally, the strangeness has also been
argued in terms of the Hausdorff dimension of the attractor [AC09]. Through this
thesis we will consider the first definition, since the other two imply the first one.

The second part of the name refers to the nonchaoticity, which still needs to be
well defined, since multiple definitions of chaos and chaoticity exist. However, in
the case of the study of SNAs, the standard is to consider systems in which almost
all the orbits that tend to the attractor (i.e. orbits that have the attractor as the
ω-limit) have non-positive Lyapunov exponents [GOPY84].

The final bit of the name to be precisely defined is the fact that we have an
attractor. When it comes to attractors, the seminal paper is the one by Milnor
in 1985 [Mil85]. Hence, our definitions will stem from there almost verbatim. In
particular we will consider that all our SNA are minimal attractors.

Thus, following the definition given by Alsedà and Costa [AC09], we can finally
give a formal definition of an SNA.

27
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Definition 2.1 (Strange Non-Chaotic Attractor [AC09]). Let F : U → U
define a discrete dynamical system. A closed set A ⊂ U is Strange Nonchaotic
Attractor if:

(a) A is a minimal attractor in the sense of Milnor [Mil85]: the realm of at-
traction ρ(A) := {x ∈ U : ω(x) ⊂ A} has positive Lebesgue measure µ(A)
and there is no strictly smaller closed set A′ ⊊ A such that µ

(
ρ(A′)

)
> 0

(b) A is strange, that is A is not a finite set of points nor a piecewise differ-
entiable manifold.

(c) the set of points in the realm of attraction of A, ρ(A), whose maximal
upper Lyapunov exponent λmax(x) > 0 has zero Lebesgue measure (non
chaoticity).

As hinted in the paragraphs leading to this definition, this is not the only
definition one can find of a strange non-chaotic attractor. However we feel it is the
most general that still only includes interesting objects.

Both the attractors studied in the GOPY paper and by Nishikawa and Kaneko,
arise in bi-parametric families of Quasi-Periodically Forced Skew Products, which
are maps of the form

(2.1) Fσ,ε : S1 × R −−−−−−−→ S1 × R
(θ, x) 7−−−−−−−→ (Rω(θ), Fσ,ε(θ, x)),

where Rω(θ) = θ + ω mod 1, with ω ∈ R\Q is an irrational rotation, and Fσ,ε :
S1 × R → R with σ, ε ∈ R+. A priory we do not impose any conditions on Fσ,ε.
However, depending on each system some restrictions might apply.

For this types of systems Stark [Sta97] proved that whenever we have an
attractor A, it is always the graph of a multivalued function

(2.2) φ : S1 → R

Hence, for us Definition 2.1(c) can be rewritten as:
φ(θ) : S1 → R is not a piecewise differentiable map.

In fact, one of the main goals of this thesis is to obtain the wavelet expansion of φ
when it is (the closure of) a map. From this wavelet expansion one can infer some
information about the strangeness of φ.

2.1.1. The invariance equation. The invariance equation will be the main
tool we will be using to obtain the wavelet expansion of φ(θ). It stems from rephras-
ing the existence of an invariant object (in particular an attractor) as finding a fixed
point of a functional equation. To this end, we will use the Transfer Operator (see
e.g [AM08, AM15, Kel96]) of system (2.1) to obtain the invariance equation. Let
P be the space of all functions (not necessarily continuous) from S1 to R. Then
for φ ∈ P one can define the following functional operator T : P −→P, called
Transfer Operator, as

T(φ)(θ) = Fσ,ε(R
−1
ω (θ), φ(R−1

ω (θ))).

Where Rω and Fσ,ε are as in Equation (2.1). See Figure 2.1 for a more visual
definition.

Remark 2.2. Observe that the functional version of the system (2.1) in P is
the one defined by the Transfer Operator. Thus, inferred from Figure 2.1, iterates
of Fσ,ε correspond to iterating T at a functional level. Hence,

T(φ)(θ) = πx
(
Fσ,ε(R

−1
ω (θ), φ(R−1

ω (θ)))
)
,
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φ

T(φ)

R−1
ω (θ) θ

Fσ,ε

θ − ω

T

Figure 2.1. A sketch of the notion of the Transfer Operator.

where πx : S1 × R+ −→ R+ denotes the projection with respect to the second com-
ponent.

In view of the above Remark, the graph of a function φ : S1 −→ R is invariant
for the System (2.1) if and only if φ is a fixed point of T, that is,

Fσ,ε

(
R−1
ω (θ), φ

(
R−1
ω (θ)

))
= T(φ)(θ) = φ(θ).

The above expression is, precisely, the invariance equation and will be our main tool
to obtain a truncated wavelet expansion of φ. However, throughout the rest of this
thesis we will use a trivial rewrite of the equation that will ease our computations:

(2.3) Fσ,ε
(
θ, φ(θ)

)
= φ

(
Rω(θ)

)
.

Remark 2.3. The Transfer Operator is a differentiable operator provided that
Fσ,ε ∈ Cn+1(S1×R,R), where Cn+1(S1×R,R) is the space of continuous and n+1
times differentiable functions (see e.g. [dlLO99]).

2.1.2. Some examples of (possible) SNAs. In this subsection we will
present some examples of (alleged) Strange Non-chaotic attractors. The existence
of an SNA has been analytically proven for the first three examples. The fourth one
is still undecided, with numerical estimations suggesting contradictory information
[NK96, Har05].

All the systems studied add some restrictions to System (2.1). In particular,
there are two main simplifications that are almost universally used. They concern
simplifications on Fσ,ε from Equation (2.1):

• Multiplicative forcing: Fσ,ε := fσ(x) · gε(θ)
• Additive forcing: Fσ,ε := fσ(x) + gε(θ)

The former is the most studied starting with [GOPY84]. Some general analytical
results actually exist for the multiplicative forcing. Most remarkably by Keller
[Kel96] and by Alsedà and Misiurewicz [AM08, AM15]. Summarizing these two
results is the main goal of the next subsection.

The systems that we will introduce in this subsection fall in one of these two
categories. The first three correspond to systems with a multiplicative forcing,
while the last one has an additive forcing. In this thesis we will use the Keller and
the Alsedà-Misiurewicz systems to test the robustness of our method in order to
apply it to the Nishikawa-Kaneko system. In all cases, ω =

√
5−1
2 , i.e., the rotation

is given by the golden mean.
We are well aware that there exist more results regarding the existence of

SNAs. When it comes to analytic results, the results by Bjerklöv [Bje09] are
remarkable. He is able to prove the existence of SNAs for a general family with
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multiplicative forcing. Regarding numerical results, we would like to emphasize
the results By Heagy and Hammel in [HH94], which through very thorough semi-
analytical methods give mechanisms of creation of SNAs. However, for the sake of
brevity we have decided to focus only on the following systems.

2.1.2.1. The GOPY model [GOPY84]. What we call the GOPY model is the
first of two proven SNA published in the literature. In the paper the authors show
the existence of two Strange Nonchaotic attractors, one on the cylinder and another
one on a three dimensional space. We will focus on the former. The system is as
follows:

(2.4) Fσ : S1 × R −−−−−−−→ S1 × R
(θ, x) 7−→

(
Rω(θ), 2σ tanh(x) cos(2πθ)

)
.

In this case, Fσ = fσ(x)·g(θ), where fσ = 2σ tanh(x) and g(θ) = cos(2πθ). The sys-
tem is imagined as a Quasi-Periodically Forced Skew Product, its quasi-periodicity
stemming from it being a nonlinear oscillator driven by two incommensurate fre-
quencies.

This system has some properties that are very easy to check. First of all, since
f(0, θ) = 0, the circle x ≡ 0 is invariant. Moreover, the orbits are always bounded,
because |2σ tanh(x)| < 2σ and | cos(2πθ)| ≤ 1, hence Fσ(x, θ) < 2σ. Therefore,
irrespective of the initial condition, after one iterate the orbit of any point will fall
within the band x ∈ [−2σ, 2σ]. Finally, it is easy to see that the vertical Lyapunov
exponent for x ≡ 0 is exactly log

(
|σ|
)
. Hence, if σ > 1, x ≡ 0 is repelling.

The existence of the attractor follows precisely from these last two facts.
Its nonchaoticity is proven by seeing that the Lyapunov exponent on the at-

tractor is negative by doing some clever bounds on its value.
Finally, its strangeness is shown using a simple analysis of the system. It can be

seen that the attractor must be zero on a dense set of points whilst being different
from zero on another dense set. That is, since cos (2πθ) = 0 for θ = 1

4 and θ = 3
4 ,

f
(
· , 14
)
= 0 (same for f

(
· , 34
)
= 0). Therefore, since x ≡ 0 is invariant it follows

that Fσ,ε
(
· , Rkω

(
1
4

) )
= 0 for any k ∈ Z (same for θ = 1

4 ). Hence, one can see
that the attractor is equal to zero on a dense subset of S1. On the other hand,
it is easy to see that the attractor is different from zero in a dense set of S1, so
the strangeness follows. In Figure 2.2 one can see plots of the strange attractor for
different values of σ.

2.1.2.2. The Keller-GOPY model. What we call the Keller-GOPY model is
a particular example of the families of systems that Keller studies in his paper
[Kel96]:

(2.5) Fσ,ε : S1 × R −−−−−−−→ S1 × R
(θ, x) 7−→

(
Rω(θ), 2σ tanh(x) |ε+ cos(2πθ)|

)
.

In particular, the model studied is very similar to the GOPY model, but it forces
the cosine to be positive and the parameter ε guarantees that gε(θ) = 0 for some
θ if an only if ε = 0. In this way we ensure that what happened in the GOPY
model, where the fact that cos(2πθ) = 0 for θ = 1

4 and 3
4 implies strangeness, can

be controlled by the value of ε. Therefore, one would obtain an Strange attractor
provided ε = 0. In this case we say that the attractor is pinched. In [Kel96],
the author gives some general results for a whole class of quasi-periodically forced
skew products with multiplicative forcing. Mostly the conditions on these systems
is GOPY-like, that is, fσ must be C1, monotonous with fσ(0) = 0 and gε(θ) = 0
if and only if ε = 0. Some cases of the attractor for this system can be found in
Figure 2.3
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(a) σ = 1.25 (b) σ = 1.5

(c) σ = 2 (d) σ = 2.25

Figure 2.2. Plot of the attractor for the GOPY model for various
values of σ.

(a) ε = 0 (b) ε = 0.01

(c) ε = 0.1 (d) ε = 0.25

Figure 2.3. Plot of the attractor for the Keller-GOPY model for
σ = 2 and different values of ε. A simple visual inspection already
shows the complexity of the pinched case compared to the regular
case with ε > 0
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The proof of the existence of these SNAs is general and it is grounded in
functional analysis theory. Mostly the author shows that if one iterates the transfer
operator, one obtains a series of decreasing functions (on the fibres) and hence one
can prove the existence of an upper semi-continuous function as the limit of these
decreasing succession of functions.

The study of these systems marks a step up from what was previously done in
SNAs, because the proofs are generic and rely heavily in functional analysis. On the
other hand, previous results relied heavily on the properties of the system itself (the
GOPY case) or (sometimes inconclusive) numerical computations of some metrics
of the attractor (the Nishikawa-Kaneko case).

2.1.2.3. The Alsedà-Misiurewicz model [AM08]. Alsedà and Misiurewicz pre-
sented this model

(2.6) Fσ,ε : S1 × R −−−−−−−→ S1 × R
(θ, x) 7−→

(
Rω(θ), 4x(1− x)(ε+ σθ(1− θ))

)
,

as a way to extend the results from Keller [Kel96] to a more general setting. In
particular they sought to obtain similar results for the case when fσ is a unimodal
C1 map. The restrictions on the system being a multiplicative forcing and on gε
still remain. In particular the authors pay a particular attention to the system we
will study, becoming the leitmotiv of the whole paper. Various instances of the
attractor can be found in Figure 2.4. Note that for this system we also have a
pinching condition for ε = 0 which leads to the attractor being strange.

(a) ε = 0 (b) ε = 0.01

(c) ε = 0.1 (d) ε = 0.25

Figure 2.4. Plot of the attractor for the Alsedà Misiurewicz
model for σ = 3 and different values of ε. Again, a simple vi-
sual inspection already shows the complexity of the pinched case.
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2.1.2.4. The Nishikawa-Kaneko model, [NK96]. By the Nishikawa-Kaneko sys-
tem we will mean the following system:

(2.7) Fσ,ε : S1 × R −−−−−−−→ S1 × R
(θ, x) 7−→

(
Rω(θ), σx(1− x) + ε sin(2πθ)

)
.

This is the only system that we study that is additively forced and that does not
have analytic results proving or disproving its strangeness. The first instance of
this system was studied by Kaneko alone in [Kan84]. It was then followed by a
more in depth study of these kind of systems in [NK96].

The authors claim that these kind of systems may have four different be-
haviours. For some values of ε the system is nonchaotic and it has a smooth
attractor. Then, as ε increases, the attractor becomes what the authors call a pre-
fractal torus, which would correspond to a smooth function that starts to have a
complicated geometry (similar to what one would obtain by studying the truncated
expansion of a Weierstrass function). By further increasing ε, the attractor become
what the authors call a fractal torus, which would be classified as a nowhere dif-
ferentiable continuous function (something like a Weierstrass function), or what we
would call an SNA. Finally, there exists a critical value ε⋆ such that if ε > ε⋆, the
system is chaotic and has a chaotic attractor. In Figure 2.5 one can find the plots
of the attractor for σ = 3 and some values of ε, corresponding to the system studied
in [NK96].

(a) ε = 0.1 (b) ε = 0.125

(c) ε = 0.150 (d) ε = 0.1555

Figure 2.5. Plot of the attractor for the Nishikawa-Kaneko model
for σ = 3 and different values of ε. This are cases studied in
[NK96]. According to the authors Figure C corresponds to a pre-
fractal torus and Figure D to a fractal torus.

The arguments to justify the strangeness of the attractor in these systems is
completely numerical, and it is based entirely on computational approximations.
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The authors compute some metrics of the attractor, mainly its length and its num-
ber of extrema. These values are obtained using an increasingly fine mesh of points
on the cylinder and arrive to the conclusion that both the length and the num-
ber of extrema grow exponentially, so the attractor should be considered a fractal.
However, there are some very clear limitations to these methods, all of them ac-
knowledged by the authors themselves. Mostly, the mesh they use has just below
ten million points. In particular, it is shown that for some values of ε the length
seems to increase exponentially for coarser meshes but then it stabilizes for finer
ones. Hence, it could well be that for some even finer meshes the computed length
of the attractor stabilizes and becomes finite. Something completely analogous
happens with the number of extrema. They claim that they grow as the mesh gets
finer, but the mesh cannot be done arbitrarily fine, at least numerically.

2.1.3. Existing analytical results. Finally, after introducing some exam-
ples of systems that have been studied as containing an SNA, we will dedicate this
subsection to give a very brief survey of the main results that exist for Strange non-
chaotic attractors in the case of quasi-periodically forced skew products. Mainly
concerning Keller-GOPY and Alsedà-Misiurewicz type systems. However, we need
some conditions on fσ and gε:

• gε : S1 −→ [0,∞) continuous, hence bounded.
• fσ : [0,∞) −→ [0,∞) in C1, bounded and such that fσ(0) = 0.

With these restrictions the behaviour of system (2.1) is well understood for fσ either
strictly monotone [Kel96] or unimodal [AM08, AM15].

First of all, we need to check the existence of an attractor.

Remark 2.4. Given a system as in Equation 2.1 satisfying the restrictions
above, let us study the existence of invariant objects. Firstly, since fσ(0) = 0, it
follows that the circle x ≡ 0 is invariant. By contrast it is easy to see that all circles
x ≡ ε, ε > 0 are not. Furthermore, a natural question is the stability of x ≡ 0. To
this end, we will compute its vertical Lyapunov Exponent. Recall that the vertical
Lyapunov Exponent at (θ0, x0) is defined as

(2.8) λx0,θ0 := lim sup
k→∞

1

k
log

∥∥∥∥∥
(

1 0
∂xk
∂θ

∂xk
∂x

)(
0
1

)∥∥∥∥∥ = lim sup
k→∞

1

k
log

∣∣∣∣∂xk∂x
∣∣∣∣ ,

where

xk = Fσ,ε
(
Rk−1
ω (θ0), xk−1

)
= Fσ,ε

(
Rk−1
ω (θ0), Fσ,ε

(
Rk−2
ω (θ0), xk−2

))
= . . .

Hence, by the chain rule

(2.9)
∂xk
∂x

=

n−1∏
k=0

DxFσ,ε
(
Rkω(θ0), xk

)
.
(
See for example [Kel96]

)
The irrational rotation Rω ensures that the system is ergodic, so it is natural to
apply Birkhoff’s Ergodic Theorem.

Theorem 2.5 (Birkhoff’s Ergodic Theorem). Let T be a measure-preserving
transformation on a measure space (T,Σ, µ), and suppose f is a µ integrable func-
tion. Then if T is ergodic and µ is invariant,

lim
n→∞

1

n

n−1∑
k=0

f(T kx) =
1

µ(X)

∫
X

fdµ a.e.

In other words, the time average of the system is equal to the space average of the
function f .
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Therefore, by Birkhoff’s Ergodic Theorem we can rewrite the vertical Lyapunov
Exponent at x ≡ 0 as

λx=0(fσ, gε) =

∫
S1
log

∣∣∣∣∂Fσ,ε(θ, x)∂x

∣∣∣∣
x=0

∣∣∣∣ dθ = log(f ′σ(0)) +

∫
S1
log |gε(θ)| dθ.

Hence, if f ′σ(0) > 1, λx=0(fσ, gε) is positive. Therefore, x ≡ 0 is a repellor for
system (2.1). Moreover, since fσ and gε are bounded by construction, infinity is
also repelling. Thus, under these assumptions, the systems must have an attractor
between x ≡ 0 and infinity. That shall be our attractor

(
θ, φ(θ)

)
. Note that both

the Keller-GOPY model and the Alsedà-Misiurewicz models satisfy these condi-
tions. As we have already mentioned in the previous subsection,

(
θ, φ(θ)

)
can be

classified as a Strange Non-Chaotic Attractor for some values of ε and σ.

The previous remark formalizes what we already noted in Subsection 2.1.2,
that the strangeness stems from the fact that the circle x ≡ 0 is repelling in the
systems studied but for some values of ε a dense set of points of the attractor lay
within the repellor. Hence we have repelling points within an attracting set. To
describe this phenomenon, we say that the system is pinched if there exists θ0 such
that φ(θ0) = 0, i.e our attractor least a point on the circle x ≡ 0. Recall that
if a system is pinched, then φ

(
Rnω(θ0)

)
for n ∈ N, since x ≡ 0 is invariant under

rotation. Hence φ(θ) = 0 on a dense set of θ ∈ S1.
Finally, we can present the following result, which summarizes the main the-

orem by Keller in [Kel96]. In particular, the system we call Keller-GOPY falls
within the hypothesis of the theorem. Hence, this result will be used further down
the line to check the robustness of the method we propose of using regularity spaces
to measure strangeness.

Theorem 2.6 (Rephrasing of Theorem 1 in [Kel96]). Let Fσ,ε as in system
(2.1) such that Fσ,ε:

• Fσ,ε(θ, x) = fσ(x)gε(θ), with
• gε : S1 −→ [0,∞) continuous, hence bounded.
• fσ : [0,∞) −→ [0,∞) in C1, bounded, fσ(0) = 0 and monotone.

Then, there exists an upper semi-continuous map φ : S1 −→ [0,∞) whose graph
K = {(θ, φ(θ)) : θ ∈ S1} is invariant under the System (2.1) and contains an
attractor. Moreover,

(a) if f ′σ(0) > 1 and gε(θ0) = 0 for some θ0 then the set {θ : φ(θ) > 0} ⊂ K
has full Lebesgue measure whereas the set {θ : φ(θ) = 0} ⊂ K is residual.
Furthermore (θ, φ(θ)) is an SNA.

(b) if f ′σ(0) > 1 and gε > 0 then φ is positive and continuous. Furthermore if
gε ∈ C1 then so is φ,

(c) if f ′σ(0) ̸= 1 then |xn − φ(θn)| → 0 exponentially fast for almost every θ
and every x > 0.

Remark 2.7. We refer the reader to [Kel96] for a more comprehensive expla-
nations on the proof of such Theorem. However, such proof is strongly based on the
fact that fσ is monotone on the fibres. Thus, the natural question is, what happens
if fσ has a different behaviour. Following this thread, in [AM08], the authors con-
sider such function to be unimodal. Using similar ideas as the ones in [Kel96]
(but introducing several operators and techniques) it is shown that an upper-
semiconscious function invariant map φ : S1 −→ R which is strictly positive in a set
of full Lebesgue measure but φ = 0 on a dense residual set (see [AM08, AM15]).
In fact amalgamating the results from [AM08, AM15] one can write a version of
Theorem 2.6 by replacing the need that fσ is monotone by the requirement that fσ
is unimodal.
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2.2. Obtaining the Lyapunov Exponent

In Definition 2.1, we have defined nonchaoticity to mean a non-positive Lya-
punov exponent on the attractor. Moreover, as we will see in Chapter 4, it will
be crucial for us to obtain an evaluation of φ(θ) on a mesh of points, in particu-
lar dyadic points. To this end, we need a reliable way to compute the Lyapunov
exponent with some control over the error. Theorem 2.6(c) guarantees that this
exponent is computable and negative. For other cases, we rely on the particularities
of the system we study.

First of all, from Equation 2.8 we can get the Lyapunov exponent along the
invariant curve φ,

lim
n→∞

1

n

n−1∑
k=0

log(|DxFσ,ε(φ(θk)), θk)|).

Using Equation 2.9 and defining

log

(
∂xk
∂x

)
:= log(|DxFσ,ε(φ(θk)), θk)|),

we obtain the the n-th approximation of the Lyapunov by

λn)φ :=
1

n

n−1∑
k=0

log

(
∂xk
∂x

)
.

Thus, one can define the one step-increment of λn)φ by △n)φ := λ
n)
φ − λn−1)

φ . Since
△n)φ must tend to zero as n tends to infinity we can rephrase the last expression as
follows

λn)φ = λn−1)
φ +△n)φ .

In addition, observe that

(n− 1)λn−1)
φ =

n−2∑
k=0

log

(
∂xk
∂x

)
.

Thus, we have that

λn)φ =

(n− 1)λ
n−1)
φ + log

(
∂xn−1

∂x

)
n

= λn−1)
φ +

log

(
∂xn−1

∂x

)
− λn−1)

φ

n
.

We can rewrite the above equation using △n)φ

(2.10) △n)φ :=

log

(
∂xn−1

∂x

)
− λn−1)

φ

n
.

Hence we can put together the following algorithm to compute the vertical Lya-
punov exponent of a hyperbolic attractor.
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Algorithm 2.8. procedure Lyapunov(Fσ,ε,DxFσ,ε, x0, TRANSIENT, TOL)
x← x0
θ ← Random[0, 1] ▷ we set θ0 to be random
for i← 1, TRANSIENT do ▷ We use a large transient to ensure convergence(

θ, x
)
= Fσ,ε

(
θ, x
)

end for
△φ = log

(∣∣DxFσ,ε(θ, x)
∣∣) ▷ Initialize △φ

λφ ← 0 ▷ Initialize λφ
for n← 2, MAX_ITER do ▷ Predetermined maximum number of iterates

λφ ← λφ△φ

△φ =
log

(∣∣DxFσ,ε(θ,x)
∣∣)−λφ

n

if
∣∣△φ∣∣ < TOL then ▷ Check if Equation (2.10) holds
λφ ← λφ +△φ
Return λφ

end if
end for
Return Lack of convergence

end procedure





CHAPTER 3

Using Daubechies Wavelets with more than 2
vanishing moments

This chapter contains the results we may need regarding wavelet theory. It is
not a comprehensive survey on the existing theory, which is too vast and profound,
but a summary of the main results that allow us to understand and obtain the
results from Chapters 4 and 5.

First and foremost we will give a very short and schematic introduction of the
construction of orthonormal families of wavelets. Presenting important concepts
such as the multy resolution analysis construction, the scaling function, the scaling
filter and the mother wavelet. Then, we will focus on Daubechies wavelets, seeing
what their main properties are and how these properties play a crucial role in their
construction.

Following the construction of the Daubechies wavelet family, we will proceed to
understand how we modify wavelet basis on R to get basis for functions on S1. This
gives rise to an orthonormal basis for L 1(S1) that is not a wavelet basis per se, in
the sense that it is not generated by translations and dilations of a mother function.
However, most of the important properties of wavelet basis are mantained.

Finally, we will present the main result regarding (Besov) regularity and the
wavelet coefficients of a function. We are interested in these theorems because, as
we shall see, we will use the regularity as an (imperfect) measure of strangeness.

Most results cited can be found in [HW96, Mal98, Tri10, Tri06, Dau92].

3.1. A survey on wavelets

As stated before, our main goal is to approximate functions on the cylinder
φ : S1 → R by means of a Daubechies wavelet basis. To this end, we shall start by
shorty surveying the orthonormal wavelet theory on R and how it can be adapted
to work on S1.

3.1.1. Wavelets as an orthonormal basis for L 2. In this section we will
present some basic wavelet theory. That is, we will show how to obtain a family of
functions

{
ψj,n

}
j,n∈Z ∈ L 2(R) such that they are a basis of L 2(R), and such that

(a) ψj,n are translations and/or dylations of a mother function, called the mother
wavelet, ψ:

ψj,n = 2−j/2ψ

(
x− 2jn

2j

)
, and

(b) they have the following orthogonality condition∫
R
ψj,n(x)ψk,m(x)dx = δj,kδn,m,

where δ · , · denotes the Kroeneker delta.

39
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Hence, since we have an orthogonal basis, any function f ∈ L 2(R) can be written
as a linear combination of ψj,n’s. That is,

(3.1) f(x) =
∑
j∈Z

∑
n∈Z

dj,nψj,n(x), for dj,n ∈ R.

In order to obtain such bases, we shall present the Multiresolution Analysis con-
struction, which is the most general way of obtaining orthonormal families of
wavelets [Dau92].

Definition 3.1. A sequence of closed subspaces {Vj}j∈Z of L 2(R) is called a
Multiresolution Analysis (or simply a MRA) if it satisfies the following six proper-
ties:

(a) {0} ⊂ · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L 2(R).
(b) {0} =

⋂
j∈Z Vj .

(c) clos
(⋃

j∈Z Vj
)
= L 2(R).

(d) There exists a function ϕ whose integer translations, ϕ(x−n), n ∈ Z, form
an orthonormal basis of V0. Such function is called the scaling function.

(e) For each j ∈ Z it follows that f(x) ∈ Vj if and only if the dyadic transla-
tions verify that f(x− 2jn) ∈ Vj for each n ∈ Z .

(f) For each j ∈ Z it follows that f(x) ∈ Vj if and only if the dilation verifies
that f(x/2) ∈ Vj+1.

Remark 3.2. Let pk : L 2(R)→ Vk be the projection from L 2(R) to Vk. Then

lim
k→∞

pkf = f

In fact, one should think of each Vk as a sequence of spaces on which finer approx-
imations of f might be achieved.

Remark 3.3. Once an MRA is fixed, Vj has an orthonormal basis {ϕj,n}n∈Z,
for every j, where

ϕj,n(x) = 2−j/2ϕ

(
x− 2jn

2j

)
.

Now, define the subspaceWj as the orthogonal complement of Vj on Vj−1, that
is,

(3.2) Vj−1 =Wj ⊕ Vj .
In this sense, one can think of Wj as a sequence of increasignly coarser spaces in
which to approximate f . Therefore, by the inclusion of the spaces Vj we have

(3.3) L 2(R) = clos

⊕
j∈Z
Wj

 = clos

V0 ⊕ ∞⊕
j=0

W−j

 .

Definition 3.4. Let {Vj}j∈Z be a Multiresolution Analysis and let ϕ(x) be its
scaling function. Define

(3.4) h[n] :=

〈
1√
2
ϕ
(x
2

)
, ϕ(x− n)

〉
, for n ∈ Z,

where ⟨ · , ·⟩ denotes the usual L 2(R) scalar product. The sequence h[n] is called
the scaling filter (or the low pass filter) of the Multiresolution Analysis. We define
the support of h, denoted by supp(h), as the minimum subset I of Z such that
I = {ℓ, ℓ+ 1, . . . , ℓ′} is a set of consecutive integers and

h[n] = 0 for every n ∈ Z\I.
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Now we can define the so-called mother wavelet, which by dylations and trans-
lations will generate a basis of L 2(R).

Definition 3.5. The mother wavelet ψ ∈ W0 is defined to be the function
whose Fourier transform is

(3.5) ψ̂(ξ) =
1√
2
e−iξĥ∗(ξ + π)ϕ̂(ξ)

where ĥ∗(ξ) is the complex conjugate of

(3.6) ĥ(ξ) =
∑
n∈Z

h[n]e−inξ,

with ĥ(0) =
√
2.

The following theorem (see [Mal98, Theorem 7.3]) ensures that we can contruct
a wavelet basis from the mother wavelet.

Theorem 3.6 (Mallat, Meyer). The mother wavelet given by Equation (3.5)
verifies that, for each integer j, the family {ψj,n}n∈Z is an orthonormal basis of
Wj, where:

(3.7) ψj,n(x) = 2−j/2ψ

(
x− 2jn

2j

)
.

As a consequence, the family {ψj,n}(j,n)∈Z×Z is an orthonormal basis of L 2(R).

It follows that one needs ϕ and h to determine a wavelet basis. Taking into
account (3.3) and the theorem above, every map f ∈ L 2(R) can be written as

f(x) =
∑
j∈Z

∑
n∈Z
⟨f, ψj,n⟩ψj,n(x)

=
∑
n∈Z
⟨f, ϕ0,n⟩ϕ0,n(x) +

∞∑
j=0

∑
n∈Z
⟨f, ψ−j,n⟩ψ−j,n(x).

Of course depending on the choice of the scaling function, the mother wavelet ψ can
be dramatically different. There are several wavelets families, such as Daubechies,
Symlets, Morlet, Coiflets, or Shannon (see e.g. [Mal98]). Each family has its own
properties that make them suited for particular applications. Through this paper,
we will focus in Daubechies wavelets. This choice will be clear later on the thesis, but
it mainly rests on two facts: they are the best suited to work on compact supports
(see Lemma 3.24, for example) and they can be used to compute the regularity of
functions, as it can be seen in Theorem 3.35.

3.1.2. Constructing a wavelet basis from a scaling filter. In practice,
however, we will rarely construct a whole MRA in order to obtain a wavelet. We
would like to be able to construct a wavelet basis just by choosing suitable h[n].
To this end, we present the following result from Mallat and Meyer:

Theorem 3.7. (Mallat, Meyer, Theorem 7.2 in [Mal09]) Let ϕ ∈ L2(R) be
an integrable scalling function. The fourier series of h[n] = ⟨2−1/2ϕ(t/2), ϕ(t− n)⟩
satisfies for all ω ∈ R

(3.8) |ĥ(ω)|2 + |ĥ(ω + π)|2 = 2

and

(3.9) ĥ(0) =
√
2.
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Conversely, if ĥ(ω) is 2π-periodic and continuously differentiable in a neighbourhood
of ω = 0, if it satisfies the above two conditions, and if

inf
ω∈[−π/2,π/2]

|ĥ(ω)| > 0

then

ϕ̂(ω) =

∞∏
p=1

ĥ(2−pω)√
2

is the Fourier transform of a scaling funcion ϕ ∈ L2(R).

Remark 3.8. Some properties regarding how h, ϕ and ψ relate to one another
are derived from Theorem 3.7. In particular:
(a) Relating h and ϕ with ψ we get

(3.10)
1

2
ψ
(x
2

)
=

∞∑
−∞

(−1)1−nh[1− n]ψ(t− n)

Note that in the literature (−1)1−nh[1− n] is usually denoted by g[n] and can
also be constructed as

g[n] =
〈
ψ
(x
2

)
, ϕ(t− n)

〉
(b) We have

(3.11)
∑
n∈Z

h[2n] =

√
2

2
=
∑
n∈Z

h[2n+ 1]

Theorem 3.7 gives us the necessary conditions on h to obtain a scaling function
ϕ that generates a MRA. From this ϕ we obtain the mother wavelet ψ by Definition
3.1.1. Hence, a suitable h become a backdoor to obtain mother wavelets without
the need to construct entire MRAs. Following this line of reasoning, we might be
interested in how properties of ψ and h may relate. One such property is compact
support. The definition of support for wavelets is exactly what one would expect.

Definition 3.9. Let ψ(x) be a wavelet derived from a Multiresolution Analysis
{Vj}j∈Z. We define the support of ψ(x), and we will denote it by supp(ψ), as the
minimum interval of the real line such that ψ(x) = 0 for every x which does not
belong to the support of ψ(x). The size of supp(ψ) is defined as the length of such
interval.

Now we have a theorem that tells us how the support of ψ, ϕ and h relate to
one another.

Theorem 3.10 (Compact Support, Theorem 7.5, [Mal09]). The scaling func-
tion ϕ has compact support if and only if h has compact support. Moreover their
supports are equal. If the support of h and ϕ is [N1, N2], then the support of ψ is
exactly [(N1 −N2 + 1)/2, (N2 −N1 + 1)/2], hence compact.

In the following section we will give an overview of the construction of Daubechies
wavelets from a carefully chosen h.

3.2. Daubechies Wavelets

The main properties of Daubechies wavelets Daubechies wavelets have the fol-
lowing core properties:

(a) They are an orthonormal basis of L 2(R).
(b) All the coefficients of h are real.
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(c) They have p vanishing moments.
(d) They have minimal compact support, in the sense of Theorem 3.13.

In particular, the interest in compact support will be clear in Chapters 4, and
specially 5. This stems from the fact that the smaller the support the more efficient
the computations become and the less momory we will require to compute the
wavelet expansion of the attractor.

The properties (a) and (b) are pretty straightforward, property (d) has been
introduced in the previous subsection. Now we shall introduce the third one.

Definition 3.11. Let ψ(x) be a wavelet from a Multiresolution Analysis {Vj}j∈Z.
We say that ψ(x) has p–Vanishing Moments if the integer p is the greatest number
such that ∫

R
xkψ(x) dx = 0 for 0 ≤ k < p.

Remark 3.12. Notice that Definition 3.11 means that ψ(x) is orthogonal to
any polynomial of degree p− 1.

Now, we can see how vanishing moments and compact support relate to one
another.

Theorem 3.13 (Daubechies, Theorem 7.7, [Mal09]). Let ψ be an orthonormal
mother wavelet with p-vanishing moments, then h has support size at least 2p− 1.

Precisely, this theorem tells us what it is meant for minimal compact support.
Fixing a number of vanishing moments forces a lower bound for the support of the
wavelet. In particular, Daubechies wavelets are obtained when size of the support
is made to be equal to 2p− 1. The process by which these wavelets are obtained is
constructive and a bit involved, hence a more detailed contruction of Daubechies
wavelets can be found in the following subsection.

3.2.1. Construction the Daubechies Wavelet Family. In this subsection
we want to give a more detailed construction of the Daubechies family of wavelets.
We will present a mix between Chapter 7 in [Mal09], and Chapter 6 in [Dau92],
taking and mixing results from both. Recall that the core properties of Daubechies
wavelets is that they are an orthonormal basis of L 2(R), all the coefficients h[n] are
real, they have minimal compact support, and p–vanishing moments. We believe it
is interesting to see the whole construction of the Daubechies Wavelet Family, since
it clearly shows that its core properties forces it to stray away from computational
efficiency. Naively one could just decide on 2p real coefficients (from 0 to 2p − 1)
and plug them in one after the other in h and set all the other coefficients to zero.
However, Theorem 3.7 tells us that not all such sequences may work. We need to
find a way to generate the coefficients such that the requirements for Daubechies
wavelets are met whilst complying with Theorem 3.7.

