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de Barcelona, pis en el qual ell va començar la seva carrera professional set dies després que jo comences el
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on deixes la roba bruta i apareix neta, hi ha coses que no es poden pagar amb diners, aquestes coses només
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—Albert Einstein



Ph.D. Thesis

Abstract

In an era where data privacy is crucial, conducting
reproducible and secure data analysis in a collabo-
rative context among multiple research centers is a
challenging task. With the growing relevance of var-
ious types of highly sensitive data such as clinical,
epidemiological or omics (genomics, transcriptomics,
exposomics, ...), the need for research through fed-
erated analysis has become a critical necessity, es-
pecially due to the sensitive nature of the data in-
volved, which raises significant privacy and ethical
concerns. To address this problem, this PhD thesis
aims to extend the capabilities of DataSHIELD, a fed-
erated analysis platform. This PhD thesis provides
advanced methods and tools like ShinyDataSHIELD,
resources, OmicSHIELD, and dsExposome, with the
goal of making DataSHIELD more relevant, adding
features to handle a broader range of data types, and
ensuring the platform’s adaptability and scalability
for the future.

The adopted methodology involves a series of soft-
ware developments, case studies, and real-world ap-
plications. Comparative analyses have been used to
establish the effectiveness of the new tools and meth-
ods created. Additionally, techniques like clustered
analysis and differential privacy have been integrated
into DataSHIELD’s capabilities.

This PhD thesis achieved the objectives by extending
DataSHIELD’s capabilities to address existing needs
in multi-cohort studies. The ShinyDataSHIELD in-
terface encourages a more pleasant and accessible
user experience for both novice and experienced re-
searchers. The concept of resources is the seminal
tool for working with datasets in different formats,

thus expanding DataSHIELD’s applicability to mul-
tidomain research. OmicSHIELD offers a robust set
of tools for analyzing omics data, while dsExposome
provides specialized features for exposome data anal-
ysis. Both of these additions operate in a federated
manner while preserving individuals’ privacy. All the
objectives achieved in this PhD thesis are attached
to an European project (ATHLETE), which required
all the developments for the WP3, which is devoted
to tools for federated data analysis.

Additionally, the study addresses challenges related
to data privacy and collaborations among centers.
The platform can effectively manage larger data sets
and perform complex analyses without compromis-
ing data privacy. This adaptability paves the way for
future applications of DataSHIELD in other fields of
research, such as neuroimaging and artificial intelli-
gence.

In conclusion, the new tools and features signifi-
cantly improve DataSHIELD’s capacity, scalability,
and adaptability. These improvements promise to
accelerate the adoption of federated data analysis
methods in multi-center studies, thereby advancing
research while rigorously maintaining data privacy.
Notably, DataSHIELD also contributes to broader
goals of reproducibility and transparency in scientific
research by allowing results to be easily verified with-
out the need for data sharing, thus overcoming tra-
ditional barriers to collaborative research. The work
presented in this PhD thesis serves as a critical ad-
vancement in federated data analysis, bridging gaps
between data privacy, reproducibility, and collabora-
tive research in biomedicine.
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Resum

En una era on la privacitat de les dades és crucial, dur
a terme anàlisis de dades reprodüıbles i segures en un
context col·laboratiu entre diversos centres de recerca
és una tasca complexa. Amb la creixent rellevància
de diversos tipus de dades altament sensibles com
cĺıniques, epidemiològiques o òmiques (genòmiques,
transcriptòmiques, exposòmiques, ...), la necessitat
de recerca a través de l’anàlisi federada s’ha conver-
tit en una necessitat cŕıtica, especialment degut a la
naturalesa sensible de les dades implicades, el que
planteja preocupacions significatives sobre la privac-
itat i l’ètica. Per abordar aquest problema, aquesta
tesi doctoral té com a objectiu ampliar les capaci-
tats de DataSHIELD, una plataforma d’anàlisi fed-
erada. Aquesta tesi doctoral proporciona mètodes
avançats i eines com ShinyDataSHIELD, resources,
OmicSHIELD i dsExposome, amb l’objectiu de fer
que DataSHIELD sigui més rellevant, afegint carac-
teŕıstiques per gestionar una gamma més amplia de
tipus de dades i garantir l’adaptabilitat i escalabilitat
de la plataforma per al futur.

La metodologia adoptada implica una sèrie de desen-
volupaments de programari, estudis de cas i aplica-
cions amb dades reals. S’han utilitzat anàlisis com-
paratius per establir l’eficàcia de les noves eines i
mètodes creats. A més, tècniques com l’anàlisi agru-
pada i la privacitat diferencial s’han integrat en les
capacitats de DataSHIELD.

Aquesta tesi doctoral ha aconseguit els objectius am-
pliant les capacitats de DataSHIELD per abordar
les necessitats existents en estudis de múltiples co-
horts. La interf́ıcie ShinyDataSHIELD fomenta una
experiència d’usuari més agradable i accessible tant
per a investigadors novells com experimentats. El
concepte de resources és l’eina seminal per trebal-
lar amb conjunts de dades en diferents formats, ex-
pandint aix́ı l’aplicabilitat de DataSHIELD a la re-

cerca multimodal. OmicSHIELD ofereix un conjunt
robust d’eines per analitzar dades òmiques, mentre
que dsExposome proporciona caracteŕıstiques espe-
cialitzades per a l’anàlisi de dades de l’exposoma.
Totes dues addicions operen de manera federada men-
tre preserven la privacitat dels individus. Tots els
objectius assolits en aquesta tesi doctoral estan ad-
junts a un projecte europeu (ATHLETE), que va re-
querir tots els desenvolupaments per al WP3, que
està dedicat a les eines per a l’anàlisi de dades feder-
ades.

A més, l’estudi aborda reptes relacionats amb la pri-
vacitat de les dades i les col·laboracions entre cen-
tres. La plataforma pot gestionar efectivament con-
junts de dades més grans i dur a terme anàlisis com-
plexes sense comprometre la privacitat de les dades.
Aquesta adaptabilitat obre el camı́ per a futures
aplicacions de DataSHIELD en altres camps de re-
cerca, com ara la neuroimatge i la intel·ligència arti-
ficial.

En conclusió, les noves eines i caracteŕıstiques mil-
loren significativament la capacitat, escalabilitat i
adaptabilitat de DataSHIELD. Aquestes millores ac-
celeraran l’adopció de mètodes d’anàlisi de dades fed-
erada en estudis multicèntrics, avançant aix́ı la re-
cerca mentre es manté rigorosament la privacitat de
les dades. Notablement, DataSHIELD també con-
tribueix a objectius més amplis de reproductibilitat i
transparència en la recerca cient́ıfica permetent que
els resultats siguin fàcilment verificables sense la ne-
cessitat de compartir dades, superant aix́ı les bar-
reres tradicionals en la recerca col·laborativa. El tre-
ball presentat en aquesta tesi doctoral serveix com un
avanç cŕıtic en l’anàlisi de dades federada, cobrint els
buits entre la privacitat de les dades, la reproductibil-
itat i la recerca col·laborativa en biomedicina.

vi



Ph.D. Thesis

Resumen

En una era donde la privacidad de los datos es cru-
cial, llevar a cabo análisis de datos reproducibles y
seguros en un contexto colaborativo entre diversos
centros de investigación es una tarea compleja. Con
la creciente relevancia de varios tipos de datos al-
tamente sensibles como cĺınicos, epidemiológicos u
ómicos (genómicos, transcriptómicos, exposómicos,
...), la necesidad de investigación a través del análisis
federado se ha convertido en una necesidad cŕıtica,
especialmente debido a la naturaleza sensible de los
datos implicados, lo que plantea preocupaciones sig-
nificativas sobre la privacidad y la ética. Para abor-
dar este problema, esta tesis doctoral tiene como ob-
jetivo ampliar las capacidades de DataSHIELD, una
plataforma de análisis federado. Esta tesis doctoral
proporciona métodos avanzados y herramientas como
ShinyDataSHIELD, resources, OmicSHIELD y dsEx-
posome, con el objetivo de hacer que DataSHIELD
sea más relevante, añadiendo caracteŕısticas para
gestionar una gama más amplia de tipos de datos
y garantizar la adaptabilidad y escalabilidad de la
plataforma para el futuro.

La metodoloǵıa adoptada implica una serie de desar-
rollos de software, estudios de caso y aplicaciones con
datos reales. Se han utilizado análisis comparativos
para establecer la eficacia de las nuevas herramientas
y métodos creados. Además, técnicas como el análisis
agrupado y la privacidad diferencial se han integrado
en las capacidades de DataSHIELD.

Esta tesis doctoral ha conseguido los objetivos am-
pliando las capacidades de DataSHIELD para abor-
dar las necesidades existentes en estudios de múltiples
cohortes. La interfaz ShinyDataSHIELD fomenta
una experiencia de usuario más agradable y accesible
tanto para investigadores novatos como experimenta-
dos. El concepto de resources es la herramienta sem-
inal para trabajar con conjuntos de datos en difer-
entes formatos, expandiendo aśı la aplicabilidad de

DataSHIELD a la investigación multimodal. Omic-
SHIELD ofrece un conjunto robusto de herramien-
tas para analizar datos ómicos, mientras que dsExpo-
some proporciona caracteŕısticas especializadas para
el análisis de datos del exposoma. Ambas adiciones
operan de manera federada mientras preservan la pri-
vacidad de los individuos. Todos los objetivos al-
canzados en esta tesis doctoral están adjuntos a un
proyecto europeo (ATHLETE), que requirió todos los
desarrollos para el WP3, que está dedicado a las her-
ramientas para el análisis de datos federados.

Además, el estudio aborda desaf́ıos relacionados con
la privacidad de los datos y las colaboraciones en-
tre centros. La plataforma puede gestionar efectiva-
mente conjuntos de datos más grandes y llevar a cabo
análisis complejos sin comprometer la privacidad de
los datos. Esta adaptabilidad abre el camino para fu-
turas aplicaciones de DataSHIELD en otros campos
de investigación, como la neuroimagen y la inteligen-
cia artificial.

En conclusión, las nuevas herramientas y carac-
teŕısticas mejoran significativamente la capacidad,
escalabilidad y adaptabilidad de DataSHIELD. Es-
tas mejoras acelerarán la adopción de métodos de
análisis de datos federado en estudios multicéntricos,
avanzando aśı la investigación mientras se mantiene
rigurosamente la privacidad de los datos. Notable-
mente, DataSHIELD también contribuye a objetivos
más amplios de reproducibilidad y transparencia en
la investigación cient́ıfica permitiendo que los resul-
tados sean fácilmente verificables sin la necesidad de
compartir datos, superando aśı las barreras tradi-
cionales en la investigación colaborativa. El tra-
bajo presentado en esta tesis doctoral sirve como
un avance cŕıtico en el análisis de datos federado,
cubriendo los huecos entre la privacidad de los datos,
la reproducibilidad y la investigación colaborativa en
biomedicina.
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1.1 Background on data sharing

All the work conducted on this PhD thesis arises from one challenge, that is data sharing in the scenario of
multi-center collaborative studies. So to understand the importance and need of the developments presented,
it is key to understand and establish all the background on data sharing.

1.1.1 Evolution of Data Sharing and Collaboration

As the demand for data-driven decision-making has increased over the years, the need for efficient data
sharing and collaboration has become more critical. Early data sharing methods were largely manual,
involving the physical exchange of data on storage devices like floppy disks or the direct transfer of data
between databases through file transfers or data import/export mechanisms [1]. These methods were limited
by slow data transfer speeds, storage capacity constraints, and the lack of automation, which often resulted
in time-consuming and error-prone processes [2]. Furthermore, these methods offered minimal support for
data provenance, data quality, and data integration, making it difficult to trace the origin of data, assess its
accuracy, or combine it with other datasets for comprehensive analysis [3].

As the limitations of early data sharing methods became apparent, researchers and practitioners sought
ways to overcome these challenges, ultimately leading to the development of distributed computing [4]. The
primary objective of distributed computing is to distribute the processing of data and computational tasks
across multiple connected computers, often referred to as nodes, which can collaborate to solve complex
problems more efficiently than a single machine. The emergence of distributed computing has facilitated
more effective data sharing, as it enables data to be stored and processed closer to its source, reducing data
transfer latency and improving overall system performance [5]. Additionally, distributed computing allows
for enhanced fault tolerance and redundancy, as data and computations can be replicated across multiple
nodes, providing greater resilience against hardware failures or data loss [6]. By providing a more robust
infrastructure for data sharing, distributed computing has laid the foundation for more advanced collabo-
rative approaches, such as federated data systems, which can address contemporary data privacy, security,
and interoperability challenges [7]. Federated data systems are a type of data management architecture that
enables the integration, analysis, and sharing of data across multiple, geographically distributed data sources
while maintaining the privacy, security, and local control of the original data.

In the domain of life sciences, the need for collaborative data sharing has become increasingly vital, as
researchers from various disciplines and institutions work together to address complex challenges such as
understanding diseases, discovering new drugs, and advancing personalized medicine [8]. Large-scale, multi-
institutional research projects, such as the Human Genome Project [9] and The Cancer Genome Atlas [10],
have demonstrated the value of data sharing in driving scientific discoveries and facilitating collaboration
among researchers worldwide. However, the sensitive nature of the data involved in these studies, including
patient genomic information, clinical records, and biometric data, raises significant privacy and ethical
concerns [11]. As a result, the life sciences domain has seen the development of specialized data sharing
platforms and federated data systems [12, 13, 14].

In the field of social sciences, the growing availability of large-scale, fine-grained social, economic, and de-
mographic data has created unprecedented opportunities for researchers to study human behavior, social
networks, and societal dynamics [15]. However, these data sources, which include government records, social
media data, and survey responses, also present unique challenges related to data privacy, security, and data
quality [16]. Researchers in social sciences must navigate these challenges while sharing and collaborating
with data to ensure the protection of individuals’ privacy and comply with regulations like General Data
Protection Regulation (GDPR) [17]. Federated data systems and privacy-preserving techniques have there-
fore gained increasing relevance in the social sciences domain, as they allow researchers to collaboratively
analyze data while addressing privacy and security concerns [18, 19].

1.1.2 Challenges in Traditional Data Sharing Approaches

Traditional data sharing approaches, such as direct data transfers or centralized data repositories, have
been fundamental to fostering collaborative research and analysis. However, with the advent of the ”fourth
paradigm” of science [20], characterized by data-intensive scientific discovery and the increasing volume,
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variety, and complexity of data, traditional data sharing approaches have encountered several significant
challenges that limit their effectiveness and applicability in today’s data-driven environments [21]. These
challenges encompass not only privacy and security concerns but also issues related to data integration, data
quality, scalability, and the need for real-time analysis. Addressing these challenges associated with tradi-
tional data sharing approaches is essential for advancing scientific research and preparing for the future needs
of data-driven domains, ensuring that the power of data can be harnessed effectively and responsibly.

To address the privacy concerns, a number of regulations and guidelines have been established worldwide to
govern the collection, storage, and sharing of personal data. One of the most prominent regulations is the
GDPR [17], which enforces stringent data protection rules for organizations handling the personal data of EU
residents. Similarly, in the United States, the Health Insurance Portability and Accountability Act (HIPAA)
[22] sets specific requirements for the protection of personal health information. Other countries and regions
have also introduced their own data protection laws and guidelines, creating a complex regulatory landscape
for organizations and researchers involved in data sharing [23].

These privacy regulations underscore the importance of adopting data sharing techniques that ensure the
protection of sensitive information while still allowing researchers and organizations to derive valuable insights
from shared data. The development of novel data sharing solutions, such as federated data systems, can
play a crucial role in addressing these challenges and promoting responsible data sharing practices in line
with privacy regulations.

In addition to data privacy concerns, traditional data sharing approaches also face challenges related to data
integration, data quality, scalability, and real-time analysis. Data integration becomes complex as the variety
of data sources and formats increases, making it difficult to combine and analyze heterogeneous datasets
[24]. Data quality issues, such as inconsistency, incompleteness, and inaccuracy, can hinder the reliability and
validity of analyses, leading to potentially misleading conclusions [25]. Scalability is another challenge, as the
volume of data continues to grow exponentially, requiring efficient methods to store, manage, and process
large-scale datasets [26]. Finally, the need for real-time analysis is becoming increasingly important in many
applications, such as monitoring and decision-making in healthcare, finance, and social sciences, necessitating
data sharing approaches that enable timely access to and analysis of relevant data [27]. Addressing these
challenges is essential for developing more robust data sharing techniques that can meet the demands of
modern data-driven environments.

1.2 Background on federated data

Having just explored the complexities and challenges of traditional data sharing methodologies, it becomes
evident that the centralization and full data access approach isn’t always achievable. This realization natu-
rally leads us to seek out innovative strategies that address these concerns while still promoting collaboration
and knowledge exchange. On the following section federated data will be explored, highlighting its potential
in circumventing traditional barriers and opening new avenues for collaborative research.

1.2.1 Introduction to Federated Data

Federated data refers to a distributed data management architecture that addresses the limitations of tra-
ditional data sharing methods by enabling the integration, analysis, and sharing of data across multiple,
geographically distributed data sources while preserving the privacy, security, and local control of the orig-
inal data. This approach tackles various challenges related to data management, such as ensuring data
confidentiality, accommodating diverse data formats, maintaining data quality and handling ever-growing
datasets.

Key characteristics of federated data systems encompass decentralized data storage, privacy preservation, in-
teroperability, scalability and efficiency. In federated data systems, data remains stored locally at its original
source, and access is granted to authorized parties without requiring the physical transfer of data. Privacy
is maintained through techniques such as differential privacy [28], secure multi-party computation [29], and
homomorphic encryption [30], ensuring that sensitive data stays safeguarded during analysis and sharing.
Interoperability is achieved by facilitating the integration and analysis of heterogeneous data sources through
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common data models, ontologies, and query languages, fostering seamless data sharing and collaboration.
Lastly, federated data systems improve scalability and efficiency by distributing computation tasks and pro-
cessing data locally, which allows for the efficient handling of large-scale datasets and reduction of data
transfer latency, ultimately enhancing overall system performance.

1.2.1.1 Federated data vs. centralized data

Federated data systems and centralized data systems exhibit several key differences in terms of data stor-
age, privacy, control, scalability, fault tolerance, and integration. In federated data systems, data remains
stored locally at its original source, preserving privacy by allowing data analysis without requiring the phys-
ical transfer of data. This approach enables local data sources to maintain control over their data while
distributing computation tasks and processing data locally, which enhances scalability and reduces data
transfer latency. Furthermore, federated data systems are more fault-tolerant, as the failure of one data
source does not necessarily impact the entire system, and they often involve more complex data integration
tasks due to the need to accommodate heterogeneous data sources [31].

Alternatively, centralized data systems gather and store data in a central repository, potentially leading
to increased privacy risks and necessitating local data sources to cede a degree of control over their data.
Centralized systems also face challenges in scaling due to the need to transmit and process all data in a
central location and may experience disruptions if the central repository fails [32]. However, centralized data
systems can simplify data integration by consolidating data into a unified format and structure within the
central repository.

1.2.1.2 Federated database systems

Federated database systems are a way to connect multiple databases, making it easier to access and work
with data from different sources. It can be abstractly interpreted as having different books (databases) with
information stored in various ways (structures). These database systems act like a librarian (middleware
layer) who helps you find the information you need from all the books without having to read each one
individually. This is important because it allows people to easily find and use data from different places
while keeping the information safe and private in its original location. This idea is illustrated on fig. 1.

6



1 INTRODUCTION Ph.D. Thesis

Figure 1: Federated database system: The proposed database system contains two different databases
controlled by a middleware layer.

In a federated database system, the middleware layer plays an essential role in controlling data privacy. It
is responsible for managing the communication between the participating databases and the end-users or
applications, ensuring that only authorized access to the data is granted; it is also responsible of applying
the different privacy preserving techniques implemented on the database, whether it is differential privacy,
encryption, data anonimization or any other technique.

1.2.2 Federated Learning and Privacy-Preserving Techniques

Federated learning is a decentralized machine learning approach that enables multiple organizations or
individuals to collaboratively train a shared model without the need to directly share sensitive or private
data [33]. In the era of big data, privacy concerns have grown exponentially due to the vast amount of
personal information generated and stored online. Traditional machine learning methods often require the
centralization of data, which raises issues related to privacy, security, and data ownership. Federated learning
addresses these concerns by allowing participants to maintain control of their data and share only model
updates or gradients, thereby reducing the risk of privacy breaches [34].

In a federated learning setup, each participant trains a local model on their own data and communicates
the model updates to a central server. The server aggregates the updates, updates the global model, and
distributes the updated global model back to the participants. This process is iteratively repeated until the
model reaches a desired level of accuracy or convergence. The decentralized nature of federated learning
enables better data privacy and security, as well as increased efficiency in certain scenarios where data
transmission is a bottleneck.

Several privacy-preserving techniques have been developed to further enhance the security of federated
learning. These techniques aim to protect the privacy of individual participants and their data, even when
adversaries have access to the shared model updates. As previously stated, this techniques include secure
multi-party computation (MPC), homomorphic encryption, and differential privacy. These techniques can
be used individually or in combination to ensure the privacy and security of federated learning systems,
safeguarding sensitive data from potential breaches or misuse.
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1.2.2.1 Secure multi-party computation

Secure Multi-party Computation (MPC) [35] is a cryptographic technique that enables multiple parties to
collaboratively compute a function on their private data while ensuring that no information about the data
is revealed, apart from the final output of the function. The primary goal of MPC is to maintain the privacy
of each party’s data throughout the computation process.

Here’s a more detailed explanation of how secure multi-party computation works:

1. Encoding the inputs: To begin with, each party’s data is encoded in such a way that it is split into
multiple shares. These shares are distributed among the participating parties using a secret sharing
scheme, such as Shamir’s secret sharing [36]. Secret sharing ensures that individual shares do not reveal
any information about the original data, and a predetermined threshold number of shares is required
to reconstruct the original data.

2. Performing the computation: After encoding and distributing the data shares, the computation
is performed on these shares without directly accessing the original data. The parties collaboratively
execute a predefined protocol designed to compute the function on the shares, in a manner that
preserves the privacy of the data. The protocol is typically composed of a series of basic operations, such
as addition, multiplication, and comparison, which can be performed on the shares while maintaining
the privacy of the underlying data.

3. Reconstructing the output: Once the computation on the shares is completed, the parties can re-
construct the final output by combining their respective output shares. The output shares are designed
in such a way that they do not reveal any information about the original data. The reconstructed out-
put is the same as if the function had been applied directly to the original data, ensuring the correctness
of the computation.

Secure MPC can be implemented using various cryptographic primitives and protocols, including secret
sharing [36], garbled circuits [37], and oblivious transfer [38]. Each of these techniques has its own advantages
and trade-offs in terms of efficiency, security, and communication overhead:

� Secret sharing: In this approach, the inputs are divided into shares using a secret sharing scheme,
and the computation is performed on the shares using linear operations. This method is efficient for
linear operations, but it can be less efficient for non-linear operations, such as multiplication.

� Garbled circuits: This technique involves representing the function as a Boolean circuit and encoding
the inputs as encrypted labels for the circuit’s input wires. The parties exchange encrypted labels
during the computation, and the circuit is evaluated in a privacy-preserving manner using Yao’s garbled
circuit construction. While garbled circuits can be used to evaluate any function, they tend to be less
communication-efficient than secret sharing-based methods.

� Oblivious transfer: This primitive allows a sender to transmit one of several possible messages to
a receiver, without the sender learning which message was selected or the receiver learning anything
about the other messages. Oblivious transfer is used in combination with other techniques, such as
secret sharing or garbled circuits, to implement secure multi-party computation protocols.

While MPC offers promising privacy-preserving capabilities for life sciences, it faces challenges such as
computational and communication overhead, limited scalability, complexity of protocols, restricted support
for complex analyses, and trade-offs between privacy and utility. These downsides can hinder the adoption
of MPC in life sciences applications, where large-scale data processing, real-time analysis, collaborations
involving multiple parties, and high-quality results are crucial. Ongoing research seeks to address these
limitations and enhance the applicability of MPC in the life sciences domain.

1.2.2.2 Homomorphic encryption

Homomorphic encryption is a form of encryption that allows computations to be performed directly on
encrypted data, without the need for decryption [39]. This powerful cryptographic technique enables privacy-
preserving data processing and analysis, as the data remains encrypted throughout the computation process.
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In the context of federated learning, homomorphic encryption can be employed to protect the privacy of
individual participants and their data when sharing model updates with the central server.

The primary goal of homomorphic encryption is to enable the computation of functions on encrypted data
in such a way that the result of the computation, when decrypted, is the same as if the function had been
applied to the original plaintext data. This is achieved through the design of encryption schemes that support
specific homomorphic operations, such as addition or multiplication, while preserving the encrypted data’s
structure.

There are various types of homomorphic encryption schemes, including partially homomorphic encryption
(PHE), somewhat homomorphic encryption (SHE), and fully homomorphic encryption (FHE) [40, 41, 42].
PHE and SHE support a limited number of homomorphic operations, while FHE allows for an unlimited
number of operations on encrypted data. However, FHE schemes typically come with high computational
and communication overheads, making them less practical for large-scale federated learning systems.

In recent years, researchers have explored the use of homomorphic encryption in federated learning to
enable secure and privacy-preserving model training [43, 44]. For example, Aono et al. (2016) proposed
a privacy-preserving linear regression method based on homomorphic encryption, allowing participants to
share encrypted model updates with the central server without revealing their private data. Kim et al. (2018)
developed a secure federated learning framework using homomorphic encryption and secure MPC, combining
the strengths of both techniques to protect participants’ privacy while sharing model updates.

Despite its potential, the practical implementation of homomorphic encryption in federated learning remains
challenging due to the associated computational and communication overheads. However, ongoing research
efforts are focused on developing more efficient homomorphic encryption schemes and tailored protocols that
can be effectively integrated into federated learning systems.

1.2.2.3 Differential privacy

Differential privacy is a privacy-preserving technique that provides strong guarantees on the privacy of
individual data while allowing statistical analysis of aggregated data [28]. In the context of federated learning,
differential privacy can be employed to protect the privacy of individual participants and their data when
sharing model updates with the central server.

The main idea behind differential privacy is to introduce carefully controlled noise to the output of a query or
a computation, so that the presence or absence of any individual’s data in the dataset does not significantly
affect the results. This ensures that an adversary cannot infer sensitive information about an individual
participant even when they have access to the noisy output.

Differential privacy is formally defined using the concept of ε-differential privacy, where ε is a parameter that
controls the level of privacy. A smaller ε value provides stronger privacy guarantees, while a larger ε value
results in a higher utility or accuracy of the computation. The formal definition of ε-differential privacy is
as follows:

A randomized mechanism M is ε-differentially private if, for any two adjacent datasets D1 and D2 that differ
in only one individual’s data, and for any subset of outputs S, the inequality eq. (1) holds.

Pr[A(D1) ∈ S] ≤ exp(ε) · Pr[A(D2) ∈ S] (1)

Where A is a randomizing algorithm that takes a dataset D as input, and ε is a positive real number, called
the privacy parameter, that defines the level of privacy (closer to 0 indicates more privacy). Formally, S
refers to all subsets of the image of A i.e. all possible subsets of the output values of the algorithm A. The
inequality refers to datasets D1 and D2 that differ on a single element (i.e., the data of one person). If met,
it indicates that after application of the randomizing algorithm, the probability that A(D1) lies in S is less
than or equal to the probability that A(D2) is in S multiplied by the constant exp(ε) that gets closer to 1.00
as ε falls to 0.
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In federated learning, differential privacy can be applied by adding noise to the model updates or gradients
during the training process [45, 46]. This can be achieved using various techniques, such as the Gaussian
mechanism, which adds Gaussian noise to the gradients, or the Laplace mechanism, which adds Laplace noise.
The amount of noise added depends on the desired privacy level (ε) and the sensitivity of the function being
computed, which is the maximum difference in the output when the input data changes by one individual’s
data.

One of the key challenges in applying differential privacy to federated learning is balancing the trade-off
between privacy and utility. As the level of privacy increases, the noise added to the model updates also
increases, which can negatively impact the accuracy of the trained model. However, recent research has
demonstrated that it is possible to achieve reasonable privacy guarantees while maintaining a high level of
utility in federated learning [47].

In conclusion, differential privacy is a powerful technique that can be used to enhance the security of federated
learning systems by providing strong privacy guarantees for individual participants. By carefully controlling
the amount of noise added to model updates during the learning process, differential privacy ensures that
sensitive information about individual participants remains protected while still allowing for accurate model
training.

1.2.3 Applications of Federated Data Analysis

In this section, we will explore the applications of federated data analysis in three key areas: healthcare and
genomics research, financial services, and fraud protection. We will discuss how federated data systems are
transforming these domains by facilitating secure, efficient, and collaborative data analysis, unlocking new
opportunities for innovation and improved decision-making.

1.2.3.1 Healthcare and genomics research

Federated data analysis has had a significant impact on the healthcare domain, enabling secure, collaborative
research and improved decision-making while addressing privacy concerns and regulatory requirements. It
has proven to be transformative in many domains, enabling the analysis of data from multiple institutions
and enhance the understanding of complex diseases [48, 49].

A notable example of the application of federated data analysis in healthcare is the i2b2 (Informatics for
Integrating Biology and the Bedside) project [50]. This initiative aims to create a scalable informatics
framework that allows medical researchers to access patient data from multiple institutions while preserving
patient privacy. By utilizing federated data analysis techniques, the i2b2 project has facilitated numerous
multi-center studies, leading to significant advancements in the understanding and treatment of various
medical conditions.

Another example is the Global Alliance for Genomics and Health (GA4GH), which employs federated data
analysis to enable secure, collaborative research on genomic data [51]. By developing standards and tools
for sharing and analyzing genomic and clinical data in a federated manner, GA4GH has fostered global
collaborations and accelerated the discovery of novel disease biomarkers, therapeutic targets, and diagnostic
tools [52].

Several studies have demonstrated the value of federated data analysis in healthcare and genomics research.
For instance, Roth et al. [53] employed federated learning to build classification models of breast cancer,
using federated data from seven clinical institutions, that approach leaded to better models than the ones
achieved at the institution level. Similarly, Lee et al. [54] applied federated learning to train a model based
on pattern mining in order to predict cardiovascular diseases.

These examples demonstrate how federated data analysis has become a critical enabler for healthcare and
genomics research, allowing institutions to collaborate and share insights while maintaining data privacy and
adhering to regulatory requirements.
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1.2.3.2 Financial services and fraud detection

Federated data is not only relevant on the bio-sciences domain, it has also made significant contributions to
the domain of financial services, specifically in the area of fraud detection. By allowing financial institutions
to securely collaborate and share insights from their data, federated data analysis has improved the accuracy
and effectiveness of fraud detection models while preserving the privacy of sensitive customer information
[55].

Another application of federated data analysis in the financial services sector is in the area of anti-money
laundering (AML). AML efforts often require the collaboration of multiple institutions to identify and report
suspicious activities. A tool for that matter has been develope by the AI department of the chinese bank
WeBank [56], they claim to have united several banks to train AML models jointly [57].

Federated data analysis has also been applied in the context of credit scoring and risk assessment. For exam-
ple, Li et al. [58] proposed a federated learning approach to predict credit risk using data from multiple fi-
nancial institutions, demonstrating improved performance compared to individual institution models.

These examples illustrate the potential of federated data analysis to transform the financial services sector by
enabling secure, collaborative data analysis and improving the efficiency and effectiveness of fraud detection
and risk management efforts.

1.2.4 Future Directions and Challenges

Federated learning and federated data are gaining significant attention due to their potential to revolutionize
data privacy, distributed computing, and machine learning. In this context, Kairouz et al. [59] noted several
key research areas have emerged, such as improving efficiency and effectiveness, preserving the privacy of
user data, ensuring fairness and addressing sources of bias, and addressing system challenges. A key property
of many of these problems is that they are inherently interdisciplinary, requiring not just machine learning
expertise but also techniques from distributed optimization, cryptography, security, differential privacy,
fairness, compressed sensing, systems, information theory, statistics, and more [33]. Many of the hardest
problems lie at the intersections of these areas, and collaboration will be essential to ongoing progress. In
the following sections, we will discuss these critical aspects and their implications for the future of federated
learning and federated data systems.

1.2.4.1 Efficiency and effectiveness

Tackling multiple tasks is an aspect of real-world scenarios that federated learning systems should be capable
of handling. Smith et al. [60] proposed a multi-task learning framework that learns from multiple tasks. Fur-
ther research is required to develop efficient multi-task learning approaches that can be applied to federated
learning systems, allowing them to handle tasks with diverse objectives and data distributions.

Adapting machine learning workflows to the federated setting poses another challenge. Traditional workflows
assume centralized data storage, which is not the case for federated learning systems. Researchers must
develop methods to adapt model evaluation, hyperparameter tuning, and other aspects of machine learning
workflows for federated settings without compromising data privacy [61].

Communication and compression are vital in federated learning systems, as they impact both efficiency
and effectiveness. Strategies like gradient compression [62] can help reduce the communication overhead
between devices and central servers. However, further research is needed to develop novel communication
and compression techniques that can provide improved trade-offs between accuracy and communication
costs.

Lastly, applying federated learning to a broader range of machine learning problems and models is a chal-
lenge that must be tackled. Most existing federated learning research focuses on supervised learning and
deep learning models. Expanding federated learning to other areas, such as reinforcement learning, unsu-
pervised learning, and different model architectures [63], will help unlock its full potential across various
domains.
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In conclusion, addressing these challenges related to personalization, multi-task learning, adapting workflows,
communication, and expanding the application scope will pave the way for more efficient and effective
federated learning systems in the future.

1.2.4.2 Privacy of user data

Addressing privacy concerns in federated learning requires a deeper understanding of both ”what” functions
being computed and the manner in ”how” computations are executed. This includes considering who can
access intermediate results and how to protect against adversarial attacks.

As we have previously discussed, one way to address privacy concerns is through differential privacy, which is
a technique that ensures the output of a computation remains indistinguishable when an individual’s data is
added or removed from the dataset. The challenge lies in adapting this technique to real-world computations,
taking into account factors such as the nature of the data (e.g., time-series data), the presence of multiple
independent actors, client availability (e.g. are all parties available at all times?); all of that have to be
leveraged in order to determine the parameters of differential privacy that provide privacy and usability of
the results.

To address the computation execution aspect, several techniques have been proposed, such as multi-party
computation (MPC), homomorphic encryption, and trusted execution environments (TEE). MPC allows
multiple parties to jointly compute a function while keeping the data private. Although MPC has been
deployed at scale, it remains more communication and computation-intensive than its insecure counterparts.
For TEE, the challenge is to develop a platform that is free from exploitable vulnerabilities [64].

Another aspect that requires attention is verifiability, which refers to proving that parties have executed their
parts of the computation faithfully. The main open problem in this area is protecting federated learning
systems against an adversarial server. Designing robust techniques to ensure verifiability while maintaining
efficiency and effectiveness is a critical challenge for future research.

In summary, the future challenges in preserving privacy in federated learning involve improving and adapting
techniques like differential privacy, multi-party computation, and trusted execution environments, as well as
addressing verifiability and protection against adversarial servers.

1.2.4.3 Fairness and addressing sources of bias

Federated learning provides a decentralized approach to machine learning that can offer privacy benefits,
but it also faces challenges related to fairness and addressing sources of bias. Machine learning models can
sometimes exhibit unintended behaviors, leading to fairness concerns [65].

One such issue is individual fairness, where people with similar characteristics receive different outcomes.
Another issue is demographic fairness, where specific groups (e.g., race, gender) receive different outcomes,
violating the principle that users should receive the same treatment regardless of their group membership
[66].

Bias in training data is a critical factor when considering fairness in federated learning models. Ensuring
representative datasets can help improve both the overall quality of downstream models and their fair-
ness.

Having explicit access to demographic information (e.g., race, gender) is essential for many existing fair-
ness criteria, including individual and demographic fairness. However, federated learning contexts often
require fairness considerations even when sensitive attributes are unavailable [67]. This situation can arise
when developing personalized language models or fair medical image classifiers without knowing additional
demographic information about individuals.

One approach to address fairness without access to sensitive attributes is to focus on equal access to effec-
tive models. This interpretation of fairness aims to maximize model utility across all individuals, regard-
less of their (unknown) demographic identities, and regardless of the ”goodness” of an individual outcome
[68].
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Since federated learning is often deployed in privacy and fairness-sensitive contexts, tensions between privacy
and fairness objectives can be magnified. Further research is needed to address the potential tension between
achieving privacy, fairness, and robustness in both federated and centralized learning [69].

Federated learning presents unique opportunities to improve the diversity of stakeholders and data incorpo-
rated into learning, which could enhance both the overall quality of downstream models and their fairness due
to more representative datasets. However, federated learning also brings about fairness-related challenges
not present in the centralized training regime, necessitating new solutions to address these concerns.

1.2.4.4 System challenges

Frequent and large-scale deployment of updates in federated learning systems poses a challenge, as monitoring
and maintaining become increasingly complex in decentralized environments [61]. Research efforts need to
focus on developing scalable and reliable methods for managing updates while maintaining the benefits of
decentralized learning.

Differences in node availability can introduce various forms of bias, which can affect the overall performance
and fairness of federated learning systems [70]. Defining, quantifying, and mitigating these biases remain an
essential direction for future research to ensure the robustness and fairness of federated learning.

Tuning system parameters in federated learning is difficult due to the existence of multiple, potentially
conflicting objectives. For example, optimizing communication efficiency may conflict with preserving user
privacy. Developing strategies that balance these objectives will be crucial to ensure the practicality and
adoption of federated learning systems.

Running machine learning workloads on end-user devices is constrained by the lack of a portable, fast, small
footprint, and flexible runtime for on-device training [71]. Developing efficient and effective runtimes that
can adapt to a wide range of device capabilities will be essential to unlock the full potential of federated
learning across diverse applications and settings.

In summary, addressing system challenges in federated learning involves tackling issues related to large-scale
updates, monitoring, debugging, device availability biases, system parameter tuning, and developing efficient
runtimes for on-device training. Future research efforts should focus on these areas to ensure the successful
deployment of federated learning systems in real-world applications.

1.3 Background on DataSHIELD

Having elucidated the nuances of federated data, we appreciate its potential in transforming the data-sharing
landscape. However, effectively utilizing federated data requires tools and platforms that can harness its
unique structure and challenges. DataSHIELD emerges as one such solution, aiming to streamline federated
data analysis.

1.3.1 DataSHIELD introduction

In today’s data-driven world, researchers and healthcare professionals often need to analyze sensitive individual-
level data, from multiple sources [72]. This data can provide valuable insights into various aspects of human
health, behavior, and the environment. However, sharing such sensitive data across institutions can pose
significant ethical, legal, and privacy concerns [73]. That’s where DataSHIELD [74] comes in.

