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Abstract

The use of deep learning has become increasingly popular in the last years in many
application fields such as the ones of computer vision and natural language processing.
Most of the tasks in these fields are now tackled more efficiently by deep learning
than by more classical techniques, provided that enough data is available. However,
deep learning algorithms still lack a crucial property, they are not able to efficiently
accumulate new knowledge into an existing model. Instead, when learning on new
data without revisiting past data they experience catastrophic forgetting. This property
is the main focus of the sub-field of Continual Learning. The absence of this property
leads to various practical consequences. Among them, the computationally expensive
nature of learning algorithms that revisit all previously seen data, which comes at a
non-negligible energy cost, and privacy issues related to the requirement to store old
data for later training.

In this thesis, we investigate the impact of learning in a continual manner on the
performance of neural networks, more specifically for classification tasks in computer
vision. We investigate the causes of catastrophic forgetting within several commonly
studied setups of continual learning. We study the continual learning setting where
data associated to distinct set of classes arrive incrementally. Under this setting, we
investigate how the difficulty of learning cross-task features accounts for the loss in
performance. Part of the thesis is dedicated to the more complex setting of online
continual learning, and the problem of the stability gap. We investigate the impact of
temporal ensembling on the stability gap and see that we can drastically reduce it by
applying an ensembling method at evaluation time, not influencing the training process.
In addition, we realise a survey of online continual learning methods and conclude that
they might be more affected by an under-fitting problem than by the non-iid training
procedure. Finally, we focus on bigger models that have had a strong first learning
experience, and study the impact of continual learning on smaller experiences when
using low-rank parameter updates.

Key words: deep learning, continual learning, online learning
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Resumen

El uso del aprendizaje profundo se ha vuelto muy popular en los últimos años en
muchos campos de aplicación como la visión por computador o el procesamiento del
lenguaje natural. La mayoría de las tareas en estos campos se resuelven de manera
más eficiente usando estas técnicas en comparación con métodos clásicos, siempre y
cuando haya suficientes datos disponibles. Sin embargo, los algoritmos de aprendizaje
profundo carecen de una propiedad crucial: no son capaces de acumular conocimiento
de manera eficiente sobre un modelo existente. En lugar de eso, cuando estos métodos
aprenden con nuevos datos sin revisitar los previos, sufren de olvido catastrófico. Esta
propiedad es el objeto principal de estudio del campo del aprendizaje continuo. La
ausencia de esta propiedad conlleva varias consecuencias a la práctica. Entre ellas, el
aumento de complejidad de cálculo por la necesidad de incorporar datos prévios para
aprender con nuevos datos, lo que conlleva un costo energético importante, o la falta
de privacidad por tener que guardar datos antiguos.

En esta tesis, investigamos el impacto del aprendizaje continuo en el rendimiento
de las redes neuronales, más específicamente en tareas de clasificación usando visión
por computador. Investigamos las causas del olvido catastrófico dentro de varios
escenarios comúnmente estudiados en el aprendizaje continuo. Analizamos el entorno
de aprendizaje continuo donde los datos asociados a conjuntos de distintas clases
llegan incrementalmente. En este contexto, investigamos cómo la dificultad para
aprender características entre tareas afecta la pérdida de rendimiento. Parte de la tesis
se dedica al entorno más complejo del aprendizaje continuo en línea y al problema
de la brecha de estabilidad. Estudiamos el impacto de los conjuntos temporales de
modelos en la brecha de estabilidad y observamos que, durante la evaluación, podemos
reducirla drásticamente aplicando un método de ensamblado de modelos, sin influir
en el proceso de entrenamiento. Además, realizamos una revisión de métodos de
aprendizaje continuo en línea y concluimos que pueden verse más afectados por un
problema de subajuste que por el procedimiento de entrenamiento con un flujo de
datos no independiente e idénticamente distribuido (i.i.d). Finalmente, nos centramos
en modelos más grandes que han tenido una experiencia de aprendizaje inicial sólida,
y estudiamos el impacto del aprendizaje continuo en experiencias más pequeñas al
usar actualizaciones de parámetros de bajo rango.

Palabras clave: aprendizaje profundo, aprendizaje continuo, aprendizaje en línea
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Resum

L’ús de l’aprenentatge profund ha crescut en popularitat els darrers anys en molts
camps d’aplicació com el de la visió per computador i el processament del llenguatge
natural. Actualment, la majoria de les tasques en aquests camps es resolen de manera
més eficaç mitjançant l’aprenentatge profund que amb tècniques clàssiques, sempre
que hi hagi prou dades disponibles. No obstant això, els algorismes d’aprenentatge pro-
fund manquen encara d’una propietat crucial, no són capaços d’acumular eficaçment
nous coneixements en un model existent. En lloc d’això, quan aprenen amb noves
dades sense revisar les dades passades, experimenten un oblit catastròfic. Aquesta
propietat és el principal focus dels subcamps de l’Aprenentatge Continu. L’absència
d’aquesta propietat porta a diverses conseqüències pràctiques. Entre elles, la naturalesa
computacionalment cara dels algorismes d’aprenentatge que revisiten totes les dades
vistes anteriorment, el que comporta un cost energètic no negligible, i els problemes
de privadesa relacionats amb la necessitat d’emmagatzemar dades antigues per a un
entrenament posterior.

En aquesta tesi, investiguem l’impacte de l’aprenentatge continu en el rendiment de
les xarxes neuronals, en especial, per a tasques de classificació en visió per ordinador.
Investiguem les causes de l’oblit catastròfic dins de diversos escenaris comuns d’apre-
nentatge continu. Estudiem l’entorn d’aprenentatge continu on les dades associades
a conjunts diferents de classes arriben incrementalment. En aquest context, investi-
guem com la dificultat d’aprendre característiques entre tasques explica la pèrdua de
rendiment. Part de la tesi està dedicada a l’entorn més complex de l’aprenentatge
continu en línia, i al problema de la pèrdua d’estabilitat. Investiguem l’impacte de
l’agrupament temporal en la pèrdua d’estabilitat i observem que podem reduir-lo
dràsticament aplicant un mètode d’assemblatge durant l’avaluació, sense influir en
el procés d’entrenament. A més, realitzem una revisió dels mètodes d’aprenentatge
continu en línia i concloem que podrien estar més afectats per un problema de subajust
que pel procediment d’entrenament no iid. Finalment, ens centrem en models més
grans que han tingut una primera experiència d’aprenentatge sòlida, i estudiem l’im-
pacte de l’aprenentatge continu en experiències més petites utilitzant actualitzacions
de paràmetres de baix rang.

Paraules clau: aprenentatge profund, aprenentatge continu, aprenentatge en línia
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1 Introduction

1.1 Deep learning of artificial neural networks
In the recent years, Deep Learning techniques that automatically learn the weights of
an artificial neural network from data, using the back-propagation algorithm [138],
have unlocked drastic improvements in a broad range of fields [89]. Computer vi-
sion [136], Natural language processing [20], Speech recognition [64], Robotics [11],
Environmental Modelling [87], Bio-informatics [78], and many others have seen
exciting developments thanks to advances in this field. The training process of most
of these advanced deep learning systems follows a simple scheme. Once the training
data is collected and cleaned, it is shuffled and presented to the model in small chunks
that are called mini-batches. The model then makes a prediction, computes the dif-
ference between its prediction and the actual label (in case of supervised learning),
and then slightly tunes its weights in order to improve the prediction. Going through
the whole training dataset several time, until the performance on a held-out validation
dataset converges, results in proper weights that can be used to solve the desired task.
Although this process seems easy to implement, it leads to rigidity in the ability of the
model to acquire new information. Indeed, if a new portion of training data arrives,
naively training on it following the same process will most probably not lead to better
weights and might even decrease the performance on the previously seen data. This
phenomenon is known as catastrophic forgetting [53, 59]. This inability to accumulate
new knowledge has serious consequences in terms of computational and memory
requirements of learning, since updating a model with new data then requires to store
all the previous training data and to revisit it jointly with the new data.

As a matter of fact, in terms of energy consumption, it is estimated that a big
language model like ChatGPT-3 can consume from 1 to 10 gigawatt-hour* (GWh) of
energy for training, which is equivalent to the yearly electricity consumption of over
1,000 U.S households [116, 126]. In these extreme cases, it is evident what would be
the positive impact of a strategy that mitigates the cost of assimilating new data into
the model, since training from scratch on the accumulation of previous and new data
would be an energetic nightmare, that needs to be repeated whenever a model update
is required.

*This estimation differs a lot when taken from different sources
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Chapter 1. Introduction

In terms of memory, while it is true that the complete storage of even recent large
scale datasets is cheap comparatively to the computation required to learn on it [130],
trying to revisit every previously seen training instance while learning on new data
comes with additional problems. Firstly, as the memory size grows it becomes more
and more expensive to revisit it while learning a new task, so revisiting a bigger
memory also impacts the computation leading to the same consequences that are
mentioned in the previous paragraph. Secondly, a lot of applications also require to
give privacy guaranties [99], in which case retaining specific training instances would
not be possible for those instances that are considered private.

The research field of Continual Learning [93, 96] is dedicated to finding solutions
to the above-mentioned issues, it studies and aims to improve the efficiency of learning
in an incremental setting under the constraint of restricted memory and computation.
It will be the core focus of this thesis.

1.2 Continual learning

1.2.1 Definition

Figure 1.1: Schema highlighting the difference between Continual Learning and Single
Session Learning. The Continual Learning agent is deployed for inference before
finishing learning and progressively assimilates new concepts.

Continual learning describes the process of learning from a stream of data by
progressively incorporating new knowledge. It is opposed to learning from scratch
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in a single session on an independently and identically distributed (i.i.d) dataset, we
highlight this difference in Figure 1.1. Every time new information arrives, it must
be built on top of previously learned knowledge, without forgetting the previously
acquired one. This approach to learning aims to be closer to the human learning
process, since we are also exposed to experiences in an incremental manner. In
practical terms, the ability to continually learn should also lead to more efficient
learning in terms of computation and memory.

Formally, continual learning can be thought of as learning from a data stream
with potentially varying data distribution. In this thesis, we will mostly talk about
supervised learning problems, where we need to predict a label yt ∈Y from an input
xt ∈X at time t . In that case, continual learning considers the setting where xt and yt

are drawn from a distribution that can vary with time xt , yt ∼ pt (x, y). After learning,
or in-between the learning sessions, the learner is expected to predict labels from inputs
coming from a test distribution that is often taken as the joint distribution over all
timesteps xtest , ytest , ttest ∼ 1

T

∑T
0 pt (x, y), where ttest is the timestep that identifies

the distribution mode from which (x, y) has been drawn, ttest is later referred to as
the task label or task id. Let’s define a prediction function f : X ×Θ −→ SC , with
learnable parameters θ ∈Θ. Here C =C ar d(Y ) and SC is the probability simplex on
RC s.t SC = {x ∈ RC :

∑C
i=0 xi = 1, xi ≥ 0∀i }. We further denote θt as the parameters

learned up to time t , and define one timestep as the arrival of a set of new inputs that
will be learned in a single session. Then, a continual learning algorithm A learns the
parameters θt given the previous parameters θt−1 and the dataset D t for time step t as
described in Equation 1.1.

θt =A
(

f ,θt−1,D t ) (1.1)

This problem is inherently difficult because the quantity to optimize is most often
not directly accessible to the algorithm, since it only sees part of the full training
distribution at a time. As a consequence, a continual learning algorithm often attempts
to prevent catastrophic forgetting of previous knowledge, by using information coming
from the previous weights, or from some externally stored memory that allows to
estimate the loss function on previously seen tasks. If we denote L t :SC×Y −→R

the loss function for task t , then the ultimate goal of the algorithm is to optimize the
following problem

argmin
θ

1

T

T∑
t=1

Ex,y∼pt (x,y)[L
t ( f (x,θ), y)] (1.2)
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1.2.2 Settings and Benchmarks
Many benchmarks have been proposed in the literature, each of them defining the
sequence of training distributions pt (x, y) and the prediction task in a different way
[152]. In this section we will present the different kinds of benchmarks and their
corresponding challenges.

Class- and Task- Incremental: In supervised learning, a common practice to create
continual learning benchmarks is to split the training data of an existing supervised
benchmark (i.e MNIST [90], Cifar100 [85], ImageNet [139]) based on mutually
exclusive sets of classes (one class that is in one set cannot be in another set). This
practice leads to the two most common benchmark type, the class-incremental learning
(CIL) and the task-incremental learning (TIL) benchmarks. In task-incremental
learning, both xtest and ttest are available at test time, which gives the option to
split the learning into different components that will or will not be activated for a
given task. However, in class-incremental learning, only xtext is available at test time,
rendering these kinds of strategies impossible or significantly harder (it is still possible
to first estimate ttest then ytest ). More formally, in task-incremental learning, the
prediction function f is trying to approximate pt (y |x) = p(y |x, t ) whereas in class-
incremental learning, it is trying to approximate p(y, t |x). These two settings are the
most commonly explored because they can be easily created from existing labeled
datasets. Extensive evaluation of existing methods for Class-incremental learning can
be found in [111], and for Task-incremental learning in [40].

Domain Incremental: Domain incremental benchmarks are not created based on
the label of the data, but rather based on its input domain. For instance, it can be
images with different lightning conditions either natural or artificial, or with different
sets of artificial augmentations applied to images of each task (Rotated MNIST or
Permuted MNIST [59]). This kind of benchmark is slightly less popular due to the
easiness of performing additional transformations during training to counter the input
domain shift. For instance, in the case of rotated MNIST, applying a random rotation
to incoming images would make the learning similar to the one on an i.i.d stream.
However, learning on natural domain shifts is an interesting problem which is actively
explored. Instances of natural domain shift can be due to the time and place of where
a picture was taken [24], or even more drastic shifts can be obtained with different
kind of modalities representing one category (real image and different kinds of visual
representation of this same category) [127].

Offline and Online Learning: Among the different kind of benchmarks, another
distinction is often made in the field of continual learning between online learning
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and offline learning. This terminology distinguishes two kind of benchmarks based on
the amount of data that is available while training a new "task". For the purpose of
explaining this concept more in detail, we will use the term of experience as done by
Lomonaco et al. [103], to refer to an incoming dataset, while we will keep the term
task to indicate a distribution shift and point to a specific data distribution. Using this
terminology, we can say that offline learning has access to experiences of significantly
bigger size than online learning, which are in general big enough to split them in
smaller chunks (mini-batches) and perform several epochs over them, while online
learning can only access one small chunk of data at a time, while it is still possible to
perform multiple iterations over it, it is in general less interesting performance wise.
While it is often believed that online learning is computationally cheaper than offline
learning, this is not a condition required by the online learning setting. However, the
inefficient aspect of performing a big number of iterations on a small batch of data
often leads to cheaper algorithms. Typically, online continual learning is of interest in
settings where the data arrives at a very fast pace and cannot be processed fast enough
by an offline learning system. This can happen in sensor networks [10], with data
coming from the Internet of Things, or in financial applications [123].

1.2.3 Desired properties
In this section, we will quickly review the main properties that we expect a continual
learning agent to have. Here by continual learning agent, we refer to the ensemble of
model, weights and continual training algorithm described in the previous section. The
properties listed below are largely inspired by observations made on human learning,
and have been presented under different formulations in various existing works [30,93].
For now, and because this is still an open problem, we will not directly link these
properties to metrics, but rather describe them in qualitative terms.

Knowledge Transfer: Whenever a continual learning agent encounters a new task,
it should be able to exploit the knowledge that it has accumulated so far to quickly
adapt to this new task and perform better on this task compared to an agent that has
no experience, this capacity is commonly referred to as forward transfer. We also
expect this knowledge transfer to work backwards, when an agent trains on a new task
it should ideally improve on the previous tasks, or at least do not forget them, this
latter property is referred to as backward transfer. If learning a task hurts the capacity
of an agent to solve previous tasks, then it suffers from forgetting [53, 59].

Memory and Computational Efficiency: The goal of continual learning is to
accumulate the knowledge from a stream of task without forgetting the previously
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learned knowledge. This definition does not necessarily imply that the continual
learning agent should not revisit previous data. And revisited limited amounts of data
is a method that is often used in continual learning. However, a caveat of this definition
is that the agent would then not be forced to accumulate knowledge from each task
but could instead perform single-session learning by storing all of the data seen so far
and learning from scratch again every time a new datapoint or set of datapoints arrives.
This would in turn not make it a continual agent anymore.

In order to impose methods to perform actual continual learning with progres-
sive accumulation of knowledge, the research community came out with artificial
constraints that bound the memory and/or the computation of a method. This can
be done for instance by limiting the amount of previous data an agent can store to
a fixed amount, or it’s amount of computation to a fixed amount. In practice, it is
easier to impose a constraint on the memory because it is a component that is easier to
control (especially under fixed network architecture and with a memory that depends
mostly on the amount of input data stored). The memory bounding is also highly
inspired by what we understand from the human learning. While it is not clear what
amount of "computation" we use, it seems quite clear to us that we cannot recreate to
the perfection every experience we have lived, which means that we do not store the
equivalent of input datapoints, or at least we discard a significant proportion of them.
This is why most often the memory bound constraint is used, often disregarding the
computational constraint.

However, this has been recently put in question [130] since from a practical point
of view, memory is very cheap in regard to computation. In terms of computation, we
expect a continual agent to learn a new task faster than it would take to learn from
scratch this task plus all previous tasks. If we denote the computation of learning
task t (alone) as Ct , then we want the learning agent to assimilate task k faster than∑k

t=1 Ct , which corresponds to learning from scratch on all tasks seen so far. In general,
continual learning methods reach computation budgets that are of the same order than
the one of learning from scratch on all the tasks only once, hence they aim to assimilate
task t using approximately Ct computation. This means that they aim to have little to
no additional computation inherent to the use of a continual learning method compared
to the case where all of the data would be available from scratch. Of course, this is
difficult to achieve.

Stability vs Plasticity: Although retaining the previously learned knowledge is
important, it is also important that the network is capable to correctly learn the new
incoming tasks. The term of plasticity is used to refer to the capacity of adaptation
of a model, and is often contrasted with the term of stability, that refers to the ability
to solve previously learned tasks at any time during the learning. This interplay
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between the two properties of plasticity and stability is referred to as the stability-
plasticity tradeoff, since for many methods, gaining in plasticity results in losing
stability. Attempts at designing plasticity metrics [105] have been made, but it is in
general quite hard to measure this property, so people often use intransigence [28]
as a proxy measurement, which measures the difference in performance between the
continually learned model and the "ideal" model learned on the full stream of data.
Note that this latter metric cannot be computed in a realistic setting but can only be
used to evaluate a continual learning method in a controlled setting where access to
the full dataset is possible.

1.2.4 Continual learning in the wider Deep Learning landscape
In order to situate continual learning in the wider field of deep learning, we here
take a look at the related fields from which continual learning research draws its
inspiration. While each chapter will contain a specific related works section more
specific to continual learning, in this section we will talk about fields that do not
directly tackle continual learning but are of interest for its study and are often taken
as inspiration to design continual learning methods. In Figure 1.2, we visualise an
undirected citation graph of the bibliographic resources used during this thesis, on
which we run a community detection algorithm to identify sub-fields of papers that are
highly connected between each other and weakly connected to the rest of the papers.
While articles are clustered in a big connected component because very related to
continual learning (on the right), we can distinguish several other clusters that are only
weakly connected to this big component and are not directly continual learning papers.

Compositional Learning: This field explores the learning of compositional or
modular structures, with the hope that individual components will be able to learn
meaningful functionalities that can be used and composed on demand when a task
requires it. If such meaningful functionalities are found, modular learning promises for
fast adaptation to unseen tasks and improved inference speed and memory. While it is
believed that this modularity can emerge from normal neural network training [37],
this property can be quite hard to harness as-is. For this reason, most works in this
field attempt to force modularity by learning a composition of smaller neural networks
along with gates that manages the routing of the module’s output into another module
input [122, 145]. While initially explored using a single level of modularity, with one
gate that routes the input to a dedicated expert network [145], leading to a "Mixture of
experts", more recent works explored multiple levels of modularity [114]. Advances
in this field are of high interest for continual learning because of the improved capacity
of compositional networks to isolate the knowledge required to solve a task from
the rest of the knowledge. This isolation of knowledge should lead to increased
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Figure 1.2: Undirected citation graph of the bibliographic resources explored during
this thesis. The main cluster on the right corresponds to purely continual learning
papers, while the other clusters correspond to other related sub-fields of deep learning.
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protection of remaining weights, and in the ideal case, routing the correct part of
the input to the correct module could lead to module-wise i.i.d training, which is a
dream for any continual learning practitioner. For these reasons, multiple continual
learning works explored this avenue starting with the simple mixture of experts [7],
to the more complex multi-level routing [113, 122]. Although they work well on
task-incremental learning benchmarks, a known issue of these methods is that they
struggle in class-incremental learning especially when the task-inference is difficult
to perform, which often makes the routing of inputs to the correct modules harder.
Interestingly, however, mixture of experts have proven to be extremely efficient in
recent large language models (LLM) [77] even when the "dedicated functionality" of
each component remains hard to interpret.

