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Abstract
Language models (LMs) have evolved to become remarkably capable yet
similarly complex and intransparant systems. Our ability to understand
how they achieve their outstanding traits – i.e. making them interpretable –
can be achieved from different angles. In this dissertation, I analyse the
learning dynamics of LMs and seek to understand the relationship between
the properties of training data and the models’ generalization behaviours.
I introduce a framework that links generalisation with conceptual knowl-
edge, specifically linguistic theory, which can be used for model analysis
or model-driven hypothesis testing. This approach is applied to analyze
the pre-training process of LMs. Furthermore, I delve into the dynamics
of new learning paradigms, such as in-context learning, contributing to
our understanding of their inconsistent prediction behaviour. Recognizing
that the analysis of complex systems often demands holistic methods, this
dissertation emphasizes and employs innovative and systematic method-
ologies for interpretability.
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Resum
Els models de llenguatge (MLs) han evolucionat per esdevenir notable-
ment capaços, però al mateix temps són sistemes complexos i poc trans-
parents. La nostra capacitat per entendre com aconsegueixen aquestes
caracterı́stiques destacades – és a dir, fent-los interpretables – es pot acon-
seguir des de diferents punts de vista. En aquesta dissertació, analitzo
la dinàmica d’aprenentatge dels MLs. Introdueixo un marc que enllaça
la generalització amb el coneixement conceptual, especı́ficament la teo-
ria lingüı́stica, que pot ser utilitzat per a l’anàlisi del model o per a la
prova d’hipòtesis dirigida pel model. Aquest enfocament s’aplica per
analitzar el procés de pre-entrenament dels MLs. A més, m’endinso en la
dinàmica de nous paradigmes d’aprenentatge, com ara el in-context lear-
ning, il·luminant les raons del seu comportament de predicció inconsistent.
Reconèixer que l’anàlisi de sistemes complexos sovint exigeix mètodes
holı́stics, aquesta dissertació emfatitza i utilitza metodologies innovadores
i sistemàtiques per a la interpretabilitat.
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Resumen
Los modelos de lenguaje (MLs) han evolucionado para convertirse en
sistemas notablemente capaces, pero al mismo tiempo son sistemas com-
plejos y poco transparentes. Nuestra habilidad para entender cómo logran
sus caracterı́sticas sobresalientes – es decir, haciéndolos interpretables –
puede lograrse desde diferentes perspectivas. En esta disertación, analizo
la dinámica de aprendizaje de los MLs. Introduzco un marco que vincu-
la la generalización con el conocimiento conceptual, especı́ficamente la
teorı́a lingüı́stica, que puede ser utilizado para el análisis del modelo o
para la prueba de hipótesis dirigida por el modelo. Este enfoque se aplica
para analizar el proceso de preentrenamiento de los MLs. Además, pro-
fundizo en la dinámica de nuevos paradigmas de aprendizaje, como el
in-context learning, iluminando las razones de su comportamiento de pre-
dicción inconsistente. Reconociendo que el análisis de sistemas complejos
a menudo requiere métodos holı́sticos, esta disertación enfatiza y emplea
metodologı́as innovadoras y sistemáticas para la interpretabilidad.
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Statement of Transparency on the Use of AI
Tools

During the writing of this dissertation, the following tools were used:

Grammarly: An AI-based writing aid used to correct spelling and impro-
ve phrasing (Grammarly, 2023).

OpenAI’s chatGPT: A language modelling-based AI-tool used as assis-
tance to phrasing and formatting (OpenAI, 2023).
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Chapter 1

INTRODUCTION

1.1 Overview

Language is complex; it exhibits such intricate structure that it is hard to
formally describe it (Chomsky, 1957, 1965). At the same time, it integrates
a multitude of human cognitive functions (Jackendoff, 2002; Baddeley,
2003; Boroditsky, 2001a; Thierry et al., 2009; Lindquist and Gendron,
2013; Fodor, 1975), and its inherent intrapersonal character (Wittgenstein,
1953) allows humans to create and maintain large societies (Deacon, 1997;
Sperber, 1996; Tomasello, 2009). Despite this complexity, most humans
are capable of learning their native language variation at a young age from
relatively sparse exposure (Hart and Risley, 1995; Hoff, 2003; Huttenlocher
et al., 2010; Rowe, 2012; Weisleder and Fernald, 2013; Gilkerson et al.,
2017). This concurrence of complexity and learnability has long intrigued
researchers in many scientific fields. I share this fascination.

In recent years, researchers have been successful in replicating lan-
guage abilities in-silico through so-called language models (LMs) in a
way that is almost indistinguishable from the human language faculty (see,
e.g. Liang et al., 2022). Considering the mentioned complexities, how
are LMs able to acquire such a skill? In this dissertation, I delve into the
analysis of learning processes in LMs. More concretely, this dissertation
adds to the research on the interpretability of LMs, a young yet established
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subfield in machine learning research. Interpretability focuses on making
the processing and behaviour of machine learning models understandable
for humans. The presented work breaks out of the young discipline’s con-
ventions by taking an unusual angle at the topic: the methods of analysis
are mostly holistic, and the subject of study is not the functionality of
common language models but rather how language models obtain their
functionality – or in other words – their learning dynamics.

The remainder of this introductory chapter lays out the motivation for
my research and my approach (Section 1.2), outlines the goals of the disser-
tation (Section 1.3), and, finally, provides an overview of the structure of
the dissertation (Section 1.4). Helpful explanations of important concepts
are given in the subsequent Background section (see Chapter 2).

1.2 Motivation

The research presented in this dissertation follows three different leitmo-
tivs: I focus on language models, I use holistic methods, and the subject
of investigation is the learning dynamics. This section motivates these
themes.

1.2.1 Why language modelling?

Language is one of the most interconnected faculties in the human cogni-
tive apparatus: within the individual, cognitive functions such as language
are considered to be embodied (i.a. Lakoff and Johnson, 1980; Varela et al.,
1991; Barsalou, 1999; Zwaan, 2004; Gallese and Lakoff, 2005; Barsa-
lou, 2008; Casasanto, 2011; Meteyard et al., 2012). Embodiment entails
that cognitive functions like language are constantly interacting with the
perceptual and motor systems, influencing each other and partially even
sharing the same neural substrate (i.a. Hauk et al., 2004; Pulvermüller et al.,
2005; Pulvermüller, 2005; Boulenger et al., 2006; Martin, 2007; Binder
and Desai, 2011; Fedorenko and Thompson-Schill, 2014; Caucheteux and
King, 2022). In the realm of perception, our language is highly connected

2
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with our visual, auditory, olfactory or tactual experience (Majid and Levin-
son, 2011), while the influence of motor control is, for example, evident
in many non-verbal behaviours that complement verbal communication
(McNeill, 1992; Kelly et al., 2010; Özyürek, 2014). Further, internal states
such as our emotions or nociception influence what we say and how we say
it (Niedenthal, 2007; Majid, 2012; Banse and Scherer, 1996; Scherer, 2003;
Kousta et al., 2009). Inversely, processing of language can evoke a wide
range of emotions. Finally, language requires cognitive control for, i.a.,
the allocation of attention, adaptation to social contexts or management
of working memory (Green, 1998; Blumenfeld and Marian, 2011; Kroll
and Bialystok, 2013). In summary, the majority of commonly investigated
cognitive functions interact with language. The centrality of language to
human cognition is so significant that strong interpretations of ideas like
linguistic relativity (Sapir, 1929; Whorf, 1940; Boroditsky, 2001b; Spelke
and Tsivkin, 2001) – also known as linguistic determinism – even go as
far as equating language with cognition, proposing that no thought beyond
the structure of one’s native language is possible. While such extreme
views are not very well supported by empirical evidence (see, e.g. Regier
and Kay, 2009), it highlights the pivotal role and interconnectedness of
language in cognition.

However, language complexity is not limited to intra-personal pro-
cesses. Beyond the individual, language adapts to situational and social
contexts (Levinson, 1983), to facilitate the diffusion of information within
larger groups to solve problems collaboratively (e.g. Wittgenstein, 1953;
Lewis, 1969) or accelerate social learning. In the broader context, it is
both the product and the vehicle of the cultural evolution in the larger body
of human society (Boyd et al., 2011; Barrett et al., 2007).

Language is central to the human species as individuals, just like our
organisation in society. It is highly interconnected but adaptable. We can
see how modelling the language faculty can be one of the most insightful
and exciting scientific endeavours. It is, however, also highly challenging.
For a long time, rule-based systems – though vigorously constructed –
could not capture the described complexity (see Section 2.1.2 for a short
history of language modelling). It is just recently that language models

3
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came into their own: due to the broad adaptation and scaling of distributed
machine-learning approaches (Hernandez et al., 2021; Ghorbani et al.,
2022; Kaplan et al., 2020; Hoffmann et al., 2022) in the past years, progress
on their capabilities has been rapid. Now, language modelling technology
is at an inflection point. The abilities of state-of-the-art models are close
to the capacities of the human language faculty. It is now that language
models become highly auspicious from a theoretical viewpoint.

1.2.2 Why a holistic style of analysis?

As stated in the Overview (1.1), a feature of my work is that its meth-
ods tend to be holistic. What motivates this decision? The choice for
holistic methods stems from the realisation that the utility of reductionist
approaches has limits in language research and – in extension – the anal-
ysis of language models. To elaborate on this insight, I will first briefly
define reductive science, complex system theory and the criticism of the
latter on the former. Then, I will delimit to which extent language and
language models are subjects of research that conform with this criticism.

Reductive science explains complex phenomena by breaking them
down into constituent parts, analysing the constituents’ properties and how
they relate to each other. It is based on the assumption of linear relation-
ships and the additivity of the component parts of a subject (Sapolsky
and Balt, 1996). Reductionism posits that it is possible to eliminate any
variability by increasing the granularity of the constituents. Ultimately,
reductionism assumes closed systems that are non-adaptive. This means
that they are not influenced by any factors external to the analysed system
and, hence, do not change in response to interactions with the external
environment (see e.g. Holland, 2000).

Reductive science has been criticised when applied to analysing dy-
namic and complex systems by proponents of what can be subsumed as
complex adaptive systems theory (CAS). CAS has probably first been de-
scribed by Mill (1856). Opposing the reductionist approach, CAS assumes
that complex systems are made up of inseparable subsystems (intercon-
nectedness; Simon, 1962). These interconnected subsystems often interact,
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leading to behaviours or properties that are not easily predicted by ex-
amining each subsystem in isolation. This tightly connects to the idea
of emergentism (O’Grady, 2008), which states that complex systems can
have emergent properties that go beyond the sum of their parts. A precon-
dition for emergent properties is the system’s self-organisation that creates
structures or behaviours without external control or central coordination
(Cameron and Larsen-Freeman, 2007). This ability for self-regulation
allows for adaptation to influences from outside the system (Cameron and
Larsen-Freeman, 2007). One of the most illustrative properties of CAS is
that systems can contain non-additivities and non-linearities. The resulting,
potentially chaotic, behaviour suggests that minor changes in a component
part can lead to unpredictable changes in the system outputs (May, 1976;
Feigenbaum, 1980).

When considering the study of language, the reductive approaches –
for example, in the tradition of Chomsky (1957, 1965) – have led to great
insights into many regularities of human language. They achieved this by
searching analytically for basic universal principles and rules of language
construction (De Lacy, 2007; Hippisley and Stump, 2016; den Dikken,
2013; Aloni and Dekker, 2016; Gutzmann, 2020). However, the reductive
linguistic theories are usually less successful when describing the (among
others) interactive (e.g. pragmatics), dynamic and adaptable (e.g. language
change), and open (e.g. variation in language use) aspects of human
languages (Sperber and Wilson, 1986; MacWhinney, 2001; Clyne, 2003;
Trudgill, 2019). A linguistic theory following the reductionist agenda has
to remain within its self-delimited range as language in the real world is
dynamic. As soon as researchers attempt to increase the ecological validity
of their work (e.g. because they conduct applied research), they frequently
have to recognise the more entangled nature of their subject (Cameron and
Larsen-Freeman, 2007; O’Grady, 2008; De Bot et al., 2007, see Hensley,
2010 for an overview).

Language models (LMs) were initially based on reductionist insights:
Rule-based systems used knowledge about, for example, language con-
struction rules from generative grammar to reverse-engineer automatic
language generation systems. With the switch to machine learning meth-
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ods, LMs diverged from the reductionist path and now have to deal with the
real-world complexity of language. Distributed machine learning methods
like neural networks embrace interconnectedness and dynamism (Mars-
land, 2011). Recent developments in machine-learning-based LMs have
led to an astonishing ability to resemble human language. As a conse-
quence, LMs became complex in themselves while their interpretability
decreased. An illustrative example of the complex properties of modern
LMs can be seen in the work of Khashabi et al. (2022), who show that
minimal perturbations in the input space of an LLM can result in entirely
divergent behaviour in the output space, which is evidence of highly non-
linear behaviour. Reductionist attempts at the explanation of LM behaviour
may still give valuable insights into the early processing stages of a model
but usually find it unexplainable with increasing depths of processing (e.g.
Elhage et al., 2021). The language models I investigate in this dissertation
are machine-learning-based distributed systems. Therefore, the methods
tend to be holistic rather than purely reductionist.

1.2.3 Why learning dynamics?

As we have seen in the previous section, language in its entirety is a com-
plex system. At the same time, almost every human acquires with relative
ease at least one language within their lifetime and does so from compar-
atively little exposure (Hart and Risley, 1995; Hoff, 2003; Huttenlocher
et al., 2010; Rowe, 2012; Weisleder and Fernald, 2013; Gilkerson et al.,
2017). For a long time, this was explained through an innate, biologically
determined linguistic architecture (Tucker and Hirsh-Pasek, 1993), which
enables rapid acquisition and – as a side effect – caused the many congru-
ences across human languages due to its alleged constraints (Chomsky,
1957, 1965). Recently, LMs based on machine learning techniques, es-
pecially since the advent of the transformer-architecture (Vaswani et al.,
2017), have shown that no language-specific inductive bias is necessary
to learn human-level language abilities. While these architectures excel
at acquiring human language, they are similarly good at other learning
objectives (e.g. in computer vision; see Carion et al., 2020; Wang et al.,
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2018; Parmar et al., 2018; Dosovitskiy et al., 2021). Hence, it is possible
to learn natural language with universal function approximators like neural
networks (Hornik et al., 1989; Csáji et al., 2001).

These developments spawn many exciting questions about the learning
process: How does this ability interact with the particular structure of
human language? How much do generalisations of LMs correspond to
regularities in theoretical linguistics? These questions may open a new
window to understanding language and learning processes in distributed
systems. However, they remain largely unaddressed and underinvestigated
by interpretability research.

1.3 Research objectives (RO)
Generally, this dissertation studies the relationship between data properties
and generalisation behaviour in language models. More specifically, the
objectives can be summarised as follows:

RO 1. Connect domain knowledge with learning dynamics
Human domain knowledge is based on similarities: If two things are
similar in some defining property, we cluster them into the same concept.
In this dissertation, I aim to connect human conceptualisation with
the learning of language models, which similarly exploit statistical
regularities to learn efficiently. I develop a framework to evaluate
which concepts a network generalises across and which ones it treats
idiosyncratically.

RO 2. Derive ‘synthetic linguistic theories’ from language models
Just like humans (Watson, 1913; Titchener, 1912; Nisbett and Wilson,
1977), language models have the problem of not being able to reliably
introspect their inner processes. Consequently, we must find alternative
ways to interface them if we want to learn about their abilities. I aim
to use the above framework to derive ‘synthetic linguistic theories’
(Chowdhury and Zamparelli, 2019) from language models in a form
similar to Gardenfors (2004)’s conceptual spaces.
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RO 3. Investigate generalisation throughout the learning process
Generalisation behaviour might not be the same throughout the learning
process of a language model. Techniques like curriculum learning
suggest that learning processes are sequential: understanding more
complicated data points builds upon established knowledge of more
basic concepts. I aim to investigate how a model’s conceptualisation
of language changes throughout the training process and whether we
can use our insights about the learning process to influence the learning
outcomes.

RO 4. Investigate failed generalisation
In some cases, the LMs generalisation does not follow the causal struc-
ture of the process that generated the data in ‘the real world’ (Schölkopf
et al., 2012). Instead, they find other (spurious) regularities in the
data that they then latch on to, potentially producing unreliable outputs
in previously unseen contexts. I aim to investigate whether there are
patterns in the brittleness of the new learning paradigm of in-context
learning. In-context learning shows seemingly chaotic behaviour in
response to certain inputs. Holistic methods appear especially sensible
in this learning paradigm.

Beyond these objectives, a desideratum of all research work in this dis-
sertation is to employ methods as holistic as possible (as it was motivated
in Section 1.2.2).

1.4 Structure
Before presenting the original research work of this dissertation, a general
background section in Chapter 2 will familiarise the reader with any
potentially unknown but relevant concepts that I will build upon. The
subsequent main body is structured into four chapters. Each chapter
contains a self-contained research project that has been or will be published
in one or multiple research papers. The content of the original publications
has been adapted to make this dissertation more cohesive. The research
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objectives of the previous section map on either one or multiple chapters.
The chapters of the main body will engage with the following desiderata:

Chapter 3 Create a framework to link formal linguistic theory with gen-
eralisation in language models (RO 1.).

Chapter 4 Apply the framework from Chapter 3 to an extensive range of
linguistic phenomena and create linguistic similarity spaces, link it
more directly to the learning signal (gradients) and use it to analyse
the change of a language model’s conceptualisation of language
throughout training (RO 1., 2. and 3.).

Chapter 5 Use an automated curriculum learning technique adapted to
language modelling to examine the potential sequentiality of lan-
guage learning in LMs (RO 2., 3.).

Chapter 6 Explore differences in robustness between learning with and
without parameter updates and try to understand data properties that
cause inconsistencies in model predictions in the latter (RO 4.).

The chapters of the main body will follow the general structure of
research papers in computational linguistics, in addition to more extensive
introduction and conclusion sections. Ultimately, I will close with a general
conclusion that revisits the original research objectives, evaluates their
achievement, summarises the contributions and hints at future directions.
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Chapter 2

BACKGROUND

Throughout the dissertation, I will build upon different concepts which
might be more or less established in the field. The subsequent section
is meant to familiarise the reader with potentially unknown ideas and
subfields of research. I will refer back to the respective portions of this
background section throughout the main body of the dissertation.

2.1 Language Models

This section familiarises the reader with the notion of language models,
starting with a definition (Section 2.1.1) and a short history of language
modelling practices (Section 2.1.2). Subsequently, I will review the litera-
ture to show why the language modelling objective is very well suited to
serve as the basis for transfer learning (Section 2.1.3).

2.1.1 A definition of language models

A language model (LM) is a computational model designed to generate
natural or formal language by learning patterns within a vast text corpus.
Formally, an LM is a probabilistic model of natural and/or formal lan-
guage (Jurafsky and Martin, 2000). It assigns a probability distribution
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over a given vocabulary conditioned on a context. In the broader defi-
nition, the context can consist of data modality provided to the model
(which includes, for example, pixels of an image; Wang et al., 2020; Li
et al., 2022, 2023a; Rust et al., 2022)). While it is not uncommon to
refer to these models as ‘language models’, in this dissertation, I concen-
trate on the narrower definition, in which the context consists exclusively
of language data. In the narrow definition, for any sequence of tokens
S = {x1, x2, ..., xN}, the LM calculates the probability distribution over
the vocabulary given the preceding words P (xi|xi−1, ..., x1). By sam-
pling a new word xi from the predicted distribution and subsequently
concatenating the predicted word to the context and applying this opera-
tion recursively, an LM autoregressively generates text. The probability
of a sequence is the joint probability of all tokens given their respective
context P (S) =

∏N
i=1 P (xi|x1, x2, ..., xN). The model is usually trained

by iteratively minimising the negative log-likelihood of all sequences in a
training corpus:

L = −
N∑
i=1

logP (xi|x1, x2, ..., xN)

Besides autoregressive models, a different subset of LMs — so-called
masked LMs or MLMs — enjoyed popularity in the late 2010s and early
2020s (e.g. Devlin et al., 2019; Liu et al., 2019c). While there were many
attempts at creating alternative LM objectives (e.g. Joshi et al., 2020; Lewis
et al., 2020; Wang et al., 2019a; Liu et al., 2019b; Radford et al., 2018;
Ramachandran et al., 2017; Dai and Le, 2015) the MLM objective was by
far the most successful. MLMs differ from generative language models by
reformulating the language modelling objective as a |V |-way classification
task, where V is the model’s vocabulary. They do so by predicting words
in a sequence that previously have been masked out: Given a sequence
of tokens S = {x1, x2, ..., xN}, where N is the length of the sequence,
they select a subset of tokens M ⊆ S, replace the tokens in M with a
special [MASK] token to then minimise the negative log-likelihood of the
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replaced tokens:

LMLM = −
∑
xi∈M

logP (xi|S \M)

Chapters 3, 4 and 6 mostly investigate with generative LMs, while Chap-
ters 5 and 6 also utilise MLMs.

2.1.2 A short history of language models

To put modern LMs and LLMs into perspective, I will briefly summarise
the history of natural language processing with a focus on language models
based on a small selection of milestones. The summary is split into two
sections: pre-neural machine learning and neural machine learning, with
the boundary between the two marked by the onset of the large-scale use
of machine learning methods in the early 2010s. This shift, even though
much more gradual than portrayed, was arguably the most profound for
the field to date and, similarly, is the most relevant to this dissertation.

Pre-neural machine learning The earliest attempts at creating computa-
tional language processing systems took place in the 1950s and 1960s in the
form of rule-based systems. Efforts like the Georgetown-IBM Experiment
(Weaver, 1952) aimed to automatically translate academic Russian into
English, albeit with limited success, as the system’s capacity was limited to
six grammar rules and 250 lexical items. Pure rule-based systems peaked
with elaborate approaches like the chatbot ELIZA (Weizenbaum, 1966),
which identified keywords in the user’s input and used hard-coded rules
to reformulate the input into a question to mimic conversation. While the
ideas of statistical language models were already formulated by Markov
(2006) and Shannon (1948), they only found more widespread adaptation
in the 1970s. N-gram and hidden Markov models gained prominence,
exploiting the statistical regularities in large language corpora. Refined
versions of statistical models as well as hybrid models that integrated
rule-based systems and statistical methods, remained prominent in the
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field well into the 2000s (see Rosenfeld, 2000). The availability of large-
scale language resources through the internet helped to improve ‘purely
statistical’ approaches until neural machine learning algorithms eventually
superseded them.

Large scale neural machine learning A significant shift in natural
language processing and language modelling started with the increased
attention to distributed learning systems such as recurrent neural networks
and end-to-end training in the early 2010s (Mikolov et al., 2010; Mikolov,
2012). This shift marked a profound change in models: Up to this point,
approaches embraced reductionist ideas like manual feature engineering
and hand-crafted rules. However, the resulting language models suffered
from limited generalisation, difficulty in dealing with sparsity in language
and weak scalability (Rosenfeld, 2000; Bengio et al., 2000; Goodman,
2001; Chelba and Jelinek, 1998; Brown et al., 1992). The new generation
of end-to-end learning models delegated feature and rule extraction to
emergent processes, overcoming problems with generalisation, sparsity
and scalability (Baroni et al., 2014). These developments came at the cost
of control over the exact model behaviour and interpretability. The shift
gained traction when the deep learning model AlexNet revolutionised the
field of Computer Vision by beating its – at the time – most important
benchmark by a far margin (Krizhevsky et al., 2012; Russakovsky et al.,
2015). Shortly after, the power of implicit feature learning in NLP be-
came apparent with the publication of word2vec (Mikolov et al., 2013a).
From here, progress was driven by architectural innovations and scaling.
Progress in architectural innovation has been relatively monolithic through
the introduction of the transformer architecture (Vaswani et al., 2017),
which emphasised the use of attention mechanisms (Bahdanau et al., 2015;
Kim et al., 2017) and optimised training through parallel processing. Trans-
formers were initially constructed for the problem of machine translation
but later came into their own as the architectural basis for language mod-
els (Devlin et al., 2019; Liu et al., 2019c; Brown et al., 2020; Touvron
et al., 2023). On the other hand, the importance of scaling the training
data (Halevy et al., 2009), model parameters and computation for model
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training became very clear. A first glimpse at the power of scaling was
given at the introduction of word2vec (Mikolov et al., 2013a,b) and, later
became formalised through the discovery of scaling laws for transformer-
based models (Hernandez et al., 2021; Ghorbani et al., 2022; Kaplan et al.,
2020; Hoffmann et al., 2022). Ultimately, setting the focus on decoder-
based, generative models instead of encoder-based, discriminative models
(MLMs; see Section 2.1.1) yielded a two-fold advantage: First, scaling
with generative models is more efficient, as parameter updates are based
on the loss of each token in a sequence instead of only the masked subset
M , resulting in a more robust learning signal. Second, generative and
discriminative language models (LMs) pursue distinct learning goals. Gen-
erative models strive to grasp the entire data distribution, enabling them to
produce new data instances (or tokens). Conversely, discriminative models
primarily focus on identifying a decision boundary to distinguish between
various classes (or tokens). This means that generative models assess the
joint probability distribution P (X, Y ), which can later be converted to
P (y|x). Discriminative models, meanwhile, target the conditional proba-
bility P (y|x) directly. While capturing P (X, Y ) can be more challenging
initially, it compels the model to create a comprehensive representation of
the original data distribution, which may offer better adaptability to novel
data from the same distribution.

2.1.3 Why are language models so effective?

Until recently – and to a certain degree still today – a major problem of
NLP models is a lack of generalisation capacity. Models tended to find de-
teriorated short-cut solutions wherever possible (Shah et al., 2020; Geirhos
et al., 2020; Niven and Kao, 2019). Those solutions perform well on their
training distribution but fail when confronted with a slight distributional
shift during testing (Hupkes et al., 2023; Kervadec et al., 2021; Teney
et al., 2023; Wang et al., 2022; Tu et al., 2020). The robustness improved
significantly when practitioners started to use language modelling as foun-
dational models (see Hendrycks et al., 2019, 2020). Why are language
models so apt as a base for transfer learning? In the following, I will briefly
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lay out some intuition behind the effectiveness of language models.

As mentioned in Section 1.2.1 and 1.2.2, the process of language gen-
eration (i.e. humans speaking or writing) is highly complex due to its
interconnection with large amounts of external factors. When a large train-
ing corpus of natural language is collected from a diverse set of sources,
this conditionality on external factors is reflected in the data: The data will
necessarily be diverse (span a variety of domains, topics, styles and so
on) and entail broad foundational knowledge (Etzioni et al., 2008; Michel
et al., 2011). With increased training set diversity, spurious correlations
are effectively countered (Kaushik et al., 2020; Weber et al., 2021) and to
achieve low empirical error, a language model has to more closely model
the underlying structure of the human language production (Schölkopf
et al., 2012). More formally, the large scale of modern LMs induces a
vast hypothesis space H (Vapnik, 1982), which then is pruned through
the inductive bias that the model receives through pertaining (Baxter,
2000). This over-parameterisation, coinciding with a strong inductive bias,
enables the model to capture many aspects of language-relevant tasks.
Empirical evidence (Raffel et al., 2020) further suggests that the generative
LM objective is the most performant among many proposed alternatives
(Joshi et al., 2020; Lewis et al., 2020; Wang et al., 2019a; Liu et al., 2019b;
Radford et al., 2018; Ramachandran et al., 2017; Dai and Le, 2015) when
controlled for computational cost.

2.2 Learning in neural networks

Learning in machines is substantially different from human learning. Just
like human learning, learning in neural networks can be systematised into
different types of learning. Different theoretical approaches have been
formulated to understand learning dynamics better. This section introduces
some concepts in the theory of neural network learning.
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2.2.1 Training approaches

The following introduces different approaches to neural network training
relevant to this dissertation and sketches out their impact on learning
dynamics.

