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Abstract

Currently, there is a growing trend in cancer cases, with lung cancer leading in cancer-
related deaths and ranking second in new cases, just behind breast cancer. Upon
lung cancer detection, patients enter a follow-up circuit within the healthcare system,
with the frequency depending on the case, for instance, ranging from check-ups ev-
ery 3, 6 months, or annually. Early detection of lung cancer is crucial, increasing sur-
vival chances, reducing patient anxiety, and alleviating the demand for healthcare re-
sources.

To address research gaps, we created a reliable dataset with cases diagnosed his-
tologically through biopsy, promoting transparency while respecting data confiden-
tiality. Numerous studies using machine learning and deep learning report promis-
ing performances in lung cancer research. However, commonly used public datasets
lack biopsy diagnoses and rely on visual classification by health experts. This con-
straint motivated us to create a dataset diagnosed through biopsy, adhering to glob-
ally accepted acquisition protocols. We also developed an infrastructure that facili-
tates multi-center data collection. Our dataset is publicly available, fostering research
progress while while ensuring data confidentiality.

We explored strategies to generate representation spaces characterizing lung nod-
ules from computed tomography scans, addressing challenges such as small sample
size and data imbalance through dimensionality reduction and feature selection. Deep
learning faces challenges in biomedical applications, particularly in screening benign
nodules, due to limited annotated data and class imbalance, leading to overfitting.

To address these challenges, we developed a framework to explore the impact of
representation spaces through three levels of data splitting in experimental design. It
provides insights into model performance, generalization capabilities, and ensures ro-
bust evaluation and reproducibility. Additionally, we conducted a statistical analysis of
the impact of scanner acquisition parameters.

The experimental results allow us to analyze outcomes at different levels of gener-
alization using cross-validation, varying the experimental unit by slice or nodule and
relating various visual representation spaces and found hyperparameters.

Keywords – Lung Cancer, Early Lung Cancer Diagnosis, Features Embedding, Hy-
perparameter Optimization, Meta Learning, Machine Learning, Deep Learning, Com-
puter Vision, Radiomics, Representation Spaces.
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Resumen

Actualmente, hay una creciente tendencia en casos de cáncer, siendo el cáncer de
pulmón el líder en muertes relacionadas por cáncer y ocupando el segundo lugar en
nuevos casos, justo detrás del cáncer de mama. Tras la detección del cáncer de pul-
món, los pacientes ingresan a un circuito de seguimiento dentro del sistema de salud,
con una frecuencia que depende de cada caso, por ejemplo, con revisiones cada 3, 6
meses o anuales. La detección temprana del cáncer de pulmón es crucial, aumentando
las probabilidades de supervivencia, reduciendo la ansiedad del paciente y aliviando
la demanda de los recursos del sistema de salud.

Para abordar las brechas en la investigación, creamos una base de datos confi-
able con casos diagnosticados histológicamente mediante biopsia, promoviendo la
transparencia y respetando la confidencialidad de los datos. Numerosos estudios que
utilizan aprendizaje automático y aprendizaje profundo informan de rendimientos
prometedores en la investigación del cáncer de pulmón. Sin embargo, las base de datos
públicos comúnmente utilizados carecen de diagnósticos por biopsia y dependen de la
clasificación visual hecha por expertos en salud. Esta limitación nos motivó a crear una
base de datos con casos diagnosticados mediante biopsia, siguiendo un protocolo de
adquisición aceptados globalmente. También desarrollamos una infraestructura que
facilita la recopilación de datos de múltiples centros. Nuestra base de datos está públi-
camente disponible, fomentando el progreso en la investigación mientras garantiza la
confidencialidad de los datos.

Exploramos estrategias para generar espacios de representación que caracterizan
los nódulos pulmonares de las tomografías computarizadas, abordando desafíos como
el pequeño tamaño de muestra y el desequilibrio de datos mediante la reducción de
dimensionalidad y la selección de características. El aprendizaje profundo enfrenta
desafíos en aplicaciones biomédicas, especialmente en la detección de nódulos be-
nignos, debido a la falta de datos anotados y al desequilibrio de clases, lo que lleva al
sobreajuste.

Para abordar estos desafíos, desarrollamos un marco para explorar el impacto de
los espacios de representación a través de tres niveles de división de datos en el dis-
eño experimental. Proporciona información sobre el rendimiento del modelo, las ca-
pacidades de generalización y garantiza una evaluación y reproducibilidad robustas.
Además, realizamos un análisis estadístico del impacto de los parámetros de adquisi-
ción del escáner.

Los resultados experimentales nos permiten analizar los resultados a diferentes
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niveles de generalización mediante validación cruzada, variando la unidad experi-
mental por corte o nódulo y relacionando diversos espacios de representación visual y
parámetros encontrados.

Palabras Clave – Cáncer de Pulmón, Detección Precóz de Cancer de Pulmón, Car-
acterísticas Embebidas, Optimización de Hiperparámetros, Metaaprendizaje, Apren-
dizaje automático, Aprendizaje profundo, Visión por computadora, Radiómica, Espa-
cios de representación.



Resum

Actualment, hi ha una creixent tendència en casos de càncer, sent el càncer de pulmó
el líder en morts relacionades per càncer i ocupant el segon lloc en nous casos, just
darrere del càncer de mama. Després de la detecció del càncer de pulmó, els pacients
ingressen a un circuit de seguiment dins del sistema de salut, amb una freqüència que
depèn de cada cas, per exemple, amb revisions cada 3, 6 mesos o anuals. La detecció
precoç del càncer de pulmó és crucial, augmentant les probabilitats de supervivència,
reduint l’ansietat del pacient i alleujant la demanda dels recursos del sistema de salut.

Per a abordar les bretxes en la recerca, creem una base de dades de confiança amb
casos diagnosticats *histológicamente mitjançant biòpsia, promovent la transparèn-
cia i respectant la confidencialitat de les dades. Nombrosos estudis que utilitzen apre-
nentatge automàtic i aprenentatge profund informen de rendiments prometedors en
la recerca del càncer de pulmó. No obstant això, les base de dades públics comuna-
ment utilitzats manquen de diagnòstics per biòpsia i depenen de la classificació visual
feta per experts en salut. Aquesta limitació ens va motivar a crear una base de dades
amb casos diagnosticats mitjançant biòpsia, seguint un protocol d’adquisició accep-
tats globalment. També desenvolupem una infraestructura que facilita la recopilació
de dades de múltiples centres. La nostra base de dades està públicament disponible,
fomentant el progrés en la recerca mentre garanteix la confidencialitat de les dades.

Explorem estratègies per a generar espais de representació que caracteritzen els
nòduls pulmonars de les tomografies computades, abordant desafiaments com la pe-
tita grandària de mostra i el desequilibri de dades mitjançant la reducció de dimen-
sionalitat i la selecció de característiques. L’aprenentatge profund enfronta desafia-
ments en aplicacions biomèdiques, especialment en la detecció de nòduls benignes,
a causa de la falta de dades anotades i al desequilibri de classes, la qual cosa porta al
*sobreajuste.

Per a abordar aquests desafiaments, desenvolupem un marc per a explorar l’impacte
dels espais de representació a través de tres nivells de divisió de dades en el disseny ex-
perimental. Proporciona informació sobre el rendiment del model, les capacitats de
generalització i garanteix una avaluació i *reproducibilidad robustes. A més, realitzem
una anàlisi estadística de l’impacte dels paràmetres d’adquisició de l’escàner.

Els resultats experimentals ens permeten analitzar els resultats a diferents nivells
de generalització mitjançant validació creuada, variant la unitat experimental per cort
o nòdul i relacionant diversos espais de representació visual i paràmetres trobats.
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Chapter 1

Introduction

1.1 Motivation and Goal

Cancer is a major public health problem worldwide [76]. According to the World Health
Organization’s International Agency for Research on Cancer (IARC), reported in GLO-
BOCAN 2020 [80, 1] that there were around 19.3 million new cases of cancer and nearly
10.0 million cancer-related deaths worldwide. On a global scale, lung cancer is the top
cause of cancer-related deaths, causing 1.7 million deaths (18.4%) and ranking second
in new cases with 2.2 million cases (11.4%). In any case excluding non-melanoma skin
cancers and including people of all ages and both sexes.

Looking at the European Union (EU), data from 2020 in EU-27 countries, provided
by Eurostat (European statistics) [62, 25, 2], shows that lung cancer makes up 11.9% of
all new cancer diagnoses and 20.4% of cancer-related deaths. This makes lung cancer
the fourth most common cancer (after prostate, breast, and colorectal cancers) and the
leading cause of cancer death.

Lung cancer is divided into Small Cell Carcinoma (SCC) and Non-Small Cell Car-
cinoma (NSCC) based on histological and morphological characteristics of the cancer
cells [64, 65]. This classification is crucial for treatment decisions, as SCC and NSCC
exhibit different behaviors, treatment responses, and prognoses.

Small Cell Carcinoma (SCC) [37, 72] is characterized by small, round cells with a
high nucleus-to-cytoplasm ratio. It is highly aggressive and tends to grow rapidly. SCC
often metastasizes early and extensively, making it less amenable to surgical interven-
tion. Typically, SCC is centrally located in the lung, near the hilum.

On the other hand, Non-Small Cell Carcinoma (NSCC) [64, 54, 50] includes vari-
ous subtypes, such as adenocarcinoma, squamous cell carcinoma, and large cell car-
cinoma. These subtypes have distinct cellular characteristics. NSCC, especially ade-
nocarcinoma (ADC) and squamous cell carcinoma (SCC), tends to grow more slowly
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Introduction 2

compared to small cell carcinoma. Large cell carcinoma behaves more similarly to
small cell carcinoma in terms of aggressiveness. NSCC can occur in different areas of
the lung, including the peripheral lung tissue.

The decision to classify lung cancer into SCC and NSCC [69, 71] is pivotal for sev-
eral reasons. Treatment approaches differ significantly; small cell carcinoma is often
treated with chemotherapy, responding well to systemic treatments. Non-small cell
carcinomas, depending on the stage and subtype, may be treated with a combination
of surgery, radiation therapy, and chemotherapy.

Moreover, the prognosis varies between SCC and NSCC. Small cell carcinoma [60,
9] generally has a poorer prognosis due to its aggressive nature and early metastasis.
Non-small cell carcinomas [42, 11], especially when detected at an earlier stage, may
have better treatment outcomes.

The clinical management of lung cancer is also influenced by this distinction. It
helps in determining the appropriate diagnostic and staging procedures, as well as
guiding the selection of targeted therapies. In summary, the division into SCC and
NSCC is based on histological and clinical characteristics, playing a crucial role in
treatment decisions and prognostic assessments for individuals with lung cancer.

The financial impact is significant, with cancer costs in the EU reaching almost
€200 billion in 2018 [41]. These costs cover both direct spending in the healthcare sys-
tem and other costs related to early death, illness, and informal care.

The National Lung Screening Trial (NLST) [82] and Dutch-Belgian Randomized
Lung Cancer Screening Trial (NELSON) [102] have shown that lung cancer screening
(LCS) with computed tomography of low dose (CTLD) reduces mortality by 20-25%.
However, the average of false positive rate of the radiological diagnosis obtained by vi-
sual inspection of scans was 23% of the nodules detected. This inaccuracy meant long
follow-up of patients with repetitive computed tomography (CT) or performing an in-
vasive procedure like a biopsy or surgery, which accounted to be futile in 73% of the
cases. A reduction of false positives would increase the efficiency of screening for early
detection of lung cancer.

The largest screening program in Europe, the NELSON study, introduced volume-
try of the nodules in consecutive CT, which meant a significant reduction of the average
of false positive rate to 13%. This suggests that the application of radiomics [96] (a re-
cent discipline that extracts a large number of image features correlating to treatment
outcome), could represent a critical shift in the reduction of the false positive rate and
an improvement of early diagnosis of lung cancer.

Radiomics uses sophisticated image analysis and machine learning tools to ob-
tain quantitative image-based features (signatures) that correlate to final diagnosis
and treatment outcome [49]. Radiomics involves the extraction of a large number of
quantitative features from medical images, such as computed tomography (CT) scans,
magnetic resonance imaging (MRI), or positron emission tomography (PET). These
features capture the heterogeneity and characteristics of lung tumors at a microscopic



3 Introduction

level, enabling more precise diagnosis and treatment planning.

Figure 1.1: Overview of a framework for machine learning models for lung diagnosis.

1. Nodule extraction: This phase entails using 3D bounding boxes to extract nod-
ules from CT scans, representing each nodule as a volume of interest (VOI).

2. Nodule Embedding: The process of embedding nodules into a representation
space for malignancy characterization involves the computation of a Radiomic
embedding [88] using either 2D slices from the Volume of Interest (VOI) or the
whole 3D VOI.

3. Nodule Diagnosis: Distinct classifiers are trained using the features obtained
from the preceding embedding phase. In case of a 2D embedding, the output
of the classifiers is aggregated using a max-voting approach on the slice predic-
tions in order to obtain the nodule diagnosis.
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This PhD Thesis focuses on some aspects of the last two steps, which State-of-Art
we review in the next Section.

1.2 State of art and challenges

In a pilot study [58] the authors retrospectively extracted 150 quantitative image fea-
tures and performed a random forest classification, which finally obtained a signif-
icantly better predictive value than volumetry alone (AUC= 0.87 vs 0.74). More re-
cently, Peikert et al. [67] built a radiomic classifier based upon eight quantitative radio-
logic features selected by the least absolute shrinkage and selection operator (LASSO)
method from 726 indeterminate nodules of the LCST. These 8 features include vari-
ables capturing location, size, shape descriptors and texture analysis. In this retrospec-
tive study, the optimism-corrected AUC for these 8 features was 0.939 with a sensitivity
and specificity of, respectively, 90% and 85%.

An alternative to classic radiomics is the use of machine learning methods that ex-
tract image features using well known methods such as, Gabor, Local Binary Patterns
(LBP), or SIFT descriptor to represent a nodule. Then machine learning techniques
(e.g. Support Vector Machine (SVM) and Random Forest) are used to define a classi-
fication of nodules in this representation space according to their diagnosis [101, 51].
This methods achieve better diagnostic power than radiomic methods with AUC equal
to 0.97, sensitivity equal to 96% with 95% of specificity for [101].

Recently, and motivated by its performance in other areas of application, researchers
have began to classify Pumonary Nodule (PN) by using CNNs (Convolutional Neural
Network). The early work of Shen et al. proposed to use a multi-crop CNN [75] to make
the model robust to scales of nodules while keeping 2D input images. Results showed
an overall accuracy (including malign and benign cases) of 87%. However, the authors
did not report sensitivity for malignancy detection and specificity for discarding be-
nign nodules and, thus, its true clinical value is uncertain.

