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Abstract

This PhD thesis addresses two current problems that belong to the �elds of classical

and quantum information theory. These are the repair problem in distributed and cloud

storage systems and the construction of good quantum error-correcting codes. We mainly

use tools coming from algebra and algebraic geometry.

The work is divided in four parts. The �rst part contains some preliminaries on

classical (Chapter 1) and quantum (Chapter 2) error-correcting codes. Suitable classical

error-correcting codes, particularly evaluation codes, are the main instrument to give a

solution to the problems we address.

The second part is devoted to construct codes dealing the repair problem in the

setting where simultaneous multiple device failures may happen. These codes are called

(r, δ)-locally recoverable codes. Chapter 3 shows interesting advances by considering

monomial-Cartesian codes as (r, δ)-locally recoverable codes. These codes come with a

natural bound for their minimum distance and we determine those giving rise to (r, δ)-

optimal locally recoverable codes for that minimum distance, which are in fact (r, δ)-

optimal. We prove that a large subfamily of monomial-Cartesian codes admits sub�eld-

subcodes with the same parameters of certain (r, δ)-optimal monomial-Cartesian codes

but over smaller supporting �elds. This fact allows us to determine in�nitely many new

(r, δ)-optimal locally recoverable codes.

Our constructions of new and good quantum-error correcting codes are given in the

third part of this PhD thesis. Chapter 4 shows how to construct new stabilizer quantum

error-correcting codes from generalized (or twisted) monomial-Cartesian codes. Our

construction uses an explicitly de�ned twist vector, and we present formulae for the

minimum distance and dimension. Generalized monomial-Cartesian codes arise from

polynomials in m variables. When m = 1 our codes are quantum maximum distance

separable, and when m = 2 and our lower bound for the minimum distance is 3, the

obtained codes are at least Hermitian almost maximum distance separable. Continuing

with the casem = 2 we prove that, for an in�nite family of parameters, our codes beat the

quantum Gilbert-Varshamov bound. Our construction gives rise to many codes whose

parameters improve those appearing in the literature.

Quantum error-correcting codes with good parameters can also be constructed by

evaluating polynomials at the roots of the trace polynomial. In Chapter 5, we propose

to evaluate polynomials at the roots of what we call trace-depending polynomials. They

are given by a nonzero constant plus the trace of a polynomial. We show that this
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x Abstract

procedure gives rise to stabilizer quantum error-correcting codes with a new wide range

of lengths and with excellent parameters. Namely, we are able to provide new binary

records according to Markus Grassl tables and non-binary codes improving the ones

available in the literature.

Some ideas on future research can be found in the brief fourth part which �nishes

this thesis.



Resumen

Esta tesis doctoral aborda dos problemas actuales que pertenecen a los campos de

la teoría de la información clásica y cuántica. Estos son el problema de recuperación en

sistemas de almacenamiento distribuido y en la nube y la construcción de buenos códigos

cuánticos correctores de errores. Principalmente usamos herramientas provenientes del

álgebra y la geometría algebraica.

El trabajo se divide en cuatro partes. La primera parte contiene algunos preliminares

sobre los códigos clásicos (Capítulo 1) y cuánticos (Capítulo 2) correctores de errores.

Ciertos códigos clásicos correctores de errores, en particular códigos de evaluación, son

el principal instrumento para dar solución a los problemas que abordamos.

La segunda parte se dedica a construir códigos diseñados para tratar el problema

de recuperación bajo la situación en la que se puedan producir fallos en varios nodos

simultáneamente. Estos códigos se denominan códigos (r, δ)-localmente recuperables. El

Capítulo 3 muestra avances interesantes considerando los códigos Cartesiano-monomiales

como códigos (r, δ)-localmente recuperables. Estos códigos poseen una cota natural pa-

ra su distancia mínima que nos permite determinar aquellos que dan lugar a códigos

(r, δ)-óptimos localmente recuperables para esa distancia mínima, que de hecho son

(r, δ)-óptimos. Probamos que una amplia subfamilia de códigos Cartesiano-monomiales

admite subcódigos-subcuerpo con los mismos parámetros que ciertos códigos Cartesiano-

monomiales (r, δ)-óptimos pero sobre cuerpos más pequeños. Este hecho nos permite

determinar un número in�nito de nuevos códigos (r, δ)-óptimos localmente recuperables.

Nuestras construcciones de nuevos y buenos códigos cuánticos correctores de errores

se presentan en la tercera parte de esta tesis doctoral. El Capítulo 4 muestra cómo cons-

truir nuevos códigos cuánticos estabilizadores correctores de errores a partir de códigos

Cartesiano-monomiales generalizados (o twisteados). Nuestra construcción usa un vector

de twisteo de�nido explícitamente, y presentamos fórmulas para la distancia mínima y la

dimensión. Los códigos Cartesiano-monomiales generalizados surgen a partir de polino-

mios en m variables. Cuando m = 1 nuestros códigos son cuánticos de máxima distancia

de separación, y cuando m = 2 y nuestra cota inferior para la distancia mínima es 3,

los códigos obtenidos son al menos Hermitianos de casi máxima distancia de separación.

Continuando con el caso m = 2 probamos que, para una familia in�nita de parámetros,

nuestros códigos baten la cota Gilbert-Varshamov cuántica. Nuestra construcción da

lugar a muchos códigos cuyos parámetros mejoran los existentes en la literatura.

También se pueden construir códigos cuánticos correctores de errores con buenos
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xii Resumen

parámetros evaluando polinomios en las raíces del polinomio traza. En el Capítulo 5,

proponemos evaluar polinomios en las raíces de lo que llamamos polinomios dependien-

tes de la traza. Estos vienen dados por una constante no nula más el polinomio traza

cuyo argumento es otro polinomio. Demostramos que este procedimiento da lugar a có-

digos cuánticos estabilizadores correctores de errores con un nuevo rango de longitudes

y con parámetros excelentes. En efecto, somos capaces de proporcionar nuevos récords

binarios con respecto a las tablas de Markus Grassl y códigos no binarios que mejoran

los existentes en la literatura.

Algunas ideas de trabajo futuro se pueden encontrar en la breve cuarta parte conclu-

yendo esta memoria.
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Introduction

In this thesis we deal with two problems that have gained importance in the last years

and are quite prevalent nowadays: the repair problem in distributed and cloud storage

systems and the search of quantum error-correcting codes with good parameters.

They are framed within information theory, a scienti�c area shared between mathe-

matics and computer science. This discipline was born in 1948 with the work of C. E.

Shannon, when for the �rst time the information was treated as a mathematical object

by considering digital information. Since then, this theory, its techniques and their e�-

ciency have experienced an exponential growth. These advances together with those in

telecommunications are, nowadays, crucial for the industrial and �nancial sectors.

Information theory has di�erent branches, one of them to which our research belongs

is the theory of error-correcting codes. It arises from the need of avoiding the corruption

of the transmitted information. Others branches intend to use the codes for other appli-

cations, such as data compression, cryptography and networking. All of them belong to

coding theory, which mainly uses algebraic techniques involving mathematical areas as

Galois theory, group theory or polynomial algebra.

Companies such as Google, Meta or Microsoft manage systems where digital data

are stored in several nodes. Due to the huge amount of stored information, the problem

of loss of data due to node failures has acquired a lot of signi�cance. A reliable storage

is required, in such way that information from any (failed) node can be recovered from

that contained in other few nodes. The repair problem mentioned at the beginning of

this introduction looks for a solution. Despite the fact that error-correcting codes are

originally designed to make computing devices be resilient against errors, some of them,

named locally recoverable (or repairable) codes (LRCs), can also be used for this end,

protecting stored data using their potential of detection and recovery from errors.

The importance of quantum computing is beyond doubt. Shor's polynomial time al-

gorithms for prime factorization and discrete logarithms on quantum computers [114, 113]

are an illustrating example, because they give a solution to hitherto intractable prob-

lems. Quantum computers are governed by the rules of quantum mechanics, since they

use subatomic particles to hold memory. Important obstacles for their reliability are the

loss of coherence and the fact that they have higher error rates than the classical com-

puters. These obstacles can be treated with quantum error-correcting codes [112, 119].

Thus, quantum error-correction is a key tool in quantum computing, which works despite

quantum information cannot be cloned [34, 128]. This explains why many researchers

1



2 Introduction

are looking for good quantum error-correcting codes (QECCs). Note that researchers and

companies are actively engaged in constructing quantum computers with many qubits

[26, 18].

Classical error-correcting codes and QECCs are very related, in fact, a certain type

of QECCs can be constructed from classical ones. Those we consider are linear codes

over �nite �elds FQ (of cardinality a prime power Q). Linear codes are simply FQ-vector

subspaces of Fn
Q. The parameters of a linear code are usually expressed as [n, k, d]Q,

where n is the length, k the dimension and d the minimum distance. The cardinality Q

of the �eld FQ refers to the number of digits used to represent information, the dimension

is related to the information that can be encoded; and the minimum distance measures

the capability to detect and correct errors.

Parameters of a linear code are constrainted by the Singleton bound: k + d ≤ n + 1,

and codes reaching equality are called maximum distance separable (MDS ) codes. It

establishes a limit on the parameters independently of Q, and MDS codes are desirable

in the sense that they achieve the best relation on them. However, the length of an MDS

code seems to be bounded above by Q+1 (or Q+2 in some exceptional case) according to

the MDS conjecture, posed by Segre in 1955 and only proved in some cases. We state it

in Conjecture 1.2.12. Notice that with a high value of k we can encode more information,

and k ≤ n, so it could be desirable to have long codes. Taking into account that a big Q

takes us to a bigger cost on the computations, in many occasions it is also interesting to

construct long codes over small �elds even though they are not MDS.

We are able to do that in two ways. One is by considering sub�eld-subcodes of long

codes over big �elds. Given a code C ⊆ Fn
Q and a sub�eld FQ′ of FQ, the code C

′ = C ∩Fn
Q′

is named the sub�eld-subcode of C over FQ′ . This procedure turns to be a key tool to

construct good codes.

The other way we mentioned comes from the use of evaluation codes. They are linear

codes of the form CPV = evP (V ) ⊆ F
n
Q de�ned as the image of a linear map

evP ∶ V → Fn
Q, evP (f) = (f(α1), . . . , f(αn)),

called evaluation map, where P = {α1, . . . , αn} is a set of n distinct points of some set

X and V = {f ∶ X → FQ} is a vector space of functions from X to the �nite �eld FQ.

Evaluation codes with a big set P and smallQ provide long codes over small �elds. Notice

that both ways described in the last two paragraphs can also be applied in combination.

Monomial-Cartesian codes (MCCs) are a class of evaluation codes which constitutes

our main tool in Chapters 3 and 4 of this work. Chapter 5 is also supported on a di�erent

class of evaluation codes.

MCCs were �rst introduced in [54] and, later in [93], they were named MCCs. In

[93] the authors only use algebraic tools (see also [95]) but we prefer a more geometrical

de�nition where we regard these codes as a�ne variety codes. A�ne variety codes were

introduced by Fitzgerald and Lax in [40] by evaluating elements in FQ[X1, . . . ,Xm]/I,

where I is an ideal of FQ[X1, . . . ,Xm], the ring of polynomials in m variables over FQ.
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Then, in De�nition 1.3.3 we introduce MCCs as evaluation codes obtained as the image

of maps

evP ∶V∆ ⊂
FQ[X1, . . . ,Xm]ÒI → Fn

Q, evP (f) = (f(α1), . . . , f(αn)) ,

where m ≥ 1 is a positive integer, P = P1 × ⋅ ⋅ ⋅ × Pm = {α1, . . . ,αn} a Cartesian product

of sets Pj ⊆ FQ, 1 ≤ j ≤m, I the vanishing ideal at P of FQ[X1, . . . ,Xm] and

V∆ = ⟨X
e1
1 ⋯X

em
m ∣ (e1, . . . , em) ∈∆⟩FQ

the FQ-linear space generated by the classes of monomials with exponents in some subset

∆ of tuples of exponents of monomials reduced modulo I.

Many evaluation codes evaluate univariate polynomials in some subset of FQ, for

example Reed-Solomon codes, which requires a big �eld for having long codes. MCCs

allow us to obtain codes as long as desired without increasing the cardinality Q of the

�eld FQ, but only by increasing the number m of variables. MCCs have been considered

for di�erent applications, such as quantum codes, LRCs with availability and polar codes

[93, 22]. Moreover the above evaluation map is also used in [25] to de�ne codes with

variable locality and availability.

The family of MCCs extends that of J-a�ne variety codes, previously introduced in

[49]. Although the authors used that denomination, one must not confuse these codes

with those satisfying the more general de�nition of a�ne variety code. J-a�ne variety

codes are MCCs where the evaluation set P is a Cartesian product of multiplicative

subgroups of FQ to which we could also add the element 0 ∈ FQ. The notation J refers

to a subset J ⊆ {1, . . . ,m} used to detect the variables where 0 ∈ FQ is not evaluated.

That is, denoting by Ut ⊆ FQ the set of t-th roots of unity for some t ∣ Q − 1, Pj = Unj ,

for some nj ∣ Q − 1, when j ∈ J , and Pj = Unj−1 ∪ {0}, for some nj − 1 ∣ Q − 1, otherwise.

J-a�ne variety codes can be thought as a generalization of cyclic codes to several vari-

ables. The possibility of introducing 0 increases the range of lengths, and the mentioned

multiplicative structure eases the control of these codes. We will consider J-a�ne variety

codes when applying techniques of sub�eld-subcodes since their structure is useful for

that purpose.

The contents in this PhD thesis are distributed in six chapters which are gathered

in four parts. Preliminaries constitute Part I, and are divided in two chapters, devoted

to classical (Chapter 1) and quantum (Chapter 2) error-correcting codes. Because of

the fact that an important family of QECCs can be constructed from classical codes,

Chapter 1 contains most of the preliminar knowledge we need. In particular, it introduces

evaluation codes, MCCs, LRCs and sub�eld-subcodes. Chapter 2 recalls the rules of

quantum mechanics and the di�erences between quantum and classical codes. Parts II

and III contain new constructions of LRCs (Chapter 3) and QECCs (Chapters 4 and 5),

respectively. Finally we devote a last part (Part IV) to explain some ideas for future

work.
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The contents of the following papers (carried out with my advisors, B. Barbero-

Lucas, G. McGuire and D. Ruano) are included, respectively, in Chapters 3 to 5 of this

thesis. The notation has been adapted in order to facilitate understanding of the text,

for example to homogenize it across di�erent chapters. We have only added to these

chapters Remark 3.2.4 and its proof in Chapter 3 and Example 4.2.8 in Chapter 4 for

completeness.

[45] C. Galindo, F. Hernando, and H. Martín-Cruz. Optimal (r, δ)-LRCs from

monomial-Cartesian codes and their sub�eld-subcodes. Des. Codes Cryptogr.,

2024. DOI 10.1007/s10623-024-01403-z.

[11] B. Barbero-Lucas, F. Hernando, H. Martín-Cruz, and G. McGuire. MDS, Her-

mitian almost MDS, and Gilbert�Varshamov quantum codes from generalized

monomial-Cartesian codes. Quantum Inf. Process., 23(86), 2024.

[46] C. Galindo, F. Hernando, H. Martín-Cruz, and D. Ruano. Stabilizer quantum codes

de�ned by trace-depending polynomials. Finite Fields Appl., 87:102138, 2023.

Next, we explain the context and the advances we have obtained with respect to the

two problems addressed in this PhD thesis.

Locally recoverable codes were introduced in [55]. Speci�cally, an error-correcting

code C is named an LRC with locality r whenever any coordinate ci of any element

c = (c1, . . . , cn) in C can be recovered by accessing at most r other coordinates, whose

positions constitute the so-called recovery set. The literature contains a good number of

papers on this class of codes, some of them are [133, 86, 99, 92, 72, 87, 110]. A variation

of Reed-Solomon codes was introduced in [122] for recovering purposes. In [13] these

codes were extended to LRCs over algebraic curves. Among the di�erent classes of codes

considered as good candidates for local recovering, cyclic codes and sub�eld-subcodes

of cyclic codes play an important role, this is because the cyclic shifts of a recovery set

again provide recovery sets [29, 56, 68, 123]. In [100] the author introduces a model of

locally recoverable code that also includes local error detection, increasing the security

of the recovery system.

There is a Singleton-like bound for LRCs with locality r [55]. Denoting [n, k, d] the

parameters of an LRC, this inequality is k + d + ⌈kr ⌉ ≤ n + 2. Codes attaining this bound

are named optimal r-LRCs and interesting constructions of this class of codes can be

found in [122] and [124] (see also [12, 13, 102, 103, 110]). When considering codes over

the �nite �eld FQ, optimal r-LRCs can be obtained for all lengths n ≤ Q [130] and a

challenging question is to study how long these codes can be [64].

The fact that simultaneous multiple device failures may happen leads us to the con-

cept of LRC with locality (r, δ) (or (r, δ)-LRC), with r and δ ≥ 2 positive integers,

meaning that any coordinate can be recovered from at most other r + δ − 2 coordinates

but allowing that δ−2 of them can also fail. This class of codes were introduced in [106],

https://doi.org/10.1007/s10623-024-01403-z
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see De�nition 1.4.4, and they also admit a Singleton-like bound [106]:

k + d + (⌈
k

r
⌉ − 1)(δ − 1) ≤ n + 1.

Codes attaining this bound are named optimal (r, δ)-LRCs. In this work and in this

context, we call them simply optimal codes.

Optimal codes have been studied in [29, 81, 92, 121, 72, 27, 36, 108], mainly coming

from cyclic and constacyclic codes. A somewhat di�erent way for obtaining LRCs with

locality (r, δ) was started in [47], where the supporting codes are J-a�ne variety codes.

We are interested in optimal codes and the recent literature presents a number of results

giving parameters of codes of this type [29, 121, 27, 129, 28, 36, 131, 132, 31, 90, 79].

The length of most of these codes is a multiple of r + δ − 1 ≤ Q and, in this case, and for

unbounded length and small size �elds, their distances have restrictions being at most

3δ. Larger distances can be obtained when Q2 +Q is a bound for the length. One must

use di�erent constructions to get these optimal codes, and a large size of the supporting

�eld seems to make easier to �nd optimal codes [117].

The goal of Chapter 3 in this PhD thesis is to obtain many new optimal LRCs coming

from MCCs. As introduced above, they are vector subspaces generated by evaluating

monomials in several variables, ⟨evP (X
e1
1 ⋯X

em
m ) ∣ (e1, . . . , em) ∈∆⟩, and the set ∆ of

exponents of their generators determines the dimension and a natural bound d0 for the

minimum distance (see Proposition 1.3.7 and Corollary 1.3.10). This bound is deduced of

the so-called footprint bound [52, 51] which can be proved with techniques of the Gröbner

basis theory [32].

The bound d0 depends on the elements in ∆ and we represent ∆ in a grid because

it helps us to compute d0. The reader can see an example of this representation (in the

bivariate case �m = 2�) in Figure 1.5. These representations are crucial in our searching

for optimal codes. Codes which are optimal when using the bound d0 for the minimum

distance are named d0-optimal codes. These codes are those attaining equality in both

inequalities below:

k + d0 + (⌈
k

r
⌉ − 1) (δ − 1) ≤ k + d + (⌈

k

r
⌉ − 1) (δ − 1) ≤ n + 1.

In our work, we introduce a recovery procedure based on interpolation which makes

easy to obtain the values r and δ of some MCCs regarded as LRCs (Proposition 3.1.1).

Supported on these facts, we provide a large family of optimal MCCs. Subsection 3.2.1

of this thesis studies bivariate codes and Subsection 3.2.2 multivariate (m ≥ 3) codes.

In fact, codes given in Propositions 3.2.1, 3.2.2 and 3.2.3, 3.2.13 and 3.2.14 give the

d0-optimal LRCs one can get with this type of codes. We remark that the lengths n of

these optimal (r, δ)-LRCs are unbounded and divisible by r + δ − 1 ≤ Q.

The above �ve propositions determine all the parameters of the d0-optimal LRCs

given by MCCs, see Remarks 3.2.4 and 3.2.15. These parameters are grouped in Corol-

lary 3.2.12 for the bivariate case and in Corollary 3.2.17 for the multivariate case. Thus,
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one gets a large family of optimal LRCs that can be constructed by a unique and simple

procedure. This family provides, on the one hand, the parameters of those LRCs over

FQ given in [28] whose lengths are of the form N(r + δ − 1) where N can be written as

a product of integers less than or equal to Q and, on the other hand, the parameters

of those LRCs in [90] with length less than or equal to Q2 +Q. In addition, MCCs are

related with and include the family of codes introduced in [3] whose evaluation map is the

same as MCCs but their evaluation sets V∆ are only a subset of ours. This makes that

the sets ∆ in [3] have speci�c shapes while ours can have arbitrary shapes and therefore

we obtain many more optimal (r, δ)-LRCs (see Remark 3.2.19 for details).

The above codes do not give new parameters but sub�eld-subcodes of many subfam-

ilies of them do give. Thus, providing new families of optimal LRCs is our main goal

in this chapter. Indeed, in Section 3.3 we prove that, considering sub�eld-subcodes of

suitable J-a�ne variety codes over sub�elds FQ′ of FQ, we get LRCs over FQ′ with the

same parameters of certain MCCs over FQ considered in Section 3.2, being then optimal.

That way we obtain optimal LRCs over smaller supporting �elds which behave as MCCs

and are new because there is no code in the literature with the same parameters and

locality. We have seen that our codes are new by comparing with the codes given in the

references [29, 81, 92, 121, 72, 27, 129, 28, 36, 131, 132, 108, 31, 90, 79], which group

the known optimal (r, δ)-LRCs whose lengths n are divisible by r + δ − 1. Moreover, our

codes are Q′-ary such that r + δ − 1 equals either Q′ + 1 or Q′ + 2 and their length is a

multiple of some of these values, so r + δ − 1 > Q′.

Our results are quite technical, and at the beginning of Section 3.3, before Subsection

3.3.1, a more detailed explanation of these facts is given. Our choice of the above

mentioned suitable J-a�ne variety codes is supported on the ideas exposed in such an

explanation. Propositions 3.3.4 and 3.3.6 for the bivariate case, and Propositions 3.3.11

and 3.3.12 for the multivariate case explain how to construct new optimal (r, δ)-LRCs

following our strategy . We give two results in each case because we construct two families

of codes, the �rst one is for codes over any �eld and the second one is for characteristic

two codes only. Lemmas 3.3.3 and 3.3.5 are important results in order to get the explicit

values of r and δ from our recovery procedure (Proposition 3.1.1).

In sum, the main results of Chapter 3 are Theorems 3.3.9, 3.3.10, 3.3.14 and 3.3.15,

that we state below as Theorems A, B, C and D, respectively. Theorem 3.3.9 (respec-

tively, 3.3.14) gives parameters of new optimal LRCs over any �eld coming from the

bivariate (respectively, multivariate) case. Theorems 3.3.10 and 3.3.15 do their own but

only for characteristic two �elds. Remarks 3.3.7 and 3.3.13 justify the novelty of our

codes. Finally, in Examples 3.3.8 and Tables 3.1 and 3.2, one can �nd some numerical

examples of new optimal LRCs over small �elds.

Theorem A. Let Fpl be a �nite �eld, p being a prime number and l a positive integer.

Consider another positive integer h such that h divides l, ph ≥ 4 if p = 2 (ph ≥ 5,

otherwise) and assume ph+1 ∣ pl−1. Consider also nonnegative integers z and t satisfying

0 ≤ t < z ≤ ⌊p
h

2 ⌋ − 1, 2t ≥max{0,4z − ph − 1}. Regard Fph as a sub�eld of Fpl .
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Then, there exists an optimal (r, δ)-LRC over Fph with the following parameters

depending on two integer variables n′ and a:

[n, k, d]ph = [(p
h + 1)n′, (n′ − 1)(2z + 1) + 2a + 1, ph + 1 − 2a]

ph

and

(r, δ) = (2z + 1, ph − 2z + 1),

whenever some of the following conditions hold:

(1) n′ ∣ pl − 1 and a = z.

(2) n′ − 1 ∣ pl − 1 and a = z.

(3) n′ − 1 ∣ pl − 1, a = t and, if p is odd, either gcd(n′, ph) ≠ 1 or gcd(n′, ph + 1) ≠ 1.

Assume now that p = 2 and consider a nonnegative integer u and, if u ≥ 1, a nonneg-

ative integer v, satisfying 0 ≤ u ≤ ph

2 − 2, 0 ≤ v < u and 2v + 1 ≥max{0,4u + 1 − ph}.

Then, there exists an optimal (r, δ)-LRC over Fph with the following parameters

depending on two integer variables n′ and a:

[n, k, d]ph = [(p
h + 1)n′, (n′ − 1)(2u + 2) + 2a + 2, ph − 2a]

ph

and

(r, δ) = (2u + 2, ph − 2u),

whenever some of the following conditions hold:

(1) n′ ∣ pl − 1 and a = u.

(2) n′ − 1 ∣ pl − 1 and a = u.

(3) n′ − 1 ∣ pl − 1 and a = v.

Theorem B. Let F2l be a �nite �eld, l ≥ 4 being an even positive integer and h = l
2 .

Consider also a positive integer z satisfying 2 ≤ z ≤ 3, 2h−2z+1 ≥max{0,2h−6}. Regard

F2h as a sub�eld of F2l .

Then, there exists an optimal (r, δ)-LRC over F2h with the following parameters

depending on the integer variables n′, a, b and c:

[n, k, d]2h = [(2
h + 2)n′, a(n′ − 1) + b,2h + 3 − b]

2h

and

(r, δ) = (a, c),

whenever some of the following conditions hold:

(1) n′ ∣ 2l − 1 and (a, b, c) = (3,3,2h).

(2) n′ − 1 ∣ 2l − 1 and (a, b, c) = (3,3,2h).
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(3) n′ ∣ 2l − 1 and (a, b, c) = (2h − 1,2h − 1,4).

(4) n′ − 1 ∣ 2l − 1 and (a, b, c) = (2h − 1,2h − 1,4).

(5) n′ − 1 ∣ 2l − 1 and (a, b, c) = (2h − 1,2h − 2z + 2,4).

Finally, consider n′ and j positive integers such that j ≤ n′ − 1 and they satisfy some

of the following conditions:

(1) n′ ∣ 2h − 1 and j ≥max{1, n′ − 2h−1}.

(2) n′ − 1 ∣ 2h − 1 and max{1, n′ − 2h−1} ≤ j < n′ − 1.

(3) n′ − 1 ∣ 2l − 1 and j = n′ − 1.

Then, there exists an optimal (r, δ)-LRC over F2h with parameters

[n, k, d]2h = [(2
h + 2)n′,3j + 1, (2h + 2)(n′ − j)]

2h

and

(r, δ) = (3,2h).

Theorem C. Keep the same notation as in Theorem A. Consider also subsets S1, S2 ⊆

{1, . . . ,m − 1} such that S1 ∪ S2 = {1, . . . ,m − 1} and S1 ∩ S2 = ∅.

Then, on the one hand, there exists an optimal (r, δ)-LRC over Fph with the following

parameters depending on the integer variables n1, . . . , nm−1 and a:

[n, k, d]ph = [(p
h + 1)n1⋯nm−1, (2z + 1)n1⋯nm−1 − a, p

h + 1 − 2z + a]
ph

and

(r, δ) = (2z + 1, ph − 2z + 1),

whenever some of the following conditions hold:

(1) nj ∣ p
l − 1 for all j ∈ S1, nj − 1 ∣ p

l − 1 for all j ∈ S2 and a = 0.

(2) S1 = ∅, nj − 1 ∣ pl − 1 for all j ∈ S2, a = 2(z − t) and, if p is odd, either

gcd (n1⋯nm−1, ph) ≠ 1 or gcd (n1⋯nm−1, ph + 1) ≠ 1.

On the other hand, there exists an optimal (r, δ)-LRC over Fph with parameters

[n, k, d]ph = [(p
h + 1)n1⋯nm−1, (2u + 2)n1⋯nm−1 − a, p

h − 2u + a]
ph

and

(r, δ) = (2u + 2, ph − 2u),

whenever some of the following conditions hold:

(1) nj ∣ p
l − 1 for all j ∈ S1, nj − 1 ∣ p

l − 1 for all j ∈ S2 and a = 0.

(2) S1 = ∅, nj − 1 ∣ p
l − 1 for all j ∈ S2 and a = 2(u − v).
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Theorem D. Keep the same notation as in Theorem B. Consider also subsets S1, S2 ⊆

{1, . . . ,m − 1} such that S1 ∪ S2 = {1, . . . ,m − 1} and S1 ∩ S2 = ∅.

Then, there exists an optimal (r, δ)-LRC over F2h with the following parameters

depending on the integer variables n1, . . . , nm−1, a, b and c:

[n, k, d]2h = [(2
h + 2)n1⋯nm−1, an1⋯nm−1 − b, c + b]2h

and

(r, δ) = (a, c),

whenever some of the following conditions hold:

(1) nj ∣ 2
l − 1 for all j ∈ S1, nj − 1 ∣ 2

l − 1 for all j ∈ S2 and (a, b, c) = (3,0,2h).

(2) nj ∣ 2
l − 1 for all j ∈ S1, nj − 1 ∣ 2

l − 1 for all j ∈ S2 and (a, b, c) = (2h − 1,0,4).

(3) S1 = ∅, nj − 1 ∣ 2
l − 1 for all j ∈ S2 and (a, b, c) = (3,2,2h).

(4) S1 = ∅, nj − 1 ∣ 2
l − 1 for all j ∈ S2 and (a, b, c) = (2h − 1,2z − 3,4).

At the beginning of this introduction, we said that this PhD thesis is concerned with

two problems. We have explained our achievements in the �eld of LRCs. Chapters 4

and 5 deal with our second problem which is the construction of good QECCs. In the

quantum setting, unlike the classical one, a unit of information can be simultaneously in

several di�erent states. For example, in the classical binary case a bit is either in state 0

or 1, but in the quantum case the qubit can be in a superposition of those states, a linear

combination of 0 and 1 with complex coe�cients. Speci�cally, a qubit is represented

as a unit vector in the Hilbert space C2, where C denotes the complex �eld, for which

we consider an orthonormal basis given by the vectors representing 0 and 1. Overall,

we require to normalize the linear combination providing the qubits in order to set the

probability of being in each state. In the general case, units of quantum information

(qudits) are represented by unit vectors in r-dimensional Hilbert spaces Cr.

Denoting again by Q a prime power and n a positive integer, a QECC of length n is

a linear subspace Q of CQn
= CQ⊗

n)
⋯ ⊗CQ, where ⊗ denotes the tensor product. Here

r = Q to take advantage of the structure of �nite �elds, so that elements in FQ represent a

basis of CQ. QECCs work focusing more on the errors that may occur than on the proper

state vectors. It is convenient to perform this procedure because of the delicate nature

of qudits. The set of errors is denoted by Gn and they are described by endomorphisms

of the Hilbert space CQn
. They have group structure generated by a �nite set which is

a so-called nice error basis. Chapter 2 gives a quick introduction to QECCs and their

relation to classical error-correcting codes.

In this thesis we consider Qk-dimensional QECCs and their parameters are written

[[n, k, d]]Q. Their minimum distance d, as in the classical setting, measures the capability

to detect and correct errors. Seminal papers on quantum error-correcting codes studied

binary codes [19, 20, 57] (see also [4, 5, 63]). Later non-binary codes were also considered
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[6, 73]; these last codes are particularly interesting in fault-tolerant computation [115, 76,

107, 59, 120, 21, 91]. The literature on quantum error-correcting codes is very extensive

(some references are [16, 98, 80, 41, 23, 116]). Many of the known quantum error-

correcting codes are stabilizer quantum codes, de�ned by Gottesman [57]. They are

constructed thinking on the errors that are more likely. Thus the code contains those

inaltered elements under the action of these errors. This makes sense because in the

quantum setting there exist nontrivial errors that may have no e�ect on an encoded

state. More concretely, a stabilizer code Q ≠ {0} is an intersection of eigenspaces of the

space CQn
(with respect to the eigenvalue 1) running over the elements of an abelian

subgroup of the error group Gn, see De�nition 2.3.1.

Stabilizer quantum error-correcting codes have as a main advantage that they can be

constructed from (classical) additive codes included in F2n
Q which are self-orthogonal with

respect to a trace symplectic form. This follows from the structure of the nice error basis.

It is related with two types of errors, so that errors in Gn may be represented as vectors in

F2n
Q up to a scalar complex. These vectors have an even number of coordinates and can

be divided into two halves each of them corresponding to a type of the mentioned errors,

see Subsections 2.2.2 and 2.3.1 for details. As a particular case of the above construction,

stabilizer codes can be obtained from Hermitian self-orthogonal linear codes over FQ2 ,

see Subsection 2.3.3. In this work, we mainly utilize this construction that will be stated

in our forthcoming Corollary 2.3.8. For convenience, the next Corollary A recalls it.

Corollary A. Let C be an [n, k] linear code over FQ2 such that C ⊆ C⊥h , C⊥h denoting

the Hermitian dual code of C. Denote by d⊥h the minimum distance of C⊥h . Then, there

exists an [[n,n − 2k,≥ d⊥h]]Q stabilizer code.

There is a quantum version of the Singleton bound. Being [[n, k, d]]Q the parameters

of a QECC, the quantum Singleton bound is:

n ≥ k + 2(d − 1).

Similarly to the classical setting, QECCs that achieve the above bound are named quan-

tum MDS codes. One can �nd many papers on this class of codes (see [35, 9, 85] to cite

only some articles from the last years). By applying the classical MDS conjecture to the

classical codes over FQ2 giving rise to stabilizer codes, the quantum MDS conjecture says,

in this context, that the length of a Q-ary quantum MDS stabilizer code is at most Q2+1

(or Q2+2 in some exceptional case). We state it in Conjecture 2.3.10. Again as explained

in the classical setting, it is interesting to obtain long Q-ary stabilizer codes with good

parameters. J-a�ne variety codes have a good behavior for this purpose [43, 49, 41].

Chapters 4 and 5 in this thesis o�er advances both in the search of MDS or almost

MDS quantum codes and of good long quantum codes.

Chapter 4 uses Q2-ary MCCs but makes a �twist� to the evaluation map evP , i.e.

it multiplies each coordinate of evP (f) by some nonzero element in FQ2 , arising the

so-called twist vector v = (v1, . . . , vn) ∈ (F∗Q2)
n and the resulting evaluation map:

evv,P ∶V∆ ⊂
FQ2[X1, . . . ,Xm]ÒI → Fn

Q2 , evv,P (f) = (v1f(α1), . . . , vnf(αn)) .
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In the literature, constructions of this type are usually said to be twisted or general-

ized. Constructions of quantum codes from generalized Reed-Solomon codes are very

common because some twists allow us to obtain a wider range of dimensions for Her-

mitian self-orthogonal codes than in the case of ordinary Reed-Solomon codes. Our

twisted constructions of MCCs pursue the same goal and we �nd QECCs with wider

range of dimensions than those previously obtained with J-a�ne variety codes. They

also achieve our goal of obtaining long codes. However, an arbitrary set P cannot be

considered, but P1 must be the set of λ(Q+1)-th roots of unity Uλ(Q+1), where λ ∣ Q−1,

and P2, . . . , Pm ⊆ F∗Q2 , see De�nition 4.1.1. With this structure, although our de�ni-

tion is slightly di�erent, we introduce what we name generalized monomial-Cartesian

codes, which are obtained as the image of the above map evv,P , see De�nition 4.1.1 and

Remark 4.1.2. Notice that they are a type of generalized a�ne variety code.

We use generalized monomial-Cartesian codes to construct Hermitian self-orthogonal

classical linear codes, and thereby to get stabilizer quantum codes. Comparing our codes

with codes in [30, 48, 88, 77, 23, 127, 15, 78, 126], we present evidence which shows their

good quality as quantum codes. Previous works using twisted codes, [126] for example,

have proved the existence of a twist vector with the required properties for the code to

be self-orthogonal, whereas an interesting feature of our construction is that we de�ne

the twist vector explicitly , see Equation (4.2.1). Moreover in Remark 4.2.2 we show that

our construction gives rise to some Hermitian self-orthogonal twisted J-a�ne variety

codes that would not be self-orthogonal without making the twist. In addition, contrary

to usual, our twist makes the evaluation of any monomial to be orthogonal to all but

one evaluation of another monomial, what allows the self-orthogonality conditions and

control of the dimension to be more manageable.

Our construction is presented in Section 4.2 and it follows from the Hermitian self-

orthogonality conditions stated in Proposition 4.2.1. Its proof shows that the choice of

our twist vector is essential for our development and fundamentally depends on the �rst

variable.

Firstly we present a general construction (Theorem 4.2.4), stated for convenience of

the reader in the below Theorem E. This construction does not give an explicit bound

for the minimum distance of the obtained stabilizer code, but it ensures the minimum

distance is bounded below by that of the Euclidean dual code of the corresponding MCC

considered (not twisted). Thus, we can provide a bound from our above bound for MCCs.

Theorem E. Let Q be an odd prime power and let m ≥ 1, λ ∣ Q − 1, n1 ∶= λ(Q + 1) and

2 ≤ nj ≤ Q
2 − 1, j = 2, . . . ,m, be positive integers. Let n ∶= n1⋯nm. Consider the twist

vector v de�ned in Equality (4.2.1) and the set E0 introduced in De�nition 4.2.3. Let ∆

be a subset of E0. Then, the code Cv,∆ = evv,P (V∆) satis�es

Cv,∆ ⊆ (Cv,∆)
⊥h .

Therefore, there exists a stabilizer quantum code with parameters

[[n,n − 2#∆,≥ d]]Q
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where # means cardinality and d denotes the minimum distance of the Euclidean dual

code (C1,∆)
⊥e of C1,∆, being 1 = (1, . . . ,1) ∈ Fn

Q2.

Then, we present a more speci�c construction based on hyperbolic codes [53]. It

allows us to control the minimum distance and maximize the dimension of the resulting

quantum code (Theorem 4.2.7). It is also stated in Theorem F below. Example 4.2.8

illustrates an intuitive strategy to obtain the statement of Theorem 4.2.7.

Theorem F. Keep the same notation as in Theorem E. Let t be a positive integer such

that

2 ≤ t ≤
Q + 3

2

and consider the set ∆t introduced in De�nition 4.2.5. Then, Cv,∆t ⊆ (Cv,∆t)
⊥h and

therefore there exists a stabilizer quantum code with parameters

[[n,n − 2#∆t,≥ t]]Q.

A remarkable fact is that our construction with m = 1 gives quantum MDS codes,

we show it in Section 4.3. We also prove that when m = 2 and our lower bound for

the minimum distance is 3, the codes are at least Hermitian almost MDS . This concept

means that the parameters do not reach the quantum Singleton bound but are the closest

we can get with Hermitian duality to this bound. Section 4.4 gives a new evidence that

many of our codes are good , since we prove that in�nitely many of them �in the case

m = 2� beat the quantum Gilbert-Varshamov bound [39], this last bound is recalled in

Theorem 2.3.11. Finally, Tables 4.3 to 4.7 of Chapter 4 present some examples with

small parameters that beat the best known codes in the literature.

Long Q-ary stabilizer codes with good parameters can also be obtained from eval-

uation codes and their sub�eld-subcodes [49, 41, 50]. The previous references consider

large �elds, FQ2µ , µ a positive integer, and evaluate adequate vector spaces of polynomi-

als with coe�cients in FQ2µ at suitable roots of the unity where, in addition, one may or

may not evaluate at zero, that is, those references use J-a�ne variety codes. However,

in [50], the authors discovered that evaluating at the set formed by the roots (and also,

at the set of non-roots) of the trace polynomial tr2µ(X) =X +X
Q +⋯+XQ2µ−1

, one gets

excellent Q-ary quantum codes, both binary and non-binary.

Motivated by the fact that evaluating at the zeros of the trace polynomial produces

codes with good behavior, in Chapter 5 we consider trace-depending polynomials, in-

stead of tr2µ(X). Our goal is to get stabilizer quantum codes with new lengths and

good parameters. For us, a trace-depending polynomial is a polynomial of the form

γ + tr2µ(h(X)), where γ ∈ FQ2µ and h(X) ∈ FQ2µ[X]. The bene�ts of this new proce-

dure are showed at the end of the chapter, in Section 5.4, where we introduce several

trace-depending polynomials such that evaluating at their roots gives rise to a consid-

erable number of binary quantum records according to [62], see Table 5.13. For us, a

(code) record means a binary quantum code such that either its parameters are better

than those of a code in [62] or match with a missing entry in [62]. These codes are
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stabilizer and we are able to determine their dimensions and minimum distances, but we

need to use the computational algebra system Magma [17] for checking the Hermitian

self-orthogonality of the involved linear codes.

As a consequence, it is undoubtedly interesting to do a theoretical analysis of the

family of quantum codes obtained by evaluating at the zeros of trace-depending poly-

nomials. That is, to give conditions guaranteeing self-orthogonality for the constituent

linear codes and compute their parameters. Notice that the length of the codes given in

[50] is Q2µ−1 since tr2µ(X) completely factorizes in the �eld FQ2µ , but these new quan-

tum codes have a wider range of lengths. A global study seems untractable because the

behavior of the trace-depending polynomials is unknown.

In Chapter 5, we restrict ourselves to a speci�c family of trace-depending polynomials

and perform a complete study of the stabilizer quantum codes supported on that family.

This family is formed by the so-called b-th trace-depending polynomials, Trb(X), where

b = b(t) = 1 +Qt, 0 < t ≤ µ (see De�nition 5.1.1). We de�ne the polynomial Trb(X) as

the representative with minimum degree of the class of the following polynomial Pb(X)

in the quotient ring FQ2µ[X]/⟨XQ2µ−1 − 1⟩:

Pb(X) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 + tr2µ(X
b) if 0 < t < µ,

1 + trµ(X
b) otherwise (t = µ),

being trµ(X) ∶= X +X
Q +XQ2

+ ⋯ +XQµ−1
. Then, the linear codes we look for being

Hermitian self-orthogonal are FQ2µ-ary evaluation codes where P is the set of roots of

Trb(X) in FQ2µ and V = ⟨Xe ∣ e ∈∆⟩ for some set ∆ ⊆ {0,1, . . . , n − 1}, being n the

cardinality of P . Note that, in order to apply our forthcoming Lemma 5.1.8, we consider

only polynomials Trb(X) which completely factorize in FQ2µ . Proposition 5.1.6 gives

a full description of the polynomials Trb(X), and Theorem 5.1.9 determines when the

sum of the i-th powers, 1 ≤ i ≤ degTrb(X), of the roots of Trb(X) vanishes, which is a

crucial fact for determining the self-orthogonality of the constituent linear codes. This

last property is studied in Theorem 5.1.14 giving rise to Qµ-ary stabilizer quantum codes

(see Corollary 5.1.15, also stated in the next Corollary B). All these results are presented

in Section 5.1.

Corollary B. Keep the above notation and assume that (Q,µ, b) is a triple such that the

polynomial Trb(X) completely factorizes in FQ2µ . Then there exists an integer A(Q, t)

(de�ned in the statement of Theorem 5.1.14) such that for each non-negative integer

τ ≤ A(Q, t), there is a stabilizer quantum code with parameters

[[Q2µ−1−t +Q2µ−1,Q2µ−1−t +Q2µ−1 − 2τ − 2,≥ τ + 2]]Qµ .

With the above ingredients and using sub�eld-subcodes, in Section 5.2 we determine

parameters of Qµ′-ary stabilizer quantum error-correcting codes, where µ′ divides µ (see

Theorem 5.2.3). We also state this theorem in the below Theorem G. One can also obtain

quantum codes by successively using Theorem 5.1.14 and Theorem 5.3.1 or Theorems

5.2.3 and 5.3.1. In this way, we get many new good codes. These codes enlarge the
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constellation of lengths of the quantum error-correcting codes obtained by evaluating at

the zeros of the trace polynomial [50].

Theorem G. Keep the above notation and assume that (Q,µ, b) ≠ (2,2,3) is a triple

such that the polynomial Trb(X) completely factorizes in FQ2µ. Fix a positive integer

µ′ < µ such that µ′ divides µ and regard FQ2µ′ as a sub�eld of FQ2µ. Consider the

set A ∶= {a0 < a1 < ⋯ < aν} introduced at the beginning of Section 5.2 and the values

A(Q, t), B(Q, t), B1(Q, t) and C(Q, t) introduced in Theorems 5.1.14 and 5.2.3. De�ne

D(Q, t) as follows:

When t > 1,

� D(Q, t) ∶= A(Q, t), whenever µ′ ≠ 1.

� Otherwise (µ′ = 1):

D(Q, t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

B(Q, t) if µ is even,

min{A(Q, t),B(Q, t)} otherwise.

When t = 1 and µ ≠ 2,

� D(Q, t) ∶= A(Q, t), whenever µ′ > 2,

� D(Q, t) ∶= C(Q, t), whenever µ′ = 2,

� D(Q, t) ∶= B1(Q, t), otherwise (µ′ = 1).

When t = 1 and µ = 2, D(Q, t) ∶= Q − 2.

Then, for each element aτ ∈ A such that aτ ≤D(Q, t), there exists an Hermitian self-

orthogonal code over FQ2µ′ whose dimension is bounded above by the value ∑τ
ℓ=0#Λaℓ

(see the beginning of Section 5.2 and Proposition 5.2.2 for details). As a consequence,

there exists a stabilizer quantum code with parameters

[[Q2µ−1−t +Q2µ−1,≥ Q2µ−1−t +Q2µ−1 − 2
τ

∑
ℓ=0

#Λaℓ ,≥ aτ+1 + 1]]
Qµ′

.

Subsections 5.3.1 and 5.3.2 supply quantum codes constructed with our theoretical

results, some good examples are either along the text or in Tables 5.9 to 5.12. In Sub-

section 5.3.1, we prove that our development gives rise to new and good binary quantum

codes, some of them being records according to [62]. In Subsection 5.3.2 we provide new

non-binary quantum error-correcting codes, some of them improving the parameters of

the codes available in the literature. All the given codes have parameters exceeding the

quantum Gilbert-Varshamov bound.

To conclude, Part IV provides some ideas for future research. We give a construc-

tion and a brief explanation of our ideas to obtain new stabilizer quantum codes from

Hermitian self-orthogonal linear codes and the techniques to get sub�eld-subcodes. We

aim for the lengths of the Hermitian self-orthogonal linear codes we construct not to be
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obtainable with univariate {1}-a�ne variety codes (BCH codes). These last codes are

used in [41] with the same objective. Thus, we want to enlarge the range of dimensions

of the Hermitian self-orthogonal {1}-a�ne variety codes given in [41]. Our computations

show substantial advances in this sense and the expected quantum codes will have very

good parameters.

We end this introduction by noticing that we consider the unusual notation Q for

a prime power here and in Part I, setting the symbol q to be used in every particular

construction. Indeed, in each chapter of Parts II and III such a Q corresponds to some

power of another prime power q.
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Preliminaries
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The �rst part of this PhD thesis introduces the basic objects and some results that

we will use later. It is divided into two chapters devoted to classical (Chapter 1) and

quantum (Chapter 2) error-correcting codes. All quantum error-correcting codes we pro-

vide in Part III are constructed from classical error-correcting codes. Thus, in Chapter 1,

we �x notation, present the framework and provide the basic tools of this work. Only

a few results are essential for constructing quantum error-correcting codes from classi-

cal codes. However, for the sake of completeness, we give an introduction to quantum

error-correcting codes. We hope it will help the reader understand better the di�erence

between classical and quantum codes.

Let us give some basic notation: #S denotes the cardinality of some set S. When

S lives in a commutative ring (respectively, vector space), ⟨S⟩ means ideal (respectively,

vector subspace) generated by S. For vector spaces, sometimes we also write a subindex

to specify the scalar �eld. The dimension of a vector space V is denoted dim(V ). The

kernel and the image of a linear map f are denoted, respectively, Ker(f) and Im(f). Let

N, N0, Z, C stand, respectively, for the set of positive integers, the set of nonnegative

integers, the ring of integers and the complex �eld. Let n > 1 be a positive integer and

(G, ⋅) be a grupoid. The ∗-product in Gn is de�ned as

∗ ∶ Gn ×Gn → Gn, (a1, . . . , an) ∗ (b1, . . . , bn) = (a1 ⋅ b1, . . . , an ⋅ bn).

Given integers e, e′, n, the fact that e is congruent with e′ modulo n is denoted e ≡ e′

mod n. Lastly, deg(f) stands for the degree of a univariate polynomial f .
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Chapter 1

Classical error-correcting codes

In this �rst chapter, we take a brief tour of some topics on error-correcting codes. We

focus on concepts and results we will use along this thesis. Section 1.1 succinctly intro-

duces error-correcting codes. The essentials on linear codes are explained in Section 1.2,

while Section 1.3 de�nes evaluation codes and introduces an interesting subfamily, called

monomial-Cartesian codes, which we will use in this thesis. Locally recoverable codes are

de�ned in Section 1.4. Here, we give some results that will be needed in Part II where

monomial-Cartesian codes are used to get good locally recoverable codes. Finally, in

Section 1.5 sub�eld-subcodes of a code are recalled. They allow us to obtain good codes

from other codes by reducing their supporting �eld. Useful results can be obtained from

sub�eld-subcodes of J-a�ne variety codes, a class of monomial-Cartesian codes whose

structure eases their management.

The main references for Sections 1.1 and 1.2 are [96, 71, 70, 101], [101, 49, 93, 51, 41,

22] for Section 1.3, [55, 106, 47] for Section 1.4 and [71, 33, 49, 41] for Section 1.5.

1.1. Encoding of information. Error-correcting codes

In this section, we give a brief introduction to the digital information broadcasting

processes and error-correcting codes. We will use the term information to refer to digital

information.

Information is usually broadcasted through a channel after a previous encoding pro-

cedure. It is expressed as a sequence of symbols of a �nite set named alphabet. When

received, the information is decoded with the aim of recovering the original pre-encoded

message. There are two main reasons for encoding information. First, because it should

previously be adapted to the characteristics of the channel. Secondly, because it is useful

for the broadcasting to be the fastest, safest and the most reliable possible. These goals

are reached with three types of codes (see De�nition 1.1.1):

Compressing codes � to compress the information,

Cryptographic codes � to guarantee the information privacy against third parties,

and

21



22 1. Classical error-correcting codes

Error-correcting codes � to detect and correct the possible errors due to the channel,

machinery used or other phenomena.

Let us recall some basic terminology. An alphabet is a �nite set containing the symbols

used to represent the information, tipically a �eld or a ring. A word w over the alphabet

A is a �nite sequence of elements of A:

w = w1⋯wn = (w1, . . . ,wn) ∈ A
n, n ∈ N.

Each value wi, i = 1, . . . , n, is named the i-th coordinate of w or its coordinate at the

position i. The number n of symbols of w is called its length. Let us denote by W (A)

the set of words over A.

Notice that information may be originally expressed over an alphabet which is not

adapted to the characteristics of the channel and then a change of alphabet is needed.

Encoding an alphabet A1 to another alphabet A2 is to provide an injective map

f ∶ A1 →W (A2).

Then, words over A1 are encoded to words over A2 by the map f ′ that applies f in every

symbol:

f ′ ∶W (A1)→W (A2), f ′(w1, . . . ,wn) = (f(w1), . . . , f(wn)).

De�nition 1.1.1. A code C over (the alphabet) A is a subset C ⊆W (A).

Every word c ∈ C is called a codeword. One can distinguish between two types of

codes depending on the length of their codewords. A block code of length n is a code

where all the codewords have the same length n. Otherwise, it is called a variable-length

code. For example, compressing codes are variable-length such that they encode frequent

symbols to short codewords.

A block code C of length n over an alphabet A with Q symbols has at most Qn

codewords. Then, a block code over A with m codewords has length at least ⌈logQ(m)⌉.

One can consider that ⌈logQ(m)⌉ of the n symbols of a codeword contain the information

and the remaining ones are redundant symbols. Thus, any block code of length n with

m codewords over an alphabet with Q symbols has an information rate of
logQ(m)

n and

a redundancy of n − logQ(m).

We are only interested in block codes, which are suitable to detection and correction

of errors. They are named error-correcting codes, in the sequel simply codes. They

are based on redundant information inclusion (control symbols) that allows us to detect

and eventually correct the corrupted part during broadcasting. Indeed, assume that the

information to send is a word w ∈W (A) that is divided into blocks of words of length k:

w =w1⋯wl, wi ∈ A
k, i = 1, . . . , l.

Considering the blocks on Ak, we add to each block x ∈ Ak redundancy, encoding it and

giving rise to a codeword of a (error-correcting) code C of length n. C is the image of an

injective map

g ∶ Ak → An.
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Notice that the information rate of C is k
n and it has redundancy n − k.

