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Abstract

Quantum technology is dependent on our capacity to manipulate
and control the quantum characteristics of particles, such as quantum
superposition, entanglement, non-classicality, no-locality, and some
collective behaviors, etc. So, the advancement of quantum technology
intimately relies on the discovery of new quantum phenomena, a
better understanding of the microscopic quantum world, and more
precise control over quantum dynamics.

In this thesis, our main objective is to utilize different kinds of
quantum dynamics as resources. To do so, we investigate thermody-
namics, non-equilibrium steady states, and dynamical spectroscopy
in order to categorize the dynamics of quantum systems as having
either no external drive (self-drive), a weak external drive, or a strong
external drive, respectively.

In the first part, we explore the dynamics of quantum heat en-
gines. In that, we consider dynamics that are driven by time-indep-
endent Hamiltonian, i.e., without external driving. We show that
when a working system non-locally interacts with two baths at differ-
ent temperatures, the engine can operate in a one-step cycle, yielding
Carnot efficiency at maximum power. This advantage is exclusively
because non-local operations are more powerful than local ones. To
study such engines in a more systematic manner, we develop a re-
source theory of heat engines. This provides a framework to study
quantum engines operating with a working system composed of a
finite number of quantum particles and restricted to few observations,
i.e., in the one-shot finite-size regime. We also propose an experimen-
tally feasible model of an engine using an atom-cavity system that
yields Carnot efficiency at maximum power.

In the second part, we consider open quantum dynamics, where
a system weakly interacts with environments. In particular, we study
the Lindblad master equation-based dynamics of quantum systems
weakly coupled to two thermal baths at different temperatures. In
general, these dynamics lead to non-equilibrium steady states. By
selectively coupling a quantum system to two different thermal baths,
a synthetic thermal bath can be engineered, and the temperature of
such a synthetic bath can be made negative. With this, we explore
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steady-state quantum thermodynamics with negative temperatures.
We show that the zeroth and the Clausius state of the second law
remain unaltered in the case of baths with negative temperatures.
However, the Kelvin-Planck statement of the second law updates
in this case to incorporate the following. (i) There is spontaneous
heat flow from a bath with a negative temperature to a bath with
a positive temperature. In this sense, the baths with a negative
temperature are ‘hotter’ than the ones with a positive temperature.
(ii) There is spontaneous heat flow from a bath with a less negative
temperature to a bath with a more negative temperature. We also
introduce a continuous heat engine operating between a positive and
negative temperature bath. Our analysis shows that the heat-to-work
conversion efficiency for such an engine is always unity. We study
the thermodynamic implications of our results.

The third part of the thesis explores systems driven by strong ex-
ternal fields. In such circumstances, we encounter transient quantum
dynamics, which cannot be described by thermodynamics. This kind
of dynamics is utilized for dynamical spectroscopy. Particularly, we
have studied high harmonic generation where a strong laser field in-
teracts with matter. By utilizing the high harmonic generation mech-
anism, we characterize the topological features of solids. Here, we
characterized the (a) topological features of the one-dimensional gen-
eralized Su-Schrieffer-Heeger chain and one-dimensional extended
Fermi-Hubbard chain by exploiting high harmonic spectroscopy, (b)
characterization of localization and delocalization phases in the one-
dimensional non-interacting quasi-periodic Aubry-Andŕe-Harper
model, and (c) characterization of a quantum critical phase in 1-D
strongly correlated by high harmonic spectroscopy.
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Resume

La tecnologı́a cuántica depende de nuestra capacidad para manip-
ular y controlar las caracterı́sticas cuánticas de las partı́culas, como
la superposición cuántica, el entrelazamiento, la no clasicidad, la no
localidad y algunos comportamientos colectivos, etc. Por lo tanto,
el avance de la tecnologı́a cuántica se basa ı́ntimamente en la des-
cubrimiento de nuevos fenómenos cuánticos, una mejor comprensión
del mundo cuántico microscópico y un control más preciso sobre la
dinámica cuántica.

En esta tesis, nuestro principal objetivo es utilizar diferentes tipos
de dinámica cuántica como recursos. Para hacerlo, investigamos
la termodinámica, el estado estacionario sin equilibrio y la espec-
troscopia dinámica para categorizar la dinámica de los sistemas
cuánticos sin impulso externo (autoimpulso), un impulso externo
débil o un impulso externo fuerte con impulso cuántico.

En la primera parte, exploramos la dinámica de los motores
térmicos cuánticos. Especı́ficamente, consideramos dinámicas que
son impulsadas por un hamiltoniano independiente del tiempo, es
decir, sin control externo. Mostramos que cuando un sistema en fun-
cionamiento interactúa de forma no local con dos baños a diferentes
temperaturas, el motor puede operar en un ciclo de un solo paso, lo
que produce la eficiencia de Carnot a máxima potencia. Esta ventaja
se debe exclusivamente a que las operaciones no locales son más
poderosas que las locales. Para estudiar tales motores de una manera
más sistemática, desarrollamos una teorı́a de los recursos de los mo-
tores térmicos. Esto proporciona un marco para estudiar los motores
cuánticos que funcionan con un sistema de trabajo compuesto por
un número finito de partı́culas cuánticas y restringido a unas pocas
observaciones, es decir, en el régimen de tamaño finito de una sola
vez. También proponemos un modelo factible experimentalmente de
un motor que utiliza un sistema de cavidad atómica que produce la
eficiencia de Carnot a máxima potencia.

En la segunda parte, consideramos la dinámica cuántica abierta,
donde un sistema interactúa débilmente con los entornos. En par-
ticular, estudiamos la dinámica basada en la ecuación maestra de
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Lindblad de sistemas cuánticos débilmente acoplados a dos baños
termales a diferentes temperaturas. En general, estas dinámicas
conducen a estados estacionarios de no equilibrio. Al acoplar se-
lectivamente un sistema cuántico a dos baños térmicos diferentes,
se puede diseñar un baño térmico sintético y la temperatura de di-
cho baño sintético se puede hacer negativa. Con esto, exploramos la
termodinámica cuántica de estado estacionario con temperaturas neg-
ativas. Mostramos que el cero y el estado de Clausius de la segunda
ley permanecen inalterados en el caso de baños con temperaturas
negativas. Sin embargo, el enunciado de Kelvin-Planck de la segunda
ley se actualiza en este caso para incorporar lo siguiente. (i) Hay un
flujo de calor espontáneo de un baño con temperatura negativa a un
baño con temperatura positiva. En este sentido, los baños con tem-
peratura negativa son ’más calientes’ que los de temperatura positiva.
(ii) Hay un flujo de calor espontáneo de un baño con una temper-
atura menos negativa a un baño con una temperatura más negativa.
También presentamos un motor térmico continuo que opera entre un
baño de temperatura positiva y negativa. Nuestro análisis muestra
que la eficiencia de conversión de calor a trabajo para tal motor es
siempre la unidad. Estudiamos las implicaciones termodinámicas de
nuestros resultados.

La tercera parte de la tesis explora los sistemas impulsados por
fuertes campos externos. En tales circunstancias, nos encontramos
con dinámicas cuánticas transitorias, que no pueden ser descritas
por la termodinámica. Este tipo de dinámica se utiliza para la espec-
troscopia dinámica. En particular, hemos estudiado la generación
de altos armónicos donde un fuerte campo láser interactúa con la
materia. Utilizando el mecanismo de generación de armónicos altos,
caracterizamos las caracterı́sticas topológicas de los sólidos. Aquı́,
caracterizamos (a) las caracterı́sticas topológicas de la cadena de
Su-Schrieffer-Heeger generalizada unidimensional y la cadena de
Fermi-Hubbard extendida unidimensional mediante la explotación
de la espectroscopia de armónicos altos, (b) la caracterización de
las fases de localización y deslocalización en el modelo de Aubry-
André-Harper, una cadena unidimensional cuasi-periódica que no
interactúa, y (c) caracterización de una fase crı́tica cuántica en 1-D
fuertemente correlacionada mediante espectroscopia de armónicos
altos.
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Resum

La tecnologia quàntica depèn de la nostra capacitat per manipular
i controlar les caracterı́stiques quàntiques de les partı́cules, com ara
la superposició quàntica, l’entrellaçament, la no-classicitat, la no-
localitat i alguns comportaments col·lectius, etc. Per tant, l’avenç
de la tecnologia quàntica es basa ı́ntimament en la descoberta de
nous fenòmens quàntics, una millor comprensió del món quàntic
microscòpic i un control més precı́s sobre la dinàmica quàntica.

En aquesta tesi, el nostre principal objectiu és utilitzar diferents
tipus de dinàmica quàntica com a recursos. Per fer-ho, investiguem
la termodinàmica, l’estat estacionari sense equilibri i l’espectroscòpia
dinàmica per categoritzar la dinàmica dels sistemes quàntics sense
impuls extern (autoimpuls), amb impuls extern feble o amb impuls
extern fort amb impuls quàntic.

A la primera part, explorem la dinàmica dels motors tèrmics
quàntics. Especı́ficament, considerem dinàmiques que són impul-
sades per un hamiltonià independent del temps, és a dir, sense control
extern. Mostrem que quan un sistema en funcionament interactua de
manera no local amb dos banys a temperatures diferents, el motor
pot operar en un cicle d’un sol pas, cosa que produeix l’eficiència de
Carnot a màxima potència. Aquest avantatge es deu exclusivament al
fet que les operacions no locals són més poderoses que les locals. Per
estudiar aquests motors de manera més sistemàtica, desenvolupem
una teoria dels recursos dels motors tèrmics. Això proporciona un
marc per estudiar els motors quàntics que funcionen amb un sistema
de treball compost per un nombre finit de partı́cules quàntiques i
restringit a unes poques observacions, és a dir, en el règim de mida
finit duna sola vegada. També proposem un model experimental
factible d’un motor que utilitza un sistema de cavitat atòmica que
produeix l’eficiència de Carnot a màxima potència.

A la segona part, considerem la dinàmica quàntica oberta, on
un sistema interactua feblement amb els entorns. En particular,
estudiem la dinàmica basada en l’equació mestra de Lindblad de
sistemes quàntics dèbilment acoblats a dos banys termals a tem-
peratures diferents. En general, aquestes dinàmiques condueixen a
estats estacionaris de no-equilibri. En acoblar selectivament un sis-
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tema quàntic a dos banys tèrmics diferents, es pot dissenyar un bany
tèrmic sintètic i la temperatura del bany sintètic es pot fer negativa.
Amb això explorem la termodinàmica quàntica d’estat estacionari
amb temperatures negatives. Mostrem que el zero i l’estat de Clau-
sius de la segona llei romanen inalterats en el cas de banys amb
temperatures negatives. Tot i això, l’enunciat de Kelvin-Planck de la
segona llei s’actualitza en aquest cas per incorporar el següent. (i) Hi
ha un flux de calor espontània d’un bany amb temperatura negativa
a un bany amb temperatura positiva. En aquest sentit, els banys
amb temperatura negativa són ’més calents’ que els de temperatura
positiva. (ii) Hi ha un flux de calor espontània d’un bany amb una
temperatura menys negativa a un bany amb una temperatura més
negativa. També presentem un motor tèrmic continu que opera entre
un bany de temperatura positiva i negativa. La nostra anàlisi mostra
que l’eficiència de conversió de calor a treball per a aquest motor és
sempre la unitat. Estudiem les implicacions termodinàmiques dels
nostres resultats.

La tercera part de la tesi explora els sistemes impulsats per forts
camps externs. En aquestes circumstàncies ens trobem amb dinàmi-
ques quàntiques transitòries, que no poden ser descrites per la ter-
modinàmica. Aquest tipus de dinàmica es fa servir per a l’espectrosc-
òpia dinàmica. En particular, hem estudiat la generació d’alts harmò-
nics on un camp làser fort interactua amb la matèria. Utilitzant el
mecanisme de generació d’harmò- nics alts, caracteritzem les carac-
terı́stiques topològiques dels sòlids. Aquı́, caracteritzem (a) les carac-
terı́stiques topològiques de la cadena de Su-Schrieffer-Heeger gener-
alitzada unidimensional i la cadena de Fermi-Hubbard estesa unidi-
mensional mitjançant l’explotació de l’espectroscòpia d’harmònics
alts, (b) la caracterització de les fases de localització i deslocalització
al model d’Aubry-André-Harper, una cadena unidimensional quasi-
periòdica que no interactua, i (c) caracterització d’una fase crı́tica
quàntica en 1-D fortament correlacionada mitjançant espectroscòpia
d’harmònics alts.
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4.4 Aubry-André-Harper (AAH) model (ongoing ) . . . . 92
4.4.1 Localization . . . . . . . . . . . . . . . . . . . . 93
4.4.2 Delocalization . . . . . . . . . . . . . . . . . . . 93
4.4.3 Inverse participation ratio (IPR) . . . . . . . . 93
4.4.4 Initial result . . . . . . . . . . . . . . . . . . . . 94

4.5 Extended Fermi Hubbard Model (EFHM) (ongoing) . 96
4.5.1 Initial result . . . . . . . . . . . . . . . . . . . . 98

5 Future perspective 101

A Appendix: Thermal baths and system-bath composites 105
A.1 Some useful properties of baths . . . . . . . . . . . . . 105
A.2 Two baths and two (sub-)systems . . . . . . . . . . . 106
A.3 Semi-local thermal operations . . . . . . . . . . . . . 108
A.4 Characterization of semi-local thermal operations . . 110

A.4.1 SLTOs are those that preserve semi-Gibbs states,
and vice versa . . . . . . . . . . . . . . . . . . . 111

A.4.2 Catalytic semi-local thermal operations (cSLTOs)115
A.4.3 SLTOs are time-translation symmetric operations115

A.5 Information theoretic notations and technical tools . 116
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Chapter 1

Introduction

Quantum devices play important roles in modern technology. These
devices rely on the static as well as the dynamical properties of quan-
tum systems. The quantum systems are fundamentally different
from the classical ones. In particular, the former allows to have quan-
tum superposition [1–4] and interference [5], non-classicality [6–8],
entanglement [9–12], EPR correlations [13], non-locality [14–16], con-
textuality [17], etc. It is obvious that at every instant of time, dur-
ing evolution, the microscopic configuration of a quantum system
changes at microscopic scales. To control the device made up of
quantum systems, one desires to have information about microscopic
configuration and knowledge of how the configuration changes over
time. Thus one of the major requirements to develop modern tech-
nology is to acquire a better understanding of the quantum systems
and have precise control over their dynamics [18, 19].

In general, the dynamics of a quantum system vary in different
physical situations. Again, by engineering these physical situations,
one may selectively induce dynamics in a quantum system. The
dynamics we are concerned with are crudely classified into three
different categories as follows.

First, when the system is evolved in isolation, it undergoes uni-
tary dynamics. Its state, in that case, changes deterministically and
reversibly following Schrödinger equation and Liouville-von Neu-
mann equation [5, 20]. In these situations, the evolution is driven by
the system’s own time-independent Hamiltonian.

The second category corresponds to an evolution of a system in
the presence of a weak interaction with an environment. These dy-

1



Chapter 1. Introduction

namics are referred to as open quantum system dynamics and are
responsible for decoherence, relaxation, or dissipation in a system
in general. There are various approaches and techniques to express
open quantum dynamics, e.g., Floquet dynamics [21–29], LGKS mas-
ter equation [30], etc. These evaluations again can be used to engineer
various dynamics of interests, for example, Floquet Hamiltonian engi-
neering [21–29]; measurement-induced dynamics, which exploits the
probabilistic nature of quantum mechanics measurements to drive
system operations [31–34].

The third category is due to the situation, where the evolution of
a system is driven by a strong external field. These are also called
strongly driven systems. These evolutions are studied in many con-
texts. The interaction between the high energy photons and atoms
or solids introduces the dynamics associated with non-linear spec-
troscopy, attosecond physics, high harmonic generation, etc [35–41].
By manipulating the Hamiltonian in a controlled manner, one may
induce the desired dynamics based on different underlying phys-
ical principles [42–47]. Tuning the inter-system interaction allows
researchers to control quantum states or state transitions. One may
achieve quantum control by applying sequences of pulses [48–51] or
by slowly changing the parameters in a quantum system’s Hamilto-
nian to perform tasks like quantum annealing [52–56].

In this thesis, we aim to utilize these dynamics as resources and
study quantum thermodynamics in closed and open quantum sys-
tems and the transient response of a system observed by using dy-
namical spectroscopy. In the coming few paragraphs, we want to
highlight the three important concepts that illustrate the three differ-
ent resources we mentioned in the above discussion.

a) Quantum heat engines: With the development of quantum me-
chanics, there have been efforts to study thermodynamics in the
quantum regime. The current technology enables us to prepare an
ensemble of a finite number of quantum particles in well-defined
states. These ensembles can again be brought in interaction with a
thermal bath in a controlled manner. Clearly, in this situation, one
cannot study thermodynamics with the average thermodynamics
quantities, as statistical averaging is not possible for a finite number
of particles. Further, due to quantum superposition, the system ex-
hibits quantum uncertainties which may become reasonably large.

2
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Figure 1.1: The cases of quantum dynamics explored in this thesis.

Also, ergodicity, in general, cannot be applied to the quantum regime.
This is because the act of observation at different times introduces
disturbance into the system and, thereby, modifies the dynamics from
the one which solely occurs due to the interaction with a thermal
bath. Thus, these demanded an extension of the traditional notion of
thermodynamics and leads to various approaches that are suitable for
the understanding of thermodynamics involving quantum particles.

There are various approaches in quantum thermodynamics based
on open quantum dynamics, fluctuation theorem, and resource the-
ory [57]. In the first part of the thesis, we shall deal with the resource
theoretic approach to the quantum thermodynamics of heat engines.
The resource theory is an information-theory based rigorous math-
ematical framework which was initially developed in the context
of entanglement theory. There are two resource theory based ap-
proaches in dealing with thermodynamics in the quantum regime:
one is based on complete passivity [58–60] and another one is based
on athermality [61–67]. The former one relies on asymptotically many
(in thermodynamic limit) number of quantum particles in interaction
with a thermal bath. The latter, on the other hand, extends thermody-
namics in one-shot finite size regime where the number of particles
can be finite and restricted to one or finite observations.

The study of quantum thermodynamics exploiting resource the-
ory of athermality finds many interesting observations. For instance,
it showed for the first time that thermodynamics in the one-shot finite
size regime is fundamentally irreversible [62], and one cannot extract
thermodynamic work from energetic coherence. In this regime, one
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needs many second laws to determine the state transformations [64].
It also could quantify the one-shot extractable work from a given state
and one-shot work cost to prepare a state of a system. Later on these
second laws are extended to understand the transformation between
states with energetic coherence [65]. However, all these studies are
limited to the situation where a finite number of quantum particles
interact with a single thermal bath. Here we develop a resource the-
ory of quantum heat engine applicable to one-shot finite-size limit,
where a few quantum particles simultaneously interact with two
baths or more thermal baths at different temperatures [68]. For that,
we first introduce free operations as semi-local thermal operations.
These operations are defined to be the operations the quantum sys-
tems undergo through the strictly energy and entropy conserving
non-local interactions with the baths. Accordingly, we also introduce
the resource-free states, in thermodynamic sense, as the semi-thermal
states. We show that any state that is not semi-thermal has some
thermodynamic potential to perform work and these resources are
quantified with the help of α-free entropies which is again expressed
in terms of Rènyi relative entropies. With these, we systematically
develop the resource theory and show that the thermodynamics of
heat engines are fundamentally irreversible in the one-shot finite-size
regime. To determine the state transformations, we find that one
needs many second laws and derive them in terms of α-free entropies.
This also enables us to quantify the one-shot extractable work from a
state and the work cost to prepare a state. Beyond this, with the help
of this framework, we propose a quantum heat engine that operates
in one-step cycle and yields Carnot efficiency at maximum power.
That concludes that the power-efficiency trade-off is no more a fun-
damental constraint in nature [69]. We also introduce a physically
realizable model to realize such an engine using quantum optical
systems.

b) Synthetic negative temperature: In general, there is no way that
a quantum system can ever be genuinely isolated from its surround-
ing. That prompted the development of the idea of the open quantum
system [70]. The evolution of closed quantum systems is often charac-
terized by unitary dynamics. However, the system, together with the
environment, forms a closed system, but when the dynamics of the
system are considered, it is referred to as an open quantum system.
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It is not possible to provide a unitary description of the evolution of
the system of interest. The time dynamics of an open quantum sys-
tem can be fully characterized by the Lindblad-Gorini-Kossakowski-
Sudarshan (LGKS) form of master equation in the presence of weak
coupling with the environment. It is widely used to study quantum
optics [71], non-equilibrium statistical mechanics [72], condensed
matter physics [73] and quantum information theory [74]. In non-
equilibrium steady state scenarios, we see various interesting quan-
tum phenomena [75,76], like macroscopic coherence phenomena [77],
non-trivial topology [78], phase transition [33, 79, 80], topological
transport [81], entanglement generation [82, 83], optical switching
device [84], floquet insulators [85], floquet engineering [86], quantum
computation [87, 88].

This thesis considers the cases where a finite-dimensional quan-
tum system weakly interacts with multiple baths at different temper-
atures and utilizes open quantum dynamics as a resource to attain
something that is otherwise not possible. In particular, we study
steady-state thermodynamics with negative temperatures. One of
the possibilities for quantum systems with bounded energy is that,
in a certain situation, it can assume ‘negative’ temperatures. There
the population distribution of a system or bath becomes an inverted
Boltzmann distribution. In other words, states with higher energy are
populated more than the ones with lower energy. It was first studied
by Purcell and Pound in the context of nuclear spin systems [89].
Subsequently, Ramsey made a comprehensive discussion on the ther-
modynamic of negative temperatures and the inter-relation between
negative and positive temperatures [90]. He argued that the Kelvin-
Planck statement of the second law should be updated to incorporate
that heat flows spontaneously from a bath with a negative tempera-
ture to one with a positive temperature.

This raised various fundamental questions on the thermodynamic
meaning of negative temperature, see for example [91–94]. Never-
theless, the doubts regarding thermodynamics with negative tem-
peratures are not resolved. Recent theoretical [95, 96] and exper-
imental [97, 98] studies with cold atoms have brought the debate
on negative temperatures back again into the spotlight. The works
in [99–101] claim that “all previous negative temperature claims and
their implications are invalid as they arise from the use of an entropy
definition that is inconsistent both mathematically and thermodynam-
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ically.” Later studies in [102–108] argue that negative temperature is
a valid extension of thermodynamics if the temperature is defined
using Boltzmann entropy as the measure of entropy.

Apart from these foundational issues, there are studies to use
negative temperature baths in constructing thermal devices, such
as heat engines, refrigerators, heat pumps, etc. [109–111]. There are
also some studies about how the Carnot cycle should be modified in
the presence of negative temperatures [112–114]. Some propositions
are also made to construct a quantum Otto engine [115, 116] and
refrigerators [117] using baths with effective negative temperatures.
It is shown that the heat-to-work conversion efficiency of an engine
operating between negative and positive temperatures would be
greater than the engines operating with positive temperatures [97,
98, 116]. However, much of these models of thermal devices either
utilize already existing negative temperature baths without caring
how it may be created or effectively prepare one by inverting the
populations using some external means.

In this thesis, we outline a method to create a genuine thermal
bath with arbitrary temperature, including negative temperature, and
study steady-state quantum thermodynamics. The bath is synthe-
sized by letting a quantum system simultaneously interact with two
thermal baths at different temperatures without any external driving.
With these synthetic baths, we study various laws of steady-state
quantum thermodynamics and constructed heat engines. We start
with proving the zeroth law and show that whenever two such baths
with identical temperature are brought in touch with each other, there
is no net heat flow. This, in turn, legitimizes the notion of the tempera-
ture of the synthetic bath (namely, the synthetic temperature). In case
of two different temperatures, we prove the Kelvin-Planck statement
of second law and demonstrate that there is a spontaneous heat flow
from the bath with negative temperature to the one with positive
temperature. This corroborates with the finding of Ramsey [90], the
bath with negative temperature is ‘hotter’ than that of the ones with
positive temperatures. Interestingly, in such cases, the entropy flow
is opposite to the direction of heat flow which is again expected for
the baths with negative temperatures. We also construct continuous
heat engines involving synthetic baths and find that engines operat-
ing between positive and negative temperature baths can yield unit
engine efficiency.
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c) Dynamical spectroscopy: We investigated the quantum dynamics
of a system in the presence of a strong external drive; the thermody-
namic description is not possible here like in previous sections. Here
we witness the transient quantum dynamics far from equilibrium.
To explore that, we chose strong field physics. There has been a lot
of interest across many new strong field phenomena, such as high
harmonic generation [118, 119], multiphoton ionization [120], above-
threshold ionization [38], nonsequential double ionization [121], at-
tosecond pulse generation [122, 123], coherent EUV emission [124],
etc.

The generation of higher-order harmonics is the result of interac-
tions between intense light and material substances, e.g., gas, plasma,
solid, or liquid samples. During this non-linear procedure, a strong
light is used to illuminate the target, and as a consequence, the sam-
ple emits a high harmonic spectrum. Here, strong light refers to the
energy of the laser field stronger than the binding field inside materi-
als. The initial evidence of HHG came from the interaction of intense
light with plasma [125], and later, from the interaction of strong light
with gas [126]. Subsequently, Ferray et. al. showed the following
interesting features of HHG spectra: as in a perturbative regime,
spectral intensity decreases as the harmonic number increases, then
decreases while intensity remains approximately constant, creating
a plateau that cannot be explained by perturbation theory, and fi-
nally abruptly ends at the high harmonic cut-off [127]. This is the
mandatory signature of HHG spectra. The Three-step model was
then introduced by Corkum as an intuitive explanation of the HHG
phenomena, which can provide a vivid and powerful insight into
the mechanics of HHG [120]. This semi-classical model describes
HHG in a three-step process: Ionization of an atom, acceleration of
the released electron in the laser field, and subsequent recombination
of the electron with the parent ion, all of which culminate in the emis-
sion of a photon with very high energy. In this scenario, electrons and
field are considered classical objects, but dynamics follow quantum
mechanical principles.

Lewenstein et al. provided a more inclusive interpretation of the
Three-step model of the HHG, which became known as the Lewen-
stein model [118]. This model is also considered to be semi-classical
due to the fact that it applies quantum mechanical principles to the
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atomic degrees of freedom while using classical principles to the
description of the field. In fact, both the Tree-step model and Lewen-
stein belong to the semi-classical domain. However, in comparison to
the Three-step model, the Lewenstein model offers a description of
the process of high-harmonic production that is both more compre-
hensive and better in agreement with experimental results. Recently,
Lewenstein et al. have offered a revised interpretation, one that treats
the HHG process as wholly quantum mechanical. [128].

Over the course of the past few decades, research into the HHG
processes that occur in atomic and molecular gases has developed
into a well-established and highly esteemed subsection of the field of
research. To produce HHG in solids that are similarly effective and to
adapt it to technology, a firmer grasp of the underlying mechanisms
that govern HHG in solids is essential. In addition, the periodic
nature of a crystalline solid and the band structure that is associated
with it gives rise to a number of sophisticated phenomena, whereas
such phenomena do not occur in atoms. Due to the nonparabolic char-
acter of the conduction bands, dynamic Bloch oscillations [129, 130],
in particular, are accountable for the generation of high harmonics
in solids. There is no manifestation of this behavior in atoms. The
solids generally are studied in reciprocal space due to the periodic
nature of solid crystals. In reciprocal space, the first step is to cre-
ate an electron-hole pair from the valance band utilizing the strong
electric field. Then, due to the absorption of the photon from the
field, the electrons migrate to the conduction band. Crystal momen-
tum follows the changing vector potential over time. The motion of
carriers in the bands leads to non-perturbative intraband harmonic
emission [119, 131]. Interband harmonic radiation is emitted at the
same time as a consequence of recombination [132, 133]. There has
been a lot of interest in high-harmonic production in solid-state ma-
terials such as dielectrics, conductors, and semiconductors [132, 134].
Ghimire et al. demonstrated the first experimental evidence of HHG
in bulk crystal [119]. In fact, it enables the research of previously
unexplored domains of physics and the invention of cutting-edge
solid-state spectroscopy and microscopy technologies that study elec-
tronic configurations of solids [135, 136].

In recent years it has been found that the electrical conduction
in solids is closely related to the topological properties of electronic
wave functions of solids. In this thesis, we study the topological char-
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Chapter 1. Introduction

acteristics of solids with the tool of HHG spectroscopy. A significant
amount of attention and effort has been given to understanding and
utilizing topological phases of matter in physics. Diverse systems
on a variety of platforms have been designed to exhibit topologi-
cal features, including such as solid [137–139], photonic [140–160],
atomic [161–167], acoustic [168–183], etc.

Topological phases of the matter later emerged to be a new class
of phases of materials that don’t follow the Landau-Ginzburg para-
digm. In contrast with other kinds of matter, topological matter ex-
hibits entirely unique properties. This allows topological matter to
protect itself against local perturbations and is consequently resilient
against defects and disorder. Thus, the study of topological matter
reveals the identification of previously unknown states of matter,
such as topological insulators [42, 184–187] and topological super-
conductors [23, 188–190], each of which have distinctive electrical,
optical, and thermal characteristics. One needs a strong field to pro-
duce HHG spectroscopy that makes it possible to access bulk modes
as well as edge modes. This makes HHG spectroscopy the most effi-
cient technique to characterize different kinds of solids [119,191–194].
In the last section of the thesis, we investigate time dynamics that
are far off from equilibrium and in the transient domain. Intense
light interacts with matter and produces HHG. We treat this time
dynamics as a resource to characterize various types of topologi-
cal phases of matter. For the purpose of studying the topological
characteristics of solids by HHG spectroscopy, we focus on the fol-
lowing models: the one-dimensional periodic and non-interacting
SSH model, the one-dimensional non-interacting and quasi-periodic
Aubry-Andŕe-Harper model, and one-dimensional interacting ex-
tended Fermi-Hubbard model (EFHM).

Jürß et al. introduced a method to distinguish topological and
non-topological phases in a 1-D non-interacting SSH model by HHG
spectroscopy [195]. But the most crucial question about the method
is whether it can distinguish between different types of topological
phases. Here we propose a method that can classify different types
of topological phases in the SSH chain. To do so, we consider the 1-D
chain of the extended SSH model where 1st, as well as 2nd nearest
neighbor hopping, are allowed. We use the HHG-spectroscopic tech-
nique to distinguish between different types of topological phases
with different modes in the 1-D chain of the extended SSH model.

9
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We observe a phase transition between metal and insulators in open
boundary conditions. Among the insulators, we can distinguish three
different types of insulators: trivial insulators, topological insulators
with two zero energy edge modes, and topological insulators with
four zero energy edge modes.

In the project with the ESSH model, by utilizing the HHG spectro-
scopic technique, we observed that electrons in an insulating phase
show remarkably different behaviors than electrons in a delocalized
metallic phase. This motivates us to study in further detail localized
and delocalized phases of matter with the tool of high harmonic spec-
troscopy. To do so, we consider the one-dimensional non-interacting
and quasi-periodic Aubry-Andŕe-Harper model (AAH). Here, for
different strengths of modulation, all single-particle states of the sys-
tem are either fully localized or fully delocalized. Our goal is also to
investigate the presence of topological edge states in the AAH model.
Another special property of the energy state of the system is exhibited
at the transition point between the localized and delocalized phases
of the AAH model, that the system shows multi-fractal behavior.
Within the purpose of this specific study, we investigate whether or
not HHG spectroscopy can characterize the multi-fractal behavior
and distinguish between the localized and delocalized phases. So far,
we can see clearly from the strength of HHG spectra.

In this study, we also look at the Extended Fermi Hubbard Model
(EFHM), which is a model of interacting electrons in 1-D solids. In
1-D, this model displays three unique phases, which are known as the
charge density wave (CDW), the Mott insulator (MI), and the bond
order wave (BOW), respectively. Each one of them demonstrates
properties that are typical of the interacting insulating phases. In
addition to this, BOW is capable of exhibiting topological behavior
similar to that of the SSH model. In this particular project, we use
the HHG spectroscopic technique to distinguish between three in-
teracting insulating phases. Moreover, we study the BOW phase in
detail to distinguish the two degenerate ground states with unique
topological signatures.

10



Chapter 1. Introduction

1.1 Short overview of the thesis

This thesis is dedicated to investigating three different types of time
dynamics of quantum systems: the system that evolves in the absence
of an external drive, the system that is driven by a weak external
drive, and the system that is driven by a strong external drive.

Chapter 2 studies those scenarios where the system is driven
by self-drive and can approach thermal equilibrium. The thermo-
dynamic description was possible for such a system. Using the
information-theoretic tool, we develop a resource theoretic frame-
work for a quantum heat engine. Our framework is able to provide a
protocol for a one-step Carnot engine. We show thermodynamical
reversibility is possible in the one-shot finite-size quantum regime.
Exploiting genuine quantum mechanical properties, our heat en-
gine can attain Carnot efficiency at maximum power in the one-shot
finite-size quantum regime. Thus it has been shown that the power-
efficiency trade-off is no more a fundamental constraint in nature.

Chapter 3 is dedicated to exploring the time dynamics of steady-
state non-equilibrium scenarios. Using the open quantum system
approach and Lindblad master equation, we create synthetic baths
and study steady-state quantum thermodynamics in the presence
of negative temperature. Various thermodynamics laws are derived
in the presence of negative temperature and analyse their thermo-
dynamic implications. Exploiting negative temperature baths, we
introduce autonomous quantum heat engines and study their ther-
modynamic properties and efficiency.

In Chapter 4, we investigate the transient time dynamics of the
quantum systems. In this particular scenario, an intense laser field
illuminates the material, giving rise to higher-order harmonics. Utiliz-
ing this, we characterize the topological properties of three different
types of systems: the one-dimensional periodic and non-intera-
cting SSH model, the one-dimensional non-interacting quasi-periodic
Aubry-Andŕe-Harper model, and the one-dimensional interacting
extended Fermi-Hubbard model.

We discuss the future perspective of this thesis work in Chapter 5.
Additionally, in Appendix A we provide all the background materials
necessary to supplement the results discussed in Chapter 2. The
supplementary information regarding the Chapter 3 and Chapter 4,
respectively are provided in Appendix B and Appendix C.
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Chapter 2

Resource theory of quantum
heat engines

Heat engines are the fundamental building blocks of modern
technology. These were invented primarily to convert heat into me-
chanical work. To lay a theoretical framework and to uncover the
laws governing the processes in the engines, thermodynamics was
empirically developed [196]. Later, it has been founded on statisti-
cal mechanics [197]. There, the zeroth law establishes the notion of
thermodynamic equilibrium. The first law ensures the total energy
conservation for feasible thermodynamic processes, and thereby re-
stricts the class of operations that are thermodynamically allowed.
The second law provides the necessary and sufficient conditions for
the state transformations under such processes. For example, the
Carnot’s statement of second law delimits the efficiency of work
extraction in a heat engine. The laws find deep implications in the
fundamental understanding of nature, and are applicable in areas
beyond their initial domain of application, such as in quantum me-
chanics, relativity, physics of black-holes, etc.

The formulation of standard thermodynamics (STh) based on sta-
tistical mechanics assumes that the systems are large and composed
of an asymptotically large number of particles (N → ∞) interacting
with even larger baths, where the average fluctuation in energy ap-
proaches zero. This is termed usually as the asymptotic regime. When
we perform measurement of thermodynamic quantities we typically
get answers corresponding to ensemble average values. There, the er-
godic theorem is assumed to be valid: the time averages are actually
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equal to the ensemble averages. Therefore, the asymptotic regime is
also assumed to allow many simultaneous or repeated measurements
on the particles.

However, the standard thermodynamics (STh) cannot be easily
extended beyond this asymptotic regime. The situation changes
completely for the systems of a finite, but moderate or even small
number of quantum particles (N ≪ ∞). In such cases, from the very
beginning, the fluctuations may play a much more important role.
The situations may be classified in two regimes: many-shot finite-size
regime - where repeated measurements (in time) are allowed on a
system made up of moderate or a small number of particles, and one-
shot finite-size regime - where only one-shot measurements are allowed
on a system composed of a single or a moderate number of particles.
One of the striking features in the one-shot finite-size regime is that
the thermodynamics is fundamentally irreversible and needs many
second laws to dictate state transformations [198, 199]. Because of
that, a heat engine operating in this regime cannot in general achieve
reversible transformation. As a consequence, it is not possible to
attain the maximum possible heat-to-work conversion efficiency (i.e.,
the Carnot efficiency) in an engine following the Carnot cycle, unless
the system interacting with the baths is made up of an asymptotically
large number of particles.

In the last decades, enormous efforts have been put forward to
extend thermodynamics to the regimes where a system made up of
a finite (typically moderate or small) number of quantum particles
interacts with a single thermal bath at fixed temperature [200, 201].
This also includes the situation where one has access to repeated,
simultaneous, and one-shot measurements on the particles. It leads
to two major approaches to studying quantum thermodynamics. The
first, which applies in fact to both the asymptotic regime and the
many-shot finite-size regime, is based on fluctuation theorems (FT),
exploiting statistical mechanics and open quantum systems dynam-
ics [202–204]. The other one is based on the quantum information
theory [64, 198, 205–215]. Among others, the latter leads to a resource
theory of quantum systems out of thermal equilibrium, which is com-
monly termed as the resource theory of quantum thermodynamics
(RTQTh) [64, 198, 205]. The RTQTh is applicable to the asymptotic
regime, and both many-shot and one-shot finite-size regimes. The
RTQTh stands out among the other approaches as it exploits a rig-
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orous mathematical framework similar to the resource theory of
entanglement, where the latter was developed to characterize the
role of entanglement in quantum information processing. There is
also another formulation of a resource theory based on complete-
passivity (CPTh) [212, 213] that generalizes thermodynamics to the
situation where system and baths become comparable in size. But,
the CPTh is applicable to the asymptotic regime only. These different
approaches can be classified in terms of their applications in different
regimes, as given in Table 2.1.

Regimes Asymptotic (N → ∞) Finite-size (N ≪ ∞)
Repeated

measurements STh, CPTh, FT, RTQTh FT, RTQTh
One-shot

measurement FT, RTQTh RTQTh

Table 2.1: The table classifies various approaches based on their
regime of applications. Here STh, FT, CPTh, and RTQTh represent
the standard thermodynamics, the fluctuation theorem, the complete-
passivity based resource theory of thermodynamics, and the resource
theory of quantum thermodynamics respectively. The N denotes the
number of particles in a system interacting with a thermal bath. Note,
RTQTh fully characterizes quantum thermodynamics only for the
systems that are block-diagonal in the energy eigenbases.

