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Abstract

Speech recognition, the cornerstone of Al voice assistants, has seen signifi-
cant improvements due to recent deep learning advancements, often being trained
with large labeled data or using large encoders pretrained with self-supervised
objectives on extensive unlabeled datasets. Despite these advancements, many
deployed systems face suboptimal conditions due to factors like shortage of tran-
scribed speech data, limited computational capabilities on smaller devices, or the
challenge of recognizing speech in noisy environments. This dissertation delves
into three research avenues for enhancing speech recognition under these chal-
lenging conditions, all of them focusing on feature enhancement and extending
beyond the conventional use of spectral features.

Firstly, we explore the potential of incorporating prosody and voice quality
features into spectral feature-based models in data-limited environments, finding
that additional pitch and voice quality measurements significantly reduce word
error rates. Secondly, we address noisy environments by assessing the impact
of speech denoising on wake-up word detection and propose a joint training ap-
proach for speech enhancement and detection models, which improves system
robustness in both noisy and clean speech conditions. Lastly, focusing on small-
footprint devices, we leverage phonetic information from models like wav2vec
2.0 to enhance keyword classifiers without extra computational load, achieving
superior performance and efficiency. This approach, further optimized through k-
means clustering for weight compression, ensures faster inference with minimal
accuracy loss, demonstrating a synergistic integration of advanced techniques to
refine speech recognition technology.

In conclusion, this research addresses critical challenges in speech recognition
through three different innovative approaches: (1) we enhance spectral feature-
based models with prosody and voice quality in data-limited settings, (2) explore
joint training methods for robust performance in noisy environments and (3) op-
timize keyword classifiers on resource-constrained devices. Thus, after exploring
these three avenues, we have not only made advances in each area but also pro-
vided a suite of techniques for speech feature enhancement that can be used com-
plementarily to offer robust, adaptable solutions for the diverse challenges faced
by contemporary Al voice assistants.

Keywords: speech recognition, speech enhancement, self-supervised learn-
ing, prosody, voice quality features
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Resum

El reconeixement de la parla, que €s la peca central dels assistents de veu per
IA, ha vist notables millores degut als avengos recents en tecniques d’aprenentat-
ge profund. Aquestes prioritzen habitualment 1’entrenament amb grans bases de
dades etiquetades o bé fan servir enormes codificadors que es pre-entrenen amb
dades extensives sense etiquetar. Tot i aquests avengos, molts sistemes operen
en condicions suboptimes a causa de factors com 1’escassetat de dades, capaci-
tats de computaci6 restringides en dispositius petits, o 1’alta preséncia de soroll
a ’ambient. Aquesta dissertacid recorre tres linies d’investigacio per millorar el
reconeixement de la parla davant d’aquestes condicions dificultoses, totes elles
enfocades en la millora de les caracteristiques extretes de la parla, anant més enlla
de I’ts convencional de caracteristiques espectrals.

Per comencar, explorem el potencial de complementar les caracteristiques es-
pectrals amb caracteristiques prosodiques i de qualitat de la veu, en sistemes amb
limitacions de dades d’entrenament, trobant millores significatives en la reducci6
d’errors en la transcripci6 de la parla. A continuacid, adrecem el reconeixement
en ambients sorollosos, primer mesurant I’impacte de 1’ts de models de neteja
del soroll sobre models de detecci6é de paraules d’activacid, i després proposant
un metode d’entrenament conjunt pels models de neteja i deteccid, incrementant
la robustesa del sistema total en condicions silencioses i sorolloses a I’hora. Fi-
nalment, centrant-nos en petits dispositius de computacié limitada, aprofitem la
informaci6 fonetica de models com wav2vec 2.0 per millorar els classificadors de
paraules clau sense carrega computacional addicional, aconseguint un rendiment
superior i millor eficiencia. Aquest enfocament, optimitzat encara més mitjangant
I’agrupament k-means per a la compressié de pesos, assegura una inferencia més
rapida amb una minima perdua de precisio.

En conclusid, aquesta recerca aborda reptes en el reconeixement de parla a
través de tres enfocaments innovadors diferents: (1) millorem els models basats
en caracteristiques espectrals amb caracteristiques de prosodia i qualitat de veu en
entorns amb dades limitades, (2) explorem metodes d’entrenament conjunt per a
un rendiment robust en entorns sorollosos 1 (3) optimitzem classificadors de pa-
raules clau en dispositius amb recursos limitats. Aixi, després d’explorar aquestes
tres vies, no només hem fet avancos en cada area, sin6é que també hem proporci-
onat un conjunt de tecniques per a la millora de caracteristiques de la parla que
poden ser utilitzades de manera complementaria per oferir solucions robustes i
adaptables als diversos reptes que afronten els assistents de veu IA moderns.

Paraules clau: reconeixement de la parla, millora de la parla, aprenentatge
auto-supervisat, prosodia, parametres de qualitat de veu
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Chapter 1

INTRODUCTION

Speech recognition is a domain of speech technology focused on transcribing
spoken words into text. Speech recognition models are paramount for the correct
behavior of voice assistants, as the accuracy of their transcriptions is necessary
for proper understanding of the intent of a user. Transcribing is challenged by the
infinite amount of variability that speech recordings have: different speaker iden-
tities, accents or noisy conditions, for instance. Tackling this issue has been done
in the latest years with Deep Learning (DL) models. These systems excel at re-
fining input audio into semantically rich latent features, that are easier to classify
into text. DL models are able to abstract away all the acoustic information that is
independent of the words pronounced (speaker traits, background noises, etc.), all
in an automatic manner, with little to none hand engineering. However, their suc-
cess in doing such task is heavily conditioned by the amount of transcribed speech
available for training, as well as how well such data fits the use case of the domain
and the number of parameters that the models have. Thus, part of the research in
speech recognition during the recent years has addressed the data scarcity issue,
finding ways to enrich audio features in order to make the most even with little
data. Plus, there is a research focus on small models that deliver fast and robust
predictions for small footprint devices, like those that operate offline in electronic
devices. The aim of this thesis is to follow up on such research, exploring three
complementary techniques of audio feature enhancement for speech recognition
in settings with low data resources and small footprint devices. Particularly, we
delve into these feature techniques by assessing different speech recognition tasks:
(1) large vocabulary speech recognition, for which we will refer simply as auto-
matic speech recognition (ASR), (2) keyword spotting (KWS), which is the task
of recognizing a smaller set of words or phrases and (3) wake-up word (WUW)
detection, which is a subset of KWS where the single word or phrase that triggers
a device has to be detected. Thus, the motivation behind this thesis is to answer
the following research questions:



[. Could the incorporation of prosody and voice quality characteristics
contribute to enhancing existing spectral feature-based speech recogni-
tion models trained in low resource scenarios, with less than 1000 hours
of data?

I1. How does the application of speech denoising affect the task of wake-up
word detection, at different noise levels? Plus, can we improve the way
speech enhancement and wake-up word detection models are jointly
trained?

III. Is there any method for using the phonetic information embedded within
an acoustic model based on self-supervised learning such as wav2vec2.0,
that enhances speech recognition, all while avoiding extra computa-
tional burden and latency?

1.1. Motivation

Deep learning has become the cornerstone of many Al-related applications in
recent years, speech technology being no exception. For instance, fully convolu-
tional and Transformer-based models are capable of providing transcriptions from
raw audio containing speech in an end-to-end fashion (Zeghidour et al., 2018c;
Graves et al., 2006; Wang et al., 2020c). Furthermore, this task may be carried
out under very diverse contexts: different speakers, accents, background noises,
etc. Models need large amounts of data and parameters in order to generalize well
to such variations, since they are designed mainly to output tokens like graphemes
or phonemes given a certain audio, without any explicit knowledge on emotions,
acoustic scenes, accents or voice pathologies (Moore, 2003). Abundance of la-
beled data and computation resources is far from reality for many use cases and
languages where an ASR module is needed. Working under low-resource situ-
ations is common, whether working for a language with limited public corpora,
or for a use case with a specific domain that does not have much labeled data, or
simply working on small footprint devices with limited computational capacity
that must face acoustically challenging environments. Thus, we aim to conduct
research on different venues for these variety of challenges, tackling feature en-
hancement for scenarios of data scarcity, high environmental noise and computa-
tional constraints separately. We explain in detail the motivations behind our three
research questions in subsections 1.1.1, 1.1.2 and 1.1.3.
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1.1.1. Speech Recognition with Prosody and Voice Quality Fea-
tures

Prosody is undoubtedly crucial in human communication and provides layers
of meaning to spoken language, which might not be immediately evident from
the mere textual representation of the words. Prosody encompasses elements
like intonation, rhythm and stress. When it comes to transcribing speech audio
into text, most ASR systems focus primarily on recognizing phonemes and words
rather than the prosodic aspects of the speech. However, this does not mean that
prosody does not play a role in speech recognition. To begin with, it is an ad-
ditional factor of acoustic variance that the model needs to disentangle, as ASRs
need to be consistent to different speech rhythms, intonations and accents, for
instance. Furthermore, prosody is not only something to be abstracted away at
speech recognition, but it also yields clues that help in the transcription process.
For instance, proper understanding of stress in syllables helps disambiguating the
meaning of homographs (words that are written the same but have different mean-
ings), which is important for knowing the context of a sentence. Plus, prosodic
information can aid in finding where to place punctuation marks in transcriptions,
especially in determining sentence and word boundaries or question marks (for
rising intonation).

In the past, some ASR proposals would use explicit information from pitch
features to help disentangling the effects of prosody when transcribing speech
(Povey et al., 2011; Guglani and Mishra, 2020; Magimai-Doss et al., 2003). Other
works would also use complementary voice quality features to enhance the tasks
of speaker recognition (Farrus et al., 2007) and diarization (Zewoudie et al., 2014).
In (Campbell and Mokhtari, 2003), the authors demonstrate that voice quality
attributes serve as important indicators for conveying paralinguistic information.
Furthermore, the authors argued that these attributes should even be regarded as
prosodic carriers, like intonation and duration, for instance.

In the current context, there is a trend to make systems as end-to-end as pos-
sible, mainly working with spectral features or even from the raw waveform only,
without additional speech features like prosody ones. It is common to rely on
increasing amounts of data and parameters, to learn to handle the implicit infor-
mation contained in these raw features, such as prosody or speaker identity. How-
ever, it is not always possible to work with huge datasets and enough computation
for massive models. Recognizing the profound impact of prosody in capturing
emotion, intent, and emphasis in human speech — which is paramount for nu-
anced speech recognition — prompts the pressing question: can the inclusion
of prosody and voice quality features further refine and enrich the prevalent
spectral feature-based systems?



1.1.2. Speech Enhancement for Wake-up Word Detection

Many Al-powered voice devices today operate in environments with ambient
noise, ranging from bustling urban settings and busy households to vehicles and
outdoor venues. This ambient noise can pose significant challenges to accurate
speech recognition. When voice commands are drowned out by extraneous sounds
or when the spoken word becomes muddled by overlapping noise, the ability of
the devices to discern user intent diminishes. To address this, speech enhancement
techniques are employed as a solution. These techniques are designed to filter out
unwanted noise, amplify the desired voice signals, and ensure that voice inputs are
as clear as possible before they reach the recognition algorithms. By refining the
input signal and reducing noise interference, speech enhancement methods play
a pivotal role in enhancing the performance and reliability of voice-activated Al
devices in real-world noisy conditions.

A particular case of speech recognition is wake-up word detection. Wake-up
words or phrases, like "Hey Siri” or "OK Google”, are designed to activate voice
assistants, and their accurate detection is crucial for optimal user experience. In
environments where the wake-up word might be masked by other sounds or over-
lapping voices, speech enhancement could be the key to ensuring the device re-
sponds promptly and accurately. However, we wonder if excessive enhancement
might inadvertently distort the voice cues the detection algorithm relies upon.
Even more, enhancement on situations without noise may cause artifacts in the
audio that would yield to detection errors. This is altogether not a trivial task,
since wake-up word models are always activated, waiting to detect the trigger
word, so their compute consumption must be low. Thus, this motivated us to study
ways to improve the noise robustness of different wake-up word classifiers, in the
scenario of a small footprint device recognizing the trigger word "OK Aura”, an
Al voice assistant created by Telefénica'. We considered a few questions about
how enhancing the noise in the input spectral features might impact optimal per-
formance. How does the performance of wake-up word detection vary across
different signal-to-noise ratios and what is the impact of it when we apply
speech enhancement? What are the most effective methods to jointly train
speech enhancement and wake-up word detection models?

'https://aura.telefonica.com/es/



1.1.3. Self-Supervised Learning for Small Footprint Keyword
Spotting

One of the research venues that has brought the most significant improve-
ments to speech recognition in the recent years has been self-supervised learning.
The main idea is to train powerful encoders that extract rich features by defining
proxy tasks, where labels are automatically generated from untranscribed data.
These features are then used to fine-tune systems for downstream tasks, such as
ASR, which require less labeled data compared to traditional supervised learn-
ing schemes. Paradigms like wav2vec2.0 (Baevski et al., 2020) or HuBERT (Hsu
et al., 2021) have become very popular, being the starting point for fine-tuning and
training many voice systems, as they have been widespread in the open-source do-
main.

However, while wav2vec2.0 and HuBERT have significantly impacted the
field due to their performance gains, there is a trade-off in terms of model size and
computational demands. These models, by virtue of their architectural depth and
complexity, can be resource-intensive. When considering deployment on small
footprint devices, such as wearables, smart home accessories, or [oT devices, this
presents a challenge. Specifically, speech recognition tasks with smaller vocab-
ulary like keyword spotting, which ideally require real-time responsiveness and
low latency, might be affected by the computational overhead of these large mod-
els. Hence, while their efficacy is undeniable for server-based applications or
scenarios with ample computational resources, more effort is needed to adapt or
distill these models for seamless integration into resource-constrained environ-
ments. Research has been done in best approaches for model optimization, quan-
tization, and pruning, but we pose the following question: is there a novel way
for leveraging phonetic information encoded in a model like wav2vec2.0, that
improves keyword spotting performance without additional computational
and latency costs?

1.2. Objectives of the Thesis

Neural speech recognition for large-vocabulary or keywords depends on a
large amount of data and significant computational resources, in order to perform
robustly in real world scenarios. In many setups, data are scarce or the models
operate on small footprint devices, reducing the ability of models to transcribe
effectively, especially in a modality such as speech audio, where the variance in-
troduced by speaker identity, prosody, accents and environmental noises is very
high. This poses the motivation behind the main questions addressed in this thesis
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which can be summarized as:

L

II.

I1I.

Could the incorporation of prosody and voice quality characteristics con-
tribute to enhancing existing spectral feature-based systems?

What is the relationship between word detection performance and varying
signal-to-noise ratios, and how does the application of speech enhance-
ment affect this relationship? Additionally, what are the most successful
approaches for co-training speech enhancement and wake-up word detec-
tion models?

Is there any innovative method for utilizing the phonetic information em-
bedded within a model such as wav2vec2.0 to enhance keyword spotting
performance, all while avoiding extra computational burden and latency?

We hypothesize that prosody and voice quality characteristics might still be
useful for large-vocabulary ASR, especially in situations where training data avail-
able is up to a maximum of 1000 hours of speech. Regarding speech enhancement
on wake-up word detection, we argue that both need to be coupled at training, so
speech enhancement specializes on cleaning speech to optimize wake-up word de-
tection, without causing distortions on clean signals or erasing speech from very
noisy recordings. Lastly, we want to prove that the phonetic information encoded
in wav2vec2.0 quantized codebooks can be transferred as weights to novel archi-
tectures in the keyword spotting domain.

1.3. Outline of the Thesis

The rest of this dissertation is structured as follows:

= Chapter 2 explores the evolution of Automatic Speech Recognition (ASR),

starting with classic Hidden Markov Models, transitioning to deep learning-
based methods, and introducing self-supervised learning paradigms. We
further examine the role of prosody in refining ASR and conclude with the
significance of Speech Enhancement in improving recognition accuracy in
noisy environments.

Chapter 3 delves into research on the impact of prosody and voice quality
features, such as jitter and shimmer, on ASR performance. We investigate
their influence in a setup constrained to a maximum of 1000 hours of data
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from the LibriSpeech dataset, to simulate a low-resource language. We ex-
periment with convolutional and Transformer architectures, finding higher
impact from prosody and voice quality features on the latter.

Chapter 4 looks at optimizing the recognition of the wake-up word "OK
Aura” for Telefonica’s voice assistant, Aura. We establish a new dataset
centered fro ”OK Aura” wake-up word and explore the integration of speech
enhancement with various small footprint classifiers. By experimenting
with different coupling methods of speech enhancement and wake-up word
classifiers during training, we discuss valuable insights into best practices
for word recognition in noisy scenarios.

Chapter 5 investigates the potential of harnessing the phonetic informa-
tion present in the wav2vec2.0 codebook, which is often discarded post-
training, to enhance a keyword spotting model. Our objective is to identify
a computationally efficient method to leverage information in such a self-
supervised learning encoder. We delve into the natural synergy between
this phonetic codebook and the innovative Perceiver architecture, particu-
larly through weight initialization strategies.

Chapter 6 presents the concluding remarks of the thesis based on the achieved
goals and also suggests potential paths for upcoming research and imple-
mentations.






Chapter 2

STATE OF THE ART

Speech recognition modeling has come a long way in recent years, going
from classic machine learning techniques like Hidden Markov Models or Gaus-
sian Mixture Models to huge deep learning models that train with even hundreds
of thousands of speech audio. The goal of this chapter is to introduce some of
the most important milestones in speech recognition modeling, as we build our
research on top of some of these models. Furthermore, as our research is focused
towards the improvement of ASR models through feature enhancement, we dedi-
cate specific sections to it. Particularly, we summarize advances in the application
of the three techniques that we study to enhance features in ASR: prosody addi-
tion, noise cleaning through speech enhancement and the use of self-supervised
learning representations.

2.1. Automatic Speech Recognition Modeling

In this section, we introduce the state of the art in speech recognition mod-
eling, delving into the historical progress and current advancements of this field.
Speech recognition, in essence, is the ability of a machine or program to identify
and transcribe human language. It is the technology that powers virtual assistants,
transcription services, hands-free computing, and many more applications that are
now a part of our daily lives.

We begin our exploration with a look at classic models that have served as
the foundational basis for speech recognition. These include the Hidden Markov
Models (HMMs) and Gaussian Mixture Models (GMMs). From these classic
techniques, we transition to discussing more recent approaches that have cata-
pulted speech recognition to new heights. These include methodologies that em-
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ploy advanced deep learning architectures like Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Transformers. CNNs are par-
ticularly effective in processing grid-like topology data, RNNs excel at handling
sequential data, and Transformers, a model architecture introduced in the sem-
inal ”Attention is All You Need” paper (Vaswani et al., 2017), offer the ability
to handle long-range dependencies in sequence data more effectively than RNNss.
The aim is to provide a comprehensive understanding of how we have advanced
from traditional models to leveraging the power of neural networks, marking a
significant evolution in speech recognition technology.

2.1.1. Hidden Markov and Gaussian Mixture Models

Before the advent of deep learning and its application to speech recognition,
other classic methods have been typically used, which still provide robust perfor-
mances nowadays. The signal processing pipeline from such statistical learning
methods is still used in many algorithms today, except that some elements are
swapped by neural models. Being so, understanding these models is paramount
to understand the state of the art in current deep learning models, and where are
they heading to.

The classic way of transcribing text from audio is to build a statistical system
that outputs the most likely text sequence, W, given a set of audio features, X.

W* = arg max p(X|W)P(W) (2.1)

Some of the most commonly used audio features are Mel Frequency Cepstral
Coefficients (MFCCs) and Short-Time Fourier Transforms (STFTs), specially the
first one, which is the preferred choice due to its closeness to human hearing
perception (Davis and Mermelstein, 1980). These are extracted directly from raw
audio using rolling windows. Such windows typically have frames sizes around
25 ms with strides of 10 ms. Standard usage of MFCCs typically involves 13
MEFCC coefficients, and 20, 40 or 80 filterbanks, for example. This is a starting
point for many applications, although exact quantities may vary.

Notice how short are these rolling windows, which are in the time range of the
occurrence of a phoneme. The mapping between acoustic features and words is
done with the so-called acoustic model, which learns a representation of p(X |W)
for generative models. Thus, the acoustic model is intended to classify every small
audio feature frame as a target text token. Commonly used targets are phonemes
(Bahl et al., 1981), graphemes (Killer et al., 2003), or even word pieces (Schus-
ter and Nakajima, 2012). Classic statistical learning models employ both Hidden
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Markov Models (HMM) and Gaussian Mixture Models (GMM) for acoustic mod-
eling. The GMM is used for modeling the distribution of features for a phone, and
the transition between phones is modeled by the HMM (Rabiner and Juang, 1986).
The transition possibilities are endless, but fortunately it is possible to find an op-
timal sequence in polynomial time with the Viterbi algorithm (Gales et al., 2008).
However, decoding takes into account the effect of two more actors: the lexicon,
also known as the pronunciation model, and the language model.

