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Abstract

In recent decades, physicists and astronomers have significantly transformed their method-
ology for investigating the universe’s content and evolution. Advanced computing tech-
niques have emerged as indispensable tools to manage the substantial data amassed by
contemporary automated telescopes and highly sensitive instruments. Extracting scien-
tific insights from the vast information pool necessitates interdisciplinary collaboration
among mechanical and electronic engineers, physicists, astronomers, computer scientists,
and software engineers.

This PhD thesis explores the interface of Computer Science and Cosmology within the
Port d’Informació Científica (PIC), a High Throughput Computing (HTC) data center.
The work encompasses two core domains: (comprehensive) data management and the
advancement of (complex) algorithms for cosmological simulations.

In the realm of data management, conventional tools like relational databases are usu-
ally employed. In this work, a pioneering stance is taken towards them, exemplified by
their central role in the Physics of the Accelerating Universe Survey (PAUS). The design
of a comprehensive data management infrastructure within the tight constraints of PAUS
is the first contribution in this thesis.

Moreover, given the limitations of relational databases in handling extensive data and
evolving usage patterns, this study also delves into alternatives. The challenges in the
distribution of cosmological catalogs within the PAUS collaboration lead to the adop-
tion of the Apache Hadoop ecosystem. This investigation culminated in the creation of
CosmoHub, an application leveraging Apache Hive —an unprecedented endeavor within
astronomy and cosmology— that promotes Open Science principles.

Concurrently, in the domain of algorithm development for cosmological simulations,
this thesis describes the effort in developing, optimizing and calibrating an algorithm for
the simulation of observed galaxy electromagnetic fluxes. This algorithm, integrated into a
much larger set of Python modules within a Spark-driven pipeline operating on a Hadoop
cluster, is crucial to the creation of the most extensive and comprehensive virtual galaxy
catalogs, serving the European Space Agency’s Euclid project.



Resum

En les darreres dècades, físics i astrònoms han transformat radicalment la seva metodologia
per investigar el contingut i l’evolució de l’univers. Les tècniques informàtiques avançades
s’han convertit en eines indispensables per gestionar la gran quantitat de dades pro-
duïdes actualment pels telescopis automatitzats i altres instruments d’alta sensibilitat.
Per poder extreure coneixements científics d’aquesta vasta quantitat de dades es requereix
la col·laboració interdisciplinària d’enginyers mecànics i electrònics, físics, astrònoms, in-
formàtics i enginyers de programari.

Aquesta tesi doctoral explora la interfície entre l’enginyeria de informàtica i la cos-
mologia dins del Port d’Informació Científica (PIC), un centre de dades i computació
científica d’alt rendiment (HTC). Les contribucions es centren en dues àrees centrals: la
gestió integral de les dades i el desenvolupament d’algoritmes complexos per a simulacions
cosmològiques.

En l’àmbit de la gestió de dades, es solen emprar habitualment eines com les bases de
dades relacionals. En aquesta tesi hem anat un pas més enllà, en situar-la en un posició
pionera i central en l’arquitectura de gestió de dades del projecte de cartografiat extra-
galàctic Física de l’Univers Accelerat (PAUS, de l’anglès). El disseny d’una infraestructura
integral de gestió de dades, dins de les estrictes limitacions del projecte PAUS, és la primera
contribució d’aquesta recerca.

A més, ateses les limitacions de les bases de dades relacionals a l’hora de gestionar
grans volums de dades i el seus patrons d’ús en constant evolució, aquesta tesi també
aprofundeix en l’estudi d’alternatives. Els reptes en la distribució de catàlegs cosmològics
dins de la col·laboració PAUS ens han portat a l’adopció de l’ecosistema Apache Hadoop.
Aquesta línia de recerca va derivar en la creació de CosmoHub, una aplicació impulsada
per Apache Hive —un esforç sense precedents en astronomia i cosmologia— i que promou
els principis de la Ciència Oberta.

Paral·lelament, en el camp del desenvolupament d’algoritmes per a simulacions cos-
mològiques, aquesta tesi descriu l’esforç per desenvolupar, optimitzar i calibrar un algo-
ritme per simular els fluxos electromagnètics observats de les galàxies. Aquest algoritme,
integrat en un conjunt molt més ampli de mòduls Python dins d’un pipeline impulsat
per Spark, és fonamental per a la creació dels catàlegs virtuals de galàxies més extensos i
complets, que donen suport al projecte Euclid de l’Agència Espacial Europea.
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Chapter 1

Introduction

The primary focus of this thesis is the innovative development of data management tools
and the refinement of complex algorithms, conducted within extensive international col-
laborations aimed at advancing our comprehension of the Cosmos. The scientific concepts
behind this work, specifically within the field of cosmology, will be introduced, since they
are essential to understand the challenges encountered throughout this research journey.

The field of expertise gap between "pure scientists" and "pure engineers" often results in
purepoor communication, reduced efficiency and frustration. A new field of specialization
has emerged in the last decades, the research software engineers (RSE, Woolston, 2022),
with the crucial responsibility to bridge this gap between science and technology, not only to
optimize overall efficiency, but to ensure project success. The RSE role has been gaining
traction in parallel with the complexity of the challenges faced in the current scientific
projects, which are constantly increasing in technical requirements and number of people
involved.

RSE are professionals who combine expertise in software development and engineering
with domain-specific knowledge and skills (Goth et al., 2023). They work with scientists
solve their computing challenges by providing tailored solutions that meet their needs and
requirements. RSE’s fundamental role in scientific research is to enable projects to make
the best use of the available data and resources (Deschamps et al., 2023).

This thesis describes some of my most important contributions to this emerging field
of research, with a particular focus on cosmology. In particular, I present my efforts in
three different but related areas.

Chapter 2 describes the effort of designing, developing and operating a data man-
agement facility for the Physics of the Accelerating Universe Survey (PAUS1). The main
challenge in this contribution was to devise, with very little resources, a comprehensive
data management architecture that would cover the entire data life cycle of the survey:
from data acquisition at the telescope, its transfer to the scientific data center, the reduc-
tion and analysis of the images through the orchestration of thousands of jobs in multiple
pipelines, the archival of all the data generated and the final distribution of results to the
scientific community.

1https://pausurvey.org/
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Chapter 3 explains the design, development and operation of CosmoHub, an applica-
tion for the interactive exploration and distribution of large structured datasets, focused
on astronomical catalogs. This contribution is an evolution of the initial work done to
make PAUS results available to the public. The main challenges in this effort were the
increasingly growing size of the datasets we have to work with, the absence of a common
access pattern that could be exploited to prearrange the data in a more efficient way, and
the lack of specific knowledge and/or experience among scientists to deal with relational
data.

Chapter 4 details the design, optimization and calibration of an algorithm for the sim-
ulation of observed galaxy fluxes2. This work is part of a much larger effort to design,
develop and operate a pipeline for the generation of synthetic galaxy catalogs from cosmo-
logical simulations called Scientific Pipeline at Port d’Informació Científica (SciPIC). In
particular, it is crucial for the design, planning, calibration and science exploitation of the
European Space Agency (ESA3) Euclid4 mission. The main challenge in this contribution
was to be able to produce large amounts of simulated fluxes in a short amount of time and
within very restrictive accuracy margins.

This introductory chapter is structured as follows: first a scientific motivation about
why research along several cosmological topics has been deemed fundamental; second an
introduction about galaxy surveys and how they contribute to the advancement of knowl-
edge on those topics; third a presentation of the concept of cosmological simulations and
their paramount importance in the planning, execution and exploitation of galaxy surveys;
fourth a description of how an adequate data management and infrastructure is essential to
handle the massive data volumes of both galaxy surveys and cosmological simulations and
crucial to the success of both kind of projects; fifth a summary of the main contributions of
this thesis; and a final section to describe the related work and its influence in this thesis.

1.1 Scientific motivation

Among the 12 fundamental questions in astronomy identified as the most pressing ones in
the Astronet Roadmap Executive Summary5 (a European strategic plan for astronomical
research and infrastructure), three of them are directly related to Cosmology:

• What is the nature of dark matter and dark energy?

• Are there deviations from the standard theories and models (general relativity, cos-
mological model, standard model of particle physics)?

• How do galaxies form and evolve?

Since the discovery of the accelerating expansion of the Universe, a wide range of exper-
iments have been conducted or planned to answer these questions, which have established
that the Universe consists of 95% dark energy and dark matter, or that we may need to

2also known as electromagnetic flux, it is the amount of energy captured per unit of time and surface.
3https://www.esa.int/
4https://sci.esa.int/web/euclid
5https://www.astronet-eu.org/?page_id=521
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rewrite the fundamental laws of physics (Abbott et al., 2019; Alam et al., 2017, 2021;
D’Amico et al., 2020; Ivanov et al., 2020; Sánchez et al., 2016; Tegmark et al., 2006,
e.g.)). Galaxy surveys have played (Asgari et al., 2021; Porredon et al., 2022) and will
play (Amendola et al., 2018; DESI Collaboration et al., 2016a, 2016b; Ivezić et al., 2019)
a central role in the discovery and understanding of the constituents of the Universe. The
standard model of cosmology and galaxy formation, postulates that galaxies are formed
in overdense dark matter regions. This allows galaxy surveys to investigate models of the
Universe by comparing either the galaxy distribution (galaxy clustering) or a statistical
measure on how space bending light changes their shape (galaxy lensing). Galaxy sur-
veys, therefore, provide multiple probes for testing theories of our Universe, which must
be internally consistent and also agree with multiple other cosmological probes, including
the cosmic microwave background (CMB, Ferreira 2019; Huterer et al. 2015; Peebles 1980;
Percival and White 2009; Planck Collaboration et al. 2016; Weinberg et al. 2013) and local
velocity measurements.

In the past two decades cosmology has undergone a transition towards precision science5

and computing has played a key role in this transition, in particular with two fundamental
related aspects, "Cosmological simulations" and "Infrastructure and (comprehensive) Data
management", for both simulated and observed data.

On the one hand, cosmological simulations are indispensable for the design and plan-
ning of large-scale extragalactic surveys. Moreover, systematic errors have become more
important than statistical errors, and simulations have become one of the fundamental
tools for measuring, calibrating, and even eliminating them. This vision is also supported
by Astronet:

Simulations of increasing complexity, including higher dynamic range, resolu-
tion, and more physics exploiting increases in computing power, are harnessed
to interpret results, and sometimes to show vividly the outcomes of the research.
[...] Besides these new instruments, future facilities also rely increasingly on
computers and data science as well as on simulations to maximize their return.

On the other hand, the quantity and complexity of the data generated, both from
observations and from the simulations themselves, have exponentially increased. Both
infrastructure and comprehensive data management are crucial for the success and scientific
impact of the experiments.

In the following sections we will describe in more detail these two fundamental aspects
identified in the latest Astronet’s strategic report, and how the contributions detailed in
this work fit in those areas.

1.2 Galaxy Surveys

The accelerating expansion of the Universe (see Riess et al., 1998 and Perlmutter et al.,
1999), discovered in the late 1990s by two independent groups through observations of
distant supernovae, has been confirmed by many experiments through different cosmolog-
ical probes. The physical explanation for this accelerating expansion is still a mystery.
However, there are many theories explaining it, the most promising ones rely on studying
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Date Survey name Data volume Catalog size
1977 - 1982 CfA N/A 2.4 · 103
1985 - 1995 CfA2 N/A 2.0 · 104
1997 - 2002 2dF N/A 3.8 · 105
2000 - 2014 SDSS (DR17) 245 TiB 4.7 · 106
2013 - 2018 DES (DR2) 2 PiB 6.9 · 108
2023 - 2029 Euclid ∼ 30 PiB 1.0 · 1010
2024 - 2034 LSST ∼ 60 PiB 3.7 · 1010

Table 1.1: Most relevant galaxy redshift surveys of last decades, showing how their data
volume and catalog size grows over time.

the content of the universe. As far as we know, ordinary matter only accounts for 5% of
its total energy, while two other unknown entities, called dark energy and dark matter,
account for the remaining 95%. Dark energy is the name given to an unknown form of
energy, which is the most accepted hypothesis to explain the accelerating expansion of the
universe.

Galaxy surveys are one of the most powerful tools to characterise the nature of dark
energy. Their main goal is to determine, with the highest precision possible, the position
of distant sources by measuring their redshift6 and angular positions. Then cosmologists
can create a 3D map of the distribution of galaxies of the observed region of the sky
and estimate statistical properties of the large scale structure of the Universe, which can
strongly constrain the cosmological parameters that drive the dynamics of the Universe.
In practice, due to the sheer volume of data involved and its complexity, such analysis has
become nearly impossible without developing innovative solutions for data management
and analysis.

Galaxy surveys are usually divided in two main categories depending on the technique
used to measure the flux of photons as a function of their energy (or as a function of
their wavelength), which constitute the so-called galaxy spectrum. On the one hand,
spectroscopic surveys observe each individual galaxy spectra and measure how it has been
shifted by its relative velocity. This method delivers very precise estimations of the redshift
but, as it requires the study of individual observations for each galaxy, it can only cover
very small portions7 of the sky. On the other hand, photometric surveys estimate the
redshift of a source by analysing the observed flux on a set of images taken using a few8

broad-band filters. As multiple sources can be observed in each image, the amount of
objects that can be measured is much greater than for spectroscopic surveys. However, as
the spectra information collected is sparse (one data point per filter), the precision is not
as good.

6Cosmological redshift signifies the stretching of light from distant objects due to expanding space,
offering a valuable tool for estimating both their distance and the universe’s age.

7Modern surveys such as the Dark Energy Spectroscopic Instrument (DESI) are starting to change this.
Compared to traditional spectroscopic surveys, DESI boasts an impressive 10x increase in observation
capacity. This is achieved through its innovative design, featuring 5,000 robotic fiber-positioners that
efficiently collect light from multiple objects simultaneously.

8Much as DESI is changing the approach for spectroscopic surveys, PAUS is doing the same by using
a much larger set of filters than traditional photometric surveys.
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The data in Table 1.1 shows some information of the historically most relevant wide area
galaxy redshift surveys: CfA9, 2dF10, Sloan Digital Sky Survey11 (SDSS), Dark Energy
Survey12 (DES), Euclid13, Legacy Survey of Space and Time14 (LSST). It is safe to say that
in the last decade the observational cosmology has entered into a different data regime.

In the next section subsections I will introduce two very different galaxy surveys on
which I have been contributing most of the work described in this thesis.

1.2.1 The Physics of the Accelerating Universe

The Physics of the Accelerating Universe Survey (PAUS) is a galaxy survey aimed at ob-
serving an extensive portion of the sky using narrow-band filters integrated within the PAU
Camera (PAUCam, Padilla et al. 2019). The main objective of this project is to determine
the spectral energy distributions of observed galaxies, surpassing the capabilities of broad-
band imaging, thereby facilitating the more accurate determination of their photometric
redshifts.

PAUCam, the instrumental centerpiece of this survey, is strategically affixed to the
prime focal point of the 4-meter class William Herschel Telescope (see Figure 1.1), located
at the "El Roque de los Muchachos" Observatory (ORM) on La Palma island (Spain). It is
equipped with six broad-band filters (u, g, r, i, z, and Y) with the same design as the DES
filters and 40 narrow-band filters that collectively span the wavelength range from 4500 to
8500 Ångströms. These narrow-band filters exhibit a width of 135 Ångströms, spaced at
100 Ångströms intervals (see Padilla et al., 2019 for more details).

The PAU Survey is a unique approach to measuring galaxy redshifts because it uses
these 40 narrow-band filters to achieve precision similar to spectroscopy but covering larger
areas like photometric surveys. This makes it particularly useful for calibrating other
(much larger) photometric redshift surveys. In addition to calibration, the PAU survey
has a number of other unique capabilities that spectroscopic surveys cannot cover, such as
measuring the redshifts of galaxies in very crowded regions, or from very faint galaxies.

The target selection strategy of the PAU Survey is aligned with the CFHTLS (Canada-
France-Hawaii Telescope Legacy Survey) fields, particularly focusing on areas where deep
imaging had previously yielded galaxy shape measurements, as documented in Heymans
et al. 2012 and Erben et al. 2013. The combination of the lensing measurements of the
source galaxies with the photometric redshifts of the lensing galaxies can enable a variety
of studies (e.g., Gaztañaga et al., 2012)

The main technical challenge of this project, besides the constructions of PAUCam, lies
in the need to design, implement and operate a data management architecture that covers
the entire data lifecycle, from image acquisition at the WHT telescope, to its transfer to
the PIC data center, its analysis and storage, and finally, making the results available to
to the scientific community. The results of this effort are documented in detail in chapter
2, and have also been published in Tonello et al., 2019 and Serrano et al., 2022.

9https://www.cfa.harvard.edu/∼dfabricant/huchra/zcat/
10http://www.2dfgrs.net/
11https://www.sdss.org/
12https://www.darkenergysurvey.org/
13http://www.euclid-ec.org/
14http://www.lsst.org/
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Figure 1.1: PAUCam mounted at the primary focus of the WHT. The 4.2m mirror, with
the secondary focus at its center, can be seen with the petals opened and ready to start
taking the first images during the commissioning phase.

On the scientific side, the challenge is to design, implement, and calibrate a set of
processing pipelines that allow for accurate measurement of the photometric redshift of
the objects observed in the images to deliver a resulting 3D map in the form of a catalog.
This goal has also been achieved, as attested by Eriksen et al., 2019, Eriksen et al., 2020,
Alarcon et al., 2021, Soo et al., 2021, and Navarro-Gironés et al. in prep.

1.2.2 Euclid Mission

The ESA Euclid mission is a space-borne survey mission dedicated to investigate the origin
of the Universe’s accelerating expansion and the nature of dark energy, dark matter and
gravity. Dark energy is a hypothetical form of energy that permeates all space and exerts
a negative pressure that drives the accelerated expansion of the universe. Dark matter is a
form of matter that does not interact with light or other forms of electromagnetic radiation
but can be detected through its gravitational effects on visible matter.
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Figure 1.2: Euclid was launched successfully on July 1st 2023 at 11:12 local time from
Cape Canaveral SLC-40 launch platform using a SpaceX Falcon 9 rocket.

Euclid is the second medium-class mission of the European Space Agency (ESA), in
collaboration with NASA and other international partners, and was named after the ancient
Greek mathematician Euclid, who is known for his work on geometry and optics.

Its main goal is to explore the composition and evolution of the dark Universe, which
accounts for about 95% of the total energy density of the Universe, but remains largely
unknown and mysterious. Euclid will measure how the dark Universe affects the growth
of cosmic structures, such as galaxies and clusters of galaxies, over the last 10 billion years
of cosmic history.

To achieve this goal, Euclid will use two complementary techniques: weak gravitational
lensing and galaxy clustering. Weak gravitational lensing measures how the light from
distant galaxies is distorted by the gravity of intervening matter, revealing the distribution
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of dark matter in the Universe. Galaxy clustering measures how galaxies are distributed
in space and time, revealing the effects of dark energy on the expansion of the Universe.

Euclid will create a huge map of the large-scale structure of the Universe across space
and time by observing billions of galaxies out to 10 billion light-years, across more than a
third of the sky. It will use a 1.2-meter telescope with two scientific instruments: a visible
imager (VIS) and a near-infrared spectrometer and photometer (NISP). VIS will measure
the shapes of galaxies for weak gravitational lensing, while NISP will measure the distances
and spectra of galaxies for galaxy clustering.

Euclid was recently successfully launched in July 2023 (see Figure 1.2) and it is currently
orbiting around the Sun-Earth second Lagrange point (L2), about 1.5 million kilometers
from Earth, along two other companions, Gaia and the James Webb Space Telescope
(JWST15). Its observations over 6.5 years will provide unprecedented data, testing our
current understanding of cosmology and physics.

The mission’s success depends on solving two major challenges. The first challenge is
dealing with the huge amount of data that it will produce, which is expected to be more
than 100 terabytes over its six-year lifetime. To handle this data, Euclid will use a com-
plex data processing system that includes ground-based data centers and high-performance
computing facilities. Chapter 3 describes this thesis’ contribution to this challenge: the
design, implementation and operation of CosmoHub, an application for the interactive
exploration and distribution of massive cosmological datasets. CosmoHub has proven so
useful for Euclid that has become the official tool for the analysis, validation and dissemi-
nation of their cosmological simulations.

The second challenge is dealing with systematic errors in its measurements, which are
errors that are consistent across multiple measurements and can arise from various sources
such as instrument calibration, atmospheric effects, astrophysical effects and also on the
theory/modelling side. To minimize these errors, Euclid will use a variety of calibration
techniques and will cross-check its measurements with other telescopes. One of those
techniques is the extensive use of cosmological simulations, describe in the following section,
to test different cosmological models and study and characterise the effect of the systematic
errors and how they can be neutralised.

1.3 Cosmological simulations

Cosmological simulations are computer-based models that help scientists understand how
the universe has evolved over time. These simulations use complex mathematical equations
to simulate the behavior of matter and energy in the universe. By simulating the universe,
scientists can study processes that occur over long time scales, such as millions or even
billions of years, which cannot be directly observed in the universe.

There are different kinds of cosmological simulations, the two most important are only
dark-matter n-body simulations and hydrodynamical simulations. Only dark matter n-
body simulations model the gravitational interactions between dark matter particles and
baryonic matter particles by replaying the evolution of the universe from its early stages
to the present day. These simulations are used to study the formation and evolution of

15https://webb.nasa.gov/
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large-scale structures such as galaxies, galaxy clusters, filaments and voids, the distribution
of dark matter, and the properties of dark energy. They are based on a combination of
physical models and numerical algorithms, and their output is a catalog containing billions
of mock galaxies, with hundreds of realistic properties such as mass, position, velocity,
shape, luminosity, and many others.

Hydrodynamical simulations include the effects of gas dynamics in addition to gravity.
They use numerical methods to solve complex equations describing the behavior of mat-
ter, energy, and fluids in the universe. Because of the complexity and precision of these
techniques, they are restricted to simulating smaller scales and, as such, they are most
valuable for studying the formation and evolution of galaxies, including the interstellar
medium, star formation, and feedback processes.

The production of these simulations is very complex because of the intrinsic data depen-
dencies of the algorithms involved, which need to evaluate concurrently the gravitational
pull of billions of particles. They also require huge amounts of memory and processing
power. In order to make their production feasible, they are run on supercomputers us-
ing parallel techniques that allow for efficient processing of their data and speed up their
calculations.

The importance and relevance of cosmological simulations for galaxy surveys lie in their
ability to provide a theoretical framework for interpreting observational data. Cosmological
simulations can be used to predict how galaxies should form and evolve under different
conditions, allowing astronomers to compare their observations with simulated data. This
comparison helps identify systematic errors in observational data and provides a way to
test different analysis techniques.

Cosmological simulations are also important for planning galaxy surveys by providing
a way to predict what observations should be made to test specific theories or hypotheses.
Simulations can be used to optimize survey design by predicting how many galaxies should
be observed, what wavelengths should be used, and how long observations should last.
This information is critical for planning successful galaxy surveys.

1.3.1 Euclid Flagship simulations

To achieve a level of image quality and resolution never before seen, researchers within the
Euclid consortium have embarked on an extensive endeavor. They are employing cutting-
edge numerical simulations to accurately model the development and transformation of
vast cosmic structures, including galaxies, galaxy clusters, and the intricate filamentary
arrangements they create within the universe.

The Euclid Flagship mock, generated by a international team of researchers, is the
largest simulated galaxy catalogue ever produced. It uses as input the Euclid Flagship
N-body Simulation. Until now, two different Euclid Flagship Simulation productions have
been released, FS1 and FS2. Thanks to their very large volume, those simulations are able
to portray very distant galaxies we observe today that emitted their light more than 10
giga-years ago, when the universe was much younger. This provides a unique window to
investigate how galaxies form and evolve across their entire lifetime.

FS1 (Potter et al., 2017) was run on the Piz Daint supercomputer at the Swiss Na-
tional Supercomputer Center (CSCS) in 2016 using PKDGRAV3 (Potter & Stadel, 2016).
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The simulation was run with the most current cosmological parameters available (Planck
Collaboration et al., 2014). An all-sky particle light-cone16 up to redshift z = 2.3, with 2
trillion particles, was produced on the fly. The ROCKSTAR halo finder17 (see Behroozi
et al., 2013) was run on the dark matter particle distribution to identify and generate a
halo catalog, able to track substructures and relations with the parent dark matter halos.
All-sky lensing convergence maps were built following the approach described in Fosalba,
Gaztañaga, et al. (2015), which enable weak lensing effects to be included in the final
galaxy catalogue.

FS2 (Stadel et al. in preparation), run in 2020, is an improvement of FS1 and is
intended to be the base for the Science Ground Segment simulations (image simulations)
and the Science Working Groups studies prior to science exploitation. It features a larger
simulation box with 4 trillion dark matter particles that goes up to redshift z = 3. This
simulation is the largest n-body simulation performed to date and matches the basic science
requirements of the mission as it allows us to model the faintest galaxies Euclid will observe
(complete down to the Euclid flux limit) and samples a cosmological volume comparable
to what the satellite will survey.

The corresponding mock galaxy catalogs are produced from the dark matter halo cata-
logs of FS1 and FS2 using an improved implementation of the Halo Occupation Distribution
(HOD) technique (Carretero et al. 2015, Castander et al. in preparation) called SciPIC.
SciPIC (Carretero et al., 2017) is a comprehensive set of Python codes to simulate, in a
very efficient and fast way, large galaxy catalogs using as input a dark matter halo popula-
tion. It runs on top of the PIC Big Data service using Apache Spark. Chapter 4 describes
in detail part of all the effort invested in the development, calibration and optimization of
SciPIC.

The galaxy catalogs produced from FS1 were used to perform the Euclid Science Per-
formance Verification 2 (SPV2) exercise18 and to inform the Euclid Mission Critical Design
Review. The galaxy catalogs produced from FS2 are being used to perform the Euclid Sci-
ence Performance Verification 3 (SPV3) analysis19. We present in Figure 1.3 an example
illustration of the mock galaxy catalogue, where a small region of the light-cone is shown,
and one can distinguish by eye the emergence of the large-scale structure of the Universe.

1.4 Data management and Infrastructure

As hightlighted by Astronet, in the last two decades astronomy has become a data-intensive
endeavor, and the large, complex and inter-dependent data sets that are being generated by
observatories, space missions and simulations require new tools and approaches for doing
science. Scientific questions are driving the need for surveys that cover large regions of the
sky, obtain deeper exposures or include multi-frequency/messenger coverage. The sheer

16A light-cone is a 3D volume that represents the past light history of a single point in space. In other
words, it is the set of all points in space that could have emitted light that reaches the observer at the
present time.

17A dark-matter halo is a triaxial structure (usually prolate) that surrounds a galaxy or galaxy cluster.
They are the basic entity on top of which galaxy catalogs are simulated. ROCKSTAR is a specialized
software to identify and mesure the propeties of haloes from a dark-matter particle simulation.

18see https://www.euclid-ec.org/wp-content/uploads/EC-Newsletter_issue08.pdf
19see https://www.euclid-ec.org/science-performance-verification-3/
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Figure 1.3: False colour visualization of a Euclid Flagship mock galaxy catalog based on
FS1. At the top, a depth-limited slice of the full light-cone (roughly 0.3% of the total
volume). Central galaxies are coloured in red and satellites in dark blue, where filaments
from the large-scale structure are seen in great detail. Bottom left shows a section zoomed
on the local universe while bottom right shows the fraction of the furthest galaxies. The
differences in large scale structure between closer and farther sections are very noticeable.

data volumes from such experiments is increasing at a high rate with a number of projects
and facilities expected to have annual data production of the order of petabytes.

We have also entered the era of multi-messenger astronomy. Going beyond the often-
quoted advent of gravitational wave science or the synergy with astroparticle physics ex-
periments, the trend is towards the need to combine data from observations across the
electromagnetic spectrum and beyond. This is in addition to the transient object searches
of time domain astronomy, leading to high flux event streams where rapid detection, clas-
sification and follow-up observations bring new challenges for computing and analysis.

Dedicated simulations, either conducted as numerical experiments or modeling efforts,
also reach levels of complexity and volumes which call for an updated assessment of how
we run them, process them, and share and distribute their outputs and associated data
products.

Users also want to interact with data from diverse sources. The need to jointly analyze
datasets from a variety of instruments or facilities with different characteristics, as well as
to connect the observational and modeling landscapes further motivates the development
of flexible and transparent frameworks where the focus shifts from data towards the ap-
plied expertise and tools. This is reinforced by the paradigm shift pertaining to sharing
information and the push for "Open Science", where the added value will come from the
access to expertise, supported by media and tools that alleviate the difficulty of dealing
with varied datasets. This, in turn, motivates new ways to deal with data, using science
analysis platforms that enable a "bringing computing to the data" paradigm.
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1.4.1 The Port d’Informació Científica

The Port d’Informació Científica (PIC) was founded in 2003 as a data center of excellence
for scientific data processing, supporting scientific groups working in projects which require
large computing resources for the processing and analysis of massive sets of distributed
data. It is operated and maintained through a collaboration agreement between IFAE
(Institut de Física d’Altes Energíes) and CIEMAT, supported by the Spanish Ministry of
Economy and Competitiveness and the catalan Department of Economy and Knowledge.

Located on the campus of the Universitat Autònoma de Barcelona (UAB) in Cerdanyola
del Vallès, Catalonia, PIC has two rooms with different characteristics and energy efficiency
profiles: a 150 m2 air-cooled room and a 25 m2 highly energy efficient room which uses
immersion cooling based on open bath dielectric fluid tanks for the storage and computing
IT equipment. Its facilities include around 12,000 high-throughput cluster computing slots,
a tape storage system with approximately 4,500 tape slots and a capacity of 64PB, and
18PB of disk storage within 60 storage servers. PIC also operates a big data service based
on a custom-designed 30-node cluster running a Hadoop distribution developed in-house.