The resource theoretic formulation reveals that thermodynamics
in the one-shot finite-size regime is not reversible and one needs
many second laws, associated with many free energies, to charac-
terize the transformations among the states that are block-diagonal
in energy eigenbases [198, 207]. These second laws have been fur-
ther studied for more general states having superpositions in energy
eigenbases [64,208–210,216]. Interestingly, in [215], it has been shown
that by allowing a non-vanishing amount of correlation all these
many second laws can be reduced to a single one, based on standard
Helmholtz free energy. Recently, the approaches based on fluctua-
tion theory and resource theory have been inter-connected for some
cases [217–219]. However, all these investigations are limited to
the situations, where the quantum system is interacting with only
one thermal bath at a fixed temperature. Therefore it is a natural
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question to ask whether it is possible to formulate a resource theory
for heat engines operating in the one-shot finite-size regime, where a
system composed of few quantum particles is interacting with two
or more thermal baths at different temperatures. Apart from some
efforts to quantify extractable work and engine efficiency in few
special cases, and to study the finite-size effects and the quantum
signatures [220–229], there has been no major progress, so far, in
formulating a resource theory for quantum heat engines.

The goal of this chapter is to formulate such a resource theory. It is
worth mentioning that much of the earlier works, applied to the one-
shot finite-size regime, focus on how the a-thermal (non-equilibrium)
property of a system can be converted into thermodynamic work, and,
for that, one thermal bath is enough. On the contrary, here we develop
a resource theory of quantum heat engines to address how, and to
what extent, the heat can be converted into work in the one-shot
finite-size regime. Therefore, the theory is fundamentally different
from the one considered in the earlier works. The new formalism
provides the foundation for a novel theoretical understanding of the
one-shot conversion of heat into work and the role of inter-system
correlations in such processes. At the same time, it opens up new
avenues to explore physically realizable quantum heat engines that
have higher efficiency and attain Carnot efficiency in the one-shot
finite-size regime.

As mentioned, the situation changes drastically once one consid-
ers thermodynamics in the presence of more than one thermal bath
at different temperatures, which is the case for a heat engine. The
first difficulty appears in defining the resource-free states. There does
not exist a state that is simultaneously in equilibrium with all the
baths. All states have some non-vanishing thermodynamic resources.
Furthermore, it is not possible to define the free operations, as the free
operations are supposed to map a resource-free state to a resource-
free state. Therefore, one cannot formulate a resource theory for heat
engines just by merely extending the one formulated for a single bath.
Rather, to start with, it requires one to introduce a new class of ther-
modynamic operations that are allowed in a heat engine, a new form
of states as the resource-free states, and to invoke new quantifiers
of thermodynamic resources. This leads us to introduce an entirely
new resource theory for quantum and nano-scale heat engines, below.
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Further, we present quantum and nano-scale heat engines that
attain the maximum possible heat-to-work conversion efficiency, i.e.,
the Carnot efficiency, in the one-shot finite-size regime. To prove
our results and to address quantum thermodynamics in the one-
shot finite-size regime in general, we formulate a resource theory for
quantum heat engines in which a system with few quantum particles
interacts with two or multiple thermal baths. With the precise charac-
terization of thermodynamic operations by introducing a first law for
engines, we derive the second laws for quantum state transformation
in the presence of two or multiple baths at different temperatures
by using information-theoretic tools. The newly introduced engine
operations are more general in the sense that the system interacts
with the baths simultaneously. We term these engine operations
as “semi-local thermal operations” (SLTOs). The SLTOs not only
enable us to build a Carnot heat engine operates with a one-step
cycle but also enhances the work extraction efficiency in the one-shot
finite-size regime – in this sense, the SLTOs is more powerful than
the ones considered earlier. As revealed by this resource theoretic
framework, the state transformations in the quantum engine are fun-
damentally irreversible in general and must obey many second laws.
As an important result of this framework, we design a reversible
engine transformation that attains the maximum possible efficiency
for work extraction, i.e., the Carnot efficiency. Along with efficiency,
power is also a key parameter to characterize a heat engine. If we
want to study power and efficiency on the same footing. We en-
counter the fundamental power efficiency trade-off. An engine that
transforms heat to work with maximum power can never achieve
Carnot efficiency and vice versa. We address this problem by using
a resource theoretic framework. It has been shown that the power
efficiency trade-off is no more a fundamental constraint, and one
can achieve Carnot efficiency with maximum power simultaneously.
These qualities make out heat engine superior to other ones.
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2.1 Resource-free operations and states

A typical (Carnot) heat engine is comprised of two heat baths
B1 and B2 with the inverse temperatures β1 = 1/T1 and β2 = 1/T2
respectively and a working system, as shown in the Figure 2.1. We
assume β1 < β2 throughout this chapter. The engine operates in
a cycle composed of four thermodynamically reversible steps: (C1)
First, an isothermal transformation (ρ, H) → (σ, H) in interaction
with the bath B1 at inverse temperature β1, where the state changes
(ρ→ σ) without updating the system Hamiltonian H. (C2) Second,
an adiabatic transformation (σ, H) → (σ, H′) without any contact
with the baths, where the system’s state remains unchanged but the
system Hamiltonian modifies to H → H′. (C3) Third, an isothermal
transformation (σ, H′) → (ρ, H′) in interaction with the bath B2 at
inverse temperature β2, only changing the state. (C4) Finally, an
adiabatic transformation (ρ, H′) → (ρ, H) without any interaction
with the baths, and updating only the system Hamiltonian H′ →
H. The steps (C1)-(C4) constitute a cycle and the engine operates
repeating the cycle many times. The important point is that, in the
steps (C1) and (C2), the working system interacts with one bath at a
time.

In our proposed quantum heat engine, we define a new engine
operation where a working system (S12) is composed of two non-
interacting subsystems S1 and S2. The subsystems S1 and S2 semi-
locally interact with the baths B1 and B2 respectively (see Figure 2.2).
With this, the number of steps in the Carnot engine is reduced. For
instance, consider that the subsystems S1 and S2 with the Hamilto-
nians HS1 and HS2 are in the states ρ and σ respectively. Then the
isothermal steps (C1) and (C3) can be combined to one step, as

(ρ⊗ σ, HS1 + HS2)→ (σ⊗ ρ, HS1 + HS2),

where HS1 = H and HS2 = H′, and HS1 + HS2 ≡ HS1 ⊗ IS2 + IS1 ⊗
HS2 . In this step, the subsystems swap their states without changing
their Hamiltonian. Further, both the adiabatic steps (C2) and (C4)
can be performed in one step as well, that is

(σ⊗ ρ, HS1 + HS2)→ (σ⊗ ρ, H′S1
+ H′S2

),

where H′S1
= H′ and H′S2

= H. Here the subsystems swap their local
Hamiltonians without modifying their states. In fact, the four steps
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Figure 2.1: A schematic of the operations in a traditional Carnot
heat engine. The horizontal and vertical axes are the thermody-
namic entropy (S) and the temperature (T). The engine is made up
of one working system and two heat baths with inverse tempera-
tures β1 = 1/T1 and β2 = 1/T2, where β1 < β2. The operations in
such an engine involve four distinct steps (C1)-(C4) in each cycle (see
text for details). The steps (C1) and (C3) represent the isothermal
transformations in interaction with thermal baths, where the state
of the working system changes without changing the Hamiltonian
(horizontal arrows). The steps (C2) and (C4) represents the adiabatic
transformations in isolation from the baths, where the working sys-
tem updates its Hamiltonian without changing its states (vertical
arrows).
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in a Carnot heat engine can be further reduced to just one step which
enables one to attain maximum possible heat-to-work conversion
efficiency, as we shall discuss later.

Semi-local thermal operations: Let us now introduce the general form
of thermodynamically allowed (semi-local) operations that a (bipar-
tite) quantum system S12 undergoes in a quantum heat engine. The
bipartite system S12 can be in an arbitrary state. Even, the states may
possess strong correlation, e.g., quantum entanglement, shared by
the subsystems S1 and S2. The only restriction is that the Hamiltonian
of the system is non-interacting and has the form HS12 = HS1 + HS2 ,
where HS1 and HS2 are the local Hamiltonians of the subsystems S1
and S2 respectively. The Hamiltonians of the baths B1 and B2 are
denoted as HB1 and HB2 respectively.

Definition 1 (Semi-local thermal operations (SLTOs)). In a quantum
heat engine, the thermodynamic operations on system S12 in a state ρS12 are
defined as

ΛS12

(
ρS12

)
= Tr B1B2

[
U(γB1 ⊗ γB2 ⊗ ρS12)U

†
]

, (2.1)

with the condition that the global unitary U satisfies the commutation
relations [

U, HB1 + HS1 + HB2 + HS2

]
= 0, (2.2)[

U, β1 (HB1 + HS1) + β2 (HB2 + HS2)
]
= 0, (2.3)

where the thermal states of the baths are denoted by γBx = e−βx HBx

Tr [e−βx HBx ]
for

x = 1, 2.

The resultant operations on the system S12 are semi-local in the
sense that, even though the subsystems (S1 and S2) “selectively”
interact with the baths (B1 and B2), the unitary U still allows cer-
tain interactions among them with the constraints (2.2) and (2.3). It
should be noted that the commutation relations (2.2) and (2.3) to-
gether constitute the first law for quantum heat engines. It ensures
strict conservation of the total energy E12 = E1 + E2 and the total
weighted-energy Eβ1β2

12 = β1E1 + β2E2 of the baths and the system,
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Figure 2.2: Semi-local thermal operations. Instead of considering
a system undergoing a transformation in the presence and absence
of baths once at a time, we generalize the engine operations using a
bipartite system S12, with two non-interacting sub-systems S1 and
S2 and the Hamiltonian HS12 = HS1 + HS2 . There, the sub-systems
S1 and S2 are semi-locally interacting with the baths B1 and B2 at
inverse temperature β1 and β2 respectively, at the same time. The
bath-system composites B1S1 and B2S2 are allowed to exchange en-
ergy through semi-local thermal operations (SLTOs), as introduced in
Definition 1.

where E1 and E2 are the energies of the B1S1 and B2S2 composites
respectively. In other words, the global unitary U respects

∆E1 + ∆E2 = 0, (2.4)
β1∆E1 + β2∆E2 = 0, (2.5)

where ∆E1 and ∆E2 are the changes in energy in B1S1 and B2S2 respec-
tively. The strict energy conservation ensured by the constraint (2.2)
(or Eq. (2.4)) is absolutely important to guarantee the proper count-
ing of work involved in a process. The constraint (2.3) (or Eq. (2.5))
brings up the semi-local character of the operation. In particular, for
a system S12 with the subsystems S1 and S2 that are initially in local
thermal equilibrium with the baths B1 and B2 respectively, the unitary
U cannot bring the subsystems away from their local equilibrium
even though it is a global operation (see Appendix A.3).

As it will be clear soon, the relation (2.3) or Eq. (2.5) guarantee
that no thermodynamic resource (free-entropy) can be created in
S12 by employing SLTOs if the subsystems S1 and S2 are initially in
thermal equilibrium with the baths B1 and B2 respectively. From the
information theory point of view, these constraints also imply that
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the global unitary operations that respect the first law conserve the
thermodynamic purity.

The SLTOs can be further generalized with an access to a bipartite
catalyst C12 composed of two non-interacting subsystems C1 and C2
and the Hamiltonian HC12 = HC1 + HC2 . The C1 is clubbed with the
subsystem S1 to form the composite S1C1. Similarly, the C2 is clubbed
with the S2 to form S2C2. Then, the composites S1C1 and S2C2 inter-
acts with the baths B1 and B2 via semi-local thermal operations. Such
operations are called catalytic semi-local thermal operations (cSLTOs)
that satisfy

ΛS12C12(ρS12 ⊗ ρC12)→ σS12 ⊗ ρC12 , (2.6)

where ρC12 is a state of the catalyst. Note, the catalyst remains un-
changed before and after the process. These catalytic operations form
a larger set of thermodynamically allowed operations compared to
SLTOs and respect all the properties satisfied by the SLTOs. The
cSLTOs are the allowed thermodynamic operation in a quantum heat
engine and constitute the free operation for the resource theory de-
veloped in this article. Several useful properties of these operations
are outlined in the Appendix A.4. It is interesting to note that the
cSLTOs converge to the (local) thermal operations that are introduced
in the resource theory of quantum states beyond thermal equilibrium
presented in [64, 198, 205], when both the baths are of the same tem-
perature, i.e., for β1 = β2.

Semi-Gibbs states: When the subsystems are locally in thermal equi-
librium with the baths they are semi-locally interacting with, the
corresponding joint uncorrelated state of the system S12 becomes
γS12 = γS1 ⊗ γS2 , where γSx = e−βx HSx /Zx with the partition func-
tions Zx = Tr [e−βx HSx ] for x = 1, 2. We term these states as the
semi-Gibbs states, as both the local states are Gibbs states with differ-
ent temperatures corresponding to the baths. The subsystems may
assume arbitrary Hamiltonians. The set of all such semi-Gibbs states
is denoted by the set TS12 ∋ γS12 . These states are the resource-free
states in the resource theory of heat engines that we develop below.
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2.2 Resource quantification and state trans-
formation

With the identification of the resource-free states and the free op-
eration with the semi-Gibbs states and the cSLTOs, respectively, we
move on to formulate the resource theory. We introduce a resource
quantifier that is related to thermodynamic work. The goal is to
characterize the general state transformations under the cSLTOs and
quantify the thermodynamic work associated with a process occur-
ring in an engine in the one-shot finite-size regime. A major part of
the results we discuss below are restricted to the states ρS12 that are
block-diagonal in the energy eigenbases of the system Hamiltonian
HS12 , i.e.,

[ρS12 , HS12 ] = 0. (2.7)

The cSLTOs are time-translation symmetric with respect to the time-
translation driven by HS12 , and that is why the cSLTOs monotonically
decrease the superpositions between different energy eigenbases (see
Appendix A.4). A heat engine operates in an arbitrarily large number
of cycles. It is, therefore, safe to assume that an arbitrary state will
dephase to its block-diagonal form after some cycles. That is why
we mainly focus on the transformations among states that are block-
diagonal in the energy eigenbases. Although, we briefly discuss the
situation when the states are not block-diagonal (see Appendix A.9).

We define the α-free-entropies as the quantifiers of thermody-
namic resource for a system composed of an arbitrary number of
quantum particles undergoing a transformation in a quantum heat
engine.

Definition 2 (α-free-entropies). Consider a system S12 is in a state ρS12
block-diagonal in the eigenbasis of the Hamiltonian HS12 . Then the α-free-
entropy of ρS12 is expressed, for all α ∈ [−∞, ∞], as

Sα(ρS12 , γS1 ⊗ γS2) = Dα

(
ρS12 ∥ γS1 ⊗ γS2

)
− log Z1Z2, (2.8)

where the Rényi α-relative entropy is given by

Dα(ρ ∥ γ) =
sgn(α)
α− 1

log Tr [ρα γ1−α].
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Here the thermal states of the subsystems are γSx =
e−βi HSx

Zx
, and the parti-

tion functions are Zx = Tr [e−βx HSx ] for x = 1, 2.

The α-free-entropies quantify the thermodynamic purity present
in the state ρS12 . It can be checked that the α-free-entropies vanish for
the semi-Gibbs states. Thus, as expected, these do not possess a non-
zero thermodynamic purity. For ρS12 = ρS1 ⊗ ρS2 , the α-free-entropy
is additive as Sα(ρS12 , γS1 ⊗ γS2) = Sα(ρS1 , γS1) + Sα(ρS2 , γS2), where
Sα(ρSx , γSx) = Dα (ρSx ∥ γSx)− log Zx. We recover Helmholtz free-
entropy S1(ρS12 , γS1 ⊗ γS2) = β1ES1 + β2ES2 − S(ρS12) for α → 1,
where ES1/S2 = Tr HS1/2ρS12 is the energy of the subsystem and S(ρS12)
is the von Neumann entropy. Thus the α-free-entropies are the one-
shot generalizations of the Helmholtz free-entropies defined in the
context of thermodynamics with multiple conserved charges, where
the charges are mutually commuting and fully independent from
each other, i.e., the charges live in disjoint Hilbert spaces. With the
α-free-entropies, the transformations in a quantum heat engine can
be characterized in terms of the second laws.

Many second laws for block-diagonal states: Consider a general transfor-
mation, via cSLTO, (

ρS12 , HS12

)
→
(

σ′S12
, H′S12

)
, (2.9)

where along with the transformation among the block-diagonal states
(ρ12 → σ′12) the initial non-interacting Hamiltonian HS12 = HS1 + HS2
of the system S12 is updated to H′S12

= H′S1
+ H′S2

. Then the second
laws that provide the necessary and sufficient conditions for such
transformations are given in the theorem below. This theorem can
be proven using similar lines of reasoning as the ones considered in
Ref. [64], with additional complexities and technicalities particular to
the engine scenario (see Appendix A.6).

Theorem 1 (Second laws for block-diagonal states). Under cSLTOs,
the transformation in Eq. (2.9) is possible if, and only if,

Sα

(
ρS12 , γS1 ⊗ γS2

)
⩾ Sα

(
σ′S12

, γ′S1
⊗ γ′S2

)
, ∀α ⩾ 0, (2.10)

where γSx =
e−βx HSx

Tr [e−βx HSx ]
and γ′Sx

= e−βx H′Sx

Tr [e
−βi H′Si ]

, for x = 1, 2.
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Figure 2.3: Extraction of free-entropy. A battery SW12 with two non-
interacting sub-systems SW1 and SW2 is used to store free-entropy (or
work) once extracted. The battery subsystems can be the two-level
systems and are restricted to remain in the pure states always. For
the protocol to extract free-entropy and work, see text.

Therefore, any transformation among the block-diagonal states
under the cSLTOs must respect the above monotonic relation for the
α-free-entropies for all α. For the transformation among the states that
are not block-diagonal in the eigenbases of HS12 , the above constitutes
only the necessary conditions where the corresponding dephased
block-diagonal states have to satisfy (2.10). This necessary condition
can be further supplemented with the monotonic decrease of quan-
tum time-translation asymmetry present in the states, as cSLTOs are
time translation symmetric operations (Appendix A.9).

Free-entropy distance, work, and fundamental irreversibility: Apart from
dictating state transformations, the Theorem 1 delimits the amount
of thermodynamic resource, i.e., free-entropy, can be extracted using
a state transformation in an engine. It also quantifies the amount of
the free-entropy required to be expended to make a transformation
possible. Now the free-entropy distance is introduced to quantify
the extractable free-entropy or the free-entropy cost in the one-shot
finite-size regime, in terms of the works that can be stored in a battery.
Here, a battery is an additional quantum system that stores work in
the form of pure energy.

Now, a battery SW12 , with two sub-systems SW1 and SW2 and the
non-interacting Hamiltonian HSW12

= HSW1
+ HSW2

is attached with
the system S12 to store free-entropy (or work) once extracted, as
shown in Figure 2.3. Without loss of generality, the battery subsys-
tems are considered to be two-level systems with the Hamiltonians
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HSW1
= W1|W1⟩⟨W1|SW1

and HSW2
= W2|W2⟩⟨W2|SW2

, and these are
restricted to remain in the eigenstates of the Hamiltonians always.
The SW1 is tagged with subsystem S1 and similarly the SW2 is with
S2. The initial battery state is chosen to be the zero-energy state
ρi

SW12
= |0⟩⟨0|SW1

⊗ |0⟩⟨0|SW2
. The composites S1SW1 and S2SW2 inter-

act with the baths B1 and B2 (at different inverse temperatures β1 and
β2) respectively through semi-local thermal operations, so that the
overall transformation is(

ρS12 ⊗ ρi
SW12

, HS12 + HSW12

)
→
(

σ′S12
⊗ ρ

f
SW12

, H′S12
+ HSW12

)
,

where final state of the battery is ρ
f
SW12

= |W1⟩⟨W1|SW1
⊗ |W2⟩⟨W2|SW2

.
Note, the battery Hamiltonian remains unchanged in the transfor-
mation. The values of W1 and W2 depend on the very cSLTO under
which the transformation happens. Therefore, it is natural to ask how
much a guaranteed amount of free-entropy involved in a transfor-
mation. To answer that, we introduce the free-entropy distance in
the theorem below. We refer to the Supplemental Information for the
proof.

Theorem 2 (Free-entropy distance). For the transformation in Eq. (2.9)
via a cSLTO, the free-entropy distance between the initial and final states of
the system is given by

Sd(ρ12 → σ′12) = β1W1 + β2W2, (2.11)

= inf
α⩾0

[
Sα(ρS12 , γS1 ⊗ γS2)− Sα(σ

′
S12

, γ′S1
⊗ γ′S2

)
]

.

As we mentioned earlier, the change in thermodynamics purity
which is measured in terms of the change in free-entropy is related
to work. From this free-entropy distance, the one-shot work can
be derived. Consider the transformation given in Eq. (2.9) via a
cSLTO. If the initial state possesses larger free-entropy than the final
one, i.e., Sα

(
ρS12 , γS1 ⊗ γS2

)
⩾ Sα

(
σ′S12

, γ′S1
⊗ γ′S2

)
for all α ⩾ 0, the

transformation can take place spontaneously under cSLTOs. For this
forward process, the Sd(ρ12 → σ′12) = β1W f

1 + β2W f
2 ⩾ 0. Then, the

guaranteed one-shot extractable work from the process is

Wext = W f
1 + W f

2 ⩾ 0. (2.12)
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In the special case where the final state is the semi-Gibbs state σ′12 =
γS1 ⊗ γS2 and the subsystem Hamiltonians do not change HS12 =
H′S12

, the Wext quantifies the one-shot distillable work from the state
ρS12 .

To perform the reverse transformation
(

σ′S12
, H′S12

)
→
(
ρS12 , HS12

)
,

the Theorem 2 constrains that the minimum one-shot free-entropy to
be supplied to ascertain the transformation is

Sd(ρ12 ← σ′12) = β1Wb
1 + β2Wb

2 , (2.13)

= sup
α⩾0

[
Sα(ρS12 , γS1 ⊗ γS2)− Sα(σ

′
S12

, γ′S1
⊗ γ′S2

)
]

.

Now, the minimum necessary work required, that is the one-shot work
cost, to implement the transformation is

Wcost = Wb
1 + Wb

2 ⩾ 0. (2.14)

For σ′12 = γS1 ⊗ γS2 and HS12 = H′S12
, the Wcost represents the one-shot

work of formation of the state ρS12 .
Fundamentally, the thermodynamic reversibility is no longer re-

spected in the one-shot finite-size regime. This irreversibility can be
understood from the fact that the free-entropy distance of a forward
process is not in general equal to its reverse process, and

Sd(ρ12 → σ′12) ⩽ Sd(ρ12 ← σ′12), (2.15)

where the equality holds for a few special cases. As a corollary, the ex-
tractable work from the transformation and the work cost to reverse
it are not equal and follow the inequality Wext ⩽ Wcost, where, again,
the equality holds only in few cases. However, in the asymptotic
limit, i.e., when the working system is composed of an asymptotically
large number of particles, the reversibility is recovered as the equality
in Eq. (2.15) is achieved on average (see Appendix A.10).

Heat engine exclusively utilizing correlation: It is known that the inter-
system correlation can store thermodynamic work potential and can
lead to “anomalous” heat flow - a spontaneous heat transfer from a
cooler to a warmer body [211]. However, the studies were restricted
to the asymptotic regime. Now, we are able to characterize such
thermodynamic potential and its role in anomalous heat flow in the
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one-shot finite-size regime. For example, consider a system state ρS12
which has non-vanishing correlation shared by the subsystems S1 and
S2, i.e., ρS12 ̸= ρS1 ⊗ ρS2 , where ρS1 = Tr S2 [ρS12 ] and ρS2 = Tr S1 [ρS12 ].
Now the one-shot free-entropy stored in the correlation is given by

Sd(ρS12 → ρS1 ⊗ ρS2) = β1Wc
1 + β2Wc

2 . (2.16)

The work store in the correlation is Wc
ext = Wc

1 + Wc
2 and this work

can be utilized to drive heat flow from the cold to the hot bath,
as it happens in a refrigeration process. Note, the block-diagonal
states can possess classical correlations. These states are sufficient to
run an engine that repeats its cycle many times. Consequently, one
may construct a heat engine that exclusively exploits the (classical)
correlation to convert heat into work. For that, one needs an initial
correlated bipartite system in the state ρS12 and the final uncorrelated
state σ′S12

= ρS1 ⊗ ρS2 in each cycle, where ρS1/S2 = Tr S2/S1 [ρS12 ]. We
must note that only the classical correlations can be accessed and
utilized in the one-shot finite-size regime. However, in the asymptotic
regime, any form of correlation, including the quantum entanglement,
can be accessed to drive a heat engine (see Appendix A.10).

2.3 Quantum heat engines with Carnot effi-
ciency at maximum power

One of the central laws of thermodynamics for heat engines in
the classical regime, that is, the second law, imposes a fundamen-
tal limit on the maximum heat-to-work conversion efficiency in an
engine, given by Carnot efficiency. This efficiency is only achieved
when the engine operates in a cycle using reversible transformations,
which requires it to run infinitely slowly. As a consequence, the
engine’s power - work extracted per unit time - becomes close to
null. In general, realistic engines operate in finite time to deliver a
non-vanishing power, and then, the efficiency is compromised. The
trade-off between efficiency and power is studied extensively in the
past decades; see, for example, [230–232], in the context of finite-time
classical engines.

In general, the laws of thermodynamics cannot be directly applied
to the engines that use working fluids made up of few particles. In
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that case, the conventional (or statistical) notion of average quanti-
ties such as energy or entropy becomes incomplete. The situation
becomes further constrained for engines operating in the quantum
regime, where the working fluid is composed of few quantum sys-
tems and the effects due to quantum fluctuations cannot be ignored.
There have been extensive studies to understand thermodynamics in
this regime, see for example [64, 198, 201–206, 210–218, 233], and it is
revealed that, in general, a quantum system in contact with a thermal
bath delivers fluctuating work. Consequently, a quantum engine,
where a working fluid sequentially or incoherently interacts with two
baths in a cycle in the presence of highly fluctuating input and output
energy fluxes, is expected to have fluctuations in both efficiency and
power, see for example [69, 222, 224, 226, 234–259]. In fact, finite size
heat engines, in general, deliver fluctuating efficiency [222, 237, 239].
It is also true for power for engines operating with finite-time cy-
cle [245, 250]. Apart from that, there are power losses due to energy
coherence [244]. Also, there are proposals that smartly exploit energy
coherence to increase power, see for example [236, 241, 251]. The
overall performance of an engine considering inter-relations between
power and efficiency in the presence of quantum fluctuation are stud-
ied in [69,247,248,250–256,260]. In [243], the authors derive the lower
and upper bound on maximum efficiency at a given power for the
low dissipation heat engines. This bound generalizes the bound on
efficiency at maximum power given by [247]. These engines also ex-
hibit universal constraints for efficiency and power [249]. For general
cases, a universal trade-off between efficiency and power is intro-
duced in [69]. A trade-off relation based on geometric arguments is
derived in [253] for any thermodynamically consistent microdynam-
ics. Further studies based on the geometry of work fluctuation and
efficiency are made in [254] for microscopic heat engines.

As in classical engines, it is now commonly believed that yielding
maximum power at Carnot efficiency is impossible in a quantum
engine. Earlier studies have assumed engines with a working system
that interacts with the hot and cold baths at different stages of an
engine cycle or with both baths simultaneously but only enabling
incoherent heat transfer. Furthermore, the working system is either
composed of a statistically large number of particles, or a few parti-
cles, allowing a large number of measurements. The role of quantum
fluctuations in delimiting efficiency or power or both becomes more
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prominent for the quantum engines operating in the one-shot finite-
size regime, i.e., engines with a finite number of quantum particles
constituting the working system and restricted to one-shot measure-
ments or observations. So far, there are no comprehensive studies on
that.

Here we introduce quantum heat engines operating in the one-
shot finite-size regime and study the power and efficiency of heat-
to-work conversion. We show that these engines can simultaneously
attain maximum efficiency, i.e., the Carnot efficiency, and maximum
power in the one-shot finite-size regime. Therefore, there is no fun-
damental trade-off between power and efficiency that an engine has
to respect in the quantum regime. Our approach is fundamentally
different from the earlier ones in the sense that: (i) the engines are
fully quantum as they operate in the one-shot finite-size regime and
allow genuine entanglement between the baths and working system,
(ii) the working system simultaneously interacts with the hot and
cold baths via semi-local thermal operations, and (iii) the engines
run in a one-step cycle. The framework relies on the resource theory
recently developed to establish the thermodynamic laws in quan-
tum heat engines [261]. The engines deliver maximum power, along
with Carnot efficiency, purely because the engines allow a coherent
transfer of heat from hot to cold baths by establishing quantum entan-
glement between the working system and the baths, thereby attaining
maximum quantum speed for the reversible state transformation in
each engine cycle. Finally, we also introduce a physically realizable
quantum heat engine based on a quantum-optical system.

2.3.1 Engine operating in one-step cycle

We consider an engine composed of two baths B1 and B2 with
corresponding Hamiltonians HB1 and HB2 and inverse temperatures
β1 and β2 respectively; a bipartite (working) system S12 with non-
interacting subsystems S1 and S2 and described by the Hamiltonian
HS12 = HS1 + HS2 ; a bipartite battery SWS12

with non-interacting sub-
systems SW1 and SW2 with the Hamiltonian HSW12

= HSW1
+ HSW2

.
Here the battery plays the role of a piston in a traditional engine that
takes away work converted from heat. Throughout this work, we
assume β1 < β2. All systems under consideration have Hamiltonians
bounded from below, with the lowest energy equal to zero. The baths
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are considerably large compared to the systems, and the degener-
acy in their microcanonical ensembles scales exponentially with the
change in energy. That means the energies of the working systems
and the battery are tiny compared to the baths, while the latter have
the highest energies close to infinity. The properties of large baths are
outlined in Appendix A.1.

The engine lets the baths interact with the working system and
the batteries via a global unitary evolution (U) where the composite
S1SW1 semi-locally interacts with B1 and S2SW2 with B2. As a result, a
semi-local thermal operation (SLTO) (Eq. (1)) is implemented on the
system-battery composite S12SW12 .

ΛS12SW12

(
ρS12 ⊗ ρSW12

)
= Tr B1B2

[
U(γB1 ⊗ γB2 ⊗ ρS12 ⊗ ρSW12

)U†
]

, (2.17)

where the global unitary U satisfies[
U, HB1 + HS1 + HSW1

+ HB2 + HS2 + HSW2

]
= 0, (2.18)[

U, β1 (HB1 + HS1 + HSW1
) + β2 (HB2 + HS2 + HSW2

)
]
= 0. (2.19)

Here the baths are in the equilibrium states denoted by γBx =
e−βx HBx

Tr [e−βx HBx ]

for x = 1, 2, and ρS12 is any state of S12. The ρSW12
is the state of the

battery SW12 , where the subsystems SW1 and SW2 always remain in
their energy eigenstates and store or supply energy in the form of
work. The commutation relation (2.18) guarantees strict conservation
of total energy of baths-system-battery composite. Note, this ensures
conservation of all moments of energy and not just the average en-
ergy. The relation (2.18), in turn, represents the quantum version of
the first law for engines. The relation (2.19) ensures strict weighted
energy conservation.

In an engine operating in cycles, the system S12 mediates the heat
transfer from B1 to B2, while a part of that is converted into work and
stored in the battery SW12 . At the end of each cycle, the S12 should
recover its initial state so it can be reused for the next cycle. But
the battery gets excited to a higher energy eigenstate to store work.
Interestingly, the engine executes this transformation in a one-step
cycle (see Figure 2.4) by implementing semi-local thermal operations
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Figure 2.4: One-step engine cycle. An engine consists of two baths
B1 and B2 at inverse temperatures β1 and β2 (β1 < β2), a working
system S12 ≡ S1S2 and a battery SW12 ≡ SW1SW2 . In each one-step
engine cycle, the composite S1SW1 − SW2S2 semi-locally interact with
the baths B1− B2 and undergoes a transformation so that the working
sub-systems S1 and S2 swaps their states along with Hamiltonians
(as indicated by the arrows) and the battery sub-systems update their
states. As a result, there is an overall flow of heat from B1 to B2 and,
in this process, part of that heat is converted into work and stored in
SW1SW2 . At the end of each cycle, the state of S1S2 becomes identical
to its initial state upto a swap operation and is, again, reused in the
next cycles. See text for more details.

on S12SW12 , as(
ρS12 ⊗ ρi

SW12
, HS12 + HSW12

)
→
(

σ′S12
⊗ ρ

f
SW12

, H′S12
+ HSW12

)
.

Consequently, the state of the working system transforms as ρS12 →
σ′S12

and at the same time the Hamiltonian is modified as HS12 =

HS1 + HS2 → H′S12
= H′S1

+ H′S2
. Further, it satisfies the cyclicity

conditions σ′S12
= US1↔S2

(
ρS12

)
, H′S1

= HS2 , and H′S2
= HS1 ,

where the unitary US1↔S2 swaps the states of the subsystems S1

and S2. The battery undergoes the transformation ρi
SW12

→ ρ
f
SW12

without updating its Hamiltonian. To understand how the above
transformation executes the (four-step) Carnot cycle in one-step, let
us focus on the transformation happening in the system, that is
(ρS12 , HS12)→ (σ′S12

, H′S12
). For this purpose, we ignore the battery as

it only changes states without updating its Hamiltonians and thereby
stores or releases work. Consider, ρS12 = ρ⊗ σ and HS12 = H + H′,
where H and H′ are the Hamiltonians of the subsystems S1 and S2
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respectively. Then the (one-step) engine operation leads to

(ρ⊗ σ, H + H′)→ (σ⊗ ρ, H′ + H). (2.20)

This involves two simultaneous sub-transformations. One is (ρ, H)→
(σ, H′) via a semi-local interaction with B1, which can be under-
stood as the combination of an isothermal (ρ, H) → (σ, H) and
then an adiabatic (σ, H) → (σ, H′) transformations. The other
sub-transformation (σ, H′) → (ρ, H) takes place in semi-local in-
teraction with the bath B2, which again can be understood as the
combination of an isothermal (σ, H′) → (ρ, H′) and then an adi-
abatic (ρ, H′) → (ρ, H) transformations. Clearly, this mimics the
situation of a Carnot engine where one working system initially in
(ρ, H) undergoes two isothermal (in interaction with two different
baths) and two adiabatic transformations but in one step.

2.3.2 Maximum power with Carnot efficiency

The engines equipped with SLTOs can yield better performance
than the traditional heat engines. Not only can the engines execute
the Carnot cycle in one step, but they are also superior to conven-
tional heat engines in efficiency and power. Most importantly, these
engines can deliver maximum power with Carnot efficiency. Note,
to attain maximum power and efficiency simultaneously, the engine
has to undergo the fastest possible thermodynamically reversible
transformation in each cycle, which we are going to demonstrate
below. Without loss of generality, we consider the working subsys-
tems S1 and S2 as qubits with the Hamiltonians HS1 = a|1⟩⟨1|S1 and
HS2 = a|1⟩⟨1|S2 respectively having identical energy spacing. We also
assume, without loss of generality, that the battery subsystems SW1
and SW2 are qubits with the Hamiltonians HSW1

= EW1 |1⟩⟨1|SW1
and

HSW2
= EW2 |1⟩⟨1|SW2

respectively. The maximum heat-to-work con-
version efficiency per (one-step) cycle is attained by implementing
a thermodynamically reversible state transformation in S1S2SW1SW2
composite

|0, 1, 0, 0⟩S1S2SW1
SW2
→ |1, 0, 1, 1⟩S1S2SW1

SW2
, (2.21)

using a semi-local thermal operation [261], where the subsystems S1
and S2 swap their states without changing the Hamiltonians, and the
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batteries SW1 and SW2 get excited. Here we denote |i, j, k, l⟩S1S2SW1
SW2

=

|i⟩S1 ⊗ |j⟩S2 ⊗ |k⟩SW1
⊗ |l⟩SW2

.
For simplicity, we may consider the working system and the

battery to be the parts of single system S ≡ S1S2SW1SW2 with the
Hamiltonian HS = a0|0⟩⟨0|S + a1|1⟩⟨1|S, where a0 = a and a1 =
a + EW1 + EW2 with the corresponding energy eigenstates
|0⟩S = |0, 1, 0, 0⟩S1S2SW1

SW2
and |1⟩S = |1, 0, 1, 1⟩S1S2SW1

SW2
. Then, the

engine becomes compact and has three constituents; hot and cold
baths (B1 and B2) and a two-level system (S). The engine cycle starts
with the initial state |0⟩S and ends with the final state |1⟩S of S (as
shown in Figure 2.5). The corresponding global transformation, lead-
ing to this one-step cycle, is

γB1 ⊗ γB2 ⊗ |0⟩⟨0|S
U−→ τB1B2 ⊗ |1⟩⟨1|S, (2.22)

where τB1B2 is final state of the baths. The unitary U strictly conserves
energy of B1B2S composite and weighted-energy of B1B2 composite,
i.e.,

[U, HB1 + HB2 + HS] = 0, (2.23)
[U, β1HB1 + β2HB2 ] = 0. (2.24)

The commutation relation (2.23) ensures the strict conservation of to-
tal energy. The relation (2.24) ensuring strict conservation of entropy
is a special case of the general condition (2.19) where the transforma-
tion is cyclic. Here the system S remains in the energy eigenstates
before and after the cycle without changing its energy and entropy.
Because of that, the entropy conservation is guaranteed by the strict
weighted-energy conservation of the baths only ( See Appendix (A.12)
for more details). Note, the semi-local nature of the evolution is
clearly understood here as the system S is simultaneously interacting
with both the baths via the unitary U.

Now we show that the unitary U, that satisfies relations (2.23)
and (2.24), leading to the transformation (2.22) indeed attains Carnot
efficiency. Then we consider constructing a driving Hamiltonian,
corresponding to the unitary U, that delivers maximum power with
Carnot efficiency.