Since nodules are 3D structures, some works have addressed the problem using 3D
CNNs. Yan et al. [99] explored 3D CNNs for pulmonary nodule classification in com-
parison to a slice-level 2D CNN and a nodule-level 2D CNN analysis. The 3D approach
was the best performer with a 87% of overall accuracy and similar specificity and sen-
sitivity at the cost of a significantly higher demand of computational resources and an-
notated data. Zhu et al. [103] used 3D deep dual path networks (DPNs) a 3D Faster Re-
gions with Convolutional Neural Net (R-CNN) designed for nodule detection with 3D
dual path blocks and a U-net-like encoder-decoder structure to effectively learn nod-
ule features. Despite the complex architecture used, this approach could only achieve
a 81% of sensitivity and specificity was not reported. Jiang et al. [45] sequentially de-
ployed a contextual attention module and a spatial attention module to 3D DPN to
increase the representation ability. A main novelty of this work is that it ensembles dif-
ferent model variants to improve the prediction robustness. Results show an increase
of sensitivity to 90% while keeping a specificity similar to [99].
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GLCM (Gray-Level Co-occurrence Matrix) texture features, have demonstrated ef-
fectiveness in cancer diagnosis across various medical imaging modalities [44]. In a re-
cent study [87], researchers proposed a hybrid approach that combined GLCM textural
features with a neural network for nodule characterization in CT scans. To ensure re-
producibility with limited training data, an embedding technique based on the statis-
tical significance of radiomic features was used. This embedded representation served
as the input for a neural network, with its architecture and hyperparameters optimized
using custom-defined metrics. The best performing model achieved a sensitivity of
100% and specificity of 83% (with an AUC of 0.94) for malignancy detection when eval-
uated on an independent patient set. This innovative approach shows promise in im-
proving the accuracy and reliability of lung cancer screening by integrating radiomic
features and deep learning techniques, offering potential solutions to the challenges
posed by false positives in current screening methods.

The output of a classic CNN are features that have no meaning from radiological
point of view. In this way, introducing classic radiomic features in the models will be
helpful for radiologist in the interpretability of the results by means of most correlated
features to malignancy of tumours. It is worth to mention that radiomic features can
describe tumour heterogeneity [14], which is a parameter related to malignancy and
well known from radiologist.

Like most clinical applications, any radiomic system must deal with Small Sample
Size (SSS) and minority classes in possibly unbalanced settings. Most matching learn-
ing methods are ill-posed under such conditions and might drop their performance
[26]. Dimensionality reduction and automatic feature selection tools have been cru-
cial to mitigate the curse of dimensionality and SSS inherent to classification.

Principal Component Analysis (PCA) is an unsupervised method that uses a lin-
ear orthogonal transformation to project features into a dimensionally reduced set of
uncorrelated variables called principal components. This technique transforms the
data in a reduced dimension but does not perform feature selection. The main prob-
lem of this technique is the loss of interpretation of the variables [39]. Partial Least
Square - Discriminant Analysis (PLS-DA) PLS-DA is a supervised classification method
based on Partial Least Squares Regression and Linear Discriminant Analysis. In this
case the technique performs both dimensionality reduction and classification. The
dimensionality reduction is similar to PCA but the new components are created by
projecting the variables and the outcome into a new space based on linear regression
models. The variables of the new reduced subspace called latent variables can predict
the outcome and, unlike PCA, there is an interpretation of the projected variables given
that the importance of the original variables in the new subspace is quantified [53].

Kernel Trick (KT) has been widely used to extend the above linear methods to the
nonlinear case. Kernel methods have aroused great interest in the last decade since
they are universal nonlinear approximations and facilitate solving complex problems
where the samples are not linearly separable as is the case of many machine learn-
ing and pattern recognition application. Kernel methods use nonlinear mapping to
project samples from the original space to a feature space where the samples are ex-



Introduction 6

pected to be easily separable using linear approaches [32].

A variety of subspace-based kernel methods have been proposed, including Kernel
Principal Component Analysis (KPCA) and Kernel Discriminant Analysis (KDA) [100].
A Kernel-Independent Component Analysis (KICA) [57] by using the KT and the Info-
max algorithm has also been proposed for enhancing classification, but its application
is limited to classes statistically independent. KDA-based approaches are better suited
for supervised classification applications since a similar supervision process is per-
formed during the dimensionality reduction, but they require solving an expensive op-
timization problem [16]. Efficient KDA approaches have been proposed as a solution
such as the Kernel Discriminant Analysis via QR decomposition (KDAQR) [97], based
on the QR decomposition to replace the costly eigen decomposition of the kernel ma-
trix, and the Kernel Discriminant Analysis by using Spectral Regression (KDASR) [16]
which combines spectral graph analysis and regularised regression. Finally, a Discrim-
inative Common Vector with Kernel (KDCV) was originally proposed by Cevikalp et al.
[19, 20] and extended (Kernel Generalized Discriminative Common Vectors, KGDCV)
to manage large dimensional data in [32].

Methods for dimension reduction in classification problems rely on the probabilis-
tic distribution of samples and, thus, might not be the best suited for SSS in unbalanced
settings. Furthermore, the features projected in the reduced spaces are computed fol-
lowing probabilistic considerations and are not easy to be clinically interpreted. In
the context of clinical applications (especially in radiomics for personalized medicine),
feature selection methods are a preferred choice. Several methods for feature selection
are applied in the field of predictive models for personalized medicine.

Random forest selects features according to the change in the classification error.
Although it is accurate in case of highly uncorrelated data, in radiomic multi-view
problems variables are highly correlated and their selection usually leads to a corre-
lated subset of variables that can produce over-fitting [55]. Besides, the selection of the
subsets is random and there is a lot of variability when applying the technique.

To avoid correlation and over-fitting, Minimum Redundancy Maximum Relevance
(mRMR) algorithm [70] selects features according to the Mutual Information (MI) be-
tween the set of features and the class variable outcome. Features are selected by a
threshold on MI which must be carefully adjusted to avoid inclusion of redundant vari-
ables or the elimination of clinical relevant ones.

The least absolute shrinkage and selection operator (LASSO) [84] uses a logistic re-
gression model with a penalty term to select features according to their significance in
class variable prediction. This method is quite popular for the definition of radiomic
signatures [78] and malignancy classification [35]. However, there are some limitations
like the low repeatability and reproducibility of textural features in the clinical setting
and the limitation of the method to properly modelling SSS unbalanced problems. We
consider this could be corrected by the introduction of uncertainty measures into pre-
dictive models and the filtering of most unstable data in the training stage.

None of the above methods considers feature reproducibility for their selection.
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In the process of clinical data collection, there are several factors prone to introduce
variability in multi-view features. Among others, the main ones are medical scans
acquisition parameters with an impact on intensity-based values and inter-observer
variability in manual annotations required to identify tumors with an impact on shape
and volumetric descriptors [4]. Such sources of variability introduce an uncertainty
in models that should be considered to issue more reliable reproducible predictions,
while avoiding over-fitting.

A recent work [78] adds scan acquisition parameters as fixed factors in a regres-
sion model for the development of a radiomic signature that predicts immunother-
apy response. However, being unable to select which radiomic features were most af-
fected, the signature reproducibility was low due to over fitting. In [4] it is reported
that method reproducibility increases if features are selected based on their stability
and reproducibility. While uncertainty modelling is central in statistical analysis (like
confidence intervals estimation for computation of hypothesis test significance), in
machine learning it has not been addressed until recent years. Latest methods [63]
based on fully connected convolutional networks use dropout as boosting method to
define a measure of uncertainty in semantic classifiers output that it is used as post-
segmentation filtering. However, up to our knowledge a selection of features based on
reproducibility and uncertainty remains unexplored.

In [56], we conducted a study with data from Vall d’Hebron Oncology Institute
(VHIO) to analyze the reproducibility of radiomics features against different image
acquisition conditions and inter-observer variability in lesion identification. The re-
producibility study was based on the correlation of feature values obtained from data
collected using different conditions and settings. In this study, features were selected
as reproducible if they had high inter-class correlation coefficient (ICC) for all sources
of variability. The performance of the selected features was compared to state-of-art
methods on a different public data base. Results obtained for the classification of le-
sion malignancy show the better performance of our selection based on reproducibil-
ity.

A main limitation of [56] is that it should be replicated for each CT device and new
representation space in order to select the most reproducible features. This is not fea-
sible in clinical practice, given that it requires the repeated acquisition of scans of the
same lesion with different parameters. This suggests an alternative selection, as well
as, studying the set of optimal ranges and values for each scan using single acquisi-
tions.

Regardless of the approach, the classifier has several hyperparameters defining its
structure (e.g. neural network architecture) and training process. Such parameters
have a strong impact on the performance of the method and they should be optimized
using some meta-learning strategy.

Meta-learning, or learning to learn, is the science of systematically observing how
different machine learning approaches perform on a given learning task, and then
learning from this experience, or meta-data, to learn which approach is the optimal
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one for the task [94]. This not only accelerates and improves the design of machine
learning or neural architectures pipelines, it also allows us to replace hand-designed al-
gorithms with new learning data-based approaches. One of the most important meta-
learning sub fields is automated hyper-parameter optimization (HPO). HPO finds a
tuple of hyper-parameters that yields an optimal model which minimizes a predefined
loss function on given independent data [23]. HPO has several outcomes: 1) reduce
the human effort applying at hand machine learning configurations; 2) improve the
performance of machine learning algorithms; and 3) improve the reproducibility and
fairness of scientific studies.

In particular, if only a single approach is considered, HPO techniques can be ap-
plied to optimize its hyper-parameters. In the case of a neural network, the set of
hyper-parameters define its architecture, as well as, its training, which includes back-
propagation configuration (like learning rate) and the definition of the loss function
weights. Any strategy for HPO should include three main steps: search space, search
strategy, and performance estimation.

First, the parameter-search-space (statically constructed by the user) is defined by
a tuple of hyper-parameters and its possible discrete value ranges where, the space
dimensionality is the number of hyper-parameters, and its search area is bounded by
the value ranges. Each tuple of hyper-parameters values define a candidate network
to be the optimal one [5][7]. Many approaches have been proposed in order to select a
candidate network or apply a search strategy.

Second, search strategies can be grouped into two baseline methodologies: ex-
haustive and evolutionary searching. In one hand, exhaustive or brute-force search
(like grid search or random search [13]) consists of systematically enumerating all pos-
sible candidates for the solution and checking whether each candidate satisfies the
objective. On the other hand, evolutionary search (like Bayesian [95] or evolutionary
genetic [8] algorithms) chooses the new candidates based on the knowledge achieved
by previous ones. [6] reports a comparison between these strategies.

Third, regardless of the search strategy used, a critical point is how to define the
metrics evaluating the performance and generalization power of the different candi-
date networks. The simplest approach is to apply a single-objective function over a
tuple of hyper-parameters and returns the associated loss [23]. Then k-fold or cross-
validation applied to the training set [43] or evaluation to a hold out [22] are often
used to estimate this generalization performance [13]. Nowadays the usual approach is
to apply a nested cross-validation procedure where hyper-parameter selection is per-
formed in the inner cross-validation, while the outer cross-validation computes an un-
biased estimate of the expected accuracy of the algorithm [93].

A main challenge in the application of deep learning to biomedical problems is the
limited amount of good quality data with annotations, which is a must for training new
models with complex architectures. Besides, in the case of benign nodule screening,
this is aggravated with the fact that the problem is highly unbalanced with benign cases
being the minority class. Under such experimental settings, models are often over-
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fitted [29] results are non-reproducible [26, 29] and most times [99, 103, 45, 99, 46]
do not outperform conventional machine learning approaches [101]. Another pitfall,
especially for deep methods is models should also be easily interpreted from a clinical
point of view to allow the analysis of the clinical factors that have an impact on the
clinical decision [61].

Numerous studies use the LIDC-IDRI dataset; however, [74] provides a decisive cri-
tique, exposing fundamental flaws linked to its reliance on subjective radiologist as-
sessments for labeling, lacking a robust foundation in pathology reports. This critique
questions the credibility of benign and malignant classifications, emphasizing the po-
tential for misdiagnosis in the absence of pathological examination, thereby casting
doubt on the dataset’s reliability. The critique extends to the dataset’s inherent limita-
tions, notably its even distribution of benign and malignant nodules, a scenario that
may not reflect real-world occurrences. This uniform distribution could impact the ef-
ficacy of machine learning models trained on the data. Additionally, the exclusion of
diagnostically challenging samples, especially those with malignancy scores of 3, lim-
its the model’s adaptability to nuanced or difficult scenarios in clinical settings, as a
malignancy score of 3 signifies diagnostic uncertainty. The paper strongly advocates
for a shift towards datasets like LIDP, which meticulously integrates pathology infor-
mation, offering a more comprehensive and clinically relevant foundation for train-
ing and evaluating machine learning models. This critique serves as a rallying call in
academia, urging a reconsideration of reliance on LIDC-IDRI and an active embrace of
datasets aligning more closely with rigorous clinical standards.

In another study ([48]), the critique continues, highlighting LIDC-IDRI’s vulnera-
bility to interobserver variability in nodule annotations. This raises serious concerns
regarding the dataset’s reliability for training robust lung cancer detection algorithms.
The inconsistent characterization of lung nodules by different radiologists introduces
challenges in standardization, potentially compromising the accuracy of machine learn-
ing models trained on this data. This variability undermines the dataset’s credibility as
a gold standard for algorithm development in lung cancer diagnosis. Additionally, the
study underscores limitations in image quality and resolution due to inconsistencies
in the parameters used during image acquisition. Critics argue that the dataset lacks
comprehensive representation across demographics and clinical scenarios, thereby
limiting its applicability to real-world settings. Despite its historical significance, these
critiques serve as a call for researchers to exercise caution and explore supplementary
datasets to address the inherent limitations of LIDC-IDRI.

In [74], cases have been collected following an acquisition protocol, taking into ac-
count the weaknesses of the LIDC-IDRI dataset. However, the authors have not made
their LIDP dataset public, making it impossible for external use. On the other hand,
[48] features a federated data architecture with distributed processing, emphasizing
security to ensure that data always remains within each region or zone. It is designed
for validating pre-trained models. Nevertheless, the challenge lies in the inability to
interact between the model and the data during runtime to analyze the model’s per-
formance, and the output is restricted to a non-interactive text log. While it’s true that
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the data in each zone is protected, the model to be validated in this structure is acces-
sible to those maintaining the structure. In other words, the model doesn’t have the
same level of protection as the data. Currently, this framework is definitively unsuit-
able for model training. Moreover, if validation is pursued, there is a requirement to
furnish the Python code of the model along with its weights.

1.3 Goal and contributions

The goal of this thesis is to improve the early diagnosis of lung cancer. In order to
achieve this and following clinical practice, we need an accurate characterization of
the nodules, which play a key role in the process. In this context, we contribute to
machine learning systems for diagnosis of lung cancer in, both, system’s pipeline and
acquisition of a dataset for training systems for early diagnosis of lung cancer.

Our main contributions to a system for diagnosis of lung cancer are:

• Visual Representation Spaces: we introduce various representation spaces for
the characterization of lesions visual appearance in CT scans. These represen-
tation spaces include classic radiomics texture features, deep features extracted
from the intensity VOIs and a novel combination of deep and radiomic features,
which we call deep radiomics. We also present two statistical strategies for the
selection of the most meaningful features.