DataSHIELD is a cutting-edge technology designed to address the challenges of securely accessing and
analyzing sensitive data from multiple sources. It enables researchers to work with individual-level data
without having to physically share it with others. Although initially developed for use in biomedical and
social sciences, DataSHIELD’s flexible and versatile nature makes it suitable for any setting where sensitive
data analysis is required, but data cannot be physically shared.

Combining diverse data sets enables researchers to access a greater volume of data, which in turn leads
to increased statistical power [75]. This enhanced statistical power allows for more accurate assessment of
relationships between omics, exposures, genomics, and health conditions. DataSHIELD serves as the enabler
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of this innovative approach by providing a secure and privacy-preserving platform for analyzing sensitive data
across multiple sources.

At its core, DataSHIELD employs a federated analysis model. This means that researchers can analyze
data from multiple sources simultaneously, without actually accessing the raw individual-level data. Instead,
DataSHIELD sends analysis requests from a central analysis machine (client) to data-holding machines
(servers), which store the harmonized data to be co-analyzed, this approach is summarized as ”taking the
analysis to the data, not the data to the analysis” [76]. It is important to remark that the data never leaves
the analysis servers, the only information leaving the servers is non-disclosive aggregated statistics (e.g. the
mean of a dataset).

This innovative approach allows researchers to collaborate and analyze data across institutions while ensuring
that sensitive individual-level data remains secure and confidential. Moreover, DataSHIELD’s infrastruc-
ture is built on free, open-source software, making it accessible and cost-effective [77] for a wide range of
users.

One of the key advantages of DataSHIELD being open source is that it fosters a trustworthy relationship
between researchers and data owners. By making the source code openly accessible, data owners can inde-
pendently verify the algorithms and methods being used to analyze their sensitive data. This transparency
allows data owners to assess if the provided solutions comply with their security and risk policies, ensuring
that their data is handled responsibly and securely.

Moreover, having an open-source platform encourages collaboration and innovation within the research
community [78]. Developers, researchers, and other stakeholders can contribute to the improvement and
expansion of DataSHIELD’s features, making it more adaptable and versatile over time. This collaborative
approach accelerates the development of new functionality and ensures that the platform remains up-to-date
with the latest advancements in data analysis and privacy protection.

In addition, open-source software like DataSHIELD often benefits from increased security due to the scrutiny
of a large community of developers and users. Any potential vulnerabilities can be identified and addressed
more quickly, enhancing the platform’s overall security and reliability [79].

1.3.2 DataSHIELD objectives

DataSHIELD, a publicly-funded project, has emerged as a vital tool for researchers working with sensitive
data by addressing key challenges in privacy, security, and collaboration. With a growing and increasingly
diverse user base, the project is establishing itself as a leading platform for secure and privacy-preserving data
analysis. As DataSHIELD continues to evolve, its main objectives focus on fostering innovation, ensuring
sustainability, and promoting global engagement in order to maintain its commitment to providing a robust,
flexible, and reliable solution for the research community. The main objectives of DataSHIELD are:

1. To enable the secure, privacy-preserving analysis of sensitive data from multiple sources, without the
need to share or physically transfer individual-level data.

DataSHIELD’s primary objective is to facilitate the analysis of sensitive data from multiple sources
while maintaining privacy and security. It achieves this by keeping individual-level data at the source
and only exchanging aggregated, non-disclosive results across study sites. This approach reduces the
risk of data breaches and addresses privacy concerns associated with sharing sensitive data, thereby
enabling more collaborative research across different organizations and jurisdictions.

2. To provide a flexible and scalable architecture that supports various data formats and storage systems,
as well as a wide range of analytical methods, including individual person data (IPD) and study level
meta-analysis (SLMA).

DataSHIELD is designed to support various data formats, storage systems, and analytical meth-
ods, making it adaptable to a wide range of research scenarios. Its flexibility allows researchers to work
with different types of data, while its scalable architecture ensures that DataSHIELD can accommodate
the growing needs of the research community, including complex analyses and increasing data volumes.
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3. To continuously develop, update, and extend the functionality of DataSHIELD, including client-side
and server-side functions, ensuring quality assurance and comprehensive documentation.

DataSHIELD is committed to the ongoing improvement and expansion of its features, both on
the client-side and server-side. The project focuses on ensuring quality assurance, comprehensive
documentation, and the integration of new analytical methods, which helps researchers to effectively
utilize DataSHIELD and stay up-to-date with the latest advancements in data analysis.

4. To address data governance requirements and facilitate compliance with relevant ethical, legal, and
institutional frameworks.

DataSHIELD places a strong emphasis on meeting the ethical, legal, and institutional frameworks
that govern sensitive data usage. By incorporating mechanisms to ensure compliance with these re-
quirements, DataSHIELD aims to create a trusted environment for data analysis and collaboration,
while also streamlining the process of obtaining necessary permissions and approvals.

5. To transition from a small-scale research software project to a larger, community-driven, meritocratic
governance model, overseen by a consortium Steering Committee or Advisory Board.

Recognizing the need to adapt to its growing user base, DataSHIELD aims to transition from a
”benevolent dictator” governance model to a more collaborative, meritocratic approach. Establishing a
consortium Steering Committee or Advisory Board will help to better engage the global DataSHIELD
community and ensure that the project benefits from diverse perspectives and expertise.

6. To explore and implement sustainable funding and resource models, including the provision of training,
consultancy, support for implementation, targeted extension of functionality, and the development of
specialized add-ons or commercially-oriented product editions.

DataSHIELD is exploring ways to secure long-term funding and resources to support its continued
development and growth. This includes offering training, consultancy, implementation support, and
targeted functionality extensions through service contracts, as well as developing specialized add-ons
or commercially-oriented product editions to generate revenue while meeting the varying needs of its
users.

7. To foster collaboration and engagement with the global DataSHIELD community, including researchers,
developers, and commercial partners, in order to advance the development and application of the
project across various domains, such as large-scale epidemiological studies, health service data, and
’omics research.

DataSHIELD aims to build a thriving community of researchers, developers, and commercial
partners who can collectively contribute to the project’s advancement. By encouraging collaboration
and engagement, DataSHIELD can harness the collective knowledge and experience of its community
to address new challenges, explore novel applications, and ultimately improve the privacy and security
of data analysis across various domains.

1.3.3 DataSHIELD ethical and legal considerations

As a powerful tool for securely analyzing sensitive data, DataSHIELD brings forth a set of ethical and legal
considerations that need to be addressed to ensure the responsible use of the technology. In this section,
we will delve into the ethical principles that guide the DataSHIELD project, the legal frameworks and
data governance mechanisms it adheres to, and how the project aims to maintain a balance between data
protection and enabling valuable research collaborations. We will also discuss how DataSHIELD addresses
the challenges of data sharing, consent, and confidentiality, while complying with relevant regulations such as
the General Data Protection Regulation (GDPR) in Europe [80]. Furthermore, we will explore the project’s
initiatives to integrate data governance rights and obligations into data sharing agreements, and its plans
to streamline data access through research passporting, enhancing accountability and transparency in the
process.
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The ethical principles that guide the DataSHIELD project focus on ensuring that the platform is used respon-
sibly while safeguarding the privacy and confidentiality of sensitive data. These principles include:

1. Respect for autonomy: DataSHIELD is designed to respect the autonomy of data subjects by enabling
data analysis without direct access to individual-level data. This approach ensures that individu-
als’ rights to control their personal information are protected, while still allowing researchers to gain
valuable insights from the data.

2. Non-maleficence and beneficence: The project aims to minimize any potential harm resulting from the
misuse or unauthorized access to sensitive data. By employing secure federated analysis techniques,
DataSHIELD ensures that the benefits of research collaborations are maximized without compromising
the privacy and well-being of data subjects.

3. Privacy and confidentiality: DataSHIELD’s technology adheres to the principle of privacy by design,
integrating data protection measures at every stage of the data analysis process. This approach not only
maintains the confidentiality of sensitive information but also helps build trust among data subjects,
researchers, and data custodians.

4. Transparency and accountability: DataSHIELD is committed to operating in a transparent and ac-
countable manner. This includes clearly communicating its objectives, methods, and any potential
risks or limitations of the platform, as well as maintaining an open dialogue with stakeholders and the
wider research community.

5. Social responsibility: DataSHIELD recognizes the importance of balancing the need for scientific ad-
vancement with the ethical responsibilities that come with handling sensitive data. The project actively
promotes responsible data sharing and collaborative research while ensuring compliance with relevant
ethical and legal frameworks [81].

These ethical principles guide the development and implementation of DataSHIELD, ensuring that the
project remains focused on providing a secure, privacy-preserving platform for data analysis, while upholding
the rights and well-being of data subjects and the broader research community.

DataSHIELD adheres to various legal frameworks and data governance mechanisms, depending on the ju-
risdiction and specific requirements of each data source. Some of the key legal frameworks and governance
aspects that DataSHIELD considers are:

1. General Data Protection Regulation (GDPR): General Data Protection Regulation (GDPR): The
GDPR, in general, is research-friendly and aims to enable the free flow of data. It permits the use of
data for research purposes under Article 9(2)j [<empty citation>], but leaves the specific regulation
and appropriate safeguards to national laws. This creates national differences in the legal basis for
processing data for scientific purposes, posing a significant challenge for data sharing across borders.
According to GDPR Article 89.1, these safeguards should ensure that technical and organizational
measures, such as pseudonymization, are in place to respect the principle of data minimization. When
possible, research purposes should be fulfilled using further processing that does not permit or no longer
permits the identification of data subjects. DataSHIELD’s federated analysis approach aligns with the
GDPR’s focus on protecting individuals’ privacy rights while navigating the complexities arising from
differences in national laws.

2. National and regional data protection laws: DataSHIELD respects the specific data protection laws
and regulations of each country or region in which it operates. This may involve adhering to additional
or more stringent privacy requirements, depending on the jurisdiction.

3. Data Access Committees and ethical approval: DataSHIELD acknowledges the importance of obtaining
permissions from Data Access Committees and securing ethical approval for research projects when
required. These governance mechanisms help ensure that data are used responsibly and in accordance
with the terms set by data providers and relevant ethics committees.

4. Legal basis for data processing: Before any analysis takes place, DataSHIELD users must confirm
the legal basis for data processing, which may involve seeking consent from data subjects, complying
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with legal obligations, or pursuing legitimate research interests. Ensuring a valid legal basis for data
processing is crucial to upholding data subjects’ rights and complying with data protection regulations.

5. Data sharing agreements: DataSHIELD aims to incorporate key data governance rights and obligations
into data sharing agreements between participating parties. This approach helps streamline data access,
while also providing a foundation for enforcing and updating governance structures as needed.

6. Research passporting: DataSHIELD is working towards a system of research passporting, allowing
researchers to obtain permission-in-principle to work with specific data sources under predefined con-
ditions. This mechanism simplifies the data access process and provides a means of sanctioning those
who violate data governance agreements.

By adhering to these legal frameworks and data governance mechanisms, DataSHIELD ensures that its
platform remains compliant with relevant regulations and ethical standards, protecting the rights of data
subjects and fostering a responsible research environment.

1.3.4 DataSHIELD Data Privacy and Security

DataSHIELD’s platform is designed to prioritize data privacy and security while allowing researchers to per-
form complex analyses on sensitive datasets. By executing analyses on the server-side, DataSHIELD ensures
that individual-level data remains protected and inaccessible to researchers or other parties involved in the
research process. This approach minimizes the risk of data leakage, unauthorized access, and inadvertent
disclosure of sensitive information.

DataSHIELD employs multiple security mechanisms to protect the sensitive data it processes and ensure
the privacy and confidentiality of the individuals whose data are being analyzed. These mechanisms in-
clude:

1. Federated Analysis: DataSHIELD’s federated analysis approach allows multiple data sources to be
analyzed simultaneously without the need to pool raw individual-level data. By sharing only aggregated
results, summary statistics, or coefficients, DataSHIELD ensures sensitive information is not disclosed
or accessed during the research process.

2. Server-side Processing: All data analyses are executed on the server-side, meaning that individual-level
data never leaves the data custodian’s server. This prevents unauthorized access or data leakage, as
researchers and collaborators only have access to the aggregated results and not the raw data.

DataSHIELD works in conjunction with data warehouses like Opal and Armadillo, which provide essential
security features that protect sensitive data throughout the analysis process. These features include:

1. Access Control: Opal and Armadillo incorporate strict access control mechanisms to ensure that only
authorized users can access the platform and perform analyses. This may include authentication
through usernames and passwords or more advanced methods such as two-factor authentication, de-
pending on the specific implementation.

2. Encrypted Communication: Opal and Armadillo use secure communication protocols, such as HTTPS
and SSL/TLS, to encrypt the data transmitted between the client and server during the analysis
process. This ensures the confidentiality and integrity of the data while in transit.

3. Audit Logging: Opal and Armadillo maintain audit logs that record all activities performed within the
platform, including data access and analysis operations. These logs can be used to monitor user activity,
detect potential security breaches, and ensure compliance with relevant data governance policies.

Data privacy and security details are particularly relevant for public health, genetics, and social sciences fields
because of the sensitive nature of the data involved. In these fields, data often include personal, medical,
genetic, and behavioral information, which, if mishandled or disclosed, could lead to significant consequences
for the individuals concerned. These consequences may range from privacy breaches and stigmatization to
discrimination and potential misuse of information by unauthorized parties.
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Ensuring data privacy and security is crucial for maintaining trust in the research process, ensuring compli-
ance with ethical and legal requirements, and promoting the responsible use of sensitive data for scientific
advancement. By effectively protecting individual-level data, researchers in public health, genetics, and so-
cial sciences can facilitate collaborations, share data across institutions and countries, and ultimately drive
meaningful insights and discoveries to improve human well-being.

1.3.5 Technical Overview of DataSHIELD

So far, we have provided an overview of DataSHIELD, including its objectives, ethical and legal considera-
tions, as well as the data privacy and security measures it incorporates. We have discussed its significance
in research fields like public health, genetics, and social sciences, and how it addresses the challenges of
working with sensitive data. In this section, we will delve deeper into the technical aspects of DataSHIELD,
exploring its components, structure, and functionalities to better understand how it operates and achieves
its goals.

We will delve into the technical aspects of DataSHIELD by examining its underlying structure. At its core,
DataSHIELD is a collection of open-source R packages, each designed to perform specific tasks within the
framework. By utilizing these packages in combination, DataSHIELD delivers a powerful and versatile solu-
tion for the analysis of sensitive data. As an open-source project, DataSHIELD encourages collaboration and
contributions from its growing community, ensuring constant improvement and adaptation to the evolving
needs of researchers and organizations alike.

R has been chosen as the language to build DataSHIELD for several compelling reasons. Firstly, researchers
in health sciences fields typically use R for their analyses, making it a familiar and accessible choice. This
allows DataSHIELD to be easily adopted and integrated into existing research workflows.

In addition to this, R is a widely recognized and powerful statistical programming language, offering a vast
array of packages and libraries for data analysis, visualization, and manipulation. This enables DataSHIELD
to leverage the existing tools and resources within the R ecosystem, providing users with a comprehensive
and versatile platform for their research needs.

Moreover, R is an open-source language with a strong community-driven approach, which aligns with
DataSHIELD’s commitment to openness and collaboration. By using R, DataSHIELD can benefit from
the continuous growth and improvement of the language, as well as contribute to the broader R community
in return.

The R Bioconductor project has also played a significant role in the development of DataSHIELD. Bio-
conductor is a collection of packages specifically designed for the analysis of omics data, such as genomics,
transcriptomics, and proteomics. These packages offer a wide range of tools and resources tailored to the
unique challenges and demands of omics data analysis. The availability of Bioconductor packages has greatly
facilitated the development of this thesis, as many of their functions have served as a foundation for the
different analysis package developed on this thesis.

DataSHIELD is primarily built on a foundation of three interconnected R packages, namely dsBase, dsBase-
Client, and DSI. These packages, which work in tandem, are designed to facilitate the analysis process and
ensure seamless communication between the client and server sides. Each package plays a distinct role in
the DataSHIELD ecosystem:

dsBase: The dsBase package serves as a fundamental building block within the DataSHIELD framework.
It functions as an analysis package, offering capabilities similar to those found in the R base package.
Crucial to the software architecture, dsBase is designed to run on the analysis server, ensuring that all data
processing and computations take place within a secure environment. This package forms the foundation for
DataSHIELD’s ability to perform complex analyses while safeguarding sensitive information.

dsBaseClient: The dsBaseClient package acts as a complementary component to the dsBase package within
the DataSHIELD framework. Designed to run on the client-side, specifically on the researcher’s computer,
this package facilitates the communication between the client and the server. Its primary function is to
generate the appropriate function calls for the server-side package (dsBase) to execute.
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DSI: The DataSHIELD Interface (DSI) package plays a crucial role in the DataSHIELD architecture by
managing the communication between the client and the server. It is responsible for transmitting the analysis
function calls generated by dsBaseClient to the server, ensuring that the correct instructions are relayed for
the server-side package to execute. By doing so, DSI facilitates seamless and secure interactions between the
different components within the DataSHIELD framework, further enhancing the privacy and protection of
sensitive data during the research process.

1.3.6 Data warehouses: Opal and Armadillo

In the previous section, we provided a technical overview of DataSHIELD, discussing the various R packages
that form the foundation of this innovative platform. As we now shift our focus to the data warehouses, Opal
and Armadillo, we will explore the technology that enables the deployment of DataSHIELD in real-world
applications. These data warehouses play a crucial role in ensuring secure and efficient data management,
minimizing the risk of unauthorized access or data breaches. In the following paragraphs, we will explain
the unique characteristics and functionalities of Opal and Armadillo, and examine how they contribute to
the overall effectiveness of the DataSHIELD infrastructure.

Opal and Armadillo represent two separate data warehouse solutions that function as servers within the
DataSHIELD ecosystem. Both have been developed to securely store information and house an R server
capable of running DataSHIELD analysis packages like dsBase. In situations involving multiple cohorts,
every participating entity, such as a hospital, retains its own on-premises data warehouse, ensuring data
remains securely stored at the site without being transferred elsewhere. Opal and Armadillo handle user
identification and permission allocation for those seeking to employ the DataSHIELD infrastructure, further
reinforcing data security and privacy measures.

1.3.6.1 Opal

Opal, developed by OBiBa, is a comprehensive core data management application that plays a vital role
in the DataSHIELD infrastructure. This server application delivers a wide range of tools for importing,
transforming, and describing data, as well as managing subject identifiers during data import and export
processes. Integrated with R, Opal allows complex statistical analysis and report generation, while also
ensuring seamless and secure data import and management through its integration with Onyx and Mica. As
a critical component of DataSHIELD, Opal offers robust data management capabilities, enabling efficient
and secure data management in real-world applications.

Opal offers a variety of main features and advantages, ensuring efficient and secure data management:

1. Data Warehouse: Opal supports various database software backends such as MongoDB, MySQL,
MariaDB, and PostgreSQL, and enables the storage of an unlimited number of variables.

2. Customized variable dictionaries: Users can create personalized dictionaries for managing and orga-
nizing their data.

3. Multiple data import and export formats: Opal supports data import from CSV, SPSS, SAS, Stata
files, and SQL databases, as well as data export to these formats.

4. Incremental data importation: Opal allows for incremental data import, making it easy to update
existing data with new information.

5. Direct connection to multiple data sources: Opal can directly connect to various data source software,
such as SQL databases and LimeSurvey.

6. Storage of diverse data types: Users can store data about any type of entity and data of any type,
including texts, numbers, geo-localization, images, and videos.

7. Genotype data storage: Opal supports the import and storage of genotype data as VCF files (Variant
Call format).

8. Advanced indexing: Opal uses ElasticSearch for advanced indexing functionality, providing fast and
efficient data search capabilities.
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9. SQL API: Opal offers an SQL API for selecting, filtering, grouping, and joining table data

1.3.6.2 Armadillo

Armadillo, developed by Molgenis, is a powerful data portal designed for data stewards to share datasets on a
server, enabling researchers to perform secure and efficient analysis using DataSHIELD tools. The platform
streamlines data sharing and management while maintaining a strong focus on data security, confidentiality,
and ease of use.

Armadillo main features can be summarized as:

1. DataSHIELD Integration: Armadillo leverages the DataSHIELD platform, enabling researchers to
perform secure, privacy-preserving analysis on shared datasets.

2. Secure Data Sharing: Data stewards can securely share datasets on the Armadillo server, allowing
researchers to analyze data while maintaining confidentiality and privacy.

3. Parquet Data Format: Data is stored in the efficient parquet format, which supports fast column
selections for analysis.

4. Web User Interface and R Client: Data stewards can manage their data on the Armadillo file server
using the web user interface or MolgenisArmadillo R client.

5. Encrypted Data Storage: Armadillo can store data encrypted on its file server for enhanced security.

6. Single Sign-On Authentication: The platform supports OpenID Connect (OIDC) based single sign-on,
allowing seamless and secure authentication.

7. Flexible Deployment Options: Armadillo can be installed on various Linux or Unix-based operating
systems, and it is also available as a Docker image for quick deployment and testing.

The decision to use one technology or another must be made by each center based on their specific needs and
requirements. Furthermore, it is worth mentioning that within a collaborative project, it is entirely possible
for different centers to employ distinct data warehouse technologies without hindering the overall goals of
the project. Ultimately, the choice of data management and analysis tools should be determined by factors
such as data security and compatibility with the center’s existing infrastructure and expertise.

1.3.7 Analysis stack. Packages and infrastructure

In the following section, we will bring together all the elements we have discussed so far, illustrating how the
various data management and analysis tools, such as Opal, Armadillo, and DataSHIELD, work together. By
integrating these tools, we can facilitate the process of managing, sharing, and analyzing data across multiple
centers while maintaining data security and privacy. To provide a comprehensive understanding of how these
components interact, we will present a simple diagram that demonstrates their synergy and highlights the
benefits of employing such a coordinated approach in a real-world scenario. This visual representation
will help in grasping the seamless collaboration and interplay between these packages and data warehouse
technologies, ultimately showcasing the potential of this integrated framework.

On fig. 2 we can take a look at a diagram showcasing the structure that a two cohort real-world DataSHIELD
project would use. As we have previously seen, there are three main R packages withing the infrastructure:
dsBase, dsBaseClient and DSI. The researcher that is going to use DataSHIELD to perform analysis is
located at the center of the image, depicted as ”analyst”. This analyst is using the dsBaseClient package
in RStudio, although any R terminal or software with capabilities to run R code could also be used. The
dsBaseClient is then contacting the different analysis servers through the DSI package, which is in charge
of sending the DataSHIELD analysis commands. This commands are recieved by the different Opal servers
and sent to the R servers they are running. Inside the R servers, there is the dsBase package which will run
the analysis and return (again through Opal and DSI) non-disclosive statistics to the analyst.
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Figure 2: Diagram illustrating the integration of RStudio as a DataSHIELD client with two distinct cohorts
using Opal servers. The analyst sends queries through dsBaseClient, and the Opal servers, running the
dsBase server package, return non-disclosive statistics to the analyst.

1.3.8 DataSHIELD analysis types

In this section, we will explore the types of analysis that DataSHIELD is capable of performing, highlighting
its versatility and adaptability to various research scenarios. DataSHIELD’s ability to work with horizontally
partitioned data and conduct both meta-analyses and pooled studies demonstrates its potential to handle
complex data structures and meet the needs of diverse research projects. We will develop each of these topics
in greater detail, showcasing DataSHIELD’s analytical capabilities.

Horizontally partitioned data and vertically partitioned data are two different ways of organizing and dis-
tributing datasets across multiple sources or organizations. Understanding the differences between these
two types of data partitioning is essential to appreciate how DataSHIELD operates and adapts to various
research contexts.

In horizontally partitioned data, the dataset is divided into multiple parts based on the records or rows.
Each partition contains a subset of the complete records, but retains all the variables or columns of the
original dataset. This approach is commonly used when different organizations or research centers hold data
on distinct individuals or groups, but share the same variables for each record.

On the other hand, vertically partitioned data involves splitting the dataset based on variables or columns.
In this case, each partition contains all records but only a subset of the variables. This scenario is typi-
cally encountered when various organizations hold different sets of variables or measurements for the same
individuals or groups.

This two types of methods of partitioning data are visualized on fig. 3.
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Figure 3: Horizontally and vertically partitioned data example.

DataSHIELD’s focus on horizontally partitioned data is a natural fit for collaborative research projects,
as it aligns with the typical configuration of such initiatives [82]. In these projects, multiple centers col-
lect the same type of data from different individuals to address specific research questions, such as health
conditions or other relevant factors. By having data from diverse populations, these collaborations aim to
achieve greater statistical power and yield more meaningful results. DataSHIELD’s ability to analyze hori-
zontally partitioned data while preserving privacy and data security enables researchers to work collectively,
unlocking the potential of shared resources and enhancing the overall quality and impact of their research
findings.

DataSHIELD offers two main analysis methods for horizontally partitioned data: meta-analysis and pooled
analysis. Both methods enable researchers to combine data from multiple sources while preserving data
privacy, but they differ in their approach and capabilities.

Meta-analysis refers to the process of statistically combining results from multiple independent studies to
arrive at a single, comprehensive conclusion. In a meta-analysis, summary statistics from each study are used
rather than individual-level data. This approach is particularly useful when combining data from different
sources or when it is not feasible to share individual-level data due to privacy concerns.

Pooled analysis, on the other hand, involves combining individual-level data from multiple sources into a
single dataset for analysis. With DataSHIELD, pooled analysis is performed in a privacy-preserving manner
by conducting the analyses on the individual data sources while only sharing aggregated results, the data
never leaves the analysis servers. This approach allows researchers to perform more complex statistical
analyses, as they have access to a larger, combined dataset without compromising data privacy.
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Both meta-analysis and pooled analysis methods offered by DataSHIELD provide researchers with valuable
tools to leverage the power of combined data from multiple sources, enabling more robust and meaningful
research outcomes while ensuring data privacy and security.

1.3.8.1 Pooled analysis in DataSHIELD: The Generalized linear model (GLM) case

In this section, we will demonstrate an example of a pooled analysis in DataSHIELD, specifically focusing on
the implementation of generalized linear models (GLMs) using a modified iterated reweighted least squares
(IRLS) method [83, 84]. GLMs are a flexible and powerful technique used to model the relationship between
a response variable and one or more explanatory variables. In the following paragraphs, we will describe the
step-by-step process of how DataSHIELD performs this privacy-preserving GLM analysis using the modified
IRLS method.

First, let’s establish the theory behind GLMs. Suppose we have a study with N independent observations.
There is a dependent Y variable and a set of covariates q for each observation. The covariates are placed inside
a matrix XT = (x1, ..., xN ), where xT

i = (xi1, ..., xiq) representing the q dimensions for the observation i. We
then assume that the relationship between Y and X for the observation i can be expressed by a GLM

ηi := g(µi) = βTxi (2)

Following the standard notation [84], ηi is the linear predictor, g the funcion specified by the researcher,
µi the mean of Yi having µ = (µ1, ..., µN ) and βT = (β1, ..., βq). βT is the parameter vector we wish to
estimate.

Following the definition of a GLM, Y must be drawn from a parameterized distribution that belongs to the
exponential family (e.g. Gaussian, bionomial, Poisson). The probability density f follows:

f(yi|θi) = exp

(
yiθi − c(θi)

ϕ
+ h(hi, ϕ)

)
(3)

From (referencia 17 link de dal) we have:

µi := E[Yi] =
dc(θi)

dθi
;V ar[Yi] = ϕ

d2c(θi)

dθ2i
:= ϕVi (4)

For a logistic regression (µ = p) we would have eq. (5) and eq. (6).

ηi = g(pi) = log
p1

1− p1
; c(θi) = −log(1− pi);ϕ = 1 (5)

dg(µi)

dµi
:= g′(pi) =

1

p1(1− pi)
;Vi = pi(1− pi) (6)

So far, we have provided an overview of the generalized linear model (GLM). In the following lines, we
will explain the Iteratively Reweighted Least Squares (IRLS) algorithm, which is designed to estimate the
maximum likelihood for the parameter vector β. As an iterative algorithm, IRLS refines its estimates through
a series of iterations to reach a convergent solution.

We define βt as the vector β at the tth iteration. IRLS derives βt+1 via eq. (7).

βt+1 = βt + I(βt)
−1s(βt) (7)

Where I is the expected information matrix and s the score function. We define I and s following eq. (8)
and eq. (9).
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I(βt) = XTWtX (8)

s(βt) = XTWt(Y = µ(t))g′(µ(t)) (9)

Where Wt is defined following eq. (10) and eq. (11).

wii(t)
−1 = Vi(t)g

′(µi(t))
2 (10)

g′(µi(t)) = dg(µi(t))/dµi(t) (11)

We use µ(t) since µ depends on β therefore on t. β is updated until a convergence criteria is met.

Now we will see how we can use this method when the data is not pooled into a single large dataframe, but
that it can be split in different study servers.

We can write I and s in terms of sumations, where N is the number of study servers. We do that following
eq. (12) and eq. (13).

I(βt) =

N∑
i=1

wii(t)xix
T
i (12)

s(βt) =

N∑
i=1

(yi − µi(t))g
′(µi(t))wii(t)xi (13)

With all that information, we can begin the iterative computation process:

1. We estimate g(µi(t)) with eq. (2). We know βt at iteration (t+ 1) from the previous iteration.

2. Then, we can estimate µi(t) with the inverse link function g−1(). E.g. for logistic regression: µi(t) :=
pi(t) = exp(βT

t xi)/(1+exp(βT
t xi)) which is the expected probability of a positive response at iteration

t.

3. We know the general form of function g and the value of µi(t), therefore we can calculate g′(µi(t)).
We have the general form g′(µi(t)) := g′(pi(t)). Following with the logistic regression example, we can
use eq. (5) and eq. (6) giving g′(pi(t)) = 1/pi(t)(1− pi(t)).

4. We know the probability density function for Y , therefore function c() is also known (eq. (3)). We
can estimate Vi(t) = d2c(θi)/dθ

2
i for iteration t (eq. (4)). For the logistic regression eq. (5) and eq. (6)

yield Vi(t) = pi(t)(1− pi(t))

5. Finally, wii(t) is calculated using g′(µi(t)) and Vi(t) with eq. (10).

Now we are in position to compute I(βt) and s(βt) is direct and βt+1 can be derived with eq. (7) finishing
the iteration process.

For those interested in a more in-depth exploration of the GLM method in DataSHIELD, including the un-
derlying mathematics and practical examples, there is a published paper available that delves into these
topics [85]. This resource provides a comprehensive understanding of the method’s implementation in
DataSHIELD.

In conclusion, the detailed mathematical demonstration provided in this section showcases the intricate and
complex mathematics employed in DataSHIELD to perform pooled analysis using the IRLS algorithm for
GLM implementation. This example highlights the platform’s capability to handle sophisticated statistical
techniques while maintaining privacy. However, it is essential to note that for such analyses to be effective,
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data across all participating studies must share the same format and scale for both the outcome variable and
covariates. Ensuring this uniformity is a fundamental prerequisite for any collaborative research endeavor
and helps ensure the accuracy and validity of the results generated.

1.3.8.2 Beyond GLM: Algorithms that can be used to perform pooled analysis

In this section, we will discuss the process of developing or identifying algorithms that can be integrated
within the DataSHIELD architecture as pooled methods. By understanding the principles and criteria for
developing or identifying suitable algorithms, researchers and developers can contribute to the expansion of
DataSHIELD’s capabilities, further promoting secure and collaborative research.

One of the promising approaches to discover new algorithms that could be adapted for use in DataSHIELD’s
infrastructure as pooled methods is to explore the field of computer science, specifically focusing on the
trend of parallelizing algorithms [86]. Over the past years, parallelization has gained significant attention
as it allows for efficient utilization of multi-core CPUs and high-performance GPUs. By leveraging the
principles and techniques employed in parallel algorithms, it is possible to identify potential candidates that
can be adapted and implemented within DataSHIELD, expanding its capabilities for secure and collaborative
analysis across distributed data sources.

When considering the adaptation of parallelized algorithms for use in DataSHIELD, it is essential to establish
an equivalence between a computing thread and a study center. This analogy allows us to better understand
how these algorithms can be applied in a distributed data setting. However, there are certain characteristics
of the algorithms that need to be carefully examined and possibly modified to ensure their suitability for
DataSHIELD’s specific requirements. These characteristics may include the communication patterns between
threads (or study centers), the nature of the data being processed, and the overall structure of the algorithm.
By thoroughly exploring these aspects, we can successfully adapt parallelized algorithms to be effectively
employed in DataSHIELD.

When assessing the suitability of an algorithm for use with horizontally partitioned data in DataSHIELD,
it is crucial to ensure that the algorithm consistently maintains the same data on each thread (or study
center) throughout the computation process, this concept is called non-sharing memory distributed algo-
rithms [87]. This characteristic is essential for preserving the privacy of individual-level data and ensuring
that the analysis can be effectively carried out across multiple study centers without compromising data
security.

Furthermore, if the algorithm requires any communication between the master (in DataSHIELD, this would
be the client) and the threads (in DataSHIELD, these would be the study centers), we must also make cer-
tain that this communication only contains aggregated non-disclosive statistics. This additional precaution
ensures that the privacy of sensitive data remains protected throughout the entire analysis process.

By carefully selecting algorithms with these features, we can ensure that DataSHIELD continues to provide
a secure and robust platform for collaborative, privacy-preserving data analysis.

Once we have identified an algorithm that meets the requirements for handling horizontally partitioned data
and ensuring privacy preservation through aggregated non-disclosive statistics, there is still some work to be
done to guarantee its security within the DataSHIELD framework. The next step is to add the appropriate
disclosure traps to ensure that the results shared with the client consistently do not contain information that
would allow reidentification of any individual.

To achieve this, we need to carefully examine the DataSHIELD privacy-preserving mechanisms described in
the relevant section and tailor the algorithm to incorporate these protective measures. Depending on the
type of data involved, it may be necessary to employ an ad-hoc solution tailored to that specific data.

This step is the most sensitive and critical aspect of adapting an algorithm for use in DataSHIELD. It is
always a good practice to consult experts with diverse backgrounds, such as mathematicians, statisticians,
biostatisticians, and other professionals, to ensure that the algorithm is secure, effective, and compliant
with privacy-preserving principles. Collaboration and thorough review are essential for maintaining the high
standards of privacy and security that DataSHIELD strives to achieve.
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We will conclude with a simple example of a pooled algorithm by demonstrating the case for the pooled mean.
When computing the mean of a variable distributed across different study centers, each center calculates the
mean of the variable and reports that value along with the number of observations to the client. The client
then aggregates this data using eq. (14) to obtain the combined mean of that variable. On that equation,
N is the number of study centers, ρi is the mean of the i study center and ni is the number of observations
of the i study center.

N∑
i=1

ρini

N∑
i=1

ni

(14)

To ensure that the information provided by the study centers is non-disclosive, a disclosure trap is placed
on each study server. This trap ensures that there is a minimum number of individuals required to compute
the mean. If the minimum number of individuals is not met, the server will not return any information
to the client. This safeguard helps maintain the privacy and security of the data while still allowing the
computation of a pooled mean across multiple study centers.

1.3.9 DataSHIELD privacy preserving mechanisms

To ensure that DataSHIELD maintains a high level of privacy and security, the framework incorporates a
multi-layered approach, including system protection elements, analysis protection elements, and governance
protection elements. Additionally, the platform is continuously evolving to address potential weaknesses,
incorporating new protection elements and future additions as the field of privacy-preserving data analysis
advances. The current chapter aims to provide an in-depth understanding of these mechanisms and their
implementation in DataSHIELD.

1.3.9.1 System protection elements

DataSHIELD’s privacy-preserving mechanisms encompass various system protection elements that ensure
the security and integrity of sensitive data. One of the fundamental aspects of these protection measures
is the implementation of robust physical security. This involves secured data centers with access controls
and surveillance systems that prevent unauthorized access to the data processing servers and hardware
components, mitigating potential breaches and data theft.

Network security is another essential component of DataSHIELD’s system protection. To safeguard the
transmission of data between client and server computers, DataSHIELD utilizes encryption techniques,
ensuring that the exchanged information remains secure and unintelligible to potential attackers. Moreover,
network firewalls are employed to block unauthorized traffic and prevent data from being sent to unapproved
locations, further enhancing the platform’s security.

In addition to physical and network security, DataSHIELD employs an R parser to validate client-server
commands and their arguments. This process allows only permitted methods to pass from the client to the
servers, ensuring that only valid methods are used for data analysis. While the R parser enforces global checks
on the commands, it is essential to note its limitations, as it lacks knowledge of the semantics of individual
methods. To address this issue, these global checks are augmented by checks within the individual methods
themselves.

Furthermore, server-side R in DataSHIELD is only callable through a middleware, such as Opal or Armadillo.
This middleware serves as an additional layer of protection, responsible for user authentication and ensuring
that only authorized users have access to the data and analytical functions.

Lastly, DataSHIELD maintains logs of all analysis commands executed on the servers. This logging mech-
anism allows for posterior revision of user activity, providing a means to track and identify potential ma-
licious actors on the platform. By continuously monitoring user activity, DataSHIELD ensures that any
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unauthorized or suspicious actions can be promptly investigated and addressed, further strengthening its
privacy-preserving mechanisms.

The system structure depicted in this section is illustrated on fig. 4, where there are the two distinct parts
differentiated, the client and the server. Communication between the parts is encrypted. Inside the server
the communication flow goes from the middleware (”web service”), then passes through the R parser and
after that it goes to the R server where data will be analyzed.

Figure 4: System protection elements flowchart. Figure extracted from ’Mitigating disclosure risk in multi-
site federated analysis: the paradigm of DataSHIELD’ by Avraam et. al. with authorization from the
authors.

1.3.9.2 Analysis protection elements

DataSHIELD’s privacy-preserving mechanisms also encompass a variety of analysis protection elements that
minimize the risk of data disclosure during statistical analyses. To achieve this, the interactions between the
client and server are restricted to ”assign” and ”aggregate” methods, ensuring that sensitive data remains
secure and inaccessible to unauthorized users.

Assign functions play a crucial role in DataSHIELD’s analysis protection. These functions generate and
save objects on the server-side without returning any information to the client-side, except for study-specific
messages indicating the successful creation and expected format of the objects across all studies. Conversely,
aggregate functions generate low-dimensional statistical results, which are then returned to the client-side.
The design of these aggregate functions inherently limits the potential for disclosive outputs.

While assign functions do not require disclosure traps per se, it is essential to consider whether they could
be exploited in a manner that would allow a user to bypass a disclosure trap. To prevent this, assign
functions are designed to only interact with server-side objects through aggregate functions, further enhancing
DataSHIELD’s privacy measures.

Several features have been implemented to limit disclosive outputs in functions. These include removing
potentially disclosive outputs (e.g., residuals and predicted values from generalized regression models), san-
itizing and validating inputs to ensure proper function behavior, and confirming that error messages do not
inadvertently reveal sensitive data.