Supervised and self-supervised learning In machine learning, the term
‘supervision’ refers to the nature of the data from which a model learns
(Bishop and Nasrabadi, 2006). Learning problems in which every input
data point has a ground truth target label are called supervised learning.
A model is optimised to predict the target from the respective input. A
major consideration in supervised learning problems is the balancing of the
bias/variance trade-off (Geman et al., 1992; James, 2003), which roughly
states that the practitioner has to ensure that the supervised learner neither
overfits nor underfits the input-to-target mapping of the data (Everitt, 1998).
To balance the bias/variance trade-off, practitioners have to estimate the
complexity of the function they want to learn and match it with a sufficient
amount of training data, consider the dimensionality of their input features
and match them with an appropriate model complexity. Alternatively,
the practitioner can resort to mediation techniques such as regularisation
(Bickel et al., 2006). Addressing the bias/variance trade-off is an essential
prerequisite for generalisation beyond the training distribution. Supervised
tasks often struggle with data availability since data collection tends to
be manual and expensive. As a consequence, in modern NLP datasets of
labelled data are usually not used as a primary training set but rather as
a target for transfer learning from self-supervised models (see following
paragraph) or as diagnostic benchmark tasks to estimate and compare
capacities across models (Wang et al., 2019c,b; Socher et al., 2013; Ra-
jpurkar et al., 2016; Zhang et al., 2019, among many). The bias/variance
trade-off, more specifically the issue of overfitting, is an important notion
in non-robust generalisation (Kavumba et al., 2019; McCoy et al., 2019;
Niven and Kao, 2019), a concept important for the presented work in
Chapter 6.

Another type of supervision relevant to this dissertation is self-supervised
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learning. Self-supervised learning is a mixed form of unsupervised learn-
ing – where there are no external ground truth labels – and supervised
learning. Instead of using external labels, in self-supervised learning, la-
bels are generated by the learning algorithm itself. This can be achieved by
predicting missing (or ‘masked’) parts of an input or predicting the follow-
ing items in a sequence in an autoregressive way. The great advantage of
self-supervised training is its ability to leverage vast amounts of unlabeled
data, making it easy to scale training. Both the prediction of masked por-
tions of the input and autoregression are common ways to pre-train LMs
(see Section 2.1.1). As laid out in Section 2.1.3, representation learning
via autoregression has various advantages as the pre-training objective for
language models.

Besides supervised and self-supervised learning, there are other types
of supervision (such as unsupervised learning, semi-supervised learning,
etc.) with partially fuzzy definitions. I will refrain from further detailed
explanations as those are less relevant to this dissertation.

Gradient-based and reinforcement learning An important characteris-
tic of a learning problem is its differentiability, i.e., whether a prediction
error can be related to the model parameters via calculating the partial
derivative of the error with respect to the model parameters. For a function
to be differentiable, it must at least be continuous at that point (Rudin,
1953). However, continuity does not always guarantee differentiability.
Furthermore, smoothness, which usually implies that a function has con-
tinuous derivatives up to a certain order, provides a stronger foundation
for differentiability (Adams and Fournier, 2003).

In most use cases of natural language processing, differentiability
is given. In those cases, gradient-based methods can optimise model
parameters directly. This is done by iteratively calculating the partial
derivative of the prediction error with respect to the model parameters and
then updating model parameters in the direction of the steepest descent
of the error (Salakhutdinov, 2014). For deeper models that implement a
cascade of parametric operations on the input, updates can be calculated by
chaining derivatives through each parameter layer, a technique commonly

18



“output” — 2023/12/20 — 15:41 — page 19 — #37

known as backpropagation (Rosenblatt et al., 1962; Rumelhart et al., 1986).

On the other hand, many real-world applications require interactions
with an external environment that is not part of the learning system. In this
case, the differentiability of the whole system is often not given, and the
practitioner has to resort to so-called reinforcement learning (RL), which
is not subject to this constraint. Instead of minimising empirical error as in
supervised and unsupervised learning, in RL, the focus lies on maximising
cumulative rewards. This leads to interesting differences in the learning
dynamics of RL systems. In conventional gradient-based learning, you
must know the optimal strategy to compute the prediction error. In RL,
this is not the case. Instead, the optimal strategy has to be discovered
by the learner. The emphasis on rewards, rather than errors, influences
the learning process. For instance, there’s an increased significance in
striking a balance between exploration (trying out new actions) and ex-
ploitation (leveraging known beneficial actions). Historically, RL has not
been widely adopted in natural language processing. This is attributed
to several challenges in the optimization process. These include issues
like high sample complexity, instability arising from sensitivity to the
reward structure, and sensitivity to hyperparameters (Vapnik, 1999). RL in
NLP can also be hampered by sparse rewards and difficulty in designing
suitable reward functions (Dulac-Arnold et al., 2019). Despite this, RL
has recently found entrance in the training of state-of-the-art LMs in the
form of reinforcement learning from human feedback (RLHF; Stiennon
et al., 2020; Glaese et al., 2022; Ouyang et al., 2022). Despite its cost (and
some inherent problems to the training process; Casper et al., 2023), RLHF
allows more precise optimization of LMs based on human preferences,
resulting in learning outcomes that are unparalleled by other methods. Up
to this date and my best knowledge, there is no formal explanation for the
advantage of RLHF for alignment over standard supervised learning (for
an attempt at an explanation, see Eysenbach et al., 2020), even though
the topic is likely to receive the attention of active research in the nearby
future.
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Learning with and without parameter updates A dichotomy that
emerged recently is learning with versus learning without model parameter
updates. While all classical parametric approaches in machine learning up-
date a model’s internal parameters to fit a target function, learning without
parameter updates – also called in-context learning (ICL) – has recently
become a new important learning paradigm. ICL describes the reduction
in per-token-loss with an increase of their indices in the input sequence (or
in other words: the later a word in the input sequence, the lower its loss;
Kaplan et al., 2020). Essentially, the model leverages information given
in the context to adjust its predictions and reduce prediction errors. As
this property becomes more pronounced in recent models, it can be used
for interesting purposes. For example, a model can develop the ability to
infer a task from its input and condition its output accordingly to solve
it. This ability was first recognised in GPT2 (Radford et al., 2019) and
evoked larger interest in GPT3 (Brown et al., 2020).

ICL is an emergent property that only arises at a certain model scale
(Wei et al., 2022b). A recent large-scale analysis in Lu et al. (2023)
shows how most of the impressive abilities of LLMs are due to their
capacity to do in-context learning. Currently, the mechanisms of ICL
are not fully understood. However, there are three prominent hypotheses
about the reasons for this emergent ability: associative memory (Ramsauer
et al., 2021), induction heads (Elhage et al., 2021; Olsson et al., 2022)
and mesa-optimisation (Hubinger et al., 2019), with the idea of mesa-
optimisation receiving the most attention. Mesa optimisation describes
an advanced stage of self-organisation. It states that in larger models,
mesa-optimisers emerge within the model parameters (Hubinger et al.,
2019). Mesa optimisers are internal optimisers that learn simple, temporary
functions from the input. Garg et al. (2022); Akyürek et al. (2022); Li et al.
(2023b) show how in-context learners can implement standard finetuning
algorithms implicitly, while Von Oswald et al. (2023) provide evidence
that IC learners implicitly implement gradient descent during inference.
The different hypotheses are not mutually exclusive and come to similar
conclusions about the phenomenon of ICL (Von Oswald et al., 2023). A
recent review of the latest research can be found in Dong et al. (2023).
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2.2.2 Theories of Learning

There are different ways to think about learning and generalisation in
machine learning and psychological research. I here present the ideas most
influential to the research that makes up this dissertation.

Generalisation-focused research At its core, generalization research
seeks to understand how computational models can apply learned knowl-
edge to previously unseen data or evaluation setups. ‘Good generalisation’,
however, is a fuzzy concept, entailing many potential scenarios. Tradi-
tionally, generalisation was tested through a model’s performance on a
previously unseen set of data that is i.i.d. to the training distribution.
However, within recent years, it became increasingly clear how this type
of generalisation does not guarantee model quality: Models may rely
on simple heuristics that do not generalise beyond the i.i.d. distribution
(Kaushik et al., 2020; Gardner et al., 2020; McCoy et al., 2019), rely on
stereotypes (Parrish et al., 2022; Srivastava et al., 2022) or memorisation
of the pre-training data rather than genuinely generalising (Lewis et al.,
2021; Razeghi et al., 2022). Since then, evaluation methods have grown
more fine-grained and elaborate. Hupkes et al. (2023) provide an excellent
and comprehensive overview and systematisation of the field. They create
a taxonomy of generalisation research, classifying it on five dimensions:
Motivation, Generalisation type, Shift type, Shift source, and Shift locus.
With this taxonomy, research becomes comparable and contextualisable.
Motivation and generalisation type are the most important dimensions to
frame my work in the main chapters. Here, I will explain the realisation of
relevant dimensions to this dissertation.

Motivation: Research in this dissertation is mainly motivated cogni-
tively and practically. The cognitive motivation can be described as either
centred around benchmarking models or deriving hypotheses about the
functioning of human cognition: one focuses on evaluating NLP mod-
els against human generalisation capabilities, given humans’ unique and
efficient learning and recombination skills; the other delves deeper into un-
derstanding human cognition and language through computational models,
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aiming to derive insights about human generalisation rather than enhanc-
ing the models themselves. The practical motivation aims at assessing
whether a model is accurate and reliable in a specific type of application.
Chapters 3, 4 and 5 are motivated by both subtypes of cognitive motivation,
while chapter 6 is additionally more practically motivated.

Generalisation type: Research in this dissertation investigates pri-
marily compositional, structural, cross-task and robust generalisation.
Compositional generalisation is defined as ‘the ability to systematically
recombine previously learned elements to map new inputs made up from
these elements to their correct output’ (Schmidhuber, 1990). Structural
generalisation is related to compositional generalisation but is less focused
on the output space. Cross-task generalisation investigates whether a
model can exploit shared structure across different learning objectives
and their related data distribution shifts. While traditionally concerned
with very explicit simultaneous multi-task learning settings, the sequential
pretraining-finetuning paradigm in NLP, as well as the in-context-learning-
based prompting paradigm, can be considered multi-task learning in the
broader sense. Robust generalisation implies that a model performs well
on new and unseen data but remains resilient against various challenges,
anomalies, or adversarial attacks it might face in real-world scenarios. To
generalise robustly, a model has to more closely model the underlying
structure of the real-world process that generates the original data we are
modelling (Schölkopf et al., 2012) instead of latching on superficial clues
like spurious correlations. Chapters 3 and 4 investigate structural and in
its sense cross-task generalisation, while Chapter 5 aims to investigate
compositional generalisation and Chapter 6 researches robustness.

Learning as data compression Machine learning and information the-
ory have long been considered to be closely linked (Solomonoff, 1964;
Rissanen, 1978; MacKay, 2003). Especially the view that learning effi-
cient representations of data and (loss-less) compression optimise the same
underlying objective. The connection is intuitive: In the act of information-
theoretic compression, we seek patterns and regularities that we can then
exploit to reduce redundancies in the description of the data. Similarly, in
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learning, especially in unsupervised learning, the goal is to discover under-
lying patterns or structures in the data to learn efficient representations of
their distribution.

This connection bears valuable frameworks for thinking about learning
in machine learning. Probably most prominent is the information bottle-
neck method (Tishby et al., 1999), which can be used to describe learning
as optimising the trade-off between minimising the mutual information
of an input X and some model internal representation T while maximis-
ing the mutual information of the same representation with some target
Y (given a joint-probability distribution p(X, Y ); Tishby and Zaslavsky,
2015). Later work suggested that the different parts of the bottleneck are
optimised in different phases of learning (first maximising accuracy – i.e.
increasing I(T, Y ) – and compressing representations afterwards – i.e. de-
creasing I(X,T ); Shwartz-Ziv and Tishby, 2017). While the universality
of these findings is contested (Saxe et al., 2018; Noshad et al., 2019), it
remains an idea that productively frames and inspires the discussion about
learning.

Considering language, recent research has shown how classification
using general-purpose parameter-free compressors such as gzip (Gailly and
Adler, 1992) can achieve similar performance to expensive representations
of parametric deep learning models such as BERT (Devlin et al., 2019)
when used as a base for sequence classification tasks (Jiang et al., 2023).
Further, Delétang et al. (2023) shows how LLMs trained exclusively on
language can function as general-purpose compressors for data of other
modalities such as image or speech data. In that sense, creating any LM
(whether modern LLMs or the construction of a generative grammar) can
be understood as an attempt to find rules for efficient compression of a
language context.

The information-theoretic compression described so far has recently
been linked to geometric compression in language models (Cheng et al.,
2023). Geometric compression is based on the manifold learning hypoth-
esis (Salakhutdinov, 2014), which states that high-dimensional data (e.g.
the representations within an LM) can be represented on a low-dimensional
manifold. The number of dimensions of this manifold is also called the
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intrinsic dimensionality. It can be estimated by dimensionality reduc-
tion methods such as PCA (Pearson, 1901; Hotelling, 1933; Wold et al.,
1987) under the assumption of flat manifolds (Campadelli et al., 2015) or
various non-linear methods for curved manifolds (Grassberger and Procac-
cia, 1983; Levina and Bickel, 2004; Haro et al., 2008; Albergante et al.,
2019). The notion of geometric compression has already found impactful
applications in machine learning (e.g. in low-rank adaptation; Hu et al.,
2022).

The idea of learning algorithms as compressors is not explicitly used
in the empirical work presented in this dissertation but informed the work
and will be used in the respective discussions.

2.3 Interpretability

In Sections 1.2.2 and 2.1.2, I outlined the transition from reductionist
methods to neural network techniques in NLP. This shift led to a significant
increase in the complexity of LMs and a corresponding decrease in their
ad-hoc interpretability – i.e. our ability to intuitively understand a model’s
behaviour and inner workings. Consequently, increasingly sophisticated
methods became necessary to disentangle the inner processes of LMs.
The research field focusing on the development and assessment of such
methods is called interpretability or explainable AI. The relevance of
interpretability in the field has increased exponentially with the onset of
neural network methods (see Figure 2.1). Why did interpretability become
so prominent?

Motivation Interpretability can be motivated from two different angles:
First, from an applied angle, one can evaluate the model to ascertain
whether the model’s generalisations align with the practitioner’s inten-
tions. This might entail ensuring the model has grasped accurate language
construction rules (e.g. Goldberg, 2019), operates without inherent biases
(e.g. Bolukbasi et al., 2016; Caliskan et al., 2017), or avoids suboptimal
shortcuts in inference tasks (e.g. Ribeiro et al., 2016). This viewpoint is
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Figure 2.1: Publications on the topic of interpretability and explainability
over the years (graphic from Fan et al., 2021)

predominant and primarily driven by the need to foster trust (e.g. Doshi-
Velez and Kim, 2017), facilitate model debugging (e.g. Olah et al., 2018),
and address ethical and regulatory considerations (e.g. European Parlia-
ment and Council of the European Union, 2016; Madiega, 2021). Second,
interpretability can be used as a tool to derive insights about a particular
subject or topic that the model is describing. Language models are models
of the generative process of language, requiring many of the associated
cognitive abilities. As such, they have become so proficient that they can
be used for, i.a., linguistic theory testing in areas in which they verifiably
employ parallel processing to humans (i.e. be used in a deductive way) or
even induce theory in itself (e.g. Weber et al., 2021; Baroni, 2022).

Types of methods From a technical perspective, research methodolo-
gies in this domain predominantly fall into two categories: structural and
behavioural methods. Structural methods analyse the internal properties
of models, which might involve examining the weights, neuron activa-
tions, or attention mechanisms. On the other hand, behavioural methods
aim to understand a model based on its observable actions in response
to specific inputs. The goal is to infer the model’s internal logic and ca-
pacities based on its behaviour. Overall, interpretability methods have
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similarities with approaches in experimental psychology and different
branches of neuroscience (such as behavioural neuroscience and systems
neuroscience), which try to infer the black-box behaviour of the human
brain via behavioural (e.g. reaction time experiments) or structural (e.g.
imaging techniques) methods. It is, therefore, not uncommon to see avid
cross-pollination in either field (e.g. see McCoy et al., 2019; Linzen et al.,
2016; Richards et al., 2019; Yamins and DiCarlo, 2016; Marblestone et al.,
2016; Kriegeskorte and Douglas, 2018).
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Chapter 3

GENERALISATION AND
LINGUISTIC THEORY

This first chapter of the main body introduces a framework to analyse the
learning dynamics of language models and empirically verifies it. It lays
the basis for later work in Chapter 4.

3.1 Introduction
In this chapter, we introduce and empirically test a framework for under-
standing learning and generalisation in language models. The framework
is based on the idea that human learning is highly interleaved, meaning
that many different objectives are optimised simultaneously and not in
a strictly sequential manner. By learning from different sources at the
same time and exploiting their commonalities, humans can form more
general rules about the world, which in turn helps them to subsequently
acquire new knowledge faster (Perkins et al., 1992; Schwartz et al., 2005;
Cormier and Hagman, 2014; Luriia, 1976). The idea of capitalising on
the commonalities of diverse tasks for more abstract generalisation is also
very well known to the machine learning community and is most explicitly
realised in the subfield of multi-task learning (MTL; Caruana, 1993, 1997).
In MTL, multiple tasks are optimised jointly, enabling the transfer of
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Figure 3.1: A conceptual visualisation of a language modelling task hi-
erarchy, from language modelling as a whole to single examples, with
complex similarities between tasks. Colours indicate task similarities.

relevant information across tasks. MTL research yields fruitful results in
both application (e.g. Collobert and Weston, 2008; Collobert et al., 2011;
Zhang et al., 2014; Donahue et al., 2014; Kaiser et al., 2017) and theory
(e.g. Baxter, 2000; Maurer, 2006; Ando and Zhang, 2005; Argyriou et al.,
2007). In the proposed framework, we study language modelling as an
MTL problem.

In a stricter definition, language modelling does not qualify as MTL.
However, both have many commonalities in their learning dynamics.
While in MTL, a model has to optimise multiple explicit loss functions, we
argue that a language model has to optimise many diverse tasks simultane-
ously as well. In that sense, language modelling is a conglomerate of many
different tasks. For example, different language construction rules have to
be learned at the same time. These rules may have more or less overlap
in their structure and may be more or less contradictory. However, they
all need to be learned to achieve the greater goal of producing acceptable
language.
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The main difference between our ‘implicit’ MTL problem and the
‘explicit’ counterparts is that our tasks are not externally defined but emerge
during learning and are conditioned by the broader objective of language
modelling (compare reductionism and complex systems in Section 1.2.2).
This means that the tasks a model optimises (such as learning a specific
linguistic rule) might change throughout the learning process and can be
hierarchical (e.g. task: learn to produce acceptable language −→ subtask:
learn language phenomenon A −→ sub-subtask: learn realisation A1 of
language phenomenon A; see Figure 3.1 for an illustration). A potential
task hierarchy that could be emerging is given by formal linguistic theory.

On the other hand, if we want to analyse the learning dynamics of a
model, our ‘implicit’ setting comes with much fewer assumptions. Since
we consider the task-organisation to be emergent and self-organising, much
of the implementational overhead of ‘explicit’ MTL is no longer necessary:
There is no need to decide which tasks to train together (e.g. Bingel and
Søgaard, 2017; Standley et al., 2020a); at which hierarchy-level to allow
tasks to interact (e.g. Søgaard and Goldberg, 2016); which degree of
parameter sharing to employ (Ruder, 2017); which mixture of training data
to employ (e.g. Luong et al., 2016), and so on. We think that the analysis of
learning dynamics in this non-disruptive way is more natural, as it allows
for the self-organising task structures in the complex system of language to
take hold (e.g. gradually allowing for other optimisation targets to emerge
with increasing skill) and is not biased by the many arbitrary decisions that
go into, e.g. the highly constructed learning scenarios of explicit MTL.

Why do we want to study language modelling as an MTL problem?
MTL gives us an idea of the way that different learning tasks are interact-
ing. In MTL, similar tasks will help each other during learning (hence
facilitating generalisation). In contrast, dissimilar tasks will not interact
or harm each other (e.g. Thrun and O’Sullivan, 1996; Passos et al., 2012).
What exactly defines ‘task similarity’ is not universally defined. Using
this notion of similarity, we build our bridge to conceptual knowledge
from linguistic theory: Linguistic conceptualisation can be considered a
prediction about the structural similarity of different utterances. In other
words, we find regularities across different utterances and categorise them
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into the linguistic phenomenon. The utterances are then considered similar
with respect to this phenomenon. In that sense, linguistic theory makes
predictions about what data a model might generalise across. Based on
our framework, the model’s generalisation behaviour can be interpreted in
one of two ways:

The model generalises within linguistic concept (a) The linguistic con-
cept is supported by computational modelling; (b) the model picked
up on the concept.

The model does not generalise within linguistic concept (a) The linguis-
tic concept is not supported by computational modelling or; (b) the
model was not able to learn the concept (e.g. because of a lack of
expressivity or data).

We see how the framework connects linguistic theory and the learning
dynamics in language modelling and might contribute to either field.

Outline Having set the principle framework in the introduction, we will
empirically underline it in the remainder of this chapter. First, we will
add the necessary basic background on MTL (Section 3.2.1), the subset of
linguistic tasks we focus on (Negative Polarity Items, and discuss some
related work in interpretability (Section 3.2.3). Then, in Section 3.3 and
3.4, we present our practical example and the respective empirical results
that showcase the framework. In Section 3.5, we discuss our results and
framework in light of their implications for interpretability, MTL and
linguistic research. We conclude in Section 3.5.

3.2 Background

In this chapter, we bring together three strands of research: MTL, linguis-
tics and interpretability. As a proof of concept, we focus on one specific
complex subset of linguistic tasks: licensing of Negative Polarity Items
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(NPIs). Below, we give a short overview of the most important charac-
teristics of the three fields of interest. The background on interpretability
complements the more general background in Section 2.3.

3.2.1 Multi-task learning

In MTL, multiple tasks are learned together to enable information transfer
from one task to another. If the transfer is successful, the benefits might be
threefold: the model learns tasks with less training data (i.e. more efficient,
Collobert et al., 2011; Benton et al., 2017; Kaiser et al., 2017), up to a
higher final accuracy (Collobert and Weston, 2008; Kaiser et al., 2017)
and in a way that better generalises to new tasks (Baxter, 2000; Collobert
and Weston, 2008).

Caruana (1993, 1997) and Ruder (2017) propose several different – but
related – processes that might enable positive transfer: related tasks can
provide additional training examples for each other on the features they
share (called ‘statistical data amplification’), certain features might be
easier to learn through one task than through another, but be helpful for
both of them (called ‘eavesdropping’), and idiosyncratic features of single
tasks can be averaged out, while more general features are reinforced
(called ‘attention focusing’)1.

However, positive transfer is not guaranteed; It is also possible that
performance deteriorates due to interference between different tasks, re-
sulting in negative transfer, Rosenstein et al. (2005); Pan and Yang (2010);
Wang et al. (2019d). Whether the transfer is positive depends on the task
similarity and whether the model can exploit this similarity (Rosenstein
et al., 2005; Thrun and O’Sullivan, 1996; Passos et al., 2012).

The main goal of MTL so far has been to avoid negative- and encour-
age positive transfer by determining task similarity and regulating the
interactions between tasks based on these similarities. Due to its pivotal
role, much research effort was spent on determining similarities of tasks
and the regulation of information transfer between them (for an overview,

1For a complete list of processes please consult the original publications.
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see Zhang and Yang, 2017; Ruder, 2017). The disadvantage of these ap-
proaches is that assuming fixed tasks and regulating transfer between them
based on fixed task similarities puts large constraints on possible transfers
between tasks. It neglects the fact that learning processes are dynamic.
In real-world learning, however, tasks – as well as their similarities – can
change throughout the learning process. As an important difference to
standard, ‘explicit’ MTL, we only use predefined tasks and their similari-
ties to analyse the learning behaviour of the model without constraining
the learning process in any way.

3.2.2 Negative Polarity Items
We exemplify our idea by analysing the learning behaviour on a complex
subset of linguistic tasks: the licensing of Negative Polarity Items (NPIs).
The properties of NPI licensing make it an interesting and adequate subset
of tasks to study, as it has a high degree of complexity, an appropriate
frequency within natural language (more detail on the distribution is given
in Table 3.1) and was previously frequently investigated in neural models
(see e.g. Warstadt et al., 2019; Jumelet et al., 2021; Marvin and Linzen,
2018; Jumelet and Hupkes, 2018; Futrell et al., 2019a; Hu et al., 2020).

NPIs are characterised by the property that they can only occur within
the scope of certain licensing contexts. For instance, in the example below,
the NPI ‘any’ can occur in sentence (1)a., where it is in the scope of a
negation, but not in sentence (1)b., where there is no licensor present.

(1) a. Bill didn’t buy any books that day.
b. * Bill did buy any books that day.

(2) a. Nobody has ever been there.
b. * Somebody has ever been there.

Licensing contexts are formed based on semantic properties, such as down-
ward entailment (Fauconnier, 1975; Ladusaw, 1980), non-veridicality
(Giannakidou, 2011), or scope marking (Barker, 2018). Common licens-
ing contexts include negation, conditionals, or superlatives and are often
triggered by a specific expression, such as ‘not’ or ‘nobody’. Grasping the
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phenomenon of NPI licensing requires an understanding of three different
aspects:

1. The class of NPIs: there is a group of expressions that are restricted
in their occurrence.

2. Licensing contexts: there exists a group of expressions that allow
NPIs to occur.

3. Scope and structure: the licensing contexts have to stand in a specific
structural relationship to the NPIs.

We focus on how LMs learn the second aspect by analysing how different
licensing contexts interact and generalize throughout training. During
learning, they should be able to exploit their similarity in the other two
aspects.

3.2.3 Linguistic interpretability of LMs

Interpretability research on LMs has shown that in pre-trained models, such
as BERT (Devlin et al., 2019), hierarchical structure emerges throughout
the layers and that this structure demonstrates parallels with linguistic
theory (Peters et al., 2018; Liu et al., 2019a; Tenney et al., 2019). However,
the way that this structure emerges during the learning process has not
been investigated.

Considering more specifically the work on NPIs, research has shown
that LMs can understand NPI licensing in recent years. Jumelet and
Hupkes (2018) evaluate the performance of LMs on data sets containing
NPI constructions extracted from large corpora, and Marvin and Linzen
(2018); Wilcox et al. (2019); Warstadt and Bowman (2020) test them on
artificial data sets containing template-based NPI constructions. In the
experiments in this chapter, we will utilise the extensive template-based
NPI corpus of Warstadt et al. (2019). Within this chapter, we add another
dimension to the stack of interpretability research on NPI by showing how
models acquire this ability.
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3.3 Approach

We consider two different types of experiments. First, to understand to
which extent models can understand and use the similarity between dif-
ferent licensing contexts (our tasks) during learning, we exploit the effect
that the frequency of the different contexts has on learning. Second, we
manipulate the LMs’ training corpus to constrain their ability to leverage
information from other licensing contexts during learning. In accordance
with the MTL literature, we expect the LMs to learn tasks more data-
efficient and to a higher final accuracy if they can leverage information
across contexts. Before we describe our experiments in more detail, we
present our model architecture and training, the evaluation procedure of
the licensing contexts, and the filter procedure we use to manipulate the
training corpus.