• Framework for Reproducible HyperParameter Optimization: we introduce strate-
gies for reproducible optimization and validation of models, focusing on two key
aspects. Firstly, a structured examination of data splitting levels is introduced,
incorporating Nodule k-folds, Leave-1-Nodule-Out, and Slice k-folds. These strate-
gies provide valuable insights into model performance and generalization capa-
bilities, ensuring a robust evaluation marked by a high degree of generalization
and reproducibility. Secondly, we formulate hyperparameter optimization as a
multi-objective optimization problem. It employs the Non-Dominated Sorting
Genetic Algorithm (NSGA-II) integrated into a Nested Cross-Validation frame-
work, addressing the search space, search strategy, and performance evaluation.
This comprehensive approach enhances our understanding of the model opti-
mization process.

Regarding the acquisition of a database for early diagnosis, we contribute in the
following aspects:

• RadioLung Dataset: we present an own collected dataset for early lung can-
cer diagnosis, including imaging and clinical data. Our approach involves the
development of a precise imaging acquisition protocol. This protocol utilizes
Multi-Detector Row CT Scanners with high-resolution features and incorporates
a low radiation dose strategy to prioritize patient safety. Notably, our protocol
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meticulously considers patient factors during both image capture and recon-
struction. Aligned with globally recognized standards in the radiology commu-
nity, the acquisition protocol is designed to detect lung cancer nodules in their
early stages. Subsequently, each identified nodule undergoes histopathological
diagnosis through biopsy samples.

• Impact of CT Acquisition Parameters : The study presented in [56] showed the
impact of device parameters in the reproducibility of radiomic systems. We present
the first statistical study on the impact that these parameters have on the perfor-
mance of methods. We use generalized mixed models [15] to estimate significant
difference in the Odds Ratio of failure for different methods and set ranges of ac-
quisition parameters ensuring reproducible results.

This thesis follows a structured progression. In Chapter 1, we introduce Lung Can-
cer Screening (LCS) and outline our research goal: developing a 1-shot algorithm for
simultaneous malignancy detection and histological diagnosis. Moving to Chapter 2,
we delve into the representation spaces designed for diagnosis of lung cancer. Chap-
ter 3 explores hyperparameter optimization, utilizing well-defined search spaces and
multi-objective functions for thorough performance evaluation. In Chapter 4, we in-
troduce fundamental CT scan concepts and meticulously detail the RadioLung dataset,
covering aspects like patient recruitment, imaging protocols, ethical considerations,
and comprehensive data management. Chapter 5 details experiments on lung cancer
screening, specifying experimental setups for the optimization process and compar-
ing results with existing approaches. Finally, Chapter 6 presents our conclusions and
suggests future research directions.
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Chapter 2

Representation Spaces for Diagnosis of
Lung Cancer

In this chapter we present different embedding strategies for the computation of visual
representation of spaces of nodules describing their appearance in CT scans. Nodule
embedding has two main steps: 1) extraction of visual features and 2) selection of most
discriminant features defining the input for the classifier.

For the extraction of visual features from CT scans we propose 3 different approaches:

1. Radiomic. This approach generates a representation space utilizing GLCM tex-
tural features. The process involves normalizing the volume of interest (VOI) and
extracting GLCM textural features slice by slice. The intensity gray level images
are transformed into co-occurrence matrices, from which the GLCM textural fea-
tures are derived.

2. Deep Intensity. Following the normalization of the VOI, the nodule slices are
directly fed into a deep pre-trained network, serving as a feature extractor from
an internal layer of the network architecture.

3. Deep Radiomic. This method combines the aforementioned approaches. Ini-
tially, a set of GLCM nodules is extracted from the VOI. Each of these nodules is
then individually processed through a deep pre-trained network, extracting fea-
tures from one of its internal layers to create an deep radiomic embedding.

Once a representation space is generated, we apply t-test that compare the means
of the features within the generated representation space. The goal is to identify fea-
tures that show a statistically significant difference between cases associated with ma-
lignancy according the nodule diagnosis. The t-test provides a quantifiable measure of
how well a particular feature can discriminate between these two groups (benign and

13
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malignant nodules), helping to select the most correlated features with the malignancy
and thus improve the classification tasks.

2.1 Nodule embedding

The feature embedding aims to create representation spaces that holds meaningful
and discriminative features of the nodules. These features can be subsequently ana-
lyzed and utilized for various classification tasks.

The following sections use nodules extracted from the CT scans, as described in
Figure 1.1. Clinicians were asked to adjust the VOI to the lesion. However, previous
studies [10, 17] underscore the significance of incorporating both the intranodular re-
gion (inside the nodule) and the perinodular region (the area surrounding the nod-
ule) for accurate classification of benign and malignant nodules. To address this, and
considering subsequent processing requirements, the size of the 3D bounding box is
enlarged to ensure the inclusion of both intranodular and perinodular regions. A cru-
cial consideration in nodule extraction is maintaining the same voxel size, direction,
and origin as the original CT scan. Any misinformation in the metadata of the VOI can
introduce image distortion or alter the order of data representation.

2.1.1 Intensity-based Representation Spaces

2.1.1.1 Radiomic Space

This representation space is generated utilizing GLCM textural features [40]. Its effec-
tiveness in cancer diagnosis has been demonstrated across a diverse range of medical
imaging modalities [85, 44, 52, 68, 81]. To calculate the GLCM features, the node masks
are required. In order to segment the nodule, we applied Otsu thresholding to the ROI
volume. Since the segmentation of peripheral nodules can include non-pulmonary
tissue, the binarized volumes were masked with a segmentation of lungs. The final
nodule segmentation was the largest connected component of the masked volumes.
The segmentation of lungs was computed using thresholding and morphological op-
erations [38]. Specifically, CT lungs were selected as the larger connected component
of the voxels with intensity between 950 to -300 Hounsfield Units, followed by a closing
with a structuring element of size 5.

Before normalizing the nodules, it is essential to consider that CT imaging quanti-
fies tissue density using Hounsfield units (HU) [3], a standardized scale. HU quantifies
how X-ray beams are attenuated as they pass through different tissues. The calculation
involves a linear transformation using specific acquisition parameters, such as slope
and intercept, to convert pixel values to HU values. The formula for HU calculation is
as follows:
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Figure 2.1: Radiomic Embedding Workflow.

HU = Pi xel _value ×Sl ope + Inter cept (2.1)

This transformation allows for standardized and consistent interpretation of tissue
density across different CT scans. The HU scale establishes specific reference points:
air is assigned a value of -1000 HU, water is 0 HU, and dense materials like metal (such
as steel or silver) can reach values as high as 4000 HU.

Now, for normalizing the VOI to a common intensity range [0, M axIntensi t y], the
following formula is employed:

Pi xel_value = (HU − Inter cept )/Sl ope

max(HU )
∗M axIntensi t y (2.2)

= (HU − Inter cept )/Sl ope

4000
∗M axIntensi t y (2.3)

where max(HU ) = 4000, is the highest HU value, and for Pi xel_value the intensities
of the volume. Despite the fact that pixel values are stored as unsigned 16 bits in DI-
COM, with a range of 0 to 65535, a study conducted by [81] has demonstrated that
utilizing only 24, 32 or 64 gray levels is sufficient to extract Gray-Level Co-occurrence
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Matrix (GLCM) textural features capable of distinguishing between benign and malig-
nant nodules.

To generate the GLCM features, image intensity is discretized using the histogram
of the original volume intensity into n discrete bins. The width of these histogram bins
determines the level of granularity at which the GLCM features describe the textural
patterns. Smaller bin widths provide a finer level of detail, while larger bin widths re-
sult in more generalized information. Once the gray values are discretized, the GLCM
is constructed by examining the spatial relationships between pixels within the neigh-
borhood. Specifically, for each pixel, the occurrence of gray-level pairs and their spa-
tial relationships with neighboring pixels are recorded in the co-occurrence matrix.
Based on the GLCM, a variety of statistical measures (including contrast, correlation,
energy, homogeneity, and many others) are computed to extract textural information.
Bin width, namely ∆, is given by:

∆= max(Pi xel_value)−mi n(Pi xel_value)

N bi ns
(2.4)

for N bi ns the number of histogram bins. In [68, 81] the authors showed the impor-
tance of, both, intensity ranges and number of bins. It is reported that a fixed bin count
between 30 and 130 bins has good reproducibility and performance.

The GLCM features are extracted by traversing the nodule axially, slice-by-slice,
from 2D images, as depicted in Figure 2.2. Afterward, these features are concatenated
and analyzed using a t-student test to identify the most strongly correlated features
with lesion malignancy. These selected features are intended for later use as inputs
to feed a classifier. An overview of workflow followed for the Radiomic Embedding is
illustrated in the Figure 2.1.

Figure 2.2: Each slice yields a total of GLCM textural features, covering both nodule and
mask slices, with (Slices, Features) referring to the number of slices within the nodule
and the features extracted from the slices.
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Figure 2.3: The nodule slices are fed through a pre-trained VGG16 network, where fea-
tures are extracted from the fully connected layer named FC6, resulting in 4096 features
per slice.

2.1.1.2 Deep Space

This space representation is generated by extracting deep features from the Gray Level-
Intensity (abbreviated as intensity) of the nodules. Numerous studies, such as those
highlighted in [86] have demonstrated the efficacy of a pre-trained network in cancer
diagnosis. To normalize the nodules, we use the following equation:

z = x − x̄

s
(2.5)

here, x represents the intensity of the nodule, x̄ denotes the sample mean of the nod-
ule, and s is the standard deviation of the nodule.

The pre-trained network serves as a robust feature extractor, leveraging its learned
weights, exemplified, for instance, in the ImageNet image database [30]. We produce
deep embedding features by traversing the nodule slice by slice. When necessary to
conform to the network’s input shape, each individual slice is replicated N times to
match the input layer’s channel count. An overview is presented in Figure 2.3.

For example, the generation of deep features using the VGG architecture [77] is il-
lustrated in Figure 2.4. In this scenario, the VGG architecture encompasses 13 convo-
lutional layers, 5 max-pooling layers with a filter size of 2 × 2, and 2 fully-connected
layers. The linear output layer employs the softmax activation function. ReLU activa-
tion is applied to all convolutional layers, while dropout regularization is incorporated
into the fully connected layers. The deep features for the intensity images are derived
from the FC6 layer, generating a vector size of 4096. This layer is the first fully con-
nected layer in the VGG16 model, positioned after the convolutional layers.
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Figure 2.4: Figure depicting the VGG architecture proposed in [77], responsible for re-
ceiving slices and generating a 4096-feature vector per slice from the FC6 layer.

2.1.2 Deep Radiomic Representation Spaces

We construct this representation space using GLCM Textural Features, from which we
extract deep features using the pre-trained model.

Figure 2.5: GLCM textural nodules are extracted from each nodule and mask. Subse-
quently, these GLCM nodules are fed into the pre-trained network slice by slice, con-
tributing to the generation of a representation space with dimensions (Nodules, Slices,
Features).
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Figure 2.6: Image illustrating GLCM texture extraction, transforming an intensity nod-
ule into GLCM nodules, crucial for generating deep radiomic features via a pre-trained
network.
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For the normalization of nodules, we employ the defined equations 2.2 and 2.4 out-
lined in Section 2.1.1.1. An overview of the generation of this representation space
is depicted in Figure 2.5. The computation of GLCM textural features [87] involves
creating a fictitious mask for each nodule, where all voxel values are set to one. This
mask signifies that all voxels within the nodule’s Volume of Interest (VOI) are consid-
ered when computing GLCM features. Subsequently, a set of GLCM nodules is gener-
ated from each nodule and its corresponding mask. Each GLCM nodule is then pro-
cessed through the pre-trained network slice by slice, resulting in a vector of dimen-
sions (Nodul e,Sl i ce,Featur es). Here, Nodul e signifies the quantity of GLCM nod-
ules, Sl i ce denotes the consistent number of slices within the GLCM nodule (equiv-
alent to the original nodule’s slice count), and Featur es represents the features ex-
tracted from the intermediate layer of the network.

The detailed process of GLCM texture extraction and GLCM nodules is illustrated in
Figure 2.6. Statistical descriptors are computed from a gray-level co-occurrence matrix
(GLCM), as describe in Section 2.1.1.1. The intensity nodule is initially represented
as an intensity matrix, undergoing transformation into a co-occurrence matrix. This
matrix, influenced by the frequency of pixel pairs with specific gray-level values and
spatial relationships within a defined neighborhood, facilitates the derivation of a set
of GLCM nodules. These GLCM nodules are then fed into the pre-trained network to
generate the deep radiomic features.

2.2 Feature Selection

As an alternative to the method [56], we propose to use the distribution of each feature
and its correlation to malignancy. Figure 2.7 illustrates the expected distribution of a
relevant and non relevant features. For relevant features, boxplots should have mini-
mum overlap, and in particular they should have different means and positive standard
deviation.

(a) Joint Average. (b) Cluster Tendency.

Figure 2.7: Boxplots of the distribution of values for a relevant (left) and non-relevant
(right) features.
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In order to select features with different average values, we use a t-test for each
feature. The null hypothesis tests whether the average of the malign and benign cases
are equal. Therefore, the p-value of the t-test can be used to rank the features based
on their significance in correlating with nodule malignancy. In to particular, select
significant features for small p-values rejecting the null hypothesis.

In the case of the radiomic GLCM features, features with a p-value < 0.05 were se-
lected as relevant. This criterion selected 19 of the 24 GLCM features that are identi-
fied with a tick in Table 2.1. This subset includes the features selected in [56] according
to reproducibility of results and according to the experiments conducted in [87], the
whole set has higher performance than the features selected in [56]. In the case of
deep features, they are ranked using a p-value obtained from a t-test, measuring the
difference in averages between malignant and benign slices. The top N features with
the lowest p-values are selected as input for the classifier.

Table 2.1: GLCM textural features chosen through a t-test for Radiomic space.

GLCM Textural Features T-test Selection

Autocorrelation ✓
Cluster Prominence ✓
Cluster Shade ✓
Cluster Tendency ✓
Contrast X
Correlation ✓
Difference Average X
Difference Entropy ✓
Difference Variance X
Inverse Difference ✓
Inverse Difference Moment ✓
Inverse Difference Moment Normalized X
Informational Measure of Correlation 1 ✓
Informational Measure of Correlation 2 ✓
Inverse Difference Normalized X
Inverse Variance ✓
Joint Average ✓
Joint Energy ✓
Joint Entropy ✓
Maximum Probability ✓
Maximal Correlation Coefficient ✓
Sum Average ✓
Sum Entropy ✓
Sum Squares ✓
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Chapter 3

Strategies for a Reproducible
Optimization and Validation of Models

In the quest to assess the impact of the representation spaces, we introduce a struc-
tured examination through three distinct levels of data splitting in our experimental
design. These strategies provide valuable insights into the model’s performance and
generalization capabilities, ensuring a robust evaluation with a high degree of general-
ization and reproducibility.

The subsequent sections deep into hyperparameter optimization strategies, pro-
viding insights into the meta-learning process as a multi-objective optimization prob-
lem. The search space, search strategy, and performance evaluation are discussed in
detail, paving the way for a comprehensive understanding of the model optimization
process.

We conceptualize hyperparameter meta-learning as a multi-objective optimiza-
tion challenge within the realm of network architectures. This expansive space is pa-
rameterized by a set of hyperparameters that collectively define both the architecture
and the intricacies of the training process, as described in Section 3.1. The values of
these hyperparameters are meticulously optimized through the utilization of a Non-
Dominated Sorting Genetic Algorithm (NSGA-II), as explained in Section 3.2, seam-
lessly integrated into a Nested Cross-Validation (NCV) framework. This integration fa-
cilitates the computation of performance metrics that serve as the defining objectives.