Meta Learning: This is a sub-field of artificial intelligence that investigates the pos-
sibility to improve the learning capabilities of a given algorithm. Most approaches do
that by differentiating through the backpropagation process, which requires additional
computation, although some alternatives have been found to save computation [118].
Using this technique, they can learn any parameter that are part of the classical training
process (i.e. hyperparameters), such as the initial weights [51], the loss [15], or any
other parameter introduced by the specific training algorithm used. Since the classical
learning process leads to catastrophic forgetting in the setting of continual learning,
many attempts have been made at using Meta-Learning in order to improve the contin-
ual learning capabilities of an agent [29, 63, 137], with the hope that the meta-learning
process can learn a more effective way of performing continual learning.

Mode Connectivity Theory and the impact of Early training phase: Mode con-
nectivity refers to the possibility of finding a path in the parameter space between
two different optimums, such that every point of this path is of low loss. Initially
studied in Garipov et al. [55], it has been quickly linked to interesting properties of
the early training phase of neural networks. In particular, it has been shown that
very early in training, a neural network reaches a point that is stable to SGD noise,
meaning that starting the training from that point on a given dataset but with different
optimization trajectories will always lead to linearly connected minima [52]. Parallel
studies have shown that perturbing the training of the network early in training could
lead to permanent loss of performance on subsequent tasks [2]. Studying the impact
of the early training phase of neural networks on the subsequent learning steps is
crucial for continual learning, since a continual learning agent is expected to learn on
a sequence of tasks by always starting from the previous model checkpoint. Although
some conclusions from this field might seem catastrophic news for continual learning,
in particular the results showing that incremental learning on incrementally bigger
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i.i.d datasets lead to reduced performance [12], it is not clear yet how these results
can generalize to different optimization configurations (higher learning rate, presence
of weight decay, different optimizer), and the impact of the early phase of training
in continual learning is still poorly understood. The mode connectivity property has
already been studied in the continual learning setting [115]. In general, most continual
learning works assume that the difficulties of continual learning only comes from
learning on non-i.i.d sequence of datasets, but works on the early phase of training
put that in question, showing that incrementally training on top of a previous model
checkpoint might lead to unexpected difficulties in itself.

Unsupervised and Self-Supervised Learning: These are learning paradigms that try
to alleviate the need for labeled data, by learning representations solely from unlabeled
inputs. Self-Supervised learning refers to the more specific class of unsupervised
algorithms that in order to learn representations, create a pretext task, for instance
via transforming the data in some way and trying to predict what transformation has
been applied [56], or by performing multiple transformations of the same input and
making their output feature match [32]. Variations of these methods also allow for
learning representations using a mix of labeled and unlabeled inputs [80]. Continual
learning has been mostly explored in the supervised setting, however because of
the incremental nature of the supervised task, it is not obvious whether the use of
a purely supervised loss in that setting is optimal. Indeed, in the class-incremental
learning setting, learning each task individually with a supervised loss struggles to
learn cross-task features, as we will detail in Chapter 2. For this reason, attempts
have been made at using losses from the field of self-supervised learning in continual
learning, either in the supervised setting [109] or the unsupervised one [57]. But more
importantly, unsupervised learning introduced great tools for evaluating the strength
of the representations, that are now used and have given interesting insight on the
representations learned in continual learning [4, 38].

1.2.5 Open source implementations
Reproducibility of existing experiments is a common concern in many fields. For-
tunately, computer science is one of the fields where reproducibility has a central
position, however, it does not mean that it should be taken for granted. While it is very
easy to reproduce a deep learning experiment by running the same code that has been
run by the author, it is not easy to ensure that the code written by an author reflects
what has been explained in the corresponding article. In particular, in deep learning,
it is common to obtain improved results by tuning the hyperparameters of a method
more than the ones of another method. Or by modifying some parts of the training
code for one method but not the equivalent part for the baseline method. All of these
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considerations make it hard to conclude on the ability of a method to improve the
results on a given benchmark or not, especially when this improvement is marginal
(which occurs for many articles). This is why it is important to spend time gathering
all the proposed methods or benchmarks under a common framework in order to make
their comparison easier and more fair. On top of that, it often makes comparison
and prototyping of new methods easier. A variety of open-source libraries have been
proposed and are concurrently used in the literature. Most of these libraries emerged
from the effort of individual students after having implemented multiple methods for
the purpose of making a survey paper, like FACIL [111] and PyCIL [170, 171], these
libraries implement most aspects of the continual learning training and evaluation
pipeline as well as a considerable amount of methods. They put the focus on exactly
reproducing methods as they have been designed in their initial respective papers
(at the cost of less code sharing between methods). Continuum [49] is a library that
focuses essentially on making the creation of continual learning benchmarks easy, by
providing utilities for splitting datasets into multiple tasks and manipulating the task
specific datasets.

The Avalanche library [26] is an end-to-end continual learning library that im-
plements all aspect of a continual learning pipeline (See Figure. 1.3) as well as its
evaluation. It is available on github at https://github.com/ContinualAI/avalanche.git
and has more than 1600 stars on github and 60 collaborators, which makes it the most
popular continual learning library at the time of writing this thesis. This library puts
the focus on making prototyping of new methods easier and more natural, which goes
together with sharing a maximum amount of code between methods. A part of this
thesis has been dedicated to developing new functionalities for this library.

1.3 Objectives and Approach
In this thesis, we study the continual learning of neural networks and try to uncover
the causes of the performance drop in this setting, which are classically regrouped
under the naming of catastrophic forgetting but in reality result from a more complex
set of causes that we attempt to pinpoint in the different chapters. In this section, we
describe the methodology that leads to the writing of each chapter, by specifying the
problem that was encountered and the resulting objective that we define.
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Figure 1.3: Architecture of the avalanche library (taken from [26]), giving an idea of
all the components that enter into the designing of a continual learning training and
evaluation pipeline.

1.3.1 On the importance of cross-task features for class-incremental
learning

In the class incremental learning setting, catastrophic forgetting is in general even
more pronounced than in task incremental learning. This is due to multiple reasons
some of them are studied in the literature. However, forgetting is still largely mentioned
as a cause of performance drop in that setting, even when a reasonable amount of data
is retained to be later replayed which usually leads to a huge reduction of forgetting
in task incremental learning [31]. To shed light on the differences between task and
class incremental learning, we decide to ablate the learning of cross-task features
in class-incremental learning, and we look at the performance that can be obtained
without this component. This allows us to highlight one big difficulty that methods
need to overcome in order to solve the task of class-incremental learning. This can be
summarized through the following objective:

Ablation of the learning of cross-task features in class-incremental learn-
ing: Study a yet unexplored cause of performance gap in class-incremental
learning and compare its influence to the one of other causes that happen in
task incremental learning.
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1.3 Objectives and Approach

1.3.2 Improving Online Continual Learning Performance and Sta-
bility with Temporal Ensembles

The phenomenon of stability gap is a new interesting observation that has been made
in the literature, initially in the setting of online continual learning [22,88]. It is based
on the observation that upon starting the training of a new task, the performance of
the model initially decreases on previous tasks (somewhat drastically) before going
back up to a higher value. While it is not yet known if this phenomena durably impairs
training, several metrics have been proposed to measure it quantitatively [88]. In order
to mitigate it, we propose to investigate the usage of model ensembling methods used
at evaluation. We compare different ways of implicit ensembling that are reasonably
applicable with a minor memory overhead and study the impact of such methods
on the stability gap as well as other continual learning metrics. This is summarized
through the following objective:

Study the impact of temporal ensembling at test time in online continual
learning: experiment with different implicit temporal ensembling methods
and evaluate their impact on several metrics in online continual learning.
We hypothesise and verify that temporal ensembling should mitigate the
stability gap.

1.3.3 A Comprehensive Empirical Evaluation on Online Continual
Learning

Online class incremental learning is a setting that imposes stronger constraints on the
availability of the data for training, by considering each incoming mini-batch as a
task. Training in this setting generally leads to lower performance. Although this is a
well studied field, it is still not clear by what mechanism it is possible to increase the
performance in this setting, and whether the lack of performance of continual learning
methods comes from the non i.i.d nature of the stream or from the lack of computation.
In order to understand more about these aspects, we perform an empirical evaluation
of several existing methods and confront them to a wide range of continual learning
metrics. In particular, we choose to report metrics that reveal the representational
power by ignoring the additional difficulty of maintaining an updated classification
head that is encountered in non i.i.d settings. This set of metrics helps us conclude
on the current problems of online continual learning methods. We set ourselves the
following objective:

13



Chapter 1. Introduction

Perform an empirical evaluation of existing online continual learning
methods: Use a wide range of metrics to better describe existing method
and find out what advantages and limits current methods have. Compare the
performance of the continual learning methods to the one of naive training
using the same amount of computation on the i.i.d stream.

1.3.4 An Empirical Analysis of Forgetting in Pre-trained Models
with Incremental Low-Rank Updates

The emergence of the use of large pretrained models in practical deep learning applica-
tions has lead to the wider use of low-rank training techniques, that aim to optimize in
a lower dimensional parameter space that is later projected back into the full parameter
space. So far, the interplay between these techniques and continual learning has not
been explored, we hence analyze how the application of these techniques affect various
continual learning metrics. This is summarized through the following objective:

Evaluate the impact of low-rank updates in continual learning: Pro-
gressively increase the rank of a widely used low-rank learning method
and study its impact on continual learning metrics. Study its impact under
different architectures and make new observations on forgetting in large
pretrained models.
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2 On the importance of cross-task features for
class-incremental learning*

2.1 Introduction
A particular challenge of class-incremental learning (class-IL) is that classes in dif-
ferent tasks are never learned together but have to be discriminated from each other
(no task-ID at test time). One way to tackle this is to store a small subset of instances
of each class seen so far to later do rehearsal when learning new ones [27, 135].
Therefore, the agent is capable of seeing classes from different tasks together over the
course of training. Even though some class-IL methods do not make use of a mem-
ory buffer [43, 165], these can currently not compete with methods using one [111].
Therefore, in this chapter, we focus our attention on methods with a memory buffer.
However, because of the memory restrictions of such rehearsal memory buffer, a class
imbalance is introduced during the learning process. One of the side effects of this
class imbalance is that the biases and the norm of weights in the classifier tend to
be higher in the classes from newer tasks [69, 111, 163]. This phenomenon is called
task-recency bias and is tackled with different bias-correction strategies by recent
approaches [16, 69, 163]. Having addressed the task-recency bias, there is still a large
gap with respect to the upper-bound (joint training). In this chapter, we investigate to
what extend the training of better cross-task features can narrow this gap.

Another focus of this work is the study of the causes of performance drop in
class-IL. As in other incremental learning settings, processing the sequence of tasks
in class-IL leads to a dramatic drop in performance from earlier tasks to the latest
ones. Many class-IL works associate catastrophic forgetting, which has been widely
studied in the task-incremental learning (task-IL) setting, to this performance drop.
However, the metrics defined for task-IL are not well suited to the class-IL setting and
can give misleading results when applied directly to the latter. In this work, we will
define similar metrics adapted to class-IL, and use them to increase understanding of
the main causes of performance drop when moving to that setting.

When learning in an incremental manner, we consider two types of features that
can be learned by the feature extractor (see Fig. 2.1). A cross-task discriminative
feature discriminates between classes that belong to different tasks, while an intra-task

*This chapter is based on an article in the International Conference on Machine Learning (ICML)
Workshop on Theory and Foundations of Continual Learning, 2021 [149]
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TASK 1

TASK 2

Figure 2.1: Fictive scenario illustrating the two types of features considered. In this
scenario, the color is an intra-task feature, and the shape is a cross-task feature. The
intra-task features are insufficient to solve the final 4-class problem.

discriminative feature discriminates between classes from the same task. Furthermore,
some features might appear during training that satisfy both types of discrimination.
Given feature types, we postulate that replay in class-IL should fulfil multiple roles
at the feature extractor level. First, to maintain previously learned intra-task dis-
criminative features. Second, to create cross-task discriminative features capable of
discriminating between classes not present in the same task. For instance, in Fig. 2.1,
discriminating between classes of the same task only requires to learn color features
(intra-task), while solving the cumulative tasks proposed in class-IL requires to also
learn shape features (cross-task). Its third role is to enable knowledge transfer between
the new task and previous tasks so that one task can benefit from the learning of
another as it occurs when learning multiple tasks concurrently [14]. Failing to learn
either type of feature would result in higher miss-classification rate. In this chapter,
we aim to study whether these two types of features are learned properly with replay,
especially cross-task features.

Our contributions are summarised as follow:

• We compare two baselines using replay. One aims to learn cross-task features
while the other does not. This helps us to assess what is the importance of
cross-task features in the class-IL setting.

• We question the use of classic task-IL metrics in class-IL and propose new
appropriate metrics. We observe that catastrophic forgetting is not the main
cause of performance drop in class-IL.
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In addition, we perform experiments allowing an increasing amount of memory to
the class-incremental algorithms. These results suggest that even though there is
no forgetting, there is room for improvements in task specific accuracy that can
significantly improve cross-task discrimination without explicitly building features for
it.

2.2 Related Work
Class-incremental learning approaches can be divided in three categories [111]:
regularisation-based, bias-correction, and rehearsal-based, which are often combined
to tackle multiple incremental learning challenges.

Regularisation-based approaches add a regularisation term to the loss which pe-
nalises changes in the weights [5,28,82] or activations [79,96,134,167]. This maintains
the stability-plasticity trade-off between maintaining previous knowledge and learning
new tasks. These approaches have been widely used in task-IL. Furthermore, they
have also shown promising results in class-incremental learning, whether by pairing
with rehearsal-based approaches [27, 69, 135, 163] or with other strategies such as
attention [43].

Rehearsal has become the most commonly used approach in class-incremental
learning, focusing on images or feature replay of previous tasks while learning a new
one. Rehearsal-based approaches can be further divided into different subcategories.
Pseudo-rehearsal methods replay generated images [146], thus avoiding the privacy
issue of storing raw data. They also have the advantage of reducing storage memory
and generating it on-the-fly instead. In MerGan [161], a conditional GAN is used to
replay images, introducing the learning and storage of an advanced network instead
of having to store exemplars. In Generative Feature Replay [100], a GAN is used to
replay smaller size features in to the classification layer, making the GAN learning
easier at the cost of fixing the feature extractor, limiting the power of future learning.
Some pseudo-rehearsal methods generate images by directly optimising in the image
space using a loss that aims to prevent forgetting [76, 101], thus avoiding the use of
an external generator. Classical rehearsal methods store exemplars and replay them
along with the data from the task at hand. However, this introduces a data imbalance
problem between the few exemplars available for previously learned classes and the
large amount of data for the new ones. For that reason some approaches combine
rehearsal with bias correction [16, 69, 163], which also tackles task-recency bias. In
IL2M [16], a dual-memory is proposed, storing both images and class-statistics, which
are used to rectify the scores of past classes. Noticeably, most rehearsal approaches
use a distillation loss term on the outputs of the model, while IL2M obtains similar
results with a classic fine-tuning cross-entropy loss instead.
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A more challenging setting is introduced with online learning, where no more than
one pass is allowed on the current task data. Therefore, instead of incremental training
sessions which can iterate over several epochs on the data, each sample is seen once
unless stored in the reduced external exemplar memory. This setting was originally
explored for task-IL, where the task-ID is known at test time [30, 104]. In GEM [104]
and A-GEM [30], gradients are modified in order to avoid both increasing the loss
on the exemplars and over-fitting on them. Eventually, it is observed in tiny episodic
memories [31], that just replaying exemplars, even when only a few are available,
efficiently prevents forgetting in the task-IL setting. Recently, some approaches have
been applied to online class-IL [6,9,67]. In MIR [6], controlled sampling is performed
to automatically rehearse samples from tasks currently undergoing the most forgetting.
REMIND [67] compresses features from the exemplars using learned quantization
modules, which later are replayed.

In recent surveys [17, 111], inter-task confusion and bias correction are identified
among the main challenges of class-IL. We argue that additional challenges are the
ones of knowledge transfer between tasks, and the learning of cross-task features
(in contrast with task-recency bias). Finally, GDumb [131] introduces a baseline
which only uses exemplars from the buffer, obtaining comparable performance to the
state-of-the-art in the online setting. The proposed method also works for class-IL
since it only needs the exemplars present in the memory buffer, however, it achieves
a lower performance. Similarly, our proposed baselines are also applicable to both
online and offline class-IL.

2.3 Intra- and Cross-task training

2.3.1 Notation
We assume that the data comes in the form of the following task sequence:

T = {(C 1,D1), (C 2,D2), ...(C n ,Dn)}, (2.1)

where n is the number of tasks, C t is the set containing the classes of task t , with
the constraint of non-overlapping classes between different tasks (∀ 1 ≤ i ≤ n, i ̸= j ,
C i ∩C j =∅). Let D t be the dataset for task t , containing the labelled images. The
learner is a neural network, function of its parameters θ and the input x, which we
will denote by f (x;θ). We further split this network into a feature extractor Ψ(x;θΨ)
with weights θΨ, and a classification layer ν(x;θν) with weights θν. The logits are
obtained by applying the feature extractor first, then the classification layer, obtaining
f (x;θ) = ν(Ψ(x;θΨ);θν). The upper-scripted θt denote the weights of the model after
seeing task t. Additionally, we denote the current task as T , a batch of data as B, and
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the upper-scripted subset containing data from task t as Bt = {(x, y) ∈Bt , y ∈C t }. So
that we can consider all classes and data that the network has seen so far, we define
C k
Σ =⋃k

t=1 C t and Dk
Σ =

⋃k
t=1 D t , where Σ stands for cumulative.

2.3.2 Two Replay Baselines
In order to better dissect the replay mechanism, we propose two different baselines
to address class-IL. The two methods differ only in the loss they apply to the feature
extractor. The first one explicitly tries to learn both cross-task and intra-task discrimi-
native features, while the second one avoids learning cross-task discriminative features,
restricting itself to learn only intra-task ones. They are defined as:

LC E (B;θ) = ∑
(x,y)∈B

− log
exp f (x;θ)y∑

c∈C T
Σ

exp f (x;θ)c
, (2.2)

LC E-I T (B;θ) = 1

T

T∑
t=1

∑
(x,y)∈Bt

− log
exp f (x;θ)y∑

c∈C t exp f (x;θ)c
. (2.3)

LC E (Eq. 2.2) is the classical cross-entropy over all classes seen so far, which
seems natural to use whenever using exemplars. LC E-I T (Eq. 2.3) is the sum of
the cross-entropies of each separate tasks, as it would be done in multi-task training or
task-incremental learning, this loss is only learning intra-task discriminative features
(C E-I T stands for cross-entropy intra-task). During training, B will be drawn from
D t ∪M where M is a memory buffer that retains a small number of samples per class.

To tackle task-recency bias that might arise from unbalanced training, and calibrate
the classification heads on top of the feature extractor, we add an extra step to our
proposed baseline algorithms. Taking inspiration from EEIL [27], we perform an
additional balanced fine-tuning step after learning the current task, training the network
on data only from the exemplars memory buffer, which contains a balanced number
of training samples per class. We use LC E on both cases for this step, but only
back-propagating it through the classifier, leaving the feature extractor frozen with the
previously learned knowledge. This is a similar procedure as F T B AL [17] with the
difference of the feature extractor parameters being frozen while the balancing step
takes place.

The detailed training procedure is explained in Algorithm 1, where L is the loss
used during the first training step, and is replaced by LC E or LC E-I T depending on the
baseline we are using. We will later refer to these baselines as F T B AL

+C T F (using LC E )
and F T B AL

-C T F (using LC E-I T ) where +C T F and -C T F stand for with and without Cross
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Algorithm 1: Two step procedure
Input: task sequence T , data D, mem. buffer M , loss L

for t ∈ 1. . .T do
for i ∈ 1. . . Nepochs do

for B ∼ D t ∪M do
θ′ ← SGD(L ,B,θ)

end for
end for
M ← FillMemory(D t ,M )
for i ∈ 1. . . NFTepochs do

for Bmem ∼M do
θ′′ν ← SGD(LC E ,Bmem ,θ′)

end for
end for

end for

Task Features respectively. Indeed, F T B AL
-C T F will emulate the learning of a feature

extractor as it would be done in the task-incremental learning setting. This will allow
us to evaluate how features learned similarly as in the task-IL setting perform when
used in the class-IL scenario, without access to task id. This fine-tuning step can
be seen as a sort of probing of the feature extractor, similarly to what is done in [4],
though here it is performed on a reduced dataset.

Naturally, we expect F T B AL
+C T F to perform better in the class-IL setting since it is

targeted to that setting. Our interest will rather focus on the gap between F T B AL
+C T F and

F T B AL
-C T F . Studying this gap and its contribution to the larger gap between these methods

and the upper bound for this setting will help us understand how improvements in
task-incremental learning can benefit class-incremental learning.

Finally, we shortly recall the main challenges for task-IL since these are inherited
by class-IL. In task-IL, since the task-ID is available at test time, it is not necessary
to learn any cross-task features to obtain good performance on each specific tasks.
This setting stills brings its share of challenges. Catastrophic forgetting [59, 82] is one
of the challenges that has been addressed the most in the literature. In task-IL, it is
described as the drop in performance on previous tasks when the learning of a new
task occurs. While catastrophic forgetting can be tough to solve in some settings and
without access to old samples, when a memory buffer of reasonable size is used (as it
is done in class-incremental learning replay methods), it becomes easier to avoid and
many works have shown how to prevent it [30, 104]. However, other challenges have
been identified, among them, the one of knowledge transfer between tasks. Primarily
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discussed in the multi-task learning literature [14], the transfer of knowledge between
tasks enables the learner to boost its performance on separate tasks when it is learning
them concurrently. In the task-incremental learning setting, this transfer between tasks
has been referred to as backward- and forward- transfer in lopez2017gradient [104].
Where backward denotes the positive influence on previous tasks performance that
learning subsequent tasks could have, while forward denotes the positive influence
learning previous tasks could have on the learning of new tasks.

