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Abstract

Reliable and uninterrupted power supply is crucial for modern societies.
Therefore, the minimization of the power outages’ duration is a priority
for the power system operators. This thesis aims to contribute to the
efforts to increase the power restoration speed by proposing automa-
tized solutions for the fault diagnosis process applied in distribution
grids. The fault diagnosis process comprises the fault detection, the
fault classification and the fault location; all three of these steps are
addressed in this study. The traditional fault diagnosis methods that
are currently applied to the grids are rapidly becoming obsolete due to
the smart grid transition. Renewable energy sources, electric vehicles
(EVs) and other smart devices may pose a challenge to conventional
fault diagnosis techniques but they also provide opportunities for the
application of advanced technological solutions. Hence, in order to take
advantage of the grid’s digitalization and the subsequent growing data
availability the proposed methods are all data–driven, with emphasis
given to the use of machine learning (ML).

The fault detection method presented in this thesis refers to active
low voltage (LV) grids and specifically the ones with EV fast charging
(FC) and ultra fast charging (UFC). The proposed ML–based algorithm
utilizes a CatBoostClassifier for the detection of faults and manages to
efficiently train the model with static simulation data. These data cor-
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respond to the grid’s normal and faulty operation when the loads are
operating at nominal power and the EV charging is ignored, i.e. to a
grid’s static loading state. In this way the algorithm is independent of
the EV charging and the intermediate operating states. When tested
on unseen data corresponding to potential intermediate states the algo-
rithm achieved an accuracy of 97.61% with only 6000 examples included
in the training data.

Regarding the fault classification, a data–driven improved version of
the popular threshold–based techniques is presented here. The method
includes an algorithm that studies the grid’s current values before and
after a fault under various fault resistances and outputs the most suit-
able threshold values for the criteria describing each fault type. Thus,
it combines increased accuracy with high adaptability to any distribu-
tion grid. The proposed technique achieves an accuracy of nearly 100%
regardless of the fault’s resistance. This constitutes an approx. 20%
higher accuracy compared to traditional threshold–based techniques
with fixed criteria.
Finally, a complete and practical ML–based fault location method for

active LV grids is proposed in this thesis. The method first identifies
the faulted branch with the use of a Random Forest (RF) classifier and
then locates the faulted point with the use of a regression model. Since
the second part of the process is the most crucial and complicated one
two tree–based predictive models are tested here, a RF regressor and an
XGBoost regressor. In order to improve the models’ and, as an extend,
the method’s performance a thorough data management strategy is in-
cluded in the algorithm. This includes among others the application of
a smart data storage strategy, the comparison of two data minimiza-
tion approaches and an efficient re–training scheme. Both models lead
to mean absolute errors (MAEs) of less than 2 m, nevertheless, the
XGBoost proves the most suitable model for this application. When
paired with the SelectFromModel dimensionality reduction algorithm
it leads to a MAE of 0.49 m and is robust against the major influ-
encing parameters such as the fault resistance, the bidirectional power
flow, the data loss and more. The research addresses all the aspects of
the method’s application, offers an insight on the designing process of
ML–based algorithms and presents an efficient, easily–applicable and
generalizable solution.
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Resumen

Un suministro eléctrico fiable y continuo es crucial para las actividades
de la sociedad moderna. Por lo tanto, la minimización de los cortes de
enerǵıa y su duración es una prioridad para los operadores de sistemas
eléctricos. Esta tesis pretende contribuir a los esfuerzos para aumentar
la velocidad de restablecimiento de la enerǵıa proponiendo soluciones
automatizadas para el proceso de diagnóstico de aveŕıas aplicado en las
redes de distribución. El proceso de diagnóstico de aveŕıas comprende
la detección, la clasificación y la localización de ésta. Cada una de estas
etapas son estudiadas en esta tesis. Los métodos tradicionales de di-
agnóstico de aveŕıas que se aplican actualmente en las redes eléctricas se
están quedando obsoletos debido a la transición a las redes inteligentes.
Las enerǵıas renovables, los veh́ıculos eléctricos (VE) y otros disposi-
tivos inteligentes pueden suponer un problema para las técnicas con-
vencionales de diagnóstico de fallos por sus comportamientos (bidirec-
cionalidad, picos de corriente, etc), pero por otro lado ofrecen oportu-
nidades para la aplicación y desarrollo de soluciones tecnológicas avan-
zadas. Por lo tanto, para aprovechar la digitalización de la red y la
consiguiente disponibilidad de datos de ésta, en la tesis se desarrollan
y presentan nuevos procesos basados en datos y su tratamiento, con
énfasis en el uso del aprendizaje automático (ML).

Primero, el método de detección de fallos presentado en esta tesis se
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centra en las redes eléctricas de baja tensión (BT) activas y, en con-
creto, a las redes que incluyen renovables, sistemas de carga rápida (FC)
y carga ultrarrápida (UFC) de VE. El algoritmo propuesto, basado en
ML, utiliza un CatBoostClassifier para la detección de fallos y con-
sigue entrenar eficientemente el modelo con datos de simulación. Estos
datos se corresponden con el funcionamiento normal y defectuoso de la
red cuando las cargas funcionan a la potencia nominal y se ignora la
carga del VE, es decir, al estado de carga estática de la red. De este
modo, el algoritmo es independiente de la carga del VE y de los esta-
dos de funcionamiento intermedios (modos de carga y estado de esta).
Cuando se validó considerando datos de casos con estados intermedios,
el algoritmo alcanzó una precisión del 97,61% con sólo 6000 ejemplos
incluidos en los datos de entrenamiento.

En la clasificación de fallos, se presenta una versión adaptada y mejo-
rada basada en datos de las técnicas convencionales y basadas en um-
brales. El método incluye un algoritmo que estudia los valores de corri-
ente de la red antes y después de una falta, bajo diferentes resistencias
de falla, y emite los valores de umbral más adecuados para los crite-
rios que describen cada tipo de falta eléctrica. De este modo, combina
una gran precisión con una gran adaptabilidad a cualquier red de dis-
tribución. La técnica propuesta logra una precisión de casi el 100%,
independientemente de la resistencia de la falta. Esto constituye una
precisión aproximadamente un 20% mayor en comparación con técnicas
tradicionales basadas en umbrales con criterios determinados.
Por último, en esta tesis se propone un método completo y práctico

de localización de fallos basado en ML para redes activas de BT. El
método identifica primero la rama con falta a través del uso de un
clasificador Random Forest (RF) y luego localiza el punto de aveŕıa
mediante un modelo de regresión. Dado que la segunda parte del pro-
ceso es la más crucial y complicada, aqúı se prueban dos modelos de
predicción basados en árboles, un regresor RF y un regresor XGBoost.
Para mejorar el rendimiento de los modelos y, por tanto, del método, se
incluye en el algoritmo una estrategia de gestión de datos. Esto incluye
entre otras cosas, la aplicación de una estrategia inteligente de almace-
namiento de datos, la comparación de dos enfoques de minimización de
datos y un esquema eficiente de reentrenamiento. Ambos modelos con-
ducen a errores medios absolutos (MAE) de menos de 2 m, sin embargo



VII

el XGBoost resulta ser el modelo más adecuado para esta aplicación.
Cuando se combina con el algoritmo de reducción de la dimensionalidad
SelectFromModel, se obtiene un MAE de 0,49 m y es robusto frente a
los principales parámetros que influyen en el comportamiento como la
resistencia al fallo, potencia bidireccional, la pérdida de datos y otros.
La investigación aborda todos los aspectos de la aplicación del método,
ofrece una visión del proceso de diseño de los algoritmos basados en ML
y presenta una solución eficiente, fácilmente aplicable y generalizable.
Palabras clave: análisis de datos, aprendizaje automático, diagnóstico

de fallos, gestión de datos, localización de fallos, red de baja tensión
activa
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1
Introduction

1.1 Motivation

Electricity is one of the most basic utilities, inextricably linked to all
parts of modern life. Major sectors such as the industry, health and
transportation rely heavily on constant and uninterrupted power sup-
ply, and society’s progress and prosperity is highly influenced by its
access to reliable and affordable electricity. Hence, apart from the con-
struction of a well-designed grid, emphasis should be also given to its
protection, maintenance and repair.

In order to ensure that the electricity providers pay the necessary
attention to the quick restoration of power supply, various indexes
have been established as a means to measure the reliability of each
provider [5]. Among the most important ones is the System Average
Interruption Duration Index (SAIDI), which is defined as follows:

SAIDI =

∑
UiNi

NT
(1.1)

where Ui is the annual power outages’ duration and Ni is the num-
ber of customers whose power supply was interrupted in location i.
NT is the sum of the company’s customers. In the case of exceed-
ing the SAIDI’s set limit, the provider is charged with the respective
fine. Therefore, the minimization of power outage times is in the best
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interest of both the utility companies and the general public.
So far, however, the location of faults has relied on customer calls

and the visual inspection of the lines, which are both time consuming.
This can change with the implementation of automatized and fast fault
diagnosis schemes. Fault diagnosis includes the detection of the fault,
then, optionally, the classification of the type of fault and in the end
the location of the faulted point, branch or sector. Over the years,
multiple methods have been developed on this topic, especially for the
detection and location of faults in medium voltage (MV) networks. The
most important ones are: the impedance-based technique [6–10], the
travelling wave method [11–13], the artificial intelligence (AI) [14–17],
the sparse measurements method [18–21] and the hybrid techniques
[22–24]. All the methodologies are analyzed in detail in Chapter 2.
As new technologies emerge and the electricity grid is being trans-

formed in accordance with the clean energy goals, the grid’s complexity
is rising significantly. The part of the grid that is currently undergoing
the most radical changes is the distribution grid. The vast integration
of Renewable Energy Sources (RES), Energy Storage Systems (ESS)
and Electric Vehicles (EVs), among others, together with the increas-
ing flexibility of the electricity markets and the expanding role of pro-
sumers have affected remarkably the characteristics of the distribution
grid, e.g. the grid’s inertia, the direction of the power flow, the short-
circuit level and more. At the same time, the majority of disruptions,
approximately 80%, in the distribution grid’s power supply are caused
by faults [25]. Thus, traditional fault diagnosis methods are becom-
ing obsolete and efficient fault diagnosis is deemed more crucial and
challenging than ever.
The grid changes, however, and the associated developments in fields

like the ICT (Information and Communication Technology) also of-
fer increased grid observability, growing data availability and various
powerful tools for the optimization and modernization of the fault di-
agnosis processes. The increased data availability facilitates the au-
tomation of the fault diagnosis process, however, it also constitutes a
source of skepticism towards the applicability and practicality of data–
dependent algorithms. Therefore, there are both opportunities as well
as challenges associated with the development of novel and fast fault
diagnosis schemes, in particular those that take advantage of the new
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ICTs.

This applies in particular to the low voltage (LV) side of the distri-
bution grid. Due to its prior lack of complexity, there is not extensive
research that takes into consideration the particularities of this part
of the grid [26–28]. However, with the major ongoing changes in the
LV grid’s characteristics and its unbalanced nature that is frequently
overlooked, the development of sophisticated fault diagnosis methods
adapted to it is imperative.

1.2 Objectives

The aim of this thesis is to present a complete solution to the problem
of fault diagnosis in distribution grids with the use of modern tech-
nologies. More specifically, emphasis is given on the use of data–driven
solutions for the development of fault diagnosis methods for the low
voltage (LV) grid. The LV is a part of the electricity grid that is start-
ing to gain attention due to its radical transformation. The transition
to the smart grid era reveals new challenges and renders the review
and redesign of the traditional fault diagnosis techniques necessary. At
the same time, the technological advancements in the field of ICT fa-
cilitate the development of improved fault diagnosis solutions. The
increased observability over the grid particularly favors the utilization
of AI–based methods; AI has been establishment as a powerful tool in
data pattern recognition.

Therefore the main goal of this research is the presentation of a com-
plete, fast, accurate and practical fault diagnosis method that opti-
mizes the use of the grid data that either are already available to the
grid operator or are expected to be available in the near future. More
specifically, this study addresses all the steps of the fault diagnosis
process, however, due to the fact that the challenges related to each
part of the process are different, the detection, classification and lo-
cation algorithms presented here do not refer to the same case study.
The individual solutions provided for each step are adapted to the par-
ticularities of the active LV grids and address the effect of potential
accuracy–influencing parameters such as the photovoltaic (PV) pene-
tration, the EV fast charging (FC) and ultra fast charging (UFC), the
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topology changes and more. Moreover, this research aims to not only
reap the benefits of Machine Learning (ML) algorithms but also to op-
timize their implementation with the development of advanced data
management techniques. Thus, important issues related to the appli-
cability of ML–based methods, such as the required data volume and
storage, the computational time and the complexity are addressed.

To sum up, the concrete research objectives of this thesis are:

� The analysis of the state–of–the–art in the field of fault diagnosis
and the identification of the related research gaps. (Chapter 2,
related publication [1])

� The analysis of the EVs’ FC and UFC effect on a ML–based fault
detection algorithm and the development of a suitable solution
for active LV grids that is robust against the charging stochastic-
ity.(Chapter 4, presented at the CIGRE Session 2022)

� The development of an easily–adaptable fault classification method
for distribution grids. (Chapter 5, related publication [3])

� The development of a turnkey ML–based fault location method
for active LV grids that analyzes all the aspects related to the
application of ML and provides appropriate solutions to the chal-
lenges arising. Emphasis is given to the management of the input
data in order to achieve optimum predictive accuracy. (Chapters
6 and 7, related publications [2, 4])



2
Fault diagnosis in
distribution grids:
State–of–the–art

This thesis is focused on the diagnosis of shunt faults in distribution
grids. Shunt faults can occur between one or more conductors and the
ground or just between two or three conductors. Examples of shunt
faults are a broken conductor in contact with the ground, a short circuit
between two lines and a contact between a tree branch and the line
leading to a short circuit. From here onward the term fault will be
referring to the following types of shunt faults:

� single–phase fault

� double–phase fault

� double–phase–to–ground fault

� three–phase fault

� three–phase–to–ground fault

Figure 2.1 illustrates a single phase fault. The other types of faults
develop accordingly. It should be noted here that this thesis does not
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Figure 2.1: Single–phase fault

refer to arc or high impedance faults. The methods could apply to
those faults as well, however, no such faults were simulated or included
in the testings.

Regarding the fault diagnosis process, this consists of the detection,
classification and location of a fault. The presented state–of–the–art
analyzes the existing research for all the parts of the process both for
the MV and the LV. In order to avoid confusion the fault diagnosis
steps are defined as follows:

� Fault detection: It is the information that a fault has occurred in
the grid.

� Fault classification: It is the identification of the type of the fault
according to the ten types of shunt faults described above.

� Fault location: There are different kinds of fault location. The
most common are: i) the calculation of the distance between the
feeder and the faulted point, ii) the identification of the node
closest to the faulted point, iii) the estimation of the faulted zone,
iv) the identification of the faulted branch. The exact type of fault
location is defined in each method.

2.1 The LV and MV grid differences

Before reviewing the available fault diagnosis literature on the MV and
the LV parts of the distribution grid, the characteristics that differenti-
ate the two should be discussed. In general, the LV grid is characterized
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by a more complex structure compared to the MV one [29]. The mul-
tiple laterals and the unbalanced loads and RES that can either be
connected with a single–phase or a three–phase conductor create an
asymmetry that does not exist in the MV grid. This results also in the
appearance of negative and zero components during the normal oper-
ation as well. Additionally, the conductors in the LV grids can either
be overhead or underground and they are highly resistive, thus they
should be simulated and treated differently. Finally, the effecy of the
consumers’ transformation to prosumers has a much more significant
effect to the operation of the LV grid.

All these factors pose serious challenges to the application of fault
diagnosis methods at the LV grid and render the development of fault
diagnosis methods adapted to the characteristics of this part of the grid
imperative. More specifically, the differences in the utilized conductors
affect the voltage and current values during the fault, which in turn
affect the accuracy of the methods. Moreover, the different size and
operation mode of the RES, the EVs and other smart grid devices such
as the batteries command the utilization of techniques with specific at-
tributes. E.g. the stochasticity of the EV charging and the operation
of residential RES deriving from the diversity of the human activity,
requires the development of highly generalizable fault diagnosis meth-
ods.

In Fig. 2.2 it can be observed that so far the bulk of the fault location
literature refers to the MV grid. Thus, it only addresses the particular-
ities of the MV and not those of the LV part. In the recent years there
has been an increasing trend in the study of the LV grid and specifically
of active LV grids as it can be seen in Fig. 2.3. Nevertheless, there are
still significant research gaps in the field of fault diagnosis in LV grids.
These will become clearer in the literature review presented in sections
2.5 and 2.6.

2.2 Fault detection in MV grids

Typically the detection of faults in MV grids is performed by over–
current relays. The broad integration of RES in the grid, however, has
posed a serious challenge to the traditional protective mechanisms [30].
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Figure 2.2: Fault location methods published each year for MV and for
LV grids [1].

On one hand the bidirectional power flow can mislead the protection
devices and on the other hand the low inertia of RES can lead to low
and thus undetectable fault currents.

Nevertheless, the Distributed System Operators (DSOs) have not yet
reported any significant difficulties in detecting faults, thus there is very
limited research on the detection of faults in MV grids. The existing
literature mainly refers to the new devices that could be installed on
the grid, new strategies for the coordination and setup of the existing
devices and a combination of the two. More specifically, [31] focuses
on the communication between the existing protection devices and the
analysis of the traditional circuit breaker tripping and subsequent re–
closing process, without, however, proposing any significant innovation.
Then, in [32] the installation and utilization of alternative measuring
devices is proposed for the detection of faults. The method is offering
a new perspective on the traditional fault detection methods, however,
it assumes an important investment.

Another method that is based on specialized equipment is the one
extracting high frequency signatures from the recorded voltage and
current signals. These signatures could be used among others for the
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Figure 2.3: Fault location methods published each year for active MV
and active LV grids [1].

detection of faults. Emphasis is given also in the different signal charac-
teristics between the overhead and underground lines. Finally, a specific
type of MV grids, a MV microgrid, is studied in [33]. The method pre-
sented in the paper is based on the injection of harmonic current by the
inverter and the subsequent analysis of the harmonic circuit. The latter
is less affected by the fault resistance, thus its analysis leads to more
accurate results. The method, however, is tested only for three–phase
faults and a maximum resistance of 2 Ω.

2.3 Fault classification in MV grids

The detection of a fault is usually followed by the classification of the
fault’s type. Even though this is not a mandatory step in the fault diag-
nosis process and it can often be omitted, it is a prerequisite for the im-
plementation of certain fault location methods such as the impedance–
based ones. As it can be seen in Fig. 2.4, even though the number
of published research papers on the topic is higher than that of the
fault detection it is still rather low. Most past research was focused on
the HV grid [34–38]. Nevertheless, the distribution grid presents signifi-
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cantly different characteristics in relation to their topology and the type
of lines, loads, protection systems, measuring devices, RES and more.
Therefore, the development of specialized fault classification methods
for the distribution grid is necessary.

Figure 2.5 presents the most popular techniques in the field. These
can be broadly categorized into AI–based methods, hybrid methods
and miscellaneous methods. Figure 2.4 shows a clear trend towards
the employment of AI algorithms for the classification of faults in the
recent years. Nevertheless, the overall number of papers utilizing each
methodology is comparable. The available literature corresponding to
each methodology is analyzed in the following sections.

Figure 2.4: Number and methodology of the yearly published fault clas-
sification papers for MV grids [1]

2.3.1 Artificial intelligence–based methods

The use of AI techniques in all scientific fields has skyrocketed over
the last few years and the fault diagnosis field is no exception. The
most frequently used AI techniques in fault classification methods are
the Artificial Neural Networks (ANNs), the Support Vector Machine
(SVM) and the Fuzzy Logic (FL).
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Figure 2.5: Overview of the most used fault classification methods for
MV grids [1]

Literature overview

The ANNs have been used for the development of methods such as
the [17, 39, 40]. In [39] the ANN is trained using as inputs the post–
fault voltage and current measured at one point in the grid. A different
approach is implemented in [40], where the authors utilize the ANN to
identify the thresholds of the positive– and zero–sequence current that
define the type of the occurring fault. This is an evolution of the, more
traditional, observation of the network variables during a fault event
for the establishment of current thresholds. Furthermore, in [17] the
collected features for the training of the ANN are the voltages dur-
ing the fault measured by micro Phasor Measurement Units (µPMUs)
or smart meters placed at the end of the lines/branches for increased
accuracy [23].

In a variation of ANN, [41] utilizes artificial immunological systems
in a process that combines the fault type identification with the calcu-
lation of the fault resistance and the location of the fault.

Then, in [24] and [14] a SVM is used for the classification of the
fault type. In the first case, the SVM serves multiple purposes as it
is also used for the configuration of the Source Short–Circuit (SSC)
level. In the second one, the use of a radial basis function kernel is
studied for the maximization of the SVM’s efficiency. On the other
hand, in [42], a SVM is compared with an ANN with respect to its
ability to classify disturbances on the grid including voltage sags. The
SVM proved more accurate, however only two– and three–phase faults
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were simulated. Finally, in [43] the SVM is combined with the K–
Nearest Neighbors (KNN) and a Random Forest (RF) in a stacked
architecture for optimum results.

Regarding FL–based methods, [44] proposes a technique that mea-
sures the three–phase current in the substation, converts the magni-
tudes and angles to fuzzy variables, and then compares them with the
set fuzzy current values that characterize each type of fault. Refer-
ence [45] studies the subject of fault classification from the point of
substations. The process followed is the same as before; the faults clas-
sification process consists of the transformation of the crisp current and
voltage values into fuzzy ones and the subsequent evaluation of their
magnitude. Additionally, [46] is also based on the variables’ fuzzifica-
tion and takes advantage of it by training five Learning Algorithm for
Multivariable Data Analysis (LAMDA) nets, one for each type of fault,
for the classification of faults.

Finally, in [47] a new method based on usupervised learning is pro-
posed. The method aims to identify the different types of faults using
mostly unlabeled data. Thus, it offers a practical solution for real
datasets.

2.3.2 Hybrid methods

The majority of hybrid methods combine an AI model, often one of the
aforementioned, with a signal transformation technique that is used
for the feature extraction. The most frequent combination is that of a
Wavelet Tranform (WT) with an ANN.

Literature overview

References falling under this category include [48–56]. In [48] the col-
lected current at the feeder is processed with the Hilbert–Huang Trans-
formation (HHT) in order to extract a signature component based on
its frequency. Then, an ANN is trained using each fault type’s en-
coding as a comparative measure. The same logic is applied also in
the methods proposed in [49, 50]. The first one combines a Discrete
Wavelet Transform (DWT) with an ANN, while the second [50] com-
bines a DWT with FL. In [51], in addition to the WT and the FL,
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an ANN is used not only for the classification of shunt faults, but also
for the distinction between the different categories of faults (e.g. open
circuits, high impedance etc.). Finally, in [52] the ANN is trained
based on the fault identifiers produced with the use of the WT and the
Fast Fourier Transformation (FFT) of the zero–sequence voltage and
the three–phase fault current. Moreover, three Adaptive Neuro–Fuzzy
Inference Systems (ANFIS) are deployed with fuzzy variables used as
fault identifiers.

Other hybrid methods include [53] and [54] in which the Clarke–
Concordia transformation is employed for the processing of the phase
currents and the extraction of the eigenvectors. These are then com-
pared with the fault patterns deriving from the theoretical basis of
eigenvectors. Even though in [54] the sensitivity analysis is more thor-
ough and there is a slight differentiation in the theoretical analysis,
the two papers present the same idea. Once again, the transformed
variables are used as inputs for an ANN. An identical procedure is also
followed in [55]. Furthermore, [56] employs the Clarke modal transfor-
mation but only for the distinction between grounded and ungrounded
faults. The phase angle shift method is used for the exact classification.
The shift in each phase’s voltage phasor before and after the fault is
calculated and based on the degree of deviation the faulted phase(s)
is/are determined.

2.3.3 Other methods

Multiple other methods have also been used for the classification of
the type of faults occurring in electricity networks, including purely
wavelet–based methods, over–current methods utilizing criteria and
thresholds, the Park transformation etc.