The objective functions, in this context, take the form of statistical summaries,
specifically the average (µ) and standard deviation (σ), derived from the losses in-
curred during a k-fold splitting of the training data. In subsequent sub-sections, we
delve into the intricacies of the search space, elucidate the search strategy, and ex-
pound upon the nuances of the performance evaluation process.

23
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3.1 Search Space

The search space is the comprehensive set of potential candidate solutions that an op-
timization algorithm explores to find the optimal solution for a given problem. It en-
compasses all conceivable combinations of hyperparameter values. The definition of
a well-structured search space is pivotal for optimization algorithms, significantly in-
fluencing the efficiency and effectiveness of the search process.

In our case, the search space comprises various architectures of a specified network
model, thus being parameterized by the hyperparameters governing the network’s ar-
chitecture. While some of these hyperparameters may be model-specific, they typ-
ically encompass fundamental elements such as the number of layers, neurons per
layer, and kernel size (in the case of convolutional models). Beyond the network ar-
chitecture, certain parameters associated with backpropagation training also impact
performance and, thus, they could also be optimized. These can include the learning
rate used in backpropagation and the dropout rate within the network. In instances
involving multi-task problems, the loss is often determined by a weighted average of
individual task losses. Consequently, these weights become another facet subject to
optimization to achieve optimal performance.

Hence, the comprehensive search space, denoted asΘ, in our network meta-learning
paradigm encompasses not only architectural specifics but also extends to crucial train-
ing parameters, forming a holistic optimization landscape defined by the following cat-
egories:

Θ= (Architecture Parameters;Training Parameters;Loss Parameters) (3.1)

3.2 Search Strategy

In our endeavor, we have opted for the utilization of the Non-Dominated Sorting Ge-
netic Algorithm (NSGA-II) [28] as our preferred optimization algorithm. The primary
aim of this exploration is to identify the optimal solution or a collection of Pareto-
optimal solutions, with a particular emphasis on the domain of multi-objective op-
timization.

The NSGA-II is an evolutionary algorithm (EA) based on Genetic Algorithm (GA)
designed for solving Multi-objective Optimization Problems (MOOPs). NSGA-II [91]
operates on the following main principles:

• Non-dominated sorting: It ranks the population members into different Pareto
fronts based on their non-domination level.

• Elite preserving operator: This operator directly transfers the non-dominated so-
lutions of the current generation into the next generation until other solutions
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dominate them.

• Crowding distance: It measures the density of the solutions around each solu-
tion, representing the average distance of two solutions on either side of a solu-
tion along each of the objectives.

• Selection operator: This operator selects the population of the next generation. It
uses the non-dominant rank and crowding distance to define the next selection
criteria. If two solutions have different ranks, the solution with the better (lower
in case of minimization) rank is preferred. If both solutions belong to the same
rank, the solution with a higher crowding distance is preferred.

In broad terms, the NSGA-II algorithm conducts non-dominated sorting on the
combination of the parent and offspring population, assigning them a rank (Pareto
front) based on an ascending level of non-domination. Subsequently, a new popu-
lation is filled according to the front ranking. If a front is taken partially, individuals
with less crowding distance are given preference. The algorithm then creates an off-
spring population from this new population using selection, crossover, and mutation
operators. This process continues until the stopping criteria are satisfied. The over-
all complexity of NSGA-II is O(M N 2), where M is the number of objectives, and N is
the population size, primarily determined by the non-dominated sorting part of the
algorithm.

As a multi-objective optimization algorithm, NSGA-II endeavors to discern the trade-
offs inherent in conflicting objectives, generating a set of optimal solutions known as
the Pareto front or non-dominated solutions.

In the following Section we describe the different statistical performance metrics
for he definition of our multi-objective problem.

3.3 Performance Evaluation

For performance evaluation, we employ a multi-level data splitting approach. Initially,
approximately 20% of nodules are extracted from the full dataset to form the hold-out
set. The remaining data are then used to create the first-level outer-folds. Within each
of these outer-folds, a second-level splitting occurs to create inner-folds, resulting in
a nested cross-validation (NCV) scheme [89]. Our optimization process is designed
to operate within these inner-folds to identify the best hyperparameter values, which
are subsequently employed in the outer-folds for model selection. The overall data
splitting and optimization process is illustrated in Figure 3.1 and elaborated upon in
the following.

The NCV scheme, as demonstrated in [18], significantly mitigates bias and yields
an error estimate closely aligned with results obtained from an independent testing
set.



Strategies for a Reproducible Optimization and Validation of Models 26

Algorithm 1 Data Splitting for Nested Cross-Validation

Require: K1 is the number of outer folds
Require: K2 is the number of inner folds
Require: D , dataset with features X and output y

1: procedure DATASPLITTING(K1,K2,D)
2: for i = 1 to K1 do
3: Split D into Dtr ai n

i , Dtest
i for the i’th split

4: for j = 1 to K2 do
5: Split Dtr ai n

i into Dtr ai n
j , Dtest

j for the j’th split

6: return K1-outer-folds, K2-inner-folds

Figure 3.1: Optimization of hyperparameters in a nested cross validation scheme.

Initially, NCV partitions the data into K1-outer-folds and K2-inner-folds, as illus-
trated in Algorithm 1. The K2-inner-folds are dedicated to identifying optimal hyper-
parameters, while the K1-outer-folds are used to evaluate these optimal hyperparam-
eters and perform model selection. It’s worth noting that, in line 4, each training set of
an outer-fold generates K2-inner-folds, creating a one-to-many relationship.

For each outer-fold, a new hyperparameter optimization process begins using its
associated inner-folds. Within each inner-fold ( j ), the network is trained using the
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Dtr ai n
j set, and the loss of the trained network is evaluated on Dtest

j . Consequently, for

each network configuration, we obtain K2 losses evaluated on the inner-fold test sets.
Two statistical summaries of these losses across the K2 inner-folds define our multi-
objective optimization problem. Our multi-objective function are defined as follows:

f1(Θ) = 1
K2

PK2
j=1 loss(Dtest

j )

f2(Θ) =
rPK2

j=1 |loss(Dtest
j )−µ|2

K2−1

(3.2)

Here, f1 and f2 represent the average (µ) and standard deviation (σ) of the loss
values generated from the test sets of the K2-inner-folds.

Algorithm 2 Optimization in the inner folds.

Require: N is the population size
Require: G is the number of generations
Require: Tr i al s is the number of trials
Require: Sear chSpace contains the values range of all hyperparamters
Require: K2 is the number of folds
Require: (Dtr ai n

j , Dtest
j ) k2-inner-folds with 1 <= i <= K2

Require: M is an architecture to be instantiated
1: procedure INNERFOLDSPROCESSING(K ,Dtr ai n

i , Dtest
i , M , p)

2: Nsga2 ← NSGA2(N, G) ▷ Instantiate the NSGA2 Algorithm
3: for t = 1 to Trials do
4: p ← Nsga2.getSample(Sear chSpace) ▷ hyperparamter values sampling
5: µt ,σt ← CrossValidationProcessing (K2,Dtr ai n

j ,Dtest
j , M , p)

6: Nsga2.report(µt ,σt )

7: p∗ ← Nsga2.getBest() ▷ From the Pareto front, select the optimal solution p∗

where both µ and σ are minimized
8: return p∗

Once all the K2-inner-folds have been processed, we obtain a set of optimal so-
lutions P := (p∗

j )K2
j=1 (asterisk), which undergo further selection based on the perfor-

mance of networks trained on the K1-outer-folds. The performance metrics for this
selection process are, as before, the average (µ) and standard deviation (σ) of the loss
values generated from the test sets of the K1-outer-folds. The configuration in P with
the lowest upper bound µ+σ is selected as the best among all individuals.

The entire methodology for NCV optimization is detailed in Algorithms 1-3. Algo-
rithm 1 illustrates the NCV splitting of data into K1-outer-folds and K2-inner-folds.

The inner-fold optimization is implemented using Algorithm 2. Algorithm 2 pro-
cesses the K2-inner-folds and returns a set of optimal solutions p∗ (asterisk) named
P. The Trials represent the number of individuals to be sampled by the NSGA-II and
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evaluated in the K2-inner-folds. Once all the K2-inner-folds have been processed, we
have a set of optimal solutions p∗ (asterisk), named P, required in Algorithm 3. Algo-
rithm 3 evaluates the found individuals to make a selection of the best model and thus
determine the best among all individuals, p† (dagger).

Algorithm 3 Model selection across outer folds.

Require: K1 is the number of outer-folds
Require: (Dtr ai n

i , Dtest
i ) outer-folds with 1 <= i <= K1

Require: M is an architecture to be instantiated
Require: P contains all the bests hyperparameters p∗ found by the Algorithm3

1: procedure OUTERFOLDSPROCESSING(K ,Dtr ai n
i , Dtest

i , M , p)
2: for each p∗ in P do
3: µ,σ← CrossValidationProcessing (K1,Dtr ai n

i ,Dtest
i , M , p∗)

4: p† ← getBest(µ, σ) ▷ Select the optimal solution p⋆ where both µ and σ are
minimized.

5: return p†

Algorithm 4 is utilized by Algorithms 2 and 3. It involves the processing of either
inner-folds or outer-folds indistinctly. It instantiates a model M with the hyperparam-
eter values contained in p, conducts the training of the model, tests it, and computes
the loss. It later calculates µ and σ, which are used to estimate the optimality of the
individuals in the case of NSGA-II (Algorithm 2) or to make model selection and deter-
mine which individual is the best of all (Algorithm 3).

Algorithm 4 Processing of a Cross-Validation

Require: K is the number of folds
Require: (Dtr ai n

i , Dtest
i ) with 1 <= i <= K

Require: M is an architecture to be instantiated
Require: p contains all the hyperparameter values

1: procedure CROSSVALIDATIONPROCESSING(K ,Dtr ai n
i , Dtest

i , M , p)
2: Mp ← M(p) ▷ Instantiate the model M with p
3: for i = 1 to K do
4: Train Mp on Dtr ai n

i with hyperparameters p
5: ŷi ← Predict Mp (Dtest

i )
6: tei ← compute test error Loss(y, ŷi )

7: Compute the µ and σ from test errors tei

8: return µ, σ

We partitioned the dataset into three levels of generalization to scrutinize the im-
pact of the novel representation space:

• Nodule k-folds: In this methodology, we employ k-fold cross-validation to eval-
uate our model’s performance in predicting unseen data. The dataset is parti-
tioned based on nodules, treating the nodule as the fundamental unit of data
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splitting. One subset is singled out as the test data, while the remaining sub-
sets are dedicated to training. This process iterates k times, with each fold uti-
lizing distinct nodules for testing. Following the training of a model for each
fold, the diagnosis score is computed by averaging the performance across the
k-folds. This approach provides dual levels of measurement: individual fold per-
formance and an overarching evaluation of the model’s proficiency across all
folds. As a result, we can discern statistical variations both within each fold and
across the entirety of folds.

• Leave-1-Nodule-Out: This strategy is a specific implementation of k-fold cross-
validation, with k set equal to the maximum number of nodules in the dataset.
The nodule is designated as the experimental unit for data splitting. Accordingly,
subsets of nodules consist of one nodule assigned to the test data, while the re-
maining nodules form the training data. Since the test set encompasses only one
nodule, this approach yields a single-level measurement, offering an overall as-
sessment of the model’s performance across all folds. Consequently, statistical
variations can be analyzed comprehensively across all folds.

• Slice k-folds: In this approach, we leverage k-fold cross-validation, employing
the slice as the experimental unit. This means that slices from the same nod-
ule can be present in both the training and test data. The process is reiterated
k times, with each fold encompassing different slices for testing. The diagno-
sis score is computed as the average across the k-folds. Analogous to the nod-
ule k-folds method, this approach captures statistical variations at each fold and
across all folds.

It is imperative to emphasize the distinction in experimental units among these
approaches. In the case of nodule k-fold and leave-1-nodule-out strategies, the exper-
imental unit is the nodule itself. Consequently, slices belonging to a particular nodule
are exclusively allocated to either the training or test set, but not both. In contrast, the
slice k-fold approach adopts the individual slice as the experimental unit, permitting
slices from the same nodule to coexist in both sets. These diverse strategies offer valu-
able insights into the model’s performance and generalization capacities, ensuring a
robust evaluation marked by a high degree of generalization and reproducibility.

3.4 Use Case: Interpretability of Radiomic Features

In order to illustrate the benefits of the proposed strategy, we have applied it to the op-
timization of the hyper-parameters of a network mapping radiomic visual features to
radiological annotations for better clinical interpretation of abstract features describ-
ing the visual appearance of medical scans. Our approach uses transformers to build
an attention map from visual features to radiological annotations related to lesion ma-
lignancy. Recently, transformer architectures using the self-attention mechanism [90]
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have emerged to be successful in natural language processing (NLP) with its capabil-
ity of capturing global dependencies across sentence words. A main application is the
translation/transformation of an input sequence into an output sequence in a differ-
ent language [31]. Given that input and output languages are encoded as dictionaries,
transformers can compute mappings transforming any two sequences of indexes.

The BERT transformer [31] used for the experiments is a sequence-to-sequence
model with a binary cross-entropy loss that follows the architecture described in [90].
The encoder has a trainable embedding layer that maps the sequence of NV visual
words to an Euclidean space of emsi ze dimensions. The embedded sequence words
are the input to nl ayer s transformer identical layers. Each layer has two sub-layers.
The first is a multi-head self-attention mechanism with nhead , and the second is a
fully connected feed-forward layer with nhi d neurons, Relu activation and dropout to
mitigate over-fitting.

The concatenation of the output of the last layer is the input to the decoder that
computes the mapping between abstract and radiological features. The decoder is an
ensemble of a fully connected layer with sigmoid activation. The set of hyperparam-
eters of the whole system are the network hyperparameters defining its architecture
(emsi ze, nhead , nhi d , nl ayer s) and the training parameters, the dropout of the net-
work and the learning rate, l r :

Θ= (Architecture Parameters;Training Parameters) =
(emsi ze,nhead ,nhi d ,nl ayer s;dr opout , l r )

(3.3)

Since BERT is trained using a weighted binary cross entropy to account for account
across annotations, in this case there are not hyperparameters associated to the defi-
nition of the loss.

The input and output of a transformer are sequences of words represented as an
index to a input and output corpus containing the collection of all input and output
words. In our case, the input is a NV -dimensional vector of radiomic visual features
and, thus, they have to be coded as indexes in order to be the input for the transformer.

The input vector of visual features, v = (v0, . . . , vNV −1) ∈ [a0,b0]×·· ·×[aNV −1,bNV −1]
∈ RNV is transformed to a sequence of NV visual words, wv = [w v

0 , . . . , w v
NV −1], using

a discretization of each visual coordinate. For each coordinate, its range, [a j ,b j ], is
discretized into nV uniform bins and v j is assigned to the index of the bin:

v j 7→ f loor ((v j −a j )/(b j −a j )∗ (nV −1)) ∈ {0, . . . ,nV −1} (3.4)

for f loor (·) the integer part of a real number.