2.3.3 On forgetting in class-incremental learning
Catastrophic forgetting [59, 82] has been widely cited as being the main cause of
performance drop in many continual learning settings. From task-IL works with two
tasks similar to transfer learning [82], the measurement of forgetting was defined as
how much of the performance on the source task decreased when learning the target
task. Initially, this measurement was very useful even when moving from two tasks
to a sequence of them since each task was evaluated separately. It has been widely
observed that training a neural network on a sequence of tasks without accessing
data from previous tasks results in catastrophic forgetting of previously learned ones.
Similar variations of that metric have also been proposed for both task-IL and class-
IL [28, 91, 144]. However, we argue that they do not directly transfer to class-IL since,
in that setting, the average accuracy is reported on an ever-more difficult problem,
which is classifying between all C n classes. For this reason, looking at the classic
forgetting measure in class-IL it is not clear if it captures only the forgetting of previous
tasks but also the increasing difficulty of the cumulative task.
Task-IL metrics: Consider that at

k ∈[0,1] denotes the accuracy of task k after learning
task t (k≤t), then the average accuracy at task t is defined as At = 1

t

∑t
i=1 at

i . Forget-
ting estimates how much the model forgot about previously learned task k at current
task t and is defined as f t

k = maxi∈{k,...,t−1} ai
k −at

k . As with accuracy, this measure
can be averaged over all tasks learned so far: F t = 1

t−1

∑t−1
i=1 f t

i [30]. We denote this
version of forgetting as classic forgetting.
Class-IL metrics: To consider these metrics for the case of class-IL, we have to
replace the notion of separate tasks that is used in task-IL by the cumulative task
that is composed of the concatenation of all tasks seen so far T k

Σ = (C k
Σ ,Dk

Σ). When
evaluating a network on the cumulative task k, we propose the following method to
predict the label:

ŷk (x;θ) = argmax
c∈C k

Σ

f (x;θ)c , (2.4)

which restricts the output to the C k
Σ classes. Note that the predictions can change when
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scenario approach growing memory size
20/cls 10/cls 5/cls 2/cls max

10 tasks F T B AL
+C T F 40.55 ± 2.1 31.5 ± 3.0 19.1 ± 2.5 9.0 ± 0.69 66.8 ± 1.1

F T B AL
-C T F 34.8 ± 2.1 27.4 ± 1.5 20.1 ± 1.2 14.3 ± 0.5 56.6 ± 1.2

20 tasks F T B AL
+C T F 34.2 ± 1.9 26.6 ± 2.7 12.5 ± 1.6 4.4 ± 0.15 67.0 ± 1.5

F T B AL
-C T F 26.8 ± 2.6 20.1 ± 2.0 15.1 ± 1.7 9.2 ± 0.7 51.8 ± 2.3

Table 2.1: Average accuracy after learning all tasks for CIFAR-100 on ResNet-32
from scratch.

you chose another task j ̸=k, which is desirable since it makes the task easier when k
gets smaller, getting rid of the confusion between classic forgetting and the growing
task difficulty discussed above. We further introduce the term cumulative accuracy of
task k as:

bt
k = 1

|Dk
Σ
|

∑
x,y∈Dk

Σ

1{y}
(
ŷk (x;θt )

)
, (2.5)

which refers to the accuracy obtained on the cumulative task k by the model θt , and
where 1{y} is the indicator function which is 1 when the prediction is correct, and 0
otherwise. To summarise the performance of the continual learning approach after
t tasks have been learned we simply report bt

t , which is equivalent to the average
accuracy classically reported in class-IL works. We then can analogously define
cumulative forgetting about a previous cumulative task k at current task t as:

f t
k = max

i∈{1,...,t }
bi

k −bt
k . (2.6)

This measure can be averaged over all tasks learned so far: F t
Σ= 1

t−1

∑t−1
i=1 f t

i . The
above defined measurements are an adaptation of the ones from [30] to the setting of
class-incremental learning, the main difference is that ours consider the incremental
cumulative tasks instead of the separate ones.

2.4 Experimental Results
Our implementation is based on the FACIL framework [111]. We use the same data
processing and scenario configurations. We extend it with our proposed baselines to
compare with its implementation of state-of-the-art methods. Our code is available at
https://github.com/AlbinSou/cross_task_cil.
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Figure 2.2: Average accuracies on CIFAR-100 splitted in 10 tasks (left) and 20
tasks (right) for F T B AL

+C T F and F T B AL
-C T F using 20 exemplars per class compared to their

respective upper-bounds (500 exemplars per class). Mean and standard deviation over
10 runs are reported.

Datasets: CIFAR-100 [85] contains 60k rgb images of size 32x32x3 divided in 100
classes, each having 500 training images and 100 test images. Since there is no defined
validation set, we set apart 10% of the train set as validation, and keep it the same for
all experiments. This is a common setting in class-IL [16,27,69,135,163]. The classes
are divided between 10 or 20 task splits to be learned incrementally, with a memory
buffer that contains 20 exemplars per class for rehearsal (2,000 total). Exemplars are
selected using the herding strategy, which has been shown to be slightly more robust
than other strategies [111]. Data augmentation is applied via padding, random crop
and random horizontal flips during training. Finally, task and class orderings [111],
are fixed to the commonly used iCaRL seed [111, 135, 163]. Imagenet [139] contains
1,000 object classes with different number of samples per class. In our experiments,
we use a reduced version composed of its 100 first classes, Imagenet-Subset (as
in [135]). Data is pre-processed using 224×224 random crop, normalization and
random horizontal flip. We split this dataset into 25 tasks with a random class order
fixed for all experiments. Exemplars are handled in the same way as the CIFAR-100
experiments.
Network: we use the commonly paired network for CIFAR-100 experiments: ResNet-
32 [68], learned with Stochastic Gradient Descent with a patience scheme. More details
about the hyper-parameters used during training can be found in Section 2.4.1. For
Imagenet-Subset, we use ResNet-18, which allows for larger input size and provides
more capacity.
Upper bounds: for each of the two baselines that use a limited amount of memory, we
also consider their respective upper bounds that have access to all data from previous
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tasks, namely F T B AL
+C T F (max) and F T B AL

-C T F (max).

2.4.1 Hyperparameter selection
We use Stochastic Gradient Descent (SGD) with momentum as the optimization
algorithm, along with a learning rate scheduling strategy using patience: the learning
rate decreases when the validation loss of the current task does not decrease for a
defined number of epochs, the model that performs best on validation data is retained.
This patience scheme is also used during the second (fine-tuning) step. Weight decay
is also used for regularisation. The proposed baselines only have one additional
hyperparameter, which is the number of balancing finetuning epochs from step 2.
We perform GridSearch/CHF following the procedure in [40, 111] that respects the
assumptions of continual learning (cannot access future tasks validation data). We
perform a learning rate search by fine-tuning on the new task (without applying any
other loss or strategy). Once the best learning rate is found for that task we set it as the
starting learning rate for it and train the final version of the current task before moving
onto the next. Below are listed the parameters used by the grid search.

Details of the Hyperparameter search for CIFAR-100

lr_first: [5e-1, 1e-1, 5e-2],
lr: [1e-1, 5e-2, 1e-2, 5e-3, 1e-3],
lr_searches: [3],
lr_min: 1e-4,
lr_factor: 3,
lr_patience: 10,
clipping: 10000,
momentum: 0.9,
wd: 0.0002

2.4.2 Importance of cross-task features

Results for CIFAR-100 are shown in Table 2.1. For the 10 tasks split, using F T B AL
+C T F

performs better than F T B AL
-C T F when using 10 or more exemplars per class, indicating

that it is able to learn some cross-task features. For very low number of exemplars, we
observe that F T B AL

+C T F is performing poorly compared to F T B AL
-C T F . The average accuracy

gap after 10 tasks between the two methods is around ∼5% when using 20 exemplars
per class, which is the most commonly considered memory size for class-IL. As we
move to the 20 tasks split, both methods suffer from a ∼5% drop in performance.
Through the comparison of these two losses with their respective upper bounds using
the maximum of memory (see Fig. 2.2), we observe that the gap due to not learning
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Figure 2.3: Final average accuracy obtained by each method and their respective upper
bounds on CIFAR-100 splitted in 10 tasks (Left) and 20 tasks (Right). The part in red
coined "others" can be obtained with better intra-task features, while the orange part is
the additional gain obtained when learning cross-task features

cross-task features is of ∼10%, and jumps to ∼15% when moving to 20 tasks. This gap
is filled in part (∼5% for 10 tasks and ∼7% for 20 tasks) by F T B AL

+C T F when 20 growing
memory per class is used. It means that the gap due to the learning of cross-task
features is already filled by a half by F T B AL

+C T F , the remaining performance gap is then
due to something else, materialised by the difference between the upper bound for
F T B AL

-C T F (max) and F T B AL
-C T F (20). We summarise these observations in Fig. 2.3.

On Imagenet-Subset (see Fig. 2.4), we observe the same conclusions. There is a
consistent difference between the two baselines due to the additional learning of cross-
task features. But this difference does not account for the main part of the performance
gap, which is observed when comparing F T B AL

-C T F (max) and F T B AL
-C T F (20), and is not

related to cross-task features.

2.4.3 Cumulative accuracy and cumulative forgetting
We have argued that the forgetting measure defined for task-IL cannot directly be
applied to class-IL (as done in some papers). Instead the definitions should be adapted
to consider cumulative accuracy of the tasks (see Eq. 2.5).

We apply the metrics defined in Sec. 2.3.3 to the experiments on CIFAR-100 (10
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10 Tasks 20 Tasks
memory classic cumulative classic cumulative

size

(2/class) 81.6 4.0 86.0 6.4

(5/class) 69.5 1.6 74.1 1.1

(10/class) 56.0 0.9 49.5 0.7

(20/class) 28.8 0.4 39.9 0.6

Table 2.2: Average forgetting (classic) compared to newly defined cumulative forget-
ting measure on CIFAR100 10 and 20 tasks split for F T B AL

+C T F . Cumulative forgetting
shows no sign of performance drop due to a forgetting phenomenon.

Table 2.3: Final average accuracy obtained by both baselines on Imagenet-subset (25
tasks)

memory 20/cls max

F T B AL
+C T F 31.7 70.6

F T B AL
-C T F 26.4 62.1

and 20 tasks). One insightful way to analyse the learning process of class-IL methods
is provided in Fig. 2.5, we coin this a cumulative accuracy graph. It allows you to
analyse the behaviour of the various cumulative tasks while the learning progresses.
For example, the line starting from Task 2 indicates bt

2. There, we can observe an
initial positive transfer when learning task 3 and a subsequent planar behaviour where
performance remains constant. The important fact to observe from this graph is that
while the average accuracy decreases considerably over the course of training, the
values of the cumulative accuracy bt

k when fixing k are quite stable. The resulting
cumulative forgetting measure is consequently very low, and only grows for the
smaller memory sizes (see Table 2.2). This means that cumulative forgetting cannot
explain on its own the decrease in average accuracy. This strongly contrasts with
the values obtained using classic forgetting, which are higher and indicate that most
of the performance drop is caused by forgetting. In conclusion, we argue that the
classic forgetting method is inapplicable to class-IL and instead encourage the usage
of cumulative forgetting. Finally, for the model using maximum memory (see Fig. 2.5),
we observe that the cumulative accuracies grow over the course of training, which
means the model gets better at previous cumulative tasks. This is showing that positive
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Figure 2.4: Average accuracies on Imagenet-Subset splitted in 25 tasks for F T B AL
+C T F

and F T B AL
-C T F using 20 exemplars per class compared to their respective upper-bounds

with maximum memory. As it is the case on cifar, the gap due to the learning of
cross-task features is not predominant, and is partly filled by the use of F T B AL

+C T F .

backward transfer is occurring: learning new tasks improves performance on older
tasks.

We applied our cumulative accuracy metric to two other state of the art methods,
BiC [163] and EEIL [27], results are reported in Fig. 2.7. We observe similar results
than the ones reported for our baselines. EEIL has a characteristic jump in cumulative
accuracy after each task, just like our baselines. Since this method also uses a balanced
fine-tuning step we believe this jump is due to the latter. On BiC, the cumulative
accuracies are very stable over the course of training.
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Figure 2.5: Cumulative accuracies bt
k on CIFAR100 (10 tasks) for

F T B AL
+C T F (20mem/cl s) (Left) and F T B AL

+C T F (max) (Right). Grey dashed lines
represent bt

k for varying t and one fixed k per line. The blue dotted line represent bt
t

for varying t , which is the average accuracy.
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Figure 2.7: Cumulative accuracies bt
k on CIFAR100 (10 tasks) for EEIL (Left) and

Bic (Right), both using a growing memory of 20 exemplars per class. Grey dashed
lines represent bt

k for varying t and one fixed k per line. The blue dotted line represent
bt

t for varying t , which is the average accuracy.
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Figure 2.6: Comparison including multiple class incremental learning methods and
the two baselines we use. CIFAR100 10 tasks, 20 growing memory per class. The
baselines used perform comparatively to other state of the art methods.

2.4.4 Comparison to state-of-the-art
In Fig. 2.6, we display a comparison of the considered baselines to other state of the
art methods like iCarl [135], LUCIR [69], BiC [163] and EEIL [27]. FT-E is another
baseline which is similar to F T B AL

+C T F but does not use a second fine-tuning stage. We
observe that F T B AL

+C T F and F T B AL
-C T F perform comparatively to the latter methods in

this setting, the comparison with FT-E shows the gain of the additional fine-tuning
stage, which helps to get rid of the task-recency bias. The main purpose to include
this comparison to state-of-the-art methods is to show that the baseline F T B AL

+C T F gets
competitive results which means that our analyses on the challenges for F T B AL

+C T F could
generalize to other state-of-the-art methods.

2.4.5 Fixed memory size
In the previous results, we considered a growing memory size. When using a fixed
memory size equivalent to the final growing size we naturally obtain better results but
we found them harder to interpret since in that case the number of samples available
per class varies during training, which makes the incremental learning problem easier
in the first few tasks and then gradually harder. Nevertheless, we report results using
fixed memory sizes below (see Fig. 2.8). In this case for the first few tasks F T B AL

+C T F
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is able to outperform the upper bound that does not learn cross-task features, this is
because enough memory is available at that time. For instance, on CIFAR100 (20
tasks) the gap between F T B AL

+C T F (2000) and F T B AL
-C T F (2000) is the same than the gap

between F T B AL
+C T F (max) and F T B AL

-C T F (max) at task 3, hinting that F T B AL
+C T F (2000) was

able to learn correct cross-task features until that point, as new tasks come however,
less memory per class is available, rendering the learning of the latter harder.
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Figure 2.8: Average accuracies on CIFAR-100 splitted in 10 tasks (top) and 20 tasks
(bottom) for F T B AL

+C T F and F T B AL
-C T F using a fixed memory of 2000 exemplars compared

to their respective upper bounds. Mean and standard deviation over 10 runs are
reported.

2.4.6 Linear probing of intermediate layers
In this section, we aim to evaluate the quality of the representations learned by both
F T B AL

+C T F and F T B AL
-C T F methods in terms of linear probing accuracy [4, 38] at different

levels in the network. This technique is widely used in unsupervised learning in order
to check the quality of a learned representation, and while it cannot be applied in a
realistic continual learning setting, because it requires access to all previous data, it is
a good way to evaluate learned representations. In Figure 2.9 we plot the accuracy of
linear probes learned on the output of various layers of the resnet32, and we compare
the results for both F T B AL

+C T F and F T B AL
-C T F . We used a limited amount of memory during

training (20 exemplars per class) as well as all the data (incremental joint).
We first observe that the difference between F T B AL

+C T F (max) and F T B AL
-C T F (max) is

not so marked in the early layers, and more marked in the later layers (Starting from
layer index 10 in the figure). We also see that this difference is created at earlier layers
and is more important for checkpoints trained on CIFAR-100 splitted in 20 tasks,
which makes sense since cross-task features become more important with increasing
number of tasks. Another interesting observation is that while for F T B AL

+C T F (max) the
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maximum accuracy is reached at the last layers, this is not the case for F T B AL
-C T F (max),

where earlier layers from the last block have a better probed accuracy. This observation
is consistent with the ones from [143], that claim that representations that are learned
in a supervised manner are not optimal for transfer to other tasks when taken at the
last layer. In this specific case, the representation learned by F T B AL

-C T F (max) is optimal
for the last task of the stream (and all other tasks considering their task-specific classes
separately), but not for the full task considering all classes at once.

Interestingly, for the continual methods that have learned with reduced memory, we
see that in both cases (10 and 20 tasks), the features learned by the continual learning
methods F T B AL

+C T F (20) and F T B AL
-C T F (20) do not differ a lot until the very last few layers.

In general, both of these curves are very close until the very end and the main separation
happens after the average pooling layer, both of them following a trajectory that is
more similar to the one of F T B AL

-C T F (max) than to the one of F T B AL
+C T F (max) (with the

best accuracy occurring at a layer that is not the last one). This shows that the network
really struggles even with 20 exemplars per class in memory to learn any cross-task
features in the earlier layers. The network is only able to learn some cross-task features
in the very last layers.
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Figure 2.9: Final average accuracy after linear probing, for F T B AL
+C T F and F T B AL

-C T F using
limited amount of memory (20 exemplars per class) as well as their respective upper
bound. Linear probes are learned on final model checkpoints after continually training
on CIFAR-100 splitted in 10 tasks (Left) and in 20 tasks (Right).

2.4.7 Discussion

We here explore the efficiency of cross-task features learning done by F T B AL
+C T F as a

function of the memory size. To do so, we use two additional metrics that focus on
specific points of the learning. The task-aware accuracy At aw is the accuracy of the
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model on the test data when it is provided with the task-id, averaged over all tasks the
model has seen so far. It is commonly used in task-IL and aims to evaluate the task-
specific performance across tasks. Since class-incremental learning comes with the
additional challenge of discriminating across tasks, we additionally use a task-inference
accuracy At i n f . The latter is computed by counting the number of predictions that
fall into the correct task. We report the values of these two measurements with an
increasing memory size in Fig. 2.10.

Although the use of F T B AL
+C T F , explicitly learning cross-task features accounts

for a part of the gap between 20 memory and the maximum amount, we observe
that both task-aware accuracy and task inference accuracy grow when increasing
the memory size. Since forgetting is eliminated as a possible cause (see Tab. 2.2),
the improvement in task-aware accuracy when the memory increases is most likely
explained by knowledge transfer between tasks. This happens for both F T B AL

+C T F and
F T B AL

-C T F and indicates that there is a greater potential gain in task-inference by learning
better quality task-specific features (For instance, through improved backward and
forward transfer) rather than by learning better cross-task features. Indeed in this case,
the learning of cross-task features is already maximum at the 50 exemplars mark (the
gap between the red curve and blue curve does not increase anymore).
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Figure 2.10: Task inference and Task aware accuracy obtained at the end of the task
sequence for different memory sizes. CIFAR100 10 tasks. The gap in task inference
between F T B AL

+C T F and F T B AL
-C T F stabilises after 50 exemplars per class. Additional per-

formance gains can be obtained by increasing task-aware accuracy, which is correlated
with task inference accuracy.
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2.5 Conclusion and future directions
Through the ablation of one major component of class-incremental learning that makes
it different from task-incremental learning, we attempted to link the challenges met
by these two settings. By studying the impact that the absence of explicit cross-task
features learning could have on popular benchmarks, we have shown that the following
is already partly solved by the use of a simple replay procedure. While the learning of
cross-task feature could still be improved, its influence on the final result may not be
as decisive as we might think. Instead, the major part of the gap could be due to other
sources. The lack of knowledge transfer studied in task-IL could be one of them. We
have also highlighted that forgetting as defined for task-IL has to be carefully adapted
for class-IL. Using our proposed cumulative forgetting measure, we observed that
forgetting is not the main cause of performance drop in that setting.

We hope that future research can draw more links between task-IL and class-
IL. While these two settings differ, we saw that they share similar challenges. In
particular, we think that it could be interesting to tackle the task-IL setting using
similar memory constraints as in class-IL, and aim for better knowledge transfer
instead of zero forgetting. Indeed, enabling more knowledge transfer between tasks
could directly be applied to class-incremental learning by learning classification heads
on top of the learned feature extractor, similarly to what we did with F T B AL

-C T F ).
Another promising type of approaches to improve the quality of the learnt repre-

sentation is learning with an unlabelled data stream concurrently to the current task,
as done in [91]. That way knowledge is transferred between the data stream and the
current task instead of in-between tasks. However, this requires to have access to such
a data stream with nice properties w.r.t the tasks at hand.