On the one hand, the lexicon contains a direct mapping between the target to-
kens and known words. For example, the word “data” could be mapped to /'der.to/
in a General American English lexicon. On the other hand, the language model
is trained with text data, and outputs the probability of the occurrence of a whole
sentence containing the sequence of words W, which is the P(W) part in equa-
tion 2.1. In other words, the lexicon helps bridging the gap between phonemes
and words, while the language model aids gathering words into likely sentences.

The final goal during training is to efficiently estimate the parameters in the
whole model: the transition probabilities in the HMM, and the mean vector and
covariance matrix in the GMM. An adaptation of the Expectation-Maximization
(EM) algorithm for HMM models is used, which is called the Baum-Welch algo-
rithm or Forward-Backward algorithm. This algorithm was developed in a series
of articles by Baum and Welch during the late 1960s and the early 1970s (Baum
and Petrie, 1966; Baum and Eagon, 1967; Baum et al., 1970).

The performance evaluation of ASR models of any type is typically done by
measuring the Word Error Rate (WER). WER compares the predicted sequence
of words with the true one, taking into account word substitutions S, insertions I
and deletions D, along with the number of words N in the sequence.

S+eD+l
WER:% 2.2)

2.1.2. Automatic Speech Recognition using Deep Learning

Research in recent years has shown that practically every element in the ASR
pipeline can be substituted by a deep learning model, achieving better perfor-
mance. This applies for the feature extraction process plus the acoustic, pronun-
ciation and language modeling.

To begin with, an example of the impact of deep learning in audio feature ex-
traction is the work by Jaitly and Hinton, which used Restricted Boltzmann Ma-
chines (RBMs) for obtaining higher dimensional encodings from audio (Jaitly and
Hinton, 2011). Authors hypothesized that traditional low dimension encodings
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like MFCCs may lose information useful for classification, and they trained RBMs
to extract audio features that maximized classification performance. More recent
approaches have involved automatic training of MFCC-like filterbanks with con-
volutional models, like in (Zeghidour et al., 2018a) or (Zeghidour et al., 2018b).
This opens up for the possibility of fully convolutional ASR pipelines like in
(Zeghidour et al., 2018c¢), discussed later on.

Furthermore, training each module independently with different objective func-
tions may cause bad error propagation between modules, so the efforts have been
focused in training these jointly, in an end-to-end (E2E) fashion. Two of the most
known paradigms in E2E models are the Connectionist Temporal Classification
(CTC) (Graves et al., 2006) and the Sequence to Sequence (Seq2Seq) criteria
(Chan et al., 2015).

Frequently, speech data is noisy and unsegmented, which hardens the task of
collapsing a sequence of phonemes, or target tokens, into the correct word. CTC
is an objective function with an associated neural network that allows to train
an acoustic neural model without knowing the alignment between the acoustics
and the transcriptions. The function sums out all the possible alignments for a
grapheme sequence in order to maximize its probability, as can be seen in equation
2.3.

p(V1X)= > J[pi(alX) (2.3)

at€Axy t=1

In other words, the CTC conditional probability of the output sequence Y
given the input one X is equal to the marginalization over the set of valid align-
ments, computing the probability for a single alignment step by step. Besides the
full token set, a blank symbol is added. The neural network modeling of such
function consists of an encoder, formed by several RNN layers, and a softmax. It
is trained with the CTC loss, which is defined as the negative log probability of
correctly labelling the sentence, as seen in equation 2.4:

CTC(Y, X) = —Inp(Y|X) (2.4)

CTC has been paramount to develop E2E models, being the foundation for
many of them. Graves and Jaitly proposed and E2E system, outputting words
directly from audio using CTC criterion (Graves and Jaitly, 2014). The CTC
function is modified to minimize the expectation of an arbitrary transcription loss
function, which yields to a direct optimization of the WER. Direct transcriptions
are provided without the need of a lexicon or a language model, even though using
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them increases the performance notoriously. This outlines one of the drawbacks
of CTC, which is that it does not model the interdependencies between the possi-
ble outputs, assuming that the label outputs are independent of each other. Such
problem is sorted out by augmenting the encoder in the CTC with a recurrent
neural network that models such dependencies between output sequences. This is
called the Recurrent Neural Network Transducer, or RNN-T (Graves, 2012). A
RNN-T based system suitable for streaming ASR, proposed by Rao et. al. (Rao
et al., 2017), allows initialization by a separate CTC-based acoustic model and a
RNN language model. Besides, it also shows that using word pieces instead of
graphemes can be beneficial for model performance, capturing longer context and
reducing substitution errors.

Meanwhile, Seq2Seq criterion usage has emerged as well, motivated by the
drawback of CTC of assuming the independence between output labels. The kick-
start for Seq2Seq ASR models is done mainly by the Listen, Attend and Spell
(LAS) model (Chan et al., 2015), which also produces direct transcripts from
the audio signal, without assuming independence in the label sequence. Basi-
cally, it consists of an encoder RNN, called listener, and a decoder RNN, called
speller. The listener accepts filterbanks, and outputs higher level representations
from speech. These are taken by the speller, which takes advantage of the at-
tention mechanism described in (Bahdanau et al., 2014) to output the final text
sequence prediction. Nonetheless, LAS model also has its limitations. For exam-
ple, it is not an online model, since it requires the whole input to be processed
before producing the transcripts. Besides, the attention mechanism requires every
output token to evaluate every input time step, which is computationally costly.
However, RNN-T and LAS models have shown to achieve similar performances,
and RNN-T models with attention mechanisms have been implemented in order
to solve the shortcomings from both of them (Prabhavalkar et al., 2017).

Moreover, the ability for convolutional neural networks (CNNs) to extract fea-
tures from 2D images (Krizhevsky et al., 2017) has been leveraged for acoustic
modeling tasks, since MFCCs and spectrograms can be considered as 2D im-
ages as well. This has led to a series of applications of CNN architectures for
speech recognition. An example of this is the usage of convolutional layers in
the Deep Speech 2 architecture (Amodei et al., 2016), which enhances the per-
formance regarding its predecessor, Deep Speech (Hannun et al., 2014), mainly
based on RNNs. In the newer model, CNNs are applied to find correlations in the
spectrogram, right before passing the new features to the recurrent layers. This,
along other improvements, helped to enhance the performance of the previous
model. However, keep in mind that approximately 12000 hours of speech audio
are needed for the model to reach its full potential. This is typical for many E2E
models, since they need to generalize lots of information, like speaker variability,
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acoustic scene sounds, noises, reverberations, accents, etc.

A clear example of the convolutional paradigm is the fully convolutional model
proposed by Facebook (Zeghidour et al., 2018c). Such model proves that it is pos-
sible to achieve state-of-the-art results with an E2E convolutional model, not only
using a convolutional acoustic model, but also a convolutional language model.
For feature processing, it uses the convolutional extractor previously mentioned
(Zeghidour et al., 2018b), which yields to substantial improvements regarding
classic mel-filterbanks, specially when applied to noisy audio. The acoustic model
is a convolutional neural network with gated linear units (Conv-GLUs) (Liptchin-
sky et al., 2017), which is one of the keys for its high performance. GLUs are orig-
inally developed for building convolutional language models that provide com-
petitive results, with a reduced latency regarding sequential RNN-based models
(Dauphin et al., 2017). Besides, they also have proved to reduce the vanishing
gradient problem. Such convolutional acoustic model is trained with the Auto
Segmentation Criterion (ASG) (Collobert et al., 2016), which is based on CTC,
even though it removes the blank symbol and contains a learnable weight matrix
modeling the transitions between letters. The GCNN-14B language model from
(Dauphin et al., 2017) is used during decoding for resolving into sentences. This
model has 14 convolutional residual blocks with convolutional layers before and
after each block, placed in order to ensure computational efficiency (He et al.,
2016). An efficient beam-search decoding from (Collobert et al., 2016) is used,
which takes into account the predictions from both the acoustic and the language
models. One of the most notable outcomes from this research is the creation of
wav?2letter++ (Pratap et al., 2018), an open-source speech recognition framework
provided by Facebook, that contains recipes for many models based on CNNs.
To continue with, let’s introduce some of the most studied ASR models based on
CNNss.

One of the natural problems in speech recognition using lexicons is how to
deal with out-of-vocabulary (oov) words. The lexicon-free model from (Likhoma-
nenko et al., 2019) shows that using a convolutional language model trained with
characters, instead of words, is very efficient in detecting such oov words. Even
more, overall WER is on pair with other baselines using word-based language
models. This model uses the Conv-GLU AM from (Collobert et al., 2016).

Another state-of-the-art architecture is the sequence-to-sequence model with
time-depth separable (TDS) convolutions from (Hannun et al., 2019). The encoder
from such model is constituted by TDS blocks, which are 2D convolutions over
time that allow for larger receptive fields, without highly increasing the number of
parameters. This way, it is possible to obtain a very optimized network, capable of
achieving high accuracies while retaining low latencies. As a matter of fact, it is
proven that such architecture is very convenient for streaming online applications
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by limiting the future context, in order to keep a low latency without a big impact
in WER performance (Pratap et al., 2020). This is the key for performing ASR
task in a device with low computational resources, like a smartphone, without
depending on the cloud.

On and on, convolutional models seem to be more efficient than RNN, even
though the cost of lower latencies comes in the form of slightly lower perfor-
mances. A model that addresses this problem is ContextNet (Han et al., 2020),
which is a novel architecture combining CNN, RNN and transducer architectures.
This model implements a convolutional encoder that uses squeeze-and-excitation
layers (Hu et al., 2018). These squeeze local filters into single global context vec-
tors, merging back global information to local vectors and finally multiplying both
of them. This way, the convolutional filters obtain the information from larger
contexts, which is a typical advange of RNN and transformer models. A RNN-
T decoder is used after the encoder, and a downsampling scheme is proposed in
order to maintain lower latency rates.

Besides models based on CNNs and RNNss, the speech recognition community
has adopted the Transformer architecture as well for building acoustic models,
achieving state-of-the-art performances (Wang et al., 2020c). The Transformer
model (Vaswani et al., 2017) is based on multiple heads of attention mechanisms,
allowing to compute representations from both input and output in a parallel fash-
ion. Such model does not need any sequence-aligned RNN nor any sort of con-
volution in its implementation. However, since its creation, it has been combined
with these in order to boost performances. For example, in the work of (Syn-
naeve et al., 2019), a convolutional front-end is appended to a Transformer-based
AM. One of the most recent examples of top performing ASR models is Whisper
(Radford et al., 2023), which shows the ability of Transformers for scaling up with
data, as it is trained with 680k hours in a variety of speech tasks.

In any case, as the advent of Transformers came close in time to the rise of
self-supervised learning models, many of the more popular Transformer-based
ASRs also use self-supervised schemes to obtain high-performant feature repre-
sentations. We look at this in the following section.
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2.2. Self-Supervised Learning for Speech Recogni-
tion

Deep supervised learning models are capable of achieving astonishing perfor-
mances, but there is an inherent cost for it, which is labeled data. Robust speech
recognition modules require amounts of labeled audio in the order of thousands
of hours (Moore, 2003). For many real world use cases, it is not feasible to ob-
tain such quantities of speech audio. Working under low resource conditions is
very common, be it because of a language with scarce resources, or because of
working with a very specific domain that does not have much available data. This
is the main motivation behind research in self-supervised learning models, which
are able to leverage information from unlabeled or partially labeled data, or even
data from other modalities like text or video. This way, the lack of labeled speech
data is compensated with other forms of information.

Proxy predictive tasks are used in order to train self-supervised models able
to extract high-level representations from data. For example, ELMo (Embed-
dings from Language Models) (Peters et al., 2018) representations are commonly
used in Natural Language Processing (NLP) applications. These are obtained
during training of a language model, and then applied to other challenging lin-
guistic tasks, like sentiment analysis or question answering. Besides NLP, self-
supervised learning has also found success in the Computer Vision (CV) field,
being VideoBERT and example of it (Sun et al., 2019). There is an interest on ap-
plying such self-supervised learning methods to ASR as well, up to the point that
there has been a special session for it in InterSpeech 2020 conference. Current ap-
proaches include future and mask predictions, generation of contextual data and
chaining ASR and TTS.

The future prediction approach consists of training powerful autoregressive
models, capable of predicting future samples given input data. For example, the
Contrastive Predictive Coding model (CPC) from (Oord et al., 2018) uses a prob-
abilistic contrastive loss, learning the underlying shared information between dif-
ferent parts of the signal. This way, local information like noise is discarded,
and further global correlations are extracted for such high-level representation.
Other models like Autoregressive Predictive Coding (APC) (Chung and Glass,
2020) show that such predictive representations outperform traditional features
like MFCCs, and reduce the needed size of downstream labeled data and model
parameters. In the line of these models, the architecture proposed by Facebook
Al Research, wav2vec (Schneider et al., 2019), uses a multi-layer CNN for the
predictive task. Optimization is done with a noise binary classification task. This
means that the system has to predict if whether a future sample is original or not,
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given that a true future sample can be substituted by a different distractor sam-
ple. Facebook provides the code for training the pre-trained models in the fairseq
toolkit (Ott et al., 2019).

Mask prediction is another predictive task, which aims to obtain speech rep-
resentations by predicting masked parts from an input signal. The Mockingjay
model (Liu et al., 2020), for example, is trained to predict the current input sig-
nal frame, given the previous and the future contexts. It consists of bidirectional
Transformer encoders, and outperforms the use of MFCCs with 100% of data,
using only the 0.1% of it. Speech-XLNet (Song et al., 2020) is another mask pre-
diction approach, which is based on XLNet (Yang et al., 2019), used in NLP. By
shuffling speech frames from an input signal, the model is forced to learn global
structures in data, given the local permutations.

One of the most popular mask prediction models for speech is wav2vec2.0
(Baevski et al., 2020). It consists of a convolutional encoder that compresses the
waveform to a latent space, which is then passed through a vector-quantized code-
book to learn discrete representations of speech. The authors found that such rep-
resentations were very similar to phonetic units. Being so, the task of wav2vec2.0
model consists of masking some latent vectors after the convolutional encoder,
then passing unmasked and masked latents through a Transformer encoder, and
predicting to which vector-quantized codes the masked parts correspond to. In this
sense, the task resembles what NLP models like BERT (Kenton and Toutanova,
2019) do, which is prediction of masked words, whereas wav2vec2.0, predicts
masked pseudo-phonemes. Soon after its release, it was quickly adopted by the
community, with recipes and models available in popular frameworks like Hug-
gingFace (Wolf et al., 2019), SpeechBrain (Ravanelli et al., 2021) or fairseq (Ott
et al., 2019). Wav2vec2.0 was also followed by HuBERT (Hsu et al., 2021), a
model with a very similar architecture based on Transformers, however it uses
k-means clustering to quantize the speech space into discrete units, showing even
better scores in different downstream tasks than wav2vec2.0 (Yang et al., 2021).

One final observation regarding masked prediction models is that a potential
major limitation is their tendency to be less effective in generative tasks due to
their design. This is because these encoders learn to get rid of low-level details
in the waveform to focus on the semantics. Thus, models like WavLM (Chen
et al., 2022) combine masked prediction with denoising tasks to learn represen-
tations that are suitable for handling low and high level details of speech. The
idea of multi-task representation learning had been previously explored in PASE
(Pascual et al., 2019), which stands for problem-agnostic speech encoder and its
most recent version, PASE+ (Ravanelli et al., 2020). PASE consists of a single en-
coder followed by multiple workers, which specialize in jointly solving different
self-supervised tasks. The learned features contain information about the speaker
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identity, phonemes and prosodic cues. The mentioned workers are regressors and
discriminators. The first ones work with input features from raw audio and the
latter ones learn to discriminate between positive and negative samples with bi-
nary cross-entropy loss. In other words, the neural encoder, based on the SincNet
model (Ravanelli and Bengio, 2018), firstly extracts a higher-level representation
from audio, which is fed into each one of the seven proposed workers, being these
small feed-forward networks. The four regression workers try to learn the model-
ing of four different input features, by minimizing the mean squared error (MSE)
between the original features and the modeled ones. These features are: the in-
put waveform, the log power spectrum (LPS), the MFCCs and a mix of prosody
features (the logarithm of the fundamental frequency, the energy, the probability-
of-voicing and the zero-crossing rate). The other three workers are used for binary
discrimination, doing different tasks like distinguishing local and global features
from distractor samples or predicting which samples belong to the future or the
past, given an anchor sample.

Going back to wav2vec2.0 and HuBERT, these are quite large models, easily
getting to hundreds of millions of parameters. That is because their big Trans-
former encoders are used as feature extractors. Still, we think of novel ways to
leverage their information for models that require faster inference. In this thesis,
we will dedicate Chapter 5 to explore how wav2vec2.0 codebook, which captures
latent pseudo-phonetic information, can be used for fast speech recognition. For
now, let’s have a look at other ways of enriching speech features beyond the spec-
trum.

2.3. Prosody in Speech Recognition

Prosody concerns linguistic properties beyond phonetic segments, like sylla-
bles and larger speech units (suprasegmental), analyzing features like intonation,
rhythm or stress. Prosody features like intonation, stress or duration have been
used as complements for features like MFCCs or STFTs. The use of such features
helps the recognizer to distinguish between questions and answers, or to group
phrases properly, for example. Furthermore, some languages like Mandarin Chi-
nese are tonal, which means that the word meaning is affected by tone.

These features have been frequently used for speech recognition with classic
systems. For example, Kaldi, a commonly used open-source speech recognition
framework (Povey et al., 2011), uses a pitch and probability-of-voicing (POV)
extractor algorithm specially suited for ASR (Ghahremani et al., 2014). In such
framework, these features can be used to train GMM, HMM and DNN based
models. However, since the advent of E2E models, it seems that prosody features

18



have been pulled off the road, in favor of only spectral features or neural feature
extractors. The wav2letter++ framework, for example, does not provide with pitch
extraction functionalities up to date.

The current trend lends towards minimal feature extraction, expecting that
E2E models automatically learn the effects of prosody by exploring huge amounts
of data. Nevertheless, for low-resource situations, it may still be needed to eval-
uate explicit prosody features, in order to aid models that are not fed with lots
of hours. Furthermore, prosody features are used as additional information in
self-supervised models like PASE (Pascual et al., 2019), proving that they are
beneficial for training. Being so, it is plausible to keep using prosody features as
an enhancement for modern models, whether with supervised or self-supervised
learning methods. Besides, the speech chain proposal where synthetic samples
from TTS are fed to ASR requires of speech variations in the TTS model, to im-
prove the ASR one. As producing variations in synthesized speaker traits has
brought improvements, applying different prosodic contours to such synthesized
voices could bring performances even further, which is suggested in (Wang et al.,
2020b).

Furthermore, prosody features have been used as well for accent detection
(Rouas, 2007; Ananthakrishnan and Narayanan, 2007; Bougrine et al., 2018).
Since they carry suprasegmental information, they inherently denote information
for dialects, which can be leveraged by ASR systems in order to boost perfor-
mances (Zheng et al., 2005). Specially, since it is acknowledged that accent
diversity is a common source of error for ASR modules, some works suggest
jointly modeling accent detection and acoustic models (Yang et al., 2018). Public
databases like Common Voice (Ardila et al., 2020), contain detailed labels on the
accent of every utterance, so further research could leverage such knowledge to
properly model accented speech. The intersection between prosody features and
accent labels seems to be an appealing way to move forward.

Other features closely related to prosody are voice quality parameters like jitter
and shimmer. These are measures of cycle-to-cycle variations of fundamental
frequency and amplitude in the speech waveform. They carry information about
the speaker’s voice quality, which have been proven to assist speaker recognition
and verification tasks in (Farrus et al., 2007; Farris and Hernando, 2009), as well
as speaker diarization in (Zewoudie et al., 2014). Such voice quality features
could also be used to enhance supervised and self-supervised models, given that
they have information about speaker variability, an important factor during speech
recognition training.

Thus, the addition of prosody and voice quality features has improved many
speech tasks, but these features have been seldomly used in neural-based ASR.
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Although one of the main advantages of deep learning is to reduce the efforts in
feature extraction, we argue that additional prosody features might still be useful
for convolutional and Transformer-based approaches, specially for training setups
without huge quantities of data. We will explore these ideas in Chapter 3.