The above transformation maps any coordinate to the same corpus of nV words
indexed by {0, . . . ,nV −1}. In order to assign each coordinate to a different set of words,
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we shift its index by j ∗nV positions to define w v
j :

w v
j = f loor ((v j −a j )/(b j −a j )∗ (nV −1))+

+ j ∗nV ∈ { j ∗nV , . . . , ( j +1)∗nV −1}
(3.5)

This manner, v is mapped to a corpus of (NV − 1)∗nV visual words indexed by
{0, . . . , (NV −1)∗nV −1}. We note that our transformation assumes that the visual fea-
tures are always in the same order, which is a reasonable assumption automatically
fulfilled in the case of being the output of a network.

Table 3.1: Hyperparameter search space for our model architecture.

Hyper-parameter nhead nhid emsize dropout nlayers lr

Search Space [2, 10] [8, 300] [2,15] [0.2, 0.8] [1, 3] [1×10−4,1]

Table 3.2: Outer-Folds Ranking

Fold Number CI inferior CI superior
BERT-3 0.0297 0.0334

BERT-1 0.0307 0.0338

BERT-5 0.0308 0.0339

BERT-2 0.0304 0.0340

BERT-4 0.0318 0.0342

BERT-0 0.0320 0.0349

BERT-9 0.0377 0.0414

BERT-7 0.0372 0.0417

BERT-6 0.0321 0.0427

BERT-8 0.0267 0.0564

We have used a subset of 584 patients with 1110 nodules of the LUNA16 public data
base [73] annotated by four radiologists. The radiological features are subtlety, internal
structure, calcification, sphericity, margin, lobulation, spiculation and texture as well
as malignancy. Calcification, internal structure, sphericity and subtlety are qualitative
descriptors. The remaining ones are considered quantitative attributes. Multiple an-
notations are summarized as the most frequent label for categorical attributes and the
average for quantitative ones. The input visual features are 19 GLCM Pyradiomics [88]
features selected according to their correlation to lesion malignancy as described in
[87][56]. Texture features were computed in 2D slices, which provides a total number
of 6751 samples.
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Table 3.3: Hold-Out Ranking

Fold Number Loss
BERT-5 0.0344

BERT-1 0.0344

BERT-0 0.0346

BERT-4 0.0345

BERT-2 0.0347

BERT-3 0.0347

BERT-6 0.0382

BERT-7 0.0383

BERT-9 0.0386

BERT-8 0.0414

The hyperparameters values have been optimized using the Optuna HPO frame-
work [5] integrated in the Nested Cross-Validation (NCV) scheme described in Section
3.3. In order to verify the generalization power of this step, 20% of the lesions (222
nodules) were randomly selected to be held out as an independent test set and the re-
maining 888 lesions were used for NCV optimization. Our NCV splits these lesions into
10-outer-folds and 10-inner-folds. Each outer fold has 800 lesions in the training set
and 88 lesions in the test set. And each inner fold has 720 lesions in the training set
and 80 lesions in the test set. Optuna [5] was run using as sampler the fast and eli-
tist multi-objective NSGA-II (Nondominated Sorting Genetic Algorithm II) algorithm
[12, 92] and a threshold as pruner.

The search space for BERT hyperparameters is shown in Table 3.1. The optimal
hyper-parameters selected by Optuna for each outer-fold inner optimization are iden-
tified by this outer-fold number. In order to asses the reproducibility of the NCV opti-
mization using statistical metrics, the BERT architectures defined by this set of hyper-
parameters selected at the inner folds were train and tested in both, the outer-folds
and the holdout set. For the outer-folds, a different model was trained on the whole
set of outer-folds and tested on the holdout test. Our hypothesis is that the best/worst
performers of the outer-folds, should also be top/bottom performers on the hold-out
set.

Table 3.2 reports intervals of the binary cross entropy loss at 95% confidence for
the outer-fold test sets and the fold number in the first column. Results are sorted in
ascending order, so first rows correspond to best performers. Table 3.3 reports the loss
for the holdout set also sorted in ascending order.

We observe that the set of four worse configurations are the same (module a per-
mutation) in both sets. In particular, the worst is always configuration BERT-8. Regard-
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ing top performers, the top five are almost the same, with 4/5 coincidences. The most
prominent exception is configuration BERT-3, which is the best for the outer-fold but it
is not (it is in 6th position) in the top five of the holdout set. However, the difference in
performance across the top one and the 6th is of the order of 10(−4), while it increases
to 4×10(−3) for the 4 worse. This suggest a further investigation of the outer-fold rat-
ing and selection and considering some statistical tests to detect significant differences
and discard those configurations performing significantly worse.
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Chapter 4

RadioLung DataSet

We have established an infrastructure to support multi-center clinical data collection
for lung cancer research. This initiative includes an online repository that allows the
collection of diverse clinical data, such as histopathology, molecular analysis, and CT
or PET scan images. Additionally, we provide details of the technology used to support
this infrastructure.

Following globally accepted standards in radiology for early lung cancer detection,
we elaborated on an Acquisition Protocol that outlines key parameters in CT scans,
patient posture considerations, and low radiation dose for patient safety. Inclusion
and exclusion criteria, along with biopsy procedures, are employed to classify nodules
between benign and malignant cases, including adenocarcinoma and squamous cell
carcinoma subtypes. Ethical considerations, patient consent, and data anonymization
are prioritized in this research, aligning with foundational principles outlined in the
Declaration of Helsinki.

The dataset, aimed at fostering collaborative research, is publicly accessible via
http://iam.cvc.uab.es/portfolio/radiolung-database. Overall, these ini-
tiatives contribute significantly to advancing lung cancer research by enhancing data
accessibility, privacy, and transparency in clinical data handling.

4.1 Annotated CT-Scans

4.1.1 Acquisition Protocol

In the context of medical imaging, such as CT scans, a voxel represents an intensity
value that is proportional to the signal intensity of the corresponding volume of tissue,
as shown in Figure 4.1. The intensity value is usually measured in Hounsfield Units
(HU) and is derived from the x-ray attenuation coefficient of the tissue. This value

35
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helps in distinguishing between different types of tissues, such as air, water, bone, and
soft tissue. The smaller the size of the voxel, the better the quality of the image and the
more accurate the representation of the underlying anatomy.

Figure 4.1: This image shows an axial cut of a slice from a CT scan. On the left side
depicts a magnified view of a single pixel. On the right side, the same pixel is extended
in a third dimension, creating a voxel, which is the smallest unit of a 3D image. (Original
source: https://radiologykey.com/computed-tomography-15. Accessed date: 1
October 2023).

Based on clinical requirements and the unique characteristics of the patient, the
acquisition parameters of a CT scan can be adjusted to yield images with diverse levels
of resolution and contrast. They are stored alongside the CT images when utilizing the
DICOM format. The following outlines acquisition parameters:

• Slice thickness (mm): the thickness of the cross-sectional slices in the imaged
body, denoted as ∆z in Figure 4.1, is comparable to the collimator width, which
is a factor influencing X-ray beam thickness. The adjustment of the collimator
width directly influences slice thickness, thereby determining the precision of
fine details visualized in each image slice.

• Slice spacing (mm): also known as interslice or gap, is the distance between two
adjacent slices. It represents the gap between two consecutive images along the
z-axis. A smaller slice spacing can provide more detailed and continuous images.

• Pixel spacing (mm): is the physical distance between two pixels in the x and y
directions of the image, in sequence depicted as ∆x and ∆y in the Figure 4.1.

• Convolution kernel: is a mathematical filter applied during image reconstruc-
tion. Different kernels can enhance or suppress certain features in the images.
For example, a sharp kernel might be used to emphasize bone structures, while
a smoother kernel might be used for soft tissue visualization.

• kVp (voltage): this is the peak voltage of the X-ray beam used during image ac-
quisition. It influences the contrast and penetration of X-rays through tissues.



37 RadioLung DataSet

Higher kVp values are often used for imaging dense structures like bones, while
lower values are suitable for soft tissue imaging.

• Rescale slope and rescale intercept: are a scaling factor and an offset, respec-
tively, applied for mapping raw pixel values to Hounsfield Units (HU), repre-
senting physical density values. They are used in a linear mapping expressed
in Equation 2.1.

Our imaging protocol utilizes Multi-Detector Row CT (MDCT) scanners [59, 79, 66]
with a section collimation of <=1mm, enabling high-resolution imaging and excep-
tional sensitivity through a minimum of 16 data acquisition channels. This setup facil-
itates the detection of subtle abnormalities within the targeted anatomical region.

CT scans are executed with meticulously defined parameters to optimize the imag-
ing process. These parameters serve as the gold standard, ensuring sufficient scan res-
olution and quality for the radiological evaluation of malignancy [47, 98]. Operating
at a voltage (KVP) range of 100-140 kVp (with a recommended setting of 120 kVp), the
current (mA) is automatically modulated based on patient size, ranging from 100 to
350 mA. This personalized approach tailors radiation exposure to the unique anatomi-
cal characteristics of each patient, achieving a delicate balance between image quality
and safety. The pitch, set at 1:0, and a gantry rotation time of <= 0.5 seconds are care-
fully chosen to minimize motion artifacts during image acquisition, aiming to keep
total scan times under 15 seconds for patient comfort and to reduce the likelihood of
motion-related distortions in the images.

Patient safety is prioritized, and the imaging protocol adopts a low radiation dose
strategy [34], targeting an effective dose of <= 1.5 mSv. This is achieved through a
combination of reduced tube current (mA) and careful management of the gantry ro-
tation time. The CT dose index volume (CTDIvol) is capped at <= 3.0 mGy (32cm) for
a standard-sized patient (170 cm, 70 Kg, BMI = 24). This commitment underscores the
practice’s dedication to maintaining the highest standards of safety while obtaining di-
agnostically relevant images.

The imaging process extends beyond parameter settings to include the patient’s
posture during image acquisition. Images are acquired during a single inspiratory
breath-hold, with the patient in the supine position and arms raised overhead. This
specific positioning minimizes motion artifacts and enhances the clarity of the cap-
tured images. Notably, no intravenous or oral contrast agents are introduced during
the imaging procedure, streamlining the process and reducing the complexity of the
scan.

Following the acquisition phase, a meticulous approach is taken to image recon-
struction, a critical aspect of delivering accurate diagnostic information. The recon-
struction process adopts a section thickness of at most 2 mm or less (recommended 1
mm) and spacing of <= 1 mm, ensuring the creation of detailed and high-resolution
images. Two distinct image reconstruction algorithms are employed: a high spatial
frequency algorithm designed for lung parenchyma and an intermediate spatial fre-
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quency algorithm tailored for mediastinal structures. The latter, specifically the medi-
astinal reconstruction algorithm, plays a crucial role in reducing noise in images ac-
quired with lower radiation doses, underscoring the commitment to optimal image
quality even in scenarios with reduced radiation.

As a final step, the captured images are systematically archived in a hospital-based
Picture Archiving and Communication System (PACS) server. These images are not
merely stored but are fully annotated, providing a comprehensive record for future
reference. Duplicates of these images are also stored in local repositories, ensuring
accessibility for clinical use when needed. This robust archival process reflects a dedi-
cation to maintaining a complete and organized repository of patient imaging data for
ongoing clinical management and analysis.

In essence, the detailed imaging protocol outlined here represents a holistic and
patient-centric approach to medical imaging, combining advanced technology, metic-
ulous parameter settings, safety considerations, and a comprehensive data manage-
ment strategy. This approach aligns with the overarching goal of providing the highest
quality of care to patients while contributing to advancements in medical diagnostics
and treatment.

4.1.2 Nodule Annotation

We present a comprehensive preprocessing procedure tailored to prepare and stan-
dardize the data in the lung cancer database. This essential preparation is pivotal for
enabling advanced image analysis tasks and fostering research in the healthcare do-
main.

To render data from the lung cancer database usable, a thorough preprocessing
step becomes imperative. This multi-faceted preprocessing encompasses several key
components:

1. Image Format Conversion: We start with the initial CT scans stored in the DI-
COM format, a common standard in healthcare. To optimize compatibility with
advanced image analysis tasks, we transform the initial DICOM images into the
NIFTI format. NIFTI, known for its lightweight file size and user-friendly struc-
ture, offers a versatile and standardized representation for medical imaging data.

2. Quality Assurance: Ensuring the quality and compatibility of CT scan data is
paramount. We examine the scan acquisition parameters to confirm their com-
pliance with required standards (refer to Chapter 4). If these criteria are not met,
the CT scan is removed from further analysis. This step guarantees that the CT
scans meet the necessary resolution quality.

3. Nodule Localization: the precise location of nodules in the CT scan is deter-
mined by one o more experience radiologists through manual o semi-automated
assessment. Depending on the database used, the location of nodules can be
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represented as follows: 3D bounding boxes, nodule mask, or center and maxi-
mum diameter. For the last two cases, we derive the 3D bounding box. In any
case, it is necessary to consider the coordinate system of the CT scans to obtain
a well-fitted 3D bounding box.

An important issue that arises when dealing with medical images and applications
is the conversion between coordinate systems, as it involves the interaction of the fol-
lowing three systems:

• The World Coordinate System, that is a Cartesian coordinate system that defines
the position and orientation of the medical image in a global reference frame. It
provides a common spatial reference for different images and facilitates their
alignment and integration. The world coordinate system typically uses three
axes (x, y, z) to represent the three-dimensional space.

• The Anatomical Coordinate System (Patient Coordinate System), also known as
the patient coordinate system, describe standard anatomical position of the hu-
man. It consists of three orthogonal planes:

– Axial Plane: is parallel to the ground and separates the head (Superior) from
the feet (Inferior). It is also referred to as the transverse plane or the hori-
zontal plane.

– Coronal Plane: is perpendicular to the ground and divides the body into
front (Anterior) and back (Posterior) portion. It is sometimes called the
frontal plane.

– Sagittal Plane: divides the body into Left and Right sides. It is commonly
used to refer to the plane that separates the body into equal halves.

Based on these planes, all axes have their positive direction. For example, the
negative Superior axis is represented by the Inferior axis. However, it’s crucial to
understand that different medical applications may adopt different definitions
of this 3D basis. The most common bases used are:

1. LPS (Left, Posterior, Superior): This basis is employed in DICOM images
and by the ITK toolkit. It defines the orientation of the three axes as follows:
the positive direction is towards the Left, the Posterior, and the Superior
directions, respectively.

2. RAS (Right, Anterior, Superior): Similar to LPS, the RAS basis is used in ap-
plications like 3D Slicer. However, it differs by flipping the orientation of the
first two axes. In the RAS basis, the positive direction is towards the Right,
the Anterior, and the Superior directions, respectively.

• The Image Coordinate System describes how an image was acquired with respect
to the anatomy. It consists of three axes (i, j, k) representing the right, bottom,
and backward directions. The origin denotes the position of the first acquired
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voxel (0, 0, 0) in the anatomical coordinate system, while spacing indicates the
distance between voxels along each axis.