The external network is deployed in collaboration between the Catalan NREN (CSUC,
Anella Científica), the Spanish NREN (RedIRIS) and the Géant pan-European network,
which provide high-throughput connectivity between research institutions and the Internet.
Being the Spanish Tier-1 center for CERN, PIC is connected through a dedicated 100 Gb
link between PIC, CERN and the other Tier-1s. It is also connected to the LHCONE
network to Tier-2s and to La Palma, one of the Canary Islands where the Roque de los
Muchachos Observatory (ORM) is located, serving multiple affiliated projects. PIC is also
connected to the Internet by another 100 Gbps links.

PIC collaborates with various scientific fields, including particle physics, astrophysics,
observational cosmology, gravitational waves, bioimaging, quantum computing and mate-
rial sciences, among other fields. In particle physics, PIC coordinates and provides support
to activities related to the Large Hadron Collider (LHC) in his role as the Spanish Tier-1
infrastructure, such as ATLAS, CMS and LHCb experiments, as well as Neutrino Physics
experiments and Voxel Imaging PET (VIP). In astronomy and cosmology, PIC collabo-
rates with several projects dedicated to the research of large scale structure, dark energy,
accelerating expansion of the universe, gamma rays and cosmological simulations, such as
CTA, MAGIC, DES, PAU, Euclid, and MICE.

Lately, the Council for Science, Technology and Innovation Policy of the Ministry
of Science and Innovation has approved the update of the Map of Singular Scientific and
Technical Infrastructures (ICTS) of Spain for 2021-2024 with the incorporation of four new
infrastructures, including PIC. PIC joined the Spanish Supercomputing Network (RES)
in 2020, an infrastructure that connects 14 supercomputing centers in Spain and since
2007 has been providing high-performance computing services to the scientific community.
Since the RES is recognized as an ICTS by the Ministry of Science, PIC has also obtained
this recognition as a node of this distributed infrastructure. The inclusion of PIC in the
ICTS map is an important milestone for the center, as it recognizes its work during almost
two decades in large-scale scientific data analysis and opens new avenues for establishing
collaborations with research groups facing data analysis challenges, and for funding these
activities.

26



1.5 Contributions

This thesis contributions revolve around the figure of the RSE in a scientific data center
and how that role is fundamental as a liaison between scientists and technicians to ensure
a correct and efficient information flow that is critical to any research project’s success.

In this section I will summarize the objectives, approach and corresponding results. The
first one has been the design and implementation of a comprehensive data management
system for the PAUS Survey. The second one has been the application of Open Science and
Open Data principles for the management of very large cosmological datasets that resulted
in the development of an open platform called CosmoHub. And the third one describes a
small but very relevant part of a greater effort to optimize and improve the efficiency of an
algorithm to simulate electromagnetic galaxy fluxes in order to generate massive synthetic
galaxy catalogs.

Note that the work presented in this thesis is deeply indebted to the free and open-
source software (FOSS) community, and all its invaluable contributions that foster col-
laborative innovation. In the spirit of reciprocity, I’ve made an effort to publish as much
source code from my contributions as possible under free licenses, hoping to empower oth-
ers and enrich the collective knowledge pool. The corresponding source code will be linked
accordingly in each section.

PAUS data management and operations

The first contribution in this thesis, described in chapter 2, has been the design, develop-
ment and operation of a data management and operations architecture that encompasses
the entire life cycle of the PAU Survey.

As a small research project, PAUS had several constraints but also some unique advan-
tages. On the one hand, as it started as a project completely lead and develop by Spanish
Institutions, both the human and material resources were limited. On the other hand, the
lack of a bureaucratic steering body also allowed for a greater degree of freedom on the
technical approaches. This effort synthesizes a wide range of tasks and responsibilities, as
the scope of the assignment was very broad.

After every PAUCam exposure is captured, it goes through a quick reduction process
on-site that gives immediate feedback on several crucial parameters. Any image that does
not pass the quality test is discarded, otherwise it is stored and staged for transfer to PIC.
It is at this time that we take control of the process. We had to design an architecture
to track the images since the moment they are transferred, until they are finally archived
after being processed by multiple pipelines.

Furthermore, not only we need to track the images themselves but also the attached
metadata that describes them, and all the additional information that will be generated
by the analysis pipelines. This metadata is also key to enable efficient processing, repro-
ducibility, and access to the project’s data, as it allows scientists to identify datasets of
special interest to their research. This architecture has to also allow the ability to perform
periodic reprocessing of all the data acquired by the survey, as frequent as every two weeks,
enabling iterative algorithm refinement with each cycle, and to provide data releases in a
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timely manner. Finally, the status, progress and quality of the processing has to be moni-
tored by the operations personnel, in order to detect as early as possible any irregularities
and issue the corrective actions needed.

PAU database (PAUdb) is the selected approach I envisioned to solve most of these
challenges tied to metadata management. Based on a PostgreSQL relational database and
tied to a carefully designed data model20, we have been able to store, track and monitor all
of the metadata generated throughout PAU Survey. Furthermore, in combination with an
Object Relational Mapper (ORM) layer, it enables processing pipelines to access all this
information in a very fast, efficient and easy way.

All the images acquired at WHT are transferred to PIC by an automated procedure
that runs every morning as observations finish. As soon as the images arrive and the
associated metadata are registered in PAUdb, their analysis can start. All the processing
of images and metadata is done by a set of highly optimized pipelines that combine external
specialized software and custom developed Python algorithms. The pipelines use the ORM
layer in order to interact with PAUdb to ensure optimal data access.

The first analysis pipeline to run on the images, and the most important one, is the
nightly pipeline. This pipeline is fundamental during observation periods as it is responsible
for detecting any anomalies on the freshly taken images, so that they can be marked as
faulty and be re-observed the following night. Thus, it is imperative that this pipeline has
been properly optimized and can run in a timely manner, to allow for the insights of a
night to drive the observations of the following and maximize the efficacy of the survey.

Besides the nightly pipeline, other pipelines have been developed to further process
PAUS’ data an deliver the planned scientific results. All these pipelines are divided into
individual tasks that get sent to the PIC computing farm to be executed. In order to track
the execution of those tasks and ensure the traceability and reproducibility of any analysis,
a custom designed tool was developed, named BT.

BT21 is a job orchestration framework that allows pipeline developers to design arbi-
trarily complex workflows, connecting a vast collection of processing steps, and keeping
track of their configuration and execution status. It is also integrated with the Quality
Control (QC) layer of PAUS, monitoring and storing essential job metrics to track the
scientific performance.

Finally, a set of web applications that feed on all this data, allow PAUS scientists and
operators to monitor, analyze and supervise the quality of the observations, as well as to
enable access and exploration of the resulting galaxy catalogs by the scientific community.

CosmoHub: interactive catalog exploration and distribution

The second contribution in this thesis, described in chapter 3, has been the design, de-
velopment and operation of CosmoHub, an application for the interactive exploration and
distribution of large structured datasets, with special attention to cosmological catalogs.
This effort is an evolution of the initial work done to publish PAUS’ results through a web
portal.

20Source code available at https://github.com/ptallada/paudm-model.
21Source code available at https://github.com/ptallada/brownthrower.
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The objectives behind CosmoHub’s design were to provide a centralized distribution
point for cosmological catalogs from multiple projects where users could build, plot and
download custom subsets of those catalogs using the most common standard data formats,
and ensuring its usability even for non-technical users (specifically for those without any
Structured Query Language (SQL) knowledge).

The most difficult challenge in this contribution has been the research, deployment and
implementation of a data warehouse that was capable of storing very large catalogs (>500
million rows, >500 columns) while keeping the query response times within interactive con-
straints. This has been specially difficult as the lack of a clear access pattern inhibits most
kinds of data access optimization techniques such as indexation, partitioning or sorting.

Although the initial prototype was built on top of PAUdb and used the same relational
database to store and query the hosted catalogs, we realized it was not the best tool for
this task. While a relational database such as PAUdb is optimized to handle thousands of
small queries per second, including the addition, modification and removal of small subsets
of rows, CosmoHub’s data workflow is very different. In particular, each catalog is only
inserted (or ingested) once at the beginning, is never modified afterwards (only removed
it its entirety) and almost all queries request a large subset of rows.

We analyzed several alternative solutions and we finally settled on Apache Hive, a
data warehouse based on Apache Hadoop. Hive provides an SQL interface on top of
massive datasets stored on a distributed filesystem, such as HDFS (Hadoop Distributed File
System). Keeping the SQL interface is important, not only to ensure a smooth transition
from PAUdb, but also because SQL is the natural language for relational data access, such
as cosmological catalogs.

Hadoop’s design, based on a shared-nothing cluster architecture, provides linear scal-
ability and great fault tolerance. On top of it, Hive is able to bring an impressive per-
formance gain with respect to PAUdb, as the queries are executed in parallel on all the
nodes in the cluster, taking advantage of concurrent and distributed data reads that greatly
reduce the execution times.

However, using SQL to explore and build custom catalogs is not very user friendly.
Therefore, for CosmoHub we have designed and implemented a web application22 that
guides the user through all the steps, even those that know nothing about SQL. Using this
interface, users are able to list and search within through the available catalogs, build their
own subsets by selecting the columns they need, add filters to further restrict the output,
quickly explore them by creating histograms or heatmaps in seconds and download the
resulting custom catalog if desired in the most standard formats.

As the astronomical community has some specific needs that were not covered by
the features available in Hive off-the-shelf, we have designed and developed23 a set of user
defined functions (UDFs) to further extend the capabilities of CosmoHub. In particular, we
have implemented three distinct sets of functions that can be called directly through SQL:
a set of HEALPix24 functions to interface with this spherical pixelization function, a set of
array aggregate functions intented to be used on astronomical spectra or probability density

22Source code for the backend is available at https://github.com/ptallada/cosmohub-api.
23See https://github.com/ptallada/pic-hadoop-udf for the full source code of the implemented UDFs.
24https://healpix.sourceforge.io/
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functions, and a set of spherical geometric functions that are part of the Astronomical Data
Query Language25 (ADQL) standard.

Finally, the custom catalogs requested by the users are delivered in minutes and can
be downloaded in several standard file formats. For this purpose, we developed multiple
drivers to generate the output in the intended format, taking advantage of Hadoop’s dis-
tributed writes to minimize catalog creation time. CosmoHub is then able to merge the
multiple outputs into a single file that is served to the user. This method has been used
to implement the following formats26: CSV.BZ227, FITS2829, ASDF30 and Parquet31.

By now, CosmoHub has become the official catalog distribution platform for several
research projects, such as PAUS or the Euclid simulations. It also hosts private data for
many other projects such as DES, DESI, MAGIC, MICE, and also public datasets such
as those from Gaia32. It currently serves about 150 monthly active users from around the
world.

SciPIC: fast and precise simulation of galaxy fluxes

The third and last contribution in this thesis, described in chapter 4, has been the design,
implementation, optimization and calibration of a method for simulating galaxy electro-
magnetic fluxes. This work is part of a large suite of algorithms for the generation of very
large synthetic galaxy catalogs, called SciPIC. These catalogs have become fundamental
to design and plan both present and future galaxy surveys, to calibrate the reduction al-
gorithms and, in general, to enable the scientific exploitation of all the data they generate.
In particular, this effort has been fundamental for the production of mock galaxy catalogs
for PAUS and the ESA Euclid mission, among others.

These mock galaxy catalogs, often implemented as massive tables with one row per
galaxy and a column per simulated property (up to several hundreds), represent realistic
synthetic universes. Galaxy fluxes constitute one of the most important properties on
those catalogs and each galaxy can have up to several hundreds, depending on how many
instruments (or filters) and observing scenarios are required. Thus, the main challenge
in this effort is to generate billions of galaxy fluxes as efficiently as possible, so that the
generation of these synthetic universes can be done in a reasonable time frame.

In physics, an observed galaxy flux can be defined as a function of the amount of energy
that arrives to an observer with respect to its wavelength. It can be computed as the
integral of the observed galaxy electromagnetic spectra convolved with the corresponding
filter transmission. In simulations, the observed galaxy spectra is estimated from several

25https://www.ivoa.net/documents/ADQL/20180112/PR-ADQL-2.1-20180112.html
26See https://github.com/ptallada/cosmohub-api/tree/master/cosmohub/api/io/format for the source

code.
27https://datatracker.ietf.org/doc/html/rfc4180, and http://sourceware.org/bzip2/
28https://fits.gsfc.nasa.gov/fits_documentation.html
29See https://github.com/ptallada/recarrayserde for the source code of the Hive FITS binary format

serializer/deserializer.
30https://asdf-standard.readthedocs.io/en/1.6.0/
31https://parquet.apache.org/
32PIC is a Gaia affiliated data center since 2020 and hosts both public and embargoed Gaia data in

CosmoHub.
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properties present in the galaxy catalog: the galaxy spectral energy distribution (SED),
the emission lines contribution and the Milky Way extinction.

However, simulating galaxy fluxes following this approach requires solving several in-
tegrals that, even when using highly optimized numerical libraries, impose a high compu-
tation cost. In our tests, simulating a single filter for one billion galaxies could take up to
13 months using a single core. Given that the largest synthetic universes can hold tens of
billions of galaxies and require up to several hundred fluxes each, it is clear the approach
based on integrals cannot be used.

In this contribution we devised an alternative approach33 based on interpolations and
some clever simplifications. The main idea has been to split up the integral computation
and take advantage of the fact that some values are constant, some depend only on the
filter, and others can be approximated.

In particular, we have tested this method for two very different scenarios: one is a
broad-band survey such as Euclid, and the other is a narrow-band survey as PAUS. Our
experiments prove that, when properly calibrated, this method is able to compute galaxy
fluxes 750 times faster than the integral-based approach within the stringent precision
margins that these simulations impose. Thus, making the production of very large mock
galaxy catalogs feasible.

1.6 Related work

As in any field of science, the contributions contained in this thesis have not been designed
in isolation. They are the result of a great personal effort supported by a broad community
of researchers with whom we share a common journey of discovery to push the boundaries
of scientific knowledge.

PAUS data management and operations

The design of PAU Survey data management was influenced by other similar contemporary
surveys. In particular, the one that had the most influence was the Dark Energy Survey
(DES, Morganson et al. 2018), as a great majority of PAUS members were also partici-
pating in DES. It shares most of the ideas behind the data model and the reliance on the
AstrOmatic34 suite of tools to perform most of the heavy lifting to process the adquired
images.

Both PAUS and DES have a data base at the center of their data management archi-
tecture. However, the resources to implement this architecture for both projects were very
different. PAUS had far less human and material means and, as it was decided from the
very beginning, PIC was to centralize all of its operations. In the end, the efficiency and
performance of PAUdm surpassed that of DES, as PAUS has been able to perform many
more reprocessings at a faster pace.

33The source code for both approaches is available at https://github.com/ptallada/scipic_fluxes.
34https://www.astromatic.net/
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Nowadays both PAUS and DES have stopped their observations, but other wide surveys
are ready to pick up the baton and continue the mission to unveil the misteries of the dark
universe. The Euclid telescope was just launched in July 2023 and the first science-ready
images have already been processed at PIC. The Dark Energy Spectroscopic Instrument
(Guy et al., 2023, DESI) has already published an early data release for the first 6 months
of observation. And the Legacy Survey of Space and Time (Ivezić et al., 2019, LSST),
to be carried out at the Vera C. Rubin Observatory, is expected to see the first light in
January 2025.

On a final note, DES is planning to shut down their entire data management architec-
ture due to its high maintenance cost, mainly from the Oracle licenses that power their
database. One of the possibilities that are being studied is to migrate the DES catalog
archive to CosmoHub, in order to preserve it and keep facilitating its access to the scientific
community.

CosmoHub: interactive catalog exploration and distribution

When we envisioned CosmoHub as a data distribution tool between PAUS and MICE
projects back in 2012, there were very few data distribution portals. The most important
ones were SkyServer (Raddick et al., 2014a, 2014b) and TAO (Bernyk et al., 2016). Those
portals were already visionary in their concepts and started a revolution that still echoes
today. With vast volumes of data within easy reach, scientific communities gathered and
took advantage to further analyze all the data available, in ways they were not imagined
yet. Along blossomed citizen science projects such as Galaxy Zoo (Lintott et al., 2011;
Willett et al., 2013).

Nowadays, there are many scientific portals that give access to multiple datasets and
offer very distinctive features, catering to an ever growing diverse user community:

• SkyServer has matured into a full-fledged science platform called SciServer (Taghiza-
deh-Popp et al., 2020), that improves on performance while incorporating a large set
of new features, including notebooks, long running batch jobs and an ADQL interface
to query all its data releases.

• TAO provides web access to cloud-based mock extragalactic survey data, generated
using sophisticated semi-analytic galaxy formation models that are coupled to large
N-body cosmological simulations. TAO is part of the larger All-Sky Virtual Obser-
vatory (ASVO) project, whose goal is to federate and distribute astronomical data
to the wider community via a cloud-based data storage system. It supports TAP
and ADQL protocols for remote data access.

• The Vera Rubin Observatory has launched the Rubin Science Platform (RSP, O’Mul-
lane et al. 2021) which offers the ability to launch notebooks, a data access portal
with a guided interface to query LSST Data Preview releases and the possibility to
access the same data over TAP in an automated way.

• The European Space Agency has deployed ESA Datalabs, a science portal featur-
ing notebooks, standard Virtual Observatory35 (VO) APIs for automated access and
a collection of commonly used astronomical software like TOPCAT36 and SAOIm-

35https://www.ivoa.net/
36https://www.star.bris.ac.uk/~mbt/topcat/
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ageDS937 that can be accessed directly from the browser over VNC (Richardson et
al., 1998). However, it does not include any guided tool to query the catalogs it
hosts.

• The National Science Foundation’s (NSF) NOIRLab has Astro Data Lab (Nikutta
et al., 2020), a very comprehensive science portal that features a crossmatch service,
an image cutout service, notebooks, a multilayer image visualization tool, an ADQL
interface to query about 50 datasets and a complete set of APIs to remotely access
the service.

All in all, there seems to be an agreement on the general direction in terms of the
functionalities that these science portals implement:

• Exploration of astronomical catalogs with the possibility to display or download
subsets of data, based almost exclussively on raw SQL statements. Some of them
offer examples or other guidance to assist users with no prior SQL experience.

• Visualization of astronomical images or maps, based on the Hierarchical progressive
surveys (HIPS, Fernique, P. et al. 2015) technique. Multiple layers of information
can be superimposed to compare between them.

• Notebooks to enable users to run arbitrary analysis over the hosted datasets.

• Standardized APIs to acces and interact with the data, including TAP, ADQL,
VOTable38, UWS39, SIA40 and SCS41.

• Federated authentication with major academic/research identity providers, such as
InCommon42 and eduGAIN43, to facilitate user onboarding.

• Collaborative features such as custom groups and the ability to share notebooks,
datasets and visualizations within these groups but also to other external users.

Even surrounded by this fierce competitors, CosmoHub still stands proud as a spe-
cialized portal for the interactive exploration and distribution of massive cosmological
datasets. Most of the alternatives have imposed restrictions on the time or volume that
queries can take. SciServer limits interactive queries to 1 minute, and batch queries to 8
hours. Astro Data Lab has a 10,000 row limit for previews and a 500,000 row limit for
batch catalogs. And RSP limits downloads to a maximum of 5 million rows. Oppositely,
CosmoHub can offer full unrestricted interactive queries and batch catalogs thanks to its
unique design and impressive performance.

Finally, note that CosmoHub has not seen any remarkable changes in design or archi-
tecture since its migration to Hadoop in 2016. Even now the most recent science platforms
are not up to par with its response times when it comes to dealing with massive datasets.
However, time does not pass in vain and some of CosmoHub’s features feel a bit outdated.

37https://sites.google.com/cfa.harvard.edu/saoimageds9
38VOTable Format Definition: https://www.ivoa.net/documents/VOTable/
39Universal Worker Service Pattern: https://www.ivoa.net/documents/UWS/
40Simple Image Access: https://www.ivoa.net/documents/SIA/
41Simple Cone Search: https://www.ivoa.net/documents/latest/ConeSearch.html
42https://incommon.org/
43https://edugain.org/
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The absence of notebooks and the lack of support for VO APIs is particularly upsetting.
Thus, work has already begun to implement these features and many more in a new version
of CosmoHub that we hope will be seen as the next point of reference.

SciPIC: fast and precise simulation of galaxy fluxes

When dealing with large datasets it is not unusual that operations that are used regularly
cannot be applied as the computational cost becomes unfeasible. The issue resides in the
problem scalability. In this scenario, shared with many other fields of science, alternatives
must be sought to simplify or circumvent this complexity. Nearly all of the time, gains in
speedup come at the cost of losing accuracy, so it is crucial to understand and tune this
balance in order to provide meaningful results.

The approach used to optimize the execution time of the algorithm that simulates
observed electromagnetic fluxes in SciPIC has nothing out of the ordinary. It is a com-
bination of simple techniques that are very effective in solving the challenge at hand. In
simple terms, we replace a convolution by a multiplicative factor and aproximate the inte-
grals by carefully calibrated interpolations:

∫
(A+B) · C ∼

(∫
A+

∫
B

)
·
∫

C

Similar approaches are taken to generate complex datasets like N-body simulations. In
these simulations of a given cubic volume, the position of trillions of particles is randomly
assigned and the effect of gravity is reproduced over large scales of time. Solving the Newton
equations (general relativity is far too complex for the current computing capabilities) for
trillions of particles over billions of years requires an amount of memory and processing
power only available in very few supercomputers in the world. The effort they require
makes these simulations one of a kind.

However, for some studies, having just a few of these simulations is not enough. For
instance, research studying the uncertainty in several cosmological parameters. These
studies really benefit from having hundreds even thousands of these simulations. For
instance, a method named COmoving Lagrangian Acceleration (COLA, Tassev et al. 2013)
is able to produce a similar output than traditional N-body simulations but several orders
of magnitude faster. COLA trades accuracy at small-scales in order to gain computational
speed without sacrificing accuracy at large scales. This makes it a very valuable tool to
cheaply generate large ensembles of accurate mock halo catalogs to study properties like
galaxy clustering and weak lensing, essential for performing detailed error analysis for
ongoing and future surveys of large scale structure.
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Chapter 2

PAU Survey data management

The Physics of the Accelerating Universe Survey (PAUS1; Martí et al., 2014) observed
about 100 deg2 of the northern sky for the study of the accelerated expansion rate of the
universe. The main scientific contribution has been the measurement of distance (in terms
of photometric redshift, or photo-z) for about 1 million galaxies from known catalogs, with
an improved resolution, together with the study of galaxy spectral features, clustering,
intrinsic alignments and their evolution, among other science cases.

PAUS uses a very innovative approach to try to combine the best characteristics of
both spectroscopic and photometric galaxy redshift surveys. By combining photometric
measurements of 6 broad-band filters with 40 narrow-band ones one has enough information
to estimate each source’s redshift with a precision similar to an spectroscopic survey, while
being able to observe a much larger area in the same time.

The data acquisition is carried out using an imaging camera, called PAUCam (Padilla
et al., 2019), designed and built at the engineering facilities of IFAE, in Barcelona. PAU-
Cam is a community instrument2 operating since 2015 at the primary focus of the 4.2 m
diameter William Herschel Telescope (WHT) at Observatorio del Roque de los Muchachos
(La Palma, Spain). PAUCam (Figure 2.1) is made of 18 4k × 2k CCDs, with a system
of 46 optical filters (6 broad band and 40 narrow band), installed in a set of moving in-
terchanging trays (López et al., 2016). Each PAUCam focal plane image consists of about
650 MiB of information, which translates into a mean total data volume of 200 GiB for a
typical observing night. PAUCam data are transferred to the Port d’Informació Científica
(PIC), the PAUS data center, after each night of observation.

I have been involved in PAUS since its inception around 2009. In particular, I have
had a main role in the design, development, testing and operation of the data management

1The project is governed by a consortium, originally founded by the Spanish institutes Centro de In-
vestigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Instituto de Fisica Teórica (IFT),
Institut de Ciències de l’Espai and Institut d’Estudis Espacials de Catalunya (ICE/IEEC-CSIC), Institut
de Física d’Altes Energíes (IFAE) and Port d’Informació Científica (PIC), with the later incorporation
of several European institutes (Durham University, ETH Zurich, Leiden Observatory, University College
London) for its scientific exploitation.

2Community, or visitor instruments at WHT are those instruments whose teams have ex-
pressed an interest in collaborative proposals. External applicants can submit a proposal based
on PAUCam after contacting the instrument responsible. Further information can be found at
https://www.pausurvey.org/paucam/community-instrument/
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Figure 2.1: Top: PAUCam design showing the filter exchange system and the overall
camera vessel. Bottom: one of the filter trays for narrow band filters. Each narrow band
filter has a different waveband and covers one of the central CCDs of the PAUCam focal
plane. Broad band filters cover the outer CCDs.

for the entire project. This chapter compiles and describes my main contributions to it.
Most of its contents were originally published in Tonello et al. (2019), an article in which
I am the first technical author. The structure of this chapter is as follows: section 2.1
introduces the main scientific requirements and technical challenges that had to be solved
for the success of the survey; section 2.2 describes the technological infrastructure of PIC,
the PAUS data center, that inherently imposes additional technical constraints; sections
2.3 through 2.7 explain in detail the design and implementation of a solution for each
challenge; and finally, section 2.8 offers some concluding remarks above all this work.
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2.1 Introduction

The data management of a galaxy redshift survey is especially demanding due to the large
amounts of data and metadata that need to be stored, the strict latency requirements of
its processing and the difficulties of providing access to all this information to any external
user. Moreover, the limited availability of observation time for the PAU Survey at the
WHT and the ambitious scientific goals of the project impose additional constraints that
must be taken care of too.

The PAU Survey data management (PAUdm) team is responsible for the design and
development of a data management architecture to deliver science-ready data products
to the PAUS Collaboration and its scientific community. The main challenges faced are
typical of a highly automated system, delivering and processing a considerably high data
volume (compared to the one that can be comfortably handled by a single computer).

Successful large projects in analyzing and distributing astronomical data, such as the
Sloan Digital Sky Survey (SDSS3), are a clear reference for this work, but are not directly
reusable given the rapid evolution of technical and software tools which can be applied to
data management.

The scientific requirements and technical challenges imposed by the project are:

• Metadata integrity and preservation

PAUdm shall guarantee the preservation and consistency of the PAU Survey’s files
metadata and of the results of the images reduction, such that they can be accessible
for their scientific exploitation. After careful consideration, it was decided to put a
relational database at the core of the data management design. This PAUS database,
named PAUdb, has been implemented using PostgreSQL4.

All of PAU Survey metadata are checked and preserved in PAUdb, including meta-
data related to the PAUCam images, the reduction results and the settings used for
the processing. Most of PAUdm services rely on PAUdb, such as the job orchestra-
tion tool (BT), the data distribution portal and several other web services for the
successful operation and management of the survey.

Section 2.3 explains the effort to design and deploy PAUdb, define its database
schema and implement an object relational layer to interface with all the data analysis
code. This work also includes the periodic refactorization and update of the database
schema as part of the ever ongoing work to optimize its efficiency and scalability to
handle the increasing volume of data.

• Data transfer and archival

The PAU Survey’s raw and reduced data files shall be archived and preserved in
an organized way. Raw image files produced by PAUCam at the WHT are to be
transferred to PIC after data taking, usually the morning after a night of observation.
A temporary storage in the observatory with capacity for 5 nights of observation
allows some margin in case of connection interruptions or other temporary problems.

3https://www.sdss.org/
4https://www.postgresql.org/
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Section 2.4 describes the data buffer at the observatory and the definition of a transfer
protocol which allowed the automation of the data transfers and its posterior long-
term archival.

• Operations: timely nightly report

The survey plan for each observation night, determined by the list of sky coordinates
and related telescope settings (such as exposure time, filter tray) that should be
observed to complete the survey with the desired quality, is guided by a nightly
report. This report compiles the result of executing the nightly pipeline on the
observed images of the previous night. As such, it must be produced during the
morning (while the researchers sleep) and be ready by afternoon to guide the target
of the following observation night. This imposes a strict time limit, as the entire
image reduction analysis has to be completed in less than 6 hours.

Section 2.5 details how the image reduction algorithms have been adapted to run on
top of the high throughput computing system at PIC, with optimized efficiency.

The specific algorithms in the nightly pipeline (image detrending and cleaning, astro-
metric and photometric calibration) as well as the algorithms used for the production
of the final catalogs (source extraction and generation of co-added objects spectra)
are explained in Castander, F. J. et al (2019) and Gaztañaga, E. et al (2019)
respectively.

• Modular and reproducible analysis

The data management of PAUS not only has to be able to process the vast amounts
of information it generates, but also has to guarantee that those analyses are re-
producible and that the codes involved in it can evolve through the project’s life
cycle.

All the data processing is split in multiple individual steps that, when necessary,
can be run isolated to test, debug and optimize. All the analysis pipelines are then
built from combining several of those steps in a direct-acyclic-graph (DAG). Section
2.6 describes the design and development of a tool called BT that, based on the
metadata stored in PAUdb, aids in the management and orchestration of all these
pipelines and their corresponding steps.

• Operations and metadata exploitation and distribution

The data management of PAU Survey involves processing and generating a lot of
metadata, most of it ends up in PAUdb. Moreover, all files (raw and reduced images
as well as analysis results) must be accessible, distributed and published, initially to
the collaborators of the project and eventually to the whole scientific community.

In order to facilitate the operations and the data access to its multiple analysis tools
and products, several web interfaces have been developed to assist in those tasks.
Although they have not been a core part of this thesis, they are briefly described in
section 2.7 to illustrate how a well designed data management system can benefit and
be further improved by powerful ad-hoc applications that tailor custom use cases.
There is one exception though, as the development of the first prototype of a data
distribution portal for wide access and distribution of PAUS data catalogs (described
in subsection 2.7.5) is indeed part of this thesis and has turn up into a full-featured
platform called CosmoHub (see chapter 3).
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2.2 PAUS data center

Figure 2.2: PAU infrastructure and services.

