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Chapter 1

Introduction

In this dissertation, we deal with three problems in harmonic analysis and approximation
theory. The first problem concerns the Hardy-Littlewood relations for Fourier coefficients
in the two-dimensional setting, the second one is related to estimates of the coefficients of
a trigonometric polynomial in different bases, and the third one refers to multidimensional
integer partitions.

In Chapter 2, we study the relations between integrability of functions and summa-
bility of their Fourier coefficients. Assuming that a function is square-integrable we have
the Parseval’s identity, which enables us to reduce a wide class of problems concerning
functions to those concerning their Fourier series, and vice versa. We would like to obtain
analogues of this relation in the spaces Lp, p 6= 2, establishing equivalences of norms of
functions and norms of their Fourier series under, of course, some additional requirements.
Results of this kind are important, in the first place, due to the fact that once such a re-
lation is found, one becomes free to choose if it is handy to deal with functions or with
coefficients in this or that case, as if having Parseval’s identity (see e.g. [18, Chs. 4–6,
12–13] and [34, Sec. 7] for applications).

Before we give precise formulations, let us introduce some notations that we are going
to use throughout the dissertation. For two functions f and g, the relation f & g (or
g . f) will mean that there exists a constant C such that f(x) ≥ Cg(x) for all x, and
the relation f � g is equivalent to f & g & f . If we write f &a g, this means that the
corresponding constant is allowed to depend on a, however, in what follows we will usually
omit the dependence of the implicit constants on the integrability parameters p and q, so
that this dependence will be taken for granted.

The following result by Paley [63] can be considered the starting point for the research
in this direction (note that the same result for the trigonometric system was obtained
several years before by Hardy and Littlewood [37]).

Theorem A (Paley, 1931). Let {φn(x)} be an orthonormal system on [a, b] with |φn(x)| ≤
M for all x ∈ [a, b] and n ∈ N. Then
a) If p ∈ (1, 2], then for any f ∈ Lp(a, b) with Fourier coefficients {cn} there holds

∞∑
n=1

|cn|pnp−2 .p,M ‖f‖pp. (1.1)

b) If p ∈ [2,∞), then, for any sequence {cn} with
∑∞

n=1 |cn|pnp−2 < ∞, there exists a

1
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function f ∈ Lp(a, b) that has {cn} as its Fourier coefficients and

∞∑
n=1

|cn|pnp−2 &p,M ‖f‖pp. (1.2)

From now on, we focus only on Fourier series with respect to the trigonometric system.
The ranges of p in Theorem A are sharp, therefore to have both (1.1) and (1.2) true

for all p ∈ (1,∞), one has to impose some additional requirements. Hardy and Littlewood
[38] showed that if we restrict ourselves to sine or cosine series with monotone tending to
zero coefficients, then both relations (1.1) and (1.2) hold for all p ∈ (1,∞). In this regard,
a natural question to ask was: how much can we release the requirement of monotonicity
to have

∞∑
n=1

|cn|pnp−2 �p ‖f‖pp (1.3)

still true? This question in turn motivated creation of various extentions of the class of
monotone sequences satisfying (1.3). In particular, the class of general monotone sequences
{cn} obeying

2n∑
k=n

|ck − ck+1| . |cn|

for all n was shown [69] to fulfil (1.3). Moreover, Hardy-Littlewood type relations were
proved for functions with general monotone Fourier coefficients not only in the Lebesgue
spaces Lp, but also in weighted Lebesgue and Lorentz spaces.

A powerful application of the Hardy-Littlewood relation is that the best approximation
En(f)p and the modulus of smoothness ωk(f, δ)p of a function f can be expressed in terms
of its coefficients {an}, provided their general monotonicity, in the following way:

( ∞∑
m=2n

apmm
p−2
) 1
p
.p En(f)p .p ann

p−1
p +

( ∞∑
m=n

apmm
p−2
) 1
p

and

ωk(f, 2
−n)p �p,k 2−nk

( n∑
m=0

ap2m2m(kp+p−1)
) 1
p

+
( ∞∑
m=n

ap2m2m(p−1)
) 1
p
.

These inequalities, in particular, allow one to characterize the Besov spaces for trigono-
metric series with general monotone coefficients (see, for instance, [6]).

Our goal will be to prove that the two-dimensional version of relation (1.3) is true
for functions whose Fourier coefficients belong to some classes of general monotone and,
impotantly, not necessarily non-negative sequences. Moreover, we will show that for a
slightly wider class, the Hardy-Littlewood relation fails for p > 2. We note also that these
results will be proved in a more general setting of weighted Lebesgue spaces.

Chapter 3 is devoted to the following question. Suppose we are given a cosine polyno-
mial

∑n
k=0 ak cos kx, ak ∈ R. With the help of Chebyshev polynomials Tk(x), according

to the equality cos kx = Tk(cosx), we can rewrite it as
∑n

k=0 bk cosk x, an algebraic poly-
nomial in cosx. Conversely, any algebraic polynomial in cosx can be represented as a
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trigonometric one. So one can pass from one of these representations to another choos-
ing the suitable basis: {cos kx}∞k=0 or {cosk x}∞k=0. But what if we look at all the cosine
polynomials whose certain coordinates with respect to the basis {cosk x}k=0 are fixed? In
other words, if we fix some K ⊂ N, some numbers {ck}k∈K and consider

A(K, {ck}) :=
{
{bk}nk=0, n ∈ N :

n∑
k=0

bk cos kx ≡
n∑
k=0

ak cosk x, ak = ck for k ∈ K
}
,

what can we say about
∑n

k=0 |bk| if we know that {bk}nk=0 ∈ A(K, {ck})? In more detail,
can we find a trigonometric polynomial belonging to A(K, {ck}) with “small” l1-norm of
the coefficients? We show that the answer is indeed positive, which yields that it is possible
to adjust any

∑
k∈K ck cosk x by adding a trigonometric polynomial with small l1-norm of

the coefficients so that the coefficients of our sum at cosk x, k ∈ K, are equal to zero.
The principle motivation for posing such a question is the problem of estimating the

value of a trigonometric polynomial at some point x, | cosx| = δ < 1, under some special
conditions. Indeed, once a result about the existence of {bk}nk=0 ∈ A(K, {ck}) with small
l1-norm of the coefficients is established, one can rewrite the trigonometric polynomial as
the algebraic one and adjust it by means of a trigonometric polynomial with small l1-norm
of its coefficients so that its first, say, k coefficients become zero. Then the value at x does
not exceed δk multiplied by the sum of absolute values of the coefficients of the obtained
polynomial plus something small that comes from the adjustment. An argument of this
type enables us to construct a nondegenerate double trigonometric series that converges
to zero by a subsequence of squares everywhere in such a way that we can control the sizes
of these squares and have explicit estimates both for the rate of convergence and for the
perturbations in the intermediate steps at every point. The problem of constructing such
series is closely related to that of finding universal trigonometric series (see [68] and the
references therein).

Another application comes from the fact that, for {bk}rk=1 in A({0, 1, ..., p−1}, {ct}p−1
t=0 ),

there holds

r∑
k=1

bkTk(y)− ypg(y) ≡
p−1∑
t=0

cty
t,

for some polynomial g, so the result can be applied to the study of Chebyshev polynomials
and Chebyshev series [53], as series of Chebyshev polynomials are known to have properties
of fast convergence among other their advantages in approximation theory and numerical
analysis (see, for instance, [13]).

To prove the mentioned result, we consider the matrix T = (tkm)∞m,k=0 whose entry

tkm is the coefficient at xm of the Chebyshev polynomial Tk(x), and derive an explicit
formula for the inverse of a square submatrix of T. This allows us to determine the
coefficients with respect to the basis {cos kx}∞k=0 of an algebraic polynomial in cosx. In
the course of the proof of Theorem 3.1, we also give some useful estimates (see Lemma
3.6) on sums of products of binomial coefficients appearing in the expression for entries
of the pseudoinverse of a Vandermonde matrix in [29] (see [7] for a substantive survey of
generalized inverses and also [64] and [71] for algebraic properties of generalized inverses
of Vandermonde matrices).

In Chapter 4, we study multidimensional partitions or, equivalently, lower sets and
establish estimates for the number of d-dimensional lower sets with fixed cardinality.
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For a given d, we call a set S ⊂ Zd+ a lower set if for any x = (x1, ..., xd) ∈ Zd+ the
condition x ∈ S implies x′ = (x′1, ..., x

′
d) ∈ S for all x′ ∈ Zd+ with x′i ≤ xi, 1 ≤ i ≤ d.

There is a one-to-one correspondence between d-dimensional lower sets of cardinality n
and (d− 1)-dimensional partitions of n, that is, representations of the form

n =
∞∑
i1=1

∞∑
i2=1

...

∞∑
id−1=1

ni1i2...id−1
, ni1i2...id−1

∈ Z+,

where ni1i2...id−1
≥ nj1j2...jd−1

if jk ≥ ik for all k = 1, 2, ..., d− 1. Thus, lower sets represent
a geometric interpretation of integer partitions. By pd(n) we denote the number of lower
sets in Zd+ containing exactly n points1.

Importantly, the theory of partitions has many applications in physics, as there are
a lot of physical structures resembling that of multidimensional integer partitions. In
particular, integer partitions are used to estimate the energy levels for a heavy nucleus
[10] and to study the shape of crystal growth [67]. Another direction of research is based
on the existence of a one-to-one correspondence between partitions of an integer and
microstates of a gas particles stored in a harmonic oscillator, not only in two-dimensional
case [4, 72] but also in multidimensional setting [56].

Furthermore, certain classes of trigonometric polynomials with harmonics in lower
sets have recently turned out to be a powerful tool in multivariate approximation (see
[11, 15, 16] and references therein).

It is known that the two-sided inequality

C1(d)n1−1/d < log pd(n) < C2(d)n1−1/d

is always true and that C1(d) > 1 whenever log n > 3d. However, establishing the “right”
dependence of C2 on d remained an open problem. We will show that if d is sufficiently
small with respect to n, then C2 does not depend on d, which means that log pd(n) is up to
an absolute constant equal to n1−1/d. Besides, we provide estimates of pd(n) for different
ranges of d in terms of n, which give the asymptotics of log pd(n) in each case.

The results of Chapters 2 and 3 are published in [60] and [61], while those of Chapter
4 can be found in [62].

1In some sources the same value is denoted by pd−1(n).



Chapter 2

Hardy-Littlewood theorem in two
dimensions

2.1 Concepts of monotonicity and known results

One of the classes of sequences such that functions with Fourier coefficients belonging to
this class still obey (1.3), is the so-called general monotone or just GM class [69, Th. 4.2].
It consists of all sequences {an} fulfilling the condition

2n∑
k=n

|ak − ak+1| . |an| (2.1)

for all n. Thus, now we dropped not only the monotonicity condition but even the basic
requirement of positivity, keeping though some regularity of our sequences. One can see
that GM class can yet be generalized (see [70, Th. 6.2(B)] and [76, Th. 1]) by putting a
mean value on the right-hand side of (2.1) instead of |an| as follows:

2n∑
k=n

|ak − ak+1| .
λn∑
k=n

λ

|ak|
k

(2.2)

with some λ > 1 (see also [32] for some properties of such sequences). Note that these
classes and several other ones, defined as (2.1) but with some other majorants on the
right-hand side, in different sources can be also called GM . For a comprehensive survey
on the concept of general monotonicity, we refer the reader to [48].

One more direction of extending the obtained results (see [1, 41, 76]) is proving them
for weighted spaces. Define the weighted Lebesgue spaces Lqw(p,q), p, q ∈ (0,∞], on [−π, π],
as the set of all measurable functions f with finite norm

‖f‖Lq
w(p,q)

:=


( π∫
−π
|t|

q
p
−1|f(t)|qdt

) 1
q
, if 0 < p, q <∞,

ess sup
t∈[−π,π]

|t
1
p f(t)|, if 0 < p ≤ ∞, q =∞.

The discrete weighted Lebesgue space lqw(p,q) is to be defined in the same way.

Now, a weighted version of relation (1.3) is given by

‖{cn}‖qlq
w(p′,q)

:=
∞∑
n=1

|cn|qn
q
p′−1 � ‖f‖q

Lq
w(p,q)

, (2.3)

5



2.1. Concepts of monotonicity and known results 6

where p′ stands for the conjugate to p, that is, 1/p+ 1/p′ = 1. Note that if we put q = p,
we get the standard Hardy-Littlewood relation (1.3). The following theorem for weighted
Lebesgue spaces was obtained by Sagher [66].

Theorem A (Sagher, 1976). If the sequences {an} and {bn} are monotone and vanishing
at infinity and the function f has the Fourier series

a0

2
+
∞∑
n=1

(an cosnx+ bn sinnx),

then for p ∈ (1,∞), q ∈ [1,∞], there holds

‖f‖Lq
w(p,q)

� ‖{an}‖lq
w(p′,q)

+ ‖{bn}‖lq
w(p′,q)

.

It turns out that the same holds if we release the monotonicity condition in the theorem
above to (2.2), thus withdrawing the requirement of positivity. This result, along with
the similar statement proved for Lorentz spaces, was given by Dyachenko, Mukanov and
Tikhonov [23].

So, in the one-dimensional case we have quite a complete picture.

The whole scenario becomes more complicated if we step out from the one-dimensional
setting to the multidimensional one, and the first question we face is to determine what
we should mean by monotonicity if we deal with multiple sequences. The usual one-
dimensional monotonicity is characterized by the inequalities an ≥ an+1, or equivalently,
∆an := an − an+1 ≥ 0. These two ways of writing the same property give rise to the
following fundamentally different multidimensional monotonicity concepts. Our focus will
be on the two-dimensional case.

2.1.1 Monotonicity in each variable

Likewise an ≥ an+1 in one dimension, we can require coordinatewise monotonicity, that
is, in two-dimensional case the condition will be

amn ≤ am′n′ , for all m ≥ m′, n ≥ n′. (2.4)

It turns out, however, that for such sequence the Hardy-Littlewood relation (1.3) does not
hold for some values of p > 1, namely, we have the following result proved by Dyachenko
[20, 22].

Theorem B (Dyachenko, 1986). a) [20, Th. 1] If {amn}∞m,n=1 satisfying (2.4) and

amn → 0, as m+ n→∞, (2.5)

is the sequence of the Fourier coefficients with respect to one of the orthonormal systems
{einxeimy}∞m,n=1, {sinnx sinmy}∞m,n=1, and {cosnx cosny}∞m,n=1, of a function f , then for
any p ∈ (1,∞),

∞∑
m,n=1

apmn(mn)p−2 . ‖f‖pp.
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b) [22, Cor. 2] Let p > 4/3 and the sequence {amn} satisfy (2.4) and
∑∞

m,n=1 a
p
mn(mn)p−2 <

∞ (therefore, (2.5) as well). Then, for any of the systems above, there exists a function
f having {amn} as its Fourier coefficients and satisfying

∞∑
m,n=1

apmn(mn)p−2 & ‖f‖pp. (2.6)

c) [20, Ths. 8, 8’] For p ∈ (1, 4/3], there exists a sequence {amn} satisfying (2.4) and (2.5)
with

∑∞
m,n=1 a

p
mn(mn)p−2 < ∞ such that the corresponding trigonometric series diverges

by squares almost everywhere on (0, 2π)2.

Note that it was shown by Fefferman [31] that for any p > 1 and any f ∈ Lp(0, 2π)2,
the Fourier series of f converges by squares almost everywhere on (0, 2π)2, thus, the third
part of the theorem means that (2.6) is no longer true for the integrability parameter
p ∈ (1, 4/3). We also remark that in general d-dimensional case the critical value is
2d/(d+ 1) (see [21, Th. 1, Th. 4] and [22, Cor. 2]) and that the d-dimensional part c) of
Theorem B for p = 2d/(d+ 1) was proved in [25].

2.1.2 Monotonicity in the sense of Hardy

The next approach to the multiple concept of monotonicity is to consider the so-called
monotonicity in the sense of Hardy (or Hardy-Krause, see [36] and [45], where this concept
initially arises). In more detail, define the differences

∆10amn := amn − am+1,n, ∆01amn := amn − am,n+1,

∆11amn := ∆01(∆10amn) = ∆10(∆01amn) = amn − am+1,n − am,n+1 + am+1,n+1,

and recalling the one-dimentional condition ∆an ≥ 0, one generalizes it in the following
way

∆11amn ≥ 0 for all m,n. (2.7)

Note that under the natural requirement (2.5), condition (2.7) implies

amn ≥ 0, ∆10amn ≥ 0, ∆01amn ≥ 0.

Here comes the result obtained by Móricz [54, Th. 1,2, Cor. 1].

Theorem C (Móricz, 1990). Let p ≥ 1 and the sequence {amn} satisfy (2.5) and (2.7).
a) If

∑∞
m,n=1 a

p
mn(mn)p−2 <∞, then the double sine or cosine series with coefficients

{amn} is the Fourier series of its sum f and

∞∑
m,n=1

apmn(mn)p−2 & ‖f‖pp.

b) If {amn} is the sequence of double sine or cosine Fourier coefficients of f ∈ Lp, then

∞∑
m,n=1

apmn(mn)p−2 . ‖f‖pp.
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The reader can find Theorem C proved for Vilenkin systems (and hence for the Walsh
system) in [73, Sec. 6.3] and [74] (see also [27, Sec. 4]).

Condition (2.7) is quite restrictive and one of the closest generalizations of it in, say,
GM spirit is the following one

∞∑
m=k

∞∑
n=l

|∆11amn| . |amn|.

Note that if the sequence satisfies (2.7), then the left-hand side above becomes just equal
to amn. The next result [26, Th. 6B] (see [27] for the proof) extends the one of Móricz.

Theorem D (Dyachenko, Tikhonov, 2007). If a nonnegative sequence {amn} satisfy (2.5)
and the so-called GM2 condition

∞∑
m=k

∞∑
n=l

|∆11amn| . |akl|+
∞∑
m=k

|aml|
m

+

∞∑
n=l

|akn|
n

+

∞∑
m=k

∞∑
n=l

|amn|
mn

, (2.8)

then the corresponding double sine, cosine, or exponential series converges everywhere on
(0, 2π)2 and is the Fourier series of its sum. Besides, for any p ∈ (1,∞),

∞∑
m,n=1

apmn(mn)p−2 � ‖f‖pp.

It is worth mentioning that the & part was proved without assuming amn ≥ 0, more-
over, it was shown that if

∑∞
m=k

∑∞
n=l |∆11amn| . βkl, then

∑∞
m,n=1 β

p
mn(mn)p−2 & ‖f‖pp.

However, in the proof of the counterpart the requirement of nonnegativity plays a crucial
role. It was noted in [28, Th. 4.1] that following the lines of this proof one can adapt it
for a more general class of sequences for which the right-hand side of (2.8) is replaces by

∞∑
m=dk/λe

∞∑
n=dl/λe

|amn|
mn

with λ > 1.
Further, it was shown in [77] that some other GM type nonnegative sequences happen

to obey the two-sided Hardy-Littlewood relation. We present the result from [77] for
weighted spaces.

Theorem E (Yu, Zhou, Zhou, 2012). Let {amn} be a nonnegative sequence satisfying
(2.5) and the following GM type conditions

2k∑
m=k

|∆aml| .
bλkc∑

m=bλ−1kc

|aml|
m

,

2l∑
n=l

|∆akn| .
bλlc∑

n=bλ−1lc

|akn|
n

,

2k∑
m=k

2l∑
n=l

|∆amn| .
bλkc∑

m=bλ−1kc

bλlc∑
n=bλ−1lc

|amn|
mn

for some λ ≥ 2, and let f(x, y) :=
∑∞

m,n=1 amn sinmx sinny. Then, for any p ∈ [1,∞),

for any function φ ∈ Φ with either φ
− 1
p−1 ∈ L if p > 1, or φ−1 ∈ L∞, if p = 1, we have

φ|f |p ∈ L⇔
∞∑

m,n=1

apmnφ(1/m, 1/n)(mn)p−2 <∞.
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In the above result Φ stands for some class of power-like positive functions, which we
are not going to specify here. A similar result with a more general GM type positive
sequences and some other (not comparable) class of power-like functions was obtained in
[19].

Similar results for the Fourier transform are also well known in the literature, see e.g.
[12, 24, 33, 59, 66].

2.2 New results for two-dimensional case

The main purpose of this chapter is to show that for some kinds of double GM sequences
we can prove the Hardy-Littlewood theorem without restricting ourselves only to positive
sequences. We present two GM type classes for which the two-sided Hardy-Littlewood
inequality holds true.

We write that {amn} ∈ GM c
1 if it satisfies (2.5) and

2k∑
m=k

∞∑
n=l

|∆11amn|+
∞∑
m=k

2l∑
n=l

|∆11amn| ≤ C|akl|, (2.9)

and {amn} ∈ GM c
2 , if it satisfies (2.5) and

2k∑
m=k

∞∑
n=l

|∆11amn|+
∞∑
m=k

2l∑
n=l

|∆11amn| ≤ C|a2k,l|, (2.10)

for all k, l ∈ N and some constant C depending only on the sequence {amn}. We remark
that the letter c in GM c comes from the word “corner”, since a set of the kind [k, 2k] ×
[l,∞)∪ [k,∞)× [l, 2l] generates a corner on the plane. Note that GM c

1 sequences obey the
one-dimensional GM conditions (2.1) in each variable (see (2.11) in the proof of Lemma
2.2), while GM c

2 in one variable satisfy (2.1), and in another one, the “backward” GM
condition.

Note that for [−π, π]2 the Lqw(p,q)-norms take the form

‖f‖Lq
w(p,q)

:=


( π∫
−π

π∫
−π
|ts|

q
p
−1|f(t, s)|qdt ds

) 1
q
, if 0 < p, q <∞,

ess sup
(t,s)∈[−π,π]2

|(ts)
1
p f(t, s)|, if 0 < p ≤ ∞, q =∞.

From now on, for convenience, we adopt the following notation: using that (sinx)(1) =
(sinx)′ = cosx and (sinx)(0) = sinx, we will write a two-dimensional trigonometric series
as

1∑
i,j=0

∞∑
m,n=0

aijmn sin(i)mx sin(j) ny

and we will say that {aijmn}∞m,n=1, i, j = 0, 1, is the sequence of its coefficients.
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Theorem 2.1. Let p ∈ (1,∞), q ∈ [1,∞], and let each of the sequences {aijmn}∞m,n=1, i, j =
0, 1, belong either to GM c

1 or to GM c
2 .

a) If {aijmn}∞m,n=1, i, j = 0, 1, is the sequence of Fourier coefficients of f ∈ L(−π, π)2,
then

‖f‖Lq
w(p,q)

&
1∑

i,j=0

‖{aijmn}‖lq′
w(p,q′)

.

b) If
∑1

i,j=0 ‖{a
ij
mn}‖lq′

w(p,q′)
<∞, then the corresponding trigonometric series converges

everywhere on (0, 2π)2 and is the Fourier series of its sum f , moreover,

‖f‖Lq
w(p,q)

.
1∑

i,j=0

‖{aijmn}‖lq′
w(p,q′)

.

Sharpness of Theorem 2.1 for GM c
2 sequences will be provided by a counterexample

in Theorem 2.8, which shows that if we restrict the sum on the left-hand side of (2.10)
to the rectangle (that is, to the intersection and not the union of the two corresponding
strips), which is one of the most natural generalizations of the left-hand side of the GM
condition (2.1), then the & part fails for p > 2 and q ≥ p.

2.3 Proof of the Hardy-Littlewood theorem for GM c se-
quences

For a sequence {amn}∞m,n=1, we define

Amn := max
(k,l)∈Qm,n

|akl| := max
(k,l)∈[2m,2m+1]×[2n,2n+1]

|akl|.