To map the world coordinate system (x, y, z) in millimeters to the voxel coordinate
system (i, j, k), we rely on the 3D affine matrix (which is a sequence of transformations
including shear, reflection, rotation, scaling, and translation) and the patient-oriented
Reference Coordinate System (RCS) stored in the DICOM format 1. By combining these
components, we can accurately assign physical positions to ever pixel in an image. This
mapping can be achieved using the following equation:
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Then, to map millimeter coordinates to voxels, it is crucial to calculate the inverse
of the 3D affine transformation. This inverse matrix enables us to determine the cor-
responding pixel coordinates (i, j) for the given millimeter coordinates.
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Where:

• Px y z : The world coordinate system (x, y, z) expressed in mm w.r.t RCS (mm).

• Sx y z : The x, y, and z coordinates of the upper left hand corner (center of the first
voxel transmitted) of the image w.r.t RCS are expressed in mm. These coordi-
nates are obtained from the DICOM’s Image Position Patient attribute.

• Xx y z ,Yx y z : The direction cosines of the first row and the first column with re-
spect to the patient’s orientation expressed in unit vectors. These values are ob-
tained from the DICOM’s Image Orientation Patient attribute.

• i , j : Column index and row index to the image plane respectively (index).

• ∆i ,∆ j : Column pixel resolution and row pixel resolution expressed in mm. These
values are obtained from the DICOM’s Pixel Spacing attribute.

From the DICOM’s Slice Location attribute, we can obtain the relative position of
the image plane expressed in mm. By ordering all the 2D slices appropriately, we stack

1It is worth noting that this information is also preserved in the NIFTI format.
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them in the normal imaging axis and we can obtain the k coordinate which corre-
sponds to the stacked slices in the image plane axis to complete the voxel coordinate
(i, j, k). By utilizing theses voxel coordinates, we can compute a well-fitted 3D bound-
ing box.

A respiratory medicine physician with seven years of expertise utilized 3D-Slicer
(version 4.11.20200930) to precisely annotate of the Volume of Interest (VOI) for each
nodule, as illustrated in Figure 4.2. This free, open-source, and multi-platform soft-
ware, widely employed in medical and biomedical imaging research, facilitated precise
delineation of the minimal nodule space. The physician’s task involved defining VOIs
that optimally encapsulated each nodule. Table 4.4 provides comprehensive informa-
tion about our database, including demographic details and statistical data such as the
minimum, maximum, and slice count for each nodule type and sex.

Figure 4.2: CT visualization in axial, coronal, and sagittal cuts was employed to achieve
precise delineation of the nodule’s VOI using the 3D-Slicer software. The upper-right
image presents a three-dimensional representation of the VOI.
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4.2 Clinical Data

In order to have a robust database, a part from DICOM CT-Scans, Radiolung database
include relevant clinical data such as: clinical variables, image variables, nodule histopathol-
ogy as well as molecular analysis. Each variable with its description are reported next.

• Epidemiological History:

– BMI (Body Mass Index): Used to calculate the weight status of a person. It
is calculated using the formula weight(kg)/height2(m).

– Smoking: Tobacco is one of the main risk factors for developing lung can-
cer. Risk varies based on total accumulated exposure (pack-years) and time
since quitting.

– Pack-Years: A formula used to calculate the cumulative exposure to to-
bacco over the patient’s lifetime. An accumulated exposure of > 20 pack-
years is associated with an increased risk of developing lung cancer.

– Air Pollution: Prolonged exposure to inhaled irritants can increase the risk
of lung diseases, impacting physiological reserve and interacting with other
pathologies.

– Family History of Cancer: Associated with an increased risk of developing
one’s own cancer due to certain genetic alterations.

– Personal History of Cancer: Increases the risk of developing a new neo-
plasm and may recur in the form of lung metastasis.

• Pulmonary History:

– COPD (Chronic Obstructive Pulmonary Disease): Presence of a progres-
sive obstruction to airflow associated with an abnormal inflammatory re-
sponse. Population with COPD has a high risk of developing lung cancer.

– Asthma: Reversible inflammation of the airways. Possible risk factor for
lung cancer.

– Bronchiectasis: Irreversible pathological dilation and destruction of the
large bronchi.

– Tuberculosis (TB): Known association between TB and an increased risk of
developing lung cancer.

– Pneumonia: Lung cancer can manifest as repeated episodes of pneumo-
nia.

• Pulmonary Function Tests:

– FCV (CVF: Forced Vital Capacity): Total volume of air expelled during a
forced expiration. The percentage indicates where the patient stands in
relation to their theoretical value, adjusted for age, weight, height, sex, and
race.
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– FEV1 (Forced Expiratory Volume in 1 second): Maximum expiratory vol-
ume exhaled in the first second. The percentage indicates where the patient
stands in relation to their theoretical value, adjusted for age, weight, height,
sex, and race.

– FEV1/FCV: Percentage relationship between FEV1 and FVC.

– DLCO (Diffusing Capacity for Carbon Monoxide): Measure of the gas trans-
fer conductance from inspired air to the blood. In summary, it measures the
gas diffusion capacity of lung tissue.

• Tumor Variables:

– Type (Stage 1, 2, 3): An abnormal growth or tumor can be benign or malig-
nant.

– Lobe (Stage 1, 2, 3): Lungs are divided into lobes, each with defined mar-
gins. Relevant for incidence and surgical considerations.

– Location (Stage 1, 2): Lung neoplasms can occur anywhere in the lungs.
Distance from the hilum or pleura can be indicative of a specific type of
tumor.

– X-ray (Stage 1, 2): X-rays detect changes in lung tissue density, providing
an additional diagnostic indicator.

– Tumor Size (Stage 1, 2, 3): One of the values used for staging a neoplasm,
determining subsequent treatment.

– Differentiation (Stage 1, 2, 3): Assigned by a pathologist based on how cells
appear under a microscope. Useful for prognosis.

– Necrosis (Stage 1, 2, 3): Tissue death, usually due to insufficient blood sup-
ply. In cancer, necrosis indicates tumor aggressiveness.

– Vascular Infiltration (Stage 1, 2, 3): If it has penetrated the walls of blood
vessels and lymphatics, it is an indicator of a more advanced tumor stage
and a higher probability of metastasis.

– Histological Diagnosis (Stage 2, 3): The diagnosis assigned by a pathologist
based on observed characteristics under a microscope.

– TNM (Stage 2, 3) (Malignant Tumor Classification): A system used to stage
a tumor (determine its extent). Examines tumor size, lymph node involve-
ment, and the presence or absence of metastasis.

• PET Scan Parameters:

– Radiofármaco: Fluorodeoxyglucose. A radiopharmaceutical injected be-
fore PET, emitting positrons detected by PET.

– Nodular Uptake (Stage 1, 2, 3): If there is higher uptake in the nodule, it
indicates more metabolic activity and, consequently, more cell division, a
typical characteristic of cancerous processes.
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– Nodule SUV (Stage 1, 2, 3): The higher the number, the more radiophar-
maceutical uptake is detected.

– Lymphadenopathy Uptake (Stage 1, 2, 3): Increased metabolic activity in
lymph nodes. It may be due to involvement in the cancerous process or any
nearby infectious process.

– Uptake in Other Locations (Stage 1, 2, 3): Increased radiopharmaceutical
uptake in other locations.

• CT Scan Parameters:

– Slice Thickness: CT scans display images that are like slices of the person
in the three axes. Thinner slices provide more precision in diagnosing and
staging the nodule.

– Nodule Diameter: The maximum diameter of the nodule on CT helps cor-
relate with the maximum diameter observed under the microscope after
surgery.

– Nodule Shape (Stage 1, 2, 3): Typically benign characteristics include an
oval or lobulated shape, well-defined, while typically malignant shapes are
irregular and spiculated.

– Nodule Density (Stage 1, 2, 3): Ground Glass Density, Partly Solid, Solid.

– Emphysema (Stage 1, 2, 3): Abnormal permanent dilation of air spaces ac-
companied by the destruction of the wall of the lung alveolus.

• Surgery Parameters:

– Surgery Type: Lungs are divided into lobes, each with defined margins.
Surgery may involve segmentectomy, lobectomy, or pneumonectomy.

– Lymph Node Stations (Stage 1, 2, 3): Lymph node involvement observed
under the microscope after surgery.

– Resection Margins (Stage 1, 2, 3): Examined during surgery to detect can-
cer cells at the margins of the extracted specimen.

– Lymphatic and Vascular Invasion (Stage 1, 2, 3): Microscopic examination
to determine if the tumor has invaded vessel tissue.

– STAS (Stage 1, 2, 3): Spread through air spaces. Dissemination implies
higher tumor aggressiveness.

– Surgical Complications: Prognostic markers indicate a patient’s risk of sur-
gical complications, and surgical complications are a prognostic factor for
the patient’s recovery.
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4.3 Online digital repository for Multicentric data Collec-
tion

To facilitate efficient collection, storage, and sharing of multi center clinical data, a
digital repository online available has been implemented. To achieve this, a private
website accessible only with a password is implemented to upload all relevant clini-
cal data (including clinical variables, nodule histopathology and molecular analysis),
acquisition characteristics and parameters, as well as image data acquired by CT and
PET-scan. A database in MySQL [33] has been also created to allow efficient storage, ac-
cess and data modification. The Entity-Relationship model [21] and logic design [83]
of the database for restoration and modification clinical data is shown in figure4.3 and
4.4 respectively.

Figure 4.3: Entity-Relationship model of the online digital repository for multicentric
data collection.

Concerning the front-end interface, we have developed a platform based on PhP
[24], HTML5-CSS [36] and mySQL database for easy data gathering and interactive
management. According to data collection requirements, web forms have been cus-
tomized to include PhP instructions managing data storage and security in terms of
data privacy and visualization for each of the hospitals.

The different views of the data gathering webpage are reported in the following
screenshots in figures 4.5, 4.6,4.7,4.8,4.9,4.10.

4.4 Radiolung Dataset Description

To be eligible for recruitment, patients were required to undergo CT-chest examina-
tions for pulmonary nodules and meet well-defined inclusion and exclusion criteria:
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Figure 4.4: Relational model of the online digital repository for multicentric data collec-
tion.

Figure 4.5: Initial page asking for the personal login.

• Inclusion criteria: stipulated nodules with a diameter ranging from 8 to 30 mm
and a final diagnosis of non-small cell lung carcinoma or a non-malignant tu-
mor.

• Exclusion criteria: encompassed individuals previously diagnosed with lung can-
cer, those with uncured extra-pulmonary cancer (excluding non-melanoma skin
cancer), pregnant individuals, those who received chemotherapy or cytotoxic
drugs in the last 6 months, and those declining to sign the consent.

It is crucial to underscore that pulmonary nodules were systematically classified
through biopsy procedures in each case, ensuring a thorough and precise assessment.

This study adheres to the foundational ethical principles outlined in the Declara-
tion of Helsinki - Fortaleza/Brazil, 2013. In every instance, informed consent is dili-
gently sought, and both images and clinical data are handled with utmost anonymity to
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Figure 4.6: Patient data inserting and modification.

Figure 4.7: CT data inserting and modification.

protect patient confidentiality. Prior to participant recruitment, the research received
approval from the ethics committee at HUGTiP (CEIC H. Germans Trias i Pujol: PI-19-
169).

To facilitate data sharing between a hospital and an external institution, such as the
CVC at UAB, which operate independently from the healthcare system, it was impera-
tive to establish a confidentiality agreement beforehand. This enables us to integrate
essential information for both clinical data and diagnostic assessments in the evalua-
tion of lung cancer.

• Slice thickness: CT scans display images that resemble cuts of the person in all
three axes. Thinner slices provide more precision in diagnosing and staging the
nodule.
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Figure 4.8: CT data inserting and modification.

Figure 4.9: PET data inserting and modification.

• Nodule diameter: The maximum diameter of the nodule by CT helps correlate
with the maximum diameter observed under the microscope after surgery.

• Nodule shape (phase 1, 2, 3): Typically benign characteristics include an oval
or lobulated, well-defined shape, while typically malignant ones have irregular,
spiculated forms.

• Nodule density (phase 1, 2, 3):

– Ground glass density: An area in the lungs with increased density while
preserving bronchial and vascular margins.



49 RadioLung DataSet

Figure 4.10: Surgery data inserting and modification.

– Partially solid: Part solid and part ground glass. Associated with malig-
nancy in 63-92

– Solid: Typically well-defined, without preservation of bronchial and vascu-
lar margins. Associated with malignancy in a lower percentage than par-
tially solid nodules.

• Emphysema (phase 1, 2, 3): Abnormal permanent dilation of air spaces, ac-
companied by the destruction of the wall of the pulmonary alveolus. It is the
most important risk factor for lung cancer in COPD. The hospital is committed
to anonymizing the data before transmitting it in the DICOM format.

Patients were recruited at Germans Trias i Pujol University Hospital (HUGTiP) in
Barcelona, Spain, for a prospective cohort study conducted between December 2019
and September 2023. During this period, comprehensive data collection, including im-
ages and clinical/demographic information, was carried out. A cohort of 90 recruited
patients underwent focused CT-chest examinations targeting pulmonary nodules, ad-
hering to precisely defined inclusion and exclusion criteria outlined earlier in this sec-
tion.

CT scans were performed using GE Medical Systems, Philips, and Siemens CT scan-
ners, following the acquisition parameters aligned with the established data acquisi-
tion protocol detailed in Section 4.1.1. Refer to Table 4.1 for detailed acquisition set-
tings corresponding to each manufacturer. The scanners imaged a total of 95 nodules.
Out of these, 23 were identified as benign, while 72 were classified as malignant. Sub-
sequent analysis revealed that 57 of the malignant nodules were adenocarcinoma, and
15 were squamous cell carcinomas. A visual representation of nodules with various
diagnoses is provided in Figure 4.11. For a comprehensive breakdown of nodule diag-
noses by scanner, please consult Table 4.2. Additionally, refer to Table 4.3 for a detailed
breakdown of nodule histology based on the scanner used.

The dataset is accessible to the public through the following link: http://iam.cv
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Table 4.1: Specifications of acquisition parameters for each scanner manufacturer.

Description\Manufacturer GE Medical Systems Philips Siemens

Model

BrightSpeed
Discovery ST

LightSpeed VCT
Revolution CT

Brilliance 16
GeminiGXL 16

Incisive CT
TruFlight Select

Somatom Drive

Convolution Kernel
LUNG
SOFT

STANDARD

B
YA
YB
YC

Bf42f
Bl57f

Slice Thickness 0.62-1.25 1-2 0.6-1.5
Slice Spacing 0.62 0.5-1 1
Pixel Spacing XY 0.56-0.87 0.35-92 0.63-0.98
kVp 100-120 120 100-140

Table 4.2: Nodules, both benign and malignant, captured by each scanner.

Nodule GE Medical Systems Philips Siemens Total

Benign 3 9 11 23
Malign 25 36 11 72

Total 28 35 22 95

c.uab.es/portfolio/radiolung-database.
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Table 4.3: Distribution of malignant nodule subtypes among the CT scanner manufac-
turers.

Nodule GE Medical Systems Philips Siemens Total

Malign
Adenocarcinoma 19 30 8 57
Squamous Cell Cancer 6 6 3 15

Total 25 36 11 72

Description Male Female Total

Demographic
Population

Patients
Age Avg ± Std

Benign PN
Malign PN

67
71.2±6.34

12
42

28
64.24±11.53

11
30

95
67.72±8.94

23
72

Nodule
Characterization

Benign Slices Min/Max/Avg
Malign Slices Min/Max/Avg

6/80/47
8/93/43

18/42/30
12/81/41

6/80/37
8/93/39

Table 4.4: Demographic population and nodule characterization.
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(a) Benign. (b) Benign.