First though, we will introduce a technical Theorem, which presents an easier
way to compute the number of vanishing moments of a mother wavelet other than
computing integrals against monic polynomials.

Theorem 3.14 (Theorem 7.4, [Mal09]). Let ψ and ϕ be a wavelet and a scaling
function that generate an orthogonal basis. Suppose that |ψ(t)| = O

(
(1+t2)−p/2−1

)
and |ϕ(t)| = O

(
(1 + t2)−p/2−1

)
. Then the following are equivalent:

(i.) The wavelet ψ has p vanishing moments.
(ii.) ψ̂(ω) and its first p− 1 derivatives are zero at ω = 0.
(iii.) ĥ(ω) and its first p− 1 derivatives are zero at ω = π.
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Remark 3.15. Note that the O conditions are trivially met for compactly
supported wavelets.

Now we can start our overview on the construction of Daubechies wavelets.
Firstly, we want the filter h to have real coefficients, hence ĥ will be a trigonometric
polynomial

(3.12) ĥ(ω) =

N−1∑
n=0

h[n]e−inω.

If we want ψ to have p vanishing moments, Theorem 3.14 tells us that ĥ has a
zero of order p at ω = π. Since we want to minimize number of coefficients of the
triogonometric polynomial (i.e minimizing N in equation (3.12)) we will factor out

(1 + e−iω)p

from ĥ(ω), which is the minimal polynomial with p zeroes at ω = π. Hence we can
write

(3.13) ĥ(ω) =
√
2

(
1 + e−iω

2

)p
χ(e−iω)

Now our objective is to find a suitable polynomial χ(e−iω) of minimum degree m
which will give us a valid h. In particular, by Theorem 3.7 we require

(3.14) |ĥ(ω)|2 + |ĥ(ω + π)|2 = 2.

Hence, h has N = m + p + 1 nonzero coefficients. Theorem 3.17 shows us that m
is at least p− 1. However, let us recall first the Bezout Theorem for polynomials.

Theorem 3.16 (Bezout, Theorem 6.1.1[Dau92]). Let Q1(y) and Q2(y) be two
polynomials with no common zeroes of degrees n1 and n2 respectively. Then, there
exist two unique polyomials P1(y) and P2(y) of degrees n2− 1 and n1− 1 such that

P1(y)Q1(y) + P2(y)Q2(y) = 1

We will need the theorem above for the prove of the following theorem.

Theorem 3.17 (Daubechies, Theorem 7.7, [Mal09]). A low pass filter h such
that ĥ(ω) has p zeroes at ω = π has at least 2p non-zero coefficients.

Proof. The proof is constructive, and it will give us h[n] for a given p. Since
h[n] is real, |ĥ(ω)|2 is an even function. Hence, it can be written as a polynomial
in cos(ω). Therefore, in the notation of Equation (3.13), |χ(e−iω)|2 is a polynomial
in cos(ω) as well. Since

sin2
(ω
2

)
=

1− cos(ω)

2
we can rewrite |χ|2 as a polynomial P (sin2(ω/2)), giving us

|ĥ(ω)|2 = 2 cos
(ω
2

)2p
P
(
sin2

ω

2

)
Setting y = sin2 (ω/2) we can rewrite Equation (3.14) as

(3.15) (1− y)pP (y) + ypP (1− y) = 1.

Thus, minimizing the number of non-zero terms of ĥ(ω) corresponds to finding a so-
lution to P (y) of minimal degree. This solution can be obtained with Theorem 3.16,
since there exist two unique polynomials P1 and P2 of degree p− 1 such that

(1− y)pP1(y) + ypP2(y) = 1

Moreover, if we subtitute 1− y for y we obtain

ypP1(1− y) + (1− y)pP2(1− y) = 1.
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By uniqueness of P1 and P2, we get P2(y) = P1(1−y). Hence, it follows that P1(y)
is a solution of Equation (3.15). In this case, we can obtain an explicit form for P1,
since

P1(y) =(1− y)−p[1− ypP1(1− y)]

=

p−1∑
k=0

(
p+ k − 1

k

)
yk +O(yp)

were this follows from a Taylor expansion of the first p coefficients for (1 − y)−p.
Since we know that the degree of P1 is p− 1, we obtain that

P1(y) =

p−1∑
k=0

(
p+ k − 1

k

)
yk.

Hence, by setting P (y) = P1(y) we obtain an explicit solution to Equation (3.15).
This is the unique with lowest degree, but by no means the unique one. For any
other higher degree solution P̃ , we have

(3.16) (1− y)p[P̃ (y)− P (y)] + yp[P̃ (1− y)− P (1− y)] = 0.

Hence P̃ − P is divisible by yp,

P̃ (y)− P (y) = ypP̃ (y).

Moreover,
P̃ (y) + P̃ (1− y) = 0,

in other words, P̃ is antisimetric with respect to 1
2 . In any case, since we are

interested in minimizing the number of coefficients, we will stick to the polynomial
with minimal degree, P (y).

However, we are interested in obtaining information about ĥ(ω) and so far we
have been working with |ĥ(ω)|2, hence we need to find a the polynomial χ from
Equation (3.13) such that |χ(e−iω)|2 = P (sin2(ω/2)), something like a square root.
Moreover, another requirement is that the coefficients of χ should be real. So χ
should be of the form

(3.17) χ(e−iω) =
m∑
k=0

rke
−ikω = r0

m∏
k=0

(1− ake−iω)

where ak are the roots of χ. Note, moreover, that since the coefficients of χ are
real, the conjugate of χ(e−iω) is simply χ(eiω). Hence,

|χ(e−iω)|2 = χ(e−iω)χ(eiω) = P (sin2(ω/2)) = P

(
2− eiω − e−iω

4

)
:= Q(e−iω)

To solve this factorization it is helpful to extend the polynomials to C by setting
z := e−iω. Hence,

Q(z) = χ(z)χ(z−1) = r20

m∏
k=0

(1− akz)(1− akz−1) =

m∏
k=0

(
1 + a2k − ak(z + z−1)

)
which is a polynomial in z + z−1. Putting all of this together we know that if ck
is a root of Q, then so it is its conjugate c̄k and 1

ck
. This automatically implies

that 1/c̄k is also a root. Hence, to build R we only need to be cautious with our
root-picking. For each pair (ck, 1/ck) we might take the root ak of R to be the one
of the two that satisfies |ak| ≤ 1 in addition to pick āk so that the coefficients are
real. This procedure gives us a polynomial of minimum degree p− 1. Moreover, we
can take r20 = Q(0) = P (1/2) = 2p−1. Therefore, our polynomial ĥ(ω) has degree
p + p − 1 = 2p − 1, hence 2p different coefficients. Since by Equation (3.6) we
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Figure 3.1. Daubechies mother wavelet with 10 vanishing mo-
ments.

have that the coefficients of ĥ correspond to the elements of h, we have constructed
h such that it satisfies Theorem 3.7, has real coefficients, and has support to be
exactly [0,2p-1], which is the Daubechies Filter. □

Remark 3.18. By the construction above and Theorem 3.10, we have that the
Daubechies mother wavelet has support exactly supp(ψ) = [−p + 1, p]. Moreover,
any ψj,n will have support

supp(ψ) = [2j(1− p+ n), 2j(p+ n)].

This is important because when we will define the periodized wavelets in Subsec-
tion 3.3 we will see that the fact that the size of the support decreases as j becomes
negative will have a tremendous importance.

It is crucial to remark again that Daubechies wavelets with p > 1 vanishing
moments do not have a closed expression. As it has been seen in their construc-
tion, the only goal is obtaining wavelets that satisfy certain conditions regarding
compactness and their vanishing moments. As we will see, this will pose a trade-
off because the number of vanishing moments play an important role when using
wavelets as basis of regularity spaces (see Section 3.4). However, as we shall see in
Chapter 5, the more vanishing moments a wavelet has, the harder it becomes to
evaluate it at a given point. Hence, we feel that a good compromise between van-
ishing moments and realistic computational requirements are Daubechies wavelets
with 10 vanishing moments (see Figure 3.1).

Until now, we have been presenting results for wavelets defined on R. However,
we are interested in L 2 functions defined on S1. In the following subsection, we
will translate the R-language of ψ(x), to the S1-language of ψPER(θ).
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3.3. Wavelets on the unit circle

Since we are interested in quasi-periodically forced skew products, our natural
scenario will be to study functions φ : S1 → R, where S1 = R/Z. Hence, we need
to adapt the Daubechies wavelets family to obtain a good orthonormal basis for
L 2(S1). It turns out that only a slight adaptation on the family defined on R is
enough for it to work on S1. We call this modification the perioditization of the
wavelet family.

In Section 4.5 from [HW96] wavelets are constructed to be an orthonormal
basis of L 2(S1) using the “periodization” given by

(3.18) ψPER

j,n (θ) =
∑
l∈Z

ψj,n(θ + l) = 2−j/2
∑
l∈Z

ψ

(
(θ + l)− 2jn

2j

)
.

The following theorem shows the importance of these periodized wavelets.

Theorem 3.19 (Theorem 5.9, [HW96]). Let ψ(x) be the mother wavelet of an
orthonormal wavelet basis from a R-MRA. Then the system given by

{1, ψPER

−j,n with j ≥ 0 and n = 0, 1, . . . , 2j − 1}

is an orthonormal basis of L 2(S1).

Remark 3.20. Note that in this case, for a fixed j we no longer need to have
infinitely many values of n to complete the basis. Instead, for each j-level we have
exactly 2j elements of the basis, namely ψPER

−j,0, ψ
PER
−j,1, . . . , ψ

PER

−j,2j−1. Hence, we can
define

VPER

0 := ⟨⟨1⟩⟩ and WPER

−j := ⟨⟨ψPER
−j,0, ψ

PER
−j,1, . . . , ψ

PER

−j,2j−1⟩⟩,
where ⟨⟨f1, f2, . . . , fn⟩⟩ denotes the space generated by f1, f2, . . . , fn. By Theo-
rem 3.19 it follows that the expression on S1 equivalent to equation (3.3) becomes

(3.19) f = a0 +

∞∑
j=0

2j−1∑
n=0

〈
f, ψPER

−j,n
〉
ψPER

−j,n ∈ V0 ⊕
∞⊕
j=0

WPER

−j .

And if now we are interested in obtaining a truncated expression for (3.19) we only
need to choose a suitable ν and hence we have

(3.20) f ≈ a0 +
ν∑
j=0

2j−1∑
n=0

〈
f, ψPER

−j,n
〉
ψPER

−j,n.

This means that to truncate a wavelet expansion, we can simply choose our cut for
a certain maximum j, which we will call ν, and automatically our expansion will
have 2ν+1 elements.

Remark 3.21. Note that even if we are using the wavelet notation and refer
to them as periodized wavelets,

{
ψPER
j,n

}
aren’t in fact a wavelet basis per se. As we

have seen, they are a basis of L 2(S1), but this basis is not generated from a single
mother wavelet. Note that if we were consider that ψPER is a sort of periodized
mother wavelet, we would obtain

2−j/2ψPER

(
x− 2jn

2j

)
= 2−j/2

∑
ℓ∈Z

ψ

(
x− 2jn

2j
+ l

)
= 2−j/2

∑
ℓ∈Z

ψ
( x
2j

+ l − n
)
̸= ψPER

j,n (x)

In fact, in this case the 1-periodicity of 2−j/2ψPER

(
x−2jn

2j

)
is not guaranteed.
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The following proposition shows us the similarities between ψPER
−j,n and ψPER

−j,m.
That is, as in the case of R-wavelets, n corresponds to a simple translation, even
though in this case it is of size n

2j . Moreover, one needs to keep in mind that
these translations are mod 1. For the sake of simplicity we have introduced the
following notation:

mod
(
n+ k, 2j

)
:= n+ k mod 2j .

Proposition 3.22. Let ψ be an R-Daubechies wavelet with p ≥ 1 vanishing
moments. Then, for every θ ∈

[
0, 1) and any α ∈ [0, 1), j ∈ {1, . . . , ν}, and

n ∈ {0, 1, . . . , 2j − 1},

ψPER

−j,n
(
Rα(θ)

)
= ψPER

−j,mod
(
n+k,2j

)(Rα(θ + k

2
j

))
for every k = 1, 2, . . . , 2j − 1.

Proof. We have mod
(
n + k, 2j

)
= n + k − r · 2j where r =

⌊
n+k
2j

⌋
∈ {0, 1}.

Then, from Equation (3.18) it follows that,

ψPER

−j,mod
(
n+k,2j

)(Rα(θ + k

2
j

))
= ψPER

−j,n+k−r·2j
(
Rα

(
θ + k

2
j

))
=

2j/2
∑
l∈Z

ψ

(
(θ + k · 2−j + α+ l)− 2−j(n+ k − r · 2j)

2−j

)
=

2j/2
∑
l∈Z

ψ

(
(θ + r + α+ l)− 2−jn

2−j

)
=

2j/2
∑
l∈Z

ψ

(
(θ + α+ l)− 2−jn

2−j

)
= ψPER

−j,n
(
Rα(θ)

)
.

□

Remark 3.23. Note that in the above proposition α might have any value in
[0, 1), in particular it can be 0 or it can be an irrational rotation given by ω. This
proposition will be crucial in what follows, since it indicates that fixing j ∈ N, the
values of ψPER

−j,n on S1 are the same for all n, just shifted around in intervals of length
1
2j . Figure 3.2 shows this behaviour.

Finally, since we are interested mostly in compactly supported wavelets, it
would be expected that the infinite sum over l in Equation (3.18) should be finite.
Hence, from Definition 3.9 Equation (3.18) we get the following proposition.

Lemma 3.24. Let ψ(x) be a mother wavelet for an orthonormal wavelet family
from a R-MRA with compact support. Let supp(ψ) = [a, b]. For given j and n let
us define

lmin(θ) =
⌈
2j(a+ n)− θ

⌉
lmax(θ) =

⌊
2j(b+ n)− θ

⌋
where θ ∈ [0, 1) (i.e. θ ∈ S1). Then,

ψPER

j,n (θ) =

lmax(θ)∑
l=lmin(θ)

ψj,n(θ + l).

Proof. Given θ ∈ [0, 1), from equation (3.18) we have

ψPER

j,n (θ) =
∑
l∈Z

ψj,n(θ + l).

Since supp(ψ) = [a, b] from Equation 3.7 it follows that supp
(
ψj,n

)
=
[
2j(a +

n), 2j(b+n)
]
. Hence, in the sum above whenever θ+l < 2j(a+n) or θ+l > 2j(b+n)

ψ−j,n(θ + l) = 0. Since l ∈ Z, the result follows. □
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Figure 3.2. Plot of the periodized Daubechies wavelets with 10
vanishing moments corresponding to j = −2. In red ψPER

−2,0, in blue
ψPER
−2,0, in orange ψPER

−2,0 and in green ψPER
−2,0. Notice the fact that all

of them are just a shift mod 1 of ψPER
−2,0 of length n

4 .

3.4. Wavelets as a (flawed) way to measure strangeness

In this section we will see how one can use the wavelet basis as a way to measure
the strangeness of an attractor, seeing also the limitations of these techniques.

The strangeness will be measured by computing and estimate of the regularity
of functions, in particular the regularity in Besov spaces. This has probably been
one of the most studied topic in analysis in the 20th century, and even whole series
of books have been written about this topic [Tri83, Tri92, Tri06]. The theory is
way more complex and profound than anything we are going to use, but nevertheless
they are a useful tool, though flawed, for our purposes.

In general, smoothness (or regularity) is measured through the inclusion to
some functional space. The classic example is the chain

(3.21) C∞(R) ⊂ · · · ⊂ Cm(R) ⊂ · · · ⊂ C2(R) ⊂ C1(R) ⊂ C0(R)
However, this regularity chain is not complete by any means. For example between
C1 and C0 one can find the Lipschitz continuous functions, which clearly deserve
a space by themselves. Another example of a class of functions that occupy this
space in particular are the absolutely continuous functions. Therefore, over the
20th century there has been an effort to try and generalize the notion of regularity
of functions through big families of regularity spaces, not necessarily equivalent to
one another but that give structured classifications of functions. One such families
are the Besov spaces Bs

p,q.

3.4.1. Basic notions. In this subsection we will present a variety of normed
functional spaces that will lead to the definition of Bs

p,q for s > 0, 0 < p <∞ and
0 < q ≤ ∞. Finally, we will explore some properties of these spaces that will justify
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our interest for Bs
∞,∞. All the results stem from [Tri83]. To simplify the notation,

assume that all of these spaces are defined on R, i.e., are of dimension one. Let us
start with the simplest of spaces and build up from there.

(i) Starting from the basics, we need to consider Cm(R), which we will endow
with the following norm

(3.22) ∥f∥Cm =
∑
k≤m

∥∥∥f (k)(x)∥∥∥
L∞

,

where f (n) denotes the nth derivative of f . Then,

Cm(R) :=
{
f ∈ C0 : ∥f∥Cm is well defined and finite

}
.

(ii) The classic generalization of the Lipschitz spaces, the Hölder spaces, usually
denoted by Cs(R) with s > 0, s /∈ Z. They can be understood as filling the
gaps in the chain from equation (3.21). However, Cs(R) is not quite general
enough, since they are not well defined when s ∈ Z. For these spaces, we
define the norm

(3.23) ∥f∥Cs = ∥f∥C⌊s⌋ + sup
x̸=y

∣∣f (⌊s⌋)(x)− f (⌊s⌋)(y)∣∣
|x− y|{{s}}

,

where ⌊s⌋ denotes the integer part of s and {{s}} denotes its fractional part.
Note that it roughly corresponds to checking for the fractional Lipschitz con-
dition on a chosen derivative. Hence,

Cs(R) :=
{
f ∈ C⌊s⌋ : ∥f∥Cs is well defined and finite

}
(iii) A closely related family of spaces are the Zygmund spaces C s (sometimes

called Hölder-Zygmund spaces). These spaces were devised to be able to use
a single family of spaces irrespective of the fact that s is or is not an integer.
This spaces use the second differences ∆2

hf
2 = f(x+ 2h)− 2f(x+ h) + f(x)

instead of the simple difference. Moreover, the decomposition of s into an
integer and a fractional part is done slightly different:

s = [s] + {{s}}+

were [s] ∈ Z and 0 < {{s}}+≤ 1 (instead of 0 ≤ {{s}}< 1). In particular one
can write [s] = −⌊1− s⌋. Now we have all the ingredients to define the norm
of the Zygmund spaces:

(3.24) ∥f∥C s = ∥f∥C[s] + sup
h ̸=0

∆2
hf

([s])

h{{s}}
+ .

As before, the space is defined as the set of functions with finite norm.

C s(R) :=
{
f ∈ C[s] : ∥f∥C s is well defined and finite

}
(iv) The Sobolev spaces Wm

p (R) come into play when we are we are mostly inter-
ested in the norm of the (distributional) derivatives of f :

(3.25) ∥f∥Wm
p

=
∑
k≤m

∥∥∥f (k)∥∥∥
L p

.

Hence,

Wm
p (R) :=

{
f ∈ L p : ∥f∥Wm

p
is well defined and finite

}
.
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(v) Finally we can introduce the Besov spaces Bs
p,q(R) for 0 < p <∞, 0 < q ≤ ∞

and s > 0, with norm

(3.26) ∥f∥Bs
p,q

= ∥f∥
W

[s]
p

+

(∫
R
|h|−q{{s}}

+
∥∥∥∆2

hf
([s])
∥∥∥q

L p

dh

|h|

) 1
q

.

If q = ∞ we change the integral and the q exponents by the maximum over
R. Therefore, we can define

Bs
p,q(R) :=

{
f ∈W [s]

p (R) : ∥f∥Bs
p,q

is well defined and finite
}
.

The derivative in these spaces is in the distributional sense.

Remark 3.25. Note that for all the spaces above we have a parameter (either
m for (i) and (iv) or s for (ii), (iii) and (v)) that computes how regular a function
in this space is. Hence, they are examples of regularity spaces because through
this parameters one can construct spectra on which to measure regularities. In
particular one can talk that a function f has Hölder-Zygmund regularity s if f ∈ C s,
or p, q-Besov regularity s if f ∈ Bs

p,q.

Remark 3.26. Note that the definitions of all the spaces above can be easily
changed to be defined on S1 instead of R. Since the regularity will be measured
through the inclusion to Besov spaces, we might want to choose p and q so that
our measurements are as refined as possible. In particular, since S1 is compact, we
have a chain of inclusions in the L p spaces

L ∞(S1) ⊂ . . . ⊂ Lm(S1) ⊂ . . . ⊂ L 2(S1) ⊂ L 1(S1)
Consequently, when dealing with

∥∥∆2
hf

([s])
∥∥

L p inside the integral in Equation 3.26,
we have chosen p to be as large as possible. In particular, when we study the more
general construction of the Besov spaces, we will see that one can use p = ∞
without any problems.

We are well aware that the following proposition is a bit too general for the concepts
we have introduced so far. Mostly because it deals with s ∈ R, not only for s > 0.
However, we feel that it is a good addition to this more intuitive section. The
general definition of Bs

p,q can be find in the next subsection.

Proposition 3.27 (Proposition 2.3.2.2 in [Tri83]). For p ∈ N we have:
(a) Let 0 < q0 ≤ q1 ≤ ∞ and let s ∈ R. Then

Bs
p,q0 ⊂ Bs

p,q1

(b) Let q0, q1 be any two natural numbers, let s ∈ R, and let ε > 0. Then

Bs+ε
p,q0 ⊂ Bs

p,q1

What this proposition shows us is that fixing p all Besov spaces are more or less
equivalent (being slightly larger as q →∞). Hence, for simplicity, in the upcoming
sections we will end up considering q = ∞. In the next subsection we will give a
formal definition of the Besov spaces Bs

p,q that is valid for 1 < p, q ≤ ∞ and s ∈ R.

3.4.2. General definitions. Despite having direct definitions of the Besov
spaces Bs

p,q for s > 0, 0 < p < ∞ and 0 < q ≤ ∞, which might help with the
intuitive study of a particular function, we will present an equivalent, though much
more theoretical definition of these spaces. This definition, moreover, allows us
to extend the regularity to s ≤ 0 and/or p = ∞. Finally, this more theoretical
construction is crucial when it comes to the study of how the wavelet expansion
and regularity relate to one another.

The space of all real valued rapidly decreasing infinitely differentiable functions
is called the (real) Schwartz space and it is denoted by S(R). The topological dual
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of S(R) is the space of tempered distributions which is denoted by S ′(R). As
previously stated in this chapter, f ∈ S ′(R), f̂(ξ) denotes the Fourier transform of
f and f∨(x) stands for the inverse Fourier transform in the sense of distributions.
Recall, also, that the essential supremum is defined as

ess sup
x∈R

f(x) = inf{a ∈ R : µ({x ∈ R : f(x) > a}) = 0},

where µ is a measure (in our case the usual Lebesgue measure). Finally, let φ0 ∈
S(R) be such that

φ0(x) :=

{
1 if |x| ≤ 1

0 if |x| ≥ 3/2

and set
φj(x) := φ0(2

−jx)− φ0(2
−j+1x)

for j ∈ N. The familiy {φj}∞j=0 is called a Dyadic Resolution of Unity in R. Note
that we can have multiple dyadic resolutions, depending on how φ0 is chosen to
behave on 1 < |x| < 3/2.

Definition 3.28. Let {φj}∞j=0 be a Dyadic Resolution of Unity and s ∈ R.
For f ∈ S ′(R) we define the quasi-norm

∥f∥p,q,s :=

 ∞∑
j=0

2jsq
(
∥(φj f̂)∨∥Lp

)q1/q

.

Where ∥ · ∥p denotes the standard Lp norm. For the case q =∞ the usual modifi-
cation of taking the essential supremum instead of powers of q is done. Then, we
define the Generalized Besov Spaces by

Bs
p,q(R) := {f ∈ S ′(R) : ∥f∥p,q,s <∞}.

As it can be seen in [Tri06, Remark 2 of Section 2.3], the spaces Bs
p,q(R) and

the quasi-norm are, in fact, independent of the chosen dyadic resolution of unity φ.
However, the choice of the values p and q does give us different spaces.

Remark 3.29. When p = q = ∞ it can be proven that Bs
∞,∞(S1) = C s(S1)

whenever s > 0. What the Besov spaces allow is the generalization of the Hl̈der-
Zygmund regularity to s ≤ 0. Of particular interest for us will be the case s = 0.

In view of the above remark we define the notion of regularity of a map.

Definition 3.30. We say that a map f has Besov regularity s ∈ R if f ∈
Bs

∞,∞(R), that is,

∥f∥∞,∞,s = sup
j≥0

2js
(
ess sup
x∈R

∣∣∣(φj f̂)∨(x)∣∣∣) <∞.

Recall that our natural framework is the unit circle. As presented in [AMR16,
Lemma 3.8] Definition 3.30 can be rewritten as follows:

Definition 3.31. We say that a circle map f has Besov regularity s ∈ R if the
map f belongs to Bs

∞,∞(S1).

The next subsection includes a brief note on the limitations of the Besov ap-
proach for our study. It is self-evident that a map φ with regularity s > 1 is almost
everywhere differentiability and hence its graph has very regular geometry. How-
ever, we can have very different functions in the geometrical sense that have the
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exact same regularity when 0 ≤ s < 1. That is why we claim that the regularity is
a flawed measure of strangeness.

3.4.3. Limitations of the Besov approach. The title of this subsection
already points the flawed nature of this approach. This mostly stems that strange-
ness as in Definition 2.1 is very difficult to quantify, despite its simplicity. Functions
that cannot be written as piecewise differential functions range from upper semi-
continuous functions as in [Kel96] to something like the Weierstrass functions. The
situation becomes way more complicated when we consider that the attractor might
be a multi-valued function [Sta99], which by definition cannot be included into any
function space.

In particular, we believe the following two examples illustrate the limitations
of the Besov approach.

Example 3.32. We will see that we can get two continuous functions f, g :
S1 → R with the same regularity. The first one is not differentiable at any point,
while the second one is differentiable everywhere except on θ = 0. First of all,
consider the Weierstrass function

f(x) =

∞∑
n=1

an cos(bnx),

which has Besov regularity − logb a whenever a · b > 1 [Har16]. On the other hand

g(x) = x− logb a

has Besov regularity also equal to − logb a. Hence we have two functions f and g
with the same regularity. However, f would fall within the definition of strangeness
from Chapter 2, while, g would not be considered strange, since it is differentiable
everywhere outside 0. A figure of two functions stemming from this example side
by side can be seen in Figure 3.3.

Example 3.33. As in the previous example, we will show two functions that
have Regularity equal to zero, but that they are have essentially different geometri-
cal complexity. On one hand, an upper semicontinuous and discontinuous in almost
any point, like the attractor from the Keller-GOPY model in the pinched case (see
Figure 3.4). This type of functions have regularity 0, due to the following result:

Proposition 3.34 (Proposition V.4.6 in [Ste70]). Efery f ∈ Bs
∞,∞ with s ∈

(0, 1) may be modified on a set of zero measure so that it becomes continuous.

On the other let us consider the function

(3.27) f(x) =


0 if x = 0

1
log(x) if 0 < x ≤ 1

2
−1

log(2) if 1
2 < x ≤ 1

,

which is continuous (and in fact C∞ in (0, 1/2) ∪ (1/2, 1)) but that has regularity
zero. See Figure 3.4 for the graph of both functions.

Let us prove that f ∈ B0
∞,∞ but f /∈ Bs

∞,∞ with s > 0. The fact that
f ∈ B0

∞,∞ follows directly from the fact that f is continuous. We will prove that
f /∈ Bs

∞,∞ with s > 0 by contradiction. Suppose that f has positive regularity
α > 0. Then we would have that there exists C > 0 such that

|0− f(x)| =
∣∣∣∣0− 1

log(x)

∣∣∣∣ ≤ C|0− x|α
for x ∈ [0, 1]. This implies that the inequality

C|x|α| log(x)| ≥ 1,
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1

0

−1
1

(a) Weierstrass function with a = 0.5
and b = 2.01.

1

0
1

(b) f(x) = x− log2.01(0.5)

≈ x0.99285590

Figure 3.3. Two very different functions with Besov regularity
s = − log2.01(0.5) ≈ 0.992855904. (A) is not differentiable at any
point while (B) is differentiable everywhere except at 0.

(a) Keller-GOPY attractor in the
pinched case.

(b) Graph of function defined in Equa-
tion (3.27).

Figure 3.4. Two very different functions with Besov regularity
s = 0. Note the very complicated geometry in (A) and the rela-
tively regular behaviour of (B).

should hold, which cannot happen since limx→0+ |x|α| log(x)| = 0 for all α > 0.
Hence, we have a function that is upper semi-continuous and has very complicated
geometry and a function that is differentiable on (0, 1/2) ∪ (1/2, 1), both with
regularity zero.

Despite these limitations, a crucial point is that if s > 1 we have almost every-
where differentiability ensured. Hence, not everything is futile. If we are able to
measure regularities bigger than 1 then we can discard strangeness right away.
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3.4.4. Wavelet coefficients and regularity. Next, we want to show how
this notion of regularity and the wavelet coefficients of a given function are related.
This is thoroughly explained in Section 4 of [AMR16], but we will present a short
summary. As previously mentioned we will be using Daubechies wavelets. The
reasoning behind this choice is twofold. On one side, the Daubechies wavelets family
are orthonormal bases on L 2(R). On the other hand, depending on the number
of vanishing moments, they are good bases of the functional spaces Bs

∞,∞(R).
Specifically, given a function φ they allow us to determine the Besov regularity
s of φ (see e.g. [AMR16] and the references therein). Let us rephrase [Tri06,
Theorem 1.64] in the spirit of Theorem 4.2 in [AMR16] for our particular needs.
For t ∈ R we set

(3.28) R(t) =

{
t− 1

2 if t > 1
2 ,

t+ 1
2 if t < − 1

2

Using this function we can present the main result concerning wavelet coefficients
and regularity in a concise manner.

Theorem 3.35 (Theorem 1.64 [Tri06]). Let f ∈ L 2(S1) and let ψ be a mother
Daubechies wavelet with more than max(R(τ), 52 − R(τ)) vanishing moments for
some τ ∈ R \

[
− 1

2 ,
1
2

]
and for each j define Ŋj = {0, 1, . . . , 2j − 1}. Then, f ∈

B
R(τ)
∞,∞(S1) if and only if there exists C > 0 such that

sup
n∈Ŋj

∣∣〈f, ψPER

j,n

〉∣∣ ≤ C2τj
for all j ≤ 0. Furthermore, if ψ has more than 2 vanishing moments, then

f ∈ B0
∞,∞(R) if and only if either the sequence

{
2−τj supn∈Ŋj

∣∣〈f, ψPER
j,n

〉∣∣}−∞

j=0

is unbounded for every τ ∈ R or there exist C > 0 and τ ∈
[
− 1

2 ,
1
2

]
such that

sup
n∈Ŋj

∣∣〈f, ψPER

j,n

〉∣∣ ≤ C2τj
for j ≤ 0.

It is important to notice that the condition on the vanishing moments limits
the choice of the wavelets used. As can be seen in Figure 3.5, the more vanishing
moments the wavelet has, the bigger range of regularities that can be computed.

Remark 3.36. Note that the crux of Theorem 3.35 is that the regularity lies in
the decay of the value of the coefficients that correspond to higher frequencies (i.e.
j large). That is, if the maximum of the absolute value of the coefficients in each j-
level is large, then the regularity shall be small. This is coherent with our intuition,
since if the higher frequencies have a more prominent role, the function φ should
be more complicated (at least locally, see Section 4.3 in [Mal98]). This is similar
to what happens when one computes the Fourier expansion of the square wave. To
obtain a good approximation of the signal one needs to compute the coefficients
of very high frequencies. In Figures 4.5 and 4.10 one can see an example of this
phenomenon.

Remark 3.37. In view of [AMR16, Remark 4.3] and the above results, the
coefficients supn∈Ŋj

|⟨f, ψj,n⟩| decay approximately exponentially

(3.29) sj := log2

(
sup
n∈Ŋj

|⟨f, ψj,n⟩|

)
≃ τj + log2(C).

Thus to compute an approximation of the Besov regularity s, one can make a
regression to estimate the slope τ from the graph of the pairs (j, sj) and compute s
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max(R(τ), 5
2

− R(τ))

τ

p s

Figure 3.5. Relation between s and the number of vanishing mo-
ments given by Theorem 3.35, and the regularity computed. In red
the areas where Theorem 3.35 cannot be applied. In green where
the first part of the theorem migh be applied. The orange area
corresponds to values of τ that give regularity zero. The grey line
corresponds to the regularity computed as a function of τ .

from the slope of the model. However, note that this computed regularity will never
be exact, since Theorem 3.35 has an inequality, while when doing a linear fit, the
obtained line is always below some of the (j, sj). In any case, this has worked rather
well for the Keller-GOPY and the Alsedà-Misiurewicz systems. See Figures 4.8 and
4.12 as examples. The situation is rather different for the Nishikawa-Kaneko case,
where the linear correlation is non-existent and needs to be studied more carefully
(See 4.16).

The value of C plays a role in some transitions to regularity zero. In particular,

when the sequence
{
2−τj supn∈Ŋj

∣∣〈f, ψPER
j,n

〉∣∣}−∞

j=0
is unbounded. This case might

happen, for example, when the coefficients corresponding to lower frequencies decay
much slower than the ones for higher frequencies. See Figure 4.16 for examples with
systems with increasingly larger values of C, despite the fact that their regularity
still could be very large.

In view of the above remark, we can establish a strategy to use the wavelet
coefficients to give an estimate of the regularity of a function. This is done in
Section 4 of [AMR16]. The following is a rephrase of these techniques but tailoring
them for our particular needs.

Algorithm 3.38 (Method to estimate regularities). Let L 2(S1) and choose
a Daubechies wavelet basis on the circle ψPER

−j,n with p ≥ 2 vanishing moments.
Consider an approximation of the wavelet expansion with N = 2ν+1 coefficients

(3.30) f = a0 +

ν∑
j=0

2j−1∑
n=0

〈
f, ψPER

−j,n
〉
ψPER

−j,n.
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To estimate the Besov regularity s of the map f , perform the following steps:

Step 1. By using the coefficients
〈
f, ψPER

−j,n
〉

from the given approximation, in view
of Theorem 3.35, compute

s−j := log2

(
sup

0≤n≤2j−1

∣∣〈f, ψPER

−j,n
〉∣∣)

for j = 0, . . . , ν.

Step 2. In view of equation (3.29), make a linear regression to estimate the slope
τ of the graph of the pairs (−j, s−j) with j = 0, . . . , ν − 1. Then, when there
is evidence of linear correlation between the variables −j and s−j set s = R(τ),
defined as in equation (3.28).

Step 3.
• If the number of vanishing moments p for ψ satisfies p > max(s, 5/2 − s)

and p ≥ 2 then f has regularity s.
• Otherwise we need to repeat Steps1 – 2 with a Daubechies wavelet having

more vanishing moments until p > max(s, 5/2− s).

Remark 3.39. Note that since we are dealing with truncated wavelet expan-
sions and doing linear fits, it may make sense to remove some pairs (−j, s−j) out
of the linear fit, as it was done in [AMR16] (even though with the methods pre-
sented the disparity is much smaller). In general we have detected s0, s−1 and s−ν
are the ones that fluctuate the most when changing ν. We believe that it stems
from the fact that the frequencies not being represented in the expansion get com-
pensated in the very low frequency coefficients (if it oscillates fast enough it may
as well look constant) and in the coefficients corresponding to ν. Hence, for the
examples in Section 4.3 we have chosen to omit them from the linear correlation
computations.