Figure 1.1 shows a scheme where the channel su�ers from interferences, commonly

called noise. In such scheme, each block x ∈ Ak is encoded to a codeword c = g(x) ∈ C

that is sent over the channel. Noise may corrupt c producing an error e ∈ An so that the

output of the channel is a word y = c + e ∈ An. Then a process, named decodi�cation,

to try to remove the error from the received word y is made. It gives an estimated sent

codeword ĉ ∈ C. Since there is a bijection between codewords and messages, ĉ gives

rise to the estimated sent message x̂ ∈ Ak. Whenever the error is not very high for the

error-correcting capability of C, it holds that ĉ = c, and therefore x̂ = x.

Figure 1.1: Information broadcasting scheme on a noisy channel [71]

Although the corrupted information can be of two types, we generally refer to them

as errors, but it is convenient to distinguish between

Erasures � unreadable symbols; or

Errors � di�erent symbols from the original ones.

Notice that erasures are detectable by the receptor but errors cannot be distinguished

from well-broadcasted symbols. Because of this, erasures are usually thought as errors

whose position is known.

It is desirable that a code corrects as many errors as possible with a high information

rate, that is, by introducing the least amount of redundancy as possible. These two

requirements are contradictory and one has to settle with a certain balance between

them. We will explain this fact in Subsection 1.2.2 for a class of codes named linear

codes. Concerning error-correction, it is desirable that codewords are as di�erent as

possible so that noise unlikely converts a codeword into another. The following concept

measures the di�erence among words.

De�nition 1.1.2. Let A be an alphabet and n be a positive integer. Given two words

w = (w1, . . . ,wn), w
′ = (w′1, . . . ,w

′
n) ∈ A

n, the Hamming distance between w and w′ is

d(w,w′) ∶=#{i ∣ 1 ≤ i ≤ n, wi ≠ w
′
i}.

The map d above de�ned gives rise to a metric on An which allows us to decode

following the minimum distance principle. In this way, when a word is received, one
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looks for a nearest one in terms of the Hamming distance. Schemes where one has a

unique choice at minimum distance are preferred.

De�nition 1.1.3. Let C be a code. Its minimum distance is de�ned as

d ∶= d(C) ∶=min{d(c,c′), c,c′ ∈ C, c ≠ c′} .

The next proposition formalizes the detection/correction procedure suggested in the

above paragraph.

Proposition 1.1.4. A code C with minimum distance d is able to detect d−1 errors and

correct ⌊d−12 ⌋ errors (respectively, d − 1 erasures).

Proof. Assume that c ∈ C ⊆ An is the sent codeword and y ∈ An is the received word,

containing 0 ≤ t < d errors. When t > 0, then y ∉ C because any codeword is at distance

at least d of c. Thus, it su�ces to check the condition y ∈ C to detect if errors were

produced.

Suppose now that y contains t < d
2 errors. Euclidean balls of radius ⌊d−12 ⌋ in A

n

whose center is each codeword in C are disjoint by de�nition of d, see Figure 1.2. Then,

y is decoded by the codeword which is the center of the unique ball containing it.

Figure 1.2: Two Euclidean balls of radius ⌊d−12 ⌋ centered in the codewords c and c′

Lastly, assume that y contains t < d erasures. Then, it is decoded by the codeword

which coincides with y in the remaining n − t coordinates.

Therefore, the higher the minimum distance is, the better the error-correcting capa-

bility of the code is. Computing the minimum distance of a code is, in general, a hard

problem. Thus, lower bounds on the minimum distance are usually used to ensure a

minimum value on the error-correcting capability of a code.

Block codes encoding and decoding processes are computationally expensive because

they require to save in memory all the codewords. In order to solve this problem, algebraic

structures are useful. Linear codes are the most common structure for error-correcting

codes.
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1.2. Linear codes

Let Q be a prime power and set FQ the �nite �eld with cardinality Q. FQ will be the

alphabet for our linear codes, which will be referred as supporting �eld. We use a capital

letter for such cardinality in order not to lead to confusion, this is because we will use

the symbol q for a (possibly) di�erent prime power. Some references for �nite �elds can

be found in [83, 71, 96, 101].

De�nition 1.2.1. A linear code of length n over FQ is a vector subspace of Fn
Q.

As a vector space, a linear code C has a dimension k. Then, #C = Qk, its information

rate is k
n and its redundancy is n − k. The fundamental parameters of a linear code are

the length, dimension and minimum distance and are usually written as [n, k, d]Q, or

[n, k, d] when the alphabet is not relevant. In order to specify the alphabet, it is also

said that C is a Q-ary code. Notice that with this algebraic structure, it su�ces to store

in memory nk elements of FQ, coming from the k codewords of a basis of C, instead of

nQk ones, coming from storing all the codewords of a general block code.

A linear code C, as a k-dimensional vector subspace of Fn
Q, is the image of an injective

linear map

g ∶ Fk
Q → Fn

Q.

We can think of Fk
Q as the information source encoded into C by the map g.

De�nition 1.2.2. A generator matrix G of a linear code C is a k ×n matrix over FQ of

rank k whose rows constitute a basis of C.

Of course, a linear code has di�erent (similar) generator matrices or, equivalently,

di�erent encodings maps g. In addition, C can be described as a system of implicit

equations given by the kernel of a linear map

h ∶ Fn
Q → Fn−k

Q

whose matrix is the transpose H⊺ of the following matrix.

De�nition 1.2.3. A parity-check matrix H of a linear code C is an (n − k) × n matrix

over FQ of rank n − k such that for every x ∈ Fn
Q, x ∈ C if and only if Hx⊺ = 0.

Then, C = Im(g) = Ker(h) and GH⊺ = 0.

Since H has maximum rank, it can be seen as the generator matrix of another linear

code over FQ.

De�nition 1.2.4. Let C ⊆ Fn
Q be a linear code with parity-check matrix H. The dual

code, C⊥, of C is the n− k-dimensional linear code over FQ that admits H as a generator

matrix.

Indeed, C⊥ is the orthogonal subspace of C with respect to the following non-

degenerate symmetric bilinear form, that we call Euclidean inner product :

⋅e ∶ Fn
Q × F

n
Q → FQ, x ⋅e y =

n

∑
i=1
xiyi.
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Sometimes we write C⊥e instead of C⊥ to distinguish among di�erent inner products we

will use. Moreover, the equality GH⊺ = 0 implies that G is a parity-check matrix of C⊥.

A linear code admits di�erent denominations depending on its relation with its dual

code.

De�nition 1.2.5. Let C be a linear code.

If C ∩ C⊥ = {0}, then C is called linear complementary-dual (LCD).

If C ⊆ C⊥, then C is called self-orthogonal.

If C = C⊥, then C is called self-dual.

The parity-check matrix of a linear code allows us to compute its minimum distance.

To show it, we de�ne the following concept.

De�nition 1.2.6. Let x = (x1, . . . , xn) ∈ Fn
Q. The (Hamming) weight of x is

w(x) ∶=#{i ∣ 1 ≤ i ≤ n, xi ≠ 0} = d(x,0),

where 0 ∶= (0, . . . ,0).

De�nition 1.2.7. Two linear codes C1, C2 are said to be isometric if there exists a

bijective mapping between them that preserves Hamming weights.

Notice that d(x,y) = w(x − y), for all x, y ∈ Fn
Q. Therefore,

d = d(C) =min{d(c,c′), c,c′ ∈ C, c ≠ c′} =min{w(c) ∣ c ∈ C, c ≠ 0} .

Proposition 1.2.8. Let C be a linear code with minimum distance d and parity-check

matrix H. Then, d coincides with the least cardinality of a set of linearly dependent

columns of H.

Proof. By de�nition of H, a word x ∈ Fn
Q belongs to C if and only if Hx⊺ = 0. Then,

there exists a codeword of weight w > 0 if and only if there exist w columns of H

which are linearly dependent. The coordinates of x are the coe�cients of such a linear

combination.

The computation of the minimum distance of a linear code is an NP-hard problem

[125]. For large dimensions, it is unsolvable, but for relatively small values of dimension

and length it can be solved in a reasonable time. The so-called Brouwer-Zimmerman

algorithm [134], described in [61], is the fastest general algorithm designed to compute

the minimum distance.

One can construct new linear codes from old by raising (raising the coordinates of

every codeword to a �xed power), lengthening (adding new coordinates), puncturing

(deleting some coordinates) and shortening (discarding all but the codewords with 0's

in some pre�xed coordinates and puncturing those codewords in those coordinates). In

the sequel we will work with raised and punctured codes, so we introduce the following
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notation. Let C be an [n, k, d]Q linear code. Let s be a nonnegative integer and c =

(c1, . . . , cn) ∈ C be a codeword. We denote cs = (cs1, . . . , c
s
n) and de�ne

Cs ∶= {cs ∣ c ∈ C} ⊆ Fn
Q.

Let R ⊆ {1, . . . , n} be a subset of cardinality r. Set πR ∶ Fn
Q → Fr

Q the projection map on

the coordinates of R and let

C[R] ∶= {πR(c) ∣ c ∈ C}.

This is the code obtained after puncturing C in the coordinates with positions in

{1, . . . , n}/R.

1.2.1. Decoding processes

The algebraic structure of linear codes eases the decoding processes, being computa-

tionally cheaper. Here we expose a general decoding method, but we remark that each

particular linear code may have other much more e�cient ones. Our next de�nition

considers the parity-check matrix to give information about the error produced when

transmitting a codeword.

Let C ⊆ Fn
Q be an [n, k, d] linear code with parity-check matrix H. Suppose that one

sends a codeword c ∈ C and receives y = c + e ∈ Fn
Q, where e ∈ Fn

Q is the error produced.

De�nition 1.2.9. The syndrome of a word w ∈ Fn
Q is de�ned to be the vector

sy(w) ∶=Hw⊺ ∈ Fn−k
Q .

Since sy(c) = 0, then sy(y) = sy(e) and the syndrome of y is a linear combination of

the columns of H corresponding to positions where errors occurred.

De�ne the equivalence relation in Fn
Q: w1 ∼ w2 if and only if w1 − w2 ∈ C and

consider its quotient space vector F
n
QÒC. Then, the equivalence classes are of the form

w + C = {w + x ∣ x ∈ C}, w ∈ Fn
Q. Notice that the condition w1 ∼ w2 is equivalent to

sy(w1) = sy(w2).

Then, once received y, we know the equivalence class e belongs to. Assuming unique

decodi�cation, decoding y means to �nd its nearest codeword. That is, to �nd that x ∈ C

whose value d(y,x) = w(y−x) is a minimum. Since every vector y−x, x ∈ C, belongs to

the equivalence class of y, that minimum is obtained when y −x is the minimum weight

element of the equivalence class of y, and y − x is assumed as the error e produced.

Therefore, the decoding is possible whenever there is a unique minimum weight element

in the equivalence class of y. If the number of errors does not overcome the error-

correcting capacity of the code, the decoding will be correct, because each equivalence

class has at most an element of weight at most ⌊d−12 ⌋. Indeed, if w1 ≠w2, both belonging

to the same equivalence class and with weight less than or equal to ⌊d−12 ⌋, thenw1−w2 ∈ C

and w(w1 −w2) ≤ w(w1) +w(w2) ≤ 2⌊
d−1
2
⌋ < d, a contradiction.
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For the code C, one constructs a two-column table whose rows are the equivalence

classes of F
n
QÒC. In each row, the �rst column contains the syndrome of any element

of the corresponding equivalence class. The second column contains the element of

minimum weight not larger than ⌊d−12 ⌋, if it exists. Otherwise, the column is empty. The

decoding method is as follows:

Algorithm 1.2.10 (General decoding method for linear codes). Received y:

1. Compute sy(y) and search the row where it appears in the above table.

2. If the second entry of that row is empty, the decoding fails. Otherwise, the second

entry is assumed to be the error e produced and the decoded codeword is y−e. End

of the algorithm.

Notice that this (general) method requires the storage of a table of Qn−k rows with

syndromes and words involving a total of Qn−k(n − k + n) elements of FQ. Thus, the

practical e�ciency of this method reduces to codes with small length and dimension.

Much more e�cient decoding algorithms are known but they are not object of study in

this work.

1.2.2. Singleton bound

As said, it is desirable for a code to have both the minimum distance and the in-

formation rate as high as possible, but these requirements are contradictory. In the

setting of linear codes, this fact is re�ected in the well-known Singleton bound. It relates

the parameters of a linear code regardless of the supporting �eld, that is, this bound is

independent of the cardinality of the �eld.

Theorem 1.2.11 (Singleton bound). Let C be an [n, k, d]Q code. Then, k + d ≤ n + 1.

Proof. By Proposition 1.2.8 , d coincides with the minimum number of linearly dependent

columns of a parity-check matrix H of C, which is at most n − k + 1 because the rank of

H is n − k. Therefore, d ≤ n − k + 1.

There are several other bounds, such as Plotkin's, Hamming's, Gilbert-Varshamov's,

Griesmer's and Elias-Bassalygo's bounds, but in this thesis we will only use the Singleton

one.

Fixed the length of a linear code, it is clear that the larger one of the two remaining

parameters is, the smaller the other is. That is the price one has to pay when desiring a

large dimension or minimum distance. Fixed length and dimension, the Singleton bound

shows that there is a maximum on its error-correcting capability.

1.2.3. MDS codes

Codes attaining equality in the Singleton bound are called maximum distance sepa-

rable (MDS ) codes.
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In 1955, Segre posed the so-called MDS conjecture [111], which has been proved in

certain cases. One of the more recent ones is when Q is prime [8]. The conjecture gives

an upper bound on the length of an MDS code.

Conjecture 1.2.12 (MDS conjecture). Let C be an [n, k, d]Q MDS code, then

n ≤ Q + 1

unless Q is even and k = 3 or k = Q − 1, in which case

n ≤ Q + 2.

The MDS conjecture implies that whenever one wishes to maximize the minimum

distance of a code by using an MDS code, one has to decide between having a limited

length or working in a larger �eld. The �rst option restricts the number of symbols

needed to broadcast information and a larger �eld implies a greater di�culty on the

operations.

We end this section by stating the next result about the dual of an MDS code.

Proposition 1.2.13. The dual of an MDS code is also an MDS code.

Proof. Let C be an MDS code with parameters [n, k, n− k + 1] and assume that its dual

C⊥ is not MDS. Then, there exists a codeword c ∈ C⊥ of weight 0 < w(c) ≤ k. Let H be a

generator matrix of C⊥ constructed by enlarging c to some basis of C⊥. H is a parity-check

matrix of C whose �rst row is given by the coordinates of c and by Proposition 1.2.8 any

n − k columns of H are linear independent. Clearly, there are n − k columns such that

its �rst coordinate equals 0 and it is a contradiction because these columns are n − k

elements of Fn−k
Q .

1.3. Evaluation codes

In this section, we introduce the so-called evaluation codes. Their codewords are n-

tuples obtained by evaluating speci�c functions at certain n �xed points. The properties

of these codes can be deduced from the algebraic structure of the space of functions and

the geometry of the involved points.

Keep the notation as in Section 1.2. Let P = {α1, . . . , αn} be a set of n distinct points

of a set X . Let V = {f ∶ X → FQ} a vector space of functions on the �nite �eld FQ.

Consider the evaluation map

evP ∶ V → Fn
Q, evP (f) = (f(α1), . . . , f(αn)).

When this map is linear, its image is a vector subspace of Fn
Q and thus a linear code of

length n over FQ.

De�nition 1.3.1. An evaluation code is a linear code of the form CPV = evP (V ) for some

linear map evP as above introduced.
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The codewords of an evaluation code are of the form evP (f), f ∈ V , and there is a

correspondence between positions and points in P .

Set V = FQ[X1, . . . ,Xm] the ring of polynomials in m variables. Let r be a positive

integer. Denote by FQ[X1, . . . ,Xm]
(r) the vector space of polynomials inm variables over

FQ with degree less than or equal to r. A classical example of evaluation code is the Reed-

Muller code. It is an evaluation code where X = P = Fm
Q and V = FQ[X1, . . . ,Xm]

(r).

Reed-Solomon codes are another important class of evaluation codes. Let us de�ne

them.

De�nition 1.3.2. Let k and n be positive integers such that 1 ≤ k < n ≤ Q. Let

P = {α1, . . . , αn} ⊆ FQ. The Reed-Solomon code RSQ,P [n, k] is the following evaluation

code:

RSQ,P [n, k] = {evP (f) ∣ f ∈ FQ[X]
(k−1)}.

The length and dimension of the code RSQ,P [n, k] are n and k, respectively. Images

by evP of bases of FQ[X]
(k−1) are bases of RSQ,P [n, k]. Reed-Solomon codes are MDS,

and thus their minimum distance d = n − k + 1. This is because every codeword, as

evaluation of a polynomial of degree less than k, has at most k − 1 coordinates equal to

0, and at least weight n − k + 1. Then, d ≥ n − k + 1 and the Singleton bound proves the

equality.

Examples of evaluation codes arise when X is an a�ne or projective space, P is a

subset of points determined by some constraints, and V is determined by polynomial or

rational functions. P could be an algebraic variety, roughly speaking the set of solutions

of a system of polynomial equations in either the a�ne or projective space. Only a�ne

varieties are considered in this thesis. A�ne variety codes were introduced in [40], where

P is an a�ne variety and V is a subspace of classes of polynomials of the quotient ring

modulo the vanishing ideal of P .

1.3.1. Monomial-Cartesian codes

This subsection introduces monomial-Cartesian codes, a family of codes present in a

good part of our work. They were introduced in [54]. In [93] the authors de�ned them

using only algebraic tools. We, similarly to [54], prefer to consider them as a�ne variety

codes.

Let Q be a prime power, m a positive integer and consider a family {Pj}
m
j=1 of subsets

of FQ with cardinality larger than one. Set

P = P1 × ⋅ ⋅ ⋅ × Pm = {α1, . . . ,αn} ⊆ Fm
Q .

We usually write αi = (αi1, . . . , αim). Consider the quotient ring

R = FQ[X1, . . . ,Xm]ÒI,

where I is the ideal of FQ[X1, . . . ,Xm] vanishing at P . Then, I is the FQ-vector space

I = ⟨f1(X1), . . . , fm(Xm)⟩,
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where

fj(Xj) = ∏
β∈Pj

(Xj − β)

and deg(fj) =#Pj =∶ nj ≥ 2 [94]. Let

E = {0,1, . . . , n1 − 1} × ⋅ ⋅ ⋅ × {0,1, . . . , nm − 1}.

Any m-tuple e = (e1, . . . , em) ∈ E is called an exponent and we denote Xe = Xe1
1 ⋯X

em
m .

Given f ∈ R, f denotes both the equivalence class in R and the unique polynomial in

FQ[X1, . . . ,Xm] with degree in Xj less than nj , 1 ≤ j ≤m, representing f . Thus

f(X1, . . . ,Xm) = ∑
(e1,...,em)∈E

fe1,...,emX
e1
1 ⋯X

em
m ,

with fe1,...,em ∈ FQ. Set supp(f) = {(e1, . . . , em) ∈ E ∣ fe1,...,em ≠ 0}. For each subset

∅ ≠∆ ⊆ E, de�ne

V∆ ∶= {f ∈R ∣ supp(f) ⊆∆} ∪ {0}.

Then, V∆ is the FQ-vector space ⟨X
e ∣ e ∈∆⟩FQ

. The linear evaluation map

evP ∶R→ Fn
Q, evP (f) = (f(α1), . . . , f(αn)),

gives rise to the following class of evaluation codes.

De�nition 1.3.3. Keep the notation of this subsection. The monomial-Cartesian code

(MCC) CP∆ is the following FQ-vector subspace of Fn
Q:

CP∆ ∶= evP (V∆) = ⟨evP (X
e) ∣ e ∈∆⟩ ⊆ Fn

Q.

We say that CP∆ is univariate (respectively, bivariate, multivariate) when m = 1 (respec-

tively, m = 2, m > 2).

MCCs are a family of codes that extend J-a�ne variety codes, previously introduced

in [49]. In [49] the authors used the term �a�ne variety codes�, however one must not

confuse them with those satisfying the more general de�nition of an a�ne variety code,

given at the end of Section 1.3. J-a�ne variety codes are MCCs where the evaluation

points belong to a Cartesian product of some multiplicative subgroups of FQ to which

we could also add the element 0 ∈ FQ. The mentioned multiplicative structure eases the

control of these codes, and the possibility of introducing 0 increases the range of lengths.

These codes can be thought as a generalization of cyclic codes to multiple variables, and

we de�ne them next as particular instances of MCCs. Denote by Ut ⊆ FQ the set of t-th

roots of unity for some t ∣ Q − 1.

De�nition 1.3.4. Consider a subset J ⊆ {1, . . . ,m}, that is used to detect the variables

where 0 ∈ FQ is not evaluated. A J-a�ne variety code, CP,J∆ , is an MCC, CP∆, where

Pj = Unj , for some nj ∣ Q − 1, when j ∈ J , and Pj = Unj−1 ∪ {0}, for some nj − 1 ∣ Q − 1,

otherwise.
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Sometimes in the future, we will consider J-a�ne variety codes since the subgroup

structure of the sets Pj will be useful for our purposes.

We also introduce the following de�nition which will be used in the next sections.

De�nition 1.3.5. Two subsets ∆1 and ∆2 of E are pseudoisometric if there exists

v = (v1, . . . , vm) ∈ Zm such that

∆2 = v +∆1 ∶= {(e1 + v1, . . . , em + vm) ∣ (e1, . . . , em) ∈∆1}.

In that case, we say that the codes CP∆1
and CP∆2

are pseudoisometric.

Remark 1.3.6. Let us explain why we speak of pseudoisometric codes. Firstly, recall the

de�nition of ∗-product given at the beginning of Part I, and De�nition 1.2.7 of isometric

codes. Note that evP (fg) = evP (f) ∗ evP (g) for all f, g ∈R.

Assume that ∆1, ∆2 ⊆ E are pseudoisometric sets such that ∆2 = v + ∆1. For

simplicity, suppose vj ≤ 0, 1 ≤ j ≤ m1, and vj ≥ 0, m1 + 1 ≤ j ≤ m for some index m1.

Consider

∆
′

2 = (−v1,−v2, . . . ,−vm1 ,0, . . . ,0) +∆2

and

∆
′

1 = (0, . . . ,0, vm1+1, . . . , vm) +∆1,

and then ∆
′

2 =∆
′

1. Thus

V∆′2
= {X−v11 ⋯X

−vm1
m1 g ∣ g ∈ V∆2} ,

and the codewords in CP
∆
′

2

are of the form

evP (X
−v1
1 ⋯X

−vm1
m1 g) = evP (X

−v1
1 ⋯X

−vm1
m1 ) ∗ evP (g),

where g ∈ V∆2 . When 0 ∉ Pj for all 1 ≤ j ≤ m such that vj ≠ 0, we have just proved

that CP
∆
′

2

and CP∆2
are isometric codes. The same reasoning proves that CP

∆
′

1

and CP∆1

are isometric. Thus CP
∆1

and CP
∆2

are isometric and this also happens when the vj are

always negative or positive. The proof is the same but we need no auxiliary code.

When 0 ∈ Pj for some index 1 ≤ j ≤m, CP∆1
and CP∆2

need not be isometric.

Length, dimension and a bound for the minimum distance of an MCC, CP∆, are

provided in the forthcoming Proposition 1.3.7 and Corollary 1.3.10.

Proposition 1.3.7. Keep the above notation. The length n and dimension k of an MCC,

CP∆, are n =∏
m
j=1 nj and k =#∆.

Proof. The claim on the length is immediate because it is equal to the number of points

to evaluate, n = #P = ∏m
j=1 nj . As for the dimension, notice that the restriction map

of evP to the vector space V∆, evP ∣V∆
∶V∆ → C

P
∆, is an isomorphism of vector spaces.

Indeed, the kernel of this map vanishes because I is the ideal of polynomials vanishing

at P . Then, setting Im (evP ∣V∆
) the image of the map evP ∣V∆

, it holds that

k = dim (CP∆) = dim (Im (evP ∣V∆
)) = dim(V∆) =#∆,

which �nishes the proof.
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Now, we are going to give a bound on the minimum distance of MCCs. Our bound is

deduced of the so-called footprint bound [52, 51] which can be proved with techniques of

the Gröbner basis theory [32] (see [24, Proposition 2.3]). Very close bounds are, on the

one hand, the Feng-Rao bound for the dual code which was initially stated for algebraic

geometry codes [37, 38] and called order bound for evaluation codes [67]. Finally it was

generalized to linear codes (see [97]). And, on the other hand, the Feng-Rao bound for

the primal code (i.e., for the code itself, not for the dual one) [2].

De�nition 1.3.8. Let E be as at the beginning of this subsection. We call footprint of

an exponent e ∈ E the value F(e) ∶=∏m
j=1(nj − ej).

In the bivariate case (m = 2), we represent the set E as a grid. Each coordinate

(e1, e2) in the grid is an exponent and it is labelled with its footprint F(e). Figure 1.3

shows the grid representation of E in the case when n1 = 10 and n2 = 9.

90 81 72 63 54 45 36 27 18 9

80 72 64 56 48 40 32 24 16 8

70 63 56 49 42 35 28 21 14 7

60 54 48 42 36 30 24 18 12 6

50 45 40 35 30 25 20 15 10 5

40 36 32 28 24 20 16 12 8 4

30 27 24 21 18 15 12 9 6 3

20 18 16 14 12 10 8 6 4 2

10 9 8 7 6 5 4 3 2 1

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

Figure 1.3: Grid representation of E, where m = 2, n1 = 10 and n2 = 9

Proposition 1.3.9. Let CP∆ be an MCC and let c = evP (f) ∈ C
P
∆ be a codeword, f ∈ R.

Fix a monomial ordering on Nm
0 and let Xe be the leading monomial of f . Then, w(c) ≥

F(e).

Proof. Recall that f1(X1), . . . , fm(Xm) are the generators of the ideal I. They have

leading monomials, respectively, Xn1
1 , . . . ,Xnm

m . Let

I ′ ∶= ⟨f(X1, . . . ,Xm), f1(X1), . . . , fm(Xm)⟩

and denote by V(I ′) the a�ne variety de�ned by I ′. Set F(I ′) the footprint of I ′, that

is, the set of monomials that are not leading monomials of any polynomial in I ′ or,

equivalently, that are not multiple of any of the leading monomials of the polynomials

in a Gröbner basis for I ′. Then, F(I ′) ⊆ F(⟨Xe,Xn1
1 , . . . ,Xnm

m ⟩). Also, since F(I ′) is a

�nite set, #V(I ′) ≤#F(I ′) [32, Section 5.3]. Then,

#V(I ′) ≤#F(I ′) ≤#F(⟨Xe,Xn1
1 , . . . ,Xnm

m ⟩).

Notice that #F(⟨Xe,Xn1
1 , . . . ,Xnm

m ⟩) = n −∏
m
i=1(ni − ei), since there are n monomials

that are not multiple of Xn1
1 , . . . ,Xnm

m but we must also remove from that set the number
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of monomials that are not multiple of Xe. An illustration for the case m = 2 is shown

in Figure 1.4.

0 . . . e1 − 1 e1 . . . n1 − 1
0

⋮

e2 − 1

e2

⋮

n2 − 1

Figure 1.4: Shaded region representing F(⟨Xe,Xn1
1 ,Xn2

2 ⟩)

Therefore,

w(c) = w(evP (f)) = n −#V(I ′) ≥ n −#F(⟨Xe,Xn1
1 , . . . ,Xnm

m ⟩) =
m

∏
i=1
(ni − ei) = F(e).

We will frequently use the following result which follows from Proposition 1.3.9.

Corollary 1.3.10. Let CP∆ be an MCC and let d be its minimum distance. De�ne d0 ∶=

d0(C
P
∆) ∶=min{F(e) ∣ e ∈∆}. Then, d ≥ d0.

The above bound is attained in some cases:

Remark 1.3.11. With the above notation, given ∅ ≠∆ ⊆ E, de�neM∆ ∶= {X
e ∣ e ∈∆}.

According to [22, De�nition 3.1], a code CP∆ is named decreasing monomial-Cartesian

whenever

Xe ∈M∆ implies Xe′ ∈M∆ for all e′ ∈ E such that Xe′ divides Xe. (1.3.1)

By [22, Theorem 3.9], the values d and d0 corresponding to any decreasing MCC coincide.

De�nition 1.3.12. A set ∆ ⊆ E that satis�es Condition (1.3.1) is called decreasing.

Example 1.3.13. From now on when displayed in a picture the exponents in a set

∆ ⊆ E are coloured in blue. Figure 1.5 shows the case when m = 2, n1 = 8, n2 = 6

and ∆ = ({0,1,2} × {0,1}) ∪ {(0,2), (1,2)}. By Corollary 1.3.10 a lower bound for the

minimum distance of the code CP∆, for any P = P1 ×P2 ⊆ F2
Q, is d0 = d0(C

P
∆) =min{F(e) ∣

e ∈∆} = 28. Moreover, since ∆ is decreasing, d = d0 by Remark 1.3.11.

1.4. Locally recoverable codes

In large scale distributed and cloud storage systems, information is disseminated in

several nodes in a redundant form to ensure reliability against node failures causing loss
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48 42 36 30 24 18 12 6

40 35 30 25 20 15 10 5

32 28 24 20 16 12 8 4

24 21 18 15 12 9 6 3

16 14 12 10 8 6 4 2

8 7 6 5 4 3 2 1

0 1 2 3 4 5 6 7
0

1

2

3

4

5

Figure 1.5: Grid representation of E, where m = 2, n1 = 8, n2 = 6. In blue, the points in

∆ = ({0,1,2} × {0,1}) ∪ {(0,2), (1,2)}

of data. This is known as the repair problem, which nowadays is gaining importance

because of the growth of the amount of stored data. It is then required a reliable

storage so that, when a node fails or it is temporarily unavailable due to maintenance

or other reasons, the data it contains can be recovered by using information from other

nodes. A natural method consists of replicating the information across several nodes, but

protecting the data using error-correcting codes is a more clever method. This way locally

recoverable (or locally repairable) codes (LRCs) arise. They were introduced in [55] and

since we know the a�ected position we desire to repair erasures. Here we abuse language

by referring to positions as coordinates, following the terminology used in literature.

De�nition 1.4.1. An LRC is an error-correcting code such that any erasure in a coor-

dinate of a codeword can be recovered from a set of other few coordinates.

Keep the notation as in Section 1.2. Let C be an [n, k, d]Q code. A coordinate

i ∈ {1, . . . , n} is locally recoverable if there is a recovery set R ⊆ {1, . . . , n} with cardinality

r ∈ N and i ∉ R such that for any codeword c = (c1, . . . , cn) ∈ C, an erasure in the

coordinate ci of c can be recovered from the coordinates of c with positions in R. Let

us denote R ∶= R ∪ {i}. The locality of a coordinate is the smallest cardinality of a

recovery set for that coordinate. An LRC with locality r is an LRC such that every

coordinate is locally recoverable and r is the largest locality of its coordinates. Recall,

from Section 1.2, that πR ∶ Fn
Q → Fr

Q is the projection map on the coordinates of R and

C[R] = {πR(c) ∣ c ∈ C}. Next we give two important bounds on the locality of an LRC.

Proposition 1.4.2. Let r be the locality of an LRC C. Then, r ≥ d(C⊥) − 1.

Proof. Let n be the length of C and g1, . . . ,gn be the columns of a generator matrix of C.

Let i ∈ {1, . . . , n} be any coordinate. Let r0 ≤ r be the locality of i and set R a recovery

set for i with cardinality r0. Then, gi ∈ ⟨gl ∣ l ∈ R⟩. Notice that this is equivalent to

dim(C[R]) = dim(C[R]) and this shows that the notion of recovery set does not depend

on the generator matrix. Thus, there exists w = (w1, . . . ,wn) ∈ C
⊥, that is, ∑n

l=1wlgl = 0,

with wi ≠ 0 and wl = 0 for all l ∉ R. Therefore, r ≥ r0 =#R ≥ d(C
⊥) − 1.
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The parameters and locality of an LRC satisfy the following Singleton-like inequality

[55].

k + d + ⌈
k

r
⌉ ≤ n + 2.

When the equality holds, the code is called an optimal r-LRC.

The following result gives an equivalent condition of recovery set and motivates the

forthcoming de�nition.

Proposition 1.4.3. A set R ⊆ {1, . . . , n} is a recovery set for a coordinate i ∉ R if and

only if d(C[R]) ≥ 2.

Proof. By [105, Proposition 4.3.12] the minimum distance d′ of any code C′ with length n′

satis�es d′ ≥ d∗, (n′ >) d∗ being a �xed positive integer, if and only if, for all S ⊆ {1, . . . , n′}

with #S > n′ − d∗, we have dim(C′[S]) = dim(C′). The proof of Proposition 1.4.2 shows

that R is a recovery set for i if and only if dim(C[R]) = dim(C[R]). Then, the result

follows by taking C′ = C[R] and d∗ = 2.

By Proposition 1.4.3, if R is a recovery set for i, then d(C[R]) ≥ 2 and thus only

one erasure can be corrected (also only up to to one error can be detected). At the

beginning, locally recoverable codes were introduced by assuming that no erasures occur

in the coordinates πR(c) used to recover the desired one ci. The previous de�nition

covers this situation, but it is limited because erasures can also occur in πR(c). The fact

that simultaneous multiple device failures may happen leads us to the concept of LRCs

with locality (r, δ) (or (r, δ)-LRCs), introduced in [106].

De�nition 1.4.4. Let r and δ ≥ 2 be positive integers. A code C is locally recoverable

with locality (r, δ) if, for any coordinate i ∈ {1, . . . , n}, there exists a set of coordinates

R = R(i) ⊆ {1, . . . , n} such that:

1. i ∈ R and #R ≤ r + δ − 1; and

2. d(C[R]) ≥ δ.

Such a set R is called an (r, δ)-recovery set for i, and C an (r, δ)-LRC.

In this thesis we only consider this last type of locality. Sometimes, abusing the

notation, we will use locality r but understanding locality (r, δ) for some δ inferred from

the context. In this de�nition, r refers to the number of coordinates used to recover

another one and δ − 1 refers to the number of erasures that can occur in an (r, δ)-

recovery set. We remark that by de�nition one can speak about several localities (r, δ),

corresponding to the d(C)−1 values of δ = 2,3, . . . ,d(C), and that r is not necessarily the

minimum possible value. The second condition in De�nition 1.4.4 allows us to correct an

erasure at coordinate i plus any other δ − 2 erasures in R/{i} by using the remaining r

coordinates (also it allows us to detect an error at coordinate i plus any other δ−2 errors

in R/{i}). Notice that, when C is an LRC with locality (r, δ), the original de�nition
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of locality of C is ≤ r. In fact, any subset R ⊆ R such that #R = r and i ∉ R ful�lls

d(C([R]∪ {i})) ≥ 2. Thus, by Proposition 1.4.3, R is a recovery set for the coordinate i.

There is also a Singleton-like inequality for (r, δ)-LRCs:

Proposition 1.4.5. [106] The parameters [n, k, d]Q of an (r, δ)-LRC, C, satisfy

k + d + (⌈
k

r
⌉ − 1)(δ − 1) ≤ n + 1. (1.4.1)

A code C as above is called an optimal (r, δ)-LRC (or simply, an optimal LRC)

whenever equality holds in (1.4.1).

1.5. Sub�eld-subcodes

A Q-ary code C may have codewords with all their coordinates in a sub�eld FQ′ of

FQ. Sometimes we will be interested in the subcode consisting of such codewords.

De�nition 1.5.1. Let C be a Q-ary code with length n and FQ′ be a sub�eld of FQ.

The sub�eld-subcode S of C over FQ′ is the linear code S = C ∩ Fn
Q′ .

Suppose that Q = pl and Q′ = ph, where p is a prime and l and h are distinct positive

integers such that h ∣ l. Let [n, k, d]Q and [n′, k′, d′]Q′ be the parameters of C and S,

respectively. Obviously, n′ = n and d′ ≥ d. A parity-check matrix of S can be constructed

from a parity-check matrix of C. We start by replacing each entry by the l
h × 1 column

containing the coordinates of such an entry with respect a basis of FQ over FQ′ . The

resulting matrix is an l
h(n−k)×n matrix over FQ′ and, by deleting dependent rows, one

obtains a parity-check matrix of S. Then, the dimension of S satis�es n− l
h(n−k) ≤ k

′ ≤ k.

Furthermore, if C has a basis of codewords in Fn
Q′ , then it is also a basis of S and in such

case k′ = k [71, Section 3.8].

We recall the concept of trace map. It is a key tool to describe sub�eld-subcodes. This

map sends every element of FQ(= Fpl) into the sum of its conjugates over FQ′(= Fph):

tr ∶= trhl ∶ Fpl → Fph , trhl (x) = x + x
ph +⋯ + xp

h( l
h
−1)

.

Properties of �nite �elds imply that this map indeed evaluates in FQ′ because trhl (x)

is a root of the polynomial XQ′ −X. Moreover, tr is surjective and a nontrivial linear

functional on the vector space FQ over FQ′ , that is, tr
h
l (γ(α + β)) = γ tr

h
l (α) + γ tr

h
l (β)

for all α, β ∈ FQ and γ ∈ FQ′ .

We also de�ne another trace type map which will be useful:

tr ∶= trhl ∶ F
n
pl → Fn

ph , determined by trhl componentwise.

De�nition 1.5.2. The trace code of a Q-ary code C is the following linear code of length

n over FQ′ :

tr(C) ∶= trhl (C) ∶= {tr
h
l (c) ∣ c ∈ C}.
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We will omit the indexes l and h of the above maps and code when they are clear

from the context.

The following theorem by Delsarte [33] provides a relation between sub�eld-subcodes,

duality and trace map (see [71, Theorem 3.8.6]).

Theorem 1.5.3 (Delsarte). Let S be a ph-ary sub�eld-subcode of a pl-ary code C. Then

S⊥ = trhl (C
⊥).

Proof. Let c = (c1, . . . , cn) ∈ C
⊥ and let s = (s1, . . . , sn) ∈ S ⊆ C. Then, recalling that ⋅e

means Euclidean inner product,

tr(c) ⋅e s =
n

∑
i=1

tr(ci)si = tr(
n

∑
i=1
cisi) = tr(0) = 0,

by de�nition of c and s and the linearity of the trace functional. Then, tr(c) ∈ S⊥,

proving that tr(C⊥) ⊆ S⊥.

Now, we show that S⊥ ⊆ tr(C⊥) by proving that (tr(C⊥))⊥ ⊆ S. Let t = (t1, . . . , tn) ∈

(tr(C⊥))⊥ ⊆ Fn
ph

and then it su�ces to prove t ∈ C (or t ⋅ec = 0 for all c = (c1, . . . , cn) ∈ C
⊥).

For such a c, since αc ∈ C⊥ for all α ∈ Fpl , then

0 = t ⋅e tr(αc) =
n

∑
i=1
ti tr(αci) = tr(α

n

∑
i=1
tici)

by the linearity of the trace functional. Finally, ∑n
i=1 tici = 0 because, otherwise, we

would contradict the fact that the trace functional is nontrivial.

1.5.1. Sub�eld-subcodes of J-a�ne variety codes

J-a�ne variety codes were introduced in De�nition 1.3.4. The structure of J-a�ne

variety codes eases their management and allows us to provide some results on their

sub�eld-subcodes that will be useful in the forthcoming chapters.

Keep the notation of this section and Subsection 1.3.1. Consider a subset J ⊆

{1, . . . ,m}. Recall that it is used to detect the variables where 0 ∈ FQ is not evalu-

ated. Assume that the polynomials fj(Xj) generating the ideal I are of the form

fj(Xj) =X
nj

j − 1,

for some nj ∣ Q − 1 if j ∈ J , and

fj(Xj) =X
nj

j −Xj ,

where nj − 1 ∣ Q − 1, otherwise. Consider the J-a�ne variety code CP,J∆ and denote by

SP,J∆ ∶= CP,J∆ ∩ Fn
ph

its sub�eld-subcode over the �eld Fph . We de�ne another trace type map as follows:

T ∶= T h
l ∶R→R, T (f) = f + fp

h

+⋯ + fp
h( l

h
−1)

,

R being the quotient ring de�ned at the beginning of Subsection 1.3.1. Some of its

properties are listed below [43, Propositions 4 and 5].
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Proposition 1.5.4. Let f ∈R. Then,

1. T (af) = aT (f), for all a ∈ Fph.

2. T (f)p
h
= T (fp

h
) = T (f).

3. evP (T (f)) = tr(evP (f)).

4. f = T (g) for some g ∈R if and only if f evaluates to Fph.

Proof. The de�nition of the map T , properties of �nite �elds and the fact that R is a

quotient ring modulo I imply 1, 2 and 3.

To prove 4, suppose that f = T (g) for some g ∈R. Then, 2 implies

fp
h

= T (g)p
h

= T (g) = f

and thus for any α ∈ Fm
pl
, f(α)p

h
= f(α), so f(α) ∈ Fph . Reciprocally, suppose that

f evaluates to Fph . The fact that tr is surjective allows us to consider w ∈ Fn
pl

such

that evP (f) = tr(w). Let f ′ ∈ R be the class of an interpolating polynomial satisfying

evP (f
′) =w. Then, Item 3 implies

evP (T (f
′)) = tr(evP (f

′)) = evP (f)

and the fact that evP is an isomorphism gives f = T (f ′).

The above introduced set

E = {0,1, . . . , n1 − 1} × ⋅ ⋅ ⋅ × {0,1, . . . , nm − 1}

can be endowed with an additive and multiplicative structure which will allow us to

determine a basis for the sub�eld-subcode SP,J
∆ and a formula for its dimension. Notice

that, when j ∉ J , the evaluation of monomials containing X0
j or containing X

nj−1
j may

be di�erent, since when evaluating at zero X0
j ∣0 = 1 but X

nj−1
j ∣

0
= 0. This explains the

di�erence on the powers of the variables when equipping E with the following structure

which we will assume in the sequel. When j ∈ J , we identify the set {0,1, . . . , nj − 1}

of possible exponents of the variable Xj with the ring Z/njZ, because the identi�cation
X

nj

j − 1 = 0 gives the identi�cation on the exponents nj = 0. Otherwise, if j ∉ J , we

have the identi�cation X
nj

j −Xj = 0, then we can identify the set {1, . . . , nj − 1} with

Z/(nj − 1)Z, and extend the addition and multiplication in this ring to {0,1, . . . , nj − 1},

by setting 0 + e = e, 0 ⋅ e = 0 for all e = 0,1, . . . , nj − 1. Therefore,

{0,1, . . . , nj − 1} ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z/njZ, when j ∈ J,

{0} ∪Z/(nj − 1)Z, otherwise.

Notice that X0
j and X

nj−1
j have the same evaluation at all the elements of Pj with the

exception of zero.

Our next de�nition generalizes that of a cyclotomic coset, related to minimal polyno-

mials and cyclic codes, see for example [71]. It will allow us to obtain sub�eld-subcodes

of J-a�ne variety codes with the same dimension as the code they come from.
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De�nition 1.5.5. With the above identi�cation of the sets in the Cartesian product E,

a set Ω ⊆ E is called closed set (with respect to ph) if phω ∈ Ω for all ω = (ω1, . . . , ωm) ∈ Ω.

Minimal closed sets are those of the form

Λ = {phie ∣ i ≥ 0},

for some element e ∈ E. Notice that closed sets are union of minimal closed sets. For

each minimal closed set Λ, denote by a the minimum element in Λ with respect to the

lexicographic order in Nm
0 , that we �x, and set Λ = Λa and ca ∶=#Λa. Hence,

Λa ∶= {a, p
ha, . . . , ph(ca−1)a}.

Fixed an index j ∈ {1, . . . ,m}, if we replace E by {0,1, . . . , nj − 1}, the same de�nition

gives rise to sets Ωj ⊆ {0,1, . . . , nj − 1} (respectively, Λ
j ⊆ {0,1, . . . , nj − 1}) called closed

(respectively, minimal closed) sets in a single variable with respect to ph. Again, denoting

by a the minimum element in Λj , we set Λj = Λj
a.

Example 1.5.6. Assume that: (1) the number of variables is m = 3; (2) the �eld is F8

and we consider its sub�eld F2, so p = 2, h = 1, l = 3; (3) in each variable, the polynomials

are evaluated at all the elements in F8, thus J = ∅, n1 = n2 = n3 = 8; and (4) we pick the

exponent a = (1,4,5). Then, the set of possible exponents E = {0,1, . . . ,7}3 has the same

structure as ({0} ∪Z/7Z)3. The minimal closed set of a with respect to 2 is obtained from

a by succesive multiplications by 2 in each variable taking into account the identi�cation

8 = 1, and it equals Λa = {(1,4,5), (2,1,3), (4,2,6)} ⊆ E. The corresponding minimal

closed set in a single variable for j = 3 is the set Λj
3 = {3,5,6} ⊆ {0,1, . . . ,7}. It is

constructed like Λa but considering only the third coordinate of the exponents, where

{0,1, . . . ,7} is identi�ed with {0} ∪Z/7Z.

In addition, minimal closed sets constitute a partition of E. Let us denote

A ∶= {a0 < a1 < ⋯ < aν} ⊆ E

the ordered set of minimum elements of all minimal closed sets. Then,

E = ⋃
a∈A

Λa.

For any set ∆ ⊆ E, we de�ne A(∆) = {a ∈ A ∣ Λa ⊆∆}. We end by de�ning a last trace

type map. For an a ∈ A, let

T a ∶= T
h
a ∶R→R, T a(f) = f + f

ph +⋯ + fp
h(ca−1)

.

Now we are ready to state the main result of this subsection [47, Theorem 2.3], [43,

Theorem 4].
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Theorem 1.5.7. Keep the above notation. Let ∆ be a subset of E. For every a ∈ A(∆),

let ξa be a primitive element of Fphca . Then, the set

⋃
a∈A(∆)

{evP (T a(ξ
k
aX

a)) ∣ 0 ≤ k ≤ ca − 1}

is a basis of the sub�eld-subcode over Fph , S
P,J
∆ . In particular

dim(SP,J∆ ) = ∑
a∈A(∆)

ca

and, if ∆ is closed, then dim(SP,J∆ ) = dim(CP,J∆ ) =#∆.

Proof. We are going to prove that the set

S ∶= ⋃
a∈A
{T a(ξ

k
aX

a) ∣ 0 ≤ k ≤ ca − 1}

constitutes a basis of the vector space over Fph of elements in R evaluating to Fph . Then,

the facts

SP,J∆ = {evP (f) ∣ f ∈ ⟨S⟩, supp(f) ⊆∆},

for every a ∈ A and k ∈ {0, . . . , ca − 1}, supp(T a(ξ
k
aX

a)) = Λa, and the map evP is

linear imply that the set given in the statement of the theorem is a basis of SP,J∆ . The

statements on the dimension are straightforward. Let us prove our �rst statement on S

at the beginning of the proof.

Let us start by proving that S generates the vector space over Fph of elements f ∈R

evaluating to Fph . Recall that the polynomials we are using to represent classes in R are

representatives modulo I. First, let us see that when supp(f) ⊆ Λa for some a ∈ A, then

f ∈ ⟨T a(ξ
k
aX

a) ∣ 0 ≤ k ≤ ca − 1⟩. Indeed, since f
ph = f , there exists some α ∈ Fpl such that

f = ∑
ca−1
s=0 (αX

a)p
hs

. The fact that αphca = α implies α ∈ Fphca . Then, α = ∑
ca−1
k=0 βkξ

k
a,

with βk ∈ Fph for all k since {1, ξa, . . . , ξ
ca−1
a } is a basis of Fphca over Fph . Therefore,

f =
ca−1
∑
s=0

αphsXphsa =
ca−1
∑
s=0
(
ca−1
∑
k=0

βkξ
k
a)

phs

Xphsa

=
ca−1
∑
k=0

βk(
ca−1
∑
s=0

ξkp
hs

a Xphsa) =
ca−1
∑
k=0

βk T a(ξ
k
aX

a).

Now, assume that f is a general element in R evaluating to Fph and suppose that Xa1

is the monomial in f with smallest exponent with respect to the lexicographic order.

Then, by the above discussion, T a1(ξ
k1
a1
Xa1), for some k1 ∈ {0, . . . , ca1 −1}, must appear

in f because it evaluates to Fph . Since ξ
k1
a1
Xa1 is the term in f with smallest exponent,

then a1 ∈ A. Let f1 = f − T a1(ξ
k1
a1
Xa1) and let ξk2a2

Xa2 be the term in f1 with smallest

exponent. Again, T a2(ξ
k2
a2
Xa2) must appear in f1 and a2 ∈ A. We can then pick

f2 = f1 − T a2(ξ
k2
a2
Xa2) and repeat this procedure, that will �nish in a �nite number of

steps, to obtain the desired expression of f as a linear combination of elements in S.

It remains to prove that those elements in S are linearly independent. Indeed, this

holds for elements in S supported on di�erent minimal closed sets because they contain
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di�erent monomials. For elements supported on the same minimal closed set Λa, a ∈ A,

we reason by contradiction. If ∑
ca−1
k=0 βk T a(ξ

k
aX

a) = 0 with βk ∈ Fph for all k, then the

coe�cient of Xa in such expression is β0+β1ξa+⋯+βca−1ξ
ca−1
a and it must vanish. This

contradicts the fact that the minimal polynomial of ξa has degree ca.

The next result will be useful for studying LRCs. It shows that, when ∆ is closed,

the operators on a J-a�ne variety code �taking its projection� and �taking its sub�eld-

subcode� commute. Recall, from Section 1.4, that the projection map Fn
Q → Fr

Q on the

coordinates of a subset R ⊆ {1, . . . , n} of cardinality r is denoted by πR.

Proposition 1.5.8. With the above notation, let R ⊆ {1, . . . , n}. If ∆ ⊆ E is closed,

then πR(S
P,J
∆ ) = πR(C

P,J
∆ ) ∩ F

#R
ph

.

Proof. First we prove that SP,J∆ = tr(CP,J∆ ). By Proposition 1.5.4, the following chain of

equalities holds:

tr(CP,J∆ ) = {tr(c) ∣ c ∈ C
P,J
∆ } = {tr(evP (f)) ∣ f ∈R, supp(f) ⊆∆}

= {evP (T (f)) ∣ f ∈R, supp(f) ⊆∆}

= {evP (T (f)) ∣ f ∈R, supp(T (f)) ⊆∆} = S
P,J
∆ .

(1.5.1)

Notice that the last but one equality is true because ∆ is closed. Now de�ne

tr′ ∶ F#R
pl
→ F#R

ph
,

determined by trhl componentwise. Then,

πR(C
P,J
∆ ) ∩ F

#R
ph
= tr′(πR(C

P,J
∆ )).

Finally consider any element in SP,J∆ , tr(c), c ∈ CP,J∆ . Then, the fact that the maps tr

and tr′ are de�ned componentwise implies πR(tr(c)) = tr′(πR(c)), which proves the

result.

We conclude this chapter with a result for the case when m = 1, J = {1} and ∆ is

a union of minimal closed sets whose representatives are consecutive and start at the

smallest one. We show that we can bound the minimum distance of the dual of the

sub�eld-subcode by considering the BCH approach.

Proposition 1.5.9. Keep the above notation, particularly that around Example 1.5.6.

Assume that m = 1 and J = {1}. Let τ be a positive integer such that τ < ν and let

∆ = Λa0 ∪Λa1 ∪⋯ ∪Λaτ ⊆ E.

Then,

d((SP,J∆ )
⊥
) ≥ aτ+1 + 1.
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Proof. First, notice that

d((CP,J∆ )
⊥
) ≥ aτ+1 + 1

by Proposition 1.2.8, since ∆ contains aτ+1 consecutive elements (a0 = 0, a1 = 1, . . . ,

aτ+1 − 1) and a parity-check matrix of (CP,J∆ )
⊥
contains a Vandermonde matrix of rank

aτ+1. Setting n ∶= n1, α ∈ FQ a primitive n-th root of unity and

∆⊥ ∶= {0,1, . . . , n − 1}/{n − e ∣ e ∈∆},

where each element before represents a class in Z/nZ, it holds that (CP,J∆ )
⊥
= CP,J∆⊥ because

for any e, e′ ∈ {0,1, . . . , n − 1}, we have

evP (X
e) ⋅e evP (X

e′) =
n−1
∑
i=0

αi(e+e′) = 0

if and only if e + e′ ≢ 0 mod n. Notice that ∆⊥ is closed because ∆ so is. Then,

Theorem 1.5.3 and Equalities (1.5.1) in Proposition 1.5.8 prove

(SP,J∆ )
⊥
= trhl ((C

P,J
∆ )

⊥
) = trhl (C

P,J
∆⊥ ) = S

P,J
∆⊥ .

Therefore, the fact that SP,J∆⊥ ⊆ C
P,J
∆⊥ implies

d((SP,J∆ )
⊥
) ≥ d(CP,J∆⊥ ) ≥ aτ+1 + 1,

which concludes the proof.
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Chapter 2

Quantum error-correcting codes

The second chapter in Part I introduces quantum error-correcting codes, we will

construct codes of this type in Chapters 4 and 5 of Part III of this thesis. Our quantum

codes are always stabilizer ones and thus the most relevant section of this chapter is

Section 2.3. For completeness we give an overall idea of the basics of quantum mechanics

with the aim that the construction and properties of these codes become understandable.