33





3 Improving Online Continual Learning
Performance and Stability with Temporal
Ensembles*

3.1 Introduction
Model Ensembling, or the aggregation of predictions coming from different models,
is a well studied and popular topic, both in the academic literature and in practical
applications [44, 65, 128]. It is known to improve performance compared to using
a single model. The success of ensembling methods has been found to depend on
the functional diversity of the members and the efficiency of the resulting ensemble
between them [58, 160]. In continual learning, the model learns the data task by task,
being exposed to one task at a time. Therefore, models at different timesteps represent
a functionally diverse set of models, each one locally adapted to the current task. Such
functional diversity can be exploited by ensembling techniques. In Figure 3.1, we
show ensembling results on two continual learning benchmarks. Here we apply a
temporal ensemble of twenty models (chosen from a large number of models saved
along the training trajectory). We can observe that ensembling leads to a significant
performance improvement (over 40% on both datasets), and that whenever we increase
the number of tasks covered by the ensemble, gains improve. Therefore, in this chapter,
we investigate the use of ensembles for continual learning and provide empirical results
that show their benefit for continual learning settings. Importantly, we show that when
using a practical and memory efficient ensembling method similar or even better
results can be obtained.

Evaluation of continually learned agents typically occurs after learning a task.
Recently, another way of evaluating has been proposed, coined continual evalua-
tion [22, 88] or anytime inference [83]. It aims to evaluate the agent’s performance
at any moment during learning. In this setting, Lange et al. [88] find that continual
learning agents suffer from the stability gap, where the performance on previous
tasks decreases drastically at the start of learning a new task, before returning to
normal when continuing training of the new task. This behavior is problematic in
many real-world applications where the agent must be applied for inference while it is
learning (i.e. for financial market forecasting, or online monitoring tasks). Ensembles

*This chapter is based on an article in the Conference on Lifelong Learning Agents (CoLLAs) 2023 [148]
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can provide improved stability, as they can reduce the variance of the predictions and
provide a more robust prediction. By combining multiple models, the errors of one
model can be compensated for by the other models in the ensemble, leading to more
stable performance.

Lastly, it is known that in class incremental learning, even when using replay,
the network is prone to suffer from the task-recency bias, which is a prediction bias
towards classes belonging to the last task. This phenomenon has been studied and
tackled in many works [16,69,163]. Ensembling models biased towards different tasks
has the potential to reduce the bias compared to the single models; we will analyse
this in this chapter.

The reasons discussed in the introduction motivate us to investigate the potential
of temporal ensembles in online continual learning. Specifically, we believe that
they could offer improved stability, reduce task recency bias, and benefit from more
functional diversity than in i.i.d learning. By exploring the performance of ensembles
of models trained on sequential data, we aim to provide insights into the benefits
and limitations of using such models in online continual learning settings. Our
contributions are the following

• We show that naively ensembling checkpoints from different continual learning
tasks yields strong performance gains for online continual learning. In search
for a practical ensembling method, we take inspiration from semi-supervised
learning and apply a temporal ensembling method (i.e., an exponential moving
average ensemble) as an evaluation model.

• We report the performance increase of the EMA ensemble in combination with
several methods, showing a consistent increase in performance (up to 9.3%
on Split-MiniImagenet). We also compute continual evaluation metrics and
consistently notice a great increase in stability metrics resulting from the use
of the EMA ensemble (up to 32.3% on Split-Cifar10). We further observe a
reduced task-recency bias of the EMA method.

3.1.1 Motivational experiment
Figure 3.1 shows the comparison between ensembles of models that cover a different
number of tasks. To perform this comparison, we first train a model continually using
a dedicated continual learning method (ER and ER-ACE in that case), along the way,
we save model checkpoints every 10 iterations, leaving about 460 model checkpoints
at the end of learning the task (22 models per task in the case of Split-Cifar100 20
tasks). Then, for each number of tasks covered, we select a subset of models that cover
no more than that number of tasks, and sample 20 models from that subset that we
join into an ensemble for which we record the test performance. We sample 10 of
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Figure 3.1: Relative accuracy gains (multiplicative in %), compared to the worst
performing ensemble, when naively ensembling 20 models coming from different
learning tasks on Split-Cifar100 (Left) and Split-MiniImagenet (Right) for two online
continual learning methods, classical replay ER and asymmetric cross entropy loss
ER-ACE. Results are reported as a function of number of covered tasks which is
defined as the number of tasks from which the ensembled models originate. The graph
shows that diversity of the ensemble is important.

Figure 3.2: Schema of the motivational experiment ensemble (Left) and of the Ex-
ponential Moving Average ensemble (Right). For the EMA ensemble, a continuum
of models is inserted in the ensemble which only occupies as much space as one
additional model in the memory. Weights of previous model checkpoints decrease
exponentially. This procedure permits to cover a spectrum of different tasks in online
continual learning.

such ensembles for every x-axis value to get mean and confidence interval that we
report in the figure. We always add a model in the ensemble which is the last training
checkpoint, so that we can always give an accuracy number to later classes when
sampling models. The ensembling of models coming from different tasks is done in
the following way. We first compute the output probabilities that each model gives to
the input. We then compute the per-class mean probability, it is possible that one class
is predicted different number of times than another class by the ensemble, so we take
that into account and divide the sum of the probabilities for that class by the number
of models in the ensemble that can predict that class.
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3.2 Related Work

3.2.1 Continual learning and online continual learning
Popular continual learning scenarios often assume that data arrive in large batches
of i.i.d data, with sharp distribution shifts happening whenever a new batch becomes
available. We call this setting boundary-aware continual learning, due to the additional
information provided by the arrival of a new task during training. Most of the continual
learning literature focus on that setting, either by also providing the task-id at test
time [40] (task-incremental learning), or not [111] (class-incremental learning). We
will focus on class-incremental learning in this chapter.

Boundary-free online continual learning [8] removes this form of supervision by
learning on a stream of small mini-batches. This means that the granularity of the
data distribution can be refined. In practice, it is possible to keep tasks that define
the granularity of the distribution, while letting the agent assume this distribution
could change at any new mini-batch. This is the setting that we experiment on in this
chapter. In MIR [6], the authors introduce a selection strategy for replay and select
the samples that will be mostly penalised by the current update. In ER-ACE [22], an
asymetric cross-entropy loss is used on current data, using only the logits represented
in the current mini-batch, while the classical cross-entropy loss is used on the replay
buffer. [169] show that a strong baseline (called RAR) in online continual learning
is repeatedly training on the available batch by sampling a new replay batch and
applying data augmentations. In this chapter, we propose a simple improvement to
these methods based on temporal ensembling which is applied at evaluation time.

Other, more classical class-incremental learning methods can be used in this setting,
as long as they don’t require knowledge of task-boundaries during training time. In
ICaRL [135], a selection strategy for storing the buffer sampled is used, along with a
nearest mean classifier. In DER [21], both the samples and the logits of these samples
are stored and replayed using data augmentation. Other classes of approaches like
EEIL [27], perform a balancing step at the end of training on each task, which makes
them unsuitable to the boundary-free setting, unless the balancing is done before
every evaluation session, in which case it could drastically increase the computation
requirements. Other than these methods, we will focus on online continual learning
methods in this chapter.

3.2.2 Ensembling in continual learning and temporal ensembling
Aggregating the predictions coming from multiple trained models has been known
for a long time as a process that results in increased performance compared to using
the predictions of the individual models [19]. The group of trained models used for
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prediction is referred to as an ensemble of models. Such ensembles have been studied
extensively in the literature [44, 65, 128]. Several challenges are associated with the
creation of such ensembles, and a lot of the requirements of these ensembles seem at
first incompatible with the constraints imposed by continual learning. In particular,
naively creating an ensemble requires the training of several models that need to be
stored in memory and trained independently, thus violating the memory and time
constraints of continual learning. Nevertheless, some of these challenges have been
already addressed in the literature. Huang et al. [72] relieve the constraint of having
to train separate models by using checkpoints of the same training run and a cyclic
learning rate schedule as the ensemble members. Wortsman et al. [160] train not only
one network but a parametric subspace of networks which they can use to create an
ensemble.

Wen et al. [157] develop BatchEnsemble, a memory efficient way to create an
ensemble of models by learning a shared weight matrix for all the members, and
then a rank one matrix for each of the members. A member is then computed as the
result of the hadamard product between the shared matrix and the rank one matrix.
They later use this technique in task incremental learning, where they learn one
member per task to be used at test time. Doan et al. [46] lay the grounds of continual
learning beyond the use of a single model. They study feasible ways of learning an
ensemble of models continually, and compare a variety of ensembling techniques like
BatchEnsemble [157] or Subspace Learning [160]. They conclude that ensembling
helps in the setting of task-incremental learning, and propose a method that make use
of that property to increase the performance in that setting. Compared to our work,
they focus more on the effect of adding more models into the ensemble but not so
much on the effect of ensembling models coming from different tasks, and they operate
in the task-incremental learning setting. Lee et al. [93] propose Incremental Moment
Matching, in which they compute the mean of the model weights in the weight space,
in turn creating an approximate ensemble. In contrast to our work, they operate in the
simpler task-incremental setting, in which task-ID is available at test time.

Temporal ensembling [141], is a technique that consists in ensembling the predic-
tions coming from different models on the training trajectory. In the original work, it
was done by keeping an exponential moving average of the predictions of the model
on the training data, but this technique was later refined in [150], where the authors
chose to keep a running average of the weights instead of the predictions, and show
that this leads to similar or even better performance, while relieving the constraint
of having to update the running prediction for each datapoint at every iteration. In
both of these works, the resulting ensemble prediction was used to improve the results
in semi-supervised learning, where only a small fraction of the sample labels are
available. This same Mean-teacher model has also been used successfully in several
self-supervised learning works [25, 61]. In this chapter, we study the application of
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cheap temporal ensembles to the setting of online continual learning.

3.3 Preliminaries

3.3.1 Continual Evaluation and The Stability Gap
In continual classification, a learning agent learns the parameters θ ∈Θ of a function
f : (X ,Θ) 7→ Y from the image input space X to the label space Y . It does so by
observing a stream of data S = {(x1, y1), (x2, y2), ...(xn , yn)}, where x ∈X and y ∈Y .
Each data tuple is drawn from a time varying distribution (x t , y t ) ∼Dt . In classical
machine learning the training data distribution does not depend on time, but this
is added as a constraint in continual learning. In both cases the goal of the agent
is to perform well on new samples drawn from the joint distribution D, which is
marginalized over past time. In practice, continual learning is simplified to allow for
easier analysis by studying distributions that come from a discrete set and switch from
one distribution to another (referred to as tasks t ∈ {t1, ...tT }). In this chapter, we will
focus on class-incremental learning, where the learner does not have access to the task
identifier t at inference time.

While all of the above simplifications make sense, they are still far from the
human learning experience, and from fitting the requirements of many real-world
applications. In comparison to the above, humans experience continuously time-
varying distributions and continual evaluation. In order to address this, Caccia et al.
[22] and Lange et al. [88] lay the basis and encourage the study of continual evaluation
of neural networks. In continual evaluation, the model is continuously evaluated
during, instead of after each task. Interestingly, they noticed that the performance on
previous tasks often drops at task shifts before coming back to a higher value later in
training, this is what they refer to as the stability gap.

3.3.2 Continual Evaluation Metrics
In this section, we present various metrics used in the online continual learning setting
and that can help measure the stability and more generally, evaluate the performance
of the agent over the course of its training. We denote A(Ei , ft ) the accuracy of ft

(model at current iteration t ), on the evaluation task Ei . The most common metric used
in this scenario is the average anytime accuracy, A A At (See Eq. 3.1), used in many
works [22,23,83]. While this metric does not focus on the worst-case performance, it is
a nice indicator of the performance of the learning agent over the course of training. It
measures the average accuracy on all tasks seen so far, and averages it over all training
iterations. In [88], a set of metrics is introduced to measure worst-case performance.
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These are particularly suited to assess the stability of the algorithms. They first define
the average minimum accuracy reached by previous tasks when learning task Tk ,
min-ACCTk (see Eq. 3.2). It gives a good idea of the worst case performance of
the agent on a given task. Then, the worst-case accuracy, WC-ACCt (see Eq. 3.3),
combines information from the minimum accuracy on previous tasks and the accuracy
on the current task. WC-ACCt summarizes the trade-off between stability (accuracy
on previous task data) and plasticity (accuracy on current task data). This metric is
upper-bounded by the average accuracy. Here, t is the current iteration, Tk the current
task (at iteration t) and t|Ti | is the iteration at the end of learning Ti . Since WC-ACCt

is upper bounded by the average accuracy, we also report a new metric which is the
relative gap between the latter and average accuracy Acct as defined in Equation 3.4,
we name it Relative Accuracy Gap (RAG) since this measures the relative gap between
worst-case accuracy and average accuracy. This metric can then be fairly compared
across various methods that have different average accuracy.

AAAt = 1

t

t∑
j=1

1

k

k∑
i=1

A(Ei , f j ) (3.1)

min-ACCTk =
1

k −1

k−1∑
i

min
n

A(Ei , fn),∀n : t|Ti−1| < n ≤ t (3.2)

WC-ACCt = 1

k
A(Ek , ft )+ (1− 1

k
)min-ACCTk (3.3)

Acct = 1

k

k∑
i

A(Ei , ft ) and RAGt = Acct−WC-ACCt

Acct
(3.4)

3.4 Method: Exponential Moving Average ensemble
(EMA)

In the introduction (see Figure 3.1) we have shown that ensembles can greatly improve
performance, however, they come at a significant increase in memory usage which is in
direct conflict with the memory requirements typically imposed on continual learners.
Indeed, both continual learning and online learning impose memory constraints since
they do not allow retaining more than a fixed amount of data coming from the stream
of data. Therefore, in this section, we look into methods to reduce the memory usage,
while maintaining the advantages of model ensembling.

Several works have focused on reducing the memory constraint of ensembles
[150, 157, 160], some did so notably by averaging the models in weight space instead
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Method Accuracy Memory (Mb)

ER 26.2 4 + 211

ER Naive Ensemble 32.1 1840 + 211

ER + EMA 36.3 8 + 211

Table 3.1: Comparison on Split-MiniImagenet (20 tasks) of the naive ensembling of
checkpoints taken along the training trajectory of a replay method every 10 iterations,
against the use of EMA ensemble. For clarity, we divide the memory footprint into the
one for the models and the one for the replay buffer (model + buffer).

of aggregating the predictions in the functional space. While it is not clear under which
condition such manipulation of the weights can form a model that performs similarly
to the ensemble of the summed members, several works have shown practical working
cases. It is possible to perform such a summation [160] whenever two models are
connected by a linear path of low loss [52]. Tarvainen & Valpola [150] propose instead
to do a weighted sum of an infinite amount of checkpoints by giving older checkpoints
less important weight, decreasing exponentially with the distance.

For a potential use of these ensembles in continual learning we are interested
in having an ensemble that covers many tasks (see Section 3.1), and one that is
cheap to store and compute. The solution adopted in [150], for semi-supervised
learning, fits well to this task since it requires storing only one additional model and
is able to ensemble models from all of the previous iterations. Consider a function
f (x) = f (x,θt ) with learnable weights θt (at training iteration t), the exponential
moving average (EMA) of it’s weights is defined as:

θt
ema =λθt−1

ema + (1−λ)θt , (3.5)

where λ is a user-defined hyperparameter comprised between 0 and 1, which sets the
importance of the current model in the running average compared to the one of the
previous models, θt−1

ema is the value of the moving average at the previous iteration,
and θt is the weights of the training model at iteration t (θt can be computed with
existing online methods, such as ER [31] or MIR [6]. This implicit definition can also
be written as an explicit sum over all the previous model weights:

θt
ema =

t∑
i=1

(1−λ)λt−iθi +λtθ0
ema . (3.6)

This means that the ensemble formed by the sum virtually covers all the previously
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encountered tasks. However, exponentially less weights will be reserved to older
tasks, potentially reducing the effective diversity of the ensemble. Nevertheless, the
motivational experiment we conducted on Split-Cifar100 show that after some number
of tasks covered by the ensemble, the accuracy gained by covering more and more
tasks is less important (sublinear growth). So covering a small number of tasks with
the ensemble can be sufficient to get satisfying performance gains. This motivated us
to analyze the exponential moving average model in the setting of online continual
learning.

In Table 3.1 we compare Naive Ensembling, discussed in Section 3.1, with the
EMA model when combined with Experience Replay [31]. As can be seen, the EMA
model significantly reduces the memory usage (requiring only one additional model).
Remarkably, ER+EMA outperforms the Naive Ensemble. This could be caused by
the fact that ER+EMA combines many more models, and because of the non-linear
weight assignment to the various models (see Figure 3.2), where EMA assigns more
weight to the last (and better) models in the training trajectory.

While the EMA approximate ensemble is commonly used in the literature and has
been proven to give good performance [25, 61, 150]. Other weight summing schemes
could be tried to compute an approximate ensemble. Such schemes are not necessarily
expected to work in classical offline learning since summing models that are far away
from each other in the weight space is not guaranteed to work. However, since online
learning only performs a few training iterations on the task at hand (compared to offline
learning), we can expect the models to be closer from each other and thus allow other
summing techniques to work. In order to explore the possibilities of such summing
techniques in online continual learning, we compare several weighting techniques.
Since we are working in the online learning setting and under the constraint of storing
only one additional model, we choose to compute the approximate ensemble following
Equation 3.7,

θt
ensembl e =

1∑t
i wi

t∑
i

wiθ
i , (3.7)

and use this ensemble instead of the EMA ensemble. This formulation allows for
more freedom in the choice of the weighting scheme, but the formulation used by
EMA can also be expressed under this form, we identify the equivalent weight wi

for the EMA ensemble using Equation 3.6 as being wi = wi−1
λ . We update at every

iteration the weighted sum of the models and normalize it by the sum of the weights to
avoid exploding model weights. In Figure 3.3 we provide a comparison of the weight
distribution for the different strategies we tried.

In Table 3.2, we present the results of combining an ensemble computed with each
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wi ER ER-ACE RAR
- - 9.9 ± 0.6 16.5 ± 0.7 27.6 ± 1.3

EMA λ = 0.99 wi−1
λ 14.0 ± 0.5 19.0 ± 0.3 35.4 ± 1.2

EMA λ = 0.995 wi−1
λ 18.0 20.1 36.8

EMA λ = 0.999 wi−1
λ 18.3 18.8 31.2

Uniform 1 13.1 12.7 17.3
Linear i 16.4 16.3 25.4

Logarithmic wi−1 + log (i ) 16.6 16.6 26.2
Quadratic wi−1 + i 2 18.2 18.8 31.5

Table 3.2: Comparison of different approximate ensembling methods inspired from
the EMA approximate ensembling method. Each ensembling technique was tried
on Split-Cifar100 in combination with ER [31] ER-ACE [22], and RAR [169]. The
second column indicates how the weights for the current model are computed at each
step. The first row indicates the results when no ensembling technique is used.

weighting scheme with three methods from the literature on the Split-Cifar100 dataset
(See Section 3.5 for explanations about the experimental settings). We see that the
EMA model gets the best performance overall, especially with λ= 0.995†. However,
we get surprisingly high results with linear, logarithmic, and quadratic weighting,
especially in combination with ER, but linear and logarithmic weighting fail to give
an advantage when combined with the more advanced methods ER-ACE and RAR.
Quadratic weighting obtains the closest resuts to the EMA methods, we provide a
more detailed comparison of Quadratic against EMA method in Figure. 3.4. Uniform
weighting is the scheme that performs worst across the board. which can be understood
since it gives equal weight to the first models than to the last models whereas the
last models have been trained for a longer time and thus are expected to have better
performance.

3.5 Experiments
Datasets. We perform experiments on 3 datasets. Cifar-10 is a 10-class dataset
that contains 60000 images of size 32 by 32 and 3 color channels [85]. Cifar-100
has the same image dimensions and number of images but with 100 classes. Mini-
Imagenet [153] is a 100-class version of ImageNet [139], that contains 60000
images which are rescaled to 84 by 84. We split these datasets into 5, 20 and 20 tasks

†These parameters are not the one we use in the main results of Section 3.6 (we use λ= 0.99). For a
discussion on hyperparameter choices, refer to Section 3.6.1
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Figure 3.3: Curve showing the evolution of different weighting schemes (wi ) under
the form described in Equation 3.7. We compare the performance of these weighting
schemes in Section 3.4. We observe here that EMA with a high lambda leads to a
weighting that looks similar to quadratic weighting. To draw these curves we place
ourselves at the last training iteration (θtl ast
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Figure 3.4: WC-ACCt for Quadratic vs EMA with λ= 0.995 in combination with ER
on Split-Cifar100 dataset. We see that the quadratic weighting scheme gives more
interesting stability (in terms of WC-ACCt ) in the first few tasks, but then fails short
compared to the EMA ensemble.
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respectively, each containing a mutually exclusive set of classes.

Scenario. We present results in the online class-incremental setting. When continual
evaluation is performed, we evaluate after each unique mini-batch. All the compared
methods are using a replay buffer, with a fixed memory size of 1000 exemplars for
Cifar-10, 2000 exemplars for Cifar-100 and 10000 for Mini-Imagenet (as in [22]).
Each training mini-batch is formed out of half of exemplars from previous tasks and
half from the current task.