PAU data management has been developed on top of the PIC infrastructure, which
consists of a storage system, a network, a computing farm, databases and user interfaces.
As such, all the challenges described in the previous section must be solved within the
technical constraints described here.

The PAU project has access to a series of standard and customized services (user
interface, test worker node, web servers on virtual machines and databases), supporting the
activities of the data management. The standard user interface system of PIC allows any
user of the PAU project to access the PIC infrastructure, with a dedicated 10 GiB "home"
space, a shared scratch NFS disk area, and access to the PAU files archive. Interactive
access to a test worker node offers an environment which allows developers to test and
debug the PAU pipelines before the production phase.

The computing farm is shared among all hosted projects at PIC. 5% of the 12000
available cores (year 2023) have been assigned to PAUdm activities as a yearly average.
The software developed for PAU Survey image reduction and analysis is managed through
git5, accessible from an NFS software area, readable by all the nodes.

Raw images from William Herschel Telescope (WHT) at Observatorio Roque de los
Muchachos (ORM) in La Palma, Canary Islands are transferred to PIC through a shared
10 Gb connection. PAU files are permanently stored on disk and tape. On tape, we
have configured an automated double copy, in two different cartridges, that guarantees the
preservation of PAU Survey data in case of failure of one of them.

A second copy of the raw data produced by PAUCam are stored at the CASU Astro-
nomical Data Center in Cambridge. This serves to mitigate any catastrophic failure of the
primary data center at PIC. In addition, this copy can be retrieved from the Isaac Newton

5https://git-scm.com/
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Group Archive6 web page one year after the observation, when data are public according
to WHT policy.

The virtualized infrastructure of PIC hosts the web services for PAU Survey: the PAU
Survey web site, and the internal web service7, entirely dedicated to PAUdm activities (see
section 2.7).

The PIC storage manager (dCache) integrates WebDAV as a native protocol for data
access. This is used for internal PAUdm archive file access. In addition, external observers,
that received a time allocation to use PAUCam for their own scientific purposes, use it to
download their data. WebDAV will also be used for open access once PAU Survey raw and
reduced data become public.

2.3 The PAUS database (PAUdb): metadata integrity and
preservation

Preservation of data and metadata, as well as of their consistency, is a critical point of the
data management of every scientific project. The PAU Survey project generates a large
number of files while data are being taken and processed, and a large amount of metadata
as a result of running image analysis pipelines. The data volume is only one of the critical
points: files and metadata produced at high velocity need to be accessed concurrently by
hundreds of nodes in the PIC computer farm where reduction and analysis codes run.

Several alternatives for implementing a metadata repository were explored, such as a
nested structure of ASCII files, relational databases or newer NoSQL solutions. Particular
emphasis was given to solutions enabling the following: use of Structured Query Language
(SQL), which is already familiar to most of the scientific community; support for relational
operations, to ease comparisons between datasets; and an open, mature, stable software
capable to deal with the data volume we had foreseen for the project.

We settled on a relational database setup consisting of two twin servers configured one
as a replica of the other. Initially, each server had 12 physical cores, 96 GiB of memory
and 2 TiB of storage (6-disk RAID array). The main database server was later upgraded
to a much powerful hardware, with 24 cores, 64 GiB RAM and 4 TiB of ultra-fast solid-
storage. PostgreSQL was selected as the software solution for the relational database due
to its stability, performance and broad compatibility with current SQL standards.

The PAU processing pipelines make heavy use of database transactions to ensure the
integrity and consistency of the ingested data. The information stored in the PAU database
is backed up periodically to minimize data loss in case of malfunction or catastrophic failure.
Full backups are made monthly, with critical tables being saved weekly. External catalogs,
which are not modified, are backed up just once after ingestion.

6http://casu.ast.cam.ac.uk/casuadc/ingarch/query
7http://paudm.pau.pic.es
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2.3.1 PAUdb data model

The database schema for PAUdb has been designed based on the requirements collected
from all PAUdm components, and has been evolving throughout the operations phase
to match changes and improvements in the processing pipelines. The PAUdb content is
organized in about 40 different tables, each one of them usually maps a to metadata entity
in the PAUdm processing pipelines. The data model8 has been specifically designed to
favour inserts instead of updates in order to support a large number of concurrent clients,
mapping to multiple simultaneously running jobs.

Figure 2.3: Schematic organization of the main PAUdb tables.

Figure 2.3 shows the high level organization of the main PAUdb tables (see tables
2.1, 2.2, 2.3, 2.4 and 2.5 in Appendix 2.A for a complete relation of tables and columns).
Some of them are filled and queried during data reduction: they contain the metadata
about raw files and files produced by the nightly pipeline, as well as calibration factors
and intermediate values. The production table takes care of code version preservation.
Job orchestration tables (for a description of the orchestration tool, see section 2.6) store
configuration and metadata related to the tasks run in the computer farm, connected to
the tables storing quality checks performed during data reduction. Other tables store the
results of the multi-epoch multi-band analysis (MEMBA) intermediate and final catalogs.
Public catalogs of reference surveys such as Gaia (Gaia Collaboration & et al., 2016), SDSS
(Abolfathi & et al., 2018) and CFHTLenS (Heymans et al., 2012) are stored in PAUdb for
calibration and analysis purposes.

PAUdb is interfaced using SQL commands or statements. This language enables users
to specify, in a declarative manner, the operation they want to perform on the database,
such as retrieving a subset of rows or modifying some existing values. Writing complex
SQL statements usually requires full knowledge of the database model and understanding

8Source code available at https://github.com/ptallada/paudm-model.
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of how relational databases work. There are also strong security concerns when those
statements contain user supplied input, as that may lead to unexpected results such as
information leaks, alteration or destruction.

In order to mitigate all those issues and to facilitate access to PAUdb by the pipeline
developers, it was decided to proxy all pipeline database operations through an Object
Relational Mapper (ORM) layer, allowing developers to interface with the database using
the standard constructions present in their programming language. Having Python9 as the
main programming language for the PAUS processing pipelines, we chose SQLAlchemy10

as the specific ORM solution because of its complete feature set and its comprehensive
documentation.

The database structure, described in the ORM model, allows developers to access
the database by importing a specific Python module in their code and using the set of
classes, objects and methods defined in it, instead of having to manually construct SQL
statements. For instance, querying data from another table linked by a foreign key is as
easy as accessing a particular object attribute. Using such an abstraction layer comes with
additional benefits, such as being able to change and evolve the database structure without
interfering with users, as they only interact with the ORM model.

2.3.2 Limitations and improvements

The implemented relational database works great for the PAUS reduction pipelines. How-
ever, while not designed nor optimized to handle high metadata volumes produced by
analysis jobs, we found out it worked well enough for most purposes.

To ease out large analysis tasks and to facilitate the publication and distribution of
the data, the largest tables handling the products of the image reduction and multi-band
analysis are migrated to the PIC Big Data platform. Once there, several services for
interactive analysis and distribution, such as CosmoHub (see section 2.7.5 and chapter 3),
make those tasks easier, faster and without limitations in data volume.

2.4 Short term storage and data transfer

PAUCam takes exposures of the night sky at the William Herschel Telescope, at Obser-
vatorio del Roque de los Muchachos in La Palma (Canary Islands). Each exposure is a
Multi-Extension FITS (MEF) (Pence et al., 2010) file that has to be transferred to the
PAU data center, preserving in its header the information (metadata) collected by the
PAUCam control system related to the sky, weather and telescope conditions when the
data was taken.

Raw data produced by PAUCam are saved in MEF files called mosaics, corresponding
to one focal plane composed by the 18 PAUCam CCD images. Each extension contains
data produced by the readout of one of the four amplifiers of each CCD, for a total of 72
extensions. The organization and collection of the information related to the MEF files
is a joint effort between the PAUCam and PAUdm teams. A communication protocol,

9https://www.python.org/
10https://www.sqlalchemy.org/
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assuring automation and consistency, had to be defined and agreed on. The MEF files
are written by the PAUCam data acquisition system (Padilla et al., 2019) including all
exposure metadata in the header.

Images are organized in observation sets. Each observation set is a group of contiguous
exposures taken with the same telescope configuration. Metadata related to each observa-
tion set (date, operator comments, project name and list of files names with checksums)
are collected in a YAML11 file by the PAUCam data acquisition system. These metadata
are not relevant for analysis but are useful for traceability and debugging purposes.

At the end of a night of observation, the telescope operator gives the command to start
the archiving procedure. Data files (MEF and YAML) are moved atomically with their
extended attributes, such as the adler32 checksum, from PAUCam to the PAUdm storage
space located at the observatory.

The main objective of the transfer procedure is to copy all newly created observation
sets from the temporary storage at WHT to the PAUdm archive at PIC. The transfer
procedure has been evolving since the initial tests before PAUCam commissioning.

The first transfer scheme implemented used a push strategy and involved setting up a
pair of Storage Resource Manager (SRM) (Donno et al., 2008) servers at both ends (WHT
and PIC), managed by an instance of the File Transfer Service (FTS) (Ayllon et al., 2014).
This first setup was heavily influenced by the WLCG infrastructure already functioning at
PIC. Later on, this scheme was simplified by dropping the use of FTS (as its use was being
deprecated at PIC) and handling ourselves the orchestration of the transfers. This also
allowed the replacement of Grid certificates by private, internal self-signed certificates.

In 2018 we completely replaced the transfer procedure for a pull-strategy one based
on the bbcp12 tool to handle the bulk transfers, triggered automatically from PIC every
morning. This tool was selected because it maximizes the bandwidth utilization even on
high-latency wide area network (WAN) links, such as the original 1 Gbps link between PIC
and ORM (2000 km apart).

After all the observation sets have been transferred to the PAUdm archive, including
checksum verification, register jobs are submitted to insert the metadata from each ex-
posure file into PAUdb. Temporary storage at WHT is manually freed as needed (about
every 6 months).

Figure 2.4 shows a sample of the network traffic during the observation period of the
second semester in 2017 (2017B), as well as the volume of data downloaded. Download
speed is stable over periods of days and is around 20 MiB/s on average, in spite of the fact
that PAU Survey shares the network link with all the other experiments operating at the
observatory.

2.5 Analysis pipelines and nightly report availability

PAUdm operations are entirely carried out on top of the infrastructure available at PIC
(see section 2.2). Evolved from a first basic script for image analysis that was designed

11http://yaml.org/
12https://www.slac.stanford.edu/~abh/bbcp/
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Figure 2.4: The solid line shows the daily average transfer speed registered at PIC for PAU
Survey data (observation period 2017B). The bar chart shows the data volume transferred
in the same day. The transfer rate performance looks quite stable and independent of the
transferred data volume. Fluctuations are due to the fact that the network link is shared
with other projects at the observatory.

to work on a single computer, the data reduction code has been acquiring complexity
and completeness. The parallelization of the processes in different pipelines has been
fundamental. Also, the use of many independent tasks helps scalability, and flexibility of
the execution environment. The PAU database has dedicated tables, created in order to
automatically activate execution of functions and orchestrate nightly operations.

The code of PAUdm is organized in pipelines written in Python, specifically designed
to be run both in a HTC infrastructure or in a local computer. Each pipeline consists of
one or more types of tasks. Each task type is connected to others by static dependencies.
Tasks of the same type have a defined configurable set of parameters and can run in parallel
to guarantee the scalability with the number of files to treat. Each task is composed of
three parts: a prolog, a run and an epilog. The prolog and epilog of the task are able to
generate new sub-jobs, with the associated dependencies and configuration. The run part
executes selected functions on given input file(s).

PAUdm has defined the following main pipelines, schematically shown in Figure 2.5:
register, nightly and MEMBA. Additional pipelines are pixelsim, for the simulation of raw
PAUCam images, crosstalk, for the evaluation of the crosstalk effect on raw mosaics and
its correction, and photoz, for the estimation of the photometric redshift of each source.

The register and nightly pipelines run automatically after each night of observation.
Their dependencies and the level of parallelization of their tasks are shown schematically
in Figure 2.6.
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Figure 2.5: PAU data management pipeline dependencies. Gray rectangles identify
pipelines and arrows their interfaces with the storage system and the PAU database.

Figure 2.6: PAU data management transfer, register and nightly pipelines, and their rela-
tion with storage and the database.

The register pipeline is responsible for storing the metadata of all images in PAUdb as
they are transferred, and has been parallelized to work every FITS file independently. Each
register job reads the header of a exposure file and inserts the corresponding metadata in
PAUdb: mosaics from the primary headers and individual images from extension headers.

Jobs in the nightly pipeline run following a hierarchical structure: for each observation
set, the master bias is calculated first, followed by the master flats. Finally the single_epoch
jobs that process each science mosaic are run in a separate job, as soon as the corresponding
master-flats mosaic is available. The nightly pipeline also calculates image parameters and
calibration factors that determine data quality used by MEMBA. The result of each run of
this pipeline can be consulted in the nightly report, generated online by querying PAUdb.
Each PAUS member can access them from the internal web page (see section 2.7.3).

Figure 2.7 shows part of the computer farm activity for PAUS, from the commissioning
of PAUCam to the end of 2017, both in terms of number of jobs (each one of them occupying
one slot in a node) and on wall time, i.e. the time spent from job submission to completion.

45



Figure 2.7: Monthly sum of the number of jobs (solid lines) and wall time (red dots),
from commissioning on June 2015 to the end of 2017. Only PAU register, nightly and
MEMBA jobs have been selected (other analysis and test jobs have been removed for
clarity). Register jobs have been run during the PAUCam observation periods. Nightly
jobs follow the register pattern. Extra nightly code releases have been run out of the
observation periods over subfields of the survey for validation purposes. Most of the time
spent in the computer farm is due to MEMBA jobs, the high number of jobs depending on
the high level of parallelization of the pipeline. Memba jobs have been run with different
configuration and different code complexity, explaining the non-linear dependency of the
number of jobs with the wall time.

2.6 Job orchestration tool: BT

The PAUdm algorithms were initially executed as a single monolithic pipeline with a long
and convoluted configuration to enable/disable specific steps and to provide the execution
parameters. This setup, albeit useful to bootstrap the initial productions of PAUdm, was
very hard to extend and maintain. This was improved following the iterations described
below.

The first iteration was to split the different processing steps into jobs, with a fixed
dependency tree connecting them. This modularization enabled the execution of an entire
pipeline in smaller and shorter jobs, improving both the maintainability and the response
times. Nevertheless, with the evolution and integration of additional processing steps, this
mechanism became too rigid. The dynamic nature of the PAUdm pipelines required a
more flexible orchestration method, were dependencies between jobs could be customised
per job, or even created at run-time depending on the analysis results.
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As a result, it was decided to develop a specific orchestration tool called brownthrower
(BT13). Even though it was developed for the PAUdm pipelines, BT is a generic tool that
may be used by other projects. In fact, it has been used for orchestrating several MICE and
Euclid job productions. Developed on top of the PIC grid job scheduler (PBS, HTCondor),
it has the advantage of being able to dynamically establish and manage the dependencies
between different jobs, therefore allowing the implementation of complex pipelines. In
order to achieve an efficient use of computing resources, the processing defined in each job
must run in a single batch slot of the PIC computer farm (generally defined as one core
and 3-4 GiB of RAM).

The cornerstone of this tool is a relational database, currently in the same database
server as PAUdb. It holds all the information about the jobs, such as their input and output
data, dependencies, and configuration settings. BT makes heavy use of the transactional
nature of the relational database to ensure the consistency and integrity of that information
while tracking the status of every job. BT provides two tools to manage jobs: a manager
and a runner. BT manager is a command line interface to create, configure and submit
jobs for execution, query their status and abort them. BT runner is the tool that executes
the job. Once launched in the proper environment, it starts pulling ready-to-run jobs
from the database and executes them sequentially. In practice, BT runner is used as a
pilot job (Sfiligoi, 2008), with several hundreds of instances running simultaneously on the
computing farm, executing multiple jobs in parallel. Finally, the fact that all the jobs,
past and present, are stored in a relational database, makes all data available for auditing
and accounting purposes. The PAUdm jobs, organized in highly parallelized tasks, are
orchestrated thanks to the connection between BT and PAUdb, both for jobs created
automatically and manually.

2.7 Operations and metadata exploitation and distribution:
PAUdm web services

The PAUdb constitutes the core part of the PAUdm system, providing all the relevant
information that can be accessed from a series of tools for the automatic execution of tasks
and for user friendly inspection and cross-check. A web interface provides a description
of the PAUdb schema, an SQL Browser, and many graphical representations of the DB
content, designed according to the users’ needs.

The web interface functionality facilitates the PAUdb inspection in a graphic form,
for operations control (jobs execution in the computing farm), data quality parameters
inspection (calculated during the first images processes), the temporal evolution of the
scientific parameters measured in the images.

The web interface is fully accessible to the PAUS members. In addition to the internal
usage, it is meant to allow the entire scientific community to easily explore the PAUdb
content, once it is published, similarly to what has been implemented for other cosmo-
logical surveys and astronomy projects. The advantage of having a single database with
multiple access points and different functions guarantees the consistency, the provenance

13Source code available at https://github.com/ptallada/brownthrower.
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and reproducibility of the results exposed. This constitutes the main difference between
the previous solutions14,15,16 and what has been designed and implemented in this thesis.

2.7.1 Operations control

Figure 2.8: View of the PAUS web interface for operations control. Time evolution of jobs
processing one observation set.

PAUdb permits the orchestration of the PAUdm pipelines jobs. During operations,
pilot jobs are launched in the PIC computing farm and the tasks to be executed are
automatically fetched form the PAUdb and executed. The details of each job recorded in
PAUdb that can be accessed from the web page are:

• the configuration,

• input,

• output,

• log messages,
14https://www.sdss.org
15https://ivoa.net/
16https://www.darkenergysurvey.org/the-des-project/data-access/
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• and, in case of an error, the traceback.

In particular, the job configuration and its error traceback allow for a quick look in
case of a failed job.

Jobs are hierarchically structured. Each job can have sub-jobs, with static dependen-
cies, as a result of the parallelization of the pipeline execution. From the web, the job
hierarchy is maintained and sub-jobs details can be accessed clicking on the top level jobs.

A series of graphical views are associated with the operation control web page. The
execution status chart, for example, gives a quick overview of the time evolution of the
jobs status of a certain pipeline (Figure 2.8).

2.7.2 Data Quality inspection

During the execution of the tasks and in the epilog of the parent tasks, a series of quality
checks are performed with results assigned to the executed job. The quality checks can
be either numeric values of parameters, to be compared to a certain value range, and/or
plots for visual check. Quality controls plots are generated by parent jobs, summarizing
the evolution of interesting parameters calculated in their subtasks.

The results of the quality checks are registered in the PAUdb and linked to the corre-
sponding job, the plots are stored in a dedicated disk space accessible both from the nodes
executing the jobs and from the web server. These results can be viewed through the job
details page.

The quality inspection is especially interesting during the process of validation and
debugging. During normal operations, the quality checks result is monitored, shown as
a green, red or yellow (in case of partial, but not critical failure) flag in the main job
operations page.

2.7.3 Nightly Report

The main purpose of the Nightly Report web page is to provide feedback to the survey
and science program planning process. Each PAUS member can access the nightly report
and check the results of the basic pipelines running on the data taken each night, through
an automatic query to PAUdb.

It provides an overview (see Figure 2.9) of all the image parameters taken in a given
range of observation nights and stored as raw metadata in PAUdb. Additional metadata
of scientific interest, like seeing, sky background, detrending status etc. are available to be
queried by the page after the nightly tasks have finished successfully, while the information
is safely stored in PAUdb. These parameters, displayed as plots, show the time evolution
of observing conditions and data quality over the night.

2.7.4 Files and metadata access and distribution

The PAUdb webpage allows the user to access the PAU files in archive, the PAUdb schema
and the metadata through an SQL search window. This tools permits running a direct
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Figure 2.9: PAUS web interface: Nightly Report page example with plots.

query to the PAUdb tables using SQL, a language widely used in the astronomical com-
munity.
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Construction of queries is supported by the publication of the full db schema: the name
of all tables, fields, types, descriptions, and of available indexes. The PAUdb webpage is
a powerful tool to query the database, visualize the results on-line in form of tables or
plots (histogram, or scatter), create new fields applying functions or as a combination of
multiple fields, and download query results (up to 10k rows) in CSV format (Shafranovich,
2005). This tool has been largely superseeded by CosmoHub, that provides more features
and performance, as explained in section 2.7.5.

The production table, where information of the general configuration of the pipelines
execution is stored, is also published, with its full content (see Figure 2.3 for a schema of
the PAUdb). Each entry of production table is associated with a pipeline and linked to its
input pipeline through the field input_production_id, to guarantee full traceability.

Other functionalities and tools developed accessing PAUdb content under scientists
request:

• Web visualization of PAUS analysis results (the so-called photometric spectra).

• Full comparison of the analysis output with the original telescope images

• Comparison of the analysis results with the results of external surveys (pre-loaded
in PAUdb).

• PAUS catalogs distribution of massive cosmological datasets without any SQL knowl-
edge being required (the origin of CosmoHub 17)

2.7.5 Catalog distribution: CosmoHub origins

Figure 2.10: PAUdm catalogs distributed in CosmoHub.

Spatial queries run directly on PAUdb, implemented using Q3C (Koposov & Bartunov,
2006) and PgSphere extensions over PostgreSQL, are not very efficient due to the size of
the tables, even when indexes are available. When users request a large number of rows,
databases ignore indexes and traverse the entire table, as it is faster that hoping between
the index and the referenced table data. Moreover, the filtering criteria may be so complex
that implementing every combination as an index becomes unfeasible.

One of the tools we have adopted to access and distribute data for the PAUS collabo-
ration is CosmoHub, a web platform based on Big Data technologies developed at PIC to

17https://cosmohub.pic.es/
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perform interactive exploration and distribution of massive cosmological datasets without
any SQL knowledge being required. The latest release has been built on top of Apache
Hive, a data warehouse based on Apache Hadoop which facilitates reading, writing and
managing large datasets. CosmoHub is hosted at the Port de Informació Científica (PIC)
and provides support not only to PAU Survey, but also to several international cosmology
projects such as the ESA Euclid space mission, the Dark Energy Survey (DES) and the
Marenostrum Institut de Ciències de l’Espai Simulations (MICE).

CosmoHub allows users to access value-added data such as sky or survey properties
maps, to load and explore pre-built datasets, and to create customized object catalogs
through a guided process. All those datasets can be interactively explored using an inte-
grated visualization tool which includes 1D histogram and 2D heatmap plots. They can
also be downloaded in standard formats. For an in-depth description of CosmoHub, see
chapter 3.

We currently ingest into CosmoHub three tables of PAUdb (see Figure 2.10), con-
taining metadata (productions information) and analysis results (table production and
forced_aperture_coadd) and derived quantities (photometric redshift, or photo-z) results
coming from pipelines using MEMBA data. Data from external surveys, used to calibrate,
to perform forced photometry or to cross-check PAUS data (such as COSMOS, CFHTLenS
or SDSS) are also accessible from CosmoHub for a direct comparison, in addition to mock
galaxy catalogs created by the MICE collaboration, which are used for calibrating and test-
ing the different pipelines. Access to this information allows the PAU Survey collaborators
to explore and download the PAUdm MEMBA output catalogs for scientific exploitation.

2.8 Conclusions

The PAU Survey project considered that the data management solutions to adopt were
crucial to determine its success, as it has been demonstrated by the previous and current
generation Surveys (from SDSS on). PAUS data management is in charge of the data
transfer from the observatory to the data center, the deployment and execution of the
nightly pipeline and other analysis pipelines, as well as the organization and distribution
of the final results and the metadata produced during the data processing.

PAUdb, implemented on a PostgreSQL database, is the successful solution adopted by
the project for PAUdm operation and orchestration. It has been designed to be the pillar
of the data management, not only to preserve information but also its consistency, from
the raw metadata to images, object catalogs and results reproducibility. It also keeps track
of the archive status, the processes that have been run, and it has been developed with
the idea of enabling data accessibility as well as distribution of final observed catalogs.
The source code of the data model and its ORM layer is available at https://github.com/
ptallada/paudm-model.

PostgreSQL has been proven to be a good choice for frequent data insertion, deletion
and update. Our implementation has limits when over several hundred concurrent connec-
tions are reached, limiting parallel execution to about 250 concurrent jobs. This, however,
does not impact routine PAUdm operations.
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BT18, a locally developed tool, is used for orchestration of PAUdm tasks on the HTC
infrastructure at PIC. It should be noted that this development was undertaken when
Grid computing was not fully mature and most of the tools available today were not in
existence. If such development had to take place today, we would have probably used
an already existing tool such as Celery19. A posteriori, the size and complexity of the
PAU Survey project justified this development, which has provided many advantages and
custom features such as the next day feedback to the observation scheduling.

The performance of the automatic transfer procedure has fulfilled the PAUS project
needs. The data downloading process from the observatory in La Palma to PIC finalizes in
a few hours, with outstanding reliability during normal operations, and full recovery in the
rare cases of failure. While more sophisticated tools would allow the same reliability with
higher automation, the data volume to be transferred per night, the concentration of the
transfer in a few weeks per years, and the relatively short lifetime of the project favoured
a simpler solution.

The high level of parallelization of the pipelines in independent jobs, the number of
computing nodes and the distributed file system available at PIC for the PAUdm jobs pro-
cess allows us to fulfill the requirement of having nightly results and data quality available
on time for optimizing the survey program. The HTC infrastructure enables reprocessing
of all survey observations within a few days.

Web services have been implemented for PAU data and metadata access, retrieval
and analysis. They have received a very positive feedback from collaborators, due to their
usability and information content. The data services implemented are giving key support to
the first scientific productions exploiting the PAUS data (see Cabayol et al. 2019; Stothert
et al. 2018; Tortorelli et al. 2018).

The first version of CosmoHub (see chapter 3 for an in-depth description of the subse-
quent implementation) over PAUdb was an excellent solution for catalog exploration and
distribution. The process of migrating PAUdb tables to this platform is still manual. The
synchronization of contents between PAUdb and CosmoHub not only improves the han-
dling of PAUS catalogs, but also their findability, once the standardization of CosmoHub
content in the Virtual Observatory paradigm is completed.

18Source code available at https://github.com/ptallada/brownthrower.
19https://docs.celeryq.dev
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2.A PAU database schema

In the following we show the names, description and column list of each of the main tables
of the PAUdb schema. Foreign keys, which determine the relation between tables, are
marked in italic.
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Table 2.1: PAUdb tables

Table name Description Columns
production Tracks the different processing

production runs for all pipelines
comments, created, id, input_production_id, job_id, pipeline, release, soft-
ware_version

mosaic List of mosaic exposure images
(raw and reduced)

airmass, amb_temp, archivepath, astro_chi2, astro_contrast, as-
tro_href_sigma, astro_nstars, astro_nstars_highsn, astro_ref_cat, as-
tro_ref_sigma, astro_status, comment, date_creat, date_obs, dec, de-
trend_status, equinox, exp_num, exp_time, extinction, extinction_err,
filename, filtertray, filtertray_tmp, guide_enabled, guide_fwhm, guide_var,
humidity, id, instrument, kind, mean_psf_fwhm, merged_mosaics, nex-
tend, obs_set_id, obs_title, photo_status, pressure, production_id,
psf_model_status, ra, rjd_obs, telfocus, time_creat, time_obs, wind_dir,
wind_spd, zp_phot_id

image List of images associated with
the mosaics (CCD and single am-
plifier images)

amp_num, bkg_mean , bkg_std, ccd_num, cosmic_ratio, dec_max, dec_min,
filter, gain, id, image_num, max_readnoise, mosaic_id, naxis1, naxis2,
n_extracted, psf_fit, psf_fwhm, psf_stars, ra_max, ra_min, rdnoise, satu-
rate_ratio, transparency, waveband, wavelength, zp_nightly, zp_nightly_err,
zp_nightly_stars

obs_set List of Observation Sets regis-
tered in the database

id, instrument, log, night, notes, obs_set, operator, rjd_start, rjd_stop

project Description of projects observing
with PAUCam

contact_email, contact_name, created_at, description, id, name

crosstalk_ratio Crosstalk correction to be ap-
plied to each amplifier

amp_num_dest, amp_num_orig, ccd_num_dest, ccd_num_orig, produc-
tion_id, ratio

detection Detections measured directly on
the image after the nightly data
reduction

id, image_id, insert_date, band, background, class_star, spread_model,
spreaderr_model, flux_auto, flux_err_auto, flux_psf, flux_err_psf,
flux_model, flux_err_model, flags, elongation, dec, ra, x, y, zp_offset
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Table 2.2: PAUdb nightly calibration tables

Table name Description Columns
phot_method Photometric methods background_method, background_parameter, comments, extraction_code,

extraction_method, extraction_parameter, id, scatterlight_method, scat-
terlight_parameter

phot_zp Photometric zero-points band, date, id, production_id, zp
template SED of star templates references filename, id, template_index, template_lib, template_name
star_photometry Calibration stars fluxes bg, bg_err, flags, flux, flux_err, id, image_id, phot_method_id, ref_cat,

ref_id, x_image, y_image
star_template_zp SED template associated with

each star
id, star_zp_id, template_fit_band_id, zp, zp_error, zp_weight

star_zp Star zero points calculated in the
nightly calibration

calib_method, id, star_photometry_id, zp, zp_error, zp_weight

image_zp Image zeropoint measurements
for each photometry-calibration
method

calib_method, id, image_id, phot_method_id, transparency, zp, zp_error
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Table 2.3: PAUdb memba and catalogs tables

Table name Description Columns
forced_aperture Contains the single measure-

ments using force photometry in
memba for each band and pass,
and for each reference source

annulus_a_in, annulus_a_out, annulus_b_in, annulus_b_out, an-
nulus_ellipticity, annulus_median, annulus_samples, annulus_sigma,
aperture_a, aperture_b, aperture_theta, aperture_x, aperture_y,
flag, flux, flux_error, image_ellipticity, image_id, pixel_id, produc-
tion_id, ref_id

forced_aperture_coadd Contains the combined measure-
ments using force photometry in
memba for each band and for
each reference source

band, chi2, flux, flux_error, n_coadd, production_id, ref_id, run

sdss_spec_photo _class, dec, extinction_g, extinction_i, extinction_r, extinction_u,
extinction_z, fiberID, fiberMagErr_g, fiberMagErr_i, fiberMagErr_r,
fiberMagErr_u, fiberMagErr_z, fiberMag_g, fiberMag_i, fiberMag_r,
fiberMag_u, fiberMag_z, mjd, mode, modelMagErr_g, model-
MagErr_i, modelMagErr_r, modelMagErr_u, modelMagErr_z, mod-
elMag_g, modelMag_i, modelMag_r, modelMag_u, modelMag_z, ob-
jID, plate, ra, specObjID, subClass, survey, tile, z, zErr, zWarning

memba_ref_cat Reference catalog used for a
given memba production

production_id, ref_cat

photoz_bcnz Photometric redshifts chi2, ebv, n_band, odds, production_id, pz_width, ref_id, zb,
zb_mean
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Table 2.4: PAUdb BT tables

Table name Description Columns
dependency Tracks the dependency between

Brownthrower jobs (Operation
table)

super_id, parent_id, child_id

job Tracks the list of Brownthrower
computing jobs (Operation ta-
ble)

config, description, id, input, name, output, status, super_id, token, ts_created,
ts_ended, ts_queued, ts_started

quality_control quality control entries measured
during the data reduction pro-
cess

check_name, id, job_id, max_value, min_value, plot_file, qc_pass, ref, time,
units, value

tag Configurable tags associated
with a job (tracebacks, logs,
etc.)

job_id, name, value

Table 2.5: PAUdb Public external tables

Table name Description
cosmos External table from zCOSMOS. Sources with accurate redshifts for forced photometry and validation
sdss_spec_photo External table from SDSS DR12 (SpecPhoto view). Sources with spectra for forced photometry and vali-

dation
spec_conv Convolved fluxes derived from spectra observations from external surveys (i.e. SDSS, COSMOS, DEEP2,

etc.
usnostars Stars from USNO catalog
yalestars Stars from Yales catalog
cfhtlens CFHTLenS catalogue for Forced Photometry
deep2 Deep2 catalog
gaia_dr2 Gaia DR2 catalog for astrometry and calibration
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Chapter 3

CosmoHub

When managing huge datasets, the main challenges that scientists have to deal with are
the interactive exploration, customization and distribution of data. Typical cosmological
surveys can produce datasets of several terabytes in size. The needs of the scientists to
deal with such huge datasets, and the novel affordable technological and computational
solutions, lead me to propose and finally guide the implementation of CosmoHub, that will
be explained in this chapter.