3.3.1 Model

Following previous work in this area, we consider recurrent language
models. We focus on uni-directional LSTM models and mirror the hyper-
parameter setup of Gulordava et al. (2018)2. We train the models on the
corpus provided by the same authors3 – a subset of the English Wikipedia
– or modified versions of the same for our second experiment (see Sec-
tion 3.4.2). To track the learning process, we save models every 100
batches of training (i.e. 371 model checkpoints per training epoch). For
all experiments, we average performance across five random seeds.

2Hyperparameters: batch size = 64, BPTT length = 35, dropout = 0.1, adaptive SGD
learning rate = 20, layers = 2, hidden and embedding size = 650, epochs = 40.

3https://github.com/facebookresearch/colorlessgreenRNNs/
tree/master/data

34

https://github.com/facebookresearch/colorlessgreenRNNs/tree/master/data
https://github.com/facebookresearch/colorlessgreenRNNs/tree/master/data


“output” — 2023/12/20 — 15:41 — page 35 — #53

3.3.2 Evaluation

P(ever)

P(ever)

LM
A lady rarely ...

A lady sometimes ...

P = 0.2

P = 0.01

✓

Figure 3.2: The NPI judgement task used for evaluating the LMs. A correct
prediction assigns a higher probability to an NPI in a context that licenses
it, based on the corpus of Warstadt et al. (2019).

To estimate the LMs’ understanding of NPIs and their dependence on the
different licensing contexts, we adapt the Cloze task of Warstadt et al.
(2019), based on the implementation of Jumelet and Hupkes (2019). This
task considers nine different types of licensing contexts (a list of the
contexts, including examples, can be found in Table 3.1). For every such
context, Warstadt et al. (2019) generated many minimal pair sentences
containing correctly and incorrectly licensed NPIs. For instance, for the
adverbs licensing context:

(3) a. A lady rarely ever thought that the children saw the boy.

b. * A lady sometimes ever thought that the children saw the
boy.

Following previous work, we quantify an LM’s understanding of a particu-
lar type of licensing context by computing the percentage of minimal pairs
in that context for which the model correctly assigns a higher probability
to the NPI in the licensing contexts than in the non-licensing contexts. I.e.,
in the example above, we would compare the probability the model assigns
to the word ever in the contexts “A lady rarely” and “A lady sometimes”
(see also Figure 3.2).
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Frequency per
Context Example 100k sentences
Simple Questions Did he ever do a mean thing? 10
Adverbs In the present political culture, there are hardly

any leaders who would avoid limelight and
refuse positions of power.

23

Questions However, various writers attribute it to Putnam,
Stark, Prescott or Gridley, while others question
whether it was said at all.

25

Superlative [...] and caused the worst winter flooding in
decades for river and stream valleys [...].

32

Only [...] ”Those [students] only are supposed to pay
anything who are abundantly able, or prefer to
do so.

85

Conditional In 1997 Li published a paper attempting to repli-
cate <unk>’s results and showed the effect was
very small, if it existed at all.

127

Quantifier That’s all you’ll ever need. 179
Determiner negation In spite of the <unk> of the disaster, no one was

ever held accountable.
218

Sentential negation It is not judged under any subjective points of
view, only the clock.

712

Table 3.1: The nine types of licensing contexts are taken from Warstadt
et al. (2019), with an example and the context frequency within the training
corpus.
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3.3.3 Identification of NPIs in training corpus

The Warstadt et al. (2019) corpus provides us with a task to evaluate nine
different context types that license NPIs. To manipulate the training corpus
for our experiments, we also need to identify sentences in the training
corpus of the model in which these contexts licence NPIs. To do so, we
need to locate these contexts, as well as establish that they, in fact, licence
an NPI in a particular sentence.

We consider the nine context types of Warstadt et al. and the corre-
sponding list of 30 expressions that are associated with these contexts (e.g.
for the context type adverbs, the list of adverbs that are licensing NPIs).
As for the NPIs, we consider an extensive list of 160 distinct NPIs4, based
on a collection provided by Hoeksema (2012). We then identify sentences
in which an element of our NPI list is preceded by an element from our
context list, ensuring that there is a dependency relation between them us-
ing the dependency parser of spaCy (Honnibal and Montani, 2017). When
there are multiple potential licensors in a sentence, we use the hierarchical
distance in the parse tree between the licensor and the NPI as a heuristic to
find the correct licensor. By testing this procedure on a manually labelled
set of 200 randomly selected sentences with multiple licensors, we esti-
mate that it identifies the correct among multiple licensors in around 97%
of cases. In Table 3.1, we report examples and frequencies of the different
licensing contexts in the training corpus based on this filtering scheme.

3.4 Experiments and results

As a first step, we assess whether the LMs can adequately represent all
nine categories of the evaluation task. To do so, we train five models
on the regular training corpus and compute their final accuracy on our
nine tasks. All models show adequate performance on most contexts (see
Table 3.2), except the simple question context. Additionally, we observe
that the models achieve their accuracy surprisingly fast: after two epochs,

4The complete list can be found in Appendix A.1.1.
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there are no more substantial changes in empirical error (see Figure 3.3a).
In the rest of our experiments, we, therefore focus only on these first two
epochs.

Context Accuracy ± std

Simple Questions 0.62 ± 0.05

Adverbs 0.92 ± 0.01

Questions 0.88 ± 0.03

Superlative 0.78 ± 0.03

Only 0.86 ± 0.04

Conditional 0.82 ± 0.06

Quantifier 0.86 ± 0.04

Determiner negation 0.92 ± 0.05

Sentential negation 0.85 ± 0.03

Table 3.2: Performance of the LMs on the evaluation task after 40 training
epochs averaged over five runs.

3.4.1 Frequency vs data efficiency

While some licensing contexts are rather common (e.g. negation), others
appear scarcely as a licensor (e.g. adverbs). Therefore, throughout the
learning process, the LMs encounter many instances of the more frequent
contexts before they see an example of an infrequent context. If LMs could
leverage information across contexts, less frequent contexts should thus
have more prior established NPI understanding that they can bootstrap
from. Consequently, the LMs should require fewer training examples to
learn less frequent contexts than they need to learn more frequent contexts.
In other words, the LM should be more data efficient for these infrequent
contexts.

In our first experiment, we use this hypothesised relationship between
frequency and data efficiency to assess whether LMs can exploit the simi-
larities between different licensing contexts. To compare across different
contexts, we quantify the data efficiency of an LM for a particular context
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as the number of examples the LM needs to observe until it reaches 95%
of its final accuracy for that context.5 To make this measure more robust,
we first apply a Savitzky–Golay noise filter to the learning curve (degree
of polynomial = 1, window size = 25; Savitzky and Golay, 1964).

We compute the data efficiency of the trained LMs for all nine con-
texts and calculate the correlation between a context’s frequency and the
model’s data efficiency concerning that context. In Figure 3.3b, we plot
the average data efficiency of each context against the frequency of that
context, as well as the linear fit that relates these two variables. The exper-
iment demonstrates a strong relationship between the data efficiency and
frequency of a respective context: r = .89, p < .05. Hence, the less frequent
a licensing context is, the fewer examples are needed for the model to learn
it, from which we conclude that the model can indeed transfer knowledge
from previously acquired knowledge.
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Figure 3.3: (a) Average evaluation task performance. The performance
rises steeply during approximately the first two epochs of training and
afterwards levels off; (b) Data efficiency of nine different licensing contexts
plotted against their frequency, averaged over five runs. The data efficiency
is quantified as the number of training examples the model needs to observe
to achieve 95% of the trained-out performance.

5The more data efficient, the lower this number thus is.
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3.4.2 Transfer from general knowledge

While the presented relationship between frequency and data efficiency
demonstrates that LMs can leverage previously learned information to
learn less frequent licensing contexts, it does not unequivocally show that
it leverages information from other NPI contexts. After all, when a less
frequent context is encountered, the LM has not only had the opportunity
to acquire prior knowledge about NPIs, it has also simply seen more
language in general. In other words, the LM may meanwhile also have
acquired more general language knowledge, which may help it to learn a
less frequent licensing context more quickly. In our second experiment,
we isolate transfer from general language knowledge and transfer from
previously observed NPIs by training LMs on single-context corpora.

Single-context corpora contain NPIs licensed only by a single context.
LMs trained on these corpora can thus not transfer knowledge acquired
from other licensing contexts, as these are not present in the training data.
By comparing the data efficiency of contexts between LMs trained on
all-context and single-context corpora, we can thus infer how much of the
increase in data efficiency for lower-frequent contexts is due to leveraging
information from other contexts.

To create our nine single-context corpora, we use the procedure de-
scribed in § 3.3.3 to identify all sentences containing NPIs licensed by
our nine contexts. For every context, we create a corpus in which all sen-
tences containing other contexts licensing NPIs are replaced by a neutral
sentence of the same length, sampled from the rest of the corpus. During
this replacement procedure, the ordering and composition of the corpus
remained otherwise intact.

When we compare the learning of single-context with all-context mod-
els, we cannot rely on the previously used data-efficiency metric from
Experiment 3.4.1. The data-efficiency measure is bound to how quickly
the model reaches its final accuracy and benefits when its final accuracy
decreases. As we expect the final accuracy to be lower in the single con-
text models, comparing only data efficiencies between models is likely

40



“output” — 2023/12/20 — 15:41 — page 41 — #59

all-contexts single-context

0 1 2
epochs

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

simple questions
0 1 2

epochs

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

AbC

adverbs
0 1 2

epochs

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

questions

0 1 2
epochs

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

superlative
0 1 2

epochs

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

only
0 1 2

epochs

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

conditional

0 1 2
epochs

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

quantifier
0 1 2

epochs

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

determiner negation
0 1 2

epochs

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

sentential negation

Figure 3.4: The LMs performance on different licensing contexts for the
first two training epochs. We obtained these curves by evaluating all
models at all 730 training checkpoints on the evaluation task.

to be uninformative.6. In this experiment, as explained below, we instead
consider the area between the curves (AbC).

Area between Curves (AbC) incorporates both data efficiency and
accuracy: for every context, we calculate the area between the all-contexts
and single-context learning curves until the point in time where they both

6Consider, for instance, the extreme case in which an LM does not learn a particular
context at all anymore in the single-context condition, as indicated by a chance accuracy
of 0.5. Because it is not learning anything, the model would arrive at its maximum
accuracy before seeing any examples, resulting in a data efficiency of 0.
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Figure 3.5: Normalised AbC for all licensing contexts until convergence
of both contexts to 95% accuracy. AbC > 0 indicates a better performance
of the all-context model and vice versa.

have reached 95% of their final accuracy. The larger this area is, the more
impactful it is to remove all other NPI contexts and the more the model
leveraged from these contexts. The learning curves of all contexts, along
with an illustration of the AbC-measure, can be found in Figure 3.4.

As a first interesting observation, we see that for seven of the nine
contexts, the all-contexts model learns faster and achieves higher final
performance.7 Both frequent and infrequent contexts thus benefit from
information acquired by other licensing contexts in terms of both data
efficiency and final accuracy.

This positive transfer can also be seen in Figure 3.5, where we plot
the AbC for all licensing contexts against their frequency. This plot also
confirms the relationship found in our previous experiments: the less
frequent a context is, the more it benefits from other NPIs (r = .76, p <
.05).

7A one-sided Welch’s test confirms that the calculated AbCs are overall different from
zero: t = 2.61, p < .05.
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3.5 General discussion and conclusion

Summary In this first chapter of the main body, we present a frame-
work to study learning dynamics in end-to-end, self-organising machine-
learning language models. The framework lends ideas from the subfield
of multi-task learning, which it connects to conceptual knowledge, in our
case, linguistic theory. In our experiments, we show that neural language
models can find and exploit similarities between the different language
construction rules or, more precisely, how they learn the task cluster of
NPI licensing. We find that LMs pick up on similarities we assume from
linguistic theory and exploit them to learn similar language constructions
with less data and higher accuracy. Especially less frequent tasks benefit
from this effect. The observed transfer behaviour mirrors the positive
transfers from traditionally constructed MTL settings. While our frame-
work is mainly focused on creating a scaffolding for the further analysis
of learning dynamics, it also has potential implications for other research
areas. Here, we illustrate how our setup and results relate and contribute
to MTL, linguistics and interpretability research.

Multi-task learning research Studying LMs as multi-task learners, we
observe several phenomena known from traditional MTL: when trained in
parallel, similar (sub)tasks are learned more efficiently (compare Collobert
et al., 2011; Kaiser et al., 2017), and with higher accuracy (Collobert and
Weston, 2008; Kaiser et al., 2017), and this effect is stronger for less
frequent tasks (Benton et al., 2017; Kaiser et al., 2017).

Our study differs in one crucial aspect from previous research on MTL:
it looks at learning dynamics within one, larger, natural task instead of
between tasks defined by the modeller. Consequently, the learning process
itself is not constrained through a priori decisions concerning task selec-
tion or how tasks should be optimised together. In our scenario, contrary
to traditional MTL, we use tasks and their hypothesised similarity only
to analyse the learning process of the language model, not to inform its
training. As such, the natural setting of our framework allows us to study
traditional MTL phenomena, such as data amplification, eavesdropping,
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and attention focusing (see Section 3.2.1), independent of arbitrary deci-
sions regarding task selection and optimisation. Insights from the natural
setting can then be transferred to scenarios in which more control over the
selection of tasks may be required.

Interpretability research Secondly, studying language models as multi-
task learners can contribute to the field of interpretability. On the most
basic level, our results confirm previous findings in interpretability that
LMs can adequately model NPIs (Jumelet and Hupkes, 2018; Wilcox et al.,
2019; Marvin and Linzen, 2018). We add to this literature by explicitly
showing that LMs connect different types of contexts through a common
concept (NPI licensing) through their learning behaviour. Contrary to pre-
vious work, we are tapping the learning process as a source of information
to understand the inner workings of these models better.

Traditional concepts from MTL, such as the earlier mentioned expla-
nations of Caruana (1993) and Ruder (2017) (Section 3.2.1) are valuable
to better understanding what models are learning and how. For instance,
when we observe that the solution of models improves when more varied
NPI material is presented (our single- versus all-context experiment), MTL
can aid in formulating concrete hypotheses about why this is the case. This,
in turn, can help us improve our understanding of the solutions that the
model learns. For instance, the single-context models usually level off on
a lower accuracy level than the all-context model (see Figure 3.4). This
is not merely explainable by the amount of data, as we continue to add
training examples in either case. The difference between models instead
appears to be due to the variety of the training data. The idea of attention
focusing (Caruana, 1993, 1997; Ruder, 2017) helps us to understand what
is going on: by being trained on more varied NPI material, the model
can better sort out which features are relevant and which ones are instead
idiosyncrasies correlated with specific contexts. Such hypotheses can then
help inform further experiments that investigate – for example – which
features specifically are better learned through attention focusing.
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Linguistics research Finally, studying language models as multi-task
learners can also contribute to linguistics. In our study, we show that LMs
can find and exploit similarities between linguistically defined concepts.
Turning things around, this generalisation behaviour of models can also be
seen as a confirmation of the linguistic task hierarchy that we assumed from
the start. The language modelling objective is unconstrained by linguistic
theory and, therefore, does not necessarily have to find the exact solutions
as linguistics. Similarity derived from the learning behaviour of language
models might, therefore, be used as a tool to work on more disputed ideas
in linguistics and to form new hypotheses in linguistic theory. While the
linguistic insights that can be drawn from the current study are relatively
limited, they do provide a proof of concept for future work: we show that
domain knowledge and the learning behaviour of neural models can be
connected.

Conclusion The work in this chapter is a principal step towards the
primary goal of this dissertation in that it formulates a framework to
understand the learning dynamics of language models in a holistic and
unconstrained way. By understanding the model’s conceptualisation as
emerging subtasks it has to optimise, we can analyse the self-organisation
ability of the language model as it would be expected from complex
systems theory (Section 1.2.2): Throughout the learning process, the model
uncovers regularities (or ‘similarities’) among data points – even though
they may not be related in the surface structure of the sentence – and learns
to pool these data points into the same concept. This generalised concept
can be used to learn new data points more efficiently. Conceptualisation
may change throughout the training as the model starts to understand the
data distribution on a more abstract (or compressed) level or when the
data distribution shifts as a sign of adaptability – a hallmark of complex
systems.

While we concentrated on the conceptualisation and learning of linguis-
tic knowledge, the framework can generally be utilised for any conceptual
knowledge a machine learning model learns. We will continue to utilise
and expand upon the framework in Chapter 4 by switching the methods
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from the undersampling approach from this chapter to oversampling (i.e.
fine-tuning) of specific phenomena. This will enable us to apply the ap-
proach to many phenomena from the BLiMP benchmark (Warstadt et al.,
2020). We additionally connect the framework to the internal dynamics
of the model by analysing its gradients (compare structural and behaviour
interpretability in the general background 2.3).

3.6 Limitations
The limitations of this chapter lie mostly on the implementational level:
Firstly, undersampling different linguistic phenomena is difficult, as they
are often covert in the surface structure of a sentence. Consequently, it
is not straightforward to filter them out of a corpus. Further, prevalent
phenomena such as subject verb agreement, present in almost every sen-
tence, are impossible to filter out of a corpus and maintain a usable training
set. Secondly, the retraining of a language model for each investigated
phenomenon is prohibitively expensive and does not scale to many phe-
nomena or larger models. We will address both of these limitations in the
following chapter.
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Chapter 4

LINGUISTIC TASK-SPACES

In the previous chapter, we introduced a framework to connect the learning
dynamics of language models with linguistic theory using ideas from MTL
research. Different language phenomena (or ‘tasks’) share structure, and
this shared structure can be leveraged by the model via generalisation.
By looking at the generalisation behaviour, we can deduce which tasks
share structure (or are ‘similar’). If we apply this idea to many tasks, we
can construct a ‘linguistic similarity space’, which is representative of an
LM’s conceptualisation of language. In this chapter, we will construct
such similarity spaces and analyse their change throughout training.

4.1 Introduction
The language faculty of LMs improved greatly in the recent past and is
nowadays close to indistinguishable from human abilities when it comes
to generating linguistically acceptable language (Liang et al., 2022). With
their impressive capabilities, LMs have become increasingly attractive as
a subject of linguistic research (Baroni, 2022). One way of employing
LMs is by using them as perfectly accessible ‘lab animals’ for linguistic
theory testing (Scholte, 2017; Futrell et al., 2019b). However, the excellent
performance of modern LMs comes with the caveat that they are inher-
ently complicated to interpret (see Section 2.3). Language production
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is complex, and similarly, a good model of language will be complex
in itself. In this chapter, I introduce a method to interpret the language
processing of LMs holistically and use it to analyse the change in their
language conceptualisation throughout the training process. To do so, I
will expand and improve the framework from Chapter 3. The framework
uses the generalisation behaviour of LMs to get insights into how they
share structure across linguistic phenomena. I will use this idea to show
how this shared structure evolves throughout the learning process.

The approach of undersampling from the previous chapter had two
principal implementational shortcomings:

1. It is computationally expensive to retrain a new model for each
investigated phenomenon;

2. It is hard to filter certain phenomena (especially very common ones
or very abstract ones)

This makes it challenging to apply to a more extensive range of linguistic
phenomena and construct a meaningful ‘linguistic task space’. Here, I
will change the approach and rely on the oversampling of phenomena
instead (i.e. selectively fine-tuning the phenomena in a pre-trained model).
Oversampling is considerably easier to apply and cheaper, enabling us to
scale to many phenomena. I will use the oversampling method to construct
linguistic task spaces at different stages of pre-training and analyse how
the language conceptualisation of LMs develops.

Outline I will first provide additional background information and sum-
marise related work (4.2). Next, I will introduce the used linguistic data
that will span our similarity space (4.3.1) and explain the methods I use to
estimate similarity among them (4.3.2). In the experimental section 4.4,
I pre-train three different language models, apply our method and then
analyse the resulting linguistic spaces throughout the pre-training process.
Finally, I discuss the results (4.5) and the methodological limitations (4.6).
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4.2 Background and related work

4.2.1 Similarity spaces in MTL

The construction of similarity spaces has been a common goal in the
multi-task and continual learning literature. Researchers in multi-task
learning have been interested in constructing taxonomies of tasks, which
relate different tasks in terms of ‘similarity’ for many years (Ben-David
and Borbely, 2008). These similarity spaces can be used to determine
the degree of transfer to expect when different tasks are trained jointly.
One of the earliest examples of constructing task-similarity spaces can be
found in Thrun and O’Sullivan (1996). More recently, Zamir et al. (2019a)
constructed a task taxonomy for a range of computer-vision tasks based
on how valuable the representations of one task are for solving another.
Standley et al. (2020b) improve on Zamir et al.’s work by basing their
taxonomy on the transferability of information across tasks. Similarly,
Achille et al. (2019) create ’task-embeddings’ for visual classification tasks
by comparing their task structure through Fisher Information Matrices.
More theoretically motivated, Lee et al. (2021) investigate task similarity
in a highly controlled setting using synthetic tasks and find their similarity
measure predictive of learning outcomes.

4.2.2 Linguistic spaces

In recent years, LMs have become potent tools for various applications.
Their impressive language faculty makes them also interesting as theories
of language (Baroni, 2022). However, just like humans (Watson, 1913;
Titchener, 1912; Nisbett and Wilson, 1977), LMs cannot introspect and re-
port their ‘cognitive’ processes. As a consequence, to understand how LMs
are processing language, we have to find methods to interface their internal
processes and new subfields such as ‘synthetic linguistics’ Chowdhury and
Zamparelli (2019) have recently emerged. The method we introduce here
to construct linguistic task spaces is a way to construct such ‘synthetic
theories’.
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To our knowledge, no work constructs comprehensive task taxonomies
for language models. However, there are notable works that utilise sim-
ilar methodologies: Weber et al. (2021) show how language models are
generalising across linguistically similar constructions and suggest that
this hints towards an implicit task hierarchy in higher-level tasks like lan-
guage modelling. Chowdhury and Zamparelli (2019) fine-tune language
models on grammatical and ungrammatical constructions and observe
that grammatical structures are more straightforward to integrate than
their ungrammatical counterparts. Prasad et al. (2019) use a paradigm
inspired by psychological priming experiments to determine the relation-
ship between different linguistic phenomena and recover their hierarchical
organization. Pérez-Mayos et al. (2021) fine-tune BERT on various down-
stream tasks and evaluate how fine-tuning interferes with BERT’s syntactic
understanding using structural probes.

Finally, the linguistic similarity spaces that we are suggesting are
highly related to the idea of conceptual spaces, a style of knowledge
representation between symbolic and distributed approaches known from
the cognitive science literature (Gardenfors, 2004, 2014).

4.3 Methods

We combine the work of Zamir et al. (2019a); Standley et al. (2020b);
Achille et al. (2019) and Weber et al. (2021) to create a similarity space of
linguistic tasks via what we call ‘similarity probing’. To do similarity prob-
ing, we use either the model’s behavioural data (‘transfer probing’) or its
internal dynamics (‘gradient probing’). In transfer probing, we construct
the similarity space by probing the measurable transfer learning across
different linguistic tasks. In gradient probing, we construct similarity
spaces based on the alignment of gradients when we fine-tune on different
tasks. Gradient probing is inspired by the work of Yu et al. (2020), who
relate properties of gradients in multi-task settings to the generalisation
behaviour of MTL models. In the following subsections, we first introduce
the data we use for probing and afterwards explain the respective probing
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methods in detail.

4.3.1 Data

Our experiments contain two separate training steps: 1) the language model
pretraining and 2) probing by fine-tuning linguistic tasks. We pre-train
our models on the standard split of a common Wikipedia corpus (wiki103;
Merity et al., 2017). For the linguistic probing, we use the BLiMP-corpus
(Warstadt et al., 2020). BLiMP is a corpus of minimal pairs containing
data for 13 higher-level linguistic phenomena, which can be subdivided
into 67 types of realisations called paradigms. A minimal pair consists of
two almost identical sentences, only distinguished by a minimal difference
that renders one of them agrammatical. Each paradigm contains 1000
individual data points, sizing the whole corpus at 67 000 data points. To
construct linguistic task spaces, we consider every paradigm as a separate
task and investigate their similarities. We split the data for each paradigm
with a ratio of 85% for probe training and 15% for evaluation.

4.3.2 Similarity Probing

Similarity probing estimates how much similarity a language model finds
between implicit linguistic tasks A and B by examining different aspects of
their learning dynamics. In alignment with previous literature in multi-task
learning, we concentrate on two measures of similarity between A and B:
their performance transfers (Zamir et al., 2019b; Standley et al., 2020b)
and their gradient alignment (Yu et al., 2020). We obtain an estimate of
transfers and gradient alignments between A and B by selectively fine-
tuning the language model on linguistic task A and measuring its impact on
B. Due to the interwoven nature of linguistic ‘tasks’ in natural language (as
described by Weber et al., 2021), it is not as straightforward to fine-tune a
language model on a specific linguistic phenomenon in isolation. We will
provide details on this challenge and how we resolve it in the following
paragraph. Subsequently, we formalise our exact methodology.
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Isolating linguistic phenomena Certain phenomena are necessarily
present in every sentence. This makes it difficult to fine-tune phenomenon
A and estimate its impact on omnipresent phenomenon B. If we use natural
language sentences, all training examples for A will automatically also
include B. As a result, we cannot tune A in isolation. More concretely,
if we choose subject verb agreement as B, structural information
about the phenomenon of subject verb agreement will be contained
in training data for any A we are choosing, independent of the relationship
between phenomenon A and subject verb agreement. Besides the
omnipresence of certain phenomena, there is another challenge: natural
language data is multi-faceted, and we might find spurious correlations
between the distributions of A and B that have nothing to do with the
relatedness of the phenomena. For example, suppose A and B come from
different paradigms but the same phenomenon. In that case, they may
have larger vocabulary overlap compared to when they stem from different
phenomena1. The similarity of the vocabulary distributions for different
tasks therefore can potentially confound transfers as well. Our method
has to isolate linguistic phenomena such their similarity measures are
not influenced by their occurrence or spurious correlations between their
distributions.

Our solution is to identify the relevant parameters for a phenomenon
(isolated from potential confounds) and selectively update only those
parameters during fine-tuning. To do so, we take advantage of the fact
that BLiMP is a dataset of minimal pairs: Each positive sample of a
linguistic task has a negative counterpart that – by definition – only differs
in the correctness of the respective task. We contrast positive and negative
examples to isolate the linguistic phenomenon: With Θ being our model
parameters, at every update, we calculate not only the gradients g+(Θ) for
positive examples but also g−(Θ) based on their corresponding negative
counterparts. We then identify a parameter subspace S that is relevant
to the linguistic task by calculating the difference gδ(Θ) between g+(Θ)

1An illustration of this can be found in Appendix A.2.1.1 showing the Wasserstein
distancesW as well as the absolute token overlap between the vocabulary distributions
of all BLiMP paradigms.
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and g−(Θ) in which we only include model parameters that differ in gδ(Θ)
with a margin of ϵ = 10−3 from 0:

S = {θ : |g+(θ)− g−(θ)| > ϵ}

In other words, we select those parameters where the gradients for positive
and negative examples are sufficiently different. We then update only
parameters contained in S by using gδ(Θ).

Transfer probing We determine the transfer between A and B by fine-
tuning a language model on A and measuring the performance on B before
and after the fine-tuning. Fine-tuning on paradigm A may have three
potential influences on paradigm B. We interpret them as follows:

1. The performance of B increases: we suppose A and B to be related
and have high similarity.

2. The performance of B decreases: we suppose A and B to be related
and to have low similarity.

3. The performance of B is unchanged: we assume A and B to be
unrelated.

To mitigate floor and ceiling effects in performance evaluation, we normal-
ize all transfers. For negative transfers, we normalise by the maximally
possible accuracy loss (which is the pre-fine-tuning accuracy), and for
positive transfers, we normalise by the maximally possible accuracy gain
(i.e., 1 - the pre-fine-tuning accuracy).