A substantial part of the results and notation of this chapter will not be used in what

remains. We only desire to give a fast-reading introduction of the underlying matter.

The main references for this chapter are [104, 65, 58, 75, 10, 57, 73, 6].

Some companies a�rm to have primitive quantum computers and the simple existence

of the Shor algorithm of factorization of positive integers on a quantum computer in a

polynomial time [113], breaking the RSA public-key system, shows the huge potential of

this computers.

However there is a big di�erence between classical and quantum computers. For

a start a (classical) bit only has the states 0 or 1, but the quantum bit (or qubit, for

short) can be in a superposition of these states. Moreover, when considering multi-

ple qubits, there exist entangled states; they are those that cannot be written as the

product of the states of each single qubit. Additionally, quantum computers are more

prone to errors compared to modern classical digital computers. This susceptibility is

due to the delicate and challenging nature of controlling quantum mechanical systems.

Classical error-correction techniques rely on the assumption that all bits in a computer

can be measured and this cannot be directly applied to quantum computers. In clas-

sical digital computers, to prevent small errors from accumulating into larger ones, the

hardware resets the bit to the nearer value of 0 or 1 at each time step. However, this

approach cannot be employed in quantum computers because entangled states would be

disrupted if a continuous measurement of each qubit was made. Classical error-correction

techniques to correct sequences of bits cannot neither be similarly applied on quantum

codes. Furthermore, unlike classical, quantum information is unclonable [128].

Thus, quantum error-correcting codes demand a somewhat di�erent approach. The

�rst quantum error-correcting codes were discovered by Shor [112] and Steane [118]. We

will work with the widely used class of stabilizer codes.

45
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First we introduce some basics of quantum mechanics to understand the setting of

quantum codes.

2.1. A basic introduction to quantum mechanics

Quantum mechanics serves as a framework to describe the laws governing a physical

system. This theory was formulated in the period 1925�1926 supported in the works of

Heisenberg, Schrödinger, and Born. It emerged in response to a series of experiments

that aimed at reconsidering the existing physical theories. They gave rise to new concepts

such as the wave-particle duality and the probabilistic behavior of particles, making the

principles of quantum mechanics seem counterintuitive.

According to these experiments, every particle is associated with a wave function

that determines the probability of �nding the particle in a certain position, but this

wave function behavior cannot be observed directly on the particle because everytime

one examines its position, it does not change. This behavior is exhibited, for example,

in the double-slit experiment.

Wave functions can be understood as elements in a Hilbert space, where the tools of

linear algebra can be applied. A wave function corresponds to a complex-valued function

which indicate the probabilities of the system to be in a certain basis state. This function

evolves in continuous time as a wave function by the Schrödinger equation, from which

the discrete time version given in Postulate 2 is derived.

Next we present the basic postulates of quantum mechanics, which provide a connec-

tion between the physical world and its mathematical formalism.

2.1.1. Postulates of quantum mechanics

We follow [104, 65] for stating the postulates of quantum mechanics.

The �rst postulate establishes how to describe the system under analysis. We under-

stand by system a portion of the physical universe chosen for study in such a way that

everything outside that portion is regarded as external to the system, and its e�ects are

not taken into consideration.

Postulate 1: State space Associated to any isolated physical system there is a com-

plex vector space with inner product (a Hilbert space) known as the �state space� of the

system. The system is completely described, at a �xed time, by its �state vector�, which

is a unit vector in the system's state space.

In quantum mechanics we work with complex �nite-dimensional Hilbert spaces, de-

noted H = Cr, 1 ≤ r ∈ N, and we use the bra-ket notation for the quantum states, in-

troduced by Paul Dirac in 1958. In quantum mechanics, a column vector in the Hilbert

space is denoted by ∣v⟩ ∈H; an inner product of two vectors ∣v⟩, ∣w⟩ ∈H is written ⟨v ∣w⟩,

the conjugate of z ∈ C is denoted by z∗ and the modulus of z is denoted by ∣z∣.

Recall that an inner product on H is a map ⟨⋅ ∣ ⋅⟩ ∶H ×H → C such that it is:
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Conjugate linear on the left: ⟨c1v1+c2v2 ∣w⟩ = c
∗
1⟨v1 ∣w⟩+c

∗
2⟨v2 ∣w⟩, for all c1, c2 ∈ C,

v1, v2, w ∈H;

Linear on the right: ⟨v ∣ c1w1 + c2w2⟩ = c1⟨v ∣w1⟩ + c2⟨v ∣w2⟩, for all c1, c2 ∈ C,
v, w1, w2 ∈H;

Hermitian: ⟨v ∣w⟩ = ⟨w ∣ v⟩∗, for all v, w ∈H;

Positive de�nite: ⟨v ∣ v⟩ ∈ R with ⟨v ∣ v⟩ ≥ 0, and ⟨v ∣ v⟩ = 0 if and only if v = 0, for

all v ∈H.

The bra-ket notation is related with the inner product. Given a vector or ket ∣v⟩, its

bra ⟨v∣ is de�ned as its conjugate transpose. An inner product of ∣v⟩ = (v1, . . . , vr)
⊺ and

∣w⟩ = (w1, . . . ,wr)
⊺, with coordinates in an orthonormal basis, is the following:

⟨v ∣w⟩ ∶= ⟨v∣∣w⟩ = (v∗1 , . . . , v
∗
r )(w1, . . . ,wr)

⊺∶=v∗1w1 +⋯ + v
∗
rwr.

Quantum mechanics does not specify the state space nor the system's state vector.

An interpretation derived from Postulate 1 is that quantum systems have a probabilistic

nature. Denoting by {∣ei⟩ ∣ i = 1, . . . , r} an orthonormal basis of H, state vectors are unit

vectors (∣v⟩ such that ⟨v ∣ v⟩ = 1), and they satisfy

∣v⟩ =
r

∑
i=1
vi∣ei⟩, vi ∈ C,

r

∑
i=1
v∗i vi = 1.

It indicates that the system is in the state ∣ei⟩ with probability ∣vi∣
2 = v∗i vi, i = 1, . . . , r.

When some vi ≠ 1 it is also said that the system is in a superposition of states. Taking

the atom model as an example, r = 2 and the electron can be in the ground or excited

state, which we denote by ∣0⟩ and ∣1⟩, respectively, see Figure 2.1. By shining light on

the atom, it is possible to move the electron from one state to the other and even into

the state ∣+⟩ ∶= 1√
2
∣0⟩ + 1√

2
∣1⟩.

Figure 2.1: Instance of the qubit as two states of an electron orbiting an atom [104]

The second postulate describes the evolution of the system as time evolves, prescrib-

ing the change of state.

Postulate 2: Evolution The evolution of a closed quantum system is described by a

unitary transformation. That is, the state ∣v⟩ of the system at time t1 is related to the
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state ∣v′⟩ of the system at time t2 by a unitary operator U which depends only on the

times t1 and t2,

∣v′⟩ = U ∣v⟩.

Again, quantum mechanics only assures that one can describe the evolution of such

a system in that way, without specifying which unitary operators U represent quantum

dynamics.

Next we recall the de�nition of unitary operator. Let A be an operator, i.e., endo-

morphism A of H. Usually, we denote ∣Av⟩ ∶= A∣v⟩.

De�nition 2.1.1. Let A be an operator of H. The adjoint or (Hermitian) conjugate

operator of A, denoted by A�, is the unique [7] operator A� of H such that, for all

∣v⟩, ∣w⟩ ∈H,

⟨v ∣Aw⟩ = ⟨A�v ∣w⟩.

An operator A is called Hermitian or self-adjoint if A� = A.

The associated matrix A� to the adjoint operator is constructed by conjugating the

entries and transposing the associated matrix A of the operator, i.e., A� = (A∗)⊺. As said,

for a vector ∣v⟩ ∈H, ∣v⟩� = ⟨v∣. A matrix has real eigenvalues i� it is Hermitian. Moreover,

if A is Hermitian, there exists an orthonormal basis of H consisting of eigenvectors of A,

so A is diagonalizable. Indeed, this result is more general, and holds for normal operators

[66, Section 8.5, Theorem 22]. An operatorA ofH is called normal ifAA� = A�A. Clearly,

Hermitian operators are normal.

A normal (or, particularly, Hermitian) operator A can be written as a linear combi-

nation of pairwise orthogonal projections (to the eigenspaces) whose coe�cients are the

corresponding eigenvalues. This linear combination is called the spectral decomposition

of A [66, Section 9.5, Theorem 9]. Given a subspace V of H with orthonormal basis

{∣e′i⟩ ∣ i = 1, . . . , r
′}, the projection onto V is the following Hermitian operator:

P ∶= PV ∶H → V, ∣v⟩↦
r′

∑
i=1
⟨e′i ∣ v⟩∣e

′
i⟩.

Two projections are said to be orthogonal whenever their images are orthogonal spaces.

The projection onto the orthogonal complement of V , V ⊥, is the operator P ⊥ ∶= I − P ,

where I denotes the identity.

De�nition 2.1.2. An operator U of H is called unitary if U �U = UU � = I.

Equivalently, the associated matrices to the operators (with respect to some basis

of H) satisfy the above condition. Unitary operators are normal and preserve inner

products, that is, given ∣v⟩, ∣w⟩ ∈H,

⟨Uv ∣Uw⟩ = ⟨U �Uv ∣w⟩ = ⟨v ∣w⟩,

by de�nition of adjoint operator. In quantum mechanics, unitary operators produce

change of basis and map orthonormal bases to orthonormal bases. Notice that applying

unitary operators on H does not contradict Postulate 2.
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The subsequent postulate addresses the in�uence of an external entity on the system

itself, particularly the outcome of measuring the system, that is, extracting information

from it. An observable refers to any measurable property of a system. Here, we present

a restrictive version of the third postulate, which employs projective measurements (a

speci�c instance of the general postulate) because it is commonly used in quantum com-

puting. This version emphasizes that the measurement device should possess �favourite�

states forming an orthonormal basis in the state space, and the result of the measurement

will be one of these designated �favourite� states. As a consequence of this postulate, in

quantum mechanics one cannot directly observe the state vector of a system, since it will

generally change as a result of the invasive character of the measurement.

Postulate 3: Measurement A projective measurement is described by an observable,

M , a Hermitian operator on H. Thus, this operator has a spectral descomposition

M =∑
m

mPm,

where m denotes the eigenvalues of the operator M and Pm denotes the projection on

the eigenspace of eigenvalue m. The possible results of the measurement correspond to

the eigenvalues m of the observable M . If the system is in state ∣v⟩ just before the

measurement, the probability of obtaining the result m is

⟨v∣Pm∣v⟩

and the state of the system after the measurement will be

Pm∣v⟩
√
⟨v∣Pm∣v⟩

.

We conclude this section by stating the last postulate which describes the state space

of a quantum system composed by several di�erent physical systems.

Postulate 4: Composite systems The state space of a composite physical system is

the tensor product of the state spaces of the component physical systems. Moreover, if we

have systems numbered 1 through n, and system number i is prepared in the state ∣vi⟩,

then the joint state of the total system is ∣v1⟩⊗⋯⊗ ∣vn⟩.

For example, given two quantum systems of state spaces H1 = Cr1 , H2 = Cr2 , with

respective bases

{∣ei⟩ ∣ i = 1, . . . , r1}, {∣e′j⟩ ∣ j = 1, . . . , r2},

there is an isomorphism of vector spaces between Cr1 ⊗ Cr2 and Cr1r2 , and a basis of

Cr1 ⊗Cr2 is

{∣ei⟩⊗ ∣e
′
j⟩ ∣ i = 1, . . . , r1, j = 1, . . . , r2}.

Then an element in H1 ⊗H2 is written as

∣v⟩ =∑
i,j

aij ∣ei⟩⊗ ∣e
′
j⟩,
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where aij ∈ C. If A and B are operators of H1 and H2 respectively, we can de�ne the

operator A⊗B of H1 ⊗H2 as

A⊗B
⎛

⎝
∑
i,j

aij ∣ei⟩⊗ ∣e
′
j⟩
⎞

⎠
=∑

i,j

aijA∣ei⟩⊗B∣e
′
j⟩.

An inner product on H1 ⊗ H2 can be derived from inner products on H1 and H2 as

follows. Consider

∣w⟩ =∑
k,l

bkl∣ek⟩⊗ ∣e
′
l⟩

in H1 ⊗H2 and then

⟨v ∣w⟩ = ∑
i,j,k,l

a∗ijbkl⟨ei ∣ ek⟩⟨e
′
j ∣ e
′
l⟩.

A quantum state ∣v⟩ in a composite system that cannot be descomposed as a product

∣v⟩ = ∣v1⟩ ⊗ ⋯ ⊗ ∣vn⟩ of states of the component systems is called an entangled state.

Otherwise, it is called a separable state. For instance, an entangled state is the two qubit

state
1
√
2
(∣0⟩⊗ ∣0⟩ + ∣1⟩⊗ ∣1⟩),

while a separable state is the two qubit state

1
√
2
(∣0⟩⊗ ∣0⟩ + ∣0⟩⊗ ∣1⟩) = ∣0⟩⊗

1
√
2
(∣0⟩ + ∣1⟩).

Entangled states are generally quite delicate and a measurement on one of them usually

makes it collapse into a �less� entangled state. Minor interactions with the environment

act as a continuous form of measurement on the system, and as the system becomes larger

(the number of tensor components grows), these interactions become more di�cult to

ignore. Consequently, the system undergoes decoherence and tends to resemble a classical

system, being this the cause of the classical appearance of the world at a human scale.

2.2. Quantum error-correcting codes

2.2.1. Generalities

In this subsection we brie�y revise detection and correction of quantum codes. Sub-

section 2.2.2 introduces an error model and a speci�c and useful class of error-correcting

codes is given in the forthcoming Section 2.3.

In classic computation, a unit of information (or bit), has only two possible states:

0 and 1. A unit of quantum information, (or quantum bit, or qubit) can be thought

as a physical system of �two� states, which correspond to those of the classical bit, ∣0⟩

and ∣1⟩, and they form an orthonormal basis of the Hilbert space representing the qubit.

Following the �rst postulate of quantum mechanics, a qubit's state ∣v⟩ is a unit vector

in C2. Thus, it is a linear combination

∣v⟩ = v1∣0⟩ + v2∣1⟩,
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where v1, v2 ∈ C are such that ∣v1∣
2+ ∣v2∣

2 = 1. A qubit is in a continuum of states between

∣0⟩ and ∣1⟩ until one observes it, getting either the result 0 with probability ∣v1∣
2 or the

result 1 with probability ∣v2∣
2. The normalization ensures that the probability of getting

some result is exactly 1. A quantum computer with n qubits is represented by states in

the 2n-dimensional Hilbert space C2⊗
n)
⋯ ⊗C2.

There is ongoing work to develop quantum computers which can manipulate qudits,

the generalization of qubits, i.e., quantum states in r-dimensional Hilbert spaces Cr,

r ≥ 2. Here we will consider quantum error-correcting codes dealing with qudits for

r = Q, a prime power, because it allows us to take advantage of the structure of �nite

�elds. As in Chapter 1, we use a capital letter Q to denote the cardinality of a �nite

�eld FQ, that will become some power of q in the following chapters. The vectors of an

orthonormal basis of CQ will be denoted by the elements of FQ: ∣x⟩, x ∈ FQ.

De�nition 2.2.1. Set 1 ≤ l, n ∈ N and let Q be a prime power. A quantum error-

correcting code (QECC ) is a linear subspace Q of CQn
= CQ⊗

n)
⋯ ⊗CQ.

We notice that some authors consider a more general case where a QECC is not im-

posed to be linear. QECCs are designed to protect quantum information from errors due

to decoherence or other quantum noise, for example that produced by the faulty quan-

tum gates. We describe the errors (also called error operators) by means of operators as

those described in Subsection 2.1.1. We assume that errors are unitary by the argument

we will give in the paragraph before Theorem 2.2.2, unless speci�ed otherwise. Also, the

encoding of quantum states into a QECC is made by means of a unitary operator.

Quantum information is rather di�erent from classical information what makes new

ideas should be introduced for error-correction. Following [104] (see also [10, 58]), three

challenges have to be overcome for a reliable quantum correction:

No cloning. Since an arbitrary quantum state cannot be cloned [128], to perform

quantum error correction, unlike the classical setting, one cannot create redundancy

by making copies of a quantum state.

Measurement disturbance. In classical error-correction, in order to apply a de-

coding procedure, syndromes are obtained to acquire information about the er-

ror produced. However, in quantum mechanics syndromes observation alteres the

quantum state.

Errors are continuous. When manipulating classical information, errors are dis-

crete, but in the quantum world the set of errors that may occur on a single qudit

is continuous.

Thus, one desires to have a suitable syndrome measurement to diagnose the type of

error occurred without knowing any information stored in the encoded state (so as not to

disturb the superposition of quantum information). The idea is that when the syndromes

are computed, all states in the code space Q remain the same and erroneous states (in
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EQ for errors E) are changed in a way that can be reversed. Then, a unitary correction

based on the syndrome (E� if E is observed) is applied with the aim of returning the

erroneous state to the original state in Q. In addition, the fact that nonorthogonal

states are not distinguishable [104] leads one to think that, in order that the syndrome

measurement allows us to distinguish di�erent errors, a QECC should be de�ned (as a

linear subspace of some larger Hilbert space) so that the di�erent errors it is intended to

detect move encoded states into orthogonal subspaces (among them) of the Hilbert space.

Furthermore, these subspaces should be undeformed with respect to the code space Q,

that is, orthogonal codewords are mapped by errors into orthogonal states, and thus can

be corrected. See Figure 2.2 (taken from [104]) for an illustration of this phaenomenon.

The syndrome measurement works by projecting the state into one of these subspaces

so that the one that is observed will determine the unitary correction applied to recover

the original state.

Figure 2.2: Two codes in a Hilbert space: (A) A not desired code Q, with non-orthogonal,

deformed �error� subspaces Ai ∶= EiQ; (B) A desired code, with orthogonal, undeformed

subspaces [104]

The conditions discussed in the above paragraph are su�cient but not necessary for

a QECC to be able to correct errors. To do it in a generic situation, the forthcoming

Theorem 2.2.2 determines necessary and su�cient conditions. Next we describe the

generic situation where Theorem 2.2.2 works [75]. The measurement that one applies

to control whether a state is in the QECC Q is the pair P and P ⊥ of projections onto

Q and Q⊥, respectively. A (non necessarily unitary) error E is said to be detectable by

the QECC Q if, for all ∣v⟩ ∈ Q, it holds that PE∣v⟩ = cE ∣v⟩ for some cE ∈ C, that is,
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codewords a�ected by E do not change excepting to get a multiple only depending on

E. Other two equivalent conditions for detectability are the following:

PEP = cEP , for some cE ∈ C

and

for all ∣v⟩, ∣w⟩ ∈ Q, it holds that ⟨v∣E∣w⟩ = cE⟨v ∣w⟩, for some cE ∈ C.

A set E of (non necessarily unitary) error operators is said to be correctable by the

QECC Q if there exists a decoding procedure for E . Notice that this de�nition involves a

set of errors, while that of detectability only considers individual errors. This is because

one must be able to distinguish among the errors to determine which one ocurred and

therefore correct it.

Next we give a characterization of the sets E = {Eγ}γ≥1 of error operators that are

correctable. A necessary and su�cient condition for E to be correctable is the existence of

a linear transformation of the set E such that the images E′γ of Eγ satisfy two properties.

First, the spaces E′γQ are orthogonal between them and second, the restriction of E′γ
to Q is a scalar multiple of the restriction to Q of a unitary operator. Moreover, this

characterization implies (i) each restriction of (E′γ)
�
E′γ to Q is a scalar multiple to the

identity operator on Q and (ii) the spaces (E′µ)
�
E′γQ, µ ≠ γ, and Q are orthogonal.

This means that the errors (E′µ)
�
E′γ are detectable, and the fact that detectability is

preserved under linear combinations provide conditions of correctability of E which we

state in the following Theorem 2.2.2. They were found by Knill and La�amme [74] and by

Bennett et al. [14]. Here we give a similar statement to [10, Theorem 1.5], an equivalent

one can be found in [75, Theorem 7] or [104, Theorem 10.1].

Theorem 2.2.2 (Knill-La�amme conditions). A QECC Q is able to correct a set E of

(non necessarily unitary) error operators if and only if for all ∣v⟩, ∣w⟩ ∈ Q and Eµ, Eγ ∈

E, it holds that

⟨v∣E�
µEγ ∣w⟩ = cµγ⟨v ∣w⟩,

for some cµγ ∈ C.

The situation discussed in the paragraph before Figure 2.2 (orthogonal error sub-

spaces and orthogonality preservation by errors) corresponds to the particular cases in

Theorem 2.2.2 where cµγ = 0 for all indices µ ≠ γ and when ⟨v ∣w⟩ = 0. However, Knill-

La�amme conditions leave room for the case where two di�erent errors have the same

e�ect on the code Q. That is, these conditions do not impose that di�erent errors map

the same codeword to di�erent subspaces. This fact is allowed by the superposition

principle of quantum mechanics but it cannot occur in classical error-correction. Let

us complete this information. Let Eµ, Eγ ∈ E be di�erent errors such that EµQ and

EγQ are not orthogonal. Suppose that a codeword ∣v⟩ ∈ Q was a�ected by Eµ, so let

∣v′⟩ = Eµ∣v⟩, but we measure whether ∣v′⟩ is in EγQ, in order to determine if ∣v⟩ was

instead a�ected by Eγ . This would disturb ∣v′⟩ unless ∣v′⟩ collapsed to the state Eγ ∣v⟩

(that is, cµγ ≠ 0), and in this case ∣v′⟩ can be corrected as though Eγ had happened.
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2.2.2. A quantum error model

In this subsection, we show an error model to represent errors acting locally on a

quantum system. Other equivalent de�nitions can be provided, we follow the approach

of the seminal paper [73]. We will work under the scenario that noise a�ects qudits

independently, since it is often a good approximation, although there are errors which

cannot be described by a product of errors in individual qudits.

We also notice an important fact concerning the third challenge indicated in pg 51.

Despite the set of quantum errors is continuous, it can be discretized. Then, to correct

all the continuum of errors that may occur on a single qudit it is enough to correct the

discrete subset of errors that span the continuum. This is a consequence of the linearity

of quantum mechanics [60, Theorem 2], [82].

The following notations and results will be used in the next subsection devoted to

stabilizer codes. Recall that Q is a power of a prime p and that, in Section 1.5, we

denoted by tr1l =∶ tr the trace map from the extension �eld FQ to the prime �eld Fp. Set

ω ∶= e
2πi
p ∈ C. As mentioned before, {∣x⟩ ∣ x ∈ FQ} denotes an orthonormal basis of CQ.

Let a, b ∈ FQ. We de�ne the unitary error operators on CQ (in a single qudit) that

correspond, respectively, with qudit �ip and phase shift errors:

X(a) ∶ CQ → CQ, X(a)∣x⟩ = ∣x + a⟩,

and

Z(b) ∶ CQ → CQ, Z(b)∣x⟩ = ωtr(bx)∣x⟩.

We de�ne the set of (unitary) error operators on CQ as

E1 ∶= {X(a)Z(b) ∣ a, b ∈ FQ}.

Regarding the elements in E1 as matrices in the mentioned basis, it holds that E1 is a

(nice error) basis of the vector space of complex Q×Q matrices. Notice that the identity

operator is also considered as an �error�. The following result describes the product of

elements in E1.

Proposition 2.2.3. Let a, b, a′ and b′ be elements in FQ. Then,

X(a)Z(b)X(a′)Z(b′) = ωtr(a′b)X(a + a′)Z(b + b′).

Proof. The equalities

X(a)Z(b)∣x⟩ = ωtr(bx)X(a)∣x⟩ = ωtr(bx)∣x + a⟩

and

Z(b)X(a)∣x⟩ = Z(b)∣x + a⟩ = ωtr(b(x+a))∣x + a⟩

prove ωtr(ab)X(a)Z(b) = Z(b)X(a) and thus the result holds.
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We can consider tensor products of n error operators as above to get an error basis

on CQn
. Indeed, given a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ Fn

Q, we de�ne the error

operators on CQn
:

X(a) ∶=X(a1)⊗⋯⊗X(an)

and

Z(b) ∶= Z(b1)⊗⋯⊗Z(bn),

and the set of error operators on CQn

En ∶= {X(a)Z(b) ∣ a, b ∈ Fn
Q}.

En (whose elements we regard as matrices) is a (nice error) basis of the vector space of

complex Qn×Qn matrices. The coordinates of the vectors a, b ∈ Fn
Q indicate, respectively,

the occurred qudit �ip or the phase shift error.

De�nition 2.2.4. The error group Gn associated with En is the group of operators

generated by En with respect to the product. By Proposition 2.2.3,

Gn = {ω
cX(a)Z(b) ∣ a, b ∈ Fn

Q, c ∈ Fp}.

The following two de�nitions are used to de�ne the minimum distance of Q. Given

two vectors a, b ∈ Fn
Q, we denote (a ∣ b) ∶= (a1, . . . , an, b1, . . . , bn) ∈ F

2n
Q .

De�nition 2.2.5. The symplectic weight sw of a vector (a ∣ b) ∈ F2n
Q is

sw((a ∣ b)) ∶=#{i ∈ {1, . . . , n} ∣ (ai, bi) ≠ (0,0)}.

Theminimum symplectic weight of a subset of F2n
Q is the minimum value of the symplectic

weights of its elements.

De�nition 2.2.6. The number of nonidentity tensor components of an error E =

ωcX(a)Z(b) ∈ Gn is called the weight of E and it is denoted w(E). In fact

w(E) ∶= sw((a ∣ b)).

Notice that the weight of a scalar multiple of the identity operator I equals 0.

De�nition 2.2.7. The minimum distance of a quantum code Q is the smallest weight

of the errors in Gn that Q does not detect.

Notice that if Q has minimum distance d, then it detects all errors in Gn of weight

less than d and corrects all errors in Gn of weight ⌊d−12 ⌋ or less. This is because, given

E1, E2 ∈ Gn, the weight of E
�
1E2 is at most w(E1) +w(E2). A quantum code Q ⊆ CQn

with dimension K and minimum distance d is said to be an ((n,K, d))q code. If K = Q
k

it is also called an [[n, k, d]]Q code. Some authors only use the bracket notation for

stabilizer codes.

In order to compare di�erent quantum codes one may use the length extension, subcode

and smaller distance propagation rules, as stated in [89] for example. We therefore say

that a quantum [[n, k, d]]Q code beats a quantum [[n′, k′, d′]]Q code if at least one of

the following holds:
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n < n′ and k = k′ and d = d′ (length extension);

n = n′ and k > k′ and d = d′ (subcode);

n = n′ and k = k′ and d > d′ (smaller distance).

In other words, decreasing n, or increasing k or d, while keeping other parameters �xed,

results in a better code. This is well known, see [89] for example, where the authors say

that �... all other parameters being equal, we record the smallest n, the largest k, the

largest d, ...�.

For detection of errors purposes, it is useful to know which elements in Gn commute.

The following proposition characterizes them. First we need to de�ne the trace-symplectic

form of two vectors (a ∣ b), (a′ ∣ b′) ∈ F2n
Q . It is de�ned as follows.

⋅s ∶ F2n
Q × F

2n
Q → Fp, (a ∣ b) ⋅s (a

′ ∣ b′) = tr(b ⋅e a
′ − b′ ⋅e a).

Proposition 2.2.8. Let E = ωcX(a)Z(b) and E′ = ωc′X(a′)Z(b′) be two elements in

the error group Gn. Then,

EE′ = ωtr(b⋅ea′−b′⋅ea)E′E.

Therefore they commute if and only if (a ∣ b) ⋅s (a
′ ∣ b′) = 0.

Proof. Proposition 2.2.3 and the properties of the trace map tr imply that

EE′ = ωtr(b⋅ea′)X(a + a′)Z(b + b′)

and

E′E = ωtr(b′⋅ea)X(a + a′)Z(b + b′).

Hence, ωtr(b⋅ea′−b′⋅ea)E′E = EE′.

We end Part I, devoted to preliminaries, by introducing stabilizer codes, an important

class of QECCs that can be developed from the theory of classical codes.

2.3. Stabilizer codes

Stabilizer (quantum) codes, which are also named additive quantum codes, were

de�ned by Gottesman [57]. They are a class of QECCs which takes advantage of the

fact that, in the quantum setting, nontrivial error operators may have no e�ect on the

encoded state. These codes are designed to protect the encoded states against most

common errors (since no code can protect against all possible errors). Stabilizer codes

have two main virtues. On the one hand, many quantum states (and quantum codes)

are described more easily by working with their stabilizer operators than with their own

states. On the other hand, stabilizer codes work in an e�cient way because of their

connection with classical codes. Most of the known QECCs are stabilizer codes.
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De�nition 2.3.1. A stabilizer code Q is a nontrivial subspace of CQn
which is the

intersection of the eigenspaces with eigenvalue 1 corresponding to the elements of an

abelian subgroup S of the error group Gn:

Q = ⋂
E∈S
{∣v⟩ ∈ CQn

∣ E∣v⟩ = ∣v⟩}.

The subgroup S is called the stabilizer of Q.

De�nition 2.3.2. A stabilizer code is pure to a positive integer t if its stabilizer does

not contain errors other than identity of weight less than t, and it is pure if it is pure to

its minimum distance.

Let us denote by Z(Gn) the center of the group Gn, by CGn(S) the centralizer of

the subgroup S in Gn and by SZ(Gn) the group generated by S and Z(Gn). An error

E ∈ SZ(Gn) is a scalar multiple of some element in S, since Z(Gn) consists of the scalar

multiples of I. Then, the restriction of E to Q equals cEI for some scalar cE ∈ C and

therefore E is detectable. When an error E ∈ Gn does not commute with an element F of

the stabilizer, that is, EF = cFE for some complex c ≠ 1 by Proposition 2.2.8, then the

error takes the stabilizer code to an orthogonal subspace because all ∣v⟩, ∣w⟩ ∈ Q satisfy

⟨v∣E∣w⟩ = ⟨v∣EF ∣w⟩ = c ⟨v∣FE∣w⟩ = c ⟨v∣E∣w⟩

and therefore ⟨v∣E∣w⟩ = 0. Hence, the error is also detectable. In fact, we have showed

all detectable errors by a stabilizer code as the following result proved in [73, Lemma 11]

states.

Proposition 2.3.3. An error E ∈ Gn is detectable by a stabilizer code Q of dimension

larger than one, with stabilizer S, if and only if either E ∈ SZ(Gn) or E ∉ CGn(S).

Let t be a positive integer and assume that a stabilizer code Q is pure to t. The

following corollary eases to understand the meaning of pureness. It states that detectable

errors which are not a scalar multiple of the identity and with weight less than t take

the stabilizer code to an orthogonal subspace.

Corollary 2.3.4. Let Q be a pure to (a positive integer) t stabilizer code with minimum

distance d. Then, all errors E ∈ Gn with 1 ≤ w(E) <min{t, d} satisfy ⟨v∣E∣w⟩ = 0 for all

∣v⟩, ∣w⟩ ∈ Q.

Proof. An error E as in the statement is detectable because w(E) < d. Since Q is pure

to t > w(E), then E ∉ SZ(Gn). Then, Proposition 2.3.3 and its preceding paragraph

imply the claim.

Next, we give a description based in [104, Page 466] of how to perform error-correction

on stabilizer codes. Let Q be a stabilizer code and S = ⟨G1, . . . ,Gn−k⟩ be its stabilizer

group. Suppose that {Ej ∣ j = 1, . . . ,m}, for some m ∈ N, is the set of correctable errors
by Q. We may assume that those errors are unitary by the argument given in the
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paragraph before Theorem 2.2.2. Then, we know that every Ej , j = 1, . . . ,m, commutes

with S (equivalently, commutes with its generators) up to a scalar factor, that is:

GlEj = β
j
l EjGl, βjl ∈ C, l = 1, . . . , n − k.

Let us call the vector (βj1, . . . , β
j
n−k) ∈ C

n−k the syndrome of the error Ej . Syndromes

are previously computed and stored as the rows of a matrix

(βjl )m×(n−k)
.

Notice that each row refers to a correctable error. Suppose that a codeword ∣ϕ⟩ ∈ Q

is a�ected by the error Ej0 and let ∣ψ⟩ = Ej0 ∣ϕ⟩. Then, one applies on ∣ψ⟩ the n − k

syndrome measurements that consist of computing Gl∣ψ⟩ for all l = 1, . . . , n − k. Then

Gl∣ψ⟩ =GlEj0 ∣ϕ⟩ = β
j0
l Ej0Gl∣ϕ⟩ = β

j0
l Ej0 ∣ϕ⟩ = β

j0
l ∣ψ⟩.

Once obtained the syndrome (βj01 , . . . , β
j0
n−k), if it equals (1, . . . ,1), it means that Ej0 ∈

SZ(Gn) and therefore we correct ∣ψ⟩ by normalizing it. Otherwise, (βj01 , . . . , β
j0
n−k) will

coincide with the j′-th row, 1 ≤ j′ ≤ m, in the syndrome matrix and correct ∣ψ⟩ by

applying the adjoint of the error Ej′ . This operation will recover ∣ϕ⟩. Indeed:

Suppose that there exists a unique row with that syndrome. Then, j′ = j0 and

therefore E�
j′ ∣ψ⟩ = E

�
j0
∣ψ⟩ = E�

j0
Ej0 ∣ϕ⟩ = ∣ϕ⟩.

Suppose that there exist two rows with that syndrome and j′ ≠ j0. Since

GlEj′ = β
j0
l Ej′Gl, l = 1, . . . , n − k,

then the following chain of equalities holds for all l = 1, . . . ,m:

Ej0GlE
�
j0
= (βj0l )

−1
GlEj0E

�
j0
= (βj0l )

−1
Gl = (β

j0
l )
−1
GlEj′E

�
j′ = Ej′GlE

�
j′ .

The above equality and the fact that the projection P onto Q can be written as

P = 1
#S ∑E∈S E [73, Lemma 9] imply

Ej0PE�
j0
=

1

#S
∑
E∈S

Ej0EE�
j0
=

1

#S
∑
E∈S

Ej′EE�
j′ = Ej′PE�

j′ ,

where we have used that any E ∈ S can be written as a product ∏i∈A⊆{1,...,n−k}Gi

and the fact that I = E�
j0
Ej0 = E

�
j′Ej′ . Then,

E�
j′Ej0PE�

j0
Ej′ = P ,

so E�
j′Ej0 ∈ S, because otherwise PE�

j′Ej0P = 0 [104, Theorem 10.8] and this fact,

together with the above equation, would lead to P = 0, a contradiction. Therefore,

E�
j′ ∣ψ⟩ = E

�
j′Ej0 ∣ϕ⟩ = ∣ϕ⟩.

Next we connect stabilizer codes to additive codes. A q-ary additive code is a closed

under addition subgroup of Ft
q for some t ∈ N. We are interested in those that allow us

to characterize the detectable errors in Gn by a stabilizer code.
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2.3.1. Stabilizer codes from additive codes over FQ

The phase information ωc of an element in Gn does not a�ect the detectability. This

means that we can suppose ωc = 1 and considering the map

Gn → F2n
Q , ωcX(a)Z(b)↦ (a ∣ b),

it holds that SZ(Gn) is mapped to the additive code

C ∶= {(a ∣ b) ∣ ωcX(a)Z(b) ∈ SZ(Gn)} =
SZ(Gn)ÒZ(Gn)

.

Moreover, by Proposition 2.2.8, CGn(S) is mapped onto the trace-symplectic dual code

C⊥s of C. That is,

C⊥s = {(a ∣ b) ∣ ωcX(a)Z(b) ∈ CGn(S)}.

Next theorem provides the connection between additive codes over FQ and stabilizer

codes [73, 6].

Theorem 2.3.5. [73, Theorem 13] The existence of an ((n,K, d))Q stabilizer code is

equivalent to that of an additive code C ⊆ F2n
Q of cardinality #C = Qn

K such that C ⊆ C⊥s

and d is the minimum symplectic weight of C⊥s/C if K > 1 (and whenever K = 1, d is the

minimum symplectic weight of C⊥s = C).

2.3.2. Stabilizer codes from additive codes over FQ2

The literature about the symplectic weight is limited. A well-known inner product

is the Hermitian one. Stabilizer codes obtained from Hermitian self-orthogonal codes

can be regarded as a particular case of the following situation where we relate stabilizer

codes and additive codes over FQ2 .

Let {α,αQ} be a normal basis of the �eld FQ2 over FQ. We de�ne the map

θ ∶ F2n
Q → Fn

Q2 , θ((a ∣ b)) = αa + αQb,

which is bijective and isometric. This last expression means that θ preserves weights

(symplectic in F2n
Q and Hamming in Fn

Q2), that is, sw((a ∣ b)) = w(θ((a ∣ b))) for all

(a ∣ b) ∈ F2n
Q . Now we de�ne the trace-alternating form of two vectors x and y in Fn

Q2 as

⋅a ∶ Fn
Q2 × Fn

Q2 → Fp, x ⋅a y = tr(
x ⋅e y

Q −xQ ⋅e y

α2Q − α2
),

which is bi-additive, linear over Fp and satis�es that x ⋅ax = 0 for all x ∈ Fn
Q2 . Moreover,

for every x and y in F2n
Q , it holds that

x ⋅s y = θ(x) ⋅a θ(y).

The previous equality clearly implies that x and y are trace-symplectic orthogonal if and

only if θ(x) and θ(y) are trace-alternating orthogonal. Let the symbol ⊥a denote dual

with respect to the trace-alternating form ⋅a. The relation between stabilizer codes and

additive codes over FQ2 follows from Theorem 2.3.5 and the isometry θ:
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Theorem 2.3.6. [73, Theorem 15] The existence of an ((n,K, d))Q stabilizer code is

equivalent to that of an additive code C ⊆ Fn
Q2 of cardinality #C = Qn

K such that C ⊆ C⊥a ,

where d is the minimum distance of C⊥a/C if K > 1 (and whenever K = 1, d is the

minimum distance of C⊥a = C).

An immediate consequence is

Corollary 2.3.7. Let C ⊆ Fn
Q2 be an [n, k]Q2 additive code such that C ⊆ C⊥a. Denote by

d⊥a the minimum distance of C⊥a . Then, there exists an [[n,n − 2k,≥ d⊥a]]Q stabilizer

code that is pure to d⊥a.

2.3.3. Stabilizer codes from linear codes over FQ2

As we have explained, when considering additive codes over FQ2 , a trace-alternating

form as above can be used to construct stabilizer codes. However, when one has linear

codes over FQ2 , it su�ces to consider the more common Hermitian inner product. It is

de�ned as the map

⋅h ∶ Fn
Q2 × Fn

Q2 → FQ2 , x ⋅h y = x ⋅e y
Q =

n

∑
i=1
xiy

Q
i .

Let the symbol ⊥h mean dual with respect to the Hermitian inner product. Given

x, y ∈ Fn
Q2 such that x ⋅h y = 0, then it is clear that x ⋅a y = 0. Thus, for a code C ⊆ Fn

Q2 ,

it holds that C⊥h ⊆ C⊥a so, whenever C ⊆ C⊥h , then C ⊆ C⊥a . In general, C⊥h ⊂ C⊥a , but

provided that C is linear over FQ2 , a dimensional argument shows that C⊥h = C⊥a (see

[73, Lemma 18]). Then one can use Corollary 2.3.7 to prove the following corollary. It

will be one of our main results to construct stabilizer codes from classical linear codes.

Corollary 2.3.8. [1, 73] Let C be an [n, k] linear code over FQ2 such that C ⊆ C⊥h.

Denote by d⊥h the minimum distance of C⊥h. Then, there exists an [[n,n − 2k,≥ d⊥h]]Q

stabilizer code that is pure to d⊥h .

2.3.4. Bounds on stabilizer codes

When studying quantum codes, this thesis only considers stabilizer codes. For this

reason, in this last subsection of Chapter 2 we provide some bounds on the parameters of

stabilizer codes. We notice that most of the bounds here given are also valid for general

quantum codes.

The quantum analogue of the classical Singleton bound is stated in the following

result, which was proved in [109] for general nonbinary quantum codes.

Theorem 2.3.9 (Quantum Singleton bound). Let [[n, k, d]]Q be the parameters of a

quantum code with k ≥ 1, then the following bound holds:

n ≥ k + 2(d − 1).
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Quantum codes reaching the quantum Singleton bound are called (quantum) MDS

codes.

There is also a quantum version [69] of the MDS conjecture. It follows by applying

the classical MDS conjecture to the classical codes over FQ2 giving rise to stabilizer codes.

Therefore, this bound is only valid for MDS stabilizer quantum codes. Even if the clas-

sical MDS conjecture were true, one could �nd non-stabilizer MDS codes contradicting

the quantum MDS conjecture.

Conjecture 2.3.10 (Quantum MDS conjecture). Let [[n,n− 2d+ 2, d]]Q be the param-

eters of a stabilizer quantum MDS code with d ≥ 3. Then, the following bound holds:

n ≤ Q2 + 1,

excepting the case when Q even and d = 4, where n ≤ Q2 + 2.

We �nish the two chapters on preliminaries by stating the quantum version of the

classical Gilbert-Varshamov bound. It helps to decide when parameters of a quantum

code have a good behavior. We say that a parameter set [[n, k, d]]Q beats this bound if

the inequality in Theorem 2.3.11 is not satis�ed.

Theorem 2.3.11 (Quantum Gilbert-Varshamov bound). [39] Suppose that n > k ≥ 2,

d ≥ 2, and n ≡ k mod 2. If

Qn−k+2 − 1

Q2 − 1
≥

d−1
∑
i=1
(Q2 − 1)i−1(

n

i
),

then there exists a pure stabilizer quantum code with parameters [[n, k, d]]Q.
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Chapter 3

Optimal (r, δ)-locally recoverable

codes from monomial-Cartesian

codes and their sub�eld subcodes

Let q be a prime power. In this chapter we keep the same notations as in Subsection

1.3.1 with Q = q, and consider MCCs with m ≥ 2 to construct (r, δ)-locally recoverable

codes. Recall from De�nition 1.3.3 that a q-ary MCC CP∆ is an Fq-vector subspace of Fn
q

CP∆ = evP (V∆) = ⟨evP (X
e1
1 ⋯X

em
m ) ∣ (e1, . . . , em) ∈∆⟩ ⊆ F

n
q

obtained as the image of a map

evP ∶V∆ ⊂R =
Fq[X1, . . . ,Xm]ÒI → Fn

q , evP (f) = (f(α1), . . . , f(αn)) ,

where m ≥ 1 is a positive integer, P = P1 × ⋅ ⋅ ⋅ × Pm = {α1, . . . ,αn} a Cartesian product

subset of Fm
q , I = ⟨f1(X1), . . . , fm(Xm)⟩ the vanishing ideal at P of Fq[X1, . . . ,Xm] (i.e.,

fj(Xj) =∏β∈Pj
(Xj − β) for j = 1, . . . ,m) and

V∆ = ⟨X
e1
1 ⋯X

em
m ∣ (e1, . . . , em) ∈∆⟩Fq

an Fq-linear space generated by classes of monomials with exponents in some subset

∆ ⊆ E = {0,1, . . . , n1 − 1} × ⋯ × {0,1, . . . , nm − 1}. This set E is that containing the

possibilities of exponents of any monomial reduced modulo I. Other important notations

are nj =#Pj and n =#P =∏
m
j=1 nj .

Recall also from De�nition 1.4.4 that an [n, k, d] code C is an (r, δ)-LRC, with r

and δ ≥ 2 positive integers, if, for any coordinate i ∈ {1, . . . , n}, there exists a set of

coordinates R = R(i) ⊆ {1, . . . , n} such that:

1. i ∈ R and #R ≤ r + δ − 1; and

2. d(C[R]) ≥ δ.

65
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We are interested in optimal codes, that is, those attaining the Singleton-like bound for

(r, δ)-LRCs we reproduce in Proposition 1.4.5:

k + d + (⌈
k

r
⌉ − 1) (δ − 1) ≤ n + 1.

The goal of this chapter is to obtain many new optimal LRCs coming from MCCs,

we refer the reader to pages 5 to 6 of the introduction of this PhD thesis for a detailed

summary of this chapter.

In Proposition 3.1.1 of Section 3.1 we show how MCCs can be considered as LRCs.

Section 3.2 is devoted to determine the set of optimal MCCs we can obtain, they are

given in Propositions 3.2.1, 3.2.2 and 3.2.3, 3.2.13 and 3.2.14. We divide our study in two

cases: bivariate and multivariate performed respectively in Subsections 3.2.1 and 3.2.2.

Parameters of codes in the above �ve propositions are grouped in Corollary 3.2.12 for

the bivariate case and in Corollary 3.2.17 for the multivariate case. They are not new

but, unlike the literature, they can be obtained by a unique procedure.

Finally our main results concerning new LRCs obtained from sub�eld-subcodes of

some subfamilies of the above MCCs are given in Section 3.3. These new LRCs are

given in Subsection 3.3.1, where the bivariate case is treated, and in Subsection 3.3.2

devoted to the multivariate case. Propositions 3.3.4 and 3.3.6 for the bivariate case, and

Propositions 3.3.11 and 3.3.12 for the multivariate case, explain how to construct new

optimal (r, δ)-LRCs. The main results of this chapter are Theorems 3.3.9, 3.3.10, 3.3.14

and 3.3.15. Theorem 3.3.9 (respectively, 3.3.14) gives parameters of new optimal LRCs

over any �eld coming from the bivariate (respectively, multivariate) case.

The entire contents in this chapter, except for Remark 3.2.4 and its proof, were

published in the journal Designs, Codes and Cryptography, see [45]. The notation has

been adapted to ease the reading of this thesis.

3.1. Locally recoverable monomial-Cartesian codes

In this section we regard MCCs with m ≥ 2 as (r, δ)-LRCs. MCCs were previously

used to provide LRCs with availability [93]. Next proposition and its proof show how

to regard MCCs as LRCs with locality (r, δ). To do it, we need to introduce some

de�nitions. For each 1 ≤ j ≤m, de�ne the support of V∆ at Xj as

suppXj
(V∆) ∶= {ej ∈ {0,1, . . . , nj − 1} ∣ there exists a monomial Xe1

1 ⋯X
ej
j ⋯X

em
m in V∆} ,

and set Kj ∶= #suppXj
(V∆) and kj ∶= max (suppXj

(V∆)). Now, and as the beginning

of Subsection 1.3.1, consider the set Pj = {α
j
1, . . . , α

j
nj} ⊆ Fq, the ideal Ij of Fq[Xj]

generated by fj =∏
nj

i=1 (Xj − α
j
i) and the map

evPj ∶Rj ∶=
Fq[Xj]ÒIj → Fnj

q

given by

evPj(f) = (f (α
j
1) , . . . , f (α

j
nj
)) .

Finally de�ne the Fq-vector space V
j
∆ ∶= ⟨X

e
j ∣ e ∈ suppXj

(V∆)⟩Fq ⊆Rj .
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Proposition 3.1.1. Let CP∆ be an MCC. Then, for each 1 ≤ l ≤ m such that kl + 1 < nl,

CP∆ is an LRC with locality (≥ Kl,≤ nl − Kl + 1). In addition, if evPl
(V l

∆) is an MDS

code, then the locality is (Kl, nl −Kl + 1).

Proof. Let c = (c1, . . . , cn) = evP (f) ∈ C
P
∆ be a codeword whose i-th coordinate ci we

desire to recover. We know that supp(f) ⊆ ∆ and thus degXj
(f) ≤ kj for all j =

1, . . . ,m. Choose a variable Xl (we will interpolate with respect to it), write ci = f(αi) =

f(αi1, . . . , αim) and consider the following subset of P :

RP = {αt ∈ P ∣ αtj = αij for all j ∈ {1, . . . ,m}/{l}}

= {(αi1, . . . , αil−1, x,αil+1, . . . , αim) ∣ x ∈ Pl} ,

whose cardinality is #RP = nl. A polynomial in V∆ can be expressed as

f(X1, . . . ,Xm) = ∑
(e1,...,em)∈∆

fe1,...,emX
e1
1 ⋯X

em
m

=
kl

∑
h=0

fh(X1, . . . ,Xl−1,Xl+1, . . . ,Xm)X
h
l ∈ Fq[X1, . . . ,Xl−1,Xl+1, . . . ,Xm][Xl].

Replacing each Xj , j ≠ l, by αij , we get a polynomial in Xl, g(Xl), with constant

coe�cients, of degree at most kl:

g(Xl) = f(αi1, . . . , αil−1,Xl, αil+1, . . . , αim) =
kl

∑
h=0

ghX
h
l ,

where gh = fh(αi1, . . . , αil−1, αil+1, . . . , αim). So we can interpolate g by using kl+1 points

in RP (since kl + 1 < nl) to obtain the coe�cients gh. Let us denote those kl + 1 points

by βt = (αi1, . . . , αil−1, βt, αil+1, . . . , αim) ∈ RP , βt ≠ αi, where βt ∈ Pl, t = 0, . . . , kl, and

let vt ∶= f(βt) = g(βt). Thus, the interpolation consists of solving the following linear

system of kl + 1 equations with indeterminates g0, . . . , gkl .

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 β0 β20 ⋯ βkl0
1 β1 β21 ⋯ βkl1
⋮ ⋮ ⋮ ⋱ ⋮

1 βkl β2kl ⋯ βklkl

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

g0

g1

⋮

gkl

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

v0

v1

⋮

vkl

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (3.1.1)

The coe�cient matrix of this system is a Vandermonde matrix, which is nonsingular,

and therefore the system has a unique solution. Consequently, we can recover ci by

evaluating g. Let

R = {t ∈ {1, . . . , n} ∣ αt ∈ RP }.

The set R is an (r, δ)-recovery set for i with r ∶= kl + 1 and δ ∶= nl − kl since i ∈ R,

#R = nl = r + δ − 1 and

d(C[R]) = d (evPl
(V l

∆)) ≥ d (evPl
(V ′l)) = δ,

where V ′l ∶= ⟨Xe
l ∣ e ∈ {0,1, . . . , kl}⟩Fq ⊆ Rl. The above inequality holds because C[R] =

evPl
(V l

∆) is a subcode of the Reed-Solomon (and thus MDS) code evPl
(V ′l). The facts

that r ≥ Kl and δ ≤ nl −Kl + 1 prove the �rst part of our statement.
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To prove the last one, notice that we have kl + 1 −Kl conditions

gh = fh(αi1, . . . , αil−1, αil+1, . . . , αim) = 0 (3.1.2)

h ∉ suppXl
(V∆), and then we actually need Kl points in RP to obtain the coe�cients of g.

The system of equations (3.1.1) can be reduced to a linear system where, for those indices

h involved in Equality (3.1.2), we remove, for example, the equations whose independent

terms are vh and, also, the variables gh (together with their coe�cients) of the remaining

equations. Indeed, C[R] is now an MDS code with parameters [nl,Kl, nl −Kl + 1], the

coe�cient matrix of this reduced system is a Kl × Kl submatrix of the transpose of

a parity-check matrix of the code C[R]⊥ whose minimum distance is Kl + 1, so it is

nonsingular, and therefore the system has a unique solution. Finally, the locality is

(r, δ) ∶= (Kl,d(C[R])) = (Kl, nl −Kl + 1).

Remark 3.1.2. With the above notation and when suppXl
(V∆) = {0,1, . . . , kl}, it holds

that evPl
(V l

∆) is a Reed-Solomon code (and thus an MDS code), and then the locality

of CP∆ is (Kl, nl −Kl + 1).

Remark 3.1.3. Let CP∆ be an MCC with parameters [n, k, d]q and locality (r, δ). Then

by Proposition 1.4.5 and Corollary 1.3.10, the following inequalities

k + d0 + (⌈
k

r
⌉ − 1) (δ − 1) ≤ k + d + (⌈

k

r
⌉ − 1) (δ − 1) ≤ n + 1 (3.1.3)

hold.

Let CP∆ be an MCC with parameters [n, k, d]q and locality (r, δ). We de�ne its defect

(with respect to d0) as the value D:

D ∶=D (CP∆) ∶= n + 1 − k − d0 − (⌈
k

r
⌉ − 1) (δ − 1) ≥ 0.

De�nition 3.1.4. The code CP∆ is called d0-optimal whenever D vanishes. That is, CP∆
is optimal and d = d0.

Remarks 3.1.5. The next facts will be useful:

1. The locality (r, δ) provided in Proposition 3.1.1 depends on the variable Xl we

choose to interpolate, which allows us to make the best choice of Xl.

2. A d0-optimal code is always optimal but a code that is not d0-optimal may be

optimal.

