THREE PROBLEMS IN HARMONIC ANALYSIS AND APPROXIMATION THEORY

Kristina Oganesyan

ADVERTIMENT. L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: © (i) \leftrightarrow © https://creativecommons.org/licenses/?lang=ca

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: ©c © © Θ https://creativecommons.org/licenses/? lang=es

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license:
https://creativecommons.org/licenses/?lang=en

THREE PROBLEMS IN HARMONIC ANALYSIS AND APPROXIMATION THEORY

Kristina Oganesyan

Director: Sergey Tikhonov

UAB
Universitat Autònoma de Barcelona

Doctorat en Matemàtiques
Centre de Recerca Matemàtica
Universitat Autònoma de Barcelona - Departament de Matemàtiques

Gener 2024

Contents

Acknowledgements iii
1 Introduction 1
2 Hardy-Littlewood theorem in two dimensions 5
2.1 Concepts of monotonicity and known results 5
2.1.1 Monotonicity in each variable 6
2.1.2 Monotonicity in the sense of Hardy 7
2.2 New results for two-dimensional case 9
2.3 Proof of the Hardy-Littlewood theorem for $G M^{c}$ sequences 10
2.4 Sharpness of the result 22
3 Cosine polynomials with restrictions on their algebraic representation 29
3.1 Inverse of a matrix containing coefficients of Chebyshev polynomials 29
3.2 Proof of Theorem 3.1 36
3.2.1 Finding a sufficient condition for (3.1) to hold 36
3.2.2 Constructing a vector of coefficients 38
3.2.3 Estimating T^{\dagger} 39
4 Number of lower sets with fixed cardinality 47
4.1 History of the problem 47
4.1.1 Small dimensional lower sets 47
4.1.2 High dimensional lower sets 49
4.2 New bounds 50
4.3 Lower sets in small dimensional spaces 51
4.4 Lower sets in high dimensions 68
Bibliography 79

Acknowledgements

First of all, I would like to deeply thank my supervisor Professor Sergey Tikhonov for his guidance and valuable advice throughout the whole period of my PhD studies, for posing problems and continually discussing various mathematical topics. Thanks to him, I acquired a lot of skills in academic interaction and gained a much more keen vision of the modern state of Mathematics as a scientific activity.

I also thank Professor Mikhail Dyachenko for constant and sincere interest in my research and for sharing with me his extensive knowledge of the topic of Chapter 2.

Many thanks to my friend and colleague Miquel Saucedo for the countless conversations and discoveries we had together during these years, which considerably broadened and deepened my knowledge. I also thank him for reading my manuscripts and giving valuable comments.

Besides, I am grateful to Lavrentin Arutyunyan for the lively discussion we had regarding the problem of Chapter 3, which resulted in the proof of Lemma 3.7.

Finally yet importantly, I would like to thank Alberto Debernardi Pinos who helped me a lot at the beginning of my doctoral studies to manage all the administrative procedures at the university.

Chapter 1

Introduction

In this dissertation, we deal with three problems in harmonic analysis and approximation theory. The first problem concerns the Hardy-Littlewood relations for Fourier coefficients in the two-dimensional setting, the second one is related to estimates of the coefficients of a trigonometric polynomial in different bases, and the third one refers to multidimensional integer partitions.

In Chapter 2, we study the relations between integrability of functions and summability of their Fourier coefficients. Assuming that a function is square-integrable we have the Parseval's identity, which enables us to reduce a wide class of problems concerning functions to those concerning their Fourier series, and vice versa. We would like to obtain analogues of this relation in the spaces $L_{p}, p \neq 2$, establishing equivalences of norms of functions and norms of their Fourier series under, of course, some additional requirements. Results of this kind are important, in the first place, due to the fact that once such a relation is found, one becomes free to choose if it is handy to deal with functions or with coefficients in this or that case, as if having Parseval's identity (see e.g. [18, Chs. 4-6, 12-13] and [34, Sec. 7] for applications).

Before we give precise formulations, let us introduce some notations that we are going to use throughout the dissertation. For two functions f and g, the relation $f \gtrsim g$ (or $g \lesssim f)$ will mean that there exists a constant C such that $f(x) \geq C g(x)$ for all x, and the relation $f \asymp g$ is equivalent to $f \gtrsim g \gtrsim f$. If we write $f \gtrsim a g$, this means that the corresponding constant is allowed to depend on a, however, in what follows we will usually omit the dependence of the implicit constants on the integrability parameters p and q, so that this dependence will be taken for granted.

The following result by Paley [63] can be considered the starting point for the research in this direction (note that the same result for the trigonometric system was obtained several years before by Hardy and Littlewood [37]).

Theorem A (Paley, 1931). Let $\left\{\phi_{n}(x)\right\}$ be an orthonormal system on $[a, b]$ with $\left|\phi_{n}(x)\right| \leq$ M for all $x \in[a, b]$ and $n \in \mathbb{N}$. Then
a) If $p \in(1,2]$, then for any $f \in L_{p}(a, b)$ with Fourier coefficients $\left\{c_{n}\right\}$ there holds

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|c_{n}\right|^{p} n^{p-2} \lesssim_{p, M}\|f\|_{p}^{p} . \tag{1.1}
\end{equation*}
$$

b) If $p \in[2, \infty)$, then, for any sequence $\left\{c_{n}\right\}$ with $\sum_{n=1}^{\infty}\left|c_{n}\right|^{p} n^{p-2}<\infty$, there exists a
function $f \in L_{p}(a, b)$ that has $\left\{c_{n}\right\}$ as its Fourier coefficients and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|c_{n}\right|^{p} n^{p-2} \gtrsim p, M\|f\|_{p}^{p} \tag{1.2}
\end{equation*}
$$

From now on, we focus only on Fourier series with respect to the trigonometric system.
The ranges of p in Theorem A are sharp, therefore to have both (1.1) and (1.2) true for all $p \in(1, \infty)$, one has to impose some additional requirements. Hardy and Littlewood [38] showed that if we restrict ourselves to sine or cosine series with monotone tending to zero coefficients, then both relations (1.1) and (1.2) hold for all $p \in(1, \infty)$. In this regard, a natural question to ask was: how much can we release the requirement of monotonicity to have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|c_{n}\right|^{p} n^{p-2} \asymp_{p}\|f\|_{p}^{p} \tag{1.3}
\end{equation*}
$$

still true? This question in turn motivated creation of various extentions of the class of monotone sequences satisfying (1.3). In particular, the class of general monotone sequences $\left\{c_{n}\right\}$ obeying

$$
\sum_{k=n}^{2 n}\left|c_{k}-c_{k+1}\right| \lesssim\left|c_{n}\right|
$$

for all n was shown [69] to fulfil (1.3). Moreover, Hardy-Littlewood type relations were proved for functions with general monotone Fourier coefficients not only in the Lebesgue spaces L_{p}, but also in weighted Lebesgue and Lorentz spaces.

A powerful application of the Hardy-Littlewood relation is that the best approximation $E_{n}(f)_{p}$ and the modulus of smoothness $\omega_{k}(f, \delta)_{p}$ of a function f can be expressed in terms of its coefficients $\left\{a_{n}\right\}$, provided their general monotonicity, in the following way:

$$
\left(\sum_{m=2 n}^{\infty} a_{m}^{p} m^{p-2}\right)^{\frac{1}{p}} \lesssim p E_{n}(f)_{p} \lesssim p a_{n} n^{\frac{p-1}{p}}+\left(\sum_{m=n}^{\infty} a_{m}^{p} m^{p-2}\right)^{\frac{1}{p}}
$$

and

$$
\omega_{k}\left(f, 2^{-n}\right)_{p} \asymp_{p, k} 2^{-n k}\left(\sum_{m=0}^{n} a_{2^{m}}^{p} 2^{m(k p+p-1)}\right)^{\frac{1}{p}}+\left(\sum_{m=n}^{\infty} a_{2^{m}}^{p} 2^{m(p-1)}\right)^{\frac{1}{p}}
$$

These inequalities, in particular, allow one to characterize the Besov spaces for trigonometric series with general monotone coefficients (see, for instance, [6]).

Our goal will be to prove that the two-dimensional version of relation (1.3) is true for functions whose Fourier coefficients belong to some classes of general monotone and, impotantly, not necessarily non-negative sequences. Moreover, we will show that for a slightly wider class, the Hardy-Littlewood relation fails for $p>2$. We note also that these results will be proved in a more general setting of weighted Lebesgue spaces.

Chapter 3 is devoted to the following question. Suppose we are given a cosine polynomial $\sum_{k=0}^{n} a_{k} \cos k x, a_{k} \in \mathbb{R}$. With the help of Chebyshev polynomials $T_{k}(x)$, according to the equality $\cos k x=T_{k}(\cos x)$, we can rewrite it as $\sum_{k=0}^{n} b_{k} \cos ^{k} x$, an algebraic polynomial in $\cos x$. Conversely, any algebraic polynomial in $\cos x$ can be represented as a
trigonometric one. So one can pass from one of these representations to another choosing the suitable basis: $\{\cos k x\}_{k=0}^{\infty}$ or $\left\{\cos ^{k} x\right\}_{k=0}^{\infty}$. But what if we look at all the cosine polynomials whose certain coordinates with respect to the basis $\left\{\cos ^{k} x\right\}_{k=0}$ are fixed? In other words, if we fix some $K \subset \mathbb{N}$, some numbers $\left\{c_{k}\right\}_{k \in K}$ and consider

$$
A\left(K,\left\{c_{k}\right\}\right):=\left\{\left\{b_{k}\right\}_{k=0}^{n}, n \in \mathbb{N}: \sum_{k=0}^{n} b_{k} \cos k x \equiv \sum_{k=0}^{n} a_{k} \cos ^{k} x, a_{k}=c_{k} \text { for } k \in K\right\},
$$

what can we say about $\sum_{k=0}^{n}\left|b_{k}\right|$ if we know that $\left\{b_{k}\right\}_{k=0}^{n} \in A\left(K,\left\{c_{k}\right\}\right)$? In more detail, can we find a trigonometric polynomial belonging to $A\left(K,\left\{c_{k}\right\}\right)$ with "small" l_{1}-norm of the coefficients? We show that the answer is indeed positive, which yields that it is possible to adjust any $\sum_{k \in K} c_{k} \cos ^{k} x$ by adding a trigonometric polynomial with small l_{1}-norm of the coefficients so that the coefficients of our sum at $\cos ^{k} x, k \in K$, are equal to zero.

The principle motivation for posing such a question is the problem of estimating the value of a trigonometric polynomial at some point $x,|\cos x|=\delta<1$, under some special conditions. Indeed, once a result about the existence of $\left\{b_{k}\right\}_{k=0}^{n} \in A\left(K,\left\{c_{k}\right\}\right)$ with small l_{1}-norm of the coefficients is established, one can rewrite the trigonometric polynomial as the algebraic one and adjust it by means of a trigonometric polynomial with small l_{1}-norm of its coefficients so that its first, say, k coefficients become zero. Then the value at x does not exceed δ^{k} multiplied by the sum of absolute values of the coefficients of the obtained polynomial plus something small that comes from the adjustment. An argument of this type enables us to construct a nondegenerate double trigonometric series that converges to zero by a subsequence of squares everywhere in such a way that we can control the sizes of these squares and have explicit estimates both for the rate of convergence and for the perturbations in the intermediate steps at every point. The problem of constructing such series is closely related to that of finding universal trigonometric series (see [68] and the references therein).

Another application comes from the fact that, for $\left\{b_{k}\right\}_{k=1}^{r}$ in $A\left(\{0,1, \ldots, p-1\},\left\{c_{t}\right\}_{t=0}^{p-1}\right)$, there holds

$$
\sum_{k=1}^{r} b_{k} T_{k}(y)-y^{p} g(y) \equiv \sum_{t=0}^{p-1} c_{t} y^{t},
$$

for some polynomial g, so the result can be applied to the study of Chebyshev polynomials and Chebyshev series [53], as series of Chebyshev polynomials are known to have properties of fast convergence among other their advantages in approximation theory and numerical analysis (see, for instance, [13]).

To prove the mentioned result, we consider the matrix $\mathbf{T}=\left(t_{m}^{k}\right)_{m, k=0}^{\infty}$ whose entry t_{m}^{k} is the coefficient at x^{m} of the Chebyshev polynomial $T_{k}(x)$, and derive an explicit formula for the inverse of a square submatrix of \mathbf{T}. This allows us to determine the coefficients with respect to the basis $\{\cos k x\}_{k=0}^{\infty}$ of an algebraic polynomial in $\cos x$. In the course of the proof of Theorem 3.1, we also give some useful estimates (see Lemma 3.6) on sums of products of binomial coefficients appearing in the expression for entries of the pseudoinverse of a Vandermonde matrix in [29] (see [7] for a substantive survey of generalized inverses and also [64] and [71] for algebraic properties of generalized inverses of Vandermonde matrices).

In Chapter 4, we study multidimensional partitions or, equivalently, lower sets and establish estimates for the number of d-dimensional lower sets with fixed cardinality.

For a given d, we call a set $S \subset \mathbb{Z}_{+}^{d}$ a lower set if for any $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{Z}_{+}^{d}$ the condition $\mathbf{x} \in S$ implies $\mathbf{x}^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{d}^{\prime}\right) \in S$ for all $\mathbf{x}^{\prime} \in \mathbb{Z}_{+}^{d}$ with $x_{i}^{\prime} \leq x_{i}, 1 \leq i \leq d$. There is a one-to-one correspondence between d-dimensional lower sets of cardinality n and $(d-1)$-dimensional partitions of n, that is, representations of the form

$$
n=\sum_{i_{1}=1}^{\infty} \sum_{i_{2}=1}^{\infty} \ldots \sum_{i_{d-1}=1}^{\infty} n_{i_{1} i_{2} \ldots i_{d-1}}, \quad n_{i_{1} i_{2} \ldots i_{d-1}} \in \mathbb{Z}_{+},
$$

where $n_{i_{1} i_{2} \ldots i_{d-1}} \geq n_{j_{1} j_{2} \ldots j_{d-1}}$ if $j_{k} \geq i_{k}$ for all $k=1,2, \ldots, d-1$. Thus, lower sets represent a geometric interpretation of integer partitions. By $p_{d}(n)$ we denote the number of lower sets in \mathbb{Z}_{+}^{d} containing exactly n points ${ }^{1}$.

Importantly, the theory of partitions has many applications in physics, as there are a lot of physical structures resembling that of multidimensional integer partitions. In particular, integer partitions are used to estimate the energy levels for a heavy nucleus [10] and to study the shape of crystal growth [67]. Another direction of research is based on the existence of a one-to-one correspondence between partitions of an integer and microstates of a gas particles stored in a harmonic oscillator, not only in two-dimensional case $[4,72]$ but also in multidimensional setting [56].

Furthermore, certain classes of trigonometric polynomials with harmonics in lower sets have recently turned out to be a powerful tool in multivariate approximation (see $[11,15,16]$ and references therein).

It is known that the two-sided inequality

$$
C_{1}(d) n^{1-1 / d}<\log p_{d}(n)<C_{2}(d) n^{1-1 / d}
$$

is always true and that $C_{1}(d)>1$ whenever $\log n>3 d$. However, establishing the "right" dependence of C_{2} on d remained an open problem. We will show that if d is sufficiently small with respect to n, then C_{2} does not depend on d, which means that $\log p_{d}(n)$ is up to an absolute constant equal to $n^{1-1 / d}$. Besides, we provide estimates of $p_{d}(n)$ for different ranges of d in terms of n, which give the asymptotics of $\log p_{d}(n)$ in each case.

The results of Chapters 2 and 3 are published in [60] and [61], while those of Chapter 4 can be found in [62].

[^0]
Chapter 2

Hardy-Littlewood theorem in two dimensions

2.1 Concepts of monotonicity and known results

One of the classes of sequences such that functions with Fourier coefficients belonging to this class still obey (1.3), is the so-called general monotone or just $G M$ class [69, Th. 4.2]. It consists of all sequences $\left\{a_{n}\right\}$ fulfilling the condition

$$
\begin{equation*}
\sum_{k=n}^{2 n}\left|a_{k}-a_{k+1}\right| \lesssim\left|a_{n}\right| \tag{2.1}
\end{equation*}
$$

for all n. Thus, now we dropped not only the monotonicity condition but even the basic requirement of positivity, keeping though some regularity of our sequences. One can see that $G M$ class can yet be generalized (see [70, Th. 6.2(B)] and [76, Th. 1]) by putting a mean value on the right-hand side of (2.1) instead of $\left|a_{n}\right|$ as follows:

$$
\begin{equation*}
\sum_{k=n}^{2 n}\left|a_{k}-a_{k+1}\right| \lesssim \sum_{k=\frac{n}{\lambda}}^{\lambda n} \frac{\left|a_{k}\right|}{k} \tag{2.2}
\end{equation*}
$$

with some $\lambda>1$ (see also [32] for some properties of such sequences). Note that these classes and several other ones, defined as (2.1) but with some other majorants on the right-hand side, in different sources can be also called GM. For a comprehensive survey on the concept of general monotonicity, we refer the reader to [48].

One more direction of extending the obtained results (see [1, 41, 76]) is proving them for weighted spaces. Define the weighted Lebesgue spaces $L_{w(p, q)}^{q}, p, q \in(0, \infty]$, on $[-\pi, \pi]$, as the set of all measurable functions f with finite norm

$$
\|f\|_{L_{w(p, q)}^{q}}:=\left\{\begin{array}{l}
\left(\int_{-\pi}^{\pi}|t|^{\frac{q}{p}-1}|f(t)|^{q} d t\right)^{\frac{1}{q}}, \quad \text { if } 0<p, q<\infty \\
\underset{t \in[-\pi, \pi]}{\operatorname{esssup}}\left|t^{\frac{1}{p}} f(t)\right|, \quad \text { if } 0<p \leq \infty, q=\infty
\end{array}\right.
$$

The discrete weighted Lebesgue space $l_{w(p, q)}^{q}$ is to be defined in the same way.
Now, a weighted version of relation (1.3) is given by

$$
\begin{equation*}
\left\|\left\{c_{n}\right\}\right\|_{l^{q}\left(p^{\prime}, q\right)}^{q}:=\sum_{n=1}^{\infty}\left|c_{n}\right|^{q} n^{\frac{q}{p}-1} \asymp\|f\|_{L_{w(p, q)}^{q}}^{q}, \tag{2.3}
\end{equation*}
$$

where p^{\prime} stands for the conjugate to p, that is, $1 / p+1 / p^{\prime}=1$. Note that if we put $q=p$, we get the standard Hardy-Littlewood relation (1.3). The following theorem for weighted Lebesgue spaces was obtained by Sagher [66].

Theorem A (Sagher, 1976). If the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are monotone and vanishing at infinity and the function f has the Fourier series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

then for $p \in(1, \infty), q \in[1, \infty]$, there holds

$$
\|f\|_{L_{w(p, q)}^{q}} \asymp\left\|\left\{a_{n}\right\}\right\|_{l_{w\left(p^{\prime}, q\right)}^{q}}+\left\|\left\{b_{n}\right\}\right\|_{l_{w\left(p^{\prime}, q\right)}^{q}}
$$

It turns out that the same holds if we release the monotonicity condition in the theorem above to (2.2), thus withdrawing the requirement of positivity. This result, along with the similar statement proved for Lorentz spaces, was given by Dyachenko, Mukanov and Tikhonov [23].

So, in the one-dimensional case we have quite a complete picture.
The whole scenario becomes more complicated if we step out from the one-dimensional setting to the multidimensional one, and the first question we face is to determine what we should mean by monotonicity if we deal with multiple sequences. The usual onedimensional monotonicity is characterized by the inequalities $a_{n} \geq a_{n+1}$, or equivalently, $\Delta a_{n}:=a_{n}-a_{n+1} \geq 0$. These two ways of writing the same property give rise to the following fundamentally different multidimensional monotonicity concepts. Our focus will be on the two-dimensional case.

2.1.1 Monotonicity in each variable

Likewise $a_{n} \geq a_{n+1}$ in one dimension, we can require coordinatewise monotonicity, that is, in two-dimensional case the condition will be

$$
\begin{equation*}
a_{m n} \leq a_{m^{\prime} n^{\prime}}, \quad \text { for all } m \geq m^{\prime}, n \geq n^{\prime} \tag{2.4}
\end{equation*}
$$

It turns out, however, that for such sequence the Hardy-Littlewood relation (1.3) does not hold for some values of $p>1$, namely, we have the following result proved by Dyachenko [20, 22].

Theorem B (Dyachenko, 1986). a) [20, Th. 1] If $\left\{a_{m n}\right\}_{m, n=1}^{\infty}$ satisfying (2.4) and

$$
\begin{equation*}
a_{m n} \rightarrow 0, \quad \text { as } m+n \rightarrow \infty, \tag{2.5}
\end{equation*}
$$

is the sequence of the Fourier coefficients with respect to one of the orthonormal systems $\left\{e^{i n x} e^{i m y}\right\}_{m, n=1}^{\infty},\{\sin n x \sin m y\}_{m, n=1}^{\infty}$, and $\{\cos n x \cos n y\}_{m, n=1}^{\infty}$, of a function f, then for any $p \in(1, \infty)$,

$$
\sum_{m, n=1}^{\infty} a_{m n}^{p}(m n)^{p-2} \lesssim\|f\|_{p}^{p} .
$$

b) [22, Cor. 2] Let $p>4 / 3$ and the sequence $\left\{a_{m n}\right\}$ satisfy (2.4) and $\sum_{m, n=1}^{\infty} a_{m n}^{p}(m n)^{p-2}<$ ∞ (therefore, (2.5) as well). Then, for any of the systems above, there exists a function f having $\left\{a_{m n}\right\}$ as its Fourier coefficients and satisfying

$$
\begin{equation*}
\sum_{m, n=1}^{\infty} a_{m n}^{p}(m n)^{p-2} \gtrsim\|f\|_{p}^{p} . \tag{2.6}
\end{equation*}
$$

c) $\left[20\right.$, Ths. $\left.8,8^{\prime}\right]$ For $p \in(1,4 / 3]$, there exists a sequence $\left\{a_{m n}\right\}$ satisfying (2.4) and (2.5) with $\sum_{m, n=1}^{\infty} a_{m n}^{p}(m n)^{p-2}<\infty$ such that the corresponding trigonometric series diverges by squares almost everywhere on $(0,2 \pi)^{2}$.

Note that it was shown by Fefferman [31] that for any $p>1$ and any $f \in L_{p}(0,2 \pi)^{2}$, the Fourier series of f converges by squares almost everywhere on $(0,2 \pi)^{2}$, thus, the third part of the theorem means that (2.6) is no longer true for the integrability parameter $p \in(1,4 / 3)$. We also remark that in general d-dimensional case the critical value is $2 d /(d+1)$ (see [21, Th. 1, Th. 4] and [22, Cor. 2]) and that the d-dimensional part c) of Theorem B for $p=2 d /(d+1)$ was proved in [25].

2.1.2 Monotonicity in the sense of Hardy

The next approach to the multiple concept of monotonicity is to consider the so-called monotonicity in the sense of Hardy (or Hardy-Krause, see [36] and [45], where this concept initially arises). In more detail, define the differences

$$
\begin{aligned}
& \Delta^{10} a_{m n}:=a_{m n}-a_{m+1, n}, \quad \Delta^{01} a_{m n}:=a_{m n}-a_{m, n+1}, \\
& \Delta^{11} a_{m n}:=\Delta^{01}\left(\Delta^{10} a_{m n}\right)=\Delta^{10}\left(\Delta^{01} a_{m n}\right)=a_{m n}-a_{m+1, n}-a_{m, n+1}+a_{m+1, n+1},
\end{aligned}
$$

and recalling the one-dimentional condition $\Delta a_{n} \geq 0$, one generalizes it in the following way

$$
\begin{equation*}
\Delta^{11} a_{m n} \geq 0 \quad \text { for all } m, n \tag{2.7}
\end{equation*}
$$

Note that under the natural requirement (2.5), condition (2.7) implies

$$
a_{m n} \geq 0, \quad \Delta^{10} a_{m n} \geq 0, \quad \Delta^{01} a_{m n} \geq 0
$$

Here comes the result obtained by Móricz [54, Th. 1,2, Cor. 1].
Theorem C (Móricz, 1990). Let $p \geq 1$ and the sequence $\left\{a_{m n}\right\}$ satisfy (2.5) and (2.7).
a) If $\sum_{m, n=1}^{\infty} a_{m n}^{p}(m n)^{p-2}<\infty$, then the double sine or cosine series with coefficients $\left\{a_{m n}\right\}$ is the Fourier series of its sum f and

$$
\sum_{m, n=1}^{\infty} a_{m n}^{p}(m n)^{p-2} \gtrsim\|f\|_{p}^{p} .
$$

b) If $\left\{a_{m n}\right\}$ is the sequence of double sine or cosine Fourier coefficients of $f \in L_{p}$, then

$$
\sum_{m, n=1}^{\infty} a_{m n}^{p}(m n)^{p-2} \lesssim\|f\|_{p}^{p} .
$$

The reader can find Theorem C proved for Vilenkin systems (and hence for the Walsh system) in [73, Sec. 6.3] and [74] (see also [27, Sec. 4]).

Condition (2.7) is quite restrictive and one of the closest generalizations of it in, say, $G M$ spirit is the following one

$$
\sum_{m=k}^{\infty} \sum_{n=l}^{\infty}\left|\Delta^{11} a_{m n}\right| \lesssim\left|a_{m n}\right|
$$

Note that if the sequence satisfies (2.7), then the left-hand side above becomes just equal to $a_{m n}$. The next result [26, Th. 6B] (see [27] for the proof) extends the one of Móricz.

Theorem D (Dyachenko, Tikhonov, 2007). If a nonnegative sequence $\left\{a_{m n}\right\}$ satisfy (2.5) and the so-called GM ${ }^{2}$ condition

$$
\begin{equation*}
\sum_{m=k}^{\infty} \sum_{n=l}^{\infty}\left|\Delta^{11} a_{m n}\right| \lesssim\left|a_{k l}\right|+\sum_{m=k}^{\infty} \frac{\left|a_{m l}\right|}{m}+\sum_{n=l}^{\infty} \frac{\left|a_{k n}\right|}{n}+\sum_{m=k}^{\infty} \sum_{n=l}^{\infty} \frac{\left|a_{m n}\right|}{m n} \tag{2.8}
\end{equation*}
$$

then the corresponding double sine, cosine, or exponential series converges everywhere on $(0,2 \pi)^{2}$ and is the Fourier series of its sum. Besides, for any $p \in(1, \infty)$,

$$
\sum_{m, n=1}^{\infty} a_{m n}^{p}(m n)^{p-2} \asymp\|f\|_{p}^{p}
$$

It is worth mentioning that the \gtrsim part was proved without assuming $a_{m n} \geq 0$, moreover, it was shown that if $\sum_{m=k}^{\infty} \sum_{n=l}^{\infty}\left|\Delta^{11} a_{m n}\right| \lesssim \beta_{k l}$, then $\sum_{m, n=1}^{\infty} \beta_{m n}^{p}(m n)^{p-2} \gtrsim\|f\|_{p}^{p}$. However, in the proof of the counterpart the requirement of nonnegativity plays a crucial role. It was noted in [28, Th. 4.1] that following the lines of this proof one can adapt it for a more general class of sequences for which the right-hand side of (2.8) is replaces by

$$
\sum_{m=\lceil k / \lambda\rceil}^{\infty} \sum_{n=\lceil l / \lambda\rceil}^{\infty} \frac{\left|a_{m n}\right|}{m n}
$$

with $\lambda>1$.
Further, it was shown in [77] that some other GM type nonnegative sequences happen to obey the two-sided Hardy-Littlewood relation. We present the result from [77] for weighted spaces.

Theorem E (Yu, Zhou, Zhou, 2012). Let $\left\{a_{m n}\right\}$ be a nonnegative sequence satisfying (2.5) and the following GM type conditions

$$
\begin{aligned}
\sum_{m=k}^{2 k}\left|\Delta a_{m l}\right| & \lesssim \sum_{m=\left\lfloor\lambda^{-1} k\right\rfloor}^{\lfloor\lambda k\rfloor} \frac{\left|a_{m l}\right|}{m}, \quad \sum_{n=l}^{2 l}\left|\Delta a_{k n}\right| \lesssim \sum_{n=\left\lfloor\lambda^{-1} l\right\rfloor}^{\lfloor\lambda l\rfloor} \frac{\left|a_{k n}\right|}{n} \\
& \sum_{m=k}^{2 k} \sum_{n=l}^{2 l}\left|\Delta a_{m n}\right| \lesssim \sum_{m=\left\lfloor\lambda^{-1} k\right\rfloor}^{\lfloor\lambda k\rfloor} \sum_{n=\left\lfloor\lambda^{-1} l\right\rfloor}^{\lfloor\lambda l\rfloor} \frac{\left|a_{m n}\right|}{m n}
\end{aligned}
$$

for some $\lambda \geq 2$, and let $f(x, y):=\sum_{m, n=1}^{\infty} a_{m n} \sin m x \sin n y$. Then, for any $p \in[1, \infty)$, for any function $\phi \in \Phi$ with either $\phi^{-\frac{1}{p-1}} \in L$ if $p>1$, or $\phi^{-1} \in L_{\infty}$, if $p=1$, we have

$$
\phi|f|^{p} \in L \Leftrightarrow \sum_{m, n=1}^{\infty} a_{m n}^{p} \phi(1 / m, 1 / n)(m n)^{p-2}<\infty
$$

In the above result Φ stands for some class of power-like positive functions, which we are not going to specify here. A similar result with a more general $G M$ type positive sequences and some other (not comparable) class of power-like functions was obtained in [19].

Similar results for the Fourier transform are also well known in the literature, see e.g. $[12,24,33,59,66]$.

2.2 New results for two-dimensional case

The main purpose of this chapter is to show that for some kinds of double $G M$ sequences we can prove the Hardy-Littlewood theorem without restricting ourselves only to positive sequences. We present two GM type classes for which the two-sided Hardy-Littlewood inequality holds true.

We write that $\left\{a_{m n}\right\} \in G M_{1}^{c}$ if it satisfies (2.5) and

$$
\begin{equation*}
\sum_{m=k}^{2 k} \sum_{n=l}^{\infty}\left|\Delta^{11} a_{m n}\right|+\sum_{m=k}^{\infty} \sum_{n=l}^{2 l}\left|\Delta^{11} a_{m n}\right| \leq C\left|a_{k l}\right| \tag{2.9}
\end{equation*}
$$

and $\left\{a_{m n}\right\} \in G M_{2}^{c}$, if it satisfies (2.5) and

$$
\begin{equation*}
\sum_{m=k}^{2 k} \sum_{n=l}^{\infty}\left|\Delta^{11} a_{m n}\right|+\sum_{m=k}^{\infty} \sum_{n=l}^{2 l}\left|\Delta^{11} a_{m n}\right| \leq C\left|a_{2 k, l}\right| \tag{2.10}
\end{equation*}
$$

for all $k, l \in \mathbb{N}$ and some constant C depending only on the sequence $\left\{a_{m n}\right\}$. We remark that the letter c in $G M^{c}$ comes from the word "corner", since a set of the kind $[k, 2 k] \times$ $[l, \infty) \cup[k, \infty) \times[l, 2 l]$ generates a corner on the plane. Note that $G M_{1}^{c}$ sequences obey the one-dimensional $G M$ conditions (2.1) in each variable (see (2.11) in the proof of Lemma 2.2), while $G M_{2}^{c}$ in one variable satisfy (2.1), and in another one, the "backward" $G M$ condition.

Note that for $[-\pi, \pi]^{2}$ the $L_{w(p, q)}^{q}$-norms take the form

$$
\|f\|_{L_{w(p, q)}^{q}}:=\left\{\begin{array}{l}
\left(\int_{-\pi}^{\pi} \int_{-\pi}^{\pi}|t s|^{\frac{q}{p}-1}|f(t, s)|^{q} d t d s\right)^{\frac{1}{q}}, \quad \text { if } 0<p, q<\infty \\
\underset{(t, s) \in[-\pi, \pi]^{2}}{\operatorname{ess} \sup }\left|(t s)^{\frac{1}{p}} f(t, s)\right|, \quad \text { if } 0<p \leq \infty, q=\infty
\end{array}\right.
$$

From now on, for convenience, we adopt the following notation: using that $(\sin x)^{(1)}=$ $(\sin x)^{\prime}=\cos x$ and $(\sin x)^{(0)}=\sin x$, we will write a two-dimensional trigonometric series as

$$
\sum_{i, j=0}^{1} \sum_{m, n=0}^{\infty} a_{m n}^{i j} \sin ^{(i)} m x \sin ^{(j)} n y
$$

and we will say that $\left\{a_{m n}^{i j}\right\}_{m, n=1}^{\infty}, i, j=0,1$, is the sequence of its coefficients.

Theorem 2.1. Let $p \in(1, \infty), q \in[1, \infty]$, and let each of the sequences $\left\{a_{m n}^{i j}\right\}_{m, n=1}^{\infty}, i, j=$ 0,1 , belong either to $G M_{1}^{c}$ or to $G M_{2}^{c}$.
a) If $\left\{a_{m n}^{i j}\right\}_{m, n=1}^{\infty}, i, j=0,1$, is the sequence of Fourier coefficients of $f \in L(-\pi, \pi)^{2}$, then

$$
\|f\|_{L_{w(p, q)}^{q}} \gtrsim \sum_{i, j=0}^{1}\left\|\left\{a_{m n}^{i j}\right\}\right\|_{l_{w\left(p, q^{\prime}\right)}^{q^{\prime}}}
$$

b) If $\sum_{i, j=0}^{1}\left\|\left\{a_{m n}^{i j}\right\}\right\|_{l_{w\left(p, q^{\prime}\right)}^{q^{\prime}}}<\infty$, then the corresponding trigonometric series converges everywhere on $(0,2 \pi)^{2}$ and is the Fourier series of its sum f, moreover,

$$
\|f\|_{L_{w(p, q)}^{q}} \lesssim \sum_{i, j=0}^{1}\left\|\left\{a_{m n}^{i j}\right\}\right\|_{l_{w\left(p, q^{\prime}\right)}^{q^{\prime}}}
$$

Sharpness of Theorem 2.1 for $G M_{2}^{c}$ sequences will be provided by a counterexample in Theorem 2.8, which shows that if we restrict the sum on the left-hand side of (2.10) to the rectangle (that is, to the intersection and not the union of the two corresponding strips), which is one of the most natural generalizations of the left-hand side of the GM condition (2.1), then the \gtrsim part fails for $p>2$ and $q \geq p$.

2.3 Proof of the Hardy-Littlewood theorem for $G M^{c}$ sequences

For a sequence $\left\{a_{m n}\right\}_{m, n=1}^{\infty}$, we define

$$
A_{m n}:=\max _{(k, l) \in Q_{m, n}}\left|a_{k l}\right|:=\max _{(k, l) \in\left[2^{m}, 2^{m+1}\right] \times\left[2^{n}, 2^{n+1}\right]}\left|a_{k l}\right|
$$

Lemma 2.2. a) For any sequence $\left\{a_{k l}\right\}_{k, l=1}^{\infty} \in G M_{1}^{c}$, there exist $c, v>0$ such that for any (m, n) with $A_{m-1, n-1} \leq T A_{m, n}$ there exist a rectangle $Q_{m-1, n-1}^{\prime} \subset Q_{m-1, n-1}$ of size $2^{m-v} \times 2^{n-v}$ satisfying

$$
\left|\sum_{k, l \in Q_{m-1, n-1}^{\prime}} a_{k l}\right|>c 2^{m+n} A_{m n}
$$

where c and v depend only on C and T.
b) For any sequence $\left\{a_{k l}\right\}_{k, l=1}^{\infty} \in G M_{2}^{c}$, there exist $c, v>0$ such that for any (m, n) with $A_{m+1, n-1} \leq T A_{m, n}$ there exist a rectangle $Q_{m+1, n-1}^{\prime} \subset Q_{m+1, n-1}$ of size $2^{m-v} \times 2^{n-v}$ satisfying

$$
\left|\sum_{k, l \in Q_{m+1, n-1}^{\prime}} a_{k l}\right|>c 2^{m+n} A_{m n}
$$

where c and v depend only on C and T.
Proof. Note that (2.5) and (2.9) imply that

$$
\begin{equation*}
\sum_{m=k}^{2 k}\left|\Delta^{10} a_{m t}\right|+\sum_{n=l}^{2 l}\left|\Delta^{01} a_{s n}\right| \leq C\left|a_{k, l}\right| \tag{2.11}
\end{equation*}
$$

for any $k, l \in \mathbb{N}$ and $(s, t) \in[k, 2 k] \times[l, 2 l]$. Similarly, (2.5) along with (2.10) imply (2.11) with $a_{2 k, l}$ instead of $a_{k, l}$ on the right-hand side. In particular, (2.11) yields that

$$
\left|a_{s, t}\right|-\left|a_{k, l}\right|=\left|a_{s, t}\right|-\left|a_{k, t}\right|+\left|a_{k, t}\right|-\left|a_{2 k, l}\right| \leq C\left|a_{k, l}\right|,
$$

so

$$
\left|a_{s, t}\right| \leq(C+1)\left|a_{k, l}\right| \leq(C+1)^{2}\left|a_{s^{\prime} t^{\prime}}\right|
$$

for any $\left(s^{\prime}, t^{\prime}\right) \in[0.5 k, k] \times[0.5 l, l]$. Considering $k=2^{m}, l=2^{n}$, we get for any $(s, t) \in$ $Q_{m-1, n-1}$

$$
\begin{equation*}
\left|a_{s t}\right| \geq(C+1)^{-2} A_{m n}=: \alpha A_{m n} . \tag{2.12}
\end{equation*}
$$

Under conditions (2.5) and (2.10), the same arguments give

$$
\left|a_{s, t}\right|-\left|a_{2 k, l}\right|=\left|a_{s, t}\right|-\left|a_{2 k, t}\right|+\left|a_{2 k, t}\right|-\left|a_{2 k, l}\right| \leq C\left|a_{2 k, l}\right|,
$$

and

$$
\left|a_{s, t}\right| \leq(C+1)\left|a_{2 k, l}\right| \leq(C+1)^{2}\left|a_{s^{\prime} t^{\prime}}\right|
$$

for any $\left(s^{\prime}, t^{\prime}\right) \in[2 k, 4 k] \times[0.5 l, l]$. Once more, considering $k=2^{m}, l=2^{n}$, we get (2.12) for $(s, t) \in Q_{m+1, n-1}$ instead of $Q_{m-1, n-1}$.

Thus, any sequence $\left\{a_{k l}\right\} \in G M_{1}^{c}$ satisfies $\left|a_{k l}\right| \leq(C+1)\left|a_{k^{\prime} l^{\prime}}\right|$ for $\left(k^{\prime}, l^{\prime}\right) \in[0.5 k, k] \times$ $[0.5 l, l]$ as well as any $\left\{a_{k l}\right\} \in G M_{2}^{c}$ does for $\left(k^{\prime}, l^{\prime}\right) \in[k, 2 k] \times[0.5 l, l]$.