2.4. Speech Enhancement

Speech recognition systems aim to convert spoken language into text, and their
performance can be significantly affected by noises in the background. Noises
introduce extraneous acoustic variations, which can mask or distort the critical
phonetic elements of speech, making it challenging for recognition systems to
accurately transcribe spoken words. Furthermore, noises are commonly found
in the places where voice assistants are used: homes, restaurants, traffic and so
on. How could we improve speech features to make speech recognition systems
more robust to noise? One way we explore in this thesis is the use of speech en-
hancement techniques, which attenuate or even eliminate these undesired acoustic
interferences.

Before the advent of deep learning, speech enhancement relied on classic
methods like Wiener filtering (Meyer and Simmer, 1997) and spectral subtrac-
tion (Yang and Fu, 2005). On the one hand, Wiener filtering estimates the clean
speech signal by applying a frequency-dependent gain to the noisy speech, based
on the signal-to-noise ratio. On the other hand, spectral subtraction estimates the
noise spectrum and subtracts it from the noisy speech spectrum. Despite their suc-
cess in various setups, these methods introduce artifacts and distortions, especially
when noises are non-stationary. Deep learning models, however, are more capa-
ble of handling such non-stationary noises, as their design is suitable for modeling
complex non-linear relationships and learning from vast amounts of data. Conse-
quently, neural-based methods have replaced the classic ones in the recent years,
yielding more natural and clearer speech, even in challenging scenarios.

Speech enhancement models may rely on different types of architectures and
features. For instance, there are models based purely on CNNs (Park and Lee,
2016), or others using LSTMs (Weninger et al., 2015) for capturing longer con-
texts, operating on spectral features. As operating on the spectrogram means dis-
carding some parts of the signal, other proposals have performed speech enhance-
ment directly on the waveform, like speech-enhancing WaveNets (Rethage et al.,
2018) or autoencoder models like Denoiser (Défossez et al., 2020). Denoiser con-
sists of a convolutional autoencoder with an LSTM between the encoder and the
decoder, having an architecture that is very similar to U-Net (Ronneberger et al.,
2015). Overall, many current approaches minimize a regression loss in time or
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frequency domains (Park and Lee, 2016; Défossez et al., 2020). However, some
models have used generative approaches instead, like SEGAN (Speech Enhance-
ment Generative Adversarial Network) (Pascual et al., 2017), which is similar to
Denoiser in its U-Net-like architecture, but uses a GAN approach to discriminate
signals cleaned by the generative network from the ground truth signals. Other
works have iterated on this paradigm, like a proposal that adds more generators
for doing multi-stage speech enhancement (Phan et al., 2020). As new generative
designs have appeared, they have been applied to speech enhacement as well, like
Flow-based models (Strauss and Edler, 2021) and diffusion ones (Lu et al., 2022;
Hu et al., 2023).

In this work, we address the usage of neural speech enhancement for a particu-
lar case of speech recognition: wake-up word detection. Previous works have ex-
plored improving speech recognition with speech enhancement, like jointly train-
ing a mask-based enhancement model with an ASR (Liu et al., 2019), or using a
fully batch-normalized architecture to regularize the output distribution changes
in the front-end at joint training (Ravanelli et al., 2016). Recent literature shows
the incorporation of attention to such pipelines, proposing models where both the
enhancement and the ASR models are based on self-attention, being optimized in
an adversarial joint training (Li et al., 2021). On and on, joint training of speech
enhancement and speech recognition models address the issue that the former may
introduce out-of-distribution artifacts that are hard to capture by the latter. In the
Chapter 4 of this thesis, we perform an extensive study on how different recog-
nition models are affected by the way we couple speech enhancement models to
them. As mentioned before, we do this in the case of recognizing wake-up words
in a real-world home voice assistant.
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Chapter 3

ENRICHING SPEECH
RECOGNITION FEATURES
WITH PROSODY

Prosody, concerning linguistic properties beyond phonetic segments such as
syllables and larger speech units (suprasegmental), focuses on features like in-
tonation, rhythm, or stress. These prosodic features, including FO contour or
speech and articulation rates, complement spectral features like MFCCs or STFTs
in speech recognition. They aid in distinguishing between different speech ele-
ments, such as questions and answers, and are crucial in tonal languages like Man-
darin where tone affects word meaning. Prosodic elements also convey meaning
in non-tonal languages by indicating speaker intent. Historically, prosodic fea-
tures have enhanced ASR system accuracy in both tonal and non-tonal languages,
as seen in frameworks like Kaldi (Povey et al., 2011; Ghahremani et al., 2014).
However, end-to-end models have shifted focus towards minimal feature extrac-
tion, typically relying on spectral features and not prosodic ones. Despite this, in
low-resource scenarios or with self-supervised models like PASE (Pascual et al.,
2019), prosodic features still prove beneficial. Additionally, prosody aids in ac-
cent detection, improving ASR performance in diverse dialects.

Voice quality parameters, such as jitter and shimmer, while distinct, are intrin-
sically connected to prosody, providing paralinguistic information alongside pitch
and duration (Campbell and Mokhtari, 2003). These features have been valuable
in various applications, including style, age, and gender classification (Slyh et al.,
1999; Wittig and Miiller, 2003), emotion detection (Li et al., 2007), speaker ver-
ification, recognition and diarization (Farrds and Hernando, 2009; Farrus et al.,
2007; Zewoudie et al., 2014), and health diagnostics (Mirzaei et al., 2018; Benba
et al., 2014).
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Considering the positive use of prosody and voice quality features in all these
tasks, we hypothesized that such features would be beneficial for neural ASR
as well. We started by incorporating prosody and voice quality features to a
convolutional-based architecture, which yielded slight improvements to the recog-
nition task. As Transformer architectures were taking over many speech tasks at
that time, we decided to follow up on the work done, applying voice quality and
pitch features to an ASR Transformer architecture. We considered that Transform-
ers would better leverage prosodic information, as these features are supraseg-
mental in nature, and Transformers’ attention mechanism is specially useful for
enriching features at larger contexts. This time, not only the overall performance
of the model was better than the convolutional one, but also prosody and voice
quality features had a major impact on performance. We discuss these two works
in detail in the following sections.

3.1. Pitch and Voice Quality Features for Convolu-
tional Speech Recognition

Firstly, we studied the effects of adding pitch and voice quality features such as
jitter and shimmer to a state-of-the-art CNN model for ASR. Recent CNN-based
ASR approaches (Wang et al., 2017; Synnaeve et al., 2019) have the advantage of
having large context windows, without the risk of vanishing gradients like in pure
LSTM approaches, and being suitable for online streaming applications, while
attaining low word error rate (WER) scores. Furthermore, following the trend
of making systems as end-to-end as possible, even fully convolutional neural ap-
proaches have been proposed, and shown state-of-the-art performances (Zeghi-
dour et al., 2018c). This fully convolutional architecture takes profit of stacking
convolutional layers for efficient parallelization with gated linear units (GLU) that
prevent the gradients from vanishing as architectures go deeper (Dauphin et al.,
2017). We refer to this model as the Conv GLU model.

Pitch features have been previously used for improving classic HMM and
DNN baselines, while jitter and shimmer parameters have proven to be useful
for tasks like speaker or emotion recognition. Thus, our first intent was to assess
the value of adding pitch and voice quality features, like jitter and shimmer, to the
spectral coefficients for a convolutional-based model. To this end, the dimension
of the mel-frequency spectral coefficients (MFSC) vector, at the input layer, was
augmented by the prosodic and voice quality features, and error rates were re-
ported for both Spanish and English speech recognition tasks. Experiments were
carried out by using the Conv GLU model. Such was proposed by (Collobert
et al., 2016) within the wav2letter’s WSJ recipe (Pratap et al., 2018) and reported
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state-of-the-art performances for both LibriSpeech (Panayotov et al., 2015) and
WSJ datasets. To the best of our knowledge, this was the first attempt to use jitter
and shimmer features within a modern deep neural-based speech recognition.

3.1.1. Methodology

Let’s outline how we assessed pitch and voice quality features, including the
data used, the feature extraction process, the system architecture employed, and
the experiments conducted.

Data

The effect of adding pitch and voice quality features was evaluated by means
of the Common Voice dataset in Spanish (Ardila et al., 2020) and the LibriSpeech
100h dataset in English (Panayotov et al., 2015). Common Voice corpus is an
open-source dataset that consists of recordings from volunteer contributors pro-
nouncing scripted sentences, recorded at 48 kHz rate and using own devices.
The sentences come from original contributor donations and public domain movie
scripts and it is continuously growing. Although there are already more than 100
hours of validated audio, we kept a reduced partition of approximately 19.0 h for
training, 2.7 h for development and 2.2 h for testing sets. The main criterion for the
stratification of such partitions was to ensure that each one had exclusive speakers,
while trying to keep a 80-10-10% proportion. Every sample can be down voted by
the contributors if it is not clear enough, so we discarded all samples containing at
least one down vote, to keep the cherry picked recordings as clean as possible. Af-
terwards, we tried to keep as balanced as possible the distributions by age, gender
and accent. Besides, in order to provide with results for a popular benchmark, the
proposal was also assessed with the aforementioned LibriSpeech 100h partition
in English, consisting of audio book recordings sampled at 16 kHz.

Feature Extraction

As recommended by wav2letter’s Conv GLU recipes!, raw audio was pro-
cessed to extract MFSCs, applying 40 filterbanks. This served as our baseline, so
on top of it we appended pitch and voice quality related features. From now on,
when we talk about pitch features we refer to the following three features: the ex-
tracted pitch itself, plus the POV for each frame and the variation of pitch across
two frames (delta-pitch). Being so, 40 MFSCs were always computed for each

"https://github.com/flashlight/wav2letter/tree/main/recipes/conv_glu
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time frame, and if specified by the user in the configuration, the three pitch fea-
tures (pitch, POV and delta-pitch) would be appended to them, plus jitter relative
and/or shimmer relative.

There are various pitch extractor algorithms such as Yin (de Cheveigne and
Kawahara, 2002) or getFO (Talkin and Kleijn, 1995). However, we decided to
refactor the Kaldi’s one from (Ghahremani et al., 2014) within the feature extrac-
tor C++ class from wav2letter. The latter algorithm has been frequently tested
along the recent years within a wide variety of ASR tasks. It is inspired by getF0
and finds the sequence of lags that maximizes the Normalized Cross Correlation
Function (NCCF). It makes use of the Viterbi algorithm for obtaining the optimal
lags and, in our implementation, it applies the logarithm to the pitch values as
the only post-processing step. The logarithm compresses pitch values to the same
order as the MFSCs, which are compressed by the logarithm as well, thus im-
proving numerical stability later on during the training phase, being more robust
to outliars. Subtracting the weighted average pitch during post-processing was
discarded, since the reported gains in WER by Kaldi are only of a 0.1%. Shim-
mer is computed measuring the peak-to-peak waveform amplitude at each period
where the pitch is extracted, and then performing the corresponding operations,
depending on whether we deal with shimmer dB or shimmer relative (see (Farrus
et al., 2007)). With the pitch extracted at each period, the same can be done for
jitter absolute and relative, by calculating the fundamental frequency differences
between such cycles.

System Architecture

Since our purpose is to study how pitch and voice quality features contribute
to a convolutional acoustic model (AM), we used the Conv GLU AM from the
wav2letter’s Wall Street Journal (WSJ) recipe (Collobert et al., 2016). This model
has approximately 17M parameters with dropout applied after each of its 17 lay-
ers. The WSIJ dataset contains around 80 hours of audio recordings, which is
closer to the magnitude of our data than the full LibriSpeech recipe (about 1000
hours). We did not do an extensive exploration of architecture parameters, since
it yielded good out of the box results with Common Voice and LibriSpeech 100h
data.

Regarding Common Voice’s lexicon, we used a grapheme-based one extracted
from the approximately 9000 words from both the training and development par-
titions. We used the standard Spanish alphabet as tokens, plus the ¢ letter from
Catalan and the vowels with diacritical marks, making a total of 37 tokens. The
¢ character was included because of the presence of some Catalan words in the
dataset, like "Bar¢a”. The language model (LM) is a 4-gram model extracted with
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KenLM (Heafield, 2011) from the training set. Since most of the sentences were
shared across partitions, due to the scripted nature of the dataset, we expected an
optimistic behavior after applying such LM. Therefore, we are also reporting re-
sults given by another 4-gram LM extracted from the Spanish Fisher + Callhome.
The Fisher corpus split is taken from the Kaldi’s recipe (Weiss et al., 2017). De-
coding across AM, lexicon and LM was done with the beam-search decoder pro-
vided by wav2letter (Liptchinsky et al., 2017). Furthermore, in order to assess
the capacity of the AM by itself, we also evaluated without LM, choosing the fi-
nal characters with the greedy best path from the predictions of the AM. For the
LibriSpeech evaluation, the lexicon and the language model were the same as pro-
vided by wav2letter’s Conv GLU LibriSpeech recipe. The lexicon was obtained
from the train corpus and the language model is a 4-gram model also trained with
KenLLM.

Experiments

To perform our assessment on the usage of pitch and voice quality features,
we tried 5 different feature configurations:

1. 40 MFSCs only

40 MFSCs + 3 pitch features

40 MFSCs + 3 pitch + 1 relative jitter

40 MFSCs + 3 pitch + 1 relative shimmer

“wok »n

40 MFSCs + 3 pitch + 1 relative jitter + 1 relative shimmer

For each one, we computed WERSs on both the dev and test sets of Common
Voice. Decodings were performed without LM (NoLM), with both in-domain and
out-domain LMs, from Common Voice’s LM (CVLM) and Fisher + Callhome’s
LM (FCLM) databases, respectively. Therefore, we obtained 6 WERs for each
one of the 5 feature configurations.

Besides the features, the training configurations for each experiment were the
same, all based on wav2letter’s WSJ recipe. The inferred segmentation was taken
out from wav2letter’s Auto Segmentation Criterion (ASG) (Collobert et al., 2016),
inspired by CTC loss (Graves et al., 2006). The learning rate was tweaked to 7.3,
and was decayed in a 20% every 10 epochs, a tuning done with the dev set. A
25 ms rolling window with a 10 ms stride was used for extracting all the features,
jitter and shimmer were averaged across 500 ms windows.
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For beam-search decoding, the following settings were tuned with the dev set:
LM weight set to 2.5, word score set to 1, beam size set to 2500, beam threshold
set to 25 and silence weight set to -0.4. In order to tune them, we did not run
an extensive exploration of hyperparameters, but after a shallow search we found
these to provide good results for both LMs.

Furthermore, LibriSpeech WER was evaluated with dev-clean/other and test-
clean/other partitions, using the same AM training recipe as in Common Voice.
As we were scaling with a bigger dataset demanding a higher computational cost,
the top three parameter configurations found with Common Voice experiments
were selected in order to perform such evaluations. Decoding parameters were
taken from wav2letter’s LibriSpeech recipe.

3.1.2. Results

Table 3.1 reports the word error rates (WER, %) for each one of the 5 feature
configurations, for the proposed decodings of Common Voice’s test set, without
LM (NoLM), with its own LM (CVLM) and the Fisher + Callhome LM (FCLM).
For every evaluated case, the best WER score is always provided by one of the
models using pitch features, or pitch with voice quality (jitter + shimmer) features,
with gains between 1.38% and 7.36% relative WER points.

For the cases without LM, the model with MFSC and pitch features is the
one with the best performance, with a relative gain of 1.83% for the test set, re-
spectively. Additional features on the other models also improve the WER score,
except for the case with pitch and shimmer only, which yields worse results across
all experiments. On the other hand, decoding with CVLM achieves the best WER
scores, when training with all the proposed features together: MFSCs, the 3 pitch
features, jitter relative and shimmer relative. A 22.90% WER is obtained for the
test set in such scenario. As it was expected, the CVLM improves drastically
the predictions, because even though it is obtained from the train partition solely,
many sentences are shared with the dev and test sets, due to the reduced vocabu-
lary in this dataset.

A more realistic approach is to decode by using an external LM. The FCLM
language model is built from the training partition of the LDC Spanish Fisher
+ Callhome corpus. Although the LM enrollment is performed with less than
20 hours of audio (approximately 16k sentences), it still yields to a reasonable
performance compared to the CVLMs decodings. With respect to the prosodic
features, the FCLM beam decoding reaches the lower WER in development by
using MFSCs only augmented with pitch features; that is, 37.57% WER. The
lowest 42.95% WER score in the test set is given by the combination of all pitch

28



Table 3.1: WER percentages by augmenting spectral features with prosody and
voice quality ones. The results are reported on the Common Voice’s test sets,
comprising 2.7 hours and 2.2 hours, respectively. Error rates are obtained by us-
ing a greedy decoding without language model (NoLLM) and by a beam search
decoding using a 4-gram LM trained both on the Common Voice’s training sub-
set (CVLM) and on the training partition of the Spanish corpus Fisher-Callhome
(FCLM).

AM WER (%)
Features NoLM-Test CVLM-Test FCLM-Test
MEFSC 70.07 24.72 44.20
+ Pitch 68.79 24.89 43.18
+ Pitch + Jitter 69.56 23.97 43.26
+ Pitch + Shimmer 77.04 25.10 50.60
+ Pitch + Jitter + Shimmer 69.51 22.90 42.95

and voice quality characteristics. Once again, the best results in terms of WER
are provided by models with pitch features, or pitch features with the combination
of jitter and shimmer, showing the potential of pitch and voice quality features to
improve the performance of an ASR based on convolutional neural networks.

Nonetheless, it is worth noticing how the use of only pitch and shimmer fea-
tures yields to worse performance for both AM and AM/LM decoding models.
Previous behaviour is depicted in the Figure 3.1, where using only shimmer dra-
matically affects the training stage of the model, making it worse and slower.
However, training with pitch features or with pitch and jitter features seems to
help at reaching better WER plateaus and at a faster pace. While jitter is a measure
of frequency instability in the wave, shimmer is a measure of amplitude instabil-
ity. Being so, pitch and jitter characteristics might contribute to MFSCs spectral
features with independent information, just by synchronising them in a simple
concatenation like the proposed one. However, the inclusion of shimmer, which
is related to amplitude —as opposed to the pitch and jitter, related to frequency—, is
more likely to be understood as a perturbation throughout the convolutional layers
that might difficult the acoustic model training.

Even though, it is interesting to see how if shimmer is coupled with jitter and
pitch characteristics altogether, the performance obtained yields to more robust
results compared to the baseline and independently of decoding with CVLM and
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FCLM language models. Other studies already suggest the correlation between
jitter and shimmer by the same index, that is, the Voice Handicap Index (VHI)
(Schindler et al., 2009), so the convolutional filters may be finding similar corre-
lations, thus improving mutual information when coupled together with spectral
features and promoting such as voice measurements as good feature candidates
for enhancing the speech recognition of pathological voices. The latter being an
interesting hypothesis to look for further evidence.

The impact of pitch and voice quality features is also reported by LibriSpeech
experiments, see Table 3.2 and Figure 3.1, with relative improvements of 2.94%
and 2.06% for dev-clean and dev-other, respectively, and about 0.96% and 2.87%
for test-clean and test-other. Gains seem to be more consistent for the ”other”
partitions, where there is more accent and prosody diversity than in ”clean” ones.

Table 3.2: LibriSpeech WER values for the three best performing combinations of
features proposed in the Acoustic Model (AM) in the Common Voice experiments:
MEFSC, MFSC + Pitch and MFSC + Pitch + Shimmer + Jitter (shortened as ”All”).
Decoding is done with a 4-gram LM trained with LibriSpeech train set transcripts.

AM WER (%)

Features dev-clean dev-other test-clean test-other

MESC 10.22 31.59 10.38 34.46
+Pitch  9.94 30.95 10.28 33.47
+ All 9.92 30.94 10.37 33.57

Appending pitch characteristics to MFSCs seems to slightly improve the ASR
performance. Among them, MFSC + pitch and MFSC + pitch + jitter + shim-
mer combinations are the ones that provide the most robust behavior across all
the experiment. All assessed features carry prosodic information and might aid
the network on complementing the information conveyed by solely the magnitude
spectrum. For instance, by helping on reducing the MFSC distortion which ap-
pears at the lower frequency region of the spectrum (Yadav et al., 2019). Overall,
they help boosting the performance of the convolutional acoustic model for both
the different databases and the languages studied in this work.
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Common Voice Dev-WER LibriSpeech Dev-WER
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Figure 3.1: Common Voice and LibriSpeech dev set WER (%) during training, as
a function of the epoch number. For the latter, dev-clean and dev-other are eval-
uated. Curves across the 5 different feature configurations for the same acoustic
model architecture.