Since the initial (and final) state of S is an energy eigenstate, the
global initial state of B1B2S can be expressed in the block-diagonal
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Figure 2.5: A compact engine. An engine consists of two baths B1
and B2 at inverse temperatures β1 and β2 respectively, and a working
system S. The system S simultaneously interacts with both the baths
via a semi-local thermal operation. The engine operates in a one-step
cycle by exciting the system S from lower energy to a higher energy
eigenstate. See text for more details.

form with respect to total energies, as

γB1 ⊗ γB2 ⊗ |0⟩⟨0|S =
⊕

EB12+a0

[γB1 ⊗ γB2 ]EB12
⊗ |0⟩⟨0|S, (2.25)

with EB12 = EB1 + EB2 , where EB1 and EB2 are the energies corre-
sponding to the baths B1 and B2 respectively, and

[γB1 ⊗ γB2 ]EB12
= p(EB12)

d1(EB1 )d2(EB2 )

∑
i=1

|EB12(i)⟩⟨EB12(i)|,

where d1(EB1) and d2(EB2) represent the degeneracies correspond-
ing to the bath energies EB1 and EB2 respectively and p(EB12) =

e−β1EB1−β2EB2 /ZB1 ZB2 . A strictly total energy conserving unitary also
takes a block-diagonal form, U =

⊕
EB12+a0

UEB12+a0
, where the unitary

UEB12+a0
operates only on the block with the total energy EB12 + a0

and implements a transformation

[γB1 ⊗ γB2 ]EB12
⊗ |0⟩⟨0|S → [τB1B2 ]E′B12

⊗ |1⟩⟨1|S, (2.26)

where E′B12
= E′B1

+ E′B2
. Note, EB12 + a0 = E′B12

+ a1 as required
by the total energy conservation. The strict conservation of total
weighted-energy of the baths ensures

β1(E′B1
− EB1) + β2(E′B2

− EB2) = β1Q1 + β2Q2 = 0, (2.27)
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where Q1 and Q2 are the heat flow out of the baths B1 and B2 respec-
tively. The Eq. (2.27) is nothing but the Clausius equality. This in turn,
ensures the thermodynamic reversibility of the state transformation.
Note, this condition also implies d1(EB1)d2(EB2) = d1(E′B1

)d2(E′B2
),

where d1(E′B1
) and d2(E′B2

) are degeneracies in the energies corre-
sponding to E′B1

and E′B2
of the baths B1 and B2 respectively (see

Appendix A.1 for more details). It is an essential requirement for a
unitary transformation where the rank and the spectra of the (un-
normalized) state of each total energy block remain unchanged.

Similar transformations, as in Eq. (2.26), also take place in all other
total energy blocks due to the evolution by the unitary U. As a result,
the desired state transformation, given in Eq. (2.22), is achieved and
thereby completes the one-step engine cycle. The extracted work per
cycle is given by Wext = a1− a0 = Q1 + Q2 as a consequence of strict
conservation of total energy. Hence, the heat-to-work conversion
efficiency becomes maximum in the one-shot finite-size regime, given
by

η =
Wext

Q1
= 1− β1

β2
, (2.28)

which is the Carnot efficiency, as expected for any reversible engine
cycle.

Let us demonstrate how the global unitary U can be implemented
using an interaction Hamiltonian

Hin = h̄g
⊕

EB12+a0

d1(EB1 )d2(EB2 )

∑
i=1

|E′B12
(i), 1⟩⟨EB12(i), 0|B1B2S + h.c.,

where, again, |EB12(i)⟩ ≡ |EB1(i), EB2(i)⟩ and |E′B12
(i)⟩ ≡ |E′B1

(i), E′B2
(i)⟩,

and g is the coupling constant. The global unitary is then U(t) =
e−itHin/h̄ for any time t. Under this unitary, an initial state |EB1(i), EB2(i), 0⟩B1B2S
in the total energy block evolves to |ψ(t)⟩ = U(t)|EB1(i), EB2(i), 0⟩B1B2S
at time t, where

|ψ(t)⟩ = cos(gt) |EB1(i), EB2(i), 0⟩B1B2S

− i sin(gt) |E′B1
(i), E′B2

(i), 1⟩B1B2S, (2.29)

which is a genuinely entangled state of B1, B2, and S for gt ̸= zπ/2
with z ∈ Z. The desired final state is attained at time τ = π/(2g),

36



Chapter 2: Resource theory of QHE

Figure 2.6: Geodesic trajectory of evolution. Evolution of states on a
quantum state space (the gray area). An initial state |ψ(0)⟩ at time
t = 0 is evolved to |ψ(t)⟩ at time t = t. There are infinitely many
paths connecting the states. One with the shortest path is called the
geodesic path (solid (blue) line). Any other path (dotted (red) line) is
longer than the geodesic one.

where all the constitutes become uncorrelated from each other. It
is important to highlight that the above engine evolution enables a
coherent heat transfer from B1 to B2, which happens due to entangle-
ment in the intermediate time and is fundamentally different from
conventional engines. Similar evolution takes place in every total
energy block, and the overall transformation (2.22) is attained at time
τ. With this, the engine extracts Wext work in τ time. Thus, the power
delivered by the engine, i.e., work extraction per unit time, is

P =
Wext

τ
=

2gWext

π
. (2.30)

Contrary to the traditional understanding, the reversible (one-
step) engine cycle via semi-local thermal operation requires finite
time. Not only that, as we argue below, the interaction Hamiltonian
Hin drives the evolution with the maximum attainable speed to result
in the shortest possible transformation time. The speed of evolution
is defined by the distance traversed by a system per unit time in its
quantum state space [262]. For pure states, the distance is measured
using Fubini-Study metric, given by s = 1

2(1− |⟨ψ|ϕ⟩|2) for any two
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states |ψ⟩ and |ϕ⟩. The speed of evolution of the state |ψ(t)⟩ is

v =
ds
dt

=
∆Hin

h̄
= g, (2.31)

where ds = 1
2(1− |⟨ψ(t)|ψ(t + dt)⟩|2) and energy uncertainty

∆Hin =
√
⟨ψ(t)|H2

in|ψ(t)⟩ − ⟨ψ(t)|Hin|ψ(t)⟩2. Note, the speed of
evolution v is same for every total energy block and, hence, for the
overall transformation. The uncertainty ∆Hin is independent of time
and has the maximum possible value, equals to h̄g for any driving
Hamiltonian bounded by the operator norm h̄g. Furthermore, the in-
teraction Hamiltonian Hin drives the evolution following a geodesic
trajectory [262] connecting the initial and the final states which rep-
resents the shortest path (see Figure 2.6). The evolution following
shortest path with maximum speed results in the minimum time
required to complete the transformation in the one-step engine cycle.
As a consequence, the power P in Eq. (2.30) is the maximum possible
one. Note, quantum effects such as entanglement are believed to
degrade the performance of engines. But, on the contrary, here we
find that the engines operating with semi-local thermal operations
can exploit entanglement to deliver maximum power with Carnot
efficiency.

2.4 A quantum optics based heat engine

Here we discuss a physically realizable quantum heat engine
transferring maximum power with Carnot efficiency following the
theoretical framework presented above. We propose an engine com-
posed of two thermal cavities and a three-level working system (see
Figure 2.7). The bath B1 is a single-mode optical cavity with a Hamil-
tonian HB1 = h̄ω1a†

1a1 = ∑n nω1|n⟩⟨n|B1 , at inverse temperature β1.
Here a†

1 and a1 are the creation and annihilation operators of the mode
in B1 respectively, ω1 represents the mode frequency, and n and |n⟩
are the number of excitation and the corresponding number state.
Similarly, the bath B2 at inverse temperature β2 is another optical
cavity with a Hamiltonian HB2 = h̄ω2a†

2a2 = ∑m mω2|m⟩⟨m|B2 . The
system S is a three-level atom (in Λ-configuration) with the Hamilto-
nian HS = ∑3

i=1 Ei|i⟩⟨i|S with E1 = 0. The overall Hamiltonian of the
baths and the system composite is then H0 = HB1 + HB2 + HS.
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A semi-local thermal operation, leading to a one-step cycle, is im-
plemented by introducing an intensity-dependent coupling between
the bath modes and the atom by the interaction Hamiltonian

HI = f1(N1)+ f2(N2) + h̄g1θ1(N1)(a1σ31 + h.c.)
+ h̄g2θ2(N2)(a2σ32 + h.c.), (2.32)

with the number operator Nk = a†
k ak corresponds to the bath Bk for

k = 1, 2, and σij = |i⟩⟨j|S (i ̸= j) is the transition operator from |j⟩S
to |i⟩S for i, j = 1, 2, 3. The f1(N1) and f2(N2) are some intensity-
dependent potentials in the cavity fields. The state |3⟩S is coupled
with |1⟩S and |2⟩S via intensity-dependent dipole-couplings g1θ(N1)
and g2θ(N2) respectively, where θ(N1) and θ(N2) are some functions
of the number operators, and g1 and g2 are some constants. There
is no direct coupling between |1⟩S and |2⟩S. The technical details of
how the interaction Hamiltonian (2.32) may be realized are described
in Appendix A.13.

With the choice of (identical) detuning ∆ = (E3− Ek)/h̄−ωk and
the couplings

g2
k

∆
θ2

k(Nk) = fk(Nk) =
g2

k
∆

N−1
k , (2.33)

for k = 1, 2. The above formula should be fulfilled possibly exactly
for large values of Nk, especially if we work at relatively high tem-
peratures. It has to be regularized, obviously, for Nk = 0 to avoid the
singularity. Nevertheless, with these choices, the three-level prob-
lem can be exactly reduced to a two-level problem irrespective of
whether the detuning ∆ is small or large, similar to what is shown
in [263–265]. Then, the corresponding two-level Hamiltonian be-
comes H′S = 1

2 h̄ω0(|2⟩⟨2| − |1⟩⟨1|), and the interaction Hamiltonian,
after rotating-wave approximation, transforms to

H′I = h̄g(A1A†
2σ12 + A†

1 A2σ21), (2.34)

where Ak = akN−1/2
k and g = g1g2/∆ is the effective Rabi frequency.

Here ω0 ≈ ω1 −ω2, i.e., the pump mode with ω1 and Stokes mode
with ω2 are in two-mode resonance with the states |1⟩S and |2⟩S.
The ω1 and ω2 are chosen so that β1ω1 = β2ω2. Then, the unitary
U(t) = exp[−itH′I/h̄] generated by H′I strictly conserves total en-
ergy of baths and system, and total weighted-energy of the baths
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Figure 2.7: An optical-cavity based quantum heat engine. (a) A
three-level quantum system S (i.e., working system) is placed in three
overlapping optical cavities. Thermal cavities with frequencies ω1
and ω2 at inverse temperatures β1 and β2 (β1 < β2) represent the
baths B1 and B2 respectively. The cavity with frequency ω0 is in reso-
nance with the transition between the ground state and the first ex-
cited state of the system. (b) The three-level system S simultaneously
interacts with baths B1 and B2 via two-mode amplitude-dependent
coupling. In each engine cycle, it absorbs a photon with energy h̄ω1
from B1 and emits a photon with h̄ω2 energy to the bath B2 and ex-
cites itself from energy E1 to E2. The system then emits a photon with
energy h̄ω0 via stimulated emission in a cavity (green) in resonance
with the transition. See text for more details.

alone, as [U(t), H′S + HB1 + HB2 ] = 0 and [U(t), β1HB1 + β2HB2 ] = 0
respectively for all time t.

The initial state of the composite B1B2S can now be expressed in
blocks classified by (n, m), as

γB1 ⊗ γB2 ⊗ |1⟩⟨1|S =
⊕
n,m

pnm |n, m, 1⟩⟨n, m, 1|B1B2S,

with pnm = exp[−β1nEB1 − β2mEB2 ]/ZB1 ZB2 , where ZB1 and ZB2 are
the partition functions of the baths B1 and B2 respectively. Due to
the constraints on strict total energy conservation, the U(t) operates
on each block (n, m) independently. For a block (n, m), the initial
state |n, m, 1⟩B1B2S evolves to |ϕ(t)⟩ = U(t)|n, m, 1⟩B1B2S at some time
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t, and it is given by

|ϕ(t)⟩ = cos(gt) |n, m, 1⟩B1B2S

− i sin(gt) |n− 1, m + 1, 2⟩B1B2S, (2.35)

which is an entangle state. This is true for all blocks (n, m), except the
blocks (0, m). Note, the time taken to evolve the initial state to the
desired final states are same for all blocks except (0, m), and that is
τ = π/(2g). As a consequence, the joint initial state of B1B2S evolves
to ρ

f
B1B2S = U(t)(γB1 ⊗ γB2 ⊗ |0⟩⟨0|S)U(t)†, and at time τ = π/(2g),

the final state of the system S becomes,

ρ
f
S = Tr B1B2 ρ

f
B1B2S =

1
ZB1

|1⟩⟨1|S +
(

1− 1
ZB1

)
|2⟩⟨2|S → |2⟩⟨2|S

for ZB1 → ∞, which is true for low inverse temperature β1 of bath B1,
or |B1| → ∞. In each cycle, the system S undergoes the transforma-
tion |1⟩S → |2⟩S and thereby extracts h̄ω0 amount of work with the
Carnot efficiency η = 1− β1/β2. The transformation takes place with
the maximum quantum speed following a geodesic trajectory and
the time requires for that is τ = π/(2g). Hence, the cycle delivers
maximum power P = 2gh̄ω0/π. The work is extracted in the form
of photons at ω0 by placing the atom in a resonant cavity and letting
the stimulated emission |2⟩S → |1⟩S (see Fig. 2.7).

It is worth mentioning that there have been several propositions of
quantum heat engines based on optical cavity or bosonic baths earlier,
for example in [266,267], where a quantum system interacts with two
bosonic thermal baths at different temperatures. However, in contrast
to the engines considered above, these engines only allow incoherent
heat transfer from hot to cold baths. They do not guarantee strict
conservation of total energy in order to characterize the energetics
correctly. Because of that, they cannot deliver maximum power with
Carnot efficiency.

2.5 Summary

In this work, we have developed a resource theory of quantum
heat engines to systematically study thermodynamics in the presence
of two or more baths in the finite-size one-shot regime. We stress that
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the earlier works focus on how the a-thermal (or out-of-equilibrium)
properties of a system transform into thermodynamic work and do
not consider the conversion of heat into work. For such considera-
tions, one thermal bath is sufficient. On the contrary, the resource
theory developed for quantum heat engines, with two or more ther-
mal baths, is the only framework to systematically address how and
to what extent the heat can be converted into work in the quantum
heat engines operating in the one-shot finite-size regime.

We have proceeded with the precise characterizations of ther-
modynamic operations, i.e., the semi-local thermal operations, by
introducing the first law for engines, where the system simultane-
ously interacts with both the baths. In addition to strict total energy
conservation, the first law also ensures a strict weighted-energy con-
servation. Then, we have defined semi-Gibbs states as resource-free
states and free-entropies as the measure of thermodynamic resource
applicable in the one-shot finite-size regime. With this, we have
formulated the second laws for state transformations in a quantum
engine. Our formulation reveals that the state transformations in
a quantum engine are irreversible, in general, and are dictated by
many second laws.

For finite-time classical engines, it is known that the maximum
power at maximum heat-to-work conversion efficiency is impossible
[230]. For quantum engines, where the working systems interacting
with the baths are quantum mechanical, the situation is quite different
because the quantum uncertainties present in the system further
delimit the extractable work in each cycle. For finite-time quantum
heat engines considered earlier, there are various trade-off relations
between power and efficiency [69, 253], and both of these quantities
cannot be maximized simultaneously.

The quantum engines considered here can deliver maximum
power with maximum efficiency and are fundamentally different
from conventional ones studied earlier. Firstly, the engine operates
in the one-shot finite-size regime, where the working system is gen-
uinely quantum in the sense that it is made up of a small number
of quantum particles (i.e., of finite-size) and allows one or few ob-
servations or measurements (i.e., one-shot measurement). Secondly,
the working system interacts with both hot and cold baths simul-
taneously via a semi-local thermal operation. These operations are
powerful compared to the operations in traditional engines as they
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can implement a one-step engine cycle and create entanglement be-
tween the baths and the working system. Because of that, it enables
a coherent flow of heat from hot to cold bath via the working system
and results in maximum power with maximum efficiency. With this,
our results have demonstrated that there, in principle, does not exist
a fundamental trade-off relation between power and efficiency. We
have also put forward an experimentally feasible quantum heat en-
gine operating in the one-shot finite-size regime with a three-level
atom as a working system and two thermal optical cavities as the
baths. We have explicitly introduced an intensity-dependent interac-
tion between the atom and cavities that executes the one-step engine
cycle yielding maximum power at Carnot efficiency.

In summary:

• We have introduced a a concrete mathematical framework lead-
ing to a resource theory and a novel theoretical understand-
ing of quantum and nano-scale heat engine, and, in particular,
many second laws to dictate state transformation, conversion
of heat into work in quantum heat engines operating in the one-
shot finite-size regime, and the role of inter-system correlations
in such processes.

• We have explored quantum heat engine that converts heat into
work by exclusively utilizing inter-system correlations.

• We have introduced quantum heat engines that operate via
one-step cycles in the one-shot finite-size regime and enable a
coherent heat transfer from hot to cold baths by establishing
genuine quantum entanglement between the working system
and the baths.

• We have demonstrated that there is no fundamental trade-off
relation between power and efficiency.

• We have shown a general protocol with which a quantum heat
engine can deliver maximum power with Carnot efficiency in
the one-shot finite-size regime.

• We have proposed a physically realizable model of such a quan-
tum heat engine based on an atom-cavity system.
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Steady-state quantum
thermodynamics with synthetic
negative temperatures

Thermodynamics constitutes a fundamental building block of the
modern understanding of nature. With the advent of quantum me-
chanics, there have been numerous efforts to extend the framework
to systems composed of a finite or large number of quantum particles
while each particle has a discrete energy spectrum and the states are
in a superposition of different energy levels, see for example [201].
One of the possibilities for quantum systems with bounded energy
is that, in certain situations, they can assume ‘negative’ tempera-
tures. This arises when the population distribution of a system or
bath becomes an inverted Boltzmann distribution, i.e., states with
higher energy are populated more than the ones with lower energy.
It was first pointed out by Purcell and Pound in the context of nuclear
spin systems [89]. Subsequently, Ramsey comprehensively discussed
the thermodynamic implications of such negative temperatures and
the inter-relation between negative and positive temperatures [90].
He advocates for an amendment to the Kelvin-Planck statement of
the second law to incorporate that heat flows spontaneously from a
bath with a negative temperature to one with a positive temperature.
In this sense, the negative temperature is ‘hotter’ than a positive
temperature.

Initially, Schöpf raised some foundational questions regarding the
dynamics of negative temperature [91]. He claimed that it is impossi-
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ble to transform a thermodynamic system adiabatically: from a posi-
tive finite temperature to the positive infinite temperature, then from
there to a negative infinite (Boltzmann) temperature, and then sub-
sequently to a negative finite (Boltzmann) temperature [91]. Tykodi
and Tremblay [92–94] disagreed and showed that the arguments
used by Schöpf are thermodynamically inconsistent as these violate
the second law of thermodynamics. Nevertheless, the debates on
thermodynamics with negative temperatures are not settled. Recent
theoretical [95, 96] and experimental [97, 98] studies with cold atoms
have brought the debate on negative temperatures back again into
the spotlight. The works in [99–101] claim that “all previous negative
temperature claims and their implications are invalid as they arise
from the use of an entropy definition that is inconsistent both mathe-
matically and thermodynamically.” Another study in [268] states that
thermodynamic equilibrium at negative temperatures would be un-
stable but can be used for work storage or battery. Several researchers
have come forward and systematically explained that identification
of the thermodynamic entropy exclusively with the volume entropy
proposed by Gibbs is the root of all doubts [102–106], and it is in-
consistent with the postulates of thermodynamics [107, 108]. Using
Boltzmann entropy as the thermodynamic entropy, they argue that
negative temperature is a valid extension of thermodynamics.

Apart from these foundational issues, there are questions on
whether a negative temperature bath can be used to construct ther-
mal devices, such as heat engines, refrigerators, heat pumps, etc.
Initially, a study on Carnot engines was made by Geusic, et al. [109]
and, later on, by Landsberg and Nakagomi [110, 111] in this context.
There are also some studies about how the Carnot cycle should be
modified in the presence of negative temperatures [112–114]. Fur-
ther, some propositions are made to construct a quantum Otto en-
gine [115, 116, 269] and refrigerators [117] using a bath with effective
negative temperature. It is shown that the heat-to-work conversion
efficiency of an engine operating between negative and positive tem-
peratures would be greater than unity [97, 98, 116]. However, much
of these models of thermal devices either utilize already existing
negative temperature baths without caring how it may be created
or effectively prepare one by inverting the populations using some
external means.

In this work, we outline how to create a thermal bath with arbi-
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trary temperature, including negative temperature, and study steady-
state quantum thermodynamics. The bath is synthesized by letting a
quantum system interact simultaneously with two thermal baths at
different positive temperatures without external driving. We study
various laws of steady-state quantum thermodynamics with these
synthetic baths and construct continuous heat engines. We start
by proving the zeroth law and show that there is no net heat flow
whenever two such baths with identical temperatures are brought in
contact with each other. This, in turn, legitimizes the notion of the
temperature of a synthetic bath (namely, the synthetic temperature).
In the case of two different temperatures, we prove the Kelvin-Planck
statement of the second law and demonstrate that there is a spon-
taneous heat flow from a bath with a negative temperature to one
with a positive temperature. This corroborates with the finding of
Ramsey [90] - baths with negative temperatures are ‘hotter’ than the
ones with positive temperatures. Interestingly, in such cases, the
entropy flow is opposite to the direction of heat flow which is again
expected for the baths with negative temperatures. We also construct
Carnot engines involving synthetic baths and find that engines op-
erating between positive and negative temperature baths can yield
unit engine efficiency. This leads us to question the physical meaning
of heat flow in the presence of a bath with negative temperatures.
With a systematic analysis, we show that the heat associated with a
bath with a negative temperature is equivalent to work but with a
negative entropy flow.

3.1 Synthetic baths and negative temperatures

In general, naturally occurring thermal equilibrium results in non-
negative temperatures. Only in certain situations, as discussed earlier,
can the temperatures be negative. Below, we introduce a method
through which a bath with an arbitrary temperature can be synthe-
sized. The temperatures of these synthetic baths can assume arbitrary
values, including negative ones.

The method utilizes a qutrit system, a hot bath (H) with inverse
temperature βH, and a cold bath (C) at inverse temperature βC. The
energy levels of the qutrit are denoted by |1⟩, |2⟩, |3⟩, with the corre-
sponding Hamiltonian H = (EH − EC) |2⟩⟨2|+ EH |3⟩⟨3|. As shown
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in Fig. 3.1, the hot (cold) bath weakly interacts with the levels |1⟩ and
|3⟩ (levels |2⟩ and |3⟩). As convention, we consider βH < βC, Planck
constant h̄ = 1, and the Boltzmann constant kB = 1 throughout this
project. The levels |1⟩ and |2⟩ are not directly coupled. However,
they are indirectly linked through the level |3⟩. When the couplings
between the qutrit and the baths are weak and satisfy the Markov
condition, the overall dynamics is expressed in terms of the Lindblad
or Lindblad-Gorini-Kossakowski-Sudarshan (LGKS) form of master
equation [70]

ρ̇ = LU(ρ) + LH(ρ) + LC(ρ). (3.1)

Here ρ represents the density matrix corresponding to a state of
the qutrit. The first term on the right-hand side of Eq. (3.1) LU(ρ) =
i [ρ, H] takes care of the unitary part of the evolution due to the system
Hamiltonian H. The second and third terms, with the Lindblad super-
operators (LSOs) LH(·) and LC(·), represent the contributions due
to the dissipative part of the evolution induced by the hot and cold
thermal baths, respectively. The LSOs are expressed (for X = H, C)
as

LX(ρ) = ΓX(NX + 1)
(

AXρA†
X − 1/2 {A†

X AX, ρ}
)

+ ΓX NX

(
A†

XρAX − 1/2 {AX A†
X, ρ}

)
, (3.2)

where AH = |1⟩⟨3|, AC = |2⟩⟨3|, anti-commutator {Y, Z} = YZ +
ZY, and NX = 1/(eβXEX − 1). The coefficient ΓX is the Weiskopf-
Wigner decay constant. The overall dynamics leads to heat exchange
between the baths and the system. The heat fluxes are quantified
as Q̇X = Tr[LX(ρ) H] due to interaction with the bath X [270–272].
Heat flux Q̇X > 0 implies that heat is flowing into the qutrit system
from the bath with inverse temperature βX.

This dynamics always leads to a steady state, say σ, which is
diagonal in the energy eigenstates. The the populations {pi} of the
states {|i⟩} satisfy

p1

p3
= eβH EH , and

p2

p3
= eβCEC .

The populations corresponding to states |1⟩ and |3⟩ attain thermal
equilibrium with the hot bath, and similarly, the populations of |2⟩
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Figure 3.1: A synthetic bath is created using two baths with different
temperatures and letting them interact with a qutrit system. In partic-
ular, the hot bath (H) with inverse temperature βH is weakly coupled
to the energy eigenstates |1⟩ and |3⟩. The cold bath (C) with inverse
temperature βC weakly interacts with the energy eigenstates |2⟩ and
|3⟩. As a result, the populations of the states |1⟩ and |2⟩ reach an
equilibrium corresponding to a synthetic temperature βS. By tuning
the temperature of the baths and the energy spacing between the
states, an arbitrary synthetic temperature can be obtained, including
negative temperatures. See text for more details.

and |3⟩ attain thermal equilibrium with the cold bath. In fact, the
dynamics drives the overall system to reach thermal equilibrium,
albeit in interactions with two baths at different temperatures. This
is justified because the heat flux and entropy production vanish, i.e.,
Q̇X = 0 for X = H, C and −βHQ̇H − βCQ̇C = 0 respectively. As the
entire system is in thermodynamic equilibrium, so as the populations
of the states |1⟩ and |2⟩.

In general, if one introduces an interaction between the levels
|1⟩ and |2⟩, be it time-dependent or time-independent, the heat and
entropy fluxes become non-zero [271, 272] and the corresponding
populations change. But once the interaction is switched off, the pop-
ulations revert to their equilibrium values. This is as if the levels |1⟩
and |2⟩, or the subspace spanned by these two levels, are interacting
with a synthetic bath at inverse temperature βS, defined as

βS =
1

ES
ln
(

p1

p2

)
=

1
ES

ln
(

p1

p3

p3

p2

)
=

βHEH − βCEC

ES
, (3.3)

where ES = EH − EC. We note that a Lindblad super-operator (LSO)
cannot be given exclusively for the equilibration dynamics due to the
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synthetic bath. However, as we discuss in the later sections, this is
a legitimate thermal bath. We call βS the ’synthetic’ inverse temper-
ature because it can be tuned to assume arbitrary values, including
negative values, by changing the energy-level spacings and the βH
and βC. In literature, there are debates on whether the temperature of
a system can be continuously changed from a positive to a negative
equilibrium temperature [268]. However, in this setup, the inverse
temperature of the synthetic bath can be tuned continuously, e.g.,
from βS > 0 to βS < 0, including βS = 0 (infinite temperature).

3.2 Thermodynamics with synthetic baths

To study thermodynamics with synthetic temperatures, we consider
two different qutrit systems L and R with the corresponding Hamil-
tonians HX = (EXH − EXC) |2⟩⟨2|+ EXH |3⟩⟨3|, with X = L, R. We
assume EXH − EXC = ES for both systems, i.e., the energy spacing
between |1⟩ and |2⟩ for both L and R are same. For brevity, we denote
HL ≡ HL ⊗ I and HR ≡ I⊗ HR. Each system couples to a hot and
a cold bath with inverse temperatures βH and βC respectively (see
Fig. 3.2) and reaches an equilibrium state. Without an interaction in
between, the equilibrium state of the composite LR becomes

ρL ⊗ ρR =
3

∑
m,n=1

pmqn |m n⟩⟨m n|, (3.4)

where p1/p3 = eβH ELH , p2/p3 = eβCELC , q1/q3 = eβH ERH , and q2/q3 =
eβCERC . The population ratio between the degenerate energy states
|21⟩ and |12⟩ is

p1q2/p2q1 = e(βLS−βRS)ES , (3.5)

where βLS and βRS are the synthetic temperatures corresponding to
qutrit L and R respectively.

An interaction is introduced that only couples subspace spanned
by the energy levels belonging to |1⟩ and |2⟩ in each qutrit, ensuring
an energy exchange between L and R only through these subspaces.
The most general interaction Hamiltonian that drives an energy ex-
change between these subspaces is given by

Hin = (λ + i γ) |12⟩⟨21|+ (λ− i γ) |21⟩⟨12|, (3.6)
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Figure 3.2: Two synthetic baths are engineered with the help of a hot
and a cold bath at inverse temperatures βH and βC, respectively. Each
synthetic bath is created by letting the baths weakly interact with
one qutrit, as shown in Fig. 3.1. Different synthetic temperatures are
engineered by tuning energy spacings between the states |1⟩, |2⟩, and
|3⟩. In addition, an interaction is introduced between the synthetic
baths to study the heat and entropy flow. See text for more details.

where λ, γ ∈ R. This interaction also strictly conserves energy, as
[Hin, HL + HR] = 0. The overall dynamics of LR is expressed as

ρ̇LR = i [ρLR, HT] + LL(ρLR) + LR(ρLR), (3.7)

where HT = HL + HR + Hin, LL(·) = LLH(·) + LLC(·), and LR(·) =
LRH(·) + LRC(·). Here, LXH(·) and LXC(·) are the LSOs taking into
account the dissipative part of the dynamics due to the coupling
with hot and cold baths, respectively, with the qutrit X. Under this
dynamics, the composite system LR reaches a steady state, say σLR.
Then, the heat flux and the entropy flux, respectively, are

Q̇X = Tr[LX(σLR) HX], ṠX = βXSQ̇X, (3.8)

with X = L, R, and Q̇X = Q̇XH + Q̇XC.
In absence of any interaction between the L and R, the steady (or

equilibrium) state is σLR = ρL ⊗ ρR (see Eq. (3.4)). Then, the heat
flux from L is Q̇L = 0, as Q̇LH = Q̇LC = 0. However in presence
of interaction via Hin, the steady state becomes σLR ̸= ρL ⊗ ρR, and
then the Q̇L = Q̇LH + Q̇LC ̸= 0. This means that there is heat flux
through the subspace spanned by {|1⟩, |2⟩} of L, which we may
consider as the heat flux due to the synthetic bath associated with L.
By convention, Q̇L > 0 implies a heat flux from the synthetic bath to
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L, which is then passed to R. With these tools at hand, we now set
out to explore steady-state quantum thermodynamics with synthetic
temperatures. Note that the first law is always respected at steady
state as Q̇L + Q̇R = 0. Thus, our emphasis would be on studying the
zeroth and second laws.

Zeroth law - In thermodynamics, the zeroth law interlinks the
notion of temperature with equilibrium. It states that if two systems
are in thermal equilibrium, they must have the same temperature
and vice versa. Again, thermal equilibrium implies that when two
systems are in contact, there is no net flux in any thermodynamic
quantities (such as heat and entropy) between systems. In such
situations, the overall entropy production also vanishes. Below we
show that, in the two-qutrit scenario discussed above, there is no
net flux of any thermodynamic quantity whenever the synthetic
temperatures are identical for both qutrits.

Recall the setup we consider in Fig. 3.2. Without any interaction,
the steady state of LR is ρL ⊗ ρR, which is diagonal in the energy
eigenstates (see Eq. (3.4)). With same synthetic inverse tempera-
tures βLS = βRS, the populations of the states |12⟩ and |21⟩ satisfy
p1q2 = p2q1 (see Eq. (3.5)). It means, the matrix corresponding to the
state ρL ⊗ ρR in the subspace spanned by {|12⟩, |21⟩} is proportional
to an identity operator. Now an interaction between L and R intro-
duced by Hin, as in Eq. (3.6). It is easily seen that [Hin, ρL ⊗ ρR] = 0
for βLS = βRS. Thus, even after the interaction is switched on, the
steady state remains unaltered, i.e., σLS = ρL ⊗ ρR and σ̇LR = 0.
Hence, there is no exchange of heat and entropy between L and R,
as Q̇X = ṠX = 0 for X = L, R. This implies that the synthetic baths
are in thermal equilibrium whenever the synthetic temperatures are
identical, irrespective of whether the temperatures are positive or
negative. A numerical analysis also confirms this. See Fig. 3.3(a).

Second law - For βLS ̸= βRS, heat and entropy flow is possible
from one qutrit to the other. However, the flow cannot be arbitrary.
The second law dictates the physically allowed processes given that
zeroth and first laws are respected. There are various statements of
the second law. Below, we analyze the Kelvin-Planck statement to
deal with the directionality of heat flow and the Clausius statement
regarding entropy production.
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Figure 3.3: The figures represent heat and entropy fluxes, Q̇L and
ṠL, respectively, through the qutrit L. The numerical calculation
is carried out with the parameters: ΓH = ΓC = 0.001, βH = 0.05,
βC = 1, λ = 1, γ = 0, ES = 9.5. The different synthetic inverse
temperatures are obtained by tuning the energy EH of |3⟩ for the
qutrits L and R. (a) The density plot represents the Kelvin-Planck
statement of the second law in terms of the heat flux through L, i.e.,
Q̇L. The plot shows no heat flux for βLS = βRS. This corroborates
with the zeroth law. However, there is a positive (negative) heat flux
Q̇L, i.e., heat flows from L to R (from R to L), whenever−βLS > −βRS
(−βLS < −βRS) implying bath with βLS (βRS) is hotter than βRS (βLS).
Clearly, a bath with a negative temperature is always ‘hotter’ than
any bath with a positive temperature. (b) The density plot represents
the variation of entropy flux ṠL for different synthetic temperatures.
As seen from the plot, for βLS = βRS, ṠL = 0. For βLS > 0 and
βRS > 0, the direction of entropy flux is same with the heat flux as
expected for the baths with positive temperatures. However, the
direction of heat flow is opposite to the direction of entropy flow, in
general, for baths with negative inverse temperatures. See text for
details.
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Let us consider the case for which −βLS > −βRS. When there
is no interaction between the qutrits, the equilibrium state of the
composite LS is ρL ⊗ ρR. The state is expressed in the block-diagonal
form as

ρL ⊗ ρR = Π0ρL ⊗ ρRΠ0 + Π1ρL ⊗ ρRΠ1,

where Π0 = |12⟩⟨12|+ |21⟩⟨21| and Π1 = I−Π0. The populations
corresponding to the energy eigenstates |12⟩ and |21⟩ satisfy p1q2 <
p2q1 (see Eq. (3.5)).

Now let us disconnect the thermal baths and introduce an inter-
action driven by Hin. This, or the total Hamiltonian HT, evolves the
composite and induces a rotation onto the subspace spanned by |12⟩
and |21⟩ only. At the same time, the other part of the density matrix
remains unchanged. As a result, there appear off-diagonal elements
in this subspace. Say, the state of LR after any evolution becomes

ρ′LR = a |12⟩⟨12|+ b |12⟩⟨21|+ c |21⟩⟨12|+ d |21⟩⟨21|
+ Π1ρL ⊗ ρRΠ1.

The unitary nature of the evolution in the subspace |12⟩ and |21⟩
guarantees that a > p1q2 and d < p2q1. For this reason and as the
off-diagonal elements do not contribute to the populations of the
reduced state of L, i.e., ρ′L = TrR ρ′LR, we find p′1 = ⟨1|ρ′L|1⟩ > p1 and
p′2 = ⟨2|ρ′L|2⟩ < p2. Similarly, for the reduced state of ρ′R = TrL ρ′LR,
the modified populations becomes q′1 = ⟨1|ρ′R|1⟩ < q1 and q′2 =
⟨2|ρ′R|2⟩ > q2. Note, the populations corresponding to level |3⟩ for
both L and R remain unchanged, i.e., ⟨3|ρ′L|3⟩ = p3 and ⟨3|ρ′R|3⟩ = q3.
Clearly, the qutrit L loses some energy. As the evolution respects strict
energy conservation, the qutrit R gains the same amount of energy.
Thus, any evolution due to Hin ensures that there is an energy flow
from L to R for −βLS > −βRS. After this modification, if L is now
exposed to its baths, the dissipative dynamics due to LL(·) forces the
qutrit to restore its equilibrium state, p′1 → p1 and p′2 → p2. This, in
turn, increases the energy of L by absorbing some heat from the hot
and cold baths or, equivalently, from the synthetic bath. Similarly, if
R is exposed to its baths, some of its energy is released to its synthetic
bath in the form of heat and thereby attains its equilibrium. Note in
this process, to reach the equilibrium, the populations of |3⟩ do not
remain constant throughout in both L and R.
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From the above arguments, we see that the unitary evolution
with the interaction between L and R drives the composite out of
equilibrium leading to a spontaneous heat flow from L to R for
−βLS > −βRS. At the same time, the dissipative evolution due
to thermal interactions with the baths tries to restore the composite
back to the initial equilibrium state (ρL ⊗ ρR) by pumping some
heat into L and absorbing some heat from R. When both unitary
and dissipative evolutions occur simultaneously, as in Eq. (3.7), the
opposing tendencies balance each other and result in a steady state,
say σLR. This steady state is again block-diagonal in total energy
eigenstates and has off-diagonal elements in the eigenstates |12⟩ and
|21⟩. Nevertheless, the steady-state dynamics generate a heat flux
from L to R,

Q̇L = Tr[LL(σLR) HL] = Tr[LL(σL) HL] > 0, (3.9)

and Q̇R = −Q̇L. The expression of Q̇L can be given analytically, and
it has complicated dependencies with all the parameters. Rather, a nu-
merical analysis is more illuminating; we have done so in Fig. 3.3(a).
Again for −βLS < −βRS, we find that Q̇L < 0. This means that there
is a spontaneous heat flow from R to L.

In thermodynamics, the Kelvin-Planck statement of the second
law states that heat can only flow from a hot bath to a cold bath
when no external work is performed. As we see above for −βLS >
−βRS, there is a heat flow from L to R. This means that: (1) baths
with negative inverse temperatures are ’hotter’ than the baths with
positive inverse temperatures; (2) baths with larger negative inverse
temperatures are ’hotter’ than those with smaller negative inverse
temperatures. This is in conformation with the findings of Ramsey
[90]. However, one important point to be noted here is that although
there is a heat flow from a negative to a positive temperature bath,
the entropy flow is the opposite. This is indeed a signature of a bath
having a negative temperature.