Literature overview

As discussed above the wavelet transform has been used a lot as part
of hybrid methods. Nevertheless, there are papers presenting only
wavelet–based methods [12, 57, 58]. Reference [58] proposes the uti-
lization of the sub–band information of the current signals in the sub-
station, which contain fault signatures that point to the type of fault.
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For the extraction of these information, the wavelet multi–resolution
analysis (MRA) of the input data is employed. Taking into consid-
eration also the changes caused in the network due to the connection
of Distributed Generation (DG), [12] proposes a method based on the
information exchange between relay agents spread out on the grid and
their analysis through a complex wavelet transformation. The sum
of the non–normalized Shannon absolute entropies of wavelet coeffi-
cients of the Clarke components and the three–phase currents are used,
first, for the identification of the general type of fault, and then, for
the identification of the affected phases. Moreover, in [57], after the
wavelet transformation the current signal’s phase energy signatures are
compared with threshold values for the determination of the type of
the fault. The thresholds were formed based on critical fault case sim-
ulations, nevertheless they are case–sensitive.

Another traditional fault classification approach that is based on
thresholds is the over–current technique. References [6, 59–62] empha-
size on the presentation of fault location techniques, however, they
also include fault classification methods which utilize mainly the over–
curent technique. Paper [6] is one of the early, fundamental references
of this technique, which compares the change in the current’s magni-
tude due to the fault with a set threshold. What differentiates the
method in [59] is that instead of a set threshold, it uses constant anal-
ogy factors, creating in this way criteria that describe each type of fault.
In the case of the other three papers [60–62] the comparison is made
between the values of the current phasors after the fault and specific
constant threshold values. The simulation results of the aforementioned
paper, however, refer only to the fault location methods, not enabling
the validation of the fault classification algorithms.

A variation of the over–current method is analyzed in [63]. In this
method, the fault’s type is determined with the use of the three–phase
normalized current at the substation and the maximum current. Along
the same path, in [13] the filtered, normalized three–phase voltage and
the zero–sequence voltage are utilized for the classification of faults.

Finally, among the proposed techniques for the classification of faults
in MV grids is also the use of the mathematical morphology [64].
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2.3.4 Observations

After reviewing the available research on fault classification some gen-
eral conclusions can be drawn regarding the existing methods. First
of all, the AI methods outweigh the rest when it comes to their accu-
racy, however models such as the ANN require a large amount of data
and significant computational power for their training. On the other
hand conventional methods such as the over–current and the wavelet–
based ones also have strong points and those are, in this case, their
simplicity and speed respectively. Hybrid methods reflect the attempt
to combine the advantages of the individual methods. They are more
complex overall, but they opt for excellent results.

More specifically, considering that the dataset size is one of the main
drawbacks related to the AI’s application, some methods aim to tackle
this problem. However, the solution proposed in fault classification
methods so far only consist of the training and testing of the algorithm
with a small dataset, without the employment of any advanced data
processing techniques. In this case the high test accuracy is probably
the result of overfitting and not of the algorithm’s potential. The over-
fitting makes the algorithm vulnerable to the slightest changes in the
grid, especially to topology changes.

Nevertheless, the AI’s capability to learn complex relations between
the data presents significant benefits. It constitutes a great solution to
problems that have proved challenging for conventional methods, such
as the classification of faults in grids with bidirectional power flow.
Moreover, in the majority of cases AI–based algorithms have proven
robust against grid parameters such as the fault distance, the fault
impedance, the capacitive effect and the noise in the measurements. In
addition they can also be used for the computation of more variables,
e.g. the fault resistance and the source short–circuit level. Finally, it
is the most suitable tool for the handling of real grid data.

Regarding the wavelet–based techniques, these are often used as part
of a hybrid method. They offer the advantages of the high efficiency
for the detection of singularities in the grids’ signals [65] and the high
speed. However, these propertis alone do not present any practical
value. Without any further processing steps the anomaly recognition
would require the evaluation of the extracted signatures from trained
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personnel. Furthermore, the whole process requires the utilization of
specialized equipment and it is less efficient in grids with multiple lat-
erals such as the distribution grid.

The other traditional method, the over–current technique, bases its
applicability on its simplicity. Since it depends entirely on threshold–
based criteria dependent to the specific grid though, it requires re–
calibration every time a major topology change occurs. In addition,
its accuracy in the presence of bidirectional power flow has not been
tested.

Finally, as previously commented, the hybrid methods are charac-
terized by higher complexity compared to the rest of the methods,
nonetheless, they aim also at higher accuracy. Combining, in their
majority, an AI model with a data transformation technique, the hy-
brid methods inherit the positive characteristics of both methods while
reducing their negative aspects.

2.4 Fault location in MV grids

The final part of the fault diagnosis process is the localization of the
faulted branch, node and/or point of the line. This is the most chal-
lenging part and, possibly because of that, also the most studied part.
Figure 2.6 presents the analyzed papers according to the year of their
publication and the utilized method. Similarly to the fault classifica-
tion methods, the main methodologies used for the location of faults
in MV grids are the impedance–based ones, the traveling wave–based
ones, the AI–based ones, the sparse and distributed measurements ones
and the hybrid ones.

First of all, the need for novel fault location algorithm is depicted
in the growing number of relevant publications. Moreover, it can be
observed that up until 2010 impedance–based methods constituted the
most used methodology. However, in the more recent years the trend
has shifted towards the AI–based and subsequently the hybrid meth-
ods. The characteristics of each method and the reasons behind these
research trends are analyzed in detail in the following sections.
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Figure 2.6: Number and methodology of the yearly published fault lo-
cation papers for MV grids [1]

2.4.1 Impedance–based methods

As commented above, the impedance–based methodology is one of the
first and most applied methodologies in the fault location field. This
method is used to calculate the exact faulted point based on the Kirch-
hoff’s laws. It analyzes one section of the line at a time until it locates
the faulted point. The section in this case is defined as a part of the
line that does not contain any laterals, as illustrated in Fig. 2.7.

The method’s application begins with the assumption that the an-
alyzed section contains the fault. It utilizes pre– and post–fault volt-
age and current values on both sides of the section as well as the line
impedance matrix in order to form equations that calculate the overall
impedance between the beginning of the section and the faulted point,
and subsequently the fault’s distance from the beginning of the section.
If the calculated distance is bigger than the section’s length then it is
concluded that the fault is not located in that part of the line and the
analysis continuous with the next section. The voltage and current val-
ues are either measured or estimated, depending on the measurements’
availability. The minimum measurement requirement is one measure-
ment point. Equation 2.1 is based on the aforementioned methodology
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Figure 2.7: Circuit with multiple branches, containing a fault with fault
current If and fault resistance Rf . The fault’s distance
from the branch preceding it is fd and from a following bus
is (l3x − fd), where l3x is the distance between buses 3 and
x.

and is used for the calculation of the voltage at the fault point (VF ).
The (VF ) is then utilized for the calculation of the faulted–point cur-
rent (IF ) which is used in Eq. 2.1 for the calculation of the exact fault
location. VFa

VFb

VFc

 =

VSa

VSb

VSc

− d ·

Zaa Zab Zac

Zba Zbb Zbc

Zca Zcb Zcc

 ·

ISa

ISb

ISc

 (2.1)

where VS , IS are the voltage and the current at the local end respec-
tively, d is the distance between the fault and the beginning of the line
and Zxy is the impedance between phases x, y.
An important variable in the equations is the fault resistance (RF ).

The latter is a real value meaning that it does not have an imaginary
part. Thus, in order to eliminate this unknown from the equations
their imaginary part is separated and set equal to zero. Equation 2.2 is
based on [9] and represents the fundamental equation utilized for the
location of a single–phase fault occurring at phase n in a line section.

[
d
RF

]
=

1

M1nIFni
−M2nIFnr

·
[
IFni

−IFnr

−M2n M1n

]
·
[
VSnr

VSni

]
(2.2)

where subscripts r, i refer to the real and imaginary part of the vari-
ables respectively, VSn is the voltage at the local end and IFn is the
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fault current.

Regarding the variables M1n ,M2n , they are defined as:

M1n =
∑
k

(ZnkrISkr
− ZnkiISki

) (2.3)

M2n =
∑
k

(ZnkrISki
+ ZnkiISkr

) (2.4)

where k equals to one of the three phases each time, Znk is the
impedance between the phases n, k and ISk

is the current at the local
end.

The unknown variables can either be directly calculated or they can
be estimated through an iterative process. Although direct calculations
are more complex, the iterative process may result in an unacceptable
accumulation of errors [66]. The final result is the distance fd between
the fault and the bus preceding it. The fault’s location is the fd added
to the cumulative length of the line sections between the feeder and the
bus preceding the fault.

In most cases, a different set of equations corresponds to each type
of fault. Therefore, as commented in section 2.3 the employment of a
fault classification method is usually required before the application of
an impedance–based method.

Literature overview

The foundations of most impedance–based methods for distribution
systems were laid in the 1990s [6,7,67]. Based on these the first patent
on both direct and iterative impedance–based methods as well as a
fault classification method was established [59].

Implementing the direct circuit analysis, researchers in [68,69] use a
distributed parameter line model for the development of the system’s
equations for a single–phase [68] and a line-to-line [69] fault respec-
tively. Both methods use the matrix inverse lemma for the simplifica-
tion of the calculations. For simplification purposes again, in [66] the
modal transform is employed to decouple the impedance matrices of
the circuit’s phases. Hence, every phase is analyzed individually and
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the direct computation of the distance is facilitated. The direct circuit
analysis is also tested on non-radial grids with encouraging results [8].

On the other hand, methods described in [9, 70–73] utilize iterative
solvers for the estimation of the fundamental equations’ unknown pa-
rameters. In one of the early studies following this approach, the use
of the symmetrical components is incorporated in the proposed fault
location method [70]. Later studies omitted the use of the symmet-
rical components, offering more solid equations first for single–phase
faults [71] and then for all the types of faults [9]. Regarding the practi-
cal side of the problem, [72] describes the field test done to a prototype
device, manufactured to locate faults, that was installed in a distri-
bution substation in Brazil. The device proved capable of identifying
transient faults as well. In other iterative–based methods, in [73] the
location of line–to–line and three–phase faults in ungrounded systems
is discussed and in [74] a backward–forward sweep is proposed for the
method’s adaptation to active grids.
In [10,62,75,76] the apparent power is used instead of the fault resis-

tance for the formation of the required equations. In this way the need
for the fault’s classification is eliminated. The fundamentals of this
approach are presented in [62]. Following that, [75] suggests an im-
plementation of the method through the use of synchronized measure-
ments for the fault location in grids with DG. In [76] the same problem
is solved with the use of non–synchronized measurements. Then, re-
searchers in [10] present an equation for the location of all shunt faults
in AC microgrids.
Other variations of the method include the use of a wide–band fre-

quency analysis and the Clark’s transformation in a distributed param-
eter line mode [77]. Furthermore, the formation of fifth–order polyno-
mial equations are applied, with emphasis given to the inclusion of
the capacitive effect in the equations [78]. This effect is studied also
in [79], where, for simplification purposes, the fault are only categorizes
as ground or line–to–line faults, and in [80], with the method tested on
an underground cable. Moreover, in another attempt to adjust the
impendance–based method to active grids and achieve faster and more
accurate results, the golden section technique is proposed as an analysis
tool in the place of the traditional fixed step technique [81].
Finally, regarding the inputs, the majority of the references utilize
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the phasors of both the voltage and the current for the location of the
fault. Nevertheless, [82] proposes two separate approaches, one using
the current phasor and one using only the current magnitude; the first
one lead to higher accuracy. Moreover, in [83] an impedance–based
method utilizing only the voltage measured in two points of the line
is presented. The location of the measuring devices is not important
for the application of the method, which is suitable also for grids with
bidirectional power flow.

Advantages and disadvantages

The main drawback of the impedance–based methods is the multiple
location estimation. It is a frequent problem in grids with laterals, espe-
cially larger grids. Another parameter that can significantly affect the
method’s performance is the changes in the loads during the fault inter-
val [66]. The load changes affect the calculated currents and voltages
and can lead to inaccuracies in the final result. Furthermore, meth-
ods utilizing current measurements may also be affected by the current
transformer’s saturation. Finally, there is very limited research regard-
ing the application of the method in grids with bidirectional power
flow.

On the other side, impedance–based methods are low-requirement,
easy-to-implement methods that are based on simple physical relations.
This is one of the main reasons that has lead to the continuous devel-
opment of such methods and the research on ways to improve them.
As it will be shown in the hybrid methods’ subsection, many ancil-
lary techniques have been deployed for the elimination of the multiple
estimations’ problem. Further optimization efforts include the utiliza-
tion of transformations that speed up the process, the reduction of
the equations and the input variable and the use of non–synchronized
measurements. Another advantage of the impedance–based methods is
that each section is analyzed individually, thus the methods take into
account the heterogeneity of the line in the calculations. Finally, the
method also allows the calculation of the fault resistance.
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2.4.2 Traveling–wave–based methods

As commented in the previous sections, a popular method in the whole
of the fault diagnosis field is the traveling–wave–based one. This method
is based on the study of the high frequency wave that appears after a
fault occurrence. The wave travels towards the ends of the line and the
time that it takes for it to arrive at each end depends on its location.
Since the wave’s speed is known and the arrival times can be measured,
the distance fd from the beginning of the line can be calculated using
eq. 2.5,

fd =
l − v(tA − tB)

2
(2.5)

where l is the length of the line, tA, tB the time that it takes for the
wave to arrive at the two ends and v the velocity of the wave.

More recent methods rely on the reflection of the traveling wave at
the faulted point after it is reflected at one of the line’s endings. In this
way it is not required to measure the signal at both sides of the line.
The wave is reflected in the extremities and the time that it takes to
travel from one end to the place of the fault and back can lead to the
estimation of its location by using eq. 2.6,

fd =
v(t2 − t1)

2
(2.6)

where fd is the distance from one end of the line, v the wave’s velocity
and t1, t2 the time that it takes for the wave to travel to the faulted
point and back respectively. The moment the wave leaves the end of
the line is considered as the inception time. The term “end of the line”
in this case can also refer to a measurement point and not the actual
ending point of the line. An illustrative example of this approach is
provided in Fig. 2.8.

Literature overview

Most traveling–wave–based methods include as a first step the modal
transform. In [58, 84–86] the wavelet transform is used for the extrac-
tion of the signals’ unique signatures. The signals are recorded at the
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Figure 2.8: Traveling–wave method representation.

substation. These signatures are compared to those stored in the re-
spective simulation–generated database. The quality and subsequently
the usefulness of the fault signatures though is affected by the amount
of junctions existing between the fault location and the substation;
the more junctions the worse the recorded data. Thus, various studies
examine the application and adaptation of wavelet–based methods to
grids with multiple laterals. In [84] only the faulted section is iden-
tified and another method is required for the calculation of the exact
distance to the fault. In [85], which uses only voltage measurements,
the frequency–distance curve of the faulted lateral is used for the ex-
act location of the fault. Moreover, [58] is based on the distinctive
characteristics of the third level output of the current signal after the
wavelet transform. Finally, reference [86] presents a new tool called
“Time Trees” for the faster creation of the signature database. This
tool, however, does not take into consideration parameters such as the
attenuation and the dispersion.

Following the same modus operandi and correlating the fault signals’
frequency with the possible fault paths, researchers in [87] use a tra-
ditional mother wavelet (Morlet–wavelet) as a filter. However, not all
frequencies and subsequently faulted paths can be identified with this
technique. Therefore, an improved version of the method that dismisses
the traditional mother wavelets and constructs new ones based on the
admissibility criteria of the Continuous Wavelet Transform (CWT) was
later presented [88]. In another attempt to optimize the method, the
faulted section identification was complemented by a criterion based on
the time span between the points of the signal coefficients’ maximum
locals [11].
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Further literature on methods utilized single–end measurements in-
cludes [89,90]. In [89] an ANN is used for the estimation of the wave’s
zero mode velocity, which is then used along with the aerial mode com-
ponent for the calculation of the fault distance through eq. 2.7,

XC =
v1 · v0(TC2 − TC1)

v1 − v0
(2.7)

where, XC is the estimated fault distance, v1 and v0 are the velocities
of the aerial and zero mode components respectively, and TC1, TC2

are the arrival times again of the aerial and zero mode components.
Reference [90] proposes a method specifically designed for unearthed
compensated systems. According to this method, the problem of the
multiple reflected signals faced in one–end measurement systems can
be overcome by tracking the arrival times of the aerial mode one and
utilizing eq. 2.6.
Some research has also been done on the comparison of single– and

double–end methods [91, 92]. The first paper has certain problematic
points as it presents methods that are based on techniques developed
for transmission networks. Moreover, no conclusions can be drawn, as
the test results presented are insufficient. The second paper constitutes
a more solid contribution as a field test is conducted for the verification
of the theory. The test shows that a combination of the methods leads
to optimum results.
Furtheremore, there are techniques that use multiple devices placed

on the grid. In [93] signal recording devices for digital wavelet trans-
form (DWT) are placed, apart from the substation, also at the load
terminals. The time of the wave’s arrival is recorded and after review-
ing the topology of the network, the location of the fault is estimated.
This method requires synchronization of all the fault transient detec-
tors with a GPS clock. The same technique and requirements but with
a different mathematical analysis are also presented in [94]. Then, El-
Zonkoly [12] also employs distributed measurements but in the form of
relay agents that sum the absolute entropies of the wavelet coefficients
of the measured current’s Clarke transform and form criteria according
to its value.
Additionally, DWT and CWT can be also combined [13]. In the first

step the DWT is utilized for the identification of the faulted section.
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Then, if the fault is located between two measuring devices, DWT is,
again, used for the location of the exact faulted point, otherwise CWT
is employed.

Finally, [95] proposes the exploitation of more properties of the Elec-
tromagnetic Transients (EMTR) generated by the fault. According to
it, through the back injection of the recorded signal after having been
reversed in time, the fault point can be detected by a process of trial
and error of possible fault locations. The variables that are randomly
chosen and changed each time are the fault location and impedance.

Advantages and disadvantages

Traveling–wave can be categorized as a rather complex yet fast method,
that in most cases is independent of the network parameters, but re-
quires specific equipment able to record the transient waves of voltage
and/or current and, usually, their arrival times. This last factor leads to
a significant increase in the method’s cost. Apart from that, the tech-
niques utilizing current measurements have the drawback of an accu-
racy drop when the DC component is high and the current transformer
saturated. In single–ended methods, the isolation of the wave of inter-
est can be obstructed by unwanted reflections and noise added by other
components and junctions of the network. Furthermore, methods like
EMTR work only when the topology of the system remains the same
during the studied transient phenomenon. Moreover, most traveling–
wave–based techniques refer only to single–phase faults, since they are
the most frequently encountered.

Nevertheless, single–ended methods are widely developed mainly be-
cause they do not depend on any kind of communication and syn-
chronization between devices. Additionally, EMTR methods lead to a
minimization of the measurement points and at the same time they are
a good fit for complex heterogeneous systems. Finally, between DWT
and CWT, which are the most commonly used transforms, CWT has
the advantage of the more detailed analysis of the spectrum of energy
of the recorded transients [87].
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2.4.3 Artificial intelligence–based methods

AI has found vast application also in the location of faults in MV grids.
As illustrated in Fig. 2.6 it has been turned into the most used method
in the recent years. Unlike the fault classification AI–based methods
though, in this case regression models are used for the prediction of
the faulted point as the target value is a numerical one. Nevertheless,
some of the most commonly used models are also in this case the ANN
[15, 17, 39, 40, 60, 61, 63, 96–98], the SVM [14] and the FL [19, 99, 100].
Other utilized AI solutions are the genetic algorithms [101,102] and the
tree–based models [103,104].

Literature overview

So far ANNs have been the most utilized AI–based fault location method
as they were among the first models to be studied and optimized by the
developers. They have strong pattern identification capabilities thus
they are highly accurate when trained properly. An ANN comprises
various layers which contain neurons with different weights. There are
different techniques for the calculation of weights, however, their com-
mon goal is to replicate as accurately as possible the relations between
the input features and the target value. given to the An illustrative
example of the ANN concept is presented in Fig. 2.9.

Most methods applying ANNs have the same structure with the main
differences between them laying on the selection of certain parameters
of the algorithm such as: the selected features, the pre-processing of
the data, the training method, the activation functions, the number of
neurons and the number of layers. Regarding the last point, all but two
papers [61,97] use just one hidden layer, which is the simplest solution.
Then, regarding the activation function, the most popular ones are:
the sigmoid [17,61,96], the gaussian radial basis [15] and the hyperbolic
tangent [63]. Furthermore, for the training of the ANNs, two algorithms
have been mainly used: the Levenberg–Marquardt [40, 60, 61, 63] and
the back propagation [17,97]. Finally, as far as the utilized features are
concerned, the three most frequent types of inputs are: a) those based
on current, b) those based on voltage and c) those that use both or
more.
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Figure 2.9: Neural network diagram.

In a more traditional approach, [61] considers just the fundamental
frequency current phasors at the substation level. An extension of this
approach is found in [15] which utilizes both the three–phase currents
at the feeder and those measured at the DG points as input for the
ANN. Furthermore, in [63] the only utilized feature is the ratio of the
grid’s short–circuit current to the short–circuit current of the DG. On
the other hand, in [17] the use of just voltage measurements from smart
meters placed along the grid is proposed. Most ANN-based methods,
however, use at least both current and voltage measurements. Some of
these methods try to improve the quality of the measurements with the
use of Butterworth filters that remove the high-frequency components
[39]. Others propose the addition of more features for the increase of the
accuracy. In [40, 60] the pre–fault and post–fault three–phase current,
voltage and active power phasors measured at the substation level are
used. Then, the largest set of inputs (17 in total) is proposed by [97]
including voltage under a short–circuit, active and reactive power under
healthy and faulty operation at the feeder level as well as circuit breaker
and motor status. This implies a significantly bigger training dataset
which can lead to higher computational times and does not guarantee
an increase in the accuracy.

An alternative approach is proposed in [96] and considers as input
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to the ANN the status of circuit breakers and relays. Then, in [105]
a Deep Graph Convolutional Network was employed, with the voltage
and current phasors utilized as features. Finally, a variation of the
ANN, the stacked auto encoder, is applied in [106] for the location of
single–phase faults. First the faulted section is identified with the use
of the Pearson’s correlation on the zero sequence current and then the
auto encoder locates the exact faulted point by spotting the changes in
the voltage and current waveforms. The method is accurate, however,
it requires the installation of µPMUs.

Another popular AI model is the SVM. SVMs create hyperplanes
based on the data characteristics in order to split them into homoge-
neous groups. Therefore, it can also be used as a pre-processing step.
In [14], for example, it is used for the simplification of the relation be-
tween the features and the target value. The outcome is then used to
train an ANN. For this reason, SVM models have been mostly used in
hybrid methods; these will be analyzed in a following section.
The third subcategory of AI techniques is the FL. FL translates the

measured values into a degree of possibility between 0 and 1, making it
possible to identify the parts of the grid that show some abnormality.
Such an application is proposed by [99] where fuzzy reasoning identifies
the faulty bus by comparing the measured voltage sag patterns with
the saved fault patterns from different buses. Another application is
proposed by [19] where Fuzzy–c clustering is implemented to determine
possible fault points. Finally, the combination of FL with an ANN
forms the ANFIS. With this tool the current signals can be used to
locate the faulty zone of the grid [100].
Apart from these three algorithms that have been used the most until

now, there multiple other AI models that have also been employed in
fault location applications for MV grids; among them the genetic algo-
rithms which are basically optimization techniques capable to overcome
limitations of conventional methods in their search for a global mini-
mum point [101, 102]. Another family of models that is growing in
popularity are the tree–based ones. Tree–based techniques such as the
RF [103,104] combine versatility with low variance and are able to per-
form well with a variety of data types. In the case of [104], the method
is not only able to locate the faulted point but also to predict the dura-
tion of the fault. Nevertheless, the overall accuracy is not particularly



2. Fault diagnosis in distribution grids: State–of–the–art 29

high and the method requires real–time data streaming which is not
feasible with the current measuring devices.

Furthermore, not only ANN have been inspired by natural systems.
Models such as the artificial immunological system have been used to
solve pattern recognition and optimization problems. Their application
is similar to those of the ANN. In [41] the model estimates the fault lo-
cation utilizing the three–phase voltage at the substation level and the
DGs. Additionally, a method based on the calculation of the variation
of the spatio–temporal correlation of the data (three–phase voltage at
the substation level) is presented in [107]. Finally, in [43] multiple clas-
sification models are stacked in order to accurately locate the faulted
node. More specifically, the proposed method aims to combine the
benefits of a SVM, a KNN model and a RF for optimum results.