CosmoHub (https://cosmohub.pic.es) is a web platform based on Hadoop to perform
interactive exploration, customization and distribution of massive cosmological datasets,
with over 60 TB of catalogued information and 50 billion astronomical objects, without any
Structured Query Language (SQL) knowledge required. Hosted at the Port d’Informació
Científica (PIC), it currently provides support to a worldwide community of more than
1400 scientists and several leading edge collaborations. It was born as an extension of the
solution implemented for the PAU Survey, with the intention to give a generic service,
suited for managing cosmological catalogs coming from galaxy surveys and other similar
projects. I investigated the possible solutions, prepared the technical design and the imple-
mentation plan of the platform, and developed all of its core features, while the deployment
and web frontend has been carried out in collaboration with the staff1 at PIC.

The main objectives of CosmoHub are to allow users to access and download custom
subsets of the datasets hosted in it and to do some quick exploration using its integrated
plotting tools, all of this using a simple guided interface. It is the first platform of its kind
to introduce Hadoop as the storage and computing platform of choice for cosmological
datasets. Its frontend has been designed around modern web standards, with special
emphasis on simplicity and usability to appeal to a broader audience. As it can be accessed
through a web browser, it does not require any kind of deployment or installation on the
final users computers.

1Special mention to Jordi Casals, for the design and implementation of the frontend; Marc Caubet,
Carles Acosta and Agustín Bruzzese for the operation of the Hadoop cluster; and Ricard Cruz for the
infrastructure maintenance.
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CosmoHub hosts a collection of catalogs from a wide array of cosmological projects,
such as COSMOS Laigle 20152, Gaia3 DR34, the Dark Energy Survey (DES5) DR26,
the Physics of the Accelerating Universe Survey (PAUS) PAUS+Cosmos photo-z7, the
MICE numerical simulations8, and the official Euclid Flagship galaxy catalogs9, among
many others. Each of those catalogs belongs to one or several research groups or projects.
Public catalogs do not require any specific membership or permission to access its data,
while access to restricted data is regulated still manually by the data owner.

Since its migration to Hadoop in 2016, CosmoHub has demonstrated its ability to
deliver cutting-edge capabilities for researchers in the field, empowering them to explore
and analyze cosmological data with unprecedented efficiency. The platform has witnessed
a steady increase in both user engagement and data volume, up to 150 monthly active users
and more than 60 TiB of catalogued data. However, this has not impacted its response
times, as 96.8% of all interactive exploration plots are generated in less than two minutes,
while 97.4% of the custom catalogs are delivered within a timeframe of 30 minutes.

This chapter describes CosmoHub and the technological decisions that drove its design
and development and is structured as follows. Section 3.1 introduces the scientific context,
section 3.2 enumerates the main user requirements that had to be addressed, section 3.3
outlines the general architecture of the solution implemented, section 3.4 dwells into the
earlier iterations of the platform, section 3.5 characterizes the Hadoop platform that powers
CosmoHub, section 3.6 details the implementation of the multiple download data formats,
section 3.7 depicts how we developed several sets of User Defined Functions to extended
the functionality, section 3.8 portrays the design and development of the web application,
section 3.9 reports the main results of this work and section 3.10 summarizes and concludes.

2http://cosmos.astro.caltech.edu/page/photom
3https://www.cosmos.esa.int/web/gaia
4https://www.cosmos.esa.int/web/gaia/dr3
5https://des.ncsa.illinois.edu
6https://des.ncsa.illinois.edu/releases/dr2
7https://pausurvey.org/pauscosmos-photo-z-catalog/
8http://maia.ice.cat/mice/
9https://www.euclid-ec.org/?page_id=4133
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3.1 Introduction

Experimental astronomy has entered in recent years into a new data regime, mainly due
to the construction and development of ground —and space— based sky surveys10 in the
whole electromagnetic spectrum, from gamma rays and X-rays, ultraviolet, optical, and
infrared to radio bands. This trend will increase with the next generation of projects, for
example: (i) the future 3.2 GigaPixel LSST camera (LSST Dark Energy Science Collabo-
ration, 2012) will take images every 30 seconds and the data rate will be about 15 terabytes
per night11, (ii) the complete Euclid survey (Laureijs et al., 2012) represents hundreds of
thousands images and several tens of petabytes of data; the final Euclid source catalog will
contain about 1010 entries12.

A substantial part of the success of a scientific project can be measured by the impact
its results have on the scientific community. Also, having powerful tools to facilitate ex-
ploration and distribution of data is key to boost their usage. With open science principles
in mind, cosmology surveys need to adopt different solutions to share and distribute their
data, including analysis tools.

One of the most successful and innovative galaxy surveys is the Sloan Digital Sky Survey
(SDSS) (York et al., 2000). The enormous success of this project is due to —besides the
quality of the data— the fact that its results are fully public and easily accessible13. They
have put great effort into facilitating scientific exploitation by any user, regardless of their
technical expertise (see Szalay et al. (2002) and Raddick et al. (2017)).

Web interfaces are a common tool to provide access to cosmological datasets. For
instance Cosmosim14 provides results from cosmological simulations performed within dif-
ferent projects. The Millennium Run Observatory15 (Overzier et al., 2013) is a theoretical
virtual observatory which uses virtual telescopes to observe semi-analytic galaxy formation
simulations. The Theoretical Astrophysical Observatory16 (TAO, Bernyk et al. 2016) also
gives access to multiple popular simulated datasets but, in addition, the datasets can be
funneled through higher-level modules to build custom mock galaxy catalogues and images.

Most recent surveys have also created dedicated portals to manage access to their data
releases. For example, the Dark Energy Survey (The Dark Energy Survey Collaboration,
2005) has produced the DES Science Portal (Gschwend et al., 2018). Future surveys like
LSST are putting a tremendous effort into designing adequate tools to access and analyze
the massive amounts of data they will generate (Jurić et al., 2017).

CosmoHub origins can be traced back to the beginnings of the Physics of the Accel-
erating Universe Survey (PAUS) project in 2013. At that time, PAUS had started to
produce its first simulated data that needed to be distributed to its collaborators. In order
to facilitate the distribution, a pilot web interface called "PAUdm Simulations Portal"
was commissioned and integrated into the official PAUdm operations web. This prototype
offered access to the PAUdm database hosted in a PostgreSQL server.

10See http://www.astro.ljmu.ac.uk/~ikb/research/galaxy-redshift-surveys.html for a non-complete list
of galaxy surveys

11https://www.lsst.org/about/dm
12https://www.euclid-ec.org/
13https://www.sdss.org/dr15/
14https://www.cosmosim.org/
15http://galformod.mpa-garching.mpg.de/mrobs/
16https://tao.asvo.org.au/tao/
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The amount of data stored in the prototype grew substantially. Most of it came from
external data used in PAUS pipelines, such as SDSS star catalogs and MICE mock galaxy
catalogs. In time, MICE started ingesting more of its own data in the same database,
in order to be able to use the web interface. Through several iterations we ended up
implementing some dataset exploration features.

After a few iterations, we decided to promote this PAUS dataset exploration tool into
a full fledged independent product that could give service to lots of projects with sim-
ilar requirements. This implementation started as early as 2013, with the express idea
of offering a web application for the interactive exploration and distribution of massive
cosmological datasets. It also had to leverage an intuitive user interface so users with no
Structured Query Language (SQL, Chamberlin and Boyce (1974)) knowledge could visual-
ize and download customized subsets of the data without any difficulty. This first version
used the same PostgreSQL as PAUdb to handle the data, following a similar approach as
the one adopted by other projects (SDSS uses Microsoft SQL Server, while DES uses an
Oracle Database). A few years later, we started struggling with performance issues due
to the increasing amounts of data we were managing, and we decided to revisit our design
choices.

In order to overcome the performance and scalability limitations of PAUdb when pro-
cessing CosmoHub’s queries, we explored alternative setups. The most promising ones
were based on distributed architectures that enabled linear scaling of both storage and
processing power and, in addition, their data operation semantics were better suited for
CosmoHub’s data workflow. The results of all this effort are described in Tallada et al.,
2020, a re-engineered version of CosmoHub released in late 2016 and powered by Apache
Hive, a data warehouse solution based on Apache Hadoop which facilitates reading, writ-
ing and managing large datasets. First described in Carretero et al., 2017, CosmoHub is
one of the earliest implementations of a storage and computing platform for cosmological
datasets based on Apache Hive. Some other works have also used other Apache Hadoop
components to deal with massive datasets, e.g. Apache Spark in Plaszczynski et al., 2019.

At the time of writing this thesis, over 60 TiB of catalogued information and 50 ×
109 astronomical objects from a dozen different projects can be interactively explored
using an integrated visualization tool which includes 1D histogram and 2D heatmap plots.
Interactive visualization of datasets of thousands of millions of objects can be done in less
than a minute, and customized subsets can be generated in a timescale of minutes.

3.2 User requirements

Most of the CosmoHub’s objectives originated from our experience in designing and de-
veloping the PAU Survey data management (PAUdm) (Tonello et al., 2019), and from the
interactions of the PAU Survey project with other peer projects such as MICE (Fosalba,
Crocce, et al., 2015, Crocce et al., 2015, Fosalba, Gaztañaga, et al., 2015, Carretero et
al., 2015 and Hoffmann et al., 2014) and DES. The following list defines the set of key
requirements for CosmoHub.

• Centralized data distribution
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Having a unique point of data distribution enables having a single, authoritative
version of the data, reducing the risk of duplicated, corrupted or deprecated replicas.
A unique entry point also facilitates the enforcement of access controls and policies.

Also, when relying on a common platform, it is important to minimize the risk of
having a single point of failure. Therefore, this platform has been configured in
a high-availability setup where service is not disrupted by eventual failures of its
individual components (see section 3.3).

• Easy to use

Usability is also a key for the success of this kind of platform. The easier it is to
use, the more users it will engage and, therefore, the data published on it will reach
a wider audience, increasing their impact on the scientific community.

Interfaces should be clean and simple enough such that any user may use the service
without prior training. In detail, the following two issues should be addressed:

– No Structured Query Language (SQL) knowledge must be required
In a data distribution service, SQL is the most common interface for interacting
with the data. SQL is a declarative language that provides a set of constructs
to select, project, filter and retrieve subsets of information from a database. As
an industry standard, most (if not all) vendors of data warehouses offer a SQL
interface to interact with their own services.
Exposing an SQL interface is problematic for at least two reasons: First, while
SQL knowledge is common in technical circles, many scientific users are not
trained with it. And second, SQL is an industry standard, but has different ven-
dor implementations that deviate from official specifications. These differences
originate from adding complementary features or because their implementation
predates the official specification. This means that even users with training on
data warehouses might encounter problems because the SQL they know does
not match the exact flavour used in a given solution.

– Standard file formats
The astronomical community has grown used to a standard set of formats for
data interchange. Consequentially, specific tools for managing, processing and
visualizing data stored in these formats have been developed and are widely
used. Therefore, we must support those formats to enable our users to keep
using the tools they already master and make the interoperability with them as
straightforward as possible.

This usability objective has been considered for end users, but also for system admin-
istrators. They should be able to deploy and keep the service operational, avoiding
that eventual hiccups pose a threat to service availability.

• Custom datasets

One of the main challenges of managing large datasets is to be able to efficiently
generate small customized subsets fitting the scientists’ needs.

Allowing the generation and download of custom subsets enables users to minimize
data storage and transfer costs. At the same time, processing costs are also reduced
as the selection and filtering part is offloaded onto the service, which has plenty of
resources optimized for this task.
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Figure 3.1: CosmoHub’s data model, which stores information about its catalogs, groups,
users and access control lists (acl), among other metadata. Users can access all the data
in CosmoHub of those groups they are member of. Users request access to the groups they
are affiliated to when the register in the platform and those requests are validated/granted
by an admin of the project/group.

As a downside, the service must cope with the additional storage required for all
(potentially overlapping) subsets that the users have requested, including some means
to eventually expire or purge them.

• Quick exploration

The ability to create custom datasets is not useful if the user does not know the exact
criteria to define them or is not confident enough on the properties of the resulting
subset. Having some functionality to interactively explore and preview the results of
subset generation is very helpful.

This quick exploration tool can be offered in different ways, for example row sam-
pling or simple visualizations such as scatter plots and histograms. Once the users
are certain that the subset matches their expectations, they can proceed with the
download, as needed.

3.3 General architecture

This section describes the general design of the architecture of CosmoHub, from a techno-
logically agnostic viewpoint:

• Target audience

Prospective users of CosmoHub are the thousands of scientists around the globe
collaborating in astronomical projects that manage and/or produce large amounts of
catalogued data. Most of these data end up released to the public and, if a replica
is available in CosmoHub, any registered user may access, explore and download it.

Furthermore, these projects usually have private datasets for internal processes, such
as release validation or calibration, which are only available to project members.

• Metadata database

CosmoHub provides access to a collection of catalogs or astronomical datasets hosted
in our data warehouse. Each catalog is defined by a name, a short description and a
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summary of its characteristics. Each catalog is mapped to a single table in our data
warehouse containing a set of columns, which are described by its data type and a
short description.

Each catalog belongs to one or several projects or research groups. Users can access
all data in CosmoHub associated to the groups they are member of. Users request
access to the groups when registering in the service. Each group has a set of users
with special privileges who are in charge of validating and granting the corresponding
membership requests. Access to specific groups or projects can be updated at any
time through a web interface. Users receive an email notification whenever their
privileges change. A catalog may also be public and, as such, not require any specific
membership to access it.

Figure 3.1 shows the relational data model of all this metadata. In particular, in
addition to storing the information about catalogs, groups and users, it also includes
the relationships between them such as project membership or group administration
privileges.

• Web interface

CosmoHub is designed as a web application. This solution only needs a web browser,
that usually comes preinstalled on any computer, and an internet connection. More-
over, this also allows to reuse all the user experience of the web semantics and graph-
ical metaphors that most users are already used to.

• Guided process

In order to facilitate the usage of the platform to those users unfamiliar with SQL,
the custom subset building interface has been designed as a guided series of steps
that can be followed very easily even by the most inexperienced user.

The web interface guides users through a sequence of steps, allowing them to select
catalogs they are interested in, then the columns they need, adding filtering criteria
(if needed) and choosing the download format.

They can also plot and preview the dataset they are building with the integrated
plotting tool, also implemented with intuitive and easy to use web forms to configure
each type of plot (see section 3.8 for details).

• SQL expert mode

CosmoHub also offers the possibility to unleash the full power and capabilities of
SQL. The "expert" mode allows to write an SQL query directly and passes it to the
underlying database for its execution. This feature allows more experienced users to
define additional computed columns using standard functions and operators, specify
arbitrary groupings or even perform joins. The latter is very interesting because it
allows matching and combining data from several different catalogs.

Furthermore, these capabilities can be extended by implementing additional user
defined functions (UDFs) through a set of JAR files. For now, users cannot add their
own UDFs for security reasons and are instead directed to contact us if they have a
specific need. The list of implemented UDFs (described in section 3.7) is linked in
the "expert" mode and also available in the Help section17.

17https://cosmohub.pic.es/help
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• (Simple) visualization

Users may get a quick insight on the data they are selecting by using the four inte-
grated visualizations that CosmoHub offers:

– Table overview shows 20 rows of the subset.

– Scatter plot, to visualize trends and relations between different columns. It also
supports plotting different series of data, but is limited to plot only 10k points,
so users only see partial results/behaviour of the full subset. Therefore, the plot
may not be representative of the subset as a whole.

– 1D histograms and 2D heatmaps, both with automatic hints on column names,
and bin ranges.

1D histograms and 2D heatmaps are aggregated plots implemented on the backend.
They get the full picture of the custom subset. For performance reasons they are
limited to less than 10k uniform bins, which is by far enough for most applications.

• Batch custom subsets

When users finish exploring a subset, they can select a download format and request
its generation and delivery. Among the formats, special attention must be put in
supporting Flexible Image Transport System (FITS) (Wells & Greisen, 1979), which
is one of the most popular data formats in astronomy.

The custom subset is built in the background by the underlying database engine.
When the custom subset is ready and stored, an email will be sent to the user with
a link that they must follow in order to start the download.

• Security

CosmoHub hosts private datasets and also serves as the authoritative catalog repos-
itory for a number or projects. As such, it is of utmost importance to ensure the
integrity of any stored dataset and to prevent any unauthorized accesses to them. All
SQL queries, including those coming from the "expert" mode, are screened by the
API. In this process, each SQL sentence is parsed by Hive and the list of catalogs to
be accessed is retrieved. Then, each catalog is checked against the user’s privileges
stored in CosmoHub’s metadata (see Figure 3.1). If a user tries to access a catalog
without the required permissions, the action is logged and an error is returned.

Furthermore, in order to better ensure the integrity of the datasets, all sentences that
are not pure SELECTs are filtered at the API level too.

3.4 Early prototypes

From the beginning, CosmoHub was designed in a way that no specific technical knowledge
was required in order to exploit its functionalities. In particular, users were already able
to formulate queries without any SQL knowledge through a guided process. Also, users
were able to directly download Value-Added-Data (prebuilt catalogs or other information
needed to analyze the data, such as filter curves or dust maps), they could visualize general
data trends using simple plots and, of course, download custom subsets which were created
asynchronously in the computing facilities at PIC.
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Figure 3.2: Hadoop layered ecosystem, showing how multiple components stack on top of
others to provide a broad set of features and services. In grey, the components used for
CosmoHub.

After a year, the performance of the database server —designed specifically to host
only PAUS data— started to suffer. The amount of data hosted kept growing (from 1 to
10 TB), mainly due to catalogs ingested from external projects, the storage space became
tight and response times degraded (queries over large catalogs could take up to 2 days to
complete).

In this situation, the first affected feature were the interactive plots, which at that time
were limited to 10k rows and queries taking less than 2 minutes to complete. With the
increasing size of the catalogs, most queries did not fulfill the response time requirements
even using custom indexes.

I redesigned the database part and proposed to migrate to another instance of Post-
greSQL database in a separate server, with much more storage space and similar processing
power. In that way, we mitigated two problems: the limited storage available and the com-
petition of computing resources with the main PAUdm processing pipelines.

Nevertheless, the problem of solving the long response times was hard to tackle. In
our experience, traditional relational databases such as PostgreSQL can deal with huge
datasets, as long as you work with them in small chunks. But when the requested data is
above a certain threshold, the PostgreSQL query optimizer does not use indexes as it is not
efficient anymore. That is the main reason why most of the queries ended up performing a
sequential scan of the entire table, resulting in response times that could take several hours
and even a few days. Lastly, although used very sparsely, modifying any table schema and
removing large amounts of rows were extremely inefficient operations.

For these reasons PostgreSQL was not the right tool for CosmoHub’s data workflow
and we explored different possibilities (see section 3.5) to solve the problem. The best
solution we agreed on was to use Apache Hive, a data warehouse based on Hadoop.
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3.5 Hadoop Platform

Assessing alternatives From the experience gained from prototypes, we knew that
choosing the right data storage and processing platform was fundamental to achieve our
objectives. Therefore, we researched and tested several alternatives that we thought could
be useful. There are multiple solutions in the market to handle large structured datasets
in a manner that is scalable and has good performance, such as NoSQL (or non-relational)
databases and distributed relational databases. We only took into consideration the open
source alternatives due to technical and economic reasons.

We knew from the beginning that one of the key requirements of CosmoHub would be
the ability to hold multiple large datasets, and to be able to analyze, compare and cross-
match them. The particular architecture of NoSQL solutions such as HBase18, Cassan-
dra19, MongoDB20 or Redis21) normally does not allow for efficient joins between datasets.
Furthermore, each of them implement a different language for interacting with the data,
with partial SQL support, at best. For these reasons, we decided to discard the NoSQL
solutions.

For the distributed relational databases, we studied two approaches. First, we tested
clustered implementations of traditional databases, such as Postgres-XL and Greenplum.
These solutions rely on sharding and replicating the datasets onto multiple nodes in a
computer cluster. Queries are then split and routed to the proper nodes, which execute
them assisted by a central coordinator. Due to the reliance on partitions and indexes, this
kind of solutions are optimal for scaling out large datasets.

These kind of solutions are mostly engineered to the CRUD (Create, Retrieve, Update
and Delete) paradigm they have inherited, where each operation usually involves a small
subset of the total number of rows. In contrast, in the typical CosmoHub workflow, datasets
are ingested and deleted always as a whole, never updated, and usually retrieved in large
subsets, or as aggregations of large subsets. In addition to the critical differences in data
workflow design, it was not straightforward to implement or integrate new data formats
on these solutions.

Next, we tested solutions based on the Hadoop platform, such as Apache Hive (Thu-
soo et al., 2009) and Apache Impala (Bittorf et al., 2015). Hive is an open-source data
warehouse which has gained a lot of momentum since 2013, mostly thanks to the Horton-
works22 Stinger23 and Stinger.next24 initiatives. Impala is a massively parallel processing
(MPP) SQL query engine for data stored in Hadoop, and its most important contributor
is Cloudera25.

When evaluating these alternatives, we found that Impala timings were inconsistent,
and in some cases, the results were incorrect. More up to date correctness reports have

18https://hbase.apache.org
19https://cassandra.apache.org/
20https://www.mongodb.com/
21https://redis.io
22https://hortonworks.com/
23https://es.hortonworks.com/blog/100x-faster-hive/
24https://es.hortonworks.com/blog/stinger-next-enterprise-sql-hadoop-scale-apache-hive/
25https://www.cloudera.com/
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replicated the same findings26 27 28. Furthermore, the administration tools from the Cloud-
era Hadoop distribution were not free, which the Hortonworks’ where open source. Conse-
quently, we decided on a solution based on Apache Hive on top of Hortonworks due to its
stability, extensibility, comprehensive documentation and availability of free administration
tools.

Software stack Apache Hive is one of the multiple components in the Hadoop ecosys-
tem. Figure 3.2 displays a typical Hadoop architecture showing several of those components
layered in a stack. CosmoHub heavily relies on several of these components, specially on
Apache Hive, which is a data warehouse software that facilitates reading, writing, and
managing large structured datasets located in distributed storage. From the administra-
tor’s point of view, migrating from the previous setup based on PostgreSQL to Apache
Hive is easy as both have the same interface (SQL) with the data.

Apache Hive sits on top of Apache Tez (Saha et al., 2015), an application framework
which allows the execution of complex directed-acyclic-graphs (DAG) of tasks for process-
ing data. The scaffolding provided by Tez allows the orchestration and optimization of
Hive tasks, even at runtime, boosting its performance.

The computing needs of every Hadoop platform are delivered by Yet Another Resource
Negotiator (YARN) (Vavilapalli et al., 2013). YARN enables the execution of arbitrary
tasks on top of containers executed in cluster nodes. Their resources are delimited and
isolated, as to not interfere or starve each other. Resources are managed using scheduling
queues, where each user and group can get a fair share of resources as per configuration.

The keystone of the Hadoop platform, the Hadoop Distributed File System (HDFS)
(Shvachko et al., 2010) lays at the base of the stack. HDFS is a high performance dis-
tributed filesystem that makes use of the storage of the nodes in a Hadoop cluster, merging
it into a single name-space for increased capacity and performance. Concisely, it works
by splitting the files in fixed-size blocks and then replicating those blocks between the
available nodes in the cluster. This architecture allows very good resilience and scalability.

Additional components take care of security, user authentication and authorization,
as well as the administration and configuration of the different components. The market
offers several distributions that include most of those components in the form of self-
contained packages that facilitate an easy installation and configuration and, in addition,
commercial support. After testing several alternatives, we decided on using Hortonworks
Data Platform (HDP) as the software solution. The currently installed version is HDP
3.1.4.

Hardware architecture Figure 3.3 shows the hardware setup of the Hadoop platform
used for CosmoHub. The current cluster is composed of 16 compute nodes and 3 head
nodes. The 16 compute nodes are grouped in 4 dual-twin servers. Each node is equipped
with two 14-core CPUs, 128 GiB of RAM, two 6 TB SATA disks and a single 960 GB SSD
disk. The SATA drives are configured with a small RAID-1 partition to host the OS, and
the rest of space is used for HDFS storage (without RAID). The SSD drive is devoted to

26https://mr3.postech.ac.kr/blog/2018/10/30/performance-evaluation-0.4/
27https://mr3.postech.ac.kr/blog/2019/03/22/performance-evaluation-0.6/
28https://mr3.postech.ac.kr/blog/2019/06/26/correctness-hivemr3-presto-impala/
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Figure 3.3: Hadoop cluster architecture, showing the configuration of the external disks
and their logical links, the physically separated network for the nodes and external disk
enclosures and the connection with the core network along with the headnodes and Cos-
moHub server.

cache intermediate files in order to boost the efficiency of shuffle operations (Kambatla &
Chen, 2014), such as CosmoHub joins. The compute nodes are located at our innovative
oil-submersion cooling facility, which is very power efficient (Acín et al., 2015).

Because of the dense form factor used for the compute nodes, there is not much space
for expansion. Thus, in order to expand the storage capacity, we provisioned two external
disk enclosures, with 36 SATA disks of 2 TB. Each compute node mounts 4 of those disks
using iSCSI, two from each enclosure, accounting for 32 of the 36 drives in each enclosure.
The remaining 4 drives are left as spare. The iSCSI disks appear as if they were local disks
and are used for HDFS storage.

All in all, the compute nodes sum 448 cores, 2 TiB of RAM, 192 TiB of local SATA
storage space and 128 TiB of external iSCSI storage space. After taking into account
the CPU and RAM reserved for Hadoop services in the compute nodes, and the overhead
that replicas introduce in HDFS storage, the actual resources available for processing are
approximately ∼400 cores, 1.8 TiB RAM, ∼60 TiB of local SATA storage and ∼40 TiB of
external iSCSI storage space.

Each compute node and disk enclosure has a 10 GbE link to the same network switch.
This switch is kept separated from the rest of the network infrastructure so that traffic
peaks or saturation do not affect other critical services at PIC. An additional 10 GbE
link connects this switch to the rest of the PIC network, where the head nodes and the
CosmoHub application server are located.

The head nodes are equipped with two 8-core CPUs, 32 GiB of RAM and 2 TB of local
storage. They are configured in a high-availability setup. In case of a failure, the service
running in another head node is able to promote itself to master and keep the service
functioning.
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3.5.1 Data management

CosmoHub hosts multiple datasets of different projects, origins, cardinalities and complex-
ities, and all of them are stored on HDFS. Most of the time, incoming raw data is published
in some kind of ASCII29 format, like CSV. The main problem with this kind of formats is
that they are not able to describe the corresponding data types in a native way. In some
cases, the data files are augmented with additional headers or they come with attached
documentation of the types and meaning of the different columns in the dataset. However,
alternative binary formats —such as FITS— are also common, and lately others such as
Hierarchical Data Format 5 (HDF5) (Folk et al., 2011) have been gaining traction. A deci-
sive advantage of these binary formats is that they can store the machine representation of
the values and they carry along detailed metadata, including the description of data types
and columns. Therefore, they are preferred in order to preserve as much information as
possible when ingesting a dataset into CosmoHub.