Methods. We compare the performance of five replay methods. ER-ACE [22],
MIR [6], RAR [169], DER [21] are described in Section 3.2.1, while ER [31] is the
vanilla replay baseline. We display their performance along with the one of their EMA
augmented version on the studied datasets. Additionally, we report the results of an
i .i .d reference method that is allowed the same memory and computational budget as
the compared methods, but for which the data arrives in an independent and identically
distributed manner (in contrast to the continual learning manner where data arrives
split by split). Since some of the methods included in the comparison make use of
input transformations (RAR), we also include the results of the i .i .dw/tr reference
method, which uses the same input transformations.

Training and Implementation Details. For all datasets we use a slim version of
Resnet-18 as done in [104] and perform 3 passes per mini-batch using Stochastic
Gradient Descent with a learning rate of 0.1, and batch size of 32. We run each
experiment for six seeds and report the mean and standard deviation. For DER, we
stick to the parameters used in the original paper for CIFAR10 (α= 0.1 and β= 0.5).
For the EMA ensemble, we chose a momentum parameter of λ= 0.99. More details
on the choice of this parameter can be found in Section 3.6.1. We make use of the
Avalanche framework [103] for all experiments. We make the code available at:
https://github.com/AlbinSou/online_ema.

Metrics. For every method, we report the final average accuracy but also the continual
evaluation metrics described in Section 3.3.2, that we computed on a held out validation
set after training on each new mini-batch. The validation dataset contains 5% of the
total training data. We report both AAATfinal and WC-ACCTfinal in the tables, where
T f i nal is the last training iteration. We also report WC-ACCt at every iteration in the
figures. The final value of the R AG metric that we define in Equation 3.4 is reported in
percent. Note that we do not make use of this validation data to tune hyperparameters
but just to compute the continual evaluation metrics.
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3.6 Results

Figure 3.5: Validation accuracy on task 1 data (Left), Average Anytime Accuracy
A A At (Middle) and WC-ACCt (Right) for ER-ACE and its EMA augmented version
on Split-Cifar100, using 2000 memory. Mean and standard deviation are computed
over 6 runs.

Figure 3.6: Split-Cifar100, validation accuracy on task 1 data (Left), Average Anytime
Accuracy A A At (Middle) and WC-ACC (Right), for RAR and its EMA augmented
version, using 2000 memory. Mean and standard deviation are computed over 6 runs.

3.6 Results
On Split-Cifar10 the EMA ensemble offers consistent improvements across all

methods (see Table 3.3), especially for RAR, where it offers a 4.3% improvement
in final average accuracy. We hypothesise that the gains of EMA are smaller than
on Split-Cifar100 and Split-MiniImagenet because in that case the EMA ensemble
weights cover less tasks than in the case of the other two datasets (5 tasks but the same
number of training iterations than Split-Cifar100). Nevertheless, the stability metrics
are greatly improved also for this dataset.
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Figure 3.7: Comparison of the average accuracy on the validation data of three methods
trained on Split-MiniImagenet (20 tasks), and their EMA augmented version. EMA
performance is indicated with the dotted lines. We report the mean and standard
deviation over 6 runs.
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Figure 3.8: Comparison of the average accuracy on the validation data of three
methods trained on Split-Cifar100 (20 tasks), and their EMA augmented version.
EMA performance is indicated with the dotted lines. We report the Mean and standard
deviation over 6 runs
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Split-Cifar10 Split-Cifar100
Method Acc ↑ A A Aval ↑ WC-Accval↑ R AG val↓ Acc ↑ A A Aval↑ WC-Accval↑ R AG val↓
i .i .d 65.2 ± 1.8 23.4 ± 0.7
i .i .d+E M A 67.3 ± 1.3 25.8 ± 0.6

+2.1 +2.4
i .i .dw/tr 71.2 ± 1.4 32.3 ± 1.0
i .i .d+E M A

w/tr 75.5 ± 1.3 37.2 ± 0.8
+4.3 +4.9

ER 37.5 ± 1.6 57.3 ± 0.6 26.0 ± 1.0 31.0 ± 5.6 9.9 ± 0.6 22.5 ± 0.8 5.8 ± 0.4 43.0 ± 3.4
ER+E M A 38.8 ± 1.3 59.9 ± 0.7 35.1 ± 1.1 9.9 ± 1.5 14.0 ± 0.5 29.2 ± 0.9 13.1 ± 0.7 5.6 ± 1.6

+1.2 +2.6 +9.1 -21.1 +4.1 +6.7 +7.3 -37.4
M I R 40.2 ± 2.8 54.0 ± 0.4 17.0 ± 0.6 57.1 ± 4.4 10.6 ± 0.7 22.8 ± 0.7 6.3 ± 0.4 39.6 ± 3.0
M I R+E M A 42.7 ± 2.1 55.9 ± 4.2 34.5 ± 1.5 19.7 ± 4.8 14.9 ± 0.4 28.8 ± 0.9 14.3 ± 0.6 5.4 ± 1.4

+2.5 +1.9 +7.5 -37.4 +4.3 +6.0 +8.0 -34.2
ER-ACE 50.2 ± 1.2 62.7 ± 1.4 34.6 ± 2.0 29.9 ± 4.8 16.5 ± 0.7 27.7 ± 0.6 10.3 ± 0.4 38.7 ± 3.3
ER-ACE+EMA 51.5 ± 1.6 64.6 ± 1.4 48.7 ± 1.9 4.6 ± 0.8 19.0 ± 0.3 30.7 ± 0.6 15.3 ± 0.6 20.9 ± 3.5

+1.3 +1.9 +14.1 -25.2 +2.5 +3.0 +5.0 -17.8
DER++ 51.1 ± 3.0 56.4 ± 1.6 17.9 ± 0.6 64.5 ± 2.9 18.2 ± 0.7 24.7 ± 1.0 4.5 ± 0.6 75.8 ± 3.2
DER+E M A++ 53.1 ± 3.7 59.5 ± 1.7 36.4 ± 1.1 30.6 ± 3.5 23.2 ± 1.2 35.0 ± 1.3 19.7 ± 0.9 16.7 ± 2.3

+2.0 +3.2 +18.5 -33.9 +5 +10.3 +15.2 -59.1
R AR 63.0 ± 1.4 67.3 ± 0.9 28.2 ± 2.9 55.1 ± 4.1 27.6 ± 1.3 32.5 ± 1.5 11.8 ± 0.9 57.0 ± 1.8
R AR+E M A 67.3 ± 0.8 72.4 ± 0.8 60.5 ± 1.1 10.1 ± 1.5 35.4 ± 1.2 42.6 ± 2.1 32.4 ± 1.7 7.9 ± 0.9

+4.3 +4.9 +32.3 -40.0 +7.8 +10.1 +20.6 -49.9

Table 3.3: Comparison of the final average accuracy on the test set and continual
evaluation metrics on the validation set for various methods with their EMA model
augmented version, on Split Cifar10 (Left) and Split Cifar100 (Right).

On Split-Cifar100 (See Table 3.3 and Figure 3.8) the EMA ensemble offers consid-
erable improvements for ER, RAR, DER and MIR (from 4.0-7.8%). The improvements
are less consequent for ER-ACE, but still important (2.5%). We hypotesize that the
smaller gain is due to the smaller task-recency bias of ER-ACE. This is illustrated in
Figure 3.5 and Figure 3.6. In these two figures on the left, we see that the performance
of RAR on task 1 data drops instantly after learning task 1, which means it has been
traded for accuracy on task 2, it suffers from the task-recency bias. Whereas for
ER-ACE, the performance on task 1 does not drop as much after learning task 1, thus
the gap with the EMA augmented version is not as important. This is also reflected
in Table 3.3. In these figures as well, we can see how the use of the EMA model
improves the stability, both by looking at the WC-Acc but also at the reduced accuracy
variations on a single task.

On Split-MiniImagenet, we see the largest performance improvements. This time,
RAR sees similar gains than ER (9.3% and 10%), while ER-ACE gains are also more
important than in the case of Split-Cifar100. This is coherent with the observations that
we had in the motivational experiments (Figure 3.1) that the gains from ensembling
are slightly more important in the case of Split-MiniImagenet. This might also be
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Split-MiniImagenet
Method Acc ↑ A A Aval↑ WC-Accval↑ R AG val↓
i .i .d 29.9 ± 2.2
i .i .d+E M A 34.9 ± 1.6

+5.0
i .i .dw/tr 32.3 ± 1.7
i .i .d+E M A

w/tr 39.9 ± 1.1
+7.6

ER 26.2 ± 0.2 33.9 ± 0.7 11.0 ± 0.9 59.6 ± 2.2
ER+E M A 36.3 ± 1.1 44.3 ± 0.9 34.2 ± 0.6 7.9 ± 1.4

+10.1 +10.4 +13.2 -51
M I R 27.3 ± 1.7 33.9 ± 0.4 9.6 ± 0.9 66.3 ± 2.3
M I R+E M A 36.1 ± 1.2 43.5 ± 0.8 34.0 ± 1.4 8.6 ± 2.0

+8.8 +9.6 +24.4 -57.7
ER-ACE 27.4 ± 1.7 35.3 ± 0.5 12.9 ± 0.9 54.2 ± 2.6
ER-ACE+EMA 34.5 ± 0.8 41.0 ± 0.8 19.8 ± 1.1 44.6 ± 1.8

+7.0 +5.7 +6.9 -9.6
DER++ 18.4 ± 1.8 20.3 ± 2.6 4.0 ± 0.4 78.5 ± 1.5
DER+E M A++ 23.3 ± 2.3 29.4 ± 2.9 17.8 ± 3.3 25.0 ± 6.9

+4.9 +9.1 +13.8 -53.5
R AR 29.1 ± 0.8 33.8 ± 0.8 11.4 ± 0.5 61.6 ± 2.1
R AR+E M A 38.4 ± 0.8 44.9 ± 0.4 35.6 ± 0.4 11.6 ± 1.7

+9.3 +11.1 +24.2 -60.0

Table 3.4: Comparison of the final aver-
age accuracy on the test set and contin-
ual evaluation metrics on the validation
set for various methods along with their
EMA model augmented version, on Split-
MiniImagenet.
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Figure 3.9: Comparison of pre-
vious state-of-the-art method in
online continual learning R AR
against the reference method
i .i .dw/tr on Split-Cifar100 (Top)
using 2000 memory and Split-
Minimnet using 10000 memory
(Bottom). The performance gap
is indicated in green, and is greatly
reduced by the use of EMA.

due to the memory size used that is different from the one used for Split-Cifar100.
In Figure 3.7, we show a comparison of three methods and their EMA augmented
version. We notice that in that case, the use of ER-ACE hurts the performance of the
EMA model, which performs worse than just using ER and EMA. Also, for ER and
RAR, we notice various bumps in the validation accuracy ‡ of the EMA model that
are not present in the current model accuracy. We believe these bumps occur when the
previous task bias is compensated by bias towards the current task. The location and
width of these bumps depend on the λ parameter chosen for the exponential moving
average (for more analysis see Figure 3.12).

‡More generally we observe these bumps on all the studied datasets and report them for Split-
MiniImagenet and Split-Cifar100 in Figure 3.7 and Figure 3.12
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Figure 3.10: Task Confusion matrices computed on the test set after training of
the last task for RAR on Split-MiniImagenet (20 tasks), final training model (Left),
RAR+EMA model (Middle), and RAR+EMA model taken at the tip of the bumps
observed in Figure 3.7 (Right). Note the drop in task-recency bias from RAR (a) to
RAR+EMA (b) as a consequence of ensembling.

Effect on the task-recency bias: In Figure 3.10, we display the task confusion
matrices of RAR, for the final training model, the final EMA model, and the EMA
model taken at the tip of the bump (selected using a hold-out validation memory
mechanism). The matrix shows the number of test images from a particular task
(y-axis) that are classified as being from another task (x-axis). For the last training
model, a lot of samples are predicted to be in the last task as indicated by the last
column, which shows an important task-recency bias. For the final EMA model, the
task-recency bias is also present though slightly diminished, but for the best selected
EMA model, it is almost absent, confirming our hypothesis about the origin of the
bump§.

Comparison with the gains in online i.i.d setting: When applied on the reference
methods i .i .d and i .i .dw/tr , the use of EMA model at evaluation also improves the
results by a good margin, showing that the gains obtained in continual learning are not
only due to continual-learning based improvements (like reducing the task-recency
bias), but also on more general online-learning improvements. However, we observe
in general higher gains in continual learning than in the i.i.d setting, except on Split-
Cifar10, where they are equivalent, showing that the adaptation of the momentum
parameter to the distribution drift speed is essential to get continual learning related
gains. To illustrate the higher gains in continual learning, we highlight the gap in final
accuracy between previous state-of-the-art method (RAR), and the i .i .dw/tr baseline,
along with the EMA augmented versions (See Figure 3.9). We see that for two of
the studied datasets, the gap between R AR and i .i .dw/tr is reduced by the use of the
EMA model. For Split-Cifar100, an initial 4.7% gap is reduced to a 1.8% gap, while

§Note that all our results are based on the finishing point of training, which does typically not coincide
with the bump.
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for Split-MiniImagenet, an initial 3.2% gap is reduced to a 1.5% gap.

Effect on the stability metrics: Finally, for all methods and on all datasets, the A A A
and the WC-Acc are greatly improved by the use of EMA, which shows that aside
from raising the accuracy, the EMA model offers an important stability boost. We
illustrate this effect by showing one single task accuracy curve along with the WC-Acc
curve during training in Figure 3.5 and Figure 3.6. We see that in both cases both the
fluctuations due to small-batch training and the bigger fluctuations due to task shift
are reduced by the use of the EMA ensemble. We also present a detailed analysis
of stability at the level of a single task shift in Figure 3.11. In general, the biggest
increase in WC-Acc also correspond to the biggest decrease in Relative Accuracy Gap
(R AG), and is significant, confirming that the increase in WC-Acc is not due to an
increase in average accuracy, but due to a better stability.

A closer look at the stability gap: In Figure 3.11, we compare the accuracy of
RAR [169] and RAR+EMA on the data of two subsequent tasks during the task shift.
We see that the current training model instantly loses accuracy on previous task at
the task shift before regaining part of this accuracy later in training. This results in
an important stability gap since the accuracy on previous task reaches a low point
during training before going back to "normal". This observation is coherent with the
one made in [88]. The orange curves indicate the performance of the EMA model on
the same tasks. We see that the EMA models takes longer to get good performance
on new task but ends up getting better performance than the training model. EMA
models also displays improved stability (performance on previous task is smoothly
going from initial to final performance).

3.6.1 Details about hyperparameter choice for EMA model
Hyperparameter choice. In all of our experiments, we chose a λ of 0.99 for the
EMA model, and additionally warm up the EMA model in the first few iterations
by setting this parameter to 0.9 in the beginning. This parameter tells us about the
horizon of the EMA model. Since we were interested in an ensemble that covers
several experiences, we chose an horizon parameter that is high enough so that the
EMA model gives non-negligible weights to previous tasks. However, this process has
a flaw since it requires to know how many iterations the learner is going to perform on
a given task, which is not suppose to happen in continual learning or in online learning.
Nevertheless, we believe more practical solutions can be applied to tune this parameter
but we did not investigate them. We think the choice of this parameter should depend
on the speed at which the input distribution changes, which might be captured by some
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Figure 3.11: Split-Cifar10, validation accuracy on task 2 data and task 3 data at task
shift (indicated with dotted black line). In blue, the accuracy for the training model, in
orange, the accuracy for the EMA model. Solid lines indicate accuracy on task 2 data
while dotted lines indicate accuracy on task 3 data.

other mechanism, we leave this direction to future works. In our experiments, we
saw that a relatively wide range of parameters between 0.95 and 0.995 were working
correctly and always boosting the accuracy in more or less significative ways. We
present results for varying λ on Split-Cifar100 in Figure 3.12. We see in that figure
that increasing λ until the accuracy bump discussed in Section 3.6 disappears is overall
beneficial for the final average accuracy, but this might not be possible to do in practice
when not knowing the amount of data to be received from each class. Also, higher λ
values, while beneficial for the final average accuracy, affect negatively the accuracy
for earlier tasks. One work around to that problem would be to tune λ progressively
according to the number of already seen classes vs the number of new coming classes.

The accuracy bumps that we observe in various figures when looking at the average
accuracy indicate that the gains that we report in the tables could be bigger if we would
retain the model at the tip of the bump. However, this requires the use of a hold-out
validation memory and an additional copy of the model on disk. In Figure 3.10, we
retain the model using the above technique of validation memory and observe that
these bumps correspond to a lower task-recency bias in the saved EMA model.

Trade-off. This choice of lambda also highlights a problem of this method that
makes it difficult to export to non-online learning. It is its dependency on the number
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of training iterations. Indeed, choosing a higher λ increases the time horizon of the
method, but also has negative effects for several reasons. First of all, it is not clear how
high of a λ can be chosen before the performance of the ensemble decreases since
giving too much weights to single models that are too far in the weight space from the
last model might break the assumption that summing models in the weight space leads
to a model with accuracy equivalent to the ensemble of these two models [160]. This
assumption is believed to be true as long as two models are connected by a linear path
of low loss, and it is possible that two models that are far away from each other do not
respect this constraint. Secondly, it would be a nice addition to be able to sum models
obtained after each training batch, or even every training task (instead of each training
iteration, since several iterations can be performed on the same training batch in online
learning). However for the same reason invoking linear connectivity properties, it is
not clear that this would work any better than increasing the momentum value in the
computation of the exponential moving average.

Task Covering. For the chosen parameter value, on Split-Cifar100, we can compute
the total amount of weight assigned to each task. From Eq. 3.6, we deduce the weight
for a single member in the ensemble θi is (1−λ)λt−i where t is the iteration of the
current training model. We can sum this over the iterations covering one task. If we
place ourselves at the end of one task, with λ= 0.99 (value used in our experiments)
we get 88% of the weights in the last task, 9% of the weight in the previous task, and
1% in the second last task. This indicates that a majority of the weights are assigned
to later tasks (in particular from last task to second last task). However, we argue
here that as the mean can be highly influenced by outliers, the exponential moving
average is nothing else than a weighted mean, and can be influenced by outliers as
well. Since the distance in the weight space between models from different tasks is
more important than the one between models from the same task, it is possible that
earlier models influence more strongly the current moving average than what we could
believe by looking at the weights value.

3.6.2 Attempts at using EMA model for distillation
Tarvainen & Valpola [150] initially introduced the EMA model in order to use it as
a teacher model in semi-supervised learning. They find that distilling knowledge
from the EMA model to the student is beneficial in that setting. We likewise tried to
apply distillation by using the EMA model as a teacher, however we found that gains
obtained by this method (when present) were not robust enough to be reported. In
Table 3.5, we report the student and teacher (EMA) performance when using, and not
using, Mean-Teacher distillation (See Eq. 3.8). We found that some improvements
could be observed in combination with simple ER on Split-Cifar100 both in terms of

54



3.7 Conclusion

0 1000 2000 3000 4000
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ac

cu
ra

cy
0.95
0.96
0.97
0.98
0.99
0.992
0.995

Figure 3.12: Comparison of the results obtained for various λ values of the EMA
model on Split-Cifar100 (20 tasks) for ER. Each curve depicts the average accuracy of
the EMA model using a different λ on all tasks seen so far. The value we chose in our
experiments (0.99) is not optimal but nor do we have a way of chosing the optimal
one. Mean and standard deviation are computed over 3 seeds.

student and teacher performance, however these improvements did not generalize to
Split-MiniImagenet, neither do they combine well with a stronger method like RAR.
Notably, in the case of ER+MT D for Split-MiniImagenet and R AR+MT D for both
datasets, we observe that the final accuracy of the student is only slightly modified by
the distllation process (sometimes increased, sometimes decreased), but the accuracy
of the teacher is decreased consequently to its application, this indicates that the
distillation process might reduce the diversity of the EMA ensemble by pulling models
from the training trajectory closer from one another.

LC E ( fθ(x), y)+αLC E ( fθ(x), fθE M A (x)) (3.8)

3.7 Conclusion
We investigate the effect of employing temporal ensembling methods, such as EMA,
in online continual learning. This direction is particularly interesting because of
the distinctive nature of this combination. In online continual learning, temporal
ensembles offer the potential to combine models from various training tasks, leading
to novel dynamics that cannot be achieved in classical offline learning, where every
model ensemble is trained on the same distribution. In the experiments, we show that
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Method Split Cifar100 Split MiniImagenet
Acc Acc

ER 9.9 ± 0.6 26.2 ± 0.2
ER (EMA) 14.0 ± 0.5 36.3 ± 1.1
ER+MT D 14.7 ± 0.5 27.1 ± 2.1

ER+MT D (EMA) 19.0 ± 0.4 33.5 ± 1.4
R AR 27.6 ± 1.3 29.1 ± 0.8

R AR (EMA) 35.4 ± 1.2 38.4 ± 0.8
R AR+MT D 27.0 ± 1.0 27.1 ± 2.5

R AR+MT D (EMA) 32.7 ± 0.9 33.4 ± 2.5

Table 3.5: Mean Teacher distillation results for teacher and non teacher on Split-
Cifar100 (20 Tasks) (Left) and Split-MiniImagenet (Right). Mean and standard
deviation are reported over 6 seeds.

temporal ensembles can greatly improve continual learning performance and stability.
To circumvent the increased memory requirements for the usage of ensembles, we
propose to use a memory efficient ensembling solution for online continual learning.
We report results using this method in combination with other state-of-the-art methods
and conclude that this method consistently increases the final performance and overall
stability of several replay methods, closing in on the performance that can be reached
in the i .i .d setting. Most surprisingly, we do this without affecting the training process
but just by ensembling models from the training trajectory.

