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Abstract

The modern understanding of physics is deeply linked with the concept
of information. The revival of the study of quantum mechanics in the
form of quantum information is just an example of a more general trend
showing how the incorporation of ideas from information theory into the
practice of physics is not simply a fertile opportunity to find new results,
but it also offers a radically new understanding of what physics should
be describing: emblematic of this paradigm shift is the transition from
the infinite dimensional space associated to the wave functions appear-
ing in the Schrödinger equation, to the extreme simplicity of the modern
cornerstone of quantum mechanics, the qubit. A special place in this
context is taken by thermodynamics: on the one hand, because it was
one of the first branches of physics in which the role of information was
explicitly recognised; on the other, as the formal correspondence between
Shannon and Boltzmann entropy hints at a deep connection between the
two. Ultimately, it almost feels like these two theories will end up co-
inciding, and one will speak about thermodynamics just as information
theory with erasure. We are still far away from this claim, but the contin-
uous appearance of information quantifiers in genuinely thermodynamics
setting, especially when characterising the dissipation, cannot but cor-
roborate this belief.

The aim of this thesis is to move further in the identification of the
two theories, by focusing on some aspects of information geometry and
showing how these naturally apply to the study of thermodynamic trans-
formations. In particular, the main object of interest is the family of
quantum Fisher information metrics, thoroughly studied in the first part
of the thesis. In there we prove a fact that motivates the interest in this
quantity: despite the statistical setting in which it was originally formu-
lated, it has such a deep dynamical nature that all physical evolutions
can actually be defined just in terms of their behaviour with respect to

ix
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the Fisher information. In the second part of the thesis, we connect this
discussion to the field of thermodynamics. In this context, we show that
the Fisher information metrics naturally emerge in the description of the
dissipation in near-isothermal transformations, that is whenever the driv-
ing is slow enough for the system to be close to equilibrium during the
whole protocol. This shows another example of what seems to be a gen-
eral rule: the naturality with which structures developed in the context of
statistical inference and information theory apply to the study of entropy
production.



Resumen

La comprensión moderna de la física está enlazada al concepto de infor-
mación. El renacimiento en el interés por la mecánica cuántica causado
por el nacimiento de la información cuántica es solo un ejemplo de una
tendencia más general que muestra cómo la incorporación de ideas de la
teoría de la información en la práctica de la física no es simplemente una
oportunidad fértil para encontrar nuevos resultados, sino que también
ofrece una comprensión radicalmente nueva de lo que la física debería
describir: emblemático de este cambio de paradigma es la transición del
espacio de dimensión infinita asociado a las funciones de onda que apare-
cen en la ecuación de Schrödinger, a la extrema simplicidad de la reciente
piedra angular de la mecánica cuántica, el qubit. Un espacio especial en
este contexto lo ocupa la termodinámica: por un lado, porque fue una de
las primeras ramas de la física en la que se reconoció explícitamente el
papel de la información; por el otro, por el hecho que la correspondencia
formal entre la entropía de Shannon y la de Boltzmann sugiere una conex-
ión profunda entre las dos. En última instancia, casi parece que estas dos
teorías terminarán coincidiendo, y se hablará sobre termodinámica como
la teoría de la información con pérdidas. Todavía estamos lejos de esta
afirmación, pero la continua aparición de cuantificadores de información
en contextos genuinamente termodinámico, especialmente al momento de
caracterizar la disipación, no puede no corroborar esta creencia.

El objetivo de esta tesis es avanzar en la identificación de las dos
teorías, centrándose en algunos aspectos de la geometría de la informa-
ción y mostrando cómo se aplican naturalmente al estudio de las trans-
formaciones termodinámicas. En particular, el principal objeto de interés
es la familia de métricas de información cuántica de Fisher, ampliamente
estudiada en la primera parte de la tesis. Allí probamos un hecho que
motiva el interés en esta cantidad: a pesar del contexto estadístico en el
que se formuló originalmente, tiene una natura dinámica tan profunda
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que todas las evoluciones físicas pueden definirse solo en términos de sus
comportamientos con respecto a la Información de Fisher. En la segunda
parte de la tesis, conectamos esta discusión con el campo de la termod-
inámica. En este contexto, mostramos que las métricas de información de
Fisher emergen naturalmente en la descripción de la disipación en trans-
formaciones casi-isotérmicas, es decir, siempre que el desplazamiento sea
lo suficientemente lento como para que el sistema esté cerca del equilibrio
durante todo el protocolo. Esto muestra otro ejemplo de lo que parece
ser una regla general: la naturalidad con la que estructuras desarrolladas
en el contexto de la inferencia estadística y de la teoría de la información
se aplican al estudio de la producción de entropía.



Overview

This work is naturally divided in two parts, distinguished both in subject
and style. The first part, about the definition and characterisation of the
Fisher information metric, is mathematical in nature, rather technical,
and aims at giving an organic treatment to a plethora of results that
were scattered in the literature. The second part of the thesis takes a
more physical stance, which results in a discursive style and less heavy
formalism. The first two chapters of this part, about the first and second
law of thermodynamics, do not contain original work, but are instead
dedicated to what I would have liked to know during my master, when I
was first exposed to the subject of modern thermodynamics.

Despite the order of presentation would suggest otherwise, depending
on the inclination of the reader, it is possible to start from the second part
and to use the first simply as an appendix. Still, given the significance of
the results contained in Chapter 1, we preferred to dedicate a full chapter
to the Fisher information, rather than to delegate it to an appendix.
Finally, we also refer to Chapter 5 for a the summary of the results
obtained during the PhD.

Part I: Information
Chap. 1: Fisher information and the geometry of quantum states

The problem of assessing the similarity of different classical statistical
distributions does not have a straightforward answer: different methods
yield different quantifications, and there is no clear argument that would
single out a unique strategy over all the others. As a matter of fact, this
difficulty actually reflects the many different behaviours that a probabil-
ity distribution shows depending on the regime one is focusing on: two
distributions could be very similar in the asymptotic regime, but show
substantial differences when one restricts their attention to single-shot
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experiments. For this reason, rather than trying to reduce the richness of
the phenomenology that one can focus on, Csizár introduced a family of
possible quantifiers, the contrast functions (see Sec. 1.1), which encom-
passes the many different aspects that one could want to characterise.
Remarkably, despite the plethora of different possibilities, when one con-
siders close-by probability distributions (in the sense that their statistics
are very similar) all the contrast functions collapse into a single quantity:
the Fisher information metric.

For quantum states, however, this simplification does not happen: the
local behaviour of different contrast functions only coincides for diagonal
states, i.e., classical statistics, but otherwise to each (symmetrised) con-
trast function there corresponds a different local metric. This family is
what one refers to as the quantum Fisher information metrics, and the
non-uniqueness of these quantities shows that the estimation scheme one
is considering stays relevant even for close-by states. The resulting rich
phenomenology is discussed in Sec. 1.4, which can be considered as a field
guide to the many different mathematical expressions that the quantum
Fisher information can take.

It should be noticed that there is another important way of charac-
terising the Fisher information: the Chentsov theorem states that this is
the unique metric on the space of probability distributions that contracts
under arbitrary stochastic maps (Thm. 1). A similar result was later ob-
tained by Petz (Thm. 3), showing that the same family of quantum Fisher
information discussed above can also be characterised as all the metrics
that contract under arbitrary physical evolutions. There are two impor-
tant consequences of this theorem: first, it legitimates the identification
of the family of quantum Fisher information obtained from the local ex-
pansion of contrast functions as the correct extension of the classical
Fisher information to quantum systems (if this second characterisation
was not present, one could wonder whether it would be possible to single
out a unique quantum Fisher information from additional axioms); on
the other hand, it reveals a hidden link between the local behaviour of
distinguishability measures and physical evolutions.

This second aspect of the Fisher information metric remained long
unexplored. Only recently we found that the Chentsov-Petz theorem can
be actually reversed: one can define all physical evolutions as exactly
the unique family of linear maps that contract the Fisher information
(see Thm. 5 and [1, 4]). In this way, whereas the Chentsov-Petz theorem
would suggest that the Fisher metric is a derived concept, as it can be
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defined in terms of the dynamics, in reality there is no hierarchy between
the two, as one can also characterise the physical evolutions starting from
the Fisher information.

This connection is further explored in Sec. 1.5.1–1.5.5, where we show
that a number of properties of dynamical semigroups can be formulated
in terms of the relation between their generators and the Fisher informa-
tion metrics. In particular, Markovianity is equivalent to a monotonous
contraction of the Fisher information on the space of states (together
with an ancilla of the same dimension, see Thm. 9), while detailed bal-
ance corresponds to a self-adjoint generator with respect to the scalar
products induced by the Fisher metrics.

The results just discussed demonstrate the intimate dynamical nature
of the Fisher information metric, hinting at a subtle connection between
statistics and physical evolutions that was so far overlooked.

Part II: Thermodynamics
Chap. 2: The first law

The first law of thermodynamics has two main messages: first, it
encodes the law of conservation of energy; secondly, it naturally splits
the energy into an accessible and an inaccessible component, reflecting
the fact that an agent only has control over a part of the universe, namely
the system. Indeed, any energy inserted on the system through a driving
(i.e., in the form of work), will eventually flow into the environment due
to a thermalisation process, becoming de facto irretrievable. In order to
account for this apparent local violation of the conservation of energy, one
is led to introduce the concept of heat, as all that energy disappearing
into the thermal bath.

Interestingly, while this division of the total energy into work and heat
is unproblematic for classical systems, in the quantum regime one has to
be more careful, as the measurement scheme employed becomes relevant
to the definition of these two quantities. Indeed, since the Hamiltonian is
driven, it could in general not commute with itself at different times, so
there are incompatibility issues in the definition of a probability distri-
bution for the work (or, equivalently, for the heat). The most standard
approach in this context is to define it through the two-point measure-
ment (TPM) scheme: at the beginning and at the end of the protocol,
one performs a global measurement of the energy of system and bath, and
defines the change of energy as the difference between the two outcomes.
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Since there are no other energy sources, this equals the work, as the only
change of energy can come from the driving of the system Hamiltonian.
In this way, one can define the probability of extracting a given amount
of work w as the sum of the probabilities of all possible energy gaps equal
to w (see Eq. (2.16)).

Setting aside the feasibility of performing a global measurement on
system and bath (which is usually considered to be macroscopic), this
definition has an important drawback: if there is any coherence in the
initial state of the system, the average change of energy is actually dif-
ferent from the average computed from the probability defined above.
Indeed, the initial energy measurement dephases the state, erasing any
memory of the initial coherences. Moreover, in this context one can al-
ways find a non-contextual ontological model reproducing the statistics of
the work, meaning that any genuinely quantum phenomenon is actually
washed away by the initial measurement (Thm. 16).

Given these two important issues, one could wonder why we consid-
ered this definition in the first place. It is true that the work defined for
classical systems is actually compatible with the measurement scheme
just discussed, but one might wonder whether there is a way of modify-
ing it by preserving this compatibility, and recover the equality between
the difference of average energy and the average computed from the prob-
ability distribution. The negative answer to this endeavour is given by
Thm. 15: there is no definition of a quantum work probability distribu-
tion satisfying both these conditions.

At this point there are two possible ways forward: either one sticks
with the definition of work arising from the TPM scheme, aware of its
limitations and scope, which is the approach taken in this thesis; or one
drops the assumption that the work is actually connected to a probabil-
ity distribution. Indeed, if one relaxes the definition to quasiprobabilities,
not only one can have the compatibility with both the requirements dis-
cussed above, but can also obtain genuinely quantum phenomena (i.e.,
not reproducible through non-contextual models, see Thm. 17). The
only drawback of this approach is that one partly loses the connection
between dissipation and information quantifiers (as one can see by com-
paring Eq. (2.28) with Eq. (2.51)), which is the main reason to consider
the two point energy measurement scheme definition of work.

Chap. 3: The second law

The second law of thermodynamics tells us that generic transforma-
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tions cannot be undone, as the universe has the tendency to maximise its
entropy with time. The tension between this statement and the reversibil-
ity of microscopic laws of motion led Maxwell to formulate a thought
experiment that would demonstrate the statistical nature of the second
law: his famous demon, i.e, a mechanism with complete control over the
atomic elements of the system which can extract work from a thermal
state without inputting any extra energy in the system.

Despite the advent of statistical mechanics, Maxwell’s demon has had
the power to stir controversy for over a century, with discussions mostly
focussed on finding loopholes in the argument which would protect the
second law even in the extreme regime in which the demon was formu-
lated. As recounted in Sec. 3.1, rather than being just an academic skir-
mish, this debate led to one of the biggest revolution of modern physics:
the idea that information is actually physical. Indeed, the pioneering ap-
proach of Szilárd showed that there was an impediment to the operation
of Maxwell’s demon coming from the way in which information was han-
dled in its memory. In its most modern formulation, the arguments hinted
at by Szilárd became the basis for the Landauer’s principle, the fact that
the erasure of a bit of information must dissipate at least kBT log 2 of
energy. As the memory of the demon is finite, this means that in order
to continue operating it has to start erasing it at some point, releasing
heat into the environment, and ultimately saving the second law from
this attack.

Still, it should be noted that, despite the indisputable importance of
the attempts just discussed, the second law is indeed statistical in nature.
It is a fact that there are fluctuations in the entropy, signalling a local and
sporadic inversion of the arrow of time, without the need to go to astro-
nomical periods as the ones involved in the Poincaré recurrence theorem.
Indeed, whereas these inversions are seldom observed at a macroscopic
scale, when moving to smaller systems they become more and more rele-
vant. It is quite remarkable, then, that some of the most important new
results in modern thermodynamics come from taking these fluctuations
seriously.

Indeed, whereas the universality of most of thermodynamics’ results
requires the system to be always at equilibrium, it was proven by Jarzyn-
ski that one could still find universal results by averaging over many
realisations of the same transformation. His celebrated fluctuation the-
orem (see Eq. (3.22)) connects the statistics of work extracted during
transformations that bring the system arbitrarily out of equilibrium to a
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functional of the difference of free energy, i.e., to a state function. It is
important to highlight that this result could only be derived once the ex-
istence of fluctuations in any thermodynamic transformation was actually
acknowledged.

Along the same lines, Crooks relations (see Eq. (3.44)) connect the
dissipation during a thermodynamic transformation with the probability
of observing it as compared with its time reversed version. In particular,
it shows that a system starting at equilibrium has the tendency to move
along the time direction that dissipate more. It should be pointed out
though that all the results presented are based on the assumptions that
the state at the beginning of the transformation is thermal, so one cannot
use Crooks relations to directly infer the directionality in the arrow of
time. Still, this result shows that once the thermalisation of generic
systems is proven, the asymmetry in time naturally emerges even when
bringing them out of equilibrium.

These fluctuation theorems were initially deduced for classical sys-
tems. Still, when one uses the TPM definition of work, it can be shown
that they also hold in the quantum regime. Interestingly, it has also been
proven that this is a defining property of the TPM scheme: Thm. 20
states that any probability distribution satisfying a minimal compati-
bility with the classical definition of work and for which the Jarzynski
equality holds coincides almost everywhere with the TPM definition of
work. This result also justifies the interest in the TPM scheme, and al-
lows for a cleaner restatement of the no-go theorem from Chapter 2, in
the form of Thm. 21.

Chap. 4: Thermodynamic transformations close to equilibrium

Thermodynamics applies to a huge spectrum of systems, ranging from
gases in a box to biological entities. Apart from the clear structural differ-
ences between the two examples provided, from a thermodynamic point
of view what makes the first system much more tractable than the second,
is that the transformations considered in the study of gases are usually
ideal, i.e., in which the system is always at thermal equilibrium, while,
in order to function, biological systems need to be out of equilibrium.
Indeed, even an unstructured medium as can be an ideal gas is difficult
to describe when one moves away from equilibrium.

Restricting the scope of the investigation to ideal transformations
only, while making the applicability of the results found less general, al-
lows for the definition of universal laws. The most famous example in
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this context is the efficiency of a Carnot engine: if the working medium
is always at equilibrium during the cycle, the efficiency of the engine only
depends on the temperatures of the two baths, and not on any charac-
teristics of the system Hamiltonian. When moving out of equilibrium,
equalities become inequalities, and the possibility of finding laws that are
independent of the system becomes not only unfeasible, but in princi-
ple impossible, given the huge range of different systems that these laws
should encompass (it is important to notice that this is exactly the reason
that makes fluctuation theorems such remarkable results).

A middle ground between the two extreme regimes described above
is the one of slow driving transformations: in this context, despite the
system is moved out of equilibrium by the driving, this happens so slowly
compared to every thermalisation timescale, that effectively the state is
almost thermal during the whole transformation. This approximation
allows to examine systems out of equilibrium, while retaining a certain
generality in the results obtained. In particular, a general feature emerg-
ing in this context is that the space of parameters naturally possesses
a Riemannian structure, where the metric describes the way the system
dissipates at a local level. In this context, while the metric is still system
dependent, the results one can obtain from the existence of this structure
are not.

In particular, we find that there are two main metric structures asso-
ciated to every quantum system: one describing the average dissipation,
the other describing its fluctuations. Interestingly, the two metric struc-
tures that emerge in this context are directly connected to the quantum
Fisher information described in Chapter 1. While the first of these two
metrics was already known for classical systems at least from the 70s, the
second is a result only recently derived. The reason for this delay is that
the two metrics actually coincide for any classical systems, and show a
difference in behaviour only when coherences are present. Moreover, one
can also prove that the production of coherences during a transforma-
tion is witnessed both from the breakdown of a relation connecting the
average dissipation to its fluctuations (see Eq. (4.124)), and from the ap-
pearance of non-Gaussian features in the work probability distribution.
Despite the particular form of this distribution is system dependent, we
can give a fairly general characterisation of some of its main features: for
example, we find that all the cumulants of the dissipation are positive,
signalling a tendency of this quantity to substantially fluctuate over its
average value (see the discussion in Sec. 4.5). Moreover, in Sec. 4.6 we
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present general features of the way in which systems close to equilibrium
dissipate, which subsume the simplifications observed in the characteri-
sation of slowly driven transformations. Finally, in Sec. 4.7 we discuss
the optimisation of engines in this regime, providing six general principles
one can use to design engines operating at maximum power only by using
quite high level information about the system and the baths.

As we discussed in Chapter 2, the definition of a probability distri-
bution for work can be problematic in the quantum regime. While the
results just discussed are valid for the average dissipation regardless of
the measurement scheme employed, for all higher order statistics these
depend on the use of the TPM definition. In particular, this means that
no genuinely quantum phenomena can be observed, as there will always
be the possibility of actually reproducing the statistics of the work via a
non-contextual model. Indeed, since systems in the slow driving regime
are always close to equilibrium, one could wonder whether the continuous
thermalisation that they experience would result in a similar degradation
of the coherence that is at the root of the non-contextuality of the TPM
work distribution (as the initial measurement completely erases all the
off-diagonal terms). For this reason, we include at the end of the Chapter
the discussion of a system in the slow driving regime showing a purely
contextual advantage in its power output (see Eq. (4.216) in Sec. 4.8).
This proves that the restriction to transformations close to equilibrium
does not prevent the observation of genuinely quantum phenomena.
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Chapter 1

Fisher information and the
geometry of quantum states

Distinguishing classical or quantum probability distributions based on
their observed statistics is a delicate matter: different operational cri-
teria lead to different quantifiers, and there is no general consensus on
which would be the most appropriate principle to single out one. The
canonical family of tools in this context is given by the set of contrast
functions, a generalisation of the relative entropy, which share with it
many important properties, above all the contractivity under physical
evolutions. This property mirrors the intuitive behaviour noisy transfor-
mations of loosing information about the initial conditions as the dynam-
ics unfolds, leading to a progressive decrease in the ability of agents to
distinguish different initial states. For classical probabilities, despite the
plethora of different contrast functions, their local expansion leads to a
unique quantity called the Fisher information metric, which endows the
space of probability with a Riemannian structure. On the other hand,
for quantum states the non-commutativity of different observables pre-
cludes the same uniqueness result, but one can anyway give a complete
characterisation of the functional expression of general Fisher metrics.

Another way of characterising the same family of metrics is by requir-
ing their contractivity under physical maps, result that goes under the
name of Chentsov theorem for classical systems, and that was generalised
by Petz to the quantum regime. Interestingly, it was recently shown that
this relation goes both ways: all the physical evolutions are the ones and
only the ones that contract the Fisher metrics. This result shows their
inherently dynamical nature. As this family arises from distinguishabil-
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ity measures and not from dynamical objects, this conclusion could in
principle be surprising. For this reason, the connection is further corrob-
orated by the fact that other dynamical properties of evolutions can be
expressed in terms of Fisher information. On the one hand, this motivates
the interest in this topic, on the other, it shows how physical evolutions
could be defined just in terms of statistical quantities.

1.1 The classical case: from contrast functions to
classical Fisher information

Suppose an agent has to evaluate which one between two models better
describes an experiment. A possible strategy is the following: repeat
the same observation independently many times, so to generate a list
of data {xi}i∈{1,...,N}, and then compare the probability of getting this
result given the two distributions. If the first model is associated to the
probability distribution ρ and the second to σ, the ratio between the two
probabilities can be rewritten as:

p({xi}i∈{1,...,N}|ρ)
p({xi}i∈{1,...,N}|σ)

=
N∏
i=1

p(xi|ρ)
p(xi|σ)

= (1.1)

= expN

(
1

N

N∑
i=1

(log p(xi|ρ)− log p(xi|σ))

)
, (1.2)

where in the first line we used the independency between different runs
to pass to the product. Suppose now that the true distribution is given
by ρ. Thanks to the law of large numbers, the sum in the exponent will
asymptotically converge to the value:

DKL(ρ||σ) := Tr [ρ (log ρ− log σ)] , (1.3)

where ρ and σ are diagonal density matrices encoding the corresponding
classical distributions. This is just one of the many ways in which one
can introduce the relative entropy in Eq. (1.3), and it directly connects
it to the logarithm of observed statistics in independent observations.

The relative entropy has a series of useful properties:

1. positivity: that is DKL(ρ||σ) ≥ 0, with equality iff ρ ≡ σ;

2. homogeneity: corresponding to the conditionDKL(λ ρ||λσ) = λD(ρ||σ),
for positive λ;
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3. joint convexity: which means that for every 0 ≤ λ ≤ 1 it holds that

DKL(λ ρ1 + (1− λ) ρ2||λσ1 + (1− λ)σ2) ≤
≤ λDKL(ρ1||σ1) + (1− λ)DKL(ρ2||σ2) ;

4. monotonicity: meaning that for any stochastic map ϕ,D(ϕ(ρ)||ϕ(σ)) ≤
D(ρ||σ) .

As it was mentioned in the introduction, different strategies give
rise to different quantifiers, among which we mention two in particular,
namely:

• the χ2-divergence: given by χ2(ρ||σ) = Tr
[
(ρ−σ)2

ρ

]
, and whose op-

erational interpretation will be discussed in the following, and,

• the Hellinger distance: defined as HH(ρ||σ) := 1
2 Tr

[
(
√
ρ−
√
σ)2
]
.

All of these measures satisfy the four conditions listed above, so one can
take them to give an axiomatic construction of possible distinguishability
quantifiers. Out of the many functional forms that can be chosen to do so,
the most commonly used ansatz is given by the family of g-divergences:

Hg(ρ||σ) := Tr [ρ g(σ/ρ)] , (1.4)

also called contrast functions or Csizár divergences (chapter 4 in [12]). All
the examples above are contained in this family, as it can be verified by
choosing g(x) = − log x to obtain the usual relative entropy, whereas the
χ2-divergence corresponds to g(x) = (1− x)2 and the Hellinger distance
to g(x) = 1−

√
x. Whereas the homogeneity of Eq. (1.4) follows by con-

struction, one needs to impose extra constraints on the function g for the
other conditions to be satisfied: for example, the positivity corresponds
to the request that g(x) ≥ 0 for positive x and g(1) = 0. Moreover, g(x)
needs to be strictly convex at x = 1 for joint convexity and monotonicity
to hold [12].

Remarkably, despite the generality of Eq. (1.4), all the g-divergences
locally behave in the same way. This can be easily verified by considering
an arbitrary diagonal state ρ and a small perturbation δρ. Then, by
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Taylor expanding the contrast functions one obtains:

Hg(ρ+ δρ ||ρ) = Tr

[
ρ g

(
1+

δρ

ρ

)]
= (1.5)

=�����g(1)Tr [ρ] +������
g′(1)Tr [δρ] +

g′′(1)

2
Tr

[
δρ2

ρ

]
+O

(
|δρ|3

)
= (1.6)

=
g′′(1)

2
χ2(ρ+ δρ ||ρ) +O

(
|δρ|3

)
, (1.7)

where one uses the fact that, thanks to strict convexity, g has a minimum
in x = 1, which implies that g′(1) = 0 and g′′(1) > 0. This shows
that locally all contrast functions coincide up to a constant factor with
the χ2-divergence. Equivalently, one can regard the χ2-divergence as an
extension of the local parabolic behaviour of contrast functions to the
whole space of probability distributions.

We can also give an operational meaning to the χ2-divergence, which
naturally emerges in the context of estimating probability distributions
from frequencies [13]. Assume the same setting as for Eq. (1.2), but now
one has only access to the vector of frequencies {fi}i∈{1,...,n}, where we
indicate by n the number of different outputs and by N the number of
repetitions of the experiment. If the true distribution is {pi}i∈{1,...,n},
the probability of observing a given frequency vector is given by the
multinomial distribution:

P ({fi}i∈{1,...,n}) =
N !

(f1N)! . . . (fnN)!
pf1N1 . . . pfnNn . (1.8)

In the limit of many repetitions, one can use Stirling’s approximation
N ! ∼

√
2πN

(
N
e

)N , to obtain:

P ({fi}i∈{1,...,n})
N≫1
=

1(√
2πN

)n−1√
f1 . . . fn

e−NDKL(f ||p) . (1.9)

Moreover, thanks to the law of large numbers, {fi}i∈{1,...,n} is exponen-
tially close to the true distribution, so the Kullback-Leibler divergence
reduces to χ2(f ||p). Suppose now that we want to characterise the prob-
ability distributions compatible with a given observed frequency vector
{fi}i∈{1,...,n}. Then, it follows from Eq. (1.9) that any probability distri-
bution p := f + df satisfying:

χ2(f ||p) = χ2(f ||f + df) =

n∑
i=1

df idf i

fi
≤ 1

N
(1.10)
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will be a good guess. This shows how the characterisation of the local
geometry induced by the χ2-divergence can be of interest for estimation
theory.

Hence, to this end, we consider the metric defined at the point p by
the tensor gi,j =

δi,j
pi

. Clearly, χ2(p||p + dp) = dpidpj gi,j . Interestingly,
it is possible to make this metric Euclidean by an appropriate change
of coordinates. Consider, indeed, the substitution given by Xi :=

√
pi

(called the purification of p); then the metric is given by:

gi,j dp
idpj = gi,j(4XiXj) dX

idXj = (1.11)

=
δi,j
X2
i

(4XiXj) dX
idXj = 4δi,j dX

idXj = g̃i,j dX
idXj . (1.12)

The change of variables made the metric proportional to the Euclidean
one. This mapping also provides a geometrical interpretation for the
Hellinger distance. Given two distributions ρ and σ, corresponding to the
two purifications X :=

√
ρ and Y :=

√
σ, one can see that the Euclidean

distance in the latter space is proportional to the Hellinger distance:

DEuc(X,Y )2 = 4
n∑
i=1

(Xi − Yi)2 = (1.13)

= 4
n∑
i=1

(
√
ρi −

√
σi)

2 = 4HH(ρ||σ) . (1.14)

Despite this appealing connection, simply using the Euclidean dis-
tance in the space of purification is not sufficient to define Riemannian
neighbourhoods on the space of probability distributions. In fact, in order
for the normalisation constraint to hold, one has to require that:

n∑
i=1

pi =

n∑
i=1

X2
i = 1 . (1.15)

This restrict the purifications associated to an actual probability distri-
bution to an octant of the sphere (as the additional constraint Xi ≥ 0
comes from the choice of the root for √p). Since spheres do not contain
any straight line, one needs to use the metric induced by embedding them
in a Euclidean space. In this case, geodesics are great circles, and the
corresponding distance is measured by the angle in radians between the
endpoints of the path (since for a radius 1 circle, the angle in radians
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Figure 1.1: The space of classical probability distributions is the sim-
plex defined by the conditions

∑
pi = 1 and pi ≥ 0. The square root

maps the simplex into an octant of the sphere, the space of purifications.
In the latter space, there is a straightforward geometrical interpretation
for the Hellinger distance: it corresponds to the Euclidean distance mea-
sured in the purification space. This is not a geodesic distance, as the
points crossed by the connecting chord lay outside the allowed states.
The Bhattacharyya angle, or distance, on the other hand corresponds to
the geodesic distance for the Fisher information metric.

corresponds to the length of the subtended arc). This construction takes
the name of Bhattacharyya distance and can be expressed in formulae as:

DBH(X,Y ) = 2 arccos (X · Y ) = 2 arccos

(
n∑
i=1

√
ρiσi

)
. (1.16)

Notice that the additional factor 2 comes from the fact that the Fisher
metric is just proportional to the Euclidean one.

The discussion above shows the importance of the χ2-divergence: it
generalises the quadratic local behaviour of all g-divergences to all states,
which means that all contrast functions locally reduce to it. For this
reason, the Riemannian metric locally induced by the χ2-divergence co-
incides with the one derived from any other g-divergence. This metric
takes the name of Fisher information metric, and its importance is further
strengthened by the following result:

Theorem 1 (Chentsov [14]). The Fisher information is the unique Rie-
mannian metric on the space of smooth classical probability distributions
which is contractive under arbitrary stochastic maps.

A proof of this theorem can be found in [15], and its significance is
further explored in Sec. 1.5.
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In order to get some insights about the expression of the Fisher metric,
it is useful to look at at a paradigmatic example. Consider the family of
Gaussian probability distributions parametrised by µ and σ2:

Nµ,σ(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 . (1.17)

The Fisher information can be computed from the expansion:

χ2(Nµ+dµ,σ+dσ||Nµ,σ) =
∫ ∞
−∞

dx
(Nµ+dµ,σ+dσ(x)−Nµ,σ(x))2

Nµ,σ(x)
= (1.18)

≃
∫ ∞
−∞

dx
(∂µNµ,σ(x)dµ+ ∂σNµ,σ(x)dσ)2

Nµ,σ(x)
= (1.19)

=

∫ ∞
−∞

dx (∂µ logNµ,σ(x) dµ+ ∂σ logNµ,σ(x) dσ)2Nµ,σ(x) . (1.20)

The last step, i.e., passing from a derivative on the distribution to a
derivative on its logarithm (called log-likelihood), is quite standard, and
it is particularly useful for exponential families. There are three integrals
that need to be computed:∫ ∞
−∞

dx (∂µ logNµ,σ)2Nµ,σ(x) =
∫ ∞
−∞

dx

(
x− µ
σ2

)2

Nµ,σ(x) =
1

σ2
;

(1.21)∫ ∞
−∞

dx (∂σ logNµ,σ(x))2Nµ,σ(x) =

=

∫ ∞
−∞

dx

(
(x− µ)2 − σ2

σ3

)2

Nµ,σ(x) =
2

σ2
; (1.22)∫ ∞

−∞
dx (∂µ logNµ,σ(x) ∂σ logNµ,σ(x))Nµ,σ(x) = 0 . (1.23)

Hence the Fisher information metric is given by:

gi,jdp
idpj =

1

σ2
(dµ2 + 2dσ2) . (1.24)

This is the metric of the Poincaré half-plane, a well studied model of hy-
perbolic geometry. In this case the geodesics are either vertical lines in the
(µ, σ) plane, or half-circles whose origin lays on the µ axis (see Fig. 1.2).
The interpretation of the metric is quite clear: in the case σ → 0 there is
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a deterministic output corresponding to µ, hence distributions with dif-
ferent expectation values are infinitely far away from each other, because
they can be perfectly distinguished; in the opposite limit, as σ → ∞, it
is impossible to distinguish different distributions, as the average value
is completely hidden by the fluctuations, and, for this reason, the metric
trivialises to zero. Moreover, the half-circle geodesics can be interpreted
as follows: consider the task of changing a probability distribution from
Nµ1,0 to Nµ2,0 in such a way that locally (i.e., for finite statistics) the
difference between subsequent samples is minimal. At the beginning, the
only possibility is to increase the fluctuations, because any deviations
from the average value µ1 would witness a change in the probability dis-
tribution; once the fluctuations are strong enough, they start hiding the
change in the expectation value, which can be modified more and more
as the fluctuations increase; finally, the same process is reversed to reach
Nµ2,0. This example also shows a possible interpretation of the Fisher
geodesics: they provide the trajectory in the probability space that adi-
abatically changes one distribution into another, where adiabatically is
intended in the sense of minimal local change throughout the trajectory.

1.2 Quantum contrast functions

Any sensible generalisation of the concept of contrast functions to quan-
tum states should satisfy the same properties that we found in the clas-
sical case. We rewrite them here for convenience:

1. positivity: H(ρ||σ) ≥ 0, with equality iff ρ ≡ σ;

2. homogeneity: H(λρ||λσ) = λH(ρ||σ), for λ > 0;

3. joint convexity: namely the condition that

H(λρ1 + (1− λ)ρ2||λσ1 + (1− λ)σ2) ≤
≤ λH(ρ1||σ1) + (1− λ)H(ρ2||σ2) (1.25)

for 0 ≤ λ ≤ 1;

4. monotonicity: for any Completely Positive Trace Preserving (CPTP)
map Φ, it should hold that H(Φ(ρ)||Φ(σ)) ≤ H(ρ||σ);

5. differentiability: the function hρ,σ(x, y) := H(ρ + xA||σ + yB) for
A and B Hermitian operators is C∞.
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Figure 1.2: The Fisher information geometry associated to Gaussian
distributions is the Poincaré half-plane, a well known model of hyper-
bolic geometry. Geodesics are given by half-circles with their origin on
the x-axis (with vertical lines in the limit of infinite radius circles). Each
point in the half-plane corresponds to a different Gaussian, and geodesics
should be interpreted as a trajectory in which the statistics of the model
are minimally varied. In the figure above we plot the Gaussians corre-
sponding to the highlighted points, which are chosen to exemplify this
behaviour.
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Notice the addition of the last requirement, as we already expect that
the expansion of the contrast functions will give rise to quantum Fisher
informations, so it is sensible to already require some smoothness prop-
erties.

The non-commutativity of general quantum observables gives a cer-
tain freedom in the choice of contrast functions, corresponding to different
ways in which one could define the division in the argument of g(x) in
Eq. (1.4). The most canonical choice is the following, proposed in [16]:

Hg(ρ||σ) := Tr
[
ρ1/2 g(LσR−1ρ )

[
ρ1/2

]]
, (1.26)

where Lρ and Rρ are the left and right multiplication superoperators,
acting as Lρ[σ] = ρ σ and Rρ[σ] = σ ρ, while g is an operator convex
function defined on (0,∞), satisfying g(1) = 0. This choice is mainly
justified by the content of Thm. 2, and by the use of the superoperator
LσR−1ρ in the context of W∗-algebras, where it takes the name of relative
modular operator [16]. It should be noticed that if one chooses g(x) =
− log x, then Eq. (1.26) gives the usual relative entropy.

We can now explore which constraints have to be imposed on g(x) to
satisfy the requirements above. The positivity condition 1 corresponds
to imposing that g(1) = 0 is the only zero of the function. Moreover, by
noticing the fact that the contrast function associated to g(x) = (x− 1)
is identically zero (as Hg(ρ||σ) = Tr [σ − ρ] ≡ 0) in order to ensure the
positivity of Hg(ρ||σ) it is sufficient to require that g(x) + a(x − 1) ≥
0, for some arbitrary constant a. On the other hand, condition 2 is
automatically satisfied, while one needs to require that g(x) is matrix
convex at x = 1 for the joint convexity to hold (condition 3). This
directly implies the monotonicity of the contrast functions, condition 4,
fact that can be proved as follows: first, it should be noticed thatHg(ρ||σ)
are unitary invariant. Indeed, one has:

Hg(U ρU
†||U σ U †) := (1.27)

= Tr
[
U ρ1/2 U † g(LU σ U†RU ρ−1 U†)

[
U ρ1/2 U †

]]
= (1.28)

= Tr
[
U ρ1/2 U † U g(LσR−1ρ−1)

[
ρ1/2

]
U †
]
= Hg(ρ||σ) , (1.29)

where the step from Eq. (1.28) to the Eq. (1.29) can be verified either
in coordinates (see Eq. (1.40)), or by expanding g(x) in Laurent series,
while in Eq. (1.29) we exploited the unitarity of U and the cyclicity of
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the trace. Second, also notice that for generic contrast functions it holds
that:

Hg(ρ⊗ τ ||σ ⊗ τ) = (1.30)

= Tr
[
g(Lσ⊗τR−1ρ⊗τ) [ρ⊗ τ ]

]
= Tr

[
g(LσR−1ρ ⊗ I) [ρ⊗ τ ]

]
= (1.31)

= Tr
[
g(LσR−1ρ ) [ρ]

]
Tr [τ ] = Hg(ρ||σ) , (1.32)

where in Eq. (1.31) we used the fact that LτR−1τ coincides with the iden-
tity operator on the commutant of τ . This identity can also be verified
by expanding g(x) in Laurent series or from the coordinate expression
in Eq. (1.40). These two facts allow to deduce the monotonicity of the
contrast functions in Eq. (1.26) from their joint convexity. Indeed, given
a CPTP map Φ, one can express it in terms of its Stinespring’s dilation:

Φ(ρ) = TrE

[
U (ρ⊗ |ψ ⟩⟨ψ |)U †

]
, (1.33)

where U is a unitary operator and |ψ ⟩⟨ψ | is an environmental pure state
of dimension dE . Take a unitary basis {Vi} for the space of bounded oper-
ators of dimension d2E . It is a well-known result that

∑
i(Vi(ρE)V

†
i )/d

2
E =

1E/dE for any ρE [17]. We denote this operator by ∆1(ρ). This identity,
together with Eq. (1.33) allows us to rewrite the action of the channel as:

Φ(ρ)⊗ 1dE
dE

=
1

d2E

d2E∑
i=1

(I⊗ Vi)U (ρ⊗ |ψ ⟩⟨ψ |)U †(I⊗ V †i ) , (1.34)

where we used 1 to indicate the identity matrix, and I for the identity
superoperator. Putting together this expression with Eq. (1.32) we can
finally prove monotonicity. Indeed, one has:

Hg(Φ(ρ)||Φ(σ)) = Hg

(
Φ(ρ)⊗ 1dE

dE

∣∣∣∣∣∣∣∣Φ(σ)⊗ 1dEdE
)

= (1.35)

= Hg

(
(1⊗∆1)

(
U (ρ⊗ |ψ ⟩⟨ψ |)U †

)
||(1⊗∆1)

(
U (σ ⊗ |ψ ⟩⟨ψ |)U †

))
≤

(1.36)

≤ 1

d2E

d2E∑
i=1

Hg(ρ⊗ |ψ ⟩⟨ψ | ||σ ⊗ |ψ ⟩⟨ψ |) = Hg(ρ||σ) , (1.37)

where in the first line and in the third line we used Eq. (1.32), while in
the step from the second to the third line we used the decomposition in
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Eq. (1.34) together with the unitary invariance and joint convexity of Hg.
This proves condition 4.

In order to highlight the similarities and the differences with the clas-
sical contrast functions in Eq. (1.4), we provide here the coordinate ex-
pression of Eq. (1.26). First, define the eigensystem of ρ and σ as:

ρ =
∑
i

ρi |ρi ⟩⟨ρi | , σ =
∑
j

σj |σj ⟩⟨σj | . (1.38)

Since LσR−1ρ [ |σj ⟩⟨ρi |] =
σj
ρi
|σj ⟩⟨ρi |, the relative modular operator is

diagonal in the basis given by {|σj ⟩⟨ρi |}. Hence, Eq. (1.26) can be ex-
panded as:

Hg(ρ||σ) : =
∑
i,j

Tr

[
g

(
σj
ρi

)
|σj ⟩⟨σj | ρ |ρi ⟩⟨ρi |

]
= (1.39)

=
∑
i,j

ρi g

(
σj
ρi

)
|⟨σj |ρi⟩|2 . (1.40)

In particular, it is clear that if ρ and σ are diagonal in the same basis,
then Eq. (1.26) reduces to the classical expression in Eq. (1.4).

The operator convex functions with g(1) = 0 have the following inte-
gral expression

g(x) = ag (x− 1) + bg (x− 1)2 + cg
(x− 1)2

x
+

∫ ∞
0

dνg(s)
(x− 1)2

x+ s
,

(1.41)

where bg, cg > 0, and νg is a positive measure with finite mass [16].
Moreover, using the two identities:

(LσR−1ρ − 1)
[
ρ1/2

]
= (σ − ρ)ρ−1/2 = R−1/2ρ (σ − ρ) , (1.42)

(RσL−1ρ − 1)
[
ρ1/2

]
= ρ−1/2(σ − ρ) = L−1/2ρ (σ − ρ) , (1.43)

one can rewrite the contrast functions in Eq. (1.26) as:

Hg(ρ||σ) = Tr
[
ρ1/2g(LσR−1ρ )

[
ρ1/2

]]
= (1.44)

= Tr
[
L−1/2ρ (ρ− σ) g(LσR−1ρ )(LσR−1ρ − 1)−2[R−1/2ρ (ρ− σ)]

]
= (1.45)

= Tr
[
(ρ− σ)R−1ρ h(LσR−1ρ )[(ρ− σ)]

]
, (1.46)
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where in Eq. (1.45) we rewrote ρ1/2 using the identities above, and
we used the fact that L†σ = Rσ to group together the superoperators
(RσL−1ρ − 1)−1 and (LσR−1ρ − 1)−1. Finally, in Eq. (1.46) we defined
the function h(x) := g(x)/(x − 1)2. Putting together the expression in
Eq. (1.41) for g(x) with what we just obtained in Eq. (1.46), it is a matter
of simple algebra to give the general integral form of quantum contrast
functions:

Hg(ρ||σ) =Tr
[
(ρ− σ)(bg ρ−1 + cg σ

−1)(ρ− σ)
]
+

+

∫ ∞
0

dνg(s) Tr
[
(ρ− σ)(Lσ + sRρ)−1[(ρ− σ)]

]
. (1.47)

As it was discussed above, the linear contribution disappears from the
expression, meaning that, for some arbitrary ag, just g(x) + ag(x− 1)
needs to be positive for the contrast function to satisfy the condition 1.

In general, the divergence in Eq. (1.26) is not symmetric. One might
then wonder what is the connection between Hg(ρ||σ) and Hg(σ||ρ). This
is given by the transformation g(x) → ĝ(x) := x g(x−1). In fact, it is
straightforward to verify that:

Hĝ(ρ||σ) = Tr
[
ρ1/2 ĝ(LσR−1ρ )[ρ1/2]

]
= Tr

[
ĝ(LσR−1ρ )[ρ]

]
= (1.48)

= Tr
[
g((LσR−1ρ )−1)[LσR−1ρ [ρ]]

]
= Tr

[
g(L−1σ Rρ)[σ]

]
= (1.49)

= Tr
[
g(LρR−1σ )[σ]

]
= Hg(σ||ρ) , (1.50)

where in the first line we used the cyclicity of the trace to group together
the two ρ1/2, while in the last line we used the commutation between
Lσ and Rρ, together with the fact that Lσ[σ] = Rσ[σ]. Interestingly, the
transformation above is also involutive (meaning that ĝ(x)→ g(x)), so it
really corresponds to an exchange in the arguments of Hg(ρ||σ). Hence,
a divergence is symmetric if and only if its defining function satisfies
g(x) = ĝ(x) = xg(x−1).

We can then study which constraints symmetry imposes on the func-
tions in Eq. (1.41). First, notice that under the transformation g(x) →
ĝ(x) the function (x − 1)2 is mapped to (x − 1)2/x, so for symmetry to
hold one has to require bg ≡ cg. If we now focus on the measure ν alone,
we see that:

ĝ(x) =

∫ ∞
0

dνg(s) x
(x−1 − 1)2

x−1 + s
=

∫ ∞
0

dνg(s)
(x− 1)2

1 + x s
= (1.51)

=

∫ ∞
0

dνg(t
−1)

1

t2
(x− 1)2

1 + x t−1
=

∫ ∞
0

dνg(t
−1)

1

t

(x− 1)2

t+ x
, (1.52)
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where in the second line we used the substitution t = s−1. In order
for the last integral to coincide with g(x) one then has to require that
dνg(s) = dνg(s

−1)/s. Hence, any g(x) corresponding to a symmetric
divergence can be written as:

g(x) = bg
(x+ 1)(x− 1)2

x
+

∫ 1

0
dνg(s)

(x− 1)2

x+ s
+

∫ ∞
1

dνg(s)
(x− 1)2

x+ s
=

(1.53)

= bg
(x+ 1)(x− 1)2

x
+

∫ 1

0
dνg(s)

(
(x− 1)2

x+ s
+

(x− 1)2

1 + sx

)
=

(1.54)

=

∫ 1

0
dNg(s)

(
(x− 1)2

x+ s
+

(x− 1)2

1 + sx

)
, (1.55)

where we implicitly transformed the second integral in the first line
through the change of variables s → s−1, and used the properties of
dν. Finally, in the last line we grouped all the terms by defining the mea-
sure dNg(s) := bgδ(s) ds+dνg(s). Correspondingly, a generic symmetric
contrast function takes the form:

Hg(ρ||σ) =

=

∫ 1

0
dNg(s) Tr

[
(ρ− σ)

(
(Lσ + sRρ)−1 + (Lρ + sRσ)−1

)
[(ρ− σ)]

]
.

(1.56)

This expression will be particularly useful in the next section.

1.2.1 From contrast functions to quantum Fisher infor-
mation

There are two main routes for extending the Fisher information metric to
the quantum regime: one can either explore the local behaviour of con-
trast functions, or one try to extend Chentsov theorem to CPTP maps.
In this section, we start from the first of the two approaches, because it
shows the analogy and the differences with the classical case. Still, given
the apparent arbitrariness in the definition of the contrast functions in
Eq. (1.26), one could think that pursuing the second route could lead to
a quite different characterisation: remarkably, though, one can single out
the same family of metrics by imposing the property of being contractive
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under arbitrary evolutions (Thm. 3). This is a first hint at the dynam-
ical nature of the Fisher information, which will be further explored in
Sec. 1.5.

In order to study the local behaviour of Eq. (1.26), consider two
close-by states ρ and σ, that is ρ := π + εA and σ := π + εB, where
A and B are self-adjoint, traceless perturbations. By using the expres-
sion for contrast functions in Eq. (1.46) and by retaining only terms up
to order O

(
ε2
)
, we can expand the divergence as:

Hg(π + εA||π + εB) = (1.57)

= ε2Tr
[
(A−B)R−1π+εAh(Lπ+εBR

−1
π+εA)[(A−B)]

]
= (1.58)

=
ε2

2

(
Tr
[
(A−B)

(
R−1π+εAh(Lπ+εBR

−1
π+εA)

)
[(A−B)]

]
+Tr [A↔ B]

)
=

(1.59)

=
ε2

2
Tr

[
(A−B)R−1π

1

f
(LπR−1π ) [(A−B)]

]
+O

(
ε3
)
, (1.60)

where Eq. (1.58) is exact, while in Eq. (1.59) we denote by Tr [A↔ B]
the first trace of the line but with A and B exchanged, and we used the
fact that exchanging the arguments of Hg(ρ||σ) does not affect the result
at this order of approximation. The function defined in the last line is
given by:

f(x) =
(x− 1)2

g(x) + xg(x−1)
. (1.61)

We remind the reader that exchanging the arguments in the contrast
function corresponds to the transformation g(x)→ xg(x−1). In this way,
we see that every f(x) is in one to one relation with a unique symmet-
ric contrast function. Interestingly, the properties of f(x) are quite well
characterised. First, since g(x) has to be matrix convex, it follows that
f(x) is matrix monotone [18]. Moreover, it should be noticed that f(x)
satisfies the symmetry f(x) = xf(x−1). Finally, without loss of general-
ity, we can require the normalisation condition f(1) = 1. The functions
satisfying these three conditions are called standard monotone functions.
Interestingly, they can be completely classified using the following:

Lemma 1 (Theorem 4.43 from [18]). Consider a function f : (0,∞) →
(0,∞). The following conditions are equivalent:

1. f(x) is matrix monotone;
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2. [Tf ](x) := x/f(x) is matrix monotone;

3. f(x) is matrix concave.

This theorem directly implies that the standard monotones are all
contained in the interval:

2x

x+ 1
≤ f(x) ≤ x+ 1

2
. (1.62)

This can be shown as follows: thanks to the condition f(x) = xf(x−1)
one only needs to characterise the properties of f(x) in the interval [0, 1].
Moreover, the same condition also implies that f ′(1) = 1

2 . In fact, this
can be easily verified from the equation:

f ′(x) = f(x−1)− 1

x
f ′(x−1) , (1.63)

by setting x to 1, and noticing the normalisation f(1) = 1. Then, from
concavity it follows that f(x) ≤ f(1)+f ′(1)(x−1) = (x+1)/2. The upper
bound satisfies all the necessary constraints, so it can be identified as the
largest standard monotone function, which we indicate by fB. Finally,
notice that the transformation f → Tf inverts the inequality and maps
standard monotones into standard monotones.

Hence, in analogy to what happens in the classical case, when one
considers infinitesimally close distributions, contrast functions can be ex-
panded according to the theorem:

Theorem 2 (Lesniewski, Ruskai [16]). For each g satisfying the required
properties to define a contrast function, one can locally approximate Hg

up to corrections of order O
(
ε3
)

as:

Hg(π + εA||π + εB) =
ε2

2
Tr
[
(A−B) J−1f

∣∣
π
[(A−B)]

]
, (1.64)

where the superoperator Jf is given by:

Jf
∣∣
π
:= Rπ f(LπR−1π ) , (1.65)

and g and f are connected by the equation:

f(x) =
(x− 1)2

g(x) + x g(x−1)
. (1.66)
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In contrast with what happened in classical statistics, quantum diver-
gences do not collapse on a single quantity when considering their local
behaviour. Still, it is possible to claim that the class of operators J−1f
generalises the Fisher information to the quantum regime by using the
concept of monotone metrics. These are scalar products Kπ(A,B) that
satisfy the two properties:

1. smoothness: Kπ(A,B) depends smoothly on π;

2. monotonicity: for every CPTP Φ the metric is contractive:

KΦ(π)(Φ(A),Φ(A)) ≤ Kπ(A,A) .

In the classical setting, Chentsov theorem identifies the Fisher informa-
tion as the unique monotone metric on the space of probability distribu-
tions. For quantum states, on the other hand, we have:

Theorem 3 (Petz [19]). The monotone metrics on self-adjoint operators
are all given in the form:

Kf,π(A,B) := Tr
[
A J−1f

∣∣
π
[B]
]
, (1.67)

where f : R+ → R+ is an operator monotone function. Moreover, re-
quiring that Kf,π(A,B) is real and that it reduces to the classical Fisher
information for commuting variables constrains f to be a standard mono-
tone function.

This last result corroborates the interpretation of J−1f as the natural
extension of Fisher information scalar product to quantum mechanical
systems. Moreover, it also shows that the definition of contrast functions
in Eq. (1.26) is well justified, as their local behaviour correctly reduces
to the quantum Fisher information.

Due to the importance of the quantum Fisher information and the
richness in the structure of the Jf , in the next subsection we study in
depth the properties of this class of operators.

1.3 Properties of quantum Fisher information

In the previous section it was shown that the expansion of the quantum
contrast functions constrains f to be a standard monotone, that is to
satisfy the symmetry f(x) = xf(x−1), and additionally we imposed the
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normalisation f(x) = 1. The same characterisation is obtained in the
context of monotone metrics when one requires Kf,π(A,B) to be real
and to reduce to the classical Fisher information for commuting states.
Metrics satisfying this last requirement are said to be Fisher adjusted,
and this condition follows directly from requiring f(1) = 1. In fact,
first notice that [B, π] = 0 implies that LπR−1π B = B. Then, a simple
calculation gives:

Tr
[
A J−1f

∣∣
π
[B]
]
= Tr

[
AR−1π

1

f
(LπR−1π )[B]

]
= Tr

[
AR−1π

1

f
(I)[B]

]
=

(1.68)

= Tr
[
ABπ−1

]
, (1.69)

which is exactly the same result one would obtain if A andB were classical
vectors. Moreover, for the same reason, the action of Jf on operators that
commute with π is simply the multiplication by the state.

On the other hand, the condition f(x) = xf(x−1) enforces that Jf
maps self-adjoint operators into self-adjoint operators. Indeed, one has
that, if A = A†, it follows that:

(Jf
∣∣
π
[A])† = (Rπf(LπR−1π )[A])† = Lπf(RπL−1π )[A†] = (1.70)

=��Lπ�
��L−1π Rπf(LπR−1π )[A] = Jf

∣∣
π
[A] , (1.71)

where we used the fact that (Lπ[A])† = Rπ[A†] (and similarly for Rπ),
the commutation [Lπ,Rπ] = 0 and the property f(x) = xf(x−1).

The monotonicity of f(x) is expressed in formulae as:

Tr
[
Φ(A) J−1f

∣∣
Φ(π)

[Φ(A)]
]
≤ Tr

[
A J−1f

∣∣
π
[A]
]
, (1.72)

for every self-adjoint operator A and CPTP map Φ. By polarisation, one
can transfer the condition on the superoperators themselves obtaining:

Φ† ◦
(
J−1f
∣∣
Φ(π)

)
◦ Φ ≤

(
J−1f
∣∣
π

)
; (1.73)

Φ ◦
(
Jf
∣∣
π

)
◦ Φ† ≤

(
Jf
∣∣
Φ(π)

)
, (1.74)

where the first inequality directly follows from Eq. (1.72), while the second
can be obtained with a two lines proof (Lemma 2 in [19]). Notice that
the equality is obtained if and only if Φ is a unitary.
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Interestingly, the class of standard monotones also comes with a par-
tial ordering. We say that f1 ≤ f2 if f1(x) ≤ f2(x) for every x. This
partial order is reflected in the operators Jf . In fact, it holds that:

f1 ≤ f2 =⇒ (Jf1 ≤ Jf2) ∧
(
J−1f1 ≥ J−1f2

)
. (1.75)

Since Jf
∣∣
π

is diagonal in a basis independent of f (see Eq. (1.81)), this fact
can be verified directly in coordinates. Hence, there exists a minimum
and a maximum quantum Fisher information, respectively corresponding
to f(x) = (x+1)/2 and f = 2x/(x+1). Interestingly, the same ordering
is reflected also on the symmetrised version of the contrast functions. In
particular, one has that:

H (x−1)2

x+1

(ρ||σ) ≤ Hsymm
g (ρ||σ) ≤ Hsymm

(x−1)2(ρ||σ) , (1.76)

where it should be noticed that the lower bound is already symmetrised
thanks to the symmetry of the corresponding g.

We can now pass to give some explicit expressions of the quantum
Fisher information. First, one can replicate the computations that led to
Eq. (1.56) to obtain:

Hg(π + εA||π + εB) =
ε2

2
Tr
[
(A−B) J−1f

∣∣
π
[(A−B)]

]
= (1.77)

=
ε2

2

∫ 1

0
dNg(s) Tr

[
(A−B)

(
(Lπ + sRπ)−1 + (Rπ + sLπ)−1

)
[(A−B)]

]
,

(1.78)

where we extended the notation dN(s) to asymmetric g(x) as dN(s) :=
(bg+ bĝ+ cg+ cĝ)δ(s)ds/2+(dνg(s)+dνg(s

−1)/s). From this expression,
together with the requirement that J−1f should be Fisher adjusted, we
obtain the normalisation condition on the measure dN(s):∫ 1

0
dNg(s)

2

1 + s
= 1 , (1.79)

as it can be verified by noticing that (Lπ + sRπ)−1[A] = Aπ−1

(1+s) for com-
muting operators.

We can also use the functional expression of Jf to give its coordinate
in the basis of π, denoted by:

π =
∑

πi |i⟩⟨i | . (1.80)
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It is straightforward to compute the action of Jf on |i⟩⟨j |:

Jf
∣∣
π
[ |i⟩⟨j |] = f

(
πi
πj

)
πj |i⟩⟨j | ; (1.81)

J−1f
∣∣
π
[ |i⟩⟨j |] =

(
f

(
πi
πj

)
πj

)−1
|i⟩⟨j | . (1.82)

Consider now an operator A which can be written in coordinates as A :=∑
Ai,j |i⟩⟨j |. Then, Jf acts as:

Jf
∣∣
π
[A] =

∑
f

(
πi
πj

)
πj Ai,j |i⟩⟨j | =

∑
(Jf ◦A)i,j |i⟩⟨j | , (1.83)

where we introduced the matrix Jf :=
∑

Jf [ |i⟩⟨j |], and we use the circle
to denote the Hadamard product. Analogously, the same computation
can be carried out for J−1f .

The expression just obtained is particularly useful to discuss the pos-
itivity properties of Jf . In fact, a result that goes under the name of
Schur product theorem states that the Hadamard product of two opera-
tors is positive if they are both positive. This means that in order for Jf
to be positivity preserving, the matrix Jf has to be positive semidefinite
for any probability vector {πi}i∈{1,...,n} and any n ∈ N (and similarly for
J−1f ). Since every principal sub-matrix should also be positive semidefi-
nite, from the positivity of the determinant of the 2×2 matrix containing
only the (i, j)-components, it follows that πiπj−f(πi/πj)2π2j ≥ 0. Hence,
one can deduce that a necessary condition for Jf to be positive preserving
is that f(x) ≤

√
x, while for J−1f the condition becomes f(x) ≥

√
x.

Consider now the question about the complete positivity of Jf . It
is straightforward to see that P =⇒ CP. In fact, complete positivity
corresponds to the request that Jf

∣∣
π
⊗ In is positivity preserving for any

n. But this can be written as Jf
∣∣
π⊗1n , which proves the claim.

Finally, it is interesting to explore the properties of the transformation
f(x) → [Tf ](x) := x/f(x). From Lemma 1 it follows that this map
sends standard monotones into standard monotones. Using the property
f(x) = xf(x−1) we can rewrite this transformation as:

[Tf ](x) =
x

f(x)
=

1

f(x−1)
. (1.84)

From this expression it is evident that T is involutive, meaning that
TTf = f . Moreover, it has a unique fixed point, given by f(x) =

√
x.
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Since it flips inequalities, this also means that it maps the region f(x) ≥√
x to the region f(x) ≤

√
x, that is it maps the region in which J−1f can

be CP to the region in which Jf can be CP. In particular, one can rewrite
JTf as:

JTf
∣∣
π
= Rπ Tf(LπR−1π ) = Rπ

1

f
(L−1π Rπ) = (1.85)

= R−1
π−1

1

f
(Lπ−1R−1

π−1) = J−1f
∣∣
π−1 . (1.86)

From this relation we can deduce that T maps Jf that are CP into J−1Tf
that are CP (and vice versa). In fact, suppose that Jf is given in the
general Kraus form:

Jf
∣∣
π
[ρ] =

∑
i

Ki(π) ρKi(π)
† , (1.87)

where i ranges on a possibly uncountable set, and Ki(π) are π-dependent
Kraus operators. Then, J−1Tf can be expressed as:

J−1Tf
∣∣
π
[ρ] = Jf

∣∣
π−1 [ρ] =

∑
i

Ki(π
−1) ρKi(π

−1)† , (1.88)

so it also admits an expression in terms of Kraus operators, i.e., it is also
completely positive.

This transformation is also useful to study the convexity properties
of the set of standard monotones. Indeed, it was shown in [20] that the
inverse of a standard monotone can be rewritten as:

1

f(x)
=

∫ 1

0
dµf (λ)

(
λ+ 1

2

)(
1

x+ λ
+

1

1 + λx

)
, (1.89)

where dµf (λ) is a probability measure. Then, following Lemma 1, we
know that [Tf ](x) = x/f(x) is also a matrix monotone, and, since the
transformation T is invertible and involutive, for every standard mono-
tone f there corresponds a unique Tf and all the standard monotones
can be written as the image of some other function, namely Tf , under
T . Hence, we can manipulate Eq. (1.89) to give the following integral
expression:

f(x) =

∫ 1

0
dµTf (λ)

(
1 + λ

2

)(
x

x+ λ
+

x

1 + λx

)
. (1.90)
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This shows that the set of standard monotone functions has the property
of being a Bauer simplex, and that its extreme points are exactly the
functions in the integrand of Eq. (1.90).

Finally, it should be noticed that we can lift the transformation T to
act on symmetric contrast functions. In particular, since there is a one-
to-one relation between the standard monotone functions and the convex
functions gsymm(x) corresponding to symmetric divergences, the range of
the latter is given by:

(x− 1)2

(x+ 1)
≤ gsymm(x) ≤ (x+ 1)(x− 1)2

4x
. (1.91)

We then define the transformation T̃ acting on gsymm(x) as:

[T̃ gsymm](x) :=
(x− 1)4

4x gsymm(x)
. (1.92)

The definition is chosen so that the following diagram commutes:

gsymm T̃ gsymm

f Tf .

T̃

Locally Locally

T

Now that we have discussed the main properties of the quantum
Fisher information operators, in the next section we present a com-
pendium of notable examples.

1.4 A garden of quantum Fisher information

Before starting to consider the rich range of specific examples that quan-
tum Fisher informations offer us, we study the general properties of the
set of standard monotones, which we denote by F . As we discussed
above, this is a convex set, compact under pointwise convergence, and
whose extreme points are given in Eq. (1.90), that is, functions of the
form:

fλ(x) =

(
1 + λ

2

)(
x

x+ λ
+

x

1 + λx

)
, (1.93)
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where λ ∈ [0, 1]. Starting from the definition in Eq. (1.65), we can give
the explicit expression:

Jfλ
∣∣
π
[A] = Rπ fλ(LπR−1π )[A] = (1.94)

=

(
1 + λ

2

)
((LπR−1π + λ)−1[πA] + (1 + λLπR−1π )−1[πA]) = (1.95)

=

(
1 + λ

2

)(
(Lπ + λRπ)−1 + (Rπ + λLπ)−1

)
[πAπ] , (1.96)

where in the step from the first to the second line we used the commu-
tation between Lπ and Rπ. This implies that generic Jf can be written
as:

Jf
∣∣
π
[A] = (1.97)

=

∫ 1

0
dµTf (λ)

(
1 + λ

2

)(
(Lπ + λRπ)−1 + (Rπ + λLπ)−1

)
[πAπ] .

(1.98)

Thanks to Eq. (1.86), we can also express any Fisher information metric
as:

J−1f
∣∣
π
[A] = JTf

∣∣
π−1 [A] = (1.99)

=

∫ 1

0
dµf (λ)

(
1 + λ

2

)(
(L−1π + λR−1π )−1 + (R−1π + λL−1π )−1

)
[π−1Aπ−1] =

(1.100)

=

∫ 1

0
dµf (λ)

(
1 + λ

2

)(
(Lπ + λRπ)−1 + (Rπ + λLπ)−1

)
[A] , (1.101)

as it could also be directly inferred from Eq. (1.89). Interestingly, we
are back to the expression in Eq. (1.78), so that we can identify the two
defining measures through the formula:

dNg(λ) := dµf (λ)

(
1 + λ

2

)
. (1.102)

This shows that the expansion in Eq. (1.78) can be interpreted as a
decomposition into extreme points of the space of standard monotones.