Advantages and disadvantages

As discussed before, the employment of AI models is accompanied by
certain drawbacks. First of all, they usually require a large amount of
data for their training. Secondly, the quality of the data can signifi-
cantly impact the algorithm’s performancy and reliability. Currently
it is rather hard to obtain real data and most methods do perform a
thorough data analysis to ensure the quality of the generated data that
are used for the algorithm’s training and testing. At the same time, the
constant feed of the models with real data from the grid is not yet feasi-
ble and it would require infrastructural investments. Furthermore, the
models’ accuracy when handling unseen data is not guaranteed; e.g.
topology changes could lead to a significant drop in the algorithm’s
accuracy.

Nevertheless, when it comes to the overall method’s efficiency, knowledge–
based methods outperform conventional ones. Their ability to detect
non–linear patterns in the data is unique and enables the accurate
and fast resolution of complex problems. Moreover, thanks to the lat-
est technological advancements, the practical application of AI–based
methods can be greatly facilitated with the use of algorithms optimiz-
ing the data management and the computational processes. Finally,
the algorithm’s performance with unseen data can be easily improved
with the use of algorithms that increase its generalizability and smart
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re-training techniques.

2.4.4 Sparse and distributed measurements methods

Due to the growing grid monitoring possibilities and the technologi-
cal advancements various techniques based on the use of sparse and
distributed measurements have been developed. The development of
smart devices specifically has inspired a lot of methods and potential
future applications [108]. This section presents an overview of the avail-
able methods.

Literature overview

The most popular method falling under this category is the one based
on the voltage sags recorded by meters spread across the grid, when
these are available. This method locates the fault by comparing the
collected fault measurements with the data generated by the simula-
tion of all the possible faults on the grid. The faulted point is the one
presenting the smallest difference between the measured and the sim-
ulated values. An index ϵ is usually calculated for every measurement
point, as shown in eq. 2.8; the highest index corresponds to the fault’s
location.

ϵi =
1

∆V m −∆V c
i

(2.8)

Methods relying on this techniques include: i) [20, 109], which only
locate the node closest to the fault, ii) [99] with a fuzzy approach of
the results, iii) [110], which considers a non–linear voltage sag profile
and iv) [111], which is characterized by increased complexity compared
to the other methods but locates the exact faulted point. Similarly,
in [112] the maximum voltage drop is calculated and is followed by
the study of the voltage profile. An important drawback of this last
method, however, is that it is unable to locate faults in the first and
last sectors of the grid.

Apart from the classic use of the voltage measurements there are also
methods proposing a different approach for their utilization. In [18] the
voltage is used for the calculation of the nodal fault currents and the
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estimation of their mean values which then point to the location of the
faulted bus. An improved version of this method is presented in [19].
Among the improvements are the reduction of the required input data
and the method’s extension to all types of shunt faults. Additionally,
another extension of the methodology, this time targeting the method’s
adaptation to grid’s with DG, is proposed in [113].

The particularities of grids with changing power flow directions are
also studied in [21, 114]. In [114] two different approaches cover the
cases of both radial and non–radial grids. Similarly, in [21] a new ap-
proach to fault location in all types of networks including ring and
meshed ones is presented. With the utilization of Directional Fault
Passage Indicators (DFPIs) and Intelligent Electronic Devices (IED),
the algorithm first isolates the faulted section, and then estimates the
exact fault location. The devices employ the function ANSI 21FL, and
the algorithm interprets the data obtained from them. The installa-
tion of DFPIs is also proposed by [115], which aims at optimizing the
current trial and error process followed by DSOs with the employment
of the Markov decision process. Then, regarding microgrids with DG,
a recursive least–square method is proving to be an accurate and fast
solution [64].

Furthermore, there are also studies utilizing as inputs the zero–
sequence values of the variables [116, 117]. In [116] the zero–sequence
voltage and current are used for the construction of the fault factor
and then a genetic algorithm, that lead to an accurate fault location.
In [117], however, the zero–sequence voltage was excluded from the
method in order to avoid the error introduced by the use of the zero–
sequence voltage criterion.

Finally, a different perspective is presented in [118], where real–time
state estimation is used for the location of the faulted line. The fault is
treated as an added bus that absorbs the fault current. Based on that
parallel scenarios that are based on the different possible topologies are
run. The result that are the closest to the measurements point to the
fault location. For the implementation of this method, however, every
node is assumed to be monitored by a PMU.
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Advantages and disadvantages

The sparse measurements techniques are taking advantage of the smart
grid transition in order to provide simple and fast fault location solu-
tions. They are accurate in grids with different layouts, e.g. radial
and meshed grids, and they are not affected by the bidirectional power
flow. In fact, their performance seems to improve in the presence of
DG in the grid, as the inverters are a potential source of additional
measurements. Most procedures take place offline and combine the
fault location with the estimation of the fault resistance. Moreover,
the methods utilizing state estimation are normally independent of the
nature of loads/generation [118]. Finally, more recent methods have
reduced requirements, including their ability to locate the fault with-
out knowing the grid’s topology [21]. Overall, the development of novel
smart devices and control systems leaves plenty of room for innovation
in fault location methods utilizing sparse measurements.

The biggest drawback of the sparse measurement methods is the
investment cost that is usually implied for their application. For the
minimization of this cost an optimization of the meter placement should
be included in the respective studies. Moreover, they require extensive
simulations of all the possible fault scenarios and large databases for
the storage of the results. Additionally, in most cases, the methods
based solely on sparse measurements suffer from the multiple estima-
tion problem and are thus often combined with other methods. Then,
methods like the one in [116, 117] include complex calculations, which
increase the difficulty of their implementation.

2.4.5 Hybrid methods

Similarly to the fault classification methods, in an effort to minimize the
drawbacks of the individual fault location methods, new hybrid tech-
niques trying to combine their benefits have emerged. The most com-
mon combinations are, once again, an AI model with a wavelet trans-
form and in the fault location field also an impedance–based method
with a sparse measurements method.
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Literature overview

There is an abundance of hybrid fault location methods combining AI
models with a wavelet transform. The wavelet transform is used for
the extraction of useful information from the voltage and/or current
signals. The extracted information is used as features by the AI model
for the prediction of the fault location. The most commonly used AI
models are: i) the ANN [51,119–122] and the ii) SVM [22].

Another less common case is the combination of AI with another
data processing method such as a rule–based scheme [123] or the more
modern edge–computing [124]. Furthermore, apart from the wavelet
transform there are other types of transformations used in combination
with an AI model. A popular one is the Clark–Concordia transforma-
tion [53–55].

Moreover, the combination of impedance–based methods with sparse
measurements methods mainly aims to resolve the multiple estima-
tion problem. These methods are usually structured as follows: the
impedance–based methods are used for the calculation of the fault’s
distance from the feeder and the sparse measurements are used for the
estimation of the voltage sags throughout the grid in order to locate
the faulted branch/zone/node [23, 125–127]. Other approaches to the
multiple estimation problem include the use of transient analysis [128],
the combination of impedance–based methods with AI [24,57] and the
combination of voltage sag methods with AI models [129], mathemati-
cal methods [130] or state estimation [131].

Advantages and disadvantages

The main goal of hybrid methods is the improvement of the available
fault location solutions. They aim to increase not only their robustness
and accuracy but also their efficiency. This includes the minimization
of the input data and the reduction of the required investment cost.
Nevertheless, these benefits come at a cost which usually translates to
more complex calculations, increased implementation times and loss of
physical meaning. In general, they combine the benefits of the individ-
ual methods used but they also inherit some of their drawbacks.
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2.4.6 General comparison

Due to the higher number of available methods in the fault location
field it is important to evaluate their fundamental properties and see
how they compare to each other before selecting a methodology to work
with. The established criteria for their comparison are their accuracy,
complexity, number of inputs, speed and cost. The desired method
characteristics depend on the specific application and define the method
selection. In Fig. 2.10 the evaluation of the methods based on the
established criteria is presented. The best combination (outer layer Fig.
2.10) refers to the case with the highest accuracy, lowest complexity,
smallest number of inputs, highest speed, lowest cost.

As commented before, although the hybrid methods lead to the high-
est accuracy, their cost and complexity are also important factors to
be considered. On the other hand, the impedance–based methods lack
in accuracy, nevertheless, depending on the case, this drawback can be
compensated by their low requirements for input data. Overall, the AI
methods could be considered the best alternative, constituting the best
trade–off between a) accuracy and speed, and b) complexity, cost and
number of inputs.

High accuracy

Low 

 of inputs
High speed

Low cost

Impedance Trav. Wave AI Sparse meas. Hybrid

complexity

Small number

Figure 2.10: Comparative analysis of fault location methods [1].



2. Fault diagnosis in distribution grids: State–of–the–art 35

2.5 Fault detection and classification in LV grids

The detection of faults in the LV grid is usually performed by the fuses
installed on the grid. Nevertheless, the smart grid transition has cre-
ated both the need and the opportunity for smarter fault detection
methods.On one hand the vast integration of RES could cause phe-
nomena such as the blinding of the protective devices. This case is
thoroughly studied in [132] with the utilization of different protection
devices and settings being proposed for the problem’s resolution. On
the other hand the appearance of new measurements sources such as
the inverters or various sensors could increase the quantity and versa-
tility of the available data, thus facilitating the accurate detection of
faults.

A conventional measurement–based method is presented in [133],
which studies the rms current increase and the voltage drop in rela-
tion to the fault resistance in order to set fault–detecting thresholds.
Another method that utilizes thresholds is presented in [134] which is
suitable for low frequency measured data collected from the secondary
side of the MV/LV transformer. It uses the Kalman filter for the esti-
mation of the grid’s state and calculates the error between the estimated
state and the measured one. Even though the study includes a thorough
analysis of the threshold selection process, it is a grid–specific method
that is easily affected by the grid’s parameters, e.g. the loads. Thresh-
olds are also used in [135,136], where the measured values are collected
and analyzed either by advanced sensors or the distributed transformer
controller. Moreover, more recent fault detection methods take advan-
tage of the increased data availability by applying AI algorithms. More
specifically, a deep learning [137] and a gradient boosting [28] algorithm
have been used for the detection of faults in LV grids.

Finally, various fault detection methods have also been developed for
LV microgrids. There are both threshold–base approaches [138, 139]
and more advanced ones [140, 141]. The method proposed in [138] is
distinctive from the other threshold–base methods since the value that
is compared to set thresholds is the resistance in various points of the
grid and not the current or the voltage. Nevertheless, it is also char-
acterized by high uncertainty and grid dependency. Another modified
threshold–base approach is presented in [139], which monitors the tran-
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sient inverter current in certain time windows. The recorded current is
then compared with its estimated fundamental frequency value. If their
difference exceeds a set thresholds then it indicates a fault occurrence.
Even though this is a more elaborate method, apart from the typical
drawbacks of threshold–based methods, it also includes the problem
that in order for the fault to be detected the monitoring window needs
to contain normal operation data as well.

Regarding the more advanced methods, these are both hybrid meth-
ods. In [140] a wavelet transform is applied to the collected signals
and the energy signatures extracted are used as inputs to an eXtreme
Gradient Boosting (XGBoost) classifier. Similarly, in [141] a wavelet
transform is combined with a Deep Neural Network (DNN). Both meth-
ods require the usage of specialized equipment and trade-off complexity
for accuracy. It should be noted, though, that in [141] some test results
show a higher accuracy than the corresponding training results, which
causes concerns for the paper’s credibility.

The fault classification methods in LV grids are even more lim-
ited than the fault detection ones. These are mainly inspired by the
corresponding methods developed for the MV. Specifically, in [26] a
threshold–based method is used, that compares the zero–sequence cur-
rent phasor with a threshold set as the maximum possible current am-
plitude during normal operation multiplied with a safety factor. Then,
in [142] Park’s transform is used for the analysis of the voltage’s zero–
sequence component. Moreover, another conventional method is pre-
sented in [133] which is based on the monitoring of the per phase current
increase. Its reliability, however, is limited to low–impedance faults
(lower than 10 Ω). Finally, an AI–based method utilizing gradient
boosting trees is proposed in [28]. This is the most advanced of the
available techniques and is characterized by the highest accuracy and
reliability.

2.6 Fault location in LV grids

The part of the fault diagnosis process for LV grids that has been the
most studied is, once more, the fault location. Similarly to the method
categorization presented in section 2.4, most methods developed for the
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LV grid belong to one of the following families of methods: i) traveling–
wave–based methods, ii) sparse measurements methods, iii) AI–based
methods and iv) hybrid methods.
Regarding the traveling–wave–based methods, these vary slightly

from the ones proposed for the MV grid. The use of underground
cables inspired the application of Time Domain Reflectometry (TDR)
[143,144]. TDR’s results are considered reliable, however, the method’s
implementation requires specific hardware and trained personnel. Over
the years the use of wavelet–based methods has advanced, in parallel
with the methods developed of the MV grids, and it includes the use of
test signals [145] and of the Park’s transformation [142] for the location
faults.
The infrastructure improvements in the LV grid resulting in increased

observability over the grid have also prompted the use of advanced
measurement–based techniques for the location of faults in this part of
the grid as well. Hence, also in the case of LV grids, an increase was
observed in fault location methods relying on smart devices. Among the
proposed smart devices to be used for the data recording required are
fault indicating devices [27] and local sensors [135, 136]. On the other
hand, there are techniques that use conventional well-known devices
such as the PMUs, but propose either the increase of their installation
points [26] or the use of alternative measurements such as the negative–
sequence–voltage [146].
Furthermore, the utilization of sparse measurements for the improve-

ment of the impedance–based methods’ accuracy is also observed in
fault location techniques developed for the LV grid. In [147] novel de-
vices operating in very high frequencies are employed for the collection
of data to be used in the location of arc faults. Then, in [23] the ob-
tained voltage measurements are compared with thresholds that once
again require adjustment based on the specific application. In an effort
to counterbalance this negative characteristic and increase the flexibil-
ity of the method, a zonal division of the grid was proposed.
Moreover, the growing data availability in the LV grid has also lead to

an increasing interest in the development of AI–based methods. Over
the past decade, AI has established itself as a powerful computational
tool and has found multiple applications in various sectors including in
the power systems [148, 149]. Regarding the location of faults in LV
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grids different models have been trained and tested for the location of
either the faulted node or the exact faulted point. In [150] the statistical
basis of machine learning (ML) was put in the forefront and used to
locate the exact point of the fault. However, the overall accuracy was
not particularly high and only three phase faults with a maximum
fault resistance of 1 Ω were considered in the study. The method used
in [28] employs a gradient boosting tree model for the detection and
identification of faults as well as the location of the faulted branch for
single phase and three phase faults. The utilized model is very efficient
and leads to very high accuracy, however, the study focuses only on two
types of faults and, more importantly, there is no location of the exact
fault point. Finally, in [137] a deep learning algorithm is presented that
interpolates the input measurements in order to become independent
of the number of measurement points. The method achieves a mean
accuracy of more than 88.2% in the prediction of the fault’s distance
from the feeder for a wide range of fault resistances. Nevertheless,
the training of deep learning models is highly demanding both for the
machine and for the developer as it contains more complex processes
than other AI models and a large number of parameters that need to
be tuned. Moreover, the main characteristic of deep learning is the
requirement of a large amount of data, which is one of the scientific
community’s major concerns regarding its practical application.

2.7 Observations

The advantages and disadvantages of the fault diagnosis methodologies
used in LV grids are similar to those of the MV grid. The traveling–
wave–based methods are fast, however, they are expensive and hard to
implement. At the same time, their accuracy decreases significantly in
grids with multiple laterals and junction points. Therefore, their prac-
tical value is low for LV grids. On the other hand, sparse measurement
methods are more practical and robust compared to the travelling–
wave–based ones, nevertheless, they also present important drawbacks,
such as the need for infrastructure investments, the fact that they are
grid–specific and the lack of thorough performance validation in the
existing research. Then, hybrid methods are usually more accurate,
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however, they are also more complex and carry some of the combined
methods’ negative characteristics. This last part is especially noticeable
when threshold–based methods are used. These are very vulnerable to
any topology changes and are very grid–specific. Finally, AI–based
methods also require the collection of large datasets, which implies
potential infrastructure investments, and they usually lack generaliz-
ability. Furthermore, they can be computationally expensive and be
treated as black–box methodologies. However, there are multiple tech-
niques that can minimize AI’s negative characteristics and highlight
its unmatched ability to recognize complex patters in the data and its
robustness against potential accuracy-decreasing parameters.

2.8 Research gaps

Based on the literature review on the fault diagnosis methods devel-
oped for the distribution grid it can be concluded that the ongoing en-
ergy transition has posed a great challenge to the traditional methods
and has created the need and opportunity for novel techniques. The
vast integration of RES, ESS and EVs, among others, together with
the increasing flexibility of the electricity markets and the expanding
role of prosumers have altered remarkably the topology of the distribu-
tion grid. At the same time the new smart measuring devices and the
advanced communication systems allow for the automatization of the
fault diagnosis process and the development of faster and more accurate
methods. Especially in the LV grid, the available research is very lim-
ited and the ongoing changes are very radical, thus the need for smarter
fault diagnosis methods is growing. The following section discusses in
detail the advantages and disadvantages of the available methodologies
in order to determine the most suitable methodology for the resolution
of the main challenges faced in the field of fault diagnosis for active LV
grids.

2.8.1 Fault location

Regarding impedance–based methods, the question remains as to how
efficiently they can be adjusted to a meshed grid with bidirectional
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power flow or a grid in islanded mode. Some hybrid methods that in-
corporate the impedance–based technique are able to tackle this mat-
ter, however, when it comes to purely impedance–based methods the
number of publications on this subject is extremely low. Moreover, a
common characteristic of the active grids is the frequent changes in the
operational state or the topology of the grid. These can affect signifi-
cantly the performance of an impedance–based fault location method,
however, are not considered in most studies.

A research gap concerning the effect of the new smart grid compo-
nents can be found also in the traveling–wave–based methods; from the
sixteen papers studied here only three take into account the integra-
tion of RES in the simulations. Additionally, more in-depth research
is required on the effect of the growing number of laterals and tapped
loads in the distribution grid. These lead to multiple signal reflections
which make the detection of the faulted point harder. Furthermore,
in this case as well, the topology changes should be taken into con-
sideration during the method’s development, as they could lead to the
misinterpretation of the recorded signals.
In the field of AI, a major talking point in relation with its practical

applicability is the required data volume and the existing legislation
related to the data collection and usage. Regarding the data volume
and the need for large data storage systems, the development of efficient
data management schemes to accompany the fault diagnosis method
is imperative. Moreover, every AI–based method should specify the
data collection process that needs to be followed in order to ensure its
applicability. Finally, emphasis should be given on the generalizability
of the AI–based methods, so that they become more robust against
topology changes.
Furthermore, considering that the hybrid methods are a combination

of other techniques including the aforementioned ones, most challenges
related to the other methods apply to the hybrid ones as well. Due to
their versatile nature, however, there is plenty of room for novelty and
improvement on their efficiency. This could be easily achieved with the
use of novel measuring and feature extraction techniques. Neverthe-
less, as the use of smart devices is intensified and their functions are
multiplying, the ramifications of possible device malfunctions become
more critical. Smart devices are becoming an essential part of the grid’s
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Operation and Management (O&M) and the impact of external signal
interference or cyberattacks should be thoroughly evaluated. Thus, the
effect of missing or distorted measurements needs to be considered in
future studies.

Finally, the biggest challenge yet, is the large scale practical imple-
mentation of automatic fault location methods by the DSOs. Even
though there is an abundance of fault location methodologies in litera-
ture, in practice most DSOs have not yet implemented an automatized
process for the location of faults. The practices vary between countries
and even between DSOs operating in the same country, however, the
majority relies on customer calls followed by the visual inspection of the
line by a technical crew in order to locate the faults in the distribution
grid [151]. Another common tactic is the manual or remotely controlled
test switching of the pole–switches [152]. Both of these techniques,
however, are time-consuming and can be both costly and dangerous for
the general public and the equipment; e.g. if the isolated part of the
grid becomes energized before the fault is cleared [153]. There are also
devices that have been developed in order to facilitate the detection
of faults, such as the FPIs. Nevertheless, they constitute significant
investments that in most cases are considered uneconomical due to the
fact that they serve only a single purpose. Furthermore, even in the
case where an already installed device has an integrated fault location
function, this might be insufficient for a grid with multiple laterals due
to the multiple estimation problem [154]. Thus, the main focus of the
DSOs should be either a) the application of elaborate fault location
methods that are based on simple measurements or b) the utilization
of the advanced functions of new multi–purpose smart devices, such as
the last gasp messages [155], that are expected to be installed on the
grid in the upcoming years.

2.8.2 Fault classification

As already discussed, the amount of methods focusing on the identi-
fication of the type of faults occurring in distribution grids is quite
small and allows for more research and experimentation to be con-
ducted. The challenges concerning these methods are similar to the
ones already mentioned in the previous subsection. On top of that,
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however, the data concerning the accuracy of fault classification al-
gorithms are almost non–existent. Fault classification techniques are
usually part of a general fault isolation or fault diagnosis method, fo-
cusing on fault location, thus not including tests and simulation results
specifically referring to the classification process; and even when they
do present some results, the sample is often quite small and the out-
come, although highly promising, potentially untrustworthy. To that
end contributes also the fact that important parameters, such as the
noise in the measurements, are frequently ignored in the simulations
conducted specifically for the fault classification methods.

2.8.3 Fault detection

In line with the research gaps identified in the fault location and classi-
fication methods, further analysis is required on the effect of the bidi-
rectional power flow on the fault detection methods. Moreover, the
vast integration of FC and UFC stations on the LV grids is expected
to increase significantly the grid’s load and affect the current values.
The current is a crucial parameter in the fault detection process and
big fluctuations of the current’s values could lead to high inaccuracies.
Most available methods are based on conventional techniques, which
are unsuitable for active grids. At the same time, the technologically
advanced solutions do not take include a thorough sensitivity analysis
on the emerging influencing parameters.

2.8.4 LV grids

The LV grid is a research gap in itself. As described in the previous
section, only a very limited number of papers has been published on
the subject, thus leaving plenty of room for the development of new
methods; e.g. the efficiency of AI algorithms has not been examined
in depth yet. Additionally, although the effect of RES has been con-
sidered in some studies, an analysis of the effect of batteries or the
integration of EVs on fault diagnosis methods is missing. Then, the
effect of parameters like the smart devices and their novel features,
the data availability, the load and the line characteristics on the fault
diagnosis algorithms requires also further research on the LV side.
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2.9 Problem definition and selected methodology

In line with the discussed research gaps and research methodologies,
this PhD research focuses on the development of practical and efficient
fault diagnosis methods for active distribution grids. In the case of the
fault detection and location steps of the process, the research gaps are
identified in the active LV grids, therefore, the developed algorithms are
tailored to the characteristics of a representative LV grid. Moreover,
the effect of bidirectional power flow is taken into consideration in both
algorithms and in the case of the fault detection also the effect of FC and
UFC. Regarding the fault classification part, a research gap is identified
in the bibliography concerning both the MV and the LV parts, hence,
the developed method is applied to the whole distribution grid. Finally,
the AI is selected as the main work methodology as it encapsulates the
most benefits and shows the greatest potential among the available
methods. Its application, however, still poses significant challenges.
Therefore, this research attempts to address the main challenges related
to the application of AI in fault diagnosis algorithms and to present fast,
accurate and generalizable solutions.
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3
Artificial intelligence

algorithms

As commented in Chapter 2, the main AI–based models used in fault
diagnosis algorithms are the ANN, the SVM, the FL and the tree–
based models. Each model has its own characteristics and the selection
of the most suitable one depends on the application at hand. The main
factors that influence the model selection process are the type of the
target value, the relationships between the data, the size of the dataset,
the outliers/noise in the data and the system’s computational power.

The target value is the parameter that defines the type of the prob-
lem. Based on the latter the problems and subsequently the AI models
types are split into two major categories. In the case of categorical
target values, classification models are utilized, whereas in the case of
continuous target values regressions target values are used. The detec-
tion of faults constitutes a binary classification problem, since the target
value is one of two possible states. The identification of the faults’ type
is a multi-class classification problem, since the target value is one of
ten possible classes. Finally, the fault location problem constitutes a
regression problem since the target value is the distance between the
fault and the main feeder.

Regarding the rest of the parameters defining the model selection
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process, these need to be carefully and individually evaluated for each
model depending the specific application. A brief analysis of the most
significant models’ characteristics in relation to these parameters is
presented in the next section.