The Clausius statement, another formulation of the second law,
states that the overall entropy production is always positive in a
thermodynamical process. For steady-state thermodynamics with
synthetic baths, the overall entropy production is given by

Σ = ṠLR − βLSQ̇L − βRSQ̇R, (3.10)

55



Chapter 3: Synthetic negative temperature

where ṠLR = ∂SLR/∂t is the rate of change in von Neumann entropy
SLR = −Tr[σLR log σLR], and βLS (βRS) is the synthetic inverse tem-
perature of L (R) and Q̇L (Q̇R) is the heat flux from L (R). Note at
steady state, the ∂SLR/∂t = 0 and Σ = (βRS− βLS) Q̇L, as Q̇L = −Q̇R.
For −βLS > −βRS, the heat flux from L is positive, Q̇L > 0. Conse-
quently, Σ > 0. Similarly, Q̇L < 0 for −βLS < −βRS, and thus Σ > 0.
For βLS = βRS, we have Σ = 0. Thus, the Clausius inequality in the
differential form is

Σ ≥ 0,

and it is always satisfied as long as the Kelvin-Planck statement is
respected.

At steady state, the entropy production rate is positive, Σ ≥ 0.
This is mainly due to the dissipative interaction between the baths
and the system. However, one may find out an entropy flow through
the system LR, as

ṠX = −Tr[LX(σLR) log σLR],

for X = L, R (see Appendix B.1). At steady state, ṠL + ṠR = 0 as
the state does not evolve over time. ṠL > 0 implies that there is
an entropy flux from bath with inverse temperature βLS to R via
L, and similarly for ṠR > 0. In general, for a bath with positive
temperature, an outflow of heat is associated to a decrease in entropy.
One striking feature we must note here is that, although there is a
spontaneous heat flow from a bath with negative temperature to a
bath with positive temperature, the entropy flow is just opposite to
that (see Fig. 3.3(b)). This is also true when both baths are of negative
temperatures. For a bath with negative temperature, an outflow of
heat is associated with an increase in entropy of the bath. Thus, a
bath with negative temperature in general acts as an entropy sink.

3.3 Quantum heat engines with a bath at neg-
ative temperature

Now we discuss heat engines operating with a bath at synthetic tem-
peratures, particularly at negative temperatures. A device acting
as a heat engine aims to transform heat into work. A generic heat
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engine consists of three primary parts: two separate heat baths with
different temperatures and a working system. It operates by absorb-
ing heat from the hot bath. The working system transforms part of
this heat into work, dumping the rest into the cold bath. The model
of a quantum heat engine (QHE) we are concerned with utilizes a
synthetic bath with negative temperature and a heat bath with pos-
itive temperature (as depicted in Fig. 3.4). The working system is
composed of a qutrit (L) and a qubit (W). The synthetic bath with
inverse temperature βLS is created using two baths at different tem-
peratures βH and βC and letting these weakly interact with L, similar
to the one considered in Fig. 3.1. The Hamiltonian of L is given by
HL = (EH − EC)|2⟩⟨2|+ EH|3⟩⟨3|. The qubit W is weakly coupled
to a bath at inverse temperature βW ≥ 0, and its Hamiltonian is
HW = EW |2⟩⟨2|, where EW = EH − EC. To operate the device as a
heat engine, a time-dependent interaction is introduced between L
and W driven by the interaction Hamiltonian

HE
in(t) = δ (|11⟩⟨22| eiωt + |22⟩⟨11| e−iωt). (3.11)

The total Hamiltonian is then HE
T = H0 + HE

in(t), where H0 =
HL + HW . The overall dynamics will never lead to a steady state
for a time-dependent interaction. However, for a periodic time de-
pendence, there is a rotating frame in which the interaction becomes
time-independent. For instance, to move from the laboratory frame
to a rotating frame to we may introduce a rotation, given by the
unitary U = exp[iHRt] which satisfies [HR, H0] = 0. For a suitable
HR, the interaction becomes time-independent, i.e., Vin = UHE

in(t)U
†.

In this rotating frame, the overall dynamics comprising the unitary
and the dissipative evolution is given by (see Appendix B.1)

ρ̇R
LW = i[ρR

LW , H̄E
T ] + LL(ρ

R
LW) + LW(ρR

LW), (3.12)

for a state ρLW , with ρR
LW = UρLWU† and H̄E

T = H0 − HR + Vin. Note
the LSOs remain unchanged in the rotating frame. Now that the
time-dependence in the Hamiltonian is lifted, the dynamics attains a
steady state σR

LW in the rotating frame.
With this, the heat flux, entropy flux, and the power in the labora-

tory frame are quantified as (see Appendix B.1)

Q̇X = Tr [LX(σ
R
LW) H0], ṠX = −Tr[LX(ρ

R
LW) log σR

LW ],

and P = i Tr [σR
LW [Vin, H0]]. (3.13)
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Figure 3.4: A schematic of a quantum heat engine operating with two
baths; one with negative inverse temperature βSL and the other with
positive temperature βW . The negative temperature is synthesized by
weakly coupling a qutrit L with a hot and a cold bath, as discussed
in Fig. 3.1. This is as if the energy levels |1⟩ and |2⟩ are coupled to
a synthetic bath at inverse temperature βSL. A qubit W is weakly
coupled to the bath with βW . In the engine, L and W are coupled
through a time-dependent interaction as in Eq. (3.11). The arrows
represent the direction of heat (Q̇X) and entropy (ṠX) fluxes for X =
L, W, and P represents the power of the engine. See text for more
details.

for X = L, W, and [A, B] = AB − BA. Here Q̇X and ṠX represent
the heat and entropy fluxes through system X respectively, and P
represents the power. The condition Q̇L + Q̇W + P = 0 is always
satisfied as required by the first law [273, 274] and at steady state,
ṠL + ṠW = 0. For any negative inverse temperature βLS < 0, we have,
as confirmed by numerical analysis, Q̇L > 0, Q̇W > 0, and P < 0.
This means the device draws heat from both the synthetic bath and
the bath with inverse temperature βW . For traditional engines, the
efficiency is calculated as the ratio of work extracted and the heat
absorbed by the engine from the hot bath. Here, the heat is absorbed
from both baths. For each bath, the corresponding engine efficiency
may be defined as

ηL =
−P
Q̇L

, and ηW =
−P
Q̇W

.

It can be easily checked that ηL > 1 and ηW > 1. Thus, the efficiency
exceeds unity for an engine operating between baths with positive
and negative temperatures. This is what is also claimed in literature
[109]. We, however, find this conclusion incomplete. The heat-to-
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Figure 3.5: The plot represents a change in heat flux (Q̇L) and entropy
flux (ṠL) through L in the engine with respect to βSL. The calculation
is done with the parameters: βH = 0.01, βW = 0.1, βC = 10, δ = 5,
ω = 1, and ES = 5. As clearly seen, Q̇L > 0 and ṠL < 0 for all
βSL < 0. See text for more details.

work conversion efficiency should always be defined with respect to
the total amount of heat entering the engine and the amount of work
produced out of that. In that sense, the total heat flux entering the
engine is Q̇L + Q̇W , and this entire heat is converted into work. As a
result, we find

η =
−P

Q̇L + Q̇W
= 1,

i.e., the engine efficiency becomes unity. Thus, the efficiency of an
engine can never exceed unity in any circumstance as long as the first
law, i.e., the overall energy conservation, is respected.

This is, nevertheless, different from what we see in traditional
heat engines. It raises a question on the physical meaning of the
heat released or absorbed by a bath with a negative temperature. By
definition, heat is a form of energy that is always associated with a
change in the entropy of the corresponding bath. Heat flow, thus,
occurs with an entropy flow. The work, on the other hand, is a pure
form of energy and is not associated with any flow of entropy. In
traditional engines operating with baths at positive temperatures,
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the direction of heat flow and the direction of entropy flow is the
same. That is how a bath gets cooled down when it releases some
heat. For a bath with a negative temperature, this is not true (see
Fig. 3.3(b)). There the bath’s entropy increases as it releases heat.
For the engine we have considered above, the direction of heat flux
Q̇L > 0 is opposite to the direction of entropy flux ṠL < 0 in L which
is coupled to the negative bath (see Fig. 3.5). While for W, coupled to
positive temperature bath, the direction of heat flux Q̇W > 0 is the
same as the direction of entropy flux ṠW > 0. In fact, while heat is
entering the engine from both baths, there is an entropy flow from
the bath with inverse temperature βW to the bath with βSL where the
latter acts as an entropy sink.

In order to understand the thermodynamic nature of this heat,
let us make a closer inspection of the process that is happening on
L and W alone in the rotating frame. To create a synthetic bath
with negative temperature, L interacts with hot and cold baths with
inverse temperatures βH and βC. The corresponding heat fluxes
are Q̇LH = Tr[LLH(σ

R
LW) HL] and Q̇LC = Tr[LLC(σ

R
LW) HL]. Recall

that LL(·) = LLH(·) + LLC(·). We can also quantify the power as
PL = i Tr[σLW [Vin, HL]] which is produced in L. For the interaction
Vin, we always find Q̇LH > 0, Q̇LC < 0, and PL > 0. For W, the heat
flux and power can be similarly calculated, and they are Q̇W > 0 and
PW < 0. At steady state, we have

Q̇LH + Q̇LC + PL = 0,

Q̇W + PW = 0,
P = PL + PW .

Note Q̇L = Q̇LH + Q̇LC and Q̇L = −PL. This may imply that the
heat flux from the synthetic bath is quantitatively equal to the power
extracted from L. But, as mentioned above, this cannot be just power,
as power is not associated with any entropy flux. Here, instead, we
see an entropy flux opposite to the power extracted (heat flux) in
L. This leads us to conclude that heat from a bath with a negative
temperature is thermodynamic work but with negative entropy.
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3.4 Conclusion

In this work, we have studied steady-state quantum thermodynamics
with negative temperatures. For that, we have engineered synthetic
baths by utilizing two baths at different positive temperatures and let-
ting them weakly interact with qutrit systems in a particular fashion.
These synthetic baths can assume arbitrary temperatures, including
negative ones. These baths with negative temperatures are exploited
to study steady-state thermodynamics. We have explored the ther-
modynamic laws, particularly the zeroth and second laws. We have
shown that whenever two synthetic baths with identical tempera-
tures are brought in contact, there is no heat flow in between. This,
in turn, legitimizes the notion of temperatures in synthetic baths.
On the other hand, for non-identical temperatures, there is a heat
flow. Further, heat always flows spontaneously from a bath with
a negative temperature to a positive one. This implies that a bath
with a negative temperature is ‘hotter’ than a bath with a positive
temperature. Further, there is a heat flow from a bath with a less
negative temperature to a bath with a more negative temperature.
We have then studied the Clausius statement of the second law in
case of negative temperatures and found that there is always non-
negative entropy production in the steady-state thermal processes.
Then, we have introduced a heat engine model that operates between
two baths, one with negative temperature and the other with positive
temperature. Unlike traditional engines, these engines always yield
unit heat-to-work conversion efficiency. A systematic analysis has
revealed that the heat flow from a bath with a negative temperature
is equivalent to an injection of work into the working system by an
equal amount. This is exactly the reason why these engines yield unit
efficiency.

Finally, we conclude that:

• A thermal bath with a negative temperature can be synthesized
with two baths with different positive temperatures.

• In steady-state thermodynamics with negative temperatures,
the zeroth law and the Clausius statement of the second law
remain unchanged. However, the Kelvin-Plack statement is to
be appended to incorporate that there is a spontaneous heat
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flow from a bath with a negative temperature to a bath with
a positive temperature and from a bath with smaller negative
temperature to a bath with a larger negative temperature.

• A continuous heat engine can be constructed using baths with
negative and positive temperatures. In such engines, the heat-
to-work conversion efficiency is always unity. This is maximum
for any device that respects first law, i.e., conservation of total
energy.

• On the fundamental level, the thermodynamic nature of heat
from a bath with a positive temperature is qualitatively different
from the one with a negative temperature. For the former, heat
flows in the same direction as entropy flow. For the latter, heat
flows in the opposite direction of entropy flow. Further, heat
from a bath with a negative temperature is thermodynamic
work but with negative entropy.
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Dynamical spectroscopy

In this chapter, we explore the transient quantum dynamics as a po-
tential resource. We consider such a scenario of transient quantum
dynamics like High Harmonic Generation (HHG), which is a conse-
quence of the interaction between materials and a strong laser field.
Such HHG processes can divulge crucial system details that can be
investigated. In the following part, we discuss in detail the mecha-
nisms of HHG in atoms (Sec. 4.1) and then solids (Sec. 4.2) which is
the main focus of this chapter. Finally, we shall see how HHG can be
utilized for dynamical spectroscopy to characterize different solids.

4.1 HHG in Atomic systems

When a photon with appropriate energy is incident upon an atom,
it can interact with an electron in the atom and excite it to a higher
energy state as in Fig. 4.1. In order for the atom to be excited, the
energy of the photon must be the same as the difference in energy
between two specific energy levels.

In general such a scenario, a dimensionless parameter is defined to
compare the different energy scales involved in the problem. Such a
parameter was introduced by Leonid Veniaminovich Keldysh, which
is known as the Keldysh parameter λ.

λ =

√
Ip

2Up
(4.1)
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Figure 4.1: Single-photon absorption: The ground state (|g⟩) atom
has become excited (|e⟩) due to the absorption of a photon of energy
h̄ω.

where Ip and Up are the ionization energy and the ponderomotive
energy, respectively. The ponderomotive energy is expressed,

Up =
e2E2

0
4mω2

o
(4.2)

Depending on the effective value of λ, we encounter different process
as follow:

Multiphoton Ionization (MPI) (λ≫ 1): In this scenario, the energy
of the incident photon is off-resonant with the energy gap. Neverthe-
less, electrons might be excited by multiphoton absorption. Then the
emission process will eventually lead to the electron returning to its
ground state. As a consequence, a high-energy photon is released as
in Fig. 4.2. This procedure is often carried out in a laser field, where
the high intensity of the laser field permits the atom or molecule to
absorb a large number of photons in a relatively short period of time.
Because MPI is a non-linear process, it follows that the ionization rate
will swiftly increase in proportion to the laser intensity.

Tunnel Ionization (λ ≪ 1) : Tunnel ionization takes place when
the strength of the electric field is sufficient to overcome the binding
energy of the electrons in the atom or molecule, causing the electrons
to tunnel through the potential barrier and become ionized as in
Fig. 4.3. This process takes place when the electric field is strong
enough to overcome the binding energy of the electrons and the
process is known as ”strong field ionization”. The tunnel ionization
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Figure 4.2: Multiphoton ionization: In this scenario, the energy of the
incoming photon is not in resonance with the energy gap between
two levels, an electron may jump to a higher energy level by absorb-
ing a series of photons.

process leads to the development of a highly charged ion, then the
electron moves in the laser field, and when the laser field turns, the
electron then can subsequently recombine with the ion that it was
derived from to generate higher harmonics. In this extremely nonlin-
ear optical process, low-energy photons are converted into one soft
x-ray photon. This multi-photon process paves the way to exploring
the frontiers of physics on the order of one quintillionth (10−18) of a
second and generates the notion of ultrafast measurements.

The high harmonic generation (HHG) was encountered by experi-
mentalists [125, 126]. Later on, Ferray et al. [127] phenomenologically
described the characteristics of HHG spectra, which are as follows:
At first, the intensity of spectra decreases as the harmonic number
increases, as in a perturbative regime; then, the harmonic number
further increases the intensity remains approximately constant over
a broad region, creating a plateau that cannot be explained by pertur-
bation theory; and finally, the plateau ends abruptly at a point called
the high harmonic cut-off. This is the signature characteristic of HHG
spectra.
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There are a couple of theoretical models that attempt to give in-
tuition about the microscopic picture of HHG. Corkum introduced
a three-step model to explain HHG, which has become popular as
Simple-man’s model [120]. In this semi-classical model, the move-
ment of electrons in the laser field is described as a classical phe-
nomenon, even though tunneling and recombination are described
as quantum phenomena. The simple man model predicted: In HHG,
the electrons that are liberated by tunnel ionization are accelerated
back toward the ionized atoms or molecules by the laser field, and
when they recombine with the ion, they emit photons with ener-
gies that are many times higher than the frequency of the original
laser pulse. The other model was introduced by Lewenstein et al.,
which is famous as the Lewenstein model [118]. This model actually
modified Simple-man’s model, where they use the strong field ap-
proximation technique and consider the electric field as a classical
field and electrons as quantum particles. Recently Lewenstein et al.
have further provided a completely quantum mechanical description
of HHG [128].

Figure 4.3: Schematic view of tunnel ionization of the atomic system,
here V(r) and Fr are the binding energy of electrons and the external
electric field, respectively.
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After this, we discuss exclusively about HHG in solids, leaving
atoms and molecules behind.

4.2 HHG in solids

The energy difference between electrons in solids is more complicated
than in the two-level atomic systems. The electrons in solids lie within
a band structure and the electron crystal momentum plays a role in
the interaction between light and matter in solids. When light is
absorbed by a material, it has the possibility to excite an electron,
bringing it from a lower energy state to a higher one and forming an
electron-hole pair as a result of the transition. The probability of this
happening depends on the energy and the polarization of the incident
light and the density of states in the band structure at the energy level
of the electron. Even when light interacts with a solid, it can also
transfer momentum to the electrons, driving them to accelerate to
higher momentum values within the band of energy levels. This
acceleration may lead to the transition from the valence band to the
conduction band as well. This process is known as optical or photon-
induced acceleration, and it can be used to manipulate the electronic
properties of solids. However, this process is very reliant on the band
structure of the material and the properties of incident light. In the
scenario of light emission, it displays richer dynamics due to the
different electronic structures of solids. The crystal momentum of
the electron, on the other hand, determines the probability of it being
excited to a certain energy level. This is determined by the symmetry
of the crystal lattice as well as the characteristics of the excited states.

The realization of HHG in solids would occur through two mech-
anisms [134, 275, 276]: interband polarization and intra-band current.
This shares many similarities with the three-step approach that is
often employed to explain HHG in atomic substances [133, 277–279].
However, there are also significant dissimilarities with the atomic
three-step model. In the solid phase, the cutoff frequency of HHG
varies linearly with the strength of the electric field [133, 280]. In
the gas phase, however, the cutoff frequency varies linearly with the
intensity of the driving electric field [120, 281]. After an electron has
been ionized in a gas, it accelerates through the gas by driving field.
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Figure 4.4: HHG mechanism in solids and atoms, [276].

However, the band structure of a solid prevents the free acceleration
of electrons.

The two mechanisms of HHG in solid have been discussed below.

4.2.1 The intra-band mechanism

After the electrons are driven by the electric field from a partially
filled valance band to a partially filled conduction band, then the
intra-band mechanism kicks in. Due to the strong electric field, the
electron is driven anharmonically in the conduction band, and the
hole is driven anharmonically in the valance band. The strongly
anharmonic motion of the electrons (and holes) results in an anhar-
monic current that governs HHG in solids. Since the currents that
are responsible for the emission of light are confined inside distinct
band—that is, the holes are in the valence band, and the electrons are
in the conduction band (Fig. 4.4; [276])—this process is referred to as
the intra-band mechanism [119, 282].
Electron’s motion under intra-band mechanism: We calculate the
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group velocity of the electron’s wave packet, which itself is composed
of a superposition of several Bloch waves with different values of
crystal momentum k. The dispersion relation of band structure is
denoted as E(k), and the group velocity would be [283],

vg =
1
h̄

dE(k)
dk

(4.3)

The electrons traverse through an electric field with strength E
for the duration dt→ 0 , then the change in energy would be

dE = −e E vg dt (4.4)

using Eq. (4.3) and Eq. (4.4) we can write,

h̄
dk
dt

= −e E (4.5)

It implies that changes in the crystal momentum of Bloch electrons
are due to the external electric field E . We can define the acceleration
of a Bloch electron as,

a =
1
h̄

d
dt

dE(k)
dk

=
1
h̄

d2E(k)
d2k

dk
dt

= − 1
h̄2

d2E(k)
d2k

e E (4.6)

The above equation expresses the equation of the motion of moving

particles in the crystal. The term, [ d2E(k)
d2k ]−1 is referred as the effective

mass of moving particles in a crystal.

The intra-band current: The intra-band current is the consequence of
the anharmonicity of the motion of electrons and holes within their
respective bands [119]. We assume a particular scenario where the
electrons and holes are created by the external field, and the electrons
are already migrated to the conduction band. The same electric field
also drives the electron and hole in their respective band. In this
situation, the equation of motion of electrons is expressed by Eq. (4.5).
Now, we apply an oscillatory electric field with frequency ω0 under
a constant envelope,

E (t) = E0 cos (ω0 t) (4.7)
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According to Eq. (4.5) we can write:

dk
dt

= −E0 cos (ω0 t) (4.8)

k(t) = − E0

ω0
sin(ω0 t) (4.9)

here we assume h̄ = e = [ d2E(k)
d2k ]−1 = 1.

One can expand Eq. (4.8) and can write

E(k) =
∞

∑
r=0

hr cos (rka) (4.10)

here, a is the lattice constant, and hr is another constant that is associ-
ated with the band structure of the crystal.

Now we use Eq. (4.10) and Eq. (4.8) to get the the group velocity,

vg =
dE(k)

dk
= −

rmax

∑
r=1

(r a hr ) sin (r a k(t))

= −
rmax

∑
r=1

(r a hr ) sin
(
− r a

E0

ω0
sin (ω0 t)

)
=

rmax

∑
r=1

(r a hr ) ∑
n

J2n−1

(
r a

E0

ω0

)
sin ((2n− 1)ω0 t)

(4.11)

here we use Jacobi-Anger expansion in the form of the Bessel function
Jn of first kind of order n, sin(a sin x) = ∑∞

n=−∞ Jn(a) sin(nx).
The equation for current would be derived from the expression of
group velocity in Eq. (4.11)

Iintra(t) = −
2e

(2π)3

∫
BZ

vg(k t) fG(k t) d3k (4.12)

fG(k t) is the time-dependent distribution function of the wave
packet. So, one can calculate the high harmonic IHHG from the time
derivative of of the current.

IHHG(t) ∝
∣∣∣∣∂Iintra(t)

∂t

∣∣∣∣2 FFT−−→ IHHG(ω) ∝
∣∣∣∣ωĨintra(ω)

∣∣∣∣2 (4.13)

70



Chapter 4: Dynamical spectroscopy

However, for simplicity, we assume that a wave packet is localized at
a particular k.

Iintra(t) ∝ vg(t) (4.14)

Then, one can easily calculate IHHG directly from the group velocity.

IHHG(t) ∝
∣∣∣∣∂vg(t)

∂t

∣∣∣∣2 FFT−−→ IHHG(ω) ∝
∣∣∣∣ωṼG(ω)

∣∣∣∣2 (4.15)

Applying Eq. (4.11) to Eq. (4.15) we can calculate higher-order har-
monics

IHHG,(2n−1)(ω) ∝
∣∣∣∣Nω0

rmax

∑
r=1

(r a hr)J2n−1

(
r a E0

ω0

)∣∣∣∣2 (4.16)

where n ∈N > 0 and we use the

FT{sin ((2n− 1)ω0 t)} ∝ δ(ω− (2n− 1)ω0)

Eq. (4.16) indicates that only the odd-integer (2n− 1) harmonics are
emitted. Also, the Bloch frequency is often introduced,

ωB =
eaE0

h̄
= a E0 (4.17)

where, h̄ = e = 1.
However, Eq. (4.16) would be modified by Bloch frequency,

IHHG,(2n−1)(ω) ∝
∣∣∣∣Nω0

rmax

∑
r=1

(r a hr)J2n−1

(
r ωB

ω0

)∣∣∣∣2 (4.18)

The intraband picture predicts a cutoff frequency of the order if the
electron (or hole) is confined to a single cosine-shaped conduction
(or valence) band,

Ncutoff =
ωB

ω0
. (4.19)

All in all, we see from the analysis that Bloch oscillation plays a cru-
cial role in generating intra-band current in solids.
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Role of Bloch oscillation: Bloch oscillation describes the oscilla-
tion of a particle (e.g., an electron) confined in a periodic potential
when a constant force is operating on it. When an electric field accel-
erates an electron, the particle encounters a periodic potential as it
traverses through a crystal lattice. Bloch oscillation is the result of
this potential, which causes the velocity of the electron to oscillate
back and forth and produce the oscillation. Bloch oscillation has
been shown to have a substantial consequence for high harmonic
generation in solid-state materials [130, 132, 284]. In particular, it can
contribute to the intra-band current in HHG, which is the current that
flows within the conduction band of the material. Let us consider
that a periodic band is partially filled with electrons, and a constant
electric field −E is acting on the band. According Eq. (4.5)

dk(t)
dt

= E ⇒ k(t) = E .t (4.20)

Again, we assume a cosine brand structure E(k) = 2− cos (ka), the
group velocity would be,

dE(k)
dk

= a sin (ka) = a sin (E .t.a) = sin (ωB.t) (4.21)

the expression of ωB has been given in Eq. (4.17).
Eq. (4.21) implies that the group velocity with Bloch frequency ωB
results in the acceleration within the bands. The group velocity in
the Bloch oscillation flips signs (t = π

ωB
), which is also worth noting.

Another important point is if the driving field is not adequately
powerful and changes sign before the electron reaches the Brillouin
zone boundary, no Bloch oscillations can occur because the electrons
never reach the Brillouin zone boundary. This can be understood
with a simple example, considering that electrons start at k = 0 and
the electric field is expressed in Eq. (4.7). We have k(t) = − E0

ω0
sin ω0t

from Eq. (4.9). The Bloch oscillation can occur if the amplitude of
k = E0

ω0
is greater or equal to the Brillouin zone edge π

a ,

E0

ω0
≥ π

a
⇒ ωB ≥ πω0 (4.22)

Next, we discuss the second mechanism of HHG in solids.
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4.2.2 The interband mechanism

The interband mechanism refers to the process by which electrons are
migrated from the valence band to the conduction band due to the
absorption of high-energy photons. This process generates polariza-
tion within the material. The polarization arises from the separation
in the opposite direction of the electron and hole charge carriers in
real space due to the electric field of the incident light. However,
in k−space, the electron and hole charge carriers move in the same
direction. In real space, though, the electrons and the holes are driven
in opposite directions by the field, causing a dipole moment to be
created. Thus, the change in dipole moment causes the change in
polarization inside the material, resulting in a current generation.
Due to the external electric field, the charge carrier electrons and
holes accelerate, which ultimately finally recombine and result in
the emission of light. This polarization current is often referred to as
interband current. That can be obtained directly from polarization
P(t),

Iinter(t) =
∂P(t)

∂t
(4.23)

The calculation for the associated radiation spectrum is the modulus
square of the Fourier transform of the time derivative of the cur-
rent. This is equivalent to taking the Fourier transform of the dipole
acceleration.

Rinter(ω) =

∣∣∣∣∣FT

{
∂

∂t
Iinter(t)

}∣∣∣∣∣
2

=

∣∣∣∣∣FT

{
∂2

∂2t
P(t)

}∣∣∣∣∣
2

∝

∣∣∣∣∣ω2P̃(ω)

∣∣∣∣∣
2

(4.24)

here we take the Fourier transform of the time derivative, which is
proportional to iω. On summing the contribution from intra-band
and interband mechanisms, the resultant harmonics can be obtained
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as

R(ω) =

∣∣∣∣∣FT

{
∂

∂t
Iintra(t) +

∂

∂t
Iinter(t)

}∣∣∣∣∣
2

=

∣∣∣∣∣FT

{
∂

∂t
Iintra(t) +

∂2

∂2t
P(t)

}∣∣∣∣∣
2

∝

∣∣∣∣∣iωĨintra(ω) + ω2P̃(ω)

∣∣∣∣∣
2

(4.25)

Thus, the interplay between intra-band and interband action is
one of the essential processes that generate HHG in solids. Hence,
we have two processes that, in theory, are able to explain how high-
harmonic light might be generated from a solid. The obvious issue
that has to be asked is which of these two mechanisms is prominent
for the generation of high-order harmonics in solids. The last decade
has seen a great deal of debate on these issues, but no clear resolution
has emerged.

However, the incorporation of HHG into solids has the potential
to transform a broad number of disciplines, spanning from funda-
mental studies of light-matter interactions to applied research in
materials science, quantum technologies, and surface science [285].
It facilitated a new way to understand physical phenomena beyond
linear response regimes such as:
a) Ultrafast imaging: HHG can be used to capture images of dynamic
processes on ultrafast timescales, providing insights into the behav-
ior of materials and biological systems. For example, researchers
have used HHG to image the motion of electrons in graphene, pro-
viding new insights into the electronic properties of this material
[35, 286, 287].
b) Ultrafast electronics: HHG can be used to generate high-frequency
signals for use in ultrafast communication and computing technolo-
gies. For example, one can use HHG to generate terahertz radiation,
which has potential applications in high-speed wireless communica-
tion and sensing [129, 288, 289].
c) Attosecond physics: HHG can be used to generate extremely short
bursts of light, known as attosecond pulses, which are useful for
studying ultrafast processes on the timescale of electronic motion.
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For example, researchers have used HHG to study the dynamics of
electronic motion in atoms and molecules, providing insights into
fundamental processes in quantum physics [38, 39, 290–292].
d) Ultrafast spectroscopy: We can utilize HHG to study the properties
of materials on extremely short timescales, providing insights into
the behavior of electrons and the dynamics of chemical reactions. For
example, HHG has been used to study the behavior of electrons in
topological insulators, which have potential applications in quantum
computing [293–298].

Beyond these, there are several applications of HHG, such as
Nonlinear optics, ultra-fast magnetism [299–301], quantum materials
[302–305] and more [306–308].

Here, we employ HHG spectroscopy to investigate three dis-
tinct properties of solids: topological features in the generalized
non-interacting SSH chain; the distinction between localized and de-
localized phases in the non-interacting Aubry-André-Harper model;
and the topological phase in the 1-dimensional strongly correlated
extended Fermi Hubbard model. In recent years, the field of con-
densed matter physics has seen an increasing interest in the study
of topological phases of matter. These phases are characterized by
non-local and non-perturbative properties that are protected by topo-
logical invariants, which are robust against perturbations and im-
perfections. The discovery of topological insulators [185, 309] and
topological superconductors [137, 310] has led to the exploration of
a wide range of topological phases in different materials, including
cold atoms [311] and photonic [312–314] systems. The study of these
systems is not only of fundamental interest, but also has potential
applications in various fields, such as quantum computing [315–318],
spintronics [319], and magnetometry [320].

In the following section, we explore the topological feature of the
1-D Extended Su- Schrieffer-Heeger chains.

4.3 Detection of topological phase in extended
Su-Schrieffer-Heeger chains

The Su-Schrieffer-Heeger (SSH) model is one of the simplest models
that exhibit non-trivial topological properties. It is a one-dimensional
model originally introduced to describe the electronic properties of
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polyacetylene [321, 322], a linear polymer of carbon and hydrogen
atoms. The model is described by a tight-binding Hamiltonian rep-
resenting hopping of electrons between adjacent sites, with two dif-
ferent parameters, representing alternating single and double bonds.
The SSH model exhibits two different phases, characterized by the
number of edge states that appear in the band gap at a zero-energy.
In the trivial phase, there are no zero-energy states, while in the
topological phase, there are two such states that appear at the open
ends of the system. Various extensions of the SSH model have been
explored, including longer-range tunneling terms that describe the
hopping between second nearest neighbors [318, 323]. An appropri-
ately extended SSH model may exhibit additional topological phases,
such as a phase characterized by four edge states.

High harmonic spectroscopy in condensed matter is a burgeoning
field in strong-field attosecond science that has the potential to un-
cover the structural and dynamical properties of materials [291, 324].
High harmonic generation (HHG) is a nonlinear optical process that
occurs when an intense laser field interacts with a material, pro-
ducing high-order harmonics of the incident frequency. In recent
years, the connection between strong-field attosecond science and
the topological condensed matter has started to be explored theo-
retically [325–333] and experimentally [334, 335]. In the context of
the SSH model, theoretical studies have shown that high-harmonic
spectroscopy can be used to detect topological properties [326, 327].
In particular, the high-harmonic spectra of the SSH model exhibit
characteristic features that allow to distinguish between trivial and
non-trivial topological phases, and to identify the topological edge
states. Nevertheless, it remains unclear whether two different non-
trivial topological phases, with various non-zero number of edge
states, can also be identified using HHG.

To address this issue, in this work, we consider the extended
version of the SSH model which includes second neighbor electronic
hopping as studied in Ref. [336]. This model exhibits topological
phases with zero, two, and four-edge states. We propose a method to
distinguish between these phases using high-harmonic spectroscopy.
Our method is based on the analysis of the non-linear polarization of
the material, which reveals characteristic signatures of the topological
phases. We show that our method can provide a clear distinction
between materials with two and four edge states, and can be used to

76



Chapter 4: Dynamical spectroscopy

identify and control the topological properties of other topological
materials. Our method could have significant implications for the
study of topological phases in condensed matter and could aid in the
development of new technologies.

4.3.1 The extended Su-Schrieffer-Heeger model

The Su-Schrieffer-Heeger (SSH) model [321,337] is a theoretical model
used in solid-state physics to describe the electronic properties of
one-dimensional crystalline systems. The model considers a chain of
alternating atoms in sublattices A and B in a two site unit cell [327].
The electrons hop inside the unit cell (intra cell) and between nearest
neighbor unit cells (inter cells) with different hopping amplitudes.
The model is thus characterized by a parameter called the dimer-
ization parameter, which represents the difference in the hopping
strengths between the intra and intercellular bonds. When the inter-
cellular dimerisation is stronger than the intracellular one, it exhibits
a nontrivial topological phase with a bulk gap, and supports the
presence of topologically protected edge states at the boundary of the
chain. This allows the SSH model to be a prototypical model of a 1D
topological insulator. The topological nature of the SSH model is due
to the presence of a chiral symmetry which is a discrete symmetry
that anti-commutes with the SSH Hamiltonian and shows that the
model is invariant under the exchange of its two sublattices. It also
ensures that for every positive energy of the system there exists a
negative energy with the same magnitude. Interestingly, the energies
are also symmetrical under swap of the dimerisations, and the disper-
sion relation is identical and gapped everywhere (insulator), except
when the dimerisation is zero where it is gapless (metal). However,
the system has distinct properties under swap of the dimerisation as
the eigenvectors differ significantly. In fact, when the Berry curva-
ture of the eigenvectors in quasi-momentum space is integrated over
the entire Brillouin zone, one finds different topological invariants
called Chern numbers. This shows that the two insulating phases
are topologically distinct. The presence of different topological sec-
tors implies the impossibility of crossing from an insulating phase
to another without undergoing a topological phase transition which
involves the closing of the bulk gap (i.e. the metallic phase where
the winding number is ill-defined) of the system. This is why when
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1 2 43 5 6 7 8 9 10

Figure 4.5: Schematic representation of the one-dimensional ESSH
model described by the Hamiltonian (Eq. (4.27)): Each blue ellipse
represents a unit cell containing two sites: A-type sites drawn below,
and B-type sites drawn above. To keep chiral symmetry in tact, we
only include hopping processes between A-type and B-type sites, in-
cluding intracell hopping, J1, hoppings between neighboring cells,J′1
and J3, as well as hopping between next-to-nearest cells, J′3.

the system with a non-zero bulk topological invariant is put under
an open boundary condition, there appears a zero energy (edge)
mode within the bulk gap of the system, sharply localised at the
boundary separating a topologically non-trivial region (insulator)
from a topologically trivial one. The non-interacting tight-binding
model used in this study does not consider electron-electron inter-
actions. As a result, it is possible to obtain precise analytical results
for both the band structure and the winding number, making it a
representative example of a 1D topological insulator [309]. The SSH
model has so far been experimentally realized in various systems:
cold atoms [338], photonic lattices [161, 339], and mechanical sys-
tems [340]. The topological phase diagram of the standard SSH can
be extended to include phases with higher values of topological in-
variants, if not restricted to only nearest neighbor electronic hopping.
Allowing for a longer range of hopping, such as, hopping between
second neighbor sites, generates a model which we denote as an
extended Su-Schrieffer-Heeger (ESSH) model, extensively studied in
Ref. [323]. However, hoppings only between the different sublattices
are included to preserve the chiral symmetry of the model, which in
turn keeps the topology intact. More specifically, in this work, we
study the Hamiltonian of the 1D ESSH model:

H = J1

N

∑
n=1

(ĉ†
n,A ĉn,B + h.c.) + J′1

N

∑
n=1

(ĉ†
n,B ĉn+1,A + h.c.)

+J3

N

∑
n=1

(ĉ†
n,A ĉn+1,B + h.c.) + J′3

N

∑
n=1

(ĉ†
n,B ĉn+2,A + h.c.)

(4.26)
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where N is the number of cells, in a chain of M = 2N sites in the chain.
In the second quantized notation, ĉ†

n,s (cn,s) is the electron creation
(annihilation) operator at unit cell n with sublattices s = A, B. The
first term represents intracellular electron hopping with strength
J1, the second represents the nearest neighbor intercellular hopping
between B at cell n and A at cell n + 1, the third is nearest neighbour
hopping between A at cell n and B at cell n + 1 whereas the fourth
term captures the next nearest neighbour hopping between B at cell
n and A at cell n + 2 (see Fig. 4.5). In the first quantized notation, the
Hamiltonian in real space can be written as

H =J1

(
N

∑
n=1
|n, A⟩⟨n, B|+ h.c

)

+J′1

(
N

∑
n=1
|n, B⟩⟨n + 1, A|+ h.c

)

+J3

(
N

∑
n=1
|n, A⟩⟨n + 1, B|+ h.c

)

+J′3

(
N

∑
n=1
|n, B⟩⟨n + 2, A|+ h.c

)
.

(4.27)

As in the standard SSH model, the extended SSH model Hamilto-
nian also preserves the three discrete symmetries: chiral, particle-hole
and time-reversal and is classified under the BDI topological class
with its topological invariant (the winding number) belonging to the
set of integers Z. On an open boundary, the ESSH can host different
numbers of edge modes: zero, two or four edge modes, depending on
the absolute value of its bulk winding number being zero, one or two.
In contrast the standard SSH model, possess only two possibilities –
zero or two edge modes on the ends of the open chain.