Gradient Probing Besides only relating tasks on the level of perfor-
mance transfers (similar to Standley et al., 2020b; Zamir et al., 2019b;
Weber et al., 2021), we can also directly relate tasks in the parameter
space by comparing the overlap of their respective subspaces S and the
alignment of gradients gδ(Θ) in those subspaces. Taking inspiration from
the work of Yu et al. (2020) on gradient alignment of different tasks in
multi-task learning, we assume that:
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1. If A and B have greater subspace overlap and gδ are aligned, the
tasks will benefit each other, and we consider them similar.

2. If A and B have a greater subspace overlap, but gδ does not align,
the tasks will interfere, and we consider them dissimilar.

3. If A and B have a small or no subspace overlap, the tasks will not
interact, and we consider them unrelated.

We determine the overlap between subspaces of tasks A and B by calcu-
lating their Jaccard-similarity:

Jaccard(SA, SB) =
|SA ∩ SB|
|SA ∪ SB|

The alignment of task-relevant subspaces can be determined by calculating
the cosine similarity of their respective gδ.

4.4 Experiments
We here employ the similarity probing methods described in the previous
section on three different generative language models throughout their
training process.

4.4.1 Experimental details
Experiments are separated into pre-training and subsequent probe-training.
This subsection provides details on training details in either stage.

Models and pre-training For our experiments, we employ decoder-
based generative transformer models based on code from the fairseq library
(Ott et al., 2019). The principal difference between the three models is
their amount of trainable parameters. The smallest model TLM-27M
contains ∼27M trainable parameters2. The two other models, TLM-70M

2layers = 3, hidden- and embedding-size = 256, attention-heads = 4, ffn-size = 1024
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and TLM-203M, double the respective hyperparameters, which results in
models with ∼70M and ∼203M trainable parameters. We keep all other
hyperparameter settings related to training constant3. We use the Adam
optimiser during the pretraining phase to achieve higher convergence speed.
We pre-train the models for up to 20 epochs4 to final perplexities of 65.21,
38.32 and 27.61 on the validation set of wiki103.

Probe tuning During the probing phase, we adapt some hyperparameters
to avoid potential confounds: We switch to plain stochastic gradient de-
scent (SGD) to preempt interference of Adam’s momentum terms (Kingma
and Ba, 2015) with the probing process. Additionally, we change the batch
size to 850, such that every batch contains all possible data points of the
train split of a probed paradigm. The rationale for using a large batch size
is to average out as many idiosyncracies of the individual data points in the
learning signal as possible. We fine-tune on the data of single paradigms
until the model’s performance on the same paradigm converges. Our
stopping criterion is defined as performance being lower or equal to the
average of the last five steps.

4.4.2 Experimental results

We will first consider the general properties of the probing process and the
resulting similarity spaces and afterwards demonstrate how they develop
throughout the training process.

Probe tuning During fine-tuning, we observe only small increases in
perplexity on the wiki103 validation set for all models. At the same
time, performance on the fine-tuned paradigms improves in all paradigms,
indicating that our fine-tuning method is indeed selectively updating a
specific linguistic task (for fine-tuning details, see Appendix A.2.2.2).

3Hyperparameters: batch size = 16, dropout = 0.1, learning rate = 0.0001
4Throughout the pre-training, we save model checkpoints for later analysis at 0, 1, 2,

3, 4, 5, 10, 15 and 20 training epochs, respectively.
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Clustered by phenomena

Figure 4.1: Transfer spaces for our three models after two epochs of pre-
training. To the right, we can see how paradigms cluster into phenomena
according to BLiMP.

Transfer spaces Figure 4.1 shows the resulting transfer matrices from
probing the different models after two epochs of pre-training. Each
heatmap cell represents the normalised transfer from a fine-tuned to an
evaluated paradigm. Next to the transfer spaces, we show how paradigms
cluster based on the membership to the higher-level phenomena. The trans-
fer matrices are ordered by the size of their respective models. We can see
how, with increasing model size, the transfer pattern across paradigms be-
comes increasingly similar to the clustering of the phenomena (i.e. models
increasingly generalise within linguistic phenomena). We expect the mod-
els to generalise according to the clustering by phenomena. However, this
is not the only ‘hypothesis space’ with which we can compare the transfer
spaces and hypothesis spaces like this are a straightforward way to test
ideas about generalisation patterns. Alternative hypothesis spaces could
follow other clusterings (e.g. ‘linguistic tasks that require quantifiers’).

If a model generalises across the different paradigms that make up a
phenomenon, we can say that it has a grasp of the overarching concept
of the phenomenon. We quantify this ‘grasp’ by calculating the average
transfer between paradigms from the same phenomenon (see Figure 4.2).
A high value indicates that the model strongly generalises the phenomenon.
From the table, we see that the larger the model, the more it has an
overarching understanding of the different phenomena. Interestingly, many
phenomena have low transfer values but very high standard deviations.
This means that the paradigms within them form subclusters that are highly
interfering with each other (see especially filler-gap dependencies
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[FG-DEP]). The model discovered the paradigms’ relatedness but cannot
reconcile them. Different irregular forms [IRR-F] strongly interfere
with each other.

We can conclude that language models do generalise within the same
phenomena; however, that generalisation is stronger for some phenomena
than for others. Larger models are better at exploiting within-phenomena
similarities. Within-phenomena subclusters are highly interfering with
each other. Other paradigms are just treated idiosyncratically by the model
without any interactions with other realisations of the same phenomenon
(see, e.g. binding [BIND]). In the next paragraph, we will relate the
transfer spaces with gradient spaces.
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Figure 4.2: The degree of within-phenomena transfer for different models
pre-trained for two epochs.

Gradient spaces We will now look at the properties of the subspaces of
different paradigms, how they overlap and how aligned they are. We first
average the sizes of all subspaces and represent them as a portion of all
model parameters to get an idea of how distributed different paradigms are
processed. The average subspace size is |S27M | = 0.57%(±0.5), |S70M | =
1.39%(±1.4), |S203M | = 1.45%(±1.44) of all model parameters5.

Is the overlap of the subspaces of different paradigms (i.e. their
Jaccard similarity) predictive of the transfer between them? If we con-

5It is essential to remember that this value is influenced by the threshold parameter ϵ
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struct a similarity space solely based on Jaccard similarity, correlations
with our transfer spaces are very low (r27M = .09, r70M = .15 and
r203M = .14, respectively). That means that just because paradigms are
processed through the same parameters, it does not imply that they share
structure. Additionally to being overlapping, the subspaces also have to
be aligned. If we multiply the Jaccard similarity with the cosine sim-
ilarity of the subspace gradients, the correlations of the gradient space
with the transfer space jump to r27M = .68, r70M = .63 and r203M = .64.
The alignment of relevant subspaces, hence, predicts the transfer learning
between different paradigms.

Testing similarity spaces We can now use our similarity spaces to test
them against different hypothesis spaces (like the hypothesis space on the
right in Figure 4.1). We correlated the gradient spaces with ‘clustered
by phenomena’ space and different controls and find that phenomena
are much more predictive of generalisation than our vocabulary controls
(Wasserstein and token overlap; see Table 4.1). This confirms that the
models generalise within phenomena across something beyond their shared
vocabulary.

Hypothesis space TLM-27M TLM-70M TLM-203M

Token Overlap .9 .18 .16
Wasserstein distance -.21 -.26 -.27
Clustered by phenomena .39 .42 .44

Table 4.1: Correlations of gradient spaces with different hypothesis spaces.

We have seen that we can use our method to construct spaces of an LMs lan-
guage conceptualisation. How does this conceptualisation change through-
out training?
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Linguistic spaces throughout training

We will now use our linguistic spaces as an interpretability tool to analyse
how LMs conceptualise language throughout the training process. We
will first look at how well the LMs learn the different BLiMP paradigms
and then investigate the development of their similarity spaces throughout
training.
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Figure 4.3: (a) The average Jaccard similarity of task-subspaces either
within the same phenomenon or outside the phenomenon; (b) the average
inner product of gδ of the overlapping subspaces.

BLiMP learning We evaluate all model checkpoints on all paradigms
without fine-tuning. During pre-training, the performance on the BLiMP
benchmark increases steeply in early training and then levels off. The
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increase is especially abrupt for the larger models (the learning curves can
be found in Appendix A.2.2.1). Interestingly, during the probing phase,
our contrastive fine-tuning of linguistic tasks improves much quicker and
to higher final performance in models that are pre-trained for more epochs
(for a visualisation see Appendix A.2.2.2), indicating that our selective
updating works better if it can latch on to previous knowledge already
contained in the model parameters and subspace selection is, therefore,
more meaningful. So, how does the processing of BLiMP paradigms
change throughout the pre-training?
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Figure 4.4: The development of subspace size throughout language model.

Development of similarity space When we consider the average size
of subspaces |S|, we find that the subspaces continuously become larger
during pre-training (see Figure 4.4). The LMs appear to process linguis-
tic tasks initially more localised and continuously increase the degree of
distributedness of the processing. But does this also increase the inter-
connectedness of different paradigms with more training? We observe
that, indeed, the Jaccard similarity within-phenomenon increases with
training, meaning that paradigms from the same phenomenon share more
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parameters in later training (see Figure 4.3a). At the same time, the overlap
between paradigms from different phenomena only increases marginally.
Also, the alignments of gradients increase selectively for paradigms from
the same phenomenon (see Figure 4.3b). Larger models, again, align
related paradigms much faster and to a higher degree than smaller models.
This shows how the processing of linguistic phenomena starts idiosyncratic
(separated parameters and not aligned), and with training, the sharing of
structure increases (shared parameters, where appropriate and aligned).

Similarity space stability Overall, we find that similarity spaces are
remarkably stable: similarity patterns are present from very early in train-
ing (within the first epochs), and any change that happens later is instead
a reinforcement of that pattern rather than a substantial change (see Fig-
ure 4.5). This is somewhat surprising if we compare it with patterns of
human learning, which are much more marked by stages (Piaget et al.,
1952; Gopnik et al., 1999, 2004). As we deepen our knowledge, new
patterns emerge – in comparison, language learning in LMs appears to be
continuous rather than marked by such incisive shifts.
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Figure 4.5: Correlation of gradient similarity spaces with the trained-out
gradient space. Correlation is very high after only a few epochs, indicating
that the overall pattern of gradient similarities only changes minimally.

4.5 General discussion and conclusion

Summary In this chapter, we introduced a method to construct linguistic
task spaces, a conceptual space of a language model’s language under-
standing (Gardenfors, 2004, 2014). To do so, we introduce a technique
to isolate linguistic phenomena from their entanglement with other phe-
nomena and enable us to fine-tune them selectively despite their latent
nature. Thereby, we resolve major issues of the undersampling approach
from the previous Chapter (3). We follow the established methods from
MTL and obtain behavioural similarity estimates by selectively fine-tuning
specific linguistic tasks and evaluating their effect on other tasks. We also
introduce a new method and produce structural similarity estimates by
analysing their shared parameters and alignment. The gradient alignment
between linguistic tasks predicts their transfer learning on the BLiMP
benchmark. Structural methods are usually more expressive, maintaining
a larger amount of information (compare 2.3).
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Use cases The resulting similarity spaces can be used in different ways.
From a linguist’s perspective, the space can be used as an explicit hypoth-
esis about the relatedness of different linguistic structures (in the sense
of constructing a ‘synthetic linguistic theory’; Chowdhury and Zampar-
elli, 2019). By constructing a hypothesis space and testing it against the
similarity space, a linguist can do simple and quick hypothesis testing.
From the machine learning perspective, the similarity space can be used
as a tool to interpret the extent of a language model’s grasp on different
language phenomena and its generalisation behaviour. In our analysis, we
concentrated on the machine learning perspective by analysing the learning
dynamics of the language model.

Insights into the learning process We observe that larger models are
quicker to latch on to linguistically meaningful similarities between tasks
and, overall, are better at exploiting their similarities, and they identify
more related linguistic tasks. When looking at the changes in relevant
subspaces for the different phenomena, we observe that they become
larger with training. The overlap primarily increases across related lin-
guistic tasks (within phenomena) and not so much for unrelated linguistic
tasks. Similarly, the gradient alignment of the related subspaces selec-
tively increases. Hence, in early training, LMs learn linguistic tasks more
idiosyncratically and in isolation but later start distributing and connect-
ing them broadly, sharing structure and using more parameters to encode
any linguistic task. This runs against an intuition from learning theory
that assumes that learning is finding efficient compression rules (see Sec-
tion 2.2.2): with a better understanding of a task, we find better rules to
compress the input data to a lower intrinsic dimensionality (Cheng et al.,
2023). The intrinsic dimension describes the number of dimensions re-
quired to represent data. How does this reconcile with the increase of
extrinsic dimensionality we observe here? A more distributed processing
of concepts allows for more overarching structure sharing and generalisa-
tion across different subconcepts, which might be necessary to achieve a
lower intrinsic dimensionality. Intrinsic and extrinsic dimensions might
be inversely related in language models. Ultimately, when analysing the
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similarity spaces throughout the training process, we find that similarity
patterns are surprisingly stable, and learning appears rather to reinforce
the existing patterns than let new patterns emerge – a learning behaviour
we would expect from more human-like learning.

Future reseach From here, many future routes can be taken for further
research. As language models become more apt in many domains, they
can become interesting models of cognition beyond language. We have
presented an efficient method of extracting conceptual spaces from their
generalisation dynamics. Further, linguistically inclined researchers can
construct hypothesis spaces based on controversial concepts in the field
and test them against linguistic spaces extracted from language models.
To improve upon our method for task-space construction, we see multiple
viable routes to follow: future research may utilise more potent state-
of-the-art LLMs to construct similarity spaces. More advanced models
may find more subtle structural similarities that are more informative
to linguists. Further, we imagine swapping the ‘anchors’ that span the
space (i.e. in our case, the BLiMP ‘paradigms’) with anchors derived
from the learning dynamics themselves might yield more expressive task
spaces. This way, we become less constrained by any assumptions about
the language structure made by linguistic theory.

4.6 Limitations
To put the presented method into perspective, I will briefly elaborate on
the most important limitations.

Firstly, as discussed in the previous section (4.5), a major weakness of
our probing approach lies in the necessary top-down definition of ‘anchors’
that we use to span the space. We utilise human-defined phenomena and
relate them to each other. However, a more accurate linguistic space can
probably be described by ‘anchors’ that are defined through the model
itself and span the conceptual space with maximal expressivity.

Secondly, while our approach applies to all types of knowledge do-

64



“output” — 2023/12/20 — 15:41 — page 65 — #83

mains, it requires minimal pairs of phenomena within that domain to
fine-tune them selectively. Minimal pairs are primarily used in linguistics
and are uncommon in other knowledge domains.

Thirdly, our fine-tuning and evaluation data are i.i.d. and come from
a very narrow distribution: the data are not natural but synthetic, and all
data are generated using the same templates. We use this very narrow
i.i.d. data to asses the fine-tuning success during probing. However, we
cannot be entirely sure whether we succeeded in fine-tuning a specific
linguistic phenomenon rather than some idiosyncracies of the narrow data
distribution. While our contrastive fine-tuning approach might elevate this
issue slightly, it does not dispel our doubts completely. The optimal way
to guarantee our results would be the evaluation on a set from a separate
distribution.
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Chapter 5

AUTOMATED CURRICULUM
LEARNING FOR
INTERPRETABILITY

We have seen in the previous chapter how the learning process of LMs
exhibits surprisingly little change in structure (i.e. shifts in generalisation
patterns). Here, we will employ another method to analyse the learning
process of LMs: automated curriculum learning algorithms. Automated
curriculum learning (CL) algorithms select the data points for a target
model to learn optimally at any point in training. In this chapter, we will
analyse the policy of an automated CL algorithm optimised for language
data.

5.1 Introduction
In the first two chapters of this dissertation, we investigated the different
linguistic concepts that a language model finds and utilises to improve its
language abilities. In this chapter, we are now interested in whether provid-
ing certain features in the data with different prioritisation can influence
the learning speed and the quality of the learning outcomes. To that end,
we use an automated curriculum learning method as an interpretability
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tool.

Automated curriculum learning usually consists of small meta-learning
algorithms that learn to optimise the distribution and order of the training
data of a target model (a detailed explanation of curriculum learning will
be given in the background section of the current chapter). By training
such an algorithm for language models and analysing its policy, we can
infer what is learned at the different stages during the training process. Out
of all NLP tasks, language modelling requires by a large margin the most
computation and data during training. It is surprising that — to the best of
our knowledge — there is no established curriculum learning method for
LM training. We, therefore, resort to an automated curriculum learning
technique from computer vision called ‘commentaries’ (Raghu et al., 2021)
and apply it to our learning problem. Raghu et al. (2021)’s approach learns
a ‘teacher’ model that takes a data point and a learning state indicator of the
target model and predicts a respective weight. This weight is then applied
to the target model’s loss of that data point. An extensive explanation of
the mechanism of commentaries will be given in Section 5.3. Since it is
computationally expensive to train teacher models in the commentaries
framework, we start our analysis with computationally cheap context-
free grammars (CFGs) (Section 5.3.1) and only afterwards transition to
full-scale models (Section 5.3.2). While doing so, we will first see how
our teacher models create apparently sound curricula which match well
with what we would expect from the literature. Under closer inspection,
however, we will uncover how they are very brittle and inconsistent. In the
second part of this chapter (from Section 5.3 onwards), we dive deeper into
the reasons for this brittleness and find that Raghu et al. (2021)’s framework
— rather than providing a sound data-based curriculum strategy — is fully
data-agnostic and that learning advantages stem from interactions of the
curriculum shape with the Adam optimiser (Kingma and Ba, 2015). As a
result of the interaction, the parameter updates of the model are scaled in
size, similar to a change in learning rate; the curriculum yields no benefit
beyond that. Ultimately, we show how the curriculum-Adam-interaction
is not limited to the commentaries framework but can also explain results
in other curriculum learning approaches when they are combined with
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optimisation through Adam. Importantly, we show that plain Adam with
properly tuned hyperparameters outperforms curricula in all of our tested
settings.

Outline We will start by providing additional background information
on curriculum learning (Section 5.2) and on the commentaries framework
in particular (Section 5.3). We will then dive into our pilot studies using
CFGs (Section 5.3.1) and continue on encoder-based language models
(Section 5.3.2). In Section 5.4, we will dissect the brittleness of the
curricula and show the generality of our uncovered interaction. We will
conclude in Section 5.5.

5.2 Background
Inspired by human learning, curriculum learning (CL) exposes machine-
learning models to a limited, ‘simple’ portion of the data distribution at
first and only gradually introduces ‘complex’ examples into the training
process until the whole training data is used (Elman, 1993; Rohde and
Plaut, 1999; Krueger and Dayan, 2009; Bengio et al., 2009). To this end,
every CL approach has to formalise which training examples are ‘simple’
and which are ‘complex’ (i.e. determine a difficulty measure) and decide on
the rate at which to add ‘more complex’ examples into training (i.e. define
a scheduling function). Difficulty measures and schedule functions can be
determined in different ways. We here shortly summarise a broad grouping
of approaches: hand-crafted curricula and automated curricula.

5.2.1 Hand-crafted curricula
The simplest type of curriculum fixes the difficulty measure and schedule
function prior to training without adapting them dynamically according to
the learner state. The choice of the difficulty measure is usually based on
the practitioner’s intuitions and experiences. Common difficulty measures
in NLP include the sequence lengths of an input (or the closely related
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depth of the parse tree) (Tay et al., 2019; Martı́nez Alonso et al., 2017;
Platanios et al., 2019), the number of coordinating conjunctions (Kocmi
and Bojar, 2017) or the diversity of the used vocabulary (Platanios et al.,
2019). Schedule functions typically expand the data distribution towards
more difficult examples monotonically, either as a step-function (Bengio
et al., 2009; Spitkovsky et al., 2010a; Kocmi and Bojar, 2017) or contin-
uously (Hacohen and Weinshall, 2019; Platanios et al., 2019; Penha and
Hauff, 2020; Liu et al., 2018). Examples of step functions can be seen in
Figure 5.9a. Hand-crafted curricula have the advantage of being cheap
and easy to implement. On the other hand, the choice of the correct setup
requires experience or expert domain knowledge, idiosyncracies of data
and tasks make them potentially difficult to generalise, and the method
is ‘coarse’, such that it is limited to the predefined structure and cannot
dynamically adapt to the current state of the learner.

5.2.2 Automated curricula

There are different approaches to addressing the shortcomings of hand-
crafted curricula. We coarsely bin them into (1) non-parametric and (2)
parametric solutions. The (1) non-parametric curricula can dynamically
adapt the schedule function and/or difficulty measures to the current state of
the learner without learning any additional parameters. The most common
approach to non-parametric curriculum learning is self-paced learning
(SPL; Kumar et al., 2010). In SPL, data points are only included in
training when they produce losses that fall under a dynamic threshold. On
the other hand, (2) parametric approaches utilise meta-learning to learn
additional parameters (often times referred to as ‘teacher’-models) that
predict a data point’s utility towards a target (or ‘student’)-model’s learning
objective (for examples, see MentorNet by Jiang et al. 2018, ScreenerNet
by Kim and Choi 2018, and learning-to-teach by Fan et al. 2018). The
predicted utility is then used to optimise the learning process. As they
require no manual work, end-to-end approaches are convenient. However,
they come oftentimes with the high computational cost of optimising
‘teacher’ models, making them too expensive to optimise with large target
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models.

5.2.3 Theoretical underpinnings
Theoretical explanations of the efficiency of curriculum learning remain
relatively sparse. The two most referred-to explanations can be found
in Bengio et al. (2009), which state that CL helps 1) with denoising the
dataset and 2) by smoothening of the non-convex optimisation landscape
(as a form of continuation method; compare Allgower and Georg, 1980).

Despite all of their different forms and technical implementations,
all curriculum learning approaches have in common that they cause a
systematic shift in the learning signal the model is receiving. We refer to
this universal shift of curricula as the curriculum structure throughout this
paper. The curriculum structure is central to generalising our findings in
later sections.

5.3 Automated CL with Commentaries
We here conduct a case study on commentaries, an existing parametric
approach to curriculum learning. We start by summarising how the com-
mentaries curriculum (Raghu et al., 2021) is learned and applied.

Mechanism To learn a curriculum, commentaries are formalised as a
teacher model T (xi, i;ϕ) → wi with parameters ϕ that takes a batch of
data xi and an indicator of the target model’s current learning state i to
produce a weight wi ∈ [0,1] for every data point in the batch. The indicator
i is set to be the number of previous iterations for which the target model
has been trained, and we denote I to be the total amount of updates for
which we will train a model. Further, we denote the target model as S and
its parameters as θ. At every iteration i, the weight-vector wi is applied to
the target model’s loss Ltrain.

The commentaries pipeline is divided into two phases: a teacher-
pretraining phase and an evaluation phase. We depict both phases in
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init
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update
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return

return

Figure 5.1: A visualisation of the commentaries-framework. The left side
illustrates the teacher optimisation: The teacher model (T ) is trained in the
outer loop to optimise the learning process of the practice target models
(Sp) in the inner loop. The number of iterations in the inner loop is limited
by the amount of memory available. The right side shows how the pre-
trained teacher is used to optimise a new student model to convergence.

Figure 5.1. During teacher-pretraining, the teacher is explicitly trained
to minimise the loss of S on some held-out data Ddev by reweighing the
training loss of S. To do so, several ‘practice’ target models Sp are trained
on Dtrain for a limited amount of steps Ip while their loss Ltrain is weighted
by the teacher-predicted w. For all training steps, the computational graph
of Sp is maintained. Subsequently, Sp is evaluated on the held-out set
Ddev. Clearly, the resulting loss Ldev depends Sp’s optimised parameters
θ̂. At the same time, θ̂ depend on the teacher parameters ϕ through the
reweighing of Ltrain during training, such that:

∂Ldev

∂ϕ
=

∂Ldev

∂θ̂
× ∂θ̂

∂ϕ
(5.1)

This makes it possible to backpropagate Ldev ‘through training’ to
update the teacher parameters ϕ. The number of Sp’s optimisation steps Ip

in the teacher pretraining phase is limited by the amount of memory that
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can be allocated to store the computational graph. 1.
In the evaluation phase – after the teacher parameters ϕ have been

pre-trained – a new target model S is trained to evaluate the teacher policy.
Since there is no need to save the computational graph of the training at
this stage, there is also no limit to the number of training steps I , such
that we can now train S to convergence. For additional details, we refer to
Raghu et al. (2021).

5.3.1 Pilot study on context-free grammars (CFG)

To have highly controllable experiments with low computational cost, we
start by learning curricula for two tasks based on CFGs.

Dataset Description Example Configuration

anbn

A grammaticality judgement task
in which the student is trained to
predict whether a sequence is pro-
ducible through anbn or not.

aadddd → 0
cccbbb → 1

n ≤ 6

|V | = 41

|D| = 15 600

DyckLM

A next-token prediction (i.e. lan-
guage modelling) task in which the
student is trained to generate dif-
ferent opening or closing parenthe-
ses. While it is possible to open a
new parenthesis at any point, only
the most recently opened parenthe-
sis can be closed at any time.

({[]<>}→ }
({[]<>}→ )

depth ≤ 8

length ≤ 20

|V | = 18

|D| = 5 000

Table 5.1: Overview of the CFG datasets

1To elevate this limitation, Raghu et al. (2021) suggest an approximation for the
gradients of the teacher model (right-hand term in Equation 5.1) through truncated
Neumann series and implicit vector-Jacobian products (for details, see original paper).
However, Raghu et al. (2021) do not apply this approximation to their CL approach.
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Experimental setup - Data

In generative linguistics, a CFG is a set of recursive rewriting rules (or
‘productions’) used to generate patterns of strings. We look into two types
of CFGs: one with a sequence classification objective (anbn; described
in detail in Table 5.1) and the other with a sequence generation objective,
mimicking autoregressive language modelling (DyckLM ; see Table 5.1).
While being a significant simplification of natural language, we can use the
experiments on CFGs to get a better understanding of general patterns in
the teachers’ policy. We generate training- / target- / validation- / test-sets
by splitting the generated data into portions of 50% / 20% / 10% / 20%,
respectively.

Experimental setup - Models

We implement our models using the fairseq-library (Ott et al., 2019). The
details on the model architectures can be found in Table 5.2. The teacher
architectures mirror the student used during teacher optimisation, replacing
the output head with a sigmoid function. Accordingly, the teacher predicts
a single weight for the loss of every input sequence in the classification
tasks and a weight for every token in the sequence generation task. We
optimise a teacher with practice students learning anbn or DyckLM for
Ip = 1000 steps, following the protocol described in Section 5.3. After the
teacher optimisation, we use the teacher to train a student with the same
architecture to its convergence.

Dataset Model type nlayers nheads dimemb dimffn nparams

anbn Transformer-Encoder 2 8 48 32 ∼34k

DyckLM Transformer-Decoder 2 8 8 32 ∼4k

Table 5.2: Model details of the CFG-pilot experiment
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Experimental results

Here, we will first evaluate the performance gains that the commentaries
curricula are able to achieve. This is necessary in order to guarantee that
the analysis of the curricula is meaningful. Afterwards, we will provide an
analysis of the teachers’ curriculum policy.
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Figure 5.2: Test-set performance of the student on (a) anbn and (b)
DyckLM respectively; the dashed line in both plots indicates the number
of steps Ip were taken during the teacher optimization.