Raw data The original upstream data, in whatever raw format is provided, is copied
into HDFS and then converted into a native Hive format that is suitable for efficient query
processing. Optimized Row Columnar (ORC30) and Parquet31 are two contending formats
in this area.

Features like columnar-based structure, push-down predicate (PPD) capabilities, col-
umn statistics or bloom filters are very useful for query efficiency, as they enable to skip
entire sections of rows that do not contain data of interest. While both formats are very
similar and support nearly the same set of features, we decided to use ORC because it is
the one that is recommended by Hortonworks, the chosen Hadoop platform distribution
for CosmoHub.

Although Hive already performs very well just using the features described above, we
tried to reduce even more the execution times combining them with other capabilities. For
instance, even though joins are not an officially supported feature, we use a combination
of partitions and buckets to improve its efficiency. Hive had also limited support32 for
single-table indexes that we deemed unnecessary for CosmoHub’s purposes.

Interactive exploration Queries intended for visualization purposes should finish in a
delimited time to satisfy the interactivity requirement. As transferring large amounts of
data to the browser for plotting is unfeasible, we use histograms and heatmaps to visualize
large datasets. CosmoHub rewrites the queries that feed the histogram and heatmap plots
in order to pre-aggregate the results and deliver to the browser only the data points to be
plotted. This minimizes network traffic and lessens the load on the client.

Furthermore, in order to speed up even more the execution of interactive queries, two
resources queues have been set up in YARN. One queue is for batch tasks such as generating
custom catalogs or other non-CosmoHub related jobs, while the other is devoted solely to
the execution of interactive queries. This last queue has absolute priority over the resources

29https://tools.ietf.org/html/rfc20
30https://orc.apache.org/specification/ORCv1/
31https://parquet.apache.org/
32Indexes are no longer available in latest versions (v3.0 and later)
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and can even preempt resources from the other queue if needed in order to ensure the fastest
execution time possible.

The results (see section 3.9.1) show that, in nearly all cases, the time it takes for queries
to finish is low enough so that the interactive use is feasible.

Custom catalogs Custom catalogs are user-defined subsets of other catalogs that serve
a specific purpose for the requester. They are generated from an SQL statement and,
due to the distributed nature of Hadoop, the output is written concurrently as a set
of independent files, each one of them created by a different task. Oozie33 is used to
orchestrate the execution of the corresponding SQL query.

In previous iterations of CosmoHub, as the database engine was not distributed, the
output was generated and served as a single-file download. This feature was optimal for our
users as it simplified and streamlined the handling of the custom catalogs. Thus, in order
to have a smooth transition, we wanted to keep the same single-file download functionality.

However, per the specific characteristics of the Hadoop platform, preserving this be-
haviour proved to be a tough challenge, as we had to conceive and implement a fast and
simple way to merge a set of files into a single coherent download stream.

The following subsection describes in great detail the different formats supported in
CosmoHub and how they were implemented to enable the single-file download feature.

3.6 Download formats

Custom catalogs are generated by Hive, following a user request. The parallel nature of
Hive query execution makes this process very fast, as the data is processed and written
simultaneously using multiple nodes in the Hadoop cluster. However, this also means that,
at the end of this process, the resulting catalog is stored scattered among multiple files.
Then, these files, or the data contained in these files, have to be delivered to the requesting
user.

The main limitation encountered is that neither web browsers nor users like to deal
with multiple files. First, web browsers do not support multiple file downloads out-of-
the-box, although there are some proposals34 to change this, with very limited support35

yet. Currently, the most commonly found workaround is to generate and serve a ZIP36 file
containing the set of files to be downloaded. But this process adds a non-trivial amount
of processing power per download, both when creating the ZIP file to be served, and then
when it is decompressed by the user after the download has finished. Also, it doubles
the storage requirements at the user side, where the ZIP file and the decompressed data
must coexist, even if just for some seconds before the ZIP file can be deleted. And second,
dealing with multiple files may be cumbersome, or not even possible, depending on the
application or tool that is used to process the data. Moreover, even though the input data
processed to generate a custom catalog may be extensive (around 100GiB - 10TiB), the

33https://oozie.apache.org/
34File System API: https://fs.spec.whatwg.org/
35https://caniuse.com/native-filesystem-api
36ZIP file format specification: https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
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resulting custom catalogs are usually much smaller (100MiB - 10GiB). Dealing with this
amount of data in a single file is much more easier and less error prone.

Thus, we wanted to preserve the ability to deliver the custom catalogs as a single file
download, as with the prior version of CosmoHub. In order to minimize the response time,
it would be extremely interesting to generate this file on-the-fly while it is being sent to
the user browser, avoiding materializing the combined file to disk before sending it, to be
able to start the download process as soon as the query finishes.

However, not all formats are acceptable. For the CosmoHub platform, one of the key
requirements is to support the most commonly used formats in cosmology and astronomy.
Also, the different formats must be compatible and interoperable with the ecosystem of
software and tools already in place in those fields. The corresponding source code for the
formats implemented below can be consulted at https://github.com/ptallada/cosmohub-
api/tree/master/cosmohub/api/io/format.

csv.bz2

The CSV37 format, albeit standardized "de jure" as recently as 2005, it predates the
appearance of personal computers for at least a decade. It can be traced back, at least, as
far as 1972. Its simple definition and implementation have turned it into the most common
data interchange format for structured data, with broad support among nearly all software
and tools.

Accordingly, it is fundamental that CosmoHub offers CSV as one of the available down-
load formats for custom catalogs. Hive has native support for delimited text formats and
can write the results of a query in CSV format. Note that as explained previously, as
queries are executed in parallel in the Hadoop cluster, the result data is stored distributed
among a set of output files. Merging the output data into a single file is trivial for a format
as simple as CSV. One just needs to concatenate all the individual files in sequence to
generate a single file that is also a CSV format compliant.

CSV format, as it is based on textual data, is not very efficient when representing
information which is not text-based. In particular, numerical data, which accounts for
99% of all the data stored in CosmoHub, has an evident storage overhead. As an example,
computers just use 4 bytes when storing an integer value. The same value can take up to
11 bytes when stored in CSV, nearly 3 times more. And we still have to add the storage
space needed for all the delimiters.

The simplest way to mitigate this overhead is to apply a compression algorithm to get
a more compact representation of the same data. In fact, most compression algorithms
work great on text data and are able to achieve high compression ratios. However, not all
compression algorithms work the same. On the one hand, it must be supported by Hive.
On the other hand, we shall be able to merge several compressed files into a single one as
easily as possible while keeping the CSV format interoperability.

37RFC 4180: https://www.rfc-editor.org/rfc/rfc4180.html
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Hive has built-in support for two compression algorithms: GZip38 (file extension .gz),
and BZip239 (file extension .bz2), although more can be added, such as XZ40, following a
relatively simple process41.

From all the algorithms that were tested, only the ones aforementioned above permitted
the simplest merging operation possible: concatenating a sequence of compressed files
results in a single valid compressed file. In other words, given three CSV files A, B and
C, and let | be the concatenation operation, then:

compress(A) | compress(B) | compress(C) ≡ compress(A|B|C) (3.1)

In order to choose the best algorithm we analyzed several performance and timing
reports424344. When testing, we encountered some problems when decompressing a file
containing multiple Gzip streams, so it was discarded. In the end we settled for BZip2 as
it has a good balance between compression ratio and speed, is available out-of-the-box in
Hadoop and has broader support in software and tools.

Figure 3.4 the process of producing a custom catalog in CSV.BZ2 format. Once the
user requests the custom catalog in CosmoHub, its corresponding query is submitted to
Hive. The execution is carried out by multiple nodes in the Hadoop cluster which process
the input data and write their corresponding output into CSV.BZ2 files. Once the query
has finished, the user is notified and the custom catalog is ready to be delivered.

When the user triggers the download process, the Python API sums the size of all the
output files and sets some headers. There are two kinds of headers: a CSV header is added
dynamically to the file with the information of the author, date of creation and query used
to generate the catalog, and also HTTP headers to set the filename, its length (to let the
browser show the download progress) and to advertise resuming capabilities. Afterwards,
the Python API reads and forwards the contents of each of the individual files, one by
one, to the same download stream until all the content has been delivered. The download
process, if interrupted, can be resumed at any point: the Python API just needs to start
reading the output files from the requested position, taking into account the space taken
by the headers.

FITS

In astronomy and cosmology, one of the most popular and broadly used formats is FITS4546

(Flexible Image Transport System). The term "image" in the standard’s name is loosely
applied and FITS files often contain only non-image data, such as tabular data. It was
initially developed in the late 1970s and standardized as early as 1981. Since then, several
revisions have been published, the latest is v4.0 in August 2018. FITS was designed for

38https://www.gzip.org/
39http://sourceware.org/bzip2/
40https://tukaani.org/xz/
41https://github.com/yongtang/hadoop-xz
42https://www.rootusers.com/gzip-vs-bzip2-vs-xz-performance-comparison/
43https://tukaani.org/lzma/benchmarks.html
44https://linuxreviews.org/Comparison_of_Compression_Algorithms
45https://fits.gsfc.nasa.gov/fits_documentation.html
46https://www.loc.gov/preservation/digital/formats/fdd/fdd000317.shtml
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long-term archival use, and special care is taken so that the format is backwards compatible
as new features are added.

However, and due to some design decisions taken decades ago, FITS suffers some lim-
itations (see Thomas et al., 2015) that get in the way of some modern use cases. For
CosmoHub, the most important ones are:

• Only ASCII characters are supported, both for metadata (i.e. author names, file
comments, column names and descriptions) and actual columns with text data. This
pitfall, which comes from the historical context when it was defined, severely restricts
the use of any language other than English for representing this information. The
first publication of Unicode (Unicode Staff, 1991) was in 1991, 10 years later than
the first FITS standard.

• The number of rows must be specified in the header. As innocuous as this design
decision might appear, it has a profound impact on those use cases which rely on
streaming or sequential writes. In our case, as the number of rows that will be
generated by a custom catalog is not known beforehand, it is impossible to generate
the corresponding header for the FITS file until the end. But by that time, and due
to the way Hive and Hadoop work, the output files have already been written and
cannot be modified.

Several other formats appeared, partly to overcome these limitations, such as VOTable
(Ochsenbein et al., 2004), Hierarchical Data Format 5 (HDF5; Folk et al., 2011) or Ad-
vanced Scientific Data Format (ASDF; Greenfield et al., 2015).

For some time, I thought it would not be possible to support FITS as a download
format in CosmoHub, or at least that its implementation would not be as optimal as the
CSV.BZ2 alternative. The obvious workaround would be to generate the output files in
another format, and then convert and merge them all into a single FITS file afterwards.
This course of action implies an additional step that would add processing and storage
overheads, as well a significant delay before being able to start the download process.

After careful thinking, we came up with a technique that would allow us to support
the FITS format in CosmoHub without sacrificing any processing or storage space. These
files have the following structure: a primary header, followed by a binary table header, and
finally the row data. This three parts need to be padded to a size that is multiple to 2880
bytes47.

The problem is that the number of rows must be specified in the binary table header.
However, there is a particular characteristic of the FITS format that we can exploit to work
around this problem. Tabular data is stored row by row in a specific binary representation,
and the size of each row does not depend on any of its values, but only on the column data
types.

This fixed-size row length means that the number of rows can be computed by dividing
the size of the row data by the width of each row. The second value can be easily obtained
by inspecting the schema returned from the catalog query. For the first, we need a way
for Hive to generate the output files data using the same binary representation. Hive has

47An obsolete requirement meant to align with the magnetic tape block size of earlier times.
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specific APIs to extend its functionality, and one of those APIs tackles the ability to imple-
ment additional output formats. In particular, we had to implemented a custom SerDe48

(Serializer/Deserializer) to define and implement how row values are to be represented and
stored on disk. For the implementation of this SerDe, we used the nom.tam FITS Java
library49, which made this development much simpler. The corresponding source code of
this implementation is available at https://github.com/ptallada/recarrayserde. With this
SerDe in place, finally had support for FITS as download format in a very optimal way.

ASDF

ASDF aims to take the best qualities that made FITS so successful, such as the binary
data representation for fast reading and the clear text human-editable metadata. Among
its particular features it allows streaming row data (that is, without the need to specify in
advance the number of rows it contains).

ASDF files are divided in several sections, the ones involved in this use case are the
header (which contains the metadata) and the data sections. The schema is defined in
the header and is serialized as a YAML Ain’t Markup Language (YAML) (Ben-Kiki et al.,
2009) document. In order to facilitate interoperability and migration from FITS, ASDF
uses the exact same row binary format in the data sections. This fact made it very easy to
add ASDF support in CosmoHub, as we just developed a method to write the rows using
the FITS binary format. In other words, we can generate a valid ASDF file by combining
the output files we already have with the corresponding ASDF header.

In order to generate the correct ADSF header we took advantage of the ASDF50 Python
library. The header can be constructed just providing the query schema (which we already
need to compute the row width). With this approach, we have been able to support an
additional download format with very little extra effort.

Figure 3.5 shows the data flow when generating a catalog either in FITS or ASDF for-
mat. Once the user requests the catalog, its corresponding query is submitted to Hive. The
participating nodes process the input data and write their output using the custom SerDe
that was developed, which writes down the rows following the FITS binary representation.
Once the query finishes and the user starts the download, the Python API sums the size
of all the output files and divides it by the width of each row to get the total number of
rows in the custom catalog. Then, depending on the chosen format, either a FITS header
or an ASDF is generated.

After this, we already have all the information to set the required HTTP headers and
start forwarding the data to the user: first the header (with some padding for FITS),
followed by the concatenated contents of all the output files (finished with more padding
for FITS). If the download process is interrupted, just as for the CSV.BZ2 format, the
process can be resumed just by reading the output files from the requested position, taking
into account the size taken by the headers (and padding).

48https://cwiki.apache.org/confluence/display/hive/serde
49http://nom-tam-fits.github.io/nom-tam-fits/
50https://github.com/asdf-format/asdf
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Figure 3.5: Generation of a single FITS/ADSF download file.

Parquet

Apache Parquet51 is the last download format that has been added in CosmoHub. Parquet
is an open source column-oriented data storage format based on a record-shredding and
assembly algorithm52 described in Melnik et al. (2010). As a columnar format, the values
in each column are stored in contiguous memory locations, bringing multiple advantages
such as efficient reads that skip unneeded column and column-wise compression optimized
to each specific data type.

Parquet files can be identified by a special marker (magic number) at the beginning
and ending. After the first marker, there are multiple row groups storing the row data
and a footer containing all the row group and file metadata. As all the metadata is
written at the end of the file, this format is perfect for use cases than involve streaming
an undetermined amount of rows. Parquet uses Thrift53 (Agarwal et al., 2007) and, in
particular, its TCompactProtocol54 to represent both the row data and metadata in an
efficient way.

51https://parquet.apache.org/
52https://github.com/julienledem/redelm/wiki/The-striping-and-assembly-algorithms-from-the-

Dremel-paper
53https://thrift.apache.org/
54https://github.com/apache/thrift/blob/master/doc/specs/thrift-compact-protocol.md

78

https://parquet.apache.org/
https://github.com/julienledem/redelm/wiki/The-striping-and-assembly-algorithms-from-the-Dremel-paper
https://github.com/julienledem/redelm/wiki/The-striping-and-assembly-algorithms-from-the-Dremel-paper
https://thrift.apache.org/
https://github.com/apache/thrift/blob/master/doc/specs/thrift-compact-protocol.md


Hive has native support for Parquet, so the output files of a custom catalog can be
written in this format. Yet, in order to facilitate the download process, all their contents
still have to be merged into a single file. As the metadata is written in the footer at the
end of each file, it would seem feasible to create this single file by concatenating all the
row groups of each file and then adding a footer with also the concatenation the metadata
for all row groups. We want to avoid at all costs to parse the contents of the row groups,
as that would add too much processing overhead to the download process.

After some failed attempts merging files written in Python, the Parquet developers
confirmed55 that both the row groups and the metadata contain pointers to absolute file
offsets that would get misaligned if its contents are simply concatenated. However, files
generated by Hive are much simpler and they only contain two problematic pointers, both
in the file metadata. Therefore, for these files, it was possible to concatenate the row groups
without any parsing, and then generating the file metadata with the correct pointer values.

combined Parquet file

rowgroups rowgroups rowgroups rowgroups rowgroups combined
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Parquet 
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Figure 3.6: Generation of a single Parquet download file.

Figure 3.6 shows the data flow when generating a catalog in Parquet. As the catalog
query is being processed by Hive, the participating nodes write the output in Parquet
format. Once this process has finished, the catalog is ready to be downloaded. When the
download process is triggered the Python API lists all the files, parses their footer and also
gets the length of all its row groups. With this information, we are able to construct a file

55https://www.mail-archive.com/dev@parquet.apache.org/msg16464.html

79

https://www.mail-archive.com/dev@parquet.apache.org/msg16464.html


metadata by concatenating every file metadata while shifting each pointer by the length
of all its preceding row groups.

The merged file is then constructed and delivered by concatenating the magic marker,
the contents of all row groups, the merged metadata, and the final marker again. As with
the other formats, several HTTP headers are used to specify the download size, file name
and to enable transfer resuming. For the latter, the merged file metadata must be recreated
as explained and then the contents can be read from the requested position to resume the
download.

3.7 User Defined Functions (UDFs)

This section describes the use of an extension mechanism called User Defined Functions,
introduced in section 3.3, in order to further expand the capabilities of the CosmoHub
platform. These are functions developed by a user of Apache Hive to implement custom
routines and procedures that can later be called directly inside any SQL statement. This is
very useful to add support for additional features not included by built-in SQL functions.

Hive defines three types of User Defined Functions: regular User Defined Functions
(UDF, from now on), are functions that work on a single row and produce also a single
row as output. Most of all the functions available in Hive are of this kind (e.g. sin, log,
trim, current_date). User Defined Aggregate Functions (UDAF) work on a set of rows
and produces a single row as output. They should be used along the GROUP BY construction
and are used to summarize the values of multiple rows (e.g. count, sum, max, avg). Finally,
User Defined Tabular Functions (UDTF) work on a single row as input and return multiple
rows as output. There are very few of these functions built in Hive, the most commonly
used is explode5657. While regular UDFs are somewhat simple to develop, both UDAFs and
UDTFs require the implementation of complex classes with several methods and require
extensive testing to ensure that they work correctly inside Hive.

The following subsections describe the work done to implement several sets of these
functions to extend the functionalities Hive as they cover some important uses cases for
CosmoHub users. Their corresponding source code can be found at https://github.com/
ptallada/pic-hadoop-udf.

3.7.1 HEALPix

HEALPix (Hierarchical Equal Area isoLatitude Pixelation of a sphere), described in Gorski
et al. (1999), describes a set of pixelization schemes58 to hierarchically subdivide the sphere
in equal surface regions (see Figure 3.7). It was originally designed to aid in the statistical
analysis of massive full-sky datasets such as the ones used for measuring the cosmic mi-
crowave background (CMB; Wandelt et al., 1998) anisotropy. Nowadays, its use cases cover

56https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-
Built-inTable-GeneratingFunctions(UDTF)

57https://cwiki.apache.org/confluence/display/hive/languagemanual+lateralview
58The particular HEALPix projection that is used in astronomy is defined by the parameters Nθ = 3

and Nϕ = 4.
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the study of magnified positions due to gravitational lensing or visualization of hierarchical
sky images, among many others.

Figure 3.7: Orthographic view of HEALPix partition of the sphere, showing subsequent
subdivisions using resolution parameter Nside = 1, 2, 4, 8. Image source: The HEALPix
Primer (Gorski et al., 1999).

HEALPix provides two different numbering or ordering schemes (see Figure 3.8) for
assigning numbers to each pixel: RING, where pixels are simply numbered counting from
north to south along each latitude ring; and NESTED, where pixels are arranged into
twelve tree structures corresponding to base-resolution pixels.

In order to facilitate its implementation as UDFs, we have made use of the official
HEALPix Java library59. The UDFs listed below implement a large subset of the features
offered by this library. These functions take some common parameters that describe the
desired resolution order (subdivision level), the ordering or numbering scheme (RING
or NESTED) and the units for position coordinates (either co-latitude and longitude in
radians, or longitude and latitude in degrees).

ang2pix(order, theta|ra, phi|dec, nest, lonlat)
Given the resolution order and a position in the sky returns the corresponding pixel
number. If nest is True, return the pixel in NESTED ordering, RING otherwise. If
lonlat is True, position is specified by longitude and latitude in degrees, otherwise
colatitude and longitude in radians.

ang2vec(theta|ra, phi|dec, lonlat)
Given a position in the sky returns the corresponding 3D position vector on the unit
sphere. If lonlat is True, position is specified by longitude and latitude in degrees,
otherwise colatitude and longitude in radians.

59https://healpix.sourceforge.io/
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Figure 3.8: Cylindrical projection of the HEALPix division of a sphere using both pixel
numbering schemes (RING and NESTED). Image source: The HEALPix Primer (Gorski
et al., 1999).

pix2ang(order, ipix, nest, lonlat)
Given a resolution order and a pixel number returns the corresponding position in the
sky. If nest is True, the pixel index is specified in NESTED ordering, RING otherwise.
If lonlat is True, position is returned as longitude and latitude in degrees, otherwise
colatitude and longitude in radians.

pix2vec(order, ipix, nest)
Given a resolution order and a pixel number returns the corresponding 3D position
vector on the unit sphere. If nest is True, the pixel index is specified in NESTED
ordering, RING otherwise.

vec2ang(vector, lonlat)
Given a 3D position vector returns the corresponding position in the sky. If lonlat
is True, position is returned as longitude and latitude in degrees, otherwise colatitude
and longitude in radians.

vec2pix(order, x, y, z, nest)
Given a resolution order and the 3D vector components of a position returns the
pixel number. If nest is True, the pixel index is specified in NESTED ordering, RING
otherwise.

neighbours(order, theta|ra|ipix, phi|dec, nest, lonlat)
Given a resolution order and either a position or a pixel number returns the pixel
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number of the SW, W, NW, N, NE, E, SE and S neighbours. The output is always an
array of 8 elements, some of them may be -1 is that pixel does not have a neighbour
in that direction. If nest is True, the pixel index is specified in NESTED ordering,
RING otherwise. If lonlat is True, position is specified by longitude and latitude in
degrees, otherwise colatitude and longitude in radians.

nest2ring(order, ipix)
Given a resolution order and a pixel, converts it from NESTED ordering to RING
ordering.

ring2nest(order, ipix)
Given a resolution order and a pixel, converts it from RING ordering to NESTED
ordering.

nside2npix(nside)
Return the number of pixels for a given NSIDE.

npix2nside(npix)
Return the NSIDE for the given number of pixels.

nside2order(nside)
Return the resolution order for the given NSIDE.

order2npix(order)
Return the number of pixels for the given resolution order.

maxpixrad(order, degrees)
Given a resolution order returns the maximum angular distance between any pixel
center and its corners. If degrees is True, the angular distance is returned in degrees,
otherwise in radians.

3.7.2 Arrays

Another common way of storing structured data is in form of arrays, such as probability
density functions (PDF). In particular in Astronomy, galaxy catalogs may store the spectral
energy distribution (SED) or the redshift PDF of their objects. An interesting scientific use
case would be to enable the aggregation of this kind of array data in order to be accessed
and analyzed as a single entity. For instance, in Asorey et al., 2016 they state that using
the entire redshift PDF instead of just the peak or the mean value delivers results with
less bias. For those kind of studies, having the ability to easily aggregate the data using a
single query would help speed up the analysis.

Unfortunately, Hive includes very few functions to deal with array data, and none of
them supports this use case. Therefore, we developed the following list of UDAFs that
operate element-wise on arrays that have matching element types and cardinalities (see
Figure 3.9 for more details).

array_min(data[ ])
Returns the lowest value for each position in the array.

array_max(data[ ])
Returns the highest value for each position in the array.
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Figure 3.9: UDAF array functions generate their result by aggregating all values in each
position. The resulting array has the same cardinality as those from input.

array_sum(data[ ])
Returns the sum of all the values for each position in the array.

array_count(data[ ])
Returns the number of elements different than NULL for each position in the array.

array_avg(data[ ])
Returns the average of all the values for each position in the array.

array_stddev_pop(data[ ])
Returns the population standard deviation for each position in the array.

array_stddev_samp(data[ ])
Returns the sample standard deviation for each position in the array.

array_variance(data[ ]) / array_var_pop(data[ ])
Returns the population variance for each position in the array.

array_var_samp(data[ ])
Returns the sample variance for each position in the array.

3.7.3 ADQL

This subsection describes the work done to add support to run Astronomical Data Query
Language60 (ADQL) statements in CosmoHub.

60https://www.ivoa.net/documents/ADQL/20180112/PR-ADQL-2.1-20180112.html
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The Virtual Observatory61 (VO) describes the concept of accessing astronomical data-
sets distributed worldwide in a simple and transparent way. The VO provides scientific
projects and data centers with a well-defined framework to publishing and delivering ser-
vices using their data, and enables users to explore, analyze and visualize all these data
using common tools and software.

The International Virtual Observatory Alliance62 (IVOA) is an organization that co-
ordinates and provides the collaborative environment needed to develop and agree on the
technical standards required to make the VO possible. The IVOA has defined multiple
standards, but for this appendix, we are interested in just two: Table Access Protocol63

(TAP) and Astronomical Data Query Language (ADQL).

TAP defines a protocol for interacting with tabular data, such as astronomical cata-
logs. It enables access to the actual table data, as well as associated metadata for the
corresponding table and database. TAP service providers must support queries written
in ADQL, a special flavour of SQL specifically designed to work with astronomical data,
although they can add other alternatives.

ADQL is loosely based on SQL-9264 with some minor differences in both syntax and
basic arithmetic and trigonometric functions. HiveQL, the specific SQL flavour of Hive, is
also based on SQL-92 and already supports most those features, albeit some of them use
a slightly different syntax. For these cases we are using a technique called transpiling65 to
rewrite ADQL statements into HiveQL specific syntax. In order to facilitate this, we have
tested and extended a Python SQL parser, transpiler and optimizer named sqlglot66.

ADQL also defines a set of geometric data types and functions to enable storing and
processing different kinds of geometries. In particular, it defines the following types: POINT,
a single sky coordinate; CIRCLE, defined by a sky coordinate and a radius in degrees;
POLYGON, defined by a sequence of consecutive vertices; and REGION, an arbitrarily complex
geometric region that is expressed as an STC-S67 string. ADQL then defines a set of
functions to construct these data types and to operate with them.

The following subsections describe the features that are missing in Hive to completely
support ADQL and our approach at solving them.

Syntax differences

SELECT TOP N
This archaic syntax comes from older versions of SQL Server and it is not supported
any more in actual databases. The goal was to transpile these constructions, but
sqlglot was unable to parse. After submitting a pull request68 to add support for it,
we can now rewrite the queries to use the standard syntax:

SELECT ... LIMIT N
61https://ivoa.net/about/what-is-vo.html
62https://www.ivoa.net/
63https://www.ivoa.net/documents/TAP/
64http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
65https://en.wikipedia.org/wiki/Source-to-source_compiler
66https://github.com/tobymao/sqlglot
67https://www.ivoa.net/documents/STC-S/
68https://github.com/tobymao/sqlglot/pull/177
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FROM A JOIN B USING C
This construction is not compatible with HiveQL but it can be transpiled to an
equivalent form. Support for this syntax was added in sqlglot per request69 and the
queries are rewritten as follows:

FROM A JOIN B ON A.C = B.C

FROM A NATURAL JOIN B

EXCEPT [ALL]

INTERSECT [ALL]
These three operators are not compatible with Hive. However, there are equivalent
constructions for all of them that deliver the same results using a compatible syntax.
Unfortunately, these cases cannot be transpiled automatically as they require addi-
tional additional schema information not present in the query. Also, adding native
support for them in Hive would be very complex and out of the scope of this thesis.
For this, we have decided to compromise on the ADQL specification and not support
this constructions.

Standard functions

log(x)

ADQL defines this function to compute the natural logarithm of any number. We
transpile this function to the equivalent in Hive, named LN(x), as LOG(x, n) is
reserved to compute logarithms of arbitrary bases.

atan2(y, x)

This function was one of the first we implemented as a UDF, years ago. However,
UDFs are not defined globally70 and to call them must be prefixed by the schema in
which they have been defined. To improve this, we have compiled a custom version
of Hive where we have included this function, and others, as built-ins so they can be
called directly as ADQL requires.

truncate(x, n)

This function is used to truncate the input to the specific number of decimal places.
However, ADQL standard specifies double as the return type, and it is unclear if an
implementation following this specification to the letter would have problems with
irrepresentable floating point numbers. In our case, we have decided to implement
this feature through a UDF using the Decimal data type which does not suffer from
representation issues.

69https://github.com/tobymao/sqlglot/issues/178
70Work ongoing in https://issues.apache.org/jira/browse/HIVE-17986
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Field Type Example
tag tinyint POINT(0), CIRCLE(1), POLYGON(2), REGION(3)
coords array<double> [12.4, 76.3, 84.9, 34.1, 37.4, 72.3]
rs array<byte> 0x991fdebdb1b7b6b2c2bdec41d30475a4...

Table 3.1: Description of the custom struct data type to store geometric data.

Geometric types

ADQL defines several data types to store and operate with specific geometries. Initially,
we implemented them in Hive using a custom union data type that could store the cor-
responding parameters needed to represent each geometry. However, as the support for
union data types in Hive is incomplete, we had to revise the implementation and refactor
it based on a custom struct data type (see Table 3.1 for its structure and implementation
details). Here follows the specific geometries defined by ADQL:

• A POINT is defined by a set of two floating point values representing its coordinates
in degrees: right ascension and declination.

• A CIRCLE is defined by a set of three floating point values representing the coordinates
of its center (right ascension and declination) and its radius, all of them in degrees.