Disclosure traps play a pivotal role in DataSHIELD’s analysis protection, allowing only non-disclosive sum-
mary statistics to leave the server. The server-side functions of the dsBase DataSHIELD package version
6.3.0 employ a set of disclosure traps, as listed in table 1. Furthermore, server administrators can add
additional disclosure traps when installing new releases of dsBase or other DataSHIELD packages (e.g.,
dsOmics).
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Similar to before, on fig. 5 there is an illustration on how the disclosure traps are integrated on the data
flowchart. All the disclosure traps are applied at the R server level given that the function call has been
allowed by the R parser, there the outputs are also checked before leaving the server in the form of non-
disclosive results, which are passed back to the user.

Figure 5: Analysis protection elements flowchart. Figure extracted from ’Mitigating disclosure risk in multi-
site federated analysis: the paradigm of DataSHIELD’ by Avraam et. al. with authorization from the
authors.

The thresholds for these disclosure traps are controlled exclusively by the data custodian, allowing them to
maintain full control over the level of protection for their specific data situation. While analysts can view
these thresholds, they cannot modify them, ensuring that data custodians can effectively safeguard sensitive
information.

1.3.9.3 Governance protection elements

Governance protection elements are crucial in ensuring that DataSHIELD’s privacy-preserving mechanisms
are robust and effective. These elements establish and enforce appropriate access controls and usage policies
to maintain the confidentiality and integrity of sensitive data.

Before researchers can analyze data using DataSHIELD, they must be authorized by the data custodian of
the study. This authorization process helps to ensure that only qualified individuals are granted access to
sensitive data. Once approved, researchers receive user-specific credentials to log in to data servers, with
some organizations even implementing two-factor authentication (2FA) for added security. Certain consortia
also require researchers to use a central analysis server, which necessitates an additional set of user-specific
credentials.

Data access procedures determine the specific subset of variables that researchers can access, further limiting
the potential for unauthorized use or disclosure of sensitive information. To safeguard against potential
privacy breaches, data stored on servers is pseudonymized, unlinking it from any personally identifiable
information.

In addition to these access controls, DataSHIELD’s governance framework also requires researchers to obtain
approval from each data owner’s ethics committee before publishing any findings. This ensures that the
results presented in research papers adhere to the ethical guidelines and data privacy requirements set forth
by the data custodians.

Moreover, researchers can be assigned different analysis profiles, each with distinct disclosure trap values.
These profiles allow data custodians to customize the level of access and functionality granted to individual
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Table 1: DataSHIELD Disclosure traps in dsBase (version 6.3.0 ) functions

Name Description
nfilter.tab The lowest number of non-empty entries that must be present in a

table for it to be shared is referred to as the minimum non-zero cell
count. This rule applies to tables of different dimensions, including
one-, two-, and three-dimensional tables. These tables can be based
on counts across one, two, or three factors or can represent the aver-
age of a quantitative variable across a factor. The default value for
the minimum non-zero cell count is set to 3.

nfilter.subset The smallest number of non-empty data points (usually representing
individuals) that must be present in a specific subset is called the
minimum non-zero count. The default value for this requirement is
set to 3.

nfilter.glm The maximum number of factors in a regression model is limited
by a certain proportion of the sample size in a study. For example,
if a study has 1,000 data points (usually individuals) for a specific
analysis and the limit is set to 0.33 (default value), then the model
can include up to 330 factors. This restriction helps prevent overly
complex models that could potentially disclose sensitive information.

nfilter.string, nfilter.stringShort The maximum length allowed for a text argument is restricted to
ensure its length is tested. Default values for the long and short text
limits are 80 and 20 characters, respectively. These restrictions help
prevent hackers from embedding harmful code within a valid text
argument that could be actively interpreted.

nfilter.levels.density The highest acceptable ratio of unique categories in a categorical
variable to the total number of entries, considered non-disclosive.
For instance, if there are 1,000 unique categories from 4,000 entries,
this would result in a 0.25 (25%) proportion, which is seen as non-
disclosive. The default value is set at 0.33.

nfilter.levels.max The highest acceptable number of distinct categories in a categorical
variable considered non-disclosive. The default value is set at 40.

nfilter.kNN The smallest allowed value for k in the k-nearest neighbors method,
primarily used for certain graphical functions. The default value is
set at 3.

nfilter.noise The smallest amount of noise that can be added to a server-side
vector. This value indicates the variance of the added noise. For
example, if the minimum noise level is set to 0.25 (the default value),
then noise with a zero mean and a variance equal to 25% of the true
variance of the vector is added to each individual value in the vector.
This ”noisy” vector can then be sent back to the client.

datashield.privacyControlLevel Allow server administrators to operate servers with a limited selec-
tion of standard methods. If this option’s value is not ”permissive”,
the following server-side methods will be unavailable: dataFrame-
SubsetDS1, levelsDS, BooleDS, cDS, cbindDS, dataFrameDS,
dataFrameSortDS, dataFrameSubsetDS2, dmtC2SDS, rbindDS, re-
codeLevelsDS, recodeValuesDS, repDS, reShapeDS, seqDS, subset-
ByClassDS, and subsetDS. The default value is ”permissive.”.
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users, further enhancing DataSHIELD’s privacy-preserving mechanisms.

The governance protection is illustrated on fig. 6. On the client side, there are the two different options, one
being an analysis computer owned by the researcher and the other one is a central analysis server, the later
requires a proprietary authentification protocol to be accessed. Afterwards, both clients connect to the same
server, where depending on the specific user, different data and R functions will be available.

Figure 6: Governance protection elements flowchart. Figure extracted from ’Mitigating disclosure risk in
multi-site federated analysis: the paradigm of DataSHIELD’ by Avraam et. al. with authorization from the
authors.

By implementing these governance protection elements, DataSHIELD ensures the responsible use of sensitive
data, while maintaining the highest standards of data privacy and security.

1.3.9.4 Future developments

The development of DataSHIELD’s privacy-preserving mechanisms is an ongoing process, with researchers
continually exploring new ways to enhance its security and functionality. One promising avenue of devel-
opment involves leveraging artificial intelligence (AI) to identify potential security risks and attacks. AI
can be utilized to monitor analysis commands in real-time, tracking differences and detecting attempts to
infer sensitive information. By automating this process, DataSHIELD can further strengthen its protection
against inferential disclosure.

The introduction of a Trusted Third Party (TTP) or an intermediate layer offers another potential enhance-
ment to DataSHIELD’s privacy-preserving capabilities. For example, a group of hospitals may be required
to publish collective reports on their activities without disclosing individual reports to the public. In such
cases, a TTP could be given access to the individual reports, collating and publishing the results in an
agreed-upon manner while ensuring data privacy is maintained.

Another area of development involves the use of multiple server domains, which can segregate different types
of data, such as injected and processed data, into distinct environments. This approach allows for greater
control over data access and reduces the risk of unauthorized disclosure.

Finally, the ability to create scripts that can only be executed if all cohorts agree presents a valuable addition
to DataSHIELD’s privacy-preserving mechanisms. This feature enables researchers to collaborate on analyses
while adhering to the stringent data privacy requirements of each cohort involved.
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1.3.10 DataSHIELD future privacy preserving mechanisms

1.3.11 Projects using DataSHIELD

In this section, we will list various ongoing and pilot projects that utilize DataSHIELD for their research
purposes. These projects highlight the growing adoption of DataSHIELD as a powerful and secure data
analysis tool within the scientific community. The increasing number of projects and institutions involved
in implementing DataSHIELD serves as a strong indicator of the project’s success and its potential for
further expansion. By looking into these projects, we can better understand how DataSHIELD has been
effectively integrated into diverse research initiatives and appreciate the impact it has had on facilitating
secure, collaborative research across multiple institutions.

The current projects using DataSHIELD are (extracted from datashield.org on 28/03/2023):

� ATHLETE [88]: Develop advance tools for Human Early Lifecourse Exposome Research and establish
a prospective exposome cohort, including a FAIR data infrastructure, by building on Europe’s most
comprehensive exposome cohorts covering the first 18 years of life.

� BioSHaRE-EU [89] Environmental Core Project for the federated analysis of data from 6 European
studies including UK Biobank; Obese Project for the federated analysis of 10 European studies includ-
ing data from the National Child Development Study.

� ENPADASI [90] (German Institute of Human Nutrition, Max Delbrück Center for Molecular Medicine
in the Helmholtz Association): The European Nutritional Phenotype Assessment and Data Sharing
Initiative aimed at delivering an open access research infrastructure containing data from a wide variety
of nutritional studies, ranging from mechanistic/interventions to epidemiological studies including a
multitude of phenotypic outcomes, facilitating combined analyses.

� EUCAN-CONNECT [91]: developing a federated FAIR platform enabling large-scale analysis of high-
value cohort data connecting Europe and Canada in personalized health. Collaborating with 173
European population-based cohort studies with 2.5M participants in total. This project aims to
coordinate DataSHIELD implementations across LifeCycle, RECAP, InterConnect, Reach, LongITools
and Athlete (and future projects that emerge).

� InterConnect [92] (MRC Epidemiology Unit, Cambridge): InterConnect is developing a global collab-
orative network for diabetes and obesity research, piloting DataSHIELD to facilitate a new approach
to data sharing that is secure, scalable and sustainable. This includes data from 43 studies.

� INTIMIC [93] (Max Delbrück Center for Molecular Medicine in the Helmholtz Association): The
Intestinal Microbiomics Knowledge Platform (INTIMIC) has the main objective of fostering studies on
the microbiota, nutrition and health by assembling available knowledge of the microbiota and the other
aspects (e.g. food science and metabolomics) that are relevant in the context of microbiome research
in a FAIRyfied (findable, accessible, interoperable and reusable) fashion to the scientific community,
and to share information with the various stakeholders.

� LifeCycle [94]: developing new strategies for optimizing early life that will help to maximize the human
developmental potential for current and future European generations. Includes 40 European cohort
studies.

� MIRACUM [95] (Medical Informatic in Research and Care in University Medicine): A national German
network of 10 University Hospitals to improve healthcare and strengthen Biomedical Informatics in
Research and Education.

� RECAP preterm [96]: Research to improve to health, development and quality of life of babies born
preterm. Includes 20 population-based cohort studies from Europe.

The projects setting up DataSHIELD pilots are (extracted from datashield.org on 28/03/2023):

� International 100,000+ cohorts consortium [97] : Large cohort studies involving hundreds of thousands
of participants have been established or launched in several regions worldwide. Cohorts provide great
value for studying diverse populations and key demographic subgroups, rare genotypes and exposures,
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and gene-environment interactions. Each cohort is constrained, however, by its size, ancestral origins,
and geographical boundaries, which limit the subgroups, exposures, outcomes, and interactions it can
examine. Linking data across large cohorts provides a vast digital resource of diverse data to address
questions that none of these cohorts can answer alone, enhancing the value of each cohort and leveraging
the enormous investments made in them to date.

� LITMUS [98]: Liver Investigation:

Aiming to use DataSHIELD to provide non-disclosive/controlled access to the LITMUS Project’s
genetic information, using the dsOmics module developed in collaboration with EUCAN-Connect and
ATHLETE. Researchers requiring access to the LITMUS genetic information are able to perform re-
mote analysis operations without needing to directly access highly confidential data, speeding advances
in diagnosis and treatment of liver disease.

Testing Marker Utility in Steatohepatitis (LITMUS) funded by the European Innovative Medicines
Initiative 2 Joint Undertaking, brings together clinicians and scientists from prominent academic cen-
tres across Europe with companies from the European Federation of Pharmaceutical Industries and
Associations (EFPIA). Their common goals are developing, validating and qualifying better biomarkers
for testing NAFLD.

� LONGITOOLS [99]: a European research project studying the interactions between the environment,
lifestyle and health in determining the risks of chronic cardiovascular and metabolic diseases; LongI-
Tools is bringing together 25 European cohorts and studies.

� NFDI4Health [100]: the National Research Data Infrastructure for Personal Health Data aims at
enabling findability, accessibility, interoperability, and reusability of data generated in clinical trials,
epidemiological, and public health studies in Germany to enhance collaboration among research com-
munities while complying with privacy regulations and ethical requirements.

In conclusion, the wide array of projects that currently employ DataSHIELD or are in the process of setting
up pilots demonstrates the versatility and effectiveness of this technology in addressing various research
challenges. As DataSHIELD continues to gain traction, it is positioned to become an increasingly valuable
tool for secure, collaborative data analysis in numerous fields of study.

1.4 Overview of Exposome Data Analysis

After a comprehensive exploration of data sharing, the potential of federated data analysis, and the capabili-
ties and gaps within DataSHIELD, it becomes evident that the manner in which we process and analyze data
can be as pivotal as the data itself. Particularly, when we consider complex and multifaceted data types,
such as exposome data, the need for sophisticated analytical approaches becomes even more pressing.

1.4.1 The exposome concept

The ”exposome” concept, first introduced by Wild in 2005 [101], encompasses the totality of an individual’s
environmental exposures and lifestyle factors throughout their lifetime while taking into account the dynamic
nature of these exposures as they evolve over time. In 2012, Wild further refined the concept by proposing a
three-domain classification system that distinguishes between internal, general external, and specific external
factors [102], this distinction is illustrated on fig. 7.
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Figure 7: Three different domains of the exposome. Extracted from Wild [102]

The internal domain relates to the biological and toxicological processes that respond to both general and
specific external exposures. General external exposures refer to the broader range of factors an individual
may encounter, such as mental stress, climate, and living environment. Specific external exposures, on the
other hand, cover a wide array of exposures the individual may be subjected to, including lifestyle factors,
medical interventions, and environmental pollutants.

Building on the initial understanding of the exposome concept, researchers have since emphasized the im-
portance of integrating multi-omics approaches to comprehensively assess the complex interactions between
environmental exposures and genetic factors in relation to human health [103]. These multi-omics integra-
tion can provide valuable insights into the molecular mechanisms underlying the exposome and its potential
impact on disease development and progression.

A key challenge in exposome research lies in the accurate measurement and assessment of environmental
exposures, which are often diverse, dynamic, and multi-dimensional. Advanced technologies such as wearable
sensors, personal exposure monitoring devices, and smartphone applications have been employed to collect
real-time data on individual exposures, improving the granularity and precision of exposome measurements
[104].

Furthermore, the exposome concept emphasizes the importance of considering the temporal dimension of
environmental exposures, as both the timing and duration of exposures can significantly influence health
outcomes. For instance, critical periods of development, such as prenatal and early postnatal life, may be
particularly sensitive to environmental influences, with potential long-lasting effects on an individual’s health
trajectory [105].

Since its inception in 2005, the exposome concept has undergone significant evolution, driven by advance-
ments in technology and a growing recognition of the importance of considering environmental exposures in
the context of human health. As a result, the exposome has emerged as a highly relevant and promising area
of research, spanning various fields including environmental health, molecular epidemiology, and precision
medicine, this is reflected on the rise of academic papers refering to it, which can be seen on fig. 8.
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Figure 8: Evolution of number of papers related to exposome during last years. Extracted using Strobel
[106]

The exposome concept has also gained increased relevance in the context of precision medicine, an approach
that aims to tailor medical treatments to individual patients based on their genetic makeup, environmental
exposures, and lifestyle factors. By elucidating the complex interplay between genes and environment,
exposome research has the potential to identify novel biomarkers and molecular targets for personalized
therapies, as well as inform the development of targeted prevention strategies to reduce disease risk in
susceptible individuals [107].

Moreover, the exposome has informed the design of large-scale cohort studies, in which longitudinal data
on environmental exposures and health outcomes are collected from thousands of individuals over extended
periods. These studies, such as the European Human Early-Life Exposome (HELIX) project and the United
States National Institutes of Health’s Environmental Influences on Child Health Outcomes (ECHO) program,
are helping to advance our understanding of the long-term health impacts of early-life exposures and identify
potential windows of susceptibility for intervention [103, 108].

In summary, the exposome concept has evolved significantly over the years, playing an increasingly important
role in shaping research across multiple disciplines. Its emphasis on the comprehensive assessment of envi-
ronmental exposures, in conjunction with genetic and lifestyle factors, holds great promise for advancing our
understanding of human health and disease, as well as informing the development of targeted interventions
and prevention strategies.

1.4.2 Data collection

Data collection is a crucial aspect of exposome research, as it forms the foundation for understanding the
intricate relationships between environmental exposures, lifestyle factors, and human health. Accurate and
comprehensive data on individual exposures is essential for identifying potential links to disease outcomes
and uncovering novel insights into disease mechanisms. In this section, we will discuss the various tools
and methods employed for capturing exposure data, including static data collection, personal exposure
monitoring devices and smartphone applications. Furthermore, we will dig into the use of questionnaires
and interviews for gathering information on lifestyle factors, as well as the collection of biological samples,
such as blood, urine, and saliva, for analyzing internal exposures and biomarkers of effect. By examining
these data collection techniques, we aim to provide a comprehensive overview of the approaches used in
exposome research and highlight their significance in advancing our understanding of the complex interplay
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between environment, lifestyle, and health.

1.4.2.1 Static data collection

Traditionally, the assessment of exposure to air pollutants has primarily relied on data gathered from fixed-
site air quality monitoring networks. While these networks can provide a wealth of data on a broad spectrum
of pollutants, they are inherently limited to a single geographic point. This spatial limitation, however, is
often circumvented by employing interpolation techniques to generate spatial maps that depict average
annual concentrations of air pollutants. These derived pollution surfaces enable researchers to spatially link
pollutant concentrations with specific populations or subpopulations, such as asthma patients, children, or
pregnant women [109].

This approach is particularly useful for large-scale studies focusing on outdoor air pollution [110], but it
is not without its limitations. The reliance on assumptions inherent to this indirect method presents chal-
lenges when compared to real exposure scenarios [111]. Specifically, exposure assessments based on averaged
measurements may artificially dilute pollution levels and rely heavily on aggregated demographic data [112].
This poses significant issues for personal exposure assessments as they do not accurately reflect an individ-
ual’s unique exposure. Furthermore, the use of data from fixed-site monitoring stations fails to account for
individual mobility patterns, particularly the time spent away from the home environment [113].

Static data collection often employs substantial hardware infrastructure distributed across cities or larger
geographic areas. An example of this is the Libelium Air Quality Station, a robust and comprehensive air
monitoring system, pictured in fig. 9. This hardware is designed to capture a wide array of pollutant data,
including levels of nitrogen dioxide, sulfur dioxide, ozone, and particulate matter [114]. These stations,
strategically distributed throughout urban and rural areas, work together to create a network that provides
a broad and detailed picture of air quality across a region.

Figure 9: Libelium Air Quality Station installed on a pole. Extracted from libelium.com

Despite the inherent spatial limitations of such static data collection methods, they serve as a crucial foun-
dation for understanding regional and city-level trends in air pollution. These trends, in turn, can inform
public health initiatives and policy decisions [115].

In the context of exposome research, these traditional methods highlight the need for more sophisticated
tools capable of capturing the dynamism and complexity of individual environmental exposures over time
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and space.

1.4.2.2 Personal exposure monitoring devices

Personal exposure monitoring (PEM) devices address the limitation of static sensors by offering real-time,
individual-level exposure data, thereby providing a more comprehensive picture of the exposome. These
devices, often portable and wearable, can monitor a wide range of environmental factors including air pol-
lutants, ultraviolet radiation, noise, temperature, and humidity. By embracing this technology, researchers
can further understand the nuances of personal environmental exposure and its impact on health.

Three notable examples of these devices include MicroPEM, Quest Q-300 Noise Dosimeter, and Wristband
Passive Samplers. MicroPEM is a portable device that monitors fine particulate matter (PM2.5) in the air,
providing researchers with accurate data on exposure to air pollution. The Quest Q-300 Noise Dosimeter
is a wearable instrument designed to measure an individual’s noise exposure, particularly in occupational
settings. Lastly, Wristband Passive Samplers, developed by the Oregon State University Superfund Research
Program, are silicone wristbands that absorb and retain various environmental chemicals, allowing for the
analysis of personal exposure to a wide range of compounds.

These devices have been utilized in various research projects to assess their effectiveness and gather valuable
data on human exposure to environmental factors. For example, the MicroPEM was evaluated in a city
with elevated PM2.5 levels, demonstrating its utility in monitoring air pollution exposure in urban settings
[116]. The Quest Q-300 Noise Dosimeter was employed in a study that investigated the contributions of non-
occupational activities to the total noise exposure of construction workers, shedding light on noise exposure
levels both inside and outside the workplace [117]. Finally, the Wristband Passive Samplers were featured
in a study that highlighted their potential as innovative tools for monitoring personal exposure to various
environmental chemicals over time, providing researchers with a unique method for assessing individual
exposure to a wide array of compounds [118]. This devices can be seen on fig. 10.

(a) MicroPEM (b) Quest Q-300 (c) Wristband passive samplers

Figure 10: Personal exposure monitoring devices

These devices function by incorporating specialized sensors that respond to specific environmental parame-
ters. For instance, an air pollution monitor may utilize a light scattering sensor to detect airborne particles.
The data collected by these devices can then be stored and analyzed, offering detailed insights into the
timing, duration, and intensity of exposures.

1.4.2.3 Smartphone applications

In the current digital age, the ubiquity of smartphones has opened up new avenues for collecting personalized
environmental exposure data. Most young-adult population carry a smartphone [119], and these devices are
equipped with a variety of built-in sensors, making them a convenient and powerful tool for PEM.
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A few years ago, the sensing capabilities of smartphones were limited to basic features such as global po-
sitioning systems (GPS), cameras, and inertial sensors. However, with rapid technological advancements,
smartphones now house a diverse array of sensors with relatively high detection accuracy, transforming
them into powerful sensing modules in addition to their primary function as communication hubs. Despite
these advancements, the sensors embedded in smartphones still face limitations in monitoring environmental
exposures and conditions.

The widespread adoption of smartphones has prompted a shift from stationary environmental sensing meth-
ods to more pervasive, personal sensing approaches. Smartphones offer several advantages as tools for indi-
vidualized environmental sensing. They are affordable, portable, and minimally intrusive, easily blending into
daily life without burdening users. However, drawbacks associated with smartphone-based sensing systems
include the quality of the embedded sensors and their data, battery life, and user-friendliness [120].

While the data quality of smartphone-based sensors may not be on par with that of larger, more expen-
sive external or static sensors, their low burden enables wide geographic coverage. This broad coverage is
facilitated by the portability of smartphones, which necessarily limits the variety of sensors they can carry.
Consequently, smartphone-based urban sensing can be classified into opportunistic and participatory sensing
[121]. Opportunistic sensing involves the automatic collection of data from embedded smartphone sensors
as users go about their daily activities without any explicit input or interaction. On the other hand, partic-
ipatory sensing requires active user engagement in the data collection process. Users voluntarily contribute
data by responding to prompts or actively recording specific environmental conditions, providing a more
targeted and context-aware dataset. Both approaches offer unique advantages in exposome research, with
opportunistic sensing enabling wider geographic coverage and participatory sensing offering more in-depth
and context-specific information about individual exposure.

Different types of exposures and markers can be captured using smartphone applications.

Transportation data

Transportation conditions can be sensed using various features embedded in smartphones, such as accelerom-
eters, GPS, cameras, WiFi, and GSM towers. For example, the Wolverine application primarily uses the
accelerometer to estimate road quality, categorizing locations as bumpy, smooth, or experiencing traffic [122].
It assesses traffic based on the number of braking events in forward motion.

Another traffic safety application estimates the time to collision and deceleration rate to avoid a crash
(DRAC) using GPS data [123]. These data points help map high-risk zones and segments within the
transportation system. To reduce battery drain caused by GPS usage, Panichpapiboon et al. [124] developed
an application that uses only the accelerometer to estimate vehicle speed and traffic density, assuming an
inverse relationship between density and speed.

General health

Smartphones have become versatile tools for general health monitoring, encompassing physical activity
tracking, fall detection, sleep monitoring, general well-being inference, emotion recognition, and even aca-
demic performance prediction [125]. These applications typically utilize a variety of sensors embedded in
smartphones, including accelerometers, light sensors, GPS, gyroscopes, magnetometers, microphones, and
proximity sensors. Custom algorithms are frequently used to process the collected data and ascertain the
level of healthy activity.

Sleep monitoring applications have utilized accelerometer and microphone data to estimate sleep duration
[126]. However, these applications often fall short in reliability compared to external sensors on the market,
such as Jawbone Up, and participatory applications like Sleep-with-phone (SWP).

In the realm of emotional recognition, researchers have used accelerometers, light sensors, and GPS sensors
along with machine learning algorithms to measure social activity levels, including phone calls, SMS messages,
email activity, and web browsing. The collected data was then used to analyze emotions in terms of pleasure
and activeness dimensions [127].

Noise pollution

37



1 INTRODUCTION Ph.D. Thesis

Noise pollution monitoring is a robust application of environmental sensing that primarily relies on a smart-
phone’s microphone. However, the phone’s age and placement during sensing can significantly influence the
results.

One challenge with this approach is the variability in microphone quality across different phones. A study
that tested noise recording applications on 100 phones [128] (both Android and iOS platforms) found that
iOS applications generally provided more accurate results. Android-based applications exhibited higher
variability, making them less reliable in scenarios with limited user participation. However, this variability
can be mitigated when large numbers of users generate data.

While most applications target the level of sound, some, like DeepEar, aim to identify the type of sound.
DeepEar uses deep learning methods to classify sounds into categories like ambient noise, speech, and music
[129]. This demonstrates the potential of smartphones to not only measure the intensity of noise pollution
but also provide insight into its composition.

1.4.2.4 Questionnaires and interviews

Questionnaires and interviews form an integral part of exposome studies. They serve as primary tools for
gathering data on a variety of factors that cannot be measured directly by sensors or biological samples,
such as lifestyle habits, dietary intake, occupational exposures, and stress levels. This sort of data has been
seen in about 50% of exposome studies used as exposure assessment and in about 25% studies as an outcome
according to Haddad et. al. [130].

Typically, these tools are designed and structured to gather comprehensive and accurate data about a
participant’s exposure history. They can be administered in several ways, including face-to-face interviews,
telephone interviews, or self-completed questionnaires, depending on the nature and scope of the study.

The objective of using questionnaires and interviews in exposome studies is twofold. Firstly, they provide
insights into the behavioral and social aspects of the exposome. For example, they can capture data on an
individual’s physical activity levels, dietary habits, and psychological stressors – all of which contribute to
health outcomes [131].

Secondly, these tools can help to contextualize and enrich the data obtained from other sources, like personal
exposure monitoring devices or biomarker analysis. They can provide information on when and why certain
exposures might have occurred, offering a more complete picture of the exposome.

Questionnaires and interviews contribute to exposome studies by enabling researchers to capture a broader
spectrum of exposure data. Notably, they allow for the assessment of complex or subjective exposures that
are difficult to measure with sensors or biological samples. They also facilitate the capture of longitudinal
data, tracking changes in exposure over time.

However, it’s important to note that the data obtained through these methods are based on self-reporting,
which can be subject to recall bias or reporting errors [132]. Despite these limitations, questionnaires and
interviews remain vital for obtaining a holistic understanding of the exposome and its impact on human
health.

1.4.2.5 Biological samples

Biological samples, such as blood, urine, and saliva, are crucial components of exposome studies, as they
offer valuable insights into internal exposures and biomarkers of effect [133]. By analyzing these samples,
researchers can assess the presence and concentration of various chemicals, metabolites, and other substances
within the body, which can help to determine the cumulative impact of environmental exposures on human
health [134]. Furthermore, biomarkers of effect can provide evidence of early biological responses to these
exposures, offering a deeper understanding of the underlying mechanisms linking environmental factors to
disease outcomes.

Various techniques are employed for the collection of biological samples in exposome studies, depending on
the type of sample and the specific analysis required. Here, we discuss some of the commonly used techniques
for collecting blood, urine, and saliva samples.
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Blood samples

Blood collection is often performed using venipuncture, where a needle is inserted into a vein to draw the
required volume of blood (Lippi et al., 2016). In some cases, capillary blood sampling can be used, which
involves collecting blood from a fingertip or heel prick. This method is less invasive and can be more suitable
for certain populations, such as infants and children. Blood samples can be processed to obtain plasma,
serum, or buffy coat for the analysis of specific biomarkers or chemicals.

Urine samples

Urine collection is a non-invasive method commonly used to assess internal exposures to various environ-
mental chemicals, such as heavy metals or organic pollutants [135]. Urine samples can be collected as spot
samples, where a single sample is taken at a specific time, or as 24-hour samples, which provide a more
comprehensive representation of the individual’s exposure over an entire day.

Saliva samples

Saliva collection is another non-invasive method, often used for measuring hormone levels, oxidative stress
markers, or other biomolecules [136]. Saliva can be collected passively by allowing saliva to accumulate in the
mouth and then spitting it into a container or by using specialized devices, such as oral swabs or salivettes,
which absorb the saliva from the mouth.

Each of these techniques has its advantages and limitations, and the choice of collection method depends
on the specific objectives of the exposome study and the nature of the biomarkers or chemicals being ana-
lyzed.

Biological samples have been crucial in exposome studies to understand the mechanisms of various health
conditions. For example, researchers discovered a connection between prenatal exposure to organophosphate
pesticides and altered neurodevelopment in children. They analyzed maternal urine samples and found that
higher pesticide exposure was associated with a decrease in cognitive abilities and increased risk of attention
problems in the children [137].

Additionally, a study examining the impact of heavy metals on kidney function used blood and urine samples
to measure the levels of cadmium and lead in individuals. The findings revealed that exposure to these metals
was linked to a higher risk of chronic kidney disease, showcasing the importance of monitoring environmental
exposures to protect human health [138].

These examples demonstrate how biological samples can be effectively used in exposome studies to investigate
the relationships between environmental exposures, genetic factors, and health outcomes, providing valuable
insights into the complex mechanisms underlying various diseases and conditions.

1.4.3 Data integration

This section will discuss the challenges and strategies for integrating diverse and multi-dimensional exposome
data. We will delve into the harmonization of data from various sources and the adoption of common data
models and ontologies. By addressing these challenges and implementing effective strategies, researchers
can gain a more comprehensive understanding of the exposome and its impact on human health, ultimately
leading to the development of more effective preventive measures and personalized treatments.

Data harmonization is an essential process when dealing with diverse and multi-dimensional exposome data
from different sources, as it helps integrate heterogeneous data types and structures. One of the main
challenges is to ensure that variables are measured and represented consistently across all datasets.

The first step towards data harmonization is data standardization [130]. This involves transforming data
from multiple sources into a standardized format. For example, researchers may need to convert units,
categorize continuous variables, or recode categorical variables using the same coding scheme [139]. This
ensures that data can be compared and combined more easily.

Another crucial aspect of data harmonization is data cleaning and quality control [140]. Ensuring data quality
is essential for reliable analysis, and this process involves identifying and correcting errors, inconsistencies,
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and missing values in the data. Quality control procedures may include range checks, validation of data
entry, and cross-checking with other related variables or external sources.

Data privacy and security are crucial aspects of data integration in exposome research, as the collected
data often contains sensitive personal information. Various techniques can be employed to safeguard data,
such as de-identification, anonymization, and encryption [141]. These methods help minimize the risk of
data breaches and protect the privacy of individuals. Additionally, researchers need to comply with data
protection regulations, such as the General Data Protection Regulation (GDPR) in the European Union.
By addressing data privacy and security concerns, researchers can maintain the trust of study participants
and ensure the ethical handling of sensitive information.

The use of common data models and ontologies is another important aspect of data integration in expo-
some research. These standardized frameworks facilitate data integration by providing a consistent way
of representing and organizing data from different sources [142]. Adopting common data models and on-
tologies allows researchers to easily map variables across datasets, ensuring that the integrated data are
consistent and meaningful. This approach promotes interoperability among datasets and helps researchers
to draw more reliable conclusions from the integrated data. By implementing common data models and
ontologies, exposome researchers can effectively tackle the challenges associated with integrating diverse and
multi-dimensional data, thus improving the overall quality of their research findings.

By employing these techniques, researchers can effectively harmonize diverse data sources, making it easier
to draw meaningful conclusions from integrated exposome data.

1.4.4 Statistical analysis methods

In this section, we present an overview of the key statistical methods used in exposome analysis, highlighting
their significance and applications in addressing various research questions.

The exposome encompasses both external and internal factors, including chemical, biological, and lifestyle
exposures, as well as genetic, epigenetic, and molecular omics responses. Due to the vast number of exposures
and the dynamic nature of biological responses, it is crucial to adopt statistical methods that can account
for high-dimensional data and complex correlation structures.

We will discuss various statistical methods employed in exposome research, ranging from dealing with missing
data, single-exposure methods, such as Exposome-wide Association Studies (ExWAS), to multi-exposure
methods, like variable selection techniques and dimension reduction approaches. Additionally, we will delve
into the integration of omics data in exposome research, exploring network-based approaches, cross-omics
analyses, and other advanced methods. Lastly, we will touch upon the importance of considering sample
size in exposome studies to ensure adequate statistical power.

Understanding and implementing these statistical methods is essential for researchers aiming to explore
the exposome and its implications for human health. By leveraging these techniques, it is possible to un-
cover novel associations, advance our knowledge of the complex interplay between environmental exposures
and health, and ultimately contribute to the development of effective prevention and intervention strate-
gies.

1.4.4.1 Missing data

Missing data in an exposome context can be problematic, as the number of complete cases may decrease
with the inclusion of more exposures. It is recommended to use imputation techniques, such as multiple
imputation, to handle missing data in epidemiological studies [143]. However, applying multiple imputation
to large datasets presents additional difficulties [144]. Imputation models should include no more than 15-25
predictors to avoid issues related to convergence due to predictors collinearity [145].

For exposures measured through biochemical assays, some values may be below the limit of detection (LOD).
The LOD is the lowest quantity of an exposure that can be detected by a specific method. A common
approach is to replace values below the LOD with a fixed value such as the LOD, half the LOD, or LOD/

√
2

[146]. Single substitution might be acceptable when the proportion of values below the LOD is low (e.g.,
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<20%). However, exposures with a high proportion of values below the LOD (e.g., >80%) should either not
be used or dichotomized into detected/undetected. Exposures with values below the limit of quantification,
which is the lowest quantity of an exposure that can be detected with stated accuracy and precision, should
be interpreted with caution.

1.4.4.2 Single-exposure Methods

Exposome-wide association studies (ExWAS)

Exposome-wide association studies (ExWAS), pioneered by Juarez et. al. [147], are a comprehensive ap-
proach used to investigate the relationship between a wide range of environmental exposures and health
outcomes. In these studies, the health outcome of interest is modeled as a function of multiple exposures,
with each exposure being treated as a separate covariate in the analysis. By employing linear regression
models, researchers can examine the association between individual exposures and the health outcome while
adjusting for potential confounding variables.

In an ExWAS, a linear regression model is fit for each exposure, with the health outcome as the dependent
variable and the exposure as the independent variable, while controlling for other relevant covariates, this
is exemplified on eq. (15). This approach allows for the simultaneous evaluation of multiple environmental
exposures and their potential impact on health outcomes. The associations found between individual ex-
posures and health outcomes can be used to identify potential environmental risk factors and guide further
research into their potential biological mechanisms.

outcome ∼ exposure1 + covariate1 + ...+ covariateN
...
outcome ∼ exposureM + covariate1 + ...+ covariateN

(15)

However, it is essential to note that ExWAS typically involve a large number of exposures, which can
lead to multiple testing issues. To address this, researchers often apply corrections for multiple testing,
such as the Bonferroni correction or false discovery rate (FDR) control, to maintain an appropriate level
of statistical significance [148]. By using these methods, ExWAS can provide valuable insights into the
complex relationships between various environmental exposures and health outcomes, facilitating a more
comprehensive understanding of the role of the exposome in human health. ExWAS analysis can effortlessly
incorporate multiple imputed datasets. The majority of software applications or tools have the capability
to autonomously perform regression analysis on each imputed dataset and merge the outcomes, taking into
account the uncertainty arising from imputations. In order to visualize the results produced by this method,
Manhattan and Volcano plots are typically used, an example of them can be seen in fig. 11.

(a) Example of Manhattan plot. Extracted from
Wang et. al. [149]

(b) Example of Volcano plot. Extracted from Agier
et. al. [150]

Figure 11: ExWAS visualizations
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1.4.4.3 Multi-exposure methods

Dimension Reduction and Variable Selection are two distinct strategies for addressing the challenges posed
by high-dimensional data in exposome research, but they serve different purposes and have different impli-
cations.

Dimension Reduction techniques aim to reduce the complexity of the data by transforming a large set of
correlated exposures into a smaller set of new variables, often called latent variables or components. These
new variables are linear combinations of the original exposures and are designed to capture most of the
variance in the original data. This approach simplifies the analysis by reducing the number of variables to a
more manageable size, while still retaining the essential information present in the original data. Dimension
reduction techniques are especially useful for exploring and visualizing relationships between variables and
for studying the combined effects of multiple exposures on health outcomes.

Variable Selection techniques, on the other hand, focus on identifying a subset of the original exposures that
are most relevant or informative for predicting a specific health outcome. These techniques search for an
optimal set of exposures by assessing the predictive performance of different combinations of exposures in the
context of a statistical model. Variable selection techniques can help to identify key exposures that have a
strong association with the health outcome of interest, while accounting for multicollinearity and controlling
for false positives.

In summary, Dimension Reduction techniques transform the original high-dimensional data into a smaller set
of new variables that retain the essential information, while Variable Selection techniques identify a subset of
the original exposures that are most relevant for predicting the health outcome of interest. Both strategies
are useful for analyzing high-dimensional exposome data, but their applicability and interpretation depend
on the specific research question and goals.

Variable Selection Techniques

The Deletion/Substitution/Addition (DSA) algorithm is a model selection technique that constructs and
assesses models with different combinations of exposures to identify the optimal set of exposure predictors
[151]. The algorithm iteratively removes, adds, or replaces predictors in the model, aiming to minimize the
prediction error. It has been applied to exposome research in recent studies of the HELIX project associating
early-life exposures and childhood lung function [150].

Another approach, Elastic Net (ENET), is a regularized regression method that combines the L1 and L2
penalties of LASSO and Ridge regression, respectively. This method selects multiple correlated exposure
variables, effectively controlling for multicollinearity and allowing the identification of key exposures asso-
ciated with health outcomes [152]. ENET has been used in exposome research to investigate relationships
between multiple environmental contaminants and birth weight [153].

Dimension Reduction Techniques

Principal Component Analysis (PCA) is a widely used dimension reduction technique that transforms a set
of correlated exposures into a smaller set of uncorrelated linear combinations known as principal components
[154]. These principal components capture most of the variance in the original data, allowing researchers
to study the effects of correlated exposures on health outcomes while reducing the complexity of the data.
PCA has been applied in exposome research to analyze the daily mortality relationship with air pollution in
Beijing [yang2013].