It is interesting to notice that for λ ≥ 3 − 2
√
2, the extreme points

satisfy fλ(x) ≤
√
x, whereas for any λ ∈ (0, 3 − 2

√
2) the corresponding

monotone has two additional crossing with the graph of the square root
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(other than x = 0 and x = 1) implying that fλ(x) neither lays all beneath
nor all above

√
x. This shows that the set of monotone functions is not

totally ordered. Moreover, it also shows that there are fs for which both
Jf and J−1f are not CP.

Indeed, regarding the question of which operators are completely pos-
itive, we have seen that a necessary condition is that the corresponding
defining function is ordered with respect to the square root. In the next
subsection we will provide a more in-depth analysis of sufficient and nec-
essary conditions for complete positivity to hold.

1.4.1 Completely positive Fisher information functionals

Before providing more precise criteria for complete positivity, it is useful
to introduce the set of inverse standard monotones, namely:

K :=

{
1

f(x)

∣∣∣∣ f ∈ F} , (1.103)

or, equivalently, the set of all operator convex functions satisfying k(x) =
k(x−1)x−1 and such that k(1) = 1. Indeed, one can readily verify
the equivalence between the two definitions as the inverse of a matrix
monotone is matrix convex (and vice versa), and the two extra con-
ditions are given by mapping k(x) → 1

k(x) . This transformation is a
bijection between F and K, and will be denoted by I in the following
(i.e., [If ](x) := 1/f(x)). Similarly to T , this map is also involutive, but
whereas T sends F into itself, I maps it to K.

We call the members of K standard convex functions. This family is
also a convex, compact set, and one can deduce from Eq. (1.89) that the
corresponding extreme points are given by the functions:

kλ(x) :=

(
λ+ 1

2

)(
1

x+ λ
+

1

1 + λx

)
. (1.104)

These functions are decreasing in λ, so every standard convex satisfies:

k1(x) =
2

x+ 1
≤ k(x) ≤ x+ 1

2x
= k0(x) . (1.105)

It should be also noticed that k0 = If1 and k1 = If0.
The isomorphism between F and K makes the choice of which one to

use in order to define the quantum Fisher information largely a matter of
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taste. Indeed, one could have started by introducing the superoperator
associated to the function k ∈ K:

Ωk := k(LπR−1π )R−1π = J−1Ik . (1.106)

The main reason to use Ωk is that it allows to lift the convex structure of
K to quantum Fisher informations, thanks to the identity Ωαk1+(1−α)k2 =
αΩk1 + (1 − α)Ωk2 . The same happened for Jf and functions of F , as
Jαf1+(1−α)f2 = α Jf1 + (1 − α)Jf2 , whereas J−1αf1+(1−α)f2 has no simple
relations with J−1f1 and J−1f2 .

We are now ready to start exploring the complete positivity of the
quantum Fisher information superoperators. To this end, let us introduce
the two sets:

F+ : = {f | Jf is CP} ; (1.107)

F− : =
{
f | J−1f is CP

}
. (1.108)

Thanks to Eq. (1.86) F+ = TF−. Moreover, it is also useful to introduce
the dual sets:

K+ : = {k |Ωk is CP} ; (1.109)

K− : =
{
k |Ω−1k is CP

}
. (1.110)

As it is clear from Eq. (1.106), one has the mapping K± = IF∓. The
reason why we need so many sets is that F+ and K+ are convex, while
it was shown in [21] that F− and K− are not. As convexity greatly
simplifies the characterisation of sets, this is a desirable property.

Interestingly, one can completely characterise F+/K+ in terms of a
partial order. In order to do so, one needs to introduce the concept
of positive definite continuous functions. These are functions h : R→ C
such that for any vector of reals {ti}i∈{1,...,n} of arbitrary size n, the matrix
A defined in coordinates as Ai,j = h(ti− tj) is positive semidefinite. This
class of function is closed under multiplication, and the corresponding
functions are uniformly bounded by their value in zero. Finally, Bochner’s
theorem says that a function is positive definite if and only if it is the
Fourier transform of a finite positive measure on R [22]. This last property
will be particularly useful later.

Then, we define the partial ordering ⪯ on both F and K by saying
that h1 ⪯ h2 if h1(et)/h2(et) is positive definite or, equivalently, if the
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matrix defined in coordinates as:

Ai,j :=
h1(πi/πj)

h2(πi/πj)
(1.111)

is positive semidefinite for any probability vector {πi}i∈{1,...,n} of any
fixed size n. It was shown in [23] that h1 ⪯ h2 implies h1(x) ≤ h2(x)
for every x. Then, we can prove that ⪯ is indeed an order relation.
First, notice that it is reflexive, i.e., h ⪯ h, as a matrix with all entries
equal to 1 is positive semidefinite. Secondly, it is antisymmetric, meaning
that h1 ⪯ h2 and h2 ⪯ h1 if and only if h1 = h2, since ⪯ implies the
pointwise order, and no different functions can lay at the same time above
and below each other. Finally, we can deduce transitivity from the fact
that the product of positive definite functions is positive definite: indeed,
from h1 ⪯ h2 and h2 ⪯ h3 it follows that h1 ⪯ h3, as h1(et)/h3(et) can
be rewritten as (h1(e

t)/h2(e
t))(h2(e

t)/h3(e
t)), and the functions inside

the two parenthesis are positive definite by assumption. These are the
defining properties of a partial order.

Then, we can verify that F+ is the set of all functions satisfying
f(x) ⪯

√
x. Indeed, this means that the matrix:

Ai,j : = f

(
πi
πj

)√
πj
πi

=

(
f

(
πi
πj

)
πj

)
1

√
πiπj

= (1.112)

=
1
√
πi

(Jf )i,j
1
√
πj
, (1.113)

is positive semidefinite. The last step shows that A is similar to the
matrix Jf defined in Eq. (1.83), so it has the same positivity properties.
Hence, the condition that f(x) ⪯

√
x corresponds to the requirement that

Jf is positive semidefinite, which, as we saw in the Sec. 1.3, makes Jf
completely positive thanks to Schur product theorem (see the discussion
below Eq. (1.83)).

Moreover, in the same way we can prove that F− is given by the
complementary set

√
x ⪯ f(x), as this corresponds to the positivity of

the matrix:

Ai,j : =

(
f

(
πi
πj

))−1 √πi
πj

=

(
f

(
πi
πj

)
πj

)−1√
πiπj , (1.114)

which thanks to Eq. (1.82) and Eq. (1.83) implies the complete positivity
of J−1f . Using the transformation I, we then have that K+ corresponds
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to functions k(x) ⪯
√
x−1 and K− to

√
x−1 ⪯ k(x), since K± = IF∓ and

f1 ⪯ f2 =⇒ If2 ⪯ If1.
Hence, we have shown that all the functions below and above

√
xwith

respect to ⪯ are exactly all the f for which either Jf or J−1f are CP. In
Sec. 1.3 it was shown that a similar necessary condition could be given
in terms of the pointwise order, so it is natural to wonder whether this
is in fact enough. The refutation of this conjecture was presented in [21],
where it was proven that for any fλ(x) with λ ̸= 1, fλ /∈ F+, even if for
any λ ≥ 3− 2

√
2 the corresponding function lays below the square root.

Hence, even if for λ ∈ [3− 2
√
2, 1) one has fλ(x) ≤

√
x, it still holds that

fλ(x) ⪯̸
√
x.

Interestingly, using the characterisation in terms of ⪯ one can find
the following analytical expressions [21]:

Theorem 4. For any f ∈ F+ there exists a symmetric probability mea-
sure dν(s) on R such that:

Jf |π[A] =
∫ ∞
−∞

dν(s) πis+
1
2 Aπ−is+

1
2 . (1.115)

Similarly, for any f ∈ F− there exists a symmetric probability measure
dµ(s) on R such that:

J−1f |π[A] =
∫ ∞
−∞

dµ(s) πis−
1
2 Aπ−is−

1
2 . (1.116)

Proof. This result is a straightforward application of Bochner’s theorem.
Let us first analyse the case in which f ∈ F+. As we discussed above,
this implies that f(x) ⪯

√
x, meaning that e−t/2f(et) is positive definite.

Hence, from Bochner’s theorem there exists a unique probability measure
dν(s) on R such that:

e−t/2f(et) =

∫ ∞
−∞

dν(s) eits . (1.117)

Since f is standard it follows that e−t/2f(et) = e−t/2etf(e−t) = et/2f(e−t),
showing that dν(s) has to be symmetric with respect to zero. Then, ap-
plying the definition of Jf in Eq. (1.65) we have:

Jf
∣∣
π
[A] = Rπ f(LπR−1π )[A] = (1.118)

= Rπ
∫ ∞
−∞

dν(s) (LπR−1π )is+1/2[A] = (1.119)

=

∫ ∞
−∞

dν(s) πis+1/2Aπ−is+1/2 , (1.120)
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proving Eq. (1.115). Similarly, for f ∈ F−, Bochner’s theorem implies
the existence of a unique probability measure dµ(s) on R such that:

et/2

f(et)
=

∫ ∞
−∞

dµ(s) eits , (1.121)

and from the fact that f is standard we can verify that dµ(s) has to be
symmetric with respect to zero. Then, the same kind of computations as
above shows that:

J−1f
∣∣
π
[A] = R−1π

1

f
(LπR−1π )[A] = (1.122)

= R−1π
∫ ∞
−∞

dµ(s) (LπR−1π )is−1/2[A] = (1.123)

=

∫ ∞
−∞

dν(s) πis−1/2Aπ−is−1/2 , (1.124)

proving the claim.

Thm. 4 shows that if f ∈ F±, one can find an explicit Kraus form for
J±1f by using Eq. (1.115) or Eq. (1.116), where the probability measure
can be obtained by inverting Eq. (1.117) or Eq. (1.121) respectively.

After having discussed these general families of standard monotones,
in the next subsections we study some specific examples. Since the set
of monotones is partially ordered, this will be mirrored in the ordering of
the sections, where we start from the largest standard monotone and we
go down from there.

1.4.2 The Bures metric

Among the standard monotone functions, the maximum is given by:

fB(x) =
x+ 1

2
. (1.125)

This function can be obtained from Eq. (1.66) if one chooses g(x) to be:

gB(x) =
(x− 1)2

x+ 1
=

∫ 1

0
dNB(s)

(
(x− 1)2

x+ s
+

(x− 1)2

1 + sx

)
, (1.126)

with dNB(s) := δ(1− s)/2. The corresponding contrast function is given
by:

HB(ρ||σ) = Tr
[
(ρ− σ)(Lσ + Rρ)−1(ρ− σ)

]
. (1.127)
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Since the quantity above is real, taking its complex conjugate does not
affect it, while it exchanges L with R and vice versa. This shows that
HB(ρ||σ) is symmetric in its arguments. The same conclusion could
also be derived by noticing that gB(x) = xgB(x

−1). Hence, HB(ρ||σ) =
HB(σ||ρ).

The associated quantum Fisher information operators take the form:

JB
∣∣
π
[A] =

1

2
{π,A} ; J−1B

∣∣
π
[A] =

∫ ∞
0

dt e−tπ/2Ae−tπ/2 . (1.128)

The metric generated by J−1B is called Bures metric. This operator gives
the explicit expression of what is called the symmetric logarithmic deriva-
tive, see Eq. (1.138). One can verify this expression of J−1B by noticing
that:

J−1B [JB[A]] =
∫ ∞
0

dt
((
e−tπ/2

π

2

)
Ae−tπ/2 + e−tπ/2A

(
e−tπ/2

π

2

))
=

(1.129)

= −
∫ ∞
0

dt

(
d

dt

(
e−tπ/2Ae−tπ/2

))
= (e−tπ/2Ae−tπ/2)

∣∣∣∣t=0

t=∞
= A .

(1.130)

Interestingly, there is a close form for the geodesic distance associated
to this metric [24]. In particular, it takes the form:

dB(ρ, σ) = 2 arccos

(
Tr

[√√
ρσ
√
ρ

])
= (1.131)

= 2arccos
(√

F (ρ, σ)
)
, (1.132)

where in the last step we have implicitly defined the fidelity F (ρ, σ).
The quantity just obtained should be compared with the Bhattacharyya
distance for classical probability vector in Eq. (1.16), to which it reduces
for commuting states. Eq. (1.132) should also be compared to the Bures
length, defined as [25]:

DB(ρ, σ)
2 = inf

{
Tr
[
(W −X)(W −X)†

] ∣∣WW † = ρ, XX† = σ
}
=

(1.133)

= 2

(
1− Tr

[√√
ρσ
√
ρ

])
= 2

(
1− cos

(
dB(ρ, σ)

2

))
.

(1.134)
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This further shows the analogy with the classical case. Indeed, one can
think of the Bures length as the analogous of the Hellinger distance for
quantum states: in fact, Eq. (1.133) simply tells us that DB(ρ, σ)

2 co-
incides with the minimum Hilbert-Schmidt distance on purifications of ρ
and σ, which is the non-commutative analogous of the Euclidean met-
ric. Indeed, when one restricts to diagonal states, this exactly reduces to
Eq. (1.13).

In the literature the Bures metric corresponds to the most canonical
choice of quantum Fisher information. In fact, it appears in the context
of quantum metrology in the famous Cramer-Rao bound, which is a limit
on the quality with which one can estimate parameters encoded in a state.
In order to see this, consider a family of density matrices ρ(θ) depending
on some parameters θ. Without loss of generality, suppose that the true
value is θ = 0. We define a locally unbiased estimator to be an observable
satisfying [26]:

∂

∂θ
Tr [ρ(θ)A]

∣∣∣∣
θ=0

= 1 . (1.135)

This equation tells us that by measuring A in a neighbourhood of θ = 0,
one obtains the correct value of θ on average:

∃ ε
∣∣ Tr [ρ(θ)A] = θ ∀θ ∈ (−ε, ε) . (1.136)

Define now the symmetric logarithmic derivative (SLD) of ρ(θ) to be the
operator L such that, for any B, we have:

∂

∂θ
Tr [ρ(θ)B]

∣∣∣∣
θ=0

= Tr [B Lρ(0)] = Tr
[
B JB

∣∣
ρ(0)

[L]
]
. (1.137)

Since this relation holds for any B, one can impose the equality even
without the trace, giving:

∂ρ(θ)

∂θ

∣∣∣∣
θ=0

=
1

2
(Lρ(0) + ρ(0)L) . (1.138)

This expression makes it clear where the name for SLD comes from, as L
can be thought as a symmetric generalisation of the differential operator
to non-commutative variables.

We are now ready to prove the Cramer-Rao bound: this is a funda-
mental limit on how small the variance of locally unbiased operators can
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be. Writing it down explicitly, we have:

Tr
[
ρ(0)A2

]
= Tr

[
A JB

∣∣
ρ(0)

[A]
]
≥ (1.139)

≥
Tr
[
A JB

∣∣
ρ(0)

[L]
]

Tr
[
L JB

∣∣
ρ(0)

[L]
] =

1

Tr
[
∂θρ(θ) JB

∣∣−1
ρ(θ)

[∂θρ(θ)]
] ∣∣
θ=0

, (1.140)

where in the step between the first and the second line we used the
Cauchy-Schwartz inequality for JB, and in the second line we used the def-
inition of local unbiased operators (Eq. (1.135)) and we inverted Eq. (1.138).
This shows that the ability to estimate the parameter θ is intrinsically
connected to the statistical difference between ρ(0) and ρ(0 + ∂θ).

It should be pointed out that the steps presented above can in prin-
ciple be replicated for the other quantum Fisher information. In fact, it
is sufficient to define the generalised derivative Lf as:

∂ρ(θ)

∂θ

∣∣∣∣
θ=0

= Jf
∣∣
ρ(0)

[Lf ] , (1.141)

to obtain:

Tr
[
A Jf

∣∣
ρ(0)

[A]
]
≥ 1

Tr
[
Lf Jf

∣∣
ρ(0)

[Lf ]
] =

1

Tr
[
∂θρ(θ) J−1f

∣∣
ρ(0)

[∂θρ(θ)]
] ∣∣
θ=0

.

(1.142)

This procedure gives a whole family of bounds. Whereas for the Bures
case the variance of an observable is a quite standard object, the problem
here is to find an operational interpretation to the generalised variance
on the left in the above equation. Still, this can be done in some contexts,
as for example for the relative entropy, Sec. 1.4.6.

1.4.3 The Heinz family

Let us introduce the one-parameter family of functions gγ>(x) defined as:

gγ>(x) =
(x− 1)2

xγ + x1−γ
, (1.143)

for γ ∈ [0, 1], corresponding to the contrast functions:

Hγ>(ρ||σ) = Tr
[
(ρ− σ)(LγσR1−γ

ρ + L1−γ
σ Rγρ)−1[(ρ− σ)]

]
(1.144)
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where in the first line we used the expression in Eq. (1.46). It is useful
for what follows to provide an integral equation to this contrast function.
To do so, we need to invert the operator:

(LγσR1−γ
ρ + L1−γ

σ Rγρ)[A] = σγ Aρ1−γ + σ1−γ Aργ = (1.145)

= (σγ Aργ)ρ1−2γ + σ1−2γ (σγ Aργ) = (1.146)

= (L1−2γ
σ + R1−2γ

ρ )LγσRγρ [A] . (1.147)

The inverse of (LσRρ)γ is simply given by (LσRρ)−γ . On the other hand,
we can use the formula:

σA+Aρ = L =⇒ L =

∫ ∞
0

dt e−tσ Ae−tρ , (1.148)

to invert the operator (L1−2γ
σ + R1−2γ

ρ ). The proof of Eq. (1.148) is
completely analogous to the procedure presented in Eq. (1.130), so we
do not repeat it here. Then, one can express the contrast function in
Eq. (1.144) as:

Hγ>(ρ||σ) =
∫ ∞
0

dt Tr
[
(ρ− σ)e−tσ1−2γ

σ−γ(ρ− σ)ρ−γe−tρ1−2γ
]
.

(1.149)

The corresponding family of standard monotone functions is given by:

fγ>(x) :=
xγ + x1−γ

2
. (1.150)

Thanks to the Löwner-Heinz inequality we know that xγ is matrix mono-
tone for all γ ∈ [0, 1] [18], which means that fγ>(x) is matrix monotone
as well. Using the integral expression for powers γ ∈ (0, 1):

xγ =
sinπγ

π

∫ ∞
0

dλ λγ−1
x

x+ λ
= (1.151)

=
sinπγ

π

∫ 1

0
dλ

(
λγ−1

x

x+ λ
+ λ−γ

x

1 + λx

)
, (1.152)

we can rewrite the functions fγ>(x) in terms of the extreme points as:

fγ>(x) =

∫ 1

0
dλ

(
sinπγ

π

(
λγ−1 + λ−γ

1 + λ

))
fλ(x) , (1.153)
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where we isolated the terms which defines the measure dµTfγ> (λ). More-
over, it is easy to show that all fγ>(x) lay above

√
x, as it easily follows

from the fact that xγ has a unique minimum at γ = 1/2. It should be
noticed that for γ = 0 or γ = 1 one has f0> = f1> = fB.

We can then use Eq. (1.149) to obtain the expression of the quantum
Fisher information. Using Thm. 2 we can indeed identify the superoper-
ator:

J−1fγ>
∣∣
π
[A] =

∫ ∞
0

dt e−(tπ
1−2γ)/2 π−γAπ−γ e−(tπ

1−2γ)/2 . (1.154)

Since J−1fγ> is given in Kraus form, it is immediately clear that it is com-
pletely positive. This shows that fγ> ∈ F− for all γ ∈ [0, 1] or, equiv-
alently,

√
x ⪯ fγ>(x). Moreover, the complex hull of standard convex

kγ> := 2/(xγ + x1−γ) is also in K+. Moreover, using Eq. (1.128) we can
also provide an expression for Jfγ> , namely:

Jfγ>
∣∣
π
[A] =

1

2
{π1−2γ , πγ Aπγ} . (1.155)

Thanks to the properties of the map T , the image fγ< := Tfγ> is
contained in F+. This family of monotones are given by:

fγ<(x) := [Tfγ> ](x) =
2x

xγ + x1−γ
. (1.156)

From the definition fγ<(x) ⪯
√
x, which in particularly implies that

fγ<(x) ≤
√
x for each x. Indeed, one can use Eq. (1.86) to derive the

expression of J±fγ< from Eq. (1.154) and Eq. (1.155), which reads:

Jfγ<
∣∣
π
[A] = JTfγ>

∣∣
π
[A] =

∫ ∞
0

dt e−(tπ
2γ−1)/2 πγAπγ e−(tπ

2γ−1)/2 ;

(1.157)

J−1fγ<
∣∣
π
[A] = J−1Tfγ>

∣∣
π
[A] =

1

2
{π2γ−1, π−γAπ−γ} , (1.158)

Again, one can confirm that all Jfγ< are CP, as they are presented in
Kraus form. In this case, it should be noticed that the convex hull of
fγ< is still in F+, without the need to pass to the inverse. Moreover, it
is interesting to point out that the only function both in fγ> and in the
fγ< is the square root, which follows from the fact that this is the only
function both in F+ and F−.
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The contrast functions associated to Eq. (1.156) come from the family
of convex functions:

gγ< =
(xγ + x1−γ)(x− 1)2

4x
(1.159)

and take the form:

Hγ>(ρ||σ) = Tr
[
(ρ− σ)(Lγ−1σ R−γρ + L−γσ Rγ−1ρ )[(ρ− σ)]

]
(1.160)

Moreover, thanks to Eq. (1.153) and Eq. (1.102) one also has:

gγ<(x) =

∫ 1

0
dλ

(
sinπγ

π

(
λγ−1 + λ−γ

2

))(
(x− 1)2

x+ s
+

(x− 1)2

1 + sx

)
(1.161)

so that we can identify dNg(s) :=
sinπγ
π

(
λγ−1+λ−γ

2

)
ds.

1.4.4 The family of α-divergences

Consider the family of convex functions:

gα(x) =
xα − 1

α(α− 1)
=

sinπα

πα(1− α)

∫ ∞
0

ds
sα

(1 + s)2

(
(x− 1)2

x+ s

)
. (1.162)

It should be noticed that in the integral above one has an extra term of
the form (1−x)/(1−α), which we ignore as it does not contribute to the
expression of the contrast function (see the beginning of Sec. 1.2). The
corresponding symmetrised version is given by:

gsymm
α (x) =

(1− xα)(1− x1−α)
2α(1− α)

, (1.163)

which is matrix convex for α ∈ [−1, 2]. Moreover, we can use Eq. (1.162)
to provide an expression for dNg(s), which can be inferred from the fol-
lowing integral:

gsymm
α (x) =

sinπα

πα(1− α)

∫ 1

0
ds

(sα + s1−α)

2(1 + s)2

(
(x− 1)2

x+ s
+

(x− 1)2

1 + sx

)
,

(1.164)

so that we can identify dNg(s) := sinπα
πα(1−α)

(sα+s1−α)
2(1+s)2

ds. This expression
corrects the one provided in [16].
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Another interesting integral expression for gα(x) is given by:

gα(x) =
1

α(α− 1)

∫ α

0
dβ (xβ log x) . (1.165)

This can be used to compute the associated contrast functions:

Hα(ρ||σ) =
1

α(α− 1)

(
Tr
[
σαρ1−α

]
− 1
)
= (1.166)

=
1

α(α− 1)

∫ α

0
dβ Tr

[
ρ1−β(log σ − log ρ)σβ

]
. (1.167)

We call these quantities α-divergences. A similar family is the one of
Rényi divergences, given by:

Sα(ρ||σ) : =
1

α− 1
log Tr

[
ρασ1−α

]
= (1.168)

=
1

α− 1
log

(
1 +

∫ α

0
dβ Tr

[
ρβ(log ρ− log σ)σ1−β

])
.

(1.169)

It is easy to see that the two are related by the equation:

Hα(ρ||σ) =
e−αS1−α(ρ||σ) − 1

α(α− 1)
. (1.170)

Interestingly, the α-contrast functions and the corresponding Rényi di-
vergences locally give rise to the same metric structure, which is related
to the statistics of work close to equilibrium (see Eq. (2.28)).

An expansion of these quantities was provided in [7], but we present
here a more compact derivation. First, it should be noticed that locally
Hα(ρ||σ) is indistinguishable from Hsymm

α (ρ||σ), so we can do the ex-
pansion directly on the latter. In particular, one can use the following
integral expression:

2α(α− 1)Hsymm
α (ρ||σ) =

(
Tr
[
σαρ1−α

]
+Tr

[
ρασ1−α

]
− 2
)
= (1.171)

=

∫ α

0
dβ

(
Tr
[
ρ1−β(log σ − log ρ)σβ

]
+Tr

[
ρβ(log ρ− log σ)σ1−β

])
=

(1.172)

=

∫ α

0
dβ

(∫ β

0
dγ Tr

[
ρ1−γ(log σ − log ρ)σγ(log σ − log ρ)

]
+

−
∫ 1

β
dγ Tr

[
ργ(log ρ− log σ)σ1−γ(log ρ− log σ)

])
,

(1.173)
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where the last equality can be verified by carrying out the integrals and
see that it correctly retrieves Eq. (1.172). Substituting γ → 1− γ in the
second integral of Eq. (1.173), one finally obtains:

2α(α− 1)Hsymm
α (ρ||σ) = (1.174)

=

∫ α

0
dβ

(∫ β

0
dγ −

∫ 1−β

0
dγ

)
(Tr

[
ρ1−γ(log σ − log ρ)σγ(log σ − log ρ)

]
) =

(1.175)

= −
∫ α

0
dβ

∫ 1−β

β
dγ Tr

[
ρ1−γ(log σ − log ρ)σγ(log σ − log ρ)

]
. (1.176)

It should be noticed that the symmetry in the arguments of Hsymm
α (ρ||σ)

is reflected in the symmetry under the transformation α→ 1−α. More-
over, thanks to the appearance of the two differences of logarithms in
Eq. (1.176), it is straightforward to give the local expansion of the α-
divergences. In fact, denote by J−1L the Fréchet derivative of the loga-
rithm, which reads in formulae [18]:

J−1L [A] := lim
ε→0

log(π + εA)− log π

ε
=

∫ ∞
0

dt (π + t)−1A (π + t)−1 .

(1.177)

Hence, one can approximate the operator log(π+εA) by log(π)+εJ−1L [A].
Then, a simple substitution shows that the expansion of the α-divergences
is given by:

Hα(π||π + εδρ) =
S1−α(π||π + εδρ)

1− α
= (1.178)

=
ε2

2α(1− α)

∫ α

0
dβ

∫ 1−β

β
dγ Tr

[
π1−γ J−1L [δρ]πγJ−1L [δρ]

]
=

(1.179)

=
ε2

2α(1− α)

∫ α

0
dβ

∫ 1−β

β
dγ covγπ(J−1L [δρ], J−1L [δρ]) , (1.180)

where in the last line we implicitly defined the γ-covariance. This quantity
can be connected to the Wigner-Yanase-Dyson skew information, defined
as:

Ix(π, L) = −1

2
Tr
[
[πx, L][π1−x, L]

]
= (1.181)

= Tr
[
L2 π

]
− Tr

[
π1−x Lπx L

]
, (1.182)
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which can be interpreted as a quantifier of the quantum uncertainty of
the observable L as measured in the state π [27]. In fact, by adding and
subtracting the variance of J−1L [δρ] to Eq. (1.180), one obtains:

Hα(π||π + εδρ) = (1.183)

=
ε2

2
Tr
[(
J−1L [δρ]

)2
π
]
+

ε2

2α(α− 1)

∫ α

0
dβ

∫ 1−β

β
dγ Iγ(π, J−1L [δρ]) .

(1.184)

This expression is particularly useful when one wants to isolate the effects
of the coherences in the basis of π. Notice in fact that for full rank states
π, the Wigner-Yanase-Dyson skew information Iγ(π, J−1L [δρ]) = 0 if and
only if [π, δρ] = 0.

The standard monotones associated to Hα(ρ||σ) are given by:

fα(x) =
α(1− α)(x− 1)2

(1− xα)(1− x1−α)
, (1.185)

which are clearly symmetric under the exchange α → 1 − α. Applying
Thm. 2 to Eq. (1.180) one can deduce that the corresponding family of
quantum Fisher information takes the form:

J−1α
∣∣
π
[A] =

1

α(1− α)

∫ α

0
dβ

∫ 1−β

β
dγ J−1L

[
π1−γ J−1L [A]πγ

]
. (1.186)

Moreover, in [28] another integral expression, only valid for α ∈ (0, 1),
was provided, namely:

J−1α
∣∣
π
[A] =

(sinπα)2

π2α(1− α)

∫ ∞
0

ds

∫ ∞
0

dt
sα

(π + s)(π + t)
A

t1−α

(π + s)(π + t)
,

(1.187)

which clearly shows that in this range J−1α is completely positive, which
means that the corresponding monotone function satisfies fα ∈ F−.
Moreover, in [21] it was shown that fα ∈ F+ for α ∈ [−1,−1

2 ] ∪ [32 , 2],
meaning that for this set of parameters Jα is CP, whereas, for α ∈
[−1

2 , 0) ∪ (1, 32 , 2] neither Jα or J−1α are CP. Unfortunately, we weren’t
able to find a general expression for Jα not even in the parameter range
for which it is completely positive.

In the next sections, different examples of quantum Fisher information
as α varies. First, it should be noticed that in the range α ∈ [0, 1/2]
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Figure 1.4: In the figure some of the most notable standard monotones
are presented in a log-log scale (in the inset we show their behaviour in
linear coordinates). In particular, we show the two extrema (fB and fH),
the square root, the family fα of α-divergences in the range α ∈ [0, 1]
and its transform Tfα, together with the standard monotone associated
with the quantum information variance fV (x) defined in Eq. (1.229).
The shading in the two curves associated to fα indicates that this family
interpolates between f0, the standard monotone for the relative entropy,
and the maximum value f1/2 = 1

4(1+
√
x)2, corresponding to the Wigner-

Yanase skew information. It is interesting to notice that the monotone
associated to the quantum information variance does not satisfy fV (x) ≥√
x nor fV (x) ≤

√
x. This shows that there are monotones for which

both Jf and J−1f are not CP.
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fα(x) are monotonically increasing in α, whereas for α ∈ [1/2, 2] they
are monotonically decreasing. There are three limits that are notable
enough to deserve a name: the Fisher information associated with the
relative entropy is the one given by the limit α → 0, called Kubo-Mori-
Bogoliubov (KMB) inner product; in the limit α → 1/2 one obtains the
largest among the family, the Wigner-Yanase metric; finally, for α → 2
one gets the minimal function fH(x) = 2x/(x + 1), called the harmonic
mean.

1.4.5 The Wigner-Yanase skew information (α = 1/2)

The first case we consider is given by the Wigner-Yanase metric. This
is associated to the case α = 1

2 , giving rise to the following contrast
function:

gWY (x) = 4(1−
√
x) , HWY (ρ||σ) = 4(1− Tr

[√
ρ
√
σ
]
) . (1.188)

The corresponding standard monotone function takes the particularly
simple form:

fWY (x) =

(
1 +
√
x

2

)2

. (1.189)

This expression should be compared with fB(x) in Eq. (1.125). In fact,
it can be easily verified that fWY (x) ≡ (fB(

√
x))

2. Hence, the quan-
tum Fisher information for the Wigner-Yanase metric can be directly
computed from the one for the Bures as:

JWY

∣∣
π
[A] =

1

4
{
√
π, {
√
π,A}} ; (1.190)

J−1WY

∣∣
π
[A] =

∫ ∞
0

dt

∫ ∞
0

ds e−(t+s)
√
π/2Ae−(t+s)

√
π/2 . (1.191)

It is a remarkable fact that the space of d-dimensional density matrices
endowed with the metric generated by J−1WY is locally isometric to an n-
sphere of radius 2 in d2− 1 dimensions [29]. Hence, one can give a closed
form for the geodesic distance, i.e.:

dWY (ρ, σ) = 2 arccosTr
[√
ρ
√
σ
]
, (1.192)

where the similarity with the Bures geodesic distance in Eq. (1.132)
is evident. Indeed, both reduce to the same quantity for commuting
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states, i.e., to the Bhattacharyya distance in Eq. (1.16). Moreover, since
Tr
[√
ρ
√
σ
]
≤
√
F (ρ, σ) [30], it also holds that dB(ρ, σ) ≤ dWY (ρ, σ), as

the arccosine is monotonically decreasing. To the best of the author’s
knowledge, these are the only two cases for which one has an analytical
expression for the geodesic distance. In this case, one even has a simple
expression for the geodesic path connecting any two density matrices ρ
and σ, which can be parametrised as:

γρ→σWY (t) = 2

(
(1− t)√ρ+ t

√
σ
)2

Tr
[(
(1− t)√ρ+ t

√
σ
)2] . (1.193)

Another important property of this metric is that it can be used to
express the quantum Chernoff bound [31]. This arise in the following
setting: consider the task of distinguishing two different states ρ0 and
ρ1, knowing that each is prepared with a probability p0 and p1. In this
context, the symmetric distinguishability problem consists in finding a
POVM E0, E1 such that the probability of error Pe := p0Tr [E1ρ0] +
p1Tr [E0ρ1] is minimal. By defining the positive and negative part of a
hermitian operator as A± := (|A|±A)/2, one can prove that the optimal
measurement is obtained by setting E1 to be the projector on the range
of (p1ρ1 − p0ρ0)+, which yields the minimum error probability [31]:

Pe,min =
1

2
(1− Tr [|p1ρ1 − p0ρ0|]) . (1.194)

This discussion was done in the single copy scenario. If one allows more
copies of ρ0/1 to be prepared at the same time with the probability p0/1,
one can again infer that the optimal error probability is given by:

Pe,min,n =
1

2
(1− Tr

[
|p1ρ⊗n1 − p0ρ⊗n0 |

]
) . (1.195)

Differently from what happened for the single copy scenario, though, this
probability scales with n, and in particular it asymptotically decrease as
Pe,min,n ≃ e−ξQCBn for n ≫ 1. In [31] it was proven that the exponent
takes the form:

ξQCB := − lim
n→∞

logPe,min,n
n

= max
0≤s≤1

(− log Tr
[
ρs0ρ

1−s
1

]
) . (1.196)

This result goes under the name of Chernoff bound.
The position at which the maximum is found usually depends on the

particular form of ρ0 and ρ1. Still, if one restricts to the case in which
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ρ1 = ρ0+δρ, with δρ≪ 1, then one can apply the methods from Sec. 1.4.4
to express ξQCB in terms of J−1α . Then, the maximum in the family is
attained for s = 1

2 , meaning that:

ξQCB =
1

8
Tr
[
δρ J−1WY

∣∣
ρ0
[δρ]
]
. (1.197)

This further motivates the interest in the Wigner-Yanase metric.

1.4.6 The relative entropy (α = 0)

The most renowned among the α-divergences, and among the contrast
functions in general, is the one obtained in the limit α → 0, namely the
relative entropy. In fact, carrying out the limit of Eq. (1.180) one gets:

gL(x) := lim
α→0

1

α(α− 1)

∫ α

0
dβ (xβ log x) = − log x . (1.198)

The corresponding contrast function takes the familiar form:

S(ρ||σ) := HL(ρ||σ) = Tr [ρ (log ρ− log σ)] . (1.199)

Moreover, its symmetrised version has the following integral expression:

gL(x) + x gL(x
−1)

2
=

∫ 1

0
dNL(s)

(
(x− 1)2

x+ s
+

(x− 1)2

1 + sx

)
, (1.200)

where dNL(s) :=
1

2(1+s)ds. This divergence not only is very relevant in
the context of quantum information, but it is also of key importance in
the context of resource theory and thermodynamics. It is related to the
von Neumann entropy by the equation:

S(ρ||1) = −S(ρ) , (1.201)

and it has the special property that it is additive on tensor products:

S(ρA ⊗ ρB||σA ⊗ σB) = S(ρA||σA) + S(ρB||σB) . (1.202)

Thanks to this, one can express the mutual information in a state ρAB ∈
HA ⊗HB as:

I(A : B) := S(ρA) + S(ρB)− S(ρAB) = (1.203)
= Tr [ρAB log ρAB]− Tr [ρA log ρA]− Tr [ρB log ρB] = (1.204)
= Tr [ρAB log ρAB]− Tr [ρAB log ρA ⊗ ρB] = S(ρAB||ρA ⊗ ρB) , (1.205)



1.4 A garden of quantum Fisher information 45

where ρA := TrB [ρAB] (and similarly for B) and in the last line we
used the additivity of the tensor products when taking the logarithm of
positive states. Eq. (1.205) shows that the mutual information is directly
connected to the statistical distance of the state ρAB from a product state
locally indistinguishable from it (i.e., ρA ⊗ ρB).

As it was mentioned above, the relative entropy also plays a special
role in quantum thermodynamics, as it is used in the definition of the
relative entropy out of equilibrium:

F (ρ,H) := Tr [ρH]− β−1 S(ρ) . (1.206)

Indeed, this can be transformed as follows:

F (ρ,H) = β−1(−Tr
[
ρ log e−βH

]
+ Tr [ρ log ρ]) = (1.207)

= −β−1 logZH + β−1Tr

[
ρ

(
log ρ− log

e−βH

ZH

)]
= (1.208)

= Feq(πβ(H)) + β−1 S(ρ||πβ(H)) , (1.209)

where we denoted the thermal state by πβ(H) := e−βH

ZH
, and we defined

the partition function ZH to be ZH := Tr
[
e−βH

]
. Finally, in the last

line, we defined the free energy of equilibrium in the usual way, i.e.,
Feq(πβ(H)) := −β−1 logZH . Again we see that the excess free energy
with respect to the equilibrium one is given by the statistical distance
from the Gibbs state, as measured by the relative entropy.

Going back to its mathematical characterisation, it should be noticed
that the corresponding standard monotone is given by:

fL(x) =
x− 1

log x
=

∫ 1

0
dα xα , (1.210)

i.e., it corresponds to f>(x) in Eq. (1.150) for a uniform measure. This
integral expression is particularly useful because it allows the immediate
calculation of JL as:

JL
∣∣
π
[A] =

∫ 1

0
dα π1−αAπα . (1.211)

Interestingly, this superoperator is the same one gets from the Dyson
series of the exponential, i.e., elog(π)+εA ≃ π + ε JL[A]. For this reason,
one can deduce that J−1L [A] will be given by the first term in the expansion
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of log(π + εA). As we saw in the expansion of the α-contrast functions,
this reads:

J−1L
∣∣
π
[A] =

∫ ∞
0

dt (π + t)−1A (π + t)−1 . (1.212)

Notice that the same conclusion could be reached by directly expanding
Eq. (1.199). Since J−1L is in Kraus form, it follows that fL ∈ F−. This
could be surprising as fL is obtained from the convex combination of
elements of F−, which is not a convex set [21].

Another useful property of the operator J−1L is that it allows us to
express the symmetrised relative entropy in the form of an integral. This
reads [32]:

HL(ρ||σ) +HL(σ||ρ) = Tr [(ρ− σ) (log ρ− log σ)] = (1.213)

=

∫ 1

0
dt Tr

[
(ρ− σ) J−1L

∣∣
tρ+(1−t)σ[(ρ− σ)]

]
. (1.214)

This expression is particularly useful when one needs to compare the
global and local behaviour of the relative entropy: for example, in [32]
it was used to prove the equality of the contraction coefficients for the
symmetrised relative entropy with the one for the corresponding Fisher
information (defined in Eq. (1.304) and Eq. (1.306)).

The scalar product defined by JL on the space of observables is called
Kubo-Mori-Bogoliubov (KMB) inner product. It is particularly relevant
in the context of linear response theory due to the following identity:

∂2

∂x∂y
Tr
[
eH+xA+yB

] ∣∣
0
= Tr

[
A
(
JL
∣∣
eH

)
[B]
]

(1.215)

which connects the KMB inner product to the expansion of the partition
function associated with the Hamiltonian H. This quantity naturally
appears when one wants to estimate the fluctuations around thermal
equilibrium in the linear response regime [33]. Starting from this inter-
pretation we can provide a Cramer-Rao bound of the type in Eq. (1.142).
Indeed, suppose one has a Hamiltonian depending on some parameters
θ. The corresponding thermal state is given by πβ(H(θ)) := e−βH(θ)

ZH(θ)
, and

we can use Eq. (1.215) to derive that:

1

ZH(0)

∂2

∂x2
Tr
[
e−βH(0)+xA

] ∣∣∣∣
x=0

= Tr
[
A
(
JL
∣∣
πβ(H(0))

)
[A]
]
, (1.216)
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which provides an operational procedure of accessing the generalised vari-
ance in Eq. (1.142), namely through the linear response of the thermal
state at equilibrium when one perturbs the Hamiltonian by β−1A. Sup-
pose now that A is a locally unbiased estimator, i.e., that it satisfies:

∂

∂θ
Tr [πβ(H(θ))A]

∣∣∣∣
θ=0

= 1 . (1.217)

Then, from Eq. (1.142) we obtain that:

1

ZH(0)

∂2

∂x2
Tr
[
e−βH(0)+xA

] ∣∣∣∣
x=0

≥ (1.218)

≥ 1

Tr
[
∂θπβ(H(θ)) J−1L

∣∣
πβ(H(0))

[∂θπβ(H(θ))]
] ∣∣∣∣
θ=0

= (1.219)

=
1

β2Tr
[
∆∂θH(θ) JL

∣∣
πβ(H(0))

[∆∂θH(θ)]
] ∣∣∣∣
θ=0

, (1.220)

where in the last line we used the notation ∆A := A − ⟨A⟩πβ(H(0)) aris-
ing from the expansion of the thermal state πβ(H(ε)) = πβ(H(0)) −
ε β JL[∆∂θH(θ)] (see Eq. (4.26) for the details of the calculation). In
order to show the relevance of this last formula, suppose one wants to
estimate the temperature of a thermal state through the measurement of
the observable A. In order for the estimator to be locally unbiased, we
require that:

∂

∂β
Tr [πβ(H)A]

∣∣∣∣
β=β0

= 1 (1.221)

where β0 is the temperature of the system around which we want our
thermometer to work. Then, it should be noticed that the denominator
of Eq. (1.220) can be connected to the heat capacity as follows:

CH(β0) : =
∂

∂T
Tr [H πβ(H)]

∣∣∣∣
β=β0

=
∂β

∂T

1

∂β
Tr [H πβ(H)]

∣∣∣∣
β=β0

=

(1.222)

= β2Tr
[
∆H JL

∣∣
πβ(H)

[∆H]
] ∣∣∣∣
β=β0

(1.223)
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where T is the temperature and we used the definition β := 1/T . Hence,
wrapping everything together we see that the fluctuations in the mea-
surement of the temperature are bounded as:

1

ZH
∂2

∂x2
Tr
[
e−β0H+xA

] ∣∣∣∣
x=0

≥ 1

CH(β0)
, (1.224)

result that can be interpreted as saying that if one wants to get a good es-
timation of the temperature the best strategy is to maximise the heat ca-
pacity of the thermometer. The discussion above shows how the Cramer-
Rao bound can be interesting even when applied to quantum Fisher in-
formations other than the Bures one.

1.4.7 The quantum information variance

The function:

gV (x) =
1

2
(log x)2 . (1.225)

defines what is called the quantum information variance, given by [34]:

HV (ρ||σ) =
1

2
Tr
[
ρ (log ρ− log σ)2

]
. (1.226)

This quantity is not part of the family of α-divergences, but it is related
to them by the identity:

HV (ρ||σ) =
1

2

∂2

∂α2
(α(α− 1)Hα(ρ||σ))

∣∣∣∣
α=0

. (1.227)

Hence, it is straightforward to verify, for example, that:

gV (x) =

∫ ∞
0

ds
(− log s)

(1 + s)2

(
(x− 1)2

x+ s

)
. (1.228)

The corresponding monotone function is given by:

fV (x) =
2 (x− 1)2

(x+ 1)(log x)2
(1.229)

Thanks to the relation in Eq. (1.227), we can also deduce from Eq. (1.186)
that the Fisher information takes the form:

J−1V
∣∣
π
[A] =

1

2
J−2L [{π,A}] . (1.230)
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Interestingly, one could arrive to the same result from the relation fV (x) =
fL(x)

2/fB(x) (defined in Eq. (1.210) and Eq. (1.125) respectively). This
identification also allows us to express JV in terms of JL and J−1B , namely:

JV
∣∣
π
[A] =

∫ ∞
0

dt e−tπ/2 J2L[A] e−tπ/2 . (1.231)

The quantum information variance can be interpreted as a quantifier
of the fluctuations in the distinguishability of ρ with respect to σ [34].
For this reason, it also appears in the context of the statistics of work as
the natural quantifier of fluctuations (see Sec. 4.4).

1.4.8 The geometric mean

Consider the function:

g√x(x) =
√
x−1 −

√
x , (1.232)

which corresponds to the contrast function:

H√x(ρ||σ) = Tr
[√

ρ (ρ− σ)
√
σ−1

]
. (1.233)

Its symmetrised version has the following integral expression:

gsymm√
x

(x) =
(x− 1)2

2
√
x

=

∫ 1

0
ds

1

2π
√
s

(
(x− 1)2

x+ s
+

(x− 1)2

1 + sx

)
, (1.234)

so that we can identify dNg(s) :=
1

2π
√
s
. Despite the fact the expression

of H√x(ρ||σ) might look unfamiliar, the associated standard monotone
takes a particularly simple form. In fact, this corresponds to:

f√x(x) =
√
x . (1.235)

In this case it is quite easy to compute the quantum Fisher information
operators, which are given by:

J√x
∣∣
π
[A] =

√
π A
√
π ; J−1√

x

∣∣
π
[A] =

√
π−1A

√
π−1 . (1.236)

As it can be verified by inspection, both J√x and J−1√
x

are CP, as they
are presented in Kraus form. Indeed, f√x is the only element in the
intersection of F+ and F−. Moreover, it can actually be used to define
these sets thanks to the order relation ⪯ defined above. In this sense, the
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square root can be regarded as the middle point in the space of standard
monotone functions. It should also be noted that f√x is also the only
fixed point of the transformation T . The peculiar property of having
both J√x and J−1√

x
CP will be used in the definition of the Petz’ recovery

map (see Sec. 3.3).

1.4.9 The harmonic mean (α = 2)

The last function we consider is again in the family of α-divergences, and
it is given by the limit α→ 2, for which we obtain:

g2(x) =
x2 − 1

2
. (1.237)

A more standard definition of the same divergence is obtained by using
the function:

gH(x) =
(x− 1)2

2
. (1.238)

In fact, it should be noticed that the two only differ by a linear term,
namely g2(x)− gH(x) = −2(x− 1), so we indeed have that Hg2(ρ||σ) ≡
HgH (ρ||σ). The corresponding contrast function is then given by:

HH(ρ||σ) =
1

2
Tr
[
(ρ− σ)ρ−1(ρ− σ)

]
=

1

2

(
Tr
[
σ2ρ−1

]
− 1
)
, (1.239)

while the measure associated to its symmetrised version reads:

gH(x) + xgH(x
−1) =

(x− 1)2

2
+

(x− 1)2

2x
= (1.240)

=

∫ 1

0
dNH(s)

(
(x− 1)2

x+ s
+

(x− 1)2

1 + sx

)
, (1.241)

with dNH(s) = δ(s)/2. Finally, the standard monotone function associ-
ated to it is given by:

fH(x) =
2x

x+ 1
. (1.242)

This is the minimal standard monotone function, also corresponding to
the image of the Bures function through T , i.e., fH = TfB. Thanks to
this relation we can use Eq. (1.86) to directly obtain:

JH
∣∣
π
[A] =

∫ ∞
0

dt e−tπ
−1/2Ae−tπ

−1/2 ; J−1H
∣∣
π
[A] =

1

2
{π−1, A} .

(1.243)
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This could also be deduced from the fact that fH = f0< (in the notation
of Eq. (1.156)), so the formula above could be directly inferred from
Eq. (1.157) and Eq. (1.158).

This concludes the survey of the quantum Fisher information met-
rics.

1.5 The dynamical properties of Fisher informa-
tion

In the treatment of Fisher information most of the focus goes into its
significance as a distinguishability quantifier, and in the many different
results linking it to estimation theory, as in the case of the Cramer-Rao
bound and of the Chernoff bound (see Eq. (1.140) and Eq. (1.196)). At
the same time, Fisher information metrics satisfy the important property
of being the only class that monotonically decreases under the action
of any CPTP map. Hence, there is a dual manner of defining Fisher
information, one statistical and one dynamical, and it is not clear how
the two should be connected. In fact, it is not even obvious that these two
properties should define the same class of metrics. For this reason, even
if the statistical aspects of the Fisher information are quite well studied,
this is not very informative about its dynamical nature.

Indeed, not only the Fisher information can be defined in terms of
its contractivity under physical evolutions, but also many properties of
the dynamical maps can be given solely in terms of their behaviour with
respect to the Fisher information. The first result in this direction is
given by the following [1]:

Theorem 5. Consider a trace and adjoint preserving linear map Φ :
Md(C) → Md(C), where Md(C) is the space of d × d complex matri-
ces. Define S ⊂ Md(C) to be the set of positive semidefinite, trace one
matrices, and define Φanc := Id ⊗ Φ. If Φanc satisfies the following three
properties:

1. Φ is full-rank;

2. Φanc maps at least one point from the interior of S ⊗S into S ⊗S;

3. for any two states ρ and ρ+ δρ in Φ−1anc(S ⊗ S ∩Φanc(S ⊗ S)) with
|δρ| ≪ 1, for any contrast function Hg, one has:

Hg(ρ||ρ+ δρ) ≥ Hg(Φanc(ρ)||Φanc(ρ+ δρ)) ; (1.244)
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then, the original map Φ is CP.

This theorem shows that the property of being completely positive can
be defined exclusively in statistical terms. Indeed, this characterisation
could be regarded as the dual of the Chentsov/Petz theorem: not only
the Fisher information is the unique family of metrics that contracts
under arbitrary CP maps, but also CP maps are the only set of maps
that contract the Fisher information. Without the existence of Thm. 5,
one could refer to the Fisher information is a derived concept, as the
Chentsov/Petz theorem tells us that it can be derived from the much more
fundamental notion of physical evolutions. Instead, the main contribution
of Thm. 5 is to show that it is at least as fundamental as the concept
of complete positivity, since the latter can be defined in terms of the
first. Indeed, one could think of an information theoretic reconstruction
of quantum mechanics that defines the allowed evolutions in terms of the
Fisher information alone. This is still to hypothetical to be made precise,
but it shows the importance in principle of the result just stated.

Proof. We prove the theorem by contradiction: suppose there exists a
map Φ that is not CP, but that satisfies Eq. (1.244). Thanks to condi-
tion 2 there exists at least one point π in the interior of S ⊗ S such that
Φanc(π) is a state. Moreover, from the assumption that Φ is not CP there
is also at least one state σ such that Φanc(σ) /∈ S ⊗ S. Without loss of
generality one can choose σ to be in the interior of S ⊗ S: if this is not
the case, one can take an ε-ball around σ whose image still lays outside of
the state space, and by inspecting the intersection between its preimage
and S⊗S one can find a point satisfying the assumption. Hence, the line
ρλ := (1 − λ)π + λσ also lays in the interior of the state space. From
this, it follows that the following superior is finite:

sup
λ,Tr[δρ2]=1

Hg(ρλ||ρλ + ε δρ) ≃ (1.245)

≃ sup
λ,Tr[δρ2]=1

ε2

2

(
Tr
[
δρ J−1f

∣∣
ρλ
[δρ]
])

<∞ , (1.246)

where ε ≪ 1, and we used the fact that the Fisher information is a
bounded operator in the interior of the state space.

Since by varying λ, Φanc(ρλ) interpolates between the positive defi-
nite matrix Φanc(π) and one with at least one negative eigenvalue, namely
Φanc(σ), there exists a λ∗ such that Φanc(ρλ∗) is a state with at least one
zero-eigenvalue. We are now ready to prove the claim. Set the state ρη
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to be given by ρη := ρ(λ∗−η), where η ≪ 1 is chosen so that the smallest
eigenvalue of Φ(ρη) is of order η. Moreover, consider a perturbation δρη
such that [Φanc(ρη),Φanc(δρη)] = 0, and having a positive finite contribu-
tion along the eigenvectors corresponding to η-eigenvalues (the positivity
condition ensures that in the limit η → 0 the perturbed state is still in
the interior of S for any finite η). Since Φ is full rank one can always find
such an element. Then, the evolved contrast function reads:

Hg(Φanc(ρη)||Φanc(ρη + εδρη)) ≃
ε2

2

d2∑
i=1

(δρ̃η)
2
i

(ρ̃η)i
, (1.247)

which scales as 1/η as η → 0. Hence, we can always find a η small enough
such that:

Hg(Φanc(ρη)||Φanc(ρη + εδρη)) > sup
λ,Tr[δρ2]=1

Hg(ρλ||ρλ + δρ) ≥ (1.248)

≥ Hg(ρη||ρη + εδρη) , (1.249)

contradicting the assumption that Φanc is contracting for any two points
in the interior of the space of states (condition 3). This proves the claim.

The connection between the Fisher information and the dynamics of
quantum systems is actually even deeper: not only one can express the
CP-ness of a map in terms of its contractivity property with respect to
the Fisher information, but also, with the same principle, one can define
Markovianity of a semigroup of maps in the same way. Moreover, we
show in the following that self-adjointness of an operator with respect to
Fisher information metric corresponds to a detailed balanced dynamics.
These topics are the argument of the next subsections, and corroborate
the interpretation of the Fisher information as an intimately dynamical
quantity.

1.5.1 Characterisation of Markovian evolutions

Before starting to investigate the dynamical character of Fisher informa-
tion, we need to introduce the concept of dynamical semigroup. To this
end, consider a family of CP-maps Φt depending smoothly on t, such that
for any two times t and s (t ≥ s) one can define an intermediate map
Φt,s satisfying the property Φt = Φt,s ◦ Φs. This kind of maps are called
divisible.
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Divisible dynamics Φt are naturally endowed with the structure of
semigroup (with identity), hence the name of dynamical semigroup. In-
deed, define {Φt,s}t≥s to be the set of all intermediate maps. Since
Φt = Φt,t ◦Φt = 1 ◦Φt, the identity is contained in the set; moreover, the
composition rule Φt,s ◦Φs,r = Φt,r satisfies associativity. For this reason,
the study of divisible evolutions coincides with the one of semigroups
of maps. In particular, if all the intermediate maps are CP, the corre-
sponding semigroup is called CP-divisible. This is the most canonical
notion of Markovianity [35], and the one that will be used in this text.
It should be noticed that for CP-divisible maps all the contrast functions
monotonically decrease, as it can be verified from their derivative:

d

dt
Hg(Φt(ρ)||Φt(σ)) = (1.250)

= lim
ε→0

Hg(Φt+ε(ρ)||Φt+ε(σ))−Hg(Φt(ρ)||Φt(σ))
ε

= (1.251)

= lim
ε→0

Hg(Φt+ε,tΦt(ρ)||Φt+ε,tΦt(σ))−Hg(Φt(ρ)||Φt(σ))
ε

≤ (1.252)

≤ lim
ε→0

Hg(Φt(ρ)||Φt(σ))−Hg(Φt(ρ)||Φt(σ))
ε

= 0 , (1.253)

where in Eq. (1.252) one uses the contractivity of the contrast functions
under the action of quantum channels. Since ρ and σ are arbitrary, the
same result also holds for quantum Fisher metrics, and this behaviour is
referred to as monotonic decrease of information, which also justifies the
identification of CP-divisibility with Markovian dynamics.

As we said above, a semigroup of CP-maps is Markovian without
having to put extra constraint on the global structure of the semigroup,
as the composition of infinitesimal CP-maps automatically gives a CP-
map. On the other hand, a semigroup containing non-CP elements is
non-Markovian only if the extra constraint that Φt,0 is CP for all times
is satisfied. This condition is needed to ensure that the global evolution
is actually physically realisable.

Since Φt,s is defined for any t ≥ s, one can translate the study of the
semigroup to the one of their generators, defined as:

Lt := lim
ε→0

Φt+ε,t − I
ε

. (1.254)

In the following we present a derivation of the Lindbladian expression of
the generator, which will shed light on its connection to CP-divisibility.
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First, it is useful to study what kind of constraints complete positivity
imposes on the expression of general maps. To this end, consider the
maximally entangled state in d dimensions, |Ω⟩ := 1√

d

∑
|i⟩A ⊗ |i⟩B.

The Choi state associated to a map Φ is defined as:

CΦ := (IA ⊗ Φ)[ |Ω⟩⟨Ω |] = 1

d

∑
i,j

Φ
k|i
l|j |i k ⟩⟨j l | , (1.255)

where we use the notation Φ
k|i
l|j := ⟨k|Φ( |i⟩⟨j |) |l⟩. A fundamental theo-

rem by Choi states that the map Φ is CP if and only if the corresponding
Choi state CΦ is positive semidefinite [36]. This characterisation can be
used to express the action of CP-maps on states. Given an arbitrary state
ρ, one can rewrite Φ(ρ) in terms of the Choi matrix as:

Φ(ρ) =
∑
i,j

ρi,j Φ
k|i
l|j |k ⟩⟨l | =

∑
i,j

CΦik,jlE
†
i,k ρEj,l , (1.256)

where we defined Ei,j := |i⟩⟨j |. If we now choose another orthonormal
basis for the space of bounded operators Fα :=

∑
i,j E

†
i,j Ūi,j,α (where α

is an index ranging from 1 to d2 and Uα,i,j a unitary matrix), it is easy
to see that:

Φ(ρ) =
∑
α,β

cα,β Fα ρF
†
β , (1.257)

where cα,β =
∑

i,j,k,l Uα,i,k CΦik,jlŪj,l,β is a positive matrix. Hence, any
CP-map admits an expression as in Eq. (1.257) where cα,β is required to
be positive semidefinite.

Fix now the first element of the basis Fα to be the identity opera-
tor. By ignoring the first column and the first row of the corresponding
cα,β one obtains what is called the reduced GKS (Gorini-Kossakowski-
Sudarshan) matrix for Φ, which we denote by c̃α,β [37]. This quantity is
particularly useful when talking about generators thanks to the following:

Theorem 6. Let Φt := etL, and denote by c̃α,β(L) the reduced GKS
matrix associated to L. Φt is completely positive if and only if c̃α,β(L) is
positive semidefinite.

Proof. If Φt is completely positive, then the corresponding reduced GKS
matrix c̃α,β(Φt) is positive semidefinite. Then, one can obtain c̃α,β(L)
from the limit:

c̃α,β(L) = lim
ε→0

c̃α,β(Φε)− c̃α,β(I)
ε

, (1.258)
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where we implicitly defined the reduced GKS matrix of the identity su-
peroperator. By construction this is identically zero, which implies that
c̃α,β(L) is positive semidefinite.

In order to prove the opposite direction, notice that for t sufficiently
small one has:

c̃α,β(Φt) = c̃α,β(I) + t c̃α,β(L) +O
(
t2
)
. (1.259)

Again, since the contribution coming from the identity cancels, if c̃α,β(L)
is positive semidefinite, the same holds for c̃α,β(Φt). This concludes the
proof.

The discussion above takes care of the first condition for a map to be
a quantum channel, namely complete positivity. Additionally, in order to
conserve the total probability, one also needs to require that the map is
trace preserving. A particularly compact expression for this is obtained
by rewriting the requirement of being trace preserving explicitly:

Tr [Φ(ρ)] = Tr
[
Φ†[1] ρ

]
= Tr [ρ] . (1.260)

Since this has to hold for any ρ, one can conclude that Φ†[1] = 1. The
same condition for generators becomes L†[1] = 0, as it can be verified di-
rectly from Eq. (1.254). This kind of map admits a particularly canonical
expression:

Theorem 7. Let L be a Hermitian preserving (i.e., L[A†] = L[A]†) su-
peroperator satisfying L†[1] = 0. Take an orthonormal basis with respect
to the Hilbert-Schmidt scalar product {Fα}α∈{1,...,d2} such that F1 = 1√

d
.

Then, one can express L as:

L(ρ) = −i[H, ρ] +
d2∑

α,β=2

c̃α,β

(
Fα ρF

†
β −

1

2
{F †β Fα, ρ}

)
, (1.261)

where c̃α,β is the reduced GKS matrix of L and H is a self-adjoint, trace-
less operator given by:

H =
1

2i
√
d

d2∑
β=1

c1,βF
†
β − cβ,1Fβ . (1.262)
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Proof. A general Hermitian preserving superoperator can be rewritten as
in Eq. (1.257), where the matrix cα,β is self-adjoint, but not necessarily
positive. Using this expression, and isolating the terms involving the
identity we obtain:

L(ρ) =
∑
α,β

cα,β Fα ρF
†
β = (1.263)

=
c1,1
d
ρ+

1√
d

d2∑
β=2

(
cβ,1 Fβ ρ+ c1,β ρF

†
β

)
+

d2∑
α,β=2

c̃α,β Fα ρF
†
β =

(1.264)

= Gρ+ ρG† +
d2∑

α,β=2

c̃α,β Fα ρF
†
β , (1.265)

where we defined the operator G := 1
2 dc1,1+

1√
d

∑d2

β=2 cβ,1 Fβ . Define the
real and imaginary parts of G as K = (G+G†)/2 and H = (G†−G)/(2i),
so that G = K − iH. Both matrices are self-adjoint. Moreover, notice
that H can be explicitly expressed as:

H =
G† −G

2i
=

1

2i
√
d

d2∑
β=1

c1,βF
†
β − cβ,1Fβ , (1.266)

where we implicitly make use of the fact that cα,β is self-adjoint. Since
the operators {Fα} are part of an orthonormal basis whose first element
is the identity, Fα is traceless whenever α ̸= 1. This proves that H is also
traceless.

Rewriting Eq. (1.265) using the matrices H and K we obtain:

L(ρ) = −i[H, ρ] +K ρ+ ρK +
d2∑

α,β=2

c̃α,β Fα ρF
†
β . (1.267)

Thanks to L†(1) = 0, it follows that K = −1
2

∑d2

α,β=2 c̃α,β F
†
β Fα. Then,

substituting this expression in the previous equation proves the claim.

The operator in Eq. (1.261) is called Lindbladian in the literature.
It should be noticed that its expression only depends on the fact that
L is trace preserving, an assumption that is never dropped even when
considering non-Markovianity. For this reason, this provides a unified
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tool to study the Markovian character of an evolution. In particular,
diagonalising the matrix c̃α,β , we obtain:

L[ρ] = −i[H, ρ] +
d2∑
α

λα

(
Aα ρA

†
α −

1

2
{A†αAα, ρ}

)
, (1.268)

where {λα} are the eigenvalues of c̃α,β and the Aαs go under the name
of jump operators. Since Markovianity is in one to one relation with the
positivity of the reduced GKS matrix (Thm. 6), then we also see that
this condition can be reduced to the positivity of the rates {λα}.