• A POLYGON is defined by three or more pairs of floating point coordinates defining the
sequence of vertices of the polygon. However, one also need the order or orientation71

on the sphere when traversing those vertices to be able reconstruct the proper shape.
Most libraries dealing with spherical geometry use the CCW (counter-clockwise)
convention, in which the interior of the polygon lays on the left side along the sequence
of vertices. ADQL specification does not mention any kind of ordering, which is a
grave omission, so we decided to go along the broad consensus of the industry.

• A REGION can represent an arbitrary region on the sky. ADQL defines it as a complex
geometric shape described by an STC-S72 string, but is unclear whether its support
is mandatory. Moreover, implementing support for STC-S is very complex, as there
is hardly any support at all in external libraries, and it also has not been designed
for efficient operations.
In order to make its implementation viable and its operations efficient, I decided to
base the design of the REGION geometry as a Multi-Order Coverage (MOC73) map.
In this case, the geometry is represented by an opaque byte array. More details about
its implementation are given later.

Geometric functions

ADQL defines the following operations involving the geometries just described.
71https://gis.stackexchange.com/questions/119150/order-of-polygon-vertices-in-general-gis-clockwise-

or-counterclockwise
72https://ivoa.net/documents/STC-S/
73https://healpix.sourceforge.io/doc/html/java/healpix/essentials/Moc.html
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area(geom)
Returns the area of the specified geometry in square degrees.

box(point, width, height) / box(ra, dec, width, height)
Returns a POLYGON geometry that represents a box on the sky defined by the coor-
dinates of its center, width and height, in degrees. The edges are segments of great
circles parallel to the coordinate axes at the center position.

centroid(geom)
Returns the centroid or center of mass of the provided geometry as a POINT.

circle(point, radius) / circle(ra, dec, radius)
Returns a CIRCLE geometry defined by its center coordinates and radius, in degrees.

contains(geom, geom)
Returns 1 whether the first geometry parameter is wholly contained within the second
one, 0 otherwise.

coord1(point)
Given a POINT, returns its first coordinate value (right ascension).

coord2(point)
Given a POINT, returns its second coordinate value (declination).

coordsys(geom)
This function has not been implemented as it has been marked as deprecated74 in
the latest ADQL specification.

distance(point, point) / distance(ra1, dec1, ra2, dec2)
Returns the angular distance between two sky positions, in degrees.

intersects(geom, geom)
Returns 1 whether the specified geometries overlap, 0 otherwise.

point(ra, dec) / point(hpix_29_nest)
Returns a POINT geometry defined by its coordinates in degrees, or from a HEALPix
pixel index of order 29 (the smallest one). The second variant is an extension to the
ADQL specification that we implemented to enable dealing with positions represented
using HEALPix pixels.

polygon(ra1, dec1, ra2, dec2, ra3, dec3, ...)

polygon(point1, point2, point3, ...)
Returns a POLYGON geometry defined from the sequence of its vertices (in CCW
order).

Region extension

As described before, we decided to support the REGION geometry by implementing it as
a MOC map. This special kind of HEALPix map allows defining footprints combining
pixels of different sizes. One particular property of the NESTED ordering is that it allows

74https://www.ivoa.net/documents/ADQL/20180112/PR-ADQL-2.1-20180112.html#tth_sEc4.2.4
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describing any pixel, of any size, by the integer range that encloses all the subdividing
pixels in the HEALPix hierarchy. As a result, any combination of arbitrarily-sized pixels
that form a MOC can be represented by a simple set of corresponding integer ranges.

HEALPix Java library has a specific class called RangeSet75 that allows very efficient
operations when dealing with this data structure, as well as a very optimal interpolative-
coding compression76 that saves up a lot of storage. The resulting binary array is what
gets stored in the custom geometry data type. Based on this special properties, we have
implemented the following additional functions to complement the features of CosmoHub
when dealing with REGION data types:

region(geom)
Converts the provided geometry into a REGION.

complement(geom)
Returns the complement of the provided geometry.

intersection(region)
This is an aggregate function that, given a column of regions, it returns the overall
intersection of them.

union(region)
This is an aggregate function that, given a column of regions, it returns the overall
union of them.

3.8 Web application

This section describes the web framework of CosmoHub, composed of two components.
On the one hand the server backend that powers the operation of the service for which I
conducted its entire design and development. On the other hand the frontend that exposes
all of CosmoHub’s functionalities to the user which was developed in collaboration with
PIC colleagues and in which I was involved in the design and testing phase.

Python backend

CosmoHub allows users to process large datasets to obtain additional information. In
order to decouple the results of those interactions from the way they are presented, all
operations are carried out through a set of API calls. In particular, all actions available
to the user are implemented in an API that follows the REST (Fielding, 2000) paradigm.
Operations are grouped in several endpoints depending on the data model entity they act
on (see Figure 3.1). Database access is proxied through an Object Relational Mapper
(ORM) layer in order not to tie the implementation of each action to the data model
specifics, enabling data model evolution. All actions return JSON77 responses, which
are consumed by the web frontend. A complete list of endpoints and their description
is available in Table 3.2. The full source code for the Python backend is available at
https://github.com/ptallada/cosmohub-api.

75https://healpix.sourceforge.io/doc/html/java/healpix/essentials/RangeSet.html
76https://healpix.sourceforge.io/doc/html/java/healpix/essentials/Moc.html#toCompressed()
77https://tools.ietf.org/html/rfc7159
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URL Method Description

/user

GET Retrieve current user profile

PATCH Update profile data (i.e. email, pass-
word)

POST Register a new user

DELETE Remove a user account

/groups GET Retrieve the list of groups

/acls
GET Retrieve the list of users and their

memberships

PATCH Modify a user’s membership

/catalogs GET Retrieve the list of catalogs accessible
to the current user

/catalogs/{id} GET Retrieve detailed information of a cat-
alog

/catalogs/syntax GET Perform an SQL syntax check

/downloads/datasets/{id}/readme GET Download the README file for a
dataset

/downloads/files/{id}/readme GET Download the README file for a
value-added file

/downloads/files/{id}/contents GET Download the contents of a value-
added file

/downloads/queries/{id}/results GET Download the output of a custom cat-
alog

/queries
GET Retrieve the list of custom catalogs for

the current user

POST Request the generation of a custom
catalog

/queries/{id}/cancel POST Abort the generation of a custom cat-
alog

/queries/{id}/done GET Callback to notify the completion of a
custom catalog

/contact POST Send a message to the CosmoHub
Team

Table 3.2: List of REST API endpoints, grouped by entity. For each one, its URL pattern,
the HTTP method and a brief description is shown.
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Most catalogs in CosmoHub belong to a single project although, in some special cases,
they can be associated with several projects. Only users which are members of those
projects are able to access their corresponding data. In order to prevent unauthorized uses
of CosmoHub, all requests are authenticated and the user privileges are checked against
the database. The API accepts two authentication methods, basic and token.

With HTTP Basic authentication78, each request must include a username and pass-
word combination. This information is looked up in the user database and, if no match
is found, the request is denied. The main inconvenience with this mechanism is that each
request requires a round-trip to the database. In order to soften the load on the database,
a JSON Web Token79 (JWT) is attached to every response. This token contains signed
information about the authenticated user and, when supplied on future requests, it allows
the backend to verify the identity of the user without any database involvement.

Regarding the interactive exploration feature of CosmoHub, as Hive queries are poten-
tially executed on all nodes in the Hadoop platform, a full table scan usually takes about a
minute. Combined with sampling, results can be obtained even faster. This performance
allowed us to implement interactive exploration of large datasets using histograms and
heatmaps. As also mentioned in 3.5.1, data for these plots is pre-aggregated on the Hive
side using a specially constructed query and only the data points to be plotted are sent to
the browser.

Additionally, in order to provide some feedback to the user during the execution of
interactive queries, an extension80 was developed for the Python DB-API interface for Hive
(PyHive) in order to extract the progress of an ongoing query. This information is relayed
using a websocket81 connection, which enables bidirectional communication between the
browser and the backend. Through this channel, users receive periodic progress updates
about a query and can also request its cancellation.

CosmoHub is deployed in three different instances corresponding to the production,
pre-production and test environments. Each one of them runs on separate identical virtual
machines, with 4 cores, 4 GiB of RAM and 10 GiB of storage each. Only the production
instance is accessible to the outside through https://cosmohub.pic.es.

The main software components used for building the backend stack are Flask82 as
the Python Web Server Gateway Interface (WSGI83) framework, Flask-RESTful84 as the
REST framework and gevent85 as the coroutine networking library. This stack runs on top
of uWSGI86 behind an NGINX 87 proxy.

78https://tools.ietf.org/html/rfc7617
79https://tools.ietf.org/html/rfc7519
80https://github.com/dropbox/PyHive/pull/136
81https://tools.ietf.org/html/rfc6455
82http://flask.pocoo.org/
83https://www.python.org/dev/peps/pep-3333/
84https://flask-restful.readthedocs.io
85http://www.gevent.org/
86https://uwsgi-docs.readthedocs.io
87https://www.nginx.com/
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For the data access layer, SQLAlchemy88 is used as the ORM component and the
combination of psycopg89 and psycogreen90 are used as the PostgreSQL driver and coroutine
adapter library, respectively. Finally, astropy91 is used to implement FITS as a download
format and the ASDF92 python library to implement ASDF format.

Web frontend

The web interface’s main objective is to enable the user to access all of CosmoHub’s features
which, as described in the previous section, are available through a set of REST endpoints.

Usability is a strong requirement, as the interface should be intuitive enough so that any
user can interact with it with no prior training. We took special care to follow and exploit
characteristic web semantics —such as forms, hyperlinks or scrolling, among others— to
aid the user at every step. In the end, designing a clean and simple interface, preferably
self-explanatory, is key to permitting open science.

CosmoHub’s frontend has been developed using modern, widely-supported, community
technologies, such as AngularJS93, Bootstrap94, WebSockets95, Plot.ly96 and Wordpress97.

AngularJS is a Javascript framework, developed and maintained by Google98, that ex-
tends HTML to implement Model-View-Controller capabilities into web browsers, making
user interactions dynamic, faster and more fluid. It has a large collection of official and
third-party plugins and is specially designed to interact with API based applications, such
as CosmoHub. Being open-source, well maintained and with a broad community of users
and developers are key aspects for choosing it as the base of the frontend.

Bootstrap is an open-source HTML, JavaScript and Cascading Style Sheets (CSS)
library created and maintained by Twitter99 for responsive web design. It is one of the
most used styling frameworks in the entire web development community, providing users
with clear and coherent interfaces. It comes with a handy and easy to configure column-
based layout, plus some predefined style elements. These features are extensively used in
CosmoHub.

WebSockets is a technology for bi-directional communication between web browsers and
web servers. This technique involves upgrading a stateless HTTP request into a persistent
TCP connection that can be subsequently used to transfer information from both parties.
Some features such as real-time progress monitoring require websockets to work properly.

88https://www.sqlalchemy.org/
89http://initd.org/psycopg/
90https://bitbucket.org/dvarrazzo/psycogreen
91https://www.astropy.org/
92https://asdf-standard.readthedocs.io
93https://angularjs.org/
94https://getbootstrap.com/
95https://tools.ietf.org/html/rfc6455
96https://plot.ly/
97https://wordpress.com/
98https://google.com
99https://twitter.com
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Plot.ly is an open-source plotting library based on the widely used D3.js100 web visu-
alization framework. It greatly simplifies the programming needed to implement all sorts
of charts and dashboards, such as those used for interactive exploration.

Finally, WordPress is one of the most used content management systems (CMS). Al-
though it is mostly associated with blogs, CosmoHub uses it as a backend for editing the
content of dynamic sections, such as the news feed.

When a user visits CosmoHub (https://cosmohub.pic.es), it is presented with the initial
page shown in Figure 3.10. This front page describes its goals, showcases its main features
and holds references to the rest of public contents.

User management Authentication is required in order to access CosmoHub’s main
features. For this, users have to enter their credentials in the login form. Public catalogs
can be accessed by any user. However, access to private data from additional projects
has to be manually validated by project administrators. All personal data from registered
users is stored and processed following GDPR101 regulations.

Interactive exploration Just after logging in, users are presented with the catalog
selection table. The headers on the top of each column allow to sort the list for each field,
while the top search box allows user to restrict the listing to only those entries containing
the specified words in their name or description.

Selecting any entry brings them to the catalog page (Figures 3.11 and 3.12), where
they can build their own custom catalogs or subsets for interactive exploration and/or
download. In order to guide them, the subset construction process is divided in a series
of steps, which can be traversed through scrolling or using the navigation bar fixed at the
top.

The first piece of information a user encounters is a complete description of the catalog,
usually provided by the catalog owner. Just below, an optional section called "Value Added
Data" contains links and documentation to additional data that complements this catalog
and that may be useful to analyze it, such as filter curves or extinction maps.

Users can use a predefined dataset (Step 0) or create a new one from scratch (Step 1).
Predefined datasets are curated options with specific purposes, although users can modify
them to suit their needs. There are two types of predefined datasets: basic datasets use the
guided interface to configure the subset, while expert datasets resort to setting up directly
the SQL statement in expert mode. In order to build a custom catalog from scratch,
users start choosing the set of columns they need from Step 1. The search box on the top
right allows users to filter the columns display looking for partial matches on names and
comments.

Steps 2 and 3 represent two methods available to users for restricting the number of
rows contained in their custom catalog. On the one hand, with row sampling (Step 2),
Hive can be configured to only read a fraction of the files that store the catalog’s data.
In an attempt to deliver statistically unbiased subsets, rows are divided in those files not

100https://d3js.org/
101https://gdpr-info.eu/
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Figure 3.10: Initial page, showcasing the main projects and features. Note that some
content has been edited for presentation purposes.
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Figure 3.11: Catalog page upper half, showing catalog’s description, valued added data
and steps 0 to 3.
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Figure 3.12: Catalog page bottom half, showing steps 4 to 7.
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Figure 3.13: 1D histogram, displaying the number of galaxies in MICECAT2 with true
redshift between 0.4 and 0.6, grouped by absolute magnitude in hundred uniformly sized
bins.

following any actual property but a pseudo-random value, usually a surrogate key. In
addition, users may specify in Step 3 any arbitrary criteria to further restrict the resulting
rows. If multiple criteria are specified its effects are combined, thus only rows fulfilling all
criteria are returned.

Step 4 displays the corresponding SQL statement constructed from the options selected
in the previous steps. If the guided interface capabilities are not enough, or users are
proficient using SQL, the Expert mode can be enabled by clicking a button. From that
point on, the guided interface will be disabled and the SQL sentence can only be modified
by manually editing it in the text area.

Once the custom catalog has been defined, users can interactively explore its properties
using any of the 4 visualization tools in Step 5. (i) The table preview shows the first 20
rows in the subset and it is mainly used to have a glance at the results. (ii) The scatter
plot allows to display the relationship between several properties. However, as it cannot
aggregate data, it is limited to ten thousand points. (iii) 1D histograms can be generated
from any column using a configurable number of uniformly sized bins. An example is
shown in Figure 3.13. (iv) 2D heatmaps, as scatter plots, display the relation between two
properties using rectangular bins. As with 1D histograms, bin ranges are filled in from
column statistics. Also, the metric can be selected between COUNT, AVG, MAX or MIN,
in order to display the number of rows, average, maximum or minimum value for each bin,
respectively. Figure 3.14 shows an example.

After filling in the required fields, pressing the Play button will start the process to
generate the visualization. All plots can have customized display options such as axis
scaling (linear or logarithmic), axis direction (increasing or decreasing) or switching to a
cumulative plot. Also, visualizations can be zoomed in and out, exported as a Portable
Network Graphics (PNG) image or downloaded as a CSV file for additional processing.
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Figure 3.14: 2D heatmap, displaying a color-magnitude diagram of MICECAT2.

Custom catalogs Whenever users are satisfied with the properties of their custom cat-
alog, they can request it to be generated and stored in a specific format to be later down-
loaded. Step 6 shows the supported formats: CSV with BZip2 compression, FITS and
ASDF. Finally, after selecting the desired download format. Once requested, the custom
catalog is assigned a unique identifier, so that users may track its progress

When a custom catalog is completed, users receive an email directing them to the
Activity page (see Figure 3.15) in order to download it. Users may also use this page to
follow the progress of their custom catalog requests. Finished catalogs are kept a minimum
of 30 days and are eventually deleted to maintain enough free storage space.

3.9 Results

In this section we present some of the most relevant results and successful use cases of
the version of CosmoHub as described in this article, which was commissioned in October
2016. The results are separated into two sections, the first one contains a quantitative
analysis of the volume, timing and performance of the service as a whole, while the second
section contains specific scientific applications where CosmoHub is being used.

3.9.1 Quantitative analysis

Since this version opened for public use, CosmoHub has been constantly growing in all
relevant metrics, such as number of users, number of catalogs and volume of published
data (see Figure 3.16). Note that the information in this figure only accounts for data
published through CosmoHub, excluding custom catalogs.

Until 2022, more than 1500 new users have opened an account, and more than 12,000
custom catalogs and nearly 20,000 interactive queries have been delivered. Data growth
has been limited by the available storage space.
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Figure 3.15: Activity page, used to follow custom catalog creation progress and to download
them when they are ready.
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Figure 3.16: Evolution over time of the number of available catalogs and size of published
data.
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Figure 3.17: Processing time in minutes (monthly average) for batch catalogs and interac-
tive queries. Shaded area shows the standard deviation.
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Figure 3.18: Cummulative completion ratio as a factor of processing time for batch catalogs
and interactive queries.

At the same time, performance in terms of response time has been stable. Figure
3.17 shows that the average response time for the execution of interactive queries and
the generation of custom catalogs has barely increased over time. Statistical fluctuations
are due to resource contention with concurrent queries and scheduling overheads, among
others.

It is worth noticing that, since its commissioning, the architecture and configuration of
the Hadoop platform has seen several reorganizations, although the only resource that has
been increased is the storage capacity. Therefore, by improving and tuning the platform,
we have been able to cope with the growth in users and data volume and to keep the
response time stable.

Figure 3.18 provides information about the distribution of response times by plotting
the completion ration for both interactive queries and custom catalogs. The completion
ration is defined as the fraction of queries completed after a given elapsed time. Note that
the orchestration of the different tasks on the cluster nodes has a minimum overhead of
about 10-12 seconds. Only queries that can be answered directly from statistics, such as
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Figure 3.19: Active users over time, with relevant milestones highlighted. Upper and lower
bounds correspond to active users within a window of 28 days and 7 days respectively,
while middle line is for a 14 days window.

selecting the number of rows or the maximum value of a column without filters, return in
a shorter time.

About 66.9% of all interactive queries finish in less than 30 seconds, while 96.8% of
them finish in less than 2 minutes. These response times enable users to interactive explore
any dataset, without worrying about its volume or the complexity of the query. On the
other hand, for custom catalogs, 71.0% are produced in less than 3 minutes, while 97.4%
of them finish in 30 minutes. Although not as relevant as for interactive queries, keeping a
low response time for the generation of custom catalogs is also important to keep a good
user experience.

Figure 3.19 shows the evolution of active users over time. Dates of particular scientific
events are overlayed. A clear correlation can be seen, particularly with the Euclid Con-
sortium meeting held yearly every June, where interest on newly released data boosts user
activity. A peak in activity can also be seen coinciding with Gaia Data Release 2 (DR2102).
The catalog was mirrored in CosmoHub in less than 12h and we were able to release it al-
most simultaneously to the official announcement at the Europen Space Astronomy Centre
(ESAC103).

3.9.2 Scientific applications

CosmoHub supports multiple international cosmology projects, the most relevant in terms
of users and data volume being Euclid 104. Euclid simulations require the production of
extremely large datasets. In their Flagship simulation105 (paper in preparation), with an
estimated final size of 20 TiB and nearly 30 × 109 objects, they are using as input the
largest dark-matter halo catalog up to date, with 5.5 TiB and 40×109 objects. CosmoHub
is currently providing access to the entire halo catalog and to several productions of mock

102https://www.cosmos.esa.int/web/gaia/dr2
103http://www.esa.int/About_Us/ESAC
104http://sci.esa.int/euclid/
105https://www.euclid-ec.org/?page_id=4133

101

https://www.cosmos.esa.int/web/gaia/dr2
http://www.esa.int/About_Us/ESAC
http://sci.esa.int/euclid/
https://www.euclid-ec.org/?page_id=4133


Catalog Rows Fields Size
ALHAMBRA
— S/G classified 422 K 7 10.4 MiB
— photometric redshifts 441 K 113 149.5 MiB
CFHTLens 29 M 129 7.5 GiB
COSMOS 2015 1.2 M 537 1.6 GiB
Gaia DR1 1,143 M 62 174.9 GiB
Gaia DR2 1,693 M 98 486.5 GiB
KiDS DR4 100 M 306 89.6 GiB
MICECAT 1 205 M 91 59.9 GiB
MICECAT 2 500 M 122 211.1 GiB
PAUS-COSMOS EDR 6.5 K 126 2.8 MiB
PAU-MillGas Lightcone 7.4 M 34 9.0 GiB
Zest 132 K 71 20.9 MiB

Table 3.3: List of public catalogs in CosmoHub (as of 2019).

galaxy catalogs (these account for about half of the data stored in CosmoHub). The Euclid
cosmological simulations validation team makes heavy use of the exploration capabilities
of CosmoHub in order to validate data prior to its release to the full collaboration. Then,
Euclid scientists use CosmoHub to download customized subsets of the data for further
analysis and processing.

Up to 2023, 84 publications have acknowledged CosmoHub contribution to their results.
Projects such as PAU Survey106 and MICE107 use CosmoHub as the official and primary
channel for the distribution of their data (Eriksen et al., 2019 and Cabayol et al., 2019).
Other projects such as DES108 and Gaia109 have a replica of their most important releases,
and several publications have made use of them (see Serenelli, Aldo et al., 2019 and Sevilla-
Noarbe et al., 2018). The subset of public catalogs in CosmoHub (as of October 2019) is
shown in Table 3.3.

Finally, other applications not based solely on the distribution of data are also present,
such as the one from the DES clustering science working group. They made intensive use of
the exploration capabilities to define and test many different arbitrary galaxy subsamples
to estimate the Baryon Acoustic Oscillations (BAO) feature in the galaxy distribution
(Crocce et al., 2019). Some particularly useful applications are shown in 3.A. Lastly,
some projects have also cited CosmoHub as a state-of-the-art reference to their own data
publication procedures, such as Heitmann et al., 2019 and Nelson et al., 2019.

3.10 Conclusions and future work

CosmoHub enables the interactive exploration and distribution of large cosmological data-
sets on top of Hadoop. This chapter describes the main features and capabilities of Cos-

106https://www.pausurvey.org/
107http://maia.ice.cat/mice/
108https://www.darkenergysurvey.org/
109http://sci.esa.int/gaia/
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moHub from the user’s point of view but, more importantly, it also details all the research
and decisions made regarding its design and implementation.

Regarding the design (section 3.3), it is focused on satisfying a set of needs (enumer-
ated in section 3.2) gathered from the scientific community, while the experience gained
through the early prototypes (described in section 3.4) helped pave the way to achieve its
current success. In particular, the easy to use requirement has been met by implementing
CosmoHub as a web application, with a guided process to remove any SQL knowledge de-
pendency, and the support for common astronomical data formats such as CSV and FITS.
Also, the ability to produce visualizations to get insight over billions of rows in just a few
seconds fulfills the interactive exploration requirement. Several projects such as PAUS,
MICE and the Euclid simulation group have selected CosmoHub as their primary data
distribution service, which was also one of our objectives.

The decision to delegate CosmoHub’s data processing to Hadoop and Hive (see section
3.5) has proven to be wise, as the resulting implementation is reliable, high performing and
usable with powerful features. Also, the great scalability of the platform has allowed to keep
response times low at all times (see section 3.9.1), in spite of the constant increase in data
volume. In the end, CosmoHub is providing a useful service to the scientific community
with a high quality of service, as proven by the use of CosmoHub by some of the most
relevant projects in cosmology (see section 3.9.2).

When CosmoHub entered into service in late 2016, it was the first project to apply
Hadoop to the analysis and distribution of large cosmological datasets. Over these years
we have learnt a lot from both our own experience and user’s feedback. In fact, we are
already working on the next iteration of CosmoHub which will include a lot of improvements
based on this experience:

(i) Regarding the Hadoop platform, upgrade it to a custom developed Hadoop distri-
bution. The most exciting new features include the possibility to reduce replica overhead
using erasure coding, the ability to access a read-only view of externally provided storage
and the implementation of materialized views in Hive to speed up join queries.

(ii) From CosmoHub application’s perspective, add the ability for users to upload their
own catalogs and to publish and share them with other users, extend and optimize the vi-
sualization tools performance, and improve the general responsiveness of the user interface.
We also want to implement some VO protocols such as the Table Access Protocol (TAP)
to enable programmatic access to launch SQL queries and retrieve results, and to integrate
with Jupyter Notebooks to be able to create arbitrary plots or perform custom analysis.
There are plans to provide guided analysis tasks to compute the 2-point galaxy correlation
function, to generate mock galaxy catalogs using the Halo Occupation Distribution (HOD)
model or to compute the galaxy photometric redshift, among others.

With all this future work under way, we are prepared to keep pushing forward and to
help put in place the next generation of services for managing large volumes of structured
scientific data.

103



3.A Particularly useful applications

This appendix describes in detail several representative use cases that make use of the
custom catalog generation capabilities in CosmoHub. Each application includes the full
SQL statement that was used, along with the time it took to complete. The timings
measured in this section, unlike the results in section 3.9, were performed having exclusive
use of the entire Hadoop platform.

MICECAT1 clustering sample

In this application, we want to generate a subset of MICECAT1 in order to compute the
projected 2-point correlation function on it. Thus, we selected the right ascension, the
declination and the comoving distance columns, and we filtered on a redshift shell (with
z between 0.3 and 0.4) and also on a magnitude range (with absolute magnitude on the r
band between -22 and -21). The creation of this custom catalog takes only 14 seconds and
generates a CSV.BZ2 file of 4.99 MiB containing 492,210 rows.

SELECT ‘ra‘, ‘dec‘, ‘d_c‘
FROM micecat_v1
WHERE ‘z‘ > 0.3 AND ‘z‘ < 0.4

AND ‘abs_mag_r‘ < -21 AND ‘abs_mag_r‘ > -22

DES Y1A1 BAO main sample

Another interesting application was the generation of the BAO sample for DES. This
sample, described in Crocce et al. (2019), is a subset of DES Y1 data that, according to the
article, represents “red galaxies with a good compromise of photo-z accuracy and number
density, optimal for the BAO measurement”. The query below implements the criteria
shown in Table 1 of the paper. The fast response times of CosmoHub were particularly
useful to interactively refine the parameters of the sample, which is now available also
as a predefined dataset within one of the DES private catalogs. An interactive query to
visualize the number of objects as a function of the photometric redshift takes 31 seconds.
Exporting the sample into a CSV.BZ2 file of 55.6 MiB containing 2.7 million objects takes
39 seconds.

SELECT
coadd_objects_id, ra, dec,
mean_z_bpz_hiz, z_mc_bpz_hiz, t_b_hiz, odds_hiz

FROM des_y1
WHERE (mag_auto_i > 17.5) AND (mag_auto_i < 22)

AND (mag_auto_i < 19.0 + 3.0*mean_z_bpz_hiz)
AND (ra < 15 or ra > 290 or dec < -35)
AND (flags_badregion <= 3 and flags_gold = 0)
AND (spread_model_i + (5.0/3.0)*spreaderr_model_i > 0.007)
AND ((mag_auto_i - mag_auto_z) + 2.0*(mag_auto_r - mag_auto_i) > 1.7)
AND ((mag_auto_g - mag_auto_r) BETWEEN -1. and 3.)
AND ((mag_auto_r - mag_auto_i) BETWEEN -1. and 2.5)
AND ((mag_auto_i - mag_auto_z) BETWEEN -1. and 2.)
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GAIA DR2 HEALPix partial map

The custom catalog feature can also be used in conjunction with the FITS format to create
HEALPix maps. For instance, in this application the following query was used to create
a partial map with explicit indexing110 estimating the average of the Standard error of
parallax (Angle[mas]) for each pixel. The pixel identifier is taken from the _hpix_12_nest
column. The generation of this custom catalog produces a FITS file of 156 million rows
and 1.74 GiB in size in 65 seconds.

SELECT ‘_hpix_12_nest‘, AVG(parallax_error)
FROM gaia_dr2
GROUP BY ‘_hpix_12_nest‘

Euclid True Universe FITS file

CosmoHub stores and distributes a large amount of data for the Euclid Cosmological Sim-
ulations Working Group (CSWG) which is then used as input for different image simulator
pipelines. This application uses a complex SQL statement to generate an individual input
from the catalogs stored in CosmoHub. The resulting FITS file has the correct format,
the proper field names and the correct units. This allows Euclid scientists to easily test
their codes on a smaller scale, while at the same time enabling them to iterate and provide
feedback much faster. In this particular example, the FITS file generated contains 1823344
objects, occupies 406.9 MiB and was produced in 22s.