We hope that this work inspires the design of more robust ensembling methods
for continual learning. In particular, it would be important to find a similarly efficient
method that allows to decorrelate the number of training iteration from the number
of tasks, since it could then be applied for arbitrary number of iterations per task
while similarly covering as many previous tasks as possible. Another future direction
could focus on impacting the training using such kind of ensembles, for instance by
combining it with distillation ¶.

¶We provide comments about the application of distillation in combination with EMA model in
Section 3.6.2.
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4 A Comprehensive Empirical Evaluation on
Online Continual Learning*

4.1 Introduction
In recent years, we have witnessed a surge of interest and progress in deep continual
learning methodologies. These methods are able to learn continually from a stream
of non-stationary data, thereby relaxing the principal assumption of having access
to independent and identically distributed (i.i.d.) samples, often made in statistical
learning [66]. In classic (or batch) continual learning, the common assumption is that
the data stream is composed of distinct, explicitly defined tasks or domains, and that
the method can detect the task boundaries or easily switch between domains. However,
in many real-world scenarios, the data stream may not have clear task boundaries
or domain labels, and the method may need to quickly adapt to changes in the data
distribution [9, 83]. Moreover, these methods have access to a batch of data at each
task, normally in the form of a dataset, providing them with a locally i.i.d. access to
the data.

Online Continual Learning (OCL) [104] is a more challenging and realistic setting
of continual learning, where similar to online learning [117], the method learns from
each arriving data point in the stream. OCL methods update the model with a
high frequency, often without access to task labels or boundaries, and with a limited
computational and memory budget. Due to the non-stationary nature of the stream,
OCL methods need to balance stability and plasticity. Furthermore, since the model is
used for inference at each time step (anytime inference), the learning algorithm must
not suffer from stability issues at any point of the learning process.

State-of-the-art OCL methods use a rehearsal buffer to mitigate forgetting [31].
Several improvements of basic experience replay have been proposed to improve the
sampling from the buffer [6, 86], the loss function [21, 22, 109], weights update [30]
or the classification layer [109]. A common limitation of these works, and even
recent empirical surveys [108] is that they focus only on forgetting and final accuracy.
However, OCL methods have several other objectives that should be measured with

*This chapter is based on an article in the International Conference on Computer Vision Workshop on
Visual Continual learning 2023 [147]
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MAJOR FINDINGS OF OUR PERFORMANCE EVALUATION
ON ONLINE CONTINUAL LEARNING

• Good stability does not neces-
sarily transfer to higher accu-
racy (See Table 4.2, Figure 4.3
and Section 4.6 Stability).

• There is no best-performing
OCL method across all met-
rics or memory sizes (See Table
4.2).

• OCL methods suffer from
under-fitting in the common ex-
perimental setup (See Figure
4.3 and Section 4.6 Forget-
ting).

• Well properly tuned ER is a
very competitive baseline ob-
taining better results than most
existing methods (See memory
batch size discussion 4.6 and
Section 4.5 Implementation).

• The quality of the representa-
tion is very close to the one
learned on the i.i.d stream, indi-
cating that learning a good clas-
sifier is one of main problems.
(See Section 4.6 Representa-
tion quality).

appropriate metrics.
To encourage progress in Online Continual Learning, in this chapter, we provide a

comprehensive empirical evaluation of OCL methods. We exploit recent proposals
that provide better metrics to measure forgetting (Chapter 2), continual stability [88],
and quality of the representations [22, 38, 83]. The experimental results on these
metrics highlight the strength and limitations of state-of-the-art methods in OCL.

In this work, we contribute to the body of literature in this area as follows:

• We formally define Online Continual Learning (Section 4.2) and a comprehen-
sive set of metrics (Section 4.4) to measure the performance across different
dimensions: accuracy, forgetting, continual stability, and quality of the latent
representations.

• We conduct a comprehensive empirical evaluation on Class-Incremental scenar-
ios on two main benchmarks (Split-CIFAR100 and Split-TinyImagenet) evaluat-
ing 9 different approaches against 5 metrics. The main findings can be found in
the “recommendations box” at the top of this page.

• We release all the code to reproduce our results, compare and easily prototype
new OCL strategies. The code has been developed within the Deep Continual
Learning Avalanche library for maximum flexibility and reproducibility.
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4.2 Online Continual Learning
In Online Continual Learning (OCL), a model learns from a stream of non-stationary
experiences of data. In a classification problem, at each timestep t a mini-batch
(xt , yt ) ∼ pt (x, y) is available, where pt is the underlying distribution of data and
may change over time. The function f :Rn →Rc is the prediction function and maps
inputs to the unnormalized class probabilities (logits). An OCL algorithm is a function
A : (xt , yt ), ft−1,Mt−1 → ft ,Mt , where ft is the model at time t and Mt = {(xi , yi )}
is a replay buffer, i.e., a small set of samples from the past stream stored for rehearsal.

Unlike Offline Continual Learning, OCL is a challenging setting where only a few
new samples are available at each step, which can be stored in a very limited amount.
The following are some properties that characterize OCL setups:

Online. At each timestep only a small mini-batch (xt , yt ) is available (10 in our
experiments).

Task Labels. In a task-aware setting, the models know that samples belong to a set
of known tasks and a task label is available to associate each sample to its own task.
We assume a task-agnostic setting where task labels are not available.

Task Boundaries. Even in the absence of task labels, many continual learning
methods assume knowledge about task boundaries, expecting to know when the data
distribution switches to a new task. In a boundary-agnostic setting, this information is
not available†. In this chapter, we test both boundary-agnostic and boundary-aware
methods.

Anytime Inference. In most OCL applications, models should be able to train but
also to perform inference online, after every training step [83]. As a result, methods
that require expensive finetuning steps before inference such as GDumb [131] are not
considered OCL methods in this chapter.

4.3 Methods
Similar to Offline Continual Learning, in OCL, most state-of-the-art results are

obtained by rehearsal-based methods. Because of this, most approaches use rehearsal,

†This is commonly referred to as task-free, and it is a common assumption in OCL. We propose the
term boundary-agnostic to highlight that task labels and boundaries are two different kinds of knowledge
about the properties of the stream
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Name Elements Year Boundary
AGEM [30] Modified Update 2018

ER [31] - 2019
ER + LwF [96] Distillation Loss 2019
ER-ACE [22] Modified Cross-Entropy Loss 2021

MIR [6] Modified sampling 2019
SCR [109] Contrastive Loss, NMC 2021
RAR [86] Adversarial Augmentations 2022

DER++ [21] Distillation Loss 2020
GDumb [131] Offline finetuning on the buffer 2020

Table 4.1: Summary of methods tried in the survey along with their particularities
(release year, access to task boundaries).

which is the main reason we focus on them for our empirical study. Rehearsal-based
methods keep a separate memory M of fixed size to store past samples, updated after
each mini-batch. Most rehearsal-based approaches, and all the chosen methods, follow
the pseudocode shown in Figure 4.1. In the following paragraphs, we will describe in
detail each line, explaining some methods-specific additions and the main reason for
selecting each approach.

Sampling. Usually, each new mini-batch is reused for multiple training passes,
each time sampling a different mini-batch from the memory and applying stochastic
augmentations to both old and new data. This is justified by the theoretical analysis
in [169]. MIR [6] finds the maximally interfered samples, i.e., those that maximally
decrease their loss after an SGD step on the new data, and select those for rehearsal.
Instead, RAR [86] generates new samples using targeted adversarial attacks that are
designed to be in close proximity to the decision boundary of the classifier.

Loss. Most methods use a supervised loss on both new and memory data, such as
the cross-entropy. ER-ACE [22] use different loss on new and old data due to the
different nature of the two samples. DER++ [21] uses logits distillation, storing the
logits together with the raw data in the memory. While the objective is a knowledge
distillation loss, the teacher used to compute the logits depend on the time when the
sample was stored. SCR [109] uses a contrastive loss. In CL settings with large
batches, it was shown that contrastive losses suffer less from forgetting than supervised
ones [36, 50, 106]. However, many contrastive losses require large batch sizes, big and
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4.3 Methods

Figure 4.1: Pseudocode of replay-based OCL methods. Each method can be obtained
from basic experience replay (ER) by modifying one of its fundamental components:
sampling, loss, classifier, weight update.

diverse datasets, and more time to converge, which may not be possible in an online
setting. Notice that distillation often requires task boundaries to know when to update
the teacher.

Classifier. Most methods use a linear classifier trained by backpropagation. Another
popular choice is the NCM (Nearest-Class-Mean) classifier, which computes a proto-
type for each class and uses the distance between prototypes to classify at inference
time. For example, SCR uses an NCM classifier. Usually, the NCM classifier is only
used during inference, while a separate linear classifier is trained via backpropagation
during training.

Model update. Most methods use end-to-end backpropagation using both the new
and the memory samples. Instead, A-GEM [30] uses the gradient from the memory to
impose constraints on the update of the model, exploiting the fact that interference can
be measured using the cosine similarity between gradients of different tasks.

Baseline methods. GDumb updates the memory via class-balanced reservoir sam-
pling [34] and, before each inference step, retrains the entire model using only the
memory data. GDumb is not an effective online method because it cannot do anytime
inference due to the high cost of retraining at each step. However, it is a useful baseline
that is surprisingly effective.
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4.4 Metrics
To evaluate the performance of each strategy, we use a comprehensive set of metrics
recently introduced in the OCL literature. We have taken special care to include
metrics to measure stability and knowledge accumulation. Following [88], we perform
continual evaluation after every timestep t from the stream (after training on each
mini-batch). In addition, we also evaluate the performance at task boundaries. We
indicate the accuracy of a model f at training iteration t on evaluation task Ei with
A(Ei , ft ), we denote k the current training task index.

Stability. The Worst-Case Accuracy (WC-ACC) [88] provides a trade-off between
the accuracy on iteration t and the average minimum accuracy over all tasks learned
before the current task Tk . Formally:

WC-ACCt = 1

k
A(Ek , ft )+

(
1− 1

k

)
min-ACCTk . (4.1)

The metric min-ACC is defined in [88] with respect to the last task Tk and can be
computed as:

min-ACCTk = 1

k −1

k−1∑
i=1

min
|Tk |<n≤t

A(Ei , fn), (4.2)

where |Tk | represents the last training iteration for task Tk .

Average Anytime Accuracy. The Average Anytime Accuracy [22] (A A A), some-
times called Area Under the Curve accuracy [83] (A AUC ), is a generalization of the
average incremental accuracy [135] to the continual evaluation setting, and is defined
as:

A A At = 1

t

t∑
j=1

1

k

k∑
i=1

A(Ei , f j ), (4.3)

Average Accuracy/Forgetting. Similarly to most of the works in CL, we report
the Average Accuracy and the Average Forgetting as defined by [104]. The Average
Accuracy is computed on k tasks from a model at step t by A A = 1

k

∑k
i=1 A(Ei , ft ).

Similarly, the Average Forgetting is computed by AF = 1
k

∑k
i=1 A(Ei , f|Ti |)− A(Ei , ft ).

Cumulative Accuracy/Forgetting. When applied to class-incremental learning,
as done in this chapter, the above-described Average Forgetting metric measures
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both the forgetting and the drop in performance because of the increasingly difficult
classification task. In Chapter 2, we propose a forgetting measure tailored to class-
incremental learning called cumulative forgetting. The Cumulative Accuracy for a
model f t is computed on the concatenation of all evaluation tasks seen up to task
k (E k

Σ), and only considering logits up to the classes seen in task k (C k
Σ). It can be

computed as

bt
k = 1

|E k
Σ
|

∑
x,y∈E k

Σ

1y (argmax
c∈C k

Σ

f t (x)c ), (4.4)

where 1y (ŷ) is the indicator function that is 1 if y = ŷ and 0 otherwise. We then
compute the Average Cumulative Forgetting (Chapter 2) across all tasks, which is
simply computed from the Cumulative Accuracy as F t

Σ = 1
t−1

∑t−1
k=1 maxi=1,...,t bi

k −bt
k .

Representation quality. In this setup, the model backbone is frozen and a linear
classifier is trained on top of it using all the training data seen so far (linear prob-
ing) [38], we then report the accuracy obtained with this classifier (Probed Accuracy).
This metric allows us to evaluate the quality of the representations computed with the
incrementally learned backbone. This metric is computed only at task boundaries.

4.5 Experimental setup
Benchmarks. We present results on two continual learning classification benchmarks.
Split-Cifar100 is created from the Cifar-100 dataset [85], that contains 50 000 training
images and 10 000 test images of size 32x32, equally divided into 100 classes that
are refined from 20 super-classes. Split-TinyImagenet [1] is a reduced version of
the Imagenet dataset [41], containing 100 000 training images resized to 64x64 and
splitted in 200 classes. We split these datasets into 20 tasks using a random class order
(task composition change for each random seed).

Model and training details. In all the experiments, we use a slim version of
Resnet18 as done in previous works [104]. We use the SGD optimizer without
momentum nor weight decay. We tune the learning rate for each method using hyper-
parameter selection protocol defined later in this section. Since all of the compared
methods make use of a replay buffer, we choose to follow a common protocol for learn-
ing that consists in performing several training passes on the same batch of data, using
a different batch of memory. This protocol has been used in several works [6, 71, 169].
We choose to always apply input transformations since they have been proven to dras-
tically reduce the overfitting on the buffer samples and to be efficient in combination
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with several iterations per incoming batch [169]. We use a batch size of 10 for the
current data for both benchmarks. Each training batch is then constituted of 10 images
from current data and 10 images from the replay buffer, except for SCR which needs
to sample a bigger batch from memory (of size 118). The number of training passes on
each mini-batch is kept fixed for all methods (not tuned), and set to 3 on Split-Cifar100
and 9 on Split-TinyImagenet. On both of the benchmarks we use random cropping
and random horizontal flip as input transformation, except for SCR which uses more
advanced transformations. In the main results, we use a fixed memory size of 2000 on
Split-Cifar100 and 4000 on Split-TinyImagenet. Additionally, we present results for
more extreme amounts of memory (low and high) on Split-Cifar100 in Figure 4.3.

Hyperparameter selection. In order to make sure every method tried performs
at its best, we use a hyperparameter selection mechanism. The constraints of the
online setting usually do not allow for efficient hyperparameter selection. In [108], the
first few tasks of the training stream are used as validation tasks, which is borrowed
from the protocol defined in [30]. We also follow this protocol, using the first 4
tasks (out of 20), to optimize the hyperparameters by looking at the accuracy on
the validation set. Contrary to what is done in [30], we do not allow the learner
to learn offline on these 4 tasks, but rather put the learner in the setting of online
learning. We use the tree-structured Parzen estimator algorithm [18] to guide the
search of hyperparameters, by running 200 trials for each method. In the code
(https://github.com/AlbinSou/ocl_survey) we provide the list of best hyperparameters
found using this procedure for each method as well as the ranges used.

Evaluation. As done in [22, 83], and studied more in depth in [39]. We perform
continual evaluation, meaning we evaluate the model on held-out validation data (5%
of the whole stream) after learning on each new mini-batch. On top of this, we also
perform a more classical evaluation on the test stream after training on each task.

Methods. We report results for all methods presented in Section 4.3. On top of that,
we add an i.i.d. reference method, which uses the same methodology as the one of ER
but learns on an i.i.d. stream instead of a class-incremental one.

Implementation. All methods were implemented using the Avalanche framework [26],
an open source continual learning framework that provides the tools to implement new
strategies and benchmarks in continual learning. While some methods were already
present, we adapted some of the existing methods and added some new methods to
the framework to conduct this study. The implementation of each method is modular,
which allows reuse of common components (e.g., reservoir buffers) and highlights
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the similarities and differences between methods. Despite our efforts to make the
comparison as fair as possible, there are a few points on which it was hard to make
every method coincide. We list them below:

• Handling of batch normalisation statistics: While sampling a batch from
the current task and the memory, there is a choice that needs to be made when
forwarding each batch to the model. The default solution adopted in Avalanche
is to concatenate both batches and perform one pass on the model using the
concatenated batch statistics (option 1). However, some methods were initially
implemented by forwarding each batch separately, which could have a huge
influence since in that case the separate outputs are created using each internal
batch statistics (option 2). In general, while implementing the methods, we
chose the option that was working best (ER: 1, DER++: 1, ER-ACE: 2, MIR: 2,
SCR: 1, RAR: 2). Note that MIR also updates the batchnorm statistics when
forwarding the bigger replay batch (from which it selects the samples to replay),
which also has an influence on training that other methods do not have.

• Memory batch size: Initially, we wanted to fix the batch size memory using the
hyperparameter validation protocol described above, so that each method could
select it’s adequate memory batch size. However, we found that when using a
fixed memory size and doing the hyperparameter selection on only 4 tasks, a
big memory batch size was always selected since it was giving more beneficial
results after seeing only 4 tasks. This is due to the fact that the optimal use of
the full memory size is close to always iterating on samples from the memory.
Because of this, we chose to also fix the memory batch size to the same size as
the one of the current batch (as done in most works). However, due to its use of
a contrastive loss, SCR requires to sample a big batch from the memory, so we
fixed the memory batch size to a higher number (118), which makes it behave
differently than other methods.

• Dynamic Classifier: In continual learning, the learner is not suppose to know
the total number of classes it will encounter during the training. This is why
we implemented most methods using a dynamic classification layer that adds
new units whenever encountering a new class. However, one method (DER++)
requires to replay the logits of samples from previous classes into the new
classes. The official implementation made use of a classification layer of fixed
size, and we used the same in our experiments, making it different from what
other methods do.
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Method Split-Cifar100 (20 Tasks) Split-TinyImagenet (20 Tasks)
Acc ↑ A A Aval ↑ WC-Accval ↑ Probed Acc ↑ Acc ↑ A A Aval ↑ WC-Accval ↑ Probed Acc ↑

i .i .d 35.3± 1.5 - - 45.8± 0.6 26.5± 0.6 - - 34.3± 0.5

GDumb 18.5± 0.5 - - - 13.1± 0.4 - - -
AGEM 3.1± 0.2 10.4± 0.6 2.9± 0.3 18.7± 0.8 2.6± 0.2 7.3± 0.5 2.6± 0.2 23.3± 0.6

ER 28.2± 1.2 36.6± 2.0 12.5± 0.6 44.9± 0.9 21.2± 0.6 33.9± 1.7 15.2± 0.5 35.6± 0.6

ER + LwF 30.4± 0.8 39.2± 2.0 15.3± 0.9 44.4± 0.8 22.7± 1.1 34.4± 2.4 17.0± 0.7 33.8± 0.9

MIR 29.4± 1.9 33.1± 3.2 11.6± 1.6 43.4± 0.7 21.3± 0.8 31.0± 1.8 15.2± 0.5 33.0± 0.4

ER-ACE 29.9± 0.6 38.5± 1.8 14.9± 0.9 42.4± 0.6 23.6± 0.7 35.0± 1.5 16.8± 0.7 34.2± 0.3

DER++ 29.3± 0.9 37.5± 2.5 13.4± 0.7 44.0± 0.8 22.9± 0.5 34.2± 4.0 16.3± 0.3 31.5± 0.9

RAR 28.2± 1.4 38.2± 1.6 14.9± 0.7 42.3± 0.9 15.7± 0.9 27.8± 2.8 10.1± 0.9 29.8± 0.9

SCR 28.3± 0.8 42.1± 2.1 20.3± 0.4 37.0± 0.3 16.9± 0.4 30.7± 1.5 12.3± 0.5 22.5± 0.4

Table 4.2: Last step results on Split-Cifar100 (20 Tasks) with 2000 memory (Left) and
for Split-TinyImagenet (20 Tasks) with 4000 memory (Right). For each metric, we
report the average and standard deviation over 5 seeds

4.6 Results
Final Average Accuracy. On Split-Cifar100, we found that the final performance of
all compared methods is very similar to the one of vanilla replay (ER) (See Table 4.2).
Except for the performance of AGEM, most methods performed quite competitively
in the OCL setting (only around 5% away from the i.i.d. reference method), the
best one being the introduced baseline combining ER and LwF, but only by a tiny
margin. On Split-TinyImagenet, the results are similarly close (See Table 4.2), with
the exception of ER-ACE performing better on that benchmark, and RAR and SCR
underperforming.

Stability (WC-Acc and A A A). On Split-Cifar100, in terms of stability, the results
vary much more between each method, and the final performance is not necessarily
correlated with the stability of the method. For instance, the final accuracy for MIR
is 1% above the final accuracy for SCR, however, SCR has about 9% better WC-Acc
than MIR. In Figure 4.3, we illustrate the difference in stability between SCR and ER
on Split-Cifar100 with 2000 memory. In this figure, the accuracy on the previous task
drops significantly when shifting tasks in the case of ER, indicating low stability, this
is not the case for SCR. In general, we observe that the A A A is moderately correlated
to the WC-Acc, even though they are not strongly linked in theory (it is possible to
have low WC-Acc and high A A A).