In Lemma 2.2a), due to condition (2.11) and inequality (2.12), for any (k, l) $\in Q_{m-1, n-1}$, each one of the sequences $a_{2^{m-1}, l}, a_{2^{m-1}+1, l}, \ldots, a_{2^{m}, l}$ and $a_{k, 2^{n-1}}, a_{k, 2^{n-1}+1}, \ldots, a_{k, 2^{n}}$ can have at most

$$
\begin{equation*}
\frac{C_{(k, l) \in Q_{m-1, n-1}}\left|a_{k l}\right|}{2 \alpha A_{m n}}=\frac{C A_{m-1, n-1}}{2 \alpha A_{m n}} \leq \frac{C T}{2 \alpha}=: b \tag{2.13}
\end{equation*}
$$

changes of sign.
The same holds for $Q_{m+1, n-1}$ in place of $Q_{m-1, n-1}$ in Lemma 2.2b).
Focus now on Lemma 2.2a). Consider the rectangle $R:=Q_{m-1, n-1}=\left[2^{m-1}, 2^{m}\right] \times$ $\left[2^{n-1}, 2^{n}\right]$ on the plane and draw all the segments $[(k, l),(k+1, l)]$ such that $a_{k, l-1}$ and $a_{k, l}$ have different signs and all the segments $[(k, l),(k, l+1)]$ such that $a_{k-1, l}$ and $a_{k, l}$ have different signs (call them marked segments). Then our rectangle R is divided by the marked segments into several connected parts corresponding to the terms of $\left\{a_{k l}\right\}$ of the same sign. The interior part of the union of their boundaries has at most $b 2^{n-1}$ vertical marked segments and at most $b 2^{m-1}$ horizontal ones. Take a positive integer u such that

$$
\begin{equation*}
2^{u}>8 b \tau \tag{2.14}
\end{equation*}
$$

where $\tau:=4 \sqrt{T(C+1)^{2}+1}$. Divide R into $2^{2 u}$ equal rectangles of size $2^{m-1-u} \times 2^{n-1+u}$ and consider a half of them in a checkerboard pattern. Suppose that there is no rectangle among them containing at most $2^{n-1-u} / \tau$ vertical marked segments and at most $2^{m-1-u} / \tau$ horizontal ones. Then we must have

$$
2^{2 u-1} \leq \frac{b 2^{m-1} \tau}{2^{m-1-u}}+\frac{b 2^{n-1} \tau}{2^{n-1-u}}=2^{u+2} b \tau \leq 4 b \tau 2^{u},
$$

which contradicts (2.14). So, there is a rectangle $r=\left[\alpha_{1}, \alpha_{2}\right] \times\left[\beta_{1}, \beta_{2}\right]$ of size $2^{m-1-u} \times$ 2^{n-1-u} with at most $2^{n-1-u} / \tau$ vertical marked segments and at most $2^{m-1-u} / \tau$ horizontal ones inside it. Consider the parts corresponding to the terms of $\left\{a_{k l}\right\}$ of the same sign inside r. Call the parts whose boundaries intersect the boundary of r by A-parts, the other ones, by B-parts. Note that there is no marked segment of an A-part inside the rectangle $r^{\prime}:=\left[\frac{3 \alpha_{1}+\alpha_{2}}{4}, \frac{\alpha_{1}+3 \alpha_{2}}{4}\right] \times\left[\frac{3 \beta_{1}+\beta_{2}}{4}, \frac{\beta_{1}+3 \beta_{2}}{4}\right]$. Indeed, otherwise there would exist a broken line of marked segments with either at least $0.25\left(\alpha_{2}-\alpha_{1}\right)=2^{m-3-u}$ horizontal segments or at least $0.25\left(\beta_{2}-\beta_{1}\right)=2^{n-3-u}$ vertical ones. But this is impossible, since $\tau>4$. The area of all B-parts does not exceed $2^{m+n-2-2 u} / \tau^{2}$. Thus, there are at least $2^{m+n-4-2 u}\left(1-4 \tau^{-2}\right)$ terms of the same sign in r^{\prime}, so the absolute value of the sum of the terms $\left\{a_{k l}\right\}$ in r^{\prime} is at least

$$
2^{n+m-2 u-4}\left(1-\frac{4}{\tau^{2}}-\frac{4}{\tau^{2}} T(C+1)^{2}\right) \alpha A_{m n}>2^{n+m-2 u-5} \alpha A_{m n}
$$

which concludes the proof of Lemma 2.2a) with $c:=2^{-2 u-5} \alpha$ and $v:=u+1$.
A similar argument is valid for $Q_{m+1, n-1}$ in Lemma 2.2 b), which completes the proof.

Remark 2.3. In the proof of Lemma 2.2 , for $G M_{1}^{c}$ class we only used its one-dimensional $G M$ properties (2.11), and for $G M_{2}^{c}$, the corresponding nonsymmetric relations (namely, (2.11) with $a_{2 k, l}$ in place of $\left.a_{k, l}\right)$.

Remark 2.4. The claim of Lemma 2.2a) is no longer true if we substitute the $G M_{1}^{c}$ condition (2.9) for

$$
\begin{equation*}
\sum_{m=k}^{2 k} \sum_{n=l}^{2 l}\left|\Delta^{11} a_{m n}\right| \leq C\left|a_{k l}\right| \tag{2.15}
\end{equation*}
$$

Proof. Indeed, consider the sequence

$$
a_{m n}:=\frac{(-1)^{m}}{m} f_{m}(n)
$$

where $f_{m}(n)$ we define as follows:

$$
f_{m}(n)= \begin{cases}2^{-m+1}, & \log _{2} n<\frac{m(m+1)}{2}, \\ 2^{-m-t}, & \frac{(m+t)^{2}+m-t}{2} \leq \log _{2} n<\frac{(m+t+1)^{2}+m-t-1}{2}, \quad t \in \mathbb{Z}_{+}\end{cases}
$$

For such a sequence, condition (2.5) obviously holds. Consider a rectangle $S_{m n}$ of the form $[m, 2 m) \times[n, 2 n)$. The only nonzero $\Delta^{11} a_{k l}$ in this rectangle are $\Delta^{11} a_{m^{\prime}-1, n^{\prime}}$ and $\Delta^{11} a_{m^{\prime} n^{\prime}}$, where $n^{\prime} \in[n, 2 n):\left\lfloor\log _{2}\left(n^{\prime}\right)\right\rfloor=\left\lfloor\log _{2}\left(n^{\prime}-1\right)\right\rfloor+1$, i.e. n^{\prime} is a power of two, and

$$
m^{\prime}:=\min \left\{m \in \mathbb{N}: m=\log _{2} n^{\prime}-\frac{k(k+1)}{2}, k \in \mathbb{Z}_{+}\right\}
$$

Note that $\left|a_{k l}\right| \leq\left|a_{m n}\right|$ for $k \geq m, l \geq n$, so $\left|\Delta^{11} a_{m^{\prime} n^{\prime}}\right| \leq\left|a_{m^{\prime} n^{\prime}}\right|+\left|a_{m^{\prime}+1, n^{\prime}}\right| \leq 2\left|a_{m n}\right|$, which yields condition (2.15) with $C=2$.

Assume that the assertion of Lemma 2.2 holds. Then there must exist a constant c such that for at least $c m n$ squares $[k, k+2) \times[l, l+2)$ in any $S_{m n}$ there holds

$$
\begin{equation*}
\left|a_{k l}+a_{k, l+1}+a_{k+1, l}+a_{k+1, l+1}\right| \geq c\left|a_{k l}\right| \tag{2.16}
\end{equation*}
$$

Consider a rectangle $S_{m n}$ with

$$
\frac{t(t+1)}{2}+2 m \leq \log _{2} n \leq \frac{(t+1)(t+2)}{2}-2,
$$

where $t>4 m$ is a positive integer. For any $a_{k l}$ in $S_{m n}$, we have

$$
a_{k l}=2^{-t-1} \frac{(-1)^{k}}{k},
$$

whence for any 2×2 square $[k, k+2) \times[l, l+2) \subset S_{m n}$
$\left|a_{k l}+a_{k, l+1}+a_{k+1, l}+a_{k+1, l+1}\right|=2^{-t-1} \cdot 2\left(\frac{1}{k}-\frac{1}{k+1}\right)=\frac{2}{k+1}\left|a_{k l}\right|<\frac{2}{m}\left|a_{k l}\right|=o\left(\left|a_{k l}\right|\right)$, as $m \rightarrow \infty$, which leads to a contradiction.

Lemma 2.5. For a function $f \in L(-\pi, \pi)^{2}$, given the representation

$$
f(x, y)=\sum_{i, j=0}^{1} f^{i j}(x, y), \quad f^{i j}(-x, y)=(-1)^{i} f^{i j}(x, y), f^{i j}(x,-y)=(-1)^{j} f^{i j}(x, y),
$$

for any $p \in(1, \infty), q \in[1, \infty]$, we have

$$
\|f\|_{L_{w(p, q)}^{q}} \asymp \sum_{i, j=0}^{1}\left\|f^{i j}\right\|_{L_{w(p, q)}^{q}} .
$$

Proof. The \lesssim part is clear, so we have to prove the reverse.
We start with the case $q<\infty$. Noting that for any pair of functions g_{1}, g_{2} there always holds $\left|g_{1}\right|^{q}+\left|g_{2}\right|^{q} \lesssim\left|g_{1}+g_{2}\right|^{q}+\left|g_{1}-g_{2}\right|^{q}$ and recalling that the weight is an even in each variable function, we obtain

$$
\begin{aligned}
\left\|f^{i 0}(x, \cdot)\right\|_{L_{w(p, q)}^{q}}^{q}+\left\|f^{i 1}(x, \cdot)\right\|_{L_{w(p, q)}^{q}}^{q} & \lesssim\left\|\left(f^{i 0}+f^{i 1}\right)(x, \cdot)\right\|_{L_{w(p, q)}^{q}}^{q}+\left\|\left(f^{i 0}-f^{i 1}\right)(x, \cdot)\right\|_{L_{w(p, q)}^{q}}^{q} \\
& \asymp\left\|\left(f^{i 0}+f^{i 1}\right)(x, \cdot)\right\|_{L_{w(p, q)}^{q}}^{q}
\end{aligned}
$$

for $i=0,1$. Similarly,

$$
\begin{aligned}
\sum_{i, j=0}^{1}\left\|f^{i j}\right\|_{L_{w(p, q)}^{q}}^{q} & \lesssim\left\|f^{00}+f^{01}+f^{10}+f^{11}\right\|_{L_{w(p, q)}^{q}}^{q}+\left\|f^{00}+f^{01}-f^{10}-f^{11}\right\|_{L_{w(p, q)}^{q}}^{q} \\
& \asymp\left\|\sum_{i, j=0}^{1} f^{i j}\right\|_{L_{w(p, q)}^{q}}^{q}=\|f\|_{L_{w(p, q)}^{q}}^{q} .
\end{aligned}
$$

For $q=\infty$, the claim follows from the equalities

$$
4 f^{i j}(x, y) \equiv f(x, y)+(-1)^{i} f(-x, y)+(-1)^{j} f(x,-y)+(-1)^{i+j} f(-x,-y)
$$

Next we prove a two-dimensional analogue of [23, L. 2.2] (see also the one-dimensional result [66, Th. 2.4] for the Lorentz spaces). Note that similar multidimensional results for Lorentz spaces were obtained in [57] and [58].

Lemma 2.6. Let $\left\{a_{m n}^{i j}\right\}_{m, n=1}^{\infty}, i, j=0,1$, be the sequence of Fourier coefficients of $f \in$ $L(-\pi, \pi)^{2}$. Then for any $p \in(1, \infty), q \in[1, \infty]$, there holds

$$
\sum_{i, j=0}^{1}\left(\sum_{m, n=1}^{\infty}\left(\sup _{k \geq m, l \geq n} \frac{1}{k l}\left|\sum_{s=1}^{k} \sum_{t=1}^{l} a_{s t}\right|\right)^{q}(m n)^{\frac{q}{p^{\prime}}-1}\right)^{\frac{1}{q}} \lesssim\|f\|_{L_{w(p, q)}^{q}}
$$

Proof of Lemma 2.6. Note that if we prove the statement of the lemma for odd in each variable functions $f \in L(-\pi, \pi)^{2}$, then it will be true for any integrable f. Indeed, the relation for such functions implies the same for all functions that are either odd or even in each variable due to the boundedness of the Hilbert transform in the weighted Lebesgue spaces under our assumptions on weights (see e.g. [42]). The general case follows then by Lemma 2.5. Thus, we can assume that $a_{m n}^{i j}=0$ if $(i, j) \neq(0,0)$ and omit the upper indices of $a_{m n}^{00}$.

According to $[23,(2.4),(2.7)]$, for any $1<p<\infty, 1 \leq q \leq \infty$, and $m \in \mathbb{N}$, for

$$
I_{m}(x):=\frac{\cos \frac{x}{2}(1-\cos m x)}{m \sin \frac{x}{2}}+\frac{\sin m x}{m}
$$

there holds

$$
\left\|I_{m}(x)\right\|_{l_{p, q}} \lesssim m^{-\frac{1}{p}}
$$

Therefore, for any $1<p_{1}, p_{2}<\infty, 1<q \leq \infty$, and $m, n \in \mathbb{N}$, by Hölder's inequality

$$
\begin{align*}
\frac{1}{m n}\left|\sum_{k=1}^{m} \sum_{l=1}^{n} a_{k l}\right| & \leq \int_{0}^{\pi} \int_{0}^{\pi}\left|f(x, y) I_{m}(x) I_{n}(y)\right| d x d y \\
& \leq \int_{0}^{\pi}\left|I_{n}(y)\right|\left(\int_{0}^{\pi} x^{\frac{q}{p_{1}}-1}|f(x, y)|^{q} d x\right)^{\frac{1}{q}}\left(\int_{0}^{\pi} x^{\frac{q^{\prime}}{p_{1}^{\prime}}}\left|I_{m}(x)\right|^{q^{\prime}} d x\right)^{\frac{1}{q^{\prime}}} d y \\
& \lesssim m^{-\frac{1}{p_{1}^{\prime}}} \int_{0}^{\pi}\left|I_{n}(y)\right|\left(\int_{0}^{\pi} x^{\frac{q}{p_{1}}-1}|f(x, y)|^{q} d x\right)^{\frac{1}{q}} d y \\
& \leq m^{-\frac{1}{p_{1}^{\prime}}}\left(\int_{0}^{\pi} \int_{0}^{\pi} x^{\frac{q}{p_{1}}-1} y^{\frac{q}{p_{2}}-1}|f(x, y)|^{q} d x d y\right)^{\frac{1}{q}}\left(\int_{0}^{\pi} y^{\frac{q^{\prime}}{p_{2}^{\prime}}-1}\left|I_{n}(y)\right| d y\right)^{\frac{1}{q^{\prime}}} \\
& \lesssim m^{-\frac{1}{p_{1}^{\prime}}} n^{-\frac{1}{p_{2}^{\prime}}}\left(\int_{0}^{\pi} \int_{0}^{\pi} x^{\frac{q}{p_{1}}-1} y^{\frac{q}{p_{2}}-1}|f(x, y)|^{q} d x d y\right)^{\frac{1}{q}} \\
& =: m^{-\frac{1}{p_{1}^{\prime}}} n^{-\frac{1}{p_{2}^{\prime}}}\|f\|_{L_{w\left(\left(p_{1}, p_{2}\right), q\right)}^{q}} \tag{2.17}
\end{align*}
$$

Similarly, if $q=1$,

$$
\begin{aligned}
\frac{1}{m n}\left|\sum_{k=1}^{m} \sum_{l=1}^{n} a_{k l}\right| & \leq \int_{0}^{\pi} \int_{0}^{\pi}\left|f(x, y) I_{m}(x) I_{n}(y)\right| d x d y \\
& \leq \sup _{x \in[0, \pi]} x^{\frac{1}{p_{1}^{\prime}}}\left|I_{m}(x)\right| \cdot \sup _{y \in[0, \pi]} y^{\frac{1}{p_{2}^{\prime}}}\left|I_{n}(y)\right| \cdot \int_{0}^{\pi} \int_{0}^{\pi} x^{\frac{1}{p_{1}}-1} y^{\frac{1}{p_{2}}-1}|f(x, y)| d x d y \\
& \lesssim m^{-\frac{1}{p_{1}^{\prime}}} n^{-\frac{1}{p_{2}^{\prime}}}\|f\|_{L_{w\left(\left(p_{1}, p_{2}\right), 1\right)}^{1}}
\end{aligned}
$$

Thus, for any $1<p_{1}, p_{2}<\infty, 1 \leq q \leq \infty$, and $m \in \mathbb{N}$, we obtain

$$
\begin{equation*}
m^{\frac{1}{p_{1}^{1}}} \sup _{n \in \mathbb{N}} n^{\frac{1}{p_{2}^{\prime}}} \sup _{k \geq m, l \geq n} \frac{1}{k l}\left|\sum_{s=1}^{k} \sum_{t=1}^{l} a_{s t}\right| \leq C\|f\|_{L_{w\left(\left(p_{1}, p_{2}\right), q\right)}^{q}}, \tag{2.18}
\end{equation*}
$$

with the constant C independent of m.
Now, in order to prove the desired inequality, we will invoke interpolation theory. Recall that the norm of a sequence $\mathbf{c}:=\left\{c_{k}\right\}_{k=1}^{\infty}$ in the discrete Lorentz space $l_{p, q}$, for $p \in(1, \infty)$ and $q \in(0, \infty]$, is defined as follows

$$
\|\mathbf{c}\|_{l_{p, q}}:=\left\{\begin{array}{l}
\left(\sum_{k=1}^{\infty} k^{\frac{q}{p}-1}\left|c_{k}^{*}\right|^{\frac{1}{q}}\right)^{\frac{1}{q}}, \quad \text { if } q<\infty, \\
\sup _{k \geq 1} k^{\frac{1}{p}}\left|c_{k}^{*}\right|, \quad \text { if } q=\infty,
\end{array}\right.
$$

where $\left\{c_{k}^{*}\right\}$ stands for the decreasing rearrangement of \mathbf{c}. It follows from [8, Th. 5.3.1] that for $\theta \in(0,1)$ and $q \in(0, \infty]$, for the discrete Lorentz spaces $l_{p_{1}, \infty}$ and $l_{p_{2}, \infty}, 0<p_{1}<$ $p_{2} \leq \infty$, with $\theta / p_{1}+(1-\theta) / p_{2}=1 / p$, we have

$$
\begin{equation*}
\left(l_{p_{1}, \infty}, l_{p_{2}, \infty}\right)_{\theta, q}=l_{p, q} . \tag{2.19}
\end{equation*}
$$

For the Lebesgue spaces $L_{w\left(\left(p_{11}, p_{21}\right), q\right)}^{q}$ and $L_{w\left(\left(p_{21}, p_{22}\right), q\right)}^{q}, q \in(0, \infty]$, (see (2.17)), with

$$
\frac{\theta}{p_{11}}+\frac{1-\theta}{p_{12}}=\frac{1}{p_{1}}, \quad \frac{\theta}{p_{21}}+\frac{1-\theta}{p_{22}}=\frac{1}{p_{2}}
$$

[8, Th. 5.4.1] gives

$$
\begin{equation*}
\left(L_{w\left(\left(p_{11}, p_{21}\right), q\right)}^{q} L_{w\left(\left(p_{12}, p_{22}\right), q\right)}^{q}\right)_{\theta, q}=L_{w\left(\left(p_{1}, p_{2}\right), q\right)}^{q} . \tag{2.20}
\end{equation*}
$$

For any fixed $m_{0} \in \mathbb{N}$, in light of the monotonicity of $\sup _{k>m_{0}, l>n} \frac{1}{k l}\left|\sum_{s=1}^{k} \sum_{t=1}^{l} a_{s t}\right|$ in n, (2.18) is equivalent to

$$
\begin{equation*}
m_{0}^{\frac{1}{p_{1}^{\prime}}}\left\|\left\{\sup _{k \geq m_{0}, l \geq n} \frac{1}{k l}\left|\sum_{s=1}^{k} \sum_{t=1}^{l} a_{s t}\right|\right\}_{n=1}^{\infty}\right\|_{l_{p_{2}^{\prime}, \infty}} \leq C\|f\|_{L_{w\left(\left(p_{1}, p_{2}\right), q\right)}^{q}} \tag{2.21}
\end{equation*}
$$

Fix now $p_{1}, p_{2} \in(1, \infty)$ and $q \in[1, \infty]$. Take $\theta \in(0,1)$ and $p_{11}<p_{12}, p_{21}<p_{22}$ such that $\theta / p_{11}+(1-\theta) / p_{12}=1 / p_{1}$ and $\theta / p_{21}+(1-\theta) / p_{22}=1 / p_{2}$. Note that, for any fixed m_{0}, the operator

$$
T_{m_{0}} f=\left\{\sup _{k \geq m_{0}, l \geq n} \frac{1}{k l}\left|\sum_{s=1}^{k} \sum_{t=1}^{l} a_{s t}\right|\right\}_{n=1}^{\infty}
$$

is sublinear and that due to (2.21)

$$
T_{m_{0}}: L_{w\left(\left(p_{1}, p_{21}\right), q\right)}^{q} \rightarrow l_{p_{21}^{\prime}, \infty} \quad \text { and } \quad T_{m_{0}}: L_{w\left(\left(p_{1}, p_{22}\right), q\right)}^{q} \rightarrow l_{p_{22}^{\prime}, \infty},
$$

where the involved constants do not depend on m_{0}. Then it follows from [52, Th. 6], (2.19), and (2.20) that

$$
T_{m_{0}}: L_{w\left(\left(p_{1}, p_{2}\right), q\right)}^{q}=\left(L_{w\left(\left(p_{1}, p_{21}\right), q\right)}^{q}, L_{w\left(\left(p_{1}, p_{22}\right), q\right)}^{q}\right)_{\theta, q} \rightarrow\left(l_{p_{21}^{\prime}, \infty}, l_{p_{22}^{\prime}, \infty}\right)_{\theta, q}=l_{p_{2}^{\prime}, q},
$$

so we arrive at

$$
\begin{equation*}
m^{\frac{1}{p_{1}}}\left\|\left\{\sup _{k \geq m, l \geq n} \frac{1}{k l}\left|\sum_{s=1}^{k} \sum_{t=1}^{l} a_{s t}\right|\right\}_{n=1}^{\infty}\right\|_{l_{p_{2}, q}} \lesssim\|f\|_{\left.L_{w\left(\left(p_{1}, p_{2}\right), q\right)}^{q}\right)}, \tag{2.22}
\end{equation*}
$$

for any m. Now we note that

$$
\left\|\left\{\sup _{k \geq m, l \geq n} \frac{1}{k l}\left|\sum_{s=1}^{k} \sum_{t=1}^{l} a_{s t}\right|\right\}_{n=1}^{\infty}\right\|_{l_{p_{2}, q}}=\left(\sum_{n=1}^{\infty} n^{\frac{q}{p_{2}}-1}\left(\sup _{k \geq m, l \geq n} \frac{1}{k l}\left|\sum_{s=1}^{k} \sum_{t=1}^{l} a_{s t}\right|\right)^{q}\right)^{1 / q}
$$

is decreasing in m for any $p_{2} \in(1, \infty)$ and that the operator

$$
T f=\left\{\left(\sum_{n=1}^{\infty} n^{\frac{q}{p_{2}}-1}\left(\sup _{k \geq m, l \geq n} \frac{1}{k l}\left|\sum_{s=1}^{k} \sum_{t=1}^{l} a_{s t}\right|\right)^{q}\right)^{1 / q}\right\}_{m=1}^{\infty}
$$

is sublinear. Since according to (2.22) we have

$$
T: L_{w\left(\left(p_{11}, p_{2}\right), q\right)}^{q} \rightarrow l_{p_{11}^{\prime}, \infty} \quad \text { and } \quad T: L_{w\left(\left(p_{12}, p_{2}\right), q\right)}^{q} \rightarrow l_{p_{12}^{\prime}, q},
$$

we can once again apply [52, Th. 6] and obtain

$$
T: L_{w\left(\left(p_{1}, p_{2}\right), q\right)}^{q}=\left(L_{w\left(\left(p_{11}, p_{2}\right), q\right)}^{q}, L_{w\left(\left(p_{12}, p_{2}\right), q\right)}^{q}\right)_{\theta, q} \rightarrow\left(l_{p_{11}^{\prime}, \infty}, l_{p_{12}^{\prime}, \infty}\right)_{\theta, q}=l_{p_{1}^{\prime}, q} .
$$

The latter means that

$$
\left\|\left\{\left(\sum_{n=1}^{\infty} n^{\frac{q}{p_{2}}-1}\left(\sup _{k \geq m, l \geq n} \frac{1}{k l}\left|\sum_{s=1}^{k} \sum_{t=1}^{l} a_{s t}\right|\right)^{q}\right)^{\frac{1}{q}}\right\}_{m=1}^{\infty}\right\|_{l_{p_{1}, q}} \lesssim\|f\|_{L_{w\left(\left(p_{1}, p_{2}\right), q\right)}^{q}},
$$

whence the claim follows by putting $p_{1}=p_{2}=p$.
Proof of Theorem 2.1. In light of Lemma 2.5 it suffices to prove the theorem only for either odd or even in each variable functions, omitting therefore the upper indices of $a_{m n}$.

We start with the part a). Due to Lemma 2.6, for $q<\infty$, there holds

$$
\begin{align*}
\|f\|_{L_{w(p, q)}^{q}}^{q} & \gtrsim \sum_{m, n=1}^{\infty}\left(\sup _{k \geq m, l \geq n} \frac{1}{k l}\left|\sum_{s=1}^{k} \sum_{t=1}^{l} a_{s t}\right|\right)^{q}(m n)^{\frac{q}{p}-1} \\
& \asymp \sum_{m, n=0}^{\infty} 2^{(m+n) \frac{q}{p^{\prime}}}\left(\sup _{k \geq 2^{m}, l \geq 2^{n}} \frac{1}{k l}\left|\sum_{i=1}^{k} \sum_{j=1}^{l} a_{i j}\right|\right)^{q}=: \sum_{m, n=0}^{\infty} P_{m n} . \tag{2.23}
\end{align*}
$$

Denote

$$
W_{m n}:=\sum_{k=2^{m}}^{2^{m+1}-1} \sum_{l=2^{n}}^{2^{n+1}-1}\left|a_{k l}\right|^{q}(k l)^{\frac{q}{p^{\prime}}-1} .
$$

First, we consider $G M_{1}^{c}$ sequences. Let us fix some $T>1$. We call a pair (m, n) good (we write $(m, n) \in G$), if either $m n=0$ or

$$
A_{m-1, n-1} \leq T A_{m n} .
$$

We have

$$
\begin{aligned}
\sum_{k, l=1}^{\infty}\left|a_{k l}\right|^{q}(k l)^{\frac{q}{p^{\prime}}-1} & =\sum_{m, n=0}^{\infty} W_{m n} \\
& \leq \sum_{m=0}^{\infty} W_{m 0}+\sum_{n=0}^{\infty} W_{0 n}+\sum_{(m, n) \in G \cap \mathbb{N}^{2}} W_{m n}+\sum_{(m, n) \in G} \sum_{(k, l) \in B_{m n}} W_{k l} \\
& =: J_{1}+J_{2}+J_{3}+J_{4},
\end{aligned}
$$

where $B_{m n},(m, n) \in G$, stands for the set of all pairs $(k, l) \notin G$ such that $k=m+t, l=$ $n+t$ for some $t \in \mathbb{N}$.

According to the one-dimentional Hardy-Littlewood theorem for $G M$ sequences [23, Th. 1.2], we obtain

$$
\begin{align*}
J_{1}=\sum_{m=0}^{\infty} W_{m 0}=\sum_{k=1}^{\infty}\left|a_{k 1}\right|^{q} k^{\frac{q}{p}-1} & \lesssim\|g\|_{L_{w(p, q)}^{q}}^{q}=\int_{-\pi}^{\pi} x^{\frac{q}{p}-1}\left|\int_{-\pi}^{\pi} f(x, y) \sin y d y\right|^{q} d x \\
& \leq \int_{-\pi}^{\pi} x^{\frac{q}{p}-1} \int_{-\pi}^{\pi}|f(x, y)|^{q}|y|^{q} d y d x \lesssim\|f\|_{L_{w(p, q)}^{q}}^{q} \tag{2.24}
\end{align*}
$$

where $g(x):=\int_{-\pi}^{\pi} f(x, y) \sin y d y$, since $|y|^{q} \lesssim|y|^{q / p-1}$ in $[-\pi, \pi]$. A similar estimate is valid for J_{2}.

Consider a pair $(m, n) \in G \cap \mathbb{N}^{2}$. Denote the rectangles we constructed in Lemma 2.2a) by $\left[s_{m n}^{1}, s_{m n}^{2}\right] \times\left[t_{m n}^{1}, t_{m n}^{2}\right]$, so that applying this lemma we have

$$
\begin{aligned}
& P_{m-1, n-1}=2^{(m+n-2) \frac{q}{p^{\prime}}}\left(\sup _{k \geq 2^{m-1}, l \geq 2^{n-1}} \frac{1}{k l}\left|\sum_{i=1}^{k} \sum_{j=1}^{l} a_{i j}\right|\right)^{q} \\
& \gtrsim 2^{(m+n) \frac{q}{p^{-}}-(m+n) q}\left(\left|\sum_{i=1}^{s_{m n}^{1}-1} \sum_{j=1}^{t_{m n}^{1}-1} a_{i j}\right|^{q}+\left|\sum_{i=1}^{s_{m n}^{1}-1} \sum_{j=1}^{t_{m n}^{2}} a_{i j}\right|^{q}+\left|\sum_{i=1}^{s_{m n}^{2} \sum_{j=1}^{1} \sum_{m n}^{1}} a_{i j}\right|^{q}+\mid \sum_{i=1}^{s_{m n}^{2} t_{m n}^{2}} \sum_{j=1} a^{q}\right) \\
& \gtrsim 2^{(m+n) \frac{q}{p^{-}}-(m+n) q}\left|\sum_{i=s_{m n}^{1}}^{s_{m n}^{2}} \sum_{j=t_{m n}^{1}}^{t_{m n}^{2}} a_{i j}\right|^{q} \gtrsim 2^{(m+n) \frac{q}{p^{\prime}}} A_{m n}^{q} \gtrsim W_{m n} .
\end{aligned}
$$

Here we used the inequality

$$
|x+y+z+t|+|x+y|+|x+z|+|x| \geq|z+t|+|z| \geq|t|
$$

which is valid for any $x, y, z, t \in \mathbb{C}$.
Hence, using (2.23), we obtain

$$
\begin{equation*}
J_{3}=\sum_{(m, n) \in G \cap \mathbb{N}^{2}} W_{m n} \lesssim \sum_{(m, n) \in G \cap \mathbb{N}^{2}} P_{m-1, n-1} \leq\|f\|_{L_{w(p, q)}^{q}}^{q} \tag{2.25}
\end{equation*}
$$

Finally, combining (2.24) with the analogous estimate for J_{2} and with (2.25), we derive

$$
J_{4} \leq \sum_{(m, n) \in G} W_{m n} \sum_{j=1}^{\infty} T^{-j} \leq \frac{1}{1-T^{-1}}\left(J_{1}+J_{2}+J_{3}\right) \lesssim\|f\|_{L_{w(p, q)}^{q}}^{q}
$$

which concludes the proof of the first part for the case of $G M_{1}^{c}$.
A simplified version of the argument above yields the result for $q=\infty$.
If we replace $G M_{1}^{c}$ by $G M_{2}^{c}$, i.e. (2.9) by (2.10), we change the definition of a good pair of numbers to the following one: we call a pair (m, n) good, if either $m n=0$ or $A_{m+1, n-1} \leq T A_{m n}$. The rest of the proof is the same in light of Lemma 2.2 b) with the only changes: now $B_{m n},(m, n) \in G$, stands for the set of all pairs $(k, l) \notin G$ such that $k=m-t, l=n+t$ for some $t \in \mathbb{N}$ and $P_{m-1, n-1}$ in (2.25) becomes $P_{m+1, n-1}$.

Turn now to the part b). Note that if $\left\{a_{m n}\right\} \in G M_{1}^{c} \cup G M_{2}^{c}$ and $\sum_{m, n=1}^{\infty}\left|a_{m n}\right|^{q}(m n)^{\frac{q}{p^{\prime}}-1}$ $<\infty$, then we have $\sum_{k=1}^{\infty} \sum_{l=1}^{\infty}\left|\Delta^{11} a_{k l}\right|<\infty$, which implies that the corresponding trigonometric series converges in the Pringsheim sense (that is, by rectangles) everywhere on $(0,2 \pi)^{2}$ and is the Fourier series of its sum (see [20, L. 4]). Indeed, under condition (2.9) we have by (2.12) and Hölder's inequality

$$
\begin{aligned}
\sum_{k, l=1}^{\infty}\left|\Delta^{11} a_{k l}\right| & \lesssim \sum_{k=0}^{\infty}\left|a_{2^{k}, 2^{k}}\right| \lesssim \sum_{k=0}^{\infty}\left|a_{2^{k}, 2^{k}}\right| \sum_{m=2^{k-1}}^{2^{k}} \sum_{n=2^{k-1}}^{2^{k}}(m n)^{-1} \\
& \lesssim \sum_{m, n=1}^{\infty}\left|a_{m n}\right|(m n)^{-1}=\sum_{m, n=1}^{\infty}\left|a_{m n}\right|(m n)^{\frac{1}{p^{\prime}}-\frac{1}{q}}(m n)^{-\frac{1}{p^{\prime}}-\frac{1}{q^{\prime}}} \\
& \lesssim\left(\sum_{m, n=1}^{\infty}\left|a_{m n}\right|^{q}(m n)^{\frac{q}{p^{\prime}}-1}\right)^{\frac{1}{q}}\left(\sum_{m, n=1}^{\infty}(m n)^{-\frac{q^{\prime}}{p^{\prime}}-1}\right)^{\frac{1}{q^{\prime}}}<\infty
\end{aligned}
$$

and similarly under (2.10),

$$
\begin{aligned}
\sum_{k=1}^{\infty} \sum_{l=1}^{\infty}\left|\Delta^{11} a_{k l}\right| \lesssim \sum_{k=0}^{\infty}\left|a_{2^{k+1}, 2^{k}}\right| & \lesssim \sum_{k=0}^{\infty}\left|a_{2^{k+1}, 2^{k}}\right| \sum_{m=2^{k+1}}^{2^{k+2}} \sum_{n=2^{k-1}}^{2^{k}}(m n)^{-1} \\
& \lesssim \sum_{m, n=1}^{\infty}\left|a_{m n}\right|(m n)^{-1}<\infty
\end{aligned}
$$

We will provide the proof only for the $\operatorname{system}\{\sin m x, \sin n y\}$, the other cases will follow then from boundedness of Hilbert transform in the weighted Lebesgue spaces.

