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Abstract

The interface between light and cold atomic ensembles is a fundamental
platform to unravel the quantum world and develop quantum technological
applications. Its success relies on the simple idea that the efficiency of
such an interface can be collectively enhanced by the use of many atoms.
While the interaction between its building blocks, a single photon, and
a single atom, is theoretically and experimentally understood, instead,
the interaction between light and a macroscopic ensemble of motionless
atoms is generically a complex system featuring multiple scattering and
many-body dipole interactions. To avoid the complexity, typical theories of
atom-light interactions treat the atomic medium as smooth. However, it is
well-known that microscopic optical effects driven by atomic granularity can
lead to important effects, especially in dense media. These phenomena and
their consequences on the performance of applications are not completely
understood. To take them into account exactly, Chapter 1 introduces a
“spin model” for light-matter interaction. The rest of the thesis is then
divided into three chapters, which push forward our understanding of the
interaction of light with dense atomic media.

In Chapter 2 it is argued that because of the overwhelming collective
macroscopic response an ensemble can exhibit (well captured by the stan-
dard theory), many microscopically-driven effects that have been predicted,
have also been challenging to observe so far. An essential step is thus to
suppress the macroscopic light propagation, so as to allow the microscopic
correlations to build up and to be analyzed in a background-free fashion. To
solve this issue, a technique to suppress the macroscopic optical dynamics
in free space, which allows to precisely investigate many-body aspects of
light-matter interaction, will be presented and demonstrated. In particular,
we unravel and precisely characterize a microscopic, density-dependent
dipolar dephasing effect that generally limits the lifetime of the optical
spin-wave order in ensemble-based atom-light interfaces.

In Chapter 3 we will go beyond the short-time and dilute limits consid-
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ered previously, to develop a comprehensive theory of dephasing dynamics
for arbitrary times and atomic densities. In particular, our non-perturbative
approach is based on the strong-disorder renormalization group (RG), in
order to quantitatively predict the dominant role that near-field optical in-
teractions between nearby neighbors have in driving the dephasing process.
This theory also enables one to capture the key features of the many-atom
dephasing dynamics in terms of an effective single-atom model. These
results should shed light on the limits imposed by near-field interactions
on quantum optical phenomena in dense atomic media, and illustrate
the promise of strong disorder RG as a method of dealing with complex
microscopic optical phenomena in such systems.

Chapter 4 tries to answer the question of why ordinary materials exhibit
a refractive index of order unity and if the answer can come from an electro-
dynamical argument. While textbook theories predict nonphysical values
when extrapolated to densities of solids, here, we will evaluate the exact
linear optical response of a three-dimensional lattice of two-level atoms,
first from the band structure and then from a direct numerical simulation.
Interestingly, when multiple scattering of light is exactly taken into account,
as a result of perfect interference, it is found that an ideal unity-filled array
of atoms can have a refractive index that grows with the density and is
furthermore real. This implies that a saturation mechanism for the index
should come from the quantum chemistry interactions that arise in real
materials. Whether saturation could be circumvented, could lead to novel
optical materials with transformative technological potential.



Sumario

La interfaz entre la luz y conjuntos de átomos fríos es una plataforma
fundamental para explorar el mundo cuántico y para el desarrollo de
las tecnologías cuánticas. Sus logros están basados en la sencilla idea
de que la eficiencia de esta interfaz puede mejorar al utilizar muchos
átomos. A pesar de que la interfaz entre sus constituyentes, un único
átomo y un único fotón, está experimentalmente y teóricamente entendida,
en cambio, la interacción entre la luz y un conjunto macroscópico de
átomos inmóviles es un sistema complejo que incluye dispersiones múltiples
e interacciones dipolo-dipolo entre muchos cuerpos. Para reducir esta
complejidad, las teorías tradicionales tratan el medio atómico como continuo.
Sin embargo, es conocido que los efectos ópticos microscópicos, causados por
la granularidad de los átomos, pueden dar lugar a consecuencias importantes,
sobre todo en el caso de medios densos. Estos fenómenos y sus consecuencias
en la eficiencia de las aplicaciones siguen sin entenderse por completo. Para
tenerlos en cuenta exactamente, el Capítulo 1 introduce un “modelo de
espines” para la interaccíón luz-materia. El resto de la tesis se divide luego
en tres capítulos, que impulsan nuestra comprensión de la interacción de la
luz con medios atómicos densos.

En el Capítulo 2 se argumenta que debido a la enorme respuesta
macroscópica colectiva de un conjunto (captada correctamente por la teoría
estándar), muchos de los efectos microscópicos que se han predicho también
han sido difíciles de observar hasta ahora. El reto, por lo tanto, es suprimir
la propagación de la luz macroscópica, para permitir que las correlaciones
microscópicas se acumulen y se analicen sin ese fondo. Para resolver este
problema, se presentará y demostrará una técnica para suprimir la dinámica
óptica macroscópica en el espacio libre, que permite investigar con precisión
los aspectos de muchos cuerpos de la interacción luz-materia. En particular,
caracterizamos con precisión un efecto de desfase dipolar microscópico, que
depende de la densidad, y limita la vida útil del orden de onda de espín
óptico en las interfaces átomo-luz basadas en conjuntos.
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En el Capítulo 3 iremos más allá de los límites diluidos y de tiempo
corto considerados anteriormente, para desarrollar una teoría completa
de la dinámica de desfase para tiempos y densidades atómicas arbitrarias.
En particular, nuestro método no-perturbativo se basa en el grupo de
renormalización (RG) del desorden fuerte, para predecir cuantitativamente
el papel dominante que tienen las interacciones ópticas de campo cercano
entre átomos vecinos en el proceso de desfase. Estos resultados deberían
aclarar los límites impuestos por las interacciones de campo cercano en los
fenómenos ópticos cuánticos en medios atómicos densos e ilustrar la promesa
del RG como método para tratar los fenómenos ópticos microscópicos
complejos en estos sistemas.

El Capítulo 4 trata de responder a la pregunta de por qué los materiales
ordinarios exhiben un índice de refracción de orden uno y si la respuesta
puede proceder de un argumento electrodinámico. Si bien las teorías de los
libros de texto predicen valores no físicos cuando se extrapolan a densidades
de sólidos, aquí evaluaremos la respuesta óptica lineal exacta de una red
tridimensional de átomos de dos niveles, primero a partir de la estructura de
bandas y luego a partir de una simulación numérica directa. Curiosamente,
cuando se tiene en cuenta de manera exacta la dispersión múltiple de la luz,
como resultado de la interferencia perfecta, se encuentra que una matriz
de átomos ideal tiene un índice de refracción que crece con la densidad
y, además, es real. Esto implica que un mecanismo de saturación para
el índice debería provenir de las interacciones de la química cuántica que
surgen en los materiales reales. La posibilidad de evitar la saturación
podría dar lugar a nuevos materiales ópticos con un potencial tecnológico
transformador.
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CHAPTER 1
Introduction

The quantum interface between atomic ensembles and light is considered to
be one of the most important routes to widespread quantum technologies.
The field started with the realization that optically thick free space ensem-
bles can be efficiently interfaced with quantum optical fields and during the
past decades it provided many demonstrations of fundamental phenomena
and applications [1]. Atomic ensembles are being actively pursued, for ex-
ample, to realize quantum memories for light [2–5], for quantum-enhanced
metrology [6–12], for entanglement generation between light and atomic
spins [13], to realize nonlinear optical devices operating at the single-photon
level [14–18] and for quantum simulation [19–22].

In order to understand the physics governing the efficiency of an atom-
light interface, it makes sense to first consider the probability of interaction
between its simplest representatives, a single two-level atom and a single
resonant photon, pictorially represented in Fig. 1.1a. In free space, this can
be given in terms of the ratio between the atomic absorption cross-section
σ0 “ 3λ2

0{2π, the effective area seen by a photon, and the transverse area
Ab of an incoming laser beam. For an atom shined by resonant light, the
cross-section scales as the square of the wavelength of the beam, such that
the probability that a single point-like atom scatters a photon scales like
P «λ2

0{Ab [23]. As the typical wavelength of optical transitions is of the
order of λ0 „ 1µm while the physical size of an atom is of the order of the
Bohr radius a0 „ 0.05 nm, the atomic response to light can be considered
huge. Practically, however, due to the diffraction limit, which prevents the
focusing of light below the wavelength scale, Abą λ2

0, this interaction is
generally weak, P ! 1. The current record for P , achieved by focusing
light to a small area around a single 87Rb atom, is around P „20% [24].
Nevertheless, the possibility to trap and address a single atom revitalized
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Ab

σ0 Γ0

|g〉

|e〉
ω0

(a)

Γ0

Γcκ
in

out

(b)

Figure 1.1: (a) Schematic representation of the free-space interaction between a
single photon, focused to a focal spot of area Ab and a single atom. The atom
is minimally modeled as a point-like object with two internal energy states, a
ground |gy and an excited one |ey, separated by a frequency ω0 and connected by
an optical dipole transition. The excited state can decay, emitting a photon, with
a decay rate Γ0. (b) Representation of a cavity QED system. The same two-level
atom is coupled to a cavity mode and can decay into free space modes at a rate
Γ0 or into a cavity mode with an cooperativity-enhanced rate Γc. The cavity can
also leak at a rate κ, due to material absorption.

the study of the the atom-light interaction at the fundamental level [25–
31]. Historically, however, many other practical methods for overcoming
the problem and enhancing the atom-photon interaction probability were
proposed.

One paradigm consists in confining the atom in a single-mode cavity,
constituting the field of cavity quantum electrodynamics (CQED) [32–
34], schematically represented in Fig. 1.1b. Effectively, this increases the
absorption cross-section by the number of bounces that the photon makes
before escaping from the system (at a rate κ); this number is determined by
the quality of the resonator and quantified by its finesse F . The product,
C“Fλ2

0{Ab, known as the “cooperativity”, is the relevant figure of merit
of the system and more precisely quantifies how well the atom and the
photons in the cavity mode interact. Indeed, since C can be larger than
one, rather than a probability, the cooperativity should be interpreted as a
branching ratio, C “ Γc{Γ0. As illustrated in Fig. 1.1b an initially excited
atom can either emit into a cavity mode, at a rate Γc, or into free space
at a spontaneous emission rate Γ0. Intuitively, the ratio between coherent
and useful transfer and undesired losses constitutes a key parameter in
the performance of a CQED system. Entering the high cooperativity
regime (C"1) opened up the possibility to coherently control both internal
degrees of freedom, the atomic excitation, and the cavity field, to realize,
for example, reversible state transfer between them [35], to generate non-
classical states of light such as single photons [36, 37] or entangled pairs
[38], or to implement a photon-photon phase gate [39, 40]. Besides being a
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Ωs

∼ 12λ0

0 max(a.u.)|E(r)|

(a) (b)

Γ1D

Γ0

Γ0

Figure 1.2: (a) Directional emission of a system of N “ 300 atoms/dipoles in
a uniform distribution of density η “ 1 and a average optical depth D “ 10,
excited in a matched spin wave (|k| “ k0). The amplitude of the emitted field
is reconstructed as discussed in the main text or in more details in Appendix A.
Each emitter has a fixed dipole orientation along x̂ and a fixed phase eik¨ri where
ri are the atoms position and the |k| “ k0 (b) An atomic excitation can either be
effectively “lost” in 4π or being emitted into a well defined mode.

beautiful demonstration of fundamental ideas in the quantum realm, these
results constitute the first technological demonstrations of the individual
nodes required to operate a future quantum network [34, 41]. Importantly,
these results were facilitated by the theoretical development of the necessary
tools to treat open systems. Indeed, the physics of the interplay between
the cavity mode and the atom is captured by the well-known Jaynes-
Cummings model [42], while through an elegant input-output formalism
[43], the properties of the field exiting the system (the output) can be
determined based upon knowledge of the input field and the dynamics of
the atom-cavity system alone. Despite the remarkable achievements of
CQED, however, a robust and scalable implementation that can be easily
integrated with photonics remains elusive.

Another way to enhance atom-light interactions is represented in 1.2b
and consists in using a large disordered ensemble of identical atoms [1,
2], such that if a photon fails to interact there will always be another
atom to interact with. In such a system, the relevant figure of merit is
D“Nσ0{Ab, known as the optical depth; intuitively it is just the single-
atom scattering probability introduced above times the total number of
atoms. With a sufficiently high optical depth, one might therefore reach the
limit in which a single photon has a „ 100% probability of being absorbed
and converted into an atomic excitation. Another way to understand the
efficient coupling between light and atomic ensembles is to consider the
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emitted field from a cloud of N classical dipoles characterized by a resonant
frequency ω0, as in Fig. 1.2a. In particular, when their phases match the
one of an incoming resonant field at each atom’s position r, i.e. eik¨r, where
|k| “ k0 “ ω0{c, just as it happens for phased dipole antennas [44], the
atoms emit constructively at a rate NΓ1D into a well-defined quasi-1D
direction of emission [45], around the wave vector k with a solid angle
Ωs „ pk0Rq

´2, where R is the characteristic size of the cloud. Remarkably,
similarly to the CQED case, the emerging picture (Fig. 1.2b) is that one
can effectively define “good” emissions in a well-defined mode and “bad”
ones, which are photons emitted in 4π that cannot be recollected. The
branching ratio, which quantifies the performance of such a light-matter
interface, is the optical depth, such that D “ NΓ1D{Γ0.

The possibility to enhance interactions by atom number, thus making
an efficient light-matter interface, has led to the many experimental demon-
strations listed in the first paragraph. In order to understand all these
phenomena, which are going to be of central importance in this thesis, here,
the standard theoretical approach to treating atom-light propagation in
large ensembles, the so-called Maxwell-Bloch equations, will be reviewed.
In particular, it will emerge how, in the linear regime, the optical depth D
emerges as the figure of merit of the system in concrete applications like
quantum memories.

1.1 The Maxwell-Bloch equations

Already at the classical level, light propagation through a disordered en-
semble is known to be a complex problem. Multiple scattering of light
and interference distorts the incident wavefront strongly; moreover, light
diffusing through the medium forms a volume speckle field that has no
correlations on a distance larger than the wavelength of light, for example,
limiting imaging resolution [46, 47]. The quantum mechanical problem is
even more complex, as a two-level system is a nonlinear frequency mixer,
capable of generating a continuum of new frequencies from an initial pulse.
A priori, keeping track of this continuum as it propagates and re-scatters
from other emitters appears to be a difficult task. To reduce the com-
plexity, the standard theoretical approach to treat such a system is based
upon the semi-phenomenological one dimensional Maxwell-Bloch equations,
first introduced in [48, 49] and reviewed in more detail in [1, 2, 50–55].
In most cases of interest, a quasi-1D propagating field (e.g., a Gaussian
beam), ε̂pz, tq illuminates an ensemble, and its interaction with the atoms
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Γ0

Γ0

« Pge(z, t)

z
Γ0

Γ0ε(z, t)

Figure 1.3: MBE approach to light propagation in atomic media. The granular
nature of the atomic distribution (left) is smoothed out in favour of a continuous
medium (right) of the same optical depth. An external field εpz, tq can drive
the smooth polarization field Pgepz, tq. In turn the polarization field can either
act back as a source for the electromagnetical field and spontaneously lose the
excitation at a rate Γ0, as prescribed by Eq. (1.1). Here we show the reduction
to a quasi-1D problem but also more sophisticated 3D have been developed, as
discussed in Appendix A.

is directly treated; any possible scattering into the remaining 4π solid angle
is not explicitly calculated but is treated by an approximate prescription.
Furthermore, the granularity of the atoms is ignored, and it is assumed
that their properties can be described by smooth quantum polarization
fields, P̂gepz, tq as in Fig. 1.3. In terms of these new quantum fields, in the
rotating frame of the incoming light, the equations of motion become the
well-known Maxwell-Bloch equations:

pBt ` cBzq ε̂ “ ig
?
NP̂ge

BtP̂ge “ ´i p∆´ iΓ0{2q P̂ge ´ ig
?
Nε̂

´

P̂ee´P̂gg

¯ (1.1)

Here, g is the usual light-matter coupling in free-space g “ dge

b

2ω0
h̄ε0V

where V “ AbL is the interaction volume, given by the product of the
cross-section of the mode Ab and the length of the system L, which contains
N atoms. The quantity deg is the dipole matrix element associated with
the two-level transition. Moreover, ∆ is the detuning of the probe field
with respect to the resonant frequency ω0. This coupled set of equations
simply describes that the electrical field is governed by a one-dimensional
wave equation in which the polarization field acts as a source. In turn,
the field linearly drives the polarization of the medium. The effect of
the remaining continuum of electromagnetic modes is assumed to result
in a local, independent decay rate Γ0 “

ω3
0d

2
ge

3πh̄ε0c3
for atomic excitations,

identical to the spontaneous emission rate of a single, isolated atom in
vacuum. Despite the simplifications, effectively reducing the problem to
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−2 −1 0 1 2

∆/Γ0

−0.5

0.0

0.5

1.0

a
.u
.

Re(χ0)

Im(χ0)

Figure 1.4: The single-atom susceptibilities χ0 for a two-level atom (Eq. (1.2)),
as functions of the dimensionless detuning ∆{Γ0 of the probe field. The dashed
and solid curves give the real and imaginary parts of χ0, respectively, with the
former related to propagation phase and the latter to atom absorption.

a quasi-1D quantum field theory, for this set of two coupled, nonlinear
partial differential equations on operators, no general solution is known.
One particularly simple limit of Eq. (1.1) is to investigate its linear optical
response, in which D concretely emerges as the key parameter of the system.

1.1.1 Linear response

A further simplification comes from noticing that the level of nonlinearities
in atomic ensembles is typically weak since the number of atoms is typically
larger than the number of absorbed photons, Pgg´Pee « 1, where now, for
example, Pee “ xP̂eey represents the expectation value. In other words, in
an ensemble with many atoms, it is unlikely for two consecutive photons
to hit the same atom which can now be treated as a harmonic oscillator
that never gets excited twice, neglecting its nonlinear nature. This leaves
us with a set of linear equations for classical fields, which can be studied,
for example, in the stationary regime. The equation for the electric field
thus simply reads:

Bzε “ iχk0ε

χ “
N

V
χ0 χ0 “ ´

3πΓ0

2k3
0

1

∆` iΓ0{2
.

(1.2)

Within this approach, therefore, the optical response, or how the field
propagates through the medium, is simply characterized by the linear sus-
ceptibility χ, which is found to have several important properties. First, it is
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simply proportional to the linear response, χ0, of a single, isolated atom in
free space and to the density of the ensemble, which makes it more explicit
that the underlying assumption is that every atom responds to light inde-
pendently of the surrounding emitters. Second, as represented in Fig. 1.4,
importantly, the susceptibility is a complex quantity, whose imaginary
part (orange curve) describes absorption and takes a maximum value at
resonance, as χp∆“0q “ i3π

k3
0

N
V . As expected for two-level atoms, because

the response to a probe field is around resonance is primarily absorptive,
solving for the field in Eq, (1.1), one finds that the intensity decays expo-
nentially, following the well-known Beer’s law, Ipzq“I0e

´2Imχk0z “I0e
´D,

which depends only on the optical depth of the system [1, 2, 54], defined as:

D “ 2Imχp0qk0L “
3

2π
N
λ2

0

Ab
“ N

σ0

Ab
. (1.3)

The susceptibility enters also, for example, in the complex refractive index of
the medium, as n“

b

1` N
V χ0, whose real part instead describes dispersion.

This topic will be discussed more in-depth during the thesis, in particular
in Chapter 4. Here, it is sufficient and interesting to notice that within the
MBE treatment, the resonant absorption of the atomic medium is found
to linearly scale with the density (and thus to the number of emitters),
Impχq „ N{V . The same unbounded increase is also found in the refractive
index where n „

a

N{V , a prediction that is going to be discussed in more
detail in Chapter 4. While linearization (or more precisely, a Gaussian
approximation) severely limits the range of Hilbert space that can be
accessed, the resulting dynamics (combined with a more complex atomic-
level structure) does already allow for some useful applications, such as
quantum memory for light and spin squeezing.

1.1.2 Electromagnetically induced transparency

The efficient absorption of a resonant beam provided by an optically thick
two-level ensemble is not particularly useful; however, the system can be
functionalized by adding a second ground (or metastable) state |sy, in a Λ-
type scheme (as in Fig. 1.5a). The additional transition |sy´|ey is driven by
a copropagating (classical) control field with a Rabi frequency of Ωc with the
same detuning ∆ of the probe beam E, ideally to facilitate the light–atom
state mapping. This configuration allows for the linear optics phenomenon of
electromagnetically induced transparency (EIT) [2, 56]. The linear response
and propagation of the probe field can readily be solved in a manner similar
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Figure 1.5: (a) EIT three-level scheme. The ground state |gy and the excited state
|ey interact with the quantum probe field ε (orange), detuned from the resonance
by ∆. The transition |ey ´ |sy is driven instead by a strong classical control field
with Rabi frequency Ωc (cyan), detuned from the two-photon resonance by ∆.
(b) Single-atom susceptibilities χ0 for a three-level scheme, as functions of the
dimensionless detuning ∆{Γ0 of the probe field and for Ωc{Γ0 “ 1{3.

to Part a) for two-level systems, after generalizing Eq. (1.1) to three levels.
The main physical results can be summarized as follows. The population
in the state |ey (and the corresponding spontaneous emission) can be
completely suppressed when the two-photon resonance condition (∆“0)
is satisfied, because of destructive interference between the two excitation
pathways. This leads to the medium becoming transparent to the probe
field (Imχ“ 0, Fig. 1.5b) within a characteristic bandwidth ∆eit“

Ω2
c

Γ0

?
D

around the two-photon resonance condition, realizing EIT. In the process,
the incoming photon state strongly hybridizes with collective atomic spin-
wave excitations S to create “dark-state polaritons” that propagate through
the medium at a reduced group velocity, vg “

Ω2
c

Γ0

2L
D . The light-matter

excitation can be therefore slowed down reducing the strength of the control
field. Since photons in free space, travel at the speed of light, intuitively
the more the polariton is slowed down (Ωc Ñ 0), the more its spin-wave
component should be dominant. Indeed the ratio vg{c actually determines
also the mixing angle between light and matter excitation. For realistic
values of slow light, such as vg “ 17 m{s [57], this roughly corresponds to
a population ratio of 10´7 and therefore, in such a condition, a dark-state
polariton is almost entirely a spin-wave excitation.

1.1.3 Quantum memories for light

A quantum memory is a device that allows on-demand storage and retrieval
of an arbitrary quantum state, a fundamental building block in quantum
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communication [41, 58] and linear optical quantum computation [59]. Intu-
itively the described setup is already a memory, which can store a pulse
for a delay time τd “ L{vg, provided the width of the incoming light ∆ωp
to satisfy ∆ωp ă ∆eit. Its performance is quantified by the ratio of the
achievable time delay to the initial pulse length τp ą 1{∆eit and is limited
by the so called bandwidth-delay product, τd{τp ď ∆eitτd “

?
D, which in

turn depends on the square root of the optical depth. The bandwidth-delay
product is important as it also dictates how many spatially separated pho-
tons can be stored simultaneously in the quantum memory, nph«0.2

?
D,

which, for realistic setups (D«50˜300 respectively in Ref. [18] and Ref. [3])
is nph„1˜ 4.

Within EIT, a protocol to achieve storage involves typically involves
three steps [3–5, 56, 60–66]. First, a resonant (∆ “ 0) control field is used
to open a spectral transparency window (n “ 1) in the medium, where the
quantum light can enter freely. The control field can then be adiabatically
reduced to zero. As we have seen, this process realizes a coherent transfer
within the polaritonic excitation, from its photonic component to the matter
one. At the same time the excitation slows down and can be stopped, as
vgÑ0 as ΩcÑ0. After a certain storage time, a second pulse in the control
field can then make the medium transparent again, realizing on-demand
retrieval of the states of light.