Partial least squares (PLS) regression considers the correlation between outcome and exposure variables by
merging principal component analysis (PCA) and multiple regression analysis [155]. PLS regression aims
to find a linear breakdown of the exposure matrix that maximizes the covariance between exposure and
outcome. The stronger the correlation between an exposure variable and the outcome, the greater the
weight assigned to that exposure variable in the linear mix. PLS regression also allows for the inclusion
of multiple outcome variables. To determine the ideal number of components, the mean squared error of
prediction is used in conjunction with cross-validation [156].
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1.4.4.4 Incorporating omics into exposome research

The internal exposome, measured through omics data, which encompass a wide range of high-throughput
molecular methodologies such as epigenetics, gene expression, and metabolism, play a crucial role in un-
derstanding the complex relationships between environmental exposures and health outcomes. These data
can be integrated into exposome research in various ways, such as predictors, mediators, or outcomes. This
integration helps to provide deeper insights into the underlying biological mechanisms and pathways linking
exposures to health effects.

Network-based approaches are valuable tools for organizing and analyzing high-dimensional omics data in
exposome research. These approaches help to visualize and summarize information by identifying hubs of
correlated exposures and interpreting systemic biological changes that associate with multiple exposures and
health effects [157]. This enables researchers to reveal the grouping of exposures based on their correlation
in a population or their chemical or toxicological properties [158].

Dimension reduction techniques, can be employed to analyze omics data in the context of exposome research.
As previously stated, these techniques simplify the analysis by reducing the number of variables, while still
retaining the essential information present in the original data. They are particularly useful for exploring
and visualizing relationships between variables and studying the combined effects of multiple exposures and
biomarkers on health outcomes.

Cross-omics analyses investigate how exposure and/or outcome-related signals found at one molecular level
correlate with those found at another level, providing insight into the molecular cascades related to specific
exposures and/or outcomes [159]. These analyses can be performed in two different ways, (1) relying on pre-
existing biological knowledge by connecting the omics layers through a shared gene/pathway identifier and
performing pathway enrichment analyses or identifying candidate omics markers after exploratory analysis
in a different omics layer, or (2) without prior biological knowledge, employing methods such as multi-block
PLS models or canonical regression analyses [160].

Meet-in-the-middle approaches [161] are useful for identifying biomarkers linking exposures and disease
outcomes, considering the internal exposome as a mediator of the external exposome-health outcome. This
method can help to pinpoint potential targets for intervention and prevention strategies.

1.4.4.5 Sample size in an exposome context

One of the challenges in exposome research is managing the issues related to multiple testing and low-to-
moderate effect sizes of individual exposures, this gets aggravated when when a considerable percentage of
concentrations fall below the LOD. To partially address these concerns, researchers can increase the sample
size of their studies to improve statistical power and reduce the likelihood of false-positive results.

A previous study explored the required sample size for conducting an Exposome-Wide Association Study
(ExWAS) approach with 100 exposures in relation to male fertility outcomes [162]. This study found that,
in order to achieve 80% power to detect the 95th percentile effect sizes, a sample size of 1,000 to 2,000
subjects would be necessary. This sample size is considerably larger than what would be required when
considering a single exposure. It is essential to note that this recommendation may vary depending on the
specific exposures, outcomes, and population under investigation.

By increasing the sample size, researchers can better manage the challenges associated with multiple testing
and low-to-moderate effect sizes, ultimately contributing to more robust and reliable exposome studies.

1.4.5 Challenges and limitations

Despite the promising potential of exposome research in the field of environmental health, it faces a number of
significant challenges and limitations. These range from the complexity and dynamic nature of environmental
exposures, to the difficulty in establishing definitive causal relationships between these exposures and health
outcomes. In this section we will discuss about these challenges.
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1.4.5.1 The Complexity and Dynamic Nature of Environmental Exposures

Environmental exposures represent a vast and varied array of factors, including chemical contaminants,
dietary components, physical factors, infectious agents, and more. The exposome encompasses all of these,
along with their interactions and cumulative effects over time, adding layers of complexity to its study.

Moreover, these exposures are not static; they are dynamic and evolve throughout an individual’s lifespan.
This temporal variability adds another dimension of difficulty to accurately measuring and characterizing
exposures. For instance, a particular exposure might not only vary in concentration, but also in its nature
and impact depending upon the life stage at which it occurs [163].

The sheer volume and variety of potential environmental exposures pose significant challenges for accurate
measurement. Traditional methods, such as questionnaires and personal reports, are often subject to recall
bias and may not capture the full spectrum of exposures. Biomonitoring, which measures the concentrations
of substances in body fluids or tissues, offers a more objective measure of exposure. However, it is limited
by technical constraints, including the sensitivity and specificity of the analytic methods, and the temporal
relevance of the samples [164].

Furthermore, many environmental factors are interlinked and can interact with each other in complex and of-
ten unpredictable ways, further complicating the characterization of the exposome. For example, the impact
of a chemical exposure could be modulated by an individual’s diet, physical activity levels, or concurrent
exposures to other chemicals [165].

In summary, the vast and diverse nature of environmental exposures, their dynamic evolution over time,
and the intricate interactions between them pose substantial challenges to the accurate measurement and
characterization of the exposome.

1.4.5.2 Statistical Challenges in Exposome Research

Beyond the complexities of measurement and characterization, the exposome presents unique statistical
challenges as well. The high-dimensionality of exposome data, resulting from the vast number of potential
exposures, poses a significant issue for data analysis. Traditional statistical methods often fall short in
managing such high-dimensional data, potentially leading to spurious correlations and inflated false discovery
rates [166].

One of the main issues in exposome research is the problem of multiple testing, where a large number of
statistical tests are performed simultaneously. As the number of tests increases, so does the likelihood of
obtaining significant results purely by chance. This is a particular concern in exposome research given the
massive quantity of potential exposures being tested for associations with health outcomes [167].

Moreover, the correlation structure of the exposome data adds another layer of complexity. Environmental ex-
posures are often correlated with each other due to shared sources or common behavioral, socio-demographic,
or physiological determinants. This intercorrelation can complicate the interpretation of results and poses
challenges for statistical models that assume independence among predictors.

Finally, the temporal dynamics of the exposome introduce additional challenges for statistical analysis.
Environmental exposures can vary significantly over time, and different time windows of exposure may
have different effects on health outcomes. This necessitates the use of advanced statistical methods capable
of handling time-varying exposures and lagged effects, which require sophisticated modeling techniques
[168].

In conclusion, the high-dimensionality, multiple testing issue, complex correlation structure, and temporal
dynamics of the exposome present significant statistical challenges that must be addressed to unleash the
full potential of exposome research.

1.5 Overview of Omics Data Analysis

Building on our understanding of exposome data analysis, it’s pertinent to also acknowledge another signifi-
cant frontier in the realm of complex data: omics data analysis. While the exposome provides a holistic view
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of environmental exposures, the omics realm offers an intricate glimpse into the molecular constituents and
processes that define living organisms — from genomics and proteomics to metabolomics and beyond.

1.5.1 Introduction to Omics Data Analysis

Omics data analysis is a key component of bioinformatics, a discipline that emerged in response to the
need to manage and interpret the massive amount of data generated by genomic (and other omics) research
over the past decade. This field represents the convergence of genomics, biotechnology, and information
technology, and it involves the analysis and interpretation of data, modeling of biological phenomena, and
the development of algorithms and statistics [169].

In the context of omics data analysis, bioinformatics tools are used to analyze and interpret the vast amounts
of data generated by various omics technologies, such as genomics, proteomics, and metabolomics, among
others. This analysis can provide valuable insights into various biological and disease systems, helping to
uncover molecular interactions and potential transduction pathways [170].

Throughout this section, our aim is to give you a comprehensive overview of omics data analysis, highlighting
the challenges, methodologies, and potential future directions in this field.

1.5.2 Types of omic data

There are many types of omics data, each type of omics data provides a unique perspective on the biological
processes within an organism, and together they offer a comprehensive view of an organism’s biology. We will
provide definitions of genomics, epigenomics, proteomics, metabolomics, and transcriptomics, given those
are some of the most studied ones. By understanding these different types of omics data, we can better
appreciate the complexity of biological systems.

1.5.2.1 Genomics

Genomics is the study of the entire genome of an organism. It involves the analysis of the structure, function,
and evolution of genes. With the rise of high-throughput sequencing technologies, genomics has become a
big data discipline, generating massive amounts of data that need to be processed and interpreted [171].
Genomics research has been key to uncover links between genotype and phenotype [172].

Genomics also involves the investigation of the interplay and influence of genes on each other and the
organism’s environment. The field has seen the development of robust algorithms, including those based on
deep learning [173], to handle the data explosion and provide meaningful interpretations.

1.5.2.2 Epigenomics

Epigenomics is the study of the complete set of epigenetic modifications on the genetic material of a cell,
known as the epigenome. These modifications, which include DNA methylation and histone modification,
among others, can influence gene expression without altering the underlying DNA sequence [174].

Epigenomic processes are increasingly recognized for their fundamental role in diseases such as cancer [175],
as they reflect environmental risk factors and can provide a means by which to assess genomic regulatory
interactions.

1.5.2.3 Proteomics

Proteomics is the large-scale study of proteins, particularly their structures and functions. Proteins are
vital parts of living organisms, as they are the main components of the physiological metabolic pathways of
cells. The field of proteomics has seen significant advancements with the advent of mass spectrometry-based
proteomics, which has become the tool of choice for identifying and quantifying the proteome of an organism
[176].

Proteomics research has resulted in a versatile collection of tools that allow for the uncovering of links
between protein structure and function [177].
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1.5.2.4 Metabolomics

Metabolomics is the scientific study of chemical processes involving metabolites, the small molecule sub-
strates, intermediates, and products of metabolism. Specifically, is the study of the unique chemical finger-
prints that specific cellular processes leave behind.

As with genomics, metabolomics has become a big data discipline, generating massive amounts of data.
Metabolomics research has resulted in tools that allow for the understanding of links between metabolic
profiles and physiological states [178].

Metabolomics data can be used to infer effects of environmental factors on metabolism [179] and the dynamic
changes in metabolic profiles under different conditions [180].

1.5.2.5 Transcriptomics

Transcriptomics is the study of the transcriptome—the complete set of RNA transcripts that are produced
by the genome, under specific circumstances or in a specific cell—using high-throughput methods.

By comparing the transcriptomes of different cells, or the same cells under different conditions, researchers
can gain insights into how gene expression changes in response to various factors such as disease states, envi-
ronmental stressors, or developmental stages. This can be instrumental in understanding complex biological
processes and diseases, and in the development of new therapeutic strategies [181].

1.5.3 Data collection

In the era of big data in biology, high-throughput technologies have revolutionized the way we collect,
analyze, and interpret biological information [182]. Among these, Next-Generation Sequencing (NGS) of
DNA and RNA, and mass spectrometry-based proteomics stand out as particularly impactful in the realm
of multi-omics research. They allow for the generation of extensive datasets representing the different layers
of biological information, forming the backbone of multi-omics research.

1.5.3.1 Next-Generation Sequencing (NGS)

Next-generation sequencing allows for the sequencing of DNA and RNA much more quickly and cheaply
than older sequencing methods. This technology has revolutionized genomics, enabling the sequencing of
whole genomes or targeted regions. Different NGS platforms like Illumina, Ion Torrent, and others offer
various sequencing capabilities suitable for different research needs. NGS generates vast amounts of data,
necessitating the development of sophisticated computational tools and approaches for data processing,
variant calling, and interpretation [183].

Figure 12: Illumina MiniSeq System
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1.5.3.2 Mass Spectrometry-based Proteomics

Mass spectrometry-based proteomics is a key technique for studying proteins, enabling identification, quan-
tification, and characterization of complex protein mixtures. It involves the use of mass spectrometry, a tool
that measures the mass-to-charge ratio of ions to identify and quantify molecules. In proteomics, proteins
are typically digested into peptides, which are then ionized and analyzed by the mass spectrometer. This
technology has enabled high-throughput protein profiling and biomarker discovery [184].

Figure 13: Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer

1.5.4 Multi-omics data analysis

The integration of multiple omics data types—such as the ones we have just described, provides a more
comprehensive view of the biological system being studied. This approach, known as multi-omics data
analysis, can help uncover complex molecular interactions and provide better insights into the mechanisms
of biological processes.

The use of multi-omics data analysis has led to significant discoveries in various fields. For instance, in
cancer research, the use of multi-omics data has been useful in tumor subtyping, prognosis and diagnosis [185].
Similarly, in microbiome research, the combination of metagenomics, metatranscriptomics, and metabolomics
data has provided a more holistic view of microbial communities and their functions [186].

However, multi-omics data analysis presents several challenges. Different omics data types can vary greatly
in terms of their scale, distribution, and complexity. This makes it difficult to integrate the data and interpret
the results. Furthermore, each omics data type has its own set of technical and biological biases, which need
to be accounted for in the analysis.

1.5.4.1 Multi-omics data integration

Similar to exposome research, the challenges of multi-omics data are high dimensionality, variability, and
complexity of data. Therefore, the methods explained on the exposome section regarding data integration
are very similar to the ones used on multi-omics data analysis.

These methods include data pre-processing and normalization to adjust the scale of data, dimensionality
reduction techniques like Principal Component Analysis (PCA) to manage data complexity, and various
statistical and machine learning techniques for data integration, such as multiple co-inertia analysis (MCIA),
canonical correlation analysis (CCA), or partial least squares (PLS).
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1.5.5 Statistical Analysis in Omics Data

Once the multi-omics data is integrated, the subsequent step is the analysis of this data to extract meaningful
biological insights. Here we will talk about some of the most used methods.

1.5.5.1 Differential Expression Analysis

Differential expression analysis is used to identify genes, proteins, or metabolites whose abundance (like
gene expression levels) changes significantly under different experimental conditions. It involves statistical
methods that take into account the variability of measurements within and between groups to estimate the
likelihood that observed differences occurred by chance.

The most common statistical technique employed is the Student’s t-test for comparing two groups, or Analysis
of Variance (ANOVA) for comparing more than two groups. These methods rely on the assumption that
the data are normally distributed and have similar variance within each group [187].

However, omics data often does not comply with these assumptions. Therefore, different techniques are
usually used. These include the limma package [188], which uses an empirical Bayes method to moderate
the standard errors of the estimated log-fold changes, providing stable results even for experiments with
small numbers of replicates.

For RNA-seq count data, which follows a negative binomial distribution, methods like DESeq2 [189] and
edgeR [190] have been developed. These methods use a generalized linear model approach to estimate the
variance and handle biological replicates.

All these methods provide a measure of the magnitude of differential expression (fold change), and a p-value
indicating the statistical significance of the observed change, which is then adjusted for multiple testing,
often using the Benjamini-Hochberg procedure to control the false discovery rate [148].

1.5.5.2 Correlation analysis

Correlation analysis is a statistical method used to evaluate the strength and direction of the relationship
between two or more variables. Pearson and Spearman correlation are commonly used, depending on whether
the data follow a normal distribution [191].

The Pearson correlation coefficient measures the linear relationship between two variables and assumes
that the data are normally distributed. It returns a value between -1 and 1, where 1 indicates a perfect
positive linear relationship, -1 indicates a perfect negative linear relationship, and 0 indicates no linear
relationship.

On the other hand, the Spearman correlation coefficient, a non-parametric measure of correlation, assesses
the monotonic relationship between two variables without making any assumptions about the distribution
of the data. This means that it only measures the direction of association (positive or negative) but not the
exact linear relationship.

In addition, to infer whether a detected correlation is statistically significant, a hypothesis test is often
performed. The null hypothesis is that the correlation coefficient in the population from which the sample
was drawn is zero. A p-value is then calculated to decide whether to reject the null hypothesis. Afterward,
the p-values may need to be adjusted for multiple testing.

It’s worth noting that correlation does not imply causation, meaning that even if two variables are correlated,
it does not necessarily mean that changes in one variable cause changes in the other.

1.5.5.3 Clustering Analysis

Clustering analysis is a key unsupervised learning technique commonly used in multi-omics data analysis.
The goal of clustering is to group or partition the samples (or variables) into clusters so that the samples
(or variables) within the same cluster are more similar to each other according to certain criteria, compared
to those in other clusters.
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Hierarchical Clustering [192] is an unsupervised machine learning method used to group similar objects
into clusters. It constructs a hierarchy of clusters, where each node is a cluster comprising the objects and
their subclusters. This hierarchy can be visualized as a dendrogram, a tree-like diagram (illustrated on
fig. 14). The process continues until all objects are in a single cluster or until a termination condition is met.
The resulting structure allows for varying levels of granularity in clustering, offering flexibility based on user
requirements.

Figure 14: Hierarchical clustering dendogram

K-means Clustering [193] is another popular method. It partitions the samples into K clusters in which
each sample belongs to the cluster with the nearest mean. It is necessary to specify the number of clusters
(K) in advance, which can be a disadvantage if the number of clusters is not known a priori. Different
from hierarchical clustering, it is common to visualize the results using plain scatter plots (illustrated on
fig. 15).

Figure 15: K-means 2D visualization

Determining the number of clusters is a challenge in clustering analysis. Techniques such as the elbow
method, silhouette analysis, or gap statistic are used to infer the optimal number of clusters [194].

While clustering techniques can reveal important patterns and groupings in the data, it’s important to
remember that these are exploratory methods and the resulting clusters need to be validated and interpreted
in the context of known biology or followed up with further experiments.
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1.5.5.4 Network Analysis

Network analysis is an advanced statistical approach that models and explores the complex interactions and
relationships between different biological molecules [195].

A network is a graph that consists of nodes (which represent biological entities such as genes, proteins, or
metabolites) and edges (which represent interactions or relationships between these entities). It is typically
visualized as on fig. 16.

Figure 16: Network analysis visualiztion: Nodes as black circles, paths as red lines.

Key concepts in network analysis include ”degree” (the number of edges connected to a node), ”path” (a
sequence of nodes and edges connecting two nodes), and ”centrality” measures (how important a node is
within the network).

Community detection or clustering in networks is another key concept, aiming to identify densely connected
groups of nodes, called ”modules” or ”communities”. These modules often correspond to biological path-
ways.

However, network construction and analysis require careful statistical handling, especially in terms of deter-
mining the significance of connections and controlling the false discovery rate. Randomization methods and
permutation tests are often used for this purpose.

1.5.5.5 Pathway Analysis

Pathway analysis aims to identify biological pathways significantly enriched in a list of genes, proteins, or
metabolites of interest. These pathways often represent a series of actions or changes within a cell that lead
to certain cell functions or disease processes [196].

Many online databases and tools are available for pathway analysis, such as KEGG (Kyoto Encyclopedia of
Genes and Genomes), Reactome, and MSigDB (Molecular Signatures Database).

Pathway analysis can guide the generation of new hypotheses, the design of subsequent experiments, and
the validation of findings. It has proven instrumental in biomedical research, such as identifying the biolog-
ical roles of potential therapeutic targets for cancer treatment and examining the molecular similarity and
dissimilarity between sample groups [197].

It’s important to note that while pathway analysis can provide mechanistic insights into the biological
processes associated with the list of interest, the results need to be interpreted with caution, especially
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considering the incomplete and sometimes inaccurate information in pathway databases.
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2.1 Hypotheses

The DataSHIELD framework stands as a remarkable tool for performing secure and collaborative data
analysis, especially accentuated within the ATHLETE project. However, certain limitations have surfaced
that require rectification to fully leverage its potential. These limitations encompass: 1) the exigency
for more efficient mechanisms to navigate through large and diverse datasets spanning multiple domains
within DataSHIELD. 2) The need for privacy-preserving methodologies during omics data analyses; while
DataSHIELD offers a secure analysis environment, the privacy preservation in omics data realms demands
advanced federated data analysis methodologies to uphold confidentiality without sacrificing analytical accu-
racy. 3) The imperative for advanced analytical methods to carry out robust, privacy-preserving exposome
data analysis. 4) The absence of innovative graphical solutions, which can potentially deter researchers,
especially those with limited technical prowess, from adopting DataSHIELD for non-disclosive analysis; a
more intuitive and visually guided interface can dramatically lower the entry barrier. 5) The challenge of
employing DataSHIELD in a manner that facilitates secure, collaborative multi-center analyses of real-world
data. All those limitations are encompassed within the thesis hypothesis.

— Hypotheses 1: Enhancing DataSHIELD’s data management capabilities could enable effi-
cient, privacy-preserving analysis of larger, more diverse datasets.

General hypothesis

The implementation of enhanced data management capabilities within the DataSHIELD platform enables
federated analysis of larger and more diverse datasets. This extension broadens the utility of the platform
into new domains, offering opportunities for deeper insights while preserving privacy and data security.

Specific hypothesis

� Enhanced data source management within DataSHIELD could enable efficient handling and analysis
of large and diverse datasets, including geospatial and genomic data.

� Seamless utilization of data structures from existing R packages could significantly improve DataSHIELD’s
capability to manage and analyze complex datasets.

� Extending DataSHIELD’s functionality could allow for the analysis of sensitive data from multiple
domains without compromising privacy.

� Federated privacy-protecting analysis of genomic and geospatial data may be achievable through new
analytical methodologies within DataSHIELD.

� The inclusion of disclosure control in DataSHIELD allows for adjustable levels of privacy protection
tailored to the specific data and analysis context, further enhancing its applicability in sensitive data
analysis.

� The application of DataSHIELD to larger datasets will be more efficient with functions based on the
tidyverse as well as base-R, including the potential integration of the ”dplyr” package for operating on
tabular datasets.

— Hypotheses 2: Privacy-preserving omics data analyses can be enabled through advanced
federated data analysis methodologies

General hypothesis

The implementation of a privacy-preserving software solution will facilitate the execution of omics data
analyses across multi-centre studies without physically sharing data. This advancement is anticipated to
promote enhanced research collaboration, fostering a conducive environment for data-driven research while
upholding data privacy standards.
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Specific hypothesis

� Implementation of state-of-the-art methods for GWAS, transcriptomic, and epigenomic data analyses
in a federated setting may be achieved without compromising privacy.

� A comprehensive approach to quality control and easier integration to available pipelines may surpass
existing methodologies like FAHME and sPLINK, particularly in the realm of GWAS.

� Configurable differential privacy and disclosure traps at the data source level may offer a flexible and
trustworthy platform for conducting research while protecting sensitive data.

� The ability to perform non-disclosive pooled and IPD meta-analysis may provide researchers with a
choice of methods to suit specific data characteristics and study design.

� Integration of advanced omic data analysis methodologies may be successfully achieved in existing
large consortia projects that have set up infrastructure for Federated Analysis using DataSHIELD.

� Guided by user needs, the evolution of federated omic data analysis tools may continue to expand and
improve, driving new research initiatives and findings.

— Hypotheses 3: Advanced analytical methods can enable robust, privacy-preserving expo-
some data analysis.

General hypothesis

Employing an advanced analytical framework alongside the DataSHIELD platform may facilitate robust,
privacy-ensuring analysis of exposome data within a multi-centre study framework. This approach can
overcome challenges associated with data sharing, harmonization, and standardization in exposome re-
search.

Specific hypothesis

� An advanced analytical tool can facilitate Exploratory Exposome-Wide Association Studies (ExWAS)
using synthetic data, showcasing utility in exploratory analyses of the exposome.

� A new analytical tool may effectively replicate real-world analysis for ExWAS in multi-centre studies,
displaying compatibility with real-world data and potential utility for exposome researchers.

� The ability to handle confounding factors in exposome analysis, may confirm the robustness of advanced
analytical methods in adjusting for various potential confounders in ExWAS.

� Integration of advanced analytics with the DataSHIELD infrastructure may offer an advantage over
traditional meta-analysis methods by enabling pooled analyses in multi-centre studies.

— Hypotheses 4: Innovative graphical solutions will boost DataSHIELD adoption for non-
disclosive analysis

General hypothesis

A user-friendly and efficient tool will enhance the accessibility and adoption of DataSHIELD infrastructure
for federated non-disclosive analysis, catering to both researchers with limited R skills and those experienced
in DataSHIELD who seek a platform for quick hypothesis prototyping and analysis.

Specific hypothesis

� An intuitive user interface and step-by-step processes will increase the user base for DataSHIELD by
attracting researchers without advanced R skills.

� Experienced DataSHIELD users will benefit from a solution that enables quick hypothesis prototyping
and fast analyses without the need to write complex analysis pipelines.
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� A solution with comprehensive functionality and modular structure will be easy to upgrade and main-
tain, ensuring its viability and relevance for future research requirements.

� A user-friendly tool will foster rapid understanding and utilization of DataSHIELD, thus contributing
to the broader adoption of non-disclosive analysis methods.

— Hypotheses 5: Application of DataSHIELD will enable secure, collaborative multi-center
analyses of real-world data

General hypothesis

The application of DataSHIELD to real-world data can effectively address the challenges of data access,
sharing, and analysis. Following developments outlined in this thesis, DataSHIELD will be successfully used
in real cases, enabling secure multi-center analyses while preserving data privacy and confidentiality.

Specific hypothesis

� The use of DataSHIELD in multi-center studies will enhance collaboration among researchers, enabling
more comprehensive and robust analyses without compromising data privacy and confidentiality.

� The application of DataSHIELD to real-world cases will enable the identification of undetected patterns
and relationships within data.

� The utilization of DataSHIELD will result in increased reproducibility and transparency in research,
contributing to the overall quality and reliability of scientific findings.
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2.2 Objectives

Building upon the identified gaps and proposed solutions articulated in the hypothesis, this section delineates
the objectives aimed at addressing these challenges within the DataSHIELD framework. These objectives
are intricately tied to the ATHLETE project, having been developed specifically to propel the project’s
federated, non-disclosive analysis capabilities to new heights. The goals outlined here aim to not only ease
the user experience for researchers with varying levels of R proficiency but also significantly enhance the
efficiency and versatility of handling large and diverse datasets across a multitude of scientific disciplines. The
overarching aim is to evolve the DataSHIELD infrastructure into a more robust, flexible, and user-friendly
platform that facilitates collaborative research, and can adeptly manage and analyze vast and diverse data
types. By achieving these objectives, the path will be paved for groundbreaking discoveries and insights in
the ATHLETE project, extending the horizons of what can be accomplished in a secure and collaborative
research environment.

— Objective 1: Showcase the development and expansion of DataSHIELD for efficient, secure,
and private federated analysis

General objective

To elevate the DataSHIELD platform, employing the introduction of resources for adept handling and
federated analysis of diverse, large, and sensitive datasets, all while preserving privacy and security.

Specific objective

� Establish enhanced data source management within DataSHIELD, using the concept of ”resources” to
enable efficient handling and analysis of large and diverse datasets, including exposome and genomic
data.

� Elevate DataSHIELD’s capability to manage and analyze complex datasets by seamlessly integrating
data structures from existing R packages through the ”resourcer” package.

� Extend DataSHIELD’s functionality to enable analysis of sensitive data from multiple domains without
compromising privacy, utilizing the incorporation of resources.

� Achieve federated privacy-protecting analysis of genomic and geospatial data by developing and ap-
plying the ”dsOmics” and ”dsExposome” packages within DataSHIELD.

� Amplify the efficiency of DataSHIELD’s application to larger datasets by integrating functions based on
the tidyverse as well as base-R, including the potential integration of the ”dplyr” package for operating
on tabular datasets.

— Objective 2: Advancing and Validating OmicSHIELD: An Open-Source Initiative for
Privacy-Preserved Omics Data Analyses

General objective

Drive the development and validation of OmicSHIELD, an open-source software, fostering a non-disclosive
omics data analyses avenue across multi-centre studies while adhering to stringent privacy standards.

Specific objective

� Implement state-of-the-art methods for GWAS, transcriptomic, and epigenomic data analyses within
OmicSHIELD to conduct federated analyses without compromising privacy.

� Establish a robust approach to quality control and population stratification adjustment surpassing
existing methodologies like FAHME and sPLINK, particularly within GWAS, utilizing OmicSHIELD’s
enhanced algorithms.

� Integrate configurable differential privacy and disclosure trap settings at the data source level in Omic-
SHIELD, offering a flexible and trustworthy platform for privacy-preserving research.
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� Enable the execution of non-disclosive pooled and IPD meta-analyses within OmicSHIELD, presenting
researchers with methodological choices suited to specific data attributes and study designs.

� Undertake multi-centric GWAS of CINECA data, and DGE and EWAS analysis of HELIX data using
OmicSHIELD, aiming to corroborate results with traditional local computation approaches.

� Facilitate the adoption of OmicSHIELD within existing large consortia projects with established infras-
tructure for Federated Analysis using DataSHIELD, for advanced omic data analysis methodologies.

� Employ user feedback for the continuous evolution of OmicSHIELD, ensuring the tool’s expansion
and improvement align with the research community’s needs, propelling new research initiatives and
discoveries.

— Objective 3: Unveiling and Validating the Utility of the dsExposome R Package in Exposome
Data Analysis

General objective

Create and exemplify the effectiveness of ”dsExposome”, a proficient R package devised for analyzing expo-
some data within a multi-centre study framework utilizing the DataSHIELD infrastructure.

Specific objective

� Facilitate Exploratory Exposome-Wide Association Studies (ExWAS) using exposome data via the
”dsExposome” tool, highlighting its capability for preliminary analyses of the exposome.

� Replicate real-world ExWAS of the HELIX study employing ”dsExposome” in a multi-centre study
setting, showcasing the tool’s compatibility and potential utility for exposome researchers.

� Address confounding factors in exposome analysis by reproducing the adjustments utilized in the
HELIX study through ”dsExposome”, confirming the robustness of its advanced analytical methods
in ExWAS.

� Merge advanced analytics facilitated by ”dsExposome” with the DataSHIELD infrastructure, challeng-
ing traditional meta-analysis methods by promoting pooled analyses in multi-centre studies.

— Objective 4: Bridging the Gap for User-friendly Federated Non-disclosive Analysis

General objective

Unveil ShinyDataSHIELD, an innovative tool engineered to simplify and broaden the application of DataSHIELD
for federated non-disclosive analysis, thus opening the doors of this potent technology to both novice and
experienced DataSHIELD users.

Specific objective

� Enhance accessibility to DataSHIELD for researchers lacking advanced R skills by offering an intuitive
user interface and step-by-step procedures via ShinyDataSHIELD.

� Expedite hypothesis prototyping and analysis for seasoned DataSHIELD users by streamlining complex
analysis pipelines through ShinyDataSHIELD.

� Ensure ease of upgrade and maintenance through a modular and functionally comprehensive structure
of ShinyDataSHIELD, keeping pace with evolving research demands.

� Promote a swift grasp and utilization of DataSHIELD through user-friendly navigation and guidance
provided by ShinyDataSHIELD, augmenting the acceptance of non-disclosive analysis methods in the
research community.
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— Objective 5: Employing DataSHIELD for Secure, Collaborative Multi-center Analyses on
Real-world Data

General objective

Employing DataSHIELD on real-world data opens the avenue for secure, collaborative multi-center analyses,
providing a platform to unearth meaningful insights while upholding the integrity of data privacy and
confidentiality.

Specific objective

� Foster enhanced collaboration among researchers in multi-center studies by deploying DataSHIELD,
ensuring robust and comprehensive analyses whilst safeguarding data privacy and confidentiality.

� Unlock previously undetected patterns and relationships within real-world data by leveraging the ca-
pabilities of DataSHIELD.

� Amplify reproducibility and transparency in research through the utilization of DataSHIELD, thereby
elevating the overall quality and reliability of scientific findings.

58



3 Orchestrating privacy-protected
big data analyses of data from
different resources with R and

DataSHIELD



3 ORCHESTRATING PRIVACY-PROTECTED BIG DATA ANALYSES OF DATA FROM
DIFFERENT RESOURCES WITH R AND DATASHIELD Ph.D. Thesis

3.1 Disclaimer

From the work presented along the next section, my contributions are centered on the development of
exposome and genome data integration, which is linked with the development of the respective analysis
packages presented afterwards. Moreover, I also contributed by developing further integrations with GA4GH
genome and clinical databases, such as EGA.

3.2 Introduction

Big Data brings new opportunities to biomedicine and challenges to data scientists. These challenges require
new computational and statistical paradigms to deal with important principles of data management and
data sharing. The new paradigm should consider: ensuring appropriate levels of security and privacy [198];
the rigorous application of the stringent regulations required by governance frameworks such as GDPR in
Europe (https://gdpr-info.eu/) and similar regulatory mechanisms across North America and elsewhere;
and a considered choice between central data warehousing and the distributed (federated) analysis of data
that remain with their custodian [199, 200].

Historically there has tended to be a focus on warehousing because of the technical challenges of federation
[201], and funder requirements to physically share public data [202]. This requires data custodians to
physically transfer data to a central location to make them accessible to analytic users. However, the
potential benefits of remote and federated approaches to analysing data are now widely recognised [199,
200]. Most fundamentally, the physical data then remain under the control of their custodian with limited
access. This can offer major benefits in terms of: making it easier to meet ethics and governance requirements;
enhanced flexibility to refine and rerun analyses quickly without waiting for an analyst at each institution
to follow an updated analysis plan; allowing datasets to be updated quickly without needing to be resent to
a central location [199, 203].

Anticipating the future growth of federated analysis, the DataSHIELD (www.datashield.ac.uk) and OBiBa
(www.obiba.org) projects are now 10 years into the joint development of an open-source analytics platform
that enables and simplifies flexible but efficient federated analysis [199, 204, 205]. DataSHIELD is linked
to an Opal database designed for data management, harmonization and dissemination [206]. In addition,
it actively constrains the risk of information disclosure: i.e. the risk that a data analyst is able–accidently
or deliberately—to infer individual level data [199, 207]. The DataSHIELD platform has a growing user
community and a central role in the analytic strategies of several large research consortia focussed primar-
ily on the federated analysis of large cohort studies, particularly in Europe and Canada. These include
BioSHaRE [205], EUCAN-connect [208], LifeCycle [209], ATHLETE [210] and InterConnect [211]. This
article describes a radical extension to the DataSHIELD/Opal platform–the “Resources” architecture. This
allows DataSHIELD to be used in a range of new settings which include the analysis of high-volume data
such as omics, geospatial or neuroimaging among others.

Despite the growing confidence users have been placing in DataSHIELD to perform privacy-protected anal-
yses, there have, to date, been several serious limitations: (1) Difficulty in applying DataSHIELD federated
analytics across the wide range of data formats, and data sources used in ‘omics-based research. (2) Chal-
lenges to the efficient porting of high-volume distributed data into the analytic (R) environments on the
remote data servers; single large tranches can overwhelm the handling capacity of the system and regular
block-by-block refreshments of the analytic data can be impractically slow. (3) To date DataSHIELD has
primarily been applied to research settings (typically large cohort studies) where the emphasis has been on
the provision of robust disclosure control for analysing sensitive data. But in big data analyses the emphasis
is more typically on fast, efficient analysis and data governance often requires a relatively basic level of dis-
closure control. For example, many consortium-based ‘omics projects would like data to remain with their
usual generators/custodians–i.e. a federated approach avoiding the physical transfer of data to users—and
for analysts to be unable to see, copy, capture or otherwise infer, those individual-level data. Crucially, if
limitations “1” and “2” could be circumvented it would then be straightforward to ensure that this basic level
of disclosure control is embedded into all new functions as they are developed and implemented. This would
greatly accelerate the development of new functionality making it realistic to consider rapid implementation
of Bioconductor [212], Neuroconductor [213] or R packages designed for big data analyses into DataSHIELD.
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In one stroke, these objectives have all been realised with the development and implementation of the new
“Resources” architecture in DataSHIELD/Opal.

This article describes this new facility, illustrates its value with real world examples and considers the
exciting implications it has for the future development of the DataSHIELD platform and for the wider
adoption of federated approaches to big data analysis. To help researchers use this framework, we present an
online book (https://isglobal-brge.github.io/resource_bookdown/) covering installation, sources of
help, specialized topics pertaining to specific aspects of privacy-protecting analysis and complete workflows
analysing various examples from biomedical, omics and geospatial settings. The packages developed are
available through CRAN or Github repositories under open source licenses (GPL3 or MIT).

3.3 Design and implementation

3.3.1 The resources architecture

When analysing data, it is normal to deal with a very wide variety of data formats, data storage systems
and programmatic interfaces. The purpose of the work we describe is not to define a new data format or
storage system. Instead we have aimed to describe how data can be accessed, in a formal but generic way,
to simplify the integration of various data or computation resources in a statistical analysis program. By
actively embracing the variety of data formats and computation systems we seek to guarantee that the right
tool can always be used for the type and the volume of data that are being considered.

We define a “resource” to be a description of how to access either: (1) data stored and formatted in a
particular way or (2) a computation service. Therefore, the descriptors for the resource will contain the
following elements: (1) the location of the data or of the computation services, (2) the data format (if
this information cannot be inferred from the location property) or the format of the function call to the
computation service, (3) the access credentials (if some apply).

Once a resource has been formally defined, it becomes possible to build a programmatic connection object
that will make use of the data or computation services described. This resource description is not bound to
a specific programmatic language (the URL property is a web standard, other properties are simple strings)
and does not enforce the use of a specific software application for building, storing and interpreting a resource
object. Section 7.8 in our online book describe some examples of resources available in a demonstration Opal
repository.

The data format refers to the intrinsic structure of the data. A very common family of data formats is the
tabular format which is made of rows (entities, records, observations etc.) and columns (variables, fields,
vectors etc.). Examples of tabular formats are the delimiter-separated values formats (CSV, TSV etc.), the
spreadsheet data formats (Microsoft Excel, LibreOffice Calc, Google Sheets etc.), some proprietary statistical
software data formats (SPSS, SAS, Stata etc.), the database tables that can be stored in structured database
management systems that are row-oriented (MySQL, MariaDB, PostgreSQL, Oracle, SQLite etc.) or column-
oriented (Apache Cassandra, Apache Parquet, MariaDB ColumnStore, BigTable etc.), or in semi-structured
database management systems such as the documented-oriented databases (MongoDB, Redis, CouchDB,
Elasticsearch etc.). When the data model is highly structured or particularly complex (data types and
objects relationships), a domain-specific data format is sometimes designed to handle the complexity. This
then enables statistical analysis and data retrieval to be executed as efficiently as possible. Examples of
domain-specific data formats are regularly encountered in the genomic or geospatial fields of research. A
data format can also include additional features such as data compression, encoding or encryption. Each
data format requires an appropriate reader software library or application to extract the information or
perform data aggregation or filtering operations.

Data storage can simply be realised via a file that can be accessed directly from the host’s file system or
downloaded from a remote location. More advanced data storage systems can involve software applica-
tions that expose an interface to query, extract or analyse the data. These applications can make use of a
standard programming interface (e.g. SQL) or expose specific web services (e.g. based on the HTTP com-
munication protocol) or provide a software library (in different programming languages) to access the data.
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These different ways of accessing the data are not mutually exclusive. In some cases when the (individual-
level) micro-data cannot be extracted, computation services returning aggregated/summary statistics may
be provided. The data storage system can also apply security rules, requiring authentication and proper
authorisations to access or analyse the data.