3.1.3. Conclusions

In this study, we performed a preliminary exploration on the effects of pitch
and jitter/shimmer voice quality measurements within the framework of the ASR
task performed by convolutional neural network models. The experiments re-
ported with a publicly available Spanish speech corpus showed consistent im-
provements on the model robustness, achieving a reduced relative 7% WER in
some scenarios. Besides, these feature extraction functionalities were provided
and integrated with wav2letter code to easily replicate our findings or directly
applying pitch and voice quality features to wav2letter models. We also pro-
vided the recipe for the Common Voice Spanish dataset, the first recipe suited
for wav2letter using a Spanish publicly available dataset. The recipe for Lib-
riSpeech experiments was also provided, which achieves up to a 2.94% relative
WER improvement. Find both recipes in a GitHub repository?.

Note that the approach employed for the feature combination was simple, by
just appending such features to the spectral ones at the input layer, without exten-
sive post-processing either nor adaptation of the model architecture. Being so, it
was reasonable to think that there was still margin of improvement in the appli-
cation of pitch and voice quality measurements to state-of-the-art neural models.
Possible strategies comprised adapting the feature concatenation, maybe by ded-
icating exclusive filters to the new pitch and voice quality features. This was
done in the following work, where we also switched from a convolutional to a
Transformer-based architecture, showing better effectiveness.

Zhttps://github.com/gcambara/wav2letter/tree/wav2letter_pitch
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3.2. Pitch and Voice Quality Features for Transformer-
based Speech Recognition

After obtaining improvements with pitch and voice quality features for a con-
volutional ASR model, we were encouraged to iterate the previous work with new
additions. First of all, as Transformer models had been taking over the architec-
ture landscape, we were motivated to replace our CNN model by one based on
Transformers. Especially, as we hypothesized that the global attention mecha-
nism of Transformers might work better with voice quality features, since these
have a suprasegmental nature. Our intuition was that the incorporation of such
features would assist the attention mechanisms, in order to disambiguate better
the beginning and ending of words.

Furthermore, we evaluated the effectiveness of two methods for incorporat-
ing voice quality (VQ) and pitch features into the spectral coefficients, which are
widely used in most neural automatic speech recognition (ASR) systems. The first
method involves simply concatenating the VQ and pitch features with the spectral
coefficients before the neural network’s forward pass. The second method in-
volves using two separate convolutional front-ends, one for spectral features and
another for VQ and pitch features, and concatenating the resulting features from
both front-ends. We used the LibriSpeech dataset (Panayotov et al., 2015) and
the Transformer-based model (Vaswani et al., 2017) from fairseq’s speech-to-text
(S2T) recipe (Ott et al., 2019; Wang et al., 2020a). To the best of our knowl-
edge, this was the first attempt to incorporate jitter and shimmer features into a
modern Transformer-based speech recognition system while maintaining easily
identifiable psychical/functional properties of the voice and linking them to ASR
performance.

3.2.1. Model Description

To incorporate voice quality and pitch features into spectral coefficients, a
Transformer-based model called S2T Transformer was used. The structure of the
model comprises a front-end convolutional block, sinusoidal positional embed-
ding of features, and an encoder-decoder that includes Transformer blocks, simi-
lar to (Vaswani et al., 2017). The convolutional block is composed of two 1-dim
convolutional layers with a kernel size of 5, a stride of 2, and padding of 2, each
of which uses GLU activation functions (Dauphin et al., 2017). The first layer
accepts 7' time frames per /N = 40 mel-spectrograms as input, upsamples them to
1024 features, which are then halved by the GLU activation function, producing
P = 512 hidden features. These are passed to the second layer, which also outputs
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512 features and is followed by GLU activation, resulting in O = 256 features,
which is the embedding size used for all subsequent attention layers.

Adding voice quality and pitch features of size M € [1, 5] to the spectral fea-
tures leads to an input feature vector of size N + M. As aresult, the output feature
vector of size O = 256 contains implicit pitch-related information. However, we
were concerned that the information may become too diluted after convolution
with the mel-spectrograms, since N is much greater than M.

To address this concern, we proposed an alternative architecture called S2T
VQ Transformer, which is illustrated in Figure 3.2. This model comprises two
convolutional blocks, A and B, which respectively receive mel-spectrograms and
voice quality with pitch features. Both blocks perform independent convolutions
and concatenate their outputs, resulting in a feature vector that represents K spec-
tral features and L pitch-related features, giving a total output size of O’ = K + L.
By adjusting the balance between K and L, we can assign more weight to the new
features, thereby enabling the attention layers to give them more attention. Block
A and B are identical to the convolutional block in the S2T Transformer architec-
ture, except for the modifications described in Table 3.3.

Table 3.3: Convolutional front-end blocks for mel-spectrograms and voice quality
+ pitch features.

Block Input Dim Hidden Dim Output Dim

A N=40  ps =512 K =192
B M €[1,5] pp=256 L =64

It is important to note that the hidden dimension p, is maintained for the
spectral block A, but for block B it is halved, as there are fewer pitch and voice
quality features and thus less upsampling is needed. We set the output dimensions
for each front-end at K’ = 192 and L = 64, so that concatenation of these yields
the same total output size as the plain S2T Transformer model, which is O’ =
O = 256. This ensures fairness in the comparison between the plain S2T and
VQ S2T models, as simply increasing O’ could lead to better results due to the
increased number of parameters in the feature vectors, which could potentially be
better exploited by the attention mechanism. It is worth noting that the VQ variant
has slightly fewer parameters, with 29.2M compared to 29.4M in the plain model.
Additionally, this design choice maintains a proportion of 1 pitch-related feature
for every 3 spectral features, giving greater weight to the former compared to the
plain S2T Transformer model.
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Figure 3.2: Convolutional front-end for mel-spectrogram filterbanks and pitch
related features in S2T VQ Transformer architecture.

3.2.2. Methodology

Having introduced our model proposal, let’s now examine our methodology,
focusing on the dataset used, our experimental setup, and the choices made for
acoustic modeling and decoding.

Dataset

This study evaluated its proposal using the LibriSpeech dataset (Panayotov
et al., 2015), a collection of audio book recordings in English containing up to
1000 hours of speech that were sampled at 16kHz. The dataset has a pre-existing
training split that was already divided into three subsets with around 100, 360,
and 500 hours of speech, and two subsets were also created for the development
and test sets. These subsets are referred to as train-clean-100, train-clean-360,
train-other-500, dev-clean, dev-other, test-clean, and test-other.
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Experimental setup

The main objective of this research was to investigate the significance of pitch
and voice quality features in the speech recognition system. We trained and tested
independent acoustic models with different feature combinations including mel-
spectrograms, fundamental frequency (F0), POV, AFO, jitter and shimmer. We
also tried a feature configuration with three random numbers sampled from a uni-
form distribution between 0 and 10, similar to mel-spectrogram filterbanks, to
make sure that additional voice quality and pitch features do not yield better re-
sults just by increasing the model parameters. The performance of the model was
evaluated in terms of WER in the test-clean and test-other sets, and the entire pro-
cess was repeated for every feature configuration across 6 different initialization
seeds to ensure statistical significance of the results. Due to computational limi-
tations, the experiments were conducted only on the train-clean-100 set. Finally,
we compared the performance of the filterbank-only baseline with the S2T VQ
model, which includes pitch and voice quality features, with different training set
hours: 50, 100, 200, 500 and 960.

Acoustic modeling

The process of training and testing the acoustic models was carried out us-
ing the fairseq toolkit (Ott et al., 2019). This toolkit provides examples and fea-
tures that are useful in the speech-to-text task (Wang et al., 2020a). The Lib-
riSpeech ASR example was used as a starting point for this experiment. The
S2T small Transformer model, which has 31M parameters, was trained with mel-
spectrogram features that were computed on-the-fly by fairseq.

To perform experiments that require pitch and voice quality features, Praat-
Parselmouth (Jadoul et al., 2018), which is a Python wrapper for Praat (Boersma
and Van Heuven, 2001), was used to precompute such features. The window size
and stride for computing all the features were set to 25 ms and 10 ms, respec-
tively. As the pitch, jitter and shimmer extraction algorithms only produce values
for voiced frames, empty values for unvoiced frames were interpolated with the
adjacent non-empty values in accordance with Kaldi’s pitch extraction algorithm
recommendation (Ghahremani et al., 2014). The POV vector, which indicates
voiced (1) and unvoiced (—1) segments, was constructed by keeping empty in-
dexes. The logarithm was applied to the pitch vector, and the pitch, jitter and
shimmer vectors were smoothed out by subtracting the mean of a window of 151
frames, centered in the current frame, similar to Kaldi. Finally, cepstral mean and
variance normalization was used to normalize all the combined features.

We tackled the treatment of features in two different ways, depending on the
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selected front-end, as described in section 3.2.1: either by merely concatenating
them with mel-spectrograms, or by processing them in a dedicated convolutional
block and then concatenating them with the convolved mel-spectrograms. We
utilized 40 filterbanks instead of the original 80 filterbanks in the fairseq exam-
ple to increase the proportion of pitch and voice quality features in the overall
number of features. This was done to enhance the numerical importance of the
new feature set, specifically for the simple concatenation experiments, while still
maintaining a commonly used number of filterbanks. As the simple concatenation
configuration was not used for the training set size experiments, we reverted to 80
filterbanks.

The models were trained using the cross-entropy loss with label smoothing
and Adam optimization. To prevent gradient explosions, gradient values above
10.0 were clipped. The learning rate was warmed up for 10k batch updates and
then peaked at 0.002, and subsequently decreased by an inverse root scheduler.
For the experiments involving different training sizes, the same hyperparameters
as the fairseq recipe were used to ensure the baseline was closely matched. The
models were trained until validation loss plateaued for many iterations to guar-
antee convergence. The 960 hours model was trained for 300k updates, the 500,
200, and 100 hours models for 150k updates, and the 50 hours model for 55k
updates. However, for the feature configuration scan across seeds, the number of
iterations was limited to 20k batch updates to save computational resources since
longer training did not lead to significant improvements.

Decoding

We concluded that averaging the weights from the last 10 checkpoints during
training yielded better WER scores than choosing the checkpoint with the best de-
velopment WER, which was consistent with the method used in the fairseq recipe.
Decoding was performed using the beam search algorithm with a beam size of 5
and a 10k unigram lexicon created with sentencepiece (Kudo and Richardson,
2021) from the LibriSpeech corpus. The purpose of this research was to eval-
uate the impact of voice quality and pitch features on acoustic modeling, so no
additional language model was employed.

3.2.3. Results

Figure 3.3 shows the distributions of WER scores for a range of feature com-
binations with the six different seeds used on the LibriSpeech test sets. On the
whole, the mean WER scores for the S2T VQ model are generally lower than
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those for the plain S2T Transformer model using simple feature concatenation.
Additionally, there is a clear trend towards lower WER scores as the number of
added features increases, particularly for the S2T VQ model. This is particularly
noteworthy when compared to the baseline of 40 filterbanks or the model that uses
three randomly selected features.
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Figure 3.3: LibriSpeech test-clean and test-other WER (%) for several feature
configurations tested, combining mel-spectrogram filterbanks (FB), 3 random fea-
tures (Rand), FO+POV+AFO0 (Pitch), jitter (J) and shimmer (S), using S2T and
S2T VQ models. 40 FB baseline is marked by the dashline.

The results show that using specific convolutions for pitch and VQ features
as hypothesized is beneficial. While jitter and shimmer have only a slight pos-
itive impact on the performance of the system, improving mean WER by 1.3%
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and 0.2% for test-clean and test-other respectively, pitch achieves a better perfor-
mance, with an improvement of 1.5% and 1.0% mean WER for the same sets.
However, combining pitch with jitter and shimmer results in the largest improve-
ment, with a mean WER reduction of around 2.3% for test-clean and 1.0% for
test-other. The pitch experiments show fair significance, with two-tailed p-values
of 0.134 and 0.069, while the jitter and shimmer experiments show low signit-
icance, with p-values of 0.129 and 0.624. However, the experiments with pitch
and VQ features combined show the most significant results, with p-values of
0.027 and 0.052 for test-clean and test-other. This suggests that jitter and shim-
mer may be a good complement to improve pitch features, but alone, they do not
cause a significant change.

The data in Table 3.4 indicate that the S2T VQ model with pitch and VQ
features outperforms the baseline filterbank-only model in most of the training
size scenarios. On average, the WER reduction is 5.6% for test-clean and 3.0% for
test-other, showing that the advantages of using pitch and VQ features hold even as
the amount of training data increases. To gain a better understanding of how pitch
and VQ features affect performance as the amount of training data grows, we can
examine the distribution of error types shown in Figure 3.4. The results indicate
that while the evolution of deletions (D) is similar in both models, the S2T VQ
model with pitch and VQ features significantly reduces the number of insertions
(1), resulting in a higher proportion of substitutions (S). This suggests that with
sufficient data, the S2T VQ model can learn to better use prosody information to
distinguish the beginning and end of words.

Table 3.4: Mean test WER scores for acoustic models trained with different sub-
set sizes of LibriSpeech training. Two architectures are used: the baseline with
filterbank features (80 FB) and the S2T VQ model with filterbank, pitch and voice
quality features (+VQ).

Train set WER (%)
Hours test-clean test-other

80 FB +VQ 80 FB +VQ
50 29.26 28.30 47.70 46.91
100 19.33 18.29 37.04 35.31
200 10.95 10.80 24.94 25.32
500 7.78 6.96 18.34 17.56
960 4.62 4.27 10.64 10.01
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Figure 3.4: Error distributions across training hours. Error types: substitutions
(S), deletions (D) and insertions (I).

3.2.4. Conclusions

This study investigated the impact of incorporating pitch and voice quality fea-
tures into the spectral features of a state-of-the-art acoustic ASR using two meth-
ods: simple concatenation and separate convolutional filters. The latter approach
outperformed the former, resulting in significant WER improvements when us-
ing pitch and voice quality features separately and when combined, with relative
WER reductions of up to 5.6%. Using separate convolutional filters for these fea-
tures increases the representation of prosodic information in the acoustic features,
which can be better leveraged by the attention layers. The results suggest the po-
tential of voice quality features for complementing prosodic information carried in
pitch features, and motivate further research in conversational speech recognition
or speech recognition with punctuation marks. We also suggest exploring other
prosodic features such as intensity and rhythm beyond pitch. Lastly, we made our
recipe available to the research community in a GitHub repository .

3https://github.com/gcambara/speechbook/tree/master/recipes/vq_pitch
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Chapter 4

IMPROVING RECOGNITION IN
NOISY ENVIRONMENTS WITH
SPEECH ENHANCEMENT

Speech recognition is a complex task, as mapping speech to text means ab-
stracting to a lot of low-level details in audio to obtain a precise transcription.
In Chapter 3, we saw how pitch and voice quality features induce additional in-
formation that help ASR models to disentangle prosodic information to better
delimit beginning and ending of words. However, audio recordings do not only
contain speech signal, which is already difficult to transcribe, but also register
background noises that add further complexity to the transcription task. Many
day-to-day recordings contain noises from cars, wind, background conversations
or ringing phones, so how do we minimize the impact of these in the automatic
transcription process?

This is the question that we address in this chapter of the thesis. Particu-
larly, we focus on a technique called speech enhancement (SE), which consists
in cleaning out the background noises from an audio signal, whether it is at the
waveform, spectral or latent level. This method is not only used for ASR, and
actually it is more commonly found in applications where perceptual quality is
important. We can think of videocall or audio editing applications, where we may
want to remove undesired noises, in order to hear speech better. There are classic
SE methods like Wiener filtering (Meyer and Simmer, 1997), spectral subtraction
(Yang and Fu, 2005) or subspace algorithms (Ephraim and Van Trees, 1995), but
modern neural architectures are providing better results, especially when dealing
with non-stationary noises or overlapping speech. As mentioned, SE can be used
for better perceptual quality, but its usage can benefit also the purpose of ASR, by
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obtaining features with less representation of noise, which would hypothetically
yield better transcription results for a neural classifier. We were able to study this
for two different cases with noisy conditions: firstly, transcribing speech from TV
shows, and secondly, detecting a wake-up word for a real Al home assistant.

IberSPEECH is a conference for the speech community in the Iberian Penin-
sula, which has been helding the Albayzin challenge during the last years. One
of the proposed tasks in this challenge is the recognition of speech from Spanish
TV shows. This case is very interesting for ASR research, not only because of the
expressiveness and variety of speech, but also because audio extracted from TV
shows has complex acoustic conditions. TV shows happen in a wide variety of
setups, whether they are indoor or outdoor, with several types of noises coming
from different sources, plus background music that is commonly used. As we par-
ticipated in the challenge, we did not only look to achieve the best WER scores to
win it, but also committed some computational budget to explore SE techniques to
clean the audio, and explored its impact on the transcription process. From these
experiments, detailed in the following sections, we concluded that using out-of-
the-box SE modules was a promising technique, but it also had its drawbacks. SE
models helped to transcribe speech better if the audio was severely contaminated
with noise, but if the audio was already clean enough, SE introduced additional
acoustic artifacts that made transcriptions less precise. Such results would en-
courage us to conduct deeper research on SE applied for speech recognition, after
the Albayzin challenge. This time, we would investigate it in a different scenario:
recognizing the words used for waking up a home Al assistant, called Aura.

Aura is the home assistant of the Telefénica company. It provides many ser-
vices, like informing about the weather, TV show schedules or playing movies for
the customer. All of this is done through voice interaction, so Aura’s device re-
mains idle at home, until the user says "OK Aura”, which are the wake-up words
to trigger the conversation. People interact with home assistants with home noises
happening in the background, like open faucets, dogs barking or TV shows on.
With the aim of improving Aura’s wake-up word module, and motivated by the
results of the Albayzin challenge, we conducted research on the application of SE
for Aura. This time, the speech recognition scope was narrowed down by defini-
tion, as we only had to recognize the wake-up word, instead of a large vocabulary.
For such a reason, effective wake-up word modules tend to be smaller than large
vocabulary ASR ones, so we would be able to commit more computational re-
sources on exploring the SE part. As a consequence, we explored several ways
of applying SE for better speech recognition: from applying separately trained
models, to jointly training SE and wake-up word detection models to optimize
the latter task. From such explorations we found clearer patterns of how SE af-
fects the recognition task, for a variety of signal-to-noise ratios (SNR). Our results
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suggest that joint end-to-end training of SE and wake-up word models bring the
most robust behavior, for any SNR range. We detail all our findings, within the
Albayzin challenge and the Aura project, in this chapter.

4.1. Speech Enhancement for Speech Recognition in
TV Shows

The Albayzin 2020 challenge consisted of several tasks, one of these being
performing ASR on TV shows from the Spanish National TV (RTVE). We partic-
ipated in the ASR challenge, in a joint effort between the Brno University of Tech-
nology (BUT), Telefénica Research (TID) and Universitat Pompeu Fabra (UPF),
presenting a variety of systems from hybrid to end-to-end neural models (Kocour
et al., 2021). Specifically, we submitted three different systems: a hybrid model
(Povey et al., 2018), a neural end-to-end Conv GLU model (Collobert et al., 2016)
(very similar to the one used in Section 3.1) and a joint fusion of both. The fusion
consisted of a word-level ROVER (Fiscus, 1997) fusion, and it achieved a 23.33 %
WER on the official evaluation dataset, the 4th best score in the challenge.

Furthermore, as previously mentioned, we used specific models to filter out
noises from TV shows, and used the cleaned signal to evaluate our convolutional
end-to-end system. This is the main part that we describe in this section, as we
are focused on the usage of SE models to obtain features that are free of noise, or
at least, as much as possible. Particularly, we employed two types of models to
do this: a speech denoiser, called Denoiser (Défossez et al., 2020), and a music
source separation model, called Demucs (Défossez et al., 2019). The intuition for
the latter model was that as it separates vocal tracks from the rest of instruments,
it could be used for extracting speech from background noises and music.

4.1.1. Methodology
Let’s delve into the methodology employed for evaluating SE in transcribing
TV shows. This includes a detailed description of the datasets used in our study,

the end-to-end convolutional ASR model utilized, and specifics of the training and
decoding processes.

Data

The Albayzin 2020 challenge offered two databases, namely RTVE2018 and
RTVE2020. RTVE2018 was used for training and development, while RTVE2020
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was used for the final evaluation of the submitted systems. On the one hand,
RTVE2018 database (Lleida et al., 2018; Lleida et al., 2019) includes 15 TV
programs aired by Radiotelevision Espafiola (RTVE) and offers various speech
scenarios, such as read speech, spontaneous speech, live broadcast, and political
debates. This database has a total of 569 hours of audio data, out of which 468
hours come with subtitles and are assigned as train set, and the remaining 109
hours are human-revised and divided into devl, dev2, and test sets. Both hybrid
and end-to-end models utilized dev1 and train sets for training, while dev2 and test
sets were used for validation purposes. On the other hand, RTVE2020 database
(Lleida et al., 2020) consists of 70 hours from TV shows that are manually anno-
tated and broadcast by RTVE.