3.2. Optimal monomial-Cartesian codes

In this section we give optimal (r, δ)-LRCs which are decreasing MCCs. MCCs are

well suited to provide good LRCs. Fixed a supporting �eld Fq, MCCs are error-correcting

codes with unbounded lengths that are constructed by a very simple procedure. This
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procedure determines in a very easy way their length, dimension and a bound for the

minimum distance (Proposition 1.3.7 and Corollary 1.3.10). The recovery procedure

based on interpolation (described in the proof of Proposition 3.1.1) allows us to regard

MCCs as LRCs which are very versatile and capable of giving good parameters.

As mentioned, in this section we provide optimal LRCs, but their parameters are not

new. Nonetheless we get a large family of optimal LRCs, constructed by a unique and

simple procedure, that includes the family of codes introduced in [3] (see Remark 3.2.19

for details) and provides, on the one hand, the parameters of those LRCs over Fq given

in [28] whose lengths are of the form N(r + δ − 1) where N can be written as a product

of integers less than or equal to q and, on the other hand, the parameters of those LRCs

in [90] with length less than or equal to q2 + q.

Our results will allow us to provide, in the next section, new optimal (r, δ)-LRCs

coming from sub�eld-subcodes of MCCs.

We start with the bivariate case.

3.2.1. The bivariate case (m = 2)

For simplicity let us denote X1 by X and X2 by Y . We look for decreasing sets

∆ ⊆ E, E being the set introduced in Subsection 1.3.1, such that the code CP∆ is optimal,

that is, its parameters satisfy

k + d0 + (⌈
k

r
⌉ − 1) (δ − 1) = n + 1.

Note that, by Remark 1.3.11, d = d0.

Recall we represented E by a grid, see Figure 1.3. From now on, we use shaded

regions to represent sets formed by the points in E inside that region. By rectangle we

will always refer to a subset of E whose representation as shaded set is a rectangle. The

�rst result in this subsection shows when codes CP∆, where ∆ is decreasing and has the

shape of a rectangle, are optimal.

Proposition 3.2.1. Keep the notation as at the beginning of Section 3.1, where q is a

prime power, m = 2 and n1, n2 ≥ 2 are the cardinalities of P1 and P2. Consider the sets

∆ =∆i,j ∶= {(e1, e2) ∣ 0 ≤ e1 ≤ i, 0 ≤ e2 ≤ j} ⊆ E = {0, . . . , n1 − 1} × {0, . . . , n2 − 1}

(see Figure 3.1). Then, the MCC, CP∆, de�ned by a set ∆ as above is an optimal (r, δ)-

LRC if and only if one of the following conditions hold:

i = 0 and 0 ≤ j ≤ n2 − 1, in which case (r, δ) = (1, n1).

1 ≤ i ≤ n1 − 2 and j = n2 − 1, in which case (r, δ) = (i + 1, n1 − i).

0 ≤ i ≤ n1 − 1 and j = 0, in which case (r, δ) = (1, n2).

i = n1 − 1 and 1 ≤ j ≤ n2 − 2, in which case (r, δ) = (j + 1, n2 − j).

Sets ∆ as above are denoted by ∆1
i,j.
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(n1 − i)(n2 − j)

0 . . . i . . . n1 − 1
0

⋮

j

⋮

n2 − 1

Figure 3.1: Sets ∆i,j in Proposition 3.2.1

Proof. Clearly, k = (i+ 1)(j + 1) and d0 = (n1 − i)(n2 − j). By interpolating with respect

to X, r = i + 1 and δ − 1 = n1 − i − 1. Then,

k + d0 + (⌈
k

r
⌉ − 1) (δ − 1) = (i + 1)(j + 1) + (n1 − i)(n2 − j)

+ (⌈
(i + 1)(j + 1)

i + 1
⌉ − 1)(n1 − i − 1) = n1n2 + 1 + i(j + 1 − n2),

and the code is optimal if and only if i = 0 or j = n2 − 1. Note that when j = n2 − 1 and

i = n1 − 1 one does not get an LRC.

The remaining LRCs are obtained by interpolating with respect to Y , so that r = j+1

and δ − 1 = n2 − j − 1.

In the sequel, we will perform the procedure of considering a subset ∆ ⊆ E (starting

set) and adding or removing elements to obtain a new subset ∆∗ ⊆ E (resulting set). The

expression gaining (or losing) x units in a parameter refers to the fact that the resulting

code CP∆∗ has a larger (or smaller) value for that parameter in a quantity of x units. We

can also say that the parameter increases (or decreases) x (units).

The sets ∆∗ obtained by removing the least footprint point on the n2 − 1-th row (or

n1 − 1-th column) of a rectangle ∆1
i,j with j = n2 − 1 and i ≥ 1 (or i = n1 − 1 and j ≥ 1)

also provide optimal codes since the left-hand side (LHS) of Inequalities (3.1.3) remains

the same. Indeed, when removing that point we lose one unit in dimension but we gain

one unit in the bound for the minimum distance and r, δ and ⌈kr ⌉ do not change. The

following result generalizes this situation.

Proposition 3.2.2. With notation as in Proposition 3.2.1, consider the subsets of E

∆ =∆2
i,s ∶= {(e1, e2) ∣ 0 ≤ e1 ≤ i, 0 ≤ e2 ≤ n2 − 2} ∪ {(e1, n2 − 1) ∣ 0 ≤ e1 ≤ s} ,

where max{0,2i − n1} ≤ s < i ≤ n1 − 2 (see Figure 3.2 (1)).

Then, the MCCs, CP∆, are optimal (r, δ) = (i + 1, n1 − i)-LRCs.

Analogously, the MCCs, CP∆, where

∆ =∆2,σ
j,s ∶= {(e1, e2) ∣ 0 ≤ e1 ≤ n1 − 2, 0 ≤ e2 ≤ j} ∪ {(n1 − 1, e2) ∣ 0 ≤ e2 ≤ s} ⊆ E,

max{0,2j − n2} ≤ s < j ≤ n2 − 2 (see Figure 3.2 (2)) are optimal (r, δ) = (j + 1, n2 − j)-

LRCs.
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n2 − 2
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(1) Sets ∆2
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n2 − s

2(n2 − j)

0

⋮

s

⋮

j

⋮

n2 − 1

0 . . . n1 − 2 n1 − 1

(2) Sets ∆2,σ
j,s

Figure 3.2: Sets ∆2
i,s and ∆2,σ

j,s in Proposition 3.2.2

Proof. Let us see a proof for the case ∆ = ∆2
i,s. ∆ is obtained by removing the (i − s)

least footprint points of ∆1
i,n2−1 on the n2−1-th row with 0 ≤ s < i as long as the footprint

F(s, n2 − 1) ≤ F(i, n2 − 2).

In fact, this last inequality is equivalent to n1−s ≤ 2(n1−i) and to s ≥ 2i−n1. Interpolating

with respect to X, the parameters of the code CP∆ are k = (i+1)(n2−1)+s+1, d0 = n1−s,

r = i + 1 and δ − 1 = n1 − i − 1, and therefore

k + d0 + (⌈
k

r
⌉ − 1) (δ − 1) = (i + 1)(n2 − 1) + s + 1 + n1 − s

+ (⌈
(i + 1)(n2 − 1) + s + 1

i + 1
⌉ − 1)(n1 − i − 1) = n1n2 + 1.

The case ∆ = ∆2,σ
j,s can be proved analogously. It su�ces to consider the symmetric

situation, interpolate with respect to Y and replace i by j and n1 by n2.

The following result completes our family of decreasing sets ∆, that correspond to

MCCs, where m = 2, giving rise to optimal (r, δ)-LRCs.

Proposition 3.2.3. With notation as in Proposition 3.2.1, consider the family of subsets

of E

∆ =∆3
i,j ∶= {(e1, e2) ∣ 0 ≤ e1 ≤ i, 0 ≤ e2 ≤ j − 1} ∪ {(0, j)},

where 1 ≤ i ≤ n1 − 2 and max{1,
i(n2+1)−n1

i } ≤ j ≤ n2 − 2 (see Figure 3.3 (1)).

Then, the MCCs, CP∆, are optimal (r, δ) = (i + 1, n1 − i)-LRCs.

Analogously, the MCCs, CP∆, where

∆ =∆3,σ
i,j ∶= {(e1, e2) ∣ 0 ≤ e1 ≤ i − 1, 0 ≤ e2 ≤ j} ∪ {(i,0)} ⊆ E,

1 ≤ j ≤ n2 − 2, and max{1,
j(n1+1)−n2

j } ≤ i ≤ n1 − 2 (see Figure 3.3 (2)) are optimal

(r, δ) = (j + 1, n2 − j)-LRCs.
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Figure 3.3: Sets ∆3
i,j and ∆3,σ

i,j in Proposition 3.2.3

Proof. As before, we only give the proof for the case ∆ = ∆3
i,j since a proof for ∆3,σ

i,j

follows as described in the symmetric situation of the proof of Propositon 3.2.2.

∆ is obtained by removing the points (e1, j), 1 ≤ e1 ≤ i, of a rectangle

∆i,j = {(e1, e2) ∣ 0 ≤ e1 ≤ i, 0 ≤ e2 ≤ j}

with 1 ≤ i ≤ n1 − 2 and 1 ≤ j ≤ n2 − 2 such that F(0, j) ≤ F(i, j − 1). As a consequence,

n1(n2 − j) ≤ (n1 − i)(n2 − j + 1), which is equivalent to i ≤ n1

n2−j+1 , or j ≥
i(n2+1)−n1

i .

In this case, we interpolate with respect to X and the parameters of the code CP∆ are

k = (i + 1)j + 1, d0 = n1(n2 − j), r = i + 1 and δ − 1 = n1 − i − 1. Thus,

k + d0 + (⌈
k

r
⌉ − 1) (δ − 1) = (i + 1)j + 1 + n1(n2 − j) + (⌈

(i + 1)j + 1

i + 1
⌉ − 1)(n1 − i − 1)

= n1n2 + 1.

Remark 3.2.4. The families of (decreasing) MCCs given in Propositions 3.2.1, 3.2.2

and 3.2.3 determine the parameters of all d0-optimal bivariate (m = 2) (r, δ)-LRCs CP∆
(with any set ∆ ⊆ E). That is to say, if CP∆ is a d0-optimal LRC, then there exists an

MCC, CP∆∗ , as in Propositions 3.2.1, 3.2.2 and 3.2.3 having the same parameters n, k, d,

r and δ as CP∆. Therefore, by Remark 1.3.11, we have characterized the optimal bivariate

decreasing MCCs. We devote the following subsubsection to prove the �rst mentioned

fact. Since the proof is long, to help the reader, we give a sketch in the next paragraphs.

Without loss of generality, we can suppose that our recovery method interpolates

with respect to the variable X. Recall two key facts: (i) the locality (r, δ) of an MCC

is bounded by Proposition 3.1.1, and this bound is sharp for decreasing MCCs CP∆′ by

Remark 3.1.2, being r = #suppX(V∆′); and (ii) the footprints of the exponents in the

grid E increase when going to the left and to the down.

Now, �xed P and therefore n, and #suppX(V∆) of an arbitrary MCC CP∆, the �rst

inequality in Inequalities (3.1.3) shows that to reach d0-optimality it is desirable r to be

small and k and d0 (also, δ = n1 − r + 1) to be large. We can optimize in this sense the

parameters of CP∆ by �compacting� ∆ to get a decreasing set ∆∗, so that the defect of
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the above codes satis�es D (CP∆∗) ≤ D (C
P
∆). By �compacting� we roughly mean: (1) to

translate ∆ to touch both axis X and Y , (2) to remove empty columns and, (3) for each

exponent in the resulting set, to add every element which is inside the rectangle that

the exponent �forms� with (0,0). Notice that this way #suppX(V∆) = #suppX(V∆∗),

and performing (1) and (2) (respectively, (3)) we optimize d0, r -and δ- (respectively,

k). Thus, if CP∆ were d0-optimal, then CP∆∗ would be too. This reasoning summarizes the

main idea behind the forthcoming Lemma 3.2.6 in Subsubsection 3.2.1.1 and allows us

to restrict our study to decreasing MCCs.

It remains to show that, �xed P and r, the only decreasing sets ∆ ⊆ E giving rise

to d0-optimal MCCs CP∆ are those in Propositions 3.2.1, 3.2.2 and 3.2.3. Those sets

∆ we are looking for must satisfy ∆ ⊆ ∆1
r−1,n2−1, and since CP

∆1
r−1,n2−1

is d0-optimal by

Proposition 3.2.1, successively removing the least footprint points in ∆1
r−1,n2−1 is the

optimal way to get the mentioned sets ∆. Assume that r − 1 ≤ n1

2 , the opposite case

follows similarly. Before reaching the smallest (with respect to inclusion) set M ⊆ E

among those considered in the above mentioned propositions (that will be M = ∆3
r−1,b

for some b or M = ∆2
r−1,0 �denoted M = M i

1� when i = r − 1 ≤ n1

2 , and M = ∆2
i,2i−n1

�denoted M =M i
2�, otherwise), the removed exponents go from right to left coming from

upper to lower rows. The �rst r − 1 removed exponents provide every set of Proposition

3.2.2.

If M = ∆3
r−1,b, the following removed exponents before reaching M provide sets ∆

such that ∆′ ⊆ ∆ ⊆ ∆′′, where (∆′,∆′′) ∈ {(∆3
r−1,n2−2,∆

2
r−1,0) , (∆

3
r−1,j−1,∆

3
r−1,j)} for

some j. A set ∆ ≠ ∆′, ∆′′, does not provide a d0-optimal code since in the LHS of

Inequalities (3.1.3) the term (⌈kr ⌉ − 1) (δ − 1) is the same for both ∆ and ∆′, but the

term k + d0 is less for ∆ than for ∆′. The above two paragraphs are a summary of the

�rst part of the proof of Theorem 3.2.11. This paragraph summarizes the statements of

Lemmas 3.2.8 and 3.2.9 (under the case r − 1 ≤ n1

2 ).

Finally, once reached the set M, we are forced to remove points from lower rows,

causing the di�erence between the footprints of the exponents removed becomes smaller,

and, then, the resulting sets ∆ do not give either d0-optimal codes. This fact is showed

in the rest of the proof of Theorem 3.2.11.

Notice that when one removes exponents from right to left inside a row, the bound

on the minimum distance increases the same quantity (a multiple of one unit more than

its second coordinate), but when we remove exponents from lower rows, the gain on the

bound of the minimum distance is smaller, worsening the defect of the code. See Figure

3.4 for an example, where ∆3
2,5 gives a d0-optimal code (defect 0) but, by removing

its four exponents from lowest to higher footprint, we do not get d0-optimality as the

obtained sequence of defects is 8, 4, 2, 8.

3.2.1.1. Proof of Remark 3.2.4

The forthcoming Theorem 3.2.11 proves the assertion in the �rst paragraph of Re-

mark 3.2.4. Before proving our theorem we need some previous de�nitions and results.
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Figure 3.4: On the right, the set obtained by removing four exponents of ∆3
2,5 (on the

left) as described in Remark 3.2.4

Remark 3.2.4 may be used to facilitate reading of this subsubsection.

De�nition 3.2.5. A set ∆ ⊆ E is said to be optimal if the code CP∆ is d0-optimal, that

is, D = 0, D being the defect of CP∆ given above De�nition 3.1.4.

Let ∆ (respectively, ∆∗) be a starting (respectively, resulting) set included in E. We

say that ∆∗ is obtained following a natural order if ∆∗ comes from ∆ by succesively re-

moving (respectively, adding) points of least footprint in∆ (respectively, largest footprint

in E/∆). Assume that [n, k,≥ d0]q (respectively, [n
∗, k∗,≥ d∗0]q) are the parameters, and

(r, δ) (respectively, (r∗, δ∗)) the locality of the code CP∆ (respectively, CP∆∗). Then, we

de�ne variation (of the code CP∆∗ with respect to CP∆) produced in the LHS of Inequalities

(3.1.3) as the value

k∗ + d∗0 + (⌈
k∗

r∗
⌉ − 1) (δ∗ − 1) − (k + d0 + (⌈

k

r
⌉ − 1) (δ − 1)) .

Denote ϵ1 = (1,0) and ϵ2 = (0,1).

Lemma 3.2.6. Let ∆ be a subset of E. Set

a ∶=min{e1 ∣ (e1, e2) ∈∆} and b ∶=min{e2 ∣ (e1, e2) ∈∆}.

Fix an index l ∈ {1,2} and construct the set ∆∗ as follows:

(1) Set ∆0 ∶= (−a,−b) +∆. De�ne

T0 ∶= {t ∈ {1,2, . . . , nl − 1} ∣ there is no e ∈∆0 such that el = t},

c0 ∶=#T0 and t0 ∶=minT0.

(2) For every i = 1, . . . , c0, de�ne inductively

∆i ∶= {e ∈∆i−1 ∣ el < ti−1} ∪ {e − ϵl ∣ e ∈∆i−1 with el > ti−1},

Ti ∶= {t − 1 ∣ t ∈ Ti−1/{ti−1}} and ti ∶=minTi.
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(3) Set l′ ∶= j ∈ {1,2}/{l} and de�ne

M ∶=max{el ∈ {0,1, . . . , nl − 1} ∣ e ∈∆c0}

and

vM ∶=max{el′ ∣ el =M and e ∈∆c0}.

Consider the set

∆′M =∆c0 ∪ {e ∈ E/∆c0 ∣ el ≤M , el′ ≤ vM}.

(4) For every i =M − 1,M − 2, . . . ,0, let

vi ∶=max{el′ ∣ el = i and e ∈∆′i+1}

and inductively set

∆′i ∶=∆
′
i+1,

when vi ≤ vi+1, and

∆′i ∶=∆
′
i+1 ∪ {e ∈ E/∆

′
i+1 ∣ el ≤ i, el′ ≤ vi},

when vi > vi+1.

(5) Finally, ∆∗ ∶=∆′0.

Then, when comparing ∆∗ with ∆, the variation produced in the LHS of Inequalities

(3.1.3) is ≥ 0, that is, D(CP
∆∗) ≤D(C

P
∆).

Proof. Let [n, k,≥ d0]q and (r, δ) (respectively, [n0, k0,≥ (d0)0]q and (r0, δ0)) be the

parameters and locality of the code CP∆ (respectively, CP∆0
). The MCCs CP∆ and CP∆0

are

pseudoisometric, so n = n0, k = k0 but d0 ≤ (d0)0 because the footprints of the elements

in E increase when one considers exponents going to the left and to the down. As for

the localities, we know from Proposition 3.1.1 that r, r0 ≥ Kl and δ, δ0 ≤ nl − Kl + 1.

Let [nc0 , kc0 ,≥ (d0)c0]q be the parameters and (rc0 , δc0) the locality of CP∆c0
. Suppose

l = 1 (the remaining case is analogue), Step (2) removes vertical segments in E/∆0 and

then #suppXl
(V∆c0

) = max (suppXl
(V∆c0

)) + 1, thus n = nc0 , k = kc0 but r ≥ rc0 = Kl,

δ ≤ δc0= nl −Kl + 1 (see Remark 3.1.2) and d0 ≤ (d0)c0 . Let (i, j) ∈ ∆c0 . Since every

element in E inside the rectangle that (i, j) sets from (0,0) has larger footprint than

(i, j), it makes sense to include all of them in the new set ∆ in order to increase the

dimension of the code and thus decreasing the defect. We perform it on Step (4), so that

if [n∗, k∗,≥ d∗0]q are the parameters and (r∗, δ∗) the locality of CP∆∗ , then n = n
∗, k ≤ k∗,

d0 ≤ d
∗
0 , r ≥ r

∗= Kl and δ ≤ δ
∗= nl −Kl + 1. Therefore,

k + d0 + (⌈
k

r
⌉ − 1) (δ − 1) − (k∗ + d∗0 + (⌈

k∗

r∗
⌉ − 1) (δ∗ − 1)) ≤ 0.

Remark 3.2.7. Let ∆ and ∆∗ be as in Lemma 3.2.6. Then, #suppXl
(V∆) =

#suppXl
(V∆∗). Figure 3.5 shows some simple cases where that procedure (for l = 1)

is applied.
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Figure 3.5: Examples in Remark 3.2.7

Lemma 3.2.8. Keep the notation as in Proposition 3.2.3. Let ∆1 and ∆2 be two subsets

of E of the form ∆3
i,j (respectively, ∆3,σ

i,j ) for some indices i, j, and such that ∆2 is

obtained by removing points of ∆1 following a natural order (see the paragraph below

De�nition 3.2.5 where this concept was introduced). Then, there is no d0-optimal code

CP∆ such that:

1. ∆2 ⊊∆ ⊊∆1, and

2. ∆ is not of the form ∆3
i,j (respectively, ∆3,σ

i,j ).

Proof. We perform the proof for the case when ∆1 and ∆2 are of the form ∆3
i,j . The

proof for the remaining case is analogue. It su�ces to assume that

∆1 =∆
3
i,j = {(e1, e2) ∣ 0 ≤ e1 ≤ i, 0 ≤ e2 ≤ j − 1} ∪ {(0, j)}

and

∆2 =∆
3
i,j−1 = {(e1, e2) ∣ 0 ≤ e1 ≤ i, 0 ≤ e2 ≤ j − 2} ∪ {(0, j − 1)},

where 1 ≤ i ≤ n1 −2 and ⌈
i(n2+1)−n1

i ⌉+1 ≤ j ≤ n2 −2. Thus, we have to prove that there is
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no optimal set ∆ such that ∆2 ⊊ ∆ ⊊ ∆1. A toy example in the case n1 = 10 and n2 = 9

is showed in Figure 3.6.
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Figure 3.6: Sets ∆1 and ∆2 in the proof of Lemma 3.2.8

We start by removing the point (0, j) in ∆1 ((0,7) in the example). Then the LHS

of Inequalities (3.1.3) loses one unit in dimension and also δ−1 units (since ⌈kr ⌉ decreases

one unit), whereas in the bound for the minimum distance we gain

F(i, j − 1) − F(0, j) = (n1 − r + 1)(n2 − j + 1) − n1(n2 − j) = n1 − (r − 1)(n2 − j + 1).

Thus, the variation produced in the LHS of Inequalities (3.1.3) is

n1 − (r − 1)(n2 − j + 1) − δ = n1 − (r − 1)(n2 − j + 1) − (n1 − r + 1) = −(r − 1)(n2 − j) < 0

(because r = i + 1 ≥ 2). In our example we lose δ = 8 (units) and gain 4, with a variation

equal to −4.

Iterating our procedure, for each point on the (j − 1)-th row we remove (except-

ing (0, j − 1)), we lose 1 in dimension, the bound on the minimum distance increases

n2 − j + 1 and the remaining summands of the LHS of Inequalities (3.1.3) remain the

same. Therefore the only way to sum (r−1)(n2−j) units so that the variation produced

in the LHS of Inequalities (3.1.3) equals 0, and the defect D vanishes, holds when we

remove the next r−1 points on the (j −1)-th row following a natural order. Then we get

∆2 and our result is proved.

Lemma 3.2.9. Keep the notation as in Proposition 3.2.2. Consider a set S =∆2
i,0, where

1 ≤ i ≤ n1 − 2, and a set Sσ = ∆2,σ
j,0 , where 1 ≤ j ≤ n2 − 2. Then, there is no d0-optimal

code CP∆, ∆ being the resulting set of removing less than i+ 1 points from S (or less than

j + 1 points from Sσ) following a natural order.

Proof. Consider the set S = {(e1, e2) ∣ 0 ≤ e1 ≤ i, 0 ≤ e2 ≤ n2 − 2}∪ {(0, n2 − 1)}, which we

show in Figure 3.7. The proof for Sσ is analogue and we omit it.

Recall from the proof of Proposition 3.2.3 that F(0, n2 − 1) ≤ F(i, n2 − 2) if and only

if i ≤ n1

2 and in such case S is optimal. We divide our proof in two cases according to
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Figure 3.7: Set S in the proof of Lemma 3.2.9

i ≤ n1

2 or i > n1

2 . Figure 3.8 shows an example of the case n1 = 10 and n2 = 9 showing

sets S, where i = 2 ≤ n1

2 (Figure 3.8 (1)) and i = 7 > n1

2 (Figure 3.8 (2)), with the aim of

making easier the understanding of the proof.
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Figure 3.8: Toy example in the proof of Lemma 3.2.9

Assume i ≤ n1

2 , following a natural order the �rst point to remove is (0, n2−1). Then,

in the LHS of Inequalities (3.1.3) we lose 1 (unit) in dimension plus δ − 1 and gain

F(i, n2 − 2) − F(0, n2 − 1) = 2(n1 − r + 1) − n1 = n1 − 2r + 2

in the bound for the minimum distance. Thus, the variation produced in the LHS of

Inequalities (3.1.3) is

n1 − 2r + 2 − δ = n1 − 2r + 2 − (n1 − r + 1) = −r + 1 < 0

(because r = i + 1 ≥ 2).

Notice that for each point on the (n2−2)-th row we remove (excepting (0, n2−2)), the

values r, δ and ⌈kr ⌉ do not change, we lose 1 in dimension and gain 2 in the footprint of the

exponents in that row. Keeping our procedure of removing points by following a natural

order, if we were in the best situation, that is, the natural order was to remove points of

least footprint on the (n2 − 2)-th row, then the quantity gained in the footprints of the

exponents would just be the quantity gained in the bound of the minimum distance, so in

the LHS of Inequalities (3.1.3) we would sum 1 every time we remove a point. Therefore,
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removing the next r − 1 = i points on the (n2 − 2)-th row, we would obtain the set

{(e1, e2) ∣ 0 ≤ e1 ≤ i, 0 ≤ e2 ≤ n2 − 3} ∪ {(0, n2 − 2)},

which in the best situation would be optimal, and no optimal set is obtained by removing

less than i + 1 points from S.

To conclude suppose now that i > n1

2 . In this case the set S is not optimal. Indeed,

the LHS of Inequalities (3.1.3) for the code CPS is

n1n2 + 1 + n1 − 2i,

which is less than n1n2 + 1. Removing the point with least footprint, we lose δ units in

the LHS of Inequalities (3.1.3). Then, we need to add

2i − n1 + δ = 2i − n1 + (n1 − i) = i

units to the LHS of Inequalities (3.1.3). These units should come from the sum k + d0

so that the resulting set is optimal. The same reasoning given in the above paragraph

explains that the best situation for gaining units happens by removing points on the

(n2 −2)-th row and again, by removing less than i more points from S, we cannot get an

optimal set, which concludes the proof.

Example 3.2.10. Consider the example showed in Figure 3.8, where n1 = 10 and n2 = 9,

and let us apply Lemma 3.2.9. If i = 2 ≤ n1

2 , then (r, δ) = (3,8) and we must show that

the resulting set of removing less than 3 points from S following a natural order is not

optimal. When we remove the �rst point, (0,8), then we lose δ = 8 and gain 6 in the

LHS of Inequalities (3.1.3), thus we lose 2. The next and last point to remove is (2,7).

Here, we lose 1 unit in dimension and gain 2 in the bound for the minimum distance,

but the resulting set ∆ is not optimal since D(CP∆) = 1.

As for the case i = 7 ≥ n1

2 , we have (r, δ) = (8,3) and the resulting set of removing less

than 8 points from S following a natural order is not optimal. Indeed, when we remove

the �rst point, (7,7), then we lose δ = 3 and gain 2 units in the LHS of Inequalities

(3.1.3), thus we lose 1. The next six points to remove (together with the defect of the

resulting code) are (6,7) (D = 1), (7,6) (D = 1), (0,8) (D = 2), (5,7) (D = 1), (4,7)

(D = 2) and (6,6) (D = 3) and no such a set is optimal.

Now we are ready to prove the assertion given in Remark 3.2.4.

Theorem 3.2.11. The families of MCCs given in Propositions 3.2.1, 3.2.2 and 3.2.3

determine the parameters of all bivariate (m = 2) MCCs which are d0-optimal (r, δ)-

LRCs. That is to say, if CP∆ is a d0-optimal LRC, then there exists a MCC, CP∆∗, as in

Propositions 3.2.1, 3.2.2 or 3.2.3 having the same parameters n, k, d, r and δ as CP∆.

Proof. We start by checking d0-optimality when interpolating with respect to X. Unless

we say otherwise, every process of removing (or adding) points of (or to) a subset in E

is performed by following a natural order (see the de�nition below De�nition 3.2.5). We
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also exemplify the proof for the case n1 = 10 and n2 = 9. Let us �x K ∶= #suppX(V∆)

the cardinality of the set suppX(V∆) of the optimal sets ∆ ⊆ E that we want to �nd.

By Lemma 3.2.6, we can restrict to decreasing sets ∆ (the resulting sets in the con-

struction presented in that lemma), so suppX(V∆) = {0,1, . . . , i} and r = K = i + 1, by

Remark 3.1.2). Since we know that every set ∆ with i = 0 is optimal (Proposition 3.2.1)

and we are not interested in those where i = n1 − 1 as they do not provide LRCs, we

assume 1 ≤ i = r − 1 ≤ n1 − 2. Thus, it su�ces to start with the following set:

∆1
i,n2−1 = {(e1, e2) ∣ 0 ≤ e1 ≤ i,0 ≤ e2 ≤ n2 − 1}

(see Figure 3.9 corresponding to our example where n1 = 10, n2 = 9) and to remove points

from it to get the sets ∆ we are looking for.

10 − i

0 . . . i . . . 9
0

⋮

8

Figure 3.9: Set ∆1
i,n2−1 in the proof of Theorem 3.2.11

This set is optimal by Proposition 3.2.1 and the largest optimal set with r = i + 1.

Proposition 3.2.2 proves that the i−s sets obtained from ∆1
i,n2−1 by removing one by one

until i− s points on the (n2 − 1)-th row are also optimal for s = 0 if i ≤ n1

2 and s = 2i−n1

if i > n1

2 . The last obtained set is

∆2
i,0 = {(e1, e2) ∣ 0 ≤ e1 ≤ i, 0 ≤ e2 ≤ n2 − 2} ∪ {(0, n2 − 1)},

when i ≤ n1

2 , and

M i
2 ∶=∆

2
i,2i−n1

= {(e1, e2) ∣ 0 ≤ e1 ≤ i, 0 ≤ e2 ≤ n2 − 2} ∪ {(e1, n2 − 1) ∣ 0 ≤ e1 ≤ 2i − n1} ,

if i > n1

2 .

Figure 3.10 (1) shows ∆2
2,0 for the case n1 = 10, n2 = 9. Within the same case, one

can see M7
2 in Figure 3.10 (2).

Now if i > n1

2 ,M
i
2 is the least (with respect to inclusion) optimal set such that r = i+1

considered in Propositions 3.2.1 and 3.2.2. With respect to i ≤ n1

2 , de�ne

M i
1 ∶= {(e1, e2) ∣ 0 ≤ e1 ≤ i,0 ≤ e2 ≤ b − 1} ∪ {(0, b)},

where b = ⌈
i(n2+1)−n1

i ⌉ (Figure 3.11 showsM2
1 for the case n1 = 10, n2 = 9) and the unique

optimal sets ∆ such that M i
1 ⊆∆ ⊆∆

2
i,0 are among those given in Proposition 3.2.3 (see

Proposition 3.2.3 and Lemmas 3.2.8 and 3.2.9). Then, M i
1 is the least optimal set such

that r = i + 1 considered in Propositions 3.2.1, 3.2.2 and 3.2.3 when i ≤ n1

2 . Notice that

M i
1 may be denoted either ∆2

i,0 or ∆3
i,b.
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Figure 3.10: Sets ∆2
2,0 and M7

2 in the proof of Theorem 3.2.11
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Figure 3.11: Set M2
1 in the proof of Theorem 3.2.11

Therefore, it only remains to prove that under the above cases, there is no optimal

set ∆ such that ∆ ⊂ M i
1 or ∆ ⊂ M i

2. Recall that the parameters corresponding to an

optimal set must attain the bound

k + d0 + (⌈
k

r
⌉ − 1) (δ − 1) ≤ n1n2 + 1.

Let us start with M i
2. If we remove up to s (= 2i − n1) points, then r, δ and ⌈

k
r
⌉ do not

change. The �rst point to remove is (s, n2 − 1), but then we lose one unit in dimension,

and it cannot be recovered by adding one unit in the bound for the minimum distance

because F(i, n2−2) = F(s, n2−1). Then, the variation produced in the LHS of Inequalities

(3.1.3) consideringM i
2 as the starting set is V ∶= V (M

i
2) ∶= −1. In order to achieve V = 0,

the best situation would hold when the process of removing points was from right to left

on the (n2−1)-th row (without removing points from rows below with the same footprint

that the previous removed point) because that way, for every removed point we would

lose one unit in dimension and gain one unit in the bound for the minimum distance.

But even in those cases we would not get V = 0.

Suppose that, in our next step, we have removed the s points inM i
2 on the (n2−1)-th

row from right to left obtaining the set

Si ∶= {(e1, e2) ∣ 0 ≤ e1 ≤ i,0 ≤ e2 ≤ n2 − 2} ∪ {(0, n2 − 1)},
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which is not optimal by the reasoning just given (see Figure 3.12 for the case n1 = 10,

n2 = 9 and i = 7).
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Figure 3.12: Set S7 in the proof of Theorem 3.2.11

Next we study what happens when removing points of either M i
1 or Si according to

our two cases i ≤ n1

2 , i >
n1

2 . Our reasoning di�erentiates each previous case in two new

subcases. The �rst subcase corresponds to remove a multiple of r points and the second

one to delete an intermediate number of points. Since we are looking for sets ∆ with

�xed value r corresponding to their locality, the reasoning will �nish when we delete the

last remaining point in the i-th column because if one performs a new step, the new code

will have smaller locality.

Suppose that we remove λr points of the starting setsM i
1 or S

i. Then, in the LHS of

Inequalities (3.1.3) we lose λr units (corresponding to the dimension) plus λ(δ −1) units

(because for every r points removed, ⌈kr ⌉ decreases one unit), and we gain at most λn1 in

the bound for the minimum distance (because the best situation holds by deleting (0, j)

and every point at the right of (0, j−1), j = b, . . . , b−λ+1, forM i
1, and j = n2−1, . . . , n2−λ

for Si). Then, the variation produced in LHS of Inequalities (3.1.3) would be smaller

than or equal to

−λr − λ(δ − 1) + λn1 = −λr − λ(n1 − r) + λn1 = 0.

Nevertheless, the mentioned gaining does not happen because for every j < b (for M i
1)

and j ≤ n2 − 1 (for Si) there are points in rows below with lower footprint than (0, j),

at least the point (i, j − 1). Thus, we cannot get the mentioned best situation and if we

remove a multiple of r points fromM i
1 or S

i, we do not �nd optimal sets. Figure 3.13 (1)

(respectively, 3.13 (2)) shows what happens in our example with n1 = 10, n2 = 9 when

removing 3 ⋅ (3 = r) (respectively, 2 ⋅ (8 = r)) points from M2
1 (respectively, S7).

Suppose now that we remove an intermediate number of points, that is, λr − s

(1 ≤ s < r) points from M i
1 or Si. For this end, it su�ces to start with the set

S
i
= {(e1, e2) ∣ 0 ≤ e1 ≤ i,0 ≤ e2 ≤ n2 − 2} ∪ {(0, n2 − 1)},

where we do not impose any restriction to the index i. Notice that S
i
= Si when i > n1

2

and M i
1 ⊆ S

i
otherwise. When i ≤ n1

2 , there is no loss of generality if one considers S
i
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Figure 3.13: Resulting set (1) (respectively, (2)) when removing 9 (respectively, 16)

points from M2
1 (respectively, S7) in the proof of Theorem 3.2.11

instead of M i
1 because the sets obtained by removing an intermediate number of points

can be obtained either by removing λ0r − s points from M i
1 or by removing λr − s points

from S
i
, where λ = λ0 + n2 − 1 − b.

Then, removing points of S
i
as mentioned, we obtain a set S′ whose bound on the

minimum distance is d0 ≤ n1(λ + 1) − (λ + 1) which is not optimal. We prove it by

contradiction. Assume that this set is optimal, that is, k + d0 + t = n1n2 + 1, where

t = (⌈kr ⌉ − 1) (n1 − r). Now, if we add to this set the next (λ − 1)r points (following a

natural order) without altering the locality r, we obtain a new set S′′ that satis�es

n1n2 + 1 ≥ k + (λ − 1)r + d0 +∆d + (⌈
k + (λ − 1)r

r
⌉ − 1)(n1 − r)

= k + (λ − 1)r + d0 +∆d + t + (λ − 1)(n1 − r) = k + d0 +∆d + t + (λ − 1)n1

= n1n2 + 1 +∆d + (λ − 1)n1 ≥ n1n2 + 1 − (λ − 1)n1 + (λ − 1)n1

= n1n2 + 1,

where ∆d is the variation produced in the bound on the minimum distance when ob-

taining S′′ from S′. Then −(λ− 1)n1 ≤∆d < 0 and thus, ∆d = −(λ− 1)n1. Therefore, we

get an optimal set S′′ that could be also obtained by removing less than r points of S
i
,

a contradiction by Lemma 3.2.9. To illustrate this last part of the proof, in Figures 3.14

(1), 3.15 (1) and 3.16 (1) (respectively, 3.14 (2), 3.15 (2) and 3.16 (2)) we show (within

the example where n1 = 10, n2 = 9) the sets S
2
(corresponding to the case i ≤ n1

2 ),

S′ obtained by removing λr − s = 6 ⋅ 3 − 2 points from S
2
and S′′ obtained by adding

(λ−1)r = (6−1)3 points to S′ (respectively, S
7
(corresponding to the case i > n1

2 ), S
′ ob-

tained by removing λr−s = 2 ⋅8−5 from S
7
and S′′ obtained by adding (λ−1)r = (2−1)8

points to S′).

We have checked that �xed #suppX(V∆), the only d0-optimal codes obtained by

interpolating with respect to X are of the type of those given in Propositions 3.2.1, 3.2.2

and 3.2.3. It is clear that one can perform the same reasoning by interpolating with

respect to Y . This concludes the proof after noticing that although in the procedure of
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Figure 3.14: Sets S
2
and S

7
in the proof of Theorem 3.2.11
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Figure 3.15: Sets S′ obtained by removing points from S
i
in the proof of Theorem 3.2.11
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Figure 3.16: Sets S′′ obtained by adding points to S′ in the proof of Theorem 3.2.11

interpolating with respect to X (respectively, Y ), with starting set ∆ and resulting set

∆∗, CP∆∗ would have less defect when interpolating with respect to Y (respectively, X),

we would not �nd new optimal sets because this optimality would be discarded in the

process of interpolating with respect to Y (respectively, X).
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As a consequence of Theorem 3.2.11, the next Corollary 3.2.12 determines the pa-

rameters and (r, δ)-localities of the optimal (r, δ)-LRCs we can obtain with the bound

d0 on the minimum distance. Notice that, in order not to repeat cases and since the

variables X and Y play the same role, the parameters are written only with the notation

we have used to interpolate with respect to X.

Corollary 3.2.12. Let Fq be a �nite �eld. For each pair (n1, n2) of integers such

that 2 ≤ n1, n2 ≤ q, there exists an optimal (r, δ)-LRC with length n = n1n2, parameters

[n, k, d]q and locality (r, δ) as follows:

(1) k = (i + 1)(j + 1), d = (n1 − i)(n2 − j), where

i = 0 and 0 ≤ j ≤ n2 − 1, being the locality (r, δ) = (1, n1); or

1 ≤ i ≤ n1 − 2 and j = n2 − 1, being the locality (r, δ) = (i + 1, n1 − i).

(2) k = (i + 1)(n2 − 1) + s + 1, d = n1 − s and (r, δ) = (i + 1, n1 − i), where

max{0,2i − n1} ≤ s < i ≤ n1 − 2.

(3) k = (i + 1)j + 1, d = n1(n2 − j) and (r, δ) = (i + 1, n1 − i), where 1 ≤ i ≤ n1 − 2 and

max{1,
i(n2+1)−n1

i } ≤ j ≤ n2 − 2.

3.2.2. The multivariate case (m ≥ 3)

In Subsection 3.2.1 we have studied bivariate codes CP∆, obtained from decreasing sets

∆ ⊆ {0,1, . . . , n1 − 1} × {0,1, . . . , n2 − 1}, which give rise to optimal LRCs. Moreover we

have determined all the parameters of the d0-optimal bivariate MCCs. We devote this

subsection to the same purpose in the multivariate case. Thus R = Fq[X1, . . . ,Xm]ÒI,

where m ≥ 3 and ∆ ⊆ {0,1, . . . , n1 − 1}×⋯× {0,1, . . . , nm − 1}. The forthcoming Proposi-

tions 3.2.13 and 3.2.14 are the analogues to Propositions 3.2.1 and 3.2.2 for multivariate

MCCs and allow us to determine the parameters of the d0-optimal LRCs of the type CP∆,

m ≥ 3.

Proposition 3.2.13. Keep the notation as given at the beginning of Section 3.1. For

each index j0 ∈ {1, . . . , m}, set ij = nj − 1 for all j ∈ {1, . . . , m}/{j0} and ij0 ∈

{0, 1, . . . , nj0 − 2}, and consider

∆ =∆1
i1,...,im ∶= {(e1, . . . , em) ∣ 0 ≤ ej ≤ ij, for all j = 1, . . . ,m} .

Then, the MCC, CP∆, is an optimal LRC with locality (r, δ) = (ij0 + 1, nj0 − ij0). Further-

more, ∆1
i1,...,im

are the unique sets of the form ∆′ = {(e1, . . . , em) ∣ 0 ≤ ej ≤ lj for all j =

1, . . . ,m}, where 0 ≤ lj ≤ nj − 1, providing optimal LRCs.

Proof. We interpolate with respect to X1 (the proof is analogue if we interpolate with

respect to any other variable). Consider a set ∆′ as in the statement.
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We start by assuming that lj = nj − 1 for m − 2 indices j. Without loss of generality

suppose that lj = nj − 1 for all j = 3, . . . ,m. Then, the point that de�nes the bound on

the minimum distance is (l1, l2, n3 − 1, . . . , nm − 1) and the parameters of this code give

the following value for the LHS of Inequalities (3.1.3):

d0 + k + (⌈
k

r
⌉ − 1) (δ − 1) = (n1 − l1)(n2 − l2) + (l1 + 1)(l2 + 1)n3n4⋯nm

+ [(l2 + 1)n3n4⋯nm − 1](n1 − l1 − 1)

= (n1 − l1)(n2 − l2) + n1(l2 + 1)n3n4⋯nm − (n1 − l1 − 1)

=n1(l2 + 1)n3n4⋯nm + (n1 − l1)(n2 − l2 − 1) + 1.

Thus, the code is optimal if and only if l2 = n2 − 1 (and l1 ∈ {0,1, . . . , n1 − 2} for being an

LRC).

We conclude the proof after noticing that the same reasoning allows us to prove the

proposition when the number of indices j in ∆′ such that lj = nj−1 is less than m−2.

Our next result shows that deleting, from a set ∆1
i1,...,im

, a suitable number of suc-

cessive minimum footprint points on the line ej = nj − 1, j ≠ j0, an optimal LRC is also

obtained. This is because for each removed point we lose one unit in dimension but we

gain one unit in the bound for the minimum distance and r, δ and ⌈kr ⌉ do not change.

As a consequence the LHS in Inequalities (3.1.3) remains constant.

Proposition 3.2.14. Keep the notation as in Proposition 3.2.13. De�ne

∆ =∆2
ij0 ,s
∶=∆1

i1,...,im/{(n1 − 1, . . . , nj0−1 − 1, ej0 , nj0+1 − 1, . . . , nm − 1) ∣ s ≤ ej0 ≤ ij0} ,

where s satis�es max{1,2ij0 − nj0 + 1} ≤ s ≤ ij0 ≤ nj0 − 2 or ij0 = s = 0.

Then the MCC, CP∆, is an optimal LRC with locality (r, δ) = (ij0 + 1, nj0 − ij0).

Proof. The footprint F(p) of the point

p = (n1 − 1, n2 − 1, . . . , nj0−1 − 1, ij0 , nj0+1 − 1, . . . , nm−1 − 1, nm − 1)

determines the bound d0 for the minimum distance of the code CP
∆1

i1,...,im

. We look for

an index 0 ≤ s ≤ ij0 such that ij0 − s+ 1 is the number of points in ∆1
i1,...,im

that meet the

line ej = nj −1, j ≠ j0, and have footprint less than 2 (nj0 − ij0). The candidate set ∆ for

CP∆ to be optimal is obtained by deleting from ∆1
i1,...,im

those points because 2 (nj0 − ij0)

is the footprint of any point in the set

V = {p − ϵj for all j ∈ {1, . . . ,m}/{j0}} ,

where ϵj = (δj1, . . . , δjm), δij being the Kronecker delta, and V ⊆ ∆1
i1,...,im

/{p}. Thus,

nj0 − s < 2(nj0 − ij0), what is equivalent to s ≥ 2ij0 − nj0 + 1.

Therefore, in order to ∆ be a candidate for CP∆ to be optimal, s ≥max{0,2ij0−nj0+1}.

The dimension of the code CP∆ is

k = n1n2⋯nj0−1(ij0 + 1)nj0+1⋯nm−1nm − (ij0 − s + 1),



3.2. Optimal monomial-Cartesian codes 87

and the bound on the minimum distance of CP∆ is given by the point with coordinates

ej = nj − 1, j ≠ j0, ej0 = s − 1 when s ≥ 1 or by any point of V when s = 0. Then

d0 = nj0 − s + 1 for s ≥ 1 and d0 = 2(nj0 − ij0) when s = 0. Moreover we interpolate with

respect to Xj0 (it is the only way to obtain an LRC), so r = ij0 +1 and δ−1 = nj0 − ij0 −1.

Thus, the value for k + d0 + (⌈
k
r
⌉ − 1) (δ − 1) (the LHS of Inequalities (3.1.3)) is

n1n2⋯nj0−1(ij0 + 1)nj0+1⋯nm−1nm − (ij0 − s + 1) + nj0 − s + 1

+ (⌈
n1n2⋯nj0−1(ij0 + 1)nj0+1⋯nm−1nm − (ij0 − s + 1)

ij0 + 1
⌉ − 1) ⋅ (nj0 − ij0 − 1)

= n1n2⋯nm − ij0 + nj0 − (nj0 − ij0 − 1) = n1n2⋯nm + 1,

if s ≥ 1 and

n1n2⋯nj0−1(ij0 + 1)nj0+1⋯nm−1nm − (ij0 − s + 1) + 2(nj0 − ij0)

+ (⌈
n1n2⋯nj0−1(ij0 + 1)nj0+1⋯nm−1nm − (ij0 − s + 1)

ij0 + 1
⌉ − 1) ⋅ (nj0 − ij0 − 1)

= n1n2⋯nm − ij0 − 1 + 2(nj0 − ij0) − 2(nj0 − ij0 − 1) = n1n2⋯nm + 1 − ij0 ,

otherwise. This, together with the condition ij0 = 0 in the case s = 0, proves that CP∆ is

optimal and concludes the proof.

Remark 3.2.15. As in the bivariate case, the families of (decreasing) MCCs given in

Propositions 3.2.13 and 3.2.14 determine the parameters of all d0-optimal multivariate

(m ≥ 3) (r, δ)-LRCs CP∆ (with any set ∆ ⊆ E). The following Theorem 3.2.16 proves the

analogue of Theorem 3.2.11 in the multivariate case. Therefore, by Remark 1.3.11, we

have characterized the optimal multivariate decreasing MCCs.

Theorem 3.2.16. Let CP∆ be a multivariate MCC. If CP∆ is a d0-optimal LRC, then

there exists a MCC, CP∆∗ , as in Propositions 3.2.13 or 3.2.14 having the same parameters

n, k, d, r and δ as CP∆.

Proof. The proof follows by a close reasoning to that given in Theorem 3.2.11. By

a multivariate version of Lemma 3.2.6, one can start with a set ∆ as that given in

Proposition 3.2.13 and remove points following a natural order. The main di�erence

with the case m = 2 is that when m ≥ 3, we should delete points out of a plane, which

enlarges the defect, giving rise to the two possibilities described in Propositions 3.2.13

and 3.2.14 for sets ∆ such that CP∆ is d0-optimal.

Corollary 3.2.17 determines parameters and (r, δ)-localities of the multivariate

d0-optimal (r, δ)-LRCs.

Corollary 3.2.17. Let Fq be a �nite �eld and consider an integer m ≥ 3. For every

m-tuple (n1, . . . , nm) of integers such that 2 ≤ nj ≤ q, j ∈ {1, . . . ,m}, there exists an

optimal (r, δ)-LRC with length n = n1⋯nm, parameters [n, k, d]q and locality (r, δ) as

follows:
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1. k = n1⋯nj0−1(ij0 + 1)nj0+1⋯nm, d = nj0 − ij0 and (r, δ) = (ij0 + 1, nj0 − ij0), where

ij0 ∈ {0,1, . . . , nj0 − 2}.

2. k = n1⋯nj0−1(ij0+1)nj0+1⋯nm−(ij0−s+1), d = nj0−s+1 and (r, δ) = (ij0+1, nj0−ij0),

where

max{1,2ij0 − nj0 + 1} ≤ s ≤ ij0 ≤ nj0 − 2.

3. k = n1⋯nj0−1nj0+1⋯nm − 1, d = 2nj0 and (r, δ) = (1, nj0).

Remark 3.2.18. Keep the notation as in Section 3.1, so let m ≥ 2. Let ∆ be a subset

of E satisfying some of the conditions in Propositions 3.2.1, 3.2.2, 3.2.3, 3.2.13 or 3.2.14.

De�ne ∆∗ ∶= v +∆ for any v ∈ Nm
0 such that ∆∗ ⊆ E. If 0 ∉ Pj for all 1 ≤ j ≤m, then the

MCC CP
∆∗ is optimal with the same parameters and locality as CP∆. This result follows

straightforwardly from Remark 1.3.6.

Remark 3.2.19. MCCs include the family of codes introduced in [3], codes whose eval-

uation map is the same as MCCs but their evaluation sets V∆ are only a subset of those

used for MCCs. Speci�cally, the codes in [3] are subcodes of a�ne Cartesian codes (of

order t), where the corresponding set V∆ is the set of polynomials f in Fq[X1, . . . ,Xm]

with total degree bounded by t and such that a �xed variable Xj0 has degree

degXj0
(f) ≤ ij0 < nj0 − 1 for some �xed integer ij0 (see [3, De�nitions 2.2 and 2.3]).

Therefore, while MCCs allow arbitrary sets ∆ ⊂ E, the sets ∆ of those codes considered

in [3] are of the form

∆ = {(e1, . . . , em) ∈ E ∣ e1 +⋯ + em ≤ t, ej0 ≤ ij0}.

As a consequence we obtain many more (r, δ)-optimal LRCs than those given in [3,

Corollaries 4.2 and 4.3]. Thus, if we �x the locality r = ij0+1 for some 1 ≤ j0 ≤m, then we

obtain optimal codes which are not considered in [3]. These are those of Proposition 3.2.1

for ij0 = i = 0, j < n2−2, and i < n1−2, ij0 = j = 0; those of Proposition 3.2.2 for s ≤ ij0 −2;

those of Proposition 3.2.3 for ij0 > 1 and for ij0 = 1 and nj0 < nj′ , where j
′ ∈ {1,2}/{j0};

and those of Proposition 3.2.14 for ij0 ≥ 2 and max{1,2ij0 − nj0} ≤ s ≤ ij0 − 1. Moreover,

in this chapter, we also give many more optimal LRCs, regarded as sub�eld-subcodes of

MCCs, as we will explain in the next section.

3.3. Optimal sub�eld-subcodes

Fix q = pl, p a prime. We devote this section to obtain new optimal (r, δ)-LRCs. These

are sub�eld-subcodes of J-a�ne variety codes which were introduced in De�nition 1.3.4.

In this section we keep the notations and use the results in Subsection 1.5.1. Notice

that we set Q = q. We prove that sub�eld-subcodes of some J-a�ne variety codes keep

the parameters and (r, δ)-locality of certain decreasing MCCs considered in Section 3.2,

being then optimal. Thus, we get optimal (r, δ)-LRCs over smaller supporting �elds,

which are new and behave as MCCs.
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To show the novelty of our codes, we compare them with those in the references

[29, 81, 92, 121, 72, 27, 129, 28, 36, 131, 132, 108, 31, 90, 79]. They group the known

codes whose parameters [n, k, d] and locality (r, δ) satisfy Formula (1.4.1) with equality

and their lenghts n are divisible by r + δ − 1.

LRCs we provide in this section are ph-ary, such that r + δ − 1 equals either ph + 1

or ph + 2, their length n is a multiple of some of these values, r > 1 and δ > 2. In some

cases, when r + δ − 1 = ph + 1, we also impose gcd-type conditions to obtain novelty.

