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Abstract

In this thesis, we study the optimization of operational tasks that involve the
manipulation of quantum resources. In most cases, such optimizations are
aided by understanding the geometric properties of the physical objects in-
volved. We split our results in a first part concerning Thermodynamics, and a
second part concerning Information Theory.

In the context of Thermodynamics, we first study the optimization of thermal
machines. That is, we look for those periodic control protocols, performed
on a quantum working fluid, that maximize figures of merit based on power
and efficiency. By making small assumptions on the dynamical regimes (of
low-dissipation/slow-driving, or fast-driving), we are able to construct and
characterize optimal protocols that are valid for large classes of quantum (and
classical) thermal machines.
Secondly, we study how to design quantum thermal probes that optimize the
precision in temperature estimation when put in contact with a thermal bath.
The resulting optimal configurations are simple and physically feasible, and
show an Heisenberg-like scaling of the optimal sensitivity.

In the context of Information Theory, initially we study how to characterize
memory effects (information backflows) in the dynamics of open quantum
systems, how to detect them and operationally exploit them.
Furthermore, in the subfield of Nonlocality, we study relaxations and gener-
alisation of the canonical Bell scenario, which allow us to bring the realiza-
tion of nonlocal experiments closer to simple, table-top quantum optics. In
particular, by considering nonlocality in quantum networks, we are able to
design an experiment which only involves simple passive optics and single-
photon entangled states, in which it is possible to certify nonlocality with-
out measurement inputs. Likewise, a different relaxation consists in allowing
trusted quantum inputs in a Bell experiment. This permits certifying nonlocal-
ity of any entangled state, without trusting the measurement device. We study
this measurement-device-independent framework to design simple protocols
of entanglement detection for continuous-variable states.

The results of the thesis are relevant both from the theoretical point of view
and for the efficient realisation of the operational tasks analysed.
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Resumen

En esta tesis, estudiamos la optimización de tareas operacionales que involu-
cran manipulación de recursos cuánticos. En la mayoría de los casos, dichas
optimizaciones pueden simplificarse al tener en cuenta las propriedades ge-
ométricas de los objetos físicos involucrados. Dividimos nuestros resultados
en una primera parte que concierne a la Termodinámica, y una segunda parte
que concierne a la Teoría de la Información.

En el contexto de la Termodinámica, estudiamos en primer lugar la optimización
the máquinas térmicas. Es decir, buscamos protocolos de control perdiódico,
efectuados con fluidos de trabajo cuánticos, que maximizen cantidades de in-
terés basadas en la potencia y la eficiencia. Realizando pequeñas suposiciones
relativas al régimen dinámico, por ejemplo de manipulación lenta o rápida
(slow-driving, fast-driving), logramos construir y caracterizar protocolos óp-
timos válidos para una amplia gama de máquinas térmicas cuánticas (y clási-
cas).
En segundo lugar, estudiamos como diseñar sondas térmicas que optimizen la
precisión en la estimación de la temperatura, cuando son puestas en contacto
con un baño térmico. Las configuraciones óptimas resultantes son sencillas y
realizables físicamente, y muestran un crecimiento escalado de la sensibilidad
óptima de tipo Heisenberg.

En el contexto de Teoría de la Información, inicialmente estudiamos cómo
caracterizar los efectos de memoria (reflujos de información) en la dinámica de
sistemas cuánticos abiertos, cómo detectarlos y explotarlos operacionalmente.
Además, en el campo de la no-localidad, estudiamos relajamientos y gener-
alizaciones del escenario canónico de Bell, que nos permiten acercarnos a la
realización de experimentos de no-localidad con esquemas sencillos de óp-
tica cuántica. En particular, considerando escenarios de no-localidad en re-
des cuánticas, logramos diseñar un experimento que requiere solamente el-
ementos de óptica pasiva y estados entrelazados de fotones individuales, en
el que es posible certificar no-localidad sin utilizar inputs aleatorios en las
medidas. Asimismo, una generalización diferente consiste en permitir inputs
cuánticos de confianza en un experimento de Bell. Esto permite certificar la
no-localidad de todos los estados entrelazados, sin necesidad de confiar en el
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aparato de medida. Estudiamos este marco independiente del aparato de me-
dida (measurement-device-independent) para diseñar protocolos sencillos de
detección de entrelazamiento cuántico, empleando estados de variable con-
tinua.

Los resultados de la tesis son relevantes tanto desde el punto de vista teórico,
así como para la realización eficiente de las tareas operacionales analizadas.
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Motivation

Physics can be seen as the human endeavour of understanding how nature
works, the analysis and comprehension of natural phenomena that are not yet
explained. At the same time, physics is also the search of novel, unexplored
circumstances and behaviours of physical systems that might, among other
things, be exploited to perform useful tasks. This tension between the ex-
planatory and exploratory/utilitarian view of physics has often led to progress
in both.
On one side, it is clear that theoretical breakthroughs in physics eventually
lead to enormous technological advances: from geometrical optics, which was
born in ancient Greece and brought us tools to explore nature at different
scales, to nuclear physics, thanks to which it was possible to develop most of
the medical appliances one can find in hospitals nowadays, it is evident how
innovation (and consequently society as a whole) benefits from the under-
standing of physics. So much so that when Faraday in 1831 was questioned, by
the British chancellor of the state treasury, about the usefulness of the newly
discovered “electricity”, he famously replied “I know not, but I wager that one
day your government will tax it”.
At the same time, the history of science abounds of instances inwhich the need
of exploitation of a resource, or simply some pragmatic operational question,
drove to big developments in our knowledge reality. Most famously, Ther-
modynamics was born at the beginning of the XIX century out of engineers
trying to boost the performance of the early steam engines. This led to active
research that decades later revolutionized the statistical description of micro-
scopic physics. Another example is the modern field of Informatics, which
flourished after the work of Turing, as he laid the groundwork of the field by
answering the practical question of what it means, for generic functions, to be
computable.

In this balance of foundations vs applications, the broadly-defined field ofQuan-
tum Information Sciences can be seen as paradigmatic: Quantum Mechanics
was first born and fully developed in the first half of the XX century. This the-
ory revolutionized our understanding of nature at the microscopic scale and
led to enormous technological progress that we still see today in e.g. material
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science and nanotechnology. Throughout time, in the second half of the XX
century scientists started recognising the potential of applying the mathemat-
ical structure of QuantumMechanics as a new tool in Information Theory, and
explore its consequences: first, in the 60s a big push to the field was given by
the study of pragmatic tasks in communication theory with quantum states,
until in the 80-90s researchers studying cryptography and generalizing Shan-
non information theory to the field of quantum mechanics gave rise to the
modern field of Quantum Information Theory, which has now been thriving
for more than 30 years.
To put it shortly, Quantum Information was born out of the theoretical study
of communication tasks, but gave important contributions to our understand-
ing of the foundations of quantum mechanics, thermodynamics, and led to
progress in the field of metrology, computer science and many others.

Figure 1: Artistic representation of the general motif of this thesis. A user that is
able to manipulate a quantum resource, might use it for different operational tasks.
According to each task, we study its optimization, in terms of efficiency, practicality,
or other desiderata (see Table 1). Image generated using the DALL·E artificial intelli-
gence system, by OpenAI.

The above discussion introduces the leitmotif of this thesis. We study dif-
ferent operational tasks a user might perform exploiting physical (quantum)
resources (Fig. 1), in the area of Quantum Information Sciences. For each task,
different desideratamight be listed. Accordingly, we study schemes to achieve
or optimise such objectives. It is clear that each desideratum strongly depends,
in general, on the task at hand (a train should be fast, a telescope should be

https://openai.com
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precise). In Table 1 we provide a summary-list of tasks and optimization ob-
jectives for the works of this thesis, as well as the dedicated Chapters.
Along this journey we study geometrical features of the physical objects and
operational protocols involved. Therefore the title, “Optimization and Geome-
try for Quantum Information tasks”. In many cases, geometry helps in simpli-
fying optimization that would otherwise require complex numerical routines
and/or control theory (see Chapters 1,2). In other cases, simple geometrical
patterns arise from unconstrained optimizations (Chap.s 1,2,3), and demon-
strate being efficient in practical implementations of tasks (Chap.s 3,5). In
general, geometry underlies some of the interesting properties of the set of
physical states and physical dynamics (Chap. 4), and helps quantifying oper-
ational bounds for practical tasks, such as in metrology (Chap.s 3,4,6).
We divide the results of this thesis in two broad fields of (quantum) physics,
namely, Thermodynamics and Information Theory, to which are dedicated
Part I and Part II respectively. Table 1 represents a schematic list of the tasks
we treated and the considered desiderata. In the following Chapter we provide
a rundown of the results included in this thesis and their context.

TASKS DESIDERATA CHAP.

Driving a thermal machine Maximising Power–Efficieny
trade-offs

1-2

Measuring temperature Engineering the most precise
thermometer

3

Characterizing Markovian and
non-Markovian dynamics

Identify the geometry of infor-
mation backflows and their op-
erational meaning

4

Experiments of nonlocality in
networks

Using only passive optics and
single-photon states

5

Semi-Device-Independent certi-
fications of entanglement and
other quantum properties

Finding experimentally-friendly
proposals for continuous-
variable optical systems

6

Table 1: The different operational tasks and optimizations that we studied in this
thesis. Chapters 1, 2 and 3 form Part I, dedicated to tasks in Termodynamics. Chapters
4, 5 and 6 form Part II, dedicated to tasks in Information Theory. For an overview of
our results go to next page.
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Overview of thesis results

Here we briefly summarize the context and main results forming part of this
thesis. We follow the same order of the main Chapters in Parts I and II (see
also Table 1). Each Chapter represents a different line of research, a separate
task to optimize or analyse geometrically. The results within each Chapter are
based on single or multiple papers that we authored.

Part I – Tasks in Thermodynamics: geometry and op-
timization

Chapters 1-2: Geometric optimization of driven engines.

Context. Quantum Thermodynamics [13,14] was born and rapidly grew in
the last decades. Fuelled by high experimental control of quantum systems
and engineering at microscopic scales – it is now possible to fabricate de-
vices which behave as qubits and other few-level quantum systems, and cou-
ple them to thermal baths [15–19] – one of the central goals of physicists is to
push the limits of conventional thermodynamics, and the extension of stan-
dard models and cycles to include quantum effects and small ensemble sizes.
Beyond the drive to clarify fundamental physical issues, these models may
also turn out to be relevant from a more practical point of view, for example
in nanotechnology and biology. Therefore the development and implementa-
tion of thermodynamic processes in few-level quantum systems is currently
a very active area of research [20]. As a straightforward consequence, large
theoretical efforts are devoted to the characterization and optimization at the
microscopic scale machines, which is typically translated to maximising the
efficiency or the power of the machine, or any trade-off between them. Such
problem is however in general hard, as any objective function becomes, for
thermal cycles, a functional of the chosen protocol λ⃗(t) that is performed on
the driving parameters λi of the machine. This means that finding optimal so-
lutions, even for simple thermal machines, in general requires variational cal-
culus and optimal control techniques [21,22] (recently, reinforcement learning
techniques have been also used to tackle this problem [12, 23]), and (partial)
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solutions are known only in specific simple systems [24], or for simple dynam-
ics, such as overdamped [25, 26] and underdamped [27, 28] brownian motion
in elementary potentials.

Our contributions (Chap. 1). There is, however, a vast class of thermal
machines on which it is possible to obtain pseudo-universal results for what
concerns power/efficiency tradeoffs, that is the regime of low-dissipation ther-
mal machines. These are machines that work close to equilibrium, typically
because the driving of the control parameters is slow when compared to the
thermalization scale (slow-driving regime). As a consequence, their thermo-
dynamics can be expanded around equilibrium in a perturbation theory [29],
where the first order corrections correspond to energetic losses (or irreversible
entropy production) that are inversely proportional to the duration of the pro-
tocol, i.e. to 1

τ . Such losses can in turn be characterized via a metric on the
thermodynamic manifold, and its induced distance, called the thermodynamic
length [30–35]. Differential geometry therefore offers a powerful framework
for optimising and characterising finite-time thermodynamic processes, both
classical and quantum.
In Ref. [2] we reviewed and connected different frameworks where the ther-
modynamic length emerges in the quantum regime: closed quantum systems
driven adiabatically, time-dependent Lindblad master equations, and discrete
processes. Following this, we established general principles and bounds for the
optimization of thermodynamic processes in the slow-driving regime. These
include constant speed of control variation according to the thermodynamic
metric, absence of quantum coherence generation during thermodynamic pro-
tocols, and optimality of small cycles around the point of maximal ratio be-
tween heat capacity and relaxation time for Carnot engines. In particular
we derived, in Ref. [1] a simple bound that identifies the maximum power
at any given efficiency for Carnot-like engines. Such bound can be efficiently
computed via the maximization of a scalar function for any working fluid,
and is governed by the behaviour of the heat capacity and the thermalization
timescales of the system. Moreover, it is possible to identify the optimal cycles
that saturate the bound, consisting in small cycles around the point in which
the above-mentioned scalar is maximal. These are general results which can
be employed for a variety of settings and applications, such as benchmark-
ing of thermal machines, the comparison of interacting vs. non-interacting
working fluids, or the study of non-Markovian effects on the engine perfor-
mance. Moreover, we found that most of our results can be applied to classical
macroscopic thermal machines, as they do not depend on the specific quantum
thermodynamics setting.
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Finally, in Ref. [6], we studied a more general regime of low-dissipation, that is
the case in which the thermal machine is slightly out of equilibrium not only
due to the finite-time driving, but also because it is in contact with different
thermal baths at different temperatures simultaneously. For the dissipation to
be small in such case, besides the slow-driving, the thermal bias∆T between
the different reservoirs needs to be small. A linear-response expansion can
then be performed in∆T as well as 1

τ (cf. Sec. 1.4). Again, a geometric frame-
work arises in this context, and the behaviour of the thermal machine can be
characterized in terms of a thermal geometric tensor [36], which includes the
thermodynamic length metric within. Applying such geometric framework to
the maximisation of power and efficiency in a quantum thermal machine, in
Ref. [6] we found that such problem, both for the heat engine and refrigera-
tor operational modes, is reduced to an isoperimetric problem with nontrivial
underlying metrics and curvature. This corresponds to the maximization of
the ratio between the area enclosed by a closed curve and its corresponding
length. Our framework connects thermodynamic optimization to a funda-
mental problem of geometry, and allows for practical numerical optimization
of the driving cycles. We illustrated this procedure in a qubit coupled to two
reservoirs, operating both as a thermal engines and as a refrigerator.

Our contributions (Chap. 2). Additionally, in Ref. [4], we studied a dy-
namical regime which is opposite to slow-driving. In fact, recent evidence [24,
37, 38] shows that, when focusing only on the power output of thermal ma-
chines, cycles in which the modulation of the driving parameters is performed
infinitely fast, are optimal. This regime is dubbed fast-driving regime. Con-
trary to the slow-driving regime, in fast-driving theworking fluid is constantly
far from equilibrium. At the same time, the dynamics can nevertheless be sim-
plified, as the state of the working fluid tends to a "steady state" that does not
have time to relax due to the short timescale of the driving.
For these reasons, in [4] we studied maximization of the "generalized power"
of arbitrary periodically driven thermal machines. Within the fast-driving as-
sumption, we derived the optimal class of cycles that universally maximize
the extracted power of heat engines, the cooling power of refrigerators, and in
general any linear combination of the heat currents. We denoted these optimal
solutions as “generalized Otto cycles” since they share the basic structure with
the standard Otto cycle, while being characterized, in general, by a greater
number of (fast) strokes. We bounded this number in terms of the dimension
of the Hilbert space of the system used as working fluid. As in the case of slow-
driving (Chap. 1), the generality of these results allows for a widespread range
of applications, such as reducing the computational complexity for numerical
approaches, or obtaining the explicit form of the optimal protocols when the
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system-baths interactions are characterized by a single thermalization scale.
Additionally, in [4] we illustrated our general results studying paradigmatic
models such as a qutrit-based heat engines, as well as comparing simple mod-
els of interacting and non-interacting working fluids used as engine and re-
frigerators, which show nontrivial diversities in behaviour.

Chapter 3: Thermal probes based on spin networks.

Context. Given a system at thermal equilibrium, one can define its thermal
sensitivity as the variation in the mean energy of such a system per tempera-
ture change unit. Such a figure of merit is also termed heat capacity C of the
system. The heat capacity is a fundamental thermodynamic property of phys-
ical systems: it has been proven proportional to the maximum power a system
can output in Carnot-like engines [1,39], and its critical behaviour is studied in
phase transitions. Moreover, C quantifies the maximum precision one can get
in estimating the temperature T via measuring the thermalized probe. That is,
given an estimator T̂ of the temperature, the well known Cramér-Rao bound,
specified to the case of temperature estimation [40, 41], bounds the precision
of any T̂ as ⟨(T̂−T )2⟩

T 2 ≥ (ν C)−1, where ν is the number of i.i.d. repetitions
of the experiment and C the heat capacity of the thermal probe. Moreover
the bound can be saturated by measuring the energy of the probe. The best
thermometer, according to the above scenario, is therefore a probe with maxi-
mum heat capacity. Assuming only the (finite) Hilbert space dimension of the
thermal probe, the spectrum of the theoretical system achieving maximum
C has already been worked out in [42], albeit assuming a fully controllable
Hamiltonian spectrum, without physical constraints. The resulting optimal
spectrum consist in an effective two-level system, with a single ground state
and an exponential degeneracy of the excited level.

Our contributions. Though the energy spectrum of an optimal tempera-
ture probe has been derived theoretically in [42], it is unclear if any physical
probe can exhibit such thermal sensitivity. In particular the maximum heat ca-
pacity C found in [42] shows a "Heisenberg-like" scaling, proportional to N2

when the probe is assumed to be formed byN constituents. With this pream-
ble, in Ref. [8] we aimed at answeringwhether such optimal probes can be built
on physical grounds, specifically with interacting constituents having only (i)
2-body interactions, as well as (ii) short-ranged. Surprisingly, we answered
both questions affirmatively. To tackle the problem, we chose as a platform
a generic system of spins, such as those currently programmable in quantum
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annealers 1, whose thermodynamics is starting to be studied recently [43–45],
motivated by the flexible design and high degree of control such devices. We
maximized the heat capacity of thermal probes based on standard spin Hamil-
tonians containing local magnetic field terms and 2-spins interactions. The
models emerging from such optimisation show a simple architecture of the
interactions, which can be embedded in currently available annealers. Their
resulting maximal value of C is mathematically smaller than the theoretical
bound, which can nevertheless be approximated asymptotically well, achiev-
ing the desired Heisenberg-like scaling. Our work paves the way to the physi-
cal realisation of such ultra-sensitive thermometers in spin systems and other
physical platforms. Moreover, from the point of view of spectral engineering,
the resulting optimal probes show an exponential degeneracy of the first ex-
cited level. This kind of spectrum can have application in other fields, such
as protein folding modelling [46, 47], adiabatic Grover’s search [48, 49], and
energy based boolean computation [50], and thermal machines optimization
(cf. Chapters 1 and 2).

Part II – Tasks in Information Theory: geometry and
optical proposals

Chapter 4: Markovian evolutions and Fisher Information.

Context. The study of open systems dynamics is of paramount importance
in physics, as the postulate of unitary evolution is lost whenever a description
cut is imposed between the system of interest and the environment it interacts
with. A non-isolated physical system typically loses information to its envi-
ronment [51], and when such loss is irreversible the evolution is said to be
Markovian, or memoryless. Non-Markovian (or memory) effects are of great
relevance in information theory and in the study of open systems dynamics in
general. Markovianity is studied by monitoring how information quantifiers
evolve in time, that is, observing if such quantifiers monotonously decrease
or if temporary information backflows happen. One of the canonical quanti-
fiers studied in the community is the distance between states, particularly the
trace distance, due to the fact that it quantifies the 1-shot distinguishability
between states [52], and has the desired monotone property under Markovian
evolutions. That is, in Markovian evolutions, the trace distance between any

1See for example the D-Wave annealers.

https://www.dwavesys.com/
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two states decreases monotonically, and a local increase is seen as a back-
flow of distinguishability, and therefore, of information. Most of the studies
in the community therefore focus on such framework when studying (quan-
tum) non-Markovianity [53, 54]. At the same time, the use of trace distance
has its own mathematical and operational issues. For example, such distance
is not a smooth function of its arguments (it induces a Banach space but not an
Hilbert space), and in general needs the use of ancillas to witness all possible
non-Markovian dynamics [55].

Our contributions. For these reasons, in Ref. [7] we looked for a notion
of distance that is suited to characterize completely the (non-)Markovianity
of a physical evolution while having well-behaved mathematical properties
and task-operational meaning. We showed that the Fisher information dis-
tance [56] emerges as the natural candidate in this context. Such distance
is well-known to have numerous mathematical properties and operational
meanings in metrology, statistical analysis and communication theory. In
our work [7] we fully analysed the relation between its contractivity proper-
ties and Markovianity. We proved, for classical dynamics, that Markovianity,
identified as stochastic-divisibility of the evolution maps, is equivalent to the
monotonous contraction of the Fisher metric at all points of the set of states,
by extending the thesis of a continuous-time version of the famous Chentsov’s
Theorem [57]. At the same time, we proved that operational witnesses of non-
Markovianity based on the dilation of the Fisher distance cannot, in general,
detect all non-Markovian evolutions, although this can be fixed when specific
physical postprocessing is applied to the dynamics. Finally, we showed for
the first time that non-Markovian dilations of Fisher distance between states
at any time correspond to backflow of information about the initial state of the
dynamics at time t = 0, via Bayesian retrodiction. All the mentioned results
can be lifted to the case of quantum dynamics by considering the standard
CP-divisibility framework. Our results corroborate the idea that the Fisher
Information metric is the natural object whose contractivity properties char-
acterizememory effects in open system dynamics, both from themathematical
and operational point of view.

Chapter 5: Network nonlocality with passive optics.

Context. The notion of nonlocality was formalized by Bell [58] in the 60s
for a bipartite scenario involving a central source shared by two parties. His
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work showed that a local hidden variable theory cannot describe reality ac-
cording to quantum physics. Nonlocality later became a subfield of quantum
information theory on its own [59], both for foundational reasons and appli-
cations in quantum technologies. Besides straightforward generalizations of
the standard Bell scenario to cases considering multiple parties, nonlocality
was recently generalized to more complex network scenarios, involving multi-
ple sources distributed according to a given network topology. Such scenarios
show nontrivial novel theoretical properties and are subject of intense stud-
ies in recent years [60]. We use this framework to study the nonlocality of a
single-photon maximally entangled state, which is obtained when a photon
impinges on a balanced beamsplitter, resulting in a superposition of the pho-
ton being sent in one direction or an other, |ψ⟩ = |10⟩+|01⟩√

2
. This is arguably

one of the simplest entangled states that can be created in the laboratory, and
its nonlocal properties have been intensively debated in the quantum optics
and foundations communities, as |ψ⟩ is formally entangled, but its Bell non-
locality cannot be shown without recurring to the transfer of such state to
different degrees of freedom, or additional photons in the measurement ap-
paratus. That is, a standard bipartite Bell test made only of passive optical
elements cannot reveal the nonlocality of such state.

Our contributions. In Ref. [5], we show that the nonlocality of single-
photon entangled states can nevertheless be revealed in a quantum network,
providing at the same time the first proposal of network nonlocality without
measurement inputs [61, 62]. The considered setup only requires passive op-
tical elements, namely beamsplitters, phase shifters and photodetectors, and
involves a single measurement per observer. In our protocol, three single-
photon entangled states are distributed in a triangular network (i.e. three par-
ties {A,B,C} share three copies of |ψ⟩, one per couple), introducing indeter-
minacy in the photons’ paths and creating nonlocal correlations without the
need for measurements choices. We discuss a concrete experimental realisa-
tion and provide numerical evidence that the nonlocality of such proposal has
(small) noise-tolerance to natural noises that can arise in its implementation,
through a machine learning analysis. Our results show that single-photon en-
tanglement may constitute a promising solution to generate genuine network-
nonlocal correlations useful for Bell-based quantum information protocols, as
the optical architecture involved is minimal and no measurement choice is
needed.
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Chapter 6: Measurement-device-independent certification of
quantum properties.

Context. Devising practical methods to detect entanglement and other non-
classical properties in quantum systems is one of the cornerstones of quantum
information science. To strengthen the reliability of the detection, it is essen-
tial (e.g. in adversarial scenarios), to design methods requiring the minimum
level of characterization of the devices used in the implementation. The nonlo-
cal properties of quantummechanics offer the strongest possible certifications
from this point of view (that is, with minimal assumptions). The violation
of Bell inequalities for example, can be seen as a certification of entangle-
ment that only uses the statistics provided by the experiment, without mak-
ing any assumptions on the real implementation. This is the so-called device-
independent (DI) scenario [59]. Violating Bell inequalities is however exper-
imentally challenging: for example, widely used entangled Gaussian states
of light cannot violate Bell inequalities with standard phase-space measure-
ments, as they have a local hidden variables model represented by their (posi-
tive) Wigner distribution [63]. However, the situation changes if one allows a
minimal level of trust on the preparation devices that are used. In particular,
there exist methods that do not require any characterization of the measure-
ment implemented for entanglement detection, known asmeasurement device
independent (MDI) [64,65]. These results have been anyway obtained only for
finite-dimensional systems and cannot be used when considering infinitely di-
mensional quantum states, e.g. of light.

Our contributions. In Ref. [3] we studied theMDI detection of continuous-
variable (CV) entanglement. We first generalised, to the continuous variable
regime, the seminal results by Ref.s [64, 65], showing that all entangled states
can be detected in this scenario. Most importantly, we then found a practical
protocol that allows for the measurement-device-independent certification of
entanglement of all two-mode entangled Gaussian states. This protocol is fea-
sible with current technology as it makes only use of standard optical setups
such as coherent states and homodyne measurements.
Our works opens the path to the use of CV quantum systems for MDI tasks of
entanglement detection and beyond, such as channel certification (in the same
Chapter 6 we discuss a proposal for CV quantum memory verification [66]),
randomness generation, secure communication, and certification of other quan-
tum properties. It remains an open problem that of characterising the largest
set of properties that can be certified by MDI protocols. Moreover the MDI
scenario can be seen as a simple quantum user - quantum provider scenario in
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which the (honest) user is hardware-limited compared to the remote (and un-
trusted) provider of quantum services. This scenario is therefore interesting
for near-term quantum technologies.
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Notation and conventions

Here we list recurrent notation choices for this manuscript, as well as conven-
tional terms and acronyms widely used in the literature.

Units 2

The Boltzmann constant, kB = 1.380649 · 10−23 J K−1, is set to 1.
The Planck constant, ℏ = 1.054571817... · 10−34 J s, is set to 1.

Acronyms
CPTP Completely Positive Trace-Preserving (linear map)
CV Continuous-variables
DI Device-Independent
d.o.f. degree of freedom
FTT Finite Time Thermodynamics
GAP Generalized Average Power
i.i.d. Independent and Identically Distributed (random variables)
PTP Positive Trace-Preserving (linear map)
MDI Measurement-Device-Independent
ML Machine Learning
n-M non-Markovian
POVM Positive-Operator Valued Measure
w.l.o.g. without loss of generality

2Taken from The NIST reference on Constants, Units, and Uncertainty based on CODATA
2018

https://physics.nist.gov/cuu/Constants/index.html
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Thermodynamics
ωβ or ωβ(H) The canonical thermal state given by e−βH

Tr[e−βH ]
.

U The mean internal energy of a system Tr[ρH].
dU = dQ+ dW The 1st law of Thermodynamics

(work is performed on the system).
S The Von Neumann entropy −Tr[ρ ln ρ].
F The free energy F = U − TS.
ηCarnot = 1− Tc

Th
The efficiency of an ideal Carnot cycle.

λ⃗t,
˙⃗
λt :=

d
dt λ⃗t Time-parametrization of a set of controls λi.

λ⃗(s) := λ⃗sτ , 0 ≤ s ≤ 1 Decoupling the shape λ⃗(s) of the trajectory,
λ⃗′ := ∂

∂s λ⃗ = τ
˙⃗
λ from its duration τ .

Information Theory
A,B,C,E Alice, Bob, Charlie, Eve.
Correlation The (conditional) probability distribution among correlated

parties p(a1, . . . , an|x1, . . . , xn).
L The local set of correlations.
Q The quantum set of correlations.
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Part I

Tasks in Thermodynamics:
geometry and optimization
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This first part of the thesis is dedicated to the mathematical analysis and op-
timization of operational tasks in Thermodynamics. More precisely, we con-
sider two of the fundamental tasks related to the interaction of externally con-
trolled systems with thermal environments, that are i) finding the best cycles
for thermal machines (achieving e.g. high power, high efficiency), and ii) de-
signing the most precise thermometers for temperature estimation.
The framework we will move in is that of open quantum systems interact-
ing with large thermal environments at equilibrium [51]. In this context, the
field of Quantum Thermodynamics [13, 14] has developed at a high rate in
the last three decades, pushed both by the technological goal of manipulat-
ing the energy flow at the nanoscale [67], as well as understanding the very
foundations and emergence of thermodynamic behaviour, from the underly-
ing microscopic quantum dynamics [68]. Enormous progress has been made
on the experimental side, where the thermodynamics of small quantum sys-
tems has now been tested on several platforms [15–19, 69–71]. As a conse-
quence, in recent years Quantum Thermodynamics has flourished thanks to
such technological possibilities, as well as the push of new theoretical tools,
and different frameworks that linked thermodynamics to (quantum) Informa-
tion Theory [72, 73], resource theories [74], and others.

In Chapters 1 and 2 we study the problem of thermal machines optimization.
We consider quantum working fluids that can be externally controlled and put
in contact with different thermal sources. Depending on the specific control,
which is typically expressed in cycles, this constitute a thermal machine which
can be used in different operating modes. For example, a thermal engine ex-
tracts work from the interaction with thermal reservoirs at different temper-
atures, while a refrigerator consumes external work to extract heat from a
given thermal source. Optimizing the performance of these machines consists
in identifying the cycle that maximizes one or more desiderata. In particular,
the most common choices are efficiency and power, whose exact definition
can change based on the specific thermal machine under consideration. The
problem of maximising the efficiency alone is easy to solve, and typically cor-
responds to perform only transformations at equilibrium, which are reversible
and saturate the second law of thermodynamics; however such goal can only
be achieved for infinitely slow transformations, of little usefulness from a prac-
tical point of view. Maximising the power (or any trade-off between power and
efficiency) of a given thermal machine is instead much more complex, and no
universal solutions are known. However, we study regimes in which general
results can be obtained for large classes of machines.
In Chap. 1we consider the regime inwhich the losses are small, (low-dissipation
regime [75]). For machines that operate by coupling sequentially to different
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thermal baths, this means that the transformations are performed in a long
time τ (although not infinite), and the dissipation is proportional to 1

τ , while
the working fluid is always close to equilibrium. In such regime it is pos-
sible to define, on the underlying manifold of thermal equilibrium states, a
metric that characterizes the losses via its integrated length, called thermody-
namic length (see [35] and references therein). Using these geometric tools
in Ref. [1] we were able to find the full solution to the problem of optimal
control in Carnot-like engines, while in [2] we reviewed general principles of
optimization for generic low-dissipation thermal machines. Finally, in Ref. [6]
we studied the case which includes an additional mechanism of dissipation,
given by heat leaks between thermal reservoirs. To keep losses small in this
case, not only τ needs to be large, but also the thermal bias ∆T between the
heat sources needs to be small. It has been found [36] that in said regime a
thermodynamic tensor (which includes and generalizes the thermodynamic
length metric), characterizes all energy fluxes and dissipation. By using such
geometric framework, in [6] we optimized the power and efficiency of a sim-
ple thermal machine, and found that the problem of performance optimization
gets mapped to an isoperimetric problem, i.e. the problem of maximising the
ratio between area and length, on a given non-trivial geometric manifold.
In Chap. 2 we study the opposite approximation, that of fast-driving, which
is useful to identify maximum-power protocols of certain classes of thermal
machines. Even though in such regime the working fluid is constantly far
from equilibrium, a different perturbative expansion can be applied and used
to find general solutions for maximum power protocols, as we did in Ref. [4].
As it turns out, the general characterization of such max-power protocols can
be constrained based on the geometry of the dynamical space of the working
fluid, and its Hilbert space dimension. The resulting optimal protocols can be
described in terms of a finite (bounded) number of scalar variables.

In Chapter 3 we move to the characteristic problem of thermometry [40, 41].
The goal of any thermometer is clear: estimating the temperature of a given
thermal sample with the best possible precision. The most common choice
to frame this is to minimize the mean square error between the estimated
temperature and the "true" temperature of the sample. Theoretical tools of
metrology allow to bound mathematically such maximal precision via the fa-
mous Cramér-Rao inequalities [76]. In particular, in the context of equilibrium
thermometry, minimizing the estimate’s error corresponds to maximising the
heat capacity of the thermometer that is taken to equilibrate with the thermal
sample, and later measured.
For this reason, in Ref. [8] we studied how to design a thermal probe that
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has maximum heat capacity. In fact, albeit the energy spectrum of an op-
timal probe had already been derived theoretically by Correa et al. [42], no
specific schematics for physical systems to exhibit such thermal sensitivity
was provided. We therefore approached the same problem with the additional
constrain of considering a realistic physical thermometer with a high degree
of control. We chose in particular a probe made of interacting spins, such as
those programmable in available quantum annealers, and considered the prob-
lem of maximising the heat capacity based on the available local magnetic
fields and 2-body interactions. We therefore found the best configurations
of interactions for such probes, showing that they can have a thermometric
performance arbitrarily close to the mathematical maximal bound. Moreover,
such optimal configurations show a simple geometrical structure.
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Chapter 1

Optimising slowly-driven
engines through geometry

This chapter is based on Ref.s [1, 2, 6]:
“ P. Abiuso and M. Perarnau-Llobet, Optimal cycles for low-dissipation heat engines, Phys.
Rev. Lett. 124, 110606 (2020)”
“ P. Abiuso, H. J. D. Miller, M. Perarnau-Llobet and M. Scandi, Geometric optimisation of
quantum thermodynamic processes, Entropy 22(10) (2020) ”
“ P. Terrén Alonso, P. Abiuso, M. Perarnau-Llobet and L. Arrachea, Geometric optimization
of nonequilibrium adiabatic thermal machines and implementation in a qubit system, PRX
Quantum 3, 010326 (2022)”

1.1 Background: driven thermal machines

In this section we review some basic facts about quantum driven thermal ma-
chines, setting the notation and the tools that we shall later employ to anal-
yse optimal control protocols. Notice that a different class of thermal ma-
chines is that of steady-state engines [77] (or, more in general, autonomous
engines [78, 79]), which do not require an external control in order to func-
tion; their optimisation can therefore be framed as a function of the internal
parameters and couplings of the thermal machine itself. Quite differently, the
behaviour of driven thermal machine depends on a set of controls λ⃗t that are
externally modulated in time, which makes the problem more challenging, as
we shall see below.
The general framework we consider is that depicted in Fig. 1.1. A quantum
working fluid S is described by its state ρ and its HamiltonianH , which can be
controlled externally via some parameters λ⃗. Moreover, a set of large thermal
reservoirs can be coupled to S , sequentially (or more than one at a time) in
any order, while λ⃗ is varied. The contact of each of these reservoirs with S
will be described in the standard weak-coupling/Markov approximations [51],
i.e. by means of first order master equations. That is, to each bath at inverse
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Figure 1.1: A generic quantum thermal machine is described by a system with den-
sity matrix ρ, an HamiltonianH(λ⃗) that is controlled in time via external parameters
λ⃗t, and the possibility of being couple to different thermal baths ad different temper-
atures Ti = 1/βi.

.

temperature βi = 1/Ti, is associated a LindbladianLi having, as a unique null
eigenstate, the Gibbs state,

Li[ωβi
] = 0 , ωβi

:=
e−βiH

Tr[e−βiH ]
. (1.1)

This ensures thermodynamic consistency, i.e. that when S is attached to only
one of the thermal baths, its state ρ will relax to the corresponding ωβi

.

1.1.1 The first and second law of thermodynamics in the weak
coupling regime

The concept of internal energy U of a system has its natural extension to
the quantum regime, that is, for a given state ρ with Hamiltonian H , we can
identify U with its mean value,

U = Tr[ρH] . (1.2)

The microscopic definition of work and heat is more troubled, and still de-
bated today [73]. We will however use the most common definition that is
canonically used in the context of open quantum systems dynamics [13,80,81],
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which identifies work as the energy variation due to the external change of
the Hamiltonian, while heat as the energy variation that is associated to the
change of ρ,

dW := Tr[ρ dH] , dQ := Tr[dρH] , (1.3)

such that

dU = dW + dQ . (1.4)

In order to illustrate the general formalism, we consider here a system whose
Hamiltonian Ht can be externally driven and which is weakly coupled to
a thermal bath. Without loss of generality, we will decompose the system
Hamiltonian asHt =

∑
i λ

i
tXi, where

{
λit
}
is a family of time dependent ex-

ternal parameters, and {Xi} are the corresponding observables. This means
that the average work performed on the system is given by:

W =

∫
γ
dW =

∫
γ
dt Tr[Ḣtρt] =

∫
γ
dt
∑
i

λ̇it Tr[Xiρt], (1.5)

where γ is the path in the parameters space, and ρt is the evolved system
density matrix at time t ∈ (0, τ). We know from equilibrium thermodynamics
that if the process is infinitely slow the system is always at equilibrium, that is
ρt ≃ ωt := ωβt(Ht). Consequently, the work is then given by the difference
of free energy at the endpoints of the transformation. Indeed, it is easy to see
that in this formalism one regains the usual quasistatic result:

Weq =

∫
γ
dt Tr[Ḣtωt] =

∫
γ
dt Ḟ = ∆F, (1.6)

where we used the definition of the free energy

F = U − TS , (1.7)

S being the Von Neumann entropy, S(ρ) ≡ −Tr[ρ ln ρ]. Similarly, for qua-
sistatic equilibrium transformations, one also has

Qeq = ∆U −Weq = ∆U −∆F = T∆S . (1.8)

The second law of thermodynamics, which asserts the irreversibility of gen-
eral (finite-time) processes can be expressed, equivalently, in several forms. In
particular it follows from Clausius theorem (at constant temperature) that for
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general processes one has

T∆S ≥ Q , or equivalently W ≥ ∆F . (1.9)

Given this basic introduction, it is then natural to define the dissipated work
as

Wdiss := (W −Weq) = (W −∆F ) ≥ 0 , (1.10)

in order to isolate the role of the dissipation arising from finite-time effects.

1.1.2 Quantum thermodynamic cycles

Similarly to standard classical thermodynamics, it is possible to describe cycles
in which a quantum working fluid in contact with thermal reservoirs is used,
e.g. as an engine, that is to extract energy from the thermal bias. We describe
the most common (and relevant to us) engine cycles in the following.

Carnot Cycle A Carnot Cycle is identified with a 4-steps process, that is
two isothermal strokes alternated with two isoentropic (adiabatic) strokes (cf.
Fig. 1.2). Consider a system with a controlled Hamiltonian H(λ⃗)t which can
be coupled independently to two reservoirs with temperature Th > Tc. In the
ideal quasistatic limit, the operations are performed slowly enough to allow
the system to be in thermal equilibrium ρt = ωβt(H(λ⃗t)) at every instant.
The 4 steps are:

1. while being coupled to the cold reservoir, the Hamiltonian is modified
continuously from H(X) to H(Y ), such that Tr[ω̇βcH] is negative, in
order for heat to be released to the cold source.

2. with the system isolated from the reservoirs, a quench is performed tak-
ing H(Y ) → H(Y ) Th

Tc
.

3. while being coupled to the hot reservoir, the Hamiltonian is modified
continuously from H(Y ) Th

Tc
to H(X) Th

Tc
.

4. again isolating the system a quench is performed to restoreH(X) Th
Tc

→
H(X).

Note the factors Th
Tc

are chosen in order for the state to be continuous during
the quenches. In fact the thermal state uniquely depends on βH (cf. (1.1)).
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Figure 1.2: Schematics of a Quantum Carnot cycle. Two isothermal strokes in which
the state is at equilibrium ρ = ωβi

(1.1) are alternated with two quenches of the
Hamiltonian, in which the state ρ is does not change.

.

Otto cycle Similarly, an Otto cycle is given by two adiabatic strokes alter-
nating with two thermalizing strokes (classically isochores) in which the con-
trol Hamiltonian is fixed. See Fig 1.3. Therefore the steps of the cycle are:

1. Starting from an initial state ρH keeping fixed the Hamiltonian HC the
system is allowed to thermalize in contact with the cold reservoir, reach-
ing the state ρc ≡ ωβc(Hc).

2. After isolating the system from the bath, a quench is performed taking
Hc → Hh.

3. While the gap is fixed, the system is allowed to thermalize in contact
with the hot reservoir, reaching ρh ≡ ωβh

(Hh).

4. A final quench restores Hh → Hc.

Notice that, unless considering infinitesimal transformations where βhHh ∼
βcHc , it is clear that at variance with the Carnot cycle, in the Otto cycle the
working medium S is always in an out-of-equilibrium state.
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Figure 1.3: Schematics of a Quantum Otto cycle. In this case, two quenches of the
Hamiltonian are alternated with thermalizing strokes in which the Hamiltonian is
kept constant.

.