3.1 AI method comparison

The ANN is the most widely used model in fault diagnosis applica-
tions so far. There are multiple variations of ANNs, nevertheless, they
are all more suitable to applications where large datasets are avail-
able. They have increased computational abilities compared to simpler
models such as the linear regression and are able to identify complex
patterns between the data when the appropriate training method is
followed, i.e. when appropriate activation functions are applied. Nev-
ertheless, this also means that they are computationally expensive, re-
quiring significant training time and computational power. The tech-
nological advances both in hardware (memory) and in software (opti-
mization functions) have allowed for faster ANNs implementations and
the development of more deep learning methods. Overall, however,
ANNs constitute rather demanding ML models whose performance re-
lies heavily on the fine tuning of their hyperparameters, nevertheless,
they can accurately learn complex patterns.

The SVMs have also been popular in the past, however, their use
is less frequent nowadays. Due to their nature they perform well in
high dimensional spaces and they are memory efficient. Nevertheless,
similarly to the ANNs, SVMs are characterized by high computational
times. Moreover, they require an expensive corss–validation process
and their accuracy is significantly affected by the noise in the data.
Regarding this last factor, a more robust alternative is the FL. It con-
stitutes a more accurate representation of the real world compared to
the classical logic and usually has low hardware requirements. However,
FL–based models require extensive validation and are highly dependent
on the developer’s expertise.

Finally, the last largely used family of models in fault diagnosis prob-
lems are the tree–based models. The advanced tree–based models such
as the RF are characterized by low bias, low dependence on the hyper-
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parameters’ fine–tuning and low overfitting [156]. They evaluate each
feature independently, thus, there is no need for data scaling. Moreover,
they are effective with non–linear data and with smaller datasets. Nev-
ertheless, they lack in extrapolation abilities and their training could
be long. To that end contributes also the fact that certain tree–based
models perform internal cross–validation. This, however, results also in
increased predictive accuracy and eliminates the need for a validation
dataset.

Taking into consideration their aforementioned characteristics, tree–
based models are selected as the most suitable for the fault diagnosis
problem in this study. The main problem–related factors that dic-
tated this decision were the lack of real data, the size and type of the
training dataset and the generalizability, flexibility and adaptability
requirements. The properties and operation principles of tree–based
models are analytically described in the following sections.

3.2 Tree–based models

The decision–making process of tree–based models is already described
by their name: the models’ development resembles that of a tree. As
commented above, tree-based prediction models offer high flexibility
and efficiency, with reduced computational demands [156] and have
been proven accurate in fault location problems for the MV [103]. The
simplest tree–based model is the decision tree as illustrated in Fig. 3.1.
Even though it is a weak learner, i.e. its predictive capabilities are
limited, it constitutes the basis of all the tree–based models. Due to
the different aspects of the fault diagnosis process both classification
and regression tree–based models are utilized in this study.

The tree’s training process starts from a single node containing the
initial dataset. This could be either the original dataset or a boot-
strapped version of it. The dataset is then split based on the attribute
with the highest entropy or with the use of other information gain scores
in order to create subsets with the high homogeneity. Each subset cor-
responds to a new sub–node and each attribute is only evaluated once.
The process is repeated until the set depth of the tree is reached. This
is usually followed by the tree’s pruning which assists the minimization
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of overfitting by removing terminal nodes that do not provide useful
information related to the prediction result. The selection of the at-
tributes, the number of features considered in each split and the number
of splits differ for the different tree–based models. Some of these pa-
rameters are defined during the models’ hyperparameter tuning while
others depend on internal processes of the model. The hyperparameter
tuning is discussed in each individual application presented in the fol-
lowing chapters, while the analysis of the models’ internal algorithms
falls beyond the scope of this research.

Figure 3.1: The structure of a decision tree [2].

The model’s predictive power is determined with the use of the ob-
jective function, which is defined as the sum of the training loss and a
regularization term:

obj(θ) = L(θ) + Ω(θ) (3.1)

where θ is the vector of the weights added to each feature in order
to predict the target value. In tree–based models the predicted target
value can be expressed as follows:

ŷi =

K∑
k=i

fk(xi) (3.2)

where fk ∈ F is a function containing the tree structure and leaf
scores for all the possible trees, which form the functional space F . K
is the number of trees employed.
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Usually the training loss is calculated with the use of the mean
squared error (MSE) and can be expressed as:

L(θ) =
∑
i

(yi − ŷi)
2 (3.3)

Thus, the form of the objective function for a tree–based model is
the following:

obj(θ) =
n∑
i

(yi − fk(xi))
2 +

K∑
k=1

Ω(fk) (3.4)

The models’ training goal is the optimization of the objective func-
tion, in this case of Eq. 3.4. It should be noted here that the exact
form of the objective function differs according to the trained model.

3.3 Random Forest

One of the tree–based models used in this research is the RF. Both a RF
classifier and a regressor are employed in the proposed methods. A RF
is an ensemble of decision trees (DTs) trained in parallel with a differ-
ent bootstrapped subset of the training data, as illustrated in Fig. 3.2.
Each DT makes a decision based on the provided data and attributes.
The decisions are then combined according to the type of model: in
classification problems the technique used is major voting whereas in
regression problems it is averaging. This prediction approach is called
bagging and contributes to the minimization of the model’s overfitting,
which is the biggest drawback of weak learners such as DT. Moreover, a
RF model does not require cross-validation since the algorithm applies
out–of–bag error estimation throughout the forest development pro-
cess [157]. Overall, the RF is characterized by lower variance, higher
robustness against missing or unprocessed data, smaller precision re-
quirements in hyperparameter tuning and faster training. On the other
hand, the bootstrapping used in the training dataset and the randomly
selected attributes evaluated in each split are sources of arbitrariness
for the model.
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Figure 3.2: Illustration of a Random Forest prediction model.

3.4 Gradient boosting

A subcategory of tree–based models that is growing in popularity and
predictive capabilities is the one based on gradient boosting. Gradient
boosting also constitutes an ensemble method since it combines multi-
ple weak learners for the prediction of the target value [158]. However,
contrary to the RF here the DTs is trained sequentially. More specif-
ically, the gradient boosting targets the cases that have been wrongly
predicted, instead of focusing equally on all the examples. In order to
achieve that it trains sequentially multiple DT and penalizes each tree’s
correct predictions by assigning them a smaller weight while assigning
a bigger weight to the incorrect predictions. So new weak learners are
added in order to help the stronger learner. An example of the pro-
cess is illustrated in Fig. 3.3. In this research two advanced gradient
boosting models have been utilized: the CatBoostClassifier [159] and
the XGBoost [160].

As it is indicated by the name, the CatBoostClassifier is a classifica-
tion model. In this study it is used as a binary classifier that performs
fault detection in the LV grid. CatBoostClassifier has not been previ-
ously used in power system–related problems, nevertheless, its unique
characteristics and exceptional performance [159, 161] suggest its suit-
ability to the fault detection problem. Specifically, its two most impor-
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Figure 3.3: Illustration of the XGboost model’s sequential training and
weight assignment [2].

tant attributes, the high computational speed and the low overfitting
render it perfect for the fault detection application.
On the other hand, the XGBoost model used here for the location

of the exact faulted point is a regression model. Even though there
are no existing applications of a regression XGBoost model in fault lo-
cation problems, it has been successfully used for the classification of
the faulted branch as well as a variety of other grid–related applica-
tions [162–164] and its multifarious characteristics could provide a ro-
bust solution to a complex problem such as the fault location. Among
its noteworthy attributes that distinguish it from other tree–based and
boosting models are: i) the performance of regularization, ii) the par-
allel processing and subsequent computational speed, iii) the backward
pruning and iv) the optimization possibilities.
According to Eq. 3.2, the additive function of the boosting trees can

be expressed by the prediction model equation as follows:

ŷ
(0)
i = 0

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi)

...

ŷ
(n)
i =

n∑
k=i

ŷ
(n−1)
i + fn(xi)

(3.5)
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where n is a step of the prediction process. The objective function
of the model is formed in accordance with Eq. 3.4.

3.5 RF vs XGBoost

As stated above, both the RF regressor and the XGBoost are used in
this research for the location of faults. In this way the performance
of two powerful tree–based models with different training principles
can be evaluated. XGBoost constitutes a better option for unbalanced
datasets, since it is less biased than RF, it is more robust against over-
fitting in datasets with multiple similar examples due to its pruning
approach, it is computationally faster and is less affected by the hyper-
parameters’ values. On the other hand, the RF is very robust against
overfitting when the training dataset is properly pre–processed and its
hyperparameters are easier to tune. Overall, the XGBoost represents
the latest, more advanced generation of tree–based models while RF a
vastly used and validated generation of tree–based models.

3.6 AI metrics

For the evaluation of the AI model’s performance certain metrics are
being used. These metrics differ depending on whether the model is a
classification or a regression one because of the difference in the target
values’ nature.

3.6.1 Regression metrics

The main metrics used for the evaluation of regression models are the
mean squared error (MSE), the mean absolute error (MAE) and the
R2. The first two metrics are widely known and do not need further
analysis. The coefficient of determination is the degree of predictability
of the target value from the features. The highest and best possible
value is 1, which corresponds to the perfect depiction of the feature–
target relations by the model, hence, to the model’s ability to make
accurate predictions at all cases. The metrics’ mathematical definitions
are described by the following formulas:
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MSE =
1

n

n∑
i=1

(Yi − Y ∗
i )

2 (3.6)

MAE =

∑n
i=1|Yi − Y ∗

i |
n

(3.7)

R2 = 1−
∑n

i=1 (Yi − Y ∗
i )

2∑n
i=1 (Yi − Y i)

2 (3.8)

3.6.2 Classification metrics

Regarding the evaluation of classification models the most important
metrics are the accuracy and the F1 score. These are defined as follows:

Accuracy =
Number of correct predictions

Total number of predictions
(3.9)

F1 score = 2 ∗ precision ∗ recall
precision+ recall

(3.10)

Precision and recall are described by the following equations:

Precision =
TP

TP + FP
(3.11)

Recall =
TP

TP + FN
(3.12)

where TP is the number of true positives, FP is the number of false
positives and FN is the number of false negatives.

Finally, a confusion matrix is also frequently used in order to present
the model’s predictive capacity. The matrix shows the model’s number
of correct predictions for each class as well as the number of incorrect
predictions and which class was falsely predicted instead.
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3.7 Conclusions

In this chapter a general overview of the technical characteristics of the
most popular ML models used in fault diagnosis applications is pre-
sented. Based on that, the tree–based models are selected as the most
suitable tool for the development of the fault detection and location
solutions presented in this thesis. This decision was made after taking
into consideration the specific parameters of the problem at hand, such
as the dataset size and nature, the available computational power and
time and the final solution’s desired properties. The selection of the
exact tree–based models used in each step of the fault diagnosis process
was made again in accordance with the type of problem, e.g. regression
or classification problem, and after reviewing the characteristics of the
various models. The selected models are analyzed in the corresponding
sections. Finally, the chapter is concluded with the presentation of the
metrics used to evaluate the models’ performance.



4
Fault detection in active

low voltage grids with fast
and ultra fast charging

The first part of the fault diagnosis process is the detection of the
fault. As commented in chapter 2, the detection of faults in LV has
been studied in the literature for both traditional and active grids.
Nevertheless, no fault detection method has taken into consideration
the effect of FC and UFC, therefore, this study focuses on this particular
case of fault detection. Over the past few years a rapid increase in
the number of EVs has been recorded. In 2020, 3.3 million EVs were
circulating in the roads of Europe, a 73,7% more than 2019, despite
the pandemic [165], rendering Europe the world’s largest EV market for
the first time. Furthermore, the recent revision of the Alternative Fuels
Infrastructure Regulation’s (AFIR) implementation in 2021 reinforces
the predictions of an even more significant increase in the EV circulation
in the coming years. This implies the multiplication of the EV charging
points and an additional stress to the electricity grid.

Among the grid’s parameters that can be affected by the extensive
EV charging are the voltage stability and the current levels. Thus, un-
expected grid behavior may be observed both under normal or faulty



56 4.1. EV charging stochasticity and fault detection

operation [166]. So far, however, the existing studies analyze the ef-
fects of EV charging only on the grid’s normal operation [166–169].
Moreover, the role of EVs in critical situations is analyzed mainly in
relation to their effectiveness as voltage regulators [170–172]. Hence,
as commented in chapter 2, EVs constitute another stochastic variable
that needs to be taken into consideration during the study of develop-
ment of fault diagnosis solutions as well, especially when it comes to
the detection of faults in LV grids. To the author’s knowledge there is
no existing literature on the topic.

4.1 EV charging stochasticity and fault detection

Even though it is thought by many that the effect of EVs on the grid
is similar to that of the RES and the ESS, the size, charging phases,
location, use and operation of EVs distinguish them from the other
grid elements. Their unique characteristics make the simulation and
evaluation of their effect on the grid’s operation and, more specifically,
on the fault detection methods much more challenging. Probably the
biggest challenge is the stochasticity stemming from the unpredictable
behaviour of the EV drivers. There are various load predicting algo-
rithms, however, the size and technology of EV chargers as well as the
nature of the EV as a means of transportation make the development
of accurate fault detection methods much more complex. Moreover,
the significant load differences between the quickly spreading FC (50
kW), UFC (150 kW) and the slow charging [173,174] could easily lead
to the false identification of charging events as faults.

Figures 4.1 and 4.2 illustrate the pre– and post–fault current for a
phase–to–ground fault occurring in the benchmark presented in section
4.3. In the first case all the EV FC and UFC stations are simultaneous
occupied and charging at nominal power. In the second case all the EV
charging stations are free. It can be observed that in the first case both
the pre– and post–fault currents are much higher. This difference is
expected to have a direct impact on the accuracy of the fault detection
methods.

The methods that are expected to be affected the most by the charg-
ing stochasticity are the conventional threshold–based ones. AI–based
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Figure 4.1: Pre– and post–fault current in the case of an a–phase–to–
ground fault in a grid with full EV charging.

Figure 4.2: Pre– and post–fault current in the case of an a–phase–to–
ground fault in a grid with no EV charging.
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methods may prove more robust with the proper training, however, this
would require the examination of numerous normal and faulty operation
scenarios, and the collection of especially large datasets. Apart from
time consuming and computationally expensive, this approach would
also increase the chances of overfitting the algorithm to the data. This
would make the algorithm vulnerable to even the slightest topology
changes, since the model would be fitted so perfectly to the training
data that it would not be able to make accurate predictions for new
unseen cases.

In an attempt to address the aforementioned challenges and take ad-
vantage of AI’s benefits, a novel ML–based fault detection algorithm
was developed. The algorithm’s target is twofold; it aims to cope with
the lack of real data and also to provide accurate results despite the
changes in the grid’s operation caused by unpredictable big loads such
as the EV FC and UFC. In order to achieve these goals the use of static
simulation data is proposed. In this way, the algorithm becomes gen-
eralizable and independent of the grid’s elements’ state. Additionally,
the algorithm’s application is facilitated, as the required simulation pa-
rameters for the training of the algorithm are known to any system
operator. In the following sections the optimum way to accurately sim-
ulate an active LV grid containing EV charging points without requiring
any knowledge of the intermediate charging states is presented.

4.2 Fault detection method description

The proposed fault detection algorithm falls under the category of ML–
based methods. Contrary to the other available methods, however, em-
phasis is also placed on the selection of the training data and not only
on the model’s characteristics. In order to ensure the algorithm’s effec-
tiveness in grids with multiple FC and UFC stations and its robustness
against the EVs’ stochasticity without requiring constant retraining or
the collection of enormous datasets, the training data are selected to be
static simulation data. This means that no intermediate loading states
are included in the training data. The static states that are considered
in the case of the big, unpredictable loads such as the EV chargers are
the zero loading state and the full loading state. In the first case all the
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EV chargers are considered to be disconnected while in the second case
all the EV chargers are occupied and charging at their nominal value.
The algorithm’s performance when trained with data generated from
the simulation of each of the two cases is studied. The rest of the loads
are simulated with their nominal values. The only variable elements
are the PV penetration level – only 5 specific penetration levels are
simulated though – and the fault characteristics.

The features that are utilized by the algorithm are the three-phase
voltage and current phasors. These are provided by various devices
already installed in the grid, such as the PMUs, and can be easily ac-
quired from any grid simulation software. Once the ML model is trained
and saved, the algorithm can be used at any moment for the detection
of faults with the input of real data collected from the grid. The algo-
rithm’s detection speed depends on the measuring devices’ data trans-
mission rate. After receiving the data, the algorithm instantly makes
a decision regarding the existence of a fault. The method’s training
and implementation phases are illustrated in Fig. 4.3. The presented
method could be applied either in a digital twin, or directly by a DSO
that supports the constant feed of basic grid data, such as the voltage
and current phasors at the LV substations to the model.

4.2.1 The ML model

Fault detection constitutes a binary classification problem since there
are only two possible outcomes of the process, the detection of a fault
or the absence of faults. Hence, a binary classification ML model is
used for the realization of the predictions. More specifically, the se-
lected model is the CatBoostClassifier [159]. The CatBoostClassifier is
a gradient boosting tree-based model; its basic principles are explained
in chapter 3. The model’s main benefits over other boosting and tree–
based models are its higher accuracy [159,161] and computational speed
as well as the fact that it is characterized by decreased bias and over-
fitting. The latter is especially useful in the analyzed application and
it is one of the main reasons that led to the selection of the specific
predictive model.
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Figure 4.3: The training and implementation phases of the proposed
fault detection algorithm.
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4.2.2 Training process

The model’s training commences with the data pre–processing. The
typical data pre–processing includes the scaling, shuffling and splitting
of the data. As commented in chapter 3 in the case of tree–based models
there is no need to scale the data or perform cross–validation. Hence,
the data pre–processing proposed here consists of the data shuffling
followed by their split in training and test set with an 80/20 ratio.
These steps are important for the formation of uncontaminated datasets
which is prerequisite for the overfitting’s minimization. Moreover, in
order to increase the randomness and heterogeneity of the dataset its
sampling is suggested. The sampling process denotes the bootstrapping
of the dataset. The final test phase, that comprises the algorithm’s
testing in out–of–sample data, is performed in a separate dataset that
undergoes the same pre-processing.

Once the data pre–processing is completed the model’s hyperparam-
eters are tuned. These are the model’s parameters that define its de-
velopment and learning process, e.g. the depth of a decision tree, the
learning rate etc. Their selection has a direct impact on the model’s
performance thus they should be carefully tuned. The most common
tuning process and the one proposed here consists of two parts. First,
the hyperparameters to be tuned and the value ranges for each one
are selected; usually, the models have tens of hyperparameters and an
effort to fine–tune them all can be time consuming and lead to overfit-
ting. Thus, the selection of the most significant hyperparameters is an
important part of the process that can be rather challenging as it relies
heavily on the developer’s experience. Following that, the final hyper-
parameter values are selected with the help of a meta–estimator. In this
case the applied algorithm is the RandomSearchCV as was deemed the
most efficient one. It tests the model’s performance for different hyper-
parameter values’ combinations and saves the best one. The number of
the tested combinations is set by the developer and the combined val-
ues are chosen randomly by the meta–estimator. In this study case the
number of iterations was set at 100 and the hyperparameters chosen to
be tuned, their ranges and their final values are presented in Table 4.1.
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Table 4.1: Hyperparameter values for the CatBoostClasiffier

Hyperparameters Value range Final value

Subsample [0.5, 0.7] 0.5

No of estimators [100, 700] 500

Max depth [4, 10] 7

Learning rate [0.03, 0.3] 0.1

L2 regulation [1, 30] 1

Border count [5, 200] 50

4.3 Case study

In order to evaluate the algorithm’s accuracy when trained with static
simulation data and tested in various unseen scenarios a case study was
performed.

4.3.1 Test grid

Since the method is based on the utilization of static simulation data,
a modified version of the CIGRE European LV benchmark was simu-
lated for the generation of the training dataset. Due to the lack of real
life data, the same benchmark was used for the generation of the in-
termediate operation scenarios as well. The simulation conditions were
different in the two cases though in order to ensure the reliability of
the test results. The benchmark’s general layout and characteristics
are included in [175]. The modifications done in this case pertain to
the addition of PVs, residential FC and UFC points at the first and
third feeder, a public UFC point at the second feeder and a fourth
feeder simulating a public FC and UFC station. Moreover, multiple
measuring devices were spread out in the grid, even though, as it is
later discussed, very few measurement points are required by the al-
gorithm. The addition of the new elements was done according to the
lines’ thermal ratings. The modified grid’s topology is illustrated in
Fig. 4.4. The squared Ms follow by a number depict the added meters.
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Figure 4.4: Modified CIGRE European LV benchmark

4.3.2 Simulation conditions

During the generation of the training dataset the only modified param-
eters were the PV generation, the fault resistance, the fault location
and the fault type in order to create a diverse dataset that contains
enough examples. The residential loads were simulated as constant
power loads consuming their nominal power. For the static simulation
of the EV charging points two different strategies were followed and
then compared. The first strategy, corresponding to the first generated
dataset, considered that none of the EV charging points were occupied.
The second strategy, used for the generation of the second dataset, con-
sidered that all the EV charging points were operating simultaneously
at their nominal power. In this way, the training dataset is quickly and
easily generated for any grid. The exact simulated values used here are
presented in Table 4.2.
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Table 4.2: Grid element values

Parameters Number of scenarios Values

Fault resistance
Training datasets: 75262

Test datasets: 16236
(0, 100)Ω

Locations 20 [35, 315]m from the source

PV generation levels 5 for each feeder

1st branch: 0, 800, 1700, 3000, 5000 W

2nd branch: 0, 4000, 7000, 10000, 13000 W

3rd branch: 0, 2500, 5000, 7500, 10000 W

Due to the lack of real life data, the same grid was also used of the
generation of the test dataset. In this case, however, both the EV
chargers and the rest of the loads were simulated operating in various
possible scenarios corresponding to intermediate power values. The
charging curves and subsequently the occupancy rate used for the sim-
ulation of the residential and public charging points as well as the load
curves used of the simulation of the residential loads were based on
existing literature [176–178] and are illustrated in Fig. 4.5, 4.6, 4.7, 4.8
and 4.9 respectively. The exact simulated points are marked on the
load and occupancy rate curves. The EV charging was simulated using
a Tesla Model 3 curve as shown in Fig. 4.10.

Figure 4.5: Charging curves of residential and public chargers.
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Figure 4.6: Weekday occupancy rate curve.

Figure 4.7: Weekend occupancy rate curve.

The measured data were recorded both under normal and faulty op-
eration and consisted of the three-phase voltage and current phasors.
The faulty operation measurements were recorded within half cycle of
the fault, preceding the activation of the grid’s protections. During
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Figure 4.8: Weekday load curve.

Figure 4.9: Weekend load curve.

the simulations the grid was considered to be operating in steady state
and any transient phenomena related to PVs, EVs and their convert-
ers were ignored. Furthermore, any measurement noise was omitted.
This does not compromise the algorithm’s accuracy as the test dataset
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Figure 4.10: Tesla Model 3 charging curve.

includes scenarios produced under different operation states than the
ones included in the training datasets. The features saved were the
PV generation, the fault resistance, type and location and the mea-
sured data. The target value was the existence or not of a fault. The
size of the generated training datasets was (37631, 28) each, which af-
ter sampling was reduced to (10000, 28). The size of the test dataset
was (16236, 28). The processor used during the study was an Intel(R)
Core(TM) i5-8250U CPU @ 1.60GHz.

4.4 Results

First, in order to assess the model’s predictive capabilities in fault de-
tection, the algorithm’s performance was tested on the grid without any
EV charging. Table 4.3 presents the accuracy and F1–score results for
various dataset sizes. It can be observed that the model’s performance
remains exceptionally high even when small datasets are used for its
training.
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Table 4.3: The algorithm’s performance results for a LV grid without
EV charging for different dataset sizes.
No of examples Accuracy (%) F1 score (%)

10000 100 100

6000 99.75 99.74

2000 99.75 99.74

1600 99.68 99.66

After the validation of the model’s suitability to fault detection ap-
plications, its evaluation on the more complex case of a grid with EV
charging is performed in the following sections.

4.4.1 Algorithm’s performance on grids with EV’s FC and
UFC

The performance of the two datasets is compared on the basis of the
algorithm’s detection accuracy, the F1 score, the training times and
the required dataset size. The results are presented in Table 4.4. It
can be observed that both datasets lead to highly accurate results,
however, the first dataset leads to an overall better performance. It is
characterized by a slightly better accuracy, lower training times and,
also, a greater robustness against the number of examples required to
accurately train the model. It should be noted here that due to the
random sampling applied in the datasets the number of examples does
not have a linear relation with the model’s accuracy.

Table 4.4: The algorithm’s performance results for the different dataset
characteristics.