Interestingly, the EIT scheme is not the only way to store a photon
in an atomic ensemble. With the very same Λ-scheme atoms of Fig. 1.5,
several different approaches to photon storage can be taken. In the Raman
configuration [67, 68], the fields have a large detuning (|∆| " Γ0D) and
the photons are absorbed into the stable ground state |sy by stimulated
Raman transitions. Moreover, in the photon-echo approach [69–78] (the
name reminds of spin-echoes experiments in nuclear magnetic resonance
[79]), a controlled and reversible inhomogenous broadening is be used to
dephase/rephase an atomic excitation for storage and recollection in an
ensemble of two-level atoms. Ideally, when a short pulse is absorbed by an
atomic ensemble, each atom will be in phase with the incoming field. This
is the phase-matched state that has been discussed at the beginning of this
chapter. Now, if an inhomogeneous broadening can be turned on, each
emitter will acquire new frequencies. A notable example here is given by
gradient-echo memories (GEM), where a spatially dependent frequency shift
can be controlled with an external field [71–73, 75]. As a result, the atoms
will quickly evolve to be out of phase, suppressing the strong collective
emission. If, after a certain storage time, the atoms can later be brought
back into phase with each other, the individual dipole moments will again
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create an electric field that matches the originally absorbed light, and a
photon echo will be emitted. Provided that the engineered inhomogeneous
broadening can be reversed and that the spontaneous emission is slow
compared to the storage time, the echo can approach the amplitude of the
input light and act as an efficient memory.

To conclude, a remarkable result that has been obtained within the
MBE treatment is that for all these different methods, when optimized, the
storage and retrieval of an arbitrary photon shape has a maximum efficiency
that only depends on the optical depth of the medium η„1´ 5.8{D [54].
As a consequence, in recent experiments in EIT storage [3–5] a lot of efforts
were made to push the optical depth of the atomic clouds to unprecedented
values of D « 1000 [4], reaching a storage efficiency of 92.0p1.5q%.

1.2 The flaw

Our theoretical understanding of atom-light interactions in such systems
is largely based upon the MBE, where the atoms are treated as a smooth,
polarizable medium that interacts with optical fields and where the optical
depth emerges as the figure of merit of the performance of such a light-
matter interface.

Despite having fundamentally improved our understanding of the in-
terface between light and large ensembles of atoms and allowing for the
above-mentioned applications, however, this macroscopic picture cannot
be strictly correct. Indeed, in order to capture emission into 4π, the po-
larization field is assumed to spontaneously decay at the same rate Γ0 of
a single, isolated atom, which, as seen, implies that an atomic medium
exhibits absorption, as characterized by an imaginary part of the optical
susceptibility (Imχ‰ 0). However, since an atom has no internal decay
channels, the atomic excitation is 100% converted into a photon.“Losses”
are therefore simply photons re-scattered into unwanted directions/modes
(as in Fig. 1.1). Now, if another atom happens to be sufficiently close
to the first one, the scattered photon has the chance to interact with it
and re-scatter again, mediating the interaction between the emitters and
building up correlations. Ultimately, scattering is a wave phenomenon
and the intensity emitted must depend on interference between the light
emitted by different atoms. Because of these reasons, in order to satisfy
energy conservation and to fully take into account the wave nature of
light, the correct loss description must therefore have atomic correlations
and positions built-in. The assumption of independent emission (and the
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Figure 1.6: Examples of multiple scattering of light and collective spontaneous
emission effects in light propagation through atomic ensembles.

resulting "absorption", despite the atom being purely dispersive), therefore,
should be considered a historical attempt to avoid keeping track of all
the spatio-temporal emission and interference, often considered intractable
and/or unimportant.

To further build up our intuition we present here two simple examples
in which light scattering could never be captured by MBE, as a consequence
of its assumptions: two close-by atoms and a 2D dense array of atoms.
Conveniently, these simple examples will constitute the building blocks for
the ideas that will be discussed during the thesis.

1.2.1 Two strongly interacting atoms

Consider the simple scenario represented in Fig. 1.7a, where two close-by
atoms are illuminated by a single photon. If the light is scattered by an
atom, intuitively, the closer a second nearby atom happens to be, the higher
will be the chance for the photon to scatter again. Importantly, contrary to
the MBE approach, here, the atom’s discrete positions are explicitly taken
into account. In concrete, an excited atom at position r1 can de-excite, as
represented by the spin operator σ1

ge, emitting a photon, while a second
atom at r2 can be excited, as described by σ2

eg. The strength of such process
(and its vice-versa σ1

egσ
2
ge) is really dictated by how light can propagate the

distance r12 “ r1´ r2 from one point-like atom to the other, which is given
in terms of the Green’s function G0pr12q, the solution to the wave equation
in free space [80]. Putting these ideas together, we anticipate here the basic
form of such dipole-dipole interaction which captures the above-mentioned
effect:

H2b „ G0pr12, ω0q σ
1
egσ

2
ge ` h.c. (1.4)

While the above Hamiltonian will be discussed in much more detail in
Sec. 1.3, that is, light can mediate an effective interaction between atoms,
which is naturally expected to modify its propagation as well as the atomic
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Figure 1.7: (a) Two atoms, interacting via dipole-dipole photon exchange are
equivalent to two non-interacting new atoms, with new frequencies ω˘ and new
linewidths. (b) Transmission spectra of a realistic focused beam (beam waist
w0{λ0 “ 2.5) illuminating two identical atoms placed at a distance |r|{λ0 “ 0.1.
The orange dashed line represent the transmission of that can be calculated for
the same beam and the same atomic positions, but turning off the interaction of
Eq. (1.4).

state.
Interestingly, the real part of the Green’s function contains a short-

range component, G0pr, ω0q „0 1{r3, which dominates at small inter-atomic
distances (k0r ă 1) and describes near-field coherent interactions. As a
consequence, the bare resonance frequency ω0 of two close-by atoms is
expected to symmetrically shift by the interaction, ω˘ „ 1{r3, and to be
associated to new dressed states. The process can be called renormalization
since the effect of such strong and local near-field interaction can be
approximately captured by redefining the frequency. While the description
in terms of the new frequencies and new normal modes of the system
might seem abstract, it has important consequences. For example, if the
interaction is sufficiently strong (high shifts), when light is recollected in
transmission as in Fig. 1.7b (the formalism to rigorously evaluate such
quantities will be discussed in Section 1.3), the spectrum (solid blue line)
shows two dips at the new resonant frequencies ω˘ and new linewidths,
naturally associated to the imaginary part of the Green function, ImpG0q,
which dictates dissipation. Thus, as in Fig. 1.7a, the system should be
rather thought of as made of two new effective atoms that are characterized
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by two new frequencies ω˘ (represented by different colors), rather than two
copies of a single isolated atom. This is in contrast with the transmission
that can be obtained just considering two identical copies of independent
atoms (dashed orange line in Fig. 1.7b), which would predict just twice
as the resonant absorption, also signaled by the imaginary part of the
susceptibility in Fig. 1.7c.

We introduced the idea that by simply adding a second close-by atom,
because of the fundamental dipole-dipole interaction, the optical response
(transmission and susceptibility) and the dynamics are fundamentally dif-
ferent from what MBE would predict, i.e. the sum of the response of two
independent emitters. A full theory for describing light-matter interaction
with atomic ensembles must therefore have photon-mediated dipole-dipole
interaction built in. We will introduce such a theory in Sec. 1.3.

1.2.2 2D array of atoms

In this kind of system, one naturally expects interference effects to be
particularly prominent, where constructive or destructive interference might
be maximal. Indeed, to give a concrete example, in Fig. 1.8a we show an
exact calculation of linear light scattering from a sub-wavelength (d ă λ0)
square array of atoms (technique described later), revealing that the a
sub-wavelength array can function as a perfect reflector for light [81–85].
In Fig. 1.8b we further plot the transmission and the reflection spectrum of
a finite array. High reflection can be maintained over a bandwidth Γc " Γ0,
much larger than the one of a single isolated atom, as plotted in Fig. 1.8b.
Another striking feature is that generically the light response is found to
be dispersive, i.e. thanks to the strong interference in emission, light can
either be transmitted or reflected, but only within the same input mode
(T `R “ 1). Finally, relevant to Ch. 4, where the refractive index of a 3D
array of atoms will be discussed, it is important to notice that the 2D array
can also imprint a „ π{2 shift to transmitted light, as plotted in Fig. 1.8c.
Such phenomena could never have been predicted from Eq. (1.1), where
the optical response is independent of the precise atomic positions, and
where excitation of the atoms is necessarily accompanied by dissipation
(Γ0).

This simple example is important because it shows that given the same
resources, the same number of atoms N , but now reorganized regular
fashion, can already provide a better light-matter interface by suppressing
the “bad” emissions into unwanted modes that necessarily arise in disordered
ensembles (as in Fig. 1.2). Since the effect explicitly relies on the precise
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Figure 1.8: (a) Perfect reflection from a sub-wavelength 2D array of N “ 502

atoms (white dots) placed in a square lattice of constant d{λ0 “ 0.2, with λ0 the
resonant wavelength. The incoming field from the left is a Gaussian beam with
beam waist w0 “ 0.3L „ 3λ0 where L is the size of the lattice. The intensity of
the total field Itot “ |Etot|

2, composed by the input field the rescattered one by
the atoms, exhibits constructive (left) and destructive (right) interference. For
the same parameters (b) shows typical transmittance (blue line) and reflectance
(orange line) as a function of the detuning. The mirror is highly reflective over a
linewidth Γc. (c) Phase shift acquired by the transmitted field, as appears in the
complex transmission coefficient t “ |t|eiϕ. All the above mentioned quantities
and the formalism to calculate them are discussed in detail in Ch. 4.

discrete position of the atoms, our theory must therefore have them built-in
in the first place.

Motivated by fully taking into account the granularity of atomic position,
the wave nature of light, and the striking collective effect of Fig. 1.8, we seek
to challenge the standard assumption of independent emission in the thesis.
To correctly evaluate the optical response of an ensemble of atoms we will
make use of a well-established theoretical formalism that is able to take
account of the collective behavior in spontaneous emission/re-absorption in



1.3. A SPIN MODEL APPROACH TO LIGHT-MATTER INTERACTION17

the ensemble, which is presented in the next section.

1.3 A spin model approach to light-matter inter-
action

The possibility that an atomic ensemble can experience a significantly
enhanced radiation rate via interference (“superradiance”) was already
pointed out in the seminal work of Dicke [86]. Since then a lot of effort has
gone into developing and refining a quantum formalism to describe atoms
coupled to radiation that includes collective effects. One such formalism
was developed by Welsch and co-workers [87, 88], and is based on the
classical electromagnetic Green’s tensor. It can be shown [89–91] that the
full dynamics of light emission and re-scattering of an arbitrary collection
of atoms in free space, specified only by their discrete fixed positions, can
be related to an effective open model containing only the atomic degrees
of freedom and the incident field. Here we will motivate the main results,
which can be understood in terms of a classical analogy [91] and review
the latest results in this direction.

Indeed the problem that we want to solve is similar to the classical
one of finding the total field Epr;ωq, given a known input field Einpr;ωq,
scattered by collection of N polarizable dipoles pjpωq located at rj (see
Fig. 1.9). It is well known that the field at any given point in space, can
always be written, in the frequency domain, as the sum of the external or
driving field and the field re-scattered by the dipoles

Epr;ωq “ Einpr;ωq ` µ0ω
2
ÿ

j

G0pr, rj ;ωq ¨ pjpωq (1.5)

where µ0 is the vacuum permeability andG0pr, r
1;ωq is the Green’s function,

the fundamental solution of the electromagnetic wave equation in free space
[80]:

„

p∇ˆ∇ˆq ´ ω2

c2



G0pr, r
1;ωq “ δpr´ r1qI (1.6)

that, defining the associated wavenumber k “ 2π{λ “ ω{c and the distance
r “ |r|, explicitly takes the form of the 3ˆ3 tensor:

G0pri, rj ;ωq “
eikr

4πr

„ˆ

1`
i

kr
´

1

pkrq2

˙

1 `

`

ˆ

´1´
3i

kr
`

3

pkrq2

˙

ri b rj
r2



(1.7)
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Since Eq. (1.5) just describes the field propagation, which is equivalent for
both a classical and a quantum field (Maxwell’s equations are valid both
classically and quantum mechanically), after promoting the dipoles and the
field to quantum operators, it is also expected to be valid in the quantum
realm. In concrete, it is sufficient replacing the classical dipole moment pj
by the operator p̂`j , and Eprq by the field operator Ê`prq, respectively their
positive-frequency component. Moreover, an atom only have a significant
optical response in a narrow bandwidth around its resonance frequency ω0,
therefore, it is possible to approximate G0pri ´ rj , ωq « G0pri ´ rj , ω0q,
which allows the Fourier transform of Eq. (1.5) to become local in time.
Intuitively, retardation effects are expected to be negligible (Markovian
approximation), when ∆ωL{c ! 1, where L is the characteristic length of
the system and ∆ω is the bandwidth of the atomic dynamics. The latter is
roughly given by the spontaneous emission decay rate, Γ0, which is typically
around a few MHz, resulting in a significant phase difference only over a
length of L ě 1m, much longer than typical atomic setups. As a result the
total field at a given time only depends on the instantaneous atomic state,
which results in an input-output equation for the positive rotating field [87,
91]:

E`totpr, tq “ E`inpr, tq ` µ0dgeω
2
0

ÿ

j

G0pr, rj , ω0q ¨ ℘ σjgeptq. (1.8)

In parallel, to reach (1.8), as ubiquitous in quantum optics, we expressed the
dipole operator p̂ “ ℘˚dgeσ̂eg ` ℘dgeσ̂ge in terms of an orientation vector
℘, the coherence operators σ associated to the dipole transition between a
ground state |gy and an excited one |ey, and the dipole matrix element such
that dge “ xg|p̂ ¨ ℘|ey. The hat, to explicitly indicate a quantum operator,
is further dropped for the sake of simplicity. Now that the field has been
expressed solely in terms of the input field and the atomic operators, one
needs to solve for the latter, deriving the Heisenberg equation of motion
from the full atom-field Hamiltonian. Intuitively, since the field itself
depends only on other atoms via the input-output equation, the atomic
dynamics can be fully derived from an equivalent master equation for the
atomic density operator ρ̂ptq that describes the atomic dynamics:

9̂ρ “ ´
i

h̄
rH, ρ̂s ` Lrρ̂s (1.9)
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Figure 1.9: A light source (light bulb) shines an ensemble of classical dipoles
(blue dots). The total field at the point r is the sum of the field coming from the
source (input) plus the scattered one by the dipoles, Etotprq “ Einprq ` Escprq.
The Green’s function G0pr

1, rq renders the electric field at the field point r due to
a single point source at r1.

The Hamiltonian and the Lindblad operator take the form:

H “Hat ` h̄
N
ÿ

i‰j

J ijσiegσ
j
ge

J ij “
3πΓ0

k0
℘˚ ¨ ReGpri, rj , ωegq ¨ ℘

(1.10)

Lrρ̂s “
N
ÿ

i,j

h̄Γij

2

`

2σigeρ̂σ
j
eg ´

 

σiegσ
j
ge, ρ̂

(˘

Γij “´
6πΓ0

k0
℘˚ ¨ ImG0pri, rj , ωegq ¨ ℘.

(1.11)

Although the equations above look quite different compared to the standard
Maxwell-Bloch equations, they of course reduce to well-known results. For
a single atom in free space, for example, the theory recovers exactly the
usual spontaneous emission rate of the Weisskopf-Wigner theory Γii “ Γ0 “
ω3
egd

2
ge

3πh̄ε0c3
. The dynamics of the wavefunction under the master equation can

be equivalently described in the quantum jump formalism of open systems
[92–95]. Within this formalism, the evolution is deterministic under an
effective non-Hermitian Hamiltonian for spins

H “ Hat ´
3πΓ0

k0

N
ÿ

i,j

℘˚ ¨G0pri, rj , ωegq ¨ ℘ σiegσ
j
ge, (1.12)

but must be accompanied by stochastic application of the recycling “quan-
tum jump” σgeρσeg operator in Eq. (1.11). The model can be intuitively
understood as the term σiegσ

j
ge enables an exchange of excitations between
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atoms, as one should expect from a photon-mediated emission and re-
absorption. Moreover, its strength naturally depends on how a photon
propagates from atom j to atom i, as encoded in the Green’s function in
free space.

We thus propose that Eqs. (1.8) and (1.12) constitute a novel, but
exact, formulation of atom-light interactions, which properly accounts for
atomic positions, multiple scattering, and wave interference. Generally,
these equations state that the true degrees of freedom are the atomic
spins themselves. If their dynamics or correlations can be solved through
Eq. (1.12), then all of the quantum field properties and correlations can be
constructed "for free" using Eq. (1.8), based upon knowledge of the atoms
and the input field. Once the dynamics of the atoms is solved, the electric
field at every point can be recovered through the input-output equation
(1.8) that relates the field to the atomic operators.

These equations present a number of interesting and attractive features.
For example, up to now the single-particle Hamiltonian (Hat) nor which
distribution of the emitters that we are considering have been specified.
Moreover, in the spirit of its early theoretical development [87], the formal-
ism can be also generalized in the presence of arbitrary dielectric structures,
specified by εprq, the position-dependent and possibly frequency-dependent
relative permittivity of the medium, allowing the model to equally well
capture a whole range of actively investigated atom-light interfaces (cavities,
nanophotonic structures, etc.) simply by replacing the Green’s function,
solution of (1.6).

Due to its universality and flexibility, the spin model is, therefore,
the ideal candidate to study the problem of light-matter interaction with
ensembles of atoms.

It is also interesting to note that the case of one excitation is special,
as the Hamiltonian is an N ˆN matrix (see later) and the system is
formally equivalent to a linear optics problem. Beyond that, however,
Eq. (1.12) represents an out-of-equilibrium, open, (generally) long-range
interacting many-body spin system. These are all contemporary themes in
condensed matter physics or quantum information [19, 96], which opens up
the possibility to find novel and unexpected links between quantum optics
and other fields.

Having elucidated the formalism to self-consistently treat light-matter
interaction with atomic media that will be used during the thesis it is
important to review some important results that have already been obtained.
Even more importantly, this will allow us to discuss the general directions
and long-term goals of the field, which can be nicely summed up into two
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fundamental questions:

• Is there some new and exciting physics beyond MBE?

• Are the performance of quantum technology simply limited by the
optical depth as MBE would predict? Can we do better?

Regarding the first point, for example, the macroscopic picture that MBE
offers has been challenged by theoretical considerations based on refined
treatments of microscopic details, such as atomic granularity, dipole-dipole
interactions, and multiple scattering. Already within the linear optics
regime, highly nontrivial effects are predicted in disordered ensembles,
such as superradiance and subradiance [97–103], modifications of refractive
indices and scattering rates [82, 104–110], coherent back-scattering [111–
113], and 3D Anderson localization of light [114–117]. The disorder can
be also exploited to achieve perfect focusing in complex media [47, 118].
Remarkably, one of the latest results was to show that in contrast to what
MBE would predict (see Sec. 1.1), the maximum index does not indefinitely
grow with increasing density but rather saturates to a real-life value (n „ 1)
[119]. Starting from the simple idea introduced in Sec. 1.2.1, the authors
develop a strong-disorder renormalization group approach that is able to
treat the near-field interaction between all the strongly interacting pairs
in a disordered ensemble and results in an inhomogeneous broadening of
atomic resonance frequencies. This ensures that, regardless of the physical
atomic density, light at any given frequency only interacts with at most a
few near-resonant atoms per cubic wavelength, thus limiting the optical
response and thus the maximum index.

At the same time, the possibility of identifying new phenomena or more
powerful protocols for applications involving arrays, such as by suppressing
light emission into unwanted modes, as anticipated in Sec. 1.2, has gained
significant interest recently. Despite the current limitations of each platform,
arrays of atoms are already available in laboratories. Notable examples
include the experimental realization of a Mott phase with ultracold atomic
gases [120] and optical tweezer arrays [121], which naturally leads to the
necessity of understanding how light propagates through regular atomic
structures.

For one-dimensional arrays of atoms, for example, when coupled to
a 1D photonic continuum realized by a waveguide such as an optical
fiber [122–124] or a microwave waveguide [125, 126], an elegant input-
output formalism has been developed [43, 89, 127]. Potential applications
includes new realization of CQED-like physics with atomic mirrors instead of
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conventional optical cavities [128, 129], create exotic many-excitation dark
states with fermionic spatial correlations [130] or multipartite entangled
steady states [131, 132], and use classical light sources to generate entangled
quantum many-body states of light [133–138] and quantum computation
[139]. Moreover, a one-dimensional chain of atoms has been shown to
display subradiant states [90, 91, 130, 140–144]. These modes are guided,
can propagate freely through the structure at a reduced (subradiant) decay
rate, but can also efficiently be interfaced to 1D waveguides for write/read-
out operations and exponentially reducing the error of photon storage
[90] with respect to previously known bounds (MBE). Moreover, periodic
modulation of the properties of the dielectric waveguide can fundamentally
alter the otherwise linear dispersion relation of light, to realize a photonic
crystal waveguide (PCW) [145]. In these structured systems, propagation
is well described by a band structure ωpkq and can be engineered to create
band-gaps, i.e. range of frequencies in which light cannot propagate, or
flat bands, which corresponds to a strong reduction in the group velocity
of light vgpkq “ Bω{Bk „ 0, to further boost light-atom interaction simply
increasing their interaction time [146]. As a result, not only strong light-
matter interaction without the need for a conventional optical cavity can
be realized in such systems [129, 147–151], but for example, an excited
atom whose transition frequency resides in the gap would not be able to
spontaneously emit and the atom-photon system can form a bound state
[135, 152–155]. While reaching the regime in which coherent interactions
dominate dissipative and decoherence effects paves the way to design
interesting many-body states of light [137] or to explore fundamental
physics [156] in a similar fashion to what has been done in the CQED
setup. Moreover, the richness of a structured 1D photonic bath effectively
provides ways to engineer atom-atom interactions to realize interesting new
many-body models when arrays are coupled to PCW [155, 157], beyond
what is possible and fundamentally fixed in free space, the dipole-dipole
interaction, as we have seen in this chapter.

Additionally, as discussed, the formalism allows also the study of light-
matter interfaces beyond the single excitation regime. In a recent study
[158], for example, it was shown that the appropriate combination between
the spin model and Matrix Product State (MPS) numerical techniques
provides the first general numerical technique to solve the MBE beyond
linearized or Gaussian regimes.

As anticipated, the strong collective response of a 2D array of atoms
has also attracted notable interest [159–162]. Importantly, the key aspects
of this approach such as an enhanced light-matter coupling strength and
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the directional mirror reflection of the incoming light using a 2D array
[81–85] atoms has been recently experimentally demonstrated [163]. Lever-
aging such a powerful interface, for example, single-photon storage with
polynomial improvement in error scaling [164] has been proposed. When
the nature of the atoms is taken into account, intriguing nonlinear optical
phenomena can arise [165–167]. Specifically, the Rydberg blockade can be
used to induce a conditional response to light in order to produce interest-
ing quantum optical states [168, 169] or to realize a photon-photon gate
[170]. Moreover, atomic arrays in 2D can also exhibit intriguing topolog-
ical properties such as the existence of long-lived topological edge states
[171–173].