Lemma 2.2. a) For any sequence {akl}∞k,l=1 ∈ GM c
1 , there exist c, v > 0 such that for

any (m,n) with Am−1,n−1 ≤ TAm,n there exist a rectangle Q′m−1,n−1 ⊂ Qm−1,n−1 of size
2m−v × 2n−v satisfying ∣∣∣∣ ∑

k,l∈ Q′m−1,n−1

akl

∣∣∣∣ > c2m+nAmn,

where c and v depend only on C and T .
b) For any sequence {akl}∞k,l=1 ∈ GM c

2 , there exist c, v > 0 such that for any (m,n)

with Am+1,n−1 ≤ TAm,n there exist a rectangle Q′m+1,n−1 ⊂ Qm+1,n−1 of size 2m−v×2n−v

satisfying ∣∣∣∣ ∑
k,l∈ Q′m+1,n−1

akl

∣∣∣∣ > c2m+nAmn,

where c and v depend only on C and T .

Proof. Note that (2.5) and (2.9) imply that

2k∑
m=k

|∆10amt|+
2l∑
n=l

|∆01asn| ≤ C|ak,l| (2.11)
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for any k, l ∈ N and (s, t) ∈ [k, 2k]× [l, 2l]. Similarly, (2.5) along with (2.10) imply (2.11)
with a2k,l instead of ak,l on the right-hand side. In particular, (2.11) yields that

|as,t| − |ak,l| = |as,t| − |ak,t|+ |ak,t| − |a2k,l| ≤ C|ak,l|,

so

|as,t| ≤ (C + 1)|ak,l| ≤ (C + 1)2|as′t′ |

for any (s′, t′) ∈ [0.5k, k] × [0.5l, l]. Considering k = 2m, l = 2n, we get for any (s, t) ∈
Qm−1,n−1

|ast| ≥ (C + 1)−2Amn =: αAmn. (2.12)

Under conditions (2.5) and (2.10), the same arguments give

|as,t| − |a2k,l| = |as,t| − |a2k,t|+ |a2k,t| − |a2k,l| ≤ C|a2k,l|,

and

|as,t| ≤ (C + 1)|a2k,l| ≤ (C + 1)2|as′t′ |

for any (s′, t′) ∈ [2k, 4k] × [0.5l, l]. Once more, considering k = 2m, l = 2n, we get (2.12)
for (s, t) ∈ Qm+1,n−1 instead of Qm−1,n−1.

Thus, any sequence {akl} ∈ GM c
1 satisfies |akl| ≤ (C + 1)|ak′l′ | for (k′, l′) ∈ [0.5k, k]×

[0.5l, l] as well as any {akl} ∈ GM c
2 does for (k′, l′) ∈ [k, 2k]× [0.5l, l].

In Lemma 2.2a), due to condition (2.11) and inequality (2.12), for any (k, l) ∈ Qm−1,n−1,
each one of the sequences a2m−1,l, a2m−1+1,l, ..., a2m,l and ak,2n−1 , ak,2n−1+1, ..., ak,2n can
have at most

C max
(k,l)∈Qm−1,n−1

|akl|

2αAmn
=
CAm−1,n−1

2αAmn
≤ CT

2α
=: b (2.13)

changes of sign.
The same holds for Qm+1,n−1 in place of Qm−1,n−1 in Lemma 2.2b).
Focus now on Lemma 2.2a). Consider the rectangle R := Qm−1,n−1 = [2m−1, 2m] ×

[2n−1, 2n] on the plane and draw all the segments [(k, l), (k + 1, l)] such that ak,l−1 and
ak,l have different signs and all the segments [(k, l), (k, l + 1)] such that ak−1,l and ak,l
have different signs (call them marked segments). Then our rectangle R is divided by the
marked segments into several connected parts corresponding to the terms of {akl} of the
same sign. The interior part of the union of their boundaries has at most b2n−1 vertical
marked segments and at most b2m−1 horizontal ones. Take a positive integer u such that

2u > 8bτ, (2.14)

where τ := 4
√
T (C + 1)2 + 1. Divide R into 22u equal rectangles of size 2m−1−u× 2n−1+u

and consider a half of them in a checkerboard pattern. Suppose that there is no rectangle
among them containing at most 2n−1−u/τ vertical marked segments and at most 2m−1−u/τ
horizontal ones. Then we must have

22u−1 ≤ b2m−1τ

2m−1−u +
b2n−1τ

2n−1−u = 2u+2bτ ≤ 4bτ2u,
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which contradicts (2.14). So, there is a rectangle r = [α1, α2] × [β1, β2] of size 2m−1−u ×
2n−1−u with at most 2n−1−u/τ vertical marked segments and at most 2m−1−u/τ horizontal
ones inside it. Consider the parts corresponding to the terms of {akl} of the same sign
inside r. Call the parts whose boundaries intersect the boundary of r by A-parts, the
other ones, by B-parts. Note that there is no marked segment of an A-part inside the
rectangle r′ := [3α1+α2

4 , α1+3α2
4 ] × [3β1+β2

4 , β1+3β2
4 ]. Indeed, otherwise there would exist a

broken line of marked segments with either at least 0.25(α2 − α1) = 2m−3−u horizontal
segments or at least 0.25(β2 − β1) = 2n−3−u vertical ones. But this is impossible, since
τ > 4. The area of all B-parts does not exceed 2m+n−2−2u/τ2. Thus, there are at least
2m+n−4−2u(1− 4τ−2) terms of the same sign in r′, so the absolute value of the sum of the
terms {akl} in r′ is at least

2n+m−2u−4
(

1− 4

τ2
− 4

τ2
T (C + 1)2

)
αAmn > 2n+m−2u−5αAmn,

which concludes the proof of Lemma 2.2a) with c := 2−2u−5α and v := u+ 1.
A similar argument is valid for Qm+1,n−1 in Lemma 2.2b), which completes the proof.

Remark 2.3. In the proof of Lemma 2.2, for GM c
1 class we only used its one-dimensional

GM properties (2.11), and for GM c
2 , the corresponding nonsymmetric relations (namely,

(2.11) with a2k,l in place of ak,l).

Remark 2.4. The claim of Lemma 2.2a) is no longer true if we substitute the GM c
1

condition (2.9) for

2k∑
m=k

2l∑
n=l

|∆11amn| ≤ C|akl|. (2.15)

Proof. Indeed, consider the sequence

amn :=
(−1)m

m
fm(n),

where fm(n) we define as follows:

fm(n) =

{
2−m+1, log2 n <

m(m+1)
2 ,

2−m−t, (m+t)2+m−t
2 ≤ log2 n <

(m+t+1)2+m−t−1
2 , t ∈ Z+.

For such a sequence, condition (2.5) obviously holds. Consider a rectangle Smn of the
form [m, 2m) × [n, 2n). The only nonzero ∆11akl in this rectangle are ∆11am′−1,n′ and
∆11am′n′ , where n′ ∈ [n, 2n) : blog2(n′)c = blog2(n′ − 1)c + 1, i.e. n′ is a power of two,
and

m′ := min
{
m ∈ N : m = log2 n

′ − k(k + 1)

2
, k ∈ Z+

}
.

Note that |akl| ≤ |amn| for k ≥ m, l ≥ n, so |∆11am′n′ | ≤ |am′n′ | + |am′+1,n′ | ≤ 2|amn|,
which yields condition (2.15) with C = 2.

Assume that the assertion of Lemma 2.2 holds. Then there must exist a constant c
such that for at least cmn squares [k, k + 2)× [l, l + 2) in any Smn there holds

|akl + ak,l+1 + ak+1,l + ak+1,l+1| ≥ c|akl|. (2.16)
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Consider a rectangle Smn with

t(t+ 1)

2
+ 2m ≤ log2 n ≤

(t+ 1)(t+ 2)

2
− 2,

where t > 4m is a positive integer. For any akl in Smn, we have

akl = 2−t−1 (−1)k

k
,

whence for any 2× 2 square [k, k + 2)× [l, l + 2) ⊂ Smn

|akl + ak,l+1 + ak+1,l + ak+1,l+1| = 2−t−1 · 2
(1

k
− 1

k + 1

)
=

2

k + 1
|akl| <

2

m
|akl| = o(|akl|),

as m→∞, which leads to a contradiction.

Lemma 2.5. For a function f ∈ L(−π, π)2, given the representation

f(x, y) =
1∑

i,j=0

f ij(x, y), f ij(−x, y) = (−1)if ij(x, y), f ij(x,−y) = (−1)jf ij(x, y),

for any p ∈ (1,∞), q ∈ [1,∞], we have

‖f‖Lq
w(p,q)

�
1∑

i,j=0

‖f ij‖Lq
w(p,q)

.

Proof. The . part is clear, so we have to prove the reverse.
We start with the case q < ∞. Noting that for any pair of functions g1, g2 there always
holds |g1|q + |g2|q . |g1 + g2|q + |g1 − g2|q and recalling that the weight is an even in each
variable function, we obtain

‖f i0(x, ·)‖q
Lq
w(p,q)

+ ‖f i1(x, ·)‖q
Lq
w(p,q)

. ‖(f i0 + f i1)(x, ·)‖q
Lq
w(p,q)

+ ‖(f i0 − f i1)(x, ·)‖q
Lq
w(p,q)

� ‖(f i0 + f i1)(x, ·)‖q
Lq
w(p,q)

for i = 0, 1. Similarly,

1∑
i,j=0

‖f ij‖q
Lq
w(p,q)

. ‖f00 + f01 + f10 + f11‖q
Lq
w(p,q)

+ ‖f00 + f01 − f10 − f11‖q
Lq
w(p,q)

�
∥∥∥ 1∑
i,j=0

f ij
∥∥∥q
Lq
w(p,q)

= ‖f‖q
Lq
w(p,q)

.

For q =∞, the claim follows from the equalities

4f ij(x, y) ≡ f(x, y) + (−1)if(−x, y) + (−1)jf(x,−y) + (−1)i+jf(−x,−y).

Next we prove a two-dimensional analogue of [23, L. 2.2] (see also the one-dimensional
result [66, Th. 2.4] for the Lorentz spaces). Note that similar multidimensional results for
Lorentz spaces were obtained in [57] and [58].
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Lemma 2.6. Let {aijmn}∞m,n=1, i, j = 0, 1, be the sequence of Fourier coefficients of f ∈
L(−π, π)2. Then for any p ∈ (1,∞), q ∈ [1,∞], there holds

1∑
i,j=0

( ∞∑
m,n=1

(
sup

k≥m, l≥n

1

kl

∣∣∣ k∑
s=1

l∑
t=1

ast

∣∣∣)q(mn)
q
p′−1

) 1
q
. ‖f‖Lq

w(p,q)
.

Proof of Lemma 2.6. Note that if we prove the statement of the lemma for odd in each
variable functions f ∈ L(−π, π)2, then it will be true for any integrable f . Indeed, the
relation for such functions implies the same for all functions that are either odd or even in
each variable due to the boundedness of the Hilbert transform in the weighted Lebesgue
spaces under our assumptions on weights (see e.g. [42]). The general case follows then
by Lemma 2.5. Thus, we can assume that aijmn = 0 if (i, j) 6= (0, 0) and omit the upper
indices of a00

mn.

According to [23, (2.4), (2.7)], for any 1 < p <∞, 1 ≤ q ≤ ∞, and m ∈ N, for

Im(x) :=
cos x2 (1− cosmx)

m sin x
2

+
sinmx

m
,

there holds

‖Im(x)‖lp,q . m
− 1
p .

Therefore, for any 1 < p1, p2 <∞, 1 < q ≤ ∞, and m,n ∈ N, by Hölder’s inequality

1

mn

∣∣∣ m∑
k=1

n∑
l=1

akl

∣∣∣ ≤ ∫ π

0

∫ π

0
|f(x, y)Im(x)In(y)|dxdy

≤
∫ π

0
|In(y)|

(∫ π

0
x
q
p1
−1|f(x, y)|qdx

) 1
q
(∫ π

0
x
q′
p′1 |Im(x)|q′dx

) 1
q′
dy

. m
− 1
p′1

∫ π

0
|In(y)|

(∫ π

0
x
q
p1
−1|f(x, y)|qdx

) 1
q
dy

≤ m
− 1
p′1

(∫ π

0

∫ π

0
x
q
p1
−1
y
q
p2
−1|f(x, y)|qdxdy

) 1
q
(∫ π

0
y
q′
p′2
−1
|In(y)|dy

) 1
q′

. m
− 1
p′1 n
− 1
p′2

(∫ π

0

∫ π

0
x
q
p1
−1
y
q
p2
−1|f(x, y)|qdxdy

) 1
q

=: m
− 1
p′1 n
− 1
p′2 ‖f‖Lq

w((p1,p2),q)
. (2.17)

Similarly, if q = 1,

1

mn

∣∣∣ m∑
k=1

n∑
l=1

akl

∣∣∣ ≤ ∫ π

0

∫ π

0
|f(x, y)Im(x)In(y)|dxdy

≤ sup
x∈[0,π]

x
1
p′1 |Im(x)| · sup

y∈[0,π]
y

1
p′2 |In(y)| ·

∫ π

0

∫ π

0
x

1
p1
−1
y

1
p2
−1|f(x, y)| dxdy

. m
− 1
p′1 n
− 1
p′2 ‖f‖L1

w((p1,p2),1)
.
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Thus, for any 1 < p1, p2 <∞, 1 ≤ q ≤ ∞, and m ∈ N, we obtain

m
1
p′1 sup

n∈N
n

1
p′2 sup

k≥m, l≥n

1

kl

∣∣∣ k∑
s=1

l∑
t=1

ast

∣∣∣ ≤ C‖f‖Lq
w((p1,p2),q)

, (2.18)

with the constant C independent of m.
Now, in order to prove the desired inequality, we will invoke interpolation theory.

Recall that the norm of a sequence c := {ck}∞k=1 in the discrete Lorentz space lp,q, for
p ∈ (1,∞) and q ∈ (0,∞], is defined as follows

‖c‖lp,q :=


(∑∞

k=1 k
q
p
−1|c∗k|q

) 1
q
, if q <∞,

sup
k≥1

k
1
p |c∗k|, if q =∞,

where {c∗k} stands for the decreasing rearrangement of c. It follows from [8, Th. 5.3.1]
that for θ ∈ (0, 1) and q ∈ (0,∞], for the discrete Lorentz spaces lp1,∞ and lp2,∞, 0 < p1 <
p2 ≤ ∞, with θ/p1 + (1− θ)/p2 = 1/p, we have

(lp1,∞, lp2,∞)θ,q = lp,q. (2.19)

For the Lebesgue spaces Lqw((p11,p21),q) and Lqw((p21,p22),q), q ∈ (0,∞], (see (2.17)), with

θ

p11
+

1− θ
p12

=
1

p1
,

θ

p21
+

1− θ
p22

=
1

p2
,

[8, Th. 5.4.1] gives

(Lqw((p11,p21),q), L
q
w((p12,p22),q))θ,q = Lqw((p1,p2),q). (2.20)

For any fixed m0 ∈ N, in light of the monotonicity of sup
k≥m0, l≥n

1
kl

∣∣∣ k∑
s=1

l∑
t=1

ast

∣∣∣ in n, (2.18)

is equivalent to

m

1
p′1
0

∥∥∥{ sup
k≥m0, l≥n

1

kl

∣∣∣ k∑
s=1

l∑
t=1

ast

∣∣∣}∞
n=1

∥∥∥
lp′2,∞

≤ C‖f‖Lq
w((p1,p2),q)

. (2.21)

Fix now p1, p2 ∈ (1,∞) and q ∈ [1,∞]. Take θ ∈ (0, 1) and p11 < p12, p21 < p22 such that
θ/p11 + (1 − θ)/p12 = 1/p1 and θ/p21 + (1 − θ)/p22 = 1/p2. Note that, for any fixed m0,
the operator

Tm0f =
{

sup
k≥m0, l≥n

1

kl

∣∣∣ k∑
s=1

l∑
t=1

ast

∣∣∣}∞
n=1

is sublinear and that due to (2.21)

Tm0 : Lqw((p1,p21),q) → lp′21,∞ and Tm0 : Lqw((p1,p22),q) → lp′22,∞,

where the involved constants do not depend on m0. Then it follows from [52, Th. 6],
(2.19), and (2.20) that

Tm0 : Lqw((p1,p2),q) = (Lqw((p1,p21),q), L
q
w((p1,p22),q))θ,q → (lp′21,∞, lp′22,∞)θ,q = lp′2,q,
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so we arrive at

m
1
p′1

∥∥∥{ sup
k≥m, l≥n

1

kl

∣∣∣ k∑
s=1

l∑
t=1

ast

∣∣∣}∞
n=1

∥∥∥
lp2,q

. ‖f‖Lq
w((p1,p2),q)

, (2.22)

for any m. Now we note that

∥∥∥{ sup
k≥m, l≥n

1

kl

∣∣∣ k∑
s=1

l∑
t=1

ast

∣∣∣}∞
n=1

∥∥∥
lp2,q

=
( ∞∑
n=1

n
q
p2
−1
(

sup
k≥m, l≥n

1

kl

∣∣∣ k∑
s=1

l∑
t=1

ast

∣∣∣)q)1/q

is decreasing in m for any p2 ∈ (1,∞) and that the operator

Tf =
{( ∞∑

n=1

n
q
p2
−1
(

sup
k≥m, l≥n

1

kl

∣∣∣ k∑
s=1

l∑
t=1

ast

∣∣∣)q)1/q}∞
m=1

is sublinear. Since according to (2.22) we have

T : Lqw((p11,p2),q) → lp′11,∞ and T : Lqw((p12,p2),q) → lp′12,q,

we can once again apply [52, Th. 6] and obtain

T : Lqw((p1,p2),q) = (Lqw((p11,p2),q), L
q
w((p12,p2),q))θ,q → (lp′11,∞, lp′12,∞)θ,q = lp′1,q.

The latter means that

∥∥∥{( ∞∑
n=1

n
q
p2
−1
(

sup
k≥m, l≥n

1

kl

∣∣∣ k∑
s=1

l∑
t=1

ast

∣∣∣)q) 1
q
}∞
m=1

∥∥∥
lp1,q

. ‖f‖Lq
w((p1,p2),q)

,

whence the claim follows by putting p1 = p2 = p.

Proof of Theorem 2.1. In light of Lemma 2.5 it suffices to prove the theorem only for
either odd or even in each variable functions, omitting therefore the upper indices of amn.

We start with the part a). Due to Lemma 2.6, for q <∞, there holds

‖f‖q
Lq
w(p,q)

&
∞∑

m,n=1

(
sup

k≥m, l≥n

1

kl

∣∣∣ k∑
s=1

l∑
t=1

ast

∣∣∣)q(mn)
q
p′−1

�
∞∑

m,n=0

2
(m+n) q

p′
(

sup
k≥2m, l≥2n

1

kl

∣∣∣ k∑
i=1

l∑
j=1

aij

∣∣∣)q =:
∞∑

m,n=0

Pmn. (2.23)

Denote

Wmn :=

2m+1−1∑
k=2m

2n+1−1∑
l=2n

|akl|q(kl)
q
p′−1

.

First, we consider GM c
1 sequences. Let us fix some T > 1. We call a pair (m,n) good

(we write (m,n) ∈ G), if either mn = 0 or

Am−1,n−1 ≤ TAmn.
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We have

∞∑
k,l=1

|akl|q(kl)
q
p′−1

=

∞∑
m,n=0

Wmn

≤
∞∑
m=0

Wm0 +
∞∑
n=0

W0n +
∑

(m,n)∈G∩N2

Wmn +
∑

(m,n)∈G

∑
(k,l)∈Bmn

Wkl

=: J1 + J2 + J3 + J4,

where Bmn, (m,n) ∈ G, stands for the set of all pairs (k, l) /∈ G such that k = m+ t, l =
n+ t for some t ∈ N.

According to the one-dimentional Hardy-Littlewood theorem for GM sequences [23,
Th. 1.2], we obtain

J1 =
∞∑
m=0

Wm0 =
∞∑
k=1

|ak1|qk
q
p′−1 . ‖g‖q

Lq
w(p,q)

=

π∫
−π

x
q
p
−1
∣∣∣ π∫
−π

f(x, y) sin ydy
∣∣∣qdx

≤
π∫
−π

x
q
p
−1

π∫
−π

|f(x, y)|q|y|qdydx . ‖f‖q
Lq
w(p,q)

, (2.24)

where g(x) :=
∫ π
−π f(x, y) sin y dy, since |y|q . |y|q/p−1 in [−π, π]. A similar estimate is

valid for J2.
Consider a pair (m,n) ∈ G ∩ N2. Denote the rectangles we constructed in Lemma

2.2a) by [s1
mn, s

2
mn]× [t1mn, t

2
mn], so that applying this lemma we have

Pm−1,n−1 = 2
(m+n−2) q

p′
(

sup
k≥2m−1, l≥2n−1

1

kl

∣∣∣ k∑
i=1

l∑
j=1

aij

∣∣∣)q

& 2
(m+n) q

p′−(m+n)q

(∣∣∣ s1mn−1∑
i=1

t1mn−1∑
j=1

aij

∣∣∣q +
∣∣∣ s1mn−1∑

i=1

t2mn∑
j=1

aij

∣∣∣q +
∣∣∣ s2mn∑
i=1

t1mn−1∑
j=1

aij

∣∣∣q +
∣∣∣ s2mn∑
i=1

t2mn∑
j=1

aij

∣∣∣q)

& 2
(m+n) q

p′−(m+n)q
∣∣∣ s2mn∑
i=s1mn

t2mn∑
j=t1mn

aij

∣∣∣q & 2
(m+n) q

p′Aqmn &Wmn.

Here we used the inequality

|x+ y + z + t|+ |x+ y|+ |x+ z|+ |x| ≥ |z + t|+ |z| ≥ |t|,

which is valid for any x, y, z, t ∈ C.
Hence, using (2.23), we obtain

J3 =
∑

(m,n)∈G∩N2

Wmn .
∑

(m,n)∈G∩N2

Pm−1,n−1 ≤ ‖f‖qLq
w(p,q)

. (2.25)
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Finally, combining (2.24) with the analogous estimate for J2 and with (2.25), we derive

J4 ≤
∑

(m,n)∈G

Wmn

∞∑
j=1

T−j ≤ 1

1− T−1
(J1 + J2 + J3) . ‖f‖q

Lq
w(p,q)

,

which concludes the proof of the first part for the case of GM c
1 .

A simplified version of the argument above yields the result for q =∞.

If we replace GM c
1 by GM c

2 , i.e. (2.9) by (2.10), we change the definition of a good
pair of numbers to the following one: we call a pair (m,n) good, if either mn = 0 or
Am+1,n−1 ≤ TAmn. The rest of the proof is the same in light of Lemma 2.2b) with the
only changes: now Bmn, (m,n) ∈ G, stands for the set of all pairs (k, l) /∈ G such that
k = m− t, l = n+ t for some t ∈ N and Pm−1,n−1 in (2.25) becomes Pm+1,n−1.