Performance Figure 5.2 (a) shows how the teachers’ reweighting is able
to substantially improve the students’ convergence speed during student
training for anbn and similarly for DyckLM in Figure 5.2 (b). The dashed
line indicates the respective Ip the teacher was trained for. Interestingly,
the student in Figure 5.2 (a) only shows improvements over the baseline
after it passed the dashed line. The reasons for this peculiar behaviour will
become clear in Section 5.4. Our results confirm that the framework works
in a comparable way on sequence processing tasks as for computer vision
tasks in the original paper.

Analysis of the teacher policy First, we are interested in the schedule
function that the teacher employs. We illustrate in Figure 5.3 how the
average weight in every batch wi rises, while the (normalised) standard
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Figure 5.3: Distribution of weighting during the training of a student. The
dashed line indicates up to which point the teacher has been trained.

deviation of wi declines2. This means that the teacher model learns a
high-variance (i.e. selective) weighting in early training, which includes
more and more data points as the training of S progresses. This is in
accordance with the principle idea of curriculum learning (Bengio et al.,
2009). We observe the same pattern across all datasets and models in our
experiments.

Next, we will have a look at the potential difficulty measures that the
teacher employs. The most popular difficulty measures for CL in NLP
are centred around grammatical complexity, measured through, e.g. the
maximum depth of the parse tree (e.g. Tay et al. 2019; Martı́nez Alonso
et al. 2017; Platanios et al. 2019). In anbn, parse tree depth is directly
reflected in sequence lengths, while for DyckLM , the parse tree depth
is equivalent to the current depths of the stack of opened parentheses for
each token. To see whether parse-tree depth is a crucial feature during
the learning process, we relate the parse-tree depth of data points to their
average received weight throughout training (Figure 5.4a and 5.4b). We
can see a very clear pattern in which the teacher prefers shorter sequences
early in training and continuously adds longer ones for the sequence
classification in anbn, while the pattern for DyckLM is present but less

2Importantly, small weights do not lead to small updates, as Adam normalises the size
of the gradient.
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clear. Additionally, we correlate the teacher weights with the students’
loss (compare self-paced learning; Kumar et al., 2010) on all samples in a
batch and find that the teacher favours low-loss examples at the beginning
of training (Figure 5.4c).
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Figure 5.4: (a) weighting separated by sequence lengths for anbn; (b)
weighting separated by parse-tree depth for DyckLM (c) Correlation
student log loss and teacher weighting for DyckLM

Conclusion CFG experiments

From our pilot study, we infer that commentaries can be applied to different
NLP problems and yield results similar to computer vision. We are further
able to extract meaningful features from the teacher policies. At the
same time, we observed that the results are brittle and dependent on
hyperparameter settings in an unintuitive way (for an illustration with
batch sizes, see Appendix A.3.1). We go on to test the approach on
full-scale models.

5.3.2 Studies on full-scale models

We go over to experiment with large-scale models using natural data. We
replicate Raghu et al.’s results and, in parallel, also transfer the approach
to the fine-tuning of LMs. In the following subsection, we list the experi-
mental setups, separated by modality and then go into a joint analysis of
the results.
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Experimental setup

We first replicate Raghu et al. (2021)’s results on vision data by using their
original code3. We train CNN-based teachers with 2-layer CNN-based Sp

on the CIFAR10 and CIFAR100 datasets, respectively, following the previ-
ously described procedure while sticking to the reported hyperparameter
settings. After teacher training, we evaluate the teacher on different target
models (2-layer CNN, ResNet18, ResNet34; He et al., 2016).

In parallel, we transfer the commentaries framework to natural lan-
guage data, specifically to the popular NLU tasks from the GLUE bench-
mark (Wang et al., 2019c). Just like for the CFG datasets, we replace
the CNN-based teacher and target models with small transformer en-
coder models from the fairseq library (Vaswani et al., 2017; Ott et al.,
2019). To address the computational limitations of the teacher pretraining
phase (mentioned in the previous mechanism-paragraph), we use frozen
RoBERTaBASE-embeddings (Liu et al., 2019c) instead of high-dimensional
mappings from the vocabulary as the input to our teacher and target models.
To further reduce the memory requirement of our setup, we average-pool
the embeddings with kernel size and stride of 3. We then optimise teachers
with this setup on the GLUE tasks. We evaluate the teacher by finetun-
ing the full RoBERTaBASE-model on the different GLUE tasks with their
respective teacher.

Experimental results

We first analyse the policy of the teacher models and then continue to
evaluate their performance.

Commentaries learn reasonable curricula For both, CIFAR and GLUE,
we find similar scheduling policies to the CFG experiments, with high
variance at the beginning of training and uniform weights later. Con-
sidering difficulty measures, we find that the teacher’s policy is making

3https://github.com/googleinterns/commentaries
4We choose MRPC as we consider it representative of most GLUE tasks. We find

equivalent results for other GLUE-tasks.
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Figure 5.5: All of our pre-trained commentary teachers (vision and lan-
guage) show the same pattern when predicting weights (a): predicting
small value, high-variance weights early in student training to then predict
higher and more uniform weights as student training progresses. When
trained on an NLU task like MRPC4(Dolan and Brockett, 2005), the
teacher shows a slight preference for training examples with lower loss
by assigning higher weights to these examples earlier in training (b). The
preference is even clearer for its weighting policy in regard to sequence
lengths (c): longer sequences are weighted up the beginning of training,
and longer sequences later are only included later. Loss and sequence
length are common difficulty measures in CL.
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use of sequence lengths (Tay et al., 2019; Martı́nez Alonso et al., 2017;
Platanios et al., 2019) and losses (Kumar et al., 2010). The teacher sched-
ules long sequences at first and only gradually weighs up short sequences
later in training (see Figure 5.5c). Similarly, examples with low losses
are introduced first, and higher losses are only weighted up afterwards
(Figure 5.5b). Both of these results, the scheduling as well as the diffi-
culty measures, are in line with what we would expect from the literature
(compare Section 5.2).

Commentaries’ performance is brittle We replicate the learning speed
improvements that are reported in the original paper (see Figure 5.6a). In
our GLUE setup, we find similar results (Figure 5.6b; for results on other
GLUE tasks, see Appendix A.3.5). However, as we have observed brittle
performances in the CFG experiments, we engage in an extended hyperpa-
rameter search. We find that improvements are limited to a certain set of
suboptimal hyperparameters. As soon as we properly tune the hyperparam-
eters, we learn faster by using the plain Adam optimiser without a teacher
(for replication results with all datasets and models, see Appendix A.3.3).
In all properly tuned settings, Adam, without curriculum, performs equally
or better.

In summary, the commentary teachers’ policy very well resembles
other successful setups from the CL literature. Despite this, we also find
that the curricula’s benefits during the evaluation phase are not consis-
tent: Changes in hyperparameters that should not strongly influence the
effectiveness of the curriculum – such as changes in learning rate or batch
size – erase any curriculum advantage. A proper hyperparameter search
makes commentaries ineffective. Why is this the case, and why are the
commentaries working in certain settings to begin with? To address these
questions, we stop to analyse the teacher policy and have an in-depth look
at how they actually produce their learning advantage.

Commentaries are data independent CL assumes that it matters at
which point we train on which data point. We conduct an ablation ex-
periment to see whether this is really what is driving the commentaries’
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Figure 5.6: The left side shows a 2-layer CNN (a) trained on CIFAR10 and
RoBERTaBASE (b) trained on GLUE-MRPC respectively with and without
a commentaries teacher (T ). We see how the teacher improves learning
speed for either model when trained with low learning rates (γ). However,
there is no improvement when hyperparameters are chosen optimally.
Figure (c) repeats the low γ data from Figure (a) but adds the ablated
teacher from Section 5.3.2 in dark blue for comparison.

improvements. We replace the original weighting wi – which applies an
individual weight for each data point in a batch – by the batch average wi.
This ablation erases not only the data dependence of the weights but also
the distribution of the weights within a batch. Surprisingly, this ablation
does not degrade the curriculum’s performance (see Figure 5.6c) at all.
The exact mapping of data points and weights is thus, apparently, irrelevant.
The learning benefits must originate from the mere shape of the curriculum
(i.e. the curriculum structure) by shifting from small to large weights with
increasing i. We corroborate this intuition by conducting an additional
small experiment with toy curricula that employ different simple weight
shifts as their weighting policy:

T↑linear(i) =
i
κ − Increase w linearly

T↓linear(i) = 1− i
κ − Decrease w linearly

T constant(i) = 0.5 − Keep w constant
T sigmoid(i) = σ((i− λ) ∗ κ)− Increase w non-linearly

with κ and λ being constants and σ being the sigmoid function. We
illustrate these toy policies and their performance on CIFAR10 in Ap-
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pendix A.3.4. Interestingly, some of these toy curricula produce learning
advantages akin to commentaries. In fact, effective curricula shift weights
from smaller towards larger values throughout training, suggesting that
such shifts are underpinning the success of the curriculum.

5.4 Curriculum-Adam interactions
We have seen how simple shifts from small to large loss weights can mimic
the effects of the commentary curriculum. How is this possible? First, we
know that the effect works across datasets, modalities and models and must
therefore originate in the data- and model-agnostic optimisation process.
In our case, optimisation centres around the Adam optimiser (Kingma
and Ba, 2015). Second, the effective component in our toy curricula
is the change of weighting with time. In the Adam optimiser, the only
components sensitive to changes with time are the two momentum terms
mi and vi. In the following, we will analyse the momentum terms of Adam
(see Algorithm 1) to find a potential source of the learning advantages in
commentaries.

Algorithm 1 Adam (simplified)

1: Inputs: γ (lr), β1, β2 (decay-rates), θ (parameters), f(θ) (objective)
2: initialise mi ← 0, vi ← 0
3: for i ∈ {1, . . . I} do
4: gi ← ∆θfi(θi−1)
5: mi ← β1mi−1 + (1− β1)gi
6: vi ← β2vi−1 + (1− β2)g

2
i

7: m̂i ← mi/(1− βi
1)

8: v̂i ← vi/(1− βi
2)

9: ∆θi ← m̂i/(
√
v̂i + ϵ)

10: θi ← θi−1 − γ∆θi
11: end for
12: return θi
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Asymmetric momenta In the Adam algorithm, both momenta, mi and
vi, are determined by the current gradient gi as well as their previous
states (mi−1 and vi−1, respectively). They are used to calculate the final
parameter update ∆θi. For either term, the influences of past states are
decayed at their own rate β1 and β2 (see line 5 & line 6). By default, β1

and β2 are set to largely different values5. Its progressive decay rate β1

makes mi more dependent on immediately preceding states, while vi is
largely influenced by more distant states. Both momenta are, therefore,
asymmetric in their past dependence. To calculate the parameter update
∆θi (line 9), the faster decaying term mi is divided by the square root of
the slower decaying vi. This step is done to normalise the size6 of the
parameter-update |∆θi|, and in a regular setup, the asymmetry of decay
is irrelevant as the size of mi and vi remains (more or less) constant
throughout training.

Interaction between momenta and curricula In our toy experiments
(and in commentaries), we scale our losses (and therewith the gradients gi)
by wi to become larger with time. If we systematically increase the size of
gi with time, |mt| grows faster than |vt|. By normalising the mt term by
the therewith smaller vt term, we artificially increase the size of the update
|∆θi|. There thus exists an interaction between the momentum terms and
the shape of the curriculum. This effect is easy to empirically exemplify in
a minimal example.

We consider a simple case with only a single parameter. We create two
conditions: In the first condition, we linearly increase the gradient size |gi|
from 0 to 1, where it levels off (similar to the linear toy curriculum). In the
baseline condition, the |gi| remains fixed at the value of 1 (Figure 5.7a). For
the first condition, the size of the update returned by Adam is systematically
larger compared to the baseline condition (Figure 5.7b). We hypothesise
that this scaling of |∆θi| is behind the observed learning improvements of

5Kingma and Ba (2015) recommend: β1 = 0.9; β2 = 0.999
6For simplicity, we refer to the l2-norm (calculate as |v|2 =

√
v21 + ..+ v2n) of a

vector as its ‘size’ throughout this and the following sections. Further, we simplify its
notation to be |v|.
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Figure 5.7: Minimal example with a single parameter: If we increase the
gradient of the parameter linearly (left), Adam produces larger parameter
updates |∆θi| compared to a constant gradient size (right).

commentaries and our toy experiments. We can test whether this is true by
checking the following two entailments:

Entailment 1: The size of the update |∆θi| for commentaries is larger
than for the baseline while wi increases in size. Afterwards, |∆θi|
drops to normal levels.

Entailment 2: Making mi and vi equally dependent on past |g| by
setting the decay-factors to β1 = β2 leads to the curriculum losing
its effect.

We go on to empirically test these entailments for commentaries. Moreover,
other curricula that cause systematic shifts in gradient sizes can result in
similar effects. We, therefore, continue to test different other curricula.

5.4.1 Interactions with Commentaries
Experiments For the first set of experiments, we apply minimal neces-
sary changes to the original setup of Raghu et al. (2021). We reutilise the
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Figure 5.8: (a) Akin to the minimal example in Figure 5.7, the com-
mentary teacher also produces larger parameter update |∆θi| due to
Curriculum-Adam-interactions. (b) We can neutralise the Curriculum-
Adam-interactions by setting Adam’s β parameters to equal values (β1 =
β2 = 0.99). With this intervention, the difference of |∆θi| that we observed
in (a) vanishes. As a consequence, the performance of the commentaries’
curriculum drops to the baseline (c). This shows how the interaction-
dependent increase in |∆θi| is crucial for the learning speed gains of
commentaries.

teacher model from 5.3.2 to train a new target model on the CIFAR10-
dataset (Krizhevsky et al., 2009).

We test the first entailment by recording the size of the student’s
parameter updates |∆θi| and of the baseline model without loss reweighting
during the training. Comparing the two, we find that the model with loss-
reweighing experiences an increase in |∆θi| compared to training without a
teacher (Figure 5.8a). The ‘boost’ in the update norm corresponds neatly to
the range of iterations i in which wi increases starkly (compare Figure 5.5a).
Our observations are very similar to the minimal example described in
Section 5.4 and are in line with Entailment 1. This experiment provides
supportive evidence for our hypothesis, but it is not yet sufficient: the
observed ‘boost’ could potentially arise from factors such as the enhanced
properties of the optimization landscape, as discussed in Bengio et al.
(2009).

We rule out such alternative explanations by eliminating the effect of
the Adam-curriculum-interactions while keeping potential other effects of
the curriculum unaffected. To do so, we equalise the past dependence of the
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momentum terms by setting both of Adam’s βs to the same value (β1 = β2

= 0.99). This results in Adam becoming equivalent to standard stochastic
gradient descent (SGD) with a normalised momentum term7. We train an
additional set of target models with this alternative hyperparameter setting.
As a consequence, the difference in |∆θi| disappears (see Figure 5.8b) and
the learning advantage in accuracy vanishes (Figure 5.8c). This verifies
Entailment 2.

We have seen so far that the Adam-curriculum-interactions scale the
parameter updates |∆θ|. Doing so should ultimately have the same effect
as increasing the learning rate γ (see line 10 in Algorithm 1). Hence,
instead of using a curriculum, we can simply adjust γ. We show that this
has the same effect by training three sets of target models (with and without
loss-reweighting) with learning rates spanning three orders of magnitude.
We find that only for very low values of γ, the compensating effect of
commentaries helps learning (Figure A.8 in Appendix A.3.3). With a
properly tuned γ, the difference between the baseline and commentary
condition vanishes.

Conclusions We can summarise the results of our first set of experiments
as follows: First, the effectiveness of the commentaries curriculum is a
result of Adam-curriculum-interactions that scale parameter updates to
become larger. Second, we can eliminate the effect of interactions by
setting Adam’s beta parameters to equal values. This eliminates any learn-
ing advantage. Third, the observed learning advantages are only possible
due to suboptimal hyperparameters; as soon as we set hyperparameters
optimally, vanilla Adam outperforms the curriculum.

Automated approaches to curriculum learning are especially vulnerable
to this interaction, as they can adapt their schedule function to optimally
compensate for suboptimal hyperparameters. But is this a broader problem
that can potentially affect any other CL setting? In what follows, we
investigate the impact of Curriculum-Adam-interactions on other types of
curricula.

7The βs can be chosen in the same way as the decay factor β in SGD
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Figure 5.9: On the left, we illustrate the schedule functions used for our
experiments in Section 5.4.2. On the right side, we see the corresponding
sizes of parameter updates |∆θ|. We see an increase in parameter updates
at the largest relative change of the data distribution.

5.4.2 Interactions with hand-crafted curricula

We now investigate other common hand-crafted and non-parametric cur-
ricula, such as pacing via sentence length or loss (e.g. Spitkovsky et al.,
2010b; Platanios et al., 2019; Tay et al., 2019). These curricula do not have
explicit shifts of gradient sizes from small to large. However, we have
reason to believe that they might be affected by interactions with Adam
nevertheless: We suspect that difficulty measures like sequence lengths
(Spitkovsky et al., 2010b; Platanios et al., 2019; Tay et al., 2019) or loss
(Kumar et al., 2010) are oftentimes correlated with the size of the gradients
|g| that they produce. When we finetune RoBERTaBASE (Liu et al., 2019c)
on a selection of GLUE-tasks, we find that this is indeed the case (a plot
relating sequence lengths and losses to the size of the resulting gradients
|g| can be found in Appendix A.3.6). A curriculum that orders training
examples according to these difficulty measures, hence, also implicitly
orders them according to their gradient sizes. As a consequence, classical
hand-crafted curricula potentially also trigger interactions with Adam. We
will test such curricula for interactions in the following paragraph.

Experiments We implement two simple but common hand-crafted cur-
riculum setups, which use (1) sequence length and (2) cross-entropy-loss
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as difficulty measures and employ the discrete schedule functions shown
in Figure 5.9a. Ahead of training, we order the training data according
to either their sequence length or the losses obtained by a RoBERTaBASE

model that we finetuned on the respective task. The curriculum randomly
samples from an incrementally larger portion of the ordered dataset. We
determined the hyperparameters of the schedule functions by conducting
a grid search, determining the best-performing setup on a subset of the
validation data. We then finetune RoBERTaBASE (Liu et al., 2019c) with
both an optimal and a slightly suboptimal learning rate on the MRPC-task
from the GLUE-dataset (Wang et al., 2019c).

Table 5.3 reports results for the hand-crafted curricula. If the learning
rate is low, both of our improvised curricula let RoBERTa learn much faster
compared to training without curriculum (as shown by the performance
after i = 750 steps). However, as soon as we increase the learning rate to an
optimal level, vanilla Adam outperforms all other conditions. Analogously
to our experiments with commentaries, we find the size of the parameter
updates |∆θ| to be increased during the time of the largest change in data
distribution (Figure 5.9b). The gain in |∆θ| for hand-crafted curricula is
not as prolonged as for commentaries. This makes sense, as the shift in
training distribution is especially large at the beginning of training, while
in later steps, the relative change is neglectable. Despite gains in |∆θ|
being relatively small and early in training, we observe that they are crucial
for the performance gains of the curricula: If we eliminate the interaction
with Adam by setting β1 = β2, the advantage of this simple curriculum
vanishes (see Figure A.12c in Appendix A.3.7).

Conclusions In summary, we find that interactions between curriculum
structure and Adam can also occur in hand-crafted curricula. This is the
case if the difficulty measures are correlated with the gradient norms that
they produce (e.g. if long sequences produce small gradients and short se-
quences produce large gradients). The interaction produces learning speed
improvements when finetuning RoBERTaBASE with slightly suboptimal
learning rates and, again, Adam, with optimal hyperparameter settings is
able to outperform the curriculum.
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SETUP i = 750 CONVERGED

NO CURR. 77.8±1.5 88.2±0.6
γLOW + SEQ. LEN. CURR 82.8±1.1 87.8±0.5

LOSS CURR 84.2±0.51 88.4±0.7

NO CURR. 87.6±1.4 90.1±0.3
γOPTIMAL + SEQ. LEN. CURR 83.2 ±3.5 89.1±1.4

LOSS CURR 79.5±9.6 90.0±0.9

Table 5.3: MRPC-validation accuracies of RoBERTaBASE for hand-crafted
curricula at an early stage (i = 750) and after convergence.

5.5 General discussion and conclusion

Summary In this chapter, we set out to use automated curriculum learn-
ing as an interpretability method. The goal was to better understand the
connection of data features with the learning behaviour of language models.
While the automated CL framework that we employed produced reason-
able curricula, it turns out that — upon more rigorous investigation — the
produced curricula actually produce no learning advantage. We show that
non-functional curricula can be remarkably deceptive: the Commentaries
curriculum closely resembles known curricula from the literature, even
though it ultimately works for very different reasons.

Implications for CL in NLP Unfortunately, this chapter contributes
little to the declared goal of the thesis. However, our findings still have
important implications for the field of natural language processing (NLP):
While curriculum learning has been successful in certain research areas
(most notably in reinforcement learning; Narvekar et al., 2020), it has had
mixed success in the field of NLP. In a very common setting of state-of-
the-art NLP – consisting of language model pretraining and subsequent
fine-tuning – curriculum learning has seen no success in the pretraining
stage (e.g. Surkov et al., 2022; Campos, 2021) and only produced marginal
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improvements in the fine-tuning stage (e.g. Xu et al., 2020). Here, we
come to the conclusion that these mixed results might be related to the
widespread use of the Adam optimiser (Kingma and Ba, 2015) in the field.
Optimising a model using a curriculum in combination with Adam can lead
to unintended interactions between the two. These interactions scale the
parameter updates applied to the model, equivalent to a temporary scaling
of the learning rate. Larger parameter updates lead to faster learning when
hyperparameters (such as the learning rate) are chosen suboptimally (as
shown for Raghu et al., 2021, and exemplary for common hand-crafted
curricula). However, if hyperparameters are chosen correctly, vanilla
Adam without curriculum always outperforms any curriculum learning
approach that we employed. Our findings can fully explain the learning
advantages attributed to the curriculum in all cases.

Implications for the learning process of LMs Besides the reported
results, working on this chapter also produced the interesting observation
that none of our attempts to create a curriculum for language modelling
was successful: besides the automated approach, we worked on multiple
alternative curriculum strategies. All of them failed without exception.
This is in line with multiple previous attempts at creating curriculum
learning strategies in language models (e.g. Surkov et al., 2022; Campos,
2021). We can relate this to our observations from Chapter 4: the learning
process of language models is remarkably continuous. There, different
linguistic concepts were acquired gradually, without any major shifts or
clearly separable stages in the generalisation patterns. Such a continuous
learning process likely does not require major shifts in the distribution of
the learning data like a curriculum provides them.

5.6 Limitations

It is important to understand the limitations of the presented work to esti-
mate its impact. We investigate interactions between Adam and general
curriculum structures in multiple settings. From here, it is clear that in-
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creasing the sizes of gradients will cause Adam to increase the sizes of
updates. However, it is empirically impossible to reassess all different sub-
types of curriculum learning methods in a single paper. We can, therefore,
not tell how much previous research might be affected, and we caution
rather to critically reexamine previous methods than to dismiss them. Fur-
ther, interactions are directly dependent on the mechanics of the Adam
optimiser, and there are no interactions to be expected in other popular
optimisers, such as plain stochastic gradient descent or similar.
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Chapter 6

ROBUSTNESS IN
PROMPT-BASED LEARNING

In the previous two chapters, we have been investigating the pre-training
process of LMs. In this chapter, we will direct our attention to learning
dynamics in the adaptation phase of pre-trained models. While pre-trained
LMs have remarkable capabilities, it is challenging to interface them
reliably. We will investigate the data dependence of robust generalisation
of pre-trained LMs, focusing on update-free adaptation methods such as
in-context learning.

6.1 Introduction
In the previous chapters, we have been investigating the predominant type
of learning in machine learning, which consists of iteratively updating
model parameters to converge on a low empirical loss on some objective
function. However, with the emergent ability of in-context learning (ICL)
of large language models (LLMs), a completely new learning paradigm
has gained prominence (Brown et al., 2020; Wei et al., 2022b). ICL is an
alternative to updating model parameters for a specific task (from here on
task tuning or TT) to interface the information that pre-trained language
models accumulated in their parameters and adapt it to the task of interest
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Zhou et al. (2023); Ouyang et al. (2022). ICL offers certain benefits: It
eliminates costly, task-specific fine-tuning and provides greater flexibility,
as a single model can be applied to many tasks.

The phenomenon is not yet completely understood. While there are
already some hypotheses about the mechanisms behind ICL (compare
Section 2.2.1), many aspects still require thorough research. For example,
ICL outcomes suffer from instabilities that appear to result from non-robust
generalisation. Still, it is not entirely clear whether they are similar to the
weaknesses of TT models (for an overview, see Hupkes et al., 2023). As a
result, ICL currently yields overall weaker performance compared to task-
tuning and is less stable and reliable on many benchmarks (see, e.g. Bang
et al., 2023; Ohmer et al., 2023; Min et al., 2022; Lu et al., 2022; Zhao
et al., 2021). ICL has been suggested to be less susceptible to issues with
out-of-distribution generalisation (Awadalla et al., 2022; Si et al., 2023).
Other generalisation weaknesses appear to be behind the inconsistencies:
for example, the format, order, or semantics of the provided in-context
examples can have a considerable influence on the learning outcomes, as
does the ratio of labels in the context and the exact labels used (Liang et al.,
2022). Minor changes to the prompt can have unforeseeable consequences
on the prediction outcomes (Khashabi et al., 2022). Further, it appears that
the effects of different aspects of the prompt interact in their influence on
the prediction (Wei et al., 2023; Yoo et al., 2022).

The learning dynamics of ICL appear to be complex, exhibiting many
of the properties we listed in Section 1.2.2. We will, therefore, resort
to an evaluation across many evaluation setups and a rigorous statistical
analysis to get a better understanding of ICL’s inconsistencies. In the
experimental section of this chapter, we conduct a detailed exploration
of vanilla and instruction-tuned LLMs across various shifts and setups to
understand their robustness. We start with one of the prominent themes
in robustness studies for TT models: robustness to spurious correlations
between input and label distributions (Kavumba et al., 2019; McCoy et al.,
2019; Niven and Kao, 2019) and find that in ICL, spurious correlations
do not have a significant impact on learning outcomes. In a second set
of experiments, we go on to investigate ICL’s sensitivity to other features
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of the adaptation context. To this end, we utilise the ICL consistency
test (Weber et al., 2023), a contribution to the GenBench Collaborative
Benchmarking Task (CBT; Hupkes et al., 2023). The test provides prompts
for the same data points across many different setups and enables us to test
a model’s prediction consistency. Importantly, these ‘setups’ differ only in
simple design choices (e.g. the formulation of the instructions given to a
model) and do not change the nature of the tested task but how they are
presented. A robust model should ignore these irrelevant changes to the
prompt and make the exact prediction when confronted with the same data
point across setups.

To better understand how different design decisions influence the pre-
diction outcomes, we conduct a statistical analysis of the results and shed
light on their inter-dependencies. Our holistic analysis reveals which exact
design features in the in-context data trigger unreliable changes in the
model predictions.

Outline The outline of this chapter is the following: We first present
background literature on robustness issues and inconsistencies in TT (Sec-
tion 6.2.1) and ICL models (Section 6.2.2). We then go on to evaluate
in-context learners on data with spurious correlations between the input
and target distribution – a known issue for TT learners (Section 6.3. In the
subsequent Section 6.4, we present the ICL consistency test and evaluate
it on eight different LLMs and include a detailed statistical analysis of the
effects and interactions of different design choices.