For $(x, y) \in\left(\frac{\pi}{m+1}, \frac{\pi}{m}\right] \times\left(\frac{\pi}{n+1}, \frac{\pi}{n}\right]$, we have

$$
\begin{aligned}
|f(x, y)| & =\left|\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} a_{k l} \sin k x \sin l y\right| \leq x y \sum_{k=1}^{m} \sum_{l=1}^{n} k l\left|a_{k l}\right| \\
& +x \sum_{k=1}^{m} k \sum_{l=n}^{\infty}\left|a_{k l}-a_{k, l+1}\right|\left|\tilde{D}_{l}(y)-\tilde{D}_{n}(y)\right| \\
& +y \sum_{l=1}^{n} l \sum_{k=m}^{\infty}\left|a_{k l}-a_{k+1, l}\right|\left|\tilde{D}_{k}(x)-\tilde{D}_{m}(x)\right| \\
& +\sum_{k=m}^{\infty} \sum_{l=n}^{\infty}\left|\Delta^{11} a_{k l}\right| \cdot\left|\left(\tilde{D}_{k}(x)-\tilde{D}_{m}(x)\right)\left(\tilde{D}_{l}(y)-\tilde{D}_{n}(y)\right)\right| \\
& \lesssim \frac{1}{m n} \sum_{k=1}^{m} \sum_{l=1}^{n} k l\left|a_{k l}\right|+\frac{n}{m} \sum_{k=1}^{m} k \sum_{l=n}^{\infty}\left|a_{k l}-a_{k, l+1}\right| \\
& +\frac{m}{n} \sum_{l=1}^{n} l \sum_{k=m}^{\infty}\left|a_{k l}-a_{k+1, l}\right|+m n \sum_{k=m}^{\infty} \sum_{l=n}^{\infty}\left|\Delta^{11} a_{k l}\right| .
\end{aligned}
$$

Applying condition (2.9), we derive

$$
\begin{aligned}
|f(x, y)| & \lesssim \frac{1}{m n} \sum_{k=1}^{m} \sum_{l=1}^{n} k l\left|a_{k l}\right|+\frac{n}{m} \sum_{k=1}^{m} k \sum_{t=0}^{\infty}\left|a_{k, 2^{t} n}\right|+\frac{m}{n} \sum_{l=1}^{n} l \sum_{t=0}^{\infty}\left|a_{2^{t} m, l}\right|+m n \sum_{t=0}^{\infty}\left|a_{2^{t} m, 2^{t} n}\right| \\
& \lesssim \frac{1}{m n} \sum_{k=1}^{m} \sum_{l=1}^{n} k l\left|a_{k l}\right|+\frac{n}{m} \sum_{k=1}^{m} k \sum_{l=\lceil n / 2\rceil}^{\infty} \frac{\left|a_{k l}\right|}{l} \\
& +\frac{m}{n} \sum_{l=1}^{n} l \sum_{k=\lceil m / 2\rceil}^{\infty} \frac{\left|a_{k l}\right|}{k}+m n \sum_{k=\lceil m / 2\rceil}^{\infty} \sum_{l=\lceil n / 2\rceil}^{\infty} \frac{\left|a_{k l}\right|}{k l} .
\end{aligned}
$$

In turn, (2.10) yields

$$
\begin{aligned}
|f(x, y)| & \lesssim \frac{1}{m n} \sum_{k=1}^{m} \sum_{l=1}^{n} k l\left|a_{k l}\right|+\frac{n}{m} \sum_{k=1}^{m} k \sum_{t=0}^{\infty}\left|a_{k, 2^{t} n}\right| \\
& +\frac{m}{n} \sum_{l=1}^{n} l \sum_{t=0}^{\infty}\left|a_{2^{t+1} m, l}\right|+m n \sum_{t=0}^{\infty}\left|a_{2^{t+1} m, 2^{t} n}\right| \\
& \lesssim \frac{1}{m n} \sum_{k=1}^{m} \sum_{l=1}^{n} k l\left|a_{k l}\right|+\frac{n}{m} \sum_{k=1}^{m} k \sum_{l=\lceil n / 2\rceil}^{\infty} \frac{\left|a_{k l}\right|}{l} \\
& +\frac{m}{n} \sum_{l=1}^{n} l \sum_{k=2 m}^{\infty} \frac{\left|a_{k l}\right|}{k}+m n \sum_{k=2 m}^{\infty} \sum_{l=\lceil n / 2\rceil}^{\infty} \frac{\left|a_{k l}\right|}{k l} .
\end{aligned}
$$

Hence, in both cases we get

$$
\begin{align*}
|f(x, y)| & \lesssim \frac{1}{m n} \sum_{k=1}^{m} \sum_{l=1}^{n} k l\left|a_{k l}\right|+\frac{n}{m} \sum_{k=1}^{m} k \sum_{l=\lceil n / 2\rceil}^{\infty} \frac{\left|a_{k l}\right|}{l} \\
& +\frac{m}{n} \sum_{l=1}^{n} l \sum_{k=\lceil m / 2\rceil}^{\infty} \frac{\left|a_{k k}\right|}{k}+m n \sum_{k=\lceil m / 2\rceil} \sum_{l=\lceil n / 2\rceil}^{\infty} \frac{\left|a_{k l}\right|}{k l} \\
& =: I_{m, n}^{1}+I_{m, n}^{2}+I_{m, n}^{3}+I_{m, n}^{4} . \tag{2.26}
\end{align*}
$$

Thus, for $q<\infty$, denoting $\alpha:=1-q / p$, we obtain

$$
\begin{aligned}
\|f\|_{L_{p, q}^{q}}^{q} & \asymp \int_{0}^{\pi} \int_{0}^{\pi}(x y)^{-\alpha}|f(x, y)|^{q} d x d y \\
& \lesssim \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \int_{\frac{\pi}{m+1}}^{\frac{\pi}{m}} \int_{\frac{\pi}{n}}^{\frac{\pi}{n}}(x y)^{-\alpha}\left(I_{m, n}^{1}+I_{m, n}^{2}+I_{m, n}^{3}+I_{m, n}^{4}\right)^{q} d x d y \\
& \asymp \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}(m n)^{\alpha-2}\left(\left(I_{m, n}^{1}\right)^{q}+\left(I_{m, n}^{2}\right)^{q}+\left(I_{m, n}^{3}\right)^{q}+\left(I_{m, n}^{4}\right)^{q}\right) .
\end{aligned}
$$

Recall the Hardy-type inequalities for power weights (see, for instance, [46, (0.6), (0.10), (1.102)]) for $q \geq 1$:

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\gamma}\left(\sum_{k=1}^{n} a_{k}\right)^{q} \lesssim_{q} \sum_{n=1}^{\infty} n^{\gamma+q} a_{n}^{q}, \quad \text { for } \gamma<-1, \tag{2.27}
\end{equation*}
$$

and its dual,

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\gamma}\left(\sum_{k=n}^{\infty} a_{k}\right)^{q} \lesssim_{q} \sum_{n=1}^{\infty} n^{\gamma+q} a_{n}^{q}, \quad \text { for } \gamma>-1 . \tag{2.28}
\end{equation*}
$$

Using (2.27) in each variable we arrive at

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}(m n)^{\alpha-2}\left(I_{m, n}^{1}\right)^{q}=\sum_{m=1}^{\infty} m^{\alpha-2-q} \sum_{n=1}^{\infty} n^{\alpha-2-q}\left(\sum_{l=1}^{n} l \sum_{k=1}^{m} k\left|a_{k l}\right|\right)^{q} \\
& \lesssim \sum_{n=1}^{\infty} n^{\alpha-2+q} \sum_{m=1}^{\infty} m^{\alpha-2-q}\left(\sum_{k=1}^{m} k\left|a_{k n}\right|\right)^{q} \lesssim \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}(m n)^{\alpha-2+q}\left|a_{m n}\right|^{q}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}(m n)^{\alpha-2}\left(I_{m, n}^{2}\right)^{q} & =\sum_{m=1}^{\infty} m^{\alpha-2-q} \sum_{n=1}^{\infty} n^{\alpha-2+q}\left(\sum_{l=\lceil n / 2\rceil}^{\infty} \frac{1}{l} \sum_{k=1}^{m} k\left|a_{k l}\right|\right)^{q} \\
& \asymp \sum_{m=1}^{\infty} m^{\alpha-2-q} \sum_{n=1}^{\infty} n^{\alpha-2+q}\left(\sum_{l=n}^{\infty} \frac{1}{l} \sum_{k=1}^{m} k\left|a_{k l}\right|\right)^{q} \\
& \lesssim \sum_{n=1}^{\infty} n^{\alpha-2+q} \sum_{m=1}^{\infty} m^{\alpha-2-q}\left(\sum_{k=1}^{m} k\left|a_{k n}\right|\right)^{q} \\
& \lesssim \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}(m n)^{\alpha-2+q}\left|a_{m n}\right|^{q}
\end{aligned}
$$

where we used inequality (2.12). The similar estimate holds for $I_{m, n}^{3}$. And finally, due to
(2.28), we have

$$
\begin{aligned}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}(m n)^{\alpha-2}\left(I_{m, n}^{4}\right)^{q} & =\sum_{m=1}^{\infty} m^{\alpha-2+q} \sum_{n=1}^{\infty} n^{\alpha-2+q}\left(\sum_{l=\lceil n / 2\rceil}^{\infty} \frac{1}{l} \sum_{k=\lceil m / 2\rceil}^{\infty} \frac{\left|a_{k l}\right|}{k}\right)^{q} \\
& \asymp \sum_{m=1}^{\infty} m^{\alpha-2+q} \sum_{n=1}^{\infty} n^{\alpha-2+q}\left(\sum_{l=n}^{\infty} \frac{1}{l} \sum_{k=m}^{\infty} \frac{\left|a_{k l}\right|}{k}\right)^{q} \\
& \lesssim \sum_{m=1}^{\infty} m^{\alpha-2+q} \sum_{n=1}^{\infty} n^{\alpha-2+q}\left(\sum_{k=m}^{\infty} \frac{\left|a_{k n}\right|}{k}\right)^{q} \\
& \lesssim \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}(m n)^{\alpha-2+q}\left|a_{m n}\right|^{q},
\end{aligned}
$$

which completes the proof for the case $q \in[1, \infty)$. For $q=\infty$, using (2.26) we can write

$$
\sup _{(x, y) \in\left(\frac{\pi}{m+1}, \frac{\pi}{m}\right] \times\left(\frac{\pi}{n+1}, \frac{\pi}{n}\right]}(x y)^{\frac{1}{p}}|f(x, y)| \leq(m n)^{-\frac{1}{p}}\left(I_{m, n}^{1}+I_{m, n}^{2}+I_{m, n}^{3}+I_{m, n}^{4}\right) .
$$

Next,

$$
\begin{aligned}
(m n)^{-\frac{1}{p}} I_{m, n}^{1} & =(m n)^{-\frac{1}{p}-1} \sum_{k=1}^{m} \sum_{l=1}^{n} k l\left|a_{k l}\right| \\
& \leq(m n)^{-\frac{1}{p}-1} \sum_{k=1}^{m} \sum_{l=1}^{n}(k l)^{\frac{1}{p}} \sup _{k, l}\left((k l)^{\frac{1}{p^{p}}}\left|a_{k l}\right|\right) \lesssim \sup _{k, l}\left((k l)^{\frac{1}{p^{\prime}}}\left|a_{k l}\right|\right) .
\end{aligned}
$$

We also have

$$
(m n)^{-\frac{1}{p}} I_{m, n}^{2}=(m n)^{-\frac{1}{p}} \frac{n}{m} \sum_{k=1}^{m} \sum_{l=\lceil n / 2\rceil}^{\infty} \frac{k}{l}\left|a_{k l}\right| \lesssim \sup _{k, l}\left((k l)^{\frac{1}{p^{\prime}}}\left|a_{k l}\right|\right),
$$

and the similar estimate for $I_{m, n}^{3}$. Finally,

$$
(m n)^{-\frac{1}{p}} I_{m, n}^{4}=(m n)^{-\frac{1}{p}} m n \sum_{k=\lceil m / 2\rceil}^{\infty} \sum_{l=\lceil n / 2\rceil}^{\infty} \frac{\left|a_{k l}\right|}{k l} \lesssim \sup _{k, l}\left((k l)^{\frac{1}{p^{\prime}}}\left|a_{k l}\right|\right),
$$

which completes the proof of the theorem.
Remark 2.7. For the spaces $L_{w(p, q)}^{q}(0,2 \pi)^{2}$ in place of $L_{w(p, q)}^{q}(-\pi, \pi)^{2}$, the assertion of Theorem 2.1 still holds for $q \leq p$ but fails for $q>p$.

Indeed, for $q>p$ it suffices to consider the one-dimensional sine series

$$
f(x):=\sum_{k=1}^{\infty} k^{-\frac{1}{p^{\prime}}} \log ^{-\frac{1}{p}}(k+2) \sin k x=: \sum_{k=1}^{\infty} a_{k} \sin k x .
$$

We have $\sum\left|a_{k}\right|^{p} k^{p-2}=\sum k^{-1} \log ^{-1}(k+2)=\infty$, so by the Hardy-Littlewood theorem $f \notin L_{p}$, whence $\|f\|_{L_{w(p, q)}^{q}(0,2 \pi)} \gtrsim\|f\|_{L_{p}(\pi, 2 \pi)}=\infty$. On the other hand,

$$
\|f\|_{L_{w(p, q)}^{q}(-\pi, \pi)} \asymp \sum\left|a_{k}\right|^{q} k^{\frac{q}{p^{p}}-1}=\sum k^{-1} \log ^{-\frac{q}{p}}(k+2)<\infty .
$$

However, for $q \leq p$, there holds $x^{q / p-1} \gtrsim 1$, so that

$$
\|f\|_{L_{w(p, q)}^{q}(0,2 \pi)} \asymp\|f\|_{L_{w(p, q)}^{q}(0, \pi)}+\|f\|_{L_{w(p, q)}^{q}(\pi, 2 \pi)} \asymp\|f\|_{L_{w(p, q)}^{q}(0, \pi)} \asymp\|f\|_{L_{w(p, q)}^{q}(-\pi, \pi)} .
$$

The reason of the failure of the Hardy-Littlewood relation here is that the function in case is supposed to be periodic, while a power weight is not. Thus, if one deals with weighted Lebesgue spaces on $[0,2 \pi]^{2}$, it makes more sense to consider a weight of the type $|\sin x|^{\alpha}$ in place of $|x|^{\alpha}$, which was in fact done by many authors. Note that for a power weight, weighted integrability at 2π is equivalent to integrability at zero without weight, so, as in the example above, one has to additionally check integrability at zero.

2.4 Sharpness of the result

Theorem 2.8. For $p>2, q \geq p$, the claim of Theorem 2.1a) does not hold if we replace the $G M_{2}^{c}$ condition (2.10) by

$$
\begin{equation*}
\sum_{m=k}^{2 k} \sum_{n=l}^{2 l}\left|\Delta^{11} a_{m n}\right| \leq C\left|a_{2 k, l}\right| \tag{2.29}
\end{equation*}
$$

Proof. Assume that $p>2$ and consider the sequence

$$
a_{m n}:=\frac{(-1)^{\delta_{m}}}{m^{\gamma}} g_{m}(n),
$$

where $\gamma>0$ and $\delta_{m} \in\{0,1\}$ are to be chosen later, and $g_{m}(n)=g_{m}\left(n, p^{\prime}\right)$ is defined as follows
$g_{m}(n):= \begin{cases}(-1)^{\delta_{m}} m^{-3} n^{-\frac{1}{p^{\prime}}}, & \log _{2} n<m(m+1) p^{\prime}, \\ 2^{-(m+t)^{2}-3(m+t)}, & \left((m+t)^{2}+m-t\right) p^{\prime} \leq \log _{2} n<\left((m+t)^{2}+3 m+t\right) p^{\prime}, \quad t \in \mathbb{Z}_{+} .\end{cases}$
In other words, the functions g_{m} are constructed in the following way. First, we divide $[1, \infty)$ into the intervals $I_{j}, j=0,1, \ldots$, so that $I_{j}:=\left\{x: 2 p^{\prime} j \leq \log _{2} x<2 p^{\prime}(j+1)\right\}$. After that consider the lower-triangular infinite down and to the right matrix that is filled by all positive integers in increasing order going down and to the right.

1			
2	3		
4	5	6	
7	8	9	10
\vdots	\vdots	\vdots	\vdots

Next, for any j we asign it the integer $i=i(j)$ if it is i th column that contains the element j. Fix some m and consider the values $g_{m}(1), g_{m}(2), \ldots$. While $i(j) \neq m$, we have

$$
g_{m}(n)=(-1)^{\delta_{m}} m^{-3} n^{-\frac{1}{p^{\prime}}}
$$

for $n \in I_{j}$. Once $i(j)$ becomes equal to m for the first time, that is, when $\log _{2} n \geq$ $m(m+1) p^{\prime}$ for the first time, we get $g_{m}(n)=2^{-m^{2}-3 m}$ and this value does not change till $i(j)$ becomes equal to m again and $n \in I_{j}$. When $i(j)$ becomes equal to m for the
$(s+1)$ th time, the value $g_{m}(n)$ changes for $2^{-(m+s)^{2}-3(m+s)}$ (see Figure 2.1 for a scheme of changes of absolute values of $g_{m}(n)$).

Figure 2.1:
Fix $n \in I_{j}$ for some j and consider $g_{1}(n), g_{2}(n), \ldots$ Let k be such that $\log _{2} n<m(m+$ 1) p^{\prime} if $1 \leq m \leq k$ and $\log _{2} n \geq m(m+1) p^{\prime}$ if $m \geq k+1$. Then

$$
\begin{equation*}
\left|g_{m}(n)\right| \lesssim\left|g_{m^{\prime}}(n)\right|, \quad \text { for } k+1 \leq m<m^{\prime} \leq 2 m \tag{2.30}
\end{equation*}
$$

Denote $m_{0}:=i(j+1)$. If $m_{0}=k+1$, then $g_{1}(n)=g_{2}(n)=\ldots=g_{k}(n)=2^{-(k+1)^{2}-3(k+1)}$, otherwise, $g_{m}(n)=2^{-(k+1)^{2}-3(k+1)}$ for $m \leq m_{0}-1$ and $g_{m}(n)=2^{-k^{2}-3 k}$ for $m_{0} \leq m \leq k$. Let us compare $g_{k}(n)$ and $g_{k+1}(n)$. There are two cases.

Case 1. $m_{0}=i(j+1)=k+1$. Then

$$
\left|g_{k+1}(n)\right|=(k+1)^{-3} n^{-\frac{1}{p^{\prime}}} \gtrsim(k+1)^{-3} 2^{-(k+1)(k+2)} \gtrsim 2^{-(k+1)^{2}-3(k+1)}=g_{k}(n)
$$

Case 2. $m_{0}=i(j+1)<k+1$. Then

$$
\left|g_{k+1}(n)\right|=(k+1)^{-3} n^{-\frac{1}{p^{\prime}}} \gtrsim(k+1)^{-3} 2^{-k(k+1)-m_{0}} \gtrsim 2^{-k^{2}-3 k}=g_{k}(n)
$$

Thus, in both cases we obtain $0<g_{1}(n) \leq g_{2}(n) \leq \ldots \leq g_{k}(n) \lesssim\left|g_{k+1}(n)\right|$, whence in light of (2.30),

$$
\begin{equation*}
\left|g_{m}(n)\right| \lesssim\left|g_{m^{\prime}}(n)\right|, \quad \text { for all } m<m^{\prime} \leq 2 m \tag{2.31}
\end{equation*}
$$

It remains to note that for a fixed m, we have for $n_{m}:=\left\lceil 2^{m(m+1) p^{\prime}}\right\rceil-1$ that

$$
\left|g_{m}\left(n_{m}\right)\right|=m^{-3} n_{m}^{-\frac{1}{p^{\prime}}} \asymp m^{-3} 2^{-m(m+1)} \gtrsim 2^{-m^{3}-3 m}=g_{m}\left(n_{m}+1\right)
$$

and for other n there holds $g_{m}(n) \geq g_{m}(n+1)$. So, over all $\left|a_{m n}\right|$ in $r_{k l}:=[k, 2 k] \times[l, 2 l]$, the maximal is up to a constant $\left|a_{2 k, l}\right|$.

Further we note that the constructed sequence clearly satisfies (2.5).
To prove that our sequence belongs to $G M_{2}^{c}$, let us estimate $\sum_{m=k}^{2 k} \sum_{n=l}^{2 l}\left|\Delta^{11} a_{m n}\right|$. Consider a quadruple

$$
\begin{array}{cc}
a_{m, n+1} & a_{m+1, n+1} \\
a_{m n} & a_{m+1, n}
\end{array}
$$

with $(m, n) \in r_{k l}$. Note that it can be only of the following five types

$$
\begin{array}{llllllllll}
0 & 0 & 1 & 0 & 1 & 0 & & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}
$$

where 0 stands for the terms with $\log _{2} n<m(m+1) p^{\prime}$, while 1 , for those with $\log _{2} n \geq$ $m(m+1) p^{\prime}$. We will write $(m, n) \in T_{i}, i=1, \ldots, 5$, if the corresponding quadruple is of the i th type. Note that if $(m, n) \in T_{3}$, then $(m-1, n) \in T_{1}$ and $(m+1, n) \in T_{2}$, while if $(m, n) \in T_{4}$, then $(m-1, n) \in T_{2}$ and $(m+1, n) \in T_{5}$. By the construction, quadruples of the three last types with nonzero $\Delta{ }^{11} a_{m n}$ can appear at most four times in $r_{k l}$, since any $(m, n) \in T_{3} \cup T_{4}$, as well as $(m, n) \in T_{5}$ with nonzero $\Delta^{11} a_{m n}$, satisfies $n \in I_{j}, n+1 \in I_{j+1}$, for some j, which cannot happen twice in $[l, 2 l]$. If there exists a quadruple of the first type, then

$$
\begin{aligned}
\sum_{(m, n) \in T_{1} \cap r_{k l}}\left|\Delta^{11} a_{m n}\right| & =\sum_{(m, n) \in T_{1} \cap r_{k l}} \Delta^{11} a_{m n}<\sum_{m \geq k, n \geq l} \Delta^{11}\left(m^{-3-\gamma} n^{-\frac{1}{p^{\prime}}}\right) \\
& =k^{-3-\gamma} l^{-\frac{1}{p^{\prime}}} \lesssim \max _{(m, n) \in r_{k l}}\left|a_{m n}\right|
\end{aligned}
$$

As for $(m, n) \in T_{2} \cap r_{k l}$, they all belong to a strip $\left[k^{\prime}, k^{\prime}+1\right] \times[l, 2 l]$ for some k^{\prime}. Indeed, otherwise there are m_{1} and $m_{2} \geq m_{1}+2$ belonging to $[k, 2 k]$, and $n_{1}, n_{2} \in[l, 2 l]$ such that $\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right) \in T_{2}$. But it follows from $\left(m_{1}, n_{1}\right) \in T_{2}$ that $a_{m_{1}+1, k}$, and hence $a_{m_{2}, k}$, has type 0 , while (m_{2}, n_{2}) $\in T_{2}$ implies that $a_{m_{2}, 2 k}$, and hence $a_{m_{1}+1,2 k}$, has type 1 . Thus, there exist two pairs of the form $(n, n+1)$ inside $[l, 2 l]$ such that $n \in I_{j}, n+1 \in I_{j+1}$, for some j, which cannot be true. Therefore, all $(m, n) \in T_{2} \cap r_{k l}$ do belong to a strip $\left[k^{\prime}, k^{\prime}+1\right] \times[l, 2 l]$, whence using

$$
\left|\Delta^{11} a_{m n}\right| \leq\left|\Delta^{01} a_{m n}\right|+\left|\Delta^{01} a_{m+1, n}\right|=\Delta^{01}\left|a_{m n}\right|+\Delta^{01}\left|a_{m+1, n}\right|,
$$

which is true as long as $(m, n) \in T_{2} \cap r_{k l}$, we deduce that the sum of $\left|\Delta^{11} a_{m n}\right|$ over (m, n) $\in T_{2} \cap r_{k l}$ is bounded above by four times the maximal $\left|a_{m n}\right|$ in $r_{k l}$. Combining the observations above, we arrive at

$$
\sum_{m=k}^{2 k} \sum_{n=l}^{2 l}\left|\Delta^{11} a_{m n}\right| \lesssim \max _{(m, n) \in r_{k l}}\left|a_{m n}\right| \lesssim\left|a_{2 k, l}\right|
$$

which proves (2.29).

Further, for any $q>0$,

$$
\begin{aligned}
\sum_{m, n=1}^{\infty}\left|a_{m n}\right|^{q}(m n)^{\frac{q}{p^{\prime}}-1} & \gtrsim \sum_{m=1}^{\infty} m^{\frac{q}{p^{\prime}}-1-\gamma q} \\
& \times \sum_{t=0}^{\infty} 2^{-\left((m+t)^{2}+3 m+3 t\right) q} 2^{\left((m+t)^{2}+3 m+t\right) p^{\prime}\left(\frac{q}{p^{\prime}}-1\right)} 2^{\left((m+t)^{2}+3 m+t\right) p^{\prime}} \\
& \gtrsim \sum_{m=1}^{\infty} m^{\frac{q}{p^{\prime}}-1-\gamma q}=\infty
\end{aligned}
$$

if we set $\gamma=1 / p^{\prime}$.
Note that our sequence generates the Fourier sine (or cosine) series of an odd (or even) function f that converges in the Pringsheim sense everywhere on $(0,2 \pi)^{2}$ to f according to $[20, L .4]$. To prove this, since the sequence fulfils (2.5), it suffices to show that the following sum is finite

$$
\begin{aligned}
\sum_{m, n=1}^{\infty}\left|\Delta^{11} a_{m n}\right| & \leq \sum_{(m, n) \in T_{1}} \Delta^{11} a_{m n}+\sum_{(m, n) \in T_{2} \cup T_{5}}\left(\left|\Delta^{01} a_{m n}\right|+\left|\Delta^{01} a_{m+1, n}\right|\right) \\
& +\sum_{(m, n) \in T_{3} \cup T_{4}}\left(\left|a_{m n}\right|+\left|a_{m, n+1}\right|+\left|a_{m+1, n}\right|+\left|a_{m+1, n+1}\right|\right) \\
& \lesssim 1+\sum_{(m, n) \in T_{2} \cup T_{5}}\left(\Delta^{01} a_{m n}+\Delta^{01} a_{m+1, n}\right)+\sum_{m=1}^{\infty} m^{-3-\gamma} 2^{-m(m+1)} \\
& \lesssim 1+\sum_{m=1}^{\infty} \sum_{t=0}^{\infty} 2^{-(m+t)^{2}-3(m+t)}+\sum_{(m, n) \in T_{2}} \Delta^{01} a_{m+1, n} \\
& \lesssim 1+\sum_{m=1}^{\infty} m^{-3-\gamma} 2^{-m(m-1)}<\infty .
\end{aligned}
$$

Let us stick to the case of an odd f, as for cosine series the argument is exactly the same. Denote for $m, n \geq 1$,

$$
c_{m n}:= \begin{cases}a_{m n}, & \text { if } \log _{2} n \geq m(m+1) p^{\prime} \\ 0, & \text { otherwise }\end{cases}
$$

and $b_{m n}:=a_{m n}-c_{m n}$. Then

$$
\|f\|_{L_{w(p, q)}^{q}} \leq\left\|\sum_{m, n=1}^{\infty} b_{m n} \sin m x \sin n y\right\|_{L_{w(p, q)}^{q}}+\left\|\sum_{m, n=1}^{\infty} c_{m n} \sin m x \sin n y\right\|_{L_{w(p, q)}^{q}}
$$

Note that

$$
\begin{aligned}
\sum_{m=1}^{M} \sum_{n=1}^{N} b_{m n} \sin m x \sin n y & =\sum_{m=1}^{M} \sin m x\left(\sum_{n=1}^{N-1} \Delta^{01} b_{m n} D_{n}(y)+b_{m N} D_{N}(y)\right) \\
& =\sum_{m=1}^{M-1} \sum_{n=1}^{N-1} \Delta^{11} b_{m n} D_{m}(x) D_{n}(y)+\sum_{n=1}^{N-1} \Delta^{01} b_{M n} D_{M}(x) D_{n}(y) \\
& +\sum_{m=1}^{M-1} \Delta^{10} b_{m N} D_{m}(x) D_{N}(y)+b_{M N} D_{M}(x) D_{N}(y) \\
& =: \sum_{m=1}^{M-1} \sum_{n=1}^{N-1} \Delta^{11} b_{m n} D_{m}(x) D_{n}(y)+A_{1}+A_{2}+A_{3}
\end{aligned}
$$

Since $\left\|D_{k}\right\|_{L_{w(p, q)}^{q}}^{q} \asymp \sum_{l=1}^{k} l^{\frac{q}{p^{p}}-1} \asymp k^{\frac{q}{p^{p}}}$ by Theorem A, we have for $N_{0}:=\max (N-$ 1, $\left.\left\lceil 2^{M(M+1) p^{\prime}}\right\rceil-1\right)$,

$$
\left\|A_{1}\right\|_{L_{w(p, q)}^{q}} \lesssim \sum_{n=1}^{N_{0}} M^{-3-\gamma} n^{-1-\frac{1}{p^{\prime}}}(M n)^{\frac{1}{p^{\prime}}}+M^{-3-\gamma} N_{0}^{-\frac{1}{p^{\prime}}}\left(M N_{0}\right)^{\frac{1}{p^{\prime}}} \lesssim M^{-1-\gamma} \rightarrow 0
$$

as $M \rightarrow \infty$. For $M_{0}:=\min \left\{m: m(m+1) p^{\prime} \geq N\right\}$,

$$
\left\|A_{2}\right\|_{L_{w(p, q)}^{q}} \lesssim \sum_{m=M_{0}}^{M-1} m^{-4-\gamma} N^{-\frac{1}{p^{\prime}}}(m N)^{\frac{1}{p^{\prime}}}+M_{0}^{-3-\gamma} N^{-\frac{1}{p^{\prime}}}\left(M_{0} N\right)^{\frac{1}{p^{\prime}}} \rightarrow 0
$$

as $N \rightarrow \infty$. And finally,

$$
\left\|A_{3}\right\|_{L_{w(p, q)}^{q}} \lesssim M^{-3-\gamma} N^{-\frac{1}{p^{\prime}}}(M N)^{\frac{1}{p^{\prime}}} \rightarrow 0
$$

as $M \rightarrow \infty$. Thus,

$$
\begin{equation*}
\left\|\sum_{m, n=1}^{\infty} b_{m n} \sin m x \sin n y\right\|_{L_{w(p, q)}^{q}}=\left\|\sum_{m, n=1}^{\infty} \Delta^{11} b_{m n} D_{m}(x) D_{n}(y)\right\|_{L_{w(p, q)}^{q}} \tag{2.32}
\end{equation*}
$$

Besides,

$$
\sum_{m=1}^{M} \sum_{n=1}^{N} c_{m n} \sin m x \sin n y=\sum_{m=1}^{M} \sin m x\left(\sum_{n=1}^{N-1} \Delta^{01} c_{m n} D_{n}(y)+c_{m N} D_{N}(y)\right)
$$

where in light of the inequalities $0<g_{1}(n) \leq \ldots \leq g_{M_{0}}(n)$ for M_{0} defined as above

$$
\left\|\sum_{m=1}^{M} c_{m N} \sin m x D_{N}(y)\right\|_{L_{w(p, q)}^{q}} \lesssim \sum_{m=1}^{M_{0}}\left|c_{m N}\right| N^{\frac{1}{p^{\prime}}} \leq M_{0} g_{M_{0}}(N) N^{\frac{1}{p^{\prime}}} \lesssim M_{0}^{-2} \rightarrow 0
$$

as $N \rightarrow \infty$. Hence,

$$
\begin{equation*}
\left\|\sum_{m, n=1}^{\infty} c_{m n} \sin m x \sin n y\right\|_{L_{w(p, q)}^{q}}=\left\|\sum_{m, n=1}^{\infty} \Delta^{01} c_{m n} \sin m x D_{n}(y)\right\|_{L_{w(p, q)}^{q}} \tag{2.33}
\end{equation*}
$$

Combining (2.32) and (2.33) we arrive at

$$
\begin{aligned}
\|f\|_{L_{w(p, q)}^{q}} & \leq\left\|\sum_{m, n=1}^{\infty} \Delta^{11} b_{m n} D_{m}(x) D_{n}(y)\right\|_{L_{w(p, q)}^{q}}+\left\|\sum_{m, n=1}^{\infty} \Delta^{01} c_{m n} \sin m x D_{n}(y)\right\|_{L_{w(p, q)}^{q}} \\
& =: S_{1}+S_{2}
\end{aligned}
$$

First, for $n_{m}=\left\lceil 2^{m(m+1) p^{\prime}}\right\rceil-1$, we see that $\log n_{m} \asymp m^{2}$ and $\log n_{m+1}-\log n_{m} \asymp m$, so

$$
\begin{aligned}
S_{1} & \lesssim \sum_{m=1}^{\infty} m^{\frac{1}{p^{\prime}}}\left(\sum_{n=1}^{n_{m}-1} \Delta^{11}\left(m^{-3-\gamma} n^{-\frac{1}{p^{\prime}}}\right) n^{\frac{1}{p^{\prime}}}+\sum_{n=n_{m}}^{n_{m+1}-1} \Delta^{01}\left((m+1)^{-3-\gamma} n^{-\frac{1}{p^{\prime}}}\right) n^{\frac{1}{p^{\prime}}}\right. \\
& \left.+\left(m^{-3-\gamma} n_{m}^{-\frac{1}{p^{\prime}}}\right) n_{m}^{\frac{1}{p^{\prime}}}\right) \\
& \lesssim \sum_{m=1}^{\infty} m^{\frac{1}{p^{\prime}}}\left(\sum_{n=1}^{n_{m}-1} m^{-4-\gamma} n^{-1}+\sum_{n=n_{m}}^{n_{m+1}-1} m^{-3-\gamma} n^{-1}+m^{-3-\gamma}\right) \lesssim \sum_{m=1}^{\infty} m^{\frac{1}{p^{\prime}}-2-\gamma}<\infty
\end{aligned}
$$

Second, denoting $n_{m t}:=\left\lceil 2^{\left((m+t)^{2}+3 m+t\right) p^{\prime}}\right\rceil-1$, using $c_{m n}=(-1)^{\delta_{m}}\left|c_{m n}\right|$ and the fact that $\Delta^{01} c_{m n} \neq 0$ only if $n=n_{m t}$ for $t \geq-1$, we get for $q \geq p$,

$$
\begin{align*}
S_{2}^{q} & =\left\|\sum_{m=1}^{\infty}(-1)^{\delta_{m}} \sin m x \sum_{t=-1}^{\infty} \Delta^{01}\left|c_{m, n_{m t}}\right| D_{n_{m t}}(y)\right\|_{L_{w(p, q)}^{q}}^{q} \\
& =\int_{-\pi}^{\pi}|y|^{\frac{q}{p}-1} \int_{-\pi}^{\pi}|x|^{\frac{q}{p}-1}\left|\sum_{m=1}^{\infty}(-1)^{\delta_{m}} \sin m x \sum_{t=-1}^{\infty} \Delta^{01}\right| c_{m, n_{m t}}\left|D_{n_{m t}}(y)\right|^{q} d x d y \\
& \leq \int_{-\pi}^{\pi}|y|^{\frac{q}{p}-1} \int_{-\pi}^{\pi}\left|\sum_{m=1}^{\infty}(-1)^{\delta_{m}} \sin m x \sum_{t=-1}^{\infty} \Delta^{01}\right| c_{m, n_{m t} t}\left|D_{n_{m t}}(y)\right|^{q} d x d y \tag{2.34}
\end{align*}
$$

Recall the Khintchine inequality (see e.g. [2, Rem. 1.4]): for any real sequence $\left\{s_{k}\right\} \in l_{2}$ and the system of Rademacher functions $\left\{r_{n}(t)\right\}$, we have

$$
\int_{0}^{1}\left|\sum_{k=1}^{\infty} s_{k} r_{k}(t)\right|^{q} \asymp_{q}\left(\sum_{k=1}^{\infty} s_{k}^{2}\right)^{\frac{q}{2}} .
$$

Hence,

$$
\begin{align*}
& \int_{0}^{1} \int_{-\pi}^{\pi}\left|\sum_{m=1}^{\infty} r_{m}(t) \sin m x \sum_{t=-1}^{\infty} \Delta^{01}\right| c_{m, n_{m t} \mid}\left|D_{n_{m t}}(y)\right|^{q} d x d t \\
& \quad \lesssim \int_{0}^{1}\left|\sum_{m=1}^{\infty} r_{m}(t) \sum_{t=-1}^{\infty} \Delta^{01}\right| c_{m, n_{m t} t}\left|D_{n_{m t}}(y)\right|^{q} d t \\
& \quad \lesssim\left(\sum_{m=1}^{\infty}\left(\sum_{t=-1}^{\infty}\left|\Delta^{01}\right| c_{m, n_{m t}}\left|D_{n_{m t}}(y)\right|\right)^{2}\right)^{\frac{q}{2}} \tag{2.35}
\end{align*}
$$

whenever the series on the right-hand side converges. Observe that by the Minkowski inequality and the fact that $\left\|D_{n_{m t}}\right\|_{L_{w(p, q)}^{q}} \asymp 2^{\left((m+t)^{2}+3 m+t\right) p^{\prime} \frac{1}{p^{\prime}}}$, we have

$$
\begin{align*}
& \int_{-\pi}^{\pi}|y|^{\frac{q}{p}-1}\left(\sum_{m=1}^{\infty}\left(\sum_{t=-1}^{\infty}\left|\Delta^{01}\right| c_{m, n_{m t}}\left|D_{n_{m t}}(y)\right|\right)^{2}\right)^{\frac{q}{2}} d y \\
& \quad \\
& \quad \asymp\left\|\sum_{m=1}^{\infty}\left(\sum_{t=-1}^{\infty}\left|\Delta^{01}\right| c_{m, n_{m t}}\left|D_{n_{m t}}(y)\right|\right)^{2}\right\|_{L_{w(p / 2, q / 2)}^{2}}^{\frac{q}{2}} \\
& \quad \lesssim\left(\sum_{m=1}^{\infty}\left\|\sum_{t=-1}^{\infty}\left|\Delta^{01}\right| c_{m, n_{m t}}\left|D_{n_{m t}}(y)\right|\right\|_{L_{w(p, q)}^{q}}^{2}\right)^{\frac{q}{2}} \\
& \quad \lesssim\left(\sum_{m=1}^{\infty} m^{-2 \gamma}\left(2^{-m^{2}-3 m} 2^{m(m+1)}+\sum_{t=0}^{\infty} 2^{-\left((m+t)^{2}+3(m+t)\right)} 2^{\left((m+t)^{2}+3 m+t\right)}\right)^{2}\right)^{\frac{q}{2}} \tag{2.36}\\
& \quad \lesssim\left(\sum_{m=1}^{\infty} m^{-\frac{2}{p^{\prime}}}\right)^{\frac{q}{2}}<\infty .
\end{align*}
$$

Thus, by (2.35) and (2.36), for almost all t, the sum

$$
\sum_{m=1}^{\infty} r_{m}(t) \sin m x \sum_{t=-1}^{\infty} \Delta^{01}\left|c_{m, n_{m t}}\right| D_{n_{m t}}(y)
$$

converges for almost all y uniformly in x, and moreover, (2.35) and (2.36) imply that

$$
\int_{-\pi}^{\pi}|y|^{\frac{q}{p}-1} \int_{-\pi}^{\pi}\left|\sum_{m=1}^{\infty} r_{m}(t) \sin m x \sum_{t=-1}^{\infty} \Delta^{01}\right| c_{m, n_{m t}}\left|D_{n_{m t}}(y)\right|^{q} d x d y<\infty
$$

for almost all t (denote this set by $E \subset(0,1)$). Taking any $t_{0} \in E \backslash\left\{k 2^{-l}\right\}_{k, l \in \mathbb{N}, k<2^{l}}$, so that $r_{m}\left(t_{0}\right)= \pm 1$ for all m, and setting $\left\{\delta_{m}\right\}$ according to the equality $(-1)^{\delta_{m}}=r_{m}\left(t_{0}\right)$, we obtain in light of (2.34) that $S_{2}<\infty$.

Chapter 3

Cosine polynomials with restrictions on their algebraic representation

In this chapter, we show that for any $\varepsilon>0$ one can find a trigonometric polynomial with the l_{1}-norm of its coefficients less than ε and with the desired first p coefficients with respect to the basis $\left\{\cos ^{2 k} x\right\}_{k=0}^{\infty}$.

Theorem 3.1. Let $p, s \in \mathbb{N}$ and $\left(a_{0}, a_{1}, \ldots, a_{p-1}\right) \in \mathbb{R}^{p}$. Then for $r \geq C_{1}(p, s)$ there exist a vector of coefficients $\left(b_{s}, b_{s+1}, \ldots, b_{r}\right) \in \mathbb{R}^{r-s+1}$ and a polynomial $g(x)$, $\operatorname{deg} g=2 r-2 p$, such that

$$
\begin{equation*}
\sum_{k=s}^{r} b_{k} \cos 2 k x-(\cos x)^{2 p} g(\cos x) \equiv \sum_{t=0}^{p-1} a_{t} \cos ^{2 t} x \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=s}^{r}\left|b_{k}\right|<\frac{C_{2}(p, s)}{r} \sum_{t=0}^{p-1}\left|a_{t}\right|, \tag{3.2}
\end{equation*}
$$

where $C_{1}(p, s):=\max \left(16 p^{2} s^{4 p-1}, 8 L^{2 p-1} p^{3}\right), L=4.56 \ldots$, and $C_{2}(p, s):=2^{16} p^{4 p+9} s^{4 p-1}$.

3.1 Inverse of a matrix containing coefficients of Chebyshev polynomials

Let $\mathbf{T}_{\mathbf{n}}$ be a square $n \times n$-matrix whose entry t_{m}^{k} in the m th row and k th column is the coefficient at x^{m} of the k th Chebyshev polynomial $T_{k}(x)$ (we enumerate rows and columns of $\mathbf{T}_{\mathbf{n}}$ beginning from 0). It is clear that $\mathbf{T}_{\mathbf{n}}$ is upper triangular with nonzero entries along the main diagonal. For t_{m}^{k}, an explicit formula is known (see, for instance, [43, (4.5.26)]):

$$
t_{m}^{k}= \begin{cases}0, & \text { if } m>k \text { or } k-m \equiv 1(\bmod 2), \\ (-1)^{\frac{k-m}{2} \frac{k}{k+m} 2^{m}\left(\frac{k+m}{2}\right),} & \text { otherwise. }\end{cases}
$$

Denote by $\mathbf{T}_{\mathbf{k}, 1}$ the $l \times l$-matrix whose entry in the i th row and j th column is equal to t_{i}^{k+j}.