No load dataset Full load dataset

No of examples Accuracy (%) F1 score (%) CT (min) Accuracy (%) F1 score (%) CT (min)

10000 97.61 98.79 35.53 97.57 98.77 38.35

6000 97.61 98.79 33.56 92.92 96.33 34.67

2000 97.55 98.76 33.52 97.57 98.77 33.72

1600 97.61 98.79 30.02 96.00 97.96 32.72

This similarity in the overall performance of the two training ap-
proached is attributed to the fact that, due to the lines’ hosting ca-
pacity limits, the added EV charging points account only for 15% or
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less of the feeder’s maximum loading, with the exception of feeder 4
that simulates a charging station. This is a representative percentage
for most LV grids, since many residential feeders are already operating
close to their limit. Nevertheless, compared to conventional residen-
tial loads, FC and UFC can alter significantly the grid’s load flow and
its operating state, therefore, the study of their effect on the grids is
imperative.

Furthermore, in order to really understand and validate the perfor-
mance of an AI model a closer look at the training data is always
required. Hence, a representative feature, in this case the current’s
magnitude values collected by a meter in the beginning of the line (me-
ter 1), in relation to the target value was studied. As illustrated in
Fig. 4.11, 4.12 and 4.13, the value range of the first training dataset
is closer to that of the test dataset than the value range of the second
training dataset, even though the actual data points vary considerably.
Therefore, it can be concluded that omitting the EV loads during the
generation of static simulation data can lead to the training of a highly
accurate and generalizable AI–based fault detection method for an ac-
tive LV grid. Furthermore, the algorithm constitutes a global solution
that can be applied to any grid, since it does not require the prior
knowledge of the number and location of the EV chargers.

The high performance of the final algorithm trained with no EV
charging can be summarized by the fact that it misclassified only 388
out of the 16236 test cases and they all corresponded to false posi-
tives. This means that even though the algorithm may cause a few
false alarms, it is always able to detect the occurrence of an actual
fault, ensuring the safety of people and equipment.

4.4.2 Sensitivity analysis

In order to reinforce the validity of the algorithm’s exceptional per-
formance a sensitivity analysis was performed. The effect of the most
important influencing parameters, i.e. the fault resistance, the number
of utilized meters, the PV penetration and the occupancy rate of the
EV chargers, on the fault detection method was thoroughly analyzed.
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Figure 4.11: Peak current values collected from meter 1 in relation to
the target value for the no EV load case.

Figure 4.12: Peak current values collected from meter 1 in relation to
the target value for the full EV load case.
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Figure 4.13: Peak current values collected from meter 1 in relation to
the target value for the test case.

Fault resistance

The most influential parameter on any fault diagnosis method is the
fault resistance. Due to its effect on the fault current it can affect
significantly the performance of the method. Especially in the case
of the fault detection, if the fault resistance is too high and the fault
current too low then it is very difficult for the system to detect the
fault. Thus, a big range of fault resistance values was used for the
testing of the algorithm. More specifically, 8 resistance values were
randomly selected in the range of (0, 100) [127]. In Fig. 7 it can be
observed that despite the randomness in the fault resistance selection
and the wide range tested, the algorithm is still leading to an accuracy
higher than 96% regardless of the fault resistance’s size. The small error
increase (approx. 2%) observed in the [30, 40) range usually appears
when a lower amount of examples from a specific range is included in
the training dataset.
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Figure 4.14: The algorithm’s accuracy and F1 score in relation to the
fault resistance value.

Metering requirements

Even though the measuring devices on the grid are multiplying, the
number of measurements required for the application of a fault detec-
tion algorithm is an important factor. Especially when it comes to AI–
based methods, there is a widespread skepticism regarding their large
data requirements. Therefore, a detailed analysis of the algorithm’s
measurement requirements was performed.

In order to minimize the measuring requirements in an optimum way
an features’ importance analysis was first performed. The results are
presented in Fig. 4.15. Based on the results, six meters were selected
as the most important for the recording of the training data: no. 1, 3,
6, 7, 8, 15. These meters are placed in strategic points on the grid, in
their majority at the beginning or the end of the feeders, thus they are
normally available in every grid. As it can be seen in Fig. 4.16 , the
algorithm’s performance is the same when the data from 15 meters are
collected and when the data from these 6 meters are collected. Thus,
it is concluded that the rest of the meters were providing redundant
information.

The algorithm’s performance was then tested in the case that one
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or two of the six meters were removed. The results of this stress test
are also illustrated in Fig. 4.16. It can be observed that the accuracy
of the algorithm remains high even when only four measuring devices
are used. The most extreme case, which is the only one leading to an
accuracy bellow 90% corresponds to the simultaneous elimination of
meters no. 6 and 7. This is, however, a highly unlikely scenario.

Figure 4.15: The features’ importance.

Distributed generation

As established in chapter 2, the bidirectional power flow is one of the
main challenging parameters that affect the fault detection methods.
As discussed in section 4.3.2, the proposed method was tested in 5
different PV generation levels, corresponding to the whole range of
possible generation values. In Fig. 4.17 it is shown that the algorithm
remains unaffected by the injected power and maintains its high accu-
racy regardless of its magnitude.

Occupancy rate

When studying the EV charging stochasticity’s effect on a method, the
occupancy rate of the charging points is also a significant influencing
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Figure 4.16: The algorithm’s accuracy and F1 score in relation to the
number of meters.

Figure 4.17: The algorithm’s accuracy and F1 score in relation to var-
ious PV generation levels.

parameter. The occupancy rate refers to the cumulative power that
the chargers consume in relation to their cumulative nominal power.
In Fig. 4.18 it is illustrated that the rate of misclassified cases for each
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occupancy rate in relation to the total cases misclassified is low and in-
dependent of the occupancy rate. Thus, the algorithm is indeed robust
against the EV stochasticity and highly generalizable.

Figure 4.18: The algorithm’s accuracy and F1 score in relation to var-
ious PV generation levels.

4.4.3 Conclusions

In this part of the doctoral research a fault detection method for ac-
tive LV grids with EV charging was developed and evaluated. The
goal of this study was the development of an AI–based method that
could be easily implemented in any LV grid without being affected by
the stochasticity of EV charging. For this purpose the proposed algo-
rithm utilizes only static simulation data and omits the simulation of
the EV loading. This approach results in high fault detection accu-
racy in unseen data and independence from the EV charging state and
other major influencing parameters such as the fault resistance, the PV
penetration and the measuring points.
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5
Fault classification in

distribution grids

The second step of the fault diagnosis process is the classification of
the fault type. The literature review presented in chapter 2 revealed a
major research gap in the fault classification methods developed both
for the MV and the LV grids. Since threshold–based methods seemed
to be among the most widely used and easily applied methods, the fault
classification part of this fault diagnosis solution focuses on the devel-
opment of an optimized threshold–based fault classification method for
a distribution grid.

5.1 Theoretical background

Threshold–based methods study the current and voltage patterns dur-
ing a fault in order to establish certain criteria that determine the type
of the fault based on the phase measurements. Due to the nature of
the method, however, these criteria are usually grid–specific. There
are very few methods that propose generic criteria that could be im-
plemented in any grid. The most noteworthy studies on the topic are
presented in [179] which refers to the transmission grid and in [59] which
refers to the distribution one.



78 5.2. Proposed method

The first one constitutes a practical guide on the behavior of trans-
mission grids under faults. More specifically, the analysis of the pro-
tection systems’ operation related to a fault’s appearance led to the
discovery of patterns on the current and voltage values. These were,
utilized for the development of classification criteria for phase–a faults
that were more complex and, thus, more accurate compared to other
similar methods. The research, however, applies solely to transmission
grids since the characteristics of the transmission and the distribution
grid differ greatly. Furthermore, only faults related to phase a are in-
cluded in the formulas and there is no sensitivity analysis performed.
Parameters like the management of different meters placed on the grid
or the fault resistance, which affect fault diagnosis methods signifi-
cantly, are ignored in the study.

The fault classification formulas presented in [59] are developed for
distribution grids, they are more modern and they refer to all the
phases. Nevertheless, the method does not distinguish between line-to-
line and double line-to-ground faults and relies on the lack of positive
classification of another type of fault for the classification of three phase
faults. This has limited applicability, especially in complex grids with
various measuring points. Moreover, the criteria were formed based
on the observation of the current’s values on the meter placed at the
feeder of the line, with no other data sources taken into consideration.
Finally, there was no analysis of the effect of the fault resistance on the
method’s accuracy.

Overall, the available literature is rather outdated and inadequately
tested. Therefore, this method aims to develop a modernized threshold–
based fault classification solution that is easily adaptable to any distri-
bution grid and under varying influencing parameters.

5.2 Proposed method

Motivated by the existing research as well as the research gaps, the
developed fault classification method expands the applicability and ef-
ficiency of similar over-current techniques by presenting a threshold–
based solution that is easily tailored to any conventional distribution
grid. The form of the generic criteria presented in Table 5.1 is based
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on current patterns recorded in the aforementioned literature as well
as new data analysis.

Table 5.1: The Final Fault Classification Criteria

Fault Type Criteria

1ph ∆Ix > n ∗∆Iy AND ∆Ix > m ∗∆Iz
2ph

∆Ix > k ∗∆Iy AND ∆Iz > l ∗∆Iy
I0f − I0p < I0p

2phg I0f − I0p > I0p
3ph Iif > g ∗ Iip

In Table 5.1 subscript f stands for values after the fault, subscript p
stands for values before the fault, subscripts i = {x, y, z}and{x, y, z} ∈
{a, b, c}, and ∆Ix is defined as Ixp/Ixf . With the exception of the
three phase faults, the used criterion evaluates the current variation of
each phase before and after the fault and how it compares to that of the
other two phases. This technique increases the robustness of the criteria
since it simultaneously checks the current variation of each phase and
the relation between the different phases. In the case of three phase
faults it is rather redundant to compare the current behavior between
the phases, as it is enough to establish the variation magnitude of each
phase current.

Regarding the criteria used to distinguish the double–phase faults
from the double–phase–to–ground one these are based on the princi-
pals of the symmetrical component’s theory. Even though the theory
does not apply to unbalanced grids, it was observed that the values of
the zero sequence after the two phase faults were approaching the ones
expected according to the theory. More specifically, in the occurrence
of line–to–line faults, the zero sequence current values were particu-
larly low, almost zero. On the contrary, during double line–to–ground
faults, the values of the zero sequence were much higher both compared
to those of the line–to–line faults as well as to those of the zero sequence
current before the fault. Therefore, the criterion selected as more ac-
curate was that comparing the difference in the zero sequence current
before and after the fault. To ensure that the symmetrical component
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analysis will be possible, all the meters utilized in this method should
be placed in three phase lines.

5.2.1 Threshold selection process

The most important step in threshold–based methods and the method’s
greatest source of error is the selection of thresholds. Current values
are grid dependent, thus it is impossible to establish universal thresh-
olds for the classification of faults. Hence, in order to ensure that the
thresholds used in the proposed criteria (values n, m, k, l, g in Table
5.1) are effective for all grids, the automatization of the threshold–
selection process is proposed here. The first step for that is the study
of the current’s behavior under various fault scenarios. The analysis
presented here is performed for a benchmark grid whose characteristics
are described in the following section. It includes the behavior of the
criteria variables for phase a–to–ground faults and a–b faults as well as
the behavior of the phase a during three phase faults, as representative
of the three general types of shunt faults. The analysis revealed that
the most influencing parameter on the current values, as measured in
a conventional distribution grid, is the fault resistance.

Figures 5.1 and 5.2 present the criteria values in relation to the fault
resistance for an a–phase–to–ground fault, Fig. 5.3 and 5.4 present the
same for an ab fault and Fig. 5.5 presents the ratio of the phase–a pre–
and post–fault currents (Iif /Iip) in relation to the fault resistance. It
can be observed that the ratio between the change in the current values
before and after a fault for two phases (∆Ix/∆Iy) presents a certain
pattern that differs for the various fault resistance value ranges and
the meters. The same is true also for the waveform corresponding to
the three phase fault. Thus, this research proposes the establishment
of an automatized threshold–selection process based on the study of
the current in relation to the fault resistance ranges and the utilized
meters. In this way the accuracy of the method is maximized and the
method can be quickly and easily applied to all kinds of grids.

Similarly to the fault detection method, the threshold selection pro-
cess utilizes static simulation data for the establishment of the thresh-
olds. These data can be easily generated for any grid. The data gen-
eration process includes the simulation of the grid under various fault
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Figure 5.1: The relation between the ∆Ia/∆Ib ratio and the fault re-
sistance for an a–phase–to–ground fault.
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Figure 5.2: The relation between the ∆Ia/∆Ic ratio and the fault re-
sistance for an a–phase–to–ground fault.

scenarios. Here, 1000 faults were simulated for each fault location, sum-
ming up to a total of 9000 simulated cases. A random fault resistance
with a value between 0 and 40 Ω was added to each simulated fault and
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Figure 5.3: The relation between the ∆Ia/∆Ic ratio and the fault re-
sistance for an a–b fault.
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Figure 5.4: The relation between the ∆Ib/∆Ic ratio and the fault resis-
tance for an a–b fault.

the three phase and zero sequence currents of each meter were recorded
before and after the fault. All ten types of short circuits were simulated
and stored as a number between 1 and 10.
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Figure 5.5: The relation between the Iaf /Iap ratio and the fault resis-

tance for a three phase fault.

The proposed algorithm assesses these generated data and selects
the appropriate numerical values, i.e. thresholds, that mark the limit
between the fault and no-fault cases for each phase. First, the values
of the criteria variables, e.g. the ∆Ix/∆Iy, are computed based on the
input data. Then, these values are split into smaller subsets based on
their fault resistance and the meter they were collected from. The char-
acteristics of each subset are analyzed and then their average properties
are combined leading to the selection of the appropriate thresholds for
each type of fault. The exact process is analytically described in algo-
rithm 1.

Regarding the assignment of weights in the algorithm, in the case of
the previously presented data, the minimum weight would be assigned
to the 0 − 10Ω subset that presents the biggest heterogeneity, while
the rest of the subsets would be assigned bigger weights. In this case
the weight assignment was 0.4, 1.2, 1.2, 1.2 for each of the four subsets
respectively. After the selection of the thresholds and when a fault is
detected, the algorithm evaluates the percentage of the criteria fulfill-
ment for each type of fault for the data collected from each meter. The
criterion that has the highest percentage, i.e. that is fullfilled for most
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Algorithm 1 Threshold–selection algorithm

Require: maxM,minR,maxR ∈ Z∗, Ip, If ∈ N, fault types, wi ∈
R∗, with

∑
wi = i

function Threshold selection(maxM,maxR, fault types)
for fault in fault types do
1. Read the pre and post fault current, Ip, If for each phase and
meter
2. Calculate the corresponding criteria variables
3. Establish equally ranged fault resistance groups based on the
(maxR−minR) range
4. Create a data subset Sri, i ∈ Z∗ for each fault resistance range
5. Inside each subset Sri create a data subset Smj , j ∈ Z∗ for each
meter up to maxM .
for i in Sr do

for j in Sm do
Calculate avgM(j) = avg(Smj)

end for
1. Calculate avgR(i) = avg(avgM)
2. Assign weight wi based on the subset’s heterogeneity.
if heterogeneity = small then
wi > 1

else
wi < 1

end if
end for
Calculate avg all = avg(w ∗ avgR)
Set threshold fault as avg all

end for
return thresholds

meters indicates the type of the fault. The method’s grid application is
illustrated in Fig. 5.6. Finally, the algorithm’s overall implementation
process is presented in Fig. 5.7.
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Figure 5.6: Flowchart of the implementation of the proposed fault clas-
sification algorithm
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Figure 5.7: Flowchart of the overall method’s application process

5.3 Case study

For the validation of the proposed algorithm’s high performance and
novelty, the case study evaluates not only the proposed algorithm but
also three other threshold–based algorithms; two of them (algorithms
1, 2) were based exclusively on [179] and one of them (algorithm 3)
on [59]. The point of differentiation between the first two algorithms is
only the source of input data. Algorithm 1 processes the data collected
from all the measurements for the calculation of the final result, while
algorithm 2 processes only the data collected from the meter closest to
the fault.

5.3.1 Test grid and results

All four algorithms were tested regarding their performance under dif-
ferent conditions. The grid chosen for the simulations and extraction
of the results was the IEEE 13 node test feeder, illustrated in Fig. 5.8;
the simulations were run in Simulink. The choice of the grid was dic-
tated by the variety of different elements included in it. Specifically,
it contains four meters placed at nodes 632, 633, 671, 692, marked in
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red in the respective figure, highly unbalanced lines and loads and a
LV branch. The data were collected before the breaker’s activation.
The different cases included the simulation of all kinds of shunt faults
occurring in nine different locations of the grid, the utilization of data
acquired from one up to four meters installed in different locations of
the grid as well as a range of fault resistance values.

Figure 5.8: IEEE 13-node test feeder - single line diagram

Table 5.2 presents the criteria set by the algorithm for the classifica-
tion of the different types of faults.
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Table 5.2: Selected thresolds for each fault resistance range

Fault type Thresholds

a–g
∆Ia/∆Ib ∆Ia/∆Ib

3.56 3.54

b–g
∆Ib/∆Ia ∆Ib/∆Ic

2.6 3.16

c–g
∆Ic/∆Ia ∆Ic/∆Ib

3.52 3.55

ab(–g)
∆Ia/∆Ic ∆Ib/∆Ic

3.57 3.24

bc(–g)
∆Ib/∆Ia ∆Ic/∆Ia

2.97 3.17

ca(–g)
∆Ic/∆Ib ∆Ia/∆Ib

3.56 3.57

abc(–g)
If/Ip -
3.45 -

In order to verify the superiority of this method against non–optimized
threshold–based methods, the algorithm’s accuracy with and without
the application of the automatized threshold–selection process is com-
pared. In Fig. 5.9 it can be seen that the algorithm presents an overall
increased accuracy in the case of the algorithm–selected thresholds.
The figure also presents the algorithm’s effectiveness on the MV and
the LV side separately.
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Figure 5.9: The method’s accuracy with the use of the optimum ratios
vs the use of static thresholds in relation to the fault resis-
tance.

Measurements’ Effect

In order to isolate the measurements’ effect on the algorithm’s accuracy,
the grid was simulated without the use of fault resistance. Taking into
consideration the fact that in [179] there is no reference to the process of
data collection and that in [59] the data are considered to be collected
only from a meter on the feeder (node 632 here), different approaches
were tested for the selection of the appropriate data collection method.
More specifically, the utilization of one meter in the feeder was tested
against the utilization of all four meters available in this grid. As seen
in Fig. 5.10, the proposed algorithm performs greatly in both cases,
with an accuracy of 100%. It should be noted here, that during the
analysis of the measurements’ effect the fault resistance was considered
to be zero and the measurements obtained assumed to be synchronized.

Algorithm 3 also appears to be leading to highly accurate results,
however, these results do not include the classification of three phase
faults, as this algorithm is not capable of classifying those. Another
interesting observation regarding the performance of algorithm 3 is the
fact that it is more accurate when data from only the meter in the
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feeder is used rather than when data from all four meters are used. The
explanation lays on the original establishment of the criteria. Since the
thresholds were selected based on the current’s behavioral patterns on
the feeder, the current measurements in other parts of the grid that,
due to the unbalances of the grid, do not follow the same patterns, lead
to false results.

Algorithm 1 Algorithm 2 Algorithm 3 Proposed Algorithm
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Figure 5.10: Accuracy of the tested algorithms for one and four mea-
surement points [3].

The second case that was studied was the effect of the meters’ loca-
tion on the algorithm’s accuracy. The performances of both algorithm
1 and the proposed algorithm were tested and compared. The measure-
ments collected from the grid’s meters were progressively added to the
dataset starting from the top of the grid. As illustrated in Fig. 5.11,
algorithm 1 presents an increased accuracy with the addition of the
second and the third meter, while the fourth one does not cause any
changes due to its isolated position. The proposed algorithm on the
other hand remains unaffected by the number and location of meters
and even one meter could be adequate for accurate results. Therefore,
it constitutes a more efficient alternative both in terms of accuracy and
of cost.

Finally, the algorithm’s performance for the MV and the LV part
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Figure 5.11: Accuracy of algorithm 1 and the proposed algorithm in
relation to the number of measurement points [3].

of the grid was tested in relation to the number of utilized measuring
devices. In this case a random resistance was also added to the fault.
As it can be observed in Fig. 5.12, the algorithm is highly accurate for
the MV part. Regarding the LV part, the classification of faults has
proven more challenging there and it constitutes a source of inaccuracy.

5.3.2 Conclusions

In this part of the research the development of a simple, automatized
and efficient fault classification method for distribution grids is dis-
cussed. The method is based on the utilization of sets of versatile,
flexible criteria, capable of processing data from all the meters avail-
able on the grid. The required inputs are minimized and include only
the three phase and zero sequence current rendering the method eco-
nomical and easy–to–implement. The main novelty of this method is its
adaptability to different grid topologies. The presented algorithm al-
lows for the provided criteria to be easily adjusted and directly applied
to every conventional distribution grid with minimum data and highly
accurate results. Practical guidelines are proposed for this purpose.
For the verification of the method’s performance, an asymmetrical,
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Figure 5.12: The mean accuracy of the algorithm for all the cases,
tested with the updated version of the algorithm.

heavily loaded grid was used. The tests comprised the simulation of
the ten kinds of shunt faults in nine different locations spread through
the grid, including one on the Low Voltage (LV) branch of the grid.
An analysis on the effect of the most important parameters such as the
amount and location of meters and the fault resistance, was performed.
The mean accuracy of the algorithm when applied to the Medium Volt-
age (MV) side reaches 99%, with data imported from only one meter.



6
Fault location methods for

low voltage grids

The last step of the fault diagnosis process is the location of the fault.
As discussed in chapter 2 the location of faults in LV grids is another
scarcely explored field. From the limited available research, the AI–
based methods have shown the most promising results [137], never-
theless, their applicability is still questioned. Parameters such as the
required input data volume and computational time remain significant
sources of skepticism regarding the use of AI. Hence, this research fo-
cuses on the application of advanced data management and processing
techniques for the optimization of ML–based fault location algorithms.

6.1 General method description

Artificial Intelligence pipelines can have many variations depending
on the algorithm’s main objective and application. A general layout
consists of the data collection, the data pre–processing, the hyperpa-
rameter tuning and the model’s training. The proposed method has
enriched this process with various advanced techniques that aim to in-
crease the algorithm’s applicability. More specifically, the main goals
of this method are the minimization of the algorithm’s data require-
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ments and computational time, and the increase of its generalizability
and applicability. In order to fulfill these objectives, the algorithm is
structured as follows:

1. First, the algorithm’s data requirements are addressed. This in-
cludes the data collection process, the analysis of the collected
data, the feature extraction and a data storing strategy.

2. Once the datasets are stored, the data are pre–processed and
transformed in order to have a suitable format for the employed
ML techniques.

3. Then, the application of feature selection and dimensionality re-
duction techniques is explored. These techniques aim to minimize
the model’s inputs and increase its generalizability.

4. After that, the model’s hyperparameters are tuned for maximized
accuracy.

5. A stacked architecture is adopted for the accurate location of
faults. More specifically, in order to resolve the multiple location
estimation problem two predictive models are trained. First, a
classification model identifies the faulted branch and then a re-
gression model locates the exact faulted point.

6. Finally, in order to ensure the method’s accurate performance in
all possible operation scenarios, while maintaining the training
time and data low, a smart retraining topology change strategy
is proposed.

Figure 6.1 illustrates the the preparatory steps for the algorithm’s
training. These are the ones defining the algorithm’s accuracy, thus
the ones that emphasis should be given to.
Once the data have been appropriately processed and organized, the

algorithm’s implementation is straightforward, as it can be seen from
the method’s implementation flowchart in Fig. 6.2 . All the steps of
the data processing and the algorithm’s training and implementation
are analytically described in the following sections. The test results are
presented in the next chapter. Overall, the proposed method can be
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Figure 6.1: Flow chart of the method’s training process.
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easily implemented to any active LV grid and provides a practical and
accurate solution to the fault location problem.

6.2 Faulted branch classification

As commented above, the fault location process comprises two parts:
i) the faulted branch identification and ii) the faulted point location.
The classification model used in the first part is a RF Classifier as this
is described in Chapter 3. The target value in this case is the name
of the faulted branch’s last node. The latter is encoded as an integer
between 1 and the total number of branches, based on the position of
the branch in relation to the feeder. Due to the fact that this is a simple
classification problem no data minimization techniques were applied.