6.2 Background and related work

In the following, we shortly define TT and ICL and then cover known
problems with model robustness.
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6.2.1 Task tuning
Task tuning (TT) describes the procedure of aligning a pre-trained model
with a specific task via iteratively updating its parameters to minimise its
prediction loss on some adaptation data. In our definition here, TT does
not include finetuning on more abstract objectives like instruction tuning
(IT; Wei et al., 2022a). TT models oftentimes fit spurious correlations
between inputs and the associated labels that are idiosyncratic artefacts to
the specific dataset (Niven and Kao, 2019; Kavumba et al., 2019; McCoy
et al., 2019; Geva et al., 2019; Poliak et al., 2018; Gururangan et al.,
2018; Kavumba et al., 2022) and do not align with the causal structure of
the process that generated the data in ‘the real world’ (Schölkopf et al.,
2012). Such adaptations (sometimes also referred to as ‘shortcut solutions’;
Geirhos et al., 2020) usually fail as soon as the data distribution shifts
between the adaptation and test phase. Pretraining improves robustness
compared to task training from scratch (Hendrycks et al., 2019, 2020).
However, the necessary posthoc task adaptation still overfits spurious
correlations (Niven and Kao, 2019). An effective way to mitigate issues
in task adaptation is to expose the model to counterexamples of spurious
correlations (Kaushik et al., 2020).

6.2.2 In-context learning
ICL describes the adaptation of a model to a task by inferring the task
from the input given to the model. ICL can be subdivided into (1) few-shot
learning, where in-context examples (consisting of input-output pairs)
are given in the left-handed context of a tested input, and (2) zero-shot
learning, referring to the case in which there are no examples. In this paper,
we investigate few-shot scenarios.

In contrast to TT, ICL is a considerably cheaper adaptation method as it
requires no parameter updates. Akyürek et al. (2022) and Garg et al. (2022)
show that adaptation of transformer models via ICL exhibits the same
degree of expressivity as simple linear algorithms, small neural networks
or decision trees. While ICL emerges spontaneously with increasing size of
untuned LLMs Brown et al. (2020), the ICL performance of such ‘vanilla’
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LLMs lags behind the tuned state-of-the-art on almost all common NLP
benchmarks (Liang et al., 2022).

Previous research has also shown that ICL is highly unstable. For
example, the order of in-context examples (Lu et al., 2022), the recency of
certain labels in the context (Zhao et al., 2021) or the format of the prompt
(Mishra et al., 2022) as well as the distribution of training examples and
the label space (Min et al., 2022) strongly influence model performance.
Curiously, whether the labels provided in the examples are correct is less
important(Min et al., 2022). However, these findings are not uncontested:
Yoo et al. (2022) paint a more differentiated picture, demonstrating that
in-context input-label mapping does matter, but that it depends on other
factors such as model size or instruction verbosity. Along a similar vein,
Wei et al. (2023) show that in-context learners can acquire new semanti-
cally non-sensical mappings from in-context examples if presented in a
specific setup.

From this listing, we see that ICL entails many design choices, that task-
unrelated design choices change prediction outcomes and that the effects
of design choices do not exist in isolation. The field is only beginning to
understand the complex interplays of different prompting setups.

6.3 Experiment I: Robustness to spurious cor-
relations

In the current chapter, we clarify open questions about the robustness
of in-context learners by shedding light on their sensitivity to factors to
which they should be invariant (from here on invariance factors). First,
we focus on one of the most prominent forms of non-robustness in TT
models: susceptibility to spurious correlations between inputs and labels
(Kavumba et al., 2019; McCoy et al., 2019; Niven and Kao, 2019). In
the first set of experiments, we test how different models behave when
spurious correlations are contained in their adaptation data.
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6.3.1 Setup
Datasets We use different common NLU datasets (from here on base
datasets), which are known to contain spurious correlations between in-
put and label distributions (Gururangan et al., 2018; Geva et al., 2019;
Poliak et al., 2018), as well as adversarial datasets of the same tasks.
Adversarial datasets are designed to not contain the spurious correlations
of the base datasets; then, they can be used to test whether models use
short-cut solutions. Our base datasets span three different types of NLU
tasks: natural language inference (NLI), paraphrase identification (PI) and
extractive question answering (QA). An overview can be found in Table 6.1
and additional details about dataset properties and their construction in
Appendix A.4.3.

Task Base dataset Adversarial dataset
NLI MNLI (Williams et al., 2018) HANS (McCoy et al., 2019)

ANLI (Nie et al., 2020)

PI QQP Wang et al. (2017) PAWS (Zhang et al., 2019)

QA SQuAD (Rajpurkar et al., 2016) SQuAD adv. (Jia and Liang, 2017)

adv. QA (Bartolo et al., 2020)

SQuAD shifts (Miller et al., 2020)

Table 6.1: Tasks and corresponding datasets as used in Section 6.3.

Models Our first experiment compares TT models with models that
perform tasks through ICL. For the latter, we consider two types of models:
‘vanilla’ LLMs, and LLMs that are tuned to follow instructions (IT see e.g.
Wei et al., 2022a; Zhong et al., 2021).

For TT, we use models based on RoBERTaBASE and RoBERTaLARGE

(Liu et al., 2019c). If available, we reutilise finetuned versions of RoBERTa
that have been open-sourced through the huggingface hub (Wolf et al.,
2019); if not available, we finetune the respective models ourselves (with
training details in Appendix A.4.2).

Our vanilla LLMs consist of the series of LLaMA models (7B, 13B,
33B, 65B; Touvron et al., 2023). Based on the same LLaMA models but
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Type of learning Model
TT RoBERTa-base

RoBERTa-large
ICL + vanilla LLaMA 7B, 13B, 30B, 65B
ICL + Instruction-tuning Alpaca 7B, 13B, 30B, 65B

Table 6.2: Adaptation types and the respective models, as used in Sec-
tion 6.3. We use the same ICL models in Section 6.4.

additionally fine-tuned via low-rank adaptation (LoRA; Hu et al., 2022)
on the alpaca self-instruct dataset (Taori et al., 2023; Wang et al., 2023),
we use the freely available ‘Alpaca’ models as IT equivalent. We run all
models using mixed-precision decomposition as described by Dettmers
et al. (2022). For an overview of all used models, see Table 6.2.

Evaluation We evaluate ICL models by concatenating the target example
x and with k labelled in-context examples and hard-sample from the
probability distribution over possible labels y ∈ C using

argmaxy∈CP (y|x1, y1...xk, yk, x)

where C is the set of possible labels. Every data point x is wrapped by
an instruction template. Instructions explain the task the model should
solve in natural language. The label space C is determined by the type
of instruction template and can differ across templates. We mitigate the
influences of the template format, order of (xi, yi), imbalanced distribution
of yi and semantics of xi by a pseudo-random sampling xi for every new
inference in which we ensure that for every inference the in-context labels
yi are balanced over all possible labels (similar to Wei et al., 2023; Brown
et al., 2020, inter alia). Moreover, we use multiple instruction templates
sourced from FLAN Wei et al. (2022a) to avoid systematic bias.
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6.3.2 Results

We here evaluate the generalisation capabilities of in-context learners
under covariate shift between the adaptation data (finetuning data in TT
and in-context data in ICL) and the test data (compare GenBench; Hupkes
et al., 2023).

Base data in-context First, we adapt the TT and ICL models on the base
data and then compare their performance between the base data and the
respective adversarial counterparts. If an approach is robust to spurious
correlations in the adaptation data (which are the fine-tuning data or in-
context examples, respectively), it should perform approximately equally
on the base dataset and the adversarial dataset. We relate both scores in
the first row of Figure 6.1.

Results from in-context learners land generally closer to the diagonal,
hence indicating – despite overall weaker performance – that they are more
robust to the spurious correlations in their adaptation data. To quantify
this visual result, we fit a linear regression model on the data presented
in the scatterplot in Figure 6.1a (hence, predict the adversarial- from the
base accuracies) with the intercept fixed at β0 = 0. The coefficient β1 can
then be interpreted as a degree of robustness to the different adaptation
data, with β1 = 1 indicating complete robustness and β1 = 0 complete
reliance on non-generalisable patterns in the base data. The β1 values for
different adaptation types can be found in the top row of Figure 6.1b. The
β1 values across all tasks are significantly closer to the parity value of 1
for ICL models than for TT models, with IT models having the edge over
vanilla models.

Our results demonstrate that ICL models are much less sensitive to
spurious correlations in their adaptation data than TT models. However,
the fact that ICL models do not reach the parity value of 1 means that gains
on adversarial data are smaller compared to gains on the base data. This
suggests that ICL may still be mildly sensitive to spurious correlations, or,
alternatively, that the adversarial datasets used are simply inherently more
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Figure 6.1: Figure (a) shows the f1-scores of different models – normalised
for random accuracy – on different data sets when adapted via base or
adversarial data. On each y-axis, we plot accuracy under distributional shift
(base + adv), while on each x-axis, there is no shift (base + base and adv
+ adv). Each column shows a different type of task. Marker size represents
the model size, and colour represents the type of task adaptation. Figure (b)
shows the β-parameter of the linear regression (fixed intercept) on the data
of Figure (a). We fit a linear regression for each task and adaptation type
separately. Values close to 0 indicate very strong sensitivity to adaptation
data, while values close to 1 indicate no sensitivity.

difficult, resulting in lower performances compared to the base data1. We
will further explore this question in the next experiment.

Adversarial data in-context As a follow-up experiment, we consider
what happens when the adaptation data contains adversarial examples. As
those examples do not contain the same spurious correlations, models
cannot overfit them (Kaushik et al., 2020). This should not make a differ-
ence for models that are robust to spurious correlations, but we expect a
performance drop between these two conditions for models that learned

1An illustrative example of the base data being easier: adversarial QA contains only a
single answer alternative while squad contains three.
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solutions that exploited those correlations. As we are now evaluating the
adversarial data points in both scenarios, we eliminate the potential impact
of the dataset difficulty on the scores. In the second row of Figure 6.1, we
plot performances with base adaptation examples in the context against
the performance with adversarial adaptation data, noting that ICL models
are mostly unaffected by adaptation data type while TT models land far
underneath the diagonal again. A regression analysis shows almost all β-
values of ICL models moving closer to parity, showing us how the dataset
difficulty impacted the results. However, even without the effect of dataset
difficulty on the β-values, they are still not quite equal to 1, suggesting
that the type of adaptation data has a small influence on ICL learners.

6.4 Experiment II: Consistency evaluation in
ICL

In the previous section, we saw that the inconsistency of in-context learners
is likely caused by other factors than by spurious correlations in the in-
context data. Although previous studies have reported the susceptibilities
of LLMs to various factors, the impact of different design decisions and
their interactions in the context of ICL robustness has not been systemat-
ically evaluated. Here, we test the effects of an extensive range of these
factors on prediction outcomes in consistency and accuracy. To that end,
we present the ICL consistency test. The ICL consistency test combines the
same data points with a large set of different setups and compares model
predictions across them. Subsequently, we follow up with a large-scale
evaluation and analysis of the consistency of 8 ICL models.

6.4.1 Setup - The ICL consistency test
We will here present the ICL consistency test. We will first explain our
rationale for constructing the test in the following Motivation paragraph.
In the paragraph Data, we will explain which resources the test uses, such
as the instruction templates, the data sets and how these resources are used.
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Then, we will dive into the composition of Factors into Setups. Ultimately,
we show which Metrics we use to estimate a model’s consistency.

Motivation The ICL consistency test evaluates a model’s ability to make
consistent predictions on the same data point, independent of the respective
evaluation setup. To do so, it compares a model’s prediction across many
different prompting setups. We define setups through the presence or
absence of different binary factors, which are simple choices in the prompt
design (e.g. do I use instruction A or B to prompt the model).

The motivation for this is the insight that consistency measures are
complementary to accuracy: imagine a scenario in which a model is
evaluated with two different, but equally valid, setups. For example, one
could query a model for the sentiment of a sentence <x> using either of
the following instructions:

Instruction 1 Please state whether the following sentence is positive,
negative, or neutral: <x>

Instruction 2 Given the sentence: ”<x>”, please classify its sentiment as
positive, negative, or neutral.

While both prompts are superficially different, their conveyed query is
exactly the same. Let’s assume that the model predicts the same proportion
of correct labels in either setup but does so on a different subset of the
evaluation data. The accuracy score has the same value in either setting
and, therefore, could let us assume that we have to improve the model’s
ability to solve the task at hand. In reality, however, the main issue is the
model’s questionable generalisation and lack of robustness to irrelevant
changes in the prompt. We have seen in the background section that
prompt-based learners lack this type of robustness more often than not. It
is, therefore, crucial for accurate error analysis to have a tool to estimate
reliability by systematically evaluating a model’s consistency.

Data We use different freely available and established data sources
to construct the ICL consistency test. Instructions explain in natural
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language to a model which task it should solve and wrap the original input
x from a given data set. For instructions, we use different subsets of the
crowdsourced promptsource templates (from here on ‘P3’; Bach et al.,
2022), with the exact template being used depending on the specific setup
that is evaluated. Exact information on which instructions are employed
is given in the following paragraph, ‘Setups and factors’. We use the
p3 instructions templates to wrap data points from the ANLI (Nie et al.,
2020) and MNLI (Williams et al., 2018) datasets. For each of the datasets,
randomly draw a subset of 6002 data points from the respective validation
sets and – in the case of ANLI – we draw to equal parts from the validation
sets of its three distinct subsets. We provide solved examples in the left-
handed context of the model input as an aid for the model to infer the
task it has to solve (as done in Brown et al., 2020). These in-context
examples are constructed in the same manner as the target examples but
have their ground truth label concatenated. To select in-context examples,
we randomly draw data points from the respective full training sets. The
label space, the instructions, the number or even the task of in-context
examples can, again, differ depending on the specific setup that is evaluated.
Examples of prompts can be found in Appendix A.4.5.2.

Setups and factors We estimate the robustness of a model by evaluating
the consistency of its prediction on the same data point across many
different setups. We define each setup through the absence or presence of
each of a range of binary factors λ. We include the nine factors listed in
Table 6.3 in our test3.
Besides the first seven data-related factors, we also augment the ICL con-
sistency test with two additional model-related factors using the code
implementation submitted to the GenBench CBT (for details, see Ap-
pendix A.4.6). These additional factors make it possible to relate specific
robustness issues to specific models or evaluation types. Arranging the

2We found 600 examples to yield sufficiently similar results to evaluating the whole
dataset, tested on a small subset of setups

3For more detailed explanations on the different factors and the respective motivation
to include them, we refer to Appendix A.4.7

104



“output” — 2023/12/20 — 15:41 — page 105 — #123

Factor Description

n-shots Many (k = 5) or few (k = 2) in-context examples in
the prompt.

Instruction quality Two groups of semantically equivalent but differ-
ently performing instruction templates (high- vs. low-
performing; more details in the paragraph ‘Probing
instructions’).

Balanced labels In-context examples with labels balanced across all
classes or randomly sampled examples.

Cross-templates Randomly drawn in-context instructions from all avail-
able P3 templates or the same instructions as target.

Cross-task In-context examples from another task (QQP; Wang
et al., 2017) or from the same task as the target (ANLI
/ MNLI).

Instructions Semantically equivalent target instructions that per-
form similarly (more details in the paragraph ‘Probing
instructions’).

One label In-context examples with a single randomly selected
label or randomly selected in-context examples.

Instruction tuning (Model) Models are either instruction-tuned or not (‘vanilla’
models).

Calibration (Model) Calibrate model outputs using content-free prompts
following Zhao et al. (2021) or not.

Table 6.3: Factors used to create setups

listed factors in all possible combinations results in 1536 setups. Combin-
ing the 1536 setups with our randomly sampled 600 data points results in
921 600 samples that we will evaluate.

Metrics The ICL consistency test uses consistency and accuracy metrics.
Their main features are explained in Table 6.4.
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Metric Description

Cohen’s κ We measure the consistency of model predictions using Cohen’s
κ (Cohen, 1960), a measure of interrater agreement adjusted for
agreement by chance. The metric κ equals 1 if two (or more)
sets of predictions perfectly align while agreement by chance
results in κ equalling 0. In our case, we calculate κ to compare
the predictions of a model before and after we change the value
of a factor λ across all possible setups. For example, we take the
predictions from all setups in which in-context examples have the
same label (the factors one label is present) and compare it to
the case in which we have different labels for the in-context ex-
amples (the factors one label is absent). With all other factors
being constant, we can estimate how much this factor changed
the model prediction (or, inversely, how robust a model is) by
calculating κ. To ensure meaningful scores, we mask out all
predictions that are not within the label distribution of the respec-
tive task. Finally, we get the overall model consistency κavg by
averaging across the κ values of all factors.

Main effects of λ Next to κ – the primary metric –, we also provide the auxiliary
metric in the form of the main effects of factors. The main effects
show how much the presence or absence of a factor influences the
accuracy of the model on average. The main effects of the factors
help to interpret their κ values: Does the change in prediction
occur because the factor actually improves the model accuracy
or is it due to model inconsistency? To obtain measures of the
main effects, we fit a simple linear regression model to predict
accuracy scores from the presence or absence of each factor
Accπ = β1λ+ β0. We can then interpret the coefficient β1 of λ
as its main effect (’How much does the factor on average change
accuracy scores?’).

Table 6.4: Metrics used in the ICL consistency test.

Probing instructions To find a set of high- and low-performing instruc-
tions for the instruction quality factor, we run a preliminary analysis
where we probe model behaviour in response to all 15 available P3 ANLI
instructions. We assess the performance of different instructions based on
accuracy and consistency.
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We first get a general picture of the average consistency κavg of each
model π across all templates. We find that κavg increases with the number
of parameters and is overall higher when a model has been instruction
tuned (Figure 6.2a).
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Figure 6.2: Figure (a) shows the consistency of a model π when used with
all 15 different P3 instructions, in an otherwise fixed setup. A value of
1 indicates no consistency; Figure (b) shows how consistent individual
instructions are with all other instructions. A value of 0 indicates a com-
plete change of predictions while a value of 1 indicates perfect agreement;
Figure (c) shows the respective accuracies of the instructions in Figure (b).

We then consider the consistency of each individual instruction and
find a congruent pattern of consistency across all models (Figure 6.2b)
that corresponds generally to the accuracy scores of the same instruc-
tions (compare Figure 6.2c). Interestingly, we also find two groups of
high-accuracy instructions making very different predictions (see the con-
sistency scores of 9, 10 and 15 vs. rest). Based on these observations, we
choose the two highest- and lowest-performing instructions to constitute
the instruction quality factor and templates 14 and 15 as realisations
of the instructions factor.

Experimental details To remain within reasonable computational cost,
we focus our analysis on the ANLI dataset Nie et al. (2020). To structure
the subsequent analysis, we also divide the factors test into two groups:
Firstly, factors that constitute interventions to improve consistency and
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performance and, hence, from which we want a model to change their
response when we change their value. We will call these variance factors
or λvar: These factors are n-shots, Instruction quality, Balanced
labels, Instruction tuning and Calibration. Secondly, factors
from which we want a model to not change their response (or ‘be robust
to’) when we change their value. We will call these invariance factors or
λinv: Cross-templates, Cross-task, Instructions and One label.

6.4.2 Results
We now evaluate the LLMs from Experiment I (see Table 6.2) on all possi-
ble combinations of λvar and λinv. Appendix A.4.8 shows the distribution
of accuracy scores across all runs for different models. The spread of
scores is strikingly wide, with the large models scoring from below chance
to up to 67% accuracy, depending on the overall setup. This extreme
variability underlines the importance of better understanding the impact of
different design decisions and prediction consistency in ICL.

The analysis of the results will be partitioned into two parts: First, we
will look at the main effects, i.e. how much does a single factor impact the
consistency and the accuracy across many setups? Afterwards, we will
investigate interactions, i.e. when we disentangle the main effects, do we
find systematic interactions across pairs or triplets of factors? The subse-
quent section comprehensively summarises the results of our statistical
analysis.

Main effects Figure 6.3 presents the main effects separated by model
size, illustrating the impact of each factor in isolation.
The variance factors we chose are generally thought to improve accuracy
and hence should have positive main effects. We find two out of five vari-
ance factors significantly improve performance on average, from which
instruction quality stands out as the most influential factor across
all model sizes. Similarly, we find that instruction tuning is consis-
tently beneficial while balancing the in-context labels and the number
of in-context examples (n-shots) have on average small, non-significant
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Cross-instruction
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Figure 6.3: The β-values of the main effects of each individual factor
across many different runs. The values can be directly interpreted as
‘expected accuracy gain/loss’ when a factor is present compared to when
it is absent.

effects. Surprisingly, calibration harms rather than helps performance
for all but our smallest model.

Different from variance factors, invariance factors are chosen such that
they should not influence a robust model’s predictions. Accordingly, the
main effects should be optimally close to 0. We find that models are gener-
ally robust to having varied instructions in-context (cross-instruction)
or even having a slightly positive effect. This is intriguing, as this factor
entails considerable changes to the in-context setup, and we previously
saw how the type of target instructions plays a crucial role. Otherwise,
we identify vulnerabilities of large models to the factors cross-task and
one label. The ambivalent effect of the instructions factor suggests
high volatility.

These main effects give us a general idea of the tendencies of factors.
To better understand all main effects, we will investigate interactions in
the following paragraph.

After considering the accuracy-based results, we now also look at the
prediction consistency κ of the factors (as defined in Table 6.4) The κ
score shows us the degree of robustness of a model to an invariance factor
by quantifying the degree of prediction change when a factor is changing.
We see in Figure 6.4 how robustness increases with size and instruction
tuning. The very low κ scores for the detrimental cross-task factor come
as no surprise, while low scores in the instructions factor corroborate
the previous suspicion that instructions are highly volatile: If we change
the type of instructions we use, the predictions across a lot of setups
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change.
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Cross-instruction
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Figure 6.4: The consistency values across all other factors comparing
predictions when a specific factor is present or not. A value of 0 indicates
a complete change of predictions, while a value of 1 indicates perfect
agreement. Hence, a low value indicates that a model is not robust to a
change in a specific factor.

Interactions The main effects give us a good idea of the general direction
of the impact of a single factor. However, the main effects do not tell the
whole story: Consider the case in which factor A improves performance if
it is paired with factor B, but performance deteriorates when paired with
C. A’s overall main effect might be close to zero even though it influences
certain settings. To better understand the impact of each factor, we will
have to investigate its interactions.
To analyse interactions, we fit a factorial ANOVA considering the effect of
all possible 2- and 3-way interactions4 on the accuracy of predictions. We

4We exclude the instructions factor because the independence of instruction quality
is not given. Moreover, we adapt the significance levels via Bonferroni correction for
multiple comparisons (α < 0, 00059) and show only significant interactions.
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Figure 6.5: The number of interactions per factor with other factors. A
large number of interactions means that the outcome of a change in these
factors depends on a lot of other variables.

then count the number of significant interactions every factor maintains
with other factors. A larger number of interactions suggests that a factor is
volatile, changing predictions depending on the overall setup. Further, a
large number of interactions for a single model suggests non-robustness as
we generally assume the factors to be orthogonal. On the other hand, if
factors are not interacting, we can interpret their main effects directly.

Figure 6.5 shows the number of interactions that each factor maintains.
A general observation is that large models tend to have simpler 2-way
interactions, while smaller models tend to have more complex 3-way inter-
actions. We, most importantly, find that the impact of the instruction

quality and of the instructions5 themselves are very sensitive to the
setup. This demonstrates the intricacy of the factor: The instruction

quality has the largest positive impact on prediction outcomes, but at the
same time, the instructions are highly interactive and volatile, with their
effects depending on the setup in which they are used.

5We fit another ANOVA excluding instruction quality while keeping
instructions as a factor to ensure that the effect is not only due to large performance
differences between the two realisations of instruction quality. We find similarly strong
interactions for the instructions factor (see Appendix A.4.9).
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Otherwise, we observe that calibration is the most volatile, with 8
significant interactions with other factors. The previously observed main
effect has to be seen in this perspective: calibration is not generally
detrimental, but its effects depend very much on the setup in which it
is used. For example, we find on closer inspection that calibration
leads to the highest overall accuracies for the 7B parameter models when
presented with specific instructions and paraphrase identification in-
context examples (cross-task).

On the other end of the spectrum, we find that factors like the number
of in-context examples (n-shots), the balancing of in-context labels or
using a one label who little to no interactions at all. Conveniently, we
can therefore interpret their main effects directly, as they are most likely to
be stable across setups. For example, suppose it is possible to increase the
number of examples in the context. In that case, we can reliably expect
small gains in accuracy without the danger of otherwise interfering with
the learning process. Similarly, balancing labels leads to reliable small
improvements and having just a single label in the context reliably reduces
accuracy for large models.

6.5 General discussion and conclusion

Summary In this chapter, we investigated the properties of learning
without parameter updates (i.e. in-context learning), more precisely, the
consistency and stability of this learning approach. We first evaluate
ICL’s sensitivity to spurious correlations and find it to be more robust
than TT previously. In the second part of the chapter, we present a new
test for robustness in prompt-based learning, the ICL consistency test,
and subsequently conduct a comprehensive analysis of the influence of
different setups on predictions of ICL models.

Findings While ICL learners are not sensitive to spurious correlations,
the issue of robustness is not resolved. Insignificant changes to the prompt-
ing setup can lead to unpredictable changes in the model output. We show

112



“output” — 2023/12/20 — 15:41 — page 113 — #131

that depending on the evaluation setup, ICL accuracy in our experiments
differs up to 40%, and the primary metric κ reveals that none of the tested
models performs with high consistency for any minimal setup change (i.e.
across any change in factors). Considering different setups, our analysis
shows that choosing adequate instructions promises the largest perfor-
mance gains across many setups. At the same time, instructions are
among the most volatile factors of all: they are very sensitive to the setting
in which they are used and interact with most other factors. On the other
hand, we show that factors that relate to the exact organisation of the in-
context examples, such as the label distribution or in-context instructions
(cross-instructions), have surprisingly small impacts. Factors like
n-shots – among others – are not interactive, which makes them much
easier to handle: their expected gain or loss should, in most cases, corre-
spond to our observed main effects. The results indicate that the quality
of the generalisation of ICL in LLMs can be improved: If predictions
are consistent, the model correctly disregards irrelevant context informa-
tion; if it is inconsistent, it lets irrelevant context information influence its
predictions.

Implications With respect to the dissertation, the results in the current
chapter confirm the need for more holistic thinking in model analysis and
interpretability: Previous research concentrating on single factors in the
evaluation setup tends to find positive results in a specific setup but does
not validate them across alternative setups, just to be refuted by a follow-up
study (as we have seen in work of Min et al. Min et al., 2022, which was
quickly followed by relativisation in Yoo et al. 2022 and Wei et al. 2023).
We show that ICL is ruled by complex dynamics and interactions instead of
simple linear relations between input properties and how an analysis which
keeps this complexity in mind yields valuable insights. It might be advised
to use more diverse evaluation setups and a rigorous statistical analysis of
the results to guarantee the generality of results and avoid Type-I errors in
publications (Ioannidis, 2005).

What do these findings imply for the field of NLP? To get hold of
inconsistent predictions in ICL, finding the exact properties of instructions
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that so strongly influence model predictions is a sensible next step (poten-
tially with a similar methodology as it is presented here). Insights into the
impact of instruction properties can help us to find the source of inconsis-
tencies and avoid them in production, while they can also contribute to
the theoretical understanding of in-context learning which is currently still
under investigation. While our analysis focused on the few-shot setting,
it also significantly impacts the increasingly popular zero-shot learning,
as instructions are central in that setting. For model deployment, our
findings demand caution as minor changes to certain parts of prompts (e.g.
the instructions) can change the performance of the general setup. This
is especially true for employing smaller, untuned models. A consistent
finding across all our experiments is that instruction tuning improves con-
sistency and robustness to irrelevant factors across all setups. Therefore,
we advocate for the use of tuned models to improve robustness.