(c) Adenocarcinoma. (d) Squamous cell carcinoma.

Figure 4.11: Axial cuts of pulmonary nodules with diverse diagnoses and imaging
sources. (a) and (b) showcase benign nodules imaged from the GE Medical System and
Philips scanners, respectively. Moving to malignant nodules, (c) represents an adenocar-
cinoma imaged from the Siemens scanner, while (d) shows a squamous cell carcinoma
imaged from the Philips scanner.



Chapter 5

Experiments and Results

In order to validate our methods, we have conducted the following different experi-
ments:

1. Selection of the Optimal Representation Space. The optimal representation
space for the benign and malignant classification has been selected using the
strategy described in Chapter 2.

2. Comparison to SoA. To assess the advantages of the proposed strategy, the best
representation space selected in the first experiment was compared to state of
the art methods.

3. Impact of Acquisition Parameters. The impact on performance of CT acquisi-
tion parameters has been assessed for the top performers of the previous exper-
iment in order to determine critical values for a clinical acquisition protocol.

In the next Sections, we report the experimental set-up and results obtained for
each of the experiments.

5.1 Optimal Representation Space

We use PyRadiomics [88] (version 3.01) specifically to extract GLCM features for both
Radiomic Embedding and Deep Radiomic Embedding, as detailed in chapter 2. PyRa-
diomics stands out as an open-source Python package designed for extracting radiomic
features from medical imaging volumes. This versatile tool encompasses shape fea-
tures, first-order features, and textural features, including those derived from Gray
Level Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level
Run Length Matrix (GLRLM), and Gray Level Dependency Matrix (GLDM), providing a
comprehensive characterization of various aspects of the lesion.

53
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Table 5.1: Distribution of the RadioLung dataset across holdout and training sets.

Pulmonary Nodule Holdout Set Training Set Total

Total number of Nodules 25 59 84

Benign 4 8 12
Malignant 21 51 72

Adenocarcinoma 15 42 57
Squamous Cell Cancer 6 9 15

Based on findings from our earlier investigation [87], we identified the optimal pa-
rameters for two distinct aspects: normalizing the gray level intensity of the VOI with
M axIntensi t y = 24 and establishing the number of histogram bins with N bi ns = 128,
as detailed in Equations 2.2 and 2.4, respectively. The setting M axIntensi t y = 24 de-
fines the range for normalizing the gray level intensity within the VOI to 24 gray levels.
Simultaneously, the choice of N bi ns = 128 determines the level of granularity with
which GLCM features encapsulate the textural patterns.

In the various representation spaces outlined in Section 2.1, features are extracted
by traversing the nodule slice-by-slice in an axial manner from 2D images. Subse-
quently, these features are concatenated and subjected to a t-student test, comparing
average values between malignant and benign slices. The goal is to discern the corre-
lation between these features and lesion malignancy.

Specifically, for Radiomic Embedding, our study [87] identified the 19 most rele-
vant GLCM features, enumerated in Table 2.1. In the case of VGG Embedding and VGG
Radiomic Embedding (where features are flattened), the top 500 features with the low-
est p-values are selected. These chosen features, as detailed in Table 5.2, serve as input
for training a classifier.

Table 5.2: Number of selected features for different nodule embeddings.

Nodule Embedding Selected Features

Radiomic Embedding 19
VGG Embedding 500
VGG Radiomic Embedding 500

In accordance with our optimization methodology outlined in Chapter 3, we ap-
proach network optimization by formulating hyperparameters as a multi-objective op-
timization problem within the space of network architectures. The Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) serves as the search strategy for addressing this
multi-objective problem. The search space encompasses various models parameter-
ized by hyperparameters defining the network architecture, including the number of
layers, number of neurons, activation function, weight initialization, as well as opti-
mizer, weight decay, and learning rate, all of which significantly impact performance.
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Table 5.3 displays the search space, where ’input_features’ denotes the number of fea-
tures in the input layer. In particular, the Scaler hyperparameter leverages functions
from the scikit-learn package, with ’Standard’ corresponding to StandardScaler, ’Min-
Max’ to MinMaxScaler, ’Robust’ to RobustScaler, ’Quantile’ to QuantileTransformer,
’MaxAbs’ to MaxAbsScaler, and ’Power Transformer’ to PowerTransformer functions.
The remaining hyperparameters, along with the neural network, were incorporated
using the PyTorch package.

Table 5.3: Specification of the search space.

Hyperparameter Search Space

Number of Layers [3,5]
Number of Neurons [3, input_features]
Activation Function ReLU, ReLU6, LeakyReLU, Sigmoid, Tanh
Weight Initialization Normal, Xavier, Kaiming, Orthogonal
Optimizer SGD, Adam, RMSprop
Weight Decay [1×10−5,1]
Learning Rate [1×10−6,1]

Scaler
None, Standar, MinMax, Robust,
Quantile Transformer, MaxAbs, Power Transformer

Batch Size [32, input_features]

The optimization of hyperparameter values is achieved by leveraging the Optuna
framework [5]. This involves dynamically constructing the search space at runtime
and employing the NSGA-II algorithm as the sampler to generate candidate solutions.
The initial population size of NSGA-II is set to 500. Thus, during the first iteration,
500 initial random solutions are generated for ’generation 0,’ used to produce the first
offspring set, ’generation 1,’ and subsequent generations. Offspring solutions evolve
through crossovers and mutations of the parent solutions, as detailed in Section 3.2.
Additionally, a pruning threshold is applied to prematurely terminate less promising
trials during the training process. The sampling algorithm identifies optimal configu-
rations based on the multi-objective function, precisely formulated in Equation 3.2.

To evaluate the performance of different hyperparameter configurations, we im-
plemented Nested Cross-Validation (NCV) scheme on the training set. Our multi-
objective problem is defined by the µ (mean) and σ (standard deviation) of the loss
function, evaluated on the test folds. The evaluation follows specific steps detailed in
Algorithms 1 to 4. Furthermore, to mitigate data imbalances during training, we em-
ploy a weighted cross-entropy loss function, formulated as:

loss =
PN

i=1 wei g ht [cl ass[i ]]l oss(i ,cl ass[i ])
PN

i=1 wei g ht [cl ass[i ]]
(5.1)

where loss(i ,cl ass[i ]) is the cross-entropy loss for the i-th class computed from the
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classifier prediction x and the true class as:

loss(x,cl ass) =− log

Ã
exp(x[cl ass])
PN

j=1 exp(x[ j ])

!
(5.2)

and the weight wei g ht [cl ass[i ]] is given by the inverse of the class frequency.

The search space encompasses various neural network architectures dynamically
defined at runtime based on hyperparameters sampled by NSGA2. These hyperparam-
eters, including the number of fully connected layers, hidden neurons and activation
function (see Table 5.3), play a pivotal role in shaping and defining the model.

Figure 5.1: Dynamically configured neural network architecture established at runtime
based on the hyperparameters selected through the NSGA2 optimization algorithm.

For the first experiment we use the RadioLung dataset described in chapter 4. Ran-
domly, 25 PN have been set aside for the holdout set, while the remaining 59 PN consti-
tute the training set. Within the holdout set, there are 4 benign and 21 malignant PN,
with 15 classified as adenocarcinoma and 6 as squamous cell cancer. In the training
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set, there are 8 benign and 51 malignant PN, further categorized as 42 adenocarcinoma
and 9 squamous cell cancer. The distribution of PN in the RadioLung dataset is sum-
marized in Table 5.1. Notably, the data highlights a considerable imbalance, not only
between benign and malignant cases but also within the malignant category, specifi-
cally between adenocarcinoma and squamous cell cancer.

This section presents a comprehensive evaluation of models derived from diverse
data domain, encompassing data splitting and integrated performance metrics within
an optimization process. The data domain comprises distinct representation spaces
obtained from Radiomic Embedding, VGG Embeddings, MobileNet Embedding and
VGG Radiomic Embedding, as introduced in Chapter 2. Notably, VGG Radiomic Em-
bedding is combined using Concatenation and Average fusion of features.

To assess the impact of these representation spaces, the data is stratified into three
levels of generalization. Each level uses a unique experimental sampling unit, either
nodule or slice, to partition the data into training and test folds. Further details on the
specific methods, including Nodule k-folds, Leave-1-Nodule-Out, and Slice k-folds, are
elaborated in chapter 3.

For data splitting, we adopted a 5-fold approach at both the nodule and slice levels,
utilizing the Python StratifiedGroupKFold function to maintain consistent class pro-
portions in both the training and test sets. Additionally, 25 nodules from the dataset
were randomly selected as an independent set (Holdout) of test patients. This selection
aimed to evaluate the reproducibility of the ranges computed in a slice split. Quality
metrics such as precision, recall, and the F1-score were employed to assess model per-
formance. The results obtained for the optimal configurations are summarized (mean
± standard deviation) in Table 5.7 and 5.5. Furthermore, details regarding the optimal
hyperparameters are presented in Tables 5.8 and 5.9.

We notice that the Intensity domain has the lowest score among all domains. When
using slice folds for splitting, both VGG Radiomic Concatenation and VGG Radiomic
Average domains exhibit high recall for both benign and malignant nodules. The recall
range for VGG Radiomic Concatenation is (1, 1) for malignant cases and (0.84, 1) for
benign cases. However, when splitting at the nodule level, the VGG Radiomic Average
domain experiences a significant drop in benign recall, almost reaching 0. On the other
hand, for the VGG Radiomic Concatenation domain, while the malignancy recall score
falls within the range of (0.88, 1), the recall range for benign cases is (0.37, 1). It is worth
noting that the high standard deviation (around 30%) indicates considerable variabil-
ity across folds for the VGG Radiomic Concatenation domain. MobileNet Embedding
outcomes in the Nodule 5-folds setting, demonstrating higher scores precision, recall,
and F1-Score at both slice and nodule levels. While some values are not available for
this model, it exhibits competitive performance across metrics, establishing itself as
the top-performing model in this context.

Analyzing Tables 5.8 and 5.9, we observe that optimal hyperparameters for VGG
Radiomic Embedding with Concatenation or Average are discovered by NSGA2 in the
4th and 5th generations of offsprings, with an exception for Slice 5-folds of Concate-
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nation found in generation 0, randomly. Notably, the configuration with the fewest
hidden neurons corresponds to Radiomic Embedding, likely due to the reduced input
dimensionality of its 19 features. The prevailing optimizer is SGD, and the predomi-
nant activation function is ReLU6, offering additional saturation to control the explod-
ing gradient problem by constraining outputs between 0 and 6. The frequently utilized
scalers encompass StandardScaler, which is apt for situations where features exhibit
varying scales or adhere to a normal distribution. Additionally, MaxAbsScaler proves
beneficial when dealing with data containing a mixture of positive and negative values,
ensuring the preservation of sign information.
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Table 5.4: Cross Validation Statistical Summary. Intensity Representation Spaces.

Data
Domain

Data
Split

Diagnosis Metrics Precision Recall F1-Score

R
ad

io
m

ic
-E

m
b

ed
d

in
g

Nodule
5-folds

Malign
Slice

0.85 (± 0.09) 0.67 (± 0.16) 0.74 (± 0.10)
Benign 0.29 (± 0.24) 0.44 (± 0.21) 0.31 (± 0.17)

Malign
Nodule

0.77 (± 0.10) 0.64 (± 0.14) 0.69 (± 0.07)
Benign 0.28 (± 0.22) 0.34 (± 0.25) 0.28 (± 0.18)

L1O

Malign
Slice

0.64 0.80 0.71
Benign 0.12 0.20 0.04

Malign
Nodule

0.60 0.80 0.68
Benign 0.04 0.20 0.07

Slice
5-folds

Malign
Slice

0.95 (± 0.01) 0.78 (± 0.02) 0.86 (± 0.01)
Benign 0.42 (± 0.03) 0.79 (± 0.04) 0.55 (± 0.03)

Malign
Nodule

0.97 (± 0.03) 0.85 (± 0.04) 0.90 (± 0.02)
Benign 0.57 (± 0.09) 0.88 (± 0.10) 0.68 (± 0.06)

V
G

G
-E

m
b

ed
d

in
g

Nodule
5-folds

Malign
Slice

0.90 (± 0.10) 0.72 (± 0.09) 0.80 (± 0.09)
Benign 0.34 (± 0.15) 0.72 (± 0.16) 0.43 (± 0.14)

Malign
Nodule

0.93 (± 0.10) 0.74 (± 0.05) 0.82 (± 0.05)
Benign 0.51 (± 0.12) 0.88 (± 0.15) 0.62 (± 0.08)

L1O

Malign
Slice

0.90) 0.57 0.69
Benign 0.32 0.75 0.45

Malign
Nodule

0.98 0.55 0.69
Benign 0.41 0.95 0.56

Slice
5-folds

Malign
Slice

0.99 (± 0.01) 0.96 (± 0.01) 0.97 (± 0.01)
Benign 0.82 (± 0.05) 0.93 (± 0.03) 0.87 (± 0.03)

Malign
Nodule

1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)
Benign 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)

M
o

b
ile

N
et

V
2-

E
m

b
ed

d
in

g

Nodule
5-folds

Malign
Slice

0.72 (± 0.13 ) 0.77 (± 0.11) 0.75 (± 0.12)
Benign 0.63 (± 0.14) 0.66 (± 0.17) 0.64 (± 0.16)

Malign
Nodule

0.82 (± 0.17) 0.78 (± 0.21) 0.80 (± 0.19)
Benign 0.67 (± 0.16) 0.68 (± 0.19) 0.67 (± 0.17)

L1O

Malign
Slice

- - -
Benign - - -

Malign
Nodule

- - -
Benign - - -

Slice
5-folds

Malign
Slice

- - -
Benign - - -

Malign
Nodule

- - -
Benign - - -
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Table 5.5: Cross Validation Statistical Summary. Deep Radiomic Representation Spaces.

Data
Domain

Data
Split

Diagnosis Metrics Precision Recall F1-Score

V
G

G
-R

ad
io

m
ic

C
o

n
ca

te
n

at
io

n

Nodule
5-folds

Malign
Slice

0.92 (± 0.06) 0.75 (± 0.17) 0.81 (± 0.12)
Benign 0.41 (± 0.24) 0.73 (± 0.12) 0.47 (± 0.17)

Malign
Nodule

0.90 (± 0.06) 0.70 (± 0.20) 0.76 (± 0.11)
Benign 0.46 (± 0.28) 0.72 (± 0.16) 0.51 (± 0.17)

L1O

Malign
Slice

0.90 0.72 0.74
Benign 0.41 0.55 0.41

Malign
Nodule

0.89 0.74 0.76
Benign 0.39 0.57 0.42

Slice
5-folds

Malign
Slice

0.99 (± 0.00) 0.98 (± 0.01) 0.98 (± 0.01)
Benign 0.89 (± 0.04) 0.95 (± 0.02) 0.92 (± 0.03)

Malign
Nodule

0.99 (± 0.01) 0.99 (± 0.01) 0.99 (± 0.01)
Benign 0.97 (± 0.05) 0.98 (± 0.04) 0.97 (± 0.03)

V
G

G
-R

ad
io

m
ic

A
ve

ra
ge

Nodule
5-folds

Malign
Slice

0.89 (± 0.10) 0.75 (± 0.12) 0.80 (± 0.09)
Benign 0.33 (± 0.12) 0.64 (± 0.21) 0.40 (± 0.08)

Malign
Nodule

0.88 (± 0.10) 0.75 (± 0.14) 0.79 (± 0.07)
Benign 0.46 (± 0.16) 0.67 (± 0.18) 0.52 (± 0.10)

L1O

Malign
Slice

0.47 0.58 0.52
Benign 0.08 0.40 0.14

Malign
Nodule

0.44 0.58 0.50
Benign 0.08 0.40 0.13

Slice
5-folds

Malign
Slice

1.00 (± 0.00) 0.99 (± 0.00) 0.99 (± 0.00)
Benign 0.96 (± 0.03) 0.97 (± 0.01) 0.97 (± 0.02)

Malign
Nodule

1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)
Benign 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)
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Table 5.6: Holdout Statistical Summary. Intensity Representation Spaces.