6.3 Faulted point location

The location of the exact faulted point constitutes a more complex
problem. The target value in this case is a continuous number and,
more specifically, the distance between the fault point and the sec-
ondary of the MV/LV transformer, which depend heavily on the grid’s
variables. Thus, this part of the algorithm requires the application of
advanced data management techniques for the increase of the method’s
reliability and the decrease of its CT. For the prediction of the fault’s
distance two different tree–based predictive models were trained and
compared, a RF regressor and an XGBoost model. The benefits and
characteristics of tree–based models in general as well as of the ones
utilized here are all analyzed in chapter 3.

6.4 Data management

As ML–based methods traditionally depend heavily on the quality and
the quantity of the available data, the collection of all the required
data, their storage and their processing is considered challenging by
many. It is a common perception that the application of ML–based
algorithms implies the collection of large amounts of data from devices
with increased capabilities that are not yet installed on the grid and
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Figure 6.2: Flow chart of the method’s implementation after a fault is
detected.
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the subsequent occupation of vast storage spaces. Nevertheless, most
of the above are not prerequisites for the successful employment of ML
models and, as suggested in [180], there are practices that have the po-
tential to limit any heavy data–related requirements. Moreover, there
are various data minimization techniques that can significantly limit
the size and subsequent computation time of the problem. The fol-
lowing sections provide various solutions for the efficient management
of a ML–based algorithms’ data requirements. The steps are analyzed
in implementation order. It is important to highlight here that the
proposed techniques are universal and their application does not de-
pend on any grid–specific characteristics, as long as the feature type
requirements are respected.

6.4.1 Data collection

The source of utilized data constitutes a discussion point for all fault
location methods. The collected measurements define the amount of
information that can be harvested from the grid and the potential in-
vestment costs the the method’s implementation could imply. There-
fore, the type e.g. voltage and current phasors, only current or voltage
magnitudes etc., and the transmission frequency of the measured data
to the control center should be carefully reviewed. This study presents
a a comprehensive data collection analysis covering various possible
measurement methods that may be used on the grid in order to make
the algorithm’s application possible in the majority of grids.

First of all, regarding the measured values, these can be only the
variables’ magnitudes or they can be phasors; a comparison of the algo-
rithm’s response in these two cases is presented in chapter 7. Moreover,
the algorithm utilizes both voltage and current measurements, never-
theless, based on the data analysis process that follows, the current
measurements are of higher importance for the algorithm, therefore,
their collection should be prioritized. Regarding the transmission of
the data, the algorithm does not utilize time series data, hence the
exact times of the data collection and transmission are not important.
However, one measurement before and one after the fault are required
and the measurements after the fault should be collected before the op-
eration of the grid’s protections. Thus, the method supports all bulk,
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scheduled and on demand data collection configurations. Overall, the
measurement requirements of the method are similar to those of the
simpler fault location methods and can be easily collected from various
devices that are already installed on the grid or are expected to be
installed in the near future.

6.4.2 Data analysis

Once the data collection process has been determined, the analysis of
the collected data is required. This process is performed only once,
during the training stage of the algorithm, and it is one of its most im-
portant parts. It is a step that should be included in all fault location
methods, regardless of the utilized techniques, nevertheless it is not
encountered in the existing literature. Both real and simulation data
should be analyzed and studied as they directly affect the reliability of
a method’s test results. Moreover, a deep understanding of the avail-
able data and their relations can lead to the development of innovative
solutions and new methods.

Especially for ML–based methods, the data analysis could point to
the most suitable predictive model or to an effective data transforma-
tion leading to higher accuracy. Furthermore, the data analysis can
point to the features that are the most informative for the prediction
of the target as well as, in the case of electricity grids, the position
of the most important meters. Overall, the data analysis facilitates
the researchers’ methodology–related decisions and the interpretation
of the algorithms’ outcome, and it leads to the formation of an efficient
dataset and the development of an accurate model.

So far, the majority of the existing fault diagnosis methods rely on
data generated by simulations, as there is a general lack of real data,
especially in relation to fault events on the grid. Even though with
the evolution of O&M solutions for electricity grids the DSOs’ have an
increased observability over the grid, there is still a long way to go until
real data become vastly available to the research community. Hence,
the evaluation of data generated from benchmarks like the one used in
this study is of great value. The associated parameters analyzed in this
research are the data normality, the correlation between the features
and the target value, and the feature importance.
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The data normality is tested with the use of the Shapiro–Wilk nor-
mality test [181]. This test assumes that the provided data are normally
distributed, then compares them with an actual normal distribution
and finally calculates the probability of similarity between the provided
data and those belonging to a normal distribution. If the probability
is higher than 0.05 then the data is categorized as normal.

The evaluation of the data correlation is a more complicated process,
therefore, three different methods are used for its calculation. The first
one is the Pearson’s correlation coefficient r [182], which applies to
normally distributed data. It studies the linearity between the features
and the target value by calculating the r coefficient. This is defined as
the ratio between the covariance of a random pair of samples (xi, yi)
and their respective standard deviations:

r =
cov(xi, yi)

σxiσyi
(6.1)

For non–Gaussian data two ranking coefficients are mainly used. The
first one is Kendall’s correlation coefficient τ [183], and it is utilized for
the identification of concordant and discordant pairs in the dataset.
The τ coefficient is calculated as follows:

τ =
2

n(n− 1)

∑
i<j

sgn(xi − xj)sgn(yi − yj) (6.2)

where (xi, yi) and (xj , yj) are two random pairs of observations and
n is the total amount of observations. The other ranking coefficient is
Spearman’s ρ correlation coefficient [184] which is used for the calcu-
lation of the strength between two variables. More specifically, the ρ
coefficient examines the existence of a monotonic relation between two
variables, i.e. if one decreases/increases with the decrease/increase of
the other, and is defined as follows:

ρ =
cov(rank(xi), rank(yi))

σrank(xi)σrank(yi)
(6.3)

It can be observed that the definition of the ρ coefficient is similar
to that of the r; their difference lies in the use of the variables’ values
rank in the calculation of ρ, instead of the actual sample values. Hence,
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the Spearman correlation is less affected by outliers compared to the
Pearson correlation.

The data analysis is concluded with the examination of the features’
importance. The features’ importance is an indication of each fea-
ture’s contribution to the prediction of the target value. It should not
be confused with the correlation methods as it could be more accu-
rately described as a measure of each feature’s influence on the model’s
decision–making process. Therefore, it can serve as a starting point for
the employment of feature selection or dimensionality reduction tech-
niques. Moreover, it provides information regarding the response of the
prediction model to the specific type of data, since the calculation of
the feature importance depends on the estimator fitted to the data. In
decision trees the feature importance indicates which values are mostly
used for the splitting of trees into branches. The method applied here
for the calculation of the features’ importance is the computation of
the mean and the standard deviation of the impurity decrease accu-
mulation in each tree. It was selected as an appropriate method as it
is less computationally expensive than other alternatives and its use
is only discouraged in the case of datasets containing high cardinality
features. This does not apply to the generated dataset, as it does not
contain a large number of unique values.

6.4.3 Data storage

To the author’s knowledge, there are no data storage strategies pro-
posed in the existing literature for fault location methods. Thus, in
order to address potential concerns regarding the applicability of the
presented method, a data storage plan is proposed. First of all, re-
garding the size of the required storage space, the employment of data
minimization techniques as discussed in the following sections ensures
that this does not constitute a problem for the method’s application.
Furthermore, in order to increase the algorithm’s ability to generalize
to unseen data, particularly in the case of topology changes, a novel
database construction plan is proposed. The plan entails the catego-
rization and storage of the collected data in tables according to the
status of the grid’s switching devices. Each combination of the devices’
statuses corresponds to a specific topology and subsequently to a table
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in the database. This unique combination is saved as the table’s char-
acterization number and it is used for the selection of the appropriate
dataset when the topology is changed. The size and identifiers of the
database are defined as follows:

length(DS) = count(unique(Cj = {B1∗1S1 , ..., Bi∗1Si})i={1,...,Smax}∈Z>0
)

(6.4)
where Cj is the j-th combination of the switching devices Bi with j ≥

1, i is the number of switching devices, Smax is the total of switching
devices and 1Si = {0, 1} is a boolean variable corresponding to the
state of each device, with 0 denoting that the device is open and 1 that
it is closed. When Si = 1 the 1Si = 1 and when Si = 0 the 1Si = 0.
The overall database size is 2Smax − 1 - it is assumed that at least one
switching device is closed at all times.
The database data can either be historical data, when available, or

simulation data. In the case of the simulation data, though, noise
should be added in the measurements in accordance with the real–
life devices as the extrapolation capabilities of tree–based models are
limited. The size of the additional stored datasets and the noise effect
are both analyzed in the next Chapter; it is verified that the accuracy
of the method can be maximized without any additional computational
or storage expense.

6.4.4 Data pre–processing

As briefly discussed in chapter 4, the pre–processing of the data refers
to their transformation into a form suitable for the predictive model.
It is an important step for the increase of the model’s accuracy. The
main processes include the data scaling, shuffling and splitting. The
data scaling ensures that all the features are within the same value
range, thus they are all considered to be equally important by the
model. In other words, it removes the models’ bias against features
with smaller numerical values. In the case of tree–based models this
step is not required as each feature is evaluated individually, neverthe-
less, it is a mandatory step for the application of the data minimization
techniques presented in the following section. In this research two scal-
ing functions were used, the StandardScaler() and the RobustScaler(),
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both by the scikit–learn library. They both place the mean of the
data on point zero. This is a prerequisite for dimensionality reduction
methods such as the Principal Component Analysis (PCA); point zero
is the common cross point of all the linear subspaces formed by the
PCA. The RobustScaler is used in the cases were the outliers need to
be removed from the dataset as they do not constitute useful training
examples. Regarding the shuffling of the data, this is also performed
by the scaling functions.

Finally, the splitting of the data into subsets is crucial for the min-
imization of the algorithm’s overfitting and the reliability of the test
results. If the test data are included in the algorithm’s training dataset
then the model is fitted to the specific data too accurately and will be
unable to generalize to unseen data. This constitutes a major prob-
lem for the algorithm’s implementation. Therefore, the data are split
into three distinct subsets, the training dataset, the validation dataset
and the test dataset. Here, the original dataset was only split into
training and test datasets, since the employed models perform internal
cross–validation. For this purpose, the train test split() function by
scikit–learn was used, with a 80/20 ratio between the training and the
test data.

6.4.5 Data requirement minimization

A major contribution of this research and an important parameter
for any ML–based method is the minimization of the method’s data
requirements. The assumption that all ML–based methods require
large datasets in order to be implemented constitutes a point of skepti-
cism regarding the applicability and practicality of ML–based methods.
Hence, the application of data minimization techniques can be a pow-
erful tool for the practical applications of ML–based fault diagnosis
methods. Especially as the data sources are multiplying and the data
influx is growing, the optimization of the data management process is
of utmost importance. At the same time, fewer inputs lead to lower
overfitting and, thus, greater generalizability of the algorithm. There-
fore, in this study the two major approaches to the data minimization
problem, the feature selection and the dimensionality reduction, are
deployed and compared. Furthermore, the most important algorithms
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pertaining to each approach are analyzed, tested and compared. The
comparison results are presented in the following chapter.

It should be noted here that the two data minimization approaches
and the related algorithms have different properties which should be
taken into consideration in each individual application. This research
does not intent to prove that there is a superior one between them.
It merely presents some of the currently popular and high performing
options suitable for this application and compares their performance
with respect to the particularities of the fault location problem.

Feature selection

The first approach proposed for the minimization of the input data re-
quirements is the feature selection. Feature selection methods remove
the redundant features from the dataset. Thus, they clean it from the
inputs that not only are not important for the prediction of the target
value, but may also be adding noise to the prediction process. At the
same time, fewer features mean also lower computational times. Fi-
nally, the application of a feature selection algorithm in fault diagnosis
problems points to the most important measurements, which is also an
indication of the measurement points offering higher observability over
the grid. This could be a useful guide for infrastructure investments in
electricity grids.

The feature selection methods tested in this study are the Select-
FromModel meta–transformer [185] and the Boruta algorithm [186].
Both of them constitute sophisticated algorithms with high perfor-
mance [187,188], nevertheless neither of them has been tested in distri-
bution grid data. Their selection among the various available feature
selection techniques was based on the type of data and the nature of
the problem as well as on their computational speed and reliability.

1. SelectFromModel

SelectFromModel is a meta–transformer developed by scikit-learn.
It calculates the features’ importance for a specific estimator, i.e.
a specific predictive model, and ranks them accordingly. The
most important ones are selected based on the set threshold as
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the output of the algorithm. The selection of the threshold con-
stitutes the main source of arbitrariness in the process. Thus,
here the default threshold value was used, i.e. the mean value of
the features’ importance.

2. Boruta

Boruta also performs an importance–based feature ranking. The
selection of the important features, however, is a more complex
process. First the algorithm generates the so–called shadow fea-
tures. These are created by shuffling the examples for each fea-
ture while maintaining the target column unchanged, thus form-
ing new random features. The shadow features are added to the
original dataset, which is then fitted with the estimator. The
importance of the shadow features is also calculated and is then
used as a reference for the selection of the importance threshold
for the original features; this is set as the value of the shadow
features’ highest importance. Hence, a feature is considered rele-
vant only if it performs better than the best performing shadow
feature.

In order to increase the method’s robustness and minimize the
stochasticity stemming from the shadow features’ generation and
the model’s training, the process is repeated as many times as
indicated. As a result, the features that were selected by the al-
gorithm in most iterations are categorized as the best ones, while
there is also a middle zone for features about which the algorithm
did not make a clear decision. Even though this iterative process
adds to the reliability of the method is also results in a significant
increase in its computational time and complexity.

Dimensionality reduction

The second approach used to minimize the method’s data requirements
is the dimensionality reduction. In this case the features are suitably
transformed in order to reduce the problem’s space while retaining the
important information. Some times, however, the combination of these
two goals is hard to be achieved. Therefore, a data management strat-
egy that aims to improve the application of dimensionality reduction
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in the fault location problem is proposed. More specifically, in or-
der to conserve the physical meaning of the grid’s most informative
measurements, a features’ imporance analysis is performed. The most
informative features are stored in the dataset as they are. Then, in
order to reduce the size of the problem the rest of the features are
transformed by the selected dimensionality reduction algorithm. In
this way the model’s accuracy and generalizability remain high while
the computational time decreases significantly. The time added by the
dimensionality reduction process is insignificant in comparison with the
drop in the training time. This strategy is independent of the number
and location of the meters, thus it is applicable to all grids regardless
of their topology.

Similarly to the case of the feature selection algorithms, the fea-
tures’ importance can be automatically calculated by the predictor’s li-
brary. Then, regarding the dimensionality reduction technique applied,
there are various available methods. Based on the goals set above, i.e.
the simultaneous minimization of the input data and the information
loss, the techniques tested in this study are the ones favoring a dimen-
sionality space higher than the three–dimensional one. These are the
PCA [189], the Kernel PCA [190], the Fast Independent Component
Analysis (FastICA) [191], the Truncated Singular Value Decomposition
(T–SVD) [192] and the Isometric Feature Mapping (ISOMAP) [193].

1. PCA

PCA is a well–known statistical method that aims to compress a
dataset’s correlated features and extract only the useful informa-
tion. This results in the generation of a more compact dataset
that is easier to manage during the model’s training. It is the
most popular dimensionality reduction technique with applica-
tions that include the location of faults [14]. The theory behind
PCA lies in the projection of the data points onto a lower feature
space, whose every axis is perpendicular to the rest, thus uncor-
related with them. Each axis corresponds to one eigenvector, i.e.
principal component. The eigenvectors are sorted based on their
eigenvalues; in this case the higher the eigenvalue the more impor-
tant the eigenvector. The first principal component is the vector
representing the line with the minimum squared distance from all
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the data points, hence it is characterized by the highest possible
variance. The generation of each new component is dictated by
the data points and aims to find the best fit to the data while re-
maining orthogonal to the rest of the principal components. The
total number of the principal components created by the PCA
is the same as that of the original features, however, the biggest
amount of information is compressed into the first components.
Thus, the utilization of only the first few components can lead
to the successful training of the ML model. Usually, the princi-
pal components used for the model’s training are those with an
explained variance adding up to 80% of the original dataset’s.

2. Kernel PCA

Kernel PCA is a variation of the traditional PCA that, contrary
to the original method, is able to perform non–linear dimension-
ality reduction. Thus, before the application of the PCA’s linear
operations, the utilized kernels project the dataset’s dimensions
to a linear space. There are various available kernels; the selec-
tion of the most suitable one depends on the shape of the data.
In this study the cosine kernel was used.

3. FastICA

ICA methods aim at isolating the independent components of the
dataset by finding the matrix that maximizes the non–gaussianity
of the original features. The non–gaussianity metric is a means of
measuring the statistical independence of the components. The
difference between the traditional ICA methods and the FastICA
lies in the calculation of the non–gaussianity. In the first case it
is calculated with the use of the kurtosis whereas in the second
case with the use of the negentropy. Due to that the FastICA is
faster and more reliable.

4. Truncated SVD

T–SVD is a dimensionality reduction method based on the fac-
torization of the data matrix. Its operating principle is similar
to that of the PCA with the exception that it does not center
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the data before performing the computations. While PCA trans-
forms the covariance matrix, SVD transforms the data matrix.
Thus, the computational complexity and time of the T–SVD are
significantly lower. The truncating nature of the method that dif-
ferentiates it from the SVD method pertains to its dimensionality
reduction abilities.

5. ISOMAP

ISOMAP is another non–linear dimensionality reduction method.
It can be considered an extension of the Kernel PCA. The main
goal of ISOMAP is the projection of the data into a lower–dimensional
space where the geodesic distances between the data points are
maintained unchanged. This is achieved with the application of
the nearest neighbors methodology in order to distinguish the
various manifolds of the dataset.

6.4.6 Hyperparameter tuning

Another decisive part of the model’s training process is the tuning of
the hyperparameters. The latter are the model’s properties that define
its characteristics and its learning process, e.g., the depth of a decision
tree, the learning rate etc.. Thus, it is clear that hyperparameters can
affect significantly the outcome of the training process and they should
be chosen carefully. Since the models have multiple hyperparameters,
however, not all of them can be tuned since that would be time con-
suming and computationally expensive. Hence, the developer needs to
select the most important hyperparameters to be tuned and the suit-
able range values for each hyperparameter. This constitutes the more
delicate part of the tuning process.

The selection of the final values is automatized with the use of meta–
estimators such as the RandomizedSearchCV(). This one was selected
since it constitutes the best trade–off between low computational time
and high tuning performance. It evaluates the model’s performance
under the use of different hyperparameter values’ combinations, which
are selected based on the ranges provided by the developer. The num-
ber of different combinations that are formed and tested is also selected
by the developer. The hyperparameter combination leading to the best
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result is subsequently used for the training of the model. Due to the
inherent randomness of the process, the best combination may differ
between different runs of the algorithm. Nevertheless, the final accu-
racy of the trained model does not present significant differences. The
tables including the hyperparameter values selected for each test case
are presented in the next chapter.

6.4.7 Topology change adaptation strategy

The goal of all fault location methods is to be accurate for every possible
fault case. This, however, can prove challenging, for certain methodolo-
gies such as the sparse measurements or the ML–based ones. Changes
in the topology due to a switching event or a grid reconfiguration could
affect significantly the performance of these methods. Therefore, a
strategy for the adaptation of the proposed ML–based algorithm to
potential changes in the grid’s topology is also presented in this re-
search. This strategy aims to facilitate the algorithm’s retraining by
omitting certain parts of the training process and have immediately
available the required retraining dataset. It is applicable to changes
due to switching events. A switching event may be due to the opera-
tion of protection devices or to a scheduled maintenance operation. A
permanent grid reconfiguration that is not related to the operation of
a switch is not covered by the proposed scheme and may require the
repetition of the algorithm’s entire training phase, depending on the
magnitude of the change.

The application of the proposed topology adaptation strategy as-
sumes that the appropriate data storage and pre–processing have been
performed, as described above, for all the potential switch states com-
binations. In this way the data pertaining to each case are immediately
available to the model whenever a switching event occurs. Moreover,
the use of a data minimization technique and a tree–based predictive
model increase the generalizability of the algorithm, as stated in the
previous sections. Hence, the minimization of the problem’s size and
the hyperparameter tuning do not need to be repeated every time the
grid’s topology changes. These are only performed once for the de-
fault grid topology. Thus, the algorithm is able to adapt fast to a new
topology and maintain its high accuracy.
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Whenever the algorithm is being employed due to the detection of a
fault the status of the switching devices on the grid is checked. Based
on that it is concluded whether there is a topology change or not. If
no topology change is detected then the default model is being loaded
for the prediction of the faulted point. In the case that a topology
change has indeed occurred the corresponding dataset is pulled from
the database and the prediction model is retrained with the new data.
By retraining the model each time a topology change is detected instead
of having a model for each case already trained, the method requires less
storage space and allows for the renewal of the stored data whenever
more recent data become available.

6.5 Conclusions

In this chapter a complete fault location algorithm for active LV grids
is presented. The algorithm is based on the use of an ensemble of
tree–based ML models, for the prediction of the faulted branch and
the exact fault location. In order to provide a turnkey solution the
main aspects related to the application of a fault location algorithm,
and particularly a ML–based one, are addressed. The performance of
ML–based algorithms is mostly defined by the data quality and their
management. Therefore, this study emphasizes on the data analysis,
collection, storage, pre–processing and minimization. Regarding the
latter, two strategies are proposed: one based on the feature selection
methodology and one based on the dimensionality reduction method-
ology. The most noteworthy algorithms within each methodology are
then explained and compared; their comparison forms part of the case
studies presented in the next chapter. The method is concluded with
the presentation of a smart retraining strategy that ensures the al-
gorithm’s adaptation to potential topology changes. This is the first
ML–based fault location method that provides an effective solution to
the data storage, minimization and retraining problems. The method’s
validation is performed in the next chapter.
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The evaluation of the fault location method proposed in chapter 6 was
split into two parts based on the followed data minimization technique
and the employed predictive model. Case 1 tests the version of the
method that utilizes dimensionality reduction techniques and an XG-
Boost model while case 2 the version of the method that utilizes feature
selection techniques and a RF. Apart from some common influencing
parameters whose effect was tested in both cases, the two case studies
examined different aspects of the method in order to avoid repetition
while providing a global evaluation of the fault location method. Once
more, due to the lack of real life data the test grid used in both case
studies for the generation of the required datasets was a modified ver-
sion of the CIGRE European LV benchmark [175]. The grids used in
the two case studies are almost identical and include only slight differ-
ences related to the different test cases.

It should be noted that the CTs mentioned throughout this chapter
refer to the algorithm’s training phase and not its implementation. The
algorithm’s implementation times depend on the data collection speed.
Once the data have been collected the algorithm instantly returns the
result.
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7.1 Case study 1

Case study 1 evaluates the performance of the fault location algorithm
employing dimensionality reduction for the minimization of the input
data and utilizes an XGBoost regressor as the predictive model. The as-
pects of the method that were analyzed in this case are the dataset com-
position, the performance of the dimensionality reduction techniques
described in chapter 6, the accuracy of the algorithm and the effect of
the size of the dataset, the loss of data, the fault resistance and the PV
penetration level on it.

7.1.1 Test grid

In this case study the modifications on the benchmark grid pertain
only to the addition of PVs and measuring devices in the preexisting
topology, as these are illustrated in Fig. 7.1. More specifically, three
PVs were added to the first feeder, one to the second and two to the
third. The PVs placed in the first feeder have a nominal power of 5kW
each, the one in the second feeder has a nominal power of 13kW and
the two PVs placed in the third feeder both have a nominal power of
10kW. Furthermore, various meters were added across the grid; these
are marked in the grid with a squared M followed by the number of the
meter. The meters were added in abundance, almost in every load and
node of the grid, in order to provide useful information for the grid’s
behavior. These were only used to draw conclusions on a theoretical
basis. The method’s actual measurement requirements are analyzed in
section 7.1.7.

7.1.2 Data generation

For the generation of the training and testing datasets various scenarios
of the grid’s normal and faulty operation were simulated. The parame-
ters that were modified during the simulations were the type, location
and resistance of the fault and the PV penetration levels. Table 7.1
presents the simulated value ranges.
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Figure 7.1: Modified CIGRE European LV benchmark used in case
study 1.