1.5.2 Flux of Fisher information

In this section we explain how the evolution of the Fisher information
metric under divisible dynamics can be divided as a sum of independent
fluxes. In particular, the object we want to consider is given by:

d

dt
Hg(Φt(π)||Φt(π + ε δρ)) = (1.269)

=
ε2

2

d

dt
Tr
[
Φt(δρ) J−1f

∣∣
Φt(π)

[Φt(δρ)]
]
+O

(
ε3
)
= (1.270)

=
ε2

2
Ḟt +O

(
ε3
)
, (1.271)

where we denoted the trace in Eq. (1.270) by Ft. In the following we use
the notation πt := Φt(π) and δρt := Φt(δρ). Then, we have the following
result:

Theorem 8. For any divisible dynamics, let {Aα(t)} and {λα(t)} be re-
spectively the time dependent jump operators and time dependent rates,
defined according to Eq. (1.268). Then, the derivative of the Fisher in-
formation takes the form:

Ḟt =
∑
α

λα(t) Iα(t) , (1.272)

where the current Iα(t) are given by:

Iα(t) = −2
∫ 1

0
dNg(s)

(
Tr
[
πt [Aα(t), Bs(t)

†]† [Aα(t), Bs(t)
†]
]
+

+ sTr
[
πt [Aα(t), Bs(t)]

† [Aα(t), Bs(t)]
])

,

(1.273)
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Figure 1.5: Evolution of the quantum Fisher informations under the
action of the depolarising channel ∆λt(ρ) = (1 − λt)ρ + λt

1
2 on a

qubit. The time dependent contraction coefficient are λMt = 1− e−t and
λNMt = 1 − e−t cos(2t) in the two cases. Notice that non-Markovianity
is associated to a local increase in the value of 1 − λt. In the first panel
we show the evolution of λt, in the second Ft (the inset is in logarithmic
scale) and in the third the behaviour of Ḟt. Non monotonicity in λt are
mirrored in the change of sign of Ḟt. The colour scheme is from Fig. 1.4.

and the measure dNg(s) is the one used in Eq. (1.78), while the operators
Bs(t) are defined as:

Bs(t) := (Lπt + sRπt)−1[δρt] . (1.274)

The proof of this theorem is deferred to App. A.1. It should be noticed
that the two traces in Eq. (1.273) are positive definite, so the currents
Iα(t) are always negative. This shows that the summands in Eq. (1.272)
can become positive if and only if the corresponding rate λα(t) become
negative, i.e., in the presence of non-Markovianity. In the same way, we
see that Ḟt will always be negative for Markovian dynamics, signalling the
expected monotonic contraction. This change in behaviour is exemplified
in Fig. 1.5, where we plotted the Fisher information and its derivative
for a depolarising channel, both in the Markovian and non-Markovian
regime. As it can be seen, in this case the oscillations in Ḟt mirror the
onset of non-Markovianity.

In order to give a more practical feeling about the expression in
Eq. (1.273), we present here some specific examples for which the cur-
rents Iα(t) take a particularly simple form. The first case that it is
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interesting to study is the one of classical evolutions. Then, the jump op-
erators are all of the form Ai←j = |i⟩⟨j | and all the observables commute
with πt. Thanks to this fact Bs(t) is simply given by Bs(t) = Bs(t)

† =
δρt/((1 + s)πt), where we use a slight abuse of notation to indicate the
entrywise division. This allows us to rewrite Eq. (1.273) as:

I(i←j)(t) = (1.275)

= −2
∫ 1

0
dNg(s) (1 + s) Tr

[
πt

[
|i⟩⟨j | , δρt

(1 + s)πt

]† [
|i⟩⟨j | , δρt

(1 + s)πt

]]
=

(1.276)

= −
∫ 1

0
dNg(s)

2

(1 + s)

(
(δρt)j
(πt)j

− (δρt)i
(πt)i

)2

(πt)j = (1.277)

= −
(
(δρt)j
(πt)j

− (δρt)i
(πt)i

)2

(πt)j , (1.278)

where in the last line we used the normalisation condition in Eq. (1.79).
This result indeed coincides with the one obtained for classical stochastic
dynamics [4].

Another case of particular interest is given by the flux of Bures metric.
This corresponds to a measure of the form dN(s) = δ(s−1)

2 ds. Then,
thanks to the self-adjointness relation B1(t) = B1(t)

†, by carrying out
the integration one obtains:

Iα(t) = −2Tr
[
πt [Aα(t), B1(t)]

† [Aα(t), B1(t)]
]
. (1.279)

Interestingly, in this case the flux is directly connected to the symmetric
logarithmic derivative of the state. In fact, by inverting Eq. (1.274), one
obtains:

B1(t)πt + πtB1(t) = δρt . (1.280)

Comparing this expression with the one in Eq. (1.138) for the symmetric
logarithmic derivative, it is apparent that B1(t) = 1

2 L. It should be
pointed out that the expression of the Bures flux in terms of L was already
found in [38].

At the other extreme, the smallest among the contrast functions corre-
sponds to the measure dN(s) = δ(s)

2 ds. Then, the flows can be expressed
as:

Iα(t) = −Tr
[
πt [Aα(t), δρt π

−1
t ]† [Aα(t), δρt π

−1
t ]
]
. (1.281)
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Two particularly symmetric cases are the one of the relative entropy,
corresponding to dN(s) = 1

2(1+s) ds, giving:

Iα(t) = −
∫ 1

0
ds

1

1 + s

(
Tr
[
πt [Aα(t), Bs(t)

†]† [Aα(t), Bs(t)
†]
]
+

+ sTr
[
πt [Aα(t), Bs(t)]

† [Aα(t), Bs(t)]
])

,

(1.282)

and the one of the square root, which has the measure dN(s) = 1
2π
√
s
ds,

which when plugged in Eq. (1.274) gives:

Iα(t) = −
1

π
Re

∫ 1

0
ds

(
1√
s
Tr
[
πt [Aα(t), Bs(t)

†]† [Aα(t), Bs(t)
†]
]
+

+
√
sTr

[
πt [Aα(t), Bs(t)]

† [Aα(t), Bs(t)]
])

.

(1.283)

Unfortunately, in the last two cases we did not find a way to analyti-
cally evaluate the integrals. Still, one can in principle compute the flux
Iα(t) for any Fisher information simply by solving a definite integral on
a bounded interval.

1.5.3 Fisher information and Markovianity

In this section we give a complete characterisation of the relation between
Markovianity and Fisher information metrics (see Fig. 1.6). As it was
mentioned above, all Fisher information metrics monotonically decrease
under Markovian evolutions. With the hindsight of Thm. 5 it is then not
surprising that the reverse also holds:

Theorem 9. A classical divisible evolution Φt acting on a d-dimensional
state space is Markovian if and only if it induces a monotonic decrease in
the Fisher information at all times and on the whole domain. In formulae,
the Markovianity of the evolution Φt is equivalent to the condition:

d

ds
Tr
[
Φs,t(δρ) J−1f

∣∣
Φs,t(ρ)

[Φs,t(δρ)]
] ∣∣∣∣
s=t

≤ 0 ∀ t , ρ , δρ , (1.284)

where ρ and ρ+ δρ are two arbitrary close by states in the interior of the
state space.
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For quantum dynamics the same equivalence holds if one augments
the space with a d-dimensional ancillary system on which the dynamics
acts trivially, i.e., the evolution on the composite space is given by Id⊗Φt.

This result was initially proved in [4] with a different method, which
we have included in App. A.4.1 for completeness. Still, the result above
should be seen as a direct corollary of Thm. 5. Indeed, we can see that
even for invertible non-Markovian dynamics, for ε small enough the inter-
mediate maps Φt+ε,t satisfy the first two conditions of Thm. 5 (as it is ε-
close to the identity superoperator), so the only way for non-Markovianity
to exists is to drop the third condition, i.e., the contractivity of the Fisher
information between any two points.

It should be noticed that the equivalence one can find for the contrac-
tivity of Fisher information is quite peculiar to this quantity. Indeed, one
can contrast the result just obtained with the one for the trace distance,
the most canonical quantity studied in the context of non-Markovianity
(see App. A.3): in this case one can explicitly construct classical non-
Markovian dynamics for which the trace distance between any two points
contracts. For quantum evolutions, on the other hand, the use of a d-
dimensional ancilla is necessary to separate positive preserving maps from
completely positive maps: indeed, complete positivity of Φt is equivalent
to the fact that Id ⊗ Φt is positive preserving. It should be noticed that
even in this case the same theorem does not hold for the trace distance,
despite the addition of the d-dimensional ancillary system. Indeed, it can
be shown that one needs at least an ancilla of dimension d + 1 for the
trace distance to expand in the presence of non-Markovianity [39].

The difference with the trace distance is actually even sharper. In-
deed, it is sufficient to adjoin ancillas of dimension high enough to the
system (thanks to the construction in [39], d+ 1 is enough) for the trace
distance to operationally witness the non-Markovianity of the evolution.
This means that an increase of trace distance can always be obtained
on the image of Φt when a sufficient number of extra degrees of freedom
are provided. Thm. 9, on the other hand, ensures that an expansion in
the Fisher information metrics always happens in the presence of non-
Markovianity, but it does not say anything about whether the states
needed to do so can be physically prepared. If the violation of the mono-
tonicity happens close to the boundary of the state space, for example,
and the initial part of the evolution is particularly contracting, there is
no way to actually detect the non-Markovian behaviour by looking at the
Fisher information alone. Still, one could hope that by using a sufficient
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Figure 1.6: Summary of the results of this section. On the left we give a
pictorial representation of Thm. 9: in red we depict the whole state space,
while in green the image of the map Φt. Thm. 9 tells us that a map is
non-Markovian if and only if there exists at least two points in the state
space (not necessarily in the image of the map) for which the Fisher dis-
tance increases. On the right, we compare the Fisher information with the
most canonical quantity to witness non-Markovianity, namely the trace
distance. While the monotone contractivity of the Fisher information
implies the Markovianity of the dynamics, this does not hold for the the
trace distance (Thm. 9 and App. A.3). On the other hand, supplying an-
cillas to the system allows for the detection of non-Markovianity through
the latter, while for the Fisher information one additionally needs some
post-processing of the state (Thm. 10 and 11).

number of ancillas the Fisher information could provide witnesses for
non-Markovianity. Somehow surprisingly, one can prove that this cannot
be the case:

Theorem 10. Given a divisible evolution Φt, no ancillary degree of free-
dom of finite dimensions or finite number of copy of the dynamics are
sufficient to witness all possible non-Markovian evolutions via revivals of
the Fisher distance between two initially prepared states.

The proof of this theorem is provided in App. A.4.2. The difference in
behaviour of the trace distance and the Fisher information metrics arises
from the translational invariance of the first: thanks to this property,
if a witness exists anywhere on the state space, then it can always be
translated into the image of Φt. The Fisher information, on the other
hand, has a strong dependence on the base-point, so that the same kind
of argument cannot be applied.

Despite the negative result of Thm. 9, one can still define a witness
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based on Fisher information by using post-processing:

Theorem 11. Given an evolution Φt, for any state ρ and perturbation
δρ defined on the system space and on some ancillary degrees of freedom,
it is possible to implement a class of transformations F (t)

δρ depending on
Φt and δρ that can be used to witness non-Markovianity at time t through
the use of Fisher information. This means that if the evolution Φt+dt,t is
Markovian, then

d

ds
Tr

[
F

(t)
δρ ◦ Φs(δρ) J

−1
f

∣∣
F

(t)
δρ ◦Φs(ρ)

[F
(t)
δρ ◦ Φs(δρ)]

] ∣∣∣∣
s=t

≤ 0 , (1.285)

whereas in the presence of non-Markovianity there always exists at least
one δρ for which the inequality is reversed.

The minimal dimension of the ancilla for classical systems is dA = 2,
while for quantum maps one needs dA = d+ 1.

There is a shortcoming to this construction, though: in the defini-
tion of the post-processing F (t)

δρ one needs to assume complete knowledge
about the dynamics Φt until the onset of Markovianity. In this way, one
either needs to try all the possible δρ, or has to know in advance the
structure of the dynamics in order to provide an explicit construction.
Still, this example serves more as a proof of principle showing the possi-
bility of designing post-processing filters to exploit the Fisher information
for the detection of non-Markovianity.

This completes the characterisation of the relation between Marko-
vianity and contractivity of the Fisher information, both on the image
of Φt and on the rest of the state space, as summarised in Fig. 1.6. We
point out once again the importance of Thm. 9: both Chentsov theorem
and its quantum generalisation by Petz (Thm. 1 and Thm. 3) identify the
defining property of the Fisher information metric to be its contractivity
under stochastic maps or quantum channels. Thm. 9, on the other hand,
could be read off as saying that the defining property of Markovianity is
that it contracts the Fisher information monotonically at all times. This
second implication shows how natural the concept of Fisher metric is in
the context of open system dynamics.

1.5.4 Retrodiction and Fisher information

In the literature about non-Markovianity, one of the most used expres-
sion is backflow of information. Still, by looking at the usual quantifiers
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defined to assess it, one might be surprised to discover that for the most
part they are actually distinguishability measures. For example, even in
the previous section the two objects considered are the trace distance and
the Fisher information, both accounting for the statistical difference be-
tween states. Whereas one could in principle justify the interpretation of
non-monotonicity for these quantities as actual backflow of information,
here we take a different approach: we prove, in fact, that the contrac-
tivity of the Fisher information is in one-to-one correspondence with the
monotonic degradation in the ability of an agent to retrodict the initial
state of the system (Thm. 12).

Before doing so, we need some formalism. First of all, we present a
way to simulate the Fisher scalar product at time t by the scalar product
at time t = 0. This is easily obtained by the following rearranging:

Tr
[
Φt(A) J−1f

∣∣
Φt(π)

[Φt(B)]
]
= Tr

[
AΦ†t ◦ J

−1
f

∣∣
Φt
[Φt(B)]

]
= (1.286)

= Tr
[
A J−1f

∣∣
π

[(
Jf
∣∣
π
◦ Φ†t ◦ J

−1
f

∣∣
Φt(π)

)
Φt(B)

]]
= (1.287)

= Tr
[
A J−1f

∣∣
π
[Φ̃f,tΦt(B)]

]
, (1.288)

where in the last line we implicitly defined the generalised Petz recovery
map Φ̃f,t (the usual Petz recovery map corresponds to setting f(x) =√
x). In this way, the evolution of any Fisher scalar products can be

modelled without the need to actually evolve the state, at the cost of
introducing a time dependent vector Φ̃f,tΦt(B).

The generalised Petz recovery map satisfies a number of interesting
features: first of all, it should be noticed that for classical systems it
reduces to the Bayes rule. In fact, if Φt is a stochastic map, and π a
diagonal state, the coordinate expression of Φ̃f,t is given by:

Φ̃f,t(·) =
∑
i,j

(Φt)j,i πi
(Φt(π))j

|i⟩⟨j | · |j ⟩⟨i | , (1.289)

where one can recognise the Bayes rule by interpreting πi as the proba-
bility of obtaining the microstate i, (Φt(π))j as the probability to be in
the microstate j after the evolution and, finally, (Φt)j,i as the conditional
probability of the transition i→ j.

With this connection in mind, we call the state π the prior. Interest-
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ingly, the generalised Petz recovery map perfectly recovers it:

Φ̃f,tΦt(π) = Jf
∣∣
π
◦ Φ†t ◦ J

−1
f

∣∣
Φt(π)

[Φt(π)] = (1.290)

= Jf
∣∣
π
[Φ†t(1)] = Jf

∣∣
π
[1] = π , (1.291)

where we used the fact that Jf acts as the multiplication operator on
commuting states, together with the fact that Φt is trace preserving,
which implies Φ†t(1) = 1. This equation shows that the evolution of the
state π can be completely undone by applying Φ̃f,t.

Additionally, Φ̃f,t is trace preserving if π is full-rank (which we will
always assume to be the case in the rest of the section), as it can be
verified by applying its adjoint on the identity matrix:

Φ̃†f,t[1] = J−1f
∣∣
Φt(π)

◦ Φt ◦ Jf
∣∣
π
[1] = J−1f

∣∣
Φt(π)

[Φt(π)] = 1 . (1.292)

Complete positivity, on the other hand, does not hold in general, as at
least one between Jf and J−1f is not CP. A special case in this context is
given by the geometric mean, f(x) =

√
x, as it is the only case in which

both operators are in fact CP (Sec. 1.4.8). This is the original definition
by Petz, which we denote by Φ̃P,t := Φ̃√x,t. It can be argued that it
is the most natural generalisation of the Bayes’ rule to non-commutative
probability (see Sec. 3.3, or [2] and references therein), and for this reason
it can be interpreted as a way to physically obtain information about the
initial conditions of the system (even if is not always the most optimal
method, as it is shown in App. C).

Still, if one drops the request that Φ̃f,t needs to be physically im-
plementable, then all other features of the Petz’ recovery map also hold
for Φ̃f,t, where f is a generic standard monotone function. For example,
one of the defining property of Φ̃P,t is being involutive, which means that
taking the Petz’ map of the Petz’ map gives the original channel (see
Sec. 3.3). This is in fact a general feature. Choosing as a prior Φt(π) one
can indeed see that:

(̃Φ̃f,t)f,t = Jf
∣∣
Φt(π)

◦ Φ̃†f,t ◦ J
−1
f

∣∣
Φ̃f,tΦt(π)

= (1.293)

= Jf
∣∣
Φt(π)

◦
(
J−1f
∣∣
Φt(π)

◦ Φt ◦ Jf
∣∣
π

)
◦ J−1f

∣∣
π
= Φt , (1.294)

where in the second line we used Eq. (1.290) to obtain the prior state.
Interestingly, if Φt is a divisible dynamics, so is Φ̃f,t. In fact, one can

define the intermediate recovery maps as:

Φ̃f,(t,s) = Jf
∣∣
Φs(π)

◦ Φ†t,s ◦ J
−1
f

∣∣
Φt(π)

. (1.295)
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Then, it is easy to show that Φ̃f,t = Φ̃f,sΦ̃f,(t,s), i.e., similarly to what
happens for adjoint maps, generalised Petz’ maps compose from left to
right. In fact, one has:

Φ̃f,s Φ̃f,(t,s) = Jf
∣∣
π
◦ Φ†s ◦ J−1f

∣∣
Φs(π)

◦ Jf
∣∣
Φs(π)

◦ Φ†t,s ◦ J
−1
f

∣∣
Φt(π)

=

(1.296)

= Jf
∣∣
π
◦ Φ†t ◦ J

−1
f

∣∣
Φt(π)

, (1.297)

proving the claim. In particular, in the case of f(x) =
√
x, the Markovian

character of Φt is reflected in Φ̃√x,t, i.e., Φ̃√x,t is Markovian if and only
if the original map is Markovian.

Finally, before passing to the main theorem of this section, it is inter-
esting to comment on the spectral properties of Φ̃f,tΦt. First, it should
be noticed that it is self-adjoint with respect to J−1f

∣∣
π
, as it can be readily

verified:

Tr
[
A J−1f

∣∣
π
[Φ̃f,tΦt(B)]

]
= Tr

[
Φt(A) J−1f

∣∣
Φt(π)

[Φt(B)]
]
= (1.298)

= Tr
[(

Jf
∣∣
π
◦ Φ† ◦ J−1f

∣∣
Φt(π)

)
Φt(A) J−1f

∣∣
π
[(B)]

]
= (1.299)

= Tr
[
Φ̃f,tΦt(A) J−1f

∣∣
π
[B]
]
, (1.300)

where we repeatedly used the self-adjointness of Jf to move the super-
operators from right to left. This shows that its spectrum is real and its
eigenoperators are hermitian. Moreover, it is also positive since it can be
rewritten as

Φ̃f,tΦt = J
1
2
f

∣∣
π

(
(J−

1
2

f

∣∣
Φt(π)

Φt J
1
2
f

∣∣
π
)†(J−

1
2

f

∣∣
Φt(π)

Φt J
1
2
f

∣∣
π

)
J−

1
2

f

∣∣
π
, (1.301)

and similarity transformations preserve the spectrum. Indeed, one can
also prove that the spectrum is actually contained in the interval [0, 1]. In-
deed, this follows from the contractivity of the Fisher information, since:

Tr
[
A J−1f

∣∣
π
[Φ̃f,tΦt(A)]

]
Tr
[
A J−1f

∣∣
π
[A]
] =

Tr
[
Φt(A) J−1f

∣∣
Φt(π)

[Φt(A)]
]

Tr
[
A J−1f

∣∣
π
[A]
] ≤ 1 . (1.302)

Additionally, 1 is always an eigenvalue, as Φ̃f,tΦt(π) = π. Then, if one
denotes by {Ei} its other eigenoperators, it follows from the orthogonality
between them, that they have to be traceless:

0 = Tr
[
Ei J−1f

∣∣
π
[π]
]
= Tr [Ei] . (1.303)
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In the following, we denote by ⊥f the condition of being orthogonal with
respect to J−1f

∣∣
π
. By using the min-max principle, one can obtain the

second largest eigenvalue λ2 as:

λ2 = sup
A⊥fπ

Tr
[
A J−1f

∣∣
π
[Φ̃f,tΦt(A)]

]
Tr
[
A J−1f

∣∣
π
[A]
] = sup

Tr[A]=0

Tr
[
Φt(A) J−1f

∣∣
Φt(π)

[Φt(A)]
]

Tr
[
A J−1f

∣∣
π
[A]
] .

(1.304)

The object on the right is called the Riemannian contraction coefficient
of Φt at π, and it is denoted by ηFf (Φt, π). It quantifies the minimum
rate at which the Fisher information is lost in π. In fact, it follows from
the definition that:

Tr
[
Φt(δρ) J−1f

∣∣
Φt(π)

[Φt(δρ)]
]
≤ ηFf (Φt, π) Tr

[
δρ J−1f

∣∣
π
[δρ]
]
, (1.305)

for any traceless perturbation δρ. One can define a similar object for
contrast functions, by taking the superior over all the possible states:

ηREg (Φt) = sup
ρ,σ

Hg(Φt(ρ)||Φt(σ))
Hg(ρ||σ)

. (1.306)

It is straightforward to verify that supπ η
F
f (Φt, π) =: ηFf (Φt) ≤ ηREg (Φt),

where f and g are connected by Eq. (1.66), as ηFf (Φt) just corresponds to
restricting the superior in Eq. (1.306) to close-by states. The inequality
is usually strict, but there are some special cases in which the equality
can be proven, as in the case of the symmetrised relative entropy [32]. In
general, whenever the inequality is not saturated, this implies that there
exist two states ρ ̸= σ saturating the superior in Eq. (1.306).

In the discussion above we argued that the operator Φ̃f,t can be inter-
preted as a method to retrieve some information about the initial state of
the system. This interpretation is further corroborated by the connection
between Φ̃f,tΦt and the contraction coefficients.

Consider now a state π + δρ, for δρ a small perturbation, and evolve
it according to Φt; at this point, Φ̃f,t is applied so to recover as much
information about the initial state as possible. The quality of the retrieval
can be quantified by the contrast function:

Hg(π + δρ||Φ̃f,tΦt(π + δρ)) = Hg(π + δρ||π + Φ̃f,tΦt(δρ)) = (1.307)

=
1

2
Tr
[
(δρ− Φ̃f,tΦt(δρ)) J−1f

∣∣
π
[(δρ− Φ̃f,tΦt(δρ))]

]
+O

(
|δρ|3

)
.

(1.308)
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Figure 1.7: Depiction of the content of Thm. 12:consider a dynamics Φt
which is Markovian till some time t. This implies that the Fisher distance
between any two points on the state space contracts. If between time t
and t + dt we observe non-Markovianity through the Fisher distance,
i.e., two points in the image of Φt gets farther away, then retrodicting
at time t + dt gives a better result than at time t (we use the notation
δρ̂t := Φ̃f,tΦt(δρ)).

The interpretation of Φ̃f,t as a recovery map suggests that, if Φt is Marko-
vian, the divergence above will increase with time, as the ability to retro-
dict the initial state deteriorates further and further. Still, from a math-
ematical point of view, it should be noticed that in principle there is no
intuitive reason for this to be the case: in fact, Hg(ρ||σ) is known to be
contractive only if the same channel is applied on both states, whereas in
the equation above Φ̃f,tΦt is applied only on the right. The following the-
orem bridges the gap between the intuitive interpretation of Eq. (1.307)
and its actual mathematical form:

Theorem 12. Given a divisible dynamics Φt and a prior state π, define
the generalised Petz’ map Φ̃f,t according to Eq. (1.288). Then, for any
perturbation δρ, it holds that:

d

dt
Hg(π + δρ||Φ̃f,tΦt(π + δρ)) > 0 ⇐⇒

⇐⇒ d

dt
Tr
[
Φt(δρ) J−1f

∣∣
Φt(π)

[Φt(δρ)]
]
< 0 . (1.309)

where g and f are related by Eq. (1.66). Since the Fisher information is
monotonically contractive under Markovian dynamics, this implies that
the contrast function on the left is monotonically expanding in the same
regime. Moreover, any backflow in the Fisher information is mirrored in
an increased ability to retrodict the initial state π + δρ.
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To the best of our knowledge, this result is the first that explicitly
considers backflow of information at time t = 0 (in contrast with the
usual approach at time t). Moreover, on the one hand, it legitimates the
intuitive interpretation of Φ̃f,t as a state retrieval map. On the other, it
directly connects the contractivity properties of the Fisher information
at time t, which is a distinguishability measure, with the decrease in the
ability of an agent to retrodict the initial state of the system.

Proof. Starting from the expansion of Eq. (1.307) in terms of the Fisher
information metric, we can reassemble the terms as:

d

dt
Hg(π + δρ||Φ̃f,tΦt(π + δρ)) = (1.310)

=
1

2

d

dt
Tr
[
(δρ− Φ̃f,tΦt(δρ)) J−1f

∣∣
π
[(δρ− Φ̃f,tΦt(δρ))]

]
= (1.311)

=
1

2

d

dt
Tr
[
((I− Φ̃f,tΦt)(δρ)) J−1f

∣∣
π
[((I− Φ̃f,tΦt)(δρ))]

]
= (1.312)

=
1

2

d

dt
Tr
[
δρ J−1f

∣∣
π
[((I− Φ̃f,tΦt)

2(δρ))]
]
= (1.313)

= −Tr
[
δρ J−1f

∣∣
π
[((I− Φ̃f,tΦt) ◦ (

d

dt
Φ̃f,tΦt)(δρ))]

]
, (1.314)

where in Eq. (1.313) we used the fact that both the identity operator
and Φ̃f,tΦt are self-adjoint with respect to J−1f

∣∣
π
. Thanks to Eq. (1.302)

we also know that (I − Φ̃f,tΦt) is a positive operator. On the other
hand, − d

dt Φ̃f,tΦt has positive eigenvalues if and only if the corresponding
Fisher information is contractive, as one can use the standard rewriting:

−Tr
[
A J−1f

∣∣
π
[(

d

dt
Φ̃f,tΦt)(A))]

]
= − d

dt
Tr
[
Φt(A) J−1f

∣∣
Φt(π)

[Φt(A))]
]
.

(1.315)

Since the product of two positive operators has positive spectrum, this
connection proves the claim.

1.5.5 Fisher information and detailed balance

Chentsov theorem (Thm. 1) singles out the Fisher information metric
in terms of the dynamical notion of contractivity under stochastic evolu-
tions. Thm. 5, on the other hand, reverts the direction of the implication,
proving the equivalence between complete positivity and contractivity of
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Fisher information. This result demonstrates the intrinsically dynamical
character of the Fisher information, showing that canonical properties of
evolutions can be formulated in terms of their relation with the Fisher
metric, as we have seen in the case of Markovianity (see Thm. 9).

Indeed, this is not an isolated case: in this section we explain how
the notion of detailed balance evolution can be given in terms of self-
adjointness with respect to the Fisher information scalar product. To
this end, it is useful to start with the study of the classical case to avoid
the complication coming from the variety of different quantum Fisher
information.

As discussed in App. A.2, the dynamics of a classical Markov chain Φt
are described by stochastic matrices, which can be equivalently charac-
terised in terms of their rate matrices Rt, given by the limit:

Rt := lim
ε→0

Φt+ε,t − I
ε

. (1.316)

In particular, in the appendix it is also shown that these can be generically
decomposed as:

Rt =
∑
i ̸=j

a
(t)
i←j ( |i⟩⟨j | − |j ⟩⟨j |) , (1.317)

where a
(t)
i←j are real coefficients which are non-negative for Markovian

evolutions. Then, the canonical condition of being detailed balance with
respect to the state π can be formulated in terms of the rates alone, as:

a
(t)
i←j πj = a

(t)
j←i πi , (1.318)

for every i and j. It should be noticed that this condition directly implies
that π is a steady state, as it can be readily verified by direct computation:

Rt(π) =
∑
i ̸=j

a
(t)
i←j πj ( |i⟩ − |j ⟩) = (1.319)

=
∑
i<j

(
a
(t)
i←j πj ( |i⟩ − |j ⟩) + a

(t)
j←i πi ( |j ⟩ − |i⟩)

)
= (1.320)

=
∑
i<j

a
(t)
i←j πj (( |i⟩ − |j ⟩) + ( |j ⟩ − |i⟩)) = 0 . (1.321)

Indeed, detailed balance corresponds to a stronger notion of equilibration:
not only the dynamics has π as a fixed points, but it is also time symmetric
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at equilibrium. In fact, if one interprets the rates a(t)j←i as the probability
per unit of time of the transition j ← i, Eq. (1.318) can be read as
the condition that the probability of observing the transition j ← i is
equal to the one for the reverse transition j → i, when the system is
at equilibrium. For this reason, detailed balance encodes the request of
microscopic reversibility of the dynamics, i.e., the fact that at a molecular
level the equations of motion are time symmetric.

We show now that Eq. (1.318) can be naturally formulated in terms
of the Fisher information scalar product. In analogy with the quantum
case (Eq. (1.67)), we use the notation for the scalar product:

Kπ(δρ, δσ) := Tr
[
δρJ −1π [δσ]

]
= Tr

[
δρ δσ π−1

]
, (1.322)

where we implicitly defined Jπ to be the component-wise multiplication
by π, and all the operators involved commute. This scalar product nat-
urally emerges when one is considering variations of states (as proven in
Thm. 2), so from a differential geometry point of view the two vectors δρ
and δσ should be elements of the tangent space of the state space (i.e.,
hermitian, traceless operators).

Moreover, one can also interpret Jπ as the scalar product on the
cotangent space, i.e., the space of observables: indeed, a metric on the
tangent space naturally induces one on its dual by taking the pointwise
matrix inverse [40]. Hence, one can also define the Fisher scalar product
on the space of observables as:

Ko
π(A,B) := Tr [AJπ[B]] = Tr [AB π] , (1.323)

where in this case A and B are not required to be traceless. It should
be noticed that Ko

π(A,B) is related to the two-point correlation function
used in statistical mechanics and in linear response theory.

Now, the adjoint of a superoperator Φ with respect to Kπ satisfies
the equation:

Kπ(δρ,Φ(δσ)) = Tr
[
δρJ −1π [Φ(δσ)]

]
= Tr

[
J −1π [[δρ]Φ(δσ)

]
= (1.324)

= Tr
[
Φ† ◦ J −1π [[δρ] δσ

]
= (1.325)

= Tr
[(
Jπ ◦ Φ† ◦ J −1π

)
(δρ)J −1π [δσ]

]
= Kπ(Φ̃(δρ), δσ) ,

(1.326)

where we implicitly defined Φ̃ := Jπ ◦ Φ† ◦ J −1π . Notice that since the
equation above holds for generic vectors of the tangent space, we can
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identify with Φ̃ the adjoint operation with respect to the Fisher infor-
mation metric. Hence, the condition to be self-adjoint with respect to
Kπ is given by Φ̃ = Φ, i.e., Φ ◦ Jπ = Jπ ◦ Φ†. Writing this equation in
coordinates as:

Φi,j πj = Φ̄j,i πi , (1.327)

we obtain a condition akin to the one in Eq. (1.318). Indeed, it follows
from the equation above that Rt is detailed balance exactly means that
R̃t = Rt, i.e., the generator of the dynamics is self-adjoint with respect
to the Fisher information scalar product.

This construction is done in the Schrödinger picture, meaning that
the states are the only evolving objects, while observables are static quan-
tities. The dual situation, dubbed Heisenberg picture, is the one in which
states are fixed in time, while the whole dynamics is relegated to observ-
ables. In this case it is well known that the generator of the dynamics is
given by R†t . Moreover, as it was argued above, the natural Fisher scalar
product is the one given by Ko

π. We denote the adjoint with respect to
this scalar product by Φ̃o := J −1π ◦ Φ† ◦ Jπ, where this condition can be
verified carrying out calculations completely analogous to the one that
led to Eq. (1.326). It is easy to verify that:

Φ̃ = Φ ⇐⇒ (Φ̃†)o = Φ† , (1.328)

which implies that Rt is Kπ-self-adjoint if and only if R†t is Ko
π-self-

adjoint. This shows that one can formulate the condition of being detailed
balance equivalently in the Heisenberg picture.

Putting these results together we obtain the theorem:

Theorem 13. The following conditions are equivalent:

1. the dynamics is detailed balance, i.e., the rate matrix is charac-
terised by coefficients satisfying

a
(t)
i←j πj = a

(t)
j←i πi ; (1.329)

2. the rate matrix Rt is self-adjoint with respect to the Fisher scalar
product:

R̃t = Rt ; (1.330)
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3. the rate matrix in the Heisenberg picture (i.e., R†t) is self-adjoint
with respect to the dual Fisher metric:

(R̃†t )
o = R†t . (1.331)

This characterisation shows how the condition of being detailed bal-
ance directly corresponds to the self-adjointness of the generator of the
dynamics with respect to properly defined scalar products. We can now
pass to give a generalisation of the definition of detailed balance evolution
to the quantum regime based on this hindsight.

To this end, let us consider the dynamics induced by the Lindbladian
operator in the form in Eq. (1.261), i.e.:

L[ρ] = −i[H, ρ] +
d2∑

α,β=2

c̃α,β

(
Fα ρF

†
β −

1

2
{F †β Fα, ρ}

)
. (1.332)

Since the Fisher information is invariant under the action of a purely
Hamiltonian dynamics, whereas it is contracting otherwise, we divide
the two terms in the Lindbladian by introducing the notation U(ρ) :=
−i[H, ρ], and we denote by LD := L − U , which is dubbed dissipator. It
should be noticed that U is skew-Hermitian with respect to the Hilbert-
Schmidt scalar product, meaning that:

Tr [AU(B)] = −Tr [U(A)B] . (1.333)

Given the structure of the Lindbladian above, we can introduce the notion
of quantum detailed balance. Historically, one of the first formalisations
of this notion was provided by Alicki in [41], and it is based on the
following scalar product on the space of observables:

Ko
π(A,B) := Tr [AB π] , (1.334)

where in this case A, B and π are not required to commute in general.
Similarly to the case of classical systems, this scalar product is quite
natural as it is related to two-points correlation functions, but it should
also be kept in mind that it is not part of the Fisher family. Using the
same notation as in the classical case, we denote by Φ̃o the adjoint of
the map Φ with respect to the scalar product in Eq. (1.334). Then, the
definition proposed by Alicki reads:
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Definition 1 (Heisenberg picture [41]). The dynamics generated in the
Heisenberg picture by the operator L† is detailed balance if the three con-
ditions are satisfied:

1. L† is normal with respect to the scalar product Ko
π:

[L†, (L̃†)o] = 0 ; (1.335)

2. the commutator U is skew-Hermitian with respect to Ko
π:

Ũo = −U ; (1.336)

3. the dissipator L†D is self-adjoint with respect to Ko
π:

(L̃†D)
o = L†D . (1.337)

Interestingly, from this definition one can deduce a structural charac-
terisation of detailed balanced Lindbladian (see [41]), which leads to the
equivalent definition of detailed balance:

Definition 2 (Structural definition). The dynamics generated by the
Lindbladian operator L is detailed balance if its diagonal form can be
written as:

L(ρ) = −i[H, ρ] +
∑
ω,i

λωi

(
Aωi ρ (A

ω
i )
† − 1

2
{(Aωi )†Aωi , ρ}

)
, (1.338)

and the following conditions hold:

1. [H,π] = 0;

2. (Aωi )
† = A−ωi ;

3. π Aωi π
−1 = eω Aωi ;

4. λωi = eω λ−ωi .

In the literature one usually finds this as the usual definition of de-
tailed balance, as it mirrors the same structural properties we saw for
classical systems. Indeed, from the condition 3 we know that Aωi are
eigenoperators of the the auto-modular operator LπR−1π , with eigenvalue
eω. On the other hand, all the eigenvalues of LπR−1π are of the form
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πi/πj , so the only values of ω that are allowed are the one satisfying the
constraint eω = πi/πj for some i and j. Then, by substituting this ex-
pression into condition 4, one obtains the analogous characterisation at
the level of the rates we found for classical detailed balanced systems (see
Eq. (1.329)).

Despite this positive result, it should be noticed that the choice of
the scalar product in Eq. (1.334) is somehow arbitrary, as in the passage
from commuting observables to the non-commuting case there are many
different possible orderings that can be used to extend the multiplication
operator Jπ. Moreover, it should be noticed that the scalar productKo

π in
Eq. (1.334) is not monotone under CP-maps, a property that its classical
counterpart had. For these reasons, in the following we show how one can
define detailed balance through the help of quantum Fisher informations.

A first possible definition is given by imposing Φ̃f = Φ for some
Fisher scalar product Kf,π (see Eq. (1.67)), where we used the definition
of generalised Petz map in Eq. (1.288), i.e., Φ̃f := Jf

∣∣
π
◦ Φ†t ◦ J

−1
f

∣∣
π
. As

it could be expected, the structure induced is much richer in this case.
In fact, one can show that different Kf,π induce inequivalent notions of
detailed balance, by constructing dynamics that are detailed balanced
with respect to one f but not with respect to others [42]. Moreover,
all these conditions are all weaker than the one provided by Def. 1. This
means that dynamics that are detailed balance with respect toKo

π are also
detailed balance with respect with Kf,π, but not the other way around.

Since in principle there is no preferred definition of quantum Fisher
information, we choose to impose the condition of detailed balance for all
the Kf,π at the same time:

Definition 3 (Schroedinger picture). The dynamics generated by the
Lindbladian operator L is detailed balance if for every standard mono-
tone function f the following holds

1. L is normal with respect to all the scalar products Kf,π:

[L, L̃f ] = 0 ; (1.339)

2. the commutator U is skew-Hermitian with respect to Kf,π:

Ũf = −U ; (1.340)

3. the dissipator LD is self-adjoint with respect to Kf,π:

(L̃D)f = LD . (1.341)
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We arrived to three different definitions of what it means for a Marko-
vian dynamics to be detailed balance. At this point, we can wrap every-
thing together, providing a characterisation of their interdependency:

Theorem 14. The following conditions are equivalent:

1. the generator of the dynamics in the Heisenberg picture L† satisfies
the adjointness relations in Def. 1

2. the Lindbladian L satisfies the structural characterisation in Def. 2.

These conditions imply:

3. the generator of the dynamics in the Schroedinger picture L satisfies
the adjointness relations in Def. 3.

Moreover, if the Hamiltonian H is non-degenerate the three conditions
are equivalent.

The proof of this result is provided in App. A.5. It shows that the
definition using the Fisher information is weaker even when taking into
considerations all the possible scalar products at the same time. This
should be contrasted with the definition by Alicki, in which a single scalar
product is used. The different between the two definitions arises in the
way in which the coherences (in the eigenbasis of π) are handled. Still,
it should be noticed that in both cases the evolution induced by the
unitary part decouples from the dissipative dynamics. In fact, thanks to
the normality of the generator, one has:

[U + LD,−U + LD] = 0 =⇒ [U ,LD] = 0 . (1.342)

This generic property can be used to further constrain LD in the case in
which H is non-degenerate, allowing for the identification of Def. 1 and
Def. 3 in this case.

If H is degenerate, on the other hand, we can provide the following
structural characterisation of dissipators LD that are detailed balance
according to Def. 3:

LD[ρ] =
∑
ω,i

λωi

(
Aωi ρ (A

ω
i )
† − 1

2
{(Aωi )†Aωi , ρ}

)
+ µωi B

ω
i ρ

T (Bω
i )
† ,

(1.343)

where the following conditions are satisfied:
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1. (Aωi )
† = A−ωi and (Bω

i )
† = B−ωi ;

2. π Aωi π
−1 = eω Aωi and π Bω

i π
−1 = eω Bω

i ;

3. λωi = eω λ−ωi and µωi = eω µ−ωi ;

4. λωi ≥ 0 and
∑

i µ
ω
i = 0 ∀ω.

We defer the prove to App. A.5.3. It should be noticed that the additional
term in Eq. (1.343) only acts on the off-diagonal elements (thanks to
condition 4), so, even in this case, coherences evolve independently from
the diagonal elements.

The discussions of this section, together with the one of about Marko-
vianity, corroborates the claim that the Fisher information is an inher-
ently dynamical quantity, a fact that is not completely acknowledged
in the literature. Indeed, even if this relation was already hinted at by
Chentsov theorem, it should be kept in mind that one can arrive to the
same family of Fisher informations starting from the local expansion of
contrast functions, which in principle has nothing to do with the nature
of dissipative evolutions. The results presented in here, instead, show
that the relation with the dynamics is so deep that one can even define
physical evolutions as exactly the ones that contract the Fisher metric,
showing the paramount importance of this family of scalar products.
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Thermodynamics
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Chapter 2

The first law

Experience teaches us that we live in a forgetful world, in which letters
get lost and coffee gets cold. Fundamentally, though, we expect the in-
formation not to be erased from the universe, but rather to get hidden
in subtle ways. The lost letter is just in the wrong post office, and the
imperceivable increase in the temperature of the room witnesses the fact
that the coffee was once warm. At the same time, despite the existence
of this information, it is also easy to argue that this is of little help to
any conceivable agent. This tension between a first principle that cannot
be abandoned and its lack of applicability in real life was first noticed
around two hundreds years ago in terms of energy: despite the pivotal
role of the principle of conservation of energy in Newtonian mechanics,
it is almost impossible in practice to get back the same energy we in-
putted in a system. The reconciliation of this paradox passed through
the formulation of the first law of thermodynamics: this, on the one hand,
recognises the existence of heat, a form of energy, or information, that
is inaccessible to the operating agent; on the other, by defining work to
be the energy that can be extracted from the system, it also imposes
that all the energy injected in the system exactly equals the sum of heat
and work, i.e., energy does not disappear. In this way, one accounts for
the progressive degradation of the local information, while postulating
its conservation on a global level. This is the perspective from which this
chapter is written.

83
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2.1 The thermodynamic framework

At the heart of the thermodynamic framework there are three main in-
gredients. The first one is the existence of a bath, a formally infinite
system which has reached thermal equilibrium at a definite temperature.
It is known from experience that thermalisation is a generic behaviour,
but its justification is a difficult challenge of statistical mechanics, both
technically and conceptually. Still, in most of thermodynamics one just
assumes it, without having to dwell on the specific dynamics that led to
the creation of a thermal bath.

The second ingredient is the definition of a system: this is the part
of the universe under consideration. The state of the system can be
arbitrary out of equilibrium and its Hamiltonian can depend on time
through some externally driven parameters, as a magnetic field or the
position of a piston. In order to highlight this dependence, it is customary
to decompose the Hamiltonian as:

HS(t) =
n∑
i=1

λitXi , (2.1)

where
{
λit
}

are time-dependent scalar parameters, while {Xi} are the
associated time independent observables.

Lastly, one assumes the existence of an interaction between the sys-
tem and bath that can be switched on and off at will, and which tends to
thermalise the system at the temperature of the bath. The total Hamil-
tonian then reads:

H(t) = HS(t) + gV +HB . (2.2)

where HS(t) and HB are the Hamiltonians of system and bath, while gV
is the interaction term. In this context, g is a scalar parameter quantify-
ing the strength of the coupling. It is customary to require that g ≪ 1,
corresponding to the request that the interaction energy is small com-
pared to the other energy scales (weak coupling regime). There are two
main reasons to impose this constraint: first, in this way the total energy
is additive, that is it equals the sum of the energy of the system and
bath alone; secondly, whereas in general one needs to take into consid-
eration at least a buffer region of the bath [43–45], in the weak coupling
regime the thermodynamic description solely depends on the degrees of
freedom of the system. These are two features that highly simplify the
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thermodynamic treatment. Moreover, the weak coupling assumption is
justified at least for macroscopic systems, as the interaction energy scales
like the surface area, whereas the bulk energy scales like the volume.
Unfortunately this argument does not apply to microscopic systems, for
which surface and volumes have comparable contributions. Nonetheless,
it is interesting to study the weak coupling regime first, in order to de-
velop general insights on the theory without the technical and conceptual
difficulties of having to deal with finite interactions.

2.2 Work and heat for classical systems

Now that the stage is set, we can speak about the energy balance. First,
it should be noticed that the time dependency in the Hamiltonian implies
a change in the energy of system and bath. In order for the energy of the
universe to be conserved, we have to assume the existence of an external
energy reservoir (i.e., a battery) from which energy can be extracted
and inputted at will through the driving of the external parameters of
the system Hamiltonian. We define work to be all the energy that gets
exchanged with this external reservoir, leading to the equality:

∆US +∆UB = w , (2.3)

where ∆US/B is the change of energy in the system/bath, and w denotes
the work. At the same time, we know that the driving is performed only
on the system, so all the energy that is accumulated on the bath cannot
be directly retrieved. This concept of unusable energy is identified with
heat, leading to the definition:

∆UB = Q , (2.4)

where Q is the heat transferred to the environment1. Putting together
Eq. (2.3) and Eq. (2.4), we obtain the equality:

∆US = w −Q . (2.5)

This is the usual statement of the first law of thermodynamics.
In order to exemplify this relation, we consider a classical system

undergoing a stochastic evolution. This is the most suited framework
1Here, and in the following, we only consider the case in which the system exchanges

energy with the environment, but no matter
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when treating microscopic classical systems and it is at the centre of
the recently developed stochastic thermodynamics [46]. In this context,
internal energy, work and heat become stochastic variables, by evaluating
them at the trajectory level. For example, the probability associated with
a change of internal energy ∆US is given by:

p(∆US) := µ

({
xt

∣∣∣∣HS(xτ )−HS(x0) = ∆US

})
, (2.6)

where µ ({xt}) is the probability measure associated to the trajectory xt,
and τ is the final time of the driving. Since the internal energy is the only
function of state in Eq. (2.5), this is also the only quantity for which the
definition does not require stochastic integration or differentiation. Still,
if we look at average quantities, we can split the internal energy as:

⟨∆US⟩ =
∫

dx p(∆US = x) = (2.7)

=

∫
dµτ ({xτ}) HS(xτ )−

∫
dµτ ({x0}) HS(x0) = (2.8)

=

∫ τ

0
dt

(
d

dt

∫
dµτ ({xt}) HS(xt)

)
= (2.9)

=
n∑
i=1

∫
dµτ ({xt})

∫ τ

0
dt λ̇itXi(xt)+ (2.10)

+
n∑
i=1

∫ τ

0
dt λit

d

dt

∫
dµτ ({xt}) Xi(xt) , (2.11)

where dµt is the probability density at time t. In Eq. (2.8) we used the
fact that summing over all the possible outcomes allows to separate the
average on the initial and final time, in Eq. (2.9) we exploited the smooth-
ness of average trajectories to write the difference as the integral of a total
derivative, and finally in the last equation we carried out the differentia-
tion, and exchanged the order of integration in the first integral. Notice
that these operations would be ill-defined without taking the average, as
stochastic trajectories are almost everywhere non-differentiable.

When there is no driving in the external parameters, the change in
internal energy equals minus the heat. For this reason, we can identify
the term in Eq (2.11) with the average heat, as it is the only surviving
term in the case that λ̇it = 0. Using the first law, then, we also have
a definition for the average work, i.e., it corresponds to the integral in
Eq (2.10).
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The fact that the average change in internal energy equals the differ-
ence between the average energies at the end and at the beginning of the
protocol (Eq. (2.8)) is almost trivial in this context. Another feature of
the probability in Eq. (2.6) is that it can be rewritten as

p(∆US) =
∑

Eτ−E0=∆US

p(Eτ |E0)p(E0) , (2.12)

where we defined:

p(E0) : = µ

({
xt

∣∣∣∣HS(x0) = E0

})
; (2.13)

p(Eτ |E0) : = µ

({
xt

∣∣∣∣HS(xτ ) = Eτ ∧HS(x0) = E0

})
. (2.14)

Eq. (2.12) means that the probability of obtaining a certain difference of
internal energy is equal to the sum over all compatible energies of the
probability of obtaining E0 in the first measurement, multiplied by the
probability of obtaining Eτ at the end conditioned on the first result.

Equations (2.8) and (2.12) are of course trivial statements in the con-
text of classical thermodynamics. For quantum system, instead, the sit-
uation changes drastically.

2.3 Work is not an observable

In the quantum mechanics of isolated system it is known that for each
measurable property of the system there exists a self-adjoint operator cor-
responding to it. Naively, then, one would expect to be able to associate
an observable to the work output. This can be identified by imposing
the validity of Eq. (2.8), i.e., that the change of average energy at the
beginning and at the end of the protocol equals the average work (when
considering system and bath together). In formulae, this reads:

⟨ŵ⟩ := Tr
[
Uτ ρU

†
τHτ

]
− Tr [ρH0] = Tr

[
ρ
(
U †τHτUτ −H0

)]
, (2.15)

where ρ is the state of the system and bath, H0/τ is the total Hamiltonian
at the beginning/end of the driving, and Uτ is the unitary describing the
overall dynamics. Requiring that Eq. (2.15) holds for any initial state ρ
constrains ŵ, the operator of work, to the form ŵ :=

(
U †τHτUτ −H0

)
.

Unfortunately, it is quite easy to see that this definition is unsatis-
factory. Notice, in fact, that since by definition the work in this context
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equals the difference in energy, one would also expect that the probability
of obtaining an energy value E0 at the beginning of the protocol would
be connected to the one of obtaining Eτ at the end by the relation

p(w) =
∑

Eτ−E0=w

pτ (Eτ |E0)p0(E0) , (2.16)

where p(w) is the probability of the work output w and pt the probability
distribution for the energy at time t. Now consider the case in which ŵ
has a 0 eigenvalue, associated to the eigenvector |ψ0 ⟩. Then, initialising
the system in the state |ψ0 ⟩⟨ψ0 | would induce a delta centred in zero
for the work probability, p(w) = δ(w). Together with Eq. (2.16), this
implies that p0(E0) = pτ (E0). In particular, all the moments should be
the same. This cannot be the case in general: consider for example a
qubit system with Hamiltonian H0 = σx and U †τHτUτ = (1 − σz + σx).
The work operator has |0⟩ as a zero eigenvector, but it is straightforward
to verify that:

Tr
[
|0⟩⟨0 |U †τ Hn

τ Uτ

]
̸= Tr [ |0⟩⟨0 |Hn

0 ] , (2.17)

already for n = 3, for example. This means that the statistics of the
energy were altered despite no energy was exchanged [47], contradicting
the principle of conservation of energy. For this reason, this definition of
work has to be discarded as unphysical.

One might be surprised by the absence of an operator of work. In
fact, in quantum mechanics we are used to associate measurable proper-
ties to self-adjoint operators. There is however another notable example
in which a measurable quantity is not associated to any observable: the
Berry phase. There is a common cause to this: as it is argued in [48], since
the Berry phase arises from the dependence of the Hamiltonian on some
changing parameters, the system cannot be truly isolated (for example,
in the case of molecular Berry phase, the external parameter is given by
the position of the heavy nuclei in the Born-Oppenheimer approxima-
tion). In the same way, in thermodynamics the driving is modulated by
an external battery, i.e., an effectively semi-classical object external to
the system. In principle, taking into account the dynamics of these extra
degrees of freedom would eliminate the time dependency in the Hamilto-
nian so that each measurable property would correspond to a self-adjoint
operator, but this would severely deform our description of the system.
In fact, as for molecules the dynamics of the nuclei should be neglected
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due to the huge separation of time-scales between these and the electronic
degrees of freedom, in the same way the ability of the external battery
to deterministically store and provide energy implies that it should be
treated semi-classically. Even if one could in principle solve the exact
equations of motion, these would be hardly very informative, as their
complicated expression would hide important features of the dynamics.
This justifies the use of time-dependent Hamiltonians in this context.

Going back to the definition of work, since starting directly from
Eq. (2.8) is problematic, one has to find another founding principle to
follow. This was identified in [49] with the operational definition of
Eq. (2.12). In this context, in order to define the work, one first needs to
measure the initial energy, obtaining the value E(i)

0 with probability:

p(E
(i)
0 ) = Tr

[
Π

(i)
0 ρ

]
, (2.18)

where Π
(i)
0 :=

∣∣∣E(i)
0

〉〈
E

(i)
0

∣∣∣ is the projector into the E(i)
0 eigenspace. The

measurement changes the state of the system to Π
(i)
0 . At this point, the

system is evolved unitarily according to Uτ . Finally, one measures again
the energy, obtaining E(j)

τ with probability:

p(E(j)
τ |E

(i)
0 ) = Tr

[
Π(j)
τ Uτ Π

(i)
0 U †τ

]
, (2.19)

where Π
(j)
τ :=

∣∣∣E(j)
τ

〉〈
E

(j)
τ

∣∣∣ is the projector into the E
(j)
τ eigenspace.

The total probability of extracting work w is then given by:

p(w) =
∑

E
(j)
τ −E

(i)
0 =w

p(E(j)
τ |E

(i)
0 )p(E

(i)
0 ) = (2.20)

=
∑

E
(j)
τ −E

(i)
0 =w

Tr
[
Π(j)
τ UτΠ

(i)
0 U †τ

]
Tr
[
Π

(i)
0 ρ
]
= (2.21)

=
∑

E
(j)
τ −E

(i)
0 =w

Tr
[
Π(j)
τ UτΠ

(i)
0 ρΠ

(i)
0 U †τ

]
= (2.22)

=
∑

E
(j)
τ −E

(i)
0 =w

Tr
[
U †τ Π

(j)
τ Uτ D(i)

0 [ρ]
]
, (2.23)

where in the last equation we introduced the dephasing operator D(i)
0 :=

Π
(i)
0 ρΠ

(i)
0 .
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The expression of the probability distribution in Eq. (2.23) highlights
a limitation of this scheme: all the coherences contained in the state ρ
are destroyed by the initial measurement. Still, this definition of the
work output is particularly appealing for its clear operational meaning,
in addition to having a well defined classical limit [50] and satisfying
fluctuations theorems (see Sec. 3.2). For these reasons, the procedure just
presented has become the most commonly used definition of fluctuating
work, known under the name of TPM (two point energy measurement)
scheme.

Another interesting property of the TPM scheme is that it can be
expressed in terms of well-known information theoretic quantities. In
particular, for a system initially in thermal equilibrium (i.e., whose den-
sity matrix is given by πβ(H) := e−βH

ZH
, where ZH is the partition function

ZH := Tr
[
e−βH

]
) one can write the cumulant generating function of the

random variable (−βw) as:

K−βw(λ) = log

∫
dw p(w)e−βwλ = (2.24)

= log
∑
w,

E
(j)
τ −E

(i)
0 =w

Tr
[
Π(j)
τ UτΠ

(i)
0 U †τ

] e−βE(i)
0

ZH0

e−βwλ = (2.25)

= log
∑
i,j

Tr
[
Π(j)
τ UτΠ

(i)
0 U †τ

] e−β(1−λ)E(i)
0

Z1−λ
H0

e−βλE
(j)
τ

ZλHτ

ZλHτ

ZλH0

= (2.26)

= λ log
ZHτ

ZH0

+ logTr

[
πβ(Hτ )

λ
(
Uτπβ(H0)U

†
τ

)1−λ]
= (2.27)

= −λβ∆F + (λ− 1)Sλ(πβ(Hτ )||Uτπβ(H0)U
†
τ ) . (2.28)

Notice that in Eq. (2.26) we expressed explicitly the value of w and
exploited the sum over it to decouple E

(j)
τ from E

(i)
0 . Moreover, in

Eq. (2.27) we used the definition πβ(H0) :=
∑

E
(i)
0

e−β E
(i)
0

ZH0
Π

(i)
0 (and simi-

larly for πβ(Hτ )) to express the sum in terms of thermal states. Finally,
in Eq. (2.28) we defined the difference of free energy ∆F as β∆F :=
− log Zτ

Z0
, and we remind the reader about the definition of the λ-Rényi

divergences (see Eq. (1.168)):

Sλ(ρ||σ) :=
1

λ− 1
log Tr

[
ρλσ1−λ

]
. (2.29)
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Then, Eq. (2.28) shows how the statistics of work in the TPM scheme are
directly connected to distinguishability between the final thermal state
and the evolved state, as quantified by the λ-Rényi divergences. This
gives an insight on the nature of dissipation and it will be further explored
in Chapter 4.

In fact, consider a general contrast function Hg(ρ||σ). Following the
same steps as above we have that:

Hg(Uτπβ(H0)U
†
τ ||πβ(Hτ )) =

=
∑
i,j

e−βE
(i)
0

ZH0

g

(
e−β(E

(j)
τ −E

(i)
0 )

ZHτZ−1H0

)∣∣∣〈E(j)
τ

∣∣∣Uτ ∣∣∣E(i)
0

〉∣∣∣2 = (2.30)

=
∑
w,

E
(j)
τ −E

(i)
0 =w

g(e−β(w−∆F )) Tr
[
Π(j)
τ UτΠ

(i)
0 U †τ

] e−βE(i)
0

ZH0

= (2.31)

=

∫
dw p(w) g(e−β(w−∆F )) , (2.32)

where in the first line we used the coordinate expression from Eq. (1.40).
The quantity β−1Σ = w−∆F is dubbed entropy production, and quan-
tifies the dissipation along the protocol (for more details, see Sec. 3.2).
Then, thanks to the identity in Eq. (2.32), one can interpret different
contrast functions between the evolved state and the thermal state at the
final time as different functionals of the dissipation, where the probability
distribution is the TPM one.

Finally, it should be noticed that for divisible dynamics we can obtain
an expression akin to Eq. (2.11). In fact, the change of total energy for
systems starting at equilibrium is given by:

⟨∆U⟩ = Tr [Hτ ρτ ]− Tr [H0 ρ0] =

∫ τ

0
dt

d

dt
Tr [ρtHt] , (2.33)

where we denote by ρt the effective state of the system and bath at
time t. Since the Hamiltonian of the bath is fixed, we have that ⟨∆U⟩ =
⟨∆US⟩, as the only change in energy arises from the driving in the system
Hamiltonian. Then, the total derivative above can be split as:

⟨∆US⟩ =
∫ τ

0
dt Tr

[
ρt Ḣt

]
+

∫ τ

0
dt Tr [ρ̇tHt] = (2.34)

= ⟨w⟩ − ⟨Q⟩ , (2.35)
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where we identified the first integral with the average work, and the
second with the heat. Indeed, if the Hamiltonian does not vary with
time, the change of energy only arises from the exchange of heat. This
argument, completely analogous to the one in Eq. (2.11) justifies the
identification of the work with the first integral.

Wrapping up, the TPM scheme is well justified, satisfies most of the
properties one would expect from a work distribution and has a neat con-
nection with informational theoretical quantities. Unfortunately though,
it also suffers from a severe drawback: if coherences are present in the ini-
tial state, the average work is not equal in general to the average change
of energy (that is Eq. (2.15) does not hold!). Compared to the plethora of
other nice features of the TPM statistics, this can appear as a small detail,
so that one could naively hope for an extension of the TPM scheme which
allows to recover Eq. (2.15) without radically changing the measurement
procedure. Finding such a scheme would finally give an unproblematic
definition of work in the quantum regime. However this is impossible.

2.3.1 There is no quantum analogue of the classical
work probability

The failure of the two most natural proposals for a definition of quantum
work distribution raises the question whether a satisfactory answer exists
at all. This doubt turns out to be well motivated. In fact, if one associates
to a thermodynamic protocol P a general work distribution p(w|P), the
following no-go theorem can be proved:

Theorem 15. There is no function p(w|P) associated to the protocol P
that satisfies the following three conditions:

1. (Linear probability) p(w|P) is a probability distribution linear under
convex mixing of different protocols. This means that by randomly
choosing one protocol between P1 and P2 with probability α, the
work distribution changes as

p(w|αP1 + (1− α)P2)= αp(w|P1) + (1− α) p(w|P2) ;

2. (Classicality 1) p(w|P) agrees with the TPM scheme on incoherent
states (with respect to the initial Hamiltonian);

3. (Classicality 2) The average energy change equals the average work.
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This theorem, proven in [51], shows that Condition 2 and 3, which
correspond to Eq. (2.12) and Eq. (2.8), cannot be satisfied together by
any probability distribution.

Proof. Thanks to Gleason’s theorem, if condition 1 holds, there exists
a POVM {Mw}w∈R which depends on the protocol P, but not on the
initial state ρ, such that p(w|P) = Tr [ρMw] [51]. Then, we can compare
it with the POVM corresponding to the TPM scheme, given by:

Mw
TPM :=

∑
i,j

δ(w − (E(j)
τ − E

(i)
0 )) p(E(j)

τ |E
(i)
0 )Π

(i)
0 , (2.36)

where p(E(j)
τ |E(i)

0 ) is the one defined in Eq. (2.19).
Condition 2 imposes that Mw agrees with Mw

TPM on the set of density
matrices with no coherences, i.e., the convex mixture of states of the form
ρ(k) := Π

(k)
0 . This allows to completely characterise Mw. In fact, first it

should be noticed that whenever w is not an energy gap then Mw ≡ 0,
due to the δ-function in Eq. (2.36). This allows to index the work POVM
as M i,j :=M (E

(i)
τ −E

(j)
0 ). Operating over the density matrices of form ρ(k)

one obtains:〈
E

(k)
0

∣∣∣M i,j
∣∣∣E(k)

0

〉
=
〈
E

(k)
0

∣∣∣M i,j
TPM

∣∣∣E(k)
0

〉
= δik p(E

(j)
τ |E

(i)
0 ) . (2.37)

Since there is only one non-zero element on the diagonal of M i,j , the
positivity condition for POVMs implies that all the off-diagonal terms
are zero, so that Mw is specified completely. Summarising, condition 1
implies that there exists a POVM {Mw}, and condition 2 ensures that
Mw =Mw

TPM for all w.
On the other hand condition 3 reads:∑

w

wTr [ρMw] = Tr
[
ρ
(
U †τHτUτ −H0

)]
. (2.38)

Due to the genericity of ρ this is equivalent to asking
∑

w wM
w =(

U †τHτUτ −H0

)
. This condition cannot be always satisfied by the TPM

scheme. For example, consider a qubit with initial Hamiltonian H0 =
ϵ |1⟩⟨1 | and final Hamiltonian H1 = ϵ′ |1⟩⟨1 |, which undergoes the evolu-
tion U = |0⟩⟨+ |+ |1⟩⟨−| (the Hadamard gate). In this case

∑
w wMw =

1
2 (ϵ
′ |0⟩⟨0 |+ (ϵ′ − 2ϵ) |1⟩⟨1 |), while

(
U †τHτUτ −H0

)
= ϵ′ |−⟩⟨−|−ϵ |1⟩⟨1 |.

Hence, condition 3 cannot be satisfied. This concludes the proof.
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Theorem 15 shows how straightforward properties that hold in clas-
sical thermodynamics are incompatible in the quantum regime. There is
however a loophole in the argument, as noted in [52]. In fact, assump-
tion 1, which is a formulation of preparation non-contextuality, is not
justified for quantum systems (for a brief review about the concept of
contextuality see App. B). Indeed, it can be proven that:

Theorem 16. If p(w|P) satisfies condition 1 and 2 of Theorem 15 then
there exists a universally non-contextual ontological model which repro-
duces it.

Proof. In the proof of Theorem 15 it is shown that condition 1 and 2
together imply the existence of a POVM set, i.e., the TPM one, with
the property p(w|P) = Tr [ρMw

TPM]. This induces a non-contextual on-
tological model. In fact, take the ontological space Λ to be the space
of the initial energy eigenstates, and the preparation and measurement
procedures are given by:

P (λ|ρ) := ⟨λ| ρ |λ⟩ ; (2.39)
P (w|λ,P) := Tr [ |λ⟩⟨λ |Mw

TPM] . (2.40)

Then, as the measurement output can be computed from the equation:

p(w|P) =
∫
Λ
dλ P (λ|ρ)P (w|λ,P) , (2.41)

that is, this construction gives the required non-contextual ontological
model.

Theorem 16 strongly suggests that in order to probe genuinely quan-
tum effects one has to drop the assumption that the work distribution is
a probability density. This can be done by extending the TPM scheme
from projective measurements to weak ones.