The end-to-end system was trained with additional data from multiple sources,
including the Fisher Spanish Speech dataset (Graff et al., 2010), Mozilla’s Com-
mon Voice Spanish corpus (Ardila et al., 2020), and Telefénica’s Call Center in-
house data, which is 23 hours long. Mozilla’s Common Voice Spanish corpus is a
publicly available dataset consisting of recordings of people reading scripted sen-
tences, with a sampling rate of 48kHz. The sentences were donated by volunteers
and taken from public domain movie scripts. The version of the Common Voice
corpus used in this study was 5.1, which includes 521 hours of recorded speech.
However, only the speech that was validated by the contributors, which amounts
to 290 hours, was used.

The RTVE2018 database used for training contains a large amount of speech
that has been subtitled. However, these captions contain numerous mistakes.
Often, the captions are out of synchronization by a few seconds, meaning that
the correct transcript corresponds to a different part of the audio. This problem
also affects the human-revised development and test sets. Additionally, there are
“partly-said” captions, which include misspelled and unspoken words in the tran-
scription.

To avoid errors in the training process of the hybrid ASR system due to mis-
aligned labels, a transcript retrieval technique developed in (Manohar et al., 2017)
was used. The technique involves concatenating closed captions related to the
same audio in their original timeline, creating a small text corpus of a few hun-
dred words. This text corpus is used to train a biased /N-gram language model
with N = 7, so that the model is only biased towards the currently processed cap-
tions. During decoding, the weight of the acoustic model is less than the weight of
the language model since it is believed that the captions should appear in hypothe-
ses. The “winning” path is then retrieved from the hypothesis lattice as the path
with the minimum edit cost with respect to the original transcript. Finally, the
retrieved transcripts are segmented using the Continuous Time Marked (CTMs)
files obtained from the oracle alignment, and any segments that do not correspond
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to the original transcripts are discarded. More information on this technique can
be found in (Kocour, 2019) and the paper by (Manohar et al., 2017), from which
it was adapted.

The transcript retrieval technique was used twice in the process. Firstly, an ini-
tial ASR model was trained on out-of-domain data like Fisher and CALLHOME
(Canavan and Zipperlen, 1996). Such model was used to generate hypotheses in
the first pass of transcript retrieval. Next, a new system was trained from scratch
using the clean data from the first pass, and the entire process of transcript re-
trieval was repeated. Table 4.1 demonstrates that this two-pass cleaning approach
results in the retrieval of nearly all the manually annotated development data and
50% of the subtitled training data.

Table 4.1: Two-pass transcript retrieval.

Cleaning Train Devl Dev2 Test

Original 468  60.6 152  36.8
1-pass 994 21 7.5 -
2-pass 234.2 55.1 143  33.7

Recovered 50% 91% 94% 92%

Figure 4.1: Amount of cleaned audio per TV-show, in hours.
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The barplot displayed in Figure 4.1 illustrates the number of hours that were
recuperated for different TV programs. Additionally, it provides insights into how
the data was spread out in the database. The majority of the speech data was
sourced from the La Mafiana (LM) TV program. However, due to its complex-
ity, our ASR model struggled to accurately transcribe the audio data from this
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program, and as a result, we had to discard most of the data after conducting a
thorough two-pass data cleaning process.

End-to-end Convolutional Speech Recognition

The acoustic model we used is an end-to-end design that employs the convo-
lutional architecture developed in (Collobert et al., 2016) and incorporates gated
linear units (GLUs). GLUs are utilized in convolutional models to prevent the is-
sue of vanishing gradients and maintain high performance by offering linear path-
ways. Specifically, we utilized the model from the wav2letter Wall Street Journal
(WSJ) recipe, which has around 17 million parameters and applies dropout after
each of its 17 layers. The WSJ dataset has about 80 hours of audio recordings,
which is smaller than our dataset (around 600 hours). Although the LibriSpeech
recipe utilizes a deeper Conv GLU-based architecture with around 1000 hours
of data, we opted for the WSJ recipe to reduce computation time and enhance
fine-tuning of the network’s hyper-parameters.

To train the system, the wav2letter framework was used and all data samples
were resampled to 16 kHz. Mel-frequency spectral coefficients (MFSCs) were
extracted from the raw audio using 80 filterbanks, and the Auto Segmentation
criterion (ASG) was used with a batch size of 4 (Collobert et al., 2016). The
learning rate began at 5.6 and was gradually reduced to 0.4 after 30 epochs, at
which point the training was stopped since no significant Word Error Rate (WER)
improvements were observed. From epochs 22 to 28, the system was trained using
the same training set, but with the addition of RTVE2018 train and devl samples
that had background music cleaned by the Demucs module (Défossez et al., 2019).
In the last two epochs (28-30), further samples were included that had background
noise removed by Demucs and furtherly denoised by a Denoiser (Défossez et al.,
2020). This was done to augment the data with samples that had challenging
acoustic conditions, thus helping the network to learn to generalize audio artifacts
caused by the denoiser and music separator networks, which would be beneficial
when using these networks to clean test audio.

The lexicon used in this study was created from the train and validation tran-
scripts, along with the Sala lexicon (Moreno et al., 2002). It was a grapheme-
based lexicon containing 271,000 words, with 37 tokens including the standard
Spanish alphabet, the ”¢” letter from certain Catalan words, and vowels with dia-
critical marks. The language model (LM) used in this study was a 5-gram model
trained with KenLM (Heafield, 2011), using only transcripts from the training sets
RTVE2018 train and dev1l, Common Voice, Fisher, and Call Center. The resulting
LM is named in this chapter as Alb+Others.
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Decoder hyperparameters were fine-tuned using the RTVE2018 dev?2 set, and
the best results were achieved with an LM weight of 2.25, a word score of 2.25,
and a silence score of -0.35. This same configuration was used for evaluating the
RTVE2018 and RTVE2020 datasets.

4.1.2. Speech Enhancement Experiments

Background music is frequently present in TV programs and can cause con-
fusion for speech recognition systems if it is prominent. To address this issue, we
used a Music Source Separator called Demucs (Défossez et al., 2019) to process
the audio. Demucs separates the original audio into different components such as
voice, bass, drums, and others. By keeping only the voice component, we were
able to reduce background music while keeping good quality in the speech signal.

We attempted to perform speech enhancement on the validation sets to see
whether if we could lower the WER. However, the results indicated that this ap-
proach only led to a small increase in WER, as shown in Table 4.2. We also exper-
imented with using a specialized denoiser (Défossez et al., 2020) after removing
the background music. Unfortunately, this approach increased the WER for dev2
by 1.6% compared to the original system without any enhancement. Initially,
neither of these two approaches (Demucs and Demucs + Denoiser) improved the
WER, so we did not use them for the end-to-end model in the final fusion. How-
ever, the UPF-TID team submitted separate systems using the end-to-end, end-
to-end + Demucs, and end-to-end + Demucs + Denoiser models, which are listed
in Table 4.3. Post-eval results are obtained after bug-fixing of the system used in
the official submission. Notice that performance in RTVE2020 dropped around a
15% WER, compared to RTVE2018 dataset. Our main guess is that probably the
model overfitted to the acoustic conditions and voices of the TV shows present in
RTVE2018, thus struggling with new shows in RTVE2020.

Table 4.2: Overall results on RTVE2018 dataset depending on the usage of lan-
guage models and speech enhancement.

WER [%]

AM LM Dev2 Test

1 None 36.1 37.5
, CovGLU 10+ Others 20.8 207
3, Demues None 36.4 375
4 USAlb + Others 211 20.8
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Table 4.3: Official and post-evaluation final results on RTVE2020 eval set for the
end-to-end systems.

WER [%]
LA Official Post-eval
Conv GLU 41.4 36.2
+ Demucs 42.3 37.9
+ Demucs + Denoiser 58.6 40.0

Our hypothesis for the drop in transcription quality is related to the fact that
many samples do not have background music. If we enhance the speech in these
clean samples, it may actually harm the quality of the signal. To test this, we ap-
plied music source separation to samples with different SNR ranges, measured by
the WADA-SNR algorithm (Kim and Stern, 2008). Our evaluation of the RTVE
dataset shows that music separation is most effective for SNR ranges between -5
and 5 or 8, as demonstrated in Table 4.4. The greatest improvements were seen
in TV shows with higher WER, indicating more difficult or noisier speech, such
as AV, where the speakers are often in a car, or LM and DH, where music and
speech frequently overlap. Other shows already had good quality audio, so the
benefits were not as significant. However, the AFI show had poor quality audio,
and applying Demucs could potentially make it even worse, resulting in decreased
performance.

Table 4.4: WER impact of cleaning speech signals between certain SNR ranges,
using a music source separator. End-to-end Conv GLU model is used without LM,
and percentage of cleaned samples are reported.

SNR Cleaned Samples [%] Test WER [%)]

2018 2020 2018 2020
(—o0,00) 100 100 37.50 53.53
(—00,10) 25.97 34.22 -0.05 -0.87
(—5,10) 25.84 31.33 -0.05 -0.88
(=5, 9) 5.14 11.88 -0.07 -1.03
(=5, 8) 14.95 22.11 -0.08 -0.97
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Figure 4.2: Variation of the mean WER per TV show between using Demucs-
cleaned or original samples on RTVE’s 2018 test set. Negative values represent
Demucs improvements. Note that only samples with SNR between -5 and 8 are
enhanced.
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4.1.3. Conclusions

By the end of the Albayzin 2020 Challenge we had applied enhancement tech-
niques to denoise the highly complex audio from TV shows data. The main finding
was that, despite effectively cleaning noise from audio, the models used for en-
hancement (Demucs and Denoiser) introduced additional artifacts to samples that
were already clean. This made the mean WER a bit higher, an undesired effect.
After inspecting WER reductions for different SNR intervals, we found out that
cleaning speech was delivering better WERs when applied on noisy audio. Hav-
ing used this out-of-the-box denoiser and source separation models, we concluded
that SE for ASR would be better done in a tailored manner. This would imply trig-
gering SE models at low SNR ranges, or training the speech recognition models
to be agnostic of artifacts introduced by SE modules. The latter idea was furtherly
explored in our following work: applying SE for the wake-up word detection in a
real-world voice assistant, Aura.
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4.2. Task-Aware Speech Enhancement for Wake-up
Word Detection

Detecting wake-up words in noisy environments is crucial for ensuring a pos-
itive user experience with voice assistants. The problem is that the device can
be activated unintentionally due to background noise from conversations, TVs,
or other household devices. With such problem in mind, we decided to tackle
wake-up word detection with previous enhancement of the speech signal, as we
did during the Albayzin 2020 Challenge, described in Section 4.1. Taking into
account the past experience in the challenge, where the standalone enhancement
model would introduce audio artifacts in clean speech, this time we decided to
treat both speech enhancement and recognition neural models in a joint manner.
With that in mind, we hypothesized that the speech enhancement would clean the
audio in order to prevent errors in the recognition side.

Our new study proposed a solution to improve wake-up word detection in
noisy environments by using a speech enhancement convolutional autoencoder
combined with on-device keyword spotting. The system is trained end-to-end,
optimizing a combination of losses, including a reconstruction-based loss at both
the log-mel spectrogram and waveform levels, as well as a task-specific loss that
considers cross-entropy error for keyword spotting detection. The study exper-
imented with various neural network classifiers and found that coupling speech
enhancement with wake-up word detection significantly improves performance in
noisy conditions, particularly when the two are jointly trained. Additionally, a
new publicly available speech database for the Telefonica’s voice assistant, Aura,
called the OK Aura Wake-up Word Dataset (Cdmbara et al., 2022), was intro-
duced. The dataset includes rich metadata, such as speaker demographics and
room conditions, and contains carefully selected hard negative examples that ex-
hibit different levels of phonetic similarity to the trigger words "OK Aura.”

Let’s get into the details of this research’s context, which work was done for
Aura, a cognitive conversation system. These systems rely on speech as the most
natural means of communication. A crucial component of these systems is the
speech-to-text (S2T) technology that accurately transcribes the user’s speech into
text for further processing in the natural language engine. However, to avoid run-
ning S2T models in the background at a high computational cost, a wake-up word
(WUW) is often required to trigger the S2T functionality and other conversational
mechanisms. The WUW module is designed to distinguish only between the trig-
ger word and other acoustic input, making it a two-class hypothesis test that is less
computationally and resource-intensive than an always-awake S2T model.

Although the WUW model is simpler than a large vocabulary automatic speech
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recognizer, it still needs to be resilient enough to handle acoustic disturbances like
TV, music, or background conversations. In noisy environments, the WUW’s per-
formance is affected by unexpected wake-ups, resulting in false alarm errors, and
failing to detect the trigger word, known as miss errors. These errors, particularly
false alarms, have a significant impact on user experience and can reduce expec-
tations and engagement with the technology. For this reason, there a few com-
mon approaches used to improve the robustness of WUW detection. One such
approach involves a second-step verification process, which typically involves ei-
ther an ASR or a WUW model (Ge and Yan, 2017; Kumar et al., 2020; Michaely
et al., 2017; Apple, 2017). Other works incorporate a SE module that operates at
the audio input stage to reduce noise and obtain a cleaner version of the acoustic
signal. The SE module aims to enhance the perceptual quality and intelligibility
of speech by removing background noises (Loizou, 2013; Xu et al., 2013). While
Speech Enhancement (SE) is commonly used in telecommunications and hearing
aids to improve perceptual experience, it has also shown to improve results when
used as a pre-processing step in the context of ASR task (Zorild et al., 2019; Maas
et al., 2012; Weninger et al., 2015).

Looking at WUW task particularly, recent studies have introduced systems
based on neural architectures, such as convolutional (Sainath and Parada, 2015),
recurrent (Kumar et al., 2018; Arik et al., 2017; Yamamoto et al., 2019), and
self-attention networks (Shan et al., 2018). To address robustness and general-
ization issues, a commonly used strategy is to generate training data by adding
noise. This approach exploits the ability of the deep neural networks to handle
large amounts of data by artificially corrupting the original samples. By doing
so, the resulting models become more robust and can handle a wider variety of
noises and scenarios. Similar techniques have been applied to various speech-
related tasks, including keyword spotting (Raju et al., 2018), automatic speech
recognition (Hsiao et al., 2015; Hannun et al., 2014), and wake-up word detection
(Yoon and Kim, 2020). In this work, we use similar techniques to augment our
training data for all the classifiers we describe. We add noise or create artifacts
in the original speech to generate new training samples, which leads to improved
performance in wake-up word detection tasks, consistent with findings reported
in previous works on other speech tasks.

Classic SE methods like Wiener filtering (Meyer and Simmer, 1997) or spec-
tral subtraction (Yang and Fu, 2005) are good at reducing noise from speech sig-
nals but not robust against certain types of noise, like non-stationary ones or over-
lapped speech. Deep learning approaches like encoder-decoder autoencoders have
been proposed to address this issue. Popular models include those in (Pascual
et al., 2017), using generative adversarial networks (GAN) (Goodfellow et al.,
2014), or (Défossez et al., 2020), which acts at the waveform level in real time.
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Many current approaches are optimized by minimizing a regression loss in time
or a combination with a spectrogram domain loss (Park and Lee, 2016; Défossez
et al., 2020). Inspired by these works, and our previous research on SE for TV
shows transcription, we hypothesize that using SE to clean noisy speech can im-
prove WUW detection. To test this hypothesis, we conduct various experiments
on different model proposals:

(a) The isolated classifier: a baseline scenario where only a WUW classifier is
used without any SE module.

(b) The independent SE and WUW models: these two systems are trained sep-
arately, so the SE model is optimized only waveform and spectral recon-
struction losses.

(c) The Task-Aware SE (TASE) through frozen WUW model: the WUW model
is trained first and then incorporated into the SE model during training. This
allows the WUW detection logits to be used in the SE model as a classifi-
cation loss, which is back-propagated along with the regression losses. The
WUW detector is not updated during SE training.

(d) The end-to-end TASE (TASE-E2E) and WUW model training: it involves
training both the SE and WUW models together from scratch using joint
regression and classification losses.

Summarizing, we explore the application of neural SE to WUW detection,
which had not been studied before, as far as we know. We introduce a new task-
aware loss function that enhances speech for better performance in WUW detec-
tion. This is achieved by back-propagating both the regression loss from the SE
module and the classification loss from the WUW classifier, as can be seen in
Figure 4.3. We evaluate the performance of our approach under different SNR
ratios and acoustic scenarios, demonstrating that SE is particularly effective in
high-noise environments.
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Figure 4.3: End-to-end TASE model at waveform level concatenated with a clas-
sifier.
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4.2.1. Model Description

Our model is a type of SE model that uses a fully-convolutional denoising
autoencoder with skip connections (as shown in Figure 4.3), which is similar to
other successful SE models like (Pascual et al., 2017; Défossez et al., 2020; Llom-
bart et al., 2021). During training, we give the model a noisy audio waveform
x € RT, which consists of both a clean speech signal y € R” and background
noise n € R”. The model is trained to adjust the value of x such that it equals
Ay + (1 — A\)n, where ) is a parameter that controls the SNR.

The encoder consists of six ConvBlock1D, which are sequences of a convo-
lutional layer, instance normalization, and ReLLU. In the ConvBlock1D, a kernel
size of K = 4 and a stride of S = 2 are used except for the first layer, which
uses K = 7and S = 1. The compressed signal then goes through three inter-
mediate ResBlock1D, which preserve the shape, and each block consists of two
ConvBlock1D with K = 3 and S = 1. Skip connections are added from the input
of each residual block to its output. The signal then flows through the decoder,
which has the opposite structure of the encoder, and consists of DeconvBlock1D
that replace the convolutional layers in the ConvBlock1D with transposed convo-
lutional layers. The decoder produces the enhanced signal with the same shape as
the input waveform, which is passed on to the WUW classifier. Both the encoder
and decoder blocks are connected with skip connections to maintain low-level
details of the waveform.

The model is fully convolutional to minimize the delay compared to an RNN-
based architecture for the same task. Table 4.5 shows a comparison of our model
with state-of-the-art architectures in terms of parameters, operations, size, and
forward delay. To ensure fair comparison, we measured the forward time of each
model using the same CPU and the same input data, an audio of 1.5 seconds.
We ran 100 forward passes and calculated the average forward time. We also
evaluated a variant of our architecture called “gruse” in which we replaced the
residual blocks with a Gated Recurrent Unit (GRU) with a hidden size of 256. This
resulted in a smaller model with fewer operations, but with a considerably higher
forward delay. The other architectures listed in the table are demucs (H = 64 and
H = 48) from (Défossez et al., 2020), and NSNet2, which is the baseline network
used for the Deep Noise Suppression Challenge (Braun and Tashev, 2020).
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Architecture Parameters # Operations Size (MB) Fwd Time (ms)

demucs (H = 64) 33.53M 10,015M 278.61 163.21
demucs (H = 48) 18.86M 5645M 184.05 98.28
NSNet2 2.80M - - 22.00
TASE 2.45M 4156M 154.67 65.50
gruse 1.31M 1853M 64.11 176.42

Table 4.5: Parameters, number of operations (multiplications and additions), size,
and forward time of SE models.

We optimize the model with a combination of the L1 loss for the target raw
waveform and the log-mel spectrogram, as proposed in (Yamamoto et al., 2020).
With this, we aim to reconstruct the clean waveform y, but we also include a
binary cross-entropy (BCE) loss from the WUW classifier, for the TASE case.
There are two options when the BCE loss is used, either the WUW classifier
is jointly trained from scratch with the SE module, or we use a pretrained WUW
model, which we freeze. Using this BCE loss is supposed to help the TASE model
to optimize audio cleaning towards WUW detection. Formally, we define the final
loss function as a linear combination of three losses:

LT == aLr‘aw(y: @) + BLspec(S(y)a S(@)) + ’VLBCEa (41)

where «, 3, and 7y are the loss weights, and S(+) is the log-mel spectrogram of the
signal, which is computed using 512 FFT bins, a window of 20 ms with 10 ms of
shift, and 40 filters in the mel scale.

4.2.2. Methodology

In this section, we outline the methodology of our assessment, detailing the
databases and data augmentation techniques used, as well as the wake-up word
detection models evaluated, including training and testing nuances.