Lemma 3.2. Let $l \in \mathbb{N}$ and let k be an even positive integer. The entry g_{i}^{j} of the matrix $\mathbf{T}_{\mathbf{k}, 1}^{-\mathbf{1}}$ is equal to 0 if $i+j \equiv 1(\bmod 2)$, otherwise there hold

$$
g_{2 i}^{2 j}=\frac{(-1)^{\alpha+j+\frac{k}{2}}(2 j)!(k+i-1)!(k+2 i)}{4^{j} i!(\alpha-i)!(\alpha+k+i)!} \sum_{b=0}^{j} \frac{\prod_{d=0, d \neq i}^{\alpha}\left(b^{2}-\left(\frac{k}{2}+d\right)^{2}\right)}{\prod_{d=0, d \neq b}^{j}\left(b^{2}-d^{2}\right)}
$$

and

$$
g_{2 i+1}^{2 j+1}=\frac{(-1)^{\beta+j+\frac{k}{2}}(2 j+1)!(k+i)!}{4^{\beta} i!(\beta-i)!(\beta+k+i+1)!} \sum_{b=0}^{j} \frac{\prod_{d=0, d \neq i}^{\beta}\left((2 b+1)^{2}-(k+2 d+1)^{2}\right)}{\prod_{d=0, d \neq b}^{j}\left((2 b+1)^{2}-(2 d+1)^{2}\right)}
$$

where $\alpha:=\lceil l / 2\rceil-1, \beta:=\lfloor l / 2\rfloor-1$.
Proof. Note that the entries of $\mathbf{T}_{\mathbf{k}, 1}$ belonging to a row and a column of different parities are zero, i.e. $g_{i}^{j}=0$ for $2 \nmid i+j$. Fix some $j, 0 \leq j<l$, and consider the j th column of $\mathbf{T}_{\mathbf{k}, \mathbf{l}}^{-\mathbf{1}}$. Its entries must satisfy

$$
\sum_{i=0}^{l-1} g_{i}^{j} T_{k+i}(x) \equiv x^{j}+x^{l} g(x)
$$

where $g(x)$ is some polynomial. Rewriting this, we get

$$
\begin{equation*}
\sum_{i=0}^{l-1} g_{i}^{j} \cos (k+i) x \equiv \cos ^{j} x+\cos ^{l} x g(\cos x) \tag{3.3}
\end{equation*}
$$

We start with the case of an even j. Note that for any positive integer q we have

$$
\left(\cos ^{q} x\right)^{\prime \prime}=\left(-q \sin x \cos ^{q-1} x\right)^{\prime}=q(q-1) \cos ^{q-2} x-q^{2} \cos ^{q} x
$$

So, after taking the p th derivative of (3.3) for $p=0,1, \ldots,\lceil l / 2\rceil-1=$: α, in each case we obtain at both sides polynomials in $\cos x$. As their constant terms match, we infer that

$$
\sum_{i=0}^{l-1}\left(-(k+i)^{2}\right)^{p} g_{i}^{j} t_{0}^{k+i}=y_{p}^{j}
$$

where y_{p}^{j} stands for the constant term of $\left(\cos ^{j} x\right)^{(2 p)}$ (as of a polynomial in $\cos x$). So we have

$$
\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \tag{3.4}\\
k^{2} & (k+2)^{2} & \ldots & (k+2 \alpha)^{2} \\
\vdots & \vdots & \vdots & \vdots \\
k^{2 \alpha} & (k+2)^{2 \alpha} & \ldots & (k+2 \alpha)^{2 \alpha}
\end{array}\right) \operatorname{diag}\left\{t_{0}^{k}, t_{0}^{k+2}, \ldots, t_{0}^{k+2 \alpha}\right\}\left(\begin{array}{c}
g_{0}^{j} \\
g_{2}^{j} \\
\vdots \\
g_{2 \alpha}^{j}
\end{array}\right)=\left(\begin{array}{c}
y_{0}^{j} \\
-y_{1}^{j} \\
\vdots \\
(-1)^{\alpha} y_{\alpha}^{j}
\end{array}\right)
$$

Let us find y_{p}^{j} for all p. Note that

$$
y_{p}^{2 \alpha}=\left\{\begin{array}{l}
0, \quad p<\alpha \tag{3.5}\\
(2 \alpha)!, \quad p=\alpha
\end{array}\right.
$$

and that

$$
\cos ^{j} x \equiv \sum_{t=0}^{j / 2} \eta_{2 t} \cos 2 t x
$$

The coefficients $\eta_{2 t}$ can be found from the following relation:

$$
\left(\eta_{0}, 0, \eta_{2}, 0, \ldots, 0, \eta_{j}\right)^{T}=\mathbf{T}_{\mathbf{j}+\mathbf{1}}^{-\mathbf{1}}(0,0, \ldots, 0,1)^{T}
$$

Applying equality (3.4) to the matrix $\mathbf{T}_{\mathbf{j}+\mathbf{1}}^{\mathbf{- 1}}$ and taking into account (3.5), we derive

$$
\left(\begin{array}{c}
\eta_{0} \tag{3.6}\\
\eta_{2} \\
\vdots \\
\eta_{j}
\end{array}\right)=\operatorname{diag}\left\{\frac{1}{t_{0}^{0}}, \frac{1}{t_{0}^{2}}, \ldots, \frac{1}{t_{0}^{j}}\right\}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
0^{2} & 2^{2} & \cdots & j^{2} \\
\vdots & \vdots & \vdots & \vdots \\
0^{j} & 2^{j} & \ldots & j^{j}
\end{array}\right)^{-1}\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
(-1)^{\frac{j}{2}} j!
\end{array}\right)
$$

Further,

$$
\left(\cos ^{j} x\right)^{(2 p)} \equiv \sum_{t=0}^{j / 2}\left(-4 t^{2}\right)^{p} \eta_{2 t} \cos 2 t x
$$

whence in light of (3.6),

$$
\begin{align*}
y_{p}^{j} & =\sum_{m=0}^{j / 2}\left(-4 m^{2}\right)^{p} \eta_{2 m} t_{0}^{2 m}=\left(\left(-0^{2}\right)^{p} t_{0}^{0},\left(-2^{2}\right)^{p} t_{0}^{2}, \ldots,\left(-j^{2}\right)^{p} t_{0}^{j}\right)\left(\begin{array}{c}
\eta_{0} \\
\eta_{2} \\
\vdots \\
\eta_{j}
\end{array}\right) \\
& =\left(\left(-0^{2}\right)^{p},\left(-2^{2}\right)^{p}, \ldots,\left(-j^{2}\right)^{p}\right)\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
0^{2} & 2^{2} & \ldots & j^{2} \\
\vdots & \vdots & \vdots & \vdots \\
0^{j} & 2^{j} & \ldots & j^{j}
\end{array}\right)^{-1}\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
(-1)^{\frac{j}{2}} j!
\end{array}\right) \tag{3.7}
\end{align*}
$$

According to [51], the t th element of the last column of the inverse of the Vandermonde matrix of size m with the parameters $\lambda_{0}, \ldots, \lambda_{m-1}$ is equal to

$$
\prod_{l=0, l \neq t}^{m-1}\left(\lambda_{t}-\lambda_{l}\right)^{-1}
$$

Thus, we obtain

$$
\begin{aligned}
& \left(\begin{array}{c}
g_{0}^{j} \\
g_{2}^{j} \\
\vdots \\
g_{2 \alpha}^{j}
\end{array}\right)=(-1)^{\frac{j}{2}} j!\operatorname{diag}\left\{\frac{1}{t_{0}^{k}}, \ldots, \frac{1}{t_{0}^{k+2 \alpha}}\right\}\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
k^{2} & (k+2)^{2} & \ldots & (k+2 \alpha)^{2} \\
\vdots & \vdots & \vdots & \vdots \\
k^{2 \alpha} & (k+2)^{2 \alpha} & \ldots & (k+2 \alpha)^{2 \alpha}
\end{array}\right)^{-1} \\
& \times\left(\begin{array}{cccc}
\left(-0^{2}\right)^{0} & \left(-2^{2}\right)^{0} & \ldots & \left(-j^{2}\right)^{0} \\
-\left(-0^{2}\right)^{1} & -\left(-2^{2}\right)^{1} & \ldots & -\left(-j^{2}\right)^{1} \\
\vdots & \vdots & \vdots & \vdots \\
(-1)^{\alpha}\left(-0^{2}\right)^{\alpha} & (-1)^{\alpha}\left(-2^{2}\right)^{\alpha} & \ldots & (-1)^{\alpha}\left(-j^{2}\right)^{\alpha}
\end{array}\right)\left(\begin{array}{c}
\prod_{t=0, t \neq 0}^{j / 2}\left(-(2 t)^{2}\right)^{-1} \\
\prod_{t=0, t \neq 1}^{j / 2}\left(2^{2}-(2 t)^{2}\right)^{-1} \\
\prod_{t=0, t \neq j / 2}^{j / 2} \\
\vdots \\
\prod_{t} \\
\left.l^{2}-(2 t)^{2}\right)^{-1}
\end{array}\right) \\
& =(-1)^{\frac{j}{2}} j!\operatorname{diag}\left\{\frac{1}{t_{0}^{k}}, \ldots, \frac{1}{t_{0}^{k+2 \alpha}}\right\}\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
k^{2} & (k+2)^{2} & \ldots & (k+2 \alpha)^{2} \\
\vdots & \vdots & \vdots & \vdots \\
k^{2 \alpha} & (k+2)^{2 \alpha} & \ldots & (k+2 \alpha)^{2 \alpha}
\end{array}\right)^{-1}\left(\begin{array}{cccc}
0^{0} & 2^{0} & \ldots & j^{0} \\
0^{2} & 2^{2} & \ldots & j^{2} \\
\vdots & \vdots & \vdots & \vdots \\
0^{2 \alpha} & 2^{2 \alpha} & \ldots & j^{2 \alpha}
\end{array}\right) \\
& \times\left(\begin{array}{c}
\prod_{t=0, t \neq 0}^{j / 2}\left(-(2 t)^{2}\right)^{-1} \\
\vdots \\
\prod_{t=0, t \neq j / 2}^{j / 2}\left(j^{2}-(2 t)^{2}\right)^{-1}
\end{array}\right)=:(-1)^{\frac{j}{2} j!\operatorname{diag}\left\{\frac{1}{t_{0}^{k}}, \ldots, \frac{1}{t_{0}^{k+2 \alpha}}\right\} \mathbf{J}_{\mathbf{0}}\left(\begin{array}{c}
\prod_{t=0, t \neq 0}^{j / 2}\left(-(2 t)^{2}\right)^{-1} \\
\vdots \\
\prod_{t=0, t \neq j / 2}^{j / 2}\left(j^{2}-(2 t)^{2}\right)^{-1}
\end{array}\right) ~}
\end{aligned}
$$

The matrix $\mathbf{J}_{\mathbf{0}}$ is of size $(\alpha+1) \times(j / 2+1)$ and its entries are

$$
j_{a}^{b}=\frac{\prod_{d=0, d \neq a}^{\alpha}\left((2 b)^{2}-(k+2 d)^{2}\right)}{\prod_{d=0, d \neq a}^{\alpha}\left((k+2 a)^{2}-(k+2 d)^{2}\right)},
$$

since the entry v_{i}^{j} of the square Vandermonde matrix with the parameters $k^{2},(k+2)^{2}, \ldots,(k+$ $2 \alpha)^{2}$ is equal to

$$
v_{i}^{j}=\frac{\left[\prod_{d=0, d \neq i}^{\alpha}\left(x-(k+2 d)^{2}\right)\right]_{j}}{\prod_{d=0, d \neq i}^{\alpha}\left((k+2 i)^{2}-(k+2 d)^{2}\right)},
$$

where $[P(x)]_{j}$ stands for the coefficient at x^{j} of the polynomial $P(x)$. Hence, recalling that $\alpha=\lceil l / 2\rceil-1$, we have

$$
\begin{equation*}
g_{2 a}^{j}=\frac{(-1)^{\frac{j}{2}+a+\frac{k}{2}} j!}{\prod_{d=0, d \neq a}^{\lceil l / 2\rceil-1}\left((k+2 a)^{2}-(k+2 d)^{2}\right)} \sum_{b=0}^{j / 2} \frac{\prod_{d=0, d \neq a}^{\lceil l / 2\rceil-1}\left((2 b)^{2}-(k+2 d)^{2}\right)}{\prod_{d=0, d \neq b}^{j / 2}\left((2 b)^{2}-(2 d)^{2}\right)} . \tag{3.8}
\end{equation*}
$$

Turn now to the case of an odd j. Once more, taking the p th derivative of (3.3) for $p=0,1, \ldots,\lfloor l / 2\rfloor-1=: \beta$ and obtaining the same coefficients at $\cos x$, we get

$$
\sum_{i=0}^{l-1}\left(-(k+i)^{2}\right)^{p} g_{i}^{j} t_{1}^{k+i}=z_{p}^{j}
$$

where z_{p}^{j} is the coefficient at $\cos x$ of $\left(\cos ^{j+1} x\right)^{(2 p)}$ (as of a polynomial in $\cos x$). We have

$$
\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \tag{3.9}\\
(k+1)^{2} & (k+3)^{2} & \ldots & (k+1+2 \beta)^{2} \\
\vdots & \vdots & \vdots & \vdots \\
(k+1)^{2 \beta} & (k+3)^{2 \beta} & \ldots & (k+1+2 \beta)^{2 \beta}
\end{array}\right) \operatorname{diag}\left(t_{1}^{k+1}, \ldots, t_{1}^{k+1+2 \beta}\right)\left(\begin{array}{c}
g_{1}^{j} \\
g_{3}^{j} \\
\vdots \\
g_{2 \beta+1}^{j}
\end{array}\right)=\left(\begin{array}{c}
z_{0}^{j} \\
-z_{1}^{j} \\
\vdots \\
(-1)^{\beta} z_{\beta}^{j}
\end{array}\right) .
$$

Noting that

$$
z_{p}^{2 \beta}=\left\{\begin{array}{l}
0, \quad p<\beta \tag{3.10}\\
(2 \beta+1)!, \quad p=\beta
\end{array}\right.
$$

and that

$$
\cos ^{j} x \equiv \sum_{t=0}^{(j-1) / 2} \eta_{2 t+1} \cos (2 t+1) x
$$

we derive

$$
\left(0, \eta_{1}, 0, \eta_{3}, \ldots, 0, \eta_{j}\right)^{T}=\mathbf{T}_{\mathbf{j}+\mathbf{1}}^{-\mathbf{1}}(0,0, \ldots, 0,1)^{T}
$$

Applying (3.9) to $\mathbf{T}_{\mathbf{j}+\mathbf{1}}^{\mathbf{1}}$ and using (3.10), we obtain

$$
\left(\begin{array}{c}
\eta_{1} \\
\eta_{3} \\
\vdots \\
\eta_{j}
\end{array}\right)=\operatorname{diag}\left\{\frac{1}{t_{1}^{1}}, \ldots, \frac{1}{t_{1}^{j}}\right\}\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1^{2} & 3^{2} & \ldots & j^{2} \\
\vdots & \vdots & \vdots & \vdots \\
1^{j} & 3^{j} & \ldots & j^{j}
\end{array}\right)^{-1}\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
(-1)^{\frac{j-1}{2}} j!
\end{array}\right)
$$

Further,

$$
\left(\cos ^{j} x\right)^{(2 p)} \equiv \sum_{t=0}^{j / 2}\left(-(2 t+1)^{2}\right)^{p} \eta_{2 t+1} \cos (2 t+1) x
$$

whence

$$
\begin{aligned}
& z_{p}^{j}=\sum_{m=0}^{\frac{j-1}{2}}\left(-(2 m+1)^{2}\right)^{p} \eta_{2 m+1} t_{1}^{2 m+1}=\left(\left(-1^{2}\right)^{p} t_{1}^{1},\left(-3^{2}\right)^{p} t_{1}^{3}, \ldots,\left(-j^{2}\right)^{p} t_{1}^{j}\right)\left(\begin{array}{c}
\eta_{1} \\
\eta_{3} \\
\vdots \\
\eta_{j}
\end{array}\right) \\
& =\left(\left(-1^{2}\right)^{p},\left(-3^{2}\right)^{p}, \ldots,\left(-j^{2}\right)^{p}\right)\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1^{2} & 3^{2} & \ldots & j^{2} \\
\vdots & \vdots & \vdots & \vdots \\
1^{j} & 3^{j} & \ldots & j^{j}
\end{array}\right)^{-1}\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
(-1)^{\frac{j-1}{2}} j!
\end{array}\right)
\end{aligned}
$$

Finally, as before

$$
\begin{aligned}
& \left(\begin{array}{c}
g_{1}^{j} \\
g_{3}^{j} \\
\vdots \\
g_{2 \beta+1}^{j}
\end{array}\right)=(-1)^{\frac{j-1}{2}} j!\operatorname{diag}\left\{\frac{1}{t_{1}^{k+1}}, \ldots, \frac{1}{t_{1}^{k+1+2 \beta}}\right\} \\
& \times\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
(k+1)^{2} & (k+3)^{2} & \ldots & (k+1+2 \beta)^{2} \\
\vdots & \vdots & \vdots & \vdots \\
(k+1)^{2 \beta} & (k+3)^{2 \beta} & \ldots & (k+1+2 \beta)^{2 \beta}
\end{array}\right)^{-1} \\
& \times\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1^{2} & 3^{2} & \ldots & j^{2} \\
\vdots & \vdots & \vdots & \vdots \\
1^{2 \beta} & 3^{2 \beta} & \ldots & j^{2 \beta}
\end{array}\right)\left(\begin{array}{c}
\prod_{t=0, t \neq 0}^{(j-1) / 2}\left(1^{2}-(2 t+1)^{2}\right)^{-1} \\
\prod_{t=0, t \neq 1}^{(j-1) / 2}\left(3^{2}-(2 t+1)^{2}\right)^{-1} \\
\substack{(j-1) / 2} \\
t=0, t(j-1) / 2
\end{array}\left(j^{2}-(2 t+1)^{2}\right)^{-1}\right) \\
& =:(-1)^{\frac{j-1}{2}} j!\operatorname{diag}\left\{\frac{1}{t_{1}^{k+1}}, \ldots, \frac{1}{t_{1}^{k+1+2 \beta}}\right\} \mathbf{J}_{\mathbf{1}}\binom{\prod_{t=0, t \neq 0}^{(j-1) / 2}\left(1^{2}-(2 t+1)^{2}\right)^{-1}}{\prod_{t=0,(j-1) / 2}^{(j-1) / 2}\left(j^{2}-(2 t+1)^{2}\right)^{-1}} .
\end{aligned}
$$

The matrix $\mathbf{J}_{\mathbf{1}}$ is of size $(\beta+1) \times((j-1) / 2+1)$ and its entries are

$$
j_{a}^{b}=\frac{\prod_{d=0, d \neq a}^{\beta}\left((2 b+1)^{2}-(k+2 d+1)^{2}\right)}{\prod_{d=0, d \neq a}^{\beta}\left((k+2 a+1)^{2}-(k+2 d+1)^{2}\right)} .
$$

Hence,

$$
\begin{align*}
g_{2 a+1}^{j}= & \frac{(-1)^{\frac{j-1}{2}+a+\frac{k}{2}} j!}{(k+2 a+1) \prod_{d=0, d \neq a}^{\lfloor l / 2\rfloor-1}\left((k+2 a+1)^{2}-(k+2 d+1)^{2}\right)} \\
& \times \sum_{b=0}^{(j-1) / 2} \frac{\prod_{d=0, d \neq a}^{(j-1) / 2}\left((2 b+1)^{2}-(k+2 d+1)^{2}\right)}{\prod_{d=0, d \neq b}^{\lfloor l / 2\rfloor-1}\left((2 b+1)^{2}-(2 d+1)^{2}\right)}, \tag{3.11}
\end{align*}
$$

and the claim follows.

Remark 3.3. Following the ideas of the proof of Lemma 3.2, one can establish an explicit formula for the elements of the inverse of any submatrix $\mathbf{T}_{\mathbf{k}, \mathbf{1}, \mathbf{m}}:=\left(t_{m+i}^{k+j}\right)_{i, j=0}^{l-1}$ of $\mathbf{T}_{\mathbf{n}}$ with even k and m.

Remark 3.4. For any $n \in \mathbb{N}$, the entry h_{i}^{j} of the matrix $\mathbf{T}_{\mathbf{n}}^{\mathbf{- 1}}$ is zero if $2 \nmid i+j$ or $i>j$, otherwise can be found by

$$
h_{2 i}^{2 j}=2^{\delta_{i}-2 j}\binom{2 j}{j-i}, \quad h_{2 i+1}^{2 j+1}=2^{\delta_{i}-2 j}\binom{2 j+1}{j-i},
$$

where

$$
\delta_{i}:= \begin{cases}0, & \text { if } i=0, \\ 1, & \text { if } i \neq 0 .\end{cases}
$$

Proof. Noting that, for $b \neq a$,

$$
\prod_{d=0, d \neq a}^{\lceil n / 2\rceil-1}\left((2 b)^{2}-(2 d)^{2}\right)=0,
$$

we obtain $h_{2 i}^{2 j}=0$, for $i>j$, and otherwise due to (3.8),

$$
h_{0}^{2 j}=\frac{(2 j)!}{((2 j)!!)^{2}}=2^{-2 j}\binom{2 j}{j},
$$

and

$$
\begin{aligned}
h_{2 i}^{2 j}=\frac{(-1)^{j+i}(2 j)!}{\prod_{d=0, d \neq i}^{\lceil n / 2\rceil-1}\left((2 i)^{2}-(2 d)^{2}\right)} \frac{\prod_{d=0, d \neq i}^{\lceil n / 2\rceil-1}\left((2 i)^{2}-(2 d)^{2}\right)}{\prod_{d=0, d \neq i}^{j}\left((2 i)^{2}-(2 d)^{2}\right)} & =\frac{(-1)^{j+i}(2 j)!}{(2 i)!!(-1)^{j-i}(2 j-2 i)!!(2 j+2 i)!!}(2 i-2)!!4 i \\
& =\frac{2^{1-2 j}(2 j)!}{(j-i)!(j+i)!}=2^{1-2 j}\binom{2 j}{j-i},
\end{aligned}
$$

if $i>0$.
For odd entries, once more we get $h_{2 i+1}^{2 j+1}=0$ for $i>j$, otherwise from (3.11),

$$
h_{1}^{2 j+1}=\frac{(2 j+1)!}{(2 j+2)!!(2 j)!!}=2^{-2 j}\binom{2 j+1}{j},
$$

and

$$
h_{2 i+1}^{j}=\frac{(-1)^{j+i}(2 j+1)!(-1)^{j-i}(2 i)!!(4 i+2)}{(2 i+1)(2 i)!!(2 j-2 i)!!(2 i+2 j+2)!!}=2^{1-2 j}\binom{2 j+1}{j-i},
$$

if $i>0$, so the proof is complete.
Corollary 3.5. There holds

$$
\left.\left(\cos ^{2 j}\right)^{(2 p)}\right|_{x=\pi / 2}=: y_{p}^{2 j}=(-4)^{p-j} \sum_{k=0}^{2 j}(-1)^{k}\binom{2 j}{k}(j-k)^{2 p} .
$$

Proof. It follows from (3.7) that

$$
\begin{aligned}
y_{p}^{2 j} & =(-1)^{j}(2 j)!\left(\left(-0^{2}\right)^{p}, \quad\left(-2^{2}\right)^{p}, \quad \ldots, \quad\left(-(2 j)^{2}\right)^{p}\right)\left(\begin{array}{c}
\prod_{t=0, t \neq 0}^{j}\left(-(2 t)^{2}\right)^{-1} \\
\prod_{t=0, t \neq 1}^{j}\left(2^{2}-(2 t)^{2}\right)^{-1} \\
\vdots \\
\prod_{t=0, t \neq j}^{j}\left((2 j)^{2}-(2 t)^{2}\right)^{-1}
\end{array}\right) \\
& =(-1)^{p+j}(2 j)!\sum_{a=0}^{j} \frac{(2 a)^{2 p}}{\prod_{t=0, t \neq a}^{j}\left((2 a)^{2}-(2 t)^{2}\right)}=(-4)^{p} 2^{-2 j} \sum_{a=0}^{j}(-1)^{a}\binom{2 j}{j-a} a^{2 p} 2^{\delta_{a}} \\
& =(-4)^{p-j} \sum_{k=0}^{2 j}(-1)^{k}\binom{2 j}{k}(j-k)^{2 p},
\end{aligned}
$$

where δ_{a} is as in Remark 3.4, and we are done.

3.2 Proof of Theorem 3.1

Now we are ready to prove the main theorem.
Proof of Theorem 3.1. For the sake of clarity, let us split the proof into three main parts.

3.2.1 Finding a sufficient condition for (3.1) to hold

First we note that (3.1) is equivalent to

$$
\left(\begin{array}{cccc}
t_{0}^{2 s} & t_{0}^{2 s+2} & \ldots & t_{0}^{2 r} \\
t_{2}^{2 s} & t_{2}^{2 s+2} & \ldots & t_{2}^{2 r} \\
\vdots & \vdots & \vdots & \vdots \\
t_{2 p-2}^{2 s} & t_{2 p-2}^{2 s+2} & \ldots & t_{2 p-2}^{2 r}
\end{array}\right)\left(\begin{array}{c}
b_{s} \\
b_{s+1} \\
\vdots \\
b_{r}
\end{array}\right)=\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{p-1}
\end{array}\right)
$$

Pick some $k \in\{s, s+1, \ldots, r\}$ and take the $(2 q)$ th derivative of the equality

$$
\cos 2 k x \equiv \sum_{l=0}^{k} t_{2 l}^{2 k} \cos ^{2 l} x
$$

where $q \in\{0,1, \ldots, p-1\}$, at the point $\pi / 2$. What we get is

$$
(-1)^{q}(2 k)^{2 q} t_{0}^{2 k}=\left.\sum_{l=0}^{k} t_{2 l}^{2 k}\left(\cos ^{2 l} x\right)^{(2 q)}\right|_{x=\pi / 2}
$$

which is equivalent to

$$
(-1)^{q+k}(2 k)^{2 q}=\sum_{l=0}^{k} t_{2 l}^{2 k} y_{q}^{2 l}
$$

From the relations above for all k and q in the mentioned ranges, we derive

$$
\begin{aligned}
\left(\begin{array}{cccc}
y_{0}^{0} & y_{0}^{2} & \ldots & y_{0}^{2 p-2} \\
y_{1}^{0} & y_{1}^{2} & \ldots & y_{1}^{2 p-2} \\
\vdots & \vdots & \vdots & \vdots \\
y_{p-1}^{0} & y_{p-1}^{2} & \ldots & y_{p-1}^{2 p-2}
\end{array}\right) & \left(\begin{array}{cccc}
t_{0}^{2 s} & t_{0}^{2 s+2} & \ldots & t_{0}^{2 r} \\
t_{2}^{2 s} & t_{2}^{2 s+2} & \ldots & t_{2}^{2 r} \\
\vdots & \vdots & \vdots & \vdots \\
t_{2 p-2}^{2 s} & t_{2 p-2}^{2 s+2} & \ldots & t_{2 p-2}^{2 r}
\end{array}\right) \\
& =N_{p}\left(\begin{array}{ccccc}
(2 s)^{0} & (2 s+2)^{0} & \ldots & (2 r)^{0} \\
(2 s)^{2} & (2 s+2)^{2} & \ldots & (2 r)^{2} \\
\vdots & \vdots & \vdots & \vdots \\
(2 s)^{2 p-2} & (2 s+2)^{2 p-2} & \ldots & (2 r)^{2 p-2}
\end{array}\right) N_{r-s+1}
\end{aligned}
$$

where N_{j} is a square diagonal matrix of size j with its entries belonging to the even columns equal 1 , while the entries belonging to the odd ones, equal -1 . Thus,

$$
\begin{align*}
\left(\begin{array}{cccc}
t_{0}^{2 s} & t_{0}^{2 s+2} & \ldots & t_{0}^{2 r} \\
t_{2}^{2 s} & t_{2}^{2 s+2} & \ldots & t_{2}^{2 r} \\
\vdots & \vdots & \vdots & \vdots \\
t_{2 p-2}^{2 s} & t_{2 p-2}^{2 s+2} & \ldots & t_{2 p-2}^{2 r}
\end{array}\right)= & \left(\begin{array}{cccc}
y_{0}^{0} & y_{0}^{2} & \ldots & y_{0}^{2 p-2} \\
\frac{y_{1}^{0}}{4} & \frac{y_{1}^{2}}{4} & \ldots & \frac{y_{1}^{2 p-2}}{4} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{y_{p-1}^{0}}{2^{2 p-2}} & \frac{y_{p-1}^{2}}{2^{2 p-2}} & \ldots & \frac{y_{p-1}^{2 p-2}}{2^{2 p-2}}
\end{array}\right)^{-1} \\
& \times N_{p}\left(\begin{array}{cccc}
s^{0} & (s+1)^{0} & \ldots & r^{0} \\
s^{2} & (s+1)^{2} & \ldots & r^{2} \\
\vdots & \vdots & \vdots & \vdots \\
s^{2 p-2} & (s+1)^{2 p-2} & \ldots & r^{2 p-2}
\end{array}\right) N_{r-s+1} \tag{3.12}
\end{align*}
$$

Let Y be a square matrix of size $2 p$ such that the matrix generated by the odd rows and the odd columns of Y (as before, we start enumerating from zero) is the identity matrix, an entry belonging to the $(2 u)$ th column and $(2 k)$ th row is equal to $2^{-2 k} y_{k}^{2 u}$, the other entries are zeros. Then Y is invertible due to invertibility of the identity matrix and that of the matrix $\left(2^{-2 i} y_{i}^{2 j}\right)_{i, j=0}^{p-1}$. Therefore, it follows from (3.12) that there exist $\tau_{2 i+1}^{2 j}, i=0, \ldots, p-1, j=s, s+1, \ldots, r$, such that

$$
\begin{align*}
T:=\left(\begin{array}{cccc}
t_{0}^{2 s} & t_{0}^{2 s+2} & \ldots & t_{0}^{2 r} \\
\tau_{1}^{2 s} & \tau_{1}^{2 s+2} & \ldots & \tau_{1}^{2 r} \\
t_{2}^{2 s} & t_{2}^{2 s+2} & \ldots & t_{2}^{2 r} \\
\tau_{3}^{2 s} & \tau_{3}^{2 s+2} & \ldots & \tau_{3}^{2 r} \\
\vdots & \vdots & \vdots & \vdots \\
t_{2 p-2}^{2 s} & t_{2 p-2}^{2 s+2} & \ldots & t_{2 p-2}^{2 r} \\
\tau_{2 p-1}^{2 s} & \tau_{2 p-1}^{2 s+2} & \ldots & \tau_{2 p-1}^{2 r}
\end{array}\right) & =Y^{-1} \tilde{N}_{p}\left(\begin{array}{cccc}
s^{0} & (s+1)^{0} & \ldots & r^{0} \\
s^{1} & (s+1)^{1} & \ldots & r^{1} \\
s^{2} & (s+1)^{2} & \ldots & r^{2} \\
s^{3} & (s+1)^{3} & \ldots & r^{3} \\
\vdots & \vdots & \vdots & \vdots \\
s^{2 p-2} & (s+1)^{2 p-2} & \ldots & r^{2 p-2} \\
s^{2 p-1} & (s+1)^{2 p-1} & \ldots & r^{2 p-1}
\end{array}\right) N_{r-s-1} \\
& =: Y^{-1} \tilde{N}_{p} V N_{r-s+1} . \tag{3.13}
\end{align*}
$$

Here \tilde{N}_{j} stands for a square matrix of size $2 j$ having N_{j} in the intersection of the even columns and the even rows, E_{j} in the intersection of the odd columns and the odd rows, and the other entries equal zero.

Note that if we make $\mathbf{b}:=\left(b_{s}, \ldots, b_{r}\right)^{T}$ satisfy the equality

$$
T \mathbf{b}=\mathbf{a},
$$

where $\mathbf{a}:=\left(a_{0}, 0, a_{1}, 0, \ldots, a_{p-1}, 0\right)^{T}$, then condition (3.1) will be fulfilled.

3.2.2 Constructing a vector of coefficients

Let

$$
\mathbf{b}:=T^{*}\left(T T^{*}\right)^{-1} \mathbf{a} .
$$

Since using (3.13) we have

$$
\begin{aligned}
T^{\dagger}:=\left(T T^{*}\right)^{-1} T & =\left(Y^{-1} \tilde{N}_{p} V N_{r-s+1} N_{r-s+1}^{*} V^{*} \tilde{N}_{p}^{*}\left(Y^{-1}\right)^{*}\right)^{-1} Y^{-1} \tilde{N}_{p} V N_{r-s+1} \\
& =Y^{*} \tilde{N}_{p}\left(V V^{*}\right)^{-1} V N_{r-s+1},
\end{aligned}
$$

the definition of \mathbf{b} is equivalent to

$$
\begin{align*}
\left(b_{s}, \ldots, b_{r}\right) & =\left(a_{0}, 0, \ldots, a_{p-1}, 0\right) Y^{*} \tilde{N}_{p}\left(V V^{*}\right)^{-1} V N_{r-s+1} \\
& =:\left(a_{0}, 0, \ldots, a_{p-1}, 0\right) Y^{*} \tilde{N}_{p} V^{\dagger} N_{r-s+1}, \tag{3.14}
\end{align*}
$$

where V^{\dagger} is the pseudoinverse for the Vandermonde matrix V. Note that

$$
V V^{*}=W W^{*}-Z Z^{*},
$$

where $W=\left(w_{i}^{j}\right), w_{i}^{j}:=(j+1)^{i}, j=0, \ldots, r-1, i=0, \ldots, 2 p-1, \quad Z=\left(z_{i}^{j}\right), z_{i}^{j}:=$ $(j+1)^{i}, j=0, \ldots, s-2, i=0, \ldots, 2 p-1$. According to [29, (10)], the condition number of $W W^{*}$ is

$$
\hat{\kappa}=\frac{(2 p)^{2}}{4 p-1} r^{4 p-2}
$$

The maximal entry of $W W^{*}$ is greater than $r^{4 p-1} /(4 p-1)$, therefore the l^{2}-norm of this matrix exceeds this value. Thus, $\left\|\left(W W^{*}\right)^{-1}\right\|_{2}<\hat{\kappa}(4 p-1) / r^{4 p-1}<8 p^{2} / r$. In turn, $\left\|Z Z^{*}\right\|_{2}<(s-1)^{4 p-1}$, which yields $\left\|\left(W W^{*}\right)^{-1}\right\|_{2}\left\|Z Z^{*}\right\|_{2} \leq 8 p^{2} s^{4 p-1} / r \leq 0.5$. So, we have the following representation

$$
\begin{equation*}
\left(V V^{*}\right)^{-1}=\left(W W^{*}-Z Z^{*}\right)^{-1}=\sum_{k=0}^{\infty}\left(\left(W W^{*}\right)^{-1} Z Z^{*}\right)^{k}\left(W W^{*}\right)^{-1}=:\left(E_{2 p}+X\right)\left(W W^{*}\right)^{-1} \tag{3.15}
\end{equation*}
$$

where $E_{2 p}$ is the identity matrix of size $2 p$ and

$$
\begin{equation*}
\|X\|_{2}<\frac{8 p^{2} s^{4 p-1}}{r-8 p^{2} s^{4 p-1}} \tag{3.16}
\end{equation*}
$$

Due to [29, relation before Prop. 3], for entries of $W^{\dagger}=\left(W W^{*}\right)^{-1} W$ we have (taking into account that we enumerate from zero)

$$
\begin{align*}
\left(W^{\dagger}\right)_{q, k} & =(-1)^{q} \sum_{w=q}^{2 p-1} \frac{1}{w!} s(w+1, q+1) \sum_{t=w}^{2 p-1} \frac{\binom{t+w}{w}\binom{r-w-1}{r-t-1}}{\binom{2 t}{t}\binom{r+t}{2 t+1}} \\
& \times \sum_{j=0}^{\min (t, k)}(-1)^{j+1}\binom{k}{j}\binom{j+t}{j}\binom{r-j-1}{r-t-1}, \tag{3.17}
\end{align*}
$$

where $s(w+1, q+1)$ is the Stirling number of the first kind. Further, we have from Corollary 3.5

$$
\begin{equation*}
y_{q}^{2 u}=(-4)^{q-u} \sum_{v=0}^{2 u}(-1)^{v}\binom{2 u}{v}(u-v)^{2 q}, \tag{3.18}
\end{equation*}
$$

hence, there holds

$$
\left.\begin{array}{rl}
\left(Y^{*} \tilde{N}_{p} W^{\dagger}\right)_{2 u, k} & =(-4)^{-u} \sum_{v=0}^{2 u}(-1)^{v}\binom{2 u}{v} \sum_{w=0}^{2 p-1} \frac{1}{w!} \sum_{q=0}^{\lfloor w / 2\rfloor}(-1)^{q}(u-v)^{2 q} s(w+1,2 q+1) \\
& \left.\times \sum_{t=w}^{2 p-1} \frac{\binom{t+w}{w}}{\binom{r-w-1}{r-t-1}} \begin{array}{c}
r+t \\
t
\end{array}\right) \tag{3.19}\\
2 t+1
\end{array}\right) \sum_{j=0}^{\min (t, k)}(-1)^{j+1}\binom{k}{j}\binom{j+t}{j}\binom{r-j-1}{r-t-1} . ~ \$
$$

3.2.3 Estimating T^{\dagger}

First, by the definition of Stirling numbers, $s(w+1,2 q+1)$ is the coefficient at $x^{2 q+1}$ of the polynomial $x(x+1) \ldots(x+w)$, which is the same as to be the coefficient at $x^{2 q}$ of the polynomial $(x+1) \ldots(x+w)$. Thus,

$$
\begin{align*}
\sum_{q=0}^{\lfloor w / 2\rfloor} s(w+1,2 q+1)(-1)^{q}(u-v)^{2 q} & =\operatorname{Re}(i(u-v)+1) \ldots(i(u-v)+w) \\
& <\frac{(|u-v|+w)!}{|u-v|!} . \tag{3.20}
\end{align*}
$$