1.4 Overview of the thesis results

In the first part of this chapter, the standard approach to describing light-
matter interaction with atomic media has been reviewed. It has been
further discussed that such a formalism is necessarily flawed since it does
not take into account the multiple scattering and wave interference that
necessarily builds up when light propagates in a complex and granular
atomic medium. Furthermore, we provided two concrete examples in which
the MBE formalism cannot predict the correct behavior: two strongly
interacting atoms, and a 2D atomic array. We then reviewed a theoretical
description, a spin-model for light-matter interaction, which can capture
such phenomena in a many-body open interacting theory. Again, it is im-
portant to understand these and similar microscopically-driven anomalous
optical effects, both within and beyond the linear optics regime, so as to
refine our knowledge of quantum light-matter interactions and practically
improve ensemble-based quantum optical technologies. Following these
lines, we present our contribution of the thesis to the answer to those
questions, introducing its main results.

1.4.1 Unraveling dephasing in atomic media

In reviewing different approaches to realizing an efficient light-matter
interface, cold atoms ensembles emerged as a realistic platform for vari-
ous quantum technologies. Our theoretical understanding of atom-light
interactions in such systems, and consequently the performance of the
above-mentioned applications, is largely based upon the Maxwell-Bloch
equations (MBE), where the atoms are treated as a smooth, polarizable
medium that interacts with optical fields. This macroscopic picture has
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been challenged by theoretical considerations based on refined treatments
of microscopic details, such as atomic granularity, dipole-dipole interactions,
and multiple scattering. Within the linear optics regime, highly nontrivial
effects are predicted such as modifications of refractive indices and scat-
tering rates [104–108, 110], coherent back-scattering [111–113], and 3D
Anderson localization of light [114, 116, 117]. It is important to understand
these and similar microscopically-driven anomalous optical effects, both
within and beyond the linear optics regime, so as to refine our knowledge of
quantum light-matter interactions and practically improve ensemble-based
quantum optical technologies.

To experimentally quantify such microscopic effects, the measurements
need to be carefully designed to isolate any effects being well-described by
the standard MBE. This is challenging since, as shown before in Fig. 1.2a,
most of the light is collectively emitted in a highly directional fashion
and at enhanced rate Γk „ DΓ0. As a consequence, measurements have
so far been restricted to either recollect the emitted light, and useful
intensity correlations, from a different direction [117], probing the 4π
speckle pattern in Fig. 1.2a, or to explore emission at late times when
most of the collective excitation has already left the system [106–108].
The verification of subtle microscopic effects also relies on a side-by-side
comparison with numerical approaches but is computationally limited
to moderate sample sizes L and atom numbers N , even if the modeling
is classical [174]. In addition, despite efforts in the field of nonlinear
optics [175–181], techniques to precisely quantify microscopic near-field
correlations of optical excitations, similar to those regularly achieved in
nuclear magnetic resonance (NMR) studies [182–186], are still missing.
In Chapter 2, a background-free, precise measurement of microscopically-
driven anomalous optical effects, made possible by actively suppressing the
macroscopic dynamics, is demonstrated. This technique unveils a previously
unidentified density-dependent dephasing mechanism of dipole spin waves
on an optical transition which is attributed to microscopic fluctuations of
resonant dipole interactions in an otherwise ideal ensemble of laser-cooled
atoms. The excellent agreement between the experimental data and a
simple theory based on the statistical chance to find strongly interacting
pairs in a disordered ensemble is the main result discussed in this chapter.

The first part of the chapter is thus dedicated to introducing the
measurement scheme, which relies on being able to shift the wavevector
k Ñ k1 of collective spin-wave excitations in the atomic medium [45, 187–
189]. As we will see, the combination of an additional auxiliary transition
and sub-nanosecond control pulses can deterministically and coherently
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Figure 1.10: (a) A pair-wise approach to the many-atom optical dynamics. In
a dilute atomic medium, a small fraction of pairs of atoms (red circles) are
separated by a distance much smaller than a wavelength, and thus interact
strongly via their near fields. These atoms can be replaced with a non-interacting,
dynamically equivalent pair with new effective resonance frequencies (indicated
by different colors), which evolve with the phase e´iω˘t. Single isolated atoms
instead will not significantly contribute to time evolution. (b) Representation
of the RG scheme [119]. Each step is characterized by identifying the most
strongly interacting pairs and replacing them with two new atoms with different
frequencies, which do not interact anymore through the near field. Unlike in (a),
one can continue this process (including the renormalization of atoms previously
renormalized) until all near-field interactions have been eliminated. The overall
system at the end is then equivalent to an inhomogeneously broadened ensemble
of spectral distribution P pωq.

write a position-dependent phase on each atom. With this robust geometric
phase imprinting technique, general control over the atomic excitation
wavevector can be achieved. In particular, one can create highly mismatched
spin waves |k1| ‰ ω0{c [189]. As their name suggests, being out of phase with
respect to free-space radiation, these atomic excitations cannot efficiently
radiate, but rather constitute states in which all the atoms on average emit
as if they were independent, with no preferred direction of emission and at
the rate Γ0. In other words, they are essentially free of collective evolution
under MBE. While phase-matched spin waves with |k| “ ω0{c are most
naturally created in the lab, the shift to a phase mismatched state can then
be applied on-demand. This gives sufficient time to the atoms to build up
microscopic correlation due to the dipole-dipole interaction. Importantly,
by shifting back the spin wavevector to match the dispersion relation of
light, the atomic state can be mapped back to light for efficient optical
measurements. By studying the time-dependent decay of the mismatched
spin waves, we unveil and precisely characterize a dephasing effect that
should generally exist in any ensemble-based light-matter interface, and
which can be significant even at moderate density ρ ă |k|3.

Theoretically, the dephasing mechanism is shown to arise from the
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combination of random atomic positions and the near-field interactions
between the optically excited pairs of close-by atoms. In particular, as
already anticipated in Sec. 1.2.1, the optical response of a pair of strongly
interacting atoms is equivalent to a similar pair, but in which the effect of
the strong near field has been renormalized into new effective frequencies.
Within the same line of reasoning, also the dynamics is expected to be
captured. The standard approach (MBE) would predict that the phase of
a single excitation shared between the two atoms would not evolve in the
rotating frame eiω0t of the single atom, and thus the phase coherence to be
preserved. Indeed, this is true for single isolated atoms, far apart from all
the other emitters, which, as represented in Fig. 1.10a, display no dynamics.
Close-by pairs instead (highlighted by red circles), because of the strong
and coherent interaction and the consequent spitting, will cause the phase
of the two renormalized atoms to evolve differently, i.e. with eiω˘t.

In a many-body system now, with the atoms being initialized in a
well-defined phase relation, close-by pairs, locally disrupting the phase
order, will cause the spin wave to dephase. To capture such an effect we
develop a simple theory that, based on the presented replacing strongly of
interacting pairs that statistically occur in a randomly distributed ensemble
(as in Fig. 1.10a) in favor of new atoms with new effective frequencies, is
able to analytically construct a frequency probability distribution P pωq for
an atom to have a close neighbor and thus a new effective frequency ω. The
net effect of the near-field interaction is thus captured as an inhomogeneous
broadening of the two-level transition. Because of this, spin waves are shown
to experience a short-time exponential dephasing rate γ “ CΓ0η on top of
their natural collective spontaneous emission decay. The dephasing is found
to linearly depend on the density η. Importantly, since our approximate
solution of the many-body dynamics just relies on the understanding of the
two-body problem, it can be easily generalized to describe more realistic
hyperfine atomic transitions (as the D1 line in 87Rb in the experiment),
which results in a different prefactor C. The theory, valid in the short time
regime and at the moderate densities that can be experimentally achieved
(η ă 10) and where nearest-neighbor pairs of atoms are expected to give the
biggest contribution, displays excellent agreement with the experimental
data.

These results should have implications for quantum technologies based
on atom-light interfaces, for example, imposing bounds on atomic densities
in order to achieve desired fidelities. More importantly, this work represents
one first step toward precisely measuring interacting spin dynamics in the
optical domain in a way similar to microwave NMR research [182–184, 186],
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but involving the much stronger electric dipole interaction, and for radiation
at a much shorter wavelength. While we specifically investigate dephasing
here, we believe that our powerful method to suppress macroscopic dynamics
will generally facilitate investigations of diverse other anomalous effects
[109, 114, 116, 117] in the optical domain, where microscopic correlations
are likely overshadowed by collective radiation.

Contribution of the authors

This work, reported in [190] and under peer review, involved close collabo-
ration with the experimental group of Prof. Saijun Wu at Fudan University
(Shanghai). Together with Dr. Yizun He and the other authors, they con-
ceived and realized the experiment to measure the microscopic dynamics
in cold atomic ensembles and performed the numerical simulations of the
MBE. The contribution of the author of this thesis, supervised by Prof. Dr.
Darrick E. Chang, was to understand the inadequacy of the MBE approach
and to develop the theory to explain the experimentally found additional
dephasing in terms of strongly interacting pairs and extend it to realistic
hyperfine transitions used in the experiment.

1.4.2 Dephasing in dense media: A renormalization group
approach

In the previous project, we argued that there should exist an additional
dephasing on top of spontaneous emission decay for optical spin waves,
with a rate that is exponential at early times and is directly proportional
to atomic density. It was argued that this initial dephasing arises from the
strong near-field interaction of a small fraction of particularly close nearest
neighbors, quantitatively reproducing the experimental results. Separately,
though, one might wonder what governs the dephasing behavior at later
times, or what occurs at very high densities, when many atoms sit within a
wavelength of each other and experience strong near-field interactions. We
also note that near-field interactions have been recognized to play key roles
in other collective behavior, ranging from the modification of superradiance
in small systems [191] to late-time subradiance [102] in extended systems.
Beyond exact numerics, however, the development of effective theories
generally remains a challenge in many-atom disordered systems.

In Chapter 3, a comprehensive theoretical picture of the spin-wave
dephasing phenomenon is provided by applying a non-perturbative tech-
nique based on strong disorder renormalization group (RG), which is a
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powerful method to elucidate the physics in diverse disordered condensed
matter systems [192–199] and has also recently been applied to atom-light
interactions [119]. As in the short-time theory of dephasing, one key idea
underlying this approach is that for highly disordered atomic media, strong
near-field interactions between particularly close nearest neighbors allow
such pairs to be approximately diagonalized first. The resulting dynamics
is equivalent to replacing the pair with two, new effective atoms with
renormalized frequencies, as illustrated in Fig. 1.10a. The RG theory goes
significantly beyond this, however, by realizing that nearby, strongly in-
teracting pairs (including atoms previously renormalized) can continue to
be identified and diagonalized, i.e. the many-atom system interacting via
the near field can be thought of and diagonalized in terms of an extended
hierarchy of strongly interacting pairs (Fig. 1.10b). The final result is
that the original system is dynamically equivalent to an inhomogeneously
broadened medium with a well-defined distribution of resonance frequencies
P pωq, and with the strong near-field interactions effectively removed. This
approach was recently used to predict that a disordered atomic medium
has a limiting value of the maximum refractive index, regardless of its
physical density [119]. It will be shown that RG not only works to capture
the stationary optical response of a dense gas but also to capture the
above-mentioned time-dependent dephasing dynamics of spin waves, in
a simple and non-perturbative way. The validity of the RG approach is
quantitatively verified by comparison with full, microscopic coupled-dipole
simulations of large (N „ 104) atomic ensembles.

Contribution of the authors

The author of this thesis, again supervised by Prof. Dr. Darrick E.
Chang, conceived the idea of applying a recently developed strong disorder
renormalization group technique [119] to study the dephasing dynamics in
dense ensembles of atoms. The findings are reported entirely in Chapter
3. Prof. Saijun Wu and Dr. Yizun He provided expertise and contributed
through an intense exchange of ideas which ultimately shaped this project
into its final published form [200].

1.4.3 Refractive index of a 3D atomic array

The refractive index is the most important defining property of a material
in photonics, setting the practical limitations to waveguiding, lensing,
imaging, optical lithography, etc. Despite the technological importance
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that an ultrahigh index material would have, all known optical materials
have an index of order Opnq „ 1. Starting from this basic observation,
recently pointed out by several authors [119, 201–203], Chapter 4 presents
recent efforts to understand what are the fundamental physical mechanism
that prevents reaching a high index and if an answer can come from a
simple electrodynamical model.

The starting point is realizing that textbook theories do not provide a
satisfactory answer. Indeed, as described in the introduction the standard
approach (MBE) treats an ensemble of atoms as a smooth medium, charac-
terized by a linear susceptibility, which is simply proportional to the linear
response of a single, isolated atom, and the density. This scaling comes from
the assumption that atoms interact with the optical field independently,
neglecting the possible complex behavior associated with wave interference
and multiple scattering of light, and implies that the refractive index should
also grow with the density. When evaluated at the typical densities of
everyday materials, where the atoms sit a few Bohr radii from each other,
the predicted index reaches huge nonphysical values.

In Sec. 1.2.2 it was already anticipated that multiple scattering and
photon-mediated interactions between emitters are expected to play a major
role in systems that exhibit a discrete translational invariance. In concrete,
a 2D array of atoms can function as a perfect mirror, and imprint up to a
π{2 shift to the phase of the transmitted field. Intuitively, stacking multiple
two-dimensional arrays, should provide the maximal optical response per
unit of length and thus the maximal index. For these reasons, the optical
response of a unity-filled, three-dimensional optical lattice of atoms, will be
investigated, making use of the previously introduced spin model formalism
in combination with generalized input-output equations.

The paradigmatic case of an infinite array is discussed first. In such a
system the natural basis to describe the propagation of excitations inside the
system is the one of spin waves, characterized by a well-defined wavevector.
For each of these modes, we describe how to calculate its energy and
its decay rate, i.e. the band structure, which is found to possess several
interesting properties, the most important being completely real, describing
lossless propagation. It is further argued that a sub-wavelength array, as in
Sec. 1.2.2, necessarily scatters light into a single mode, i.e. light can either
be reflected or transmitted, as the lattice prevents coherent scattering of
light into any diffraction orders. In this dispersive single-mode environment,
we then predict that the propagation of light in the medium, as seen from
the outside of a sufficiently big array, should be completely determined by
the calculated unidirectional band structure. In particular, as the phase
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index can be seen as the ratio between the effective momentum of light
inside the medium and the free space one, n “ keff{k0, the maximum index
is given by those modes that live at the end of the Brillouin zone. In
concrete, n can be as big as nmax “ π{dk0 “ λ0{2d and then display an
unbounded increase with the atomic density.

We then discuss how to calculate the exact linear optical response for
a finite system, through the previously introduced spin model formalism
in combination with generalized input-output equations. It is shown that
by illuminating the array from outside, light can only be either reflected
or transmitted into the same input mode, constituting, as predicted, a
dispersive light-matter interface. Finally, the refractive index directly from
the phase acquired by the transmission coefficient and the one that can be
predicted by the band structure are shown to perfectly agree.

The central result of the chapter is therefore that in a dense, ordered
configuration of point-like atoms, where multiple scattering and photon-
mediated interactions are not only fully taken into account, quantum optics
allows for the phase refractive index to be as big as nmax „ η1{3 and to be
furthermore completely real.

In the last part of the chapter instead, we speculate that even higher
densities, once the lattice constant is comparable with the Bohr radius,
where the electronic orbitals start to overlap, new quantum chemical in-
teractions necessarily appear. Their possible effect on the refractive index
problem is discussed, leaving a more quantitative analysis for the future.
Overall, understanding the fundamental limitations of the refractive index
in real-life materials might open new paths to realizing ultra-high index
materials exploiting the perfect interference mechanism.

Contribution of the authors

The author of this Ph.D. thesis and its supervisor, first studied the refractive
index of a perfect 3D array of well-separated atoms and this contribution
is reported entirely in Chapter 4. The quantum chemistry part, here
introduced to provide an overview of the whole refractive index project, is
being currently investigated by F. Andreoli, G. M. Andolina, and B. Windt,
members of the Theoretical Quantum Nano-Photonics group at ICFO, led
by Prof. Dr. Darrick E. Chang.
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CHAPTER 2
Unraveling microscopic dipolar interactions in

quantum atom-light interfaces

2.1 Introduction

In the introduction to the thesis, we discussed how interactions between
light and atomic ensembles are generically complex phenomena. Even
in the weak optical excitation limit, microscopic correlations can build
up through resonant dipole interactions and multiple scattering, leading
to highly nontrivial anomalous optical response [104–110] or even wave
localization [111–117]. For stronger excitations [142, 165, 167, 204–206],
the many-body dynamics may start to span the exponentially large Hilbert
space and become difficult to understand and to be numerically treated.
Nevertheless, our prevailing theory of quantum light-atom interfaces, the
Maxwell-Bloch equations (MBE) [1, 2, 50–55] that largely ignore micro-
scopic correlations, remains highly successful. To experimentally quantify
the microscopic correlations, the challenge is that measurements need to
be carefully designed to isolate any effects being well-described by the
standard MBE [106–109, 117]. Although methods to elucidate interactions
beyond MBE have also been developed in the field of nonlinear optics [175–
181], their utility clearly lags behind the level at which microscopic de-
grees of freedom can be investigated within nuclear magnetic resonance
(NMR) research and even exploited for studying fundamental quantum
dynamics [184–186] and quantum computation [207, 208].

What is causing the difference between NMR and atom-light interfaces
on resolvable microscopic correlations? A key answer was provided in a
seminal paper more than 70 years ago [209] where Van Vleck suggested
that his treatment of many-body spin-relaxation dynamics in NMR may

33
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not be applicable to light, due to the Doppler and radiation broadening.
Indeed, in the optical domain, the atomic motion and radiation effectively
smooth away and damp out the microscopic correlations. Today, while
the introduction of laser-cooling techniques can freeze out the atomic
motion, the collective radiation [98, 189, 210, 211] and more generally
the propagation of light itself remain an effective damping mechanism to
suppress local optical dipolar correlations from freely building up, thereby
limiting the precision in the state-of-art linear [106–109] and nonlinear [177–
181] spectroscopy for probing microscopic correlations with macroscopic
atomic samples. At the same time, despite the emergence of a theoretical
approach that in principle can capture all the above-mentioned phenomena
(the spin-model for light-matter interaction discussed in Sec. 1.3), their
investigation has been generally limited to numerical simulations, which
already in the linear regime is restricted to small cloud sizes and small
atoms number compared to experiments. A simpler approach that can
capture the main physical consequences of dipole-dipole interaction for
comparison with the experiments is therefore desirable.

A general method to probe microscopic correlation dynamics at quantum
atom-light interfaces is presented in this chapter. Besides using a motionless
gas of laser-cooled atoms, the key novelty of this approach is to completely
suppress collective radiation and macroscopic light propagation, by shifting
the collective optical excitation in k´space beyond the light cone [189].
The reversible suppression of collective dynamics allows the interaction
associated with microscopic dynamics to accumulate over a long time,
before a backward k-shift to map the effects onto collective radiation for
efficient measurement. By applying the method to an atomic ensemble, a
fundamental density-dependent dipolar dephasing that limits the lifetime of
atomic excitations is discovered. A simple analytical theory that captures
the additional dephasing rate is provided. This is based on the dominant
role of strong near-field optical interactions and the consequent strong
frequency shifts between close-by pairs of atoms in a disordered ensemble,
which in turn affects the short-time dynamics. The general method in
this demonstration is important for discovering and exploring many-body
aspects of quantum atom-light interfaces and optical anomalous effects
beyond MBE and should be considered as an optical counterpart to the
historical NMR spin-relaxation measurement [182].

This chapter closely follows the efforts presented in Ref. [190], as a
result of a collaboration with the experimental group of Prof. Saijun Wu
at Fudan University (Shanghai) and is organized as follows. In Sec. 2.2
both the existing formal theory (MBE) and our spin model approach in
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the context of the relaxation dynamics of optical spin waves are reviewed.
This will allow us to anticipate the main result of this work, a previously
unidentified additional source of decay of spin-wave order. In Sec. 2.3, the
experimental setup will be presented together with a discussion on the
coherent technique to suppress macroscopic dynamics. Measurements will
reveal a local-density-dependent dipolar dephasing of phase-mismatched
spin waves. Sec. 2.4 will provide a simple theoretical model of the dephasing
effect that is based on the role of strongly interacting pairs in the disordered
atomic media. Importantly, the theory can be easily generalized to treat
the realistic hyperfine atomic level structure of the atomic species. By doing
so, the predicted dephasing rate agrees well with the experimental data.
To conclude the chapter, Sec. 2.5 presents an expanded discussion and
prospects on both the measurement method and the microscopic dipolar
dephasing effect in the optical domain.

2.2 Optical spin wave relaxation

We begin by briefly reminding the previously introduced formalism for light-
matter interactions, which in principle fully accounts for the granularity of
atoms and multiple scattering. For concreteness, let’s consider an ensemble
of N two-level atoms with the ground and excited states |gjy, |ejy, leaving
the important discussion of more realistic hyperfine level structures for
later. The atoms are randomly distributed at location rj , j “ 1, ¨ ¨ ¨ , N
according to a smooth density profile ρprq with a spatial width σ. The
atoms can interact via the emission and re-absorption of a single photon,
whose resultant dynamics can be described by the effective Hamiltonian:

H “ ´
3πΓ0

k0

N
ÿ

i,j

℘˚ ¨G0pri, rj , ωegq ¨ ℘ σiegσ
j
ge (2.1)

We remind that here, σgej “ |gjyxej | and σ
eg
j “ pσgej q

: are the single atom
spin-lowering and raising operators respectively, and ℘ “ x̂ is orientation
of the dipole, assumed to be fixed along with x̂. The free-space electro-
magnetic Green’s tensor G0prij , ω0q with rij ” ri ´ rj physically describes
how light propagates from a point source at rj to another point ri, thus
encoding the photon-mediated interaction. As mentioned in the previous
chapter and important to later considerations, G0 contains both a far-field,
radiating component Gfar

0 prijq „8 1{rij and a Gnear
0 prijq „0 1{r3

ij near-field
component.
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The Hamiltonian of Eq. (2.1) is non-Hermitian and includes both
coherent interactions and dissipative collective emission. In the case of an
isolated, excited atom, this Hamiltonian predicts a spontaneous emission
rate of Γ0 “ ω3

0d
2
ge{3πh̄ε0c

3. Generally, as mentioned in the introduction,
a complete quantum description of dissipation would require a master
equation, but the non-Hermitian Hamiltonian is sufficient in the single-
excitation regime of interest here. Physically, any dissipation of atomic
excitations must be in the form of emitted photons. The specific properties
of the emitted light are encoded in the quantum electric field operator [87,
91],

Êsprq “ µ0dgeω
2
0

N
ÿ

i

Gpr´ ri, ω0q ¨ ℘ σige, (2.2)

which can be always reconstructed with the knowledge of the atomic state.
This formalism can thus be applied to investigate the emission and dy-
namical properties of single-excitation spin waves. Formally these take the
form |ky “ S`pkq|g1, g2, ¨ ¨ ¨ , gNy with S`pkq “ p1{

?
Nq

ř

j e
ik¨rjσ`j [45,

187]. Such states are the fundamental basis to study collective light-matter
interaction.

Of particular interest here will be the survival ratio between such a
state prepared initially, |kp0qy “ |ky, and the evolved state under Eq. (2.1)
at later times,

Okptq “ |xk|kptqy|
2. (2.3)

One expects that the dominant contribution to the initial decay of Okptq
will be due to collective emission.