Representation quality. Surprisingly, we find that the probed accuracy for most
methods is close to the one of the i.i.d. reference method (45.8% on Split-Cifar100
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and 34.3% on Split-Tinyimagenet). This suggests that the representation learned by
methods on the continual stream is not much worse than the one learned on the i.i.d.
stream. Therefore, the significant performance difference (in Acc) between incremental
learning methods and the i.i.d. reference is most likely caused by a deterioration of the
incrementally learned classifier. In the Appendix (See Tables 4.3 and 4.4), we provide
results with 500 and 8000 memory on Split-Cifar100. Even when using 500 memory,
we observe a similar conclusion, with the gap to probing augmenting only a bit (from
1% to 2%), showing that only a low amount of memory (5 per class in that case) is
efficient to get a decent representation strength. In general, we find that the probed
accuracy is not strongly linked with the stability metrics. In Table 4.2, we see that ER
has in both cases the best Probed Accuracy, while it has lower than average stability
metrics compared to the other methods.

Forgetting. In Figure 4.3, we display both the classical forgetting and the cumulative
forgetting defined in Section 4.4 [149]. We see that while the classical forgetting indi-
cates a high amount of forgetting that is increasing across the stream, the cumulative
forgetting gives a different picture, indicating that for all methods, some backward
transfer is achieved, and this remains quite constant across all tasks. Two curves
exhibit slightly distinct behavior, namely the ones of SCR and MIR. These distinctive
behaviors can also be observed in Figure 4.2. In the case of MIR, the average accuracy
is initially low, and later increases to match the one of ER-ACE, resulting in high
backward transfer. Whereas for SCR, the accuracy is initially high, but later meets the
one of other methods, resulting in neutral forgetting (no forgetting, but no backward
transfer). Classical forgetting however is not very relevant in the class-incremental
learning setting because it increases consequently to an increase in the difficulty of the
task (more and more classes to consider in the classification problem), which makes
it hard to interpret, as such, we advise against its use in class-incremental learning
(online or not online). In definitive, these forgetting numbers indicate that there is
some backward transfer happening, we believe this is mainly due to the fact that the
network is underfitted in online learning, due to the low number of training iterations,
making it easy to gain additional performance on a task when training on subsequent
tasks.

Effect of the memory batch size. As explained in Section 4.5, the memory batch size
is set to the same as the current batch size in our experiments, except for SCR, which
requires a higher one. We believe that this difference explains the good performance of
SCR in the early training regime (see Figure 4.2) and in the high memory size setting.
We perform additional experiments (See Table 4.4) where we use the same memory
batch size for ER as the one of SCR. On Split-Cifar100 with 8000 memory, changing
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Figure 4.2: Validation stream accuracy for each of the methods, compared to the one
of the i.i.d. reference method, on Split-Cifar100, using 2000 exemplars (Left), and
Split-TinyImagenet, using 4000 exemplars (Right). The accuracy is reported after
training on each mini-batch, we display mean and standard deviation across 5 seeds.

the memory batch size from 10 to 118 is sufficient to make ER match the performance
of SCR (jumping from 34.9% to 43.0% final accuracy). This confirms our belief that
this parameter is important to take into account when interpreting results.

Effect of the memory size. In Figure 4.3, we report the final performance of ER, the
i.i.d. reference method, and the GDumb baseline when using more extreme (low and
high) memory amounts on Split-Cifar100. When high amounts of memory are used,
the GDumb baseline can surpass the performance of the continual learning methods
if no special care is given to the memory batch size. This one needs to be adapted in
order to obtain the best performances with continual learning methods. More detailed
results are available in Table 4.3 and 4.4. For the low memory setting, we notice that
the final accuracy results differ more between each method than when using 2000
memory, with ER-ACE getting the best results both in terms of final accuracy and
stability. However, the probed accuracy is still close to the one of the i.i.d reference
method. When using more memory, we see that the performance of the GDumb
baselines matches the one of the i.i.d reference method. However, SCR surpasses both
of these, indicating that it’s still possible to learn more from the whole stream than
from just the memory. We suppose that this is due to its use of a bigger memory batch
size, which would be beneficial when a bigger memory size is used. To verify this, we
perform an additional experiment where we provide ER with the same memory batch
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Method Acc ↑ A A Aval ↑ WC-Accval ↑ Probed Acc ↑
i .i .d 28.3± 1.5 - - 40.0± 0.9

GDumb 8.8± 0.5 - - -
AGEM 3.2± 0.4 10.4± 0.5 3.2± 0.3 19.2± 0.7

ER 15.7± 1.2 28.6± 1.7 7.7± 0.9 38.2± 1.2

ER + LwF 19.7± 1.5 32.5± 1.9 10.6± 0.9 38.0± 1.6

MIR 15.7± 1.4 27.4± 2.4 9.3± 7.7 36.2± 1.0

ER-ACE 20.8± 0.9 32.8± 2.2 11.5± 0.5 36.8± 1.1

DER++ 15.2± 1.4 28.9± 3.0 7.9± 0.6 37.1± 1.5

RAR 14.6± 1.2 28.6± 1.5 7.9± 0.6 35.7± 0.9

SCR 13.2± 0.5 29.4± 1.9 8.5± 0.5 28.4± 0.5

Table 4.3: Last step results on Split-Cifar100 (20 Tasks) with 500 memory. We report
the average and standard deviation over 5 trials

Method Acc ↑ A A Aval ↑ WC-Accval ↑ Probed Acc ↑
i .i .d 39.0± 1.8 - - 49.3± 0.9

GDumb 39.6± 0.4 - - -
AGEM 3.1± 0.3 10.5± 0.5 3.1± 0.2 18.6± 0.8

ER 34.9± 1.8 39.1± 1.7 13.2± 0.8 48.7± 0.7

ER + LwF 36.7± 1.3 41.7± 1.8 17.2± 0.9 48.5± 0.9

MIR 31.8± 1.4 33.6± 2.6 8.4± 1.4 47.8± 0.8

ER-ACE 35.1± 1.2 40.6± 1.5 16.8± 1.1 47.0± 0.7

DER++ 36.1± 1.7 40.8± 2.0 14.6± 0.4 49.1± 0.7

RAR 36.9± 2.0 42.2± 1.3 16.1± 1.2 48.1± 1.2

SCR 43.5± 0.7 50.2± 2.1 32.6± 0.7 47.3± 0.7

ER‡ 43.0± 0.7 52.7± 2.2 30.7± 0.9 49.5± 1.4

Table 4.4: Last step results on Split-Cifar100 (20 Tasks) with 8000 memory. We report
the average and standard deviation over 5 trials

size as SCR, we see that with this modification, the performance of ER matches the
one of SCR, indicating that the performance of SCR in this setting is probably due to
the bigger memory batch size and not so much to the supervised-contrastive loss.

†Modified ER version with a memory batch size of size 118 (to match the size of the SCR one)
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Figure 4.3: Left: Forgetting (full lines), and Cumulative Forgetting (dotted lines) on
Split-Cifar100 with 2000 memory; Middle: Illustration of the difference in stability
between ER and SCR on Split-Cifar100 (20 tasks), using 2000 memory. We place
ourselves at the task shift between task 4 and 5 and display the accuracy on previous
task data (dotted lines) as well as the accuracy on current task data (full lines).; Right:
Final performance of ER, i.i.d. reference method, and GDumb baseline for 3 different
memory sizes on Split-Cifar100

4.7 Related Work
Existing surveys. Surveys on continual learning have focused on different aspects.
Parisi et al. [125] provide a survey on lifelong learning and draw parallels with how
biological systems prevent catastrophic forgetting. The survey of Lesort et al. [94]
studies continual learning focusing on robotics applications. More recent surveys have
focused on popular settings for continual learning. De Lange et al. [39] studies task-
incremental learning, and Masana et al. [111] investigates class-incremental learning.
More similar to the proposed work in this chapter, is the work of Mai et al. [108]
who propose an empirical evaluation of several online continual learning methods.
However, other than them, we here aim to compare a variety of competitive replay
methods that each use different approaches to tackle the setting of online continual
learning (as described in Figure 4.1). On top of that, we evaluate and compare the
performance of each method from different points of view, analyzing both the final
performance but also the stability (by evaluating on the validation set after each mini-
batch). We also evaluate the learned representation by probing the features with the
full dataset at the end of the training, as in [38].

Existing Libraries. This survey contributes to the implementation of multiple meth-
ods in the Avalanche Library [26]. Avalanche is an end-to-end library based on Pytorch
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with the goal of providing a codebase for fast prototyping, training, and reproducible
evaluation of continual learning algorithms. Besides this, other libraries have been
implemented with different objectives and qualities. SequeL [45] is a new library
that focuses on developing methods not only in PyTorch, but also in JAX. It provides
a simple interface for running experiments in both. However, the newness of the
library and the need to implement the methods in both languages make it difficult
to use. On the other hand, Sequoia [120] is a library that attempts to unite as many
continual learning settings as possible under a common tree. The root is the most
difficult problem to learn, and the leaves and branches are different settings. Lastly,
Continuum [49] is a library that focuses mostly on the benchmark aspects of continual
learning and provides tools to easily split the datasets and iterate on the resulting tasks.

Additional methods. In addition to the methods implemented, there are other meth-
ods proposed in recent years. In Online Bias Correction [35], the authors explain how
experience replay biases the model output towards recent observations. With this,
they propose a way to modify the classifier output and mitigate the bias. Following
the same idea of reducing the bias, Guo et al. [62] propose OCM based on mutual
information maximization. Here, the authors deal with the bias reduction caused by
cross entropy and they encourage the preservation of previous knowledge. Another
approach that relies on a buffer is Proxy-based Contrastive Replay [97]. Here, the
authors propose a way to complement a buffer loss and a contrastive loss. Using a
Visual Transformer in conjunction with a focal contrastive learning strategy, Wang et
al. [154] suggest mitigating the stability-plasticity dilemma.

4.8 Conclusions
In this study, we examined the performance of various Online Continual Learning

(OCL) methods, focusing on performance, stability, representation quality, and forget-
ting. Our analysis revealed intriguing insights. Firstly, we found that stability does
not always translate to higher accuracy, challenging the notion that a stable model
guarantees superior performance in the OCL setting. Additionally, we observed that
the quality of the representation learned by continual learning methods does not differ
strongly from the one obtained by learning on the i.i.d. stream, indicating that the
main challenge faced by continual learning methods is to learn a good classifier. We
also found that methods were prone to underfitting in the OCL setting, challenging
the common assumption that continual learning methods suffer from forgetting; we
here claim that they keep improving their performance on previous tasks as they
learn on subsequent tasks. In general, we found all compared methods to perform
very similarly to the common Experience Replay (ER) method. We also investigate
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some small implementation differences and conclude that sometimes small details
in implementations can make a method shine using the existing metrics, but that it
is often possible to obtain these same results by slightly modifying the baseline ER
hyperparameters or implementation details, highlighting the necessity to implement
these methods in a unified framework like avalanche so that they can be more fairly
compared. Finally, we found that no single OCL method proved to be universally
superior across all metrics or memory sizes, highlighting the absence of a one-fits-all
solution. Considering these findings, we identify several promising research directions
for online continual learning.

We advocate for stronger connections between normal i.i.d. online learning and
online continual learning, given their similar representation strengths. As the ER
strategy is already common to both settings and proven competitive, emphasis should
be put on tuning its hyperparameters during training, as already attempted in [168]
and [24]. Proper hyperparameter tuning in online continual learning remains an open
challenge. Additionally, we encourage further exploration of linking stability metrics
to training efficiency, as we found that poor stability does not necessarily impact final
representation strength. If no direct link exists, enforcing good stability during training
may not be essential, and ad-hoc methods like the one we use in Chapter 3 could be
sufficient to achieve desired stability.
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5 An Empirical Analysis of Forgetting in Pre-
trained Models with Incremental Low-Rank
Updates*

5.1 Introduction
Over the years, the increase in scale of deep models has been instrumental in driving
progress. It has now become inevitable for practitioners to embrace huge pretrained
models (such as Llama [151] or CLIP [132]) in the pursuit of efficient learning
solutions. However, resuming training on these large models can be very demanding
in terms of computational resources, and often necessitates the use of techniques that
alleviate the computational and memory burden when training.

Low-rank training techniques [3, 70, 96] can effectively finetune enormous pre-
trained models (up to 175 billion parameters for GPT 3.5 [20]), by only tuning a few
parameters (up to 10,000 times less) to later project them into the full parameter space
(or only a subset of parameter space). This allows practitioners to train models using
little memory. The most popular technique is Low-Rank Adaptation (LoRA) and is
extensively used to finetune large pretrained models because of its simplicity and ease
of use [70]. LoRA learns a low-rank version of the weight matrices of a given network
and sums them to the existing network parameters. The adapters learned in this way
can then be “plugged” into and “unplugged” from the pretrained model by simply
adding or subtracting the adapter weights to or from the pretrained ones. Moreover,
several adapters can be combined together [33, 74] by summing the adapter weights
together. Parameter-efficient learning methods like LoRA were initially studied and
successfully applied in the context of transfer learning, where the task is to optimize
for a single target domain.

While pretrained models demonstrate remarkable capabilities and can be adjusted
to downstream tasks in a one-step fashion, current transfer learning methods based
on LoRA have not investigated the loss (catastrophic forgetting) of the capabilities of
the pretrained model during the LoRA adaptation. In addition, transfer learning only
considers adaptation to a single target domain, whereas in many realistic applications
models should continually adapt to changing data distributions, varying domains,
temporal changes, a larger set of semantic classes, etc. The field of continual learning

*This chapter is based on an article that is under review

73



Chapter 5. An Empirical Analysis of Forgetting in Pre-trained Models with Incremental
Low-Rank Updates

investigates methods to address these situations, where the aim is to adapt to a changing
non-IID distribution while accumulating the knowledge of all domains. However,
the vast majority of continual learning literature has considered training from scratch
[39, 82, 96, 111]. Recently, starting from pretrained models is gaining some attention
in the community [60, 124, 155, 162]. Unfortunately, most existing works do not
aim to improve the performance of the pretrained model and focus on optimizing the
performance on the sequence of downstream tasks. Only a few recent works consider
continual improvement of the pretrained model [36].

We think that with the growing importance of very large pretrained models (or
foundation models) there will be a further shift towards studying parameter-efficient
continual learning algorithms. Therefore, we propose to study the consequences in
terms of forgetting and knowledge transfer of incremental LoRA updates. To study
incremental updates of LoRA to a sequence of tasks, we propose an experimental
setup in which we incrementally learn four fine-grained tasks (Cars, Flowers, Aircraft,
and Birds) starting from a model pretrained on ImageNet. Contrary to many previous
works, we do not aim only to achieve good performance on downstream tasks, but
we also aim to maintain the capacity on the pretrained foundation task (i.e. the 1,000
ImageNet classes used for pretraining in our experiments).

Our contributions are the following:

• We explore the interplay between low-rank updates of pretrained model and
continual learning, and we show that lower rank updates leads to less forgetting.

• We observe that the forgetting obtained for vision transformers (ViT) can be
interpreted as a form of contextual forgetting, where the forgotten samples cor-
respond to ImageNet classes related to the domain of the fine-grained datasets.

• We evaluate incremental LoRA updates on both Vision Transformer (ViT) and
Residual Network (ResNet) models and show that convolutional networks suffer
far more forgetting than Vision Transformers.

5.2 Related Work
Incremental learning refers to the paradigm of updating an existing model with a

continuous stream of data or tasks, while mitigating the phenomenon of catastrophic
forgetting. Traditional incremental learning methods initialize the feature extractor
in one of two ways: the Cold-Start scenario, where the feature extractor is randomly
initialized before the incremental learning steps [82,96,98,107,140], or the Warm-Start
scenario, where the feature extractor is pre-trained on half of the available dataset
before being incrementally trained on subsequent tasks [60, 129, 172–174].
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However, the exceptional performance of large foundational models, such as
Vision Transformers (ViT) [48] for vision tasks, and BERT models [42, 102, 142]
for natural language processing tasks, along with self-supervised techniques [13] for
effectively pre-training these models, has sparked an increasing interest in exploring
incremental learning with Pre-Trained architectures. Focusing on vision tasks, recent
state-of-the-art methods leverage the powerful representational capabilities of ResNet
architecture [68] and ViT models, both pre-trained on the Imagenet dataset [41], to
further enhance incremental learning outcomes.

Panos et al. [124] adapt a pre-trained ResNet for the first task, then freeze the feature
extractor and classify the classes across incremental steps using Linear Discriminant
Analysis (LDA). Wu et al. [162] propose to dynamically expand a frozen pre-trained
ResNet model with new convolutional layers, fine-tuning it on new data and fuse the
previous and current classifier for each new class using exemplars. Wang et al. [155]
propose learning to dynamically prompt a pre-trained ViT to sequentially learn tasks.
Goswami et al. [60] freeze a pre-trained ViT feature extractor after the first task and
then use the class covariance matrix and the class means obtained by the feature
extractor to perform classification on all task classes. Zhang et al. [166] fine-tune the
ViT feature extractor during training and, at the end of each task, calibrate the task
classifiers for class-incremental evaluation using Gaussian Prototypes accumulated
across all encountered tasks.

Some recent works explore the usage of low-rank training for updating a pre-trained
feature extractor in incremental learning. Hyder et al. [73] perform Continual Learning
via Low-Rank updates, where they represent the full weight matrix as a sum of rank 1
matrices each corresponding to one task. When they learn a new task, they learn a new
rank 1 matrix along with a selector vector that weights the existing matrices to better
fit the current task, this method allows them to have zero forgetting in the task aware
setting. Witsuba et al. [159] start from a pretrained model and incrementally learns
per task LoRA adapters, they further select the best LoRA adapter to be applied at
inference by performing task-inference via task-wise prototypes storage and retrieval.
Chitale et al. [33] propose to train a LoRA per task, then at the end of each task merge
the learning low-rank parameters with the frozen feature extractor and finally tune the
overall model using exemplars for class-incremental evaluation.

Given the recent impressive efficacy of pre-trained models in incremental learning,
current research is directed towards assessing how pretrained initialization influences
the phenomenon of forgetting during the incremental learning process. These studies
seek to understand the relationship between the representations learned for the pre-
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trained (upstream) classes and those for the subsequently added (downstream) classes,
as well as the extent to which pre-training methods impact overall performance. Ra-
masesh et al. [133] empirically evaluate the catastrophic forgetting on ResNet and
Transformers architecture. They show that pretrained networks are less susceptible of
forgetting and that their robustness improves with scale of both model and pre-training
dataset size. Mehta et al. [112] empirically demonstrate that pretrained initialization
helps mitigate forgetting, and this effect is associated with wider minima in the loss
landscape.

Lee et al. [92] examine the extent to which the architecture of pretrained models and
the pre-training method, whether supervised or self-supervised, influence incremental
learning algorithm performance. Their analysis reveals that an under-performing in-
cremental learning algorithm, originally designed for traditional incremental scenarios
(Warm-Start or Cold-Start), can be enhanced to compete with, or even surpass, existing
state-of-the-art solutions when evaluated with pretrained initialisation. Moreover, they
find that combining minimal regularization with exemplars is more beneficial than
stronger regularization when starting with a pretrained network. Janson et al. [75]
shows that using a Nearest-Mean-Classifier rule on top of a frozen pretrained ViT
provides competitive results with recent state-of-the-art approaches.

Galashov et al. [54] discuss the impact of pretrained foundation models in both
supervised and self-supervised settings, demonstrating simply fine-tuning the clas-
sification heads on a top of a foundation model in task-incremental setting the final
performance surpass those of models fully trained from scratch. Ostapenko et al. [121]
examine the efficacy of latent replay, a technique involving the replay of a network’s
intermediate representations across tasks. Their findings indicate that latent replay
surpasses the efficiency of experience replay, which relies on replaying exemplars. The
effectiveness of latent replay, however, hinges on the correlation between downstream
and upstream classes. Specifically, latent replay exhibits reduced transfer effective-
ness in out-of-distribution incremental scenarios, such as when transitioning from
an ImageNet upstream task to a Cars downstream task. Conversely, it demonstrates
notable transfer benefits in in-distribution domains, exemplified by the transition from
an ImageNet upstream task to a SplitCifar100 downstream task.

5.3 Low-Rank Training
Low-Rank training for neural networks is based on the idea that while the parameter
space of a network is so big, it is possible to find another parametrization of the
network so that we learn weights of lower dimension and later project it back into
the full parameter space. Li et al. [95] found that using this technique, it is possible
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to train overparametrized network from scratch by sometimes only learning a few
thousands of parameters that are then projected back to the full parameter dimension.
Aghajanyan et al. [3] later show that if we consider a pretrained model, the dimension
of the additional parameters that is required to solve a downstream task gets lower
the better the pretrain model is. Hu et al. [70] exploit this property and propose to
learn low-rank weight matrices instead of a flat parameter vector projected back to the
full parameter space. Using this technique called LoRA for Low-Rank Adaptation,
they can find solutions to downstream tasks when starting from a pretrained model by
learning matrices of rank as low as 1, drastically reducing the number of parameters to
be learnt.