Turn now to the part b). Note that if {amn} ∈ GM c
1∪GM c

2 and
∑∞

m,n=1 |amn|q(mn)
q
p′−1

< ∞, then we have
∑∞

k=1

∑∞
l=1 |∆11akl| < ∞, which implies that the corresponding

trigonometric series converges in the Pringsheim sense (that is, by rectangles) everywhere
on (0, 2π)2 and is the Fourier series of its sum (see [20, L. 4]). Indeed, under condition
(2.9) we have by (2.12) and Hölder’s inequality

∞∑
k,l=1

|∆11akl| .
∞∑
k=0

|a2k,2k | .
∞∑
k=0

|a2k,2k |
2k∑

m=2k−1

2k∑
n=2k−1

(mn)−1

.
∞∑

m,n=1

|amn|(mn)−1 =
∞∑

m,n=1

|amn|(mn)
1
p′−

1
q (mn)

− 1
p′−

1
q′

.
( ∞∑
m,n=1

|amn|q(mn)
q
p′−1

) 1
q
( ∞∑
m,n=1

(mn)
− q
′
p′−1

) 1
q′
<∞,

and similarly under (2.10),

∞∑
k=1

∞∑
l=1

|∆11akl| .
∞∑
k=0

|a2k+1,2k | .
∞∑
k=0

|a2k+1,2k |
2k+2∑

m=2k+1

2k∑
n=2k−1

(mn)−1

.
∞∑

m,n=1

|amn|(mn)−1 <∞.

We will provide the proof only for the system {sinmx, sinny}, the other cases will
follow then from boundedness of Hilbert transform in the weighted Lebesgue spaces.

For (x, y) ∈ ( π
m+1 ,

π
m ]× ( π

n+1 ,
π
n ], we have
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|f(x, y)| =
∣∣∣ ∞∑
k=1

∞∑
l=1

akl sin kx sin ly
∣∣∣ ≤ xy m∑

k=1

n∑
l=1

kl|akl|

+ x

m∑
k=1

k

∞∑
l=n

|akl − ak,l+1||D̃l(y)− D̃n(y)|

+ y

n∑
l=1

l

∞∑
k=m

|akl − ak+1,l||D̃k(x)− D̃m(x)|

+

∞∑
k=m

∞∑
l=n

|∆11akl| · |(D̃k(x)− D̃m(x))(D̃l(y)− D̃n(y))|

.
1

mn

m∑
k=1

n∑
l=1

kl|akl|+
n

m

m∑
k=1

k

∞∑
l=n

|akl − ak,l+1|

+
m

n

n∑
l=1

l

∞∑
k=m

|akl − ak+1,l|+mn

∞∑
k=m

∞∑
l=n

|∆11akl|.

Applying condition (2.9), we derive

|f(x, y)| . 1

mn

m∑
k=1

n∑
l=1

kl|akl|+
n

m

m∑
k=1

k
∞∑
t=0

|ak,2tn|+
m

n

n∑
l=1

l
∞∑
t=0

|a2tm,l|+mn
∞∑
t=0

|a2tm,2tn|

.
1

mn

m∑
k=1

n∑
l=1

kl|akl|+
n

m

m∑
k=1

k
∞∑

l=dn/2e

|akl|
l

+
m

n

n∑
l=1

l
∞∑

k=dm/2e

|akl|
k

+mn
∞∑

k=dm/2e

∞∑
l=dn/2e

|akl|
kl

.

In turn, (2.10) yields

|f(x, y)| . 1

mn

m∑
k=1

n∑
l=1

kl|akl|+
n

m

m∑
k=1

k
∞∑
t=0

|ak,2tn|

+
m

n

n∑
l=1

l

∞∑
t=0

|a2t+1m,l|+mn

∞∑
t=0

|a2t+1m,2tn|

.
1

mn

m∑
k=1

n∑
l=1

kl|akl|+
n

m

m∑
k=1

k

∞∑
l=dn/2e

|akl|
l

+
m

n

n∑
l=1

l

∞∑
k=2m

|akl|
k

+mn

∞∑
k=2m

∞∑
l=dn/2e

|akl|
kl

.

Hence, in both cases we get

|f(x, y)| . 1

mn

m∑
k=1

n∑
l=1

kl|akl|+
n

m

m∑
k=1

k

∞∑
l=dn/2e

|akl|
l

+
m

n

n∑
l=1

l
∞∑

k=dm/2e

|akl|
k

+mn
∞∑

k=dm/2e

∞∑
l=dn/2e

|akl|
kl

=: I1
m,n + I2

m,n + I3
m,n + I4

m,n. (2.26)
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Thus, for q <∞, denoting α := 1− q/p, we obtain

‖f‖q
Lqp,q
�

π∫
0

π∫
0

(xy)−α|f(x, y)|q dxdy

.
∞∑
m=1

∞∑
n=1

π
m∫
π

m+1

π
n∫
π
n+1

(xy)−α(I1
m,n + I2

m,n + I3
m,n + I4

m,n)q dxdy

�
∞∑
m=1

∞∑
n=1

(mn)α−2((I1
m,n)q + (I2

m,n)q + (I3
m,n)q + (I4

m,n)q).

Recall the Hardy-type inequalities for power weights (see, for instance, [46, (0.6), (0.10),
(1.102)]) for q ≥ 1:

∞∑
n=1

nγ
( n∑
k=1

ak

)q
.q

∞∑
n=1

nγ+qaqn, for γ < −1, (2.27)

and its dual,

∞∑
n=1

nγ
( ∞∑
k=n

ak

)q
.q

∞∑
n=1

nγ+qaqn, for γ > −1. (2.28)

Using (2.27) in each variable we arrive at

∞∑
m=1

∞∑
n=1

(mn)α−2(I1
m,n)q =

∞∑
m=1

mα−2−q
∞∑
n=1

nα−2−q
( n∑
l=1

l
m∑
k=1

k|akl|
)q

.
∞∑
n=1

nα−2+q
∞∑
m=1

mα−2−q
( m∑
k=1

k|akn|
)q

.
∞∑
m=1

∞∑
n=1

(mn)α−2+q|amn|q

and

∞∑
m=1

∞∑
n=1

(mn)α−2(I2
m,n)q =

∞∑
m=1

mα−2−q
∞∑
n=1

nα−2+q
( ∞∑
l=dn/2e

1

l

m∑
k=1

k|akl|
)q

�
∞∑
m=1

mα−2−q
∞∑
n=1

nα−2+q
( ∞∑
l=n

1

l

m∑
k=1

k|akl|
)q

.
∞∑
n=1

nα−2+q
∞∑
m=1

mα−2−q
( m∑
k=1

k|akn|
)q

.
∞∑
m=1

∞∑
n=1

(mn)α−2+q|amn|q,

where we used inequality (2.12). The similar estimate holds for I3
m,n. And finally, due to
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(2.28), we have

∞∑
m=1

∞∑
n=1

(mn)α−2(I4
m,n)q =

∞∑
m=1

mα−2+q
∞∑
n=1

nα−2+q
( ∞∑
l=dn/2e

1

l

∞∑
k=dm/2e

|akl|
k

)q
�
∞∑
m=1

mα−2+q
∞∑
n=1

nα−2+q
( ∞∑
l=n

1

l

∞∑
k=m

|akl|
k

)q
.
∞∑
m=1

mα−2+q
∞∑
n=1

nα−2+q
( ∞∑
k=m

|akn|
k

)q
.
∞∑
m=1

∞∑
n=1

(mn)α−2+q|amn|q,

which completes the proof for the case q ∈ [1,∞). For q =∞, using (2.26) we can write

sup
(x,y)∈( π

m+1
, π
m

]×( π
n+1

,π
n

]
(xy)

1
p |f(x, y)| ≤ (mn)

− 1
p (I1

m,n + I2
m,n + I3

m,n + I4
m,n).

Next,

(mn)
− 1
p I1
m,n = (mn)

− 1
p
−1

m∑
k=1

n∑
l=1

kl|akl|

≤ (mn)
− 1
p
−1

m∑
k=1

n∑
l=1

(kl)
1
p sup
k,l

(
(kl)

1
p′ |akl|

)
. sup

k,l

(
(kl)

1
p′ |akl|

)
.

We also have

(mn)
− 1
p I2
m,n = (mn)

− 1
p
n

m

m∑
k=1

∞∑
l=dn/2e

k

l
|akl| . sup

k,l

(
(kl)

1
p′ |akl|

)
,

and the similar estimate for I3
m,n. Finally,

(mn)
− 1
p I4
m,n = (mn)

− 1
pmn

∞∑
k=dm/2e

∞∑
l=dn/2e

|akl|
kl

. sup
k,l

(
(kl)

1
p′ |akl|

)
,

which completes the proof of the theorem.

Remark 2.7. For the spaces Lqw(p,q)(0, 2π)2 in place of Lqw(p,q)(−π, π)2, the assertion of
Theorem 2.1 still holds for q ≤ p but fails for q > p.

Indeed, for q > p it suffices to consider the one-dimensional sine series

f(x) :=

∞∑
k=1

k
− 1
p′ log

− 1
p (k + 2) sin kx =:

∞∑
k=1

ak sin kx.

We have
∑
|ak|pkp−2 =

∑
k−1 log−1(k + 2) = ∞, so by the Hardy-Littlewood theorem

f /∈ Lp, whence ‖f‖Lq
w(p,q)

(0,2π) & ‖f‖Lp(π,2π) =∞. On the other hand,

‖f‖Lq
w(p,q)

(−π,π) �
∑
|ak|qk

q
p′−1

=
∑

k−1 log
− q
p (k + 2) <∞.
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However, for q ≤ p, there holds xq/p−1 & 1, so that

‖f‖Lq
w(p,q)

(0,2π) � ‖f‖Lq
w(p,q)

(0,π) + ‖f‖Lq
w(p,q)

(π,2π) � ‖f‖Lq
w(p,q)

(0,π) � ‖f‖Lq
w(p,q)

(−π,π).

The reason of the failure of the Hardy-Littlewood relation here is that the function
in case is supposed to be periodic, while a power weight is not. Thus, if one deals with
weighted Lebesgue spaces on [0, 2π]2, it makes more sense to consider a weight of the type
| sinx|α in place of |x|α, which was in fact done by many authors. Note that for a power
weight, weighted integrability at 2π is equivalent to integrability at zero without weight,
so, as in the example above, one has to additionally check integrability at zero.

2.4 Sharpness of the result

Theorem 2.8. For p > 2, q ≥ p, the claim of Theorem 2.1a) does not hold if we replace
the GM c

2 condition (2.10) by

2k∑
m=k

2l∑
n=l

|∆11amn| ≤ C|a2k,l|. (2.29)

Proof. Assume that p > 2 and consider the sequence

amn :=
(−1)δm

mγ
gm(n),

where γ > 0 and δm ∈ {0, 1} are to be chosen later, and gm(n) = gm(n, p′) is defined as
follows

gm(n) :=

{
(−1)δmm−3n

− 1
p′ , log2 n < m(m+ 1)p′,

2−(m+t)2−3(m+t), ((m+ t)2 +m− t)p′ ≤ log2 n < ((m+ t)2 + 3m+ t)p′, t ∈ Z+.

In other words, the functions gm are constructed in the following way. First, we divide
[1,∞) into the intervals Ij , j = 0, 1, ..., so that Ij := {x : 2p′j ≤ log2 x < 2p′(j + 1)}.
After that consider the lower-triangular infinite down and to the right matrix that is filled
by all positive integers in increasing order going down and to the right.

1
2 3
4 5 6
7 8 9 10
...

...
...

...

Next, for any j we asign it the integer i = i(j) if it is ith column that contains the element
j. Fix some m and consider the values gm(1), gm(2), .... While i(j) 6= m, we have

gm(n) = (−1)δmm−3n
− 1
p′

for n ∈ Ij . Once i(j) becomes equal to m for the first time, that is, when log2 n ≥
m(m + 1)p′ for the first time, we get gm(n) = 2−m

2−3m and this value does not change
till i(j) becomes equal to m again and n ∈ Ij . When i(j) becomes equal to m for the
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(s+ 1)th time, the value gm(n) changes for 2−(m+s)2−3(m+s) (see Figure 2.1 for a scheme
of changes of absolute values of gm(n)).

Figure 2.1:

Fix n ∈ Ij for some j and consider g1(n), g2(n), ... Let k be such that log2 n < m(m+
1)p′ if 1 ≤ m ≤ k and log2 n ≥ m(m+ 1)p′ if m ≥ k + 1. Then

|gm(n)| . |gm′(n)|, for k + 1 ≤ m < m′ ≤ 2m. (2.30)

Denote m0 := i(j + 1). If m0 = k + 1, then g1(n) = g2(n) = ... = gk(n) = 2−(k+1)2−3(k+1),
otherwise, gm(n) = 2−(k+1)2−3(k+1) for m ≤ m0−1 and gm(n) = 2−k

2−3k for m0 ≤ m ≤ k.
Let us compare gk(n) and gk+1(n). There are two cases.

Case 1. m0 = i(j + 1) = k + 1. Then

|gk+1(n)| = (k + 1)−3n
− 1
p′ & (k + 1)−32−(k+1)(k+2) & 2−(k+1)2−3(k+1) = gk(n).

Case 2. m0 = i(j + 1) < k + 1. Then

|gk+1(n)| = (k + 1)−3n
− 1
p′ & (k + 1)−32−k(k+1)−m0 & 2−k

2−3k = gk(n).

Thus, in both cases we obtain 0 < g1(n) ≤ g2(n) ≤ ... ≤ gk(n) . |gk+1(n)|, whence in
light of (2.30),

|gm(n)| . |gm′(n)|, for all m < m′ ≤ 2m. (2.31)

It remains to note that for a fixed m, we have for nm := d2m(m+1)p′e − 1 that

|gm(nm)| = m−3n
− 1
p′

m � m−32−m(m+1) & 2−m
3−3m = gm(nm + 1)
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and for other n there holds gm(n) ≥ gm(n+ 1). So, over all |amn| in rkl := [k, 2k]× [l, 2l],
the maximal is up to a constant |a2k,l|.

Further we note that the constructed sequence clearly satisfies (2.5).

To prove that our sequence belongs to GM c
2 , let us estimate

∑2k
m=k

∑2l
n=l |∆11amn|.

Consider a quadruple

am,n+1 am+1,n+1

amn am+1,n

with (m,n) ∈ rkl. Note that it can be only of the following five types

0 0
0 0

1 0
1 0

1 0
0 0

1 1
1 0

1 1
1 1

where 0 stands for the terms with log2 n < m(m + 1)p′, while 1, for those with log2 n ≥
m(m + 1)p′. We will write (m,n) ∈ Ti, i = 1, ..., 5, if the corresponding quadruple is of
the ith type. Note that if (m,n) ∈ T3, then (m− 1, n) ∈ T1 and (m+ 1, n) ∈ T2, while if
(m,n) ∈ T4, then (m− 1, n) ∈ T2 and (m+ 1, n) ∈ T5. By the construction, quadruples of
the three last types with nonzero ∆11amn can appear at most four times in rkl, since any
(m,n) ∈ T3∪T4, as well as (m,n) ∈ T5 with nonzero ∆11amn, satisfies n ∈ Ij , n+1 ∈ Ij+1,
for some j, which cannot happen twice in [l, 2l]. If there exists a quadruple of the first
type, then

∑
(m,n)∈T1∩rkl

|∆11amn| =
∑

(m,n)∈T1∩rkl

∆11amn <
∑

m≥k, n≥l
∆11(m−3−γn

− 1
p′ )

= k−3−γl
− 1
p′ . max

(m,n)∈rkl
|amn|.

As for (m,n) ∈ T2 ∩ rkl, they all belong to a strip [k′, k′ + 1]× [l, 2l] for some k′. Indeed,
otherwise there are m1 and m2 ≥ m1 + 2 belonging to [k, 2k], and n1, n2 ∈ [l, 2l] such that
(m1, n1), (m2, n2) ∈ T2. But it follows from (m1, n1) ∈ T2 that am1+1,k, and hence am2,k,
has type 0, while (m2, n2) ∈ T2 implies that am2,2k, and hence am1+1,2k, has type 1. Thus,
there exist two pairs of the form (n, n + 1) inside [l, 2l] such that n ∈ Ij , n + 1 ∈ Ij+1,
for some j, which cannot be true. Therefore, all (m,n) ∈ T2 ∩ rkl do belong to a strip
[k′, k′ + 1]× [l, 2l], whence using

|∆11amn| ≤ |∆01amn|+ |∆01am+1,n| = ∆01|amn|+ ∆01|am+1,n|,

which is true as long as (m,n) ∈ T2 ∩ rkl, we deduce that the sum of |∆11amn| over
(m,n) ∈ T2∩ rkl is bounded above by four times the maximal |amn| in rkl. Combining the
observations above, we arrive at

2k∑
m=k

2l∑
n=l

|∆11amn| . max
(m,n)∈rkl

|amn| . |a2k,l|,

which proves (2.29).
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Further, for any q > 0,

∞∑
m,n=1

|amn|q(mn)
q
p′−1 &

∞∑
m=1

m
q
p′−1−γq

×
∞∑
t=0

2−((m+t)2+3m+3t)q2
((m+t)2+3m+t)p′( q

p′−1)
2((m+t)2+3m+t)p′

&
∞∑
m=1

m
q
p′−1−γq

=∞,

if we set γ = 1/p′.

Note that our sequence generates the Fourier sine (or cosine) series of an odd (or even)
function f that converges in the Pringsheim sense everywhere on (0, 2π)2 to f according
to [20, L. 4]. To prove this, since the sequence fulfils (2.5), it suffices to show that the
following sum is finite

∞∑
m,n=1

|∆11amn| ≤
∑

(m,n)∈T1

∆11amn +
∑

(m,n)∈T2∪T5

(|∆01amn|+ |∆01am+1,n|)

+
∑

(m,n)∈T3∪T4

(|amn|+ |am,n+1|+ |am+1,n|+ |am+1,n+1|)

. 1 +
∑

(m,n)∈T2∪T5

(∆01amn + ∆01am+1,n) +
∞∑
m=1

m−3−γ2−m(m+1)

. 1 +
∞∑
m=1

∞∑
t=0

2−(m+t)2−3(m+t) +
∑

(m,n)∈T2

∆01am+1,n

. 1 +

∞∑
m=1

m−3−γ2−m(m−1) <∞.

Let us stick to the case of an odd f , as for cosine series the argument is exactly the same.
Denote for m,n ≥ 1,

cmn :=

{
amn, if log2 n ≥ m(m+ 1)p′,

0, otherwise,
,

and bmn := amn − cmn. Then

‖f‖Lq
w(p,q)

≤
∥∥∥ ∞∑
m,n=1

bmn sinmx sinny
∥∥∥
Lq
w(p,q)

+
∥∥∥ ∞∑
m,n=1

cmn sinmx sinny
∥∥∥
Lq
w(p,q)

.
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Note that

M∑
m=1

N∑
n=1

bmn sinmx sinny =
M∑
m=1

sinmx
(N−1∑
n=1

∆01bmnDn(y) + bmNDN (y)
)

=
M−1∑
m=1

N−1∑
n=1

∆11bmnDm(x)Dn(y) +
N−1∑
n=1

∆01bMnDM (x)Dn(y)

+
M−1∑
m=1

∆10bmNDm(x)DN (y) + bMNDM (x)DN (y)

=:
M−1∑
m=1

N−1∑
n=1

∆11bmnDm(x)Dn(y) +A1 +A2 +A3.

Since ‖Dk‖qLq
w(p,q)

�
∑k

l=1 l
q
p′−1 � k

q
p′ by Theorem A, we have for N0 := max(N −

1, d2M(M+1)p′e − 1),

‖A1‖Lq
w(p,q)

.
N0∑
n=1

M−3−γn
−1− 1

p′ (Mn)
1
p′ +M−3−γN

− 1
p′

0 (MN0)
1
p′ .M−1−γ → 0

as M →∞. For M0 := min{m : m(m+ 1)p′ ≥ N},

‖A2‖Lq
w(p,q)

.
M−1∑
m=M0

m−4−γN
− 1
p′ (mN)

1
p′ +M−3−γ

0 N
− 1
p′ (M0N)

1
p′ → 0

as N →∞. And finally,

‖A3‖Lq
w(p,q)

.M−3−γN
− 1
p′ (MN)

1
p′ → 0

as M →∞. Thus,∥∥∥ ∞∑
m,n=1

bmn sinmx sinny
∥∥∥
Lq
w(p,q)

=
∥∥∥ ∞∑
m,n=1

∆11bmnDm(x)Dn(y)
∥∥∥
Lq
w(p,q)

. (2.32)

Besides,

M∑
m=1

N∑
n=1

cmn sinmx sinny =
M∑
m=1

sinmx
(N−1∑
n=1

∆01cmnDn(y) + cmNDN (y)
)
,

where in light of the inequalities 0 < g1(n) ≤ ... ≤ gM0(n) for M0 defined as above

∥∥∥ M∑
m=1

cmN sinmxDN (y)
∥∥∥
Lq
w(p,q)

.
M0∑
m=1

|cmN |N
1
p′ ≤M0gM0(N)N

1
p′ .M−2

0 → 0

as N →∞. Hence,∥∥∥ ∞∑
m,n=1

cmn sinmx sinny
∥∥∥
Lq
w(p,q)

=
∥∥∥ ∞∑
m,n=1

∆01cmn sinmxDn(y)
∥∥∥
Lq
w(p,q)

. (2.33)
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Combining (2.32) and (2.33) we arrive at

‖f‖Lq
w(p,q)

≤
∥∥∥ ∞∑
m,n=1

∆11bmnDm(x)Dn(y)
∥∥∥
Lq
w(p,q)

+
∥∥∥ ∞∑
m,n=1

∆01cmn sinmxDn(y)
∥∥∥
Lq
w(p,q)

=: S1 + S2.

First, for nm = d2m(m+1)p′e − 1, we see that log nm � m2 and log nm+1 − log nm � m, so

S1 .
∞∑
m=1

m
1
p′
( nm−1∑

n=1

∆11(m−3−γn
− 1
p′ )n

1
p′ +

nm+1−1∑
n=nm

∆01((m+ 1)−3−γn
− 1
p′ )n

1
p′

+ (m−3−γn
− 1
p′

m )n
1
p′
m

)
.
∞∑
m=1

m
1
p′
( nm−1∑

n=1

m−4−γn−1 +

nm+1−1∑
n=nm

m−3−γn−1 +m−3−γ
)
.
∞∑
m=1

m
1
p′−2−γ

<∞.

Second, denoting nmt := d2((m+t)2+3m+t)p′e − 1, using cmn = (−1)δm |cmn| and the fact
that ∆01cmn 6= 0 only if n = nmt for t ≥ −1, we get for q ≥ p,

Sq2 =
∥∥∥ ∞∑
m=1

(−1)δm sinmx

∞∑
t=−1

∆01|cm,nmt |Dnmt(y)
∥∥∥q
Lq
w(p,q)

=

π∫
−π

|y|
q
p
−1

π∫
−π

|x|
q
p
−1
∣∣∣ ∞∑
m=1

(−1)δm sinmx
∞∑

t=−1

∆01|cm,nmt |Dnmt(y)
∣∣∣qdxdy

≤
π∫
−π

|y|
q
p
−1

π∫
−π

∣∣∣ ∞∑
m=1

(−1)δm sinmx
∞∑

t=−1

∆01|cm,nmt |Dnmt(y)
∣∣∣qdxdy. (2.34)

Recall the Khintchine inequality (see e.g. [2, Rem. 1.4]): for any real sequence {sk} ∈ l2
and the system of Rademacher functions {rn(t)}, we have

1∫
0

∣∣∣ ∞∑
k=1

skrk(t)
∣∣∣q �q ( ∞∑

k=1

s2
k

) q
2
.

Hence,

1∫
0

π∫
−π

∣∣∣ ∞∑
m=1

rm(t) sinmx

∞∑
t=−1

∆01|cm,nmt |Dnmt(y)
∣∣∣qdxdt

.