Specifically, in typical situations, the spin wave is excited by a traveling
optical pulse, with the wavevector |k| “ k0 “ ω0{c matching the dispersion
relation of light and whose phase pattern in a macroscopic cloud of atoms is
represented in Fig. 2.1(a). As anticipated in the introductory chapter of this
thesis, the spin wave emits in analogous fashion as a phased array antenna.
The emission of light by different atoms in the forward k direction, within
a narrow superradiant emission solid angle Ωs „ pk0σq

´2 (see Appendix A),
adds constructively, while interference of the randomly positioned atoms in
other directions washes out when averaged over microscopic configurations.
This enhancement can be seen by directly calculating the single-photon
spatial wave function, εkprq “ xg1, g2, ¨ ¨ ¨ , gN |Esprq|ky via Eq. (2.2) as
illustrated in Fig. 2.1(c). Correspondingly, the initial decay rate of spin-wave
population is given by Γk “ ´2imxk|H|ky, and can readily be evaluated
to be Γk “ Γ0 ` Dpk̂qΓ0{4 after smoothing out the position granularity
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Figure 2.1: Decay of singly excited optical spin waves in a randomly distributed
cloud of atoms with dipole interactions, as prescribed by Eq.(2.1). (a) and (b)
illustrate the spin-wave order initiated in a Gaussian distributed random 2-level
gas for |k| “ ω0{c and |k1| “ 2.9ω0{c, respectively. The corresponding electric
fields |repεkprqq|, emitted at time t “ 0 and calculated over a two-dimensional
cut at the sample center, as discussed in the main text and in Appendix A, are
simulated with the coupled dipole model (CDM) and plotted in (c) and (d). In (e)
and (f), the time evolution of the spin-wave survival ratio for the phase-matched
and mismatched cases, respectively, is plotted. Here, the survival ratios are
normalized by Okptqe

Γ0t and Ok1ptqe
Γ0t, to compensate for any trivial decay that

can be attributed to the single-atom, independent spontaneous emission rate. The
survival ratio is calculated using both CDM (dashed red) and the Maxwell-Bloch
equations (MBE, dashed gray), as presented in Appendix A. In (e), the simulated
emission intensity Ikptq within the superradiant solid angle Ωs, as described in
the main text and normalized to Ikptq “ 1 at t “ 0, is plotted. The simulations
above contain N “ 532 atoms with a peak density at the center of the Gaussian
distribution being η0 “ ρ0λ

3
0 « 5. (f) shows the survival ratio as predicted by

MBE with a gray dashed line and in dashed red the distinct faster decay under
CDM dynamics. Finally, also in (f), the survival ratio of a mismatched spin wave
is calculated selectively removing close-by pairs of atoms with an interatomic
distance of rk0 ă 1 (iii), plotted in dashed blue, which roughly accounts for the
3% of the number of emitters. This is compared with the green solid curve (ii),
where the same quantity is considered, but now removing the same amount of
atoms in a random fashion, to highlight the important role of strongly interacting
pairs on the dynamics.
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trju, as prescribed by the MBE approach [45, 189, 212]. The first and
second terms reflect the random emission into most of 4π (which occurs
at the single-atom rate), and the collectively enhanced emission in the
forward direction, respectively. Here, Dpkq “

ş

DprKq2d2rK{
ş

DprKqd2rK is
the resonant optical depth of the atomic gas DprKq averaged over the rK
plane perpendicular to the k-direction [189, 212].

The simulated dynamics of the survival ratio Okptq and the superradiant
intensity Ikptq is plotted in Fig. 2.1(e), both of which are subject to
spatio-temporal evolution of the spin wave as it propagates through the
ensemble. Here Ikptq “

ş

Ωs
|εkpr, tq|

2dΩ is the emission integrated over the
full superradiant angle Ωs, which is more experimentally accessible than
Okptq. One sees that in contrast to an expected nearly exponential decay of
Okptq, the decay of intensity Ikptq deviates from being exponential at long
times, which is due to an angular redistribution of the forward emission
associated with the collective spin-wave dynamics (similar effects were found
in Ref. [213]). These quantities can be obtained by directly evolving the
spin wave under Eq. (2.1) via the Schrodinger equation, which is possible
as the single-excitation Hilbert space is of size „ N . More specifically,
the amplitudes βj for |ψptqy “ 1{

?
N

ř

j βjptqσ
`
j |g1, g2, ¨ ¨ ¨ , gNy obey the

same set of N equations as a classical resonantly coupled dipole model
(CDM, see Appendix A) [119, 212]. Importantly, although these conclusions
have been reached using Eq. (2.1) where granularity is accounted for, they
can also be derived within the conventional MBE for smooth and classical
fields xÊsy and xP̂y “ x

ř

j ℘ σgej δpr ´ rjqy while treating atoms as a
continuous medium [106, 213] (see Appendix A). Indeed, the deviation
from the MBE results due to the extra microscopic physics contained in the
CDM simulations seems quite subtle in Fig. 2.1(e), the fundamental reason
being the difficulty to extract information on the microscopic dynamics on
top of a huge collective dissipative response of the medium.

Separately, however, let’s consider a similar scenario, but starting from a
spin wave with wavevector |k1| ą ω0{c strongly mismatched from radiation
(Figs. 2.1(b)(d)(f)). While such a spin wave is not naturally generated
optically, it is possible to efficiently excite them as described in the following
section. Because of the phase mismatch, now there is no direction along
which emission will constructively interfere, after averaging over microscopic
configurations of a random gas, and similar calculations based on energy
emission predict an initial decay rate of Γk1 “ Γ0 [214], i.e., an exponential
decay with a precisely known rate according to spontaneous emission from
single, isolated atoms.

The main discovery in this work is that the above conclusion is incom-
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plete. In the following sections instead, it will be experimentally shown
and theoretically argued that the initial decay of optical spin waves gen-
erally behaves as Okptq “ e´Γkt, with Γk “ Γcoll

k ` γ deviating from the
standard MBE prediction by a local density-dependent rate γ9ρλ3

0Γ0 with
λ0 “ 2π{k0. This additional term arises due to dephasing, and only appears
by accounting for the effect of granularity in the dynamics of the dipole-
dipole interactions, in particular, between close pairs of atoms. The rate
γ can be significant even for a dilute gas with ρ ă k3

0. While a complete
theoretical picture will be presented in Sec. 2.4, an initial glimpse into the
effect is provided by comparing CDM and MBE simulations of the spin-wave
dynamics. In particular, while the survival ratio Okptq is seen to be trivial
within the MBE (dashed gray curve of Fig. 2.1(f)), the CDM predictions
(dashed red curve) strongly deviate and decay faster. The important role
of close-by pairs (having a distance less than λ0{2π, about 3% percent of
all atoms in the simulation) is illustrated by removing such pairs from the
ensemble, which results in a survival ratio (dashed blue curve) that goes
back to the MBE results at short times. In contrast, removing the same
percentage of atoms randomly (dashed green) results in almost no difference,
compared to CDM simulations of the original ensemble. Together, these
simulations clearly show the dramatic effect that “freezing” macroscopic
dynamics can have in order to observe microscopic optical phenomena, now
displaying a strong deviation from MBE predictions as long as teasing the
important role of strongly interacting pairs that has been anticipated in
the introductory chapter.

2.3 Setup and measurements

From the previous section, mismatched spin waves emerged as an interesting
class of states to study the microscopic correlation build-up as a consequence
of dipole-dipole interaction, the fundamental reason being wavevector mis-
match which prevents them from efficiently radiating. The small coupling
with free-space radiation, however, intuitively also makes them difficult
to excite them in the first place with resonant light. In this section, we
summarize a recently developed spin-wave k-control technique [189] which
is used to investigate the decay dynamics of phase-matched and mismatched
spin-wave order in a laser-cooled gas. This tool constitutes a novel approach
to suppressing the strong collective macroscopic atomic response shown
in Fig. 2.1, opening up the possibility of precisely measuring microscopic
correlation build-up. The experiments and the resulting measurements were
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performed at Fudan University, in the group of Prof. Saijun Wu. Here, we
first provide the essential ideas underlying the experimental technique. We
then discuss their concrete implementation and give the main experimental
results, in order that they may be compared with theory.

Schematically represented first in Fig. 2.2, the protocol composes a
key ingredient of the measurement protocol and allows to isolate the
macroscopic superradiant dynamics in order to perform a background-free
measurement of the dephasing rate, as it going to be discussed step-by-step.
In the introduction, k and k1 were used to indicate respectively matched and
mismatched wavevectors, for the sake of simplicity. Here, to fully appreciate
the control that can be achieved both in the spin-wave directionality and
degree of matching, and to fully understand the experimental setup, we will
carefully specify each laser-induced momentum kick needed to geometrically
impart the desired spin-wave phase order. The experimental technique relies
on sending a series of very short (sub-ns) pulses to deterministically shift
the spin wavevector, before the collective emission has a significant effect.
These short pulses act on an additional transition |gy ´ |ay, as represented
in Fig. 2.2(a). To understand the basic mechanism it is sufficient to consider
a single atom, at position r, initially prepared in the state |gy ` eikp¨r|ey,
where |kp| “ k0 is the matched wavevector of a probe field used to initially
excite the |gy ´ |ey transition. Then, a pair of short pulses, conveniently
delayed (see Refs. [189, 190]) and with opposite wave vector kc will drive
consecutive (|gy Ñ |ay and |ay Ñ |gy) π rotations. Meanwhile, the state
|ey is affected negligibly by the control pulses due to the chosen large
frequency difference between |ey and |ay. Although an atom in the |gy state
returns to |gy following the two control pulses, these pulses have non-trivial
local phases e˘ikc¨r that depend on the atomic position (with the sign
˘ depending on the order of the pulses), which can also be equivalently
visualized as the solid angle enclosed by a loop in the Bloch sphere (see
Fig. 2.2(b1-3)).

The procedure can also be performed multiple times n, as long as
the steps are well within the coherence time 1{Γ0. Although the phase
imprinting is a single atom effect, when applied to an ensemble it is
equivalent to shifting the initial wavevector of the spin wave to kp Ñ
kp˘2nkc, as illustrated in Fig. 2.2(c). Importantly, the process can also be
reversed by exchanging the order of the control pulses, which gives generic
coherent control over the direction and the degree of mismatch of the
wavevector of a spin wave. Once a phase-matched excitation is conveniently
excited, this innovative control technique can be therefore used to map
it to a mismatched one to explore its dynamics, and then to map it back
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|g〉

|e〉
|a〉

e−ikc·r
eikc·r

(a) kc

−kc

n=−1

n=1

n=0

kp + 2nkc

kp

(c)

(b1) (b2) (b3)

Figure 2.2: (a) Phase imprinting on a single atom with two counter-propagating
pulses. (c) The phase imprinting technique is applied to an atomic ensemble,
n times. Depending on the time order of the control pulses one can map the
initial momentum of the matched spin wave into kp Ñ kp ˘ 2nkc. (b1-3) Bloch
sphere representation of the projected |gy ´ |ay dynamics for an atom subjected
to the phase imprinting technique. The initial ground state |gy of the atom
is represented in (i). (ii) In the rotating frame of the control laser, a π pulse
transfers the population into the auxiliary excited state |ay. (iii) A second counter
propagating pulse then transfers back the population to the ground state |gy. The
total evolution on the Bloch sphere encloses a non-trivial solid angle, leading to
the imprinting of a position dependent geometric phase ˘2ikc ¨ r (with the sign
˘ depending on the order of the pulses).

to a matched one for optical measurements. The concrete experimental
realization of is illustrated in Fig. 2.3. In this setup optical spin waves
are defined on the 5S1{2, F “ 2 to 5P3{2, F

1 “ 3 hyperfine transition of a
cold 87Rb gas, with the Zeeman sub-levels respectively labeled as |gy and
|ey (see Fig. 2.3(b)). First, a short probe pulse with wavevector kp and
duration τp is applied to resonantly excite the |gy´ |ey dipole transition, to
generate a matched spin-wave |kpy (generation step in Fig. 2.3(e)). A weak
Rabi frequency Ωp with pulse area θp “ Ωpτp ! 1 that allows to restrict the
description to single-excitation dynamics [211, 212, 215]. As anticipated,
control over the wavevector k associated with the resulting spin wave is
achieved by cyclically driving an auxiliary |gy´ |ay D1 transition (|ay labels
the 5P1{2, F

1 sub-levels). In particular, driving population inversions from
|gy Ñ |ay and back |ay Ñ |gy with a pair of pulses on the D1 transition, with
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Figure 2.3: Measurement scheme of optical spin wave decay. (a) Schematic of
the setup. Shapes of atomic samples labeled as “A” and “B” are illustrated with
absorption images. Also illustrated are the directions and wavevectors associated
with the exciting probe beam, the control pulses, and the direction for detection
of emission. (b) Atomic level diagram and laser coupling scheme. The probe
beam couples to the |gy-|ey transition with the levels indicated for 87Rb, while fast
control pulses couple to an auxiliary |gy-|ay transition. (c, d): Angular distribution
of the light emission for the phase matched S`pks “ kp ´ 2kcq, and mismatched
S`pk1s “ kp ´ 4kcq spin-wave, as predicted by CDM simulations. (e): Timing
diagram for shifting a S`pkpq spin-wave excitation to ks “ kp ´ 2kc (interval I),
k1s “ kp ´ 4kc (interval II) and back to ks “ kp ´ 2kc (interval III).
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the first and second pulses having wavevectors ˘kc and ¯kc, respectively,
as represented in Fig. 2.3(a), which exactly leads to a wavevector shift
kp Ñ kp ¯ 2kc of the spin-wave excitation S`pkpq. The control direction
kc is finely aligned to ensure that the new direction |ks| “ ω0{c, with
ks “ kp´ 2kc, is also phase-matched, and thus the spin wave preferentially
emits in the ks direction (Fig. 2.3(c)). This has the advantage that the
spin-wave population can be read out by the detection of superradiant
emission [188], but without the strong background induced by the probe
beam [98, 210, 211, 216, 217] caused by the probe pulse that now propagates
in a different direction.

After generating the phase matched spin wave S`pksq, the dynamics of
phase-mismatched spin waves is investigated by immediately applying a
second pair of control pulses to shift to the new wavevector k1s “ ks ´ 4kc,
where |k1s| “ 2.9ω0{c. After waiting for an interrogation time Ti for the
S`pk1sq spin wave to accumulate dynamics (especially from the near-field
dipole-dipole interactions of interest), a backward shift k Ñ k ` 2kc is
applied to convert the spin wave back to ks, onto the light cone, to recall
the superradiance (Figs. 2.3(c)(d)(e)). In general, the strength of the
superradiant emission immediately following the interrogation time and
recall, IkspTiq, decays as a function of increasing Ti. Recording this strength
for various t “ Ti directly reveals the survival ratio Ok1sptq of the phase-
mismatched spin wave and allows us to infer the dephasing rate γ, as
described below.

2.3.1 Decay of phase-mismatched spin waves

To unravel the microscopic dephasing dynamics predicted by CDM, the full
spin-wave control sequence (Fig. 2.3(e)) is used to create and investigate
the phase-mismatched S`pk1sq excitation. Typical superradiance signals
during such measurements, with interrogation times Ti “ 0.5, 15.2, 30.0 ns,
are given by the different color curves in Fig. 2.4(a) and (b). For each
interrogation time, the signal Iksptq has two peaks. The first peak corre-
sponds to the interval I in Fig. 2.3(e) and arises immediately following the
generation of the spin wave S`pkpq by the probe pulse, and the re-direction
by the first pair of control pulses to orient this spin wave S`pksq along
the phase-matched (and detected) ks direction. The signal then effectively
vanishes once the second pair of control pulses is applied, to shift to a
phase-mismatched excitation S`pk1sq, where it remains for a time „ Ti
until it is recalled back to S`pksq to produce the second peak (interval
III). Not surprisingly, once recalled back to a phase-matched state, the
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Figure 2.4: Extrapolating the survival ratio Ok1sptq from decay of the recalled
superradiant emission. In both (a) and (b), shows the measured superradiant inten-
sity Iksptq versus time t and for different interrogation times Ti “ 0.5, 15.2, 30.0 ns
as indicated by the different colors. The dashed gray line indicates the decay
e´Γ0t of a single, isolated atom.

superradiant intensity Iks decays at a superradiant rate that is enhanced
by large Dpksq. More important for us, however, is the decay of the peak
intensity „ IkspTiq versus interrogation time Ti, which directly reveals
how the phase-mismatched spin wave decays during the interval Ti, i.e.,
the decay of the survival ratio Ok1s (Eq. (2.3)) for the mismatched spin
wave. Experimentally, the goal is to fit the initial decay rate of the peak
intensity Ik1s vs. Ti to an exponential (as indicated by the dashed gray line
in Fig. 2.4), and look for density-dependent deviations from the single-atom
spontaneous emission rate Γ0.

The estimated decay rate Γk1s with peak density ρ0 and the associated
dimensionless density parameter η0 “ ρ0λ

3
0 are plotted in Fig. 2.5. A

density-dependent dephasing rate γ « 0.013p4qη0Γ0 of the survival ratio
Ok1sptq can be extracted from the data. This deviation of Γk1s from the
MBE-predicted rate Γk1s “ Γ0 is the main experimental result of this work.

In the next section, we explain the physical origin of this density-
dependent decay, first discussing its basic microscopic origin in terms
of strongly interacting pairs of two-level atoms, and later generalizing
to the realistic hyperfine level structure of the atomic species used in
the experiments. Importantly, this simple theory can capture a density-
dependent dephasing, as represented by the predicted decay of a spin wave
in Fig. 2.5 (red line), agreeing well with the experimental data.
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Figure 2.5: The initial decay rates of the spin wave survival ratio, plotted vs
estimated dimensionless peak density parameter η0 “ ρ0λ

3
0. The error bars reflects

the full statistical and systematic uncertainties. The solid line gives the prediction
from the dipolar dephasing theory of Eq. (2.5) with η̄ “ η0{2

?
2 as the mean

density of a Gaussian distribution, as discussed in Sec 2.4. The dashed gray line,
Γk1s “ Γ0 is instead the prediction based on MBE, which ignores microscopic
effects associated with atomic granularity.

2.4 Unraveling dephasing

As anticipated, here, we introduce and discuss a simple theoretical model
that not only clearly identifies strongly near-field interacting pairs of atoms
as the source of microscopic dephasing mechanism but also quantitatively
reproduces the observed density-dependent dephasing rate as in Fig. 2.5 of
the previous chapter.

It is important to stress that while the microscopic model (Eq. (2.1))
can be numerically solved for moderate atom number at the weak excitation
limit, its complexity scales directly with the number of atoms N , and with
the number of disorder configurations needed to obtain disorder-averaged
results, which can even become exponential if the multilevel hyperfine
structure of realistic atoms is fully taken into account. Furthermore, despite
the necessary simplifications (smaller systems, two-level atoms. . . ) the
numerics does not directly elucidate the underlying physics. For this reason,
we develop a bottom-up approach to solve for the dynamics, that, as
anticipated and schematically represented in Fig. 2.6, consider first the
simpler problem involving just a pair of two-level atoms separated by a
distance r À k´1

0 , with k0 “ ω0{c to be the wavenumber of the light, that
can be statistically found in a disordered gas. In that case, the dipole-dipole
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≈
e−iω+t

e−iω−t

≈ 1

Figure 2.6: Representation of our pair-wise solution for the dephasing dynamics
in a disordered ensemble at moderate densities (η À 1). Strongly interacting
pairs that statistically occur are highlighted with a red circle. In the single-atom
rotating frame, e´iω0t, we replace them with two dynamically equivalent new
effective atoms with frequency shifts ω˘, induced by the strong and coherent near-
field interaction. Single isolated atoms instead, approximately do not contribute
to dephasing.

interaction given by the Eq. (2.1) Hamiltonian, is dominated by the „ 1{r3

near-field component. To be more specific, we can explicitly separate out
the Green’s function terms that are proportional to „ 1{r3, obtaining

x̂ ¨G0prq ¨ x̂ „
rk0ă1

Gnearprq ”
1

4πk3
0r

3
p3 cos θ2 ´ 1q. (2.4)

where θ is the angle between the dipole polarization (linearly polarized
along x̂) and the distance between two atoms r. The near-field contribution
is real, and thus the corresponding interaction is purely coherent and
Hermitian. In the single-excitation manifold, this interaction is diagonalized
by symmetric and anti-symmetric wave functions, |˘y “ p|egy ˘ |geyq{

?
2,

which experience opposite frequency shifts ω˘prq “ ˘3Γ0p3 cos2 θ´1q{4k3
0r

3

relative to the bare atomic transition frequency. The important realization
here is that the time evolution for the two body problem can now be
studied in terms of its normal modes. Concretely, in the single atom
rotating frame e´iω0t, an initially prepared two-body mismatched spin-
wave |ψ2b

k1s
y, will evolve as xψ2b

k1s
|ψ2b

k1s
ptqy “ e´iω`t|c`k1s

|2`e´iω´t|c´k1s
|2, having

defined the projections c˘k1s “ xψ2b
k1s
|˘y. Although the magnitude of k1s

might be constrained in an experiment, we can take the conceptual limit
where |k1s|{k0 Ñ8, or infinite mismatch, which corresponds to assigning a
random phase to each atom, and implies that the actual spin wave should
have on average equal overlap with the ˘ eigenstates, i.e. that |c˘k1s |

2 Ñ 1{2.
The dynamics of a strongly interacting pair in Fig. 2.6 can be therefore
equivalently modeled by replacing with two new atoms of new resonance
frequencies ω˘, that now do not interact anymore through the near field,
but still evolve with a phase eiω˘t while single isolated atoms will not be
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affected. Thus, a pair of strongly interacting atoms effectively acts as a
local coherent phase scrambler in the time evolution of a spin-wave |ψ2b

k1s
y.

We now turn to the evolution of a spin wave in a many-atom system, due
to dipole-dipole interactions. We consider the decay of spin-wave survival
ratio Ok1spδtq “ |xk

1
s|e
´iHeffδt|k1sy|

2 within a short interval δt ! 1{Γ0. We
begin by dividing Heff of Eq. (2.1) into Hermitian and anti-Hermitian
parts, Hr “ pHeff ` H:effq{2 and Ha “ pHeff ´ H:effq{2, which describe
coherent and dissipative interactions, respectively. Examining the coherent
interactions first, the 1{r3 scaling of the near field implies that close-by
neighbors will interact with each other more strongly than with all other
atoms combined [119]. Thus, we can approximately diagonalize Hr by
isolating close-by nearest neighbors and simply diagonalizing these pairs
exactly as we have described for the two-atom problem while treating
all other interactions between atoms as a (negligible) perturbation. In
other words, an approximate complete basis of single-excitation eigenstates
is given by |eiy with energy ω « 0 for all atoms that do not have a
close-by neighbor, and p|eigjy ˘ |giejyq{

?
2 with energy ω˘prijq for all

atoms i, j that form close-by pairs. The short-time dynamics can then be
evaluated by decomposing the initial spin wave on this basis. Then, in the
time-dependent survival ratio Ok1spδtq « |

ş

dωP pωqe´iωδt|2, the spectral
function P pωq becomes the probability distribution of finding close-by pairs
with energy ω˘. While a detailed derivation of P pωq is provided in the
following subsection (see Eq. (2.8)) it is important to notice here that its two
fundamental properties derive from the ω˘ „ 1{r3 near-field interaction,
and the consequent frequency shifts, in a random gas. First, in combination
with the probability of finding a nearest neighboring atom in an infinitesimal
shell of radius r being f p2qprq „0 4πr2, the high-frequency tails of the
distribution will generally scale (symmetrically) as P pωq91{ω2 [218]. This
scaling guarantees that the survival ratio experiences an initial exponential
decay due to near-field interactions of Ok1spδtq as e´γδt. Secondly, the
peculiar cubic scaling of the near-field, also implies that if the density
increases also the induced shifts have to grow by the same factor, because
of the reduced average nearest neighbor distance. That is, the distribution
width ∆9η has to linearly broaden with the density. As expected in a
Fourier transform now, the rate γ9∆ω is proportional to the width of the
distribution such that the newly identified rate

γ “ ξηΓ0, (2.5)

to linearly scales with the density and to be proportional to a coefficient
ξ, which can only depend on the specific model of the atom that we are
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taking into account (2-level vs hyperfine transition), as discussed in detail
in 2.4.2.