Databases

We gathered samples containing the WUW, “OK Aura”, from two in-house
databases from Telefénica. One of them is publicly available for research pur-
poses (Cambara et al., 2022), if requested through an End-User License Agree-
ment (EULA). Additionally, we extracted more negative samples (without the
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WUW), from the Spanish Common Voice (CV) corpus (Ardila et al., 2020). Fur-
thermore, we got sounds for background noise contaminations from other datasets
like QUT-NOISE (Dean et al., 2010) or the IberSpeech-RTVE Challenge (Lleida
et al., 2019). We made sure that no speaker or background noise were repeated
across training, validation and testing splits, which ratio was 80-10-10. The total
size of the dataset was of 50,737 non-WUW samples and 4651 samples

Regarding the data collection of WUW samples, this was done in two rounds.
Firstly, we collected 4300 samples (2.8 h) from 360 speakers, along with office
background noise recordings. Secondly, we recorded 1247 utterances (1.4 h) from
80 speakers. This second round was motivated by the fact that we wanted to
outsource a public dataset, so this time we asked participants to sign a consent
form. Also, we captured sentences that were hard for baseline WUW models to
recognize. Mostly, sentences that are close phonetically to the WUW, but not
the WUW itself. We divided the sentences in different levels of similarity to the
WUW:

1. The WUW itself: OK Aura.

2. The WUW within a context sentence: Perfecto, voy a mirar qué dan hoy.
OK Aura.

3. Contains “Aura”: Hay un aura de paz y tranquilidad.

4. Contains “OK”: OK, a ver qué ponen en la tele.

5. Contains similar word units to “Aura”: Hola Laura.

6. Contains similar word units to “OK”: Prefiero el hockey al baloncesto.

7. Contains similar word units to “OK Aura”: Porque Laura, ;qué te parecio
la pelicula?

However, not all the difficulty for recognizing the WUW lies in phonetic sim-
ilarity. There are other factors that may harm performance, like biases in gender,
age or accent, plus acoustic conditions related to distance to the microphone or
the room size. Metadata regarding all these topics was registered as well, as can
be seen in Table 4.6.
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Metadata Values

Age 20s, 30s, 40s, 50s, 60s. ..

Gender Female, Male, Non-binary

Distance  Close, Two steps away

Room size Small (0—10 m?), Medium (10-20 m?)

Prosody Unknown, Neutral, Annoyed, Friendly

Accent Andalusian, Andean-pacific, Castilian, Non-native. . .

Table 4.6: Metadata in the OK Aura Wake-up Word Dataset.

We acquired data using Jotform!, a web-based form service. The data was
published with the name “OK Aura Wake-up Word Dataset” (Cambara et al.,
2021), and is available to the public 2. Audio files in the OK Aura Wake-up Word
Dataset are sampled at a 16 kHz rate, and we used a Speech Activity Detection
(SAD) model to keep chunks where speech occurs. We used a model from pyan-
note.audio (Bredin et al., 2020) that was trained with the AMI dataset (Carletta,
2007).

As for non-WUW samples, we selected a subset of 55 h for training, 7 h for
development and 7 h for testing, from the 300 h of the Spanish CV dataset (Ardila
et al., 2020). The criteria behind this selection was to keep a ratio of 10:1 between
negative and positive samples, as suggested in the literature (Hou et al., 2020).
With respect to background noises, we used different contaminations like music,
from the Free Music Archive® or conversations from Podcasts in Spanish #. Find
more information on the datasets used and noise types in Table 4.7.

Noise Type Dataset
Living Room  QUT-NOISE (HOME-LIVINGB) (Dean et al., 2010)

TV IberSpeech-RTVE Challenge (Lleida et al., 2019)
Music Free Music Archive

Conversations Podcasts in Spanish

Office In-house OK Aura WUW Dataset

Table 4.7: Background noise datasets.

Thttps://form jotform.com/201694606537056
Zhttps://zenodo.org/record/5734340
3https://freemusicarchive.org/
“https://www.podcastsinspanish.org/
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Data augmentation

Music and TV original recordings were convolved with diverse Room Impulse
Responses (RIR) based on the Image Source Method (Allen and Berkley, 1979),
in order to simulate the reverberation of different room sizes (L, L,, L), where
2 <L, <45,2< L, <55,25 < L, <4 m, with microphone and source
randomly located at any (z, y) point within a height of 0.5 < z < 2 m.

After testing different data augmentation techniques, we found that back-
ground noise addition was the one giving higher performance boosts. We dis-
carded other techniques like time stretching or pitch shifting, as their gains were
not stastically significant in very noisy scenarios. We combined different noise
recordings (conversations, office and living room ambiences, TV and music) with
clean speech in a wide range of SNRs ([5, 30] or [—10, 50] dB SNR). Every epoch
we randomly selected a background noise sample per speech utterance, and com-
bined them with the SNR from a randomly chosen SNR range.

Wake-Up Word Detection Models

To evaluate the effectiveness of task-aware speech enhancement models, we
examined how they affect trigger word detection in various models. The devices
that typically run these models have limited capabilities, so it is important to con-
sider the time it takes for audio to be processed. While larger SE models generally
perform better, they may also cause unwanted delays in detection, which can de-
grade the overall user experience throughout the conversation.

To establish a starting point for classification, we utilized the well-known con-
volutional neural network (CNN) called LeNet (LeCun et al., 2015). It is com-
posed of two convolution layers with ReLU activations and two pooling layers,
followed by two fully-connected layers.

Moreover, we took inspiration from the work of Sainath and Parada (Sainath
and Parada, 2015), which explored lightweight CNNs for keyword detection by
limiting the number of operations and parameters. We also employed Tang and
Lin’s re-implementation of this work in PyTorch (Tang and Lin, 2017), therefore
using the cnn-trad-pool2 architecture, which has two convolutional layers,
each followed by time and frequency pooling. Additionally, Tang and Lin worked
with deep residual networks combined with dilated convolutions (Tang and Lin,
2018), which yielded similar results to other CNN-based architectures while al-
lowing for variations in depth and width to create small-footprint models. We
employed three models from this work: resnet15, resnetl15-narrow, and
resnet 8, which have 15, 15, and 8 ResNet blocks and 45, 19, and 45 feature
maps, respectively.
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Furthermore, we incorporated two RNN-based models, SGRU and SGRU2,
which are based on the open source tool Mycroft Precise (Scholefield, 2019),
a TensorFlow-based, lightweight WUW detection tool. We implemented these
models in PyTorch, making larger variations of the original tool. SGRU had a
single GRU with a hidden size of 200, while SGRU2 had two GRUs with a hidden
size of 100.

Lastly, we adapted an architecture proposed in Kaggle’s FAT 2019 competi-
tion ("mhiro2”, 2019) and called it CNN-FAT2019. This architecture has eight
convolutional layers with ReLLU activations and pooling layers every two convolu-
tional layers. It demonstrated strong performance in tasks like audio tagging and
detecting gender, identity, and speech events from pulse signals (Cambara et al.,
2020). This was the largest architecture we used in our study.

Table 4.8 displays the parameters, operations (multiplications and additions),
and size of each keyword detection architecture used. RNN-based networks are
the most compact, while ResNet-based architectures demonstrate varying amounts
of operations and parameters based on their depth and width.

Classifier Parameters Operations (mult. and add.) Size (MB)
lenet 4.T™M 21M 19.2
cnn-trad-pool2 183k 42M 2.23
resnetl5 237.4k 1433M 29.96
resnetlS5-narrow 42 .4k 256M 12.44
resnet8 109k 5TM 3.55
sgru 145.6k 144.4k 0.81
sgru2 103.4k 102.2k 0.53
cnn-fat2019 5.2M 1218M 41.9

Table 4.8: Parameters and number of operations of WUW detection models.

Training

We segmented speech utterances using a fixed window length of 1.5 seconds,
which is generally sufficient to capture the average duration of the WUW (1.0
second) based on the SAD timestamps. We randomly mixed speech with back-
ground noise following the process outlined in Section 4.2.2 and using a given
SNR range. The SE model was trained to handle a broad SNR range of [—10, 50]
dBs, while the WUW models were trained for two different scenarios: a classifier
trained on the same SNR range as the SE model and a classifier with less noise
awareness trained on a narrower SNR range of [5,30] dBs. This allowed us to
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investigate the effect of the SE model on classifiers trained with different levels of
noise.

To mitigate data imbalance, we used a weighted sampler to balance the classes
in each batch. Additionally, we ensured that negative samples from the OK Aura
dataset were always present in each batch through batching. This approach in-
creased the presence of negative samples that were phonetically similar to the
WUW during training, thereby enhancing their representation.

We used the loss function in Equation (4.1) to train various models in different
ways. We defined different SE models and classifiers based on the loss function
used. These models included:

(a) The Isolated classifier, where the autoencoder was removed from the archi-
tecture (Figure 4.3), and any of the classifiers were trained using the noisy
audio as input witha = f =0 and v = 1.

(b) The Separate SE and classifier model, where the classifier was removed
from the architecture, and the autoencoder was optimized based on the re-
construction losses only with« = § =1 and v = 0.

(c) The Task-Aware SE (TASE) model, where only the operations of a frozen
pretrained classifier were backpropagated to the SE model, which was opti-
mized with the reconstruction losses altogether with a = § = v = 1.

(d) The End-to-End TASE (TASE-E2E) model, where the autoencoder and
classifier were trained jointly using the three losses witha = = v = 1.

To train the models, early stopping was used based on the validation loss, with
60 epochs of patience, for a maximum of 200 epochs. If there was no improve-
ment in 20 consecutive epochs, the learning rate was decreased by an order of
magnitude. The Adam optimizer was used with a starting learning rate of 10~*
for the E2E case and 10~ for the others, with a batch size of 50.

Testing

The test results were based on a binary classification task, where it was de-
termined whether if the WUW was contained in a single time window or not. To
create the test data, both negative and positive samples were mixed with back-
ground noise at a specific SNR level. Youden’s J statistic (Youden, 1950) was
used to determine the decision threshold based on the output probabilities from a
model. F1-score was then computed for analysis and comparison across all WUW
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classifiers and SNR ranges. Objective metrics PESQ (Rix et al., 2001) and STOI
(Taal et al., 2010) were also reported on the Valentini et al. benchmark dataset
(Valentini Botinhao et al., 2016) for comparison. The dataset contains clean and
noisy speech in English with 15 different background noises. Two seconds of each
enhanced audio clip were randomly selected from the noisy test set for PESQ and
STOI measurements. Further details can be found in Section 4.2.2.

4.2.3. Results

The TASE architecture was used to enhance an audio sample that includes
background music and a keyword spoken between 1.15 and 1.95 seconds. Figure
4.4 displays the spectrogram of the enhanced audio, which contains all the relevant
speech information necessary for subsequent classification.
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Figure 4.4: Example of Speech Enhancement spectrograms. Each figure shows
(a) a noisy log-mel spectrogram and (b) an enhanced log-mel spectrogram. The
blue rectangle shows where the “OK Aura” keyword is placed.
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Figure 4.5: WUW detection performance comparison for different models in
terms of Fl-score, with and without TASE. All models are trained in the range
of [-10,50] dB SNR. TASE is not beneficial in noisy scenarios for large archi-
tectures (bottom row), while it does contribute positively to smaller models, espe-
cially when trained jointly end-to-end (upper row). (a) SGRU. (b) cnn-trad-pool2.
(c) CNN-FAT2019. (d) ResNetl5.

Figures 4.5a—d display the performance of the TASE architecture when paired
with various WUW classifiers described in Section 4.2.2. Our results indicate
that TASE greatly benefits models such as SGRU and cnn-trad-pool2, which ex-
hibit low resistance to noise compared to ResNet15 or CNN-FAT2019. However,
TASE provides equal or worse results for ResNetl5 or CNN-FAT2019 at cer-
tain noise levels. We believe that ResNet15 and CNN-FAT2019, being larger and
more complex architectures, may not benefit as much from speech enhancement
because they already handle noise nuances more accurately. We acknowledge
that we did not fine-tune the hyperparameters extensively for every architecture
due to computational constraints, and thus, our default hyperparameter selection
may be biased toward specific architectures, resulting in lower performance for
TASE-E2E in ResNetl5. Further information about the metrics for SGRU and
cnn-trad-pool2 can be found in (Cambara et al., 2022).
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F1-score as a function of noise ranges
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Figure 4.6: F1-score box plot for different SNR ranges. Classifiers trained with a
limited range of noise ([5, 30] dB SNR).

In addition, Figure 4.6 illustrates the enhancement in detecting WUW in noisy
environments by combining our TASE model with other classifiers described in
Section 4.2.2, which are neither large nor robust to noise (SGRU2, ResNet8,
ResNetl5-narrow), and LeNet, which architecture has not been optimized for au-
dio tasks. The classifiers were trained with low noise ([5, 30] dB SNR) to simulate
a voice assistant system that has not encountered excessive amounts of noise dur-
ing training. When SE is applied in quiet scenarios, the results remain relatively
good, and particularly, the models are improved in lower SNR ranges.

However, if the classifiers are trained with a wider range of SNR ([—10, 50] dB
SNR) using data augmentation, the difference in performance when using TASE
is notably reduced. F1-scores for both options are similar for most SNR ranges.
Although there is a slight advantage for the model over TASE in the noisiest range
of [—5, —10] dB SNR, it is not as large as the improvement reported in Figure 4.6.
See Figure 4.7.
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F1-score as a function of noise ranges
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Figure 4.7: F1-score box plot for different SNR ranges. Classifiers trained with a
very wide range of noise ([—10, 50] dB SNR).

The loss function parameters (4.1) for training the classifier and SE model
have been defined in Section 4.2.2, with three different training approaches: stan-
dalone, coupled with the classifier, and end-to-end training. Figure 4.8 compares
the performance of these cases using a LeNet as a WUW detector. The TASE-E2E
case outperforms all other cases in almost every SNR range, while the results are
similar for the four models from 40 dB to 10 dB of SNR. The classifiers with-
out SE model perform worst in the noisiest ranges, followed by the separate SE
case where only the waveform and spectral reconstruction losses are used. The
TASE case, which includes the classification loss in the training stage, improves
the WUW detection results, but the best results are obtained with the TASE-E2E
case, where the SE models and the classifiers are jointly trained using all three
losses.
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Macro F1-score as a function of noise ranges
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Figure 4.8: Comparison of different training methods for the SE models and
LeNet classifier, in terms of the macro F1-Score for different SNR ranges. All
models trained in the range of [—10, 50] dB SNR.

The WUW detection performance of TASE-E2E is compared to other state-of-
the-art SE models (SEGAN (Pascual et al., 2017) and Denoiser (Défossez et al.,
2020)). We employed a data augmented LeNet in different noise scenarios. Table
4.9 shows that our setup outperforms other more powerful but more general SE
models when training the models together with the task loss. We hypothesize that
this is because the SE model naturally adapts to the classifier during end-to-end
training and has been trained with a focus on common home noises. TASE-E2E
improves detection against using no SE, particularly in scenarios with background
conversations, loud office or TV noises, as shown in Table 4.10.

The results presented in Table 4.11 reveal that our SE system does not enhance
speech quality when compared to the scenario where no model is used to improve
speech. This outcome was expected, given that our models were not trained to
remove generic background noises present in the Valentini dataset. Instead, the
SE system was designed to eliminate background conversations and TV noise that
could trigger the device, thereby leading to speech degradation. However, we did
notice that the PESQ metric improved in the case of TASE combined with a LeNet
classifier in comparison to SE. Furthermore, the best results were obtained with
the end-to-end approach, where the PESQ and STOI scores were maintained at
similar levels to those obtained without an SE module. These results demonstrate
that incorporating the classification task in the loss function enhances the ability
of the SE model to clean speech.
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SNR [dB] No SE SEGAN Denoiser JointSE

20, 10] Clean 0.980 0.964 0.980 0.990
10, 0] Noisy 0.969 0.940 0.955 0.972
[0, —10] Very noisy  0.869 0.798 0.851 0.902

Table 4.9: Macro Fl-score enhancing the noisy audios with state-of-the-art SE
models and using a LeNet as a classifier.

SNR [dB] Music TV Office Living Room Convers.
[20, 10] Clean 1.0 —-0.9 1.4 0.4 2.3
[10, 0] Noisy 0.0 —-1.2 0.8 0.4 1.9
[0, —10] Very noisy 0.5 39 11.2 3.1 3.8

Table 4.10: Macro Fl1-score percentage difference between JointSE and LeNet
without SE, for different background noises.

Architecture PESQ STOI

None 2.02 0.93
SE 1.89 0.93
TASE 1.97 0.92

TASE-E2E 202 093

Table 4.11: Objective evaluation of speech quality.

4.2.4. Conclusions

We believe that our study was the first to investigate the use of neural-based
speech enhancement for wake-up word detection, and we showed that it improves
classification performance. Additionally, we introduced a method for making the
speech enhancement module aware of the WUW task by incorporating the wake-
up word classification loss during training, which we call task-aware speech en-
hancement (TASE). TASE provides even better results than training the speech
enhancement and wake-up word classification modules separately, and it can be
accomplished by freezing the wake-up word module during speech enhancement
training or by training both together from scratch, which we refer to as end-to-
end task-aware speech enhancement (TASE-E2E). TASE-E2E achieved the best
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classification performance among all the tested setups. Our experiments showed
that the benefits of speech enhancement are particularly noticeable at noisier SNR
ranges, between 10 and -10 dBs. We also compared the effectiveness of TASE to
a standalone wake-up word classifier trained on a wide range of SNRs between
50 and -10 dBs. The results showed that TASE was equally effective or slightly
better than not using it in severely noisy setups between -5 and -10 dBs SNR.
Thus, TASE has the potential to improve the performance of standard neural net
classifiers that are not specifically trained to be resilient to noise, and we encour-
age further research into the comparison between speech enhancement and noise
data augmentation techniques. Finally, we suggest that future works investigate
the particular challenges and issues that may arise in online streaming scenarios,
given that we worked with segmented audio.
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Chapter 5

LEVERAGING PHONETIC
INFORMATION FROM A
SELF-SUPERVISED MODEL

Neural-based ASR models keep improving their transcription quality, as big-
ger models that train with bigger data are created. However, the data acquisition
process for speech recognition is very costly, not only because of obtaining the
speech audio, but mostly due to the effort in transcribing it. Thus, many recent
findings in ASR have been related to the application of self-supervised learning
(SSL) algorithms to it. SSL consists in designing training pipelines where ground
truth labels are automatically generated. Masked language models are an exam-
ple of this paradigm, as they learn by predicting masked parts of a text sentence,
something that it is done by randomly sampling words to be masked, without ex-
plicit human action. Of course, we could think of similar tasks done with speech
data, something that has been studied in works like CPC (Oord et al., 2018), PASE
(Pascual et al., 2019) or wav2vec2.0 (Baevski et al., 2020).

From the aforementioned models, wav2vec2.0, altogether with HuBERT, was
the highest performing one in several speech tasks, as recorded in SUPERB bench-
mark (Yang et al., 2021), for a period of time. It also gained fast adoption, as its
open-source code was given to the community in repositories like fairseq (Ott
et al., 2019), HuggingFace (Wolf et al., 2019) and SpeechBrain (Ravanelli et al.,
2021). This model, along with the whole SSL research field, was of interest for
our work, as the core idea of speech SSL is in line with our aim, which is enhanc-
ing features for a better recognition. Wav2vec2.0 delivered impressive results for
ASR with only few transcribed data for fine-tuning, but its feature encoder was
big in size and not straightforward to use in small devices, where also small la-
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tency is a must. We knew that wav2vec2.0, during training, was learning a vector-
quantized codebook of pseudophonemes, that it used as targets in its SSL scheme.
This codebook was only used at training, to make the encoder learn about such
phonetic information, and then thrown away for inference. We hypothesized that
this phonetic information contained in the codebook could be also useful for train-
ing speech recognition classifiers, and its smaller size (it was only a matrix, in the
end) could be more suitable for low-latency devices (such as Aura, for instance).
For such a reason, we decided to explore its usage on a constrained speech recog-
nition setup: keyword spotting. Particularly, we found a very interesting archi-
tectural synergy between wav2vec2.0 latent codebook and a cross-attention based
model proposal: the Perceiver architecture (Jaegle et al., 2021).

Being so, we discovered an efficient method to use the linguistic knowledge
from a pretrained wav2vec2.0 model for small footprint Keyword Spotting (KWS).
Instead of using the encoder with over 95 million parameters, we repurposed the
phonetic information in the latent codebook, typically discarded after pretraining.
By transferring the codebook as weights for the latent bottleneck of a Keyword
Spotting Perceiver (Jaegle et al., 2021), the model is initialized with phonetic
embeddings. The Perceiver design employs cross-attention between these embed-
dings and input data to generate improved representations. This approach offers
accuracy improvements compared to random initialization without increasing la-
tency. Furthermore, we demonstrated that the phonetic embeddings can be down-
sampled using k-means clustering, accelerating inference by 3.5 times with only
minor accuracy penalties.