2.3.2 Work quasiprobability from weak measurements

In the TPM scheme the initial dephasing of the state erases any effects
arising from initial coherences. For this reason, it is interesting to explore
what happens when one considers minimally disturbing measurements.
This naturally leads to the study of weak measurements: in this context,
the initial energy measurement is carried out by coupling the system to
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a pointer, which is then projectively measured. As explained in Sec. B.3,
it is customary to associate to the pointer a Gaussian state:∣∣ψ �

〉
=

1
4
√
πs2

∫
dx e−

x2

2s2 |x⟩ , (2.42)

where the spread s of the wave function parametrises how precise the
measurement is, allowing one to continuously switch from a projective
measurement (s→ 0) to a weak measurement (s→∞).

The measurement protocol of the work is then given by the follow-
ing steps: (i) first, the pointer interacts with the system through the
Hamiltonian Hint = g(t) Π

(i)
0 ⊗P , so to gather information about ρΠ(i)

0 ;
(ii) the pointer state is projectively measured in the position basis; (iii)
the system is decoupled from the pointer, and evolved according to the
protocol P; (iv) finally, Π(j)

τ is measured projectively. For simplicity we
assume non degenerate energy gaps, so that one can associate to any work
value w a unique gap E

(j)
τ − E(i)

0 . This procedure should be compared
with the one in Sec. B.3, where Π(i) := Π

(i)
0 and Π̃(j) = U †τ Π

(j)
τ Uτ , where

the additional unitary accounts for the presence of the transformation
defined by P.

Then, following the steps of Sec. B.3, we define ρ11 := Π
(i)
0 ρΠ

(i)
0 and

ρ01 := (Π
(i)
0 )⊥ ρΠ

(i)
0 . This allows to express the average position of the

pointer upon post-selection as (see Eq. (B.21)):

⟨X⟩|j =
Tr
[
U †τ Π

(j)
τ Uτ ρ

11
]
+ e−1/4s

2
Re
[
Tr
[
U †τ Π

(j)
τ Uτ ρ

01
]]

Tr
[
U †τ Π

(j)
τ Uτ ρ

]
− 2 (1− e−1/4s2)Re

[
Tr
[
U †τ Π

(j)
τ Uτ ρ01

]] .
(2.43)

We can now explore the two limits s→ 0/∞. In the first case, i.e., in the
limit s → 0, the pointer starts in an eigenstate of the position operator,
and Eq. (2.43) reduces to:

lim
s→0
⟨X⟩|j =

Tr
[
U †τ Π

(j)
τ Uτ Π

(i)
0 ρΠ

(i)
0

]
qj

=
pTPM(w|P)

qj
. (2.44)

Since the first measurement becomes effectively projective, we obtain the
statistics given by the TPM scheme.

In the opposite limit, we have a weak measurement of the initial
energy value. Then, the average position conditioned on the output j is
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given in this case by:

lim
s→∞

⟨X⟩|j =
Re
[
Tr
[
U †τ Π

(j)
τ Uτ Π

(i)
0 ρ

]]
Tr
[
Π̃

(j)
τ ρ

] =
pweak(w|P)

qj
. (2.45)

It is interesting to point out the similarity with the TPM distribution.
This definition of work was first introduced by Allahverdyan in [53], and
it will be denoted here by the acronym WWS (weak work statistics). The
quantity in Eq. (2.45) was already studied in the literature for its connec-
tion to non-classicality: it takes the name of generalised weak value and,
interestingly, it can also be negative (in which case it is called anomalous,
as explained in Sec. B.3). This corresponds to a negativity in the WWS,
making pweak(w|P) a quasiprobability. Hence the WWS does not satisfy
condition 1 of Theorem 15. In fact, this must be the case. First, notice
that for incoherent states one has:

pweak(w|P) = Re
[
Tr
[
U †τ Π

(j)
τ Uτ Π

(i)
0 ρ

]]
= (2.46)

= Tr
[
Π(j)
τ Uτ Π

(i)
0 ρΠ

(i)
0 U †τ

]
= pTPM(w|P) , (2.47)

so that condition 2 is satisfied. Moreover, the average work is given by:

⟨w⟩weak =

∫
dw w pweak(w|P) = (2.48)

=
∑

E
(j)
τ ,E

(i)
τ

(E(j)
τ − E(i)

τ )Re
[
Tr
[
U †τ Π

(j)
τ Uτ Π

(i)
0 ρ

]]
= (2.49)

= Tr
[
ρU †τHτUτ

]
− Tr [ρH0] , (2.50)

where one uses the two identities
∑

k Π
(k)
0/τ = 1 and

∑
k Π

(k)
0/τ E

(k)
0/τ = H0/τ

to pass from Eq. (2.49) to Eq. (2.50). Hence condition 3 is also satisfied,
so that condition 1 cannot hold. This shows that the assumption of
Theorem 15 are tight, i.e., by dropping any of them one can explicitly
construct a counterexample.

Since Theorem 16 heavily depends on condition 1, one could wonder
if dropping it would allow to detect genuinely quantum phenomena. This
turns out to be true, and it motivates the interest in the WWS [52]:

Theorem 17. If the probability of work according to WWS is negative
for some work value, then it always exists a pointer state with spread s
large enough so that there is no measurement non-contextual, outcome
deterministic ontological model reproducing the statistics of work.
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In fact, this result is a particular case of Thm. 26 in App. B, so it
doesn’t need an additional proof.

As it was shown in Eq. (2.47), in the limit in which there is no coher-
ence in the initial energy basis, the WWS reduces to the TPM statistics.
For this reason, one could hope to recover (at least up to corrections
depending on the coherence) the information theoretic interpretation as-
signed to the TPM scheme. For example, assuming the state of the
system to be initially given by ρ = πβ(H0) + χ, where χ has only off-
diagonal contributions, one can write the cumulant generating function
for the WWS as:

K−βw(λ) = log

∫
dw p(w)e−βwλ =

= −λβ∆F + (λ− 1)Sλ(πβ(Hτ )||Uτπβ(H0)U
†
τ )+

+ log

1 + Re

Tr
[
πβ(Hτ )

λUτχπβ(H0)
−λU †τ

]
Tr
[
πβ(Hτ )λUτπβ(H0)1−λU

†
τ

]
 ,

(2.51)

where we omit the lengthy but straightforward calculations. This shows
that a result similar to Eq. (2.28) holds also for the WWS, but at the
cost of an additional term depending on the coherences.

The discussion in this chapter shows the difficulty of defining the
statistics of work for quantum systems, or rather a probability distribu-
tion able to manifest purely quantum behaviours. Indeed, the most used
measurement scheme, the TPM one, always admits a non-contextual on-
tological model (Thm. 16), and only if one drops the condition of positiv-
ity of the probability it is possible to probe genuinely quantum phenom-
ena (Thm. 17). Still, one of the merits of quantum thermodynamics is to
highlight the connection between statistical mechanics and information
theory which, even if no quantum phenomena were to be found, is enough
to justify the interest in the field.





Chapter 3

The second law

Thermodynamics was originally devised to answer practical problems
about the functioning of macroscopic classical engines. It is for this reason
absolutely remarkable that, despite its initial narrow scope of definition,
the second law became over time one of the most overreaching principles
of physics, with applications ranging from microscopic quantum systems
to black holes. As it encodes a preferred direction of time, seemingly in
contradiction with the time reversal symmetry of microscopic dynamics,
the second law has historically had a more controversial existence than
the first. When Boltzmann laid down its statistical mechanical founda-
tion through his famous H theorem, this attracted criticisms from per-
sonalities as Zermelo and Poincaré. Even more so, its extension to the
microscopic regime, when only a handful of particles are involved, or to
biological systems, where the order of the system seems to increase over
time, was highly debated. Despite all of this, after almost two hundreds
years we can say that the second law resisted stolidly. As pointed out
in a famous quote by Eddington1, its conceptual power is at the heart
of its impermeability to apparent violations. In fact, the second law dic-
tates how information gets transferred from a system to another, and it
shows how in this passage information can become irretrievable (despite
its global conservation). In order to make this point precise, the abstract

1“The law that entropy always increases, holds, I think, the supreme position among
the laws of Nature. If someone points out to you that your pet theory of the universe
is in disagreement with Maxwell’s equations — then so much the worse for Maxwell’s
equations. If it is found to be contradicted by observation — well, these experimental-
ists do bungle things sometimes. But if your theory is found to be against the second
law of thermodynamics I can give you no hope; there is nothing for it but to collapse
in deepest humiliation.” [54]

99
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mathematical concept of information has to be given a physical ground.
This task naturally leads to the analysis of one of the most fertile thought
experiment ever designed: the Maxwell’s demon.

3.1 Information is physical: the Maxwell’s de-
mon

In 1866, at the age of 22, Boltzmann published a tentative foundation
of equilibrium thermodynamics starting from the Hamiltonian principle.
A very similar construction appeared five years later, this time authored
by Clausius, who had already been a professor for more than 20 years.
The consequent debate between the two about the paternity of the idea
reached Scotland, as it was commented by Maxwell in a letter to Tait:
“It is rare sport to see those learned Germans contending for the priority
of the discovery that the 2nd law of thermodynamics is the Hamiltonsche
Princip [...] The Hamiltonsche Princip, the while, soars along in a re-
gion unvexed by statistical considerations, while the German Icari flap
their waxen wings in nephelococcygia amid those cloudy forms which the
ignorance and finitude of human science have invested with the incommu-
nicable attributes of the invisible Queen of Heaven.” [55]. For him trying
to give a foundation to the second law without resting on probabilistic
arguments was clearly total nonsense (ironically, in the meantime, Boltz-
mann had already amended his mistake, and had already started laying
down the foundations of statistical mechanics).

In the same spirit, in order to highlight this misconception, Maxwell
formulated one of the most famous thought experiments in physics: in
another letter to Tait dated 1867 he proposed a finite being with the
ability to detect and operate on the dynamics of a gas at the level of
single atoms, and that, by doing so, could reversibly induce a temperature
gradient in a closed box. In particular, he considered the following set-up:
a box containing a uniform distribution of gas is divided in two partitions
by a wall with a small aperture that can be opened or closed in a reversible
manner and without exerting any work. Then, the finite being could be
instructed to open the aperture whenever it would detect a fast particle
moving from right to left, and do the same for slow particles moving left
to right. As temperature is connected with the average kinetic energy of
the gas, repeating this procedure many times would induce a temperature
gradient at the cost of zero work, in contradiction with the second law of
thermodynamics.
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The nickname of demon was promptly popularised by Thomson (Lord
Kelvin) [56], whereas Maxwell had the care in another letter to specify
that this neat-fingered being could also just be thought as a well de-
signed valve [55]. For Maxwell the possibility of violating the second law
highlighted its statistical nature and, most importantly, its independence
from mechanical laws.

The ability of the second law to stir controversy, though, created a
long and heated debate around Maxwell’s demon, leading to a continu-
ous quest for loopholes in the argument. First, it was unclear whether an
intelligent being had to operate the system in order for a violation to ap-
pear, and, most importantly, if empirical laws of thermodynamics could
be applied to systems capable of reasoning (i.e., biological systems). As a
matter of fact, even Smochulowski, who proposed a possible physical re-
alisation of Maxwell’s demon and showed how this would fail, was tricked
by this argument. In his minimalistic model, the aperture between the
two partitions of the box is given by a door that can open only in one
direction, and that keeps bouncing back thanks to the action of a spring.
This system could induce a pressure gradient, if only the spring didn’t
heat up: the successive atomic collisions with the door would make it
fluctuate so much that it would quickly become unusable. In order to
continue to operate it some kind of reset mechanism dampening the os-
cillations has to be used, but this inevitably leads to dissipation. Hence,
Smochulowski argued that mechanical beings are prevented by thermal
fluctuations from violating the second law, but, interestingly, he left open
this possibility for “intelligent beings”.

In this context, the landmark work “On the Decrease of Entropy in
a Thermodynamic System by the Intervention of Intelligent Beings” by
Szilárd (dated 1929, seven years before the formalisation of Turing ma-
chines) is almost revolutionary. His idea was to show that even me-
chanical systems could reproduce the main ingredients needed from an
intelligent being to violate the second law: in particular, information
acquisition, procession and storage. Famously, he explored these phe-
nomena on a single atom gas2. He showed how ignoring the information
acquired during the initial measurement would prevent any violation of
the second law, demonstrating how the use of information was a neces-
sary ingredient. Finally, he argued that, in order for the second law to
hold, there must be an entropy increase of at least kBT log 2 associated

2He also studied them on a gas made of different types of molecules, but this
approach is less innovative than the first and, for this reason, less well known.
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Figure 3.1: A simple depiction of a Szilárd engine. A single molecule is
at equilibrium inside a box. At the beginning of the cycle, a partition is
inserted adiabatically (i.e., without dissipation) and the demon measures
whether the molecule is on the right or on the left of the partition. This
step can be realised completely mechanically by coupling the partition to
a switch that changes its state depending on whether there are collisions
coming from the right or from the left. At this point the partition is
coupled to a mechanism that lets it move only in one direction, and its
motion raises a weight. Finally, the partition is adiabatically removed.
This procedure allows to extract work from a single heat source, in con-
tradiction with the second law of thermodynamics. There is a loophole
in the argument though: the switch stores a bit of information about the
initial state of the system, so the protocol is not truly cyclic.

with binary measurements, or to the memory of the outcome, or to the
erasure thereof.

With the hindsight of modernity, all these intuitions are incredibly
ahead of time: first, he noticed how the process of information process-
ing and decision making could be automatised; second, the reduction of
information units to binary outcomes resembles closely the bits of digital
computers; finally, his radical stance on the second law made him recog-
nise the physicality of information and its effects on entropy production.

Szilárd did not specify exactly which part of the information process-
ing should be associated with dissipation. The first to extensively study
this issue was Brillouin, who tried to reduce the entropy increase to the
measurement procedure connected with electromagnetic interactions [57].
This approach was rebutted by Bennet, who showed that entropy increase
during measurement is not a general feature, so it is not enough for saving
the second law [58].



3.1 Information is physical: the Maxwell’s demon 103

Moreover, not just information acquisition, but also information pro-
cessing could be made completely dissipationless: in fact, Bennet also
proved that reversible computation is Turing complete, and that it can
efficiently simulate irreversible computers [59] (for a proof of principle
physical implementation using billiard balls see the work of Toffoli and
Fredkin [60]). Hence, also the information processing and decision making
associated with a demon can be performed without necessarily producing
entropy.

The last possible loophole was then connected with the information
storage. In particular, the progressive identification of logical irreversibil-
ity with the thermodynamic one suggested a natural candidate that could
save the second law: the only process that is by nature irreversible, that
is information erasure. This was made precise by Landauer, who showed
that there is a fundamental physical bound on the minimal heat that
has to be dissipated in order to erase a bit of information, given by
∆S = kBT log 2 [61]. The famous Landauer’s bound then agrees with
the analysis carried out by Szilárd, finally giving the long awaited exor-
cism of Maxwell’s demon.

3.1.1 An exactly solvable system

The discussion above can be made more concrete by analysing an exactly
solvable model proposed by Mandal and Jarzynski in [62] (also see [63] for
a proposal of a physical implementation using a spin valve and quantum
dots). The system is described as follows: a particle on a ring thermally
hops between three microstate (A, B and C). Connected to the transition
C → A there is a mechanism that allows to lift a weight of mass m by a
certain height ∆h. In order for the dynamics to be thermodynamically
consistent, we need to impose detailed balance on the rates:

rA→B
rB→A

=
rB→C
rC→B

= 1 ,
rA→C
rC→A

= e−βmg∆h . (3.1)

Moreover, we assume that the height of the weight is constrained to the
interval [0,∆h], meaning that it can be lifted only if it hadn’t been raised
before, and it can be lowered only in the opposite situation. In this way,
the weight effectively behaves as a two level system.

A Maxwell’s demon is introduced in the system as a mechanism con-
tinuously monitoring the microstate of the particle and weight, and reg-
istering this information as a pair (X,Z), where X ∈ {A,B,C} is the
coordinate of the particle and Z ∈ {0, 1} corresponds to whether the
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Figure 3.2: Depiction of the possible transitions during a single time
step between the internal states of the demon. The first variable repre-
sents the state of the system, while the second binary variable corresponds
to whether the weight is down or up.

weight is down or up. In this way, the dynamics of the system is com-
pletely represented by the internal state of the demon. Its memory is
modelled by a finite number of cells containing one bit each, together
with a counter that can switch between A, B and C. The difference in
treatment between the two variables mirrors the fact that the only useful
information in order to extract work is the one about the weight, so there
is no need to keep track of the particle’s history, but only of its current
position.

In order to avoid any loopholes in the treatment, we assume a min-
imalistic functioning for the demon: at the beginning of the protocol,
the weight is initialised according to the bit in the demon’s memory, and
starts interacting with the particle for a period of time τ ≫ τeq (the ther-
malisation timescale of the system); then, the weight is decoupled from
the system, the work contained in the weight is stored into a battery, and
the demon passes to the next memory cell.

Suppose the bits of memory have a probability p0 to be in the state 0
(and similarly for p1). In what follows, it is useful to define the quantity
δ := p0− p1, called excess parameter. After tracking the dynamics of the
system for long enough, each memory bit reaches a steady state charac-
terised by the new probability distribution p′0/1 and excess parameter δ′.
The average change of height per bit is given by:

⟨∆h⟩ = ∆h (p′1 − p1) =
∆h

2
(δ − δ′) = (3.2)

= ∆h
δ − δeq

2
[1−K(τ) + J(τ, δ · δeq)] , (3.3)

where δeq := peq0 − p
eq
1 = tanh

(
βmg∆h

2

)
, and K(τ) and J(τ, δ · δeq) admit
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Figure 3.3: Behaviour of the quantity in the brackets of Eq. (3.3) as a
function of the observation time τ , and for different ε := δ · δeq. We refer
to [62] for the analytical expression of K(τ) and J(τ, ε) (notice that the
difference in notation, namely K(τ) = 1

3 K̃(τ) and J(τ, ε) = ε
6 J̃(τ, ε),

where the functions with the tilde are the one presented in [62]). In the
inset we present the different regimes of the demon as characterised by the
excess parameter δ and δeq: if 0 < δ < δeq (green region) the demon acts
as an engine, extracting work at the cost of increasing the randomness of
its memory; if |δ| > δeq (orange region) then the demon acts as an eraser,
resetting its memory tape at the cost of lowering the weight. Lastly, if
0 < −δ < δeq (the red region) the demon doesn’t do anything useful: the
weight is lowered and the entropy of its memory increases.

an analytical form, which we omit for brevity (see Fig. 3.3 for their be-
haviour). The most important feature of ⟨∆h⟩ is that in the limit τ →∞
it rapidly approaches the asymptotic value of ⟨∆h∞⟩ = δ−δeq

2 .
This model allows for a clean study of the internal functioning of the

Maxwell’s demon. Suppose all the bits in the demon’s memory are ini-
tialised to 0, i.e., δ = 1. Then, in the long interaction limit τ ≫ τeq, the

demon is able to lift the weight by 1−tanh(βmg∆h
2 )

2 Nm (where Nm is the
number of bits in the demon’s memory) extracting work from a unique
thermal source, in contradiction with the second law of thermodynam-
ics. To compensate for this, its memory gets filled with random bits
distributed according to peq0/1, which retrace the weight’s history. There
are two reasons to say that the second law is not violated: for one thing,
the process cannot be said to be really cyclic, while the second law only
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applies to cyclic processes; secondly, it should be noticed that the demon
cannot continue to operate: in fact, once its memory is filled according
to peq0/1, the excess parameter will also become thermal, corresponding to
an average change in height of ⟨∆h⟩ = 0 (as it can be verified by inspec-
tion of Eq. (3.3)). Hence, in order for the demon to continue to extract
work, it has to re-initialise its memory to 0, causing a dissipation lower
bounded by the Landauer’s limit. Interestingly, this is the fundamental
reason that prevents Smochulowski’s trapdoor from working.

Additionally to this regime, there is another one that deserves to be
examined: consider the case in which ∆h≫ 1, so that δeq ∼ 1. Then, if
the demon’s memory is initially in an equal mixture of zeros and ones (δ =
0) , the system will act as an eraser: the energetic cost paid by lowering

the weight, which will be lowered on average by − tanh(βmg∆h
2 )

2 Nm, is
translated into a reinitialisation of the bits in the demon’s memory, which
are all set to zero.

The two possible regimes that the demon can undergo show the in-
terplay between the randomisation of memory bits and the energy stored
in the weight: these are two resources that can be interchanged through
the action of the demon. In fact, the model above shows that an empty
memory is a resource that can be dissipated to extract energy; in the
same way, one can use energetic resources to produce a derandomised
memory tape. This close relationship shows to which great degree the
information can be regarded as physical.

3.1.2 The physicality of intrinsic information

On this long route towards the exorcism of the demon the physicality
of information and logical operations become evident to a deeper and
deeper extent: first, one is led to consider the cost of information ac-
quisition; then, the cost of information processing; finally, the cost of
information erasure. This progressively led to the identification of logical
irreversibility with the thermodynamic one.

As a matter of fact, the relationship between physics and intrinsic
information is even more stringent. Let us consider again the operation
of the Maxwell’s demon above. As it was discussed, after a full cycle
the memory of the demon is completely randomised, so it is impossible
for it to continue to extract work without freeing up some of its memory
tape. Denote by x the string describing its memory content (which,
for inessential technical reasons, we suppose to be part of a prefix-free
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Figure 3.4: In order to reduce the amount of bits that it needs to erase,
the demon can first compress the content of its memory. This is done in
three steps: first, the string x describing its internal state is encoded into
a shorter element y. Then, one can substitute x with a program p that
on input y outputs x. Finally, p is erased. This is the only step that is
not reversible.

language). Suppose now that one can provide the demon with an extra
empty tape that needs to be returned in the same state at the end of the
protocol. Then, in principle, in order to free up part of its memory, the
demon could encode x into a new, shorter string y, which is written on
the new tape. At this point, we can use y to compress x: one can, in fact,
reversibly replace it with a program p that on input y gives back x. The
minimum length of p is by definition K(x|y), the conditional Kolmogorov
complexity of x with respect to y (see App. D for the precise definition
of this object). After this step, the state of the two tapes is given by
(y, p). At this point the demon erase p, i.e., a minimum of K(x|y) bits,
and transfers back y on its memory, freeing up the ancillary tape.

This protocol hence can be used to free ℓ∗(x)− ℓ∗(y) memory bits at
the cost of dissipating at least kBT K(x|y) amount of heat. In particular,
if one wants to completely erase the memory, corresponding to the tran-
sition x → ε (where ε denotes the empty string), the minimal amount
of heat dissipated is K(x|ε) ≡ K(x), the Kolmogorov complexity of x.
Since K(x) ≤ ℓ∗(x), by repeating this reinitialisation cycle, one could in
principle observe macroscopic violations of the second law.

Considerations along these lines led Zurek to propose the following
modification of the thermodynamic entropy [64, 65]:

SZ = H +K , (3.4)

where H is the usual Shannon or von Neumann entropy of the system,
while K is the Kolmogorov complexity of the string in the measurement
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register. Let us now re-examine Maxwell’s demon in view of the definition
above. At the beginning, the system starts with a certain amount of
statistical entropy (H > 0), while the memory tape of the demon is
completely blank (K = 0), so the initial thermodynamic entropy is given
by SZ ≡ H. When the demon starts operating, some of the statistical
entropy H is harvested to produce work. At the same time, though,
this operation results in a change of its memory to a state with finite
K, so that globally ∆SZ = 0 (which also implies that ∆H = −∆K).
This should be contrasted with the usual definition of thermodynamic
entropy: in this case, by identifying S := H, it could seem that the demon
induces a momentary decrease of entropy, and that only the finiteness of
its memory prevents it from actually producing macroscopic violations.
Using SZ on the other hand, shows that since every step is reversible, the
thermodynamic entropy does not change during the transformation.

Interestingly, the compression procedure described at the beginning
of this section does not affect the thermodynamic entropy. Indeed, since y
is a recursive encoding of x, it holds that K(x, y) = K(x) (see Eq. (D.4)),
so the first step does not increase the algorithmic entropy; similarly, for
the same reason we also have that K(p, y) = K(x, y), showing that K
stays constant during the overall process (see Eq. (D.5)).

Finally, during the erasure step one cancels the program for x gen-
erating KBT ℓ

∗(p) amount of heat. On the other hand, by applying
Eq. (D.12), one can see that the algorithmic entropy decreases by K(y)−
K(x, y) = −K(x|y∗), where y∗ is the minimal program for y. Then, the
total dissipation during this last step can be quantified as:

Q = −KBT (−ℓ∗(p)−∆SZ) = KBT (ℓ∗(p)−K(x|y∗)) ≥ 0 , (3.5)

since by definition ℓ∗(p) ≥ K(x|y) and K(x|y) ≥ K(x|y∗). Since all the
other steps were realised reversibly, Eq. (3.5) is sufficient to prove that
the dissipation during the whole process is positive, in agreement with
the second law of thermodynamics. This shows the connection between
the randomness stored in the memory of the demon (or equivalently the
intrinsic information contained in it) and the minimal amount of dissipa-
tion needed to clear it.

The proposal in Eq. (3.4) not only is able to give an elegant and
organic treatment to Maxwell’s demon, but it also explains what happens
to the entropy when a (classical) measurement is performed: without the
inclusion of the algorithmic complexity it would seem that carrying out
a measurement on a classical system would reduce the total entropy of
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Figure 3.5: Evolution of the entropy SZ and dissipation βQ during
the three stages of the demon, together with the individual contributions
coming from the statistical entropy H and the algorithmic complexity K.
During the first phase the demon harvests information about the system
and uses it to decrease its statistical entropy in order to extract work.
In order to realise this operation reversibly, it needs to keep track of its
observations, so the complexity of its memory record increases. Then, the
compression depicted in Fig. 3.4 is realised. As discussed in the main text,
despite the decrease in the number of memory bits used, this step does not
affect K. Finally, during the erasure step, while K decreases, the amount
of heat βQ released always satisfies βQ ≥ βℓ∗(p) ≥ K(x|y) ≥ K(x|y∗),
so there is an overall increase in the total entropy.

the system, since a point in the phase space has zero statistical entropy.
However, when the complexity of the register is taken into account one can
see that the entropy simply changes its form, transforming from statistical
to algorithmic.

Regarding the inequality in Eq. (3.5), it should be noticed that K is
not computable. Hence, Landauer’s limit (Q = 0) in this formulation can
only be attained by sheer luck, randomly guessing the minimal encoding
of the string. Ironically, even if this were the case, one wouldn’t be
able to tell in general how lucky it was, for the very same reason that
prevented finding the optimal program in the first place. Moreover, it
should also be noticed that there are two inequalities that need to be
saturated in order to reach Landauer’s limit: namely, one should have
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ℓ∗(p) = K(x|y) = K(x|y∗). This means that not only p needs to be
the optimal program for x, but that also y has to be minimal: in fact,
the second inequality can only be satisfied if y is the shortest program
for some string showing the importance of optimal encodings in order to
avoid any form of dissipation.

It is also important to point out that in the case of macroscopic sys-
tems one can neglect the contribution that the algorithmic complexity
gives to Eq. (3.5). In fact, given an ensemble of strings {si} distributed
according to {p(si)}, one can prove the double inequality [66]:

H({p(si)}) ≤
∑
i

p(si)K(si) ≤ H({p(si)}) +K({si, p(si)}) , (3.6)

where K({si, p(si)}) is the Kolmogorov complexity of the ensemble. For
macroscopic systems one can expect that H({p(si)}) ≫ K({si, p(si)}),
since H is an extensive quantity, while only a coarse-grained description
of the ensemble is usually needed. For this reason, one can approximate
SZ ∝ H, which explains the virtually perfect agreement between the
predictions of the usual thermodynamics in which the entropy function
is given by H only.

The discussion above concludes the review of the theoretical under-
standing of the Maxwell’s demon present in the literature so far. Possibly,
though, there might be an extra step that one can take. It should be no-
ticed, in fact, that no reference to time was made at any point. Each
of the operations of the demon can take in principle infinite time. Still,
the theoretical foundations of the second law coming from statistical me-
chanics (and the H-theorem in particular) suggest that one should not
apply the thermodynamic formalisms when treating timescales compara-
ble with the Poincaré recurrence period, as in this case there are provable
violations of the second law that happen even without external interven-
tions.

This discussion becomes particularly relevant when one treats infor-
mation processing tasks. Suppose, for example, that the compression of
the original content of the demon’s memory x is done by encoding it
into the solution of a formula, i.e., the Boolean satisfiability problem. In
this case, whereas the encoding procedure is quite straightforward, re-
trieving the actual solution is a hard problem, most surely requiring a
super-polynomial amount of steps. In this way, even if the information is
completely conserved, it becomes effectively irretrievable in the timescales
of interest. In order to prevent this kind of pathological situations it is
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sensible, then, to modify Eq. (3.4). A minimal modification is given by
substituting Kolmogorov complexity with Levin’s one, defined as [67]:

Kt(x) := {ℓ(p) + log t(p)|U(p) = x in t(p) steps} , (3.7)

where U is a fixed prefix-free universal Turing machine, and ℓ(p) and
t(p) are respectively the length and the number of steps of the program
p. Thanks to the extra contribution coming from the running time of
the program, one can see some kind of trade-off between reducing the
length of the string x, and allowing it to be still retrieved in reasonable
time. This proposal is still tentative, but it hints at the fact that maybe
Maxwell’s demon hasn’t finished yet to bring new insights to our physical
understanding of the world.

3.1.3 Quantum Landauer principle

The key role of information in thermodynamics is reflected by the sim-
plicity with which thermodynamic laws can be proved using tools from
quantum information theory. In particular, it was shown in [68] how the
second law of thermodynamics and Landauer’s limit can be derived as a
simple consequence of the monotonicity of the relative entropy. Consider,
in fact, a system in contact with an external environment undergoing an
arbitrary evolution described by a unitary U . The initial state is sup-
posed to be given by the product3 ρSE := ρS ⊗ ρE and the final state is
denoted by ρ′SE := U(ρS ⊗ ρE)U †. Then we have the following theorem:

Theorem 18 (Second law). The sum in the change of entropy of the
system and of the environment is always positive:

∆SS +∆SE = (S(ρ′S)− S(ρS)) + (S(ρ′E)− S(ρE)) ≥ 0 . (3.8)

In the theorem we implicitly used the definition of reduced state
ρ′S := TrE [ρ′SE ] (and similarly for what regards ρ′E), and we identify the
thermodynamic entropy with the von Neumann one S(ρ) := −Tr [ρ log ρ].

3Notice in fact that any correlation between system and environment can be
thought as information that the latter has about the first. In this case, we already
know from the Maxwell’s demon example that one can generate an apparent violation
of the second law by exploiting this correlation. However, if one also considers the
dynamics that led to the creation of the correlation, then we are back to the scenario
presented here, and there is no threat to the second law.
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Proof. There are a number of simple results from quantum information
that will be used. First notice that thanks to the tensor product structure
of ρSE , the entropy of the total state equals the entropy of the reduced
ones, i.e., S(ρSE) = S(ρS) + S(ρE) (see Eq. (1.201) and Eq. (1.202)).
Moreover, thanks to the invariance of the von Neumann entropy under
the action of global unitaries, it also holds that S(ρSE) = S(ρ′SE). Using
this two facts, we can rewrite Eq. (3.8) as:

∆SS +∆SE = (S(ρ′S) + S(ρ′E))− (S(ρS) + S(ρE)) = (3.9)
= (S(ρ′S) + S(ρ′E))− S(ρSE) = (3.10)
= S(ρ′S) + S(ρ′E)− S(ρ′SE) = I(S′ : E′) ≥ 0 , (3.11)

where in the last step we used the definition of mutual information in
Eq. (1.203). We remind the reader that this quantity is always positive
unless ρAB is a product state thanks to equality in Eq. (1.205), namely
I(A : B) = S(ρAB||ρA ⊗ ρB). This also shows that the equality in
Eq. (3.8) can be saturated if and only if ∆SS = ∆SE = 0.

The proof of the theorem actually offers insights on the nature of the
second law: the appearance of the mutual information in Eq. (3.11) shows
how the irreversibility arises from the spreading of information across the
system-environment partition, which makes it irretrievable through local
operations. Still, the information is conserved at a global level, as it
can be noticed from the equality S(ρ′SE) = S(ρSE). Moreover, reading
Eq. (3.11) from right to left, one can also interpret it as the fact that
creating correlation between system and environment always corresponds
to a global increase of local entropy.

So far, all the quantities used were information theoretic, and the con-
sideration made were quite general. Notice, for example, that in order to
derive Thm. 18 we don’t need to assume a thermal environment. Suppose
now that this is the case, i.e., ρE ≡ πβ(HE) =

e−βHE

ZHE
, and remember that

the heat is given by the change of energy in the environment:

Q := Tr
[
HE ρ

′
E

]
− Tr [HE ρE ] . (3.12)

Then, the following result can also be proven:

Theorem 19 (Landauer’s principle as equality). The heat transferred to
the environment can be decomposed as follows:

βQ = −∆SS + I(S′ : E′) + S(ρ′E ||ρE) . (3.13)
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This result implies that the decrease in the entropy of the system always
causes a corresponding release of heat bounded by:

βQ ≥ −∆SS . (3.14)

Thm. 19 can be seen as a refinement of Landauer’s principle to an
equality: in fact, if one considers the erasure of a maximally mixed bit
the corresponding change in entropy is given by ∆SS = − log 2.

Proof. If ρE ≡ πβ(HE) it follows that:

βQ = β(Tr
[
HE ρ

′
E

]
− Tr [HE ρE ]) = (3.15)

= Tr
[
log e−βHE ρE

]
− Tr

[
log e−βHE ρ′E

]
= (3.16)

= Tr [ρE log ρE ]− Tr
[
ρ′E log ρE

]
= (3.17)

= Tr [ρE log ρE ]− Tr
[
ρ′E log ρ′E

]
+Tr

[
ρ′E(log ρ

′
E − log ρE)

]
=
(3.18)

= ∆SE + S(ρ′E ||ρE) , (3.19)

where in the second line we used the functional form of the Gibbs state to
make ρE appear in the logarithms. Moreover, from the proof of Thm. 18,
we also know that:

∆SS +∆SE = I(S′ : E′) . (3.20)

Then, putting together Eq. (3.19) and (3.20) we obtain the equality in
Eq. (3.13). Thanks to the positivity of I(S′ : E′) and S(ρ′E ||ρE), also
Eq. (3.14) follows easily.

From Eq. (3.13) one can also deduce what are the conditions to sat-
urate Landauer’s bound. In fact, I(S′ : E′) is zero if and only if ρ′SE is a
product state, and S(ρ′E ||ρE) only in the case for ρ′E ≡ ρE . Interestingly,
whereas the first condition can be satisfied also for finite dimensional
systems, the latter requires an infinite bath [68].

3.2 Fluctuation theorems

At its birth, thermodynamics was especially successful in providing uni-
versal results expressed by equation of states. The most famous example
is, of course, the equation of state of the ideal gas, but in the same cat-
egory we can also find the characterisation of the efficiency of Carnot
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engine or of the Otto one. These are called universal, as they are inde-
pendent of the working medium chosen, as long as it stays at equilibrium
during the whole cycle. This level of generality is lost for non-equilibrium
transformations: equalities get replaced by inequalities as it happens, for
example, for the Carnot efficiency, which becomes a lower bound on the
performance of any engine working between two given temperatures. In
the same family, we have the Clausius expression of the second law:

βQ ≥ −∆S . (3.21)

For more than a century the study of the quantity Σ := ∆S + βQ,
dubbed entropy production, seemed hopeless4. Remarkably, the situa-
tion unblocked when microscopic systems, for which fluctuations become
relevant, were started to be studied. As we sketched in Chapter 2, in
this context quantities like work and heat become stochastic variables,
which can be computed at the level of the single trajectory. There are a
number of complications coming from the stochasticity of the quantity at
hand, but, maybe counterintuitively, this generalisation allowed to obtain
elegant universal results about the entropy production.

3.2.1 The Jarzynski equality

The first and among the most important results found in this direction
is given by Jarzynski equality [69]:〈

e−βw
〉
= e−β∆F . (3.22)

This equation connects the average of the exponential of the work, i.e.,
a stochastic variable, to the exponential of a function of state, namely
the difference of free energy ∆F := ∆U − β−1∆S. The connection with
Σ can be obtained through the first law, noticing that w = ∆U + Q =
∆F + β−1Σ, so that Eq. (3.22) can be rewritten as:〈

e−β(w−∆F )
〉
=
〈
e−Σ

〉
= 1 , (3.23)

also called Kawasaki identity. It is quite exceptional that a quantity like
the entropy production which, in general, depends both on the trajectory
in the space of parameters and on the speed at which the transformation

4Indeed, the fact that the Clausius inequality is not presented as an equality, i.e.,
βQ = −∆S +Σ is very emblematic of this.
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is performed, can be put in relation through an equality with a function
that only depends on the value of the parameters at the endpoints of the
trajectory. Moreover, the only key assumption in deriving Eq. (3.22) is
that the system is initially in thermal equilibrium at inverse temperature
β, whereas the final distribution can be generic.

There are a number of frameworks in which Jarzynski equality can
be proven [70, 71]. In particular, one can prove Eq. (3.22) in the con-
text of Hamiltonian dynamics. Suppose that the system is initially in
equilibrium with a thermal bath at inverse temperature β and that, be-
fore the beginning of the protocol, it is detached from the environment
and evolved according to some driven Hamiltonian dynamics. Since the
system is in isolation, the change of internal energy coincides with the
work performed on it. This allows us to write the work of a trajectory
{xt}t∈[0,τ ] as

w({xt}t∈[0,τ ]) ≡ w(xτ ,x0) = H(xτ , τ)−H(x0, 0) , (3.24)

where H(x, t) denotes the Hamiltonian evaluated at time t and gener-
alised coordinates x. Then, the average in Eq. (3.22) can be rewritten
as:〈

e−βw
〉
=

1

Z0

∫
dx0 e

−βH(x0,0)e−βw(xτ ,x0) =
1

Z0

∫
dx0 e

−βH(xτ ,τ) =

(3.25)

=
1

Z0

∫
dxτ

∣∣∣∣∂xτ∂x0

∣∣∣∣−1 e−βH(xτ ,t) =
Zτ
Z0

= e−β∆F , (3.26)

where Zτ :=
∫
dxτ e

−βH(xτ ,t) is the partition function, and we used the
canonical definition of free energy in the context of statistical mechanics
given by Ft := −β−1 logZt. Passing from the first to the second line we
changed variables, and we used the notation

∣∣∣∂xτ
∂x0

∣∣∣ for the Jacobian of the
transformation. Thanks to Liouville’s theorem, this is equal to one for
Hamiltonian evolutions, leading to Eq. (3.13).

An alternative proof follows from Feynman-Kac formula for stochastic
processes. In particular consider an evolution described by the master
equation:

ṗt(x) = Lt pt(x) , (3.27)

where Lt is a time-dependent transition matrix satisfying the property:

Lt e−βH(x,t) = 0 . (3.28)
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This connects the stochastic dynamics to the Hamiltonian parameters,
and it corresponds to the request that for each t the thermal state is a
fixed point of the instantaneous dynamics. Then, define the density:

gt(x) :=
e−βH(x,t)

Z0
. (3.29)

This coincides with the thermal state at time t = 0, and satisfies the
following transport equation:

ġt(x) = Lt gt(x)− β
∂H

∂t
(x, t)gt(x) . (3.30)

At this point we can apply Feynman-Kac formula5: this tells us that
gt(x) is also the solution to:

gt(x) =
〈
δ(x− xt) e

−β
∫ t
0 ds ∂H

∂s
(x,s)

〉
=
〈
δ(x− xt) e

−βwt

〉
(3.31)

where the average is on all trajectories evolving according to Eq. (3.27)
and that are initially distributed as g0(x), while xt is the coordinate of
the trajectory at time t. Notice that we also used the definition of the
work in Eq. (2.10):

wt :=

∫ t

0
ds

∂H

∂s
(xs, s) . (3.32)

Then, we can interpret gt(x) as the propagator of Lt, and wt as the
analogous of an imaginary action in the path integral formalism. We now
have all the definitions that we need to prove Jarzynski equality. Setting
the time to τ and integrating over all final configurations we obtain:〈

e−βw
〉
=

∫
dx

〈
δ(x− xτ ) e

−βwτ

〉
=

∫
dx gτ (x) = (3.33)

=

∫
dx

e−βH(x,τ)

Z0
=
Zτ
Z0

= e−β∆F . (3.34)

The possibility of deriving Eq. (3.22) in so radically different frameworks
shows the exceptional generality of Jarzynski equality. Notably, the only
assumption at the heart of all the derivations is the thermality of the
initial state.

5This can be thought as application of the path integral formalism in imaginary
time to the solution of stochastic equations.



3.2 Fluctuation theorems 117

Apart from the remarkable result of connecting properties out of equi-
librium with equilibrium ones, the Jarzynski equality can also be used to
give quantitative bounds on the magnitude of the dissipation. In partic-
ular, from Jensen’s inequality we have that ⟨ex⟩ ≥ e⟨x⟩ . Applying it to
Eq. (3.22) and taking the logarithm gives:

−β∆F = log
〈
e−βw

〉
≥ −β ⟨w⟩ =⇒ ∆F ≤ ⟨w⟩ , (3.35)

which is equivalent to the second law presented in Eq. (3.21), just in
terms of the work. Hence, Clausius inequality continues to hold in this
framework for average quantities. Moreover, from Kawasaki identity
(Eq. (3.23)), this inequality can also be expressed as ⟨Σ⟩ ≥ 0, i.e., the
average entropy production is always positive.

In fact, due to the stochasticity of Σ, its positivity does not hold in
general, but only after taking the average. Still, one can give an estimate
on the probability of obtaining negative dissipation as follows:

P (Σ ≤ −ζ) =
∫ −ζ
−∞

dΣ p(Σ) ≤
∫ −ζ
−∞

dΣ p(Σ)e−(ζ+Σ) ≤ (3.36)

≤ e−ζ
∫ ∞
−∞

dΣ p(Σ)e−Σ = e−ζ , (3.37)

where P (Σ ≤ −ζ) is the probability of obtaining a value of Σ smaller
than −ζ, and in the second line we used Kawasaki identity (also notice
that −(ζ + Σ) ≥ 0). This shows that even if violations of the second
law are possible in principle, they are exponentially suppressed in their
magnitude.

3.2.2 Time reversal and Crooks fluctuation theorem

One of the central questions in statistical mechanics is how a preferred di-
rection of time can arise from time reversible equations of motion. Crooks
relations show that if one can assume the thermalisation of a system, then
a time arrow naturally emerges [72]. Consider, in fact, a Hamiltonian
which changes in a series of discrete quenches H0 → H1 → · · · → HN .
When the Hamiltonian is not changing, the system undergoes a micro-
scopic reversible dynamics: this concept is the extension of time symme-
try to non-conservative dynamics and can be summarised by the following
equation:

p(x→ y |Hi) = p(y→ x |Hi) , (3.38)
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where we implicitly defined the probability at equilibrium of the transi-
tion x→ y and we highlighted the dependency on the particular Hamil-
tonian Hi. If the steady state is thermal, Eq. (3.38) can be rewritten
as:

p(y |x, Hi) e
−βHi(x) = p(x |y, Hi) e

−βHi(y) , (3.39)

where p(y |x, Hi) is the conditional probability of evolving to the state
y starting from x and with Hamiltonian Hi. Rearranging the above
equation, one obtains the classical definition of detailed balance (see
Eq. (1.329)).

Crooks fluctuation theorem puts in relation the probability of trajec-
tories evolved according to the forward evolution H0 → H1 → · · · → HN

with their reversed, evolved according to HN → HN−1 → · · · → H0.
In particular, for each trajectory {xi}i∈1,...,N we define its reversed ver-
sion {x̄i}i∈1,...,N to satisfy x̄i = xN−i. Moreover, denote by pF ({xi})
the probability of observing the trajectory {xi} starting at thermal equi-
librium and evolving according to the forward evolution; in the same
way pR({xi}) indicates the probability for {xi} starting at equilibrium
(this time the thermal state is the one associated with the Hamiltonian
HN ) and evolving according to the reversed dynamics6. Then, a simple
algebraic manipulation shows that:

pF ({xi})
pR({x̄i})

=
e−βH0(x0)

Z0

ZN
e−βH0(xN )

∏N
i=1 p(xi |xi−1, Hi)∏N

i=1 p(xN−i |xN−i+1, HN−i+1)
=

(3.40)

=
ZN
Z0

e−βH0(x0)

e−βHN (xN )

N∏
i=1

p(xi |xi−1, Hi)

p(xi−1 |xi, Hi)
= (3.41)

= e−β∆F eβ
∑N−1

i=0 (Hi+1(xi)−Hi(xi)) , (3.42)

where in the second line we rearranged the transition probabilities, and
used the microscopic reversibility together with the definition of ∆F to
obtain the final expression. Consider now the sum:

N−1∑
i=0

(Hi+1(xi)−Hi(xi)) . (3.43)

6An additional difference between the forward and reversed process is that the first
begins with a quench, while we define the latter to start with a change of the internal
state. This technical assumption becomes increasingly less relevant as N → ∞.
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This expression equals the work performed during the forward evolution,
which we denote by wF . In fact, since during a quench the system is effec-
tively isolated, the work performed equals the change of energy; summing
over every quench, we obtain exactly the quantity expressed in Eq. (3.43).
Wrapping everything together, gives the famous Crooks relations:

pF ({xi})
pR({x̄i})

= eβ(wF−∆F ) . (3.44)

This result tells us that if a trajectory has a positive entropy production,
then its probability is exponentially bigger than its time reversed version.

It should be noticed that Jarzynski equality is not independent from
Eq. (3.44). In fact, we can use Crooks fluctuation theorem to prove it:〈

e−βw
〉
=

∫
d{xi} pF ({xi})e−βwF = (3.45)

=

∫
d{x̄i} pR({x̄i})eβ(wF−∆F )e−βwF = e−β∆F , (3.46)

where we used Eq. (3.44) to pass from pF to pR, and in the last step we
integrated over {x̄i}, exploiting the fact that pR({x̄i}) is normalised.

Moreover, one can find a similar relation to Eq. (3.44) for the prob-
ability of work. Denote by pF/R(w) the probability of obtaining a work
value of w along the forward/reversed trajectory. Then, it follows from
Eq. (3.44) that the two are related as:

pF (w) =

∫
w({xi})=w

d{xi} pF ({xi}) (3.47)

= eβ(w−∆F )

∫
w({xi})=w

d{xi} pR({x̄i}) = (3.48)

= eβ(w−∆F )

∫
w({x̄i})=−w

d{x̄i} pR({x̄i}) (3.49)

= eβ(w−∆F ) pR(−w) , (3.50)

where in Eq. (3.49) we used the fact that the work along the inverse
trajectory is the negative of the one along the forward evolution. This
shows that the probability of obtaining a positive dissipation in the for-
ward evolution is exponentially bigger than the one of getting back the
same energy spent during the backwards evolution.

One of the most interesting features of Crooks fluctuation theorem is
that it makes quantitative the relation between entropy production and
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the asymmetry in the direction of time. In fact, by taking the logarithm
of both sides of Eq. (3.44) and integrating over {xi} we obtain:

⟨Σ⟩ =
∫

d{xi} pF ({xi})β(wF −∆F ) = (3.51)

=

∫
d{xi} pF ({xi}) log

pF ({xi})
pR({x̄i})

= S(pF ||pR) . (3.52)

The average entropy production is exactly connected to the distinguisha-
bility between the forward and reversed probability distribution. Hence,
⟨Σ⟩ is always positive and zero if and only if pF ≡ pR. Indeed, other quan-
tifiers for the asymmetry in the direction of time can be introduced (as the
symmetrised relative entropy or the Jensen-Shannon divergence [71, 73])
showing how Crooks fluctuation theorem implies the presence of a pre-
ferred direction of time. Still, it should be noticed that this relation is not
sufficient to give a statistical mechanical foundation to the time arrow: in
fact, as noted in [71], following a remark by Gibbs, assuming the existence
of a thermal state is enough to prove the second law of thermodynam-
ics in the form in Eq. (3.21). Since the existence of thermalisation is a
key assumption in the derivation of both Jarzynski equality and Crooks
theorem, neither of them can be used to explain how systems reach ther-
mal equilibrium. Nonetheless, their importance is not diminished from
this, but rather amplified: they actually make explicit how the existence
of a thermal state has strong physical consequences explaining the time
asymmetry of dissipative transformations.

3.2.3 Fluctuation theorems for quantum systems:
Jarzynski equality and the TPM scheme

Both Jarzynski equality and Crooks fluctuation theorem can be deduced
from Eq. (2.28), the expression of the cumulant generating function (CGF)
for the work statistics in the TPM scheme. This reads:

K−βw(λ) = log

∫
dw p(w)e−βwλ = (3.53)

= −λβ∆F + (λ− 1)Sλ(πβ(Hτ )||Uτπβ(H0)U
†
τ ) . (3.54)

Then, setting λ to 1 we obtain:

K−βw(1) = log

∫
dw p(w)e−βw (3.55)

= log
〈
e−βw

〉
= −β∆F , (3.56)
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which is equivalent to the Jarzynski equality. The Crooks fluctuation
theorem can be proven just as easily. First, notice that the reverse pro-
tocol is the one which starts from the thermal state πβ(Hτ ) and evolves
according to the unitary U †τ . Moreover, from the definition of the λ-Rényi
divergence it easily follows that:

(λ− 1)Sλ(πβ(H0)||U †τπβ(Hτ )Uτ ) = (3.57)

= logTr
[
πβ(H0)

λ(U †τπβ(Hτ )Uτ )
1−λ
]
= (3.58)

= logTr
[
Uτ πβ(H0)

λ U †τ πβ(Hτ )
1−λ
]
= (3.59)

= ((1− λ)− 1)S1−λ(πβ(Hτ )||Uτπβ(H0)U
†
τ ) . (3.60)

Then, we can rewrite the CGF for the reversed protocol as:

K−βwR (λ) = λβ∆F + (λ− 1)Sλ(πβ(H0)||U †τπβ(Hτ )Uτ ) = (3.61)

= β∆F − (1− λ)β∆F − λS1−λ(πβ(Hτ )||Uτπβ(H0)U
†
τ ) = (3.62)

= β∆F +K−βwF (1− λ) , (3.63)

where we used the subscripts F/R to distinguish the forward and re-
versed CGF. Eq. (3.63) is in fact equivalent to Crooks theorem. Indeed,
the probability of the forward process can be rewritten as the following
Fourier transform:

pF (w) =
1

2π

∫ ∞
−∞

dk ei kβw p̂F (k) = (3.64)

=
1

2π

∫ ∞
−∞

dk ei kβw
∫ ∞
−∞

dw̃ e−i kβw̃pF (w̃) = (3.65)

=
1

2π

∫ ∞
−∞

dk ei kβw eK
−βw
F (ik) = (3.66)

=
e−β∆F

2π

∫ ∞
−∞

dk ei kβw eK
−βw
R (1−ik) = (3.67)

=
e−β∆F

2π

∫ ∞
−∞

dk

∫ ∞
−∞

dw̃ ei kβ(w+w̃) e−βw̃ pR(w̃) = (3.68)

= eβ(w−∆F ) pR(−w) , (3.69)

extending Eq. (3.50) to quantum systems. Since there is no straightfor-
ward definition of quantum trajectory, this is the only fluctuation theorem
we derive here.
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The fact that Crooks fluctuation theorem implies Jarzynski equality
can also be deduced at the level of the CGF: in fact, since for any prob-
ability distribution p(w) one has K−βw(0) = 0 (as it corresponds to the
normalisation of p(w)), one can use Eq. (3.63) to prove that:

β∆F +K−βwF (1) = K−βwR (0) = 0 , (3.70)

which is equivalent to Eq. (3.56).
There is a strong relation between Jarzynski equality and the TPM

work distribution: in fact, any non-contextual probability distribution
for the work that (i) satisfies Jarzynski equality for any thermal state
and (ii) admits a classical limit when evaluated on thermal states, must
coincide with the TPM scheme [74]. More precisely, we have:

Theorem 20. Suppose that the probability distribution p(w|P) associated
to a thermodynamic protocol P satisfies the three conditions:

1. (Linear probability) p(w|P) is a probability distribution linear under
convex mixing of different protocols. This means that by randomly
choosing one protocol between P1 and P2 with probability α, the
work distribution changes as

p(w|αP1 + (1− α)P2)= αp(w|P1) + (1− α) p(w|P2) ;

2. (Jarzynski equality) For any thermal initial distribution p(w|P) sat-
isfies the Jarzynski equality;

3. (Classicality 3) The average energy change equals the average work
on initial thermal states.

Then p(w|P) coincides almost everywhere in the Hamiltonian space with
the statistics coming from the TPM scheme.

Proof. For simplicity, we assume that the initial and final Hamiltonian
are non-degenerate. Moreover, we also assume that the energy gaps are
non-degenerate, meaning that (E(j)

τ −E(i)
0 ) = (E

(l)
τ −E(k)

0 ) if and only if
i = k and j = l. This reduces the scope of applicability of the theorem
by a measure zero set, as any degenerate Hamiltonian can be made non-
degenerate by an ε-perturbation.

As noted in the proof of Theorem 15, condition 1 implies the existence
of a POVM {Mw}w∈R which depends on the protocol P and the final mea-
surement, but not on the initial state ρ, such that p(w|P) = Tr [ρMw].
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Hence, we can rewrite Jarzynski equality in this context as:〈
e−βw

〉
=

∫
dw p(w|P)e−βw =

∫
dw Tr

[
e−βH0

Z0
Mw

]
e−βw = (3.71)

= e−β∆F =
Zτ
Z0

, (3.72)

where in the second line we highlighted the dependence of the free energy
on the partition functions. Multiplying both sides by Z0 and expressing
the trace in coordinates leads to the equality:∫

dw
∑
i

〈
E

(i)
0

∣∣∣Mw
∣∣∣E(i)

0

〉
e−β(w+E

(i)
0 ) =

∑
j

e−βE
(j)
τ . (3.73)

Moreover, if one expands the exponentials in Taylor series, by noticing
that Eq. (3.73) should hold for any β we can equate the single terms in
the series as follows:∫

dw
∑
i

〈
E

(i)
0

∣∣∣Mw
∣∣∣E(i)

0

〉 (−β(w + E
(i)
0 ))n

n!
=
∑
j

(−βE(j)
τ )n

n!
. (3.74)

Denote by E(N)
τ the maximum eigenvalue of Hτ . Then, focusing on the

n-th term in the sums in Eq. (3.74), by dividing both sides of the equation
by (E

(N)
τ )n we obtain:∫
dw

∑
i

〈
E

(i)
0

∣∣∣Mw
∣∣∣E(i)

0

〉 (w + E
(i)
0

E
(N)
τ

)n
=
∑
j

(
E

(j)
τ

E
(N)
τ

)n
. (3.75)

Since the relation above has to hold for arbitrarily large n, we can take
the limit n → ∞. On the right hand side, this gives 1, as all the ratios
with eigenvalues smaller than E(N)

τ go to zero, so that only the last term
in the sum survives. On the left hand side we have the following three
possibilities:

lim
n→∞

(
w + E

(i)
0

E
(N)
τ

)n
=


0 if w + E

(i)
0 < E

(N)
τ ,

1 if w + E
(i)
0 = E

(N)
τ ,

∞ if w + E
(i)
0 > E

(N)
τ .

(3.76)

First, this shows that values of the work w > (E
(N)
τ − E

(i)
0 ) are not

allowed, as they would cause the left hand side of the equation to diverge.
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Secondly, since only the terms corresponding to the second case survive,
we also obtain the equality:∑

w

∑
i

E
(i)
0 =(E

(N)
τ −w)

〈
E

(i)
0

∣∣∣Mw
∣∣∣E(i)

0

〉
= 1 . (3.77)

Plugging this back into Eq. (3.74) makes the term corresponding to E(N)
τ

disappear. Hence, we can repeat the same reasoning iteratively, to obtain
thatMw has non-zero entries only for a discrete set of outcomes w indexed
by E(i)

0 and E(j)
τ :

Mw
i,j = 0 if w ̸= (E(j)

τ − E
(i)
0 ) . (3.78)

We are now ready to use condition 3. This reads in formulae:

⟨w⟩πβ(H0)
=
∑
w

wTr [Mwπβ(H0)] = (3.79)

=
∑
w,i,j

(E(j)
τ − E

(i)
0 )

e−βE
(i)
0

Z0
Tr
[
Mw
i,j Π

(i)
0

]
= (3.80)

= Tr
[
πβ(H0)

(
U †τHτUτ −H0

)]
= (3.81)

=
∑
i,j

(E(j)
τ − E

(i)
0 )

e−βE
(i)
0

Z0
Tr
[
Π

(i)
0 U †τ Π

(j)
τ Uτ

]
, (3.82)

where we remind the reader that Π(i)
0 :=

∣∣∣E(i)
0

〉〈
E

(i)
0

∣∣∣ is the projector into

the E(i)
0 eigenspace, and in the last line we used the fact that

∑
j Π

(j)
τ = 1

to group together the two contributions. Again, since this relation should
be valid for any β, we can equate the i-index in the two sums:∑
w,j

(E(j)
τ − E

(i)
0 )Tr

[
Mw
i,j Π

(i)
0

]
=
∑
j

(E(j)
τ − E

(i)
0 )Tr

[
Π

(i)
0 U †τ Π

(j)
τ Uτ

]
.

(3.83)

This step can be understood as follows: sending β → ∞ collapses the
population of the state to the ground state. Then, the only surviving
term in Eq. (3.80) and Eq. (3.82) are the one corresponding to E

(1)
0 .

Then, iteratively applying the same argument we obtain that one can
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impose the same relation for all the energy levels of H0, which proves the
expression in Eq. (3.83).

Finally, we make one last physically motivated assumption. We sup-
pose that under arbitrary small perturbations of E(j)

τ , the corresponding
Mw
i,j does not change too much: we note, in fact, that any quench at

the end of the protocol does not affect the state of the system, so the
dependency of Mw on the final Hamiltonian cannot be too strong. In
particular, if the perturbation is small enough such that no level crossing
happens, it is sensible to assume that Mw

i,j does not change. With this
assumption, we can isolate the j-index as well, obtaining:

Tr
[
Mw
i,j

]
= Tr

[
Π

(i)
0 U †τ Π

(j)
τ Uτ

]
. (3.84)

Using Eq. (3.77) and Eq. (3.78), together with the gap non-degeneracy
assumption, we can deduce that Mw

i,j = Π
(i)
0 Mw

i,j Π
(i)
0 . This implies that

Mw
i,j ∝ Π

(i)
0 (thanks to the non-degeneracy of the spectrum ofH0). Hence,

in order to satisfy Eq. (3.84) we must have

Mw
i,j = Π

(i)
0 Tr

[
Π

(i)
0 U †τ Π

(j)
τ Uτ

]
. (3.85)

Summing over all the indexes, we then obtain:

Mw : =
∑
i,j

δ(w − (E(j)
τ − E

(i)
0 )) Tr

[
Π

(i)
0 U †τ Π

(j)
τ Uτ

]
Π

(i)
0 = (3.86)

=
∑
i,j

δ(w − (E(j)
τ − E

(i)
0 )) p(E(j)

τ |E
(i)
0 )Π

(i)
0 =Mw

TPM , (3.87)

proving the claim.

It directly follows from the result just presented that the no-go theo-
rem on the existence of a probability distribution of work (Theorem 15)
can equivalently be stated without the need to explicitly refer to the TPM
scheme:

Theorem 21. There is no function p(w|P) associated to the protocol P
that satisfies the following three conditions:

1. (Linear probability) p(w|P) is a probability distribution linear under
convex mixing of different protocols. This means that by randomly
choosing one protocol between P1 and P2 with probability α, the
work distribution changes as

p(w|αP1 + (1− α)P2)= αp(w|P1) + (1− α) p(w|P2) ;
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2. (Jarzynski equality) For any thermal initial distribution p(w|P) sat-
isfies the Jarzynski equality;

3. (Classicality 2) The average energy change equals the average work.

This theorem can also be read as the incompatibility between en-
ergy conservation and Jarzynski equality for quantum thermodynamic
protocols. It should be noticed that since Jarzynski equality imposes
weaker constraints than Crooks relations (as the latter implies the first),
if one restricts the consideration to non-contextual descriptions, it also
follows that fluctuation theorems for quantum work always imply the
TPM scheme.

3.2.4 Crooks relations for algorithmic complexity

The wide range of applicability of fluctuation theorems can be considered
a hint for some deep underlying principle from which they can be derived,
much in the same way that many results in statistical mechanics are
applications of probability theory, and in particular of the law of large
numbers. For example, in [75] fluctuation theorems were connected to
Bayesian retrodiction, with arguments similar to the ones presented here
to derive Eq. (3.96). Then, as it is explained in Appendix D, algorithmic
complexity gives a foundation to probability theory, a more radical stance
would be to derive fluctuation theorems directly in that context. In this
section we then present a very incipient tentative in this direction.

Indeed, a theorem resembling Crooks relations can be derived directly
from the coding theorem of algorithmic complexity (see Sec. D.2). This
states that:

K(y|x) = log
1

QU (x→ y)
, (3.88)

up to a constant a factor, where the logarithm is in base 2, and we remind
the reader that the semi-measure QU is defined as (see Eq. (D.14)):

QU (x→ y) :=
∑

p|U(p,x)=y

2−ℓ(p) . (3.89)

This quantity can be interpreted as follows: it is the unnormalised proba-
bility of obtaining y from x running a random program, sampled by gen-
erating its bits by sequentially tossing a fair coin (hence, the probability
of obtaining each p is given by 2−ℓ(p)). This result can be interpreted as
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the fact that the probability of generating a given string by running a
program at random on a computer roughly equals how difficult it is to
describe it.

Consider now a Maxwell’s demon given by a universal Turing ma-
chine taking the program from random fluctuations in the environment.
Whenever it detects the end of the program, it carries out the computa-
tion changing the content of its memory to y := U(p, x). This process is
dissipationless, as no energy exchange is needed to carry out the process,
and since any transition can in principle move in both direction (there
is no time asymmetry). This situation is quite similar to the molecular
motors made out of RNA suggested by Bennet.

Then, in principle, the demon could start with a string x in its mem-
ory and end up with the string y satisfying ℓ(x) > ℓ(y), effectively clear-
ing ℓ(x) − ℓ(y) bits of memory. As discussed above, this would lead to
violations of the second law. Fortunately, it also holds that:

QU (x→ y)

QU (y → x)
= 2−K(y|x)+K(x|y) , (3.90)

up to a constant multiplicative factor. If K(y|x) = O (1), as it is the case
when y is the output of a computation starting from x, we can specialise
the above relation to:

QU (x→ y)

QU (y → x)
= 2K(x|y) , (3.91)

up to a constant multiplicative factor. This tells us that the forward
transition is exponentially more probable than the reverse one, so there
is an effective emergence of a time arrow. In fact, it should be noticed
that the quantity in the exponent of Eq. (3.91) coincides exactly with the
minimal dissipation found in Sec. 3.1.2.

This result is still quite incipient, as for example there is no clear
definition of thermal equilibrium and thermal states for algorithmic com-
plexity (and there hasn’t been so far any compelling motivation to intro-
duce them) and the probabilities in Eq. (3.91) are actually unnormalised.
Still, the straightforward connection that can be carried out between the
two fields is subtle, possibly cunning, but for sure fascinating.