It is straightforward to calculate the winding number by writing
down the Hamiltonian in Eq. (4.27) in momentum representation,
which can be obtained by replacing,

|n, A⟩ = ∑
k

e−ikxnA |k, A⟩,

|n, B⟩ = ∑
k

e−ik′xnB |k′, B⟩,
(4.28)
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where |k, s⟩ is the quasi-momentum ket with momentum k and sub-
lattice index s = A, B and using periodic boundary conditions. With
this, the Hamiltonian in Eq. (4.27) reduces to,

H = ∑
k
(|k, A⟩, |k, B⟩)

[
hx(k)σx + hy(k)σy

] (⟨k, A|
⟨k, B|

)
, (4.29)

where

hx(k) = J1 + J′1 cos ka + J3 cos ka + J′3 cos 2ka
hy(k) = J′1 sin ka− J3 sin ka + J′3 sin 2ka (4.30)

Due to the presence of discrete translational invariance in the system,
it reduces to two-level systems in the sublattice basis for each quasi-
momentum mode k and can therefore be easily written down in terms
of Pauli matrices σx and σy. Further, this decomposition into the Pauli
basis allows us to compute the winding number using hx and hy,

W =
1

2π

∫
BZ

hx∂khy − hy∂khx

h2
x + h2

y
dk (4.31)

The winding number for this model can have valuesW = −1, 0, 1, 2,
which through the bulk-boundary correspondence directly yields the
number of edge modes the system possesses in an open boundary
condition as two times its absolute value 2|W|. From the energy
spectrum plotted in Fig. 4.10, one can see the band gap structure,
the different number of zero energy modes or edge modes and the
winding number for the two most interesting cases when the system
(a) has winding number one and thus one pair of edge modes (b)
has two pairs of edge modes with winding number two. Fixing the
value of the parameters J1 = J′1 = 1, one can vary the other two
parameters J3 and J′3 and calculate the winding number to obtain a
phase diagram showing different possible phases in the ESSH system
as has been illustrated in Fig. 4.7.

4.3.2 Incident laser field

In this section, we study the coupling of the 1D ESSH model to a
linearly polarised electric field from a laser. The laser wavelength
is assumed to be much larger than the length of the system and as

80



Chapter 4: Dynamical spectroscopy

a)

c)

b)

d)

Figure 4.6: Energy eigenvalues with 80 sites (in a.u.), showing zero
(a,blue), two (a,red) and four (c,green) zero-energy states with dif-
ferent fixed parameters values of the Hamiltonian (Eq. (4.27)). The
figures on the right show the parametric plot of hx(k) and hy(k) as
defined in Eq. (4.29), with two (b) and four (d) zero-energy states.
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Figure 4.7: Topological phase diagram of the Hamiltonian (Eq.(4.29))
showing various values of the winding number for fixed J1 = J′1
varying J3 and J′3 (in units of J1), calculated as in Eq.(4.31).

such the coupling to the laser field is well captured within the dipole
approximation. The laser vector potential and electric field are:

A⃗(t) = A(t)x̂, E⃗(t) = −∂t A⃗(t). (4.32)

where x̂ is the direction along the length of the chain parallel to
the laser polarization. The way how the light couples to the matter
depends on the geometry of the system. For instance, in the velocity
gauge, the light-matter coupling provides the hopping elements with
Peierls’ phases A⃗ · (⃗rn,s − r⃗n′,s′). For concreteness, we assume that A⃗ ·
(⃗rn,s − r⃗n′,s′) ∝ n− n′. Hence, intracell hopping remains unaffected
by the light, i.e. A⃗ · (⃗rn,A − r⃗n,B) = 0, whereas hopping between
neighboring cells acquires a phase A(t), and hopping between next-
to-nearest cells a phase 2A(t). Accordingly, we have

J1(t) =J1 J′1(t) = J′1eiaA(t)

J3(t) =J3eiaA(t) J′3(t) = J′3e2iaA(t).
(4.33)

The eigenstates of the N×N-dimensional ESSH Hamiltonian (4.26)
are obtained by exact diagonalization in a real space single particle
basis. The N/2 lowest energy states (occupied by N electrons, as-
suming spin degeneracy) are time evolved within the whole laser
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pulse duration consisting of 5 cycles (nc = 5). Assuming atomic units
(h̄ = |e| = me = 4πϵ0 = 1), the incident laser field has the shape

A(t) = A0 sin2
(

ωt
2nc

)
sin (ωt) 0 < t <

2πnc

ω
. (4.34)

The frequency is set to ω = 0.03 (corresponding to λ ≃ 1.5µm), and
the vector potential amplitude is A0 = 0.5 (corresponding to a laser
intensity ≃ 20× 1010 Wcm−2 ) throughout this work. The results
discussed in this project are qualitatively independent of the details
of the laser pulse as long as the incident laser frequency is small
compared to the band gap in the insulating phases and the peak
strength of the laser is large enough to generate high harmonics.

The time-dependent wavefunction was calculated using the Crank-
Nicolson approximation for the time-dependent Hamiltonian

|Ψ(t)⟩ = exp[−iH(t)δt]|Ψ(0)⟩ ∼
1− iH

( t
2

)
δt/2

1 + iH
( t

2

)
δt/2
|Ψ(0)⟩, (4.35)

solved in individual infinitesimal δt time-steps.

4.3.3 High-harmonic generation

Our primary goal is to estimate the high harmonic spectrum of
the ESSH system. Within the semi-classical approach, for uncor-
related emitters, the spectrum of the radiated light is proportional to
the absolute square of the Fourier transform of the dipole accelera-
tion [341–343].

P(ω) =
∣∣FFT

[
WBẌ(t)

]∣∣2 (4.36)

where here we used WB as the Blackman window function and Ẍ(t) is
the acceleration or the double time derivative of the time dependent
position operator. To calculate the time-dependent expectation value
of the position operator we time-evolve all occupied eigenstates b.
The time-evolved single-particle wavefunction Ψb(t) is then used to
compute

X(t) =
N/2

∑
b=1

N

∑
j=1

∑
s=A,B

Ψj,s∗
b (t)xj,sΨ

j,s
b (t), (4.37)
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where Ψj,s
b (t) is the amplitude of the time-evolved wavefunction on

site s of cell j, and the position xj,s is given by

xj,A = xj,B = (j− 1)− (a−M)

4
(4.38)

where j is the position of each cell with two sites A and B, as shown in
Fig. 4.5. Essentially, the time-evolved average position of all electrons
in different (initial) filled eigenstates are summed to obtain the total
position of the electron cloud.

In the next Section, we analyze and compare the time-dependent
position and the harmonic response of the system at three different
parameter points, corresponding to three different phases as illus-
trated in Fig. 4.10: (a) Phase P0, represented by the parameter point
J1 = 0.651, J′1 = 0.207, J3 = 0.038, and J′3 = 0.156. From the energy
spectrum presented in Fig. 4.10a (blue), we observe the energy band
gap of 0.9 (in atomic units) and the winding number ofW = 0 corre-
sponding to the trivial insulator phase. (b) Phase P1, represented by
the point J1 = 0.51, J′1 = 0.42, J3 = 0.056, and J′3 = −0.479. It is illus-
trated in Fig. 4.10a (red), exhibiting the presence of two zero-energy
states that indicate the edge states, in agreement with the winding
numberW = 1. (c) Phase P2, represented by J1 = 0.059, J′1 = 0.021,
J3 = 0.26, and J′3 = 0.7209. For this phase, we observe in Fig 4.10b
the presence of four zero-energy states, representing the edge modes
withW = 2. The parameter choices have been made such that the
system has the same band gap and bandwidth in all three phases, al-
lowing for a clear comparison of the results amongst all three phases.
We also look at the phase transition point M, which is a metal with
the parameters J1 = 0.51, J′1 = 0.42, J3 = 1, and J′3 = 0.91. The overall
goal is to observe whether, through the time-dependent position op-
erator and the harmonic spectra, one can identify certain signatures,
which will enable a clear distinction between P0, P1, P2, and M.

4.3.4 Discussions

We first look at the expectation value of the total position operator of
the ESSH model as a function of time, as is illustrated in Fig. 4.8 for
the three different phases P0, P1 and P2. The position operator has the
similar periodicity in all the phases as that of the incident laser beam
(Eq. (4.34)) but there is a clear difference in the maximum amplitude
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Figure 4.8: Incident electric field (red, solid line) and the expected
value of the position operator (Eq.(4.37)) as a function of time, for
different topological phases P0, P1 and P2.

for the three phases. Apparently, the change in the average electronic
position is the lowest in the topologically trivial insulating phase P0
and can be attributed to the overall localised nature of the electronic
cloud for a half-filled insulator. The presence of edge modes makes
the system slightly more metallic and hence the displacement is more
in phases (P1, P2) with more edge modes in the system. This becomes
more apparent as one studies the harmonic spectra of the system.

In Fig. 4.9, we plot the logarithm of the absolute power spectra of
the harmonic spectra versus the harmonic order (integer multiple of
the incident driving frequency). The harmonic spectra for P0, P1 and
P2 show a plateau at high energies beyond the bandgap of the system.
The plateau mainly arises from interference between electronic trajec-
tories undergoing interband transitions. A cut-off is also observed at
similar harmonic order for all the three curves as it is primarily de-
termined by the bandwidth (energy difference between highest and
lowest eigenenergy) of the system, which limits the maximum energy
that the electrons can attain during evolution. However the harmonic
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Figure 4.9: The emitted high-harmonic spectra for the phases: metal-
lic, topologically trivial P0 and two different topologically non-trivial
P1 (with two edge modes) and P2 (with four edge modes). M indi-
cates the metal phase. The vertical line corresponds to the value of
the bandgap (in the units of the incident laser frequency).

response below the band gap is different for P0 and P1, P2 phases.
This region, which in usual semiconductors is mostly dominated by
intra-band contributions, has a dip for P0. However, in phases P1
and P2, we observe no dip below the bad gap. This happens because
there are mid band gap states available for electronic transition due
to the presence of edge modes in these phases. These appear as clear
signals in the harmonic spectra as now transitions between the filled
bulk bands to the mid gap edge states are possible. In contrast, the
P0 phase is a trivial insulator with a bulk gap and no mid gap states,
and thus the bulk states can only contribute to the harmonic spectra
beyond the band gap. Consequently, there appears a dip in signal
below the band gap for such a phase. This feature that allows to dis-
tinguish between the high harmonic spectra of topologically trivial
and non-trivial phases was also observed in the previous studies of
the HHG in the SSH model [326, 327]. Moreover, it has been studied
in topological superconductors and the topological nature of the edge
modes has been confirmed by showing that it is robust under local
perturbations via the HHG [333].
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However interestingly, it is not easy to distinguish between the
two topological phases based on the harmonic spectra itself, as the
overall amplitude difference in the time dependent position being
polynomial does not appear as a big difference in the harmonic spec-
tra, which is plotted in a logarithmic scale and it depends on the spe-
cific values of the hopping parameters chosen for these two phases.
Despite this, by analyzing the contributions of both bulk and edge
states to the high-harmonics and using the harmonic spectra of the
trivial insulating phase P0 and the metallic phase transition point M
as two extreme reference limits to test for metallicity, we can elab-
orate below, how precise control over the electronic filling in the
ESSH chain allows us to clearly distinguish between all the different
topological phases based solely on the HHG spectra.

We assume an ESSH chain away from half-filling where the num-
ber of electrons in the chain is ν less than N/2. Then the expectation
value of the position operator is given by,

X(t, ν) =
N/2−ν

∑
b=1

N

∑
j=1

∑
s=A,B

Ψj,s∗
b (t)xj,sΨ

j,s
b (t), (4.39)

As a consequence, varying the ESSH chain filling, i.e. changing the
value of ν = {0, 1, 2, 3, 4} affects the HHG spectra (Eq. (4.36)) of
phases P0, P1 and P2 as shown in Fig. 4.10.

We first focus on phase P0 (see Fig. 4.10a) and compare the HHG
spectra for various fillings against the one at exactly half-filling (yel-
low). It can clearly be observed that for values of filling till N/2− 1,
the HHG spectra is almost identical no matter the filling. In fact,
away from half filling the spectra in fact has no dips as it has at
half-filling. This is because even slightly away from half filling the
system is no longer an insulator and there is a small number of states
available (depending on the filling) for transition within the bulk
states below the band gap, producing significant HHG spectra from
intra-band dynamics within this partially filled valence band. This
HHG spectra resembles that of a metal as can be seen via comparison
with the green curve in Fig. 4.9. The order of magnitude difference
(in logarithmic scale) between the spectra at half filling and the one
away shows how sensitive a probe the HHG spectra is to the filling
of the system that produces metallicity and that do not.

This sensitivity acts as a means to quantitatively distinguish the
presence of the number of edge modes in phases P1 (see Fig. 4.10b)
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and P2 (see Fig. 4.10c). By varying the filling of the system with
parameters from the P1 (P2) phase we see that the system shows
metallic HHG spectra till N/2− 2 (N/2− 3) states are filled, then
suddenly it shows a dip as the bulk of the system becomes insulating
when N/2 − 1 (N/2 − 2) states are filled. Thus by continuously
monitoring the filling, it is possible to count how many states ahead of
half-filling does the system show a transition from metallic behavior
to an insulating one. This difference in the number of states gives the
number of pairs of edge modes in the system.

The dip in the harmonic power spectra at the filling where the
transition from bulk metallic to bulk insulating behavior happens,
can be quantitatively determined by summing the inverse of the
squared value of power spectra below half the bandgap for every
value of ν as,

Sp(ν) =
∆E/2

∑
w=0

1
P(ω, ν)2 , (4.40)

where ∆E is the bulk band gap energy of the system (edge modes
excluded). The sum is taken over half the band gap as expectedly the
sharp change only affects the harmonic modes below the band gap
in the harmonic spectra.

The transition shows up in this quantity Sp(ν) as a sharp jump
with at least ten orders of magnitude difference. In phase P0 the
transition occurs between the completely filled, ν = 0, to ν = 1,
where Sp(0) ∼ 10Sp(1) saying that the number of pairs of edge
modes in the system is zero. In phase P1, the transition takes place
between ν = 1 to ν = 2, where Sp(0) ∼ Sp(1) ∼ 10Sp(2) and
the system then possesses just one pair of edge modes. In phase
P2 the transition is from ν = 2 to ν = 3, which changes Sp(ν) as
Sp(0) ∼ Sp(1) ∼ Sp(2) ∼ 10Sp(3) correctly indicating that there are
two pairs of edge modes in the system. We show an illustrative plot
of this behavior in Fig. 4.11.

4.3.5 Conclusions

In summary, in this work we allow for second nearest neighbor hop-
ping in addition to the nearest neighbor hopping already present
in the standard SSH model with hopping terms within a sublattice
being forbidden. This creates the ESSH model with the chiral sym-
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a) b)

c)

Figure 4.10: High-harmonic spectra for different phases. a) Phase P0
(zero edge modes). b) Phase P1 (two edge modes). c) Phase P2 (four
edge modes). Different colors correspond to various fillings of the
system. The vertical line indicates half of the value of the bandgap
(in the units of the incident laser frequency).
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Figure 4.11: Sp(ν) versus filling for different phases P0, P2 and P4. It
shows a peak when all the states in the bulk are filled and the edge
states start to be filled. One state in the peak represents zero edge
modes or Phase P0, two states in the peak represents two edge modes
or Phase P2 and three states in the peak represents four edge modes
or Phase P4.

metry in the SSH model being preserved. However, this expands
the topological phase diagram of the SSH model to now include new
topological phases with higher winding numbers. Such a system
under open boundary condition posses three insulating phases with
zero, two, and four edge modes at each ends of the chain.

We shine a five-cycle ultrafast laser pulse with strong intensities
and below the bulk band gap frequencies parallel to the length of the
ESSH chain and calculate the emitted harmonic spectra in response to
this illumination. The harmonic spectra in the linear scale show that
the overall response of the system below the band gap is different
for its three phases; the amplitude being higher when the system has
more edge modes. However although the distinction is clearly visible
between the HHG spectra from the trivially insulating versus the
topological ones, the distinction between the two topological phases
is hard to perceive in the logarithmic scale. Therefore, we do a careful
analysis of the HHG spectra as a function of filling to show that the
HHG spectra is very sensitive to the change from bulk insulating
behavior to a bulk metallic behavior, as filling is continuously varied.
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Therefore, tracking where the bulk insulating behavior sets in, as a
function of filling, we manage to count off the number of pairs of
edge states in the system. We have also proposed a quantity that can
sharply detect this transition.

Our work concentrates on the study of an idealized model, which
features different topological phases. Our goal was to investigate
whether and how HHG is suited to differentiate between these phases.
Of course, the next step will be to consider analog phases occurring
in real materials. It is clear that brings in additional challenges: In the
present work, we have not included the effect of scattering between
electrons, or electron-phonon and other defects. A phenomenological
way of taking such effects into account is by including a dephasing
time in the analysis [344]. In fact, that can help to produce a cleaner
spectrum by removing longer trajectories that contribute to the HHG
spectra. We leave this as an outlook. Also the role of many-body
electron-electron interaction has been assumed to be negligible and
has not been considered in this work and is beyond the scope of the
current project.

In summery:

• The Su-Schrieffer-Heeger (SSH) chain is a one-dimensional
model used to understand topological insulators, primarily
using nearest neighbor electronic hopping.

• High-harmonic generation, a sophisticated technique, is in-
strumental in detecting the different topological phases in a
material.

• High-harmonic spectroscopy of the SSH chain can discern be-
tween trivial and non-trivial topological phases; this refers to
differentiating between zero and two topological edge states in
the chain.

• The extended SSH model incorporates not only the nearest
neighbor interactions, but also the next-nearest neighbors hop-
ping. In this model, topological phases arise due to zero, two,
and four zero-energy edge states.

• Despite the complexities of the extended SSH model, high-
harmonic spectroscopy is only able to differentiate between

91



Chapter 4: Dynamical spectroscopy

trivial and non-trivial topological phases, which restricts the
ability to quantify the number of edge states in the model.

• We demonstrate that high-harmonic spectroscopy can serve as
a sensitive tool for discriminating topological phases in systems
with more than two topological phases.

• We propose a practical scheme that enables precise quantifica-
tion of the number of edge modes in each topological phase.
This is accomplished by adjusting the electronic filling in the
chain.

4.4 Aubry-André-Harper (AAH) model (on-
going )

Quantum localization is a very interesting field of research, where
the Aubry-André-Harper model serves as the paradigmatic model
which can exhibit quantum localization [345]. The AAH model offers
a simple but informative framework for understanding the interplay
between quasiperiodicity, localization, and metal-insulator transi-
tions in one-dimensional systems. The critical points of the AAH
model feature critical spectra with fractal structure, which are dis-
tinguished by having multifractal eigenstates. This multifractality
reflects the non-trivial spatial distribution of wave functions, which
have a self-similar structure at different length scales. AAH model
has been realized in the photonic, acoustic, ultracold atomic sys-
tems [138, 169, 346–348]. The Hamiltonian of AAH model is given as
follows:

H = J ∑
j

(
c†

j cj+1 + c†
j+1cj

)
+ ∑

j
2V cos (2πβj) c†

j cj, (4.41)

here, β = 1+
√

5
2 is the golden ratio, and V and J are the incommensu-

rate potential strength and the hopping amplitude between adjacent
sites, respectively. c†

j (cj) is the creation (annihilation) operator for an
electron at the site j. The Hamiltonian of the AAH model exhibits
localization phase transition at V = J (V < J is the delocalized phase
and V > J – localized phase).
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4.4.1 Localization

AAH Hamiltonian exhibits a localization transition at V = J where
every single particle’s eigenstate is simultaneously localized at a finite
detuning strength. We consider an eigenstate |χj(x)⟩ is localized at
x0, if for every κ > 0 one can find a distance d > 0 such that.

|Φj(x0 ± d)|2 < κ (4.42)

This implies the probability of a particle with the eigenstate |χj(x)⟩
far from the center x0 is zero. But in the center x0, the eigenstate is
highly localized. This can be expressed as:

|χj(x, x0)⟩ = f (x, x0) e−
|x−x0|

δ (4.43)

where, f (x, x0) and δ are an arbitrary function and localization length,
respectively. The localization length of all eigenstates can be written
as:

δ = log
(V

J

)
(4.44)

4.4.2 Delocalization

The AAH model exhibits a delocalized or extended phase when the
ratio of the incommensurate potential strength (V) to the hopping
amplitude between adjacent sites (J) is less than 1(i.e.V/J < 1). Un-
der these conditions, the particles exhibit metallic behavior, resulting
in strong electrical conductivity. The localization length, a measure
of the spatial extent of a particle’s wavefunction, is inversely pro-
portional to the degree of delocalization. In a delocalized phase, the
localization length is relatively large, indicating that the particles
have a greater probability of occupying different sites within the
system. Understanding the interplay between localization length
and delocalization in the AAH model provides valuable insights into
the electronic properties and transport phenomena of quasiperiodic
materials.

4.4.3 Inverse participation ratio (IPR)

The Inverse Participation Ratio (IPR) is a useful quantity to character-
ize the localization properties of quantum states in the Aubry-André-
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Harper (AAH) model. IPR quantifies the degree of localization or
delocalization of the wavefunction by measuring the weight distribu-
tion across the lattice sites. For a given eigenstate ψn with components
ψn(j) at the lattice site j, the IPR can be expressed as:

IPRn = ∑
j
|ψn(j)|4 (4.45)

In this expression, the IPR ranges from 1/N (for a fully delocalized
state, where N is the total number of lattice sites) to 1 (for a com-
pletely localized state). For the AAH model, the IPR provides insights
into the transition between the localized and delocalized regimes gov-
erned by the ratio V/J. A larger IPR value signifies a more localized
state, whereas a smaller IPR value indicates a more delocalized or
extended state.

4.4.4 Initial result

Figure 4.12: Total current: The value of current (green) for V/J = 0.2
is 105 time larger than the current (blue) for V/J = 5 (right axis).

We perform calculations of HHG with the same laser pulse as in
SSH model,

A(t) = A0 sin2
(

ωt
2ncyc

)
sin (ωt) , (4.46)
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where A0 = 0.2, ω = 0.0075, ncyc = 5. We include the laser-matter
interaction via the time-dependent Peierls phase: t0 → t0eia0eA(t).
We consider periodic boundary conditions, and then the coupling
between particles, and the laser field is described in the velocity
gauge, c†

j cj+1 → e−iA(t)c†
j cj+1. The harmonic spectra are obtained

from the current operator,

I(t) = i J
(

e−iA(t)c†
j cj+1 − eiA(t)c†

j+1cj

)
, (4.47)

as P(ω) ∝ |FT( İ)|2, where FT is a Fourier transform with window
function. One can distinguish between localized and delocalized
phases from total current in Fig. 4.12, where the ration of IV/J=0.2

IV/J=5
∼

105 immediately indicates that the current response the system or,
subsequently, HHG of the system that can distinguish localized and
delocalized phase.

Now we are trying to calculate the multifractal properties at the
transition point from HHG spectra itself. This offers a unique chance
to investigate multi-fractal phases through the utilization of high-
harmonic generation spectra. This represents a significant advance-
ment, given the considerable difficulty associated with observing
such phenomena through conventional transportation mechanisms.
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4.5 Extended Fermi Hubbard Model (EFHM)
(ongoing)

Su-Schrieffer-Heeger (SSH) kind of phases can also occur in interact-
ing fermionic chains [349]. Extended Fermi Hubbard Model (EFHM)
is a model which hosts a particular phase which is called the Bond Or-
der Wave (BOW) phase, which arises from the competition between
on-site and nearest neighbor interaction in the model [350–354]. Such
BOW phases are topological in nature and belong to the same topo-
logical class as the SSH model that we discussed earlier. For this
particular purpose, we consider the 1-D EFHM to synthesize inter-
acting SSH dynamics. The Hamiltonian of EFHM can be expressed
as:

H = −J ∑
i
(c†

iσci+1,σ + c†
i+1,σciσ)

+ U ∑
i

ni,↑ni,↓ + V ∑
i

nini+1 (4.48)

The hopping amplitude J describes the strength of the electron’s
motion between neighboring lattice sites. U parameterizes the Hub-
bard interaction strength in the same lattice site. V accounts for
the strength of interaction between the nearest neighbor lattice site.
c†

i σ (ci σ) is the creation (annihilation) operators for a fermion with
spin σ at site i. ni,↑(ni,↓) is the number operator for the up (down)
spin electron at site i. ni = ni,↑ + ni,↓ is the total electron number op-
erator at site i. EFHM exhibits three insulating phases: Mott insulator
(MI), Charge density wave (CDW), and Bond order wave (BOW).

When the onside interaction U is much greater than the nearest
neighbor repulsion V and also the hopping strength J, the system lies
in the insulating phase which in this case is the MI phase. The CDW
phase, another insulating phase with spontaneously broken lattice
translational symmetry, appears due to the dominance of repulsion
strength between the nearest neighbor sites over onsite interaction U
and the hopping strength J of the system.

MI phase has dominant spin density wave correlations and, as
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such, is captured by the spin density wave (SDW) structure factor:

SSDW ≡
1
L ∑

lr
eiqr⟨sz

l sz
l+r⟩ (4.49)

here, L is the length of lattice, sz
l is the spin operator at l site. q is

momentum and r is the distance between the adjacent sites. The
CDW phase can be characterized by calculating the CDW structure
factor:

SCDW ≡
1
L ∑

ij
eiqr(⟨nini+j⟩ − ⟨ni⟩⟨ni+j⟩) (4.50)

The BOW phase can be characterized by the BOW operator:

Bi,i+1 ≡∑
σ

(c†
i,σ ci+1,σ + c†

i+1,σ ci,σ) (4.51)

In the BOW phase, the order is based on the charges along the bond
that connect two sites along the chain. In the bond order phase, two
kinds of ground states are possible: trivial and topological.

Figure 4.13: Schematic of different phases occur in EFHM: (a) Three
phases. (b) The phase diagram in the U-V plane. The BOW phase ap-
pears for moderate interactions between the MI and the CDW phase
at the transition point. (c) Sketch of the spontaneous dimerization
in the BOW phases. The upper chain corresponds to the trivial case,
while the lower chain is topologically nontrivial; Figure courtesy
[349].

Now we study the Hamilton in Eq. (4.48) in the presence of an
intense laser field to see if HHG spectroscopy can act as a successful
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tool in distinguishing between the different insulating phases of the
system, especially whether it can capture if there are any topological
phases as seen the BOW phase in the system. The Hamiltonian
becomes time-dependent due to the electric field:

H′ (t) = −J ∑
σ,j=1

(
e−iΦ(t)c†

j,σcj+1,σ + eiΦ(t)c†
j+1,σcj,σ

)
+ U ∑

i
ni,↑ni,↓ + V ∑

i
nini+1. (4.52)

where the laser electric field F(t) = − dA(t)
dt enters through the

time-dependent Peierls phase (Φ), eaF(t) = − dΦ(t)
dt , a, J and A(t) are

the lattice constant, hopping strength and the field vector potential
respectively. We further study the current in relation to other time-
dependent correlators of the system to look for signatures of different
phases of the system in the current and, subsequently, the HHG
spectra from the current operator.

4.5.1 Initial result

Figure 4.14: Amplitude Vs time; time-dependent vector potential of
incident light pulse, and output current pulse are indicated by blue
and red color, respectively, at N = 4, J = 0.5, V = 1.1, U = 0.8
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We perform calculations of HHG with the same laser pulse as in
EFHM,

A(t) = A0 sin2
(

ωt
2ncyc

)
sin (ωt) , (4.53)

where A0 = 0.2, ω = 0.0075, ncyc = 5.
The harmonic spectra in Fig. 4.14 are obtained from the current oper-
ator,

J (t) = −ieat0 ∑
σ

∑
j=1

(
e−iΦ(t)c†

j,σcj+1,σ − h.c.
)

. (4.54)

The data obtained using the DMRG method (Appendix C) matches
very well with one obtained from the exact diagonalization method
for small system sizes. Further, explore with the DMRG method for
more sites in order to characterize the different insulating phases of
the EFHM at half-filling using the HHG spectroscopy method.
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Future perspective

This thesis explores the role of quantum dynamics in various regimes
and have exploited them to study thermodynamics and spectroscopy.
In particular, the first regime is the self-driven dynamics of isolated
system, and it is used to study thermodynamics of quantum heat
engines. The second regime is concerned with open quantum dynam-
ics where a system is weakly coupled with a thermal environment.
In particular, here we have used dynamics based on Lindblad semi-
group approach to explore thermodynamics with negative tempera-
tures. The third regime considers driven dynamics where a system
is driven by a strong external field. We utilize theses dynamics to
explore high harmonic spectroscopy of solids.

Resource theory QHE

Using the self-driven dynamics of isolated system, we have devel-
oped a resource theory of heat engines which lays a framework
to address thermodynamics in the one-shot finite-size limit. There
a working system interacts with a thermal bath through a time-
independent interaction Hamiltonians while strictly conserving en-
ergy and weighted energy. This dynamics in general drive a working
system towards equilibrium. In particular we have found that with
the help of these powerful thermal operations, which enables quan-
tum entanglement between the working system and the baths, an
engine can operate in a one-step cycle and yield Carnot efficiency
at maximum power. We have also introduced an experimentally
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feasible model for such an engine based atom-cavity systems. An
immediate next step would be to (1) explore construction of a model
of a heat engine that exclusively utilizes the correlations between the
working systems, (2) extend the resource theory of heat engines to the
case with multiple conserved quantities, (3) construct thermo-electric
devices with high efficiency and power, etc.

Synthetic negative temperature

Using open quantum dynamics based on Lindblad master equation,
we have studied steady-state thermodynamics with baths at negative
temperatures. We have also constructed a continuous heat engine
operating between a positive and negative bath and have shown that
such engines can yield maximum efficiency. An immediate extension
of this work can be to (1) explore experimentally realizable model for
such engines, (2) studying thermodynamics uncertainty relations for
baths at negative temperatures, etc.

HHG spectroscopy

We characterize topological features solids by HHG spectroscopic
technique where the transient dynamics has been utilized as the
resources. There are currently two projects that are being worked on.
This work may be extended further as follows. (1) One can explore
the localized phase and delocalized phases of the 1-D quasi-periodic
AAH model. (2) One can differentiate between the distinct phases of
the strongly correlated 1-D EFHM.

The strongly correlated systems in more than 1-D systems are the
natural progression for these initiatives [38, 280, 292]. For example,
Cuprates [297] has been investigated using HHG spectroscopy; how-
ever, other strongly correlated systems, such as multi-layer graphene,
have not been subjected to an investigation of this kind. It is possible
that such systems may shed light on many intriguing details.

Not much research has been conducted on HHG in presence of
strong interactions, strong disorder, and quasi-periodicity. This path
has potential for us, and we would want to investigate it more in the
future.
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HHG can also be used not only to identify different phases of
matter, either strongly correlated or not, but HHG can also be utilized
for studying different kinds of quasi-particles. One study has shown
how HHG can exploit to detect the simple, non-Abelian anyon such
as Majorana fermions [333]. But other classes of non-abelian anyon or
exotic particles have not yet been detected via traditional transport-
based methods. This is the reason why we want to weaponize the
HHG spectroscopic technique so that we can determine whether or
not we are able to detect Abelian and non-Abelian phases of matter
with unusual quasi-particles such as fractionalized quasi-particle
quantum spin liquid and so on.
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Appendix A

Appendix: Thermal baths and
system-bath composites

The goal of this section is to characterize the Hilbert spaces of consid-
erably large bath(s) at certain temperature(s), small systems that are
in and away from thermal equilibrium, and their composites.

A.1 Some useful properties of baths

There are several useful properties of a considerably large bath, com-
pared to the systems they interact with. A bath is considered to be
always in thermal equilibrium at a fixed temperature, even after it
interacts with a system. Therefore it has to be reasonably large so
that it almost does not change after the interaction and remain in
equilibrium. So, a bath being large is an important assumption.

All the systems we consider have Hamiltonians bounded from
below, i.e., the lowest energy is zero. Consider a bath Bx the Hamil-
tonian HBx which has the largest energy is Emax

Bx
→ ∞. The heat

bath always remains in a Gibbs state γBx = e−βHBx

Tr [e−βHBx ]
with inverse

temperature βx. Now say there two baths B1 and B2 with the Hamil-
tonians HB1 and HB2 and the inverse temperatures β1 and β2. The
joint thermal state of the baths is expressed as

γB12 = γB1 ⊗ γB2 . (A.1)

There exists a set of energies EB12 in which the baths jointly live with
high probability. Mathematically, for the projector PEB12

that spans
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over the space with a set of the total energies EB12 , this is expressed as

Tr [PEB12
γB12 ] ⩾ 1− δ, (A.2)

where δ > 0. Given this, the bath satisfies the following properties
(cf. [198]):

• The energy EB12 ∈ EB12 is peaked around a mean value
as EB12 ∈

{
⟨EB12⟩ −O(

√
EB12), . . . , ⟨EB12⟩+ O(

√
EB12)

}
.

• The degeneracies gB(EB12) in the energies EB12 = EB1 + EB2 ∈
EB12 scale exponentially with EB1 and EB1 , i.e., gB(EB12) ⩾ exEB1+yEB2 ,
where x, y are constants. Here EB1 and EB2 are the energies of
the baths B1 and B2 respectively.

• Consider any pair of three energies (EB1 , ES1 , E′S1
) and (EB2 , ES2 ,

E′S2
), so that EB12 = EB1 + EB2 ∈ EB12 , ES1 ≪ EB1 , and E′S1

≪
EB1 , and similarly ES2 ≪ EB2 , and E′S2

≪ EB2 . Then there exists
a E′B12

= E′B1
+ E′B2

∈ EB12 so that EB1 + ES1 = E′B1
+ E′S1

and
EB2 + ES2 = E′B2

+ E′S2
.

• For an energy EB12 ∈ EB12 , the degeneracies satisfy gB(EB12 +

ES1 + ES2) ≈ gB(EB12)e
β1ES1

+β2ES2 .

These properties are instrumental in understanding the thermo-
dynamics of quantum and nano-scale systems interacting with large
baths.

A.2 Two baths and two (sub-)systems

Without loss of generality, we consider a bipartite system S12 with
two subsystems, S1 and S2, that are semi-locally interacting with two
baths B1 and B2 respectively where the baths are with the inverse
temperatures β1 and β2. We skip the discussion on the notion of
“semi-local” here. We elaborate on it later to characterize the thermo-
dynamics operations that are applicable in a quantum heat engine.

Say, the two considerably large baths B1 and B2 are with Hamilto-
nians HB1 and HB2 respectively. Further, the small systems S1 and S2
are the subsystems of a bipartite system S12 with the Hilbert space
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B1 B2
S1 S2

T1 T2

Figure A.1: A schematic of a situation where system S1 is (semi-
locally) interacting with the bath B1, and the system S2 is semi-locally
interacting with the bath B2. Temperatures of the baths are T1 = 1

β1

and T2 = 1
β2

.

HS12 = HS1⊗HS2 . The system S12 possesses a non-interacting Hamil-
tonian HS12 = HS1 + HS2 . We denote EBx and ESx as the energies of
the bath Bx and the subsystem Sx respectively. The bath Hamiltoni-
ans HB1/2 are bounded from below and could have Emax

B1/2
→ ∞. The

system Hamiltonians HS1/2 are also bounded from below and satisfy
Emax

S1/2
≪ Emax

B1/2
. We consider here non-degenerate system Hamiltoni-

ans HS1/2 . Extension to degenerate cases can be done easily.
The underlying joint Hilbert space corresponding to the S12, B1,

and B2 is nowHB1 ⊗HB2 ⊗HS1 ⊗HS2 . Here we assume the systems
to interact as in Supplementary Figure A.1. It can be expressed as the
Kronecker sums of constant total energy sub-spaces, i.e.,

HB1 ⊗HB2 ⊗HS1 ⊗HS2

=
⊕

E1+E2

 ⊕
ES1

+ES2

HE1−ES1
B1

⊗HE2−ES2
B2

⊗HES1
S1
⊗HES2

S2

 , (A.3)

where the total energies are given by E1 + E2, and E1 = EB1 + ES1
and E2 = EB2 + ES2 are the energies corresponding to the composites
B1S1 and B2S2 respectively. The total energies are the eigenvalues of
the total Hamiltonian

HB1B2S12 = HB1 + HS1 + HB2 + HS2 . (A.4)

It is important to notice that there are many combinations E1 and
E2 for which E1 + E2 is identical. Consequently, any system-baths
joint state can be written in terms of fixed total energy blocks. A
system-baths state γB1 ⊗ γB2 ⊗ ρS12 , which is diagonal in the energy
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eigenbases, can be expressed as

γB1 ⊗ γB2 ⊗ ρS12 = ∑
E1+E2

PE1+E2

(
γB1 ⊗ γB2 ⊗ ρS12

)
PE1+E2

= ∑
E1+E2

pE1+E2 ρB1B2S12
E1+E2

, (A.5)

where PE1+E2s are the projectors with total energy E1 +E2 and pE1+E2 =
Tr
[
PE1+E2

(
γB1 ⊗ γB2 ⊗ ρS12

)]
are the probabilities. Note, for a given

value E1 +E2 = X, the projector is expressed as PE1+E2 = ∑Ei
1,Ej

2
PEi

1
⊗

P
Ej

2
for Ei

1 + Ej
2 = X.

Say the set of energies E12 = E1 + E2 in which the baths B1 and B2
jointly live with high probability and satisfy the properties mentioned
for Eq. (A.2). Then, for E1 ∈ E1 and E2 ∈ E2, the normalized joint
state ρE1+E2

B1B2S12
after the projection with the projector PE1+E2 is

ρB1B2S12
E1+E2

=
1

pE1+E2

PE1+E2

(
γB1 ⊗ γB2 ⊗ ρS12

)
PE1+E2 ,

≈
⊕

ES1
+ES2

ηB1B2
E1−ES1

+E2−ES2
⊗ PES1

+ES2
(ρS12)PES1

+ES2
, (A.6)

where PES1
+ES2

are the projectors on the system (S12) space spanning
over the block given by the energy ES1 + ES2 , and

ηB1B2
E1−ES1

+E2−ES2
= ηB1

E1−ES1
⊗ ηB2

E2−ES2
=

I
B1
E1−ES1

gB1(E1)e
−β1ES1

⊗
I

B2
E2−ES2

gB2(E2)e
−β2ES2

.

(A.7)

With these minimum implements in hand, we move on to character-
ize semi-local thermal operations below.

A.3 Semi-local thermal operations

Let us now introduce the general form of thermodynamically allowed
(semi-local) operations that a (bipartite) quantum system S12 under-
goes in a quantum heat engine, where the bipartite system S12 can be
in an arbitrary state. Even, the states may possess strong correlation,
e.g., quantum entanglement, shared by the subsystems S1 and S2.
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Definition 3 (Semi-local thermal operations (SLTOs)). In a quantum
heat engine, the thermodynamic operations on system S12 in a state ρS12 are
defined as

ΛS12

(
ρS12

)
= Tr B1B2

[
U(γB1 ⊗ γB2 ⊗ ρS12)U

†
]

, (A.8)

with the condition that the global unitary U satisfies the commutation
relations [

U, HB1 + HS1 + HB2 + HS2

]
= 0, (A.9)[

U, β1 (HB1 + HS1) + β2 (HB2 + HS2)
]
= 0, (A.10)

where the thermal states of the baths are denoted by γBx = e−βx HBx

Tr [e−βx HBx ]
for

x = 1, 2.