1.1.3 Optimisation of a thermalmachine: what does thatmean?

Before passing to the main treatment and results of this Chapter, it is useful
to remark what is intended as optimisation of a thermodynamic cycle. Dif-
ferent thermal machines can be used in different operating modes. The most
typical is the engine mode, in which the controls are cycled in order to extract
work from thermal sources at different temperatures 1. However other modes
are possible such as refrigerators, accelerators, etc. [2, 4]. We will refer to the
engine mode for clarity of exposition. Optimisation of control in engines typ-
ically consists in maximising a given objective function that results from the
cycling operation of the system. The most typical objectives are power and
efficiency. These are defined, for an engine, as

P =
−W
τ

, η =
−W
Qh

. (1.11)

1Both the Carnot cycle and Otto cycle are engines, when operated in the order of steps
described in the text in Sec. 1.1.2. Similarly, by inverting the cycles, they can be used as refrig-
erators extracting heat from the reservoir at smaller temperature Tc.
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that is, power is the amount of output work per cycle, divided by the duration
of the cycle itself, while the efficiency is the ratio between output work and
heat absorbed from the hot source. When considering the efficiency alone, it
follows from standard thermodynamics that the maximum efficiency is that
obtained from an equilibrium Carnot cycle 1.1.2

ηmax = ηCarnot := 1− Th
Tc

. (1.12)

This is a universal result that follows from the second law of thermodynam-
ics. The problem of power maximization is instead more complicated and
model-dependent. However, typically increasing the power decreases the effi-
ciency, while e.g. themaximum efficiency (1.12) is obtained in the infinite-time
limit, which implies the power is null. One could therefore desire to search
for hybrid figures of merit, in a trade-off aimed at not sacrificing completely
the power for the sake of efficiency, nor vice versa. In the context of multi-
objective optimization, the full characterization of such optimal solution is
given by the identification of the so called Pareto front of the machine. This
is defined by taking into account all possible values of the objectives (in our
case {η, P}) that the engine can achieve by different operating controls. The
Pareto front is then given by those values of {η, P} such that no other cycle,
on the same machine, can achieve both higher efficiency and higher power (cf.
Fig. 1.4). The cycles on such boundary are called Pareto-optimal cycles. For
standard machines, reconstructing the Pareto front is equivalent to finding the
curve ηmax(P ) of maximal efficiency at fixed power P (or viceversa).

Is that all about optimization? In all that follows, we will focus on P and
η and the associated Pareto front, as the typical desiderata from a thermal
machines are its output rate and its efficiency. At the same time, an addi-
tional important feature of a thermal machine is its reliability. In fact, both
power and efficiency are defined on the basis of average quantities. In prin-
ciple it is desirable that the machine also has small fluctuations in its out-
put. The problem of tradeoff between power, efficiency, and fluctuations is
more complex. In the context of steady-state machines, the thermodynamic-
uncertainty-relations (TURs [82–86]) partially answer this issue with pseudo-
universal bounds, which have been extended in specific cases to driven ther-
mal machines [87–90]. More in general a Pareto-front for the 3 quantities
{η, P,∆P} would be required. For this, we refer the reader to our work [12]
which is not included in this thesis.



34

Pareto front

Figure 1.4: Schematic representation of a Pareto front for a thermal engine. A cycle
that achieves values of {η, P} on the Pareto front is considered to be optimal, as it
is impossible to obtain at the same time higher power and higher efficiency. The full
optimization of a thermal machine consists in finding the Pareto-optimal cycles.

1.2 Background: Low-dissipation regime and the ther-
modynamic length

One of the reason of the success of equilibrium thermodynamics is its uni-
versality: the work performed on a system only depends on the values of the
controllable parameters at the endpoints of the transformation via the free en-
ergy difference (1.6), the maximum efficiency of an engine is indifferent to the
details of the baths (1.12), depending only on their temperature, and in gen-
eral all the quantities of interest are given by functions of state [91]. These
results are extremely strong, but their usefulness is hindered by the necessity
of performing all the protocols in infinite time, in order to ensure the equi-
librium of the system at all times. On the other hand, if one wants to study
arbitrary finite-time, fully out-of-equilibrium processes, the situation consid-
erably complicates and it is hard to believe there can be any universal results.
Noticeably, it was found a middle ground between the two situations above,
given by the case in which the protocol is performed in long but finite time,
which can be characterised by few geometrical quantities. The main ideas
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were introduced for classical systems in a series of seminal papers in the
80s by Weinhold and Andresen, Berry and Salamon, among others [30–33].
More recently, the field saw a revival following a series of papers initiated by
Crooks [29, 34, 35, 92], leading to several applications.
The first main ingredient of such low-dissipation regime is that of assuming
the dissipation produced in a finite-time transformation being proportional to
the inverse time duration. This can be expressed both in terms of irreversible
entropy production

∆Sirr =
σ

τ
≥ 0 , (1.13)

or of work dissipation, which perturbatively makes the second law (1.9) ex-
plicit, i.e.

W −∆F =
Tσ

τ
, or equivalently T∆S −Q =

Tσ

τ
. (1.14)

This low-dissipation assumption can be taken as empiric [75, 93] (as the first
correction term of a power-law expansion in terms of the speed of the pro-
tocol) if no information on the system–bath interaction is given, or it can be
justified and derived dynamically using perturbation theory. In Ref. [2] we
reviewed some of the approaches that can be used to describe the dynamics of
generic quantum working fluids and how to perform the perturbative expan-
sion around equilibrium. In particular, in Appendix A we provide a deriva-
tion which is based on the standard Markovian framework and Lindbladian
dynamics, together with the assumption of slow driving of the system under
control [29].
Independently on the dynamical scheme, this means that it is possible to ex-
pand Ẇdiss in terms of {λ̇it} around the quasistatic limit (λ̇it ≡ 0), and obtain:

Ẇdiss =
∑
ij

λ̇it

(
∂i∂j Ẇdiss

∣∣
λ̇t≡0

)
λ̇jt +O

(
||λ̇||3

)
, (1.15)

where the first derivative cancels since we are expanding around a minimum.
For the same reason, we know that the Hessian gij = β∂i∂j Ẇdiss

∣∣
λ̇t≡0

is

positive definite. From these considerations we see that the dissipated work
can be written as:

Wdiss =
1

β

∫
γ
dt
∑
ij

λ̇it (gij)tλ̇
j
t , (1.16)

up to higher order corrections. Linear response theory tells us that the matrix
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g depends smoothly on the thermal state ωt. Therefore, from now on, we will
use the abbreviation

g or gt or gλ to indicate g(ωβ(H(λ⃗t)) . (1.17)

Moreover, we can deduce that it is positive definite and symmetric, being the
Hessian of a function around its minimum. These are the defining properties
of a metric. This interpretation is particularly useful thanks to the following
fact. If one defines the length of γ as:

lγ =

∫
γ
dt
√∑

ij

λ̇it (gij)tλ̇
j
t , (1.18)

we have the Cauchy–Schwarz like expression

βWdiss ≥ l2γ/τ, (1.19)

which takes the name of “thermodynamic length inequality” [31]. Among the
curves connecting two endpoints, λ⃗0 and λ⃗τ , we call γ geodesic if it min-
imises the distance between the two points as measured by Equation (1.18).
A geodesic is also characterised by the property that it keeps the product∑

ij λ̇
i
t (gij)tλ̇

j
t constant along its path, implying that the Cauchy–Schwarz

inequality in Equation (1.19) is saturated if γ is a geodesic. This means that in
order to design minimal dissipating protocols in the slow driving regime for
fixed endpoints – a problem that in general would require an ad-hoc minimi-
sation procedure – it is sufficient to solve a system of differential equations,
i.e., the geodesic equations.

1.3 General traits and principles of low-dissipation
machines optimization

In Ref. [2], we derived and reviewed generic principles of optimisation for
finite-time thermal machines in the low-dissipation regime [31, 75]. We con-
sider a thermal machine made up of a (quantum) working substance and sev-
eral thermal baths at different temperatures. The level of control consists of n
experimental parameters λi (i = 1, . . . , n) of the machine that can be driven
(typically Hamiltonian parameters, as H =

∑
i λ

i
tXi), together with the pos-

sibility to put themachine in contact with one of the thermal baths. The n con-
trol parameters for a vector which is parametrised in time as λ⃗(s) ≡ λ⃗sτ with
s ∈ (0, 1)—note that this notation decouples the duration τ of each process
from its shape λ⃗(s). We assume in very general terms that the low-dissipation
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condition holds and it is described by an underlying thermodynamic metric,
as presented above in (1.16). That is, for an isothermal transformation at tem-
perature T = β−1, we rewrite Equation (1.16) as

∆Q = T
(
∆S − σ

τ

)
, (1.20)

σ =

∫ 1

0
ds λ⃗′T (s)g

λ⃗
λ⃗′(s) , (1.21)

which follows from identifyingWdiss =W−∆F = T∆S−∆Q = Tσ/τ and
by recalling λ⃗(s) ≡ λ⃗sτ , which has derivative λ⃗′ ≡ ∂

∂s λ⃗ = τ
˙⃗
λ. Notice that

in most of what follows, the exact form of g
λ⃗
does not significantly change

the results. In this sense, most of the derivations are common to any system
that has first-order losses described by some quadratic form, as in linear re-
sponse theory.
We consider a machine performing M transformations close to equilibrium
(in general with different baths), each described by some heat exchange and
some dissipation in the low-dissipation regime, with an output

∆Wout =

M∑
α

∆Qα =

M∑
α=1

Tα∆Sα − Tασα
τα

. (1.22)

The output being a sum of heat exchanges is guaranteed when considering
cycling machines, or when the output of interest is the heat extraction from
a subset of the sources (cf. Chap. 2, [4]). This framework thus includes a
variety of tasks: cooling, work extraction, Landauer erasure, Carnot cycles,
and generalised Carnot engines with multiple baths or finite-size baths. In
any such a process, three main features define the control over the machine,
and can therefore be optimized:

1. The speed of the trajectory: that is, the duration τ , which charac-
terises the average speed of the process, plus any rescaling of the in-
stantaneous velocity along the trajectory. This can be formalised as a
change of coordinates λ⃗(s) → λ⃗(s(s)) with s smooth monotonous and
s(0) = 0, s(1) = 1.

2. The path of the trajectory: i.e., the (ordered) set of points swept by λ⃗,
for fixed λ⃗(0) and λ⃗(1). This identifies a curve γ in Rn.

3. The extremal points of γ, or the “location” of the process in the control
space.



38

In the following, we elaborate on the above features and show how to optimise
them, in their application to thermodynamic processes. In particular, follow-
ing the above order, in Section 1.3.1 we optimize the time duration of each
transformation τi and show a principle of constant dissipation rate optimal-
ity; in Section 1.3.2 we discuss consequences of the considerations presented
in Section 1.2 when the experimental control is such to allow variations of the
curve γ defined by λ⃗(s); and in Section 1.3.3 we discuss the cases in which a
full optimisation can be carried out, so that all the degrees of freedom listed
above can be optimised.

1.3.1 Tuning the Speed: Optimality ofConstantDissipationRate

Here, we suppose initially that the only control available on the machine (1.22)
is the time tuning of each step τα. We wish to maximise the power output
P = ∆Wout/

∑
α τα for a given loss, or equivalently we fix the (maximum)

amount of dissipated work, ∑
α

Tασα
τα

≡Wdiss (1.23)

and maximize P . The power can be written as

P =
(
∑

α Tα∆Sα)−Wdiss∑
α′ τα′

, (1.24)

hence, maximising it is equivalent to minimising
∑

α τα with the constraint
(1.23). This can be stated as

Principle 0. Maximising the power at fixed dissipation is equivalent to
minimising the dissipation at given duration.

This remark is important as the main result of this subsection (the optimality
of constant thermodynamic speed, or dissipation rate) will thus be valid for all
machines performing tasks that are limited by the above trade-off. Examples
are: maximising the power, minimising the dissipation (or entropy produc-
tion) with fixed total time, or hybrid figures of merit combinations, such as
maximising the power with a fixed amount of total loss. For a discussion of
what machines maximise their outputs when the irreversible entropy produc-
tion is minimised see [94].
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The maximisation of (1.24) can be done differentiating w.r.t τα and using La-
grange multipliers, or directly with a Cauchy–Schwarz inequality

Wdiss

∑
α

τα =

(∑
α

Tασα
τα

)(∑
α

τα

)
≥

(∑
α

√
Tασα

)2

(1.25)

which is saturated when all Tασα/τ2α are equal, that is

τα =

√
Tασα(

∑
α′
√
Tα′σα′)

Wdiss
(1.26)

PWdiss
=
Wdiss(

∑
α Tα∆Sα)−W 2

diss

(
∑

α′
√
Tα′σα′)2

. (1.27)

Notice that the fact thatTασα/τ2α is the same ∀αmeans that the rate of dissipa-
tion is constant for each of theM steps of the protocol. In particular, when the
dissipation is described by an underlying thermodynamic metric (1.21), this
implies the optimality of constant thermodynamic velocity λ⃗′T g

λ⃗
λ⃗′ = const.,

which can be seen by dividing each transformation into infinitesimal steps,
i.e., expressing

Tα∆Sα − Tασα
τα

=

∫
γ(α)

TdS −
Tdλ⃗T g

λ⃗
dλ⃗

dτ (1.28)

and applying the above reasoning, which concludes that each of the infinites-
imal Tdλ⃗T g

λ⃗
dλ⃗

dτ2 must be equal. The “thermodynamic length inequality” (1.19)
( [31,33,95]) is indeed saturated when its integrand is constant, and coincides
with the continuous version of (1.25). These considerations can be summed
up saying that for the class of machines considered here

Principle 1. In optimal protocols, the speed of the control variation is constant
(as measured from the underlying thermodynamic metric), leading to a

constant entropy production rate.

The optimality of constant entropy production rate was already noted in the
first seminal papers [96] in the context of endoreversible engines, and ap-
peared in many works thereafter (for an historical perspective, see also [97,
98]). The above formulation manifests the universality of this principle when-
ever a trade-off between output rate and losses is present in the regime where
losses are linear in the average speed of the process.
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The power (1.26) can be further maximised choosing Wdiss =
1
2

∑
α Tα∆Sα

to obtain the durations leading to the maximum power, in this case

Pmax =
(
∑

α Tα∆Sα)
2

4(
∑

α′
√
Tα′σα′)2

. (1.29)

At maximum power the losses thus correspond to half of the quasistatic out-
put: this corresponds to the “7th principle of control thermodynamics” pointed
out by Salamon et al. in [97], whose general validity was unknown: we can
state it holds (at least) for all machines described by (1.22).
We give here an example of application of the time tuning optimisation just
described.

Example: Multi-Bath Carnot Engine. A generalised Carnot engine con-
sists of a sequence of isotherms in contact with different thermal baths, alter-
nated with adiabatic strokes as in the standard Carnot cycle. The total work
output can be expressed as the sum of the heat exchanges due to cycling con-
ditions, as in Equation (1.22), with

∑
α∆Sα = 0. All the results described

above apply and the maximum power obtainable by tuning the time durations
of the isotherms is thus as in Equation (1.29). Moreover, in [2] we further an-
alyze this result assuming that all the baths have the same spectral density
∝ ωθ , described by the ohmicity parameter θ (see also App. A). Under this hy-
pothesis and the assumption that all the isotherms are small enough (cf. [2]),
this can be translated in the maximum power being expressed by

Pmulti−Carnot
max =

(
∑

α TαdSα)2

4κ0T0

(∑
α(

Tα
T0
)
1−θ
2 |dSα|

)2 (1.30)

where κ0 represents the local ratio between σ0 and (∆S0)2 at some reference
temperature T0, and satisfies κα/κα′ = (Tα/Tα′)−θ (cf. App. A). Moreover, it
is possible to show how in this case, the power is upper bounded by the same
power when it is obtained by the use of the highest and lowest temperature
only, which leads to the maximum power of a standard Carnot Engine (cf.
Section 1.3.3 or [1])

Pmulti−Carnot
max ≤ PCarnot

max =
(∆S)2

σh

(Th − Tc)
2

4Th

(
1 + ( Tc

Th
)
1−θ
2

)2 . (1.31)
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1.3.2 Path Optimisation: Geodesics and Coherences

When the control over the working fluid allows not only to vary the speed of
the transformation, but includes possible modifications of the path γ of the
trajectory λ⃗(s), the machine can be substantially improved. The optimisa-
tion over γ is independent from the time tuning considered in the previous
section. It consists of finding the shortest path σ =

∫
γ λ⃗
′T g

λ⃗
λ⃗′ between two

fixed points for each isotherm (1.21) considered in the cycle. Indeed, when
the extremal points of a trajectory are fixed, the quasistatic output is fixed
and minimizing σ always improves both power and the efficiency (cf. Section
above 1.3.1).
More precisely, with the tools described in Section 1.2, each of the σα in Equa-
tion (1.22) will be described as in (1.18) by some metric g(α) and some trajec-
tory λ⃗(α), in the form σα =

∫
γ(α) λ⃗′T(α)g

(α)

λ⃗
λ⃗′(α) . As mentioned earlier (see

Section 1.2 or Section 1.3.1), by choosing the speed to be constant the above
expression can be minimised to the thermodynamic length of the path γ(α)

σα =

(∫
γ(α)

ds
√
λ⃗′T(α)g

(α)

λ⃗
λ⃗′(α)

)2

≡ l2
γ(α) . (1.32)

This quantity depends only on the path γ(α) of the trajectory and not on its
parametrisation λ⃗(s), but it can be further minimised by considering its min-
imum among all the possible paths linking the extremal points, which then
defines the geodesics distance between the extremal points

d
λ⃗(0),λ⃗(1)

= min
γ with extremals
{λ⃗(0),λ⃗(1)}

lγ . (1.33)

These considerations can be stated as follows:

Principle 2. In optimal protocols, the driving minimises the entropy production,
i.e., it follows a geodesic on the thermodynamic manifold.

Notice that, once the metric g
λ⃗
is known, the geodesics between any two

points {λ⃗(0), λ⃗(1)} can be found by solving accordingly the geodesics equa-
tion [2].
Notice that all considerations so far apply both to classical and quantum driven
thermal machines. However, in the quantum case, it is possible to additionally
constrain optimal protocols based on coherence creation. That is, assuming
full control on the Hamiltonian Ht, it is always possible to split its variation
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in a coherence part and in a diagonal part

Ḣt = Ḣ
(d)
t + Ḣ

(c)
t , (1.34)

which can be expressed in the diagonal basis Ht =
∑

i ϵi(t) |i(t)⟩ ⟨i(t)| as

Ḣ
(d)
t :=

∑
i

ϵ̇i(t) |i(t)⟩ ⟨i(t)| , (1.35)

Ḣ
(c)
t :=

∑
i

ϵi(t)
(

˙|i(t)⟩ ⟨i(t)|+ |i(t)⟩ ˙⟨i(t)|
)
. (1.36)

As it turns out, thanks to the geometric properties of the thermodynamic
length (see App. A), for standard detailed-balanced Lindbladians, we showed
in [2] that the irreversible entropy production can be split in two indepen-
dent parts, one that is solely due to Ḣ(d)

t and one due to the rotation of the
Hamiltonian Ḣ(c)

t , that is

Wdiss =W
(d)
diss +W

(c)
diss , (1.37)

whose detailed definition we provide in App. A as well as Ref. [2]. Most im-
portantly, both components are positive,W (x)

diss ≥ 0 x = d, c, but the rotation
of the eigenvectors of the Hamiltonian (1.36) has no other effect except that
of generating the dissipationW (c)

diss. In [2] we prove that, following the above
discussion, it can be stated, for standard Markovian dynamics,

Principle 3. Quantum coherences are not created in optimal protocols,
i.e., non-commutativity [Ht, Ht′ ] ̸= 0 is avoided.

The effect of coherences inducing losses in the powerwas noted already in [99]
in the context of linear response theory of slowly driven engines with slowly
driven temperature.
We show in the following an application of theminimization of the irreversibil-
ity parameter σ for a cooling process.

Example: Cooling/Work Extraction Suppose we are interested only in a
subset of the heat currents that are part protocol, meaning that relevant output
is the heat extracted from one (or multiple) thermal sources, as in a generalised
refrigerator model. To fix the ideas for a single bath to be cooled the cooling
rate is

P cooling =
Tc∆Sc − Tcσc

τc

τex + τc
≡ Tc∆Sc −Wdiss

τex + τc
(1.38)
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where now τex is additional time spent on parts of the cycle that do not con-
tribute to the cooling output. The optimisation for fixed lossWdiss applies as
from (1.26) leading to τc = Tcσc/Wdiss , and a power

P cooling
Wdiss

=
Tc∆Sc −Wdiss

τex + TcσcW
−1
diss

, (1.39)

which clearly increases as σc is minimised. The overall maximum of the cool-
ing rate becomes for a suitable choice ofWdiss

P cooling
max = Tcσc

(√
∆Scτex/σc + 1− 1

)2
τ2ex

= Tc
∆S2

c

4σc
+O(τex) . (1.40)

The above expressions are all decreasing in the value of σc ≥ 0, which is
minimal when obtained on the geodesics of the transformation, as from Equa-
tions (1.32) and (1.33).

1.3.3 Choosing the location: total optimisation of Carnot-like
machines

After optimizing the time duration and trajectory of the transformations, the
resulting optimal output rates only depend on the end points of the transfor-
mations. The final maximisation of such expressions is in general non-trivial.
However, we note how the maximum power obtained in (1.31) is proportional
to (∆S)2 /σ, which is maximal when σ takes the geodesics value described
above in (1.33). Thus, this last quantity

(∆S)2

σ
=

(
S
λ⃗(0)

− S
λ⃗(1)

)2
d2
λ⃗(0),λ⃗(1)

(1.41)

can be maximised by changing the extremal points of the transformation. The
same quantity appears as the leading term for the cooling rate in (1.40). We
find this to be a strikingly general feature of all thermal machines whose dy-
namical information ultimately consists of just one simple isothermal trans-
formation close to equilibrium. This is clearly the case for a single heat ex-
traction from a bath as in (1.40), but it happens also, e.g., for Carnot engines,
where all relevant quantities which can be expressed solely in terms of the
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two isotherms. For example, power and efficiency of a Carnot engine read:

PCarnot =
∆S(Th − Tc)−

(
Tcσc
τc

+ Thσh
τh

)
τc + τh

, (1.42)

η =
Qh +Qc

Qh
= 1−

Tc(∆S + σc
τc
)

Th(∆S − σh
τh
)
, (1.43)

where ∆S is the variation of entropy during the hot isotherm, and the irre-
versible entropy productions are proportional to each other on optimal pro-
tocols σh/σc = (Tc/Th)

−θ , according to the spectral density of the baths
∝ ωθ [1, 29]. The two isotherms are thus symmetric, in the sense that by
construction they have an opposite entropy variation ∆Sh = −∆Sc, and the
trajectories follow the same geodesics to link the endpoints [1,29]. After time
optimisation on τc, τh in such a case it is clear from dimensional analysis that
the resulting power can only be proportional to (∆S)2/σh (or equivalently
(∆S)2/σc due to proportionality) multiplied by a function with the dimen-
sion of temperature.
More explicitly, we showed in [1] that is possible to express the maximum
power at any given efficiency

η = (1− δ)ηCarnot = (1− δ)(1− Tc/Th) (1.44)

for a Carnot engine (see also [93, 100]). We report here for simplicity only on
the case where θ = 0, thus σc = σh = σ, as

PCarnot
δ =

(∆S)2

4σ

(Th − Tc)
2δ(1− δ)

(1− δ)Tc + δTh
(1.45)

The importance of the term (∆S)2/σ was noted already in [101] as a natural
unit of entropy over time, defining the performance of thermal machines in
the low-dissipation regime for any trade-off between power and efficiency.
The equivalent optimisation for a refrigerator has been conducted in [102],
where one has a cooling power and COP coefficient (this time ∆S is defined
to be positive on the cold isotherm)

PRefrigerator =
Tc∆S − Tcσc

τc

τc + τh
, (1.46)

ε =
Qc

|Qh| −Qc
=

Tc

(
∆S − σc

τc

)
Th

(
∆S + σh

τh

)
− Tc

(
∆S − σc

τc

) , (1.47)
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which leads to a maximum cooling power at given COP (again we report it
for flat spectral density σc = σh, see [102] for generalisations) ε = (1 −
δ)εCarnot = (1− δ)Tc/(Th − Tc)

PRefrigerator
δ =

(∆S)2

4σ

Tc(Th − Tc)δ

Th − δTc
. (1.48)

Crucially, both (1.45) and (1.48) represent the full Pareto front – in the low-
dissipation approximation – for a Carnot-engine and a Carnot-refrigerator.
As discussed in Sec. 1.1.3, the full optimisation of such machines is therefore
represented by these expression. In both cases, the magnitude of the power is
proportional to (∆S)2/σ, whose maximisation thus corresponds to the total
control optimisation.
In Ref. [1] we showed how such term can always be upper bounded via the
use of a Cauchy-Schwarz inequality, that is noticing that

(
∫
dS)2∫

dsλ⃗′T g
λ⃗
λ⃗′

=

(∫
ds ∂⃗S

λ⃗
· λ⃗′
)2

∫
dsλ⃗′T g

λ⃗
λ⃗′

≤
∫

ds ∂⃗ST
λ⃗
g−1
λ⃗
∂⃗S

λ⃗
≤ max

λ⃗
∂⃗ST

λ⃗
g−1
λ⃗
∂⃗S

λ⃗
≡ max

λ⃗
C(λ⃗) . (1.49)

Moreover the upper bound in (1.49) can be saturated by performing infinites-
imal cycles around the point where C(λ⃗) is maximised [1].
Thanks to this bound and the expressions (1.45)-(1.48) the full optimisation
of these thermal machines is reduced to a simple scalar maximisation which
can be conducted numerically (see examples in our works [1, 2]). Finally, in
the meaningful case in which all observables Xi decay with a well defined
timescale τeq to their thermal value, in [1] we proved that C(λ⃗) is exactly the
heat capacity of the system divided by the equilibration time, leading to [1]:

(∆S)2

σ
≤ max

G

C(G)
τeq

. (1.50)

Here,G = βH is the adimensional Hamiltonian, so that the thermal state can
be expressed as ω = e−G/Tre−G and the heat capacity corresponds to the
adimensional energy variance C(G) = TrG2π − TrGπ2. In other words, it is
possible to state a final optimisation principle [2] as

Principle 4. Power-efficiency trade-offs are optimised by performing finite-time
Carnot cycles around the point where the ratio between heat capacity and

relaxation time of the working fluid is maximised.
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In Refs [1] and [2] these results are provided together with examples of ap-
plication to thermal machines based on low-dimensional quantum systems.
Moreover, the above analysis shows the importance of identifying systems
with large heat capacity in the context of thermal engines. This task is inti-
mately related to equilibrium thermometry, where the heat capacity directly
quantifies the precision of temperature estimation of a thermal probe. Its max-
imisation can be approached by considering system that are close to a phase
transition [1, 39] or via interaction engineering, see Chapter 3 [8].

1.4 The case of low-dissipation including heat leaks

Following the results of the above sections (Refs. [1, 2]), in Ref. [6] we con-
sidered a low-dissipation regime in which there is an additional mechanism
of dissipation: heat leaks. The crucial difference with respect to our previous
works [1, 2] is the possibility of allowing the working fluid to be in contact
with more than one thermal reservoir at a time. It is in fact typically hard
to fully isolate a quantum working fluid from the environment, which is re-
quired to emulate ideal classical cycles 1.1.2. This motivates the study of non-
equilibrium systems, where the drivenworking fluid is permanently in contact
with two ormore reservoirs. Unlike standard thermodynamic cycles, thesemi-
croscopic machines operate away from equilibrium during all the cycle. Ther-
moelectric devices [77] as well as autonomous machines [78, 79, 103, 104] are
seminal examples of this type of operation.
When a driven thermal machine is connected at the same time to two or more
thermal reservoirs, it is permanently thread by a heat flux. Hence, the very
operation as a machine relies on the mechanism of heat–work conversion in
order to overcome this effect as well as the dissipation generated by the driv-
ing sources. To consider a low-dissipation regime in this case, besides a slow
driving of the control parameters, the thermal bias will need to be small, as
in the first approximation the heat leaks are proportional to∆T . Under these
assumptions, the thermodynamics of a quantum system was derived in [36].
In particular it was showed that a tensor R, which locally depends on the
equilibrium manifold only (R ≡ R(T, λ⃗)), can be identified characterizing
all the energy fluxes. That is, given n control parameters λi, the tensor R is
(n+ 1)× (n+ 1)-dimensional and symmetric, and can be decomposed as

Ri,j =gij i, j = 1, . . . , n (1.51)
Ri,n+1 =R⃗ i = 1, . . . , n (1.52)

Rn+1,n+1 =κ (1.53)
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such that the output workWout of a cyclic driven machine, and the heat trans-
ferQtran from the hot reservoir (at temperature T +∆T ) to the cold reservoir
(at temperature T ) can be expressed as

Wout =
∆T

T

∫ τ

0
dt R⃗ · ˙⃗λ−

∫ τ

0
dt ˙⃗
λ · g · ˙⃗λ , (1.54)

Qtran =

∫ τ

0
dt R⃗ · ˙⃗λ+

∆T

T

∫ τ

0
dt κ . (1.55)

These expressions can be derived in the adiabatic linear-response regime as
from Ref. [36] and we defer the reader to that paper for further details. For
our purposes, it is important to stress that the whole tensor R and its com-
ponents are all local functions of λ⃗t, while they also depend on the coupling
parameters, the density of states of the thermal baths and T (which however
do not vary).
In Eq. (1.54), the first term represents the mechanism of heat–work conversion
and the second one corresponds to finite-time dissipation developed by the
time-dependent controls, i.e. the same dissipation mechanism we considered
in Sections 1.2 and 1.3. For this reason we identifyRij ≡ gij , in (1.51), as they
coincidemathematically (see [6]). Finally, the terms (inW andQ) proportional
to
∫ τ
0 dt R⃗ · ˙⃗λ correspond to the equilibrium quasistatic energy fluxes, and

Rn+1,n+1 ≡ κ is the resulting heat conductance.
It is important to notice that the second terms of Eqs. (1.54) and (1.55) have a
defined sign, since they are directly related to the entropy production rate [36]
(i.e. the second law of thermodynamics) which means they are detrimental.
Instead, the line integral

∫ τ
0 dt R⃗ · ˙⃗λ may have any sign, depending on the

driving protocol and it is enough to time-reverse the control λ⃗t to flip the
sign, and change the operating mode of the machine.

1.4.1 A different time scaling, and an old geometric problem

Given the expressions of the work output and heat transfer in Eqs. (1.54) and
(1.55), it is possible to interpret their terms geometrically, as explained in the
following. This allows for the optimization of the thermodynamic protocols
in terms of clear geometrical quantities.
First, we factorize the total duration τ in the expressions Eqs. (1.54) and (1.55),
such to decouple the time-rescaling from the geometrical contribution to the
different quantities, similarly to the approach taken in Sec. 1.3. Indeed by
considering an adimensional time unit s such that

λ⃗(s) = λ⃗(sτ) , s ∈ (0, 1) , (1.56)
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we can define, identifying from now on the adimensional time derivative λ⃗′ ≡
∂λ⃗/∂s = τ dλ⃗

dt ,

A =

∫ 1

0
ds R⃗ · λ⃗′ , (1.57)

ℓ2 =

∫ 1

0
ds λ⃗′ · g · λ⃗′ , (1.58)

⟨κ⟩ =
∫ 1

0
ds κ . (1.59)

Accordingly, Eqs. (1.54) and (1.55) can be expressed as follows,

Wout =
∆T

T
A− ℓ2

τ
(1.60)

Qtran = A+
∆T

T
τ⟨κ⟩. (1.61)

The names A and ℓ2 are related the geometrical meaning of the quantities
above, as we discuss. Given that λ⃗(s) represents a closed trajectory in space,
we can use Stokes’ theorem – in a three-dimensional space or its correspond-
ing generalization in higher dimensions – to re-express the line-integral defin-
ing A

A =

∫
∂Σ
R⃗ · dλ⃗ =

∫
Σ
(∇⃗λ ∧ R⃗) · dΣ⃗ , (1.62)

where Σ is a surface in the λ⃗ space, having boundary ∂Σ which coincides
with the control trajectory. We can therefore think of A as the area of the
surface defined by the control trajectory (with local weight depending on the
∇⃗λ ∧ R⃗ curvature). Note that this geometrical translation clarifies as well
that A depends only on the geometry of the trajectory λ⃗(s): that is, not only
A is independent of τ , but it is also invariant under any reparametrization
s′(s) which might change the local speed and time spent on different points
of the trajectory. Concerning ℓ2, it can be interpreted as a square length of
the control trajectory λ⃗(s). At the same time, given the presence of two time
derivatives, l2 can depend in general on reparametrizations s′(s). However, ℓ2
represents losses due to dissipation in the driving – see Eq. (1.54) – and we are
therefore interested in its minimum value, which can be obtained through the
usual Cauchy-Schwarz inequality, or thermodynamic length inequality, used
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already in (1.18)-(1.19)

ℓ2 ≥
(∫ 1

0
ds
√
λ⃗′ · g · λ⃗′

)2

=

(∫
∂Σ

√
dλ⃗ · g · dλ⃗

)2

≡ l2 . (1.63)

The lower bound l is fully geometric (it depends solely on ∂Σ) and it is always
achievable by choosing the time-parametrization s′ such that λ⃗′ · g · λ⃗′ is con-
stant. L is a natural extension of the standard thermodynamic length [30, 31,
33, 35, 92] (which we used in the sections above and [1, 2]) to non-equilibrium
setups where the working fluid is simultaneously interacting with several
baths. Finally, it is apparent that ⟨κ⟩ Eq.(1.59) represents the simple average
of a scalar number (the heat conductance) along the trajectory. In general it
clearly also depends on reparametrizations of the adimensional time s′(s), as
the average can be arbitrarily close to the maximum (minimum) value κmax

(κmin) of the trajectory, in case s′ is such to spend almost all the time close to
κmax (κmax).

Time-scaling Without diving into the details of the results of our work [6],
we notice here two main differences with the standard low-dissipation regime
discussed in 1.3. The first crucial difference is that the new loss mechanism,
which is due to heat leaks, scales proportionally to the cycle duration ∝ τ ,
instead of 1

τ . This has the direct consequence that the ideal Carnot efficiency
cannot be achieved by slowing down the operational times of control (con-
trary to standard Carnot-like machines), as the heat leak losses would grow
indefinitely. The direct consequence is that the maximum efficiency of such
machines is strictly smaller than Carnot’s efficiency and is achieved at finite-
times (cf. Fig. 1.5).
This can be seen, for example, in the engine operating mode of the system.
The power of the heat engine and its efficiency can be written as

P =
Wout

τ
=

∆T

T

A(1− τD
τ )

τ
, (1.64)

η =
Wout

Qtran
= ηCarnot

1− τD
τ

1 + τ
τk

, (1.65)

where we substituted Eqs. (1.54)-(1.55) and we defined the dissipation and heat
leak timescales

τD =
T

∆T

ℓ2

A
, τκ =

T

∆T

A

⟨κ⟩
. (1.66)
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Figure 1.5: Engine mode for a low-dissipatoin engine with heat leaks. Power and
efficiency are plotted as a function of the cycle duration, according to (1.64) and (1.65).
The optimal operating region is the gray interval between the two dashed lines: in-
deed for any point outside the region, there is a point inside with both larger effi-
ciency and larger power. In the plot τD = 1 and τκ = 2.5.

In the previous expressions ηCarnot = ∆T/T is the Carnot efficiency. Given
the expressions above, we can optimize the duration of the cycles in order to
maximize the power or the efficiency, obtaining correspondingly

τP = 2τD, τη = τD +
√
τD(τD + τκ) . (1.67)

We see that the duration for maximum efficiency is always larger than the
duration for maximum power. The corresponding maximum power and effi-
ciency at maximum power are

Pmax =
1

4

(∆T )2

T 2

A2

ℓ2
, ηPmax =

ηC
2

x− 1

x+ 1
(1.68)

while the maximum efficiency and power at maximum efficiency

ηmax = ηC

(
1− 2√

x+ 1

)
, Pηmax =

(∆T )2

T 2
⟨κ⟩(

√
x− 1)2√
x

, (1.69)

with
x = 1 +

A2

ℓ2⟨κ⟩
. (1.70)

See Fig. 1.5 for a visual representation.
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The isoperimetric problem. Finally we notice that the problem of finding
such optimal protocols reduces to an isoperimetric problem [105] (also stud-
ied as Cheeger Problem [106, 107]), that is the task of finding the shape which
maximizes the ratio between area and length. This is one of the oldest geo-
metric problems in history, and was solved already by the ancient Greeks in
the standard 2-dimensional Euclidean plane [108]. Nevertheless, when the
underlying area density or length metrics are nontrivial, no general solu-
tion is known. The observation is straightforward, after the manipulation
and time-optimization shown in the above section, all the power-efficiency
related quantities in (1.68) and (1.69) can be seen as increasing functions of
an Area/Perimeter ratio, A/ℓ. The problem of maximising such quantities
then translates to maximising such ratio, in which Area and length are de-
fined based on nontrivial metrics, as from (1.62) and (1.63).
In [6] we illustrated these ideas in a prominent quantum system playing the
role of the working fluid: a qubit driven by two parameters slowly chang-
ing in time and asymmetrically coupled to two thermal reservoirs at differ-
ent temperature. Such system can be used both in the engine mode and the
refrigerator mode, which we optimized by numerically solving their relative
isoperimetric problem on different classes of shapes.

1.5 Discussion

While originally developed for macroscopic systems, the geometric approach
to finite-time thermodynamics is now finding renewed applications within
the emerging fields of stochastic and quantum thermodynamics. In a series
of papers [1,2,6], we have highlighted its utility for minimising dissipation in
small scale systems operating close to equilibrium, characterizing the optimal
solutions and showing how geometrical tools can greatly simplify the anal-
ysis and search of optimal driving protocols for such machines. Among our
contributions, in [2] we summarised a set of key principles needed to optimise
finite-time quantum low-dissipation engines in terms of efficiency and power,
based on the computation of the thermodynamic metric tensor and length.
Taken together, these principles provide a straightforward method for deter-
mining optimal thermodynamic processes. Indeed, it is also possible to fully
optimize Carnot-like engines and refrigerators, finding the complete Pareto
front, that is finding the maximum power at any given efficiency. A simple
bound can be obtained characterizing such optimal performance [1] and can
be saturated by performing small cycles close to the point where the ratio be-
tween heat capacity and thermalization timescale is the highest. Finally, in
the case of dissipation arising not only from finite-time driving, but also heat
leaks, we showed how exploiting a generalized thermodynamic tensor [36] it
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is possible to solve the problem of performance optimization via a mapping to
an isoperimetric problem.
Interesting future directions for thermodynamic geometry in the quantum
regime include the extension beyond the slow driving regime (see also Chap-
ter 2), the inclusion of fluctuations as an objective [90,109,110], which means
solving a 3-dimensional Pareto front (see Sec. 1.1.3 and our work [23], which
is not included in this thesis), connections with strong coupling and speed-ups
to isothermality [111], relations with the third law of thermodynamics, many-
body systems, criticality [39] and interaction engineering. Finally, experimen-
tal application of our techniques is in principle possible on different platforms,
such as state of the art superconducting electronics [17,37], NMR [69], single-
electron quantum dots [112], but most of our optimization schemes can also
be applied to larger systems, such as classical gases [113].
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Chapter 2

Optimising fastly-driven
engines

This chapter is based on Ref. [4]:
“ V. Cavina, P. A. Erdman, P. Abiuso, L. Tolomeo and V. Giovannetti,Maximum-power heat

engines and refrigerators in the fast-driving regime, Phys. Rev. A 104, 032226 (2021)”

2.1 Background: power maximization and fast ma-
chines

In this Chapter we tackle once again the problem of thermal machines opti-
mization. We consider generic driven thermal machines, and for a generic in-
troduction to the framework we refer the reader to the background Section 1.1
of the previous Chapter.
The most important thermal machines that can be constructed utilizing two
or more thermal baths are the heat engine and the refrigerator. These ma-
chines are mainly characterized by two figures of merit: the efficiency (or
coefficient of performance for the refrigerator) and the extracted power (or
cooling power). The optimal strategy tomaximize the efficiencywas identified
already in the 19th century, and is closely related to the second law of thermo-
dynamics. As such it is characterized by a universal strategy: infinitely slow
transformations, known as reversible transformations, must be performed (cf.
Chap. 1). On the other hand, the maximization of the extracted power or cool-
ing power requires finite-time thermodynamics, which relies on a microscopic
model to describe the evolution of the system. Therefore, the maximization
of the power is usually regarded as a model-specific task, thus lacking a uni-
versal characterization [25, 80, 114–116] In this framework (cf. Chap. 1), the
fundamental question, which has not been tackled in general, is how to opti-
mally drive the control parameters as to maximize the power of periodically
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driven classical or quantum thermal machines. This is what we analyse in this
Chapter.
In general, this is a formidable task, as it requires to solve the time-dependent
dynamics of an open quantum system, coupled to thermal baths, and to per-
form a functional optimization over all available control parameters. In Chap-
ter 1 we showed that in the low-dissipation, slow-driving regime, a universal
strategy to maximize the power at any efficiency can be derived [1, 2]. How-
ever, notice that the dynamical approximations involved in the low-dissipation
are justified – unsurprisingly – in the regime of high efficiency. That is, con-
sidering the Pareto front 1.1.3, in Chap. 1 we showed how to reconstruct it,
under a general approximation that however can fail when focusing on the
points of maximum power. Beyond this regime, common strategies to improve
the power extracted from a quantum engine rely on performing fast and ef-
fectively adiabatic quantum operations through the Shortcut to Adiabaticity
technique [117–119] or using Floquet engineering [120, 121]. The variety of
frameworks employed span from the optimization of finite time Carnot cycles
to Otto cycles [122, 123], endoreversible cycles, etc..
However within this mare magnum of frameworks and methods, in the con-
text of systems described by Markovian dynamics, recent evidence suggests
that the optimal strategy to extract maximum power may consist of varying
the control parameters infinitely fast [12, 21, 24, 26, 124, 125]. This observa-
tion would imply a profound “duality” between efficiency and power: both
would be maximized according to two opposite universal strategies (infinitely
slow, or infinitely fast control speed). In [4] we discussed the optimization of
thermal machines in the fast driving regime.