Table 7.1: Grid element values

Parameters Number of scenarios Values

Fault resistance 17 [0, 40]Ω

Fault locations 25 [35, 315]m from the source

Fault types 10 All types of shunt faults

PV generation levels 5 for each feeder

1st branch: 0, 800, 1700, 3000, 5000 W

2nd branch: 0, 4000, 7000, 10000, 13000 W

3rd branch: 0, 2500, 5000, 7500, 10000 W

The generated dataset comprises the modified variables, the node at
the end of each faulted branch and the three phase current and voltage
phasors measured before and after the fault. The post-fault measure-
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ments were recorded within half cycle from the fault’s occurrence, be-
fore the activation of the protection devices. The exact measurement
time is not important and it can be after the first half cycle, as long as
the recorded data contain disturbance information. This is a common
requirement for all fault location methods. Prior to the fault the grid
was set to operate in steady state without transient phenomena. The
number of simulation scenarios was 21250. The processor used during
the simulations and the execution of the algorithms was an Intel(R)
Core(TM) i5-8250U CPU @ 1.60GHz.

In order to make the generated dataset as realistic as possible this
was sampled and various examples were randomly discarded, making
the final dataset non-homogeneous. The dataset size used for the eval-
uation of the data and the comparison of the dimensionality reduction
techniques after the sampling was randomly set at (10200, 344), where
10200 is the number of examples and 344 is the number of features.
The number of features corresponds to the maximum amount collected.
The different datasets analyzed in section 7.1.3 had a different (smaller)
number of features. For the fault location part, the optimum dataset
size is studied in section 7.1.7 as part of the sensitivity analysis of the
algorithm.

7.1.3 Dataset evaluation

As commented in chapter 6, the utilization of any dataset, either real
or generated, should be accompanied by the analysis of its elements.
An effective analysis ensures the quality and validity of the data and
subsequently of the test results, points to the suitable techniques to be
used, in this case the suitable predictive model and defines the design
choices that shape the method. Thus, here a statistical analysis of the
generated dataset is presented. This dataset and the respective analysis
can be considered representative of the basic variables measured in a
small LV grid with RES and different kinds of loads. The analysis
examines the normality of the data, the correlation between them and
their importance for the predictive process of the utilized model.

Regarding the analyzed data, these include the features as described
in the previous section and the target value, which in this case is the
distance between the fault and the main feeder. The recorded variables,
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i.e. the voltage and current, are split into magnitude and angle values
and these are treated as different features. Based on the use of the
recorded variables three different datasets were formed. As shown in
Table 7.2, the first dataset contains the voltage and current measure-
ments before and after the fault, the second contains only the measure-
ments recorded after the fault and the third the ratio of each variable’s
values before and after the fault ∆I,∆V . These datasets correspond
to the ones used more frequently in fault location methods.

The variables’ names in the first two datasets contain the letter a
or b in the second position, with a denoting a measurement after the
fault and b denoting the measurement before the fault. The letter in
the third position - or second position in the case of the third dataset
- corresponds to the measured phase. All the names include also a
number which points to the meter that performed the measurement.
Finally, the letters m and a at the end of each name denote whether it
is a magnitude or an angle variable respectively.

Regarding the analysis results, it should be noted that due to the
large number of features contained in the datasets the corresponding
plots illustrate only the features with the highest scores in each case.

Table 7.2: Voltage and current values in each analyzed dataset.

1st dataset 2nd dataset 3rd dataset

I
b
ph = Ibph < θ I

a
ph = Iaph < θ ∆Iph =

I
a
ph

I
b
ph

V
b
ph = V b

ph < θ

I
a
ph = Iaph < θ V

a
ph = V a

ph < θ ∆Vph =
V

a
ph

V
b
ph

V
a
ph = V a

ph < θ

b: value measured before the fault, a: value measured after the
fault, ph: each of the three phases.

The first test performed in all three datasets was the Shapiro nor-
mality test. As a rule of thumb it is set that a probability of similarity
smaller than 0.05 means that the dataset does not follow a normal dis-
tribution. This was the case for all three datasets studied here. As dis-
cussed in chapter 6, the correlation coefficients computed for datasets
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that do not follow Gaussian distribution are the Kendall’s coefficient
and the Spearman’s coefficient. The Pearson’s correlation coefficient is
also calculated here, but only for validation purposes, as it assumes a
normal data distribution.

The first observation that can be made after the calculation of the
first two coefficients is in line with the theoretical background and con-
firms that Kendall’s coefficient is smaller than that of Spearman’s. The
analyses results can be seen in Fig. 7.2, 7.3 and 7.4 and in Fig. 7.5, 7.6
and 7.7. Based on the same figures, it can be concluded that the rank
of the features and that of the target value in the first dataset present
the strongest correlation of the three. This signifies that the variables
in the first dataset have stronger monotonic relationships with the tar-
get value. Nevertheless, the different types of faults lead to an overall
weak monotonic relationship between the features and the target. Dur-
ing the evaluation of the analysis results the physical side of the features
should also be taken into consideration. Here, for example, the high
correlation between features such as the currents before the fault and
the target value can be misleading. These values do not have a direct
physical relationship since the current values before the fault are inde-
pendent of the fault location. These pre–fault current values can be
useful but only when evaluated together with the current values after
the fault.
Regarding Pearson’s correlation coefficient, as illustrated in Fig. 7.8,

7.9 and 7.10, in a small LV grid such as the one examined, the linear cor-
relation between the features and the target value is rather weak. This
is to be expected as the non–linearity of these relations is obvious al-
ready from the analytical equations presented in the impedance–based
methods and is enhanced by the tree–shaped topology of LV grids and
the RES added to it.
Another important metric that can provide a valuable insight to the

dataset and the entire predictive process is the features’ importance.
In Fig. 7.11, 7.12 and 7.13 it can be observed that the third dataset
is the one containing the most useful features for the prediction of
the target value. This means that the features contained in the third
dataset assist the most in the split of a tree–based predictive model.
The other two datasets also includes features of high importance, but
not as high as those in the third dataset. Taking into account the
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Figure 7.2: Kendall’s coefficient calculated for the first dataset [2].
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Figure 7.3: Kendall’s coefficient calculated for the second dataset [2].
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Figure 7.4: Kendall’s coefficient calculated for the third dataset [2].
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Figure 7.5: Spearman’s coefficient calculated for the first dataset [2].
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Figure 7.6: Spearman’s coefficient calculated for the second dataset [2].
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Figure 7.7: Spearman’s coefficient calculated for the third dataset [2].
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Figure 7.8: Pearson’s coefficient calculated for the first dataset [2].

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Correlation

Iab_1_m
Iab_4_m
Vab_6_m
Vab_5_a

Vab_3_m
Iab_7_m
Iab_6_m
Iab_5_m
Vab_5_m
Iab_3_m
Iab_2_m
Vab_2_m
Vab_1_a
Iab_1_a

FaultLocation_m

Figure 7.9: Pearson’s coefficient calculated for the second dataset [2].
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Figure 7.10: Pearson’s coefficient calculated for the third dataset [2].

weak correlations between the features and the target value in all the
datasets, the features’ importance is a crucial criterion for the selection
of the best dataset.

After evaluating the correlations, the features’ importance and of
course the physical relationships between the variables, the dataset
that was selected for the training of the ML model was the third one.
The aforementioned dataset contains all the information regarding the
state of the grid before and after the fault in a compact form and leads
to better tree splits, hence more accurate results with less features.

Overall, the analysis results show the difficulty of conventional meth-
ods to generalize the complex relations between the voltage/current
values and the fault location for different LV grids. On the other hand,
it appears that tree–based ML models are capable of providing accurate
predictions for these datasets; this needs to be verified by the metrics of
the final model. Finally, the data analysis does not only bring out the
most informative dataset but also to the most important meters. Both
the correlation coefficients and the features’ importance point to the
same meters as the most informative ones. These are the meters found
in the beginning of each feeder and a meter placed in the middle/end
of the first feeder. This is a useful observation for the installation of
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Figure 7.11: Features’ importance for the first dataset [2].
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Figure 7.12: Features’ importance for the second dataset [2].
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Figure 7.13: Features’ importance for the third dataset [2].

new meters and the collection and analysis of only the necessary data.

7.1.4 Data minimization using dimensionality reduction

After the appropriate dataset is selected a good practice is to reduce
its content to only the necessary data. In this way both the algorithm’s
computational speed and generalizability are increased. One of the data
minimization approaches presented in chapter 6 is a data management
strategy that combines the use of the most important features in their
original form and the application of a dimensionality technique on the
rest of the dataset. The most important features are selected according
to the features’ importance analysis presented in the previous section.
In this case the number of the selected features was 10. For the selec-
tion of the most suitable dimensionality reduction technique the five
methods presented in chapter 6 were tested and compared. The cri-
teria used for their comparison were: a) the CT of the dimensionality
reduction process, b) the CT of the predictive process with the use of
the reduced dataset and without the hyperparameter tuning, and c)
the predictive accuracy.

Before applying the dimensionality reduction techniques the size of
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the reduced dataset needs to be defined. Similarly to the criteria es-
tablished for the selection of the dimensionality reduction method, the
selection of the new dimensionality space was done based on the opti-
mum trade–off between the CT and the accuracy. Fig. 7.14 illustrates
the mean square error (MSE) in relation to the CT for the T–SVD
method for a range of [20, 90] dimensions. It can be observed that there
is an almost inversely exponential relation between the two variables
up until a point where the MSE starts to increase with the increase in
the number of features. This indicates the model’s overfitting to the
training data when too many features are used. Based on these results
and in line with the multi–objective optimization process adopted, the
size of the reduced dimensionality space was set at 30. Thus, for a
30–dimensional space the performance of each technique is presented
in Table 7.3. According to these results, the selected dimensionality
reduction technique is the T–SVD. Even though Kernel PCA leads to
the lowest MSE, T–SVD combines a comparable error with a much
lower execution time.
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Figure 7.14: The MSE in relation to the CT of the algorithm for a range
of [20, 90] dimensions with the use of T–SVD [2].
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Table 7.3: Comparative table of the dimensionality reduction methods
Method CT of dimensionality reduction (s) MSE (m2) Total CT (s)

PCA 0.38 119.25 10.08

KPCA 76.6 87.8 85.8

FastICA 1.3 155.44 11.1

T–SVD 0.18 95.61 11.65

ISOMAP 102.78 696.66 111.7

The application of the proposed data minimization strategy resulted
in the reduction of the dataset’s features to 40. This mix of original
and transformed data not only reduces the method’s CT but, as it can
be seen in Fig. 7.15, it also leads to a much higher accuracy compared
to the use of a higher number of dimensions in the dimensionality re-
duction process. It manages to compress the most informative parts of
the original dataset in less than a third of its size.
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Figure 7.15: The algorithm’s MSE in relation to the dataset composi-
tion [2]

7.1.5 Hyperparameters

The last step before the training of the algorithm is the tuning of the
model’s hyperparameters. Table 7.4 presents the final hyperparameter
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values that were selected for the training of the XGBoost Model, based
on the process described in chapter 6. These values refer to the specific
application and the tuning of the hyperparameters should be repeated
every time the method is to be applied to a different grid.

Table 7.4: Hyperparameter values

No. of gradient boosting trees 700

Maximum tree depth
for base learners 7

Subsample ratio of
the training instance 0.7

Min sum of instance weight
needed in a child 3

Boosting learning rate 0.1

Subsample ratio of columns
when constructing each tree 0.7

Objective “reg:squarederror”

7.1.6 Fault location accuracy

After the model’s training its predictive performance on the test data
is evaluated. The results of the test are presented in Table 7.5. The
hyperparameter tuning and the use of the mix dataset have a direct im-
pact on the method’s MSE which is significantly smaller than the one
shown in Table 7.3. Additionally, a further decrease on the algorithm’s
CT can be observed. As a reference point it should be noted here that
the algorithm’s CT when trained with the original dataset, without the
use of the dimensionality reduction but with the tuning of the hyper-
parameters, was 1970,1s or 32 min. This is more than twice the CT of
the method after the use of dimentionality reduction. Furthermore, the
train and test accuracy are both high and almost identical, indicating
the lack of overfitting.
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Table 7.5: Fault location prediction model results

MSE (m2) 13.26

MAE (m) 1.69

CT without
hyperparameter tuning (s) 11.89

CT with hyperparameter
tuning (min) 12.27

Train accuracy (%) 99.9

Test accuracy (%) 99.8

7.1.7 Sensitivity analysis

A fault location method’s accuracy can be affected by various param-
eters. In order to test the its robustness under different scenarios a
sensitivity analysis was performed. The studied parameters were cho-
sen based on the characteristics of the fault location problem and the
properties of a ML–based algorithm.

Fault distance

The first parameter that was studied was the effect of the fault’s loca-
tion on the algorithm’s accuracy. In Fig. 7.16 it can be seen that the
Mean Percentage Error (MPE) of the method is less than 6% in all
cases. The MPE is defined as follows:

MPE =
100%

n

n∑
i=1

(Yi − Y ∗
i )

Yi
(7.1)

where Y is the real value of the fault distance, Y ∗ is the predicted
value, Y = 1

n

∑n
i=1 Yi and n is the total number of examples.

The spikes in the plot correspond to locations whose distance from
the feeder is the same but are placed on different branches. The more
branches with equally distant points from the feeder, the higher the
algorithm’s error. This is particularly noticeable for shorter distances
where the voltage values are similar in all the branches.
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Figure 7.16: MPE of the algorithm in relation to the fault’s distance
from the feeder [2].

Dataset size

When it comes to the size of the dataset used for the algorithm’s train-
ing this is determined not only by the number of features, which has
been previously analyzed, but also by the number of examples. This
is also an important factor affecting the algorithm’s predictive capa-
bilities. A training dataset that is too large may lead to overfitting or
storage problems while a dataset that is too small may lead to under-
fitting. Therefore, the dependence of the proposed algorithm on the
number of training examples is analyzed here. In Fig. 7.17 the MSE
and the training time of the model in relation to the amount of utilized
training examples is presented. As expected, the more the utilized ex-
amples the lower the MSE and the higher the CT. The MSE may be
high when few data are used, however, it drops significantly for more
than 6800 examples. This is a small number of examples that is easily
collected and stored. Thus, the presented algorithm combines high ac-
curacy with low data and storage requirements. It should be stressed
here that the different types of predictive models respond differently
to the amount of utilized training data. The results of this sensitivity
analysis support the claim that tree–based models perform well even



7. Fault location: Case studies 129

with smaller datasets.

The optimum dataset size selected for the study is approached as
another case of multi-objective optimization, with the target being the
balance point between the lowest CT and the lowest MSE. Both pa-
rameters are considered almost equally important with CT being given
a slightly higher importance factor in order to partly counterbalance
its lower numerical values. Specifically, the weights selected were 1.1
for the CT and 0.9 for the MSE. The red line in Fig. 7.17 illustrates
the weighted average curve of the CT and the MSE in relation to the
number of examples. The minimum of the curve constitutes the opti-
mum point and corresponds to 11900 examples. Out of these 80% was
used for the training of the algorithm and the other 20% was used for
its testing.
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Figure 7.17: The MSE and CT of the algorithm in relation to the num-
ber of utilized examples [2].

Loss of data

Another factor that could have an important impact on the perfor-
mance of a fault location method is the loss of data due to a communi-
cation error or the malfunction of one or more measuring devices. For
this purpose, this research analyzes the effect of a potential data loss
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from one, three or five of the grid’s meters. The missing values were
replaced with 0. Regarding the failing meters in each scenario, in order
to ensure the validity of the analysis the MSE of five failing meter com-
binations was calculated each time and the mean value of the MSEs
was computed as the final result for each scenario. Even though the
selection of the failing meters was mostly random, a parameter that
needed to be taken into consideration during this process due to the
applied data management strategy was the importance of the meters.

Hence, three separate cases were tested regarding the failing meters
included in each data loss scenario. The first case explored the possibil-
ity that all the failing devices were providing data that were classified
as important. These are the data utilized by the algorithm in their
original form; the corresponding devices are characterized as primary
devices. In the second case it was considered that the missing mea-
surements came from devices providing the less important data, thus
characterized as secondary devices. Finally, in the third case the data
loss originated from both the primary and secondary devices. Meters
1, 4, 5, 9, 10 were selected as the failing primary devices and meters 2,
6, 8, 13, 14 as the failing secondary devices. In the third case, when the
scenario of the three failing meters was tested, one of them was con-
sidered to be a primary meter and two secondary meters. In the same
case, for the scenario with the five failing meters the ratio primary to
secondary devices was 2/3.

As expected, Fig. 7.18 confirms the algorithm’s high dependence on
the primary measuring devices. Thus, the simultaneous failure of three
or more can result in high errors. This is, however, a very improba-
ble scenario that does not characterize the algorithm’s average perfor-
mance. Regarding the other two meter failure cases, the MSE is almost
the same as that under normal conditions. Therefore, the test results
verify the algorithm’s robustness against potential data loss.

Fault resistance

A parameter that affects all fault diagnosis methods and should not
be omitted from a related study is the fault resistance. Depending on
the consistency of the parts involved in the fault the value of the fault
resistance can vary significantly. This is directly reflected in the fault
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Figure 7.18: The MSE of the algorithm in the case of data loss from
one, three or five meters [2].

current measurements, whose value fluctuates according to the different
fault resistances. These notable fluctuations can impact the efficiency
of fault location methods and limit their generalizability. Thus, in
this study a broad range of fault resistances was simulated in order to
identify the algorithm’s sensitivity to it. More specifically, the tested
fault resistances were in the range of [0, 40] Ω. Higher impedance faults
are out of this research’s scope, therefore, this range was selected as the
most representative for detectable faults in LV grids [133].

In Fig. 7.19 the algorithm’s response for the different fault resistance
value ranges is illustrated. Even though the algorithm’s accuracy re-
mains above 99% for the entire analyzed spectrum, it is lower for the
lower values of the fault resistance. The reason behind this is the greater
variation of the current’s values in this range of fault resistances, as it
can be observed in Fig. 7.20 which depicts representative current mea-
surements recorded by meter 8. Hence, it is more challenging in this
case for the algorithm to distinguish between the different cases and
predict the correct target value. Overall, however, the fault resistance’s
effect on the proposed algorithm can be considered negligible.
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Figure 7.19: The accuracy of the algorithm in relation to the fault re-
sistance value ranges [2].
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Figure 7.20: The ratio between the current before and after the fault in
relation to the fault resistance as measured by meter 8 [2].
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PV penetration level

Finally, a major parameter to be considered in all power systems stud-
ies in the smart grids era is the integration of RES. The power injected
by the RES can also affect the fault current and subsequently the fault
location accuracy. The bidirectional power flow can cause phenomena
such as the blinding of the protection and measuring devices which
alter the values of the grid’s variables and can confuse the algorithm.
Therefore, in this study the effect of five different PV power generation
levels was simulated and analyzed. The generation levels are presented
in Table 7.1. As illustrated in Fig. 7.21 there is no clear pattern be-
tween the generated power and the algorithm’s accuracy. Nonetheless,
the consistently high accuracy indicates that the algorithm remains
practically unaffected by the various PV penetration levels.
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Figure 7.21: The accuracy of the algorithm in relation to the PV power
generation levels [2].

7.2 Case study 2

In case study 2 the utilized data minimization technique is the fea-
ture selection and the predictive model is a RF. Apart from that, this
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case study tests the proposed re–training strategy in case of topology
changes and analyzes the load changes and measurement noise effects on
the algorithm. Moreover, the difference in the algorithm’s performance
when trained with phasors or only magnitude values is discussed.

7.2.1 Test grid

In this case study the grid is identical to that of case study 1 with
the addition of 4 switching points and one reserve connection between
feeders 1 and 3. These are marked with red Xs and a red dashed line
respectively in Fig. 7.22. They are accompanied by the identification
codes indicating the topology change scenario they are used at. The
default grid topology is the one illustrated in black.

7.2.2 Data generation

The simulations performed for the generation of the training and test-
ing datasets for each topology included the modification of the fault’s
parameters and the grid’s elements as in Table 7.1, with the exception
of the fault resistance whose range was expanded to a maximum of
100 Ω. Moreover, in this case study the loading levels were also modi-
fied and noise was added to the collected data at a later stage. These
modifications are discussed in the corresponding parts of the sensitivity
analysis in section 7.2.7.

The data generation and collection process is the same as in case
study 1. The size of the sampled dataset in this case for the default
topology is (13600, 344). The datasets used for the sensitivity analyses
tests have a size of (10000, 344) for each level of data contamination
and of (23800, 344) for each loading level in order to examine as many
potential scenarios as possible and ensure the reliability of the results.
The number of features in all the datasets decreased after the applica-
tion of the feature selection method. The size of the datasets that need
to be stored for each topology change is discussed in section 7.2.6. It
should be noted here that the dataset used was the one identified as
dataset 1 in case study 1. This selection was mandated by the fact that
the maximum number of features in their natural form were chosen to
be utilized in the testing of the feature selection methods.
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Figure 7.22: Modified CIGRE European LV benchmark used in case
study 2.

7.2.3 Magnitude vs phasor utilization

As commented in chapter 6 the measuring devices installed on the
grid vary between the different countries and DSOs, meaning that the
recorded variables differ as well. The most commonly measured vari-
ables are the voltage and current magnitudes. As the installation of
smart meters, PMUs and other devices providing synchronized mea-
surements grows, however, the phasors’ angles are also available in most
cases. Therefore, the performance of the algorithm with and without
the use of the angles is tested and compared in this research.

Table 7.6 presents the results of the tests, which verify that the use
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of the variables’ angles lead to higher accuracy but also to higher CTs.
Nevertheless, the algorithm’s error in the case when only magnitude
values are utilized remains very low. Based on these results and after
taking into consideration the research goals of this thesis, the data that
were selected to be used for the rest of the study were the three phase
current and voltage phasors before and after the fault. In this way, the
full potential of the algorithm can be explored.

Table 7.6: Comparison of the model’s performance with and without
the angles of the V, I included in the dataset

Dataset with angles Dataset without angles

MSE (m2) 11.34 23.68

MAE (m) 0.51 1.01

CT without the hyperp. tuning (min) 9.74 4.81

7.2.4 Feature selection method comparison

After the selection of the model’s training dataset its minimization is
once again implemented. In this case study the SelectFromModel and
the Boruta feature selection algorithms are compared. The estimator
used for the calculation of the features’ importance was in both cases a
RF. The criteria for the algorithms’ comparison were their CT, the CT
of the overall algorithm’s training with and without the minimization
of features, the number of the selected features and the MSE of the
trained model. The last point of comparison is thoroughly analyzed
in subsection 7.2.6 as it coincides with the evaluation of the proposed
method. Nevertheless, it is presented in Table 7.7 together with the
other results for comparative purposes. The table also includes the
algorithm’s MSE without the deployment of feature selection, as a ref-
erence point.

The results confirm its method’s theoretical characteristics. More
specifically, the Boruta algorithm leads to the method with the highest
accuracy, nevertheless due to the complexity and iterative nature of the
algorithm, the CT is much higher than that of the SelectFromModel.
The SelectFromModel algorithm may lead to a higher MSE, however, it
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Table 7.7: Comparison of feature selection methods

SelectFromModel Boruta No feature selection

CT (s) 23.13 2731 -

No of selected features 23 112 -

MSE (m2) 11.65 2.29 4.95

ML model’s CT (min) 20.78 43.59 100.16

is very fast and selects very few features, thus it significantly decreases
the method’s data requirements and CT. The same observations can
be made also regarding the relation between the SelectFromModel and
the algorithm without feature selection. Even though the difference in
the MSE is not great, the differences in data requirements and CT are
important. Thus, it is concluded that the SelectFromModel algorithm
constitutes the best feature selection option and it is the one applied
to the training dataset.

SelectFromModel features

The application of the SelectFromModel algorithm has indicated the
utilization of 23 features out of the 344 that were originally included
in this dataset. Thus, the final size of the default dataset utilized for
the training and testing of the algorithm was (13600, 23). The selected
features comprise only of current and voltage values both before and
after the fault, mostly from phase b. The percentage of selected fea-
tures corresponding to each measuring device is presented in Fig. 7.23.
In accordance with the data analysis presented in case study 1, the
most important meters are the ones in the beginning and middle of the
branches. Additionally, in Fig. 7.24 it is shown that almost 2/3 of the
selected features correspond to magnitude values. This supports the
results presented in section 7.2.3 stating that the algorithm’s perfor-
mance remains high also when trained only with magnitude values.
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Figure 7.23: The percentage of features coming from each meter that
were selected by the feature selection algorithm.
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Figure 7.24: The ratio of magnitude vs angle features in the selected
features list.
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7.2.5 Hyperparameters

Finally, before the presentation of the method’s performance, the hy-
perparameter ranges and the selected values used for the training of
the RF regression and classification models are presented in Table 7.8.