LoRA [70] is a low-rank training method that has been designed initially for
large language models (LLMs). The principle of this method is quite straightforward,
in order to ensure that the difference between the finetuned model and the pretrain
model is low-rank, they parametrize this difference ∆W f i netune as the product of two
matrices B n×r and Ar×m with a small r << mi n(n,m), this product has a rank less
than or equal to r by construction. While LoRA has been initially designed to work
for 2 dimensional parameter tensors (matrices), which is the case for query key value
parameter matrix of the transformers, it can be also applied on convolution layers of
arbitrary kernel size with a small adaptation. However, since in this chapter we apply
it on convolution layers of kernel size 1x1 (third convolution layer of each ResNet
block), we can apply LoRA just the same way than on query key value matrices by
viewing the 1×1×n ×m kernel as an n ×m matrix.

W =W n×m
pr etr ai n +∆W n×m

f i netune

=W n×m
pr etr ai n +B n×r Ar×m

Existing works that apply LoRA in continual learning [159] use one LoRA adapter
per task and rehearse it at inference, [33] merge the learned LoRA and later finetune
the model using stored exemplars. Approaches that store the LoRA for later rehearsal
make the choice to sacrifice transfer between tasks in order to have zero forgetting.
Here we want to study the forgetting induced by continually learning the pretrained
model, we hence choose a natural approach which is to learn one LoRA adapter per
task that we sum to the model weights at the end of each task, without storing it
separately. We believe this option makes sense for the tasks we consider that are
fine-grained, however we could imagine more complex schemes learning different
LoRAs for different samples (for instance one LoRA per class), in order to have one
LoRA of low-rank specialized to each domain, we leave this to future works.
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5.4 Experiments

5.4.1 Experimental Setup
Datasets: We perform the continual learning experiments by learning on a sequence
of 4 fine-grained classification datasets with varied topics and dataset size. Stanford
Cars [84] is comprised of 196 categories of cars, and contain 8,144 training images and
8,041 test images. Oxford 102 Flowers dataset [119] has 102 categories of flowers with
around 1,000 training images. FGVC-Aircraft dataset [110] is comprised of a total
of 10,200 images of 102 aircraft model variants. Caltech-UCSD birds dataset [156]
contains 6033 images of 200 birds species. For all the datasets, we apply the same
transformations during training and evaluation than the ones that were applied to
Imagenet during training of the specific model. We consider two training settings
using these datasets, one of them we coin the Short Setting considers training on the
sequence of 4 tasks Cars - Flowers - Aircraft - Birds, while the other setting we coin
the Long Setting considers training on a two repetitions of this sequence, and splits
each dataset in two random parts, to create a sequence of 8 training experiences by
revisiting the previous tasks.

Models: To get the pretrained models, we use the timm [158] library and fetch
pretrained model from the HuggingFace database. In particular, and in order to pro-
vide a more complete analysis, we use two models, one ViT [47] with patch size 16
(HuggingFace model id: "timm/vit_base_patch16_224.augreg_in1k") , with a total
of 86M parameters, and one ResNet-50 [68] (HuggingFace model id: "timm/res-
net50.a1_in1k"), with 21M parameters, both pretrained on Imagenet 1k [41]. Both
model have similar performance on the Imagenet test set, with the ViT having 79.14%
accuracy and the ResNet-50 80.04% Top-1 accuracy.

Low-Rank Training: In order to perform low-rank incremental training, we setup a
new LoRA adapter for each task that we merge into the model weights at the end of
training each task by simply summing the adapter weights to the model weights. For
the ViT, we choose to apply the adapter on every attention matrix (query, key, value
weight matrix), which is a classical process. For the ResNet, it is less obvious how to
choose the parameters to adapt since adapting every convolutional layer would results
in prohibitive amount of adapted parameters. In order to provide a fair comparison
with the ViT, we choose to adapt only the last convolutional layer of each block
(1×1 convolution), which results in an amount of modifiable parameters that roughly
matches the one of the ViT attention matrices (1/4th of the total number of parameters
of the network). We then vary the rank of the LoRA which in turns varies the number of

78



5.4 Experiments

trainable parameters, we provide in 5.1 a comparison on how this number of trainable
parameters evolve linearly but with different slopes for the chosen ResNet and ViT.
We insist here that although the number of trainable parameter varies with the rank,
the number of modifiable parameters does not depend on the rank and is always fixed
once we have chosen the type of layer to modify. Additionally, we tune the parameter
alpha of the LoRA to be equal to two times the LoRA rank, we make this choice in
order to be able to work at fixed learning rate while fairly comparing results across
ranks, since fixing alpha and increasing the rank leads to smaller learning rate for
bigger ranks, which also has an effect on learning and forgetting. We choose a range
of rank of [1, 2, 3, 4, 5, 6, 7] for ResNet-50 and [1, 2, 4, 6, 8, 16, 32] for ViT. We
decided to expand the range more for ViT based on the observation that forgetting was
lower for lower ranks of LoRA in combination with ViT, whereas forgetting was quite
high for ResNet-50 even when using low-rank, and increasing the rank makes it even
worse as seen in Figure 5.2.

Optimization: We use the AdamW optimizer [81] with learning rate of 1e −3, a
batch size of 32 and a cosine learning rate scheduler with warmup that we restart
for each task, we choose the warmup steps to be always equal to 1/18 th of the total
number of finetuning steps for one task, and we roughly tune the number of epochs for
each task so that we train for a bit more epochs on tasks that are very small (in order
to get a decent number of training iterations and converging training accuracy).

Reproductibility: To perform our continual learning experiments, we use the avalanche
library [26, 103], which is an open source library available at https://github.com/
ContinualAI/avalanche. We will release the code to reproduce our experiments upon
acceptance.

5.4.2 Results
Impact of forgetting the pretrain task: To assess the impact of forgetting of the
pretrain task on further transfer capacity, we compare the results of finetuning the
pretrained model directly on each fine-grained task (i.e. Direct Transfer) versus
finetuning it continually, by taking the checkpoint at the end of learning each task to
start training on the subsequent task. In order to fairly compare it to later experiments
done with LoRA, we finetune only the query key value matrices for ViT and the
third convolutional layer of each block for ResNets. We present the results of this
experiment in Table 5.1. We see that after learning ’Cars’ and ’Flowers’ the network
only obtains a 30% performance on ’AirCraft’, whereas a direct adaptation to ’Aircarft’
would yield 58%, showing that much of the pretrained knowledge useful for airplane
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Figure 5.1: Comparison of the number of trainable parameters as a function of the
LoRA rank for both ResNet-50 and ViT (in % of the total parameters). We restrict the
comparison to the range of considered ranks.

classfiication has been lost by the two finetuning stages. In order to avoid that while
still continually learning the pretrained model, we need to avoid forgetting of the
pretrain task.

Task Continual FT Direct Transfer
Cars 83.0 83.0

Flowers 86.1 (-4.2) 90.3
AirCraft 30.0 (-28.6) 58.6

Birds 36.8 (-36.9) 73.7

Table 5.1: Comparison between the (first) accuracy obtained on downstream tasks
when performing continual finetuning on the task sequence Cars - Flowers - AirCraft -
Birds versus when performing direct transfer learning on each dataset, starting from
the pretrained ViT model.

Does the LoRA rank impact forgetting? We experiment with various ranks of the
LoRA adapter that we train and merge for each task. We then report the accuracy and
forgetting on the pretrained task (Imagenet 1k [41]) as well as on the downstream
tasks. Additionally, we apply LwF [96], a continual learning method that could
realistically be applied without access to the pretraining task data, on top of the
low-rank learning procedure, in order to confirm that the gains obtained by low-rank
learning are orthogonal to the gains obtained using existing continual learning method.
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We experiment with ranks in the range [1, 2, 4, 6, 8, 16, 32] for ViT and [1, 2, 3, 4, 5,
6, 7] for ResNet (See Discussion in Section 5.4.1).

We present the results for both continual low-rank finetuning and LwF in Figure 5.2
and Figure 5.3 respectively, and the detailed results for finetuning in Table 5.2. In
Figure 5.2 we see that the rank chosen for the adapter has a significant impact on
the forgetting of both the pretraining task and on the downstream task Cars (this
conclusion generally holds for all tasks in the sequence), this impact also seems
more important for ViT than for ResNet. We see that while learning an adapter
of higher rank, the accuracy on the downstream task is positively affected (at least
up to the maximum rank considered here), but choosing a very low-rank already
reaches very satisfying accuracy compared to training only the output head, providing
a good stability-plasticity tradeoff. In Figure 5.3, we see that when applying LwF in
combination with LoRA, we still see a big discrepancy between LoRA adapters of
different ranks, although the forgetting is still drastically reduced for all of the ranks.
These results indicate that the rank has an impact on forgetting that is orthogonal to
the one of LwF. Interestingly, by combining ViT with an adapter of rank 1 and LwF,
we even witness some slight backward transfer on Imagenet when learning on Cars
with the accuracy increasing by a small amount of 0.1%. We also see in Table 5.2
that the gains in plasticity obtained by training adapter of higher rank do not manage
to convert in higher overall average accuracy since it is counterbalanced by too high
forgetting, it results in a final average accuracy that diminishes with the rank.

Rank Average Accuracy Average Forgetting
1 69.9 9.2
4 66.8 14.3
8 68.0 13.6

16 62.2 21.0
32 55.9 28.9

Rank Average Accuracy Average Forgetting
1 52.2 23.6
3 51.2 25.5
4 52.0 24.8
5 50.3 27.8
7 47.9 30.7

Table 5.2: Final average accuracy and forgetting after learning on the Short Setting,
depending on the rank, for ViT (Left) and ResNet (Right)
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Figure 5.2: Test Accuracy on the pretrain task Imagenet1k (Left) and on the down-
stream task Cars (Right) when fine tuning on the Short Setting with multiple LoRA
ranks, using ViT network (Blue) and ResNet-50 (Green).
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Figure 5.3: Test Accuracy on the pretrain task Imagenet1k (Left) and on the down-
stream task Cars (Right) when training on the Short Setting with multiple LoRA
ranks in combination with the LwF method, using ViT network (Blue) and ResNet-50
(Green).

Interpretation of the forgetting of the pretraining task: Since the tasks that we
choose have a very specific domain and the pretrain task covers a wide variety of
domains with some categories that lie in the domain of the fine-grained tasks, we
try to interpret the forgetting of the pretraining task by looking at the most forgotten
categories of Imagenet1k. Whenever learning on a new downstream task, we report
the new errors that the model make on Imagenet. In this experiment, we exclusively
consider direct transfer from the pretrained model using a LoRA adapter, to maintain
clarity and avoid confounding variables. We present these differences in error vector
by using two methods, the first method simply considers the histogram of the most
affected categories, while the second one considers comparing the distributions of
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the semantic distances between the category name and a target word that describes
the domain of the fine-grained dataset. We chose to report the Wu-Palmer semantic
distance which is widely used in the field of Natural Language Processing [164] .

In Figure 5.4, we show the most forgotten Imagenet categories after learning on
the Cars dataset, using ViT with a LoRA adapter of rank 32, with a total forgetting of
7% on Imagenet test set. Looking at the category names, we see that the most forgotten
one is "sports cars" from Imagenet, which indeed is very related to the Cars dataset
domain. While not all categories in the histogram are related with cars, there is a good
amount of them that are, among them "grille", "tow trucks", "convertible", "minivan",
"limousine", "pickup" are all present in the top 20 forgotten categories, which provides
strong evidence that there is contextual forgetting. The same conclusion holds for
Aircrafts, where the first forgotten Imagenet category is "airliner". In Figure 5.5, we
see that while Imagenet categories are generally lying in two "modes" of similarity
with the word plane and cars, the newly forgotten categories mainly lie in the mode
that is most similar to the target word, with a small spike on words that are very similar,
which corresponds to the most forgotten categories that we observe in Figure 5.4.
Interestingly, we do not observe such contextual forgetting for ResNet-50 model (See
Figure 5.6).

We hypothesise that this contextual forgetting happens because of a bigger feature
drift for images which category is related to the downstream task at hand, which results
in bigger forgetting due to the missing head adaptation, although the network might
now be better at distinguishing these categories since it "improved" this part of the
feature space.
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Figure 5.4: 20 most forgotten categories of Imagenet1k after learning on Stanford
Cars (Left) and Aircraft (Right), using direct transfer from the pretrained ViT model
with a LoRA adapter of rank 32
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Figure 5.5: Wu-Palmer similarity between the forgotten category names an the word
"Car" after learning on Cars dataset (Left) and with the word "plane" after learning
on Aircraft dataset (Right). Comparison of the similarity distribution of all Imagenet
categories versus the forgotten categories (weighted by the amount of test images
forgotten in this category), when using direct transfer from the pretrained ViT model
with a LoRA adapter of rank 32

Although we observed contextual forgetting quite clearly for the ViT model, we
did not find evidence of it in the ResNet-50 model. In Figure 5.6, we perform the
same analysis as we did in Figure 5.4 and 5.5 but for ResNet-50 instead of ViT. In
order to have the most chances to observe this contextual forgetting, we choose the
finetuning run that had the lowest forgetting using a LoRA of rank 1, which results in
60% accuracy on Imagenet after learning on Cars. However, even when doing so, we
find no evidence of contextual forgetting for this network. Indeed, for that network,
the most forgotten categories do not seem very related to the downstream task that has
been trained, and the distribution of new errors almost matches the distribution of all
Imagenet categories which shows no bias towards forgetting of classes semantically
related to the downstream task domain.

84



5.4 Experiments

fla
tw

or
m 

ha
nd

ke
rc

hie
f 

dis
hr

ag
 

log
ge

rh
ea

d 

sp
ind

le

he
n-o

f-t
he

-w
oo

ds
 

dr
ag

on
fly

 

Amer
ica

n S
taf

for
ds

hir
e t

er
rie

r 

Gre
at 

Py
re

ne
es

Amer
ica

n l
ob

ste
r 

Staf
for

ds
hir

e b
ull

ter
rie

r 

bla
ck

-fo
ote

d f
er

re
t 

po
wer

 dr
ill

gr
ea

t w
hit

e s
ha

rk
 

wolf
 sp

ide
r 

cr
ay

fis
h 

fur
 co

at

mini
sk

irt
 

bo
ok

 ja
ck

et 

ice
 lo

lly
 

0

10

20

30

Top 20 Class Counts

0.0 0.2 0.4 0.6 0.8 1.0
Similarity to word car

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

New error Categories
All Imagenet Categories

Figure 5.6: (Left) 20 most forgotten classes of Imagenet1k after learning on Stanford
Cars, (Right) Wu-Palmer similarity between the forgotten category names an the word
"Car". Comparison of the similarity distribution of all Imagenet categories versus the
forgotten categories (weighted by the amount of test images forgotten in this category),
when using direct transfer from the pretrained ResNet-50 model with a LoRA adapter
of rank 1

Can we improve the forward transfer capabilities of the base model?: In order to
answer this question, we use the Long Setting described in the Dataset section, which
revisits each fine-grained task one more time, but can only learn with half of the data
every time. In order to see if forward transfer is possible we are interested in looking
at the accuracy reached the second time the task is encountered and compare it to the
accuracy reached when the task is encountered the first time. If we can reach a better
accuracy when encountering the second part of the dataset, it means that forward
transfer is effective.

In Figure 5.7, we show the results on the Long Setting. Curiously in that case, we
get more occurrences of backward transfer on Imagenet1k, where the accuracy initially
goes down but goes back up at some point in the stream. We also notice that there is
knowledge transfer between both half of the downstream task dataset both for ViTs
and ResNet. For instance for the Aircraft task, the first accuracy sets up at around 45%
for ViT and 30% for ResNet, and jumps to around 52% for ViT and 45% for ResNet
when the task is encountered for the second time. This hints at the fact that we actually
managed to improve the forward transfer capabilities of the model by training on the
first half of the dataset so that we can reach better accuracy on the second half, which
is an encouraging step regarding the possibility to continually improve these models.
We also see in Figure 5.8 that the final average accuracy over all tasks is not affected
by the Long Setting for ViTs trained with very low-rank adapters, and even improved
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for ViTs trained with adapters of higher rank. In comparison, the accuracy for ResNet
is overall negatively affected (around 3% drop in average accuracy between the two
settings).
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Figure 5.7: Test Accuracy on the pretrain task Imagenet1k (Left) and on the down-
stream task Aircraft (Right) when fine tuning on the Long Setting with multiple LoRA
ranks, using ViT network (Blue) and ResNet-50 (Green).
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Figure 5.8: Average test accuracy across all seen tasks on the Short Setting (Left) and
on the Long Setting (Right) when fine tuning with multiple LoRA ranks, using ViT
network (Blue) and ResNet-50 (Green)

5.5 Conclusion
In this chapter we explored the possibility of continually training large pretrained
models by finetuning them on small, fine-grained downstream tasks using low-rank
adapters that we merge at the end of each task. While doing so, we monitor the
performance of the pretraining task in order to determine how much the learning of
downstream tasks affects it. We make a few of interesting observations.
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Firstly, we see that varying the rank of the low-rank adapter has an important
impact on forgetting of both the pretrain task and the downstream tasks, and that in
general forgetting diminishes when the rank of the adapter is low. These gains in
stability are still present when combined with the existing continual learning method
LwF, which is a method that can be applied without access to the pretrain task dataset.

Secondly, we observe that when finetuned on fine-grained downstream tasks with a
specific domain, ViTs exhibit contextual forgetting in which the pretrain task categories
that are forgotten are semantically related to the downstream tasks on which it has
been finetuned.

Lastly, we observed many differences in the application of LoRA to ViTs and
ResNets. In particular, we do not observe contextual forgetting in ResNets, but we do
observe a drop in performance for ResNet training in the Long Setting whereas ViT
conserves similar accuracies to the Short Setting. In general, we also find ResNet to
suffer more from forgetting in the context of low-rank learning (while it suffers less
in case of full finetuning). This suggests that transformer-like architectures are more
adept at accumulating knowledge through incremental low-rank updates.

Overall, we believe that using per-task low-rank updates in order to incrementally
improve pretrained models is a promising direction and we hope that future research
can exploit our analysis to further explore it.
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6 Conclusions and Future Work

6.1 Conclusions
In this thesis, we analyzed various continual learning settings ranging from offline
learning from scratch, to online learning from scratch, to offline learning from a big
pretrained model. Every time, we aimed to understand the reasons that lead to a
performance gap when comparing continual learning to learning from scratch on the
concatenation of the training data coming from the continual stream.

In Chapter 2, we made it clear how the difficulty to learn cross-task features in
the class-incremental setting contributes to the performance gap. We also put this in
relation to the commonly used forgetting metric, and show that this metric does not
correctly capture the challenges of class-incremental learning. To remediate to that,
we propose a new metric coined “cumulative forgetting” that takes into account the
increasing difficulty of the class-incremental task.

In Chapter 3, we investigate the stability gap and question its potential impact on
the optimization process. Using a temporal ensembling method, we show considerable
progress on metrics that were designed to measure the stability gap, without influencing
the training process. We also show that in the case of online learning, the use of
temporal ensembling can drastically improve the final performance and address the
task-recency bias.

In Chapter 4, we take a deeper look into existing online continual learning meth-
ods and compare them in a fair way using the widely used continual learning open
source library Avalanche. Using an extensive array of metrics including stability and
representation probing metrics and comparing the continual learning methods to naive
training done on the i.i.d stream, we uncover that they both lead to representations of
similar strength. We see that the main problem faced by online methods is the one of
continually adapting the classifier, and encourage future works to build more links
between online learning and continual online learning.

In Chapter 5, we investigate a different problem which is continual learning of
strong pretrained, or “foundation” models. In that context, we are interested in
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evaluating the impact of the rank when updating the model using low-rank updates,
since this is a common technique used to fine-tune large pretrained models. We
discover that the rank used for training indeed has a strong impact on forgetting, with
lower rank inducing lower forgetting. Through this analysis, we also observe a curious
behaviour in Vision Transformer models that we name “contextual forgetting”, where
the forgetting caused by fine-tuning on fine-grained datasets can be interpreted in
terms of new errors on the pretrain task, since we observe that new errors belong to
categories that are semantically related to the domain of the fine-tuning task.

6.2 Future Directions
The observations from Chapter 2 that the learning of cross-task features is an important
cause of the performance gap encourages future research to focus on the learning of
more general features that would not suffer from that problem. Although learning
unsupervised features might initially lead to a performance drop because these features
are not specific enough for the discriminative task, they might be better suited for
continual learning and outperform supervised learning approach when put to the
appropriate scale by using different benchmarks with more training data in each task.

The observations from Chapter 3 make us realize that the stability gap can be
artificially solved by using some ensembling techniques at evaluation time. Knowing
that, it would be very interesting to discover whether the stability gap has a real lasting
impact on the training trajectory and the resulting final performance, in that case it
would be necessary for further methods to fill this gap also at training time.

The observations from Chapter 4 encourage stronger ties between online continual
learning and classical online learning, since we notice that the representations obtained
on the i.i.d stream are of similar strength than the ones obtained on the continual
stream, and under-fitting seems to be the bottleneck problem in that setting.

In Chapter 5, we see that low-rank training methods are not only a good tool for
classical deep learning but could also have benefits in continual learning, hence they
could be used as a component of newly developed methods that aim to continually
learn pretrained models. We also make the interesting observation that large pretrained
visual transformers exhibit contextual forgetting, this again could be exploited to
design methods that try to counter specific instances of forgetting, for instance, we
could think of a contextual replay method that only replays instances that correspond
to a given context instead of instances from all previous tasks.
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