2.2 Framework and fast-driving regime

The fast-driving regime is characterized by driving time scales which are much
faster than the thermal relaxation τrel. In [4] we introduce it and discuss it in
the context ofMarkovian dynamics for systemswhoseHamiltonian commutes
at different times. This encompasses a variety of models of interest in stochas-
tic thermodynamics, from chemical networks tomolecularmotors andmore in
general any dynamical system described by stochastic master equations [126].
As schematically depicted in Fig. 1.1, we consider a D-dimensional quantum
system S (the working medium or working fluid of the model) that is weakly
coupled toN thermal baths characterized by inverse temperatures βα, forα =
1, . . .M . As in Chapter 1, we assume S to be externally controlled through a
set of n time-dependent control parameters collectively represented by a real
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vector function

λ⃗t , 0 ≤ t ≤ τ , (2.1)

where τ is the total duration of the driving. In the following, we denote the
function λ⃗t as the protocol or the driving. In our analysis λ⃗t acts as a mod-
ulator both for the local Hamiltonian of the system H

λ⃗t
as well as for the

interactions with the thermal baths which, adopting the standard Markovian
approximations [51] (cf. Sec. 1.1), induce a first-order dynamics expressed by a
Lindbladian super-operatorD

α,λ⃗t
. We hence assign the temporal evolution of

the system in terms of the following master equation for the reduced density
matrix ρt of S ,

ρ̇t = L
λ⃗t
[ρt] ≡ −i

[
H

λ⃗t
, ρt

]
+

M∑
α=1

D
α,λ⃗t

[ρt] , (2.2)

where L
λ⃗t

is the (time-dependent) Lindbladian generator of the dynamics.
For simplicity, we assume that the Hamiltonian commutes at all times, i.e. that
[H

λ⃗1
, H

λ⃗2
] = 0 for all λ⃗1, λ⃗2, in order to suppress non-adiabatic transitions. In

such regime in fact, D
α,λ⃗t

locally depends on time through λ⃗t, and the master
equation can be rigorously derived 1 (see details in [4] and references therein).
We describe the possibility of deciding which bath is coupled to S at any given
time through the dependence of the dissipators on λ⃗t. If only bathα is coupled
to S , and if we fix the control parameters λ⃗t = λ⃗, we expect S to thermalize
by evolving towards the Gibbs density operator

ω
α;λ⃗

≡ exp[−βαHλ⃗
]/Z

α;λ⃗
, (2.3)

Z
α;λ⃗

≡ Tr[exp[−βαHλ⃗
]] being the partition function. The instantaneous heat

flux flowing out of bath α can then be computed as [13, 80]

Jα(t) ≡ Tr
[
H

λ⃗t
D

α,λ⃗t
[ρt]
]
. (2.4)

Again, within the above framework, we are interested in performing thermo-
dynamic cycles, i.e. in performing a periodic driving λ⃗t, with period τ , such
that the variation of internal energy Ut ≡ Tr[H

λ⃗t
ρt] of the working fluid is

zero after each cycle. In this regime, the first law of thermodynamics guar-
antees us that all the work extracted from the system is only provided by

1Moreover, in [4] we also include a discussion of the non-commuting case, the regimes in
which Eq. 2.2 is still justified, and how our results can be affected by quantum rotations in the
Hamiltonian control.
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the heat baths, and not by some particular state preparation of S . The pe-
riodicity of Ut requires both λ⃗t and ρt to be periodic functions. In general,
ρt is not a periodic function. However, using the spectral properties of the
Lindblad non-pathological master equations, the following property holds (a
proof is provided, e.g., by Theorem 2 of Ref. [127]): if λ⃗t is a τ -periodic func-
tion, then the solution of Eq. (2.2) asymptotically converges toward a “lim-
iting cycle” solution ρ(lc)

[λ⃗]
(t), which is independent of the initial condition of

the system, and which is periodic with the same period τ of the controls, i.e.
ρ(lc)
[λ⃗]
(t + τ) = ρ(lc)

[λ⃗]
(t) for all τ . The subscript in ρ(lc)

[λ⃗]
(t) emphasizes that the

limiting cycle is a functional of the whole protocol, i.e. it depends on the con-
trol parameters along the whole cycle. In this asymptotic regime, the internal
energy Ut becomes a periodic function, providing us with a thermodynamic
cycle. From now on, we therefore focus solely on this regime.
We now wish to identify the optimal choice of λ⃗t that allows us to maximize
the extracted power from a heat engine, or the cooling power of a refriger-
ator, averaged over a cycle. Both these quantities can be expressed as linear
combinations of time integrals of the currents, defined in Eq. (2.4). Therefore,
given an arbitrary collection cα of real coefficients, we define the Generalized
Average Power (GAP), which is a functional of the whole protocol, as

Pc[λ⃗] ≡
1

τ

M∑
α=1

∫ τ

0
cαJα(t) dt,

=
1

τ

∫ τ

0
Tr
[
H

λ⃗t

M∑
α=1

cαDα,λ⃗t

[
ρ(lc)
[λ⃗]t

]]
dt. (2.5)

For instance, if we choose cα = 1 for all α, Eq. (2.5) represents the average
of the total extracted heat flux, which coincides with the average extracted
power for periodically driven heat engines; if instead cα = δα,M , with α =M
labelling the coldest bath and δ representing the Kronecker delta, Eq. (2.5)
represents the average cooling power, which measures the performance of a
refrigerator; if cα = −1 for all α, Eq. (2.5) represents the average dissipated
heat flux, which measures the performance of a heater, and so on.
Finding the optimal value of λ⃗t that maximize the functional (2.5) is, in gen-
eral, a formidable task. Nonetheless, as we shall see, an explicit solution to the
problem can be obtained when studying the performance in the limit of fast
modulation of the driving parameters. In fact, until now, our framework is
general and does not assume simplifications on the dynamics of the working
fluid S . The fast driving regime is characterized by driving the system with a
protocol λ⃗t whose period τ is much shorter than the typical relaxation times
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induced by the baths. Therefore, we may expect that the limiting cycle state of
S “does not have time” to thermalize with the bath, so it might actually con-
verge to a fixed, time-independent out-of-equilibrium state. This is precisely
what happens.
More specifically, let us denote with Γ

[λ⃗]
the maximum rate which character-

izes the master equation (2.6) along the cycle, that is the rate characterizing
the fastest possible relaxation to the steady state (see technical details in [4]).
Formally, we can expand ρ(lc)

[λ⃗]
in a power series in Γ

[λ⃗]
τ ≪ 1. As we prove in

the technical material of [4], it turns out that the leading order term ρ
(0)

[λ⃗]
is in-

deed time-independent. A closed expression for such term can be obtained by
making use of a projection technique that allows us to replace the dynamical
generator L

λ⃗t
with the superoperator G

λ⃗t
which has the important property

of being invertible on the (D2 − 1)-dimensional linear subspace of traceless
linear operators acting on S . Specifically, Eq. (2.2) can be rewritten in themore
convenient form

˙̃ρt = G
λ⃗t

[
ω̃
λ⃗t

− ρ̃t

]
, (2.6)

where ω
λ⃗t
is the (unique) fixed point ofL

λ⃗t
and where, for all density matrices

ρ of S , we define

ρ̃ ≡ ρ− 1/d , (2.7)

its traceless component. Equipped with this notation, in [4] we prove that

ρ̃
(0)

[λ⃗]
≡

(∫
I
[λ⃗]

G
λ⃗t
dt

)−1 [∫
I
[λ⃗]

G
λ⃗t
[ω̃

λ⃗t
] dt

]
, (2.8)

where I
[λ⃗]

denotes the time interval of one cycle of duration τ 2. Using the
approximation ρ(lc)

[λ⃗]
≈ ρ

(0)

[λ⃗]
, we can write the GAP in Eq. (2.5) in the fast driving

regime as

Pc[λ⃗] =
1

τ

∫
I
[λ⃗]

Tr
[
H

λ⃗t

∑
α

cαDα,λ⃗t

[
ρ(0)
[λ⃗]

]]
dt, (2.10)

2To understand non-rigorously the reason behind the limiting solution (2.8), notice that, in
the limit of infinitely-fast driving, the steady state ρ̃(0)

[λ⃗]
should satisfy the stability equation∫

dt ˙̃ρt = 0 ⇒
∫

dt Gλ⃗t

[
ω̃λ⃗t

− ρ̃
(0)

[λ⃗]

]
= 0 , (2.9)

which implies (2.8) after inverting
∫
I
[λ⃗]

Gλ⃗t
dt .
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which is guaranteed to be valid up to linear corrections in the expansion pa-
rameter Γ

[λ⃗]
τ (however, it should be stressed that, by direct evaluation, the

GAP of the optimal protocol turns out to be valid up to second order correc-
tions in Γ

[λ⃗]
τ in all the analytical and numerical applications we used).

Equations (2.8) and (2.10) are the main starting point of our analysis: they
allow us to express the GAP as an explicit functional of the protocol λ⃗t without
requiring us to solve the master equation.

2.3 Fast-driving optimization

Among all possible control strategies and protocols, in [4] we provided a uni-
versal proof that the power is optimized by “generalized Otto cycles”, i.e. by
performing sudden variations (quenches) of the control parameters among a
finite number of fixed values. The generality of the proof is guaranteed by
the fact that it holds for any Hamiltonian describing the working fluid, the
baths, and the coupling. Furthermore, it holds regardless of the number of
baths, and regardless of the specific form of the time dependent dissipators
in the Lindblad master equation, that can depend on an arbitrary number of
external controls subject to arbitrary constraints. In addition, it holds for the
maximization of any linear combination of the heat currents, which includes
the extracted power of a heat engine, the cooling power of a refrigerator, the
dissipated heat by a heater, and so on.
The optimal protocol, i.e. the generalized Otto cycle, is characterized by L
infinitesimal time intervals, connected by an identical number of quenches,
in which the control parameters are held constant. We prove that, in general,
L ≤ D, where D is the dimension of the Hilbert space of the working fluid.
This bound also places a constraint on the number of thermal baths that are
necessary to maximize the power.

2.3.1 Divide et impera

Instead of performing a direct constrained functional optimization of the GAP
(see Eq. (2.10)) with respect to λ⃗t, we employ an iterative procedure that even-
tually leads to the identification of the “generalized Otto cycle” as the optimal
one. The main idea of the proof is the following: given any assigned periodic
protocol which respects the constraint λ⃗t, we prove that it is possible to “cut
away” parts of it to build a new, shorter, cycle which delivers a higher or equal
GAP than the starting one. By reiterating this process over and over, we end
up with the generalized Otto cycle. We therefore denote this procedure as
cut-and-choose.



59

In order to detail the cut-and-choose procedure, let us first formally introduce
the notion of cyclic sub-protocols. Given an arbitrary cyclic protocol λ⃗t of
period τ and fundamental period I

[λ⃗]
= [0, τ ], consider a subset IA of I

[λ⃗]

of non-zero measure τA. A cyclic sub-protocol λ⃗At of λ⃗t with period τA and
fundamental period I

[λ⃗A]
≡ [0, τA] is hence obtained by rigidly joining the

various parts which compose the restriction of λ⃗t on IA. This procedure may
introduce localized discontinuities, i.e. quenches, within the protocol – see
Fig. 2.1 for a 1-dimensional example.
Since Eq. (2.8) holds for any periodic protocol in the fast driving regime, by
repeating λ⃗At many times, the state ofS will tend to a new asymptotic constant
state ρ(0)

[λ⃗A]
whose traceless component reads accordingly

ρ̃
(0)

[λ⃗A]
=

(∫
I
[λ⃗A]

G
λ⃗A
t
dt
)−1 [∫

I
[λ⃗A]

G
λ⃗A
t
[ω̃

λ⃗A
t
] dt
]
. (2.11)

It goes without mentioning that analogous conclusions can be drawn also for
the sub-protocol λ⃗Bt that is obtained by considering the restriction of λ⃗t to the
complement IB of IA, i.e. the set IB = I

[λ⃗]
/IA of measure τB = τ − τA:

once more, under iterated application of such driving, the state of S will tend
to a constant asymptotic state ρ(0)

[λ⃗B ]
given by Eq. (2.11) by simply replacing

everywhere the index A with B; see Fig. 2.1 for an example.
Assume next that the states ρ(0)

[λ⃗A]
and ρ(0)

[λ⃗B ]
introduced above coincide and are

equal to ρ(0)
[λ⃗]

, i.e.

ρ
(0)

[λ⃗A]
= ρ

(0)

[λ⃗B ]
= ρ

(0)

[λ⃗]
. (2.12)

Equation (2.12) is a rather strong requirement which in general is not met by
generic choices of IA and IB : still, as we shall discuss in the next section,
the possibility of identifying sub-protocols fulfilling this property is always
granted. For the moment we hence assume that Eq. (2.12) is satisfied. The
GAPs Pc[λ⃗

A] and Pc[λ⃗
B] delivered respectively by the sub-protocols λ⃗A and

λ⃗B can be computed using Eq. (2.10). Assuming Eq. (2.12) is fulfilled, we no-
tice that the integrands entering Pc[λ⃗], Pc[λ⃗

A] and Pc[λ⃗
B] are all the same.

Therefore, exploiting the linearity of the integral respect to the its integration
domain (i.e. time), and recalling that τ = τA + τB , we have that

Pc[λ⃗] =
τAPc[λ⃗

A] + τBPc[λ⃗
B]

τA + τB
. (2.13)
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Figure 2.1: Schematic representation of the cut-and-choose procedure. Upper panel:
representation of an arbitrary protocol λ⃗t defined on the time interval I[λ⃗] of duration
τ . Central panel: we partition I[λ⃗] into two disjoing subsets IA and IB . Lowe panel:
we define two new sub-protocols λ⃗At and λ⃗Bt by restricting λ⃗t respectively to IA and
IB . This process may introduce discontinuities in the controls, denoted as quenches.

The above equation establishes that the GAP of the original protocol λ⃗t can
be expressed as a non-trivial convex combination of the GAPs of the sub-
protocols λ⃗At and λ⃗Bt : therefore it must be smaller or equal to the maximum
of those two quantities, i.e.

Pc[λ⃗] ≤ Pc[λ⃗
A], (2.14)

where, without loss of generality we assumed Pc[λ⃗
B] ≤ Pc[λ⃗

A]. Inequality
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Figure 2.2: Representation of a generalized Otto cycle, which results from a large
number of re-iterations of the cut-and-choose procedure depicted in Fig. 2.1. L (in-
finitesimally short) constant controls are alternated with quenches. Finite upper
bounds can be obtained for the maximum value of L that is needed for the opti-
mization.

(2.14) implies that given a generic periodic protocol λ⃗t, it is possible to con-
struct a shorter one λ⃗A that delivers a larger or equal GAP. This is the reason
for the name cut-and-choose procedure. We can now re-iterate the cut-and-
choose procedure starting from λ⃗At , thus obtaining another (even shorter) pro-
tocol λ⃗AA

t that produces a greater or equal GAP, and so on and so forth. After
many iterations of the cut-and-choose procedure, we end up with a protocol
that cannot be further optimized via this technique. This protocol is charac-
terized by an infinitesimal domain I of duration dτ , divided into L segments
of length dτi. Without loss of generality, we can assume that the dτis are short
enough such that the controls λ⃗t take on a constant value λ⃗i ≡ λ⃗ti during each
time interval dτi. This is a generalized Otto cycle; see Fig. 2.2 for a schematic
representation.
Using Eq. (2.10), the associated GAP of such protocol can hence be expressed
as

Pc[{λ⃗i, µi}] =
L∑

j=1

µjTr
[
H

λ⃗j

∑
α

cαDα,λ⃗j

[
ρ(0)
[{λ⃗i,µi}]

]]
, (2.15)

where µi = dτi/dτ represents the percentage of the total protocol time spent
at each point λ⃗i, and ρ(0)

[{λ⃗i,µi}]
is the time-independent limiting cyclic state

whose traceless component is, from Eq. (2.8),

ρ̃
(0)

[{λ⃗i,µi}]
≡

 L∑
j=1

µjGλ⃗j

−1  L∑
j=1

µjGλ⃗j
[ω̃

λ⃗j
]

 . (2.16)
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Crucially, we are able to place a finite upper bound to the number L of time
intervals of the optimal generalized Otto cycle. In [4] we prove that, to max-
imize the GAP in general, it is sufficient to consider L to be at most equal to
the degrees of freedom of the density matrix plus one. Since in the commuting
case only the diagonal component of ρt plays a role in determining the heat
currents, we find that

L ≤ D . (2.17)

Furthermore, if the dissipator of each bath is characterized by a single (control-
dependent) timescale andN = 2, then L = 2 regardless of the dimensionality
of the system; in this case, the optimal protocol reduces to a conventional in-
finitesimal Otto cycle. For applications, we can thus directly optimize Eq. (2.15)
over the values of the controls λ⃗i and of the time fractions µi which are model-
specific.
In order to gain further physical insight into our result, let us consider the
paradigmatic case in which our system S can only be coupled to one bath
at the time. Mathematically, this assumption can be described by a specific
control parameter, say αt, whose value is the index of the bath we are coupled
to, α = 1, . . . ,M . Therefore, S must be coupled only to a single bath in
each time interval dτi. In this scenario, it is interesting to notice that our
bound on the number of time intervals poses a limit to the maximum number
of thermal baths necessary to maximize the GAP: indeed, at most L baths
will be used. Therefore, for low dimensional working fluids, the maximum
number of thermal baths necessary to maximize the GAP is strongly limited.
However, we also explicitly show in [4] that three thermal baths at different
temperatures can outperform two thermal baths when the working fluid is a
qutrit. This result is in contrast with the maximization of the efficiency, which
is always obtained by coupling S only to the hottest and coldest bath available.

2.3.2 A geometric interpretation of Eq. (2.12)

The argument presented in the previous section relies on the assumption (2.12)
that one can identify two new sub-protocols λ⃗At and λ⃗Bt that preserve the
asymptotic state ρ(0)

[λ⃗]
of the original protocol λ⃗(t). We provide an explicit proof

that such condition can always be fulfilled by translating it into a geometric
problem.
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𝛾𝑢

𝛾𝑢A

𝛾𝑢B

𝛾𝑢A

𝛾𝑢B

𝛾𝑢A 𝛾𝑢B

Figure 2.3: Upper left: schematic representation of γ[λ⃗] and of its center of mass. Up-
per right: schematic representation of a partition of γ[λ⃗] into γ[λ⃗A] and γ[λ⃗B ]. Lower
panels: schematic representation of the sub-curves γ[λ⃗A] and γ[λ⃗B ] which preserve
the center of mass of the original curve γ[λ⃗].

For this purpose, let us define the curves γ
[λ⃗]

≡ {v
λ⃗(t)

|t ∈ I
[λ⃗]
}, γ

[λ⃗A]
≡

{v
λ⃗A
t
|t ∈ I

[λ⃗A]
}, and γ

[λ⃗B ]
≡ {v

λ⃗B
t
|t ∈ I

[λ⃗B ]
} generated by the functions

v
λ⃗t

≡ G
λ⃗t

[
ω̃
λ⃗(t)

− ρ̃
(0)

[λ⃗]

]
, (2.18)

v
λ⃗A,B
t

≡ G
λ⃗A,B
t

[
ω̃
λ⃗A,B
t

− ρ̃
(0)

[λ⃗]

]
. (2.19)

That is, the above simply represent the trajectories given by the instantaneous
time-derivatives (velocities v

λ⃗t
) associated to ρ̃(0)

[λ⃗t]
. Since the domains I

[λ⃗A]
and

I
[λ⃗B ]

are complementary and provide a decomposition of I
[λ⃗]
, γ

[λ⃗A]
and γ

[λ⃗B ]

are disjoint, and their union coincides with γ
[λ⃗]

(see upper panels of Fig. 2.3
for a schematic representation). It is important to notice that the functions
in Eq. (2.19), thus also the curves γ

[λ⃗]
, γ

[λ⃗A]
, and γ

[λ⃗B ]
, belong to the special

subspace of traceless Hermitian operators of S which is locally isomorphic to
RD2−1.By exploiting the fact that the Hamiltonian commutes at all times, we
can further reduce the number of degrees of freedom to be locally isomorphic
to RD−1. This is due to the fact that the heat currents can be written solely
in terms of the diagonal part of ρt, which in turn satisfies a closed equation of
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motion.
Since ρ̃(0)

[λ⃗]
satisfies Eq. (2.8), the curve γ

[λ⃗]
has a null “center of mas”O

[λ⃗]
(rep-

resented by the black dot in Fig. 2.3), i.e.

O
[λ⃗]

≡
∫
I
[λ⃗]

v
λ⃗(t)

dt = 0 . (2.20)

Using the linearity of the integral respect to its integration domain, it is easy
to verify that the sum of the “centers of mass” O

[λ⃗A]
≡
∫
I
[λ⃗A]

v
λ⃗A
t
dt with

O
[λ⃗B ]

≡
∫
I
[λ⃗B ]

v
λ⃗B
t
dt is null, i.e.

O
[λ⃗A]

+O
[λ⃗B ]

= O
[λ⃗]

= 0 . (2.21)

We claim that a necessary and sufficient condition for Eq. (2.12) to hold is
that the curve γ

[λ⃗A]
(and hence due to Eq. (2.21), also γ

[λ⃗B ]
) must have a null

center of mass too. Indeed, exploiting the invertibility of
∫
I
[λ⃗A]

G
λ⃗A
t
dt, one can

observe that setting O
[λ⃗A]

= 0 is fully equivalent to having

ρ̃
(0)

[λ⃗]
=

(∫
I
[λ⃗A]

G
λ⃗A
t
dt
)−1 [∫

I
[λ⃗A]

G
λ⃗A
t
[ω̃

λ⃗A
t
] dt
]
= ρ̃

(0)

[λ⃗A]
, (2.22)

where, in the last step, we used Eq. (2.11) to recognize ρ̃(0)
[λ⃗A]

. An analogous

conclusion holds also for the sub-protocol λ⃗Bt thanks to Eq. (2.21).
This is the geometric reformulation of Eq. (2.12) we were looking for: our par-
titioning technique works if, starting from a generic curve γ

[λ⃗]
inRD−1 having

a null center of mass, we are able to split it into two sub-curves γ
[λ⃗A]

and γ
[λ⃗B ]

such that these still have a null center of mass (this concept is schematically
represented in Fig. 2.3). In [4] we prove that it is indeed possible assuming
that the original protocol λ⃗t possesses some weak notion of regularity. The
main idea is that, given an arbitrary curve in RD−1 with zero center of mass,
it is always possible to identify a null convex combination of at mostD points
lying on the curve.
Reiterating this cut-and-choose procedure many times may lead to a piecewise
continuous curves with a large number of discontinuities. Crucially, in [4] we
show that it is always possible to end up with a curve characterized by at most
D discontinuities. This result gives rise to the bounds on L.
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2.4 Applications

In Ref. [4], we applied the main results presented above to specific scenar-
ios. For example, when all observables of the working fluid share the same
(control-dependent) thermalization time, we further proved that the number
of quenches needed in an optimal protocol is L = 2, that is, the optimal pro-
tocol is a standard infinitesimal Otto cycle.
Moreover, in such models, assuming to have total control over the Hamil-
tonian of the working fluid, we identify the optimal modulation of the con-
trol parameters, which consists of producing a highly-degenerate many-body
spectrum characterized by a single energy gap. This protocol allows us to com-
pute the maximum achievable power using a working medium made up ofN
interacting qubits. We showed that the power of such heat engine goes beyond
its counterpart based on N non-interacting qubits, displaying a many-body
advantage. The value of the maximum power has a supra-extensive transient
regime in N , and in the N → ∞ limit we find that it is linear in the temper-
ature difference ∆T between the hottest and the coldest bath, while the non
interacting case exhibits the more common quadratic ∆T 2 dependence. In
addition, the interacting case displays an efficiency at maximum power which
asymptotically approaches Carnot efficiency (for N → ∞). Surprisingly, we
find that in the refrigerator case, many-body interactions do not provide sig-
nificant advantage over non-interacting qubits.
Additionally, we studied a qutrit system as a testing ground for our general
results. We numerically show that while the commonL = 2 case is optimal for
typical thermalization models used to describe Bosonic and Fermionic baths,
the generalized Otto cycle (characterized in this case by L = 3 quenches)
outperforms the L = 2 case for some particular forms of the master equation.
This implies that our bound on L (2.17) is, in general, tight. Furthermore, as
opposed to the maximum efficiency, we show that the power can be enhanced
by the presence of more than two thermal baths at different temperatures.
All the detailed results and simulations can be found in [4]. In the following,
we briefly present the relevant case of systems that have a (point-dependent)
single relaxation timescale.

2.4.1 Simple thermalization case

In this section we discuss a simplified model of thermalization where the
super-operator G

λ⃗t
of Eq. (2.6) is purely multiplicative, leading to a master

equation of the form
˙̃ρt = Γ

λ⃗t
(ω̃

λ⃗t
− ρ̃t), (2.23)
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with Γ
λ⃗t
> 0 a scalar number which defines the rate of thermalization of all

the observables of the system. Furthermore, we assume that the model allows
S to be coupled to a single bath at the time. As discussed in the final part of
Sec. 2.3.1, we formally introduce a single control parameter, denoted with αt,
indexing the bath we are coupled to at time t. Notice that, for all values of λ⃗t,
the equilibrium states ω

λ⃗t
always correspond to the Gibbs distribution of bath

αt, i.e. ωαt;λ⃗t
as in Eq. (2.3). As discussed in the first part of the paper, the

maximum GAP is given by Eqs. (2.15) and (2.16) which, using Eq. (2.23), can
be rewritten as

Pc[{λ⃗i, µi}] =

∑L
i,j=1 cαiµiµjΓλ⃗i

Γ
λ⃗j
Pi←j∑L

i=1 µiΓλ⃗i

, (2.24)

ρ̃
(0)

[{λ⃗i,µi}]
=

∑L
i=1 µiΓλ⃗i

ω̃
λ⃗i∑L

i=1 µiΓλ⃗i

, (2.25)

where αi is the constant value of α(t) during the interval dτi (we used the
assumption that S can be coupled to a single bath at the time to remove the
sum over α in Eq. (2.24)), and where

Pi←j ≡ Tr
[
H

λ⃗i

(
ω̃
λ⃗i

− ω̃
λ⃗j

)]
. (2.26)

Notice that Pi←i = 0, while

Pj←k + Pk←j ≤ 0 , (2.27)

when S is coupled to the same temperature during the time intervals dτj and
dτk. This is given by the fact that Pj←k + Pk←j is equal to Pc[{λ⃗i, µi}] with
cα = 1 ∀i, and µi = 0 ∀i ̸= j, k, which physically represents the average
power extracted from a heat engine operating between equal temperatures
(and therefore cannot be positive).
Using these properties, we show that with the only assumption of the dy-
namics being described by Eq. (2.23), it is possible to greatly simplify the
optimization of the GAP of thermal machines. We consider positive GAPs,
i.e. generalized average powers consisting of a positive linear combination
of the heat currents extracted from the different thermal baths (formally we
assume that cα ≥ 0 ∀α). This hypothesis includes both the average power
extracted from a heat engine (cα = 1 ∀α), and the cooling power of a refriger-
ator (cα = δα,N , with α = N labelling the coldest bath). We prove that [4], in
order to maximize a positive GAP, it is sufficient to consider a protocol with at
most one time interval per temperature; therefore L ≤ N . Moreover, if more
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than one heat current is neglected in the definition of the GAP, it is possible to
further reduce the number of intervals. Specifically, given κ ≤ N the number
of distinct temperatures of the baths for which cα ̸= 0, we prove that

L ≤ min(N,κ+ 1) . (2.28)

This implies that a refrigerator (κ = 1) is always characterized by L = 2,
regardless of the number of baths, while a heat engine (κ = N ) by L ≤ N .
In the following, for simplicity, we focus on the refrigerator and heat engine
case with two thermal baths at our disposal. As a consequence, L = 2. Under
this hypothesis, we find that:

(i) The optimal durations of the time intervals and the resulting maximum
GAPs can be determined as a function of the control parameters.

(ii) If the thermalization rates are a function of the bath αt, but only weakly
depend on the specific value of the other control parameters, i.e. Γ

λ⃗i
=

Γαi , and if we assume to have total control over the systemHamiltonian,
we can fully carry out the maximization of the GAP, finding that the op-
timal control strategies involve degenerate spectra of the Hamiltonian
of the working fluid.

Moreover, under the toy model hypothesis of (ii), we compare the GAP of
a heat engine and of a refrigerator delivered by N non-interacting qubits
[GAPNI(N)], with the GAP of N interacting qubits [GAPI(N)], finding that
there is a many-body advantage in the engine case (only!). All the details of
these results can be found in [4]. For completeness, we provide the analytical
expressions of the maximum power of a standard refrigerator and an engine
in the following.

Refrigerator Let us consider two inverse temperatures β1 and β2 such that
β1 < β2. The average cooling power of a refrigerator, P[R], is described by
the GAP with c2 = 1 on the cold bath while c1 = 0. Since L = 2, Eq. (2.24)
reduces to

P[R] =
µ1µ2Γλ⃗1

Γ
λ⃗2
P2←1

µ1Γλ⃗1
+ µ2Γλ⃗2

(2.29)

where µ2 = 1 − µ1. We can thus explicitly maximize the above expression
over the choice of the time fraction µ1, leading to

P
(max)
[R] =

Tr
[
H

λ⃗2

(
ω̃
λ⃗2

− ω̃
λ⃗1

)]
(√

Γ−1
λ⃗1

+
√
Γ−1
λ⃗2

)2 , (2.30)
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which is obtained for µ1 =
√
Γ
λ⃗2
/(
√
Γ
λ⃗2

+
√

Γ
λ⃗1
). Notably, the expression

of the maximum cooling power in Eq. (2.30) only requires a maximization over
λ⃗1 and λ⃗2, which in general is model dependent.

Engine Let us consider the same setting β1 < β2. The average extracted
power of a heat engine, P[E], is described by the GAP with c1 = c2 = 1. Since
L = 2, Eq. (2.24) reduces to

P[E] =
µ1µ2Γλ⃗1

Γ
λ⃗2

(P1←2 + P2←1)

µ1Γλ⃗1
+ µ2Γλ⃗2

(2.31)

It follows that the optimization over the time fraction µ1 is identical to that of
the refrigerator, see Eq. (2.29), leading to

P
(max)
[E] =

Tr
[(
H

λ⃗1
−H

λ⃗2

)(
ω̃
λ⃗1

− ω̃
λ⃗2

)]
(√

Γ−1
λ⃗1

+
√
Γ−1
λ⃗2

)2 , (2.32)

which is obtained forµ1 =
√

Γ
λ⃗2
/(
√

Γ
λ⃗2
+
√

Γ
λ⃗1
). Also in this case, Eq. (2.32)

only requires a model-dependent maximization over λ⃗1 and λ⃗2.

2.5 Discussion

In Ref. [4] we exhaustively discussed the optimization of thermal machines in
the fast driving regime for commuting Hamiltonians. We proved in full gen-
erality that the optimal protocols are universally given by generalized Otto
cycles, which are composed by a certain number L of infinitesimal time in-
tervals where the control is fixed. We then bounded L from above in terms
of the dimension of the Hilbert space of the working fluid. The proof holds
regardless of the specific choice of the control-dependent dissipators, of possi-
ble constraints on the control parameters, and regardless of the specific form
of the Hamiltonian of the working fluid. Moreover, the bound is shown to be
tight in general. We showed that the standard fast Otto cycle, characterized
by two quenches (L = 2) is optimal in a vast class of systems. Assuming
full control over the system, we explicitly found the optimal driving strategy,
which involves producing highly degenerate states, revealing an interesting
connection with the results of [122] and our [1], as well as being optimal for
thermometry (see Chap. 3). In [4] we also applied this optimal strategy to
compare the performance of a refrigerator and of a heat engine based on N
interacting and non-interacting qubits. In the refrigerator case, we found that
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the non-interacting qubits perform almost as well as the interacting ones; it
is therefore reasonable to consider constructing a refrigerator operating in
parallel many simple independent units. Conversely, in the heat engine case
we found a many-body advantage resulting in the enhancement of both the
maximum power, and of the efficiency at maximum power, which approaches
Carnot efficiency in the limit of many qubits.
Besides their theoretical relevance, from an operational point of view, the re-
sults derived in this work hugely simplify the numerical procedure of finding
optimal protocols, due to the intrinsic simplicity of the generalized Otto cycle.
This is somewhat analogous to what happens to control optimizations in the
slow driving regime (cf. Chap. 1), in which the driving is much slower than
the dissipative dynamics induced by the baths. These results show that, by
exploiting the concept of time scale separation, we can simplify the charac-
terization of the power generation in thermal machines. This simplification
can be exploited both for analytical and numerical treatments, such as the ones
showed in [4] and more. As future directions, it is interesting to assess the role
of coherence in the non-commuting case, and to understand for which classes
of systems the fast driving regime is optimal for power extraction. Further-
more, by providing strict bounds on optimal protocols, our results can be used
as benchmarks to assess if effects beyond the Markovian regime and weak
coupling approximation can indeed enhance, or decrease, the performance of
thermal machines (see for example our work [9], not included in this the-
sis). At last, it seems natural to investigate the properties of the fast-driving
regime respect to other thermodynamic figures of merit, such as the efficiency
at maximum power, or work fluctuations. We partially developed this goal in
the technical material of Ref. [12], which is not included in this thesis.
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Chapter 3

Engineering good
thermometers

This chapter is based on Ref. [8]:
“ P. Abiuso, P.A. Erdman, M. Ronen, G. Haack, F. Noé and M. Perarnau-Llobet, Discovery
of Optimal Thermometers with Spin Networks aided by Machine-Learning, arXiv preprint
2211.01934, (2022).”

3.1 Background: equilibrium thermometry

A fundamental operational task in thermodynamics is that of measuring tem-
perature, in order to correctly assess a system at thermal equilibrium. Such
problem enters in the general theoretical study of parameter estimation, which
gave rise to the modern field of quantum metrology [128, 129]. The typical
task in metrology is that of estimating one or more parameters θ⃗ which are
encoded in the state of a probe ρ

θ⃗
, via a given measurement scheme. It turns

out that this problem is intimately related to the geometry of the set of states
itself [130], via the so called Fisher informationmetric (cf. Chap. 4 and App. C).
Focusing on the estimation of temperature, we define the thermal sensitivity
of a system at thermal equilibrium, as the variation in the mean energy of such
a system per temperature change unit. Such a figure of merit is also termed
heat capacity of the system. More precisely, given a bath at some temperature
T = β−1 (we use natural units in which kB = 1), we set about by letting a
probe (the thermometer) ρ, fully thermalize with a thermal reservoir, resulting
in the Gibbs state for the probe

ρ −→ ωβ(H) :=
e−βH

Tr[e−βH ]
. (3.1)
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The heat capacity is then given by

C(H,β) := d
dT Tr[Hρβ(H)] = −β2 d

dβTr[Hρβ(H)] . (3.2)

Besides its relevance in temperature estimation (see below), the heat capacity
C is a fundamental thermodynamic property of physical systems: it has been
proven proportional to the maximum power a system can output in Carnot-
like engines [1, 39], and its critical behaviour is studied in phase transitions.
In the context of thermometry, C quantifies the maximum precision one can
get in estimating the temperature T via measuring the probe ρβ . That is, given
an estimator T̂ 1 of the temperature, the Cramér-Rao bound [76], specified to
the case of temperature estimation [40, 41], bounds the precision of any T̂ as

⟨(T̂ − T )2⟩
T 2

≥ (ν C)−1 , (3.3)

where ν is the number of i.i.d. repetitions of the experiment. Moreover the
bound can be saturated by performing energymeasurements. Notice that such
bound is valid only in the abovementioned typical scenario, with uncorrelated
repeated measurements of the fully thermalized probe. Other metrological
schemes can involve partially thermalized probes [40, 41].
An optimal thermometer, is therefore, in the above setting, a probe exhibiting
the maximal value of C. In such case the problem of optimal thermometry re-
duces to identifying, under physical constraints, systems having large C. Such
a problem has been addressed in terms of the Hamiltonian spectrum of the
probe in [42] that is, assuming the only constraints to be the (finite) Hilbert
space dimension of the thermal probe and a fully controllable Hamiltonian
spectrum otherwise. The resulting optimal spectrum consist in an effective
two-level system, with a single ground state and an exponential degeneracy
of the excited level. At the same time, no physical system construction on how
to realize the spectrum of such optimal Hamiltonian was given. It would be
therefore desirable to characterize optimal thermal probes under additional,
physically motivated assumptions. In particular, checking whether the opti-
mal probes can be built with realistic interacting systems that use only (i) 2-
body interactions, and possibly only (ii) short-ranged interactions. In Ref. [8]
we tackled this problem answering both questions affirmatively.

1An estimator T̂ (x1, . . . , xν) is a function of the ν stochastic outputs of the measurement
chosen for the estimation protocol.
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3.2 Spectrum-based thermometry optimization

Before going to the main results of Ref. [8], it is useful to understand the max-
imization of C that has been performed in [42] in terms of the Hamiltonian
spectrum, as well as additional considerations that we make below. In terms
of the eigensystem {Ei, |Ei⟩} of the probe’s HamiltonianH the state popula-
tions of ωβ(H) read

pi ≡ Z−1β e−βEi , with Zβ =
∑
i

e−βEi . (3.4)

so that ωβ =
∑

i pi |Ei⟩ ⟨Ei|. In such basis it is easy to verify from (3.2) that
the heat capacity is proportional to the energy variance of the thermal state,
that is

C(H,β) = β2∆2
βH , (3.5)

∆2
βH = Z−1β

D∑
i=1

E2
i e
−βEi −

(
Z−1β

D∑
i=1

Eie
−βEi

)2

. (3.6)

Such expression clarifies that the heat capacity only depends on the spec-
trum of the Hamiltonian H . Moreover, there is a clear scale-symmetry as
C(λH, λ−1β) = C(H,β). For this reason, we will often consider tempera-
ture units in which β = 1 and simply refer to C(H) := C(H,β = 1). Fi-
nally, here and throughout the work, we notice that a global shift in the en-
ergy levels makes no difference in the thermal state nor for the heat capacity
C(H) = C(H + c1). (c is any real number).
As mentioned above, the maximization of C of a generic D-dimensional sys-
tem at thermal equilibrium has been carried out in [42] assuming full-control
of the spectrum and its Hamiltonian,

Cspec
max(D) := max

H|dimH=D
C(H) (3.7)

The resulting optimal spectrum consists of a single ground state and a (D−1)-
degenerate excited state, that is

Hdeg = 0 |0⟩ ⟨0|+
D−1∑
i=1

E |i⟩ ⟨i| , (3.8)

with an optimal gap x = βE in temperature units that satisfies the tran-
scendental equation ex = (D−1)(x+2)

(x−2) . The corresponding heat capacity is
Cspec
max(D) = x2ex(D − 1)/(D − 1 + ex)2 [42]. This expression gives in the
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asymptotic regime of large probes (D → ∞) x ≃ lnD, hence

Cspec
max(D) ≃ (lnD)2/4 . (3.9)

Consider now the case in which the system is composed by N constituents.
For reasons that will become clearer later we consider units with minimal
dimension, i.e. a system made of N (quantum) bits. It follows that

D = 2N , (3.10)

thus the theoretical bound of [42] translates in this case to

Cspec
max(2

N ) ≃ N2(ln 2)2

4
, βE ≃ N ln 2 , (3.11)

for N ≫ 1, i.e., yielding a quadratic scaling in the number of particles. This
“Heisenberg-like" scaling of the thermal sensitivity is to be confronted with
the typical extensive behaviour of the heat capacity (i.e. linear in N ).
Without any restriction on the possible interactions among the N spins it is
always possible to generate the Hamiltonian (3.8) and saturate the theoretical
maximum value Cspec

max of the heat capacity (see e.g. [131], where the authors
make use of arbitrary N -body interactions).
The question we address in [8] is what happens if we restrict ourselves to
physically motivated Hamiltonians, which cannot have arbitrary spectrum in
general. To solve this problem, it is useful to understand the origin of the N2

scaling, that is what features of the ideal Hamiltonian (3.8) are relevant. The
peculiarity of the degenerate model (3.8) can be appreciated in terms of the
thermal ground state probability

p0 =
1

1 + (D − 1)e−βE
, D = 2N . (3.12)

At low energies, the value of p0 is ∼ 0, meaning that in the thermal state,
the population is spread evenly in the degenerate excited subspace until E ∼
(N ln 2)/β, where it “suddenly" climbs to ∼ 1. This transition has width
∼ 1/β, where the system experiences the peak in heat capacity, while for
smaller (resp. larger) values of E, the whole population collapses to the ex-
cited subspace (resp. ground state), with no energy variance. As the optimal
gap is linear in N , the resulting variance scales quadratically. It should be
noticed that a similar scaling is obtained also when substituting an effective
dimension that scales exponentiallyD′ ∝ θN for any θ > 1. In such case one
would obtain Cspec

max(θN ) ≃ (N ln θ)2/4. That being, the exponential (in N )
degeneracy of the first excited level is the first main ingredient for a system
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exhibiting such quadratic scaling of the heat capacity. Thanks to the follow-
ing lemma, which we prove in Appendix B, such a condition is also sufficient,
i.e., if one can generate a single ground state and an exponentially degenerate
first excited state, albeit not necessarily (2N − 1)-degenerate, the obtainable
maximal heat capacity scales quadratically in N .

Lemma 1. Consider two Hamiltonians,H1 andH2, such thatH1 has 1 ground
state and a k1-degenerate excited state (k1 + 1 levels in total), whileH2 has the
same spectrum and additional excited states above (totaling 1 + k1 + k2 levels),

H1 = 0 |0⟩ ⟨0|+
k1∑
i=1

E |i⟩ ⟨i| , (3.13)

H2 = 0 |0⟩ ⟨0|+
k1∑
i=1

E |i⟩ ⟨i|+
k1+k2∑
α=k1+1

Eα |α⟩ ⟨α| , (3.14)

with 0 ≤ E ≤ Eα ∀α. Assuming control over the first excited gap E, the
maximum heat capacity obtainable withH2 is always larger than the maximum
heat capacity obtainable with H1.

max
E

C(H1) ≤ max
E≤Eα

C(H2) . (3.15)

That is, additional excess levels above the k1-degeneracy of H1 can only in-
crease the maximal heat capacity. Notice that the control over E, while keep-
ing Eα ≥ E ∀α, can be easily obtained by rescaling all the parameters of H1

orH2 globally. The proof of the lemma is given in the technical material of [8]
and in App. B.