1∫
0

∣∣∣ ∞∑
m=1

rm(t)
∞∑

t=−1

∆01|cm,nmt |Dnmt(y)
∣∣∣qdt

.
( ∞∑
m=1

( ∞∑
t=−1

∣∣∣∆01|cm,nmt |Dnmt(y)
∣∣∣)2) q

2
, (2.35)
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whenever the series on the right-hand side converges. Observe that by the Minkowski

inequality and the fact that ‖Dnmt‖Lq
w(p,q)

� 2
((m+t)2+3m+t)p′ 1

p′ , we have

π∫
−π

|y|
q
p
−1
( ∞∑
m=1

( ∞∑
t=−1

∣∣∣∆01|cm,nmt |Dnmt(y)
∣∣∣)2) q

2
dy

�
∥∥∥ ∞∑
m=1

( ∞∑
t=−1

∣∣∣∆01|cm,nmt |Dnmt(y)
∣∣∣)2∥∥∥ q2

L
q/2
w(p/2,q/2)

.
( ∞∑
m=1

∥∥∥ ∞∑
t=−1

∣∣∣∆01|cm,nmt |Dnmt(y)
∣∣∣∥∥∥2

Lq
w(p,q)

) q
2

.
( ∞∑
m=1

m−2γ
(

2−m
2−3m2m(m+1) +

∞∑
t=0

2−((m+t)2+3(m+t))2((m+t)2+3m+t)
)2) q

2

.
( ∞∑
m=1

m
− 2
p′
) q

2
<∞. (2.36)

Thus, by (2.35) and (2.36), for almost all t, the sum

∞∑
m=1

rm(t) sinmx
∞∑

t=−1

∆01|cm,nmt |Dnmt(y)

converges for almost all y uniformly in x, and moreover, (2.35) and (2.36) imply that

π∫
−π

|y|
q
p
−1

π∫
−π

∣∣∣ ∞∑
m=1

rm(t) sinmx
∞∑

t=−1

∆01|cm,nmt |Dnmt(y)
∣∣∣qdxdy <∞

for almost all t (denote this set by E ⊂ (0, 1)). Taking any t0 ∈ E \ {k2−l}k,l∈N,k<2l , so

that rm(t0) = ±1 for all m, and setting {δm} according to the equality (−1)δm = rm(t0),
we obtain in light of (2.34) that S2 <∞.



Chapter 3

Cosine polynomials with
restrictions on their algebraic
representation

In this chapter, we show that for any ε > 0 one can find a trigonometric polynomial with
the l1-norm of its coefficients less than ε and with the desired first p coefficients with
respect to the basis {cos2k x}∞k=0.

Theorem 3.1. Let p, s ∈ N and (a0, a1, ..., ap−1) ∈ Rp. Then for r ≥ C1(p, s) there exist
a vector of coefficients (bs, bs+1, ..., br) ∈ Rr−s+1 and a polynomial g(x), deg g = 2r − 2p,
such that

r∑
k=s

bk cos 2kx− (cosx)2pg(cosx) ≡
p−1∑
t=0

at cos2t x (3.1)

and

r∑
k=s

|bk| <
C2(p, s)

r

p−1∑
t=0

|at|, (3.2)

where C1(p, s) := max(16p2s4p−1, 8L2p−1p3), L = 4.56..., and C2(p, s) := 216p4p+9s4p−1.

3.1 Inverse of a matrix containing coefficients of Chebyshev
polynomials

Let Tn be a square n × n-matrix whose entry tkm in the mth row and kth column is the
coefficient at xm of the kth Chebyshev polynomial Tk(x) (we enumerate rows and columns
of Tn beginning from 0). It is clear that Tn is upper triangular with nonzero entries along
the main diagonal. For tkm, an explicit formula is known (see, for instance, [43, (4.5.26)]):

tkm =

{
0, if m > k or k −m ≡ 1 (mod 2),

(−1)
k−m

2
k

k+m2m
( k+m

2
m

)
, otherwise.

Denote by Tk,l the l× l-matrix whose entry in the ith row and jth column is equal to

tk+j
i .

29
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Lemma 3.2. Let l ∈ N and let k be an even positive integer. The entry gji of the matrix
T−1k,l is equal to 0 if i+ j ≡ 1 (mod 2), otherwise there hold

g2j
2i =

(−1)α+j+ k
2 (2j)!(k + i− 1)!(k + 2i)

4ji!(α− i)!(α+ k + i)!

j∑
b=0

α∏
d=0, d 6=i

(b2 − (k2 + d)2)

j∏
d=0, d 6=b

(b2 − d2)

and

g2j+1
2i+1 =

(−1)β+j+ k
2 (2j + 1)!(k + i)!

4βi!(β − i)!(β + k + i+ 1)!

j∑
b=0

β∏
d=0, d 6=i

((2b+ 1)2 − (k + 2d+ 1)2)

j∏
d=0, d 6=b

((2b+ 1)2 − (2d+ 1)2)

,

where α := dl/2e − 1, β := bl/2c − 1.

Proof. Note that the entries of Tk,l belonging to a row and a column of different parities

are zero, i.e. gji = 0 for 2 - i + j. Fix some j, 0 ≤ j < l, and consider the jth column of
T−1k,l . Its entries must satisfy

l−1∑
i=0

gjiTk+i(x) ≡ xj + xlg(x),

where g(x) is some polynomial. Rewriting this, we get

l−1∑
i=0

gji cos(k + i)x ≡ cosj x+ cosl x g(cosx). (3.3)

We start with the case of an even j. Note that for any positive integer q we have

(cosq x)′′ = (−q sinx cosq−1 x)′ = q(q − 1) cosq−2 x− q2 cosq x.

So, after taking the pth derivative of (3.3) for p = 0, 1, ..., dl/2e − 1 =: α, in each case we
obtain at both sides polynomials in cosx. As their constant terms match, we infer that

l−1∑
i=0

(−(k + i)2)pgji t
k+i
0 = yjp,

where yjp stands for the constant term of (cosj x)(2p) (as of a polynomial in cosx). So we
have


1 1 ... 1
k2 (k + 2)2 ... (k + 2α)2

...
...

...
...

k2α (k + 2)2α ... (k + 2α)2α

diag
{
tk0, t

k+2
0 , ..., tk+2α

0

}

gj0
gj2
...

gj2α

 =


yj0
−yj1

...

(−1)αyjα

 .

(3.4)
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Let us find yjp for all p. Note that

y2α
p =

{
0, p < α,

(2α)!, p = α,
(3.5)

and that

cosj x ≡
j/2∑
t=0

η2t cos 2tx.

The coefficients η2t can be found from the following relation:

(
η0, 0, η2, 0, ..., 0, ηj

)T
= T−1j+1

(
0, 0, ..., 0, 1

)T
.

Applying equality (3.4) to the matrix T−1j+1 and taking into account (3.5), we derive


η0

η2
...
ηj

 = diag

{
1

t00
,

1

t20
, ...,

1

tj0

}
1 1 ... 1
02 22 ... j2

...
...

...
...

0j 2j ... jj


−1

0
...
0

(−1)
j
2 j!

 . (3.6)

Further,

(cosj x)(2p) ≡
j/2∑
t=0

(−4t2)pη2t cos 2tx,

whence in light of (3.6),

yjp =

j/2∑
m=0

(−4m2)pη2mt
2m
0 =

(
(−02)pt00, (−22)pt20, ..., (−j2)ptj0

)
η0

η2
...
ηj



=
(
(−02)p, (−22)p, ..., (−j2)p

)


1 1 ... 1
02 22 ... j2

...
...

...
...

0j 2j ... jj


−1

0
...
0

(−1)
j
2 j!

 . (3.7)

According to [51], the tth element of the last column of the inverse of the Vandermonde
matrix of size m with the parameters λ0, ..., λm−1 is equal to

m−1∏
l=0, l 6=t

(λt − λl)−1.
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Thus, we obtain
gj0
gj2
...

gj2α

 = (−1)
j
2 j! diag

{
1

tk0
, ...,

1

tk+2α
0

}
1 1 ... 1
k2 (k + 2)2 ... (k + 2α)2

...
...

...
...

k2α (k + 2)2α ... (k + 2α)2α


−1

×


(−02)0 (−22)0 ... (−j2)0

−(−02)1 −(−22)1 ... −(−j2)1

...
...

...
...

(−1)α(−02)α (−1)α(−22)α ... (−1)α(−j2)α





j/2∏
t=0, t 6=0

(−(2t)2)−1

j/2∏
t=0, t 6=1

(22 − (2t)2)−1

...
j/2∏

t=0, t 6=j/2
(j2 − (2t)2)−1



= (−1)
j
2 j! diag

{
1

tk0
, ...,

1

tk+2α
0

}
1 1 ... 1
k2 (k + 2)2 ... (k + 2α)2

...
...

...
...

k2α (k + 2)2α ... (k + 2α)2α


−1

00 20 ... j0

02 22 ... j2

...
...

...
...

02α 22α ... j2α



×



j/2∏
t=0, t 6=0

(−(2t)2)−1

...
j/2∏

t=0, t 6=j/2
(j2 − (2t)2)−1

 =: (−1)
j
2 j! diag

{
1

tk0
, ...,

1

tk+2α
0

}
J0



j/2∏
t=0, t 6=0

(−(2t)2)−1

...
j/2∏

t=0, t 6=j/2
(j2 − (2t)2)−1

 .

The matrix J0 is of size (α+ 1)× (j/2 + 1) and its entries are

jba =

α∏
d=0, d 6=a

((2b)2 − (k + 2d)2)

α∏
d=0, d 6=a

((k + 2a)2 − (k + 2d)2)

,

since the entry vji of the square Vandermonde matrix with the parameters k2, (k+2)2, ..., (k+
2α)2 is equal to

vji =

[ α∏
d=0, d 6=i

(x− (k + 2d)2)
]
j

α∏
d=0, d 6=i

((k + 2i)2 − (k + 2d)2)

,

where [P (x)]j stands for the coefficient at xj of the polynomial P (x). Hence, recalling
that α = dl/2e − 1, we have

gj2a =
(−1)

j
2

+a+ k
2 j!

dl/2e−1∏
d=0, d 6=a

((k + 2a)2 − (k + 2d)2)

j/2∑
b=0

dl/2e−1∏
d=0, d 6=a

((2b)2 − (k + 2d)2)

j/2∏
d=0, d 6=b

((2b)2 − (2d)2)

. (3.8)
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Turn now to the case of an odd j. Once more, taking the pth derivative of (3.3) for
p = 0, 1, ..., bl/2c − 1 =: β and obtaining the same coefficients at cosx, we get

l−1∑
i=0

(−(k + i)2)pgji t
k+i
1 = zjp,

where zjp is the coefficient at cosx of (cosj+1 x)(2p) (as of a polynomial in cosx). We have


1 1 ... 1

(k + 1)2 (k + 3)2 ... (k + 1 + 2β)2

...
...

...
...

(k + 1)2β (k + 3)2β ... (k + 1 + 2β)2β

diag (tk+1
1 , ..., tk+1+2β

1 )


gj1
gj3
...

gj2β+1

 =


zj0
−zj1

...

(−1)βzjβ

 .

(3.9)

Noting that

z2β
p =

{
0, p < β,

(2β + 1)!, p = β,
(3.10)

and that

cosj x ≡
(j−1)/2∑
t=0

η2t+1 cos(2t+ 1)x,

we derive (
0, η1, 0, η3, ..., 0, ηj

)T
= T−1j+1

(
0, 0, ..., 0, 1

)T
.

Applying (3.9) to T−1j+1 and using (3.10), we obtain


η1

η3
...
ηj

 = diag

{
1

t11
, ...,

1

tj1

}
1 1 ... 1
12 32 ... j2

...
...

...
...

1j 3j ... jj


−1

0
...
0

(−1)
j−1
2 j!

 .

Further,

(cosj x)(2p) ≡
j/2∑
t=0

(−(2t+ 1)2)pη2t+1 cos(2t+ 1)x,

whence

zjp =

j−1
2∑

m=0

(−(2m+ 1)2)pη2m+1t
2m+1
1 =

(
(−12)pt11, (−32)pt31, ..., (−j2)ptj1

)
η1

η3
...
ηj



=
(
(−12)p, (−32)p, ..., (−j2)p

)


1 1 ... 1
12 32 ... j2

...
...

...
...

1j 3j ... jj


−1

0
...
0

(−1)
j−1
2 j!

 .
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Finally, as before
gj1
gj3
...

gj2β+1

 = (−1)
j−1
2 j! diag

{
1

tk+1
1

, ...,
1

tk+1+2β
1

}

×


1 1 ... 1

(k + 1)2 (k + 3)2 ... (k + 1 + 2β)2

...
...

...
...

(k + 1)2β (k + 3)2β ... (k + 1 + 2β)2β


−1

×


1 1 ... 1
12 32 ... j2

...
...

...
...

12β 32β ... j2β





(j−1)/2∏
t=0, t 6=0

(12 − (2t+ 1)2)−1

(j−1)/2∏
t=0, t 6=1

(32 − (2t+ 1)2)−1

...
(j−1)/2∏

t=0, t 6=(j−1)/2

(j2 − (2t+ 1)2)−1



=: (−1)
j−1
2 j! diag

{
1

tk+1
1

, ...,
1

tk+1+2β
1

}
J1



(j−1)/2∏
t=0, t 6=0

(12 − (2t+ 1)2)−1

...
(j−1)/2∏

t=0, t 6=(j−1)/2

(j2 − (2t+ 1)2)−1

 .

The matrix J1 is of size (β + 1)× ((j − 1)/2 + 1) and its entries are

jba =

β∏
d=0, d 6=a

((2b+ 1)2 − (k + 2d+ 1)2)

β∏
d=0, d 6=a

((k + 2a+ 1)2 − (k + 2d+ 1)2)

.

Hence,

gj2a+1 =
(−1)

j−1
2

+a+ k
2 j!

(k + 2a+ 1)
bl/2c−1∏
d=0, d 6=a

((k + 2a+ 1)2 − (k + 2d+ 1)2)

×
(j−1)/2∑
b=0

bl/2c−1∏
d=0, d 6=a

((2b+ 1)2 − (k + 2d+ 1)2)

(j−1)/2∏
d=0, d 6=b

((2b+ 1)2 − (2d+ 1)2)

, (3.11)

and the claim follows.
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Remark 3.3. Following the ideas of the proof of Lemma 3.2, one can establish an explicit
formula for the elements of the inverse of any submatrix Tk,l,m := (tk+j

m+i)
l−1
i,j=0 of Tn with

even k and m.

Remark 3.4. For any n ∈ N, the entry hji of the matrix T−1n is zero if 2 - i+ j or i > j,
otherwise can be found by

h2j
2i = 2δi−2j

(
2j

j − i

)
, h2j+1

2i+1 = 2δi−2j

(
2j + 1

j − i

)
,

where

δi :=

{
0, if i = 0,

1, if i 6= 0.

Proof. Noting that, for b 6= a,

dn/2e−1∏
d=0, d 6=a

((2b)2 − (2d)2) = 0,

we obtain h2j
2i = 0, for i > j, and otherwise due to (3.8),

h2j
0 =

(2j)!

((2j)!!)2
= 2−2j

(
2j

j

)
,

and

h2j
2i =

(−1)j+i(2j)!
dn/2e−1∏
d=0, d 6=i

((2i)2 − (2d)2)

dn/2e−1∏
d=0, d 6=i

((2i)2 − (2d)2)

j∏
d=0, d 6=i

((2i)2 − (2d)2)

=
(−1)j+i(2j)!

(2i)!!(−1)j−i(2j − 2i)!! (2j+2i)!!
(2i−2)!!4i

=
21−2j(2j)!

(j − i)!(j + i)!
= 21−2j

(
2j

j − i

)
,

if i > 0.
For odd entries, once more we get h2j+1

2i+1 = 0 for i > j, otherwise from (3.11),

h2j+1
1 =

(2j + 1)!

(2j + 2)!!(2j)!!
= 2−2j

(
2j + 1

j

)
,

and

hj2i+1 =
(−1)j+i(2j + 1)!(−1)j−i(2i)!!(4i+ 2)

(2i+ 1)(2i)!!(2j − 2i)!!(2i+ 2j + 2)!!
= 21−2j

(
2j + 1

j − i

)
,

if i > 0, so the proof is complete.

Corollary 3.5. There holds

(cos2j)(2p)|x=π/2 =: y2j
p = (−4)p−j

2j∑
k=0

(−1)k
(

2j

k

)
(j − k)2p.
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Proof. It follows from (3.7) that

y2j
p = (−1)j(2j)!

(
(−02)p, (−22)p, ..., (−(2j)2)p

)


j∏
t=0, t 6=0

(−(2t)2)−1

j∏
t=0, t 6=1

(22 − (2t)2)−1

...
j∏

t=0, t 6=j
((2j)2 − (2t)2)−1


= (−1)p+j(2j)!

j∑
a=0

(2a)2p

j∏
t=0, t 6=a

((2a)2 − (2t)2)

= (−4)p2−2j
j∑

a=0

(−1)a
(

2j

j − a

)
a2p2δa

= (−4)p−j
2j∑
k=0

(−1)k
(

2j

k

)
(j − k)2p,

where δa is as in Remark 3.4, and we are done.

3.2 Proof of Theorem 3.1

Now we are ready to prove the main theorem.

Proof of Theorem 3.1. For the sake of clarity, let us split the proof into three main parts.

3.2.1 Finding a sufficient condition for (3.1) to hold

First we note that (3.1) is equivalent to


t2s0 t2s+2

0 ... t2r0
t2s2 t2s+2

2 ... t2r2
...

...
...

...

t2s2p−2 t2s+2
2p−2 ... t2r2p−2




bs
bs+1

...
br

 =


a0

a1
...

ap−1

 .

Pick some k ∈ {s, s+ 1, ..., r} and take the (2q)th derivative of the equality

cos 2kx ≡
k∑
l=0

t2k2l cos2l x,

where q ∈ {0, 1, ..., p− 1}, at the point π/2. What we get is

(−1)q(2k)2qt2k0 =

k∑
l=0

t2k2l (cos2l x)(2q)|x=π/2,
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which is equivalent to

(−1)q+k(2k)2q =

k∑
l=0

t2k2l y
2l
q .

From the relations above for all k and q in the mentioned ranges, we derive


y0

0 y2
0 ... y2p−2

0

y0
1 y2

1 ... y2p−2
1

...
...

...
...

y0
p−1 y2

p−1 ... y2p−2
p−1




t2s0 t2s+2
0 ... t2r0

t2s2 t2s+2
2 ... t2r2

...
...

...
...

t2s2p−2 t2s+2
2p−2 ... t2r2p−2



= Np


(2s)0 (2s+ 2)0 ... (2r)0

(2s)2 (2s+ 2)2 ... (2r)2

...
...

...
...

(2s)2p−2 (2s+ 2)2p−2 ... (2r)2p−2

Nr−s+1,

where Nj is a square diagonal matrix of size j with its entries belonging to the even
columns equal 1, while the entries belonging to the odd ones, equal −1. Thus,


t2s0 t2s+2

0 ... t2r0
t2s2 t2s+2

2 ... t2r2
...

...
...

...

t2s2p−2 t2s+2
2p−2 ... t2r2p−2

 =


y0

0 y2
0 ... y2p−2

0
y01
4

y21
4 ...

y2p−2
1
4

...
...

...
...

y0p−1

22p−2

y2p−1

22p−2 ...
y2p−2
p−1

22p−2


−1

×Np


s0 (s+ 1)0 ... r0

s2 (s+ 1)2 ... r2

...
...

...
...

s2p−2 (s+ 1)2p−2 ... r2p−2

Nr−s+1. (3.12)

Let Y be a square matrix of size 2p such that the matrix generated by the odd rows
and the odd columns of Y (as before, we start enumerating from zero) is the identity
matrix, an entry belonging to the (2u)th column and (2k)th row is equal to 2−2ky2u

k , the
other entries are zeros. Then Y is invertible due to invertibility of the identity matrix
and that of the matrix (2−2iy2j

i )p−1
i,j=0. Therefore, it follows from (3.12) that there exist

τ2j
2i+1, i = 0, ..., p− 1, j = s, s+ 1, ..., r, such that

T :=



t2s0 t2s+2
0 ... t2r0

τ2s
1 τ2s+2

1 ... τ2r
1

t2s2 t2s+2
2 ... t2r2

τ2s
3 τ2s+2

3 ... τ2r
3

...
...

...
...

t2s2p−2 t2s+2
2p−2 ... t2r2p−2

τ2s
2p−1 τ2s+2

2p−1 ... τ2r
2p−1


= Y −1Ñp



s0 (s+ 1)0 ... r0

s1 (s+ 1)1 ... r1

s2 (s+ 1)2 ... r2

s3 (s+ 1)3 ... r3

...
...

...
...

s2p−2 (s+ 1)2p−2 ... r2p−2

s2p−1 (s+ 1)2p−1 ... r2p−1


Nr−s−1

=: Y −1ÑpV Nr−s+1. (3.13)
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Here Ñj stands for a square matrix of size 2j having Nj in the intersection of the even
columns and the even rows, Ej in the intersection of the odd columns and the odd rows,
and the other entries equal zero.

Note that if we make b := (bs, ..., br)
T satisfy the equality

Tb = a,

where a := (a0, 0, a1, 0, ..., ap−1, 0)T , then condition (3.1) will be fulfilled.

3.2.2 Constructing a vector of coefficients

Let

b := T ∗(TT ∗)−1a.

Since using (3.13) we have

T † := (TT ∗)−1T = (Y −1ÑpV Nr−s+1N
∗
r−s+1V

∗Ñ∗p (Y −1)∗)−1Y −1ÑpV Nr−s+1

= Y ∗Ñp(V V
∗)−1V Nr−s+1,

the definition of b is equivalent to

(
bs, ..., br

)
=
(
a0, 0, ..., ap−1, 0

)
Y ∗Ñp(V V

∗)−1V Nr−s+1

=:
(
a0, 0, ..., ap−1, 0

)
Y ∗ÑpV

†Nr−s+1, (3.14)

where V † is the pseudoinverse for the Vandermonde matrix V . Note that

V V ∗ = WW ∗ − ZZ∗,

where W = (wji ), w
j
i := (j + 1)i, j = 0, ..., r − 1, i = 0, ..., 2p − 1, Z = (zji ), z

j
i :=

(j + 1)i, j = 0, ..., s− 2, i = 0, ..., 2p− 1. According to [29, (10)], the condition number of
WW ∗ is

κ̂ =
(2p)2

4p− 1
r4p−2.