Returning to the spontaneous emission arising from the anti-Hermitian
term Ha, mathematically, at short times its effect on evolution commutes
with that of Hr (e.g., by considering a Suzuki-Trotter expansion). As the
initial ensemble-averaged spontaneous emission rate of a phase-mismatched
spin wave is simply that of a single atom, Γcoll

k1s
“ Γ0 [214], we can conclude

that the total initial decay of the survival ratio is given by Γk1s “ Γ0p1`ξηq.
When such a prediction for the dephasing rate is compared with the
experimentally measured one in Fig. 2.5, for the specific F “ 2 Ñ F “ 3 D2

transition of 87Rb (see Sec. 2.4.2), we observe good agreement with the data.
Importantly here, the calculations assumes an infinite and homogeneous
atomic cloud. In an experiment, an ensemble generally follows a position
dependent distribution ρprq, which can be generally taken into account
substituting a mean density ρÑ ρ “

ş

ρ2prqd3r{
ş

ρprqd3r in Eq. (2.6). For
a Gaussian distribution it is easy to show that the mean density is related
to the peak density as ρ “ ρ0{2

?
2.

While we elucidated here the key physical mechanism and the main
points of a predictive theory of the additional dephasing rate that arises
in disordered ensembles, before discussing its implications in Sec. 2.5, we
clearly specify how to derive the effective frequency distribution P pωq in
the next section, for the simpler and more intuitive case of two-level atoms.
Then, as anticipated, in Sec. 2.4.2 we generalize the theory to more realistic
and more complex dipole transitions and dipole-dipole interaction between
hyperfine atomic levels. This will allow for a fair comparison between
predictions and experiments.

2.4.1 The effective frequency distribution of strongly inter-
acting pairs

As anticipated in the previous sections of this chapter, the near-field
interaction emerged as being the dominant process that contributes to
dephasing. Instead of solving the full many-body problem, one realizes
that its highly local contribution can be taken into account approximately
diagonalizing the near field into the following complete basis in the single-
excitation manifold: |eiy with energy ω « 0 for all atoms that do not have a
close-by neighbor, and p|eigjy`|giejyq{

?
2 with energy ω˘prijq for all atoms

i, j that form nearest neighbor close-by pairs. As also stated previously,
the dynamics induced by the near-field interactions can be evaluated by
projecting the initial spin wave into this basis and assuming that overlap
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with symmetric/anti-symmetric pair states is equal.
To be more precise, one can start from the probability distribution of

nearest neighbors in a random gas of density ρ [219],

f p2qprq “ ρe´
4π
3
r3ρ (2.6)

which gives the probability of finding the closest neighbor at a position
r (such that

ş

d3rf p2qprq “ 1), given one atom at the origin. Within the
approximations stated above and further assigning to each atom in a close-
by pair a frequency ω˘prq, the spin wave survival ratio is formally given
by

Ok1sptq “

ˇ

ˇ

ˇ

ˇ

ż

d3rf p2qprq
1

2

´

e´iω`prqt ` e´iω´prqt
¯

ˇ

ˇ

ˇ

ˇ

2

(2.7)

Here, as we are primarily interested in the short-distance and high-frequency
contribution of particularly nearby pairs, we need not impose any specific
distance cutoff (e.g., r ă k´1

0 ) in the integral.
To proceed further, it is convenient to introduce the change of variables

ω “ ω˘prq “ ω˘pr, θq, to convert the integrand into the Fourier transform
of the frequency probability distribution P pωq – that of strongly interacting
and symmetrically excited pairs in the ensemble. Doing so, especially
paying attention to the changes sign at | cos θ| “ 1{

?
3 of ω˘pr, θq , leads

to the following compact form:

P pωq “
Γ0

16π2

η

ω2

ż 1

0
dpcos θq|hpθq|e´

Γ0η

8π2 |
hpθq
ω
|, (2.8)

having introduced the function hpθq “ 3 cos2 θ´1 for simplicity and η “ ρλ3
0

being the local dimensionless density parameter. Although the derived
P pωq might not be in a simple form, it is straightforward to see that the
high-frequency tails are symmetric and behave asymptotically like

P pωq˘8 „ ξηΓ0
1

2πω2
, (2.9)

where the defined ξ “ 1{p6π
?

3q is a numerical factor that, as anticipated,
depends on the details of the atomic structure, here specifically evaluated
within the 2-level approximation and can be easily calculated looking at
the asymptotic behavior ω Ñ8 of the integral in Eq. (2.8).

2.4.2 Hyperfine atoms

The presented calculations thus far rely on the approximation of an atom
as a two-level system. However, real atoms have a complex multilevel
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Figure 2.7: Multilevel atomic structure, corresponding to the Fg “ 2 Ñ Fe “ 3
transition of the D2 line in 87Rb probed in the experiment. The states are
labeled by their Zeeman quantum number mgpeq, while in orange we indicate the
strength of the allowed transitions, as characterized by the squared Clebsh-Gordan
coefficients |Cge |2.

structure. This is specifically illustrated in Fig. 2.7 for the experimental
case of interest, involving the maximum angular momentum ground (Fg “ 2)
and excited (Fe “ 3) state manifolds of the D2 transition of 87Rb. Here,
the set of ground (excited) states tgpequ consist of all possible Zeeman
levels |mgpeq| ď Fgpeq along some given quantization axis.

This point is generically far from being a simple technicality as already
the ground states manifold grows as p2Fg ` 1qN , where N is the number
of atoms, making the numerical problem untreatable already at the single
excitation level. However, as the proposed approach to approximately
capture the many-body dynamics only relies on the full understanding of
the two-body problem, as before, one just needs to study the simpler case
of two hyperfine atoms, strongly interacting through their near field. Also,
in this case, the eigenmodes of the two-body problem will be used as an
approximate basis to diagonalize the spin-wave of a many-atom system.
We will show that this leads simply to a modification of the dephasing
coefficient ξ. In the presence of multiple ground and excited states, the
dipole-dipole interaction (Eq. (2.1) for two-level atoms) can be readily
generalized to [144]

H“´
ω2

0d
2
FeFg

ε0c2

ÿ

ij

e˚g1e1 ¨Gprij , ω0q ¨ egeC
g1

e1C
g
eσ

i
e1g1σ

j
ge. (2.10)

The interaction describes photon emission and re-absorption between two
atoms at a distance rij and the labels g, e, g1, e1 refer to arbitrary Zeeman
levels. The strengths of these dipole transitions depend on a reduced dipole
matrix element dFeFg that is independent of the Zeeman levels, Clebsch-
Gordan coefficients Cge “ xFg,mg|Fe,me; 1,mg ´mey, and the overlap of
the emitted/collected photon polarization with the spherical basis of choice,
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Figure 2.8: (a) Resonant dipole-dipole interactions in the molecular basis. When
the molecular axis, defined by the distance between the atoms r, aligns with
the quantization axis x̂, the interaction preserves the total angular momentum
projection along x̂. Thus if one atom emits a σ̂´ photon, the second atom can
only absorb it on a σ̂´ transition. (b) In an arbitrary orientation of the molecular
axis respect to the quantization axis (for example x̂ ¨ r̂ “ cos θ) this is no longer
true. In particular a photon emitted by one atom can generically drive all the
possible transitions of the second atom, depending on θ.

given by

ege “ emg´me “

$

&

%

´pẑ ` iŷq {
?

2, mg´me“1
x̂, mg ´me “ 0

pẑ ´ iŷq {
?

2, mg´me“´1

(2.11)

Here, we conveniently choose to align π transitions (mg ´me “ 0) with
the beam polarization x̂. Interestingly, the total spontaneous emission rate
of any one of the excited states (equal for all states) can be related to

these quantities by Γ0 “
ř

g |C
g
e |

2
ω3

0d
2
FeFg

3πh̄ε0c3
. In particular, by considering the

“closed transition” with |Cge |2 “ 1 we have Γ0 “
ω3

0d
2
FeFg

3πh̄ε0c3
.

As before, we will consider the specific case of two atoms sufficiently
close to each other (răk´1

0 ) that the interaction of Eq. (2.11) is dominated
by the coherent near-field component of the Green’s function (compare
with Eq. (2.4) for two-level atoms).

The form of Eq. (2.10) greatly simplifies when the quantization axis
x̂ aligns with the natural “molecular” axis, defined as being the vector r
connecting the two atoms, as represented in Fig. 2.8a. In this case, the
interaction is only non-zero when an excited atom emits on a transition (σ̂´

for example) that is equal to the transition of the second, ground-state atom
as it absorbs the photon, thus preserving the projection of the total angular
momentum along the quantization axis x̂. In an arbitrary configuration,
however, as in Fig. 2.8b where the molecular and quantization axes do not
agree, this is no longer true, and the ground state atom can be excited
along with any transition once absorbing the photon. As a consequence,
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already the two-body problem appears to be complex since eigenstates
of the Hamiltonian (2.10) necessarily involve non-trivial superpositions
of multiple Zeeman states. The problem will be therefore approached
numerically.

First, we diagonalize (2.10) within the single-excitation manifold for
a pair of atoms at fixed distance r, obtaining n “ 2ˆp2Fe ` 1qˆp2Fg `
1q non-trivial eigenstates, tψjuj“1,...n, and eigenvalues, tωjuj“1,...n. The
eigenvalues can only depend on the distance between the atoms r (not on
the angle θ) and, just considering the near field interaction, will have the
general form

ωjprq “ Cj
Γ0

k3
0r

3
(2.12)

where Ci is generically a non trivial combination of CG coefficients.
The angular part will appear in the projection over the eigenstates

as we now discuss. As before we assume the pair to be in a x̂ polarized
two-body mismatched spin-wave (|k1s| “ 2.9ω0{c)

|ψ2b
k1s
y “ S:k1s

|g1, g2y

S:k1s
“

1
?

2

´

eik
1
s¨r1σ1

e1,g1 ` e
ik1s¨r2σ2

e2,g2

¯ (2.13)

such that me1 “ mg1, me2 “ mg2. Each atom is assumed to initially be in
a randomly chosen Zeeman sublevel g1,2 and to obtain observables we will
average over all the possible sublevel configurations.

While the excited state looks simple because of our convenient choice
of the polarization basis, generally it will not be an eigenstate of the
dipole-dipole interaction Hamiltonian but will have some overlap with them
hjpθq “ |xψ

2b
k1s
|ψjy|

2, such that all the modes would naturally contribute to
the dephasing in the time evolution. Then, making the same assumptions
as before for the evolution of a many-atom spin wave, the survival ratio of
Eq. 2.7 for two-level atoms naturally generalizes to

Ok1sptq “

ˇ

ˇ

ˇ

ˇ

ˇ

ż

d3rf p2qprq
ÿ

j

hjpθqe
´iωjprqt

ˇ

ˇ

ˇ

ˇ

ˇ

2

(2.14)

Further defining the integrals Hj “
ş1
´1 d cos θ hjpθq and performing multi-

ple changes of variables ω “ ωjprq according to the sign of the eigenvalue it
is again possible to define the frequency distribution of strongly interacting,
excited pairs of atoms:

P pωq “
Γ0

12π2

η

ω2

ÿ

j

Hj |Cj |e
´

Γ0η

6π2 |
Cj
ω
| (2.15)
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transition 2-level 0 Ñ 1 1
2 Ñ

3
2 1 Ñ 2 3

2 Ñ
5
2 2 Ñ 3

6πξ 1{
?

3 1 0.77 0.69 0.66 0.64

Table 2.1: The coefficient ξ (multiplied by 6π in the Table) for the density-
dependent dephasing rate γ “ ξηΓ0, as calculated for different atomic structures.
These include two-level atoms, and transitions Fg Ñ Fe involving ground and
excited state manifolds with angular momenta Fg and Fe, respectively.

Also here, the distribution is found to have symmetric tails, which asymp-
totically behave like

P pωq˘8 „ ξηΓ0
1

2πω2
(2.16)

where now the dephasing coefficient ξ introduced in the main text, which
depends on the details of the atomic structure generalizes to

ξ “
1

6π

ÿ

j

Hj |Cj |. (2.17)

This quantity is evaluated numerically in Table 2.1 for various different
hyperfine transitions. This thus generalizes the result for 2-level atoms
ξ “ 1

6π
?

3
that we found in Eq. (2.17).

2.5 Discussion & Outlook

In the introduction of this thesis and more thoroughly in this chapter it
was discussed how MBE are considered the standard approach both to
describe light-matter interaction and excitation propagation dynamics in
cold atoms ensembles in terms of smooth fields as well as the performance
of quantum technological applications in terms of the optical depth. As
argued, such an approach, while effectively capturing the strong collective
resonant emission that characterizes an efficient light-matter interface at
high D, explicitly neglects microscopic effects like multiple scattering arising
from dipole-dipole interaction.

Beyond MBE, these effects are important because they have been
predicted to give rise to interesting phenomenology and could potentially
affect the performance of applications. Probing microscopic correlations
has been difficult exactly because of the huge collective directional emission,
which forced measurements to take place in low-light conditions, either
looking at the emitted field from different angles with respect to the main
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light propagation direction or at late times when most of the superradiant
emission left the system.

Within this context, in this chapter, a general method to probe micro-
scopic dynamics in cold atomic ensembles in a background-free fashion has
been demonstrated, which is expected to be generically useful to probe
microscopic spin dynamics in cold atoms. This is possible by managing
the phase-matching condition in the time domain so as to transiently sup-
press macroscopic collective dynamics associated with optical spin-wave
excitations. More broadly, the ability to reversibly generate and retrieve
mismatched spin waves is anticipated to have important applications in the
envisioned atomic array scenarios [84, 90, 142, 171, 204, 205, 220]. With
this method, a density-dependent dipolar dephasing rate of optical spin
waves has been measured. The previously overlooked dephasing effect is
fundamental to a randomly positioned atomic gas and has been described
by a simple quantitative theory.

Importantly, the unraveled dephasing effect on spin-wave order is ex-
pected to be of direct and widespread relevance to the performance of
quantum light-matter interfaces, as we are going to discuss. As the strong
near-field resonant dipole interaction between closely spaced pairs of atoms
is a universal property of dense atomic ensembles [102, 104, 110, 174], the
consequent observed dephasing mechanism is therefore fundamental, as
opposed to other error sources such as Doppler broadening due to atomic
motion and dephasing due to magnetic field inhomogeneities are generically
considered “technical”, as they can be reduced cooling down the atoms or
better shielding the atomic cloud.

To understand why let’s recall that the efficiency of the light-matter
interface between a single photon and an ensemble of cold atoms is funda-
mentally limited by the competition between the spontaneous and collective
emissions. While the first happens at the rate of a single atom in free space
Γ0 and covers the whole 4π solid angle, collective emission in a well-defined
direction happens at an enhanced rate Γcoll

k “ Γ0p1` D{4q. This gives a
branching ratio, and thus an efficiency, which while simply proportional to
the optical depth Γcoll

k {Γ0 „ D, remains fundamentally limited by sponta-
neous emission. In applications, the spontaneous emission leads to photon
storage infidelity as ε „ 1{D [54]. For example, in subradiance-based
ultrafast quantum memory [214], photons are proposed to be stored as
phase-mismatched dipole spin waves for a spontaneous emission limited
storage time proportional to 1{Γ0.

Here, with the newly identified dephasing mechanism which enhances
the decoherence rate by the p1`ξηq factor, this bound should be accordingly
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modified as ε „ p1` ξηq{D. The correction can be significant if the local
density of the atomic sample is high. This suggests that there could be
upper bounds on the maximum atomic densities tolerable to reach a given
fidelity. Furthermore, as total atom number (or optical depth) is also an
important resource [1], this, in turn, would set a limit on the minimum
system size, which has implications in efforts to make compact quantum
devices based upon ensembles.

In parallel, again, to overcome this limitation, one might resort to atomic
arrays [83] where the fluctuations of near-field interactions are controlled,
as has been demonstrated recently [163].
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CHAPTER 3
Dephasing in optically dense atomic media: a

renormalization group approach

3.1 Introduction

In Ch. 2, it was experimentally observed that optical spin waves suffer from
a dephasing that is exponential at early times and is directly proportional
to atomic density. It was argued that this initial dephasing arises from
the strong near-field interaction of a small fraction of particularly close
nearest neighbors, quantitatively reproducing the experimental results.
Separately, though, one might wonder what governs the apparently non-
exponential behavior at later times, or what occurs at very high densities,
when many atoms sit within a wavelength of each other and experience
strong near-field interactions. We also note that near-field interactions
have been recognized to play key roles in other collective behavior, ranging
from the modification of superradiance in small systems [191] to late-time
subradiance [102] in extended systems. Beyond exact numerics, however, the
development of effective theories generally remains a challenge in many-atom
disordered systems. Here, we provide a comprehensive theoretical picture
of the spin-wave dephasing phenomenon by applying a non-perturbative
technique based on strong disorder renormalization group (RG), which is a
powerful method to elucidate the physics in diverse disordered condensed
matter systems [192–199] and has also recently been applied to atom-light
interactions [119]. As in the short-time theory of dephasing, one key idea
underlying this approach is that for highly disordered atomic media, strong
near-field interactions between particularly close nearest neighbors allow
such pairs to be approximately diagonalized first. The resulting dynamics
is equivalent to replacing the pair with two, new effective atoms with

57



58 CHAPTER 3. RG APPROACH TO DEPHASING
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e−iω+t

e−iω−t
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Figure 3.1: (a) A pair-wise approach to the many-atom optical dynamics. As
derived in Ref. [190], in a dilute atomic medium, a small fraction of pairs of
atoms (red circles) are separated by a distance much smaller than a wavelength,
and thus interact strongly via their near fields. These atoms can be replaced
with a non-interacting, dynamically equivalent pair with new effective resonance
frequencies (indicated by different colors), which evolve with the phase e´iω˘t.
Single isolated atoms instead will not significantly contribute to time evolution. (b)
Representation of the RG scheme [119]. Each step is characterized by identifying
the most strongly interacting pairs and replacing them with two new atoms with
different frequencies, which do not interact anymore through the near field. Unlike
in (a), one can continue this process (including the renormalization of atoms
previously renormalized) until all near-field interactions have been eliminated.
The overall system at the end is equivalent to an inhomogeneously broadened
ensemble of spectral distribution P pωq, plotted in Fig. 3.4.

renormalized frequencies, as illustrated in Fig. 3.1(a). The RG theory
goes significantly beyond this, however, by realizing that nearby, strongly
interacting pairs (including atoms previously renormalized) can continue to
be identified and diagonalized, i.e. the many-atom system interacting via
the near field can be thought of and diagonalized in terms of an extended
hierarchy of strongly interacting pairs (Fig. 3.1(b)). The final result is
that the original system is optically equivalent to an inhomogeneously
broadened medium with a well-defined distribution of resonance frequencies
P pωq, and with the strong near-field interactions effectively removed. This
approach was recently used to predict that a disordered atomic medium
has a limiting value of the maximum refractive index, regardless of its
physical density [119]. Here, we show that RG not only works to capture
the stationary optical response of a dense gas but also to capture the
above-mentioned time-dependent dephasing dynamics of spin waves, in
a simple and non-perturbative way. The validity of the RG approach is
quantitatively verified by comparison with full, microscopic coupled-dipole
simulations of large (N „ 104) atomic ensembles. This work constitutes a
step forward in understanding the consequences of the fundamental dipole-
dipole interaction in disordered media when the true granular nature of the
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atomic distribution is taken into account.

This chapter is an adaptation of the published work of Ref. [200],
the result of again a collaboration and intense exchange of ideas with
Prof. Saijun Wu and Dr. Yizun He from the Fudan University (Shanghai),
and is structured as follows. In Sec. 3.2 we briefly review the microscopic
theoretical description of photon-mediated dipole-dipole interactions, which
accounts for atomic positions, near-field interactions, and multiple scattering
of light, and which serves as the basis for the microscopic simulations of spin-
wave dynamics. In Sec. 3.3 we describe the RG approach, which enables one
to predict a universal inhomogeneous broadening function for a disordered
medium. From here, we then formulate a simple, approximate, single-
atom model for the spin-wave dephasing dynamics. In Sec. 3.4, we present
detailed numerical simulations of the spin-wave dynamics from dilute to
high-density media, which show both the initial exponential dephasing and
non-exponential behavior at later times. We also compare these results
with the RG approach, which exhibits good quantitative agreement in all
regimes. We conclude and provide an outlook in Sec. 3.5.

3.2 Microscopic model of atom-light interaction
dynamics

We consider a minimal model consisting of N identical 2-level atoms at
fixed, random positions triui“1,...,N that are uniformly distributed within
a spherical cloud. The ground and excited states |gjy and |ejy have an
electric dipole transition characterized by resonance frequency ω0 “ ck0

and wavelength λ0 “ 2π{k0, and a single-atom excited-state spontaneous
emission rate given by Γ0. We also define a dimensionless density in terms
of the number of atoms per cubic wavelength η “ λ3

0N{V , where V “ 4
3πR

3

is the volume of the ensemble and R its radius.

As it has been extensively discussed in the previous chapters, the effects
of photon-mediated dipole-dipole interactions, multiple scattering, and
wave interference in spontaneous emission are captured by an effective
atomic Hamiltonian (2.1), where the photon-mediated interactions between
atoms are described by the free-space Green’s tensor G0pr, ω0q introduced
in Eq.(1.7). Fixing the orientation of the atomic dipole matrix element,
℘ “ x̂, it is convenient define θj` as its angle with respect to rj`. Doing so,
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the Hamiltonian H “
ř

j`Hj`σ
j
egσ`ge is characterized by the coefficients

Hj` “ ´
3Γ0

4
eik0rj`

„

3 cos2 θj` ´ 1

pk0rj`q3
´ i

3 cos2 θj` ´ 1

pk0rj`q2
´

cos2 θj` ´ 1

k0rj`



.

(3.1)
Important to later discussions, however, let’s recall that the real part of
the Green’s function (describing coherent interactions) contains a „ 1{r3

near-field component, which dominates at small inter-atomic distances
(k0ră1). This near-field interaction explicitly reads:

Hnear
j` “ ´

3Γ0

4pk0rj`q3
`

3 cos2 θj` ´ 1
˘

. (3.2)

The dissipative part instead describes collective spontaneous emission as
arising from wave interference of the emitted light, while in the limit of
a single atom, predicts the known spontaneous emission rate of Γ0 “

ω3
0d

2
eg{3πh̄ε0c

3, with dge being the amplitude of the dipole matrix element
for the atomic transition. Generally, the presence of dissipation requires
a master equation treatment [87, 88, 191, 221], but the non-Hermitian
Hamiltonian (2.1) is sufficient to describe the single-excitation regime of
interest in our work, which generally reduces to solving a set of classical
coupled dipole equations of motion [55, 80, 82, 90, 98, 104, 114, 211, 212],
as discussed also in Appendix A.

We will specifically be interested in applying the Hamiltonian (3.1)
above to investigate the dynamics of a single-excitation “timed Dicke state”
or spin wave, defined as

|ky “
1
?
N

ÿ

j

eik¨rj |ejy. (3.3)

These collective states with well-defined wavevectors constitute a natural
basis to describe light-matter excitations. For example, phase-matched
spin waves with |k| « k0 “ ω0{c are naturally and easily excited by an
incoming resonant short pulse. By reciprocity, it is well known that they
also efficiently emit into a narrow, well-defined direction centered around
k [45], with a collectively enhanced rate [55, 98, 188, 211, 212, 222–225],
Γcoll
|k|„k0

{Γ0 “ 1`D{4, which linearly scales with the average optical depth of
the medium. This narrow emission occurs due to constructive interference
of the emitting atoms along the k direction, and forms the basis of collective
enhancement at the heart of efficient atom-light interfaces [1, 56] and the
applications mentioned in the introduction. This behavior can be equally
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derived by microscopic theories [188] or by the macroscopic MBE [55, 222,
223].