What to look for in an ideal thermometer. Following from the above
discussion we know what is the desired spectrum in any constrained maximi-
sation of the heat capacity, that is, a single ground state and the largest possible
degeneracy of the first excited level, regardless of the value of larger levels. As
the system size grows, any model featuring an exponential degeneracy of the
first excited level and a tunable gap, will show the desired Heisenberg-like
scaling of the heat capacity.

3.3 Optimal spin thermal probes

According to the above discussion, in Ref. [8] we tackled the problem of max-
imising the heat capacity of realistic systems, that is, engineering the best ther-
mometer. To address the question, we chose as a platform a generic system
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of spins, such as those currently programmable in quantum annealers, whose
thermodynamics is starting to be studied [43–45], andwhich represent flexible
physical devices with a high degree of control. Motivated by real-life feasibil-
ity, we require the interactions among the spins to be two-body typed. In the
case of a classical system, this means that the general N -spins Hamiltonian
we will consider is of the kind

H =
N∑
i

hiσ
z
i +

N∑
i<j

Jijσ
z
i σ

z
j . (3.16)

We considered also the case of fully quantum-mechanical spin Hamiltonians.
However, numerical evidence showed that no relevant advantage is given by
adding off-diagonal interactions involving σx and σy terms to the Hamilto-
nian (3.16). Moreover, let us mention that although (3.16) allows, in principle,
to connect any two spins with an interaction of strength Jij , Hamiltonians
with short-range interactions are strongly desirable for such systems to be
scalable in size.
In the following, we showcase the main results of [8]. There, we demonstrated
that it is possible to design a thermal probe (“Adam model") consisting of N
interacting spins that approximates the maximum value Cspec

max of the thermal
sensitivity (3.11). Moreover, restricting ourselves to short-range interactions,
we showed that it is still possible (“Abel model") to obtain a heat capacity ex-
hibiting the same scaling as (3.11) with a prefactor that can be made arbitrarily
close to the maximum.

3.3.1 Adam model

We maximised numerically C(H) using Eq. (3.6) and constraining H to be
of the form (3.16). More precisely (see details in [8]), using techniques com-
monly employed in the machine learning community, the numerical routine
starts from a random choice of the hi and Jij parameters in (3.16), and reit-
eratively improves them. At each iteration, we compute the gradient of C(H)
with respect to hi and Jij using backpropagation [132], and we use the Adam
optimizer (Adaptive Moment Estimation) [133] to update the parameters us-
ing the gradient. The Adammethod is similar in spirit to gradient descent, but
includes various improvements and is often found to converge better. After
repeating the optimization for different total numbers of spins N , a recurrent
pattern emerged, which we dub "Adam model" and describe here.
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...

Figure 3.1: Schematic representation of the Adam model (cf. Hamiltonian (3.17).

Let us consider the following system Hamiltonian describing particular cou-
pling choices for N spins (labeled from 1 to N ) in (3.16)

HAdam[N ](a, b) := a σz1 + b

N∑
i=2

σzi (1+ σz1) , (3.17)

where a and b are two coefficients. A representation is given in Fig. 3.1. The
resulting spectrum has 2 main classes of eigenstates. First,

(
N−1
k

)
-degenerate

states with energy

Ek = a+ 2b(k − (N − 1− k)), for k = 0, . . . , N − 1 , (3.18)

corresponding to the first spin being up σz1 = 1 , and k spins up among the
remaining N − 1 ones. If instead the first spin is down σz1 = −1, we get a
2N−1 times degenerate excited state at energy

Edeg = −a . (3.19)

That is, the simple topology and choice of the couplings in (3.17) makes the
first spin σz1 being able to “switch on and off” the effective magnetic field on
the remaining spins, generating an exponential degeneracy of the Edeg level.
Moreover, it is easy to see that by choosing

b > 0 and b(N − 3) ≤ a < b(N − 1) (3.20)

one ensures

E0 < Edeg ≤ Ek for k = 1, . . . , N − 1 . (3.21)

That is, a single ground state, and 2N−1-degenerate first excited level. By
saturating b(N − 3) = a one gets Edeg = E1 totalling a 2N−1 + N − 1
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Figure 3.2: Schematic representation of the Abel model (cf. Hamiltonian (3.24). In
the Abel model the total number of spins is N = n(m+ 1).

degeneracy for the first excited 2. Notice that Lemma 1 ensures that such
model can achieve at least the heat capacity Cspec

max(2N−1), that is

Cspec
max(2

N−1) ≤ CAdam[N ]
max ≤ Cspec

max(2
N ) , (3.22)

which in the asymptotic limit

CAdam[N ]
max ≳

(N − 1)2(ln 2)2

4
(3.23)

becomes indistinguishable from the theoretical bound Cspec
max(2N ) (3.11) (cf.

Fig. 3.4).

3.3.2 Abel Model

As the Adam model arises from an unconstrained numerical optimization of
C for Hamiltonians of the form (3.16) (cf. above Sec. 3.3.1), we conjecture it to
be the global optimum for such class. At the same time, in physical implemen-
tations, the star-shaped connectivity of (3.17) (cf. Fig. 3.1) cannot be scaled to
any number of particles. For this reason, we generalized the Adam model to a
similar configuration that only has short-range interactions, the Abel model.
Specifically, inspired by the Adam model, we consider N = n(m + 1) spins
with Hamiltonian (as from Figure 3.2)

2We conjecture that 2N−1 + N − 1 is the maximum obtainable degeneracy of the first
excited level, in Hamiltonians of the form (3.16) with a single ground state.
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HAbel[N ](aα, J, b) :=
∑
α

aασ
z
α − J

∑
α

σzασ
z
α+1 + b

∑
α,i

(σzα + 1)σzα,i ,

(3.24)

where α is the index identifying the central spin of each Adam-like sub-unit,
while (α, i) selects the ith spin in each sub-unit, i.e.

α = 1, . . . , n , i = 1, . . . ,m . (3.25)

This model guarantees a 2n↓m degeneracy for each energy level with n↓ α-
spins. In particular, when all the α-spins are down, i.e. σzα = −1 ∀α, it obtains
a 2mn degeneracy. At the same time, one needs to make such configuration
to be the first excited state, with a single ground state. One way to do this is
by making the couplings J strong enough to force all the n α-spins to be the
same. In such case one is left with two configurations that is σα = 1 ∀α, or
σα = −1 ∀α. In the first case, one has E =

∑
α aα + 2b

∑
α,i σα,i while in

the second case E = −
∑

α aα with degeneracy 2nm. Calling then
∑

α aα :=
h, we have

2mn levels with E = h+ 2b
∑
α,i

σα,i , − (n− 1)J (3.26)

2mn levels with E = −h− (n− 1)J , (3.27)

and (2n− 2)2mn remaining neglected levels. Notice that Eq.s (3.26) and (3.27)
effectively recreate the same spectrum of the Adam model, with N ′ = nm
(instead of N ′ = N − 1). Thanks to the Lemma 1, we know that such model,
by choosing correctly the couplings, can get a heat capacity at least as large of
that of a system having 1 ground state and 2mn +mn degeneracy of the first
excited. This is done by choosing

−h = h− 2bmn+ 4b→ b(mn− 2) = h . (3.28)

With such choice one gets Cmax ∼ (ln(2mn+mn))2

4 ≃ 1
4(ln 2)

2(mn)2 which is
essentially quadratic in N = n(m+ 1), i.e.

CAbel[N ]
max ≳

(
m ln 2

2(m+ 1)

)2

N2 . (3.29)

Remark 1. It is clear from (3.29) how larger values of m increase the ob-
tainable heat capacity. For m = N − 1 the Abel model coincides with the
Adam model (n = 1, cf. Fig. 3.1). For short range interactions there will be
a maximum m allowed. We notice that for m = 3, the Abel model could
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Figure 3.3: Embedding of the Abel model form = 3 (see Fig. 3.1) into the Chimera
graph, which is used by D-Wave Systems [134]. Dotted lines are unused couplings of
the Chimera architecture.

be programmed on current D-Wave annealers, as the topology of the interac-
tions of (cf. Fig. 3.1 and Fig. 3.3) can be embedded, form = 3, in the Chimera
graph, corresponding to the D-Wave processors [134]. This means that, as
from (3.29), a programmable spin network in the Chimera graph can reach
at least ∼ m2

(m+1)2
= 9/16 of the overall bound Cspec

max(2N ) (3.11). Moreover,
surprisingly, numerical optimization of the C for the Chimera model results in
the Abel model withm = 3 [8].

Remark 2. We point out an unexpected practical feature of both the Adam
and Abel model. In bothmodels, when performing the temperature estimation
via energy measurements, it is enough to measure a single spin. In fact, in the
regime of large N , the only relevant energy levels contributing to the Gibbs
state are the ground level and the first excited (levels above are exponentially
suppressed in the statistics), which are indicated by the value of σz1 for the
Adam model (3.17), or any of the σzα in the Abel model (3.24).

3.4 Spin probes comparison

As a results-summary, in Figure 3.4 we compare the maximum values of the
heat capacity C for different models of spin Hamiltonians, as the number N
of spins grows. The Adam and Abel models show a quadratic scaling in N
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that eventually surpasses all standard models – such as the Ising model in
1D (and 2D), as well as a model of uniform “all-to-all" interactions – as these
show instead the standard thermodynamic extensive scaling (i.e., linear inN )
of the heat capacity. We briefly describe each of the compared models in the
following paragraphs.

Figure 3.4: Maximum heat capacity Cmax and its scaling for N spins employed in
different models of interaction. Both the Adammodel and Abel model show aHeisen-
berg scaling∝ N2 of the optimal sensitivity, therefore outperforming standard mod-
els that have an extensive scaling of C. For N ≥ 6 the Adam model is numerically
optimal among all possible spin Hamiltonians (3.16), and asymptotically saturates the
mathematical bound 3.11.
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Ising Lattices. The 1D Ising model stands as the most superficial candidate
for a spin graph thermometry probe. For N spins it is defined by the Hamil-
tonian

H1D (⃗h, J⃗) := −
N∑
i=1

hiσ
z
i −

N∑
i=1

Jiσ
z
i σ

z
i+1, (3.30)

where we chose periodic boundary conditions σN+1 ≡ σ1. The heat ca-
pacity in such model can be efifciently computed from with standard tech-
niques [135]. Numerically maximizing it leads consistently to homogeneous
interactions Ji,j = J and local fields hi = h. As expected, an Ising chain
probe will at most achieve a linear scaling of the heat capacity in N , as seen
in Figure 3.4. Notice that a 2-dimensional Ising model can achieve a slightly
higher scaling i.e. C ∝ N lnN [136, 137].

All-to-All Model We considered also a model that is completely symmetric
under permutations, with all-to-all interactions, i.e.

HAll(h, J) := −h
N∑
i=1

σzi − J
∑
i<j

σzi σ
z
j , (3.31)

describing a complete graph with homogeneous interactions J > 0 and lo-
cal fields h > 0. Taking the systems’ symmetries in to account we get the
following

(
N
k

)
-degenerate eigenenergies for k ≤ N up-spins:

Ek = h(N − 2k) +
J

2
[4k(N − k)−N(N − 1)] . (3.32)

This expression makes it easy to visualize the spectrum and the correspond-
ing degeneracies. The All-to-All-models’ spectrum shows pairs of sufficiently
proximate excited states, although not exponentially degenerate [8]. In fact,
for smallN ≤ 5 the All-to-All model appears to have the highest heat capacity
among the considered models (see inset in Fig. 3.4) and consistently emerged
from numerical optimisation in the same regime.

3.4.1 k-SAT model and the exponential degeneracy

Finally, we notice that in Refs. [50, 138] an Hamiltonian replicating a global
AND-operation betweenM logical bits (represented byM spins) was intro-
duced, with the aid of M additional ancillary spins. Such Hamiltonian was
proposed as the basic element to build general models to solve k-SAT prob-
lems. We will thus refer to it as the k-SAT model. A logical AND identifies
a single string (without loss of generality, the string given by 111 . . . 1, M
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Model 1st excited deg. Asymptotic Max. C Short-range?

k-Sat [50] 2
N
2 − 1 ∼ (ln 2)2

4
N2

4 ✗
I

I

Adam 2N−1 +N − 1 ∼ (ln 2)2

4 (N − 1)2 ✗
I

I

Abel 2
mN
m+1 + mN

m+1 ∼ (ln 2)2

4
m2N2

(m+1)2
✓
I

I

Table 3.1: Models recreating an effective spectrum with a single ground state and
an expontially degenerate first excited level, plus additional levels above. Both Adam
and Abel perform better than the k-Sat model, in terms degeneracy of the first excited
level. This is reflected in the value of the maximal heat capacity C (cf. Fig. 3.4).
Moreover the Abel model has the additional feature of being short-ranged.

times) with an energy EAND different from the energy EAND associated to
all the other 2M − 1 logical strings. Formally, this spectrum coincides with
the ideal two-level degenerate model (3.8). At the same time, the construction
uses a total N = 2M of spins. This means that the Hamiltonian proposed
in [50, 138] exhibits the desired single ground state and exponential degener-
acy of the first excited level, thus achieving a quadratic scaling of the max-
imum C (cf. Fig. 3.4).However, the effective dimension of the logical spins’
system is D′ = 2N/2, while considering the ancillary spins the whole space
has dimension D = 2N (the neglected levels correspond to energies that can
be made arbitrarily high, see [50]). In other words, an overhead ofM = N/2
spins was used to achieve a spectrum with single ground state and ∼ 2N/2

degeneracy of the first excited level. The models proposed in our work (Adam
and Abel) achieve the same while using a much smaller overhead, that is, a
1-spin overhead for the Adam model and aN/(m+1)-spins overhead for the
Abel model. In table 3.1 we compare these quadratic models.

3.5 Discussion

In Ref. [8] we took on the problem of maximising the heat capacity C of phys-
ically feasible systems. From the operational point of view, this corresponds
to engineering the best probe for temperature estimation, in the context of
equilibrium thermometry. We showed that it is possible to engineer sim-
ple probes based on interacting spins that can approximate asymptotically
(i.e. in the limit of large size) the maximum mathematical of C based on the
sole Hilbert space dimension, which was found in [42]. That is, we showed
that such thermal sensitivity can essentially be achieved via 2-body interac-
tions (Adam model, Sec. 3.3.1). Additionally, an arbitrary good approximation
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can be achieved also when requiring short range interactions (Abel model,
Sec. 3.3.2).
In terms of Hamiltonian spectrum engineering, by generalizing some of the
results of [42], we showed that the essential requirement for an optimal ther-
mal probe made of N constituents, is the presence of a single ground state
and the exponential (in N ) degeneracy of the first excited level, indepen-
dently of higher spurious levels. This effective two-level spectrum appears not
only in problems of heat capacity maximisation, but also in thermometry out
of equilibrium [139], Otto cycles optimization [4, 122], protein folding mod-
elling [46, 47], adiabatic Grover’s search [48, 49], and energy based boolean
functions [50]. We thus speculate that our work might have application in
these subjects.
In particular our Abel model can be programmed on current quantum anneal-
ers. An experimental demonstration is therefore at hand. At the same time,
it is important to assess possible noise-sources and noise-tolerance (which is
partially assessed in [8]) of our results, as well as taking into account the ther-
malization timescale, which depends on the specifics of the experiment.
Another interesting direction would be that of engineering "critical" probes
to study artificial phase-transitions, or meant to measure different parameters
(such as the magnetic field). Finally, similar problems could be studied on
different physical platforms, such as cold atom arrays.
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Part II

Tasks in Information Theory:
geometry and optical

proposals
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The following part of the thesis is devoted to the analysis and optimisation
of operational tasks that belong to the field of Quantum Information Theory,
specifically in the areas of QuantumMarkovianity, Quantum Nonlocality, and
entanglement witnessing.

First, in Chapter 4, we study memory effects in open systems dynamics. The
regime inwhich a systemmonotonically loses information to a (typicallymuch
bigger) environment is dubbed Markovian regime. Markovian dynamics, or
Markov models, have been studied for more than a century and are typi-
cally introduced as those probabilistic dynamics whose update in time does
not depend on the complete history of the state’s evolution (in this sense
is memoryless), but rather only on the immediately previous time-step, i.e.
P (ik, tk|jk−1, tk−1; jk−2, tk−2; . . . ) = P (ik, tk|jk−1, tk−1) .While in the clas-
sical case the set of Markovian evolutions is well defined by the above equa-
tion, such conditional probabilities are not well defined in quantum scenarios,
whichmakes the definition ofMarkovian dynamics for quantum open systems
non-trivial [53, 54, 140]. A condition that is equivalent, in the classical case,
at the level of single-time tomography [53], and is canonically extended to
the quantum scenario, is that of stochastic-divisibility. That is, Markovian are
those physical processes in which each intermediate evolution between two
times t2 > t1 satisfies the same mathematical properties of the total evolution
from time 0 to t, which is dubbed “stochastic”. Markovian models are ubiqui-
tous in the mathematical modelling of physical processes, bio-processes, eco-
nomics etc.. At the same time, non-Markovian effects are of interest from the
theoretical point of view, both for understandingwhen theMarkovian approx-
imation breaks down, and to explore its (possibly beneficial) effects in different
operational tasks.
The theoretical study of Markovian and non-Markovian dynamics has there-
fore two fundamental objectives: i) the full characterization ofMarkovian evo-
lutions from the mathematical point of view, and ii) the collection of prac-
tical tasks that can be boosted by non-Markovian effects during the evolu-
tion. We contribute to both purposes, by analysing the behaviour of the Fisher
Information [56], which is a distance-based quantifier of information whose
mathematical and operational properties have been intensively studied both
in mathematics and physics. We characterise completely the relation between
the variation of Fisher Information in time, the underlying geometry of the set
of states, and information revivals in the several operational tasks to which
the Fisher Information is associated (state discrimination, error correction,
metrology, etc.) [7].



88

Secondly, in Chapters 5 and 6, we move to the field of Bell nonlocality, or sim-
ply nonlocality. Broadly speaking, nonlocality studies the gap between the
statistical structure of local hidden variable models and quantum mechanics.
That is, given the probabilistic outputs of an experiment whose devices are
left uncharacterized, nonlocality studies if the resulting probability distribu-
tion is compatible with an underlying classicality of the unobserved sources
and measurements, or not, with minimal assumptions regarding the causal
separation among different parts of the experiment. It was first formalised
by Bell [58] in the simple scenario of two non-communicating parties, Alice
and Bob, performing experiments locally in their laboratories, with the pos-
sibility of previously distributing shares of a common random source, which
might be classical or quantum [59]. Nonlocality experiments are of great in-
terest both for their relevance in the foundations of quantum mechanics and
for their technological applications in communication theory, cryptography,
randomness generation, entanglement certification, and others. At the same
time, experiments in this area are typically quite challenging, as they rely on
the strongest forms of entangled states andmeasurements, and are easily frag-
ile to noise.
Accordingly, we consider optimization of theoretical nonlocal tasks as bring-
ing them closer to technological feasibility, particularly using quantum optics.
More precisely, we study variations and relaxations of the original Bell sce-
nario that make an experimental realisation of nonlocal experiments suitable
for simple photonic platforms.
In particular, in Chap. 5 we design an experiment that is able to demonstrate
the nonlocality of a simple class of entangled states by using only standard
passive optics. The maximally entangled state |ψ+⟩ := |01⟩+|10⟩√

2
can be en-

coded in the Fock basis on two different modes, in particular with a single
photon being in a superposition of being sent in two different directions. This
is perhaps the simplest entangled state that can be created easily in a labora-
tory, by heralding a single photon and sending it to a balanced beamsplitter
(i.e. with transmissivity = reflectivity = 50%). This state cannot violate Bell
locality when using measurement apparatuses consisting only of simple pas-
sive optics (cf. Chap. 5). Nevertheless, we study its nonlocal properties in the
network scenario. In fact, the field of nonlocality has been generalized to the
case of general causal networks of parties sharing unobserved classical/quan-
tum sources, which show a range of new phenomena [60] with respect to the
standard Bell scenario. In particular we provide an experimental proposal in
which single photon entangled states can violate locality in the triangle net-
work without using additional photon-field excitations in the measurement
apparatus.
In Chapter. 6 instead, we study a different relaxation of the Bell scenario, in
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which parties A and B are allowed to input verified quantum states in their
laboratories, therefore assuming additional level of trust in their experiment
with respect to the standard Bell experiment. In fact, the Bell scenario is some-
times referred to as the Device-Independent (DI) scenario, as it does not as-
sume any particular form of the devices and sources used byA andB. Allow-
ing for trusted quantum inputs leads to the so called Measurement-Device-
Independent (MDI) scenario [64], which offers the possibility of certifying en-
tanglement of any entangled state [65], something impossible in the standard
Bell scenario. Among our results we use this framework to design an experi-
mentally friendly MDI entanglement witness for all entangled gaussian states,
which can be realised using only standard linear optics and homodyne detec-
tion.
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Chapter 4

The geometry of
(non-)Markovianity and
information flow

This chapter is based on Ref. [7] :
“P. Abiuso, M. Scandi, D. De Santis and J. Surace, Characterizing (non-)Markovianity

through Fisher Information, arXiv preprint 2204.04072, (2022).”

4.1 Background: Markovianity

QuantumMechanics postulates that the evolution of an isolated system is uni-
tary. At the same time, isolated systems are difficult to confine in a laboratory,
and even more difficult to encounter in nature. Virtually any system evolves
interacting with external degrees of freedom, that typically belong to a much
larger environment. For these reasons it is of paramount importance for physi-
cists to study and understand open systems dynamics [51, 141].
The information contained in an evolving open system may undergo two pos-
sible dynamical regimes, dubbed Markovian or non-Markovian. Markovian
evolutions are characterized bymemoryless environments, where at each time
the dynamical trajectory can be represented by physical transformations that
solely depend on the immediately previous time step [51, 141]. It follows that
in this regime the information contained in the system undergoes a mono-
tonic degradation, being dispersed into the environment irreversibly. On the
other hand, non-Markovian dynamics are distinguished by memory effects,
meaning that at any time the evolution might in general depend on all the
previous time steps of the trajectory. This property allows information to flow
back into the system. This regime attracted interest both at a theoretical level,
as well as for its operational consequences in various quantum information
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scenarios, such as for quantum key distribution [142], metrology [143], en-
tanglement generation [144], quantum communication [145], quantum tele-
portation [146], quantum thermodynamics (cf. our Ref. [9], which we did not
include in this thesis).

4.1.1 Mathematical description

Consider first the case of finite-dimensional classical dynamics. In such case
the state of a system is defined by a probability vector p, having components
pi that represent the probability of the system being in the microstate i. It
follows that the set of states is given by the symplex S(RN ) defined as

S(RN ) := {p ∈ R
N |pi ≥ 0 ∧

∑
i

pi = 1} . (4.1)

The dynamics can be represented as a linear 1 map acting on the set of states.
More precisely, a stochastic map (or channel) T (t,0) is a linear operator that
evolves p, from a time 0 to t,

T (t,0)[p(0)] = p(t) . (4.2)

It follows, from the requirement of mapping any positive normalized vector
to a positive normalized vector, that for every t,∑

i

T
(t,0)
ij = 1 , T

(t,0)
ij ≥ 0 ∀ i, j . (4.3)

In fact, the elements T (t,0)
ij can be interpreted as the conditional probability

of ending up in microstate i at time t starting from j at time 0, i.e. T (t,0)
ij =

P (i, t|j, 0).
We call evolution a family of stochastic maps parametrized by time, i.e. T :=
{T (t,0)|0 ≤ t}. Assuming the channel to be continuous and differentiable in
time, as well as invertible 2, one can define the intermediate channel T (t,s)

between two increasing times s and t as

T (t,s) ≡ T (t,0) ◦ T (s,0)−1 , t ≥ s ≥ 0 . (4.4)
1The linearity of themap follows from consistencywith the physical possibility of preparing

convex mixtures of states.
2Invertibility of themaps can can be always physically satisfied by introducing undetectable

ε-noises to the dynamics.
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Channels with these properties constitute the class of smooth evolutions. A
smooth evolution T is called stochastic-divisible or Markovian [53, 141] if for
any partition of the interval [0, t] it can be split into intermediate channels, all
of which are stochastic

T (t,0) = T (t,tk−1) ◦ T (tk−1,tk−2) ◦ · · · ◦ T (t1,0) . (4.5)

More precisely, Markovian evolutions are multi-time processes {t0, t1, . . . }
where the evolution of the state only depends on the latest previous sampling
of it, i.e.

P (ik, tk|jk−1, tk−1; jk−2, tk−2; . . . ) = P (ik, tk|jk−1, tk−1) , (4.6)

from which the dynamics is said to be memoryless. This condition is equiv-
alent to Eq. (4.5) when restricting the tomography of the dynamics to two-
times probabilities 3, such as the case of quantum dynamics, in which single-
shot measurements inevitably interfere with the dynamics. It should be there-
fore kept in mind that we will identify Markovian evolutions with stochastic-
divisible evolutions.

The case of quantum dynamics. In the case of (finite-dimensional) quan-
tum dynamics, a state is represented by a density matrix ρ, that is, a posi-
tive definite matrix acting on a complex Hilbert space CN , with unit trace.
As such, one could define physical evolutions as those linear superoperators
that map normalised density matrices to normalised density matrices, simi-
larly to (4.3) above. These form the class of Positive Trace Preserving (PTP)
superoperators [51, 54]. It turns out, however, that when considering multi-
partite systems with trivial dynamics on ancillary degrees of freedom, there
exist quantum (entangled) states ρAB and PTP maps T which, when consid-
ered together with the trivial dynamics of the ancillary degrees of freedom,
stop being positive. That is, T is PTP, but T ⊗ 1 is not PTP (1 is the identity
operator) and it exists a bipartite state ρAB ≥ 0 such that TA ⊗ 1B[ρAB] is
not positive definite. For this reason, physical maps for open quantum sys-
tems are defined to be those maps that are PTP and for which any extension
T ⊗1with trivial dynamics on ancillary degrees of freedom is also PTP. These
superoperators form the class of Completely Positive Trace Preserving (CPTP)
maps [51]. It can be proven that CPTP maps coincide with those evolutions
arising from unitary interactions with an environment and partial trace on
the system of interest [147]. This mathematical phenomenon property has

3More precisely, Eq. (4.6) implies Eq. (4.5). Viceversa, when multi-time probabilities are not
accessible beyond the two-point conditional P (i, tk|j, tl), any dynamics satisfying (4.5) can be
represented by a Markovian process (4.6). For a detailed analysis, see [53].
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Figure 4.1: Pictorial representation ofMarkovian and non-Markovian dynamics, and
the witnessing of non-Markovian effects. The typical approach consists in finding
an information quantifier that decreases under stochastic maps (CPTP maps in the
quantum case). According to Eq. (4.5), such quantifier decreases monotonically if the
evolution is Markovian. A non-monotonic behaviour of such quantity, i.e. a backflow
is therefore a witness of non-Markovianity.

no counterpart in the classical domain, where it exists no gap between PTP
and CPTP maps. Accordingly, a quantum evolution is a family of CPTP maps
parametrized by time T := {T (t,0)|0 ≤ t} acting on density matrices, giving
rise to the evolution T (t,0)[ρ(0)] = ρ(t).
Although the definition ofMarkovianity in quantumdynamics is debated [140],
in analogy to Eq. (4.5), in this manuscript we adopt the canonical definition of
quantum Markovianity as CP-divisibility [53], i.e., T is said to be Markovian
if for any partition of the interval [0, t], it can be written as the composition
of intermediate maps that are CPTP.

4.1.2 Non-Markovianity detection

The complete characterization of non-Markovianity passes through the clas-
sification of the possible information backflow phenomena that these evo-
lutions can offer. This task is at the core of the non-Markovian witnessing
problem [53, 54]. More specifically, one needs to find information quanti-
fiers and specific initializations of the system (which may include ancillas)
that are able to signal the non-Markovian nature of the evolution via revivals
of an otherwise monotonically decaying information, see Fig. 4.1. Different
quantifiers have been considered in this context, such as for state discrimi-
nation [55, 148], channel capacity [149], volume of accessible states [150] and
correlations [151, 152]. This approach allows to understand how we can gain
benefits from non-Markovian evolutions and, at the same time, it is committed
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to test the correspondence between its phenomenological and mathematical
definition.
The most typical quantifier canonically used in the community is the trace
distance. In the classical case 4, it is given by

DTr(p, q) = |p− q| =
∑
i

|pi − qi| , (4.7)

where p and q are two classical probability distributions. Such distance quan-
tifies the distinguishability between the states p and q, as the error probability
of distinguishing the two in a single-shot measurement is lower bounded by
Perr =

2−|p−q|
4 [52]. Moreover, this quantity decreases under physical maps,

leading to a monotonic decrease for Markovian evolutions [53]. Hence, one
consequence associated to the loss of information due to Markovianity is a
continuous decrease in the ability of an agent to discriminate between any
two states.
Still, the effects linked to Markovianity go well beyond what can be quantified
by the trace distance alone. In the followingwe study an alternative quantifier:
the Fisher information distance.

4.2 Background: Fisher metric and Fisher Informa-
tion

The Fisher distance can be defined from its value between two infinitesimally
close points. That is, given a small perturbation |d| ≪ 1 it reads

D2
Fish(p,p+ d) ≃ ⟨d,d⟩p :=

1

2

∑
i

d2i
pi
, (4.8)

where we define the Fisher scalar product ⟨a, b⟩p :=
∑

(aibi)/(2pi). Notice
that such metric coincides with the differential of the square root of p. That
is, at leading order,

D2
Fish(p,p+ d) = 2|√p−

√
p+ d|2 . (4.9)

This means that the Fisher metric maps the set of states from the symplex
S(RN ) to a sphere sector, via the change of variabley =

√
p [56,130]. Accord-

ingly, integrating Eq. (C.3) over the space of states one can obtain the general
expression of the distance DFish(p, q) =

√
2 arccos (

√
p · √q) [56, 153].

4Similarly, in the quantum case,DTr(ρ, σ) := Tr[|ρ− σ|].
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The Fisher distance between two infinitesimally close points is sometimes
called Fisher Information 5. Besides its interesting mathematical properties,
this quantity has numerous operational interpretations: inmetrology it is used
to derive the Cramér-Rao bound [76, 154], a fundamental limit on the preci-
sion with which a parameter can be estimated; it quantifies the asymptotic dis-
tinguishability between multiple copies of two states (Chernoff bound [155]);
moreover, it also arises as the infinitesimal expansion of the relative entropy
[156] (in fact, it can be shown that any f -divergence locally behaves as the
Fisher information [157]).
The relation between Fisher metric and Markovianity has been previously
partially analyzed [158]. In fact, a key characterisation of the Fisher metric
is given by the Chentsov’s theorem: this says that the Fisher information is
the unique Riemannian metric that contracts under the action of all stochastic
maps [56, 57, 159].
This is the starting point of our work in Ref. [7]. In particular, we study
whether this strong relation between stochasticity and contractivity of the
Fisher information can be reversed. That is, is it true that a map is Markovian
if and only if it contracts monotonically the Fisher information? What are the
operational consequences of the contraction/dilation of such metric?

Remark In the following we will concentrate mostly on classical dynamics
for simplicity. At the same time, all the discussion and results can be gen-
eralized to the quantum scenario. This requires, besides, the identification of
Markovian and non-Markovian dynamics on quantum states, also the general-
isation of the Fisher distance. By generalizing Chentsov’s theorem, Petz [160]
found that, whereas the Fisher information distance is uniquely defined for
classical systems, the presence of non commutative observables allows only
for the definition of a family of Fisher information in the quantum case. In Ap-
pendix C we quickly review the different Quantum Fisher distances and the
resulting Quantum Fisher informations. For the following discussion and re-
sults, it is enough to stress that although not uniquely defined, when restricted
to the semiclassical limit case of quantum states that commute, all Quantum
Fisher distances collapse onto the same classical Fisher distance.

5More precisely, the Fisher Information is the parametric derivative of the Fisher distance,
when the state pθ is parametrized by some variable θ [130]. That is, the Fisher Information is
equal to

lim
δθ→0

D2
Fish(pθ,pθ+δθ)

δθ2
.
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4.3 Rate matrix decomposition of Markovian evolu-
tions

From its definition (4.4), it is easy to verify that T (t,s) still satisfies
∑

i T
(t,s)
ij =

1 ∀j, which can be equivalently rewritten as

T
(t,s)
jj = 1−

∑
i ̸=j

T
(t,s)
ij ∀j , (4.10)

and corresponds to the requirement that the dynamics preserves the normal-
isation. In the limit of infinitesimal time-steps, a smooth evolution T (t,0) is
generated by the rate matrix

R(t) ≡ lim
δt→0

T (t+δt,t) − 1

δt
, (4.11)

such that d
dt T

(t,0) = R(t) ◦ T (t,0). Thanks to the condition in Eq. (4.10) (see
also Eq. (4.13a) below), one can always decompose R(t) as

R(t) =
∑
i ̸=j

a
(t)
i←j (|i⟩⟨j| − |j⟩⟨j|) , (4.12)

where a(t)i←j are real coefficients called rates.
Since the composition of two Markovian evolutions is again Markovian, one
can check the stochastic-divisibility of a channel by studying maps of the form
T (t+δt,t) ≈ 1 + δtR(t) for all possible times. is, we require T (t+δt,t) to be
stochastic, imposing on the rate matrix, via Eq. (4.3),∑

i

(δij + δtR
(t)
i,j ) = 1 + δt

∑
i

R
(t)
i,j = 1 ∀j, (4.13a)

δij + δtR
(t)
i,j ≥ 0 ∀ i, j , (4.13b)

where δij denotes the Kronecker delta. The first conditions implies that
∑

iR
(t)
i,j

= 0, which leads to the canonical decomposition (4.12). If we now focus on
the second condition in Eq. (4.13) we see that R(t)

i,j ≥ 0 whenever i ̸= j. In
the parametrisation above this means that a(t)i←j ≥ 0. It follows that the rate
matrices generating stochastic evolutions form a cone, whose elements are
matrices of the form (4.12) having all the rates ai←j positive. Since a smooth
evolution T is Markovian if and only if T (t+δt,t) is stochastic ∀t, we can give
the following definition:
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Definition 1. A smooth evolution is Markovian if and only if for all times t
the rates a(t)i←j are positive for all pairs of microstates i ̸= j.

Quantummaster equations As for classical dynamics, it is possible to de-
rive a canonical decomposition for the local time-generator of a CPTP map.
That is, given a smooth CPTP-divisible family T (t,0) of superoperators one
can define

L(t) := lim
δt→0

T (t+δt,t) − 1

δt
,

d

dt
T (t,0) = L(t) ◦ T (t,0) . (4.14)

The “quantum rate matrix”L(t) is typically called lindbladian, as its character-
ization was given by Lindblad [161], and separately by Gorini-Kossakowski-
Sudarshan [162]. The resulting canonical decomposition is of the form

L[ρ] =
∑
i

γi

(
AiρA

†
i −

1

2
{A†iAi, ρ}

)
, (4.15)

where the operators Ai are traceless and orthonormal Tr[AiA
†
j ] = δij , while

the coefficients γi are real and correspond to the rates of the quantum master
equation.
In the most general time-dependent case, the operators Ai(t) are also time-
dependent, as well as the rates γi(t). Albeit less trivial, it was proven [163]
that, as in the classical case (cf. Def. 1), the Markovianity (defined as CPTP di-
visibility) of smooth quantum evolutions becomes equivalent to the positivity
of the rates of the master equation at all times γi(t) ≥ 0.

4.4 Contractivity of the Fisher metric and the detec-
tion of non-Markovianity

In the following we present the main results obtained in Ref. [7]. Notice that
for simplicity we only state the main results and partially explain the proofs
for the case of classical dynamics. The full proofs can be found in [7], as well
as the generalizations to quantum dynamics (cf. also App. C).
From now onwewill omit time-dependencywhen no confusion can arise. The
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Fisher distance between any two points decreases under the action of stochas-
tic maps. This directly implies that underMarkovian dynamics the Fisher met-
ric contracts continuously. Indeed, simple algebra yields, for infinitesimal d,

2
d

dt
D2

Fish(p,p+ d) =
∑
i

(
2diḋi
pi

− d2i
p2i
ṗi

)
=

=
∑
i,j

(
2di(ai←jdj − aj←idi)

pi
− d2i
p2i

(ai←jpj − aj←ipi)

)
=

=
∑
i,j

(
2didjai←j

pi
− d2i
pi
aj←i −

d2i
p2i
pjai←j

)
=

=
∑
i,j

ai←j

(
2didj
pi

−
d2j
pj

− d2i
p2i
pj

)
=

= −
∑
i ̸=j

ai←j

(
di
pi

− dj
pj

)2

pj ≤ 0 . (4.16)

This can be rewritten as

d

dt
D2

Fish(p,p+ d) = −
∑
i ̸=j

ai←jIi←j ≤ 0 , (4.17)

where we implicitly defined

Ii←j :=
1

2

(
di
pi

− dj
pj

)2

pj (4.18)

as the Fisher information flow associated to the rate ai←j . These are positive
objects, so that the contraction of the Fisher metric is directly associated to
the positivity of the rates ai←j .
Now suppose that for some time t there is a negative rate a(t)

ĩ←j̃
< 0 (i.e., the

evolution is non-Markovian). Is this sufficient to reverse the contraction of
the Fisher information? The positive answer is given by the following

Theorem 1. A smooth evolution T (t,0) is Markovian if and only if it induces a
decrease in Fisher distance between any two points in S(RN ) at all times, i.e.

T (t,0) is Markovian ⇔ DFish(T
(t+δt,t)[p], T (t+δt,t)[q]) ≤ DFish(p, q)

∀t, ∀p, q ∈ S(RN ) . (4.19)
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Note that applying an intermediate map T (t,s) to all the points in the state
space S(RN ) is in general not physically defined, as only points in the image
of T (s,0) are guaranteed to be physical states after applying T (t,s) (cf. Eq. (4.4)).
Still, by considering the infinitesimal evolution T (t+δt,t) ≃ 1 + δtR(t), each
point in the interior ofS(RN ) is guaranteed to be a physical state after evolving
for a δt small enough. This allows d

dtDFish(p, q)|t to be well defined at all
times for all points in the interior of S(RN ).

Proof. As the⇒ implication in Eq. (4.19) is trivial from themonotonicity prop-
erty of the Fisher distance, only the proof of the opposite ⇐ is needed, that
is, that the contraction at all points and times of the Fisher distance implies
Markovianity of the evolution. For that, suppose that the first instance of
non-Markovianity happens between time t and t + δt. In order to prove the
statement it is sufficient to consider the Fisher distance between any two in-
finitesimally close points p and p + d, with |d| ≪ 1, evolving according to
T (t+δt,t). Then, for any negative rate a(t)

ĩ←j̃
< 0, one can find a point p and a

perturbation d such that d
dtD

2
Fish(p,p+ d) > 0. In fact, assume without loss

of generality that a1←2 < 0 and consider p and d of the form

p =


O(ε)
1− ε
O(ε)
...

O(ε) ,

 , d =


O(ε)
O(ε)
O(ε2)

...
O(ε2)

 , (4.20)

where ε is an arbitrary small number and we assume that the vectors p and
p + d are properly normalised. Notice that it is always possible to choose p
and p + d in the interior of S(RN ) (i.e., with strictly positive components).
Inserting this expression in Eq. (4.17) we find that the only term of orderO (1)
comes from setting i = 1, j = 2 in the sum (4.17). That is, at leading order,

d

dt
D2

Fish(p,p+ d) = −a1←2
d21
p21

+O (ε) . (4.21)

Since a1←2 < 0 we can always find a ε small enough so that this quantity is
strictly positive. Hence, for any non-Markovian dynamics there always exists
p and d such thatD2

Fish(p,p+d) locally increases, proving the Theorem.

Theorem 1 can be seen as a completion of Chentsov’s Theorem, as it implies
that not only the Fisher information decreases under Markovian evolutions,
but also that an evolution contracting the Fisher distance between any two
points has to be Markovian. The proof generalizes to the case of quantum
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dynamics in the canonical CP-divisibility framework [53], by considering a
copy of the system on which the dynamics acts trivially, i.e., the evolution is
given by T (t,0)⊗1N and the set of states is considered on the global bipartition
(see details in [7]).
Interestingly, a similar theorem cannot hold for the trace-distance as one can
explicitly construct non-Markovian evolutions that monotonically contract
DTr(p, q) for any two points ( [7, 53]). This corroborates the interpretation
of the Fisher metric as the canonical distance whose contractivity identifies
stochastic-divisible maps. Still, the argument that lead to Thm. 1 has a short-
coming: even if non-Markovianity implies the dilation of the Fisher informa-
tion, this is not sufficient to produce an operational witness. In fact, assume
that at time t there is a local dilation of Fisher distance for two points close to
p̃. In order to observe it, one would need to initialise the system in the state
p(0) = (T (t,0))−1p̃. If p̃ is outside the image of T (t,0), this cannot be achieved
physically. That is, the drawback of this approach is that the Fisher metric is
point-dependent, and the witnessing point might be excluded by the dynam-
ics T (t,0). On the other hand, the trace-distance is translational invariant, i.e.,
DTr(p, q) = |d| where d = p − q. Then, as soon as any two points p and
q are increasing their trace-distance, in order to present an operational wit-
ness it is sufficient to consider a point r in the interior of the image of T (t,0)

and ε small enough for rε = r + ε(p − q) to be in the image as well. Then,
DTr(r, rε) = εDTr(p, q) and this increases by assumption. Moreover, if one
adds a finite number of ancillary degrees of freedom on which the dynam-
ics acts trivially, one can always find such two points for any non-Markovian
evolution (see [55] and [7]). A similar property does not hold for the Fisher
distance, as it lacks translation invariance. More specifically,

Theorem 2. No finite number n of copies of the channel T (t,0) nor ancillary
degrees of freedom of any dimensionM is enough to witness all non-Markovian
evolutions via revivals of the Fisher distance between two initially prepared states.