Table 7.8: Hyperparameter values

No. of trees Maximum depth No. of features Min No. of samples Min No. of samples

considered required required

of the tree in each split to split a node at each node

[100 : 1200 : 100] [5 : 30 : 5] “auto”, “sqrt” [2, 5, 10, 15, 100] [1, 2, 5, 10]

R 800 30 “sqrt” 2 1

C 100 20 “sqrt” 2 1

7.2.6 Results

After the selection of the appropriate data processing techniques and
the suitable training dataset, the method’s overall performance is eval-
uated. This includes the accuracy of the classification model used for
the identification of the faulted branch and the accuracy of the regres-
sion model used for the calculation of the distance between the faulted
point and the main feeder.

Faulted branch classification accuracy

As analyzed in chapter 6, the faulted branch classification is performed
by a RF classifier. The target variable is each branch’s last node. There
were 6 different target values in the studied grid. The model’s test re-
sults are presented in table 7.9. It can be seen that both the accuracy
and the F1 score are particularly high. The excellent predictive capa-
bilities of the model are also verified by the confusion matrix shown in
Fig. 7.25.
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Table 7.9: Fault classification results

Accuracy (%) F1 score (%)

99.79 99.79

Figure 7.25: Confusion matrix [4]

Fault location accuracy

The regressor used for the location of the faulted point is a RF regressor.
The algorithm’s performance in the location of faults after the selection
of the most informative features is summarized in Table 7.10. It can be
observed that thanks to the data management techniques embedded in
the algorithm both the error and CT are maintained low.

Table 7.10: Fault location algorithm’s performance

MSE (m2) MAE (m) R2 CT with hyperp. tuning (min) CT without hyperp. tuning (s)

11.65 0.83 0.9983 20.78 36.69
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Topology change scheme – retraining performance

In order to avoid a performance loss during topology changes an efficient
retraining scheme was presented in chapter 6. The scheme’s testing
was divided into two parts. The first part focuses on the retraining
data volume and the corresponding CT. As commented also in case
study 1, the dataset size affects both the CT and the accuracy of the
method. Hence, different dataset sizes were used for the algorithm’s
retraining after the occurrence of the topology change 1 scenario. This
is illustrated in Fig. 7.22 and corresponds to the disconnection of a part
of branch 1.

Fig. 7.26 shows the MAE and the CT in relation to the number of
examples included in the dataset. As expected once again, the more
the utilized examples the lower the MAE and the higher the CT. Simi-
larly to the multi–objective optimization performed in section 7.1.7 the
weighted average of the two parameters was calculated pointing to the
dataset size that leads to the best trade–off between the MAE and the
CT. Based on the results it is concluded that the optimum number of
examples that should be contained in each dataset is 7000. This is a
small number that can be easily collected and stored. Regarding the
re–training scheme’s actual CT, it can be observed that this is much
lower compared to the one required for the repetition of the whole
training process, which includes the time–consuming hyperparameter
tuning. It should be noted here that the CTs do not include the time
required for the loading of the data into the algorithm.

The second part of the retraining scheme’s efficiency evaluation tests
the algorithm’s accuracy in the case of four different topology changes.
All the cases are illustrated in Fig. 7.22; three of them include the
disconnection of a part of the grid while one includes the isolation of a
part of branch 3 and the re–connection of another part of it to branch 1.
Moreover, in order to make sure that the algorithm is able to perform
well even in situations were fast retraining is the priority or there is
a lack of data, only 5500 examples were included in each retraining
dataset instead of 7000. The results for each new topology scenario
are presented in Table 7.11 and verify the efficiency of the proposed
re–training scheme. Despite the small size of the utilized datasets the
error is maintained low and the accuracy high in all the cases, while
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the CT is only a few seconds. For comparative reasons it should be
stated that the MAE in the case of the topology change 1 without the
implementation of the retraining scheme is 113m, while the R2 has a
negative value which indicates the big differences between the default
and the changed topology dataset variables. Overall, the incorporation
of the proposed re–training scheme maximizes the reliability of the
power supply even in extreme scenarios.
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Figure 7.26: The values and weighted average of the MAE and the CT
for different amount of utilized examples for Topology 1.

Table 7.11: Retraining scheme performance for the tested topologies

Topology 1 Topology 2 Topology 3 Topology 4

MSE (m2) 10.35 0.485 0.957 14.49

MAE (m) 0.76 0.032 0.05 0.74

R2 0.9975 0.999 0.999 0.997

CT without hyperp. tuning (s) 21.2 9.75 9.56 13.05
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7.2.7 Sensitivity analysis

The sensitivity analysis performed in order to verify the robustness
of the fault location algorithm tested in case study 2 includes once
more the study of the location of the fault, the fault resistance and
PV penetration as influencing parameters. Additionally, in order to
broaden the validation spectrum of AI–based fault location methods,
the effect of load changes and measurement noise on the algorithm’s
performance is also analyzed.

Location of the fault

As it can be seen in Fig. 7.27, the effect of the fault’s location on the
algorithm is similar to that observed in case study 1. This is expected
since the grid presents the same characteristics and the two algorithm’s
share similar properties. More specifically, here the mean error is less
than 5% for the faults closer to the main feeder, and less than 1% for
the rest of the distances.
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Figure 7.27: PME in relation to the fault distance from the main feeder
[4].
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Fault resistance

As stressed in section 7.1.7 the effect of the fault resistance on fault lo-
cation algorithms can be significant. It is an unpredictable parameter
whose values can vary notably, therefore, a margin of [0-40] Ω is studied
here. In order to analyze the algorithm’s behavior in relation to the
changes in the fault resistance values, the latter were divided in sub-
sections. Then, the mean test accuracy of the algorithm was calculated
for each one of those. As shown in Fig. 7.28, the drop in the accuracy
is small as the fault resistance increases, therefore, the algorithm can
be considered robust against the fault resistance effect.
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Figure 7.28: Test accuracy of the predictive model in relation to the
fault resistance [4].

PV penetration level

In this case study the analysis of the PV penetration level’s effect on the
algorithm is measured with the use of the MSE instead of the R2. The
reason behind that is that in this case the performed analysis showed
that there is a pattern in the relation between the PV penetration level
and the MSE. In Fig. 7.29 it can be observed that the higher the PV
penetration the bigger the MSE of the model. Nevertheless, the latter
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is still exceptionally low and verifies the algorithm’s robustness.
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Figure 7.29: MSE of the predictive model in relation to the PV power
generation [4].

Load change

Another parameter that could lead to inaccuracies in the location of
a fault is the load changes. These directly affect the grid’s measured
variables and can alter the data patterns learned by the model. In order
to test the proposed algorithm’s robustness against the effect of the load
changes, three different load levels were simulated. These correspond
to the 30%, 60% and 80% of the loads’ nominal values. The algorithm’s
accuracy in each case as well as the mean value of the tested cases are
presented in Fig. 7.30. As expected, the lower the load level the lower
the accuracy of the algorithm, since the measured values diverge more
from the originally simulated ones. Nevertheless, the mean accuracy
remains high and above 99%.

Measurement noise

Finally, the distortion of the input data due to the noise introduced by
the measuring devices is an inevitable part of the data collection. In
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model combinations
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Figure 7.30: Model’s test accuracy in relation to the nominal value per-
centage the grid’s loads are operating at.

chapter 6 the incorporation of the measurement noise in the model’s
training data in case of generated datasets was discussed. Here, the
effect of this noise in the algorithm’s accuracy is analyzed by contami-
nating the dataset with 10%, 20%, 40% and 60% noisy data. In order
to test the algorithm in the most extreme of cases a ± 5% noise was
added to the measurements. It can be observed that the additional
noise in the data is affecting the accuracy of the algorithm, however, it
is not causing an error of more than 5.5%.

7.3 Comparison of the possible data minimization
and predictive model combinations

The presented fault location method proposes the combination of a
data minimization approach with a tree–based predictive model. For
this purpose a dimensionality reduction method and a feature selection
method were combined with an XGBoost model and a RF respectively.
These combinations were made taking into consideration the particular
characteristics of the data minimization techniques and the predictive
models. The pairings represent the middle cases that are not expected
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Figure 7.31: Model’s test accuracy in relation to the percentage of noisy
data included in the dataset.

to lead to either a very high or a very low method performance overall.
The goal of this decision was to present a more realistic and generic de-
piction of the method’s performance as well as two viable alternatives.

Nevertheless, the method’s accuracy and CT for all the possible com-
binations was tested and it is presented in Table 7.12. The results
verify the hypothesis that the dimensionality reduction–XGBoost and
feature selection–RF combinations are both solid solutions that lead to
satisfactory results. The best pairing overall, however, is that of the
XGBoost model with the SelectFromModel algorithm which combines
high speed and accuracy. On the other hand, the worst pairing is that
of the dimensionality reduction and the RF. The test results confirm
the theoretical comparison presented in chapter 3; the XGBoost model
is faster and leads to less overfitting than the RF when used in a fault
location application, regrardless of the data minimization technique
employed. Furthermore, the SelectFromModel algorithm suits better
both models than the T–SVD–based strategy.

Overall, both the XGBoost and the RF models proved to be reliable,
flexible and accurate when combined with the appropriate data man-
agement techniques, however, the XGBoost is deemed more suitable for
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Table 7.12: Comparison of feature selection methods

RF - XGBoost - RF - XGBoost -

SelectFromModel SelectFromModel T–SVD T–SVD

MSE (m2) 11.65 1.35 206.97 13.26

MAE (m) 0.83 0.49 6.76 1.69

CT with hyperp. tuning (min) 21.01 7.72 29.8 12.27

this application. Moreover, both the T–SVD and the SelectFromModel
are capable to decrease the size of the problem without a significant in-
formation loss. However, the compression of information by the T–SVD
leads to lower predictive accuracy which cannot be counterbalanced by
the proposed data management technique that combines original and
compressed features. The SelectFromModel algorithm does not require
any additional features and leads to more accurate results, thus it is
more effective in a fault location algorithm.

7.4 Conclusions

In this chapter two fault location case studies were presented. Their
goal was not only to verify the proposed algorithm’s accuracy but also
to present an insight to the design choices made during the develop-
ment of a ML–based solution. Thus, each case study tested different
sides of the fault location algorithm presented in chapter 6 and pro-
posed solutions that ensure the successful practical implementation of
the method under the most common operational scenarios. The first
case study evaluated the use of dimensionality reduction techniques
for the minimization of the training data and an XGBoost regression
model as the predictor. Additionally, it included an all–important data
analysis that presented the correlation and importance of the data in
different versions of the original dataset. Then, the second case study
evaluated the efficiency of feature selection methods in minimizing the
training data and the predictive capabilities of a RF regressor. More-
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over, it analyzed the algorithm’s performance when synchronized mea-
surements are not available and it validated the effectiveness of the
model’s retraining scheme in case of topology changes. Finally, both
case studies included a sensitivity analysis examining the effect of the
fault’s location, the fault’s resistance and the PV’s penetration level
on the algorithm’s accuracy. The first case study also analyzed the
effect of the dataset’s size and potential data loss on the method. The
second case study complemented those results with the evaluation of
the load changes’ and the measurement noise’s impact on the model’s
performance.
Many conclusions can be drawn from these case studies. First of all,

the combined normal and faulty operation dataset generated from such
an active LV grid is not normally distributed and has a loose correlation
with the location of the fault. The most compact dataset that can be
formed by these data is the one containing the difference between the
before and after the fault values. Moreover, even though the use of
phasors leads to higher location accuracy, the method’s error in case
only magnitude values are available is not much higher. Additionally,
the meters providing the most important measurements are those place
in the beginning and the middle of each feeder.
Furthermore, the proposed data management strategies not only im-

prove the model’s performance but also facilitate its re–training. Thus,
the presented smart re–training strategy is fast and efficient for all
switching events with a minimum number of additional examples. Fi-
nally, the best predictor–data minimization technique combination is
that of the XGBoost and the SelectFromModel algorithm. The overall
results verify that the method is highly effective in locating faults and
can be easily applied to any active LV grid since it is not dependent to
any topology–specific parameters.



150



8
Conclusions

This thesis presented a complete fault diagnosis solution for distribution
grids. The term fault refers to all ten types of shunt faults. Each part
of the fault diagnosis process targeted a specific research gap related
to it, as those arose from the literature review presented in chapter
2. The steps of the fault diagnosis are three: the detection of a fault,
the classification of the type of fault and the location of the faulted
point. Most research gaps were identified in the research related to
the LV grid, therefore, the study was mainly focus on that part of the
grid and, in particular, on active LV grids. The ongoing smart grid
transition has posed many challenges to the traditional fault diagnosis
techniques, however, it has also provided opportunites for the devel-
opment of innovative solutions. Thus, taking into consideration the
increased observability over the grid that is enabled by the continu-
ous technological advancements, the proposed methods were all data–
driven. More specifically, emphasis was placed on the use of ML, whose
advanced pattern identification abilities have been verified in multiple
applications.

Regarding the first step of the fault diagnosis process, the fault de-
tection method presented in this research focuses on the detection of
faults in LV grids with increased fast charging and ultra–fast charging
penetration. The problem constitutes a binary classification problem,
therefore, the CatBoostClassifier is proposed as the predictive model. It
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constitutes a state–of–the–art tree–based boosting model that is highly
efficient and easy to train. Moreover, in order to develop a ML–based
fault detection algorithm with high accuracy and robustness against
the EV charging stochasticity, the algorithm’s training is performed
with static simulation data. For the generation of the training data
two static simulation scenarios were tested and compared, one that
ignored all EV charging and one that considered that all EV charg-
ers installed in the grid were simultaneously occupied and operating
at nominal power. The algorithm was trained with each dataset and
tested on out–of–sample data generated from the simulation of possible
intermediate charging and loading states. The tests showed that the
algorithm achieved a high detection accuracy in both cases, however,
it yielded the best results when trained with the first dataset, i.e. the
one generated with no EV charging simulation. Thus, the proposed
algorithm can be effectively trained with static simulation data and
without requiring the prior knowledge of the number or position of the
EV chargers. Hence, it is easily applicable to any active LV grid and
combines generalizability with speed and accuracy. Its performance
was also tested against the effect of the fault resistance, potential data
loss, the PV penetration’s level, the dataset’s size and the charging
stations’ occupancy rate.

The second step of the fault diagnosis process, the fault classifica-
tion, constitutes the least studied part of the process. Therefore, the
research was extended to both the MV and the LV grid, with emphasis
on the MV. The proposed approach in this case is more traditional and
aims to present an updated and automatized version of the threshold–
based techniques, which account for the majority of the available fault
classification techniques. Thus, after the establishment of some generic
criteria to be used for the identification of each type of fault, an al-
gorithm automatizing the criteria’s threshold–setting process was pre-
sented. The criteria use only three–phase current values before and
after the fault. The developed algorithm analyzes the data generated
by the grid at hand and proposes suitable thresholds for each criterion.
The process is mainly defined by the influence of the fault resistance
on the fault current. Thus, it constitutes the first method that is not
limited to testing its robustness against this very important parameter
but also incorporates its effect on the threshold–setting process. This
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is possible by simulating some representative fault scenarios with var-
ious fault resistance values. In this way the method’s accuracy and
adaptability to each specific grid are ensured and facilitated, rendering
the proposed fault classification method universal, effective and easily
applicable to any conventional grid.
The final step of the fault diagnosis process is the location of the

faulted point. The literature review revealed that even though there
is an abundance of related papers developed for MV grids, there is
a lack of research for LV grids. Hence, the proposed fault location
method was developed for and tested on an active LV grid. In order to
avoid phenomena such as the multiple location estimation the fault lo-
cation process has been split into two parts: i) the identification of the
faulted branch and ii) the calculation of the distance between the main
feeder and the faulted point. Both of these functions are performed
by ML models, rendering this an ensemble ML–based method. The
faulted branch identification constitutes a multiclass classification prob-
lem since the target value is the last node of each branch. Therefore,
a RF classifier was used as the predictive model. This is a reliable and
easy–to–implement model that has been vastly used and tested, thus
it was selected as a fitting model for this simpler part of the method.
The tests confirmed its suitability by showcasing its high accuracy.
The calculation of the fault’s distance from the main feeder consti-

tutes a regression problem, since the target value is a continuous num-
ber representing the distance to the fault. The distance calculation is a
complex problem whose result can be easily influenced by multiple pa-
rameters. Therefore, two regression tree–based models were tested and
compared, a RF and an XGBoost. These represent the traditional and
the advanced generation of tree–based models respectively. The perfor-
mance of ML models though is not only determined by their inherent
characteristics but also by the tuning of their hyperparameters and the
quality and management of the input data. Thus, in order to boost the
models’ performance, apart from the necessary hyperparameter tuning,
the proposed algorithm includes: i) a smart data storage scheme, which
groups the data based on the switches’ states during the data collec-
tion, ii) a three–stage data pre–processing which includes the scaling,
shuffling and splitting of the data into training and testing datasets and
iii) a data minimization strategy which reduces the problem’s size, and
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the model’s training time and overfitting. The employed techniques
not only increase the algorithm’s efficiency but also facilitate the im-
plementation of a fast and effective retraining scheme in the case of
topology changes due to switching events. Furthermore, in order to en-
sure the algorithm’s applicability, its measurement requirements were
also addressed with the different possibilities being analyzed. To the
author’s knowledge, this is the first research that provides an all–round
ML–based fault location algorithm comprising smart data storage and
minimization schemes and an efficient re–training strategy. Finally, it
is the first algorithm to present a thorough data analysis that evaluates
the correlation between the data that are usually available on the grid
such as the voltage and current phasors before and after the fault and
the fault distance as well as the importance of these data to the model’s
predictive process.

A crucial part of the aforementioned data management process is
that of the data minimization for which multiple solutions have been
developed over the years. In this research two common approaches were
utilized and compared, the feature selection and the dimensionality
reduction. For each of the two approaches the most popular and/or
sophisticated techniques were applied and compared. These are:

� for the feature selection the:

1. SelectFromModel

2. Boruta

� for the dimensionality reduction the:

1. PCA

2. KPCA

3. FastICA

4. T–SVD

5. ISOMAP

Each data minimization approach was combined with a ML model
in order to test the algorithm’s performance. The feature selection
techniques were paired with the RF regressor and the dimensionality
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reduction techniques were paired with the XGBoost regressor. These
pairings were made based on the algorithms’ expected behavior and
aimed to form combinations with similar, satisfactory performances
that support the part that is considered less efficient; in the case of
the data minimization techniques this is the dimensionality reduction,
and in the case of the predictive models this is the RF. In this way two
viable solutions are presented. The accuracy and computational speed
of the other two possible combinations, however, were also computed
in order to identify the best pair overall for this application.
The method’s testing was performed with the use of simulation data

generated by properly modified versions of the CIGRE European LV
grid. The results showed that for the specific application the best–
performing feature selection technique was the SelectFromModel algo-
rithm and the best–performing dimensionality reduction technique was
the T–SVD. The latter was combined with the use of original features
in order to form a more efficient data minimization strategy. Moreover,
the best overall data minimization technique–predictive model pairing
was that of the SelectFromModel and the XGBoost algorithms. The
XGBoost outperformed the RF in both cases leading to lower errors and
CTs. Similarly, the SelectFromModel algorithm outperformed the T–
SVD in both cases. Finally, the conducted sensitivity analysis showed
that the proposed algorithm is robust against the fault’s location, the
fault resistance, the PV penetration, the dataset’s size and potential
data loss, the changes in the load and the noise in the measurements.

8.1 Future work

This research has presented solutions for some of the more pressing re-
search gaps in the field of fault diagnosis. Nevertheless, there are more
sides of the problem to be explored and as the grid transformation and
the technological advancements continue new challenges and opportu-
nities arise. Potential future work topics in the field of fault diagnosis
are the following:

1. With regard to the fault detection:

� Development of a generalizable solution for the detection of
high impedance faults in active LV grids.
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� Testing of the algorithm with different input data, i.e. dif-
ferent collected measurements.

2. With regard to the fault classification:

� Testing of the technique on an active grid.

� Testing of the technique exclusively on a LV grid.

� Threshold establishment with the use of ML and comparison
with the conventional computational techniques.

3. With regard to the fault location:

� Utilization of a physics–based ML model for the location of
faults.

� Expansion of the method to other types of faults, such as
series faults.

� Testing of the algorithm on high impedance faults.

4. With regard to all the proposed algorithms:

� Testing of the techniques on weaker grids.

� Testing on larger grids.

� Testing on an experimental setting or with the use of real
data, if the testings proposed above are performed with sim-
ulation data, as is the case in this research.
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distribución de enerǵıa eléctrica usando métodos basados en el
modelo y métodos basados en el conocimiento. page 151, 2006.
41

[154] Shahram Kazemi. Reliability Evaluation of Smart Distribution
Grids. page 150. 41

[155] Hahn Tram. Technical and operation considerations in using
Smart Metering for outage management. In 2008 IEEE/PES
Transmission and Distribution Conference and Exposition, pages
1–3, April 2008. ISSN: 2160-8563. 41

[156] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and
Charles J. Stone. Classification And Regression Trees. Rout-
ledge, Boca Raton, October 2017. 47

[157] Muhammad Waseem Ahmad, Monjur Mourshed, and Yacine
Rezgui. Trees vs Neurons: Comparison between random forest



178 Bibliography

and ANN for high-resolution prediction of building energy con-
sumption. Energy and Buildings, 147:77–89, July 2017. 49

[158] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. En-
semble Learning. In The Elements of Statistical Learning, pages
605–624. Springer New York, New York, NY, 2009. 50

[159] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev,
Anna Veronika Dorogush, and Andrey Gulin. CatBoost: un-
biased boosting with categorical features. arXiv:1706.09516 [cs],
January 2019. arXiv: 1706.09516 version: 5. 50, 59

[160] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree
Boosting System. In Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Min-
ing, pages 785–794, San Francisco California USA, August 2016.
ACM. 50

[161] Abdullahi Ibrahim, Ridwan Raheem, Muhammed Muhammed,
Rabiat Abdulaziz, and Saheed Ganiyu. Comparison of the Cat-
Boost Classifier with other Machine Learning Methods. Interna-
tional Journal of Advanced Computer Science and Applications,
11:11, December 2020. 50, 59

[162] Weizeng Wang, Yuliang Shi, Gaofan Lyu, and Wanghua Deng.
Electricity Consumption Prediction Using XGBoost Based on
Discrete Wavelet Transform. DEStech Transactions on Computer
Science and Engineering, 0(aiea), 2017. 51

[163] Raza Abid Abbasi, Nadeem Javaid, Muhammad Nauman Javid
Ghuman, Zahoor Ali Khan, Shujat Ur Rehman, and Amanullah.
Short Term Load Forecasting Using XGBoost. In Leonard Barolli,
Makoto Takizawa, Fatos Xhafa, and Tomoya Enokido, editors,
Web, Artificial Intelligence and Network Applications, Advances
in Intelligent Systems and Computing, pages 1120–1131, Cham,
2019. Springer International Publishing. 51

[164] Wu Yucong and Wang Bo. Research on EA-Xgboost Hybrid
Model for Building Energy Prediction. Journal of Physics: Con-
ference Series, 1518:012082, April 2020. 51



Bibliography 179

[165] Global EV Outlook 2021. Technical report, International Energy
Agency, April 2021. 55

[166] J. A. P. Lopes, F. J. Soares, and P. M. R. Almeida. Integration
of Electric Vehicles in the Electric Power System. Proceedings of
the IEEE, 99(1):168–183, January 2011. 56

[167] Sulabh Sachan and Nadia Adnan. Stochastic charging of electric
vehicles in smart power distribution grids. Sustainable Cities and
Society, 40:91–100, July 2018. 56

[168] J. R. Pillai, P. Thøgersen, J. Møller, and B. Bak-Jensen. Integra-
tion of Electric Vehicles in low voltage Danish distribution grids.
In 2012 IEEE Power and Energy Society General Meeting, pages
1–8, July 2012. 56

[169] Linni Jian, Yanchong Zheng, Xinping Xiao, and C.C. Chan. Op-
timal scheduling for vehicle-to-grid operation with stochastic con-
nection of plug-in electric vehicles to smart grid. Applied Energy,
146:150–161, May 2015. 56

[170] Niels Leemput, Frederik Geth, Juan Van Roy, Jeroen Büscher,
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