Our codes are new because they are optimal and there is no code in the literature with

the same parameters and locality. The following paragraph shows some requeriments

that the codes in the above given list of references must satisfy showing that, taking into

account the above paragraph, our codes give optimal codes over the same �eld with a

wider range for the pairs (r, δ).

Parameters and locality of the previously mentioned literature codes, assumed also

ph-ary, satisfy the following conditions, which di�er from ours:

r + δ − 1 ≤ ph [28, 36, 131, 132, 31, 79];

r+δ−1 ≤ ph+1 with either minimum distances other than ours [121, 90] or opposite

gcd-type conditions [121], see the future Remarks 3.3.7 and 3.3.13;

either n ∣ ph − 1 or n ∣ ph + 1 [29, 27, 108], but our codes have n ≥ 2(ph + 1) since

n = (r + δ − 1)n2⋯nm with nj ≥ 2 for all j ∈ {1, . . . ,m};

r = 1 [129];

δ = 2 [81, 92, 72, 79]; and

2δ + 1 ≤ d ≤ r + δ [79] but, in case our codes have d ≤ r + δ, then d ≤ 2δ, see the

future Remarks 3.3.7 and 3.3.13.

Sub�eld-subcodes of J-a�ne variety codes were also used in [47] to provide (r, δ)-

LRCs but unlike this chapter, most of them are non-optimal. The recovery procedure

proposed in [47] is di�erent from the one in this chapter; it was designed to be applied

on sub�eld-subcodes and it mainly uses the structure of closed sets introduced in De�ni-

tion 1.5.5. As a consequence, LRCs in [47] have di�erent parameters than those in this

section. In particular, the values r and δ in [47] of ph-ary sub�eld-subcodes (of a q-ary

code) satisfy r + δ − 1 = ph − 1, while those in this section are such that r + δ − 1 is either

ph + 1 or ph + 2. Finally, setting q = ph and n ≤ (ph)m, we also notice that our codes in

Section 3.2 extend those in [47] because, here, our restriction is r + δ − 1 ≤ ph.

Closed sets will be the key for obtaining optimal (r, δ)-LRCs coming from sub�eld-

subcodes. To explain it, we recall, on the one hand, that if ∆ is a closed set, then

dim(SP,J∆ ) = dim(CP,J∆ ) = #∆. On the other hand, the minimum distance of a sub�eld-

subcode SP,J∆ admits the bound on the MCC CP,J∆ it comes from. Since ∆ is closed, it

is not decreasing (see De�nition 1.3.12) because the construction of closed sets produces

non-consecutive elements in some coordinate. Then ∆ contains gaps, see for example the
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future Figure 3.19. Therefore, the bound given in Corollary 1.3.10 is not sharp, which

forces us to use an improved bound for each particular case that depends on the shape of

∆. This new bound coincides with that of Corollary 1.3.10 on a certain decreasing MCC

CP,J∆′ obtained, roughly speaking, after �compacting� ∆ to a decreasing set ∆′ such that

#∆ =#∆′. Roughly speaking, �to compact� a set ∆ ⊆ E (represented as a shaded region

in the grid E) means to move ∆ by a translation vector vanishing out of the variable

used to interpolate in such a way that the �rst segments of exponents in that variable are

as full as possible, and to remove empty segments (see the forthcoming Figure 3.17 d),

where we use the identi�cation 9 = 0 and points where X = 2 go to points with X = 8).

This procedure is very close to that described in the third paragraph of Remark 3.2.4,

but adapted to the current shapes of the sets ∆. Thus, if we choose ∆ to be closed,

the code over Fph , S
P,J
∆ , has the same parameters n and k and the same bound for the

minimum distance as CP,J∆′ . Moreover, the recovery method presented in Proposition

3.1.1 can also be applied to SP,J∆ obtaining the same locality (r, δ) as CP,J∆′ . Therefore,

we deduce optimality of sub�eld-subcodes SP,J∆ from the optimality of the codes CP,J∆′

studied in Section 3.2.

3.3.1. Optimal (r, δ)-LRCs coming from sub�eld-subcodes of bivariate

MCCs

In this subsection, we use some results in Section 3.2 and the ideas described in

the above paragraph to provide some families of new optimal (r, δ)-LRCs coming from

sub�eld-subcodes of q-ary bivariate J-a�ne variety codes. We will give ph-ary optimal

(r, δ)-LRCs whose length is a multiple of r + δ − 1, where r + δ − 1 equals ph + 1 or ph + 2,

r > 1, δ > 2, and for some codes we impose certain gcd-type conditions so that all the

codes provided are new (see the introduction of Section 3.3 and the future Remark 3.3.7).

The forthcoming Propositions 3.3.4 and 3.3.6 (in characteristic two) prove the optimality

while Theorems 3.3.9 and 3.3.10 show the parameters of our codes.

Recall from De�nition 1.3.4 that Ut ⊆ Fq denotes the multiplicative subgroup of Fq

of t-th roots of unity, t ∣ q − 1. Keep the notation as in Section 3.1 and Subsection 1.5.1.

Fix i ∈ {1,2} (it refers to the variable Xi with respect to which we will interpolate when

applying our recovery method) and denote i′ the unique element i′ ∈ {1,2}/{i}.

Pick ph ≥ 4 if p equals 2 (ph ≥ 5, otherwise) such that ph + 1 ∣ q − 1. Here, the set of

points to evaluate in the variable Xi is Pi = Uph+1 ⊆ Fq, and thus its cardinality equals

ni = p
h + 1. Our (two-dimensional) set P of evaluation points is P = P1 ×P2, where Pi′ is

either some multiplicative subgroup Uni′
⊆ Fq, with ni′ ∣ q − 1 and J = {1,2}, or, allowing

also the element 0 to be evaluated, Uni′−1 ∪ {0} ⊆ Fq, with ni′ − 1 ∣ q − 1 and J = {i}.

The following two families of sets will be used to de�ne the sets ∆ of our codes SP,J∆

since they will constitute the sets suppXi
(V∆) de�ned at the beginning of Section 3.1.

For each nonnegative integer a ≤ ⌊p
h

2 ⌋ − 1 (and, if p = 2, b ≤ ph

2 − 2), we consider the sets

Λi introduced in Subsection 1.5.1, and de�ne

Ωa ∶= {0,1, . . . , a, p
h + 1 − a, ph + 2 − a, . . . , ph} = Λi

0 ∪Λ
i
1 ∪⋯ ∪Λ

i
a
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when a > 0, Ω0 ∶= {0} and

Ω∗b ∶= {
ph

2
− b,

ph

2
− b + 1, . . . ,

ph

2
+ b + 1} = Λi

ph

2
−b
∪Λi

ph

2
−b+1
∪⋯ ∪Λi

ph

2

.

These are closed sets (in the �xed variable i with respect to ph) of the set {0,1, . . . ,

ni−1} = {0,1, . . . , p
h} (identi�ed with Z/(ph+1)Z) of possible exponents, in the variable

Xi, of evaluation polynomials. Indeed, with the above mentioned identi�cation, ph+1 = 0

and then Λi
0 = {0} and Λi

t = {t, p
h − (t − 1)}.

Example 3.3.1. Set (i, ph, q, a, b) = (1,8,64,3,2), that is we �x the �rst variable to

interpolate and we take the �eld F64 and its sub�eld F8. Then the above de�ned sets are

Ωa = {0,1,2,3,6,7,8} = Λ
i
0∪Λ

i
1∪Λ

i
2∪Λ

i
3 = {0}∪{1,8}∪{2,7}∪{3,6}, where, for example,

Λi
2 = {2,2 ⋅ 8 = 16 = 7} because the exponents in the variable i ful�ll the identi�cation

9 = 0 and Ω∗b = {2, . . . ,7} = Λi
2 ∪ Λ

i
3 ∪ Λ

i
4 = {2,7} ∪ {3,6} ∪ {4,5}, and they coincide,

respectively, with the set suppXi
(V∆) in Figure 3.17 a) (i) and b) (i).

Now, let 0 ≤ t < z ≤ ⌊p
h

2 ⌋−1 be nonnegative integers such that 2t ≥max{0,4z−ph−1}.

In addition, when p = 2, consider a nonnegative integer 0 ≤ u ≤ ph

2 − 2 and if u ≥ 1, let

0 ≤ v < u be a nonnegative integer such that 2v + 1 ≥ max{0,4u + 1 − ph}. Let us de�ne

the following four types of sets ∆ (named ∆1, ∆2, ∆
∗
1 and ∆∗2) which will allow us to

give our �rst family of optimal codes SP,J∆ . Sets ∆1 and ∆2 provide codes de�ned over

�nite �elds of arbitrary characteristic, while sets ∆∗1 and ∆∗2 work only in characteristic

two.

∆1(z) ∶=∆1 ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ωz × {0,1, . . . , n2 − 1}, when i = 1,

{0,1, . . . , n1 − 1} ×Ωz, otherwise;

∆2(z, t) ∶=∆2 ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ωz × {0,1, . . . , n2 − 2} ∪Ωt × {n2 − 1}, when i = 1,

{0,1, . . . , n1 − 2} ×Ωz ∪ {n1 − 1} ×Ωt, otherwise;

∆∗1(u) ∶=∆
∗
1 ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ω∗u × {0,1, . . . , n2 − 1}, when i = 1,

{0,1, . . . , n1 − 1} ×Ω
∗
u, otherwise;

and

∆∗2(u, v) ∶=∆
∗
2 ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ω∗u × {0,1, . . . , n2 − 2} ∪Ω
∗
v × {n2 − 1}, when i = 1,

{0,1, . . . , n1 − 2} ×Ω
∗
u ∪ {n1 − 1} ×Ω

∗
v , otherwise.

Our choice of sets ∆ is supported on the ideas exposed before Subsection 3.3.1. We

will prove that they are closed in the forthcoming Proposition 3.3.4. It must hold in each

variable and happens in the variable i′ by picking all the possible exponents or all but

ni′−1 (notice that Λ
i′

ni′−1 = {ni′−1} when i
′ ∉ J). A key fact is that we force the projected

code in the variable i, evPi
(V i

∆), to be MDS in order to have the explicit values of r and

δ from Proposition 3.1.1. Finally, the above sets ∆ are those that, as described before

Subsection 3.3.1, can be �compacted� to some of the sets provided in Propositions 3.2.1,

3.2.2 or 3.2.3 and admit their same (improved) bounds on the minimum distance.
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Example 3.3.2. This is a continuation of Example 3.3.1. With the same notation, set

z = a and t = b, consider also (u, v) = (2,1). Then, Ωt = {0,1,2,7,8} and Ω∗v = {3, . . . ,6}.

Figure 3.17 c) (i) and d) (i) show, respectively, the sets ∆2 and ∆∗2 in this case.

Lemma 3.3.3. Keep the above notation. Let a ≤ ⌊p
h

2 ⌋ − 1 and, if p = 2, b ≤ ph

2 − 2

be nonnegative integers. Consider the Fq-vector spaces V1 = ⟨(Xi)
e ∣ e ∈ Ωa⟩ and

V2 = ⟨(Xi)
e ∣ e ∈ Ω∗b ⟩ contained in the quotient ring Ri de�ned before Proposition 3.1.1.

Then, evPi(V1) and evPi(V2) are MDS codes.

Proof. Let Ω ∶= {0,1, . . . ,2a} = Ωa + a regarded as representatives of elements in

Z/(ph + 1)Z. De�ne V = ⟨(Xi)
e ∣ e ∈ Ω⟩. Codewords in evPi(V ) are of the form

evPi((Xi)
af) = evPi((Xi)

a) ∗ evPi(f),

where f ∈ V1, * denoting the *-product as introduced at the beginning of Part I.

Since 0 ∉ Pi, evPi(V1) and evPi(V ) are isometric codes. The code (evPi(V ))
⊥ is a

[ph + 1, ph − 2a,≤ 2a + 2]q code and, since Ω contains 2a + 1 consecutive elements,

d ((evPi(V ))
⊥) ≥ 2a+2 because its corresponding parity-check matrix contains a Vander-

monde matrix of rank 2a + 1. Thus, (evPi(V ))
⊥ is an MDS code and therefore evPi(V )

and evPi(V1) are MDS codes. The fact that Ω∗b contains 2b + 2 consecutive elements

proves that (evPi(V2))
⊥ is an MDS code and therefore so is evPi(V2).

The following result shows sets P, J and ∆ giving rise to our �rst family of new

optimal LRCs SP,J∆ in the bivariate case. Sets in Items (1), (2) and (3) provide codes

over �elds of any characteristic, while the remaining items only give characteristic two

codes. We note that the proof is based on the ideas exposed in the paragraphs before

Subsection 3.3.1 and Example 3.3.2. The speci�c parameters of the LRCs corresponding

to this result are given in the next Theorem 3.3.9.

Proposition 3.3.4. Keep the the notation as above where Fph is regarded as a sub�eld

of Fq=pl and p
h + 1 ∣ q − 1. Fixed i and Pi = Uph+1, the set of ph + 1-th roots of unity,

the following statements determine sets Pi′, J and ∆ such that the sub�eld-subcodes SP,J∆

over the �eld Fph are optimal (r, δ)-LRCs.

(1) Pi′ = Uni′
for some ni′ such that ni′ ∣ q − 1; J = {1,2} and ∆ =∆1, in which case

(r, δ) = (2z + 1, ph − 2z + 1).

(2) Pi′ = Uni′−1 ∪{0} for some ni′ such that ni′ −1 ∣ q−1; J = {i} and ∆ =∆1, in which

case

(r, δ) = (2z + 1, ph − 2z + 1).

(3) Pi′ = Uni′−1 ∪ {0} for some ni′ such that ni′ − 1 ∣ q − 1 and, if p is odd, either

gcd(ni′ , p
h) ≠ 1 or gcd(ni′ , p

h + 1) ≠ 1; J = {i} and ∆ =∆2, in which case

(r, δ) = (2z + 1, ph − 2z + 1).
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(4) Pi′ = Uni′
for some ni′ such that ni′ ∣ q − 1; J = {1,2} and ∆ =∆∗1, in which case

(r, δ) = (2u + 2, ph − 2u).

(5) Pi′ = Uni′−1∪{0} for some ni′ such that ni′ −1 ∣ q−1; J = {i} and ∆ =∆∗1, in which

case

(r, δ) = (2u + 2, ph − 2u).

(6) Pi′ = Uni′−1∪{0} for some ni′ such that ni′ −1 ∣ q−1; J = {i} and ∆ =∆∗2, in which

case (r, δ) = (2u + 2, ph − 2u).

Proof. We start by proving that the sets ∆ in the statements (1)-(6) are closed with

respect to ph. As we said, in the single variable i, the subsets of {0,1, . . . , ni − 1} =

{0,1, . . . , ph} (identi�ed with Z/(ph + 1)Z),

Ωa = Λ
i
0 ∪Λ

i
1 ∪ ⋅ ⋅ ⋅ ∪Λ

i
a

and

Ω∗b = Λ
i
ph

2
−b
∪Λi

ph

2
−b+1
∪ ⋅ ⋅ ⋅ ∪Λi

ph

2

,

for a ∈ {z, t} and b ∈ {u, v} are clearly closed. In the single variable i′, {0,1, . . . , ni′ − 1}

is closed. In addition, when 0 ∈ Pi′ , the minimal closed set in a single variable Λi′

ni′−1 ⊆

{0,1, . . . , ni′ − 1} is the set Λi′

ni′−1 = {ni′ − 1}. Indeed, with the identi�cation ni′ = 1

described in Subsection 1.5.1, the following chain of equalities holds:

ph(ni′ − 1) = (p
h − 1)(ni′ − 1) + ni′ − 1 = (p

h − 1)ni′ + ni′ − p
h = ph − 1 + ni′ − p

h = ni′ − 1.

Therefore, {0,1, . . . , ni′ − 2} = {0,1, . . . , ni′ − 1}/{ni′ − 1} is also closed. The Cartesian

product and the union of closed sets are closed, so the sets ∆ in (1)-(6) are closed and

dim(SP,J∆ ) = dim(CP,J∆ ).

Now we are going to prove that the sub�eld-subcodes SP,J∆ are LRCs. Let i = 1 and V1

as in Lemma 3.3.3 with a = z. Since Ωz is closed, dim(evPi(V1)∩F
ph+1
ph
) = dim(evPi(V1))

and the fact that d(evPi(V1) ∩ F
ph+1
ph
) ≥ d(evPi(V1)) (see De�nition 1.1.3 to recall this

notation) and Lemma 3.3.3 imply that evPi(V1) ∩ F
ph+1
ph

is an MDS code with minimum

distance ph − 2z + 1. Taking R such that πR(C
P,J
∆ ) = evPi(V1), Proposition 1.5.8 shows

that πR(S
P,J
∆ ) = evPi(V1) ∩ F

ph+1
ph

is also MDS. Then, Proposition 3.1.1 applied to SP,J∆ ,

∆ being either ∆1 or ∆2, proves that S
P,J
∆ is an LRC with locality (2z + 1, ph − 2z + 1).

Replacing (V1, a, z,Ωz) by (V2, b, u,Ω
∗
u) one deduces that SP,J∆ is an LRC with locality

(2u + 2, ph − 2u), whenever ∆ is either ∆∗1 or ∆∗2 . Notice that r and δ do not depend

neither on t nor on v, unlike dimension and minimum distance.

The case i = 2 can be proved analogously noticing that we are in the symmetric

situation. It su�ces to interpolate with respect to Y and change i by i′ and n2 by n1.
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With notation as in Section 3.2 page 69 and i = 1, we assert that the minimum

distance of the code SP,J∆ admits the bound on the minimum distance of CP,J∆′ , d0 (C
P,J
∆′ ),

whenever

(∆,∆′) ∈ {(∆1,∆
1
2z,n2−1) , (∆2,∆

2
2z,2t) , (∆

∗
1 ,∆

1
2u+1,n2−1) , (∆

∗
2 ,∆

2
2u+1,2v+1)}.

Let us prove the statement. Figure 3.17 considers the case (p, h, l, z, t, u, v) = (2,3,6,3,2,

2,1) to illustrate our reasoning. Let c = evP (f), f(X,Y ) ∈ V∆ be a codeword in SP,J∆ .

a) Assume �rstly that ∆ = ∆1. A no-root (α,β) in P of f(X,Y ) must satisfy

that α is a no-root of f(X,β) as a polynomial in X and β is a no-root of f(α,Y )

as a polynomial in Y . Denote nβ (respectively, nα) the cardinality of the set of no-

roots of f(X,β) (respectively, f(α,Y )). Set nX (respectively, nY ) the minimum of nβ

(respectively, nα) when β (respectively, α) runs over P2 (respectively, P1). Then, the

number of no-roots of f in P is at least nXnY . Since d (evP1(V1) ∩ F
ph+1
ph
) = ph + 1 − 2z

and d (evP2 (⟨Y
e ∣ e ∈ {0,1, . . . , n2 − 1}⟩) ∩ Fn2

ph
) = 1 (they are MDS codes), then w(c) ≥

ph + 1 − 2z and d (SP,J∆ ) ≥ ph + 1 − 2z = d0 (C
P,J
∆′ ). See a) in Figure 3.17.

b) Consider now the case ∆ = ∆∗1 . Since d (evP1(V2) ∩ F
n2

ph
) = ph − 2u, the same

argument as in a) proves d (SP,J∆ ) ≥ ph − 2u = d0 (C
P,J
∆′ ). See b) in Figure 3.17.

c) For proving the case ∆ =∆2, we use the following ordering in E:

(e1, e2) ≤ (e
′
1, e
′
2) ⇐⇒ e2 < e

′
2 or (e2 = e

′
2 and e1 ≤ e

′
1),

and we distinguish two cases:

The leading monomial of f is in Ωz × {0,1, . . . , n2 − 2}, then an analogue argument

as in a) proves w(c) ≥ 2(ph + 1 − 2z).

The leading monomial of f is in Ωt × {n2 − 1}, then consider ∆′′ ∶= ∆ + (t,0) ⊆ E

because of the relation ph + 1 = 0 in {0,1, . . . , ph}. Consider the codeword in CP∆′′

evP (X
tf) = evP (X

t) ∗ evP (f) = evP (X
t) ∗ c.

Since 0 ∉ P1, w(c) = w(evP (X
tf)) ≥ F(2t, n2 −1) = p

h +1−2t, F denoting footprint

as introduced in De�nition 1.3.8, by Proposition 1.3.9 (the leading monomial of

Xtf is µXγY n2−1 with γ ≤ 2t).

Then, w(c) ≥min{2(ph + 1 − 2z), ph + 1 − 2t} = ph + 1 − 2t and therefore

d (SP,J∆ ) ≥ ph + 1 − 2t = d0 (C
P,J
∆′ ) .

See c) in Figure 3.17.

d) Finally, when ∆ = ∆∗2 , reasoning as in c) with ∆′′ ∶= ∆ + (p
h

2 + v + 1,0), one gets

the desired bound:

d (SP,J∆ ) ≥ ph − 2v = d0 (C
P,J
∆′ ) .

See d) in Figure 3.17.
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0 1 2 3 . . . 6 7 8
0

1

2

⋮

n2 − 1

(i) ∆ =∆1 = Ω3 × {0,1, . . . , n2 − 1}

0 1 2 . . . 6 7 8
0

1

2

⋮

n2 − 1

(ii) ∆′ = (∆1)
′ =∆1

6,n2−1

a) Either P2 = Un2 , n2 ∣ q − 1 and J = {1,2}, or P2 = Un2−1 ∪ {0}, n2 − 1 ∣ q − 1 and J = {1}

0 1 2 3 . . . 7 8
0

1

2

⋮

n2 − 1

(i) ∆ =∆∗1 = Ω
∗
2 × {0,1, . . . , n2 − 1}

0 1 2 . . . 5 . . . 8
0

1

2

⋮

n2 − 1

(ii) ∆′ = (∆∗1)
′ =∆1

5,n2−1

b) Either P2 = Un2 , n2 ∣ q − 1 and J = {1,2}, or P2 = Un2−1 ∪ {0}, n2 − 1 ∣ q − 1 and J = {1}

0 1 2 3 . . . 6 7 8
0

1

2

⋮

n2 − 2
n2 − 1

0 1 . . . 4 5 . . . 8
0

1

2

⋮

n2 − 2
n2 − 1

0 1 . . . 4 5 6 7 8
0

1

2

⋮

n2 − 2
n2 − 1

(i) ∆ = ∆2 =

Ω3 × {0, 1, . . . , n2 − 2}

∪Ω2 × {n2 − 1}

(ii) ∆′′ = (∆2)
′′ =

∆2 + (2,0)

(iii) ∆′ = (∆2)
′ =∆2

6,4

c) P2 = Un2−1 ∪ {0}, n2 − 1 ∣ q − 1 and J = {1}

0 1 2 3 . . . 6 7 8
0

1

2

⋮

n2 − 2
n2 − 1

0 1 2 3 4 . . . 8
0

1

2

⋮

n2 − 2
n2 − 1

0 1 2 3 4 5 . . . 8
0

1

2

⋮

n2 − 2
n2 − 1

(i) ∆ = ∆∗2 =

Ω∗2 × {0, 1, . . . , n2 − 2} ∪

Ω∗1 × {n2 − 1}

(ii) ∆′′ = (∆∗2)
′′ =

∆∗2 + (6,0)

(iii) ∆′ = (∆∗2)
′ =∆2

5,3

d) P2 = Un2−1 ∪ {0}, n2 − 1 ∣ q − 1 and J = {1}

Figure 3.17: Sets ∆, ∆′ (and ∆′′) considered in the proof of Proposition 3.3.4 for values

(i, ph, q, P1, z, t, u, v) = (1,8,64, U9,3,2,2,1)
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The case i = 2 follows by symmetry. It su�ces to replace P1 by P2, n2 by n1 and

consider

(∆,∆′) ∈
⎧⎪⎪
⎨
⎪⎪⎩

(∆1,∆
1
n1−1,2z) , (∆2,∆

2,σ
2z,2t) , (∆

∗
1 ,∆

1
n1−1,2u+1) , (∆

∗
2 ,∆

2,σ
2u+1,2v+1)

⎫⎪⎪
⎬
⎪⎪⎭

.

Notice that #∆ = #∆′ and dim(SP,J∆ ) = dim(CP,J∆ ) = dim(C
P,J
∆′ ). Moreover, d(SP,J∆ )

≥ d(CP,J∆ ) ≥ d0(C
P,J
∆′ ) and the locality of CP,J∆′ is the same as the locality of SP,J∆ . Then,

the fact that CP,J∆′ is optimal (Corollary 3.2.12 (1) when ∆ is ∆1 or ∆∗1 , and Corollary

3.2.12 (2) when ∆ is ∆2 or ∆
∗
2) implies that the sub�eld-subcode SP,J∆ over the �eld Fph

is optimal, which concludes the proof.

At the beginning of this subsection we announced the introduction of two families

of new optimal codes. One of them contains codes over �elds of any characteristic and

it has already been described. Next we introduce the second one that only works in

characteristic two. We start by giving some sets that will be useful for it. In this case,

p = 2, l ≥ 4 is an even positive integer, h = l
2 (recall that the �eld and sub�eld we are

considering are denoted, respectively, Fq=pl and Fph) and the set of points to evaluate

in the variable Xi is the set of 2h + 1-th roots of unity together with the element 0,

Pi = U2h+1 ∪ {0} ⊆ Fq. Recall also that {i, i′} = {1,2} means that Xi is the variable we

use to interpolate. Then, the cardinality of Pi is ni = 2
h + 2 and P = P1 ×P2, where Pi′ is

either Uni′
⊆ Fq, with ni′ ∣ q − 1 and J = {i′}, or Uni′−1 ∪ {0} ⊆ Fq, with ni′ − 1 ∣ q − 1 and

J = ∅.

Now we introduce some sets which will be the sets suppXi
(V∆) corresponding to the

sets ∆ that we are going to consider. Let 1 ≤ j ≤ ni′ − 1 and 2 ≤ z ≤ 3, 2h − 2z + 1 ≥

max{0,2h − 6} be positive integers and denote

Ω ∶= {0,1,2h} = Λi
0 ∪Λ

i
1,

Ω⊥ ∶= {0,2,3, . . . ,2h − 1} = {0,1, . . . ,2h + 1}/ (Λi
1 ∪Λ

i
2h+1)

and

Ω∗(z) = Ω∗ ∶= {z, z + 1, . . . ,2h − z + 1} = Λi
z ∪Λ

i
z+1 ∪⋯ ∪Λ

i
2h−1.

These are closed sets (in the �xed variable i with respect to 2h) of the set {0,1, . . . ,

ni−1} = {0,1, . . . ,2
h+1} (identi�ed with {0}∪Z/(2h+1)Z) of possible exponents, in the

variable Xi, of evaluation polynomials. De�ne the following four types of sets ∆ (named

∆1, ∆
⊥
1 , ∆2 and ∆⊥2) to be used in our second family of codes SP,J∆ :

∆1 ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ω × {0,1, . . . , n2 − 1}, when i = 1,

{0,1, . . . , n1 − 1} ×Ω, otherwise;

∆⊥1 ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ω⊥ × {0,1, . . . , n2 − 1}, when i = 1,

{0,1, . . . , n1 − 1} ×Ω
⊥, otherwise;
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∆2(j) ∶=∆2 ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ω × {0,1, . . . , j − 1} ∪ (0, j), when i = 1,

{0,1, . . . , j − 1} ×Ω ∪ (j,0), otherwise;

and

∆⊥2(z) ∶=∆
⊥
2 ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ω⊥ × {0,1, . . . , n2 − 2} ∪Ω∗ × {n2 − 1}, when i = 1,

{0,1, . . . , n1 − 2} ×Ω
⊥ ∪ {n1 − 1} ×Ω∗, otherwise.

The reasons for choicing the above sets ∆ are essentially the same ones we explained

for our �rst family, however there are some minor di�erence. Here, in some cases, a

smaller set of exponents is considered for the variable i′ but we keep the closeness property

because, in such cases, the minimal closed sets in the variable i′ contain a single element.

We also have MDS projected codes but our proof for this property is di�erent.

Our next result plays the role of Lemma 3.3.3 for studying our second family of

optimal codes.

Lemma 3.3.5. Keep the above notation. Let V1 = ⟨X
e ∣ e ∈ Ω⟩Fq , V2 = ⟨X

e ∣ e ∈ Ω⊥⟩Fq ⊆

Ri and de�ne C1 ∶= evPi(V1)∩F
#Pi=2h+2
2h

and C2 ∶= evPi(V2)∩F2h+2
2h

. Then, C1 and C2 are

MDS codes.

Proof. Notice that evPi(V2) is the dual code of evPi(V1) since

Ω⊥ = {0,1, . . . ,2h + 1}/{2h + 1 − x ∣ x ∈ Ω}

[49, Proposition 1] and, by Delsarte Theorem, (C2)
⊥ = (evPi(V2))

⊥ ∩ F2h+2
2h

= C1, since

Ω = Λi
0∪Λ

i
1 is closed and then Ω⊥ also is. Thus, it su�ces to prove that C1 is an MDS code.

Notice that its dimension coincides with the dimension of evPi(V1) because Ω is closed

(Theorem 1.5.7), so the parameters of C1 are [2
h + 2,3,≤ 2h]2h . Moreover, any codeword

c ∈ C1 is of the form c = evPi(f), where f = T (λ+µX), λ, µ ∈ Fq = F22h and T ∶Ri →Ri is

the map given by T (g) = g+g2
h
(see Subsection 1.5.1). We have to prove that d(C1) = 2

h,

which is equivalent to prove that the number of roots of f = λ + λ2
h
+ µX + µ2

h
X2h in

Pi = U2h+1 ∪ {0} is at most 2, or that the equation

λ + µX = λ2
h

+ µ2
h

X2h (3.3.1)

has at most 2 solutions in Pi. Indeed, if λ ∉ F2h , X = 0 is not a solution since λ ≠ λ2
h
.

Thus, the above equation is equivalent to

λX + µX2 = λ2
h

X + µ2
h

X2h+1

and to

µX2 + (λ + λ2
h

)X + µ2
h

= 0,

which has at most 2 solutions in Pi. Otherwise, if λ ∈ F2h , then λ = λ
2h and Equation

(3.3.1) is equivalent to

µX ((µX)2
h−1 − 1) = 0.
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We may suppose µ ≠ 0 since the case µ = 0 is not relevant to compute the minimum

distance. Then, the solutions are X = 0 and X = β
µ with β ∈ F2h such that β2

h+1 = µ2
h+1

(since X2h+1 = 1), that is, β2 = µ2
h+1. The solution X = β

µ exists if µ2
h+1 (∈ F2h) is a

square in ∈ F2h and therefore β =
√
µ2h+1. Hence, we obtain at most 2 solutions in Pi,

as desired.

As before, we give sets P, J and ∆ providing our second family of new optimal LRCs

SP,J∆ in the bivariate case. Parameters for these codes are given in the forthcoming

Theorem 3.3.10.

Proposition 3.3.6. Keep the notation as before Lemma 3.3.5 where F2h is regarded as

a sub�eld of Fq=22h. Fixed i ∈ {1,2} and Pi = U2h+1 ∪ {0}, the set of 2h + 1-th roots of

unity together with 0, the following statements determine sets Pi′, J and ∆ such that the

sub�eld-subcodes SP,J∆ over the �eld F2h are optimal (r, δ)-LRCs. Recall that P = P1×P2

and {i, i′} = {1,2}.

(1) Pi′ = Uni′
for some ni′ such that ni′ ∣ q − 1; J = {i

′} and ∆ = ∆1, in which case

(r, δ) = (3,2h).

(2) Pi′ = Uni′−1 ∪ {0} for some ni′ such that ni′ − 1 ∣ q − 1; J = ∅ and ∆ =∆1, in which

case (r, δ) = (3,2h).

(3) Pi′ = Uni′
for some ni′ such that ni′ ∣ q − 1; J = {i

′} and ∆ = ∆⊥1 , in which case

(r, δ) = (2h − 1,4).

(4) Pi′ = Uni′−1 ∪ {0} for some ni′ such that ni′ − 1 ∣ q − 1; J = ∅ and ∆ =∆⊥1 , in which

case (r, δ) = (2h − 1,4).

(5) Pi′ = Uni′
for some ni′ such that ni′ ∣ 2

h − 1; J = {i′} and ∆ = ∆2, where

j ≥max{1, ni′ − 2
h−1}. In this case (r, δ) = (3,2h).

(6) Pi′ = Uni′−1 ∪ {0} for some ni′ such that ni′ − 1 ∣ 2
h − 1; J = ∅ and ∆ = ∆2, where

max{1, ni′ − 2
h−1} ≤ j < ni′ − 1. In this case (r, δ) = (3,2h).

(7) Pi′ = Uni′−1 ∪ {0} for some ni′ such that ni′ − 1 ∣ q − 1; J = ∅ and ∆ = ∆2, where

j = ni′ − 1. In this case (r, δ) = (3,2h).

(8) Pi′ = Uni′−1 ∪ {0} for some ni′ such that ni′ − 1 ∣ q − 1; J = ∅ and ∆ =∆⊥2 , in which

case (r, δ) = (2h − 1,4).

Proof. The proof follows from a close reasoning to that given in the proof of Proposition

3.3.4. There are some minor di�erences which we next explain.

- Recall that {0,1, . . . ,2h + 1} is a set of representatives of {0} ∪ Z/(2h + 1)Z and Λi
l

is the minimal closed set in the variable i of the element l ∈ {0,1, . . . ,2h + 1}. Then, as

we said before

Ω = Λi
0 ∪Λ

i
1,
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Ω⊥ = {0,1, . . . ,2h + 1}/ (Λi
1 ∪Λ

i
2h+1) ,

and

Ω∗ = Λi
z ∪Λ

i
z+1 ∪⋯ ∪Λ

i
2h−1,

are clearly closed sets, which proves that the sets ∆1, ∆
⊥
1 and ∆⊥2 , as well as ∆2 in Item

(7) are closed. The fact that the sets ∆2 in Items (5) and (6) are closed follows by

noticing that when Pi′ = Uni′
, ni′ ∣ 2

h − 1 or Pi′ = Uni′−1 ∪ {0}, ni′ − 1 ∣ 2
h − 1, one can

identify 2h with 1 when computing minimal closed sets in the variable i′. Therefore, the

sets {0,1, . . . , j − 1} and {j} are closed because they are a union of single point minimal

closed sets. This proves that ∆2 is closed.

- Lemma 3.3.5 implies that evPi(V1)∩F2h+2
2h

and evPi(V2)∩F2h+2
2h

are MDS codes with

respective minimum distances 2h and 4. Proposition 3.1.1 applied to SP,J∆ proves that it

is an LRC with locality (3,2h) when ∆ equals ∆1 or ∆2 and (2
h − 1,4) in case ∆ be ∆⊥1

or ∆⊥2 .

- When i = 1, the minimum distance of SP,J∆ admits the bound on the minimum

distance of CP,J∆′ , d0 (C
P,J
∆′ ), whenever the pair (∆,∆

′) belongs to the following set:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(∆1,∆
1
2,n2−1) , (∆

⊥
1 ,∆

1
2h−2,n2−1) ,

⎛
⎜
⎝
∆2,

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∆2
2,0, when j = n2 − 1,

∆3
2,j , otherwise.

⎞
⎟
⎠
, (∆⊥2 ,∆

2
2h−2,2h−2z+1)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Recall that the sets ∆l
i,j , 1 ≤ l ≤ 3 were introduced in Section 3.2. The cases where ∆

equals ∆1 or ∆
⊥
1 (respectively, ∆2 or ∆

⊥
2) can be proved as in Item a) (respectively c)) in

the proof of Proposition 3.3.4. However, when ∆ = ∆2 and the exponent of the leading

monomial of f is (0, j), we do not consider any set ∆′′ but we immediately notice that

w(c) ≥ n1(n2 − j). When ∆ = ∆⊥2 and the exponent of the leading monomial of f is in

Ω∗ × {n2 − 1}, following the idea of the proof of Proposition 3.3.4, we consider the sets:

∆′′0 ∶=∆ + (2
h + 2 − z,0) ⊆ E and ∆′′ ∶=∆′′0 + (−1,0) ⊆ E,

because of the relation 2h + 2 = 1 in {0,1, . . . ,2h + 1}. We illustrate this part of the proof

with the example in Figure 3.18. Since 0 ∈ P1, now we have

w(c) ≥ w(evP (X
−1(X2h+2−zf))) ≥ F(2h + 1 − 2z, n2 − 1) = 2z + 1.

Then, wherever the exponent of the leading monomial of f is, w(c) ≥min{8,2z+1} = 2z+1

and therefore the minimum distance of SP,J∆ admits the bound on the minimum distance

of CP,J∆′ , that is, d(S
P,J
∆ ) ≥ 2z + 1 = d0(C

P,J
∆′ ).
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0 1 2 3 4 5
0

1

2

⋮

n2 − 2
n2 − 1

(1) ∆ = ∆⊥2 = Ω⊥ ×

{0,1, . . . , n2 − 2} ∪

Ω∗ × {n2 − 1}

0 1 2 3 4 5
0

1

2

⋮

n2 − 2
n2 − 1

(2) ∆′′0 = (∆⊥2)
′′
0

=∆⊥2 + (4,0)

0 1 2 3 4 5
0

1

2

⋮

n2 − 2
n2 − 1

(3) ∆′′ = (∆⊥2)
′′

= (∆⊥2)
′′
0 + (−1,0)

0 1 2 . . . 5
0

1

2

⋮

n2 − 2
n2 − 1

(4) ∆′ = (∆⊥2)
′ =

∆2
2,1

Figure 3.18: Sets ∆⊥2 , ∆
′′
0 , ∆

′′ and ∆′ considered in the proof of Proposition 3.3.6 for

values (i,2h, q, P1, P2, J, z) = (1,4,16, U5 ∪ {0}, Un2−1 ∪ {0},∅,2)

The case i = 2 can also be proved following the same arguments as above. It su�ces to

consider the symmetric situation, replace P1 by P2, n2 by n1 and use pairs (∆,∆′) such

that

(∆,∆′) ∈

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(∆1,∆
1
n1−1,2) , (∆

⊥
1 ,∆

1
n1−1,2h−2) ,

⎛
⎜
⎝
∆2,

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∆2,σ
2,0 , when j = 2h + 1,

∆3,σ
j,2 , otherwise.

⎞
⎟
⎠
, (∆⊥2 ,∆

2,σ
2h−2,2h−2z+1)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

We conclude with a last di�erence with respect to the proof of Proposition 3.3.4.

- The fact that CP,J∆′ is optimal follows from Corollary 3.2.12 (1) when ∆ is ∆1 or ∆
⊥
1 ,

Corollary 3.2.12 (3) when ∆ =∆2 and j < ni′ −1 and Corollary 3.2.12 (2) when ∆ equals

∆⊥2 or ∆2 and j = ni′ − 1.

Remark 3.3.7. Propositions 3.3.4 and 3.3.6 do not give an exhaustive list of the optimal

(r, δ)-codes one can �nd from sub�eld-subcodes of MCCs. These results are designed for

providing ph-ary optimal (r, δ)-LRCs such that r+δ−1 is either ph+1 or ph+2 and their

lengths are a multiple of r + δ − 1, r > 1 and δ > 2. Notice that these codes are new with

respect to those given in the literature, see the beginning of this section. The gcd-type

condition given in Proposition 3.3.4 Item (3) is stated to provide new parameters with

respect to those obtained in [121]. Moreover, excepting Proposition 3.3.6, Items (5), with

j ≠ ni′ −1, and (7) (where d ≥ r+ δ), codes in both propositions have minimum distances

d ≤min{r + δ,2δ}, being new with respect to [79].

Examples 3.3.8. In these examples, we give some new optimal LRCs obtained by

applying Propositions 3.3.4 and 3.3.6.

(1) Our �rst example corresponds to Proposition 3.3.4 (3). To help the reader, in this

�rst example we are more explicit. Consider (q, ph, i, z, t, n1, n2) = (5
2,5,2,1,0,9,6)

and the set ∆2(z, t) in our �rst family. This means that we consider the �eld F25,

its sub�eld F5 and we �x the second variable to interpolate. Moreover, the set
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of points to evaluate in that variable (respectively, �rst variable) is the set of 6-

th roots of unity (respectively, 8-th roots of unity together with the element 0),

which has cardinality n2 (respectively, n1). Then, one gets a [54,25,6]5 optimal

(3,4)-LRC.

(2) Consider (q, ph, i, z, n1, n2) = (7
2,7,2,2,17,8), then by Proposition 3.3.4 (2) one

gets a [136,85,4]7 optimal (5,4)-LRC.

(3) Consider (q, ph, i, z, t, n1, n2) = (9
2,9,1,3,1,10,21), then by Proposition 3.3.4 (3)

one gets a [210,143,8]9 optimal (7,4)-LRC.

(4) Consider (q, ph, i, n1, n2) = (2
4,4,1,6,15), then by Proposition 3.3.6 (1) one gets a

[90,45,4]4 optimal (3,4)-LRC.

(5) Consider (q, ph, i, j, n1, n2) = (2
6,8,2,6,8,10), then by Proposition 3.3.6 (6) one

gets a [80,19,20]8 optimal (3,8)-LRC.

(6) Consider (q, ph, i, z, n1, n2) = (2
6,8,1,3,10,10), then by Proposition 3.3.6 (8) one

gets a [100,58,7]8 optimal (7,4)-LRC.

Figure 3.19 shows the sets ∆ introduced in Propositions 3.3.4 and 3.3.6 and used

in the above examples. We make explicit the descomposition of the set ∆ = ∆2 =

{0,1, . . . ,5} × {0,1,8} ∪ {(6,0)} in Example 3.3.8 (5) as a union of minimal closed sets.

Indeed, (i, P1, P2, J) = (2, U7 ∪ {0}, U9 ∪ {0},∅) and ∆ is the union of the following

minimal closed sets:

Λ(0,0) = {(0,0)}, Λ(1,0) = {(1,0)}, Λ(2,0) = {(2,0)}, Λ(3,0) = {(3,0)},

Λ(4,0) = {(4,0)}, Λ(5,0) = {(5,0)}, Λ(6,0) = {(6,0)}, Λ(0,1) = {(0,1), (0,8)},

Λ(1,1) = {(1,1), (1,8)}, Λ(2,1) = {(2,1), (2,8)}, Λ(3,1) = {(3,1), (3,8)},

Λ(4,1) = {(4,1), (4,8)}, Λ(5,1) = {(5,1), (5,8)}.

Now, we state our main results in this subsection which are Theorems 3.3.9 and 3.3.10.

These results follow directly from Propositions 3.3.4 and 3.3.6 and provide explicitly the

parameters and (r, δ)-localities of the new optimal LRCs we have obtained.

Theorem 3.3.9. Let Fq be a �nite �eld with q = pl, p being a prime number and l a

positive integer. Consider another positive integer h such that h divides l, ph ≥ 4 if p = 2

(ph ≥ 5, otherwise) and assume ph + 1 ∣ q − 1. Consider also nonnegative integers z and t

satisfying 0 ≤ t < z ≤ ⌊p
h

2 ⌋ − 1, 2t ≥max{0,4z − ph − 1}. Regard Fph as a sub�eld of Fq.

Then, there exists an optimal (r, δ)-LRC over Fph with the following parameters

depending on two integer variables n′ and a:

[n, k, d]ph = [(p
h + 1)n′, (n′ − 1)(2z + 1) + 2a + 1, ph + 1 − 2a]

ph

and

(r, δ) = (2z + 1, ph − 2z + 1),

whenever some of the following conditions hold:
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(1) n′ ∣ q − 1 and a = z.

(2) n′ − 1 ∣ q − 1 and a = z.

(3) n′ − 1 ∣ q − 1, a = t and, if p is odd, either gcd(n′, ph) ≠ 1 or gcd(n′, ph + 1) ≠ 1.

Assume now that p = 2 and consider a nonnegative integer u and, if u ≥ 1, a nonneg-

ative integer v, satisfying 0 ≤ u ≤ ph

2 − 2, 0 ≤ v < u and 2v + 1 ≥max{0,4u + 1 − ph}.

Then, there exists an optimal (r, δ)-LRC over Fph with the following parameters

depending on two integer variables n′ and a:

[n, k, d]ph = [(p
h + 1)n′, (n′ − 1)(2u + 2) + 2a + 2, ph − 2a]

ph

and

(r, δ) = (2u + 2, ph − 2u),

whenever some of the following conditions hold:

(1) n′ ∣ q − 1 and a = u.

(2) n′ − 1 ∣ q − 1 and a = u.

(3) n′ − 1 ∣ q − 1 and a = v.

0 1 . . . 7 8
0

1

⋮

5

0 1 . . . 15 16
0

1

2

⋮

6

7

0 1 2 3 . . . 7 8 9
0

1

2

⋮

19

20

(1) ∆ = {0,1, . . . ,7}×{0,1,5}

∪ {(8,0)}

(2) ∆ = {0,1, . . . ,16}

× {0,1,2,6,7}

(3) ∆ = {0,1,2,3,7,8,9}

× {0,1, . . . ,19} ∪ {0,1,9} ×

{20}

0 1 . . . 4 5
0

1

2

⋮

14

0 1 . . . 5 6 7
0

1

⋮

8

9

0 1 2 3 . . . 6 7 8 9
0

1

⋮

7

8

9

(4) ∆ = {0,1,4} ×

{0,1, . . . ,14}

(5) ∆ = {0,1, . . . ,5}×{0,1,8}

∪ {(6,0)}

(6) ∆ = {0,2,3, . . . ,7}

× {0,1, . . . ,8} ∪ {3,4,5,6} ×

{9}

Figure 3.19: Sets ∆ considered in Examples 3.3.8
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Theorem 3.3.10. Let Fq be a �nite �eld with q = 2l, l ≥ 4 being an even positive

integer and h = l
2 . Consider also a positive integer z satisfying 2 ≤ z ≤ 3, 2h − 2z + 1 ≥

max{0,2h − 6}. Regard F2h as a sub�eld of Fq.

Then, there exists an optimal (r, δ)-LRC over F2h with the following parameters

depending on the integer variables n′, a, b and c:

[n, k, d]2h = [(2
h + 2)n′, a(n′ − 1) + b,2h + 3 − b]

2h

and

(r, δ) = (a, c),

whenever some of the following conditions hold:

(1) n′ ∣ q − 1 and (a, b, c) = (3,3,2h).

(2) n′ − 1 ∣ q − 1 and (a, b, c) = (3,3,2h).

(3) n′ ∣ q − 1 and (a, b, c) = (2h − 1,2h − 1,4).

(4) n′ − 1 ∣ q − 1 and (a, b, c) = (2h − 1,2h − 1,4).

(5) n′ − 1 ∣ q − 1 and (a, b, c) = (2h − 1,2h − 2z + 2,4).

Finally, consider n′ and j positive integers such that j ≤ n′ − 1 and they satisfy some

of the following conditions:

(1) n′ ∣ 2h − 1 and j ≥max{1, n′ − 2h−1}.

(2) n′ − 1 ∣ 2h − 1 and max{1, n′ − 2h−1} ≤ j < n′ − 1.

(3) n′ − 1 ∣ q − 1 and j = n′ − 1.

Then, there exists an optimal (r, δ)-LRC over F2h with parameters

[n, k, d]2h = [(2
h + 2)n′,3j + 1, (2h + 2)(n′ − j)]

2h

and

(r, δ) = (3,2h).

Table 3.1 shows parameters of some new optimal (r, δ)-LRCs coming from sub�eld-

subcodes deduced from Theorems 3.3.9 and 3.3.10.

3.3.2. Optimal (r, δ)-LRCs coming from sub�eld-subcodes of multivari-

ate MCCs

This section is devoted to extend Propositions 3.3.4 and 3.3.6 and Theorems 3.3.9

and 3.3.10 to the multivariate case. The corresponding versions are stated in the below

Propositions 3.3.11 and 3.3.12, and Theorems 3.3.14 and 3.3.15. Their proofs run parallel
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Item in Theorem ph q n k d r δ

3.3.9 (3) (for (n′, z, t) = (25,1,0)) 5 25 150 = 6 ⋅ 25 73 6 3 4

3.3.9 (1) (for (n′, z) = (48,1)) 7 49 384 = 8 ⋅ 48 144 6 3 6

3.3.9 (2) (for (n′, u) = (16,0)) 4 16 80 = 5 ⋅ 16 32 4 2 4

3.3.9 (3) (for (n′, z, t) = (22,2,0)) 8 64 198 = 9 ⋅ 22 106 9 5 5

3.3.10 (2) (for (n′, j) = (8,5)) 8 64 80 = 10 ⋅ 8 16 30 3 8

3.3.10 (3) (for n′ = 18) 4 256 108 = 6 ⋅ 18 144 6 3 6

Table 3.1: Optimal (r, δ)-sub�eld-subcodes over Fph in the bivariate case

to those given in the bivariate case and we omit them. The sets ∆ extend the ones used

for the bivariate case, but our multivariate case requires to write them in a di�erent way.

Keep the notation as in Section 3.1 and Subsection 1.5.1. Fix j0 ∈ {1, . . . ,m} (it refers

to the variable Xj0 we use to interpolate when applying our recovery method) and S1,

S2 ⊆ {1, . . . ,m}/{j0} such that S1∪S2 = {1, . . . ,m}/{j0} and S1∩S2 = ∅. These sets give

a partition of {1, . . . ,m}/{j0} to decide which variables are (or not) evaluated at zero.

As before, Propositions 3.3.11 and 3.3.12 determine two constructions of sets P, J and

∆ to get optimal families of LRCs, and Theorems 3.3.14 and 3.3.15 give the parameters

of the corresponding codes. Notice that Proposition 3.3.12 and Theorem 3.3.15 give rise

to codes over �elds of characteristic two.

For our �rst construction, keep the notation as in the paragraphs before Lemma 3.3.3

but changing i by j0. In particular consider nonnegative integers z and t (and when p = 2)

u and v as in those paragraphs. Denote

Oz,t ∶= {t + 1, t + 2, . . . , z, p
h + 1 − z, ph + 2 − z, . . . , ph − t}

and

Ou,v ∶= {
ph

2
− u,

ph

2
− u + 1, . . . ,

ph

2
− v − 1,

ph

2
+ v + 2,

ph

2
+ v + 3, . . . ,

ph

2
+ u + 1} .

De�ne

∆1 ∶= {0,1, . . . , n1−1}×⋯×{0,1, . . . , nj0−1−1}×Ωz×{0,1, . . . , nj0+1−1}×⋯×{0,1, . . . , nm−1},

∆2 ∶=∆1/{(n1 − 1, . . . , nj0−1 − 1, ej0 , nj0+1 − 1, . . . , nm − 1) ∣ ej0 ∈ Oz,t} ,

∆∗1 ∶= {0,1, . . . , n1−1}×⋯×{0,1, . . . , nj0−1−1}×Ω
∗
u×{0,1, . . . , nj0+1−1}×⋯×{0,1, . . . , nm−1}

and

∆∗2 ∶=∆
∗
1/{(n1 − 1, . . . , nj0−1 − 1, ej0 , nj0+1 − 1, . . . , nm − 1) ∣ ej0 ∈ Ou,v} .

Proposition 3.3.11. Keep the notation as above where Fph is regarded as a sub�eld

of Fq=pl and ph + 1 ∣ q − 1. Fixed j0 and Pj0 = Uph+1, the set of ph + 1-th roots of

unity, the following statements determine sets P = P1 × ⋯ × Pm, J and ∆ such that the

sub�eld-subcodes SP,J∆ over the �eld Fph are optimal (r, δ)-LRCs:



3.3. Optimal sub�eld-subcodes 105

(1) Pj = Unj for some nj such that nj ∣ q − 1 whenever j ∈ S1 and when j ∈ S2

Pj = Unj−1 ∪ {0} for some nj such that nj − 1 ∣ q − 1; J = S1 ∪ {j0} and ∆ = ∆1, in

which case

(r, δ) = (2z + 1, ph − 2z + 1).

(2) S1 = ∅, for all j ∈ S2 Pj = Unj−1 ∪ {0} for some nj such that nj − 1 ∣ q − 1 and, if p

is odd, either gcd (∏j∈{1,...,m}/{j0} nj , p
h) ≠ 1 or gcd (∏j∈{1,...,m}/{j0} nj , p

h + 1) ≠ 1;

J = {j0} and ∆ =∆2, in which case

(r, δ) = (2z + 1, ph − 2z + 1).

(3) Pj = Unj for some nj such that nj ∣ q−1 when j ∈ S1 and when j ∈ S2 Pj = Unj−1∪{0}

for some nj such that nj − 1 ∣ q − 1; J = S1 ∪ {j0} and ∆ =∆∗1, in which case

(r, δ) = (2u + 2, ph − 2u).

(4) S1 = ∅ and for all j ∈ S2 Pj = Unj−1 ∪ {0} for some nj such that nj − 1 ∣ q − 1;

J = {j0} and ∆ =∆∗2, in which case

(r, δ) = (2u + 2, ph − 2u).