Specifically, given n copies of the system, and an ancilla with arbitrary dimen-
sionM , the state space will be S(RN⊗n ⊗RM ) and the dynamics acting on it
T̄ (t,0) = T (t,0)⊗n ⊗ 1M .

Proof. Weconstructively provide, for anyn andM , a counterexample inwhich
all the states in the image of T̄ (t,0) continue decreasing their Fisher distance
between time t and t + δt, even if T (t+δt,t) ≃ 1 + δtR(t) is non-stochastic.
Herewe provide the proof for the single copy case, deferring themultiple cases
one to the paper [7], which has essentially the same treatment. The map we
consider is then given by T̄ (t,0) = T (t,0) ⊗ 1M and the rate matrix by R̄(t) =
d
dt T̄

(t,0) = R(t) ⊗1M . Suppose now that there is a unique negative rate aĩ←j̃
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and that the image of T (t,0) is contained to a small ball around an appropriate
vector π (e.g., by a map of the form T (t,0)[p] = π(1− ε)+ εp). Attach at time
0 an arbitrary ancilla, so that the initial state is given by p(0) ∈ S(RN ⊗RM ),
and definew to be its reducedmarginal onRM , whereas the dynamics is given
by T̄ (t,0) = T (t,0) ⊗ 1M . Then, the state at time t will be ε-close to

p(t) ∼ π ⊗w +O (ε) . (4.22)

Notice also that the rate matrix R̄(t) = d
dt T̄

(t,0) = R(t)⊗1M has the following
coordinate expression

[R̄]ij,αβ = Rijδαβ i, j ∈ {1, . . . , N} α, β ∈ {1, . . . ,M} , (4.23)

so that the rates are simply given by aiα←jβ = ai←jδαβ . In this scenario, the
evolution of the Fisher distance (as expressed in Eq. (4.17)) becomes

−
∑
i ̸=j,α

ai←j

(
diα
piα

− djα
pjα

)2

pjα +O (ε) with pjα = πjwα . (4.24)

Again, consider the case in which at time t a single rate becomes negative, for
definiteness say a1←2 < 0. Then, it is sufficient that a2←1π1 > |a1←2|π2 to
see that the sum in Eq. (4.24) is strictly negative in the limit ε → 0. Hence,
even if the dynamics is non-Markovian, there is no increase in Fisher distance
on the image of T (t,0), proving Theorem 2 for n = 1.

In the same way, even using multiple copies of the channel does not help
finding a witness. The proof easily generalises to n ≥ 2. Moreover, it should
be noticed that the condition of finite copies in Thm. 2 cannot be dropped:
in fact, in the limit of infinite copies, one can perform full tomography of the
evolution, allowing to reconstruct its action also on points outside of the image
of T (t,0).
Despite the above "no-go" Theorem, we can introduce an operational non-
Markovianity witness which does not require additional copies of the channel,
but only some specific post-processing of the states. More specifically, the
following technical theorem holds

Theorem 3. For any state p and perturbation d on S(RN ⊗ RM ) (where we
admit an M -dimensional ancilla), it is possible to implement a class of trans-
formations Fd depending on d and on T (t,0) that witness non-Markovianity at
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time t. That is, if T (t+δt,t) is stochastic, for any choice of d, one has that

DFish(Fd ◦ T (t+δt,0)[p], Fd ◦ T (t+δt,0)[p+ d])

≤ DFish(Fd ◦ T (t,0)[p], Fd ◦ T (t,0)[p+ d]) (4.25)

whereas in the presence of non-Markovianity (i.e., for T (t+δt,t) not stochastic)
there exists at least one d for which the inequality is reversed (i.e., the Fisher
distance of the post-processed states increases). Moreover, for classical systems
M = 2 is enough to witness in this way all non-Markovian evolutions (while for
quantum systems one needs in generalM = N + 1 6).

The detailed proof is technical and provided in [7]. Theorem 3 ensures that any
break of stochastic-divisibility in the interval [t, t + δt] can be operationally
witnessed via backflow of Fisher information between states that undergo the
transformation Fd before being measured. That is, from the operational point
of view, the above theorem implies that in such case if one is interested in
the Fisher distance between the post-processed states, via Fd

7 of p and q
being as large as possible, if "non-Markovianity occurs" at time t, it is better
to wait an additional time δt before measuring the system. The specific form
of Fd [7] is ad hoc to prove the Theorem, which should be considered as a
proof of principle of the possibility of witnessing non-Markovianity through
post-processing.

4.5 Bayesian retrodiction and the meaning of infor-
mation backflow

In most of the literature about non-Markovianity backflows of information
are considered by studying states p(t) at time t [53, 54], while the question
about backflows of information about the initial state p(0) remains instead
largely unexplored. Even if one can argue that the invertibility of the dy-
namics preserves the information about the initial conditions (as these can be
recovered as p(0) = T (t,0)−1[p(t)]), actually retrieving the initial state from
p(t) requires full tomography both of the state and of the channel, and a post-
processing of such data which cannot be performed physically in a single-shot
scenario.

6It should be noticed that in the quantum case it is never possible to detect all non-
Markovian evolutions by using ancillas that have dimension less thanN , as the CPTP condition
for superoperators needs (at least) an N -dimensional ancilla to be detected [164].

7Notice that Fd might be thought as an unavoidable part of the measurement apparatus.



104

Conversely, we consider here a Bayesian inversion of p(t) that allows us to
compare it with the initial state through a physically implementable transfor-
mation. In particular, define the prior as a vector π representing our knowl-
edge about the system at time 0. Given an evolution T (t,0), the Bayes-recovery
map is defined as

T̂t = Jπ ◦ T ⊺
t ◦ J−1T [π] (4.26)

where we use the shorthand notation Tt := T (t,0), and we introduced the map
Jp, corresponding to the diagonal operator that multiplies each component of
a vector by the corresponding component of p, i.e. [Jp]ij = δijpj .
The map T̂t is stochastic (i.e., physically implementable) and represents a re-
covery of the state via statistical retrodiction [165,166]. Indeed if one identifies
the coordinates of the prior with the corresponding probability, i.e.,

πi ≡ P (i, 0) , (4.27)

and the components of themapswith the corresponding transitions, i.e., (Tt)ij
≡ P (i, t|j, 0), it is easy to verify that

(T̂t)ij ≡ P (i, 0|j, t) (4.28)

satisfies the Bayes rule. It should also be noticed that T̂t perfectly recovers the
prior at all times (π = T̂t ◦ Tt[π]) (cf. Fig. 4.2).
This channel allows us to study howmuch information is stored in the evolved
state p(t) about its initial conditions. In particular, we can compare the dis-
tance between p(0) and the retrodicted state

p̂(t) := T̂t[p(t)] = T̂t ◦ Tt[p(0)] . (4.29)

We also assume that the prior contains some knowledge on the initial condi-
tions, so that we can write p(0) = π + d, for some small |d| ≪ 1. Moreover,
since π is perfectly recovered, we also have that p̂(t) = π + d̂(t). Then, the
Fisher information between p(0) and p̂(t) reads

D2
Fish(p(0), p̂(t)) ≃

〈
d− d̂(t),d− d̂(t)

〉
π
. (4.30)

Interestingly, this object is directly connected to the Fisher information at time
t:
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Theorem4. The contractivity of the Fisher information at time t is in one-to-one
correspondence with the expansivity of Eq. (4.30). That is,

d

dt
D2

Fish(p(0), p̂(t)) =
d

dt

〈
d− d̂(t),d− d̂(t)

〉
π
≥ 0 (4.31)

if and only if the Fisher information contracts for any two points in the vicinity
of Tt[π].

Proof. The main ingredient in the proof of this theorem is given by the fol-
lowing identities

⟨d, T̂tTt[d]⟩π = ⟨Tt[d], Tt[d]⟩Tt[π] = ⟨T̂tTt[d],d⟩π, (4.32)

which can verified by directly substituting T̂t with its definition in Eq. (4.26).
One can read from these equalities the following two facts: first, T̂t can be
used to put in relation the Fisher information at time 0 and at time t; secondly,
T̂tTt is self-adjoint with respect to ⟨•, •⟩π . This allows to rewrite Eq. (4.31) as

d

dt

〈
d, (1− T̂tTt)

2[d]
〉
π
= −2

〈
d, (1− T̂tTt)

d

dt
T̂tTt[d]

〉
π

. (4.33)

First notice that (1− T̂tTt) is positive definite. In fact, this can be seen from

⟨d, T̂tTt[d]⟩π = ⟨Tt[d], Tt[d]⟩Tt[π] ≤ ⟨d,d⟩π , (4.34)

where the last inequality follows from the contractivity of the Fisher informa-
tion. Moreover, we also have that ⟨d, d

dt T̂tTt[d]⟩π = d
dt ⟨Tt[d], Tt[d]⟩Tt[π], so

that − d
dt T̂tTt is positive if and only if the Fisher contracts monotonically. If

this is the case, we can use the fact that the product of two positive operators
has positive spectrum. On the other hand, if the Fisher metric is expanding
at time t, there exists an eigenvector d̃ of − d

dt T̂tTt with negative eigenvalue
λ < 0, so that

−2

〈
d̃, (1− T̂ T )

d

dt
T̂ T [d̃]

〉
π

= 2λ
〈
d̃, (1− T̂ T )[d̃]

〉
π
< 0, (4.35)

proving the claim.

This theorem tells us that the ability of an agent of retrieving the initial state of
the dynamics decreases under Markovian evolution. Moreover, in the case in
which there are backflows in the Fisher information, non-Markovianity helps
obtaining more information about the initial state (see Fig. 4.2).
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stochastic non-stochastic

Figure 4.2: Representation of Theorem 4. Given a prior π, the Bayes retrodiction
map T̂t is a physical (i.e. stochastic) map that recovers perfectly π when applied
to Tt[π] (via Bayes rule), while in general other close-by points are not retrodicted
perfectly. We prove that, when the evolution is Markovian (i.e. stochastic-divisible),
the retrodicted state p̂ := T̂tTt[p] continuously gets further from the original value
p (green retrodiction in the picture). If stochastic-divisibility is broken, it exist a
state whose retrodiction improves, that is p̂ gets closer to p, according to the Fisher
distance (orange retrodiction).

4.6 Discussion

In Ref. [7] we characterized the relation between Markovianity (intended as
stochastic divisibility), Fisher metric contractivity and information flow, both
from the mathematical and operational point of view. We explored such con-
nection to its very limits, and the resulting picture can be seen in Fig. 4.3: we
showed that monotonous contractivity of the Fisher metric on the whole set of
states and at all times, is mathematically equivalent to Markovianity (Thm. 1).
As known, when the metric dilates locally inside the image of the evolution
Im(T (t,0)), a backflow of Fisher information can be operationally witnessed.
At the same time, non-Markovian evolutions might in general show Fisher
metric dilations only outside the image of the evolution itself, regardless of
the number of copies of the channel and ancillary degrees of freedom available
(Thm. 2). To witness operationally non-Markovianity in such cases, one needs
post-processing to be appended to the dynamics (Thm. 3). Finally, we showed
that dilations of the Fisher metric between evolving states can be mapped to
a backflow of information about the initial states by applying Bayesian retro-
diction (Thm. 4).
Moreover, the results were presented for classical dynamics in order to keep
the exposition clean. Despite that, we also show in [7] that the generaliza-
tions to the quantum dynamics scenario of our results can be easily worked
out constructively, by using properties of the Quantum Fisher metric on diag-
onal subspaces (cf. Appendix C). At the same time, the non-uniqueness of the
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Contractivity
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Figure 4.3: The main quantity analyzed in our work [7] is the rate of contraction/di-
lation of the Fisher metric, i.e., d

dt DFish(p, q), with |p− q| ≪ 1, when both p and q
evolve according to the local intermediate map T (t+δt,t). We characterize the mathe-
matical and operational meaning of the negativity/positivity of such rate, both inside
and outside the image of the evolution T (t,0).

Quantum Fisher distance offers a rich landscape of possibilities when defin-
ing retrodiction, or simply in the computation of the rate of change of Fisher
distance outside diagonal subspaces. We will investigate these issues in forth-
coming work [66].
Finally, it would be of natural interest to investigate if this picture can be en-
larged to the analysis of Markovianity and non-Markovianity based on multi-
time correlators [140], which is being studied in recent years.
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Chapter 5

Network nonlocality with
passive optics and
single-photons

This chapter is based on Ref. [5]:
“P. Abiuso, T. Kriváchy, E.-C. Boghiu, M.-O. Renou, A. Pozas-Kerstjens and A. Acín, Single-
photon nonlocality in quantum networks, Phys. Rev. Research 4, L012041 (2022)”

5.1 Background: Bell nonlocality

Local hidden variables models cannot account for all the predictions of quan-
tum theory. This was formalized in 1964 by J. S. Bell [58], and is now com-
monly termed Bell nonlocality, or simply nonlocality [59]. Nonlocality is a
quantum property with no classical analogue displayed in the so-called Bell
tests, defined by the statistics obtained when performing appropriate local
measurements on a well-chosen entangled state. More precisely, the origi-
nal bipartite Bell scenario consists in two parties, Alice and Bob (or A and B),
performing an experiment in different, non-communicating laboratories. Al-
ice (Bob) might choose different measurements, labelled by x (y), leading to
outputs a (b), and the statistical description of their experiment’s results is
therefore given by the probability distribution p(a, b|x, y). The absence of
communication between the two is formalised as the non-signalling property
of Alice’s (Bob’s) output being independent of Bob’s (Alice’s) input:∑

b

p(a, b|x, y) := p(a|x, y) = p(a|x) (and viceversa). (5.1)
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The non-signalling property can be in principle guaranteed by making the
measurement of the two parties space-like separated, and claiming consis-
tency with special relativity. At the same time, such property does not imply
the absence of correlations between A and B. For example, they could be
allowed to share a classical source of randomness, which can be represented
without loss of generality, as a real variable λ. More precisely, assuming no
direct causal dependence of Alice from Bob or viceversa, the most general
probability distribution arising from a Bell experiment involving only classi-
cal sources, is [59]

pL(a, b|x, y) =
∫

dλ µ(λ)p(a|x, λ)p(b|y, λ) . (5.2)

Conditional probabilities of the form above form the so called local set L.
Similarly, if Alice and Bob can share a quantum state as a common source, the
resulting non-signalling distribution is given according to the Born-rule

pQ(a, b|x, y) = Tr[(Ma|x
A ⊗M

b|y
B )ρAB] . (5.3)

Perhaps surprisingly, Bell theorem [58] showed that the setQ strictly contains
L. That is, the correlations achievable between non-communicating parties
sharing quantum states can be outside the local set, i.e. they can be nonlocal.
This rules out any local hidden variable theory as a possible fundamental de-
scription of reality. In order to violate locality, Alice and Bob need to share
an entangled state [59]. When the cardinality of inputs {x, y} and outputs
{a, b} is finite, the local set L can be described as a finite-dimensional poly-
tope, that is, a convex set with a finite number of vertices, which correspond to
deterministic strategies employed by the parties [59]. The facets of the poly-
tope correspond to hyperplanes which in turn define linear inequalities for
any probability to be inside the local set. These are called Bell inequalities.
The most famous Bell inequality was found in the simplest scenario of par-
ties having binary inputs x, y = 0, 1 and binary outputs a, b = ±1. Clauser,
Horne, Shimony and Holt (CHSH) [167], showed that in any Bell experiment
with classical sources, the following bound holds∣∣⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩

∣∣ ≤ 2 , (5.4)

where the correlators introduced ⟨AxBy⟩ :=
∑

a,b ab p(a, b|x, y) are the av-
erage values of the outputs’ product. Moreover using a maximally entangled
state and appropriate measurements, they showed that in quantummechanics
can achieve a value of 2

√
2 for the same quantity. Later, Tsirelson [168] proved

that this is also the maximum value obtainable with quantum mechanics.
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Beyond the fundamental motivation, nonlocality is relevant from an applied
point of view, and violating Bell inequalities is the goal of many experiments
manipulating quantum sources. In fact, correlationswith no classical analogue
are the main resource, e.g., for the security of device-independent protocols
for quantum random number generation [169,170] and quantum key distribu-
tion [171–173], as well as self-testing of quantum states [174].

5.2 Background: Single-photon nonlocality

Bell tests have been performed in many different systems, from massive parti-
cles [175] to photons [176,177], and using many different degrees of freedom,
such as electronic levels, polarization, orbital angular momentum or time bins.
In most of these realizations the relevant degrees of freedom used to encode
the entanglement are transmitted to each distant observer by a separate physi-
cal particle. We are interested in the question of whether single-particle quan-
tum states can display nonlocal correlations with no classical analogue. In
particular, we consider the question in the context of single-photon entangle-
ment, that is, the state

|ψ+⟩AB =
1√
2
(|01⟩AB + |10⟩AB), (5.5)

obtained when sending a single photon into a balanced beamsplitter. Here
|01⟩AB (resp. |10⟩AB) represents the situation in which the photon is sent
to the right party B (resp. the left party A). The resulting state therefore
consists of only one photon and entanglement is encoded in the two optical
spatial modes.
Is the state (5.5) nonlocal? This question has been intensively debated in the
quantum foundations and quantum optics community, e.g. [178–188]. In prin-
ciple, a positive answer is provided by the following simple argument [180–
182]: the two optical modes can be transferred to the population of two en-
ergy levels of two distant massive particles. Single-photon entanglement is
therefore mapped into two-particle entanglement and a Bell test can now
be implemented. The question is much subtler when considering only op-
tical means. To obtain a nonlocal behavior, the two observers need to use
local active measurements involving local oscillators creating extra local pho-
tons [178, 179, 184, 186]: without these active measurements, measuring the
information content of the state (5.5) would allow the observers to deduce if
they received the photon sent by the source, destroying the indeterminacy in
the photon path, i.e. the coherences in (5.5). Then, the statistics become clas-
sically simulable. One is therefore tempted to conclude that the observation of
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Figure 5.1: (a) Bell n-local experiment. (b) Example of network-local experiment.

nonlocal effects in the single-photon entangled state by passive optical means,
that is, phase shifters, beamsplitters and photodetectors, is impossible.
The main result of our work [5] is to show that this is not the case and one can
indeed reveal the nonlocality of state (5.5) with only passive measurements. To
do so, we go beyond standard Bell tests and consider setups defined by causal
networks. We show that three copies of single-photon entangled states placed
in a triangle causal network (cf. Fig. 6.4) can exhibit non-classical correlations.

5.3 Network nonlocality and the Triangle Network

The standard Bell scenario can be extended to experiments involving multiple
parties. A probabilistic output of n > 2 is then said Bell n-local if it can be
decomposed as

pn−L(a1, . . . , an|x1, . . . , xn) =
∫

dλ µ(λ)p(a1|x1, λ) . . . p(an|xn, λ) .

(5.6)

Such definition corresponds to all the n parties sharing a common (classical)
source λ (see Fig. 5.1(a)).
More recently, theoreticians realized that n-local correlations are a particu-
lar case of a classical causal network, in which the non-observable source λ
influences all n parties. Starting in the early 2010s, seminal works [61, 189–
192] considered more complex causal structures involving several indepen-
dent sources, each being distributed to a subset of the parties involved in the
scenario. It is therefore possible to define network-local correlations those that
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arise from parties sharing classical sources according to a structure defined by
a network [60]. That is, for a network withm sources and n parties,

pnetwork−L(a1, . . . , an|x1, . . . , xn) =∫
dλ1 . . . dλm p(a1|x1, λ⃗(1)) . . . p(an|xn, λ⃗(n)) , (5.7)

where λ⃗(i) is the array of sources that is sent to party (i). For example, for
the network in Fig. 5.1(b), one has λ⃗(1) = {λ1, λ2}, λ⃗(2) = {λ2, λm}, λ⃗(3) =
{λm}.
For a fixed network, the generic study of nonlocality consists in characteriz-
ing the set of probability distributions arising from (5.7), and whether such
set is strictly larger when using quantum sources, or even theoretical post-
quantum sources [60]. It is well understood that these networks offer new
possibilities to design quantum experiments with no classical analogue [61,
62, 189, 191–194]. At the same time, the analysis of nonlocality in networks
becomes mathematically and computationally challenging, as networks with
m > 1 sources generally define non-convex sets of correlations, both in the
classical and quantum case [60].
A network that has attracted considerable interest is the triangle network [61,
62, 195–199]. One of the main features such network is the possibility of ex-
hibiting nonlocality without the need of measurement inputs [61, 62, 199]. In
such case the considered Bell-type experiment consists of three observers, A,
B and C , receiving states prepared by three sources, see Fig. 6.4. These states
are measured producing outcomes a, b and c with probability p(a, b, c), with-
out inputs.
In this case, a classical local description of the experiment compatible with the
causal constraints defined by the network has the form

p(a, b, c) =

∫
dαdβdγ pA(a|β, γ)pB(b|γ, α)pC(c|α, β) . (5.8)

The causal model therefore consists of classical variables α, β and γ uniformly
(without loss of generality) distributed by the sources and local response func-
tions pX , with X = A,B,C , producing the measurement outcomes. In anal-
ogy with standard Bell tests, we define probability distribution p(a, b, c) that
can be written as Eq. (5.8) as causally classical or, simpler, local.
A quantum description of the experiment compatible with the causal network
replaces the random variables by quantum states ρα, ρβ and ργ and the local
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Figure 5.2: (Left) Causal model for the Triangle Network: three independent sources
{α, β, γ} prepare correlated states that are distributed among the three parties. Each
of them produces an output through a local process acting on the received parts of the
states. The form of the states and local processes depend on the theory, say classical
or quantum, used to reproduce the correlations in the network. (Right) Schematics of
the proposed quantum optical experiment. A, B and C share single-photon entan-
gled states |ψ+⟩ = (|01⟩ + |10⟩)/

√
2 prepared by the sources. Each party receives

two optical modes that are mixed on a beamsplitter, the resulting output modes be-
ing measured by photodetectors. In the specific experimental instance depicted here,
A does not detect any photon, B has one detector firing, and C has both detectors
firing.

response functions by quantum measurements. Therefore, quantum probabil-
ities compatible with the triangle network have the form

p(a, b, c) = Tr
[
(ρα ⊗ ρβ ⊗ ργ)(M

(a)
A ⊗M

(b)
B ⊗M

(c)
C )
]
, (5.9)

whereM (a)
A denote the positive measurement operators defining the Positive-

Operator Valued Measure (POVM) for A,
∑

aM
(a)
A = 1A, and similarly for

B and C . We slightly abuse the notation in Eq. (5.9) by not specifying the
tensor products and different Hilbert spaces in which the different operators
act, but this is clear from Fig. 6.4. We say that a quantum experiment, defined
by states and measurements producing the outcome distribution p(a, b, c) ac-
cording to Eq. (5.9), is nonlocal whenever this distribution cannot be described
by a classical model (5.8).
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5.4 Witnessing Single-Photonnonlocality in theTri-
angle network

In Ref. [5] we provided a nonlocal quantum experiment in the triangle network
that only uses single-photon entangled states, beamsplitters and photodetec-
tors. Our main idea is to exploit the topology of the network to reintroduce
indeterminacy in the photon path, necessary to exploit the coherences of these
states when using passive measurements.
The experimental setup proposed is depicted in Fig. 6.4: three parties A, B, C
share, for each pairAB,BC , CA, the single photon entangled state |ψ+⟩, see
Eq. (5.5). The initial state is thus

|ψ+⟩A2B1 ⊗ |ψ+⟩B2C1 ⊗ |ψ+⟩C2A1 ≡ |Ψ+⟩A1A2B1B2C1C2
. (5.10)

Each party then receives its two optical inputs onmodesX1X2 (X = A,B,C)
and mixes them with a beamsplitter, which induces a unitary transformation
BX1X2(t, ϕ) parametrized by its transmissivity t and phase ϕ. All parties use
the same value for t, and the phases are all null for simplicity. After passing
through the beamsplitters, the photons end up in photodetectors. For each
mode Xi, the operators describing a perfectly efficient photodetection corre-
spond to the projectors onto the vacuum state D□

Xi
= |0⟩⟨0|Xi (detector off)

and the projector on its orthogonal complement D■
Xi

= 1Xi − |0⟩⟨0|Xi (de-
tector firing). Indeed, we assume that the detectors do not resolve the number
of photons but only their presence. The measurement obtained by mixing two
modes with the beamsplitter and the ideal photodetectors can be accordingly
expressed as a POVM for each party (here BX1X2 = BX1X2(t, 0))

Π
(0)
t X1X2

= B†X1X2
(D□

X1
⊗D□

X2
)BX1X2 ,

Π
(L)
t X1X2

= B†X1X2
(D■

X1
⊗D□

X2
)BX1X2 ,

Π
(R)
t X1X2

= B†X1X2
(D□

X1
⊗D■

X2
)BX1X2 , (5.11)

Π
(2)
t X1X2

= B†X1X2
(D■

X1
⊗D■

X2
)BX1X2 ,

where the measurement labels stand respectively for no photon counts (0), a
count in the left detector (L), a count in the right detector (R), or counts in both
detectors (2). The crucial point is that when t ̸= 0, the L andRmeasurements
actually detect superpositions of photons in the incoming modes (see details
in [5]).
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The quantum experiment described here results in the output distribution

pt(abc) = Tr[|Ψ+⟩⟨Ψ+| (Π(a)
t ⊗Π

(b)
t ⊗Π

(c)
t )]

a, b, c ∈ {0, L,R, 2} (5.12)

which depends on the transmissivity t of the beamsplitters used by the parties.
The resulting distribution pt turns out to be nonlocal in a wide range of trans-
missivities t. More precisely, to prove nonlocality, first we simplified the struc-
ture that classical strategies must follow in the triangle network (5.8). Specif-
ically, all the local response functions pA, pB , pC in (5.8) can be assumed to
be deterministic, and all the indeterminacy is therefore delegated to the clas-
sical sources {α, β, γ}, which can all be assumed to be, w.l.o.g, real numbers
uniformly distributed in the interval [0, 1]. Therefore, any local model is spec-
ified by deterministic triangle-local response functions pApBpC that map all
the points of the cube [0, 1]3 to the observed outputs

{α, β, γ} → {a(β, γ), b(γ, α), c(α, β)} . (5.13)

Secondly, we were able to identify strict constraints that need to be satisfied
by all possible classical causal models simulating the considered experimen-
tal output pt(abc) in the triangle network. In particular, we exploited the
cyclic symmetry and null components (due to photon number conservation)
of the distribution. For example, all outputs of the form (here χ represents any
of L or R) {(000), (00χ), (2χχ), (22χ)}, or any of their permutations, have
zero probability, due to the fact that there are initially 3 photons in the net-
work, of which at most 2 can end up in the same photodetector. That is, in
each run of the experiment the total number of clicks in the detectors must
be 2 or 3. By taking all the relevant properties of pt into account, one can
identify constraints that need to be satisfied by any classical strategy, speci-
fied by the response functions (5.13), aiming at reproducing pt. In fact, while
the exact form of the response functions remains in general unknown, some
of its marginals can be expressed in terms of the output pt. These relevant
marginals are nothing other than linear constraints on the response functions,
parametrized by t. Together with standard normalization and positivity con-
straints, these define a Linear Program. The feasibility of such Linear Program
is, by definition, necessary for the existence of such local response functions.
Therefore, when infeasible, no local model exists to simulate our experiment
proposal. Results show that the Linear Program is infeasible for t ∈ (0.785, 1)
and t ∈ (0, 0.215), proving the claims of this section.
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Figure 5.3: Range of nonlocality for the distribution pt (5.12) resulting from the
ideal experiment represented in Figure 6.4. The nonlocality of such distribution is
equivalent to the distribution p′t of Ref. [62], whose nonlocality has been proven to
be in the range t ∈ (0, 0.215) ∪ (0.344, 0.437) ∪ (0.563, 0.656) ∪ (0.785, 1) (see
Ref.s [62, 198]), and conjectured in [201] to be over the whole [0, 1] interval except
the indicated five points, which have a local model [62].

The techniques we used are similar to those introduced in [62] and general-
ized in [200]. However, their findings cannot be applied directly to our sce-
nario. The reason behind this is that the works [62,200] are based on a token-
counting approach to some physical "tokens" that are: i) generated from the
sources, ii) distributed to the parties in a coherent superposition of different
ways, and iii) counted at the output. In our experiment the physical tokens
are the photons, which however can be miscounted at the output, as more
than one could enter in the same photodetector 1. For these reasons, we had
to extend these techniques so that they could be applied to our setup.
Importantly, as part of the proof, we showed that our distribution is nonlocal
if and only if the distribution proposed in [62], which we dub p′t, is nonlocal
as well. After finishing our manuscript, Pozas-Kerstjens et al. proved [198] p′t
is nonlocal in the range t ∈ (0.563, 0.656) and t ∈ (0.344, 0.437) as well2.
Nonlocality of p′t in the intervals (0.215, 0.5) and (0.5, 0.785) has been con-
jectured already in [201]. Given the above mentioned equivalence between
the nonlocality of pt and p′t proven in this work, this would imply that the
proposed ideal experiment is nonlocal for all transmissivities except t ∈ {0.0,
0.215, 0.5, 0.785, 1.0}, which are known to have local models (cf. [5,62]). The
up-to-date summary of nonlocality for our distribution is given in Fig. 5.3.

1In [5] we also discuss the idealized case with perfect, number-resolving photodetectors.
2Notice that both Ref. [62] and [198] use as main parameter for the distribution u =

√
t.
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5.5 Optical realisation and noise analysis

After proving the nonlocality of the outputs of the ideal noiseless experiment,
we analyzed the robustness of our results against typical noise errors, by mod-
elling imperfections which occur in experimental realizations of the optical
network presented in Fig. 6.4.
In our modelling of the network we focused on three main parameters: the im-
purity of the generated single-photon entangled state (Q), the transmissivity
of the optical channels (T ) of the network, and the efficiency of the final pho-
todetectors (ν). We thus obtained a noisy output distribution pQ,T,ν

t (a, b, c)
(see details in [5]). It follows that

pQ=0,T=1,ν=1
t (a, b, c) ≡ pt(a, b, c) , (5.14)

that is, with no impurity, and perfect transmission and detection, we recover
the idealized experiment.
Inevitably, part of the key properties and symmetries of pt(a, b, c) disappear as
soon as noise is introduced in the network. This makes the analytic approach
unworkable in this case. Consequently, in order to estimate the tolerance to
the noises introduced above, we resorted to a technique recently introduced
in [201]: there, a feed-forward neural network is shaped with the same topol-
ogy of the causal network under study, and it is then asked to reproduce the
target distribution pQ,T,ν

t . Each output of the neural network is thus literally
an instance of a classical model (which can be therefore described by Eq. (5.8)
in our case) trying to reproduce pQ,T,ν

t . For a fixed target distribution, the neu-
ral network is trained by minimizing the Euclidean distance from the neural
network’s local model to the target. When the target distribution is inside the
local set, a sufficiently large neural network should be capable of learning it.
Instead, a large distance between the machine’s best guess and the target is
taken as an indication of nonlocality. What it means to be “large” enough can
be somewhat arbitrary, since some nonlocal behaviors are extremely close to
the local set (as is the case here), and additionally the neural network’s model
is not guaranteed to converge to the optimal solution as it can get stuck in lo-
cal minima during training. In order to gain deeper insight into the boundary
between locality and nonlocality we examine transitions of the learning algo-
rithm’s behavior when adding noise to the target distribution, and retraining
the machine independently for each target distribution. The very noisy case
is guaranteed to be local and the machine learning results on those give a ref-
erence to which we can compare the nonlocal regime. By definition, this tech-
nique does not certify nonlocality in an absoluteway, but has been shown to be
reliable and efficient from the point of view of computational resources [201].
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Figure 5.4: Euclidean distance of machine learned local models from the noisy dis-
tribution p(Q,T,ν)

t under an experimentally realistic noise model for t = 0.65 (left)
and t = 0.85 (right), with Q = 0.006875 for both (see [5]).

For the noiseless distribution pQ=0,T=1,ν=1
t (a, b, c) ≡ pt(a, b, c), the neural

network’s best guess is distant from the experimental output, corroborating
the analytical proof of nonlocality for t ∈ (0.785, 1). At the same time the
neural network hints at the locality of the output distribution for t = 0.5 and
t = 1, which have local strategies (cf. Fig. 5.3). A local model exists as well for
t ∼ 0.785. Moreover, the same machine indicates (seemingly even stronger)
nonlocality in the range t ∈ (0.5, 0.785), in line with the conjecture of [201]
and the results of [198] (cf. Fig. 5.3).
The noise robustness is, however, small. The neural network seems to indicate
that the points that are “most nonlocal” are t ∼ 0.85 and t ∼ 0.65. For these
two points we tested the tolerance to the physical noises introduced above,
see Fig. 5.4: choosing Q ≃ 0, 7% (cf. [5]), the neural network tries to learn
p
(Q,T,ν)
t for different values of the transmissivity T and detector efficiency ν.

Results show that nonlocality is more robust for t = 0.65, where it is lost
when T ≲ 95% or ν ≲ 95%.

5.6 Discussion

In Ref. [5] we provided an experimental proposal to demonstrate nonlocality
of single-photon entangled states. Typical photon-based Bell experiment are
usually based on two-photon states in which entanglement is encoded in the
polarization degree of freedom. At the same time, heralded preparation of a
two-photon maximally entangled state is quite challenging, even more if more
than one source has to be prepared contemporaneously. In turn, single-photon
entanglement can be easily prepared in a heralded way: an arbitrarily good
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approximation to it can be obtained when detecting photons in one of the
two modes resulting from the SPDC process and sending the non-measured
mode into a balanced beamsplitter [5]. This makes it a relevant technological
candidate for experiments and applications of network nonlocality.
Remarkably, the setup we proposed is not only passive in terms of the imple-
mented measurements, but also because it does not require any active choice
of measurements. That is, in our setup, there are no classical inputs and ob-
servers perform a single measurement on their received shares. These charac-
teristics make the proposal, arguably, the simplest experimental demonstra-
tion of the nonlocality of the single-photon entangled state, as well as the first
experimental proposal for genuine network nonlocality [62].
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Chapter 6

Measurement-device-
independent certification of
quantum properties

This chapter is based on Ref. [3]:
“P. Abiuso, S. Bäuml, D. Cavalcanti and A. Acín, Measurement-device-independent entan-

glement detection for continuous-variable systems, Phys. Rev. Lett. 126, 190502 (2021).”

6.1 Background: Entanglement detection, Nonlocal-
ity and Device-Independent certifications

Entanglement is the main resource for a broad range of applications in quan-
tum information science, among which are quantum key distribution [171],
quantum computation [202], and quantum metrology [203]. It is therefore
crucial to develop methods to detect entanglement that are reliable and prac-
tical. The most common method to detect entanglement is given by entangle-
ment witnesses [204]. The typical entanglement detection routine consists in
finding an observableWAB whose average value is, without loss of generality,
positive for some entangled state ρentAB , while at the same time negative for any
separable state. That is ,

Tr[ρentABWAB] > 0 , (6.1)

while

Tr[ρABWAB] ≤ 0 ∀ρ|ρ =
∑
i

piρ
(i)
A ⊗ ρ

(i)
B . (6.2)
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For any entangled ρentAB , the existence of an observable WAB satisfying (6.1)
and (6.2) is guaranteed by the Hahn-Banach theorem and the fact that the set
of separable states is convex [56]. However, to be reliable this technique re-
quires a perfect implementation of the measurements that lead to the observ-
ableWAB . Indeed, small calibration errors can lead to false-positive detection
of entanglement [205, 206], which can be critical when using the wrongly de-
tected entangled state for quantum information purposes. A possible way of
circumventing this problem is to move into the so called device-independent
(DI) scenario [59]. The violation of Bell inequalities (cf. 5.1), can in fact be
seen as a DI entanglement witness. The reason is that separable states cannot
violate any Bell inequality. This can be clearly seen: using a separable state

ρAB =
∑
i

piρ
(i)
A ⊗ ρ

(i)
B , (6.3)

in a Bell experiment, leads to a probabilistic output (cf. (5.3))

p(a, b|x, y) = Tr[(Ma|x
A ⊗M

b|y
B )ρAB]

=
∑
i

pi Tr[Ma|x
A ρ

(i)
A ]Tr[M b|y

B ρ
(i)
B ] , (6.4)

which is clearly local, i.e. in the form (5.2), via identifying the shared classical
source µ(λ) := pλ and the local response functions p(a|x, λ) := Tr[Ma|x

A ρ
(λ)
A ]

(similarly forB). In the DI framework measurements and sources do not need
to be characterised, since entanglement is detected through the violation of
Bell inequalities, which only use the statistics provided by the experiment,
without making any assumptions on the real implementation, except the no-
signalling assumption (5.1), which can be guaranteed e.g. by isolating the labs
of A and B, or performing space-like separated measurements.
The DI scenario is however stringent from an experimental point of view, re-
quiring low levels of noise and high detection efficiencies. This is why other
approaches requiring intermediate level of trust on the devices have been de-
veloped. In particular, there exist methods that do not require any character-
ization of the measurement implemented for entanglement detection, known
as measurement-device-independent (MDI) [64, 65].

6.2 Measurement-device-independent entanglement
witnessing

An entanglement detection scenario where two parties, Alice and Bob, do not
assume a particular description of their measurement but use trusted sources



123

Figure 6.1: Entanglement witnessing in the Device-Independent scenario (upper im-
age) and in the Measurement-Device-Independent scenario (lower image): the latter
can be seen as a relaxation of a Bell game in which the inputs are quantum states.
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of states was first introduced by Buscemi [65]. Namely, let us consider that
Alice and Bob can produce states ψµ

A′ and ψν
B′ according to some distribu-

tions pA′(µ), pB′(ν) respectively. Alice and Bob can use these states as inputs
to their measurement devices, which return outcomes a and b respectively.
Then, assuming only the validity of quantum theory and the locality of the
measurements, these outcomes occur with probability

p(a, b|ψµ
A′ , ψ

ν
B′) = Tr[Ma

AA′ ⊗N b
BB′(ψ

µ
A′ ⊗ ρAB ⊗ ψν

B′)] , (6.5)

where Ma
AA′ and N b

BB′ are unknown elements of a Positive-Operator Val-
ued Measure (POVM), and ρAB is also undetermined. The main goal of Al-
ice and Bob is to determine if ρAB is entangled based on the knowledge of
p(a, b|ψµ

A′ , ψν
B′), as well as the quantum inputs and their distribution ψµ

A′ ,
ψν
B′ , pA′(µ), pB′(ν). In this sense, MDI entanglement witnessing can be seen

as a modified version of standard Bell nonlocality experiments (cf. Fig. 6.1).
Besides the calibration issue discussed before, this scenario is motivated by
cryptographic tasks in which Alice and Bob do not trust the provider of the
measurement devices they are using [207–210].
For finite dimensional Hilbert spaces, Buscemi has shown that any entangled
state ρAB can be certified in this scenario, but his proof is not constructive [65].
The authors of [64] have shown how to construct MDI entanglement witness
from standard entanglement witnesses. At the same time, an intuitive expla-
nation of why it is possible to detect any entangled state in this scenario was
given in [211]. Indeed collecting the statistics p(a, b|ψµ

A′ , ψν
B′) from the exper-

iment (6.5), and having the knowledge of the inputs ψµ and ψν , corresponds
to testing, on such inputs the POVM defined as

Ma,b
A′B′ := TrAB[(M

a
AA′ ⊗N b

BB′)ρAB] . (6.6)

In fact, if follows from its definition that

p(a, b|ψµ
A′ , ψ

ν
B′) = Tr[Ma,b

A′B′(ψ
µ
A′ ⊗ ψν

B′)] . (6.7)

Moreover it is easy to see that if ρAB is separable, the corresponding Ma,b
A′B′

is also a separable POVM. If instead ρAB is entangled, it is always possi-
ble to choose Ma

AA′ and N b
BB′ such that the corresponding Ma,b

A′B′ is en-
tangled as well [211]: for example it is enough to choose measurements in-
cluding the projection on the maximally entangled state |ϕ+⟩ := 1√

d

∑d
i |ii⟩,

as in [64] (here d is the dimension of the local Hilbert space). In fact, given



125

M1
AA′ = |ψ+⟩⟨ψ+| and N1

BB′ = |ψ+⟩⟨ψ+|, the resulting POVM has an ele-
ment proportional to the state ρAB itself

M1,1
A′B′ =

1

d2
ρ⊺A′B′ . (6.8)

This means that, if the correct measurements are chosen, the entanglement
ofMa,b

A′B′ can then be detected by choosing a tomographically complete basis
{ψµ

A′ , ψν
B′} and using Eq. (6.7) to reconstructMa,b

A′B′ .

6.3 MDI entanglementwitnessing for continuous vari-
ables states

In what follows we present the main results of our work [3]. We first gener-
alise the results of [64, 65] and show that the entanglement of every CV en-
tangled state can in principle be detected in a MDI scenario. We then move to
the experimentally relevant case of Gaussian states and operations and show
a MDI protocol that is able to certify the entanglement of all two-mode Gaus-
sian entangled states. Moreover, this protocol only requires the production of
coherent states and the implementation of homodyne measurements. Notice
that a fully DI approach in this context is not well suited, because as we lack
a sistematic and practical approach to find useful Bell tests for continuous-
variable states. For instance, in the Gaussian regime, which is the most feasi-
ble experimentally, DI entanglement detection is impossible because no Bell
inequality can be violated [59].
Our approach provides also an interesting connection between MDI entangle-
ment detection and quantum metrology.