The maximal entry of WW ∗ is greater than r4p−1/(4p− 1), therefore the l2-norm of this
matrix exceeds this value. Thus, ‖(WW ∗)−1‖2 < κ̂(4p − 1)/r4p−1 < 8p2/r. In turn,
‖ZZ∗‖2 < (s − 1)4p−1, which yields ‖(WW ∗)−1‖2‖ZZ∗‖2 ≤ 8p2s4p−1/r ≤ 0.5. So, we
have the following representation

(V V ∗)−1 = (WW ∗ − ZZ∗)−1 =
∞∑
k=0

((WW ∗)−1ZZ∗)k(WW ∗)−1 =: (E2p +X)(WW ∗)−1,

(3.15)

where E2p is the identity matrix of size 2p and

‖X‖2 <
8p2s4p−1

r − 8p2s4p−1
. (3.16)
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Due to [29, relation before Prop. 3], for entries of W † = (WW ∗)−1W we have (taking into
account that we enumerate from zero)

(W †)q,k = (−1)q
2p−1∑
w=q

1

w!
s(w + 1, q + 1)

2p−1∑
t=w

(
t+w
w

)(
r−w−1
r−t−1

)(
2t
t

)(
r+t
2t+1

)
×

min(t,k)∑
j=0

(−1)j+1

(
k

j

)(
j + t

j

)(
r − j − 1

r − t− 1

)
, (3.17)

where s(w + 1, q + 1) is the Stirling number of the first kind. Further, we have from
Corollary 3.5

y2u
q = (−4)q−u

2u∑
v=0

(−1)v
(

2u

v

)
(u− v)2q, (3.18)

hence, there holds

(Y ∗ÑpW
†)2u,k = (−4)−u

2u∑
v=0

(−1)v
(

2u

v

) 2p−1∑
w=0

1

w!

bw/2c∑
q=0

(−1)q(u− v)2qs(w + 1, 2q + 1)

×
2p−1∑
t=w

(
t+w
w

)(
r−w−1
r−t−1

)(
2t
t

)(
r+t
2t+1

) min(t,k)∑
j=0

(−1)j+1

(
k

j

)(
j + t

j

)(
r − j − 1

r − t− 1

)
. (3.19)

3.2.3 Estimating T †

First, by the definition of Stirling numbers, s(w + 1, 2q + 1) is the coefficient at x2q+1 of
the polynomial x(x+ 1)...(x+ w), which is the same as to be the coefficient at x2q of the
polynomial (x+ 1)...(x+ w). Thus,

bw/2c∑
q=0

s(w + 1, 2q + 1)(−1)q(u− v)2q = Re(i(u− v) + 1)...(i(u− v) + w)

<
(|u− v|+ w)!

|u− v|!
. (3.20)

To obtain upper bounds for the sum

A(t, k, r) :=

min(k,t)∑
j=0

(−1)j
(
k

j

)(
j + t

j

)(
r − j − 1

r − t− 1

)
that appears in (3.19), we need the following

Lemma 3.6. Let t, q, k, r ∈ N be such that q ≥ t ≥ 2.
a) If r ≥ q + 2q2 and r − q − 1 ≥ k ≥ q, then

|A(t, k, r)| =

∣∣∣∣∣∣
min(k,t)∑
j=0

(−1)j
(
k

j

)(
j + t

j

)(
r − j − 1

r − t− 1

)∣∣∣∣∣∣
≤ 4

(
q

r − 1− q

)q−t(r − 1

t

)
. (3.21)
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b) If r ≥ 2t3 + t and k < t, then

|A(t, k, r)| <
(
r − 1

t

)
. (3.22)

c) If r ≥ 2Ltt1.5, where L := (
√

2 + 1)
1+ 1√

2 (
√

2− 1)
−1+ 1√

2 2
− 1

2
√
2 , and t ≤ k ≤ r − 1, then

|A(t, k, r)| < 3

(
r − 1

t

)
. (3.23)

Proof. a) We begin with estimate (3.21) and the proof will be divided into several steps.
Step 1. Algebraic representation of A(t, k, r). It turns out that the sum of prod-

ucts of binomial coefficients A(t, k, r) has the following algebraic meaning: it represents
the coefficient at xtyk of the Taylor expansion at zero of the function

G(x, y) :=
(1 + y)k

(1 + xy)t+1(1− x)r−t
.

Indeed,(
r − j − 1

r − t− 1

)
=

(
r − j − 1

t− j

)
=

(r − j − 1)(r − j − 2)...(r − t)
(t− j)!

= (−1)t−j
(−(r − t))(−(r − t+ 1))...(−(r − j − 1))

(t− j)!
= (−1)t−j

(
−r + t

t− j

)
,

so we have for k ≥ q ≥ t

A(t, k, r) =

min(k,t)∑
j=0

(−1)j
(
k

j

)(
j + t

j

)(
r − j − 1

r − t− 1

)

=

min(k,t)∑
j=0

(
k

j

)(
−t− 1

j

)
(−1)t−j

(
−r + t

t− j

)
,

which corresponds to the mentioned coefficient.
Take some ε ∈ (0, 1) and let δ = t/r. By Cauchy’s formulas,

A(t, k, r) =
1

(2πi)2

∫
|y|=ε

∫
|x|=ε

G(x, y)x−t−1y−k−1dx dy =
1

(2πi)2

∫
|y|=ε

(1 + y)k

yk+1

×

 ∫
|x|=εδ−1

1

(1 + xy)t+1(1− x)r−txt+1
dx − 2πi resx=1

1

(1 + xy)t+1(1− x)r−txt+1

 dy

=: S1 + S2.

Step 2. Estimating S2. We have

resx=1
1

(1 + xy)t+1(1− x)r−txt+1
=

(−1)r−t

(r − t− 1)!

(
1

(1 + xy)t+1xt+1

)(r−t−1) ∣∣∣∣
x=1

=
(−1)r−t

(r − t− 1)!

r−t−1∑
l=0

(
1

xt+1

)(l)( 1

(1 + xy)t+1

)(r−t−1−l) ∣∣∣∣
x=1

=
−1

(r − t− 1)!

r−t−1∑
l=0

(t+ l)!

t!

(r − l − 1)!

t!

yr−t−1−l

(1 + y)r−l
,
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hence, S2 is the coefficient at y0 of the Laurent expansion of the function

(1 + y)k

yk
−1

(r − t− 1)!

r−t−1∑
l=0

(t+ l)!

t!

(r − l − 1)!

t!

yr−t−1−l

(1 + y)r−l

=
−1

(r − t− 1)!(t!)2

r−t−1∑
l=0

(t+ l)!(r − l − 1)!yr−t−1−l−k
∞∑
j=0

(
−r + l + k

j

)
yj .

Note that for l satisfying r − t − 1 − l − k > 0, the coefficient of the corresponding term
at y0 is zero, therefore it suffices to consider just l ≥ r − t − 1 − k. At the same time,
if −r + l + k ≥ 0, then −(r − t − 1 − l − k) = −r + t + 1 + l + k > −r + l + k, so( −r+l+k
−(r−t−1−l−k)

)
= 0, which means that for l ≥ r−k the corresponding term is zero. Hence,

S2 =
−1

(r − t− 1)!(t!)2

r−k−1∑
l=r−t−1−k

(t+ l)!(r − l − 1)!

(
−r + l + k

−r + t+ 1 + l + k

)

= −
r−k−1∑

l=r−t−1−k
(−1)r−t−1−l−k (t+ l)!(r − l − 1)!(r − l − k − 1− r + t+ 1 + l + k)!

(r − t− 1)!(t!)2(−r + t+ 1 + l + k)!(r − l − k − 1)!

= −
t∑

m=0

(−1)m
(r − 1− k +m)!(t+ k −m)!

(r − t− 1)!t!m!(t−m)!
=: −

t∑
m=0

(−1)mDm(r, t, k).

Step 2.1. Estimating Dm. Note that

Dm(r, t, k + 1)

Dm(r, t, k)
=
t+ k + 1−m
r − 1− k +m

,

and since q < r−t
2 − 1 +m < r − q − 1, the maximum of the above expression is attained

either at k = q or at k = r − 1− q.
For k = q, we have

Dm+1(r, t, q)

Dm(r, t, q)
=

(r − q +m)(t−m)

(m+ 1)(t+ q −m)
=
rt− qt+mt− rm+ qm−m2

mt+ t+ qm+ q −m2 −m
> 1,

since

rt− qt− rm ≥ r − qt ≥ t+ q ≥ t+ q −m.

Thus, Dm(r, t, q) is maximal at m = t and

Dt(r, t, q) =
(r − 1− q + t)!q!

(r − t− 1)!(t!)2
≤
(

q

r − 1− q

)q−t(r − 1

t

)
.

For k = r − 1− q, we have

Dm+1(r, t, r − 1− q)
Dm(r, t, r − 1− q)

=
(q +m+ 1)(t−m)

(m+ 1)(r − 1 + t− q −m)

=
qt+mt+ t− qm−m2 −m

rm+ r − 2m− 1 + tm+ t− qm− q −m2
< 1,
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in light of

rm+ r −m− 1 + t− q ≥ r − 1− q ≥ qt+ t.

Thus, Dm(r, t, r − 1− q) is maximal at m = 0 and

D0(r, t, r − 1− q) =
q!(r − 1 + t− q)!
(r − t− 1)!(t!)2

≤
(

q

r − 1− q

)q−t(r − 1

t

)
.

Finally,

|S2| ≤ 4

(
q

r − 1− q

)q−t(r − 1

t

)
.

Step 3. Estimating S1. Observe that for small enough ε and |y| = ε, |x| = εδ−1,
the function |G(x, y)x−t−1y−k−1| is equivalent to

ε−(δ−1)(r−t)ε−k−1ε−(δ−1)(t+1),

then

|S1| . εεδ−1ε−(δ−1)(r−t)−k−1−(δ−1)(t+1) = εr−t−k ≤ εq+1−t →
ε→0

0,

whence we get (3.21).

b) Turn now to (3.22) for r ≥ 2t3 + t and k < t. We have

A(t, k, r) =

min(k,t)∑
j=0

(−1)j
k!

j!(k − j)!
(j + t)!

j!t!

(r − j − 1)!

(t− j)!(r − t− 1)!

=
(r − 1)!

t!(r − t− 1)!

t∑
j=0

(−1)j
(
t

j

)(
t+ j

j

)
k(k − 1)...(k − j + 1)

(r − 1)(r − 2)...(r − j)
.

For all j, there holds(
t

j

)(
t+ j

j

)
k(k − 1)...(k − j + 1)

(r − 1)(r − 2)...(r − j)
< tj(2t)j

tj

(r − t)j
≤ 1,

since r ≥ 2t3 + t. Note that the expression above decreases. Indeed, going from j to j + 1
we get our value changed by

(j + t+ 1)(k − j)(t− j)
(r − j − 1)(j + 1)2

<
2t · t2

r − t
≤ 1.

Therefore, we derive

A(t, k, r) <

(
r − 1

t

)
.
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c) Now we have only to prove (3.23) under the mentioned conditions. Divide our sum
into two sums in the following way:

A(t, k, r) =

(
r − 1

t

) t∑
j=0

(−1)j
(
t

j

)(
t+ j

j

)(k + 1

r

)j
+

(
r − 1

t

) t∑
j=1

(−1)j
(
t

j

)(
t+ j

j

)(
k...(k − j + 1)

(r − 1)...(r − j)
−
(k + 1

r

)j)

=:

(
r − 1

t

)
(S3 + S4).

Step 1. Estimating S3. Since(
t+ j

j

)
=

(t+ j)(t+ j − 1)...(t+ 1)

j!
= (−1)j

(−t− 1)(−t− 2)...(−t− j)
j!

= (−1)j
(
−t− 1

j

)
,

we have

S3 =

t∑
j=0

(
t

t− g

)(
−t− 1

j

)(k + 1

r

)j
=

1

t!

(
(1 + x)t

(
1 +

(k + 1

r

)
x
)−t−1)(t)∣∣

x=0
.

To estimate this value, we will need the following

Lemma 3.7. For any positive integer n and any γ ∈ (0, 1), there holds

|cγn| :=
1

n!

∣∣∣((1 + x)n(1 + γx)−n−1
)(n)∣∣∣

x=0

∣∣∣ ≤ 2

and |c0
n| = |c1

n| = 1.

Proof. Fix some n ∈ N. We have

h(x) := (1 + x)n(1 + γx)−n−1 =

(
1

γ
+

1− 1
γ

1 + γx

)n
1

1 + γx

=

n∑
g=0

(
n

g

)(
1

γ

)g (
1− 1

γ

)n−g
(1 + γx)n−g+1

,

whence

1

n!
h(n)(x) =

1

n!

n∑
g=0

(
n

g

)(1− 1
γ

)n−g
γg

(−1)nγn

(1 + γx)2n−g+1

(2n− g)!

(n− g)!
.
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Making the change of variable r = n− g, we obtain

1

n!
h(n)(0) =

(−1)n

n!

n∑
r=0

(γ − 1)r
(

n

n− r

)
(n+ r)!

r!

= (−1)n
n∑
r=0

(1− γ)r(−1)r
(n+ r)!

(n− r)!(r!)2

= (−1)n
n∑
r=0

(1− γ)r(−1)r
(
n+ r

r

)(
n

n− r

)

= (−1)n
n∑
r=0

(1− γ)r
(
−n− 1

r

)(
n

n− r

)
= (−1)n

1

n!

(
(1 + x)n(1 + (1− γ)x)−n−1

)(n)∣∣∣
x=0

.

Hence, cγn = (−1)nc1−γ
n . Therefore, it is enough to prove the claim only for γ ∈ (0, 1/2],

and separately, for γ = 0.

Let γ ∈ (0, 1/2]. Note that the function h(x) := (1+x)n(1+γx)−n−1 is analytic inside
the circle of radius 1/

√
γ. Let x = (a+ bi)/

√
γ, a2 + b2 = 1, then

∣∣∣∣ 1 + x

1 + γx

∣∣∣∣2 =
1 + a2

γ + 2a√
γ + b2

γ

1 + γa2 + 2
√
γa+ γb2

=
1

γ
.

Thus, the maximum of the function h(x) on the circle |x| = 1/
√
γ cannot exceed γ−n/2/(1−

γ) and due to Cauchy’s inequalities,

|cγn| ≤ (1/
√
γ)−nγ−n/2/(1− γ) = (1− γ)−1 ≤ 2.

For γ = 0, we have h(x) = (1 + x)n =
∑n

k=0

(
n
k

)
xk, whence cn = 1.

Thus, Lemma 3.7 gives

|S3| ≤ 2. (3.24)

Step 2. Estimating S4. For any j = 1, ..., t, there holds

0 <
(k + 1

r

)j
− k...(k − j)

(r − 1)...(r − j)
<
(k + 1

r

)j
−
(k + 1− t

r

)j
<
j(k + 1)j−1

rj
≤ 1

r
. (3.25)

By Stirling’s formula,

(
t

j

)(
t+ j

j

)
=

(t+ j)!

(t− j)!(j!)2
<
√
t+ j

(t+ j)t+j

(t− j)t−jj2j
≤

√
t+

t√
2

 (
1 + 1√

2

)1+ 1√
2(

1− 1√
2

)1− 1√
2 2
− 1

2
√
2

t

=

√
t+

t√
2
Lt. (3.26)
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Combining (3.25) and (3.26), we get

|S4| ≤ t ·

√
t+

t√
2
Lt · 1

r
< 2Lt

t1.5

r
< 1

for r ≥ 2Ltt1.5, which along with (3.24) gives us relation (3.23).

Let us turn back to the entries of the matrix T †. In view of (3.20), we derive from
(3.19) and Lemma 3.6

|(Y ∗ÑpW
†)2u,k| < 2 · 4−u

u∑
v=0

(
2u

u− v

) 2p−1∑
w=0

(v + w)!

v!w!

2p−1∑
t=w

(
t+w
w

)(
r−w−1
r−t−1

)(
2t
t

)(
r+t
2t+1

) 4

(
r − 1

t

)
τ(k)

= 8(r − 1)!

u∑
v=0

2p−1∑
w=0

2p−1∑
t=w

(u!)2(v + w)!(t+ w)!(r − w − 1)!(2t+ 1)

(u− v)!(u+ v)!v!(w!)2(r − t− 1)!(t− w)!(r + t)!
τ(k),

where

τ(k) =


1, if k ≤ 2p− 1 or k ≥ r − 2p,

r
−q+2p−1

2 , if k = q or k = r − 1− q, 2p− 1 ≤ q ≤
√
r

2 ,

r
−
√
r/2+2p−1

2 , if
√
r

2 < k < r − 1−
√
r

2 .

Going from w − 1 to w, the corresponding product changes by

(v + w)(t+ w)(t− w + 1)

(r − w)w2
<

(4p)3

r − 2p
< 1,

hence, the maximum is attained at w = 0. So,

|(Y ∗ÑpW
†)2u,k| < 8(r − 1)! 2p

u∑
v=0

2p−1∑
t=0

(u!)2(r − 1)!(2t+ 1)

(u− v)!(u+ v)!(r − t− 1)!(r + t)!
τ(k)

< 16p · 4p · (u+ 1)

2p−1∑
t=0

((r − 1)!)2

(r − t− 1)!(r + t)!
τ(k)

< 16p · 4p · p · 2p1

r
τ(k) =

128p4τ(k)

r
.

Similarly, from (3.17) we have

|(W †)qk| ≤
2p−1∑
w=q

(w + 1)

2p−1∑
t=w

(
t+w
w

)(
r−w−1
r−t−1

)(
2t
t

)(
r+t
2t+1

) 4

(
r − 1

t

)
τ(k)

=

2p−1∑
w=q

(w + 1)(r − 1)!

2p−1∑
t=w

(t+ w)!(r − w − 1)!(2t+ 1)

w!(r − t− 1)!(t− w)!(r + t)!
τ(k).

Here going from w−1 to w our term changes by (t+w)(t−w+1)/w(r−w) < 2(2p)2/(r−
2p) < 1, so,

|(W †)qk| ≤ 2p · 2p · 4p
2p−1∑
t=0

((r − 1)!)2

(r − t− 1)!(r + t)!
τ(k) <

32p4τ(k)

r
. (3.27)
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Since an entry of Y ∗ does not exceed in absolute value 2p ·p4p−2 (see (3.18)), then an entry
of Y ∗ÑpX is less than or equal in absolute value to 2p · 2p4p−1 · 8p2s4p−1/(r − 8p2s4p−1)
(here we used estimate (3.16)). So an entry of Y ∗ÑpXW

† does not exceed

2p · 32p4p+2 8p2s4p−1

r − 8p2s4p−1
· 32p4

r
.

Thus, for r − 1 ≥ k > s− 1, according to (3.15) we have

|(Y ∗ÑpV
†)2u,k−s| = |(Y ∗Ñp(E +X)W †)2u,k| ≤ |(Y ∗ÑpW

†)2u,k|+ |(Y ∗ÑpXW
†)uk|

<
27p4τ(k)

r
+

215p4p+9s4p−1

(r − 8p2s4p−1)r
. (3.28)

For r − 1 ≥ k > s− 1 and an odd u, due to (3.27)

|(Y ∗ÑpV
†)u,k−s| ≤ max

i
|(V †)i,k−s| ≤ 2 max

i
|(W †)ik| < 2

32p4τ(k)

r
. (3.29)

From (3.28) and (3.29) we finally get

‖Y ∗ÑpV
†‖∞ ≤ r ·

215p4p+9s4p−1

(r − 8p2s4p−1)r

+
27p4

r

( 2p−1∑
k=0

+
r−1∑

k=r−2p

+

b
√
r/2c∑

k=2p

+

r−2p−1∑
k=r−1−b

√
r/2c

+

r−b
√
r/2c−2∑

k=b
√
r/2c+1

)
τ(k)

<
215p4p+9s4p−1

r − 8p2s4p−1
+

27p4

r
(2p+ 2p+ 1 + 1 + r · r−

√
r
4

+p− 1
2 )

<
216p4p+9s4p−1

r
,

whence in light of (3.14) condition (3.2) follows, and the needed is proved.
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Number of lower sets with fixed
cardinality

For a given d, we call a set S ⊂ Zd+ a lower set (or a downward closed set) if for any
x = (x1, ..., xd) ∈ Zd+ the condition x ∈ S implies x′ = (x′1, ..., x

′
d) ∈ S for all x′ ∈ Zd+ with

x′i ≤ xi, 1 ≤ i ≤ d. By pd(n) we denote the number of lower sets in Zd+ containing exactly
n points.

There is a one-to-one correspondence between d-dimensional lower sets of cardinality
n and (d− 1)-dimensional partitions of n, that is, representations of the form

n =
∞∑
i1=1

∞∑
i2=1

...
∞∑

id−1=1

ni1i2...id−1
, ni1i2...id−1

∈ Z+,

where ni1i2...id−1
≥ nj1j2...jd−1

if jk ≥ ik for all k = 1, 2, ..., d − 1. Thus, lower sets rep-
resent a geometric interpretation of multidimensional integer partitions. In particular,
two-dimensional lower sets with n elements visualize integer partitions of the number n,
i.e. its representations as a sum n = n1 + n2 + ...nk, n1 ≥ n2 ≥ ... ≥ nk via the so-called
Young diagrams, which consist of n cells placed in k rows and n1 columns so that the ith
row contains ni cells and the first cell in each row belongs to the first column.

4.1 History of the problem

4.1.1 Small dimensional lower sets

The history begins with finding the number p2(n) of integer partitions of a positive integer
n, i.e. of representations of n as a sum of nonincreasing positive integers, and evidently
goes back to Leibniz [47]. However, the first significant results in the partition theory were
obtained much later by Euler [30]. Another way to understand p2(n) is considering the
following generating function [50, Vol. 2, p. 1]

∞∏
k=1

(1− xk)−1 =

∞∑
n=0

p2(n)xn,

47
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where we assume pd(0) = 1 for any d. In 1917, Hardy and Ramanujan revealed the
asymptotic behaviour of the function p2(n) (see [39, (3)] or [40, (1.4)]):

p2(n) ∼ e

√
2n
3
π

4
√

3n
.

Later, Rademacher [65, (1.8)] found an expansion of p2(n) as a convergent series.
In the case d = 3, for the so-called plane partitions, the generating function was given

by MacMahon [49]:

∞∏
k=1

(1− xk)−k =

∞∑
n=0

p3(n)xn

(see [14] for a simpler proof). The asymptotics of p3(n) was obtained by Wright [75,
(2.21)], namely,

p3(n) ∼ (2ζ(3))
7
36 eζ

′(−1)

√
2πn

25
36

e3(ζ(3))
1
3 2−

2
3 n

2
3 ,

where

ζ ′(−1) = 2

∞∫
0

y log y

e2πy − 1
dy ≈ −0.165421.

For the cases d > 3, no generating functions are known so far, although MacMahon
conjectured that the function

∞∏
k=1

(1− xk)−(d+n−2
n−1 ) (4.1)

should generate pd(n) for every d, but this turned out to be wrong. On the other hand,
some relations between the numbers pd(n) and the so-called MacMahon’s numbers gener-
ated by (4.1), as well as some numerical values of pd(n), can be found in [3]. Besides, it was
conjectured in [55] that MacMahon’s numbers give the asymptotics of log pd(n)/n1−1/d for
solid partitions, i.e. for d = 4, and the hyposesis was accompanied by the exact values of
p4(n), n ≤ 50, and Monte Carlo simulations (see also [5] for related numerical results in
higher dimensions). However, the computations in [17] make this conjecture unlikely to
be true for d = 4.

It is worth mentioning that an effective method for evaluating p4(n) is suggested in
[44]. Moreover, there is an algorithm that enables one to compute numbers of partitions
for n ≤ 26 in any dimension (see [35]).

Importantly, the partition theory has many applications in physics, as there are a lot of
physical structures resembling that of multidimensional integer partitions. In particular,
integer partitions are used to estimate the energy levels for a heavy nucleus [10] and to
study the shape of crystal growth [67]. Another direction of research is based on the
existence of a one-to-one correspondence between partitions of an integer and microstates
of a gas particles stored in a harmonic oscillator, not only in two-dimensional case [4, 72]
but also in multidimensional setting [56].
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Furthermore, the spaces of polynomials associated with lower sets have recently turned
out to be a powerful tool in multivariate approximation (see [11, 15, 16] and references
therein).

In the problem of estimating pd(n), the important relation

C1(d) ≤ log pd(n)

n1− 1
d

≤ C2(d) (4.2)

was established by Bhatia, Prasad and Arora [9, (12), (16)], however the exact dependence
of the constants on d remained an open problem. Explicit values of C1 and C2 have recently
been suggested in [16, Th. 1.5], according to which (4.2) holds with

C1(d) = 0.9
d

(d!)
1
d

log 2, C2(d) = π

√
2

3
dlog d, (4.3)

where the upper bound holds for any n ∈ N and the lower bound is valid for n > 55d. Note
that in this case C1(d) is uniformly bounded from below since Stirling’s formula gives

d! <
√

2πd
(d
e

)d
e

1
12d

for all d ≥ 1, and consequently, we have for d ≥ 3,

C1(d) ≥ 0.9e log 2

(2πde
1
6d )

1
2d

≥ 0.9e log 2

(6πe
1
18 )

1
6

> 1.