3.3 How to revert an open system dynamics?

In order to define Crooks relations, one explicitly uses the time reversal
of a dissipative dynamics. Whereas for evolutions that preserve the in-
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formation it is straightforward to define a concept of time reversal (for
example, for a unitary U , the time reversed evolution is just the one in-
duced by U †), the meaning of inverse evolution is more ambiguous for
open system dynamics. Just to give an example, it follows from Stine-
spring’s dilation theorem that for any channel Φ there exists a unitary
evolution and an ancillary state σ such that [17]:

Φ(ρ) ≡ TrA

[
U(ρ⊗ σ)U †

]
, (3.92)

where the partial trace is on the ancillary space. Then, a possible proposal
of an inverse channel is given by:

Φ̃(ρ) ≡ TrA

[
U †(ρ⊗ σ)U

]
. (3.93)

It is easy to see that this inverse map is ill-defined. In fact, to each
Φ the corresponding dilation is not unique, and different dilations give
inequivalent time inversions. For this reason, this naive definition cannot
work.

An alternative route is to define the time reversed evolution of a classi-
cal stochastic dynamics as the one obtained through Bayes’ retrodiction:
in this way, one could interpret the inverse map more as an artificial
tool for an agent to guess the initial state of an evolution than an actual
physical dynamics [76]. Interestingly, as it was pointed out in [75], this
construction allows for a straightforward derivation of Crooks relations.
Consider, for example, a classical stochastic map Φ. Notice that the
coordinates Φj,i can be interpreted as the probability of the transition
p(i→ j). Moreover, suppose that the prior is given by the thermal state
πβ(H0). This is a sensible request: one can expect that a generic system,
left unperturbed, will eventually thermalise. Encoding this information
gives the prior πβ(H0). Moreover, since we want to introduce a notion
of microreversibility (as it is necessary for Crooks relations to hold), we
impose that the inverse transition p̃(j ← i) satisfies detailed balance with
respect to the equilibrium state:

(πβ(H0))i p(i→ j) = (πβ(H0))j p̃(j ← i) , (3.94)

meaning that, at equilibrium, the probability of observing the forward
transition (the left hand side of the equation) should be balanced by the
probability of the backwards transition (the right hand side). This is the
standard definition of detailed balance for Markov chains (see Eq. 1.329)
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and it induces a time symmetric dynamics on the trajectories. As it
was briefly mentioned in Sec. 1.5.4, this condition is connected to Bayes’
theorem by solving for p̃:

p̃(j ← i) =
(πβ(H0))i p(i→ j)

(πβ(H0))j
. (3.95)

In order to interpret the above equation as Bayes’ theorem, we also need
to demand that πβ(H0) is a fixed state of the dynamics. Assuming now
that the Hamiltonian of the system quenches to Hτ , we can assume the
prior for the reverse transformation to be given by πβ(Hτ ). Then, the
ratio between the probabilities of forward and backwards trajectory are
given by:

pF (i→ j)

pR(j ← i)
=

(πβ(H0))i p(i→ j)

(πβ(Hτ ))j p̃(j ← i)
=

(πβ(H0))j
(πβ(Hτ ))j

= eβ(wj−∆F ) , (3.96)

where we defined wj = (Hτ − H0)j , the work coming from moving the
energy level of the j-th microstate. Iteratively repeating this argument
(similarly to what happened in Eq. (3.42)) we obtain the Crooks relations
on the full trajectory7.

The downside of this construction is that there is no universally ac-
cepted extension of Bayes theorem to quantum mechanics. For this reason
in [2] we suggested an axiomatic approach to single out Bayes’ inversion
from physical principles. We denote by Φ̃ a possible inversion of the map
Φ. Then, the first two principles demanded are:

1. Φ̃ is physically implementable;

2. if Φ−1 is physically implementable then Φ̃ ≡ Φ−1.

In the first condition, by physically implementable we mean that Φ̃ is
either a stochastic map or a CPTP, depending on the context. This
request is needed since we want the reverse of a physical state to be
a physical state itself. Moreover, the second condition connects to the
discussion we made at the beginning of the section: when Φ completely
preserves the information of the initial state (i.e., for permutations or
unitaries), Φ−1 is physical. Then, we have an unambiguous definition of

7This kind of reasoning can be applied to quantum dynamics in the context of
quantum trajectories to derive fluctuations theorems similar to the ones in Eq. (3.96).
Since this formalism was not used elsewhere in the work, we did not include it here,
but we refer the interested reader to [77, 78] for an alternative take on the problem.
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time reversal, namely Φ̃ = Φ−1. This is hardly the general behaviour,
as generically Φ−1 will map probability distributions to quasiprobability
distributions.

The second set of principles we demand characterises the way Φ̃ be-
haves with respect to the prior π. We want to demand some version of
microreversibility (as we know that Bayes inversion can be used to re-
construct Crooks relations), but rather than asking that Φ and Φ̃ alone
satisfy detailed balance, we impose this condition on the forth-and-back
evolution Φ̃Φ. This is motivated by two reasons: first, even if asking Φ
and Φ̃ to be connected by detailed balance directly isolates Bayes’, it also
imposes that π should be a fixed state of the dynamics. For this reason,
in order to explore also out-of-equilibrium scenarios, we only demand the
fiducial state to be perfectly retrieved by the forth and back evolution,
Φ̃Φ(π) = π. The second reason to keep this level of generality is con-
nected to the first: since π and Φ(π) are now different states, it could
be possible for them not to commute in general. At the heart of Bayes’
theorem there is the definition of a joint probability distribution of the
form P (A,B), together with the use of the rule of conditional proba-
bility P (A,B) = P (A|B)P (B) = P (B|A)P (A). If π and Φ(π) do not
commute, one cannot define in general a joint probability distribution on
their microstates. On the other hand, since Φ̃Φ sends π into itself, there
is no problem of incompatibility in the latter case. Hence, we demand:

3. Φ̃Φ is detailed balance with respect to the prior π;

4. Φ̃Φ has only positive eigenvalues.

Before explaining what we mean by detailed balance in condition 3, we
just point out that the last axiom is more technical in nature, and for
this reason we refer the interested reader to the explanation in App. C.
On the other hand, whereas there is a universally accepted definition
of detailed balance for classical stochastic systems (namely Φ̃Φ should
satisfy (Φ̃Φ)i,jπj = (Φ̃Φ)j,iπi), in the case of quantum dynamics the
issue becomes a bit subtler (see Sec. 1.5.5 for an in-depth explanation).
In particular, we only demand detailed balance with respect to J√x

∣∣
π
,

which is a weaker version of the most commonly used definition, and
corresponds to the condition:

(Φ̃Φ) J√x
∣∣
π
= J√x

∣∣
π
(Φ̃Φ)† , (3.97)

where J√x
∣∣
π

in this context is the superoperator defined by J√x
∣∣
π
[ρ] =√

π ρ
√
π. It should be noticed that it is CP, and reduces to the multipli-
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cation by the state π if [ρ, π] = 0. This choice of J√x
∣∣
π

is made for its
connection to the Petz’ recovery map, defined as:

Φ̃P := J√x
∣∣
π
Φ† J−1√

x

∣∣
Φ(π)

, (3.98)

which is the most usual extension of Bayes’ reverse to the quantum
regime [79]. Notice that in the same way in which requiring detailed bal-
ance on Φ and Φ̃ for classical dynamics basically defines the Bayes’ inver-
sion, the same happens for the Petz’ recovery map. Moreover, Eq. (3.97)
reduces to the usual definition of detailed balance for stochastic maps
if all the quantities in the equation are classical. Finally, also notice
that condition 3 also implies that Φ̃Φ(π) = π (see Sec. 1.5.5), so this
requirement also encodes the fact that π is preserved by the composed
dynamics.

It came as a surprise that these conditions are not sufficient to single
out Bayes’ reverse or the Petz recovery. In fact, we found in [2] that
one can define a whole class of possible recovery maps, and optimise over
them to obtain the best state retrieval channel. This topic is explored
in App. C, where it is shown that the optimal state retrieval map out-
performs both Bayes’ and Petz’ maps on the task of guessing the initial
state of an evolution.

In order to single out Bayes’ reverse map, we propose the following
extra axiom:

5. The reversal is an involutive operations, meaning that ˜̃Φ = Φ.

This request encodes the usual intuition that the reverting twice the
time direction should leave the evolution unaffected. The optimal map
we mentioned above does not satisfy this last axiom, but both Bayes’ and
Petz’ maps do, so if one could prove that these are the only two cases in
which condition 5 holds we would have a physically motivated foundation
of time reversals for open system dynamics. Unfortunately, we were only
able to find strong numerical evidences that this is the case for classical
dynamics (see App. C) but we weren’t able to present an analytical proof
of this fact. Still, the evidences collected so far are enough to hope for a
positive solution of the problem.





Chapter 4

Thermodynamic
transformations close to
equilibrium

Once the tendency of systems to thermalisation is established, one can
study the way in which energy transfers from one system to another us-
ing the thermodynamic formalism. Assuming the continuous thermality
of the system during a transformation, for example, one can find uni-
versal results which allow the expression of the second law in terms of
the maximum efficiency of an engine (the famous Carnot formulation).
When finite time effects are included, though, the situation becomes sig-
nificantly more involved, as non-equilibrium processes usually depend on
the specific initial state of the system, the trajectory in the Hamiltonian
space and the speed at which the transformation is realised. Midway
between these two extreme situations lies the slow driving regime: in this
case, by assuming that the transformation is realised in very large but
finite time, one finds that the system is always close to equilibrium. As
a consequence, this allows to significantly reduce the complexity of the
problem, which turns out to be completely describable in terms of differ-
ential geometrical quantities defined on the space of thermal states. In
fact, it can be shown that the cumulant generating function of the work
in the TPM scheme can be expressed solely in terms of Fisher informa-
tion metrics. Moreover, the slow driving expansion of the average entropy
production defines a metric structure whose geodesics correspond to min-
imally dissipating protocols. In the same way, also the fluctuations in the
entropy production define a metric, which coincides with the first only

133
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for classical systems, providing a signature of the creation of quantum co-
herence during the protocol. Even if these effects cannot be contextual,
as they are defined in the TPM scheme, we also show that restricting the
study to the slow driving regime is not an impediment to the appearance
of genuinely quantum effects.

4.1 Ideal thermodynamics

The natural space in which thermodynamic protocols take place is given
by the set of pairs (H, ρ), where H is the Hamiltonian of the system and
ρ is its state. Then, thermodynamics transformations can be thought
as trajectories in this space, where the pair (Ht, ρt) describes the state
of the system and its Hamiltonian for each time. In this context, ideal
transformations are those for which the only points in the trajectories are
of the form (H,πβ(H)).

In particular, define the isothermal slice at inverse temperature β as
the set

⋃
H {(H,πβ(H))}. Then, an isothermal transformation is one

that lies completely in a single isothermal slice, and can be thought as
the the zeroth order approximation to protocols whose duration τ is much
greater than any thermalisation timescale of the system. Interestingly, in
this case the work becomes a function of state, i.e., it does not depend
on the specific trajectory in the thermodynamic space, but only on its
endpoints. In fact, by looking at the CGF (Eq. (2.28)) in this case one
finds:

K−βw(λ) = log

∫
dw p(w)e−βwλ = (4.1)

= −λβ∆F + (λ− 1)Sλ(πβ(Hτ )||Uτπβ(H0)U
†
τ ) = (4.2)

= −λβ∆F , (4.3)

where in the last line we used the assumption that τ is long enough for the
evolved state to be effectively thermal. If one takes the inverse Fourier
transform of the last equation, it is easy to show that the corresponding
work distribution is a δ-function centred in ∆F , meaning that the work
output becomes deterministic and only depends on Hτ and H0.

The other fundamental type of ideal trajectory is given by the adia-
batic transformations, corresponding to protocols (Ht, πβt(Ht)) such that
the product βtHt is constant along the trajectory. Since thermal states
only depend on this product, and not on the specific value of βt or Ht,
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Figure 4.1: Depiction of a Carnot cycle in the thermodynamic space and
in the β−S plane (where β is the inverse temperature and S the entropy).
Different isothermal slices are represented with different colours, and the
dashed lines connecting them correspond to the adiabatic quench. In the
β − S plane horizontal lines correspond to isothermal transformations,
while the vertical lines corresponds to the adiabatic quenches.

the state does not change during the transformation, and no heat is ex-
changed with the environment. Hence, the work can be identified with
the change of energy, and there is no increase of entropy during the trans-
formation. If the adiabatic is realised in a single quench H1 → H2 the
average work performed is given by:

⟨w⟩ = Tr [H2 πβ2(H2)]− Tr [H1 πβ1(H1)] = (4.4)
= Tr [(H2 −H1)πβ1(H1)] = (4.5)

= Tr

[(
β1
β2
H1 −H1

)
πβ1(H1)

]
= (4.6)

=

(
β1
β2
− 1

)
Tr [H1 πβ1(H1)] =

(
β1
β2
− 1

)
U1 , (4.7)

where we used the condition πβ1(H1) = πβ2(H2) to group the differ-
ence in average energies, together with the defining property of adiabatic
transformations β1H1 = β2H2.

It should be noticed that every ideal transformation can be approx-
imated arbitrarily well just in terms of isothermal and adiabatic trans-
formations: in fact, one can rectify the original trajectory in terms of
horizontal (within an isothermal slice) and vertical (connecting different
slices) lines, obtaining an arbitrary good approximation. Then, it is just
sufficient to notice that isothermal transformations completely lie in a
single slice, while adiabatics connect different slices.
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Since the isothermal work is a function of state, the only way of ex-
tracting work along a cycle is by connecting different isothermal slices (in
fact, otherwise the cyclicity condition would imply w = ∆F = 0, since
the initial and final Hamiltonian coincide). Then, the minimal variation
is obtained by connecting two isothermals through adiabatic quenches,
realising the famous Carnot cycle. It is worthwhile to look at this pro-
tocol more closely. During the hot isothermal an amount |Qh| of heat is
transferred from the bath to the system, while during the cold isothermal
an amount Qc passes from the system to the bath. Thanks to Eq. (4.3),
by applying the first law one obtains Q = ∆F −∆U = −β−1∆S, as one
would expect from the fact that there is no dissipation during the isother-
mal transformation. Moreover, thanks to the adiabaticity condition we
also have that the heat exchanged during the isothermals satisfies:

βhQh = −∆Sh = −(S(πβh(H2))− S(πβh(H1))) = (4.8)
= − (S(πβc(H3))− S(πβc(H4))) = (4.9)
= ∆Sc = −βcQc , (4.10)

where we used the same convention for Hi as in Fig. 4.1. We also define
w to be the overall average work absorbed by the system during the cycle
(notice that the sign convention follows the one used in the definition of
the first law, Eq. (2.5)). The first law implies that the total change of
energy during the cycle is given by ∆U = w − Qc − Qh = 0, where the
last equality imposes the conservation of energy along the cycle. Then,
by defining the efficiency of the Carnot engine to be the ratio between the
work output (i.e., −w) and the heat absorbed (i.e., −Qh), one obtains:

ηC : =
⟨w⟩
|Qh|

=
Qc +Qh
Qh

= 1 +
Qc
Qh

= (4.11)

= 1− βh
βc
. (4.12)

The expression in Eq. (4.12) sets a limit to the maximum efficiency of
any engine operating between two thermal reservoirs. As a matter of fact,
this result is equivalent to the second law, and indeed constitutes its first
formulation ever. Suppose in fact an engine operating between two baths
at the same temperature whose efficiency is higher. From Eq. (4.11) and
Eq. (4.12) this would mean that Qc +Qh < Qh − βh

βc
Qh (notice that the

inequality get reversed since Qh is negative). But then, one would have
that the exchange of heat during the cycle satisfies βcQc + βhQh < 0 in
contradiction with the formulation of the second law in Eq. (3.14).
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Additionally, the Carnot engine can be used to define a scale of tem-
perature, as it is apparent from Eq. (4.12). In fact, once the zero-th
law of thermodynamics is established (the fact that thermal baths can
be grouped in equivalence classes labelled by a parameter called temper-
ature), Eq. (4.12) says that any Carnot engine operating between two
baths has an efficiency that only depends on their temperatures. This
means that the ratio between the heat transfer during the cold and hot
isothermal can be expressed as:

Qc
Qh

= f(Tc, Th) , (4.13)

where f(Tc, Th) is a general function of the temperatures Tc/h. Then,
since the same efficiency should also be given by a cycle that uses an
intermediate bath at temperature Ti, the following equality holds:

f(Tc, Th) =
Qc
Qh

= −Qc
Qi

Qi
Qh

= −f(Tc, Ti)f(Ti, Th) . (4.14)

Whereas the left hand side depends only on Tc and Th, the right hand
side contains the additional variable Ti. This implies that the defining
function must be of the form:

f(Tc, Th) = −
g(Tc)

g(Th)
, (4.15)

where g(T ) is an arbitrary monotonic function. For simplicity, one choses
the convention that g is linear, i.e., g(T ) := T , which gives back the
expression in Eq. (4.12) constructively. Moreover, once a conventional
standard temperature is chosen (say the triple-point of the water), a scale
can in principle be defined exactly through the use of a Carnot cycles be-
tween a bath at the standard temperature and the target temperature
one wants to measure. On the one hand, this results demonstrates that
the temperature scale is a derived concept, once the zero-th and second
law of thermodynamics are established. On the other, it shows that op-
timising Carnot engines, even without any practical application for work
extraction, can yield improvement in the way temperature is measured.

4.2 Thermodynamics close to equilibrium

The assumption that the system is always at equilibrium completely
erases any dependency on the dynamics. In general, though, one needs
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to know the complete evolution Ut in order to describe the statistics of
work, as it is apparent from the expression of the CGF in Eq. (2.28). In
this context, the assumption of slow driving regime is key to allow for
results that are universal, but that do not depend on the totality of the
previous history of the system. Indeed, whereas deriving the thermali-
sation of local variables directly from the unitary evolution Ut is quite a
non-trivial task, once this fact is established many interesting results can
be derived from this approximation, as the description of the system is
at the right level of abstractness.

In the same way, if one is allowed to assume that the state of the
system satisfies ρt := Utπβ(H0)U

†
t ≃ πβ(Ht) + εδρt for all times (with

ε ≪ 1), a number of universal results can be proven, which characterise
the property of slowly driven systems. Indeed, to this end, let us consider
again the CGF, which can be rewritten as:

Kdiss(λ) := K−β(w−∆F )(λ) = (λ− 1)Sλ(πβ(Hτ )||ρτ ) = (4.16)

= (λ− 1)

∫ τ

0
dt

d

dt
Sλ(πβ(Ht)||ρt) = (4.17)

= (λ− 1)

∫ τ

0
dt

(
d

ds
Sλ(πβ(Hs)||ρt) +

d

ds
Sλ(πβ(Ht)||ρs)

) ∣∣∣∣
s=t

,

(4.18)

where we isolated the dissipative component by considering the distri-
bution of the variable β(w − ∆F ) ≡ Σ, and we passed to the integral
expression so to be able to apply the slow driving expansion. Indeed,
even if ρt ≃ πβ(Ht)+εδρt for each t, the correction to this equality could
in principle build up with time. For this reason, one can substitute ρt
with its slow-driving approximation only when treating quantities local
in time, as for example the integrand of Eq. (4.18). Now, it should be
noticed that the second term in Eq. (4.18) does not contribute to the
integral. Indeed, by explicitly carrying out the differentiation one has:

(λ− 1)
d

ds
Sλ(πβ(Ht)||ρs)

∣∣∣∣
s=t

=
d

ds
log Tr

[
πβ(Ht)

λρ1−λs

]
= (4.19)

= −i
Tr
[
πβ(Ht)

λ [Ht, ρ
1−λ
t ]

]
Tr
[
πβ(Ht)λρ

1−λ
t

] = −i
Tr
[
[Ht, πβ(Ht)

λ] ρ1−λt

]
Tr
[
πβ(Ht)λρ

1−λ
t

] = 0 ,

(4.20)

where we used the fact that ρ1−λt = Utπβ(H0)
1−λU †t to take the derivative

of the state, and in the last step we used the cyclicity of the trace to
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transfer the commutator on the thermal state, which clearly commutes
with Ht.

We are now ready to use the slow-driving approximation. This is
given by:

Kdiss(λ)

λ− 1
≃
∫ τ

0
dt

d

ds
Sλ(πβ(Hs)||πβ(Ht) + εδρt)

∣∣∣∣
s=t

≃ (4.21)

≃
∫ τ

0
dt ε

∂2

∂ε1∂ε2
Sλ(πβ(Ht+ε1)||πβ(Ht) + ε2δρt)

∣∣∣∣
ε1,ε2=0

= (4.22)

=
ε

λ− 1

∫ τ

0
dt

∫ λ

0
dx

∫ 1−x

x
dy covyt (J

−1
t,L

[
d

dt
πβ(Ht)

]
, J−1t,L[δρt]) ,

(4.23)

where in the last line we used the expansion of the λ-Rényi entropy ob-
tained in Eq. (1.180), and the shorthand notation covyt := covyπβ(Ht)

and
Jt,L := JL

∣∣
πβ(Ht)

for the Fisher information operator associated with the
expansion of the relative entropy. It should be noticed that the extra
minus compared with the expression in Eq. (1.180) comes from differen-
tiating in the two arguments of the Rényi entropy, see Eq. (1.60). Finally,
it should also be noticed that the derivative of the thermal state takes
the form:

d

dt
πβ(Ht) =

d

dt

(
e−βHt

Tr [e−βHt ]

)
= (4.24)

= −β

(
Jt,L[Ḣt]−

e−βHt

Tr [e−βHt ]
2Tr

[
e−βHtḢt

])
= (4.25)

= −β Jt,L[Ḣt −
〈
Ḣt

〉
πβ(Ht)

1] := −β Jt,L[∆Ḣt] , (4.26)

where we used the Dyson series for the exponential (as explained below
Eq. (1.211)) and the cyclicity of the trace to transform the derivative of
the partition function in an average, and finally we implicitly defined the
operator ∆Ḣt := Ḣt −

〈
Ḣt

〉
πβ(Ht)

1.

Hence, the slow driving limit of the dissipative CGF takes the form:

Kdiss(λ) = −β
∫ τ

0
dt

∫ λ

0
dx

∫ 1−x

x
dy covyt (∆Ḣt, J−1t,L[εδρt]) , (4.27)

The one presented above serves as a more simple version of the derivation
given in [7].
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We can discuss now the two main frameworks in which one can use the
slow driving expansion. First, consider an evolution given by a sequence
of infinitesimal quenches followed by a complete thermalisation. This
scenario is particularly appealing because it allows for an unambiguous
separation between work and heat: in fact, since during the quench the
system is effectively isolated, the change of energy during this step is
constituted completely by work; similarly, during the thermalisation, as
the Hamiltonian stay fixed, the change of energy is solely given by the
transfer of heat. Moreover, since one always starts in thermal equilibrium,
the work defined according to WWS coincides with the TPM scheme.
Then, considering a sequence of quenches of the form H1 → H2 → · · · →
HN , where Hi+1−Hi ≃ Ḣi

N , one can approximate the discrete trajectory
by a continuous path Ht with t ∈ [0, N ]. Since the thermalisation step
completely erases all the informations about the previous step, the work
output at each step is completely independent from all the other steps.
For this reason, the CGF in this context is given by:

K−βw(λ) =

N∑
i=1

log

∫
dwi p(wi)e

−βwiλ = (4.28)

= −λβ∆F + (λ− 1)
N∑
i=1

Sλ(πβ(Hi+1)||πβ(Hi)) = (4.29)

= −λβ∆F + (λ− 1)

∫ N

0
dt

1

N

d

ds
Sλ(πβ(Hs)||πβ(Ht))

∣∣∣∣
s=t

, (4.30)

where in Eq. (4.28) we used the fact that the CGF of a sum of independent
variables is just the sum of the single CGF, then in Eq. (4.29) one can
read the sum of dissipative CGF of a single quench (and we highlighted
the total difference in free energy), and in the last step we used the
approximation Sλ(πβ(Hi+1)||πβ(Hi)) ≃ 1

N
d
ds Sλ(πβ(Hs)||πβ(Ht))

∣∣
s=t

to
pass to the integral. Without even the need to pass from Eq. (4.21) we
can now give the expression for the dissipative CGF as:

Kdiss(λ) = (λ− 1)

∫ N

0
dt Sλ(πβ(Ht)−

β

N
Jt,L[∆Ḣt]||πβ(Ht)) = (4.31)

= − β2

2N2

∫ N

0
dt

∫ λ

0
dx

∫ 1−x

x
dy covyt (∆Ḣt, ∆Ḣt) = (4.32)

= − β2

2N

∫ 1

0
ds

∫ λ

0
dx

∫ 1−x

x
dy covyNs(∆ḢNs, ∆ḢNs) , (4.33)
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where in the last line we changed the variables as t → (Ns) in order
to highlight the scaling of the dissipative CGF, which goes to zero as
1/N . Indeed, in the limit N → ∞ the system is effectively always at
equilibrium, so there should be no dissipation.

Another standard situation worth exploring is the one in which the
state evolves according to the driven Lindbladian equation;

ρ̇t = Lt(ρt) ; Lt(πβ(Ht)) = 0 , (4.34)

meaning we have a Markovian evolution such that the thermal state cor-
responding to the driven Hamiltonian Ht is the instantaneous fixed point
of the dynamics. Moreover, we also assume that this is the unique equi-
librium state of the evolution. Then, if the duration of the protocol goes
to infinity, it is clear that for each Ht the system would be in the corre-
sponding thermal state. With this hindsight in mind, it is useful to write
the state of the system as ρt := πβ(Ht) + δρt and to pass to the variable
s := t/τ , so that s ∈ [0, 1]. Then, the Lindbladian equation transforms
to:

d

ds
(πβ(Hτs) + δρτs) = τ

d

dt
ρt = τ Lτs(δρτs) . (4.35)

We can now solve for δρt. First, in order to invert the Lindbladian we need
to introduce the concept of Drazin inverse L+t . This is a pseudoinverse
satisfying the following three conditions for any trace-class operator A:

1. given the fixed point πβ(Ht) of Lt, it holds that L+t (πβ(Ht)) = 0;

2. it maps operators to traceless operators, i.e., Tr
[
L+t (A)

]
= 0;

3. for any trace class operator A, it holds that:

L+L(A) = LL+(A) = A− πβ(Ht)Tr [A] . (4.36)

Interestingly, if a Drazin inverse can be found, then it is unique [9]. In-
deed, the following functional expression:

L+t (A) := −
∫ ∞
0

dν eνLt(A− πβ(Ht)Tr [A]) (4.37)

satisfies all the conditions above, as it can be verified from direct calcula-
tion, proving the existence of the Drazin inverse. Then, by applying L+t
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on both sides of Eq. (4.35) and grouping the terms containing δρt on the
left, we obtain:(

I− 1

τ
L+τs

d

ds

)
(δρτs) =

1

τ
L+t
(

d

ds
πβ(Hτs)

)
. (4.38)

Finally, for τ long enough one can invert the operator on the left to obtain
the perturbative expansion:

δρt =
∞∑
i=1

(
L+t

d

dt

)n
(πβ(Ht)) = −βL+t (Jt,L[∆Ḣt]) +O

(
1

τ2

)
, (4.39)

where in the limit τ ≫ 1 we can keep just the first term. Then, in this
case the CGF in Eq. (4.27) takes the form:

Kdiss(λ) = β2
∫ τ

0
dt

∫ λ

0
dx

∫ 1−x

x
dy covyt (∆Ḣt, J−1t,L[L

+
t (Jt,L[∆Ḣt])]) .

(4.40)

It should be noticed that if the thermalisation timescales are all equal,
then one obtains back the expression from Eq. (4.33). Indeed, this corre-
sponds to setting L+t = −τ eq 12 . This correspondence will be made more
precise in the next section.

A standard assumption in this context is that the Lindbladian is de-
tailed balance at each time, which implies that J−1t,LL

+
t Jt,L = (L†t)+. This

reads:

(L†t)+(A) := −
∫ ∞
0

dν eνL
†
t (A− 1Tr [Aπβ(Ht)]) . (4.41)

Since Tr
[
∆Ḣt πβ(Ht)

]
= Tr

[
Ḣt πβ(Ht)

]
− Tr

[
Ḣt πβ(Ht)

]
= 0, for de-

tailed balance Lindbladians the expression in Eq. (4.40) simplifies to:

Kdiss(λ) = β2
∫ τ

0
dt

∫ ∞
0

dν

∫ λ

0
dx

∫ 1−x

x
dy covyt (∆Ḣt, e

νL†t (∆Ḣt)) ,

(4.42)

where we can interpret the integrand as the autocorrelation function of
∆Ḣt as measured by the y-covariance.

Now that the general structure of the statistics of work close to equi-
librium has been laid down, we can start studying more fine-grained prop-
erties.
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4.3 Average dissipation and the emergence of a
metric structure

Average quantities play a central role in thermodynamics. Indeed, when-
ever a rule holds in classical thermodynamics (without fluctuations), then
it can be translated to the stochastic framework by taking the average of
each random variable. The reason for this is that for macroscopic systems
the fluctuations around the average go to zero, and the system becomes
effectively deterministic, so that all the quantities of interest collapse on
their average value. Hence, any result in classical thermodynamics can
be directly translated to the corresponding averaged equation.

In particular, we remind the reader that the first cumulant of a
stochastic variable coincides with its average, so we can compute the
average work from the expression:

⟨w⟩ = −β−1 d

dλ
K−βw(λ)

∣∣∣∣
λ=0

= (4.43)

= ∆F − β−1 d

dλ
((λ− 1)Sλ(πβ(Hτ )||ρτ ))

∣∣∣∣
λ=0

. (4.44)

Using the integral expression in Eq. (1.169) to express the Rényi entropy,
we can compute the average dissipation as:

⟨Σ⟩ = β(⟨w⟩ −∆F ) = (4.45)

= − d

dλ
log

(
1 +

∫ λ

0
dx Tr

[
πβ(Hτ )

x(log πβ(Hτ )− log ρτ )ρ
1−x
τ

])
=

(4.46)

= −Tr [(log πβ(Hτ )− log ρτ )ρτ ] = S(ρτ ||πβ(Hτ )) . (4.47)

The expression just obtained connects the average irreversibility with the
distinguishability between the evolved state and the final thermal state
as measured by the relative entropy. We remind the reader that a similar
application of the Kullback-Leibler divergence had been pointed out in
Eq. (1.209), where it was used to divide the out of equilibrium free energy
into an equilibrium contribution and a term quantifying the distance from
the thermal state.

Thanks to the positivity of the relative entropy, Eq. (4.47) directly
implies the second law:

⟨Σ⟩ = S(ρτ ||πβ(Hτ )) ≥ 0 , (4.48)
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with equality if and only if the final state is exactly thermal, i.e., only
in the infinite time limit. Notice that all the information about the his-
tory of the evolution is completely contained in ρτ . Yet, if the dynamics
is Markovian, this description is not satisfactory, and a better suited ap-
proach is to examine how work (or dissipation) is created instantaneously.
To this end, we can use Eq. (2.35), to express the average work of a system
starting at equilibrium as:

⟨w⟩ =
∫ τ

0
dt Tr

[
ρtḢt

]
= (4.49)

= −β−1
∫ τ

0
dt

(
Tr

[
ρt

d

dt
log

e−βHt

Zt

]
− d

dt
logZt

)
= (4.50)

= ∆F + β−1
∫ τ

0
dt

d

ds
S(ρt||πβ(Hs))

∣∣∣∣
s=t

, (4.51)

where now ρt is the effective state of the system at each time, and we
performed the integral over the logarithm of the partition function to
get the difference in free energy. Then, the average dissipation can be
rewritten as:

⟨Σ⟩ =
∫ τ

0
dt

d

ds
S(ρt||πβ(Hs))

∣∣∣∣
s=t

= (4.52)

=

∫ τ

0
dt

(
d

dt
S(ρt||πβ(Ht))−

d

ds
S(ρs||πβ(Ht))

∣∣∣∣
s=t

)
= (4.53)

= S(ρτ ||πβ(Hτ )) +

∫ τ

0
dt

(
− d

ds
S(ρs||πβ(Ht))

∣∣∣∣
s=t

)
, (4.54)

where it is important to keep in mind that, despite using the same no-
tation, the ρτ in this expression and the one in Eq. (4.48) are different:
whereas in Eq. (4.48) all the information about the dynamics is encoded
in the state, in the equation above, due to the Markovianity of the evolu-
tion, ρτ is the effective state of the system which only retains informations
that are local in time.

We can now analyse the two contributions to Eq. (4.54). As explained
above, the first term in the equation only depends on the endpoints and
it is a measure of the amount of the non-equilibrium free energy left
in the state ρτ . On the other hand, since πβ(Ht) is the fixed state of
the dynamics at time t, it follows from the monotonicity of the relative
entropy that the integrand in Eq. (4.54) (which we denote by ⟨Σ̇t⟩) is
positive for Markovian evolutions (i.e., CP-divisible), and zero if and
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only if the system is always at thermal equilibrium ρt ≡ πβ(Ht). Hence,
in the limit τ →∞ one reaches the minimum of ⟨Σ̇t⟩.

This consideration suggests the following expansion. Denote by {λit}
the time dependent scalar parameters of the evolution (see, for example,
the canonical decomposition of a driven Hamiltonian in Eq. (2.1)). In
the limit of slow driving, one expects that λ̇it → 0. Then, one can expand
the average dissipation rate around this limit to obtain:

⟨Σ̇t⟩ = λ̇it����∂i ⟨Σ̇t⟩
∣∣
{λ̇t}≡0 + λ̇it

(
∂i∂j ⟨Σ̇t⟩

∣∣
{λ̇t}≡0

)
λ̇jt +O

(
||λ̇||3

)
, (4.55)

where we denote by ∂i = ∂
∂λit

and we implicitly sum over repeated indices.
It should also be noticed that the first derivative cancels since we are
expanding around a minimum. For the same reason, we know that the
Hessian (gi,j)t = ∂i∂j ⟨Σ̇t⟩

∣∣
{λ̇t}≡0 is a positive definite matrix. Hence, the

average dissipation can be approximated for τ →∞ by:

⟨Σ⟩ =
∫
γ
dt λ̇it (gi,j)tλ̇

j
t +O

(
1

τ2

)
, (4.56)

where we used the notation γ to denote the trajectory of the driving in
the parameter space.

It is interesting to study the properties of (gi,j)t. First, notice that
from standard arguments in linear response theory it follows that it should
depend smoothly on the thermal state πβ(Ht). Moreover, as it was argued
above it is positive definite and symmetric, being the Hessian of a function
around its minimum. These three properties (smoothness, positivity and
symmetry) make (gi,j)t a metric on the space of parameters. Indeed, we
can interpret Eq. (4.56) as the energy functional or the action of the curve
γ with respect to the metric g [40]. This name comes from the formal
analogy between Eq. (4.56) and the action of a system of free particles
with mass tensor given by g.

The mathematical formalism that one introduces in this way, rather
than being solely a theoretical framework in which to describe the same
phenomenology, also has practical applications, and offers a set of pow-
erful tools to give very general results about the entropy production. For
example, it is a standard result in differential geometry (corresponding to
locally applying the Cauchy-Schwarz inequality), that the energy func-
tional of a curve γ is bounded by its length squared. This translates to
the following bound on the average dissipation:

⟨Σ⟩ ≥ 1

τ
ℓ2γ , (4.57)
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where the length of γ is defined as:

ℓγ =

∫
γ
dt

√
λ̇it (gi,j)tλ̇

j
t . (4.58)

Eq. (4.57) takes the name of “thermodynamic length inequality” [80] and
shows that for slow driving systems the geodesic distance between two
points naturally corresponds to the square of the minimal dissipation.
Indeed, the inequality in Eq. (4.57) can be saturated if γ is a geodesic.
Looking at what this means from the point of view of Cauchy-Schwarz,

the equality in Eq. (4.57) corresponds to the request that
√
λ̇it (gi,j)tλ̇

j
t

is parallel to the constant function with respect to the L2 scalar product.
Since in this case being parallel corresponds to being proportional to
each other, it turns out that optimal curves are characterised by having
a constant entropy production rate ⟨Σ̇t⟩. This behaviour is exemplified
in Fig. 4.2, where the Landauer erasure of a qubit is realised through a
linear and a geodesic protocol. Especially in the last panel it becomes
apparent that the geodesic drive distributes the entropy production more
uniformly during the protocol.

Apart from giving insights on the nature of dissipation, introducing
a metric structure can also have practical applications in the design of
minimally dissipating protocols. Indeed, without needing to pass from
the interpretation above, one can directly solve a system of differential
equations, the geodesic equations, to obtain the optimal driving. These
read:

λ̈it + Γij,k
∣∣
λt
λ̇jt λ̇

k
t = 0 , (4.59)

where we again sum over repeated indices, and Γij,k denote the Christoffel
symbols, which are given by:

Γij,k|λt =
1

2
gi,l (∂jgl,k + ∂kgj,l − ∂lgj,k) |λt . (4.60)

Here, gi,l is the inverse of the metric, and we use the shorthand notation
∂igj,k|λt ≡ (∂gj,k/∂λi)|λ=λt . Indeed, we obtained the optimal drive in
Fig. 4.2 exactly through this method.

It should be noticed that the dissipation resulting from a geodesic
drive can, in fact, behave significantly different from the one of suboptimal
protocols. Consider again the Landauer erasure presented above, i.e., a
qubit driven with the Hamiltonian Ht = E(t) |1⟩⟨1 |. In Fig. 4.3 we
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Figure 4.2: Comparison of a geodesic drive of a qubit with the cor-
responding linear protocol, where the Hamiltonian is varied as: Ht =
E(t) |1⟩⟨1 |. The first panel compares the two drivings. If one looks at
the populations of the excited state for each energy (the numbers in grey),
it is apparent that the geodesics is slower when the state is highly popu-
lated, and ramps up at the end of the protocol. Comparing this behaviour
with the expression of the work in Eq. (4.49) gives an intuition of why
this protocol is optimal. The last two panels show the entropy produc-
tion rate for a fast and a slow realisation of the protocol. The solid lines
are the theory prediction, while the dotted lines corresponds to actual
experimental data from [3]. As it is apparent, the geodesic drive tends
to a more uniform distribution of the entropy production. Interestingly,
this effect appears already for fast driving speed.

Figure 4.3: Comparison between the dissipation for a linear drive and
a geodesic drive of Ht = E(t) |1⟩⟨1 |, as a function of the final energy
E(τ). The first panel shows the limit limτ→∞ τ⟨Σ⟩, which singles out
the slow driving contribution. The other two panels show the data for
finite times (solid lines correspond to the theoretical predictions, while
the points are measured in the experiment [3]). Notice that in the last
two panels we plot the average heat and not the average dissipation. The
grey line corresponds to the ideal case, ⟨∆Q⟩ = −β−1∆S.
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plot the dissipation as a function of the final energy E(τ). In particular,
in the first panel we consider the asymptotic behaviour of the τ⟨Σ⟩ in
the limit τ → ∞. In this way, the only term surviving is the integral
in Eq. (4.56). Then, it can be seen that as E(τ) → ∞ the dissipation
associated with the linear drive diverges, while in the case of a geodesic
drive it saturates to a constant. This stark difference can also be noticed
when finite time effects are taken into account (interestingly, also for
relatively fast drivings, as in the middle panel of Fig. 4.3).

4.3.1 Metric structure in different frameworks

Another strength of the geometric approach is its flexibility. Indeed,
the metric g can be explicitly computed in many frameworks: as it was
explained in [6] the same structural form can be obtained for a system
undergoing quenches, for slowly driven Lindbladian dynamics, or even in
the linear response regime of a unitary evolution. For example, by direct
differentiation of Eq. (4.33) one can easily obtain:

⟨Σ⟩ = d

dλ

β2

2N

∫ 1

0
ds

∫ λ

0
dx

∫ 1−x

x
dy covyNs(∆ḢNs, ∆ḢNs)

∣∣∣∣
λ=0

=

(4.61)

=
β2

2N

∫ 1

0
ds

∫ 1

0
dy covyNs(∆ḢNs, ∆ḢNs) = (4.62)

=
β2

2N

∫ 1

0
ds Tr

[
∆ḢNs Jt,L[∆ḢNs]

]
, (4.63)

where in the last line we used the definition of Jt,L in terms of the y-
covariance. This metric is well known in statistical mechanics and takes
the name of Kubo-Mori-Bogoliubov (KMB) inner product (see Sec. 1.4.6).
Moreover, thanks to the relation in Eq. (1.215), one can rewrite the av-
erage dissipation for quenched systems in terms of the second derivative
of the free energy, i.e.:

⟨Σ⟩ = β2

2N

∫ 1

0
ds

∂2

∂ε1∂ε2
logZHNs+ε1∆ḢNs+ε2∆ḢNs

∣∣∣∣
ε1,ε2=0

= (4.64)

= − β3

2N

∫ 1

0
ds

∂2

∂ε1∂ε2
F (HNs + ε1∆ḢNs + ε2∆ḢNs)

∣∣∣∣
ε1,ε2=0

.

(4.65)

This equality shows how dissipation in the linear regime is related to
the susceptibility of the free energy along the trajectory (a fact that
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was already noticed in the classical scenario in [80–84]). This behaviour
constitutes the backbone of average entropy production, and any mod-
ifications only account for the different equilibration timescales present
in the system. Notice in fact that for the quench model the thermali-
sation steps imposes a unique timescale for all the degree of freedom of
the system, which simplifies the dynamics and allows for the derivation
of cleaner results.

In order to make the discussion above more precise, consider now the
average dissipation associated to a Lindbladian dynamics. Differentiating
Eq. (4.40), we obtain:

⟨Σ⟩ = − d

dλ
β2
∫ τ

0
dt

∫ λ

0
dx

∫ 1−x

x
dy covyt (∆Ḣt, J−1t,L[L

+
t (Jt,L[∆Ḣt])])

∣∣∣∣
λ=0

=

(4.66)

= −β2
∫ τ

0
dt

∫ 1

0
dy covyt (∆Ḣt, J−1t,L[L

+
t (Jt,L[∆Ḣt])]) = (4.67)

= −β2
∫ τ

0
dt Tr

[
∆Ḣt Jt,L[J−1t,L[L

+
t (Jt,L[∆Ḣt])]]

]
= (4.68)

= −β2
∫ τ

0
dt Tr

[
∆Ḣt L+t (Jt,L[∆Ḣt])

]
, (4.69)

where in Eq. (4.68) we used the expression of Jt,L in terms of the y-
covariance, and in the last step we simplified the two KMB inner products.
We can highlight the fact that the trace in Eq. (4.69) is real by rewriting
it as:

⟨Σ⟩ = −β2
∫ τ

0
dt Tr

[
Jt,L[(L+t )†(∆Ḣt)]∆Ḣt

]
= (4.70)

= −β
2

2

∫ τ

0
dt Tr

[
∆Ḣt

(
L+t + Jt,L(L+t )†J

−1
t,L

)
(Jt,L[∆Ḣt])

]
, (4.71)

where in the first line we moved the two operators from the right to the
left, and in the second step we used the cyclicity of the trace to add
Eq. (4.69) and Eq. (4.70). It should be noticed that if L is detailed bal-
ance, then the two contributions in the curved brackets coincide and one
obtains again the original expression (i.e., since L is self-adjoint with re-
spect to all the Fisher metrics, one does not need to manipulate Eq. (4.69)
to make it evidently real).
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Suppose now that the original Lindbladian has right eigenoperators
given by {Xi

t} and left eigenoperators given by {Y i
t }, meaning that:

Lt(Xi
t) = −

1

τ it
Xi
t ; Jt,L ◦ L†t ◦ J

−1
t,L(Y

i
t ) = −

1

τ̃ it
Y i
t . (4.72)

It should be noticed that whereas the definition of the right eigenoperator
is unambiguous, in the left eigenoperators one also has the freedom to
choose the scalar product with respect to which to define them (in this
case we used the Fisher metric J−1t,L). It should be noticed, though, that
both {Xi

t} and {Y i
t } can be chosen to be Hermitian operators, since Lt

is Hermitian preserving. Hence, without loss of generality we assume
self-adjointness of both left and right eigenoperators.

By assumption πβ(Ht) is always a right eigenoperator with eigenvalue
zero, i.e., Lt(πβ(Ht)) = 0. Moreover, it is also a left eigenoperator, since
one has that:

Jt,L ◦ L†t ◦ J
−1
t,L(πβ(Ht)) = Jt,L ◦ L†t(1) = 0 , (4.73)

where in the last step we used the fact that in order for the Lindbladian
to generate a trace preserving evolution, it should hold that L†t(1) = 0.
This directly implies that:

Tr
[
Xi
t

]
= Tr

[
Xi
t

]
= −τ it Tr

[
Lt(Xi

t)
]
= −τ it Tr

[
L†t(1)Xi

t

]
= 0 ; (4.74)

Tr
[
Y i
t

]
= −τ̃ it Tr

[
Jt,L L†t J

−1
t,L(Y

i
t )
]
= −τ̃ it Tr

[
J−1t,L(Y

i
t )Lt(Jt,L[1])

]
= 0 ,

(4.75)

where in the last step one uses Jt,L[1] = πβ(Ht). Moreover, it is also
straightforward to verify that:

Tr
[
Xi
t J−1t,L[Y

j
t ]
]
= −τ it Tr

[
Lt(Xi

t) J−1t,L[Y
j
t ]
]

(4.76)

= −τ it Tr
[
Xi
t J−1t,L

[
Jt,L(L†t)J

−1
t,L[Y

j
t ]
]]

= (4.77)

=
τ it

τ̃ jt
Tr
[
Xi
t J−1t,L[Y

j
t ]
]
. (4.78)

Hence, in order to have consistency Tr
[
Xi
t J−1t,L[Y

j
t ]
]
= δi,j should hold

(where we impose without loss of generality that the scalar product is
normalised) and τ it = τ̃ it . Hence, there is an unambiguous definition for
the eigenvalues.
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The considerations above allow us to express the Drazin inverse di-
rectly in terms of the thermalisation timescales τ it , i.e.,

L+t (Xi
t) : = −

∫ ∞
0

dν eνLt(Xi
t − πβ(Ht)Tr

[
Xi
t

]
) = (4.79)

=

(
−
∫ ∞
0

dν e−ν/τ
i
t

)
Xi
t = −τ it Xi

t . (4.80)

Indeed, any pseudoinverse coincides with the actual inverse in the sub-
space in which the original map is full-rank. Moreover, one also has that:

Jt,L(L+t )†J
−1
t,L(Y

i
t ) := (4.81)

= −
∫ ∞
0

dν eνJt,L(L
+
t )†J−1

t,L(Y i
t − πβ(Ht)Tr

[
J−1t,L[Y

i
t ]πβ(Ht)

]
) = (4.82)

=

(
−
∫ ∞
0

dν e−ν/τ
i
t

)
Y i
t = −τ it Y i

t . (4.83)

We are now ready to connect the KMB inner product to the average
dissipation during a slowly driven Lindbladian evolution. First, notice
that Jt,L[∆Ḣt] is a traceless operator, so it can be decomposed in terms
of {Xi

t} as:

Jt,L[∆Ḣt] =
∑
i

Tr
[
Y i
t J−1t,L[Jt,L[∆Ḣt]]

]
Xi
t = (4.84)

=
∑
i

Tr
[
Y i
t ∆Ḣt

]
Xi
t . (4.85)

For what follows, it is also useful to introduce the notation (∆Ḣt)i :=

Tr
[
Y i
t ∆Ḣt

]
and the symmetric matrix (mKMB

i,j )t := Tr
[
Xi
tJ−1t,L[X

j
t ]
]
.

Then, starting from Eq. (4.68) we have that:

⟨Σ⟩ = −β2
∫ τ

0
dt Tr

[
Jt,L[∆Ḣt] J−1t,L[L

+
t (Jt,L[∆Ḣt])]

]
= (4.86)

= −β2
∫ τ

0
dt
∑
i,j

Tr
[
Xi
t J−1t,L[L

+
t (X

j
t )]
]
Tr
[
Y i
t ∆Ḣt

]
Tr
[
Y j
t ∆Ḣt

]
=

(4.87)

= β2
∫ τ

0
dt
∑
i,j

τ jt (m
KMB
i,j )t(∆Ḣt)i(∆Ḣt)j = (4.88)

= β2
∫ τ

0
dt
∑
i,j

(
τ it + τ jt

2

)
(mKMB

i,j )t(∆Ḣt)i(∆Ḣt)j . (4.89)
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Notice that if all the thermalisation timescales were equal, one would
obtain back an expression equivalent to the one for the quench scenario.
Eq. (4.89), on the other hand, tells us that the average dissipation arises
from the interplay between the susceptibility of the thermal state to exter-
nal perturbations (encoded in mKMB

i,j ) and the thermalisation timescale
in that direction. For this reason, it is conceptually justified to introduce
the matrix (Ti,j)t :=

(
τ it+τ

j
t

2

)
, which encodes the information about the

different equilibration velocity in each direction. Then, the metric takes
the particularly simple form (gi,j)t = (Ti,j)t ◦ (mKMB

i,j )t, where ◦ denotes
the Hadamard product of matrices.

The same functional expression was found for classical stochastic pro-
cesses [85]. Indeed, it appears to be quite general. For example, in [6] it
was shown how one can translate results obtained in the context of lin-
ear response of an adiabatically driven unitary dynamics (see, e.g., [86])
in this language. In this context, the main object of study is the linear
response of the expectation value Tr

[
Xi
tπβ(Ht)

]
to an external pertur-

bation of the form
∑

i λ
i
tX

i. If the parameters are moved slowly, one can
use the expression:

Tr
[
Xi
tρt
]
= Tr

[
Xi
tπβ(Ht)

]
+
∑
j

χadt (Xi
t , X

j
t ) λ̇

j
t +O

(
||λ̇t||2

)
, (4.90)

where χadt is the adiabatic response function given by:

χadt (Xi
t , X

j
t ) = −i

∫ ∞
0

dν
(
ν Tr

[
πβ(Ht) [e

iHνXi
te
−iHν , Xj

t ]
])

. (4.91)

Then, it was argued in [86] that this behaviour naturally leads to the defi-
nition of a thermodynamic metric, corresponding to the symmetrised adi-
abatic response function, i.e., (gi,j)t =

1
2

(
χadt (Xi

t , X
j
t ) + χadt (Xj

t , X
i
t)
)
.

Despite the apparent formal difference with the other metrics presented
so far, it is not difficult to show that this expression can be recast in
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terms of the KMB-inner product. Indeed, a two line computation gives:

χadt (Xi
t , X

j
t ) =

= −i
∑
n,m

∫ ∞
0

dν

(
ν (ei(E

(n)
t −E

(m)
t )ν)

(
e−βE

(n)
t − e−βE

(m)
t

ZHt

)
(Xi

t)n,m(X
j
t )m,n

)
=

(4.92)

= i
∑
n,m

1

ZHt

e−βE
(n)
t − e−βE

(m)
t

(E
(n)
t − E(m)

t )2
(Xi

t)n,m(X
j
t )m,n = (4.93)

= −β
∫ ∞
0

dν

∫ 1

0
dx Tr

[
πβ(Ht)

1−xeiHtνXi
te
−iHtνπβ(Ht)

xXj
t

]
=

(4.94)

= −βTr
[
Xi
t U+

t (Jt,L[X
j
t ])
]
, (4.95)

where in the first line we expressed everything in the eigenbasis of Ht and
in the last step we defined the operator:

U+
t (A) :=

∫ ∞
0

dν TrB
[
e−iHtνAeiHtν

]
, (4.96)

tracing out the bath degrees of freedom. The expression for χadt (Xi
t , X

j
t )

should be compared with Eq. (4.69), with which it has a striking similar-
ity. Indeed, the eigenvalues of U+

t encode the thermalisation timescales
of the system, in the same way of L+t in the Lindbladian context. Hence,
by simply repeating the same steps above, one can define the analogous
of the matrix (Ti,j)t for unitary adiabatic evolutions, so that even in this
case the metric can be expressed as (gi,j)t = (Ti,j)t ◦ (mKMB

i,j )t.
Hence, direct inspection of the metric structure tells us that in order

to minimise the dissipation, one should vary only the parameters which
at the same time thermalise fast (corresponding to τ it ≪ 1) and that do
not radically change the thermal state. The possibility of understanding
the way in which the system dissipates simply by studying the metric will
be further explored in the next section.

4.3.2 General principles from spectral analysis: coher-
ences are detrimental

Apart from the possibility of automatically devising optimal protocols,
the geometric approach is also useful when it comes to the interpretation
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of the way in which entropy is dissipated. For example, in the caption of
Fig. 4.2 it was discussed how one can already get some intuition on the
shape of the geodesics by noticing that the metric decays with the popu-
lation, so it will induce trajectories that are slow in the highly populated
region, while accelerating exponentially as the population goes to zero.

A good example of a general principle which can be derived in this
way is the one about coherences. Suppose that one wants to connect two
Hamiltonian H0 and Hτ such that [H0, Hτ ] = 0. In the following we
will show that under mild assumptions on the dynamics, any creation of
coherence will be detrimental, i.e., optimal protocols only pass through
diagonal Hamiltonians.

Consider, in fact, a Lindbladian that decouples the population dy-
namics from the coherences. Detailed balance implies this condition, but
it is not necessary to enforce it. In particular, any normal Lindbladian
satisfies this requirement, as one can verify from the condition [87]:

[U ,LD] = 0 . (4.97)

Given a Hermitian operator A, there is a canonical decomposition A =
AD + AC , where AD only contains the diagonal elements of A (with
respect to the corresponding thermal state), while AC is implicitly defined
as AC = A − AD. Then, under the assumption above, one has that
L(A)D = L(AD) and L(A)C = L(AC). Moreover, it is straightforward
to verify that the same happens for the superoperator Jt,L. Hence, one
can rewrite the entropy production in Eq. (4.69) as:

⟨Σ⟩ = −β2
∫ τ

0
dt Tr

[
∆Ḣt L+t (Jt,L[∆Ḣt])

]
= (4.98)

= −β2
∫ τ

0
dt Tr

[
(∆ḢD

t +∆ḢC
t )
(
L+t (Jt,L[∆Ḣt])

D + L+t (Jt,L[∆Ḣt])
C
)]

=

(4.99)

= −β2
∫ τ

0
dt Tr

[
∆ḢD

t L+t (Jt,L[∆ḢD
t ])
]
+Tr

[
∆ḢC

t L+t (Jt,L[∆ḢC
t ])
]
=

(4.100)

=
〈
ΣD
〉
+
〈
ΣC
〉
, (4.101)

where in Eq. (4.100) we used the fact that the trace of the product of an
off-diagonal operator and a diagonal one is zero. It should be noticed that
both contributions to the entropy production satisfy

〈
ΣD/C

〉
≥ 0. This

shows that the creation of coherence is always detrimental. In particular,
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if both endpoints of the protocol are diagonal in the same basis, then the
optimal path will also be purely diagonal, so that

〈
ΣC
〉
≡ 0.

This concludes the discussion of the geometric picture arising from the
average dissipation. As it was argued, it provides a flexible framework to
automatically design minimally dissipating protocols and to get insights
on the nature of dissipation. Interestingly, also quasistatic fluctuations
give rise to a metric structure. This will be the subject of next section.

4.4 Fluctuations and quantum signatures

Moving on in the study of the statistics of work, the second natural object
to be considered is the fluctuations around the average value. These are
computed as: 〈

σ2w
〉
=
〈
w2
〉
− ⟨w⟩2 . (4.102)

Notice that, since the fluctuations are invariant under translation of their
average value, the fluctuations in work are proportional to the ones in
the entropy production:〈

σ2Σ
〉
=
〈
Σ2
〉
− ⟨Σ⟩2 = β2(

〈
(w −∆F )2

〉
− ⟨(w −∆F )⟩2) = (4.103)

= β2(
〈
w2
〉
−�����2 ⟨w⟩∆F +��∆F − ⟨w⟩2 +�����2 ⟨w⟩∆F −��∆F ) = (4.104)

= β2
〈
σ2w
〉
. (4.105)

Then, one can obtain their expression from the CGF as:

β2
〈
σ2w
〉
=
〈
σ2Σ
〉
=

d2

dλ2
Kdiss(λ)

∣∣∣∣
λ=0

= (4.106)

=
d2

dλ2
log

(
1 +

∫ λ

0
dx Tr

[
πβ(Hτ )

x(log πβ(Hτ )− log ρτ )ρ
1−x
τ

])
=

(4.107)

=
d

dλ

Tr
[
πβ(Hτ )

λ(log πβ(Hτ )− log ρτ )ρ
1−λ
τ

]
1 +

∫ λ
0 dx Tr

[
πβ(Hτ )x(log πβ(Hτ )− log ρτ )ρ

1−x
τ

]∣∣∣∣
λ=0

= (4.108)

= Tr
[
ρτ (log πβ(Hτ )− log ρτ )

2
]
− Tr [ρτ (log πβ(Hτ )− log ρτ )]

2 =
(4.109)

= 2HV (ρτ ||πβ(Hτ ))− S(ρτ ||πβ(Hτ ))
2 , (4.110)

where we used the same integral expression from Eq. (4.47) and used the
notation HV (ρ||σ) for the quantum information variance (see Sec. 1.4.7).
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This quantity is obviously positive, as it is a contrast function. Moreover,
the difference in Eq. (4.110) is also positive. We define this quantity
relative entropy variance, which we denote by V (ρτ ||πβ(Hτ )). On the one
hand, the positivity of V (ρτ ||πβ(Hτ )) directly follows from the positivity
of
〈
σ2Σ
〉
. At the same time, this can also be proven through Cauchy-

Schwartz inequality, since for any ρ and σ one has:

S(ρ||σ)2 =Tr [ρ (log ρ− log σ)1]2 ≤ (4.111)

≤ Tr
[
ρ (log ρ− log σ)2

]
Tr
[
ρ12

]
= 2HV (ρ||σ) , (4.112)

which directly implies that V (ρ||σ) ≥ 0. This gives us the extra infor-
mation about what are the situations that saturate the bound, i.e., for
which V (ρ||σ) ≡ 0. This happens when there exists a scalar λ such that
(log ρ − log σ) = λ1. It is straightforward to prove that this is possible
only for λ = 0 and ρ = σ. Hence, the relative entropy variance is positive
definite and zero if and only if ρ ≡ σ.

It should be noticed that the relative entropy variance is also jointly
convex, so one can repeat the same arguments that led to Eq. (1.37)
to prove that it is also monotone. Hence, if the dynamics is Markovian
fluctuations are monotonically increasing during the evolution. Indeed,
differentiating directly Eq. (4.18) (notice that the second term in the
integral was proven to be zero) one has:

〈
σ2Σ
〉
=

∫ τ

0
dt

d

ds
V (ρt||πβ(Hs))

∣∣∣∣
s=t

= (4.113)

=

∫ τ

0
dt

(
d

dt
V (ρt||πβ(Ht))−

d

ds
V (ρs||πβ(Ht))

∣∣∣∣
s=t

)
= (4.114)

= V (ρτ ||πβ(Hτ )) +

∫ τ

0
dt

(
− d

ds
V (ρs||πβ(Ht))

∣∣∣∣
s=t

)
, (4.115)

where again it should be noticed that the meaning of ρτ in the last ex-
pression is not the same as in Eq. (4.110), as in this case the state only
contains information that are local in time, whereas in Eq. (4.110) ρτ
encodes the whole dynamics.

We denote the integrand in Eq. (4.115) by
〈
(σ̇2Σ)t

〉
. Thanks to the

monotonicity of the relative entropy variance,
〈
(σ̇2Σ)t

〉
≥ 0, with equality

if and only if ρt ≡ πβ(Ht) for all times. This condition is satisfied only
in the limit in which the driving is realised in infinite time, so we can
carry out an expansion around λ̇it ≈ 0 completely analogous to the one
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in Eq. (4.55):

⟨(σ̇2Σ)t⟩ = λ̇it�����
∂i ⟨(σ̇2Σ)t⟩

∣∣
{λ̇t}≡0 + λ̇it

(
∂i∂j ⟨(σ̇2Σ)t⟩

∣∣
{λ̇t}≡0

)
λ̇jt +O

(
||λ̇||3

)
,

(4.116)

where we sum over the repeated indices. Since we are expanding around a
minimum, the first derivative cancels, while the Hessian matrix (gσi,j)t :=

∂i∂j ⟨(σ̇2Σ)t⟩
∣∣
{λ̇t}≡0 is positive definite.

Hence, the local behaviour of the fluctuations in the entropy pro-
duction can also be described geometrically. Interestingly, whereas the
metric arising from the average dissipation was well known at least from
the ‘80s, the existence of a metric associated to the fluctuations was dis-
covered only in [8]. The reason for this delay can be best understood
directly from the CGF. Indeed, if one can assume time translation co-
variance of the Lindbladian (i.e., that the evolution of the population
completely decouples from the one of the coherences), Eq. (4.40) can be
rewritten as:

Kdiss(λ) = Kdiss
D (λ) +Kdiss

C (λ) , (4.117)

where we isolated the diagonal and coherent contribution. The first term
is given by:

Kdiss
D (λ) = β2

∫ τ

0
dt

∫ λ

0
dx

∫ 1−x

x
dy covyt (∆Ḣ

D
t , J−1t,L[L

+
t (Jt,L[∆Ḣ

D
t ])]) =

(4.118)

= β2
∫ τ

0
dt

∫ λ

0
dx

∫ 1−x

x
dy Tr

[
πβ(Ht)∆Ḣ

D
t L+t (∆ḢD

t )
]
= (4.119)

= β2 (λ− λ2)
∫ τ

0
dt Tr

[
πβ(Ht)∆Ḣ

D
t L+t (∆ḢD

t )
]
, (4.120)

where in Eq. (4.119) we used the fact that everything commutes, and in
the last step we explicitly carried out the two integrations, since there is
no dependence on y in the integrand. The coherent contribution on the
other hand is simply given by:

Kdiss
C (λ) = β2

∫ τ

0
dt

∫ λ

0
dx

∫ 1−x

x
dy covyt (∆Ḣ

C
t , J−1t,L[L

+
t (Jt,L[∆Ḣ

C
t ])]) .