From anecdotal evidence, we can conclude that adaptation methods
like RLHF (as we discussed them in the general background section 2.2.1)
are improving the consistency of ICL learners even more than instruction
tuning. This hints at the special dynamics of RL that we are not able to
achieve with regular gradient-based methods. With more research into
these currently still nebulous dynamics of RL, it might be worthwhile to
investigate whether their advantages can be emulated by less expensive
gradient-based methods.

6.6 Limitations

The research presented in both experimental sections has several limi-
tations. For the first set of experiments in Section 6.3, the comparison
between TT models and in-context learners is not ‘fair’. Model sizes
are not comparable, the amount of adaptation data differs significantly
(thousand for task-tuning compared to 5 for ICL), and some of the ad-
versarial datasets were created with some of the TT models ‘in-the-loop’
(e.g. ANLI). However, our motivation here is not to be fair but to show
practically relevant effects in either type of task adaptation. For a fair
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comparison, see Mosbach et al. (2023).
For the second set of experiments in Section 6.4, we only consider a

subset of factors that we deemed the most relevant or interesting. Albeit we
consider our choice of factors appropriate, they are in no way exhaustive.
Adding more factors would enrich the analysis. However, the number of
inferences to compute grows exponentially with the number of considered
factors, which sets a limit for the number of analysed factors. However,
we think that the performance on the ICL consistency test can be a good
indicator of the quality of the generalisation that an LLM is making.
For potential follow-ups, we suggest a more fine-grained investigation
of different instruction designs for the target example, as this potentially
yields interesting insights on what exactly leads to high-performance gains
and large volatility. Our study is coarse in this aspect. Our analysis was
further hampered by the decision to use the relatively ‘hard’ ANLI dataset
to run our evaluation: smaller models produce very low ICL accuracies for
hard datasets like ANLI across many factors and therefore provide little
variance for meaningful analysis.
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Chapter 7

GENERAL DISCUSSION AND
CONCLUSIONS

In the following, I first summarise the findings of the individual chapters
and how they map onto the research objectives from Section 1.3. Then,
I will put all individual findings into a broader context and discuss my
work’s contributions to the fields with which it intersects. Finally, I will
provide an outlook on how the intersecting fields will develop, and future
work can potentially build productively on my contributions.

7.1 Revisiting the chapters
Chapter 3: Generalisation and linguistic theory

Summary The work in Chapter 3 is a principal step towards the primary
goal of this dissertation in that it formulates a framework to understand
the learning dynamics of language models in a holistic and unconstrained
way. We show how similarity relations from linguistic theory connect
to the language modelling generalisation behaviour: concepts that are
considered similar in linguistic theory can be used by the language model
to generalise and share structure across different data points: throughout
the learning process, the model uncovers regularities (or ‘similarities’)
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among data points unrelated to the surface structure and learns to pool
these data points into the same concept. In this way, we can analyse the
self-organisation ability of the language model without interfering with the
dynamics of the complex system (Section 1.2.2). Our experiments show
how language models generalise different realisations of the same concept
(i.e. licensing of NPIs). Interestingly, suppose we expose a model just to
one realisation of a concept instead of a broader range of them (i.e. we
prevent generalisation). In that case, the model is performance comparably
much poorer, even on the presented realisation itself.

Contextualisation within the literature The work in this chapter touches
upon different ideas in cognitive science, machine learning and theory of
learning: The idea of a ‘linguistic similarity space’ is closely related to
the notion of ‘conceptual spaces’ (Gardenfors, 2004, 2014) and ideas of
geometric representations (Kriegeskorte and Kievit, 2013) in the cognitive
sciences. Our framework can be understood as an approach to realise the
idea of ‘conceptual spaces’ of language via computational means. On the
other hand, the generalisation of linguistic concepts can be understood
from the perspective of learning as compression. Learning as compression
is the idea that efficient learning compresses information in the input data
efficiently to a low-dimensional representation (see Section 2.2.2. Finding
similarities in linguistic structure and learning linguistic rules to exploit
them can be seen as an efficient strategy for compressing language data
into a low-rank representation.

Limitations The main limitations of this chapter are implementational:
We apply undersampling of a specific linguistic concept (i.e. eliminate
it from the training data of the language model) to investigate the effects
on other language concepts. This approach is problematic in two ways:
First, it is computationally expensive to train a new language model on
the modified training data to investigate its effects on other concepts. If
we plan to construct larger language spaces encompassing many different
language concepts, this approach is not viable. Besides the computational
cost, it is also challenging to filter training corpora for certain language
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concepts, as frequently, these concepts are not observable in the surface
form of a sentence.

Further, the work presented in Chapter 3 does not yet allow any state-
ment about the learning process of language models. The similarity of
different linguistic concepts within the model should change throughout
training as the model starts to understand the data distribution better. More
efficient (i.e. abstract) compression rules might emerge, and generalisa-
tion patterns might change. Understanding these learning processes is a
declared goal of this dissertation.

We address these three limitations in Chapter 4.

Chapter 4: Linguistic task-spaces

Summary The work in Chapter 4 extends and improves upon the frame-
work we introduced in Chapter 3. The pivotal idea here is that by looking
at the generalisation behaviour of an LM across different linguistic tasks,
we can deduce which tasks share structure (or are ‘similar’ to each other).
If we apply this idea to many tasks simultaneously, we can construct a
‘linguistic similarity space’ representing an LM’s conceptualisation of
language. We resolve major issues of the undersampling approach from
the previous chapter by replacing it with oversampling and a technique
to isolate linguistic phenomena from their entanglement within natural
language. This enables us to fine-tune them selectively despite their latent
nature and follow established methods from MTL to obtain behavioural
similarity space based on the transfer learning across linguistic tasks. We
further produce structural similarity estimates by analysing their shared
parameters and alignment. We use the similarity spaces to investigate the
learning process of LMs and discover that their processing of linguistic
tasks becomes more distributed and interconnected with training. We also
uncover that LM learning is remarkably continuous, where most linguis-
tic similarity is discovered early in training, and this pattern is merely
reinforced later on. We do not observe any larger shifts in the observed
patterns, as we would expect from human-like learning. We also find
that large models are faster in uncovering linguistic similarities and also
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form more general concepts of phenomena (shown through the higher
within-phenomena generalisation).

Contextualisation within the literature The approach and the findings
in this chapter connect with different branches of research. I will shed light
on the four most interesting connections. First and foremost, our work
connects with previous research in MTL (Caruana, 1993, 1997). In MTL,
the goal is to exploit shared structure across tasks to improve the data
efficiency and performance on the involved tasks. To do so, researchers
have been estimating the shared structures in tasks via different similarity
measures for many years (Ben-David and Borbely, 2008). In the domain
of computer vision, such similarity estimates have been used to create
taxonomies of tasks (or ‘task-spaces’ Zamir et al., 2019a; Standley et al.,
2020b; Achille et al., 2019). While there have been many studies using
similar methodologies on LMs (Chowdhury and Zamparelli, 2019; Prasad
et al., 2019; Pérez-Mayos et al., 2021), in this chapter, we constructed
for the first time large-scale linguistic spaces based on many different
linguistic tasks. We further construct similarity spaces based on structural
information by identifying task-relevant parameter subspaces and relating
them via their gradient alignment, a method inspired by Yu et al. (2020).

Secondly, the way we suggest linguists interpret linguistic task spaces
has many similarities to the idea of Gardenfors (2004, 2014)’s notion of
conceptual spaces. Using language model representations as a conceptual
space of language is an established idea, especially in the realm of lexical
semantics (Baroni and Lenci, 2010; Mikolov et al., 2013b,a). Our method
presented here is different from the previous approaches proposed here, as
it can be used with any language concept and can disentangle them from
the spuriously correlated – but unrelated patterns – that they usually occur
with. After a language task space is constructed, it is straightforward to
use it for linguistic research by testing explicit linguistic theories against
it, making them a means to more tightly connect deep learning techniques
with linguistic theory (Baroni, 2022).

Thirdly, after constructing linguistic spaces, we dive into the analysis
of their change throughout the LM training process. We here observe the
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change of relevant subspaces throughout the training process. Curiously,
as the LM forms better, more generalising representations of the different
phenomena, the representations become more distributed. This increase
in extrinsic dimensionality (i.e. the number of dimensions that are used
within the model to represent the data) opposes the assumed low intrinsic
dimensionality (i.e. the number of dimensions that the model requires to
represent the data, independent of the extrinsic dimension) that the model
requires as it becomes more refined. Research on the intrinsic dimensions
of language models (Aghajanyan et al., 2021; Cheng et al., 2023) is still
young, and their relationship with the extrinsic dimensionality of single
concepts is still unknown.

Ultimately, we find that the learning process of LMs is remarkably
stable. This insight might explain why there are, to this day, only a few
research papers in curriculum learning (CL) for language models (Campos,
2021; Surkov et al., 2022). The training of state-of-the-art language models
is among the most computationally expensive endeavours, making it a
prime target for optimisation via CL. As we see here, the learning process
of LMs is not marked by stark shifts of generalisation patterns but rather
by a continuous reinforcement of early patterns. As such, stark shifts in
the data distribution, as we would enforce them on the model via CL, are
not prone to yield any improvement.

Limitations One of the goals of the framework that we introduce in
Chapter 3 and 4 is to detach the constructed linguistic spaces and the cor-
responding analysis of the learning dynamics of LMs as much as possible
from prior assumptions upon the task structure. By predetermining the
tasks (or ‘anchors’) that we use to span the space, we are unnecessarily
constraining the expressivity of the resulting space. For a more expressive
linguistic space, the anchors that span the space have to be determined
through the dynamics of the language model itself. Further, while our
approach applies to all types of knowledge domains, it requires minimal
pairs of phenomena within that domain to fine-tune them selectively. Min-
imal pairs are primarily used in linguistics and are uncommon in other
knowledge domains. Ultimately, there is concern about the narrow distri-
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bution of the synthetic BLiMP data that we have been using for fine-tuning
and evaluation of the different linguistic tasks.

Chapter 5: Automated curriculum learning for Interpretability

Summary In Chapter 5, we set out to use automated curriculum learning
(CL) as an interpretability method for better understanding the connection
of data features with the learning behaviour of language models. The
idea is to create a curriculum that improves LM learning using automated
CL strategies and analyse the curriculum policy. The curriculum policy
should give us insights into the learning dynamics of the LM. While the
automated CL framework we employed produced reasonable curricula, it
turns out that — upon more rigorous investigation — the created curricula
produce no learning advantage. At the same time, the non-functional
curricula are remarkably deceptive: the curricula closely resemble known
policies from the literature, even though they ultimately work for very
different reasons. We found that optimising a model using a curriculum in
combination with Adam can lead to unintended interactions between the
two. These interactions scale the parameter updates applied to the model,
equivalent to a temporary scaling of the learning rate γ. Scaling γ, in
return, leads to faster learning if hyperparameters are chosen suboptimally,
while optimally-tuned hyperparameters with plain Adam lead to the best
performances.

Contextualisation within the literature The fact that pure Adam per-
forms the best throughout all of our experiments might hint at why CL
in NLP is rarely used: Adam is the most common optimiser in NLP,
and it appears to only benefit from curricula with bad hyperparameters.
This chapter warrants particular caution for future research: research in
curriculum learning using Adam has to be accompanied by a rigorous
hyperparameter search to make reliable claims about the success of the
curriculum beyond reducing the need for hyperparameter selection.

Chapter 5 produced an insight that might be valuable for the field of
NLP. However, unfortunately, it contributes only indirectly to the declared
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goal of the thesis. An interesting observation is that none of our attempts
were successful at creating a curriculum for the task of language modelling:
the automated approach failed. Further, during pilot experiments, other
curriculum strategies were equally unsuccessful. This is in line with
multiple previous attempts at creating curriculum learning strategies in
language models (e.g. Surkov et al., 2022; Campos, 2021). This might
relate to our observations from Chapter 4 that the overall learning process
of language models is remarkably continuous: different linguistic concepts
are acquired gradually without any major shifts or clearly separable stages
in generalisation patterns. A continuous learning process does not require
major shifts in the distribution of the learning data.

The inefficiency of curricula in language models starkly contrasts their
efficiency in humans, where a well-designed curriculum is critical for
learning success. This might highlight the difference in learning processes
between humans and machines: In psychology and neuroscience, con-
verging evidence suggests that top-down regulation of learning processes
through higher-level control functions is crucial for human efficiency in
conceptualisation (see, e.g. Blair and Razza, 2007; Efklides, 2008; Sigman
et al., 2014; Metcalfe and Kornell, 2005). Top-down control and feedback
might give more structure to learning and make curricula useful. In that
case, future generations of language models that more closely resemble
humans and use more structured learning dynamics might become sensi-
tive to curricula. A glimpse at models that learn generalisations following
more human-like patterns has been recently given by Lake and Baroni
(2023), who motivate their model architecture by their ability to make
more human-like compositional generalisations.

Limitations The analysis of the interactions includes an extensive range
of settings, encompassing different training regimes (toy-setting, train-
ing from scratch and fine-tuning pre-trained models), different modalities
(vision and language) and different types of curricula (automated vs hand-
crafted)’. Our findings can fully explain the learning advantages attributed
to the curriculum in all cases. However, it is important to say that we
cannot make claims about the number of potentially affected curriculum
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learning strategies. From our investigation, it is clear that increasing the
sizes of gradients will cause Adam to increase the sizes of parameter up-
dates. However, it is empirically impossible for us to reassess all different
subtypes of curriculum learning methods. Therefore, we ask to be wary
and critically reexamine previous methods instead of dismissing them.

Chapter 6: Robustness in prompt-based learning

Summary In Chapter 6, we investigated the properties of learning with-
out parameter updates (i.e. in-context learning). We mainly focus on the
consistency and stability of this learning approach. We show how ICL is
mildly sensitive to spurious correlations (or generally the properties of
the adaptation data), but this sensitivity has a comparably small influence
on the learning outcomes. Other factors play a much greater role: pre-
vious literature has shown that presumably insignificant changes to the
prompting setup can lead to unforeseeable changes in the model output
(Lu et al., 2022; Zhao et al., 2021; Mishra et al., 2022; Min et al., 2022).
Research that predominantly looks at single factors and tries to gauge their
impact has not come to clear solutions so far. We, therefore, introduce a
new test for robustness in prompt-based learning, the ICL consistency test
and subsequently conduct a comprehensive analysis of the influence of
different setups on predictions of ICL models. The ICL consistency test
evaluates the consistency of model predictions on the same data points
across many different setups. ICL accuracy in our experiments differs
up to 40% across setups, and the primary metric κ reveals that none of
the tested models performs with high consistency for any minimal setup
change (i.e. across any change in factors). However, there is a tendency:
larger and instruction-tuned models generally perform more consistently
and robustly. Single factors cause different degrees of inconsistencies and
are more ‘disruptive’ to the general prediction setup: The type of natural
language instructions that are used strongly influence the predictions the
model makes and the effect of other factors.
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Contextualisation within the literature The chapter highlights the need
for more holistic thinking in the model analysis and interpretability when
the model dynamics require it: ICL currently exhibits chaotic learning
dynamics (as shown by e.g. Khashabi et al. (2022)). As a consequence,
research might find not reliable or contradictory results when investigating
ICL and concentrating only on single factors (Lu et al., 2022; Zhao et al.,
2021; Mishra et al., 2022; Min et al., 2022). Holistic evaluations, which
test the impact of a factor on many setups at the same time, can give
more reliable results. The need for more holistic evaluation to get a
clearer picture of the capacities as well as the mechanisms in LLMs, with
initiatives like i.a. HELM (Liang et al., 2022), GenBench (Hupkes et al.,
2023), BIG-bench (Srivastava et al., 2023) or evaluation pipelines like
eval-harness (Gao et al., 2021) gaining prominence.

Limitations The main limitations of our experiments and the ICL con-
sistency test are the number of factors that we chose to include in the test.
Albeit we consider our choice of factors appropriate, they are in no way
exhaustive. Adding more factors would enrich the analysis. Especially
in retrospect, adding more factors that dissect different properties of the
Instructions that so strongly influence prediction outcomes would have
been insightful. However, we think that the performance on the ICL consis-
tency test can be a good indicator of the quality of the generalisation that an
LLM is making. Our analysis was further hampered by the decision to use
the relatively ‘hard’ ANLI dataset to run our evaluation: smaller models
produce very low ICL accuracies for challenging datasets like ANLI across
many factors and provide little variance for meaningful analysis.

7.2 Revisiting the research objectives

In the Introduction (Section 1.3), I specified four research objectives for
this dissertation. I will briefly repeat these objectives and evaluate how
far the objectives have been met by the work presented in the main body
chapters.
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1. Connect domain knowledge with learning dynamics
Summary: The goal was to develop a framework which relates formal
linguistic theory and learning dynamics in language models.
Evaluation: I created a framework that relates linguistic knowledge
with the learning dynamics of language models based on ideas from
multi-task learning (MTL) in Chapter 3. As discussed in the previous
section (7.1), the experimental work using the framework was limited by
implementational details in Chapter3. We mostly addressed these issues
in Chapter 4 and placed the framework on a stronger empirical base
using more rigorous experiments on the alignment of gradient subspaces.
The framework maintains strong connections with the literature on MTL
and conceptual spaces.

2. Derive ‘synthetic linguistic theories’ from language models
Summary: Use the framework from goal 1 to generate a ‘linguistic
task space’ that represents the language model’s conceptualisation of
language.
Evaluation: In Chapter 4, I created high-dimensional linguistic task
spaces using performance transfers of language models across a large
range of linguistic concepts. Additionally, I connected these transfers
to parameter subspaces within the models and generated similarity
spaces based on the alignment of gradients for different tasks within
them. Similarity spaces show how language models parse language;
which concepts do they share structure across? Which ones can not
be reconciled with each other? A major weakness that still has to be
addressed in the necessary top-down definition of ‘anchors’ that we use
to span the space: We utilise human-defined phenomena and relate them
to each other. However, a more accurate linguistic space can probably
be described by ‘anchors’ that are defined through the model itself and
span the conceptual space with maximal expressivity.

3. Investigate generalisation throughout the learning process
Summary: Use different techniques to investigate the change of model
generalisation throughout the training process.
Evaluation: I investigated linguistic generalisation throughout the train-
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ing process of language models in Chapters 4 and 5. The results of
Chapter 4 show that linguistic concept building in LMs happens at
different paces for different concepts. However, the process appears
relatively continuous and not marked by strongly delimitated ‘stages’
of learning. This starkly contrasts with human learning, as discussed
in the previous section (7.1), and might be one of the reasons for the
ineffectiveness of curricula in language modelling, as we observed in
Chapter 5. A less marked learning trajectory highlights an essential
difference between human and machine learning.

4. Investigate failed generalisation
Summary: Investigate how different data properties lead to inconsis-
tent and non-robust model predictions in learning without parameter
updates.
Evaluation: I contributed to a better understanding of inconsistencies
and non-robustness in the young learning paradigm of learning without
parameter updates by narrowing down the source of inconsistencies in
the input data and eliminating potential other sources. However, this is
just a first step to understanding what determines ICL predictions: an
in-depth analysis of volatile factors will help to understand ICL intrica-
cies better. Showcasing the effectiveness of more holistic methods and
rigorous statistics will hopefully convince others of the usefulness of
our methodology.

7.3 Contributions

How do my findings translate to concrete, tangible contributions to the
fields of linguistics, cognitive sciences, NLP and beyond? In the following,
I will broadly cluster the contributions into three subgroups: contribution
of our framework for generalisation behaviour in LMs (see Linguistic
spaces below), our findings regarding the learning process of LMs (see
Learning process of LMs) as well as contributions on a methodological
level (see Holistic methods).
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Linguistic spaces In the work presented in this dissertation, I create
a framework to generate a linguistic conceptual space from a language
model’s learning dynamics. These linguistic spaces can be understood as
a ‘synthetic linguistic theory’, which can become theoretically interest-
ing for empirically inclined linguistic researchers to quickly test new or
contested latent constructs against a language model. A test of a hypoth-
esis can be done by selecting ‘anchors’ that contain the latent construct
under discussion and comparing their generalisation with an alternative
subset randomly selected from the remaining ‘anchors’. Especially with
refined ‘anchors’ as discussed in Section 7.2 and using LLMs instead of
regular LMs, the resulting linguistic spaces can become an exciting tool
for linguistic research.

Beyond linguistics, the suggested framework can generally be utilised
for any conceptual knowledge a machine learning model learns, and we
have data that isolates specific concepts we are interested in. With language
models becoming increasingly potent, constructing conceptual spaces
can be a helpful tool to interface their latent abilities and overcome the
introspection problem of humans and LMs, as I described in Objective 2
in Section 1.3. Constructing conceptual spaces from language models can
ultimately help us to create ‘synthetic science’ in which we analyse the
generalisation behaviour of LLMs to reconstruct their conceptualisations.

Learning process of LMs One of the main ideas behind constructing
linguistic task spaces was to see how a language model’s linguistic con-
ceptualisation changes throughout its training process. A desideratum was
to find major shifts in the conceptualisation at different stages of training
and, in addition to that, have clear indicators of how the model’s language
understanding changes. However, we uncovered that the linguistic con-
ceptualisation of LMs is instead continuous and does not entail significant
sudden shifts in its generalisation behaviour. This can be seen as a major
contribution to the understanding of the learning dynamics of LMs and is
interesting from multiple perspectives: Firstly, it highlights an important
difference between human and machine learning dynamics (as I discussed
in Section 7.1). Secondly, it gives us an intuition as to why the data pro-
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vided to an LM is essential, but the ordering is not and why we do not have
any viable curriculum learning strategies for language models up to this
day.

Holistic methods In this dissertation, I discuss the contrast between
reductionist and holistic methods (mostly Section 1.2.2). I suggest that
for analysing complex systems such as language models, certain portions
of their dynamics might be hard to address with conventional, strongly
reductionist approaches. In many cases, holistic methods are hard to realise
and potentially computationally expensive, as they do not allow breaking
the problem into manageable portions. However, they can give clearer or
complementary insights into otherwise inaccessible research domains. For
example, previous to our research in chapter 6, multiple studies looked
at different single aspects of ICL setups in isolation (as discussed in
Section 7.1). The results were difficult to reconcile with one another,
while our holistically oriented approach was evident in its implications.
One of the contributions of this dissertation is to showcase a variety of
holistic methods, encourage more holistic evaluations where necessary
and advise caution with strongly reduced setups with complex subjects.
We can learn from experiences in psychological research. In psychology,
researchers handle an inherently complex subject: the human mind. Using
strongly reductionist methodology on complex subjects contributes to
the ongoing replication crisis in the field Ioannidis (2005); Collaboration
(2015); Camerer et al. (2018). Awareness of when a methodology is
appropriate and applying it rigorously can contribute significantly to the
productivity of the field.

7.4 Outlook

I sketch out in the Introduction how language modelling is at the time of
writing at a culmination point. Each chapter in this dissertation uses a
different model architecture (from LSTMs to Transformers to pre-trained
Transformers to large pre-trained transformers) and different training
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regimes (from training from scratch to fine-tuning to in-context learn-
ing). This rate of change exemplifies how we move at an unprecedented
speed, and it is hard to foresee where the current developments will lead
us. My outlook will give a concentrated view of the potential future of the
research work presented in this dissertation.

The importance of AI and its interpretability Language modelling
technology has recently found broad adaptation in the public. The in-
creased utility of language models for all kinds of applications in the
recent past promises that large language models and related technology
will, in the near future, impact our day-to-day lives. In such a scenario,
the understanding of such models is only increasing in importance. In-
terpretability, however, is multi-faceted, and we can only get a complete
picture of a model by using a multitude of methods (Carvalho et al., 2019).
Research in interpretability should, therefore, draw on all resources that
can help us understand a model, including the learning dynamics and its
generalisation patterns. With the increasing complexity of models, better
and more creative approaches to interpretability will make an important
difference in minimising risks and biases in models, enabling us to benefit
from their capacities fairly and safely.

Models of (language) cognition and ‘synthetic science’ Machine learn-
ing models have achieved impressive performances in many application
domains in recent years. With LMs in particular, we have, for the first
time, a machine-learning model that excels in many environments at the
same time. While LMs process their inputs profoundly differently from
humans (Fodor and Pylyshyn, 1988; Lake et al., 2017; Lake and Baroni,
2023), they can serve as a model of (non-human) cognition. As such,
they can provide us with new ways of conceptualising already profoundly
studied domains, potentially blazing the trail to new perspectives. How-
ever, extracting conceptual knowledge is challenging as LMs are similarly
unable to introspect their inner processes as humans. Improved methods
of extracting concepts from LMs can open a rich field of ‘synthetic sci-
ence’, helping us to understand our topic of interest from the perspective
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of an alternative cognitive system. If constructing conceptual spaces from
learning dynamics is the best way to achieve this, it remains to be seen.

To further improve the framework presented in Chapters 3 and 4, a
logical next step would be to find different ‘anchors’ to span the linguistic
space. Currently, the data points that span the space are defined by formal
linguistic theory. However, anchors directly derived from the generali-
sation dynamics of the model might be more expressive of the model’s
language understanding. A space anchored by a more diverse set of data –
allowing for more unforeseen interactions between data points – could be
more expressive of the models underlying language conceptualisation.

Holistic methods of analysis When extrapolating the development of
LLMs, we can easily see how their complexity will continue to increase
as scaling laws promise more gains and new approaches start to integrate
additional modules such as tools (Schick et al., 2023), perceptual modali-
ties (Bubeck et al., 2023) or scenarios like embodiment become a reality
(Driess et al., 2023). As I argued throughout the dissertation, with the in-
creasing complexity of the analysed system, we are more likely to require
more holistic methods of analysis. The economic and scientific prospects
of more sophisticated LMs are great, and the corresponding shearing force
will propel us towards more complex models. Adequate methods to un-
derstand or improve them and make them fair and safe will be necessary.
Just like for certain aspects of human cognition, for an extensive range of
analytic needs in LMs, adequate methods can only be holistic.
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Appendices

A.1 Chapter 1
The supplementary material to Chapter 3 contains additional information
on the NPIs used in our experiments.

A.1.1 List of NPIs
We here present the full list of 160 NPIs that has been used for modifying
the corpora:

• a bed of roses
• a care in the world
• a chance in hell
• a damn
• a damn thing
• a day goes by
• a day over
• a ghost of a
• a hair out of place
• a living soul
• a moment of your

time
• a moment too soon

• a shadow of a
doubt

• a single soul
• all that much
• all that many
• any
• any longer
• any old
• any time soon
• anybody
• anymore
• anyone
• anything

• anything like

• anytime soon

• anywhere

• anywhere close

• anywhere near

• as of yet

• as yet

• at all

• avail

• bat an eye

• be any time

• be anything like
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• beat around the
bush

• by a long sho
• by any chance
• by any means
• by any stretch
• by miles
• by much
• can be bothered
• can compare to
• can hold a candle

to
• can make of
• can possibly
• chance in hell
• come at a worse

time
• come cheap
• could care less
• could possibly
• cut the mustard
• even once
• ever
• far wrong
• for much longer
• for shit
• for the life of
• for the soul of
• give a crap
• give a damn

• give a fuck
• give a shit
• half a chance
• half bad
• have a clue
• have any of
• hold a candle to
• hold water
• in a blue moon
• in a hundred years
• in a long time
• in a million years
• in ages
• in all of history
• in any
• in any manner
• in any way
• in centuries
• in days
• in decades
• in his right mind
• in hours
• in living memory
• in minutes
• in months
• in recent memory
• in the least
• in the least bit
• in the slightest
• in weeks

• in years
• just any
• just yet
• know the first

thing
• know the first

thing about
• know the half of it
• least of all
• let alone
• lift a finger
• make a sound
• make head or tail

of
• make much differ-

ence
• mean a thing
• mean feat
• miss a beat
• much care
• much help
• much of a
• much of anything
• much to look at
• much to lose
• nor
• on speaking terms
• on your life
• one single thing
• or anything
• rhyme or reason

180



“output” — 2023/12/20 — 15:41 — page 181 — #199

• say much
• see eye to eye
• set foot
• set foot in
• set foot on
• sit right with
• sit well
• sit well with
• small feat
• so much as
• square with
• squat
• stand a chance
• strong suit

• such thing
• sweat it
• take his eyes off
• take kindly to
• take lightly
• take no for an an-

swer
• that many
• that much
• that often
• the ghost of
• the half of
• the half of it
• the least bit

• the like of which
• the likes of which
• the slightest
• the slightest bit
• think much of
• to be taken lightly
• whatever
• whatsoever
• with a barge pole
• worth a damn
• worth his salt
• worth its salt
• yet
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A.2 Chapter 2
The supplementary material to Chapter 4 contains additional information
about the control hypothesis spaces that we employ to verify the meaning-
fulness of our linguistic spaces (Appendix A.2.1). Further, we document
the development of the LMs’ performance on BLiMP in different scenarios
(Appendix A.2.2). We also provide additional information on the develop-
ment of subspace sizes throughout training (Appendix A.2.3). Ultimately,
we show all heatmaps for all transfer and gradient spaces for all models
throughout the whole training process (Appendix A.2.4).