So, for n > 55d, we have log pd(n) > n1−1/d (see [40, Sec. 2] for the case d = 2).

4.1.2 High dimensional lower sets

If we do not restrict ourselves to the case of a fixed (or relatively small) dimension d
and assume that d grows somehow significantly along with n, then the general structure
of lower sets changes, and the two-sided estimates in Theorem 4.1 are no longer true.
Besides, estimate (4.2) with C1 and C2 from (4.3) becomes quite rough if we just allow d
to be of order log n. Somewhat better bounds for this setting were obtained in [15, (24),
(31)]:

pd(n) ≤ 2dn and pd(n) ≤ dn−1(n− 1)!

for any positive integers d and n. The latter inequality was strengthened and comple-
mented by a lower bound in [16, Th. 1.4](

d+ n− 2

n− 1

)
≤ pd(n) ≤ dn−1.

Note that
(
d+n−2
n−1

)
> dn−1/(n− 1)!



4.2. New bounds 50

4.2 New bounds

We show that if the dimension d is sufficiently small with respect to n, then C2 in (4.2) is
also independent of d.

Theorem 4.1. For any d ≥ 2 and any n ≥ (30d)2d2, there holds

1 <
log pd(n)

n1− 1
d

< 7200.

If n satisfies the weaker condition n ≥ d12d log d, then

1 <
log pd(n)

n1− 1
d

< d2.

The case of high dimensional lower sets is treated in the following theorem, which gives
asymptotics of log pd(n) for different orders of growth of d provided that d & n/ logγ n for
some γ.

Theorem 4.2. (a) If d > n3/2, then

1 ≤ pd(n)(
d+n−2
d−1

) < 1

1− n3

2d

.

(b) If dn−2 →∞ as n→∞, then

log pd(n) = (n− 1)(log d− log n+ 1) + o(n).

(c) If d satisfies cn2 ≤ d ≤ Cn2 for some constants c and C, then

log pd(n) = n log n+O(n).

(d) If dn−2 → 0 and log d ≥ log n+ o(log n) as n→∞, then

log pd(n) = n log n+ o(n log n).

In particular, combining the estimates that lead us to the result above and applying
them to the power–logarithmic scale of d in terms of n, we come to

Corollary 4.3. If cnα logγ n ≤ d ≤ Cnα logγ n for some α ≥ 1, γ ∈ R, and positive
constants c and C, then

pd(n) =


(
d+n−2
d−1

)
θ(d, n), if α > 3, or α = 3, γ > 0,

enn(α−1)n logγn n eO(n3−α log−γ n+logn), if 2 ≤ α ≤ 3,

nneO(n log logn), if 1 ≤ α < 2.

Here the function θ(d, n) ≥ 1 is bounded above by a constant that depends only on α and
γ.

Remark 4.4. Note that the case α = 3, γ = 0, c > 0.5, is covered by Theorem 4.2 (a).
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4.3 Lower sets in small dimensional spaces

In this section, we prove Theorem 4.1 and in the course of the proof reveal some features
of the nature of lower sets.

From now on we associate any point q = (q1, ..., qd) ∈ Z+ of a lower set with a unit
cube having its center at that point. So, we will stick to this visualization of a lower set
as a set of cubes leaning on one another. In Figure 4.1, we give an example of such a
visualization of a plane partition of n = 15 with

n11 = 4, n12 = 3, n13 = 2, n14 = 1, n21 = 3, n22 = 1, n31 = 1,

so that the lower layer by itself represents a partition of n11 + n12 + n13 + n14 = 10, while
the next one, a partition of n21 + n22 = 4.

Figure 4.1:

For two cubes q = (q1, ..., qd) and q′ = (q′1, ..., q
′
d), we write q � q′ if qi ≥ q′i for all

i = 1, ..., d. If there holds either q � q′ or q′ � q, we say that q and q′ are comparable.

In the first place, we will be interested in the “top” subsets of lower sets, which will
play a crucial role in our further analysis. To be more specific, we need the following

Definition. We call a subset Q′ of a lower set Q available if for any q′ ∈ Q′ there is
no q ∈ Q \ {q′} such that q � q′.

In other words, it is such a subset that we can take its elements out in any order
without breaking the lower set structure in any step. Denote by M(Q) the maximal
available subset of Q. The lemma below delivers the bound on |M(Q)| that in some sense
we would expect basing on our intuition: it seems that the more concentrated the lower
set is, the richer its available subset can be (see Remark 4.6).

Lemma 4.5. For any d ≥ 2 and n ≥ d6d log d, for any d-dimensional lower set Q, |Q| = n,
there holds

|M(Q)| ≤
d−1∏
k=1

(
1 +

1

k2

)
n1− 1

d <
sinhπ

π
n1− 1

d .

Remark 4.6. Define the lower sets Qk in d-dimensional space by the condition q ∈ Qk ⇔
q1 + ... + qd ≤ k. Then it follows from Lemma 4.5 that the sets Qk, for large enough k,
are optimal in the sense that their maximal available subsets are the largest possible up
to an absolute constant.

Proof of Lemma 4.5. We prove the left-hand side inequality by induction on d, which will
yield the assertion of the lemma. In the case d = 2 we have Q = Q1 ∪ Q2, where every
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q = (q1, q2) ∈ Qi satisfies qi ≤
√
n − 1, i = 1, 2. Since M(Q) cannot have more than one

cube with a fixed q1 or q2, we can write |M(Q)| ≤ 2
√
n.

Suppose now that we proved the inequality for the dimensions 2, 3, ..., d− 1, and let us
prove it for d ≥ 3. For simplicity we denote

Kd :=

d−1∏
k=1

(1 + k−2) < 4.

Consider all the nonempty subsets Q0, ..., Qm, m ≤ n − 1, being the intersections of Q
with the hyperplanes q1 = 0, ...,m, respectively. They are lower sets themselves and if for
some j we have q = (j, q2, ..., qd) ∈ Qj ∩M(Q), then q = (j + s, q2..., qd) /∈ Qj+s for all
s ≤ m− j. Let

ni := |Qi|, 0 ≤ i ≤ m.

Note that we can apply the induction assumption to Qi with ni ≥ (d − 1)6(d−1) log(d−1).
Now, taking into account that

(d− 1)6(d−1) log(d−1) < d6(d−1)(log(d−1)−log d)n1− 1
d ≤ d−3n1− 1

d , (4.4)

we have (assuming nm+1 = 0)

|M(Q)| ≤
m∑
i=0

min{ni − ni+1,Kd−1n
1− 1

d−1

i }+
∑

ni≤d−3n1− 1
d

ni − ni+1

≤
m∑
i=0

min{ni − ni+1,Kd−1n
1− 1

d−1

i }+
n1− 1

d

d3

=:

m∑
i=0

min{∆i,Γi}+
n1− 1

d

d3
=:

m∑
i=0

Mi +
n1− 1

d

d3

=: F (n0, ..., nm) +
n1− 1

d

d3
. (4.5)

We will maximize F (n0, ..., nm) over all (n0, ..., nm) in the set

Sn := {(n0, ..., nm) ∈ R+ : n0 ≥ ... ≥ nm, n0 + ...+ nm = n},

permiting thereby ni to take noninteger values. Take a point (n0, ..., nm) where this
maximum is attained. Assume that for some i, 0 ≤ i ≤ m− 1, such that

ni > 8d−1

we have ∆i > Γi. If we substitute the pair (ni, ni+1) by (ni − x, ni+1 + x) for sufficiently
small positive x, the new point will still be in Sn with Mj , j 6= i − 1, i, i + 1, and Γi−1

remaining unchanged. At the same time, ∆i−1 will increase, which means that Mi−1

will not decrease. Moreover, choosing x small enough we can keep either the relation
∆i+1 ≥ Γi+1 or ∆i+1 ≤ Γi+1 true. Consider the two cases.

Case 1. ∆i+1 ≥ Γi+1.
Then Mi+Mi+1 = Γi+Γi+1 and the sum Γi+Γi+1 increases as ni and ni+1 become closer
to each other while keeping their sum constant. Thus, we increase F (n0, ..., nm), which
contradicts the definition of (n0, ..., nm).
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Case 2. ∆i+1 ≤ Γi+1.
The value ∆i+1 + Γi changes in

x−Kd−1

(
n

1− 1
d−1

i − (ni − x)1− 1
d−1
)
≥ x

(
1−Kd−1

d− 2

d− 1
(ni − x)−

1
d−1

)
> 0,

since ni ≥ 8d−1 > Kd−1
d−1 . Hence, Mi + Mi+1 increases. Thus, we increase F (n0, ..., nm),

which once again contradicts the definition of (n0, ..., nm).
The fact that both cases led us to contradictions means that there holds

∆i ≤ Γi, 0 ≤ i ≤ min{p,m− 1}, (4.6)

where p is the maximal index satisfying np ≥ 8d−1.
If m ≤ n1/d − 1, we have

|M(Q)| ≤ max
n0+...nm=n

m∑
i=0

Kd−1n
1− 1

d−1

i +
n1− 1

d

d3
< Kdn

1− 1
d (4.7)

and there is nothing to prove. Thus, from now on, we can assume that

m ≥ n
1
d and nm ≤ n1− 1

d . (4.8)

The rest of the proof we divide into two cases: the case of “large” and the case of
“small” values n0. We will see that n0 cannot be large at a point of the maximum of
F (n0, ..., nm).

Case a. n0 > 2Kd−1n
1−1/d.

Define the sequence {ai}∞i=0 in the following way:

a0 := n0 and ai := ai−1 −Kd−1a
1− 1

d−1

i−1 for i ≥ 1. (4.9)

Let us estimate the maximal number k such that

ak >
Kd−1n

1− 1
d

2
and

k∑
i=0

ai ≤ n.

From the definition of ai we see that the ratio ai/ai+1 increases along with i. So,

ak/2

0.5Kd−1n
1− 1

d

>
ak/2

ak
>

a0

ak/2
>

2Kd−1n
1− 1

d

ak/2
,

where in the case of odd k we understand ak/2 as (a(k−1)/2 + a(k+1)/2)/2. Hence, ak/2 >

Kd−1n
1−1/d. Since ai − ai+1 decreases, we have (k + 1)ak/2 ≤

∑k
i=0 ai ≤ n, which yields

k + 1 < n
1
dK−1

d−1.

So,

a0 − ak+1 =
k∑
i=0

Kd−1a
1− 1

d−1

i ≤ Kd−1
n

1
d

Kd−1

(
nKd−1

n1/d

)1− 1
d−1

= K
1− 1

d−1

d−1 n1− 1
d < Kd−1n

1− 1
d ,
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whence ak+1 > Kd−1n
1−1/d > 0.5Kd−1n

1−1/d. Thus, the sum of ai becomes equal to n
before ai reaches 0.5Kd−1n

1−1/d. Therefore, according to (4.6), since ni for i ≤ p decreases
slower than ai does, we obtain that p = m and

m+ 1 ≤ k + 1 < n
1
dK−1

d−1 < n
1
d ,

which contradicts (4.8).
Case b. n0 ≤ 2Kd−1n

1−1/d.
Assume first that

n0 − np > Ldn
1− 1

d , Ld := Kd−1

(
1 +

2

3(d− 1)2

)
. (4.10)

Considering the sequence {ai} given by (4.9), denote by q the maximal index such that

aq ≥ 8d−1 and

q∑
i=0

ai ≤ n.

We divide the interval (aq + ε, a0] into

Ij := (νj , µj ] := (Ajn
1− 1

d , (Aj + n−
1
2d )n1− 1

d ], Aj := Aj+1 + n−
1
2d ,

where ε ∈ [0, n1−3/(2d)) is chosen so that (a0 − aq − ε)n−1+3/(2d) ∈ Z. Note that |Ij | =
n1−3/(2d) for all j. Denote the number of ai’s belonging to Ij by kAj and let aij be the
greatest of ai that belongs to Ij .

Now, in order to prove that the assumption (4.10) cannot hold, we are going to show
that each Ij contains significantly many terms ai, and this will yield that ai, and therefore
ni, cannot decrease considerably until the sum of its first terms becomes equal to n. The
fact that a0 = n0 is not very large implies certain regularity of ai, namely, it will ensure
that the leaps between ai are small enough to get appropriate estimates on kAj for each
of the intervals Ij .

Fix some j and suppress for simplicity the index j in Aj . Suppose that

kA <
A

1
d−1
−1n

1
2d

Ld
. (4.11)

Since the ratio ai/ai+1 increases and aij+1−1 > νj = Ajn
1−1/d, we have(

1

1−Kd−1A
− 1
d−1n−

1
d

)kA
≥
(

1

1−Kd−1a
− 1
d−1

ij+1−1

)kA
≥
(aij+1−1

aij+1

)kA
≥

aij
aij+1

≥
µj −Kd−1a

1− 1
d−1

ij−1

µj+1
≥ (A+ n−

1
2d )n1− 1

d −Kd−1a
1− 1

d−1

0

An1− 1
d

≥ 1 +
n−

1
2d

A
−
K2
d−12n−

1
d

A
. (4.12)

At the same time, since (kA + 1 + x)/(2 + x) ≤ (kA + 1)/2 for x ≥ 0, the ratio between
consequent terms in the binomial expansion of

(1−Kd−1A
− 1
d−1n−

1
d )−kA
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is less than

kA + 1

2
Kd−1A

− 1
d−1n−

1
d <

Kd−1A
− 1
d−1n−

1
d

2
+
A−1n−

1
2dKd−1

2Ld

≤ Kd−1(d− 1)
2
d−1n−

1
d

2
+

(d− 1)2n−
1
2dKd−1

2Ld
≤ (d− 1)2n−

1
2d .

This implies

(1−Kd−1A
− 1
d−1n−

1
d )−kA < 1 + kAKd−1A

− 1
d−1n−

1
d

1

1− (d− 1)2n−
1
2d

< 1 +
n−

1
2d

A

1(
1 + 2

3(d−1)2

)
(1− (d− 1)2n−

1
2d )

.

Combining this with (4.12), we obtain

1(
1 + 2

3(d−1)2

)
(1− (d− 1)2n−

1
2d )

> 1− 2n−
1
2dK2

d−1,

which yields

0 > −2n−
1
2dK2

d−1 +
2

3(d− 1)2
−

4n−
1
2dK2

d−1

3(d− 1)2
− (d− 1)2n−

1
2d

+ 2(d− 1)2n−
1
dK2

d−1 −
2n−

1
2d

3
+

4n−
1
dK2

d−1

3

≥ 2

3(d− 1)2
− 68

3
n−

1
2d (d− 1)2 ≥ 0,

since n > d18d > 342d(d− 1)8d. This contradiction disproves (4.11), whence

kAj ≥
A

1
d−1
−1

j n
1
2d

Ld
.

Summing up this inequality over all j, we derive

n ≥
∑
ai∈∪Ij

ai ≥
∑
j

kAjAjn
1− 1

d ≥
∑
j

n1− 1
2dA

1
d−1

j

Ld
> nL−1

d

a0n
1
d
−1−n−

1
2d∫

aqn
1
d
−1+n−

1
2d

x
1
d−1 dx

=: nL−1
d

y+z−2n−
1
2d∫

y

x
1
d−1 dx,

where z ≥ Ld by the assumption (4.10). This means that there holds

1 > L−1
d

y+Ld−2n−
1
2d∫

y

x
1
d−1 dx ≥ L−1

d

d− 1

d
(Ld − 2n−

1
2d )

d
d−1

≥ (1− 2n−
1
2d )L

1
d−1

d

d− 1

d
≥

L
1
d−1

d
d−1
d

1 + 3n−
1
2d

≥ 1. (4.13)
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Let us prove the latter inequality. It suffices to show that

Ld ≥
(

1 +
1

d− 1

)d−1
(1 + 3n−

1
2d )d−1.

This, in turn, will follow from

1 +
2

3(d− 1)2
≥ (1 + 3n−

1
2d )d−1

(
1 +

1

2(d− 1)2

)
(4.14)

and

Kd−1

(
1 +

1

2(d− 1)2

)
≥
(

1 +
1

d− 1

)d−1
. (4.15)

Firstly, by the assumption of the lemma we have n > 62d(d− 1)2d, so

1 +
2

3(d− 1)2
> 1 +

1

2(d− 1)2
+ 6(d− 1)n−

1
2d +

3n−
1
2d

d− 1

= (1 + 6(d− 1)n−
1
2d )
(

1 +
1

2(d− 1)2

)
≥ (1 + 3n−

1
2d )d−1

(
1 +

1

2(d− 1)2

)
,

which proves (4.14). Secondly, note that for d = 3 both sides of (4.15) are equal 2.25 and
for d = 4 inequality (4.15) becomes 95/36 ≥ (4/3)3. For d ≥ 5, (4.15) follows from the
fact that the left-hand side is greater than e.

The contradiction in (4.13) along with the fact that ai’s decrease faster than ni shows
that (4.10) does not hold and therefore

n0 − np ≤ Ldn1− 1
d . (4.16)

In addition, we note that if p 6= m, then by (4.6)

np+1 ≥ np(1−Kd−1n
− 1
d−1

p ) > np

(
1−Kd−1(8d−1))−

1
d−1

)
> 0.5np,

whence np < 2 · 8d−1.
Finally, in light of (4.5), (4.7), and (4.16), we obtain

|M(Q)| ≤ n1− 1
d

d3
+

p−1∑
i=0

(ni − ni+1) +
m∑
i=p

Mi

<
n1− 1

d

d3
+ (n0 − np) + 2 · 8d−1 +Kd−1n

1− 1
d−1

m

<
n1− 1

d

d3
+ Ldn

1− 1
d + 2 · 8d−1 +Kd−1n

1− 2
d

< Kd−1n
1− 1

d

(
1

2d3
+
(

1 +
2

3(d− 1)2

)
+

8d−1

n1− 1
d

+ n−
1
d

)
≤ Kd−1n

1− 1
d

(
1 +

2

3(d− 1)2
+

1

2d3
+ d−10(d−1) log d + n−

1
d

)
< Kdn

1− 1
d ,

since n > 12d(d− 1)2d, and the proof of the lemma is complete.
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Remark 4.7. Note that under the assumptions of Lemma 4.5, the argument above gives

max
(n0,...,nm)∈Sn

m∑
i=0

min{ni − ni+1,Kd−1n
1− 1

d−1

i }

≤ Kd−1n
1− 1

d

(
1 +

2

3(d− 1)2
+ d−10(d−1) log d + n−

1
d

)
. (4.17)

Remark 4.8. Without any restriction on d and n we can straightforwardly show that
there always holds

|M(Q)| ≤ dn1− 1
d .

Proof. Proceeding by induction as in the proof of Lemma 4.5 we obtain

|M(Q)| ≤ max
n0+...+nm=n

m∑
i=0

min{ni − ni+1, (d− 1)n
1− 1

d−1

i }.

As long asQ is a lower set, there holds ni ≥ ni+1 for any i = 1, ...,m−1, so nbn1/dc ≤ n1−1/d.
Thus, ∑

k≥bn1/dc

(nk − nk+1) ≤ n1− 1
d

and

|M(Q)| ≤ n1− 1
d + (d− 1) max

n0+...+nbn1/dc−1
≤n

bn
1
d c−1∑
k=0

n
1− 1

d−1

k

≤ n1− 1
d + (d− 1)n

1
d

( n

n1/d

)1− 1
d−1

= dn1− 1
d .

Now, as we already have the bound for the cardinalities of the available subsets, we
are able to obtain needed estimates for the number of lower subsets of a lower set. Define

T (n) := max
lower sets Q: |Q|=n

|M(Q)|.

Lemma 4.9. For the number C(Q, k, d) of all lower subsets Q′, |Q′| ≥ n− k, of a lower
set Q, |Q| = n, in d-dimensional space there holds

C(Q, k, d) < max
{

8,
4eT (n)

k

}k
.

Proof. First we show that every lower subset Q′ of a lower set Q can be constructed by
successively discarding cubes of Q one by one so that in any step the current set remains
being a lower set.

Indeed, let us list all the cubes we have to discard from Q in a sequence in an arbitrary
order. By a disorder we call a pair (q, q′) of cubes in this sequence such that q goes after
q′ in it, but q � q′. Now, if there is a disorder (q, q′) in the sequence, we simply swap
q and q′ eleminating thereby the disorder and not creating any new one. Thus, we can
rearrange the sequence so that there is no disorder in it.
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Consider the part of the sequence that starts at the beginning and ends right before a
comparable pair of cubes appears. Then the cubes of this part belong to M(Q), while the
subsequent cube does not. By repeating this process, we observe that each lower subset
of Q can be constructed as follows. First we discard some cubes (call this set R1) from
M(Q) =: M(Q1). After that we remove a set R2 of cubes from M(Q1 \ R1) \M(Q1) =:
M(Q2) \M(Q), and so on. In doing so, the number of ways to take away cubes in the

first step is
(|M(Q)|
|R1|

)
, and in the ith step, for i > 1, is

(|M(Qi)|−(|M(Qi−1)|−|Ri−1|)
|Ri|

)
. Denoting

ki := T (|Qi|)− |M(Qi)|+ |Ri|, we have
(|M(Q)|
|R1|

)
≤
(T (|Q|)

k1

)
and for i > 1,(

|M(Qi)| − (|M(Qi−1)| − |Ri−1|)
|Ri|

)
=

(
|M(Qi)| − (T (|Qi−1|)− ki−1)

|Ri|

)
≤
(
T (|Qi|)− (T (|Qi−1|)− ki−1)

ki

)
≤
(
ki−1

ki

)
.

Hence, the number of ways to construct a lower subset of Q with a fixed sequence of |Ri|
is at most(

T (n)

k1

)(
k1

k2

)(
k2

k3

)
...

(
kl−1

kl

)
≤
(
T (n)

k1

)
2k1+k2+...+kl−1 <

(
T (n)

k1

)
2k, (4.18)

where l is the number of steps. If T (|Q|) ≤ k, the right-hand side is bounded by 22k.
Otherwise, according to Stirling’s formula,(

T (n)

k1

)
2k <

(eT (n)

k1

)k1
2k ≤

(2eT (n)

k

)k
.

Finally,

C(Q, k, d) ≤
∑

|R1|+...+|Rl|≤k

max
{

4,
2eT (n)

k

}k
< max

{
8,

4eT (n)

k

}k
. (4.19)

Corollary 4.10. If n ≥ d6d log d, there holds

C(Q, k, d) <
(
e4 max

{
1,
n1− 1

d

k

})k
(4.20)

and

C(Q, k, d) < 22k+4n1− 1
d . (4.21)

Proof. Inequality (4.20) follows immediately from Lemmas 4.5 and 4.9 (note that 2 sinhπ/π
< e2). The second estimate is valid due to Lemma 4.5 and relation (4.18) in the same
fashion as (4.19).

Now we are in a position to prove our main result.

Proof of Theorem 4.1. We start with the second part of the theorem. Let us first prove
by induction on d that

log pd(n) < Udn
1− 1

d for n > d12d log d, (4.22)
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where U2 := 2
√

2 and, for d ≥ 3,

Ud := Ud−1d
1
d−1 + 1.