(4.121)
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Suppose now that the evolution is purely classical, which implies that
Kdiss(λ) ≡ Kdiss

D (λ). Then, it is straightforward to verify that:

⟨Σ⟩ = − d

dλ
Kdiss
D (λ)

∣∣∣∣
λ=0

= −β2
∫ τ

0
dt Tr

[
πβ(Ht)∆Ḣ

D
t L+t (∆ḢD

t )
]
;

(4.122)〈
σ2Σ
〉
=

d2

dλ2
Kdiss
D (λ)

∣∣∣∣
λ=0

= −2β2
∫ τ

0
dt Tr

[
πβ(Ht)∆Ḣ

D
t L+t (∆ḢD

t )
]
,

(4.123)

which implies the following fluctuation-dissipation relation (FDR) for
classical systems:

1

2

〈
σ2Σ
〉
= ⟨Σ⟩ . (4.124)

Hence, whenever no coherence is created along the protocol the metric for
the average dissipations and fluctuations actually coincide, which explains
the delay in its formulation for classical systems. In the general case, on
the other hand, the metric takes the form:

〈
σ2Σ
〉
= β2

d2

dλ2

∫ τ

0
dt

∫ λ

0
dx

∫ 1−x

x
dy covyt (∆Ḣt, J−1t,L[L

+
t (Jt,L[∆Ḣt])]) =

(4.125)

= β2
d

dλ

∫ τ

0
dt

∫ 1−λ

λ
dy covyt (∆Ḣt, J−1t,L[L

+
t (Jt,L[∆Ḣt])]) =

(4.126)

= −2β2
∫ τ

0
dt Tr

[
∆Ḣt Jt,B[J−1t,L[L

+
t (Jt,L[∆Ḣt])]]

]
, (4.127)

where in the last step we use the notation Jt,B := JB
∣∣
πβ(Ht)

, correspond-
ing to the Bures metric defined in Eq. (1.128). If the Lindbladian is
detailed balance, the equation above further simplifies to:〈

σ2Σ
〉
= −2β2

∫ τ

0
dt Tr

[
∆Ḣt Jt,B[(L+t )†(∆Ḣt)]

]
= (4.128)

= −2β2
∫ τ

0
dt Tr

[
∆Ḣt (L+t )(Jt,B[∆Ḣt])

]
, (4.129)

which is the expression originally obtained in [8]. In this case, one can
give a particularly simple form to the quantum correction to the FDR in
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Eq. (4.124):

Q : =
1

2

〈
σ2Σ
〉
− ⟨Σ⟩ = (4.130)

= −β2
∫ τ

0
dt Tr

[
∆Ḣt (L+t )((Jt,B − Jt,L)[∆Ḣt])

]
, (4.131)

where we used the expression for the average dissipation from Eq. (4.69).
As it was pointed out in Sec. 1.3 (see Eq. (1.75)) the ordering of the Fisher
information scalar products Jf follows the one of the corresponding defin-
ing functions, which implies that (Jt,B−Jt,L) is a positive superoperator.
Moreover, since L is detailed balance, its eigenoperators are orthonormal
with respect to both Jt,B and Jt,L, and all its eigenvalues are negative.
Putting these two remarks together, we obtain that the quantum correc-
tion is non-negative, and zero if and only if Ḣt commutes with Ht at all
time, i.e.,

Q̇t ≥ 0 , (4.132)

where Q̇t denotes the integrand in Eq. (4.131). In a previous work
(see [8]), it was claimed that the positivity of Eq. (4.132) could be ob-
tained only in the presence of detailed balance dynamics. Here we show
that this is an unnecessary constraint. Indeed, since Jt,B[∆Ḣt] is trace-
less, one can give an expansion of the fluctuations akin to the one in
Eq. (4.89), which reads:

1

2

〈
σ2Σ
〉
= −β2

∫ τ

0
dt Tr

[
Jt,B[∆Ḣt] J−1t,L[L

+
t (Jt,L[∆Ḣt])]

]
= (4.133)

= −β2
∫ τ

0
dt
∑
i,j

Tr
[
Xi
t J−1t,L[L

+
t (X

j
t )]
]
Tr
[
Y i
t J−1t,LJt,B[∆Ḣt]

]
Tr
[
Y j
t ∆Ḣt

]
=

(4.134)

= β2
∫ τ

0
dt
∑
i,j

τ jt (m
KMB
i,j )t(Jt,B[∆Ḣt])i(∆Ḣt)j , (4.135)

where we used the same notation as in Sec. 4.3.1. Since the eigenval-
ues of J−1t,LJt,B are all larger or equal to one (with equality only on the
commutant) we have the lower bound:

(Jt,B[∆Ḣt])i ≥ (∆Ḣt)i . (4.136)

Then, comparing the integrand in Eq. (4.135) with the one in Eq. (4.88)
we have the proof that Q̇t ≥ 0 in general. Moreover, once more we
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Figure 4.4: On the left, we show how an incoherently driven system
approaches the fluctuation-dissipation relation in Eq. (4.124) as the du-
ration of the protocol τ is increased. The Hamiltonian is driven as
Ht = E(t) |1⟩⟨1 |. The red continuous line are the theoretical predic-
tions, while the green points correspond to experimental data from [5].
On the right, we show the dissipation and fluctuations for a protocol of
the form Ht = tσ̂x + (1 − t)σ̂z. We see that for β → 0 the FDR are
effectively satisfied, while in the opposite limit the quantum correction Q
grows more and more.

also obtain that equality can only be obtained for commuting protocols.
This behaviour is exemplified in Fig. 4.4, where we show the FDR for an
incoherently driven system, and its breakdown in the case [Ht, Ḣt] ̸= 0.
Interestingly, from the right panel one can also see that as β → 0 (i.e., in
the high temperature limit) one goes back to the classical scenario.

Interestingly, the presence of a non-zero Q is connected to the ap-
pearance of higher order cumulants in the distribution of work. In fact,
it should be noticed that the CGF can be expressed as:

Kdiss(λ) =

∞∑
n=1

(−λ)n

n!
κn , (4.137)

where κ1 ≡ ⟨Σ⟩ and κ2 ≡
〈
σ2Σ
〉
. Moreover, thanks to Jarzynski equality

Kdiss(1) = 0 (see Eq. (3.56)). Hence, setting λ to one in Eq. (4.137), we
obtain that:

−⟨Σ⟩ +
〈
σ2Σ
〉

2
+
∞∑
n=3

(−1)n

n!
κn = 0 =⇒ Q = −

∞∑
n=3

(−1)n

n!
κn . (4.138)

This behaviour is exemplified in Fig. 4.4, where we show how Q can be
divided in terms of successive cumulants. Moreover, since higher order
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Figure 4.5: Behaviour of the work distribution of an incoherently driven
system as the duration of the protocol increases. The histogram repre-
sents the experimental data from the same experiment of Fig. 4.4, while
the continuous lines are the theoretical prediction [5]. Finally, the dotted
line corresponds to the ideal work extraction, i.e., to ∆F .

cumulants are positive in the quasistatic regime (see Sec. 4.5), this also
means that the FDR directly implies the fact that all other cumulants
are zero. This is the defining property of a Gaussian. Indeed, the ob-
servation of FDR in the slow driving regime witnesses the Gaussianity
in the distribution of the work, behaviour presented in Fig. 4.5 for an
incoherently driven quantum dot. This connection was already noticed
by Jarzynski in its original paper [69], where he derived the FDR from
arguments justifying the Gaussianity of work distribution of slowly driven
classical systems by appealing to the central limit theorem.

His reasoning can indeed be made precise in the quench model (see
Fig. 4.6). In this context, increasing the number of steps N makes the
work scale as 1/N . Moreover, the thermalisation between each of the
steps completely erases any memory of the past, so that the total work is
given by a sum of independent random variables scaling as 1/N . These
are the premises of the central limit theorem, which explains why for
diagonal systems the work distribution approaches a Gaussian. This be-
haviour can also be expected in general, as one can verify from inspection
of Kdiss

D (λ) in Eq. (4.120). Indeed, a quadratic CGF implies that the cor-
responding probability distribution is Gaussian.

It should be noticed that Eq. (4.138) also tells us that any deviation
from a Gaussian behaviour in the slow driving regime is a witness of the
creation of coherence. Indeed, the difference in the statistical behaviour
can be quite stark. Consider, for example, a system in which the driv-
ing does not affect the energy spacing of the spectrum, but only creates
coherences between different energy levels (again for clarity of the ex-
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planation, we consider the quench model of the dynamics). This kind of
protocols are called purely coherent and are depicted in the bottom panel
of Fig. 4.6. In this case, increasing the number of steps only affects the
transition probability, while the possible work output remains unvaried.
Hence, in the limit of N ≫ 1, the final distribution will be a comb of
δ-functions, whereas one would have expected a continuous behaviour.

Wrapping up, in this section we showed how the expansion of the
fluctuations of entropy production in the slow driving regime gives rise
to a metric that is equivalent to the one for the dissipation in the clas-
sical regime, but which becomes different whenever coherence is created
along the protocol. Indeed, one can prove fluctuation-dissipation relations
that hold for diagonally driven systems, but which breakdown whenever
[Ht, Ḣt] ̸= 0 for any time of the protocol. In turn, the FDR are equiva-
lent to the Gaussianity of the distribution, and any deviation from this
behaviour also witnesses the creation of coherence.

It should be noticed that these effects make the phenomenology of
quantum thermodynamics systems much richer than their classical coun-
terpart. For one thing, whereas for incoherent protocols one can minimise
the dissipation and the fluctuations at the same time, this is no longer
the case when one has a non-commutative driving. Indeed, whereas in
the classical regime a single metric is sufficient to completely characterise
(and optimise) thermodynamic protocols close to equilibrium, whenever
coherence is present one has a whole family of different metrics, corre-
sponding to different Fisher informations. Starting from Eq. (2.32) we
can in fact give the following quasistatic expansion:

〈
g(e−Σ)

〉
=

∫
dw p(w) g(e−β(w−∆F )) = (4.139)

= Hg(Uτπβ(H0)U
†
τ ||πβ(Hτ )) = (4.140)

=

∫ τ

0
dt

d

ds
Hg(ρt||πβ(Hs))

∣∣∣∣
s=t

= (4.141)

=

∫ τ

0
dt

d

ds
Hg(πβ(Ht) + δρt||πβ(Hs))

∣∣∣∣
s=t

= (4.142)

= β

∫ τ

0
dt Tr

[
δρt J−1t,f [Jt,L[∆Ḣt]]

]
, (4.143)

where we have reproduced the standard procedure presented above to
obtain a metric for ρt ≈ πβ(Ht) + δρt and we have used the shorthand
notation Jt,f := Jf

∣∣
πβ(Ht)

. Moreover, for Lindbladian evolutions we can
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further simplify Eq. (4.143) to:〈
g(e−Σ)

〉
= −β2

∫ τ

0
dt Tr

[
L+t (Jt,L[∆Ḣt]) J−1t,f [Jt,L[∆Ḣt]]

]
. (4.144)

Interestingly, all the functionals above collapse into the same value for
classically driven systems. On the other hand, since we know that g(x) =
(x − 1)2/(x + 1) is maximal, one can define a whole family of positive
quantum signatures, given by:

Qg : =
〈
(1− e−Σ)2

1 + e−Σ

〉
−
〈
g(e−Σ)

〉
= (4.145)

=

〈
2 e−

Σ
2 sinh

(
Σ

2

)
tanh

(
Σ

2

)〉
−
〈
g(e−Σ)

〉
, (4.146)

which witnesses the creation of coherences during the protocol.

4.5 Higher order cumulants

After discussing the first two cumulants, we can also briefly analyse how
higher terms behave. First, it should be noticed that since we have to take
at least three derivatives, there is no contribution coming from Kdiss

D (λ),
as the latter has only a quadratic dependence on λ. As it was discussed
above, this already shows that higher order cumulants can be non-zero if
and only if the driving is non-commuting for some time. Hence, one can
restrict the attention to the differentiation of:

d2

dλ2
Kdiss
C (λ) = −2β2Re

∫ τ

0
dt covλt (∆Ḣ

C
t , J−1t,L[L

+
t (Jt,L[∆Ḣ

C
t ])]) =

(4.147)

= −2β2Re
∫ τ

0
dt Tr

[
πλt ∆Ḣ

C
t π

1−λ
t J−1t,L[L

+
t (Jt,L[∆Ḣ

C
t ])]

]
, (4.148)

where in order to keep the notation compact we used the abbreviation
πt := πβ(Ht). It is useful to investigate how the integrand alone behaves
under differentiation. To this end, consider two generic operators A and
B, and notice that the following two relations hold:

d

dλ
Tr
[
πλt Aπ

1−λ
t B

]
= −β Tr

[
πλt [H,A]π

1−λ
t B

]
; (4.149)

d2

dλ2
Tr
[
πλt Aπ

1−λ
t B

]
= −β2Tr

[
πλt [H,A]π

1−λ
t [H,B]

]
, (4.150)
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as each differentiation gives a term of the form ± log πt, and it can be
easily verified that the terms coming from the partition function do not
contribute to the final result. Hence, we can rewrite all the cumulants in
terms of the two inductively defined operators C(n)

t and D(n)
t , where:

C
(1)
t = ∆ḢC

t ; C
(n)
t = [H, C

(n−1)
t ] ; (4.151)

D
(1)
t = J−1t,L[L

+
t (Jt,L[∆Ḣ

C
t ]) ; D

(n)
t = [H, D

(n−1)
t ] , (4.152)

and each of the cumulants of order three or higher is given by:

κ2n+1 = −2β2n+1Re

∫ τ

0
dtTr

[
πtD

(n)
t C

(n+1)
t

]
; (4.153)

κ2n+2 = −2β2n+2Re

∫ τ

0
dtTr

[
πtD

(n+1)
t C

(n+1)
t

]
. (4.154)

In order to prove the positivity of all κn it is useful to expand Eq. (4.148)
in terms of the eigenoperators of the Lindbladian, in the same way as we
did in the previous sections. Then, one obtains:

d2

dλ2
Kdiss
C (λ) = β2

∫ τ

0
dt
∑
i,j

τ jt (m
KMB
i,j )t(J−1t,L[∆Ḣ

C
t ]λ)i(∆Ḣ

C
t )j ,

(4.155)

where we denoted by (J−1t,L[∆Ḣ
C
t ]λ)i the following two traces:

Tr
[
Y i
t J−1t,L[π

λ∆̇HC
t π

1−λ]
]
+Tr

[
Y i
t J−1t,L[π

1−λ∆̇HC
t π

λ]
]
. (4.156)

This decomposition is particularly useful because it reduces the whole
dependency on λ to the expression above. We can now show that for
each n there exists a positive constant cn such that:

(−1)n dn

dλn
(J−1t,L[∆Ḣ

C
t ]λ)i

∣∣∣∣
λ=0

≥ cn (∆ḢC
t )i . (4.157)

Indeed, focusing on the λ dependent part, we can give the following
coordinate expression:

πλ |i⟩⟨j | π1−λ+π1−λ |i⟩⟨j | πλ = (4.158)

=
(
(πt)

λ
i (πt)

1−λ
j + (πt)

λ
i (πt)

1−λ
j

)
|i⟩⟨j | (4.159)
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where {|i⟩} is the eigenbasis of πt, and we assume i ̸= j. It should be
noticed that this eigeonperator is diagonal in the same basis as Jt,L, so
their spectrum simply multiplies. Let us now restrict to the study of the
behaviour of this expression under derivation. To this end, it is useful to
distinguish between even and odd derivatives, which give:

d2n

dλ2n

(
πλ |i⟩⟨j | π1−λ + π1−λ |i⟩⟨j | πλ

) ∣∣∣∣
λ=0

=

= ((πt)i + (πt)j)

(
log

(πt)i
(πt)j

)2n

|i⟩⟨j | ; (4.160)

− d2n+1

dλ2n+1

(
πλ |i⟩⟨j | π1−λ + π1−λ |i⟩⟨j | πλ

) ∣∣∣∣
λ=0

=

= ((πt)i − (πt)j)

(
log

(πt)i
(πt)j

)2n+1

|i⟩⟨j | . (4.161)

It is not hard to see that in both cases the spectrum is positive. Indeed,
for even terms, both the sum in the first parenthesis and the logarithm
part are positive, so the result trivially follows. On the other hand, for
odd terms, one should notice that both components have the same sign.
Indeed, if (πt)i > (πt)j , then clearly (πt)i − (πt)j > 0 and log (πt)i

(πt)j
> 0,

so the result is positive. In the opposite case, namely (πt)i < (πt)j , both
inequalities flip, so their product is again positive.

We are now ready to prove the claim. First notice that both Jt,L
and the derivatives of the operator in Eq. (4.158) have positive spectrum,
which is strictly non-zero on the subspace of non-commuting operators.
Moreover, the differentiation does not change the eigenbasis presented in
Eq. (4.158), so the total spectrum is just the product of the two. Hence,
by setting cn to the smallest term in this product, Eq. (4.157) is always
satisfied. But then, the positivity of higher cumulants follows from the
same proof we used for the fluctuations, see Eq. (4.136). This concludes
the proof of the positivity of all the cumulants of the dissipation, i.e.,

∀n κn > 0 . (4.162)

It should be noticed though, that differently from what happened for
the average dissipation and the fluctuations (and for the functionals in
Eq. (4.139)) higher order cumulants do not subsume a metric structure, as
they are not positive definite. Still, one can use Eq. (4.162) to infer some
information about the shape of the distribution: indeed, the skewness
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γ1 and the excess kurtosis γ2 are connected to the cumulants by the
relations:

γ1 =
κ3

(κ2)3/2
, (4.163)

γ2 =
κ4

(κ2)2
. (4.164)

The positivity of κ3 and κ4 then means that the probability distribution
has a fat tail on the right of the average ⟨Σ⟩, i.e., that compared to a
normal distribution, values of the dissipation which are larger than the
average by five or more standard deviations are more likely to occur due
to quantum fluctuations.

Finally, it is interesting to point out the dependence of the higher cu-
mulants on temperature. As it apparent from Eq. (4.147), this is directly
connected to the behaviour of the y-covariance: indeed, if the variation of
the parameter y does not change the corresponding covariance, then any
differentiation of Eq. (4.147) will result in cumulants that are identically
zero. This is exactly what happens in the high-temperature regime, as it
is exemplified in Fig. 4.7 for a qubit. In there, we plot the y-covariance
both for [Ht, Ḣt] = 0 (incoherent driving) and [Ht, Ḣt] ̸= 0 (coherent driv-
ing). Whereas the two become more and more different as β increases, for
β → 0 one can see that even for the coherent protocol one finds the same
flat behaviour obtained for the classical driving, which in turns witnesses
the cancellation of all higher order cumulants. In this way, we can see
how statistical features of the distribution of dissipation can be deduced
from how the y-covariance depends on the parameter y.

4.6 Statistical properties close to equilibrium

Entropy production out of equilibrium can become incredibly complicated
to characterise and is, in general, quite system dependent. Apart from
the remarkable results given by the fluctuation theorems (see Sec. 3.2)
little is known, and one would lean to expect that few universal results
can be found.

The intermediate situation presented so far, the one of slow proto-
cols, allows to make quite general statements about the statistics of the
dissipation. One could prove the existence of FDR for classical systems,
whose breakdown witnesses the creation of coherences along the driving.
It was further shown that the distribution for an incoherently driven sys-
tem is always a Gaussian for slow enough protocols, and that, thanks to
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Figure 4.7: Depiction of the y-covariance for a qubit in the thermal
state corresponding to H = σz for the two drivings and Ḣ = σz, for the
left panel (incoherent driving), and Ḣ = σx for the right one (coherent
driving). In the first case, we can see that there is no dependency on the
parameter y, so any differentiation of the CGF higher than the second
will give zero. On the other hand, for the coherent driving at finite
temperature, one can see that the corresponding surface becomes quite
curved. In the high temperature limit though, i.e., as β → 0, this feature
washes out.
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the FDR, it is sufficient to know the average value of the dissipation in
order to completely characterise the corresponding probability distribu-
tion. Again, the breakdown of this behaviour are neatly related to the
creation of coherence. In this case, one can further prove that all the cu-
mulants are non-negative, and in particular positive for non-commuting
protocols. Translating this last result in terms of skewness and excess
kurtosis tells us that the probability distribution has a fat tail on the
right of the average value.

The possibility of giving such a complete characterisation of the en-
tropy production is connected to two mechanisms that highly simplify the
physics of the system. Indeed, we will show that the entropy production
becomes completely time symmetric close to equilibrium, which allows
for a stronger version of the Crooks relations to be derived, the so called
Evans-Searles theorem. This result highly constrains the corresponding
distribution. Before that, we will also show that, differently from the
general case, the dissipation of thermodynamic resources connected to
athermality and asymmetry decouples close to equilibrium. This allows
to represent the probability distribution of slowly driven protocols as the
sum of two independent random variables, each associated to a differ-
ent type of dissipation. These two phenomena are peculiar to the slow
driving regime and allow for a much simpler treatment of the entropy
production.

4.6.1 Separation of different channels of entropy produc-
tion

At the inception of thermodynamics there is the effort to characterise
the capability of an agent to perform useful tasks under the constraint
that some of the energy which can be accessed is not completely usable.
The same framework appears in modern resource theory [88], making
thermodynamics one of the most natural examples for this abstract ap-
proach. Indeed, among the firsts to set thermodynamics in this language
we can already find the work by Lieb and Yngvason in 1999 [89], where
the uniqueness of the entropy functional was proved on isothermal slices.

Out of the equilibrium, it was shown that a single law is not sufficient
to characterise all thermodynamic processes, not even when all the states
are diagonal. Indeed, a necessary condition ensuring the existence of a
thermodynamic transformation from a state ρ to a new state σ is that
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the following condition is satisfied for all Rényi divergences [90]:

Sλ(ϱ||πβ(H)) ≥ Sλ(σ||πβ(H)) (∀λ ≥ 0) , (4.165)

where πβ(H) is the reference thermal state, and the Hamiltonian is fixed
in time. Since the Rényi divergences are positive definite, we can interpret
each of them as a different quantifier of a resource referred to as athermal-
ity, which degrades over time during thermodynamic processes. Indeed,
we know that as time passes every thermodynamic transformation brings
any state to thermal equilibrium, for which the divergences in Eq. (4.165)
go to zero, signalling a complete depletion of all the resources. In this con-
text, the thermal state is the most passive of the theory, as no transition
πβ(H)→ ρ is allowed thermodynamically.

If the state contains off-diagonal terms in the energy eigenbasis an
additional family of constraints have to be satisfied by all thermal tran-
sitions ρ→ σ [91, 92]:

Sλ(ϱ||DH(ϱ)) ≥ Sλ(σ||DH(σ)) (∀λ ≥ 0) , (4.166)

where DH is the dephasing operator in the H eigenbasis. This set of
constraints quantifies the amount of coherence in each state and the cor-
responding resource is called asymmetry, and it is connected with the
breakdown of the time translation invariance of the state.

Interestingly, the expressions in Eq. (4.165) and Eq. (4.166) closely
resemble the ones obtained in Eq. (4.16) for the dissipative part of the
CGF and with Eq. (4.48) for its average version, despite the different
frameworks in which the two were derived (for one thing, in the latter
case the Hamiltonian varies in time). Despite this similarity, though, it
is in general impossible to divide the effects coming from the dissipation
of athermality from the one of asymmetry in the statistics of work. A
notable exception in this context is given by average quantities, that,
due to their connection to the relative entropy, are additive in the two
contributions [91].

When one restricts the attention to close-to-equilibrium protocols the
same kind of simplification appears at all the level of statistics. In order to
exemplify this effect, we focus here on the quench model, but it should be
noticed that the same conclusions also hold for any normal Lindbladian,
since the condition in Eq. (4.97) makes the dynamics of the diagonal
terms completely independent from the coherence part. In this context,
we can intuitively understand how the creation and depletion of resources
take place during each quench: first, since the system starts in a thermal
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state there is no athermality in it, nor asymmetry, as it is diagonal. All
the resources are introduced by quenching the Hamiltonian, which by
providing work brings the state out of equilibrium and, at the same time,
can in principle break its time symmetry invariance by introducing off-
diagonal terms. Hence, part of the work is converted in athermality, part
in asymmetry. Right after the quench a perfectly thermalising operation
is applied, which dissipates both resources, bringing the system back to
a symmetric equilibrium state.

If the system were always at equilibrium, from the result of Lieb and
Yngvason one would expect the existence of a single resource quantifier
to certify possible transitions. Indeed, in the case of isothermal transfor-
mations a transition ρ → σ is possible only if w = ∆Fρ→σ [89]. When
moving out of equilibrium though, we know that one also need to take
into account the effects of the stochastic variable Σ, the entropy pro-
duction, which justifies the need for the many constraints which have
to be satisfied in Eq. (4.165) and Eq. (4.166). Interestingly, though, in
the quasistatic regime the cumulant generating function for the entropy
production decouples as (see Eq. (4.117))

Kdiss(λ) = Kdiss
D (λ) +Kdiss

C (λ) , (4.167)

signalling the existence of two independent stochastic variables ΣD and
ΣC, corresponding respectively to the dissipation of athermality and to
the one of asymmetry, as the first comes from the diagonal part of the
driving while the second follows from the off-diagonal contributions. This
intuitive separation can be made precise by presenting two independent
protocols each reproducing one part of Kdiss(λ). To this end, it is useful
to rewrite explicitly the two contributions in the quench model, which
are given by:

Kdiss
D (λ) =

β2(λ2 − λ)
2N2

∫ N

0
dt Vart(∆Ḣ

D
t ) , (4.168)

Kdiss
C (λ) = − β2

2N2

∫ N

0
dt

∫ λ

0
dx

∫ 1−x

x
dy covyt (∆Ḣ

C
t , ∆Ḣ

C
t ) , (4.169)

where ∆Ḣ
D/C
t are the same as the one used in Eq. (4.117), and we in-

troduced the variance Vart(A) := Tr
[
A2, πβ(Ht)

]
− Tr [Aπβ(Ht)]

2.
Consider now a new quench protocol for which each step is divided in

two parts: (a) a change of the Hamiltonian which affects only the diagonal
Hi → (Hi+Di(Hi+1−Hi)), followed by complete thermalisation (where
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{Hi} are the one of the driving, and Di := DHi); (b) a rotation of the
energy basis (Hi + Di(Hi+1 −Hi)) → Hi+1, again followed by complete
thermalisation. The corresponding cumulant generating function takes
the form:

Kdiss
sim (λ) = Kdiss

A (λ) +Kdiss
B (λ) , (4.170)

where Kdiss
A/B(λ) correspond to the two parts of the protocol, and their

independence is a consequence of the thermalisation step that completely
decouples one process from the other. Writing down the explicit form of
the two terms in Eq. (4.170):

Kdiss
A (λ) = (λ− 1)

N∑
i=1

Sλ(πβ(Hi +Di(Hi+1 −Hi))||πβ(Hi)) , (4.171)

Kdiss
B (λ) = (λ− 1)

N∑
i=1

Sλ(πβ(Hi+1)||πβ(Hi +Di(Hi+1 −Hi))) ,

(4.172)

we see that in general the simulated process differs from the original one,
as Kdiss(λ) ̸= Kdiss

sim (λ). In the quasistatic limit though things highly
simplify. First, it should be noticed that in the limit N → ∞, standard
arguments from perturbation theory show that Hi+1 has the same spec-
trum as (Hi+Di(Hi+1−Hi)). If β is small enough (or N large enough),
the same also holds for the corresponding thermal states. Hence, expand-
ing the first term one obtains:

Kdiss
A (λ) =

β2(λ2 − λ)
2N2

∫ N

0
dt Vart(∆Dt(Ḣt)) = Kdiss

D (λ) , (4.173)

since Dt(Ḣt) = ḢD
t .

If we now focus on the second term, Kdiss
B (λ), it should be noticed

that the variation in the Hamiltonian is given by:

Hi+1 − (Hi +Di(Hi+1 −Hi)) = Hi+1 −Di(Hi+1) = HC
i+1 . (4.174)

Hence, in the same limit of small β, or large N one can express the second
part of the CGF as:

Kdiss
B (λ) = − β2

2N2

∫ N

0
dt

∫ λ

0
dx

∫ 1−x

x
dy covyt (∆Ḣ

C
t , ∆Ḣ

C
t ) = Kdiss

C (λ) .

(4.175)
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The computations just completed show that one can indeed simulate
the action of quasistatic protocols by splitting it in two independent pro-
cesses, one in which only athermality is consumed, and the other in which
only asymmetry is depleted, as represented in Fig. 4.8. Indeed, by looking
at Eq. (4.171) and Eq. (4.172) one can notice that the first CGF mirrors
the form of the constraints on athermality imposed by the second laws in
Eq. (4.165) (as all the states are diagonal), while the latter reproduces the
structure of Eq. (4.166), in which one compares a state with its own de-
phased version. It should be noticed, though, as it was correctly pointed
out in [93], that due to the dependence of the thermal state on the tem-
perature, in order to ensure the correctness of the calculations above, one
needs to take N exponentially large in β, limiting the practical use of the
split presented. Still, Eq. (4.173) and Eq. (4.174) should be understood
as a proof of principle of the separation of the entropy production close to
equilibrium into two independent channels, one for each kind of resource.

In this context, it is interesting to notice that the family of second laws
in Eq. (4.165) collapse into a single constraint, since covyt (∆ḢD

t , ∆Ḣ
D
t ) =

Vart(∆Dt(Ḣt)). Indeed, close to equilibrium, in the absence of coher-
ences, one can completely characterise the entropy production ΣD in
terms of its average value alone, so it is clear that one can look just at
one quantity (other than ∆F ) to assess whether a transition is thermo-
dynamically possible or not.

Another interesting aspect of the splitting in Eq. (4.167) is that one
can rewrite the coherent contribution as:

Kdiss
C (λ) =

β2(λ2 − λ)
2N2

∫ N

0
dt Vart(∆Ḣ

C
t )+ (4.176)

+
β2

2N2

∫ N

0
dt

∫ λ

0
dx

∫ 1−x

x
dy Iyt (πβ(Ht), ∆Ḣ

C
t ) , (4.177)

where in the second line we used the definition of the Wigner-Yanase-
Dyson skew information (see Eq. (1.182)). This quantifies the amount of
uncertainty about the coherent driving as measured in the thermal state,
and it is widely used in the theory of asymmetry [94]. The expression just
presented does not depend on the splitting used in Eq. (4.170), showing a
general connection between the coherent part of the driving and resource
theoretic quantities. It should also be noticed that the same splitting is
also possible for the Lindbladian model, by decomposing ∆ḢC

t in terms
of the corresponding right eigenoperators.

The splitting into diagonal and coherent contribution is present for
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Figure 4.8: In the quasistatic regime the entropy production Σ splits in
two additive contributions, one which accounts only for the dissipation
associated with the athermality created at each step (ΣD, red line), and
a part coming solely from a change in the energy basis (ΣC , green line).

all cumulants, i.e., κn = κDn + κCn . In particular, since for n > 2, κDn = 0,
and the first two cumulants are positive, we have that:

κn ≥ κDn , (4.178)

confirming the intuition that the additional channel of entropy produc-
tion provided by the dissipation of asymmetry worsen the quality of the
work extraction. Hence, close to equilibrium, coherences are not only
detrimental to the average work extraction but at all levels of statistics.
While, as it was pointed out in the discussion above, the result for the av-
erage is not new, as it derives from the additivity of the relative entropy,
the one for higher cumulants follows exclusively from the independence in
the dissipation of athermality and asymmetry for slow driving protocols.

Additionally, the two terms in Eq. (4.167) independently satisfy the
Jarzynski equality, as it can be explicitly verified by evaluating Eq. (4.168)
and Eq. (4.169) for λ = 1. This means that both Kdiss

D (λ) and Kdiss
C (λ)

can indeed be considered as arising from two independent thermal pro-
cesses. The probability distribution of the total dissipated work will then
be given by the convolution between the Gaussian coming from the dissi-
pation of athermality resources with the probability distribution coming
from the degradation of asymmetry. This observation also implies that
the two paradigmatic regimes studied in section 4.4 (see Fig. 4.6) can
be considered to be the cornerstone of any quasistatic thermodynamic
process.

Finally, one last interesting effect is the fact that the modified FDR
are also satisfied independently by the two different channels of entropy
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production. We can then write the inequality:〈
ΣD
〉

σ2
ΣD

=
1

2
≥
〈
ΣC
〉

σ2
ΣC

=
1

2
− Q

C

σ2
ΣC

. (4.179)

This shows that for a fixed amount of fluctuations, coherent processes
always dissipate less. It should be noticed though that the presence of a
negative correction implies that higher cumulants are non-zero, as it was
shown in Eq. (4.138), signalling a tendency of the system to fluctuate
above ⟨Σ⟩. Comparing this behaviour with the one happening for diag-
onal driving, it can be noticed how the entropy production associated
with the degradation of asymmetry is inherently different than the one
associated to the dissipation of athermality, having bigger fluctuations,
arising partly from the thermal disorder, partly from the genuinely quan-
tum uncertainty in the state. Indeed, this behaviour was already noticed
in [95].

4.6.2 Time reversal symmetry

As it was pointed out in Sec. 3.2.3, one can derive the Crooks relations
for the entropy production:

pF (Σ)

pR(−Σ)
= eΣ (4.180)

from the equality Kdiss
R (λ) = Kdiss

F (1 − λ) (see Eq. (3.63)). Interest-
ingly enough, in the slow driving regime one can prove that Kdiss

F (λ) =
Kdiss
F (1 − λ), which implies that Eq. (4.180) holds without having to

revert the protocol. This can be verified from Eq. (4.27), by noticing
that the extremes of integration are invariant under the change of vari-
able λ → 1 − λ. A more elegant proof can be given as follows: in the
TPM scheme the cumulant generating function associated to the reverse
protocol can be written as:

Kdiss
R (λ) = (λ− 1)Sλ(πβ(H0)||U †τπβ(Hτ )Uτ ) = (4.181)

= (λ− 1)Sλ(Uτπβ(H0)U
†
τ ||πβ(Hτ )) = (4.182)

= (λ− 1)Sλ(ρτ ||πβ(Hτ )) , (4.183)

i.e., by inverting the arguments of the Rényi entropy in Eq. (4.16) for the
forward driving. Hence, in order to obtain the slow driving expansion
for the reverse protocol, one can simply carry out the same expansion
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presented in Sec. 4.2 but with the arguments inverted. As it was pointed
out in Sec. 1.2.1, though, all contrast functions become symmetric in
their arguments for close-by states, so one can deduce that Kdiss

F (λ) =
Kdiss
R (λ). This means that close to equilibrium the entropy production

becomes completely time symmetric. This should not be surprising as
we are expanding the entropy production around its minimum, so that
the corresponding CGF can be expressed in terms of quadratic functions,
which do not distinguish between the driving Ḣt and its reverse Ḣrev

t =
−Ḣ1−t.

Going back to Eq. (4.180) we can then obtain the relation:

p(Σ)

p(−Σ)
= eΣ , (4.184)

which goes under the name of Evans-Searles fluctuation theorem [96]. It
places a considerable constraint on the fluctuations in entropy production,
with negative values exponentially suppressed. Moreover, it should be
noticed that by splitting the entropy production in diagonal and coherent
contribution Σ = ΣD+ΣC one obtains the two independent Evans-Searles
fluctuation theorems:

p(Σx)

p(−Σx)
= eΣx , x = {D,C} , (4.185)

which further constrain the distribution of entropy production. This dis-
cussion, together with the one from the previous section, show that the
effects of the time symmetry, together with the separation of different
channels of dissipation are at the origin of the simplicity with which we
can give so general results close to equilibrium.

4.7 Engine optimisation

The maximum efficiency of ideal engines is given by the Carnot formula in
Eq. (4.12). This result is universal, in the sense that it does not depend on
any detail of the particular system in exam, but only on the temperatures
of the two baths used to perform the cycle. It should be noticed, though,
that the power output of such engines is zero, since this is defined as:

P := −
⟨w⟩
τtot

, (4.186)

and for ideal transformations one has τtot =∞.



4.7 Engine optimisation 177

When moving to the slow driving regime one loses some part of the
universality, but it is anyway possible to put forward a set of very gen-
eral principles that optimal engines should satisfy. In particular, in this
context we refer to optimality of a cycle as the property of maximising
the power output for a fixed total time τtot.

Let us then consider the case of a cycle performed between n different
baths, specified by their inverse temperature {βi}. Each isothermal is
performed in time τi, and the total time of the transformation is given by
τtot :=

∑
i τi. Finally, we assume that different isothermals are connected

through adiabatic jumps, in analogy with what happened for the Carnot
engine in Fig. 4.1. Thanks to the first law, after a full cycle one has
⟨w⟩ =

∑
i Qi, where Qi denote the heat exchanged with the i-th bath.

Then, the power output can be expressed as:

P = −
⟨w⟩
τtot

= −
∑

i Qi
τtot

=

∑
i β
−1
i (∆Si − ⟨Σi⟩)∑

τi
. (4.187)

Since the power output is a positive quantity, it is apparent that, in order
to maximise it, one needs to minimise the negative contributions coming
from

∑
⟨Σi⟩. Moreover, it should be noticed that this expression of

the power is general, so the same reasoning applies also outside of the
slow driving regime. For this reason, we can express the 0-th principle of
engines optimisation at finite time as:

0. Maximising the power at fixed total time is equivalent to minimising
the dissipation.

Now, the particularity of the slow driving regime is that ⟨Σi⟩ =
O
(
τ−1i

)
. This means that in this context (τi ⟨Σi⟩) is a quantity that

does not depend on the duration of the protocol. Moreover, it should
be noticed that one can bound the total dissipation through a Cauchy-
Schwartz inequality, given by:(∑

i

β−1i ⟨Σi⟩

)∑
j

τj

 ≥ (∑
i

√
β−1i τi ⟨Σi⟩

)2

. (4.188)

The lower bound is saturated for {β−1i ⟨Σi⟩} and {τi} being parallel,
corresponding to the requirement β−1i ⟨Σi⟩ /τi = const. This can also be
expressed by saying that the dissipation rate is constant across different
isothermal transformations, leading to the principle:
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1. The minimum total dissipation in the slow driving regime is ob-
tained by keeping the ratio β−1i ⟨Σi⟩ /τi constant for all isothermal
drives. This leads to the equality:

∑
i

β−1i ⟨Σi⟩ =
1

τtot

(∑
i

√
β−1i τi ⟨Σi⟩

)2

. (4.189)

It should be noticed again that thanks to the slow driving assumption
(τi ⟨Σi⟩) is a constant function of τi, so the lower bound in Eq. (4.188)
does not depend on time.

Using Eq. (4.189) one can substitute the total time appearing in the
definition of the power as:

P =

(∑
i β
−1
i ∆Si

) (∑
i β
−1
i ⟨Σi⟩

)
−
(∑

i β
−1
i ⟨Σi⟩

)2(∑
i

√
β−1i τi ⟨Σi⟩

)2 . (4.190)

We can carry out the maximisation of the numerator and the minimisa-
tion of the denominator independently. Then, starting from the latter we
know that the minimum dissipation along each cycle is obtained following
geodesics paths. Following the discussion around Eq. (4.57) this implies
that the entropy production rate ⟨Σ̇t⟩ is constant along each of the tra-
jectories. Moreover, since (τi ⟨Σi⟩) is also constant, this implies that the
entropy production rate is always the same for all the transformations.
We can summarise this discussion in the two principles:

2. The isothermal transformations of optimal engines in the slow driv-
ing regime follow the corresponding geodesic drives;

3. The entropy production rate ⟨Σ̇t⟩ of optimal engines in the slow
driving regime is constant along the whole cycle.

A simple corollary of the principles above is that in optimal engines the
creation of coherence is avoided, as in the slow driving regime coherences
are always detrimental. Hence, we can state the following principle:

4. Optimal engines in the slow driving regime avoid the creation of
coherences, meaning that the Hamiltonians {Ht} are all diagonal
in the same basis.
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We can now pass to the optimisation of the numerator. In this case, by
inspection of Eq. (4.190) it is clear that this is obtained for

∑
i β
−1
i ⟨Σi⟩ =

1
2

(∑
i β
−1
i ∆Si

)
, which gives:

Pmax =


(∑

i β
−1
i ∆Si

)
2

(∑
i

√
β−1i τi ⟨Σi⟩

)


2

=

∑
i β
−1
i ∆Si

2 τtot
, (4.191)

where in the last step we used Eq. (4.189) to substitute back τtot. It
should be noticed that the expression in the numerator corresponds to
the work output for an ideal cycle. Hence, we obtain that in the slow
driving regime the maximum power of an engine is given by half the
maximum work output along that cycle divided by the total time. A
similar result was discussed in [97] for engines that can be optimised by
keeping the entropy production rate constant. Still, here we show that
this assumption applies to any engine operated close to equilibrium.

At this point it is useful to recall the thermodynamic length inequality
in Eq. (4.57), given by:

⟨Σi⟩ ≥
1

τi
ℓ2γi , (4.192)

which is saturated along geodesics. Then, we can rewrite the maximum
power in Eq. (4.191) as:

Pmax =

(∑
i β
−1
i ∆Si

)2
2

(∑
i

√
β−1i ℓγi

)2 . (4.193)

This quantity only depends on the endpoints chosen for the transforma-
tions. In [6] it was shown that the optimal power is always obtained by
restricting the number of baths to two, i.e., for a Carnot like cycle. This
should not be surprising, as the same behaviour also holds for ideal en-
gines. Hence, in the following, without loss of generality, we will assume
that the cycle operates between two baths only.

Moreover, we further assume that the thermodynamic length satisfies
a relation of the form

√
β−1c F (βc)ℓγc =

√
β−1h F (βh)ℓγh for some function

F . This assumption is well justified when all the baths have the same
spectral density [6], so this does not restrict too much the validity of the
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discussion below. Then, simple manipulations of Eq. (4.193) leads to:

PCarnot
max =

β−1h
4

∆S2
h

ℓ2γh

(
(βc − βh)F (βc)

(F (βc) + F (βh))βc

)2

(4.194)

where we implicitly used the relation ∆Sc = −∆Sh that holds for cycles.
Hence, in order to complete the optimisation, we should maximise the
ratio ∆S2

h/ℓ
2
γh

. Interestingly, even this problem can be solved by resorting
to the Cauchy-Schwarz inequality [98]. To this end, it is useful to express
the difference of entropy between the endpoints in terms of the Kubo-
Mori-Bogoliubov metric:

∆S = S(πβ(Hτ ))− S(πβ(H0)) =

∫ τ

0
dt

d

dt
S(πβ(Ht)) = (4.195)

= β

∫ τ

0
dt

d

dt
Tr

[
e−βHt

Zt
(Ht − β−1Zt)

]
= (4.196)

= −β2
∫ τ

0
dt Tr

[
∆Ht Jt,L[∆Ḣt]

]
. (4.197)

It should be noticed that if there exists a single equilibration timescale
in the system one can rewrite the thermodynamics metric as (gi,j)t =
τ eq (mKMB

i,j )t (see, for example, Eq. (4.89))1. Then, it follows that:

∆S2
h

ℓ2γh
=

∆S2
h

τh ⟨Σ⟩
=
β2h

(∫ τh
0 dt

∑
i,j(m

KMB
i,j )t(∆Ht)i(∆Ḣt)j

)2
τh τ eq

∫ τh
0 dt

∑
i,j(m

KMB
i,j )t(∆Ḣt)i(∆Ḣt)j

≤

(4.198)

≤
β2h

τh τ eq

∫ τh

0
dt
∑
i,j

(mKMB
i,j )t(∆Ht)i(∆Ht)j = (4.199)

=
β2h

τh τ eq

∫ τh

0
dt Tr [∆Ht Jt,L[∆Ht]] =

1

τh τ eq

∫ τh

0
dt CHt(βh) ,

(4.200)

where we used the fact that for geodesics the equality ℓ2γh = (τh ⟨Σ⟩)
holds (see Eq. (4.57)), together with the definition of heat capacity in
Eq. (1.223). Hence, the inequality just found tells us that:

∆S2
h

ℓ2γh
≤ 1

τh τ eq

∫ τh

0
dt CHt(βh) , (4.201)

1If this is not the case, one can always use the bound (gi,j)t ≥ τ eq
min (m

KMB
i,j )t,

where τ eq
min is the smallest equilibration time.
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which can be further bounded as:
∆S2

h

ℓ2γh
≤ 1

τh τ eq

∫ τh

0
dt CHt(βh) ≤

1

τ eq
max
γh

CHt(βh) , (4.202)

where we simply upper bounded the integrand by its maximal value. The
first inequality is saturated if the integrand in Eq. (4.197) is constant,
i.e., if there is a uniform creation of entropy along the trajectory. The
second inequality can be saturated by doing infinitesimal cycles around
the maximum of γh. This leads to the principle:

5. Optimal engines in the slow driving regime with a single thermali-
sation timescale operate in infinitesimal cycles.

Moreover, the best position in the parameter space where to perform the
infinitesimal cycle is exactly the one that maximises the heat capacity:

6. The infinitesimal cycles of optimal engines in the slow driving regime
with a single thermalisation timescale are peaked around the max-
imum of the heat capacity in the Hamiltonian space.

The discussion presented in this section gives a complete optimisation
of the power output of engines close to equilibrium: principle 1 tells us
how to choose the different times {τi}, namely in such a way that the
entropy production is constant for each isothermal; then, principle 2, 3
and 4 specify the driving, constraining it to be geodesic and without
coherences; finally, principle 5 and 6 tell us how to choose the driving
among all the possible geodesics, showing that infinitesimal cycles around
the maximum heat capacity are optimal. In this way one arrives to the
expression for the maximum power:

PCarnot
max =

β−1h
4τ eq

(
max
H

CH(βh)

) (
(βc − βh)F (βc)

(F (βc) + F (βh))βc

)2

. (4.203)

This equation shows that there are no other free parameters to optimise,
giving a universal expression of the maximum power depending only on
the temperatures of the baths, together with the system dependent quan-
tities τ eq, CH(β) and F (β).

4.8 Signature of contextuality in the linear re-
sponse regime

All the results presented so far are derived in the TPM scheme, so it
is hard to imagine that any genuinely quantum effects could arise in



182 Thermodynamic transformations close to equilibrium

this context (see Thm. 16). Emblematic of the problem is the quench
model in Eq. (4.33), in which the state before each quench is completely
thermal, i.e., with no coherence, so that the TPM and WWS schemes
coincide. Hence, one could expect that even by studying the statistics of
work defined in a more general scheme could not result in any genuinely
quantum effects, as the property of being close to equilibrium is enough
to wash out any contextuality in the process.

Interestingly, this is not the case: one can find contextual advantages
even in the linear response regime [99]. In particular, consider an engine
defined as follows: first, the system is coupled at the same time to a
hot and a cold bath in order to generate a non-equilibrium steady state
ρ; at this point the system is driven unitarily in time τ through the
transformation generated by the Hamiltonian:

H(t) = H0 + g V (t) ; V (0) = V (τ) = 0 . (4.204)

Notice that the second condition allows us to refer to this as a cyclic
transformation. Moreover, it should be noticed that the linear response
is defined by the regime in which (gτ) ≪ 1, i.e., for very short duration
of the pulses, or for small interactions strength. In the following we will
consider the second case. This is an implicit assumption in the physical
derivation of the Lindbladian equation, so the subject of this section is as
general as the results presented in the TPM scheme. Then, the average
change of energy during one cycle is given by:〈

wQ
〉
= Tr

[
ρU †τ H0 Uτ

]
− Tr [ρH0] = (4.205)

= −i
∫ τ

0
dt Tr

[
ρU †t [H0, H(t)]Ut

]
. (4.206)

At this point it is useful to define the Hamiltonian in the interaction pic-
ture, i.e., HI(t) = eiH0tH(t) e−iH0t = H0+g VI(t). Indeed, by expanding
Eq. (4.206) at first order in powers of g one obtains:

〈
wQ
〉
= −ig

∫ τ

0
dt Tr

[
ρ eiH0t [H0, V (t)]e−iH0t

]
+O

(
g2
)
= (4.207)

= −ig
∫ τ

0
dt Tr [ρ [HI(0), HI(t)]] +O

(
g2
)
, (4.208)

where in the last step we highlighted the relation between
〈
wQ
〉

and the
two-points correlation function. Expressing Eq. (4.208) in coordinates
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one also gets:〈
wQ
〉
= −2gτ

∑
i

E
(i)
0 ImTr

[
ρΠ

(i)
0

(
1

τ

∫ τ

0
dt VI(t)

)]
+O

(
g2
)
=

(4.209)

= −2gτ
∑
i

E
(i)
0 Tr

[
ρΠ

(i)
0

]
Im

Tr
[
ρΠ

(i)
0 X

]
Tr
[
ρΠ

(i)
0

]
+O

(
g2
)
, (4.210)

where we implicitly defined the operator X := 1
τ

∫ τ
0 dt VI(t). It should

be noticed that the ratio in Eq. (4.210) has the same structure as the
weak values defined in Eq. (B.15). Indeed, it was shown in [100] that
also the imaginary part of the weak values can give rise to witnesses of
contextuality.

Indeed, this is the case for
〈
wQ
〉

under some assumptions on the
unitary Ut. In particular, define the superoperator Uτ [·] := Uτ (·)U †τ .
Suppose then that for g small enough it holds that:

1

2

(
Uτ + U†τ

)
= (1− pd) I+ pd C , (4.211)

where C is some arbitrary quantum channel and pd = O
(
g2
)
. It was

proven in [99] that this can be guaranteed through the following theorem:

Theorem 22. Define the matrix:

Jkj := 1− (αk − αj)2

C
(4.212)

where C > 0 and αi are the eigenvalues of the operator X defined above.
Then, if there exists a C such that J is positive semidefinite, for g small
enough the decomposition in Eq. (4.211) holds.

From an ontological model point of view, Eq. (4.211) means that
there are two transformations Tτ and T ∗τ , not necessarily unitary, which
are not too far from the trivial transformation TI under uniform mixing.
Moreover, since C is a channel, it also implies that there exists a third
transformation TC such that:

1

2
(Tτ + T ∗τ ) =op (1− pd)TI + pd TC . (4.213)

Then, one can apply the following theorem:
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Theorem 23. Assuming the validity of Eq. (4.213), for any non-contextual
ontological model and any observable O :=

∑
iOi |i⟩⟨i |, the average dif-

ference:

⟨∆O⟩τ :=
∑
i

Oi (p(i|Tτ (P),M)− p(i|P,M)) , (4.214)

corresponding to the difference between the average at time τ and time
t = 0, is bounded by:

| ⟨∆O⟩τ | ≤ 4 pdOmax , (4.215)

where Omax is the largest eigenvalue of O.

We refer to [99] for the proof. The theorem just presented shows
that for any non-contextual transformation that can be approximately
reversed (in the sense of Eq. (4.213)) the linear response scales as pd =
O
(
g2
)
. On the other hand, from Eq. (4.210) we know that the average

change in energy scales as O (g) if the imaginary part of the anomalous
weak values for X is non-zero. Hence, for g small enough the work out-
put

〈
wQ
〉

can be bigger than the one generated by any non-contextual
counterpart. Moreover, the power output in this context is given by:

PQ = 2 g
∑
i

E
(i)
0 ImTr

[
ρΠ

(i)
0 X

]
+O

(
g2
)
. (4.216)

Since there is no explicit dependence on time in this expression, no non-
contextual ontological model can reproduce this power output (for g small
enough) even if one allows for a longer time of simulation then the one
of the original cycle.

This discussion concludes the chapter about thermodynamics close to
equilibrium. As we saw, the assumption of slow driving allows for many
simplifications and universal results, and, as it was shown in this last
section, could still give rise to interesting genuinely quantum effects.



Chapter 5

Map of results and Outlook

Given the way in which this thesis was devised and written, it might
be difficult to properly discern between the contributions of the author
and the results that were already known in the literature. The rationale
behind this choice is to favour the natural stream of thoughts and to
provide an organic treatment of the subject, rather than to bend the ex-
position to the artificial need of partitioning between results of the author
as opposed to the one of other scientists. Still, we take this section to pro-
vide a brief summary of the results of the author (and colleagues), divided
by chapters to facilitate the identification in the main text. Moreover,
this map of the results disseminated in the thesis is also complemented
by the questions that still remain unresolved and that would be worth to
look at in the future.

Results contained in Chapter 1: Fisher information and the
geometry of quantum states

The discussion presented in Sec. 1.1–1.4 about the quantum Fisher
information was already known in the literature. In [1] these results
were reviewed and presented in a unified manner. Moreover, in the same
publication (and in [4]) the dynamical nature of the Fisher information
was discussed. The beginning of Sec. 1.5, together with Sec. 1.5.1–1.5.4,
are completely new and derive from the two papers mentioned. Part
of the characterisation of the detailed balance was already recognised in
the literature, so it is fair to say that the only genuinely new result of
Sec. 1.5.5 is the expression of the generator for a (Fisher) detailed balance
dynamics in Eq. (1.343) (also contained in [1]).

185
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Open questions:

• We know that for the Bures metric and the Wigner-Yanase skew
information (defined in Sec. 1.4.2 and Sec. 1.4.5) a closed formula
of the geodesic distance can be found. The particularly simple ex-
pressions connected to these two metrics arise from the minimality
of the Bures metric, on the one hand, on the other, from the prop-
erty of the Wigner-Yanase metric to have a constant curvature on
all the space of states (which allows one to reduce the problem to
the one of finding the geodesics on a sphere [29]). One question
of particular interest is the following: is it possible to find a gen-
eral solution for the geodesic distance for any standard monotone
function? Or at least in the case of the relative entropy, or the fam-
ily of Rényi-divergences? Such a solution would allow to give neat
lower bounds, characterising, for example, the minimum average
dissipation and similar quantities of operational relevance.

• One of the reason behind the interest for the Bures metric is that it
is directly connected to the estimation of parameters encoded in uni-
tary evolutions through the Cramer-Rao bound. Indeed, suppose
the state ρ is evolved in the imaginary time with the Hamiltonian
H̃. The susceptibility of the state at time t = 0 is given by:

d

dt
ρ(t)

∣∣∣∣
t=0

=
d

dt
et H̃ρ(0)et H̃

∣∣∣∣
t=0

= 2 JB
∣∣
ρ(0)

[H̃] . (5.1)

If one compares the expression just obtained with the symmetric
logarithmic derivative defined in Eq. (1.138), it is apparent that up
to an unimportant factor 2, the two actually coincide. A similar be-
haviour also appears for another encoding, namely ρ(t) := eH0+tH̃ ,
which is particularly useful in the context of linear response of ther-
mal states. Indeed, in this case one obtains (see Eq. (4.26)):

d

dt
ρ(t)

∣∣∣∣
t=0

= JL
∣∣
ρ(0)

[H̃] . (5.2)

It is no coincidence that the two examples above are the only two
for which the Cramer-Rao bound seems to have some physical rele-
vance, as they are also the only two expressions (to the best of the
author’s knowledge) for which the following equation holds:

d

dt
ρ(t)

∣∣∣∣
t=0

= Jf
∣∣
ρ(0)

[H̃] . (5.3)
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States satisfying Eq. (5.3) are called exponential families associated
to the function f . It is then an open question whether one can find
a closed expression for the exponential family associated to some
other f (and possibly for the general case).

• Despite the rich mathematical structure associated to a Riemannian
manifold, it should be noticed that in our analysis of the relation
between evolutions and Fisher information we only have analysed
maps that contract the scalar product, or that are self-adjoint with
respect to it. These are two of the most simple properties one can
explore, while it is still an open problem what would happen if one
looked at more sophisticated quantities, like scalar curvature or the
Riemann tensor. The same type of problem will also arise in the
context of Chapter 4, and it boils down to the question of whether
there is a physical interpretation to the Riemannian properties of
the Fisher metric.

• Finally, as it was mentioned in the main text, it would be interesting
to study whether the equivalence between physical dynamics and
maps that contract the Fisher information could be used in some
form of reconstruction of quantum mechanics [101]. For example,
once the Hilbert space formalism was obtained following axioms
coming from information theory principles, one could define the
possible evolutions just in terms of the Fisher information metric.

Results contained in Chapter 3: The second law

Most of the results presented in Chapter 3 were already well known
in the literature. In the discussion of the Maxwell’s demon, Sec. 3.1.2
closely follows (and partially expands) the work by Zurek [64, 65]. In
particular, the proposal to use Levin’s complexity (see Eq. (3.7)) is new
to the best of the author’s knowledge. On the same note, the discussion
of the relation between Crooks relations and algorithmic coding theorem
(Sec. 3.2.4) is also original. Finally, a more concrete result is the one
discussed in Sec. 3.3, namely the axiomatic definition of Bayes’ inversion,
which was taken from [2]. The content of this paper is further explored
in Appendix C.

Open questions:

• The treatment of Maxwell’s demon presented in Sec. 3.1 hints at
a subtle connection between information processing and thermo-
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dynamics. Is it possible to make this relation more precise? For
example, by looking at the exactly solvable model of Maxwell’s de-
mon in Sec. 3.1.1, one can see that there is a relation between the
randomness of the bits stored in demon’s memory and the amount
of extracted work. Is it possible to rephrase this concept in purely
algorithmic terms? Or, to say it with Maxwell’s words, is this just
a cunning example of nephelococcygia?

• In [2] we found numerical evidences that requiring a retrieval map
to be involutive (see condition 5) is key to isolate Bayes’ reverse
map. Can this be analytically proven? Is it possible to give a
similar result also for the quantum case?

Results contained in Chapter 4: Thermodynamic transforma-
tions close to equilibrium

All of the results in Chapter 4 are original work, apart from Sec. 4.8
about contextuality in linear response theory. In particular, the general
expression of the cumulant generating function of work (see Sec. 4.2)
was taken from [7], while the considerations about the metric structure
associated to the average dissipation (Sec. 4.3) summarise the results
from [6] and [9]. The chapter about fluctuations of work reviews the
results from [8], and contains some expressions previously unpublished
(in particular we define a whole family of positive quantum signatures in
Eq. (4.146)). Sec. 4.5 and 4.6 are taken from [7], while Sec. 4.7 is from [6].

Open questions:

• The quantities discussed in Chapter 4 are defined in the TPM
scheme. For this reason, one could argue that the effects that we re-
fer as quantum are not genuinely so, as they admit a non-contextual
model simulating them. This raises the question: is it possible to
derive similar results to the one presented in Sec. 4.2–4.7 starting
from the WWS, or with some construction in the spirit of Sec. 4.8?
In particular, it should be noticed that Thm. 23 only discusses av-
erage quantities, while higher order statistics are not considered.
Could one find some quantifier akin to Q, defined in Eq. (4.131),
whose positivity would witness contextuality?

• As discussed in the open questions of Chapter 1, despite the rich
geometrical structure, we only make use of the concept of geodesics,
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ignoring any other Riemannian properties of the manifold of ther-
mal states. This approach descends from a tendency to not dwell on
mathematical technicalities if they are not justified from a physical
interpretation. Still, it is worth wondering whether one could give
any physical meaning to the whole differential geometrical struc-
ture arising in the presence of a Riemannian metric. A result in
this direction is the work [102] which connects the thermodynamic
curvature of classical systems with their correlation length. Then,
it would be interesting to verify whether this result can be extended
to the quantum regime.

• One of the problems of the resource theory of thermodynamics,
apart from the plethora of different definitions, is that it is hardly
connected with what people usually call thermodynamic transfor-
mations. This difference in language could be noticed in Sec. 4.6.1
where, despite the effort to identify quantities defined in the two
frameworks, the overall connection is still partly loose. In [103] con-
tinuous thermalising transformations were formalised in the frame-
work of resource theory, providing a first step to bridge the two
formalisms. In that work the system Hamiltonian needs to be con-
stant during the transformation, implying that only the production
of heat could be characterised, but not of work. Indeed, the general
problem of constructing a resource theory of continuous thermody-
namic operations seems rather challenging and still far away. Still,
could restricting to transformations close to equilibrium help, given
the many simplifications present in this regime?
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Appendix A

Dynamical properties of
Fisher information

A.1 Derivation of the flux of Fisher information

We present here the derivation of Thm. 8. In particular, we want to study
the evolution of the Fisher information:

Ft := Tr
[
δρt J−1f

∣∣
πt
[δρt]

]
, (A.1)

where πt := Φt(π) and δρt := Φt(δρ). Using the integral expression in
Eq. (1.78), we can rewrite the Fisher information as:

Ft = 2Re

∫ 1

0
dNg(s) Tr

[
δρt (Lπt + sRπt)−1[δρt]

]
, (A.2)

where the real part comes from the fact that (Lπ + sRπ)† = (Rπ + sLπ).
This expression is particularly convenient for calculations, due to the
simple form that the derivative of (Lπt + sRπt)−1 takes. In fact, this is
given by:

d

dt
(Lπt + sRπt)−1 = −(Lπt + sRπt)−1(Lπ̇t + sRπ̇t)(Lπt + sRπt)−1 ,

(A.3)

where π̇t is simply the derivative of the state. This expression can be
proved by noticing that d

dt Lπt = Lπ̇t (and similarly for Rπt) and by
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taking the derivative of:

d

dt

(
(Lπt + sRπt)(Lπt + sRπt)−1

)
= (A.4)

= (Lπ̇t + sRπ̇t)(Lπt + sRπt)−1 + (Lπt + sRπt)
d

dt
(Lπt + sRπt)−1 =

(A.5)

=
d

dt
I = 0 , (A.6)

which directly implies Eq. (A.3). Given this technical tool, we can start
analysing the evolution of Ft under the dynamics generated by the Lind-
bladian:

Lt[ρ] = −i[Ht, ρ] +
d2∑
α

λα

(
Aα(t) ρAα(t)

† − 1

2
{Aα(t)†Aα(t), ρ}

)
.

(A.7)

Notice that, since Ft is invariant under unitary transformations, there is
no contribution coming from the commutator in the previous equation.
Moreover, since the derivative is linear, it decomposes into a sum of the
form:

Ḟt =
∑
α

λα(t) Iα(t) , (A.8)

where each current Iα(t) only contains the corresponding jump operator
Aα(t), together with its adjoint. For this reason, without loss of gen-
erality, we consider here Lindblad operators generated by a single jump
operator. In order to shorten the notation we also assume that the jump
operator, denoted by A, is time independent, again without loss of gen-
erality. We start by rewriting the derivative of the Fisher information
as:

Ḟt = 2Re

∫ 1

0
dNg(s)

(
2Tr

[
δρ̇t(Lπt + sRπt)−1[δρt]

]
+

+Tr

[
δρt

(
d

dt
(Lπt + sRπt)−1

)
[δρt]

])
.

(A.9)
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The second term in the integral can be expanded as:

Tr

[
δρt

(
d

dt
(Lπt + sRπt)−1

)
[δρt]

]
= (A.10)

= −Tr
[
δρt(Lπt + sRπt)−1(Lπ̇t + sRπ̇t)(Lπt + sRπt)−1[δρt]

]
= (A.11)

= −Tr
[
Bs(t)

† π̇tBs(t)
]
− sTr

[
Bs(t)

†Bs(t) π̇t

]
= (A.12)

= −Tr
[
Bs(t)

† L(πt)Bs(t)
]
− sTr

[
Bs(t)

†Bs(t)L(πt)
]
, (A.13)

where we introduced the notation Bs(t) := (Lπt + sRπt)−1[δρt]. On the
other hand, the first term in Eq. (A.9) simply gives:

2Tr
[
δρ̇t(Lπt + sRπt)−1[δρt]

]
= (A.14)

= 2Tr [L(δρt)Bs(t)] = 2Tr
[
L((Rπt + sLπt)[Bs(t)†])Bs(t)

]
= (A.15)

= 2Tr
[
L(Bs(t)†πt)Bs(t)

]
+ 2sTr

[
L(πtBs(t)†)Bs(t)

]
, (A.16)

where in the second line we have multiplied and divided by (Rπt + sLπt)
to obtain Bs(t)

†. We can now proceed in summing up Eq. (A.13) and
Eq. (A.16). Due to the number of terms that will appear, though, we
first consider the first traces in both equations, and then the second ones.
Hence, summing the first term in Eq. (A.13) and the first of Eq. (A.16),
and explicitly expanding the Lindbladian, we obtain:

2Tr
[
ABs(t)

†πtA
†Bs(t)

]
−
((((((((((((
Tr
[
Bs(t)

†πtA
†ABs(t)

]
− Tr

[
A†ABs(t)

†πtBs(t)
]
+

− Tr
[
Bs(t)

†AπtA
†Bs(t)

]
+
(((((((((((((1

2
Tr
[
Bs(t)

†πtA
†ABs(t)

]
+
(((((((((((((1

2
Tr
[
Bs(t)

†A†AπtBs(t)
]
, (A.17)

where the first three terms come from Eq. (A.13), and the last three from
Eq. (A.16). Notice that the second term corresponding to Eq. (A.13)
cancels with the last two terms coming from Eq. (A.16). Indeed, we can
take the conjugate of the last trace without affecting the result, thanks to
the real part in Eq. (A.9). The remaining terms can be further simplified
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to give:

2Tr
[
πtA

†Bs(t)ABs(t)
†
]
− Tr

[
πtBs(t)A

†ABs(t)
†
]

− Tr
[
πtA

†Bs(t)Bs(t)
†A
]
= (A.18)

= Tr
[
πt [A

†, Bs(t)]ABs(t)
†
]
+Tr

[
πtA

†Bs(t) [A,Bs(t)
†]
]
= (A.19)

= −Tr
[
πtBs(t)A

† [A,Bs(t)
†]
]
+Tr

[
πtA

†Bs(t) [A,Bs(t)
†]
]
= (A.20)

= Tr
[
πt [A

†, Bs(t)][A,Bs(t)
†]
]
= (A.21)

= −Tr
[
πt [A,Bs(t)

†]†[A,Bs(t)
†]
]
, (A.22)

where in the first line we used the cyclicity of the trace to put in evidence
πt, then in the third line we took the complex conjugate of the trace
(again exploiting the fact that only the real part contributes to the Fisher
information), and used the identity [X,Y ]† = [Y †, X†] = −[X†, Y †].