The resultant operations on the system S12 are semi-local in the
sense that, even though the subsystems (S1 and S2) “selectively” in-
teract with the baths (B1 and B2), the unitary U still allows certain
interactions among them with the constraints (A.9) and (A.10). It
should be noted that the commutation relations (A.9) and (A.10) to-
gether constitute the first law for quantum heat engines. The relation
(A.9) guarantees strict conservation of the total energy E12 = E1 + E2,
where E1 and E2 are the energies of the B1S1 and B2S2 composites re-
spectively. In addition, the relation (A.10) ensures strict conservation
of the total weighted-energy Eβ1β2

12 = β1E1 + β2E2, and it signifies
that any change in (one-shot) entropy of B1S1, due to an exchange of
energy between B1S1 and B2S2, must be compensated by a counter
change in (one-shot) entropy of B2S2. It is interesting to note that the
SLTOs converge to the (local) thermal operations that are introduced
in the resource theory of quantum states beyond thermal equilibrium
presented in [64, 198, 205], when both the baths are of the same tem-
perature, i.e., for β1 = β2. Several useful properties of SLTOs are
outlined in the Method.

The SLTOs can be further generalized with an access to a bipartite
catalyst C12 composed of two non-interacting subsystems C1 and C2
and the Hamiltonian HC12 = HC1 + HC2 . The C1 is clubbed with the
subsystem S1 to form the composite S1C1. Similarly, the C2 is clubbed
with the S2 to form S2C2. Then, the composites S1C1 and S2C2 inter-
acts with the baths B1 and B2 via semi-local thermal operations. Such
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operations are called catalytic semi-local thermal operations (cSLTOs)
that satisfy

ΛS12C12(ρS12 ⊗ ρC12)→ σS12 ⊗ ρC12 , (A.11)

where ρC12 is a state of the catalyst. Note, the catalyst remains un-
changed before and after the process. These catalytic operations form
a larger set of thermodynamically allowed operations compared to
SLTOs and respect all the properties satisfied by the SLTOs. The
cSLTOs are the allowed thermodynamic operation in a quantum heat
engine and constitute the free operation for the resource theory devel-
oped to prove the results presented in this article (see Supplementary
Information).

When the subsystems are locally in thermal equilibrium with
the baths they are semi-locally interacting with, the joint uncor-
related state of the system S12 becomes γS12 = γS1 ⊗ γS2 , where
γSx = e−βx HSx /Zx with the partition functions Zx = Tr [e−βx HSx ] for
x = 1, 2. We term these states as the semi-Gibbs states. The set of all
such semi-Gibbs states is denoted by the set TS12 ∋ γS12 . The SLTOs
map the set TS12 onto itself. The SLTOs and the semi-Gibbs states are
the precursors of a resource theory of heat engines that we develop
in the Supplementary Information.

A.4 Characterization of semi-local thermal
operations

Recall the Stinespring dilation of the SLTOs given in the main text,

ΛS12

(
ρS12

)
= Tr B1B2

[
U(γB1 ⊗ γB2 ⊗ ρS12)U

†
]

, (A.12)

where the global unitary U satisfies the commutation relations (R1)
[U, HB1 + HB1 + HB2 + HS2 ] = 0,
and (R2)

[
U, β1 (HS1 + HB1) + β2 (HS1 + HB1)

]
= 0. The HSx and

HBx are the Hamiltonians of the subsystem Sx and the bath Bx respec-
tively for x = 1, 2. The thermal states of the baths are denoted by

γBx =
e−βx HBx

Tr [e−βx HBx ]
.

The unitary U strictly conserves both the total energy and the
total weighted-energy, as guaranteed by the commutation relations
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(R1) and (R2). It can be expressed in terms of the total energy blocks,
as

U = ∑
E1+E2

PE1+E2 (U) PE1+E2 =
⊕

E1+E2

UE1+E2 , (A.13)

where PE1+E2 is the projector spanning the sub-space with total energy
E1 + E2. The global unitary U cannot transfer populations among the
blocks with different total energies. The UE1+E2 cannot be arbitrary.
Within a block given by the fixed total energy E1 + E2, the UE1+E2 can
implement population transfer among the states that have identical
total weighted-energy β1E1 + β2E2.

For a system state ρS12 , the UE1+E2 operates on the total energy
block given by the normalized state system-baths composite ρB1B2S12

E1+E2
,

defined in the earlier section, that is

ρB1B2S12
E1+E2

=
1

pE1+E2

PE1+E2

(
γB1 ⊗ γB2 ⊗ ρS12

)
PE1+E2 ,

≈
⊕

E1+E2

I
B1
E1−ES1

gB1(E1)e
−β1ES1

⊗
I

B2
E2−ES2

gB2(E2)e
−β2ES2

⊗ PES1
+ES2

(ρS12)PES1
+ES2

, (A.14)

as discussed in Section A.2. The E1 and E2 are the energies correspond
to the composites B1S1 and B2S2. Recall, there are many combinations
of E1 and E2 that led to same value of total energy E1 + E2 and total
weighted-energy β1E1 + β2E2.

A.4.1 SLTOs are those that preserve semi-Gibbs states,
and vice versa

From the definition of SLTOs itself, it is clear that these operations
preserve semi-Gibbs states. Let us consider the microscopic picture.
Say the initial system state is in the semi-Gibbs state, given by

ρS12 = γS1 ⊗ γS2 = ∑
i

e−β1E
S1
i

ZS1

|ES1
i ⟩⟨E

S1
i | ⊗∑

j

e−β2ES2
j

ZS2

|ES2
j ⟩⟨E

S2
j |,

(A.15)
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where |ES1
i ⟩ are the energy eigenstates of the Hamiltonian HS1 =

∑i ES1
i |E

S1
i ⟩⟨E

S1
i | of the subsystem S1, and the |ES2

j ⟩ are the energy

eigenstates of the Hamiltonian HS2 = ∑j ES2
j |E

S2
j ⟩⟨E

S2
j | of the subsys-

tem S2. The ZS1 and ZS2 are the partition functions. For each block
with the total energy E1 + E2, the bath-system composite state, as
discussed in Section A.2, is

ρB1B2S12
E1+E2

=
⊕

E
S1
i +ES2

j

I

gB1(E1)e−β1E
S1
i

⊗ I

gB2(E2)e
−β2ES2

j

⊗

 e−β1E
S1
i

ZS1

|ES1
i ⟩⟨E

S1
i | ⊗

e−β2ES2
j

ZS2

|ES2
j ⟩⟨E

S2
j |


=

I

gB1(E1)ZS1

⊗ I

gB2(E2)ZS2

. (A.16)

Clearly, the application of a unitary (with the form (A.13)) on the joint
system-bath composite that strictly conserves both the total energy
and the total weighted-energy will not change the maximally mixed
state (A.16) in every total energy block. Therefore, a semi-Gibbs state
will not change upon the application of an SLTO.

Now we consider the reverse statement that is if a semi-Gibbs
state preserving operation can be implemented using an SLTO, placed
in the Corollary below.

Corollary 3 (Semi-Gibbs preservation of semi-local thermal opera-
tions). Consider two non-interacting sub-systems S1 and S2, of a bipartite
system S12, that are semi-locally interacting with the baths B1 and B2, at
inverse temperatures β1 and β2, respectively. Then the semi-local thermal
operations are the ones that satisfy the semi-Gibbs preservation condition,

ΛS12

(
γS1 ⊗ γS2

)
= γ′S1

⊗ γ′S2
∈ TS12 , ∀ γS1 ⊗ γS2 ∈ TS12 . (A.17)

Proof. Let us just consider the situation where the Hamiltonians of
the sub-systems do not change, i.e., the situation where
ΛS12

(
γS1 ⊗ γS2

)
= γS1 ⊗ γS2 . Extension to the general cases can be

simply followed.
Below we show that the semi-Gibbs preserving operations are

precisely the semi-local thermal operations when they are applied on
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the block-diagonal states, i.e., [ρS12 , HS12 ] = 0. Let us consider that
the Hamiltonian of the system S12,

HS12 = HS1 + HS2 , (A.18)

is non-degenerate in system energy. The bath-system composite
(B1B2S12) in the total energy blocks E1 + E2 is expressed in Eq. (A.5).
We restrict ourselves within one total energy block E1 + E2. We show
that, with the help of just permutation between bases, any arbitrary
operation can be performed that preserves the corresponding semi-
Gibbs state within the total energy block. Once done with this, it will
be easy to check that such an operation can be implemented in every
other total energy blocks. Note, the total energy E1 + E2 ∈ E12 (see
Section A.2).

Within a block of total energy E1 + E2, there are sub-blocks corre-
sponding to the system energies ES1

i + ES2
j .The permutations among

the eigenbases respecting strict conservation of total energy and to-
tal weighted-energy will result in transfer of eigenbases among the
sub-blocks defined by ES1

i + ES2
j (the energy of the system). Each

sub-block also constitutes a degenerate subspace with the dimension

gB1(E1)e−β1E
S1
i gB2(E2)e

−β2ES2
j (see Section A.2). All the eigenvalues

of the system-bath composite in this sub-block become equal to

p(ES1
i + ES2

j )

gB1(E1)e−β1E
S1
i gB2(E2)e

−β2ES2
j

, (A.19)

after normalization, where p(ES1
i + ES2

j ) = Tr [P
E

S1
i +ES2

j
ρS12 ]. For the

notational simplicity, let us denote p(ES1
i + ES2

j )→ pij, where i (and

j) stands for the energy levels ES1
i in system S1 (and ES2

j in system S2),

and gB1(E1)e−β1E
S1
i → di and gB2(E2)e

−β2ES2
j → dj.

Now, we can introduce permutations among the states that pre-
serves total energy as well as the total weighted-energy. Then, the
’transition current’ between system energy sub-blocks is denoted by
tij→mn, which is equal to the number of eigenstates that are trans-
ferred from the ij-th sub-block (corresponding to the system energy
ES1

i + ES2
j ) to mn-th sub-block (corresponding to the system energy
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ES1
m + ES2

n ). The transition current satisfies

∑
ij

tij→mn = dmdn, (A.20)

∑
mn

tij→mn = didj. (A.21)

The permutations will lead to a modification in the probability dis-
tribution in the system part {pij} → {qmn}. The new probability
distribution can be written in terms of the transition currents, satisfy-
ing (A.20) and (A.21), becomes

qmn = ∑
ij

tij→mn
pij

didj
= ∑

ij
sij→mn pij, (A.22)

where sij→mn =
tij→mn

didj
is the probability of the transition ij → mn.

The transition matrix {sij→mn} transforms a normalized probability
distribution to another normalized probability distribution, as it sat-
isfies the stochastic condition ∑mn sij→mn = 1, ∀ij. Along with the

relation
didj

dmdn
= e−β1E

S1
i −β2E

S2
i

e−β1E
S1
m −β2E

S2
n

, the stochastic condition implies that all

transformations satisfying the constraints (A.20) and (A.21) guaran-
tee the preservation of the semi-Gibbs state γS1 ⊗ γS2 . With this, we
prove that in a given total energy block, all possible operations that
strictly conserve both the total energy and the total weighted-energy
are semi-Gibbs preserving operations.

Note, for a given arbitrary semi-Gibbs preserving transformation
on the system S12 in a block-diagonal state ρS12 , a permutation among
the system energy sub-blocks within a fixed total energy and total
weighted-energy block, can be performed to result in the desired
transformation. The resultant operation in the block strictly conserves
total energy as well as total weighted-energy. Further for every such
block, there exists permutation operations that lead to the same
transformation on the system S12 part. The combination of all these
individual transformations, that are performed in different blocks
leads to the implementation of the semi-Gibbs preserving operation
on the initial state of the system S12.

It is clear from above that all semi-Gibbs preserving transforma-
tions can be performed with the help of permutations within each
block having fixed total energy and total weighted-energy. These
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operations are unitary and strictly conserve the total energy as well as
the total weighted-energy. Hence, these are nothing but the semi-local
thermal operations. Therefore, an arbitrary semi-Gibbs preserving op-
eration applied on system in a block-diagonal state can be simulated
using semi-local thermal operation.

We shall re-consider this semi-Gibbs preserving property to char-
acterize the state transformations under SLTOs in Section A.6.1, and
in the context of majorization in the Theorem 9.

A.4.2 Catalytic semi-local thermal operations (cSLTOs)

The SLTOs can be further generalized with an access to a bipartite
catalyst C12 composed of two non-interacting subsystems C1 and C2
and the Hamiltonian HC12 = HC1 + HC2 . The C1 is clubbed with the
subsystem S1 to form the composite S1C1. Similarly, the C2 is clubbed
with the S2 to form S2C2. Then, the composites S1C1 and S2C2 inter-
acts with the baths B1 and B2 via semi-local thermal operations. Such
operations are called catalytic semi-local thermal operations (cSLTOs)
that satisfy

ΛS12C12(ρS12 ⊗ ρC12)→ σS12 ⊗ ρC12 , (A.23)

where ρC12 is a state of the catalyst. Note, the catalyst remains un-
changed before and after the process. These catalytic operations form
a larger set of thermodynamically allowed operations compared to
SLTOs and respect all the properties satisfied by the SLTOs. The
cSLTOs are the allowed thermodynamic operation in a quantum heat
engine and constitute the free operation for the resource theory de-
veloped in this article. Several useful properties of these operations
are outlined in the Appendix A.4. It is interesting to note that the
cSLTOs converge to the (local) thermal operations that are introduced
in the resource theory of quantum states beyond thermal equilib-
rium presented in [64, 198, 205], when both the baths are of the same
temperature, i.e., for β1 = β2.

A.4.3 SLTOs are time-translation symmetric operations

It is interesting to note that the SLTOs, as well as the cSLTOs, are time-
translation symmetric operations with respect to the time evolution
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generated by the Hamiltonian HS12 = HS1 + HS2 . In other words, if
there is a time translation of the system driven by unitary V(t) =

e−itHS12
/h̄ for any given time t, then

V(t)
[
ΛS12(ρS12)

]
V†(t) = ΛS12

[
V(t)(ρS12)V

†(t)
]

, (A.24)

i.e., the order of the time translation operations and the SLTO com-
mute. Because of this symmetric property, the SLTOs monotoni-
cally decrease the superpositions between different eigenbases of
HS12 or, in other words, among the energy eigenbases. Note the
SLTOs are also time-translation symmetric with respect to the sys-
tem’s weighted-Hamiltonian Hβ1β2

S12
= β1HS1 + β2HS2 , since

[Hβ1β2
S12

, HS12 ] = 0.
The Eq. (A.24) further implies that the SLTOs commute with the

dephasing operations in the eigenbases of the Hamiltonian of the
system HS12 = ∑i,j(ES1

i + ES2
j )|ij⟩⟨ij|, i.e.,

ΛS12 ◦ PS12(ρS12) = PS12 ◦ΛS12(ρS12), (A.25)

where PS12(ρS12) = ∑ij⟨ij|ρS12 |ij⟩|ij⟩⟨ij| is the dephasing operation.
Note the dephasing operation can be achieved by time averaging
time-translated state for a long enough time T,

PS12(ρS12) =
1
T

∫ T

0
V(t) (ρS12) V(t)dt. (A.26)

The Eq. (A.25) signifies that the diagonal elements in the eigenbases
of HS12 , i.e., PS12(ρS12), evolve independently of the off-diagonal ele-
ments. Further, the amount of asymmetry present in a state due to the
superposition between different energy eigenbases monotonically de-
creases under the SLTOs. We use these properties to understand the
free-entropy locking in superpositions and to add more conditions to
supplement the second laws for state transformations below.

A.5 Information theoretic notations and tech-
nical tools

In this section, we shall briefly outline the notations and tools that
will be used to derive the conditions of state transformation under
SLTOs. The interested readers are referred to [64,198] for more details.

116



Appendix: Resource theory of QHE

A.5.1 Rényi α-entropies

Given an k-dimensional probability distribution p = {pi}k
i=1, the

Rényi α-entropies are defined as

Hα(p) =
sgn(α)
1− α

log
k

∑
i=1

pα
i , ∀α ∈ R \ {0, 1}, (A.27)

where sgn(α) = 1 for α ⩾ 0 and sgn(α) = −1 for α < 0. For
α ∈ {−∞, 0, 1, ∞}, the Hαs can be computed using limits, and they
are

H−∞(p) = log pmin, H0(p) = log rank(p),

H1(p) = −
k

∑
i=1

pi log pi, and H∞(p) = − log pmax. (A.28)

The rank(p) means the number of non-zero elements in p, and pmin
and pmax are the elements with smallest and largest values in p.

These Rényi entropies can also be defined for arbitrary quantum
state ρ, where the {pi} would be the eigenvalues of the density ma-
trix ρ. Note, at α → 1, the H1(ρ) = −Tr ρ log ρ becomes the von
Neumann entropy of the state ρ.

A.5.2 Rényi α-relative entropies

For any two k-dimensional probability distributions p = {pi}k
i=1 and

q = {qi}k
i=1, the Rényi α-relative entropies are defined as

Dα(p ∥ q) =
sgn(α)
α− 1

log
k

∑
i=1

pα
i q1−α

i , ∀α ∈ [−∞, ∞]. (A.29)

For the cases α ∈ {−∞, 0, 1, ∞}, the Dαs are calculated using limits,
as

D∞(p ∥ q) = lim
α→∞

Dα(p ∥ q) = log max
i

pi

qi
, (A.30)

D−∞(p ∥ q) = lim
α→−∞

Dα(p ∥ q) = D∞(q ∥ p), (A.31)

D0(p ∥ q) = lim
α→0+

Dα(p ∥ q) = − log
k

∑
i:pi ̸=0

qi, (A.32)

D1(p ∥ q) = lim
α→1

Dα(p ∥ q) = ∑
i

pi(log pi − log qi). (A.33)
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Here we use the conventions that 0
0 = 0 and x

0 = ∞ for x > 0. The
Rényi α-relative entropies satisfy many interesting properties, and we
shall mention few useful ones below. These entropies monotonically
decrease under stochastic maps Λ, i.e.,

Dα(p ∥ q) ⩾ Dα(Λ(p) ∥ Λ(q)), ∀α ∈ [−∞, ∞]. (A.34)

The inequalities are also known as the data-processing inequality.
Another important property is that, for α ∈ [0, ∞],

Dα(p ∥ q) ⩽ Dδ(p ∥ q), for α ⩽ δ. (A.35)

For a k-dimensional probability distribution {qi}k
i=1 with 0 < qi <

1 and ∀qi ∈ Q, there exist a set of natural numbers {di}k
i=1 such that

∑i di = N and qi =
di
N . Then a fine-grained, N-dimensional uniform

probability can be written as

Γ(q) =


q1

d1
, . . . ,

q1

d1︸ ︷︷ ︸
d1

, . . . ,
qk
dk

, . . . ,
qk
dk︸ ︷︷ ︸

dk

 =


1
N

, . . . ,
1
N︸ ︷︷ ︸

N

 . (A.36)

Similarly, any other probability distribution {pi}k
i=1 can be fine grained

to

Γ(p) =


p1

d1
, . . . ,

p1

d1︸ ︷︷ ︸
d1

, . . . ,
pk
dk

, . . . ,
pk
dk︸ ︷︷ ︸

dk

 . (A.37)

Then, for α ∈ [−∞, ∞], the Rényi α-relative entropies are related to
the Rényi α-entropies as

Dα (p|q) = Dα (Γ(p)|Γ(q)) = sgn(α) log N − Hα(p). (A.38)

For the situations where qi /∈ Q, we can relate the Rényi α-relative
entropies with the Rényi α-entropies using the following Lemma.

Lemma 4 (Ref. [64]). Consider a non-increasingly ordered, k-dimensional
probability distribution q = {qi}k

i=1 with ∀qi > 0, and qis may possibly
assume irrational values. Then, for any ϵ > 0, there exists a probability
distribution qϵ such that
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(i) ∥ q− qϵ ∥< ϵ,

(ii) Each probability in qϵ is rational so that qϵ =
{

di
N

}k

i=1
, where ∀di ∈N

and ∑k
i=1 di = N.

(iii) There exists a stochastic channel Λ such that Λ(q) = qϵ, and for any
arbitrary probability distribution r, the channel satisfies ∥ r − Λ(r) ∥⩽
O
(√

ϵ
)
.

The Rényi α-relative entropies can be extended to two arbitrary
quantum states ρ and σ. For this work, we shall restrict to the cases
where [ρ, σ] = 0, and supp[ρ] ⊆ supp[σ]. Then the Rényi α-relative
entropies are defined as

Dα(ρ ∥ σ) =
sgn(α)
α− 1

log Tr [ρασ1−α], ∀α ∈ [−∞, ∞]. (A.39)

For α→ 0, it becomes the min-relative entropy,

Dmin(ρ ∥ σ) = D0(ρ ∥ σ) = − log Tr [Πρσ], (A.40)

where Πρ is the projector onto the support of the state ρ. For the
α→ 1, it reduces to the von Neumann relative entropy as

D1(ρ ∥ σ) = Tr [ρ(log ρ− log σ]. (A.41)

For the case α→ ∞, it results in the max-entropy given by

Dmax(ρ ∥ σ) = D∞(ρ ∥ σ) = log min{λ : ρ ⩽ λσ}. (A.42)

The Rényi α-relative entropies are known to satisfy the monotonicity
relation under completely positive maps, for α ∈ [0, 2],

Dα(ρ ∥ σ) ⩾ Dα(Λ(ρ) ∥ Λ(σ)). (A.43)

For other values of α, validity of the monotonicity is still an open
question.

A.5.3 Majorization and catalytic majorization (trump-
ing)

The majorization relations are useful to introduce partial orders be-
tween arbitrary probability distributions [355]. For any two prob-
ability distributions p = {pi}k

i=1 and p′ = {p′i}k
i=1, we say that p
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majorizes p′, i.e., p ≽ p′, if for all l = 1, . . . , k,

l

∑
i=1

p↓i ⩾
l

∑
i=1

p′↓i and
k

∑
i=1

p↓i =
k

∑
i=1

p′↓i = 1, (A.44)

where the p↓ is obtained by rearranging p in the non-increasing
order so that p↓1 ⩾ p↓2 ⩾ . . . ⩾ p↓k , and similarly we obtain p′↓

by rearranging p′. When two probability distributions are partial
ordered through a majorization relation, these satisfy the following
properties:
(i) Two probability distributions p and p′ satisfy a majorization rela-
tion, p ≽ p′ if and only if there exist a channel Λ such that p′ = Λ(p)
and Λ satisfies Λ(η) = η, where η is the uniform distribution. The
channels Λ are called bi-stochastic channels, and these can be imple-
mented using random unitary operations.
(ii) If two probability distributions p and p′ satisfy a majorization
relation, p ≽ p′, then

f (p) ⩽ f (p′), (A.45)

where f are all Schur-concave functions. Note, the Rényi α-entropies
Hαs are Schur-concave functions for α ∈ [−∞, ∞].

Let us now discuss catalytic majorization or trumping. There
are situations where p and p′ cannot be partially ordered in terms of
majorization, but in presence of an additional probability distribution
x, it satisfies p ⊗ x ≽ p′ ⊗ x. This is termed as “p trumps p′” or
p ≽T p′. For two given probability distribution it is often very
difficult to find the additional probability distribution x to check
if the former are related through trumping. However, if the two
probability distributions satisfy following two Lemmas, then one
could ensure the existence of at least one x.

Lemma 5 (Ref. [64]). Let us consider two probability distributions p and
p′ that do not contain any element equal to zero. Then, p trumps p′, i.e.,
p ≽T p′ if, and only if, the Rényi α-entropies satisfy

Hα(p) ⩽ Hα(p′), ∀α ∈ (−∞, ∞). (A.46)

Obviously, there are situations where the p and p′ are not of full-
ranks (i.e., with all non-zero elements). In this situation, the Lemma
below holds.
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Lemma 6 (Ref. [64]). Let us consider two arbitrary probability distribu-
tions p and p′. Then the following are equivalent:
(i) For an arbitrary ϵ > 0, there exists a full rank probability distribution
p′ϵ such that ∥ p′ − p′ϵ ∥⩽ ϵ and p trumps p′ϵ (i.e., p ≽T p′ϵ). (ii) The
inequalities are satisfied, Hα(p) ⩽ Hα(p′), ∀α ∈ (−∞, ∞).

The notion of majorization and trumping can also be extended
to quantum states, say between ρ and ρ′. Then, the majorization
relation ρ ≽ ρ′ implies the relations (A.44) where the p↓ and p′↓ are
the non-increasingly ordered eigenvalues of ρ and ρ′ respectively.

A.5.4 d-majorization and catalytic d-majorization

Not only for two probability distributions, but the majorization-like
partial ordering can also be drawn between two pairs of probability
distributions. Consider two pairs of probability distributions (p, q)
and (p′, q′). The (p, q) d-majorizes (p′, q′) if and only if

∑
i

qi f
(

pi

qi

)
⩽ ∑

i
q′i f
(

p′i
q′i

)
, (A.47)

for any arbitrary concave function f . This d-majorization based pre-
ordering is then denoted as d(p|q) ≽ d(p′|q′). Given this definition
of d-majorization, we present the following Lemma.

Lemma 7 (Ref. [64]). Let us consider four probability distributions p, p′, q,
and q′. Then the following statements are equivalent: (i) The pair (p, q)
d-majorizes the pair (p′, q′), i.e., d(p|q) ≽ d(p′|q′). (ii) There exists a
stochastic channel Λ that satisfies Λ(p) = p′ and Λ(q) = q′.

A catalytic d-majorization can also be introduced as in the follow-
ing.

Lemma 8 (Ref. [64]). For two pairs of probability distributions, (p, q) and
(p′, q′) with the constraints that q and q′ are of full rank, the following
conditions are equivalent:

(i) The Rényi α-relative entropies satisfy Dα(p ∥ q) ⩾ Dα(p′ ∥ q′),
∀α ∈ [−∞, ∞].

(ii) For ϵ > 0, there exists full-rank probability distributions r, s, and p′ϵ,
and a stochastic channel Λ such that
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(a) Λ(p⊗ r) = p′ϵ ⊗ r,
(b) Λ(q⊗ s) = q′ ⊗ s, moreover s can be a uniform distribution η
onto the support of r,
(c) ∥ p′ − p′ϵ ∥ ⩽ ϵ.

We shall use this Lemma for the derivations of the second laws
for the state transformations under cSLTOs.

A.6 Second laws for transformations between
states block-diagonal in energy eigen-
bases

In this section, we present the necessary and sufficient conditions for
state transformations, i.e., the second laws of state transformations,
under (catalytic) semi-local thermal operations. All the necessary
and sufficient conditions derived here are based on the assumption
that the initial states are block-diagonal in the energy eigenbases of
the system. However, the conditions still apply to initial non-block-
diagonal states, but only as necessary conditions.

We start with a bipartite system S12, with non-interacting Hamil-
tonian HS12 = HS1 + HS2 , and the initial state ρS12 . The subsystem
S1 (S2) is semi-locally interacting with a bath B1 (B2) at inverse tem-
perature β1 (β2). After a transformation, the final state of the system
becomes σS12 . At this stage, we assume that the system Hamiltonian
remains unchanged before and after the transformation. Our goal
is to find necessary and sufficient conditions with which we can
ascertain that the transformation

(ρS12 , HS12)→ (σS12 , HS12) (A.48)

is possible via a semi-local thermal operation Λ, and vice versa.

A.6.1 State transformation in absence of a catalyst

Suppose, we do not have access to a catalyst. Following the discus-
sion made in Sections A.2 and A.4, we rewrite the initial system-bath
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composite as

γB1 ⊗ γB2 ⊗ ρS12 = ∑
E12

PE12

(
γB1 ⊗ γB2 ⊗ ρS12

)
PE12 = ∑

E12

pE12 ρB1B2S12
E12

.

(A.49)

Here E12 = E1 + E2 the total energy and the projector PE12 spans the
system-bath joint space with the same value of total energy E12. The
probabilities pE12 = Tr [PE12(γB1 ⊗ γB2 ⊗ ρS12)]. Now for E1, EB1 ∈ E1
and E2, EB2 ∈ E2, the normalized state of the bath-system composites,
in a block of total energy E12 = E1 + E2, is given by

ρB1B2S12
E12

=
⊕
ES12

I

gB1(E1)e
−β1ES1

⊗ I

gB2(E2)e
−β2ES2

⊗ PES12
(ρS12)PES12

=
⊕
ES12

ηB1
E1−ES1

⊗ ηB2
E2−ES2

⊗ PES12
(ρS12)PES12

, (A.50)

where ES12 = ES1 + ES2 is the system energy and PES12
is the projector

correspond to the system energy ES12 . Similarly, the final joint state
of the bath and the system composite can be expressed as

γB1 ⊗ γB2 ⊗ σS12 = ∑
E12

PE12

(
γB1 ⊗ γB2 ⊗ σS12

)
PE12 = ∑

E12

qE12 σB1B2S12
E12

,

(A.51)

where qE12 = Tr [PE12(γB1 ⊗ γB2 ⊗ σS12)]. For a total energy E12 =
E1 + E2 block, the normalized state becomes

σB1B2S12
E12

=
⊕
ES12

ηB1
E1−ES1

⊗ ηB2
E2−ES2

⊗ PES12
(σS12)PES12

. (A.52)

With these structures of the initial and final states of the system-bath
composites, we put forward the necessary and sufficient conditions
for the transformations of block-diagonal states under semi-local
thermal operations.

Majorization condition

The conditions are derived in terms of majorization (see Section A.5.3)
in the following theorem.
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Theorem 9 (Majorization condition for state transformations). Con-
sider two states ρS12 and σS12 that are block-diagonal in the eigenbases of the
Hamiltonian of the system HS12 = HS1 + HS2 . Then the transformation
(ρS12 , HS12)→ (σS12 , HS12) by means of semi-local thermal operation is pos-
sible if, and only if, the initial and final states of the system-bath composites
satisfy the majorization relation⊕

ES1
+ES2

ηB1
E1−ES1

⊗ ηB2
E2−ES2

⊗ PES12
(ρS12)PES12

≽

⊕
ES1

+ES2

ηB1
E1−ES1

⊗ ηB2
E2−ES2

⊗ PES12
(σS12)PES12

(A.53)

for large enough E1 and E2.
Moreover, for the cases where the initial system state is not block-

diagonal in the eigenbases of HS12 , the necessary condition for the transfor-
mation (ρ′S12

, HS12)→ (σ′S12
, HS12) is⊕

ES1
+ES2

ηB1
E1−ES1

⊗ ηB2
E2−ES2

⊗ PES12
(ρ′S12

)PES12
≽

⊕
ES1

+ES2

ηB1
E1−ES1

⊗ ηB2
E2−ES2

⊗ PES12
(σ′S12

)PES12
. (A.54)

Proof. For the system-bath composite state in a block with fixed
total energy E12 = E1 + E2, the allowed operations are any uni-
tary operations that also strictly conserve total weighted-energy
Eβ1β2

12 = β1E1 + β2E2. Because, such a unitary operation does not
alter the total energy as well as the total weighted-energy of the block.
However, as we shall show below, we not only can apply all such
unitary operations but also implement random unitary operations
as long as population remain in this fixed total energy and total
weighted-energy block. Note these are the only possible operations
that are allowed on the systems-baths joint space as they strictly
conserve the total energy and total weighted-energy.

We start with the first part of the theorem and prove it using a
protocol involving the following steps, where the initial state of the
system-bath composite is with total energy E12 and total weighted-
energy Eβ1β2

12 :
(i) Implementing random unitary operations: We assume that the E1

and the E2, corresponding to the block with energy E12, are reason-
ably large. This in turn implies that the dimension of the maximally
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mixed state ηB1
E1−ES1

⊗ ηB2
E2−ES2

is exponentially large. Therefore we
can divide the state in two normalized sub-parts, as

ηB1
E1−ES1

⊗ ηB2
E2−ES2

=
(

ηB1
E′′1
⊗ ηB2

E′′2

)
⊗
(

ηB1
E′1−ES1

⊗ ηB2
E′2−ES2

)
(A.55)

where E1 = E′′1 + E′1 and E2 = E′′2 + E′2, and each of the sub-parts are
in maximally mixed states with exponentially large dimensions. We
further assume that ηB1

E1−ES1
⊗ ηB2

E2−ES2
is so large that it hardly differ

from ηB1
E′1−ES1

⊗ ηB2
E′2−ES2

. The initial state of the system-bath composite

with total energy E12, is then

(
ηB1

E′′1
⊗ ηB2

E′′2

)
⊗

⊕
ES12

ηB1
E′1−ES1

⊗ ηB2
E′2−ES2

⊗ PES12
(ρS12)PES12

 . (A.56)

Now, the state ηB1
E′′1
⊗ ηB2

E′′2
can be used as a control state to imple-

ment random unitary operations (i.e., a unital channel) on the rest of
the system-bath composite, by using a global unitary on the entire
system-bath composite that strictly conserves both total energy and
total weighted-energy. Lets say, we implement such a global unitary
UE1+E2 (see Eq. (A.13)) so that the resultant system state becomes σS12
after tracing out the baths. Note the joint state of the system-bath
composite can still have correlations among them.

(ii) Destroying unwanted correlations in the system-bath composite
state: Now, we can destroy the unnecessary correlations that may
possibly present between the sub-systems and baths after step (i).
That is done by a “twirling” operation which is itself a random
unitary operation within the total energy block. For each system state
with the energy ES12 = ES1 + ES2 , we apply twirling operation on the
bath part B1B2 while applying identity operation on the system part,
such that the transformed final system-bath state becomes classically
correlated as ⊕

ES1
+ES2

ηB1
E1−ES1

⊗ ηB2
E2−ES2

⊗ PES12
(σS12)PES12

. (A.57)

Both the operations applied in steps (i) and (ii) are random uni-
tary operations that respect strict conservation of total energy and
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total weighted-energy, and these are the precursors of semi-local ther-
mal operations in the joint space of systems and baths (see Section
A.4). Further, if two states are related through random unitary opera-
tions, then the states satisfy pre-ordering by a majorization relation,
and this is a necessary and sufficient condition. Consequently, the
transformation is possible if and only if the initial system-bath state
majorizes the final one, within a block of total energy E12. Now since
baths are considerably large in energy compared to the systems, we
can implement the random unitary operations in the other blocks,
similar to the steps (i) and (ii), such that the reduced system state
becomes exactly the same. As a result, we do not need to check the
majorization relation for every block with fixed total total energy.
Therefore, the transition (ρS12 , HS12)→ (σS12 , HS12) is possible if, and
only if, the majorization relation (A.53) is satisfied. With this, we
complete the proof of the first part.

For the second part, we recall that the reduced operations on
the system part, as the result of global unitary operations on the
systems-baths composite, respect time-translation symmetry with
respect to time translation by the Hamiltonian of the system HS12
(see main text). The block-diagonal elements (also known as the
’zero’ mode elements) of the system density matrix (ρ′S12

) with respect
to the eigenbases of HS12 evolve independently of the off-diagonal
elements (’non-zero’ modes) under this time-translation symmetric
operations. For any transformation connecting the initial state (ρ′S12

)
to a final state (σ′S12

), it is necessary that the corresponding block-
diagonal states must satisfy the majorization relation (A.54). This
relation cannot provide the sufficient condition as it does not encode
information related to the non-block-diagonal elements.

So far, we have derived the necessary and sufficient condition
for transformations between block-diagonal states under semi-local
thermal operations. However, the condition requires us a take into
account both the system and the bath parameters simultaneously,
which is not always practical.

Thermo-majorization condition

Here we aim to derive necessary and sufficient conditions that exclu-
sively depend on the system parameters, based on thermo-majorization.
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Consider two quantum states ρS12 and σS12 , block-diagonal in the
eigenbases of the Hamiltonian HS12 = HS1 + HS2 , with the probabili-
ties {pij} and {qij} respectively. Here the Hamiltonian of the system
is written as H12 = ∑ij(ES1

i + ES2
j )|ij⟩⟨ij|, the probabilities are given

by pij = ⟨ij|ρS12 |ij⟩ and qij = ⟨ij|σS12 |ij⟩. A pre-ordering is done by

a non-increasing ordering of the quantities {pij e(β1E
S1
i +β2ES2

j )} and
relabeled, so that

p11 e(β1E
S1
1 +β2ES2

1 ) ⩾ p12 e(β1E
S1
1 +β2ES2

2 ) ⩾p21 e(β1E
S1
2 +β2ES2

1 ) (A.58)

⩾ p22 e(β1E
S1
2 +β2ES2

2 ) ⩾ . . . .

This determines the sequence in {pij}, which may or may not satisfy
a non-decreasing order. We denote the set of the ordered probability
distribution as {p↓ij}, where p↓11 is the pij corresponding to the largest

pij e(β1E
S1
i +β2ES2

j ) value and so on. A similar pre-ordering is also done
for {qij} → {q↓ij}. Now we construct a Lorentz curve with the points
corresponding to the pairs

{(x, y)} =
{(0, 0),

(p11, e−(β1E
S1
1 +β2ES2

1 )),

(p11 + p12, e−(β1E
S1
1 +β2ES2

1 ) + e−(β1E
S1
1 +β2ES2

2 )),

(p11 + p12 + p21, e−(β1E
S1
1 +β2ES2

1 ) + e−(β1E
S1
1 +β2ES2

2 ) + e−(β1E
S1
2 +β2ES2

1 )),
...

(1, Z1Z2)}

Plotting these points gives a function fp(x) corresponding to the state
ρS12 . A similar function is also derived for {qij}, and that is fq(x) for
σS12 .

Theorem 10 (Thermo-majorization condition for state transforma-
tions). A transition (ρS12 , HS12)→ (σS12 , HS12) can occur under semi-local
thermal operation if, and only if, the spectra of ρS12 thermo-majorizes the
spectra of σS12 , i.e.,

fp(x) ⩾ fq(x), ∀x ∈ [0, Z1Z2]. (A.59)
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In this sub-section, the derived necessary and sufficient conditions
based on majorization are very handy. This is in the sense that they
are easy to check, in particular, the one based on thermo-majorization.
However, as we have mentioned in Section A.5, there are probability
distribution that do not satisfy majorization relation as such, but
can still possess a majorization based pre-ordering by having access
to another probability distribution as a catalyst. It is not easy to
check whether there exists a probability distribution which can act
as a catalyst in order satisfy a majorization relation. We can still
find necessary and sufficient condition(s) based on Reńyi relative
entropies to ensure their existence, which we shall consider in the
next sub-section.