For the second construction, we use the notation as in the paragraph before Lemma

3.3.5 but changing i by j0. De�ne

∆1 ∶= {0,1, . . . , n1−1}×⋯×{0,1, . . . , nj0−1−1}×Ω×{0,1, . . . , nj0+1−1}×⋯×{0,1, . . . , nm−1},

∆2 ∶=∆1/{(n1 − 1, . . . , nj0−1 − 1, ej0 , nj0+1 − 1, . . . , nm − 1) ∣ ej0 ∈ {1,2
h}} ,

∆⊥1 ∶= {0,1, . . . , n1−1}×⋯×{0,1, . . . , nj0−1−1}×Ω
⊥×{0,1, . . . , nj0+1−1}×⋯×{0,1, . . . , nm−1}

and

∆⊥2 ∶=∆
⊥
1/

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(n1 − 1, . . . , nj0−1 − 1, ej0 , nj0+1 − 1, . . . , nm − 1)

∣ ej0 ∈

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

{0}, when z = 2,

{0,2,2h − 1}, otherwise.

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Proposition 3.3.12. Keep the notation as above where F2h is regarded as a sub�eld

of Fq=22h . Fixed j0 and Pj0 = U2h+1 ∪ {0}, the set of 2h + 1-th roots of unity together

with 0, the following statements determine sets P = P1 ×⋯ × Pm, J and ∆ such that the

sub�eld-subcodes SP,J∆ over the �eld F2h are optimal (r, δ)-LRCs:

(1) Pj = Unj for some nj such that nj ∣ q − 1 whenever j ∈ S1 and when j ∈ S2

Pj = Unj−1 ∪ {0} for some nj such that nj − 1 ∣ q − 1; J = S1 and ∆ = ∆1, in which

case

(r, δ) = (3,2h).
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(2) Pj = Unj for some nj such that nj ∣ q − 1 whenever j ∈ S1 and when j ∈ S2

Pj = Unj−1 ∪ {0} for some nj such that nj − 1 ∣ q − 1; J = S1 and ∆ = ∆⊥1 , in which

case

(r, δ) = (2h − 1,4).

(3) S1 = ∅ and for all j ∈ S2 Pj = Unj−1 ∪{0} for some nj such that nj −1 ∣ q −1; J = ∅

and ∆ =∆2, in which case

(r, δ) = (3,2h).

(4) S1 = ∅ and for all j ∈ S2 Pj = Unj−1 ∪{0} for some nj such that nj −1 ∣ q −1; J = ∅

and ∆ =∆⊥2 , in which case

(r, δ) = (2h − 1,4).

Remark 3.3.13. As in the case of bivariate codes (see Remark 3.3.7), Propositions

3.3.11 and 3.3.12 do not give an exhaustive list of the optimal (r, δ)-LRCs one can get

from sub�eld-subcodes of MCCs, in fact they impose conditions in order to obtain new

families of optimal (r, δ)-LRCs. See the beginning of this section.

Finally, we state our main results for the multivariate case. They are Theorem 3.3.14

(respectively, 3.3.15) which give parameters and (r, δ)-localities of the optimal (r, δ)-

LRCs we have obtained in Proposition 3.3.11 (respectively, 3.3.12).

Theorem 3.3.14. Let Fq be a �nite �eld with q = pl, p being a prime number and l a

positive integer. Consider another positive integer h such that h divides l, ph ≥ 4 if p = 2

(ph ≥ 5 otherwise) and assume ph + 1 ∣ q − 1. Consider also nonnegative integers z and t

satisfying 0 ≤ t < z ≤ ⌊p
h

2 ⌋− 1, 2t ≥max{0,4z − ph − 1} and subsets S1, S2 ⊆ {1, . . . ,m− 1}

such that S1 ∪ S2 = {1, . . . ,m − 1} and S1 ∩ S2 = ∅. Regard Fph as a sub�eld of Fq.

Then, there exists an optimal (r, δ)-LRC over Fph with the following parameters

depending on the integer variables n1, . . . , nm−1 and a:

[n, k, d]ph = [(p
h + 1)n1⋯nm−1, (2z + 1)n1⋯nm−1 − a, p

h + 1 − 2z + a]
ph

and

(r, δ) = (2z + 1, ph − 2z + 1),

whenever some of the following conditions hold:

(1) nj ∣ q − 1 for all j ∈ S1, nj − 1 ∣ q − 1 for all j ∈ S2 and a = 0.

(2) S1 = ∅, nj − 1 ∣ q − 1 for all j ∈ S2, a = 2(z − t) and, if p is odd, either

gcd (n1⋯nm−1, ph) ≠ 1 or gcd (n1⋯nm−1, ph + 1) ≠ 1.

Assume now that p = 2 and consider a nonnegative integer u and, if u ≥ 1, a nonneg-

ative integer v, satisfying 0 ≤ u ≤ ph

2 − 2, 0 ≤ v < u and 2v + 1 ≥max{0,4u + 1 − ph}.

Then, there exists an optimal (r, δ)-LRC over Fph with parameters

[n, k, d]ph = [(p
h + 1)n1⋯nm−1, (2u + 2)n1⋯nm−1 − a, p

h − 2u + a]
ph
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and

(r, δ) = (2u + 2, ph − 2u),

whenever some of the following conditions hold:

(1) nj ∣ q − 1 for all j ∈ S1, nj − 1 ∣ q − 1 for all j ∈ S2 and a = 0.

(2) S1 = ∅, nj − 1 ∣ q − 1 for all j ∈ S2 and a = 2(u − v).

Theorem 3.3.15. Let Fq be a �nite �eld with q = 2l, l ≥ 4 being an even positive

integer and h = l
2 . Consider also a positive integer z satisfying 2 ≤ z ≤ 3, 2h − 2z + 1 ≥

max{0,2h − 6} and subsets S1, S2 ⊆ {1, . . . ,m− 1} such that S1 ∪S2 = {1, . . . ,m− 1} and

S1 ∩ S2 = ∅. Regard F2h as a sub�eld of Fq.

Then, there exists an optimal (r, δ)-LRC over F2h with the following parameters

depending on the integer variables n1, . . . , nm−1, a, b and c:

[n, k, d]2h = [(2
h + 2)n1⋯nm−1, an1⋯nm−1 − b, c + b]2h

and

(r, δ) = (a, c),

whenever some of the following conditions hold:

(1) nj ∣ q − 1 for all j ∈ S1, nj − 1 ∣ q − 1 for all j ∈ S2 and (a, b, c) = (3,0,2h).

(2) nj ∣ q − 1 for all j ∈ S1, nj − 1 ∣ q − 1 for all j ∈ S2 and (a, b, c) = (2h − 1,0,4).

(3) S1 = ∅, nj − 1 ∣ q − 1 for all j ∈ S2 and (a, b, c) = (3,2,2h).

(4) S1 = ∅, nj − 1 ∣ q − 1 for all j ∈ S2 and (a, b, c) = (2h − 1,2z − 3,4).

We �nish this subsection by giving, in Table 3.2, the parameters of some new optimal

(r, δ)-LRCs coming from sub�eld-subcodes deduced from Theorems 3.3.14 and 3.3.15.

Item in Theorem ph q n k d r δ

3.3.14 (1) (for (m,z, t) = (3,1,0)) 5 625 480 = 6 ⋅ 5 ⋅ 16 240 4 3 4

3.3.14 (2) (for (m,z, t) = (3,3,1)) 9 81 800 = 10 ⋅ 8 ⋅ 10 556 8 7 4

3.3.14 (2) (for (m,z, t) = (4,1,0)) 4 16 320 = 5 ⋅ 4 ⋅ 4 ⋅ 4 190 5 3 3

3.3.14 (2) (for (m,u, v) = (3,2,0)) 8 64 720 = 9 ⋅ 8 ⋅ 10 476 8 6 4

3.3.15 (1) (for m = 4) 4 256 900 = 6 ⋅ 5 ⋅ 5 ⋅ 6 450 4 3 4

3.3.15 (4) (for (m,z) = (3,2)) 4 16 576 = 6 ⋅ 6 ⋅ 16 287 5 3 4

Table 3.2: Optimal (r, δ)-sub�eld-subcodes over Fph in the multivariate case

Acknowledgements. We thank O. Geil and H. H. López for explaining us when

monomial-Cartesian codes were introduced and named. These facts had gone unnoticed

by us. We named them zero-dimensional a�ne variety codes in a previous version of

[45].
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Chapter 4

Stabilizer quantum codes from

generalized monomial-Cartesian

codes

Let q be an odd prime power. In this chapter we construct q2-ary classical linear

codes that satisfy the hypotheses of Corollary 2.3.8; that is we present codes that are

Hermitian self-orthogonal, and thereby they give rise to stabilizer quantum codes. We

also aim for these quantum codes to have good parameters. For the codes we introduce

in this chapter, we are going to use the same notations as for a monomial-Cartesian code,

see Subsection 1.3.1, with Q = q2. Recall from De�nition 1.3.3 that a q2-ary MCC CP∆ is

an Fq2-vector subspace of Fn
q2

CP∆ = evP (V∆) = ⟨evP (X
e1
1 ⋯X

em
m ) ∣ (e1, . . . , em) ∈∆⟩ ⊆ F

n
q2

obtained as the image of a map

evP ∶V∆ ⊂R =
Fq2[X1, . . . ,Xm]ÒI → Fn

q2 , evP (f) = (f(α0), . . . , f(αn−1)) ,

where m ≥ 1 is a positive integer, P = P1 × ⋅ ⋅ ⋅ ×Pm = {α0, . . . ,αn−1} a Cartesian product

subset of Fm
q2 , I = ⟨f1(X1), . . . , fm(Xm)⟩ the vanishing ideal at P of Fq2[X1, . . . ,Xm]

(i.e., fj(Xj) =∏β∈Pj
(Xj − β) for j = 1, . . . ,m) and

V∆ = ⟨X
e1
1 ⋯X

em
m ∣ (e1, . . . , em) ∈∆⟩Fq2

an Fq2-linear space generated by classes of monomials with exponents in some subset

∆ ⊆ E = {0,1, . . . , n1 − 1} × ⋯ × {0,1, . . . , nm − 1}. This set E is that containing the

possibilities of exponents of any monomial reduced modulo I. Notice that we reordered

the evaluation points in P from 0 to n − 1 as it will be suitable for our purposes. Other

important notations are nj =#Pj and n =#P =∏
m
j=1 nj .

In this chapter we use a generalized version of monomial-Cartesian codes (GMCCs) to

construct Hermitian self-orthogonal classical linear codes. This choice lets the resulting

quantum codes to have a wider range of dimensions that those previously obtained with
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J-a�ne variety codes. GMCCs are obtained from MCCs by twisting each coordinate

of their codewords by �xed nonzero elements of the �eld. This operation may help

to manage the self-orthogonality conditions. To avoid repetitions, an abstract for this

chapter can be found in pages 10 to 12 of the introduction of this PhD thesis.

This chapter is laid out as follows. We introduce GMCCs in Section 4.1. Our con-

struction is presented in Section 4.2, �rst a general one (Theorem 4.2.4), and then a

more speci�c construction that allows us to control the minimum distance, maximizing

also the dimension of the quantum code (Theorem 4.2.7). We provide an explicit twist

vector, see Equation (4.2.1), and formulae for the dimension and minimum distance. In

Section 4.3 we show that our construction with m = 1 gives MDS codes, and when m = 2

and our lower bound for the minimum distance is 3, the codes are at least Hermitian

almost MDS. Section 4.4 contains a proof that for an in�nite family of parameters when

m = 2, our codes beat the Gilbert-Varshamov bound. Finally, in Section 4.5 we present

many examples obtained with our procedure, de�ned by small parameters and being

better than any known code in the literature.

The entire contents in this chapter were carried out with B. Barbero-Lucas and G.

McGuire and, except for Example 4.2.8, they were published in the journal Quantum

Information Processing, see [11]. The notation has been adapted to ease the reading of

this thesis.

4.1. Generalized monomial-Cartesian codes

In this chapter we assume that q is an odd prime power, although in this section

the de�nitions hold for any q. Let us �x a �nite �eld Fq2 . Recall that Fq2[X1, . . . ,Xm]

denotes the polynomial ring in m ≥ 1 variables over Fq2 and that for each element

e = (e1, . . . , em) ∈ Nm
0 , we write Xe for Xe1

1 X
e2
2 ⋯X

em
m . We use the lexicographic order

in Nm
0 for the exponents. That is, given e, e′ ∈ Nm

0 , we say e < e′ if and only if e1 < e
′
1 or

there exists j ∈ {2, . . . ,m} such that e1 = e
′
1, . . . , ej−1 = e

′
j−1 and ej < e

′
j .

Let λ ∈ N such that λ ∣ q − 1. Let P1 be the set of roots of the polynomial X
λ(q+1)
1 − 1

which lies in Fq2 . We also consider arbitrary subsets Pj ⊆ F∗q2 for j = 2, . . . ,m which

have cardinality greater than or equal to 2. The rest of the notations are the same as

the above introduced for a MCC. Notice that, in this setting, f1(X1) = X
λ(q+1)
1 − 1 and

n1 = λ(q + 1). Again, given f ∈ R, f denotes both the equivalence class in R and the

unique polynomial representing f in Fq2[X1, . . . ,Xm] with degree in Xj less than nj ,

1 ≤ j ≤m. Thus, one can write any f ∈R uniquely as

f(X1, . . . ,Xm) = ∑
(e1,...,em)∈E

fe1,...,emX
e1
1 ⋯X

em
m ,

with fe1,...,em ∈ Fq2 .

Now, for any positive integer t, set ζt a primitive t-th root of unity. Since Pj has

nj elements, we �x a bijection between Pj and the set {0,1, . . . , nj − 1} which gives an

ordering on Pj , j = 2, . . . ,m. Let us represent by α(j,s), 0 ≤ s ≤ nj − 1, the elements of Pj
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under the mentioned ordering. For ϵ = (ϵ1, . . . , ϵm) ∈ E we de�ne αϵ ∈ P by

αϵ ∶= (ζ
ϵ1
λ(q+1), α(1,ϵ2), . . . α(m,ϵm)),

where ϵ1 indicates the exponent of ζλ(q+1) and ϵj ∈ {0,1, . . . , nj − 1} gives the position of

the element α(j,ϵj) ∈ Pj in the ordering on Pj , j = 2, . . . ,m. Every element of P has the

form αϵ for some ϵ ∈ E. This sets up a bijection between P and E.

We order the set P with the (lexicographic) order on Nm
0 restricted to E. That is,

given αϵ, αϵ′ ∈ P , then αϵ < αϵ′ if and only if ϵ < ϵ′. Then, we can rename the points in

P as

α0 ∶= α(0,...,0), α1 ∶= α(0,...,0,1), . . . , αn−1 ∶= α(n1−1,n2−1,...,nm−1).

Let v = (v0, . . . , vn−1) ∈ (F∗q2)
n, we will refer to this vector as the twist vector. We

index the coordinates of v by the elements of E, and we order the coordinates of v in

the same way as we ordered the elements of P . That is,

v0 ∶= v(0,...,0), v1 ∶= v(0,...,0,1), . . . , vn−1 ∶= v(n1−1,n2−1,...,nm−1).

The following linear evaluation map in P :

evv,P ∶R→ Fn
q2 , evv,P (f) = (v0f(α0), . . . , vn−1f(αn−1))

is injective by the de�nition of R. It provides the following class of evaluation codes.

De�nition 4.1.1. Let P , v and ∆ be as above. The generalized monomial-Cartesian

code (GMCC ) CPv,∆ is the image of V∆ via the evaluation map evv,P , that is,

CPv,∆ ∶= evv,P (V∆) = ⟨evv,P (X
e) ∣ e ∈∆⟩ ⊆ Fn

q2 .

Along this chapter, we �x an ordering on P as before and then use the notation

evv ∶= evv,P and Cv,∆ ∶= C
P
v,∆.

Remark 4.1.2. When all the sets Pj ⊆ Fq2 , j = 1, . . . ,m, are arbitrary, GMCCs extend

monomial-Cartesian codes. This should be the accurate de�nition, but for our pur-

poses in this chapter we consider the above mentioned particular set P1, namely that of

λ(q + 1)-th roots of unity, and sets Pj , j = 2, . . . ,m, not containing the element 0 ∈ Fq2 .

Next we show that the Hermitian dual of a GMCC is also a GMCC.

Lemma 4.1.3. The dual code (Cv,∆)
⊥h is a GMCC Cw,∆ for some twist vector w.

Proof. Consider any two codewords c = (c0, . . . , cn−1) ∈ C1,∆ and b = (b0, . . . , bn−1) ∈

(C1,∆)
⊥h . Then, the following equation holds:

c0b
q
0 +⋯ + cn−1b

q
n−1 = 0. (4.1.1)

Set v = (v0, . . . , vn−1) the twist vector in (F∗q2)
n. It holds that v∗c = (v0c0, . . . , vn−1cn−1) ∈

Cv,∆ whenever c = (c0, . . . , cn−1) ∈ C1,∆, because the map

C1,∆ → Cv,∆, given by c↦ v ∗ c (4.1.2)
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is bijective. We use this presentation of Cv,∆.

We are going to prove that (Cv,∆)
⊥h = Cw,∆ where w = (w0, . . . ,wn−1) is de�ned by

wi ∶=
1
vqi

for all i = 0, . . . , n − 1. This will conclude the proof.

First we claim that, for any b ∈ (C1,∆)
⊥h , we have that w ∗b = (w0b0, . . . ,wn−1bn−1) ∈

(Cv,∆)
⊥h . To see it, choose v ∗ c ∈ Cv,∆ and note that

v0c0w
q
0b

q
0 +⋯ + vn−1cn−1w

q
n−1b

q
n−1 = 0,

where we use the fact that wq
i =

1

vq
2

i

= 1
vi

for all i, and Equation (4.1.1). This shows that

all the vectors w ∗ b are in (Cv,∆)
⊥h .

Finally note that the map

(C1,∆)
⊥h → (Cv,∆)

⊥h , de�ned by b↦w ∗ b

is bijective, showing the required equality: (Cv,∆)
⊥h = Cw,∆.

The length and the dimension of a GMCC are n and #∆, respectively. A bound for

the minimum distance is provided in the forthcoming Corollary 4.1.6. It follows from

the fact that monomial-Cartesian codes C1,∆ in the sense of our De�nition 4.1.1 admit

the bound in Corollary 1.3.10 (see also De�nition 1.3.8 where the notation F of footprint

was introduced and Proposition 1.3.9) and, also, from the following result.

Lemma 4.1.4. The GMCCs C1,∆ and Cv,∆ are isometric.

Proof. For any codeword c = (c0, . . . , cn−1) ∈ C1,∆, its twisted analogue codeword v ∗ c =

(v0c0, . . . , vn−1cn−1) ∈ Cv,∆ under the bijective mapping (4.1.2) has the same Hamming

weight. This holds because vi ≠ 0 for all i = 1, . . . , n.

Corollary 4.1.5. Let Cv,∆ be a GMCC and let c = evv(f) ∈ Cv,∆ be a codeword given

by f ∈R. Fix a monomial ordering on (N0)
m and let Xe be the leading monomial of f .

Then, w(c) ≥ F(e).

Corollary 4.1.6. Let Cv,∆ be a GMCC and let d be its minimum distance. De�ne

d0 ∶= d0 (Cv,∆) ∶=min{F(e) ∣ e ∈∆}. Then, d ≥ d0.

For example, pick m = 2, n1 = 8, n2 = 6 and ∆ = ({0,1,2} × {0,1}) ∪ {(0,2), (1,2)}.

Following the same conventions as those in the paragraph above Figure 1.3, Figure 4.1

shows the grid representation of E in this case. Then, for any v ∈ (F∗q2)
n, by Corol-

lary 4.1.6, a lower bound for the minimum distance of the code Cv,∆ is d0 (Cv,∆) =

min{F(e) ∣ e ∈∆} = 28.

Lemma 4.1.7. Let Cv,∆ be a GMCC. Then (Cv,∆)
⊥h and (Cv,∆)

⊥e are isometric.

Proof. It is straightforward because (Cv,∆)
⊥h = ((Cv,∆)

⊥e)q.

Lemma 4.1.8. Let Cv,∆ be a GMCC. Then (C1,∆)
⊥h and (Cv,∆)

⊥h are isometric.



4.2. Constructions of stabilizer quantum codes from GMCCs 115

48 42 36 30 24 18 12 6

40 35 30 25 20 15 10 5

32 28 24 20 16 12 8 4

24 21 18 15 12 9 6 3

16 14 12 10 8 6 4 2

8 7 6 5 4 3 2 1

0 1 2 3 4 5 6 7
0

1

2

3

4

5

Figure 4.1: Grid representation of E, where m = 2, n1 = 8, n2 = 6, and ∆ =

({0,1,2} × {0,1}) ∪ {(0,2), (1,2)}

Proof. It follows from Lemma 4.1.4 and the fact that the family of GMCCs is closed

under duality by Lemma 4.1.3.

Corollary 4.1.9. Let Cv,∆ be a GMCC. Then d((Cv,∆)
⊥h) = d((C1,∆)

⊥e).

Proof. The equality is deduced from the isometry between (Cv,∆)
⊥h and (C1,∆)

⊥h (by

Lemma 4.1.8) and the fact that (C1,∆)
⊥h is isometric to (C1,∆)

⊥e (by Lemma 4.1.7).

4.2. Constructions of stabilizer quantum codes from gener-

alized monomial-Cartesian codes

In the present section we construct stabilizer quantum codes by applying Corol-

lary 2.3.8 to GMCCs (De�nition 4.1.1) with a speci�c twist vector. Recall from the be-

ginning of this chapter that q is an odd prime power, ζq2−1 denotes a primitive q2 − 1-th

root of unity, λ is a natural number such that λ ∣ q − 1, n1 = λ(q + 1), 2 ≤ nj ≤ q
2 − 1 for

all j = 2, . . . ,m, and n = n1n2⋯nm. We �x the following twist vector:

v = (ζ
q−1
2

q2−1, . . . , ζ
q−1
2

q2−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n
q+1

,1, . . . ,1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

n
q+1

, ζ
q−1
2

q2−1, . . . , ζ
q−1
2

q2−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n
q+1

, . . . ,1, . . . ,1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

n
q+1

) ∈ (F∗q2)
n. (4.2.1)

The equality

(ζ
q−1
2

q2−1)
q+1
= ζ

(q+1)(q−1)
2

q2−1 = ζ
q2−1
2

q2−1 = −1

proves

vq+1 = (−1, . . . ,−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n
q+1

,1, . . . ,1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

n
q+1

,−1, . . . ,−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n
q+1

, . . . ,1, . . . ,1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

n
q+1

).

The vector vq+1 has q + 1 blocks of length n
q+1 and values −1's or 1's. Recall that the

coordinates vϵ of v are labelled and ordered in the same way as the points αϵ ∈ P . This

twist vector works as follows. For each ϵ ∈ E,

vq+1ϵ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−1 if 0 ≤ (ϵ1 mod 2λ) ≤ λ − 1,

1 if λ ≤ (ϵ1 mod 2λ) ≤ 2λ − 1.
(4.2.2)
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Notice that vϵ only depends on ϵ1. The reason why we choose this speci�c twist vector

is going to become clear in the forthcoming Proposition 4.2.1.

4.2.1. Self-orthogonality conditions

First we present some conditions for the evaluation vectors (under the map evv) of

monomials in R to be orthogonal for the Hermitian inner product, when our twist vector

is used.

Proposition 4.2.1. Keep the same notation as before. Let q be an odd prime power

and consider the twist vector v de�ned in Equality (4.2.1). Let e = (e1, . . . , em), e′ =

(e′1, . . . , e
′
m) ∈ E be exponents of two monomials Xe, Xe′ ∈ R. Then, the evaluation

vectors under the map evv of these monomials are orthogonal for the Hermitian inner

product if one of the following conditions hold:

e1 ≡ e
′
1 mod q + 1, or

e1 /≡ e
′
1 mod q+1

2 .

Proof. In order to compute some conditions under which two evaluations of monomials

of the quotient ring R are orthogonal for the Hermitian inner product we have to see

when the following sum vanishes:

evv(X
e) ⋅h evv(X

e′) = ∑
ϵ∈E

vq+1ϵ ζ
ϵ1(e1+qe′1)
λ(q+1) α

(e2+qe′2)
(2,ϵ2) ⋯α

(em+qe′m)
(m,ϵm) .

Since vϵ only depends on ϵ1, we set vϵ1 ∶= v(ϵ1,...,ϵm) = vϵ and reorder the above sum in

the following way:

evv(X
e) ⋅h evv(X

e′) =
⎛

⎝

λ(q+1)−1
∑
ϵ1=0

vq+1ϵ1 ζ
ϵ1(e1+qe′1)
λ(q+1)

⎞

⎠

⎛

⎝

n2−1
∑
ϵ2=0

α
(e2+qe′2)
(2,ϵ2)

⎞

⎠
. . .
⎛

⎝

nm−1
∑
ϵm=0

α
(em+qe′m)
(m,ϵm)

⎞

⎠
.

(4.2.3)

The above equality is true because all coordinates vϵ in v that have the same ϵ1 coincide.

Now we study when the �rst factor in (4.2.3) equals 0. We ignore the remaining

factors, since the �rst one gives enough information for the proof.

λ(q+1)−1
∑
ϵ1=0

vq+1ϵ1 ζ
ϵ1(e1+qe′1)
λ(q+1) (4.2.4)

is a sum where ϵ1 runs over {0,1, . . . , λ(q + 1) − 1}. Using the three following facts: i)

each ϵ1 can be written in the form sλ + r where 0 ≤ s ≤ q and 0 ≤ r < λ to break the sum

(4.2.4) into λ blocks of size q + 1, ii) ζq+1 ∶= ζλλ(q+1) is a primitive (q + 1)-th root of unity,

and iii) the structure of the twist vector v, we can write the sum (4.2.4) as

λ(q+1)−1
∑
ϵ1=0

vq+1ϵ1 ζ
ϵ1(e1+qe′1)
λ(q+1) = ∑

0≤s≤q
0≤r<λ

vq+1sλ+rζ
(sλ+r)(e1+qe′1)
λ(q+1) =

q

∑
s=0

vq+1sλ ζ
s(e1+qe′1)
q+1

+ ζ
e1+qe′1
λ(q+1)

q

∑
s=0

vq+1sλ+1ζ
s(e1+qe′1)
q+1 +⋯ + ζ

(λ−1)(e1+qe′1)
λ(q+1)

q

∑
s=0

vq+1sλ+λ−1ζ
s(e1+qe′1)
q+1

= (1 + ζ
(e1+qe′1)
λ(q+1) + ⋅ ⋅ ⋅ + ζ

(λ−1)(e1+qe′1)
λ(q+1) )(

q

∑
s=0

vq+1sλ ζ
s(e1+qe′1)
q+1 ) .
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We have considered Equality (4.2.2) and the fact that, for the above λ, vq+1sλ = v
q+1
sλ+1 =

⋯ = vq+1sλ+λ−1 for all 0 ≤ s ≤ q. Now, Equality (4.2.2) and the fact that ζ q+1
2
∶= ζ2q+1 is a

primitive q+1
2 -th root of unity, allow us to rewrite the last sum as follows:

q

∑
s=0

vq+1sλ ζ
s(e1+qe′1)
q+1 =

q−1
2

∑
s=0

vq+12sλζ
2s(e1+qe′1)
q+1 +

q−1
2

∑
s=0

vq+12sλ+1ζ
(2s+1)(e1+qe′1)
q+1

=

q−1
2

∑
s=0

vq+12sλζ
2s(e1+qe′1)
q+1 − ζ

e1+qe′1
q+1

q−1
2

∑
s=0

vq+12sλζ
2s(e1+qe′1)
q+1

= ζ
e1+qe′1
q+1

⎛
⎜
⎝

q−1
2

∑
s=0

ζ
s(e1+qe′1)
q+1
2

⎞
⎟
⎠
−
⎛
⎜
⎝

q−1
2

∑
s=0

ζ
s(e1+qe′1)
q+1
2

⎞
⎟
⎠

= (ζ
e1+qe′1
q+1 − 1)

⎛
⎜
⎝

q−1
2

∑
s=0

ζ
s(e1+qe′1)
q+1
2

⎞
⎟
⎠
.

Thus, we have shown that we can express the sum (4.2.4) as

λ(q+1)−1
∑
ϵ1=0

vq+1ϵ1 ζ
ϵ1(e1+qe′1)
λ(q+1) = P (ζ

e1+qe′1
λ(q+1))(ζ

e1+qe′1
q+1 − 1)

⎛
⎜
⎝

q−1
2

∑
s=0

ζ
s(e1+qe′1)
q+1
2

⎞
⎟
⎠
,

where P (X) = 1 +X +X2 + ⋅ ⋅ ⋅ +Xλ−1. The above product equals 0 if and only if one of

the following conditions holds:

ζ
e1+qe′1
q+1 − 1 = 0 ⇐⇒ e1 + qe

′
1 ≡ 0 mod q + 1. That is, e1 ≡ e

′
1 mod q + 1; either

(∑
q−1
2

s=0 ζ
s(e1+qe′1)
q+1
2

) = 0 ⇐⇒ e1 + qe
′
1 /≡ 0 mod q+1

2 . Since q ≡ −1 mod q+1
2 , this is

equivalent to e1 /≡ e
′
1 mod q+1

2 ; or

P (ζ
(e1+qe′1)
λ(q+1) ) = 0. This is true if and only if ζ

(e1+qe′1)
λ(q+1) is a λ-th root of unity other

than 1. That is equivalent to e1 + qe
′
1 ≡ 0 mod q + 1 and e1 + qe

′
1 /≡ 0 mod λ(q + 1),

which is a particular case of the �rst condition.

Therefore, if either of the �rst two conditions hold, the sum (4.2.4) equals 0. It implies

that evv(X
e) and evv(X

e′) are orthogonal for the Hermitian inner product.

Remark 4.2.2. Suppose that the twist vector is 1 ∶= (1, . . . ,1) ∈ (F∗q2)
n, λ = 1 and Pj is

the set of q + 1-th roots of unity for every j = 1, . . . ,m. Then for any ∆ ⊆ E, the GMCC

C1,∆ is a {1, . . . ,m}-a�ne variety code and it is not self-orthogonal (for the Hermitian

inner product). This is because when we compute the Hermitian inner product of the

evaluation of any monomial Xe =X(e1,...,em) with itself, one obtains the equalities

ev1(X
e) ⋅h ev1(X

e) = ∑
ϵ∈E

ζ
ϵ1e1(1+q)
q+1 ζ

ϵ2e2(1+q)
q+1 ⋯ζ

ϵmem(1+q)
q+1

=
⎛

⎝

q

∑
ϵ1=0

ζ
ϵ1e1(1+q)
q+1

⎞

⎠

⎛

⎝

q

∑
ϵ2=0

ζ
ϵ2e2(1+q)
q+1

⎞

⎠
. . .
⎛

⎝

q

∑
ϵm=0

ζ
ϵmem(1+q)
q+1

⎞

⎠
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and every factor above is
q

∑
s=0

ζ
se1(1+q)
q+1 = q + 1 ≠ 0.

The code C1,∆ is not self-orthogonal but the twist vector v given in Equality (4.2.1)

provides a self-orthogonal GMCC Cv,∆, and this code is isometric to C1,∆. We have

chosen the twist vector carefully because many other GMCCs are not self-orthogonal.

4.2.2. Our general construction

Before stating a theorem with the general construction of this chapter, we introduce

a subset of E which will be useful.

De�nition 4.2.3. Let E0 ∶= {e = (e1, . . . , em) ∈ E ∣ 0 ≤ e1 ≤
q−1
2
} ⊆ E.

The next theorem shows that the set E0 introduced in De�nition 4.2.3 is used as a

reference to construct Hermitian self-orthogonal GMCCs.

Theorem 4.2.4. Let q be an odd prime power and let m ≥ 1, λ ∣ q − 1, n1 ∶= λ(q + 1)

and 2 ≤ nj ≤ q
2−1, j = 2, . . . ,m, be positive integers. Let n ∶= n1⋯nm. Consider the twist

vector v de�ned in Equality (4.2.1) and the set E0 ⊆ E introduced in De�nition 4.2.3.

Let ∆ be a subset of E0. Then,

Cv,∆ ⊆ (Cv,∆)
⊥h .

Therefore, there exists a stabilizer quantum code with parameters

[[n,n − 2#∆,≥ d]]q

where d = d((C1,∆)
⊥e).

Proof. Since for all (e1, . . . , em) ∈∆ we have e1 ≤
q−1
2 , the self-orthogonality follows from

Proposition 4.2.1. The existence and parameters of the stabilizer quantum code follow

from Corollary 2.3.8. Notice that d = d((Cv,∆)
⊥h), but from Corollary 4.1.9 we can

conclude that d = d((C1,∆)
⊥e).

Notice that in the above theorem we do not give an explicit bound for the minimum

distance, but it can be computed using Corollary 4.1.6 in every particular case.

4.2.3. Our speci�c construction

Following [53], we provide a strategy to choose a set ∆ ⊆ E0 so that, on the one hand,

we can control the minimum distance d((C1,∆)
⊥e) and, on the other hand, the dimension

of the resulting stabilizer quantum code is maximized. To that purpose, we need the

following de�nition.

De�nition 4.2.5. Let 2 ≤ t ≤ q+3
2 be a positive integer. De�ne

∆t ∶=

⎧⎪⎪
⎨
⎪⎪⎩

e = (e1, . . . , em) ∈ E
RRRRRRRRRRR

m

∏
j=1
(ej + 1) < t

⎫⎪⎪
⎬
⎪⎪⎭

⊆ E.
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(2) ∆4
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(3) ∆5

Figure 4.2: Sets ∆3, ∆4 and ∆5, where m = 2, n1 = 8 and n2 = 6. We use the same

conventions as in the paragraph above Figure 1.3

Some instances of the above set are represented in Figure 4.2.

Lemma 4.2.6. Let ∆t ⊆ E be the set introduced in De�nition 4.2.5. Then,

d ((C1,∆t)
⊥e) ≥ t.

Proof. It follows from [42, Section 3].

Theorem 4.2.7. Let q be an odd prime power and let m ≥ 1, λ ∣ q − 1, n1 ∶= λ(q + 1)

and 2 ≤ nj ≤ q
2−1, j = 2, . . . ,m, be positive integers. Let n ∶= n1⋯nm. Consider the twist

vector v de�ned in Equality (4.2.1), a positive integer t such that

2 ≤ t ≤
q + 3

2

and the set ∆t ⊆ E introduced in De�nition 4.2.5. Then, the following inclusion holds

Cv,∆t ⊆ (Cv,∆t)
⊥h .

Therefore, there exists a stabilizer quantum code with parameters

[[n,n − 2#∆t,≥ t]]q.

Proof. Let e ∈ ∆t. From ∏m
j=1(ej + 1) < t we have that e1 < t − 1. Since t ≤ q+3

2 ,

then e1 < t − 1 ≤
q+1
2 and therefore ∆t ⊆ E0. So, from Theorem 4.2.4 we have that

Cv,∆t ⊆ (Cv,∆t)
⊥h .

The existence and parameters of the stabilizer quantum code follows from Corol-

lary 2.3.8. Notice that from Corollary 4.1.9 and Lemma 4.2.6, we have d((Cv,∆t)
⊥h) =

d((C1,∆t)
⊥e) ≥ t.

Example 4.2.8. Let m = 2, q = 7 and P2 = P1, so n1 = n2 = 8. In this case, the code

C1,∆t is a {1,2}-a�ne variety code and under this setting, we provide an illustrative

strategy to obtain the same statement of Theorem 4.2.7. Notice that we are going to

give a di�erent argument than the one we gave in Theorem 4.2.7. From [41, Proposition
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2.2], the evaluation of a monomial Xi1
1 X

i2
2 , ev1(X

i1
1 X

i2
2 ), admits a unique Euclidean non-

orthogonal evaluation of a monomial. It is ev1(X
r1
1 X

r2
2 ), where rj ∶= nj − ij mod nj ,

j = 1,2. Figure 4.3 shows an example of a set S of pairs of exponents of monomials

whose evaluations under the map ev1 are not Euclidean orthogonal. Those exponents

are paired under the same colour.

64 56 48 40 32 24 16 8

56 49 42 35 28 21 14 7

48 42 36 30 24 18 12 6

40 35 30 25 20 15 10 5

32 28 24 20 16 12 8 4

24 21 18 15 12 9 6 3

16 14 12 10 8 6 4 2

8 7 6 5 4 3 2 1

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

(1) Xi1
1 X

i2
2

64 56 48 40 32 24 16 8

56 49 42 35 28 21 14 7

48 42 36 30 24 18 12 6

40 35 30 25 20 15 10 5

32 28 24 20 16 12 8 4

24 21 18 15 12 9 6 3

16 14 12 10 8 6 4 2

8 7 6 5 4 3 2 1

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

(2) Xr1
1 X

r2
2

Figure 4.3: Pairs ((i1, i2), (r1, r2)) giving the set S ∶= {((0,0), (0,0)), ((1,0), (7,0)),

((0,1), (0,7)), ((1,1), (7,7)), ((2,1), (6,7))} in Example 4.2.8

Thus, if we consider a set ∆ ⊆ E, then a basis of the code (C1,∆)
⊥e is

{ev1(X
e1
1 X

e2
2 ) ∣ (e1, e2) ∈∆

⊥e},

where

∆⊥e ∶= E/ {(n1 − i1 mod n1, n2 − i2 mod n2) ∣ (i1, i2) ∈∆} .

In this example ∆0 = {0,1,2,3} × {0,1, . . . ,7}. Let us pick t = q+3
2 = 5. Then we

know that ∆5 ⊆∆0 and thus Cv,∆5 ⊆ (Cv,∆5)
⊥h . Figure 4.4 (1) shows ∆5. The minimum

distance of (Cv,∆5)
⊥h can be obtained from that of (C1,∆5)

⊥e since by Corollary 4.1.9

both coincide. Figure 4.4 (2) shows (∆5)
⊥e . Then we deduce that the bound given in

Corollary 4.1.6 for the minimum distance of (C1,∆5)
⊥e = C1,(∆5)⊥e is

d0 ((C1,∆5)
⊥e) = d0 (C1,(∆5)⊥e) = 2.

However, we can enlarge the bound. To that purpose, consider 1′ ∶= (1, . . . ,1) ∈ Nm,

the code

C1,∆5(1
′) ∶= {c ∗ ev1(X1⋯Xm) ∣ c ∈ C1,∆5}

and

∆′5 ∶=∆5 + (1,1)

(see De�nition 1.3.5). Then, C1,∆5(1
′) = C1,∆′5 . Moreover, the codes C1,∆5 and C1,∆5(1

′)

are isometric (see Remark 1.3.6). Indeed, since no point in P has a vanishing coordinate,

the codewords in C1,∆5(1
′) are obtained by multiplying coordinate-wise the codewords
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in C1,∆5 by a non-zero element. In addition, by McWilliams identities (C1,∆5)
⊥e and

(C1,∆5(1
′))
⊥e are also isometric. Figure 4.4 (3) and (4) show∆′5 and (∆

′
5)
⊥e , respectively.

The set (∆′5)
⊥e is decreasing (see De�nition 1.3.12), and therefore

d ((Cv,∆5)
⊥h) = d ((C1,∆5)

⊥e) = d ((C1,∆5(1
′))
⊥e
) = d0 ((C1,∆5(1

′))
⊥e
) = 5.
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(3) ∆′5
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⊥e

Figure 4.4: Sets ∆5, (∆5)
⊥e , ∆′5 and (∆′5)

⊥e in Example 4.2.8

4.2.4. The dimension

We state a recursive formula for the dimension of the stabilizer quantum code which

was shown in [53].

Let a, b ∈ N. Consider the case when nj = b for all j = 1, . . . ,m. We de�ne

Vb(m,a) ∶=#

⎧⎪⎪
⎨
⎪⎪⎩

(l1, . . . , lm)
RRRRRRRRRRR

lj ∈ N, 1 ≤ lj ≤ b, j = 1, . . .m,
m

∏
j=1

lj ≤ a

⎫⎪⎪
⎬
⎪⎪⎭

.

By [53]

Vb(m,a) =
b

∑
s=1

V (m − 1, ⌊
a

s
⌋) ,



122 4. Stabilizer quantum codes from generalized monomial-Cartesian codes

where Vb(1, a) =min{a, b}.

Note that #∆t = Vλ(q+1)(m, t − 1), where all of n1, . . . , nm are equal to λ(q + 1).

Therefore we can use the recursive formula above described to compute #∆t, and hence

the dimension of the stabilizer quantum code in Theorem 4.2.7.

For example, when m = 2

#∆t = Vλ(q+1)(2, t − 1) = t − 1 + ⌊
t − 1

2
⌋ + ⌊

t − 1

3
⌋ +⋯ + ⌊

t − 1

t − 2
⌋ + ⌊

t − 1

t − 1
⌋, (4.2.5)

and when m = 3

#∆t = Vλ(q+1)(3, t − 1) =
t−1
∑
β=1

⌊ t−1
β
⌋

∑
γ=1
⌊
t − 1

βγ
⌋.

4.3. MDS and Hermitian almost MDS quantum codes

In this section we give quantum codes whose parameters satisfy or are close to satisfy

equality in the quantum Singleton bound (see Theorem 2.3.9). Recall that quantum

codes attaining equality are said to be (quantum) MDS. First we provide quantum codes

of this type.

Theorem 4.3.1. The stabilizer quantum codes obtained from Theorem 4.2.7 with m = 1

are quantum MDS codes.

Proof. For any given bound for the minimum distance t ∈ {2, . . . , q+32 }, we have ∆t =

{0,1,2, . . . , t − 2}. The parameters of the stabilizer quantum code constructed from

Theorem 4.2.7 are

[[n, k, d]]q = [[λ(q + 1), λ(q + 1) − 2(t − 1),≥ t]]q.

It is easily veri�ed that the above parameters provide a quantum MDS code. Indeed,

k + 2d ≥ λ(q + 1) − 2(t − 1) + 2t = λ(q + 1) + 2 = n + 2 and the quantum Singleton bound

gives an equality.

Some sample parameters are given in Tables 4.3 to 4.7. For example, we obtain

quantumMDS codes with parameters [[12,8,3]]5 in Table 4.4, [[8,4,3]]7 and [[16,8,5]]7

in Table 4.5 and [[20,12,5]]9 in Table 4.6. We do not claim that these examples are

new.

The article [126] constructs MDS codes with lengths r(q2 − 1)/h, where h is an even

divisor of q − 1 and r ≤ h/2 (their Theorems 3, 4 and 5). This article does not provide

an explicit twist vector (only its existence is proved). Our construction uses an explicit

twist vector and (in the m = 1 case) gives codes with the same parameters as in [126].

Next we provide the other type of quantum codes we announced, whose parameters

are close to satisfy equality in the quantum Singleton bound. The quantum Singleton

defect of a parameter set [[n, k, d]] is de�ned to be n−(k+2d−2). MDS codes have quan-

tum Singleton defect 0, by de�nition. Codes with quantum Singleton defect 1 are called

quantum almost MDS (QAMDS) codes. However, from the statement of Corollary 2.3.8
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one can see that the quantum Singleton defect of any code constructed using that result

must be even, and thus a quantum Singleton defect of 1 cannot be achieved. The smallest

nonzero Singleton defect of a code constructed using Corollary 2.3.8 is therefore 2. This

motivates the following de�nition.

De�nition 4.3.2. A quantum code constructed from Corollary 2.3.8 with parameters

[[n, k, d]]q such that n = k + 2d is called a quantum Hermitian almost MDS (QHAMDS )

code.

In Theorem 4.3.1 we showed that we can construct stabilizer quantum MDS codes.

Recall that the quantum MDS conjecture (Conjecture 2.3.10) states that n ≤ q2 + 1 for a

stabilizer quantum MDS code with parameters [[n, k, d]]q and q odd. Now we are going

to show that we can also construct stabilizer quantum codes with n > q2 + 1 that are

at least QHAMDS. That is, they are either QHAMDS or MDS. If the quantum MDS

conjecture is true, they cannot be MDS, and therefore they would have the best possible

parameters.

Theorem 4.3.3. The stabilizer quantum codes obtained from Theorem 4.2.7 with m = 2,

n > q2 + 1 and t = 3 are at least QHAMDS.

Proof. Let m = 2, t = 3 and λ and n2 be as de�ned in Theorem 4.2.7 such that n > q2 +1.

We have ∆3 = {(0,0), (1,0), (0,1)} (see Figure 4.2). The parameters of the stabilizer

quantum code constructed from Theorem 4.2.7 are

[[n, k, d]]q = [[λ(q + 1)n2, λ(q + 1)n2 − 6,≥ 3]]q.

It is easily veri�ed that the above parameters provide a code which is at least QHAMDS.

This is because k + 2d ≥ λ(q + 1)n2 − 6 + 2 ⋅ 3 = λ(q + 1)n2 = n.

Some examples will be given in Tables 4.3 to 4.7. In [30] the authors study ternary

quantum codes of minimum distance three. In that paper (their Theorem 4.4) quantum

codes with parameters [[n,n − 7,3]]3 are shown for certain lengths n. For those lengths

which are a multiple of 4 and less than 64 we can improve the dimension by 1, using the

codes in Theorem 4.3.3. See also Table 4.3.

4.4. Beating Gilbert-Varshamov bound

In this section we set an in�nite family of codes obtained from our construction for

m = 2 that beat the quantum Gilbert-Varshamov bound, stated in Theorem 2.3.11. We

remark that some codes with m > 2 also beat the Gilbert-Varshamov bound. Several

examples for m = 3 are presented in Tables 4.3, 4.4 and 4.6. Explicit constructions better

than the Gilbert-Varshamov bound have also been considered before, see for instance [84].

Recall that a parameter set [[n, k, d]]q beats the quantum Gilbert-Varhsamov (QGV)

bound if the inequality in Theorem 2.3.11 for Q = q is not satis�ed.

In the m = 2 case we have the following statement, using the codes constructed in

this chapter. In this statement we are using Formula (4.2.5).
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Theorem 4.4.1. Given an odd prime power q, and given d in the range 5 ≤ d ≤ q+3
2 , let

n be in the interval

((d − 1)d−1
q2

(q2 − 1)d−1
q2(d−1)(0.7+ln(d−1)))

1
d−1

≤ n ≤ (q2 − 1)2

and have the form λ(q + 1)n2 where λ ∣ (q − 1) and 2 ≤ n2 ≤ q
2 − 1. Then there exists a

stabilizer quantum code with parameters

⎡
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎣

n,n − 2
d−1
∑
j=1
⌊
d − 1

j
⌋,≥ d

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦q

and this code beats the quantum Gilbert-Varshamov bound.

Proof. We use the codes whose existence is proved in Theorem 4.2.7 in the case m = 2.

The upper bounds d ≤ q+3
2 and n ≤ (q2−1)2 follow from the construction in Theorem 4.2.7.

Let

A =
d−1
∑
i=1
(q2 − 1)i−1(

n

i
) and D =

qn−k+2 − 1

q2 − 1
,

where k = n−2∑d−1
j=1⌊

d−1
j ⌋ (this dimension formula comes from Formula (4.2.5) which uses

our construction with m = 2). We wish to prove that A >D under the stated hypotheses.

To prove this, we are going to let

B =
1

(d − 1)d−1
nd−1(q2 − 1)d−2 and C = (

q2

q2 − 1
) q2(d−1)(0.7+ln(d−1)),

and we will prove three things: that A > B, that B ≥ C, and that C > D. This will

complete the proof that A >D.

To show that A > B, we use the estimate for binomial coe�cients (nk) > (
n
k )

k. Then

A =
d−1
∑
i=1
(q2 − 1)i−1(

n

i
) > (

n

d − 1
)(q2 − 1)d−2

> (
n

d − 1
)

d−1
(q2 − 1)d−2 =

1

(d − 1)d−1
nd−1(q2 − 1)d−2 = B.

To prove that B ≥ C, rearranging the hypothesis

((d − 1)d−1
q2

(q2 − 1)d−1
q2(d−1)(0.7+ln(d−1)))

1
d−1

≤ n

yields precisely that B ≥ C.

To prove that C > D, we use the fact that if r ≥ 4 then Hr < 0.7 + ln r, where Hr is

the r-th harmonic number de�ned by Hr = ∑
r
j=1

1
j . Then

d−1
∑
j=1
⌊
d − 1

j
⌋ <

d−1
∑
j=1

d − 1

j
= (d − 1)Hd−1 < (d − 1)(0.7 + ln(d − 1)),

since d − 1 ≥ 4. Lastly, it follows that

D =
qn−k+2 − 1

q2 − 1
<
qn−k+2

q2 − 1
= (

q2

q2 − 1
) qn−k

= (
q2

q2 − 1
) q

2∑d−1
j=1 ⌊ d−1j ⌋ < (

q2

q2 − 1
) q2(d−1)(0.7+ln(d−1)) = C.



4.4. Beating Gilbert-Varshamov bound 125

Theorem 4.4.1 assumes that d ≥ 5 because of the constant 0.7, which is a choice. The

cases d = 3 and d = 4 can be proved separately. They could be included in the proof

above but the constant 0.7 would have to be larger. Similarly, we could have stated the

theorem for d ≥ 6 and the constant would be smaller, it would be 0.68. Then the d = 5

case would need to be handled separately. As d gets larger, the constant gets smaller

and approaches the Euler-Mascheroni constant.

For each q between 7 and 17 and d = 5, 6, 7, Table 4.1 gives the range of values of n

for which the quantum Gilbert-Varshamov bound is beaten, as stated in Theorem 4.4.1.

d

q
7 9 11 13 17

5 742-2304 1438-6400 2450-14400 3818-28224 7800-82944

6 d > q+3
2 3848-6400 7022-14400 11600-28224 26006-82944

7 d > q+3
2 d > q+3

2 None None 72590-82944

Table 4.1: Some instances of the range of lengths of stabilizer quantum codes (from

Theorem 4.4.1 only) that beat the quantum Gilbert-Varshamov bound

A separate special analysis for each d, or using better estimates in the proof, or

using a computer, will give a better range of values for n than the statement of The-

orem 4.4.1. For example, when q = 7 and d = 5, computer calculations show that the

Gilbert-Varshamov bound is beaten by our codes as soon as n > 295, whereas the proof

of Theorem 4.4.1 gives n ≥ 742. As another example, when q = 11 and d = 7, the range of

values of n as given by the statement of Theorem 4.4.1 is empty (in Table 4.1 we wrote

�None�). However, there are in fact values of n that beat the Gilbert-Varshamov bound.

We state one example [[7200,7172,7]]11 in Table 4.7.

We also remark that Theorem 4.4.1 is for m = 2. A similar result will hold for m > 2.

4.4.1. The case d = 3

Theorem 4.4.1 assumes that d ≥ 5 to obtain a slightly stronger statement. We treat

the case that d = 3 (and m = 2) separately, and we complete the analysis in detail now.

We omit the d = 4 case, which is similar.

Suppose d = 3. By Formula (4.2.5) we have that∆3 has 3 elements, see also Figure 4.2.

The two sides of the Gilbert-Varshamov bound become

qn−k+2 − 1

q2 − 1
=
q8 − 1

q2 − 1
= q6 + q4 + q2 + 1

and
d−1
∑
i=1
(q2 − 1)i−1(

n

i
) = n + (

n

2
)(q2 − 1).

To beat the QGV bound we obtain a condition which is a quadratic polynomial in n,

namely we require that

n + (
n

2
)(q2 − 1) − (q6 + q4 + q2 + 1) > 0.
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Solving the quadratic yields that the QGV bound is beaten when

n >
q2 − 3 +

√
8q8 + q4 − 6q2 + 1

2(q2 − 1)
.

For m = 2 the largest possible n is (q−1)(q+1)(q2−1). Therefore, for each valid n which

is a multiple of q + 1 between
q2−3+

√
8q8+q4−6q2+1
2(q2−1) and (q2 − 1)2, we obtain a code of that

length that beats the QGV bound.

We show Table 4.2 where for each q, 3 ≤ q ≤ 11, and d = 3 we state the range of values

of n for which Gilbert-Varshamov bound is beaten.

q 3 5 7 9 11

Range of lengths 15-64 38-576 72-2304 117-6400 174-14400

Table 4.2: Some instances of the range of lengths of quantum stabilizer codes from

Theorem 4.2.7 with d = 3 that beat the quantum Gilbert-Varshamov bound

In the d = 4 case (details omitted) the polynomial in n would be cubic instead of

quadratic.

4.5. Examples

Tables 4.3 to 4.7 show some samples of small values of the parameters of the stabilizer

quantum codes constructed with Theorem 4.2.7. For their minimum distance, we give

the lower bound t provided by Theorem 4.2.7. We remind the reader of our notation: q

is an odd prime power, n1 can be any λ(q+1) where λ is a divisor of q−1
2 , and n2 and n3

can take any value between 2 and q2 − 1. Note that for codes [[n, k, d]]q = [[n, k,≥ t]]q,

constructed from Theorem 4.2.7, we must have t ≤ q+3
2 = 3 when q = 3, and t ≤ q+3

2 = 4

when q = 5.