A.2.1 Controls

We include control conditions and baselines for our experiments. This
appendix section provides the necessary details.

A.2.1.1 Vocabulary baselines

We calculate two baselines to estimate the amount of transfer that is due
to mere vocabulary overlap between different paradigms: (1) Absolute
token overlap between the vocabularies VA and VB of different paradigms
– calculated simply as the size of their intersection |VA ∩ VB| – and (2) the
Wasserstein distance W (Kantorovich, 1960) between the vocabularies
distributions. These vocabulary controls can be correlated with correlated
with the transfer or gradient spaces. The degree of correlation indicates
how much of the transfer between different paradigms can be attributed to
the vocabulary overlap between phenomena alone.

A.2.2 BLiMP performance

Throughout our experiments, we pre-train and fine-tune our LMs. We here
document the performance of the models in different scenarios: first, we
show how the models perform on the whole benchmark throughout the pre-
training process. Second, we show how different pre-training checkpoints
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Paradigm 2

Absolute overlap

Figure A.1: (1 - W) in the left heatmap and the normalised absolute
vocabulary overlap on the right.

adapt In the following, we detail the performance of our models on the
BLiMP dataset throughout the pre-training process.

A.2.2.1 BLiMP learning curves

During the pre-training process, we evaluate each saved checkpoint on all
paradigms of the BLiMP benchmark and average the results. The following
plot shows the respective learning curves for the different models. While
none of the models achieve very good performance, the largest model
achieves their final performance much faster than the smaller ones.
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Figure A.2: Learning curves achieved on the different paradigms of the
BLiMP dataset by our generative transformer LM.

A.2.2.2 BLiMP probe tuning

The final performance after fine-tuning a specific phenomenon changes
with the amount of pre-training. The final performance of that model for
that specific phenomenon is shown in Figure A.3. With more pre-training,
models adapt better during the fine-tuning. Larger models generally adapt
better than smaller models.
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Figure A.3: Average final performance after fine-tuning a linguistic task.
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A.2.3 Subspace sizes
Throughout the training process, the average size of the subspaces with
which the LMs learn the different linguistic phenomena increases. The
subspace sizes within the larger models increase to a higher percentage of
their overall parameters and continue to increase for longer. Interestingly,
we have seen in the main body of the thesis (see Section 4.4.2) that this
increase does not happen at random but rather is directed to increase the
overlap between related phenomena throughout the training process.
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Figure A.4: Average subspace sizes of different linguistic phenomena
throughout the training process.

A.2.4 Similarity spaces
We calculate all similarity spaces throughout the training process. Fig-
ure A.5 on the following page illustrates the transfer and gradient matrices
for each saved model checkpoint.
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A.3 Chapter 3

The supplementary material to Chapter 5 contains additional information
about exact hyperparameter settings for all experiments (Appendix A.3.2),
additional learning curves for all replications of Raghu et al. (2021)’s
experiments (Appendix A.3.3) and results for our extension to GLUE-data
(Appendix A.3.5). Further, we illustrate the weighting policies of the
toy-teachers from Section 5.3.2 (Appendix A.3.4), give empirical proof
for relation of difficulty measures with their associated gradient norms |g|
(Appendix A.3.6) and provide the learning-curves of our finetuning experi-
ments using hand-crafted curricula in Section 5.4.2 which are summarised
in Table 5.3. Ultimately, we disclose the hardware infrastructure that we
used to conduct all experiments (Appendix A.3.8).

A.3.1 Additional Experiment: Impact of batch-size dif-
ferences

We found that differences in hyperparameter settings can have a large
impact on teaching outcomes. For computational limitations, we use
practice students with small batch sizes during teacher optimisation as this
allows for more steps Ip in the inner loop. Depending on our choice of
batch sizes during the following longer training, the effectiveness of the
teacher differs substantially: Batch sizes of similar size to the ones used
by practice students produce performance improvements for is that the
teacher has seen during training (up to Ip; see Figure A.6 (a)).

On the other hand, with an increased batch size during longer training
compared to teacher optimisation, the performance improvements project
towards later stages of training (beyond Ip; see Figure A.6 (b)). Curious
is that at these later stages of training in which we observe the learning
speed improvements, variance in teacher weights is already close to 0 (see
Figure 5.4 (a)) and the teacher therefore has no influence on the student
training anymore.
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Figure A.6: (a) Student trained with batch size of 8 and a teacher optimised
with a practice student trained with batch-size of 8; (b) Student trained
with batch size of 64 with the same teacher

A.3.2 Hyperparameter details
Throughout our experiments, we employed different sets of hyperparame-
ters. In the following tables, we summarise the hyperparameter settings
for every experiment, separated by hyperparameters for training and fine-
tuning, for model architectures (if not given by Raghu et al., 2021) and for
the schedule functions of our hand-crafted curricula:

A.3.2.1 Hyperparameters training

Here, ‘variable’ values are set depending on the specific subset of GLUE
we train on. RoBERTa-models that were trained with hand-crafted (HC)
curricula were trained using suboptimal (LOW) and optimal (OPT) learn-
ing rates.

Table A.1: Hyperparameters training.

EXPERIMENT γ (LR) LR-DECAY BATCH SIZE WARM-UP EPOCHS Ipractice Iteacher

§ 5.3.2: COMMENTARIES CIFAR (T ) INNER: 10−4 ; OUTER: 10−3 NONE 8 - - 1500 100
GLUE (T ) INNER: 10−4; OUTER: 10−3 NONE 8 - - VARIABLE 100
CIFAR (S) 2L-CNN: 10−3; RESNET: 10−5 NONE 64 - 25 - -
GLUE (S) ROBERTA: 4× 10−6 SQUARE-ROOT 8 100 VARIABLE - -

§ 5.4.1: HC CURRICULA ALL LOW: 4× 10−6; OPT.: 2× 10−5 SQUARE-ROOT 8 100 VARIABLE - -

188



“output” — 2023/12/20 — 15:41 — page 189 — #207

A.3.2.2 Hyperparameters model architecture

For all replications of Raghu et al. (2021)’s experiments, we used their
exact same model architectures. To transfer commentaries to NLP, we
conducted a small hyperparameter search to find the smallest possible
model architecture for the practice student Sp and teacher (T ) model that
maintains the capacity to substantially reduce the empirical error on all
GLUE-benchmark-tasks. The best model follows the transformer-encoder
architecture and is implemented using the fairseq library (Vaswani et al.,
2017; Ott et al., 2019). Sp and T are using the same base architecture.

Table A.2: Hyperparameters models.

EXPERIMENT N-LAYERS EMB-DIMS FFN-EMB ATTENTION-HEADS

§ 5.3.2: COMMENTARIES GLUE (T AND SP) 2 64 64 8

A.3.2.3 Hyperparameters schedule functions

We obtain the exact shape of the manual schedule functions from Sec-
tion 5.4.2 through a hyperparameter grid search and selected the triples in
Table A.3 as best performing schedule functions for our two hand-crafted
curricula. ‘Start portion’ describes percentage of initially used data, ‘step
size’ how much data is added to the portion of used data at every increment
and ‘increment’ is the number of updates after which additional data is
added to the pool of used data.

Table A.3: Hyperparameters schedule functions.

EXPERIMENT START PORTION STEP SIZE INCREMENT

§ 5.4.2: HAND-CRAFTED CURRICULA SEQUENCE LENGTH CURRICULUM 30% 10% 300
LOSS CURRICULUM 30% 10% 50
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A.3.3 Replication commentaries curriculum CIFAR10/100
The following (Figure A.7) shows the performance of different models on
CIFAR10 and CIFAR100 when trained with and without the commentaries
curriculum. We replicate Raghu et al. (2021)’s results. However, we also
find that their hyperparameter setting is suboptimal and that with properly
tuned hyperparameters, vanilla Adam outperforms the curriculum.
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Figure A.7: All replication results from the original paper, with suboptimal
hyperparameters that show the effect from the original paper and optimised
hyperparameters.
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Figure A.8: Learning curves for the 2-layer CNN trained on CIFAR10
with and without teacher at different learning rates γ. We see how lowering
γ helps commentaries improve over the vanilla Adam. At the overall best
γ, however, vanilla Adam performs on par.
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A.3.4 Toy curricula CIFAR10
In this section, we exemplify the simple loss-weighting policies that we
described in Section 5.3.2. When applied to the 2-layer CNN model
while training on the CIFAR10 dataset, the toy-teacher show how a simple
shift of loss-reweighting from low- to high weight values can improve
learning speed above no weighting (baseline with wi = 1). We can also
see, how decreasing weights have the opposite effect (see T↓linear) and that
the absolute value of the weight has no influence (compare Tconstant and
baseline).
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Figure A.9: The left side (a) shows the weights applied to the loss by
the different toy curricula. The right side (b) shows the performance of a
2-layer CNN trained on CIFAR10 with the different toy curricula.
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A.3.5 GLUE with Commentaries

In this section, we document the learning speed improvements that we ob-
serve with commentaries when we finetune RoBERTa on different GLUE-
tasks. Either axis shows the steps that the models requires to converge to
98% of its final performance when it is trained with and without a com-
mentaries teacher. We can see how with a suboptimal learning-rate (lr),
RoBERTa generally converges faster when it is trained with commentaries
(dots land above the diagonal). As soon as we use the optimal learning
rate, Adam without a teacher converges faster or just as fast as with teacher
(crosses land below the diagonal or on it).
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Figure A.10: Updates RoBERTaBASE needs to converge when finetuned
on different GLUE tasks, with and without teacher. Dots above the line
mean that the model with teacher learns faster; dots below the line mean
the model without teacher is faster. We see how an optimal learning rate
eliminates the effects of the teacher. Convergence is defined as 98% of
final validation performance.
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A.3.6 Correlations of difficulty measures with |g|
We stated in Section 5.4.2 that difficulty measures are correlated with the
size of the gradient that they evoke in a model. We here show empirically
that this is the case for the two difficulty measures that we are considering
in our experiments (sequence length and loss).
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Figure A.11: Covariance of common difficulty measures (Sequence length
and Loss) with the size of gradients that they produce when fine-tuning
RoBERTaBASE for a selection of GLUE-tasks. Both, sequence lengths
(a) and by cross-entropy-loss (b) are highly correlated with the average
gradient norms. We chose a representative subset of GLUE and binned
data points to improve the presentability of the results.

A.3.7 Learning curves hand-crafted curricula

In this section, we present the learning-curves that correspond to the
training-runs summarised in Table 5.3. We can see that our hand-crafted
curricula only provide an advantage when γ is set low. As soon as we use
an optimal learning rate, plain Adam outperforms the curricula. Moreover,
learning with the curricula becomes highly unstable (see by variance
across runs), something that is generally known to happen when parameter
updates are too large. Ultimately, we can also see how the benefit in hand-
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crafted curricula can also be eliminated by setting beta-values to equal
values, just like we previously observed it for commentaries before.
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(a) default βs + low γ

0 500 1000 1500 2000 2500
i

70

80

90

ac
cu

ra
cy

MRPC

Adam + Loss curr.
Adam
Adam + Seq. Len. curr.

(b) default βs + high γ
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Figure A.12: Learning curves of RoBERTaBASE when finetuned on MRPC
trained with the hand-crafted curricula. (a) shows the performance when
Adam’s β-parameters allow for interaction. The learning rate γ = 4e-6 lets
our hand-crafted curricula outperform the baseline using vanilla Adam. (b)
Shows what happens with optimal γ = 2e-5: vanilla Adam outperforms
any curriculum condition. (c) shows the performance when interactions
are prevented. Here, the curricula do not yield any learning advantage.

A.3.8 Computational resources
In this very last section, we disclose the computational infrastructure that
was necessary to conduct our experiments. As commentaries require to
save the whole computational graph of the practice student’s training to be
saved, GPUs with larger vRAM are desirable.

Table A.4: Computational resources used for conducting our experiments.

RESOURCES TYPE QUANTITY CAPACITY

GPUS NVIDIA A30 5 24GB HBM2
CPUS INTEL XEON SILVER 25 2.4GHZ X 10
RAM – 1 256GB
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A.4 Chapter 4

The supplementary material to Chapter 6 contains additional information
about the fine-tuning of LMs in the first section of the experiments. Fur-
ther, more details about the datasets and instruction templates used in all
experiments are given. For experiment 2, we add detailed descriptions of
factors as well as our motivations to include them. We provide results to
supplementary analyses in the second set of experiments.

A.4.1 List of finetuned models
Models

RoBERTaBASE RoBERTaLARGE
MNLI textattack/roberta-base-MNLI roberta-large-mnli

Base datasets SQuAD deepset/roberta-base-squad2 deepset/roberta-large-squad2
QQP own own

HANS own own
ANLI own own

Adv. datasets PAWS own own
SQuAD adversarial own own
adversarial QA own own
SQuAD shifts own own

A.4.2 Finetuning details of own models

We finetuned all RoBERTa models using the same set of hyperparameters
based on the literature and experience.

Hyperparameters We train using the ADAM Optimizer with γ = 1e-05,
inverse square root decay and β1/2 = (0.9, 0.999), no weight decay, 250
warmup steps and a batch size of 8. We stop training if the model does not
show improvement on the validation set for 1 epoch of training.

Data For adversarially tuned models, we mixed the training set of the
base data with 70% of the adversarial data (30% retained for evaluation).
We ensured a mixing ratio of 20%/80% adversarial/base data.
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A.4.3 Experiment 1: Datasets details

We here provide additional information about the datasets we use in Ex-
periment 1:

A.4.3.1 Base datasets

MNLI (Multi Natural Language inference; Williams et al. 2018)
A large-scale natural language inference dataset. It contains sentence
pairs annotated with three categories: entailment, contradiction,
and neutral. The dataset is sourced from a variety of genres, like
fiction, government documents, and telephone conversations, thus
encouraging models to learn domain-agnostic representations.

QQP (Quora Question Pairs; Wang et al. 2017)
A collection of question pairs from the Quora platform, labelled as ei-
ther duplicates or non-duplicates. The aim is to identify semantically
equivalent questions, addressing challenges such as paraphrasing
and varying levels of detail.

SQuAD (Stanford Question Answering Dataset; Rajpurkar et al. 2016)
A reading comprehension dataset consisting of questions about pas-
sages from Wikipedia. The questions are human-annotated, and the
answer to each question is a segment (or span) of the passage. The
goal of models is to identify and extract the correct span from the
passage that answers the question.

A.4.3.2 Adversarial datasets

HANS (Heuristic Analysis for NLI Systems; McCoy et al. 2019)
Constructed to evaluate models on non-entailment cases that appear
entailed due to spurious biases. Built upon common NLI datasets
like SNLI and MultiNLI, it dissects three heuristic strategies that
a model might utilise: lexical overlap, subsequence, and syntactic
structure.
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ANLI (Adversarial Natural Language Inference; Nie et al. 2020)
Generated by first training models on existing datasets (e.g., SNLI
and MultiNLI) and then having human annotators produce exam-
ples that the models predict incorrectly. Generation of additional
examples was done in multiple rounds with respectively improved
models, accordingly each round increases the adversarial difficulty.

PAWS (Paraphrase Adversaries from Word Scrambling; Zhang et al.
2019)
Comprises sentence pairs with high lexical overlap but differing
semantics, challenging models that heavily weigh word overlap.
An adversarial expansion to datasets like the Quora Question Pairs
dataset (QQP).

SQuAD Adversarial (Jia and Liang, 2017)
A derivative of the Stanford Question Answering Dataset (SQuAD)
where adversarial sentences are introduced into the context para-
graphs, aiming to mislead models into selecting incorrect answers
while the correct answers remain unchanged.

Adversarial QA (Bartolo et al., 2020)
A reading comprehension dataset, where each question is tied to a
Wikipedia passage. Distinctively, answer annotations are freeform
human responses rather than extracts from the passage, testing the
extractive capability boundaries of SQuAD-inspired models.

SQuAD Shifts (Miller et al., 2020)
Formed by perturbing the original SQuAD distribution in terms
of linguistic and stylistic attributes. This dataset gauges model
robustness against unseen data distributions, such as domain shifts
or synthetic noise.
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A.4.4 Experiment 1: Impact of spurious correlations in
ICL

We conducted an additional analysis of the results in Section 6.3.2. The
goal of this additional analysis is to understand the impact of the type of
adaptation data (adversarial vs. base) on the prediction outcomes in com-
parison with other factors that we varied in our experiments (such as the
type of instruction template, whether the model was instruction
tuned or the size of the model). Type data is a binary factor indicating
whether the model was adapted on base or adversarial data; Size is a
quarternary factor indicating model size; Type instructions is a binary
factor indicating the type of template that was used; Instruction tuned

is a binary factor indicating whether the tested model was instruction tuned
or not.

Table A.5 shows the summary statistics of an ANOVA that we apply
to these factors and their impact on the model accuracy. We can see from
Table A.5 that adaptation data is the only factor that does not significantly
impact prediction outcomes.

df sum sq mean sq F P(>F)

Type data 1.0 8.67 8.67 0.12 0.72
Size 3.0 6626.73 2208.91 31.26 5.71e-18
Type instruction 1.0 95.32 95.32 1.34 0.024
Instruction tuned 1.0 900.55 900.55 12.74 4.05e-04
Residual 357.0 25220.11 70.64 NaN NaN

Table A.5: Results of ANOVA
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A.4.5 Prompt template examples

A.4.5.1 FLAN instructions

Input:
Does the Hypothesis in the input entail (True) or contradict (False) the Premise or is it
independent (Neither)?
Premise: Kirklees Stadium (known as the John Smith’s Stadium due to sponsorship), is a
multi-use sports stadium in Huddersfield in West Yorkshire, England. Since 1994, it
has been the home ground of football club Huddersfield Town and rugby league side
Huddersfield Giants, both of whom moved from Leeds Road.
Hypothesis: Kirklees Stadium is in Scotland.

OPTIONS:
- True
- Neither
- False

ANSWER: False.

[...]

Does the Hypothesis in the input entail (True) or contradict (False) the Premise or is it
independent (Neither)?
Premise: Jonathan Smith (born January 17, 1971), better known by his stage name Lil
Jon, is an American rapper, record producer, and DJ. He was the frontman of the group
Lil Jon & The East Side Boyz, which he formed in 1997, and they released several
albums until 2004.
Hypothesis: Jonathan Smith spent much of his time in China.

OPTIONS:
- True
- Neither
- False

ANSWER:

Target:
Neither.
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A.4.5.2 P3 - details

In the following, we provide more details on the instruction templates
(Bach et al., 2022), as used in Experiments II.

P3 details – names Names of all available P3-instructions, ordered as in
Figure 6.2

1. ‘MNLI Crowdsource’

2. ‘Guaranteed Possible
Impossible’

3. ‘Always Sometimes
Never’

4. ‘Consider Always
Sometimes Never’

5. ‘Does This Imply’

6. ‘Guaranteed True’

7. ‘GPT 3 Style’

8. ‘Take the Following as
Truth’

9. ‘Must Be True’

10. ‘Based on the Previous

Passage’

11. ‘Should Assume’

12. ‘Can We Infer’

13. ‘Justified in Saying’

14. ‘Does It Follow That’

15. ‘Claim True False In-
conclusive’

P3 details – examples

High-performing templates ‘Claim true false inconclusive’
[...]

Jonathan Smith (born January 17, 1971), better known by his stage name Lil Jon, is an
American rapper, record producer, and DJ. He was the frontman of the group Lil Jon &
The East Side Boyz, which he formed in 1997, and they released several albums until
2004. Based on that information, is the claim: ”Jonathan Smith spent much of his time in
China.” true, false, or inconclusive?

ANSWER:

200



“output” — 2023/12/20 — 15:41 — page 201 — #219

High-performing templates ‘Does it follow that’
[...]
Given that Jonathan Smith (born January 17, 1971), better known by his stage name
Lil Jon, is an American rapper, record producer, and DJ. He was the frontman of the
group Lil Jon & The East Side Boyz, which he formed in 1997, and they released several
albums until 2004. Does it follow that Jonathan Smith spent much of his time in China.
Yes, no, or maybe?

ANSWER:

Low-performing templates ‘MNLI crowdsource’
[...]
Jonathan Smith (born January 17, 1971), better known by his stage name Lil Jon, is an
American rapper, record producer, and DJ. He was the frontman of the group Lil Jon &
The East Side Boyz, which he formed in 1997, and they released several albums until
2004. Using only the above description and what you know about the world, ”Jonathan
Smith spent much of his time in China.” is definitely correct, incorrect, or inconclusive?
ANSWER:

Low-performing templates ‘Guaranteed possible impossible’
[...]
Assume it is true that Jonathan Smith (born January 17, 1971), better known by his stage
name Lil Jon, is an American rapper, record producer, and DJ. He was the frontman of
the group Lil Jon & The East Side Boyz, which he formed in 1997, and they released
several albums until 2004.

Therefore, ”Jonathan Smith spent much of his time in China.” is guaranteed, possible, or
impossible?

ANSWER:

A.4.6 Introducing custom factors
The ICL consistency test allows the addition of additional user-defined
factors. This is useful if factors should be evaluated that are related to
modifications of the model (e.g. whether it was instruction-tuned Wei
et al., 2022a, or not) or when the model was evaluated in a different way
(e.g. whether we calibrate our output probabilities Zhao et al., 2021, or
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not). Note that adding a factor in this way will change the overall results
of the analysis (see Section 6.4.1 for more details). Alternatively, the task
can be evaluated separately for either of the user-defined factors.

A.4.7 Factors details

In the following, we provide a more detailed description of the factors used
in Section 6.4 and also provide our motivation to include these factors.

A.4.7.1 Variance factors

Size We consider models of different sizes. Model size has been shown
to be an important moderating factor in probably all previous studies on
in-context learning.

Instruction tuning We have seen previously that instruction tuning
improves the consistency of a model across templates (see Section 6.4.1).
We introduce it as a factor to show which other invariance factors it may
affect.

Calibration Previous research has shown how small models are es-
pecially biased towards single labels when prompted. We find similar
tendencies for our model: We exploratively calculate the entropy of a
model’s predictions across all data points in a dataset. This allows us to
estimate whether a model is biased toward predicting a single label (low
entropy). Optimally, a model’s prediction should be close to the entropy
of the target distributionH(Y ). We find that smaller models have a larger
bias towards predicting a single label (lower prediction entropy), while
larger and IT models get closer toH(Y ) (see Figure A.13).
Zhao et al. (2021) suggests solving this issue by calibrating the model
probabilities using ‘content-free’ prompts. We add the factor of calibration
to assess its effects systematically.
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Figure A.13

n-shots The number of in-context examples has been shown to interact
with other factors (e.g. according to Zhao et al., 2021, calibration has
a more significant effect for fewer in-context examples). We would also
expect that n-shots interacts with many other in-context factors such as
one label, in which we show the model just examples with the same
label in-context, is modulated by the number of in-context examples. We
introduce ‘few’ (k = 2) and ‘many’ (k = 5) examples as a factor.

Instruction quality Ultimately, we have seen how some instructions
produce consistent and relatively well-performing responses across dif-
ferent models while others do not (see Section 6.4.1. We add this last
factor to see which other types of factors help the in-context learner cope
with varying instruction quality. We chose the two best and two
worst-performing templates1 from our previous analysis.

A.4.7.2 Invariance factors

The following briefly describes each of the tested λinv.

1See Appendix A.4.5 for an example of the instructions
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Balanced labels Zhao et al. (2021) additionally showed how a majority
label among the in-context example can influence the distribution of model
outputs. Therefore, we compare contexts with balanced in-context label
distribution with randomly sampled labels and an extreme case with only
a single in-context label.

Cross-instruction We include cross-templates as a factor to assess
model robustness to shifts in label space and surface form of instruction
formulation. Previous research has shown how in-context learners are
sensitive to the instructions (Mishra et al., 2022) as well as the label distri-
bution C (Min et al., 2022). The experiments of Min et al. (2022) represent
an extreme case in which C is resampled to be random tokens. While these
edge cases are theoretically attractive, we here change this scenario to a
practically common one, where instructions and labels are semantically
equivalent but have different surface forms by randomly sampling from the
available p3 instructions for the in-context examples. We test the impact of
in-context instructions in a single setting with results shown in Figure A.14
Surprisingly, almost all models are robust to semantic-invariant changes
to instructions of the in-context examples despite changes in the label
space and substantial changes in surface form and format across different
instructions.
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Cross-task In cross-task, we exchange the task of the in-context
examples such that the only consistency between in-context and target
examples is the general format (x followed by y) and the truthfulness
of the x to y mapping. To see whether conditioning on a fixed label
space matters, we add tasks with a discriminative (QQP) and a generative
(SQuAD) objective as different factors. Compared to a zero-shot baseline,
we can see that large models can benefit from conditioning on other tasks
(Figure A.15).
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Figure A.15

For our principal analysis, we only include QQP as an in-context task,
as SQuAD is incompatible with many other factors (such as balanced
labels, one label aso...)

Instructions Besides the quality of the instructions, we are also inter-
ested in how consistent model behaviour is across instructions that
are of similar quality. To get an insight into this, we bin the high-quality
instructions respectively into a new factor.
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A.4.8 Experiment 2: Accuracy distribution
We here show the distribution of accuracy scores for all setups in experi-
ment 2, separated by model size (hue) and whether the model is instruction
tuned or not (i.e. vanilla).
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Figure A.16
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A.4.9 Experiment 2: Interactions details

A.4.9.1 ANOVA using instructions factor

We fit an ANOVA using the factor instructions instead of instruction
quality. In that case, we find a similar pattern of interactions, showing
that the size of the main effect can not merely explain the number of
interactions.
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Figure A.17: Interactions when excluding Instruction quality and
keeping Instructions instead. We find similar patterns.

A.4.9.2 Interaction mappings and effect sizes

The following shows the exact mapping of the interacting factors as well
as the size of the corresponding effect size, measured by βλ1×λ2 values
from a post hoc regression analysis.
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Figure A.18: The exact mappings of all two-way interactions in our exper-
iments.
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Additionally, the following table lists the exact mapping of the sig-
nificant three-way interactions between different factors, as measured by
βλ1×λ2×λ3 of the post hoc regression analysis.

Model λ1 λ2 λ3 βλ1×λ2×λ3

7B Instruction quality Calibration Cross task 0.037106
13B Instruction tuned Calibration Instruction quality 0.002102
13B Instruction quality Cross task Calibration -0.013176

Table A.6: The exact mappings of all three-way interactions in our experi-
ments.
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