In the same way as [AMR16, Remark4.5], we want to mention that for our
computations we need to make ν as large as possible. Some of the main reasons
being:

(a) The truncation error of the approximation (3.30) depends on the regularity
of f . Thus, since it is not reasonable to assume that the regularity is
known, we need to fix the value of ν as the biggest our computing resources
and time can support.

(b) In view of Step 2 and to increase the reliability of the regressions on ν
samples, clearly ν must be as big as possible.

(c) Related with the above point, among all samples (−j, s−j) with j =
0, . . . , ν − 1, one should only use the pairs (−j, s−j) where the linear de-
pendence is clearly seen. Thus one has another restriction to the number
of samples available and hence ν > 0 must be as large as possible.

(d) As it can be seen in Section 4.4, in the Nishikawa-Kaneko attractor there
are two possible linear correlations when considering (−j, s−j) for some
values of ε . One spans the coefficients corresponding to lower values of j
(and hence, lower frequencies). The other one, can be found in the ones
corresponding to higher frequencies. If one only considered the correlation
spanning the lower frequency coefficients, one would obtain very low values
of the regularity. However, the correlation concerning higher frequencies
results in very high values of the regularity. Hence, to be sure that the
obtained results are acceptable, ν should be very large. If it were too
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small, the second correlation might be hidden and hence the regularity
computed would not be optimal.

In view of the above, we are ready to compute an estimate of the regularity of
a certain function f ∈ L 2(S1). It only remains to find the truncated wavelet
expansion of the attractor φ from Chapter 2. This is, precisely, one of the main
topics of the following Chapter, where we will obtain the wavelet coefficients using
the invariance equation from Section 2.1.1.



CHAPTER 4

Solving the Invariance Equation with Wavelets

In this chapter we will seek to solve the invariance Equation (2.3),

Fσ,ε(θ, φ(θ)) = φ
(
Rω(θ)

)
,

using wavelets. Recall that what we are trying to do is to find a map φ : S1 → R
such that its graph is the attractor of the system. As we discussed in Chapter 2 this
is equivalent to φ being a solution to the invariance equation which is a functional
equation in which its fixed points are invariant graphs of System (2.1). Moreover,
recall that Theorem 3.19 tells us that the so called periodized wavelet basis for
L 2(S1) has the peculiarity that is of the form

{1, ψPER

j,n with j ≤ 0 and n = 0, 1, . . . , 2−j − 1}.
That is, fixing j > 0 the number of different functions ψPER

−j,n is finite. Hence, we
will seek to solve the invariance equation by finding coefficients d−j,n ∈ R such that

φ(θ) = d0 +

∞∑
j=0

2j−1∑
n=0

d−j,nψ
PER

−j,n(θ),

where d−j,n =
〈
φ,ψPER

−j,n
〉
, that is

d−j,n =

∫
S1
φ(θ)ψPER

−j,n(θ)dθ.

It comes without saying that it is impossible to find infinitely many wavelet coef-
ficients numerically, so we will truncate the expression to get a truncated wavelet
expansion. The natural way of doing this is to fix a maximum value of j, that we
shall call ν, and then obtaining all the coefficients for j = 0, . . . , ν and, for each j,
for n = 0, 1, . . . , 2j − 1. In other words, we want to obtain an expression as

(4.1) φ̆(θ) := a0 +

ν∑
j=0

2j−1∑
n=0

d−j,nψ
PER

−j,n(θ).

Note that in this case the expansion has exactly 2ν+1 elements.
Finally, we can state the goal of this chapter. We want to find the coefficients

{d−j,n}νj=0 such that

(4.2)

∣∣∣∣∣∣Fσ,ε
θ, a0 + ν∑

j=0

2j−1∑
n=0

d−j,nψ
PER

−j,n(θ)


−φ

a0 + ν∑
j=0

2j−1∑
n=0

d−j,nψ
PER

−j,n
(
Rω(θ)

)∣∣∣∣∣∣ < tol,

for every θ ∈ S1, with tol being a reasonable error chosen beforehand.
Note that this procedure can eventually lead to the reconstruction of the at-

tractor without having to compute it by forward iteration, as it is otherwise usual
for numerical studies of attractors. This in principle might allow an improved study

59
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of attractors with very slow convergence, or the study of bifurcations in which the
attractor might dissappear but the invariant function might not.

This chapter will start with a section in which we will give a detailed account
of how we have solved Equation 4.2 using Newton’s method.

4.1. Setting up Newton

After the the dynamical explanation of the problem in Chapter 2 and the more
or less analysis-centric wavelet introduction in Chapter 3, we will use the results
of both sections to produce an algorithm that will allow us to compute truncated
wavelet expansions of functions such that their graphs

(
θ, φ(θ)

)
are attractors of

System (2.1).

Remark 4.1. To de-clutter the indices, from now on we will work with the
single index ℓ = ℓ(j, n) = 2j + n. Hence, Equation (4.2) now can be rewritten as

(4.3) φ̆(θ) = a0 +

ν∑
j=0

2j−1∑
n=0

d−j,nψ
PER

−j,n(θ) = d0 +

N−1∑
ℓ=1

dℓψ
PER

ℓ (θ),

where N = 2ν+1. More precisely, we can consider the coefficients d0 and {dℓ}ℓ as
the unknowns of the functional equation (4.2), obtaining

(4.4) d0 +

N−1∑
ℓ=1

dℓψ
PER

ℓ (Rω(θ))− Fσ,ε

(
θ, d0 +

N−1∑
ℓ=1

dℓψ
PER

ℓ (θ)

)
≈ 0.

Hence, we will strive to solve N dimensional vector of unknowns
D : = (d0, d1, . . . , dN−1)

= (d0, d0,0, . . . , d−ν,2ν−1) (in the bi-indexed notation).
(4.5)

Since our goal is to find D, the straightforward approach would be to obtain a
non-linear system of N independent equations with D as the vector of unknowns,
and solve it directly by using Newton’s method. This approach is quite standard
when one is dealing with the Fourier basis, for example in celestial mechanics. That
is, if we fix θ, Equation 4.4 gives us one equation with N unknowns d0, d1, . . . dN−1.
Hence, if we can get N such equations, we should be able to find a solution for D.
As it is usual, we will discretize θ into N dyadic points θi = i/N ∈ S1. For each
θi we have then an instance of Equation (4.4). Hence, by defining the function
Fσ,ε(D) : RN −→ RN

(4.6) Fσ,ε(D) :=
d0 +

∑N−1
ℓ=1 dℓψ

PER

ℓ (Rω(θ0))− Fσ,ε
(
θ0, d0 +

∑N−1
ℓ=1 dℓψ

PER

ℓ (θ0)
)

d0 +
∑N−1
ℓ=1 dℓψ

PER

ℓ (Rω(θ1))− Fσ,ε
(
θ1, d0 +

∑N−1
ℓ=1 dℓψ

PER

ℓ (θ1)
)

...
d0 +

∑N−1
ℓ=1 dℓψ

PER

ℓ (Rω(θN−1))− Fσ,ε
(
θN−1, d0 +

∑N−1
ℓ=1 dℓψ

PER

ℓ (θN−1)
)

 ,

we have converted the problem of solving the invariance equation using wavelets
into a root finding one. Namely we want to solve

Fσ,ε(D̃) ≈ 0⃗ ∈ RN ,

to obtain an approximation D̃ of D.
Hence, applying Newton’s method at each step we want to compute

(4.7) Dn+1 = Dn − JFσ,ε(Dn)
−1Fσ,ε(Dn),
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where Dn is the nth approximation of D by the method. To avoid inverting
JF(Dn), is is standard to change the iteration to solving the following linear system
system of equations

(4.8) JFσ,ε(Dn)
(
Dn+1 −Dn

)
= −Fσ,ε(Dn).

for (Dn+1 −Dn) at each Newton step .
At it is evident from Equation (4.6), a direct implementation of this path leads

us to evaluating periodized Daubechies wavelets ψPER
−j,n(θ) at each newton step. As

explained in Subsection 3.2 this is not an easy task. In fact Chapter 5 of this thesis
is dedicated solely to this problem. Hence another approach is necessary.

To this end, we will use linear algebra and some cleverly defined matrices that
will allow us to precompute all the wavelet evaluations that we need and store
them in an ordered manner. The main motivation behind the construction of these
matrices is the realization that the truncated wavelet expansion evaluated at θ can
be written as an scalar product of two vectors

(4.9) φ̆(θ) = d0 +
N−1∑
ℓ=1

dℓψ
PER

ℓ (θ) =
(
1, ψPER

1 (θ), ψPER

2 (θ), . . . , ψPER

N−1(θ)
)
·


d0
d1
d2
...

dN−1.


An analogous result can be obtained for the truncated expression for φ̆(Rω(θ)).
From Equation (4.9) we can see that instead of evaluating periodized wavelets at
each Newton step, we can pre-compute them and use linear algebra whenever we
need to use the evaluation. This is one of the crucial points of this method, since
it allows us to orderly store and use the value of a wavelet evaluated at a point
whenever we might need it. To exploit this properties, we have defined to matrices
Ψ and ΨR where all the needed ψPER

ℓ (θi) and ψPER

ℓ (Rω(θi)) will be stored.

Definition 4.2. Let ψ(x) be an orthonormal wavelet from a R-MRA:
(a) We define the wavelet matrix Ψ as a square matrix whose column 0 is

constant 1 and the column ℓ ∈ {1, 2, . . . , N − 1} is ψPER

ℓ (θi) with i =
0, 1, . . . , N − 1. Equivalently, the ith row of the column will be of the form(

1, ψPER

1 (θi), ψ
PER

2 (θi), . . . , ψ
PER

N−1(θi)
)

(b) We define the rotated wavelet matrix ΨR as a square matrix whose column
0 is constant 1 and the column ℓ ∈ {1, 2, . . . , N − 1} is ψPER

ℓ (Rω(θi)) with
i = 0, 1, . . . , N − 1. Equivalently, the ith row of the column will be of the
form (

1, ψPER

1 (Rω(θi)), ψ
PER

2 (Rω(θi)), . . . , ψ
PER

N−1(Rω(θi))
)

Remark 4.3. Let Ψ be the wavelet matrix for a Daubechies wavelet of p van-
ishing moments. We can write the block of size N×2j corresponding to the wavelets
ψPER
−j,n with the same j as

ψPER
−j,0(0) ψPER

−j,1(0) ψPER
−j,3(0) . . . ψPER

−j,2j−1(0)

ψPER
−j,0

(
1
N

)
ψPER
−j,1

(
1
N

)
ψPER
−j,3

(
1
N

)
. . . ψPER

−j,2j−1

(
1
N

)
...

...
...

...
...

ψPER
−j,0

(
N−2
N

)
ψPER
−j,1

(
N−2
N

)
ψPER
−j,3

(
N−2
N

)
. . . ψPER

−j,2j−1

(
N−2
N

)
ψPER
−j,0

(
N−1
N

)
ψPER
−j,1

(
N−1
N

)
ψPER
−j,3

(
N−1
N

)
. . . ψPER

−j,2j−1

(
N−1
N

)

 .
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For the matrix ΨR the result is completely analogous. As we will see later we can
apply Proposition 3.22 to find self-similarities within these types of blocks to reduce
the amount of memory required to store Ψ and ΨR.

Remark 4.4. Using the matrices defined above, we obtain

Ψ ·D =


d0 +

∑N−1
ℓ=1 dℓψ

PER

ℓ (0)

d0 +
∑N−1
ℓ=1 dℓψ

PER

ℓ

(
1
N

)
. . .

d0 +
∑N−1
ℓ=1 dℓψ

PER

ℓ

(
N−1
N

)
 =


φ̆(0)
φ̆
(

1
N

)
. . .

φ̆
(
N−1
N

)
 =: Φ.(4.10)

The vector Φ contains the approximation of the attractor evaluated at all the dyadic
points. Similarly,

Ψ ·D =


d0 +

∑N−1
ℓ=1 dℓψ

PER

ℓ (Rω(0))

d0 +
∑N−1
ℓ=1 dℓψ

PER

ℓ

(
Rω
(

1
N

) )
. . .

d0 +
∑N−1
ℓ=1 dℓψ

PER

ℓ

(
Rω
(
N−1
N

) )
 =


φ̆(Rω(0))

φ̆
(
Rω
(

1
N

) )
. . .

φ̆
(
Rω
(
N−1
N

) )
 =: ΦR.(4.11)

Form the vectors Φ and ΦR we can recover the graph of the attractor. We will use
this property in Sections 4.3 and 4.4 to check the quality of the results obtained.

Our goal now is to write Equation 4.8 using Ψ and ΨR. Let us start by defining
the vector ℘ ∈ RN

[℘]i := Fσ,ε (θi, [ΨD]i) .

where [ΨD]i is the i − th component of the vector Ψ ·D ∈ RN and [ΨRD]i is the
i− th component of the vector ΨR ·D ∈ RN , respectively.

In view of the above definitions and remark, we can re-write Equation 4.6 to
obtain an expression Fσ,ε(D) using the wavelet matrices:

(4.12) Fσ,ε(D) = ΨRD− ℘.

This equation give us the invariance equation evaluated at all θi at once. From here
it follows easily that the Jacobian Matrix of this systems can be written as

JFσ,ε = ΨR −∆σ,εΨ,

where ∆σ,ε is the derivative matrix defined as a diagonal square matrix given by

(∆σ,ε)i,ℓ =

{
DxFσ,ε (θi, [ΨD]i) if i = ℓ,

0 otherwise.

If rewrite Equation (4.8) using the wavelet matrices we obtain

℘n −ΨRDn = −Fσ,ε(Dn) = JFσ,ε(Dn)(Xn) = (ΨR −∆(n)
σ,εΨ)Xn,

where ∆(n)
σ,ε stands for the derivative matrix at each step, and Xn := Dn − Dn−1

stands for the unknown at each Newton step. Therefore, at each Newton iterate
we have to solve the following N ×N linear system of equations

(4.13)
(
ΨR −∆(n)

σ,εΨ
)
Xn = ℘n −ΨR.

The above algebraic form implies that the matrices Ψ and ΨR only need to be
(pre)computed once in the whole iteration. For example, all the computations in
Sections 4.3 and 4.4 have been done with the same pre-computed wavelet matrices
stored in a binary file.

To conclude the rephrasing of the problem we need to explain how one can get
the initial seed D0. In this cases, it is usual to use the Birkhoff Ergodic Theorem (see
Theorem 2.5). Indeed, assuming that the dynamical system given by Equation (2.1)
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verifies that φ(·)ψPER(·) ∈ L 1(S1) then, by the Birkhoff Ergodic Theorem, it follows
that

dℓ :=

∫
supp

(
ψPER

ℓ

) φ(θ)ψPER

ℓ (θ) dθ = lim
k→∞

1

k

k−1∑
i=0

f of Birk. Erg. Thm.︷ ︸︸ ︷
φ · ψPER

ℓ · χ
supp

(
ψPER

ℓ

)(Riω(θ)),
where χsuppψPER

ℓ
is the characteristic function for the support of ψPER

ℓ . However,
the convergence of this method is very slow, and it requires a lot of evaluations on
irrational points, which defeats the purpose of the method. However, it turns out
that the trapezoidal rule because gives us a good seed. That is, taking k = N our
initial seed will be given by[

D0
]
ℓ
:=

1

N

N∑
i=0

ψPER

ℓ (θi)φ(θi).

Note that since the function is defined on S1 the formula is slightly different than
the trapezoidal rule on the interval, Now, we can write the initial guess in matricial
form as

(4.14) D0 :=
1

N
Ψ⊤(φ(θ0), φ(θ1), . . . , φ(θN−1)

)⊤
=

1

N
Ψ⊤Φ⊤,

where we the N -dimensional vector Φ =
(
φ(θ0), φ(θ1), . . . , φ(θN−1)

)
is as in Equa-

tion 4.10. Thus, we need to compute Φ with precision. This can only be done in a
Fσ,ε-basis, since small changes on σ or ε might lead to very different attractors. At
the end of Chapter 2, Algorithm 2.8 allows us to compute the Lyapunov exponent
on the attractor. Using this, we present a method to compute Φ with a prescribed
precision.

Algorithm 4.5 (A sample of an SNA). Consider a skew product, given by
Equation (2.1) and assume that has a hyperbolic attractor A ̸≡ 0. To get a sample
of
mathcalA = {(θ, φ(θ)) : θ ∈ S1} with precision at least δ perform the following
steps:

Step 1. Fix ν > 0 big enough and a tolerance δ small enough. Set N = 2ν+1 and
take θi = i/N ∈ S1 for i = 0, . . . , N − 1.

Step 2. Compute λφ using Algorithm 2.8. Use λφ to compute the minimum
number of iterates by

η ≈
log
(
δ
δ0

)
λφ

,

where δ0 denotes the initial error, which may be unknown. To solve that issue and
to ensure that so that possible errors on λϕ will not interfere with the computation
we will choose the number of iterates to be

(4.15) n0 := T ·
log
(

δ
δMAX

)
λφ

where T ≥ 1 is a multiplicative factor to ensure that n0 ≥ η. In our case we have
set T = 10. Moreover, since we do not know the value of δ0, we simply use an upper
bound δMAX that will depend on each system.

Step 3. Using such n0, compute the preimage of each θi ∈ S1 by the rotation Rω.
That is, for i = 0, . . . , N − 1 set

θ̃i = R−n0
ω (θi).
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Step 4. For each i = 0, . . . , N − 1 iterate forwards n0 times the System (2.1) using
such θ̃i’s and x0 = c > sup

x∈R
max
θ∈[0,1]

Fσ,ε(θ, x).

Clearly, the output of the above algorithm is the following vector

(4.16) Φ = (φ(θ0), φ(θ1), . . . , φ(θN−1))
⊤

which is at least a δ-close sample of φ evaluated at our desired points θi ∈ S1, with
i = 0, 1, . . . , N − 1.

Remark 4.6. For the cases we are going to study, we consider a uniformly dis-
tributed mesh in S1. However, one might as well choose a non-uniformly distributed
mesh. In other words the choice of points in Step 1 of the following algorithm can
be done arbitrarily. The problem is that this choice has consequences, which must
be taken into account further down the line.
Moreover, modifying choice will mean that the wavelet matrices Ψ and ΨR in
Chapters 4 and 5 would have to be rewritten accordingly.

Remark 4.7. In [AMR16] there is another strategy to compute such a Φ with
precision. The idea is the use of Theorem 2.6(c) and an explicit diffeomorphism
h : S1 −→ S1 (which is a C2 degree one rational quadratic monotone spline on the
circle). In this thesis we have used another method because we explicitly need φ
evaluated on a mesh of points.

Finally we are able to give what is without any doubt the cornerstone of this
chapter (and probably of this part of the thesis). The following algorithm allows us
to compute the wavelet expansion of an attractor given by the graph of a function
φ : S1 → R in a quasi-periodically forced skew product.
Algorithm 4.8 (Numerical Computation of an SNA with Wavelets). Con-
sider an skew product, given by Equation (2.1) with an invariant map φ : S1 −→ R.
That is, there exists a map φ such that for all θ ∈ S1

Fσ,ε(θ, φ(θ)) = φ(Rω(θ)).

Moreover, assume that we can evaluate φ(θi) with a desired precision. Fix ψ a
Daubechies wavelet with p vanishing moments. To compute an approximation of
an invariant curve of System (2.1) using a truncated Daubechies wavelet expression
with N coefficients, perform the following steps:

Step 1. Fix an integer ν > 0 as big as possible and two tolerances that will cause
the Newton loop to break:

• tol, corresponding to finding an approximate solution to the Invariance
Equation (4.2)
• tol_zero, corresponding to having two consecutive iterates very close, i.e.
∥Dn −Dn−1∥ < tol_zero would trigger a stop in the loop. tol_zero

should be significantly smaller that tol
Set N = 2ν+1 as the number of coefficients of the approximation. Fix a ∥·∥ on RN .

Step 2. Compute the N ×N matrices ΨR and Ψ.

Step 3. To get a reasonable seed for Newton’s Method, use Equation (4.14). That
is, set

D0 =
1

N
Ψ⊤Φ⊤,

where Φ is given by as the result of Algorithm 4.5. Hence, we can ensure we have
control on the computation error of φ(θi), so this approximation is achievable.

Step 4. Find Dn ∈ RN using a numerical solver to find the solution to the equation(
ΨR −∆(n)

σ,εΨ
)
Xn = ℘n −ΨR,
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where Xn = Dn−Dn−1 until either ∥Dn −Dn−1∥ < tol_zero or ∥℘n −ΨR∥ < tol.
As a result, we get

φ(θ) ≈ d0 +
N−1∑
ℓ=1

dℓψ
PER

ℓ (θ).

That is a numerical approximation, up to a precision tol, of an invariant object
with wavelets.

Remark 4.9. Note that in this algorithm converge almost all the results intro-
duced until now. From the understanding of the dynamical problem to the theory
of wavelets. Moreover, all the constructions in this chapter are what allows the
algorithm to be efficient and as simple as possible. Two main issues are left to
be tackled though: solving Equation (4.13) in Step 4, and the computation of
the matrices Ψ and ΨR. The first issue will be the subject of Section 4.2. As for
the latter, the longest chapter of this thesis, Chapter 5, is solely dedicated to the
computation of this matrices.

Before starting with the numerical methods that will allow us to solve Equa-
tion (4.13) at each step of the algorithm, we would like to give some general prop-
erties of the wavelet matrices that show that if one understands their structure one
can realize that they contain a lot of redundant information.

4.1.1. Some properties of the Wavelet Matrices. Recall that Ψ and ΨR
have been defined in Definition 4.2 and contain all the ψPER

ℓ (θi) and ψPER

ℓ (Rω(θi))
we require for the computations in Algorithm 4.8. Since they are square matrices
of dimension N ×N , if all the coefficients were to be stored it would require a lot of
memory. For example, if we were to use 225 coefficients, one would need a matrix of
size 250. Numerically, if we were to store every single matrix coefficient in double
precision (8 bytes), we would require 8 petabytes of memory, which no single storage
unit in the market can store, let alone finding any computer with the RAM memory
capabilities in order to do anything remotely useful with it. However, there are two
properties shared by both the wavelet matrix and the rotated wavelet matrix that
allow us to save all the essential information while using less than N log2(N) entries.

Remark 4.10. Let Ψ and ΨR be the wavelet matrix and the rotated wavelet
matrix for a Daubechies wavelet of p vanishing moments. If we study the block of
size N × 2j as the one in Remark 4.3 we can apply Proposition 3.22 to see that the
information contained in the first column is exactly the same that the information
contained in any other column. The only difference is that they are shifted. For
example, given two consecutive columns in the same j-block we can understand the
situation as follows:
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ψPER
−j,n(0) ψPER

−j,n+1(0)

ψPER
−j,n

(
1
N

)
ψPER
−j,n+1

(
1
N

)
...

...

ψPER
−j,n

(
2ν−j−1
N

)
ψPER
−j,n+1

(
2ν−j−1
N

)
ψPER
−j,n

(
1
2j

)
ψPER
−j,n+1

(
1
2j

)
...

...

ψPER
−j,n

(
2·2ν−j−1

N

)
ψPER
−j,n+1

(
2·2ν−j−1

N

)
ψPER
−j,n

(
2
2j

)
ψPER
−j,n+1

(
2
2j

)
...

...
...

...

ψPER
−j,n

(
N−2j

N

)
ψPER
−j,n+1

(
N−2j

N

)
...

...
ψPER
−j,n

(
N−1
N

)
ψPER
−j,n+1

(
N−1
N

)




In this case, we the colour coding indicates that the entries of the matrix are the
same.

In the following two pages, we have put examples of Ψ and ΨR with N = 16,
marking their self-similarities with colours.
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Moreover, apart from the self-similarities explained above, it is easy to see that
the j blocks of the matrix are sparse for all j such that 2j > 2p − 1. This is due
to the fact that by Remark 3.18 the support of ψPER

−j,n is of length min
(
1, 2p−1

2j

)
.

Hence if one is to evaluate ψPER
−j,n on dyadic points in [0, 1), there is going to be an

increasing (as j increases) number of zeroes on each column.
Having surveyed some of the most important properties of the wavelet matrices,

we are not ready to begin the discussion on solving Equation (4.13) in Algorithm 4.8

4.2. Solving Equation (4.13)

This section is devoted to the particulars of Step 4 of Algorithm 4.8, that is to
solving the following equation:(

ΨR −∆(n)
σ,εΨ

)
Xn = ℘n −ΨR.

Recall that Ψ and ΨR are the Wavelet Matrix and the Rotated Wavelet Matrix
respectively (see Definition 4.2), and that[

℘n

]
i
= Fσ,ε (θi, [ΨDn]i) , and,[

∆(n)
σ,ε

]
i,ℓ

=

{
DxFσ,ε (θi, [ΨDn]i) if i = ℓ

0 otherwise.

This system poses some challenges that need to be addressed carefully. First of all,
the dimension of the system is 2ν , which grows very fast as we increase ν. Being our
computational limit at ν = 30 (see Chapter 5), we would like to solve the system
for at least ν = 25. Hence, the dimension N = 33, 554, 432. Moreover, as we have
hinted the matrices will be stored taking advantage of their self-similarities and
localized sparsity. Therefore, we have matrices that are very optimized for storage
(which in any case is our main limiter) but not so much for computations. In
Annex A one can find the data types used to deal with the matrices, as well as the
implementation of their basic operations. Thus, any hope of using decomposition
methods should be thrown out the window. Luckily for us (and as it is standard)
we can use iterative methods to solve these kinds of equations with very large
dimensions [HdlL06b, HdlL06a, HdlL07]. In Subsection 4.2.2 we shall study
the mathematics behind these methods and we will intoduce the one that we have
used for computations, the Transpose-Free Quasi Residual Method (or TFQMR).

Moreover, we need to study carefully the systems in case some sort of precon-
ditioning is required. In Subsection 4.2.1 we will study the spectrum of

ΨR −∆(n)
σ,εΨ

for various instances of the systems we study, and show how some preconditioning
strategies may help with the computations.

4.2.1. Preconditioning strategies. We shall see what preconditioners may
help to solve the system. To this end we shall study the spectrum of

(4.17) ΨR −∆σ,εΨ

close to the solution to see how it may change with the preconditioners. In partic-
ular, we are going to use a left preconditioner, that is an invertible matrix P that
allows us to re-write the system as

(4.18) PAx = Pb,

instead of Ax = b. Note that the solutions of both systems are the same, since P
is invertible. The goal of this matrix is usually to tame the condition number of
the system. There are but few methods to find a condition matrix, all relegated to
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very particular cases. Many times, the ability to find a precondition matrix boils
down to sheer luck.

4.2.1.1. The Keller-GOPY system. In Figure 4.1 (A) and (B) one we can see
the spectrum of (4.17) for the Keller-GOPY model for a pinched and a non-pinched
case for ν = 10, that is dimension N = 210 = 1024. Note that for the non-pinched
case the eigenvalues are very close to the circle of radius one. However, for the
pinched case, one can see that some eigenvalues may be very close to zero whilst
some are clearly greater than one. However, we are very lucky that Ψ⊺

R turns out
to be a very good preconditioner. To see the effects of the preconditioner, we have
computed the spectrum of (4.17) for the same two cases as in Figure 4.1 (A) and
(B) but using Ψ⊺

R as a preconditioner, that is the spectrum of Ψ⊺
R

(
ΨR − ∆σ,εΨ

)
.

In Figure 4.1 (A) and (B) one can see the result. Note that now the eigenvalues
are centred around 1 instead of being centred around 0, all of them to the right of
ℜ(λ) = 0.8. This ensures a much nicer condition number of the matrix, making its
solving a much easier task.

(a) σ = 2 ε = 0 (b) σ = 2 ε = 0.1

(c) Preconditioned, σ = 2 ε = 0 (d) Preconditioned, σ = 2 ε = 0.1

Figure 4.1. Keller-GOPY Attractor:(A) and (B) correspond
to the spectrum of the matrix ΨR − ∆σ,εΨ for σ = 2. (A) cor-
responds to the pinched case while (B) corresponds to the non-
pinched case. (C) and (D) correspond to the same situation for
Ψ⊺
R(ΨR −∆σ,εΨ), i.e. using Ψ⊺

R as a preconditioner.

4.2.1.2. The Alsedà-Misiurewicz system. This case is very similar to the one
above, however the matrices do not behave as nicely. In Figure 4.2 one can see
that the spectrum of the matrix for the pinched case is more scattered than in the
Keller-GOPY model. Moreover, even though the preconditioning by Ψ⊺

R still shows
good results, notice that for the pinched case the eigenvalues get dangerously close
to 0. In particular, we have definitely noticed a decrease in the speed of convergence
when solving this model in comparison to the Keller-GOPY system.
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(a) σ = 2 ε = 0 (b) σ = 2 ε = 0.1

(c) Preconditioned, σ = 2 ε = 0 (d) Preconditioned, σ = 2 ε = 0.1

Figure 4.2. Alsedà-Misiurewicz Attractor: (A) and (B) cor-
respond to the spectrum of the matrix ΨR − ∆σ,εΨ for σ = 2.
(A) corresponds to the pinched case while (B) corresponds to the
non-pinched case. (C) and (D) correspond to the same situation
for Ψ⊺

R(ΨR −∆σ,εΨ), i.e. using Ψ⊺
R as a preconditioner.

4.2.1.3. The Nishikawa Kaneko system. As it has been usual in the rest of
this thesis, this case is essentially different from the previous two cases. For the
Nishikawa-Kaneko model Matrix (4.17) has a very scattered spectrum and so far
we have been unable to find good pre-conditioners for it. In Figure 4.3 one can see
the spectrum of Matrix (4.17) for ε = 0.15.

4.2.2. Krylov methods. Krylov methods are a sub-class of iterative methods
which include some of the most well known ones, such as GMRES or BiCGSTAB.
Given a linear equation

Ax = b,

where A is an N ×N non-singular matrix, b ∈ RN and x is our unknown. Instead
of trying to deal with the matrix itself and try to find some kind of decomposi-
tion, iterative methods try to find increasingly better approximations of the actual
solution. All the cases we are going to study are particular instances of projec-
tion methods. That is, given x0 an initial guess, we compute the initial residual
r0 := b−Ax0 (that is, the difference between our guess and the actual solution), and
two m dimensional subspaces K and L such that we can find a (hopefully better)
approximation of the solution x̃ satisfying

x̃ ∈ x0 +K, and b−Ax̃ ⊥ L.

It follows that one should choose the spaces K and L in a way that makes this
approximation as efficient as possible. When K = L we say that the method is an
orthogonal projection. Whenever they are different, the projection is called oblique.
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Figure 4.3. Nishikawa-Kaneko Attractor: eigenvalues corre-
sponding to matrix ΨR − ∆σ,εΨ with ν = 15 (that is Dimension
215) and ε = 0.15. Note the incredible scattering of eigenvalues.
We were unable to find any pre-conditioner that made things eas-
ier.

The main defining characteristic of Krylov methods is that the space K is the
so-called Krylov subspace

(4.19) Kk(A, r0) = ⟨⟨r0, Ar0, A2r0, . . . , A
kr0⟩⟩.

Where as before r0 = b−Ax0 is the initial residual of the system. The choice of L
and how one deals with the bases of Kk(A, r0) are what will differentiate one family
of methods from another.

Note that all the Akr0 are linearly independent for k = 0, 1, . . . , k0, where k0
is smaller than the degree of the minimal polynomial. For example, if r0 is an
eigenvector then the dimension of the Krylov subspace is 1.

Since we want x̃ ∈ Kk(A, r0), it follows that our approximations will be of the
form

A−1b ≈ x̃ = x0 + pm−1(A)r0,

where pm−1 is a polynomial of degree m− 1. However, the Krylov basis is far from
ideal. Mostly because as k increases we might have that Akb ≈ Ak+1b due to the
dominance of the greatest eigenvector. Hence, it is desirable to rewrite the basis
r0, Ar0, A

2r0, . . . , A
kr0 in a way that allows us to do easier computations. This is

mainly done through the Arnoldi process, which consists of a simple modification
of the Gram-Schmid procedure.

Algorithm 4.13 (Arnoldi’s Method, Algorithm 6.1 in [Saa03]).
procedure Arnoldi

Choose v1 such that ∥v1∥ = 1
for j ← 1, . . . ,m do

for i← 1, . . . , j do
hi,j = ⟨Avj , vi⟩

end for
wj ← Avj −

∑j
i=1 hi,jvi
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hj+1,j ← ∥wj∥
if hj+1,j = 0 then

STOP
end if
vj+1 ← wj/hj+1,j

end for
end procedure

The Arnoldi process lies on the centre of some of the most well known itera-
tive methods, such as General Minimal Residual Method (or GMRES). However,
the general implementations demand the storage of large amounts of memory. For
example in GMRES, to guarantee convergence, one needs to store most hi,j (us-
ing methods such as the Givens rotation some of them may be discarded), which
requires (N+1)N

2 items, hence requiring the storage of O(N2) elements. We have
been concerned with minimizing our memory usage of floating point numbers thus
such requirements negates all the efforts. If one were to use restarted versions of
the algorithms, they are specially suited for very particular cases, such as when
the eigenvalues are clustered, which, in general, is not the case for us. Hence,
we have discarded the Arnoldi route in favour of the methods that use Lanczos
biorthogonalization techniques. In this circumstances the space Lk is defined to be

Lk = Kk(A⊺, r0) = ⟨⟨r0, A⊺b, (A⊺)2r0, . . . , (A
⊺)kr0⟩⟩.

The Lanczos biorthogonalization allows us then to obtain bases of Kk and Lk that
are biorthogonal, that is

⟨vi, wj⟩ = δi,j , 1 ≤ i, j ≤ m.

Algorithm 4.14 (Lanczos Biorthogonalization, Algorithm 7.1 in [Saa03]).
procedure Lanczos

Choose v1 and w1 such that ⟨v1, w1 ⟩ = 1
β1 ← δ1 ← 0
w0 ← v0 ← 0
for j ← 1, . . . ,m do

αj ← ⟨Avj , wj⟩
vj+1 ← Avj − αjvj − βjvj−1

wj+1 ← A⊺wj − αjwj − δjwj−1

δj+1 ←
√
|⟨vj+1, wj+1⟩|

if δj+1 = 0 then
STOP

end if
βj+1 ← ⟨vj+1, wj+1⟩/δj+1

vj+1 ← vj+1/δj+1

wj+1 ← wj+1/βj+1

end for
end procedure

Remark 4.15. Note that for computing wj+1 and vj+1 we only require αj , βj ,
βj+1, δj and δj+1. Hence, contrary to what happened for the Arnoldi Procedure,
not all the coefficients α, β and δ need to be stored for the whole algorithm.

The following proposition shows us that the vectors obtained are indeed bases
for the Kk and Lk spaces and that these bases are biorthogonal.
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Proposition 4.16 (Proposition 7.1 in [Saa03]). If Algorithm 4.14 does not
break down before step m, then the vectors

{
vi
}m
i=1

and
{
wj
}m
j=1

form a biorthogonal
system. Moreover, {vi}i is a basis of Kk(A, v1), and {vi}i is a basis of Kk(A⊺, w1).

There might be two reasons why δj+1 = 0. Either one of the vectors vj+1

or wj+1 is zero or they are orthogonal. The former case is not very worrying,
since it indicates convergence of the method and the finding of an exact solution.
The latter is quite inconvenient. However, some techniques exist to try to avoid
this scenario. Depending on the matrix (for example symmetric matrices) different
methods may be applied, giving rise to different systems. Many iterative methods
that use Lanczos biorthogonalization techniques actually solve Ax = b and A⊺x = b,
while requiring to multiply by both A and A⊺ at each iteration. Since we are only
focused in solving Ax = b, we have decided to use a method called Transpose-Free
Quasi-Residual Method, or TFQMR. It is quite robust and only requires one matrix
multiplication per iteration, hence since one of our bottlenecks is the product of a
matrix by a vector it is very convenient.