Recall also codes with n+2 = k+2d are called MDS codes and codes with n = k+2d are

called QHAMDS codes. We also say in the sixth column if that code beats the quantum

Gilbert-Varshamov bound in the sense explained before Theorem 4.4.1.

In order to compare di�erent quantum codes, one may use the propagation rules, see

two paragraphs above Proposition 2.2.8.

In the tables below, we give some examples of codes that result from our construction

and compare them to the best known codes in the literature. In some cases we improve

on the best known. It is possible to have more than one improvement. For example, a

[[78,72,3]]5 code beats a [[80,68,3]]5 code in two ways, because it has a smaller n and

also has a larger k.

Finally, the article [126] has a construction of MDS codes with lengths of the form

r(q2 − 1)/h, where h is an even divisor of q − 1 and r ≤ h/2 (see Theorems 3, 4 and 5 in

[126]). Some of the MDS codes appearing in our tables may also be obtained with the

construction in [126].



4.5. Examples 127

m n1 n2 n3 [[n, k, (d ≥) t]]q Beats QGV Comment

1 4 [[4,0,3]]3 No MDS

1 8 [[8,4,3]]3 Yes MDS

2 4 5 [[20,14,3]]3 Yes QHAMDS

2 4 6 [[24,18,3]]3 Yes QHAMDS

2 4 7 [[28,22,3]]3 Yes QHAMDS

2 4 8 [[32,26,3]]3 Yes QHAMDS, equals [[32,26,3]]3 in [30]

2 8 5 [[40,34,3]]3 Yes QHAMDS, beats [[40,33,3]]3 in [30]

2 8 6 [[48,42,3]]3 Yes QHAMDS, equals [[48,42,3]]3 in [30]

2 8 7 [[56,50,3]]3 Yes QHAMDS, beats [[56,49,3]]3 in [30]

2 8 8 [[64,58,3]]3 Yes QHAMDS , beats [[64,57,3]]3 in [30]

3 8 3 3 [[72,64,3]]3 Yes Beats [[72,62,3]]3 in [78]

3 4 8 4 [[128,120,3]]3 Yes Length not obtained with m = 1,2

Table 4.3: A q = 3 sample of stabilizer quantum codes

m n1 n2 n3 [[n, k, (d ≥) t]]q Beats QGV Comment

1 6 [[6,2,3]]5 No MDS

1 12 [[12,8,3]]5 Yes MDS

1 12 [[12,6,4]]5 Yes MDS

2 6 5 [[30,24,3]]5 No QHAMDS, beats [[33,13,3]]5 in [15]

2 6 6 [[36,30,3]]5 No QHAMDS

2 6 6 [[36,26,4]]5 No Length not obtained with m = 1

2 6 7 [[42,36,3]]5 Yes QHAMDS

2 6 13 [[78,72,3]]5 Yes QHAMDS, beats [[80,68,3]]5 in [15]

2 6 13 [[78,68,4]]5 Yes Beats [[78,60,4]]5 in [88]

2 6 16 [[96,86,4]]5 Yes Same as in [88]

2 6 19 [[114,104,4]]5 Yes Length not obtained with m = 1

2 6 22 [[132,122,4]]5 Yes Beats [[132,118,4]]5 in [127]

2 12 24 [[288,282,3]]5 Yes QHAMDS

2 12 24 [[288,278,4]]5 Yes Beats [[288,275,4]]5 in [48]

3 24 13 2 [[624,612,4]]5 Yes Same as in [48]

3 24 24 2 [[1152,1144,3]]5 Yes Length not obtained with m = 1,2

Table 4.4: A q = 5 sample of stabilizer quantum codes
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m n1 n2 n3 [[n, k, (d ≥) t]]q Beats QGV Comment

1 8 [[8,4,3]]7 No MDS

1 16 [[16,12,3]]7 Yes MDS

1 16 [[16,10,4]]7 Yes MDS

1 16 [[16,8,5]]7 Yes MDS

1 24 [[24,20,3]]7 Yes MDS, same as [126]

1 48 [[48,44,3]]7 Yes MDS

2 8 7 [[56,50,3]]7 No QHAMDS

2 8 8 [[64,58,3]]7 No QHAMDS, beats [[65,53,3]]7 in [77]

2 8 8 [[64,54,4]]7 No Length not obtained with m = 1

2 8 8 [[64,48,5]]7 No Beats [[65,41,5]]7 in [77]

2 8 9 [[72,66,3]]7 Yes QHAMDS, beats [[75,63,3]]7 in [88]

2 8 9 [[72,56,5]]7 No Beats [[75,51,5]]7 in [88]

2 8 15 [[120,114,3]]7 Yes QHAMDS, beats [[126,114,3]]7 in [15]

2 8 21 [[168,162,3]]7 Yes QHAMDS, beats [[168,158,3]]7 in [15]

2 8 21 [[168,158,4]]7 Yes Beats [[168,152,4]]7 in [15]

2 8 25 [[200,190,4]]7 Yes Same as in [88]

2 8 48 [[384,378,3]]7 Yes QHAMDS, same as in [23]

2 8 48 [[384,374,4]]7 Yes Same as in [23]

2 8 48 [[384,368,5]]7 Yes Same as in [23]

2 16 27 [[432,422,4]]7 Yes Beats [[432,419,4]]7 in [48]

3 16 48 2 [[768,760,3]]7 Yes Length not obtained with m = 1,2

Table 4.5: A q = 7 sample of stabilizer quantum codes

m n1 n2 n3 [[n, k, (d ≥) t]]q Beats QGV Comment

1 10 [[10,6,3]]9 No MDS

1 20 [[20,16,3]]9 Yes MDS

1 20 [[20,14,4]]9 Yes MDS

1 20 [[20,12,5]]9 Yes MDS

1 40 [[40,36,3]]9 Yes MDS

2 10 10 [[100,80,6]]9 Yes Length not obtained with m = 1

2 10 24 [[240,230,4]]9 Yes Beats [[246,228,4]]9 in [88]

2 10 55 [[550,534,5]]9 Yes Length not obtained with m = 1

3 80 80 2 [[12800,12792,3]]9 Yes Length not obtained with m = 1,2

Table 4.6: A q = 9 sample of stabilizer quantum codes
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m n1 n2 [[n, k, (d ≥) t]]q Beats QGV Comment

1 12 [[12,8,3]]11 No MDS

1 12 [[12,6,4]]11 Yes MDS

1 12 [[12,4,5]]11 Yes MDS

1 60 [[60,56,3]]11 Yes MDS

1 60 [[60,54,4]]11 Yes MDS

1 60 [[60,52,5]]11 Yes MDS

2 12 15 [[180,174,3]]11 Yes QHAMDS, beats [[183,171,3]]11 in [88]

2 12 15 [[180,164,5]]11 No Beats [[183,159,5]]11 in [88]

2 60 120 [[7200,7172,7]]11 Yes Length not obtained with m = 1

Table 4.7: A q = 11 sample of stabilizer quantum codes





Chapter 5

Stabilizer quantum codes from

evaluation codes at the roots of

trace-depending polynomials

The purpose of the present chapter is the same as the preceding one: to construct

classical linear codes that satisfy the hypotheses of Corollary 2.3.8, that is, to be Her-

mitian self-orthogonal, and thereby obtain stabilizer quantum codes. We also aim for

these quantum codes to have good parameters. However, instead of considering MCCs

over relatively small �elds, we use our other strategy, that is to use evaluation codes over

large �elds Fq2µ , q being a prime power and µ a positive integer, and then reduce the

�eld by considering their sub�eld-subcodes.

Recall from De�nition 1.3.1 that given a set P = {α1, . . . , αn} of n distinct points of

some set X and a vector space of functions on the �nite �eld Fq2µ , V = {f ∶ X → Fq2µ},

an evaluation code over Fq2µ is a linear code of the form CPV = evP (V ) for some linear

map

evP ∶ V → Fn
q2µ , evP (f) = (f(α1), . . . , f(αn)).

The research in this chapter is motivated from the fact that quantum error-correcting

codes with good parameters can be constructed by evaluating univariate polynomials at

the roots of the trace polynomial tr2µ(X) =X+X
q+⋯+Xq2µ−1 [50]. Then, we propose to

evaluate polynomials at the roots of trace-depending polynomials γ + tr2µ(h(X)), where

γ ∈ Fq2µ and h(X) ∈ Fq2µ[X], with the aim of obtaining quantum codes with new lengths

and excellent parameters.

We refer the reader to pages 12 to 14 of the introduction of this PhD thesis for more

details of the work carried out in this chapter. We start from the end by stating that bi-

nary code records according to [62] using the above procedure are provided in Section 5.4.

However, for completely general cases we had to use the computational system Magma to

ensure self-orthogonality. To avoid the use of Magma in Section 5.1 we perform a theoret-

ical analysis to construct Hermitian self-orthogonal linear codes by restricting ourselves

to a speci�c family of trace-depending polynomials, see De�nition 5.1.1. Theorem 5.1.9

131



132 5. Stabilizer quantum codes from trace-depending polynomials

determines when the sum of some powers of the roots of these polynomials vanishes,

which is crucial for determining the self-orthogonality of the constituent linear codes.

This last property is studied in Theorem 5.1.14, giving rise to qµ-ary stabilizer quantum

codes in Corollary 5.1.15. Later in Section 5.2, we provide stabilizer codes over smaller

�elds using sub�eld-subcodes. Finally in Section 5.3 we provide new binary records ac-

cording to [62] and non-binary codes improving the ones available in the literature, all

of them with parameters exceeding the quantum Gilbert-Varshamov bound.

The entire contents in this chapter were carried out with D. Ruano and published

in the journal Finite Fields and Their Applications, see [46]. The notation has been

adapted to ease the reading of this thesis.

5.1. Evaluation codes and b-th trace-depending polynomials

In this section, we introduce a particular family of trace-depending polynomials and

consider linear codes that evaluate at the roots of the polynomials in this family. We

study their parameters and self-orthogonality conditions. Later, we will see that good

stabilizer quantum codes can be derived from them and their sub�eld-subcodes.

5.1.1. The b-th trace-depending polynomials

Let q be a prime power. Since in the future we will be interested in sub�eld-subcodes

and Hermitian duality, our initial results are stated over the �eld Fq2µ with µ a positive

integer.

For de�ning the trace-depending polynomials we are interested in, we consider the

trace polynomials tr2µ(X) and trµ(X) de�ned as follows:

trj(X) ∶=X +X
q +Xq2 +⋯ +Xqj−1 ,

where j equals either 2µ or µ. Notice that they give rise to a trace map as that given

in Section 1.5, where q was equal to ph and qj = pl. Next, set b = b(t) = 1 + qt for some

integer number 0 < t ≤ µ and introduce the polynomial

Pb(X) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 + tr2µ(X
b) if 0 < t < µ,

1 + trµ(X
b) otherwise (t = µ).

Now, consider the quotient ring R0 ∶= Fq2µ[X]/⟨X
q2µ−1 − 1⟩ and we are ready for intro-

ducing the concept of b-th trace-depending polynomial.

De�nition 5.1.1. With the above notation, we denote by Trb(X) the representative

with minimum degree of the class of Pb(X) in R0. We name Trb(X) the b-th trace-

depending polynomial .

Remark 5.1.2. Later in Subsection 5.1.2 we will introduce codes obtained by evaluating

at the roots of the polynomial Trb(X). When t = µ, De�nition 5.1.1 uses the polynomial
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trµ(X) instead of tr2µ(X) because, when the characteristic of the �eld Fq2µ is 2, otherwise

Trb(X) = 1 and Trb(X) has no roots. Indeed, when t = µ, the following computation

tr2µ(X
b) =X1+qµ +Xq(1+qµ) +Xq2(1+qµ) +⋯ +Xqµ−1(1+qµ)

+Xqµ(1+qµ) +Xqµ+1(1+qµ) +⋯ +Xq2µ−1(1+qµ)

shows the equality

tr2µ(X
b) + ⟨Xq2µ−1 − 1⟩ = 2 [trµ(X

b) + ⟨Xq2µ−1 − 1⟩] ,

which also proves that, in this case (t = µ), when the characteristic of the �eld Fq2µ is

not even, the trace maps tr2µ and trµ play an analogue role.

Next, we determine the degree of the polynomial Trb(X).

Proposition 5.1.3. The degree of the b-th trace-depending polynomial Trb(X), b = 1+q
t,

1 ≤ t ≤ µ, is n = n(t) = q2µ−1−t + q2µ−1.

Proof. The case when t = µ is clear. Assume 0 < t < µ and write

Trb(X) =
n

∑
z=0

czX
z.

Since Pb(X) has no term involving a power of Xq2µ−1 and Trb(X) is the representative

with minimum degree of its class in R0, c0 = 1. Write z = ∑
2µ−1
ℓ=0 κℓq

ℓ, with 0 ≤ κℓ < q,

the q-adic expansion of the exponents z > 0 such that cz ≠ 0. Sometimes, for the sake of

simplicity and easiness, this q-adic expansion will be represented with a 2µ-tuple (z)q as

in Table 5.1. The q-adic expansion of b is displayed in Table 5.2, and the q-adic expansion

qℓ q0 q1 ⋯ qt−1 qt ⋯ q2µ−t ⋯ q2µ−1

(z)q κ0 κ1 . . . κt−1 κt . . . κ2µ−t . . . κ2µ−1

Table 5.1: q-adic expansion of z, any exponent of Trb(X) = ∑
n
z=0 czX

z

qℓ q0 q1 ⋯ qt−1 qt qt+1 ⋯ q2µ−t ⋯ q2µ−1

(b)q 1 0 . . . 0 1 0 . . . 0 . . . 0

Table 5.2: q-adic expansion of b

of the elements z > 0 such that cz ≠ 0 can be obtained by successively shifting the values

in Table 5.2. Indeed, each shift corresponds to an exponent z = qsb, 0 ≤ s ≤ 2µ− 1, where

q2µ is identi�ed with 1. As a consequence, cz = 1 whenever cz ≠ 0, and the degree of the

b-th trace-depending polynomial Trb(X) is given by the sequence of shifts which gives

the largest positive integer; it is n = q2µ−1−t + q2µ−1. Notice that, for simplicity, b = q0b is

considered a shift of b.



134 5. Stabilizer quantum codes from trace-depending polynomials

Along this chapter and with the above notation, we only consider triples (q, µ, b)

satisfying the following property:

The polynomial Trb(X) has n ∶= n(t) ∶= q
2µ−1−t + q2µ−1 di�erent roots in the �eld Fq2µ .

(5.1.1)

We denote these roots by {β1, β2, . . . , βn} =∶ T .

The following result proves that the triples (q, µ, b(µ)) always satisfy Property (5.1.1).

For 0 < t < µ, by explicit computation, we have found a number of triples (q, µ, b)

satisfying Property (5.1.1). Some examples can be seen in Table 5.3. With some of these

values we have obtained good stabilizer quantum codes, as we will show in Section 5.3.

We do not know a general result characterizing the before mentioned triples.

q µ t b n = degree

2 2 1 3 12

2 4 2 5 160

2 4 3 9 144

2 6 3 9 2304

2 6 5 33 2112

3 2 1 4 36

3 4 2 10 2430

3 4 3 28 2268

5 2 1 6 150

5 4 2 26 81250

5 4 3 126 78750

7 2 1 8 392

11 2 1 12 1452

Table 5.3: Triples (q, µ, b), b = 1 + qt, satisfying Property (5.1.1)

Proposition 5.1.4. Assume b = b(µ). The b-th trace-depending polynomial Trb(X) ∈

Fq2µ[X] has n = n(µ) = q
µ−1 + q2µ−1 di�erent roots in the �eld Fq2µ.

Proof. The polynomial trµ(X) gives the trace map trµ ∶ Fqµ → Fq. The map g ∶ Fq2µ →

Fqµ de�ned as g(x) = xb is well-de�ned and it is surjective; with the exception of 0 ∈ Fqµ ,

each element in Fqµ has qµ + 1 counter-images. The map Pb − 1 de�ned by Pb(X) − 1

satis�es Pb − 1 = trµ ○g, therefore the set of roots of Trb(X) is

(trµ ○g)
−1(−1) = g−1[tr−1µ (−1)].

Since trµ is a trace map, tr−1µ (−1) has q
µ−1 di�erent elements and the cardinality of

(trµ ○g)
−1(−1) is (qµ + 1)qµ−1 = q2µ−1 + qµ−1, which concludes the proof.
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5.1.2. Evaluation codes at the roots of trace-depending polynomials

Now we are going to de�ne the family of codes we are interested in. These codes are

evaluation codes as introduced in Section 1.3. We only consider triples (q, µ, b) satisfying

Property (5.1.1). We �x any of them, set Tr(X) ∶= Trb(X) and de�ne the evaluation

map evT at the roots of Tr(X), T = {β1, β2, . . . , βn}, as:

evT ∶R ∶= Fq2µ[X]/⟨Tr(X)⟩→ Fn
q2µ , evT (f) = (f(β1), f(β2), . . . , f(βn)), (5.1.2)

where f stands for the class of a polynomial f ∈ Fq2µ[X] in R and its corresponding

polynomial function.

De�nition 5.1.5. Let E = {0,1, . . . , n − 1} and consider a non-empty subset ∆ ⊆ E.

We de�ne the evaluation code, CT∆, of ∆ at the roots of the trace-depending polynomial

Tr(X) (given by a triple (q, µ, b)) as the linear code of length n over the �eld Fq2µ

generated by the set {evT (X
e) ∣ e ∈∆}, that is,

CT∆ = ⟨evT (X
e) ∣ e ∈∆⟩Fq2µ

= evT (⟨X
e ∣ e ∈∆⟩)Fq2µ

.

Notice that these codes can also be thought as univariate MCCs as de�ned in Sub-

section 1.3.1.

Our next result describes the polynomial Tr(X). Recall that b = 1+ qt with 0 < t ≤ µ.

Proposition 5.1.6. Let Tr(X) = ∑n
z=0 czX

z. One has that cz = 0 for all indices z, with

the exception of:

z = 0;

z = qjb, where 0 ≤ j ≤ 2µ − t − 1;

and, when t < µ, z = zj ∶= q
j−1(1 + q2µ−t) for 1 ≤ j ≤ t.

Thus, Tr(X) has 2µ + 1 non-zero coe�cients cz when t < µ and it has µ + 1 otherwise

(t = µ). All the non-vanishing coe�cients are equal to 1.

Proof. It is clear that c0 = 1. The monomials in the second item of the statement: Xqjb,

0 ≤ j ≤ 2µ−t−1, are terms with coe�cient 1 in the polynomial Tr(X) by the construction

of Pb(X), and they are the only terms with non-vanishing coe�cient when t = µ because

taking classes modulo the ideal ⟨Xq2µ−1−1⟩ does not produce any modi�cation of Pb(X).

When t < µ, apart from the above monomials, there are new terms with coe�cient

1 in the expression of Pb(X) which are Xqjb, 2µ − t ≤ j ≤ 2µ − 1. Recall that Tr(X) is

the representative of minimum degree of the class of Pb(X) modulo ⟨Xq2µ−1 − 1⟩. As

we explained in the proof of Proposition 5.1.3, the representatives of the classes modulo

⟨Xq2µ−1 − 1⟩ of the monomials Xqjb, 0 ≤ j ≤ 2µ − 1, are monomials Xz where z is an

integer whose q-adic expansion (see Table 5.1) is given by a sequence of shifts of the

q-adic expansion of b (see Table 5.2). Clearly the monomials Xqjb, with 0 ≤ j ≤ 2µ− t−1,

correspond to the �rst shifts and those where 2µ− t ≤ j ≤ 2µ− 1 correspond to the values

zj in the last item of the statement.
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Remark 5.1.7. Table 5.4 shows the q-adic expansions of the indices z ≠ 0 in the ex-

pression of Tr(X) = ∑n
z=0 czX

z such that cz ≠ 0. Recall that the values zj introduced

in Proposition 5.1.6 do not appear when t = µ and notice that b and z1 are the unique

indices which are not a multiple of q. The q-adic expansions show how the indices z are

ordered as natural numbers, for instance n > zt and both are larger than the remaining

ones.

(z)q

qℓ
q0 q1 ⋯ qt−1 qt qt+1 ⋯ q2µ−t−1 q2µ−t ⋯ q2µ−1

(b)q 1 0 . . . 0 1 0 . . . 0 0 . . . 0

(qb)q 0 1 . . . 0 0 1 . . . 0 0 . . . 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮

(n)q = (q
2µ−t−1b)q 0 0 . . . 0 0 0 . . . 1 0 . . . 1

(z1)q 1 0 . . . 0 0 0 . . . 0 1 . . . 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮

(zt)q 0 0 . . . 1 0 0 . . . 0 0 . . . 1

Table 5.4: q-adic expansions of the indices z ≠ 0 such that cz ≠ 0 in the expression of

Tr(X) = ∑n
z=0 czX

z

We are interested in codes CT∆ ⊆ Fn
q2µ which are self-orthogonal with respect to the

Hermitian inner product. This is because under that condition, Corollary 2.3.8 allows us

to construct quantum stabilizer codes. For this reason (see the proof of the forthcoming

Theorem 5.1.14), we introduce the following values:

si ∶=
n

∑
j=1

βij ; 1 ≤ i ≤ q2µ − 1.

Now we state a result involving the above values si in the fashion of [50, Lemma 4],

which can be proved similarly. Notice that the reason why we only consider polynomials

Trb(X) which completely factorize in Fq2µ is to be able to use this result.

Lemma 5.1.8. With the above notation, for every index r such that 1 ≤ r ≤ n, the

following equality

⎛

⎝

r−1
∑
j=0

cn−jsr−j
⎞

⎠
+ rcn−r = 0

holds.

In addition, when r > n, one gets

n

∑
j=0

cn−jsr−j = 0.

The following result determines the indices i ≤ n for which the value si does not

vanish and, therefore, it helps to show when Hermitian orthogonality of vectors evT (X
e)
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does not hold (see, again, the proof of Theorem 5.1.14). For that purpose, consider the

values:

j2,ℓ ∶= 1 + (2 + ℓ)q
t−1 + (q − (2 + ℓ))q2µ−t−1,

where 0 ≤ ℓ ≤ q − 1.

Theorem 5.1.9. Keep the notation as in Proposition 5.1.6.

� When 1 < t < µ, there are exactly q indices i ≤ n such that si ≠ 0. We denote these

indices in increasing order as i0 < i1 whenever q = 2. Otherwise, we denote them as

i0 < i1 < i2,0 < i2,1 < ⋯ < i2,q−3.

Then,

a) It holds that i0 = n − z1, i1 = n − (z1 + zt − n), and i2,ℓ = n − j2,ℓ for 0 ≤ ℓ ≤ q − 3.

b) si0 = si2,ℓ = 1 for ℓ = 0 and for ℓ even.

c) si1 = si2,ℓ = −1 for ℓ odd.

� When t = 1, there exist exactly q + 1 indices i ≤ n such that si ≠ 0. With the above

notation, these indices are

i0 < i1 < i2,0 < i2,1 < ⋯ < i2,q−3 < i2,q−2 ∶= i2,q−3 + q
2µ−2 − q2µ−3 + q − 1,

and they satisfy Property a), and properties b) and c) for 0 ≤ ℓ ≤ q − 2. The case q = 2,

µ = 2 and t = 1 should be treated separately; here there are four indices i0 < i1 < i2,0 < i2,1

satisfying the above mentioned properties a), b) and c).

� When t = µ, there is only one index i0 = q
2µ−1 − qµ + qµ−1 − 1 lower than n such

that si0 ≠ 0. Here we also �nd an exception in the case q = t = µ = 2 where there are two

indices i0 = 5 and i1 = 10 satisfying si ≠ 0.

Proof. Lemma 5.1.8 and q-adic expansions are the main tools of our proof. We divide it

in two cases: Case A, where we study the case t ≠ 1 and Case B that corresponds to the

situation t = 1. Within each case, we consider several steps and state and prove some

lemmas. Step A.1 computes i0 and si0 proving the �rst equalities in a) and b) and also

the �rst statement in the case t = µ. Step A.2 determines i1 and si1 showing the second

equality in a) and the �rst one in c). Here we also conclude the proof of the case t = µ.

Step A.3 (respectively, A.4) computes i2,0 and si2,0 (respectively, i2,ℓ and si2,ℓ for ℓ ≠ 0).

The treatment of Case B is a bit di�erent because distinct q-adic expansions appear.

We consider here three steps corresponding to results which will prove the statement of

Theorem 5.1.9 in this case t = 1.

Our strategy mainly consists of noticing that �xed an index h such that sh ≠ 0,

the next index h′ > h such that sh′ ≠ 0 occurs when the coe�cient of sh in the sum

provided by Lemma 5.1.8 that starts with cnsh′ is di�erent from zero. To reach this

conclusion, we also prove that the mentioned coe�cient is zero for those indices h′′ such
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that h < h′′ < h′ and, in this case, sh′′ = 0.

Case A. t ≠ 1. Step A.1. We start by proving the �rst equality in Items a) and b)

of the statement. Thus, we assume 1 < t < µ. As before, we set Trb(X) = ∑
n
z=0 czX

z.

Denoting Supp ∶= SuppTrb(X) ∶= {z ≠ 0 ∣ cz ≠ 0}, we have proved that

Supp = {z ∣ (z)q is obtained by iteratively applying shifts to (b)q}

and this set has cardinality 2µ.

From our notation i0 ∶= min{i ∣ 1 ≤ i ≤ n and si ≠ 0}. Setting r = i0 in the �rst

equality of Lemma 5.1.8, we get

cnsi0 + cn−1si0−1 +⋯ + cn−(i0−1)s1 = −i0cn−i0 .

The de�nition of i0 shows that 0 ≠ si0 = −i0cn−i0 . Since our supporting �eld is Fq2µ ,

this implies that −i0 is not a multiple of q and cn−i0 ≠ 0. Taking into account that

n = q2µ−1−t + q2µ−1, n − i0 has to be of the form 1 + λq because otherwise i0 would be

a multiple of q and thus i0cn−i0 would be 0. The index i0 is a minimum and therefore

n − i0 equals the value

max{n − z = n −
2µ−1
∑
ℓ=0

κℓq
ℓ ∣ n − z ∈ Supp and its q-adic expansion starts with 1}.

Inspecting the set of q-adic expansions that are obtained as (successive) shifts of (b)q

�see Table 5.4� one deduces that, with the notation in Proposition 5.1.6, the following

equality holds:

n − i0 = z1 = 1 + q
2µ−t

and hence si0 = −(−1) = 1. Therefore the �rst equality in Items a) and b) of the statement

follows for 1 < t < µ.

When t = µ, noticing that the cardinality of Supp is µ and reasoning analogously,

we obtain n − i0 = b = 1 + q
µ and therefore i0 = q

2µ−1 − qµ + qµ−1 − 1. This proves our last

statement with the exception of the uniqueness of i0 that will be proved later.

Step A.2. Let us prove the �rst equality in Item c) of the statement. Assume 1 < t < µ

and, as in the statement of the theorem, set

i1 ∶=min{i ∣ i0 < i ≤ n and si ≠ 0}.

Again by Lemma 5.1.8, one gets:

cnsi1 + cn−1sii−1 +⋯ + cn+i0−i1si0 + cn+i0−i1−1si0−1 +⋯ + cn−(i1−1)s1 = −i1cn−i1 ,

which, from the de�nition of i1, implies

si1 + cn+i0−i1si0 = −i1cn−i1 . (5.1.3)
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The inequalities i0 < i ≤ n prove 0 ≤ n− i < n− i0 = z1 and thus i0 ≤ n+ i0 − i < i0 + z1. We

look for i1 such that cn+i0−i1 ≠ 0 (later we will see that this is the only possibility) and

then n + i0 − i1 must be equal to the value

max{n + i0 − i ∈ Supp ∣ i0 ≤ n + i0 − i < n}.

Considering the q-adic expansions of the values in Supp (see Table 5.4), that maximum

is attained when n+i0−i1 = zt, because zt is the larger value in Supp lower than n. Then,

i1 = n+ i0−zt = n−(z1+zt−n) as stated in a). The index i1 is a multiple of q if and only

if n − i1 is, thus looking at the q-adic expansions of the shifts of (b)q, i1cn−i1 equals 0

except when n−i1 equals b or z1. Now n−i1 is neither b nor z1 and therefore, by Equality

(5.1.3), si1 = −1 as said in Item c) of our theorem. Indeed, reasoning by contradiction,

if n− i1 = b then zt − i0 = b and thus zt + z1 = n+ b, which means qt−1 + q2µ−t = qt + q2µ−t−1,

a contradiction. In addition, n − i1 = z1 implies zt − i0 = z1 and therefore zt = n, again a

contradiction.

Notice that in the searching of i1, one could consider Equality (5.1.3) with some index

i, i0 < i < i1 instead of i1, si ≠ 0 and cn+i0−i = 0, but then n − i should be either z1 or b.

In the �rst case i = n − z1 = i0 which contradicts the fact that i0 < i; and in the second

one, the inequality q2µ−1 + q2µ−t−1 + 1 + qt < q2µ−1 + qt−1 + 1 + q2µ−t proves n + b < zt + z1,

which implies i1 = 2n− z1 − zt < n− b = i and i would not be the required minimum value

with si ≠ 0.

Now we conclude the proof of our last statement concerning the case t = µ. Reasoning

as in the previous paragraphs, one gets two possibilities.

The �rst one is that Equality (5.1.3) holds for some index i1 such that cn+i0−i1 = 0,

then n− i1 = b and, since we proved before that in this case n− i0 = b, then i1 = i0, which

contradicts the fact i1 > i0.

Otherwise, n + i0 − i1 should be an element in Supp of the form (1 + qµ)qj , for some

0 < j ≤ µ − 2, because Equality (5.1.3) makes no sense for j = 0 -except when q = µ = 2-

nor for j = µ − 1 (since it would imply that i0 = i1). Then

i1 = (1 + q
µ)qµ−1 + (1 + qµ)qµ−1 − (1 + qµ) − (1 + qµ)qj = (1 + qµ)(2qµ−1 − qj − 1),

and thus i1 > n, proving that there is no such i1 ≤ n. As a consequence, we conclude that

i0 is the only index satisfying si0 ≠ 0 when t = µ and the case q = µ = 2 does not hold.

Notice that n+ i0 − i1 = 1+ q
µ = b if and only if n+ i0 − i1 = n− i0, which is equivalent

to i1 = 2i0 and then 2i0 ≤ n. This inequality happens if and only if q2µ−1 + qµ−1 ≤ 2qµ + 2,

which holds only when q = µ = 2. Therefore, only in this case, we get a new index i1

such that si1 = −1 = 1 as stated.

Step A.3. Assume 1 < t < µ. Iterating our reasoning, de�ne

i2 ∶=min{i ∣ i1 < i ≤ n and si ≠ 0}.

By Lemma 5.1.8 one gets

cnsi2 +⋯ + cn+i1−i2si1 +⋯ + cn+i0−i2si0 +⋯ + cn−(i2−1)s1 = −i2cn−i2 , (5.1.4)
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where the main novelty is that one might have three non-vanishing summands on the

left hand side of the equality.

Let us study Equality (5.1.4). First we determine the q-adic expansion of the value

i1.

Lemma 5.1.10. With the above notation, the q-adic expansion of i1 is that displayed in

Table 5.5.

qℓ q0 ⋯ qt−2 qt−1 qt ⋯ q2µ−t−2 q2µ−t−1 q2µ−t ⋯ q2µ−2 q2µ−1

(i1)q q − 1 . . . q − 1 q − 2 q − 1 . . . q − 1 1 q − 1 . . . q − 1 0

Table 5.5: q-adic expansion of i1 in the proof of Theorem 5.1.9

Proof. We start with the following chain of equalities

i1 = (n − z1) + (n − zt) = q
2µ−1 + q2µ−1−t − (1 + q2µ−t) + q2µ−1 + q2µ−1−t − (q2µ−1 + qt−1)

= q2µ−1 + q2µ−1−t − (1 + q2µ−t) + q2µ−1−t − qt−1 =∶ w. (5.1.5)

Noticing that q2µ−1 = (q − 1)q2µ−2 + (q − 1)q2µ−3 +⋯+ (q − 1)q + q, one gets that the value

w in (5.1.5) equals

(q − 1)q2µ−2 +⋯ + (q − 2)q2µ−t + (q + 1)q2µ−t−1

+ (q − 1)q2µ−t−2 +⋯ + (q − 1)qt + (q − 2)qt−1 +⋯ + (q − 1),

which ends the proof.

Next we study the index i2 involved in Equality (5.1.4).

Lemma 5.1.11. There is only an index i
′

2 > i1 such that cn+i1−i′2
≠ 0. With the notation

as before Theorem 5.1.9, this index satis�es n − i
′

2 = j2,0.

Proof. Since i
′

2 > i1, there exists a positive integer j
′

2 < z1 + zt − n such that i
′

2 = n − j
′

2.

Then n+i1−i
′

2 = i1+j
′

2 < n. By Lemma 5.1.10, z = zt is the unique value z = n+i1−i
′

2 < n as

in Proposition 5.1.6 that can be obtained with indices j
′

2 < z1+zt−n. This is because the

last coordinate of the q-adic expansion (z)q of the remaining values z in Proposition 5.1.6

vanishes. By inspection, we deduce that the q-adic expansion of j
′

2 is that given in Table

5.6 and thus, with the notation as before the statement of Theorem 5.1.9, j
′

2 = j2,0.

qℓ q0 q1 ⋯ qt−2 qt−1 qt ⋯ q2µ−t−2 q2µ−t−1 q2µ−t ⋯ q2µ−1

(j
′

2)q 1 0 . . . 0 2 0 . . . 0 q − 2 0 . . . 0

Table 5.6: q-adic expansion of j
′

2 in the proof of Theorem 5.1.9

Lemma 5.1.12. The above introduced index i2 = min{i ∣ i1 < i ≤ n and si ≠ 0} equals

n − j2,0 ∶= i2,0. In addition, si2,0 = 1.
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Proof. Assume �rst that q > 2. De�ne j2 = n − i2, then

j2 < n − i1 = z1 + zt − n = 1 + (q − 1)q
2µ−1−t + qt−1 =∶ θ. (5.1.6)

The q-adic expansion of θ in the above equality proves that there is no index j,

j2,0 < j < z1 + zt − n such that sn−j ≠ 0. In fact, write i = n − j, by Lemma 5.1.11,

we have that cn+i1−i = 0; in addition icn−i = 0 because either i is a multiple of q or, other-

wise, cn−i = 0. This is because inspecting the q-adic expansion of j2,0 and the expression

(5.1.6), we notice that there is no j as required with a q-adic expansion having only two

ones; in fact j should have a q-adic expansion of the form 1+(q−2)q2µ−t−1+other terms.

Finally, cn+i0−i = cn−z1+j = 0 since all the coe�cients of the q-adic expansion of n− z1 are

q − 1 except those of q2µ−1 and q2µ−1−t. Therefore, considering Equality (5.1.4) with i

instead of i2, we get sn−j = 0. As a consequence, i2 = n − j2,0 ∶= i2,0 is our candidate for

satisfying si2 ≠ 0. Let us show that, indeed, si2,0 ≠ 0.

Equality (5.1.4) reads

sn−j2,0 +⋯ + cztsi1 +⋯ + cn−z1+j2,0si0 = −(n − j2,0)cj2,0

and we know that czt = 1, si1 = −1. Now,

n − z1 + j2,0 = q
2µ−1 + q2µ−1−t − q2µ−t − 1 + (q − 2)q2µ−1−t + 2qt−1 + 1

= q2µ−1 + q2µ−1−t − q2µ−t − 1 + q2µ−t − 2q2µ−t−1 + 2qt−1 + 1

= q2µ−1 − q2µ−t−1 + 2qt−1

= (q − 1)q2µ−2 + (q − 1)q2µ−3 +⋯ + (q − 1)q + q − q2µ−t−1 + 2qt−1,

getting a q-adic expansion as in Table 5.7.

qℓ q0 ⋯ qt−2 qt−1 qt ⋯ q2µ−t−2 q2µ−t−1 ⋯ q2µ−2 q2µ−1

(n − z1 + j2,0)q 0 . . . 0 2 0 . . . 0 q − 1 . . . q − 1 0

Table 5.7: q-adic expansion of n − z1 + j2,0 in the proof of Theorem 5.1.9

Therefore the q-adic expansion of n − z1 + j2,0 has more than two non-vanishing

entries and then, it cannot be one of the values z described in Proposition 5.1.6. Thus

cn−z1+j2,0 = 0. Similarly, the q-adic expansion of j2,0 has three nonvanishing entries and

therefore cj2,0 = 0. This concludes the proof of the case q > 2 and si2,0 = sn−j2,0 = −si1 = 1.

When q = 2, the only indices i such that si ≠ 0 are i0 and i1. This fact can be proved

by noticing that, reasoning as above, the unique candidate j2 ∶= n − i2 < n − i1 such that

si2 ≠ 0 is j2,0 = 1 + q
t = b. Using again Equality (5.1.4) one gets

sn−b +⋯ + cztsi1 +⋯ + ci0+bsi0 = −(n − b)cb.

The only unknown value is ci0+b, and

i0 + b = q
2µ−1 + q2µ−1−t − (q2µ−t + 1) + qt + 1 = q2µ−1 − q2µ−t + q2µ−t−1 + qt.
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Now writing again q2µ−1 = ∑
2µ−2
i=1 (q−1)q

2µ−1−i+q, one deduces that the value i0+b equals

(q − 1)q2µ−2 +⋯ + (q − 1)q2µ−t+1 + (q − 2)q2µ−t

+ [(q − 1)q2µ−t−1 +⋯ + (q − 1)q + q] + q2µ−t−1 + qt.

The value given in square brackets is q2µ−t and therefore the q-adic expansion of i0 + b

has more than two non-vanishing entries, which means that ci0+b = 0. Thus si1 = 1 and

−(n − b)cb = 1 proving that sn−b = 0. Notice that in this case the characteristic of the

supporting �eld is two.

Step A.4. To �nish the proof of our Theorem 5.1.9 when t ≠ 1, it su�ces to reason as

before. That is to say, in the next step de�ne i2,1 ∶=min{i ∣ i2,0 < i ≤ n and si ≠ 0}; again

one gets an equality similar to Equality (5.1.4) and, as we will see later, cn+i2,0−i2,1 ≠ 0 is

the only feasible possibility, then n + i2,0 − i2,1 = zt and thus,

i2,1 = n − (zt − n + j2,0) = n − j2,1 = n − (1 + 3q
t−1 + (q − 3)q2µ−t−1).

Iterating the reasoning, one obtains candidates i2,ℓ, 0 ≤ ℓ ≤ q − 2, as in the statement

(note that these indices satisfy i2,ℓ ≤ n, which is equivalent to j2,ℓ ≥ 0).

We start by computing the values si2,ℓ, 1 ≤ ℓ ≤ q − 3. Recall that si2,0 = 1 and note

that we assume q ≥ 3 since we have obtained all the indices i with si ≠ 0 (and the values

si) in the case q = 2. By Lemma 5.1.8, the following equality holds:

cnsi2,ℓ + cn+i2,ℓ−1−i2,ℓsi2,ℓ−1 +⋯+ cn+i2,0−i2,ℓsi2,0 + cn+i1−i2,ℓsi1 + cn+i0−i2,ℓsi0 = −i2,ℓcn−i2,ℓ .

(5.1.7)

Consider an index 0 ≤ ℓ′ < ℓ. Then, one gets the chain of equalities

n + i2,ℓ′ − i2,ℓ = n + (ℓ − ℓ
′)qt−1 − (ℓ − ℓ′)q2µ−t−1 = (ℓ − ℓ′)qt−1 − (ℓ − ℓ′ − 1)q2µ−t−1 + q2µ−1,

which proves that cn+i2,ℓ−1−i2,ℓ = czt .

The right hand side of Equality (5.1.7) vanishes because cn−i2,ℓ = cj2,ℓ = 0, which holds

since the q-adic expansion of j2,ℓ does not coincide with any element in Table 5.4.

Next we are going to show that, with the exception of the �rst two summands, every

summand in the left hand side of Equality (5.1.7) vanishes. In this case si2,ℓ + si2,ℓ−1 = 0

and we obtain the values of the indices si as in the statement.

We start by proving that cn+i2,ℓ′−i2,ℓ = 0 whenever 0 ≤ ℓ′ < ℓ and ℓ′ ≠ ℓ − 1. In this

case, 1 < ℓ − ℓ′ ≤ q − 3 and the q-adic expansion of n + i2,ℓ′ − i2,ℓ is

(ℓ − ℓ′)qt−1 − (ℓ − ℓ′ − 1)q2µ−t−1 + q2µ−1,

which has an expansion with a summand (q − 1)q2µ−2. This implies that n + i2,ℓ′ − i2,ℓ is

not an element in Table 5.4 and thus cn+i2,ℓ′−i2,ℓ = 0.

We prove now that cn+i1−i2,ℓ = 0. Notice that n + i1 − i2,ℓ = i1 + j2,ℓ. Table 5.5 shows

the q-adic expansion of i1 and then, the summand corresponding to the least power of
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q in the q-adic expansion of i1 + j2,ℓ is (ℓ + 1)qt−1. Since 1 ≤ ℓ ≤ q − 3, this last q-adic

expansion does not coincide with any expansion in Table 5.4, proving that cn+i1−i2,ℓ = 0.

To conclude the proof of the computation of si2,ℓ , 1 ≤ ℓ ≤ q − 3, it only remains to

check whether cn+i0−i2,ℓ vanishes. Indeed,

n + i0 − i2,ℓ = i0 + j2,ℓ = i0 + 1 + (2 + ℓ)q
t−1 + (q − 2 − ℓ)q2µ−t−1

= q2µ−1 + q2µ−t−1 − 1 − q2µ−t + 1 + (2 + ℓ)qt−1 + (q − 2 − ℓ)q2µ−t−1

= q + (q − 1)q +⋯ + (q − 1)q2µ−2 + (2 + ℓ)qt−1 + (q − ℓ − 1)q2µ−t−1 − q2µ−t

= (2 + ℓ)qt−1 + (q − ℓ − 1)q2µ−t−1 + (q − 1)q2µ−t +⋯ + (q − 1)q2µ−2.

Then, the �rst summand in the q-adic expansion of i0 + j2,ℓ is (2 + ℓ)q
t−1 showing that

cn+i0−i2,ℓ = 0 by Table 5.4.

To �nish, we determine the value si2,q−2 . Then, again by Lemma 5.1.8, one has

cnsi2,q−2 + cn+i2,q−3−i2,q−2si2,q−3 +⋯ + cn+i0−i2,q−2si0 = −i2,q−2cn−i2,q−2 , (5.1.8)

where n − i2,q−2 = j2,q−2 = b. Then −i2,q−2cn−i2,q−2 = 1 and, as we proved before, only

the �rst two summands in the left hand side of Equality (5.1.8) do not vanish. Then

when the characteristic of the supporting �eld is odd, one gets si2,q−2 + 1 = 1 and thus

si2,q−2 = 0. Otherwise (the characteristic of the supporting �eld is 2), si2,q−2 − 1 = 1 and,

as well, si2,q−2 = 0.

Then, we have proved that q − 3 is the largest index ℓ such that si2,ℓ ≠ 0.

It remains to prove that that si = 0 whenever n ≥ i ≥ i2,0 and i ≠ i2,ℓ, 0 ≤ ℓ ≤ q − 3.

We start by proving that for any ℓ as above, si2,ℓ+j = 0 whenever 0 < j < q
2µ−t−1−qt−1.

Set f ∶= i2,ℓ − i2,ℓ−1 = q
2µ−t−1 − qt−1. By Lemma 5.1.8, the following equality holds:

cnsi2,ℓ+j + cn−jsi2,ℓ + cn−j−fsi2,ℓ−1 + cn−j−2fsi2,ℓ−2 +⋯ + cn−j−ℓfsi2,0

+ cn+i1−i2,ℓ−jsi1 + cn+i0−i2,ℓ−jsi0 = −(i2,ℓ + j)cn−i2,ℓ−j . (5.1.9)

Consider an integer α such that 0 ≤ α ≤ ℓ ≤ q − 3, then

n − j − αf = q2µ−t−1 + q2µ−1 − α(q2µ−t−1 − qt−1) − j = q2µ−1 + (1 − α)q2µ−t−1 + αqt−1 − j.

Since 0 < j < q2µ−t−1 − qt−1, one gets

q2µ−1 − αq2µ−t−1 + (α + 1)qt−1 < n − j − αf < q2µ−1 + (1 − α)q2µ−t−1 + αqt−1,

and the q-adic expansion of n− j −αf contains either the summand (q−1)q2µ−2 or q2µ−1.

Then, it can be neither n nor zt. This proves that, for all α and j as before, cn−j−αf = 0

by Table 5.4.

Next we prove that cn+i1−i2,ℓ−j vanishes. Indeed,

n + i1 − i2,ℓ − j =n + 2n − z1 − zt − (n − j2,ℓ) − j = 2n + j2,ℓ − z1 − zt − j

=2(q2µ−1 + q2µ−1−t) + (1 + (2 + ℓ)qt−1 + (q − 2 − ℓ)q2µ−t−1)

− (1 + q2µ−t) − (qt−1 + q2µ−1) − j

= q2µ−1 − q2µ−t + (q − ℓ)q2µ−t−1 + (1 + ℓ)qt−1 − j.



144 5. Stabilizer quantum codes from trace-depending polynomials

Since 0 < j < q2µ−t−1 − qt−1, one gets that

q2µ−1 − q2µ−t + (q − ℓ − 1)q2µ−t−1 + (2 + ℓ)qt−1

and

q2µ−1 − q2µ−t + (q − ℓ)q2µ−t−1 + (1 + ℓ)qt−1

are a lower and an upper bound on the values n+i1−i2,ℓ−j. Then, the q-adic expansion of

n+i1−i2,ℓ−j has a summand (q−1)q2µ−2 if ℓ ≠ 0. When ℓ = 0, the above mentioned q-adic

expansion has a summand q2µ−1 and it must be lower than zt. In any case, cn+i1−i2,ℓ−j = 0

for all j.

The value cn+i0−i2,ℓ−j is also zero. In fact,

n + i0 − i2,ℓ − j = n + (n − z1) − (n − j2,ℓ) − j = n + j2,ℓ − z1 − j

= q2µ−1 − q2µ−t + (q − ℓ − 1)q2µ−1−t + (2 + ℓ)qt−1 − j.

Using again that 0 < j < q2µ−t−1 − qt−1, we see that

q2µ−1 − q2µ−t + (q − ℓ − 1)q2µ−1−t + (2 + ℓ)qt−1

and q2µ−1 − q2µ−t + (q − ℓ − 2)q2µ−1−t + (3 + ℓ)qt−1 are an upper and a lower bound on

the values n + i0 − i2,ℓ − j. Then, computing the q-adic expansions of both bounds, we

deduce that the q-adic expansion of n+ i0 − i2,ℓ − j has a summand (q − 1)q2µ−2 and thus

cn+i0−i2,ℓ−j = 0. Moreover, −(i2,ℓ+j)cn−i2,ℓ−j = 0, because when n−i2,ℓ−j is not a multiple

of q, n− i2,ℓ − j can be neither b nor z1. Then by Equality (5.1.9), it holds that si2,ℓ+j = 0

whenever 0 < j < q2µ−t−1 − qt−1 and 0 ≤ ℓ ≤ q − 3.

In an analogue manner, it can be shown that si2,q−2+j = 0 for 0 < j ≤ 1 + qt and

Theorem 5.1.9 is proved when t ≠ 1.

Case B. t = 1. In this case, t = 1, zt = z1 and an ordered set of indices i candidates to

satisfy si ≠ 0 is

n − z1 < 2(n − z1) < ⋯ < q(n − z1).

Notice that these are the indices given in the statement because i0 = n − z1, i1 = (n −

z1) + (n − z1) = 2(n − z1) and for 0 ≤ ℓ ≤ q − 3,

(ℓ + 3)(n − z1) = n − j2,ℓ.

Indeed, (ℓ + 3)n − (ℓ + 3)z1 = n − j2,ℓ if and only if (ℓ + 3)z1 = (ℓ + 2)n + j2,ℓ if and only if

(ℓ + 3) (1 + q2µ−1) = (ℓ + 2) (q2µ−2 + q2µ−1) + (ℓ + 3) + (q − (2 + ℓ)) q2µ−2.

With this new notation, one has to successively apply Lemma 5.1.8 obtaining equal-

ities as follows for 1 ≤ β ≤ q:

cnsβ(n−z1) + cz1s(β−1)(n−z1) + c2z1−ns(β−2)(n−z1) +⋯ + c(β−1)z1−(β−2)nsn−z1

= −β(n − z1)cn−β(n−z1). (5.1.10)

The following lemma will be useful to conclude our proof.
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Lemma 5.1.13. For 1 ≤ α ≤ q, the values αz1−(α−1)n are equal to q2µ−2(q−α+1)+α.

In addition, the q-adic expansion of αz1 − (α − 1)n coincides with that of some element

in Table 5.4 if and only if either α = 1 or µ = 2 and α = q.

Proof. The proof follows from the chain of equalities:

αz1 − (α − 1)n = α(1 + q
2µ−1) − (α − 1)(q2µ−2 + q2µ−1)

= q2µ−1 − (α − 1)q2µ−2 + α = q2µ−2(q − α + 1) + α.

Moreover, q2µ−2(q − α + 1) + α = z1 when α = 1 and it equals q2 + q whenever µ = 2

and α = q. Otherwise, the value q2µ−2(q − α + 1) + α cannot be expressed as qi + qi+1,

0 ≤ i ≤ 2µ − 2.

Step B.1. First we assume that

sβ(n−z1)+j = 0 for 0 ≤ β ≤ q − 1 and 0 < j < n − z1. (5.1.11)

In a few lines we will prove that this assumption is true.

Now, from Lemma 5.1.13, we deduce that every summand (with the exception of

the �rst two ones) in the left hand side of Equality (5.1.10) vanishes. In addition,

n − β(n − z1) = n − βn + βz1 = βz1 − (β − 1)n. Again by Lemma 5.1.13, the right hand

side of Equality (5.1.10) is zero for β ≠ 1 and 1 for β = 1. This proves that, whenever

1 ≤ β ≤ q, the value sβ(n−z1) = 1 if β is odd and it equals −1, otherwise.

Step B.2. Let us prove our Assertion (5.1.11). Also that sq(n−z1)+j = 0 for every j such

that 0 < j < j1 ∶= q
2µ−2−q2µ−3+q−1 and sq(n−z1)+j1 ≠ 0. Note that j1 ≤ n−z1 ≤ n−q(n−z1)

and that the �rst inequality is an equality when µ = 2.

Let us prove Assertion (5.1.11). Take 0 < j < n − z1 = q
2µ−2 − 1 and 0 ≤ β ≤ q − 1. By

Lemma 5.1.8, one has

cnsβ(n−z1)+j + cn−jsβ(n−z1) + cz1−js(β−1)(n−z1)

+ c2z1−n−js(β−2)(n−z1) +⋯ + c(β−1)z1−(β−2)n−jsn−z1 = −(β(n − z1) + j)cβz1−(β−1)n−j .

(5.1.12)

The values cαz1−(α−1)n−j , 0 ≤ α ≤ q − 1, satisfy:

cαz1−(α−1)n−j =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if 0 ≤ α ≤ q − 2 or α = q − 1 and j ≠ j1

1 if α = q − 1, j = j1 and µ ≠ 2.

Indeed, for α = 0 the value cn−j vanishes because z1 < n − j < n and n and z1 are the

largest indices i such that ci ≠ 0. For 1 ≤ α ≤ q − 1, from the fact 0 < j < q2µ−2 − 1 and by

Lemma 5.1.13, the following chain of inequalities holds:

(q − α)q2µ−2 + α + 1 < αz1 − (α − 1)n − j < (q − α + 1)q
2µ−2 + α.
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Then, looking at the q-adic expansions of the bounds on αz1 − (α − 1)n − j given by the

above inequalities, the result is true for every α such that 1 ≤ α < q − 1. When α = q − 1,

αz1−(α−1)n−j appears in Table 5.4 only when µ ≠ 2 and αz1−(α−1)n−j = q
2µ−2+q2µ−3,

that is, j = j1.

Hence, from Equality (5.1.12) we have sβ(n−z1)+j = 0 for 0 ≤ β ≤ q−1 and 0 < j < n−z1,

except when β = q − 1, j = j1 and µ ≠ 2. In such a case, Equality (5.1.12) is

s(q−1)(n−z1)+j1 = −((q − 1)(n − z1) + j1)c(q−1)z1−(q−2)n−j1 ,

and the right hand side vanishes because of the characteristic of the �eld. This proves

Assertion (5.1.11).