The resource location description will make use of the web standard “Uniform Resource Identifier (URI):
Generic Syntax”.[214] More specifically, the Uniform Resource Locator (URL) specification is what we need
for defining the location of the data or computation resource: the term Uniform allows the resource to
be described in the same way, independently of its type, location and usage context; the use of the term
Resource does not limit the scope of what might be a “resource”, e.g. a document, a service, a collection
of resources, or even abstract concepts (operations, relationships, etc.); the term Locator both identifies
the resource and provides a means of locating it by describing its access mechanism (e.g. the network
location). The URL syntax is composed of several parts: (1) a scheme, that describes how to access the
resource, e.g. the communication protocols “https” (secured HTTP communication), “ssh” (secured shell,
for issuing commands on a remote server), or “s3” (for accessing Amazon Web Service S3 file store services),
(2) an authority (optional), e.g. a server name address, (3) a path that identifies/locates the resource in a
hierarchical way and that can be altered by query parameters.

The resource’s data format might be inferred from the path component of the URL; for example, by using
the file name suffix. However, it is not always possible to identify the data format because the path could
make sense only for the data storage system, for example when a file store designates a document using an
obfuscated string identifier or when a text-based data format is compressed as a zip archive. The format
property can provide this information. Although the authority part of the URL can contain user information
(such as the username and password), it is discouraged to use this capability for security considerations. The
resource’s credentials property will be used instead, and will be composed of an identifier sub-property and
a secret sub-property, which can be used for authenticating with a username/password, an access token, a
key pair (private and public keys), or any other credentials encoded string. The advantage of separating the
credentials property from the resource location property is that a user with limited permissions could have
access to the resource’s location information while the credentials are kept secret.

3.3.2 The resourcer R package

The resourcer package is an R implementation of the data and computation resources description and
connection. It reuses many existing R packages for reading various data formats and connecting to external
data storage or computation servers. The resourcer package’s role is to interpret a resource description
object to build the appropriate resource connection object. Because the scope of resources is very wide,
the resourcer package provides a framework for dynamically extending the interpretation capabilities to new
types of resources. Next, we describe the key issues to deal with resources within the R environment. Further
details and examples are available in Section 7.8 in our online book.

3.3.2.1 Resources R Implementation

The resource class is a simple R structure that holds the properties of the resource described in the previous
section: URL, format, identity and secret. To simplify the designation of a resource, an additional name
attribute is defined. This identifier is optional and is not necessarily unique. The ResourceClient is a key
R6 class, which wraps a resource object and defines operations that can be performed on it. The resourcer
package has built-in support for the following use cases:

� Data file resource whose location is defined by the resource’s URL and that can be downloaded in a
temporary folder to be read. The file locations that are supported by default are: (1) the local file
system (obviously with a no-op download), (2) an HTTP(S) connection, optionally providing basic
authentication based on the resource’s credentials, (3) the MongoDB GridFS file store, (4) Opal’s file
store and (5) a remote SSH server. For the reading part, the resourcer package uses some tidyverse R
packages (such as haven for the SAS, SPSS and Stata data formats, readr for delimited data formats
and readxl for Excel data formats) or can load an R object based on its class name specified in the
resource’s data format property.

62



3 ORCHESTRATING PRIVACY-PROTECTED BIG DATA ANALYSES OF DATA FROM
DIFFERENT RESOURCES WITH R AND DATASHIELD Ph.D. Thesis

� SQL database resource which has a connector based on R’s interface for databases (DBI). The resource’s
URL indicates which database connector is to be used. The SQL databases supported by default are
MySQL/MariaDB and PostgreSQL, and some “big data” databases exposing a SQL interface such
as PrestoDB and Apache Spark. The resourcer package can be extended to new DBI-compatible
databases.

� NoSQL database resource which can be read using connectors from the nodbi package. Only the
MongoDB database is supported for now.

� Command-based computation resource. The resourcer package can handle commands to be executed
in the local shell and on a remote server through a secure shell (SSH) connection.

3.3.2.2 Interacting with R Resources

As the ResourceClient is simply a connector to a resource, its utility is enhanced by a range of data conversion
functions that are defined by default:

� R data.frame, which is the most common representation of tabular data in R. A data frame, as defined
in R base, is an object stored in memory that may be not suitable for large to big datasets.

� dplyr tbl, which is another representation of tabular data provided by the dplyr package that nicely
integrates with the R interface for databases: filtering, mutation and aggregation operations can be
delegated to the underlying SQL database, reducing the R memory and computation footprint. Useful
functions are also provided to perform joint operations on relational datasets.

In the case when the resource is a R object, the R data file ResourceClient offers the ability to get the
internal raw data object. Then complex data structures, optimized for a specific research domain can be
accessed with the most appropriate tools.

When the resource is a computation service provider, the interaction with the resource client will consist of
issuing commands/requests with parameters and getting the result from it either as a response object or as
a file to be downloaded.

The purpose of the resourcer package is definitely not to substitute itself for the underlying library; rather
it is a general approach that facilitates the access to the data and service resources in the most specific
way.

3.3.2.3 Extending R Resources

Thanks to its modular and dynamic architecture, the resourcer package can easily be extended to:

� new file locations (see for instance the s3.resourcer R package which connects Amazon Web Service S3
file stores),

� new file readers (see Section 8 in our online book to see how VCF files are read in the dsOmics R
package),

� new DBI-compatible databases. For instance, using bigrquery R package, it would be easy to implement
access to a resource stored in a Google’s BigQuery database.

� new domain specific applications which would expose data extraction and/or analysis services. The
only requirement is that an R connection API exists for the considered resource application.

3.3.2.4 Resources with DataSHIELD/Opal

DataSHIELD infrastructure is a software solution that allows simultaneous co-analysis of multiple data
sets stored on different servers without the need to physically pool data or disclose sensitive information.
DataSHIELD uses Opal servers to perform such analyses.

At a high level DataSHIELD is set up as a client-server model, each server housing the data for its corre-
sponding study. A request is made from the client to run specific functions on the data held in the remote
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servers and that is where the required analyses are actually performed. Non-sensitive and pre-approved
summary statistics are returned from each study server to the client where they can then be combined for
an overall analysis. An overview of what a multi-site DataSHIELD architecture would look like is illustrated
in fig. 17.

Figure 17: A schematic diagram of a multi-site DataSHIELD infrastructure. It includes one central
analysis node (the client) and three data nodes (the servers).

The current limitation of this infrastructure is that the data assignment operation consists of extracting the
dataset from the data repository (the primary storage can be either a SQL database or a MongoDB database)
and pushing it in the R server’s memory as a data.frame object. This data assignment process consumes
time, physical memory and applies only to datasets in tabular format. Although acceptable for small datasets
(usually less than 10M data points), this infrastructure cannot be used for big data systems, complex data
structures and existing computation facilities. In order to overcome these limitations, data access can instead
be delegated to the R servers using the concept of resources. The DataSHIELD middleware (Opal) will be
responsible for performing the assignment of a resource description as a ResourceClient object in the R server
(as soon as the relevant permissions have been granted). The connection to data or computation resources
is then readily usable by the DataSHIELD user. In terms of data access security, the resource credentials
are not visible via the DataSHIELD client node, just like the individual-level data.

After converting a resource to a data.frame object, existing DataSHIELD analysis R packages can be used in
a backward compatible way. New DataSHIELD R packages, such as dsOmics and dsGeo, described in this
paper, can make use of the power of resources to apply DataSHIELD’s data privacy preserving paradigm to
large datasets, complex data structures and external computation facilities.

The integration of the resources concept in Opal consists of (1) dynamically discovering the different types of
resources that can be handled by the associated R server, (2) providing an appropriate user-friendly graphical
interface (GUI) for managing the resource descriptions and access permissions, and (3) assigning resource
objects in the R server on user demand. The latest version of Opal (v 3.0) implements these capabilities,
making resources accessible to the DataSHIELD framework.

3.4 Results

The table 2 describes the main features of our proposed framework that are mainly driven by DataSHIELD’s
capabilities. The table also shows the main advantages of disadvantages that can be found when using
the resources in federated data analyses. Different features including scalability, disclosure prevention,
deployment and future applications to other biomedical areas than genomics are discussed.
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Table 2: Main characteristics of the proposed infrastructure for privacy-protected federated data analyses
with big data

Feature Capabilities / Advantages Limitations / Disadvantages
Resources Any data source or computation re-

source that can be accessed from R is
made available in DataSHIELD. These
include databases of any kind (SQL,
NoSQL, distributed Big Data systems),
most of the file formats, domain specific
applications accessible through web ser-
vices or remote commands etc. Applies
to any scientific domain.

Resource URL design can be complex
when resource options need to be spec-
ified. R is the required entry point,
which complexifies the use of analysis
algorithms in Python for instance.

Scalability Scales with number of studies. The re-
sources can interact with Apache Spark
or Hadoop.

Some advanced statistical techniques
may not scale well with number of
records. The processing power can
sometimes suffer from latency. There
is a need for investigation share com-
putation over multiple processors.

R programming lan-
guage

R is an open-source and heterogenous
programming language. Interpreters for
available for many operating systems. A
wide community support its users.

Skills for other functional and statis-
tical programming languages can be
transferred to learn R. However not
all of the analysts are familiar with
other programming languages, which
can raise some barriers of adoption.

Disclosure prevention Several complementary features that
provide privacy preservation are imple-
mented in the DataSHIELD architec-
ture. Just one of these is that data
custodians/owners (not analysts) have
complete control over a series of optional
filters that dictate the potential disclo-
sivity of the analytic output. As one ex-
ample, this includes the minimum count
acceptable in a non-empty cell of a con-
tingency table. When rare observations
are critical to analysis, data custodians
can actively choose to relax the filters
to enable meaningful analysis to be un-
dertaken. One of the implications of
the combined effect of several of the pri-
vacy preservation features is that an-
alysts can never see, copy or abstract
the individual-level data on the primary
data servers.

Data protection is shared between
existing computer systems and
DataSHIELD. An existing computer
system that has some poorly imple-
mented secured network access and
authentication may threaten the qual-
ity of disclosure prevention. In other
words, as well as the active privacy
preservation built into DataSHIELD
software, it is also crucial that the
hardware on which everything runs
must satisfy good practice for conven-
tional privacy protection.

Graphical User Inter-
face (GUI)

The use of R studio and the specialised
data warehouse software have a GUI.
Analysis can be integrated with GUI
packages, such as R Shiny.

An appropriate use of R Scripts, R
notebooks and vignettes is helpful.
DataSHIELD users then need to learn
how to use these approaches before us-
ing DataSHIELD. The use of R Studio
can make the learning curve less steep.
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Feature Capabilities / Advantages Limitations / Disadvantages
Applications to other
biomedical areas than
genomics

Any other specific data infrastructures
available in public repositories such as
images (OpenNeuro), transcriptomic or
epigenomic data (GEO) can be accessed
and analyzed in a distributed and pri-
vacy preserving way. Applications out-
side biomedical, health and social sci-
ence are also entirely possible.

There are no obvious scientific or aca-
demic domains to which DataSHIELD
could not in principle be applied. Par-
ticularly, if the aim is to facilitate
the quantitative analysis of individual
level data which are sensitive either
because of ethico-legal or information-
governance restrictions, or because of
their intrinsic intellectual or commer-
cial value.

Cost As everything is based on open-source
freeware, the costs are minimized for
any organisations who wishes to adopt
DataSHIELD.

While DataSHIELD development is
substantively funded through grants,
there is nevertheless a need to seek sup-
port from the user community (particu-
larly large-scale users) to contribute to
the core DataSHIELD provision: user
training and support; on-line support
materials; bug snagging and error cor-
rection; continuous testing of evolving
code; preparing and smoothly under-
taking new releases.

Time From the user perspective,
DataSHIELD is a time-effective tool
as does not require iterative in-person
communication between the analyst and
the data holders. This is most evident
in comparing the time commitment
required for a standard consortium-
based metaanalysis and that required
by a centrally controlled study-level
meta-analysis via DataSHIELD. The
former requires the analysis centre to
ask each study to undertake a series
of specified analysis and return results
(typically several rounds of analysis
and return). In contrast the latter is
controlled in real time as if one was
working directly with the raw data.
This can speed things up by orders of
magnitude.

Like any specialised open-source soft-
ware, DataSHIELD analysts, develop-
ers and installer need some time to
adapt to the concepts of federated sys-
tems and disclosure limitations.

Server sharing DataSHIELD supports multi-tenancy,
to permit multiple users to share a
DataSHIELD server. It also per-
mits multiple servers to be deployed if
needed.

DataSHIELD requires some specialised
data warehouse software such as Opal.
At the moment there is no white-paper
that formally defines standards for fur-
ther development in this area.
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Feature Capabilities / Advantages Limitations / Disadvantages
Documentation DataSHIELD has a wiki that pro-

vides beginners training to any new
DataSHIELD analysts and developers.
Some more advanced tutorials are avail-
able on multimedia contents through
YouTube. Documentation for the Opal
specialised data warehouse software is
available online. The online book of
this paper will be continuously being up-
dated with more extensions (e.g. tran-
scriptomics, epigenomics, imaging data,
longitudinal data analyses, ...).

DataSHIELD documentation needs
to be more supportive to the
DataSHIELD developers. An online
forum is available for community en-
gagement and support. No advanced
statistical techniques are explicitly
taught, as it is assumed that any
analyst planning to use DataSHIELD
would already understand the theory
and practice underpinning the analysis
that is to be undertaken. However, in
practice the DataSHIELD team knows
that this is not always true and so
some analytic theory is increasingly
being presented when it is useful.

Deployment Software solution packages are available
for different hosting systems (includes
a container-based option) and the re-
source concept can adapt itself to the
existing hosting infrastructure. It is ad-
vised that DataSHIELD should only be
deployed in a setting in which all hard-
ware and middleware systems satisfy
conventional best practice for data man-
agement and privacy protection. Sim-
ilarly, it is assumed that DataSHIELD
will not be used if information gover-
nance or other restrictions already pro-
scribe the particular analysis proposed.

It is important that there is at least
a minimum baseline level of system
administration knowledge on the part
of the data owner and proper di-
mensioning of the hardware (especially
when targeting multi-user, computa-
tion intensive usage). Nobody should
be making sensitive data available for
analysis via any mechanism–including
DataSHIELD–if they do not have a
proper understanding of their data sys-
tems or of the governance framework
under which analysis is to be enacted.

3.4.1 Available resources extensions

We have extended the resources available at the resourcer package into different settings. These extensions
as well as the current resources that can be accessed through the Opal servers are described in table 3. So
far, we can get data from different locations (Amazon Web Services, HL7 FHIR or Dremio), read other
types of files which are specific in genomic studies (BAM, VCF and PLINK) and access data from other
infrastructures such as GA4GH, a federated ecosystem for sharing genomic, clinical data [215] and EGA which
is a permanent archive that promotes distribution and sharing of genetic and phenotype data consented for
specific approved uses [216].

Table 3: Available resources at the resourcer R package and extensions for genomic data.

Type Resource Reference R pack-
age

Use

File reader R data https://cran.

r-project.org/

resourcer Any

File reader Tidy data (.csv,.tsv, txt,
...)

https://www.

tidyverse.org/

resourcer Any

File location S3 compatible file store https://min.io/ https:

//aws.amazon.com/

s3.resourcer Any
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Type Resource Reference R pack-
age

Use

Database SQL https://www.

mysql.com/ https:

//mariadb.org/ https:

//www.postgresql.org/

https://prestodb.io/

resourcer Any

Database and Big
Data analytics

SQL https://spark.apache.

org/

resourcer Any

Database NoSQL https://www.mongodb.

com/

resourcer Any

Computation service SSH https://en.wikipedia.

org/wiki/Secure_Shell

resourcer Any

Domain specific HL7 FHIR http://hl7.org/fhir/ fhir.resourcer Patient’s
data

Database SQL https://www.dremio.

com/

odbc.resourcerAny

File reader VCF https://en.wikipedia.

org/wiki/Variant_

Call_Format

dsOmics Genomic

File reader GDS https://bioconductor.

org/packages/release/

bioc/html/gdsfmt.html

dsOmics Genomic

File reader BAM http://samtools.

github.io/hts-specs/

SAMv1.pdf

dsOmics Genomic

File reader Bioconductor infrastruc-
tures (ExpressionSet,
RangedSummarizedEx-
periment, MultiAssayEx-
periment, ...)

http://bioconductor.

org/

dsOmics Genomic

Computation service PLINK http://zzz.bwh.

harvard.edu/plink/

dsOmics Genomic

Domain specific GA4GH https://www.ga4gh.

org/

dsOmics Genomic
and clini-
cal

Domain specific EGA https://ega-archive.

org/

dsOmics Genomic
and clini-
cal

3.4.2 Real data analyses

We illustrate how to perform privacy-protecting big data analyses using our proposed infrastructure. We
have set up an Opal demo site (see Chapter 4 in our bookdown) to illustrate how to perform some basic
analyses using DataSHIELD as well as how to deal with different resources for genomic and geographical
data. These data are publicly available and can be accessed through DataSHIELD or using the URL available
in the Opal site. The genomic example describes how to perform genome-wide association (GWAS). The
geographic examples describe how to analyse information about journeys undertaken by specified individuals’,
the environment through which they travel and whether the journeys have an impact on the individuals’
health. Chapter IV in our online book provides users with workflows and case studies for downstream
analyses and visualizations.
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3.4.2.1 Genomic data analysis

Bioconductor provides core data structures and methods that enable genome-scale analysis of high-throughput
data in the context of the rich statistical programming environment offered by the R project [212]. We have
created two packages to perform privacy-protecting federated genomic data analysis with DataSHIELD and
Bioconductor. The dsOmics package contains the functions that are used on the server side where the ac-
tual analysis is implemented and which specify the privacy-protecting summary statistics that will be send
back to the client, while the dsOmicsClient has the functions that are used on the client side, to control
the commands that are send to the server side and to combine the received outcomes for pooled analysis
applications.

Genomic data can be stored in different formats. Variant Call Format (VCF) and PLINK files [217]. are
commonly used in genetic epidemiology studies. In order to deal with this type of data, we have extended the
resources available at the resourcer package to VCF files. We use the Genomic Data Storage (GDS) format
which is designed for large-scale data management of genome-wide variants and can efficiently manage VCF
files into the R environment. This extension requires the creation of specific ResourceClient and ResourceRe-
solver classes. This extension is available in the dsOmics package (See Section 8 in the supplementary book).
Briefly, the client class uses snpgdsVCF2GDS function implemented in SNPrelate to coerce the VCF file to
a GDS object [218]. Then, the GDS object is loaded into R as an object of class GdsGenotypeReader from
GWASTools package [219]. that facilitates downstream analyses such quality control of SNPs and individual
data, population stratification and association analyses using GENESIS Bioconductor package [220].

The fig. 18 describes how GWAS may be performed using DataSHIELD client-side functions (i.e dsOmic-
sClient package). Basically, data (genomic and phenotypes/covariates) can be stored in different sites (EGA,
GA4GH, https, ssh, AWS S3, local,. . . ) and are managed with Opal through the resourcer package and their
extensions implemented in dsOmics. The association analyses involving GWAS are based on fitting different
generalized linear models (GLMs) for each SNP that can be performed using a base DataSHIELD function
(ds.glm). The difference between standard data analysis and that done by DataSHIELD is that the analysis
is performed at the location of the data (e.g. the data nodes). No data is transferred from that location, only
non-disclosive summary statistics. The set of analytical operations which can be requested to be performed
at the location of the data, has been careful constructed to prevent any attempt for direct or inferential
disclosure of any individual-level information. The R parser also blocks any form of arguments that are not
allowed in DataSHIELD. For analytical operations which could potential yield results which are disclosive,
for example if a small amount of data is being analysed, the operation will check if the results match the data
protection policies of the location’s data governance rules, before returning any results back to the client
(e.g. the analysis node). If any of the protection rules are violated, the client does not receive any results
but gets study-side messages with information about potential disclosure issues [199].
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Figure 18: Scheme of DataSHIELD implementention of genomic data analysis. The dsOmics
package contains functions to perform non-disclosive data analyses of resources encoding genomic data that
are managed within Opal using the resourcer package. Genomic data normally have two pieces of information,
one corresponding to variants (e.g. SNPs) and another for phenotypic data (grouping variable, outcome,
covariates, . . . ). Both can be stored in different resources. BAM/VCF/PLINK for SNPs and text/csv
file for phenotypes and covariates. This package should be installed in the Opal server along with their
dependences. The package dsOmicsClient must be available in the client side and contains functions that
allow the interaction between the analysis computer and the servers.

It should be noticed that repeatedly calling ds.glm function can be very time consuming when analysing
thousands of SNPs which requires multiple iterations of calls over the network between the client and the
server. In order to overcome this problem, we also implemented a federated meta-analysis approach that ba-
sically runs an independent GWAS at each server and then meta-analyse the results. GDS data at each server
are analyzed using GWASTools and GENESIS Bioconductor packages that allows to perform GWAS very
quickly. Once the study-specific estimates and standard errors generated by the analyses undertaken on each
server have been returned to the client, they can be combined using whatever meta-analysis approaches—and
whatever R meta-analysis packages—the user may choose. This methodology has some limitations when data
are not properly harmonized (e.g. genotyping in different platforms, different VCF versions,. . . ). In order
to overcome this problem, data format validation can also be performed by the analyst using DataSHIELD
functions. In genomics, this can be achieved by first doing imputation and then solving issues concerning
genomic strand and file format [221].

GWAS can also be performed using programs that are executed using shell commands. This is the case for
PLINK, one of the state-of-the-art programs to run GWAS. Resources also allow the use of secure SSH service
to run programs on a remote server accessible through SSH containing data and analysis tools where R is just
used for launching the analyses and aggregating results. This feature allows us to create functions to analyze
data using specific shell programs. Section 9 in our online book describes how the PLINK program can be
used to perform GWAS. In this case, the resource describes that access is given via SSH, the credentials
required to connect, and the commands that can be run (of which one is plink).

We would like to emphasize that with DataSHIELD, analysis is performed at the location of the data. The
data provider has full control over what information is transferred from their location to the location of the
analyst by setting filters for a number of disclosure traps. This means that the results returned to the analyst
can be carefully created to be non-disclosive, and match the policies of the data provider’s data governance
rules.
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3.4.2.2 Geographic Information System (GIS) and spatial analysis

The R packages rgdal, rgeos and sp provide core data structures and methods that enable analysis of geospa-
tial data in the context of the rich statistical programming environment offered by the R project. We have
created two packages to perform privacy-protecting federated GIS data analysis with DataSHIELD and these
packages. The dsGeo package contains the functions used on the server side to assure privacy-protecting
analyses, while dsGeoClient has functions that command the data analyses from the client side and enable
integration across studies.

The resourcer package allows large geospatial datasets to be handled. These include data derived from
standard storage systems, such as relational databases, making use of existing sp data structures such as
SpatialPoints and SpatialLinesDataFrame among others. These types of data are the core of geospatial
analysis in R, allowing users to work with geometries and their descriptive attributes. For example, we
might want to know that a GPS trace corresponds to someone who is 45 years old, or that a region defined
by a polygon has a particular air pollution level. As described in the methods section, resources can be
extended to any type of data that can be managed within R. Here we describe how to extend the resources
to the case of analysing Geographic Positioning System (GPS) traces and other geolocation data, combined
with phenotypic data.

Section 13 in our online book illustrates how to perform a realistic analysis of GPS traces and geolocation
data. In this example, building on the work of Burgoine et al., [222] we consider daily commutes captured as
GPS traces by 810 individuals in the eastern suburbs of London. We also have data on the location of 6100
fast food or takeaway outlets in the same area. Further data are available, relating to each individual’s Body
Mass Index (BMI), age, sex, total household income, highest educational qualification and smoking status.
These data therefore allow us to test the association between exposure to takeaway food on a commute and
on individual’s BMI. We illustrate how the tools available in the dsGeo package allow this question to be
addressed.

We created three resources in Opal that contain the GPS journey data (SpatialLinesDataFrame), the loca-
tions of the food outlets (SpatialPointsDataFrame) and the phenotypic data (data.frame). These data can be
manipulated to give a measure of exposure to the food outlets for each individual. Our package allows us to
transform the point data denoting food outlets into buffer regions surrounding each point. The idea is that
if an individual’s GPS trace falls within this buffer then we can say that the individual is ‘exposed’ to that
food outlet. Thus, we find the intersection of each individual’s trace with each buffered region to obtain a
vector of the intersecting buffers for each individual. This is further processed into a count of ‘exposures’ per
individual. Finally we can run GLMs using the DataSHIELD base function ds.glm() to test the association
between BMI and food outlet exposure, correcting for potential confounding factors such as income.

3.5 Future perspectives

3.5.1 DataSHIELD

The development of the new “resources” component of the OBiBa middle-ware that underpins the DataSHIELD
platform has profound implications for the future of the overall DataSHIELD project. It has greatly relaxed
constraints on the source, format and volume of the data that can be ingested into a DataSHIELD session
while continuing to provide full flexibility in terms of the capacity to enact active disclosure control at a level
appropriately tailored to the context of the particular analytic problem at hand. This has already allowed
us to embark on exploring extensions of functionality to encompass some of the most widely used classes
of contemporary research data, for example, Omic data and images. In tandem with recent advances we
have made in learning how to simplify the extension of functionality in any field provided that a relevant
R-package already exists, DataSHIELD is now on the cusp of being able to provide a generic easily usable
and simply extendable approach to truly federated analysis across many science and technology domains.
This will have a myriad of applications in academic research, commercial settings and health & social care
systems. The ability to finely tune disclosure controls in a manner that can only be modified by the data
custodian will make this approach particularly attractive for anybody wishing to work with data that are
sensitive. This not only includes human (or other) data subject to the appropriately stringent requirements
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of contemporary law, ethics and broader frameworks for data governance, but also encompasses data that
are sensitive for reasons of intellectual property investment or commercial value. However, if disclosure
controls are set to be very permissive or off, the convenience, flexibility and potential extendibility of the
system could ultimately make this an approach of choice for any federated analysis even if the data are not
especially sensitive.

In light of the development of resources, it is envisaged that in the future there will be at least three
flavours of DataSHIELD that will vary in their convenience of use, flexibility and ease of extension of
functionality: (1) All disclosure checks set to off. This will permit maximum flexibility for analysing
non-sensitive federated data and easily extendable by adding new functionality; (2) Disclosure checks on
but minimal–e.g. preventing users from seeing or copying the individual level data but avoiding restrictions
on the analyses themselves. This flavour is likely to be most useful when data from a large research platform
cannot physically be shared but the analysis required is based on data objects that are fundamentally
privacy-protecting such as Omics data or images based on internal scanning; (3) Full disclosure checks;
this will be equivalent to the default situation that applies now.

Now that it is possible for DataSHIELD to work much more readily with large/big datasets, we anticipate
that DataSHIELD and the resourcer R package will offer functions based on the tidyverse as well as base-
R. For example, this will include the option of using dplyr R package for operating on tabular datasets
(see Interacting with R Resources section) and on tibbles as well as standard R data-frame objects. A
resources integration improvement might therefore be to use the dplyr API for delegating as much as possible
data filtering and mutating to the underlying data storage system (e.g. databases exposing a SQL query
interface). This extension is already being explored.

3.5.2 Parallel computing

Working effectively with large data may also require programming practices that match the available com-
puter hardware infrastructure, both processing and storage. R is efficient when operating on vectors or
arrays, so a pattern used by high-performing and scalable algorithms is to split the data into manageable
chunks and to iterate over them. Chunks can be evaluated in parallel to gain speed. There are several R
packages that can be used to this end (parallel, foreach, . . . ) as well as BiocParallel Bioconductor package
that facilitates parallel evaluation across different computing environments while allowing users from having
to configure the technicalities. DataSHIELD analysis is parallelized by design (i.e. each server is working
independently of the others). Therefore, for a server instance, the best approach is to use data structures
and analysis tools that perform computations efficiently. This is the strongest point of the resources as we
have done with the integration of dplyr and Bioconductor packages as well as those that can be implemented
using, for instance, sparklyr [223].

3.5.3 Omic and geographical data

We have provided some of the functionalities offered by Bioconductor and R packages in the DataSHIELD
context that allow to analyse genomic and geographical data. These packages are extensive and more work is
needed to repackage a more complete range of operations available in a privacy-protecting way. For instance,
ds.Omics can be easily be extended to other omic data analyses such as differential gene expression analysis
of methylation data analyses using the same strategy as the one used for genomic data. Visualisation can
add great value and will be covered when being implemented in a privacy-protecting way. The dsBaseClient
and dsBase packages already contain functions for privacy-protecting plots such as heatmaps and scatter
plots. The privacy of data is protected in these cases by effectively blurring the data or by removing outlying
points. These techniques could be adapted, for instance, to allow geospatial data to be visualised in a
privacy-protecting way.

3.5.4 Data cataloging

The next step of the resources integration in Opal is to make their meta-data findable to a researcher:
exposing the data dictionaries, annotated with taxonomy or ontological terms, would benefit the research
community when looking for datasets for a research question. OBiBa software application suite provides
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both Opal, the data repository (or data integration system, using the resources) and Mica [206], the data web
portal application. Mica operates by extracting from Opal the dataset dictionaries to build a searchable data
catalogue, with basic summary statistics and by allowing the submission of data access requests. Resources
registered in Opal should be made visible from Mica as well.

3.5.5 Other applications

We would like to highlight that there are dozens of disciplines other than genomics and geospatial that
could also benefit from our infrastructure. For instance, extending the resources to other settings such as
neuroimaging by using libraries from Neuroconductor, a similar project to Bioconductor for computational
imaging, would be an important advance in that field since data confidentiality may also be an issue. Also,
it is worth noting that one of the main advantages of using the resources is that we do not need to move data
from their original repositories which can present a serious problem when dealing with neuroimaging data
[224]. Another area that can readily benefit from our new framework is artificial intelligence. Big data and
machine learning have applied innovatively many advanced statistical methodologies such as deep learning
which is driving the creation of new and innovative clinical diagnostic applications among others [225].
The current trend is to include machine learning algorithms within Cloud capacities in different biomedical
problems [226, 227, 228]. Our framework can interface with “Apache Spark”, a fast and general engine
for big data processing [229], through the sparklyr R package that will allow the use of different machine
learning algorithms for big data.
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4.1 Introduction

Contemporary data analytics in health and biological sciences include a central focus on the analysis and
interpretation of high volume ‘omics data’ (genomic, epigenomic, or metabolomic data). An important
requirement for fully exploiting the potential of such data is to make large amounts of clinical, epidemiological
and omic information accessible and interoperable to researchers. This can be achieved through data sharing.
Historically, data-sharing has been based on central warehousing: this requires data generators to physically
transfer data or summary statistics to make them accessible to analytic users. This approach has been
adopted, for instance, by the vast majority of consortia devoted to the analysis of genomic data. Under
this setting, each data provider runs their own genome-wide association studies (GWAS) independently and
shared summary statistics are meta-analyzed by one or two data analysts [230]. Alternatively, a recent and
increasingly used analytic trend known as federated analysis (FA) permits analysis of multiple decentralized
datasets without accessing disclosive or individual-level information (i.e., migrating the analysis to the data)
[231]. Motivated by the delicate nature of genetic and health data and the ethical and legal issues behind
sharing this kind of information, the potential benefits of FA are being increasingly recognized widely [232,
233, 234].

Meta-analysis is widely adopted for the combination of GWAS [235] and is also being used in differential gene
expression and epigenome wide association studies (EWAS) by combining results from different populations
[236]. Individual participant data (IPD) meta-analysis is an increasingly popular tool used as an alternative
to traditional aggregate data meta-analysis, especially as it avoids reliance on published results and provides
an opportunity to investigate individual-level interactions, stratified models or adjusting for other covariates.
Being capable of performing both IPD meta-analyses and mega-analyses (i.e. pooled analyses) in a federated
framework would be a cutting-edge advance for the biomedical field, allowing, among other possibilities, to
choose the best and most convenient approach to be applied depending on data characteristics and designs.
Unfortunately, most currently available FA systems for omics data are only intended to perform pooled
analyses, arguing that this approach substantially increases statistical power [237]. However, pooled analysis
in a multi-cohort setting is not recommended when data are heterogeneous among cohorts or when data
are not properly harmonized (e.g. gene expression normalized using different methods, or GWAS data
maintained on different platforms) as substantive heterogeneity in the nature of the data can lead to biased
results. This includes “confounding by study” which can be very severe when an outcome and an explanatory
covariate vary in tandem (or in a reciprocal manner) across study populations [238].

Omic FA has a key constraint since it includes sensitive information. It requires ensuring appropriate levels
of security and privacy and the judicious application of the stringent regulations implicit to contemporary
governance frameworks such as the General Data Protection Regulation (GDPR) in Europe. In order
to address this important issue, different privacy-protecting techniques such as federated learning (FL),
differential privacy (DP), homomorphic encryption (HE), and secure multi-party computation (SMPC) have
been developed, some or all of which may be adopted [239]. Furthermore, algorithms developed by researchers
could potentially be used alongside genotype-phenotype associations from genetic association studies by an
attacker to predict genotypes and phenotypes of target individuals based on genome information shared by
individuals or their relatives [240]. A secure FA platform should thus have solutions to minimise the risk of
potential attacks.

The burden of data sharing on multi-center studies that will deal with omic data has enormously increased
in the last few years. These include large projects such as ORCHESTRA, MIRACUM, unCoVer, LifeCycle,
HELIX and ATHLETE [241, 242, 243, 244, 245, 246] among many others. Having software solutions to
FA in omic studies using privacy-protected techniques is therefore an urgent need. In the omic setting,
infrastructures for federated networks, FA of GWAS (FAHME [237] and sPLINK [247]) and transcriptomic
data (Flimma [248]) have been proposed. These existing tools have important limitations including that
they may require their own data infrastructures and different programming languages – some of which are
not open source, hence making the implementation of new features difficult. Another important limitation of
existing solutions is that downstream analyses (e.g. data visualization, post-omic data analyses) are poorly
integrated into analytical pipelines.

In this paper, we introduce OmicSHIELD, a software analytic platform for omic multi-center studies that
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overcomes these limitations. Our platform is based on DataSHIELD which is a software created to allow
analysis of data at individual-level using disclosure-preventing methods that address ethical-legal restrictions
surrounding confidentiality [238, 249]. Key aspects of DataSHIELD include: a) client-server architecture
(”taking the analysis to the data”), b) analytical methods for FA including both pooled and meta-analyses,
and (c) tailored multi-layer disclosure controls (the bottom line being that the analyst cannot see, copy
or extract individual level data held by individual studies) [250]. DataSHIELD has been used in different
multi-consortia projects, details on how they leveraged DataSHIELD to guarantee confidentiality of their
data can be found elsewhere [251, 252, 253]. OmicSHIELD has also implemented protection layers to prevent
malicious attacks that have the aim of recovering individual-level data through omics data analyses. These
include different privacy-preserving methods, filters to avoid getting disclosive information (e.g. related to
low allele frequencies).

OmicSHIELD covers analytical techniques for transciptomics, epigenomics and genomics omics data. It
allows both pooled analyses and IPD meta-analyses. The analysis are available for horizontally partitioned
data, this approach is commonly used when different organizations or research centers hold data on distinct
individuals or groups, but share the same variables for each record. A key feature is that DataSHIELD is
open-source, written in R and licensed under the GPL, thus facilitating downstream analyses within a single
pipeline by interacting with other programming languages (e.g. Python) and with other R or Bioconduc-
tor packages. Data warehousing is based on Opal which is integrated within DataSHIELD, thus offering a
complete software solution, more information on Supplementary data 2. Another huge advantage of using
this approach is that DataSHIELD has implemented state-of-the-art methods to perform the standard sta-
tistical analyses applied in different disciplines, including biomedicine, epidemiology and the social sciences,
in a non-disclosive manner. This facilitates, for instance, performing federated descriptive analyses before
commencing omic studies using the same platform. OmicSHIELD is based upon our recent development, the
“resources” architecture which is a new DataSHIELD infrastructure that allows: 1) the use of large data in
their original repositories; 2) working with original data formats (e.g. PLINK, VCF, ExpressionSet, Range-
SummarizedExperiments); 3) interactions with other programming languages (including shell commands)
and softwares (R, Neuroconductor, Bioconductor, Python); and 4) interfacing with “Apache Spark”, a fast
and general purpose analytical engine for big data and deep learning [254]. Furthermore, OmicSHIELD
incorporates both disclosure controls and differential privacy approaches to assure privacy-preserving data
analyses. Therefore, our approach has the potential to fulfil the stringent requirements made by data con-
trollers (e.g. hospitals) often hinder multicentric medical studies, since differentially private learning has
been positioned as one of the preferred methods for GDPR-compliant recommender systems [255].

To help users leverage these frameworks, we present an online book available at https://isglobal-brge.
github.io/OmicSHIELD/. It covers installation, sources of help, and complete workflows illustrating ex-
amples of omics data analyses using freely available datasets. It also includes material describing different
use cases corresponding to real world data applications from different existing projects. Data used in the
examples are fully available at two Opal servers which readers can access as DataSHIELD users. Therefore,
results can be fully reproduced and users can perform additional analyses using other covariates or condi-
tions. Developed packages are available through CRAN and GitHub repositories under open source licenses
(GPLv3 or MIT).

4.2 Methods

In this section, we start by giving a general overview of OmicSHIELD functionalities and solutions, high-
lighting their virtues and indications for dealing with some of the challenges mentioned in this manuscript.
Then, we demonstrate the applicability of OmicSHIELD to two real life cases of omic data analyses using
state-of-the-art methods. We illustrate how to perform a FA of genomic data in the first example and how
to analyse transcriptomic and epigenomic data in the second example. To this end, we provide one Opal
server with all the required data to reproduce the use cases (see Section 1.4 in the online book).
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4.2.1 Overview of OmicSHIELD

Herein, we provide a global overview of main features implemented in OmicSHIELD. The table 4 describes the
key aspects that make OmicSHIELD the right platform to perform FA of omics data. Minimum hardware
requirements to run OmicSHIELD are very different depending on the type of omics data; for genomics,
storage capability is most important as genomic data sets tend to be very large, whereas analyses are usually
highly optimized and do not load all the available data, thus meaning that computational power and RAM
requirements are considerably lower; for other omics (e.g. transcriptomics, epigenomics), RAM requirements
are more demanding and may therefore be higher. Indicative requirements are available in Section 19 of the
online book.

Table 4: Key aspects of OmicSHIELD.