Data
Domain

HPO Data
Split

Diagnosis Metrics Precision Recall F1-Score

Radiomic

Nodule
5-folds

Malign
Slice

0.71 0.47 0.57
Benign 0.19 0.40 0.26

Malign
Nodule

0.60 0.43 0.50
Benign 0.11 0.20 0.14

Slice
5-folds

Malign
Slice

0.72 0.51 0.59
Benign 0.19 0.37 0.25

Malign
Nodule

0.69 0.64 0.67
Benign 0.17 0.20 0.18

VGG
Intensity

Nodule
5-folds

Malign
Slice

0.00 0.00 0.00
Benign 0.23 1.0 0.37

Malign
Nodule

0.00 0.00 0.00
Benign 0.26 1.00 0.42

Slice
5-folds

Malign
Slice

0.76 0.70 0.73
Benign 0.20 0.26 0.23

Malign
Nodule

0.71 0.71 0.71
Benign 0.20 0.20 0.20

MobileNet
Intensity

Nodule
5-folds

Malign
Slice

0.86 0.61 0.72
Benign 0.38 0.70 0.49

Malign
Nodule

0.91 0.67 0.77
Benign 0.44 0.80 0.57

Slice
5-folds

Malign
Slice

- - -
Benign - - -

Malign
Nodule

- - -
Benign - - -
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Table 5.7: Holdout Statistical Summary. Deep Radiomic Representation Spaces.

Data
Domain

HPO Data
Split

Diagnosis Metrics Precision Recall F1-Score

VGG
Radiomic
Concat.

Nodule
5-folds

Malign
Slice

0.77 1.00 0.87
Benign 0.00 0.00 0.00

Malign
Nodule

0.74 1.00 0.85
Benign 0.00 0.00 0.00

Slice
5-folds

Malign
Slice

0.78 0.71 0.74
Benign 0.24 0.30 0.27

Malign
Nodule

0.69 0.64 0.67
Benign 0.17 0.20 0.18

VGG
Radiomic
Average

Nodule
5-folds

Malign
Slice

0.76 0.55 0.64
Benign 0.21 0.41 0.28

Malign
Nodule

0.73 0.57 0.64
Benign 0.25 0.40 0.31

Slice
5-folds

Malign
Slice

0.67 0.16 0.26
Benign 0.20 0.73 0.32

Malign
Nodule

1.00 0.14 0.25
Benign 0.29 1.00 0.45
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5.2 Comparison to SoA

We have compared our best model selected in 5.1 with state of the art methods which
include the three type of approaches: radiomics [27], machine learning [101] and deep
CNN [75, 99, 103, 45, 46]. In order to compare to the results reported for each of state of
the art methods, we have computed the following metrics from true positive, T P , true
negative, T N , false negative, F N , and false positive, F P diagnosis at nodule level:

Sensi t i vi t y = 100 · T P

T P +F N
(5.3)

Sensitivity measures the percentage of correctly diagnosed malignant nodules.

Speci f i ci t y = 100 · T N

T N +F P
(5.4)

Specificity measures the percentage of benign nodules correctly identified.

Accur ac y = 100 · T P +T N

Number o f Nodules
(5.5)

for Number of Nodules denoting the total amount of nodules. The accuracy mea-
sures the percentage of correctly diagnosed nodules (both malign and benign nodules)
among the total number of nodules in the dataset.

F 1 Scor e = 100 · 2 ·Pr ec ·Rec

Pr ec +Rec
(5.6)

for Rec, Pr ec denoting, respectively, the precision and recall at diagnosis level:

Rec = 100 · T P

T P +F N
Pr ec = 100 · T P

T P +F P
(5.7)

The metric (5.6) measures the trade-off between recall and precision, and in general, a
higher F1-score means a better performance. We also computed the receiver operating
characteristic (ROC) curves and the area under the curve (AUC).

Table 5.10 shows the metrics for state of the art methods grouped according to type
of approach and our method with best performance in boldface. It reports the metrics
obtained by Model3 in our test set together with the results obtained by the selected
state of the art in their datasets and reported in their works. We also report the num-
ber of parameters of each method as indicator of its complexity and computational
and data cost for training. Our method outperforms in Accuracy, Sensitivity and F1
Score. In computer-aided diagnose, sensitivity is significant because correctly finding
out patients with malignant nodules is crucial. Besides, the highest F1 Score implies
that our method achieves the best trade-off between precision and recall. Our method
has a splendid compromise between the performance of the system and the number of
trainable parameters. A remarkable point compared to Deep CNN approaches, is that,
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our method needs strongly less samples to train the model, which is a must in medical
imaging.

Table 5.10: Results of our method compared to the state of the art with malignant nod-
ules as positive cases.

Approaches Accuracy Sensitivity Specificity
F1

Score
AUC

Param.
(M)

Radiomics
Peikert et al. [27] – 90.40 85.50 – 0.939 <0.29

Machine Learning
Zhang et al. [101] 96.09 96.84 95.34 – 0.979 <0.29

Deep CNN
Multicrop [75] 87.14 77.00 93.00 – 0.930 –

Nodule-level 2D [99] 87.30 88.50 86.00 87.23 0.937 –
Vanilla 3D [99] 87.40 89.40 85.20 87.25 0.947 –

DeepLung [103] 90.44 81.42 – – – 141.57
AE-DPN [45] 90.24 92.04 88.94 90.45 0.933 678.69

NASLung [46] 90.77 85.37 95.04 89.04 – 16.84

Hybrid
Our 96.30 100 83.33 97.67 0.940 0.29

5.3 Impact of Acquisition Parameters

The impact of acquisition parameters has been assessed using the Odds ratio (OR).
This score calculates the relationship between a variable and the likelihood of an event
occurring. In our case, OR can be interpret as identifying influential acquisition pa-
rameter by assessing the relationship between each parameter and the method out-
come (failure). That is, the risk of error under a given acquisition parameter. For each
parameter, its OR has been estimated using a logistic regression model using a gener-
alized linear model under a binomial distribution and logit link:

model f 1 <−g l m( f ai lur e par ameter,d at a = d ades, f ami l i y = bi nomi al ())

(5.8)

the exponential of the coefficient estimated for the parameter gives the OR for the
parameter. For each model, we report OR, its 95% CI, p values for significance (with
significant values indicated in bold face) and the number of samples. For all statisti-
cal analysis a p-value < 0.05 was considered significant. Statistical analysis were con-
ducted using R version 4.3.2.
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Table 5.11 reports the failure ratios for each of the acquisition parameters prone to
impact on method’s performance. For the categorical parameters (manufacturer and
KVP), we report the number and percentage of failures and successful predictions. For
the continuous parameters (X Ray, number of slices, slice thickness and spiral pitch
factor) we report the median and inter-quartile ranges (IQR). The nodules acquired
with GE device have a greater rate of success than the other devices. Regarding acqui-
sition parameters, scans acquired with a KVP different than 120 have a smaller rate of
success.

Table 5.11: Global Prediction failures, n (%); Median (IQR).

Characteristic N Correct, N = 69 Failure, N = 18

Manufacturer 87
GE MEDICAL SYSTEMS 23 (85%) 4 (15%)
Philips 32 (78%) 9 (22%)
SIEMENS 14 (74%) 5 (26%)

KVP 87
120 58 (82%) 13 (18%)
Another voltage 11 (69%) 5 (31%)

X Ray Tube Current 87 243.00 (164.00, 299.00) 247.50 (193.75, 379.50)

Number of slices 87 358.00 (311.00, 497.00) 451.50 (322.75, 468.00)

Slice thickness 87 1.50 (0.63, 2.00) 1.50 (1.31, 2.00)

Spiral Pitch Factor 48 9.84 (9.84, 13.75) 13.50 (9.88, 15.00)

Table 5.12: Prediction failures for each acquisition parameter. 1OR = Odds Ratio, CI =
Confidence Interval

Predictors OR1 95% CI1 p-value N

Manufacturer 0.607 87
GE MEDICAL SYSTEMS — — — —
Philips 1.62 0.46-6.56 — —
SIEMENS 2.05 0.47-9.57 — —

KVP 0.267 87
120 — — — —
Another voltage 2.03 0.56-6.68 — —

X Ray Tube Current (per 50 units) 1.11 0.96-1.27 0.145 87
Number of slices (per 50 units) 1.01 0.81-1.23 0.933 87
Slice thickness 1.73 0.81-4.16 0.152 87
Spiral Pitch Factor (per 0.1 units) 1.22 0.97-1.58 0.098 48

Table 5.12 reports the statistical summary of the glm models adjusted for each pa-
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rameter. As for the possible acquisition parameters that could explain the miss clas-
sification of the predicted diagnosis, we do not have significant results, probably due
to the low number of samples. Even though, it seems that questions about the manu-
facturer, voltage, X-ray or slice thickness could be relevant. The failure rate with a GE
device is substantially lower than with Siemens or Philips, and volts different from 120
almost double the predicted failure rate.

Figure 5.2: Forest plot of univariate odds ratio results - Failures

Figure 5.2 plots the 95% CI for each of the factors to visually check any deviation
from OR=1, which indicates no influence of the parameter. All factors, except the num-
ber of slices show a deviation.



Chapter 6

Conclusions and future work

The goal of this thesis is to improve the early diagnosis of lung cancer. In order to
achieve this and following clinical practice, an accurate characterization of the nod-
ules has been done. In this context, we contribute to machine learning systems for
diagnosis of lung cancer in, both, system’s pipeline and acquisition of a dataset for
training systems for early diagnosis of lung cancer. Intelligent artificial methods ap-
plied to medical imaging have to face two key drawbacks. The available small amount
of labelled data and the obligation that methods must ensure good rates avoiding false
positives. In order to overcome with these two main challenges, we have proposed an
hybrid method that combines an embedded radiomic texture features to character-
ize nodules and an optimized feed-forward network for nodule diagnosis. The nodule
embedding step is based on selecting those radiomic features that significantly corre-
late to malignancy ensuring reproducibility with minimal training data. The fully con-
nected network architecture and hyperparameters are optimized using own-defined
metrics of the diagnostic power to ensure maximum clinical outcome.

These are the main conclusions for each of the contributions of the thesis regarding
a system for diagnosis of lung cancer:

• Visual Representation Spaces. We have presented an hybrid method based on
classic radiomic features combined with a network with an architecture opti-
mized for the malignancy diagnosis of a pulmonary nodules using a novel strat-
egy based on multi-objective optimization. Our optimized approach achieves
competitive (being best for some metrics) results for identification of malignancy
using a highly unbalanced small size number of cases. These intermediate re-
sults show that radiomics are able to approximate the malignancy diagnosis of
a pulmonary nodule and encourage further research including a higher number
of cases and the optimization of convolutional architectures.

• Framework for Reproducible HyperParameter Optimization. We have presented
a strategy for the optimization of network hyper-parameters using a multi ob-
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jective Non-dominated Sorting Genetic Algorithm combined with a nested cross
validation to optimize statistical metrics of the performance of networks. In or-
der to illustrate the benefits of the proposed strategy, we have apply it to an ap-
plication use case of a network mapping radiomic visual features to radiological
annotations for better clinical interpretation of abstract features describing the
visual appearance of medical scans. Results obtained indicate the generalization
power of the proposed optimization strategy. However, we have to notice that a
model configuration exception has been find out. In this way, further investiga-
tion should be addressed in order to filter this sort of outliers. A proposed solu-
tion, could be to consider some statistical tests to detect significant differences
and discard those configurations performing significantly worse.

• RadioLung Dataset. We presented an own collected dataset for early lung can-
cer diagnosis, including imaging and clinical data. Our approach involves the
development of a precise imaging acquisition protocol. This protocol utilizes
Multi-Detector Row CT Scanners with high-resolution features and incorporates
a low radiation dose strategy to prioritize patient safety. Notably, our protocol
meticulously considers patient factors during both image capture and recon-
struction. Aligned with globally recognized standards in the radiology commu-
nity, the acquisition protocol is designed to detect lung cancer nodules in their
early stages. Subsequently, each identified nodule undergoes histopathological
diagnosis through biopsy samples.

• Impact of CT Acquisition Parameters. We have conducted a statistical analysis
of the impact of CT scan acquisition parameters on the performance of meth-
ods. In particular, the impact of the manufacturer, KVP voltage, slice thickness,
X Ray, number of slices,and spiral pitch factor has been analyzed using logistic
regression models to estimate OR and detect significant differences. Descriptive
statistics show that scans acquired with GE devices and KVP=120 have a greater
rate of success. Although we do not have significant results, probably due to the
low number of samples, all parameters except the number of slices seem to have
an impact on performance.

6.1 Future research lines

In our future endeavors, we are keen on delving deeper into histological discrimina-
tion, specifically in developing models capable of distinguishing between adenocar-
cinoma and squamous cell cancer. To attain this goal, our focus will be on explor-
ing diverse methods of contrastive learning. This approach involves learning repre-
sentations by contrasting positive samples (similar) against negative samples (dissim-
ilar). By doing so, we can significantly increase the number of samples, enhancing
the model’s ability to discern features crucial for distinguishing lung cancer nodules.
To further optimize this process, we may need to incorporate positional information
for the samples. Rather than comparing all samples indiscriminately against each
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other, considering their positions can refine the categorization process. Additionally,
employing contrastive learning has the potential to enhance the model’s robustness
against variations in nodules, such as differences in size, shape, density, and even vari-
ations in scan acquisition parameters.

The RadioLung Dataset continues to grow as new cases are continuously added.
In our ongoing efforts, we aim to conduct a comprehensive analysis of the impact of
various parameters with the goal of establishing minimum requirements for clinical
practice.

Moreover, we plan to integrate pre-trained transformers as generators of represen-
tation spaces, harnessing their capacity to capture intricate patterns and features. This
integration will enable us to explore additional representation spaces by incorporating
diverse perspectives, including various cuts of the nodules, such as coronal and sagit-
tal views. Furthermore, we intend to extend our investigation to include volumetric
data, providing a more holistic understanding of lung cancer characteristics. These ad-
vancements in data analysis and representation will contribute to refining the dataset
and improving the accuracy and robustness of our methods in the context of lung can-
cer diagnosis
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