It should be noted that phase-matched spin-wave excitations undergo
non-trivial macroscopic spatio-temporal propagation dynamics [100, 213],
which is already an interesting problem by itself. This makes it challenging
to quantify the magnitude and effects of microscopic dephasing, due to
the difficulty in defining an ideal time-evolving reference state to compare
to, if dephasing could hypothetically be eliminated. As discussed in the
previous chapter (Sec. 2.3), an elegant, robust solution to this problem was
proposed in Ref. [190], with experimental realization based on a series of
time-domain spin-wave control techniques [188, 189].

Let’s briefly recall that the experimental technique relies on sending
a series of very short (sub-ns) pulses that cyclically drive an additional
auxiliary transition deterministically shift the spin wavevector before the
collective emission has a significant effect. The net effect is that the
norm and the direction of k can be controlled coherently. While the
directional control is one of the key ingredients to precisely explore the
superradiant dynamics [188, 189], here we will focus on the generation of
highly mismatched spin waves, simply labeled with k and with |k| ‰ k0.
The process can also be reversed by exchanging the order of the control
pulses. In particular, one can map a phase-mismatched spin-wave back to
a matched one, for convenient optical measurements. The peak intensity
emitted by this matched spin-wave, and specifically the dependence on the
amount of time that the system spends in the mismatched state, directly
reveals the magnitude of microscopic dephasing, as detailed in the previous
chapter and in Ref. [190].

The mismatched spin-waves constitute elegant initial states to investi-
gate microscopic dephasing dynamics, due to the absence (on average) of
macroscopic spatio-temporal dynamics. For example, these states neither
couple to light efficiently nor have any preferred emission or propagation di-
rection. Due to the lack of any direction in which the emitted field (averaged
over random configurations) interferes, the average initial spontaneous emis-
sion rate of this state reduces to the single-atom value Γcoll

|k|‰k0
“ Γ0 [214].

Since this state does not exhibit any background macroscopic dynamics,
|ky itself serves as a reference to compare against the actual time-evolved
state.

Specifically, we will be interested in the time evolution under the dipole-
dipole Hamiltonian (2.1) as given by |kptqy “ e´iHt|ky. Since the initial
state contains only a single excitation, as argued above, the dynamics can
be efficiently evaluated numerically, with the resulting equations of motion



62 CHAPTER 3. RG APPROACH TO DEPHASING

Γ0t = 0.0 Γ0t = 0.3 Γ0t = 1.0

−5 0 5

z/λ0
−5

0

5

x
/λ

0

−π 0 π

ϕi

(a)

0 1
Γ0t

10−1

100

e−Γ0t

Ok

Pk

(b)

Figure 3.2: (a) Snaphots of the time evolution of a mismatched spin wave.
We initially prepare a mismatched spin wave |ky (|k| “ 6.0k0) in a particular
configuration trju of a disordered gas at density η “ 10, N “ 104 atoms and radius
R{λ0 „ 6. The state is then let to evolve under the dipole-dipole Hamiltonian
(2.1) and the projection over the initial state is computed, xk|kptqy “

ř

j |fj |e
iϕj ,

extracting the time dependent amplitudes and phases in the single atom basis. To
create the snapshots above we consider all the atoms contained in a slice of size
∆y “ R{35, plot their position along the xz plane, and color them according to
their accumulated phase in time evolution ϕj , as a consequence of the interaction,
for different times. The global effect of this dephasing is represented in (b)
where we plot the global overlap Ok “ |xk|kptqy|

2 (blue curve) and population
Pk “ xkptq|kptqy (purple) of the same mismatched spin-wave. Quantifying the
deviation of the overlap with respect to the predicted decay e´Γ0t (red dotted
line) is the main purpose of this work.

equivalent to classical coupled dipole equations (see Appendix A). As in
chapter 2, with the time-dependent state we can construct two quantities
of interest,

Pkptq “ xkptq|kptqy

Okptq “ |xk|kptqy|
2.

(3.4)

The first quantity Pkptq ď 1 monotonically decreases and gives the total
remaining excited state population at any time t, with the rest having been
irreversibly lost due to (collective) spontaneous emission. The second quan-
tity, Okptq, on the other hand, quantifies the overlap with the initial spin
wave, and thus describes the survival of the spin-wave order. Importantly,
as discussed more in concrete in the previous chapter (see Sec. 2.3), the
survival ratio and its time dependence are measurable quantities in the
experiments. While we will present a more systematic analysis in Sec. 3.4,
we provide a visual example of the physics encoded in Pkptq and Okptq in
Fig. 3.2. In particular, we simulate the dynamics of an initial spin wave
|ky, with |k| “ 6k0, in a particular configuration trju of a disordered gas
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of N “ 104 atoms with density η “ 10, and in a spherical volume of radius
R{λ0 « 6. The evolved state |kptqy under Eq. (2.1) is calculated for several
specific times t. In Fig. 3.2a we consider all the atoms contained within a
slice ∆y “ R{35 of the center of the cloud, and plot their positions in the
x-z plane. The colors represent the accumulated phase of each atom relative
to its initial value eik¨rj , with a strong dephasing evident at time Γ0t “ 1.0.
In Fig. 3.2b, we then plot Pkptq (purple) and Okptq (blue) as calculated
for the entire ensemble, along with the single-atom spontaneous emission
e´Γ0t for reference (dashed red). It can be seen that while the initial decay
of the total excited population Pkptq occurs at a rate „ Γ0 (confirming
the absence of collective enhancement) before slowing down, the spin wave
survival ratio Okptq decays significantly faster than Γ0, due to the dephasing
illustrated in Fig. 3.2a.

To practically study the dephasing dynamics of a mismatched excitation,
it is important to realize that the condition for mismatching actually
depends on system size. In a sufficiently small system RÑ 0, intuitively,
phase differences eik¨δr between atoms become negligible and all spin waves
begin to resemble the symmetric |k “ 0y state. Such a state then has
superradiant properties reminiscent of the Dicke limit [45, 86]. To check the
degree of phase mismatch, we evaluate the instantaneous average decay rate,
Γk “ ´2Imxk|H|ky, and check that it is sufficiently close to Γ0. In Fig. 3.3,
we plot the decay associated to a particular spin-wave |ky, for different
densities, atom number and radii. These decay rates generically show two
peaks at ˘k0, which are associated with modes that efficiently emit because
of the phase-matching condition. It can be seen that these peaks become
narrower as the system size is increased (either at fixed density or fixed
atom number), while for spin wavevectors that lie sufficiently far from these
peaks the spin waves have a decay rate that indeed approaches Γ0. We
observe in Fig. 3.3 that our specific choice |k| “ 6k0 fulfills our mismatching
requirement Γk „ Γ0 for the ranges of system sizes and densities to be
explored in this work.

3.3 A Renormalization group approach

While the microscopic model (Eq. (2.1)) can be numerically solved for
moderate atom number, its complexity scales directly with the number
of atoms N , and with the number of configurations needed to obtain
disorder-averaged results. Furthermore, the exact numerics does not directly
elucidate the underlying physics. Motivated by that, here we introduce
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Figure 3.3: Average decay rate Γk “ ´2Imxk|H|ky of a spin-wave with momentum
k “ p0, 0, kq for (a) different densities η of a spherically uniform atomic cloud of
N “ 104 atoms. In (b) we evaluate the same quantity but keeping the density
fixed to η “ 500 and varying the number of atoms and the radius of the cloud.
All the curves are averaged over 200 realizations.

a simple model, based on a strong-disorder RG approach, which clearly
identifies the role that near-field interactions have on the dynamics, and
which allows the effects of such interactions to be captured by a simple
effective, single-atom theory.

In the previous chapter, a theory to understand the short-time dephasing
rate of a spin wave for dilute ensembles with densities η À 1 was developed.
It was then found that the dephasing is primarily attributable to a small
fraction of atomic pairs separated by a distance much smaller than the
optical wavelength, k0r ă 1 (highlighted in Fig. 3.1(a)), which strongly
interact via their near fields (Eq. (3.2)). The „ 1{r3 scaling of the near field
implies (in three dimensions) that the presence of other atoms is just a weak
perturbation on top of the strong pairwise interaction, such that the pair
can be separately and approximately diagonalized. In the single-excitation
manifold, diagonalizing the near-field interaction (3.2) of a pair yields
symmetric and anti-symmetric eigenstates, |˘y “ p|egy ˘ |geyq{

?
2, which

experience opposite frequency shifts ω˘ “ ˘ 3Γ0

4k3
0r

3 p1´ 3 cos2 θq relative to
the bare atomic transition frequency.

The time evolution for the two-body problem can now be studied
in terms of its normal modes. Concretely, in the single atom rotating
frame e´iω0t, an initially prepared two-body spin-wave |ky, will evolve
as xk|kptqy “ e´iω`t|c`k |

2 ` e´iω´t|c´k |
2, having defined the projections

c˘k “ xk|˘y. Although the magnitude of k might be constrained in an
experiment, we can take the conceptual limit where k Ñ 8, or infinite
mismatch. This implies that the phase eik¨rj of each excited atom is
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effectively random (being infinitely sensitive to the specific atomic position),
which implies that the actual spin wave should have on average equal overlap
with the ˘ eigenstates, i.e. that |c˘k |

2 Ñ 1{2. The dynamics can therefore
be equivalently modeled by replacing the two original atoms with two new
atoms of new resonance frequencies ω˘, that now do not interact anymore
through the near field, but evolve with their “free” inhomogeneous phases
e´iω˘t (see Fig. 3.1(a)).

In Ref. [190], the short-time dynamics of a many-atom, dilute ensemble
were approximated by identifying a small fraction of close-by atomic pairs
that evolved with the phases e´iω˘t as argued above, while the remaining
atoms were assumed to undergo no evolution. By taking the position
dependence of the function ω˘prq and combining with the known distribu-
tion function of separations r of nearest neighbors in a random ensemble,
an initial decay of the spin-wave survival order was predicted and mea-
sured to be exponential, |Okpδtq|

2 “ e´Γkδt, with a density-dependent rate
Γk{Γ0 “ 1` ξη, where ξ “ 1{6π

?
3 for two-level atoms.

Now, in a dense ensemble (Fig. 3.1(b)) or at longer evolution times, the
basic picture of replacing close-by atomic pairs with new effective atoms of
renormalized frequencies do not change. However, a key realization is that
after an atom has been renormalized, it can still see another atom close
by with which it can strongly interact (again highlighted by red circles in
Fig. 3.1(b)). This allows yet another renormalization step to take place,
which now will involve the diagonalization of a pair of atoms with the
effective frequencies previously obtained. Whereas only a small fraction of
atoms dictates the initial decay in a dilute ensemble, here, we must specify
a general procedure valid for any density, to repeatedly and hierarchically
identify the single most strongly interacting pair (including the possibility
that the pair contains already renormalized atoms) and replace them with
two new effective atoms.

Starting from that overall intuition, we now formulate the general
principles and assumptions underlying our proposed RG scheme, before
presenting a more detailed description of its implementation. We also
present the principles of the RG scheme in a manner that goes beyond the
particular goal of interest here, involving the study of dephasing dynamics.
Succinctly put, our RG scheme consists of three principles:

1) The system dynamics is exactly described by the total Hamiltonian
of Eq. (3.1). Although we have provided the matrix elements in the
basis given by individually excited atoms |ejy, formally we are free to
choose any other basis. In our RG scheme, we thus choose to work in
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the basis defined by the eigenstates of just the near-field interaction
Hnear, as given in Eq. (3.2). Note that this is simply a choice of
basis, and in particular, makes no assumptions about the relative
contributions of the near- versus far-fields to the system dynamics.

2) We assume that the many-atom eigenvalue distribution of Hnear

can be approximately obtained by a series of diagonalizations over
atomic pairs, through a procedure specified below. The pairwise
diagonalization, which significantly reduces the complexity, is moti-
vated by the fact that the near field between a close-by atomic pair
can dominate over the near-field interactions between this pair and
all other atoms combined. While this is an approximation, we can
numerically verify that the agreement between the approximate and
exact eigenvalue distribution is nearly perfect (e.g., see Fig. 3.4 and
the related discussion).

3) We now arrive at the third principle, the only one that cannot be fully
justified. Strictly speaking, the eigenstates of Hnear will be somewhat
delocalized over a set of atoms, as dictated by our identification of
strongly interacting pairs. However, we assume that in terms of their
interaction with light (via the far-field dipole-dipole interactions and
from any possible external fields), these eigenstates respond effectively
as if they were perfectly localized point dipoles. In particular, under
this assumption, the original system becomes optically equivalent
to a set of point dipoles that only interacts via the far fields, and
which has a resonance frequency distribution corresponding to the
eigenvalue distribution from (3.2). While the degree of validity of
this approximation is hard to analyze on formal grounds, a partial
justification of why it might work well is given in Ref. [119].

With these principles in mind and having anticipated that RG can
involve the renormalization of atoms that have already been renormalized
in previous steps, here, we consider the more general case of two inhomo-
geneous atoms of general resonance frequencies of ωi and ωj , interacting
via the near field, as described by the two-body Hamiltonian in the single
excitation sector,

H2b
j` “ xωj`y1`

ˆ

δωj` Hnear
j`

Hnear
j` ´δωj`

˙

. (3.5)

For convenience, we have defined xωj`y “ pωj ` ω`q{2, δωj` “ pωj ´ ω`q{2.
To quantify the strength of the interaction, we define the ratio between
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the off-diagonal and the diagonal elements, Kj` “ Lj`|Hnear
j` |{p|δωj`| ` 1q,

where the matrix L keeps the information of whether a pair of atoms has
already been renormalized (Lj` “ 0) or not (Lj` “ 1). This prevents a
pair of renormalized atoms from being renormalized between themselves
multiple times (although each atom from the pair can be renormalized with
other atoms). Intuitively, a large value of Kj` (which requires Lj` “ 1)
means that the strength of the interaction is able to further split the
original frequency difference δωj`. Thus, the most strongly interacting pair
is identified as that with the largest value of Kj` (red circles in Fig. 3.1(b)).
Once identified, the full diagonalization of (3.5) gives two eigenvalues,

ω˘ “ xωj`y˘

c

δω2
j` `

´

Hnear
j`

¯2
. The pair can be therefore replaced by an

approximately equivalent one, made of two atoms with the new resonance
frequencies ω˘ and that do not interact anymore through the near field
(setting Lj` “ 0).

Repeated application of this algorithm, which constitutes the renor-
malization group (RG) flow, continues until all near-field interactions have
been removed (Ljl “ 0 for all pairs) and the atoms have been assigned
the new effective frequencies tωiu. In particular, this does allow for pairs
with small values of Kj` ă 1 to be renormalized, and we do not impose a
cutoff to the RG based on the value of Kj`. This formally implements the
principles of our RG approximation described earlier, where our goal is to
describe the system in terms of the (approximately calculated) eigenstates
of the near field. The actual numerical implementation of RG thus exhibits
a complexity of „ N2 steps of renormalizing atomic pairs. However, as we
will see in the next paragraph, RG gives rise to a universal distribution
P pωq of new effective resonance frequencies that is independent of atom
number for sufficiently large N . This distribution can thus be used for all
future calculations at no complexity cost, e.g., in cases where N is too large
to make the direct numerical implementation feasible.

When the RG scheme is applied to multiple realizations of randomly
distributed ensembles of atoms, we can build up the probability distribution
P pωq of the effective frequencies, which we illustrate in Fig. 3.4. As the
near-field interaction only depends on distance through the dimensionless
parameter pk0rq

´3, the distribution when rescaled by density, P pω{ηq,
should be a universal function for a sufficiently large number of atoms
and sufficiently large geometry, where boundary effects are negligible. We
can directly confirm this numerically in Fig. 3.4, where we plot P pω{ηq
obtained from RG for various densities.

The high-frequency tails of P pωq correspond to the most strongly
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Figure 3.4: Universal probability distribution of normalized frequencies ω{η. We
apply the RG approach to spherical samples of N “ 2500 atoms at dimension-
less densities η “ 500, 1000, 1500 to extract the new effective frequencies tωiu,
sampling approximately „ 103 different configurations at each density to build
the probability distribution P pω{ηq. The purple solid line instead corresponds
to the exact numerical spectrum of the near-field interaction Hamiltonian. This
is obtained considering an ensemble of atoms (same parameters as before) and
diagonalizing Hnear (defined in Eq. (3.2)) to get the eigenfrequency statistics.

interacting pairs, which are renormalized at the beginning of the flow.
This perfectly matches the simpler theory presented in [190] for dilute
atoms, based on the probability distribution of nearest neighbors, where it
was found that asymptotically

P pωq „˘8 ξη
1

2πω2
. (3.6)

The central part of the distribution P pωq instead consists of atoms that
have been renormalized multiple times. In this sense, the presented RG
scheme and the resulting probability distribution is the correct way to
capture the near field induced inhomogeneous broadening of the medium
and the induced dephasing rate of spin-waves in dense media, as we are
going to discuss.

Formally, the RG procedure amounts to approximately diagonalizing
the near-field part of the Hamiltonian (2.1) (an NˆN matrix), by repeat-
edly identifying and diagonalizing a dominant interacting pair of atoms
(a 2ˆ 2 block). We can quantify the error by comparing the resulting fre-
quency distribution P pωq obtained by RG, with the eigenvalue distribution
obtained by exact, numerical diagonalization of the real, symmetric N ˆN
Hamiltonian Hnear (Eq. (3.2)). It can be seen in Fig. 3.4 that the two are
essentially indistinguishable, which validates principle 2) of the RG scheme.
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As anticipated in principle 3), at the end of the RG flow, the resulting
new effective (point-like) atoms can still interact through the far-field, which
in general cannot be ignored or assumed to be a small effect. From here,
one can solve the far-field dynamics in this new basis (which now no longer
has near-field interactions). This was done for example in [119] to study the
refractive index, finding excellent agreement between the optical response
that can be calculated exactly from the full Hamiltonian of Eq. (3.1) and
the one of an inhomogeneously broadened medium as obtained by the RG
treatment.

In our particular problem of interest involving near-field induced de-
phasing, we essentially eliminate the effect of far-field interactions, due to
the specific choice of a phase-mismatched spin wave as the initial state. We
specifically recall that mismatched excitations are naturally decoupled (in
an average sense) from free space, with no particular direction of emission
and a decay rate Γ0 free of collective enhancement. We will indeed see in
the next section that far-field effects are essentially unnoticeable in the
dephasing of mismatched spin waves while RG predicts the dephasing rate
with great quantitative accuracy. Since decay can be treated separately now,
RG results can be applied to predict the time evolution of a spin wave in an
effective single-atom picture, focusing on the spin-wave survival ratio Okptq.
In particular, while the coherence of a single, isolated atom (without the
rotating frame) is expected to evolve as xσgeptqy “ xσgep0qye´ipω0´iΓ0{2qt,
the distribution in resonance frequencies of the new effective medium will
result in an uncertainty of accumulated phase in time

Orgptq “

ˇ

ˇ

ˇ

ˇ

ż

dωP pωqeiωt
ˇ

ˇ

ˇ

ˇ

2

e´Γ0t, (3.7)

thus introducing microscopically-driven dephasing due to inhomogeneous
broadening. We emphasize that the simplicity of Eq. (3.7) arises from
the elimination of macroscopic dynamics via our initial phase-mismatched
state.

3.4 Spin-wave dephasing

We now present the exact numerical simulations and analysis of the time
evolution of a mismatched spin wave for densities ranging from dilute
(η ! 1) to dense (η " 1), which we will then compare with the simple RG
prediction of Eq. (3.7). To be concrete, we take an initial state consisting
of a highly mismatched spin wave (Eq. (3.3)) with momentum |k|“ 6k0,
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x̂´polarized and directed along ẑ, in an ensemble of N“104 atoms. Then,
the time evolution of the total excited-state population Pkptq and of the
overlap with the initially prepared spin-wave order Okptq is calculated for
Ns“500 realizations of the disordered gas and averaged, as indicated by
xPky for example. Numerical results are represented in Fig. 3.5, where we
also plot our prediction for the time evolution of the overlap, ORG, made
in Eq.(3.7) (orange dash-dotted lines), based on the effective single-atom
theory described in the previous section. We first focus on the short-time
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Figure 3.5: Time evolution of an initially prepared ideal mismatched spin-wave
(|k| ‰ k0), at different values of the dimensionless density, from small, η “ 0.1
to high η “ 1000. The blue line is the average time evolution of the overlap
Ok (see Eq.(3.4)) over different realizations of the disordered gas, while the blue
shaded region corresponds to the standard deviation. The red dotted line shows
an exponential decay with a rate Γ0, as predicted by treating the atomic medium
as smooth (MBE). The purple dashed line is the population of the time evolved
state divided by the atom number, Pk{N . Finally, the orange line is the overlap
ORG as predicted by RG theory (see Sec. 3.3). We simulate the time evolution
of N “ 104 atoms, to guarantee that, at the maximum density η “ 1000, the
radius of the uniformly distributed spherical cloud is R{λeg “ 1.34 ą 1, such that
the cloud is not subwavelength. All the quantities are averaged over Ns „ 500
different atomic samples. At density η “ 100, the inset shows the short-time
exponential dynamics. The interval over which we fit for an exponential e´pΓ0`γqt

(dashed black curve) is highlighted in green and corresponds to Γkt ă 0.1, while
at longer times the overlap deviates from this simple behavior, as predicted by
our RG approach.

dynamics. As introduced in the previous section, the short-time decay of a
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spin-wave is predicted to be exponential [190], xOkpδtqy „ e´Γkδt, within a
time interval Γkδt ! 1. The rate Γk “ Γ0 ` γ is given by the sum of the
single-atom emission rate, as predicted by the macroscopic MBE, and an
additional density-dependent dephasing rate, γ “ Γ0ξη, with ξ “ 1{6π

?
3.

As shown in the inset of η “ 100 (Fig. 3.5), for example, the microscopic
dynamics reveal a short-time decay of the spin-wave order that is distinctly
faster than the MBE prediction. The decay becomes even more evident at
higher densities (η “ 102, 103). We can confirm the density dependence
in the short-time decay rate Γk by fitting the curve xOky for each density
in the short-time window, defined by Γkδt ă 0.1, to an exponential of the
form e´pΓ0`γqt, and plotting the dependence of the fit parameter γ versus
density parameter η in Fig. 3.6(a). We also plot the prediction γ “ Γ0ξη in
red. It is important to observe that within our defined “short time” interval,
already „ 10% of the initial spin-wave order is lost. An excellent agreement
is observed over a large range of densities, both changing size and number
of atoms (respectively blue squares and circles) of a random gas, confirming
that this effect does only depend on the dimensionless density parameter
η, as predicted and experimentally checked in the previous chapter. At
longer times and higher densities, the decay of spin-wave order noticeably
deviates from exponential. Despite its simplicity, our single effective atom
model based on RG (Eq. (3.7)), displays excellent agreement beyond the
short-time interval. Viewed from the RG perspective, this non-exponential
contribution comes from the frequency components near the center of
the inhomogeneous broadening probability distribution P pω{ηq (Fig. 3.4),
corresponding to atoms that are renormalized multiple times.