Key issue for omic FA OmicSHIELD solution
Different types of federated analyses Pooled analysis and IPD meta-analysis
Non-disclosive analyses Those by DataSHIELD
Privacy-protected / attacks Differential privacy, filters, audit activity
Different omic data Functions for genomics, transcriptomics and epige-

nomic with easy extension to metagenomics
Open source GPL3 and MIT license
Interaction with other tools Post omic analyses with R/Bioconductor, other

FA for clinical or epidemiological analyses with
DataSHIELD

4.2.2 Security and privacy

Aside from the inherent disclosure control techniques of DataSHIELD (https://data2knowledge.atlassian.
net/wiki/spaces/DSDEV/pages/714768398/Disclosure+control), there are additional techniques for Omic-
SHIELD code to ensure that server-side functions do not return disclosive information. These can be summa-
rized as disclosure traps embedded in the functional analytic code that runs on the data processing servers,
allowing only non-disclosive low-dimensional summary statistics to leave the server and therefore filtering the
information that the client receives. The behaviour of these techniques can be configured by each study’s
data custodians in the Opal server, thus allowing individual studies to adopt a set of disclosure controls
that complies with their own local required regulations (see online book Section 20), the final choice of the
parameters in k-anonymity and k-nearest neighbours depends on a rigorous assessment of the real risks of
disclosure and the magnitude of the information loss generated by applying the anonymization process. In
general, this association is highly context dependent, and therefore the selection of the parameters must be
specified based on each specific data situation. Differential privacy methods (Supplementary data 4) are
also implemented to enable an additional layer of protection to results that are returned by study servers to
the central analysis node. Differential privacy has been defined as the inability of an attacker to distinguish
whether a single individual is present in a dataset [256]. Adding stochastic noise to function outputs is a way
of achieving this: different types of noise can be used [257], with fine-tuned Laplace noise being the chosen
method for our implementation (see online book Section 16). This approach has been adopted as a coun-
termeasure to inference attacks using complex queries [258]: as such attacks can make use of GWAS results
and allele frequencies, the differential privacy mechanisms we implement are intended to cause additional
difficulty for such attacks. There are other strategies that can be performed using minor allele frequencies
(MAF) [259]. In order to prevent these attacks, we offer an extra layer of protection by having a filter that
blocks the output for SNPs with a MAF lower than a pre-specified threshold. This threshold is configurable
by data owners and does not need to be the same across all the study servers.

4.2.3 Omic analytic capabilities

OmicSHIELD contains functionalities to perform three types of omic data analysis: GWAS, DGE and EWAS.
The table 5 describes the main functions available in OmicSHIELD. The fig. 19 demonstrates how omic
association analyses can be performed using DataSHIELD client-side functions (i.e. using the dsOmicsClient
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package). Data (omics and phenotypes/covariates) are stored in their native formats at different sites (for
example, remote servers accessible via https or ssh, Amazon S3, locally, etc.) managed from Opal through
the resourcer R package. Analysis follows the DataSHIELD client-server architecture, implemented through
a pair of libraries with dsOmics implemented server-side and dsOmicsClient client-side. Most association
analyses involving omics data are based on fitting different generalized linear models (GLMs) for each feature
(e.g, SNP, CpG, gene, transcript, etc.) and this forms the basis of the methods we have implemented, which
includes two different types of analysis: pooled and IPD meta-analyses.

Table 5: Main analysis functions of OmicSHIELD. For the complete list of functions and the complete
details refer to the available online guide.

Function Description

Genomics

ds.fastGWAS Performs a pooled fast GWAS using the algorithm
described in the “Methods” section

ds.metaGWAS Performs a IPD meta-analysis GWAS using the
GENESIS BioConductor library

ds.alleleFrequency Calculates the allele frequencies. Can be used
pooled or as a IPD meta-analysis

ds.exactHWE Calculates the exact HWE test using Fisher’s
method. There is the option of only using the
controls to calculate this test

ds.PCA Performs a pooled PCA using only the SNPs that
have been linked to differentiate ethnic groups

ds.PRS Calculates the polygenic risk scores of the indi-
viduals sourcing the risk SNPs and weights on the
PGSCatalog

ds.PLINK Creates a remote connection to a machine with
PLINK to remotely run analysis commands using
traditional PLINK syntaxis

ds.snptest Creates a remote connection to a machine with
SNPTEST to remotely run analysis commands us-
ing traditional SNPTEST syntaxis

manhattan Plots a Manhattan plot using the results from
ds.fastGWAS and ds.metaGWAS

LocusZoom Plots a LocusZoom plot using the results
from ds.fastGWAS and ds.metaGWAS.
It can retrieve the genes present on the
region of interest using BioMaRT and
TxDb.Hsapiens.UCSC.hgXX.knownGene (XX
can be 37 or 38)

plotPCA Plots the results of ds.PCA. The plot can be color
coded using categorical variables of the genomic
data

Other Omics

ds.addPhenoData2eSet Auxiliary function to add phenotype data to the
ExpressionSets that contain the omic data

ds.limma Fits a limma + voom model
ds.edgeR Fits an edgeR model
ds.DESeq2 Fits a DESeq2 model
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Figure 19: Scheme of DataSHIELD implementation of omic-related packages. The dsOmics pack-
age contains functions to perform non-disclosive data analyses of resources encoding omic data that are
managed within Opal using the resourcer package. Omic data normally have two pieces of information, one
corresponding to features (CpGs, SNPs, genes, . . . ) and another for phenotypic data (grouping variable,
outcome, covariates, . . . ) that can be stored in different resources (e.g. PLINK and table in genomics) or
in a specific resource designed for that purpose in R/Bioconductor (e.g. ExpressionSet or RangedSumma-
rizedExperiment). This package should be installed in the Opal server along with their dependences. The
package dsOmicsClient must be available in the client side and contains functions that allow the interaction
between the analysis computer and the servers.

The “pooled approach” (fig. 20(A)) is recommended when the user wants to analyse omics data from different
sources and obtain results as if the data were physically located in a single database. This can be very time
consuming when using base DataSHIELD functions (such as ds.glm) which require multiple iterations of
calls across the network between the client and the servers. We circumvented this problem by implementing
a fast algorithm for massive generalized linear models (see Supplementary data 6). This approach is not
recommended for data not fully harmonized – that is, it should not be performed when gene expressions
are normalized using different methods, or when GWAS data use different platforms, as substantive het-
erogeneity in the nature of the data can lead to biased results [260]. The “IPD meta-analysis approach”
(fig. 20(B)) overcomes limitations raised when performing pooled analyses. In particular, computation issues
are addressed by using scalable and fast methods to perform data analyses at the whole-genome level at
each server. Best practice methods to perform meta GWAS should be adopted [261]. We have implemented
these methodologies in OmicSHIELD (see online book Section 14). Adopting a meta-analytic approach is
also recommended when there is large heterogeneity in the trait of interest between cohorts.
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Figure 20: Types of omics data analyses implemented in dsOmicsClient. We have implemented
two different types of analyses: the virtually pooled and the federated meta-analysis. Panel A shows the
“virtually pooled approach” that is recommended when the user wants to analyse omic data from different
sources (e.g studies) and obtain results as if the data were located in a single data warehouse. Panel B
depicts the “federated meta-analysis approach” that overcomes the limitations raised when performing pooled
analyses: computing time and data harmonization. The computation issue is addressed by using scalable
and fast methods to perform data analysis at whole-genome level at each server. The data harmonization
issue is addressed by combining results using p-values that are independent of how omic data in features
have been recorded.
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4.2.4 GWAS: Federated population stratification, pooled and IPD meta-analysis and poly-
genic risk scores

Genomic data are analysed using the GWASTools and GENESIS Bioconductor packages that allow quality
control (QC) and GWAS using the Genomic Data Storage (GDS) infrastructure to be performed [262].
Section 5.1 in the online book describes how to perform analysis using a single centre containing data from
the CINECA study (see Supplementary data 1), while in Section 5.2 an example of multi-centre data analyses
is described using CINECA data split into three cohorts. As DataSHIELD can deal with computational
resources [254], we have also implemented methods to perform meta-analyses using PLINK and SNPTEST
which are standardly used to perform GWAS using genotyped and imputed SNPs, respectively.

We use the PGS Catalog to calculate polygenic risk scores (PRS, Supplemenary data 8) from curated
literature [263]. As this information can be disclosive, OmicSHIELD calculates PRS for each individual at
each server without any interaction between the cohorts (see Section 6 in the online book). The PRS are
stored on the servers and are considered thereafter as any other covariable. That is, PRS can be used as
part of an association model, but extractions can be obtained only through summary statistics subject to
usual disclosure controls provided by DataSHIELD.

Computing principal components analyses (PCA) is the standard methodology to address populations in
GWAS, but computing federated PCA is missed in other federated GWAS solutions (e.g. FAHME [237] or
sPLINK [247]). Existing approaches use principal components (PCs) estimated at each cohort and these
covariates are then used for the adjustment of association models. However, PCs should be computed
using the entire population to capture genetic differences among individuals [264]. OmicSHIELD is able
to circumvent this issue by adopting the block approach (Supplementary data 5), thus providing a better
solution than any other available elsewhere.

4.2.5 Differential gene expression analysis and EWAS

The DGE and EWAS meta-analyses provided by OmicSHIELD make use of the widely used limma package
[265] that uses ExpressionSet, RangedSummarizedExperiment or GenomicRatioSet Bioconductor infrastruc-
tures to deal with omic and phenotypic (e.g. covariates) information. Section 9 in our online book describes
how to perform DGE from data available in a public repository such as the The Cancer Genome Atlas
(TCGA) project. This corresponds to RNA-seq data which are analysed using limma+voom [266]. We
have implemented functions for using other methods such as DESeq2 and edgeR [267] as well as methods
to analyse microarray data using limma. In this example, we use TCGA data available through the recount
project. There is no need to store either the data or a copy in a new location, even temporarily. Specifically,
it does not need to be loaded into R or uploaded to an Opal server; we simply create a resource in the Opal
server called tcga liver such that the URL is the one available from recount. Then, analysis can be directed
from the local computer, with data access being managed through the Opal server in such a manner that
the risk of disclosure is appropriately controlled: i.e. with inferences based exclusively on the manipulation
of low dimensional summary statistics.

Section 10 in the online book illustrates how to perform EWAS. In this example, we describe how to carry
out analyses using data from two different sources (e.g. two different cohorts or studies). DNA methylation
profiling (Illumina 450K array) of 190 individuals (100 in study 1 and 90 in study 2) is undertaken in the
superior temporal gyrus and prefrontal cortical brain regions of patients with Alzheimer’s (GEO accession
number GSE66351). We are interested in determining differentially methylated probes (DMPs) between
the two regions of the brain. Two resources are created in the Opal server that contain ExpressionSets
with the CpG sites from each study. In this situation, a range of different analyses might be performed.
One may be interested in assessing whether a given CpG is associated with a particular trait or covariate
via an analysis equivalent to one applied if one has access to the whole data set (i.e. 190 individuals) in
a single machine. This would represent a “pooled approach” in a single-site DataSHIELD structure. The
analyses are normally performed using GLMs, as in the case of gene expression data. We can run GLMs
using the ds.glm() DataSHIELD base function, using an approach that is mathematically equivalent to
placing individual-level data from all sources in one central warehouse and analysing those data using the
conventional glm() function in R. Our package permits the analysis of several (or even all) CpGs using
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this approach. In order to speed up the process, we can run limma at each server using our ds.limma()
function and, once the results from each study have been returned to the client, they can be combined using
study-level meta-analysis techniques.

4.2.6 Post-omic analyses and visualization

The pooled approach returns the size effects, standard errors and some annotations of the specific features.
The IPD meta-analysis approach returns study-specific estimates and standard errors generated by the anal-
yses undertaken on each server. These results can then be combined using different meta-analytic techniques.
GWAS use effect size and standard errors, while DGE and EWAS use p-values [236]. Both approaches are
implemented in OmicSHIELD (see Section 5.2.8 in the online book). Once analyses are performed, differ-
ent visualizations can be obtained. The results obtained from this analysis are non-disclosive since they
include only the names of the features (genes, CpGs, SNPs, etc.), the annotation and the corresponding size
effect, p-values and adjusted p-values. For all types of analysis, state-of-the-art plots such as qq-plots and
Manhattan plots can be obtained. For GWAS, a locus zoom plot can also be created.

4.2.7 Use case 1: Multi-centric GWAS of CINECA data

To evaluate our new approach to GWAS analysis, we used a public dataset of synthetic genotype data from
CINECA, information about the data can be found on Supplementary data 1. This dataset has been split
into three different virtual study servers to act as individual study centres. The virtual configuration is
illustrated in fig. 21. The resources with this data are available at the demo Opal server hosted by Obiba
(https://opal-demo.obiba.org/, user: dsuser; password: P@ssw0rd) on the project called OMICS.

Figure 21: Configuration for multi-centric GWAS of CINECA data using OmicSHIELD. To
achieve this configuration, the data from CINECA has been partitioned into three different virtual cohorts,
containing 817, 1073 and 614 individuals respectively. Each virtual cohort contains the genotype information
of the individuals, the amount of variants present for each individual is 865 thousands.

In order to offer new developments to researchers as well as provide traditional methodologies, we describe
how two different approaches can be performed. In the IPD meta-analysis, results are computed at each
study separately and then combined through meta-analysis, while the pooled approach results are computed
using a technique that optimises the model across all servers simultaneously and therefore allows virtually
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pooled results to be obtained without sharing data between the servers (hence reducing both computational
and networking loads). Here, we present in detail the fast pooled GWAS using differential privacy. A
complete example describing traditional meta-analysis is available in Section 5 of the online book.

We compare the results obtained using OmicSHIELD with those obtained by pulling the three datasets into
a single dataset and being analysed with a single computer. We are interested in assessing associations
between SNPs and diabetes, information that is obtained from a variable called ‘diabetes diagnosed doctor‘.
We adjust for other covariates including sex, age and high-density lipoprotein (HDL) cholesterol. The effect
sizes (i.e. beta values) of the top 20 SNPs obtained with OmicSHIELD are compared with the effects
obtained using a single dataset. This comparison yielded a mean square error of 5.3 x 10-4 and a bias of -2.6
x 10-3 which is almost negligible in practical terms (bias in the risk of a given SNP is to the order of 1 in
10000). The Manhattan plot depicted in fig. 22 shows that the top hits among the p-values and the general
trend of significance levels are accurately replicated using OmicSHIELD. We can see that the noise added
by the differential privacy method (-privacy: 3) allows trends to be replicated while ensuring that the top
hits remain significant.

Figure 22: Locus zoom plots of the top hit for the original data (left) and pooled fast GWAS
(right). The red line corresponds to a threshold of significance of -log10(P) ¡ 5 x 10-5. Trends and top hits
are reproduced on the OmicSHIELD analysis, the major differences being found on the SNPs clearly not
relevant.

4.2.8 Use case 2: DGE and EWAS analysis of HELIX data

Here we illustrate how to perform DGE and EWAS of HELIX data, information about the data can be found
on Supplementary data 1. The data infrastructure for this project is depicted in fig. 23. Transcriptome data
are stored in an Opal server as ExpressionSet objects while Epigenome data are stored as GenomicRatioSet,
which are two of the standard Bioconductor infrastructures to deal with this type of omic data [268]. Note
that both types of Bioconductor objects contain phenotypic data (i.e. metadata) encapsulated jointly with
the omic data. All of the datasets are available in the same Opal server using different “resources”. In
both examples, we are interested in comparing gene expression and methylation between males and females
focusing only on the autosomes.
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Figure 23: Opal Data infrastructure of HELIX project.

For the DGE analysis, we analyse microarray data derived using the ”Human Transcriptome Array 2.0”
of Affymetrix. Among the different analyses, we show how to apply IPD meta-analysis with the functions
ds.limma() and metaPvalues(). For each microarray probe, this analysis implements multiple generalized
linear models separately (one per study) and combine the results using study-specific derived p-values. As a
result, we identified a list of 325 probes (mapping 287 genes) differentially expressed between boys and girls
of the HELIX project, and which further passed multiple-testing correction filters (P-value threshold=1.74e-
06). As proof of the ability of OmicSHIELD to be integrated with other R functionalities and Biocon-
ductor packages, we continued the pipeline presenting results of a functional enrichment analysis (FEA).
This analysis shows that significant differentially expressed genes participate in processes with evident and
previously-described sexual dimorphism such is the case of “Longevity regulating pathways” (KEGG Path-
way: hsa04211) (See Section 11.5 in the online book).

For the EWAS data we illustrate how to perform DNA methylation differential analysis using microarray
data obtained with the “Infinium HumanMethylation450k” platform of Illumina. Section 12 in the online
book describes how to compare the DNA methylation levels between boys and girls in the HELIX cohorts.
We illustrate how to perform an epigenome-wide meta-analysis with and without adjusting for surrogate
variables. We also adjusted our models by confounders including age and ethnicity. Consequently, from the
initial list of almost 300k CpGs, we identify a total of 10,417 differential methylated probes between boys
and girls from which only 3 passed the strict Bonferroni multiple-testing correction. Interestingly, two of
these 3 probes, cg12052203 and cg25650246 (mapping the B3GNT1 and RFTN1 respectively), have been
previously associated with sex methylation differences (http://www.ewascatalog.org). The FEA showed
that significant CpGs map genes participating in processes with strong sex differences such is the case of bone
formation (“Endocrine and other factor-regulated calcium reabsorption”, KEGG Pathway: hsa04961).

Aside from the use cases, we have also performed a validation of our software using data from the ATHLETE
project, on the validation we made sure that the results are consistent with the typical local-computation
approach. The results yielded by OmicSHIELD using that data will be included on a methylation research
manuscript. All the details of the validation can be found on Supplementary data 3.

4.3 Discussion

We have presented a software to perform omic analyses using multi-centre studies (i.e. federated data)
with active disclosure protection during analysis and for outputs. Such a tool, based on the paradigm of
DataSHIELD and Opal, provides a great opportunity for researchers to enhance multi centre collaboration by
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establishing a trustworthy platform that brings the analysis to the data, hence avoiding onerous data sharing
procedures. The solution we present is fully open source, enabling researchers not only to contribute their
own developments, but to personally assess and control the disclosure-prevention and differential-privacy
mechanisms. This guarantees the data contributors (e.g. research participants) and custodians (e.g. data
controllers) complete transparency on how data is utilised, something that is central to the philosophy of
the GDPR but is not achievable with commercially licensed software.

OmicSHIELD has implemented state-of-the-art methods in GWAS, transcriptomic and epigenomic data
analysis including methodologies that are missing from existing approaches. For example, for GWAS, we
have implemented quality control (Supplemenyary data 7) of individual studies before performing pooled- or
meta-analyses [261], and non-disclosive pooled principal component analysis (PCA) to adjust for population
stratification in pooled GWAS (something not addressed in FAHME [237] or sPLINK [247]). For transcrip-
tomic and epigenomic studies, we have implemented outlier removal and surrogate variable analysis, and
differential expression analyses using not only limma and voom but also other existing approaches, including
edgeR and DESeq, that could be required, for metagenomics data analyses [267].

OmicSHIELD provides the results one would expect when having all the data combined on a single machine,
however, the data are neither shared between study servers nor stored on an intermediate server. Simply
stated, data never leave the study centers where they are hosted and thus remain fully controlled by their
data owners. Pooled analysis can be beneficial to improve statistical power. However, this approach is not
useful when huge imbalances exist between different datasets. Our software solution includes approaches for
researchers to select the best methods taking into consideration how data have been collected or harmonized,
different types of study designs, and data heterogeneity. Both implemented methods are privacy-protected
using disclosure traps and differential privacy. The disclosure traps and differential privacy are configurable
at the data source level; the decision of whether to apply differential privacy (and it’s -differential privacy)
is dictated by the data manager of each site, and it is possible to have different sites using different config-
urations, thus offering flexibility to multi-center studies where there are different views and regulations on
data protection and disclosure risks.

Currently, there are several European projects that have set up an infrastructure using DataSHIELD to
perform FA. These include UnCoVer [242], ATHLETE [244], LifeCycle [243], InterConnect [269], in addition
to national consortia established in Germany (e.g. INTIMIC [270] and MIRACUM [271]) and Sweden [272].
They started by analysing data addressing clinical and epidemiological scientific questions, but are now also
moving towards including omic data analyses. In this regard, OmicSHIELD will provide a great solution
for performing FA in these large consortia and allow the examination, for instance, of the impact of the
exposome on the epigenome, discover new genetic risk factor for persistent COVID or knowing how the
exposome impacts on human health, among others.

The presented iteration of OmicSHIELD has the potential to reproduce many published papers as well as
be the main driver of new investigative projects; nevertheless, there are many ways this software could be
expanded in the future. Discussion to determine future directions to be taken will be held with researchers
that use our tool for their work; in this way, we can guarantee that future versions of OmicSHIELD will
contain functionalities required by real life projects, ensuring its longevity and quality. Besides having
access to new developments of OmicSHIELD, researchers that choose to use the DataSHIELD ecosystem
will also benefit from the growing array of available open source libraries (https://www.datashield.org/
help/community-packages), thus enabling them to use a wide variety of tools to perform non-disclosive
statistical analyses on their data.
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5.1 Introduction

The exposome [273] is a term used to describe the cumulative impact of environmental exposures on human
health throughout an individual’s lifetime. It encompasses a wide range of exposures, including physical,
chemical, and biological factors, such as air pollution, diet, alcohol consumption, and stress. The exposome
represents a holistic view of the environment and its impact on human health [274], beyond the traditional
focus on specific exposures and diseases. The study of the exposome has the potential to inform the devel-
opment of new prevention and treatment strategies for a wide range of health conditions [275]. For example,
research has shown that exposure to air pollution can increase the risk of cardiovascular disease [275], and
that exposure to toxic chemicals can increase the risk of reproductive problems [276]. By identifying the
environmental exposures that contribute to these and other health conditions, the exposome provides a
framework for understanding the causes and mechanisms of disease, and for developing targeted and effec-
tive prevention strategies. In addition, the exposome has the potential to improve our understanding of
individual susceptibility to disease. For example, genetic and epigenetic variations may interact with envi-
ronmental exposures to influence an individual’s risk of disease [277], and some individuals may be more
susceptible to certain exposures due to their genetic profile. By considering the entire exposome, rather
than just individual exposures, researchers can gain a more comprehensive understanding of the factors that
contribute to health and disease.

Despite the potential of the exposome to advance our understanding of human health, the study of the
exposome is challenging, particularly when working with large and complex datasets that may contain
sensitive personal information [278]. This poses significant privacy and security risks, as well as ethical and
regulatory challenges. For example, the collection and analysis of data on individuals’ lifestyles, behaviors,
and health status may be subject to privacy laws and regulations, which may raise concerns about the use
of personal information for research purposes. To address these challenges, it is important to adopt secure
and privacy-preserving methods for collecting and analyzing exposome data. This involves using appropriate
methods to protect sensitive information and to ensure that only non-disclosive aggregated results are made
available to researchers. In addition, it is important to consider the ethical implications of exposome research,
such as the potential for harm or discrimination, and to ensure that all participants are fully informed about
the purposes and methods of the study.

To achieve the full potential of exposome research while also protecting the privacy and security of par-
ticipants and their data, the use of privacy-preserving methods is crucial. In this context, DataSHIELD
[279] offers a valuable solution. DataSHIELD is a decentralized infrastructure designed to allow for secure
and privacy-preserving analysis of sensitive data. By enabling researchers to perform complex analyses on
datasets without having to access them directly, DataSHIELD provides a secure and ethical framework for
the study of the exposome. DataSHIELD works by allowing researchers to perform complex analyses on
safely stored data without directly accessing it. This is achieved through data warehouses, using Opal [280]
or Armadillo software [281]. Researchers can then perform their analyses on the remote data through a
client-server architecture, with the client (researcher) contacting the server, which returns the results to the
researcher in an aggregated, non-disclosive format. This infrastructure ensures that the underlying data re-
mains secure and confidential, while still allowing for meaningful and robust analysis to be performed.

In this context, we present dsExposome, a DataSHIELD package for performing Exposome data analysis.
The package has been designed to include the required functionalities on a typical Exposome data analysis
pipeline, that is data preprocessing and normalization, identify differentially exposed features, and model
exposome-outcome associations. The application fields of dsExposome include but are not limited to en-
vironmental health, epidemiology, toxicology, and precision medicine. The package can be used to analyze
data from various sources, including population-based studies, cohort studies, and case-control studies. It
can be used to identify potential environmental risk factors for various diseases, including cancer, respiratory
and cardiovascular diseases. dsExposome can also be used for the identification of biomarkers for exposure
to specific environmental agents, which can be used for monitoring environmental health and for the de-
velopment of targeted interventions to reduce exposure. The development of the package has been possible
thanks to the recent advances of DataSHIELD allowing all types of objects to be used (through what is
called resources [282]), which catalyzed the development of our work, as we are able to use a type of objects
called ‘ExposomeSet‘, which are defined on the exposome analysis package ‘rexposome‘ [283].
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5.2 Methods

5.2.1 Opal data warehouse

Opal is a data warehousing system that was created for hosting, documenting and processing data from
epidemiological studies, but has since evolved into a data hub application that controls access to various
external resources and their usage in R analysis environments. As the middleware application for each data
node within the DataSHIELD infrastructure, Opal performs user authentication and authorization, makes
data available in private R server-side sessions, controls which operations can be executed, and tracks user
activity. It acts as a broker between researchers and institutions, with institutions having control over user
access to data and operations.

Opal controls input requests while the algorithms return non-disclosive information through real-time pro-
grammatic interactions via web services. The DataSHIELD client-side API is currently available in R but
can be extended, while the server-side API is written in R and can be used as an entry point to other
computational resources. All user interactions with the R environment are recorded by Opal for auditing
purposes.

5.2.2 Datasets

5.2.2.1 Use case 1

The INMA-Sabadell Cohort’s exposome data analysis focuses on investigating the effects of environmental
factors on the health of children. The data, belonging to the INMA-Sabadell birth cohort [284], contains
information on 88 environmental exposures, 4 health outcomes (rhinitis, whistling chest, flu, and wheezing),
and 4 covariates (sex, age, BMI, and blood pressure) of 109 individuals. The individuals are children born in
Sabadell (Spain) over the years 2004 and 2005, there is almost equality on the sex of the individuals.

5.2.2.2 Use case 2

The synthetic clinical data has been generated based on a study linking long-term fine particulate matter
(PM2.5) exposure and IHR risk [285]. The generated data contains information on 3888 patients, with the
following phenotypes: IHR condition, gender, age, body mass index (BMI), and smoking status, as well as
patient location information in terms of longitude and latitude. The exposure data includes PM2.5, sulfate
(SO4), nitrate (NO3), ammonium (NH4), organic matter(OM), black carbon (BC), mineral dust (SOIL), and
sea salt (SS), which are the annual mean estimates for 2020 obtained from various data sources, including
NASA MODIS [286] and MISR [287], and estimated by the Atmospheric Composition Analysis Group at
Washington University of St. Louis [288].

5.2.2.3 Use case 3

The HELIX project is aimed at understanding the impact of environmental risk factors on the health of
mothers and children, with a special focus on molecular health profiles (omics data). The project is based
on data from six European birth cohorts, including the BiB (Born in Bradford, United Kingdom), EDEN
(Étude des Déterminants pré et postnatals du développement et de la santé de l’ENfant, France), INMA
(INfancia y Medio Ambiente, Spain), KANC (Kaunus Cohort, Lithuania), MoBa (Norwegian Mother and
Child Cohort Study, Norway), and Rhea (Mother-Child Cohort in Crete, Greece) cohorts, and includes a
total of 31,472 mother-child pairs. For the purpose of this study, a sample of 1,301 children between the
ages of 6 and 11, with omics data available, complete environmental history, and no serious health problems,
was selected. The pre-processed transcriptomic and epigenomic data from HELIX are publicly accessible
and have been added to the ISGlobal Opal server as part of the ”HELIX” project, providing a platform for
federated exposome, transcriptomic and epigenomic data analysis. This data set is used on the third use
case.
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5.2.3 Exposome analysis capabilities

Along this section we highlight two distinct analysis capabilities: server-wise and pooled. In server-wise
analysis, the results obtained by the researcher are independent of the server where the data is stored.
For instance, when conducting an association analysis, we obtain the results from each server, which can
be further analyzed using meta-analysis techniques to obtain a global result. Pooled techniques refer to
algorithms that can combine data without physically placing it together. This technique can be advantageous
because, with meta-analysis techniques, statistical power can be lost.

5.2.3.1 Exposome Wide Association Studies

dsExposome main capability is to perform Exposome Wide Association Studies (ExWAS). An ExWAS is a
kind of analysis where multiple generalized linear models (e.g. linear or logistic regressions) are fitted. The
linear models follow the formula:

phenotype of interest exposure + covariates

The same model is fitted for all the available exposures (or the ones we manually select). The results will
then show how each exposure is related to a phenotype, which is represented by a regression coefficient and
a p-value corrected for multiple testing.

Based on inputs from exposome researchers, we also included a variation of the ExWAS, which we call
inverse ExWAS. In this model, we invert the position of the phenotype and exposure variables in the model,
i.e.:

exposure phenotype of interest + covariates

ExWAS can be performed server-wise as a individual patient data IPD meta-analysis approach and it can
also be performed using a pooled approach. To perform the pooled analysis, the function ‘ds.glm‘ from the
dsBase package (core DataSHIELD package) is used. The pooled approach can bring very valuable results,
as it performs the analysis as if all the data was contained in the same data set, although data are not put
together, at any stage of the algorithm.

5.2.3.2 Principal component analysis

Principal component analysis (PCA) is a dimensionality reduction technique. In the study of exposome such
tools are very valuable due to the high dimensionality exposome sets can have [289]. We have developed our
PCA functionality both as server-wise and pooled analysis. In order to do a pooled PCA, we have used a
block method [290].

The PCA method has the drawback of only working with numerical data. Most exposure data is numeric,
although we may need to analyze datasets that contain categorical variables. In order to still be able to
perform dimensionality reduction on them, we have implemented a factor analysis of mixed data (FAMD).
This method can be interpreted as a PCA for the numerical variables and a multiple correspondence analysis
(MCA) for the categorical ones. This method is only implemented server-wise, not pooled.

After performing a PCA/FAMD analysis on the exposome data, the typical following step is to apply a
clustering algorithm in order to understand how the individuals can be grouped. In order to do that we
implemented a hierarchical clustering of principal components (HCPC) [291].

5.2.3.3 Exposome data exploration

Aside from the core analytical functionalities, we also included methods aimed at performing exposome data
exploration. We have included two different methods to check for exposure normality, the methods included
are the Shapiro test and the Anderson-Darling test.

There is also the option to retrieve the summary of a given variable, whether it is numeric or categorical the
summary information will be distinct:

� Numerical
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– Number of observations

– Quantiles

– Mean

� Categorical

– Number of observations

– Category labels

– Counts for each category

Finally, there is a method to retrieve the amount of missing exposure information. The researcher can obtain
a table of percentage of missing and count of missing per exposure.

5.2.3.4 Exposure transformations

If a certain exposure does not follow a gaussian distribution, we can try to apply a conversion to it. For
that reason, we included the option of applying the most typical transformation to selected exposures. The
available transformations methods are 1) logarithm, 2) exponential and 3) square root.

5.2.3.5 Visualization

In order to provide a complete analysis experience, the only missing piece is good visualization of the results.
We provide visualizations for all the different methods of our package.

For the ExWAS we provide a Manhattan plot. On a Manhattan plot the features (exposures) are on the x
axis and on the y axis there are the p-values of the association of the features to the phenotype of interest.
We also included the option of plotting the beta values instead of the p-values. The same plot can also be
used for the inverse ExWAS.

There is a function to visualize the results of the PCA/FAMD analysis. This plotting functionality has been
designed to replicate the type of plots that can be achieved using the traditional on-premises analysis package
‘rexposome‘. It has capabilities of displaying the PCA of the exposures as well as the phenotypes.

For the descriptive analysis, there are a various type of visualizations available:

� Visualization of missing values: Simple bar plot to visually inspect the amount (or percentage) of
missing values present on the exposome data.

� Visualization of exposures: We can visualize using boxplots the numerical exposures. We can filter by
families if we are not interested in all the exposures.

� Visualization of single exposures: We can visualize selected exposures using binned histograms. There
is the option of visualizing the current histogram plus the histograms of the transformed exposure
(using logarithmic, exponential and square root transformations), normality test scores are given in all
cases to assess whether the exposure needs to be transformed.

5.2.3.6 Miscellaneous

Bundled into dsExposome we have included many miscellaneous functionalities that while they do not
necessarily contribute to the analysis, they are of extreme importance when using DataSHIELD. That is
because since we do not have the actual data loaded into our computer, we can’t check for the family names
of the exposures, the number of individuals, exposure names, etc. For that reason, we have distinct functions
to obtain this information that we later need when calling certain functions.

A good example of why those functions are necessary would be visualizing a histogram of a certain exposure,
we need to be able to retrieve the exposure names in order to pass that information to the plotting function.
Also, if we want to perform an ExWAS, it is important to know which covariables are available and their exact
naming. In theory most of that information should be available to the researchers via codebooks established
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by the different cohorts; nevertheless, it is always better to have actual access to that information just in
case there is a mismatch between the dataset and the codebook.

5.3 Results

5.3.1 Use case 1

In the first use case, we will demonstrate the capabilities of the dsExposome package and DataSHIELD
infrastructure for performing a pooled Exposome-Wide Association Study (ExWAS) on exposome data from
the INMA-Sabadell cohort. The data consists of 88 exposures and 109 individuals, divided into two cohorts
of 51 and 58 individuals respectively, stored on two different Opal servers. The fig. 24 illustrates the infras-
tructure of this use case, showcasing the decentralization of the data and the secure nature of the analysis
performed through DataSHIELD. By utilizing dsExposome and DataSHIELD, we aim to demonstrate the
potential of this approach for large-scale exposome studies, advancing our understanding of the relationship
between environmental exposures and human health.

Figure 24: Architecture of the Exposome Analysis Use Case, which consists of two different Opal servers
storing the INMA-Sabadell exposome data of 88 exposures and 109 individuals, divided into two cohorts
of 51 and 58 individuals, respectively. The data is securely stored on each server and is available to the
researcher through non-disclosive aggregated results.

Performing a pooled analysis with the dsExposome package on the DataSHIELD infrastructure means that
the results we receive are the same as if we had all the data together in the same dataset. This provides a
significant advantage over traditional meta-analysis studies, where results are often limited by the hetero-
geneity of the data or the inability to pool data from multiple sources. This offers the ability to analyze
the combined data from two different opal servers as if it were one dataset, providing a robust and secure
approach to exposome analysis.

The results of the analysis of the relationship between the air pollutants and metal exposures with the flu
health condition can be found in fig. 25, this figure has been generated with functions already available on
dsExposome, there is no need of sourcing third party libraries for visualizing results. The figure presents
the results in the form of a Manhattan plot, which graphically depicts the impact of different exposures on
the incidence of the flu health condition. The Manhattan plot provides valuable insights into the potential
relationship between the exposures and the health condition, allowing for easy interpretation and analysis
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of the results.

Figure 25: Manhattan plot of the ExWAS analysis results showing the relationship between air pollutants
and metals exposures to the ‘flu‘ health condition on a pooled analysis of two cohorts. The horizontal red
line represents the significance threshold of p-value = 0.05.

By interpreting the Manhattan plot that we have obtained on this use case, we can see that the Arsenic
exposure has a significant positive correlation with the flu health condition without adjusting using other
co-variates. This output falls in line with previous peer-reviewed studies linking Arsenic intake to respiratory
conditions [292].

5.3.2 Use case 2

In the second use case described in this paper, we analyze synthetic clinical data related to ischemic heart
disease (IHR) with the added factor of geolocation data to provide insight into air exposures. This study
aims to utilize the dsExposome package to conduct an Exposome-Wide Association Study (ExWAS) that
links the housing location of patients to the corresponding exposure values while ensuring that sensitive
information remains secure and protected from unauthorized access.

For this use case we will use a synthetically generated dataset, which contains 3888 individuals and various
phenotypes, including age, gender and IHR health condition. The data has been generated so that we will
observe a relationship between PM2.5 exposure and IHR condition. In order to obtain the PM2.5 exposure
values for each patient, we will link the home location (included on the generated synthetic data) and real
world geolocated PM2.5 exposure values.

The geolocated information is contained inside NetCDF files [293], which are not directly accessible to the
client. Instead, the client can only utilize the data they contain as a covariable in the exposome analysis.
This enhances the privacy and security of the underlying data and ensures that sensitive information is not
vulnerable to unauthorized access or misuse.
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Overall, this use case showcases the versatility and power of DataSHIELD in the analysis of complex, multi-
modal sensitive data.

The fig. 26 provides an overview of the architecture for this use case, showcasing how the synthetic clin-
ical data and NetCDF sources are all stored on the Opal server, linked together, and made available for
analysis.

Figure 26: Architecture of the Geospatial Data Use Case. The diagram illustrates the setup of the study,
with the clinical data and geospatial data securely stored on a single Opal server.

In fig. 22, we showcase the geospatial representation of the mean ground-level PM2.5 data of 2020 in the
USA. It is important to note that, despite the ability to use this information as a covariable in our analysis,
the client does not have access to the raw data and is unable to generate this map themselves. The map is
shown purely to provide an insight into the appearance of the data.
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Figure 27: Visualization of Mean Ground-Level Fine Particulate Matter (PM2.5) Data for the USA in 2020.
This map serves only for illustrative purposes and the client is not able to generate it. The data has been
extracted from a NetCDF data source that is securely stored on the Opal server.

With all this data at our disposal, we can use DataSHIELD and dsExposome to perform the proposed ExWAS
analysis. More precisely, we will assess the relationship of the different geo-located exposures to the IHR
condition adjusted by gender and smoke condition (smoker/non-smoker). The results of this analysis can be
seen on the fig. 23 in the form of a Manhattan plot. This plot displays the association between each exposure
and the IHR health condition. The plot illustrates the impact of including this additional information on the
analysis, and provides insight into the potential relationship between the different exposures and the IHR
health condition. As expected, we obtain a significant association between the health condition and PM2.5
as we generated our synthetic data to have this association. Nevertheless, it is an indicator that 1) we have
successfully related patient location data to geo-location exposure data, and 2) the ExWAS results of the
dsExposome package are reliable.
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Figure 28: Manhattan plot of the ExWAS analysis results showing the relationship between different geolo-
cated air exposures and IHR health condition. The horizontal red line represents the significance threshold
of p-value = 0.05.

5.3.3 Use case 3

This third use case aims to demonstrate the capabilities of the dsExposome package and DataSHIELD
infrastructure for performing an exposome analysis on a multi-centre study framework, this time with real
data from the HELIX study [294], a European multi-cohort exposome collaborative effort. The focus is on
applying an ExWAS to obtain a real relationship between a health condition and different exposures. To
highlight the potential of DataSHIELD in this context, the use case replicates published analyses investigating
the association between a range of prenatal and postnatal exposures and blood pressure in children, which was
conducted by Warembourg et al. [295] following traditional techniques: data transfers between collaborating
centers and study of it on-premises.

The original study found that a variety of internal and external exposures impact both diastolic and systolic
blood pressure readings. For the purpose of simplicity, we will only replicate the results reported for postnatal
exposures and systolic blood pressure. These results use as confounding factors the child age, child height,
child sex, child cohort, mother’s age at the moment of birth and mother’s BMI at the moment of birth.