5.1. Recycle Your Wav2Vec2 Codebook: a Speech
Perceiver for Keyword Spotting

In this section, we start by diving deeper into the motivation behind our re-
search. Then, we outline our proposed model, detailing the integration of wav2vec2.0
with the Perceiver model. Additionally, we discuss various techniques employed
to enhance latency.

5.1.1. Motivation

Recent improvements in keyword spotting (KWS) consisted in using the Trans-
former architecture (Vaswani et al., 2017) and self-supervised learning proposals
like wav2vec2.0 (Baevski et al., 2020). Transformers have an advantage over
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CNNs and RNNs because they can capture information from wider contexts be-
yond a local range, and they avoid the issue of vanishing or exploding gradi-
ents. However, this advantage comes at a high computational cost due to the self-
attention mechanism (Bahdanau et al., 2014), which is especially pronounced in
high-dimensional modalities like audio or image. Keyword Spotting Transformer
(KWT) (Berg et al., 2021) and Audio Spectrogram Transformer (AST) (Gong
et al., 2021) models address this issue by using a method inspired by the Vision
Transformer (ViT) (Dosovitskiy et al., 2020): downsampling the spectrogram into
patches.

Meanwhile, models such as Wav2KWS (Seo et al., 2021) or the classifier from
SUPERB (Yang et al., 2021) have effectively utilized wav2vec2.0 for Keyword
Spotting (KWS). At training, wav2vec2.0 builds a latent codebook that captures
phonetic information. These codes are used as a target to train its feature encoder.
After training, the codebook is usually discarded, and only the encoder is used for
downstream tasks such as KWS or ASR. Although the encoder can extract detailed
features from raw waveforms, its large size (no less than 95 million parameters
for the BASE model) and additional latency make its application to small KWS
classifiers not so straightforward.

Thus, we concentrate on investigating ways to reuse the phonetic informa-
tion stored in the wav2vec2.0 latent codebook. Our research demonstrates that
this information can improve the accuracy of a KWS model at the start of the
training process and results in improved convergence, with no added cost in la-
tency and model parameters. Our proposal is based on a natural combination of
the wav2vec2.0 and Perceiver models (Jaegle et al., 2021). The Perceiver model
employs cross-attention between the input data and a smaller latent bottleneck
tensor, which results in lower computational costs than pure self-attention over
input data. We discovered that a pretrained wav2vec2.0 latent codebook can be
used as an initialization for the Perceiver’s latent bottleneck tensor, leading to im-
proved accuracy compared to random weight initialization. Additionally, since
many vectors in the wav2vec2.0 codebook contain similar phonetic information,
we employ k-means clustering and average vectors from the same clusters, result-
ing in downsampled latent bottlenecks that provide faster inference with only a
minor reduction in accuracy. This work’s main contribution is twofold. Firstly, it
sheds light on the effectiveness of utilizing latent codebook recycling for efficient
transfer learning of the wav2vec2.0 model. Secondly, it demonstrates the appli-
cation of the Perceiver model, for the first time to our knowledge, in a specific
speech task such as Keyword Spotting (KWS).
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Figure 5.1: The Keyword Spotting Perceiver (KWP) model.

5.1.2. Model Description

The Keyword Spotting Perceiver (KWP) we created is configured to process
inputs of 1-second waveforms, which are then transformed into log-mel spectro-
grams with 100 time steps (M) and 64 frequency bins (/). These spectrograms are
then linearly projected into a 192-dimension space (C'), creating an M xC' data ar-
ray. We append Fourier positional encodings to this data array along the C' dimen-
sion, using 64 frequency bands and an optimal resolution of 224, as advised by the
original Perceiver study. The model then engages in cross-attention between the
data array and a latent bottleneck array of dimensions Nx D, using a single atten-
tion head. The resulting output is further processed using a Transformer block that
includes self-attention with eight heads and a multilayer perceptron (MLP) with
a hidden size of 1024. The dimensions for both self-attention and cross-attention
heads are fixed at 64. As the final output is another Nx D latent array, we iterate
the cross-attention process with the data array and the Transformer blocks for a
total of 6 layers. We share weights across these layers following the pattern of a
RNN. We initially experimented without sharing weights, but found it led to a de-
crease in performance due to overfitting. In the end, we average the latents across
the D dimension, normalize the layer, and perform a linear projection to obtain
the class logits for prediction. A visual model is provided in Figure 5.1.

The latent array could be randomly generated (KWP-BASE), or alternatively,
we could use the weights from a pretrained wav2vec2.0 model’s latent codebook
(KWP-W2V2). For this research, we repurposed the latent weights from the Hug-
gingFace repository’s wav2vec2.0 BASE model'. The codebook was made up of
640 vectors (V) each with a dimension of 128 (D).

However, the computational challenge of cross-attention between the latent

Thttps://huggingface.co/facebook/wav2vec2-base
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and data arrays is proportional to O(M N), which negates the efficiency bene-
fits when compared to self-attention over the data array O(N?). This is because
O(MN) equates to O(100x640) or (6.4x10*), which is greater than O(N?) or
O(100%) or (10*). To counteract this, we investigated three techniques to down-
size this latent space to smaller dimensions N = [320, 160, 80, 40, 20] through:
(1) selecting vectors at random, (2) pooling adjacent vectors for an average, and
(3) using k-means clustering to average vectors within the same group. The
wav2vec2.0 paper posits that the majority of the codebook latents are specific
to English phonemes, with some phonemes being represented by multiple latents.
For example, the silence phoneme accounts for 22% of the codebook. As a re-
sult, we expected that k-means clustering would be the most effective downsizing
method by grouping similar or identical phoneme latents. Simple average pooling
may retain phonetic data, but we anticipated it to be less optimal as we couldn’t
ensure that contiguous vectors in the codebook aligned with similar phonetics,
which could lead to phoneme information blending. In contrast, random sampling
ensures the preservation of each vector’s individual information in the codebook,
but as N decreases, a significant amount of information could be lost due to the
exclusion of most vectors.

5.2. Accuracy and Latency of the Keyword Spotting
Perceiver

In this section, we focus on evaluating the accuracy and latency of our Key-
word Spotting Perceiver through a series of experiments. We will outline the
experimental methodology used, examine the model’s performance both at initial-
ization and upon convergence, and conclude with key insights drawn from these
assessments.

5.2.1. Methodology

Let’s elaborate on the assessment carried out for our Keyword Spotting Per-
ceiver proposal. Initially, we examined the impact of transferring the wav2vec2.0
latent codebook to the Perceiver bottleneck during the initialization phase. We
also explored varying methods for downsampling this latent space and compared
the accuracy of the baseline KWP-BASE model and the wav2vec2.0-initialized
KWP-W2V2 model. Subsequently, we retained the most effective downsampling
method for the next round of experiments, during which we allowed the system to
train until it reached convergence. For KWP-BASE and KWP-W2V2 models with
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different latent number variants N = [320, 160, 80, 40, 20], we reported accuracy,
model size, and inference time metrics.

We carried out the training, validation, and testing stages using the standard
partitions from the Google Speech Commands V2 dataset (Warden, 2018), and
the accuracy metrics were derived from the 35-commands task. Timing metrics
were obtained by performing inference on 1-second waveforms using a CPU, with
a warm-up period of 10 forward passes and an average time calculated over 150
forward passes. We employed the AdamW optimizer (Loshchilov and Hutter,
2018) with a step learning rate scheduler, reducing the learning rate each epoch
by a gamma factor of 0.98, starting with an initial learning rate of 1e=*. The batch
size was set to 32, with training occurring for a single epoch during the initial-
ization experiments and 400 epochs during the convergence experiments. For the
latter, we selected the top-10 checkpoints with the highest validation accuracy,
averaged their weights to create the final checkpoint, which was then used for test
accuracy measurements. The PyTorch code used for our experiments is available
to the public?.

In terms of data augmentation, we implemented time shifting of +£0.1 sec-
onds with a 60% probability. We also resampled the waveform signal within a
[0.85, 1.15] fraction of the input sampling rate, which was set to 16 kHz, with a
100% probability. We added background noise within a range of [5.0,30.0] dBs
and applied SpecAugment (Park et al., 2019) with two time masks of 25 frame
size and two frequency masks of 7 frames each. Both of these data augmenta-
tion methods were applied with a 100% probability during training. However,
for the shorter initialization experiments that lasted a single epoch, we reduced
the augmentation conditions to allow the system to learn more during the initial
stages. The probabilities for time shifting and resampling were decreased to 30%,
SpecAugment to 70%, and background noise addition to 80%.

5.2.2. Initialization with Wav2Vec2.0 Codebook

We tested the effect of transferring the wav2vec2.0 codebook to KWP dur-
ing the initialization phase. We achieved this by calculating the test accuracy
following a single epoch, and we carried out this process ten times, each with
a different seed. We drew comparisons between KWP-BASE and KWP-W2V2,
both containing all the N = 640 latent vectors. In this case, we allowed the la-
tent bottleneck weights to be modifiable (BASE and W2V2) and also kept them
constant (BASE-Frozen and W2V2-Frozen).

Zhttps://github.com/gcambara/speech-commands
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As illustrated by Figure 5.2 (left), both W2V2 and W2V2-Frozen displayed a
notable performance edge over BASE and BASE-Frozen. This led us to infer that
the phonetic information imported from the wav2vec2.0 latent codebook gave the
model an initial advantage, providing useful information that the cross-attention
mechanism could utilize from the get-go. It was also intriguing to note the lack
of performance disparity between BASE and BASE-Frozen. Our theory is that,
during the first epoch, the randomly initialized BASE model did not accumulate
enough phonetic information in its latent bottleneck. This limited the ability of
the cross-attention to exploit associations with input data. On the contrary, the
W2V2 model was able to harness the power of cross-attention early, leading to a
beneficial cycle between the phonetic data in the latent codebook and the cross-
attention weights linked to input data.
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Figure 5.2: The test accuracy following a unique training epoch for two models -
one randomly initialized (BASE) and the other initialized with wav2vec2.0 latent
codebook weights (W2V2), with either adaptable or static weights (left). Also,
we present the outcomes of bottleneck latents downsampling using k-means clus-
tering (KM), average pooling (AVG), and random sampling (RAND) (right).

We proceeded by replicating the same ten-seed experiment for N = [320, 160,
80,40, 20] latent vectors in the bottleneck. We tested different downsampling
techniques: k-means clustering (W2V2-KM), average pooling (W2V2-AVG), and
random sampling (W2V2-RAND). The outcomes, depicted in Figure 5.2 (right),
underscored the efficacy of all three latent downsampling methods in improving
performance compared to the BASE model. Of these, W2V2-KM emerged as
the top performer. This validated our belief that averaging latents associated with
the same phonetic clusters was a superior strategy compared to the simple aver-
aging of contiguous latents, as done in W2V2-AVG, or the random sampling of
latent vectors, as performed by W2V2-RAND. The latter method, especially, saw
a decrease in representational capacity as N decreased.
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5.2.3. Assessment at Convergence

In order to assess the precision of the KWP-BASE and KWP-W2V2 models
post-convergence, we let the models undergo a prolonged training session of 400
epochs. At this stage, we only experimented with adaptable latent weights and
k-means clustering downsampling since the latter proved to deliver superior ini-
tialization results. We carried out training and testing with 3 seeds, changing the
number of latents once again with the same range, N = [640, 320, 160, 80, 40, 20,
and drew comparisons between BASE and W2V?2 versions.

As shown in Figure 5.3, the W2V2 version maintained a considerable lead
across all the latent numbers, reaching a peak mean accuracy of 96.26 + 0.04%
with 640 latents. This exceeded the BASE’s highest accuracy of 95.6 + 0.2%
achieved with 80 latents. It appears that the W2V2 variant scales well with the
number of latents, unlike the BASE model, which might find it challenging to
cluster phonetic information in the latent space as it expands. However, KWP
(1.5M parameters) still falls a bit short compared to its self-attention counterparts,
with the lightest KWT (0.6M parameters) achieving a 96.8% accuracy, and AST
reaching 98.1%. It is worth mentioning that AST is pre-trained with ImageNet
(Deng et al., 2009) and has a significantly larger size (87M parameters). Despite
this, we encourage further exploration into fine-tuning KWP to achieve state-of-
the-art performance.

The inference time for the model with 640 latents stands at 49 &= 5 ms, and for
the smaller model with 20 latents, it’s 14 + 2 ms. Considering that the accuracy is
95.3+0.1% for the latter, we see a relative accuracy loss of only 1% with k-means
clustering downsampling while boosting the inference speed by 3.5 times. The
accuracy of the BASE model at 20 latents is 94.6 + 0.3%, which is significantly
lower than that of W2V2. This proves that even a severe downsampling from 640
to 20 latents of wav2vec2.0 information remains a more effective choice compared
to randomly initializing the latent space in KWP.

5.2.4. Conclusions

In the study presented herein, we unveiled the potential of reusing the pho-
netic information embedded in the wav2vec2.0 latent codebook by transplanting
it into the latent bottleneck weights of a Keyword Spotting Perceiver. By doing so,
we noted a substantial and consistent increase in accuracy compared to scenarios
where the latent bottleneck was randomly initialized. This improvement was not
just observed during the initial stages of training but was also sustained during the
later phases of the Keyword Spotting task.
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Figure 5.3: Post-convergence test accuracies for KWP-BASE (depicted in orange)
and KWP-W2V2 (shown in blue) with varying counts of bottleneck latents, along-
side the CPU inference time (represented in red).

Furthermore, our exploration extended into devising efficient downsampling
strategies to compress the latent codebook. We found that simply averaging k-
means clusters led to notable enhancements in model performance. In fact, this
technique enabled us to reduce the inference time of the model by up to 3.5 times,
which resulted in only a marginal 1% decrease in accuracy.

The implications of our findings are substantial, as they underscore the value
of effectively leveraging the rich information contained within large self-supervised
models like wav2vec2.0. We firmly believe that our work serves as a robust foun-
dation and a catalyst for future research. Such future endeavors could explore
more efficient ways to utilize the wealth of information in these large models or
even extend the application of our techniques to other tasks such as large vocabu-
lary ASR. Our work also promotes the exploration of different methods to transfer
knowledge between models, beyond our particular exploration on wav2vec2.0.
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Chapter 6

CONCLUSIONS AND FUTURE
WORK

I started this thesis by stating the motivation on working towards the chal-
lenges of deep learning methods in the realm of automatic speech recognition,
particularly at the feature representation level. While it is undeniable that deep
learning has propelled the field forward, the performance of speech recognition
systems is hindered by the lack of data, the requirement of small footprint de-
vices or the presence of acoustically challenging environments, just to name a few
sources of issues. Out of the research labs, many real-world systems and projects
operate under some of these conditions.

The work in this thesis has been focused to specific contributions on three
different research threads that branch from the field of feature enhancement for
ASR. Firstly, I explored the integration of prosody and voice quality features into
neural models for speech recognition. Given the inclination of deep learning to-
wards diminishing additional features, we hypothesized that, particularly in low
data situations with less than 1000 hours, incorporating prosodic context could
be advantageous. The experimental work on this thread resulted in the develop-
ment of new convolutional and Transformer models, which were shared through
publications and open-source contributions.

Subsequently, we addressed challenges related to speech and noises in a project
with Telefonica Research, focusing on a subset task of speech recognition: wake-
up word detection. Herein, we investigated optimal strategies for applying speech
features enhancement to improve the robustness of wake-up word recognition
models, which yielded conference and journal publications and the release of an
open-source wake-up word dataset.

Lastly, motivated by data limitations and the requirement for small compact
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models, we explored self-supervised learning models for speech. Typically, most
of the self-supervised learning approaches involve the usage of large encoder mod-
els, that are not always suitable for small footprint devices. In this occasion, we
investigated on ways to leverage the knowledge absorbed by these models but in
a zero-cost way regarding latency and model parameters. For such work, aimed
for speech keyword spotting, we also published a conference paper and delivered
open-source code.

The outline of this chapter is as follows: I present final reflections and con-
clusions on the experiments done in this thesis in Section 6.1, and in Section 6.2
I outline next steps for future research. Lastly, I summarize the accomplishments
and attributions resulting from this work in Section 6.3.

6.1. Conclusions

Feature enhancement for speech recognition can be achieved in various ways.
In recent years, the field that has seen the most prominent research has been self-
supervised learning for speech. We conducted research in this area, focusing pri-
marily on leveraging information encapsulated by self-supervised learning models
in a manner that is cost-effective in terms of latency and computation for speech
recognition modules. Nevertheless, we also explored other research streams that
are not only independent but also complementary to self-supervised learning tech-
niques. Specifically, we investigated various ways to couple speech enhancement
modules with wake-up word classifiers to improve detection in noisy home envi-
ronments. Additionally, we focused on exploring the use of prosody and voice
quality measurements to complement spectral features, assessing their utility in
setups with fewer than 1000 hours of data. Research across these three streams
provided us with valuable insights into different ways to enhance features for im-
proved performance in speech recognition tasks, whether they involve large vo-
cabulary speech recognition, keyword spotting, or simply wake-up word detec-
tion.

The first research stream we explored to enhance features for speech recogni-
tion involved the application of pitch and voice quality features, specifically jitter
and shimmer. We were motivated by the success of applying such features to other
speech tasks, such as speaker recognition and diarization. Moreover, prosody fea-
tures like pitch had already been successfully applied to speech recognition in
classic models before the advent of deep learning. We hypothesized that such
features could still be beneficial for deep learning systems, as they could provide
more specific information that might assist during model training, especially in
situations where large datasets are not available.
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Thus, we did an initial probe into the implications of utilizing pitch, along
with jitter/shimmer voice quality measurements, in the context of large vocabu-
lary speech recognition, modeled by convolutional neural networks. Using a pub-
licly accessible Spanish speech corpus, our experiments exhibited improvements
in model robustness, effecting a relative 7% diminution in WER under particular
circumstances. Furthermore, we implemented these feature extraction capabilities
in the wav2letter code, allowing for the straightforward replication of our results
or the direct implementation of pitch and voice quality features to wav2letter mod-
els. Additionally, we supplied the recipe for the Common Voice Spanish dataset,
representing the first of its kind suitable for wav2letter using a publicly avail-
able Spanish dataset. Also, the recipe facilitating LibriSpeech experiments was
published, with improvements up to a relative marking an upsurge to a 2.94% in
WER.

It should be noted that the method used for feature combination was straight-
forward, simply concatenating such features to the spectral ones at the input layer,
without significant post-processing or adaptation of the model architecture. Given
this, it was plausible to believe that additional enhancements could be made in
applying pitch and voice quality measurements to cutting-edge neural models.
Potential strategies included modifying the feature concatenation, perhaps by allo-
cating specific filters to the new pitch and voice quality features. This adjustment
was implemented in subsequent work, where we also transitioned from a convo-
lutional to a Transformer-based architecture, demonstrating improved efficacy.

In this new study, we once again researched the usage of pitch and voice qual-
ity features, this time applying them to a state-of-the-art Transformer-based acous-
tic model. With the knowledge gained from previous research, we tried two differ-
ent methods to apply the new features: first, by simply concatenating them to the
spectral ones, and second, by processing them with separate convolutional filters.
It turned out that, as we had hypothesized, the latter approach outperformed the
former, with higher WER improvements (up to 5.6%) whether we applied pitch
and voice quality features separately or combined them altogether. By using sep-
arate convolutional filters, we could control the total amount of pitch and voice
quality features compared to the spectral ones. Whereas before we would have
a single stream of 40 spectral features plus as many as 5 pitch and voice quality
ones, now, with the separate filters, we could control it to have a proportion of
64 pitch and voice quality features against 192 spectral ones. This would make
prosody information more explicit to the attention mechanisms in the Transformer.
Such results suggested the potential of voice quality measurements to complement
pitch features, yielding better recognition even for a simple benchmarking task of
speech recognition for English. We believe that these features could be even more
useful for tonal languages like Chinese, or speech recognition involving punc-
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tuation marks, for instance. Moreover, our explorations only delved into features
derived from pitch, but it could be interesting to explore feature enhancement with
other prosody-related features like rhythm or intensity.