Interestingly, at even longer times, it can be seen that for each density,
the average xOky deviates from our prediction and saturates to a value
that barely decreases over the range of times plotted. We furthermore
observe numerically that this value closely coincides with the total excited
state population remaining divided by the atom number, Pkptq{N (dashed
purple curves). The slow decay of population Pkptq at long times is an
effect that has been studied extensively in recent years, and is known as
late-time subradiance [97–103]. While a microscopic derivation is difficult,
a heuristic argument can be made that the remaining population should be
roughly equally distributed throughout the ensemble, given a smooth initial
distribution. Furthermore, given the randomness of the dynamics, this
population will be statistically evenly distributed among any N extended
modes that can be defined for the system, such as our spin-wave mode of
interest.

As far as we can numerically check (e.g., up to N “ 104 atoms for a
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Figure 3.6: (a) Short-time dephasing rate vs. dimensionless density η. Blue dots
are extracted from an exponential fit at short times (xOky „ e´Γkδt), within the
time interval Γkδt “ 0.1, of the full time evolution of a mismatched spin-wave
(|k| “ 6k0) at different densities 0.1 ď η ď 103. The red line is instead the
theoretical prediction for the short-time dephasing rate γ “ Γ0ξη, discussed in
the main text. Simulations are performed with a cloud of atoms of fixed size
(R{λeg “ 1.34) and averaging over Ns„500 realizations. (inset) The same short
time dephasing rate is evaluated (square dots), but now to explore the low-density
regime we simulate the spin-wave dynamics in an ensemble with a fixed number
of atoms, N “ 104 (again averaged Ns „ 500 times) and varying the radius of the
cloud. (b) Numerical simulations of the time evolution of the averaged overlap
xOky (solid blue lines) for a mismatched spin-wave (|k| “ 6.0k0) compared with
the RG prediction ORG (orange dash-dotted line), and the total excited population
divided by atom number, xPky{N (purple dashed line). The simulations consider
a system of fixed density η “ 100, but different atom number N “ 102, 103, 104.

density of η “ 100 in Fig. 3.6(b)), we see that the RG prediction ORG
follows the actual spin-wave survival ratio Ok for increasingly long times
as N is increased, due to the decrease in the saturation value Pk{N . This
strongly suggests that the single-atom RG prediction should be interpreted
as the correct description of the dephasing dynamics in the thermodynamic
limit when the late-time population in any one mode „ 1{N becomes
negligible.

3.5 Conclusions

In summary, we have developed an effective single-atom theory that de-
scribes well the non-exponential dephasing dynamics of optical spin waves
in disordered atomic media, including at high densities and at long times.
This theory is based upon the technique of strong disorder renormalization
group, which treats the potentially strong near-field interactions in such a
medium in a non-perturbative way.
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We envision that our predictions, particularly in the high-density regime,
could be immediately explored using solid-state emitter ensembles such
as rare-earth-doped crystals [73, 226–228], where many atoms per cubic
wavelength are typical. Separately, the remarkable accuracy by which RG
is found to reproduce the dephasing dynamics suggests that it can be a
powerful tool to quantitatively investigate and understand other microscopic
optical phenomena in disordered systems.
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CHAPTER 4
Refractive index of 3D array

4.1 Introduction

This chapter covers recent collaborative efforts with Francesco Andreoli,
Bennet Windt, and Dr. Gian Marcello Andolina, members of the TQNP
group at ICFO. The results are being drafted into a manuscript.

Ultrahigh index, low-loss optical materials at telecom or visible fre-
quencies would have potentially game-changing implications for optical
technologies and light-based applications. Notably, the reduction in the
optical wavelength λ “ λ0{n compared to the free-space value λ0 could
lead to unprecedented opportunities associated with field confinement and
focusing. For example, nanoscale resonators and waveguides could lead to
strong optical nonlinear interactions at the single-photon level, compact
metasurfaces such as for wavefront shaping, and optical circuitry with the
same physical footprint as electronic transistors. The reduction in wave-
length could also be useful for nanoscale microscopy and optical lithography,
processes that are fundamentally limited by the diffraction limit. Despite
these remarkable implications, known optical materials at telecom and
visible wavelengths ubiquitously have an index of order unity. Interestingly,
very little research has been done on why such a limitation might arise [203].
For example, using Kramers-Kronig relations and a sum rule, one recent
work places an elegant bound between the maximum index a material can
have and the bandwidth over which a large index can be maintained [202],
but does not directly address how large the index can be. Here, we introduce
a minimal model that elucidates how large we might expect an index to
become, under ideal circumstances, and anticipate the possible fundamental
mechanisms that could limit its indefinite growth, leaving their exploration

75
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for future work. As a starting point for a bottom-up model, let’s recall
that the basic building block of a material – individual atoms – can have
an extraordinarily large and universal response to light when isolated. As
discussed in Ch. 1, an isolated atom can exhibit a scattering cross-section
of „ λ2

0 when illuminated by photons resonant with an electronic transition
of wavelength λ0. Given that a typical transition wavelength λ0 „ 1 µm is
much larger than the typical spacing between atoms in a solid (of the order
of the Bohr radius, a0 „ 0.05 nm), one might wonder why the large atomic
density in a solid does not provide a strongly multiplicative response to
light. Indeed, we anticipated in Ch. 1 that such a huge response is predicted
by the standard macroscopic theory of light-matter interaction (MBE). In
particular, let’s recall that such theory states that the refractive index
should depend on the product of the susceptibility of a single atom and the
particle density as npωq „

a

χ0pωqN{V „
?
η (“refined” approaches such

as Drude-Lorentz or the Lorentz-Lorenz models actually reach the same
conclusions [119]). The large near-resonant susceptibility of an individual
atom then leads to a value of the maximum index of n „ 105 at solid
densities, as illustrated by the black curve in Fig. 4.1, which is in contrast
with typical values of n „ 1 in real-life material, as highlighted by the green
region. As discussed in Ch. 1, this scaling comes from the assumption that
atoms interact with the optical field independently, neglecting the possible
complex behavior associated with wave interference and multiple scattering
of light between emitters at fixed discrete positions, which cannot strictly
be correct.

Indeed, as highlighted in the rest of this thesis, intuitively, a proper
theory for the index must also account for strong, non-perturbative multiple
scattering of light. This is expected to be important once the inter-atomic
distance becomes smaller than the resonant transition wavelength, d À λ0

(see Fig. 4.1b), such that the individual atomic scattering cross-section
start to overlap. A complete theory must also account for the fact that at
sufficiently high densities, one reaches the "quantum chemistry" regime
highlighted in Fig. 4.1. Here, atomic orbitals strongly hybridize (Fig. 4.1c),
and the many-body quantum chemistry problem would have to be combined
with multiple scattering.

This chapter covers part of this theory, exploring the maximum possible
attainable index from a purely electrodynamical standpoint at densities
where quantum chemistry effects can be ignored.

The highly non-perturbative nature of light scattering and optical
properties in dense collections of near-resonant atoms in the quantum
optics regime of well-separated atoms has attracted significant attention
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Figure 4.1: Schematic plot of the maximum real part of the refractive index versus
density of atoms N{V (in units of the wavelength λ0 of an atomic transition).
Conventional textbook theories predict a maximum index that scales with density
as n „ pNλ3

0{V q
1{2. In the “quantum optics” regime, atoms are sufficiently far

enough part that they can be considered isolated objects, which only interact
via the electromagnetic field. For sufficiently high densities, one enters the
“quantum chemistry” regime where the overlap of electronic orbitals between
different atoms becomes non-negligible and chemical interactions occur. The
effects of non-perturbative multiple scattering were investigated for a disordered
atomic medium in the quantum optics regime in Ref. [119], where it was found
that the maximum index was limited to n « 1.7 (red curve). Here, we show
that a perfect crystal exhibits a purely real index scaling as n „ pNλ3

0{V q
1{3 in

the quantum optics regime (solid blue curve). The maximum index should be
ultimately limited by the onset of quantum chemistry (dashed blue curve) and
approach typical values of real materials n „ 1, highlighted by the green region.
We also schematically represent the three different regimes of the problem, at
varying d. (a) At d " λ0, a0, atoms are far apart from each other and each one
independently respond to light, with the cross section σ0 „ λ2

0 (cyan shaded
region) of an isolated atom in free space. (b) At λ0 ą d ą a0, intuitively, as the
optical cross sections start to overlap, multiple scattering and wave interference
need to be taken into account. (c) At λ0 ! d „ a0, also the electronic orbitals
(orange) starts to overlap and a quantum chemistry approach is therefore required.
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in recent years. In the context of disordered ensembles, for example, it
has been theoretically predicted and experimentally observed that dense
media can have a significantly weaker optical response than predicted by
standard formulas. The maximum refractive index of a disordered atomic
medium was predicted to saturate at n « 1.7 regardless of how high the
atomic density becomes [119] (solid red curve of Fig. 4.1). In particular, the
same non-perturbative strong disorder renormalization group theory used
to identify inhomogeneous broadening coming from near-field interactions
discussed in Ch. 3, was also shown to be the limiting mechanism for the
index growth.

The case of perfectly ordered and equivalently dense atomic lattices,
however, is expected to be quantitatively and qualitatively different, as a
consequence of the discrete translational invariance. In concrete, according
to Bloch’s theorem, the atomic excitations are organized in bands with a
well-defined dispersion relation and moreover, the physics of diffraction and
directional constructive/destructive interference should play a prominent
role. Light scattering with regular atomic structures has been studied
in the past, in various dimensions. Indeed, as anticipated in Sec. 1.2.2
and relevant to this chapter, it has been theoretically predicted [82, 84,
140] and experimentally observed [163] that a 2D array of atoms in free
space can in principle act as a perfect mirror for a weak resonant, incident
plane wave, while providing a significant („ π{2) transmission phase shift
around resonance (see Fig. 1.8). This effect arises from the strong collective
response and constructive interference of the emission from the array. As
light is fundamentally prohibited from being absorbed or scattered into
random directions, the array and the field then see each other as single-
mode systems. Moreover, the fact that the atoms are ordered and that each
constituent 2D layer has a single-mode response should lead to the largest
index possible, as the lattice constant is decreased. Indeed, the importance
of having a single mode response is already suggested in Ref. [202]. At
the same time, in Ref. [203], it is presciently predicted that “on a more
futuristic level, the writing is on the wall – the way to increase the index is
to somehow develop a stoichiometric high-density arrangement of atoms.”

The central result of this chapter is that in the quantum optics regime
before quantum chemistry can occur, the maximum index of a perfect
lattice grows with the density as nmax9λ0{d “ η1{3, and is furthermore
perfectly real.

The chapter is organized as follows. In Sec. 4.2 the general method
to calculate the band structure of an infinite 3D lattice is discussed while
leaving the detailed calculations to Appendix C. In Sec. 4.3 we then show
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that this band structure directly gives the phase of transmitted light and
the index as seen by a field from the outside of a finite 3D array. Finally,
in Sec. 4.5, we speculate that at even higher densities, once the lattice
constant decreases to a sufficient level, d „ a0, where atomic orbitals start
to overlap, new quantum chemical interactions necessarily appear. Their
possible effect on the refractive index problem is discussed.

4.2 The band structure

In order to achieve our goals, it is necessary to learn how to evaluate
the refractive index from the “spin model” formulation of light-matter
interaction provided in Chapter 1 and extensively used during the rest of
the thesis. To capture the linear optical response, it will be sufficient to
consider only a single excitation in our system, exactly described, as argued,
by the Hamiltonian (1.12). The input-output equation (1.8) instead, tells
us that once we solve for the atomic degrees of freedom, the electrical field
can be always reconstructed with just the information on the probe field
and the state of the atoms. This already suggests that not only should
be possible to extract an index directly from the transmitted field, but
more importantly that there should be some relation between how atomic
excitation and the electrical field propagate.

The natural language for studying the propagation of an excitation in
a systems characterized by a discrete translational invariance is the one of
spin waves, Bloch theorem and band structures. For an infinite periodic
Bravais lattice (single atom per unit cell) the single excitation eigenstates
are, due to Bloch theorem, spin waves with definite momentum (Bloch
modes)

|ky “
ÿ

j

eik¨rjσjeg|gy (4.1)

where k “ pkx, ky, kzq is the associated Bloch vector, chosen to be in the first
Brillouin zone r´π{d, π{ds3, and d is the lattice constant. The associated
eigenvalues for such a spin wave can be calculated asH|ky “

´

Jk ´ i
Γk
2

¯

|ky.
This allows to find, for every k, a complex eigenvalue where, the real
(imaginary) part correspond to the frequency (decay rates) of the excitation,
given by

Jk “ ω0 ` Repχkq (4.2)

Γk “ Γ0 ´ 2Impχkq, (4.3)
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Figure 4.2: Unidirectional band structure for a propagating spin waves |ky, with
k “ p0, 0, kzq along the ẑ direction, for a simple cubic sub-wavelength array of
lattice constant d{λ0=0.2. The numerical evaluation is done fixing the polarization
of the atoms to be perpendicular to the propagation direction such that ℘ “ x̂.
The dashed vertical lines corresponds to the light cone kz “ ˘k0. The red shaded
region shows the presence of a bandgap, where no propagating modes are allowed.

and can be obtained performing the sum:

χk “ ´
3πΓ0

k0

ÿ

r‰0

eik¨r℘˚ ¨G0pr, ω0q ¨ ℘. (4.4)

It is important to notice that the sum to compute in (4.4) is poorly
convergent in real space, due to the long-range nature of the interaction; an
established technique to resolve this issue, Fourier transforming the sum in
momentum space, where convergence is expected to be faster, is presented
in Ref. [171, 229–231] and reviewed in details in Appendix C.

In the following, we will study the propagation of a single atomic
excitation inside a 3D infinite array of atoms, polarized along with x̂, in
a simple cubic lattice and in the sub-wavelength regime. We furthermore
focus on the propagation along with the ẑ direction. The resulting band
structure, obtained performing the sum (4.4), is plotted in Fig. 4.2, which
we now discuss in detail. Intuitively, since in an infinite lattice the atoms
occupy the whole space, without boundaries, there cannot be any coupling
with free-space modes of the electromagnetic field and thus, we expect the
decay rates in Eq. (4.3) to be exactly zero, i.e. Γk “ 0. Indeed, as shown in
Ref. [229] when the reduced atomic system of Eq. (2.1) is diagonalized, one
finds that the eigenvalues are purely real and thus describe purely lossless
excitations, even though the Hamiltonian itself is non-Hermitian. It is
important to notice that the full atom-light Hamiltonian that describes
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exactly the system is Hermitian, and thus the coupled system would be
diagonalizable by a set of polariton modes with no decay. That also the
diagonalization of the effective Hamiltonian produces lossless polariton
modes reflects the fact that Eq. (2.1) is an exact description of atom-light
interactions in the limit that the speed of light is infinite. The conclusion is
that we expect the polariton propagation inside the medium to be exactly
described by the spin-wave band structure and that absorption cannot
occur within the bulk of a (unity filled) 3D lattice, or equivalently, that
Impχq “ 0. This of course contradicts the prediction of MBE, which implies
huge absorption (Impχq „ ?η).

Now, when the idea that propagation inside the lattice is fully de-
termined by a real band structure is combined with the fact that light
scattering on a sub-wavelength lattice needs to happen in the same direc-
tion imposed by an incoming field (as all but one scattering orders are
suppressed), implies that for a sufficiently big, but finite array, light propa-
gation in the bulk will be fully determined by the band structure along the
same direction. In concrete, as represented in Fig. 4.2 when illuminated by
light at a particular detuning ∆ respect to the resonant frequency ω0, and
directed along with ẑ, the dispersive nature will force the system to excite
spin waves with wavevector that satisfy energy conservation, i.e. ωk “ ∆.
When the solutions are given by ˘keffp∆q, being lossless, the spin waves
can travel without dissipation and emerge either from the other side of the
finite lattice (transmitted) or backward (reflected), such that T `R “ 1 as
anticipated. Moreover, we notice the presence of a bandgap (red shaded
region in Fig. 4.2), a range of frequencies in which the spin-wave cannot
propagate and thus necessarily needs to be reflected in the finite case,
R “ 1.

Having anticipated that we intuitively expect propagation of the light-
matter excitation to be exactly described by the band structure, one could
in principle evaluate the phase refractive index just by the ratio between
the effective wavevector inside the array versus the free space one:

n “
keff
k0

(4.5)

The equation written above implies an unbounded scaling of the refractive
index versus the atomic density. Indeed, focusing on the maximum achiev-
able index, for momenta close to the edge of the Brillouin zone, where
keff „ π{d, the refractive index is expected to scale as n “ λ0{2d „ η1{3

(blue solid line in Fig. 4.1). However, as anticipated, such scaling cannot
be sustained at the densities of real-life materials, where atoms sit a few
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Bohr radii from each other and where the atomic orbitals are expected to
strongly hybridize. Taking a conservative value for the distance between
the atoms, e.g. d „ 102a0, where one expects quantum chemistry to be
negligible, but still small (d " λ0) such that multiple scattering of light to
strongly contribute to the light response, quantum optics allows in principle
to have a lossless medium of index nmax “ λ0{2d|d„102a0

„ 100.
We have seen that the study of an infinite 3D lattice leads to a number

of remarkable properties, which should be inherited by a sufficiently big,
but finite, array. In particular:

• The fact that lossless mode can propagate through the lattice and
that sub-wavelength lattice can only have a single order of diffraction
leads to the exciting prediction that a large, but finite, 3D lattice,
with a lattice constant, d ă λ0, should always respond to light in
a purely dispersive way. In other terms, for a suitable input mode,
transmittance and reflectance should always add to one (T `R “ 1).

• For this reason, within the range of frequencies characterized by the
bandgap, we expect 100% reflection, due to the impossibility for the
spin-waves to propagate through the lattice.

• The atomic band structure, if it is indeed equivalent to the band
structure as seen by light, should predict the accumulated phase of
the light transmitted through the array and thus the index.

These predictions motivate the study of light propagating through a finite-
sized lattice, which allows the transmission/reflection coefficients and the
effective index of light to be deduced (e.g., the transmission phase) and
compared to the atomic band structure calculation, which will be done in
the following section.

4.3 The transmission coefficient

In the previous section, we have characterized the mixed light-matter
excitations that emerge in a 3D lattice of two-level atoms interacting with
the quantized radiation field. Now, we discuss how to study numerically the
linear transmission and reflection properties of a weak probe field through
a finite 3D array, and consequently how to evaluate its phase refractive
index, directly from the computed transmitted light.
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First, an external incoming light field Ein can drive an arbitrary collec-
tion of atomic dipoles in free space, as specified by the atomic Hamiltonian

Hat “ ´h̄∆
ÿ

j

σjee ´ h̄
ÿ

j

`

Ωjσ
j
ge ` h.c.

˘

Ωj :“
deg
h̄
℘˚j ¨Einprjq

(4.6)

Here, as in the previous section, ∆ “ ωp ´ ω0 is the detuning of the probe
field frequency ωp with respect to the transition frequency. Moreover, the
defined Rabi frequencies Ωj only depend on the value of the external field
at the discrete, fixed atomic positions.

As discussed in Ch. 1 the full dynamics of light emission and re-scatter
of a single photon through the ensemble can be related to an effective
model containing only the atomic degrees of freedom and the incident field,
prescribed by the Hamiltonian Hat `H (see (1.12)).

Moreover, the total electrical field can be then reconstructed with an
input-output relation (1.8). Evaluating the field at each point r can be
computationally expensive, however, in experiments, one often cares only
about the projection of this field in a particular spatial mode, such as a
Gaussian. In Ref. [164] it is sown that as long as the input field does not
contain any evanescent component (or they are negligible), the projection
of the input-output equation on the same mode lets us define the quantum
operator associated with the detector which is simply given by:

Edet “ Ein,det ` ideg

d

k0

2h̄ε0Fdet

ÿ

j

E˚detprjq ¨ ℘ σ
j
ge (4.7)

where Êin,det is the input field projected in the detection mode and Fdet “
ş

z“const d
2rE˚detprq ¨Edetprq is a normalization constant. With the equation

(4.7) it is possible to reconstruct the projection of the output field in the
detection mode just solving for the atomic degrees of freedom. In the
absence of atoms this equation is simply stating that the outgoing and the
incoming field are the same. We typically want to probe the system with a
classical Gaussian-like beam and to recollect light in the same mode

The field that we chose is a Gauss-Laguerre mode, a solution of
Maxwell’s equation in the paraxial approximation pw0 " λq [80, 84].

Einpr, zq “ E0
w0

wpzq
e
i
´

k0z´k0
r2

2Rpzq
´ϕpzq

¯

e
´ r2

w2pzq , (4.8)
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with the usual beam parameters

wpzq “ w0

c

1`
´

z
zR

¯2
zR “

w2
0k0

2

Rpzq “ z
”

1`
`

zR
z

˘2
ı

ϕpzq “ arctan z
zR

(4.9)

where w0 is the beam waist. In particular one wants to avoid the regime
where the paraxial limit breaks down. While the non-paraxial limit can
be formally solved [164], physically it makes it more difficult to compare
the numerically obtained refractive index to the band structure calculation.
This is because the tightly focused beam has a lot of wavevector components,
whereas we would like something as close to the plane-wave limit as possible
in order to map a light wave with a definite momentum into a spin-wave
with a definite momentum.

In the weak driving regime, one can look for a solution |ψy in the single
excitation sector. Defining the expectation values of the atomic coherences
as xσ̂iegy “ σieg, the atomic equation of motion reads:

Btσ
j
ge “ i∆σjge ` iΩj ´ iΓ0

ÿ

`

gj`σ
`
ge

gj` “ ´
3π

k0
℘˚ ¨G0prj , r`, ωegq ¨ ℘.

(4.10)

Driving the system we look in particular for a stationary solution, x 9σiegy “ 0,
given by

σge “M´1Ω Mij “ ´∆δij ` Γ0gij . (4.11)

Looking at the expectation value pxÊouty “ xψ|Êout|ψyq of the projection
(4.7) over the atomic states and normalizing respect to the input field the
transmission coefficient associated to this input mode can be written down
as

tp∆q “ 1` i
3πΓ0

2k2
0Fin

ÿ

j,`

E˚jM´1
j` E`. (4.12)

For simplicity, we introduce the scalar field amplitude

Ej “ ℘˚ ¨Einprjq “
h̄

deg
Ωj , (4.13)

and the normalization constant

Fin “

ż

z“const
d2rE˚inprq ¨Einprq, (4.14)
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which ensures that the input field carries only one photon. The reflection
coefficient is instead obtained by projecting on the backward propagating
input mode, Einprq

˚:

rp∆q “ i
3πΓ0

2k2
0Fin

ÿ

j,`

EjM´1
j` E`. (4.15)

From the evaluation of the transmission coefficient, one can readily define
a phase refractive index, as we are going to show. An electromagnetic
wave propagating in a medium of length L with a refractive index n will
have a transmission coefficient tp∆q “ |tp∆q|eiϕ, which is just the product
between the transmission amplitude and ϕ, the imprinted phase shift. In
a macroscopic description, the latter is simply the difference between the
phase acquired by the incoming field in free propagation, k0L, and the
one within the medium, keffL, described by an effective momentum [90,
91]. Generally keff can be complex, which accounts for dispersion and
dissipation. The (generally complex) phase refractive index can therefore
be defined as the ratio:

np∆q “
keff
k0
p∆q “ 1´ i

logptq

k0L
(4.16)

While the formalism is quite general, in the following section we will
numerically evaluate the transmission and refractive index of a 3D array.

4.4 Finite 3D array

Having elucidated the basic formalism and tools, in this section we will
evaluate the refractive index of a sufficiently big, but finite, perfectly
filled 3D array of 2-level atoms (x̂ polarized) in a simple cubic lattice. In
particular, we will show that the optical response of the system can be
related to the spin-wave band structure of the infinite lattice described
before.