6.3.1 Reduction to process tomography

In this section, we show that it is possible to detect the entanglement of any
entangled state in a MDI scenario where Alice and Bob use coherent states as
trusted inputs (the proof is presented for two-mode bipartite states but can be
generalized to moremodes, see Supplementarymaterial of [3]). The technique
is a CV adaptation of the scheme used in [64].
Suppose Alice and Bob are in possession of trusted sources producing co-
herent states |α⟩A′ and |β⟩B′ , respectively, according to some distribution.
The shared entangled state is ρAB . The systems AA′ and BB′ are then pro-
jected onto respective two-mode squeezed vacuum (TMSV) states, i.e. the
measurement {|Φ(r)⟩ ⟨Φ(r)| ,1−|Φ(r)⟩ ⟨Φ(r)|} is performed on bothAA′ and
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BB′ (r is the squeezing parameter). Conditioned on α and β, the probabil-
ity of both measurements obtaining output ‘1’, corresponding to the projector
|Φ(r)⟩ ⟨Φ(r)| ≡ Φ(r), can be expressed as

Pρ(1, 1|α, β)

= Tr
[(

Φ
(r)
AA′ ⊗ Φ

(r)
BB′

)
(|α⟩ ⟨α|A′ ⊗ ρAB ⊗ |β⟩ ⟨β|B′)

]
= Tr

[
M

(r)
A′B′ |α⟩ ⟨α|A′ ⊗ |β⟩ ⟨β|B′

]
, (6.9)

where we have defined

M
(r)
A′B′ := TrAB

[(
Φ
(r)
AA′ ⊗ Φ

(r)
BB′

)
(ρAB ⊗ 1A′B′)

]
, (6.10)

which is a POVM element by construction. Our main observation in this sec-
tion is that non-separability of the POVM element defined by (6.10) is equiv-
alent to the underlying state being entangled. Namely, we have

Proposition 1. For any r > 0, the POVM elementM (r)
A′B′ defined by eq. (6.10)

is entangled if and only if ρAB is entangled.

Proof. Let us assume ρAB is separable, i.e.

ρAB =
∑
µ

pµρ
µ
A ⊗ σµB. (6.11)

We can then define

M
(r)µ
A′ :=TrA

[
Φ
(r)
AA′

(
ρµA ⊗ 1A′

)]
,

N
(r)µ
B′ :=TrB

[
Φ
(r)
BB′

(
σµB ⊗ 1B′

)]
, (6.12)

which are POVM elements by construction. It is easy to see that M (r)
A′B′ =∑

µ pµM
(r)µ
A′ ⊗ N

(r)µ
B′ , which is separable. It remains to be shown that the

POVM element defined by Eq. (6.10), which can be rewritten as 1

M
(r)
A′B′ = (1− λ2)λn̂A+n̂BρTABλ

n̂A+n̂B (6.13)
1Here we used the well-known decomposition of two-mode squeezed states in the Fock

basis

|Φ(r)⟩ =
√

1− tanh2 r

∞∑
i=0

(tanh r)i |ii⟩
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(where λ = tanh r and n̂X = a†XaX the number operator on mode X), is
entangled for all entangled ρAB . In fact, suppose there exists an entanglement
witness W such that Tr[ρW ] < 0 while Tr[ρ′W ] ≥ 0 for any ρ′ separable 2.
FromW we can obtain a Hermitian operator W̃ such that Tr[M (r)

A′B′W̃ ] < 0,
whereas for any separable POVM Tr[

∑
µ pu(M

µ
A ⊗Nµ

B)W̃ ] ≥ 0. Consider in
fact

W̃ = λ−n̂A−n̂BW Tλ−n̂A−n̂B . (6.14)

It is then easy to see that

Tr[M (r)
A′B′W̃ ] = (1− λ2)Tr[ρW ] < 0 . (6.15)

For separable POVMs, on the other hand, it holds∑
µ

pµTr[W̃ (Mµ
A ⊗Nµ

B)] =
∑
µ

pµTr[W (M̃µ
A ⊗ Ñµ

B)], (6.16)

where M̃µ
A = λn̂A(Mµ

A)
Tλn̂A , Ñµ

B = λn̂B (Nµ
B)

Tλn̂B . The operators M̃µ
A

and Ñµ
B are manifestly positive semidefinite, meaning that under a proper

renormalization they can be seen as states, thus generating a separable state
ρ′ such that Tr[ρ′W ] ≥ 0. This implies∑

µ

pµTr[W (M̃µ
A ⊗ M̃µ

B)] ≥ 0 , (6.17)

which finishes the proof.

We show in [3] that the violation of the derived witness (6.15) scales as 1/N ,
whereN is the energy scale (number of photons) defined by the original wit-
ness, which is to be compared with the 1/d scaling found in [64] (d being the
Hilbert space dimension of ρAB).
As a consequence of Proposition 1, Alice and Bob can certify the entanglement
of ρAB in a MDI way, if their output statistics allow them to fully reconstruct
the POVM elementM (r)

A′B′ . As in the case of discrete variables [211], this can
be achieved by means of tomography. In order to perform measurement to-
mography, the input states have to be chosen from a tomographically complete
set [214]. The set of all coherent states form a tomographically complete set
via the Glauber-Sudarshan P-representation [215, 216].

2Such a witness always exists, as the set of separable states is defined to be closed for oper-
ational consistence, see e.g. [212, 213]
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Once Alice and Bob have reconstructedM (r)
A′B′ , they can determine whether

it is non-separable using an entanglement criterion. We also note that, for
a given entangled state, if the witnessW is known, all that is necessary is to
evaluate Tr[M (r)

A′B′W̃ ], which might not require full tomography. In summary,
we have the following

Corollary 1. For every entangled state ρAB , if |α⟩ and |β⟩ are chosen from
tomographically complete sets, Alice and Bob can certify the entanglement of
ρAB in a measurement-device-independent way.

The results presented in this section suffer from practical problems in their
realization: firstly, they rely on performing the POVM that projects on the
two mode squeezed states defined in Eq. (6.9). A typical scheme for such mea-
surement involves photodetection, which typically has low efficiency and high
cost. Secondly, the full tomography could be in general experimentally ineffi-
cient. Therefore, the previous proof is mostly a proof-of-principle result. Next,
we show that feasible schemes for MDI entanglement detection are possible.
In fact, we propose an experimentally-friendly MDI entanglement detection
protocol which is based solely on homodyne measurements and can detect all
two-mode Gaussian entangled states.

6.3.2 MDI Entanglement Witness for all two-mode Gaussian
states

In this section we present a practical method for MDI entanglement certifica-
tion of Gaussian states that can be implemented using readily available optical
components. Our method is inspired by the entanglement witness introduced
in a seminal paper by Duan et al. [217] (see also Simon [218]). In that work, it
was proven that the inequality

⟨EWκ⟩ ≡
〈
∆2ûκ

〉
+
〈
∆2v̂κ

〉
≥ κ2 + κ−2

2
, (6.18)

where ⟨∆2Ô⟩ is the variance of the operator Ô, and

ûκ =

(
κx̂A − x̂B

κ

)
, v̂κ =

(
κp̂A +

p̂B
κ

)
, (6.19)

(i) holds for any two-mode separable state, real number κ, where κ > 0
without loss of generality, and pairs of orthogonal quadratures of the bosonic
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modes A and B 3, while (ii) for any entangled Gaussian state there exist a
value of κ and pairs of quadratures such that Eq. (6.18) is violated.
Our main result is an experimentally-friendly method for MDI entanglement
detection inspired by the witness (6.18) and given by the following proposi-
tion:

Proposition 2. Let |α⟩ and |β⟩ be coherent states prepared by Alice and Bob
according to the Gaussian probability distribution

P (α) =
1

πσ2
e−|α|

2/σ2
α ≡ αx + iαp (6.20)

(for different choices of input distribution, see [3]). Consider the setup in Fig. (6.4)
in which uncharacterized local measurements are applied jointly on these states
and half of an unknown state ρAB , producing as a result two real numbers
(a1, a2) for Alice and (b1, b2) for Bob. For all local measurements and all sepa-
rable states one has

⟨MDIEWκ⟩ ≡
〈
U2
κ

〉
+
〈
V 2
κ

〉
≥ κ2 + κ−2

2

σ2

1 + σ2
, (6.21)

where Uκ and Vκ are

Uκ ≡ κa1 −
b1
κ

−
καx − βx

κ√
2

,

Vκ ≡ κa2 +
b2
κ

−
καp +

βp

κ√
2

. (6.22)

For any two-mode entangled Gaussian state, there exist local measurements act-
ing jointly on the state and the input coherent states violating inequality (6.21).

Looking at its definition, the operational meaning of the witness is clear: Alice
and Bob results should be such that their difference and sum, weighted by κ,
are as close as possible to the same difference and sum of the quadratures of the
coherent states, divided by

√
2. Note also that expectation values in (6.21) are

3We use here a notation similar to [63]. In particular the quadratures are defined as

â = x̂+ ip̂ , â† = x̂− ip̂ ,

such that

[x̂, p̂] =
1

4i
[â+ â†, â− â†] =

i

2
.

Note for example that the variances of the quadratures will have a factor 1/2 with respect to
the normalization choice of Duan et al. [217].
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Figure 6.2: Experimental setup for the MDI entanglement detection of a 2-mode
state. Fiduciary coherent states are prepared by the parties and measured together
with the corresponding subsystems of the unknown state ρAB . To compute the
bound of the entanglement witness (6.21), measurements should be seen as unchar-
acterized black boxes producing the outputs. To obtain a violation, the following
specific measurements are implemented: the coherent states are mixed with the re-
spective modes of ρAB in a 50:50 beam splitter and homodyne measurements of x̂
and p̂ are performed on the two outputs.

computed with respect to the quantum state and the distribution of coherent
states.

Proof of (6.21). To prove the inequality we need to minimize the value of the
witness over all separable states ρAB =

∑
i piρ

(i)
A ⊗ ρ

(i)
B . We can restrict the

analysis to product states because the witness is linear on the state. It follows
that the output probability factorises

p(a1, a2, b1, b2|α, β) = Tr
[
MA

a1,a2 |α⟩ ⟨α|
]
Tr
[
MB

b1,b2 |β⟩ ⟨β|
]
, (6.23)

and we are left with two independent POVMs on the input states to be opti-
mised. Using ⟨U2

κ⟩ + ⟨V 2
κ ⟩ ≥ ⟨∆2Uκ⟩ + ⟨∆2Vκ⟩ and the fact that the distri-

bution is completely factorised between the two sides it follows that the value
of the witness is lower bounded by the minimum of

1

2

(
κ2 +

1

κ2

)(〈
∆2
[√

2a1 − αx

]〉
+
〈
∆2
[√

2a2 − αp

]〉)
. (6.24)

That is: in the absence of correlations, the best Alice and Bob can do is to
separately perform the optimal measurements to estimate the input coherent
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states.
Minimizing the expression in the second parenthesis in (6.24) looks essen-
tially like a metrology problem. A lower bound, in turn, can be obtained using
a multi-parameter Bayesian version of the quantum Cramér-Rao bound [219].
The simultaneous estimation of the position and momentum quadratures has
been studied thoroughly and is optimized for coherent states by measuring x̂
and p̂ on two different modes after a 50:50 beam-splitter [220,221]. In particu-
lar, assuming a Gaussian prior distribution, like in our case, the minimal sum
of variances is equal to σ2/(1 + σ2) [220], which proves the bound for the
entanglement witness.

To prove the violation claimed in Proposition 2, it suffices to show that for
any entangled two-mode Gaussian state there exist local measurements and
values of (κ, σ) that lead to it. Consider now the optical setup depicted in
Fig. 6.4. Alice and Bob, upon receiving their respective subsystems of ρAB ,
first mix them with local coherent states in a balanced beam splitter, and then
measure the position and momentum quadratures in the output ports. The
output observables are thus

Â1 =
x̂α + x̂A√

2
, Â2 =

p̂α − p̂A√
2

,

B̂1 =
x̂β + x̂B√

2
, B̂2 =

p̂β − p̂B√
2

. (6.25)

The quadratures x̂A, p̂A, x̂B and p̂B are those used in the standard device-
dependent witness (6.18). Observables (6.25) are used to define the measure-
ment outputs needed for the computation of our MDI witness (6.21). More
precisely, consider first the case in which the average values of the state’s
quadratures are null, ⟨x̂A⟩ = ⟨p̂A⟩ = ⟨x̂B⟩ = ⟨p̂B⟩ = 0. Then, by taking
(a1, a2, b1, b2) equal to the statistical output of (Â1, Â2, B̂1, B̂2) respectively,
it follows by substituting in (6.22) 4

〈
U2
κ

〉
=

〈(
κ
x̂α + x̂A√

2
− 1

κ

x̂β + x̂B√
2

−
καx − βx

κ√
2

)2〉

=
1

2

(
κ2⟨∆2x̂α⟩+

⟨∆2x̂β⟩
κ2

+
〈
∆2ûκ

〉)
=

1

2

(
κ2 + κ−2

4
+
〈
∆2ûκ

〉)
. (6.26)

4We use that coherent states have minimum variances ⟨∆2x̂α,β⟩ = ⟨∆2p̂α,β⟩ = 1
4
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Similarly,
〈
V 2
κ

〉
= 1

2

(
κ2+κ−2

4 +
〈
∆2v̂κ

〉)
, and consequently we find that in

the proposed scheme

⟨MDIEWκ⟩ =
1

2

(
κ2 + κ−2

2
+ ⟨EWκ⟩

)
. (6.27)

The generalization to states that have non-zero averages of the quadratures
is obtained by simply offsetting the outputs accordingly as follows: a1 is the
output of Â1 − ⟨x̂A⟩/

√
2, a2 of Â2 + ⟨p̂A⟩/

√
2 and so on.

The violation of the inequality (6.21) is therefore found for any entangled
Gaussian state: indeed, for any such state there exist quadratures and a value
of κ such that ⟨EWκ⟩ < κ2+κ−2

2 , which implies from Eq. (6.27) that in the pro-
posed scheme ⟨MDIEWκ⟩ < κ2+κ−2

2 . It is then sufficient to choose σ large
enough to violate (6.21).

6.3.3 Two-mode squeezed state case, with noise tolerance

At last, to illustrate the feasibility of our scheme, we apply it to the case of
ρAB being a TMSV state. By including noise tolerance, we pave the way for
an experimental realization of our MDI entanglement witness.
A TMSV state can be described as the mixing of two single-mode squeezed
states (one squeezed in p̂ and one in x̂) [63]. In the Heisenberg picture, this
results in

x̂A =
erx̂

(0)
1 + e−rx̂

(0)
2√

2
, p̂A =

e−rp̂
(0)
1 + erp̂

(0)
2√

2
,

x̂B =
erx̂

(0)
1 − e−rx̂

(0)
2√

2
, p̂B =

e−rp̂
(0)
1 − erp̂

(0)
2√

2
, (6.28)

where the superscript {x̂(0), p̂(0)} represents operators acting on the vacuum.
Consider now the two operators ûκ=1 = x̂A − x̂B and v̂κ=1 = p̂A + p̂B . From
Eq. (6.18) we see, by choosing κ = 1, that these operators satisfy for any
separable state ⟨∆2ûκ=1⟩ + ⟨∆2v̂κ=1⟩ ≥ 1. If we compute the above com-
bination for the two-mode squeezed state, we obtain ûκ=1 =

√
2e−rx̂

(0)
2 and

v̂κ=1 =
√
2e−rp̂

(0)
1 . Consequently, it holds

⟨EWk=1⟩TMSV = e−2r < 1. (6.29)

This is not surprising: as soon as there is squeezing r > 0 the state is entan-
gled. Substituting this value into expression (6.21), we obtain the entangled
score for the MDI witness ⟨MDIEWκ=1⟩ = 1

2

(
1 + e−2r

)
.
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To check noise tolerance, we consider losses in the modes A and B modelled
as a beam splitter

âA(ηA) =
√

1− ηAâA(0) +
√
ηAâ

(0)
NA ,

âB(ηB) =
√
1− ηB âB(0) +

√
ηB â

(0)
NB , (6.30)

where â(0)NX is a vacuummode acting as a noise on modeX , while âX(0) is the
corresponding noiseless mode. We focus on a natural scenario in which the
source producing the two-mode squeezed state is between Alice and Bob and
losses affect the two modes, not necessarily in a symmetric way. At the same
time, the same loss noise (6.30) applied to the input coherent states would lead
only to a renormalization of α and β and can be compensated by increasing
the variance σ. Using Eqs. (6.28) and (6.30) we can accordingly compute

⟨EWκ⟩TMSV,ηA,ηB
= (6.31)〈

∆2

(
κx̂A(ηA)−

x̂B(ηB)

κ

)
+∆2

(
κp̂A(ηA) +

p̂B(ηB)

κ

)〉
=

1

2

(
κ2ηA +

ηB
κ2

)
+
e2r

4

(
κ
√
1− ηA −

√
1− ηB
κ

)2

+
e−2r

4

(
κ
√
1− ηA +

√
1− ηB
κ

)2

.

Notice that it is always possible to chooseκ such thatκ
√
1− ηA−κ−1

√
1− ηB

= 0 and r big enough to nullify the last term of (6.31), and obtain a score (6.27)
⟨MDIEWκ⟩ = 1

4

(
κ2(η2A + 1) + (η2B + 1)κ−2

)
, which is lower than the sep-

arable bound 1
2

(
κ2 + κ−2

) (
σ2

1+σ2

)
for large enough σ. In this sense the en-

tanglement witness we analysed here is loss-resistant. In Figure 6.3 we plot
the trade-off between noise, entanglement, and variance of the prior distribu-
tions σ for the MDI detection of entanglement in the case of symmetric losses
(ηA = ηB , κ = 1).

6.4 OtherMDI certification tasks: quantummemory
verification

The MDI framework can be used, in general, as a scenario for quantum certifi-
cation with minimal assumptions. Besides the case of entanglement certifica-
tion presented above, such framework has been used as well for quantum key
distribution [207, 208], quantum secure communication [222], and quantum
randomness certification [211].
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Figure 6.3: Contourplot of the obtainable value (6.27) of ⟨MDIEWκ=1⟩, for a two-
mode squeezed vacuum state with squeezing parameter r, under the presence of
losses with parameter ηA = ηB ≡ η (cf. (6.31)). The contours are chosen to match the
separable bound (6.21) for different values of σ, which corresponds to the width of
the Gaussian prior used in the experiment. Therefore the area under each σ-contour
defines the range of parameters for which MDI entanglement is certified.
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Another task that is suited to the MDI scenario is that of quantum memory
verification. The idea of quantummemory certification with minimal assump-
tions was introduced in Ref. [223]. Specifically, the problem is that of a honest
party A wanting to test the quantum memory given by an untrusted provider
E. Given the kind of task, it is natural to have trusted quantum inputs, i.e.
the task is inherently suited for the class of measurement-device-independent
protocols. Alice can send quantum inputs to Eve, who claims to have a “good”
quantummemory, which can be seen as a channelN , that maps the input state
ϕ to N [ϕ] after some time τ (i.e. the storage time). Ideally, the most desirable
property of a memory is the fidelity between input and output. However, a
unitary channel N [ϕ] = UϕU † is arguably as good as a memory as the iden-
tity channelN = 1. In fact, unitary transformations preserve the information
contained in the input state ϕ, and can be corrected by applying the inverse
unitary. Instead, the fundamental property of a quantum memory is that of
preserving “the quantumness” of what it stores, such as the entanglement of
the states that are sent to it. More precisely, it is known that a channel is
entanglement-breaking if and only if it can be simulated bymeasure & prepare
transformations, that is, measuring the ϕ and preparing a new state accord-
ing to the measurement result [223]. Such channels therefore only require a
classical memory storing the measurement results.
Therefore, the main property that a quantum memory should satisfy is to be a
non-entanglement-breaking channel, and the task of quantummemory verifi-
cation can therefore be defined as the MDI certification of non-entanglement-
breaking channels.
The authors in [223] showed constructively, in the discrete variable case, that
any non-entanglement-breaking channel can be in fact certified in the MDI
scenario. We sketch the protocol as follows: Alice sends to Bob a stateφ at time
t = 0, and another state ϕ at time t = τ . Eve can perform anymeasurement on
φ and ϕ, but given the time delay, she is forced to useN [φ] in case she wants
to perform a joint measurement. If Eve performs projections on the maximally
entangled state, then Alice can certify ifN is non-entanglement breaking, just
out of the statistics P (b|φ, ϕ). Let’s say in fact that Eve’s POVM is

M b=0 = |ψ+⟩ ⟨ψ+| , (6.32)
M b=1 = 1− |ψ+⟩ ⟨ψ+| , (6.33)

where ψ+ is the maximally entangled state |ψ+⟩ = 1√
d

∑d
i |ii⟩. Then, one has

P (b = 0|φ, ϕ) = 1

d
Tr[ϕTN [φ]] . (6.34)
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Eve

Alice

Figure 6.4: Alice sends random coherent states |α⟩, and, with a delay, |β⟩. Eve,
after conserving |α⟩ in the memory N , measures jointly x̂α+x̂β√

2
and p̂α−p̂β√

2
, via a

beamsplitter and homodyne detection.

That is, by varying ϕ and φ it is possible to do tomography of N and verify
if it is non-entanglement breaking. This is the underlying idea, which can be
translated into a proper witness (see details in [223]).
The first experimental MDI verifications of quantummemories have been per-
formed for the discrete variables case [224–226].

6.4.1 MDI certification of a continuous variables quantummem-
ory

We propose a MDI protocol for the verification of continuous variable quan-
tum memories, inspired both by [223] and [3], where we have seen that in
the context of continous variables there is a strong connection of MDI certi-
fication to metrology, which we exploit again in the following proposal. The
detailed study will be the object of a forthcoming work [227]. Here we briefly
outline the proposal and the idea behind the security proof.
The setup is simple, as in Figure 6.4. Alice sends a random coherent state
|α⟩, and after some time, |β⟩. If the memory is perfect, Eve can measure the
quadratures

X̂ =
x̂α + x̂β√

2
, P̂ =

p̂α − p̂β√
2

, (6.35)
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via mixing the two inputs in a balanced beam splitter. This measurement can
be seen as an estimate of the corresponding linear combination of the complex
numbers defining the coherent states. That is, the average values of X̂ and P̂
are, respectively, αx+βx√

2
and αp−βp√

2
, and the variance associated to both mea-

surements (6.35) is the vacuum standard noise, equal 1/4 in our normalization
choice (cf. [63]), ∆2X̂ = ∆2P̂ = 1

4 . The measurement (6.35) is an entangled
measurement on the two incoming modes. For this reason, we propose a wit-
ness based on such estimation. That is, we input random α and β, and we
ask Eve two outputs ξx and ξp representing Eve’s best estimate of αx+βx√

2
and

αp+βp√
2

. We thus compute as a score the average value of Eve’s estimate error,
i.e.

score:=
〈(

ξx −
αx + βx√

2

)2

+

(
ξp −

αp − βp√
2

)2
〉
. (6.36)

As we chose units in which the vacuum has variance= 1
4 on both quadratures,

if the memory is perfect N = 1 the resulting score will have a value of 1/2,

score(N = 1) = ∆2

(
x̂α + x̂β√

2

)
+∆2

(
p̂α − p̂β√

2

)
=

1

2
. (6.37)

Now, if instead the channel N is entanglement breaking, this means that
it corresponds to a measure & prepare channel. Intuitively, the estimation
of the above quantity will then need to go through all the four values of
αx, βx, αp, βp, doubling the error. This is the main idea of the MDI proof in
this case. That is, the optimal strategy ifN is entanglement breaking, becomes
measuring x̂α√

2
and p̂α√

2
, and separately the same for x̂β√

2
and p̂β√

2
. By doing so,

the average error, i.e. the score (6.36) will be 4 ∗ 1
4 = 1.

score(N ent.-breaking) ≳ 1 . (6.38)

What we presented until now is only the idea of the experimental proposal,
without formal proofs, which will be given in a forthcoming work [227].

6.5 Discussion

We discussed different measurement-device-independent (MDI) protocols for
the certification of quantum properties, such as entanglement, in experimental
scenarios involving a minimal level of trust in the devices employed. This sce-
nario consists and assuming only a precise description of the quantum states
used as inputs of the experiment, while leaving the rest uncharacterised. In
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particular, extended previous results and found new practical witnesses for
the case of continuous-variable systems, showing how such framework is well
suited to implementations in systems using e.g. Gaussian quantum optics. The
implementation of our protocols for entanglement witnessing [3] and quan-
tummemory verification [227] is feasible with current technology and is being
investigated at the moment.
Our work also opens up a series of interesting directions. From a general
perspective, our results opens the path to the use of CV quantum systems
for MDI tasks beyond entanglement detection, such as randomness genera-
tion [211], secure communication [208,222], or witnessing of indefinite causal
order [228]. Another possible research direction would be to investigate the
possible generality of the connection between entanglement detection and
metrology exploited in [3]. In particular, can all MDI entanglement tests be
translated into a parameter estimation problem?
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Conclusions

In this thesis, we theoretically analysed the optimization of a series of op-
erational tasks involving the use of quantum resources. We considered a wide
range of protocols with different objectives, frommeasuring temperature with
the best possible precision, to witnessing entanglement of optical states with
minimal assumptions, to implementing efficient thermal cycles for refrigera-
tion or energy extraction, et cetera.
As we argued in the “Motivation” Chapter, analysing these tasks to their limits
can bring additional knowledge to the theory itself. This is in fact one of the
classic tools of theoretical physics, i.e. that of using gedankenexperiments to
gain understanding in our description of nature. This is arguably the case of
this PhD thesis, too. In it, we could appreciate different theoretical insights,
some of which we list here:

• While studying thermal engines, we were reminded once again of the
central role of the heat capacity as a central quantifier that characterizes
equilibrium properties and close-to-equilibrium properties of a working
fluid.

• In the context of thermometry, we found out that it is possible to achieve
an Heisenberg-like scaling of the estimation precision of temperature,
which not only can be obtained with physically sound interacting sys-
tems, but also without any use of entanglement or other quantum prop-
erties.

• For what concerns the study of memory effects and non-Markovianity
witnessing, our results seem to suggest that the natural geometry of the
set of states should be the one given by the Fisher Information, thanks
to which it is also possible to give a more intuitive notion of information
backflow in an open dynamics.

• When studying network nonlocality of optical states, we contributed
to answering a physical question that has always sparked debate in the
quantum foundations community: can a single-particle entangled state
show nonlocality with particle-detection measurements only?
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• While investigating the detection of entanglement with minimal as-
sumptions, we learnt how different protocols for the certification of
quantum properties can be translated to problems of adversarial metrol-
ogy, and viceversa.

Geometry played a central role in our work, facilitating the optimization of
practical tasks, emerging both as a natural tool for mathematical analysis, and
in the resulting optimal protocols.
Among the geometrical objects we studied, we find remarkable how the Fisher
Information metric recurrently appears in the study of subjects that are, a pri-
ori, not related, such as the thermodynamic length metric (cf. Chap. 1 and
App. A), the geometry of non-Markovianity witnessing (Chap. 4), as well as
the metrological bounds that can be used to infer the best precision of a ther-
mometer (Chap. 3) or the capacity of parameter estimation for entangling and
non entangling measurements (Chap. 6).

The outlooks of our research have multiple directions, which reflect the va-
riety of subjects studied. For topic-specific perspectives we refer the reader
to the “Discussion” section at the end of each Chapter. There is however, a
number of general, speculative questions that remain open. Among them:

• Together with Ref. [39], our result in [1] show that the main figure of
merit of a thermal engine or refrigerator is given by the ratio between
heat capacity and relaxation timescale, C/τrel. When considering i.i.d.
equilibrium thermometry, the main figure of merit becomes instead νC
(see Chap. 3), where ν is the number of repetitions of the experiment.
One might therefore be tempted to observe the following: the number
of reads of a thermalized themometers is governed by the total time τ
at disposal, divided by τrel. That is, ν ∼ τ/τrel. This means that, when
time becomes a resource, in the context of equilibrium thermometry, the
main figure of merit becomes the same as that of thermal machines. Is
this a coincidence? Are the tasks of energy extraction and temperature
estimation related more intimately than what we know?

• Our results in Chapter 3 show that it is possible to engineer heat ca-
pacities C that scale quadratically in the size of the system. Is it possi-
ble to obtain a similar result when considering the whole ratio C/τrel,
in physically-sound systems? This would have consequences in all the
above-mentioned problems. At the same time, it is an extremely chal-
lenging problem, as the parameter optimization involves also the inter-
actions with the thermal reservoir, which dictate τrel.
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• Our results show that, in the context of low dissipation thermal ma-
chines and equilibrium thermometry, no quantum advantage is observed.
Rather, quantum effects seem to be detrimental. Are there reasonable
tasks in thermodynamics where a quantum advantage exists and is ef-
fective? The most notable signatures of quantum advantage in thermal
machines have been so far noted in limits of small action / small power
(see e.g. [229] or [230]), which might therefore be seen as of minor im-
portance.

• In the quest of quantum advantages in thermodynamics, can the advan-
tage derive from nonlocal properties of quantum sources, perhaps in
networks? Is there a thermodynamic protocol which is able to show a
quantum advantage in a semi-device-independent way?

• What is the most general description of non-Markovianity outside the
stochastic-divisibility framework? Can it be still described in terms of
metric contraction/dilation?

• Is it possible to identify the most general tasks which can be certified be-
tween an honest user – which can only prepare and send trusted quan-
tum inputs – and an untrusted quantum provider? Does this class coin-
cide with a class of adversarial metrology tasks?

Finally, thus far we have stressed how our analysis of operational tasks can
give new insights and understanding in theoretical Quantum Physics. It is ev-
ident, however, that the natural continuation of many of the results presented
in this thesis will be their experimental demonstration, as well as their appli-
cation to real-life useful protocols. In this sense, we can anticipate that a part
of our results is currently under consideration for realization.
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Appendix A

Slow-driving derivation of the
thermodynamic length

As we mentioned in Chap. 1, the thermodynamic length metric can be derived
in different dynamical frameworks. In Ref. [2] we review some of them. In this
Appendix, we show explicitly how to derive explicitly such metric in the case
of open quantum systems [35], assuming standard Markovian dynamics and
following approach of Ref. [29].
Consider a slow isothermal process where the Hamiltonian of the working
fluid S is externally controlled by some experimental parameters λ⃗t – we will
write for simplicity Ht ≡ H

λ⃗t
– that is

Ht , t ∈ [0, τ ] , (A.1)

while in contact with a thermal bath at temperature T = 1/β. In order to
characterise the process beyond the quasistatic limit, we need to assume some
structure on the thermalization processes of S induced by the reservoir. In a
rather generic scenario we consider that the relaxation of the quantum work-
ing fluid can be described by a master equation with the thermal state as a
unique fixed point [51], i.e.

ρ̇t =Lt[ρ] , (A.2)
Lt[ωt] =0 . (A.3)

Here and throughout the Appendix we use the shorthand subscript t to indi-
cate any time dependence byHt ≡ H(λ⃗t). In particular, notice that in general
Lt depends on time through Ht, and

ωt ≡
e−βHt

Tr[e−βHt ]
. (A.4)
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Following [29], the solution of this master equation can be found perturba-
tively around 1/τ . By writing the expansion

ρt = ρ
(0)
t + ρ

(1)
t + ρ(2) + . . . ρ

(i)
t ∼ O(τ−i) , (A.5)

it is possible to solve the dynamical equation by noticing that ρ̇(i)t is of or-
derO(τ−(i+1)) and starting the perturbative expansion around the quasistatic
equilibrium solution

ρ
(0)
t = lim

τ→∞
ρt = ωt . (A.6)

That is, given

ρ̇t = ρ̇
(0)
t + ρ

(1)
t + · · · = Lt[ρ

(0)
t + ρ

(1)
t + . . . ] , (A.7)

And matching the same-order equations

ρ̇
(i)
t = Lt[ρ

(i−1)
t ] , (A.8)

it follows that the first order correction in ρt is

ρ
(1)
t = L−1t [ρ̇

(0)
t ] = L−1t [ω̇t] . (A.9)

Notice that in general Lt is not an invertible operator. It is however invertible
when restricted to the subspace of density matrices having null trace (such as
is ω̇t), assuming that is has a unique steady state, as in the case of standard
thermalizations (see [29] for the technical details). We will therefore use an
abuse of notation indicating withL−1t the pseudoinverse ofLt on the traceless
subspace of density matrices.
Plugging this expression into W =

∫ τ
0 dt Tr[ρtḢt] it is possible to compute

the corrections to the quasistatic limit i.e.

W (i) =

∫ τ

0
dt Tr[ρ(i)t Ḣt] , (A.10)

which immediately yields the quasistatic results

W (0) =

∫ τ

0
dt Tr[ωtḢt] = ∆F (A.11)
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and the first order correction

W (1) =

∫ τ

0
dt Tr[L−1t [ω̇t]Ḣt] . (A.12)

The limit of slow-driving [29] corresponds to neglecting all higher orders, and
identifyingW (1) as the irreversible work dissipated (cf. Chap. 1)

W −∆F =W (1) =
Tσ

τ
, (A.13)

where we chose the standard parametrization that factorizes the temperature
T and the total duration τ of the transformation. It follows that the irreversible
entropy production per unit time, expressed by the coefficient σ, can be ex-
pressed as

σ = β

∫ 1

0
ds Tr[L−1s [ω′s]H

′
s] , (A.14)

where we slightly Abiused the notation by using the adimensional time s =
t/τ , i.e. As ≡ Asτ for any quantity A, as well as

A′s ≡
∂

∂s
As = τȦsτ , for any quantity A . (A.15)

From now on, we will avoid writing the time s when clear from the context,
and we will use the Hamiltonian in units of temperature, i.e.

Gs ≡ βHs . (A.16)

It follows that

σ =

∫ 1

0
ds Tr[L−1[ω′]G′] and ω =

e−G

Tr[e−G] . (A.17)

We can then use the formula for the derivative of an exponential,

ω′ = −
∫ 1

0
dy ω1−y(G′ − Tr[ωG′])ωy ≡ −Jω[G

′], (A.18)

where we defined the operator Jω .
σ can then be reexpressed in the convenient quadratic form:

σ = −
∫ 1

0
ds Tr[G′L−1[Jω[G′]]] . (A.19)
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Considering the control parameters that drive Gs, e.g. in the form

Gs =
∑
j

λj(s)Xj , (A.20)

(where Xj is a vector of observables of the system) it follows that the above
quadratic form (A.19) if projected to a metricmij onto the control vector λ⃗ as

σ =
∑
ij

∫ 1

0
ds λ′imijλ

′
j (A.21)

with

mij = −1

2

(
Tr[XiL−1s Jω[Xj ] +XjL−1s Jω[Xi]]

)
. (A.22)

The matrixmij is symmetric, positive-definite due to the second law dσ ≥ 0,
and it depends smoothly on the base point ω; hence it defines a metric.

A.1 Thermodynamic metric for single or multiple
time scales

As the general expression (A.19)-(A.22) of the thermodynamic length metric
depends on the dynamical generatorLs, in this section we consider the simple
case of an exponential relaxation of ρ to equilibrium with a single time-scale,
as described by the Lindbladian:

Ls[ρs] = τ−1eq (ωs − ρs) (A.23)

which has pseudo-inverse L−1s [.] = τeq(ωsTr(.)− I) that acts multiplicatively
on the subspace of traceless operators. In this case, using that Tr[Jω[ρ]] = 0 ∀ρ
one finds that σ in (A.19) is given by:

σ = τeq

∫ 1

0
ds Tr[G′[Jω[G′]]] . (A.24)

Notice that although we have assumed that the whole state ρ converges to
equilibrium as in (A.23), strictly speaking it is only necessary that the driven
observables (theXj in (A.20)) converge to equilibriumwith a single time-scale,
i.e., ⟨Ẋi⟩ρ = τ−1eq (⟨Xi⟩ω−⟨Xi⟩ρ), with ⟨X⟩ρ = Tr(Xρ). This is especially rel-
evant in complex systems (e.g. many-body systems), where the full dissipative
dynamics can be extremely complex but the equilibration of somemacroscopic
observables can be well described by an exponential relaxation with a suitable
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time-scale. In this sense, it is also worth pointing out that if each generalised
observable Xi decays with a different time-scale τi

⟨Ẋi⟩ρ = τ−1i (⟨Xi⟩ω − ⟨Xi⟩ρ) , (A.25)

then the metric above can be easily generalised as [35]:

mij =
τi + τj

2

∂2

∂λi∂λj
lnZ, Z ≡ Tr[e−G] , (A.26)

Z being the partition function and where we have absorbed the dependence
on τi in the metric and where τi can in principle depend on the point of the
trajectory.

Connection to Fisher Information metric In the above analysis, we ex-
pressed the dissipation σ as a quadratic form in terms of the Hamiltonian
change G′ = βH ′, as in (A.19). Notice however, how the same quantity can
be expressed as a function of the thermal state variation ω′, i.e. using the
definition ω′ = −Jω[G

′] (A.18), from (A.17) it follows

−σ =

∫ 1

0
ds Tr[J−1ω [ω′]L−1ω′] (A.27)

Notice that both Jω andL are invertible on the subspace of traceless operators,
and that ω′ is traceless. Without loss of generality we can assume also G
to have null average value Tr[ωG], as it does not influence the definition of
ω (A.17). In such case we find

ω′ = −
∫ 1

0
dx ω1−xG′ωx ≡ −Jω[G

′], (A.28)

where Jω[.] = Jω[.] + ωTr[ω(.)]. In the simple relaxation case in which
Ls[ρs] = τ−1eq (ωs − ρs), we find

σ = τeq

∫ 1

0
ds Tr[ω′J−1ω [ω′]] . (A.29)

The operator Jω corresponds to the Kubo-Mori-Bogoliubov inner product,
and the integrand Tr[dωJ−1ω [dω]] corresponds to the infinitesimal square length
associated to dω according to the associated Quantum Fisher metric (cf. Ap-
pendix C). In the limit of simple exponential relaxation, we thus find that the
dissipation σ of the transformation is equivalent to the square distance that is
travelled by the thermal state, starting at ωs=0 to ωs=1.
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A.1.1 Thermodynamic metric on standard microscopical mod-
els

In this section, we apply our general considerations to derive thermodynamic
metrics for systems described by quantum master equations that can be de-
rived from standard physical models (particularly, for detailed-balanced dy-
namics). Before, let us discuss here some generic properties. Following [29,51],
we have in standard scenarios where a quantum system is coupled to a bosonic
bath:

L[ρ] =
∑
ν>0

γ0ν
θ
(
(N(βν) + 1)DAν [ρ] +N(βν)D

A†
ν
[ρ]
)

(A.30)

where γ0νθ is the spectral density of the bath (θ defines the Ohmicity),

DX [ρ] = XρX† − 1

2
(X†Xρ+ ρX†X) (A.31)

and

N(βν) =
1

eβν − 1
(A.32)

is the Bose-Einstein distribution (one can consider ferimonic baths by replac-
ing N(βν) by the Fermi distribution). The general form (A.30) of L depends
onHs, β and the spectral density J(ν) = γ0ν

θ . Consider now a Carnot cycle
with two baths at temperature βc and βh, and the action of each bath being
described by a L(HS , β, J(ν)). Assuming that the spectral density of both
baths is the same, then both Lindbladians are related by the transformation
β → λ−1β and HS → λHS , with β ≡ βc and λ ≡ βc/βh. In terms of the
Lindbladian, note that [29]:

L(λHS , λ
−1β) = λθL(HS , β), (A.33)

which shows how the generators of the dynamics are related between the cold
and hot isotherm, i.e.

L((βc/βh)HS , βh) =

(
βc
βh

)θ

L(HS , βc) . (A.34)

After noticing that the dissipation is related to L through Eq. (A.19), we can
write a simple proportionality relation for themetric describing the dissipation
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on the hot and cold isotherm,

m
(h)
ij =

(
Tc
Th

)θ

m
(c)
ij , (A.35)

which implies, for time-reversal symmetric protocols described in the main
text,

σh =

(
Tc
Th

)θ

σc . (A.36)
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Appendix B

Proof of Lemma 1 (Chap. 3).

In this Appendix we prove the theoretical Lemma 1 presented in the main text
in Chapter 3. The lemma considers two Hamiltonians, H1 and H2, such that
H1 has a single ground state and a k1-degenerate excited state (k1+1 levels in
total), whileH2 has the same spectrum and additional k2 excited states above
(totaling 1 + k1 + k2 levels) that is,

H1 = 0 |0⟩ ⟨0|+
k1∑
i=1

E |i⟩ ⟨i| , (B.1)

H2 = 0 |0⟩ ⟨0|+
k1∑
i=1

E |i⟩ ⟨i|+
k1+k2∑
α=k1+1

Eα |α⟩ ⟨α| , (B.2)

with 0 ≤ E ≤ Eα ∀α. Consider now the realistic situation in which these
Hamiltonians are controlled via internal coupling parameters λ⃗, such as is the
case of our work. The lemma has two assumptions: i) it is possible to control
the first excited gap E(λ⃗), contemporary to keeping the additional α-levels
above ii) Eα(λ⃗) ≥ E(λ⃗). A simple scenario in which these assumptions are
satisfied is the simple Hamiltonian

H2(λ) = λ

 k1∑
i=1

ϵ |i⟩ ⟨i|+
k1+k2∑
α=k1+1

ϵα |α⟩ ⟨α|

 . (B.3)

Under assumptions i) and ii), the lemma states that the maximum heat ca-
pacity obtainable with H2 is always larger than the maximum heat capacity
obtainable with H1.

max
E

C(H1) ≤ max
E≤Eα

C(H2) . (B.4)



156

Proof of the Lemma. When computing the variance of the energy in a
thermal state, global shifts in the energy do not matter. For this reason we
rewrite the same Hamiltonians putting the k1 |i⟩ levels to zero, i.e.