To obtain upper bounds for the sum

$$
A(t, k, r):=\sum_{j=0}^{\min (k, t)}(-1)^{j}\binom{k}{j}\binom{j+t}{j}\binom{r-j-1}{r-t-1}
$$

that appears in (3.19), we need the following
Lemma 3.6. Let $t, q, k, r \in \mathbb{N}$ be such that $q \geq t \geq 2$.
a) If $r \geq q+2 q^{2}$ and $r-q-1 \geq k \geq q$, then

$$
\begin{align*}
|A(t, k, r)| & =\left|\sum_{j=0}^{\min (k, t)}(-1)^{j}\binom{k}{j}\binom{j+t}{j}\binom{r-j-1}{r-t-1}\right| \\
& \leq 4\left(\frac{q}{r-1-q}\right)^{q-t}\binom{r-1}{t} . \tag{3.21}
\end{align*}
$$

b) If $r \geq 2 t^{3}+t$ and $k<t$, then

$$
\begin{equation*}
|A(t, k, r)|<\binom{r-1}{t} \tag{3.22}
\end{equation*}
$$

c) If $r \geq 2 L^{t} t^{1.5}$, where $L:=(\sqrt{2}+1)^{1+\frac{1}{\sqrt{2}}}(\sqrt{2}-1)^{-1+\frac{1}{\sqrt{2}}} 2^{-\frac{1}{2 \sqrt{2}}}$, and $t \leq k \leq r-1$, then

$$
\begin{equation*}
|A(t, k, r)|<3\binom{r-1}{t} \tag{3.23}
\end{equation*}
$$

Proof. a) We begin with estimate (3.21) and the proof will be divided into several steps.
Step 1. Algebraic representation of $A(t, k, r)$. It turns out that the sum of products of binomial coefficients $A(t, k, r)$ has the following algebraic meaning: it represents the coefficient at $x^{t} y^{k}$ of the Taylor expansion at zero of the function

$$
G(x, y):=\frac{(1+y)^{k}}{(1+x y)^{t+1}(1-x)^{r-t}}
$$

Indeed,

$$
\begin{aligned}
\binom{r-j-1}{r-t-1} & =\binom{r-j-1}{t-j}=\frac{(r-j-1)(r-j-2) \ldots(r-t)}{(t-j)!} \\
& =(-1)^{t-j} \frac{(-(r-t))(-(r-t+1)) \ldots(-(r-j-1))}{(t-j)!}=(-1)^{t-j}\binom{-r+t}{t-j}
\end{aligned}
$$

so we have for $k \geq q \geq t$

$$
\begin{aligned}
A(t, k, r) & =\sum_{j=0}^{\min (k, t)}(-1)^{j}\binom{k}{j}\binom{j+t}{j}\binom{r-j-1}{r-t-1} \\
& =\sum_{j=0}^{\min (k, t)}\binom{k}{j}\binom{-t-1}{j}(-1)^{t-j}\binom{-r+t}{t-j}
\end{aligned}
$$

which corresponds to the mentioned coefficient.
Take some $\varepsilon \in(0,1)$ and let $\delta=t / r$. By Cauchy's formulas,

$$
\begin{aligned}
& A(t, k, r)=\frac{1}{(2 \pi i)^{2}} \iint_{|y|=\varepsilon|x|=\varepsilon} G(x, y) x^{-t-1} y^{-k-1} d x d y=\frac{1}{(2 \pi i)^{2}} \int_{|y|=\varepsilon} \frac{(1+y)^{k}}{y^{k+1}} \\
& \times\left(\int_{|x|=\varepsilon^{\delta-1}} \frac{1}{(1+x y)^{t+1}(1-x)^{r-t} x^{t+1}} d x-2 \pi i \operatorname{res}_{x=1} \frac{1}{(1+x y)^{t+1}(1-x)^{r-t} x^{t+1}}\right) d y \\
& \\
& =: S_{1}+S_{2}
\end{aligned}
$$

Step 2. Estimating S_{2}. We have

$$
\begin{aligned}
\operatorname{res}_{x=1} \frac{1}{(1+x y)^{t+1}(1-x)^{r-t} x^{t+1}} & =\left.\frac{(-1)^{r-t}}{(r-t-1)!}\left(\frac{1}{(1+x y)^{t+1} x^{t+1}}\right)^{(r-t-1)}\right|_{x=1} \\
& =\left.\frac{(-1)^{r-t}}{(r-t-1)!} \sum_{l=0}^{r-t-1}\left(\frac{1}{x^{t+1}}\right)^{(l)}\left(\frac{1}{(1+x y)^{t+1}}\right)^{(r-t-1-l)}\right|_{x=1} \\
& =\frac{-1}{(r-t-1)!} \sum_{l=0}^{r-t-1} \frac{(t+l)!}{t!} \frac{(r-l-1)!}{t!} \frac{y^{r-t-1-l}}{(1+y)^{r-l}}
\end{aligned}
$$

hence, S_{2} is the coefficient at y^{0} of the Laurent expansion of the function

$$
\begin{aligned}
& \frac{(1+y)^{k}}{y^{k}} \frac{-1}{(r-t-1)!} \sum_{l=0}^{r-t-1} \frac{(t+l)!}{t!} \frac{(r-l-1)!}{t!} \frac{y^{r-t-1-l}}{(1+y)^{r-l}} \\
= & \frac{-1}{(r-t-1)!(t!)^{2}} \sum_{l=0}^{r-t-1}(t+l)!(r-l-1)!y^{r-t-1-l-k} \sum_{j=0}^{\infty}\binom{-r+l+k}{j} y^{j} .
\end{aligned}
$$

Note that for l satisfying $r-t-1-l-k>0$, the coefficient of the corresponding term at y^{0} is zero, therefore it suffices to consider just $l \geq r-t-1-k$. At the same time, if $-r+l+k \geq 0$, then $-(r-t-1-l-k)=-r+t+1+l+k>-r+l+k$, so $\binom{-r+l+k}{-(r-t-1-l-k)}=0$, which means that for $l \geq r-k$ the corresponding term is zero. Hence,

$$
\begin{aligned}
S_{2} & =\frac{-1}{(r-t-1)!(t!)^{2}} \sum_{l=r-t-1-k}^{r-k-1}(t+l)!(r-l-1)!\binom{-r+l+k}{-r+t+1+l+k} \\
& =-\sum_{l=r-t-1-k}^{r-k-1}(-1)^{r-t-1-l-k} \frac{(t+l)!(r-l-1)!(r-l-k-1-r+t+1+l+k)!}{(r-t-1)!(t!)^{2}(-r+t+1+l+k)!(r-l-k-1)!} \\
& =-\sum_{m=0}^{t}(-1)^{m} \frac{(r-1-k+m)!(t+k-m)!}{(r-t-1)!t!m!(t-m)!}=:-\sum_{m=0}^{t}(-1)^{m} D_{m}(r, t, k) .
\end{aligned}
$$

Step 2.1. Estimating D_{m}. Note that

$$
\frac{D_{m}(r, t, k+1)}{D_{m}(r, t, k)}=\frac{t+k+1-m}{r-1-k+m}
$$

and since $q<\frac{r-t}{2}-1+m<r-q-1$, the maximum of the above expression is attained either at $k=q$ or at $k=r-1-q$.

For $k=q$, we have

$$
\frac{D_{m+1}(r, t, q)}{D_{m}(r, t, q)}=\frac{(r-q+m)(t-m)}{(m+1)(t+q-m)}=\frac{r t-q t+m t-r m+q m-m^{2}}{m t+t+q m+q-m^{2}-m}>1,
$$

since

$$
r t-q t-r m \geq r-q t \geq t+q \geq t+q-m .
$$

Thus, $D_{m}(r, t, q)$ is maximal at $m=t$ and

$$
D_{t}(r, t, q)=\frac{(r-1-q+t)!q!}{(r-t-1)!(t!)^{2}} \leq\left(\frac{q}{r-1-q}\right)^{q-t}\binom{r-1}{t} .
$$

For $k=r-1-q$, we have

$$
\begin{aligned}
\frac{D_{m+1}(r, t, r-1-q)}{D_{m}(r, t, r-1-q)} & =\frac{(q+m+1)(t-m)}{(m+1)(r-1+t-q-m)} \\
& =\frac{q t+m t+t-q m-m^{2}-m}{r m+r-2 m-1+t m+t-q m-q-m^{2}}<1,
\end{aligned}
$$

in light of

$$
r m+r-m-1+t-q \geq r-1-q \geq q t+t .
$$

Thus, $D_{m}(r, t, r-1-q)$ is maximal at $m=0$ and

$$
D_{0}(r, t, r-1-q)=\frac{q!(r-1+t-q)!}{(r-t-1)!(t!)^{2}} \leq\left(\frac{q}{r-1-q}\right)^{q-t}\binom{r-1}{t}
$$

Finally,

$$
\left|S_{2}\right| \leq 4\left(\frac{q}{r-1-q}\right)^{q-t}\binom{r-1}{t}
$$

Step 3. Estimating S_{1}. Observe that for small enough ε and $|y|=\varepsilon,|x|=\varepsilon^{\delta-1}$, the function $\left|G(x, y) x^{-t-1} y^{-k-1}\right|$ is equivalent to

$$
\varepsilon^{-(\delta-1)(r-t)} \varepsilon^{-k-1} \varepsilon^{-(\delta-1)(t+1)},
$$

then

$$
\left|S_{1}\right| \lesssim \varepsilon \varepsilon^{\delta-1} \varepsilon^{-(\delta-1)(r-t)-k-1-(\delta-1)(t+1)}=\varepsilon^{r-t-k} \leq \varepsilon^{q+1-t} \underset{\varepsilon \rightarrow 0}{\rightarrow} 0,
$$

whence we get (3.21).
b) Turn now to (3.22) for $r \geq 2 t^{3}+t$ and $k<t$. We have

$$
\begin{aligned}
A(t, k, r) & =\sum_{j=0}^{\min (k, t)}(-1)^{j} \frac{k!}{j!(k-j)!} \frac{(j+t)!}{j!t!} \frac{(r-j-1)!}{(t-j)!(r-t-1)!} \\
& =\frac{(r-1)!}{t!(r-t-1)!} \sum_{j=0}^{t}(-1)^{j}\binom{t}{j}\binom{t+j}{j} \frac{k(k-1) \ldots(k-j+1)}{(r-1)(r-2) \ldots(r-j)} .
\end{aligned}
$$

For all j, there holds

$$
\binom{t}{j}\binom{t+j}{j} \frac{k(k-1) \ldots(k-j+1)}{(r-1)(r-2) \ldots(r-j)}<t^{j}(2 t)^{j} \frac{t^{j}}{(r-t)^{j}} \leq 1
$$

since $r \geq 2 t^{3}+t$. Note that the expression above decreases. Indeed, going from j to $j+1$ we get our value changed by

$$
\frac{(j+t+1)(k-j)(t-j)}{(r-j-1)(j+1)^{2}}<\frac{2 t \cdot t^{2}}{r-t} \leq 1
$$

Therefore, we derive

$$
A(t, k, r)<\binom{r-1}{t}
$$

c) Now we have only to prove (3.23) under the mentioned conditions. Divide our sum into two sums in the following way:

$$
\begin{aligned}
A(t, k, r) & =\binom{r-1}{t} \sum_{j=0}^{t}(-1)^{j}\binom{t}{j}\binom{t+j}{j}\left(\frac{k+1}{r}\right)^{j} \\
& +\binom{r-1}{t} \sum_{j=1}^{t}(-1)^{j}\binom{t}{j}\binom{t+j}{j}\left(\frac{k \ldots(k-j+1)}{(r-1) \ldots(r-j)}-\left(\frac{k+1}{r}\right)^{j}\right) \\
& =\binom{r-1}{t}\left(S_{3}+S_{4}\right) .
\end{aligned}
$$

Step 1. Estimating S_{3}. Since

$$
\begin{aligned}
\binom{t+j}{j}=\frac{(t+j)(t+j-1) \ldots(t+1)}{j!} & =(-1)^{j} \frac{(-t-1)(-t-2) \ldots(-t-j)}{j!} \\
& =(-1)^{j}\binom{-t-1}{j}
\end{aligned}
$$

we have

$$
S_{3}=\sum_{j=0}^{t}\binom{t}{t-g}\binom{-t-1}{j}\left(\frac{k+1}{r}\right)^{j}=\left.\frac{1}{t!}\left((1+x)^{t}\left(1+\left(\frac{k+1}{r}\right) x\right)^{-t-1}\right)^{(t)}\right|_{x=0}
$$

To estimate this value, we will need the following
Lemma 3.7. For any positive integer n and any $\gamma \in(0,1)$, there holds

$$
\left|c_{n}^{\gamma}\right|: \left.=\frac{1}{n!}\left|\left((1+x)^{n}(1+\gamma x)^{-n-1}\right)^{(n)}\right|_{x=0} \right\rvert\, \leq 2
$$

and $\left|c_{n}^{0}\right|=\left|c_{n}^{1}\right|=1$.
Proof. Fix some $n \in \mathbb{N}$. We have

$$
\begin{aligned}
h(x):=(1+x)^{n}(1+\gamma x)^{-n-1} & =\left(\frac{1}{\gamma}+\frac{1-\frac{1}{\gamma}}{1+\gamma x}\right)^{n} \frac{1}{1+\gamma x} \\
& =\sum_{g=0}^{n}\binom{n}{g}\left(\frac{1}{\gamma}\right)^{g} \frac{\left(1-\frac{1}{\gamma}\right)^{n-g}}{(1+\gamma x)^{n-g+1}}
\end{aligned}
$$

whence

$$
\frac{1}{n!} h^{(n)}(x)=\frac{1}{n!} \sum_{g=0}^{n}\binom{n}{g} \frac{\left(1-\frac{1}{\gamma}\right)^{n-g}}{\gamma^{g}} \frac{(-1)^{n} \gamma^{n}}{(1+\gamma x)^{2 n-g+1}} \frac{(2 n-g)!}{(n-g)!}
$$

Making the change of variable $r=n-g$, we obtain

$$
\begin{aligned}
\frac{1}{n!} h^{(n)}(0) & =\frac{(-1)^{n}}{n!} \sum_{r=0}^{n}(\gamma-1)^{r}\binom{n}{n-r} \frac{(n+r)!}{r!} \\
& =(-1)^{n} \sum_{r=0}^{n}(1-\gamma)^{r}(-1)^{r} \frac{(n+r)!}{(n-r)!(r!)^{2}} \\
& =(-1)^{n} \sum_{r=0}^{n}(1-\gamma)^{r}(-1)^{r}\binom{n+r}{r}\binom{n}{n-r} \\
& =(-1)^{n} \sum_{r=0}^{n}(1-\gamma)^{r}\binom{-n-1}{r}\binom{n}{n-r} \\
& =\left.(-1)^{n} \frac{1}{n!}\left((1+x)^{n}(1+(1-\gamma) x)^{-n-1}\right)^{(n)}\right|_{x=0} .
\end{aligned}
$$

Hence, $c_{n}^{\gamma}=(-1)^{n} c_{n}^{1-\gamma}$. Therefore, it is enough to prove the claim only for $\gamma \in(0,1 / 2]$, and separately, for $\gamma=0$.

Let $\gamma \in(0,1 / 2]$. Note that the function $h(x):=(1+x)^{n}(1+\gamma x)^{-n-1}$ is analytic inside the circle of radius $1 / \sqrt{\gamma}$. Let $x=(a+b i) / \sqrt{\gamma}, a^{2}+b^{2}=1$, then

$$
\left|\frac{1+x}{1+\gamma x}\right|^{2}=\frac{1+\frac{a^{2}}{\gamma}+\frac{2 a}{\sqrt{\gamma}}+\frac{b^{2}}{\gamma}}{1+\gamma a^{2}+2 \sqrt{\gamma} a+\gamma b^{2}}=\frac{1}{\gamma} .
$$

Thus, the maximum of the function $h(x)$ on the circle $|x|=1 / \sqrt{\gamma}$ cannot exceed $\gamma^{-n / 2} /(1-$ γ) and due to Cauchy's inequalities,

$$
\left|c_{n}^{\gamma}\right| \leq(1 / \sqrt{\gamma})^{-n} \gamma^{-n / 2} /(1-\gamma)=(1-\gamma)^{-1} \leq 2 .
$$

For $\gamma=0$, we have $h(x)=(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$, whence $c_{n}=1$.
Thus, Lemma 3.7 gives

$$
\begin{equation*}
\left|S_{3}\right| \leq 2 . \tag{3.24}
\end{equation*}
$$

Step 2. Estimating S_{4}. For any $j=1, \ldots, t$, there holds

$$
\begin{equation*}
0<\left(\frac{k+1}{r}\right)^{j}-\frac{k \ldots(k-j)}{(r-1) \ldots(r-j)}<\left(\frac{k+1}{r}\right)^{j}-\left(\frac{k+1-t}{r}\right)^{j}<\frac{j(k+1)^{j-1}}{r^{j}} \leq \frac{1}{r} \tag{3.25}
\end{equation*}
$$

By Stirling's formula,

$$
\begin{align*}
\binom{t}{j}\binom{t+j}{j}=\frac{(t+j)!}{(t-j)!(j!)^{2}}<\sqrt{t+j} \frac{(t+j)^{t+j}}{(t-j)^{t-j} j^{2 j}} & \leq \sqrt{t+\frac{t}{\sqrt{2}}}\left(\frac{\left(1+\frac{1}{\sqrt{2}}\right)^{1+\frac{1}{\sqrt{2}}}}{\left(1-\frac{1}{\sqrt{2}}\right)^{1-\frac{1}{\sqrt{2}}} 2^{-\frac{1}{2 \sqrt{2}}}}\right)^{t} \\
& =\sqrt{t+\frac{t}{\sqrt{2}}} L^{t} \tag{3.26}
\end{align*}
$$

Combining (3.25) and (3.26), we get

$$
\left|S_{4}\right| \leq t \cdot \sqrt{t+\frac{t}{\sqrt{2}}} L^{t} \cdot \frac{1}{r}<2 L^{t} \frac{t^{1.5}}{r}<1
$$

for $r \geq 2 L^{t} t^{1.5}$, which along with (3.24) gives us relation (3.23).
Let us turn back to the entries of the matrix T^{\dagger}. In view of (3.20), we derive from (3.19) and Lemma 3.6

$$
\begin{aligned}
& \left|\left(Y^{*} \tilde{N}_{p} W^{\dagger}\right)_{2 u, k}\right|<2 \cdot 4^{-u} \sum_{v=0}^{u}\binom{2 u}{u-v} \sum_{w=0}^{2 p-1} \frac{(v+w)!}{v!w!} \sum_{t=w}^{2 p-1} \frac{\binom{t+w}{w}\binom{r-w-1}{r-t-1}}{\binom{2 t}{t}} 4\binom{r+t}{2 t+1}
\end{aligned}\binom{r-1}{t} \tau(k),
$$

where

$$
\tau(k)=\left\{\begin{array}{l}
1, \quad \text { if } k \leq 2 p-1 \text { or } k \geq r-2 p, \\
r \frac{-q+2 p-1}{2}, \quad \text { if } k=q \text { or } k=r-1-q, 2 p-1 \leq q \leq \frac{\sqrt{r}}{2}, \\
r^{\frac{-\sqrt{r} / 2+2 p-1}{2}}, \quad \text { if } \frac{\sqrt{r}}{2}<k<r-1-\frac{\sqrt{r}}{2} .
\end{array}\right.
$$

Going from $w-1$ to w, the corresponding product changes by

$$
\frac{(v+w)(t+w)(t-w+1)}{(r-w) w^{2}}<\frac{(4 p)^{3}}{r-2 p}<1
$$

hence, the maximum is attained at $w=0$. So,

$$
\begin{aligned}
\left|\left(Y^{*} \tilde{N}_{p} W^{\dagger}\right)_{2 u, k}\right| & <8(r-1)!2 p \sum_{v=0}^{u} \sum_{t=0}^{2 p-1} \frac{(u!)^{2}(r-1)!(2 t+1)}{(u-v)!(u+v)!(r-t-1)!(r+t)!} \tau(k) \\
& <16 p \cdot 4 p \cdot(u+1) \sum_{t=0}^{2 p-1} \frac{((r-1)!)^{2}}{(r-t-1)!(r+t)!} \tau(k) \\
& <16 p \cdot 4 p \cdot p \cdot 2 p \frac{1}{r} \tau(k)=\frac{128 p^{4} \tau(k)}{r} .
\end{aligned}
$$

Similarly, from (3.17) we have

$$
\begin{aligned}
\left|\left(W^{\dagger}\right)_{q k}\right| & \leq \sum_{w=q}^{2 p-1}(w+1) \sum_{t=w}^{2 p-1} \frac{\binom{t+w}{w}\binom{r-w-1}{r-t-1}}{\binom{2 t}{t}\binom{r+t}{2 t+1}} 4\binom{r-1}{t} \tau(k) \\
& =\sum_{w=q}^{2 p-1}(w+1)(r-1)!\sum_{t=w}^{2 p-1} \frac{(t+w)!(r-w-1)!(2 t+1)}{w!(r-t-1)!(t-w)!(r+t)!} \tau(k) .
\end{aligned}
$$

Here going from $w-1$ to w our term changes by $(t+w)(t-w+1) / w(r-w)<2(2 p)^{2} /(r-$ $2 p)<1$, so,

$$
\begin{equation*}
\left|\left(W^{\dagger}\right)_{q k}\right| \leq 2 p \cdot 2 p \cdot 4 p \sum_{t=0}^{2 p-1} \frac{((r-1)!)^{2}}{(r-t-1)!(r+t)!} \tau(k)<\frac{32 p^{4} \tau(k)}{r} . \tag{3.27}
\end{equation*}
$$

Since an entry of Y^{*} does not exceed in absolute value $2 p \cdot p^{4 p-2}$ (see (3.18)), then an entry of $Y^{*} \tilde{N}_{p} X$ is less than or equal in absolute value to $2 p \cdot 2 p^{4 p-1} \cdot 8 p^{2} s^{4 p-1} /\left(r-8 p^{2} s^{4 p-1}\right)$ (here we used estimate (3.16)). So an entry of $Y^{*} \tilde{N}_{p} X W^{\dagger}$ does not exceed

$$
2 p \cdot 32 p^{4 p+2} \frac{8 p^{2} s^{4 p-1}}{r-8 p^{2} s^{4 p-1}} \cdot \frac{32 p^{4}}{r}
$$

Thus, for $r-1 \geq k>s-1$, according to (3.15) we have

$$
\begin{align*}
\left|\left(Y^{*} \tilde{N}_{p} V^{\dagger}\right)_{2 u, k-s}\right|=\left|\left(Y^{*} \tilde{N}_{p}(E+X) W^{\dagger}\right)_{2 u, k}\right| & \leq\left|\left(Y^{*} \tilde{N}_{p} W^{\dagger}\right)_{2 u, k}\right|+\left|\left(Y^{*} \tilde{N}_{p} X W^{\dagger}\right)_{u k}\right| \\
& <\frac{2^{7} p^{4} \tau(k)}{r}+\frac{2^{15} p^{4 p+9} s^{4 p-1}}{\left(r-8 p^{2} s^{4 p-1}\right) r} \tag{3.28}
\end{align*}
$$

For $r-1 \geq k>s-1$ and an odd u, due to (3.27)

$$
\begin{equation*}
\left|\left(Y^{*} \tilde{N}_{p} V^{\dagger}\right)_{u, k-s}\right| \leq \max _{i}\left|\left(V^{\dagger}\right)_{i, k-s}\right| \leq 2 \max _{i}\left|\left(W^{\dagger}\right)_{i k}\right|<2 \frac{32 p^{4} \tau(k)}{r} \tag{3.29}
\end{equation*}
$$

From (3.28) and (3.29) we finally get

$$
\begin{aligned}
\left\|Y^{*} \tilde{N}_{p} V^{\dagger}\right\|_{\infty} & \leq r \cdot \frac{2^{15} p^{4 p+9} s^{4 p-1}}{\left(r-8 p^{2} s^{4 p-1}\right) r} \\
& +\frac{2^{7} p^{4}}{r}\left(\sum_{k=0}^{2 p-1}+\sum_{k=r-2 p}^{r-1}+\sum_{k=2 p}^{\lfloor\sqrt{r} / 2\rfloor}+\sum_{k=r-1-\lfloor\sqrt{r} / 2\rfloor}^{r-2 p-1}+\sum_{k=\lfloor\sqrt{r} / 2\rfloor+1}^{r-\lfloor\sqrt{r} / 2\rfloor-2}\right) \tau(k) \\
& <\frac{2^{15} p^{4 p+9} s^{4 p-1}}{r-8 p^{2} s^{4 p-1}}+\frac{2^{7} p^{4}}{r}\left(2 p+2 p+1+1+r \cdot r^{-\frac{\sqrt{r}}{4}+p-\frac{1}{2}}\right) \\
& <\frac{2^{16} p^{4 p+9} s^{4 p-1}}{r}
\end{aligned}
$$

whence in light of (3.14) condition (3.2) follows, and the needed is proved.

Chapter 4

Number of lower sets with fixed cardinality

For a given d, we call a set $S \subset \mathbb{Z}_{+}^{d}$ a lower set (or a downward closed set) if for any $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{Z}_{+}^{d}$ the condition $\mathbf{x} \in S$ implies $\mathbf{x}^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{d}^{\prime}\right) \in S$ for all $\mathbf{x}^{\prime} \in \mathbb{Z}_{+}^{d}$ with $x_{i}^{\prime} \leq x_{i}, 1 \leq i \leq d$. By $p_{d}(n)$ we denote the number of lower sets in \mathbb{Z}_{+}^{d} containing exactly n points.

There is a one-to-one correspondence between d-dimensional lower sets of cardinality n and $(d-1)$-dimensional partitions of n, that is, representations of the form

$$
n=\sum_{i_{1}=1}^{\infty} \sum_{i_{2}=1}^{\infty} \ldots \sum_{i_{d-1}=1}^{\infty} n_{i_{1} i_{2} \ldots i_{d-1}}, \quad n_{i_{1} i_{2} \ldots i_{d-1}} \in \mathbb{Z}_{+}
$$

where $n_{i_{1} i_{2} \ldots i_{d-1}} \geq n_{j_{1} j_{2} \ldots j_{d-1}}$ if $j_{k} \geq i_{k}$ for all $k=1,2, \ldots, d-1$. Thus, lower sets represent a geometric interpretation of multidimensional integer partitions. In particular, two-dimensional lower sets with n elements visualize integer partitions of the number n, i.e. its representations as a sum $n=n_{1}+n_{2}+\ldots n_{k}, n_{1} \geq n_{2} \geq \ldots \geq n_{k}$ via the so-called Young diagrams, which consist of n cells placed in k rows and n_{1} columns so that the i th row contains n_{i} cells and the first cell in each row belongs to the first column.

4.1 History of the problem

4.1.1 Small dimensional lower sets

The history begins with finding the number $p_{2}(n)$ of integer partitions of a positive integer n, i.e. of representations of n as a sum of nonincreasing positive integers, and evidently goes back to Leibniz [47]. However, the first significant results in the partition theory were obtained much later by Euler [30]. Another way to understand $p_{2}(n)$ is considering the following generating function [50, Vol. 2, p. 1]

$$
\prod_{k=1}^{\infty}\left(1-x^{k}\right)^{-1}=\sum_{n=0}^{\infty} p_{2}(n) x^{n}
$$

where we assume $p_{d}(0)=1$ for any d. In 1917, Hardy and Ramanujan revealed the asymptotic behaviour of the function $p_{2}(n)$ (see [39, (3)] or [40, (1.4)]):

$$
p_{2}(n) \sim \frac{e^{\sqrt{\frac{2 n}{3}} \pi}}{4 \sqrt{3} n}
$$

Later, Rademacher [65, (1.8)] found an expansion of $p_{2}(n)$ as a convergent series.
In the case $d=3$, for the so-called plane partitions, the generating function was given by MacMahon [49]:

$$
\prod_{k=1}^{\infty}\left(1-x^{k}\right)^{-k}=\sum_{n=0}^{\infty} p_{3}(n) x^{n}
$$

(see [14] for a simpler proof). The asymptotics of $p_{3}(n)$ was obtained by Wright [75, (2.21)], namely,

$$
p_{3}(n) \sim \frac{(2 \zeta(3))^{\frac{7}{36}} \zeta^{\zeta^{\prime}(-1)}}{\sqrt{2 \pi} n^{\frac{25}{36}}} e^{3(\zeta(3))^{\frac{1}{3}} 2^{-\frac{2}{3}} n^{\frac{2}{3}}}
$$

where

$$
\zeta^{\prime}(-1)=2 \int_{0}^{\infty} \frac{y \log y}{e^{2 \pi y}-1} d y \approx-0.165421
$$

For the cases $d>3$, no generating functions are known so far, although MacMahon conjectured that the function

$$
\begin{equation*}
\prod_{k=1}^{\infty}\left(1-x^{k}\right)^{-\binom{d+n-2}{n-1}} \tag{4.1}
\end{equation*}
$$

should generate $p_{d}(n)$ for every d, but this turned out to be wrong. On the other hand, some relations between the numbers $p_{d}(n)$ and the so-called MacMahon's numbers generated by (4.1), as well as some numerical values of $p_{d}(n)$, can be found in [3]. Besides, it was conjectured in [55] that MacMahon's numbers give the asymptotics of $\log p_{d}(n) / n^{1-1 / d}$ for solid partitions, i.e. for $d=4$, and the hyposesis was accompanied by the exact values of $p_{4}(n), n \leq 50$, and Monte Carlo simulations (see also [5] for related numerical results in higher dimensions). However, the computations in [17] make this conjecture unlikely to be true for $d=4$.

It is worth mentioning that an effective method for evaluating $p_{4}(n)$ is suggested in [44]. Moreover, there is an algorithm that enables one to compute numbers of partitions for $n \leq 26$ in any dimension (see [35]).

Importantly, the partition theory has many applications in physics, as there are a lot of physical structures resembling that of multidimensional integer partitions. In particular, integer partitions are used to estimate the energy levels for a heavy nucleus [10] and to study the shape of crystal growth [67]. Another direction of research is based on the existence of a one-to-one correspondence between partitions of an integer and microstates of a gas particles stored in a harmonic oscillator, not only in two-dimensional case [4, 72] but also in multidimensional setting [56].

Furthermore, the spaces of polynomials associated with lower sets have recently turned out to be a powerful tool in multivariate approximation (see [11, 15, 16] and references therein).

In the problem of estimating $p_{d}(n)$, the important relation

$$
\begin{equation*}
C_{1}(d) \leq \frac{\log p_{d}(n)}{n^{1-\frac{1}{d}}} \leq C_{2}(d) \tag{4.2}
\end{equation*}
$$

was established by Bhatia, Prasad and Arora $[9,(12),(16)]$, however the exact dependence of the constants on d remained an open problem. Explicit values of C_{1} and C_{2} have recently been suggested in [16, Th. 1.5], according to which (4.2) holds with

$$
\begin{equation*}
C_{1}(d)=0.9 \frac{d}{(d!)^{\frac{1}{d}}} \log 2, \quad C_{2}(d)=\pi \sqrt{\frac{2}{3}} d^{\log d} \tag{4.3}
\end{equation*}
$$

where the upper bound holds for any $n \in \mathbb{N}$ and the lower bound is valid for $n>55^{d}$. Note that in this case $C_{1}(d)$ is uniformly bounded from below since Stirling's formula gives

$$
d!<\sqrt{2 \pi d}\left(\frac{d}{e}\right)^{d} e^{\frac{1}{12 d}}
$$

for all $d \geq 1$, and consequently, we have for $d \geq 3$,

$$
C_{1}(d) \geq \frac{0.9 e \log 2}{\left(2 \pi d e^{\frac{1}{6 d}}\right)^{\frac{1}{2 d}}} \geq \frac{0.9 e \log 2}{\left(6 \pi e^{\frac{1}{18}}\right)^{\frac{1}{6}}}>1
$$

So, for $n>55^{d}$, we have $\log p_{d}(n)>n^{1-1 / d}$ (see [40, Sec. 2] for the case $d=2$).

4.1.2 High dimensional lower sets

If we do not restrict ourselves to the case of a fixed (or relatively small) dimension d and assume that d grows somehow significantly along with n, then the general structure of lower sets changes, and the two-sided estimates in Theorem 4.1 are no longer true. Besides, estimate (4.2) with C_{1} and C_{2} from (4.3) becomes quite rough if we just allow d to be of order $\log n$. Somewhat better bounds for this setting were obtained in $[15,(24)$, (31)]:

$$
p_{d}(n) \leq 2^{d n} \quad \text { and } \quad p_{d}(n) \leq d^{n-1}(n-1)!
$$

for any positive integers d and n. The latter inequality was strengthened and complemented by a lower bound in [16, Th. 1.4]

$$
\binom{d+n-2}{n-1} \leq p_{d}(n) \leq d^{n-1}
$$

Note that $\binom{d+n-2}{n-1}>d^{n-1} /(n-1)$!

4.2 New bounds

We show that if the dimension d is sufficiently small with respect to n, then C_{2} in (4.2) is also independent of d.

Theorem 4.1. For any $d \geq 2$ and any $n \geq(30 d)^{2 d^{2}}$, there holds

$$
1<\frac{\log p_{d}(n)}{n^{1-\frac{1}{d}}}<7200
$$

If n satisfies the weaker condition $n \geq d^{12 d \log d}$, then

$$
1<\frac{\log p_{d}(n)}{n^{1-\frac{1}{d}}}<d^{2}
$$

The case of high dimensional lower sets is treated in the following theorem, which gives asymptotics of $\log p_{d}(n)$ for different orders of growth of d provided that $d \gtrsim n / \log ^{\gamma} n$ for some γ.

Theorem 4.2. (a) If $d>n^{3} / 2$, then

$$
1 \leq \frac{p_{d}(n)}{\binom{d+n-2}{d-1}}<\frac{1}{1-\frac{n^{3}}{2 d}}
$$

(b) If $d n^{-2} \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\log p_{d}(n)=(n-1)(\log d-\log n+1)+o(n)
$$

(c) If d satisfies $c n^{2} \leq d \leq C n^{2}$ for some constants c and C, then

$$
\log p_{d}(n)=n \log n+O(n)
$$

(d) If $d n^{-2} \rightarrow 0$ and $\log d \geq \log n+o(\log n)$ as $n \rightarrow \infty$, then

$$
\log p_{d}(n)=n \log n+o(n \log n)
$$

In particular, combining the estimates that lead us to the result above and applying them to the power-logarithmic scale of d in terms of n, we come to

Corollary 4.3. If $c n^{\alpha} \log ^{\gamma} n \leq d \leq C n^{\alpha} \log ^{\gamma} n$ for some $\alpha \geq 1, \gamma \in \mathbb{R}$, and positive constants c and C, then

$$
p_{d}(n)= \begin{cases}\binom{d+n-2}{d-1} \theta(d, n), & \text { if } \alpha>3, \text { or } \alpha=3, \gamma>0 \\ e^{n} n^{(\alpha-1) n} \log ^{\gamma n} n e^{O\left(n^{3-\alpha} \log ^{-\gamma} n+\log n\right)}, & \text { if } 2 \leq \alpha \leq 3 \\ n^{n} e^{O(n \log \log n)}, & \text { if } 1 \leq \alpha<2\end{cases}
$$

Here the function $\theta(d, n) \geq 1$ is bounded above by a constant that depends only on α and γ.

Remark 4.4. Note that the case $\alpha=3, \gamma=0, c>0.5$, is covered by Theorem 4.2 (a).

4.3 Lower sets in small dimensional spaces

In this section, we prove Theorem 4.1 and in the course of the proof reveal some features of the nature of lower sets.

From now on we associate any point $q=\left(q_{1}, \ldots, q_{d}\right) \in \mathbb{Z}_{+}$of a lower set with a unit cube having its center at that point. So, we will stick to this visualization of a lower set as a set of cubes leaning on one another. In Figure 4.1, we give an example of such a visualization of a plane partition of $n=15$ with

$$
n_{11}=4, n_{12}=3, n_{13}=2, n_{14}=1, n_{21}=3, n_{22}=1, n_{31}=1,
$$

so that the lower layer by itself represents a partition of $n_{11}+n_{12}+n_{13}+n_{14}=10$, while the next one, a partition of $n_{21}+n_{22}=4$.

Figure 4.1:
For two cubes $q=\left(q_{1}, \ldots, q_{d}\right)$ and $q^{\prime}=\left(q_{1}^{\prime}, \ldots, q_{d}^{\prime}\right)$, we write $q \succ q^{\prime}$ if $q_{i} \geq q_{i}^{\prime}$ for all $i=1, \ldots, d$. If there holds either $q \succ q^{\prime}$ or $q^{\prime} \succ q$, we say that q and q^{\prime} are comparable.

In the first place, we will be interested in the "top" subsets of lower sets, which will play a crucial role in our further analysis. To be more specific, we need the following

Definition. We call a subset Q^{\prime} of a lower set Q available if for any $q^{\prime} \in Q^{\prime}$ there is no $q \in Q \backslash\left\{q^{\prime}\right\}$ such that $q \succ q^{\prime}$.

In other words, it is such a subset that we can take its elements out in any order without breaking the lower set structure in any step. Denote by $M(Q)$ the maximal available subset of Q. The lemma below delivers the bound on $|M(Q)|$ that in some sense we would expect basing on our intuition: it seems that the more concentrated the lower set is, the richer its available subset can be (see Remark 4.6).

Lemma 4.5. For any $d \geq 2$ and $n \geq d^{6 d \log d}$, for any d-dimensional lower set $Q,|Q|=n$, there holds

$$
|M(Q)| \leq \prod_{k=1}^{d-1}\left(1+\frac{1}{k^{2}}\right) n^{1-\frac{1}{d}}<\frac{\sinh \pi}{\pi} n^{1-\frac{1}{d}}
$$

Remark 4.6. Define the lower sets Q_{k} in d-dimensional space by the condition $q \in Q_{k} \Leftrightarrow$ $q_{1}+\ldots+q_{d} \leq k$. Then it follows from Lemma 4.5 that the sets Q_{k}, for large enough k, are optimal in the sense that their maximal available subsets are the largest possible up to an absolute constant.

Proof of Lemma 4.5. We prove the left-hand side inequality by induction on d, which will yield the assertion of the lemma. In the case $d=2$ we have $Q=Q_{1} \cup Q_{2}$, where every
$q=\left(q_{1}, q_{2}\right) \in Q_{i}$ satisfies $q_{i} \leq \sqrt{n}-1, i=1,2$. Since $M(Q)$ cannot have more than one cube with a fixed q_{1} or q_{2}, we can write $|M(Q)| \leq 2 \sqrt{n}$.