A.6.2 Catalytic state transformation

Before we propose the necessary and sufficient conditions for the
transformation under catalytic semi-local thermal operations, let us
introduce the definition of α-free-entropy (Sα) in terms of the Rényi
α-relative entropy (Dα).

α-free-entropies

Consider a state ρS12 of a bipartite system S12 with Hamiltonian
HS12 = HS1 + HS2 , where the sub-system S1 (S2) is semi-locally inter-
acting with the bath B1 (B2) at inverse temperature β1 (β2). Also, the
state ρS12 is block-diagonal in the eigenbases of the Hamiltonian HS12 .
Then, the Rényi α-relative entropy between the system state and its
corresponding semi-Gibbs state, for α ∈ [−∞, ∞], is given by

Dα(ρS12 ∥ γS1 ⊗ γS2) =
sgn(α)
α− 1

log Tr [(ρS12)
α (γS1 ⊗ γS2)

1−α],

(A.60)

where the thermal states are γSi =
e
−βi HSi

Zi
, with Zi = Tr [e−βi HSi ] and

i = 1, 2. Now the α-free-entropy of the state ρS12 is defined as

Sα(ρS12 , γS1 ⊗ γS2) = Dα

(
ρS12 ∥ γS1 ⊗ γS2

)
− log Z1Z2,
∀α ∈ [−∞, ∞]. (A.61)
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The name ’free-entropy’ is justified by fact that it quantifies the work
potential stored in a system in terms of entropy, which we shall
discuss in the Section A.7. For α→ 1, the Sα reduces to the Helmholtz
free-entropy as

S1(ρS12 , γS1 ⊗ γS2) = β1ES1 + β2ES2 − S(ρS12), (A.62)

where S(ρS12) = −Tr ρS12 ln ρS12 is the von Neumann entropy and
ESx = Tr [ρSx HSx ] is the average energy of the sub-system Sx, with
x = 1, 2. For the cases where the state ρS12 is uncorrelated, ρ12 =
ρS1 ⊗ ρS2 , the α-free-entropy becomes additive Sα(ρS12 , γ1 ⊗ γ2) =
Sα(ρS1 , γ1) + Sα(ρS2 , γ2).

Second laws in terms of α-free-entropies

Now with the notion of α-free-entropy, we go on to propose the
necessary and sufficient conditions for catalytic semi-local thermal
operation, in the following theorem.

Theorem 11. Consider two states ρS12 and σS12 that are block-diagonal
in the eigenbases of a system Hamiltonian HS12 = HS1 + HS2 . Then, a
transformation (ρS12 , HS12) → (σS12 , HS12) is possible under semi-local
thermal operation if, and only if, for all α ∈ (−∞, ∞),

Sα(ρS12 , γS1 ⊗ γS2) ⩾ Sα(σS12 , γS1 ⊗ γS2). (A.63)

Remark: The condition for α = −∞, ∞ can be included by continuity.

Proof. Since the initial and final states are block-diagonal in the en-
ergy eigenbases, the theorem above can be proved using catalytic
d-majorization shown in the Lemma 8. Replacing the probability
distributions, in Lemma 8, with the eigenvalues of the states block-
diagonal in energy, as

p→ ρS12 ; initial state of the system,

p′ → σS12 ; final state of the system,

q = q′ → γS1 ⊗ γS2 ; semi-Gibbs state of the system,
r → ρC12 ; a catalyst
s→ γC1 ⊗ γC2 ; semi-Gibbs state of the catalyst.
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Note, if we consider that the Hamiltonian of the catalyst HC12 =
HC1 + HC2 is trivial (i.e., HC12 = I), then

s = γC1 ⊗ γC2 → η; a uniform distribution.

Let us first assume that the catalyst possesses a trivial Hamiltonian
HC12 = I and the conditions (A.63) are satisfied. The latter, in terms
of Rényi α-relative entropy, means

Dα(ρS12 ∥ γS1 ⊗ γS2) ⩾ Dα(σS12 ∥ γS1 ⊗ γS2), ∀α ∈ (−∞, ∞).
(A.64)

Then, as the Lemma 8 implies, there exists a catalyst ρC12 and a
channel Λ that (i) preserves the semi-Gibbas state γS1 ⊗ γS2 ⊗ γC1 ⊗
γC2 , as

Λ
(
γS1 ⊗ γS2 ⊗ γC1 ⊗ γC2

)
= γS1 ⊗ γS2 ⊗ γC1 ⊗ γC2 , (A.65)

and (ii) transforms the initial state as

Λ
(
ρS12 ⊗ ρC12

)
= ρo

S12
⊗ ρC12 , (A.66)

where ∥ ρo
S12
− σS12 ∥ ⩽ ϵ. As the operations that preserve semi-

Gibbs states are also semi-local thermal operations (see Corollary
3), it implies that such a transformation using catalytic semi-local
thermal transformation is possible.

Let us consider the converse now. Suppose there is a catalytic
semi-local thermal channel Λ that transforms

Λ
(
ρS12 ⊗ ρC12

)
= ρo

S12
⊗ ρC12 , (A.67)

where ∥ ρo
S12
− σS12 ∥ ⩽ ϵ. Then the Lemma 8 implies that the condi-

tions (A.64) are satisfied. This completes the proof.

For block-diagonal input state of a system, a block-diagonal catalyst
is enough

Note, for a block-diagonal input state of a system, a block-diagonal
catalyst is enough. This can be seen from the fact that the semi-local
thermal operations are time-translation symmetric with respect to
the Hamiltonian of the systems HS12 (see main text). This is also
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true in the presence of catalysts. Therefore, the catalytic semi-local
thermal operations are time-translation symmetric with respect to
the joint Hamiltonian of the system and the catalyst, HS12 + HC12 .
Mathematically, for the catalytic semi-local thermal transformation
ρS12 ⊗ ρC12 → Λ(ρS12 ⊗ ρC12) = σS12 ⊗ ρC12 , it means

Λ
(
e−it(HS12

+HC12
) ρS12 ⊗ ρC12 eit(HS12

+HC12
)) (A.68)

= e−it(HS12
+HC12

) Λ
(
ρS12 ⊗ ρC12

)
eit(HS12

+HC12
).

Due to this time-translation symmetry, the block diagonal elements of
the S12C12 composite evolve fully independently of the off-diagonal
elements. Further, these block-diagonal elements can be expressed as
the tensor-products of block-diagonal elements arising from the sys-
tem S12 and the catalyst C12 corresponding to the energy eigenbases
of their own Hamiltonians. For an initial state ρS12 block-diagonal
in energy bases, the block-diagonal part of the catalyst state only
participates during the transformation. Therefore, a catalyst in a state
block-diagonal in its energy eigenbases is enough.

Avoiding negative α

The second laws for the transformations between system states, that
are block-diagonal in energy, are based on the conditions (A.63) for
α ∈ [−∞, ∞]. However, we can get rid of the negative α in the
conditions by borrowing an ancillary system in a pure state. The only
condition is that, after the transformation, we return it with good
fidelity. Even a two-qubit system in a pure state is enough to lift all
the conditions involving negative α.

Theorem 12. Consider two states ρS12 and σS12 that are block-diagonal in
the energy eigenbases, with the associated Hamiltonian HS12 = HS1 + HS2 .
Additionally, we are allowed to borrow a two-qubit system A12 with a trivial
Hamiltonian and in a pure state |0⟩⟨0|A1 ⊗ |0⟩⟨0|A2 , and then return it
with a good fidelity. Then a transformation (ρS12 , HS12)→ (σS12 , HS12) is
possible under semi-local thermal operation if, and only if,

Sα(ρS12 , γS1 ⊗ γS2) ⩾ Sα(σS12 , γS1 ⊗ γS2), ∀ α ⩾ 0. (A.69)

Proof. Let us first assume that the transformation

ρS12 ⊗ |0⟩⟨0|A1 ⊗ |0⟩⟨0|A2 → σS12 ⊗ |0⟩⟨0|A1 ⊗ |0⟩⟨0|A2 (A.70)
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is possible by means of a catalytic semi-local thermal operation. Then,
using Theorem 11 and noticing that the Rényi α-relative entropies
(Dα) are finite for the state |0⟩⟨0|A1 ⊗ |0⟩⟨0|A2 only for α ⩾ 0, we have

Dα(ρS12 ⊗ |0⟩⟨0|A1 ⊗ |0⟩⟨0|A2 ∥ γS1 ⊗ γS2 ⊗ γA1 ⊗ γA2) (A.71)
⩾ Dα(σS12 ⊗ |0⟩⟨0|A1 ⊗ |0⟩⟨0|A2 ∥ γS1 ⊗ γS2 ⊗ γA1 ⊗ γA2),

for all α ⩾ 0. Moreover, Dα(ρS12 ⊗ |0⟩⟨0|A1 ⊗ |0⟩⟨0|A2 ∥ γS1 ⊗ γS2 ⊗
γA1 ⊗ γA2) = Dα(ρS12 ∥ γS1 ⊗ γS2) + Dα(|0⟩⟨0|A1 ⊗ |0⟩⟨0|A2 ∥ γA1 ⊗
γA2). Thus the conditions (A.71), in turn, imply the conditions (A.69).

Conversely, let us consider that the conditions (A.69) (as well as
the conditions (A.71)) are satisfied. As we have indicated earlier, the
Dαs become infinite with |0⟩⟨0|A1 ⊗ |0⟩⟨0|A2 for α < 0. However, we
may allow that the final state of the ancillary system A12 is returned
in the full-rank state but arbitrarily close to the original state. Then
the left-hand side of (A.71) remains infinite but the right-hand side
becomes finite. Thus, we are led to

Dα(ρS12 ∥ γS1 ⊗ γS2) ⩾ Dα(σS12 ∥ γS1 ⊗ γS2), ∀α ∈ R. (A.72)

Now by Theorem 11, we say that the state ρS12 ⊗ |0⟩⟨0|A1 ⊗ |0⟩⟨0|A2
can be transformed arbitrarily close to the state σS12 ⊗ |0⟩⟨0|A1 ⊗
|0⟩⟨0|A2 .

A.6.3 State transformation with time dependent Hamil-
tonians

So far we have restricted ourselves to the cases where the system
Hamiltonian remains unchanged before and after the transformations.
However, in real situations, this restriction is not often respected. To
include all these scenarios, we consider the cases where such changes
in Hamiltonians are allowed.

Consider a situation where the non-interacting Hamiltonian HS12 =
HS1 + HS2 of the system S12 changes to H′S12

= H′S1
+ H′S2

, along with
the state transformation ρ12 → σ′12. Here the (′) indicates the state
with modified Hamiltonian. Such a change in the Hamiltonian often
happens due to some time dependencies of the joint Hamiltonian.
Then the second laws that incorporate such situations are given in
the theorem below.
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Theorem 13 (Second law for block-diagonal states). Under a cat-
alytic semi-local thermal operation, a transformation

(
ρS12 , HS12

)
−→(

σ′S12
, H′S12

)
that leads to changes both in system states and the non-

interacting system Hamiltonians is possible if, and only if,

Sα

(
ρS12 , γS1 ⊗ γS2

)
⩾ Sα

(
σ′S12

, γ′S1
⊗ γ′S2

)
, ∀α ⩾ 0, (A.73)

where γSi =
e
−βi HSi

Tr [e
−βi HSi ]

and γ′Si
= e

−βi H′Si

Tr [e
−βi H′Si ]

, for i = 1, 2.

Proof. Let us assume the total Hamiltonian of the universe is time-
independent. Any change happening in the system Hamiltonian can
then be understood due to the presence of a clock system X. The joint
Hamiltonian of the system and clock system is given by

t f

∑
t=ti

H(t)⊗ |t⟩⟨t|X, (A.74)

where |t⟩X are some orthonormal basis. Then a change in Hamilto-
nian H(ti)→ H(t f ), along with a transformation in the system state
ρ→ σ, is equivalent to the change in a joint clock-system state as

ρ(ti)⊗ |ti⟩⟨ti|X −→ σ(t f )⊗ |t f ⟩⟨t f |X. (A.75)

We exploit this argument to change the joint non-interacting Hamil-
tonian of the system, so that

HS12 = HS1 + HS2 −→ H′S12
= H′S1

+ H′S2
. (A.76)

We consider a bipartite clock system X12 that is responsible for the
change in Hamiltonian of the system S12. Since the transition does
not depend on the intermediate times, we simply assume the initial
state to be |ti⟩X1/2 = |0⟩X1/2 and the final state to be |t f ⟩X1/2 = |1⟩X1/2 .
Therefore, the time-independent joint Hamiltonian of the system and
the clock can be written as

HS12X12 =
(

HS1 ⊗ |0⟩⟨0|X1 + H′S1
⊗ |1⟩⟨1|X1

)
(A.77)

+
(

HS2 ⊗ |0⟩⟨0|X2 + H′S2
⊗ |1⟩⟨1|X2

)
= HS1X1 + HS2X2 .
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Here X12 plays the role of a switch and it controls the Hamiltonian on
the system by choosing its state |ij⟩⟨ij|X12 = |i⟩⟨i|X1 ⊗ |j⟩⟨j|X2 . For ex-
amples, when the switch X12 is in the state |00⟩⟨00|X12 , it implements
the Hamiltonian HS12 on the system S12. On the other hand, when the
switch is in the state |11⟩⟨11|X12 , it switches the system Hamiltonian
to H′S12

. Now consider a catalytic semi-local thermal operation that
leads to the transformation(

ρS12 , HS12

)
−→

(
σ′S12

, H′S12

)
. (A.78)

This is equivalent to the transformation between the joint system-
switch states block-diagonal in energy, and with the fixed Hamilto-
nian HS12X12 ,

(
ρS12 ⊗ |00⟩⟨00|X12 , HS12X12

)
−→

(
σ′S12
⊗ |11⟩⟨11|X12 , HS12X12

)
(A.79)

under a catalytic semi-local thermal operation applied jointly on the
system and the clock. Now following the Theorem 12, we cast the
necessary and sufficient conditions for the transformation, as

Sα

(
ρS12 ⊗ |00⟩⟨00|X12 , γS1X1 ⊗ γS2X2

)
(A.80)

⩾ Sα

(
σ′S12
⊗ |11⟩⟨11|X12 , γS1X1 ⊗ γS2X2

)
, ∀α ⩾ 0,

where γSiXi =
e
−βi HSiXi

Tr [e
−βi HSiXi ]

, for i = 1, 2, are the thermal states corre-

spond to the Hamiltonians HSiXi and inverse temperatures βi. More-
over, we notice that

Sα

(
ρS12 ⊗ |00⟩⟨00|X12 , γS1X1 ⊗ γS2X2

)
(A.81)

− Sα

(
σ′S12
⊗ |11⟩⟨11|X12 , γS1X1 ⊗ γS2X2

)
= Sα

(
ρS12 , γS1 ⊗ γS2

)
.

As a result, the necessary and sufficient conditions for the transfor-
mation reduce to

Sα

(
ρS12 , γS1 ⊗ γS2

)
⩾ Sα

(
σ′S12

, γ′S1
⊗ γ′S2

)
, ∀α ⩾ 0. (A.82)
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A.7 Free-entropy distance, thermodynamic
work and fundamentally irreversibility

In this section, we relate α-free-entropies, introduced in the previous
section, with thermodynamic works. A formal connection and equiv-
alence between work and purity have been established in [64, 198].
Here we briefly outline the approach presented in [198]. A thermaliza-
tion or work extraction process leads an arbitrary system-bath state
to a more mixed (or less pure) system-bath state for a given block
with fixed total energy. These processes are nothing but random-
ization (noisy) processes and extensively studied in context purity
resource theory [356]. However, there is a subtlety we encounter here,
compared to purity resource theory. Nevertheless, one may claim
that the thermodynamics is nothing but a purity resource theory
constrained by the temperature of the bath and the Hamiltonian of
the system [64, 198, 205].

Consider a bipartite system S12, with initial non-interacting Hamil-
tonian HS12 = HS1 + HS2 , in an initial state ρS12 . After a catalytic
semi-local thermal operation, the state and the Hamiltonian for the
system are changed to σ′S12

and H′S12
= H′S1

+ H′S2
respectively, i.e.,

(
ρS12 , HS12

)
−→

(
σ′S12

, H′S12

)
. (A.83)

For this transformation we may need a catalyst C12, with the Hamil-
tonian HC12 = HC1 + HC2 . However, for simplicity, we consider the
catalyst as a part of the system.

Our aim is to exploit this transformation to extract free-entropy
and thermodynamic work. For that, we also introduce a battery
that stores or expends work. We may think that the bipartite battery
SW12 is composed of sub-systems SW1 and SW2 with the Hamiltonian
HSW12

= HSW1
+ HSW2

, where the two-level Hamiltonians are HSW1
=

W1|W1⟩⟨W1| and HSW2
= W2|W2⟩⟨W2|. The battery sub-system SW1

(SW2) is semi-locally interacting with the bath B1 (B2). Note, these two
battery sub-systems can in principle exchange energy, i.e., work, as
this operation is allowed by the catalytic semi-local thermal processes.
When the battery sub-systems are thermalized to the temperatures of
B1 and B2, the corresponding semi-Gibbs state becomes γSW1

⊗ γSW2
,
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where

γSWi
=

1
1 + e−βiWi

(
|0⟩⟨0|+ e−βiWi |1⟩⟨1|

)
, (A.84)

with i = 1, 2, and βi is the inverse temperature of the bath Bi. Now, let
us consider the transformation of the system and the battery together(

ρS12 ⊗ |00⟩⟨00|SW12
, HS12 + HSW12

)
→(

σ′S12
⊗ |00⟩⟨00|SW12

, H′S12
+ HSW12

)
, (A.85)

where we denote |W1W2⟩⟨W1W2|SW12
= |W1⟩⟨W1|SW1

⊗ |W2⟩⟨W2|SW2
.

Then second laws, i.e., Theorem 13, ensure the conditions

Sα(ρS12 ⊗ |00⟩⟨00|SW12
, γS1 ⊗ γS2 ⊗ γSW1

⊗ γSW2
) (A.86)

⩾ Sα(σ
′
S12
⊗ |W1W2⟩⟨W1W2|SW12

, γ′S1
⊗ γ′S2

⊗ γSW1
⊗ γSW2

)

to be satisfied for all α ⩾ 0. Given the initial, the final and the thermal
states of the battery, we can derive the bound on the α-free-entropy
stored in the battery, as

Sα(ρS12 , γS1 ⊗ γS2)− Sα(σ
′
S12

, γ′S1
⊗ γ′S2

) ⩾ β1W1 + β2W2, (A.87)

where W1 (W2) is amount of work stored in the battery sub-system
via the transformation in its state |0⟩⟨0|W1 → |W1⟩⟨W1|W1 (|0⟩⟨0|W2 →
|W2⟩⟨W2|W2). Due to total energy and total-weighted energy conser-
vation of the global process on the system-battery-baths composite,
the battery SW12 can only increase its energy. This implies

W1 + W2 ⩾ 0. (A.88)

However, note that the quantities W1 and W2 depend on the cSLTO
that executes the transformation. Therefore, it is important to quan-
tify the guaranteed amount of free-entropy or the works involved
in a state transformation irrespective to the operations that execute
it. This quantification is done in terms of the free-entropy distance,
given below.

136



Appendix: Resource theory of QHE

Theorem 14 (Free-entropy distance). For a catalytic semi-local thermal
operation, leading to a transition

(
ρS12 , HS12

)
−→

(
σ′S12

, H′S12

)
, the free-

entropy distance between the initial and final block-diagonal states is given
by

Sd
(
ρ12 → σ′12

)
= inf

α⩾0

[
Sα(ρS12 , γS1 ⊗ γS2)− Sα(σ

′
S12

, γ′S1
⊗ γ′S2

)
]

= β1W1 + β2W2 ⩾ 0. (A.89)

Note, the guaranteed extracted work is Wext = W1 + W2. The
Theorem 14 leads to several interesting results. Now in terms of
the free-entropy distance, we can quantify these quantities, as in the
following.

Corollary 15 (Extractable free-entropy and free-entropy cost). For a
transformation between the block-diagonal states,

(
ρS12 , HS12

)
−→(

σ′S12
, H′S12

)
, under catalytic semi-local thermal operations, the extractable

free-entropy Sext, and the free-entropy cost Scost for the reverse the process,
are given by

Sext
(
ρ12 → σ′12

)
= inf

α⩾0

[
Sα(ρS12 , γS1 ⊗ γS2)− Sα(σ

′
S12

, γ′S1
⊗ γ′S2

)
]
= Sd

(
ρ12 → σ′12

)
,

Scost
(
σ′12 → ρ12

)
= − sup

α⩾0

[
Sα(ρS12 , γS1 ⊗ γS2)− Sα(σ

′
S12

, γ′S1
⊗ γ′S2

)
]

.

(A.90)

It is clear that the free-entropy that we can extract from the process
is in general lower than the free-entropy to be expended to reverse
the process. To see this, let us consider the transformation (A.83) and
assume Sext(ρS12 → σ′S12

) > 0. Then,

Sext(ρS12 → σ′S12
) ⩽ − Scost(σ

′
S12
→ ρS12). (A.91)

Therefore, thermodynamics in this regime is fundamentally irreversi-
ble, analogous to the cases with single bath [198]. With the help
of free-entropy distance, we are also able to compute the distillable
free-entropy and free-entropy of formation for a state.
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In the situation where the σS12 = γS1 ⊗ γS2 and the system Hamil-
tonian does not change, the Corollary 15 leads us to quantify dis-
tillable free-entropy Sdist for the process ρS12 → γS1 ⊗ γS2 , and the
free-entropy of formation S f orm for the process γS1 ⊗ γS2 → ρS12 , as

Sdist(ρS12) = D0
(
ρS12 ∥ γS1 ⊗ γS2

)
= − log Tr

(
ΠρS12

γS1 ⊗ γS2

)
, (A.92)

S f orm(ρS12) = D∞
(
ρS12 ∥ γS1 ⊗ γS2

)
= log min

{
λ : ρS12 ⩽ λ(γS1 ⊗ γS2)

}
. (A.93)

A.8 Superposition and free-entropy locking

The cSLTOs are time translation symmetric with respect to the system
Hamiltonian HS12 . Consider a quantum state ρS12 that has superpo-
sition in the eigenbases of Hβ1β2

S12
. Then the state can be expressed

as

ρS12 = ρd
S12

+ ρo
S12

, (A.94)

where ρd
S12

is the block-diagonal part of the state and ρo
S12

is the off-
diagonal part of the state when it is expressed in the energy eigen-
bases of the system. The off-diagonal part ρo

S12
evolve independently

of the block-diagonal part ρd
S12

under cSLTOs, and the cSLTOs can
only access the block-diagonal elements for free-entropy extraction.
That is why the only accessible free-entropy in the one-shot finite-size
regime is the one corresponding to the dephased state of the original
one.

Therefore, there is a free-entropy locking in the presence of such
superposition as the free-entropy stored in the superposition cannot
be accessed. Note, in presence of quantum correlation, e.g., entangle-
ment, such superposition is inevitably present in the state, and there
would be free-entropy locking. However, in the asymptotic regime,
where the number of particles in the system becomes considerably
large, this free-entropy can be unlocked and fully accessed via cSLTOs
(see below). As a result, one can fully extract free-entropy from the
quantum correlations present in the system in the asymptotic regime.
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A.9 Second laws for the non-block-diagonal
states

We have already mentioned that the second laws derived in the The-
orem 13 provide the necessary and sufficient conditions for the trans-
formation between states that are block-diagonal in the eigenbases of
the Hamiltonian HS12 . For the states that are not block-diagonal, the
second laws become only the necessary conditions. These necessary
conditions can be further supplemented by a monotonic measure of
the time-translation asymmetry. For a quantum state ρS12 with the
Hamiltonian HS12 , the asymmetry is quantified as

Aα(ρS12 , HS12) = Dq
α

(
ρS12 ∥ PS12(ρS12)

)
(A.95)

where the PS12(ρS12) is the dephased state in the energy eignebases,
given in Eq. (A.26), and the quantum Rényi α-relative entropy is
defined as

Dq
α(ρ ∥ σ) =

{ 1
α−1 log Tr (ρασ1−α), α ∈ [0, 1)

1
α−1 log Tr

(
[σ

1−α
2α ρ σ

1−α
2α ]α

)
, α > 0.

(A.96)

Note, in the limit α→ 1, the quantum α-relative entropy converges
to the well known von Neumann relative entropy Dq

1(ρ ∥ σ) =
Tr (ρ log ρ− ρ log σ).

Similar to the state transformation in the presence of a single
bath [208, 210], we also supplement the necessary condition for state
transformation in presence of two baths via cSLTOs, in addition to
the second laws for the diagonal states. Consider a transformation
(ρS12 , HS12)→ (σ′S12

, H′S12
) via a cSLTO, where the states may have su-

perposition in the energy eigenbases. Then, the necessary conditions
for the transformation are

Aα(ρS12 , HS12) ⩾ Aα(σ
′
S12

, H′S12
), ∀α ⩾ 0, (A.97)

where the amount quantum asymmetry monotonically decreases
under cSLTOs.

A.10 Asymptotic equipartition

The framework developed for quantum heat engines working in
the one-shot finite-size regime can reproduce the know results of
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thermodynamics for the engines operating in the asymptotic regime.
It is well known that all the Rényi α-relative entropies converge to von
Neuman relative entropy in the asymptotic regime (or i.i.d. regime),
that is

lim
N→∞

1
N

Dα(ρ
⊗N ∥ σ⊗N) = D1(ρ ∥ σ) = Tr (ρ log ρ− ρ log σ),

for all α. For that reason, the α-free-entropies reduce to the Helmholtz
free-entropy for all α, as

lim
N→∞

1
N

Sα

(
ρ⊗N

S12
, (γS1 ⊗ γS2)

⊗N
)
= S1(ρS12 , γS1 ⊗ γS2). (A.98)

Therefore, in the asymptotic regime, there is only one free-entropy
and that is the Helmholtz free-entropy. Consider a transformation
in the asymptotic regime via a cSLTO, where the individual system
transformations as

(ρS12 , HS12)→ (σ′S12
, H′S12

). (A.99)

The many second laws in the one-shot finite-size regime converge to
a single second law providing necessary and sufficient condition for
the engine transformation in the asymptotic regime, that is

S1(ρS12 , γS1 ⊗ γS2) ⩾ S1(σ
′
S12

, γ′S1
⊗ γ′S2

). (A.100)

The amount of extractable free-entropy or the free-entropy distance
per copy of the system, given the initial and the final states, is

Sd(ρS12 → σ′S12
) = S1(ρS12 , γS1 ⊗ γS2)− S1(σ

′
S12

, γ′S1
⊗ γ′S2

)

= ∆S− β1∆ES1 − β2∆ES2 , (A.101)

where ∆S = S(ρS12)− S(σ′S12
) the change in the von Neumann en-

tropy. ∆ES1 = Tr ρS12 HS1 − Tr σ′S12
H′S1

is the change in average energy
of the subsystem S1, and similarly, the ∆ES2 is for S2. Note, for the re-
verse transformation (σ′S12

, H′S12
)→ (ρS12 , HS12), the free-entropy cost

per copy of the system is exactly equal to the extractable free-entropy
in the forward process, i.e.,

Sd(ρS12 → σ′S12
) = Sd(ρS12 ← σ′S12

), (A.102)
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As a consequence, the thermodynamic reversibility is recovered in
the asymptotic regime.

We recall that there is a free-entropy locking in the one-shot finite-
size regime for the quantum states that have quantum superposition
in the energy eigenbases, i.e., for [ρS12 , HS12 ] ̸= 0. However, in the
asymptotic limit, where the number of systems N → ∞, all states
become symmetric with respect to the Hamiltonian on average, and
this is because of the fact that

lim
N→∞

1
N

[
ρ⊗N

S12
,

N−1

∑
x=0

I⊗x ⊗ HS12 ⊗ I⊗(N−x−1)

]
= 0, ∀ ρS12 .

So, an arbitrary state can be written in the block-diagonal form on
average in the asymptotic regime. It means that a state which is
non-block-diagonal in single-copy level becomes block-diagonal (on
average) in the energy eigenbases in the asymptotic regime. Con-
sequently, the locked free-entropy due to the presence of quantum
superpositions and correlations in a state can be accessed and ex-
tracted.

Let us now turn to the heat engines and show how the framework
presented above reproduces the traditional thermodynamics and its
laws. One may recover the statements of the second law in terms of
heat, where the heat Q is defined as Q = ∆E−W. Here ∆E is the
change in the internal energy in the system and W is the work done
by the system. Consider an engine transformation where bipartite
system S12 is semi-locally interacting with the baths B1 and B2 via
semi-local thermal operation. The global operation respect strict con-
servation of total weighted-energy, i.e., β1∆E1 + β2∆E2 = 0, where
∆E1 and ∆E2 is the change in energies of the B1S1 and B2S2 compos-
ites respectively. Then, the total weighted-energy conservation and
Eq. (A.89) together lead to

β1Q1 + β2Q2 ⩽ 0, (A.103)

where Q1/2 = ∆E1/2−W1/2. The expression above is the Clausius in-
equality and mathematically captures all the statements of the second
law in terms of heat. For instance, in the asymptotic regime where
the above definition of heat is applicable, we recover the traditional
form of Carnot efficiency as η = W∞

Q1
⩽ Q1+Q2

Q1
⩽ 1− β1

β2
, where the
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extracted work is given by W∞ ⩽ Q1 + Q2 and equality only holds
for the reversible engine operations.

In the asymptotic regime, the role of correlations in driving “anoma-
lous” heat flow from a cold to a hot bath can also be understood. For
example, consider the situation where engine operation leads to a
transformation (ρS12 , HS12) → (ρS1 ⊗ ρS2 , HS12) which exploits the
correlation between the subsystems S1 and S2. Here ρS1 = Tr S2ρS12
and ρS2 = Tr S1ρS12 . As per the second law in the asymptotic regime,
the transformation takes place spontaneously if and only if the free-
entropy satisfy S1(ρS12 , γS1 ⊗ γS2) ⩾ S1(ρS1 ⊗ ρS2 , γS1 ⊗ γS2). The
extractable free entropy from this process is

I(S1 : S2) ⩾ β1W1 + β2W2 ⩾ 0. (A.104)

where I(S1 : S2) = S(ρS1) + S(ρS2) − S(ρS12) is the mutual infor-
mation quantifying the correlation present in the system S12. The
Wext = W1 + W2 ⩾ 0 is the extractable work. This stored work in
correlation is responsible for the spontaneous “anomalous” heat flow
from the cold to the hot bath, which is nothing but a process that
happens in the case of refrigeration.

A.11 Reversible Engine Operation in a One-
step Cycle

Here we reconsider the reversible engine operation, given in the
main text (see Eq. (2.21)), that yields maximum power with Carnot
efficiency. We have assumed a bipartite working system S12 with
the Hamiltonian HS12 = HS1 + HS2 where HS1 = a|1⟩⟨1|S1 and HS2 =
a|1⟩⟨1|S2 . We have also assumed a bipartite battery SW12 with the
Hamiltonian HSW12

= HSW1
+ HSW2

, where HSW1
= EW1 |1⟩⟨1|SW1

and
HSW2

= EW2 |1⟩⟨1|SW2
. The one-step cycle is executed by implementing

a global unitary (U) operation on the baths-system-battery composite
leading to the transformation

γB1 ⊗ γB2 ⊗ ρS12 ⊗ ρi
SW12
→ σB1B2 ⊗ σS12 ⊗ ρ

f
SW12

, (A.105)

where ρS12 = |0⟩⟨0|S1 ⊗ |1⟩⟨1|S2 and σS12 = |1⟩⟨1|S1 ⊗ |0⟩⟨0|S2 are
the initial and final states of the working system S12, and ρi

SW12
=
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|0⟩⟨0|SW1
⊗ |0⟩⟨0|SW2

and ρ
f
SW12

= |1⟩⟨1|SW1
⊗ |1⟩⟨1|SW2

are the initial
and final states of the battery SW12 . Recall, the global unitary U re-
spects strict conservation of total energy and total weighted-energy.
Therefore, we can study the transformation in each total energy
block separately. Consider a block of total energy E1 + E2, where
E1 = ES1 + EB1 is the sum of energies belonging to S1 and B1, and
similarly for E2 = ES2 + EB2 . In this total energy block, the transfor-
mation becomes

[γB1 ⊗ γB2 ⊗ ρS12 ]E1+E2 ⊗ ρi
SW12
→ [σB1B2 ⊗ σS12 ]E′1+E′2

⊗ ρ
f
SW12

,

(A.106)

where E′1 = E′S1
+ E′B1

and E′2 = E′S2
+ E′B2

. The strict conservation of
the total weighted-energy and the total energy ensure that

β1E1 + β2E2 = β1(E′1 + EW1) + β2(E′2 + EW2), (A.107)

E1 + E2 = E′1 + E′2 + EW1 + EW2 , (A.108)

where E1 = EB1 , E2 = EB2 + a, E′1 = E′B1
+ a, and E′2 = E′B2

. Here we
have assumed β1 < β2.

Note, similar transformations will follow in the other total weighted-
energy blocks with identical initial and final battery states. The re-
duced transformation on the system S12, ρS12 → σS12 is reversible
because all α-free-entropies for pure system and battery states con-
sidered here are α independent [261]. As a consequence, free-entropy
distances satisfy Sd(ρS12 → σS12) = Sd(ρS12 ← σS12), where

Sd(ρS12 → σS12) = β2a− β1a = β1EW1 + β2EW2 > 0. (A.109)

This relation guarantees that there is strict conservation of weighted-
energy of the working system and the battery together. Therefore,
conservation of total weighted-energy (A.107) is reduced down to
the strict conservation of the weighted-energy of the baths only, i.e.

β1(EB1 − E′B1
) + β2(EB2 − E′B2

) = β1Q1 + β2Q2 = 0, (A.110)

where we have identified the heat as the change in energy of the bath
B1 given by Q1 = EB1 − E′B1

and similarly Q2 = EB2 − E′B2
for bath

B2. This is true for all energy blocks. The Eq. (A.110) represents the
Clausius equality for the cyclic process. The other total energy blocks
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will result in identical Clausius equality. The net extracted work in
each (one-step) engine cycle is given by

Wext = EW1 + EW2 = Q1 + Q2 > 0, (A.111)

Here we have used the strict total energy conservation (A.108). It is
clear from Eqs. (A.110) and (A.111) that the heat-to-work conversion
is ηC = Wext

Q1
= 1− β1

β2
, which is exactly the Carnot efficiency. Never-

theless for reversible engine transformation, the global unitary evo-
lution strictly ensures total energy conservation of B1B2S12SW12 and
weighted-energy conservation of B1B2, and that are mathematically
expressed by the commutation relations [U, HB1 + HB2 + HS] = 0
and [U, β1HB1 + β2HB2 ] = 0 respectively, where HS = HS1 + HS2 +
HSW1

+ HSW2
is the Hamiltonian of the system S = S12SW12 .

A.12 Conservation of weighted-energy im-
plies conservation of entropy

To understand the relationship between the conservation of entropy
and the conservation of weighted-energy, we analyze the engine pro-
cess in terms of the transformations happening in micro-canonical
ensembles. The baths are assumed to be considerably large compared
to the systems and the batteries. Since the global unitary implemen-
tation of the SLTOs strictly satisfy total energy conservation, we may
concentrate on the transformation happening in each total energy
block separately. For instance, consider the transformation (A.106).
This respects the total energy conservation, as given in Eq. (A.108).
Again, the overall process occurs unitarily in isolation, so total en-
tropy must be strictly conserved. The batteries only absorb or release
work, and, by definition, they cannot exchange entropy with the rest
of the system. Thus the entropy of system-bath composite (B1S1S2B2)
must have to be conserved. Given the initial total energy E1 + E2, the
strict entropy conservation implies the conservation of degeneracy,
i.e.,

gB(E1 + E2) = gB(E′1 + E′2)

= gB(E1 + E2)eβ1(E′1−E1)+β1(E′2−E2). (A.112)
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Thus, the following must have to be satisfied β1(E′1 − E1) + β1(E′2 −
E2) = 0. Here, E1 = EB1 + ES1 and E2 = EB2 + ES2 , and similarly for
E′1 and E′2. Thus, the above condition is reduced to

β1
(
∆EB1 + ∆ES1

)
+ β2 (∆EB2 + ∆ES2) = 0, (A.113)

where ∆Ex = E′x − Ex is the change in energy for the given total
energy block. This is nothing but the condition for strict weighted-
energy conservation, as ensured by the commutation relation (A.10).

A.13 Intensity-dependent Hamiltonian (2.32)

This section aims to show how the interaction Hamiltonian (2.32) can
be realized with designed cavities or ion traps. We will focus here on
the case of one cavity interacting with a two-level atom. Generaliza-
tion to three-level systems and two different cavities coupled to the
two different transitions is straightforward.

So, the starting point is a cavity (or trap) with a slight anharmonic-
ity. That is described by the Hamiltonian of a harmonic oscillator,
with frequency ω and a small controllable anharmonicity V (x/x0),

Hcav =
p2

2m
+

mω2x2

2
+ V (x/x0) = h̄ω a†a + V

(
a† + a√

2

)
. (A.114)

where x0 =
√

h̄
mω . Assuming that ω is much larger than any other

relevant frequency, it makes sense to go to the interaction picture with
respect to the harmonic part of the Hamiltonian, and apply rotating
wave approximation, i.e., neglect all rapidly oscillating terms and
leave only diagonal terms in the Fock basis. The end result is

Hcav,I = f (N), (A.115)

where N = a†a and f (n) = ⟨n|V(x)|n⟩ with N|n⟩ = n|n⟩.
Similarly, we assume that atom-cavity coupling originally has a

general form
Hc = h̄gb(x/x0)(σ

† + σ), (A.116)

where b(x/x0) is the cavity mode function, which we take to be odd,
i.e. b(−y) = −b(y). Assuming that the atom is close to the bare
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cavity resonance and, performing the same steps as before, we end
up with the interaction Hamiltonian

Hc,I = h̄g(θ(N)σ†a + h.c.), (A.117)

where ⟨n− 1|b(x/x0)|n⟩ = θ(n− 1)
√

n.
The intensity-dependent functions f (N) and θ(N) are related to

the original functions V (x/x0) and b (x/x0). For general f (N) and
θ(N), one needs to design the original functions. This can be done
using Monte Carlo (MC) optimization procedures. To this aim one
defines a cost function

C[V, b] = || fact(·)− ftar(·)||+ ||θact(·)− θtar(·)||, (A.118)

where f , θact,tar are the actual and target forms of the functions f (·)
and θ(·), and || · || denotes any norm in the space of the functions
f , θ. Judging from Eq. (2.33) it can be L2-norm for f (·) and Lq-norm
with q > 2 for θ(·). Now the MC procedure runs as follows: i) we
choose actual form of Vact(·) and bact(·); ii) we calculate fact(·), θact(·)
and C[Vact, bact]; iii) we modify slightly Vact(·) and bact and calculate
the new value of C[Vact, bact]; iv) we accept the modification, if the
new value of the error function is smaller than the previous one;
v) we go to iii) and repeat this steps until convergence is achieved.
MC optimization maybe modifies to allow small errors, if we treat
the cost functions like energy and minimize the corresponding free
energy at some arbitrary auxiliary temperature T .