H ′1 = −E |0⟩ ⟨0| , (B.5)

H ′2 = −E |0⟩ ⟨0|+
∑
α

E′α |α⟩ ⟨α| . (B.6)

with E ≥ 0 and Eα − E ≡ E′α ≥ 0.
We now use temperature units β = 1, to simplify the discussion. The thermal
states are therefore

ρ(1) =
e−H

′
1

Tr[e−H′
1 ]
, ρ(2) =

e−H
′
2

Tr[e−H′
2 ]
. (B.7)

Let us call p(1)0 and p(2)0 the corresponding ground state populations,

p
(1)
0 =

1

1 + k1e−E
, p

(2)
0 =

1

1 + k1e−E +
∑

α e
−(E′

α+E)
. (B.8)

Notice that they both depend on the value ofE, whichwe omit in the following
for simplicity. It is easy to compute the heat capacity (equivalently, the energy
variance) as

∆2H1 = E2 p
(1)
0 (1− p

(1)
0 ) . (B.9)

For what concerns H2 instead (calling pα the population of the level Eα)

∆2H2 =E
2p

(2)
0 +

∑
α

E′2α pα −

(
−E p(2)0 +

∑
α

E′αpα

)2

=E2p
(2)
0 (1− p

(2)
0 ) +A+B , (B.10)

with

A :=
∑
α

E′2α pα −

(∑
α

E′αpα

)2

≥ 0 , (B.11)

B :=2Ep
(2)
0

(∑
α

E′αpα

)
≥ 0 . (B.12)

where the inequalities follow from B being trivially positive, while A corre-
sponds to the variance of an Hamiltonian having levels Eα with population
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pα and all the rest of the population 1 −
∑

α pα being at an energy = 0. It
follows that

∆2H2 ≥ E2p
(2)
0 (1− p

(2)
0 ) . (B.13)

Finally, let’s compare the maximal value of the heat capacity in the two cases.
Let’s call Ē(1) the optimal value for the Hamiltonian H1, which induces a
ground state population equal to p̄(1)0 = p

(1)
0 (Ē(1)), i.e.

max∆2H1 = max
E

E2p
(1)
0 (E)(1− p

(1)
0 (E)) = (Ē(1))2p̄

(1)
0 (1− p̄

(1)
0 ) .

(B.14)

It suffices to conclude now by noticing that p(2)0 (E) is an increasing function
of E and is always smaller than p(1)0 (E), cf. Eq. (B.8). This means that

p
(2)
0 (x) = p

(1)
0 (y) implies x > y . (B.15)

Therefore one can choose p(2)0 (E) = p̄
(1)
0 which will lead to E > Ē and

therefore from (B.13)

max∆2H2 ≥ (Ē(1))2p̄
(1)
0 (1− p̄

(1)
0 ) , (B.16)

concluding the proof.
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Appendix C

Fisher distance and Fisher
metric

C.1 Classical Fisher metric and Fisher information

The Fisher distance is a fundamental object in statistical and mathematical
physics. Here we first consider the case of classical systems, more precisely
with a finite dimensionD. This means that the state of the system can be de-
scribed by a probability vector pi i = 1, . . . , D. The set of states is therefore
the D − 1-dimensional symplex in RD defined as

S(RD) := {p ∈ R
D|pi ≥ 0 ∧

D∑
i=1

pi = 1} . (C.1)

The Fisher distance on S(RD) induces Riemannian manifold, as it derives
from a Riemannian metric, that is a positive definite inner product that varies
smoothly in the manifold. In particular, such inner product can be defined as

⟨a, b⟩p :=
∑ aibi

2pi
. (C.2)

The corresponding infinitesimal length squared between p and p+δp is given
by

D2
Fish(p,p+ δp) ≃ ⟨δp, δp⟩p :=

1

2

∑
i

δp2i
pi

, (C.3)

Notice that such metric coincides with the differential of the square root of p.
That is, at leading order,

D2
Fish(p,p+ d) = 2|√p−

√
p+ δp|2 . (C.4)
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This means that the Fisher metric maps the set of states from the symplex
S(RD) to a sphere sector, via the change of variable y =

√
p [56,130]. Accord-

ingly, integrating Eq. (C.3) over S(RD) one can obtain the general expression
of the distance [56, 153]

DFish(p, q) =
√
2 arccos (

√
p · √q) . (C.5)

However, notice that the same distance is well-defined in the cone of positive
vectors of RD , that is

C(RD) := {v⃗ ∈ R
D)|vi ≥ 0} . (C.6)

When integrating the distance (C.3) over two points C(RD), the resulting dis-
tance is

D′Fish(v⃗, w⃗) =
√
2

√(
Tr[v⃗ + w⃗]− 2

√
v⃗ ·

√
w⃗
)
. (C.7)

It follows, for normalized vectors (i.e. physical states) that DFish(p, q) (C.5)
corresponds to the angle (or arc with unit radius) between p and q, while

D′Fish(p, q) =
√
2

√(
2− 2

√
p⃗ ·
√

q⃗
)
. (C.8)

is the euclidean distance between√
p and√

q, which clearly satisfies

D′Fish(p, q) ≤ DFish(p, q) . (C.9)

The Fisher distance between two infinitesimally close points is sometimes
called Fisher Information. More precisely, the Fisher Information is defined
when considering parametric derivatives of the states. That is, consider the
state pθ to be parametrized by some variable θ. Then it is possible to define

lim
δθ→0

D2
Fish(pθ,pθ+δθ)

δθ2
=
∑
i

(∂θpi)
2

pi
. (C.10)

This quantity is usually termed Fisher Information w.r.t. parameter θ.
This quantity has numerous operational interpretations: in metrology it is
used to derive the Cramér-Rao bound [76,154], a fundamental limit on the pre-
cision with which θ can be estimated, which we clarify below in C.1.1. More-
over, it quantifies the asymptotic distinguishability between multiple copies
of two states (Chernoff bound [155]); it also coincides with the infinitesimal
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expansion of the relative entropy, or Kullback-Leibler divergence [156],

S(p||p+ δp) =
∑

pi ln

(
pi

pi + δpi

)
= −

∑
i

pi ln

(
1 +

δpi
pi

)
=

−
∑
i

pi

(
δpi
pi

− 1

2

δp2i
p2i

+ . . .

)
=

1

2

∑
i

δp2i
pi

+O(δp3) , (C.11)

where we used that
∑

i δpi = 0 due to the normalization constraint. More in
general, it can be shown that any f -divergence locally behaves as the Fisher
information [157]).
Finally, a theorem by Chentsov [56,57,159] identifies the Fisher metric (C.3) as
the only Riemannian metric that is monotone under classical stochastic maps,
i.e.

⟨δp, δp⟩p ≥ ⟨T [δp], T [δp]⟩T [p] ∀T stochastic. (C.12)

Remarkably, the same property is not enough to single out a unique metric in
the quantum case (see below Sec. C.2).

C.1.1 Single-parameter metrology and the Cramer-Rao bound

Consider the problem of estimating a parameter θ, which will be encoded in
some state of the physical system at hand in the laboratory. In the classical
case, the state is therefore given by some probability distribution

pθ(x) , (C.13)

where we now take x to be either discrete or continuous, i.e. pθ can be ei-
ther finite or infinite dimensional. An estimator is a function τ̂(x) trying to
reproduce the value of θ, based on the measurement output x (notice that in
the classical case there is no ambiguity regarding the measurement observ-
able. Typical estimators are not perfect: they might have, for example some
systematic error b(θ), called bias: that is, taking the expectation value

Eθ(τ̂) =

∫
dx τ̂(x)pθ(x) = θ + b(θ) . (C.14)

Consider now the derivative of the above equation in θ

1 + ∂θb(θ) =

∫
dx τ̂(x)∂θpθ(x) =

∫
dx (τ̂(x)− k(θ))

∂θpθ(x)

pθ
pθ(x) ,

(C.15)
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where in the second equality we added for free any constant k(θ) which does
not depend on x. Taking now

∫
dx A(x)B(x)pθ(x) := ⟨A,B⟩ as a scalar

product, and applying the Cauchy-Schwarz inequality, we obtain

(1 + ∂θb(θ))
2 ≤

(∫
dx (τ̂(x)− k(θ))2pθ(x)

)(∫
dx (∂θpθ(x))

2

pθ(x)

)
.

(C.16)

The above equation gives us a lower bound on the mean squared distance of
the estimator from any constant, in particular themean square error (choosing
k(θ) = θ)

Eθ[(τ̂ − θ)2] ≥ (1 + ∂θb(θ))
2

Eθ[(∂θ ln pθ)2]
. (C.17)

This is the so called Cramer-Rao bound [76, 154]. Good estimators are unbi-
ased, e.g. ∂θb(θ) = 0. We see therefore that the average mistake is inversely
proportional to the Fisher information

Eθ[(τ̂ − θ)2] ≥
(
Eθ[(∂θ ln pθ)

2]
)−1 ≡ (∫ dx(∂θpθ(x))

2

pθ(x)

)−1
. (C.18)

Parenthesis on the Bayesian case. A similar bound can be obtained in
case some prior knowledge about the possible value of θ is given. That is,
consider a prior distribution on the possible values of θ given by K(θ). We
have, by definition, for fixed θ, Eθ[τ̂(x)] = θ + b(θ), which can be integrated
over the distributionK to obtain∫

dθdx K(θ)pθ(x) (τ̂(x)− θ − b(θ)) = 0 . (C.19)

Taking the derivative in θ of the above equation (notice that for the equality
to 0 it is sufficient to integrate in x) one obtains∫

dθdx (∂θK(θ) + ∂θpθ)) (τ̂ − θ − b(θ)) =

∫
dθdx K(θ) (1 + ∂θb(θ)) .

(C.20)

Similarly as above, one can consider the integral weightedwithK(θ)pθ(x) as a
scalar product, and apply the Cauchy-Schwarz inequality to obtain a Bayesian
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Cramer-Rao bound, which we express here for unbiased estimators∫
dθdx K(θ)pθ(x) (τ̂ − θ − b(θ))2 ≥

(
1 +

∫
dθ ∂θb(θ)

)2∫
dθ (∂θK(θ))2

K(θ +
∫
dθdx K(θ) (∂θpθ(x))

2

pθ(x)

(C.21)

This bound is on the variance of τ̂ , but a similar bound can be obtained by
neglecting the integral of ∂θ(K(θ)b(θ)), (which is justified under the very
mild assumption ofK(θ)b(θ) going to zero for large values of θ), to obtain for
the mean square error∫

dθdx K(θ)pθ(x) (τ̂ − θ)2 ≥ 1∫
dθ (∂θK(θ))2

K(θ +
∫
dθdx K(θ) (∂θpθ(x))

2

pθ(x)

.

(C.22)

As we see, in the Bayesian case, the expected precision of the measurement
is given by the average Fisher Information of the state pθ(x), plus the Fisher
Information of the priorK(θ) itself.

C.2 Quantum Fisher metric

The extension of the Fisher information metric to quantum systems is done
by generalising Chentsov’s theorem to completely positive, trace preserving
maps (CPTP). That is, a metric Kf

ρ (A,B) on quantum states is called mono-
tone if it decreases under all CPTPmaps E , that isKρ(A,A) ≥ KE[ρ](E [A], E [A]).
Then, it was shown by Petz in [160] that all such metrics are induced by scalar
products of the form:

Kf
ρ (A,B) :=

1

2
Tr[A† J−1f,ρ[B]], (C.23)

where Jf,ρ is a self-adjoint superoperator given by:

Jf,ρ := Rρ f(LρR
−1
ρ ), (C.24)

and Lρ/Rρ are the left/right multiplication operators acting as Lρ[π] = ρπ
(respectively Rρ[π] = πρ) and f : R+ → R+ is a standard operator monotone
function, which satisfies

f(1) = 1 , f(x) = xf(x−1) . (C.25)
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Operator monotone functions satisfying the above requirements are all con-
tained between two extrema

2x

x+ 1
≤ f(x) ≤ 1 + x

2
. (C.26)

Despite this complicated form, and the remaining arbitrariness of f , the in-
terpretation of Kf

ρ (A,B) as the natural extension of the Fisher information
to the quantum regime is corroborated by the fact the Jf,ρ[A] acts as a sym-
metrized non-commutative version of the multiplication by ρ (consequently
J
−1
f,ρ can be considered a non-commutative multiplication by ρ−1, similarly to

the classical case). See more in detail Sec. C.2.2.
For this reason, we define the family of quantum Fisher distances as

D2
Fish, f (ρ, ρ+ δρ) ≃ Kf

ρ (δρ, δρ) :=
1

2
Tr[δρ† J−1f,ρ[δρ]] . (C.27)

The uniqueness of the classical Fisher metric is hence substituted with a whole
family of different monotone metrics. In the following we provide few rele-
vant examples. It should be kept in mind that all these different examples of
Fisher metric collapse onto the same metric in the classical case of commuting
operators (cf. C.2.2) .

C.2.1 Examples

KMB Fisher metric and the thermodynamic length
Asmentioned in Appendix A.1, the expression of work dissipation/irreversible
entropy production (A.29) corresponds to the integral of a particular Quantum
Information metric, i.e. the one given by the Kubo-Mori-Bogoliubov inner
product, which corresponds to the choice of f

f(x) =

∫ 1

0
dy xy , (C.28)

which gives

J
f(x)=

∫ 1
0 dy xy ,ρ

[A] =

∫ 1

0
dy ρyAρ1−y . (C.29)

This can be inverted as

J
−1
f(x)=

∫ 1
0 dy xy ,ρ

[A] =

∫ ∞
0

dy(ρ+ y)−1A(ρ+ y)−1 . (C.30)
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The corresponding infinitesimal length squared 1
2Tr[δρJ

−1
ρ [δρ]] is the one ap-

pearing in (A.29).

Bures Fisher metric and the Quantum Cramer-Rao bound.
By choosing f being equal to the maximum (C.26)

f(x) =
x+ 1

2
, (C.31)

Jf,ρ (C.24) becomes proportional to the anticommutator

Jf=x+1
2

,ρ[A] =
1

2
{A, ρ} , (C.32)

which has inverse equal to

J
−1
f=x+1

2
,ρ
[A] = 2

∫ ∞
0

dy e−yρAe−yρ . (C.33)

The resulting metric (C.23) is the so called Bures metric, which corresponds
to the smallest of all the Quantum Information metrics. Moreover, the Bures
metric, when considered as a parametric derivative, is the metrological gener-
alization of the Fisher Information (C.18) entering the Cramer Rao bound. That
is, in the context of Quantum parameter estimation, the Quantum Cramer Rao
bound reads [128], for an unbiased estimators τ̂ of θ,

Eθ[(τ̂ − θ)2] ≥
(
Tr[∂θρθJf=x+1

2

−1
,ρθ

[∂θρθ]]
)−1

. (C.34)

Geometric Fisher metric, complete positivity and the Petz recovery
map
Another important example is given by choosing

f(x) =
√
x , (C.35)

from which it follows immediately

Jf=
√
x,ρ[A] =

√
ρA

√
ρ , J

−1
f=
√
x,ρ

[A] =
√
ρ−1A

√
ρ−1 . (C.36)

This is corresponds to the so called geometric Jf,ρ operator, and is the only
QuantumFishermetric forwhich it holds that bothJf,ρ andJ−1f,ρ are Completely-
Positive operators. Related to this, this is the Fisher metric that is used to gen-
eralized the Bayesian retrodiction map (4.26), to the Quantum Petz recovery
map [165, 231].
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C.2.2 Quantum reduction Classical

It is interesting to point out, though, that when Jf,ρ acts on diagonal states it
behaves (independently of f ) as the multiplication by ρ. That is, if [A, ρ] = 0

Jf,ρ[A] = ρA = Aρ , J
−1
f,ρ[A] = ρ−1A = Aρ−1 . (C.37)

And therefore, if A, ρ] = [B, ρ] = 0, with a small abuse of notation we have

Kf
ρ (A,B) :=

1

2
Tr
[
A†B

ρ

]
= ⟨A,B⟩ρ , (C.38)

where A,B and ρ can be seen as the vectors corresponding to the diagonal
elements in the common diagonal basis. That is, all the quantum Fishermetrics
collapse to the classical one for diagonal states. This is the main feature allows
us, in Ref. [7] to lift to the quantum scenario the results presented in Chapter 4
for the classical case, without further complications.
Specifically, we present in the following few particularly relevant Lemmas.

Lemma 2. Given a state ρ =
∑

i ρi |i⟩⟨i|, any perturbation δρ can be decom-
posed in diagonal and coherent part as:

δρ = δρ∆ + δρC with [ρ, δρ∆] = 0 and ⟨i| δρC |i⟩ = 0 , (C.39)

that is, δρ∆ is the diagonal part of the matrix δρ and δρC the off-diagonal. Then
for all f

Tr[δρJ−1f,ρ[δρ]] = Tr[δρ∆ J
−1
f,ρ[δρ∆]] + Tr[δρC J

−1
f,ρ[δρC ]] = (C.40)

= 2 ⟨δ, δ⟩ρ + Tr[δρC J
−1
f,ρ[δρC ]] , (C.41)

where the components of the vectors δ, ρ are specified as

ρi = ⟨i| ρ |i⟩ , δi = ⟨i| δρ |i⟩ = ⟨i| δρ∆ |i⟩ . (C.42)

This result directly follows from the fact that

Trδρ∆ J
−1
f,ρ[δρC ] = TrδρC J

−1
f,ρ[δρ∆] = 0 , (C.43)

since J−1f,ρ[δρ∆] is itself diagonal in the basis |i⟩ of eigenvectors of ρ. Then, we
can use the Lemma above to prove the following corollary:
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Corollary 2. Consider a perturbation of the form δρ = δρ∆ + dt δρC , where
dt is an infinitesimal quantity. Then, from Lemma 2 it follows that

Tr[δρJ−1f,ρ[δρ]] = Tr[δρ∆ J
−1
f,ρ[δρ∆]] +O

(
dt 2
)
= 2 ⟨δ, δ⟩ρ +O

(
dt 2
)
.

(C.44)

In particular, the time derivative of the Fisher Information between ρ and ρ+ δρ
for [ρ, δρ] = 0 coincides with the derivative of the classical Fisher Information.
That is:

1

2
Tr[δρJ−1f,ρ[δρ]] = ⟨δ, δ⟩ρ and

1

2

d

dt
Tr[δρJ−1f,ρ[δρ]] =

d

dt
⟨δ, δ⟩ρ .

(C.45)

In fact, consider the scenario in which initially the perturbation is of the form
δρ ≡ δρ∆. In order to compute the derivative, one considers the evolution of
the state ρ + δρ for a time dt , which we denote by ρ̃ + δρ̃. Then, the per-
turbation has the form δρ̃ = δρ̃∆ + dt δρ̃C , so that we are in the situation of
Eq. (C.44) (notice that it doesn’t matter whether we take δρ̃∆ to be diagonal
with respect to ρ or to ρ̃, as this difference only contributes to order O (dt )).
Since quadratic terms in dt do not contribute to the derivative, these consid-
erations prove Eq. (C.45).
Finally, in the next Lemma we show that there are special points for which the
trace distance and the Fisher information locally coincide. This result allows
us to lift the many constructions present in the literature for the trace distance
to the study of the Fisher information metric.

Lemma 3. Choose an arbitrary perturbation δρ. Then, consider the state ρδρ =
|δρ|
Tr|δρ| . It holds that

D2
Fish(ρδρ, ρδρ + δρ) =

1

2
D2

Tr(ρδρ, ρδρ + δρ) =
1

2
Tr|δρ|2 . (C.46)

Moreover, since [ρδρ, δρ] = 0, one can use Corollary 2 to show that:

d

dt
D2

Fish(ρδρ, ρδρ + δρ) =
1

2

d

dt
D2

Tr(ρδρ, ρδρ + δρ) =
1

2

d

dt
Tr|δρ|2 (C.47)



168

In fact, since [ρδρ, δρ] = 0, the quantum Fisher information and its derivative
can be studied just by looking at the quantity ⟨δ, δ⟩ρδρ

. But this is given by:

2 ⟨δ, δ⟩ρδρ
=
∑
i

δ2i(
|δi|

Tr|δρ|

) =
∑
i

δ2i
|δi|

∑
j

|δj | =

=

(∑
i

|δi|

)2

= D2
Tr(ρδρ, ρδρ + δρ) . (C.48)

The fact that not only one can locally identify the Fisher distance and the trace
distance, but also their first derivatives is of key importance in many of our
derivations in [7].



169

Bibliography

[1] P. Abiuso and M. Perarnau-Llobet, Optimal cycles for low-dissipation heat en-
gines, Phys. Rev. Lett. 124, 110606 (2020), doi:10.1103/PhysRevLett.124.110606.

[2] P. Abiuso, H. J. D. Miller, M. Perarnau-Llobet and M. Scandi, Geometric
optimisation of quantum thermodynamic processes, Entropy 22(10) (2020),
doi:10.3390/e22101076.

[3] P. Abiuso, S. Bäuml, D. Cavalcanti and A. Acín, Measurement-device-
independent entanglement detection for continuous-variable systems, Phys. Rev.
Lett. 126, 190502 (2021), doi:10.1103/PhysRevLett.126.190502.

[4] V. Cavina, P. A. Erdman, P. Abiuso, L. Tolomeo and V. Giovannetti, Maximum-
power heat engines and refrigerators in the fast-driving regime, Phys. Rev. A 104,
032226 (2021), doi:10.1103/PhysRevA.104.032226.

[5] P. Abiuso, T. Kriváchy, E.-C. Boghiu, M.-O. Renou, A. Pozas-Kerstjens and
A. Acín, Single-photon nonlocality in quantum networks, Phys. Rev. Research
4, L012041 (2022), doi:10.1103/PhysRevResearch.4.L012041.

[6] P. Terrén Alonso, P. Abiuso, M. Perarnau-Llobet and L. Arrachea, Ge-
ometric optimization of nonequilibrium adiabatic thermal machines and
implementation in a qubit system, PRX Quantum 3, 010326 (2022),
doi:10.1103/PRXQuantum.3.010326.

[7] P. Abiuso, M. Scandi, D. De Santis and J. Surace, Charac-
terizing (non-)markovianity through fisher information (2022),
doi:10.48550/ARXIV.2204.04072.

[8] P. Abiuso, P. A. Erdman, M. Ronen, G. Haack, F. Noé and M. Perarnau-Llobet,
Discovery of optimal thermometers with spin networks aided bymachine-learning
(2022), doi:10.48550/ARXIV.2211.01934.

[9] P. Abiuso and V. Giovannetti, Non-markov enhancement of maximum
power for quantum thermal machines, Phys. Rev. A 99, 052106 (2019),
doi:10.1103/PhysRevA.99.052106.

[10] P. Abiuso, V. Holubec, J. Anders, Z. Ye, F. Cerisola and M. Perarnau-Llobet,
Thermodynamics and optimal protocols of multidimensional quadratic brow-
nian systems, Journal of Physics Communications 6(6), 063001 (2022),
doi:10.1088/2399-6528/ac72f8.

[11] Z. Ye, F. Cerisola, P. Abiuso, J. Anders, M. Perarnau-Llobet and V. Hol-
ubec, Optimal finite-time heat engines under constrained control (2022),
doi:10.48550/ARXIV.2202.12953.

https://doi.org/10.1103/PhysRevLett.124.110606
https://doi.org/10.3390/e22101076
https://doi.org/10.1103/PhysRevLett.126.190502
https://doi.org/10.1103/PhysRevA.104.032226
https://doi.org/10.1103/PhysRevResearch.4.L012041
https://doi.org/10.1103/PRXQuantum.3.010326
https://doi.org/10.48550/ARXIV.2204.04072
https://doi.org/10.48550/ARXIV.2211.01934
https://doi.org/10.1103/PhysRevA.99.052106
https://doi.org/10.1088/2399-6528/ac72f8
https://doi.org/10.48550/ARXIV.2202.12953


170

[12] P. A. Erdman, A. Rolandi, P. Abiuso, M. Perarnau-Llobet and F. Noé, Pareto-
optimal cycles for power, efficiency and fluctuations of quantum heat engines us-
ing reinforcement learning (2022), doi:10.48550/ARXIV.2207.13104.

[13] S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemporary
Physics 57(4), 545 (2016), doi:10.1080/00107514.2016.1201896.

[14] S. Deffner and S. Campbell, Quantum Thermodynamics, 2053-2571. Morgan &
Claypool Publishers, ISBN 978-1-64327-658-8, doi:10.1088/2053-2571/ab21c6
(2019).

[15] K. E. Dorfman, D. V. Voronine, S. Mukamel and M. O. Scully, Photosynthetic
reaction center as a quantum heat engine, Proceedings of the National Academy
of Sciences 110(8), 2746 (2013), doi:10.1073/pnas.1212666110.

[16] J. V. Koski, V. F. Maisi, J. P. Pekola and D. V. Averin, Experimental realization of
a szilard engine with a single electron, Proceedings of the National Academy of
Sciences 111(38), 13786 (2014), doi:10.1073/pnas.1406966111.

[17] J. P. Pekola, Towards quantum thermodynamics in electronic circuits, Nature
Physics 11(2), 118 (2015), doi:10.1038/nphys3169.

[18] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler
and K. Singer, A single-atom heat engine, Science 352(6283), 325 (2016),
doi:10.1126/science.aad6320.

[19] A. Ronzani, B. Karimi, J. Senior, Y.-C. Chang, J. T. Peltonen, C. Chen and J. P.
Pekola, Tunable photonic heat transport in a quantum heat valve, Nature Physics
14(10), 991 (2018), doi:10.1038/s41567-018-0199-4.

[20] N. M. Myers, O. Abah and S. Deffner, Quantum thermodynamic devices: From
theoretical proposals to experimental reality, AVS Quantum Science 4(2), 027101
(2022), doi:10.1116/5.0083192.

[21] V. Cavina, A. Mari, A. Carlini and V. Giovannetti, Optimal thermody-
namic control in open quantum systems, Phys. Rev. A 98, 012139 (2018),
doi:10.1103/PhysRevA.98.012139.

[22] L. S. Pontryagin, Mathematical theory of optimal processes, CRC press, ISBN
9782881240775 (1987).

[23] P. A. Erdman and F. Noé, Identifying optimal cycles in quantum thermal ma-
chines with reinforcement-learning, npj Quantum Information 8(1), 1 (2022),
doi:10.1038/s41534-021-00512-0.

[24] P. A. Erdman, V. Cavina, R. Fazio, F. Taddei and V. Giovannetti, Maximum
power and corresponding efficiency for two-level heat engines and refrigera-
tors: optimality of fast cycles, New Journal of Physics 21(10), 103049 (2019),
doi:10.1088/1367-2630/ab4dca.

[25] T. Schmiedl and U. Seifert, Optimal finite-time processes in stochastic thermody-
namics, Phys. Rev. Lett. 98, 108301 (2007), doi:10.1103/PhysRevLett.98.108301.

https://doi.org/10.48550/ARXIV.2207.13104
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1088/2053-2571/ab21c6
https://doi.org/10.1073/pnas.1212666110
https://doi.org/10.1073/pnas.1406966111
https://doi.org/10.1038/nphys3169
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1038/s41567-018-0199-4
https://doi.org/10.1116/5.0083192
https://doi.org/10.1103/PhysRevA.98.012139
https://doi.org/10.1038/s41534-021-00512-0
https://doi.org/10.1088/1367-2630/ab4dca
https://doi.org/10.1103/PhysRevLett.98.108301


171

[26] T. Schmiedl and U. Seifert, Efficiency at maximum power: An analytically solv-
able model for stochastic heat engines, EPL (Europhysics Letters) 81(2), 20003
(2007), doi:10.1209/0295-5075/81/20003.

[27] A. Gomez-Marin, T. Schmiedl and U. Seifert, Optimal protocols for minimal work
processes in underdamped stochastic thermodynamics, The Journal of Chemical
Physics 129(2), 024114 (2008), doi:10.1063/1.2948948.

[28] A. Dechant, N. Kiesel and E. Lutz, Underdamped stochastic heat engine
at maximum efficiency, EPL (Europhysics Letters) 119(5), 50003 (2017),
doi:10.1209/0295-5075/119/50003.

[29] V. Cavina, A. Mari and V. Giovannetti, Slow dynamics and thermody-
namics of open quantum systems, Phys. Rev. Lett. 119, 050601 (2017),
doi:10.1103/PhysRevLett.119.050601.

[30] F. Weinhold, Metric geometry of equilibrium thermodynamics, The Journal of
Chemical Physics 63(6), 2479 (1975), doi:10.1063/1.431689.

[31] P. Salamon and R. S. Berry, Thermodynamic length and dissipated availability,
Phys. Rev. Lett. 51, 1127 (1983), doi:10.1103/PhysRevLett.51.1127.

[32] G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Rev.
Mod. Phys. 67, 605 (1995), doi:10.1103/RevModPhys.67.605.

[33] L. Diósi, K. Kulacsy, B. Lukács and A. Rácz, Thermodynamic length, time, speed,
and optimum path to minimize entropy production, The Journal of Chemical
Physics 105(24), 11220 (1996), doi:10.1063/1.472897.

[34] P. R. Zulkowski, D. A. Sivak, G. E. Crooks and M. R. DeWeese, Ge-
ometry of thermodynamic control, Phys. Rev. E 86, 041148 (2012),
doi:10.1103/PhysRevE.86.041148.

[35] M. Scandi and M. Perarnau-Llobet, Thermodynamic length in open quantum
systems, Quantum 3, 197 (2019), doi:10.22331/q-2019-10-24-197.

[36] B. Bhandari, P. T. Alonso, F. Taddei, F. von Oppen, R. Fazio and L. Arrachea,
Geometric properties of adiabatic quantum thermal machines, Phys. Rev. B 102,
155407 (2020), doi:10.1103/PhysRevB.102.155407.

[37] J. P. Pekola, B. Karimi, G. Thomas andD. V. Averin, Supremacy of incoherent sud-
den cycles, Phys. Rev. B 100, 085405 (2019), doi:10.1103/PhysRevB.100.085405.

[38] A. Das and V. Mukherjee, Quantum-enhanced finite-time otto cycle, Phys. Rev.
Research 2, 033083 (2020), doi:10.1103/PhysRevResearch.2.033083.

[39] M. Campisi and R. Fazio, The power of a critical heat engine, Nature Commu-
nications 7(1), 11895 (2016), doi:10.1038/ncomms11895.

[40] A. De Pasquale and T. M. Stace, Quantum Thermometry, pp. 503–527, Springer
International Publishing, Cham, ISBN 978-3-319-99046-0, doi:10.1007/978-3-
319-99046-0_21 (2018).

https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1063/1.2948948
https://doi.org/10.1209/0295-5075/119/50003
https://doi.org/10.1103/PhysRevLett.119.050601
https://doi.org/10.1063/1.431689
https://doi.org/10.1103/PhysRevLett.51.1127
https://doi.org/10.1103/RevModPhys.67.605
https://doi.org/10.1063/1.472897
https://doi.org/10.1103/PhysRevE.86.041148
https://doi.org/10.22331/q-2019-10-24-197
https://doi.org/10.1103/PhysRevB.102.155407
https://doi.org/10.1103/PhysRevB.100.085405
https://doi.org/10.1103/PhysRevResearch.2.033083
https://doi.org/10.1038/ncomms11895
https://doi.org/10.1007/978-3-319-99046-0_21
https://doi.org/10.1007/978-3-319-99046-0_21


172

[41] M. Mehboudi, A. Sanpera and L. A. Correa, Thermometry in the quantum
regime: recent theoretical progress, Journal of Physics A: Mathematical and
Theoretical 52(30), 303001 (2019), doi:10.1088/1751-8121/ab2828.

[42] L. A. Correa, M. Mehboudi, G. Adesso and A. Sanpera, Individual quan-
tum probes for optimal thermometry, Phys. Rev. Lett. 114, 220405 (2015),
doi:10.1103/PhysRevLett.114.220405.

[43] L. Buffoni and M. Campisi, Thermodynamics of a quantum annealer, Quantum
Science and Technology 5(3), 035013 (2020), doi:10.1088/2058-9565/ab9755.

[44] Z. G. Izquierdo, I. Hen and T. Albash, Testing a quantum annealer as a quan-
tum thermal sampler, ACM Transactions on Quantum Computing 2(2) (2021),
doi:10.1145/3464456.

[45] T. Albash and J. Marshall, Comparing relaxation mechanisms in quantum
and classical transverse-field annealing, Phys. Rev. Applied 15, 014029 (2021),
doi:10.1103/PhysRevApplied.15.014029.

[46] R. Zwanzig, A. Szabo and B. Bagchi, Levinthal’s paradox., Proceedings of the
National Academy of Sciences 89(1), 20 (1992), doi:10.1073/pnas.89.1.20.

[47] R. Zwanzig, Simple model of protein folding kinetics., Proceedings of the Na-
tional Academy of Sciences 92(21), 9801 (1995), doi:10.1073/pnas.92.21.9801.

[48] E. Farhi and S. Gutmann, Analog analogue of a digital quantum computation,
Phys. Rev. A 57, 2403 (1998), doi:10.1103/PhysRevA.57.2403.

[49] J. Roland and N. J. Cerf, Quantum search by local adiabatic evolution, Phys. Rev.
A 65, 042308 (2002), doi:10.1103/PhysRevA.65.042308.

[50] N. Chancellor, S. Zohren, P. A. Warburton, S. C. Benjamin and S. Roberts, A
Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph,
Scientific Reports 6(1), 37107 (2016), doi:10.1038/srep37107.

[51] H.-P. Breuer, F. Petruccione et al., The theory of open quantum systems, Oxford
University Press on Demand, doi:10.1093/acprof:oso/9780199213900.001.0001
(2002).

[52] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quan-
tum Information: 10th Anniversary Edition, Cambridge University Press,
doi:10.1017/CBO9780511976667 (2010).

[53] Á. Rivas, S. F. Huelga and M. B. Plenio, Quantum non-markovianity: charac-
terization, quantification and detection, Reports on Progress in Physics 77(9),
094001 (2014), doi:10.1088/0034-4885/77/9/094001.

[54] H.-P. Breuer, E.-M. Laine, J. Piilo and B. Vacchini, Colloquium: Non-markovian
dynamics in open quantum systems, Rev. Mod. Phys. 88, 021002 (2016),
doi:10.1103/RevModPhys.88.021002.

[55] B. Bylicka, M. Johansson and A. Acín, Constructive method for detecting the
information backflow of non-markovian dynamics, Phys. Rev. Lett. 118, 120501
(2017), doi:10.1103/PhysRevLett.118.120501.

https://doi.org/10.1088/1751-8121/ab2828
https://doi.org/10.1103/PhysRevLett.114.220405
https://doi.org/10.1088/2058-9565/ab9755
https://doi.org/10.1145/3464456
https://doi.org/10.1103/PhysRevApplied.15.014029
https://doi.org/10.1073/pnas.89.1.20
https://doi.org/10.1073/pnas.92.21.9801
https://doi.org/10.1103/PhysRevA.57.2403
https://doi.org/10.1103/PhysRevA.65.042308
https://doi.org/10.1038/srep37107
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/PhysRevLett.118.120501


173

[56] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States: An
Introduction to Quantum Entanglement, Cambridge University Press,
doi:10.1017/CBO9780511535048 (2006).

[57] N. N. Cencov, Statistical decision rules and optimal inference, 53. American
Mathematical Soc., doi:https://doi.org/10.1090/mmono/053 (2000).

[58] J. S. Bell, On the einstein podolsky rosen paradox, Physics Physique Fizika 1,
195 (1964), doi:10.1103/PhysicsPhysiqueFizika.1.195.

[59] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani and S.Wehner, Bell nonlocality,
Rev. Mod. Phys. 86, 419 (2014), doi:10.1103/RevModPhys.86.419.

[60] A. Tavakoli, A. Pozas-Kerstjens, M.-X. Luo and M.-O. Renou, Bell nonlo-
cality in networks, Reports on Progress in Physics 85(5), 056001 (2022),
doi:10.1088/1361-6633/ac41bb.

[61] T. Fritz, Beyond bell's theorem: correlation scenarios, New Journal of Physics
14(10), 103001 (2012), doi:10.1088/1367-2630/14/10/103001.

[62] M.-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin and S. Beigi, Genuine
quantum nonlocality in the triangle network, Phys. Rev. Lett. 123, 140401 (2019),
doi:10.1103/PhysRevLett.123.140401.

[63] S. L. Braunstein and P. van Loock, Quantum information with continuous vari-
ables, Rev. Mod. Phys. 77, 513 (2005), doi:10.1103/RevModPhys.77.513.

[64] C. Branciard, D. Rosset, Y.-C. Liang and N. Gisin, Measurement-device-
independent entanglement witnesses for all entangled quantum states, Phys. Rev.
Lett. 110, 060405 (2013), doi:10.1103/PhysRevLett.110.060405.

[65] F. Buscemi, All entangled quantum states are nonlocal, Phys. Rev. Lett. 108,
200401 (2012), doi:10.1103/PhysRevLett.108.200401.

[66] M. Scandi, P. Abiuso, J. Surace and D. De Santis, Quantum Fisher Information:
divisible dynamics, reverse processes and witnesses for Non-Markovianity (In
preparation) .

[67] N. Linden, S. Popescu and P. Skrzypczyk, How small can thermal machines
be? the smallest possible refrigerator, Phys. Rev. Lett. 105, 130401 (2010),
doi:10.1103/PhysRevLett.105.130401.

[68] C. Gogolin and J. Eisert, Equilibration, thermalisation, and the emergence of
statistical mechanics in closed quantum systems, Reports on Progress in Physics
79(5), 056001 (2016), doi:10.1088/0034-4885/79/5/056001.

[69] J. P. S. Peterson, T. B. Batalhão, M. Herrera, A. M. Souza, R. S.
Sarthour, I. S. Oliveira and R. M. Serra, Experimental characterization
of a spin quantum heat engine, Phys. Rev. Lett. 123, 240601 (2019),
doi:10.1103/PhysRevLett.123.240601.

[70] J. Klatzow, J. N. Becker, P. M. Ledingham, C. Weinzetl, K. T. Kaczmarek, D. J.
Saunders, J. Nunn, I. A. Walmsley, R. Uzdin and E. Poem, Experimental demon-
stration of quantum effects in the operation of microscopic heat engines, Phys.
Rev. Lett. 122, 110601 (2019), doi:10.1103/PhysRevLett.122.110601.

https://doi.org/10.1017/CBO9780511535048
https://doi.org/https://doi.org/10.1090/mmono/053
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1088/1361-6633/ac41bb
https://doi.org/10.1088/1367-2630/14/10/103001
https://doi.org/10.1103/PhysRevLett.123.140401
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/PhysRevLett.110.060405
https://doi.org/10.1103/PhysRevLett.108.200401
https://doi.org/10.1103/PhysRevLett.105.130401
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1103/PhysRevLett.123.240601
https://doi.org/10.1103/PhysRevLett.122.110601


174

[71] D. von Lindenfels, O. Gräb, C. T. Schmiegelow, V. Kaushal, J. Schulz, M. T.
Mitchison, J. Goold, F. Schmidt-Kaler and U. G. Poschinger, Spin heat engine
coupled to a harmonic-oscillator flywheel, Phys. Rev. Lett. 123, 080602 (2019),
doi:10.1103/PhysRevLett.123.080602.

[72] J. M. Parrondo, J. M. Horowitz and T. Sagawa, Thermodynamics of information,
Nature physics 11(2), 131 (2015), doi:10.1038/nphys3230.

[73] J. Goold, M. Huber, A. Riera, L. del Rio and P. Skrzypczyk, The role of
quantum information in thermodynamics—a topical review, Journal of Physics
A: Mathematical and Theoretical 49(14), 143001 (2016), doi:10.1088/1751-
8113/49/14/143001.

[74] M. Lostaglio, An introductory review of the resource theory approach to
thermodynamics, Reports on Progress in Physics 82(11), 114001 (2019),
doi:10.1088/1361-6633/ab46e5.

[75] M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck, Efficiency at
maximum power of low-dissipation carnot engines, Phys. Rev. Lett. 105, 150603
(2010), doi:10.1103/PhysRevLett.105.150603.

[76] H. Cramér, Mathematical methods of statistics, Princeton University Press,
ISBN 0691005478, doi:https://doi.org/10.1515/9781400883868 (1946).

[77] G. Benenti, G. Casati, K. Saito and R. S.Whitney, Fundamental aspects of steady-
state conversion of heat to work at the nanoscale, Physics Reports 694, 1 (2017),
doi:https://doi.org/10.1016/j.physrep.2017.05.008.

[78] F. Tonner andG.Mahler, Autonomous quantum thermodynamicmachines, Phys.
Rev. E 72, 066118 (2005), doi:10.1103/PhysRevE.72.066118.

[79] A. Roulet, S. Nimmrichter, J. M. Arrazola, S. Seah and V. Scarani,
Autonomous rotor heat engine, Phys. Rev. E 95, 062131 (2017),
doi:10.1103/PhysRevE.95.062131.

[80] R. Alicki, The quantum open system as a model of the heat engine, Journal
of Physics A: Mathematical and General 12(5), L103 (1979), doi:10.1088/0305-
4470/12/5/007.

[81] T. D. Kieu, The second law, maxwell’s demon, and work deriv-
able from quantum heat engines, Phys. Rev. Lett. 93, 140403 (2004),
doi:10.1103/PhysRevLett.93.140403.

[82] A. C. Barato and U. Seifert, Thermodynamic uncertainty relation
for biomolecular processes, Phys. Rev. Lett. 114, 158101 (2015),
doi:10.1103/PhysRevLett.114.158101.

[83] T. R. Gingrich, J. M. Horowitz, N. Perunov and J. L. England, Dissipation
bounds all steady-state current fluctuations, Phys. Rev. Lett. 116, 120601 (2016),
doi:10.1103/PhysRevLett.116.120601.

[84] P. Pietzonka and U. Seifert, Universal trade-off between power, efficiency, and
constancy in steady-state heat engines, Phys. Rev. Lett. 120, 190602 (2018),
doi:10.1103/PhysRevLett.120.190602.

https://doi.org/10.1103/PhysRevLett.123.080602
https://doi.org/10.1038/nphys3230
https://doi.org/10.1088/1751-8113/49/14/143001
https://doi.org/10.1088/1751-8113/49/14/143001
https://doi.org/10.1088/1361-6633/ab46e5
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/https://doi.org/10.1515/9781400883868
https://doi.org/https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1103/PhysRevE.72.066118
https://doi.org/10.1103/PhysRevE.95.062131
https://doi.org/10.1088/0305-4470/12/5/007
https://doi.org/10.1088/0305-4470/12/5/007
https://doi.org/10.1103/PhysRevLett.93.140403
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevLett.120.190602


175

[85] G. Guarnieri, G. T. Landi, S. R. Clark and J. Goold, Thermodynamics of precision
in quantum nonequilibrium steady states, Phys. Rev. Research 1, 033021 (2019),
doi:10.1103/PhysRevResearch.1.033021.