As seen on the first use case, when performing an ExWAS with dsExposome, we can do it as a pooled analysis,
which provides a great advantage over traditional meta-analysis methods. However, when dealing with real
world data instead of synthetic datasets generated for demonstration purposes, we do not always have the
opportunity to use this advance, as poorly harmonized datasets could play against our purposes. Fortunately,
the HELIX data used for this use case was well harmonized, so we performed a pooled analysis.

The comparison of our analysis results with the published ones is presented in table 6, we present the
significant exposures found by the publication and their p-values and compare it to the p-values we found.
We observe that the most significant findings obtained using dsExposome are like those in the paper we
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aimed to replicate. However, it’s worth noting that our pipeline doesn’t exactly reproduce the methodology
used in the publication and thus, the results may not be exactly the same. We can clearly see how overall
the p-value magnitude order as well as beta sign is consistent across the board; the beta values present a
greater value variance, but never a sign difference.

Table 6: Results presented on the publication by Warembourg et. al (2019) compared to the results ob-
tained on the same analysis using dsExposome. The table contains information on the 11 top hits from the
publication.

Exposure Publication p-val dsExposome p-val Publication beta dsExposome beta
DDE 0.00000 0.00000 -2.10 -1.47
HCB 0.00000 0.00000 -2.05 -3.97
PCB 153 0.00009 0.00012 -1.90 -2.24
PCB 170 0.00068 0.00036 -1.73 -1.14
PBDE 153 0.00093 0.00298 -1.66 -0.49
PCB 138 0.00099 0.00061 -1.54 -1.89
PCB 180 0.00142 0.00037 -1.77 -1.23
PCB 118 0.00337 0.00603 -1.07 -1.80
MBzP 0.01069 0.00741 -0.87 -0.89
MEHP 0.02466 0.04348 -0.80 -0.73
Indoor benzene 0.04105 0.04424 0.78 2.47

In summary, with this use case we highlight the ability of dsExposome to provide valuable results in real
world multi-centre studies, such as the HELIX study. By replicating the findings of Warembourg et al. and
demonstrating the compatibility with real world data, we further establish dsExposome as a valuable tool
for exposome researchers.

If the reader is interested in replicating the use cases, we have made available a selection of supplementary ma-
terialat: https://isglobal-brge.github.io/Supplementary-Material/. The user guides contain step-
by-step commented code of how to reproduce the presented use cases using dsExposome and DataSHIELD.
Also, we have uploaded the raw data for use cases 1 and 2, so that the reader can reproduce the results
both using DataSHIELD and traditional techniques (on-premises analysis) in order to properly assess the
veracity of the results provided by our solution. For the use case 3 the raw data and DataSHIELD access
will be provided upon reasonable request.

5.4 Discussion

The study of the exposome has the potential to revolutionize our understanding of human health and disease,
by providing a holistic view of the impact of environmental exposures on health. However, the study of the
exposome is challenging, particularly when working with large and complex datasets that may contain
sensitive personal information, which poses significant privacy and security risks, as well as ethical and
regulatory challenges. To address these challenges, it is important to adopt secure and privacy-preserving
methods for collecting and analyzing exposome data.

The DataSHIELD infrastructure provides a solution to these challenges by enabling secure and privacy-
preserving analysis of sensitive data. By allowing researchers to perform complex analyses on datasets
without having to access them directly, DataSHIELD provides a secure and ethical framework for the study
of the exposome. This is achieved using data warehouses, such as Opal or Armadillo, and the client-server
architecture of DataSHIELD, which ensures that the underlying data remains secure and confidential, while
still allowing for meaningful and robust analysis to be performed.

Here we present dsExposome, an open-source package that gathers the main tools and methods employed in
the study of the exposome. These tools include data preprocessing, machine learning methods such as PCA,
clustering and association analyses. Our solution is written using R and is embedded inside the DataSHIELD
ecosystem of packages, which further increases the value of our proposition, given that the researchers can

102

https://isglobal-brge.github.io/Supplementary-Material/


5 DSEXPOSOME: SECURE AND PRIVACY-PRESERVING EXPOSOME ANALYSIS USING THE
DATASHIELD INFRASTRUCTURE Ph.D. Thesis

integrate different techniques on their analyses. For example, they can also have access to non-disclosive
Lasso regression methods to be used with the exposome data. Such integration is a key for the quality of
the exposome research of the future, which as we demonstrated can rely on non-disclosive techniques.

This study showcases the effectiveness of the dsExposome package and DataSHIELD infrastructure in con-
ducting meaningful exposome analysis across various scenarios. Especially it is important to remark the
third use case, which indicates the potential and viability of this approach in conducting exposome research
while ensuring the protection of individuals’ privacy and data security.

The results we presented offer various perspectives on what our software is capable of. Initially, we empha-
sized on two separate use cases using both synthetic and public data, allowing interested readers to conduct
the same analysis locally and verify the results our solution provides for transparency. In the third use case,
we demonstrated the effectiveness of our product by obtaining meaningful results in a real-world application.
Our findings were not an exact match to the previously published study, but this was not the goal of our
package. Instead, we aimed to create a flexible and adaptable foundation for non-disclosive exposome data
analysis, and we achieved this by making the software open-source and receptive to new functionalities from
developers. This approach allows researchers to tailor the package to their specific analysis needs on future
projects, ensuring the most useful and relevant results.

Overall, the DataSHIELD infrastructure and dsExposome package provide a valuable solution for the study
of the exposome, by enabling secure and privacy-preserving analysis of sensitive data, and by allowing
researchers to perform complex analyses without compromising the privacy of the individuals represented in
the data. As such, this approach represents a significant step forward in the development of a secure and
ethical framework for the study of the exposome.
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6.1 Introduction

Data privacy continues to be a central concern in contemporary research [296]. There are many ethico-legal
considerations, including requirements under General Data Protection Regulation (GDPR), that must be
taken into account when planning and configuring an analysis involving sensitive data; in particular mitigat-
ing the risk of individual identification. Such considerations have a huge impact on the feasibility and time
to carry out multi-cohort studies and genomic studies, which rely on obtaining permissions to access and
share sensitive data[297]. DataSHIELD is an open-source software infrastructure aimed at facilitating an
effective and appropriate response to such challenges [298, 299]. To achieve this, DataSHIELD represents an
infrastructure where the researchers only ever receive sufficient statistics (low dimensional data transforma-
tions/aggregations containing all of the information needed to drive whatever analysis is required) from each
of the different data servers, while the servers themselves manage their data using Obiba’s Opal technology
[300]. The data owners/custodians manage these servers, and have sole control of the disclosure filters that
are applied to the outputs, as well as the set of DataSHIELD functions that can be used on their data. This
enables researchers to perform analyses on federated data without the need to possess physical copies of the
data from each source. On the DataSHIELD website (https://www.datashield.org/help) the reader can
find information on how to:

1. Conduct basic statistical analyses

2. Administrate the servers

3. Deploy DataSHIELD functions and packages

Recently, DataSHIELD has seen a major upgrade focused on expanding the scope of which types of data
can be analysed [301], which results in the ability to analyse high volume, potentially non-tabular, data such
as genomics data structures among many others. Many science fields can now make use of this extension,
and therefore it is important to make DataSHIELD easier to use for non-technical users. The DataSHIELD
infrastructure includes a series of R packages that enables the remote and non-disclosive analysis of sensitive
data (https://www.datashield.org/help/community-packages). The software described in this article
uses a subset of functionalities from the dsBase [302] package for data shaping, analysis and presentation
methods, the dsSurvival [303] package for survival analysis and the dsOmics [304] package for omics analysis.
We present ShinyDataSHIELD, an R Shiny [305] application that enables interaction with the DataSHIELD
analysis infrastructure via a web application, providing capabilities to perform federated non-disclosive anal-
ysis for non-technical users. We have designed the application to provide a user-friendly experience that
frees the researcher from writing any analysis code.

6.2 Implementation

The following list describes all the functionalities of the software presented, which can be used in two
configurations: (1) single data sources; (2) multiple data sources in a federated configuration. The single-
source configuration invokes all of the privacy protection features of DataSHIELD but, by definition, has
no need to activate the routines and algorithms permitting federated co-analysis across multiple sites. For
further information we have made available an online user-guide with different use cases and technical
information (https://isglobal-brge.github.io/ShinyDataSHIELD_bookdown/). All the functionalities
use DataSHIELD disclosure controls.

Tabular data functionalities:

1. Data column types: When dealing with tabular data a researcher may be interested in: 1) Assessing
the column class; and 2) Transforming the class of a column. Both functionalities are available.

2. Descriptive statistics: There are a number of functions that can display descriptive statistics in two
different ways:

(a) Summary statistics: Available for numeric and categorical variables. It displays a table with
summary statistics. For categorical variables it displays the number of counts in each category,
and for numerical variables, the quartiles and the mean values.
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(b) Graphical representations: 1) Scatter plot, to visualize the relationship between two numerical
variables; 2) Histogram, to visualize the distribution of a numerical variable; 3) Heatmap, to
visualize the density of counts in grids formed by two numerical variables; 4) Boxplot, to visualize
the locality and spread of one or more numerical variables, with the option of performing two
groupings using categorical variables. All graphical representations preserve data privacy as they
are generated through anonymisation techniques or disclosure controls [306].

3. Statistical modelling: There are three classes of statistical models that can be fit.

(a) Generalized linear models (GLM): GLM models can be fitted using pooled techniques or meta-
analysis techniques (study-level meta-analysis fitting will also yield a forest plot of the results as
well as the regression results table). For both approaches the user can specify the error distribution
to be either Gaussian, Poisson or binomial for linear, poisson and logistic regressions respectively.

(b) Generalized linear mixed effects models (GLMer): GLMer models are fitted using meta-analysis
techniques (a forest plot is displayed alongside the results table). The user can specify the error
distribution to be either Poisson or binomial.

(c) Survival analysis: Survival analysis can be performed via a study-level meta-analysis of Cox
regression models. The models can be fitted for different types of censoring: left, right, counting
and intervals. The regression results are displayed in a table and a forest plot, while privacy-
preserving survival curves are also displayed.

Resources functionalities:

1. Genomics: Genome-wide association study (GWAS) can be performed using two types of resources:
VCF (Variant Call Format) files and PLINK containers. The VCF files are analysed using BioCon-
ductor libraries (GWASTools [307] mainly), while PLINK containers are analysed using the PLINK
software [308]. The GWAS results can be visualized as a table or as a Manhattan plot [309].

2. Omics: Perform association analysis using Limma [310]. The accepted resources for this analysis are
ExpressionSet and RangedSummarizedExperiment containers [311].

Miscellaneous functionalities:

The miscellaneous functionalities are not part of DataSHIELD, they are part of the software that improves
the user experience.

1. Plot editor: There is a built-in plot editor that allows some simple customization for the generated
plots. This editor has been built using the ggplot2 and the ggthemr [312] R packages. The options
that the plot editor offers are: 1) Change text size; 2) Change X-axis text angle; 3) Add title, subtitle
and caption; 4) Custom labels for X and Y axes; 5) Custom legend label (if there is a legend to be
customized); 6) Colour themes.

ShinyDataSHIELD has been implemented using a modular approach where all the modules have the same
design, so there is no confusion when using different functionalities. Each one of the different modules
performs a single task: a module for statistical modelling, a module for descriptive analysis, etc. This
guarantees that the application will be easy to upgrade and the source code will be easier to read for future
maintainers.

The language for interacting with the modules follows a similar pattern , which in our application is the
following: 1) When entering a module, the researcher must select the tables or resources to be used. Internal
checks are always performed on the selected items to ensure the functions of the module will not crash; 2)
The buttons are disabled until the researcher performs an operation that requires them, e.g. the visualization
buttons for the survival models are not available until a survival model is fitted. This shared language ensures
a consistent experience.

Operating in the background, R Shiny provides executive control of the functions in the different DataSHIELD
packages, thus providing a seamless experience for the researcher, who simply receives the aggregated results
as tables and figures interacting with a web-application.
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6.3 Use

In this section we will explain how to use the software. As previously mentioned, there is a common structure
across all the functionalities described that provides for a friendly user experience. With this provision, the
typical experience of a ShinyDataSHIELD user should be both easy and intuitive. A key component of our
software is that there are multiple checks that display human readable error messages, helping the users
understand the reason something is not working. If the reader wishes to reproduce the displayed screenshots
using our software, he/she can refer to the online user guide.

The first step is to define which Opal servers will be used, the credentials to be applied to them and which
tables or resources have to be loaded into the remote R sessions hosted at the Opal servers. It is in this step
where we define whether we want to use a single data source or multiple. To define multiple data sources,
we just have to add more servers. This allows us to perform pooled analysis – combining inferences across
all the specified servers. Once we have performed the connections, we only have access to the particular set
of datasets we have selected. If we wish to use different ones, we have to disconnect and reconnect again
specifying the new set of data sets we now require. This step is illustrated in fig. 29.

Figure 29: Connections interface. The illustrated configuration is a single server data source configuration
with three different tables selected.

The next step is to select which of the array of data available on each server should be used. This can sound
counterintuitive given we just selected the data to load in the previous step. However, it adds flexibility, for
example we can load multiple datasets and study them separately without having to disconnect. Moreover,
it is at this point where the data is checked for integrity for doing pooled analysis. This ensures that the
tables contain equivalent variables. This step is illustrated in fig. 30.
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Figure 30: Selecting the tables to use. We can see, following Figure 1, that we have three available tables.

With this last step completed, we are inside the module that we have selected. Now we can finally use our
data to undertake the desired statistical data analyses. All the modules have multiple functionalities, for
example the descriptive analysis module has different visualization options (see Section 3.3 in the bookdown),
all the functionalities available are displayed along the navigation tabs of each module (see fig. 30). Linear,
generalized linear and survival models can also be fitted using our shiny app as described in section 3.4 in
the bookdown.

There are other modules that have functionalities that can only be used when a certain action has been
performed. This is very easy and intuitive for the users, for example, the genomics module can perform a
GWAS and it can also plot the results (e.g. Manhattan plot). But, the plot can only be created once a
GWAS analysis has been performed (see Section 3.5 in the bookdown).

Having followed all the steps described above, the user is now in a position to perform any of the analyses
described in the Implementation section.

6.4 Discussion

ShinyDataSHIELD is a novel R Shiny application that enables federated non-disclosive analyses for non-
technical users. The goal of our software is to make the DataSHIELD infrastructure more accessible to
researchers without R skills, as well as providing a platform for researchers experienced in DataSHIELD
to perform quick hypothesis prototypes and quick analyses without the burden of writing a new analysis
pipeline within R. For reference, even a basic pipeline aimed at fitting a linear model, while necessarily
incorporating appropriate check code, may typically require anywhere from 25 to 50 lines of code. However,
despite benefitting from the simplicity provided by ShinyDataSHIELD the researcher is not freed from the
need to ensure that he/she is correctly interpreting the statistical results obtained from the application and
that all models are built upon correct assumptions.

Our software is designed around core DataSHIELD functionalities and will be expanded as new functionalities
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and packages are available. With the current version of the Shiny app the plot editor can only be used for
customizing Box plots, but we aim to make this functionality available for all other types of plots in a
future release. Also, new functionalities will be added if researchers request them. Moreover, other research
groups could take the source code and modify it to suit their particular needs. Since our software wraps
DataSHIELD functions, periodical revisions from the maintainers will be required when new versions of
DataSHIELD are released, to ensure that no wrappers are broken.

In conclusion, helping researchers to adopt non-disclosive methods for potentially federated analyses is in-
evitably a challenging task. When using DataSHIELD via its traditional integrated development environment
this involves learning DataSHIELD syntax. By providing a user-friendly Shiny R based tool that can simplify
the procedures and shorten the learning curve, we believe that this article and the technical work program
underpinning it can contribute towards an accelerated adoption of such methods as well as demonstrating
the capabilities of DataSHIELD. We hope that this will encourage researchers interested in the technology to
explore its capabilities and test them out for themselves. Given ongoing developments in ShinyDataSHIELD
as well as rapid evolution of the DataSHIELD infrastructure itself, ShinyDataSHIELD will be actively main-
tained and upgraded in the years to come, so that all the novel functionalities introduced by the DataSHIELD
community can be used and be utilized in on our application.
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7.1 Introduction

Alongside developing the contents presented on this manuscript in the form of published papers, some other
work was developed but was never intended to be published. This work is a DataSHIELD analysis package,
named dsMLClient. This package was designed with the intention of integrating various machine learning
methodologies within the DataSHIELD infrastructure. The dsMLClient tried to offer a new way of doing
machine learning tasks. It did this by stepping away from the normal server-based approach used in the
current DataSHIELD machine learning tools.

The primary goal was to adapt traditional machine learning methods and transform them into a comprehen-
sive package that could operate as a pooled algorithm across multiple servers. The intent was to construct
an analysis package that could extend the reach of machine learning methods into the DataSHIELD ecosys-
tem.

Even though it was envisioned as a proof-of-concept, there was still a great emphasis on disclosure prevention,
so all the methodologies were developed and implemented with that in mind. The other emphasis of this
work was to implement all the methodologies so they could operate in a pooled configuration, making them
very useful for multi-cohort projects.

In addition to dsMLClient, a significant contribution was made to extend the existing dsSurvival package.
Originating from a specific need in the unCoVer study for pooled survival analysis, a new method based on
survival tables was added. This extension not only allows for meta-analysis but also provides the capability
for pooled survival analysis, thereby significantly enhancing the package’s versatility and the scope of research
that can be carried out using DataSHIELD.

On the following sections we will discuss the work what was done, pointing out the technical details of the
different methods implemented.

7.2 Design and Development

Machine learning

The beginning of the dsMLClient package originated in the need for a more sophisticated range of methods
that could enhance the DataSHIELD ecosystem’s capacity. We recognized a growing demand among current
and potential users for more advanced, yet accessible, methodologies within their projects. It became clear
that there was a gap in the capabilities of DataSHIELD.

One of the available packages at the time was dsSwissKnife, developed by the Swiss Bioinformatics Institute.
Despite its potential, it fell short in addressing some of the fundamental requirements of the DataSHIELD
community. Specifically, it lacked support for pooled analysis methods, a very powerful feature for facilitating
analysis across multiple servers. Furthermore, it failed to implement non-disclosure mechanisms, essential
for preserving data privacy within the DataSHIELD infrastructure.

Motivated by the limitations of dsSwissKnife and driven by the need for a more comprehensive solution,
we embarked on developing the dsMLClient package. Our strategy was to initially focus on implementing
basic methods as a proof of concept. This would allow us to demonstrate the viability of the concept before
committing to more complex functionality.

Even though this was a proof of concept phase, we still commited our efforts to make sure that there were
non-diclosure checks and mechanisms. Making sure that the prototype is well suited to comply with the
DataSHIELD standards. As a result, the final product is suitable to be considered to be used with real world
data.

Survival analysis

The enhancement of the dsSurvival package was born out of both necessity and opportunity. While the
original package had made strides in providing survival analysis capabilities within the DataSHIELD ecosys-
tem, it was not without its limitations. Specifically, the package was initially tailored to meta-study survival
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analyses, which although valuable, did not fully capitalize on DataSHIELD’s inherent strength—pooling
data across multiple centers to achieve higher statistical power.

Enter the unCoVer study—a pivotal catalyst that accelerated the timeline of this development. While the
unCoVer study initially reached out to us for aid in implementing pooled survival analysis, the need for such
a functionality had been looming in our minds. The essence of DataSHIELD lies in its capability to facilitate
secure multi-center analyses, a promise that could only be fully realized through pooled analyses.

The journey of incorporating this new feature was relatively streamlined in terms of time but presented
its unique set of challenges. The core hurdle was ensuring the harmonious merging of non-disclosive data
received from different study servers. Another layer of complexity was added as we entered debates about
how the returned data to the client should be appropriately filtered to remain non-disclosive.

The result is a significantly augmented dsSurvival package that is capable of elevating any survival analysis
that involves multi-study, harmonized data. This extension is not just a reactionary development to meet the
immediate needs of a specific project; it represents a thoughtful expansion that underscores DataSHIELD’s
commitment to both data privacy and rigorous, multi-faceted statistical analyses.

7.3 Features and Functionality

Machine learning

The dsMLClient package was designed with a blend of diverse methodologies to offer users a useful range
of analytical tools within the DataSHIELD ecosystem. Four key methods form the core of this package: 1)
Singular Value Decomposition (SVD), 2) k-means clustering, 3) k-nearest neighbors (kNN), and 4) Factor
Analysis of Mixed Data (FAMD). These were selected based on their wide-ranging applications and potential
to improve the quality and depth of analyses within the DataSHIELD ecosystem.

7.3.1 Singular Value Decomposition (SVD)

SVD is a matrix factorization method commonly used for dimensionality reduction, noise reduction, and the
identification of underlying latent variables. The implementation of SVD offers users a powerful tool for han-
dling high-dimensional data and uncovering patterns and relationships that might otherwise be missed.

7.3.1.1 Statistical method implemented

Implementing Singular Value Decomposition (SVD) in a distributed environment presents unique challenges,
primarily due to the need to work across separate datasets while still extracting meaningful, unified patterns.
To address this, a block method was utilized in dsMLClient[313].

The block method is a procedure that hinges on the division of the entire dataset into multiple sub-datasets
or ’blocks’. These blocks are processed individually, and a SVD is computed for each, yielding respective U
(left singular vectors) and Σ (singular values). This approach allows for the partitioning of computational
load across servers, thereby optimizing performance.

After the individual SVD computations, the results are merged into a composite matrix, essentially creating
a condensed representation of the original data from across all servers. This merged matrix then undergoes
a final SVD. The end product is a set of singular vectors and singular values that reflect the structure of the
entire dataset, despite it being processed in blocks.

The steps can be summarized as follows:

1. Divide the Dataset: Partition the entire dataset into manageable ’blocks’ or sub-datasets.

2. Compute Individual SVDs: Perform SVD on each sub-dataset, resulting in sets of U and Σ.

3. Merge Results: Combine all U and Σ into a single matrix that encapsulates the information from
all sub-datasets.
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Figure 31: SVD block method schematic. Extracted from Iwen et al.[313]

4. Perform Final SVD: Execute an additional SVD on the merged matrix, resulting in a final set of U
(left singular vectors), Σ (singular values), and V (right singular vectors).

This steps are illustrated on fig. 31.

For this SVD implementation, only the numerical columns of the datasets are considered, while non-numerical
columns (e.g., factors, characters) are omitted from the analysis. This decision ensures the mathematical
validity of the SVD, as the method is primarily designed to work with numerical data.

To accommodate datasets of varying sizes, the client-side SVD offers two versions: a full SVD and a truncated
SVD. The full SVD is generally used for smaller datasets where computational resources are not a limiting
factor. For larger datasets, where computing the full SVD might be resource-intensive, a truncated SVD
is employed. The truncated SVD provides an approximation of the full SVD and significantly reduces
computational load, thereby enabling analysis of larger datasets.

In sum, the block method implementation of SVD in the dsMLClient package presents a robust, privacy-
preserving, and scalable solution for distributed data analysis within the DataSHIELD ecosystem.

7.3.2 k-means Clustering

k-means is an unsupervised learning algorithm often used to divide datasets into meaningful groups or
clusters. The inclusion of k-means in the dsMLClient package equips users with the ability to explore and
interpret the natural structure of their datasets, which can be crucial for a range of tasks including market
segmentation, anomaly detection, and data pre-processing.

7.3.2.1 Statistical method implemented

For the implementation of k-means clustering within the dsMLClient package, a parallel k-means algorithm
was used[314]. This approach builds on the traditional k-means algorithm, allowing it to efficiently work
across distributed datasets, which is a key characteristic of the DataSHIELD ecosystem.
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In a parallel k-means algorithm, the k-means clustering process is independently computed for each block or
partition of the dataset (horizontally partitioned). This computation generates a set of ’local’ centroids for
each block. These local centroids are then transmitted to the client, where they are merged and averaged,
taking into account the number of data points associated with each centroid.

The parallel k-means algorithm follows an iterative process. After the initial computation of local centroids
and their subsequent merging, the new set of ’global’ centroids is sent back to the servers. Each server then
recomputes the k-means clustering based on these new centroids, and the process repeats. This iterative
procedure continues until one of two stopping conditions is met:

1. The change in centroid positions (known as the learning rate) falls below a pre-specified threshold.
This condition suggests that the centroids have largely stabilized and further iterations are unlikely to
yield significant changes.

2. A maximum number of iterations is reached. This condition serves as a fail-safe to prevent the algorithm
from running indefinitely in cases where the centroids continue to shift.

Here is a high-level description of the process (a detailed flowchart is available on fig. 32):

1. Initial Centroid Selection: Initial centroids are either randomly selected or specified by the user.

2. Local k-means Calculation: Each server independently applies the k-means algorithm to its local
dataset, using the current global centroids.

3. Centroid Aggregation: Each server calculates the local centroids and the count of data points
assigned to each centroid. This information is sent to the client.

4. Global Centroid Calculation: At the client side, the received local centroids and counts are used
to compute the new global centroids. The global centroids are calculated as the weighted average of
local centroids, with the weights being the number of data points assigned to each centroid.

5. Centroid Update and Iteration: The new global centroids are sent back to the servers and used
for the next round of local k-means calculation. The process repeats until the stopping conditions are
met.

From a data privacy perspective, the only information sent back to the client are the local centroids, the
count of data points for each centroid, and the assignment labels. The local centroids are aggregated results
that can’t be traced back to the original data, preserving privacy. The counts are also non-disclosive as
they merely provide a count of data points per cluster. Finally, the assignment labels, which indicate which
cluster each data point belongs to, contain no intrinsic information about the data points themselves, further
protecting privacy.

7.3.2.2 Results Visualization for k-means Clustering

In the dsMLClient package, k-means clustering results are visualized using a scatter plot enhanced with
cluster ellipses. This graphical representation is a straightforward and effective way to display the results of
the k-means algorithm.

Remember, the key to interpreting such a scatter plot is to consider not just the individual points, but also
the larger patterns formed by the clusters and their ellipses. These patterns can provide key insights into
the structure of your data and the effectiveness of your clustering.

An example of the visualization created by dsMLClient can be seen in fig. 33.
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Figure 32: K-means flowchart
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Figure 33: K-means scatter plot visualization

7.3.3 k-nearest neighbors (kNN)

kNN is a type of instance-based learning method that can be used for both classification and regression
tasks. With kNN, users of dsMLClient can draw on their data’s inherent structure to predict outcomes for
new instances, based on the characteristics of ’neighboring’ data points.

7.3.3.1 Statistical method implemented

In the dsMLClient package, a parallel version of the k-Nearest Neighbors (kNN) algorithm has been imple-
mented, inspired by the work of Liang et al [315]. This version is adapted to work with distributed datasets
in a manner similar to the implementation of the k-means algorithm.

The core idea behind the kNN algorithm is to classify a data point based on the labels of its ’k’ nearest
neighbors in the feature space. In the context of parallel computation across distributed datasets, this process
involves several key steps (illustrated on fig. 34):

1. Data Point Transmission: A data point that needs to be classified is sent to all servers.

2. Local kNN Calculation: Each server finds the ’k’ closest data points to the query data point within
its local dataset, along with their classification labels.

3. Results Aggregation: The sets of ’k’ closest neighbors and their labels from all servers are sent back
to the client.

4. Final Decision: The client aggregates all the received neighbors and their labels. The final classifi-
cation of the query data point is determined based on majority voting among the aggregated labels.

121



7 BREAKTHROUGHS BEYOND PUBLISHED WORK Ph.D. Thesis

Figure 34: KNN flowchart

Unlike the k-means algorithm, there is no iterative process involved in the kNN algorithm. Once the final
decision is made based on the aggregated closest neighbors, the classification for the query data point is
finalized.

The implementation of the parallel kNN algorithm in dsMLClient employs a privacy-preserving method to
mitigate potential data disclosure risks. This approach addresses a specific risk in the kNN algorithm: if a
user queries a data point that exactly matches a point in the dataset, the returned distance from the server
will be zero, revealing that an exact match exists in the dataset.

To circumvent this disclosure risk, the implementation utilizes a similar anonymization process as used in the
scatterPlotDS1 function. The principle idea is to add noise to the dataset when computing the distance.
This additional step ensures that the client can never definitively confirm whether a queried point exactly
matches a point in the dataset.

However, the introduction of noise brings a trade-off: while it reduces the risk of data disclosure, it intro-
duces a degree of uncertainty into the classification process. The altered distances due to noise addition
can potentially affect the identification of ’k’ nearest neighbors and, consequently, the final classification
decision.

Despite this trade-off, the privacy-preserving implementation of kNN within the dsMLClient package offers
a balance between maintaining data privacy and enabling distributed classification tasks.

7.3.4 Factor Analysis of Mixed Data (FAMD)

FAMD is a multivariate data analysis method suitable for datasets with a mixture of continuous and cate-
gorical variables. FAMD enables users to explore relationships between different types of variables and to
reduce dimensionality without losing critical information inherent in the data.

7.3.4.1 Statistical method implemented

The implementation of Factor Analysis of Mixed Data (FAMD) in the dsMLClient package is based on the
method proposed by Jérôme Pagès[316]. FAMD is a versatile technique that allows the simultaneous analysis
of both quantitative (continuous) and qualitative (categorical) variables.

1https://github.com/datashield/dsBase/blob/v6.2/R/scatterPlotDS.R
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The steps involved in the method are as follows (illustrated on fig. 35):

1. Dummy Encoding: Categorical variables are converted into a set of binary (dummy) variables, each
representing a unique category within the original variable. This process is known as one-hot encoding
or dummy variable encoding.

2. Standardization of Continuous Variables: Each continuous variable is standardized by dividing
it by its standard deviation. This ensures that all continuous variables have the same scale and that
none dominates the analysis due to its numerical scale.

3. Normalization of Dummy Variables: Each dummy variable is divided by the square root of its
proportion (pj), where pj is the proportion of individuals that take the category j. This normalization
is done to make the scale of the dummy variables comparable to that of the continuous variables.

4. Principal Component Analysis (PCA): PCA is performed on the resulting matrix, which includes
both the standardized continuous variables and the normalized dummy variables. The PCA will yield
principal components that are linear combinations of all the variables (both continuous and categorical).

Survival analysis

The new extension employs actuarial life tables to facilitate pooled survival analyses. This methodology
is particularly well-suited for examining survival probabilities at fixed time intervals, making it extremely
practical for a wide range of survival analysis applications, such as monitoring the survival rates of cancer
patients over time.

In essence, the methodology involves the construction of a life table based on two key inputs: time intervals
and events. Time intervals define the periods within which events can occur, while events (e.g., patient death)
represent the outcomes of interest in the survival analysis. Importantly, this life table can be independently
constructed at each server, which is essential for achieving pooled analysis capabilities across different study
centers.

The steps involved in the method are as follow (illustrated on fig. 36):

1. Survival object creation: By using the already laid out dsSurvival package, a survival object has
to be created. On the creation of this object, the objective event and stratification variables can be
specified.

2. Extract data of interest: From the survival object created, only some data of interest has to be
extracted, that being the times, individuals at risk (still at the study for a given time) and individuals
with an event.

3. Merge data on the client: Join the data by time points by adding the values.

4. Compute survival probability: Once the data has been merged, it is trivial to obtain the probability
of survival (given eq. (16) and eq. (17)).

Survival rate = 1− Ids with event

Ids at risk
(16)

Probability of survival = cumprod(Survival rate) (17)

The primary challenge encountered on the development of this method was a discussion whether returning
the number of individuals with an event on a time frame is disclosive; the discussions concluded that it
is not disclosive, although from the DataSHIELD community would be of great interest on this particular
matter.
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Figure 35: FAMD flowchart
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Figure 36: Life tables flowchart. Exemplified with two different servers performing a pooled survival analysis.
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7.4 Current status

Machine learning

As of today, dsMLClient stands as a successfully developed proof of concept, with a firm focus on data
privacy and functionality. Its development has demonstrated how various machine learning methodologies
can be adapted and implemented in the DataSHIELD infrastructure for pooled analysis across different
servers.

dsMLClient’s development and testing phase has yielded accurate results, giving confidence in the correctness
of its implemented methods. The package incorporates a diverse range of methodologies, which have been
carefully chosen to accommodate a wide range of analysis providing comprehensive functionality.

At its current stage, dsMLClient could be deployed in real-world projects. Its capabilities are such that it
can serve users who need to conduct analyses across distributed datasets; as long as they are comfortable
with the implemented methods for mitigating data disclosure risks.

Survival analysis

At the time of writing the manuscript of this thesis, the developments have been submitted as a pull request
to the original repository containing the ‘dsSurvival‘ package. An open communication is being maintained
with the original creator of the package, Dr. Soumya Banerjee, which whom I have collaborated before.

Moreover, on the upcoming DataSHIELD 2023 conference I have been approved for a talk about this pooled
survival method. On the conference I expect to withstand further discussions with DataSHIELD members
about the method, it’s security and whether it has any hidden flaws I might have missed.

7.5 Future developments

Machine learning

As we move forward, the future of dsMLClient could be very promising, with opportunityof growth and
development. There is already interest from various researchers and projects keen on utilizing its current
functionalities. These preliminary expressions of interest indicate that the package, in its existing form, can
begin to serve a wider user base, fulfilling real-world analysis needs.

However, the journey of dsMLClient is far from complete. Future work on the package will be guided by
two main priorities.

First, there is a need for more thorough assessment of the data disclosure risk mitigation mechanisms cur-
rently in place. Although the prototype was primarily developed with a focus on non-disclosure mechanisms,
as the package moves into wider use, the robustness of these mechanisms will be a critical aspect to ensure
the privacy of the data used. The plan is to undertake rigorous testing and validation of these mechanisms,
refining and enhancing them as necessary to ensure they effectively maintain data privacy while facilitating
meaningful analysis.

Second, there is a need to broaden the scope of machine learning methodologies available in the package.
While the package already supports a variety of methods, there is room to incorporate more advanced
techniques, making the tool even more versatile and valuable to researchers. The selection of these new
methods will be informed by the needs and feedback of the users, as well as the latest developments in the
field of machine learning.

In sum, the future of dsMLClient will be one of evolution and refinement. There is a firm commitment to
making the package a great tool for DataSHIELD users.

Survival analysis

Upon discussing over the package and it’s security on the DataSHIELD 2023 conference, it is to be expected
the new method to be merged on the original ‘dsSurvival‘ repository. Following that no further developments
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are foreseen for this package.
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8.1 unCoVer project

8.1.1 Project description

The unCoVer project, an initiative named for its mission to ”Unravel Data for Rapid Evidence-Based Re-
sponse to COVID-19,” emerged as a collaborative scientific project in the middle of the COVID-19 pandemic.
The project was initiated in November 2020 and was set to span two years until November 2022. At its
core, the unCoVer project represents a dynamic and responsive alliance, coordinated by the Prins Leopold
Instituut voor Tropische Geneeskunde in Belgium, consisting of 29 dedicated partners across 18 countries
worldwide.

The aims of unCoVer are centered around harnessing the power of real-world data derived from the health
systems’ response and patient care during the COVID-19 crisis across Europe and beyond. UnCoVer’s efforts
involve synchronizing research on a global scale to effectively combat the ongoing COVID-19 pandemic. The
project seeks to streamline access to and usage of COVID-19 related real-world data, capitalizing on the
potential of data being generated routinely and reflecting common medical practices.

Moreover, unCoVer aims to identify potential data gaps and underrepresented populations, gathering infor-
mation with existing and planned COVID-19 related clinical databases. It provides an innovative platform
for the aggregation of dissimilar data sources, anticipating the needs for data harmonization and addressing
ethical and legal considerations.

Leveraging expertise in advanced computational, epidemiological and biostatistical methods, unCoVer is
designed to handle the complexity of heterogeneous and multi-layered information. This allows for rapid
queries and the generation of robust findings related to various facets of COVID-19, including SARS-CoV-
2 infection, prognosis determinants, treatment safety and effectiveness, as well as the disease’s impact on
health system resources.

unCoVer aspires to extend the use and results of the platform, inviting new partners with existing similar
networks on both European and international levels. The ultimate goal is to maximize the project’s impact
in saving lives and optimizing resources in the fight against COVID-19. It is through this objective that
unCoVer’s network works towards a future where the world is better equipped to tackle public health
emergencies like the COVID-19 pandemic.

8.1.2 Methodology and Ethical Considerations

The unCoVer project, funded by Horizon 2020, employs methodologies and ethical guidelines in the objective
to uncover comprehensive insights into the COVID-19 pandemic. This network, consisting of 29 partners from
18 countries, collects and uses real-world data (RWD) derived from the care and response of health systems
to COVID-19 patients across Europe and internationally. unCoVer’s aim is to utilize the full potential of this
information to rapidly address the pressing clinical and epidemiological research questions that the pandemic
continually presents.

From the start of the COVID-19 pandemic, the partners have been gathering RWD from electronic health
records, which now includes information from over 22,000 hospitalised COVID-19 patients. Additionally,
the project has also information from national surveillance and screening data, and registries with over 1.9
million COVID-19 cases across Europe. This data, subject to continuous updates, represent a very powerful
resource for analysis.

The diverse datasets are meticulously catalogued, harmonised, and integrated into a multi-user data reposi-
tory operated through Opal-DataSHIELD, an interoperable open-source server application. Federated data
analyses are conducted without sharing or disclosing any individual-level data. The primary objective of
these analyses is to reveal patient baseline characteristics, biomarkers, determinants of COVID-19 progno-
sis, the safety and effectiveness of treatments, potential strategies against COVID-19, and epidemiological
patterns.

These analyses serve to supplement evidence from clinical trials, which often exclude more complex, hetero-
geneous populations and those most at risk of severe COVID-19. This ensures that unCoVer’s insights are
inclusive and representative of the diverse global population affected by the pandemic.
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Ethics are central to unCoVer’s planification. Databases are available through a federated data analysis
platform that processes available COVID-19 RWD without disclosing identification information to analysts,
and it limits output to data aggregates. The dissemination of unCoVer’s activities, which include the
access and use of diverse RWD and the results generated by pooled analyses, take place through training
and educational activities, scientific publications, and conference communications, thereby maximizing the
impact of the project’s findings.

The overall project organization is summarized on fig. 37.

Figure 37: unCoVer organization. Taken from https://uncover-eu.net/mission

8.1.3 Tasks developed

As an associate member of the unCoVer project, I developed different tasks to contribute to the analysis of
the data and the overall development of the project.

8.1.3.1 Application Development and Utilization

One of my significant contributions to the unCoVer project is the design and development of an R Shiny
application, a data handling solution crafted with the objective of streamlining the data analysis process.
This application is designed as a user-friendly interface for exploiting the data gathered during the project.
Its origins are based on the research I conducted and compiled into the ShinyDataSHIELD paper, a piece of
work previously presented on this thesis manuscript.