Algorithm 4.17 (TFQMR, an adaptation of Algorithm 7.8 in [Saa03]). This
algorithm is an adaptation suited for our computations.

procedure TFQMR(A, b, x0, TOL, M) ▷ M is the max number of iterates
w0 ← u0 ← r0 ← b−Ax0
τ0 ← ∥r0∥
θ0 ← η0 ← 0
ρ0 ← ⟨r0, r0⟩ ▷ Technically we can use another r̃0
for j ← 1, . . . ,M do

if j mod 2 = 0 then
αj+1 ← αj ← ρj

⟨vj ,r0⟩
uj+1 ← uj − αjvj

end if
wj+1 ← wj − αjAuj
dj+1 ← uj + (θ2j/αj)ηj
θj+1 ← ∥wj+1∥ /τj
cj+1 ← (1 + θ2j+1)

−1/2

τj+1 ← τjθj+1xj+1

ηj+1 ← c2j+1αj
xj+1 ← xj + ηj+1dm+1

if τj+1 ·
√
j + 1 <TOL then ▷ By Equation 7.83 in [Saa03]

return x ▷ ∥b−Axj∥ ≤ τj+1

√
j + 1

end if
if j mod 2 = 1 then

ρj+1 ← ⟨wj+1, r0⟩
βj−1 ← ρj+1/ρj−1

uj+1 ← wj+1 + βj−1um
vj+1 ← Auj+1 + βj−1(Auj + βj−1vj−1) ▷ Auj is already computed

end if
end for

end procedure

Remark 4.18. We have also tried using other methods like restarted GMRES
or BiCGSTAB, but the results have been quite lacklustre both in terms of speed
and in terms of convergence.
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4.3. Testing the Algorithm I: The Keller-GOPY and
Alsedà-Misiurewicz models

In this section we will compute the wavelet expansion and regularities of the
attractors given by the graph of φ : S1 → R for the systems we call the Keller-
GOPY and the Alsedà-Misiurewicz models (see Subsection 2.1.3). Recall that these
systems correspond to the systems for which we have existing analytical results
regarding the strangeness. For both systems we will compute the truncated wavelet
expansion (or the vector D as in Equation (4.5)) for various values of the parameters
σ and ε using Algorithm 4.8. To test the fitness of the expansion, we have recovered
the graph of the attractor using Equation 4.10 and comparing it to the values
obtained from Algorithm 4.5.

In all cases, we have used Daubechies wavelets with p = 10 vanishing moments.
This is done as a compromise between ease of computation (see Chapter 5) and the
ability to compute regularities as in Theorem 3.35. Regarding the regularity, results
for an interesting cohort of examples have been obtained by defining a dependence
ε(σ) so that whilst sweeping the parameter σ we can obtain results for different
values of ε. It should be remembered that for this systems what determines the
strangeness is the value ε = 0.

With all the obtained results we will proceed to compute the regularities of φ
for each system using Algorithm 3.38, that is by computing

s−j := log2

(
sup

0≤n≤2j−1

∣∣〈f, ψPER

−j,n
〉∣∣) ,

doing a linear fitting on the pairs (−j, s−j), and applying Theorem 3.35.

4.3.1. The Keller-GOPY model. In Subsection 2.1.2 we defined the Keller-
GOPY model as

(4.20)
(
θn+1

xn+1

)
= Fσ,ε(θn, xn) =

(
Rω(θn)

2σ tanh(xn) · (ε+ |cos(2πθn)|)

)
,

where ω =
√
5−1
2 . Recall that the name indicates that it is a particular instance

of the family of systems in which we can apply the results by Keller [Kel96], and
that the system chosen is entirely based on the GOPY model [GOPY84]. From
[Kel96] if ε = 0 we have that the set{

( i4 + nω (mod 1), 0) : n ∈ N, i ∈ {1, 3}
}

is both a subset of the attractor and is dense (and invariant) in x ≡ 0, which for
σ > 1 is a repellor.

On the other hand, if ε > 0 the system is not pinched and the attractor is
regular. Hence, the regularity is zero if ε = 0 and is positive if ε > 0 [AMR16].
Now, we would like to study how good are the approximations we have done. To
this end we have obtained an approximation of the attractor on dyadic points using
Algorithm 4.5 fixing the tolerance to be at least 10−32. Then, we have compared
this approximation with the one obtained from Equation (4.10). The results can
be found in Figure 4.4. One can see that the differences between the computed
attractor and the recovered from the wavelet expansion become much bigger for
ε = 0, i.e the system is pinched, hence the regularity is zero. For these cases,
however, when we zoom in the points where the errors are the greatest, we see
that those spots correspond to the pinched points (see Figure 4.10). Moreover, the
shape of the reconstructed attractor is still very similar to the one of the computed
attractor, but since the jump is so sudden, small differences lead to greater errors.
This is clearly visible in Figure 4.5.
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(a) ε = 0 (b) Errors for ε = 0

(c) ε = 0.05 (d) Errors for ε = 0.05

(e) ε = 0.1 (f) Errors for ε = 0.1

Figure 4.4. Comparisons for the Keller-GOPY system between
the computed attractor using Algorithm 4.5 and the one obtained
from the reconstruction in Equation (4.10). All plots correspond
to instances of System (2.5) with σ = 2. Figures (A), (C) and
(E) contain two plots. In red the one corresponding to the di-
rect approximation of the attractor using Algorithm 4.5. In blue
the one obtained by the reconstruction using Equation 4.10. For
both cases we have fixed ν = 20, that is 220 points and wavelet
coefficients. Figures (B), (D) and (F) correspond to the difference
Computed-Recovered. Note the change of scale between Figure (B)
and Figures (D) and (F). A closer look to this phenomenon can be
found in Figure 4.5.
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Figure 4.5. For the Keller-GOPY system for ν = 20, σ = 2
and ε = 0, zoom into the area of greatest difference between the
computed attractor and the recovered attractor in Figure 4.4 A
and D.

Furthermore, we want to study in a more or less qualitative manner how slight
changes in the values of σ and ε modify the wavelet expansion of the object. This is
crucial when it comes to considering using continuation techniques in the Newton
steps. In Figure 4.6 one can see that there is a big change between systems between
the case ε = 0 and ε > 0. On the other hand, if we fix ε a change on σ produces
mellower changes in the expansion. Hence, it seems that continuation should be
applied as long as one takes into account that the approximation to ε = 0 should be
done carefully. In Table 4.1 one can see a more quantitative presentation. Note that
as the system is less regular, the maximum value of the coefficients for the larger
computed values of j becomes bigger, while the values for smaller j increase with ε.
This is completely expected in the light of Theorem 3.35 and Remark 3.36. Finally,
we would like to compute the regularities of the attractors using Algorithm 3.38.
We have studied the regularities for the Keller-GOPY model using a parametric
sweep for σ ∈ [1.9, 2] and using the following parametrization for ε:

(4.21) ε(σ) =

{
0 if σ ≤ 2,

(σ − 2)2 if σ > 2.

Note that ε(σ) = 0 if σ ≤ 2, hence by Theorem 2.6 and Proposition 3.34 we
would expect the regularity to be zero for σ ∈ [1.9, 2], whilst it should be greater
than 0 whenever σ > 2. In Figure 4.7 one can see the computed regularity using
Algorithm 3.38 for various values of ν. Note that as the value of ν increases the
more pronounced the transition from non-zero regularity to zero regularity is, that
is, the behaviour is closer to what one would expect at the light of Example 3.33,
since Theorem 2.6 tells us that the attractor is the graph of a continuous function if
ε > 0 whilst it is upper semi-continuous for ε = 0. Finally, in Figure 4.8 one can see
the intermediate steps of Algorithm 3.38. For this system, the linear correlation is
very clear, as it can be seen by the high values of the Pearson correlation coefficient
r2.
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(a) σ = 1.95 and ε = 0 (b) σ = 2 and ε = 0

(c) σ = 1.95 and ε = 0.01 (d) σ = 2 and ε = 0.01

(e) σ = 1.95 and ε = 0.05 (f) σ = 2 and ε = 0.05

(g) σ = 1.95 and ε = 0.1 (h) σ = 2 and ε = 0.1

Figure 4.6. Representation of the computed value of D for ν =
10 and various values of σ and ε. Note the flattering of [D]ℓ for
larger values of ℓ as ε increases.
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(a) Computed regularity for various values of ν. Notice that the higher
the value of ν sharper the transition from positive regularity to regularity
zero.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1.9  2  2.1  2.2  2.3  2.4  2.5

ε

σ

(b) Plot of the parametriza-
tion given by Equa-
tion (4.21)

(c) Computed Lyapunov
exponent on the attrac-
tor using Algorithm 2.8 for
the parametrization given
by Equation (4.21)

Figure 4.7. Regularity computed from the wavelet coefficients
for different values of ν. Moreover, i n Figure (B) we have plotted
the parametrization (4.21) for the sake of clarity. In Figure (C)
one can find the Lyapunov exponent on the attractor along this
parametrization.
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 0.955
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 0.98

 0.985

 0.99

 0.995

 1

 1.9  2  2.1  2.2  2.3  2.4  2.5

r2

σ

(a) Computed Pearson correlation coefficient when computing the reg-
ularity through the linear fitting along ε(σ).

(b) Linear plot for σ =
1.9, the equation of the
regression line is y =
0.489x− 1.110.

(c) Linear plot for σ =
2.02, the equation of
the regression line is
y = 1.066x + 2.682.
This is the plot with
lowest correlation coef-
ficient

(d) Linear plot for σ = 2.5,
the equation of the regres-
sion line is y = 1.483x +
1.552.

Figure 4.8. For the Keller-GOPY system, Pearson correlation
coefficient of the linear fit required in Algorithm 3.38 to compute
the regularity corresponding to the parametrization ε(σ) given by
Equation 4.21. Moreover, three examples of the correlation corre-
sponding to local extrema of r2. In red the computed points, in
orange the computed linear regression.
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Table 4.1. Computed values of s−j for ν = 15, σ = 2, and various
values of ε. It is interesting to focus on the difference between the
values of s−j between ε = 0 and ε = 0.01. While for 0 ≤ j ≤ 8
the values are very similar, the situation changes for larger values
of j. Note, for example, that for j = 14 the value of s−14 for
ε = 0 is two orders of magnitude bigger than the one for ε = 0.01.
Moreover, this disparity is exclusive to the transition from ε = 0
to ε > 0, since the difference between other values of ε are not as
pronounced.

j ε = 0 ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.25
0 1.863285 1.972168 2.270392 2.567642 3.282877
1 0.664647 0.691259 0.742475 0.759416 0.733901
2 0.103665 0.115256 0.149286 0.188689 0.281358
3 0.195352 0.180068 0.148248 0.142602 0.125911
4 0.112117 0.114462 0.101045 0.089480 0.050348
5 0.096182 0.093136 0.055595 0.022944 0.010252
6 0.082908 0.047025 0.018986 0.012364 0.007496
7 0.039285 0.025321 0.012168 0.005657 0.002634
8 0.021483 0.013034 0.002136 0.001218 0.000761
9 0.023645 0.003753 0.001533 0.000757 0.000274
10 0.019941 0.001475 0.000275 0.000137 0.000081
11 0.012349 0.000518 0.000215 0.000107 0.000032
12 0.007805 0.000203 0.000065 0.000032 0.000011
13 0.006357 0.000069 0.000025 0.000012 0.000005
14 0.002564 0.000023 0.000005 0.000002 0.000002

4.3.2. The Alsedà-Misiurewicz System. What we call the Alsedà-Misiurewicz
[AM08] system is the following instance of System (2.1)

(4.22)
(
θn+1

xn+1

)
= Fσ,ε(θn, xn) =

(
Rω(θn)

4xn(1− xn)(ε+ σgθn(1− θn))

)
.

In Chapter 2 we have already introduced this system and have shown that there
exist analytical results that show the existence of an attractor that is strange pro-
vided ε = 0. As in the case of the Keller-GOPY model, we will start by comparing
the reconstructed attractor form the computed wavelet expansion and the approx-
imation of the attractor obtained with Algorithm 4.5. The results can be found in
Figure 4.9. We find similar phenomena as in the Keller-GOPY system regarding
the difference between the computed and reconstructed attractors when ε = 0. We
have added a zoom around the biggest difference in Figure 4.10, which parallels
Figure 4.5. The changes on the wavelet expansion corresponding to small changes
on ε and σ completely mimic the Keller-GOPY case. Hence, for the sake of brevity
we have not included their discussion here.

When it comes to computing regularities, we would like to validate the re-
sult that D. Romero obtained in [RiS15] using the Haar basis for the following
parametrization of ε(σ):
(4.23)

ε(σ) :=


− 3323299

500000 σ
2 + 60871083

2500000 σ −
34284691
1562500 if σ ∈ [1.6, 2.0),

(σ − 2.8)8 + 0.0005 if σ ∈ [2.0, 3.49),
366298374428641
861000000000000σ

2 − 7013481614144179
2152500000000000σ + 179131268100176321

28700000000000000 if σ ∈ [3.49, 3.9],

0 otherwise.
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(a) ε = 0 (b) Errors for ε = 0

(c) ε = 0.05 (d) Errors for ε = 0.05

(e) ε = 0.1 (f) Errors for ε = 0.1

Figure 4.9. Comparisons for the Alsedà-Misiurewicz system be-
tween the computed attractor using Algorithm 4.5 and the one
obtained from the reconstruction given by Equation (4.10). All
plots correspond to instances of System (2.6) with σ = 2. Figures
(A), (E) and (E) contain two graphs. In red the one corresponding
to the direct approximation of the attractor using Algorithm 4.5.
In blue the one obtained from the reconstruction given by (4.10).
For both cases we have fixed ν = 15, that is 215 points and wavelet
coefficients. Figures (B), (D) and (F) correspond to the difference
Computed-Recovered. Note the change of scale between Figure (B)
and Figures (D) and (F). A closer look around the points with
greater error can be found in Figure 4.10.
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Figure 4.10. For the Alsedà-Misiurewic system for ν = 15, σ = 2
and ε = 0, zoom into the area of greatest difference between the
computed attractor and the recovered attractor in Figure 4.4 A
and D.

The plot of ε(σ) can be found ind Figure 4.11(C). We have computed the wavelet
expansion doing a parametric sweep on σ and computed ε accordingly. Then,
using Algorithm 3.38 we have computed the regularity of the attractor. In Figure
4.11(A) one can find the computed regularity using ν = 20 as a function of σ.
Note that when ε becomes small the regularity decreases as well. Figure 4.12(A)
corresponds to the Pearson correlation coefficient obtained when computing the
regularities corresponding to Figure 4.11. Moreover, one can find some examples
of the linear correlation formed by −j and s−j corresponding to the intermediate
steps in Algorithm 3.38 in this case.

After the obtained results we conjecture that the attractor for these systems
is most likely regular. However, it is very complicated anyway, which limits the
information that a numerical approximation may provide.

4.3.3. Assessment of the Obtained Results. The study of these two sys-
tems can be understood as a proof of concept for the Algorithm. First of all,
because the recovery of the attractor from the wavelet expansion given by Equa-
tion 4.10 has been quite successful. Moreover, the fact that we have analytical
results regarding the existence of SNAs has allowed us to study the behaviour of
the wavelet expansion in and around the cases where we know that the attractor of
the system is strange. This has shown that the strategy of using the regularity and
Algorithm 3.38 to compute seems a good strategy to discern the cases in which the
attractor is the graph on an upper semi-continuous function, and hence strange.
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(a) Computed regularity for the attractor corresponding to the Alsedà-
Misiurewicz system

(b) The Lyapunov exponent of the
attractor as a function of σ and
ε(σ)

(c) Parametrization σ(ε)

Figure 4.11. Computed regularity of the attractor for the
Alsedà-Misiurewicz system. Moreover, information regarding the
parametrization used has also been included for the sake of clarity.

4.4. Testing the Algorithm II: The Nishikawa-Kaneko Model

In this section we finally venture into the unknown, since for this model we
have no analytical results that prove or disprove the strangeness. In this case
the perceived strangeness does not stem from the fact that part of the attractor
lies within an invariant repellor of the system (what we call pinching with respect
to x ≡ 0). In this case, the perceived strangeness comes from the fact that the
attractor seems to be becoming increasingly complicated, what the authors call a
fractalization. This is paired with the system being on the course of transitioning
from non-chaotic to chaotic.
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(a) Computed Pearson correlation coefficient when computing the reg-
ularity through the linear fitting along ε(σ).

(b) Linear plot for σ =
1.8460, the equation
of the regression line
is y = 1.535884x −
2.122176.

(c) Linear plot for σ =
2.8460, the equation
of the regression line
is y = 0.997386x −
0.639696.

(d) Linear plot for σ =
3.5000, the equation
of the regression line
is y = 1.430911x +
0.334801.

Figure 4.12. For the Alsedà-Misiurewicz system, Pearson cor-
relation coefficient of the linear fit required in Algorithm 3.38 to
compute the regularity corresponding to the parametrization ε(σ)
given by Equation (4.23). Moreover, three examples of the corre-
lation corresponding to local extrema of r2. In red the computed
points, in orange, the computed linear regression.

In this sense, the computations become extremely tricky. The vertical Lya-
punov exponent goes to zero (see Figure 4.13), meaning that the convergence to
the attractor becomes increasingly slower. This poses some issues for us. For
example, whenever we want to compute the seeds for the Newton method using Al-
gorithm 4.5 the amount of iterates required for convergence becomes quite large. In
this framework, rounding errors start playing a crucial role, sometimes completely
invalidating the results given by iteration. Since the matrix

ΨR −∆σ,εΨ
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(a) Computed Lyapunov expo-
nent for the Nishikawa-Kaneko at-
tractor for a parametric sweep on
ε around the area we studied.

(b) Zoom of the Lyapunov expo-
nent to the area around the tran-
sition from non-chaotic to chaotic
attractor. Note that the transition
happens at least twice in this im-
age. Mainly due to the sharp peak
right after ε = 0.157 and the sub-
sequent sharp dip that brings the
exponent below zero again. The
tolerance corresponding to these
computations is of around 10−16.

Figure 4.13. Computed value of the Lyapunov exponent for the
Nishikawa-Kaneko attractor using Algorithm 2.8.

is especially bad conditioned in this case (see Section 4.2.1 in this Chapter), ensure
that we have very good seeds for the Newton’s method. In particular, continuation
techniques have been unable to give consistent convergence of the method. What
is even worst, for most values, using iterative methods actually worsens results
compared to the ones given directly seed computed by Algorithm 4.5. Partially this
stems from the fact that this seed gives excellent approximations (see the second
column in Figure 4.14). Therefore, all the results here presented stem directly from
the seed given by Algorithm 4.5. Partially due to this fact, we have not yet been
able to obtain any wavelet expansions for what Nishikawa and Kaneko call a fractal
torus, that is for values 0.1553 < ε < 0.1573, because after around 0.1552 the seed
obtained by Algorithm 4.5 does not give good enough approximations. This might
be due to the fact that we have observed a slow but steady increase of the value of
the coefficients corresponding to higher frequencies for the values of ε leading up to
this point (see for example Figures 4.15 and 4.16). However, in any case this means
that we have not obtained interesting results while studying this system. First
of all, as in the previous two sections, we have recovered the attractor from the
wavelet expansion and compared the results approximation of the attractor using
Algorithm 4.5. The results can be found in Figure 4.14.

When it comes to computing regularities using Algorithm 3.38 we do see a huge
change with respect to the previous two examples. While we had very clear linear
correlations between −j and s−j = log2

(
maxn∈{0,...,2j−1}{d−j,n}

)
in the Keller-

GOPY system (Figure 4.8) and in the Alsedà-Misiurewicz sytem (Figure 4.12) this
is not the case for this system. In Figure 4.15 one can see the strange behavior that
we observe. For smaller values of ε one can see that the shape of the pairs (−j, s−j)
resembles a hockey stick. However, it seems that the flatter part corresponding to
larger values of j is only numerical noise, because we have tried to manually set all
the coefficients in this area to zero and the recovery of the attractor mostly remain
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(a) ε = 0.05 (b) Errors for ε = 0.05

(c) ε = 0.1 (d) Errors for ε = 0.1

(e) ε = 0.155 (f) Errors for ε = 0.155

Figure 4.14. Comparisons for the Nishikawa-Kaneko system be-
tween the computed attractor using Algorithm 4.5 and the one
obtained from the reconstruction given by Equation (4.10). All
plots correspond to instances of System 2.7 with σ = 3. Figures
(A), (C) and (E) contain two graphs. In red the one corresponding
to the direct approximation of the attractor using Algorithm 4.5.
In blue the one obtained from the reconstruction given by (4.10).
For both cases we have fixed ν = 25, that is 225 points and wavelet
coefficients. Figures (B) (D) and (F) correspond to the difference
Computed-Recovered. Note the change of scale between Figure (F)
and Figures (B) and (D), since (F) is closer to what is referred as
a fractal torus

unchanged. Hence, it would seem that the modulus of the coefficients becomes very
small very fast and that we are left with a sort of numerical noise baseline. Hence
to obtain the regularity for this points we would need to consider the slope of the
steeper part of the graph. However, as it can be seen in Figure 4.15 at around
ε ≈ 0.5 one sees that the behaviour starts to change. What what was previously
a hockey stick now becomes progressively more humpy, with a flatter part in the
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beginning and a more sudden drop. The interesting part about this is that the
flatter part becomes wider and wider as ε approaches 0.1551, the maximum value
for which we have been able to compute the wavelet expansion (see Figure 4.16).
In this case, the flatter part spans the first 21 coefficients. However, we still have
a change in slope after that point. Considering this behaviour, it would seem that
the move from non-strangeness to alleged strangeness is a process that starts with
the increase in value of the coefficients of low frequency, and that as ε increases
more and more of the coefficients corresponding to higher frequencies become larger.
However, contrary to what happened in Section 4.3 this is always a movement from
lower to higher frequencies, not a sudden jump in the higher frequencies.

(a) ε = 0.02 (b) ε = 0.05

(c) ε = 0.1 (d) ε = 0.155

Figure 4.15. Graphs of (−j, s−j) for the intermediate steps of
Algorithm 3.38 for the Nishikawa-Kaneko system. Note the start of
a Hump for ε ≈ 0.5 that becomes clearer as ε increases. The speed
in which the hump becomes more pronounced can be better seen in
Figure 4.16, where we have plotted this graphs for some coefficients
leading up to ε = 0.155 at once. The flatter tails correspond to
numerical noise, since we have set all the coefficients for large values
of j to zero and the recovery of the attractor barely changed.

All of this also begs the question, which slope one should take when applying
Algorithm 3.38, since either the slope of the flatter part or the slope of the steeper
part at each side of the hump would fall within the possibilities of Theorem 3.35.
However, provided that the behaviour for the higher frequency coefficient follows
the one observed in the steeper part, it would seem that the results obtained from
doing the linear fitting on this side are more optimal, since s would be larger.
Considering this, the results obtained can be found in Figure 4.16.



4.5. SOME COMMENTS ON THE RESULTS 89

ε regularity (flat) regularity (steep)
0.1545 0.234988 7.819649
0.1546 0.246864 6.162333
0.1547 0.135883 7.331269
0.1548 0.150465 5.815172
0.1549 0.095662 7.830169
0.1550 0.107555 8.414967
0.1551 0.107555 7.797493

Figure 4.16. A more careful look at the possible computations
of regularity regarding the Nishikawa-Kaneko model. Note the
disparity between the regularities computed using the steeper part
and the one computed with the flatter one. If one considered the
former as valid, then the attractor cannot be considered strange.
Otherwise, the regularity falls within the gray zone described in
Section 3.4 and we cannot decide anything.

4.5. Some comments on the results

When it comes to the computations, we would like to summarize some of
the problems and particularities that we have encountered and that are common
throughout all computations in this thesis.

First of all, regarding the bottlenecks in the computation we have mainly iden-
tified three of them:

(i) The computation of the initial seed of the system. The main reason is that
Algorithm 4.5 requires to iterate the function n0 times on each θi = i/N ,
which is dependent on the Lyapunov exponent. Hence, the reason of this
bottleneck is twofold. On one hand, if the Lyapunov exponent is small the
number of iterates n0 to obtain a good approximation might become very
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large. On the other hand, As N increases the number of points for which
this sampling must be done increases. Hence, at the end of the day one needs
to do n0 · N iterations to obtain a good approximation. For a Lyapunov
exponent of λφ ≈ − 0.01 (which is not out of the ordinary for the Nishikawa-
Kaneko system) n0 ≈ 5 · 105. On the other hand, if ν = 25, N = 2ν =
33, 554, 432. Hence, we might be talking of having to perform around three
trillion iterations for a single seed. Parallelization techniques might help, but
the computational time required is still demanding.

(ii) The product of a matrix and a vector. Despite our efforts to implement all the
matrix operations in an efficient manner, if we are dealing with very large N
the operations still take a very long time. Despite all the simplifications the
algorithm still scales close to O(N2), hence the times become very big very
fast. Partially this stems from the fact that the way we have decided to store
the matrices is optimized for reducing the storage required to save them, as
it can be seen in Annex A. This, however, imposes quite a few restrictions on
the matrix operations, since we need to recover a whole matrix from a fraction
of the information stored in it.

(iii) Lack of regularity complicates the convergence of the iterative solvers. As
we have commented in Subsection 4.2.1 as the system looses regularity the
matrices to be solved have worse condition numbers. Hence, the computation
tend to work flawlessly for more regular systems struggle quite a bit for the
non-regular case. Moreover, the seed given by Equation (4.14) does not per-
form as well for cases with lower regularity. So one might find oneself in a
position where a lot of time is dedicated to compute a mediocre seed for the
Newton method.

To try to deal with problems (i) and (iii), for the Keller-GOPY and Alsedà-
Misiurewicz systems we have resolved to use continuation techniques to obtain the
wavelet expansion, especially around ε = 0, but also for positive regularities. The
results are somewhat better, since we need to compute fewer new seeds for newton,
as the previous result works as a seed for the newer one. However, in light of what
has been shown in Figure 4.6 and Table 4.1, the approach must be done with very
fine steps, since around ε = 0 slight variations in the value of ε mean noticeable
changes in the wavelet expansion. On the other hand, as stated on Section 4.4 the
continuation approach has not given any meaningful results when dealing with the
Nishikawa-Kaneko model.

The system that requires furthest study, though, is the Nishikawa-Kaneko one.
We have been unable to find a good enough preconditioner to help solve the system
in a reliable manner. In fact, as stated in Subsection 4.4 all results have been ob-
tained directly from the seed. As already explained in Section 4.4, the seed has been
so good that it already gave an acceptable solution without any further iterations
(see for example Figure 4.14). It remains to be seen if a good preconditioner may
unlock the possibility of using continuation or further refinement the fractal torus
case.



CHAPTER 5

Computing the Wavelets Matrices

In this chapter we give a thorough explanation on how to compute the wavelet
matrices Ψ and ΨR from Chapter 3 Section 4.1. To this end we will present various
implementations of the Daubechies-Lagarias algorithm [DL91, DL92] suited to our
needs. This chapter has two main parts, one centred on evaluating a Daubechies
wavelet with p vanishing moments on dyadic points and another revolving on eval-
uating the same wavelet on a dyadic points plus an irrational rotation. To fully
understand this section one needs to have in mind the introduction to Daubechies
wavelets from Section 3.2.

An important note is that the results presented in this chapter, irrespective of
their theoretical interested, are implementation-focused. That is, they are presented
in a manner that facilitates their translation to any programming language. In
particular, since we are dealing with a large volume of computations and memory
usage the underlying assumption is that the programming language will be low-
level and compiled. In particular, we have used the C programming language for
the implementations. To this end, the main result of every section will have two
versions, a general one and, for lack of a better term, a dyadic one. This stems
from the fact that to evaluate the wavelet at a point x the Daubechies-Lagarias
algorithm requires for us to compute the dyadic expansion of {{2x}}. Since we
are mostly interested in dyadic rationals {{2x}}= m

2n , 0 ≤ m < 2n (or rotated
ones, but that is better left for Section 5.5), the dyadic expansion of {{2x}} can
be easily inferred from the binary expansion of m. Moreover, since our goal is an
implementation in C, the binary expansion of m is the default way the computer
storesm. Hence, using only very efficient bitwise operators one can do computations
that otherwise would be neither as easy nor as fast. In the case of rotated wavelet
values in Section 5.5, we have adapted the algorithm to compute ψPER

i,j (Rω(θ)) while
still being able to operate in the dyadic-as-integer frame. This however, turns out
to be more involved, and it is better left for a comprehensive discussion in that
section.

5.1. Notation and Definitions

For the sake of completeness within this chapter, let us fix some definitions
anew. By default we will consider that all vectors are written as column vectors.
Moreover # »

1k will denote the vector of dimension k with all its components equal to
1. We will use {{·}}, ⌈·⌉ and ⌊·⌋ to for the fractional part, the ceiling function and
the floor function respectively. Furthermore, let us recall some basic notions.

Definition 5.1 (Binary expansion). Let q ∈ N. Then we can write

q = aℓ2
ℓ + aℓ−12

ℓ−1 + · · ·+ a12 + a0.

with ai ∈ {0, 1}, 0 ≤ i < ℓ, and aℓ = 1. Note that q is odd if and only if a0 = 1.
The string

binary(q) := aℓaℓ−1 . . . a1a0

91
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is called the binary expansion of q. The length of the binary expansion is by
definition exactly ℓ + 1 and will be denoted by length(binary(q)). Observe that
length(binary(q)) ≤ ℓ if and only if q < 2ℓ+1.

Now, very closely related to the previous definition we have the definition of
the Dyadic expansion of a real number x ∈ [0, 1).

Definition 5.2 (Dyadic expansion). Given a real number x =
∑∞
i=1

ai
2i ∈ [0, 1)

with ai ∈ {0, 1} we will call the sequence a1a2 . . . an . . . the the dyadic expansion
of x and denote it by dyad(x). Also, dyad(x, i) = ai denotes the i-th digit of the
dyadic expansion of x. We say that 0 ≤ x < 1 is a dyadic rational if the dyadic
expansion is finite, i.e. x = m

2ν for some 0 ≤ m < 2ν .

Note that if x = m
2ν , for some ν ∈ N and 0 ≤ m < 2ν , then

dyad(x) = 0 . . .0 binary(m).

5.2. The Daubechies-Lagarias Algorithm

In this section we will introduce the Daubechies-Lagarias algorithm [DL91,
DL92]. This algorithm allows the computation of the value of a Daubechies wavelet
at an arbitrary point. As has been shown in Section 3.2 this is far from trivial. Since
the construction of the Daubechies wavelet family seek to minimize the support
for a given number of vanishing moments, these wavelets are not optimized for
computational ease.

Let ψ be an R-Daubechies wavelet with p > 1 vanishing moments with scaling
filter h. We define two (2p− 1)× (2p− 1) matrices M0 and M1, where

(M0)i,j =
√
2h[2i− j − 1] and (M1)i,j =

√
2h[2i− j]

for i, j ∈ {1, 2, . . . , 2p− 1}. Recall that we consider supp(h) = [0, 2p− 1].

Example 5.3. Consider the R-Daubechies wavelet with p = 2 vanishing mo-
ments. Then we have

h =

(
1 +
√
3

4
√
2
,
3 +
√
3

4
√
2
,
3−
√
3

4
√
2
,
1−
√
3

4
√
2

)
Hence we get the matrices

M0 =
√
2

h[0] 0 0
h[2] h[1] h[0]
0 h[3] h[2]

 =

 1+
√
3

4 0 0
3−

√
3

4
3+

√
3

4
1+

√
3

4

0 1−
√
3

4
3−

√
3

4

 , and

M1 =
√
2

h[1] h[0] 0
h[3] h[2] h[1]
0 0 h[3]

 =

 3+
√
3

4
1+

√
3

4 0
1−

√
3

4
3−

√
3

4
3+

√
3

4

0 0 1−
√
3

4

 .

Now we have all the tools required to prove the Daubechies-Lagarias main
result, which leads to the various algorithms we will use to evaluate wavelets on a
single point.

Theorem 5.4 (Theorem 2.2 and subsequent remarks in [DL92]). Let ϕ be the
scaling function of an R-Daubechies wavelet with p ≥ 1 vanishing moments. Then

(5.1) lim
n→∞

n∏
i=1

Mdyad(x,i)
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exists for every x ∈ [0, 1), and it is equal to
ϕ(x) ϕ(x) . . . ϕ(x)

ϕ(x+ 1) ϕ(x+ 1) . . . ϕ(x+ 1)
...

...
...

...
ϕ(x+ 2p− 2) ϕ(x+ 2p− 2) . . . ϕ(x+ 2p− 2)


Example 5.5. Following with Example 5.3, we can compute the products of

the M0 and M1 matrices for p = 2 from before. In particular we will compute the
limits of the products for x = 0 and x = 1

2 .
• x = 0, this means that dyad(x) = 0∞, by numerically approximating the

product of infinitely many matrices we obtain,

lim
n→∞

Mn
0 ≈

 0 0 0
1.3660254 1.3660254 1.3660254
−0.3660254 −0.3660254 −0.3660254

 .

• x = 1
2 , this means that dyad(x) = 10∞, by using the previous result we

obtain,

lim
n→∞

M1M
n
0 ≈

0.9330127 0.9330127 0.9330127
0 0 0

0.0669872 0.0669872 0.0669872

 .

Using Theorem 5.4 and Remark 3.8 (a) we can compute the value of ψ at an
arbitrary point.

Corollary 5.6. Let ψ be an R-Daubechies wavelet with p ≥ 1 vanishing mo-
ments and let h be its scaling filter. Then, for every x ∈ R we have

(5.2) ψ(x) = −(−1)d(x)
√
2

2p−1 u(x)
⊺

(
lim
n→∞

∏n

i=1
Mdyad({{2x}},i)

)
#»
1 ,

where d(x) = 1− ⌊2x⌋ ∈ Z, and

u(x)⊺ =
(
h[d(x)],−h[1 + d(x)], h[2 + d(x)], . . . ,−h[2p− 3+ d(x)], h[2p− 2+ d(x)]

)
.

Proof. Denote by Φ(x) the vector(
ϕ
(
{{2x}}

)
, ϕ
(
{{2x}}+1

)
, ϕ
(
{{2x}}+2

)
, . . . , ϕ

(
{{2x}}+2p− 2

))⊺
.

We have

ψ(x) =
√
2
∑
n∈Z

(−1)1−nh[1− n] ϕ(2x− n) Equation (3.10)

=
√
2
∑
n∈Z

(−1)1−n h[1− n] ϕ
(
{{2x}}+ ⌊2x⌋ − n

)
=
√
2
∑
m∈Z
−(−1)m+d(x) h

[
m+ d(x)

]
ϕ
(
{{2x}}+m

)
Re-indexing by
m = ⌊2x⌋ − n

= −(−1)d(x)
√
2

2p−2∑
m=0

(−1)m h
[
m+ d(x)

]
ϕ
(
{{2x}}+m

)
supp(ϕ) = [0, 2p− 1]

= −(−1)d(x)
√
2 u(x)⊺Φ(x) Matricial formula of scalar product

= −(−1)d(x)
√
2 u(x)⊺

(
1

2p−1

(
lim
n→∞

∏n

i=1
Mdyad({{2x}},i)

)
#»
1

)
Theorem 5.4

= −(−1)d(x)
√
2

2p−1 u(x)
⊺

(
lim
n→∞

∏n

i=1
Mdyad({{2x}},i)

)
#»
1 ,
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□

Definition 5.7. Note that in the evaluation of a Daubechies wavelet in Corol-
lary 5.6 there are two sides on the formula, hence it makes sense to give a proper
name to each half. On one hand we have the vector u(x). On the other hand, the
limit of products of matrices,

DL
(
{{2x}}

)
:= lim

n→∞

∏
Mdyad({{2x}},i),

which we will refer to as the matrix product at x.