Suppose now that we proved the inequality for the dimensions $2,3, \ldots, d-1$, and let us prove it for $d \geq 3$. For simplicity we denote

$$
K_{d}:=\prod_{k=1}^{d-1}\left(1+k^{-2}\right)<4
$$

Consider all the nonempty subsets $Q_{0}, \ldots, Q_{m}, m \leq n-1$, being the intersections of Q with the hyperplanes $q_{1}=0, \ldots, m$, respectively. They are lower sets themselves and if for some j we have $q=\left(j, q_{2}, \ldots, q_{d}\right) \in Q_{j} \cap M(Q)$, then $q=\left(j+s, q_{2} \ldots, q_{d}\right) \notin Q_{j+s}$ for all $s \leq m-j$. Let

$$
n_{i}:=\left|Q_{i}\right|, 0 \leq i \leq m
$$

Note that we can apply the induction assumption to Q_{i} with $n_{i} \geq(d-1)^{6(d-1) \log (d-1)}$. Now, taking into account that

$$
\begin{equation*}
(d-1)^{6(d-1) \log (d-1)}<d^{6(d-1)(\log (d-1)-\log d)} n^{1-\frac{1}{d}} \leq d^{-3} n^{1-\frac{1}{d}} \tag{4.4}
\end{equation*}
$$

we have (assuming $n_{m+1}=0$)

$$
\begin{align*}
|M(Q)| & \leq \sum_{i=0}^{m} \min \left\{n_{i}-n_{i+1}, K_{d-1} n_{i}^{1-\frac{1}{d-1}}\right\}+\sum_{n_{i} \leq d^{-3} n^{1-\frac{1}{d}}} n_{i}-n_{i+1} \\
& \leq \sum_{i=0}^{m} \min \left\{n_{i}-n_{i+1}, K_{d-1} n_{i}^{1-\frac{1}{d-1}}\right\}+\frac{n^{1-\frac{1}{d}}}{d^{3}} \\
& =: \sum_{i=0}^{m} \min \left\{\Delta_{i}, \Gamma_{i}\right\}+\frac{n^{1-\frac{1}{d}}}{d^{3}}=: \sum_{i=0}^{m} M_{i}+\frac{n^{1-\frac{1}{d}}}{d^{3}} \\
& =: F\left(n_{0}, \ldots, n_{m}\right)+\frac{n^{1-\frac{1}{d}}}{d^{3}} \tag{4.5}
\end{align*}
$$

We will maximize $F\left(n_{0}, \ldots, n_{m}\right)$ over all $\left(n_{0}, \ldots, n_{m}\right)$ in the set

$$
S_{n}:=\left\{\left(n_{0}, \ldots, n_{m}\right) \in \mathbb{R}^{+}: n_{0} \geq \ldots \geq n_{m}, n_{0}+\ldots+n_{m}=n\right\}
$$

permiting thereby n_{i} to take noninteger values. Take a point $\left(n_{0}, \ldots, n_{m}\right)$ where this maximum is attained. Assume that for some $i, 0 \leq i \leq m-1$, such that

$$
n_{i}>8^{d-1}
$$

we have $\Delta_{i}>\Gamma_{i}$. If we substitute the pair $\left(n_{i}, n_{i+1}\right)$ by $\left(n_{i}-x, n_{i+1}+x\right)$ for sufficiently small positive x, the new point will still be in S_{n} with $M_{j}, j \neq i-1, i, i+1$, and Γ_{i-1} remaining unchanged. At the same time, Δ_{i-1} will increase, which means that M_{i-1} will not decrease. Moreover, choosing x small enough we can keep either the relation $\Delta_{i+1} \geq \Gamma_{i+1}$ or $\Delta_{i+1} \leq \Gamma_{i+1}$ true. Consider the two cases.

Case 1. $\Delta_{i+1} \geq \Gamma_{i+1}$.
Then $M_{i}+M_{i+1}=\Gamma_{i}+\Gamma_{i+1}$ and the sum $\Gamma_{i}+\Gamma_{i+1}$ increases as n_{i} and n_{i+1} become closer to each other while keeping their sum constant. Thus, we increase $F\left(n_{0}, \ldots, n_{m}\right)$, which contradicts the definition of $\left(n_{0}, \ldots, n_{m}\right)$.

Case 2. $\Delta_{i+1} \leq \Gamma_{i+1}$.
The value $\Delta_{i+1}+\Gamma_{i}$ changes in

$$
x-K_{d-1}\left(n_{i}^{1-\frac{1}{d-1}}-\left(n_{i}-x\right)^{1-\frac{1}{d-1}}\right) \geq x\left(1-K_{d-1} \frac{d-2}{d-1}\left(n_{i}-x\right)^{-\frac{1}{d-1}}\right)>0
$$

since $n_{i} \geq 8^{d-1}>K_{d-1}^{d-1}$. Hence, $M_{i}+M_{i+1}$ increases. Thus, we increase $F\left(n_{0}, \ldots, n_{m}\right)$, which once again contradicts the definition of $\left(n_{0}, \ldots, n_{m}\right)$.

The fact that both cases led us to contradictions means that there holds

$$
\begin{equation*}
\Delta_{i} \leq \Gamma_{i}, \quad 0 \leq i \leq \min \{p, m-1\} \tag{4.6}
\end{equation*}
$$

where p is the maximal index satisfying $n_{p} \geq 8^{d-1}$.
If $m \leq n^{1 / d}-1$, we have

$$
\begin{equation*}
|M(Q)| \leq \max _{n_{0}+\ldots n_{m}=n} \sum_{i=0}^{m} K_{d-1} n_{i}^{1-\frac{1}{d-1}}+\frac{n^{1-\frac{1}{d}}}{d^{3}}<K_{d} n^{1-\frac{1}{d}} \tag{4.7}
\end{equation*}
$$

and there is nothing to prove. Thus, from now on, we can assume that

$$
\begin{equation*}
m \geq n^{\frac{1}{d}} \quad \text { and } \quad n_{m} \leq n^{1-\frac{1}{d}} \tag{4.8}
\end{equation*}
$$

The rest of the proof we divide into two cases: the case of "large" and the case of "small" values n_{0}. We will see that n_{0} cannot be large at a point of the maximum of $F\left(n_{0}, \ldots, n_{m}\right)$.

Case a. $n_{0}>2 K_{d-1} n^{1-1 / d}$.
Define the sequence $\left\{a_{i}\right\}_{i=0}^{\infty}$ in the following way:

$$
\begin{equation*}
a_{0}:=n_{0} \quad \text { and } \quad a_{i}:=a_{i-1}-K_{d-1} a_{i-1}^{1-\frac{1}{d-1}} \text { for } i \geq 1 \tag{4.9}
\end{equation*}
$$

Let us estimate the maximal number k such that

$$
a_{k}>\frac{K_{d-1} n^{1-\frac{1}{d}}}{2} \quad \text { and } \quad \sum_{i=0}^{k} a_{i} \leq n
$$

From the definition of a_{i} we see that the ratio a_{i} / a_{i+1} increases along with i. So,

$$
\frac{a_{k / 2}}{0.5 K_{d-1} n^{1-\frac{1}{d}}}>\frac{a_{k / 2}}{a_{k}}>\frac{a_{0}}{a_{k / 2}}>\frac{2 K_{d-1} n^{1-\frac{1}{d}}}{a_{k / 2}}
$$

where in the case of odd k we understand $a_{k / 2}$ as $\left(a_{(k-1) / 2}+a_{(k+1) / 2}\right) / 2$. Hence, $a_{k / 2}>$ $K_{d-1} n^{1-1 / d}$. Since $a_{i}-a_{i+1}$ decreases, we have $(k+1) a_{k / 2} \leq \sum_{i=0}^{k} a_{i} \leq n$, which yields

$$
k+1<n^{\frac{1}{d}} K_{d-1}^{-1}
$$

So,
$a_{0}-a_{k+1}=\sum_{i=0}^{k} K_{d-1} a_{i}^{1-\frac{1}{d-1}} \leq K_{d-1} \frac{n^{\frac{1}{d}}}{K_{d-1}}\left(\frac{n K_{d-1}}{n^{1 / d}}\right)^{1-\frac{1}{d-1}}=K_{d-1}^{1-\frac{1}{d-1}} n^{1-\frac{1}{d}}<K_{d-1} n^{1-\frac{1}{d}}$,
whence $a_{k+1}>K_{d-1} n^{1-1 / d}>0.5 K_{d-1} n^{1-1 / d}$. Thus, the sum of a_{i} becomes equal to n before a_{i} reaches $0.5 K_{d-1} n^{1-1 / d}$. Therefore, according to (4.6), since n_{i} for $i \leq p$ decreases slower than a_{i} does, we obtain that $p=m$ and

$$
m+1 \leq k+1<n^{\frac{1}{d}} K_{d-1}^{-1}<n^{\frac{1}{d}},
$$

which contradicts (4.8).
Case b. $n_{0} \leq 2 K_{d-1} n^{1-1 / d}$.
Assume first that

$$
\begin{equation*}
n_{0}-n_{p}>L_{d} n^{1-\frac{1}{d}}, \quad L_{d}:=K_{d-1}\left(1+\frac{2}{3(d-1)^{2}}\right) . \tag{4.10}
\end{equation*}
$$

Considering the sequence $\left\{a_{i}\right\}$ given by (4.9), denote by q the maximal index such that

$$
a_{q} \geq 8^{d-1} \quad \text { and } \quad \sum_{i=0}^{q} a_{i} \leq n
$$

We divide the interval $\left(a_{q}+\varepsilon, a_{0}\right]$ into

$$
I_{j}:=\left(\nu_{j}, \mu_{j}\right]:=\left(A_{j} n^{1-\frac{1}{d}},\left(A_{j}+n^{-\frac{1}{2 d}}\right) n^{1-\frac{1}{d}}\right], \quad A_{j}:=A_{j+1}+n^{-\frac{1}{2 d}},
$$

where $\varepsilon \in\left[0, n^{1-3 /(2 d)}\right)$ is chosen so that $\left(a_{0}-a_{q}-\varepsilon\right) n^{-1+3 /(2 d)} \in \mathbb{Z}$. Note that $\left|I_{j}\right|=$ $n^{1-3 /(2 d)}$ for all j. Denote the number of a_{i} 's belonging to I_{j} by $k_{A_{j}}$ and let $a_{i_{j}}$ be the greatest of a_{i} that belongs to I_{j}.

Now, in order to prove that the assumption (4.10) cannot hold, we are going to show that each I_{j} contains significantly many terms a_{i}, and this will yield that a_{i}, and therefore n_{i}, cannot decrease considerably until the sum of its first terms becomes equal to n. The fact that $a_{0}=n_{0}$ is not very large implies certain regularity of a_{i}, namely, it will ensure that the leaps between a_{i} are small enough to get appropriate estimates on $k_{A_{j}}$ for each of the intervals I_{j}.

Fix some j and suppress for simplicity the index j in A_{j}. Suppose that

$$
\begin{equation*}
k_{A}<\frac{A^{\frac{1}{d-1}-1} n^{\frac{1}{2 d}}}{L_{d}} \tag{4.11}
\end{equation*}
$$

Since the ratio a_{i} / a_{i+1} increases and $a_{i_{j+1}-1}>\nu_{j}=A_{j} n^{1-1 / d}$, we have

$$
\begin{align*}
\left(\frac{1}{1-K_{d-1} A^{-\frac{1}{d-1}} n^{-\frac{1}{d}}}\right)^{k_{A}} & \geq\left(\frac{1}{1-K_{d-1} a_{i_{j+1}-1}^{-\frac{1}{d-1}}}\right)^{k_{A}} \geq\left(\frac{a_{i_{j+1}-1}}{a_{i_{j+1}}}\right)^{k_{A}} \geq \frac{a_{i_{j}}}{a_{i_{j+1}}} \\
& \geq \frac{\mu_{j}-K_{d-1} a_{i_{j}-1}^{1-\frac{1}{d-1}}}{\mu_{j+1}} \geq \frac{\left(A+n^{-\frac{1}{2 d}}\right) n^{1-\frac{1}{d}}-K_{d-1} a_{0}^{1-\frac{1}{d-1}}}{A n^{1-\frac{1}{d}}} \\
& \geq 1+\frac{n^{-\frac{1}{2 d}}}{A}-\frac{K_{d-1}^{2} 2 n^{-\frac{1}{d}}}{A} . \tag{4.12}
\end{align*}
$$

At the same time, since $\left(k_{A}+1+x\right) /(2+x) \leq\left(k_{A}+1\right) / 2$ for $x \geq 0$, the ratio between consequent terms in the binomial expansion of

$$
\left(1-K_{d-1} A^{-\frac{1}{d-1}} n^{-\frac{1}{d}}\right)^{-k_{A}}
$$

is less than

$$
\begin{aligned}
\frac{k_{A}+1}{2} K_{d-1} A^{-\frac{1}{d-1}} n^{-\frac{1}{d}} & <\frac{K_{d-1} A^{-\frac{1}{d-1}} n^{-\frac{1}{d}}}{2}+\frac{A^{-1} n^{-\frac{1}{2 d}} K_{d-1}}{2 L_{d}} \\
& \leq \frac{K_{d-1}(d-1)^{\frac{2}{d-1}} n^{-\frac{1}{d}}}{2}+\frac{(d-1)^{2} n^{-\frac{1}{2 d}} K_{d-1}}{2 L_{d}} \leq(d-1)^{2} n^{-\frac{1}{2 d}}
\end{aligned}
$$

This implies

$$
\begin{aligned}
\left(1-K_{d-1} A^{-\frac{1}{d-1}} n^{-\frac{1}{d}}\right)^{-k_{A}} & <1+k_{A} K_{d-1} A^{-\frac{1}{d-1}} n^{-\frac{1}{d}} \frac{1}{1-(d-1)^{2} n^{-\frac{1}{2 d}}} \\
& <1+\frac{n^{-\frac{1}{2 d}}}{A} \frac{1}{\left(1+\frac{2}{3(d-1)^{2}}\right)\left(1-(d-1)^{2} n^{-\frac{1}{2 d}}\right)} .
\end{aligned}
$$

Combining this with (4.12), we obtain

$$
\frac{1}{\left(1+\frac{2}{3(d-1)^{2}}\right)\left(1-(d-1)^{2} n^{-\frac{1}{2 d}}\right)}>1-2 n^{-\frac{1}{2 d}} K_{d-1}^{2}
$$

which yields

$$
\begin{aligned}
0 & >-2 n^{-\frac{1}{2 d}} K_{d-1}^{2}+\frac{2}{3(d-1)^{2}}-\frac{4 n^{-\frac{1}{2 d}} K_{d-1}^{2}}{3(d-1)^{2}}-(d-1)^{2} n^{-\frac{1}{2 d}} \\
& +2(d-1)^{2} n^{-\frac{1}{d}} K_{d-1}^{2}-\frac{2 n^{-\frac{1}{2 d}}}{3}+\frac{4 n^{-\frac{1}{d}} K_{d-1}^{2}}{3} \\
& \geq \frac{2}{3(d-1)^{2}}-\frac{68}{3} n^{-\frac{1}{2 d}}(d-1)^{2} \geq 0
\end{aligned}
$$

since $n>d^{18 d}>34^{2 d}(d-1)^{8 d}$. This contradiction disproves (4.11), whence

$$
k_{A_{j}} \geq \frac{A_{j}^{\frac{1}{d-1}-1} n^{\frac{1}{2 d}}}{L_{d}}
$$

Summing up this inequality over all j, we derive

$$
\begin{aligned}
n \geq \sum_{a_{i} \in \cup I_{j}} a_{i} \geq \sum_{j} k_{A_{j}} A_{j} n^{1-\frac{1}{d}} \geq \sum_{j} \frac{n^{1-\frac{1}{2 d}} A_{j}^{\frac{1}{d-1}}}{L_{d}} & >n L_{d}^{-1} \int_{a_{q} n^{\frac{1}{d}-1}+n^{-\frac{1}{2 d}}}^{a_{0} n^{\frac{1}{d}-1}-n^{-\frac{1}{2 d}}} x^{\frac{1}{d-1}} d x \\
& =n L_{d}^{-1} \int_{y}^{y+z-2 n^{-\frac{1}{2 d}}} x^{\frac{1}{d-1}} d x
\end{aligned}
$$

where $z \geq L_{d}$ by the assumption (4.10). This means that there holds

$$
\begin{align*}
1>L_{d}^{-1} \int_{y}^{y+L_{d}-2 n^{-\frac{1}{2 d}}} x^{\frac{1}{d-1}} d x & \geq L_{d}^{-1} \frac{d-1}{d}\left(L_{d}-2 n^{-\frac{1}{2 d}}\right)^{\frac{d}{d-1}} \\
& \geq\left(1-2 n^{-\frac{1}{2 d}}\right) L_{d}^{\frac{1}{d-1}} \frac{d-1}{d} \geq \frac{L_{d}^{\frac{1}{d-1}} \frac{d-1}{d}}{1+3 n^{-\frac{1}{2 d}}} \geq 1 \tag{4.13}
\end{align*}
$$

Let us prove the latter inequality. It suffices to show that

$$
L_{d} \geq\left(1+\frac{1}{d-1}\right)^{d-1}\left(1+3 n^{-\frac{1}{2 d}}\right)^{d-1}
$$

This, in turn, will follow from

$$
\begin{equation*}
1+\frac{2}{3(d-1)^{2}} \geq\left(1+3 n^{-\frac{1}{2 d}}\right)^{d-1}\left(1+\frac{1}{2(d-1)^{2}}\right) \tag{4.14}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{d-1}\left(1+\frac{1}{2(d-1)^{2}}\right) \geq\left(1+\frac{1}{d-1}\right)^{d-1} \tag{4.15}
\end{equation*}
$$

Firstly, by the assumption of the lemma we have $n>6^{2 d}(d-1)^{2 d}$, so

$$
\begin{aligned}
1+\frac{2}{3(d-1)^{2}} & >1+\frac{1}{2(d-1)^{2}}+6(d-1) n^{-\frac{1}{2 d}}+\frac{3 n^{-\frac{1}{2 d}}}{d-1} \\
& =\left(1+6(d-1) n^{-\frac{1}{2 d}}\right)\left(1+\frac{1}{2(d-1)^{2}}\right) \\
& \geq\left(1+3 n^{-\frac{1}{2 d}}\right)^{d-1}\left(1+\frac{1}{2(d-1)^{2}}\right)
\end{aligned}
$$

which proves (4.14). Secondly, note that for $d=3$ both sides of (4.15) are equal 2.25 and for $d=4$ inequality (4.15) becomes $95 / 36 \geq(4 / 3)^{3}$. For $d \geq 5$, (4.15) follows from the fact that the left-hand side is greater than e.

The contradiction in (4.13) along with the fact that a_{i} 's decrease faster than n_{i} shows that (4.10) does not hold and therefore

$$
\begin{equation*}
n_{0}-n_{p} \leq L_{d} n^{1-\frac{1}{d}} \tag{4.16}
\end{equation*}
$$

In addition, we note that if $p \neq m$, then by (4.6)

$$
\left.n_{p+1} \geq n_{p}\left(1-K_{d-1} n_{p}^{-\frac{1}{d-1}}\right)>n_{p}\left(1-K_{d-1}\left(8^{d-1}\right)\right)^{-\frac{1}{d-1}}\right)>0.5 n_{p}
$$

whence $n_{p}<2 \cdot 8^{d-1}$.
Finally, in light of (4.5), (4.7), and (4.16), we obtain

$$
\begin{aligned}
|M(Q)| & \leq \frac{n^{1-\frac{1}{d}}}{d^{3}}+\sum_{i=0}^{p-1}\left(n_{i}-n_{i+1}\right)+\sum_{i=p}^{m} M_{i} \\
& <\frac{n^{1-\frac{1}{d}}}{d^{3}}+\left(n_{0}-n_{p}\right)+2 \cdot 8^{d-1}+K_{d-1} n_{m}^{1-\frac{1}{d-1}} \\
& <\frac{n^{1-\frac{1}{d}}}{d^{3}}+L_{d} n^{1-\frac{1}{d}}+2 \cdot 8^{d-1}+K_{d-1} n^{1-\frac{2}{d}} \\
& <K_{d-1} n^{1-\frac{1}{d}}\left(\frac{1}{2 d^{3}}+\left(1+\frac{2}{3(d-1)^{2}}\right)+\frac{8^{d-1}}{n^{1-\frac{1}{d}}}+n^{-\frac{1}{d}}\right) \\
& \leq K_{d-1} n^{1-\frac{1}{d}}\left(1+\frac{2}{3(d-1)^{2}}+\frac{1}{2 d^{3}}+d^{-10(d-1) \log d}+n^{-\frac{1}{d}}\right)<K_{d} n^{1-\frac{1}{d}}
\end{aligned}
$$

since $n>12^{d}(d-1)^{2 d}$, and the proof of the lemma is complete.

Remark 4.7. Note that under the assumptions of Lemma 4.5, the argument above gives

$$
\begin{align*}
\max _{\left(n_{0}, \ldots, n_{m}\right) \in S_{n}} & \sum_{i=0}^{m} \min \left\{n_{i}-n_{i+1}, K_{d-1} n_{i}^{1-\frac{1}{d-1}}\right\} \\
& \leq K_{d-1} n^{1-\frac{1}{d}}\left(1+\frac{2}{3(d-1)^{2}}+d^{-10(d-1) \log d}+n^{-\frac{1}{d}}\right) \tag{4.17}
\end{align*}
$$

Remark 4.8. Without any restriction on d and n we can straightforwardly show that there always holds

$$
|M(Q)| \leq d n^{1-\frac{1}{d}}
$$

Proof. Proceeding by induction as in the proof of Lemma 4.5 we obtain

$$
|M(Q)| \leq \max _{n_{0}+\ldots+n_{m}=n} \sum_{i=0}^{m} \min \left\{n_{i}-n_{i+1},(d-1) n_{i}^{1-\frac{1}{d-1}}\right\}
$$

As long as Q is a lower set, there holds $n_{i} \geq n_{i+1}$ for any $i=1, \ldots, m-1$, so $n_{\left\lfloor n^{1 / d}\right\rfloor} \leq n^{1-1 / d}$. Thus,

$$
\sum_{k \geq\left\lfloor n^{1 / d}\right\rfloor}\left(n_{k}-n_{k+1}\right) \leq n^{1-\frac{1}{d}}
$$

and

$$
\begin{aligned}
|M(Q)| & \leq n^{1-\frac{1}{d}}+(d-1)_{n_{0}+\ldots+n_{\left\lfloor n^{1 / d}\right\rfloor-1} \leq n} \sum_{k=0}^{\left\lfloor n^{\left.\frac{1}{d}\right\rfloor-1}\right.} n_{k}^{1-\frac{1}{d-1}} \\
& \leq n^{1-\frac{1}{d}}+(d-1) n^{\frac{1}{d}}\left(\frac{n}{n^{1 / d}}\right)^{1-\frac{1}{d-1}}=d n^{1-\frac{1}{d}} .
\end{aligned}
$$

Now, as we already have the bound for the cardinalities of the available subsets, we are able to obtain needed estimates for the number of lower subsets of a lower set. Define

$$
T(n):=\max _{\text {lower sets } Q:|Q|=n}|M(Q)|
$$

Lemma 4.9. For the number $C(Q, k, d)$ of all lower subsets $Q^{\prime},\left|Q^{\prime}\right| \geq n-k$, of a lower set $Q,|Q|=n$, in d-dimensional space there holds

$$
C(Q, k, d)<\max \left\{8, \frac{4 e T(n)}{k}\right\}^{k}
$$

Proof. First we show that every lower subset Q^{\prime} of a lower set Q can be constructed by successively discarding cubes of Q one by one so that in any step the current set remains being a lower set.

Indeed, let us list all the cubes we have to discard from Q in a sequence in an arbitrary order. By a disorder we call a pair $\left(q, q^{\prime}\right)$ of cubes in this sequence such that q goes after q^{\prime} in it, but $q \succ q^{\prime}$. Now, if there is a disorder $\left(q, q^{\prime}\right)$ in the sequence, we simply swap q and q^{\prime} eleminating thereby the disorder and not creating any new one. Thus, we can rearrange the sequence so that there is no disorder in it.

Consider the part of the sequence that starts at the beginning and ends right before a comparable pair of cubes appears. Then the cubes of this part belong to $M(Q)$, while the subsequent cube does not. By repeating this process, we observe that each lower subset of Q can be constructed as follows. First we discard some cubes (call this set R_{1}) from $M(Q)=: M\left(Q_{1}\right)$. After that we remove a set R_{2} of cubes from $M\left(Q_{1} \backslash R_{1}\right) \backslash M\left(Q_{1}\right)=$: $M\left(Q_{2}\right) \backslash M(Q)$, and so on. In doing so, the number of ways to take away cubes in the first step is $\binom{|M(Q)|}{\left|R_{1}\right|}$, and in the i th step, for $i>1$, is $\binom{\left|M\left(Q_{i}\right)\right|-\left(\left|M\left(Q_{i-1}\right)\right|-\left|R_{i-1}\right|\right)}{\left|R_{i}\right|}$. Denoting $k_{i}:=T\left(\left|Q_{i}\right|\right)-\left|M\left(Q_{i}\right)\right|+\left|R_{i}\right|$, we have $\binom{|M(Q)|}{\left|R_{1}\right|} \leq\binom{ T(|Q|)}{k_{1}}$ and for $i>1$,

$$
\left.\begin{array}{rl}
\left(\left|M\left(Q_{i}\right)\right|-\left(\left|M\left(Q_{i-1}\right)\right|-\left|R_{i-1}\right|\right)\right. \\
\left|R_{i}\right|
\end{array}\right)=\binom{\left|M\left(Q_{i}\right)\right|-\left(T\left(\left|Q_{i-1}\right|\right)-k_{i-1}\right)}{\left|R_{i}\right|} .
$$

Hence, the number of ways to construct a lower subset of Q with a fixed sequence of $\left|R_{i}\right|$ is at most

$$
\begin{equation*}
\binom{T(n)}{k_{1}}\binom{k_{1}}{k_{2}}\binom{k_{2}}{k_{3}} \ldots\binom{k_{l-1}}{k_{l}} \leq\binom{ T(n)}{k_{1}} 2^{k_{1}+k_{2}+\ldots+k_{l-1}}<\binom{T(n)}{k_{1}} 2^{k} \tag{4.18}
\end{equation*}
$$

where l is the number of steps. If $T(|Q|) \leq k$, the right-hand side is bounded by $2^{2 k}$. Otherwise, according to Stirling's formula,

$$
\binom{T(n)}{k_{1}} 2^{k}<\left(\frac{e T(n)}{k_{1}}\right)^{k_{1}} 2^{k} \leq\left(\frac{2 e T(n)}{k}\right)^{k}
$$

Finally,

$$
\begin{equation*}
C(Q, k, d) \leq \sum_{\left|R_{1}\right|+\ldots+\left|R_{l}\right| \leq k} \max \left\{4, \frac{2 e T(n)}{k}\right\}^{k}<\max \left\{8, \frac{4 e T(n)}{k}\right\}^{k} \tag{4.19}
\end{equation*}
$$

Corollary 4.10. If $n \geq d^{6 d \log d}$, there holds

$$
\begin{equation*}
C(Q, k, d)<\left(e^{4} \max \left\{1, \frac{n^{1-\frac{1}{d}}}{k}\right\}\right)^{k} \tag{4.20}
\end{equation*}
$$

and

$$
\begin{equation*}
C(Q, k, d)<2^{2 k+4 n^{1-\frac{1}{d}}} \tag{4.21}
\end{equation*}
$$

Proof. Inequality (4.20) follows immediately from Lemmas 4.5 and 4.9 (note that $2 \sinh \pi / \pi$ $<e^{2}$). The second estimate is valid due to Lemma 4.5 and relation (4.18) in the same fashion as (4.19).

Now we are in a position to prove our main result.
Proof of Theorem 4.1. We start with the second part of the theorem. Let us first prove by induction on d that

$$
\begin{equation*}
\log p_{d}(n)<U_{d} n^{1-\frac{1}{d}} \quad \text { for } n>d^{12 d \log d} \tag{4.22}
\end{equation*}
$$

where $U_{2}:=2 \sqrt{2}$ and, for $d \geq 3$,

$$
U_{d}:=U_{d-1} d^{\frac{1}{d-1}}+1
$$

The basis $d=2$ follows from the estimate $p_{2}(k)<e^{2 \sqrt{2 k}}$ (see at the end of [40, Sec. 2]). Assuming that (4.22) holds for $2,3, \ldots, d-1$ we will prove it for $d \geq 3$. Take a lower set $Q,|Q|=n$, put $k:=\left\lfloor n^{1 / d}\right\rfloor$, and for a fixed $p, p=1, \ldots, d$, consider the following "slices" of Q :

$$
Q_{i}^{p}:=\left\{Q \cap\left\{q_{p}=i\right\}\right\} \backslash \bigcup_{0<t<p, 0 \leq j<k} Q_{j}^{t}, \quad i=0, \ldots, k-1
$$

of cardinalities $n_{0}^{p} \geq n_{1}^{p} \geq \ldots \geq n_{k-1}^{p}$. Note that $Q=\bigcup_{0 \leq i<k, 1 \leq p \leq d} Q_{i}^{p}$, since otherwise there would exist a cube $q \in Q$ with $q_{i}>n^{1 / d}-1$ for all $i=1, \ldots, d$, and, by the definition of lower sets, the cardinality of Q would exceed $\left(n^{1 / d}\right)^{d}$, which is not true. So,

$$
\sum_{p=1}^{d} l_{p}=n, \quad l_{p}:=n_{0}^{p}+\ldots+n_{k-1}^{p}
$$

In addition, any $Q_{i}^{p}, i>0$, is a lower subset of Q_{i-1}^{p}, so once Q_{i-1}^{p} is constructed, then if $n_{i}^{p} \geq(d-1)^{12(d-1) \log (d-1)}$, the number of possible Q_{i}^{p} (with a fixed n_{i}^{p}) can be estimated either by (4.21) or by the induction assumption. As in (4.4), one can show that $(d-1)^{12(d-1) \log (d-1)}<d^{-6} n^{1-\frac{1}{d}}$. Thus, combining (4.20), (4.21), and the induction assumption we obtain the following bound for the logarithm of the number of slices of fixed cardinalities n_{i}^{p} (for simplicity, we omit the upper indexes p for n_{i}^{p}):

$$
\begin{align*}
\max _{n_{0}+\ldots+n_{k-1}=l_{p}} & \left\{U_{d-1} n_{0}^{1-\frac{1}{d-1}}+\sum_{i=0}^{k-2} \min \left\{2\left(n_{i}-n_{i+1}\right)+4 n_{i}^{1-\frac{1}{d-1}}, U_{d-1} n_{i+1}^{1-\frac{1}{d-1}}\right\}\right\} \\
+ & \sum_{i: n_{i}<d^{-6} n^{1-\frac{1}{d}}}\left(n_{i}-n_{i+1}\right)\left(4+\log n_{i}\right) \\
= & : G\left(l_{p}, d\right)+\sum_{i: n_{i}<d^{-6} n^{1-\frac{1}{d}}}\left(n_{i}-n_{i+1}\right)\left(4+\log n_{i}\right) \tag{4.23}
\end{align*}
$$

Note that

$$
\begin{align*}
\sum_{i: n_{i}<d^{-6} n^{1-\frac{1}{d}}}\left(n_{i}-n_{i+1}\right)\left(4+\log n_{i}\right) & \leq \frac{n^{1-\frac{1}{d}}}{d^{6}}\left(4+\log (d-1)^{12(d-1) \log (d-1)}\right) \\
& <\frac{24 n^{1-\frac{1}{d}}}{d^{4}} \tag{4.24}
\end{align*}
$$

Then, taking into account (4.23), (4.24), and the inequality $p_{2}(n) \leq e^{2 \sqrt{2 n}}$, we derive

$$
\begin{aligned}
\log p_{d}(n) & \leq \log \left|\left\{\left\{n_{i}^{p}\right\}, 1 \leq i \leq k, 1 \leq p \leq d: \sum_{i, p} n_{i}^{p}=n\right\}\right|+\sum_{p=1}^{d} G\left(l_{p}, d\right)+d \frac{24 n^{1-\frac{1}{d}}}{d^{4}} \\
& \leq \log \binom{n+d-2}{d-1}+2 d \sqrt{2 n}+\frac{8 n^{1-\frac{1}{d}}}{9}+\max _{\substack{l_{1}+\ldots+l_{d}=n \\
n_{0}^{p}+\ldots+n_{k-1}^{p}=l_{p}}} \sum_{p=1}^{d} \sum_{i=0}^{k-1} U_{d-1} n_{i}^{1-\frac{1}{d-1}} \\
& \leq d \log 2 n+2 d \sqrt{2 n}+\frac{8 n^{1-\frac{1}{d}}}{9}+U_{d-1} \max _{l_{1}+\ldots+l_{d}=n} \sum_{p=1}^{d} n^{\frac{1}{d(d-1)}} l_{p}^{1-\frac{1}{d-1}} \\
& \leq 3 d \sqrt{2 n}+\frac{8 n^{1-\frac{1}{d}}}{9}+U_{d-1} d^{\frac{1}{d-1}} n^{1-\frac{1}{d}} \\
& <U_{d} n^{1-\frac{1}{d}},
\end{aligned}
$$

completing the proof of (4.22).
Further, as $U_{d}<d^{2}$ for $d<8$, it suffices to prove the second part of the theorem by induction on $d \geq 8$. As above, the induction assumption holds for Q_{i}^{p} with $n_{i}^{p} \geq$ $(d-1)^{12(d-1)} \log (d-1)$. Likewise in (4.23), by (4.24), the logarithm of the number of slices of fixed cardinalities n_{i}^{p} does not exceed

$$
\tilde{G}\left(l_{p}, d\right)+\sum_{i: n_{i}<d^{-6} n^{1-\frac{1}{d}}}\left(n_{i}-n_{i+1}\right)\left(4+\log n_{i}\right) \leq \tilde{G}\left(l_{p}, d\right)+\frac{24 n^{1-\frac{1}{d}}}{d^{4}}
$$

with

$$
\begin{aligned}
\tilde{G}\left(l_{p}, d\right): & =\max _{n_{0}+\ldots+n_{k-1}=l_{p}}\left\{(d-1)^{2} n_{0}^{1-\frac{1}{d-1}}\right. \\
& \left.+\sum_{i=0}^{k-2} \min \left\{2\left(n_{i}-n_{i+1}\right)+4 n_{i}^{1-\frac{1}{d-1}},(d-1)^{2} n_{i+1}^{1-\frac{1}{d-1}}\right\}\right\} \\
& \leq 4 k\left(\frac{l_{p}}{k}\right)^{1-\frac{1}{d-1}} \\
& +\max _{n_{0}+\ldots+n_{k-1}=l_{p}}\left\{B_{d-1} n_{0}^{1-\frac{1}{d-1}}+\sum_{i=0}^{k-1} \min \left\{2\left(n_{i}-n_{i+1}\right), B_{d-1} n_{i+1}^{1-\frac{1}{d-1}}\right\}\right\}
\end{aligned}
$$

where $B_{x}:=x^{2}-4, x \geq 8$. Noting that

$$
\begin{aligned}
B_{d-1} n_{0}^{1-\frac{1}{d-1}} & +\sum_{i=0}^{k-1} \min \left\{2\left(n_{i}-n_{i+1}\right), B_{d-1} n_{i+1}^{1-\frac{1}{d-1}}\right\} \\
& \leq B_{d-1} \sum_{i=0}^{\left\lfloor 2 d^{-1} n^{1 / d}\right\rfloor-1} n_{i}^{1-\frac{1}{d-1}}+2 n_{\left\lfloor 2 d^{-1} n^{1 / d}\right\rfloor-1} \\
& \leq B_{d-1} 2^{\frac{1}{d-1}} d^{-\frac{1}{d-1}} l_{p}^{1-\frac{1}{d}}+\frac{2 l_{p}}{2 d^{-1} n^{\frac{1}{d}}-1} \\
& <B_{d-1} 2^{\frac{1}{d-1}} d^{-\frac{1}{d-1}} l_{p}^{1-\frac{1}{d}}+d l_{p} n^{-\frac{1}{d}}+2 d^{2} l_{p} n^{-\frac{2}{d}}
\end{aligned}
$$

and that

$$
4 k\left(\frac{l_{p}}{k}\right)^{1-\frac{1}{d-1}} \leq 4 n^{\frac{1}{d(d-1)}} l_{p}^{1-\frac{1}{d-1}}
$$

we have

$$
\sum_{p=1}^{d} \tilde{G}\left(l_{p}, d\right) \leq 4 d^{\frac{1}{d-1}} n^{1-\frac{1}{d}}+B_{d-1} 2^{\frac{1}{d-1}} n^{1-\frac{1}{d}}+d n^{1-\frac{1}{d}}+2 d^{2} n^{1-\frac{2}{d}}
$$

Hence, using again $p_{2}(n) \leq e^{2 \sqrt{2 n}}$, we obtain for $d \geq 8$

$$
\begin{aligned}
\log p_{d}(n) & \leq \log \left|\left\{\left\{n_{i}^{p}\right\}, 1 \leq i \leq k, 1 \leq p \leq d: \sum_{i, p} n_{i}^{p}=n\right\}\right|+\sum_{p=1}^{d} \tilde{G}\left(l_{p}, d\right)+\frac{24 n^{1-\frac{1}{d}}}{d^{3}} \\
& <3 d \sqrt{2 n}+4 d^{\frac{1}{d-1}} n^{1-\frac{1}{d}}+B_{d-1} 2^{\frac{1}{d-1}} n^{1-\frac{1}{d}}+d n^{1-\frac{1}{d}}+2 d^{2} n^{1-\frac{2}{d}}+\frac{24 n^{1-\frac{1}{d}}}{d^{3}} \\
& <3 d \sqrt{2 n}+2 d^{2} n^{1-\frac{2}{d}}+\left(d^{2}-\frac{d}{16}\right) n^{1-\frac{1}{d}} \\
& <d^{2} n^{1-\frac{1}{d}}
\end{aligned}
$$

where in the last step we used that $n>\max \left\{(64 d)^{d},(96 \sqrt{2})^{6}\right\}$. This concludes the proof of the second part of the theorem.

We now turn to the first part. Our aim will be to prove the stronger inequality

$$
\begin{equation*}
p_{d}(n)<1800 K_{d} Y_{d} n^{1-\frac{1}{d}}=: C K_{d} Y_{d} n^{1-\frac{1}{d}} \tag{4.25}
\end{equation*}
$$

where $Y_{d}:=\prod_{k=3}^{d-1}\left(1+2^{-k}\right)^{1 / k}$ and $K_{d}=\prod_{k=1}^{d-1}\left(1+k^{-2}\right)$ as above. Inequality (4.25) implies the needed estimate $p_{d}(n)<7200 n^{1-1 / d}$, since $K_{d}<\sinh \pi / \pi, \log Y_{d}<1 / 12$, and $e^{1 / 12} \sinh \pi / \pi<4$.

Let us prove (4.25) by induction on d. The cases $d \leq 59$ follow from the second part of the theorem, so we prove the claim for $d \geq 60$ assuming that it holds for $2,3, \ldots, d-1$. We divide the proof into several steps.

Step 1. Partition into slices. Take a lower set $Q,|Q|=n$, and put

$$
k_{p}:=\left\{\begin{array}{l}
\left\lfloor 2^{-(d-1)} d^{-1} n^{1 / d}\right\rfloor=: k, \quad 0 \leq p \leq d-1 \\
\left\lfloor 2^{d(d-1)} d^{d-1} n^{1 / d}\right\rfloor, \quad p=d .
\end{array}\right.
$$

For a fixed $p, p=1, \ldots, d$, consider the slices

$$
Q_{i}^{p}:=\left\{Q \cap\left\{q_{p}=i\right\}\right\} \backslash \bigcup_{0<t<p, 0 \leq j<k_{t}} Q_{j}^{t}, \quad i=0, \ldots, k_{p}-1
$$

of cardinalities $n_{0}^{p} \geq n_{1}^{p} \geq \ldots \geq n_{k_{p}-1}^{p}$. Note that $\cup_{i, p} Q_{i}^{p}=Q$, since otherwise there exists a cube q in Q with $q_{p} \geq k_{p}$ for all p, so all the cubes with p th coordinate at most k_{p} belong to Q as well, which contradicts the fact that $\prod_{p} k_{p}>n$.