We can now pass to examine the last two terms in Eq. (A.13) and
Eq. (A.16). Since the steps are completely analogous to the ones in the
previous derivation, we present them all together. Carrying them out
gives:

2sTr
[
AπtBs(t)

†A†Bs(t)
]
−
((((((((((((
sTr

[
A†AπtBs(t)

†Bs(t)
]

− sTr
[
πtBs(t)

†A†ABs(t)
]
+ (A.23)

− sTr
[
Bs(t)

†Bs(t)AπtA
†
]
+
(((((((((((((s

2
Tr
[
Bs(t)

†Bs(t)A
†Aπt

]
+
(((((((((((((s

2
Tr
[
Bs(t)

†Bs(t)πtA
†A
]
= (A.24)

= sTr
[
πt [Bs(t)

†, A†]Bs(t)A
]
+ sTr

[
πtBs(t)

†A† [Bs(t), A]
]
= (A.25)

= −sTr
[
πtA

†Bs(t)
† [Bs(t), A]

]
+ sTr

[
πtBs(t)

†A† [Bs(t), A]
]
=

(A.26)

= sTr
[
πt [Bs(t)

†, A†][Bs(t), A]
]
= (A.27)

= −sTr
[
πt [Bs(t), A]

†[Bs(t), A]
]
= (A.28)

= −sTr
[
πt [A,Bs(t)]

†[A,Bs(t)]
]
. (A.29)

This concludes the proof of Thm. 8. In fact, generalising again to the
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case of many time dependent jump operators, we finally obtain:

Ḟt =
∑
α

λα(t) Iα(t) = (A.30)

= −2
∑
α

λα(t)

∫ 1

0
dNg(s)

(
Tr
[
πt [Aα(t), Bs(t)

†]†[Aα(t), Bs(t)
†]
]
+

(A.31)

+ sTr
[
πt [Aα(t), Bs(t)]

†[Aα(t), Bs(t)]
])

,

(A.32)

where we can drop the real part, as both the terms in the integral are
positive definite.

A.2 Markovianity for classical evolutions

Despite the richness of the Fisher information geometry for quantum
systems when compared to the single metric in the classical case, all
the results characterising the relation between Fisher information and
Markovianity can be proved by reducing to essentially classical systems.
For this reason, we briefly present a useful characterisation of Markovian
stochastic maps.

Classical dissipative evolutions are described by stochastic maps, i.e.,
matrices Φ satisfying the two conditions:∑

i

(Φ)i,j = 1 ; (A.33)

(Φ)i,j ≥ 0 ∀ {i, j} , (A.34)

where the first condition ensures the conservation of total probability,
while the second is needed to make sure that states are mapped into
states. In complete analogy to the quantum case, a family of stochastic
maps Φt depending smoothly on t is called divisible if for any two times
t and s (t ≥ s) one can define an intermediate map Φt,s satisfying the
relation Φt = Φt,s ◦ Φs. A divisible stochastic dynamics is Markovian if
all the intermediate maps Φt,s are stochastic.

The smoothness in t allows to define the rate matrix Rt through the
equation

Rt := lim
ε→0

Φt+ε,t − I
ε

. (A.35)
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Then, since the composition of two stochastic maps is again stochastic,
Markovianity holds if and only if Rt generates a stochastic evolution for
any time t. For this reason, it is useful to characterise this kind of rate
matrices. To this end, consider the matrix Φt+ε,t ≃ I+εRt. For the global
evolution to be Markovian, this matrix should satisfy the two conditions
in Eq. (A.33) and Eq. (A.34), namely:∑

i

(δij + ε (Rt)i,j) = 1 + ε
∑
i

(Rt)i,j = 1 , (A.36)

δij + ε (Rt)i,j ≥ 0 ∀ {i, j} , (A.37)

where δij denotes the Kronecker delta. From the first condition we can
deduce that

∑
i(Rt)i,j = 0. In particular, highlighting the diagonal terms,

one obtains R(t)
j,j = −

∑
i ̸=j R

(t)
i,j . Matrices satisfying this constraint can

be decomposed as:

Rt =
∑
i ̸=j

a
(t)
i←j ( |i⟩⟨j | − |j ⟩⟨j |) (A.38)

for a(t)i←j some real coefficients. We assume that this condition is always
satisfied, also for non-Markovian evolutions, as it corresponds to the re-
quirement that the dynamics preserves the normalisation. In fact, since
non-Markovian evolutions are trace preserving on their domain, one can
argue by linearity that this condition can be extended to the whole space
of states.

Moreover, the condition in Eq. (A.37) implies that (Rt)i,j ≥ 0 when-
ever i ̸= j. In the parametrisation above this means that the rates satisfy
a
(t)
i←j ≥ 0. Hence, Markovianity corresponds to the request of having

positive rates a(t)i←j for all times.
It should be pointed out that the derivation just presented is com-

pletely analogous to the one for the Lindbladian operators. In fact, in
the same way we characterised trace preserving maps with Thm. 7, one
needs to do the same for stochastic matrices, leading to Eq. (A.38). Once
this parametrisation is obtained, it is then straightforward to connect
Markovianity and positivity of rates.

A.3 Use of the trace distance in non-Markovianity

The study of non-Markovianity is mainly carried out in terms of informa-
tion quantifiers, like, for example, distinguishability distances. These are
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functions devised to quantify how statistically distinguishable two states
are, and they usually decrease under physical evolutions. Then, as this
leads to a monotonic decrease in these distances under Markovian dy-
namics, any increase thereof signals the appearance of non-Markovianity.
In this context, the most used example is given by the trace distance:

DTr(ρ, σ) = Tr [|ρ− σ|] . (A.39)

This quantity is connected to the maximal probability pd of distinguishing
ρ from σ in a single shot measurement, thanks to the relation pd(ρ, σ) =
(1 +DTr(ρ, σ))/2 [17]. Moreover, since it is translational invariant, it is
particularly appealing for analytical calculations. In particular, suppose
ρ and σ are two probability vectors, and define δρ := σ − ρ. Then, the
trace distance is given by:

DTr(ρ, σ) = DTr(ρ, ρ+ δρ) = Tr [|δρ|] . (A.40)

If the evolution is described by the rate matrix Rt, it is straightforward
to see that:

d

dt
DTr(ρ, σ) =

d

dt
Tr [|δρ|] =

∑
i

d

dt
|δρi| = (A.41)

=
∑
i

sign(δρi)δρ̇i =
∑
i

sign(δρi)
∑
j

(Rt)i,j dj = (A.42)

=
∑
i ̸=j

sign(δρi)
(
a
(t)
i←jδρj − a

(t)
j←iδρi

)
= (A.43)

=
∑
i ̸=j

a
(t)
j←i δρi (sign(δρj)− sign(δρi)) . (A.44)

where we used the parametrisation of the rate matrix in Eq. (A.38),
and in the last line we swapped the indexes of the first term in order
to put the coefficient a(t)j←i in evidence. It should be noticed that if all
the rates are positive, then the sum will be negative: in fact, either
sign(δρj) = sign(δρi), in which case the term inside the parenthesis is
zero, or sign(δρj) = −sign(δρi), so that δρi(sign(δρj) − sign(δρi)) =
−2 δρi sign(δρi) = −2|δρi|. This calculation shows explicitly how the
trace distance decreases under Markovian maps.

Interestingly, it is a well known fact that an evolution is Markovian if
and only if the trace norm of any vector v decreases monotonically [35].
For this reason, it would be natural to expect the same to hold for the
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trace distance as well. It is easy to see, though, that this is false: one
simple counterexample can be given in dimension d = 2, with a1←2 <
0 and a2←1 > 0, and the additional condition that |a2←1| > |a1←2|.
Plugging such choice in Eq. (A.44), and using the fact that in dimension
2 in order for δρ to be traceless it must satisfy δρ1 = −δρ2, it is easy to
check that the derivative of the trace distance stays negative. Still, there
is no contradiction between the two results: indeed, the trace distance
can only access vectors of the form δρ = σ−ρ, i.e., that are traceless. This
reduces the dimension of the vectors tested by one. In fact, by choosing
the traceful vector vi = δi2, one is able to witness non-Markovianity in
the counterexample just presented.

Suppose now to have access to extra ancillary degrees of freedom
on which the dynamics acts trivially, i.e., the global evolution is given
by Φt ⊗ IdA , where dA is the dimension of the ancilla. Then, one can
always find product states ρ and σ on the composite space such that
TrS [ρ− σ] ̸= 0 while TrA [ρ− σ] = 0, so that the total trace is zero. In
this way, ancillary degrees of freedom give access to traceful vectors, and
so to the possibility of witnessing non-Markovianity. A similar argument
was also presented in [39] for the case of quantum dynamics. These results
lead to the following:

Theorem 24. Given a divisible dynamics Φt, there always exists an an-
cilla of finite dimension dA on which the dynamics acts trivially (i.e.,
the total evolution is given by Φt ⊗ IdA) such that one can witness any
non-Markovianity in Φt via revivals in the trace distance between initially
prepared states.

For quantum states dA = d+1 [39]. It should be noticed, though, that
in order to actually speak about complete positivity one always needs an
ancilla of dimension at least d (as complete positivity coincides with the
positivity of the map Φ ⊗ Id). In this way, the trace distance needs one
extra dimension than the minimum in order to witness non-Markovianity.
A similar result actually holds also for classical systems. In this case, one
only needs to enlarge the state space by one extra dimension. Then, for
any vector v on the original space, one can always construct a traceless
state on this extended space as:

δρ =

{
δρi = vi if i ∈ {1, . . . , d} ;
δρi = −

∑d
j=1 δρj if i ≡ d+ 1 .

(A.45)

This state satisfies Tr [|δρ̇|] = Tr [|v̇|], which proves the claim. Still, in
this case it should be noticed that this construction cannot be carried
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out by adjoining an ancilla, as in that case the minimum dimension of
the state space is dA = 2. Nonetheless, this example is useful as it shows
that two dimensional ancillas are enough, and that in principle it would
be sufficient to embed the dynamics Φt in a space only one dimension
bigger than the original space in order to witness non-Markovianity.

A.3.1 Relation between trace distance and Fisher infor-
mation

In this section we present two technical results that are fundamental for
the rest of the proofs in this section. First, we show in which cases one
can reduce the study of the dynamics of the quantum Fisher information
to its classical counterpart; secondly, we define a set of states and per-
turbations such that the Fisher information actually coincides with the
trace distance.

The first result we present is:

Lemma 2. Consider a state ρ and a perturbation δρ of the form δρ =
δρ∆ +dt δρC , where δρ∆ contains all the elements on the diagonal of δρ,
while δρC only off-diagonal terms, and dt ≪ 1. Then, it follows that:

Tr
[
δρ J−1f

∣∣
ρ
[δρ]
]
= Tr

[
δρ∆ J−1f

∣∣
ρ
[δρ∆]

]
+O

(
dt 2
)
= (A.46)

= Tr
[
(δρ∆)

2 ρ−1
]
+O

(
dt 2
)
. (A.47)

Moreover, if δρ = δρ∆ at time zero, then the derivative of the quantum
Fisher information reduces to its classical counterpart:

d

dt
Tr
[
δρ J−1f

∣∣
ρ
[δρ]
]
=

d

dt
Tr
[
(δρ∆)

2 ρ−1
]
. (A.48)

In this way, as long as only first derivatives are involved, all the quantum
Fisher informations collapse on the classical one for commuting ρ and
ρ+ δρ.

Proof. The first part of the result is quite straightforward, since

Tr
[
δρ∆ J−1f

∣∣
ρ
[δρC ]

]
= Tr

[
δρC J−1f

∣∣
ρ
[δρ∆]

]
= 0 , (A.49)

thanks to the fact that J−1f
∣∣
ρ
[δρ∆] only has diagonal terms, while δρC is

non zero only away from the diagonal.



202 Dynamical properties of Fisher information

The second part of the Lemma is also quite straightforward to prove:
denote by ρdt + δρdt the perturbed state after an infinitesimal evolu-
tion of time dt . Then, one can expand δρdt in Taylor series to obtain
δρdt = δρ∆ + dt δρ̇∆ + dt δρC , where δρ̇∆ is the change along the diag-
onal, while δρC only contains off-diagonal terms (notice that it doesn’t
matter whether we define the diagonal with respect to time t = 0 or dt ,
as this difference only contributes to order O (dt )). This implies that the
Fisher information reduces to its classical counterpart also for infinitesi-
mal times dt . Hence, the derivative also coincides with the derivative of
the classical Fisher metric, proving Eq. (A.49).

The Lemma above will be used to lift the proof for classical stochastic
systems to the quantum regime. Moreover, it also allows us to prove:

Lemma 3. Given an arbitrary perturbation δρ, define the state ρδρ =
|δρ|

Tr[|δρ|] . Then, the square of the trace distance between ρδρ and ρδρ + δρ
coincides with the Fisher metric at that point, i.e.,

D2
Tr(ρδρ, ρδρ + δρ) = Tr [|δρ|]2 = Tr

[
δρ J−1f

∣∣
ρδρ

[δρ]
]
. (A.50)

Moreover, this relation also holds for their first derivative:

d

dt
D2

Tr(ρδρ, ρδρ + δρ) =
d

dt
Tr
[
δρ J−1f

∣∣
ρδρ

[δρ]
]
. (A.51)

Proof. First notice that [ρδρ, δρ] = 0, so that the Fisher information is
simply given by:

Tr
[
δρ J−1f

∣∣
ρδρ

[δρ]
]
= Tr

[
(δρ)2 ρ−1δρ

]
= Tr [|δρ|] Tr

[
(δρ)2

|δρ|

]
= Tr [|δρ|]2 ,

(A.52)

which proves the first part of the claim. Moreover, thanks to Lemma 2
this relation also carries out to the first derivative, as [ρδρ, δρ] = 0.

The fact that not only one can locally identify the Fisher distance and
the trace distance, but also their first derivatives, allows us to lift many
of the construction made for the latter to the first, which will prove of
key importance in most of our derivations.

A.4 Additional proofs

In the following we provide the proof of Thm. 9-11 from the main text.
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A.4.1 Proof of Theorem 9

The statement of the theorem reads:

Theorem. A classical divisible evolution Φt acting on a d-dimensional
state space is Markovian if and only if it induces a monotonic decrease in
the Fisher information at all times and on the whole domain. In formulae,
Markovianity of Φt is equivalent to the condition:

d

ds
Tr
[
Φs,t(δρ) J−1f

∣∣
Φs,t(ρ)

[Φs,t(δρ)]
] ∣∣∣∣
s=t

≤ 0 ∀ t , ρ , δρ , (A.53)

where ρ and ρ+ δρ are two arbitrary close by states in the interior of the
state space.

For quantum dynamics the same equivalence holds if one augments
the space with a d-dimensional ancillary system on which the dynamics
acts trivially, i.e., the evolution on the composite space is given by Id⊗Φt.

It should be noticed that if Φt is non-Markovian, then there is no
guarantee that Φs,t maps states to states when acting on points outside
of the image of Φt. Still, since Φt+dt, t ≃ I+ dt Lt, for each point in the
interior of the state space there is a dt small enough so that its image
under Φt+dt, t is still a state. For this reason, one can define the derivative
in Eq. (A.53) without problems when ρ is an interior state.

In the theorem above one side of the implication is trivial, namely the
fact that Markovian maps uniformly contracts the Fisher information. In
the following we prove the other direction.

Proof (classical case). We need to show that any non-Markovianity is re-
flected in an increase of Fisher information. First, we can use Eq. (1.278)
to express the derivative of the Fisher information, obtaining:

d

ds
Tr
[
Φs,t(δρ) J−1f

∣∣
Φs,t(ρ)

[Φs,t(δρ)]
] ∣∣∣∣
s=t

= −
∑
i ̸=j

a
(t)
i←j

(
δρj
ρj
− δρi

ρi

)2

ρj .

(A.54)

Assume without loss of generality that a(t)1←2 < 0. Consider then the state
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ρ and the perturbation δρ to be given by:

ρ =


O(ε)
1− ϵ
O(ε)

...
O(ε) ,

 , δρ =


O(ε)
O(ε)
O(ε2)

...
O(ε2)

 , (A.55)

where ε is an arbitrary small number and we assume that both ρ and ρ+δρ
are properly normalised. We also assume, without loss of generality, that
both states have strictly positive components, meaning that they sits in
the interior of the state space. Now, with this choice, the only terms
of O (1) in the sum in Eq. (A.54) comes from setting i = 1 and j = 2.
Hence, at leading order we obtain

d

ds
Tr
[
Φs,t(δρ) J−1f

∣∣
Φs,t(ρ)

[Φs,t(δρ)]
] ∣∣∣∣
s=t

= −a(t)1←2

δρ21
ρ21

+O (ε) > 0 ,

(A.56)

for ε small enough, as a(t)1←2 < 0 by assumption. This proves the claim.

Proof (quantum case). In the case of a quantum map non-Markovianity
means that Φt is not CP-divisible. This implies that there exists a time
t for which the Choi state Id ⊗ Φt+dt, t[ |Ω⟩⟨Ω |] develops some negative
eigenvalue. Call |v ⟩ the corresponding eigenvector. Since Φt+dt, t is in-
finitesimal, CΦt+dt, t must be close to |Ω⟩⟨Ω |. But then, in order for |v ⟩ to
correspond to a negative eigenvalue it must contain a non-zero component
|v⊥ ⟩ orthogonal to |Ω⟩. To see that this is true, assume the opposite,
i.e., |v ⟩ ≡ |Ω⟩ (as it is parallel to |Ω⟩ and normalised); then, from
perturbation theory we know that the corresponding eigenvalue must be
1 + O (dt ) > 0. This contradicts the assumption that |v ⟩ is associated
to a negative eigenvalue. Hence ⟨v⊥|Ω⟩ = 0.

Consider now the state and the perturbation to be given by:

ρ = |Ω⟩⟨Ω | ; δρ = ε ( |v⊥ ⟩⟨v⊥ | − |Ω⟩⟨Ω |) . (A.57)

With this choice we have that [ρ, δρ] = 0. Moreover, the evolution of
δρ through Φt+dt, t can only generate an off-diagonal component of order
O (dt ). Hence, we are in the situation of Lemma 2, so that we can neglect
any off-diagonal contributions. Then, since all the transitions are along
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the diagonal, the dynamics is effectively classical. This brings us back
to the proof above, since we know that the rate av⊥←ψ+ is negative by
assumption. Then by padding the rest of the diagonal elements of the
state with O (ε) terms, and with O

(
ε2
)

terms for the perturbation, the
resulting ρ and δρ are exactly of the form in Eq. (A.55). Hence, one can
carry out the same argument as in the classical case. This concludes the
proof.

A.4.2 Proof of Theorem 10

In Sec. A.3 we showed that the contractivity of the trace distance is not
sufficient to imply the Markovianity of a smooth evolution, but still it is
possible to supplement the system with a finite number of ancillas which
allows to witness any non-Markovian dynamics. In the case of the Fisher
information the situation is completely reversed: despite what we showed
in Sec. A.4.1, namely that the Markovianity of an evolution is in bijection
with the monotonous contractivity of the Fisher distance, we prove here
that there is no way of using the latter to witness non-Markovianity in
the standard way (that is, by preparing initial states {ρ, ρ+ δρ} at time
t = 0 that will experience a local increase in distance at some later time),
not even by allowing the use of finite, but arbitrary, number of copies of
the dynamics and of ancillas:

Theorem. Given a divisible evolution Φt, no ancillary degree of freedom
of finite dimensions or finite number of copy of the dynamics are sufficient
to witness all possible non-Markovian evolutions via revivals of the Fisher
distance between two initially prepared states.

This difference in behaviour can be explained by the heavy depen-
dence of the Fisher metric on the base-point. In fact, consider the case
in which the first instance of non-Markovianity happens at some time t.
In principle, the image of Φt might be arbitrarily small, forcing the phys-
ically accessible states to be a limited subset of the full space. Whereas
this is not a problem for the trace distance, as it is translational invariant,
it severely reduces the space of witnesses for the Fisher distance.

Proof (classical case). Consider an initial evolution Φt that maps any
state into a ball close to some state π (e.g., a map of the form Φt[ρ] =
π(1− ε)+ ερ). Suppose one attaches an arbitrary ancilla of some dimen-
sion dA to the system at time t = 0, so that the dynamics is given by the
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map Φt ⊗ IdA , and the initial state ρ is part of the tensor product state
space. Then, after time t, the global state will be ε-close to:

ρ(t) := Φt ⊗ I(ρ) ≃ π ⊗ ρA +O (ε) , (A.58)

where we defined ρA := TrS [ρ] to be the reduced state on the ancillary
space at time t = 0. It should also be noticed that the global rate matrix
R̃t has the following coordinate expression:

R̃t =
d

dt
Φt ⊗ IdA = Rt ⊗ IdA =⇒ (R̃t)ij,αβ = (Rt)ij δαβ , (A.59)

where Rt indicates the original rate matrix, while we denote by latin
letters the coordinates on the system space, and by greek ones the one
for the ancillary system. From this expression we can deduce that the
rates for R̃t factorise as ã(t)iα←jβ = a

(t)
i←jδαβ .

Consider now the derivative of the Fisher information at time t be-
tween the state Φt(ρ) and Φt(ρ+ δρ). Using Eq. (1.278) again we obtain:

Ḟt = −
∑
i ̸=j,α

a
(t)
i←j

(
(δρ(t))i,α
(ρ(t))i,α

− (δρ(t))j,α
(ρ(t))j,α

)2

(ρ(t))j,α = (A.60)

= −
∑
i ̸=j,α

a
(t)
i←j

(
(δρ(t))i,α
(ρA)απi

− (δρ(t))j,α
(ρA)απj

)2

(ρA)απj +O (ε) . (A.61)

The expression above prevents the witnessing of all non-Markovian be-
haviours. Suppose, in fact, that at time t a single rate becomes nega-
tive, for definiteness say a(t)1←2 < 0. Then, it is sufficient that a(t)2←1π1 >

|a(t)1←2|π2 for the sum in Eq. (A.60) to be strictly negative in the limit
ε→ 0. Hence, even if the dynamics is non-Markovian, there is no increase
in Fisher distance on the image of Φt.

In the same way, even using multiple copies of the channel does not
help finding a witness. Consider in fact the dynamics Φ̃t := Φ⊗nt ⊗ IdA
acting on the state space given by n identical copies of the system and
by some ancillary space of dimension dA. The rate matrix in this case is
given by

R̃t =
d

dt
Φ̃t =

n∑
l=1

I
⊗(l−1)
d ⊗Rt ⊗ I⊗(n−l)d ⊗ IdA . (A.62)
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Denoting again by latin letters the indexes on the copies of the system
space, and by greek letters the indexes of the ancillary space, we can
express the rates as

ã
(t)
(i1i2...in,α)←(j1j2...jn,β)

=

n∑
l=1

a
(t)
il←jl

(
δi1j1 . . . δil−1jl−1

δil+1jl+1
. . . δinjnδαβ

)
.

(A.63)

In order to shorten the notation, in the following we denote the multi-
index (i1i2 . . . in, α) by ({ik}, α).

Considering the same initial dynamics Φt as in the previous part of
the proof, we see that any state gets mapped in the vicinity of:

ρ(t) := Φ⊗nt ⊗ I(ρ) ≃ π⊗n ⊗ ρA +O (ε) , (A.64)

where again ρA is the reduced of the initial state on the ancillary space.
Thanks to the expression of the rates in Eq. (A.63), we can express the
derivative of the Fisher information as:

Ḟt =

= −
∑

{ik}≠{jk},α

ã
(t)
({ik},α)←({jk},β)

(
(δρ(t)){ik},α

(ρ(t)){ik},α
−

(δρ(t)){jk},α

(ρ(t)){jk},α

)2

(ρ(t)){jk},α ,

(A.65)

where (ρ(t)){jk},α ≃ πj1 . . . πjn(ρA)α. Even in this case Eq. (A.65) can
stay negative, despite the inset of non-Markovianity. Again, suppose that
a
(t)
1←2 is the only negative rate of Rt. Then, the negative contributions to

Eq. (A.65) are given by:

−
∑
{jk}

n∑
l=1

a
(t)
2←1

(
(δρ(t)){jk}l=2,α

(ρ(t)){jk}l=2,α
−

(δρ(t)){jk}l=1,α

(ρ(t)){jk}l=1,α

)2

(ρ(t)){jk}l=1,α ,

(A.66)

where we denoted by {jk}l=x the string of indexes (j1, . . . , jl−1, x, jl+1, . . . , jn)
and we used the expression of the rates in Eq. (A.63). We can compare
the sum above with

−
∑
{jk}

n∑
l=1

a
(t)
1←2

(
(δρ(t)){jk}l=1,α

(ρ(t)){jk}l=1,α
−

(δρ(t)){jk}l=2,α

(ρ(t)){jk}l=2,α

)2

(ρ(t)){jk}l=2,α ,

(A.67)
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which is positive by the assumption that a(t)1←2 is the only negative rate.
Then, summing up Eq. (A.66) and Eq. (A.67) then turns out to be neg-
ative whenever

a
(t)
2←1 (ρ(t)){jk}l=1,α > |a

(t)
1←2| (ρ(t)){jk}l=2,α , (A.68)

i.e., if a(t)2←1π1 > |a
(t)
1←2|π2, in complete analogy with what happened in

the single copy case. This proves the general claim in Thm. 10.

Proof (quantum case). We can prove Thm. 10 for quantum dynamics by
using again Lemma 2 to reduce it to the classical scenario. Before doing
so, though, we need to extend it to the multi-copies scenario with ancillas.

Consider a dynamics Φt which moves all the states close to a target
one, say π, and then it dephases them in the corresponding eigenbasis.
For definiteness, this can be expressed as:

Φt[ρ] = D(ε2) ◦ F (ε1)[ρ] , (A.69)

where

F (ε1)[ρ] = (1− ε1)π + ε1ρ , (A.70)

D(ε2)[ρ] = (1− ε2)ρD + ε2ρ , ρD =
∑
i

|i⟩⟨i | ρ |i⟩⟨i | , (A.71)

and |i⟩ is an eigenbasis of π (so that D is the dephasing operator in the
basis of π).

We directly study the multiple copies scenario. Consider any initially
prepared ρ and ρ + δρ quantum states of H⊗n ⊗ CdA , where H is the
d-dimensional state space of the single-copy channel, and we supply a
dA-dimensional ancilla. Then the total evolution is given by:

Φ̃t = Φ⊗nt ⊗ IdA , (A.72)

where T (t,0) is as in Eq. (A.69). By defining ρA to be the reduced state
of ρ on the ancillary degrees of freedom, it is easy to see that at leading
order one has

Φ̃t[ρ] = π⊗n ⊗ ρA +O (ε1) . (A.73)

Moreover, it also holds that

Φ̃t[δρ] = ε1 δρD +O (ε1ε2) , (A.74)
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where δρD = D(0)⊗n ⊗ IdA [δρ] is the dephased perturbation. As such it
can be expressed as

δρD =
∑
γ

θ
(γ)
D ⊗ ω

(γ) , (A.75)

where θ(γ)D are operators on H⊗n satisfying [θ
(γ)
D , π⊗n] = 0, and ω(γ) are

operators on CdA . The expression of the quantum Fisher information is
then given by:

Tr
[
δρ J−1f

∣∣
ρ
[δρ]
]
= ε21Tr

[
δρD J−1f

∣∣
π⊗n⊗ρA

[δρD]
]
+O

(
ε21 (ε2 + ε1)

)
.

(A.76)

If we now use the expression for δρD given in Eq. (A.75), we can rewrite
the leading term in the above equation as:

ε21
∑
γ,γ′

Tr
[
θ
(γ)
D J−1f

∣∣
π⊗n [θ

(γ′)
D ]

]
Tr
[
ω(γ)J−1f

∣∣
ρA
[ω(γ′)]

]
=: ε21

∑
γ,γ′

M(1)
γγ′M

(2)
γγ′ ,

(A.77)

where we implicitly definedM(1)/M(2) to be the matrix with components
given by the first/second trace. It should be noticed that M(2) is time
independent, as the evolution on the ancillary degrees of freedom is trivial.
For this reason, the instantaneous derivative of the Fisher information can
be rewritten as:

Ḟt = ε21
∑
γ,γ′

(
d

dt
M(1)

γγ′

)
M(2)

γγ′ , (A.78)

that is, as the trace-product of two matrices, d
dtM

(1) and M(2). Since
M(2) is positive definite, it is enough for d

dtM
(1) to be negative definite

in order for the product to be ≤ 0.
We can now prove the quantum version of Theorem 10. In fact, we

just need to show that there exists a non-Markovian evolution for which
d
dtM

(1) is negative definite. First, notice thatM(1) is a Hermitian matrix,
thanks to the self-adjointness of the operator Jf . For this reason, without
loss of generality, we can assume it to be given in diagonal form. Consider
then the semi-classical Lindbladian with rates a(t)i←j and jump operators
|i⟩⟨j |, i.e.,

L[ρ] =
∑
i ̸=j

a
(t)
i←j

(
|i⟩⟨j | ρ |j ⟩⟨i | − 1

2
{|j ⟩⟨j | , ρ}

)
, (A.79)
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and suppose a(t)1←2 < 0. Thanks to the condition [θ
(γ)
D , π⊗n] = 0, each

component of M(1) can be expressed in terms of the classical Fisher in-
formation. Hence, thanks to the proof for the classical case, one can
always find π such that the Fisher information rates are negative, irre-
spectively of the expression of the θ(γ)D . This concludes the proof.

A.4.3 Proof of Theorem 11

Theorem. Given an evolution Φt, for any state ρ and perturbation δρ
defined on the system space and on some ancillary degrees of freedom,
it is possible to implement a class of transformations F (t)

δρ depending on
Φt and δρ that can be used to witness non-Markovianity at time t by
using the Fisher information. This means that if the evolution Φt+dt, t is
Markovian, then

d

ds
Tr

[
F

(t)
δρ ◦ Φs(δρ) J

−1
f

∣∣
F

(t)
δρ ◦Φs(ρ)

[F
(t)
δρ ◦ Φs(δρ)]

] ∣∣∣∣
s=t

≤ 0 , (A.80)

whereas in the presence of non-Markovianity there always exists at least
one δρ for which the inequality is reversed.

The minimal dimension of the ancilla for classical systems is dA = 2,
while for quantum maps one needs dA = d+ 1.

Proof. Suppose at time t the divisible dynamics Φt is non-Markovian.
Then, thanks to Thm. 24, one can always supplement the system with
an ancilla of dimension dA, so that there always exists some traceless δρ
such that d

dt |δρ|
2
Tr is increasing in time. For classical system dA = 2,

while for quantum ones dA = d+ 1.
Choose, then, δρ so that it shows backflow in the trace norm at time

t. Define now ρδρt :=
|δρt|

Tr[|δρt|] , where we used the notation δρt := Φt(δρ).
Thanks to Lemma 3 we have that:

d

dt
Tr
[
δρt J−1f

∣∣
ρδρt

[δρt]
]
=

d

dt
D2

Tr(ρδρt , ρδρt + δρt) > 0 , (A.81)

So that the same backflow appears also in the Fisher information. In
order to obtain some insights on what’s going on, it is useful to repeat
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the computation for the derivative here. Doing so, we obtain:

d

dt
Tr
[
δρt J−1f

∣∣
ρδρt

[δρt]
]
=

d

dt

∑
i

(δρt)
2
i

(ρδρt)i
(A.82)

=
∑
i

2

(
(δρt)i (δρ̇t)i

(ρδρt)i
− 1

2

(δρt)
2
i (ρ̇δρt)i

(ρδρt)
2
i

)
.

(A.83)

It should be noticed that the last term in the sum is zero: in fact, the
first term already gives d

dt |δρ|
2
Tr, so the last term must be zero due to

Lemma 3. On the other hand, it is not difficult to carry out the explicit
calculation, giving

∑
i

(δρt)
2
i (ρ̇δρt)i

(ρδρt)
2
i

=

(∑
i

���(δρt)
2
i (ρ̇δρt)i

���(δρt)
2
i

)∑
j

|(δρt)j |

2

= 0 , (A.84)

where the result is obtained by noticing that ρδρt is normalised, so that
ρ̇δρt is traceless. This shows that despite the explicit dependence of the
Fisher information on ρδρt , there is no contribution arising from its deriva-
tive in Eq. (A.83). In some sense, the base-point acts as it were frozen,
without affecting the ability of the Fisher information to present a back-
flow.

This intuition inspires the following construction. Define the filtering
operator F (t)

δρ as

F
(t)
δρ (σ) = (1− ε) ρδρt + ε σ , (A.85)

where ε is some arbitrary small parameter. It should be noticed that on
traceless states, it acts as:

F
(t)
δρ (δσ) = F

(t)
δρ (σ + δσ)− F (t)

δρ (σ) = ε δσ . (A.86)

In particular, the Fisher information between σ and σ + δσ transforms
under the application of this filter as

Tr

[
F

(t)
δρ (δσ) J

−1
f

∣∣
F

(t)
δρ (σ)

[F
(t)
δρ (δσ)]

]
= ε2Tr

[
δσ J−1f

∣∣
ρδρt

[δσ]
]
+O

(
ε3
)
,

(A.87)
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that is F (t)
δρ moves the base-point of the Fisher information to ρδρt . For

this reason, the filtering defined in Eq. (A.85) allows to witness non-
Markovianity. This can be verified by explicitly computing the derivative
in Eq. (A.80):

d

ds
Tr

[
F

(t)
δρ ◦ Φs(δρ) J

−1
f

∣∣
F

(t)
δρ ◦Φs(ρ)

[F
(t)
δρ ◦ Φs(δρ)]

] ∣∣∣∣
s=t

= (A.88)

= ε2
d

ds
Tr
[
Φs(δρ) J−1f

∣∣
ρδρt

[Φs(δρ)]
] ∣∣∣∣
s=t

= (A.89)

= ε2
d

ds
Tr
[
δρs J−1f

∣∣
ρδρt

[δρs]
] ∣∣∣∣
s=t

= (A.90)

= ε2
d

dt
Tr
[
δρt J−1f

∣∣
ρδρt

[δρt]
]
= ε2

d

dt
D2

Tr(ρδρt , ρδρt + δρt) , (A.91)

where we neglected terms of order O
(
ε3
)
, and in the last line we added a

time dependence on the base-point, thanks to the considerations around
Eq. (A.84). For this reason, the quantity in Eq. (A.85) has the same
behaviour as the trace distance: it contracts for any Markovian dynamics,
while whenever this condition is not satisfied one can always find a δρ
that witness the inset of non-Markovianity.

A.5 Detailed balance in the quantum regime

In this appendix we will first prove Thm. 14 and then we will provide
the structural characterisation of Fisher detailed balance Lindbladians
presented in Eq. (1.343).

Due to the amount of different notions of adjoints used in the fol-
lowing, we remind the reader about the notation used. There are three
different scalar product used, namely the Hilbert-Schmidt one, Ko

π and
Kf,π, which induce the following adjoints:

Hilbert-Schmidt: Tr [AX(B)] = Tr
[
X†(A)B

]
; (A.92)

Ko
π : Tr [AO(B)π] = Tr

[
Õo(A)Bπ

]
; (A.93)

Kf,π : Tr
[
AJ−1f [OB]

]
= Tr

[
(ÕfA)J−1f [B]

]
, (A.94)

where O and O are a superoperator on the space of observables or on the
state space, respectively, while X is a generic bounded operator. As it
is explained in the main text, one can formulate the adjoint with respect
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to Ko
π or Kf,π in terms of the Hilbert-Schmidt adjoint, thanks to the

relation:

Õo = R−1π ◦O† ◦ Rπ ; (A.95)

Õf = Jf
∣∣
π
◦ O† ◦ J−1f

∣∣
π
, (A.96)

as it can be verified directly from the definition. From this relations it is
easy to see that the self-adjoint condition corresponds to the two equality
Rπ ◦O = O† ◦Rπ in the Ko

π case, and O ◦ Jf
∣∣
π
= Jf

∣∣
π
◦O† for the Fisher

one. Thanks to this characterisation we can prove the following useful
result:

Lemma 4. Suppose O and O are adjoint of each other, O† ≡ O. Then,
if [O,LπR−1π ] = 0, the two conditions of self-adjointness and skew-self-
adjointness with respect to Kf,π and Ko

π coincide.

Proof. First of all, it should be noticed that both the auto-modular op-
erator (LπR−1π )† = L−1π Rπ = (LπR−1π )−1 and (Rπ)† = Lπ. Using these
property we can show that the (skew-)self-adjointness with respect to
Kf,π is equivalent to the corresponding notion for Ko

π. In fact, the fol-
lowing relations are equivalent:

Õf = ±O ⇐⇒ (OJf
∣∣
π
)† = ±OJf

∣∣
π
⇐⇒ (A.97)

⇐⇒ f((LπR−1π )−1)LπO = ±ORπf(LπR−1π ) ⇐⇒ (A.98)

⇐⇒ �����
f(LπR−1π )RπO = ±�����

f(LπR−1π )O†Rπ ⇐⇒ Õo = ±O , (A.99)

where in the last line we used the property f(x) = xf(x−1), together
with the commutation between O and LπR−1π to push f(LπR−1π ) to the
left of both equations. Finally, the last step is simply the definition of
O† ≡ O.

This lemma is particularly useful because it allows to reduce the ques-
tion about the equivalence of Def. 1 and Def. 3 to the decision about the
commutation of the Lindbladian with the auto-modular operator LπR−1π .

A.5.1 Proof of Theorem 14

The aim of this section is to prove Thm. 14:

Theorem. The following conditions are equivalent:
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1. the generator of the dynamics in the Heisenberg picture L† satisfies
the adjointness relations in Def. 1

2. the Lindbladian L satisfies the structural characterisation in Def. 2.

These conditions imply:

3. the generator of the dynamics in the Schroedinger picture L satisfies
the adjointness relations in Def. 3.

Moreover, if the Hamiltonian H is non-degenerate the three conditions
are equivalent.

First, it should be noticed that the equivalence between condition 1
and 2 was already proven by Alicki in [41], so we postpone the proof to
App. A.5.3 where the characterisation of Lindbladians satisfying condi-
tion 3 is given. In the particular case in which H is non-degenerate, this
will provide a proof of the structural definition of condition 2.

Proof. First it should be noticed that if condition 2 is satisfied, the Lind-
bladian commutes with the auto-modular operator LπR−1π . In fact, start-
ing from the characterisation:

L(ρ) = −i[H, ρ] +
∑
ω,i

λωi

(
Aωi ρ (A

ω
i )
† − 1

2
{(Aωi )†Aωi , ρ}

)
, (A.100)

it is a matter of straightforward calculations to verify that:

LπR−1π (L(ρ)) = −iπ[H, ρ]π−1+

+
∑
ω,i

λωi

(
(π Aωi π

−1)π ρπ−1(π−1Aωi π)
† − 1

2
π{(Aωi )†Aωi , ρ}π−1

)
=

(A.101)

= −i[H,πρπ−1]+

+
∑
ω,i

λωi

(
��e
ω��e−ω Aωi π ρπ

−1(Aωi )
† − 1

2
{(Aωi )†Aωi , π ρπ−1}

)
= (A.102)

= L(LπR−1π (ρ)) (A.103)

where we used the condition [H,π] = 0, together with LπR−1π (Aωi ) =
eω Aωi and (Aωi )

† = A−ωi . Since condition 2 is equivalent to condition 1,
and [L,LπR−1π ] = 0, thanks to Lemma 4 this means that L has the same
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self-adjointness properties with respect to Ko
π and Kf,π. This proves the

forward implication.
Let us prove the reverse, namely that condition 3 is equivalent to

condition 1 for non-degenerate Hamiltonians. Let us first focus on the
unitary part. Then, using U† = −U we can rewrite the skew-adjointness
condition as:

U ◦ Jf
∣∣
π
= −Jf

∣∣
π
◦ U† ⇐⇒ U ◦ Jf

∣∣
π
= Jf

∣∣
π
◦ U . (A.104)

Then, applying the two operators in the last equation to the identity, we
can verify that:

U ◦ Jf
∣∣
π
(1) = Jf

∣∣
π
◦ U(1) =⇒ U(π) = −i Jf

∣∣
π
([H,1]) =⇒ (A.105)

=⇒ [H,π] = 0 . (A.106)

Notice that this result is generic, i.e., no assumptions on the spectrum of
H need to be made. This directly implies the commutation [U ,LπR−1π ] =
0, so again thanks to Lemma 4 we have that for the unitary part condi-
tion 3 and 1 are always equivalent.

Let us now focus on Eq. (A.106). Since H and π commute, we can
find a common set of eigenvectors, which we denote by {|α⟩}. Moreover,
the basis {|α⟩ ⟨β |} gives a set of common eigenvectors to U and LπR−1π ,
as it can be verified by direct calculation:

U( |α⟩ ⟨β |) = −i(Hα −Hβ) |α⟩ ⟨β | ; (A.107)

LπR−1π ( |α⟩ ⟨β |) = πα
πβ
|α⟩ ⟨β | . (A.108)

Both superoperators have constant eigenvalues for all eigenvectors of the
form |α⟩ ⟨α |. Under the assumption of continuity under small pertur-
bations, we can also assume that each eigenvector such that α ̸= β has
a different eigenvalue (non-degenerate gap condition). These two obser-
vations together then imply that any superoperator commuting with U
needs to commute with LπR−1π as well. In the main text we showed how
normality of L implies [U ,LD] = 0. Then, thanks to the considerations
above, we also have that:

[LD,LπR−1π ] = 0 . (A.109)

Hence we can use Lemma 4, which implies that if (L̃D)f = LD, we also

have that (L̃†D)o = L
†
D. This concludes the proof.
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It should be noticed that the non-degeneracy of the spectrum is
needed to prove the commutation relation in Eq. (A.109). The same
equivalence can be proven if LπR−1π has some functional dependence on
U . Take for example the thermal scenario, i.e., π ∝ exp[−βH]. Then
the auto-modular operator takes the form LπR−1π = exp[−iβU ]. Due to
normality of the Lindbladian (which implies [U ,LD] = 0), we directly
obtain Eq. (A.109), proving the equivalence without further assumptions
on the spectrum of π or H.

A.5.2 Def. 3 is weaker in general

Whereas the constraint coming from Def. 1 imply the one in Def. 3, the
reverse does not hold in general. In fact, this is connected with the
commutation between LD and LπR−1π . Whereas in the first definition of
detailed balance these two operators always commute, this is not the case
for the Fisher detailed balance dissipators. This leads to a less constrained
evolution of the coherences, as it will be shown in the following.

First, as it was discussed in the proof in the previous section, if {|α⟩}
is an eigenbasis for π, then {|α⟩ ⟨β |} are eigenvectors for LπR−1π , with
eigenvalues:

LπR−1π ( |α⟩ ⟨β |) = πα
πβ
|α⟩ ⟨β | . (A.110)

Since the steady state π is always assumed to be full rank, proving that
LD commutes with LπR−1π is equivalent to requiring that the matrix
elements

(LD)γ|αδ|β ≡ ⟨γ | LD( |α⟩⟨β |) |δ ⟩ (A.111)

satisfy the following condition

[LD,Φπ] = 0 ⇐⇒ (LD)γ|αδ|β

(
πα
πβ
− πγ
πδ

)
= 0 . (A.112)

Equivalently, this means that matrix elements of D can be nonzero only
if:

(LD)γ|αδ|β ̸= 0 =⇒ πα
πβ

=
πγ
πδ
. (A.113)

In the following we show that a slightly more general condition fol-
lows from the requirement that (L̃D)f = LD for all standard monotone
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functions f . Indeed, this condition can be written in coordinates as:

LD ◦ Jf
∣∣
π
= Jf

∣∣
π
◦ L†D ⇐⇒ (A.114)

⇐⇒ (LD)γ|αδ|β f
(
πα
πβ

)
πβ = (LD)β|δα|γ f

(
πγ
πδ

)
πδ . (A.115)

At this point it is useful to introduce the notation e−ω1 := πα/πβ , and
e−ω2 := πγ/πδ. Grouping the functional dependence on one side of the
equation we obtain:

(LD)γ|αδ|β πβ

(LD)β|δα|γ πδ
=
f (e−ω2)

f (e−ω1)
. (A.116)

It should be noticed that the left hand side of the equation does not
depend on the function f , so the coordinates of LD are zero unless ω1 =
±ω2. Notice that the second condition follows from the symmetry of
standard monotone functions f(x) = x f(x−1).

Hence, the only non-zero elements of LD are satisfy either of the
conditions:

(LD)γ|αδ|β ̸= 0 =⇒
(
πα
πβ

=
πγ
πδ

)
∨
(
πα
πβ

=
πδ
πγ

)
. (A.117)

Comparing this result with Eq. (A.113) directly shows that LD does not
commute in general with LπR−1π , so Def. 3 is weaker than Def. 1 (at the
end of the section we present an explicit example showing this). For this
reason, it is interesting to explore which constraints Eq. (A.117) imposes
on the Lindbladian. First, it should be noticed that since LD is adjoint
preserving, its coordinates satisfy

LD(A†) = LD(A)† ⇐⇒ (LD)γ|αδ|β = (L̄D)δ|βγ|α . (A.118)

Then, combining Eq. (A.116), Eq. (A.117), and Eq. (A.118), we can see
that:

• populations and coherences do not mix, and the populations on
the diagonal satisfy the classical detailed balance. In fact, from
Eq. (A.117) we see that from α = β it follows that γ = δ (assum-
ing π to be non-degenerate), and the currents are related by the
standard detailed balance condition:

(LD)γ|αγ|α πα = (LD)α|γα|γ πγ . (A.119)
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• The dynamics of the coherences can be split in two cases: the one
for which πα

πβ
=

πγ
πδ

, implying the following relation:

(LD)γ|αδ|β πβ = (LD)β|δα|γ πδ = (L̄D)α|γβ|δ πδ . (A.120)

This property is satisfied also in the Alicki’s definition of detailed
balance.

• Moreover, one has additional transitions between coherences with
characterised by the relation πα

πβ
= πδ

πγ
. In this case the rate are

given by:

(LD)γ|αδ|β πβ = (LD)β|δα|γ πγ = (L̄D)α|γβ|δ πγ . (A.121)

These rates are the only novelty compared with the one coming
from Def. 1, and are the cause of the failure of LD from commuting
with LπRπ.

In order to justify the preference for Def. 3 as the quantum generalisa-
tion of detailed balance, we argue here that this last case is still physically
sensible. Consider indeed two coherences terms |α⟩ ⟨β | and |γ ⟩ ⟨δ | such
that πα

πβ
=

πγ
πδ

. Then, from Eq. (A.120) it follows that the ratio between
the currents induced between the two coherences is given by:∣∣(LD)γ|αδ|β ∣∣∣∣(L̄D)α|γβ|δ ∣∣ =

πδ
πβ

=
πγ
πα

. (A.122)

The additional freedom given by Eq. (A.121) corresponds to the possibil-
ity of the matrix element (LD)δ|αγ|β to be non-zero. It should be noticed,
though, that the current between the two coherences is consistent with
Eq. (A.122): ∣∣(LD)δ|αγ|β∣∣∣∣(L̄D)α|δβ|γ∣∣ =

πδ
πβ

=
πγ
πα

. (A.123)

Thus, the difference between Def. 1 and the Fisher one (i.e., Def. 3), is
that the first allows the coherences |α⟩ ⟨β | and |γ ⟩ ⟨δ | to communicate
but prohibits interaction between |α⟩ ⟨β | and |δ ⟩ ⟨γ |, while the latter
allows the dynamics to connect both off-diagonal elements, while keeping
the ratio between the two currents detailed balanced.
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Finally, before moving on to the characterisation of the Lindbladian
operators satisfying Def. 3 we present here an example of L which is
detailed balance in the Fisher sense, but not according to Def. 1. Consider
a two-levels system thermalizing to the Gibbs state

πβ =
|0⟩⟨0 |+ e−β |1⟩⟨1 |

1 + e−β
. (A.124)

We consider the Hamiltonian of the system to be completely degenerate,
i.e., H ∝ 1, which implies U = 0. Then, it is easy to see that the
Lindbladian

L(ρ) = AρA† − 1

2
{ρ,A†A} , (A.125)

with the jump operator given by A = |0⟩⟨1 |+
√
e−β |1⟩⟨0 | satisfies L̃f =

L, but not L̃o = L.

A.5.3 Structural characterisation of Def. 3

This section is devoted to the derivation of the structural form of a de-
tailed balanced Lindbladian according to the Def. 3. Restricting the
derivation to the case in which L commutes with LπR−1π also proves the
equivalence between Def. 1 and Def. 2.

With the hindsight of the previous section it is useful to expand the
Lindbladian operator in terms of the following eigenbasis:

Fωα :=

{
|γ ⟩⟨α |

∣∣∣∣ πγπα = eω
}
. (A.126)

It is also useful to introduce the function βα(ω) := {β|πβ = παe
ω},

namely a function that returns the index β such that πβ
πα

= eω. In or-
der to keep the notation clear we also define γα(ω) and δα(ω) exactly in
the same way. The elements of the eigenbasis in Eq. (A.126) have the
property that:

(Fωα )
† = F−ωγα(ω) ; (A.127)

πFωα = eω Fωα π . (A.128)
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Generically, one can express the action of the dissipator as:

LD(ρ) : =
∑
α,β,
γ,δ

(LD)γ|αδ|β |γ ⟩⟨α | ρ ( |δ ⟩⟨β |)
† = (A.129)

=
∑
α,ω,
ω1,ω2

(LD)γα(ω)|αδα(ω+ω2)|βα(ω1)
Fωα ρ (F

ω−ω1+ω2

βα(ω1)
)† , (A.130)

where we implicitly defined πγ/πα =: eω, πβ/πα =: eω1 and πδ/πγ =: eω2 .
This expression is particularly useful because it allows for a straightfor-
ward application of the constraints in Eq. (A.117). In fact, we have that:

πα
πβ

=
πγ
πδ

⇐⇒ ω1 = ω2 ; (A.131)

πα
πβ

=
πδ
πγ

⇐⇒ ω1 = −ω2 . (A.132)

Hence, the sum above can be restricted to the case ω1 = ±ω2, giving:

LD(ρ) =
∑
α,ω
ω1

(LD)γα(ω)|αδα(ω+ω1)|βα(ω1)
Fωα ρ (F

ω
βα(ω1)

)†+ (A.133)

+
∑
α,ω,
ω1 ̸=0

(LD)γα(ω)|αδα(ω−ω1)|βα(ω1)
Fωα ρ (F

ω−2ω1

βα(ω1)
)† . (A.134)

It should be noticed that the case ω1 = 0 is included in the first sum,
so that we have to impose the constraint ω1 ̸= 0 in the second line. In
this way LD naturally splits in two parts, LD1 (i.e., the operator in the
first line) corresponding to the component of the dissipator commuting
with LπR−1π , and LD2 , given by the sum in the second line. Interestingly,
the condition L̃oD = LD implies LD ≡ LD1 , so characterising the latter
provides the structural form of detailed balance Lindbladian according to
Def. 1.

Whereas LD1 directly commutes with LπR−1π , we can apply a transfor-
mation to LD2 to make it commuting. In particular, it should be noticed
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that LD2 transforms under the transposition superoperator T as:

T LD2(ρ) =
∑
α,ω,
ω1 ̸=0

(LD)γα(ω)|αδα(ω−ω1)|βα(ω1)

(
Fωα ρ (F

ω−2ω1

βα(ω1)
)†
)T

= (A.135)

=
∑
α,ω,
ω1 ̸=0

(LD)γα(ω)|αδα(ω−ω1)|βα(ω1)

∣∣παeω−ω1
〉
⟨πα | ρ |παeω1 ⟩⟨παeω | =

(A.136)

=
∑
α,ω,
ω1 ̸=0

(LD)γα(ω)|αδα(ω−ω1)|βα(ω1)
Fω−ω1
α ρ (Fω−ω1

βα(ω1)
)† = (A.137)

=
∑
α,ω,
ω1 ̸=0

(LD)γα(ω+ω1)|α
δα(ω)|βα(ω1)

Fωα ρ (F
ω
βα(ω1)

)† , (A.138)

where in the second line we used the abuse of notation |πα ⟩ for |α⟩, and
in the last line we made an implicit change of variables. From Eq. (A.138)
we can see that TLD2 takes a form completely analogous to LD1 . For this
reason, it directly follows that:

[TLD2 ,LπR−1π ] = 0 . (A.139)

This condition allows to lift the characterisation for LD1 to LD2 , as it will
be shown in the following.

We begin by studying LD1 . Notice that the coordinates of LD are
related by:

(LD)γα(ω)|αδα(ω+ω1)|βα(ω1)
= eω (LD)βα(ω1)|δα(ω+ω1)

α|γα(ω) , (A.140)

as it can be verified from Eq. (A.116). Then, we can diagonalise LD1 in
a way completely analogous to the procedure carried out in Sec. 1.5.1.
To this end, it is useful to introduce a new basis of operators, given by
{Xω

m} = {∆i}1≤i≤d∪{Fωα }ω ̸=0, where {∆i}1≤i≤d is an orthonormal basis
for the diagonal matrices, and ∆1 = 1/

√
d. Then, we can rewrite LD1 in

this basis as:

LD1(ρ) =
∑
α,β

(LD)γα(0)|αδβ(0)|β F
0
α ρ (F

0
β )
† +

∑
α,β
ω ̸=0

(LD)γα(ω)|αδβ(ω)|β F
ω
α ρ (F

ω
β )
† =

(A.141)

=
∑
i,j

D0
i,j ∆i ρ (∆j)

† +
∑
α,β,
ω ̸=0

Dω
α,β F

ω
α ρ (F

ω
β )
† , (A.142)
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where we introduced the coefficients Dω
α,β := (LD)γα(ω)|αδβ(ω)|β and

D0
i,j =

∑
α,β

(LD)α|αβ|β Ūα,i Uj,β , (A.143)

where U is the unitary defined by ∆i := Ui,αFα. In order to make the
dissipator explicitly trace preserving, we highlight the terms containing
the identity operator. In analogy to Sec. 1.5.1 this leads to the form:

LD1(ρ) = {K, ρ}+
∑

i,j ̸=(1,1)
ω

Dω
i,j X

ω
i ρ (X

ω
j )
† , (A.144)

and K :=
D0

1,1

2d 1+
1√
d

∑
iD

0
i,1∆i. The absence of the Hamiltonian contri-

bution follows from the fact that we are looking at the dissipator alone.
Equivalently, it is not hard to show that all the D0

i,j are indeed real.
It should be noticed that LD2 only gives contributions out of the diag-

onal, so one can impose trace preservation on LD1 alone, i.e., L†D1
(1) = 0.

This directly implies that K = −1
2

(∑
i,j ̸=(1,1)D

ω
i,j(X

ω
j )
†Xω

i

)
, so the dis-

sipator can be rewritten in Lindblad form:

LD1(ρ) =
∑

i,j ̸=(1,1)
ω

Dω
i,j

(
Xω
i ρ (X

ω
j )
† − 1

2

{
(Xω

j )
†Xω

i , ρ
})

. (A.145)

The property of the dissipator of being adjoint preserving implies that the
matrix Dω

i,j is Hermitian. Then, there exists a unitary matrix V , such
that Dω

i,j = V ω
i,m(λ

ω
mδ

m
n )(V ω)†n,j , where we sum over repeated indexes.

Hence, define the jump operators Aωm := Xω
i V

ω
i,m. Then, Eq. (A.145)

becomes:

LD1(ρ) =
∑

i,j ̸=(1,1)
ω

λωm V ω
i,m(V

ω)†m,j

(
Xω
i ρ (X

ω
j )
† − 1

2

{
(Xω

j )
†Xω

i , ρ
})

=

(A.146)

=
∑
m,ω

λωm

(
Aωm ρ (A

ω
m)
† − 1

2

{
(Aωm)

†Aωm, ρ
})

. (A.147)

We can now characterise the properties of the jump operators and of the
rates in the previous equation. First, it should be noticed that, since
Xω
i are eigenoperators of the auto-modular operator LπR−1π , the same
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holds for Aωm, as the unitary does not mix Xω
i s with different ωs. More-

over, Eq. (A.140) implies that Dω
α,β = eωD−ωδβ(ω),γα(ω), where we used the

same indices as in the equation. This relation shows that D−ωδβ(ω),γα(ω)
can be diagonalised as e−ωλωmδ

m
n = (V ω)†m,αD

−ω
δβ(ω),γα(ω)

(V ω)β,n. We
can deduce the following two facts: first, the spectrum of Dω

α,β sat-
isfies λωi = eω λ−ωi ; second, since (Xω

α )
† = X−ωγα(ω), it also holds that

(Aωi )
† = X−ωγα(ω)(V

ω
α,i)
† = X−ωγα(ω)V

−ω
γα(ω),i

= A−ωi . Hence, we see that LD1

satisfies the same conditions of Def. 2, namely:

1. (Aωi )
† = A−ωi ;

2. π Aωi π
−1 = eω Aωi ;

3. λωi = eω λ−ωi .

Since LD1 is the only component of the dissipator if one uses Def. 1, this
proves the equivalence between this notion of detailed balance and the
structural characterisation in Def. 2.

We can now pass to characterise LD2 . Thanks to Eq. (A.138) we can
rewrite it as:

LD2(ρ) =
∑
α,ω,
ω1 ̸=0

(LD)γα(ω+ω1)|α
δα(ω)|βα(ω1)

(Fωα ρ (F
ω
βα(ω1)

)†)T = (A.148)

=
∑
α ̸=β,
ω

(LD)
γβ(ω)|α
δα(ω)|β F

ω
β ρ

T (Fωα )
† = (A.149)

=
∑
α ̸=β,
ω

(LD)
δβ(ω)|α
γα(ω)|β F

ω
β ρ

T (Fωα )
† , (A.150)

where we eliminated the dependence on ω1 by enforcing the constraint
α ̸= β. Finally, in the last line we changed exchanged the dummy indexes
γ and δ to highlight the analogy with the other part of the Lindbladian.
Indeed, define the matrix D̃ω

α,β := (LD)
δβ(ω)|α
γα(ω)|β for any α ̸= β and zero on

the diagonal. It is interesting to compare it to the off-diagonal elements of
Dω
α,β = (LD)γα(ω)|αδβ(ω)|β : as it can be seen, the two are related by an exchange

γα(ω)↔ δβ(ω). Moreover, thanks to Eq. (A.123) it also holds that:

D̃ω
α,β = eω D̃−ωδβ(ω),γα(ω) , (A.151)
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which shows the analogy with Dω
α,β even further. Using Eq. (A.118) it

also follows that D̃ω
α,β is hermitian, so there exist a unitary matrixW such

that D̃ω
α,β = Wω

α,m(µ
ω
mδ

m
n )(Wω)†n,β . We also define the jump operators

Bω
m := (Wω

m,α)
†Fωα . Then, one can rewrite LD2 as:

LD2(ρ) =
∑
α ̸=β,
ω

Wω
α,m(µ

ω
mδ

m
n )(Wω)†n,β F

ω
β ρ

T (Fωα )
† = (A.152)

=
∑
m

µωmB
ω
m ρ

T (Bω
m)
† . (A.153)

In analogy with the previous case it also holds that µωi = eωµ−ωi and
(Bω

m)
† = B−ωm , together with the fact that Bω

m is an eigenoperator of
LπR−1π . Still, there is one crucial difference with LD1 : since all the diag-
onal elements of D̃ω

α,β are zero, this matrix is traceless, meaning that the
sum of the eigenvalues is zero also zero. Hence, whereas λωi ≥ 0 for all i
and ω, we have the extra constraint

∑
i µ

ω
i = 0, implying the negativity

of some of the µωi . Putting everything together, we finally obtain the
characterisation in Eq. (1.343).



Appendix B

Generalised contextuality

The reality described by quantum mechanics appears to be radically dif-
ferent from the classical world, but it is not so obvious how to pin-point
what causes this divergence in phenomena: features as exotic and icon-
ically quantum as wave-particle duality and quantum tunneling can ap-
pear in classical systems, together with quantisation of energy and bound
states (as shown by the hydrodynamical analogues [104]), whereas more
technical but equally important properties as the Heisenberg uncertainty
principle, the no-cloning and no-broadcasting theorem can be reproduced
simply by imposing epistemic restrictions on a carefully designed classical
stochastic system [105]. The latter model is even able to show entangle-
ment, arguably the most renowned quantum effect.

For this reason, in order to set a clear distinction between what classi-
cal and quantum systems can do, one has to take into account all classical
hidden-variable models at once and explore their limitations with respect
to quantum systems. Historically, this approach was initiated by Bell,
who found the first genuinely quantum signature, i.e., non-locality. This
was formulated in terms of inequalities that any hidden-variable classical
model needs to satisfy, but that are violated by quantum mechanics (the
famous Bell’s inequalities).

Another very powerful concept that was later introduced as a genuine
quantum feature is the one of contextuality. Differently from non-locality,
that applies to multi-partite scenarios, contextuality is well suited to
explore the non-classicality of single systems and, for this reason, it gives
a powerful tool to certify the quantumness of phenomena appearing in
quantum thermodynamics (see, e.g., Sec. 2.3.2).
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B.1 Definition

The framework in which generalised contextuality is formulated is the
one of ontological models [106]. These are a theoretical representation of
the most general way in which a physical system can give rise to certain
statistics. In particular, taking an operational stance, it can be argued
that the only experimentally accessible aspect of reality are given by
correlations of the form p(k| P, T ,M), i.e., the probability of obtaining an
output k given a preparation P, a transformation T and a measurement
M. It should be noticed that in this context P, T and M do not refer
to any underlying physical system, but rather describe an operational
procedure carried out in the experiment.

At this point, one assumes the existence of a physical system subject
to the experiment, whose state-space is usually referred by Λ and called
the space of ontic states. Its elements provide an ultimate description
of the physical state of the system, that can be classical (as in the case
of hidden variables models), quantum or even post-quantum. Then, one
assumes that to each preparation P one can associate a probability den-
sity µP(λ) on the ontic space. In the same way, one associate to T and
M two functions describing how the actions of the experimentalist affect
the system: namely a transition matrix ΓT (λ

′, λ) and an indicator func-
tion ξM(k|λ), where k is the output of the experiment. These elements
should be compatible with the statistics p(k| P, T ,M), as encoded in the
equation:

p(k| P, T ,M) =

∫
Λ
dλµP(λ) ΓT (λ

′, λ) ξM(k|λ′) . (B.1)

In order to simplify the treatment and without loss of generality, it is
customary to include the effects of the transformation in the measurement
procedure, and for this reason we will neglect it in the following.