Remark 5.8. Note that since we are dealing with Daubechies wavelets the
filter h has support equal to [0, 2p− 1]. Hence,

h[i+ d(x)] = 0 whenever i+ d(x) /∈ [0, 2p− 1].

5.3. How to Compute the Value of a Daubechies Mother Wavelet for
all Dyadic rationals

In this section we will explore a very fast implementation of the Daubechies-
Lagarias algorithm stemming from Corollary 5.6 to evaluate a Daubechies mother
wavelet on dyadic points. For us, this works mostly as a motivation for the next
sections, in which we will compute the values of periodized wavelets on the same
set of dyadic points. However, we feel that this implementation is useful on its
own right: many implementations in which wavelet values need to be computed
at an arbitrary point simply use the cascade algorithm [Dau92] to obtain a the
wavelet value on a dyadic mesh and then use interpolation [Boo]. We believe that
the implementation of this algorithm might lead to much lower computation times
while having a higher precision. For our implementation on obtaining the wavelet
expansions of SNAs, obtaining the wavelet value at a point with maximum precision
was a top priority, therefore we chose a Daubechies-Lagarias implementation over
the cascade algorithm. However, it turned out that the computations became
extremely fast in the process.

5.3.1. How to efficiently approximate the matrix products for dyadic
x’s. In this subsection we shall see how to efficiently compute the matrix products
for x, i.e.

DL
(
{{2x}}

)
= lim
n→∞

∏
Mdyad({{2x}},i)

when x is a dyadic rational. Let us first formalize this notion of dyadic rationals of
order ν.

Definition 5.9. Let ν ∈ N. We define the set of dyadic rationals of order ν
as the set{ r

2ν
: 0 ≤ r < 2ν

}
= {0} ∪

{
2mq

2ν
: 0 ≤ m < ν, q ∈ N odd, and 2mq < 2ν

}

As we already have stated in the introduction to this chapter, in the case of
dyadic rationals of order ν computing dyad({{2x}}, i) is equivalent to computing the
ith element of binary(2m+1q).

Moreover, note that we only need to concern ourselves with x ∈
[
0, 12

)
, since any

number x can be written as x = ⌊x⌋ + {{x}}, hence {{2x}}= {{2{{x}}}}. Moreover,
since {{2

(
x+ 1

2

)
}}= {{2x}}= 2x, it follows that for x ∈

[
0, 12

)
the matrix product

at x equals the matrix product at x+ℓ+ 1
2 , ℓ ∈ Z. Therefore, if we want to compute
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the matrix product at x for all dyadic rationals we only need to compute the matrix
product for x = 0 and for

(5.3) x =
2mq

2ν
<

1

2
=

2ν−1

2ν

Remark 5.10. Note that 2mq < 2ν−1 implies that m < ν−1 and q < 2ν−m−1.
Therefore

length(binary(q)) = ℓ+ 1 ≤ ν −m− 1.

Under the assumption of Equation (5.3), we have that{{
2

(
2mq

2ν

)}}
=

2m+1q

2ν
=

q

2ν−m−1
.

Hence we can write the dyadic expansion of {{2x}} as

(5.4) 0λ(q,m,ν)1al−2 · · · a1a00∞,

where 0λ(q,m,ν) is a sequence of λ(q,m, ν) = (ν − 1) − (m + length(binary(q))) ≥ 0
zeros, l = length

(
binary(q)

)
and binary(q) = 1al−2al−3 · · · a1a0, and 0∞ denotes an

infinite sequence of zeros. Now, we have enough information to compute the matrix
products for any x ∈ [0, 1/2).

(5.5) DL
(
{{2x}}

) #»
1 = lim

n→∞
Mdyad(2x,0) ·Mdyad(2x,1) · · ·Mdyad(2x,n) ·

#»
1 =

M
λ(q,m,ν)
0 ·M1 ·Mal−2

·Mal−3
· · ·Ma1 ·Ma0 ·

(
lim
n→∞

Mn
0 ·

#»
1
)
.

Since the matrix M0 has 1 as a simple dominant eigenvalue (Theorem 2.2 in
[DL92]) by the power method we have that

lim
n→∞

Mn
0

#»
1 =

#»

V(0) =
#»

V(0).

Where
#»

V(0) is an eigenvector of eigenvalue 1 such that

#»
1 =

#»

V(0) +

2p−2∑
i=1

ci
#»

Vi(0),

where ci ∈ R and
#»

Vi(0) are the other eigenvectors of M0. Now we can rewrite
Equation (5.5) as

DL
(
{{2x}}

) #»
1 = M

λ(q,m,ν)
0 ·M1 ·Mal−2

·Mal−3
· · ·Ma1 ·Ma0 ·

#»

V(0).(5.6)

In particular when x = 0 we get

(5.7) DL(0)
#»
1 == lim

n→∞
Mn

0 ·
#»
1 =

#»

V(0).

Note that a possible conclusion of this subsection is that if one divides the real line
by semi-integer intervals (i.e. . . . , [−n,−n + 1/2), . . . , [0, 1/2), [1/2, 1), . . . , [n, n +
1/2), . . . ) the information given by DL

(
{{2x}}

)
is the same for each interval, since

given y ∈ supp(ψ) it can be written as either y = x + 1
2 + ℓ or y = x + ℓ with

x ∈ [0, 1/2) and ℓ ∈ {1− p, 2− p, . . . ,−1, 0, 1 . . . p− 1, p} we have,

DL
(
{{2y}}

)
= lim
n→∞

∏n

i=1
Mdyad({{2y}},i) =

lim
n→∞

∏n

i=1
Mdyad({{2x}},i) = DL

(
{{2x}}

)
.

(5.8)

In a way, the matrix products only care about the (semi-)fractional part of x. As we
shall see in the following subsection, it will be the vector u(x) that will contain the
information regarding the (semi-)integral part of x. Hence, splitting Corollary 5.6
into two parts, one for the matrix products and another one for the vectors u, is not
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only done for convenience, but it points to a deeper duality within the computation
of wavelets.

5.3.2. How to compute the vector u(x). Only the vector u(x) remains to
be computed in order to be able to evaluate the mother Daubechies wavelet at a
point x. As we will see, u(x) complements the information missing in the matrix
products, because it is where de dependence on the (semi-)integral part of x is
found.

Recall that a Daubechies wavelet ψ with p vanishing moments has support
exactly [1− p, p] (Theorem 3.10). As we saw in the previous subsection, it is useful
to divide the whole support of the wavelet in intervals of length 1

2 :

supp(ψ) =[1− p, p] =
p−1⋃
ℓ=1−p

[ℓ, ℓ+ 1) ∪ {p}

=

p−1⋃
ℓ=1−p

(
{ℓ} ∪

(
ℓ, ℓ+ 1

2

)
∪
[
ℓ+ 1

2 , ℓ+ 1
))
∪ {p}.

In the previous subsection we have already seen that DL
(
{{2y}}

)
, y ∈ supp(ψ) only

depends on the (semi-)fractional part of y. Hence, we shall focus on the computation
of u(y). First we need to compute the values of d(y) in terms of x ∈

[
0, 12

)
and

ℓ, where either y = x + ℓ or y = x + ℓ + 1
2 . Recall that d(y) = 1 − ⌊2y⌋ is as in

Corollary 5.6.

d(x+ ℓ) = 1− ⌊2x+ 2ℓ⌋ = 1− ⌊2x⌋ − 2ℓ = 1− 2ℓ = d(ℓ), and

d
(
x+ 1

2 + ℓ
)
= 1− ⌊2x+ 1 + 2ℓ⌋ = −⌊2x⌋ − 2ℓ = −2ℓ = d

(
1
2 + ℓ

)
.

It is to be observed that the value of d(y) depends only on the semi-integral subin-
terval in which it is found. In particular, the term −(−1)d(y) will be positive if
y = x+ ℓ and negative if y = x+ ℓ+ 1

2 . Finally, by the definition of u(x) stated in
Corollary 5.6 we get

u(x+ ℓ)⊺ =
(
h[d(x+ ℓ)],−h[1 + d(x+ ℓ)], . . . , h[2p− 2 + d(x+ ℓ)]

)
=
(
h[1− 2ℓ],−h[2− 2ℓ], . . . , h[2p− 1− 2ℓ]

)
= u(ℓ)⊺, and

u
(
x+ 1

2 + ℓ
)⊺

=
(
h[−2ℓ],−h[1− 2ℓ], . . . , h[2p− 2− 2ℓ]

)
= u

(
1
2 + ℓ

)⊺
.

(5.9)

Then, by Corollary 5.6 and its proof, and the results from the previous subsec-
tion we get

Corollary 5.11 (To Corollary 5.6). Let ψ be an R-Daubechies wavelet with
p ≥ 1 vanishing moments and let h be its scaling filter. Then, for every ℓ ∈ Z and
x ∈

(
0, 12

)
we have

ψ(ℓ) =
√
2

2p−1 u(ℓ)
⊺ #»

V(0),

ψ(x+ ℓ) =
√
2

2p−1 u(ℓ)
⊺

(
lim
n→∞

∏n

i=1
Mdyad(2x,i)

)
#»
1 ,

ψ
(
1
2 + ℓ

)
= −

√
2

2p−1 u
(
1
2 + ℓ

)⊺ #»

V(0), and

ψ
(
x+ 1

2 + ℓ
)
= −

√
2

2p−1 u
(
1
2 + ℓ

)⊺(
lim
n→∞

∏n

i=1
Mdyad(2x,i)

)
#»
1 .

Note that this Corollary clearly shows the dichotomy with which we ended the
last subsection. On one hand, the matrix products give us the information about
the fractional (or the halftional, in a sense) part of the value of the wavelet, while
the vector u(x) gives the information on the postion of x within the vector [1−p, p].
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Example 5.12. Now that we have all to tools to compute the value of a
Daubechies wavelet at a point, let us finally compute ψ

(
1
4

)
for ψ with two vanisi-

hing moments (we simply follow through with Examples 5.3 and 5.5). First of all,
we have already computed limn→∞

∏n
i=1 Mdyad(2x,i) in Example 5.5, since 2x = 1

2
in our case.

As for the for the vector u(0) since d
(
1
4

)
= 1−

⌊
1
2

⌋
= 1

u

(
1

4

)⊺

= u(0)⊺ = (h[1],−h[2], h[3])

=

(
3 +
√
3

4
√
2
,
3−
√
3

4
√
2
,
1−
√
3

4
√
2

)
.

Hence

ψ

(
1

4

)
=

√
2

3

(
3 +
√
3

4
√
2
,
3−
√
3

4
√
2
,
1−
√
3

4
√
2

)0.9330127 0.9330127 0.9330127
0 0 0

0.0669872 0.0669872 0.0669872

 1⃗

≈1.0915063.

As a comparison, the BoostC++ [Boo] library implementation gives a value of
ψ
(
1
4

)
= 1.0915063

5.3.3. Algorithm to compute ψ by using Corollary 5.11 and Equa-
tion (5.6). Finally, we are able to give the outline of our algorithm to compute
the wavelet values on all the dyadic points at once. This will be done by carefully
re-using as many computations as possible. This allows us to plot any Daubechies
mother wavelet or store these values to do further computations or interpolations.
In particular, since we have that

ψj,n(x) = 2−j/2ψ

(
x− 2jn

2j

)
it follows that if x = m

2ν , then x−2jn
2j = m−2j+νn

2j+ν , which is still a dyadic rational.
Hence the values of ψj,n(x) on a dyadic rational, can be computed more or less
directly by having a mesh of values of ψ(x) on dyadic rationals of order 2j+ν (recall
that j might be negative, hence j + ν < ν). Even though we will not be using this
strategy it may be useful to keep it in mind.

When it comes to the actual implementation of Corollary 5.6 as an algorithm,
we need to take into account that by Equation (5.8) DL

(
{{2x}}

)
= DL

(
{{2y}}

)
if

x−y = k 1
2 , for some k ∈ Z. Hence, our goal is to compute DL

(
{{2x}}

)
for all dyadic

x ∈ [0, 1/2) and then multiply them for the various u(ℓ) and u
(
ℓ+ 1

2

)
as needed

to obtain all the dyadic points within the support. Moreover, we will compute the
matrix products DL

(
{{2x}}

)
as efficiently as possible. Recall that from (5.3) we

have to compute the dyadic expansion of all numbers of the form
2mq

2ν
=

q

2ν−m
, where m < ν and q < 2ν−m−1.

For this numbers one can compute This leads to one of the most important simpli-
fications. Note that if we have two numbers x1 = 2mq

2ν and x2 = 2m
′
q

2ν , with m < m′

then by equation (5.4) we have

dyad(x1) =
m−m′︷ ︸︸ ︷
0 . . .0

λ(q,m′,ν)︷ ︸︸ ︷
0 . . .0 1al−2 · · · a1a00∞, and

dyad(x2) = 0 . . .0︸ ︷︷ ︸
λ(q,m′,ν)

1al−2 · · · a1a00∞,
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recall that λ(q,m, ν) = (ν − 1 − (m + length(binary(q)))) is as in (5.4), i.e., the
number of initial zeroes of dyad

(
2mq
2ν

)
. Therefore, a good strategy is to compute

the matrix product for mmax, the m such that λ(q,mmax, ν) = 0. This is done by
simply setting

(5.10) mmax = (ν − 1)− length(binary(q))

This stems from the fact that for any n ∈ Z+ we have

2length(binary(n))−1 ≤ n < 2length(binary(n)), and also

length
(
binary

(
2mn

))
= m+ length(binary(n)).

Hence, the equality mmax + length(binary(q)) = ν − 1 is equivalent to mmax being
the largest m for which 2mq < 2ν−1 (thus 2mq

2ν < 1
2 ). Therefore, in the case when

m = mmax the matrix product is simply

M1 ·Mal−2
·Mal−3

· · ·Ma1 ·Ma0

#»

V(0).

with binary(q) = 1al−2al−3 · · · a1a0. Recall that the contribution of M∞
0 has been

simplified by the use of the vector
#»

V(0) in Equation (5.6).
Once the matrix product for mmax has been computed for 0 ≤ m < mmax we

have that our matrix product will be

(5.11) Mmmax−m
0 M1 ·Mal−2

·Mal−3
· · ·Ma1 ·Ma0

#»

V(0)︸ ︷︷ ︸
Matrix products for mmax

.

Thus the strategy is to compute the matrix products for mmax and then obtain all
the others by iteration on m by simply multiplying the previous product by M0 on
the left.

Then, by the dichotomy between matrix products and the vector u we simply
need to multiply the resulting matrix product by the suitable u(ℓ) or u

(
ℓ + 1

2

)
.

Finally, to obtain the wavelet value on any 2mq
2ν + ℓ or 2mq

2ν + ℓ + 1
2 we simply

multiply the result by ±
√
2

2p−1 .

Algorithm 5.13 (Computation of ψ(y) for all y ∈ supp(ψ), y dyadic of order
ν.). This algorithm corresponds to the efficient implementation of Corollary 5.6.

Initialize: pre-compute the vectors u(ℓ) and u
(
1
2 + ℓ

)
for ℓ = 1 − p, . . . , p − 1 using

(5.9).
Initialize: pre-compute 2ν and the coefficient

√
2

2p−1

Step 0: Compute ψ(ℓ) and ψ
(
1
2+ℓ

)
for ℓ = 1−p, . . . , p−1 by using Corollary 5.11.

Initialize: q = 1
Step 1: Compute the Daubechies–Lagarias Products Vector

(5.12) #  »
DL(q) := M1 ·Mal−2

·Mal−3
· · ·Ma1 ·Ma0 ·

#»

V(0)

with binary(q) = 1al−2al−3 · · · a1a0. Moreover, by Equation (5.10) set

mmax = (ν − 1)− length(binary(q))
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Step 2: Compute ψ(x + ℓ) and ψ
(
x + 1

2 + ℓ
)

with x = 2mmaxq
N for the integers

ℓ = 1− p, . . . , p− 1, using Corollary 5.11 by

ψ(x+ ℓ) =
√
2

2p−1u(l) ·
(

lim
n→∞

n∏
i=1

Mdyad(2x,i)

)
#»
1

=
√
2

2p−1u(ℓ) ·
#  »
DL(q) and,

ψ

(
x+ ℓ+

1

2

)
= −

√
2

2p−1u

(
ℓ+

1

2

)
·
(

lim
n→∞

n∏
i=1

Mdyad(2x,i)

)
#»
1

= −
√
2

2p−1u

(
ℓ+

1

2

)
· #  »
DL(q).

The last equality holds due to Equations (5.6) and (5.10).
Step 3: For every m = mmax − 1,mmax − 2, . . . , 0 (if any) set

#  »
DL(q) = M0

#  »
DL(q).

Then compute ψ(x + ℓ) and ψ
(
x + 1

2 + ℓ
)

with x = 2mq
N for the integers

ℓ = 1− p, . . . , p− 1, using Corollary 5.11 with

ψ(x+ ℓ) =
√
2

2p−1u(l) ·
(

lim
n→∞

n∏
i=1

Mdyad(2x,i)

)
#»

V(0)

=
√
2

2p−1u(ℓ) ·
#  »
DL(q) and,

ψ

(
x+ ℓ+

1

2

)
= −

√
2

2p−1u

(
ℓ+

1

2

)
·
(

lim
n→∞

n∏
i=1

Mdyad(2x,i)

)
#»

V(0)

= −
√
2

2p−1u

(
ℓ+

1

2

)
#  »
DL(q).

This follows because

λ(q,m− 1, ν) = λ(q,m, ν) + 1.

Iterate: q ← q + 2; if q < 2ν−1 goto Step 1

An efficiency comment to Step 1: The Compact Binary Expansion of an
odd positive integer q is a triplet

(
lb, κ, (b1, b2, . . . , bκ)

)
where κ ≥ 1 is odd, lb =∑κ

i=1 bi and the numbers bi are positive integers such that

binary(q) = 1bκ0bκ−11bκ−2 · · ·0b21b1 ,
where 0bi (respectively 1bi) is a block of bi consecutive 0’s (respectively 1’s). Ob-
serve that the Compact Binary Expansion of an odd number is always well defined
and lb = length

(
binary(q)

)
.

By using Compact Binary Expansions we can write:
#  »
DL(q) := M1 ·Maκ−2

·Maκ−3
· · ·Ma1 ·Ma0 ·

#»

V(0) =

Mbκ
1 ·M

bκ−1

0 ·Mbκ−2

1 · · ·Mb2
0 ·M

b1
1 ·

#»

V(0)

Moreover, the computation of λ(q,m, ν) becomes almost trivial, since

λ(q,m, ν) = (ν − 1)− (m+ lb).

Now, mmax = (ν − 1) − lb is trivial to compute. Moreover, we can greatly
improve computation times by using pre-computed powers of the matrices M0 and
M1. We believe that it is worth to store Mn

0 and Mn
1 for n = 1, 2, . . . , ν − 2. We

are well aware that this leads to an increase in the usage of memory. However,
considering that M0 and M1 have dimension (2p− 1)× (2p− 1) and that our final
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goal is to compute the two 2ν × 2ν wavelet matrices, the a remarkable increase in
speed that follows from the storage of the powers Mn

0 and Mn
1 for n = 1, 2, . . . , ν−2

trumps any slight (in comparison) increase in memory requirements.

5.4. Evaluating Periodized Wavelets on Dyadic Points

Until now we have been dealing with computing the Daubechies mother wavelet
ψ on dyadic points. However, in Chapter 3 we mostly work with periodized wavelets,
ψPER
j,n , see Section 3.3. Nevertheless, the results from the previous section will be

fundamental for our purposes. We will study two cases, in Subsection 5.4.1 we
focus on the periodized wavelet ψPER = ψPER

0,0 , in which the dichotomy between the
vector u and the matrix products is not as obvious. In fact the vector u will be
trivial. In Subsection 5.4.2 we are interested in computing ψ−j,n, with j ≥ 1 and
n ∈ {0, . . . 2j − 1}, where the dichotomy will come back in full force.

5.4.1. The Periodized Mother Wavelet ψPER. In this subsection we will
give an algorithm to compute

ψPER(θ) = ψPER

0,0 (θ) = ψPER

0 (θ) for every θ ∈ S1 = [0, 1).

To this end, we will apply the Daubechies-Lagarias algorithm and give an adapta-
tion of Algorithm 5.13 for the particular case of the periodized wavelet.

Corollary 5.14. Let ψ be an R-Daubechies wavelet with p ≥ 1 vanishing
moments. Then, for every θ ∈ S1,

ψPER(θ) =
∑
ℓ∈Z

ψ(θ + ℓ) =

p−1∑
ℓ=1−p

ψ(θ + ℓ) =

= −(−1)d(θ)
√
2

2p−1

(
p∑

ℓ=1−p

u(θ + ℓ)

)⊺
DL({{2θ}}) #»

1 .

Proof. The first equality is the definition of periodized wavelets as in Equa-
tion (3.18). The second equality follows from Lemma 3.24. The last equality is a
direct consequence of Corollary 5.11 and the following two facts. On one hand, we
have that {{2(θ+ ℓ)}}= {{2θ}}. On the other, by the definition of d(x) we have that

(5.13) d(θ + ℓ) = 1− ⌊2θ + 2ℓ⌋ = d(θ)− 2ℓ,

hence (−1)d(θ+ℓ) = (−1)d(θ). □

Now, let us introduce a technical proposition that will allow us to simplify the
computations down the line.

Proposition 5.15. Let ψ be an R-Daubechies wavelets with more than p ≥ 1
vanishing moments. Then the following hold:

(a) For every θ ∈
[
0, 12

)
,

∑
ℓ∈Z

u(θ + ℓ) =

√
2

2
# »ua

2p−1
=
∑
ℓ∈Z

u
(
θ + 1

2 + ℓ
)
,

where # »ua⊺
2p−1

denotes the row vector (1,−1, 1,−1, . . . ,−1, 1) of dimension 2p−1.
(b) ψPER(θ) = −ψPER

(
θ + 1

2

)
for every θ ∈

[
0, 12

)
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Proof. To prove (a), let us denote the i-th component of u(θ) as ui(θ) =
(−1)ih[i+ d(x)], i ∈ {0, 1, . . . , 2p− 2}. Then, by Remark 3.8 (b)∑

ℓ∈Z
ui
(
θ + ℓ

)
=
∑
ℓ∈Z

(−1)i h
[
i+ d(θ + ℓ)

]
Equation(5.13)

= (−1)i
∑
ℓ∈Z

h
[
i+ d(θ)− 2ℓ)

]
Equation(3.11)

= (−1)i
√
2

2

= (−1)i
∑
ℓ∈Z

h
[
i+ d(θ)− 1− 2ℓ)

]
Equation(3.11)

=
∑
ℓ∈Z

(−1)i h
[
i+ d

(
θ + 1

2 + ℓ
)]

since d
(
θ + 1

2

)
= d(θ) − 1

=
∑
ℓ∈Z

ui
(
θ + 1

2 + ℓ
)
.

Finally, (b) follows directly from (a), Corollary 5.14, and the fact that d
(
θ + 1

2

)
=

d(θ)− 1. □

Note that form Proposition 5.15(b) it follows that to compute ΨPER(θ) for every
θ ∈ S1 we only need to compute the values of ψPER(θ) for θ ∈

[
0, 12

)
.

Notice that d(θ) = 1−⌊2θ⌋ = 1 whenever θ ∈
[
0, 12

)
. Hence, from Corollary 5.14

and Proposition 5.15 we get

Corollary 5.16. Let ψ be an R-Daubechies wavelet with p ≥ 1 vanishing
moments. Then, for every θ ∈

[
0, 12

)
,

ψPER(θ) = 1
2p−1

# »ua⊺
2p−1

DL
(
{{2θ}}

) #»
1 .

Moreover, we can re-write the corollary by considering θ to be a dyadic rational
of the form 2mq

2ν , that is, we only need to compute binary(q) when it comes to dyad(θ).
Hence, from Equations (5.6) and (5.7), we get

Corollary 5.16 (Dyadic version). Let ψ be an R-Daubechies wavelet with
p ≥ 1 vanishing moments. Then,

ψPER(0) = 1
2p−1

# »ua⊺
2p−1

#»

V(0),

and for every ν ∈ N \ {1}, m ∈ {0, 1, . . . , ν − 2} and q < 2(ν−1)−m odd,

ψPER

(
2mq

2ν

)
= 1

2p−1
# »ua⊺

2p−1

(
M

λ(q,m,ν)
0 ·M1 ·Maℓ−2

·Maℓ−3
· · ·Ma1 ·Ma0 ·

#»

V(0)
)
,

where binary(q) = 1aℓ−2aℓ−3 · · · a1a0 and λ(q,m, ν) = (ν−1)−
(
m+length(binary(q))

)
.

Now we have all the information to be able to provide an adaptation of Algo-
rithm 5.13 to the periodized wavelet. That is, on the computation of the dyadic
expansion of odd integers q and then computing mmax for each q. The computation
of all the other 0 ≤ m < mmax then follows. Note that most of the notation and
ideas behind the algorithm (such as mmax and using odd qs) correspond to the ones
in Algorithm 5.13, therefore they will not be repeated here.

Algorithm 5.17 (Computation of ψPER(θ) for dyadic θ ∈ S1). This algorithm
is the implementation of Corollary 5.14 following the structure and techniques of
Algorithm 5.13.
Step 0: Compute ψPER(0) = 1

2p−1
# »ua⊺

2p−1

#»

V(0).

Initialize: set q = 1
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Step 1: Compute the Daubechies–Lagarias Products Vector
#  »
DL(q) := M1 ·Maℓ−2

·Maℓ−3
· · ·Ma1 ·Ma0 ·

#»

V(0)

with binary(q) = 1aℓ−2aℓ−3 · · · a1a0. Compute also

mmax := (ν − 1)− length(binary(q)).

Step 2: Compute

ψPER

(
2mmaxq

2ν

)
= 1

2p−1
# »ua⊺

2p−1

#  »
DL(q).

Step 3: For every integer m = mmax − 1,mmax − 2, . . . , 0 (if there exists any)
re-define #  »

DL(q) = M0
#  »
DL(q) and compute

ψPER

(
2mq

2ν

)
= 1

2p−1
# »ua⊺

2p−1

#  »
DL(q).

Iterate: q ← q + 2; if q < 2ν−1 goto Step 1

5.4.2. The Periodized Wavelets ψPER
−j,n for j ≥ 1. When it comes to evalu-

ating ψPER
−j,n on dyadic points for j ≥ 1 the dichotomy between u(θ) and the matrix

products DL
(
{{2θ}}

)
comes back in full force. However, in this case instead of di-

viding the support in sub-intervals of size 1
2 , S1 ≡ [0, 1) is divided into subintervals

of length 1
2j . Even though the vector u now will depend on j and n, we will be able

to give general formulae for their computation. First, let us start with a corollary
of Proposition 3.22 to remind us of the self-similarities of the periodized wavelets.

Corollary 5.18 (of Proposition 3.22). Let ψ be an R-Daubechies wavelet with
p ≥ 1 vanishing moments. Then, for every θ ∈

[
0, 1

2
j

)
, j ∈ {1, . . . , J}, and n ∈

{0, 1, . . . , 2j − 1},

ψPER

−j,n(θ) = ψPER

−j,mod
(
n+k,2j

)(θ + k

2
j

)
for every k = 1, 2, . . . , 2j − 1.

Remark 5.19. Implementation-wise this is a crucial lemma. As shown in
Remark 4.10, it allows us to slash the computation times and storage required for
the matrices, since for any j and ν fixed, the columns of the block of size 2ν × 2j

starting at the column 2j are merely permutations of the same column. Hence,
both when computing these blocks and when it comes to storing them, we only
need to handle any one of the 2j columns involved. Therefore, the efficiency per
block both in terms of memory usage and computation-wise is increased by a factor
of 2j , which for large values of j is remarkable.

Now we need the analogue of Corollary 5.14 to deal with the effective compu-
tation of ψPER

−j,n at the dyadic points.
In what follows we set

(5.14)
#»

uj(a) :=
∑
ℓ∈Z

u
(
2jℓ− a

)
Corollary 5.20. Let ψ be an R-Daubechies wavelet with p ≥ 1 vanishing

moments and let ν ∈ N \ {1}, j ∈ {1, . . . , ν − 1} and n ∈ {0, 1, . . . , 2j − 1}. Then
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for every θ ∈
(
0, 1

2
j+1

)
,

ψPER

−j,n(0) =

√
2
j+1

2p− 1

#»

uj(n)⊺
#»

V(0),

ψPER

−j,n(θ) =

√
2
j+1

2p− 1

#»

uj(n)⊺
(

lim
n→∞

∏n

i=1
Mdyad(2j+1θ,i)

)
#»
1 ,

ψPER

−j,n
(

1

2
j+1

)
= −
√
2
j+1

2p− 1

#»

uj
(
n− 1

2

)⊺ #»

V(0), and

ψPER

−j,n
(
θ + 1

2
j+1

)
= −
√
2
j+1

2p− 1

#»

uj
(
n− 1

2

)⊺(
lim
n→∞

∏n

i=1
Mdyad(2j+1θ,i)

)
#»
1 ,

Now, we can write what we call the dyadic version of the previous corollary.
Recall that in this case we are interested in the case when θ is a dyadic rational
and hence we can explicitly compute its dyadic expansion in terms of the binary
expansion of an integer.

Corollary 5.20 (Dyadic version). Let ψ be an R-Daubechies wavelet with p ≥
1 vanishing moments, let ν ∈ N \ {1}, j ∈ {1, . . . , ν − 1} and n ∈ {0, 1, . . . , 2j − 1},
and let 2mq

2ν be a dyadic rational in the interval
(
0, 1

2
j+1

)
, where m ∈ Z+ and q ∈ N

is odd. Then,

ψPER

−j,n

(2mq
2ν

)
=

√
2
j+1

2p− 1

#»

uj(n)⊺(
M

λ(q,m+j,ν)
0 ·Mbκ

1 ·M
bκ−1

0 · · ·Mb2
0 ·M

b1
1 ·

#»

V(0)
)
, and

ψPER

−j,n

(2mq
2ν

+ 1

2
j+1

)
= −
√
2
j+1

2p− 1

#»

uj
(
n− 1

2

)⊺
(
M

λ(q,m+j,ν)
0 ·Mbκ

1 ·M
bκ−1

0 · · ·Mb2
0 ·M

b1
1 ·

#»

V(0)
)
,

where
(
lb, κ, (b1, b2, . . . , bκ)

)
is the Compact Binary Expansion of q (more concretely

binary(q) = 1bκ0bκ−1 · · ·0b21b1), and λ(q,m+ j, ν) = (ν − 1)− (m+ j + lb).

To obtain useful (implementable) and efficient formulae for ψPER
−j,n(θ), we addi-

tionally need explicit expressions for the vectors
#»

uj(n) and
#»

uj
(
n− 1

2

)
. This will be

done in the next subsection, after the proof of Corollary 5.20.

Proof of Corollary 5.20. Recall that whenever k ∈ Z

{{2(θ + k)}}= {{2θ}} and (−1)d(θ+k) = (−1)d(θ)−2k = (−1)d(θ).

So, by Equation (3.18) and Corollary 5.6,

ψPER

−j,n(θ) =
∑
ℓ∈Z

ψ−j,n(θ + ℓ) = 2j/2
∑
ℓ∈Z

ψ

(
(θ + ℓ)− 2−jn

2−j

)
= 2j/2

∑
ℓ∈Z

ψ
(
2jθ + 2jℓ− n

)
= −(−1)d(2

jθ)

√
2
j+1

2p− 1

(∑
ℓ∈Z

u
(
2jθ + 2jℓ− n

))⊺
(

lim
n→∞

∏n

i=1
Mdyad({{2j+1θ}},i)

)
#»
1 .
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for every θ ∈ [0, 1), j ∈ {1, . . . , ν − 1}, and n ∈ {0, 1, . . . , 2j − 1}. As before, to
minimize computations, we have to improve the expressions of

d(2jθ),
∑
ℓ∈Z

u
(
2jθ + 2jℓ− n

)
and {{2j+1θ}}.

For every θ ∈
[
0, 1

2
j+1

)
we have{{

2j+1
(
θ + 1

2
j+1

)}}
=
{{
2j+1θ

}}
= 2j+1θ,

d
(
2jθ + 2jℓ− n

)
= 1−

⌊
2
(
2jθ + 2jℓ− n

)⌋
= 1−

⌊
2j+1θ

⌋
− 2
(
2jℓ− n

)
= 1− 2

(
2jℓ− n

)
= d
(
2jℓ− n

)
,

d
(
2jθ) = d(0) = 1,

d
(
2j
(
θ + 1

2
j+1

)
+ 2jℓ− n

)
= 1−

⌊
2
(
2j
(
θ + 1

2
j+1

)
+ 2jℓ− n

)⌋
= 1−

⌊
2j+1θ + 1 + 2

(
2jℓ− n

)⌋
= −

⌊
2j+1θ

⌋
− 2
(
2jℓ− n

)
= −2

(
2jℓ− n

)
= 1−

⌊
2
(
1
2 + 2jℓ− n

)⌋
= d
(
1
2 + 2jℓ− n

)
, and

d
(
2j
(
θ + 1

2
j+1

))
= d

(
1
2

)
= 0.

Consequently, if ui(θ) = (−1)ih[i+ d(θ)] denotes the i-th component of the vector
u(θ) with i ∈ {0, 1, . . . , 2p− 2}, we get

ui
(
2jθ + 2jℓ− n

)
= (−1)i h

[
i+ d

(
2jθ + 2jℓ− n

)]
= ui

(
2jℓ− n

)
, and

ui

(
2j
(
θ + 1

2
j+1

)
+ 2jℓ− n

)
= (−1)i h

[
i+ d

(
2j
(
θ + 1

2
j+1

)
+ 2jℓ− n

)]
= ui

(
1
2 + 2jℓ− n

)
.

In summary,

u
(
2jθ + 2jℓ− n

)
= u

(
2jℓ− n

)
, and

u
(
2j
(
θ + 1

2
j+1

)
+ 2jℓ− n

)
= u

(
1
2 + 2jℓ− n

)
.

Concerning the dyadic statements, note that the condition

2mq

2ν
<

1

2j+1 =
2ν−j−1

2ν

is equivalent to 2mq < 2ν−j−1, which implies q < 2ν−j−m−1 and hence, m < ν−j−1
because q ≥ 1. Consequently, lb = length(binary(q)) ≤ ν − j −m− 1.

On the other hand,

dyad
(
2j+1 2

mq

2ν

)
= dyad

(
q

2ν−m−j−1

)
= 0λ(q,m+j,ν)1bκ0bκ−1 · · ·0b21b10∞.

Now the corollary follows putting all the above together and by using Equa-
tions (5.6) and (5.7). □

5.4.2.1. On the efficient computation of the vectors
#»

uj(n) and
#»

uj
(
n − 1

2

)
. The

only remaining issue regarding an implementation of Corollary 5.20 is to give ex-
plicit formulae for the vectors

#»

uj(n) and
#»

uj
(
n − 1

2

)
, desirably depending only on

j and the number of vanishing moments p. Recall that
#»

uj(a) =
∑
ℓ∈Z u(2

jℓ − a).
To this end, let us study some properties of u(2jℓ − a) whenever a ∈ Z + 1

2Z. In
particular, since [u(k)]i = (−1)ih[i+1−2k] for k ∈ Z+ 1

2Z it follows that [u(k)]i = 0
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whenever i + 1 − 2k /∈ supp(h) = [0, 2p − 1]. Hence, it follows that u(k) =
#»
0 if{

i+ 1− 2k
}2p−2

i=0
/∈ supp(h). Hence by defining

(5.15) base
(
u(k)

)
:= {1− 2k, 2− 2k, . . . , 2p− 1− 2k}

we have that u(k) = #»
0 if and only if base(u(k)) ∩ supp(h) = ∅.

As we want to compute
#»

uj(n) and
#»

uj
(
n− 1

2

)
, we are interested in the conditions

on ℓ as a function of n and δ such that

base

(
u

(
2jℓ− n+

δ

2

))
∩ supp(h) ̸= ∅,

where δ ∈ {0, 1}.