SELECT CAST(((gal.halo_id * 10000) + gal.galaxy_id) AS bigint) AS SOURCE_ID,
CAST(gal.ra_gal AS float) AS RA,
CAST(gal.dec_gal AS float) AS DEC,
CAST(gal.ra_gal_mag AS float) AS RA_MAG,
CAST(gal.dec_gal_mag AS float) AS DEC_MAG,
CAST(gal.observed_redshift_gal AS float) AS Z_OBS,
CAST(gal.abs_mag_r01_evolved AS float) AS TU_MAG_R01_SDSS_ABS,
CAST(-2.5*log10(gal.sdss_r01) - 48.6 AS float) AS TU_MAG_R01_SDSS,
CAST(gal.sed_cosmos AS float) AS SED_TEMPLATE,
CAST(ROUND(gal.ext_curve_cosmos) AS smallint) AS EXT_LAW,
CAST(gal.ebv_cosmos AS float) AS EBV,
CAST(gal.logf_halpha_model3_ext AS float) AS HALPHA_LOGFLAM_EXT,
CAST(gal.logf_hbeta_model3_ext AS float) AS HBETA_LOGFLAM_EXT,
CAST(gal.logf_o2_model3_ext AS float) AS O2_LOGFLAM_EXT,
CAST(gal.logf_o3_model3_ext AS float) AS O3_LOGFLAM_EXT,
CAST(gal.logf_n2_model3_ext AS float) AS N2_LOGFLAM_EXT,
CAST(gal.logf_s2_model3_ext AS float) AS S2_LOGFLAM_EXT,
CAST(gal.bulge_fraction AS float) AS BULGE_FRACTION,
CAST(gal.bulge_length AS float) AS BULGE_LENGTH,
CAST(gal.disk_length AS float) AS DISK_LENGTH,
CAST(gal.disk_axis_ratio AS float) AS DISK_AXIS_RATIO,
CAST(gal.disk_angle AS float) AS DISK_ANGLE,
CAST(gal.kappa AS float) AS KAPPA,
CAST(gal.gamma1 AS float) AS GAMMA1,

110See https://healpix.sourceforge.io/data/examples/healpix_fits_specs.pdf for more information about
how HEALPix data is stored as FITS.

105

https://healpix.sourceforge.io/data/examples/healpix_fits_specs.pdf


CAST(gal.gamma2 AS float) AS GAMMA2,
CAST(gal.mw_extinction AS float) AS AV,
CAST(gal.euclid_vis_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_VIS,
CAST(gal.euclid_nisp_y_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_Y_NISP,
CAST(gal.euclid_nisp_j_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_J_NISP,
CAST(gal.euclid_nisp_h_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_H_NISP,
CAST(gal.blanco_decam_g_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_G_DECAM,
CAST(gal.blanco_decam_r_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_R_DECAM,
CAST(gal.blanco_decam_i_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_I_DECAM,
CAST(gal.blanco_decam_z_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_Z_DECAM,
CAST(gal.cfht_megacam_u_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_U_MEGACAM,
CAST(gal.cfht_megacam_r_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_R_MEGACAM,
CAST(gal.jst_jpcam_g_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_G_JPCAM,
CAST(gal.pan_starrs_i_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_I_PANSTARRS,
CAST(gal.pan_starrs_z_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_Z_PANSTARRS,
CAST(gal.subaru_hsc_z_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_Z_HSC,
CAST(gal.gaia_g_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_G_GAIA,
CAST(gal.gaia_bp_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_BP_GAIA,
CAST(gal.gaia_rp_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_RP_GAIA,
CAST(gal.lsst_u_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_U_LSST,
CAST(gal.lsst_g_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_G_LSST,
CAST(gal.lsst_r_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_R_LSST,
CAST(gal.lsst_i_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_I_LSST,
CAST(gal.lsst_z_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_Z_LSST,
CAST(gal.lsst_y_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_Y_LSST,
CAST(gal.kids_u_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_U_KIDS,
CAST(gal.kids_g_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_G_KIDS,
CAST(gal.kids_r_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_R_KIDS,
CAST(gal.kids_i_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_I_KIDS,
CAST(gal.2mass_j_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_J_2MASS,
CAST(gal.2mass_h_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_H_2MASS,
CAST(gal.2mass_ks_el_model3_odonnell_ext*1.e23 AS float) AS TU_FNU_KS_2MASS,
CAST(SHIFTRIGHT(gal.hpix_29_nest, (29-5)*2) AS bigint) AS hpix_5_nest

FROM cosmohub.flagship_mock_sc456 AS gal
WHERE SHIFTRIGHT(hpix_29_nest, (29-5)*2) = 7155
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Chapter 4

Simulating galaxy fluxes

Cosmological simulations are intricate computational models that replicate the evolution
of the universe over vast cosmic scales of space and time. These simulations employ
sophisticated numerical techniques to solve the complex equations governing fundamental
forces like gravity, fluid dynamics, and radiation. By dividing a simulated "box" of space
into a grid and tracking variables like matter density and energy distribution at each
point, these simulations offer a dynamic portrayal of cosmic processes, providing a virtual
laboratory to explore the universe’s history.

Cosmological simulations hold immense significance in observational cosmology due
to their unique ability to connect theoretical models with real-world observations. By
generating synthetic data that mirrors astronomical phenomena, simulations aid in under-
standing how galaxies, dark matter, dark energy, and other cosmic components interact,
form structures, and evolve across billions of years.

In this context, the simulation of the observed galaxy electromagnetic fluxes, the
amount of energy captured per unit of time and surface, is crucial because it enables
the interpretation and calibration of astronomical data obtained from telescopes and other
observational instruments. By accurately simulating how galaxies emit and interact with
different types of electromagnetic radiation across various wavelengths (such as visible
light, radio waves, X-rays), they allow astronomers to understand how galaxies and their
components contribute to the observed fluxes, aiding in the identification of different astro-
physical processes, such as star formation, supernovae, and active galactic nuclei. Further-
more, these simulations are fundamental to desig and optimize observational strategies,
improving our ability to analyze and interpret the vast amount of data collected from
telescopes.

The computation of the observed electromagnetic flux of an astronomical object given
its spectral energy distribution (SED) –the energy emitted by an object as a function of the
wavelength– is one of the fundamental properties provided in simulated galaxy catalogs.

The simulation of the observed electromagnetic flux of an astronomical object given
its spectral energy distribution (SED) –the energy emitted by an object as a function of
the wavelength– requires computing an integral, either in wavelength or frequency, of the
object SED, multiplied by the optical system response function. This is not a complicated
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operation, but it takes 36 milliseconds1 to compute the flux for one galaxy in a single
band. Therefore, when this process has to be performed for a large number of galaxies (i.e.
billions of objects) the computational time required becomes prohibitive without optimized
parallelization. Moreover, when the SED comes from a simulation it may have separate
components affecting in different ways the final result, such as the stellar continuum, the
emission line fluxes or the extragalactic absorption. In those cases, it can be more efficient
to compute each contribution separately, but this also adds complexity to the process.

The Euclid Flagship mock galaxy catalogue2,3 is the largest synthetic mock galaxy
catalogue ever produced, containing of the order of 5 billion objects with up to 400 proper-
ties, including their fluxes in more than 30 energy (or frequency) bands. The scale of this
catalog means that it is completely unfeasible to compute the fluxes using a traditional
approach using integrals, as the processing time would be around 170 years using a single
core4.

This chapter explains in detail the methodology we have followed to design, develop,
calibrate and validate an approximate method that enables the computation of the galaxy
fluxes in a much faster way, while ensuring the results still fulfill the scientific precision
constraints. This work is part of a larger suite of algorithms called SciPIC (Carretero et
al., 2017), that has been successfully applied to the generation of Euclid and PAUS mock
galaxy catalogs for their instrument and scientific simulations.

In the approach presented in this chapter, the computation of each galaxy flux is divided
in three independent steps. The combination of the results from each step produces the
desired value for the flux. This method has been heavily optimized and is calibrated
to deliver its results as fast and accurate as possible. Using this approach, it takes 47
microseconds on average1 to estimate the observed flux in any band, lowering the time
needed using integrals by a factor 750 in equal computing conditions.

In the case of simulations for the Euclid project, this means that the fluxes of the
entire Flagship mock galaxy catalog with its 5 billion sources and 30 wavelength bands of
the Euclid satellite instruments (including the visible imager (VIS) and the near infrared
3-filter (Y, J and H) photometer (NISP-P) instruments) can be estimated in less than
12 hours when using 300 cores on our PIC Big Data platform. However, most dataset
productions are internal validation releases that are much smaller and take less than a
hour to be produced. For PAUS simulations, albeit its galaxy mock catalogs are smaller
(∼3 billion sources), they require a larger set of wavelength bands (∼90 filters) so they end
up taking a similar amount of time.

This method must also be precise as well as fast in order for its results to be sci-
entifically valid. The effective scientific applicability of this method has been tested for
both Euclid and PAUS simulations, that define strict requirements in terms of precision
for their measures. For Euclid, when comparing the magnitude5 difference between the
standard integrals and the approximated approach, 99.8626% of the simulated galaxies
fulfil the requirement of having a ∆m < 0.01. The method has also been optimized and

1at PIC, using a reference computing node.
2https://sci.esa.int/web/euclid/59348-euclid-flagship-mock-galaxy-catalogue
3https://www.esa.int/About_Us/ESAC/Euclid_flagship_mock_galaxy_catalogue
45109objects · 30bands/object · 0.036seconds/band = 5.4109seconds = 62, 500days = 171, 12years
5As galaxy fluxes are so minuscule, astronomers prefer using logarithmic units such as magnitudes (m).

Also, magnitudes align better with how our eyes perceive brightness changes as non-linear. See section 4.2
for the exact definition.
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used to simulate the observed flux for PAUS using its narrow band filters, fulfilling the
survey requirement ∆m < 0.01 for 99.9996% of the simulated galaxy sample. Note that
this method is very generic and, with the proper calibration, can be applied to simulate
fluxes for any survey.

The structure of this chapter is as follows. Section 4.1 introduces SciPIC, a set of codes
and algorithms for the generation of synthetic mock galaxy catalogs using a specific kind of
cosmological simulations, and which this contribution is part of. Section 4.2 describes the
traditional approach to estimate the apparent magnitude using integrals having as input
the parameters from the cosmological simulations without any approximation, produced
for cosmological surveys such as Euclid and PAUS. Section 4.3 shows the specific input
data used in the design of the approximate computation method. Section 4.4 explains the
optimization and calibration of the approximate method needed for Euclid and PAUS mock
galaxy simulations and integrated in SciPIC. Section 4.5 displays the scientific performance
and accuracy results using a sample of galaxies. Finally, section 4.6 collects the conclusions
of this chapter.
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4.1 SciPIC

SciPIC, named after Scientific Pipeline at PIC, is a suite of algorithms integrated into a
powerful pipeline dedicated to the generation of massive synthetic galaxy catalogs based on
halo catalogs coming from n-body dark matter cosmological simulations. These algorithms
implement multiple recipes, each one of them specifically tailored to simulate a distinct set
of dependent galaxy properties.

Originally, most of the algorithms were designed, developed and applied to the produc-
tion of the Marenostrum Institut de Ciències de l’Espai (MICE) galaxy catalogs (Carretero
et al., 2015). Afterwards, I have led and contributed greatly to the refactoring, optimiza-
tion, calibration and integration of all these codes into SciPIC, coordinated by a team of
scientific advisors.

This effort was fundamental in order for them to perform as efficiently as possible,
thus allowing the pipeline to scale up to producing catalogs of billions of entries, such as
the Euclid Flagship mock galaxy catalog6 (see Castander et al. in preparation), among
other datasets. With up to 10 billion objects up to redshift7 z = 3 and more than 1250
properties each, it is one of the largest (if not the largest) and most complete synthetic
galaxy catalogs ever produced. It is based on the Flagship simulation (see Stadel et al. in
preparation), also the largest dark-matter particle simulation produced at the time of this
writing, and its corresponding halo catalog8 with more than 130 billion objects and about
80 properties. ALso, it has also been used in the production of synthetic galaxy catalogs
for the PAU Survey project (see Cabayol et al., 2023).

The combination of all these state-of-the-art algorithms in a single pipeline is a very
distinctive key feature that greatly improves the scientific applications of its results and the
corresponding impact of the derived research. The resulting pipeline is divided in a series
of sequential steps that can be enabled individually in order to customize the resulting
catalog. Each of those steps involves a different algorithm that computes a distinct set of
properties, and several of them already have a corresponding paper describing their design,
implementation and scientific results.

This chapter describes in depth the galaxy flux computation algorithm (step 9 from
the list below), for which a short article was published (see Tallada-Crespí et al. (2023))
explaining the main approach and results. This chapter is the evolution of the original
extended article that describes in greater detail the design, implementation, calibration
and testing done to the algorithm to ensure its suitability for the simulation of galaxy
fluxes for both Euclid and PAUS surveys.

The input of the SciPIC pipeline is specified as an SQL query producing the columns
required depending on the enabled steps. It can also be used to patch or improve an
already existing catalog by recomputing a subset of its properties. As a reference, here
follows the description of all the steps listed in the order they get computed:

6https://www.esa.int/About_Us/ESAC/Euclid_flagship_mock_galaxy_catalogue
7In this context, redshift is used to refer to how far does the simulation reach, in terms of time and

space. In more "traditional" units, we could say the catalog contains galaxies up to 11.5 giga years old, or
21.1 giga light-years away.

8As dealing with individual particles of a dark-matter simulation is computationally unfeasible, neigh-
bouring particles within a certain distance are aggregated into a structure called dark-matter halo. This
also allows the computation of additional properties such as morphology or density profiles, among others.
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1. Chunking: All rows from the input catalog are split into subsets and transformed
into an iterator of Pandas DataFrame objects (one per subset). Then, the following
steps can take advantage of the column-oriented layout of this structure to perform
very efficient vectorized operations in order to compute their set of properties.

2. Halo properties: Several additional properties are derived from the input halo
catalog, such as true redshift, concentration-virial mass relation, smoothed mass or
Euler angles.

3. Galaxy assignation: A specific number of galaxies are assigned to each host halo
using both the Halo Occupation Distribution (HOD) model and the Sub-Halo Abun-
dance Matching (SHAM) method, depending on the mass of the halo and a luminos-
ity function (Blanton et al., 2003, 2005, see). We also assign each of them a color
–represented by a flux ratio between two wavelength bands–, positions and velocities,
among other main properties.

4. Spectral Energy Distribution (SED) parameters: Based on the luminosity, color
and distance, we assign each galaxy an SED template from a well-known library, a
corresponding intrinsic extinction curve and color excess E(B − V ). See section 4.3
for the definition of these terms.

5. Lensing: Parameters describing the deformation of the galaxy shape due to gravita-
tional effects –also known as lensing– are assigned to each galaxy from corresponding
lensing maps provided along the dark-matter simulation. These parameters are as-
signed from very large arrays, covering the full sky and 200 redshift steps, that do
not fit in memory. In order to make the mapping feasible and efficient, the input is
organized by redshift step and sky region. Thus, if this step is enabled, prior to com-
puting these properties the mock catalog is spilled to disk, registered as a temporary
table, and read again in order to regroup the data in the optimal way to minimize
memory consumption.

6. Magnified positions: The apparent positions of the galaxies on the sky are mag-
nified by applying the lensing distortions computed in the previous step.

7. A rotation can be applied to positions, velocities and orientations, both from host
halos as well as galaxies, in order to place the simulated area in the desired region
on the sky.

8. Multiple stellar properties are computed, such as metallicity, stellar mass or the
luminosity of emission lines, among others.

9. Fluxes: We simulate the apparent and absolute electromagnetic flux of each galaxy
as a combination of the galaxy SED, the emission lines flux and the attenuation due
to the Milky Way dust extinction.

10. The morphological parameters that define the shape and orientation of each
galaxy are derived.

11. The photometric noise estimation is carried out by applying different recipes de-
pending on the filter (or wavelength band) to account for uncertainties in the flux
measurement.
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12. The intrinsic alignment of each galaxy is assigned. More details can be found in
Hoffmann et al. (2022). Note that this is a fundamental and novel property that very
few catalogs have.

13. An estimation of the photometric redshift using a deep learning code based on
the fluxes and noise derived in step 9 and 11, respectively. The method is explained
in detail in Eriksen et al. (2020).

14. Finally, the resulting catalog is stored to disk and registered as a table. After
the proper validation process, it is published in CosmoHub to make it accessible to
its final users.

4.2 Computing fluxes for simulations

Synthetic galaxy catalogs are produced based on data coming from simulations of the uni-
verse and provide a multitude of properties for each galaxy. One of the most interesting
properties in observational cosmology are the galaxy spectral flux densities (or electromag-
netix fluxes, in short). From them, we can derive many other properties such as the color
or redshift.

In most simulated galaxy catalogs, fluxes are computed for a combination of instru-
ments and filters (see section 4.3.2), corresponding to a set of telescopes and wavelength
ranges on which they perform their observations. Fluxes denote the rate at which energy
is transferred by electromagnetic radiation, per unit surface area and per unit wavelength.
In SI units, it is measured in W ·m−3, although in astronomy it is much more practical to
use cgs units such as erg · s−1 · cm−2 ·Hz−1.

However, astronomers usually work with AB magnitudes. Given a flux in cgs units,
its corresponding AB magnitude (mAB) is defined for a monochromatic frequency (or
wavelength) as:

mAB = −2.5 log10 f(ν)− 48.6 (4.1)

where f(ν) is the energy flux density in cgs units. This definition can be extended to the
magnitude measured with a filter of transmission T (ν) for a photon counting device as
Fukugita et al., 1996:

mAB = −2.5 log10

∫
f(ν)T (ν)dνν∫
T (ν)dνν

− 48.6 (4.2)

which can also be computed in wavelength as

mAB = −2.5 log10

∫
f(λ)T (λ)λc dλ∫

T (λ)dλλ
− 48.6 (4.3)

using the conservation of energy as f(ν) dν = f(λ) dλ and the relation ν = c/λ, where c
is the speed of light.
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The relation between the apparent magnitude9, m, and the absolute magnitude10, M ,
in the same band is given by the following expression using the distance modulus relation:

m = M + 5 (log10 (DL)− 1) +Kcorr (4.4)

where DL is the luminosity distance11 in megaparsecs (Mpc) and Kcorr is the K-correction12

which is needed because, for a galaxy observed at a given redshift, the absolute (M) and
apparent (m) magnitudes do not sample the same wavelength region of the SED (Hogg
et al., 2002).

The galaxy simulations used provide, for each galaxy, all the necessary information
to estimate the apparent magnitude in any band: the absolute AB magnitude in the 0.1r
band of the Sloan Digital Sky Survey (SDSS)13 (M0.1r − 5 log10 h), the redshift and the
SED. The luminosity distance (DL) can be estimated using Equation 4.4 given the galaxy
redshift and the assumed cosmological model14. Then, the K-correction can be estimated
in the 0.1r band of SDSS using the following expression:

Kcorr = 2.5 log10

[∫
f rest(λ)T (λ)λdλ∫
fobsT (λ)(λ)λdλ

]
(4.5)

where f rest(λ) = SEDrest(λ) is the galaxy template in rest-frame, T (λ) is the system trans-
mission and fobs(λ) = SEDobs(λ) is the redshifted observed galaxy SED. The way to com-
pute SEDobs(λ) is to shift the wavelengths to λ · (1+ zobs) and decrease the flux_density
as flux_density/(1 + zobs), where zobs is the observed redshift. Note that Equation 4.5 is
a simplified version of the ones described in Hogg et al., 2002.

The Euclid Flagship galaxy mock catalogue does not directly provide the SED of a
galaxy, but the values of the templates to build an SED from a library of templates and
the emission lines fluxes. The SED is further split into the stellar continuum contribution
and the internal extinction. For more details, see sections 4.3.1 and 4.3.3

See https://github.com/ptallada/scipic_fluxes for the full source code of the standard
approach based on integrals and figure 4.1 for the full computational flow.

We start by computing the extincted SED from the unextincted galaxy SED template
using the following expression:

SEDext(λ) = SEDun−ext(λ) · ext_factor(λ) (4.6)
9Measures the brightness of a galaxy as seen from Earth, including the attenuation by the distance. It

can also include other effects such as intergalactic dust or magnification due to lensing.
10Measures the intrinsic brightness of a galaxy, regardless of its distance from Earth. It is calculated

based on the amount of electromagnetic flux that the galaxy would emit if it were placed at a distance of
10 parsecs from Earth.

11The relation between an object’s observed brightness and its cosmological distance. It is defined as the
distance at which a point source would have to be placed in order to have the same observed brightness
as the object in question.

12A factor that is applied to the observed magnitude of an astronomical object to account for the redshift
of the object

13In Blanton et al., 2003, the 0.1 band passes are defined as the SDSS bandpasses shifted to match their
rest-frame shape at redshift z = 0.1.

14ΛCDM model with Ωm = 0.319, Ωb = 0.049 , ΩΛ = 0.681, σ8 = 0.83, ns = 0.96 and h = 0.67
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where ext_factor(λ) is given by the expression:

ext_factor(λ) =

(
ext_curve(λ)

ext_curve(λ)[0]

)(E(B−V )/0.2)

(4.7)

where:

• SEDext_curve(λ) is the extinction curve for that particular galaxy

• SEDext_curve[0](λ) is a reference function in frequency that does not apply any ex-
tinction to the galaxy

• E(B − V ) is the colour-excess15 given in the catalogue.

Note that this expression is somewhat peculiar because it is driven by the way the extinction
is provided in the input catalogue and the format in which the extinction templates are
given.

As explained above, the apparent AB magnitude in the 0.1r band of SDSS can be
estimated using Equation 4.4. Then, fluxes can be computed from magnitudes using the
inverse of the AB magnitude definition given in Equation 4.1.

0.1rflux_observed = 10−0.4(0.1mr+48.6) (4.8)

15It measures the reddening of light due to interstellar dust, defined as the difference between the
observed (B-V) color and its intrinsic (B-V) color
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Then, the observed AB magnitude is computed from Equation 4.3. In fact, one can
alternatively reformulate Equation 4.3 in flux (in erg s−1 cm−2 units) instead of in AB
magnitudes, as shown in Equation 4.9.

0.1rflux_integral =

∫
f(λ)T (λ)λc dλ∫

T (λ)dλλ
(4.9)

Note that here we use the extincted SED, f(λ) = SEDext(λ), of Equation 4.6. With
both values, 0.1rflux_observed and 0.1rflux_integral, the normalization factor of the
SED is given by:

norm_factor =

0.1rflux_integral
0.1rflux_observed

(4.10)

With the normalization factor we can compute the normalized SED. Then, using Equa-
tion 4.9 one can compute the flux of an object in any particular filter with transmission
curve T (λ), where f(ν) = SEDext,norm

obs is the observed spectral energy distribution already
normalized and with the intrinsic extinction applied. And again, Equation 4.1 is used to
convert from fluxes to magnitudes to get the apparent magnitude in the AB magnitude
system in the same particular filter with transmission curve T (λ).

So far, the emission line contribution has not been taken into account. Here we present a
simple method to model this contribution. For the purpose of this work it is not relevant the
accuracy of the emission line model since the focus is on the optimization of the method.
Each emission line is modeled with a Gaussian function, with its mean value being the
wavelength of the emission line and its standard deviation (in km/s) is estimated using
the Tully-Fisher relation (Tully & Fisher, 1977):

log10(σel) = ((−0.10 + 0.01 · zobs) · (M0.1r − 5 log10 h− 0.3)− 0.05 · zobs) (4.11)

The Gaussian function representing the emission line is extincted, redshifted and nor-
malized using the flux of the emission line given in the input catalogue.

If the science use case requires it, we can include the Milky Way extinction16 (see
section 4.3.4) by applying the extinction law correction (which is a also function of λ) to
the normalized and intrinsically extincted spectral energy distribution, SEDext,norm

obs (λ).
The extinction due to the Milky Way is applied in the same way as the galaxy intrinsic
extinction. There are two main measurements of the Milky Way extinction values, those
of Schlegel et al., 1998 and those of Planck Collaboration et al., 201417.

16It refers to the dimming of light from stars and other astronomical objects due to interstellar dust in
the Milky Way galaxy, also known as galactic extinction.

17https://www.cosmos.esa.int/web/planck/home/
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Figure 4.2: The 31 COSMOS SED templates used for the Euclid Flagship mock galaxy
catalog. The 7 elliptical models are shown in red. Green lines correspond to 11 spirals and
1 lenticular, and blue lines represent the 12 Starburst templates.

4.3 Input data

In this section we describe the particular data used within SciPIC pipelines to estimate the
flux for the Euclid Flagship and PAUS mock galaxy catalogs: the COSMOS201518 spectral
energy distributions and extinction laws, the different filters and the model for the Milky
Way extinction curve and its strength.

4.3.1 Galaxy templates and extinction laws

The galaxy SED templates used are the COSMOS templates from Ilbert et al., 2009. There
are in total 31 different SEDs corresponding to different kind of galaxies (starburst, spiral
and elliptical). Figure 4.2 shows all the COSMOS2015 spectral energy distributions.

Galaxy intrinsic extinction is also taken into account when estimating the flux. In
particular, five different extinction laws from Ilbert et al., 2009 are used. The galaxy SED
or template is modified with a factor coming from the corresponding extinction law for each
galaxy as expressed in Equations 4.6 and 4.7, where ext_curve[0] means no extinction and
ext_curve refers to the rest of the extinction curves. The different extinction laws used
are shown in Figure 4.3.

The SciPIC flux pipeline assigns to each galaxy an sed_template, an extinction law
(ext_curve) and its strength (colour excess, E(B-V)). One or more extinction laws can
be applied to the COSMOS SED templates (see Table 4.1). The total combination of
COSMOS SEDs and extinction laws is 47. A sed_template refers to a linear interpolation

18A comprehensive survey of the distant universe that combines data from multiple telescopes and
surveys for over half a million objects in the two-square-degree COSMOS field.
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Figure 4.3: Different extinction laws used for the Euclid Flagship mock galaxy catalog.

COSMOS SED Extinction curve
0-6 0
7-9 0

10-18 1
19-22 1
23-30 2
23-30 3
23-30 4

Table 4.1: Possible combinations of COSMOS SEDs and the different extinction laws.

between two COSMOS SEDs. For example, if a galaxy has sed_template = 10.3, then
sed_template = 0.7 · SED[10] + 0.3 · SED[11].

4.3.2 Filters

The Euclid Flagship mock galaxy catalog provides fluxes in more than 30 different filters.
In addition of the four different filters of the Euclid mission (see Figure 4.4), simulations
include fluxes for other surveys, such as DES or Rubin-LSST, in order to compute accurate
photometric redshifts to achieve their science goals. The PAU Camera mounts a system of
40 narrow-band filters, consecutive in wavelength and with effective wavelengths separated
by 10nm. The narrow-band system spans the wavelength range from 450nm to 850nm.
The camera is also equipped with 6 broad-band filters, mimicking the u, g, r, i, z, Y
filter set used in the DES camera. For this dissertation we show the results for 6 different
narrow band PAU filters covering all its wavelength range (see Figure 4.5). We have tested
that selecting another set of filters does not modify the results and the conclusions are
equivalent.
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Figure 4.4: Euclid Standard Bandpasses for the Euclid experiment filters. The bandpasses
represent the total system throughput.

0 2500 5000 7500 10000 12500 15000 17500 20000

Wavelength (Å)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
tr

an
sm

is
si

on

PAU filters

pau_nb455
pau_nb535
pau_nb615
pau_nb685
pau_nb765
pau_nb845

Figure 4.5: The 6 different narrow band PAU filters tested for this chapter: nb455, nb535,
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band, and the number corresponds to the central lambda of the filter.
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Wavelength
Extinction line Vacuum Air
Hα 6564.6 6562.8
Hβ 4862.7 4861.3
OII (1) 3727.0 3726.0
OII (2) 3729.8 3728.8
OIII (1) 5008.2 5006.8
OIII (2) 4960.2 4958.9
NII (1) 6585.2 6583.4
NII (2) 6549.8 6548.0
SII (1) 6718.2 6716.4
SII (2) 6732.6 6730.8

Table 4.2: Emission lines with their corresponding wavelengths both in air and in vacuum,
named after the element that is emitting and the transition energy or ionization state of
the atom.

4.3.3 Emission lines

Simulated galaxy spectra also contains the contribution of some of the most prominent
emission lines. The input catalog specifies the logarithm of the observed emission line
flux in erg · cm−2 · s−1 including already the intrinsic extinction. Table 4.2 shows the
ten emission lines we compute with their corresponding wavelengths both in air and in
vacuum19. These are the strongest, and therefore most important to model.

4.3.4 Milky Way extinction

In order to simulate fluxes as observed in a given position on the sky, we need to include the
Milky Way extinction at the position of each galaxy. This effect, also known as interstellar
extinction, refers to the absorption and scattering of light as it travels through the dusty
interstellar medium within our own galaxy, the Milky Way. This dust, composed mainly
of tiny grains of carbon, silicon, and other elements, effectively dims and reddens the light
from objects behind it, making them fainter and redder than they truly are. We use the
latest release20 from Planck Collaboration et al. (2014) to obtain the colour excess E(B−V )
that we apply to our simulations. See Figure 4.6 for the corresponding extinction value in
galactic coordinates of our Milky Way.

The O’Donnell (1994) extinction curve is used to model the wavelength dependence of
the Milky Way extinction. In particular we use the extinction21 Python library, which
contains an implementation for this function. Figure 4.7 shows the normalized shape of
the Milky Way extinction curve.

19This distinction is made to accomodate both terrestrial observatories (which are affected by the air in
the atmosphere) and space-borne ones (which operate in vacuum).

20https://irsa.ipac.caltech.edu/data/Planck/release_1/all-sky-maps/maps/HFI_CompMap_
ThermalDustModel_2048_R1.20.fits

21https://extinction.readthedocs.io/
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Figure 4.6: The colour excess values from the latest release of Planck Collaboration et al.
(2014) in ecliptic coordinates.
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Figure 4.7: O’Donnell extinction function with AV = 1 and RV = 3.1.
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Bin width
Range Euclid PAU

sed template [0, 30] 0.5 0.5
ext curve [0, 4] 1 1
E(B-V) [0, 0.5] 0.01 0.01
true redshift [0.0, 2.3] 0.02 0.005

Table 4.3: Binning configuration for each parameter and filter set.