Now, when 0 < j < j1, it holds that

q2µ−3 + 1 < qz1 − (q − 1)n − j < q
2µ−2 + q,

and again qz1 − (q − 1)n− j appears in Table 5.4 only when µ ≠ 2 and qz1 − (q − 1)n− j =

q2µ−3 + q2µ−4, that is, j = j1 − q2µ−4 + 1. Reasoning as before, we get sq(n−z1)+j = 0 for all

0 < j < j1.

Finally, when j = j1, then qz1 − (q − 1)n − j1 = q
2µ−3 + 1 and

cqz1−(q−1)n−j1 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if µ ≠ 2

1 if µ = 2.

If µ ≠ 2, then j1 < n − z1 and we can apply the results above. From Equality (5.1.12) we

get

sq(n−z1)+j1 + c(q−1)z1−(q−2)n−j1sn−z1 = 0,

giving rise to the equality sq(n−z1)+j1 = −1 (note that when q is even, 1 = −1). Otherwise,

when µ = 2, j1 = n − z1 and q(n − z1) + j1 = (q + 1)(n − z1). Then, Lemma 5.1.13 proves

s(q+1)(n−z1) + cz1sq(n−z1) + cqz1−(q−1)nsn−z1 = −(n − b)cb. (5.1.13)

Here, the last summand of the left hand side of Equality (5.1.13) equals one and the

right hand side is also equal to one. Therefore, in this case,

s(q+1)(n−z1) = −sq(n−z1) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−1 if q is odd

1 if q is even.

We have proved that the set Γ = {ℓ(n − z1)}
q
ℓ=1 ∪ {q(n − z1) + j1} is the set of indices

r ≤ q(n − z1) + j1 such that sr ≠ 0.

Step B.3. To conclude, we show that if q(n− z1)+ j1 < r ≤ n, then sr = 0 except when

q = µ = 2, in which case sn ≠ 0.

Suppose that q = µ = 2 does not hold. In this case, r = q(n − z1) + j where

q2µ−2 − q2µ−3 + q − 1 = j1 < j ≤ n − q(n − z1) = q
2µ−2 + q, (5.1.14)
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and by Lemma 5.1.8, the following equality

cnsq(n−z1)+j + cn−j+j1sq(n−z1)+j1 + cn−jsq(n−z1) + cz1−js(q−1)(n−z1)

+ c2z1−n−js(q−2)(n−z1) +⋯ + c(q−1)z1−(q−2)n−jsn−z1 = −(q(n − z1) + j)cn−q(n−z1)−j (5.1.15)

holds.

From the inequalities in (5.1.14), we deduce

q2µ−1 + q2µ−3 − q + 1 > n − j ≥ q2µ−1 − q,

and then, cn−j ≠ 0 if and only if n − j = z1. Moreover,

q2µ−1 + q2µ−2 > n − j + j1 ≥ q
2µ−1 + q2µ−2 − (q2µ−3 + 1) > z1,

which proves cn−j+j1 = 0.

Recalling Lemma 5.1.13, for 1 ≤ α ≤ q, the following chain of inequalities holds:

(q − α)q2µ−2 + q2µ−3 − q + (α + 1) > αz1 − (α − 1)n − j ≥ (q − α)q
2µ−2 − q + α.

Looking at the q-adic expansions of the bounds on αz1 − (α− 1)n− j given by the above

inequalities, one deduces that, when 1 ≤ α < q, the coe�cient of q2µ−2 in the q-adic

expansion of αz1 − (α − 1)n − j admits three possibilities: it is di�erent from 0 and 1, it

is 0 in which case the coe�cient q − 1 appears in the before mentioned q-adic expansion,

or it is 1 but its contiguous term in the q-adic expansion is not 1. This proves that

cαz1−(α−1)n−j = 0 for all 1 ≤ α < q.

If n− j ≠ z1, then the left hand side of Equality (5.1.15) is equal to sq(n−z1)n+j . If the

right hand side of Equality (5.1.15) is not a multiple of q, then neither n − q(n − z1) − j

is and one could get cn−q(n−z1)−j ≠ 0 only when n − q(n − z1) − j equals z1 or b. The

�rst situation cannot hold because n − q(n − z1) − j < q
2µ−3 + 1 < z1 and the second one

contradicts the fact n − j ≠ z1. Therefore, sq(n−z1)n+j vanishes for all index j as above.

Otherwise, if n − j = z1, one gets

s(q+1)(n−z1) + cz1sq(n−z1) = −(n − b)cb

and then, s(q+1)(n−z1) = 0.

The only remaining case is q = µ = 2. Then, n = 12, z1 = 9, j1 = 3 and Γ =

{ℓ(n − z1)}
q+1
ℓ=1 = {3,6,9} is the set of indices r ≤ q(n − z1) + j1 = 9 such that sr ≠ 0.

Now, Equality (5.1.15) is

s6+j + c15−js9 + c12−js6 + c9−js3 = −(6 + j)c6−j ,

and, then, one deduces the equalities s10 = s11 = 0 and s12 = 1.

This concludes the proof of this case t = 1 and that of Theorem 5.1.9.

With the above ingredients, we are ready to provide the parameters of Hermitian

self-orthogonal codes of the type CT∆ , de�ned in the previous Subsection 5.1.2.
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Theorem 5.1.14. Let q be a prime power. Consider the polynomial Tr(X) = Trb(X),

where b = 1 + qt with 0 < t ≤ µ, µ being a positive integer. Assume that (q, µ, b) ≠ (2,2,3)

is a triple satisfying Property (5.1.1). De�ne A(q, t) as follows:

A(q, t) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

qµ − ⌈ q−12 ⌉q
µ−1 − ⌈ q−12 ⌉q

µ−t−1 − 2 if 0 < t ≤ µ
2 ,

qµ − ⌈ q−12 ⌉q
µ−1 − ⌈ q−12 ⌉q

t−1 − 2 if µ
2 < t < µ,

qµ−1 − 2 if t = µ,

whenever q ≠ 2, and

A(q, t) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2µ − 2t−1 − 2 when q = 2 and t < µ,

2µ−1 − 2 when q = 2 and t = µ.

For any nonnegative integer τ , de�ne ∆(τ) ∶= {e ∈ Z ∣ 0 ≤ e ≤ τ}. Then, if τ ≤ A(q, t),

the linear code CT∆(τ), over Fq2µ, has length n = q
2µ−t−1 + q2µ−1 and satis�es:

i) It is Hermitian self-orthogonal, that is

CT∆(τ) ⊆ (C
T
∆(τ))

⊥h
.

ii) Its dimension is τ + 1 and the minimum distance of (CT∆(τ))
⊥h

is larger than or equal

to τ + 2.

Proof. We �rst carry out the proof in the case t ≠ µ.

By Proposition 5.1.3, n = q2µ−t−1 + q2µ−1 is the length of the code CT∆(τ). With the

above notation, to show Item i), we have to prove that evT (X
e) ⋅hevT (X

e′) = 0 whenever

e, e′ ≤ A(q, t). Now

evT (X
e) ⋅h evT (X

e′) =
n

∑
j=1

βe+q
µe′

j = se+qµe′ .

De�ne I ∶= {i ∣ 1 ≤ i < q2µ and si ≠ 0}. With the notation as in Theorem 5.1.9, set

I1 = {i0, i1} ∪ {i2,0, i2,1, . . . , i2,q∗},

where q∗ = q − 3 if t ≠ 1 and q∗ = q − 2 otherwise. Theorem 5.1.9 shows that

I1 = {i ∣ 1 ≤ i ≤ n and si ≠ 0}

and, clearly, I1 ⊆ I.

To prove Item i), we are going to determine a set J ⊇ I of candidates i to satisfy

si ≠ 0. Since we have obtained the indices r ≤ n such that sr ≠ 0, we look for indices

r > n with this last property. Applying the second part of Lemma 5.1.8, we get

cnsr + cn−1sr−1 +⋯ + c0sr−n = 0,

so the indices r > n such that sr ≠ 0 ful�ll r − n = β − α for some α and β such that

cα ≠ 0 and sβ ≠ 0. Otherwise, sr = 0 by the above formula. Therefore, for obtaining our



5.1. Evaluation codes and b-th trace-depending polynomials 149

set of candidates J , we have to consider the elements in I1 and append those indices r

iteratively obtained by the formula β−α+n, where β is some previously obtained element

in J (i.e., β is in I1 or it is a new candidate given by the procedure we are describing)

and α is one of the indices (di�erent from n) appearing in Table 5.4.

The q-adic expansion of the indices in I1 (with the exception of the last one when

t = 1) can be obtained as follows: i0 = (q
2µ−1 − 1) − (q − 1)q2µ−1−t and then, all the

coe�cients in its q-adic expansion are q − 1 with the exception of those of q2µ−1 and

q2µ−1−t, which are zero. The remaining values i1, i2,0, . . . , i2,q−3 are obtained from the

previous one by adding q2µ−1−t − qt−1. Thus the coe�cients in the q-adic expansion of

the elements in I1 successively decrease one unit with respect to qt−1 and increase one

unit with respect to q2µ−1−t. See the forthcoming Table 5.8, where we give the q-adic

expansions of the above indices and of an index j0 which will be used later. Each q-adic

expansion starts in the �rst part of the table and continues in the corresponding line of

the second one.

Now we consider the qµ-adic expansion of each index i ∈ J . It is expressed as

i = i(0) + i(1)qµ,

with i(0) and i(1) nonnegative integers lower than qµ.

We only need to prove that

if e, e′ ≤ A(q, t), then e + e′qµ /∈ J . (5.1.16)

For the following reasoning, see Table 5.8. Assume t ≠ µ and q ≠ 2.

(z)q

qℓ
q0 q1 ⋯ qt−1 qt ⋯ qµ−t−1 qµ−t ⋯ qµ−2 qµ−1 →

(i0)q q − 1 q − 1 . . . q − 1 q − 1 . . . q − 1 q − 1 . . . q − 1 q − 1

(i1)q q − 1 q − 1 . . . q − 2 q − 1 . . . q − 1 q − 1 . . . q − 1 q − 1

⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮

(i2,q−3)q q − 1 q − 1 . . . 0 q − 1 . . . q − 1 q − 1 . . . q − 1 q − 1

(j0)q q − 1 q − 1 . . . q − 1 q − 1 . . . ⌊ q−12 ⌋ q − 1 . . . q − 1 ⌊ q−12 ⌋

→ qµ qµ+1 ⋯ qµ+t−1 qµ+t ⋯ q2µ−t−1 q2µ−t ⋯ q2µ−2 q2µ−1

q − 1 q − 1 . . . q − 1 q − 1 . . . 0 q − 1 . . . q − 1 0

q − 1 q − 1 . . . q − 1 q − 1 . . . 1 q − 1 . . . q − 1 0

⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮

q − 1 q − 1 . . . q − 1 q − 1 . . . q − 1 q − 1 . . . q − 1 0

q − 1 q − 1 . . . q − 1 q − 1 . . . ⌊ q−12 ⌋ q − 1 . . . q − 1 ⌊ q−12 ⌋

Table 5.8: q-adic expansions of the candidates in I1 and j0 when 1 < t ≤ µ
2 within the

proof of Theorem 5.1.14

Notice that, as said, i0(1), i1(1) and i2,ℓ(1), 0 ≤ ℓ ≤ q − 3, are positive integers lower

than qµ−1. To obtain the values in J , we have to add n = q2µ−1+q2µ−1−t to every previous
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value in J and subtract an index di�erent from n appearing in Table 5.4. In addition,

in each step, we start with an index β with qµ-adic expansion i(0) + i(1)qµ to get the

qµ-adic expansion of the next one: j(0) + j(1)qµ = β − α + n, where j(1) > i(1) and

j(0) ≤ i(0).

Suppose now that 1 ≤ t ≤ µ
2 . Our �rst step is to de�ne a bound A′(q, t) ≥ A(q, t), that

eases the understanding of the de�nition of A(q, t). We desire that every i ∈ J ful�lls

the following statement:

if min{i(0), i(1)} ≤ A′(q, t), then max{i(0), i(1)} > A′(q, t),

because then Statement (5.1.16) is proved for A′(q, t) instead of A(q, t) (and therefore

for A(q, t)) and thus Theorem 5.1.14 i) holds. The reason for choosing A(q, t) is that,

as we will see next, the expression of A′(q, t) di�ers depending on whether or not q − 1

is even.

The bound A′(q, t) = ∑
qµ−1

v=0 A′vq
v is given by min{max{i(0), i(1) ∣ i ∈ J } − 1. To get

this minimum, the elements i ∈ J to be considered are of the form:

i = i′ + xn − xα, (5.1.17)

i′ ∈ J , α = qµ−1 + qµ−t−1 or α = qµ−1 + qµ+t−1 and x < q is a positive integer such that, in

the expression ∣i(0) − i(1)∣ = ∑
qµ−1

v=0 hvq
v, hqµ−1 is either 0 (if q − 1 is even) or 1 (if q − 1

is odd). When looking for such a bound, one should not consider candidates given by

values i′ ∈ J /I1 ∪ {i2,q−2}; this is because the coe�cient of q2µ−1 in its q-adic expansion

is positive and increases if one adds n, giving rise to a greater value max{i(0), i(1)} than

when starting with elements i′ in I1/{i2,q−2}.

Then, to get the bound A′(q, t), one must keep in mind those elements i ∈ J de-

scribed in Equality (5.1.17) with i′ ∈ I1/{i2,q−2} and consider the element i whose value

max{i(0), i(1)} is a minimum. Taking into account that the coe�cients of qµ−1 and

q2µ−1 in the q-adic expansion of every element in I1/{i2,q−2} are, respectively, q − 1 and

0, we get A′qµ−1 =
q−1
2 when q − 1 is even and A′qµ−1 = ⌈

q−1
2 ⌉, otherwise.

As a consequence, the inclusion in our Item i) holds if one considers the value

A(q, t) ∶=minS − 1, where

S =

⎧⎪⎪
⎨
⎪⎪⎩

j(0) ∣ j(0) = j(1), j(0) =
qµ−1−1
∑
v=0

j(0)vq
v + ⌊

q − 1

2
⌋qµ−1,

j = i + xn − y(qµ−1 + qµ−t−1) or j = i + xn − y(qµ−1 + qµ+t−1),

i ∈ I1/{i2,q−2}, x, y positive integers

⎫⎪⎪
⎬
⎪⎪⎭

.

Then, A(q, t) = j0(0) − 1, where

j0 = i0 + ⌊
q − 1

2
⌋n − ⌈

q − 1

2
⌉ (qµ−t−1 + qµ−1) ,

see Table 5.8, and notice that we need i = i0 to obtain j(0) = j(1). This proves the

corresponding case in the statement. It is worthwile to add that A′(q, t) = A(q, t) only

when q − 1 is even.
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When µ
2 < t < µ, then µ− t−1 < t−1 and we can reason similarly, but to get the value

j′0 playing the same role as j0, instead of i0, we have to use the value i′0 in I1 whose

q-adic expansion has ⌈ q−12 ⌉ as a coe�cient for q2µ−t−1. That is, i′0 is i2,⌈ q−1
2
⌉−2 when q ≥ 4

and i′0 = i1 otherwise (q = 3). Then we have to consider

j′0 = i
′
0 + ⌊

q − 1

2
⌋n − ⌈

q − 1

2
⌉ (qµ−1 + qµ+t−1)

to deduce that A(q, t) = j′0(0) − 1.

The cases t = µ and q = 2 follow by computing

A(q, t) =min{max{i(0), i(1)}, i ∈ J } − 1 = i1(0) − 1.

Now, we show Item ii). The dimension of CT∆(τ) is τ + 1 because evT is injective; in

fact it is given by a Vandermonde matrix over Fq2µ of rank τ + 1. Finally, the assertion

about the minimum distance of (CT∆(τ))
⊥h

follows from the following two facts: The

above mentioned matrix is also a parity-check matrix of the code (CT∆(τ))
⊥e
, and then

its minimum distance is at least τ + 2, and this last code is isometric to (CT∆(τ))
⊥h
, since

(CT∆(τ))
⊥h
= ((CT∆(τ))

⊥e
)
qµ

.

By Corollary 2.3.8, we get the following immediate consequence of Theorem 5.1.14.

Corollary 5.1.15. Let q be a prime power. Assume that (q, µ, b) is a triple satisfying

Property (5.1.1). With notation as in Theorem 5.1.14, for each non-negative integer

τ ≤ A(q, t), there is a stabilizer quantum code with parameters

[[q2µ−1−t + q2µ−1, q2µ−1−t + q2µ−1 − 2τ − 2,≥ τ + 2]]qµ .

5.2. Sub�eld-subcodes of evaluation codes at the roots of

trace-depending polynomials

In this section we show that, considering sub�eld-subcodes of the above described

codes, one obtains qµ
′

-ary stabilizer codes, where µ′ < µ and µ′ divides µ. Some of these

codes have excellent parameters as we will explain in Section 5.3.

For a start and in order to bound the parameters of the codes we are interested in,

we need to de�ne another family of related evaluation codes which will be useful in the

forthcoming Proposition 5.2.2. Denote by U = Fq2µ/{0} = {α1, α2, . . . , αq2µ−1} the set of

non-zero elements of the �nite �eld Fq2µ . Consider the map

evU ∶R0 (= Fq2µ[X]/⟨X
q2µ−1 − 1⟩)→ Fq2µ−1

q2µ
, evU(f) = (f(α1), . . . , f(αq2µ−1)),

f being the polynomial function de�ned by the class of a polynomial (also named f) of

Fq2µ[X] in R0. It is similar to the map evT given in Subsection 5.1.2.

Fix a positive integer µ′ < µ such that µ′ divides µ. Following Subsection 1.5.1,

write E0 ∶= {0,1, . . . , q
2µ − 2} regarded as a set of representatives of the quotient ring
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Z/(q2µ − 1)Z, where we consider minimal closed sets with respect to q2µ
′

. Recall that

these sets are denoted by Λa ∶= {q
2µ′ia ∣ i ≥ 0}, where a ∈ A ∶= {a0 < a1 < ⋯ < aν} ⊆ E0, A

being the ordered set of minimum elements of minimal closed sets.

Let Γ be a nonempty subset of E0, using the map evU , we de�ne the evaluation

code CUΓ as the linear code, over the �eld Fq2µ , generated by the set {evU(X
e) ∣ e ∈ Γ}.

Notice that it is a univariate {1}-a�ne variety code. Within this framework, the sub�eld-

subcode of CUΓ over the �eld Fq2µ′ is

SUΓ ∶= C
U
Γ ∩ (Fq2µ′)

q2µ−1
.

In order to bound the minimum distance by considering the BCH approach, we are

only interested in sets Γ which are union of minimal closed sets whose minimum elements

start at a0 and are consecutive. That is, �x a positive integer τ < ν and set

Γ(τ) ∶= Λa0 ∪Λa1 ∪⋯ ∪Λaτ .

Then, by Proposition 1.5.9 and the fact that Euclidean and Hermitian dual of our codes

are isometric (see the end of the proof of Theorem 5.1.14), one gets the following result:

Proposition 5.2.1. With the above notation, the following BCH-type bound holds:

d((SUΓ(τ))
⊥h
) ≥ aτ+1 + 1.

Now we return to consider the family of evaluation codes de�ned in Subsection 5.1.2,

where the map evT is used. Keeping the notation as in that subsection, we de�ne the

sub�eld-subcode over the �eld Fq2µ′ of the code C
T
∆ as

ST∆ ∶= C
T
∆ ∩ F

n
q2µ′

.

Recall that E = {0,1, . . . , n − 1} and pick aτ . Consider the set Γ(τ); these values are

initially regarded as powers of monomials generating a linear space of elements in the

quotient ring R0, but, since we desire to use the map evT , we must consider their classes

modulo the ideal ⟨Tr(X)⟩ and, when considered as elements in R = Fq2µ[X]/⟨Tr(X)⟩,

they provide generators of the form Xe, e ∈ Γ(τ)E , of a linear space which can be evalu-

ated by evT . Notice that Γ(τ)
E is a suitable set of indices included in E. Then, reasoning

as in the proof of [50, Theorem 13], the following result follows. It is a remarkable fact

that the bound given in Proposition 5.2.1 is inherited by (ST
Γ(τ)E)

⊥h
, although it is not

a direct consequence of the relation between both codes.

Proposition 5.2.2. The dimension and minimum distance of the sub�eld-subcode ST
Γ(τ)E

over the �eld Fq2µ′ and its Hermitian dual satisfy:

1. dim (ST
Γ(τ)E) ≤ ∑

τ
ℓ=0#Λaℓ .

2. d((ST
Γ(τ)E)

⊥h
) ≥ aτ+1 + 1.
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We conclude this subsection by providing parameters of qµ
′

-ary stabilizer quantum

codes, derived from the codes in Proposition 5.2.2.

Theorem 5.2.3. Let q be a prime power and (q, µ, b) ≠ (2,2,3), b = 1+qt and 0 < t ≤ µ, a

triple satisfying Property (5.1.1). Fix a positive integer µ′ < µ such that µ′ divides µ. Set

A ∶= {a0 < a1 < ⋯ < aν} ⊂ E0 ∶= {0,1, . . . , q
2µ − 2} the ordered set of minimum elements

of minimal closed sets, corresponding to the quotient ring Z/(q2µ − 1)Z, with respect to

q2µ
′

. Consider the value A(q, t) introduced in Theorem 5.1.14 and the following values:

B(q, t) ∶= qµ − (q − 1)qµ−t − q, B1(q, t) ∶= qµ − (q − 1)qµ−t − 2

and C(q, t) ∶= (q2µ−2 − 1)/(qµ−2 + 1).

De�ne D(q, t) as follows:

When t > 1,

� D(q, t) ∶= A(q, t), whenever µ′ ≠ 1.

� Otherwise (µ′ = 1):

D(Q, t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

B(Q, t) if µ is even,

min{A(Q, t),B(Q, t)} otherwise.

When t = 1 and µ ≠ 2,

� D(q, t) ∶= A(q, t), whenever µ′ > 2,

� D(q, t) ∶= C(q, t), whenever µ′ = 2,

� D(q, t) ∶= B1(q, t), otherwise (µ′ = 1).

When t = 1 and µ = 2, D(q, t) ∶= q − 2.

Then, for each element aτ ∈ A such that aτ ≤D(q, t), the sub�eld-subcode S
T
Γ(τ)E over

the �eld Fq2µ′ is Hermitian self-orthogonal and, as a consequence, there exists a stabilizer

quantum code with parameters

[[q2µ−1−t + q2µ−1,≥ q2µ−1−t + q2µ−1 − 2
τ

∑
ℓ=0

#Λaℓ ,≥ aτ+1 + 1]]
qµ′
.

Proof. Our proof follows a close reasoning to that used when proving [50, Theorem 15],

although we consider sub�eld-subcodes over Fq2µ′ instead of over Fq2 . Consider the

basis B of CUΓ(τ) introduced in the proof of [50, Proposition 11] and, reasoning as at the

beginning of the proof of [50, Theorem 15], it su�ces to prove that

evT (X
eq2µ

′ℓ+e′qµ′q2µ′m) ⋅e evT (X
0) = 0,

for values ℓ,m ∈ {0,1, . . . , µ
µ′ − 1}, m ≥ ℓ and e, e

′ ∈ {a0, a1, . . . , aτ}.

When µ′(2m − 2ℓ + 1) ≤ µ, it holds that

evT (X
eq2µ

′ℓ+e′qµ′q2µ′m) ⋅e evT (X
0) = [evT (X

e+e′qµ′(2m−2ℓ+1)) ⋅e evT (X
0)]

q2µ
′ℓ

.
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Otherwise, µ < µ′(2m − 2ℓ + 1) ≤ µ′(2µµ′ − 1) = 2µ − µ′ < 2µ. Therefore, one can set

2m − 2ℓ + 1 = µ
µ′ + s, where 1 ≤ s < µ

µ′ and then

evT (X
eq2µ

′ℓ+e′qµ′q2µ′m) ⋅e evT (X
0) = [evT (X

e+e′qµ+sµ′) ⋅e evT (X
0)]

q2µ
′ℓ

=
⎛

⎝
[evT (X

eqµ−sµ
′+e′) ⋅e evT (X

0)]
qµ+sµ

′

⎞

⎠

q2µ
′ℓ

.

Thus, one concludes that it su�ces to prove that both products

evT (X
e+e′qµ′r) ⋅e evT (X

0) and evT (X
eqµ

′r+e′) ⋅e evT (X
0)

vanish for all values e, e′ ≤D(q, t) and µ′r ≤ µ. Then, since we give a common bound for

e and e′, it su�ces to check that

evT (X
e+e′qµ′r) ⋅e evT (X

0) = 0 (5.2.1)

for e, e′ ≤D(q, t) and 0 ≤ r ≤ µ
µ′ .

Assume �rst that t > 1. Then e+e′qµ
′r < i0 = q

2µ−1−(q−1)q2µ−1−t−1 when µ′r < µ−1

and Equality (5.2.1) holds by Theorem 5.1.9. Thus, one only has to check Equality (5.2.1)

when µ′r = µ or µ′r = µ − 1. Suppose �rst that µ′ ≠ 1, then the case µ′r = µ − 1 does

not happen because µ′ divides µ. Then, µ′r = µ and therefore, if e, e′ ≤ A(q, t), Equality

(5.2.1) is true because of the proof of Theorem 5.1.14 and our result is proved in this case.

Now, if µ′ = 1, it su�ces that e, e′ ≤ A(q, t) to prove Equality (5.2.1) when µ′r = r = µ.

Otherwise, µ′r = r = µ − 1, and e, e′ ≤ B(q, t) implies e + e′qµ−1 < i0. Noticing that

(B(q, t) + 1) + (B(q, t) + 1)qµ−1 ≥ i0, one deduces that Equality (5.2.1) is true whenever

e, e′ ≤ min{A(q, t),B(q, t)}. Note that if µ is even, r = µ means 2m − 2ℓ + 1 = µ by the

reasoning at the beginning of the proof and this case cannot hold. Hence, when t > 1,

µ′ = 1 and µ is even, the bound D(q, t) equals B(q, t).

To conclude the proof, assume that t = 1. First suppose µ ≠ 2. Then i0 = q
2µ−2 − 1

and e + e′qµ
′r < i0 when µ′r < µ − 2. As above, to prove Equality (5.2.1) when µ′r = µ

it su�ces to have that e, e′ ≤ A(q, t). But one needs e, e′ ≤ B1(q, t) in case µ′r = µ − 1

and e, e′ ≤ C(q, t) whenever µ′r = µ − 2 (notice that C(q, t)(1 + qµ−2) = i0 but ⌊C(q, t)⌋ ≠

C(q, t)). We also notice that

B1(q, t) < C(q, t).

Finally, since µ = µ′α for some positive integer α, µ′r = µ−2 = µ′α−2, then 2 = µ′(α−r),

which happens only when either µ′ = 1 or µ′ = 2. Therefore, D(q, t) equals A(q, t) when

µ′ > 2, it is C(q, t) when µ′ = 2 and B1(q, t) in case µ′ = 1. When µ = 2, then µ′ = 1 and

B1(q, t) = q − 2. This concludes the proof.

Remark 5.2.4. When the set of exponents of the polynomial Tr(X) is contained in

Γ(τ), then dim (ST
Γ(τ)E) ≤ ∑

τ
ℓ=0#Λaℓ − 1 (because there is a relation modulo Tr(X)

(Tr(X) = 0), which decreases the dimension by one). Therefore, one gets a favourable

situation since the bound on the dimension of the stabilizer quantum code given in

Theorem 5.2.3 is increased by two.
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5.3. Examples

In this section, we present some examples of stabilizer quantum codes obtained from

our previous results. We only show those codes having good parameters, in particular the

parameters of all codes in this section beat the quantum Gilbert-Varshamov bound (see

Subsection 2.3.4) and, some of them, either are binary records or beat the parameters of

others available in the literature. See the last but one paragraph above Proposition 2.2.8

to recall how propagation rules allow us to say when a code beats another one. Recall

also that, by record, we mean a binary quantum code whose parameters either improve

some given in [62] or correspond to an entry in [62] whose construction was missing.

5.3.1. Binary examples

With the notation as in Theorem 5.2.3, consider the triple (q, µ, b) = (2,4,5). We have

that t = 2 and a0 = 0, a1 = 1, a2 = 2, a3 = 3, a4 = 5, a5 = 6, a6 = 7, a7 = 9, a8 = 10, a9 = 11

are minimum elements of minimal closed sets. Moreover the cardinality of the minimal

closed sets Λaℓ , 1 ≤ ℓ ≤ 8, is always 4. Set µ
′ = 1 and then D(q, t) = B(q, t) = 10. Applying

Theorem 5.2.3 with τ = 8 and noticing that the condition in Remark 5.2.4 holds, we obtain

a [[160,96,≥ 12]]2 binary stabilizer quantum code, which beats the [[160,96,≥ 11]]2

code given in [62]. Thus, we have obtained a record as a binary quantum code. Now,

using the subcode and length extension propagation rules (see Subsection 2.2.2) we �nd

four new records. These are [[160,95,≥ 12]]2, [[161,96,≥ 12]]2, [[162,96,≥ 12]]2 and

[[163,96,≥ 12]]2.

In the remaining of this chapter, we will also use the following result to construct

stabilizer codes. This result was stated in [44] and it is an easy consequence of [73,

Lemma 76] (see also [6]).

Theorem 5.3.1. Let C be an Fq2r -linear code of length n and dimension k, where r is a

positive integer. Suppose C ⊆ C⊥h, where

C⊥h ∶= {x ∈ (Fq2r)
n
∣ x ⋅h y =

n

∑
i=1
xiy

qr

i = 0 for all y in C} .

Then, there exists an Fq-stabilizer quantum code with parameters

[[rn, rn − 2rk,≥ d⊥h]]
q
,

where d⊥h is the minimum distance of the code C⊥h.

With the same previous triple (q, µ, b) = (2,4,5), using Theorem 5.1.14 and sets ∆(i),

0 ≤ i ≤ 12 (A(q, t) = 12), one obtains Hermitian self-orthogonal codes CT∆(i). By applying

Theorem 5.3.1 to these codes, one gets binary stabilizer quantum error-correcting codes

of length n = 640 whose parameters are displayed in Table 5.9.

We can also combine our procedures and starting from our initial linear codes over

F28 , we consider sub�eld-subcodes over F24 . These codes use sets ∆ which are successive

union of consecutive minimal closed sets Λ
′

i, 0 ≤ i ≤ 12, with respect to 24. That is
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k 624 616 608 600 592 584 576 568 560 552 544 536

d ≥ 3 4 5 6 7 8 9 10 11 12 13 14

Table 5.9: Parameters of binary stabilizer quantum codes of length 640

Λ
′

0 = {0}, Λ
′

1 = {1,16}, Λ
′

2 = {2,32}, Λ
′

3 = {3,48}, Λ
′

4 = {4,64}, Λ
′

5 = {5,80}, Λ
′

6 =

{6,96}, Λ
′

7 = {7,112}, Λ
′

8 = {8,128}, Λ
′

9 = {9,144}, Λ
′

10 = {10,160}, Λ
′

11 = {11,176}, and

Λ
′

12 = {12,192}. In this way, using Theorem 5.2.3 with µ′ = 2, one obtains Hermitian

self-orthogonal codes over F16. Note that D(q, t) = 12. Then, Theorem 5.3.1, applied

to these codes, gives rise to binary stabilizer quantum error-correcting codes of length

n = 320. Some of their parameters are displayed in Table 5.10.

k 308 300 292 284 276 268 260 252 244 236 228 220

d ≥ 3 4 5 6 7 8 9 10 11 12 13 14

Table 5.10: Parameters of binary stabilizer quantum codes of length 320

Applying the last two procedures (both with A(q, t) = 10) to the triple (q, µ, b) =

(2,4,9), we get binary stabilizer quantum error-correcting codes with parameters

[[576,576 − 8(i + 1),≥ i + 2]]2

with 1 ≤ i ≤ 10, and of length n = 288 with parameters as in Table 5.11.

k 276 268 260 252 244 236 228 220 212 204

d ≥ 3 4 5 6 7 8 9 10 11 12

Table 5.11: Parameters of binary stabilizer quantum codes of length 288

The lengths of the last four families of codes exceed those considered in [62]. We

have not found binary quantum codes with these lengths in the literature, thus we may

conclude that they are new.

5.3.2. Non-binary examples

We devote this subsection to provide parameters of non-binary stabilizer quantum

error-correcting codes obtained with the same three procedures described in Subsection

5.3.1 for the binary case. Speci�cally, our codes come from applying either Theorem

5.2.3, or Theorem 5.1.14 and then Theorem 5.3.1, or Theorem 5.3.1 applied to sub�eld-

subcodes of codes given by Theorem 5.2.3. Most of them are new and we have not found

other codes for comparison, but some of them can be compared and beat some codes in

the recent literature.

With the triple (q, µ, b) = (3,2,4), applying Theorem 5.1.14 and then Theorem 5.3.1,

after noticing that A(q, t) = 3, we get ternary stabilizer quantum codes with parameters

[[72,64,≥ 3]]3, [[72,60,≥ 4]]3 and [[72,56,≥ 5]]3.



5.4. Sporadic stabilizer quantum codes from trace-depending polynomials 157

Consider now the triple (q, µ, b) = (5,2,6) and apply Theorem 5.2.3 with µ′ = 1. The

value D(q, t) equals 3 and we obtain a 5-ary stabilizer quantum code with parameters

[[150,136,≥ 5]]5 beating the [[150,134,≥ 5]]5 code given in [23]. With the help of

Theorems 5.1.14 and 5.3.1, taking into account that A(q, t) = 11, we also obtain new

5-ary codes with length n = 300 and remaining parameters as given in Table 5.12.

k 292 288 284 280 276 272 268 264 260 256 252

d ≥ 3 4 5 6 7 8 9 10 11 12 13

Table 5.12: Parameters of 5-ary stabilizer quantum codes of length 300

Using now the triple (5,2,26) and applying Theorem 5.2.3 with µ′ = 1, since B(q, t) =

16, we get a family of stabilizer quantum codes with parameters

{[[130,130 − 2(2i + 1),≥ 2 + i]]5}
9
i=1 .

Moreover, considering the triple (q, µ, b) = (7,2,8) and applying Theorem 5.2.3

with µ′ = 1, D(q, t) = 5 and we get 7-ary stabilizer quantum codes with parameters

[[392,378,≥ 5]]7, [[392,374,≥ 6]]7 and [[392,370,≥ 7]]7, beating the codes with param-

eters [[392,376,≥ 5]]7, [[392,372,≥ 6]]7 and [[392,364,≥ 7]]7 given in [23] and the code

with parameters [[392,368,≥ 7]]7 given in [44]. With the same triple, applying Theo-

rems 5.1.14 and 5.3.1, since A(q, t) = 23, we are able to obtain a family of 7-ary stabilizer

quantum codes with parameters [[784,784 − 4(i + 1),≥ i + 2]]7, 1 ≤ i ≤ 23.

Finally, if we take (q, µ, b) = (7,2,50) and apply Theorem 5.2.3 with µ′ = 1, we

get B(q, t) = 36 and there is a family of stabilizer quantum codes with the following

parameters: {[[350,350 − 2(2i + 1),≥ i + 2]]7}
15
i=1.

5.4. Sporadic stabilizer quantum codes from trace-

depending polynomials

In this section, we show that excellent quantum codes can be obtained by evaluating

at the zeros of trace-depending polynomials. We consider here trace-depending polyno-

mials which are di�erent from those studied in this chapter, and some of our assertions

are supported in calculations made with the computational algebra system Magma [17].

It is an open question to develop a complete theory for studying this class of quantum

error-correcting codes.

All the codes in this section are constructed as follows. Set q = 2, µ = 4 and consider

some new trace-depending polynomials Tr′(X) di�erent from the above considered b-th

trace-depending polynomials Trb(X). We have used [17] to check that our polynomials

Tr′(X) have no multiple roots over the �eld F28 . The number of roots of each Tr′(X),

say m, is not required to be the degree of Tr′(X). Following the same notation and

construction described in Section 5.2, we consider suitable sets∆ ⊂ E, codes CT
′

∆ obtained

by evaluation under the map (5.1.2) -where Tr(X) is substituted by Tr′(X) and T by
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the set T ′ of roots of Tr′(X)- and sub�eld-subcodes ST
′

∆ ∶= C
T ′

∆ ∩ F
m
24 over the �eld F24 .

Proposition 5.2.2 determines bounds on the dimension and minimum distance of these

codes. Using [17] again, we check that the codes ST
′

∆ are Hermitian self-orthogonal.

Finally, applying Theorem 5.3.1 we get binary stabilizer quantum codes.

Table 5.13 shows polynomials Tr′(X), sets ∆ and parameters of the binary stabilizer

quantum codes obtained, proving that, by selecting suitable trace-depending polynomials

Tr′(X), the above procedure produces records with respect to [62]. Note that γ stands

for a primitive element of the �eld F28 and tr2µ(X) is the trace polynomial de�ned before

De�nition 5.1.1. We conclude by explaining that the sets Λ
′

i that appear in Table 5.13

are some of the 16-ary minimal closed sets, over the set E0 = {0,1, . . . ,254}, considered

in Subsection 5.3.1.

Tr′(X) m ∆ [[n, k, d]]2

1 + tr2µ(γ
5X3) 120 ∆1 = ∪

5
i=0Λ

′

i [[240,196,≥ 7]]2

1 + tr2µ(γ
5X3) 120 ∆2 = ∪

6
i=0Λ

′

i [[240,188,≥ 8]]2

1 + tr2µ(γ
5X3) 120 ∆3 = ∪

7
i=0Λ

′

i [[240,180,≥ 9]]2

1 + tr2µ(γ
5X3) 120 ∆4 = ∪

8
i=0Λ

′

i [[240,172,≥ 10]]2

1 + tr2µ(γ
5X3) 120 ∆5 = ∪

9
i=0Λ

′

i [[240,164,≥ 11]]2

1 + tr2µ(γ
5X3) 120 ∆6 = ∪

10
i=0Λ

′

i [[240,156,≥ 12]]2

1 + tr2µ(γ
5X5) 96 ∆7 = ∪

11
i=0Λ

′

i [[192,132,≥ 9]]2

1 + tr2µ(γ
5X5) 96 ∆8 = ∪

8
i=0Λ

′

i [[192,124,≥ 10]]2

1 + tr2µ(γX
19 +X10) 116 ∆9 = ∪

7
i=0Λ

′

i [[232,172,≥ 9]]2

1 + tr2µ(γX
19 +X10) 116 ∆10 = ∪

8
i=0Λ

′

i [[232,164,≥ 10]]2

1 + tr2µ(γX
19 +X10) 116 ∆11 = ∪

9
i=0Λ

′

i [[232,156,≥ 11]]2

1 + tr2µ(γX
19 +X10) 116 ∆12 = ∪

10
i=0Λ

′

i [[232,148,≥ 12]]2

1 + tr2µ(γ
3X9 +X) 112 ∆13 = ∪

7
i=0Λ

′

i [[224,164,≥ 9]]2

1 + tr2µ(γ
3X9 +X) 112 ∆14 = ∪

8
i=0Λ

′

i [[224,156,≥ 10]]2

1 + tr2µ(γ
3X9 +X) 112 ∆15 = ∪

9
i=0Λ

′

i [[224,148,≥ 11]]2

1 + tr2µ(γ
8X25 +X10) 100 ∆16 = ∪

7
i=0Λ

′

i [[200,140,≥ 9]]2

1 + tr2µ(γ
8X25 +X10) 112 ∆17 = ∪

8
i=0Λ

′

i [[200,132,≥ 10]]2

1 + tr2µ(γ
17X3 +X13) 104 ∆18 = ∪

7
i=0Λ

′

i [[208,148,≥ 9]]2

1 + tr2µ(γ
17X3 +X13) 104 ∆19 = ∪

8
i=0Λ

′

i [[208,140,≥ 10]]2

1 + tr2µ(γ
17X3 +X13) 104 ∆20 = ∪

9
i=0Λ

′

i [[208,132,≥ 11]]2

Table 5.13: Sporadic binary stabilizer quantum error-correcting records



Part IV

Further research. Some advances
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In this last part of the PhD thesis we provide some ideas for future research. We pro-

pose a problem and a conjectural answer from which we have some evidence; furthermore,

it has been tested with a number of calculations.

Again, we desire to construct new stabilizer quantum codes from Hermitian self-

orthogonal linear codes and their sub�eld-subcodes by using Corollary 2.3.8.

Let us give a sketch of what we propose. As we stated in the introduction, J-a�ne

variety codes are codes well suited for our purpose. As a �rst step, we aim for the lengths

of the linear codes we consider not to be obtainable with univariate {1}-a�ne variety

codes (BCH codes). To achieve it, we plan to enlarge these codes by evaluating at further

elements of the supporting �eld. As we will see in Equation (5.4.1), the (Hermitian) self-

orthogonality conditions of such codes allow us to focus on certain projections which are

also {1}-a�ne variety codes. Thus, as a second step, we also desire to improve the range

of dimensions of self-orthogonal univariate {1}-a�ne variety codes given in [41] (see also

[1]). As a consequence, these improvements will be inherited to the parameters of the

resulting quantum codes.

Let us introduce the codes to be studied. Keep the notation for MCCs introduced

in Section 1.3.1. Let q be a prime power and consider s, n1, n2 and λ positive integers

such that s is even, n1 = (q
s + 1)n2, n2 ∣ q

s − 1 and λ ≤ q2s−1
n1

. Let γ ∈ Fq2s be a primitive

element of the �eld Fq2s and ζn1 ∈ Fq2s be a primitive n1-th root of unity. Our codes

(that can be thought as univariate MCCs) are de�ned as

CP∆ ∶= ⟨evP (X
e) ∣ e ∈∆⟩ = evP (⟨X

e ∣ e ∈∆⟩) ⊆ Fn
q2s

obtained from the evaluation map

evP ∶R =
Fq2s[X]ÒI → Fn

q2s , evP (f) = (f(α1), . . . , f(αn)),

where I = ⟨(Xn1 − 1)(Xn1 − γn1)⋯(Xn1 − γ(λ−1)n1)⟩Fq2s
, ∆ is some subset of the set

{0,1, . . . , λn1 − 1} which contains the possibilities of exponents of any monomial reduced

modulo I and

P = {α1, . . . , αn} = {1, ζn1 , . . . , ζ
n1−1
n1

, γ, γζn1 , . . . , γζ
n1−1
n1

, . . . , γλ−1, γλ−1ζn1 , . . . , γ
λ−1ζn1−1

n1
}

is the zero set of I. Notice that the length of our codes CP∆ equals n = λn1. Furthermore,

we impose the condition λn1 ∤ q
2s − 1 for this length cannot be obtained with univariate

{1}-a�ne variety codes.

Our goal is to give conditions so that the sub�eld-subcodes SP∆ = C
P
∆ ∩ F

n
q2 give rise

to q-ary stabilizer quantum codes from Corollary 2.3.8. We desire to use techniques we

know to get sub�eld-subcodes of J-a�ne variety codes (see Section 1.5.1) and adapt

them to our setting. Although it requires its own study, in the sequel we will use the

same notation as in such section. We desire to obtain a larger range of dimensions for

our self-orthogonal codes than those in literature and also to provide a bound for the

minimum distance of the resulting stabilizer codes. Notice that from Corollary 2.3.8 this
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minimum distance is bounded by d((SP∆)
⊥h). Sets ∆ we want to consider are union of

minimal closed sets with consecutive minimum elements. That is,

∆ = Λa0 ∪Λa1 ∪⋯ ∪Λaτ ⊆ {0,1, . . . , λn1 − 1},

where

A = {a0 < a1 < ⋯ < aν} ⊆ {0,1, . . . , λn1 − 1}

denotes the ordered set of minimum elements of all minimal closed sets. Such a bound

will be aτ+1, which follows from an analogue result to that of Proposition 1.5.9.

We study when the following inclusion holds CP∆ ⊆ (C
P
∆)
⊥h because then SP∆ ⊆ C

P
∆ ⊆

(CP∆)
⊥h ⊆ (SP∆)

⊥h . Then, given e, e′ ∈ {0,1, . . . , λn1 − 1}, we need to know when the

following inner product vanishes:

evP (X
e) ⋅h evP (X

e′) =
n1−1
∑
i=0

ζi(e+qe
′) + γe+qe

′
n1−1
∑
i=0

ζi(e+qe
′) +⋯ + γ(λ−1)(e+qe

′)
n1−1
∑
i=0

ζi(e+qe
′)

= (
n1−1
∑
i=0

ζi(e+qe
′))(1 + γe+qe

′

+⋯ + γ(λ−1)(e+qe
′)). (5.4.1)

We only study the case when the factor ∑
n1−1
i=0 ζi(e+qe

′) vanishes, ignoring the other

factor, since it su�ces in order to get zero in the above product. Then, we re-

strict our study of self-orthogonality conditions to the projected code in the �rst n1

coordinates, CP∆[{1, . . . , n1}]. It is a univariate {1}-a�ne variety code CP
′

∆′ , where

∆′ ⊆ {0,1, . . . , n1 − 1} and P ′ = {1, ζn1 , . . . , ζ
n1−1
n1
}. Notice that the set ∆′ is obtained

from ∆ after reducing its elements modulo n1 and thus the elements are reordered in

new closed sets

∆′ = Λ′a′0 ∪Λ
′
a′1
∪⋯ ∪Λ′a′τ ⊆ {0,1, . . . , n1 − 1},

where a′0, a
′
1, . . . , a

′
τ are the respective minimum elements of these new minimal closed

sets.

In [41] it was proved that if a′τ <
n1

q2(s−1)+1 holds, then the code CP
′

∆′ satis�es C
P ′

∆′ ⊆

(CP
′

∆′)
⊥h
. However, with our advanced work we conjecture the larger bound

a′τ ≤ qn2 − ⌊
(q − 1)n2 − 1

qs−1
⌋ − 1.

By the manner we have constructed this bound we believe that it is sharp. This belief is

also supported with many computer calculations. Moreover, we would achieve our goal

of obtaining many more self-orthogonal {1}-a�ne variety codes by improving their range

of dimensions. For example, taking q = 3, s = 4, n1 = (3
4 + 1) ⋅ 16 = 82 ⋅ 16 and n2 = 16,

the bound in [41] is a′τ ≤ 1 but our bound is a′τ ≤ 46. This fact would also allow us to

construct many new stabilizer quantum codes from the enlarged construction provided

above.



Conclusions

This PhD thesis o�ers some advances on two problems in the �elds of mathematics

and information theory. These problems are the repair problem in distributed and cloud

storage systems and the construction of better quantum error-correcting codes than the

current ones. Both can be treated with the construction of suitable classical error-

correcting codes.

With respect to the �rst problem, we focus on the setting where simultaneous multiple

device failures may happen. Error-correcting codes devoted to this problem are called

(r, δ)-locally recoverable codes.

After recalling the basics on classical and quantum error-correcting codes, Chapters 3

to 5 provide some suitable codes to address the former problems. We considered evalua-

tion codes, mainly monomial-Cartesian codes and their generalized constructions. They

allowed us to present new codes suited to both problems.

Chapter 3 regarded monomial-Cartesian codes as (r, δ)-locally recoverable codes and

provided a recovery method. We determined those giving rise to (r, δ)-optimal locally

recoverable codes for a natural bound on their minimum distance, which are in fact (r, δ)-

optimal with that minimum distance. By considering a large subfamily of monomial-

Cartesian codes we proposed in�nitely many sets of new (r, δ)-optimal locally recoverable

codes. These were a family of sub�eld-subcodes of J-a�ne variety codes that admit the

same parameters of certain optimal monomial-Cartesian codes but are supported over

smaller �elds.

Afterwards, in Chapter 4, we used generalized (or twisted) monomial-Cartesian codes

to construct new stabilizer quantum error-correcting codes. We provided an explicit twist

vector and formulae for their minimum distance and dimension. We showed that when

we use generalized monomial-Cartesian codes that arise from polynomials in one variable,

our codes are quantum MDS, and when they arise from polynomials in two variables and

our lower bound for the minimum distance is 3, the obtained codes are at least Hermitian

almost MDS. Our family of codes was shown to have excellent parameters. This good

quality of our quantum codes is justi�ed because, on the one hand, when they come from

polynomials in two variables, we got an in�nite family that beats the Gilbert-Varshamov

bound. On the other hand, because we were able to present many examples that are

better than any known code in the literature.

Evaluating polynomials at the roots of the trace map gives rise to codes with very

good parameters. Motivated by this fact, in Chapter 5, we constructed codes by eval-
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uating polynomials at the roots of trace-depending polynomials (given by a constant

plus the trace of a polynomial). These codes provided new wide ranges of lengths and

also excellent parameters. In particular we obtained binary records according to Markus

Grassl tables and non-binary codes improving the previous ones in the literature.

To conclude, we gave some ideas for further research. We showed in Part IV a con-

struction (of certain Hermitian self-orthogonal linear codes and their sub�eld-subcodes)

derived from some codes close to univariate {1}-a�ne variety codes. Lengths of these

linear codes cannot be obtained with self-orthogonal a�ne variety codes as before al-

luded. Moreover we think they also improve the range of dimensions of self-orthogonal

codes de�ned by univariate {1}-a�ne variety codes given in a previous paper.



Conclusiones

Esta tesis doctoral ofrece algunos avances en dos problemas de los campos de las ma-

temáticas y la teoría de la información. Estos problemas son el problema de recuperación

en sistemas de almacenamiento distribuido y en la nube y la construcción de códigos

cuánticos correctores de errores mejores que los existentes. Ambos se pueden tratar con

la construcción de ciertos códigos clásicos correctores de errores.

Con respecto al primer problema nos centramos en la situación en la que se pue-

dan producir fallos en varios nodos simultáneamente. Los códigos correctores de errores

diseñados para este problema se denominan códigos (r, δ)-localmente recuperables.

Tras introducir lo básico sobre códigos clásicos y cuánticos correctores de errores,

los Capítulos 3, 4 y 5 proporcionan algunos códigos adecuados para abordar los pro-

blemas anteriores. Estos eran códigos de evaluación, principalmente códigos Cartesiano-

monomiales y sus construcciones generalizadas, que nos permitieron presentar nuevos

códigos aptos en ambos problemas.

El Capítulo 3 consideraba los códigos Cartesiano-monomiales como códigos (r, δ)-

localmente recuperables y proporcionaba un método de recuperación. Determinamos

aquellos que dan lugar a códigos (r, δ)-óptimos localmente recuperables para una cota

natural en su distancia mínima, que de hecho son (r, δ)-óptimos para esa distancia míni-

ma. Considerando una amplia subfamilia de códigos Cartesiano-monomiales propusimos

un número in�nito de conjuntos de nuevos códigos (r, δ)-óptimos localmente recupera-

bles. Estos eran una familia de subcódigos-subcuerpo de códigos variedad J-afín que

admiten los mismos parámetros que ciertos códigos Cartesiano-monomiales pero sobre

cuerpos más pequeños.

Posteriormente, en el Capítulo 4, usamos códigos Cartesiano-monomiales generali-

zados (o twisteados) para construir nuevos códigos cuánticos estabilizadores correctores

de errores. Proporcionamos un vector de twisteo explícito y fórmulas para su distancia

mínima y dimensión. Demostramos que cuando usamos códigos Cartesiano-monomiales

generalizados que se obtienen a partir de polinomios en una variable, nuestros códigos

son cuánticos de máxima distancia de separación, y cuando se obtienen de polinomios

en dos variables y nuestra cota para la distancia mínima es 3, los códigos obtenidos son

al menos Hermitianos casi de máxima distancia de separación. Mostramos que nuestra

familia de códigos posee parámetros excelentes. Esta buena calidad de nuestros códigos

cuánticos viene justi�cada porque, por una parte, cuando provienen de polinomios en

dos variables, obtuvimos una familia in�nita que bate la cota Gilbert-Varshamov y, por
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otra parte, porque fuimos capaces de presentar numerosos ejemplos que son mejores que

los códigos conocidos en la literatura.

Evaluar polinomios en las raíces del polinomio traza da lugar a códigos con parámetros

muy buenos. Motivados por este hecho, en el Capítulo 5, construimos códigos evaluando

polinomios en las raíces de polinomios dependientes de la traza (dados por una constante

no nula más la traza de otro polinomio). Estos códigos proporcionaban nuevos rangos de

longitudes y también parámetros excelentes. En particular obtuvimos récords binarios

con respecto a las tablas de Markus Grassl y códigos no binarios mejorando los obtenidos

previamente en la literatura.

Para concluir dimos algunas ideas de trabajo futuro. En la Parte IV mostramos una

construcción (de ciertos códigos lineales autoortogonales Hermíticos y sus subcódigos

subcuerpo) derivada de unos códigos cercanos a los códigos variedad {1}-afín en una va-

riable. Las longitudes de estos códigos lineales no se pueden obtener con códigos variedad

afín autoortogonales como los anteriormente aludidos. También creemos que mejoran el

rango de dimensiones de códigos autoortogonales de�nidos por códigos variedad {1}-afín

en una variable dado en un artículo previo.
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