The question of the convergence of the MC procedure, as well as
the sensitivity and the role of errors in the realization of our quantum
engine is very interesting but clearly goes beyond the scope of present
work. We will study it in a future publication.

A.14 Effective Hamiltonian of the quantum
optics based quantum heat engine

We start by considering that our system S is described by the Hamil-
tonian of a Λ-system and that each of the two transitions is coupled
to a different bosonic mode. The Hamiltonian is divided into two
parts H = H0 + H1, with

H0 = ω1N1 + ω2N2 + E1|1⟩⟨1|S + E2|2⟩⟨2|S + E3|3⟩⟨3|S, (A.119)
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H1 = f1(N1) + f2(N2) + g1θ1(N1)(â1σ31 + h.c.) (A.120)
+ g2θ2(N2)(â2σ32 + h.c.).

Here σij = |i⟩⟨j|S is the transition operator, and Nk = a†
k ak the number

operator corresponding to the bath Bk. The system and bath energies
are given by Ei and ωk (h̄ = 1). The terms fk(Nk) represent intensity-
dependent energy shifts of the baths, whereas gk(Nk) also takes into
account the intensity-dependence of the dipole interaction between
the system and the baths. We now set E1 = 0 and move to the
interaction picture with respect to H′0 = ω1N1 + ω2N2 + E2|2⟩⟨2|S +
ω1|3⟩⟨3|S, imposing the resonant condition ω1 = ω2 + E2. This gives
the interaction picture Hamiltonian

HI = ∆|3⟩⟨3|+ f1(N1) + f2(N2) + g1θ1(N1)(â1σ31 + h.c.)
+ g2θ2(N2)(â2σ32 + h.c.), (A.121)

with ∆ = E3 −ω1. We express our quantum state in the interaction
picture as:

|Ψ⟩ = |α̃⟩B|1⟩S + |β̃⟩B|2⟩S + |γ̃⟩B|3⟩S, (A.122)

where |α̃⟩B, |β̃⟩B, and |γ̃⟩B are unnormalized states of the B1B2 com-
posite. This leads to the following form of the Schrödinger equation
in components

i
d
dt
|α̃⟩B = [ f1(N1) + f2(N2)] |α̃⟩B + g1θ1(N1)â†

1|γ̃⟩B, (A.123)

i
d
dt
|β̃⟩B = [ f1(N1) + f2(N2)] |β̃⟩B + g2θ2(N2)â†

2|γ̃⟩B, (A.124)

i
d
dt
|γ̃⟩B = [ f1(N1) + f2(N2) + ∆] |γ̃⟩B

+ g2θ2(N2)â2|β̃⟩B + g1θ1(N1)â1|α̃⟩B. (A.125)

Now we consider a large detuning , i.e.,
∥∥∥ d

dt |γ̃⟩B
∥∥∥ ≃ 0, and ∆ ≫

⟨ f1(N1) + f2(N2)⟩, which allows us to express

|γ̃⟩ ≃ − 1
∆
(

g1θ1(N1)â1|α̃⟩B + g2θ2(N2)â2|β̃⟩B
)

. (A.126)
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Introducing this result in the previous equations leads to

i
d
dt
|α̃⟩B =

[
f1(N1) + f2(N2)−

g2
1

∆
θ2

1(N1)

]
|α̃⟩B

− g1g2

∆
θ1(N1)â†

1 â2θ2(N2)|β̃⟩B, (A.127)

i
d
dt
|β̃⟩B =

[
f1(N1) + f2(N2)−

g2
2

∆
θ2

2(N2)

]
|β̃⟩B

− g1g2

∆
θ2(N2)â†

2 â1θ1(N1)|α̃⟩B. (A.128)

The latter are the same equations of motion generated by an effective
interacting Hamiltonian given by

H′eff = f1(N1) + f2(N2)−
g2

1
∆

θ2
1(N1)−

g2
2

∆
θ2

2(N2)

− g1g2

∆
(θ1(N1)â†

1 â2θ2(N2)σ21 + h.c.). (A.129)

For suitable functions that satisfy

fk(Nk) =
g2

k
∆

θ2
k(Nk), (A.130)

we obtain the final effective Hamiltonian

Heff = −
g1g2

∆
θ1(N1)â†

1 â2θ2(N2)σ21 + h.c.. (A.131)
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Appendix: Synthetic negative
temperature

Below, we consider steady-state thermodynamics, where the working
system is weakly interacting with two baths and driven by a time-
dependent Hamiltonian. In particular, when the time-dependent
Hamiltonian has simple periodic time dependence, there exists a ro-
tating frame in which the overall dynamics become time-independent.
In that case, thermodynamic quantities like heat, work, entropy, etc.
can be consistently defined.

B.1 Rotating frame and steady-state thermo-
dynamics

Let us consider the setup discussed in Section 3.3 of the main text.
The Hamiltonian of the working systems are

HL = (EH − EC)|2⟩⟨2|+ EH|3⟩⟨3|,
HW = EW |2⟩⟨2|,
HE

in(t) = δ (|11⟩⟨22| eiωt + |22⟩⟨11| e−iωt),

HE
T(t) = HL + HW + HE

in(t),

where EW = EH − EC. The Hamiltonian HL corresponds to a qutrit
L. It weakly interacts with a hot (H) and a cold (C) bath at inverse
temperatures βH and βC (as described in Section 3.3 of the main text)
to synthesize a bath with negative inverse temperature βLS. The qubit
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W, with Hamiltonian HW , weakly interacts with a bath with positive
inverse temperature βW . The L and W interact between them with
a time-dependent interaction Hamiltonian given by HE

in(t). After
having all these interactions, the overall dynamics of the composite
LW is

∂ρLW(t)
∂t

= i[ρLW(t), HE
T(t)] + LL(ρLW(t)) + LW(ρLW(t)), (B.1)

for a state ρLW , where LL(·) = LLH(·) + LLC(·) is the Lindbld super-
operator (LOS) representing the dissipative dynamics due to baths H
and C, andLW(·) is the LOS for the bath with inverse temperature βW .
For this dynamics, the heat flux and power are defined as [270, 273]

Q̇ = Tr
[

∂ρLW(t)
∂t

HE
T(t)

]
, (B.2)

P = Tr

[
ρLW

∂HE
T(t)
∂t

]
. (B.3)

Note the heat flux Q̇ and the power P may have time dependence.
For time-dependent Hamiltonians, the dynamics generally never

leads to a steady state. However, for a periodic time-dependence,
as in HE

in(t), there is a rotating frame in which the Hamiltonian can
be made time-independent. For that, a counter-rotation is applied
on the laboratory frame by U = eiHRt with [HR, H0], where H0 =
HL + HW . In the rotating frame, an operator A in the laboratory
frame transforms as A → (A)R = UAU†. Further, there exists a
Hamiltonian HR for which the interaction Hamiltonian reduces to
a time-independent one, given by Vin = UHE

in(t)U
†. Accordingly,

the overall Hamiltonian becomes time-independent, and it is H̄E
T =

H0 − HR + Vin. In this rotating frame, the overall dynamics is recast
as

∂ρR
LW(t)
∂t

= LU(ρ
R
LW) + LL(ρ

R
LW) + LW(ρR

LW), (B.4)

for a state ρLW , with ρR
LW = UρLWU†. Here we denote LU(ρ

R
LW) =

i[ρR
LW , H̄E

T ] which is the unitary controbution to the dynamics. This
dynamics can lead to a steady state, say σR

LW . It can be easily checked
that the LOSs remain unchanged in this rotating frame. Given that
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Tr[AB] = Tr[(A)R(B)R] for two arbitrary operators A and B, we may
re-express the heat flux and power as [270]

Q̇ = Tr
[(

∂ρLW(t)
∂t

)
R

(
HE

T(t)
)

R

]
= Tr

[
L(ρR

LW) H0

]
, (B.5)

where L(ρR
LW) = LL(ρ

R
LW) + LW(ρR

LW), and the power as

P = Tr

[
(ρLW)R

(
∂HE

T(t)
∂t

)
R

]
= −i Tr

[
ρR

LW [H0, Vin]
]

, (B.6)

where [A, B] = AB− BA. The heat flux Q̇ can be divided into two
parts. One contribution comes from interaction of L with baths H
and C, i.e., Q̇L = Tr

[
LL(ρ

R
LW) H0

]
and the other due to interaction

between W with its bath, i.e., Q̇W = Tr
[
LW(ρR

LW) H0
]
.

Now we study the entropy flux through LW. Note the rate of
change in von Neumann entropy is given by

Ṡ = −Tr
[

∂ρLW(t)
∂t

log ρLW(t)
]

= −Tr
[(

∂ρLW(t)
∂t

)
R

log (ρLW(t))R

]
.

In the rotating frame and at steady-state, it reduces to

Ṡ = −Tr

[
∂σR

LW
∂t

log σR
LW

]
= 0.

The rate of change in entropy vanishes because the state does not
change over time. Nevertheless, there still can be a non-vanishing flux
of entropy passing through L and W. Given that unitary dynamics
does not contribute to the entropy flux,
i.e., −Tr[LU(ρ

R
LW) log σR

LW ] = 0, we can calculate the entropy flux
through L and W respectively as

ṠL = −Tr[LL(ρ
R
LW) log σR

LW ], (B.7)

ṠW = −Tr[LW(ρR
LW) log σR

LW ], (B.8)

where ṠL + ṠR = 0.
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B.2 Thermodynamics analysis with original
baths

To check the thermodynamic consistency of the results discussed
in Section 3.3, we also analyze the engine from the perspective of
the original baths with inverse temperatures βH, βC, and βW . We
have seen in the main text that heat fluxes from the baths H and C
are Q̇LH > 0, Q̇LC < 0 respectively, and Q̇W > 0. The total heat
flux that is entering the engine is Q̇I = Q̇LH + Q̇W . By using the
first law Q̇LH + Q̇LC + Q̇W + P = 0 and the Clausius inequality in
differential form βHQ̇LH + βCQ̇LC + βWQ̇W ≤ 0, we can drive the
engine efficiency, i.e.,

−P
Q̇I
≤ 1− βHQ̇H + βWQ̇W

βCQ̇H + βCQ̇W
= ηCar.

The upper bound is the Carnot efficiency and is always less than unity.
In fact, for βW = βH, the Carnot bound results in the traditional
bound, ηCar = 1 − βH/βC. For βW = βC, the bound reduces to
ηCar = (1− βH/βC)Q̇H/Q̇I .
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Density matrix renormalization
group (DMRG) method

The Density Matrix Renormalization Group (DMRG) is a compu-
tational methodology of significant potency that has been devised
for the investigation of quantum systems that are one-dimensional
in nature. The DMRG methodology is founded on the principle of
partitioning the system into two distinct halves and subsequently
optimizing the density matrix for each of these halves independently.
The process of optimization entails a methodical reduction of the
Hilbert space of the system by retaining solely the most notable states,
followed by conducting computations on this condensed space. The
aforementioned technique is subsequently employed in a repetitive
manner to the residual degrees of freedom until the intended degree
of precision is attained.

The DMRG methodology is heavily reliant on the fundamental
principle of renormalization. The concept of renormalization pertains
to the removal of high-energy degrees of freedom from a given system
in order to facilitate the computational process. Within the framework
of DMRG, the process of eliminating the high-energy degrees of
freedom involves a systematic truncation of the Hilbert space of the
system, whereby only the most pertinent states are retained. The
parameter referred to as the bond dimension is commonly used to
determine the quantity of states that are preserved, thereby regulating
the magnitude of the truncated Hilbert space.

DMRG has been effectively implemented in various physical sys-
tems, including spin chains, lattice models, and quantum field theo-
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ries. The DMRG method exhibits a notable advantage in analyzing
systems characterized by pronounced correlations, a scenario where
conventional techniques prove inadequate owing to the exponential
expansion of the Hilbert space. The application of DMRG has been
observed in the examination of intricate materials, including high-
temperature superconductors. This has resulted in novel revelations
regarding the conduct of quantum matter.

C.1 Structure of the DMRG algorithm

As can be seen in Fig. C.1, we break up the superblock into two
distinct blocks: the environment block, which is represented by the
symbol |j⟩, and the system block, which is denoted by the symbol |i⟩.

|Φ⟩ = ∑
i,j

Φi,j|i⟩|j⟩ (C.1)

It has been assumed that ⟨Φ | Φ⟩ = 1. Now, we trace out the
environment part, the reduced density matrix would be

TrE[|Φ⟩⟨Φ|] = σ̂ii′ = ∑
j

ΦijΦ∗i′ j|i⟩⟨i
′| (C.2)

The expectation value of an operator associated with the system can
be written

Tr[σ̂ii′Ô] = ∑
α

wα

〈
uα|Ô|uα

〉
(C.3)

where wα is the non-negative eigenvalue of eigenvector |uα⟩ of the
system’s density matrix. We have ∑α wα = 1 because of Tr[σ̂ii′ ] = 1
Since Tr σ̂ = 1. Now we only consider the states having noticeable
ωα value, and the rest would be eliminated. That leads to reduce
dimensions of Hilbert space, but we have to compromise with little
error in the expected value of the system operator.

⟨Φ|Ô|Φ⟩approx =
m

∑
α=1

wα

〈
uα|Ô|uα

〉
(C.4)

here m indicated those ωm ̸= 0 values with high weight. Now,

154



Appendix: DMRG

Superblock

System Environment

|i⟩ |j⟩

Figure C.1: The superblock is divided into system and environment
blocks.

look at the ground state after the approximation. After the desired
approximation we can write:

|Φ⟩ ≈
∣∣Φ′〉 = ∑

j

m

∑
α=1

aα,j |uα⟩ |j⟩ (C.5)

We can express the system block states, |uα⟩ = ∑i uα
i |i⟩, α = 1, · · · , m.

The error that we have to compromise with

Sm = ||Φ⟩ −
∣∣Φ′〉∣∣2 (C.6)

In general, we can write

∣∣Φ′〉 = ∑
α

aα |uα⟩ |vα⟩ , (C.7)

where vα
j = ⟨j | vα⟩ = Nαaα,j, with Nα chosen to set ∑j

∣∣∣vα
j

∣∣∣2 = 1.
The error Sm would be expressed as

Sm = ∑
ij

(
Φij −

m

∑
α=1

aαuα
i vα

j

)2

, (C.8)

We have the opportunity to minimize Sm by exploring all possible
combinations of uα, vα, and aα with the given number of m. One can
determine the solution by using the singular value decomposition of
the rectangular matrix Φ

Φ = UDVT, (C.9)

155



Appendix: DMRG

H̃l H̃R
l

Figure C.2: Superblock configuration, H̃l and H̃R
l are the Hamiltoni-

ans of system and environment, respectively.

The given expression involves a ℓ× ℓ orthogonal matrix U and a
ℓ× J column-orthogonal matrix V, where j ranges from 1 to J. It is
assumed that J is greater than or equal to ℓ. The singular values of Φ
are contained in the diagonal matrix D. The elements situated on the
diagonal of matrix D are denoted by aα. The columns of matrices U
and V that correspond to these diagonal elements are represented by
uα and vα, respectively. So, one can write from the Eq. (C.1)

σ = UD2UT. (C.10)

The wα values represent the eigenvalues of σ, which are equivalent
to the square of aα. The uα values correspond to the eigenstates of
σ that possess the highest eigenvalues. The variable wα denotes the
likelihood of the block existing in the state uα, subject to the constraint
that the summation of all wα values is equal to a certain quantity. The
variable wα denotes the likelihood of the block existing in the state
uα, subject to the constraint that uα, with ∑α wα

The truncated weight would be

Dm =
mmax

∑
α=m+1

wα = 1−
m

∑
α=1

wα, (C.11)

where mmax denotes the dimensionality of the density matrix.There
exists a measure, denoted as Dm, which exhibits a strong correlation
with the error in the ground-state energy. The discarded weight Dm is
often used to measure the error. It is possible to compute the ground-
state energy and the discarded weight for various values of m and
perform an extrapolation as m approaches infinity. This methodology
offers a dependable approximation of the discrepancy in the energy
of the ground-state energy [357, 358].
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C.1.1 The infinite-size algorithm

Starting with the procedure for infinite systems, the DMRG ap-
proach gradually increases the system’s size in physical space until it
achieves the target size while keeping the maximum dimension of
the superblock Hamiltonian constant. Using a reflection of the sys-
tem block, the environment block is built. The superblock’s layout is
shown in Fig C.2. The Hamiltonian of the system block with reduced
basis isHl. We get the environment block with the HamiltonianHR

l ,
which is obtained by the reflection ofHl.

So, if the system is symmetrical in reflection, here’s (Fig C.3) how
the algorithm can be put together:

1. Create a superblock consisting of L sites, making sure it’s small
enough to allow for exact diagonalization.

2. Then, diagonalize the Hamiltonian of the superblock, denoted
by HLSB, using techniques such as the Lanczos algorithm or
the more sophisticated Lanczos-Davidson algorithm [359, 360].
This process will yield the ground-state eigenvalue, E0, and the
corresponding eigenvector, |Φ0⟩.

3. Construct the reduced density matrix, denoted as ρii′ , for a new
system block containing l′ sites derived from the state |Φ⟩, by
applying Eq (C.2). In this case, l′ is equal to l, which is given by
(L/2)− 1.

4. Perform the diagonalization of the reduced density matrix ρii′

to acquire its m eigenvectors, denoted as u1, · · · , um, which
correspond to the largest eigenvalues.

5. Create the HamiltonianHl+1 and other operators Ol+1 for the
new system block, then transform them into the eigenbasis of
the reduced density matrix by calculating H̃l+1 = R†

LHl+1RL
and Õl+1 = R†

LOl+1RL. Here, the transformation matrix RL con-
sists of the m eigenvectors, represented as RL = (u1, · · · , um).

6. Form a new superblock Hamiltonian, denoted as HSB
L+2, by

combining the transformed Hamiltonian H̃l+1, two individual
sites, and the right-side transformed Hamiltonian H̃R

l+1.
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Figure C.3: The process of the infinite system algorithm

7. Repeat the process starting from step 2, but now replace L with
L + 2.

8. Keep repeating steps 2 - 6 until the algorithm converges!

The size of the superblock expands by two sites during each stage,
as illustrated in Fig. C.3. The iterations persist until a satisfactory
approximation of the infinite system is achieved.

C.1.2 The finite-size algorithm

White [357, 361] introduced the finite system algorithm as a method
to precisely determine the characteristics of systems with finite di-
mensions, which complements the infinite system algorithm. The
first phase of the method is similar to the infinite system variation,
but we cease increasing both blocks once the algorithm converges
on a new superblock length L. At this point, one might stop and
utilize the existing building pieces as a stand-in for the finite system.
But experience shows that the approach usually ends up produc-
ing unsatisfactory results. Specifically, this is because, in the first
stages of the infinite system method, the environment block is too
tiny to effectively reflect the embedding in the final system, resulting
in significant environmental errors. To address this, White developed
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a strategy for sweeping across the finite system. During these sweeps,
one continues with the renormalization processes, but rather than
increasing both blocks; one block is enlarged at the cost of the other
in order to maintain the same size for the superblock. Currently, the
scenario has undergone a reversal and the expansion process occurs
in the converse direction. Each iteration of the process encompasses
a complete cycle of growth and shrinkage for both blocks, updating
each block once for every size. If the system has reflection symmetry,
then it is feasible to use the reflection of the left block at a certain
magnitude to represent the right block at the same magnitude. In
this particular scenario, the growth of the environment block may be
replaced with the growth of the system block by simply resetting the
size of the system block to 1 and continuing with the development of
that block.

These sweeps’ rationale is to enhance the inclusivity of various
block sizes by enabling their integration into the final system. On
the other hand, the effectiveness of the embedding process is antici-
pated to increase as representations of the building blocks grow more
accurate. Sweeping the system frequently reduces environmental
mistakes and brings the overall error close to the truncation error,
thus eliminating it. As a result, we are able to realistically reduce the
overall error to below the truncation error level.

The following (Fig C.4) is the procedure for the finite-system
algorithm:

1. Execute the infinite-system algorithm until the superblock at-
tains the size L. Preserve the H̃l values and the necessary oper-
ators for connecting the blocks during each iteration.

2. Repeats steps 3-5 of the infinite-system algorithm to get H̃l+1,
although here, l ̸= l′.

3. Create further a superblock of length L by combining H̃l+1 two
single sites and H̃l′−1.

4. Repeat steps 2 and 3 until reaching the final location of the envi-
ronment length archives l′ = 1. This segment of the algorithm
is referred to as the left-to-right zipping phase.

5. Execute iterations 3-to-5 of the infinite-system algorithm with
the objective of constructing the environment and preserving
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Figure C.4: Finite system algorithm

the value of the corresponding Hamiltonian H̃R
l′−1 in every

iteration.

6. Similarly, create a superblock of sizeL by combining H̃l−1, two
individual sites, and H̃l′+1.

7. Continue performing steps 5 and 6 until l = 1. his segment of
the algorithm is referred to as the right-to-left zipping phase.

8. Repetition will continue from step 1 until the algorithm con-
verges.

C.2 Elements of DMRG within tensor net-
work approach

Tensor Network techniques offer a generic framework for the study
of many-body systems in any dimension. The fundamental concept
underlying Tensor Networks is to represent the wavefunction of the
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many-body system as a network of tensors, with each tensor standing
in for a local degree of freedom of the system. This is the fundamental
principle behind Tensor Networks.

When tensor network approaches are used with DMRG, the result
is a powerful and versatile tool for investigating quantum systems
that is both accurate and interpretable. It enables the accurate de-
piction of big, complicated systems with a large number of degrees
of freedom, and it achieves a high level of accuracy in predictions,
making it a suitable tool for the study of highly coupled systems.
This method may be used for a broad variety of quantum systems,
such as those that exhibit a variety of interactions, symmetries, and
boundary conditions. The wave function is easily interpretable when
seen through the lens of the tensor network, which makes it simple
to draw conclusions about the physical world based on the outcomes
of TN-DMRG with Tensor Network computations.

C.2.1 Matrix Product State

An MPS is a shorthand term for an ansatz that represents a many-
body wave function. Consider a many-body quantum system, which
consists of N coupled systems, each of which is formed of d dimen-
sional states. The dimension of the Hilbert space would be dN and
the basis vectors are expressed as |S1⟩ ⊗ |S2⟩ ⊗ |S3⟩ ⊗ .......⊗ |SN⟩.
We can write the general form of the wave function

|Φ⟩ = ∑
S1S2S3...SN

ΦS1S2S3...SN |S1⟩ |S2⟩ |S3⟩ . . . |SN⟩ (C.12)

Each sub-system’s unique index combinability is a multiplicative fac-
tor that has the potential to increase the total number of basis states.
As a basic principle of quantum mechanics, the fact that the size of
the Hilbert space grows exponentially with the size of the system is
very different from the way the size of the state space grows linearly
in classical mechanics. We can express (C.12) diagrammatically,

An MPS is represented as a collection of three-index tensors
ASi

αi,αi+1 , where Si is the physical index representing the local basis
at site i, and αi and αi+1 are auxiliary indices (also known as bond
indices) for a one-dimensional system.
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|Φ⟩ = ∑
σ1σ2σ3...σN

α1α2α3...αN−1

AS1
1α1

AS2
α1α2 AS3

α2α3 . . . ASN
αN−11 |S1⟩ |S2⟩ |S3⟩ . . . |SN⟩

(C.13)

|Φ⟩ = A1 A2 A3 AN

S1 S2 S3 SNS1 S2 S3 SN

Figure C.5: Matrix product state

C.2.2 Matrix-Product Operators

In a way comparable to that of the matrix product state, one can
define the Matrix Product operator (MPO). Every site of MPO is
connected with two legs with different indices in Fig C.6.

Ô = ∑
S′1S′2...S′N
S1S2...SN

OS′1
S1

OS′2
S2

. . . OS′N
SN
|S1⟩ |S2⟩ |S3⟩ . . . |SN⟩

〈
S′1
∣∣ 〈S′2∣∣ 〈S′3∣∣ . . .

〈
S′N
∣∣

(C.14)

The expectation value of an operator can be express like the
Fig. C.2.2.
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Ô = Ô1 Ô2 Ô3 ÔN

S1

S′1

S2

S′2

S3

S′3

SN

S′N

Figure C.6: Matrix product operator

⟨Φ|Ô|Φ⟩ = Ô1 Ô2 Ô3 ÔN

A1

A†
1

A2

A†
2

A3

A†
3

AN

A†
N

Figure C.7: The expectation value of the operator O.

C.2.3 DMRG algorithm

The DMRG approach leverages Matrix Product States (MPS) to en-
code quantum states, allowing for good accuracy while keeping a
computationally viable cost. Here we learn the Density Matrix Renor-
malization Group (DMRG) approach using matrix product states.

Here, we provide a step-by-step procedure of the DMRG method
through MPS.

1. Hamiltonian representation: To begin, one needs to express
the Hamiltonian of the quantum system in terms of the local
interactions.

2. Initialize MPS: The tensors must be set to random values or
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a known beginning state before the operation can begin on an
MPS. In order to prevent biases in the tensor network represen-
tation, it is usual practice to assign random values to the tensors
from the beginning. A different option is to initialize the tensors
with a ground state or product state of a simpler system.

3. Create a tensor for the environment: The environment tensors
are constructed using a combination of the Hamiltonian and
the MPS tensors for the neighboring sites. Update the environ-
ment tensors as we move through the system during the sweep
procedure.

4. Sweep operation: In a tensor network, optimizing the tensor at
each site requires a series of iterative sweeps. An optimization
sweep involves iteratively reversing the direction of the tensor
optimization from left to right and back again. This step is criti-
cal for developing a tensor network representation that is both
effective and precise. There are two main processes involved
in every sweep: optimization and gauge transformation. The
optimization process seeks for the tensor that provides the most
overall satisfaction across all sites. Conversely, the goal of the
gauge transformation is to reduce inefficient redundancy in
the tensor network. In order to eliminate the gauge degrees of
freedom, a local unitary transformation is applied to the MPS
tensors, a process known as gauge transformation. It is nec-
essary to repeat the sweeps until the energy or MPS tensors
converge in order to optimize the tensors in the system. When
the difference between the most recent and earlier tensors falls
below a certain threshold, we say that the tensor network has
converged.

The sweep operation comprises two essential steps: optimiza-
tion and gauge transformation.

• Optimization: The optimization process involves the fol-
lowing steps to update the MPS tensor for the current site
and minimize the energy of the local Hamiltonian at this
site:

(a) Form an effective Hamiltonian for the current site by
combining the local Hamiltonian with the environ-
ment tensors. This effective Hamiltonian describes the

164



Appendix: DMRG

interaction of the current site with the rest of the sys-
tem. The environment tensors represent the tensors of
all other sites in the system, excluding the current site.

(b) Compute the reduced density matrix for the current
site by tracing out the rest of the system. This density
matrix describes the probability of finding the current
site in a particular state while averaging over the states
of the other sites in the system. Using the MPS repre-
sentation, one can perform this operation efficiently,
which is essential for large systems.

(c) Obtain a collection of eigenvalues and eigenvectors by
solving an eigenvalue problem for the effective Hamil-
tonian. The energy state of the current site that is most
stable is that with the lowest eigenvalue (ground state).
Then, one can make sure that the tensor network rep-
resentation appropriately depicts the system’s ground
state by updating the MPS tensor for the current site
with the relevant eigenvector.

In general, the optimization procedure is an essential part
of the tensor network approaches, since it is the step that
guarantees the MPS tensor at each site is updated properly
and effectively. One may acquire an accurate representa-
tion of the system’s ground state and the attributes it has
by decreasing the energy of the local Hamiltonian at each
site.

• Gauge transformation: The process of updating the MPS
tensor for the current site in a tensor network involves the
following steps in detail:

(a) For the current site, do a singular value decomposition
(SVD) (in Fig C.2.3) on the updated MPS tensor. In
this stage, the tensor is divided into a set of singular
values and the left and right singular vectors that go
with them. The SVD is an important stage in tensor
network approaches because it makes it possible to
manipulate the tensor network effectively.

(b) Keep only the most significant singular values in the
SVD, as determined by a threshold or a predefined
maximum number of states. This truncation phase
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is required to guarantee that the MPS remains man-
ageable in size, especially for large systems. By dis-
carding the less significant singular values, the storage
requirements of the tensor network can be drastically
reduced.

(c) Using the truncated SVD, update the MPS tensors for
the current site and the next (or prior, depending on
the sweep direction). In this stage, the left and right
singular vectors are combined with the reduced sin-
gular values to generate new tensors. These revised
tensors offer a more accurate and compact representa-
tion of a tensor network.

(d) Update the environment tensors for the next (or prior)
site as needed. The environment tensors are the ten-
sors of all other sites in the system that are not current
or updated. One may guarantee that the tensor net-
work stays consistent and correct by updating these
tensors depending on the reduced SVD.

Overall, updating the MPS tensor for the current site in
a tensor network comprises a number of essential stages,
including SVD, truncation, and updates to the MPS and en-
vironment tensors. By carefully following these methods,
one may generate an efficient and accurate tensor network
representation.

The optimization step involves finding the best possible tensor
that satisfies the optimization criteria at each site. In contrast,
the gauge transformation step aims to remove the unwanted
redundancy in the tensor network, making it more compact
and efficient.

It is crucial to repeat the sweeps until the energy or MPS tensors
converge, as this guarantees the accuracy of the tensor network
representation. Convergence refers to the point where the dif-
ference between the current and the previous tensors is below
a predefined threshold, indicating that the tensor network has
stabilized.

We consider only four physical sites in Fig. C.9 for simplicity. We
can do SVD from the left side, which leads to the left canonical form
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M = U D V†

Figure C.8: Singular value decomposition of M.

|Φ′⟩ = A1 A2 A3 A4

S1 S2 S3 S4S1 S2 S3 S4

Figure C.9: Caption

shown in Fig. C.10. Similarly, one can do SVD from the right sides,
which leads to the right canonical form Fig. C.11. Although in DMRG,
it would be conventions take a combination of left and right canonical
form which results in a mixed canonical form (in Fig. C.12).

We draw a diagram of matrix product operator for Hamiltonian
in Fig. C.13. Using the mixed canonical form and writing down
the Hamiltonian on the local MPS (in Fig. C.16) we can solve the
Schrödinger equation as an eigen value problem.
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|Φ⟩ =

S1 S2 S3 S4

A1 A2 A3 A4

S1 S2 S3 S4

= U1 U2 U3 Φ4

S1 S2 S3 S4

=

U1 U2 Φ3=

S1 S2 S3 S4

= U1 Φ2

S1 S2 S3 S4

Figure C.10: Left-canonical form
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|Φ⟩ =

S1 S2 S3 S4

A1 A2 A3 A4

S1 S2 S3 S4

= Φ1 V2 V3 V4

S1 S2 S3 S4

= Φ2 V3 V4

S1 S2 S3 S4

= Φ3 V4

S1 S2 S3 S4

Figure C.11: Right-canonical form
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|Φ⟩ =

S1 S2 S3 S4

U1 U2 Φ3 V4

S1 S2 S3 S4

Figure C.12: Mixed-canonical form; the most convenient form for
DMRG

H

Figure C.13: Hamiltonian

H

U†
1 U†

2 Φ†
3 V†

4 V†
5

Basis Wave function Basis

Figure C.14: Utilize mixed canonical form
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H

U†
1 U†

2

U1 U2 V4 V5

Φ†
3 V†

4 V†
5

Basis Wave function Basis

Figure C.15: Hamiltonian is projected into local MPS basis
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H

Φ†
3

Wave function

Figure C.16: The Hamiltonian only acting on local MPS Φ†
3 to solve

the Schrödinger equation as an eigen value problem.
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[158] M. Milićević, T. Ozawa, G. Montambaux, I. Carusotto, E. Ga-
lopin, A. Lemaı̂tre, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo.
Orbital edge states in a photonic honeycomb lattice. Physical
Review Letters, 118(10), March 2017.

[159] Yu-Xin Wang and Aashish A. Clerk. Intrinsic and induced
quantum quenches for enhancing qubit-based quantum noise
spectroscopy. Nature Communications, 12(1), November 2021.

[160] Shiwei Tang, Yikai Xu, Fei Ding, and Feng Liu. Continuously
tunable topological defects and topological edge states in di-
electric photonic crystals. Physical Review B, 107(4), January
2023.

[161] S. K. Kanungo, J. D. Whalen, Y. Lu, M. Yuan, S. Dasgupta, F. B.
Dunning, K. R. A. Hazzard, and T. C. Killian. Realizing topo-
logical edge states with rydberg-atom synthetic dimensions.
Nature Communications, 13(1), February 2022.

[162] L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang,
J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse,
B. C. Sanders, and P. Xue. Observation of topological edge
states in parity–time-symmetric quantum walks. Nature Physics,
13(11):1117–1123, July 2017.

[163] G. Pelegrı́, A. M. Marques, R. G. Dias, A. J. Daley, J. Mompart,
and V. Ahufinger. Topological edge states and aharanov-bohm
caging with ultracold atoms carrying orbital angular momen-
tum. Physical Review A, 99(2), February 2019.

[164] Nathan Goldman, Jean Dalibard, Alexandre Dauphin, Fabrice
Gerbier, Maciej Lewenstein, Peter Zoller, and Ian B. Spielman.
Direct imaging of topological edge states in cold-atom systems.

190



Bibliography

Proceedings of the National Academy of Sciences, 110(17):6736–
6741, April 2013.

[165] Martin Leder, Christopher Grossert, Lukas Sitta, Maximilian
Genske, Achim Rosch, and Martin Weitz. Real-space imaging
of a topologically protected edge state with ultracold atoms in
an amplitude-chirped optical lattice. Nature Communications,
7(1), October 2016.

[166] Chao Hang, Dmitry A. Zezyulin, Guoxiang Huang, and
Vladimir V. Konotop. Nonlinear topological edge states in
a non-hermitian array of optical waveguides embedded in an
atomic gas. Physical Review A, 103(4), April 2021.

[167] Entong Zhao, Chengdong He, and Gyu-Boong Jo. “designing
synthetic topological matter with atoms and lights”. Light:
Science and Applications, 11(1), February 2022.

[168] Cheng He, Xu Ni, Hao Ge, Xiao-Chen Sun, Yan-Bin Chen,
Ming-Hui Lu, Xiao-Ping Liu, and Yan-Feng Chen. Acoustic
topological insulator and robust one-way sound transport. Na-
ture Physics, 12(12):1124–1129, aug 2016.

[169] Xiang Ni, Kai Chen, Matthew Weiner, David J. Apigo,
Camelia Prodan, Andrea Alù, Emil Prodan, and Alexander B.
Khanikaev. Observation of hofstadter butterfly and topological
edge states in reconfigurable quasi-periodic acoustic crystals.
Communications Physics, 2(1), June 2019.

[170] He Gao, Haoran Xue, Qiang Wang, Zhongming Gu, Tuo Liu,
Jie Zhu, and Baile Zhang. Observation of topological edge
states induced solely by non-hermiticity in an acoustic crystal.
Physical Review B, 101(18), May 2020.

[171] Weiwei Zhu, Xinsheng Fang, Dongting Li, Yong Sun, Yong
Li, Yun Jing, and Hong Chen. Simultaneous observation of a
topological edge state and exceptional point in an open and
non-hermitian acoustic system. Physical Review Letters, 121(12),
September 2018.

191



Bibliography

[172] Ze-Guo Chen, Changqing Xu, Rasha Al Jahdali, Jun Mei, and
Ying Wu. Corner states in a second-order acoustic topologi-
cal insulator as bound states in the continuum. Phys. Rev. B,
100:075120, Aug 2019.

[173] Xiang Ni, Maxim A Gorlach, Andrea Alu, and Alexander B
Khanikaev. Topological edge states in acoustic kagome lattices.
New Journal of Physics, 19(5):055002, may 2017.

[174] Marc-Antoine Lemonde, Vittorio Peano, Peter Rabl, and Dim-
itris G Angelakis. Quantum state transfer via acoustic edge
states in a 2d optomechanical array. New Journal of Physics,
21(11):113030, nov 2019.

[175] Amir Darabi and Michael J. Leamy. Tunable nonlinear topolog-
ical insulator for acoustic waves. Physical Review Applied, 12(4),
oct 2019.

[176] Xinhua Wen, Chunyin Qiu, Yajuan Qi, Liping Ye, Manzhu Ke,
Fan Zhang, and Zhengyou Liu. Acoustic landau quantization
and quantum-hall-like edge states. Nature Physics, 15(4):352–
356, mar 2019.

[177] Guancong Ma, Meng Xiao, and C. T. Chan. Topological phases
in acoustic and mechanical systems. Nature Reviews Physics,
1(4):281–294, March 2019.

[178] Haoran Xue, Yahui Yang, Fei Gao, Yidong Chong, and Baile
Zhang. Acoustic higher-order topological insulator on a
kagome lattice. Nature Materials, 18(2):108–112, December 2018.

[179] Matthew Weiner, Xiang Ni, Mengyao Li, Andrea Alù, and
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André Staudte, Andrei Yu. Naumov, D. M. Villeneuve, Claus
Ropers, and P. B. Corkum. Tailored semiconductors for high-
harmonic optoelectronics. Science, 357(6348):303–306, July 2017.

[304] B. Frietsch, A. Donges, R. Carley, M. Teichmann, J. Bowlan,
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Christoph Lange, Jens Güdde, et al. Subcycle observation of
lightwave-driven dirac currents in a topological surface band.
Nature, 562(7727):396–400, 2018.
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