Lemma 5.21. Let ℓ ∈ Z then

base

(
u

(
2jℓ− n+

δ

2

))
∩ supp(h) ̸= ∅,

if and only if ℓ is such that

(5.16) ℓmin :=

⌈
1− p+ n− δ

2

2j

⌉
≤ ℓ ≤

⌊
p+ n− δ+1

2

2j

⌋
=: ℓmax

Proof. Not that if we explicitaly compute the base we get

base

(
u

(
2jℓ− n+

δ

2

))
=
{
1− 2j+1ℓ+ 2n− δ, . . . , 2p− 1− 2j+1ℓ+ 2n− δ

}
.

Since supp(h) = {0, . . . , 2p−1} it is clear that base
(
u
(
2jℓ− n+ δ

2

))
∩ supp(h) ̸= ∅

if and only if 1− 2j+1ℓ+ 2n− δ ≤ 2p− 1 and 2p− 1− 2j+1ℓ+ 2n− δ ≥ 0. Since
ℓ ∈ Z, it follows that the valid values of ℓ are⌈

1− p+ n− δ
2

2j

⌉
≤ ℓ ≤

⌊
p+ n− δ+1

2

2j

⌋
.

Hence the result follows. □

Remark 5.22. These ℓmax and ℓmin allow us to compute the vectors
#»

uj(n) and
#»

uj
(
n− 1

2

)
in a realistic way, since they limit the ℓ required to compute them. That

is,

#»

uj(n) =
∑
ℓ∈Z

u(2jℓ− n) =
ℓmax∑
ℓmin

u(2jℓ− n) and

#»

uj
(
n− 1

2

)
=
∑
ℓ∈Z

u

(
2jℓ− n+

1

2

)
=

ℓmax∑
ℓmin

u

(
2jℓ− n+

1

2

)

Finally, we are able to compute the vectors
#»

uj
(
n− δ

2

)
as a function of only h,

j and n.

Proposition 5.23. Let

ℓmin =

⌈
1− p+ n− δ

2

2j

⌉
ℓmax =

⌊
p+ n− δ+1

2

2j

⌋
be as in Lemma 5.21. Then, following statements hold:
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(a) For every j ∈ N, n ∈ {0, 1, . . . , 2j − 1} and i ∈ {0, 1, 2, . . . , 2p− 2},

[ #»

uj(n)
]
i
= (−1)i

ℓmax∑
ℓ=ℓmin

i+1+2n−2j+1ℓ∈supp(h)

h
[
i+ 1 + 2n− 2j+1ℓ

]
.

(b) For every j ∈ N and n ∈ {0, 1, . . . , 2j − 1},

[ #»

uj
(
n− 1

2

)]
0
=

⌊ n2j ⌋∑
ℓ=

⌈
2n−2p+1

2j+1

⌉h[2n− 2j+1ℓ
]
.

(c) For every j ∈ N, n ∈ {0, 1, . . . , 2j − 1} and i ∈ {1, 2, . . . , 2p− 2},[ #»

uj
(
n− 1

2

)]
i
= −

[ #»

uj(n)
]
i−1

.

Proof. (a) follows directly from Lemma 5.21. (b) follows directly from the
definition of

#»

uj applying it to the i = 0 position. As for Statement (c), since
d(x) = 1− ⌊2x⌋ , for every m ∈ Z we have

d
(
m+ 1

2

)
= 1−

⌊
2
(
m+ 1

2

)⌋
= 1− ⌊2m⌋ − 1 = d(m)− 1.

Hence,

[ #»

uj
(
n− 1

2

)]
i
=

[∑
ℓ∈Z

u
(
2jℓ− n+ 1

2

)]
i

=
∑
ℓ∈Z

[
u
(
2jℓ− n+ 1

2

)]
i
=

(−1)i
∑
ℓ∈Z

h
[
i+ d

(
2jℓ− n+ 1

2

)]
=

− (−1)i−1
∑
ℓ∈Z

h
[
(i− 1) + d

(
2jℓ− n

)]
= −

[ #»

uj(n)
]
i−1

.

□

Remark 5.24. Proposition 5.23 tells us that when it comes to the computation
of the vectors

#»

uj
(
n− δ

2

)
we only need to compute the values when δ = 0 and only

compute the first component when δ = 1.

Remark 5.25. Recall that n ∈ {0, . . . , 2j − 1}, hence if 2j > p, we have that

ℓmin =

{
0 if n ≤ p− 1 + δ

2

1 if n > p− 1 + δ
2

ℓmax =

{
0 if n ≤ 2j − p+ δ+1

2

1 if n > 2j − p+ δ+1
2

Consequently, if n ∈
[
p− 1, 2j − p+ 1

]
∩Z it follows that ℓmin > ℓmax, therefore

we get
#»

uj
(
n − δ

2

)
=

#»
0 . In Figure 5.1 one can see a sketch of this fact. Moreover,

by Corollaries 5.20 and 3.22 we can determine the values of θi, j and n such that
ψPER
−j,n(θi) = 0 beforehand, since

#»

uj
(
n
)
=

#»
0 implies that ψPER

−j,n(θi) = 0 for θi =

0, . . . , 1
2j+1 . This is coherent with Remark 3.18 that tells us that support of the

periodized wavelets keeps getting smaller as j increases.

5.4.2.2. Algorithm to compute ψPER
−j,n on dyadic rationals of order ν. Now we

are finally ready to give an explicit dyadic algorithm for the non rotated ψPER
−j,n case.

It follows the same notation and structure as the previous Algorithms 5.13 and 5.17.

Algorithm 5.26 (Computation of ψPER
−j,n(θ) for dyadic θ ∈ S1). This algorithm

is an implementation of Corollary 5.20. Here the definitions of mmax are as in
Subsection 5.3.3.
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1

p − 1 − δ
2 2j − p + 1+δ

2
2j − 10

ℓmin

ℓmax

Figure 5.1. Graphs of ℓmin and ℓmax as functions of n when 2j >
p. Note the area in the centre where ℓmin > ℓmax.

Initialize: pre-compute the vectors
#»

uj(n) and
[

#»

uj
(
n− 1

2

)]
0

for n = 0, . . . , 2j−1 using
Proposition 5.23.

Initialize: pre-compute 2ν and the coefficient
√
2
j+1

2p−1

Step 0: Compute ψPER
j,n (0) and ψPER

i,j

(
1

2j+1 ) for n = 0, . . . , 2j − 1 using Corol-
lary 5.20.

Initialize: q = 1
Step 1: Compute the Daubechies–Lagarias Products Vector

(5.17) #  »
DL(q) := Mbκ

1 ·M
bκ−1

0 · · ·Mb2
0 ·M

b1
1 ·

#»

V(0)

with binary(q) = 1bκ0bκ−1 · · ·0b21b1 . Moreover, by Equation (5.10) set

mmax = (ν − 1)− j − lb

Step 2: Compute ψPER
j,n (θ) and ψPER

j,n

(
θ + 1

2j+1

)
with θ = 2mmaxq

2ν for the integers
ℓ = 1− p, . . . , p− 1, using Corollary 5.20 by

ψPER

−j,n(θ) =
√
2
j+1

2p−1

#»

uj(n) · #  »
DL(q) and,

ψPER

−j,n
(
θ + 1

2j+1

)
= −

√
2
j+1

2p−1

#»

uj
(
n− 1

2

)
· #  »
DL(q).

Where the product by
#»

uj
(
n+ 1

2

)
is done using Proposition 5.23 (b) and

(c).
Step 3: For every m = mmax−1,mmax−2, . . . , 0 (if any) set

#  »
DL(q) = M0

#  »
DL(q).

and repeat Step 2 to for θ = 2mq
2ν . This follows because

λ(q,m+ j − 1, ν) = λ(q,m+ j, ν) + 1.

Iterate: q ← q + 2; if q < 2ν−j−1 goto Step 1

5.5. The Rotated Wavelet Value

This section is completely analogous to the previous one, but dealing with
ψPER
j,n

(
Rω(θi)

)
, where Rω is as in Equation (2.1) the irrational rotation by ω. That
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is, as in Equation (2.1), given by

Rω(θ) = θ + ω mod 1

= {{θ + ω}}
= θ + ω − ⌊θ + ω⌋.

Since all the systems studied usually have ω = 1
2 (
√
5 − 1) ≈ 0.61803 [AMR16,

Kan84, NK96, AM08, AM15, Kel96] we will assume the following condition
on ω:

(5.18) 2ω = {{2ω}}+1

Note that this condition is equivalent to asking that 1
2 < ω < 1. Still related to ω,

let us define

(5.19) ω̃ := {{2ω}},

which for all of our cases ω̃ =
√
5− 2 ≈ 0.236067978.

Moreover, since we are interested in using the Daubechies Lagarias algorithm
on irrational points, we have to move forward with some precaution. First and
foremost, we relied heavily on the fact that we were using dyadic numbers, and
hence their dyadic expansion was finite. Thus, we used the eigenvector

#»

V(0) as a
placeholder for whatever zeroes may lay on the right hand size of the limit. In
this case, we have to tread more carefully, considering we are using an irrational
number, which has an infinite dyadic expansion. To this end, we will introduce a
series of vectors

#»

V
(ω)
k that will play a similar role to

#»

V(0). However, as we shall see
these have to be precomputed for various values of k.

As we have been doing in the previous sections, we will treat the dyadic numbers
as integers. The underlying reason for this is mostly for computational efficiency.
On one hand, with this setup we know exactly where the influence of the dyadic
points begins, so we can better use the vectors

#»

V
(ω)
k . On the other hand, we can

optimize the memory usage of our computer, by using only the amount of memory
required at each computation. If we were to use double precision floating point
arithmetic (64 bits), we would always need to save the whole dyadic number as an
entire floating point, even if we are limited to matrices of size 230, hence actually
needing dyadics up to order ν = 30, which need at most 30 bits. Therefore, even
though the use of integer arithmetic for storing rotated dyadic rationals might
involve higher theoretical preparation and may seem more involved than the ones
used for plain dyadic numbers, we believe it still poses advantages in terms of speed
and memory efficiency.

Additionally, the way we have designed the computations, we are positive that
the precision in which we can compute the rotated wavelet values almost corre-
sponds to the maximum precision allowed by the data type used. This stems from
two facts. One one hand, the techniques used minimize all other possible errors,
since the dyadic approach allows us to deal with the irrationality almost as if we
were working with rational numbers. On the other hand, the errors corresponding
to the floating point arithmetic can be vanquished by using a floating point with
higher precision for certain operations and then truncating to the actually desired
precision for the final result (such as using __float128 for the matrix products
regarding M0 and M1 and then storing the obtained result as a double).

Furthermore, when considering how one computes and stores the dyadic ex-
pansions of the points, it can be useful to take into account the maximum precision
to be used, that is the number of digits we will work with. To this end, we work
in a framework in which all the values used have a maximum precision ν⋆, i.e. the
number of digits of the dyadic expansion of ω we are willing to store.
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For the following subsections will proceed in a similar manner as before, first
computing the periodic mother wavelet ψPER on dyadic rationals rotated by an
irrational rotation, followed by the computation of ψPER

i,j on the same rotated dyadic
points.

5.5.1. Computation of the Rotated ψPER. Now we are finally ready to
start computing some wavelet values. The main goal of this subsection is to give
an algorithm to evaluate ψPER on rotated dyadic rationals. As we will see, we will
obtain a very similar results to Corollary 5.14 but with a caveat: the effects of the
rotation distort the simplicity of Corollary 5.14 on the matrix product part DL.
This mostly stems from the fact that 1

2 < ω < 1. Therefore, when computing
the matrix products we have to be careful, since if 1 − ω < θ < 1

2 it follows that
Rω(θ) = θ + ω − 1. This does not complicate that much the general Daubechies-
Lagarias formulae. However, it requires a lot of care when considering their dyadic
version. In particular, one needs to find a dyadic number τ(ν)

2ν such that ω +
τ(ν)−1

2ν < 1 < ω + τ(ν)
2ν . It is self evident that this number τ depends on both ν

and ω. The computation of τ(ν) becomes one of the crucial factors in being able
to write the dyadic version of the Daubechies-Lagarias formulae. In fact the whole
Subsubsection 5.5.1.2 is almost exclusively devoted to efficiently computing τ(ν).

Let us begin by giving the analogous of Corollary 5.14 for ψPER.

Corollary 5.27. Let ψ be an R-Daubechies wavelet with p ≥ 1 vanishing
moments. Then for every θ ∈ S1,

ψPER(Rω(θ)) =
∑
ℓ∈Z

ψ(Rω(θ) + ℓ)

= −(−1)d
(
Rω(θ)

) √
2

2p−1

(∑
ℓ∈Z

u(Rω(θ) + ℓ)

)⊺
DL
(
{{2θ + ω̃}}

) #»
1 .

Proof. The statement follows from the straightforward application of Corol-
lary 5.14 and the fact that

{{2Rω(θ)}} =
{{
2(θ + ω − ⌊θ + ω⌋)

}}
=
{{
2θ + ω̃ + 1− 2 ⌊θ + ω⌋

}}
= {{2θ + ω̃}}

□

Let us prove a technical proposition that will pave the way to obtaining a
Daubechies-Lagarias computation for ΨPER(Rω

(
θ)
)

similar to Corollary 5.14.

Proposition 5.28. Let ψ be an R-Daubechies wavelet with p ≥ 1 vanishing
moments. Then, ψPER

(
Rω(θ)

)
=
∑p−1
ℓ=1−p ψ

(
Rω(θ)+ℓ

)
for every x ∈ S1. Moreover,

the following statements hold for every θ ∈
[
0, 12

)
:

(a) d
(
Rω(x)

)
=

{
0 if θ ∈ [0, 1− ω),
1 if θ ∈

[
1− ω, 12

)
.

(b) ∑
ℓ∈Z

u
(
Rω(θ) + ℓ

)
=

√
2

2
# »ua

2p−1
=
∑
ℓ∈Z

u
(
Rω
(
θ + 1

2

)
+ ℓ
)
.

(c) ψPER
(
Rω(θ)

)
= −ψPER

(
Rω
(
θ + 1

2

))
.

Proof. The first statement follows from Corollary 5.14.
To prove (a) we need to compute d

(
Rω(θ)

)
in terms of θ. We have⌊

2Rω(θ)
⌋
= ⌊2(θ + ω − ⌊θ + ω⌋)⌋ = ⌊2(θ + ω)⌋ − 2 ⌊θ + ω⌋ .
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On the other hand, 1
2 < ω < 1 implies that 1 − ω < 1

2 . Thus, if θ ∈ [0, 1 − ω)
(equivalently ω ≤ θ + ω < 1), 1 < 2ω ≤ 2(θ + ω) < 2, and hence, ⌊2(θ + ω)⌋ = 1
and ⌊θ + ω⌋ = 0. If θ ∈

[
1− ω, 12

)
we obtain

1 ≤ θ + ω < 1
2 + ω < 3

2 and 2 ≤ 2(θ + ω) < 3,

and hence, ⌊2(θ + ω)⌋ = 2 and ⌊θ + ω⌋ = 1. Consequently,

⌊
2Rω(θ)

⌋
=

{
1 if θ ∈ [0, 1− ω),
0 if θ ∈

[
1− ω, 12

)
,

and thus,

d
(
Rω(θ)

)
= 1−

⌊
2Rω(θ)

⌋
=

{
0 if θ ∈ [0, 1− ω), and
1 if θ ∈

[
1− ω, 12

)
.

Now we prove (b). To do this we need to repeat the above computation for d
(
Rω
(
θ+

1
2

))
. Observe that 0 ≤ θ < 1

2 is equivalent to

1 < 1
2 + ω ≤ θ + 1

2 + ω < 1 + ω < 2,

which implies that
⌊
θ + 1

2 + ω
⌋
= 1. Hence⌊

2Rω
(
θ + 1

2

)⌋
=
⌊
2(θ + 1

2 + ω)
⌋
− 2
⌊
θ + 1

2 + ω
⌋
= ⌊2(θ + ω)⌋ − 1,

and

d
(
Rω
(
θ + 1

2

))
= 1−

⌊
2Rω

(
θ + 1

2

)⌋
= 2− ⌊2(θ + ω)⌋ =

2−

{
1 if θ ∈ [0, 1− ω)
2 if θ ∈

[
1− ω, 12

)} =
⌊
2Rω(θ)

⌋
= 1− d

(
Rω(θ)

)
.

Now, as before, let us denote by ui(x) := (−1)ih[i+d(θ)] the i-th component of
the vector u(θ) with i ∈ {0, 1, . . . , 2p−2}. Moreover, recall that d(θ+ ℓ) = d(θ)−2ℓ
for every x ∈ R and ℓ ∈ Z, and d

(
Rω(θ)

)
∈ {0, 1}. Then, by Remark 3.8(b),∑

ℓ∈Z
ui
(
Rω(x) + ℓ

)
=
∑
ℓ∈Z

(−1)i h
[
i+ d

(
Rω(x) + ℓ

)]
= (−1)i

∑
ℓ∈Z

h
[
i+ d

(
Rω(x)

)
− 2ℓ)

]
= (−1)i

√
2

2

= (−1)i
∑
ℓ∈Z

h
[
i+ 1− d

(
Rω(x)

)
− 2ℓ)

]
=
∑
ℓ∈Z

(−1)i h
[
i+ d

(
Rω
(
x+ 1

2

))
− 2ℓ

]
=
∑
ℓ∈Z

(−1)i h
[
i+ d

(
Rω
(
x+ 1

2

)
+ ℓ
)]

=
∑
ℓ∈Z

ui
(
Rω
(
x+ 1

2

)
+ ℓ
)
.

Finally, (c) follows directly from (b), Corollary 5.27 and{{
2
(
θ + 1

2

)
+ ω̃

}}
= {{2θ + 1 + ω̃}}= {{2θ + ω̃}}, and

(−1)d
(
Rω

(
x+

1
2

))
= (−1)1−d

(
Rω(θ)

)
= −(−1)d

(
Rω(θ)

)
.

□
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Thanks to this proposition we can finally get explicit Daubechies-Lagarias for-
mulae for a general ψPER(Rω(θ)), similar to Corollary 5.27. Note that, as already
mentioned in the introduction of this section, the fact that 1 − ω ∈ [0, 1/2] forces
us to consider two different cases.

Corollary 5.29. Let ψ be an R-Daubechies wavelet with p ≥ 1 vanishing
moments. Assume that θ ∈ [0, 1− ω). Then, {{2θ + ω̃}}= 2θ + ω̃ and

ψPER
(
Rω(θ)

)
= − 1

2p−1
# »ua⊺

2p−1

(
lim
n→∞

∏n

i=1
Mdyad(2θ+ω̃,i)

)
#»
1 .

Assume that θ ∈
[
1− ω, 12

)
. Then, {{2θ + ω̃}}= 2θ + ω̃ − 1 and

ψPER
(
Rω(θ)

)
= 1

2p−1
# »ua⊺

2p−1

(
lim
n→∞

∏n

i=1
Mdyad(2θ+ω̃−1,i)

)
#»
1 .

Proof. When θ ∈ [0, 1− ω) we have {{2θ + ω̃}}= 2θ + ω̃ because

0 < ω̃ < 2θ + ω̃ < 2− 2ω + ω̃ = 1.

On the other hand, when θ ∈
[
1− ω, 12

)
, {{2θ + ω̃}}= 2θ + ω̃ − 1 because

1 = 2− (ω̃ + 1) + ω̃ = 2− 2ω + ω̃ ≤ 2θ + ω̃ < 1 + ω̃ < 2.

Then, the corollary follows from Corollary 5.27 and Proposition 5.28(a,b). □

The next task is to obtain a version of Corollary 5.29 for dyadic values of θ.
To do this we have to introduce the necessary notation that will be used to state
and prove the result we are looking for. This will be done in the next subsection.

5.5.1.1. On storing rotated dyadic numbers as an integers. Before going on
with the computation of the wavelet values, let us introduce with some general
considerations on how we are going to efficiently deal with using integers to store
dyadic numbers rotated by the irrational rotation Rω. To archieve this, we need
some notation.

First of all, since we will be dealing with irrational nubers, we would like to fix
a certain number of digits to work with. This will be done by forcing our binary
expansions (that in the dyadic world correspond to the dyadic expansions of θ) to
have a fixed finite length.

Definition 5.30 (ℓ-binary expansion). Given a non-negative integer m we
define the ℓ-digit binary expansion of m, for short ℓ-binary expansion of m, as the
sequence bℓ−1bℓ−2 . . . b1b0 ∈ {0, 1}ℓ such that m =

∑ℓ−1
i=0 bi2

i. The ℓ-digit binary
expansion of m will be denoted by binaryℓ(m). Observe that ℓ ≥ length(binary(m))
and, hence,

binaryℓ(m) = 0ℓ−length(binary(m)) binary(m).

In the following remark we will see how the dyadic expansion of a rotated dyadic
number and the binary expansion of its integer part relate to one another.

Remark 5.31. We want to explore how one might deal with irrational numbers
in a dyadic setting. Suppose we have α ∈ [0, 1). In particular

α = 0. dyad(α).

However, suppose we want to use integer arithmetic for the first ν⋆ digits of the
expansion, similarly to what we did when considering dyadic rationals using integer
arithmetic. This can be done by defining ᾱ = 2ν

⋆

α. Trivially α = ᾱ/2ν
⋆

. It is
easy to see that we get ᾱ = ⌊ᾱ⌋ + {{ᾱ}}, where ⌊ᾱ⌋ < 2ν

⋆

. In this setting, we
can operate with the dyadic-as-integers framework on the integer ⌊ᾱ⌋ while still
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taking into account the effects of {{ᾱ}} (for example through the vectors
#»

V
(ω̃)
n we

will define in Subsubsection 5.5.1.2). Moreover,

dyad
(
ᾱ

2ν⋆

)
= binaryℓ

(
⌊ᾱ⌋
)
dyad

(
{{ᾱ}}

)
= 0ℓ−length(binary(⌊α⌋)) binary

(
⌊ᾱ⌋
)
dyad

(
{{ᾱ}}

)
= dyad(α).

This will be used in the next subsubsection to use the irrational number ω̃ as an
integer to adapt the rotated case to a dyadic setting.

Since we are interested in using matrices Ψ and ΨR with the largest possible
dimension 2ν we will assume that ν ≥ 5 from now on.

Let ν⋆ > ν be an upper bound for ν. This ν⋆ should be understood as the
length of the dyadic expansion of ω̃ we will store. This is to help with computing
limn→∞

∏n
i=1 Mdyad({{2θ+ω̃}},i) for several values of ν without having to consider

each case separately. In fact, computation-wise ν⋆ should be taken as the bit
length of the data type used to store the dyadic numerators and to perform all
related arithmetic. Since we use the C programing language, we use the unsigned
int type for this purpose. Hence

ν⋆ = 8 · sizeof(unsigned int) = 32.

Recall that the maximum number that can be stored in 32 bits is 2ν
⋆ −1 = 232−1.

5.5.1.2. On the effcient computation of the matrix products. In this subsubsec-
tion, we would like to obtain a version of Corollary 5.29 focusing on dyadic values.
To this end we will implement the strategy used so far to consider the dyadic num-
bers as integers divided by 2ν , for some ν ∈ N such that ν < ν⋆ (ν⋆ being the
maximum precision have we set). Moreover, we need to find a way to compute τ(ν)
as mentioned in the introduction to this section. In what follows we set

(5.20) 2ν
⋆

ω̃ = ϖ +
{{
2ν

⋆

ω̃
}}

where ϖ :=
⌊
2ν

⋆

ω̃
⌋
. This is the first crucial step to deal with irrational numbers in

an integer setting. Note that

binaryν⋆(ϖ) := bν⋆−1bν⋆−2bν⋆−3bν⋆−4 . . . b1b0

corresponds to the dyadic expansion of ω̃ up to order ν⋆. Moreover, for r ∈
{1, 2, . . . , ν⋆},

ϖ̃
r
:=

r−1∑
i=0

bi2
i ∈ Z.

Hence, binaryr
(
ϖ̃
r)

= br−1 . . . b1b0. Therefore, the various ϖ̃ r correspond to the
tails of the dyadic expression of ϖ:

ϖ︷ ︸︸ ︷
bν⋆−1bν⋆−2 . . . br . . . b1b0︸ ︷︷ ︸

ϖ̃ r

Observe that ϖ̃ ν⋆

= ϖ and ϖ̃
r
< 2r. Hence, for r ≤ s ≤ ν⋆,

ϖ̃
s − ϖ̃

r

2r
≤ ϖ̃

s

2r
<
ϖ̃
s
+ 2r − ϖ̃

r

2r
=
ϖ̃
s − ϖ̃

r

2r
+ 1.

Moreover, from the definition of ϖ̃ r and ϖ̃
s it follows that ϖ̃ s− ϖ̃ r

2r ∈ Z+. Thus,

(5.21) ϖ̃
s
= 2r

ϖ̃
s − ϖ̃

r

2r
+ ϖ̃

r
= 2r

⌊
ϖ̃ s

2r

⌋
+ ϖ̃

r
.

In particular, ϖ̃ r
= ϖ̃

s
(mod 2r).
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Moreover, let us denote νd := ν⋆ + 1− ν ≥ 2. Note that νd corresponds to the
shift one needs to apply to the binary expansion of length ν⋆ in order to land on
the first digit that gives an expression of length ν:

Shift of length νd︷ ︸︸ ︷
binary(a) = aν⋆−1aν⋆−2aν⋆−3 . . . aνdaνd−1︸ ︷︷ ︸

Binary expansion of the first ν digits

aνd−2 . . . a1a0

Finally, τ(ν) := 2ν−1 −
⌊
ϖ

2νd

⌋
∈ Z.

Remark 5.32. By (5.21),⌊ ϖ
2νd

⌋
2ν

d
≤ ϖ =

⌊
2ν

⋆

ω̃
⌋
< 2ν

⋆

ω̃ =

ϖ +
{{
2ν

⋆

ω̃
}}

= 2ν
d
⌊ ϖ
2νd

⌋
+ ϖ̃

νd

+
{{
2ν

⋆

ω̃
}}
≤

2ν
d
⌊ ϖ
2νd

⌋
+
(
2ν

d
− 1
)
+
{{
2ν

⋆

ω̃
}}
<

(⌊ ϖ
2νd

⌋
+ 1

)
2ν

d
.

Hence,

τ(ν)− 1 = 2ν−1 −
⌊ ϖ
2νd

⌋
− 1 < 2ν−1 −

ϖ +
{{
2ν

⋆

ω̃
}}

2νd =

2ν−1 − 2ν−1

2ν⋆

(
ϖ +

{{
2ν

⋆

ω̃
}})

= 2ν−1
(
1− ω̃

)
< 2ν−1 − ϖ

2νd ≤ τ(ν).

Consequently,
q
2ν > 1− ω = 1−ω̃

2 is equivalent to q ≥ τ(ν).

Observe also that, since ν ≥ 5,

0 < 2ν−2 < 2ν−1
(
1− ω̃

)
< τ(ν) < 2ν−1

(
1− ω̃

)
+ 1 < 4 2ν−1

5 + 2ν−1

5 = 2ν−1.

Now we will define a series of vectors
#»

V
(ω̃)
k , k ∈ {0, . . . , ν⋆} that will play an

analogous role that the vector
#»

V(0) had in the non rotated case. However, since we
are dealing with an irrational rotation, in this case we cannot simply assume that
there is an infinite series of zeroes on the right hand side. Hence, we need to define
different vectors depending on the value of ν we will use.

#»

V
(ω̃)
0 := lim

n→∞

(
Mdyad({{2ν⋆ ω̃}},1) ·Mdyad({{2ν⋆ ω̃}},2) · · ·Mdyad({{2ν⋆ ω̃}},n) ·

#»
1
)
=(

lim
n→∞

∏n

i=1
Mdyad({{2ν⋆ ω̃}},i)

)
#»
1 ,

and for k = 1, 2, . . . , ν⋆,
#»

V
(ω̃)
k :=Mbk−1

#»

V
(ω̃)
k−1.

The inequality ϖ̃
k
< 2k, implies ϖ̃ k+{{2ν

⋆
ω̃}}

2k
∈ [0, 1) and hence,

dyad

(
ϖ̃
k
+
{{
2ν

⋆

ω̃
}}

2k

)
= binaryk

(
ϖ̃
k) dyad

(
{{2ν

⋆

ω̃}}
)
.

So,

(5.22)
#»

V
(ω̃)
k =

(
lim
n→∞

∏n

i=1
M

dyad
(

ϖ̃ k+{{2ν⋆
ω̃}}

2k
,i
)) #»

1 .
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In particular,

(5.23)

#»

V
(ω̃)
ν⋆ =

(
lim
n→∞

∏n

i=1
M

dyad
(

ϖ̃ ν⋆
+{{2ν⋆

ω̃}}
2ν

⋆ ,i
)) #»

1 =(
lim
n→∞

∏n

i=1
M

dyad
(

ϖ+{{2ν⋆
ω̃}}

2ν
⋆ ,i

)) #»
1 =(

lim
n→∞

∏n

i=1
M

dyad
(
ω̃,i
)) #»

1 .

Where the last equation follows from Equation 5.20.

Corollary 5.33 (Corollary 5.29 - Dyadic version). Let ψ be an R-Daubechies
wavelet with p ≥ 1 vanishing moments. Then,

ψPER
(
Rω(0)

)
= 1

2p−1
# »ua⊺

2p−1

#»

V
(ω̃)
ν⋆ ,

and

ψPER

(
Rω

(
τ(ν)
2ν

))
= − 1

2p−1
# »ua⊺

2p−1

(
Mν−1

0 · #»

V
(ω̃)

νd

)
.

Moreover, for x = q
2ν <

1
2 with q ∈ N \ {τ(ν)},

ψPER
(
Rω
(
q
2ν

))
= (−1)d 1

2p−1

# »ua⊺
2p−1

(
Mν−1−lbq

0 ·M1 ·Ma
lbq−2
·Ma

lbq−3
· · ·Ma

1
·Ma

0
· #»

V
(ω̃)

νd

)
,

with
d = 0 and binary

(
q +

⌊ ϖ
2νd

⌋)
= 1a

lbq−2
a

lbq−3
· · · a

1
a

0

for q < τ(ν), and

d = 1 and binary(q − τ(ν)) = 1a
lbq−2

a
lbq−3
· · · a

1
a

0

whenever τ(ν) < q < 2ν−1.

Remark 5.34. When τ(ν) ≤ q < 2ν−1, by Remark 5.32 we have

0 ≤ q − τ(ν) < 2ν−1 − τ(ν) =
⌊ ϖ
2νd

⌋
< 2ν

⋆

ω̃ < 2ν
⋆

.

Consequently, q − τ(ν) fits in a ν⋆−bit unsigned integer.
When 0 < q < τ(ν) we have

0 <
⌊ ϖ
2νd

⌋
< q +

⌊ ϖ
2νd

⌋
< τ(ν) +

⌊ ϖ
2νd

⌋
= 2ν−1 ≤ 2ν

⋆−1.

Consequently, q +
⌊
ϖ

2νd

⌋
also fits in a ν⋆−bit unsigned integer.

Proof of Corollary 5.29 dyadic version. The first statement (case x =
0) follows from Corollary 5.29and (5.23).

Now, in view of Corollary 5.29 and Remark 5.32 we essentially need to compute
the full dyadic expression of {{2x+ ω̃}} for the dyadic rationals

x =
q

2ν
<

1

2
=

2ν−1

2ν

with q ∈ {1, 2, . . . , 2ν−1−1} (observe that since q < 2ν−1, length(binary(q)) ≤ ν−1).
We consider two cases:
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Case 1: q ≤ τ(ν)− 1. That is by Remark 5.32, θ = q · 2−ν ∈ (0, 1−ω). In this
case, by Corollary 5.29 and (5.21),

1 > {{2x+ ω̃}}= 2x+ ω̃ = 2

(
q · 2−ν

)
+ ω̃ =

2ν
d
q +ϖ +

{{
2ν

⋆

ω̃
}}

2ν⋆ =

1

2ν−1

2ν
d
(
q +

⌊
ϖ

2νd

⌋)
2νd +

ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

 =

1

2ν−1

(
q +

⌊ ϖ
2νd

⌋
+
ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
.

Consequently, since {{2x+ ω̃}},
{{
2ν

⋆

ω̃
}}
, ϖ̃

νd
+{{2ν

⋆
ω̃}}

2νd ∈ [0, 1), by Remark 5.31 for

α = q +
⌊
ϖ

2νd

⌋
+

ϖ̃ νd
+
{{

2ν
⋆
ω̃
}}

2νd < 2ν−1,

dyad
(
{{2x+ ω̃}}

)
=

dyad

(
1

2ν−1

(
q +

⌊ ϖ
2νd

⌋
+
ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

))
=

0ν−1−lbq binary
(
q +

⌊ ϖ
2νd

⌋)
dyad

(
ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
,

where lbq = length
(
binary

(
q +

⌊
ϖ

2νd

⌋))
. Thus, by (5.22), for x = q ·2−ν ∈ (0, 1−ω),

(
lim
n→∞

∏n

i=1
Mdyad({{2x+ω̃}},i)

)
#»
1 =

Mν−1−lbq
0 ·M1 ·Malbq−2

·Malbq−3
· · ·Ma1 ·Ma0 ·(

lim
n→∞

∏n

i=1
M

dyad
(

ϖ̃ νd
+{{2ν⋆

ω̃}}

2ν
d ,i

)) #»
1 =

Mν−1−lbq
0 ·M1 ·Ma

lbq−2
·Ma

lbq−3
· · ·Ma1

·Ma0
· #»

V
(ω̃)

νd ,

where binary
(
q +

⌊
ϖ

2νd

⌋)
= 1a

lbq−2
a

lbq−3
· · · a

1
a

0
.

Then, the statement for the case 1 ≤ q ≤ τ(ν)− 1 follows from Corollary 5.29
for the case x = q · 2−ν ∈ (0, 1− ω).

Case 2: τ(ν) ≤ q < 2ν−1. That is x = q · 2−ν ∈
(
1− ω, 12

)
. By Corollary 5.29

and (5.21),

[0, 1) ∋ {{2x+ ω̃}}= 2x+ ω̃ − 1 =
2ν

d
q +ϖ − 2ν

⋆

+
{{
2ν

⋆

ω̃
}}

2ν⋆ =

1

2ν−1

(
q +

⌊ ϖ
2νd

⌋
− 2ν−1 +

ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
=

1

2ν−1

(
(q − τ(ν)) +

ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
.
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Since q = τ(ν) (i.e. x = τ(ν) · 2−ν), by Remark 5.31 we have

dyad
(
2x+ ω̃ − 1

)
= dyad

(
1

2ν−1

ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
=

binaryν−1(0) dyad

(
ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
= 0ν−1 dyad

(
ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
.

Hence, by (5.22),(
lim
n→∞

∏n

i=1
Mdyad(2x+ω̃−1,i)

)
#»
1 =

Mν−1
0 ·

(
lim
n→∞

∏n

i=1
M

dyad
(

ϖ̃ νd
+{{2ν⋆

ω̃}}

2ν
d ,i

)) #»
1 = Mν−1

0 · #»

V
(ω̃)

νd ,

and the second statement of the corollary follows from Corollary 5.29 for the case
x = q · 2−ν ∈

(
1− ω, 12

)
.

When q > τ(ν), again by Remark 5.31,

dyad
(
2x+ ω̃ − 1

)
= dyad

(
1

2ν−1

(
(q − τ(ν)) +

ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

))
=

binaryν−1(q − τ(ν)) dyad

(
ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
=

0ν−1−lbq binary(q − τ(ν)) dyad

(
ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
.