The idea is to split our lower set Q into two subsets: the union of the chosen slices of the first $d-1$ directions $\bigcup_{1 \leq p \leq d-1,0 \leq i<k_{p}} Q_{i}^{p}$ and the complement subset $Q^{\prime}:=\bigcup_{0 \leq i<k_{d}} Q_{i}^{d}$. Both $Q \backslash Q^{\prime}$ and Q^{\prime} consist of slices that are lower sets themselves. The number of lower
subsets of the former can be well estimated using the induction assumption, as the number of slices is small enough. The number of slices in the remaining set Q^{\prime} is not that small, however we will see that the number of them is still well bounded, so that Lemma 4.9 can come into play "prohibiting" the cardinalities of slices being close to each other. Denote $\left|Q^{\prime}\right|=: l,\left|Q \backslash Q^{\prime}\right|=: t$, so $l+t=n$.

Step 2. Dealing with small slices. Observe that each of the chosen slices is a lower set and for each p and $i<k_{p}-1$ the set Q_{i+1}^{p} is a subset of Q_{i}^{p}. We can apply the induction assumption to Q_{i}^{p} with $n_{i}^{p} \geq(30(d-1))^{2(d-1)^{2}}$. Noting that

$$
(30(d-1))^{2(d-1)^{2}}<\left(\frac{d}{d-1}\right)^{2(d-1)^{2}} n^{\frac{(d-1)^{2}}{d^{2}}} \leq 2^{-2(d-1)} n^{\frac{(d-1)^{2}}{d^{2}}}
$$

for a fixed p we have

$$
\begin{equation*}
\sum_{-2(d-1) n \frac{(d-1)^{2}}{d^{2}}}\left(n_{i}^{p}-n_{i+1}^{p}\right)(4+\log n)<2^{-2 d+3} n^{\frac{(d-1)^{2}}{d^{2}}} \log n \tag{4.26}
\end{equation*}
$$

Step 3. Estimating the number of possible $\mathbf{Q} \backslash \mathbf{Q}^{\prime}$. Using the induction assumption and the bound of the number of lower subsets given by (4.21) along with (4.26), we obtain that the logarithm of the number of possible $Q \backslash Q^{\prime}$ with fixed n_{i}^{p} is less than

$$
\begin{align*}
& \sum_{p=1}^{d-1} \sum_{i=0}^{k-1} C K_{d-1} Y_{d-1}\left(n_{i}^{p}\right)^{1-\frac{1}{d-1}}+(d-1) \cdot 2^{-2 d+3} n^{\frac{(d-1)^{2}}{d^{2}}} \log n \\
& \quad<C K_{d-1} Y_{d-1}((d-1) k)^{\frac{1}{d-1}} t^{1-\frac{1}{d-1}}+n^{\frac{(d-1)^{2}}{d^{2}}} \log n \\
& \quad \leq 0.5 C K_{d-1} Y_{d-1} n^{\frac{1}{d(d-1)}} t^{1-\frac{1}{d-1}}+n^{\frac{(d-1)^{2}}{d^{2}}} \log n \tag{4.27}
\end{align*}
$$

Step 4. Obtaining a general bound for the number of possible \mathbf{Q}^{\prime}. Now we estimate the number of possible Q^{\prime} with fixed $n_{i}:=n_{i}^{d}$. For the sake of simplicity, let $m:=k_{d}, \Delta_{i}:=n_{i}-n_{i+1}, \Gamma_{i}=n_{i}^{1-1 /(d-1)}$ (note that the last notation slightly differs from that of the proof of Lemma 4.5). Combining the induction assumption with (4.20) and keeping in mind (4.26), we see that the logarithm of the number of lower sets with fixed n_{i} cannot exceed the following sum (assuming $n_{m+1}=0$)

$$
\begin{align*}
& C K_{d-1} Y_{d-1} n_{0}^{1-\frac{1}{d-1}}+2^{-2 d+3} n^{\frac{(d-1)^{2}}{d^{2}}} \log n \\
& \quad+\sum_{i=0}^{m} \min \left\{\left(n_{i}-n_{i+1}\right)\left(4+\log ^{+} \frac{n_{i}^{1-\frac{1}{d-1}}}{n_{i}-n_{i+1}}\right), C K_{d-1} Y_{d-1} n_{i+1}^{1-\frac{1}{d-1}}\right\} \\
& \quad<4 C n_{0}^{1-\frac{1}{d-1}}+n^{\frac{(d-1)^{2}}{d^{2}}} \log n+\sum_{i=0}^{m} \min \left\{\Delta_{i}\left(C+\log ^{+} \frac{\Gamma_{i}}{\Delta_{i}}\right), C K_{d-1} Y_{d-1} \Gamma_{i}\right\} . \tag{4.28}
\end{align*}
$$

We can bound the latter sum of minima by

$$
\begin{align*}
\sum_{i: \Delta_{i} \leq \Gamma_{i}} \Delta_{i} \log \frac{e^{C} \Gamma_{i}}{\Delta_{i}}+\sum_{i: \Delta_{i}>\Gamma_{i}} C K_{d-1} \Gamma_{i} & =: \sum_{i=0}^{s-1} M_{i}+\sum_{i=s}^{m} M_{i} \\
& =: G\left(n_{0}, \ldots, n_{s}\right)+H\left(n_{s}, \ldots, n_{m}\right) \tag{4.29}
\end{align*}
$$

where s is the first index i such that $n_{i} \leq l^{1-1 / d} / 4 d^{3}$. Note that in (4.28) we can assume that $n_{m} \geq(30(d-1))^{2(d-1)^{2}}$, as the other n_{i} are already taken into account.

Step 5. Estimating $\mathbf{G}\left(\mathbf{n}_{\mathbf{0}}, \ldots, \mathbf{n}_{\mathbf{s}}\right)$. Take a tuple $\left(n_{0}, \ldots, n_{s}\right)$ that delivers the maximum of the function G over all the tuples in

$$
\begin{aligned}
S_{l}^{\prime}:=\{ & \left(n_{0}, \ldots, n_{s}\right) \in \mathbb{Z}^{+}: \\
& \left.n_{0} \geq \ldots \geq n_{s} \geq 0, n_{s-1} \geq \max \left\{\frac{l^{1-\frac{1}{d}}}{4 d^{3}},(30(d-1))^{2(d-1)^{2}}\right\}, n_{0}+\ldots+n_{s}=l\right\} .
\end{aligned}
$$

Note that $\Delta_{s-1}>\Gamma_{s-1}$, since otherwise $n_{s}>0$ and we can decrease n_{s} so that $\Delta_{s-1}>\Gamma_{s-1}$ increasing thereby the value of G.

Assume that for some $i, 0 \leq i \leq s-1$, we have

$$
\Delta_{i}>\Gamma_{i}+2
$$

Then $\Delta_{i}>3$ and if we substitute the pair $\left(n_{i}, n_{i+1}\right)$ by $\left(n_{i}-1, n_{i+1}+1\right)$, the tuple will still be in S_{l}^{\prime} with $M_{j}, j \neq i-1, i, i+1$, and Γ_{i-1} unchanged. At the same time Δ_{i-1} increases, which means that M_{i-1} does not decrease. Denote by $\Delta_{j}^{\prime}, \Gamma_{j}^{\prime}$ and M_{j}^{\prime} the corresponding values after the substitution. Consider the three cases.

Case 1. $\Delta_{i+1}>\Gamma_{i+1}$.
Then $\Delta_{i+1}^{\prime}>\Gamma_{i+1}^{\prime}$ and

$$
\left(M_{i}^{\prime}+M_{i+1}^{\prime}\right)-\left(M_{i}+M_{i+1}\right)=C K_{d-1}\left(\left(\Gamma_{i}^{\prime}+\Gamma_{i+1}^{\prime}\right)-\left(\Gamma_{i}+\Gamma_{i+1}\right)\right)>0 .
$$

Case 2. $\Delta_{i+1} \leq \Gamma_{i+1}, \Delta_{i+1}^{\prime} \leq \Gamma_{i+1}^{\prime}$.
We have

$$
\begin{aligned}
&\left(M_{i}^{\prime}+M_{i+1}^{\prime}\right)-\left(M_{i}+M_{i+1}\right) \\
&=\left(\Delta_{i+1}+1\right) \log \frac{e^{C}\left(n_{i+1}+1\right)^{1-\frac{1}{d-1}}}{\Delta_{i+1}+1}-\Delta_{i+1} \log \frac{e^{C} n_{i+1}^{1-\frac{1}{d-1}}}{\Delta_{i+1}}+C K_{d-1}\left(\left(n_{i}-1\right)^{1-\frac{1}{d-1}}-n_{i}^{1-\frac{1}{d-1}}\right) \\
& \geq C-\Delta_{i+1} \log \frac{\Delta_{i+1}+1}{\Delta_{i+1}}-C K_{d-1}\left(0.5 n_{i}\right)^{-\frac{1}{d-1}}>C-1-8 C n_{i}^{-\frac{1}{d-1}}>0
\end{aligned}
$$

since $n_{i}>16^{d-1}$.
Case 3. $\Delta_{i+1} \leq \Gamma_{i+1}, \Delta_{i+1}^{\prime}>\Gamma_{i+1}^{\prime}$.
Then

$$
\Delta_{i+1}+1=\Delta_{i+1}^{\prime}>\Gamma_{i+1}^{\prime}>\Gamma_{i+1}>2,
$$

so $\Delta_{i+1} \geq 0.5 \Gamma_{i+1}$, and

$$
\begin{aligned}
\left(M_{i}^{\prime}+M_{i+1}^{\prime}\right)-\left(M_{i}+M_{i+1}\right) & =C K_{d-1}\left(n_{i+1}+1\right)^{1-\frac{1}{d-1}}-\Delta_{i+1} \log \frac{e^{C} n_{i+1}^{1-\frac{1}{d-1}}}{\Delta_{i+1}} \\
& +C K_{d-1}\left(\left(n_{i}-1\right)^{1-\frac{1}{d-1}}-n_{i}^{1-\frac{1}{d-1}}\right) \\
& \geq C K_{d-1}\left(n_{i+1}+1\right)^{1-\frac{1}{d-1}}-\Delta_{i+1} \log 2 e^{C}-C K_{d-1}\left(0.5 n_{i}\right)^{-\frac{1}{d-1}} \\
& \geq 0.25 C K_{d-1}\left(1-4\left(0.5 n_{i}\right)^{-\frac{1}{d-1}}\right)>0,
\end{aligned}
$$

since $n_{i}>4^{d}$.

Thus, in all the cases G increases, and we come to a contradiction, which yields that

$$
\begin{equation*}
\Delta_{i} \leq \Gamma_{i}+2<1.25 \Gamma_{i}, \quad 0 \leq i \leq s-1, \tag{4.30}
\end{equation*}
$$

as $n_{i}=\Gamma_{i}^{\frac{d-1}{d-2}}>8^{\frac{d-1}{d-2}}$.
Note that for $s \leq l^{1 / d}$ we straightforwardly have an appropriate bound

$$
\begin{equation*}
G\left(n_{0}, \ldots, n_{s}\right) \leq \max _{n_{0}+\ldots n_{s-1}=l} \sum_{i=0}^{s-1} C K_{d-1} n_{i}^{1-\frac{1}{d-1}}=C K_{d-1} l^{1-\frac{1}{d}}, \tag{4.31}
\end{equation*}
$$

so from now on we assume

$$
\begin{equation*}
s-1 \geq l^{\frac{1}{d}} \quad \text { and } \quad n_{s-1} \leq l^{1-\frac{1}{d}} . \tag{4.32}
\end{equation*}
$$

If $n_{0}>2.5 l^{1-1 / d}$, then considering the sequence

$$
a_{0}:=n_{0} \quad \text { and } \quad a_{i}=a_{i-1}-1.25 a_{i-1}^{1-\frac{1}{d-1}} \text { for } i \geq 1,
$$

similarly as in the proof of Lemma 4.5 (see Case a), we see that the sum of a_{i} becomes equal to l before a_{i} reaches $l^{1-1 / d}$, so the same holds for n_{i} (since n_{i} decreases slower than a_{i}, cf. (4.30)). This contradicts (4.32). Thus,

$$
n_{0} \leq 2.5 l^{1-\frac{1}{d}} .
$$

Now, when we have the ratio n_{0} / n_{s-1} bounded by $10 d^{3}$, we are going to show that Δ_{i} must be greater that Γ_{i} for all $i=0, \ldots, s-1$. Assume the contrary, that is, for some $0<i<$ s there holds $\Delta_{i-1} \leq \Gamma_{i-1}$. Then we consider a new tuple ($n_{0}+n_{i}, n_{1}, \ldots, n_{i-1}, n_{i+1}, \ldots, n_{s}, 0$) instead of $\left(n_{0}, n_{1}, . ., n_{s}\right)$ and estimate the difference between the values of G at these points. First, let us estimate the difference $M_{0}^{\prime}-M_{0}$.

Case a. $\Delta_{0}>\Gamma_{0}$.
We have

$$
\begin{aligned}
M_{0}^{\prime}-M_{0} & =C K_{d-1}\left(\left(n_{0}+n_{i}\right)^{1-\frac{1}{d-1}}-n_{0}^{1-\frac{1}{d-1}}\right) \\
& \geq \frac{d-2}{d-1} C K_{d-1} \Gamma_{i}\left(\frac{n_{i}}{n_{0}+n_{i}}\right)^{\frac{1}{d-1}} \geq C K_{d-1} \Gamma_{i}\left(10 d^{3}\right)^{-\frac{1}{d-1}} \\
& =: W
\end{aligned}
$$

as $n_{i} \geq l^{1-1 / d} / 4 d^{3}$.
Case b. $\Delta_{0} \leq \Gamma_{0}, \Delta_{0}^{\prime} \leq \Gamma_{0}^{\prime}$.
Then

$$
\begin{aligned}
M_{0}^{\prime}-M_{0} & =\left(\Delta_{0}+n_{i}\right) \log \frac{e^{C}\left(n_{0}+n_{i}\right)^{1-\frac{1}{d-1}}}{\left(\Delta_{0}+n_{i}\right)}-\Delta_{0} \log \frac{e^{C} n_{0}^{1-\frac{1}{d-1}}}{\Delta_{0}} \\
& \geq C n_{i}-\Delta_{0} \log \frac{\Delta_{0}+n_{i}}{\Delta_{0}} \geq(C-1) n_{i}>W
\end{aligned}
$$

Case c. $\Delta_{0} \leq \Gamma_{0}, \Delta_{0}^{\prime}>\Gamma_{0}^{\prime}$.
In this case

$$
\begin{aligned}
M_{0}^{\prime}-M_{0} & =C K_{d-1}\left(n_{0}+n_{i}\right)^{1-\frac{1}{d-1}}-\Delta_{0} \log \frac{e^{C} n_{0}^{1-\frac{1}{d-1}}}{\Delta_{0}} \\
& \geq 2 C\left(n_{0}+n_{i}\right)^{1-\frac{1}{d-1}}-C \Delta_{0} \frac{n_{0}^{1-\frac{1}{d-1}}}{\Delta_{0}} \geq W .
\end{aligned}
$$

Now let us turn to estimating the difference $M_{i-1}^{\prime}-\left(M_{i-1}+M_{i}\right)$.
Case a'. $\Delta_{i}>\Gamma_{i}, \Delta_{i-1}+\Delta_{i} \leq \Gamma_{i-1}$.
Then

$$
\begin{aligned}
M_{i-1}^{\prime}-\left(M_{i-1}+M_{i}\right) & =\left(\Delta_{i-1}+\Delta_{i}\right) \log \frac{e^{C} \Gamma_{i-1}}{\Delta_{i-1}+\Delta_{i}}-\Delta_{i-1} \log \frac{e^{C} \Gamma_{i-1}}{\Delta_{i-1}}-C K_{d-1} \Gamma_{i} \\
& \geq C \Delta_{i}-\Delta_{i}-C K_{d-1} \Gamma_{i} \geq\left(C-1-C K_{d-1}\right) \Gamma_{i} \\
& =: V
\end{aligned}
$$

Case b'. $\Delta_{i}>\Gamma_{i}, \Delta_{i-1}+\Delta_{i}>\Gamma_{i-1}$.
Note that

$$
\Gamma_{i}=\left(\Gamma_{i-1}^{\frac{d-1}{d-2}}-\Delta_{i-1}\right)^{\frac{d-2}{d-1}}>\left(\Gamma_{i-1}^{\frac{d-1}{d-2}}-\Gamma_{i-1}\right)^{\frac{d-2}{d-1}}=\Gamma_{i-1}\left(1-\Gamma_{i-1}^{-\frac{1}{d-2}}\right)^{\frac{d-2}{d-1}} \geq \frac{C}{C+1} \Gamma_{i-1}
$$

since $n_{i-1} \geq(30(d-1))^{2(d-1)^{2}}>60^{4(d-1)}>1801^{d-1}$. So,

$$
\begin{aligned}
M_{i-1}^{\prime}-\left(M_{i-1}+M_{i}\right) & =C K_{d-1} \Gamma_{i-1}-\Delta_{i-1} \log \frac{e^{C} \Gamma_{i-1}}{\Delta_{i-1}}-C K_{d-1} \Gamma_{i} \\
& >-C \Gamma_{i-1} \geq(-1-C) \Gamma_{i} \geq V
\end{aligned}
$$

Case c'. $\Delta_{i} \leq \Gamma_{i}$.
We have

$$
\begin{aligned}
M_{i-1}^{\prime}-\left(M_{i-1}+M_{i}\right) & =\left(\Delta_{i-1}+\Delta_{i}\right) \log \frac{e^{C} \Gamma_{i-1}}{\Delta_{i-1}+\Delta_{i}}-\Delta_{i-1} \log \frac{e^{C} \Gamma_{i-1}}{\Delta_{i-1}}-\Delta_{i} \log \frac{e^{C} \Gamma_{i}}{\Delta_{i}} \\
& \geq-\Delta_{i} \log \frac{e^{C} \Gamma_{i}}{\Delta_{i}} \geq-C \Gamma_{i}>V
\end{aligned}
$$

Hence, in all the cases

$$
\begin{aligned}
G\left(n_{0}+n_{i}, \ldots, n_{m}, 0\right)-G\left(n_{0}, . ., n_{m}\right) & \geq W+V \\
& =C K_{d-1} \Gamma_{i}\left(10 d^{3}\right)^{-\frac{1}{d-1}}+\left(C-1-C K_{d-1}\right) \Gamma_{i} \\
& >C K_{d-1} \Gamma_{i}\left(\left(10 d^{3}\right)^{-\frac{1}{d-1}}-\frac{3 C+1}{4 C}\right)>0
\end{aligned}
$$

for $d \geq 60$. This means that we come to a contradiction that ensures

$$
\begin{equation*}
\Delta_{i}>\Gamma_{i}, \quad 0 \leq i \leq s-1 \tag{4.33}
\end{equation*}
$$

With (4.33) and (4.31) in hand, we obtain

$$
\begin{align*}
G\left(n_{0}, \ldots, n_{s}\right) & \leq \sum_{0 \leq i<s: \Delta_{i} \leq \Gamma_{i}} \Delta_{i} \log \frac{e^{C}\left(\Delta_{i}+\Delta_{i+1}\right)}{\Delta_{i}}+\sum_{0 \leq i<s: \Delta_{i}>\Gamma_{i}} C K_{d-1} \Gamma_{i} \\
& =\sum_{0 \leq i<s: \Delta_{i}>\Gamma_{i}} C K_{d-1} \Gamma_{i} \\
& =\sum_{0 \leq i<s: \Delta_{i} \leq \Gamma_{i}} C \Delta_{i}+\sum_{0 \leq i<s: \Delta_{i}>\Gamma_{i}} C K_{d-1} \Gamma_{i} \\
& <C K_{d-1} n^{1-\frac{1}{d}}\left(1+\frac{2}{3(d-1)^{2}}+d^{-10(d-1) \log d}+l^{-\frac{1}{d}}\right) \tag{4.34}
\end{align*}
$$

where the last inequality is due to (4.17).
Step 6. Estimating $\mathbf{H}\left(\mathbf{n}_{\mathbf{s}}, \ldots, \mathbf{n}_{\mathbf{m}}\right)$. Let us split $H\left(n_{s}, \ldots, n_{m}\right)$ (see (4.29)) into two sums

$$
H\left(n_{s}, \ldots, n_{m}\right)=\sum_{s \leq i: \Delta_{i} \leq 2^{-2 d} d^{-8} \Gamma_{i}} M_{i}+\sum_{s \leq i: \Delta_{i}>2^{-2 d} d^{-8} \Gamma_{i}} M_{i}=: H_{1}+H_{2}
$$

corresponding to, roughly speaking, big and small ratios Γ_{i} / Δ_{i}. For H_{2} and $d \geq 60$, we have the bound

$$
H_{2} \leq n_{s}\left(4+\log 2^{2 d} d^{8}\right)<2 d n_{s} \leq \frac{l^{1-\frac{1}{d}}}{2 d^{2}}
$$

Further, for i satisfying $\Delta_{i} \leq 2^{-2 d} d^{-8} \Gamma_{i}$, we obtain

$$
\log \frac{e^{4} \Gamma_{i}}{\Delta_{i}}<e^{2} \sqrt{\frac{\Gamma_{i}}{\Delta_{i}}} \leq e^{2} 2^{-d} d^{-4} \frac{\Gamma_{i}}{\Delta_{i}}
$$

whence

$$
H_{1} \leq \sum_{i=s}^{m} \frac{e^{2}}{2^{d} d^{4}} \Gamma_{i} \leq \frac{e^{2}}{2^{d} d^{4}} k_{d}^{\frac{1}{d-1}} l^{1-\frac{1}{d}} \leq \frac{e^{2} l^{1-\frac{1}{d}}}{d^{3}}
$$

Thus,

$$
\begin{equation*}
H\left(n_{s}, \ldots, n_{m}\right)=H_{1}+H_{2} \leq \frac{l^{1-\frac{1}{d}}}{2 d^{2}}+\frac{e^{2} l^{1-\frac{1}{d}}}{d^{3}}<\frac{l^{1-\frac{1}{d}}}{d^{2}} \tag{4.35}
\end{equation*}
$$

Step 7. Combining all the estimates together. Note that the number of different n_{i}^{p} is less than

$$
\binom{n+d-2}{d-1}\left(e^{2 \sqrt{2 n}}\right)^{d}<e^{3 d \sqrt{2 n}}
$$

Therefore, recalling (4.27), (4.28), (4.29), (4.34), and (4.35), we infer

$$
\begin{aligned}
\log p_{d}(n) & \leq 0.5 C K_{d-1} Y_{d-1} n^{\frac{1}{d(d-1)}} t^{1-\frac{1}{d-1}}+4 C n^{1-\frac{1}{d-1}}+2 n^{\frac{(d-1)^{2}}{d^{2}}} \log n+3 d \sqrt{2 n} \\
& +C K_{d-1} Y_{d-1} l^{1-\frac{1}{d}}\left(1+\frac{2}{3(d-1)^{2}}+d^{-10(d-1) \log d}+l^{-\frac{1}{d}}+\frac{1}{2 C d^{2}}\right)
\end{aligned}
$$

Note that

$$
\begin{equation*}
2 n^{\frac{(d-1)^{2}}{d^{2}}} \log n<C n^{1-\frac{2}{d}+\frac{1}{d^{2}}} \log n \leq C n^{1-\frac{2}{d}+\frac{1}{2 d(d-1)}+\frac{1}{d^{2}}}<C n^{1-\frac{1}{d-1}} \tag{4.36}
\end{equation*}
$$

since $n^{\frac{1}{2 d(d-1)}} \geq n^{\frac{\log \log n}{\log n}}=\log n$. Indeed, if the latter does not hold, then $d^{2}>\log n / 2 \log \log n$ and

$$
d^{8 d^{2}}>\left(\frac{\log n}{2 \log \log n}\right)^{\frac{2 \log n}{\log \log n}} \geq(\log n)^{\frac{\log n}{\log \log n}}=n
$$

which contradicts the conditions of the theorem. So, using (4.36) we come to

$$
\begin{align*}
\log p_{d}(n) & <0.5 C K_{d-1} Y_{d-1} n^{\frac{1}{d(d-1)}} t^{1-\frac{1}{d-1}}+5 C n^{1-\frac{1}{d-1}}+3 d \sqrt{2 n} \\
& +C K_{d-1} Y_{d-1} l^{1-\frac{1}{d}}\left(1+\frac{3}{4(d-1)^{2}}+l^{-\frac{1}{d}}\right) \\
& <C K_{d-1} Y_{d-1} n^{\frac{1}{d(d-1)}}\left(0.5 t^{1-\frac{1}{d-1}}+l^{1-\frac{1}{d-1}}\left(1+\frac{3}{4(d-1)^{2}}+l^{-\frac{1}{d}}\right)\right) \tag{4.37}\\
& +5 C n^{1-\frac{1}{d-1}}+3 d \sqrt{2 n} .
\end{align*}
$$

Let us estimate the expression in brackets in (4.37). If $l \leq n / 2^{d}$, then

$$
0.5 t^{1-\frac{1}{d-1}}+l^{1-\frac{1}{d-1}}\left(1+\frac{3}{4(d-1)^{2}}+l^{-\frac{1}{d}}\right)<n^{1-\frac{1}{d-1}}
$$

Otherwise,
$0.5 t^{1-\frac{1}{d-1}}+l^{1-\frac{1}{d-1}}\left(1+\frac{3}{4(d-1)^{2}}+l^{-\frac{1}{d}}\right)<\left(0.5 t^{1-\frac{1}{d-1}}+l^{1-\frac{1}{d-1}}\right)\left(1+\frac{3}{4(d-1)^{2}}+2 n^{-\frac{1}{d}}\right)$.
Note that for any $0<a<b, \gamma \in(0,1)$, there holds

$$
0.5 a^{\gamma}+(b-a)^{\gamma} \leq b^{\gamma}\left(1+2^{-\frac{1}{1-\gamma}}\right)^{1-\gamma}
$$

which in our case with $\gamma:=1-1 /(d-1)$ gives

$$
0.5 t^{1-\frac{1}{d-1}}+l^{1-\frac{1}{d-1}} \leq n^{1-\frac{1}{d-1}}\left(1+2^{-d+1}\right)^{\frac{1}{d-1}}
$$

Therefore, in both cases we get

$$
\begin{align*}
Y_{d-1} n^{\frac{1}{d(d-1)}}\left(0.5 t^{1-\frac{1}{d-1}}\right. & \left.+l^{1-\frac{1}{d-1}}\left(1+\frac{3}{4(d-1)^{2}}+l^{-\frac{1}{d}}\right)\right) \\
& \leq Y_{d} n^{1-\frac{1}{d}}\left(1+\frac{3}{4(d-1)^{2}}+2 n^{-\frac{1}{d}}\right) \tag{4.38}
\end{align*}
$$

Finally, (4.37) and (4.38) together imply

$$
\begin{aligned}
\log p_{d}(n) & \leq C K_{d-1} Y_{d} n^{1-\frac{1}{d}}\left(1+\frac{3}{4(d-1)^{2}}+2 n^{-\frac{1}{d}}\right)+5 C n^{1-\frac{1}{d-1}}+3 d \sqrt{2 n} \\
& <C K_{d} Y_{d} n^{1-\frac{1}{d}}
\end{aligned}
$$

where the latter inequality follows from

$$
\max \left\{2 n^{-\frac{1}{d}}, 2.5 n^{-\frac{1}{d(d-1)}}, d n^{\frac{1}{2}-1+\frac{1}{d}}\right\}=2.5 n^{-\frac{1}{d(d-1)}} \leq \frac{1}{12(d-1)^{2}}
$$

as $n \geq(30 d)^{2 d^{2}}$. Thus, Theorem 4.1 is proved.

4.4 Lower sets in high dimensions

In cases of high dimensions, the situation is quite different. In the first place, the trivial lower bound $p_{d}(n) \geq\binom{ d+n-2}{d-1}$ becomes much more reasonable, as configurations of lower sets, in general, become more sparse. We start by considering the case of a very large dimension d.

Proof of Theorem 4.2 (a). Put the first cube into the origin and, for a fixed $j, 0 \leq j \leq$ $n-1$, spread j cubes along the axes. To complete a lower set, we have to add more $n-1-j$ cubes and we will do it stepwise. Note that any cube we now place is not aligned along an axis, so it has at least two nonzero coordinates. This means that in any subsequent step the current cube must be adjacent to at least two faces of two previously placed cubes. Since every pair of cubes can have at most one pair of their faces on which we can place a cube leaning, we come to the following estimate

$$
p_{d}(n) \leq \sum_{j=0}^{n-1}\binom{d-1+j}{d-1} \prod_{k=j}^{n-2}\binom{k}{2}=: \sum_{j=0}^{n-1} A_{j} .
$$

Noting that

$$
\frac{A_{j+1}}{A_{j}}=\frac{2(d+j)}{(j+1) j(j-1)} \geq \frac{2 d}{n^{3}}
$$

we obtain

$$
\frac{p_{d}(n)}{\binom{d+n-2}{d-1}}=\frac{\sum_{j=0}^{n-1} A_{j}}{\binom{d+n-2}{d-1}} \leq \frac{1}{1-\frac{n^{3}}{2 d}} \cdot \frac{A_{n-1}}{\binom{d+n-2}{d-1}}=\frac{1}{1-\frac{n^{3}}{2 d}} .
$$

The estimate from below is given by

$$
p_{d}(n) \geq A_{n-1}=\binom{d+n-2}{d-1}
$$

The next result provides a more delicate estimate from above by dealing with a similar construction as in the proof of Theorem 4.2 (a).

Lemma 4.11. There holds

$$
p_{d}(n) \leq \sum_{m=2}^{n} \frac{e^{m}}{2^{m}} \sum_{t=1}^{m-1}(2 \pi)^{-\frac{t+1}{2}} \sum_{\substack{s_{0}+\ldots+s_{t}=m \\ s_{i} \geq 2,0 \leq i<t}} \frac{1}{\sqrt{s_{0} s_{1} \ldots s_{t}}}(2 d)^{s_{0}} s_{0}^{2 s_{1}-s_{0}} s_{1}^{2 s_{2}-s_{1}} \ldots s_{t-1}^{2 s_{t}-s_{t-1}} s_{t}^{-s_{t}}
$$

Proof. Observe that every lower set can be constructed in the following way. First we put a cube into the origin. After that we choose some axes to put a cube along each of them, we call this zero step. Then, inductively, as we have completed the $(k-1)$ th step, we have a lower set whose cubes have the sum of the coordinates less or equal to k. In the k th step we add some cubes to our set so that the following two conditions hold: any cube we put now has the sum of its coordinates equal to $k+1$ and the set we construct remains to be a lower set.

Let us estimate the number of choices to put s_{k} cubes in the k th step. Note that these s_{k} cubes must lean only on s_{k-1} cubes that we put in the previous step.

When $k=1$, each pair of s_{0} cubes from the previos step generates a place for a new cube and there are also s_{0} possibilities to put a cube along an axis. So, the total number of possible places in this case is $s_{0}\left(s_{0}+1\right) / 2<\left(s_{0}+1\right)^{2} / 2$.

Turn now to the cases of $k>1$. Suppose that there are l cubes among these s_{k-1} ones that lie along some axes, that is, they have all the coordinates except one equal to zero. Then the only two ways to lean a new cube on any of these l cubes are either to continue going along the corresponding axes or to lean it on one of these l cubes and on one of the remaining $s_{k-1}-l$ ones. If a new cube does not lean on those l cubes, then it has more than one nonzero coordinate, thus must lean on at least two cubes from the other $s_{k-1}-l$ ones from the previous step. As we have already noted, each pair of cubes generates at most one place for a new cube to lean on both of them. Summing up, the number of places to put cubes in the k th step is 1 in the case $s_{k-1}=l=1$ and

$$
l+l\left(s_{k-1}-l\right)+\binom{s_{k-1}-l}{2} \leq \frac{s_{k-1}^{2}}{2}
$$

otherwise. In the case $s_{k-1}=l=1$ all the remaining steps must have $s_{i}=1, i \geq k$. We come to the estimate

$$
p_{d}(n) \leq \sum_{m=1}^{n-1} \sum_{t=1}^{m} \sum_{\substack{\begin{subarray}{c}{s \\
0 \\
s_{i} \geq 2,1 \leq i<t \\
\hline} }}\end{subarray}}\binom{d}{s_{0}}\binom{\frac{\left(s_{0}+1\right)^{2}}{2}}{s_{1}}\binom{\frac{s_{1}^{2}}{2}}{s_{2}} \ldots\binom{\frac{s_{t-1}^{2}}{2}}{s_{t}}
$$

Using Stirling's formula we see that

$$
\binom{a}{b} \leq \frac{a^{b}}{b!} \leq \frac{1}{\sqrt{2 \pi b}}\left(\frac{a e}{b}\right)^{b}
$$

for any $a \geq b \geq 1$, so we finally obtain

$$
\begin{aligned}
p_{d}(n) & \leq \sum_{m=1}^{n-1} \sum_{t=1}^{m} \sum_{t=1} e^{s_{0}+\ldots+s_{t}=m} 1 s_{i}\left(\frac{e}{2}\right)^{m-s_{0}}(2 \pi)^{-\frac{t+1}{2}} \\
& \times \frac{1}{\sqrt{s_{0} s_{1} s_{2} \ldots s_{t}}} d^{s_{0}} s_{0}^{-s_{0}}\left(s_{0}+1\right)^{2 s_{1}} s_{1}^{-s_{1}} s_{1}^{2 s_{2}} s_{2}^{-s_{2}} \ldots s_{t-1}^{2 s_{t}} s_{t}^{-s_{t}} \\
& =\sum_{m=2}^{n} \frac{e^{m}}{2^{m}} \sum_{t=1}^{m-1}(2 \pi)^{-\frac{t+1}{2}} \sum_{\substack{s_{0}+\ldots+s_{t}=m \\
s_{i} \geq 2,0 \leq i<t}} \frac{1}{\sqrt{s_{0} s_{1} \ldots s_{t}}}(2 d)^{s_{0}} s_{0}^{2 s_{1}-s_{0}} s_{1}^{2 s_{2}-s_{1}} \ldots s_{t-1}^{2 s_{t}-s_{t-1}} s_{t}^{-s_{t}} .
\end{aligned}
$$

Lemma 4.11 will be our main tool for further upper estimates of $p_{d}(n)$. The first one is of interest when $d=o\left(n^{2}\right)$ as $n \rightarrow \infty$.
Proposition 4.1. For $d \leq n^{2} / 4$, there holds

$$
p_{d}(n)<4 e^{c n} n^{n+2 \sqrt{d}} \max \left\{2^{-n},(2 n)^{-\sqrt{d}}\right\} \quad \text { with } c=\frac{3}{2 e}+1,
$$

which in case $d n^{-2} \rightarrow 0$ as $n \rightarrow \infty$ yields

$$
p_{d}(n) \leq n^{n+o(n)}
$$

Proof. Consider a tuple $\left(s_{0}, s_{1}, \ldots, s_{t}\right) \in \mathbb{N}^{t+1}$ such that $s_{i} \geq 2$ for $0<i<t$ and $s_{0}+\ldots+s_{t}=$ m. Note that

$$
\begin{equation*}
\left(s_{0} s_{1} \ldots s_{t}\right)^{\frac{3}{2}} \leq\left(\frac{m}{t}\right)^{\frac{3 t}{2}} \leq e^{\frac{3 m}{2 e}} \tag{4.39}
\end{equation*}
$$

Suppose that there is no $s_{i}, i \geq 1$, such that $s_{i} \geq \sqrt{d}$. Then, using (4.39), we have

$$
\begin{align*}
F\left(d, s_{0}, \ldots, s_{t}\right): & =\left(s_{0} s_{1} \ldots s_{t}\right)^{\frac{3}{2}}(2 d)^{s_{0}} s_{0}^{2 s_{1}-s_{0}} s_{1}^{2 s_{2}-s_{1}} \ldots s_{t-1}^{2 s_{t}-s_{t-1}} s_{t}^{-s_{t}} \\
& \leq e^{\frac{3 m}{2 e}}(2 d)^{s_{0}} s_{0}^{2 s_{1}-s_{0}} s_{1}^{s_{2}} s_{2}^{s_{3}} \ldots s_{t-1}^{s_{t}} s_{t}^{-s_{1}} \\
& \leq e^{\frac{3 m}{2 e}}(2 d)^{s_{0}} s_{0}^{2 \sqrt{d}-s_{0}} d^{\frac{m-s_{0}}{2}} \\
& =e^{\frac{3 m}{2 e}} d^{\frac{m+s_{0}}{2}} 2^{s_{0}} s_{0}^{2 \sqrt{d}-s_{0}} \\
& <e^{\frac{3 m}{2 e}} d^{\frac{m}{2}} m^{2 \sqrt{d}} 2^{s_{0}} d^{\frac{s_{0}}{2}} s_{0}^{-s_{0}} . \tag{4.40}
\end{align*}
$$

Here we used the inequality $s_{1}^{s_{1}} s_{2}^{s_{2}} \ldots s_{t}^{s_{t}} \geq s_{1}^{s_{2}} s_{2}^{s_{3}} \ldots s_{t}^{s_{1}}$, which is true since for any $k \in \mathbb{N}$, any positive integers a_{1}, \ldots, a_{k}, and any permutation σ from the symmetric group \mathfrak{S}_{k}, there holds

$$
\begin{equation*}
\prod_{i} a_{i}^{a_{\sigma(i)}} \leq \prod_{i} a_{i}^{a_{i}} \tag{4.41}
\end{equation*}
$$

The maximum of the right-hand side of (4.40) is attained at $s_{0}=2 \sqrt{d} / e$, so in this case

$$
\begin{equation*}
F\left(d, s_{0}, \ldots, s_{t}\right) e^{-\frac{3 m}{2 e}} \leq d^{\frac{m}{2}}\left(e^{\frac{1}{e}} m\right)^{2 \sqrt{d}} \leq n^{n} 2^{-n} e^{\frac{n}{2}} n^{2 \sqrt{d}}<n^{n+2 \sqrt{d}} \tag{4.42}
\end{equation*}
$$

If there exists $s_{i} \geq \sqrt{d}, i \geq 1$, then choosing the maximal such index i and using twice inequality (4.41) along with (4.39) we obtain

$$
\begin{align*}
F\left(d, s_{0}, \ldots, s_{t}\right) e^{-\frac{3 m}{2 e}} & \leq 2^{s_{0}}\left(d^{s_{0}} s_{0}^{2 s_{1}-s_{0}} \ldots s_{i-1}^{2 s_{i}-s_{i-1}} s_{i}^{-s_{i}}\right) m^{2 s_{i+1}}\left(s_{i+1}^{2 s_{i+2}-s_{i+1}} \ldots s_{t-1}^{2 s_{t}-s_{t-1}} s_{t}^{-s_{t}}\right) \\
& \leq 2^{s_{0}}\left(s_{0}^{2 s_{1}-s_{0}} \ldots s_{i-1}^{2 s_{i}-s_{i-1}} s_{i}^{2 s_{0}-s_{i}}\right) m^{2 s_{i+1}}\left(s_{i+1}^{s_{i+2}} \ldots s_{t-1}^{s_{t}} s_{t}^{-s_{i+1}}\right) \\
& \leq 2^{s_{0}}\left(s_{0}^{s_{1}} \ldots s_{i-1}^{s_{i}} s_{i}^{s_{0}}\right) m^{2 s_{i+1}} m^{s_{i+2}+\ldots+s_{t}} \\
& \leq 2^{s_{0}} m^{s_{0}+\ldots+s_{i}+2 s_{i+1}+s_{i+2}+\ldots+s_{t}} \\
& <2^{m-\sqrt{d}} m^{m+\sqrt{d}} \leq 2^{n-\sqrt{d}} n^{n+\sqrt{d}} \tag{4.43}
\end{align*}
$$

According to Lemma 4.11, it remains only to estimate the sum

$$
\sum_{m=2}^{n} \frac{e^{m}}{2^{m}} \sum_{t=1}^{m-1}(2 \pi)^{-\frac{t+1}{2}} \sum_{\substack{s_{0}+\ldots+s_{t}=m \\ s_{i} \geq 2,0 \leq i<t}} \frac{1}{\left(s_{0} s_{1} \ldots s_{t}\right)^{2}}
$$

Note that the right sum is equal to the coefficient at x^{m} of the polynomial

$$
P(x):=\left(\sum_{j=1}^{m} \frac{x^{j}}{j^{2}}\right)\left(\sum_{j=2}^{m} \frac{x^{j}}{j^{2}}\right)^{t}
$$

We have $P(1)<\left(\pi^{2} / 6\right)^{t+1}$, therefore,

$$
\begin{align*}
\sum_{m=2}^{n} \frac{e^{m}}{2^{m}} \sum_{t=1}^{m-1}(2 \pi)^{-\frac{t+1}{2}} \sum_{\substack{s_{0}+\ldots+s_{t}=m \\
s_{i} \geq 2,0 \leq i<t}} \frac{1}{\left(s_{0} s_{1} \ldots s_{t}\right)^{2}} & <\sum_{m=2}^{n} \frac{e^{m}}{2^{m}} \sum_{t=1}^{m-1}\left(\frac{\pi^{2}}{6 \sqrt{2 \pi}}\right)^{t+1} \\
& <\frac{4}{9} \frac{1}{1-\frac{2}{3}} \sum_{m=2}^{n} \frac{e^{m}}{2^{m}}=\frac{4}{3} \sum_{m=2}^{n} \frac{e^{m}}{2^{m}} \tag{4.44}
\end{align*}
$$

Thus, combining (4.44) with (4.42) and (4.43), we finally derive

$$
\begin{aligned}
p_{d}(n+1) & \leq n^{n+2 \sqrt{d}} \max \left\{1, \frac{2^{n}}{(2 n)^{\sqrt{d}}}\right\} \frac{4}{3} \sum_{m=1}^{n}\left(\frac{e^{\frac{3}{2 e}+1}}{2}\right)^{m} \\
& <4 e^{\frac{3 n}{2 e}+n} n^{n+2 \sqrt{d}} \max \left\{2^{-n},(2 n)^{-\sqrt{d}}\right\}
\end{aligned}
$$

which concludes the proof.