4.4 SciPIC approximated approach

Given an SED and a transmission function, galaxy fluxes can be computed exactly solving
the integrals in Equation 4.9. However, when this method has to be applied to a large
galaxy catalog, it becomes prohibitive in terms of computation time. As introduced in
section 3.1, and as a reference, estimating the flux of one billion galaxies in a single band
can more than 13 months22 in a single core. With the objective of generating simulated
galaxy fluxes in a reasonable time while minimizing accuracy loss, we have developed and
optimized a method to estimate an approximated value by splitting its computation in
several steps using the following expression:

flux = (fluxSED + fluxEL) · factorMW (4.12)

where fluxSED is the SED flux contribution, fluxEL is the emission lines flux contribution
and factorMW is a factor applied to approximate the Milky Way extinction. The validity
and accuracy of the method will be show in section 4.5.

4.4.1 SED flux contribution

The value in this first step is generated by an interpolation function for each filter that,
given the SED, the extinction curve and its strength (E(B-V)), and the observed redshift,
yields an interpolated continuum flux which already includes the intrinsic extinction. This
result is then normalized using an absolute magnitude and the true redshift of the galaxy.
This function is implemented using the RegularGridInterpolator23 class from the scipy
python package24.

The interpolation function is built from a grid of coordinates for each dimension and
the corresponding multidimensional matrix of flux values. Each filter of each survey has
its own corresponding interpolation function, as the binning for its parameter space has
been optimized to fulfill the accuracy requirements. In particular, both PAU and Euclid
surveys require that the error in AB magnitude introduced by the approximation has to
be smaller than 1%. Table 4.3 show the details about the binning configuration of each
filter set.

2236 milliseconds per flux per band on average, based on actual measures of an optimized implementation
of section 4.2 method.

23https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html
24https://scipy.org
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Each resulting matrix of fluxes has 1.8 million entries, in the case of Euclid filters, or 7.1
million entries for PAU ones. All these values are computed using the standard approach
described in section 4.2. Even though the computation is also done in parallel on top of
the PIC Big Data platform using Apache Spark, it still takes about 3 hours to generate all
the matrices for the interpolation functions. In order to optimize this process and be able
to reuse them, they are stored and cached on disk. Whenever an interpolation function is
needed, it is first looked for in the cache, and only computed if it is not present. Changes
in its parameters such as the binning of the filter transmission also trigger its computation
to account for the new values.

By construction, the interpolation function yields the exact computed flux when the
provided coordinates match any of the grid vertices, otherwise it returns an interpolated
flux in which the error introduced by the approximation increases the farther the coordi-
nates are from a vertex. Figures 4.8, 4.9 and 4.10 show this behaviour and characterize
the deviance introduced by the interpolation function, after carefully adjusting the binning
spacing. In this particular case, we never interpolate over the extinction curves, so no error
is introduced there. The accumulated error combining the effect of all dimensions is shown
in Figure 4.11, and it is always below the limit imposed by the surveys (less than 0.01
difference in AB magnitude).

4.4.2 Emission line contribution

An interpolation matrix is also used to include the flux contribution of the different emission
lines. Each line is modeled using a normalized Gaussian function: the mean value is
the wavelength of the line and the standard deviation (sigma) depends on the absolute
magnitude and the observed redshift, as shown in Equation 4.11.

The interpolation matrices are built as described in section 4.4.1 but, opposite to SED
interpolation matrices, they are not cached due to their reduced dimensions and the very
little time it takes to compute them. In this case, the function yields a not normalized
contribution for each emission line and filter using as input the absolute magnitude and the
observed redshift. Each emission line flux contribution is normalized using the respective
emission line absolute flux from the input catalog, and then added all together to the
interpolated flux to obtain (fluxinterp + fluxel).

The error in magnitude introduced in this step by the interpolation cannot be measured
at construction time, as was done in section 4.4.1. Instead, it has been characterized using
a sample of synthetic galaxies (see section 4.5 for more details).

4.4.3 Milky Way extinction contribution

The last step to estimate the galaxy flux as would be observed by a telescope is to apply
the extinction due to how the light attenuates when passing through our Milky Way. The
colour excess (E(B-V)) correction value is given by the map presented in section 4.3.4.
The extinction (or reddening) law is assumed to be the function from O’Donnell (1994).
As already mentioned, we use the extinction python library. We follow the work of Cox
(2000) and Bolzonella et al. (2000) to estimate the observed flux after passing through the
Milky Way:
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Figure 4.8: Maximum absolute magnitude difference introduced by interpolating across
adjacent SED templates. In order to keep the error below the acceptable threshold, we
had to double the binning along the SED index axis.
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Figure 4.9: Maximum absolute magnitude difference introduced by interpolating across
E(B-V) bins.
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Figure 4.10: Maximum absolute magnitude difference introduced by interpolating across
redshift bins.
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Figure 4.11: Maximum absolute magnitude difference introduced by interpolating across
all dimensions (except extinction curve) as a function of redshift. After carefully defining
the binning of each dimension for each filter, the delta in magnitude is always below the
threshold for any combination of parameters.
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Fo(λ) = Fi(λ) · 10−0.4·A(λ) (4.13)

where Fo(λ) is the observed flux as a function of λ, Fi(λ) is the flux before passing through
the Milky Way and A(λ) is the extinction at a wavelength λ, which is related to the colour
excess, E(B-V), and with the reddening curve k(λ) by:

A(λ) = k(λ)E(B − V ) = k(λ)
AV

R
(4.14)

where R is a constant.

We approximate Equation 4.13 assuming the extinction in each filter is a multiplicative
factor. In other words, we consider that the extinction curve (in Figure 4.7) is flat across
the filter (in Figures 4.4 and 4.5). The following expression estimates this average value
within each filter:

odonnel =

∫
SEDnorm

odonnel(λ) · T (λ) ·
λ
c dλ∫

T (λ) · dλ
λ

(4.15)

where SEDnorm
odonnel is the chosen function to model the extinction curve of the Milky Way

and T (λ) is the filter transmission curve. The corresponding colour excess E(B − V ) at
the position of each galaxy is retrieved from Planck Collaboration et al. (2014) dust maps
and used to derive the final extinction factor:

factorMW = 10

(
E(B−V )·

(
rv
Av

)
·odonnel·0.4

)
(4.16)

that is finally multiplied to the galaxy flux to get the desired result (See Equation 4.12).

4.5 Results

The method presented in this chapter needs to be fast as well as accurate to fulfill the
scientific requirements of both Euclid and PAUS simulations. In order to measure both,
a mock catalog of 2.21 million synthetic galaxies was provided as input and the galaxy
fluxes were computed using both the standard method and the approximated method. In
particular, for these results we used the broad band filters from Euclid and a selection of
narrow band filters from the PAU survey that covered its whole range of wavelengths, as
described in section 4.3.2.

With respect of the accuracy, the following set of plots displays the difference between
the fluxes computed using both approaches. Figure 4.12 shows the magnitude difference
in the SED flux between both methods. This figure is the equivalent to Figure 4.11 but
using the sample of galaxies, instead of blindly testing the whole space of parameters. As
such, the errors in Figure 4.12 are less than or equal to those in Figure 4.11, and always
below the required threshold.
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Figure 4.12: Maximum magnitude difference introduced by the SED flux approximation.
The solid line indicates the average delta, the top shaded area indicates the maximum,
and the shaded bottom indicates the standard deviance, for each redshift bin.
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Figure 4.13: Maximum magnitude difference introduced by the emission lines flux approx-
imation. The solid line indicates the average delta, the top shaded area indicates the
maximum, and the shaded bottom indicates the standard deviance, for each redshift bin.
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Figure 4.14: Maximum magnitude difference introduced by the Milky way local extinction
using a flat approximation. The solid line indicates the average delta, the top shaded area
indicates the maximum, and the shaded bottom indicates the standard deviance, for each
redshift bin.
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Figure 4.15: Maximum magnitude difference introduced by the combination of all approx-
imations. The solid line indicates the average delta, the top shaded area indicates the
maximum, and the shaded bottom indicates the standard deviance, for each redshift bin.
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SED el M.W. Combined
euclid_nisp_h 100.000 100.000 100.000 100.000
euclid_nisp_j 100.000 100.000 100.000 99.999
euclid_nisp_y 100.000 100.000 99.999 99.999
euclid_vis 100.000 100.000 99.848 99.863
pau_nb455 100.000 100.000 100.000 99.999
pau_nb535 100.000 99.999 100.000 99.999
pau_nb615 100.000 99.999 100.000 99.999
pau_nb685 100.000 99.999 100.000 99.999
pau_nb765 100.000 99.999 100.000 99.999
pau_nb845 100.000 99.999 100.000 99.999

Table 4.4: Percentage of galaxies that fulfil the accuracy requirement (an AB magnitude
difference below 0.01) for each approximated step (from left to right: SED flux interpo-
lation, emission line flux interpolation, Milky Way dust extinction), as well as for the
combination of all steps.

Figure 4.13 shows the magnitude difference in the galaxy flux introduced by the emis-
sion lines contribution approximation. For the Euclid bands all fluxes are below the re-
quired threshold. For all the PAUS bands, the threshold is exceeded only for 0.00014% of
the galaxies on average.

Figure 4.14 shows the magnitude difference introduced by the flat approximation of
the local Milky Way extinction. This is the step which introduces most of the error, and
the one that is most difficult to optimize. The reason is that there is no binning that can
be adjusted here, but a constant factor per filter. In particular, very broad band filters
are affected the most as a flat approximation struggles to fit the O’Donnell function across
the wavelength range. The effect is clearly noticeable in the widest of the filters (Euclid
VIS) in which 0.15% of the galaxies exceed the delta threshold. The rest of the bands are
unaffected. If needed, this could be reduced by splitting affected filters in several subfilters,
computing the flux for each of them and adding all up.

Figure 4.15 shows the result of combining the error contribution from the three steps:
the SED flux, the emission lines and the Milky Way extinction. In the end, only 0.137%
of galaxies in the Euclid VIS band exceed the error in magnitude, while for the rest of the
bands is less than 0.0003%. Table 4.4 summarizes all these numbers.

Performance wise, the standard method takes around 35.5 milliseconds on average to
produce a flux (including the emission lines and the Milky Way extinction). The same re-
sults can be delivered in 0.047 milliseconds (about 750 times faster) using the approximated
approach. Timings are stable even when across filters, as shown in Table 4.5.

Finally, nothe that the accuracy of this method has also been tested by an indepen-
dent and completely different external implementation led by the Euclid OU-SIM team.
OU-SIM is the organizational unit responsible for delivering simulations for all Euclid’s pur-
poses, such as VIS data, NIR photometry, NIR spectroscopy and external ground based
photometry. In their approach, they reconstruct the full SED and then compute the flux
using integrals. However, as (1) the number of bands they need is very limited, (2) the
computation is distributed to multiple data processing centers around the world using
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Processing time (in ms)
Band Standard Approximated Speedup
pau_nb455 35.68 0.0478 745
pau_nb535 35.63 0.0477 745
pau_nb615 35.61 0.0477 746
pau_nb685 35.60 0.0476 746
pau_nb765 35.63 0.0478 744
pau_nb845 34.61 0.0467 740
euclid_nisp_h 35.6 0.0472 753
euclid_nisp_j 35.7 0.0471 756
euclid_nisp_y 35.2 0.0468 752
euclid_vis 35.5 0.0476 745

Table 4.5: Average flux computation time per galaxy and band for both the standard
and the approximated method. The computation has been performed on top of the PIC
Big Data platform comprised of 12 nodes, where each node is equipped with an AMD
Threadripper 1920X @ 2.2 GHz CPU, 128 GiB RAM DDR4 @ 2666 MHz, 12 x 3 TiB
SATA HDDs and 2 x 1 TiB NVMe SSDs.

thousands of CPUs and, (3) they do not simulate as much area, their computation takes
several weeks but is still manageable.

4.6 Conclusions

This chapter describes the method that has been designed and developed for estimating
the observed galaxy fluxes for both the Euclid and PAU survey simulations. In particular,
the Euclid Flagship mock galaxy catalog with its 9 billion objects and more than 200
properties, including fluxes in 30 different bands, is the largest synthetic galaxy catalog
to be produced to date. The traditional approach based on solving several integrals per
observed flux is not adequate when the number of fluxes to be computed is very large,
as the total processing time becomes prohibitive. As a reference, producing the fluxes for
the Euclid Flagship mock galaxy catalog using the standard approach based on integrals
would take about 300 years in a single CPU, at about 36 milliseconds per flux on average,
which is totally unfeasible.

Compared to the standard method, this approach delivers a staggering 750x boost
in speedup, achieving an average of 0.047 milliseconds per flux on average (all within
the same computing environment) while still fulfilling the accuracy requirements of both
Euclid and PAU surveys. Combining the speed of the approximated method with the
scaling capabilites of the Apache Spark framework it has been developed onto, the fluxes
for the Euclid Flagship mock galaxy catalog can be delivered in less than 12 hours on a
300-core computing cluster. Complete source code for this contribution can be found at
https://github.com/ptallada/scipic_fluxes.

In conclusion, if it was not for the method and calibration presented in this chapter,
it would not have been possible to produce neither the Euclid Flagship galaxy mocks nor
the PAUS simulated catalogs.
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Chapter 5

Conclusions and future work

Physicists and astronomers have radically changed their approach to study the universe,
its content and evolution, over the past decades. The need for advanced computing tech-
niques has become the key to deal with the outstanding data volume collected by the
modern automatized telescopes and high sensitive instruments. The infrastructures that
support their operation also have to keep scaling up their capacity and efficiency to meet
the requirements of the experiments. As the complexity of those infrastructures increase,
scientists alone can no longer be in charge of them. This responsibility has been progres-
sively delegated to dedicated facilities run by specialized personnel, such as data processing
centers and research software engineers.

In parallel, the ability to extract the scientific insights from the multitude of information
collected by those instruments has become a multidisciplinary work between mechanical
and electronic engineers, physicists, astronomers, mathematicians, computer scientists, and
software engineers. Communication between scientific teams and their technical counter-
parts has become critical for the success of their projects. In the last decade, a specialized
role called Research Software Engineer (RSE) has arisen to commit to this duty (Woolston,
2022). However, after 10 years of the role being defined, there are still many handicaps
that need to be addressed. In particular, how to train, integrate and provide a career pro-
gression for that role (Cosden et al., 2022), and how software needs to be truly recognized
as a fundamental research output on its own (Jay et al., 2020).

This thesis focuses on my work as a Research Software Engineer (RSE) at the Depart-
ment of Cosmology and Astrophysics at PIC. It delves into my efforts to address various
data management challenges for large volumes of structured data using efficient and diverse
approaches, all within the scientific computing domain, with a specific focus on cosmology
projects. Notably, my contributions have significantly impacted two of the most promi-
nent galaxy redshift surveys today: PAUS and Euclid. These efforts have been recognized
through publications in peer-reviewed journals (Tonello et al., 2019; Tallada et al., 2020;
Tallada-Crespí et al., 2023).

In the following sections I will summarize the main conclusions of each chapter and I
will conclude with the lines of work planned and in progress.

135



PAU Survey data management

Based on the experience from preceding surveys such as SDSS or DES, PAUS acknowledged
from the very beginning that the design of a proper data management architecture1 was
key to achieving their scientific objectives. This architecture had to cover all steps of data
processing, starting from the transfer of images adquired by PAUCam, handling all their
processing by multiple analysis pipelines and ending with the archival and distribution of
the results.

Given that no open global solution was existing, an original management was needed to
fulfill the project requirements. In this regard, the decision of putting PAUdb, a relational
database, at the center of all the data management architecture was a bold move at that
time, but one that delivered great advantatges: (1) it ensures the consistency, integrity and
traceability of all the metadata related to the operations of PAUS and, (2) through the
ORM layer2, it also provides very efficient metadata access for all the processing pipelines.

The automatic transfer procedure of images from the WHT, albeit simple, fulfilled every
PAUS project need. The downloading process finalizes in a few hours, with outstanding
reliability during normal operations, and full recovery in the rare cases of failure.

The orchestration of all analysis jobs on top of PIC’s HTC infrastructure is carried out
by a custom developed tool called BT3. It tracks the configuration, execution status and
dependencies of every job to maximize throughput and ensure that the nightly pipeline
results are available in time for the next observing night. It also monitors the quality of
data products and guarantees the reproducibility of any results. Paired with the high level
of parallelization of the pipelines in independent jobs, the number of computing nodes and
the distributed file system available at PIC, BT also enables the reprocessing of all survey
observations within a few days.

A suite of web services has also been developed on top of PAUdb to facilitate seamless
access, retrieval, and analysis of PAUS data and metadata. Together with the automated
data management services, they enable to comply with the Open Science and Open Data
principles, guaranteeing the reproducibility of scientific results. These web services have
been met with positive feedback from collaborators, who have also commended their user-
friendliness and the richness of the information they provide.

Finally, for the distribution of results in the form of catalogued data, a web portal
called CosmoHub was implemented. Several prototypes were developed on top of PAUdb
that later became the seed of a much larger effort to develop a truly scalable platform for
handling massive structured datasets of several interoperable data sources, shared with the
scientific community.

Summarizing, my contributions to PAUS have been instrumental in enabling the pro-
ject’s scientific achievements. Hence, in recognition of my role in PAUS’s success, I have
been granted the status of PAUS builder. This distinction allows me to sign as co-author
on all PAUS-related publications4. To date, PAUS has produced 30 articles in high-impact

1highly automated, reliable and fully traceable
2Source code available at https://github.com/ptallada/paudm-model.
3Source code available at https://github.com/ptallada/brownthrower.
4https://pausurvey.org/pausurvey/publications/
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peer-reviewed journals and 18 communications with written proceedings, demonstrating
its significant impact within the scientific community.

CosmoHub

Stemming from the necessity to share simulatied data between MICE and PAUS, and
later to distribute PAUS results to the public community, CosmoHub was designed as a
generic platform to enable interactive exploration and distribution of very large structured
datasets, with a special focus on massive cosmological catalogs.

After careful evaluation of numerous alternatives, the decision to select Apache Hadoop
and Apache Hive as the data warehouse platform and to construct CosmoHub upon this
foundation has proven to be a resounding success. This robust, highly performant, and
user-friendly platform has empowered CosmoHub with a suite of impressive features that
have significantly enhanced its user-facing functionalities. Also, its unrivaled scalability
has allowed to keep response times low at all times in spite of the constant increase in
users and data volume.

Usability was also a major goal in CosmoHub’s design. The implementation of a
guided interface has been key in bridging the gap for researchers with limited SQL exper-
tise. Furthermore, the development and integration of a comprehensive suite of UDFs5 has
considerably expanded and simplified the platform’s capabilities, catering to those specific
yet prevalent use cases. CosmoHub also boasts a variety of visualization options, enabling
users to effortlessly explore and gain insights from any dataset within seconds. Addition-
ally, customized subsets can be materialized and downloaded in a matter of minutes. By
embracing the most prevalent data formats6, including de-facto standards like CSV, FITS7,
ASDF and Parquet, CosmoHub seamlessly integrates with the broader scientific toolkit,
fostering smooth data exchange and analysis.

Since the redesign and migration to Hadoop was completed in October 2016, Cosmo-
Hub became the first project to apply Hadoop to the analysis and distribution of large
cosmological datasets. It has kept growing at a steady pace and it is now providing a
useful service to the scientific community to many relevant projects, even becoming the
official data distribution service for several of them such as PAUS, MICE and the Euclid
Flagship mock galaxy simulations. In 2020, PIC became an affiliated Gaia data center, and
CosmoHub step up to host a mirror of every major Gaia public data relase since. In 2021,
CosmoHub was also accepted in re3data, a global registry of research data repositories
from different academic disciplines.

In all these years, CosmoHub has grown significantly in terms of data storage and user
base while keeping the response times stable. This is a summary of the most important
numbers in these areas nowadays:

Data storage The amount of data hosted by CosmoHub has grown steadily over the
years, reaching about 60 TB of catalogued data by the end of 2023. This vast

5Their full source code can be found at https://github.com/ptallada/pic-hadoop-udf.
6See https://github.com/ptallada/cosmohub-api/tree/master/cosmohub/api/io/format for the corre-

sponding source code.
7See https://github.com/ptallada/recarrayserde for the complete source code of the Hive FITS binary

format serializer/deserializer.
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repository of cosmological data is a testament to the platform’s growing popularity
and utility within the scientific community.

User base CosmoHub has over 1800 registered users, 150 of them are active at least
once a month, demonstrating its widespread adoption among researchers working in
various fields of cosmology. These users actively engage with the platform, creating
over 50,000 interactive plots and downloading over 20,000 custom catalogs to date.

Response times CosmoHub has been specifically designed to prioritize fast response
times, particularly for interactive plots, ensuring a seamless user experience while
exploring large datasets. For interactive data exploration, 67% of queries are com-
pleted within 30 seconds, and 97% are finished within 2 minutes. Similarly, for
custom catalog generation, 71% of catalogs are generated within 3 minutes, and 97%
are completed within 30 minutes.

Summing up, these impressive growth metrics and performance indicators underscore
CosmoHub’s position as a valuable resource for cosmological research. The platform’s
ability to handle large datasets, accommodate a diverse user base, and deliver fast query
response times has undoubtedly contributed to its success and widespread adoption within
the scientific community. The full source code for the web backend is available at https:
//github.com/ptallada/cosmohub-api.

Finally, note that CosmoHub has been developed according to the same principles of
data Findability, Accessibility, Interoperability and Reusability (FAIR, Wilkinson et al.
2016), promoted by the European Open Science Cloud (EOSC8)and strongly supported
by the European Commission, to maximize the distribution and exploitation of scientific
data generated by public funds.

SciPIC: fast and precise simulation of galaxy fluxes

Galaxy surveys need very complex cosmological simulations for their design, operation and
science exploitation. One of the most important kinds of simulations are the mock galaxy
catalogs, a sort of synthetic universe, containing billions of observable objects with an
extensive list of properties.

SciPIC is a comprehensive multi-stage pipeline for the generation of synthetic galaxy
catalogs that has been under heavy development at PIC for the last decade. Based on
previous work by Carretero et al. (2015), it contains dozens of algorithms carefully tuned
to be able to generate these massive catalogs as efficiently as possible.

One of those algorithms is responsible for the simulation of observed electromagnetic
fluxes in multiple filters. This operation requires solving several integrals whose computing
requirements, when combined with very large catalogs, end up being unaffordable.

Advised by an experienced team of cosmologists, I designed, implemented and opti-
mized an approximated method. The main idea behind has been to separate the integrals
into different components that can be computed separately using interpolations and other
techniques. Although this approach is not mathematically equivalent, the balance between

8https://eosc.eu/eosc-about/
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computing requirements and accuracy can be tuned with the proper calibration. The corre-
sponding source code, both for the original integral-based approach, and the approximated
one can be found at https://github.com/ptallada/scipic_fluxes.

The resulting method is able to perform up to 750 times faster than the approach based
on integrals. It also has been calibrated to deliver accurate results within a restrictive 1%
error threshold. Furthermore, when integrated with the parallel execution capabilities of
Spark and the PIC Big Data platform, massive productions containing billions of objects
can be delivered in a single day. For instance, it has been used extensively to produce mock
galaxy catalogs for Euclid and PAUS. One of the most distinctive achievements has been
the production of several releases of the Euclid Flagship mock galaxy catalog, the largest
synthetic universe to date, with up to 5 billion objects and more than 400 properties each.

Future work

The successful collaboration between software engineering and cosmology and the fun-
damental role of RSE, both for the scientific projects supported and for developing and
maintaining the core services of the PIC, is demonstrated by the work planned and funded
for the next period.

PAU Survey has not taken any new data for several years now as the WHT is currently
devoted full-time to another instrument9. Furthermore, it is a very real possibilty that it
will not be able to observe any more. Hence, work on the data management infrastructure
has been cut down to the bare minimum, maintenance only. However, scientists are still
optimizing and calibrating their analysis pipelines and reprocessing all the acquired data.
Several publications are expected in 2024 based on these new results.

We are currently in the process of comissioning a new Hadoop cluster that will enable
both CosmoHub and SciPIC to scale up on their capabilities. This new cluster is composed
of 30 nodes summing 720 cores, 15 TiB of RAM, 60 TiB of NVMe and 4.3 PB of storage
combined. Two thirds of this cluster are already deployed and will enter into production
in February 2024. The last third of the cluster has yet to be awarded in a public tender,
in a process that is suffering severe delays from the contracting office at IFAE.

This new cluster is being tested and deployed using a new custom Hadoop distribution
that has been under development at PIC for the past year. While we have been using and
open-source Hadoop distribution (Hortonworks Data Platform) for the last seven years,
its adquisition by Cloudera and subsequent access restriction to both binaries and updates
has left us little with no other choice. Our own distribution, named Shepherd, includes a
broad set of components from the Hadoop ecosystem required by CosmoHub and SciPIC. In
particular, it comes with a much needed Spark update that brings important performance
improvements and also clears the path to upgrade to recent Python versions.

This distribution has been presented to several Spanish forums to foster the creation of
a local community around it, including those data centers that already operate a Hadoop
cluster such as the Centro de Supercomputación de Galicia (CESGA) and Consorci de
Serveis Universitaris de Catalunya (CSUC).

9https://www.ing.iac.es/astronomy/instruments/weave/weaveinst.html
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CosmoHub is already being tested on top of this new infrastructure. We are seeing
notable performance improvements, both for the interactive visualizations and the custom
catalog generation. This speedup comes not only from the increase in computing power, but
also from enhancements in the query execution algorithms and the correction of multiple
bugs.

The future of CosmoHub has already been defined in two separate lines of work: one
focused on the expansion of its core features, and the other on broadening its scope to
become a multi-messenger interoperable science portal. Work on the first line has already
started in several design documents that cover all the planned features and how they can be
implemented. From a technical point of view, these are the main features already planned:

• The implementation of a WebDAV translation layer on top of WebHDFS to facilitate
large data transfers to/from the outside.

• The adoption of Arrow as the data communication protocol between CosmoHub’s
backend and its web frontend to improve the efficiency and density of interactive
visualizations.

• The integration of CosmoHub’s user accounts into the PIC centralized user database
in order to simplify the maintenance and take advantage of features like a consistent
authorization layer and the Single Sign-On.

• The migration to a new technological stack: the backend will be rewritten using
FastAPI10, and the frontend will use Nuxt11, PrimeVue12 and UnoCSS13. The APIs
will be documented using OpenAPI14 and AsyncAPI15.

The user-facing features we have planned are the following:

• There will be a public section for unauthenticated users to browse and interact with
public catalogs. They will be able to interactively explore the datasets but will not
be able to request custom catalogs.

• Sharing visualizations and custom catalogs will be as easy as distributing a link to
the intended parties.

• Users will be able to upload their own catalogs, to analyze them privately or to put
them public for everyone to see.

• CosmoHub will fully embrace the IVOA recommendations16 and implement several
important VO protocols such as ADQL, UWS, TAP and VOTable. We are studying
if we also implement VoSpace. This will allow users to interact with CosmoHub’s
data using standard tools and libraries like TOPCAT17, astroquery18 or pyvo19.

10https://fastapi.tiangolo.com/
11https://nuxt.com/
12https://primevue.org/
13https://unocss.dev/
14https://www.openapis.org/
15https://www.asyncapi.com/
16https://www.ivoa.net/documents/
17https://www.star.bris.ac.uk/~mbt/topcat/
18https://astroquery.readthedocs.io
19https://pyvo.readthedocs.io
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The evolution of CosmoHub into a multimessenger science platform is still in the very
early statges of design. Several use cases are being explored, with the general idea to
combine current cosmological datasets (which mostly cover the visible portion of the elec-
tromagnetic spectrum), with data from gravitationa waves, gamma rays and neutrinos.

Regarding SciPIC, we are invested in several lines of work at this moment:

• A more refined calibration of the HOD algorithm through and iterative minimiza-
tion approach, testing a broad range of parameters. This effort will result in the
production of more accurate realizations of the number of satellite galaxies in our
simulations.

• The implementation of a Spark version of TreeCorr20, a very optimized code for the
computation of 2-point and 3-point correlation functions. By leveraging the parallel
processing capabilities of Spark, this development will make it possible to manage
very large datasets in much shorter times. See Plaszczynski et al. (2021) for a similar
approach.

• The development and integration of an n-dimensional pdf transfer code for the gener-
ation of survey-specific galaxy samples inspired by color-matching algorithms (Pitié
& Dahyot, 2005) in photography and image manipulation.

• With respect to the simulation of observed galaxy electromagnetic fluxes, there are
still several optimitzation we can pursue, such as the computation of these fluxes
directly from absolute color differences. This will help further reduce the computation
requirements and/or increase the precision of the results.

In this regard, I want to emphasize that in the last two years, our team has successfully
applied to several competitive funding calls to consolidate and expand these lines of work.
In total, we have received 1.5 million euros until 2025, which clearly reflect the importance
and the impact of our contributions. Here follows the calls and the amount we were granted:

• 1,000,000 euros from Plan Complementario, for the design, deployment and operation
of a multi-messenger science platform.

• 400,000 euros from Equipamiento Científico y Técnico for the acquisition and de-
ployment of a new Hadoop cluster to increase the performance and storage both for
CosmoHub and SciPIC.

• 89,000 euros from Plan Nacional, for the development of new algorithms and tec-
niques to improve the generation of massive synthetic mock galaxy catalogs for mul-
tiple surveys.

Finally, the role of RSEs in Spanish public research institutions is still in its early stages
of development. The lack of a clear role hinders their ability to secure funding and receive
proper recognition for their contributions. Existing funding opportunities often prioritize
hardware or postdoctoral positions, leaving RSEs with limited funding avenues. Moreover,
the lack of a defined role can make it challenging for RSEs to secure authorship in research
papers, diminishing their visibility. Ultimately, this ambiguity undermines the recognition

20https://rmjarvis.github.io/TreeCorr
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that RSEs rightly deserve for their fundamental role in scientific research. However, there
are some initiatives underway to define a technological career for RSEs, but these are still
incipient. The first openings for RSE positions are expected to be allocated in 2024. We
are closely following the progress of these initiatives, as our own future is inextricably
linked to their success.
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