The basis d = 2 follows from the estimate p2(k) < e2
√

2k (see at the end of [40, Sec. 2]).
Assuming that (4.22) holds for 2, 3, ..., d − 1 we will prove it for d ≥ 3. Take a lower set
Q, |Q| = n, put k := bn1/dc, and for a fixed p, p = 1, ..., d, consider the following “slices”
of Q:

Qpi := {Q ∩ {qp = i}} \
⋃

0<t<p, 0≤j<k
Qtj , i = 0, ..., k − 1,

of cardinalities np0 ≥ np1 ≥ ... ≥ npk−1. Note that Q =
⋃

0≤i<k, 1≤p≤dQ
p
i , since otherwise

there would exist a cube q ∈ Q with qi > n1/d− 1 for all i = 1, ..., d, and, by the definition
of lower sets, the cardinality of Q would exceed (n1/d)d, which is not true. So,

d∑
p=1

lp = n, lp := np0 + ...+ npk−1.

In addition, any Qpi , i > 0, is a lower subset of Qpi−1, so once Qpi−1 is constructed,

then if npi ≥ (d − 1)12(d−1) log(d−1), the number of possible Qpi (with a fixed npi ) can be
estimated either by (4.21) or by the induction assumption. As in (4.4), one can show

that (d − 1)12(d−1) log(d−1) < d−6n1− 1
d . Thus, combining (4.20), (4.21), and the induction

assumption we obtain the following bound for the logarithm of the number of slices of
fixed cardinalities npi (for simplicity, we omit the upper indexes p for npi ):

max
n0+...+nk−1=lp

{
Ud−1n

1− 1
d−1

0 +
k−2∑
i=0

min{2(ni − ni+1) + 4n
1− 1

d−1

i , Ud−1n
1− 1

d−1

i+1 }
}

+
∑

i: ni<d−6n1− 1
d

(ni − ni+1)(4 + log ni)

=: G(lp, d) +
∑

i: ni<d−6n1− 1
d

(ni − ni+1)(4 + log ni). (4.23)

Note that

∑
i: ni<d−6n1− 1

d

(ni − ni+1)(4 + log ni) ≤
n1− 1

d

d6

(
4 + log(d− 1)12(d−1) log(d−1)

)

<
24n1− 1

d

d4
. (4.24)



4.3. Lower sets in small dimensional spaces 60

Then, taking into account (4.23), (4.24), and the inequality p2(n) ≤ e2
√

2n, we derive

log pd(n) ≤ log
∣∣∣{{npi }, 1 ≤ i ≤ k, 1 ≤ p ≤ d :

∑
i,p

npi = n
}∣∣∣+

d∑
p=1

G(lp, d) + d
24n1− 1

d

d4

≤ log

(
n+ d− 2

d− 1

)
+ 2d

√
2n+

8n1− 1
d

9
+ max

l1+...+ld=n
np0+...+npk−1=lp

d∑
p=1

k−1∑
i=0

Ud−1n
1− 1

d−1

i

≤ d log 2n+ 2d
√

2n+
8n1− 1

d

9
+ Ud−1 max

l1+...+ld=n

d∑
p=1

n
1

d(d−1) l
1− 1

d−1
p

≤ 3d
√

2n+
8n1− 1

d

9
+ Ud−1d

1
d−1n1− 1

d

< Udn
1− 1

d ,

completing the proof of (4.22).
Further, as Ud < d2 for d < 8, it suffices to prove the second part of the theorem

by induction on d ≥ 8. As above, the induction assumption holds for Qpi with npi ≥
(d− 1)12(d−1) log(d−1). Likewise in (4.23), by (4.24), the logarithm of the number of slices
of fixed cardinalities npi does not exceed

G̃(lp, d) +
∑

i: ni<d−6n1− 1
d

(ni − ni+1)(4 + log ni) ≤ G̃(lp, d) +
24n1− 1

d

d4

with

G̃(lp, d) : = max
n0+...+nk−1=lp

{
(d− 1)2n

1− 1
d−1

0

+

k−2∑
i=0

min{2(ni − ni+1) + 4n
1− 1

d−1

i , (d− 1)2n
1− 1

d−1

i+1 }
}

≤ 4k
( lp
k

)1− 1
d−1

+ max
n0+...+nk−1=lp

{
Bd−1n

1− 1
d−1

0 +

k−1∑
i=0

min{2(ni − ni+1), Bd−1n
1− 1

d−1

i+1 }
}
,

where Bx := x2 − 4, x ≥ 8. Noting that

Bd−1n
1− 1

d−1

0 +
k−1∑
i=0

min{2(ni − ni+1), Bd−1n
1− 1

d−1

i+1 }

≤ Bd−1

b2d−1n1/dc−1∑
i=0

n
1− 1

d−1

i + 2nb2d−1n1/dc−1

≤ Bd−12
1
d−1d−

1
d−1 l

1− 1
d

p +
2lp

2d−1n
1
d − 1

< Bd−12
1
d−1d−

1
d−1 l

1− 1
d

p + dlpn
− 1
d + 2d2lpn

− 2
d
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and that

4k
( lp
k

)1− 1
d−1 ≤ 4n

1
d(d−1) l

1− 1
d−1

p ,

we have

d∑
p=1

G̃(lp, d) ≤ 4d
1
d−1n1− 1

d +Bd−12
1
d−1n1− 1

d + dn1− 1
d + 2d2n1− 2

d .

Hence, using again p2(n) ≤ e2
√

2n, we obtain for d ≥ 8

log pd(n) ≤ log
∣∣∣{{npi }, 1 ≤ i ≤ k, 1 ≤ p ≤ d :

∑
i,p

npi = n
}∣∣∣+

d∑
p=1

G̃(lp, d) +
24n1− 1

d

d3

< 3d
√

2n+ 4d
1
d−1n1− 1

d +Bd−12
1
d−1n1− 1

d + dn1− 1
d + 2d2n1− 2

d +
24n1− 1

d

d3

< 3d
√

2n+ 2d2n1− 2
d +

(
d2 − d

16

)
n1− 1

d

< d2n1− 1
d ,

where in the last step we used that n > max{(64d)d, (96
√

2)6}. This concludes the proof
of the second part of the theorem.

We now turn to the first part. Our aim will be to prove the stronger inequality

pd(n) < 1800KdYdn
1− 1

d =: CKdYdn
1− 1

d , (4.25)

where Yd :=
∏d−1
k=3(1 + 2−k)1/k and Kd =

∏d−1
k=1(1 + k−2) as above. Inequality (4.25)

implies the needed estimate pd(n) < 7200n1−1/d, since Kd < sinhπ/π, log Yd < 1/12, and
e1/12 sinhπ/π < 4.

Let us prove (4.25) by induction on d. The cases d ≤ 59 follow from the second part
of the theorem, so we prove the claim for d ≥ 60 assuming that it holds for 2, 3, ..., d− 1.
We divide the proof into several steps.

Step 1. Partition into slices. Take a lower set Q, |Q| = n, and put

kp :=

{
b2−(d−1)d−1n1/dc =: k, 0 ≤ p ≤ d− 1,

b2d(d−1)dd−1n1/dc, p = d.

For a fixed p, p = 1, ..., d, consider the slices

Qpi := {Q ∩ {qp = i}} \
⋃

0<t<p, 0≤j<kt

Qtj , i = 0, ..., kp − 1

of cardinalities np0 ≥ np1 ≥ ... ≥ npkp−1. Note that ∪i,pQpi = Q, since otherwise there exists
a cube q in Q with qp ≥ kp for all p, so all the cubes with pth coordinate at most kp belong
to Q as well, which contradicts the fact that

∏
p kp > n.

The idea is to split our lower set Q into two subsets: the union of the chosen slices of the
first d − 1 directions

⋃
1≤p≤d−1, 0≤i<kp Q

p
i and the complement subset Q′ :=

⋃
0≤i<kd Q

d
i .

Both Q \Q′ and Q′ consist of slices that are lower sets themselves. The number of lower
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subsets of the former can be well estimated using the induction assumption, as the number
of slices is small enough. The number of slices in the remaining set Q′ is not that small,
however we will see that the number of them is still well bounded, so that Lemma 4.9 can
come into play “prohibiting” the cardinalities of slices being close to each other. Denote
|Q′| =: l, |Q \Q′| =: t, so l + t = n.

Step 2. Dealing with small slices. Observe that each of the chosen slices is a
lower set and for each p and i < kp − 1 the set Qpi+1 is a subset of Qpi . We can apply the

induction assumption to Qpi with npi ≥ (30(d− 1))2(d−1)2 . Noting that

(30(d− 1))2(d−1)2 <
( d

d− 1

)2(d−1)2

n
(d−1)2

d2 ≤ 2−2(d−1)n
(d−1)2

d2 ,

for a fixed p we have∑
npi≤2−2(d−1)n

(d−1)2

d2

(npi − n
p
i+1)(4 + log n) < 2−2d+3n

(d−1)2

d2 log n. (4.26)

Step 3. Estimating the number of possible Q \Q′. Using the induction assump-
tion and the bound of the number of lower subsets given by (4.21) along with (4.26), we
obtain that the logarithm of the number of possible Q \Q′ with fixed npi is less than

d−1∑
p=1

k−1∑
i=0

CKd−1Yd−1(npi )
1− 1

d−1 + (d− 1) · 2−2d+3n
(d−1)2

d2 log n

< CKd−1Yd−1((d− 1)k)
1
d−1 t1−

1
d−1 + n

(d−1)2

d2 log n

≤ 0.5CKd−1Yd−1n
1

d(d−1) t1−
1
d−1 + n

(d−1)2

d2 log n. (4.27)

Step 4. Obtaining a general bound for the number of possible Q′. Now we
estimate the number of possible Q′ with fixed ni := ndi . For the sake of simplicity, let

m := kd, ∆i := ni − ni+1, Γi = n
1−1/(d−1)
i (note that the last notation slightly differs

from that of the proof of Lemma 4.5). Combining the induction assumption with (4.20)
and keeping in mind (4.26), we see that the logarithm of the number of lower sets with
fixed ni cannot exceed the following sum (assuming nm+1 = 0)

CKd−1Yd−1n
1− 1

d−1

0 + 2−2d+3n
(d−1)2

d2 log n

+
m∑
i=0

min
{

(ni − ni+1)
(

4 + log+ n
1− 1

d−1

i

ni − ni+1

)
, CKd−1Yd−1n

1− 1
d−1

i+1

}
< 4Cn

1− 1
d−1

0 + n
(d−1)2

d2 log n+
m∑
i=0

min
{

∆i

(
C + log+ Γi

∆i

)
, CKd−1Yd−1Γi

}
. (4.28)

We can bound the latter sum of minima by∑
i: ∆i≤Γi

∆i log
eCΓi
∆i

+
∑

i: ∆i>Γi

CKd−1Γi =:
s−1∑
i=0

Mi +
m∑
i=s

Mi

=: G(n0, ..., ns) +H(ns, ..., nm), (4.29)
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where s is the first index i such that ni ≤ l1−1/d/4d3. Note that in (4.28) we can assume
that nm ≥ (30(d− 1))2(d−1)2 , as the other ni are already taken into account.

Step 5. Estimating G(n0, ...,ns). Take a tuple (n0, ..., ns) that delivers the maxi-
mum of the function G over all the tuples in

S′l :=
{

(n0, ..., ns) ∈ Z+ :

n0 ≥ ... ≥ ns ≥ 0, ns−1 ≥ max
{ l1− 1

d

4d3
, (30(d− 1))2(d−1)2

}
, n0 + ...+ ns = l

}
.

Note that ∆s−1 > Γs−1, since otherwise ns > 0 and we can decrease ns so that ∆s−1 > Γs−1

increasing thereby the value of G.
Assume that for some i, 0 ≤ i ≤ s− 1, we have

∆i > Γi + 2.

Then ∆i > 3 and if we substitute the pair (ni, ni+1) by (ni−1, ni+1 +1), the tuple will still
be in S′l with Mj , j 6= i−1, i, i+1, and Γi−1 unchanged. At the same time ∆i−1 increases,
which means that Mi−1 does not decrease. Denote by ∆′j ,Γ

′
j and M ′j the corresponding

values after the substitution. Consider the three cases.
Case 1. ∆i+1 > Γi+1.

Then ∆′i+1 > Γ′i+1 and

(M ′i +M ′i+1)− (Mi +Mi+1) = CKd−1((Γ′i + Γ′i+1)− (Γi + Γi+1)) > 0.

Case 2. ∆i+1 ≤ Γi+1, ∆′i+1 ≤ Γ′i+1.
We have

(M ′i +M ′i+1)− (Mi +Mi+1)

= (∆i+1+1) log
eC(ni+1 + 1)1− 1

d−1

∆i+1 + 1
−∆i+1 log

eCn
1− 1

d−1

i+1

∆i+1
+CKd−1

(
(ni−1)1− 1

d−1−n
1− 1

d−1

i

)
≥ C −∆i+1 log

∆i+1 + 1

∆i+1
− CKd−1(0.5ni)

− 1
d−1 > C − 1− 8Cn

− 1
d−1

i > 0,

since ni > 16d−1.
Case 3. ∆i+1 ≤ Γi+1, ∆′i+1 > Γ′i+1.

Then
∆i+1 + 1 = ∆′i+1 > Γ′i+1 > Γi+1 > 2,

so ∆i+1 ≥ 0.5Γi+1, and

(M ′i +M ′i+1)− (Mi +Mi+1) = CKd−1(ni+1 + 1)1− 1
d−1 −∆i+1 log

eCn
1− 1

d−1

i+1

∆i+1

+ CKd−1

(
(ni − 1)1− 1

d−1 − n
1− 1

d−1

i

)
≥ CKd−1(ni+1 + 1)1− 1

d−1 −∆i+1 log 2eC − CKd−1(0.5ni)
− 1
d−1

≥ 0.25CKd−1(1− 4(0.5ni)
− 1
d−1 ) > 0,

since ni > 4d.
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Thus, in all the cases G increases, and we come to a contradiction, which yields that

∆i ≤ Γi + 2 < 1.25Γi, 0 ≤ i ≤ s− 1, (4.30)

as ni = Γ
d−1
d−2

i > 8
d−1
d−2 .

Note that for s ≤ l1/d we straightforwardly have an appropriate bound

G(n0, ..., ns) ≤ max
n0+...ns−1=l

s−1∑
i=0

CKd−1n
1− 1

d−1

i = CKd−1l
1− 1

d , (4.31)

so from now on we assume

s− 1 ≥ l
1
d and ns−1 ≤ l1−

1
d . (4.32)

If n0 > 2.5l1−1/d, then considering the sequence

a0 := n0 and ai = ai−1 − 1.25a
1− 1

d−1

i−1 for i ≥ 1,

similarly as in the proof of Lemma 4.5 (see Case a), we see that the sum of ai becomes
equal to l before ai reaches l1−1/d, so the same holds for ni (since ni decreases slower than
ai, cf. (4.30)). This contradicts (4.32). Thus,

n0 ≤ 2.5l1−
1
d .

Now, when we have the ratio n0/ns−1 bounded by 10d3, we are going to show that ∆i

must be greater that Γi for all i = 0, ..., s−1. Assume the contrary, that is, for some 0 < i <
s there holds ∆i−1 ≤ Γi−1. Then we consider a new tuple (n0+ni, n1, ..., ni−1, ni+1, ..., ns, 0)
instead of (n0, n1, .., ns) and estimate the difference between the values of G at these points.
First, let us estimate the difference M ′0 −M0.

Case a. ∆0 > Γ0.
We have

M ′0 −M0 = CKd−1((n0 + ni)
1− 1

d−1 − n
1− 1

d−1

0 )

≥ d− 2

d− 1
CKd−1Γi

( ni
n0 + ni

) 1
d−1 ≥ CKd−1Γi(10d3)−

1
d−1

=: W,

as ni ≥ l1−1/d/4d3.
Case b. ∆0 ≤ Γ0, ∆′0 ≤ Γ′0.

Then

M ′0 −M0 = (∆0 + ni) log
eC(n0 + ni)

1− 1
d−1

(∆0 + ni)
−∆0 log

eCn
1− 1

d−1

0

∆0

≥ Cni −∆0 log
∆0 + ni

∆0
≥ (C − 1)ni > W.

Case c. ∆0 ≤ Γ0, ∆′0 > Γ′0.
In this case

M ′0 −M0 = CKd−1(n0 + ni)
1− 1

d−1 −∆0 log
eCn

1− 1
d−1

0

∆0

≥ 2C(n0 + ni)
1− 1

d−1 − C∆0
n

1− 1
d−1

0

∆0
≥W.



65 Chapter 4. Number of lower sets with fixed cardinality

Now let us turn to estimating the difference M ′i−1 − (Mi−1 +Mi).
Case a’. ∆i > Γi, ∆i−1 + ∆i ≤ Γi−1.

Then

M ′i−1 − (Mi−1 +Mi) = (∆i−1 + ∆i) log
eCΓi−1

∆i−1 + ∆i
−∆i−1 log

eCΓi−1

∆i−1
− CKd−1Γi

≥ C∆i −∆i − CKd−1Γi ≥ (C − 1− CKd−1)Γi

=: V.

Case b’. ∆i > Γi, ∆i−1 + ∆i > Γi−1.
Note that

Γi = (Γ
d−1
d−2

i−1 −∆i−1)
d−2
d−1 > (Γ

d−1
d−2

i−1 − Γi−1)
d−2
d−1 = Γi−1(1− Γ

− 1
d−2

i−1 )
d−2
d−1 ≥ C

C + 1
Γi−1,

since ni−1 ≥ (30(d− 1))2(d−1)2 > 604(d−1) > 1801d−1. So,

M ′i−1 − (Mi−1 +Mi) = CKd−1Γi−1 −∆i−1 log
eCΓi−1

∆i−1
− CKd−1Γi

> −CΓi−1 ≥ (−1− C)Γi ≥ V.

Case c’. ∆i ≤ Γi.
We have

M ′i−1 − (Mi−1 +Mi) = (∆i−1 + ∆i) log
eCΓi−1

∆i−1 + ∆i
−∆i−1 log

eCΓi−1

∆i−1
−∆i log

eCΓi
∆i

≥ −∆i log
eCΓi
∆i
≥ −CΓi > V.

Hence, in all the cases

G(n0 + ni, ..., nm, 0)−G(n0, .., nm) ≥W + V

= CKd−1Γi(10d3)−
1
d−1 + (C − 1− CKd−1)Γi

> CKd−1Γi

(
(10d3)−

1
d−1 − 3C + 1

4C

)
> 0

for d ≥ 60. This means that we come to a contradiction that ensures

∆i > Γi, 0 ≤ i ≤ s− 1. (4.33)

With (4.33) and (4.31) in hand, we obtain

G(n0, ..., ns) ≤
∑

0≤i<s: ∆i≤Γi

∆i log
eC(∆i + ∆i+1)

∆i
+

∑
0≤i<s: ∆i>Γi

CKd−1Γi

=
∑

0≤i<s: ∆i>Γi

CKd−1Γi

=
∑

0≤i<s: ∆i≤Γi

C∆i +
∑

0≤i<s: ∆i>Γi

CKd−1Γi

< CKd−1n
1− 1

d

(
1 +

2

3(d− 1)2
+ d−10(d−1) log d + l−

1
d

)
, (4.34)
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where the last inequality is due to (4.17).

Step 6. Estimating H(ns, ...,nm). Let us split H(ns, ..., nm) (see (4.29)) into two
sums

H(ns, ..., nm) =
∑

s≤i: ∆i≤2−2dd−8Γi

Mi +
∑

s≤i: ∆i>2−2dd−8Γi

Mi =: H1 +H2,

corresponding to, roughly speaking, big and small ratios Γi/∆i. For H2 and d ≥ 60, we
have the bound

H2 ≤ ns(4 + log 22dd8) < 2dns ≤
l1−

1
d

2d2
.

Further, for i satisfying ∆i ≤ 2−2dd−8Γi, we obtain

log
e4Γi
∆i

< e2

√
Γi
∆i
≤ e22−dd−4 Γi

∆i
,

whence

H1 ≤
m∑
i=s

e2

2dd4
Γi ≤

e2

2dd4
k

1
d−1

d l1−
1
d ≤ e2l1−

1
d

d3
.

Thus,

H(ns, ..., nm) = H1 +H2 ≤
l1−

1
d

2d2
+
e2l1−

1
d

d3
<
l1−

1
d

d2
. (4.35)

Step 7. Combining all the estimates together. Note that the number of different
npi is less than (

n+ d− 2

d− 1

)
(e2
√

2n)d < e3d
√

2n.

Therefore, recalling (4.27), (4.28), (4.29), (4.34), and (4.35), we infer

log pd(n) ≤ 0.5CKd−1Yd−1n
1

d(d−1) t1−
1
d−1 + 4Cn1− 1

d−1 + 2n
(d−1)2

d2 log n+ 3d
√

2n

+ CKd−1Yd−1l
1− 1

d

(
1 +

2

3(d− 1)2
+ d−10(d−1) log d + l−

1
d +

1

2Cd2

)
.

Note that

2n
(d−1)2

d2 log n < Cn1− 2
d

+ 1
d2 log n ≤ Cn1− 2

d
+ 1

2d(d−1)
+ 1
d2 < Cn1− 1

d−1 , (4.36)

since n
1

2d(d−1) ≥ n
log logn
logn = log n. Indeed, if the latter does not hold, then d2 > log n/2 log log n

and

d8d2 >
( log n

2 log log n

) 2 logn
log logn ≥ (log n)

logn
log logn = n,
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which contradicts the conditions of the theorem. So, using (4.36) we come to

log pd(n) < 0.5CKd−1Yd−1n
1

d(d−1) t1−
1
d−1 + 5Cn1− 1

d−1 + 3d
√

2n

+ CKd−1Yd−1l
1− 1

d

(
1 +

3

4(d− 1)2
+ l−

1
d

)
< CKd−1Yd−1n

1
d(d−1)

(
0.5t1−

1
d−1 + l1−

1
d−1

(
1 +

3

4(d− 1)2
+ l−

1
d

))
(4.37)

+ 5Cn1− 1
d−1 + 3d

√
2n.

Let us estimate the expression in brackets in (4.37). If l ≤ n/2d, then

0.5t1−
1
d−1 + l1−

1
d−1

(
1 +

3

4(d− 1)2
+ l−

1
d

)
< n1− 1

d−1 .

Otherwise,

0.5t1−
1
d−1 + l1−

1
d−1

(
1 +

3

4(d− 1)2
+ l−

1
d

)
< (0.5t1−

1
d−1 + l1−

1
d−1 )

(
1 +

3

4(d− 1)2
+ 2n−

1
d

)
.

Note that for any 0 < a < b, γ ∈ (0, 1), there holds

0.5aγ + (b− a)γ ≤ bγ(1 + 2
− 1

1−γ )1−γ ,

which in our case with γ := 1− 1/(d− 1) gives

0.5t1−
1
d−1 + l1−

1
d−1 ≤ n1− 1

d−1 (1 + 2−d+1)
1
d−1 .

Therefore, in both cases we get

Yd−1n
1

d(d−1)

(
0.5t1−

1
d−1 + l1−

1
d−1

(
1 +

3

4(d− 1)2
+ l−

1
d

))
≤ Ydn1− 1

d

(
1 +

3

4(d− 1)2
+ 2n−

1
d

)
. (4.38)

Finally, (4.37) and (4.38) together imply

log pd(n) ≤ CKd−1Ydn
1− 1

d

(
1 +

3

4(d− 1)2
+ 2n−

1
d

)
+ 5Cn1− 1

d−1 + 3d
√

2n

< CKdYdn
1− 1

d ,

where the latter inequality follows from

max{2n−
1
d , 2.5n

− 1
d(d−1) , dn

1
2
−1+ 1

d } = 2.5n
− 1
d(d−1) ≤ 1

12(d− 1)2
,

as n ≥ (30d)2d2 . Thus, Theorem 4.1 is proved.
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4.4 Lower sets in high dimensions

In cases of high dimensions, the situation is quite different. In the first place, the trivial
lower bound pd(n) ≥

(
d+n−2
d−1

)
becomes much more reasonable, as configurations of lower

sets, in general, become more sparse. We start by considering the case of a very large
dimension d.