There are some properties of the probability density and of the indi-
cator functions that need to be specified: first, the indicator function is
required to satisfy

∑
k ξM(k|λ) = 1, meaning that all the ontic states give

some output with probability one. Then, we require µP(λ) and ξM(k|λ)
to be compatible with convex mixing: in particular, if one choses P1 or
P2 conditioned to a coin toss with bias q, it is imposed that the corre-
sponding probability density is given by q µP1(λ) + (1 − q)µP2(λ) (and
similarly for ξM(k|λ)). Finally, if a notion of coarse-graining is present
in the theory, we also impose that the indicator functions are compatible
with it. That is, if a measurement M̃ can be performed by summing over
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some partition of the measurementM, then the corresponding indicator
function should satisfy ξM̃(k|λ) =

∑
kM

ξM(kM|λ).
In order to exemplify how the various ingredients can be used in

practice, it is interesting to examine the Beltrametti-Bugajski model for
quantum mechanics [107]: in this case Λ is simply the set of all wave
functions, the preparation of a pure state |ψ ⟩ is associated to the δ-
function:

µψ(λ) = δ(λ− ψ) , (B.2)

while the indicator function associated to a set of POVM {Mi}i∈{1,2..,n}
is given by:

ξ{Mi}(k|λ) = Tr [Mk |λ⟩⟨λ |] . (B.3)

In this way, it is obvious that the statistics of quantum mechanics can be
completely recovered. In fact, given a density matrix ρ =

∑
i pi |ψi ⟩⟨ψi |,

and a POVM {Mi}i∈{1,...,n}, the corresponding response function is given
by:

p(k|ρ, {Mi}i∈{1,2..,n}) =
∑
i

pi

∫
Λ
dλ δ(λ− ψi) Tr [Mk |λ⟩⟨λ |] = (B.4)

=
∑
i

piTr [Mk |ψi ⟩⟨ψi |] = Tr [Mk ρ] , (B.5)

i.e., one recovers the usual Born rule for density matrices.
A central concept in this framework is the on of operational indis-

tinguishability. Two preparations P1 and P2 are operationally indistin-
guishable if for any measurementsM they satisfy:

p(k| P1,M) = p(k| P2,M) . (B.6)

In the same way, for measurements we say that M1 and M2 are opera-
tionally indistinguishable if for any preparations they satisfy:

p(k| P,M1) = p(k| P,M2) . (B.7)

Now, a system is called non-contextual if operational indistinguisha-
bility is reflected at the level of the ontological model, i.e., if for any
operationally equivalent preparation one assigns the same probability dis-
tribution µP(λ) (and similarly for the measurement procedure). Interest-
ingly, classical systems always admit a non-contextual ontological model.
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On the other hand, we can see that the most obvious model for quantum
mechanics, the Beltrametti-Bugajski one, is contextual: given two differ-
ent decomposition of the state ρ =

∑
i pi |ψi ⟩⟨ψi | =

∑
j qj |ϕj ⟩⟨ϕj |, one

obtains two different representations on the ontic state∑
i

pi µψi
(λ) ̸=

∑
j

qj µϕj (λ) . (B.8)

Somehow surprisingly this is a common feature for quantum mechanics:
it was shown in [106] that there is no non-contextual ontological model
for quantum theory. Hence, if one can certify contextuality, then it also
implies that the phenomenon studied does not admit a classical hidden-
variable explanation.

B.2 Relation to other notions of non-classicality

The textbook definition for contextuality could seem to differ from the
one presented here. In particular, one says that a measurement is Kochen-
Specker non-contextual if one can specify the statistics of any elements
of a POVM without having to refer to the other elements that are not
being measured [108]. In this sense, the output of a measurement does
not depend on the context in which it is being measured. Quantum
mechanics is contextual according to Kochen-Specker for Hilbert space of
dimension strictly higher than 2.

It is straightforward to see how this definition compares to the one
of non-contextuality given above. To this end, consider an element Mk

of a generic measurement. This can be prepared in at least two ways:
either as part of the full POVM {Mi}i∈{1,...,n}, or as part of the reduced
set {Mk,1 −

∑
i ̸=k Mi}. Since for non-contextual models the indicator

function does not depend on the way in which a POVM is prepared,
the statistics for Mk needs to coincide in the two cases. Hence, non-
contextuality implies Kochen-Specker non-contextuality. It should be
noticed, though, that whereas Kochen-Specker contextuality was proven
in dimension 3 or higher, the generalised version holds for any quantum
system.

Another important criterion for non-classicality is the presence of neg-
ativities in the Wigner function of a state. Interestingly, these are strictly
related to contextuality. In order to specify exactly how, we need to intro-
duce the framework of quasi-probability representations: in this context,
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to any operational theory one assigns a quasi-measure µρ(λ) to each op-
erationally equivalent preparation and a set of real functions ξk(λ) that
sum to unity for each operationally equivalent measurement. Then, a
non-negative representation is one in which quasi-probabilities can be
substituted with probabilities, that is, all the quantities are strictly pos-
itive. These are equivalent to non-contextuality [109]: in fact, if one has
a non-negative representation, this provides a non-contextual ontological
model, as µρ(λ) and ξk(λ) do not depend on the specific preparation;
on the other hand, a non-contextual model provides the required non-
negative representation. Hence, the contextuality of quantum mechan-
ics implies that one cannot construct a quasi-probability representation
which does not show negativities.

B.3 Witnessing contextuality through weak mea-
surements

Contextuality is a rather delicate property, so the back-action caused by
strong measurement can disturb the system enough to completely wash it
away. For this reason, one has to rely on weak measurements to witness
it (Thm. 25).

These are minimally invasive measurements which are usually realised
as follows. Suppose one wants to estimate the observable O :=

∑
i oiΠ

(i),
where Π(i) are orthonormal projectors. First, one prepares an ancillary
system called the pointer in some specific state. One widely used choice
is to set the pointer state to be Gaussian, that is of the form:∣∣ψ �

〉
=

1
4
√
πs2

∫
dx e−

x2

2s2 |x⟩ . (B.9)

Then, the pointer interacts with the system for a time τ0 through the
Hamiltonian Hint = g(t) Π(i) ⊗ P , where P is the momentum operator,
while the units of time are chosen so that

∫ τ
0 dt g(t) = 1; in this step

information about ρΠ(i) is transferred to the pointer (where ρ is the
initial state of the sytem). The final state of the system and pointer is
given by:

Uintρ⊗
∣∣ψ �

〉〈
ψ �

∣∣U †int =
=

1√
πs2

∑
k,k′∈{0,1}

ρkk
′ ⊗
∫

dxdy e−
(x−k)2

2s2 e−
(y−k′)2

2s2 |x⟩⟨y | , (B.10)
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where it is useful to decompose the initial state of the system as:

ρ11 = Π(i) ρΠ(i) , ρ01 = (Π(i))⊥ ρΠ(i) , (B.11)

ρ10 = Π(i) ρ (Π(i))⊥ , ρ00 = (Π(i))⊥ ρ (Π(i))⊥ . (B.12)

At this point, the pointer state is projectively measured in the ba-
sis |x⟩⟨x |, inducing a POVM on the system denoted by {Mx

s }x∈R. Fi-
nally, one projectively measures a second observable Õ :=

∑
j oj Π̃

(j) and
post-selects some value j. After this step, the position of the pointer is
measured, while Π̃j is post-selected on the system. Then, the average
position of the pointer is given by:

⟨X⟩|j = Tr
[
(Π̃(j) ⊗X)Uint ρ⊗

∣∣ψ �

〉〈
ψ �

∣∣U †int] /qj , (B.13)

where qj is the probability of success of the post-selection, that is:

qj = Tr
[
(Π̃(j) ⊗ 1)Uint ρ⊗

∣∣ψ �

〉〈
ψ �

∣∣U †int] . (B.14)

The average position of the pointer encodes information about the ini-
tial value of Π(i). In particular, in the following we show how ⟨X⟩|j is
connected to the concept of generalised weak value, which are defined as:

Tr
[
Π̃(j)Π(i) ρ

]
Tr
[
Π̃(j) ρ

] , (B.15)

which will be the central object of Thm. 25.
We can now estimate the value of ⟨X⟩|j . Thanks to the Gaussian

structure of the pointer state, it is straightforward to carry out the com-
putation of qj and ⟨X⟩|j . In particular, the success probability is given
by:

qj =(
Tr
[
Π̃(j)ρ00

]
+Tr

[
Π̃(j)ρ11

]
)
) 1√

πs2

∫
dxdy e−

x2

2s2 e−
y2

2s2 δ(x− y)+

+
(
Tr
[
Π̃(j)ρ01

]
+Tr

[
Π̃(j)ρ10

]
)
) 1√

πs2

∫
dxdy e−

x2

2s2 e−
(y−1)2

2s2 δ(x− y) =

(B.16)

= Tr
[
Π̃(j)ρ00

]
+Tr

[
Π̃(j)ρ11

]
+ 2 e−1/4s

2
Re
[
Tr
[
Π̃(j)ρ01

]]
= (B.17)

= Tr
[
Π̃(j)ρ

]
− 2 (1− e−1/4s2)Re

[
Tr
[
Π̃(j)ρ01

]]
, (B.18)
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where in Eq. (B.16) we grouped together ρ00 and ρ11, since changing the
average of the Gaussian does not affect the normalisation, in Eq. (B.17)
we used the fact that (ρ01)† = ρ10 to take the real part, and in the last
line we added and subtracted (ρ01 + ρ10).

In the same way, we can compute the numerator of ⟨X⟩|j . In this
case, we need the following three integrals:

1√
πs2

∫
dx x e−

x2

s2 = 0 ;
1√
πs2

∫
dx x e−

(x−1)2

s2 = 1 ; (B.19)

1√
πs2

∫
dx x e−

(x−1)2+x2

2s2 =
e−1/4s

2

2
. (B.20)

It is a matter of simple algebra to show that:

⟨X⟩|j =
Tr
[
Π̃(j)ρ11

]
+ e−1/4s

2
Re
[
Tr
[
Π̃(j)ρ01

]]
Tr
[
Π̃(j)ρ

]
− 2 (1− e−1/4s2)Re

[
Tr
[
Π̃(j)ρ01

]] . (B.21)

Interestingly, in the limit s → 0 the pointer state becomes a δ-function,
and the measurement becomes a normal projective measurement. Indeed,
we have that:

lim
s→0
⟨X⟩|j =

Tr
[
Π̃(j)ρ11

]
qj

=
Tr
[
Π̃(j)Π(i)ρΠ(i)

]
Tr
[
Π̃(j)(ρ00 + ρ11)

] , (B.22)

i.e, the probability of measuring the output i for the observable O, fol-
lowed by the measurement of the output j for the observable Õ. Notice
that in this case one has to renormalise with respect to the two possible
output of the PVM Π(i), namely, 0 or 1.

In the opposite limit one obtains the generalised weak value from
Eq. (B.15). Indeed, for s → ∞, (which corresponds to a weak mea-
surement, as the pointer is completely delocalised), the average position
becomes:

lim
s→∞

⟨X⟩|j =
Tr
[
Π̃(j)ρ11

]
+Re

[
Tr
[
Π̃(j)ρ01

]]
Tr
[
Π̃(j)ρ

] =
Re
[
Tr
[
Π̃(j)Π(i) ρ

]]
Tr
[
Π̃(j) ρ

] ,

(B.23)

where in the second equation one implicitly uses that Π(i) +(Π(i))⊥ = 1.
Notice that the measurement is said to be weak because, as the spread
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in the position basis is infinite (s → ∞), the momentum of the particle
is zero, which causes almost no disturbance to be introduced in the sys-
tem. The construction just presented provides an operational procedure
of accessing the generalised weak values.

A weak value is called anomalous if it is not contained in the spectrum
of the measured operator. It was shown in [110] for pure states, and later
generalised to density matrices in [52], that anomalous weak values are a
proof of contextuality. This is done in two steps: first, it is shown that a
set of requirements cannot be satisfied by any non-contextual ontological
model (Thm. 25). Then, we show that in the presence of anomalous
weak values these requirements can be satisfied (Thm. 26). The proofs
presented follow [52].

Theorem 25. Given a POVM {Mx
s }x∈R and a post-selection Π̃(j) satis-

fying the following three properties:

1. every element of the POVM can be decomposed as Mx
s = ps(x− 1)Π(i)

+ps(x)(Π(i))⊥, where ps is a probability distribution with median
x = 0;

2. Disregarding the outcome of the initial weak measurement leads to
a disturbance psd ≤

1
2 , i.e.:

Ss =

∫
dx (Nx

s )
† Π̃(j)Nx

s = (1− psd) Π̃(j) + psdE
d , (B.24)

where Nx
s satisfies the property Mx

s := (Nx
s )
†Nx

s , and Ed is an
element of a POVM;

3. The values of x under the pre- and post-selection have a negative
bias which outweighs psd for s large enough. That is:

ps− :=
1

pΠ̃(j)

∫ 0

−∞
dx Tr

[
(Nx

s )
†Π̃(j)Nx

s ρ
]
>

1

2
+

psd
pΠ̃(j)

, (B.25)

where pΠ̃(j) is the probability of measuring Π̃(j) in the state ρ.

Then, there exists no non-contextual, outcome deterministic ontological
model reproducing the statistics of the experiment.

Proof. The proof proceeds by showing that these three properties cannot
be satisfied by any measurement non-contextual outcome deterministic
ontological model.
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Before starting, let us define the POVM {Sxs }x∈R∪{F xs }x∈R describing
the overall effect of the initial POVM and the final post-selection, and
corresponding to whether this was successful or not. In particular, these
operators are given by Sxs := (Nx

s )
†Π̃(j)Nx

s and F xs := (Nx
s )
†(1−Π̃(j))Nx

s .
Now, consider the probability of obtaining the outcome x in the

POVM {Mx
s }x∈R, given the preparation corresponding to a state ρ. In

the ontological model this is expressed by the response function:

p(x| ρ, {Mx
s }x∈R) =

∫
Λ
dλµρ(λ) ξ{Mx

s }(x|λ) . (B.26)

If the model is non-contextual equivalent preparations are represented in
the same way at the level of the ontological model. In particular, con-
sider the two possibilities for measuring x: in one case, the measurement
{Sxs } ∪ {F xs } is performed, and one disregards the output of the projec-
tive measurement; in the other case, one measures {Π(i)}∪{(Π(i))⊥} and
classically samples from ps(x). Thanks to condition 1 this reconstructs
the POVM Mx

s . Non-contextuality means that these two procedures are
equivalent at the level of the ontological model, i.e.,:

ξ(Mx
s |λ) = ξ(Sxs |λ) + ξ(F xs |λ) (B.27)

= ps(x− 1) ξ(Π(i)|λ) + ps(x) ξ((Π(i))⊥|λ) . (B.28)

Notice that, thanks to non-contextuality, we can drop the dependence of
the indicator function ξ on which POVM is being performed. Eq. (B.28)
allows us to prove the inequality:∫ 0

−∞
dx ξ(Sxs |λ) ≤

∫ 0

−∞
dx (ξ(Sxs |λ) + ξ(F xs |λ)) = (B.29)

=

∫ 0

−∞
dx ξ(Mx

s |λ) = (B.30)

=

∫ 0

−∞
dx
(
ps(x− 1) ξ(Π(i)|λ) + ps(x) ξ((Π(i))⊥|λ)

)
≤ (B.31)

≤ 1

2

(
ξ(Π(i)|λ) + ξ((Π(i))⊥|λ)

)
=

1

2
, (B.32)

where the last inequality comes from the fact that ps(x) has median in x =
0, and we finally used the fact that the probability of two incompatible
and exhaustive events is 1.

A second ingredient we need is the probability of obtaining a suc-
cessful post-selection. Again there are two ways to compute it: first,
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just by considering the probability of obtaining {Sxs } ∪ {F xs }, and then
disregarding the value of x; secondly, by using condition 2, one can per-
form the measurement {Π̃(j)} ∪ {1 − Π̃(j)} with probability (1 − psd), or
{Ed} ∪ {1− Ed} with probability psd. For this last procedure, one post-
selects the first outcome in both cases. Then, we can rewrite the indicator
function as:

ξ(Ss|λ) =
∫

dx ξ(Sxs |λ) = (1− psd) ξ(Π̃(j)|λ) + psd ξ(E
d|λ). (B.33)

Since Π̃(j) is a projective measurement and the ontological model is as-
sumed to be outcome deterministic, Λ can be partitioned as Λ0∪Λ1, with
the property that λ ∈ Λi =⇒ p(Π̃(j)|λ) = δi,1. All the ingredients to
estimate ps− are now ready. Its formulation in the ontological model is
given by:

ps− =
1

pΠ̃(j)

∫ 0

−∞
dx Tr

[
(Nx

s )
†Π̃(j)Nx

s ρ
]
= (B.34)

=
1

pΠ̃(j)

∫ 0

−∞
dx

∫
Λ
dλµρ(λ) ξ(S

x
s |λ) = (B.35)

=
1

p
Π̃

(j)
τ

(∫ 0

−∞
dx

∫
Λ0

dλµρ(λ) ξ(S
x
s |λ) +

∫ 0

−∞
dx

∫
Λ1

dλµρ(λ) ξ(S
x
s |λ)

)
.

(B.36)

The first integral can be bound by pd: in fact, decomposing it through
Eq. (B.33), one can use the fact that on Λ0 one has ξ(Π̃(j)|λ) = 0, so
the value of the first integral can be bound by psd. On the other hand,
thanks to Eq. (B.29), the second integral can be bounded by 1/2, times
the area of Λ1, which by construction is p

Π̃
(j)
τ

. This means that for a non-
contextual model ps− ≤ (p

Π̃
(j)
τ
/2 + psd)/pΠ̃(j)

τ
. But this is in contradiction

with condition 3. Hence, there is no non-contextual ontological model
reproducing the three conditions of the theorem.

Theorem 25 gives a way to certify the genuine quantumness of a phe-
nomena. In particular, we show now that anomalous weak values are
able to satisfy all the conditions of Thm. 25 whenever they show some
negativity:

Theorem 26. If the real part of the weak value in Eq. (B.15) is nega-
tive for some choice of indexes i and j, then it always exists a pointer
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state with s large enough so that there is no measurement non-contextual,
outcome deterministic ontological model reproducing the statistics of the
weak measurement.

Proof. Consider a weak measurement scheme as explained above. It
should be noticed that the POVM induced by the measurement of the
pointer state can be expressed as:

Nx
s =

1
4
√
πs2

e−
(x−1)2

2s2 Π(i) +
1

4
√
πs2

e−
x2

2s2 (Π(i))⊥ ; (B.37)

Mx
s =

1√
πs2

e−
(x−1)2

s2 Π(i) +
1√
πs2

e−
x2

s2 (Π(i))⊥ , (B.38)

where Nx
s satisfies Mx

s := (Nx
s )
†Nx

s . Indeed, one can immediately de-
duce Mx

s from Eq. (B.10), while for Nx
s one needs to use the condi-

tion Π(i)(Π(i))⊥ = (Π(i))⊥Π(i) = 0. Then condition 1 is satisfied with

ps(x) = 1√
πs2

e−
x2

s2 .
We can now evaluate the operator:

Ss =

∫
dx (Nx

s )
† Π̃(j)Nx

s , (B.39)

Again, the Gaussian structure of the pointer state allows for an analytical
solution (we omit the lengthy but straightforward computations):

Ss =

=
1 + e−

1
4s2

2
Π̃(j) +

1− e−
1

4s2

2

(
Π(i) − (Π(i))⊥

)
Π̃(j)

(
Π(i) − (Π(i))⊥

)
.

(B.40)

One can define Ed :=
(
Π(i) − (Π(i))⊥

)
Π̃(j)

(
Π(i) − (Π(i))⊥

)
to be part

of the POVM {Ed,1 − Ed} (notice in fact that it is not only positive,
but also a projector, as it satisfies (Ed)2 = Ed), and set the probability

of disturbance to psd := 1−e−
1

4s2

2 . With these choices condition 2 is also
satisfied.

It remains to show that for s large enough the negative bias outweighs
psd, i.e.,

ps− :=
1

p
Π̃

(j)
τ

∫ 0

−∞
dx Tr

[
(Nx

s )
†Π̃(j)

τ Nx
s ρ
]
>

1

2
+

psd
p
Π̃

(j)
τ

. (B.41)
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To this end, it is useful to keep in mind the following Gaussian integrals:

1√
πs2

∫ 0

−∞
dx e−

(x−1)2

s2 =
1

2
erfc

(
1

s

)
; (B.42)

1√
πs2

∫ 0

−∞
dx e−

x2

s2 =
1

2
; (B.43)

1√
πs2

∫ 0

−∞
dx e−

x2

2s2 e−
(x−1)2

2s2 =
e−

1
4s2

2
erfc

(
1

2s

)
, (B.44)

where erfc(x) is the complementary error function. Notably, in the limit
of s→∞ we can expand it as:

1

2
erfc

(
1

s

)
=

1

2
− 1√

πs2
+O

(
1

s2

)
(B.45)

At this point one can plug in the explicit expression of Nx
s in Eq. (B.41),

and it is a matter of computations to show that:

ps− =
1

2
− 1

s
√
π p2

Π̃
(j)
τ

Re
[
Tr
[
Π̃(j)Π(i) ρ

]]
+O

(
1

s2

)
. (B.46)

On the other hand, the probability of disturbance can be expanded at
infinity as:

psd =
1− e−

1
4s2

2
=

1

8s2
+O

(
1/s3

)
. (B.47)

By assumption, there exists i and j such that the weak value in Eq. (B.15)
has negative real part. it should be noticed that the negativity must
arise from the numerator, as the denominator is just the probability of
measuring the output j. This means that:

Re
[
Tr
[
Π̃(j)
τ Π

(i)
0 ρ

]]
< 0 , (B.48)

so that also condition 3 can be satisfied for s large enough. This shows
that there cannot be any non-contextual explanations for negativities in
the real part of the weak values.

It should be noticed that the negativity which is treated here are
not equivalent to the one in the Wigner function. In the latter case,
one wants to provide a quasi-probabilistic representation of all quantum
mechanics, and the failing to do so is a witness for the contextuality of
the theory. In this context, instead, the negativity is just associated to
an anomalous weak value, and for this reason it is not directly related to
a quasi-probabilistic representation.



Appendix C

Outperforming Bayes’
retrodiction

In this appendix we present the results obtained in [2] on the charac-
terisation of state retrieval maps. Our aim is to find a definition of a
reverse map that retrieves the original states as well as possible. Some-
what surprisingly, this does not coincide with the one obtained from
Bayes’ theorem. In particular, we show that in some cases taking Bayes’
as the reverse map results in a further deterioration of the information
contained in the state. Finally, we give arguments showing that an extra
axiom could in fact isolate Bayes’ reverse map and Petz recovery map as
the only inversion.

Given a channel Φ and a prior state π, we define a state retrieval map
to be one satisfying the following four conditions:

1. Φ̃ is physically implementable;

2. if Φ−1 is physically implementable then Φ̃ ≡ Φ−1;

3. Φ̃Φ is detailed balance with respect to the prior π;

4. Φ̃Φ has only positive eigenvalues.

The first three were motivated in the main text, while an explanation
of the fourth will be given in Sec. C.2. Before showing how one can
define a criteria to isolate an optimal state retrieval, we present a useful
parametrisation of physical maps which have a specific transition π → σ.
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C.1 Parametrisation of maps for a given transi-
tion

In this section we show how to parametrise all the maps Ψ having a
definite transition π → σ, i.e., satisfying Ψ(π) = σ. We will first present
how this can be done for classical stochastic maps, and then we will pass
to analyse the case for quantum channels.

Suppose, then, to have a map Ψ having the transition π → σ. It is
useful to rewrite it as follows:

Ψ = LΨJ −1π , (C.1)

where Jπ is a diagonal matrix with entries (Jπ)i,i := (π)i, and LΨ is
implicitly defined by the equation LΨ := ΨJπ. Since Jπ has positive
entries, the same holds for LΨ . Moreover, it satisfies the two conditions:∑

i

LΨ
i,j =

∑
i

Ψi,j (Jπ)j,j = πj ; (C.2)∑
j

LΨ
i,j =

∑
j

LΨ
i,j (J −1π )j,j(π)j = σi , (C.3)

where in Eq. (C.2) we used the fact that stochastic matrices satisfy∑
i Ψi,j = 1, while in Eq. (C.3) that LΨJ −1π (π) = Ψ(π) = σ. In this

way, we are able to uniquely associate to each Ψ a member LΨ of U(σ, π),
the space of matrices with non-negative entries, with columns summing
to σ and rows summing to π. This space was studied in [111] where it
was shown that it is a convex polytope with a finite number of vertices,
denoted by V (k)

σ|π . What is also interesting is that since the two conditions
in Eq. (C.2)-(C.3) are connected by a matrix transpose, there is a one to
one relation between the vertices of U(σ, π) and the one of U(π, σ) given
by (V

(k)
σ|π )

T = V
(k)
π|σ .

Then, for every map Ψ, there exists at least one probability vector
{λ(Ψ)

k } such that:

Ψ =
∑
k

λ
(Ψ)
k V

(k)
σ|πJ

−1
π . (C.4)

Since U(σ, π) is a convex polytope, but not a simplex, the coefficients
{λ(Ψ)

k } are not necessarily unique.
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A similar construction can be made for quantum channels. In this
case, for a given map Ψ we can decompose it as:

Ψ = ΛΨ J−1√
x

∣∣
π
, (C.5)

where J√x
∣∣
π

acts as J√x
∣∣
π
(ρ) :=

√
πρ
√
π (see Sec. 1.4.8), and ΛΨ is given

by ΛΨ = Ψ J√x
∣∣
π
. Since both Ψ and J√x

∣∣
π

are CP, ΛΨ is CP as well.
Analogously to the conditions in Eq. (C.2)-(C.3), we can characterise ΛΨ

by its action on the identity operator:

(ΛΨ)†[1] = J√x
∣∣
π
Ψ†[1] = π ; (C.6)

(ΛΨ)[1] = Ψ J√x
∣∣
π
[1] = σ , (C.7)

where in Eq. (C.6) we used the fact that Ψ is trace preserving together
with the self-adjointness of J√x

∣∣
π
, while the condition in Eq. (C.7) fol-

lows from J√x
∣∣
π
[1] = π. In this way, similarly to what happens for

the classical case, a quantum channel is uniquely identified by a map
ΛΨ ∈ UQ(σ, π), the space of CP transformations that map the identity to
σ, and whose adjoints map the identity to π. Even in this case UQ(σ, π) is
convex, and it has been characterised in terms of the Kraus operators cor-
responding to each vertex [36]. In particular, a map V [ρ] :=

∑
i Vi ρ V

†
i

is a vertex of UQ(σ, π) if the following conditions hold:

1.
∑

i ViV
†
i = σ;

2.
∑

i V
†
i Vi = π;

3. (ViV
†
j )i,j and (V †j Vi)i,j are jointly linear independent.

One important difference with the classical case is that UQ(σ, π) contains
a non-trivial symmetry (i.e., one that is not reducible to a relabeling):
consider the two unitary maps Uπ and Vσ, defined by Uπ[ρ] := UρU †,
and satisfying Uπ[π] = π (and analogously for Vσ, with Vσ[σ] = σ). Then,
the conditions in Eq. (C.6)-(C.7) are invariant under the transformation:

ΛΨ → Vσ ΛΨ Uπ . (C.8)

This means that every ΛΨ contained in UQ(σ, π) is part of an invariant
family connected by the unitary transformations defined in Eq. (C.8).
Finally, notice that also in this case the elements of UQ(σ, π) and UQ(π, σ)
are in one-to-one correspondence through the adjoint transformation.
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Another possible characterisation of the space UQ(σ, π) is in terms of
a marginal problem for the corresponding unnormalised Choi state. This
is defined by the formula CΨ := d (IA ⊗Ψ)[ |Ω⟩ ⟨Ω |], where |Ω⟩ is the
maximally entangled state (see Eq. (1.255)). Then, the application of Ψ
to a state ρ can be equivalently expressed as Ψ[ρ] = TrA

[
(ρT ⊗ 1) CΨ

]
.

Moreover, it also holds that Ψ†[ρ] = (TrB
[
(1⊗ ρ) CΨ

]
)T . This implies

that we can translate the conditions on ΛΨ to constraints on the Choi
matrix, namely:

TrB

[
CΛΨ

]
= TrB

[
(1⊗ 1) CΛΨ

]
= ((ΛΨ)†[1])T = (π)T ; (C.9)

TrA

[
CΛΨ

]
= TrA

[
(1⊗ 1) CΛΨ

]
= (ΛΨ)[1] = σ . (C.10)

Thanks to the Choi-Jamiołkowski isomorphism we know that CΛΨ is
positive semidefinite, and it follows from the two equations above that
Tr
[
CΛΨ

]
= 1. Hence, UQ(σ, π) can be parametrised as the set of all

maps whose Choi matrix corresponds to a bipartite quantum state ρAB
compatible with the two marginals ρA = σ and ρB = (π)T . This identi-
fication allows to constrain the spectrum of the Choi states in UQ(σ, π).
In fact, one can construct a system of linear inequalities depending on
the spectrum of ρA and ρB to constrain the spectrum of ρAB [112, 113].

We can now formalise the concept of map reversion: this is a transfor-
mation R from U(Φπ, π) to U(π,Φπ) such that the conditions (1-4) are
satisfied (UQ(Φπ, π) for quantum transformations). To be more precise,
in order to revert a map Φ, we first need to define the corresponding
LΦ = ΦJπ. Then, the reverse map Φ̃ is given by Φ̃ := R(LΦ)J −1Φ(π), and
we impose compatibility with conditions (1-4).

C.1.1 Bayes inspired reverse and Petz’ recovery map

An interesting feature of this parametrisation is that the transformation
R corresponding to Bayes’ reverse map or to the Petz recovery map is
particularly natural. In fact, if one writes Bayes’ theorem in matrix form
one obtains:

Φ̃B =
∑
i,j

πiΦj,i
(Φ(π))j

|i⟩⟨j | = Jπ (Φ)TJ −1Φ(π) = Jπ (L
ΦJ −1π )TJ −1Φ(π) =

(C.11)

= (LΦ)TJ −1Φ(π) . (C.12)
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Figure C.1: Depiction of the action of a stochastic map Φ on a two levels
classical system. Any physical state retrieval Φ̃ must be contracting,
implying that many states will not be in its domain. For this reason, in
order to get as less error as possible, one requires the image of Φ̃Φ to
be as big as possible. A natural quantifier of the volume of the image
of a linear map is its determinant. Moreover, it should be noticed that
any negative eigenvalues in Φ̃Φ corresponds to a flip in the image, which
will significantly increase the error. For this reason, imposing condition 4
prevents this pathological situation from happening.

This shows that in this case R is simply the transpose map. In the same
way, in the case of the Petz recovery map it is straightforward to show
that:

Φ̃P = J√x
∣∣
π
Φ† J−1√

x

∣∣
Φ(π)

= J√x
∣∣
π
(ΛΦ J−1√

x

∣∣
π
)† J−1√

x

∣∣
Φ(π)

= (C.13)

= (ΛΦ)† J−1√
x

∣∣
Φ(π)

.

(C.14)

Again, R is simply given by the adjoint map ΛΦ → (ΛΦ)†.

C.2 The max-det principle

Conditions (1-4) do not select a unique retrieval map, but rather a whole
family of transformations. For this reason, we motivate here a maximisa-
tion principle that singles out a unique optimal state retrieval map Φ̃O.

To this end, consider a stochastic map from a space into itself (see
Fig. C.1). This type of maps are contracting: the volume of their image
will be smaller than the one of their domain. The composite transfor-
mation Φ̃Φ falls into this class. In order to preserve as many states as
possible, a minimal requirement is that the image of Φ̃Φ is not too small.
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A standard measure of the volume of the image of a linear map is its
determinant, and for this reason we demand that:

Principle. Optimal retrieval maps maximise the determinant of Φ̃O Φ
under the constraints (1-4).

Interestingly, this minimal requirement is enough to single out a
unique Φ̃O. Before, moving on to provide some analytical insights about
why we expect this to be a good definition, it is worth to point out
that we imposed condition 4 following the same kind of geometrical con-
siderations. In fact, notice that any negative or complex eigenvalue in
the spectrum of Φ̃Φ corresponds to a reflection or a rotation of the do-
main, which would increase the statistical distance between a state and
its evolved version. For this reason, it is sufficient to explore state re-
trievals corresponding to Φ̃Φ with positive spectrum. It should also be
noticed that, indeed, both Bayes’ and Petz maps satisfy this requirement.
In fact, by performing a similarity transformation one can see that:

J −1/2π (Φ̃BΦ)J 1/2
π = J 1/2

π (Φ)TJ −1Φ(π)ΦJ
1/2
π = (C.15)

=
(
J −1/2Φ(π) ΦJ

1/2
π

)T (
J −1/2Φ(π) ΦJ

1/2
π

)
, (C.16)

which implies that their spectrum is also positive (the computations for
Petz recovery map are completely analogous, substituting J with J).

C.2.1 Analytical insights on the max-det principles

Beyond the intuitive necessity of having the image of the retrieval map as
big as possible, the principle of the maximisation of the determinant can
be justified more rigorously. We provide here some analytical insights on
why this should in fact be a good requirement.

First, it should be noticed that in order to optimise the quality of
the retrieval we have to make Φ̃Φ as similar as possible to the identity
transformation. Since both Φ̃Φ and I are positive semidefinite matrices,
the relative entropy between the two is well defined and takes the form:

D(I||Φ̃Φ) = Tr
[
I (log I− log Φ̃Φ)

]
= (C.17)

= −Tr
[
log Φ̃Φ

]
= log det(Φ̃Φ)−1 , (C.18)

where one uses the well known matrix identity Tr [logA] = log detA.
Minimising this relative entropy is then equivalent to the maximisation



C.2 The max-det principle 243

of the determinant of Φ̃Φ. Even if the relative entropy between two
superoperators is not a standard object, Eq. (C.18) suggests that our
principle indeed identifies the right statistical property to optimise.

A more standard approach, even if it provides only bounds and not
equalities, is to study the action of Φ̃Φ through the use of contrast func-
tions. We remind the reader that for classical states Csiszár contrast
functions are defined as (see Sec. 1.1):

Hg(ρ||σ) :=
∑
i

ρi g

(
σi
ρi

)
, (C.19)

where g is an arbitrary positive convex function such that g(0) = 0.
Moreover, Hg(ρ||σ) are connected to the classical Fisher information by:

Hg(ρ||ρ+ δρ) ≃ 1

2
Tr
[
δρJ −1ρ [δρ]

]
=
∑
i

δρ2i
ρi

, (C.20)

where |δρ| ≪ 1. On the other hand, from the family of quantum contrast
functions we consider here only the one associated to the square root (see
Sec. 1.4.8 for more details about it):

H√x(ρ||σ) =
1

2
Tr
[√

ρ(ρ− σ)
√
σ−1

]
, (C.21)

which gives the expansion:

H√x(ρ||ρ+ δρ) ≃ 1

2
Tr
[
δρ J−1√

x

∣∣
ρ
[δρ]
]
. (C.22)

Thanks to condition 3, Φ̃Φ is self-adjoint with respect to the scalar prod-
uct induced by J√x

∣∣
π
. In fact, one has:

Tr
[
A J−1√

x

∣∣
π
[Φ̃Φ(B)]

]
= Tr

[
J√x

∣∣
π
[(Φ̃Φ)†(J−1√

x

∣∣
π
[A])] J−1√

x

∣∣
π
[B]
]
=

(C.23)

= Tr
[
Φ̃Φ(A) J−1√

x

∣∣
π
[B]
]
, (C.24)

and the same of course holds for the classical case by substituting J√x
∣∣
π

with Jπ (in fact, this holds for all the calculations in this section). Indeed,
as it was proved in Sec. 1.5.5 the condition of being detailed balance is
equivalent to being self-adjoint with respect to the Fisher scalar product.
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Then, thanks to the self-adjointness of Φ̃Φ we can find an orthonor-
mal basis {Ei} such that Φ̃Φ[Ei] := φiEi and Tr

[
Ei J−1√x

∣∣
π
[Ej ]

]
= δi,j .

Moreover, due to condition 4, all the φi are positive and less then one
(since Φ̃Φ is a CP-map) meaning that we can express them as φi = e−λi ,
where λi are all positive. Notice that the λs are also connected to the
determinant of the forth-and-back map by the relation:

log det Φ̃Φ = Tr
[
log Φ̃Φ

]
= −

∑
i

λi . (C.25)

Consider now the modified contraction rate close to the prior state π:

µFg (π, δρ) :=
Hg(π||π + δρ)−Hg(Φ̃Φ(π)||Φ̃Φ(π + δρ))

Hg(π||π + δρ)
, (C.26)

where Hg(ρ||σ) is a generic contrast function in the classical case, or
the one in Eq. (C.21) in the quantum one. Thanks to the expansion in
Eq. (C.22) and the self-adjointness of Φ̃Φ, we can rewrite the µFg (π, δρ)
as:

µFg (π, δρ) =
Tr
[
δρ J√x

∣∣−1
π

[δρ]
]
− Tr

[
δρ J−1√

x

∣∣
π
[(Φ̃Φ)2(δρ)]

]
Tr
[
δρ J−1√

x

∣∣
π
[δρ]
] = (C.27)

=

∑
i |δρi|2(1− e−2λi)∑

i |δρi|2
, (C.28)

where δρi := Tr
[
δρ J√x

∣∣−1
π

[Ei]
]

are the component of δρ in the eigenbasis

of Φ̃Φ.
Using the inequality 1− e−x ≤ x holding for positive x (with equality

only for x ≡ 0), we can bound the modified contraction rate by:

µFg (π, δρ) ≤ 2

∑
i |δρi|2λi∑
i |δρi|2

≤ (C.29)

≤ 2
∑
i

λi = 2 log det(Φ̃Φ)−1 . (C.30)

Define now the two rates:

µREg := inf
ρ,σ

Hg(ρ||σ)−Hg(Φ̃Φ(ρ)||Φ̃Φ(σ))
Hg(ρ||σ)

; (C.31)

µFg := inf
ρ,δρ

Hg(ρ||ρ+ δρ)−Hg(Φ̃Φ(ρ)||Φ̃Φ(ρ+ δρ))

Hg(ρ||ρ+ δρ)
, (C.32)
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which are related to the one discussed in Sec. 1.5.4 by µg = 1−ηg. Then,
since it was argued in the main text that ηREg ≥ ηFg , it directly follows
that µREg ≤ µFg . Using the standard rewriting:

µFg ≡ inf
ρ,δρ

µFg (ρ, δρ) ≤ µFg (π, δρ) , (C.33)

we obtain the following chain of inequalities

µREg ≤ µFg ≤ µFg (π, δρ) ≤ 2 log det(Φ̃Φ)−1 . (C.34)

Writing explicitly µREg , we finally get:

inf
ρ,σ

Hg(ρ||σ)−Hg(Φ̃Φ(ρ)||Φ̃Φ(σ))
Hg(ρ||σ)

≤ 2 log det(Φ̃Φ)−1 . (C.35)

Hence, the inverse of the determinant bounds the maximum rate at which
any two states become indistinguishable (also see Sec. 1.5.4 for discussions
of similar quantities). Since this quantifies the velocity at which informa-
tion is lost, maximising the determinant slows down the irreversible flow
of information out of the system.

Another interesting inequality can be obtained with analogous meth-
ods: consider, in fact, the ability of Φ̃Φ to retrieve states close to the
prior as quantified by the contrast functions Hg. Then, we can rewrite
this quantity as:

Hg(π + δρ||Φ̃Φ(π + δρ)) =
1

2
Tr
[
δρ J−1√

x

∣∣
π
[(1− Φ̃Φ)2(δρ)]

]
= (C.36)

=
1

2

∑
i

|δρi|2(1− e−λi)2 . (C.37)

Thanks to the inequality (1 − e−x)2 ≤ x/2 holding for positive x, it
directly follows that:

Hg(π + δρ||Φ̃Φ(π + δρ)) ≤ 1

4

∑
i

|δρi|2λi ≤
Hg(π||π + δρ)

2
log det(Φ̃Φ)−1 .

(C.38)

This tells us that the determinant bounds the ability of retrieving states
close to the prior. Arguably this is the most relevant situation, for exam-
ple, in error correction, in which one wants to correct the effect on the
noise especially for states close to the fiducial state π.
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We stress again that the computations leading to Eq. (C.35) and
Eq. (C.38) only hold in the quantum case for the contrast function in
Eq. (C.21). Still, if the condition 3 gets modified with the require-
ment that Φ̃Φ satisfies the canonical definition of detailed balance (see
Sec. 1.5.5) all the steps can be generalised to any quantum contrast func-
tion. Despite this, since all the other discussions hold also for the weaker
definition of detailed balance (the one with respect to J√x only) we don’t
have strong enough reasons to make condition 3 more stringent.

In this section we have presented some analytical insights justifying
the max-det principle (namely Eq. (C.18), (C.35) and Eq. (C.38)). To
further motivate this choice, in the next section we compare its perfor-
mance in state retrieving with the Bayes’ and Petz maps.

C.2.2 Quality of the retrieval

Before studying two particular cases, we give an emblematic example
of how the Petz recovery map (or the Bayes’ reverse channel) seems to
deviate from the intuitive notion of state retrieval map. In particular, we
have the following:

Theorem 27. Whenever a transformation Φ is detailed balanced with
respect to the prior state (i.e, Φ J√x

∣∣
π
= J√x

∣∣
π
Φ†) and has positive spec-

trum, we have the following:

1. the Petz recovery map coincides with Φ;

2. the optimal state retrieval map is the identity operator I.

The proof of this fact is straightforward. In fact, from the definition
of the Petz recovery map we obtain:

Φ̃P = J√x
∣∣
π
Φ† J−1√

x

∣∣
π
= Φ , (C.39)

(notice that we used the fact that π is a fixed point of the dynamics),
while for the second half of the statement it is sufficient to notice that:

det(Φ̃Φ) ≤ det(Φ) , (C.40)

with equality if and only if Φ̃ is a unitary transformation. Thanks to
the assumptions in the Theorem, condition 3 and 4 are automatically
satisfied for Φ̃ = I, and thanks to the inequality in Eq. (C.40) this choice
is indeed optimal.
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Figure C.2: Comparison between the quality of retrieval using the Petz
recovery channel (in green) and the optimal state retrieval (in red) as
measured by the trace distance. On the left, we choose a depolarising
channel ∆η acting on a qubit and x and z are the coordinates in the
Bloch sphere. On the right, we use the channel defined in Eq. (C.42),
where x1 and z1 are the Bloch coordinates on the first qubit, while the
second is set to πβ(H). The choice of the trace distance as a quantifier is
simply aesthetic, and we observed similar behaviour using other statistical
divergences.

We exemplify this result on the left panel of Fig. C.2. We considered
the depolarising channel acting on a qubit:

∆η(ρ) = (1− η) ρ+ η
1

2
, (C.41)

where η is a scalar parameter in [0, 4/3], and we chose 1/2 as the prior
state. Then, it is easy to verify that all of the assumptions of the Thm. 27
are satisfied. Hence, in this case, the optimal strategy is to leave the sys-
tem unperturbed. On the other hand, using the Petz recovery map cor-
responds to another application of ∆η, leading to a further deterioration
of the information about the initial state. This shows how our definition
of optimal retrieval is more suited in the task of recovering a state after
a transformation.

The right panel of Fig. C.2 shows the difference in performance of the
optimal map and the Petz’ one for the two-qubit channel defined by:

Φ(ρA ⊗ ρB) = θλ1(ρB)⊗ θλ2(ρA), (C.42)

where θλ is the thermalising channel on a qubit defined by:

θλ(ρ) = (1− λ)ρ+ λTr [ρ]πβ(H) (C.43)
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Figure C.3: Geometrical representation of the action of optimal maps
for qubits. In panel (a) the action of the map Φ defined as a contraction
of the Bloch sphere, composed with a translation. In panel (b) in blue
we represent the Petz recovery map, while in light green the optimal
state retrieval. As it can be noticed, the latter corresponds to a uniform
translation bringing Φ(π) to π, together with the minimal contraction
that allows to perform this operation physically. Finally, in panel (c) in
light yellow the image of Φ̃OΦ and in orange the one of Φ̃PΦ. As it can
be noticed, there is a clear gap in the volume of states that are covered
by the two different maps.

and πβ(H) is the thermal state associated to the Hamiltonian H :=
ϵ |1⟩⟨1 |. Taking the prior state to be π := πβ(H)⊗πβ(H) allows to solve
the problem analytically. A simple calculations shows that, even in this
case, the Petz map coincides with the original channel, i.e., Φ̃P = Φ.
On the other hand, the optimal state retrieval is given by Φ̃O = SWAP,
the swap operator. Again we see that the action of the optimal state
retrieval is intuitively what we expect: since the dynamics is completely
depolarising, the maximum one can achieve is obtained by undoing the
swap between the two systems.

So far the optimal maps have been always unital. In Fig. C.3 we
present an example in which this is not the case. Consider a map on
the Bloch sphere which acts as the composition of a contraction and a
translation. We choose the prior state to be given by π = 1

2 , so that Φ̃Φ
is unital even if Φ is not (this technical point is needed for the numerical
optimisation we implemented, which made use of the parametrisation
given in [114]). Then, the action of the Petz map and of the optimal state
retrieval are presented in the Fig. C.3.(b). This offers a neat geometrical
interpretation of ΦO: this is given by the composition of a compression
and a translation specified as follows: the translation is the one recovering
the desired prior π (the red arrow in the picture) and the compression
is the minimal one making Φ̃O physical (i.e., so that the image of Φ̃O is
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contained in the Bloch sphere). As one can see from Fig. C.3.(c) indeed
the image of Φ̃OΦ is considerably bigger than the one for Φ̃PΦ.

C.3 Isolation of Bayes’ inverse

In this section we discuss the evidences suggesting that the extra condi-
tion:

5. the reversal is an involutive operations, meaning that ˜̃Φ = Φ,

together with the other four, allows to single out the Bayes’ one as unique
inverse map. In particular, we assume that the action of R to be specified
only by its action on the vertices V (k)

Φπ|π of the convex set U(Φπ, π). Notice
that in this context Φπ denotes a vector, and has little to do with the
original map.

Then, since U(Φπ, π) and U(π,Φπ) are connected by transposition,
we will identify V

(k)
Φπ|π with V

(k̃)
π|Φπ = (V

(k)
Φπ|π)

T so that R is a map from
a space into itself. Moreover, doing so shows that the R corresponding
to Bayes’ inversion is the identity matrix, since, as it was noticed in
Sec. C.1.1, Bayes’ inversion corresponds to a transposition on the space
U(Φπ, π).

Then, we can divide the vertices of U(Φπ, π) in two groups: the ones
corresponding to permutations (in the sense that V (k)

Φπ|πJ
−1
π is a permu-

tation), and all the others. Thanks to condition 2, on the vertices of the
first kind any reverse map gives the identity, as:

(V
(k)
Φπ|πJ

−1
π )−1 = (V

(k)
Φπ|πJ

−1
π )T = (J −1π (V

(k)
Φπ|π)

TJΦ(π))J −1Φ(π) = (C.44)

= ((V
(k)
Φπ|π)

TJ −1Φ(π)JΦ(π))J −1Φ(π) = (V
(k)
Φπ|π)

TJ −1Φ(π) . (C.45)

Then, it follows that R is the direct sum of the identity matrix acting
on the first ℓ sites and a permutation matrix with cycles of maximal
length 2 acting on sites ℓ + 1, . . . , n. Indeed, thanks to the structure of
U(Φπ, π), one can interpret the coefficients {λ(Φ)

k } as a probability vector.
ThusRmust map probability distributions into probability distributions,
meaning that R is a stochastic matrix. Moreover, axiom 5 implies R2 =
1, meaning that R is invertible and coincides with its inverse. It should
be noticed that all the invertible stochastic matrices are permutations.
The involutive condition then also implies that it must be a permutation
of cycle at most 2. We can now focus on the action of R on the first ℓ
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indices. From condition 2 we know that permutations must be mapped
into their inverse, that is U → UT . Thanks to the relation between the
vertices of U(Φπ, π) and U(π,Φπ) this corresponds to R acting as the
identity on the first ℓ elements of {λ(Φ)

k }.
Since it is a stochastic matrix, in order to study R, it is sufficient to

study its action on the vertices of the simplex of the probability vectors
{λ(Φ)

k }. In particular we need to check if there is any permutation of two
vertices of this simplex that is admissible other than the identity.

We focus on the action of R on single vertices. Consider in particular
the case in which Φ := V

(i)
Φπ|πJ

−1
π . Since R is a permutation, there exists

a vertex V
(j)
π|Φπ which satisfies Φ̃ ≡ V

(j)
π|ΦπJ

−1
Φ(π) = (V

(j)
Φπ|π)

TJ −1Φ(π). From
principles (3 and 4 the following matrix

Xi,j = J
− 1

2
π (V

(j)
Φπ|π)

TJ −1Φ(π)V
(i)
Φπ|πJ

− 1
2

π (C.46)

is positive semidefinite.
At the same time, due to principle 5, if the vertex (V

(j)
Φπ|π)

T corre-

sponds to the inverse of V (i)
Φπ|π, then V (i)

Φπ|π must be the inverse of (V (j)
Φπ|π)

T .
This consideration, together with conditions 3 and 4, then also implies
that the matrix

Yi,j = J
− 1

2

Φ(π)V
(i)
Φπ|πJ

−1
π (V

(j)
Φπ|π)

TJ −
1
2

Φ(π) (C.47)

is positive semidefinite.
Since the number of vertices is finite, it is easy to explicitly verify

for which set of indices Eq. (C.46) and Eq. (C.47) are positive semidefi-
nite. We verified this for many possible families of stochastic maps that
the only admissible R is the identity, meaning that axiom 5 seems to
be enough to single out the Bayes reversion (see Fig. C.4). Despite this
promising result, an analytical proof of this fact is still missing. In fact
we miss a characterisation of the properties of the vertices for generic
U(Φπ, π). To the best of our knowledge, for an arbitrary pair (Φπ, π),
it is not even possible to know the precise number of vertices of the set
U(Φπ, π) without first mechanically constructing them using the algo-
rithm of Jurkat and Ryser [111].
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Figure C.4: In order to check if R can be any a permutation different
from the identity one checks which of the matrices Xi,j and Yi,j are Pos-
itive SemiDefinite (PSD). If, for a fixed value of i and j, both the matrix
Xi,j and Yi,j are PSD, then a R permuting i and j is allowed. In the
first line we choose π = (0.1, 0.2, 0.7) and Φπ = (0.3, 0.6, 0.1), while in
the second line π = (0.1, 0.6, 0.1, 0.2) and Φπ = (0.1, 0.2, 0.3, 0.4). The
elements in the grid are green if the corresponding matrix is PSD and on
the diagonal, red if it PSD but out of the diagonal, and white otherwise.
As it can be seen, in the first line only requiring that Xi,j or Yi,j are
positive semidefinite is enough to single out the diagonal, corresponding
to the identity transformation, that is, as it was explained in the text,
to the Bayes inversion. In the second line we see that one actually needs
to ask that both Xi,j and Yi,j are PSD, because there are cases in which
one is PSD but the other is not. When one considers the two conditions
together, again the only possibility left is the one of Bayes inversion.





Appendix D

Elements of Kolmogorov
complexity

Kolmogorov’s most famous contribution to modern mathematics is the
formalisation of probability theory in terms of an axiomatic construction.
It might be surprising, then, that among the many other results and the-
ories that he produced, mostly in the context of stochastic processes and
dynamical systems, one can find his name in a small fringe of mathe-
matics, the theory of algorithmic complexity. Indeed, in this context the
Kolmogorov complexity of a string is defined as the shortest program
that can generate it. This quantity is apparently so far away from the
other areas that he had explored, that it appears more as a mathemati-
cal curiosity than a serious pursuit. This could not be further from the
truth: in fact, rather than being the result of an erratic exploration, the
central aim motivating his study of algorithmic complexity is to justify
the applicability of probability theory to the real world. To say it with
his words (as cited in [66]):

This theory was so successful, that the problem of finding the
basis of real applications of the results of the mathematical
theory of probability became rather secondary to many inves-
tigators. [...However,] the basis for the applicability of the
results of the mathematical theory of probability to real “ran-
dom phenomena” must depend in some form on the frequency
concept of probability, the unavoidable nature of which has
been established by von Mises in a spirited manner.

The main foundational problem here can be explained as follows: say
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one tosses 100 times a fair coin, obtaining 100 times head; this is a per-
fectly normal output in probability theory, albeit of exponentially small
probability. Still, one would be quite surprised to see something like this
happening, and would rather think that the original coin is not fair, than
to accept this string as a mere improbable event. Hence, there must be
some notion of randomness that applies to single sequences (and not to
sets), to which we intuitively refer to when talking of probability.

The key aspect captured by Kolmogorov complexity is the difficulty
of finding any regularity in random sequences. Indeed, whereas a uniform
sequence of heads and tails seems perfectly normal, having instances in
which only one outcome is repeated many times (as in the example above)
seem rather suspicious. What makes the definition of Kolmogorov quite
remarkable, is the intuition connecting the presence of regularities to the
existence of a short description: indeed, while exponentially improbable
outcomes can be easily characterised (e.g., 100 times head), for more
probable strings one does not have any possibility of describing it other
than writing it down explicitly digit by digit.

This idea was made precise in the work of Martin-Löf, and we refer
to [66] for an in-depth investigation of the matter. In the following, we will
just briefly provide the most technical aspects of Kolmogorov complexity
that are used in Sec. 3.1.2 and Sec. 3.2.4. Still, even if we do not dwell
too much on the connection between randomness, probability theory and
algorithmic complexity, one should keep it in mind as the fundamental
raison d’être of the subject.

D.1 Main definitions and properties

We will assume the reader to be familiar with the notion of Turing ma-
chine (TM) and universal Turing machine (UTM). These are formalisa-
tions of the intuitive notion of program, i.e., a computation following a
finite set of instructions. In this context, with universality one refers to
the ability of UTMs of simulating any other Turing machine [115]. One
can also think of TMs as the program that one uses to define them on a
standard UTM, for example their expression in Python for modern com-
puters. This allows to give an enumeration of all TMs: in this example,
by interpreting the programs in Python as integers (by associating them
to their expression in binary code). Having an enumeration of all possi-
ble TMs shows that not all questions that can be formulated, can also
be answered in finite time. Indeed, the first example of this kind was the
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famous halting problem, that is the question about whether an arbitrary
TM will halt or not. For some TMs, e.g., the ones that won’t compile, this
decision problem is straightforward. Still, there is no universal method
deciding all the instances of this question. Indeed, suppose there were
such a program, call it H, that outputs 1 if the TM on which it is run
halts, and 0 otherwise. Then one could construct a TM T̃ that loops for
ever if H(T̃ ) = 1 and halts if H(T̃ ) = 0. This is clearly a contradiction.
Hence, H cannot give a solution in finite time on every input.

This leads to the definition of recursive enumerability: a set is recur-
sive enumerable if its member are outputted by some Turing Machine in
infinite time. One can associate to each recursive set a binary function
deciding the membership of a given input to the set. In this case, the
function either halts or runs for ever, and there is no way of deciding
which one of the two cases it is. On the other hand, a function is called
recursive if it halts on all inputs.

Before passing to the definition of algorithmic complexity, it is useful
to introduce some more notation. First, it should be noticed that the set
of strings has a natural order, the lexicographic partial order, which we
denote by <ℓ and is defined as:

y <ℓ x ⇐⇒ ∃z | x = yz . (D.1)

A set of strings S is called prefix free, if for any two x, y ∈ S, y <ℓ x
if and only if y = x. We choose a standard encoding E from the set of
binary strings to some infinite prefix free set, and denote by x̄ := E(x).
We also require that in order for E to be a proper encoding, it should
satisfy ℓ∗(x) := ℓ(x̄) ≤ ℓ(x) + 2 log ℓ(x), where ℓ(x) is the length of the
string. Finally, we will also use the notation T (x) < ∞ to indicate that
the Turing machine T halts on input x.

In the following, rather than normal TMs, we will focus on Chaitin
computers. These are defined as follows: consider a UTM U with two
inputs, one indicating the program p that it should use, the other the
input x on which to run p (i.e, the UTM acts as U(p, x) = p(x)). Then,
a universal Turing machine C is a Chaitin computer if the domain of
definition of the TM defined as Cx(p) := C(p, x) is prefix free [116]. This
restriction implies that the programs read by Cx are self-delimiting: in
fact, for every p such that Cx(p) < ∞, if p <ℓ q and Cx(q) < ∞, this
implies that p ≡ q, because otherwise the domain of Cx would not be
prefix free. Equivalently, the information about when to stop reading p is
already contained in itself, without the need for Cx to scan any additional
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end-markers.
We fix a universal Chaitin computer C to be the reference machine

with respect to which all the following definitions are given. Then, we
can define the Kolmolgorov prefix complexity as [66]:

K(x|y) := min {ℓ∗(p)|C(p, y) = x} . (D.2)

For each string x there exists an uncomputable string x∗|y defined to be
the shortest program to output x on input y, chosen in lexicographic
order. Then, K(x|y) = ℓ(x∗|y). We also define K(x) := K(x|ε), where ε
is the empty string, and x∗ := x∗|ε.

It is easy to see that K(x|y) or, equivalently, x∗|y are not recursive.
Indeed, suppose the contrary, i.e., that there were a program F|y as-
sociating to each string its algorithmic complexity. Then, consider the
following program F̃|y: on input a natural number, it outputs the first
string (in lexicographic order) with that conditional complexity. Obvi-
ously K(F̃|y(n)|y) = n. But, then, for any n = K(F̃|y(n)|y) > ℓ∗(F̃|y),
F̃|y would encode the number F̃|y(n) better than the optimal program,
generating a contradiction. Hence, F̃|y is not computable1.

It should be noticed that changing the reference machine C to C ′

changes K(x|y) by a constant. Indeed, given the optimal program x∗|y for
C, C ′ can simulate it with a overhead of ℓ∗(C). The same argument can
be made swapping C and C ′, so one writes:

KC(x|y) = KC′(x|y) +O (1) , (D.3)

where we highlighted the dependency of the algorithmic complexity on
the defining Chaitin computer. Eq. (D.3) takes the name of invariance
theorem, which shows that one can refer toK(x|y) as a well-defined quan-
tity, as it does not depend drastically on its defining machine. This comes
at the cost that all the equality that we will write in the following are
actually to be understood up to a constant factor (i.e., as in Eq. (D.3)).

There are a number of interesting properties that the Kolmogorov
complexity satisfies. Consider for example the quantity K(x, f(x)), i.e.,
of the vector {x, f(x)}, where we assume that f is a computable func-
tion. Then, it is easy to modify the reference machine as: C̃(p, y) :=

1The very same concept is at the root of Berry paradox. This can be expressed
as following: “consider the smallest integer not definable in less than 12 words”. It is
easy to see that no such integer can exists, making the notion of integers definable in
less than n words problematic.
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{p(y), f(p(y))}. Then, thanks to the invariance theorem, this means that:

K(x, f(x)) = K(x) , (D.4)

where we remind the reader that this equality is defined up to a constant
additive term. Moreover, for the same reason if p(y) = x then it also
holds that:

K(p, y) = K(x, y) , (D.5)

since in this case one can redefine the reference machine to first run on
some input to generate {p, y}, and then it applies the first argument to
the second, i.e., {p(y), y} = {x, y}.

Interestingly, the same holds also for K(x,K(x)), even if K is not a
computable function. In this case the reason for this follows from the
minimality of K(x). Indeed, it is easy to show that K(x, y) ≥ K(x),
as one can give a program for x starting from one for {x, y} with just a
constant overhead, but not the other way around. Moreover, one can gen-
erate {x,K(x)} from the minimal program x∗ by changing the reference
machine to C̃(p, y) := {p(y), ℓ(p)}. This shows that K(x,K(x)) ≤ K(x)
which, together with the inequality above gives:

K(x,K(x)) = K(x) . (D.6)

Considering the conditional Kolmogorov complexity, it is straightfor-
ward to verify that:

K(x|y) ≤ K(x) , (D.7)

since the set of programs on which one takes the minimum in the first
case is at least as large as the one for the unconditional case (as one
can construct a C̃ that always disregard any extra inputs). Similarly
K(x|y1, . . . , yn) ≤ K(x|y1, . . . , yn−1).

An interesting property of the Kolmogorov prefix complexity which
does not hold if one drops the request that the domain of C is prefix free
is the subaddittivity, i.e.,

K(x, y) ≤ K(x) +K(y) . (D.8)

The proof of this result can be found in [66]. This property is in common
with the Shannon entropy, but it is not the only connection between
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the two. Indeed, one can prove that given a computable probability
distribution p(x) such that H(p) <∞, then it holds that [66]:

0 ≤
∑
x

p(x) (K(x)−H(p)) ≤ cp , (D.9)

where cp = K(p) + O (1) only depends on p. It is also interesting to
point out that part of the proof is based on the noiseless coding theorem.
Moreover, the relation with Shannon theory is even stronger as it can
be verified considering the following scenario: consider an ensemble of
strings {si} distributed according to {p(si)}, then it holds that [66]:

H({p(si)}) ≤
∑
i

p(si)K(si) ≤ H({p(si)}) +K({si, p(si)}) , (D.10)

where K({si, p(si)}) is the Kolmogorov complexity of the ensemble.
The similarity between Kolmogorov complexity and Shannon the-

ory motivated Chaitin to his study of the algorithmic information the-
ory [117]. Still, an important property of the Shannon entropy, namely
the symmetry of information does not hold for Kolmogorov complexity.
Indeed, one has that:

K(x, y) = K(x|y) +K(y) (D.11)

only holds up to logarithmic corrections in K(y). Still, using the coding
theorem (Thm. 28) it is possible to show that:

K(x, y) = K(x|y∗) +K(y) = K(y|x∗) +K(x) , (D.12)

within an additive constant. It should be noticed that we use the notation
K(x|y∗) := K(x|y, y∗), from which it trivially follows that K(x|y∗) ≤
K(x|y) (see Eq. (D.7)).

Finally, we hint at the definition of randomness in this context. A
string is considered random, or incompressible, if K(x) ≥ ℓ(x). It should
be noticed that any minimal programs x∗ are random, as otherwise
K(K(x)) ≤ ℓ∗(x∗) = K(x), and one could use this more concise encoding
to simulate x with a program shorter than K(x). This also means that
x∗∗ = x∗, i.e., the best description of the minimal program is the minimal
program itself (run on a machine that just returns the input). This ar-
gument was implicitly used in the analysis of the algorithmic Maxwell’s
demon in Sec. 3.1.2.
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D.2 Coding theorem

Another important property that makes the Kolmogorov prefix complex-
ity particularly desirable compared to other definition of algorithmic com-
plexity is that it can be used to define a prefix free code. Indeed, one can
associate to each program the corresponding output. For any universal
Chaitin computer U , this is indeed a prefix free code, so it follows from
the Kraft inequality that:

ΩC :=
∑

p |U(p)<∞

2−ℓ
∗(p) < 1 , (D.13)

It should be noticed that ΩC , called Chaitin’s constant, is less than one
since there are programs that do not halt.

This discussion suggests the definition of the following semimeasure:
suppose one has a fair coin, that sequentially flips to generate a program
p. Running it on a standard Chaitin computer on input x, one obtains
a string p(x) (or it loops for ever). Then, one can define the transition
probability of starting from x and ending in y as:

QU (x→ y) :=
∑

p|U(p,x)=y

2−ℓ
∗(p) . (D.14)

Thanks to Kraft inequality QU is indeed a semimeasure. This quantity is
connected to the Kolmogorov complexity by one of the most important
results in the subject, the coding theorem:

Theorem 28. There is a constant cU that only depends on the choice of
universal Chaitin computer U such that:

K(y|x) = − logQU (x→ y) + cU . (D.15)

The theorem above tells us that the probability of randomly obtaining
y starting from x is within a multiplicative constant of 2−K(y|x). This
remarkable result was used in Sec. 3.2.4 to define algorithmic fluctuation
relations.

This concludes the brief summary of the essential ingredients of al-
gorithmic complexity used in the main text. Once again we refer the
interested reader to [66] to explore this vast and interesting subject.
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