Thus, again by (5.22),(
lim
n→∞

∏n

i=1
Mdyad({{2x+ω̃}},i)

)
#»
1 =

Mν−1−lbq
0 ·M1 ·Malbq−2

·Malbq−3
· · ·Ma1 ·Ma0 ·(

lim
n→∞

∏n

i=1
M

dyad
(

ϖ̃ νd
+{{2ν⋆

ω̃}}

2ν
d ,i

)) #»
1 =

Mν−1−lbq
0 ·M1 ·Ma

lbq−2
·Ma

lbq−3
· · ·Ma

1
·Ma

0
· #»

V
(ω̃)

νd ,

where binary(q − τ(ν)) = 1a
lbq−2

a
lbq−3
· · · a

1
a

0
has length lbq.

This shows the statement of the corollary for the case τ(ν) < q < 2ν−1, by
using again Corollary 5.29 for the case x = q · 2−ν ∈

(
1− ω, 12

)
. □

5.5.2. Computation of the Rotated ψPER
j,n with j < 0. In this subection

we will finally tackle the computation of ψPER
j,n on rotated dyadic points. It serves

as a worthy end to the chapter, as it is by far the most complex computation of
all. At the end of the day, it all boils down to using the techniques developed in
Subsections 5.4.2 and 5.5.1. However, when combining both techniques the results
become quite more involved. If one recalls Corollary 5.20, even though we wanted
to compute the wavelet value for θ ∈

[
0, 1

2j

)
, the interval had to be divided into

two, θ ∈
[
0, 1

2j+1

)
and θ ∈

[
1

2j+1 ,
1
2j

)
. On the other hand, we have just seen that

the fact that we are applying an irrational rotation with ω > 1
2 , also divides the

interval of computable numbers in two, separated by 1− ω. Hence, in this case we
will find that the number of cases will be three, stemming from the combination of
the previous two. One cannot say which gives rise to which, but both effects need
to be taken into account simultaneously.
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As we have already stated, we are interested in finding an efficient implemen-
tation of the Daubechies-Lagarias algorithm for

ψPER

j,n

(
Rω(θ)

)
with j ≥ 1, n ∈ {0, 1, . . . , 2j − 1}

when θ ∈ [0, 1) is dyadic.
From the definition of periodized wavelet in Equation (3.18) applied in our case

we can write:

(5.24) ψPER

j,n

(
Rω(θ)

)
=
∑
ℓ∈Z

ψj,n
(
θ + ω + ℓ

)
= 2−j/2

∑
ℓ∈Z

ψ

((
θ + ω + ℓ

)
− 2jn

2j

)

for every θ ∈ [0, 1), and j, n ∈ Z.
In a very similar manner to Proposition 3.22 we can find self-similarities within

the wavelet values with the same j.

Corollary 5.35 (of Proposition 3.22). Let ψ be an R-Daubechies wavelet with
p ≥ 1 vanishing moments. Then, for every θ ∈

[
0, 1

2
j

)
, j ∈ {1, . . . , J}, and n ∈

{0, 1, . . . , 2j − 1},

ψPER

−j,n
(
Rω(θ)

)
= ψPER

−j,mod
(
n+k,2j

)(Rω(θ + k

2
j

))
for every k = 1, 2, . . . , 2j − 1.

Now we need a rotated version of Corollary 5.16 to get an explicit expression
for ψPER

−j,n for general values of j, n and θ ∈ S1, in terms of these parameters and
variable. This is also the analogue of Corollary 5.20 for non-dyadic values of x. To
do this we will introduce some useful notation.

Recall that ω̃ := {{2ω}}, and 2ω = 1 + ω̃. Now we set,

jω := 2j · 2 · ω = 2j + 2jω̃ and
jϖ :=

⌊
jω
⌋
= 2j +

⌊
2jω̃
⌋
.

Clearly, with this notation, {{jω}}= {{2jω̃}}, and

jω = jϖ + {{jω}}= 2j +
⌊
2jω̃
⌋
+ {{2jω̃}}.

Note that jϖ corresponds to a shift to the left of length ν⋆ − j of the binary
expression of ϖ.

On the other hand, given an R-Daubechies wavelet with p ≥ 1 vanishing mo-
ments and j ∈ {1, . . . , J}, we denote

κωj := (−1)
⌊ ϖ
2ν⋆−j

⌋ √
2
j+1

2p− 1
.

Also, for every θ ∈
[
0, 1

2
j

)
, we denote

ηj(θ) :=
⌊
2j+1θ + {{2jω̃}}

⌋
.

Note that 0 ≤ 2j+1θ + {{2jω̃}} < 3, hence ηj(θ) ∈ {0, 1, 2}. The avid reader will
have already noticed that ηj corresponds to the divisions of the interval

[
0, 1

2j+1

)
mentioned in the introduction of this sub-section.

Finally, we will define the analogous to the vector
#»

uj(m) for the rotated case

#»

ujω(m) :=
∑
ℓ∈Z

u
(

jϖ
2 + 2jℓ−m

)
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Corollary 5.36. Let ψ be an R-Daubechies wavelet with p ≥ 1 vanishing
moments, and let ν ∈ N \ {1}, j ∈ {1, . . . , ν − 1} and n ∈ {0, 1, . . . , 2j − 1}. Then,
for every θ ∈

[
0, 1

2
j

)
,

ψPER

−j,n
(
Rω(θ)

)
= (−1)ηj(x)κωj

#»

ujω
(
n− ηj(θ) 12

)⊺(
lim
n→∞

∏n

i=1
M

dyad
(
2j+1θ+{{2j ω̃}}−ηj(θ),i

)) #»
1 .

Proof. We recall that for every θ ∈ R and k ∈ Z we have

{{2(θ + k)}}= {{2θ}} and d(θ + k) = 1− ⌊2(θ + k)⌋ = d(θ)− 2k.

Hence, (−1)d(θ+k) = (−1)d(θ). So, by Equation (3.18) and Corollary 5.6,

ψPER

−j,n
(
Rω(θ)

)
=
∑
ℓ∈Z

ψ−j,n
(
θ + ω + ℓ

)
= 2j/2

∑
ℓ∈Z

ψ

((
θ + ω + ℓ

)
− 2−jn

2−j

)
= 2j/2

∑
ℓ∈Z

ψ
(
2j(θ + ω) + (2jℓ− n)

)
= (−1)d(2

j(θ+ω))

√
2
j+1

2p− 1

(∑
ℓ∈Z

u
(
2j(θ + ω) + (2jℓ− n)

))⊺
(

lim
n→∞

∏n

i=1
Mdyad({{2j+1(θ+ω)}},i)

)
#»
1 .

Now observe that

(5.25) 2j+1(θ + ω) = 2j+1θ + jω = 2j+1θ + {{2jω̃}}+
(
2j +

⌊
2jω̃
⌋)
.

Consequently,{{
2j+1(θ + ω)

}}
=
{{
2j+1θ + {{2jω̃}}

}}
= 2j+1θ + {{2jω̃}}−ηj(θ).

Now we claim that⌊
2j+1(θ + ω)

⌋
= ηj(θ) + 2j +

⌊
ϖ

2ν⋆−j

⌋
.

Observe that, if the claim holds,

(−1)d(2
j(θ+ω)) = (−1)1−⌊2

j+1(θ+ω)⌋ = −(−1)⌊2
j+1(θ+ω)⌋ =

− (−1)ηj(θ)(−1)2
j

(−1)
⌊ ϖ
2ν⋆−j

⌋
= (−1)ηj(θ)

(
−(−1)

⌊ ϖ
2ν⋆−j

⌋)
,

so that (−1)d(2j(θ+ω))
√
2
j+1

2p−1 = −(−1)ηj(θ)κωj .
By (5.25),

⌊
2j+1(θ + ω)

⌋
= ηj(θ)+ 2j +

⌊
2jω̃
⌋
. So, to prove the claim we have

to show that ⌊
2jω̃
⌋
=
⌊ ϖ

2ν⋆−j

⌋
.

By (5.21),

2jω̃ =
2ν

⋆

ω̃

2ν⋆−j =
ϖ +

{{
2ν

⋆

ω̃
}}

2ν⋆−j =
2ν

⋆−j ⌊ ϖ
2ν⋆−j

⌋
+ ϖ̃

ν⋆−j
+
{{
2ν

⋆

ω̃
}}

2ν⋆−j =⌊ ϖ

2ν⋆−j

⌋
+
ϖ̃
ν⋆−j

+
{{
2ν

⋆

ω̃
}}

2ν⋆−j .
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Hence,

{{2jω̃}} =
{{

ϖ̃ ν⋆−j+
{{

2ν
⋆
ω̃
}}

2ν⋆−j

}}
=
ϖ̃
ν⋆−j

+
{{
2ν

⋆

ω̃
}}

2ν⋆−j , and⌊
2jω̃
⌋
=
⌊ ϖ

2ν⋆−j

⌋
,

because ϖ̃
ν⋆−j

< 2ν
⋆−j (in particular, ϖ̃ ν⋆−j+{{2ν

⋆
ω̃}}

2ν⋆−j < 1). This ends the proof
of the claim.

To end the proof of the corollary we have to show that, for θ ∈
[
0, 1

2
j

)
,∑

ℓ∈Z
u
(
2j(θ + ω) + (2jℓ− n)

)
=

#»

ujω
(
n− ηj(θ) 12

)
=
∑
ℓ∈Z

u
(

jϖ+ηj(θ)
2 + (2jℓ− n)

)
.

Recall that ui(θ) := (−1)ih[i+ d(θ)] denotes the i-th component of the vector u(θ)
with i ∈ {0, 1, . . . , 2p− 2}. So, we need to prove that

d
(
2j(θ + ω) + (2jℓ− n)

)
= d
(

jϖ+ηj(θ)
2 + (2jℓ− n)

)
.

By using again that d(θ + k) = 1− ⌊2(θ + k)⌋ = 1− ⌊2θ⌋ − 2k for every θ ∈ R and
k ∈ Z, the last equality is equivalent to⌊

2j+1(θ + ω)
⌋
=
⌊
jϖ + ηj(θ)

⌋
= jϖ + ηj(θ).

On the other hand, for x ∈
[
0, 1

2
j

)
, we have⌊

2j+1(θ + ω)
⌋
=
⌊
2j+1θ + jϖ + {{jω}}

⌋
= jϖ + ηj(θ).

This ends the proof of the corollary. □

Now we need the dyadic version of Corollary 5.36.
For ν ∈ N \ {1}, j ∈ {1, . . . , ν − 1} and ℓ ∈ {0, 1} we denote

τ
ℓ
(j, ν) := 2ν−j−(1−ℓ) −

⌊
ϖ̃
ν⋆−j

2νd

⌋
∈ Z.

Remark 5.37 (The dyadic version of ηj(x)). We would like to obtain an anal-
ogous result to 5.32 but for the ψPER

j,n case. Let ν ∈ N \ {1} and j ∈ {1, . . . , ν − 1}.
From the proof of Corollary 5.36 we know that

{{2jω̃}}=
ϖ̃
ν⋆−j

+
{{
2ν

⋆

ω̃
}}

2ν⋆−j .

Hence,

τ
ℓ
(j, ν)− 1 = 2ν−j−(1−ℓ) −

⌊
ϖ̃
ν⋆−j

2νd

⌋
− 1 <

2ν−j−(1−ℓ) −
ϖ̃
ν⋆−j

+
{{
2ν

⋆

ω̃
}}

2νd =

2ν−j−(1−ℓ) − 2ν−j−1

(
ϖ̃
ν⋆−j

+
{{
2ν

⋆

ω̃
}}

2ν⋆−j

)
=

2ν−j−1
(
2ℓ − {{2jω̃}}

)
< 2ν−j−(1−ℓ) − ϖ̃

ν⋆−j

2νd ≤ τ
ℓ
(j, ν).

Consequently, for every θ = q
2ν ∈

(
0, 1

2
j

)
,

ηj
(
q
2ν

)
=
⌊
2j+1 q

2ν + {{2jω̃}}
⌋
=
⌊

q
2ν−j−1 + {{2jω̃}}

⌋
= 1
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is equivalent to 2ν−j−1
(
1 − {{2jω̃}}

)
≤ q < 2ν−j−1

(
2 − {{2jω̃}}

)
which, in turn, is

equivalent to
τ0(j, ν) ≤ q ≤ τ1(j, ν)− 1.

Analogously,
ηj
(
q
2ν

)
= 0 is equivalent to q ≤ τ0(j, ν)− 1,

and
ηj
(
q
2ν

)
= 2 is equivalent to q ≥ τ

1
(j, ν).

Corollary 5.38 (Corollary 5.36 Dyadic version). Let ψ be an R-Daubechies
wavelet with p ≥ 1 vanishing moments, let ν ∈ N \ {1}, j ∈ {1, . . . , ν − 1} and
n ∈ {0, 1, . . . , 2j − 1}. Then, the following statements hold:

(a) ψPER
−j,n

(
Rω(0)

)
= κωj

#»

ujω(n)⊺
#»

V
(ω̃)
ν⋆−j ,

and for every q ∈
{
1, 2, . . . , τ0(j, ν)− 1

}
,

ψPER

−j,n
(
Rω
(
q
2ν

))
= κωj

#»

ujω(n)⊺
(
Mν−j−1−lbq

0 ·M1 ·Ma
lbq−2
·Ma

lbq−3
· · ·Ma1

·Ma0
· #»

V
(ω̃)

νd

)
,

where binary
(
q +

⌊
ϖ̃ ν⋆−j

2νd

⌋)
= 1a

lbq−2
a

lbq−3
· · · a1a0 .

(b) ψPER
−j,n

(
Rω
( τ0 (j,ν)

2ν

))
= −κωj

#»

ujω
(
n− 1

2

)⊺ (
Mν−j−1

0 · #»

V
(ω̃)

νd

)
,

and for every q ∈ {τ0(j, ν) + 1, τ0(j, ν) + 2, . . . , τ1(j, ν)− 1},

ψPER

−j,n
(
Rω
(
q
2ν

))
= −κωj

#»

ujω
(
n− 1

2

)⊺(
Mν−j−1−lbq

0 ·M1 ·Ma
lbq−2
·Ma

lbq−3
· · ·Ma

1
·Ma

0
· #»

V
(ω̃)

νd

)
,

where binary
(
q − τ0(j, ν)

)
= 1a

lbq−2
a

lbq−3
· · · a1a0 .

(c) ψPER
−j,n

(
Rω
( τ

1
(j,ν)

2ν

))
= κωj

#»

ujω(n− 1)⊺
(
Mν−j−1

0 · #»

V
(ω̃)

νd

)
,

and for every q ∈ {τ
1
(j, ν) + 1, τ

1
(j, ν) + 2, . . . , 2ν−j − 1},

ψPER

−j,n
(
Rω
(
q
2ν

))
= κωj

#»

ujω(n− 1)⊺
(
Mν−j−1−lbq

0 ·M1 ·Ma
lbq−2
·Ma

lbq−3
· · ·Ma1

·Ma0
· #»

V
(ω̃)

νd

)
,

where binary
(
q − τ1(j, ν)

)
= 1a

lbq−2
a

lbq−3
· · · a1a0 .

Remark 5.39. For every q ≤ τ
0
(j, ν)− 1, we have

q +
⌊
ϖ̃ ν⋆−j

2νd

⌋
< τ0(j, ν) +

⌊
ϖ̃ ν⋆−j

2νd

⌋
= 2ν−j−1 −

⌊
ϖ̃ ν⋆−j

2νd

⌋
+
⌊
ϖ̃ ν⋆−j

2νd

⌋
< 2ν

⋆−2

because ν⋆ > ν and j ≥ 1. Consequently, q +
⌊
ϖ̃ ν⋆−j

2νd

⌋
fits in a ν⋆−bit unsigned

integer.
Now let τ0(j, ν) ≤ q ≤ τ1(j, ν)− 1. In this case we have

q − τ
0
(j, ν) < τ

1
(j, ν)− τ

0
(j, ν) = 2ν−j − 2ν−j−1 = 2ν−j−1 < 2ν

⋆−2,

and again q − τ0(j, ν) fits in a ν⋆−bit unsigned integer.
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Finally, when τ
1
(j, ν) ≤ q ≤ 2ν−j − 1,

q − τ
1
(j, ν) < 2ν−j − τ

1
(j, ν) =

⌊
ϖ̃
ν⋆−j

2νd

⌋
≤ ϖ̃

ν⋆−j

2νd ≤

ϖ =
⌊
2ν

⋆

ω̃
⌋
< 2ν

⋆

ω̃ < 2ν
⋆

· 1
4
= 2ν

⋆−2.

So, q − τ
1
(j, ν)

)
also fits in a ν⋆−bit unsigned integer.

As before, to obtain implementable and efficient formulae for ψPER
−j,n

(
Rω(θ)

)
,

we additionally need explicit expressions for the vectors
#»

ujω(n),
#»

ujω
(
n − 1

2

)
, and

#»

ujω(n−1). This will be done in the next subsection, after the proof of Corollary 5.36.

Proof of Corollary 5.38. From the proof of Corollary 5.36we know that

{{2jω̃}}=
ϖ̃
ν⋆−j

+
{{
2ν

⋆

ω̃
}}

2ν⋆−j .

Hence, since ηj(0) =
⌊
{{2jω̃}}

⌋
= 0, the first statement of (a) follows from Corol-

lary 5.36 and (5.22).
Now we prove the second statement of (a). By Remark 5.37, we know that

q ∈
{
1, 2, . . . , τ

0
(j, ν) − 1

}
is equivalent to ηj

(
q
2ν

)
=
⌊

q
2ν−j−1 + {{2jω̃}}

⌋
= 0. On

the other hand, by (5.21),

1 > 2j+1θ + {{2jω̃}} = q

2ν−j−1
+ {{2jω̃}} =

q

2ν−j−1
+
ϖ̃
ν⋆−j

+
{{
2ν

⋆

ω̃
}}

2ν⋆−j =

1

2ν−j−1

q + 2ν
d⌊ ϖ̃ ν⋆−j

2νd

⌋
+ ϖ̃

νd

+
{{
2ν

⋆

ω̃
}}

2νd

 =

1

2ν−j−1

(
q +

⌊
ϖ̃ ν⋆−j

2νd

⌋
+
ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
.

In particular,

q +
⌊
ϖ̃ ν⋆−j

2νd

⌋
+
ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd < 2ν−j−1.

So, since ϖ̃ νd
+{{2ν

⋆
ω̃}}

2νd ∈ [0, 1), by Remark 5.31 for q +
⌊
ϖ̃ ν⋆−j

2νd

⌋
+

ϖ̃ νd
+
{{

2ν
⋆
ω̃
}}

2νd ,

dyad
( q

2ν−j−1
+ {{2jω̃}}

)
=

dyad

(
1

2ν−j−1

(
q +

⌊
ϖ̃ ν⋆−j

2νd

⌋
+
ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

))
=

0ν−j−1−lbq binary
(
q +

⌊
ϖ̃ ν⋆−j

2νd

⌋)
dyad

(
ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
,
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where lbq = length
(
binary

(
q +

⌊
ϖ̃ ν⋆−j

2νd

⌋))
. Thus, by (5.22),(

lim
n→∞

∏n

i=1
M

dyad
(

q

2ν−j−1 +{{2j ω̃}},i
)) #»

1 =

Mν−j−1−lbq
0 ·M1 ·Malbq−2

·Malbq−3
· · ·Ma1 ·Ma0 ·(

lim
n→∞

∏n

i=1
M

dyad
(

ϖ̃ νd
+{{2ν⋆

ω̃}}

2ν
d

)
,i)

)
#»
1 =

Mν−j−1−lbq
0 ·M1 ·Ma

lbq−2
·Ma

lbq−3
· · ·Ma1

·Ma0
· #»

V
(ω̃)

νd ,

where binary
(
q +

⌊
ϖ̃ ν⋆−j

2νd

⌋)
= 1a

lbq−2
a

lbq−3
· · · a

1
a

0
. So, the second statement of (a)

follows from by Corollary 5.36.
Now we prove (b). By Remark 5.37, we know that τ

0
(j, ν) ≤ q ≤ τ

1
(j, ν)− 1 is

equivalent to ηj
(
q
2ν

)
=
⌊

q
2ν−j−1 + {{2jω̃}}

⌋
= 1. So, since

j ≤ ν − 1 ⇐⇒ νd ≤ ν⋆ − j,
by (5.21) we get

1 > 2j+1x+ {{2jω̃}}−1 =
q

2ν−j−1
+ {{2jω̃}}−1 =

q − 2ν−j−1

2ν−j−1
+
ϖ̃
ν⋆−j

+
{{
2ν

⋆

ω̃
}}

2ν⋆−j =

q − τ0(j, ν)
2ν−j−1

+
ϖ̃
ν⋆−j − 2ν

d
⌊
ϖ̃ ν⋆−j

2νd

⌋
+
{{
2ν

⋆

ω̃
}}

2ν−j−1 · 2νd =

1

2ν−j−1

(
q − τ

0
(j, ν) +

ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
.

When q = τ
0
(j, ν), by Remark 5.31 we have

dyad
( q

2ν−j−1
+ {{2jω̃}}−1

)
= dyad

(
1

2ν−j−1

ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
=

0ν−j−1 dyad

(
ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
.

Hence, by (5.22),(
lim
n→∞

∏n

i=1
M

dyad
(

q

2ν−j−1 +{{2j ω̃}}−1,i
)) #»

1 =

Mν−j−1
0 ·

(
lim
n→∞

∏n

i=1
M

dyad
(

ϖ̃ νd
+{{2ν⋆

ω̃}}

2ν
d ,i

)) #»
1 = Mν−j−1

0 · #»

V
(ω̃)

νd ,

and the first statement of (b) follows from Corollary 5.36.
When q > τ

0
(j, ν), again by Remark 5.31,

dyad
( q

2ν−j−1
+ {{2jω̃}}−1

)
=

dyad

(
1

2ν−j−1

(
q − τ0(j, ν) +

ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

))
=

0ν−j−1−lbq binary
(
q − τ

0
(j, ν)

)
dyad

(
ϖ̃
νd

+
{{
2ν

⋆

ω̃
}}

2νd

)
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and, again by (5.22),(
lim
n→∞

∏n

i=1
M

dyad
(

q

2ν−j−1 +{{2j ω̃}} −1,i)

)
#»
1 =

Mν−j−1−lbq
0 ·M1 ·Malbq−2

·Malbq−3
· · ·Ma1 ·Ma0 ·(

lim
n→∞

∏n

i=1
M

dyad
(

ϖ̃ νd
+{{2ν⋆

ω̃}}

2ν
d ,i

)) #»
1 =

Mν−j−1−lbq
0 ·M1 ·Ma

lbq−2
·Ma

lbq−3
· · ·Ma1

·Ma0
· #»

V
(ω̃)

νd ,

where binary
(
q − τ

0
(j, ν)

)
= 1a

lbq−2
a

lbq−3
· · · a

1
a

0
has length lbq. Thus, by using

Corollary 5.36 the second statement of (b) follows.
To prove (c) note that τ1(j, ν) ≤ q ≤ 2ν−j − 1 is equivalent to q

2ν < 1
2j and

ηj
(
q
2ν

)
=
⌊

q
2ν−j−1 + {{2jω̃}}

⌋
= 2 by Remark 5.37. Then the proof of (c) follows

“mutatis mutandis” the proof of (b), and replacing τ
0
(j, ν) by τ

1
(j, ν). □

5.5.2.1. Efficient computation of the vectors
#»

ujω(n),
#»

ujω
(
n− 1

2

)
. We will present

an analogous of Lemma 5.21 for the rotated case. Please keep in mind the definition
of base(k) as given in Equation 5.15.

Lemma 5.40. Let ℓ ∈ Z then

base

(
u

(
jϖ

2
+ 2jℓ− n+

δ

2

))
∩ supp(h) ̸= ∅,

if and only if ℓ is such that

(5.26) ℓmin :=

⌈
1− p+ n−

jϖ+δ
2

2j

⌉
≤ ℓ ≤

⌊
p+ n−

jϖ+δ+1
2

2j

⌋
=: ℓmax.

Proof. The proof is completely analogous to the one for Lemma 5.21. □

Remark 5.41. Analogously to Remark 5.22 this ℓmax and ℓmin allow us to
actually compute the vectors

#»

ujω(n),
#»

ujω
(
n− 1

2

)
, since we have limited the values

of ℓ in their definition to a finite set. That is,

#»

ujω(n) =
∑
ℓ∈Z

u

(
jϖ

2
+ 2jℓ− n

)
=

ℓmax∑
ℓmin

u

(
jϖ

2
+ 2jℓ− n

)
,

#»

ujω
(
n− 1

2

)
=
∑
ℓ∈Z

u

(
jϖ + δ

2
+ 2jℓ− n

)
=

ℓmax∑
ℓmin

u

(
jϖ + δ

2
+ 2jℓ− n

)
.

Note that again in this case we have that for 2j > p that for most values of n
ℓmin > ℓmax, hence

#»

ujω
(
n− δ

2

)
= 0, in particular we get

ℓmin =

{
0 if n ≤ p− 1 +

jϖ+δ+1
2 ,

1 if n > p− 1 +
jϖ+δ+1

2 ,
and,

ℓmax =

{
−1 if n ≤ 1− p+

jϖ+δ
2 ,

0 if n > 1− p+
jϖ+δ

2 .

(5.27)

Moreover, since jϖ < 2j , we get that both

p− 1 +
jϖ + δ + 1

2
< 2j − 1 and 1− p+

jϖ + δ

2
2j − 1 < 2j − 1.

In particular, we get similar sparsity results as in Remark 5.25, with the areas
#»

ujω
(
n− δ

2

)
̸= 0 can be seen represented in Figure 5.2.
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1

−1

1 − p +
jϖ+δ

2

p − 1 +
jϖ+δ+1

2

2j − 10

ℓmin

ℓmax

Figure 5.2. Graphs of ℓmin and ℓmax as functions of n when 2j >
p for the rotated case. Note that we have ℓmax < ℓmin except for a
region in the centre.

Proposition 5.42. Let

ℓmin :=

⌈
1− p+ n−

jϖ+δ
2

2j

⌉
≤ ℓ ≤

⌊
p+ n−

jϖ+δ+1
2

2j

⌋
=: ℓmax,

be as in Lemma 5.40. Then the following statements hold:
(a) For every j ∈ N, n ∈ {0, 1, . . . , 2j − 1} and i ∈ {0, 1, 2, . . . , 2p− 2},

[ #»

ujω(n)
]
i
= (−1)i

ℓmax∑
ℓ=ℓmin

i+1+2n−(2j+1ℓ+jϖ)∈supp(h)

h
[
i+ 1 + 2n−

(
2j+1ℓ+ jϖ

)]
.

(b) For every j ∈ N and n ∈ {0, 1, . . . , 2j − 1},

[ #»

ujω
(
n− 1

2

)]
0
=

⌊
2n−jϖ

2j+1

⌋∑
ℓ=
⌈

2n−2p+1−jϖ

2j+1

⌉h[2n− (2j+1ℓ+ jϖ
)]
.

(c) For the special case n = −1.

[ # »

u1ω(−1)
]
0
=

⌊
−3−jϖ

2j+1

⌋∑⌈
−2p−2+1−jϖ

2j+1

⌉h[2n− 3− 4ℓ
]
.

Furthermore, for every j ∈ N \ {1} and n ∈ {0, 1, . . . , 2j − 1},

[ #»

ujω(n− 1)
]
0
=

0∑
ℓ=1+

⌊
− 2p+1+jϖ

2j+1

⌋h[2n− 1−
(
2j+1ℓ+ jϖ

)]
.
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(d) For every j ∈ N, n ∈ {0, 1, . . . , 2j − 1}, t ∈ {1, 2} and i ∈ {t, t+ 1, . . . , 2p− 2},[ #»

ujω
(
n− t 12

)]
i
= (−1)t

[ #»

ujω(n)
]
i−t.

(e) For every j ∈ N and n ∈ {0, 1, . . . , 2j − 1},[ #»

ujω(n− 1)
]
1
= −

[ #»

ujω
(
n− 1

2

)]
0
.

Proof. For every t ∈ Z+ and x ∈ R we have

d
(
x+ t

2

)
= 1−

⌊
2
(
x+ t

2

)⌋
= 1− ⌊2x⌋ − t = d(x)− t.

Consequently,

(5.28) d
(

jϖ
2 + (2jℓ− n) + t

2

)
= d
(

jϖ
2 + (2jℓ− n)

)
− t.

We start by proving statements (d) and (e):

[ #»

ujω
(
n− t 12

)]
i
=

[∑
ℓ∈Z

u
(

jϖ+t
2 + (2jℓ− n)

)]
i

=
∑
ℓ∈Z

[
u
(

jϖ+t
2 + (2jℓ− n)

)]
i
=

(−1)i
∑
ℓ∈Z

h
[
i+ d

(
jϖ+t

2 + (2jℓ− n)
)]

=

(−1)t(−1)i−t
∑
ℓ∈Z

h
[
(i− t) + d

(
jϖ
2 + (2jℓ− n)

)]
= (−1)t

[ #»

ujω(n)
]
i−t.

Also, from the previous equalities,[ #»

ujω
(
n− 1

)]
1
= −

∑
ℓ∈Z

h
[
1 + d

(
jϖ
2 + (2jℓ− n) + 2

2

)]
= −

∑
ℓ∈Z

h
[
1 + d

(
jϖ
2 + (2jℓ− n)

)
− 2
]

= −
∑
ℓ∈Z

h
[
d
(

jϖ
2 + (2jℓ− n) + 1

2

)]
= −

[ #»

ujω
(
n− 1

2

)]
0
.

The proof of (a) follows directly from the definitions of ℓmin and ℓmax for the ro-
tated case. (b) and (c), follow from the construction of

#»

ujω and the particularization
to i = 0. □

5.6. Specialization to p = 10

The reader will note that all the results from Chapter 3 have been obtained
using Daubechies Wavelets with 10 vanishing moments. For the sake of complete-
ness, we will write the specialization of Propositions 5.23 and 5.42 to p = 10 without
proof.

Corollary 5.43 (Specialisation of Proposition 5.23 to p = 10). For p = 10
the following statements hold:
(1) For j = 1 and n ∈ {0, 1} we have[ # »

u1(n)
]
i
= (−1)i

4∑
k=0

h
[
α1,n(i) + 4k

]
for every i ∈ {0, 1, 2, . . . , 18}. Moreover,[ # »

u1
(
n− 1

2

)]
0
=

4∑
k=0

h
[
2n+ 4k

]
.
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(2) For j = 2 and n ∈ {0, 1, 2, 3} we have

[ # »

u2(n)
]
i
= (−1)i

⌊
19−α2,n(i)

8

⌋
∑
k=0

h
[
α2,n(i) + 8k

]
,

for every i ∈ {0, 1, 2, . . . , 18}. Moreover,

[ # »

u2
(
n− 1

2

)]
0
=

⌊
19−2n

8

⌋∑
k=0

h
[
2n+ 8k

]
.

(3) For j = 3 and n ∈ {0, 1, 2, 3, 4, 5, 6, 7} we have[ # »

u3(n)
]
i
= (−1)i

{
h
[
α3,n(i)

]
if α3,n(i) > 3, and

h
[
α3,n(i)

]
+ h
[
α3,n(i) + 16

]
otherwise,

for every i ∈ {0, 1, 2, . . . , 18}. Moreover,[ # »

u3ω
(
n− 1

2

)]
0
=

{
h[mod(2n+ 7, 16)] if mod(2n+ 7, 16) > 3, and
h[mod(2n+ 7, 16)] + h[mod(2n+ 7, 16) + 16] otherwise,[ # »

u3ω(n− 1)
]
0
=

{
h[mod(2n+ 6, 16)] if mod(2n+ 6, 16) > 3, and
h[mod(2n+ 6, 16)] + h[mod(2n+ 6, 16) + 16] otherwise,

and

[ # »

u3ω(n− 1)
]
1
= −

{
h[mod(2n+ 7, 16)] if mod(2n+ 7, 16) > 3, and
h[mod(2n+ 7, 16)] + h[mod(2n+ 7, 16) + 16] otherwise.

(4) For j = 4 and n ∈ {0, 1, . . . , 15} we have

[ # »

u4(n)
]
i
=



(−1)i h[i+ 1] for i ∈ {0, 1, 2, . . . , 18} when n = 0,{
(−1)i h[i+ 1 + 2n] for i ∈ [0, 18− 2n] ∩ Z
0 for i ∈ [19− 2n, 18] ∩ Z

}
when 1 ≤ n ≤ 6,(−1)i h[i+ 1 + 2n] for i ∈ [0, 18− 2n] ∩ Z

0 for i ∈ [19− 2n, 30− 2n] ∩ Z
(−1)i h[i+ 2n− 31] for i ∈ [31− 2n, 18] ∩ Z

 when n ∈ {7, 8, 9},

{
0 for i ∈ [0, 30− 2n] ∩ Z
(−1)i h[i+ 2n− 31] for i ∈ [31− 2n, 18] ∩ Z

}
when n ≥ 10.

Moreover, [ # »

u4
(
n− 1

2

)]
0
=

{
h[2n] for n ≤ 9, and
0 otherwise.

(5) For j ≥ 5 and n ∈ {0, 1, . . . , 2j − 1} we have

[ #»

uj(n)
]
i
=



(−1)i h[i+ 1] for i ∈ {0, 1, 2, . . . , 18} when n = 0,{
(−1)i h[i+ 1 + 2n] for i ∈ [0, 18− 2n] ∩ Z
0 for i ∈ [19− 2n, 18] ∩ Z

}
when 1 ≤ n ≤ 9,

0 for i ∈ {0, 1, 2, . . . , 18} when 10 ≤ n ≤ 2j − 10,{
0 for i ∈

[
0, ñ− 1

]
∩ Z

(−1)i h
[
i− ñ

]
for i ∈

[
ñ, 18

]
∩ Z

}
when n ≥ 2j − 9,
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where ñ := 2j+1 − 2n− 1 ∈ [1, 17] ∩ Z. Moreover,

[ #»

uj
(
n− 1

2

)]
0
=

{
h[2n] for n ≤ 9, and
0 otherwise.

Corollary 5.44 (Specialisation of Proposition 5.42 to p = 10). For p = 10
the following statements hold:

(1) For j = 1 and n ∈ {0, 1} we have

[ # »

u1ω(n)
]
i
= (−1)i

4∑
ℓ=0

h
[
mod(i+ 2n+ 3, 4) + 4ℓ

]
for every i ∈ {0, 1, 2, . . . , 18}. Moreover,

[ # »

u1ω
(
n− 1

2

)]
0
=

4∑
k=0

h
[
mod(2(n+ 1), 4) + 4k

]
, and

[ # »

u1ω(n− 1)
]
0
=

4∑
k=0

h
[
mod(2n+ 1, 4) + 4k

]
.

(2) For j = 2 and n ∈ {0, 1, 2, 3} we have

[ # »

u2ω(n)
]
i
= (−1)i

⌊
19−mod(i+2n+5,8)

8

⌋∑
ℓ=0

h
[
mod(i+ 2n+ 5, 8) + 8ℓ

]
,

for every i ∈ {0, 1, 2, . . . , 18}. Moreover,

[ # »

u2ω
(
n− 1

2

)]
0
=

⌊
19−mod(2n+4,8)

8

⌋∑
k=0

h
[
mod(2n+ 4, 8) + 8k

]
, and

[ # »

u2ω(n− 1)
]
0
=

⌊
19−mod(2n+3,8)

8

⌋∑
k=0

h
[
mod(2n+ 3, 8) + 8k

]
.