Proof of Theorem 4.2 (a). Put the first cube into the origin and, for a fixed j, 0 ≤ j ≤
n−1, spread j cubes along the axes. To complete a lower set, we have to add more n−1−j
cubes and we will do it stepwise. Note that any cube we now place is not aligned along an
axis, so it has at least two nonzero coordinates. This means that in any subsequent step
the current cube must be adjacent to at least two faces of two previously placed cubes.
Since every pair of cubes can have at most one pair of their faces on which we can place
a cube leaning, we come to the following estimate

pd(n) ≤
n−1∑
j=0

(
d− 1 + j

d− 1

) n−2∏
k=j

(
k

2

)
=:

n−1∑
j=0

Aj .

Noting that

Aj+1

Aj
=

2(d+ j)

(j + 1)j(j − 1)
≥ 2d

n3
,

we obtain

pd(n)(
d+n−2
d−1

) =

∑n−1
j=0 Aj(
d+n−2
d−1

) ≤ 1

1− n3

2d

· An−1(
d+n−2
d−1

) =
1

1− n3

2d

.

The estimate from below is given by

pd(n) ≥ An−1 =

(
d+ n− 2

d− 1

)
.

The next result provides a more delicate estimate from above by dealing with a similar
construction as in the proof of Theorem 4.2 (a).

Lemma 4.11. There holds

pd(n) ≤
n∑

m=2

em

2m

m−1∑
t=1

(2π)−
t+1
2

∑
s0+...+st=m
si≥2, 0≤i<t

1
√
s0s1...st

(2d)s0s2s1−s0
0 s2s2−s1

1 ...s
2st−st−1

t−1 s−stt .

Proof. Observe that every lower set can be constructed in the following way. First we put
a cube into the origin. After that we choose some axes to put a cube along each of them,
we call this zero step. Then, inductively, as we have completed the (k−1)th step, we have
a lower set whose cubes have the sum of the coordinates less or equal to k. In the kth step
we add some cubes to our set so that the following two conditions hold: any cube we put
now has the sum of its coordinates equal to k + 1 and the set we construct remains to be
a lower set.
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Let us estimate the number of choices to put sk cubes in the kth step. Note that these
sk cubes must lean only on sk−1 cubes that we put in the previous step.

When k = 1, each pair of s0 cubes from the previos step generates a place for a new
cube and there are also s0 possibilities to put a cube along an axis. So, the total number
of possible places in this case is s0(s0 + 1)/2 < (s0 + 1)2/2.

Turn now to the cases of k > 1. Suppose that there are l cubes among these sk−1

ones that lie along some axes, that is, they have all the coordinates except one equal to
zero. Then the only two ways to lean a new cube on any of these l cubes are either to
continue going along the corresponding axes or to lean it on one of these l cubes and on
one of the remaining sk−1 − l ones. If a new cube does not lean on those l cubes, then
it has more than one nonzero coordinate, thus must lean on at least two cubes from the
other sk−1 − l ones from the previous step. As we have already noted, each pair of cubes
generates at most one place for a new cube to lean on both of them. Summing up, the
number of places to put cubes in the kth step is 1 in the case sk−1 = l = 1 and

l + l(sk−1 − l) +

(
sk−1 − l

2

)
≤
s2
k−1

2
,

otherwise. In the case sk−1 = l = 1 all the remaining steps must have si = 1, i ≥ k. We
come to the estimate

pd(n) ≤
n−1∑
m=1

m∑
t=1

∑
s0+...+st=m
si≥2, 1≤i<t

(
d

s0

)( (s0+1)2

2

s1

)( s21
2

s2

)
...

( s2t−1

2

st

)
.

Using Stirling’s formula we see that(
a

b

)
≤ ab

b!
≤ 1√

2πb

(ae
b

)b
for any a ≥ b ≥ 1, so we finally obtain

pd(n) ≤
n−1∑
m=1

m∑
t=1

∑
s0+...+st=m
si≥2, 1≤i<t

es0
(e

2

)m−s0
(2π)−

t+1
2

× 1
√
s0s1s2...st

ds0s−s00 (s0 + 1)2s1s−s11 s2s2
1 s−s22 ...s2st

t−1s
−st
t

=

n∑
m=2

em

2m

m−1∑
t=1

(2π)−
t+1
2

∑
s0+...+st=m
si≥2, 0≤i<t

1
√
s0s1...st

(2d)s0s2s1−s0
0 s2s2−s1

1 ...s
2st−st−1

t−1 s−stt .

Lemma 4.11 will be our main tool for further upper estimates of pd(n). The first one
is of interest when d = o(n2) as n→∞.

Proposition 4.1. For d ≤ n2/4, there holds

pd(n) < 4ecnnn+2
√
d max{2−n, (2n)−

√
d} with c =

3

2e
+ 1,

which in case dn−2 → 0 as n→∞ yields

pd(n) ≤ nn+o(n).
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Proof. Consider a tuple (s0, s1, ..., st) ∈ Nt+1 such that si ≥ 2 for 0 < i < t and s0+...+st =
m. Note that

(s0s1...st)
3
2 ≤

(m
t

) 3t
2 ≤ e

3m
2e . (4.39)

Suppose that there is no si, i ≥ 1, such that si ≥
√
d. Then, using (4.39), we have

F (d, s0, ..., st) : = (s0s1...st)
3
2 (2d)s0s2s1−s0

0 s2s2−s1
1 ...s

2st−st−1

t−1 s−stt

≤ e
3m
2e (2d)s0s2s1−s0

0 ss21 s
s3
2 ...s

st
t−1s

−s1
t

≤ e
3m
2e (2d)s0s2

√
d−s0

0 d
m−s0

2

= e
3m
2e d

m+s0
2 2s0s2

√
d−s0

0

< e
3m
2e d

m
2 m2

√
d2s0d

s0
2 s−s00 . (4.40)

Here we used the inequality ss11 s
s2
2 ...s

st
t ≥ ss21 s

s3
2 ...s

s1
t , which is true since for any k ∈ N,

any positive integers a1, ..., ak, and any permutation σ from the symmetric group Sk, there
holds ∏

i

a
aσ(i)
i ≤

∏
i

aaii . (4.41)

The maximum of the right-hand side of (4.40) is attained at s0 = 2
√
d/e, so in this case

F (d, s0, ..., st)e
− 3m

2e ≤ d
m
2 (e

1
em)2

√
d ≤ nn2−ne

n
2 n2
√
d < nn+2

√
d. (4.42)

If there exists si ≥
√
d, i ≥ 1, then choosing the maximal such index i and using twice

inequality (4.41) along with (4.39) we obtain

F (d, s0, ..., st)e
− 3m

2e ≤ 2s0(ds0s2s1−s0
0 ...s

2si−si−1

i−1 s−sii )m2si+1(s
2si+2−si+1

i+1 ...s
2st−st−1

t−1 s−stt )

≤ 2s0(s2s1−s0
0 ...s

2si−si−1

i−1 s2s0−si
i )m2si+1(s

si+2

i+1 ...s
st
t−1s

−si+1

t )

≤ 2s0(ss10 ...s
si
i−1s

s0
i )m2si+1msi+2+...+st

≤ 2s0ms0+...+si+2si+1+si+2+...+st

< 2m−
√
dmm+

√
d ≤ 2n−

√
dnn+

√
d. (4.43)

According to Lemma 4.11, it remains only to estimate the sum

n∑
m=2

em

2m

m−1∑
t=1

(2π)−
t+1
2

∑
s0+...+st=m
si≥2, 0≤i<t

1

(s0s1...st)2
.

Note that the right sum is equal to the coefficient at xm of the polynomial

P (x) :=
( m∑
j=1

xj

j2

)( m∑
j=2

xj

j2

)t
.
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We have P (1) < (π2/6)t+1, therefore,

n∑
m=2

em

2m

m−1∑
t=1

(2π)−
t+1
2

∑
s0+...+st=m
si≥2, 0≤i<t

1

(s0s1...st)2
<

n∑
m=2

em

2m

m−1∑
t=1

( π2

6
√

2π

)t+1

<
4

9

1

1− 2
3

n∑
m=2

em

2m
=

4

3

n∑
m=2

em

2m
. (4.44)

Thus, combining (4.44) with (4.42) and (4.43), we finally derive

pd(n+ 1) ≤ nn+2
√
d max

{
1,

2n

(2n)
√
d

}
4

3

n∑
m=1

(e 3
2e

+1

2

)m
< 4e

3n
2e

+nnn+2
√
d max{2−n, (2n)−

√
d},

which concludes the proof.

The complementary lower bound for the case d = o(n2) will be as follows.

Proposition 4.2. If d ≥ n/ψ(n) for some positive function ψ(n) ≥ 1 such that ψ(n)→∞
and logψ(n)/ log n→ 0 as n→∞, then there holds

pd(n+ 1) ≥ n
(
n+ n log d

ψ(n) logn

)
(1+o(1))

,

and, consequently, if log d
ψ(n) logn → 0 as n→∞, we have

pd(n) ≥ nn+o(n).

Proof. Let us count only the lower sets whose cubes have at most two nonzero coordinates
and these coordinates are at most 1. First, we place a cube into the origin. After this we
fix some number i, i = 1, ..., n, and choose i axes to put cubes along them. The remaining
cubes will lie on some of the two-dimensional hyperplanes generated by the chosen axes.
So the number of such lower sets is

min{d,n}∑
i=1

(
d

i

)( i(i−1)
2

n− i

)
=:

min{d,n}∑
i=1

Bi ≥ Bbn/ψ(n)c.

To estimate the latter value, we note that by Stirling’s formula

√
2πa

(a
e

)a
≤ a! ≤ e

1
12

√
2πa

(a
e

)a
for all a ≥ 1, so this implies the inequality(

a

b

)
≥

√
aaa

e
1
6

√
2π(a− b)b(a− b)a−bbb

>
1

2
√
a

(a
b

)b
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for all a > b ≥ 1. Now, assuming that ψ(n) ≤ n/6, we can estimate Bbn/ψ(n)c as follows
(writing just ψ in place of ψ(n) for the sake of simplicity)

Bbn/ψc =

(
d

bnψ c

)(1
2b

n
ψ c

2 − 1
2b

n
ψ c

n− bnψ c

)
>

1

2
√
d

(dψ
n

) n
ψ
−1 ψ√

2n

( n

4ψ2

)n− n
ψ

> d
n
ψ
− 3

2n
n−2 n

ψψ
−2n+3 n

ψ(n) 2
−2n+ 2n

ψ
− 3

2

= exp
(
n log n− 2n log n

ψ
+
n log d

ψ
− 3 log d

2
− 2n logψ

+
3n logψ

ψ
− 2n log 2 +

2n log 2

ψ
− 3 log 2

2

)
(4.45)

= n

(
n+ n log d

ψ logn

)
(1+o(1))

,

which in case log d = o(ψ(n) log n) yields

Bbn/ψ(n)c ≥ nn+o(n).

Remark 4.12. For d ≥ n/ log n and ψ(n) := logn, inequality (4.45) gives

pd(n+ 1) > n
n− 6n log logn

log2 n .

Proof of Theorem 4.2 (d). The relation follows straightforwardly from the corresponding
parts of Propositions 4.1 and 4.2.

Now we give a more general estimate, which will imply the sharp exponential order of
pd(n) in case of n2 = O(d).

Proposition 4.3. If d ≥ ξn2 for some ξ = ξ(n) ≥ 2n−1, then

pd(n) < 3a2ne
125n
ξ n2en

dn

nn
with a = max{2e3.5ξ−1, 1}.

In particular, if ξ(n)→∞ as n→∞, then

pd(n) = en
dn

nn
eo(n).

Proof. For a tuple (s0, ..., st) ∈ Nt+1 with s0 + ...+ st = m, as before let

F (d, s0, ..., st) := (s0s1...st)
3
2 (2d)s0s2s1−s0

0 s2s2−s1
1 ...s

2st−st−1

t−1 s−stt .

We will prove by induction on t that

F (d, s0, ..., st) ≤ a2m−s0 exp

(
−

125m
ξ∫

min{ 125m
ξ

,s1}

log
ξx

125m
dx

)
m2 (2d)m

mm
. (4.46)
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Note that for any α ≤ β and γ,

W (α, β, γ) :=

γβ∫
γα

log
x

γ
dx = γ(x log x− x)

∣∣∣β
α
. (4.47)

The case t = 0 is clear (we assume s1 = 0). In the case t = 1 we have

(logF (d, s0,m− s0))′s0 =
(

log
(

(2d)s0s2m−3s0+1.5
0 (m− s0)−m+s0+1.5

))′
s0

= log
2d(m− s0)

s3
0

+
2(m− s0) + 1.5

s0
− 1.5

m− s0

> log
2ξ(m− s0)

e1.5m
> log

ξ(m− s0)

3m
.

If s1 ≥ 6m/ξ, then applying the inequality above and (4.47), we see that

F (d, s0, s1) ≤ exp
(
−W (0, 2, 3mξ−1)

)
F (d,m, 0) ≤ F (d,m, 0) =

(2d)m

mm
,

which is less then the right-hand side of (4.46). Otherwise, s1 < 6m/ξ < 125m/2ξ and

F (d, s0, s1) ≤ exp
(
−W (0, 1, 3mξ−1)

)
F (d,m, 0) = e

3m
ξ

(2d)m

mm
,

while at the right-hand side of (4.46) we get at least

exp
(
−W (0.5, 1, 125mξ−1)

)(2d)m

mm
= e

125m
2ξ

(2d)m

mm
,

which completes the proof of (4.46) for t = 1.
Assume now that t > 1 and (4.46) is proved for all m and for 1, ..., t− 1. Let us prove

it for t.
Consider a tuple (s0, s1, ..., st) ∈ Nt+1 such that s0 + ... + st = m and suppose that

st > st−1/2. Fix s1, ..., st−1 and s0 + st =: y and see what occures if we increase s0 =: x.
We have (

logF (d, x, s1, ..., st−1, y − x)
)′
x

=
(
x log 2d+ (2s1 − x+ 1.5) log x+ (2y − 2x− st−1 + 1.5) log st−1

+ (x− y + 1.5) log(y − x)
)′
x

> log
2d(y − x)

xs2
t−1

− 1.5

y − x
≥ log

2dst
s0s2

t−1

− 1.5 > log
d

s0st−1
− 1.5

> log
d

m2
− 1.5 ≥ log ξ − 1.5.

This means that we can increase s0 by 1 and decrease st keeping their sum constant until
either st ≤ st−1/2 or st = 1 so that in every step of this process the value of F (d, s0, ..., st)
changes by at least exp(log ξ − 1.5) = ξe−1.5.

Suppose now that for some i, 1 < i ≤ t− 1 and j ≥ i, we have

sl ≥ 2sl+1 for i ≤ l < j and sj = ... = st = 1. (4.48)
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Fix s1, ..., si−1, si+1, ..., st and s0 + si =: y and observe what occures if we start increasing
s0 =: x. We see that(

logF (d, x, s1, ..., si−1, y − x, si+1, ..., st)
)′
x

=
(
x log 2d+ (2s1 − x+ 1.5) log x+ (2y − 2x) log si−1

+ (2si+1 + x− y + 1.5) log(y − x)
)′
x

> log
2d(y − x)

xs2
i−1

− 2si+1 + 1.5

y − x
= log

2dsi
s0s2

i−1

− 2si+1 + 1.5

si
≥ log ξ − 3.5,

while si ≥ si+1 (which is true under (4.48)) and si ≥ si−1/2. So we can decrease si and
increase s0 with their sum constant, changing F (d, s0, ..., st) by at least ξe−3.5 in each step,
until one of the following situations happens.

Case 1. si = si+1 = ... = st = 1.
Then we accumulated at most the extra factor (e3.5ξ−1)∆s0 , where by ∆s0 we denote the
number of steps we made increasing s0, which is exactly the difference between the value
of s0 in the end and in the beginning of the process. So, we come to (4.48) with i− 1 in
place of i and proceed inductively with i− 1 instead of i.

Case 2. si−1 ≥ 2si ≥ 4si+1.
Then we come again to (4.48) with i− 1 in place of i with the same accumulated factor.

Case 3. si−1 < 2si = 4si+1.
Then si = 2si+1 =: 2x and we merge si = 2x and si+1 = x into one single variable equal
to 2x. Let us compare the new value of F with the original one:

F (s0, ..., si−1, 2x, si+2, ..., st)

F (s0, ..., st)
=

s
4x−si−1+1.5
i−1 (2x)2si+2−2x+1.5

s
4x−si−1+1.5
i−1 (2x)2x−2x+1.5x2si+2−x+1.5

≥ (4x)−x−1.5.

At the same time the sum of all the variables s0, s1, ..., si−1, 2x, si+2, ..., st becomes m− x
instead of m. So, by the induction assumption we have

F (d, s0, ..., st) ≤ max
x

(4x)x+1.5a2m−2x−s0 exp

(
−

125(m−x)
ξ∫

min{ 125(m−x)
ξ

,s1}

log
ξy

125(m− x)
dy

)

× (m− x)2 (2d)m−x

(m− x)m−x

≤ max
x

(4x)x+1.5a2m−2x−s0 exp

(
−

125m
ξ∫

min{ 125m
ξ

,s1}

log
ξy

125m
dy

)
m2 (2d)m−x

(m− x)m−x
.

Since (
(x+ 1.5) log 4x+ (m− x)(log 2d− log(m− x))

)′
x

= log 4x+ 1− log 2d+
1.5

x
+ log(m− x) + 1

= log
4e3.5x(m− x)

2d
< log

2e3.5

ξ
,
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we finally have the desired inequality (4.46), as

F (d, s0, ..., st) ≤ max
x

(
max

{2e3.5

ξ
, 1
})x

a2m−2x−s0

× exp

(
−

125m
ξ∫

min{ 125m
ξ

,s1}

log
ξy

125m
dy

)
m2 (2d)m

mm

= a2m−s0 exp

(
−

125m
ξ∫

min{ 125m
ξ

,s1}

log
ξy

125m
dy

)
m2 (2d)m

mm
.

This way we either merged two variables in some step and obtained the needed inequality
using the induction assumption or reach the situation s1 ≥ 2s2 ≥ 2i−1si, si+1 = ... = st =
1, for some 1 ≤ i ≤ t. In the latter occasion, considering s0 + s1 =: y to be constant and
changing s0 =: x we see that(

logF (d, x, y − x, s2, ..., st)
)′
x

= (x log 2d+ (2y − 3x+ 1.5) log x+ (2s2 − y + x+ 1.5) log(y − x))′x

≥ log
2d(y − x)

x3
− 2− 2s2 + 1.5

y − x
≥ log

2ds1

s3
0

− 2s2

s1
− 3.5.

Thus, while s1 ≥ s2, there holds(
logF (d, x, y − x, s2, ..., st)

)′
x
≥ log

2ds1

e5.5s3
0

> log
ξs1

125m
.

So, we can decrease s1 and increase s0 with s0 + s1 constant so that F (d, s0, ..., st) in this

process increases at least by exp(
∫ s∗1
s′1

log(ξx/125m) dx), (where s∗1 stands for the value of

s1 that we started from and s′1, for the value where we stopped), until one of the following
situations happens.

Case a. s1 = s2 = ... = st = 1. Then

F (d, s0, ..., st) ≤ exp

(
−

s∗1∫
s1

log
ξx

125m
dx

)
max
s0

s2
0(2d)s0

ss0−2
0

≤ exp

(
−

125m
ξ∫

min{ 125m
ξ

,s1}

log
ξx

125m
dx

)
(2d)m

mm−2
,

and the needed inequality is proved.

Case b. s1 = 2s2. Then we merge s1 and s2 into s1 as above and use the induc-
tion assumption. The only difference is that we have to take into account the factor

exp(
∫ s∗1
s′1

log(ξx/125m) dx) that we accumulated while making s1 decrease.

Thus, in all cases we obtained (4.46) for all m.
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Hence, we have

F (d, s0, ..., st) ≤ a2m exp

(
−

125m
ξ∫

0

log
ξx

125m
dx

)
m2 (2d)m

mm
,

which in light of equality (4.47) implies

F (d, s0, ..., st) ≤ a2me
125m
ξ m2 (2d)m

mm
.

Finally, taking into account Lemma 4.11 and estimate (4.44), we obtain

pd(n) < a2ne
125n
ξ n2 d

n

nn
4

3

n∑
m=2

em < 3a2ne
125n
ξ n2 d

n

nn
en,

which concludes the proof.

Proof of Theorem 4.2 (b), (c). The claim follows from Proposition 4.3 and the simple es-
timate pd(n) ≥

(
d+n−2
d−1

)
.

Proof of Corollary 4.3. The first case readily follows from Theorem 4.2 (a).

Let α ≥ 2. If α > 2 or α = 2, γ > 0, for n satisfying n > 2πe3 + 1 and nα−2 logγ n ≥
2e3.5, invoking Proposition 4.3 with ξ(n) := nα−2 logγ n, we can write

en
dn

nn
· 1

d
< en−1 dn−1

e
1
12

√
2π(n− 1)n−0.5

<

(
d+ n− 2

d− 1

)
≤ pd(n)

≤ 3e
125n3−α
c logγ n n2en

dn

nn
= en

dn

nn
eO(n3−α log−γ n+logn), (4.49)

which gives a sharp estimate up to eo(n). Otherwise, when α = 2, γ ≤ 0, we obtain an
extra eO(n+γn log logn) factor at the right-hand side of (4.49), which is still eO(n3−α log−γ n).

Turn now to the case α < 2. In light of inequality (4.45), for any ψ = ψ(n) fulfilling
the conditions

1 ≤ ψ(n) ≤ n

6
,

we have

log pd(n+ 1) ≥ n log n− n(2− α) log n

ψ(n)
+
nγ log log n

ψ(n)
+
n log c

ψ(n)

− 3α log n

2
− 3γ log log n

2
− 3 logC

2
− 2n logψ(n) +

3n logψ(n)

ψ(n)

− 2n log 2 +
2n log 2

ψ(n)
− 3 log 2

2
. (4.50)
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Taking ψ(n) = logδ n := logmax{1,−γ} n and plugging this into (4.50), we obtain

log pd(n+ 1) ≥ n log n− n(2− α) log1−δ n+
nγ log log n

logδ n
+
n log c

logδ n

− 3α log n

2
− 3γ log log n

2
− 3 logC

2
− 2δn log log n+

3δn log log n

logδ n

− 2n log 2 +
2n log 2

logδ n
− 3 log 2

2
, (4.51)

which yields

log pd(n+ 1) > n log n+O(n log log n).

One can see that estimate (4.51) is up to a constant optimal with respect to an appropriate
choice of a function ψ. Indeed, we need to counterbalance the two main terms of (4.50),
namely, n log n/ψ and n logψ. They are equal when ψ = log n/W (log n), where W (x)
stands for the W–Lambert function, i.e. the inverse function for yey. The fact that
W (x) log−1 x→ 1 as x→∞, yields ψ(n) ∼ log n/ log log n and the estimate we obtain by
means of such ψ is up to a constant the same as the one for ψ(n) = logδ n.

At the same time, according to Proposition 4.1, there holds

log pd(n) ≤ n log n+O(n).

Summing up,
nneO(n log logn) ≤ pd(n) ≤ nneO(n).
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