[86] G. Falasco, M. Esposito and J.-C. Delvenne, Unifying thermodynamic uncer-
tainty relations, New Journal of Physics 22(5), 053046 (2020), doi:10.1088/1367-
2630/ab8679.

[87] T. Koyuk, U. Seifert and P. Pietzonka, A generalization of the thermodynamic
uncertainty relation to periodically driven systems, Journal of Physics A: Math-
ematical and Theoretical 52(2), 02LT02 (2018), doi:10.1088/1751-8121/aaeec4.

[88] T. Koyuk and U. Seifert, Operationally accessible bounds on fluctuations and
entropy production in periodically driven systems, Phys. Rev. Lett. 122, 230601
(2019), doi:10.1103/PhysRevLett.122.230601.

[89] T. Van Vu and Y. Hasegawa, Thermodynamic uncertainty relations un-
der arbitrary control protocols, Phys. Rev. Research 2, 013060 (2020),
doi:10.1103/PhysRevResearch.2.013060.

[90] H. J. D. Miller, M. H. Mohammady, M. Perarnau-Llobet and G. Guarnieri, Ther-
modynamic uncertainty relation in slowly driven quantum heat engines, Phys.
Rev. Lett. 126, 210603 (2021), doi:10.1103/PhysRevLett.126.210603.

[91] L. D. Landau and E. M. Lifshitz, Statistical Physics: Volume 5, vol. 5, Elsevier,
ISBN 9780750633727 (2013).

[92] G. E. Crooks, Measuring thermodynamic length, Phys. Rev. Lett. 99, 100602
(2007), doi:10.1103/PhysRevLett.99.100602.

[93] Y.-H. Ma, D. Xu, H. Dong and C.-P. Sun, Universal constraint for efficiency
and power of a low-dissipation heat engine, Phys. Rev. E 98, 042112 (2018),
doi:10.1103/PhysRevE.98.042112.

[94] P. Salamon, K. H. Hoffmann, S. Schubert, R. S. Berry and B. Andresen, What
conditions make minimum entropy production equivalent to maximum power
production? 26(1), 73 (2001), doi:doi:10.1515/JNETDY.2001.006.

[95] B. Andresen and J. M. Gordon, Constant thermodynamic speed for minimizing
entropy production in thermodynamic processes and simulated annealing, Phys.
Rev. E 50, 4346 (1994), doi:10.1103/PhysRevE.50.4346.

[96] P. Salamon, A. Nitzan, B. Andresen and R. S. Berry, Minimum entropy pro-
duction and the optimization of heat engines, Phys. Rev. A 21, 2115 (1980),
doi:10.1103/PhysRevA.21.2115.

[97] P. Salamon, J. Nulton, G. Siragusa, T. Andersen and A. Limon,
Principles of control thermodynamics, Energy 26(3), 307 (2001),
doi:https://doi.org/10.1016/S0360-5442(00)00059-1.

[98] B. Andresen, Current trends in finite-time thermodynamics,
Angewandte Chemie International Edition 50(12), 2690 (2011),
doi:https://doi.org/10.1002/anie.201001411, https://onlinelibrary.
wiley.com/doi/pdf/10.1002/anie.201001411.

https://doi.org/10.1103/PhysRevResearch.1.033021
https://doi.org/10.1088/1367-2630/ab8679
https://doi.org/10.1088/1367-2630/ab8679
https://doi.org/10.1088/1751-8121/aaeec4
https://doi.org/10.1103/PhysRevLett.122.230601
https://doi.org/10.1103/PhysRevResearch.2.013060
https://doi.org/10.1103/PhysRevLett.126.210603
https://doi.org/10.1103/PhysRevLett.99.100602
https://doi.org/10.1103/PhysRevE.98.042112
https://doi.org/doi:10.1515/JNETDY.2001.006
https://doi.org/10.1103/PhysRevE.50.4346
https://doi.org/10.1103/PhysRevA.21.2115
https://doi.org/https://doi.org/10.1016/S0360-5442(00)00059-1
https://doi.org/https://doi.org/10.1002/anie.201001411
https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201001411
https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201001411


176

[99] K. Brandner, M. Bauer and U. Seifert, Universal coherence-induced power losses
of quantum heat engines in linear response, Phys. Rev. Lett. 119, 170602 (2017),
doi:10.1103/PhysRevLett.119.170602.

[100] V. Holubec and A. Ryabov, Maximum efficiency of low-dissipation heat engines
at arbitrary power, Journal of Statistical Mechanics: Theory and Experiment
2016(7), 073204 (2016), doi:10.1088/1742-5468/2016/07/073204.

[101] A. C. Hernández, A.Medina and J.M.M. Roco, Time, entropy generation, and op-
timization in low-dissipation heat devices, New Journal of Physics 17(7), 075011
(2015), doi:10.1088/1367-2630/17/7/075011.

[102] V. Holubec and Z. Ye, Maximum efficiency of low-dissipation refrig-
erators at arbitrary cooling power, Phys. Rev. E 101, 052124 (2020),
doi:10.1103/PhysRevE.101.052124.

[103] J. P. Palao, R. Kosloff and J. M. Gordon, Quantum thermodynamic cooling cycle,
Phys. Rev. E 64, 056130 (2001), doi:10.1103/PhysRevE.64.056130.

[104] N. Brunner, N. Linden, S. Popescu and P. Skrzypczyk, Virtual qubits, virtual
temperatures, and the foundations of thermodynamics, Phys. Rev. E 85, 051117
(2012), doi:10.1103/PhysRevE.85.051117.

[105] A. Ros, The isoperimetric problem, Global theory of minimal surfaces 2, 175
(2001).

[106] E. Parini, An introduction to the cheeger problem, Surv. Math. Appl. 6, 9 (2011).

[107] G. P. Leonardi, An Overview on the Cheeger Problem, pp. 117–139, Springer
International Publishing, Cham, ISBN 978-3-319-17563-8, doi:10.1007/978-3-
319-17563-8_6 (2015).

[108] V. Blåsjö, The isoperimetric problem, The American Mathematical Monthly
112(6), 526 (2005), doi:10.1080/00029890.2005.11920227.

[109] H. J. D. Miller, M. Scandi, J. Anders and M. Perarnau-Llobet, Work fluctuations
in slow processes: Quantum signatures and optimal control, Phys. Rev. Lett. 123,
230603 (2019), doi:10.1103/PhysRevLett.123.230603.

[110] T. Denzler and E. Lutz, Power fluctuations in a finite-time quan-
tum carnot engine, Phys. Rev. Research 3, L032041 (2021),
doi:10.1103/PhysRevResearch.3.L032041.

[111] N. Pancotti, M. Scandi, M. T. Mitchison and M. Perarnau-Llobet, Speed-
ups to isothermality: Enhanced quantum thermal machines through con-
trol of the system-bath coupling, Phys. Rev. X 10, 031015 (2020),
doi:10.1103/PhysRevX.10.031015.

[112] M. Scandi, D. Barker, S. Lehmann, K. A. Dick, V. F. Maisi and M. Perarnau-
Llobet, Constant dissipation rate is optimal for thermodynamic protocols: ex-
perimental implementation of landauer erasure through thermodynamic length,
doi:10.48550/ARXIV.2209.01852 (2022).

https://doi.org/10.1103/PhysRevLett.119.170602
https://doi.org/10.1088/1742-5468/2016/07/073204
https://doi.org/10.1088/1367-2630/17/7/075011
https://doi.org/10.1103/PhysRevE.101.052124
https://doi.org/10.1103/PhysRevE.64.056130
https://doi.org/10.1103/PhysRevE.85.051117
https://doi.org/10.1007/978-3-319-17563-8_6
https://doi.org/10.1007/978-3-319-17563-8_6
https://doi.org/10.1080/00029890.2005.11920227
https://doi.org/10.1103/PhysRevLett.123.230603
https://doi.org/10.1103/PhysRevResearch.3.L032041
https://doi.org/10.1103/PhysRevX.10.031015
https://doi.org/10.48550/ARXIV.2209.01852


177

[113] R.-X. Zhai, F.-M. Cui, Y.-H. Ma, C. P. Sun and H. Dong, Experimental imple-
mentation of finite-time carnot cycle, doi:10.48550/ARXIV.2206.10153 (2022).

[114] M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck, Quantum-
dot carnot engine at maximum power, Phys. Rev. E 81, 041106 (2010),
doi:10.1103/PhysRevE.81.041106.

[115] O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer and
E. Lutz, Single-ion heat engine at maximum power, Phys. Rev. Lett. 109, 203006
(2012), doi:10.1103/PhysRevLett.109.203006.

[116] K. Zhang, F. Bariani and P. Meystre, Quantum optomechanical heat engine,
Phys. Rev. Lett. 112, 150602 (2014), doi:10.1103/PhysRevLett.112.150602.

[117] J. Deng, Q.-h. Wang, Z. Liu, P. Hänggi and J. Gong, Boosting work char-
acteristics and overall heat-engine performance via shortcuts to adiabatic-
ity: Quantum and classical systems, Phys. Rev. E 88, 062122 (2013),
doi:10.1103/PhysRevE.88.062122.

[118] E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo,
D. Guéry-Odelin, A. Ruschhaupt, X. Chen and J. G. Muga, Chapter 2 -
shortcuts to adiabaticity, In E. Arimondo, P. R. Berman and C. C. Lin,
eds., Advances in Atomic, Molecular, and Optical Physics, vol. 62 of Ad-
vances In Atomic, Molecular, and Optical Physics, pp. 117–169. Academic Press,
doi:https://doi.org/10.1016/B978-0-12-408090-4.00002-5 (2013).

[119] A. d. Campo, J. Goold and M. Paternostro, More bang for your buck:
Super-adiabatic quantum engines, Scientific Reports 4(1), 6208 (2014),
doi:10.1038/srep06208.

[120] P. W. Claeys, M. Pandey, D. Sels and A. Polkovnikov, Floquet-engineering
counterdiabatic protocols in quantum many-body systems, Phys. Rev. Lett. 123,
090602 (2019), doi:10.1103/PhysRevLett.123.090602.

[121] T. Villazon, A. Polkovnikov and A. Chandran, Swift heat transfer by fast-
forward driving in open quantum systems, Phys. Rev. A 100, 012126 (2019),
doi:10.1103/PhysRevA.100.012126.

[122] A. E. Allahverdyan, K. V. Hovhannisyan, A. V. Melkikh and S. G. Gevorkian,
Carnot cycle at finite power: Attainability of maximal efficiency, Phys. Rev. Lett.
111, 050601 (2013), doi:10.1103/PhysRevLett.111.050601.

[123] R. Kosloff and Y. Rezek, The quantum harmonic otto cycle, Entropy 19(4) (2017),
doi:10.3390/e19040136.

[124] E. Geva and R. Kosloff, A quantum-mechanical heat engine operating in finite
time. a model consisting of spin-1/2 systems as the working fluid, The Journal of
Chemical Physics 96(4), 3054 (1992), doi:10.1063/1.461951.

[125] V. Cavina, A. Mari, A. Carlini and V. Giovannetti, Variational approach to the
optimal control of coherently driven, open quantum system dynamics, Phys. Rev.
A 98, 052125 (2018), doi:10.1103/PhysRevA.98.052125.

https://doi.org/10.48550/ARXIV.2206.10153
https://doi.org/10.1103/PhysRevE.81.041106
https://doi.org/10.1103/PhysRevLett.109.203006
https://doi.org/10.1103/PhysRevLett.112.150602
https://doi.org/10.1103/PhysRevE.88.062122
https://doi.org/https://doi.org/10.1016/B978-0-12-408090-4.00002-5
https://doi.org/10.1038/srep06208
https://doi.org/10.1103/PhysRevLett.123.090602
https://doi.org/10.1103/PhysRevA.100.012126
https://doi.org/10.1103/PhysRevLett.111.050601
https://doi.org/10.3390/e19040136
https://doi.org/10.1063/1.461951
https://doi.org/10.1103/PhysRevA.98.052125


178

[126] U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular ma-
chines, Reports on Progress in Physics 75(12), 126001 (2012), doi:10.1088/0034-
4885/75/12/126001.

[127] P. Menczel and K. Brandner, Limit cycles in periodically driven open quantum
systems, Journal of Physics A: Mathematical and Theoretical 52(43), 43LT01
(2019), doi:10.1088/1751-8121/ab435a.

[128] M. G. A. Paris, Quantum estimation for quantum technology, In-
ternational Journal of Quantum Information 07(supp01), 125 (2009),
doi:10.1142/S0219749909004839.

[129] G. Tóth and I. Apellaniz, Quantum metrology from a quantum information sci-
ence perspective, Journal of Physics A: Mathematical and Theoretical 47(42),
424006 (2014), doi:10.1088/1751-8113/47/42/424006.

[130] J. S. Sidhu and P. Kok, Geometric perspective on quantum parameter estimation,
AVS Quantum Science 2(1), 014701 (2020), doi:10.1116/1.5119961.

[131] W.-K. Mok, K. Bharti, L.-C. Kwek and A. Bayat, Optimal probes for global quan-
tum thermometry, Communications Physics 4(1), 62 (2021), doi:10.1038/s42005-
021-00572-w.

[132] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, http:
//www.deeplearningbook.org (2016).

[133] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization,
doi:10.48550/ARXIV.1412.6980 (2014).

[134] D-wave systems.

[135] G. Mussardo, Statistical field theory: an introduction to exactly solved models in
statistical physics, Oxford University Press, ISBN 9780198788102 (2010).

[136] M. E. Fisher, The theory of equilibrium critical phenomena, Reports on Progress
in Physics 30(2), 615 (1967), doi:10.1088/0034-4885/30/2/306.

[137] N. S. Izmailian and C.-K. Hu, Exact amplitude ratio and finite-size correc-
tions for the m × n square lattice ising model, Phys. Rev. E 65, 036103 (2002),
doi:10.1103/PhysRevE.65.036103.

[138] A. B. Dodds, V. Kendon, C. S. Adams and N. Chancellor, Practical designs for
permutation-symmetric problem hamiltonians on hypercubes, Phys. Rev. A 100,
032320 (2019), doi:10.1103/PhysRevA.100.032320.

[139] P. Sekatski and M. Perarnau-Llobet, Optimal nonequilibrium thermometry in
finite time, doi:10.48550/ARXIV.2107.04425 (2021).

[140] S. Milz and K. Modi, Quantum stochastic processes and quan-
tum non-markovian phenomena, PRX Quantum 2, 030201 (2021),
doi:10.1103/PRXQuantum.2.030201.

[141] A. Rivas and S. F. Huelga, Open quantum systems, vol. 10, Springer,
doi:10.1007/978-3-642-23354-8 (2012).

https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/1751-8121/ab435a
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1116/1.5119961
https://doi.org/10.1038/s42005-021-00572-w
https://doi.org/10.1038/s42005-021-00572-w
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1088/0034-4885/30/2/306
https://doi.org/10.1103/PhysRevE.65.036103
https://doi.org/10.1103/PhysRevA.100.032320
https://doi.org/10.48550/ARXIV.2107.04425
https://doi.org/10.1103/PRXQuantum.2.030201
https://doi.org/10.1007/978-3-642-23354-8


179

[142] R. Vasile, S. Olivares, M. A. Paris and S. Maniscalco, Continuous-variable quan-
tum key distribution in non-markovian channels, Phys. Rev. A 83, 042321 (2011),
doi:10.1103/PhysRevA.83.042321.

[143] A. W. Chin, S. F. Huelga and M. B. Plenio, Quantum metrology
in non-markovian environments, Phys. Rev. Lett. 109, 233601 (2012),
doi:10.1103/PhysRevLett.109.233601.

[144] S. F. Huelga, A. Rivas and M. B. Plenio, Non-markovianity-assisted
steady state entanglement, Phys. Rev. Lett. 108, 160402 (2012),
doi:10.1103/PhysRevLett.108.160402.

[145] B. Bylicka, D. Chruściński and S. Maniscalco, Non-Markovianity and reservoir
memory of quantum channels: a quantum information theory perspective, Sci-
entific Reports 4(1), 5720 (2014), doi:10.1038/srep05720.

[146] E.-M. Laine, H.-P. Breuer and J. Piilo, Nonlocal memory effects allow per-
fect teleportation with mixed states, Scientific Reports 4(1), 4620 (2014),
doi:10.1038/srep04620.

[147] W. F. Stinespring, Positive functions on c*-algebras, Proceedings of the Amer-
ican Mathematical Society 6(2), 211 (1955), doi:https://doi.org/10.1090/S0002-
9939-1955-0069403-4.

[148] F. Buscemi and N. Datta, Equivalence between divisibility and monotonic de-
crease of information in classical and quantum stochastic processes, Phys. Rev. A
93, 012101 (2016), doi:10.1103/PhysRevA.93.012101.

[149] B. Bylicka, D. Chruściński and S. Maniscalco, Non-markovianity and reservoir
memory of quantum channels: a quantum information theory perspective, Sci-
entific Reports 4 (2014), doi:10.1038/srep05720.

[150] S. Lorenzo, F. Plastina and M. Paternostro, Geometrical characterization of non-
markovianity, Phys. Rev. A 88, 020102 (2013), doi:10.1103/PhysRevA.88.020102.

[151] D. D. Santis and M. Johansson, Equivalence between non-markovian dynam-
ics and correlation backflows, New Journal of Physics 22(9), 093034 (2020),
doi:10.1088/1367-2630/abaf6a.

[152] J. Kołodyński, S. Rana and A. Streltsov, Entanglement negativity as a
universal non-markovianity witness, Phys. Rev. A 101, 020303 (2020),
doi:10.1103/PhysRevA.101.020303.

[153] W. K. Wootters, Statistical distance and hilbert space, Phys. Rev. D 23, 357
(1981), doi:10.1103/PhysRevD.23.357.

[154] C. R. Rao, Information and the accuracy attainable in the estimation of statistical
parameters, Kotz S., Johnson N.L. (eds) Breakthroughs in Statistics. Springer
Series in Statistics (Perspectives in Statistics) (1992), doi:10.1007/978-1-4612-
0919-5.

[155] H. Chernoff, A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based
on the sum of Observations, The Annals of Mathematical Statistics 23(4), 493
(1952), doi:10.1214/aoms/1177729330.

https://doi.org/10.1103/PhysRevA.83.042321
https://doi.org/10.1103/PhysRevLett.109.233601
https://doi.org/10.1103/PhysRevLett.108.160402
https://doi.org/10.1038/srep05720
https://doi.org/10.1038/srep04620
https://doi.org/https://doi.org/10.1090/S0002-9939-1955-0069403-4
https://doi.org/https://doi.org/10.1090/S0002-9939-1955-0069403-4
https://doi.org/10.1103/PhysRevA.93.012101
https://doi.org/10.1038/srep05720
https://doi.org/10.1103/PhysRevA.88.020102
https://doi.org/10.1088/1367-2630/abaf6a
https://doi.org/10.1103/PhysRevA.101.020303
https://doi.org/10.1103/PhysRevD.23.357
https://doi.org/10.1007/978-1-4612-0919-5
https://doi.org/10.1007/978-1-4612-0919-5
https://doi.org/10.1214/aoms/1177729330


180

[156] S. Kullback, Information theory and statistics, Dover. Publications, ISBN 978-
0486696843 (1997).

[157] I. Csiszár and P. C. Shields, Information Theory and Statistics: A Tutorial, Foun-
dations and Trends® in Communications and Information Theory 1(4), 417
(2004), doi:10.1561/0100000004.

[158] X.-M. Lu, X. Wang and C. P. Sun, Quantum fisher information flow and
non-markovian processes of open systems, Phys. Rev. A 82, 042103 (2010),
doi:10.1103/PhysRevA.82.042103.

[159] L. L. Campbell, An extended čencov characterization of the information met-
ric, Proceedings of the American Mathematical Society 98(1), 135 (1986),
doi:https://doi.org/10.2307/2045782.

[160] D. Petz, Monotone metrics on matrix spaces, Linear Algebra and its Applications
244, 81 (1996), doi:https://doi.org/10.1016/0024-3795(94)00211-8.

[161] G. Lindblad, On the generators of quantum dynamical semigroups, Communi-
cations in Mathematical Physics 48(2), 119 (1976), doi:10.1007/BF01608499.

[162] V. Gorini, A. Kossakowski and E. C. G. Sudarshan, Completely positive dynam-
ical semigroups of n-level systems, Journal of Mathematical Physics 17(5), 821
(1976), doi:10.1063/1.522979.

[163] M. J. W. Hall, J. D. Cresser, L. Li and E. Andersson, Canonical form of master
equations and characterization of non-markovianity, Phys. Rev. A 89, 042120
(2014), doi:10.1103/PhysRevA.89.042120.

[164] D. Chruściński and S. Maniscalco, Degree of non-markovianity of quantum evo-
lution, Phys. Rev. Lett. 112, 120404 (2014), doi:10.1103/PhysRevLett.112.120404.

[165] F. Buscemi and V. Scarani, Fluctuation theorems from bayesian retrodiction,
Phys. Rev. E 103, 052111 (2021), doi:10.1103/PhysRevE.103.052111.

[166] J. Surace and M. Scandi, State retrieval beyond bayes’ retrodiction and reverse
processes (2022), doi:10.48550/ARXIV.2201.09899.

[167] J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt, Proposed experi-
ment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880 (1969),
doi:10.1103/PhysRevLett.23.880.

[168] B. S. Cirel’son, Quantum generalizations of Bell’s inequality, Letters in Mathe-
matical Physics 4(2), 93 (1980), doi:10.1007/BF00417500.

[169] R. Colbeck, Quantum and Relativistic Protocols For Secure Multi-Party Compu-
tation, Ph.D. thesis, University of Cambridge, doi:10.48550/ARXIV.0911.3814
(2007).

[170] S. Pironio, A. Acín, S. Massar, A. B. de la Giroday, D. N. Matsukevich,
P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning and C. Monroe,
Random numbers certified by Bell’s theorem, Nature 464(7291), 1021 (2010),
doi:10.1038/nature09008.

https://doi.org/10.1561/0100000004
https://doi.org/10.1103/PhysRevA.82.042103
https://doi.org/https://doi.org/10.2307/2045782
https://doi.org/https://doi.org/10.1016/0024-3795(94)00211-8
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1103/PhysRevA.89.042120
https://doi.org/10.1103/PhysRevLett.112.120404
https://doi.org/10.1103/PhysRevE.103.052111
https://doi.org/10.48550/ARXIV.2201.09899
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1007/BF00417500
https://doi.org/10.48550/ARXIV.0911.3814
https://doi.org/10.1038/nature09008


181

[171] A. K. Ekert, Quantum cryptography based on bell’s theorem, Phys. Rev. Lett. 67,
661 (1991), doi:10.1103/PhysRevLett.67.661.

[172] A. Acín, N. Gisin and L. Masanes, From bell’s theorem to se-
cure quantum key distribution, Phys. Rev. Lett. 97, 120405 (2006),
doi:10.1103/PhysRevLett.97.120405.

[173] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio and V. Scarani, Device-
independent security of quantum cryptography against collective attacks, Phys.
Rev. Lett. 98, 230501 (2007), doi:10.1103/PhysRevLett.98.230501.

[174] I. Šupić and J. Bowles, Self-testing of quantum systems: a review, Quantum 4,
337 (2020), doi:10.22331/q-2020-09-30-337.

[175] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruiten-
berg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri
et al., Loophole-free Bell inequality violation using electron spins separated by 1.3
kilometres, Nature 526(7575), 682 (2015), doi:10.1038/nature15759.

[176] M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner,
A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson, C. Abel-
lán, W. Amaya, V. Pruneri et al., Significant-loophole-free test of Bell’s
theorem with entangled photons, Phys. Rev. Lett. 115, 250401 (2015),
doi:10.1103/PhysRevLett.115.250401.

[177] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J.
Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D.
Dyer et al., Strong loophole-free test of local realism, Phys. Rev. Lett. 115, 250402
(2015), doi:10.1103/PhysRevLett.115.250402.

[178] S. M. Tan, D. F. Walls and M. J. Collett, Nonlocality of a single photon, Phys.
Rev. Lett. 66, 252 (1991), doi:10.1103/PhysRevLett.66.252.

[179] L. Hardy, Nonlocality of a single photon revisited, Phys. Rev. Lett. 73, 2279
(1994), doi:10.1103/PhysRevLett.73.2279.

[180] C. C. Gerry, Nonlocality of a single photon in cavity qed, Phys. Rev. A 53, 4583
(1996), doi:10.1103/PhysRevA.53.4583.

[181] L. Vaidman, Nonlocality of a single photon revisited again, Phys. Rev. Lett. 75,
2063 (1995), doi:10.1103/PhysRevLett.75.2063.

[182] Y. Aharonov and L. Vaidman, Nonlocal aspects of a quantum wave, Phys. Rev.
A 61, 052108 (2000), doi:10.1103/PhysRevA.61.052108.

[183] B. Hessmo, P. Usachev, H. Heydari and G. Björk, Experimental demon-
stration of single photon nonlocality, Phys. Rev. Lett. 92, 180401 (2004),
doi:10.1103/PhysRevLett.92.180401.

[184] J. B. Brask, R. Chaves and N. Brunner, Testing nonlocality of a single
photon without a shared reference frame, Phys. Rev. A 88, 012111 (2013),
doi:10.1103/PhysRevA.88.012111.

https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.97.120405
https://doi.org/10.1103/PhysRevLett.98.230501
https://doi.org/10.22331/q-2020-09-30-337
https://doi.org/10.1038/nature15759
https://doi.org/10.1103/PhysRevLett.115.250401
https://doi.org/10.1103/PhysRevLett.115.250402
https://doi.org/10.1103/PhysRevLett.66.252
https://doi.org/10.1103/PhysRevLett.73.2279
https://doi.org/10.1103/PhysRevA.53.4583
https://doi.org/10.1103/PhysRevLett.75.2063
https://doi.org/10.1103/PhysRevA.61.052108
https://doi.org/10.1103/PhysRevLett.92.180401
https://doi.org/10.1103/PhysRevA.88.012111


182

[185] O. Morin, J.-D. Bancal, M. Ho, P. Sekatski, V. D’Auria, N. Gisin, J. Lau-
rat and N. Sangouard, Witnessing trustworthy single-photon entanglement
with local homodyne measurements, Phys. Rev. Lett. 110, 130401 (2013),
doi:10.1103/PhysRevLett.110.130401.

[186] T. Das, M. Karczewski, A. Mandarino, M. Markiewicz, B. Woloncewicz and
M. Żukowski, Can single photon excitation of two spatially separated modes
lead to a violation of bell inequality via weak-field homodyne measurements?,
New Journal of Physics 23(7), 073042 (2021), doi:10.1088/1367-2630/ac0ffe.

[187] B. Yurke and D. Stoler, Bell’s-inequality experiments using independent-particle
sources, Phys. Rev. A 46, 2229 (1992), doi:10.1103/PhysRevA.46.2229.

[188] B. Yurke and D. Stoler, Einstein-podolsky-rosen effects from independent particle
sources, Phys. Rev. Lett. 68, 1251 (1992), doi:10.1103/PhysRevLett.68.1251.

[189] C. Branciard, N. Gisin and S. Pironio, Characterizing the nonlocal correla-
tions created via entanglement swapping, Phys. Rev. Lett. 104, 170401 (2010),
doi:10.1103/PhysRevLett.104.170401.

[190] C. Branciard, D. Rosset, N. Gisin and S. Pironio, Bilocal versus nonbilocal corre-
lations in entanglement-swapping experiments, Phys. Rev. A 85, 032119 (2012),
doi:10.1103/PhysRevA.85.032119.

[191] D. Cavalcanti, M. L. Almeida, V. Scarani and A. Acín, Quantum net-
works reveal quantum nonlocality, Nature Communications 2(1), 184 (2011),
doi:10.1038/ncomms1193.

[192] T. Fritz, Beyond Bell’s Theorem II: Scenarios with Arbitrary Causal
Structure, Communications in Mathematical Physics 341(2), 391 (2016),
doi:10.1007/s00220-015-2495-5.

[193] D. Cavalcanti, R. Rabelo and V. Scarani, Nonlocality tests enhanced by a third ob-
server, Phys. Rev. Lett. 108, 040402 (2012), doi:10.1103/PhysRevLett.108.040402.

[194] T. Van Himbeeck, J. Bohr Brask, S. Pironio, R. Ramanathan, A. B. Sainz and
E. Wolfe, Quantum violations in the instrumental scenario and their relations to
the Bell scenario, Quantum 3, 186 (2019), doi:10.22331/q-2019-09-16-186.

[195] M.-O. Renou, Y. Wang, S. Boreiri, S. Beigi, N. Gisin and N. Brunner, Limits on
correlations in networks for quantum and no-signaling resources, Phys. Rev. Lett.
123, 070403 (2019), doi:10.1103/PhysRevLett.123.070403.

[196] I. Šupić, J.-D. Bancal and N. Brunner, Quantum nonlocality in networks can be
demonstrated with an arbitrarily small level of independence between the sources,
Phys. Rev. Lett. 125, 240403 (2020), doi:10.1103/PhysRevLett.125.240403.

[197] T. Kraft, S. Designolle, C. Ritz, N. Brunner, O. Gühne and M. Huber, Quan-
tum entanglement in the triangle network, Phys. Rev. A 103, L060401 (2021),
doi:10.1103/PhysRevA.103.L060401.

[198] A. Pozas-Kerstjens, N. Gisin and M.-O. Renou, Proofs of network quantum non-
locality aided by machine learning (2022), doi:10.48550/ARXIV.2203.16543.

https://doi.org/10.1103/PhysRevLett.110.130401
https://doi.org/10.1088/1367-2630/ac0ffe
https://doi.org/10.1103/PhysRevA.46.2229
https://doi.org/10.1103/PhysRevLett.68.1251
https://doi.org/10.1103/PhysRevLett.104.170401
https://doi.org/10.1103/PhysRevA.85.032119
https://doi.org/10.1038/ncomms1193
https://doi.org/10.1007/s00220-015-2495-5
https://doi.org/10.1103/PhysRevLett.108.040402
https://doi.org/10.22331/q-2019-09-16-186
https://doi.org/10.1103/PhysRevLett.123.070403
https://doi.org/10.1103/PhysRevLett.125.240403
https://doi.org/10.1103/PhysRevA.103.L060401
https://doi.org/10.48550/ARXIV.2203.16543


183

[199] S. Boreiri, A. Girardin, B. Ulu, P. Lypka-Bartosik, N. Brunner and P. Sekatski,
Towards a minimal example of quantum nonlocality without inputs (2022),
doi:10.48550/ARXIV.2207.08532.

[200] M.-O. Renou and S. Beigi, Network nonlocality via rigidity of to-
ken counting and color matching, Phys. Rev. A 105, 022408 (2022),
doi:10.1103/PhysRevA.105.022408.

[201] T. Kriváchy, Y. Cai, D. Cavalcanti, A. Tavakoli, N. Gisin and N. Brunner, A neu-
ral network oracle for quantum nonlocality problems in networks, npj Quantum
Information 6(1), 70 (2020), doi:10.1038/s41534-020-00305-x.

[202] R. Jozsa and N. Linden, On the role of entanglement in quantum-
computational speed-up, Proceedings of the Royal Society of London. Series
A: Mathematical, Physical and Engineering Sciences 459(2036), 2011 (2003),
doi:10.1098/rspa.2002.1097.

[203] G. Tóth and I. Apellaniz, Quantum metrology from a quantum information sci-
ence perspective, Journal of Physics A: Mathematical and Theoretical 47(42),
424006 (2014), doi:10.1088/1751-8113/47/42/424006.

[204] O. Gühne and G. Tóth, Entanglement detection, Physics Reports 474(1), 1 (2009),
doi:https://doi.org/10.1016/j.physrep.2009.02.004.

[205] D. Rosset, R. Ferretti-Schöbitz, J.-D. Bancal, N. Gisin and Y.-C. Liang,
Imperfect measurement settings: Implications for quantum state tomog-
raphy and entanglement witnesses, Phys. Rev. A 86, 062325 (2012),
doi:10.1103/PhysRevA.86.062325.

[206] T. Moroder, O. Gühne, N. Beaudry, M. Piani and N. Lütkenhaus, Entanglement
verification with realistic measurement devices via squashing operations, Phys.
Rev. A 81, 052342 (2010), doi:10.1103/PhysRevA.81.052342.

[207] H.-K. Lo, M. Curty and B. Qi, Measurement-device-independent
quantum key distribution, Phys. Rev. Lett. 108, 130503 (2012),
doi:10.1103/PhysRevLett.108.130503.

[208] S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein,
S. Lloyd, T. Gehring, C. S. Jacobsen and U. L. Andersen, High-rate measurement-
device-independent quantum cryptography, Nature Photonics 9(6), 397 (2015),
doi:10.1038/nphoton.2015.83.

[209] Z. Li, Y.-C. Zhang, F. Xu, X. Peng and H. Guo, Continuous-variable
measurement-device-independent quantum key distribution, Phys. Rev. A 89,
052301 (2014), doi:10.1103/PhysRevA.89.052301.

[210] X.-C. Ma, S.-H. Sun, M.-S. Jiang, M. Gui and L.-M. Liang, Gaussian-modulated
coherent-state measurement-device-independent quantum key distribution, Phys.
Rev. A 89, 042335 (2014), doi:10.1103/PhysRevA.89.042335.

[211] I. Šupić, P. Skrzypczyk and D. Cavalcanti, Measurement-device-independent en-
tanglement and randomness estimation in quantum networks, Phys. Rev. A 95,
042340 (2017), doi:10.1103/PhysRevA.95.042340.

https://doi.org/10.48550/ARXIV.2207.08532
https://doi.org/10.1103/PhysRevA.105.022408
https://doi.org/10.1038/s41534-020-00305-x
https://doi.org/10.1098/rspa.2002.1097
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1103/PhysRevA.86.062325
https://doi.org/10.1103/PhysRevA.81.052342
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1038/nphoton.2015.83
https://doi.org/10.1103/PhysRevA.89.052301
https://doi.org/10.1103/PhysRevA.89.042335
https://doi.org/10.1103/PhysRevA.95.042340


184

[212] B. Regula, L. Lami, G. Ferrari and R. Takagi, Operational quantification of
continuous-variable quantum resources, Phys. Rev. Lett. 126, 110403 (2021),
doi:10.1103/PhysRevLett.126.110403.

[213] A. S. Holevo, Probabilistic and statistical aspects of quantum theory, vol. 1, Edi-
zioni della Normale Pisa, doi:10.1007/978-88-7642-378-9 (2011).

[214] G. M. D'Ariano, L. Maccone and M. G. A. Paris, Quorum of observables for
universal quantum estimation, Journal of Physics A: Mathematical and General
34(1), 93 (2000), doi:10.1088/0305-4470/34/1/307.

[215] E. C. G. Sudarshan, Equivalence of semiclassical and quantum mechani-
cal descriptions of statistical light beams, Phys. Rev. Lett. 10, 277 (1963),
doi:10.1103/PhysRevLett.10.277.

[216] R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev.
131, 2766 (1963), doi:10.1103/PhysRev.131.2766.

[217] L.-M. Duan, G. Giedke, J. I. Cirac and P. Zoller, Inseparability crite-
rion for continuous variable systems, Phys. Rev. Lett. 84, 2722 (2000),
doi:10.1103/PhysRevLett.84.2722.

[218] R. Simon, Peres-horodecki separability criterion for continuous variable systems,
Phys. Rev. Lett. 84, 2726 (2000), doi:10.1103/PhysRevLett.84.2726.

[219] H. Yuen and M. Lax, Multiple-parameter quantum estimation and measurement
of nonselfadjoint observables, IEEE Transactions on Information Theory 19(6),
740 (1973), doi:10.1109/TIT.1973.1055103.

[220] M. G. Genoni, M. G. A. Paris, G. Adesso, H. Nha, P. L. Knight and M. S. Kim,
Optimal estimation of joint parameters in phase space, Phys. Rev. A 87, 012107
(2013), doi:10.1103/PhysRevA.87.012107.

[221] S. Morelli, A. Usui, E. Agudelo and N. Friis, Bayesian parameter estimation
using gaussian states and measurements, Quantum Science and Technology
6(2), 025018 (2021), doi:10.1088/2058-9565/abd83d.

[222] Z. Zhou, Y. Sheng, P. Niu, L. Yin, G. Long and L. Hanzo, Measurement-device-
independent quantum secure direct communication, Science China Physics, Me-
chanics & Astronomy 63(3), 230362 (2019), doi:10.1007/s11433-019-1450-8.

[223] D. Rosset, F. Buscemi and Y.-C. Liang, Resource theory of quantum memories
and their faithful verification with minimal assumptions, Phys. Rev. X 8, 021033
(2018), doi:10.1103/PhysRevX.8.021033.

[224] Y. Mao, Y.-Z. Zhen, H. Liu, M. Zou, Q.-J. Tang, S.-J. Zhang, J. Wang, H. Liang,
W. Zhang, H. Li, L. You, Z. Wang et al., Experimentally verified approach to
nonentanglement-breaking channel certification, Phys. Rev. Lett. 124, 010502
(2020), doi:10.1103/PhysRevLett.124.010502.

[225] F. Graffitti, A. Pickston, P. Barrow, M. Proietti, D. Kundys, D. Ros-
set, M. Ringbauer and A. Fedrizzi, Measurement-device-independent ver-
ification of quantum channels, Phys. Rev. Lett. 124, 010503 (2020),
doi:10.1103/PhysRevLett.124.010503.

https://doi.org/10.1103/PhysRevLett.126.110403
https://doi.org/10.1007/978-88-7642-378-9
https://doi.org/10.1088/0305-4470/34/1/307
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1109/TIT.1973.1055103
https://doi.org/10.1103/PhysRevA.87.012107
https://doi.org/10.1088/2058-9565/abd83d
https://doi.org/10.1007/s11433-019-1450-8
https://doi.org/10.1103/PhysRevX.8.021033
https://doi.org/10.1103/PhysRevLett.124.010502
https://doi.org/10.1103/PhysRevLett.124.010503


185

[226] Y. Yu, P.-F. Sun, Y.-Z. Zhang, B. Bai, Y.-Q. Fang, X.-Y. Luo, Z.-Y. An, J. Li,
J. Zhang, F. Xu, X.-H. Bao and J.-W. Pan, Measurement-device-independent
verification of a quantum memory, Phys. Rev. Lett. 127, 160502 (2021),
doi:10.1103/PhysRevLett.127.160502.

[227] P. Abiuso and A. Acín, Quantum memory verification for continuous-variable
systems (In preparation) .

[228] H. Dourdent, A. A. Abbott, N. Brunner, I. Šupić and C. Branciard, Semi-device-
independent certification of causal nonseparability with trusted quantum inputs
(2021), doi:10.48550/ARXIV.2107.10877.

[229] R. Uzdin, A. Levy and R. Kosloff, Equivalence of quantum heat machines,
and quantum-thermodynamic signatures, Phys. Rev. X 5, 031044 (2015),
doi:10.1103/PhysRevX.5.031044.

[230] M. Lostaglio, Certifying quantum signatures in thermodynamics and metrology
via contextuality of quantum linear response, Phys. Rev. Lett. 125, 230603 (2020),
doi:10.1103/PhysRevLett.125.230603.

[231] M. Ohya and D. Petz, Quantum entropy and its use, Springer Science & Business
Media (2004).

https://doi.org/10.1103/PhysRevLett.127.160502
https://doi.org/10.48550/ARXIV.2107.10877
https://doi.org/10.1103/PhysRevX.5.031044
https://doi.org/10.1103/PhysRevLett.125.230603




187

This page is intentionally left blank.


	Abstract
	Resumen
	List of publications
	INTRO
	Motivation
	Overview of thesis results
	Notation and conventions

	I Tasks in Thermodynamics: geometry and optimization
	Optimising slowly-driven engines through geometry
	Background: driven thermal machines
	Background: Low-dissipation regime and the thermodynamic length
	General traits and principles of low-dissipation machines optimization
	The case of low-dissipation including heat leaks
	Discussion

	Optimising fastly-driven engines
	Background: power maximization and fast machines
	Framework and fast-driving regime
	Fast-driving optimization
	Applications
	Discussion

	Engineering good thermometers
	Background: equilibrium thermometry
	Spectrum-based thermometry optimization
	Optimal spin thermal probes
	Spin probes comparison
	Discussion


	II Tasks in Information Theory: geometry and optical proposals
	The geometry of (non-)Markovianity and information flow
	Background: Markovianity
	Background: Fisher metric and Fisher Information
	Rate matrix decomposition of Markovian evolutions
	Contractivity of the Fisher metric and the detection of non-Markovianity
	Bayesian retrodiction and the meaning of information backflow
	Discussion

	Network nonlocality with passive optics and single-photons
	Background: Bell nonlocality
	Background: Single-photon nonlocality
	Network nonlocality and the Triangle Network
	Witnessing Single-Photon nonlocality in the Triangle network
	Optical realisation and noise analysis
	Discussion

	MDI certification of quantum properties
	Background: Entanglement detection, Nonlocality and Device-Independent certifications
	Measurement-device-independent entanglement witnessing
	MDI entanglement witnessing for continuous variables states
	Other MDI certification tasks: quantum memory verification
	Discussion


	OUTRO
	Conclusions
	Acknowledgements
	Slow-driving derivation of the thermodynamic length
	Thermodynamic metric for single or multiple time scales

	Proof of Lemma 1 (Chap. 3).
	Fisher distance and Fisher metric
	Classical Fisher metric and Fisher information
	Quantum Fisher metric

	Bibliography