(3) For j = 3, n ∈ {0, 1, 2, 3, 4, 5, 6, 7} and i ∈ {0, 1, 2, . . . , 18} we have

[ # »

u3(n)
]
i
= (−1)i

{
h
[
α3,n(i)

]
if α3,n(i) > 3, and

h
[
α3,n(i)

]
+ h
[
α3,n(i) + 16

]
otherwise,

where, α3,n(i) := mod(i+ 2n+ 8, 16) ∈ {0, 1, . . . , 15}. Moreover,

[ # »

u3ω
(
n− 1

2

)]
0
=

{
h[mod(2n+ 7, 16)] if mod(2n+ 7, 16) > 3, and
h[mod(2n+ 7, 16)] + h[mod(2n+ 7, 16) + 16] otherwise,

and

[ # »

u3ω(n− 1)
]
0
=

{
h[mod(2n+ 6, 16)] if mod(2n+ 6, 16) > 3, and
h[mod(2n+ 6, 16)] + h[mod(2n+ 6, 16) + 16] otherwise.
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(4) For j = 4 and n ∈ {0, 1, . . . , 15} we have

[ # »u4ω(n)
]
i
= (−1)i




h[i+ 2n+ 14] for i ∈ [0, 5− 2n] ∩ Z
0 for i ∈ [6− 2n, 17− 2n] ∩ Z
h[i+ 2n− 18] for i ∈ [18− 2n, 18] ∩ Z

 when n ∈ {0, 1, 2},

{
0 for i ∈ [0, 17− 2n] ∩ Z
h[i+ 2n− 18] for i ∈ [18− 2n, 18] ∩ Z

}
when 3 ≤ n ≤ 8,

h[i] for i ∈ {0, 1, 2, . . . , 18} when n = 9,{
h[i+ 2n− 18] for i ∈ [0, 37− 2n] ∩ Z
0 for i ∈ [38− 2n, 18] ∩ Z

}
when n ≥ 10.

Moreover,

[ # »

u4ω
(
n− 1

2

)]
0
=


h[2n+ 13] if n ≤ 3,
0 if 4 ≤ n ≤ 9,

h[2n− 19] if n ≥ 10,

and

[ # »

u4ω(n− 1)
]
0
=


h[2n+ 12] if n ≤ 3,
0 if 4 ≤ n ≤ 9,

h[2n− 20] if n ≥ 10,
.

(5) For j ≥ 5 and n ∈ {0, 1, . . . , 2j − 1} we have

[ #»

ujω(n)
]
i
=



0 for i ∈ {0, 1, 2, . . . , 18} when 2n < jϖ − 19,

(−1)i h
[
i+ 2n− (jϖ − 1)

]


for i ∈
[
jϖ − (2n+ 1), 18

]
∩ Z

when jϖ − 19 ≤ 2n < jϖ − 1,
for i ∈ {0, 1, 2, . . . , 18}

when 2n ∈
{
jϖ − 1, jϖ

}
,

for i ∈
[
0, 18 + jϖ − 2n

]
∩ Z

when jϖ < 2n ≤ 18 + jϖ,
0 for i ∈ {0, 1, 2, . . . , 18} when 2n > 18 + jϖ.

Moreover,

[ #»

ujω
(
n− 1

2

)]
0
=


0 if 2n < jϖ,

h
[
2n− jϖ

]
if jϖ ≤ 2n ≤ jϖ + 19,

0 if 2n > jϖ + 19,

and

[ #»

ujω(n− 1)
]
0
=


0 if 2n < jϖ + 1,

h
[
2n− 1− jϖ

]
if jϖ + 1 ≤ 2n ≤ jϖ + 20,

0 if 2n > jϖ + 20.

Remark 5.45. Note that in the case when j ≥ 5 in Corollary 5.44, we have
that most values of

[ #»

ujω(n)
]
i

will be zero. In particular, the vector
#»

ujω(n) will be

zero whenever n <
⌊

jϖ−19
2

⌋
.

Note however, that for the non-zero cases the values depend only on the parity
of jϖ. That is, the values computed for

#»

ujω(n) depend only on wether jϖ is odd
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or even. Hence, one only needs to compute the non-zero coefficients of jϖ for two
cases.

Finally note that in this case the effect of
[ #»

ujω
(
− 1

2

)]
0

and
[ #»

ujω(−1)
]
0

should
not be underestimated. It might well happen that

[ #»

ujω(n)
]
i
= 0 for all i but[ #»

ujω(−1)
]
0
̸= 0.





Conclusions

This are the conclusions corresponding to the second part of the thesis. We
have successfully extended and consolidated the results obtained in [AMR16],
which were expanded in David Romero’s PhD thesis [RiS15], to which this present
thesis hopes to be a worthy continuation.

Using the invariance equation, we have successfully presented a method that
allows to compute the truncated wavelet expansion of an attractor φ of a quasi-
periodic forced skew product. That is, 2ν+1 coefficients

{
d−j,n ≈ ⟨φ,ψPER

−j,n⟩
}
j,n

such that

φ(θ) ≈ a0 +
ν∑
j=0

2j−1∑
n=0

d−j,nψ
PER

−j,n(θ).

Moreover, this method has shown an outstanding robustness, as it has been used
to compute the expansion for many different types of systems. It clearly performs
better with regular systems, but it even has been able to give good approximations
strange attractors and capture their behaviour. The fact that the subsequent re-
covery of the attractor from its wavelet expansion so closely mimics the behaviour
of the approximation by forward iteration also deserves notice.

Another remarkable achievement is to have been able to obtain these expan-
sions with as many as 230 coefficients, that is, ν = 29. We believe that this is
noteworthy, especially if one considers that Daubechies wavelets are very compli-
cated to compute, becoming harder as the number of vanishing moments increase.
Hence, we believe that having succeeded in this endeavour with p = 10 vanishing
moments is undoubtedly a reason of self-satisfaction.

What is more, we have been able to use these truncated expansions to compute
the Besov regularities of the attractors for different values of the parameters. In Sec-
tion 4.3, we have tested the method with the Keller-GOPY and Alsedà-Misiurewicz
systems, for which there exist analytic results concerning their strangeness. The
regularity obtained with the method successfully mimics the expected analytic be-
haviour. In Section 4.4 we have profitably scouted the situation for the Nishikawa-
Kaneko system. Even though we cannot call the results conclusive, we believe that
the insight we have gained from our computations is valuable.

Finally, in Chapter 5 we have given a very thorough description on how one can
evaluate (periodized) Daubechies wavelets extremely efficiently. The subsequent
implementation of the various algorithms devised have allowed us to obtain the
wavelet matrices to be used in Chapter 4 using very reasonable computing resources
and in a manageable amount of time.

All in all, we have developed a semi-analytic method that allows us to bet-
ter understand the strangeness of attractors as (lack of) regularity. This method
should complement other semi-analytical methods such as the computation of the
arc length of the curve [JT08] or the computation of the Hausdorff dimension
[GJ13].
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Further research

There are three main areas where one can keep investigating: control of the
error, improving the numerical limitations, and further applications of the wavelet
coefficients.

Firstly, a comprehensive theoretical study of the error is required. However,
this is harrowing endeavour. First and foremost, because we have no a priory results
on how good a truncated wavelet approximation might be, specially if our goal is to
use Theorem 3.35 to obtain regularities. A clear example of this is the Nishikawa-
Kaneko case, were the behaviour of the computed coefficients is not as clear cut
as in the Keller-GOPY or the Alsedà-Misiurewicz case. In this sense, the desire to
use as many coefficients as possible collides with the capabilities available hardware.
Hence, giving an appropriate estimate of the error for this sort of cases seems wishful
thinking. We are quite confident that the error cannot be too large, though. Mostly
because Figures 4.4, 4.9 and 4.14 show that the wavelet approximations obtained
are of very good quality.

The main issues with obtaining results are laid out in Section 4.5. In this sense,
the quest for better preconditioners is probably what can put the finishing touches
to the method explained in this thesis. A better preconditioner than the one we
have been using so far might help with the cases of zero regularity, as well as with
the Nishikawa-Kaneko system. We have tried to use the matrices that are, in a
way, natural to the system: 1

NΨ, 1
NΨ⊺, 1

NΨR, 1
NΨ⊺

R, having seen that 1
NΨ⊺

R is
optimal for the Keller-GOPY and the Alsedà-Misiurewicz systems, but not for the
Nishikawa-Kaneko case. Moreover, with better preconditioners, one might use some
other iterative solver that might perform better then TFQMR. Having said that,
we believe that we have obtained optimal results in the computing and storage of
the wavelet matrices and in the the implementation of the matrix operations.

When it comes to further applications, Theorem 3.35 has a more general version
that allows to compute the Besov regularity for general Bs

p,q, which might allow
for some finer tuning when detecting irregularities that might not be discerned
within the spaces Bs

∞,∞. However, we are quite sceptical when it comes to the
opportunities for finer detection following this path due to the inclusivity results
presented in Section 3.4.

A path that may lead to more interesting results if done carefully is the use
of two-microlocal spaces Cs,s′x0

, which roughly measure the smoothness of a function
at a given point x0 when compared to the surrounding points. Jaffard shows that
there is a correlation between the regularities s and s′ and the wavelet expansion
of a function in [Jaf91]. The main result is quite similar to Theorem 3.35.

Theorem 5.46 ([Jaf91] Theorem 2). A distribution u belongs to Cs,s′x0
(Rk) if

and only if ∣∣⟨u, ψj,n⟩∣∣ ≤ C2(−k/2+s)j 1(
1 + |k − 2jx0|

)s′
Note that when s′ = 0 this theorem corresponds with Theorem 3.35, which

makes sense because if s > 0 and s′ = 0 then Cs,s′x0
corresponds to the classical

Holder space. However, in this case the regularity depends on two parameters, s
and s′ which can no longer be solved by a simple linear fitting. Moreover, the role
of each parameter must be properly understood within the context of the duality
strangeness and regularity. This is not trivial and requires a deeper theoretical
understanding.

Finally, when it comes to further applications an interesting area of study could
be finding (probably numerical) dependencies between the wavelets coefficients and
the attractors. This could allow us to study bifurcations directly from the wavelet
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expansion. This, however, is a beast of its own to tackle, since Daubechies wavelets
are very hard to evaluate, hence the coefficients computed cannot be neither easily
nor intuitively understood.





APPENDIX A

Some notes on the numerical implementations

This very technical Annex wants to be a natural continuation to Chapter 5. In
it we will focus on showing the actual implementation of the wavelet matrices in
the C programming language. In particular, we will present the date types used
to store the matrices and how one can program the operations corresponding to
multiplying a matrix by a vector and the transposed matrix by a vector. Since this
Annex reflexes the algorithms and code used to obtain the results from Chapter 4,
we present the results for the particular case when we are using Daubechies wavelets
with p = 10 vanishing moments.

A.1. Data types for the Wavelet Matrices

In this section we will present the data types used for the storage of the wavelet
matrices. Recall that in Remark 4.10 we saw that by Proposition 3.22 we had that
fixing j, all the columns corresponding to ψPER

−j,n, n = 0, . . . , 2j − 1 were actually
permutations of one another. To this end, the natural way of reducing storage
becomes storing only one of the columns for the whole block of size N × 2j . Which
column will depend on the situation, though. Notice that this allows a massive
reduction on the amount of memory required to store all the information. If we are
considering matrices of size N×N , now the size required is reduced to N× log2(N).
As we shall see, we can further reduce the memory required to store the matrices
by using the results regarding ℓmax and ℓmin from Remark 5.25 and equation (5.27)
in Chapter 5. Using this results, we can avoid storing all the unnecessary zeroes
for the blocks of j such that 2j > p. For the particular case we have used, p = 10,
j = 5 is the smallest such value. Hence we have non-sparse blocks for j =≤ 4 and
sparse blocks whenever j ≥ 5.

A.1.1. Some general considerations regarding the data types. For the
implementation, we wold like to be able to deal with the whole wavelet matrix as
single entity. To this end, it is interesting to realize that there are in fact four types
of blocks within a wavelet matrix.
Type 1 The first type corresponds to the first column, which corresponds to the

vector #»
1 , i.e, all the entries are 1. Hence, we do not to store this at all, just

taking this fact into account when implementing the matrix operations is
enough.

Type 2 The second type of block corresponds to the second column, the one that
stores the values of ψPER = ψPER

0,0 . Recall that by Propositions 5.15 and
5.28 these column satisfies that the first N/2 entries and the last N/2
entries have the same absolute value but have different signs. Knowing
this, we only need to store the first N/2 entries and change their signs
when implementing matrix operations.

Type 3 The third type of block corresponds to the ones where j is such that 2j ≤
2p − 1. In this case, all the entries should be considered different than
zero. However, by Proposition 3.22 we know that all the columns inside
one j-block are simply shifts of the first column. Hence, if one takes this
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shifts into account, for each j-block with 2j columns, only one needs to be
stored.

Type 4 The fourth and final type of column is the one corresponding to j levels
such that 2j > 2p−1. By the finiteness of the support many entries on this
column will simply be zero. In Chapter 5, we have even been able to localize
where the zeroes are thanks to the definitions of ℓmax and ℓmin. Hence, for
each j-block we have to take into account both the self similarities (and
hence store only one column) and the sparsity (therefore storing only the
non-zero values).

Therefore, when it comes to storing these different types of columns one needs to
do it carefully so that what is stored is both enough to recover all the information
and minimal in the sense that we would not want to use memory superfluously. As
we said before, for the first column, one does not need to store any information.
For the second column, an array of size N/2 suffices. As for the j-blocks with j
such that 2j ≤ 2p− 1, we have defines the following data type in C that allows us
to store all the information we need:

typedef struct {
unsigned dimrows , dimcols;
double *base_column;

} Self_Similar_Matrix_EncodedByColumn;

Where dimrows corresponds to the division of the column in groupings that will
shift around (see Examples 4.11 and 4.12, where the groupings of size dimrows are
coloured the same). On the other hand, dimcols corresponds to 2j , the number of
columns in this j-block. In the array base_column we store the whole first column
in the block. All the others can be reconstructed knowing dimrows and dimcols.

Finally, for the sparse column, we have defined another data type:
typedef struct {

unsigned dimrows , dimcols;
unsigned numnonzeroblocks , nonzerodimension;
unsigned base_non_interruptus_column_number;
double *base_non_interruptus_column;

} Self_Similar_Matrix_Interruptus_EncodedByNonInterruptusColumn;

In here, dimcols and dimrows have the same definition as in Self_Similar_Matrix_EncodedByColumn.
On the other hand, numnonzeroblocks corresponds to the number of blocs that
are different from zero in a given column. Simmilarly, nonzerodimension cor-
respond to the number of entries that are different from zero. We are aware that
nonzerodimension = numnonzeroblocks·dimrows, but since we are going to use it
repeteadly we considered that is was worth storing it in the data type. What is a bit
more interesting is the integer base_non_interruptus_column_number. This cor-
responds to the column within the j-block that does not start with a zero (that is in
the overall position within the matrix 2j+base_non_interruptus_column_number).
Note that due to the matrix structure there is only one such column within the j-
block. Finally, in the array base_non_interruptus_column we store the values dif-
ferent from zero of the column in position base_non_interruptus_column_number.

One of the goals of the current implementations are that we want the pro-
gramming to be as simple as possible. Therefore, note that the data types for
each type of column can be used far either the Wavelet Matrix Ψ and the Ro-
tated Wavelet Matrix ΨR. The main change will be in the definition of the integer
base_non_interruptus_column_number. The reason behind this stems from the
different definitions of ℓmax and ℓmin and can be clearly seen in Figures 5.1 and 5.2.

Using the two data types described above, we can create a new data type called
Wavelet_Matrix to store both the non-rotated and the rotated wavelet matrices.
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typedef struct {
unsigned short nu;
unsigned N, Nhalf;
double *psi_PER_0_vals;
Self_Similar_Matrix_EncodedByColumn *psi_PER;
Self_Similar_Matrix_Interruptus_EncodedByNonInterruptusColumn
*psi_PER_big;

} Wavelet_Matrix;

In this case remains to explain the integers nu, N and Nhalf and the array psi_PER_0_vals.
As the name implies nu corresponds to ν, the number of j-blocks used. N = 2ν cor-
responds to the dimension of the matrix. Nhalf = N/2 is stored because it is often
used. Finally, the array psi_PER_0_vals corresponds to the storing of the first
half od the second column. Note that both the psi_PER and psi_PER_big are
considered to be arrays, since we have an entry in the array for each j-block.

A.2. Matrix operations

In this section we will show the implementations of the matrix operations we
are going to use, that is Ψ · #»v , Ψ⊺ · #»v , ΨR · #»v , and Ψ⊺

R ·
#»v . First, however, we will

need a couple of auxiliary functions. All of them are based on their BLAS library
equivalent.

The first one is dotproductsdif, which given three vectors #»v , #»u and #»w com-
putes #»v · #»u − #»v · #»w.

double dotproductsdif(unsigned size , double *c, double *a, double *b){
double dtemp;
unsigned char rem = size % 5;
switch (rem) {

case 0: dtemp = 0.0; break;
case 1: dtemp = c[0]*(a[0] - b[0]); break;
case 2: dtemp = c[0]*(a[0] - b[0]) +

c[1]*(a[1] - b[1]); break;
case 3: dtemp = c[0]*(a[0] - b[0]) +

c[1]*(a[1] - b[1]) +
c[2]*(a[2] - b[2]); break;

case 4: dtemp = c[0]*(a[0] - b[0]) +
c[1]*(a[1] - b[1]) +
c[2]*(a[2] - b[2]) +
c[3]*(a[3] - b[3]); break;

}
for(unsigned i=rem; i < size ; i += 5){

dtemp += c[i]*(a[i] - b[i]) +
c[i+1]*(a[i+1] - b[i+1]) +
c[i+2]*(a[i+2] - b[i+2]) +
c[i+3]*(a[i+3] - b[i+3]) +
c[i+4]*(a[i+4] - b[i+4]);

}
return dtemp;

}

The next function, dotproduct computes the dot product between two vectors.
double dotproduct(unsigned size , double *a, double *b){

double dtemp;
unsigned char rem = size % 5;
switch (rem) {

case 0: dtemp = 0.0; break;
case 1: dtemp = a[0]*b[0]; break;
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case 2: dtemp = a[0]*b[0] + a[1]*b[1]; break;
case 3: dtemp = a[0]*b[0] + a[1]*b[1] +

a[2]*b[2]; break;
case 4: dtemp = a[0]*b[0] + a[1]*b[1] +

a[2]*b[2] + a[3]*b[3];
}
for(unsigned i=rem; i < size ; i += 5){

dtemp += a[i]*b[i] + a[i+1]*b[i+1] + a[i+2]*b[i+2] +
a[i+3]*b[i+3] + a[i+4]*b[i+4];

}
return dtemp;

}

Now, we have the function vectsum. It simply computes the sum of all the entries
of an array.

double vectsum(unsigned size , double *a){
double dtemp = 0.0; register unsigned i;
unsigned char rem = size % 6;
for(i=0; i < rem; i++) dtemp += a[i];
for( ; i < size ; i += 6) {

dtemp += a[i] + a[i+1] + a[i+2] +
a[i+3] + a[i+4] + a[i+5];

}
return dtemp;

}

The penultimate auxiliary function simply computes a #»v + #»u and stores it in the
memory corresponding to vector #»u .

void DAXPY(unsigned size , double alpha , double *a, double *b){
if(fabs(alpha) < 1.e-16) return;
for(unsigned i=0 ; i < size ; i++) b[i] += alpha*a[i];

}

The final function of this section simply sets all the entries of a vector to a fixed
number a.

void set_constant_vector(unsigned size , double a, double *b){
b[0] = b[1] = b[2] = b[3] = b[4] = a;
for(unsigned i=size % 5; i < size ; i += 5) {

b[i] = a; b[i+1] = a; b[i+2] = a;
b[i+3] = a; b[i+4] = a;

}
}

To this point, all of the data types and functions presented have been general in
scope. From this point onwards, we will focus only in the specialization Daubechies
wavelets with p = 10 vanishing moments.

A.2.2. Functions corresponding to the Wavelet Matrix. In this section
we will present the code for the functions we have used for the products Ψ · #»v and
Ψ⊺ #»v . For all the functions the inputs are the matrix to be multiplied, the array x,
which corresponds to the vector #»v and the array b, where the result is stored.
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A.2.2.1. Matrix times vector. The function is based in the fact that one can
understand the product of a matrix and a vector columnwise as follows:

a0,0 a0,1 . . . a0,N−1

a1,0 a1,1 . . . a1,N−1

...
...

...
...

aN−1,0 aN−1,1 . . . aN−1,N−1




v0
v1
...

vN−1

 =

v0


a0,0
a1,0

...
aN−1,0

+ v1


a0,1
a1,1

...
aN−1,1

+ · · ·+ vN−1


aN−1,0

aN−1,1

...
aN−1,N−1


Using this principle and the internal structure of the matrix we get the following
code for the matrix multiplication.
void Wavelet_Matrix_times_vector (Wavelet_Matrix *Wm,

double *x, double *b){
set_constant_vector(Wm ->N, x[0], b);
DAXPY(Wm ->Nhalf , x[1], Wm->psi_PER_0_vals , b);
DAXPY(Wm ->Nhalf , -x[1], Wm->psi_PER_0_vals , b+Wm->Nhalf);

for(unsigned j=1; j<5; j++){
DAXPY(Wm ->N, x[Wm->psi_PER[j]. dimcols],

Wm ->psi_PER[j]. base_column , b);
for(unsigned n=1, shift=Wm->psi_PER[j]. dimrows;

n<Wm ->psi_PER[j]. dimcols;
n++, shift+=Wm ->psi_PER[j]. dimrows){

DAXPY(shift , x[Wm->psi_PER[j]. dimcols+n],
Wm->psi_PER[j]. base_column +(Wm->N-shift), b);

DAXPY(Wm ->N-shift , x[Wm->psi_PER[j]. dimcols+n],
Wm->psi_PER[j]. base_column , b+shift);

}
}
for(unsigned j=5 ; j < Wm->nu ; j++){

register unsigned n, shift;
//Type I columns
for(n=0,

shift=Wm ->psi_PER_big[j]. base_non_interruptus_column_number*
Wm->psi_PER_big[j]. dimrows;
n < Wm ->psi_PER_big[j]. base_non_interruptus_column_number;
n++, shift -= Wm->psi_PER_big[j]. dimrows){

DAXPY(shift , x[Wm->psi_PER_big[j]. dimcols+n],
Wm->psi_PER_big[j]. base_non_interruptus_column ,
b+(Wm->N-shift));

DAXPY(Wm ->psi_PER_big[j]. nonzerodimension -shift ,
x[Wm->psi_PER_big[j]. dimcols+n],
Wm->psi_PER_big[j]. base_non_interruptus_column+shift ,
b);

}
// Column base_non_iterruptus_column -number
DAXPY(Wm ->psi_PER_big[j]. nonzerodimension ,

x[Wm->psi_PER_big[j]. dimcols+
Wm ->psi_PER_big[j]. base_non_interruptus_column_number],
Wm ->psi_PER_big[j]. base_non_interruptus_column , b);

//Type II columns
for(n=Wm->psi_PER_big[j]. base_non_interruptus_column_number +1,

shift=Wm ->psi_PER_big[j]. dimrows;
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n <= Wm->psi_PER_big[j]. dimcols +
Wm->psi_PER_big[j]. base_non_interruptus_column_number -
Wm->psi_PER_big[j]. numnonzeroblocks;
n++, shift += Wm->psi_PER_big[j]. dimrows){

DAXPY(Wm ->psi_PER_big[j]. nonzerodimension ,
x[Wm->psi_PER_big[j]. dimcols+n],
Wm->psi_PER_big[j]. base_non_interruptus_column ,
b+shift);

}
//Type I columns
for(shift = Wm->psi_PER_big[j]. dimrows;

n < Wm ->psi_PER_big[j]. dimcols;
n++, shift += Wm->psi_PER_big[j]. dimrows){

DAXPY(shift , x[Wm->psi_PER_big[j]. dimcols+n],
Wm->psi_PER_big[j]. base_non_interruptus_column +
(Wm ->psi_PER_big[j]. nonzerodimension - shift), b);

DAXPY(Wm ->psi_PER_big[j]. nonzerodimension -shift ,
x[Wm->psi_PER_big[j]. dimcols+n],
Wm->psi_PER_big[j]. base_non_interruptus_column ,
b+(Wm->N+shift -Wm->psi_PER_big[j]. nonzerodimension));

}
}

}

A couple of notes in the implementation. Due to the Definitions of ℓmax and ℓmin in
Remark 5.25, it is easy to see that there are two types of columns for this matrix:

(A.1) Type I:



⋆
...
⋆
0
...
0
⋆
...
⋆


Type II:



0
...
0
⋆
...
⋆
0
...
0


In the non rotated case we have that the columns begin with non-zero coefficients,
and hence are of Type I. Moreover, the last columns are also of Type I. In between
there is a big blob in the middle of Type II. In particular, for p = 10 we have 9
columns of Type I in the beginning and 10 columns in the end with 2j − 19 Type
II columns in the middle.

A.2.2.2. Transposed Matrix times Vector. Similarly to the previous section, if
we decompose the product of a transposed matrix by a vector in column-based
operations we get that

Ψ⊺ #»v =
#»

b

can be rewritten as
b[i] = #»v ·

(
Ψ
)
∗,i,

where
(
Ψ
)
∗,i denotes the i-th column of the matrix Ψ. Hence, we can proceed to

an almost identical way as for the regular product of matrix times vector basically
changing the DAXPYs for dotproduct.
void Wavelet_Matrix_transposed_times_vector (Wavelet_Matrix *Wm,

double *x, double *b){
b[1] = dotproductsdif(Wm->Nhalf , Wm->psi_PER_0_vals , x,
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x+Wm->Nhalf);
b[0] = vectsum(Wm->N, x);

for(unsigned j=1; j<5; j++){
b[Wm->psi_PER[j]. dimcols] =

dotproduct(Wm ->N, Wm ->psi_PER[j]. base_column , x);
for(unsigned n=1, shift=Wm->psi_PER[j]. dimrows;

n < Wm ->psi_PER[j]. dimcols;
n++, shift += Wm->psi_PER[j]. dimrows){

b[Wm->psi_PER[j]. dimcols + n] =
dotproduct(shift ,

Wm->psi_PER[j]. base_column +(Wm->N-shift), x) +
dotproduct(Wm ->N-shift ,

Wm->psi_PER[j]. base_column , x+shift);
}

}

for(unsigned j=5 ; j < Wm->nu ; j++){
register unsigned n, shift;
double * bstrip = b + Wm ->psi_PER_big[j]. dimcols;
//Type I columns
for(n=0,

shift=Wm ->psi_PER_big[j]. base_non_interruptus_column_number*
Wm->psi_PER_big[j]. dimrows;
n < Wm ->psi_PER_big[j]. base_non_interruptus_column_number;
n++, shift -= Wm->psi_PER_big[j]. dimrows){

bstrip[n] = dotproduct(shift ,
Wm->psi_PER_big[j]. base_non_interruptus_column ,
x+(Wm->N-shift)) +
dotproduct(Wm ->psi_PER_big[j]. nonzerodimension -shift ,
Wm->psi_PER_big[j]. base_non_interruptus_column+shift , x);

}
// Column base_non_iterruptus_column -number
bstrip[Wm->psi_PER_big[j]. base_non_interruptus_column_number] =

dotproduct(Wm ->psi_PER_big[j]. nonzerodimension ,
Wm->psi_PER_big[j]. base_non_interruptus_column , x);

//Type II columns
for(n=Wm->psi_PER_big[j]. base_non_interruptus_column_number +1,

shift=Wm ->psi_PER_big[j]. dimrows;
n <= Wm->psi_PER_big[j]. dimcols +
Wm->psi_PER_big[j]. base_non_interruptus_column_number -
Wm->psi_PER_big[j]. numnonzeroblocks;
n++, shift += Wm->psi_PER_big[j]. dimrows){

bstrip[n] = dotproduct(Wm->psi_PER_big[j]. nonzerodimension ,
Wm ->psi_PER_big[j]. base_non_interruptus_column ,
x+shift);

}
//Type I columns
for( ; n < Wm->psi_PER_big[j]. dimcols ;

n++, shift += Wm->psi_PER_big[j]. dimrows){
bstrip[n] = dotproduct(Wm->N-shift ,

Wm->psi_PER_big[j]. base_non_interruptus_column ,
x+shift) +

dotproduct(Wm ->psi_PER_big[j]. nonzerodimension -
(Wm ->N-shift),
Wm ->psi_PER_big[j]. base_non_interruptus_column+
(Wm ->N-shift),x);
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}
}

}

A.2.3. Functions corresponding to the Rotated Wavelet Matrix. In
this subsection we will present the code for the products for the ΨR, the rotated
wavelet matrix. We had to develop slightly different functions for this case. This
mostly stems from the fact that within each j-block with j ≥ 5 the Type I and Type
II types of columns from Equation (A.1) are reversed. In particular, we have 19
consecutive columns of Type I leading up to the column base_non_interruptus-
_column_number, while the rest of the columns are of Type II. Hence the loop from
j ≥ 5 has been modified accordingly.

A.2.3.1. Rotated Matrix times Vector. The case is identical to the non-rotated
case for j ≤ 4. For j ≥ 5 we simply need to take into account that the first columns
are of Type II as in Equation (A.1).
void Rotated_Wavelet_Matrix_times_vector (Wavelet_Matrix *Wm,

double *x, double *b){
set_constant_vector(Wm ->N, x[0], b);
DAXPY(Wm ->Nhalf , x[1], Wm->psi_PER_0_vals , b);
DAXPY(Wm ->Nhalf , -x[1], Wm->psi_PER_0_vals , b+Wm->Nhalf);
for(unsigned j=1; j<5; j++){

DAXPY(Wm ->N, x[Wm->psi_PER[j]. dimcols],
Wm ->psi_PER[j]. base_column , b);

for(unsigned n=1, shift=Wm->psi_PER[j]. dimrows ;
n < Wm ->psi_PER[j]. dimcols;
n++, shift += Wm->psi_PER[j]. dimrows){

DAXPY(shift , x[Wm->psi_PER[j]. dimcols+n],
Wm->psi_PER[j]. base_column +(Wm->N-shift), b );

DAXPY(Wm ->N-shift , x[Wm->psi_PER[j]. dimcols+n],
Wm->psi_PER[j]. base_column , b+shift);

}
}
for(unsigned j=5 ; j < Wm->nu ; j++){

register unsigned n, shift;
//Type II columns
for(n=0, shift =(Wm->psi_PER_big[j]. dimcols -

Wm->psi_PER_big[j]. base_non_interruptus_column_number)*
Wm->psi_PER_big[j]. dimrows;
n <= Wm->psi_PER_big[j]. base_non_interruptus_column_number -
Wm->psi_PER_big[j]. numnonzeroblocks;
n++, shift += Wm->psi_PER_big[j]. dimrows){

DAXPY(Wm ->psi_PER_big[j]. nonzerodimension ,
x[Wm->psi_PER_big[j]. dimcols+n],
Wm->psi_PER_big[j]. base_non_interruptus_column ,
b+shift);

}
//Type I column
for(n=Wm->psi_PER_big[j]. base_non_interruptus_column_number -

Wm->psi_PER_big[j]. numnonzeroblocks +1U,
shift= Wm->psi_PER_big[j]. nonzerodimension -
Wm->psi_PER_big[j]. dimrows;
n < Wm ->psi_PER_big[j]. base_non_interruptus_column_number;
n++, shift -= Wm->psi_PER_big[j]. dimrows){

DAXPY(shift , x[Wm->psi_PER_big[j]. dimcols+n],
Wm->psi_PER_big[j]. base_non_interruptus_column ,
b+(Wm->N-shift));
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DAXPY(Wm ->psi_PER_big[j]. nonzerodimension -shift ,
x[Wm->psi_PER_big[j]. dimcols+n],
Wm->psi_PER_big[j]. base_non_interruptus_column+shift ,
b);

}
// Column base_non_iterruptus_column -number
DAXPY(Wm ->psi_PER_big[j]. nonzerodimension ,

x[Wm->psi_PER_big[j]. dimcols+
Wm ->psi_PER_big[j]. base_non_interruptus_column_number],
Wm ->psi_PER_big[j]. base_non_interruptus_column , b);

//Type II columns
for(n=Wm->psi_PER_big[j]. base_non_interruptus_column_number +1,

shift=Wm ->psi_PER_big[j]. dimrows ;
n < Wm ->psi_PER_big[j]. dimcols; n++,
shift += Wm ->psi_PER_big[j]. dimrows){

DAXPY(Wm ->psi_PER_big[j]. nonzerodimension ,
x[Wm->psi_PER_big[j]. dimcols+n],
Wm->psi_PER_big[j]. base_non_interruptus_column ,
b+shift);

}
}

}

A.2.3.2. Transposed Rotated Matrix times Vector. Finally, this implementation
follows the same structure as the non-transposed product but changing the DAXPYs
for dotproducts, as it was done in the non-rotated case.

void Rotated_Wavelet_Matrix_transposed_times_vector
(Wavelet_Matrix *Wm , double *x, double *b){

b[1] = dotproductsdif(Wm->Nhalf , Wm->psi_PER_0_vals ,
x, x+Wm->Nhalf);

b[0] = vectsum(Wm->N, x);
for(unsigned j=1; j<5; j++){

b[Wm->psi_PER[j]. dimcols] =
dotproduct(Wm ->N, Wm ->psi_PER[j]. base_column , x);

for(unsigned n=1, shift=Wm->psi_PER[j]. dimrows ;
n < Wm ->psi_PER[j]. dimcols ; n++,
shift += Wm ->psi_PER[j]. dimrows){

b[Wm->psi_PER[j]. dimcols + n] =
dotproduct(shift , Wm ->psi_PER[j]. base_column +

(Wm ->N-shift), x) +
dotproduct(Wm ->N-shift , Wm->psi_PER[j]. base_column ,

x+shift);
}

}
for(unsigned j=5 ; j < Wm->nu ; j++){

register unsigned n, shift;
double * bstrip = b + Wm ->psi_PER_big[j]. dimcols;
Type II columns
for(n=0, shift =(Wm->psi_PER_big[j]. dimcols

- Wm->psi_PER_big[j]. base_non_interruptus_column_number)*
Wm->psi_PER_big[j]. dimrows; n <=
Wm->psi_PER_big[j]. base_non_interruptus_column_number -
Wm->psi_PER_big[j]. numnonzeroblocks;
n++, shift += Wm->psi_PER_big[j]. dimrows){

bstrip[n] = dotproduct(Wm->psi_PER_big[j]. nonzerodimension ,
Wm ->psi_PER_big[j]. base_non_interruptus_column ,
x+shift);
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}
//Type I columns
for(n=Wm->psi_PER_big[j]. base_non_interruptus_column_number -

Wm->psi_PER_big[j]. numnonzeroblocks +1U,
shift= Wm->psi_PER_big[j]. nonzerodimension -
Wm->psi_PER_big[j]. dimrows;
n < Wm ->psi_PER_big[j]. base_non_interruptus_column_number ;
n++, shift -= Wm->psi_PER_big[j]. dimrows){

bstrip[n] = dotproduct(shift ,
Wm->psi_PER_big[j]. base_non_interruptus_column ,
x+(Wm->N-shift)) +
dotproduct(

Wm ->psi_PER_big[j]. nonzerodimension -shift ,
Wm ->psi_PER_big[j]. base_non_interruptus_column+
shift , x);

}
// Column base_non_iterruptus_column -number
bstrip[Wm->psi_PER_big[j]. base_non_interruptus_column_number] =

dotproduct(Wm ->psi_PER_big[j]. nonzerodimension ,
Wm ->psi_PER_big[j]. base_non_interruptus_column ,
x);

//Type II columns
for(n=Wm->psi_PER_big[j]. base_non_interruptus_column_number +1,

shift=Wm ->psi_PER_big[j]. dimrows ;
n < Wm ->psi_PER_big[j]. dimcols;
n++, shift += Wm->psi_PER_big[j]. dimrows){

bstrip[n] = dotproduct(Wm->psi_PER_big[j]. nonzerodimension ,
Wm->psi_PER_big[j]. base_non_interruptus_column ,
x+shift);

}
}

}
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