The complementary lower bound for the case $d=o\left(n^{2}\right)$ will be as follows.
Proposition 4.2. If $d \geq n / \psi(n)$ for some positive function $\psi(n) \geq 1$ such that $\psi(n) \rightarrow \infty$ and $\log \psi(n) / \log n \rightarrow 0$ as $n \rightarrow \infty$, then there holds

$$
p_{d}(n+1) \geq n^{\left(n+\frac{n \log d}{\psi(n) \log n}\right)(1+o(1))}
$$

and, consequently, if $\frac{\log d}{\psi(n) \log n} \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
p_{d}(n) \geq n^{n+o(n)}
$$

Proof. Let us count only the lower sets whose cubes have at most two nonzero coordinates and these coordinates are at most 1. First, we place a cube into the origin. After this we fix some number $i, i=1, \ldots, n$, and choose i axes to put cubes along them. The remaining cubes will lie on some of the two-dimensional hyperplanes generated by the chosen axes. So the number of such lower sets is

$$
\sum_{i=1}^{\min \{d, n\}}\binom{d}{i}\binom{\frac{i(i-1)}{2}}{n-i}=: \sum_{i=1}^{\min \{d, n\}} B_{i} \geq B_{\lfloor n / \psi(n)\rfloor}
$$

To estimate the latter value, we note that by Stirling's formula

$$
\sqrt{2 \pi a}\left(\frac{a}{e}\right)^{a} \leq a!\leq e^{\frac{1}{12}} \sqrt{2 \pi a}\left(\frac{a}{e}\right)^{a}
$$

for all $a \geq 1$, so this implies the inequality

$$
\binom{a}{b} \geq \frac{\sqrt{a} a^{a}}{e^{\frac{1}{6}} \sqrt{2 \pi(a-b) b}(a-b)^{a-b} b^{b}}>\frac{1}{2 \sqrt{a}}\left(\frac{a}{b}\right)^{b}
$$

for all $a>b \geq 1$. Now, assuming that $\psi(n) \leq n / 6$, we can estimate $B_{\lfloor n / \psi(n)\rfloor}$ as follows (writing just ψ in place of $\psi(n)$ for the sake of simplicity)

$$
\begin{align*}
B_{\lfloor n / \psi\rfloor}= & \binom{d}{\left\lfloor\frac{n}{\psi}\right\rfloor}\binom{\frac{1}{2}\left\lfloor\frac{n}{\psi}\right\rfloor^{2}-\frac{1}{2}\left\lfloor\frac{n}{\psi}\right\rfloor}{ n-\left\lfloor\frac{n}{\psi}\right\rfloor} \\
> & \frac{1}{2 \sqrt{d}}\left(\frac{d \psi}{n}\right)^{\frac{n}{\psi}-1} \frac{\psi}{\sqrt{2} n}\left(\frac{n}{4 \psi^{2}}\right)^{n-\frac{n}{\psi}} \\
> & d^{\frac{n}{\psi}-\frac{3}{2}} n^{n-2 \frac{n}{\psi}} \psi^{-2 n+3 \frac{n}{\psi(n)}} 2^{-2 n+\frac{2 n}{\psi}-\frac{3}{2}} \\
= & \exp \left(n \log n-\frac{2 n \log n}{\psi}+\frac{n \log d}{\psi}-\frac{3 \log d}{2}-2 n \log \psi\right. \\
& \left.\quad+\frac{3 n \log \psi}{\psi}-2 n \log 2+\frac{2 n \log 2}{\psi}-\frac{3 \log 2}{2}\right) \tag{4.45}\\
= & n^{\left(n+\frac{n \log d}{\psi \log n}\right)(1+o(1))},
\end{align*}
$$

which in case $\log d=o(\psi(n) \log n)$ yields

$$
B_{\lfloor n / \psi(n)\rfloor} \geq n^{n+o(n)} .
$$

Remark 4.12. For $d \geq n / \log n$ and $\psi(n):=\log n$, inequality (4.45) gives

$$
p_{d}(n+1)>n^{n-\frac{6 n \log \log n}{\log ^{2} n}} .
$$

Proof of Theorem 4.2 (d). The relation follows straightforwardly from the corresponding parts of Propositions 4.1 and 4.2.

Now we give a more general estimate, which will imply the sharp exponential order of $p_{d}(n)$ in case of $n^{2}=O(d)$.

Proposition 4.3. If $d \geq \xi n^{2}$ for some $\xi=\xi(n) \geq 2 n^{-1}$, then

$$
p_{d}(n)<3 a^{2 n} e^{\frac{125 n}{\xi}} n^{2} e^{n} \frac{d^{n}}{n^{n}} \quad \text { with } a=\max \left\{2 e^{3.5} \xi^{-1}, 1\right\} .
$$

In particular, if $\xi(n) \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
p_{d}(n)=e^{n} \frac{d^{n}}{n^{n}} e^{o(n)} .
$$

Proof. For a tuple $\left(s_{0}, \ldots, s_{t}\right) \in \mathbb{N}^{t+1}$ with $s_{0}+\ldots+s_{t}=m$, as before let

$$
F\left(d, s_{0}, \ldots, s_{t}\right):=\left(s_{0} s_{1} \ldots s_{t}\right)^{\frac{3}{2}}(2 d)^{s_{0}} s_{0}^{2 s_{1}-s_{0}} s_{1}^{2 s_{2}-s_{1}} \ldots s_{t-1}^{2 s_{t}-s_{t-1}} s_{t}^{-s_{t}} .
$$

We will prove by induction on t that

$$
\begin{equation*}
F\left(d, s_{0}, \ldots, s_{t}\right) \leq a^{2 m-s_{0}} \exp \left(-\int_{\min \left\{\frac{125 m}{\xi}, s_{1}\right\}}^{\frac{125 m}{\xi}} \log \frac{\xi x}{125 m} d x\right) m^{2} \frac{(2 d)^{m}}{m^{m}} \tag{4.46}
\end{equation*}
$$

Note that for any $\alpha \leq \beta$ and γ,

$$
\begin{equation*}
W(\alpha, \beta, \gamma):=\int_{\gamma \alpha}^{\gamma \beta} \log \frac{x}{\gamma} d x=\left.\gamma(x \log x-x)\right|_{\alpha} ^{\beta} \tag{4.47}
\end{equation*}
$$

The case $t=0$ is clear (we assume $s_{1}=0$). In the case $t=1$ we have

$$
\begin{aligned}
\left(\log F\left(d, s_{0}, m-s_{0}\right)\right)_{s_{0}}^{\prime} & =\left(\log \left((2 d)^{s_{0}} s_{0}^{2 m-3 s_{0}+1.5}\left(m-s_{0}\right)^{-m+s_{0}+1.5}\right)\right)_{s_{0}}^{\prime} \\
& =\log \frac{2 d\left(m-s_{0}\right)}{s_{0}^{3}}+\frac{2\left(m-s_{0}\right)+1.5}{s_{0}}-\frac{1.5}{m-s_{0}} \\
& >\log \frac{2 \xi\left(m-s_{0}\right)}{e^{1.5} m}>\log \frac{\xi\left(m-s_{0}\right)}{3 m}
\end{aligned}
$$

If $s_{1} \geq 6 \mathrm{~m} / \xi$, then applying the inequality above and (4.47), we see that

$$
F\left(d, s_{0}, s_{1}\right) \leq \exp \left(-W\left(0,2,3 m \xi^{-1}\right)\right) F(d, m, 0) \leq F(d, m, 0)=\frac{(2 d)^{m}}{m^{m}}
$$

which is less then the right-hand side of (4.46). Otherwise, $s_{1}<6 \mathrm{~m} / \xi<125 \mathrm{~m} / 2 \xi$ and

$$
F\left(d, s_{0}, s_{1}\right) \leq \exp \left(-W\left(0,1,3 m \xi^{-1}\right)\right) F(d, m, 0)=e^{\frac{3 m}{\xi}} \frac{(2 d)^{m}}{m^{m}}
$$

while at the right-hand side of (4.46) we get at least

$$
\exp \left(-W\left(0.5,1,125 m \xi^{-1}\right)\right) \frac{(2 d)^{m}}{m^{m}}=e^{\frac{125 m}{2 \xi}} \frac{(2 d)^{m}}{m^{m}}
$$

which completes the proof of (4.46) for $t=1$.
Assume now that $t>1$ and (4.46) is proved for all m and for $1, \ldots, t-1$. Let us prove it for t.

Consider a tuple $\left(s_{0}, s_{1}, \ldots, s_{t}\right) \in \mathbb{N}^{t+1}$ such that $s_{0}+\ldots+s_{t}=m$ and suppose that $s_{t}>s_{t-1} / 2$. Fix s_{1}, \ldots, s_{t-1} and $s_{0}+s_{t}=: y$ and see what occures if we increase $s_{0}=: x$. We have

$$
\begin{aligned}
& \begin{array}{l}
\left.\log F\left(d, x, s_{1}, \ldots, s_{t-1}, y-x\right)\right)_{x}^{\prime}
\end{array} \\
& \quad=\left(x \log 2 d+\left(2 s_{1}-x+1.5\right) \log x+\left(2 y-2 x-s_{t-1}+1.5\right) \log s_{t-1}\right. \\
& \quad+(x-y+1.5) \log (y-x))_{x}^{\prime}
\end{aligned} \quad \begin{aligned}
& \quad>\log \frac{2 d(y-x)}{x s_{t-1}^{2}}-\frac{1.5}{y-x} \geq \log \frac{2 d s_{t}}{s_{0} s_{t-1}^{2}}-1.5>\log \frac{d}{s_{0} s_{t-1}}-1.5
\end{aligned} \quad \begin{aligned}
& \quad>\log \frac{d}{m^{2}}-1.5 \geq \log \xi-1.5 .
\end{aligned}
$$

This means that we can increase s_{0} by 1 and decrease s_{t} keeping their sum constant until either $s_{t} \leq s_{t-1} / 2$ or $s_{t}=1$ so that in every step of this process the value of $F\left(d, s_{0}, \ldots, s_{t}\right)$ changes by at least $\exp (\log \xi-1.5)=\xi e^{-1.5}$.

Suppose now that for some $i, 1<i \leq t-1$ and $j \geq i$, we have

$$
\begin{equation*}
s_{l} \geq 2 s_{l+1} \text { for } i \leq l<j \quad \text { and } \quad s_{j}=\ldots=s_{t}=1 \tag{4.48}
\end{equation*}
$$

Fix $s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{t}$ and $s_{0}+s_{i}=: y$ and observe what occures if we start increasing $s_{0}=: x$. We see that

$$
\begin{aligned}
& \left(\log F\left(d, x, s_{1}, \ldots, s_{i-1}, y-x, s_{i+1}, \ldots, s_{t}\right)\right)_{x}^{\prime} \\
& =\left(x \log 2 d+\left(2 s_{1}-x+1.5\right) \log x+(2 y-2 x) \log s_{i-1}\right. \\
& \left.+\left(2 s_{i+1}+x-y+1.5\right) \log (y-x)\right)_{x}^{\prime} \\
& >\log \frac{2 d(y-x)}{x s_{i-1}^{2}}-\frac{2 s_{i+1}+1.5}{y-x}=\log \frac{2 d s_{i}}{s_{0} s_{i-1}^{2}}-\frac{2 s_{i+1}+1.5}{s_{i}} \geq \log \xi-3.5,
\end{aligned}
$$

while $s_{i} \geq s_{i+1}$ (which is true under (4.48)) and $s_{i} \geq s_{i-1} / 2$. So we can decrease s_{i} and increase s_{0} with their sum constant, changing $F\left(d, s_{0}, \ldots, s_{t}\right)$ by at least $\xi e^{-3.5}$ in each step, until one of the following situations happens.

Case 1. $s_{i}=s_{i+1}=\ldots=s_{t}=1$.
Then we accumulated at most the extra factor $\left(e^{3.5} \xi^{-1}\right)^{\Delta s_{0}}$, where by Δs_{0} we denote the number of steps we made increasing s_{0}, which is exactly the difference between the value of s_{0} in the end and in the beginning of the process. So, we come to (4.48) with $i-1$ in place of i and proceed inductively with $i-1$ instead of i.

Case 2. $s_{i-1} \geq 2 s_{i} \geq 4 s_{i+1}$.
Then we come again to (4.48) with $i-1$ in place of i with the same accumulated factor.
Case 3. $s_{i-1}<2 s_{i}=4 s_{i+1}$.
Then $s_{i}=2 s_{i+1}=: 2 x$ and we merge $s_{i}=2 x$ and $s_{i+1}=x$ into one single variable equal to $2 x$. Let us compare the new value of F with the original one:

$$
\frac{F\left(s_{0}, \ldots, s_{i-1}, 2 x, s_{i+2}, \ldots, s_{t}\right)}{F\left(s_{0}, \ldots, s_{t}\right)}=\frac{s_{i-1}^{4 x-s_{i-1}+1.5}(2 x)^{2 s_{i+2}-2 x+1.5}}{s_{i-1}^{4 x-s_{i-1}+1.5}(2 x)^{2 x-2 x+1.5} x^{2 s_{i+2}-x+1.5}} \geq(4 x)^{-x-1.5}
$$

At the same time the sum of all the variables $s_{0}, s_{1}, \ldots, s_{i-1}, 2 x, s_{i+2}, \ldots, s_{t}$ becomes $m-x$ instead of m. So, by the induction assumption we have

$$
\begin{aligned}
F\left(d, s_{0}, \ldots, s_{t}\right) & \leq \max _{x}(4 x)^{x+1.5} a^{2 m-2 x-s_{0}} \exp \left(-\int_{\min \left\{\frac{125(m-x)}{\xi}, s_{1}\right\}}^{\frac{125(m-x)}{\xi}} \log \frac{\xi y}{125(m-x)} d y\right) \\
& \times(m-x)^{2} \frac{(2 d)^{m-x}}{(m-x)^{m-x}} \\
& \leq \max _{x}(4 x)^{x+1.5} a^{2 m-2 x-s_{0}} \exp \left(-\int_{\min \left\{\frac{125 m}{\xi}, s_{1}\right\}}^{\frac{125 m}{\xi}} \log \frac{\xi y}{125 m} d y\right) m^{2} \frac{(2 d)^{m-x}}{(m-x)^{m-x}} .
\end{aligned}
$$

Since

$$
\begin{aligned}
((x+1.5) \log 4 x & +(m-x)(\log 2 d-\log (m-x)))_{x}^{\prime} \\
& =\log 4 x+1-\log 2 d+\frac{1.5}{x}+\log (m-x)+1 \\
& =\log \frac{4 e^{3.5} x(m-x)}{2 d}<\log \frac{2 e^{3.5}}{\xi}
\end{aligned}
$$

we finally have the desired inequality (4.46), as

$$
\begin{aligned}
F\left(d, s_{0}, \ldots, s_{t}\right) & \leq \max _{x}\left(\max \left\{\frac{2 e^{3.5}}{\xi}, 1\right\}\right)^{x} a^{2 m-2 x-s_{0}} \\
& \times \exp \left(-\int_{\min \left\{\frac{125 m}{\xi}, s_{1}\right\}}^{\frac{125 m}{\xi}} \log \frac{\xi y}{125 m} d y\right) m^{2} \frac{(2 d)^{m}}{m^{m}} \\
& =a^{2 m-s_{0}} \exp \left(-\int_{\min \left\{\frac{125 m}{\xi}, s_{1}\right\}}^{\frac{125 m}{\xi}} \log \frac{\xi y}{125 m} d y\right) m^{2} \frac{(2 d)^{m}}{m^{m}}
\end{aligned}
$$

This way we either merged two variables in some step and obtained the needed inequality using the induction assumption or reach the situation $s_{1} \geq 2 s_{2} \geq 2^{i-1} s_{i}, s_{i+1}=\ldots=s_{t}=$ 1 , for some $1 \leq i \leq t$. In the latter occasion, considering $s_{0}+s_{1}=: y$ to be constant and changing $s_{0}=: x$ we see that

$$
\begin{aligned}
& \left(\log F\left(d, x, y-x, s_{2}, \ldots, s_{t}\right)\right)_{x}^{\prime} \\
& \quad=\left(x \log 2 d+(2 y-3 x+1.5) \log x+\left(2 s_{2}-y+x+1.5\right) \log (y-x)\right)_{x}^{\prime} \\
& \quad \geq \log \frac{2 d(y-x)}{x^{3}}-2-\frac{2 s_{2}+1.5}{y-x} \geq \log \frac{2 d s_{1}}{s_{0}^{3}}-\frac{2 s_{2}}{s_{1}}-3.5
\end{aligned}
$$

Thus, while $s_{1} \geq s_{2}$, there holds

$$
\left(\log F\left(d, x, y-x, s_{2}, \ldots, s_{t}\right)\right)_{x}^{\prime} \geq \log \frac{2 d s_{1}}{e^{5.5} s_{0}^{3}}>\log \frac{\xi s_{1}}{125 m}
$$

So, we can decrease s_{1} and increase s_{0} with $s_{0}+s_{1}$ constant so that $F\left(d, s_{0}, \ldots, s_{t}\right)$ in this process increases at least by $\exp \left(\int_{s_{1}^{\prime}}^{s_{1}^{*}} \log (\xi x / 125 m) d x\right.$), (where s_{1}^{*} stands for the value of s_{1} that we started from and s_{1}^{\prime}, for the value where we stopped), until one of the following situations happens.

Case a. $s_{1}=s_{2}=\ldots=s_{t}=1$. Then

$$
\begin{aligned}
F\left(d, s_{0}, \ldots, s_{t}\right) & \leq \exp \left(-\int_{s_{1}}^{s_{1}^{*}} \log \frac{\xi x}{125 m} d x\right) \max _{s_{0}} \frac{s_{0}^{2}(2 d)^{s_{0}}}{s_{0}^{s_{0}-2}} \\
& \leq \exp \left(-\int_{\min \left\{\frac{125 m}{\xi}, s_{1}\right\}}^{\frac{125 m}{\xi}} \log \frac{\xi x}{125 m} d x\right) \frac{(2 d)^{m}}{m^{m-2}}
\end{aligned}
$$

and the needed inequality is proved.
Case b. $s_{1}=2 s_{2}$. Then we merge s_{1} and s_{2} into s_{1} as above and use the induction assumption. The only difference is that we have to take into account the factor $\exp \left(\int_{s_{1}^{\prime}}^{s_{1}^{*}} \log (\xi x / 125 m) d x\right)$ that we accumulated while making s_{1} decrease.

Thus, in all cases we obtained (4.46) for all m.

Hence, we have

$$
F\left(d, s_{0}, \ldots, s_{t}\right) \leq a^{2 m} \exp \left(-\int_{0}^{\frac{125 m}{\xi}} \log \frac{\xi x}{125 m} d x\right) m^{2} \frac{(2 d)^{m}}{m^{m}}
$$

which in light of equality (4.47) implies

$$
F\left(d, s_{0}, \ldots, s_{t}\right) \leq a^{2 m} e^{\frac{125 m}{\xi}} m^{2} \frac{(2 d)^{m}}{m^{m}}
$$

Finally, taking into account Lemma 4.11 and estimate (4.44), we obtain

$$
p_{d}(n)<a^{2 n} e^{\frac{125 n}{\xi}} n^{2} \frac{d^{n}}{n^{n}} \frac{4}{3} \sum_{m=2}^{n} e^{m}<3 a^{2 n} e^{\frac{125 n}{\xi}} n^{2} \frac{d^{n}}{n^{n}} e^{n}
$$

which concludes the proof.

Proof of Theorem 4.2 (b), (c). The claim follows from Proposition 4.3 and the simple estimate $p_{d}(n) \geq\binom{ d+n-2}{d-1}$.

Proof of Corollary 4.3. The first case readily follows from Theorem 4.2 (a).
Let $\alpha \geq 2$. If $\alpha>2$ or $\alpha=2, \gamma>0$, for n satisfying $n>2 \pi e^{3}+1$ and $n^{\alpha-2} \log ^{\gamma} n \geq$ $2 e^{3.5}$, invoking Proposition 4.3 with $\xi(n):=n^{\alpha-2} \log ^{\gamma} n$, we can write

$$
\begin{align*}
e^{n} \frac{d^{n}}{n^{n}} \cdot \frac{1}{d} & <e^{n-1} \frac{d^{n-1}}{e^{\frac{1}{12}} \sqrt{2 \pi}(n-1)^{n-0.5}}<\binom{d+n-2}{d-1} \\
& \leq p_{d}(n) \\
& \leq 3 e^{\frac{1255^{3-\alpha}}{c \log ^{\gamma} n}} n^{2} e^{n} \frac{d^{n}}{n^{n}}=e^{n} \frac{d^{n}}{n^{n}} e^{O\left(n^{3-\alpha} \log ^{-\gamma} n+\log n\right)}, \tag{4.49}
\end{align*}
$$

which gives a sharp estimate up to $e^{o(n)}$. Otherwise, when $\alpha=2, \gamma \leq 0$, we obtain an extra $e^{O(n+\gamma n \log \log n)}$ factor at the right-hand side of (4.49), which is still $e^{O\left(n^{3-\alpha} \log ^{-\gamma} n\right)}$.

Turn now to the case $\alpha<2$. In light of inequality (4.45), for any $\psi=\psi(n)$ fulfilling the conditions

$$
1 \leq \psi(n) \leq \frac{n}{6}
$$

we have

$$
\begin{align*}
\log p_{d}(n+1) & \geq n \log n-\frac{n(2-\alpha) \log n}{\psi(n)}+\frac{n \gamma \log \log n}{\psi(n)}+\frac{n \log c}{\psi(n)} \\
& -\frac{3 \alpha \log n}{2}-\frac{3 \gamma \log \log n}{2}-\frac{3 \log C}{2}-2 n \log \psi(n)+\frac{3 n \log \psi(n)}{\psi(n)} \\
& -2 n \log 2+\frac{2 n \log 2}{\psi(n)}-\frac{3 \log 2}{2} \tag{4.50}
\end{align*}
$$

Taking $\psi(n)=\log ^{\delta} n:=\log ^{\max \{1,-\gamma\}} n$ and plugging this into (4.50), we obtain

$$
\begin{align*}
\log p_{d}(n+1) & \geq n \log n-n(2-\alpha) \log ^{1-\delta} n+\frac{n \gamma \log \log n}{\log ^{\delta} n}+\frac{n \log c}{\log ^{\delta} n} \\
& -\frac{3 \alpha \log n}{2}-\frac{3 \gamma \log \log n}{2}-\frac{3 \log C}{2}-2 \delta n \log \log n+\frac{3 \delta n \log \log n}{\log ^{\delta} n} \\
& -2 n \log 2+\frac{2 n \log 2}{\log ^{\delta} n}-\frac{3 \log 2}{2}, \tag{4.51}
\end{align*}
$$

which yields

$$
\log p_{d}(n+1)>n \log n+O(n \log \log n)
$$

One can see that estimate (4.51) is up to a constant optimal with respect to an appropriate choice of a function ψ. Indeed, we need to counterbalance the two main terms of (4.50), namely, $n \log n / \psi$ and $n \log \psi$. They are equal when $\psi=\log n / W(\log n)$, where $W(x)$ stands for the W-Lambert function, i.e. the inverse function for $y e^{y}$. The fact that $W(x) \log ^{-1} x \rightarrow 1$ as $x \rightarrow \infty$, yields $\psi(n) \sim \log n / \log \log n$ and the estimate we obtain by means of such ψ is up to a constant the same as the one for $\psi(n)=\log ^{\delta} n$.

At the same time, according to Proposition 4.1, there holds

$$
\log p_{d}(n) \leq n \log n+O(n) .
$$

Summing up,

$$
n^{n} e^{O(n \log \log n)} \leq p_{d}(n) \leq n^{n} e^{O(n)} .
$$

Bibliography

[1] R. Askey, S. Wainger, Integrability theorems for Fourier series, Duke Math. J. 33 (1966), 223-228.
[2] S. Astashkin, The Rademacher System in Function Spaces, Birkhauser, 2020.
[3] A. O. L. Atkin, P. Bratley, I. G. Macdonald, J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Cambridge Philos. Soc. 63 (1967), 1097-1100.
[4] F. C. Auluck, D. S. Kothari, Statistical mechanics and the partitions of numbers, Proc. Cambridge Phil. Soc. 42(3) (1946), 272-277.
[5] S. Balakrishnan, S. Govindarajan, N. S. Prabhakar, On the asymptotics of higher dimensional partitions, J. Phys. A: Math. Theor. 45(5) (2012), 055001.
[6] A. S. Belov, M. I. Dyachenko, S. Yu. Tikhonov, Functions with general monotone Fourier coecients, Russian Math. Surveys 76(6) (2021), 951-1017.
[7] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd edition, Springer, New York, 2003.
[8] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer, New York, 1976.
[9] D. P. Bhatia, M. A. Prasad, D. Arora, Asymptotic results for the number of multidimensional partitions of an integer and directed compact lattice animals, J. Phys. A: Math. Gen. 30 (1997), 2281-2285.
[10] N. Bohr, F. Kalckar, On the transmutation of atomic nuclei by impact of material particles. I. General theoretical remarks, Kgl. Danske Vid. Selskab. Math. Phys. Medd. 14(10) (1937).
[11] A. Bonito, R. DeVore, D. Guignard, P. Jantsch, G. Petrova, Polynomial approximation of anisotropic analytic functions of several variables, Constr. Approx. 53(2) (2021), 319-348.
[12] B. Booton, Y. Sagher, Norm inequalities for certain classes of functions and their Fourier transforms, J. Math. Anal. Appl. 335(2) (2007), 1416-1433.
[13] J. P. Boyd, R. Petschek, The relationships between Chebyshev, Legendre and Jacobi polynomials: The generic superiority of Chebyshev polynomials and three important exceptions, J. Sci. Comput. 59 (2014), 1-27.
[14] T. W. Chaundy, Partition-generating functions, Quart. J. Math. (Oxford) 2 (1931), 234-240.
[15] A. Cohen, G. Migliorati, F. Nobile, Discrete least-squares approximations over optimized downward closed polynomial spaces in arbitrary dimension, Constr. Approx. 45 (2017), 497-519.
[16] F. Dai, A. Prymak, A. Shadrin, S. Tikhonov, V. Temlyakov, On cardinality of the lower sets and their universal discretization, J. Complex. 101726 (2023).
[17] N. Destainville, S. Govindarajan, Estimating the asymptotics of solid partitions, J. Stat. Phys. 158 (2015), 950-967.
[18] O. Domínguez, S. Tikhonov, Function spaces of logarithmic smoothness: embeddings and characterizations, Memoirs Amer. Math. Soc. 282(1393) (2023).
[19] K. Duzinkiewicz, B. Szal, On weighted integrability of double sine series, J. Math. Anal. Appl. 472 (2019), 1581-1603.
[20] M. I. Dyachenko, On the convergence of double trigonometric series and Fourier series with monotone coefficients, Math. USSR Sb. 57 (1987), 57-75.
[21] M. I. Dyachenko, Multiple trigonometric series with lexicographically monotone coefficients, Anal. Math. 16(3) (1990), 173-190.
[22] M. I. Dyachenko, Norms of Dirichlet kernels and some other trigonometric polynomials in L_{p}-spaces, Sb . Math. 78(2) (1994), 267-282.
[23] M. Dyachenko, A. Mukanov, S. Tikhonov, Hardy-Littlewood theorems for trigonometric series with general monotone coefficients, Studia Math. 250(3) (2019), 217-234.
[24] M. Dyachenko, E. Nursultanov, S. Tikhonov, F. Weisz, Hardy-Littlewood-type theorems for Fourier transforms in \mathbb{R}_{d}, J. Funct. Anal. 284(4) (2023), 109776.
[25] M. I. Dyachenko, K. A. Oganesyan, Counterexamples to the Hardy-Littlewood theorem for generalized monotone sequences, Math. Notes 113(3) (2023), 458-463.
[26] M. Dyachenko, S. Tikhonov, Convergence of trigonometric series with general monotone coefficients, C. R. Acad. Sci. Paris Ser. I 345 (2007), 123-126.
[27] M. Dyachenko, S. Tikhonov, A Hardy-Littlewood theorem for multiple series, J. Math. Anal. Appl. 339 (2008) 503-510.
[28] M. Dyachenko, S. Tikhonov, General monotone sequences and convergence of trigonometric series, Topics in Classical Analysis and Applications in Honor of Daniel Waterman, World Scientific, 88-101, 2008.
[29] A. Eisinberg, P. Pugliese, N. Salerno, Vandermonde matrices on integer nodes: the rectangular case, Numer. Math. 87 (2001), 663-674.
[30] L. Euler, De partitione numerorum, 1753, (Leonhardi Euleri opera omnia, 1911).
[31] C. Fefferman, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc. 77 (1971), 744-745.
[32] L. Feng, V. Totik, S. P. Zhou, Trigonometric Series with a Generalized Monotonicity Condition, Acta Math. Sin. (Engl. Ser.) 30(8) (2014), 1289-1296.
[33] D. Gorbachev, E. Liflyand, S. Tikhonov, Weighted Fourier inequalities: Boas' conjecture in \mathbb{R}_{n}, J. Anal. Math. 114 (2011), 99-120.
[34] D. Gorbachev, S. Tikhonov, Moduli of smoothness and growth properties of Fourier transforms: Two-sided estimates, Jour. Appr. Theory 164(9) (2012), 1283-1312.
[35] S. Govindarajan, Notes on higher-dimensional partitions, J. Comb. Theory, Ser. A 120 (2013), 600-622.
[36] G. H. Hardy, On double Fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters, Quart. J. Math. 37(1) (1906), 53-79.
[37] G. H. Hardy, J. E. Littlewood, Some new properties of Fourier constants, Math. Annal. 97 (1927), 159-209.
[38] G. H. Hardy, J. E. Littlewood, Notes on the theory of series (XIII): Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9.
[39] G. H. Hardy, S. Ramanujan, Une formule asymptotique pour le nombre des partitions de n, C. R. Hebd. Séances Acad. Sci. 164 (1917), 35-38.
[40] G. H. Hardy, S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. 17 (1918), 75-115.
[41] P. Heywood, On the integrability of functions defined by trigonometric series, Quart. J. Math. 5 (1954), 71-76.
[42] R. Hunt, B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Am. Math. Soc. 176 (1973), 227-251.
[43] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge: Cambridge University Press, 2005.
[44] D. Knuth, A note on solid partitions, Math. Comput. 112(4) (1970), 955-961.
[45] J. M. Krause, Fouriersche Reihen mit zwei veränderlichen Grössen, Ber. Verh. Königl. Sächs. Ges. Wiss. Leipzig 55 (1903), 164-197.
[46] A. Kufner, L. E. Persson, Weighted Inequalities of Hardy Type, World Scientific, Singapore, 2003.
[47] G. W. Leibniz, Specimen de divulsionibus aequationum ad problemata indefinita in numeris rationalibus solvenda, Letter 3 dated Sept. 2, 1674, Math. Schriften 4(2).
[48] E. Liflyand, S. Tikhonov, A concept of general monotonicity and applications, Math. Nachrichten 284 (2011), 1083-1098.
[49] P. A. MacMahon, Memoir on the theory of the partitions of numbers. Part V: Partitions in two-dimensional space, Phil. Trans. R. Soc. London Ser. A 211 (1912), 75-110.
[50] P. A. MacMahon, Combinatory Analysis, 2 vols, Cambridge University Press, 19151916.
[51] N. Macon, A. Spitzbart, Inverses of Vandermonde matrices, The American Mathematical Monthly, 65(2) (1958), 95-100.
[52] L. Maligranda, On interpolation of nonlinear operators, Comment. Math. Prace. Mat. 28(2) (1989), 253-275.
[53] J. C. Mason, D. C. Handscomb, Chebyshev Polynomials, Chapman and Hall/CRC (2002).
[54] F. Móricz, On double cosine, sine, and Walsh series with monotone coefficients, Proc. Amer. Math. Soc. 109(2) (1990), 417-425.
[55] V. Mustonen, R. Rajesh, Numerical estimation of the asymptotic behaviour of solid partitions of an integer, J. Phys. A 36(24) (2003), 6651-6659.
[56] V. S. Nanda, Partition theory and thermodynamics of multi-dimensional oscillator assemblies, Proc. Cambridge Philos. Soc. 47 (1951), 591-601.
[57] E. D. Nursultanov, Net spaces and inequalities of Hardy-Littlewood type, Sb. Math. 189(3) (1998), 399-419.
[58] E. D. Nursultanov, On the coefficients of multiple Fourier series in L_{p}-spaces, Izv. Math. 64(1) (2000), 93-120.
[59] E. Nursultanov, S. Tikhonov, Weighted Fourier inequalities in Lebesgue and Lorentz spaces, J. Fourier Anal. Appl. 26(4) (2020), 57.
[60] K. Oganesyan, Cosine polynomials with restrictions on their algebraic representation, J. Approx. Theory 281-282 (2022), 105802.
[61] K. Oganesyan, Two-dimensional Hardy-Littlewood theorem for functions with general monotone Fourier coefficients, J. Fourier Anal. Appl. 29 (2023), 60.
[62] K. Oganesyan, Bounds for the number of multidimensional partitions, arXiv: 2303.14397.
[63] R. Paley, Some theorems on orthogonal functions, St. M. 3 (1931), 226-238.
[64] A. A. Pantelous, Karageorgos A.D., Generalized inverses of the vandermonde matrix: Applications in control theory, Int. J. Control Autom. Syst. 11 (2013), 1063-1070.
[65] H. Rademacher, On the partition function p(n), Proc. London Math. Soc. (Ser. 2) 43 (1938), 241-254.
[66] Y. Sagher, Integrability conditions for the Fourier transform, J. Math. Anal. Appl. 54 (1976), 151-156.
[67] H. N. V. Temperley, Statistical mechanics and the partition of numbers II. The form of crystal surfaces, Math. Proc. Cambridge Philos. Soc. 48 (1952), 683-697.
[68] T. Tetunashvili, Universal series and subsequences of functions, Sb. Math., 209(10) (2018), 1498-1532.
[69] S. Tikhonov, Trigonometric series with general monotone coefficients, J. Math. Anal. Appl. 326 (2007) 721-735.
[70] S. Tikhonov, Best approximation and moduli of smoothness: Computation and equivalence theorems, J. Approx. Theory 153 (2008), 19-39.
[71] L. Verde-Star, Inverses of generalized Vandermonde matrices, J. Math. Anal. Appl., 131(2) (1988), 341-353.
[72] C. Weiss, M. Holthaus, Asymptotics of the number partitioning distribution, Europhys. Lett. 59(4) (2002), 486-492.
[73] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Math. vol. 1568, Springer, Berlin, Heidelberg, 1994.
[74] F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233.
[75] E. M. Wright, Asymptotic partition formulae: I. Plane partitions, Quart. J. Math. Oxford Ser. 2 (1931), 177-189.
[76] D. S. Yu, P. Zhou and S. P. Zhou, On L_{p} integrability and convergence of trigonometric series, Studia Math. 182 (2007), 215-226.
[77] D. Yu, P. Zhou, S. Zhou, Mean bounded variation condition and applications in double trigonometric series, Anal. Math. 38 (2012), 83-104.

[^0]: ${ }^{1}$ In some sources the same value is denoted by $p_{d-1}(n)$.