After exploring the addition of prosody features in situations where large
datasets of speech were not accessible, we conducted research on another thread
closely related to feature enhancement: the denoising of speech features as a pre-
liminary step before recognition, in order to better manage challenging acoustic
environments. The first stepping stone in this research stream was the Albayzin
2020 challenge, where we had to develop a competitive speech recognition system
for Spanish TV shows. Recognizing speech in TV shows was challenging because
it was mixed with a plethora of acoustic events, such as overlapping speech, mu-
sic, indoor and outdoor noises, etc. To tackle this, we applied speech enhancement
models to denoise the highly complex audio present in TV shows.

Our primary discovery revealed that, while the models utilized for enhance-
ment (Demucs and Denoiser) successfully purified audio from noise, they inad-
vertently introduced additional artifacts into samples that were initially clean, sub-
sequently elevating the average WER slightly, which was not a desirable outcome.
A closer examination of WER reductions across various SNR intervals indicated
that the process of cleaning speech resulted in improved WERs when executed
on noisy audio. Given our utilization of these ready-made denoisers and source
separation models, we deduced that speech enhancement for speech recognition
would be more effectively accomplished with a customized approach. This might
involve activating speech enhancement models at lower SNR ranges, or alterna-
tively, training the speech recognition models to disregard artifacts introduced by
speech enhancement modules. We would delve deeper into the latter concept in
our subsequent work, which explored applying speech enhancement for wake-up
word detection in a real-world voice assistant, Aura.

During this new research project for Aura, we designed and collected a new
database containing the wake-up word "OK Aura”, plus some other sentences
with similar, distracting phrases, such as "OK Laura”. This dataset was named
the ”OK Aura Dataset” and was publicly distributed under an End-User License
Agreement. Having collected the new data, we initiated our novel study on the use
of neural-based speech enhancement for wake-up word detection, considering the
lessons learned in the Albayzin 2020 challenge. This time, we proposed a strat-
egy, named task-aware speech enhancement (TASE), that informs the speech en-
hancement module about the wake-up word task by integrating the wake-up word
classification loss during its training. TASE, offering superior results compared to
independently training the speech enhancement and wake-up word classification
modules, can be done by either freezing the wake-up word module during speech
enhancement training or initiating training from scratch for both, the latter be-
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ing dubbed end-to-end task-aware speech enhancement (TASE-E2E). TASE-E2E
surfaced as the top performer in classification across all evaluated configurations.
Our experimental findings highlighted the particularly prominent advantages of
speech enhancement within noisier SNR spans, specifically between 10 and -10
dBs. We also compared the efficacy of TASE against a standalone wake-up word
classifier, both trained across an expansive SNR spectrum from 50 to -10 dBs. The
outcomes demonstrated that TASE matched or marginally surpassed the effective-
ness of the standalone wake-up word classifier in notably noisy environments, be-
tween -5 and -10 dBs SNR. Consequently, TASE has the capability to amplify
the efficiency of conventional neural network classifiers, which are not inherently
designed to handle noise, and we advocate for additional research exploring the
comparison between speech enhancement and noise data augmentation methods.
In closing, we recommend subsequent studies to delve into the specific challenges
and problems potentially surfacing in live streaming contexts, considering our
work was conducted with segmented audio.

The years dedicated to crafting this thesis coincided with the rise of self-
supervised learning applied to speech. We could not overlook these innovations
and aimed to contribute to this research thread during our work. Self-supervised
learning models were designed to mitigate data requirement issues, excelling at
training with limited labeled data by pretraining with a self-supervised objective
on unlabeled speech utterances. However, many paradigms, such as wav2vec2.0
and HuBERT to name a few, relied on large encoders with millions of parameters
to absorb all this implicit speech information. While these models are suitable
in low-resource data scenarios, they might not be the best option for use-cases
with computational constraints, such as in small footprint devices. Keeping that
in mind, and especially after having worked on home devices like Aura, we de-
cided to explore feature enhancement with self-supervised learning techniques.
This time, our focus would be to find a way to leverage information contained
in these pretrained models, but without additional costs in latency or computa-
tional requirements. With that objective, we chose speech command detection as
a simple task to further explore our research scope.

We accomplished our goal by identifying a synergy between two state-of-the-
art models: wav2vec2.0, a self-supervised learning model, and Perceiver, a model
that uses cross-attention between a compressed latent space and the input signal.
As the wav2vec2.0 model learned a phonetic vector-quantized codebook during
the training phase, we discovered that we could use such a codebook as the initial-
ization of the latent bottleneck weights in the Perceiver. We not only designed the
first Perceiver applied to speech, the Keyword Spotting Perceiver, but also demon-
strated the effectiveness of our weight transfer method from the wav2vec2.0 code-
book to the Perceiver weights. We observed accuracy improvements when using
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the codebook as initialization compared to randomly initializing the weights, not
only in the early stages of training, where it was notably pronounced, but also at
the model’s convergence.

Moreover, we researched further by investigating potent downsampling ap-
proaches to condense the latent codebook. Our discovery that straightforwardly
averaging k-means clusters yielded significant enhancements in model perfor-
mance was paramount. This method not only accelerated the inference time of the
model by up to 3.5 times but also incurred only a slight 1% drop in accuracy. Our
discoveries hold interesting implications, highlighting the importance of leverag-
ing efficiently the abundant information embedded in extensive self-supervised
models like wav2vec2.0. Forthcoming investigations could delve into more pro-
ficient methods to exploit the information in these large models or broaden the
application of our strategies to additional tasks, such as large vocabulary speech
recognition. Furthermore, our work points towards exploring alternative tech-
niques for transferring knowledge between models, going beyond our specific
exploration of wav2vec2.0.

Little else remains to be said now that we have reached the end of this work,
other than revisiting the initial questions that we posed at the beginning and sum-
marizing the findings we have extracted from our research:

[. Could the incorporation of prosody and voice quality characteristics
contribute to enhancing existing spectral feature-based systems?

Our explorations of convolutional and Transformer-based architectures for
1000 or fewer hours of data suggest that, yes, there is a reduction in word
error rates when using such additional features. Furthermore, processing
these features and spectral ones separately with different convolutional fil-
ters is an effective method to increase the prosody information ratio in the
feature space, which yields better performance than simply concatenating
spectral and prosody features.

II. What is the relationship between wake-up word detection performance
and varying signal-to-noise ratios, and how does the application of speech
enhancement affect this relationship? Additionally, what are the most
successful approaches for co-training speech enhancement and wake-
up word detection models?

Wake-up word detection, like other speech recognition tasks, underperforms
when the signal-to-noise ratio is reduced, so speech enhancement models
serve as a viable solution to mitigate this issue. However, enhancement
models can adversely affect the performance of classifiers at high signal-
to-noise ratios of the input signal, as they may introduce slight distortions
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into clean speech. Consequently, we discovered that jointly training speech
enhancement and wake-up word detection models renders the compound
model robust across a wide signal-to-noise ratio range, from very noisy to
clean speech. Freezing the wake-up word detection module and backpropa-
gating its loss to the speech enhancement is already beneficial, but optimal
results are obtained when both are trained without freezing.

III. Is there an innovative method for utilizing the phonetic information
embedded within a model such as wav2vec2.0 to enhance keyword spot-
ting performance, all while avoiding extra computational burden and
latency?

Indeed, we discovered a method to repurpose the phonetic information con-
tained in the wav2vec2.0 codebook, which resulted in performance im-
provements for keyword spotting without incurring additional latency and
complexity. We utilized the phonetic quantized vectors from the codebook
to initialize the latent weights of a Keyword Spotting Perceiver, achieving
greater accuracy than with random initialization. Moreover, we demon-
strated that we could compress these phonetic weights by employing k-
means clustering, therefore enabling even faster inference with only a min-
imal penalization in accuracy.

By the end of this thesis, we have managed to explore and contribute to three
research streams in speech recognition feature enhancement, providing new in-
sights to the community, as well as producing additional outcomes such as pub-
lished recipes, source codes, papers, and datasets. Before detailing all these con-
tributions, we dedicate the following section to discuss and inspire further work.

6.2. Future Work

The insights obtained throughout the course of this thesis inspire additional
research initiatives on the topics studied herein. These final thoughts suggest po-
tential next steps for the explored research streams, while also considering some
outcomes published by the community during this time, beyond our contributions
in the thesis.

Given the favorable outcomes from introducing pitch and voice quality fea-
tures, we believe it is important to extend this exploration, especially in specific
instances where substantial data is unavailable. Although the prevailing trend
appears to continue toward enhancing systems to be as end-to-end as possible,
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by supplementing them with additional training data and computational capac-
ity, with Whisper (Radford et al., 2023) exemplifying this paradigm, we advocate
for the expansion of our methods in low-resource scenarios. This is particularly
relevant for tonal languages, where prosody carries significant semantic weight,
and in applications like predicting punctuation marks. Moreover, we learned that
the processing choices for prosody and voice quality features are important. Im-
proved results were observed when utilizing dedicated convolutional filters in-
stead of stacking them with spectral features. Consequently, we might consider
alternative designs that further capitalize on prosody aspects to enhance transcrip-
tions. Why not employ cross-attention between prosody and spectral or linguistic
features to derive better alignments? Or introduce explicit rhythm or intensity fea-
tures for a more comprehensive prosody representation? As we can see, there are
some ideas that would be worth to explore.

Regarding speech enhancement for on-device wake-up word detection, we
studied a setup with fixed size windows of speech, but in real-life scenarios detec-
tion works with audio streaming. For such a reason, we would encourage further
research on optimizing the enhancement-detection pipeline for these streaming
scenarios. Our denoising pipeline had a regression loss, but there are other gen-
erative approaches that are more advanced, like GANSs, flows or the late diffusion
models. It would be worth it to try these paradigms for denoising, altogether
with the speech recognition loss, to make more advanced pipelines. Furthermore,
we collected a variety of interesting examples in the "OK Aura” dataset, with a
classification of distractor examples that were labeled with the phonetic similarity
they had to "OK Aura”. We did not have the time and scope to research on this,
but we think it would be very interesting to explore phonetic disambiguation with
this dataset. Plus, we also had other labels like speaker’s accent or approximated
room dimension, so these are other interesting metadata that could motivate some
research on accent detection or bias, or treatment of reverberations.

Lastly, we found it intriguing that the phonetic information from the vector-
quantized codebook in wav2vec2.0 could be repurposed to enhance keyword spot-
ting in a Perceiver model. This insight could easily be extended to apply a Per-
ceiver, or any model based on cross-attention, to large vocabulary speech recog-
nition. While we used the wav2vec2.0 codebook, there are alternative mod-
els that leverage discrete phonetic representations too, such as HuBERT, and
several recently proposed models in text-to-speech, which focus on predicting
vector-quantized speech tokens. Some examples of these models include Tortoise
(Betker, 2023), AudioLM (Borsos et al., 2023), and VALL-E (Wang et al., 2023).
Not only could we try using these vector-quantized representations for speech
classification, but we could also explore compressing these codebooks with k-
means to determine whether we can reduce the complexity or codec-based text-
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to-speech modeling with minimal impact on synthesis quality.

On and on, the insights given by our findings plus the recent advancements
made by fellow researchers encourage a wide variety of research streams that we
think are worth to explore. We sincerely hope to inspire future work in these areas.

6.3. Achievements and Attributions

The process of this research has brought tangible outcomes in the form of pa-
pers, datasets, project deliveries and open-source code for the community. These
are listed in this section, as well as attributions to the collaborators and sponsors
that participated in the course of this thesis.

6.3.1. Publications

All the findings mentioned in this work have been published, mostly in con-
ferences and journals, and just a few in pre-print pages like arXiv.org. Besides,
some of the outcomes and research models developed here have been used in other
research streams and projects. Some examples of these are the use of data aug-
mentation for improving ASRs on a low-resource language like Quechua, or the
application of our ASR technology to voice-to-voice translators for emergency
teams, under the European project INGENIOUS !. These contributions have also
been published in papers and are listed here:

» Cambara, G., Grivolla, J., Farras, M., Wanner, L. Automatic Speech Trans-
lation for Multinational First Responder Teams. Proceedings of the 20th
ISCRAM Conference — Omaha, Nebraska, USA May 2023.

» Céambara, G., Luque, J. Farrus, M. Recycle Your Wav2Vec2 Codebook: A
Speech Perceiver for Keyword Spotting. Proceedings of the 29th Interna-
tional Conference on Computational Linguistics. Gyeongju, Republic of
Korea. October 2022.

= Zevallos R., Bel N., Cambara G., Farrus M., Luque J. Data Augmentation
for Low-Resource Quechua ASR Improvement. Proceedings of the Inter-
Speech. Incheon, Republic of Korea, September 2022.

= Cambara G., Lépez F., Bonet B., Gémez P., Segura C., Farrds M., Luque
J. TASE: Task-Aware Speech Enhancement for Wake-Up Word Detection

'https://ingenious-first-responders.eu/
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in Voice Assistants. (Feature Paper). Applied Sciences. Special Issue on
IberSPEECH 2020: Speech and Language Technologies for Iberian Lan-
guages), 12(4), pp. 1974, 2022.

Peird-Lilja A., Cambara G., Farris M., Luque J. Naturalness and Intelligi-
bility Monitoring for Text-to-Speech Evaluation. Proceedings of the Speech
Prosody Conference. Lisboa, Portugal, May 2022.

Cambara G., Farrts M., Luque J. Voice Quality and Pitch Features in
Transformer-Based Speech Recognition. Proceedings of the Speech Prosody
Conference. Lisboa, Portugal, May 2022.

Cistola, G., Peir6-Lilja, A., Cambara, G., van der Meulen, 1., Farrus, M. In-
fluence of TTS systems performance on reaction times in people with apha-
sia. Applied Sciences, 11(23), 11320. 2021.

Codina-Filba, J., Cambara, G., Luque, J., Farrds, M. Influence of ASR and
Language Model on Alzheimer’s Disease Detection. arXiv preprint
arXiv:2110.15704. 2021.

Cambara G., Peir6-Lilja A., Farrds M., Luque J. English Accent Accuracy
Analysis in a State-of-the-Art Automatic Speech Recognition System. PaPE
2021 Workshop ”From speech technology to big data phonetics and phonol-
ogy - a win-win paradigm”. Barcelona, Catalonia, June 2021.

Kocour M., Cdmbara G., Luque J., Bonet D., Farris M., Karafidt M., Vesely
K., Cernocky J. BCN2BRNO: ASR System Fusion for Albayzin 2020 Speech
to Text Challenge. Proceedings of the IberSpeech. Valladolid, Spain, March
2021.

Bonet, D., Cdmbara, G., Lopez, F., Gémez, P., Segura, C., Luque, J. Speech
enhancement for wake-up-word detection in voice assistants. arXiv preprint
arXiv:2101.12732. 2021.

Codina-Filba J., Cambara G., Peir6-Lilja A., Grivolla J., Carlini R., Farrts
M. The INGENIOUS Multilingual Operations App. Proceeding of the In-
terSpeech. Brno, Czech Republic, August 2021.

Cambara, G., Luque, J., Farris, M. Convolutional speech recognition with
pitch and voice quality features. arXiv preprint arXiv:2009.01309. 2020.

Cambara, G., Luque, J., Farras, M. Detection of speech events and speaker
characteristics through photo-plethysmographic signal neural processing.
IEEE International Conference on Acoustics, Speech and Signal Process-
ing. Barcelona, Spain. May 2020.
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6.3.2. Datasets

Our work in speech enhancement for wake-up word detection was done under
Telefénica’s project ”Aura”, a voice assistant for homes. It implied the record-
ing and publication of OK Aura, a speech dataset that contains 1247 utterances
(1.4 hours) from 80 speakers. Speakers pronounce the wake-up word itself "OK
Aura”, plus other sentences that might be similar, or not, to "OK Aura”.

This dataset contains rich metadata annotations, so it is possible to study di-
verse factors and biases that might affect wake-up word detection performance:
accent, gender, prosody/emotion, room size, distance to the microphone, etc. Be-
sides, it also contains recordings of sentences that are phonetically similar to OK
Aura”, like ”Porque Laura...” or ”... como Aura...”, with the purpose to experi-
ment with difficult sentences. The full dataset is available in Zenodo ? through an
End-User License Agreement.

6.3.3. Open-Source Code

Most of the software developed during this thesis has been published open-
source, so it is reusable by the community for other projects or experiment repli-
cation. Some exceptions being the source code for some developments of Aura
technology, which is property of Telefonica, or specific ASR components for the
INGENIOUS project. Besides that, most of the code used here is public, and also
I have done contributions on open-sourcing some of the state-of-the-art baselines
used in the thesis, like the wav2vec2.0 implementation that I co-authored in the
SpeechBrain toolkit.

» speech-commands * - An implementation of the Keyword Spotting Per-
ceiver that is benchmarked with the Google Speech Commands dataset.

» SpeechBrain’s wav2vec2.0 * - An open-source implementation of the wav2-
vec2.0 model for the SpeechBrain toolkit.

= speacher ° - A speech teacher framework that enables research in curricu-
lum learning for speech recognition and quality assessment for speech syn-
thesis models.

https://zenodo.org/record/5734340

3https://github.com/gcambara/speech-commands

“https://github.com/speechbrain/speechbrain/blob/develop/
recipes/LibriSpeech/self-supervised-learning/wav2vec2/train_
sb_wav2vec2.py

Shttps://github.com/gcambara/speacher
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= speechbook © - Recipes used to train some of our ASR models, like the
Transformer model with voice quality and prosody features.

= wav2letter ’ - Forked version of the wav2letter++ framework that enables
training with pitch and voice quality features.

= cape 8 - An open-source implementation of Continuous Augmented Po-
sitional Embeddings (CAPE) (Likhomanenko et al., 2021), generalizable
positional embeddings for speech, audio, text and images.

6.3.4. Project Deliveries

Many research outcomes and developed models have been used for project
deliveries during the time of this work. Find here these mentioned:

» INGENIOUS ° - A voice-to-voice translator for European emergency teams
speaking in different languages, where I deployed ASR models for Spanish,
French, German and Swedish.

» Aura '* - Telefénica’s voice assistant, for which we delivered speech en-
hancement models to improve its wake-up word detection.

= Dolby Labs - During a six months internship I implemented a novel self-
supervised learning model that I deployed for the company’s internal use,
as well as code for benchmarking against multiple speech downstream tasks
like speech recognition, speaker diarization or speaker identification.

= Amazon Alexa - In the course of another six-month internship I worked
on implementing a new text-to-speech paradigm based on large language
models and diffusion decoders. Part of this research is the core of the new
Alexa components that are currently being announced !'! and deployed to
user devices. I have not included these advancements in the thesis main
corpus as it went out of the scope of our work, which is mainly focused on
speech recognition, and also because it is undergoing publication reviewing
within the company.

Shttps://github.com/gcambara/speechbook
"https://github.com/gcambara/wav2letter/tree/wav2letter_pitch
$https://github.com/gcambara/cape
https://ingenious-first-responders.eu/
Onttps://aura.telefonica.com/es/
Thttps://www.amazon.science/blog/alexa-unveils—new-speech-
recognition-text-to-speech-technologies
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6.3.5. Attributions

This work has been possible thanks to the funding and collaboration of many
partners, which attributions are mentioned in the following list, following no par-
ticular order:

s The TALN Natural Language Processing Research Group (UPF - DTIC
Department) has ensured and managed the funding of the author during the
whole course of this thesis. For that, I give special thanks to Dr. Mireia
Farrds and Dr. Leo Wanner.

= Particularly, most of the funding received from TALN has come from the
INGENIOUS European project, which is funded by the European Union’s
Horizon 2020 Research and Innovation Programme and the Korean Gov-
ernment under Grant Agreement No 833435.

» Telefénica Research funded the first year of this thesis, first during a six-
month internship and then through a partnership with TALN, for which I
want to thank Dr. Jordi Luque.

= The collection and design of the "OK Aura” dataset, as well as the develop-
ment of the speech enhancement model for wake-up word detection, were
done in collaboration with Dr. Jordi Luque, Dr. Carlos Segura, Dr. Mireia
Farrts, David Bonet, Fernando Lépez and Pablo Lopez.

= Dolby Labs provided funding the second year of this thesis, for a six-month
internship with Dr. Joan Serra, Dr. Santiago Pascual and Dr. Jordi Pons.

= Amazon Text-to-Speech Research granted an internship for six months in
the third year of the thesis, for which I want to thank Dr. Elena Sokolova
and Dr. Antonio Bonafonte.

= Thanks to Alex Peir6-Lilja, Rodolfo Zevallos, Martin Kocour and Ariadna
Sanchez for being frequent collaborators on works about ASR for low-
resource languages and text-to-speech assessment, speech enhancement for
TV shows or curriculum learning for speech. Some of these topics have
been treated in this thesis and others have been left out to narrow down the
scope of it.
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