This application’s practicality lies in its ability to heighten the efficiency of data usage within the project. By
breaking down barriers between valuable data and the team members who need access to it, we managed to
optimize our approach to comprehensive data analysis and interpretation. This tool facilitated a smoother
data navigation experience, making data interpretation less complicated and more accessible to all members
of the project, regardless of their computational expertise. A couple of screenshots of the application are on
fig. 38 and fig. 39.
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Figure 38: unCoVer dashboard. Metadata page

Figure 39: unCoVer dashboard. Server connection page

8.1.3.2 Analytical Workshops and Skills Transfer

Beyond the development of the R Shiny application, my contributions to the unCoVer project also extended
to skill transfer and education. Recognizing the importance of empowering the project’s analysts with the
knowledge and skills necessary to effectively utilize the DataSHIELD infrastructure, I developed and delivered
a series of analysis workshops. The material has been made openly available to be used as a reference by
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other projects, it can be found at https://isglobal-brge.github.io/UnCoVer_workshop/.

These workshops were conducted in-person, creating an environment for real-time interactions and hands-on
resolution of any arising problems or questions. The Universidad Politécnica de Madrid (UPM) served as
the venue for these workshops on two separate occasions. The workshops were delivered in collaboration
with Juan R. González, director of this thesis.

8.1.3.3 Impactful Data Analysis

The final significant aspect of my involvement in the unCoVer project was conducting data analyses. Utilizing
DataSHIELD, I studied the effects of comorbidities on the mortality rate of COVID-19. This exploration
involved several analytical strategies, including exploratory data analysis, linear regression analysis, and
survival analysis.

These methodologies provided a detailed understanding of the subject, shedding light on the relation between
comorbidities and the subsequent impact on patient COVID outcome.

8.1.4 Development and Improvement of DataSHIELD Packages

To achieve the objectives of the unCoVer project, and at the same time improve the DataSHIELD infrastruc-
ture, I developed and improved a couple of DataSHIELD packages. These packages were key on handling
the project’s data and enabled more sophisticated analyses.

8.1.4.1 Development of dsDates Package

The first package, named dsDates, was developed to manage and operate on date class variables. This
functionality was crucial for the unCoVer project, as it has data comprised a multitude of dates related
to patient care, such as admission and discharge dates from hospitals. These variables required proper
manipulation, particularly for computations like determining the length of a patient’s hospital stay - a
critical factor in survival analysis. The dsDates package facilitated these operations, providing a reliable
tool for working with date-related data.

8.1.4.2 Enhancements to the dsSurvival Package

Additionally, the project called for improvements to an existing package - dsSurvival. This package,
designed for conducting survival analyses within the DataSHIELD infrastructure, needed enhancements to
meet the project’s specific needs.

The first enhancement involved improving the visual representation of survival curves. The base R package
initially plotted these, but for publication purposes, a more polished and comprehensive visualization was
needed. To fulfill this requirement, I implemented improvements using the ggplot2 package, elevating the
quality and clarity of survival curve visualizations.

The second enhancement was the use of stratified variables in survival analysis (for instance, analyzing sur-
vival rates based on gender). While this feature was technically available in the package, it was compromised
by a bug. I addressed this issue, resolving the bug and enabling reliable stratified survival analysis.

Finally, the third enhancement involved the implementation of a method for pooled survival analysis. Prior
to this, the package was only capable of conducting server-wise (meta) survival analysis. Recognizing the
potential of pooled survival analysis, particularly given the unCoVer project’s vast data distributed across
multiple servers, I developed a method using tables of survival. This new functionality enables pooled survival
analysis, allowing for data from various servers to be analyzed as if contained within a single table. This
has significantly increased statistical power, yielding more robust results and advancing our understanding
of COVID-19 survival rates.
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8.1.5 Academic outcomes and contributions

The unCoVer project has led to the creation of substantial academic output, a testament to its signifi-
cant research. One notable outcome is the formulation of a peer-reviewed paper, provisionally titled ”Car-
diometabolic comorbidities and COVID-19 outcomes: a case-example of federated learning of real-world data
from hospitals across Europe”.

In this paper, the results of my extensive DataSHIELD analyses, as detailed earlier, form the analysis
foundation. These analyses investigate the impact of cardiometabolic comorbidities on the outcomes of
COVID-19, showcasing the power of federated learning to gain insights from real-world data collected from
various hospitals across Europe.

As of now, the manuscript is in its developmental stage, with rigorous efforts being made to refine its content
and structure. Upon completion, it will be submitted to a scientific journal for consideration of publication,
extending the reach of the unCoVer project’s findings. The specific journal for submission is yet to be
decided, with the selection process aiming to ensure maximum visibility and impact within the scientific
community.

The culmination of these results into a peer-reviewed paper marks a significant academic contribution,
enhancing the existing body of knowledge on COVID-19 and providing valuable insights that could influence
future research and clinical practices.
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8.2 ATHLETE project

8.2.1 Project description

The Advancing Tools for Human Early Lifecourse Exposome Research and Translation (ATHLETE) project
is a comprehensive initiative focusing on the systematic analysis of the exposome - the totality of environ-
mental exposures encountered from conception onwards - during the early life stages from early pregnancy
through adolescence. The primary objective of ATHLETE is to establish a toolbox of exposome tools
and an Europe-wide exposome cohort that will evaluate the impact of a wide array of environmental risk
factors on mental, cardiometabolic, and respiratory health outcomes, along with the associated biological
pathways.

This project utilizes the data and resources of 16 existing longitudinal population-based birth cohort studies
across 11 European countries, with approximately 80,000 mother-child pairs. This range of groups effectively
illustrates the variety within European communities, while also guaranteeing a comprehensive coverage of
existing exposome data.

The project also incorporates newly established birth cohorts that offer improved sampling strategies for
exposure assessment and advanced outcome assessments. These new cohorts enable the evaluation of new
chemicals that have been produced in high volumes more recently.

The project consists of three interlinked components focusing on data and tools, evidence, and transla-
tion. Specific efforts are directed towards creating a findable, accessible, interoperable, reusable (FAIR) data
infrastructure, developing advanced statistical and toxicological strategies for analyzing complex multidimen-
sional exposome data, and implementing intervention strategies to improve early life urban and chemical
exposomes. Moreover, the project aims to translate the resulting evidence into policy recommendations and
prevention strategies.

Ultimately, ATHLETE aspires to generate a substantial body of knowledge and tools that will be instrumen-
tal in better understanding and preventing health damage from environmental exposures. All data, tools,
and results will be assembled in an openly accessible toolbox, providing a valuable resource for researchers,
policymakers, and other stakeholders well beyond the duration of the project.

The work package structure of the ATHLETE project is illustrated on fig. 40.

8.2.2 DataSHIELD Methods in Work Packages 1, 3 and 4

Work Package 1 (WP1) focuses on the construction of a FAIR (Findable, Accessible, Interoperable, Reusable)
data infrastructure for the ATHLETE Exposome cohort. This involves gathering exposome data from
disparate sources into an open-access platform that is easy to navigate for researchers. One significant
addition to this infrastructure is the integration of the HELIX subcohort data. To ensure interoperability
of the exposome data, harmonization protocols have been implemented, which standardize the exposome
variables across all cohorts.

Data access is organized into a federated and a centralized system. For the federated access protocol,
DataSHIELD is employed. This tool allows for remote data analysis without the need for data sharing or
release, thereby circumventing potential governance restrictions or data access delays. DataSHIELD enables
access from the R statistical environment using MOLGENIS or Opal software.

Work Package 3 (WP3) is primarily concerned with the development of exposome data analysis tools. This
involves tackling analytical challenges in exposome research, including estimating combined effects of expo-
sures, integrating exposome and cross-omics data, and incorporating a priori knowledge on causal structures
and mediators to enhance causal inference.

Importantly, WP3 aims to expand DataSHIELD tools for remote and non-disclosive data analysis to better
accommodate exposome data visualization and analysis. New functionalities have been developed to handle
complex big data, within DataSHIELD through the Opal (and MOLGENIS) data warehouse.

Work Package 4 (WP4) centers on finding the biological pathways from the exposome to health. Leverag-
ing omics technologies, WP4 aims to understand early, preclinical perturbations of biological pathways in

134



8 APPLICATION TO REAL WORLD DATA Ph.D. Thesis

Figure 40: ATHLETE project components. Extracted from [88]
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response to environmental exposures.

DataSHIELD will be extended to handle omics data. In addition, open-source software, front-end applica-
tions, tutorials, and e-learning materials will be developed to make these analytical tools more accessible to
a broad audience of researchers.

8.2.3 Tasks developed

The ATHLETE project has been a comprehensive and collaborative effort involving multiple parties. My
role in this project has been primarily concentrated in the areas of software development, technical support,
infrastructure maintenance and infrastructure deployment.

8.2.3.1 Deployment and Maintenance of the Opal Node at ISGlobal

One of the critical tasks I executed was the deployment and maintenance of the Opal node at ISGlobal. This
data infrastructure plays a pivotal role, as it hosts the INMA data of the ATHLETE project. Overseeing
the setup and continued functioning of the Opal node required an in depth understanding of data hosting
needs and procedures of the project. This task also demanded ongoing troubleshooting and problem-solving
to ensure that data access remained smooth and consistent.

8.2.3.2 Assistance to Researchers and Enhancement of dsExposome

Working closely with researchers has been a key part of my role. Specifically, I’ve provided technical assistance
to the researchers making use of the dsExposome package to analyze exposome data through DataSHIELD.
In response to their specific analytical needs, I helped to expand the functionalities of this tool, streamlining
their workflow and improving the efficiency of their data analysis processes. The modifications implemented
in dsExposome were meant to cover the unique needs of exposome analyses in the ATHLETE project.

8.2.3.3 Collaboration and Support in dsOmics Utilization

Furthermore, my work extended to the use of the dsOmics package in the project. This task involved provid-
ing support to researchers, similar to my role with dsExposome. I also implemented additional functionalities
in response to researchers’ specific needs for their analyses. A notable part of this task was my collaboration
with Sof́ıa Aguilar Lacasaña, who utilized the package for her paper’s analysis. Her efforts effectively served
to validate the dsOmics package results in a multi-cohort scenario, contributing significantly to the software’s
overall success.

8.2.3.4 Development of an Experimental Version of the limma Package

Lastly, I undertook an innovative task to enhance the efficiency of omics analysis within the project. Given
the constraints of the DataSHIELD infrastructure, where analyses extending over 30 minutes encountered
issues, there was a need to optimize computational speed. To address this, I developed an experimental
version of the limma package, a popular tool for the analysis of gene expression data in the R environment.
Through parallelization, this experimental modification allowed a 30x speedup of computations, drastically
improving the efficiency and feasibility of extensive omics analyses in the ATHLETE project.

8.2.4 Academic outcomes and contributions

The ATHLETE project has significantly contributed to the scientific community through a series of high-
quality research outputs and advancements in data analysis tools. This body of work has broadened our
understanding of the exposome and its associations with health outcomes, thereby influencing both public
health and epidemiology fields.

8.2.4.1 Published Papers

A substantial part of the project’s academic outcomes includes a series of papers published in various scientific
journals. These papers encompass a wide range of topics related to the exposome, demonstrating the depth
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of the research conducted within the ATHLETE project.

For instance, several papers focused on the development and validation of analytical tools for exposome data.
This includes papers on the dsExposome and dsOmics packages, which discuss how these tools can enhance
the analysis of complex exposome and omics data. Furthermore, details on the optimization of the limma

package for efficient omics analysis within DataSHIELD infrastructure represents an important contribution
to computational biology and bioinformatics.

Moreover, numerous papers have presented findings on the relationships between environmental exposures
and health outcomes, shedding light on important public health issues. They have highlighted the role of
early life exposures on later life health and the role of the exposome in disease risk prediction. Additionally,
the inclusion of the gut microbiome as a new omics layer in exposome research is a significant advancement
in the field.

8.2.4.2 Thesis Contributions

The different manuscripts presented along this thesis are all part of the work and efforts that have been
placed on the ATHLETE project. They provide the software foundations that have been used along the
project to implement the DataSHIELD infrastructure and analysis.

In summary, the academic outcomes of the ATHLETE project have greatly enriched scientific literature
on the exposome, as well as enriching the DataSHIELD analysis capabilities. The advancements made
in this project hold great potential to influence future research directions in environmental health and
epidemiology.

8.2.4.3 Past Contributions

In addition to the above-mentioned contributions, the ATHLETE project also encompasses significant work
conducted during my Master’s thesis, which was also undertaken at ISGlobal. This research culminated in
the publication of a paper also part of the ATHLETE project’s academic output.

The paper represents a contribution to the study of the exposome. It illustrates my early engagement with
the field and forms the foundation upon which my subsequent research activities in the ATHLETE project
were built. It was through this initial study that I gained valuable insights into the complexities of exposome
research and the analytical challenges it presents.
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9.1 Introduction

The primary focus of this research is distributed across three different fronts. First, it aims to catalyze the
adoption of a specialized non-disclosive, open-source technology known as DataSHIELD. Second, it seeks
to extend the DataSHIELD ecosystem by implementing new methods and packages. These enhancements
enable researchers to work with novel types of data, such as omics and exposome data, while ensuring a non-
disclosive analysis approach. Lastly, the study is designed to create user-friendly tools that make interaction
with DataSHIELD more accessible to both new and experienced developers. This layered approach addresses
key barriers to the wider application of DataSHIELD technology.

The need for such advancements is underlined by the challenges that researchers currently face in the field
of scientific data analysis, particularly when dealing with sensitive genomics data. Traditional methods
often require cumbersome data sharing agreements, which can slow down the pace of discovery and limit
collaborative efforts. The non-disclosive features of DataSHIELD can alleviate these issues, enabling a higher
quality and more democratic research landscape.

In addition to offering a more streamlined and secure way to handle sensitive data, DataSHIELD also brings
an added layer of credibility to scientific research. Its non-disclosive nature assures that the data of individual
participants remains confidential. Moreover, it allows for greater transparency in research findings. Reviewers
and readers alike can more easily reproduce results and validate that the published findings indeed address
the research question comprehensively.

Another significant advantage is the speed and efficiency that DataSHIELD technology can bring to research
projects. Traditional multi-center studies often require laborious coordination between different data man-
agers, delaying the testing of new hypotheses. DataSHIELD enables researchers to conduct multi-center
analyses right from their own computers, significantly speeding up the research process. This acceleration
could lead to faster insights and more robust scientific outcomes.

In summary, the research addresses critical gaps in the existing DataSHIELD ecosystem. Through its contri-
butions, it paves the way for more secure, efficient, and democratic data analysis in scientific research.

9.2 Summary of key findings

The cornerstone achievements of this research are encapsulated in four pivotal papers that form the backbone
of this thesis. Firstly, the resourcer system was developed to extend DataSHIELD’s capabilities to support
a diverse range of data formats. While DataSHIELD was initially designed to work with tabular data,
resourcer now enables compatibility with a plethora of file types, including but not limited to R data files,
plain text data, s3 compatible databases, SQL databases, and specialized formats such as VCF and BAM.
This allows researchers greater flexibility in the data they can use, opening the door for more comprehensive
and varied analyses.

Secondly and thirdly, specialized packages were developed to expand DataSHIELD’s utility in handling
omics and exposome data. Consultation with experts in both fields ensured the development of robust and
relevant functionalities. Among the standouts are pooled ExWAS and pooled PCA for exposome analysis,
and super-fast pooled GWAS and PRS for omic data. These functionalities not only serve theoretical needs
but have proven effective in real-world applications.

Fourthly, a user-friendly graphical platform was introduced to simplify the DataSHIELD experience. This
web-based application removes the need for researchers to familiarize themselves with DataSHIELD’s intri-
cacies or to install R and related dependencies. It offers a range of essential functionalities for hypothesis
testing, such as descriptive analysis, GLM, survival models, GWAS, and ExWAS, with the added convenience
of a built-in plot editor for generating publication-ready figures. Future updates, based on user feedback,
are also in the pipeline to make the platform even more comprehensive.

Beyond these key deliverables, it is noteworthy that the developed tools are already being actively used in
research projects. In particular, the ATHLETE and HELIX projects stand out as primary beneficiaries of
these advancements, further underlining the real-world applicability and impact of this research.
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In summary, the findings of this research have achieved the overarching goals of enhancing DataSHIELD’s
capabilities, extending its applications in scientific research, and making it more accessible to the broader
scientific community. These developments directly address the initial problems outlined in this research,
offering a more secure, versatile, and user-friendly platform for non-disclosive data analysis.

9.3 Interpretation of findings

While the core of this research lies in tool development rather than traditional scientific inquiry, its relevance
to the existing body of work on DataSHIELD and non-disclosive analysis cannot be understated. Prior to
this research, DataSHIELD had a more limited scope, being predominantly used for multi-center studies that
focused on tabular epidemiological data. The addition of new data types—particularly omics and exposome
data—represents a significant departure from prior studies and has the potential to enrich existing research
by enabling new scientific hypotheses and investigations.

Although the findings of this thesis may not be described as scientific knowledge advances in the traditional
sense, their utility and potential for broad impact are remarkable. The extensions and enhancements intro-
duced here stand to make non-disclosive analysis more robust, versatile, and applicable to a wider range of
scientific questions. This opens the door for new projects concerned with data privacy to conduct rigorous
and proper research without compromising on data integrity or security.

By focusing on tool development, this research has filled a unique and necessary gap in the existing land-
scape of non-disclosive data analysis. The tools have practical applications and are already being adopted
in significant research endeavors, notably the ATHLETE and HELIX projects. The ability to seamlessly
integrate omics or exposome data with traditional epidemiological data is particularly promising, as it allows
for a more comprehensive understanding of various phenomena and can lead to new, impactful scientific
results.

In sum, the work presented in this thesis complements and extends the existing capabilities of DataSHIELD,
thereby broadening its applicability and making it a more valuable resource for secure, efficient, and com-
prehensive data analysis in scientific research.

9.4 Strengths and contributions

One of the foremost strengths of this research lies in its capacity to significantly improve the DataSHIELD
infrastructure. This research not only elevates the platform’s capabilities but also fosters its broader adoption
within the scientific community. The focus on tailoring tools to meet the specific needs of actual researchers
sets this work apart, offering practical solutions that are immediately applicable and beneficial for ongoing
research. The provision of documentation and the promise of continued support for new tool integration
reflect a deep commitment to creating a sustainable and user-friendly environment for secure, efficient data
analysis.

In terms of capabilities, this research fills a void in the existing DataSHIELD ecosystem by introducing
the ability to analyze new types of data—specifically, omics and exposome data. Moreover, it does so
without compromising the essential feature of non-disclosiveness. This enhancement opens new avenues for
researchers interested in a wide variety of scientific questions that go beyond traditional epidemiological data.
The research also furnishes all the required functionalities for comprehensive studies in these new domains,
thus offering an all-inclusive platform for non-disclosive data analysis.

The novel contributions of this work have a broader implication for the intersection of bioinformatics and
non-disclosive data analysis. For instance, the implementation of fast pooled GWAS and differential privacy
mechanisms represent significant advances in the field. Similarly, the introduction of pooled PCA and
survival analysis methods, designed specifically for DataSHIELD, fill specific gaps in the current analytical
landscape. Although these contributions have been implemented within the DataSHIELD platform, their
underlying principles and methodologies could well be adapted for other platforms, expanding their potential
impact.
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This thesis, therefore, serves as a landmark in the field, marking the integration of multiple facets of bioin-
formatics and non-disclosive data analysis. Through its various improvements and novel contributions, the
research has the potential to catalyze significant advancements in secure, efficient, and comprehensive data
analysis in scientific research.

9.5 Limitations

One significant limitation of this research revolves around the assurance of non-disclosure in the analysis
packages developed. While the responsibility of ensuring non-disclosure typically falls on the developer,
the lack of standardized protocols or a dedicated team within the DataSHIELD community to vet new
packages for this quality adds an element of uncertainty. Although my work has benefited from the input
and expertise of multiple individuals, including my thesis director and other members of the DataSHIELD
community, the absence of an established verification process leaves room for potential lapses in the non-
disclosive guarantee.

Another perceived limitation concerns the comprehensiveness of the analysis packages for omics and expo-
some data. While the open-source nature of these tools allows for future expansion, the current versions
may not cater to all the diverse methodologies that different researchers might prefer. It’s worth noting,
however, that this limitation is inherent to any tool aiming to be comprehensive in a rapidly evolving field.
The current set of functionalities is, nevertheless, robust and designed to meet the most pressing needs of
researchers in these domains.

Lastly, the lack of a dedicated team or centralized review mechanism within the DataSHIELD community
to ensure the non-disclosive nature of newly developed packages is both a limitation and a constraint. It
poses a challenge to the expansion and acceptance of new tools within the DataSHIELD ecosystem, given
the imperative of maintaining data privacy in non-disclosive analysis.

9.6 Limitations of the DataSHIELD infrastructure

DataSHIELD holds significant promise for advancing non-disclosive data analysis in bioinformatics, but the
adoption and successful implementation of this infrastructure come with challenges. A primary technical
obstacle hindering its wider adoption is the difficulty of use, which is intricately tied to the setup of the
infrastructure itself. Implementing DataSHIELD for multi-center studies presents an even greater challenge,
as the necessity to deploy new technology across different research centers can create friction between the
desired goals of a study and the practical limitations of the infrastructure. This friction often dissuades new
projects from adopting the technology, damaging its reputation before it even has a chance to demonstrate
its capabilities.

Adding to these challenges are the financial constraints. Projects rarely budget for the new machines required
to host the DataSHIELD infrastructure, often leading to the use of older, less reliable machines. This has
a cascading effect, as researchers sometimes find themselves unable to conduct their analyses due to server
downtime at one or more centers. While latency and scalability have not proven to be significant issues, the
overall impression of DataSHIELD can suffer when researchers encounter these sorts of roadblocks.

The ecosystem’s usability also limits its adoption. Currently, the connection packages for DataSHIELD are
exclusively available in R, alienating researchers who may be more comfortable with Python or other pro-
gramming languages. Although there are ongoing efforts to make DataSHIELD accessible through Python,
this limitation can deter potential users.

Another critical issue affecting DataSHIELD’s reputation and adoption is the prevailing misconception about
its inherent security features. While DataSHIELD is designed to be a secure method for data analysis, the
actual security lies in the analysis packages themselves, not the infrastructure. A poorly designed package
can compromise the entire system, thereby defeating its core purpose of providing a non-disclosive platform.
This calls into question the rigorousness of the security measures in place, and exposes the lack of a dedicated
team or standardized procedures for vetting new packages for non-disclosive compliance.
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Though DataSHIELD promotes itself as a secure data analysis environment, it has not undergone compre-
hensive penetration testing. This leaves a significant gap in its security posture, creating reservations among
IT professionals who may advocate for other, more rigorously tested solutions. While VPN access for the
analysis servers has been cited as a countermeasure, the evolving nature of security threats demands a more
robust and proactive approach to security.

The DataSHIELD community is active and supportive, especially through public forums, but there are areas
that require improvement. Documentation for developers is notably lacking, leading to a learning curve that
could discourage new contributors. While the core functionalities of DataSHIELD are actively developed, the
project does not have a sufficient mechanism for scrutinizing new packages to ensure their security and non-
disclosive properties. This is not a small oversight, but a critical missing component that could significantly
affect its long-term viability and trustworthiness.

The project’s funding model also poses limitations. Relying mainly on public grants has not allowed for the
kind of rapid development and feature expansion possible with private funding. This financial limitation
inhibits the ecosystem from keeping pace with privately funded alternatives and even affects its ability to
conduct essential security tests like penetration testing.

Given these challenges, a restructuring of priorities could significantly benefit DataSHIELD. The focus should
shift from adding new features to the core system, which is already stable and functional, to ensuring the
non-disclosive properties of new packages. This will not only make the system more secure but will also build
trust, encouraging its adoption across new projects. While the community can contribute to some extent,
organizational restructuring and additional funding avenues need to be explored to address these limitations
effectively.

9.7 Future steps

The landscape of secure, non-disclosive data analysis is continually evolving, and DataSHIELD is poised
to adapt and grow in response to emerging needs and technologies. One of the most immediate areas for
expansion is the development of new statistical methodologies. As the scientific community’s requirements
become increasingly complex, the need for a richer repertoire of analytical tools within DataSHIELD becomes
crucial. By incorporating a wider range of statistical methods, DataSHIELD can cater to a broader audience
of researchers with diverse analytical needs.

Excitingly, one of the upcoming features that has been highly requested is Python support. DataSHIELD
has primarily operated within the R programming ecosystem, which, while robust, limited its accessibility
to a subset of the scientific community. The extension into Python will undoubtedly broaden its user base
and facilitate integration with a multitude of data analysis pipelines, thereby boosting its applicability and
utility.

In the short term, a key focus is on the extensive testing of new functions and packages. Given the project’s
open-source nature, the community plays a pivotal role in identifying bugs and limitations, thereby ensuring
that DataSHIELD remains a reliable tool for secure data analysis. These efforts align well with the long-
term strategic objectives, which include establishing DataSHIELD as a highly secure and rigorously tested
platform. While there are no known plans for collaborations or partnerships to accelerate these goals, the
role of community contributions cannot be overstated. As the community grows and becomes increasingly
knowledgeable about the project’s nuances, its members will likely make more meaningful contributions to
overcoming existing limitations.

The potential applications of DataSHIELD are not limited to its current primary users in multi-center
bioscience research projects. There is considerable scope for expansion into healthcare, where the tool could
serve to connect hospitals and inform treatment decisions. Its non-disclosive, secure nature makes it an
excellent fit for sensitive medical data. Moreover, as the toolset expands, it may find applications in social
sciences, particularly if capabilities for Geographical Information Systems (GIS) analyses are developed.
However, certain industries like banking may not align well with the project’s goals and features.

Ensuring robust security measures is vital to maintaining the core value proposition of DataSHIELD. Given
its mission to provide a non-disclosive analysis platform, any strides made in enhancing security protocols
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and passing penetration tests would contribute significantly to its credibility. Simultaneously, efforts are
underway to improve documentation and user-friendliness, which will undoubtedly make the platform more
accessible to newcomers and contribute to its ongoing success.

In summary, the future of DataSHIELD appears promising, with planned expansions in both methodolog-
ical and technological dimensions. Its success hinges on its adaptability, the contributions of an engaged
community, and its ability to maintain a strong focus on its core principles of secure, non-disclosive data
analysis.
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Expanding the Capabilities of DataSHIELD with resources

The introduction of resources in the DataSHIELD platform represents a pivotal advancement, acting as a
catalyzer that greatly extends the platform capabilities to use virtually any type of data as well as computing
resources. This enables federated privacy-protecting analyses across multiple domains, offering a powerful
prospect for academic, commercial, and healthcare sectors.

Incorporating the notion of resources has exponentially enhanced DataSHIELD’s capabilities. It can now
handle and analyze larger, more intricate datasets while maintaining privacy and security. This robust
solution plays a pivotal role in managing and parsing vast datasets, ensuring seamless interoperability with
other R packages.

Further extending its reach, the birth of the dsOmics and dsExposome packages has unlocked newer horizons
for DataSHIELD. These allow genomic and exposome data analyses in a federated and privacy-conscious
manner. Those two packages can’t exist without the advances introduced by the resources, as the data
format in which genomic and exposome data is stored, does not comply with what DataSHIELD accepted
before as inputs, that being plain tables. The advances done developing this work is what unlocked the
potential to have omics and exposome data analysis in DataSHIELD, and on the future that could even be
expanded to image analysis and geospatial data analysis.

OmicSHIELD: A Beacon for Privacy-Protected Omics Analysis

In the realm of omics research, OmicSHIELD emerges as a revolutionary, open-source solution. It carves
a niche by facilitating privacy-protected, non-disclosive omics data analyses across multi-center studies. In
doing so, it paves the way for greater collaboration, helping omics research to advance leaps and bounds
without having to be slowed by the always time-consuming data sharing argreements and handling of sensitive
data.

Answering the call for a robust solution in omics data analysis, OmicSHIELD seamlessly integrates with
multi-center studies. Its capabilities encompass a comprehensive suite of tools adept at analyzing genomic,
transcriptomic, and epigenomic data. Among its capabilities, it is to be mentioned the state-of-the-art
methods for pooled GWAS, filling the gaps left by predecessors like FAHME and sPLINK. Furthermore, the
software harnesses differential privacy and employs disclosure trap mechanisms, ensuring a robust shield of
privacy.

Beyond privacy, OmicSHIELD showcases its prowess in pooled and meta-analyses, ensuring the privacy of
individual-level data. When compared with traditional methods, it stands tall, delivering consistent pooled
results without the need of physically pulling the data on the same server, guaranteeing that sensitive data
never leave the study servers. With prospects of integration into large consortia projects and an open-source
foundation that thrives on continuous user feedback, OmicSHIELD promises to remain a standard in the
ever-evolving domain of omic data analyses.

The dsExposome Package: Bridging Exposome Analyses with Data Privacy

Within the intricate framework of exposome analyses, the dsExposome package emerges as a new solution.
It’s not just any tool, but one that has been crafted for the DataSHIELD infrastructure, promising a robust
solution for multi-center studies. Its power lies in balancing the scales between detailed exposome analysis
and aiding data privacy concerns.

The dsExposome tool has showcased its merits by efficiently conducting an Exposome-Wide Association
Study (ExWAS) using synthetic data sets as well as with real-world data. Its seamless compatibility with
the DataSHIELD framework ensures data privacy, proving invaluable for multi-center studies where data
sharing and harmonization are formidable challenges. Furthermore, its application in replicating real-world
exposome analysis, such as the HELIX study, stands testament to its capability.

In addition to its analytical strengths, dsExposome has the ability to handle various confounding factors in
exposome analyses. This ensures that the outcomes are not just accurate, but also scientifically insightful. A
significant advantage it offers is its ability to perform a pooled analysis, which stands out as a more efficient
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solution than traditional meta-analysis methods, especially for complex multi-source studies. And while it
might chart a different course than traditional on-premises analyses, its results are comparable, proving its
utility. The provision of comprehensive user guides and access to test data accentuates its commitment to
transparency and collaborative research.

ShinyDataSHIELD: Streamlining Federated Non-Disclosive Analysis

At the forefront of federated non-disclosive analysis, ShinyDataSHIELD stands as a user-friendly utility.
As an R Shiny application, it has been meticulously crafted to augment the usability of the DataSHIELD
infrastructure. It achieves this by striking a balance, making DataSHIELD accessible to both new and
seasoned researchers.

With its vast repertoire, ShinyDataSHIELD aims towards a wide array of research needs. From basic data
column transformations to intricate statistical modeling, its scope spans wide. Its intuitive design ensures
smooth user interactions, enabling fast hypothesis testing and efficient analysis, all without demanding
programming or scripting know-how.

The platform also ensures data integrity with its rigorous checks and understandable error messages, em-
powering users to identify and rectify issues on the fly. As it continues to evolve, the promise of extended
plotting functionalities and the incorporation of new DataSHIELD features ensures it remains at the cutting
edge. Given its potential, it is poised to play a fundamental role in promoting the adoption of non-disclosive
analysis methods, underscoring the immense promise of such methods in advancing research while upholding
data privacy.

DataSHIELD in Action: Real-World Applications for Collaborative Multi-Center
Analyses

DataSHIELD’s application on tangible, real-world data has substantiated its potential as a robust tool for
secure, collaborative multi-center analyses. Its powers goes beyond theoretical promises, offering researchers
a platform that seamlessly integrates meaningful insights with data privacy and confidentiality.

In direct application scenarios, improved DataSHIELD methodologies exhibited commendable efficiency and
accuracy. When juxtaposed against traditional statistical methods, the disparities were non-significant,
demonstrating the methodological success and adaptability of DataSHIELD. But beyond just methodology,
DataSHIELD proved to be an instrumental bridge for researchers across multi-center studies. By allowing
researchers to directly obtain results without sending analysis scripts between centers, DataSHIELD cross-
center collaboration has become more streamlined and efficient for researchers.

One of DataSHIELD’s standout contributions has been its indomitable impact on the reproducibility and
transparency facets of research. Given that there is no need to share data to reproduce the results of a certain
peer reviewed paper, research developed using DataSHIELD can easily share the scripts and DataSHIELD
access so that the results can be reproduced and tested by readers and reviewers, providing an exceptionally
valuable resource to guaranteeing good practices and credibility on analyses. Such guarantees are almost non-
existent on traditional research given the data sharing agreements impediments and the overall reluctance
to share data just to be used to reproduce some results.

With such practical applications and outcomes, DataSHIELD has firmly established itself as more than
just a tool—it’s a catalyst for reshaping the landscape of collaborative research while upholding the data
privacy.
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[185] Ot́ılia Menyhárt and Balázs Győrffy. “Multi-omics approaches in cancer research with applications in
tumor subtyping, prognosis, and diagnosis”. In: Computational and Structural Biotechnology Journal
19 (Jan. 2021), pp. 949–960. issn: 2001-0370. doi: 10.1016/J.CSBJ.2021.01.009.

[186] Vanessa Aguiar-Pulido et al. “Metagenomics, metatranscriptomics, and metabolomics approaches for
microbiome analysis”. In: Evolutionary Bioinformatics 12 (May 2016), pp. 5–16. issn: 11769343. doi:
10.4137/EBO.S36436/ASSET/IMAGES/LARGE/10.4137_EBO.S36436- FIG3.JPEG. url: https:
//journals.sagepub.com/doi/10.4137/EBO.S36436.

[187] Xiangqin Cui and Gary A. Churchill. “Statistical tests for differential expression in cDNA microarray
experiments”. In: Genome Biology 4 (4 Apr. 2003), pp. 1–10. issn: 14656906. doi: 10.1186/GB-
2003-4-4-210/FIGURES/1. url: https://link.springer.com/articles/10.1186/gb-2003-4-4-
210https://link.springer.com/article/10.1186/gb-2003-4-4-210.

[188] Matthew E. Ritchie et al. “limma powers differential expression analyses for RNA-sequencing and
microarray studies”. In: Nucleic Acids Research 43 (7 Apr. 2015), e47–e47. issn: 0305-1048. doi:
10.1093/NAR/GKV007. url: https://dx.doi.org/10.1093/nar/gkv007.

[189] Michael I. Love, Wolfgang Huber, and Simon Anders. “Moderated estimation of fold change and dis-
persion for RNA-seq data with DESeq2”. In: Genome Biology 15 (12 Dec. 2014), pp. 1–21. issn:
1474760X. doi: 10 . 1186 / S13059 - 014 - 0550 - 8 / FIGURES / 9. url: https : / / genomebiology .
biomedcentral.com/articles/10.1186/s13059-014-0550-8.

[190] Mark D. Robinson, Davis J. McCarthy, and Gordon K. Smyth. “edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data”. In: Bioinformatics 26 (1 Jan. 2010),
pp. 139–140. issn: 1367-4803. doi: 10.1093/BIOINFORMATICS/BTP616. url: https://dx.doi.org/
10.1093/bioinformatics/btp616.

160

/pmc/articles/PMC6543993/ /pmc/articles/PMC6543993/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543993/
/pmc/articles/PMC6543993/ /pmc/articles/PMC6543993/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543993/
https://doi.org/10.1016/0163-7827(94)90022-1
https://doi.org/10.1111/J.1365-3040.2012.02519.X
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2012.02519.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.2012.02519.x https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2012.02519.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2012.02519.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.2012.02519.x https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2012.02519.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2012.02519.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.2012.02519.x https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2012.02519.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2012.02519.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.2012.02519.x https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2012.02519.x
https://doi.org/10.3390/IJMS18081652
https://www.mdpi.com/1422-0067/18/8/1652/htm https://www.mdpi.com/1422-0067/18/8/1652
https://www.mdpi.com/1422-0067/18/8/1652/htm https://www.mdpi.com/1422-0067/18/8/1652
https://doi.org/10.1016/J.MOLCEL.2015.05.004
https://doi.org/10.1016/J.MOLCEL.2015.05.004
https://doi.org/10.5858/ARPA.2016-0501-RA
https://doi.org/10.5858/ARPA.2016-0501-RA
https://dx.doi.org/10.5858/arpa.2016-0501-RA
https://doi.org/10.1002/MAS.21355
https://doi.org/10.1002/MAS.21355
https://onlinelibrary.wiley.com/doi/full/10.1002/mas.21355 https://onlinelibrary.wiley.com/doi/abs/10.1002/mas.21355 https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/mas.21355
https://onlinelibrary.wiley.com/doi/full/10.1002/mas.21355 https://onlinelibrary.wiley.com/doi/abs/10.1002/mas.21355 https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/mas.21355
https://onlinelibrary.wiley.com/doi/full/10.1002/mas.21355 https://onlinelibrary.wiley.com/doi/abs/10.1002/mas.21355 https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/mas.21355
https://doi.org/10.1016/J.CSBJ.2021.01.009
https://doi.org/10.4137/EBO.S36436/ASSET/IMAGES/LARGE/10.4137_EBO.S36436-FIG3.JPEG
https://journals.sagepub.com/doi/10.4137/EBO.S36436
https://journals.sagepub.com/doi/10.4137/EBO.S36436
https://doi.org/10.1186/GB-2003-4-4-210/FIGURES/1
https://doi.org/10.1186/GB-2003-4-4-210/FIGURES/1
https://link.springer.com/articles/10.1186/gb-2003-4-4-210 https://link.springer.com/article/10.1186/gb-2003-4-4-210
https://link.springer.com/articles/10.1186/gb-2003-4-4-210 https://link.springer.com/article/10.1186/gb-2003-4-4-210
https://doi.org/10.1093/NAR/GKV007
https://dx.doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/S13059-014-0550-8/FIGURES/9
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8
https://doi.org/10.1093/BIOINFORMATICS/BTP616
https://dx.doi.org/10.1093/bioinformatics/btp616
https://dx.doi.org/10.1093/bioinformatics/btp616


REFERENCES Ph.D. Thesis

[191] R Artusi, P Verderio, and EJTIjobm Marubini. “Bravais-Pearson and Spearman correlation coeffi-
cients: meaning, test of hypothesis and confidence interval”. In: The International journal of biological
markers 17 (2 2002), pp. 148–151.

[192] Frank Nielsen. “Hierarchical Clustering”. In: (2016), pp. 195–211. doi: 10.1007/978-3-319-21903-
5_8. url: https://link.springer.com/chapter/10.1007/978-3-319-21903-5_8.

[193] J. A. Hartigan and M. A. Wong. “Algorithm AS 136: A K-Means Clustering Algorithm”. In: Applied
Statistics 28 (1 1979), p. 100. issn: 00359254. doi: 10.2307/2346830.

[194] Noviyanti T M Sagala, Alexander Agung, and Santoso Gunawan. “Discovering the Optimal Number
of Crime Cluster Using Elbow, Silhouette, Gap Statistics, and NbClust Methods”. In: ComTech:
Computer, Mathematics and Engineering Applications 13 (1 Feb. 2022), pp. 1–10. issn: 2476-907X.
doi: 10.21512/COMTECH.V13I1.7270. url: https://journal.binus.ac.id/index.php/comtech/
article/view/7270.

[195] Steve Horvath. Weighted network analysis: applications in genomics and systems biology. Springer
Science Business Media, 2011.
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