Practically we will look at transmission of a Gaussian beam, Eq. (4.8),
for which the beam waist is chosen to be w0{λ0 “ 0.3pNx´1qd{λ0; for the
parameters that will be used in the simulations, Nx,y “ 50 and for lattice
constant d{λ0 ď 0.2 one gets a focal spot of w0{λ0 „ 3. The factor 0.3 is
just a reasonable choice to have the input field mostly inside the array but
still have a beam waist large enough to treat it as a paraxial field with a
well-defined wavevector along ẑ [84, 164]. For these parameters, the overall
results of the numerical simulations are presented in Fig. 4.3, which are now
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Figure 4.3: (a) Transmittance T “ |t|2 and (b) reflectance R “ |r|2 spectrum
calculated respectively with the transmission and reflection coefficients defined
in Eq. (4.12) and Eq. (4.15), for a 3D array of N “ 502ˆ25 atoms of lattice
constant d{λ0 “ 0.2, illuminated by a weak Gaussian field of waist w0{λ0 „ 3. (c)
Phase refractive index, numerically calculated extracting the phase acquired by
the transmission coefficient, as defined in Eq. (4.16). The curve also represent the
effective momentum of light as seen from outside the medium, as a function of the
dimensionless detuning. (d) The blue solid line is the same unidirectional band
structure for an infinite array presented in Fig. 4.2. On top of it, the orange solid
line is the same line plotted in (c) but now inverted, i.e. plotting the detuning as
a function of the numerically evaluated effective wavevector.

discussed. In Figs. 4.3a and 4.3b the squared transmission and reflection
coefficients are respectively plotted. As predicted in the previous section, as
a consequence of the purely dispersive behavior of the medium (Imχ “ 0),
and the single-mode response of a dense sub-wavelength array, transmission
and reflection always add up to one (T`R“1) over the whole spectrum.
Moreover, a stopband in light transmission is present. In that frequency
range, the band structure shows us that the spin-waves cannot propagate
and for sub-wavelength lattice constant light can only be re-emitted in the
reflection mode, achieving nearly 100% reflection. Outside the gap, the
transmitted spectrum shows peaks, associated with resonant modes of the
finite-size atomic “slab” (in particular, the ends of the medium constitute
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mirrors that form a low-finesse cavity).
The phase refractive index is then directly extracted from the phase of

the numerically evaluated transmission coefficient, as defined in Eq. (4.16),
and plotted in Fig. 4.3c as a function of the dimensionless detuning of the
input field. First, outside the bandgap, where light can be transmitted,
the index is found to be perfectly real, as predicted in the previous section.
Again, n can be interpreted as the ratio between the effective wavevector
of light traveling through the medium and the free space one, n “ keff{k0.
Importantly, keffp∆q is a function of the detuning of the incoming beam.
In a dispersive environment, such detuning simply constitutes the energy
difference that the probe needs to provide (respect to ω0) in order to excite
such an effective mode. Inverting this relation, i.e. obtaining the energy
of the mode ∆pkeffq as a function of the wavevector, one intuitively gets a
band structure, this time numerically evaluated and again effectively, the
band structure as seen from the outside by light. To conclude, when the
effective band structure is superimposed on the spin-wave band structure
discussed in the previous section, as done in Fig. 4.3d, we observe an
excellent agreement. This result shows that, for a large enough system, the
light dispersion inside the medium is indeed characterized by the spin-wave
band structure.

The equivalence between the index and the band structure also implies
that, as clearly visible in Fig. 4.3c, at a particular detuning of the input
field, one can excite a spin wave of wavevector kmax “ π{d, thus reaching
the maximum refractive index achievable in an ideal 3D array of atoms at
that particular lattice constant

nmax “
kmax
k0

“
λ0

2d
(4.17)

As a function of the dimensionless density, η “ pλ0{dq
3, the maximum

refractive index goes like nmax „ η1{3 and is furthermore real, in agreement
with the band structure argument provided in the previous section while in
contrast with Maxwell-Bloch prediction.

4.5 Quantum chemistry

We have shown that a 3D unity-filled lattice has a maximum refractive
index that is purely real and scales as n „ λ0{2d „ η1{3. This unbounded
increase suggests that the low index of real materials should be caused by
other physical mechanisms that can alter the perfect interference and the
dispersive response of an ideal 3D array.
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An interesting question, which we aim to pursue in the future, is what
crucial ingredients are missing from the spin model treatment of light-matter
interaction, which are relevant for real-life materials and are responsible for
saturation of the refractive index. On one hand, real-life materials could
be affected by dephasing, disorder, static inhomogeneities, or coupling of
electronic transitions to other degrees of freedom (e.g., phonons, yielding
an effective bath). Minimal models of these effects could be incorporated
into the spin model, to understand their effects on n, for example as an
additional decay rate on top of the dispersive response of a 3D array.

Another possibility, more fundamental and interesting, is chemistry, e.g.
the interaction and hybridization of atomic orbitals. While a full “quantum
chemistry” calculation is beyond the scope of this thesis, it is possible that
the initial onset of chemical effects might be captured in a perturbative
manner in our spin model. Here we discuss the key assumption and the
minimal set of chemical interactions that are expected to affect the optical
response of a 3D array of atoms.

As anticipated, one can focus on a regime of large d{a0 and try to
identify which physical mechanism turns on first as well its magnitude by
making the lattice constant smaller compared to the Bohr radius. To the
lowest order, there is no overlap between the electronic orbitals centered
at different atomic sites and the problem reduces to the quantum optical
limit discussed in the previous sections. For simplicity, one can consider
the paradigmatic case of hydrogen atoms as the solution for the electronic
orbitals is known. Furthermore, as in the previous discussion, the driving
field is taken to be weak. Thus, along with the d{a0 expansion, we can then
restrict to the lowest bands (those reducing to 1s and 2p hydrogen levels
in the isolated atom limit, respectively our ground and excited state), and
further assume that only a single electron is excited to the p-orbital band.
Again restricting to this regime is sufficient to probe the linear refractive
index.

Here, we speculate on one limitation to the index that can emerge
purely due to quantum chemistry on the ground state (all atoms in the 1s
orbital), in the form of density-density correlations. For large d{a0, the first
effect allowed by chemistry is the tunneling of an electron to a neighboring
nucleus. The complex dynamics and the interaction of charge and spin
of electrons in a material are thought to be captured by the well-known,
minimal (yet physically rich), Fermi-Hubbard model. The model, while
offering great simplification to the full many-electron Hamiltonian, captures
the competition between the kinetic energy of the electron, that makes
it tunnel to the nearest neighbor with a hopping amplitude t and a local
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repulsion U ą 0 which penalizes double occupation (niσ “ c`iσcjσ) of sites

H “ ´t
ÿ

ăiją

ÿ

σ

c`iσcjσ ` U
ÿ

i

niÒniÓ. (4.18)

As the overlap directly depends on the distance between the lattice sites,
also the energy scales depend on d{a0. While the evaluation of t and U from
first principles can be challenging, a straightforward approximation is to
take the hopping term as the overlap between two 1s hydrogen wavefunction
centered at two consecutive lattice sites, such that tpd{a0q will intuitively
decay exponentially as d{a0 gets bigger. On the other end the energy
cost of having two electrons occupying the same lattice site is the same
as the ionization of the donor. This is roughly independent of d and for
hydrogen is U „ 13.6 eV. An array of hydrogen atoms corresponds to the
half-filling limit of the Fermi-Hubbard model, in which case the absence
of tunneling would lead to exactly one electron per nucleus as the ground
state. For small but non-zero tunneling (t ! U), so-called holon-doublon
pairs can emerge, in which one nucleus has no electrons and a neighboring
one contains two. This represents the onset of density-density correlations
induced by chemistry, within the Fermi-Hubbard model. Thus the typical
configuration we wish to take into account is illustrated in Fig. 4.4a, where
with a generally low probability (intuitively „ pt{Uq2) one can find a
holon-doublon pair in an otherwise perfect array (one electron per site).

The realization now is that holon-doublon pairs are expected to strongly
affect the optical response. Because of their small population, it generally
makes sense to consider just the effect of a single holon-doublon pair,
in an otherwise perfect crystal (one electron per site). Importantly, the
holon (nucleus with no electron) and the doublon (a negatively charged
ion) have a completely different response to light and in particular, do
not efficiently couple to light near resonance with the first excited state
of neutral hydrogen. As a result, at large d{ao, one can model a holon-
doublon pair as two consecutive defects (empty sites) of the perfect array,
as illustrated in Fig. 4.4b. Intuitively, as a defect explicitly breaks the
discrete translational invariance, it opens up different scattering channels,
which ultimately can be interpreted as additional decay (Γ1 in Fig. 4.4b)
on top of the purely dispersive and single-mode behavior of unity-filled 3D
array. It will be therefore crucial for the future to study the optical response
of an array with holes and their effect on the refractive index. While a
more quantitative and precise study of the complex dynamics of correlated
electrons is needed in the future, we stress that the general approach, as
conveyed in this section, will be to incorporate complex quantum chemistry
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« Γ′
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Figure 4.4: (a) Due to the overlap of electronic orbitals, qualitatively an electron
can tunnel to a nearest neighbor atom to form an holon-doublon pair. (b) From
the perspective of the incoming photon this pair can be approximated as two
consecutive defects in a otherwise perfect array of well separated atoms. A defect
breaks the perfect interference and can scatter light into other modes, effectively
introducing an additional effective decay rate Γ1.

and condensed matter effects into quantum optics in a simple effective
way. Overall, this future work, besides trying to answer the fundamental
question of why the refractive index of real-life material of order n „ 1,
should also both inspire new efforts to realize ultra-high index material but
also discover new optical phenomena at the interplay between collective
optical phenomena, multiple scattering, solid-state physics, and quantum
chemistry.



CHAPTER 5
Conclusions & Outlook

The interface between light and atomic ensembles is an important platform
for the development of quantum technological applications while exposing
many fundamental and contemporary physical questions that are yet to be
completely answered. In the introduction of this thesis, it was discussed
how MBE are generally considered the standard approach both to describe
light-matter interaction and excitation propagation dynamics in cold atoms
ensembles in terms of smooth fields. Within MBE, the efficiency of the
interface between a single photon and an ensemble of cold atoms is funda-
mentally limited by the competition between spontaneous and collective
emissions. While the first happens at the rate of a single atom in free space
Γ0 and covers the whole 4π solid angle, collective emission in a well-defined
direction happens at an enhanced rate Γcoll

k “ Γ0p1` D{4q. This gives a
branching ratio between “good” and “bad” emission, and thus an efficiency,
which is simply proportional to the optical depth Γcoll

k {Γ0 „ D, which
ultimately sets the performance of quantum applications such as photon
storage [54]. Importantly, this ratio remains fundamentally limited by
spontaneous emission.

As argued, while MBE captures the strong collective resonant emission
that characterizes an efficient light-matter interface at high D, it explicitly
neglects microscopic effects like multiple scattering arising from dipole-
dipole interaction. Beyond MBE, these effects are important because they
have been predicted to give rise to interesting phenomenology and could
potentially affect the performance of applications.

Importantly, the fundamental dipole-dipole interaction, emerging from
photon exchange processes between the emitters, can be self-consistently
taken into account in a “spin model” treatment of light-matter interaction
with atomic media, which has been reviewed in Ch. 1. This approach has
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attracted a lot of attention in the past years, especially in trying to answer
the two fundamental questions that were posed at the beginning of this
thesis:

• Is there some new and exciting physics beyond MBE?

• Are the performance of quantum technology simply limited by the
optical depth as MBE would predict? Can we do better?

These questions, of crucial importance in the field of quantum optics but
far from being completely answered, were tackled during the three main
chapters of this thesis. Here, we provide a general overview of the obtained
results and some perspectives on future directions that would be interesting
to explore.

In Ch. 2 two important results were obtained. First, an innovative
method has been demonstrated to coherently manipulate the wavevector of
the atomic spin-wave excitations. As argued in the main text, the coherent
manipulation of the matching condition between the atomic excitation with
the free space radiation can be used to suppress the strong macroscopic
collective dynamics (well captured by the MBE) and opens up the possibility
of probing microscopic correlations in cold atomic ensembles.

Second, with this experimental technique, a density-dependent dipolar
dephasing rate of optical spin waves has been measured. Moreover, the addi-
tional decoherence contribution has been described by a simple quantitative
theory that captures the role of strongly interacting pairs in the medium.
Importantly, while well-known error sources such as Doppler broadening
due to atomic motion and dephasing due to magnetic field inhomogeneities
are generically considered “technical”, as they can be reduced by cooling
down the atoms or better shielding the atomic cloud, here, as the strong
near-field resonant dipole interaction between closely spaced pairs of atoms
is a universal property of dense atomic ensembles [102, 104, 110, 174] and
is therefore fundamental to a randomly positioned atomic gas.

The unraveled dephasing effect on spin-wave order is therefore expected
to be of direct relevance to the performance of quantum light-matter
interfaces. Indeed, recalling that the efficiency of the light-atoms interface,
i.e. the branching ratio between ‘good” and “bad” emission, fundamentally
limited by Γ0, here should be accordingly modified as „ D{p1` ξηq to take
into account the enhanced decoherence rate by the p1 ` ξηq factor. The
correction can be of course significant if the local density of the atomic
sample is high. This suggests that there could be upper bounds on the
maximum atomic densities tolerable to reach a given fidelity or limit on the
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minimum system size, which has implications in efforts to make compact
quantum devices based upon ensembles. More experimental and theoretical
studies should be therefore done in the high-density regime.

Finally, to overcome the limitations imposed by dephasing, one might
resort to atomic arrays [83], where the fluctuations of near-field interactions
are controlled, as has been experimentally demonstrated recently [163] and
where phase coherence is protected by the symmetry (see Ch.4). Further-
more, arrays of atoms offer the intriguing possibility of even suppressing
spontaneous emission in the first place. Indeed, because of the destructive
interference in collective spontaneous emission, mismatched spin waves have
the important property to be “subradiant”, i.e. their decay rate approaches
zero. Subradiant states have been shown, for example, to provide a basis
to store and retrieve a single photon with exponentially better performance
compared to what MBE would predict [90]. For these reasons, the ability
to reversibly generate and retrieve mismatched spin waves is therefore
anticipated to have important applications in atomic array setups, where
it could be readily used to access this class of states, which are otherwise
generally decoupled from free space radiation and difficult to probe.

Motivated by the result of the previous chapter it was natural to ask
ourselves if the particular scaling with the density also holds outside the
experimentally achievable regime of parameters. For this reason, in Ch. 3
dephasing has been studied in the high-density and long times regime,
simulating the relaxation dynamics of a mismatched spin wave for up to
N “ 104 atoms. While such a strongly correlated system is generally
complex to solve, here, we have developed an effective single-atom theory
that describes well the non-exponential dephasing dynamics of optical
spin waves in disordered atomic media. The theory, based upon the
technique of strong disorder renormalization group (RG), treats the strong
near-field interactions in such a medium in a non-perturbative way. An
important result is that at the end of the RG flow, the technique maps
the initial complex interaction between discrete point-like atoms into an
inhomogeneous broadening of the two-level transition, characterized by a
probability distribution. This suggests that MBE can be refined to capture
the near field correlations build-up by including by hand inhomogeneous
broadening. This approach, as shown in Ch. 3, can be tested against the
full exact simulation of light and atomic excitation dynamics. While here
this approach has been used to capture, with an excellent agreement, the
dephasing dynamics that emerged from exact simulations, in a previous
work [119], the refractive index and its saturation at high densities as been
unraveled.
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For these reasons, RG can be a powerful tool to quantitatively investigate
and understand other microscopic optical phenomena in disordered dense
systems.

In concrete, as argued in Ch. 3, the developed approach could be immedi-
ately explored using solid-state emitter ensembles such as rare-earth-doped
crystals [73, 226–228], where many atoms per cubic wavelength are typical.
Moreover, recently it has been predicted that dipole-dipole interaction in
dense ensembles contributes to narrowing the EIT transparency window
[232], which is expected to reduce the storage efficiency of slow light as
an EIT-based quantum memory application (see Ch. 1). In parallel, as
demonstrated in Ch. 3, we also face the unprecedented possibility of actually
simulating the dynamics, and more in concrete the storage and retrieval
capabilities of realistic atomic ensembles (N „ 104), at densities where
the strong near-field interaction cannot be neglected anymore. Finally, the
synergy between full exact simulations and the RG effective approach could
help to derive new fundamental bounds to the performance of quantum
technological applications with cold atom ensembles, which constitutes an
interesting direction to explore in the near future.

Finally, Ch. 4 starts with the realization that available optical materials
in the visible range generically have an index of order one, with little
research done to understand and overcome this limitation.

Ultrahigh index, low-loss optical materials at telecom or visible fre-
quencies would have important implications for optical technologies and
light-based applications due to better confinement and focusing of light. For
example, a high n, associated with a reduction in the optical wavelength
λ “ λ0{n compared to the free-space value λ0 could lead to better nanoscale
resonators and waveguides to realize strong optical nonlinear interactions at
the single-photon level, more compact metasurfaces for wavefront shaping
or better resolution in microscopy and optical lithography, processes that
are fundamentally limited by the diffraction limit.

For these reasons, in Ch.4, we introduced a minimal model that elu-
cidates how large we might expect an index to become, under the ideal
circumstances of a perfect 3D crystal, and anticipate the possible funda-
mental mechanisms that could limit its indefinite growth, leaving their
exploration for future work.

The obtained central result is that in a dense, ordered configuration
of point-like atoms, where multiple scattering and photon-mediated inter-
actions are fully taken into account, quantum optics allows for the phase
refractive index to be as big as nmax„η

1{3, to be furthermore completely
real. This confirms that, in contrast to the previous projects, the micro-
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scopic correlations build-up and the constructive interference guaranteed
by the perfect symmetry in an ideal crystal are not detrimental, but can
be exploited to realize a more efficient light-matter interface.

We then argued that already the simplest model of an atom beyond
the point-like approximation, i.e. a hydrogen atom can introduce complex
dynamics of correlated electrons through tunneling. More studies will
be therefore done soon to incorporate complex quantum chemistry and
condensed matter effects into quantum optics in a simple effective way.
Overall, this future work, besides trying to answer the fundamental question
of why the refractive index of real-life material of order n „ 1, should
also both inspire new efforts to realize ultra-high index material but also
discover new optical phenomena at the interplay between collective optical
phenomena, multiple scattering, solid-state physics, and quantum chemistry.

If such a high index with low losses is indeed possible and once the
regimes and the boundaries of the maximum achievable index will be
clarified, an interesting path to take would be to explore its possible
technological implications (quantum networks, quantum non-linear optics,
quantum metrology. . . ), as a high index at low losses necessarily implies an
efficient light-matter interface. A concrete direction, for example, would be
to study the engineering of photon-photon interaction with Rydberg atoms
under EIT, a system that has been extensively studied in the context of
MBE [233, 234].
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APPENDIX A
Numerical simulations: MBE vs. CDM

The analysis of Chapter 2 suggests the decay of spin-wave survival ratio
follows Okptq « e´Γkt initially, with Γk “ Γcoll

k ` γ deviating from the
standard MBE prediction by a local density-dependent rate γ “ ξηΓ0. As
seen, the additional term arises due to dephasing, and only appears by
accounting for the effect of granularity in the dynamics of the dipole-dipole
interactions, in particular, between close pairs of atoms.

This prediction with both MBE and CDM simulations can also be
verified numerically. Indeed, a glimpse into the effect is provided by
comparing CDM and MBE simulations of the spin-wave dynamics in Fig. 2.1
was also presented in Section 2.2. In particular, while the survival ratio
Okptq is seen to be trivial within the MBE (dashed gray curve of Fig. 2.1(d)),
the CDM predictions (dashed red curve) strongly deviate and decay faster.
The important role of close-by pairs (having a distance less than λ0{2π,
about 3% percent of all atoms in the simulation) is illustrated by removing
such pairs from the ensemble, which results in a survival ratio (dashed
blue curve) that goes back to the MBE results at short times. In contrast,
removing the same percentage of atoms randomly (dashed green) results
in almost no difference, compared to CDM simulations of the original
ensemble. Together, these simulations clearly show the dramatic effect that
“freezing” macroscopic dynamics can have, in order to observe microscopic
optical phenomena.

Here, for completeness and reproducibility, the practical implementation
of these simulations will be discussed. For example, within the microscopic
spin model, it will be shown how to evaluate quantities like the intensity
of the emitted field or the spin-wave survival ratio. This will also allow
us to concretely show how the smoothing approximation that MBE use to
treat the field dynamics effectively washes out dipole-dipole interactions
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and thus the microscopic correlations build up.
Because of its importance, the idea that physically, any dissipation of

atomic excitations must be in the form of emitted photons, was repeated
many times in the thesis. As argued, the specific properties of the emitted
light are encoded in the quantum electric field operator (see the discussion
around Eq. (1.8)), which reads:

Êprq “ µ0degω
2
0

ÿ

i

Gpr´ ri, ω0q ¨ ℘ σige. (A.1)

It can readily be verified that Eq. (A.1) is the solution to the Maxwell wave
equation

∇ˆ∇ˆ Ê´
ω2

0

c2
Ê “

ω2
0

ε0c2
P̂prq, (A.2)

where the polarization density takes the form P̂prq “
ř

j δpr´ rjq℘ σjge for
two-level atoms, which explicitly depends on the discrete atomic positions
triui“1,...,N . As we are interested in linear dynamics, it suffices to consider
the singly excited atomic state

|ψptqy “
1
?
N

ÿ

j

βjptqσ
j
eg|g1, ¨ ¨ ¨ , gNy, (A.3)

and define a single-photon wave function εpr, tq “ xg1, ¨ ¨ ¨ , gN |Ê|ψptqy and
polarization fields p̂pr, tq “ 1{

?
N

ř

j ℘ βjδpr´ rjq. These fields obey the
same Maxwell equation (A.2), which is well known to be valid both in the
classical as well as in the quantum regime. In other terms, in the single
excitation sector, quantum and classical description coincides.

As discussed in the main text, we consider N two-level atoms with
positions rj (specified later), with resonant dipolar interaction specified by
Eq. (2.1). To study spin-wave dynamics within the linear excitation regime,
it suffices to initialize a spin-wave excitation with wavevector k:

|ky “
1
?
N

ÿ

j

eik¨rjσjeg|g1, ¨ ¨ ¨ , gNy, (A.4)

accordingly setting the initial phases on each atoms as βjpt “ 0q “ eik¨rj .
Because of the naturally occurring spontaneous emission and dipole-

dipole interaction associated with the spin-model Hamiltonian of Eq. (1.12),
the Schrödinger equation for the amplitudes βjptq is readily found to be [119,
212]:

9βj “ ´
Γ0

2
βj ` i

3

2
λ0Γ0

ÿ

l‰j

Gxxprjl, ω0qβl. (A.5)
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Notice that the dipole direction is fixed along the ℘ “ x̂ direction. Equiva-
lently, the time evolved state is also captured by |kptqy “ e´iHt|ky , i.e. by
time-evolving under the effective Hamiltonian (1.12).

Once the time-evolved state is known, the relevant observables to the
experiment can be constructed. For example, the spin-wave surviving ratio
by Eq. (2.3) is evaluated as

Okptq “ |xk|kptqy|
2 “

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
N

N
ÿ

j

βjptqe
´ik¨rj

ˇ

ˇ

ˇ

ˇ

ˇ

2

. (A.6)

The expectation value of the electrical field εpr, tq “ xg1, ..., gN |Êsprq|ψptqy
s instead given by

εpr, tq “
ω2

0

ε0c2

N
ÿ

j

Gpr´ rj , ω0q ¨ ℘ βjptq, (A.7)

which can be completely evaluated both in space and time. Like this, for
example, in Fig. 2.1 (a) and (b), the 3D field intensity ik “ |εpr, 0q|2 at t “ 0,
is calculated on the plane y “ 0, respectively for a matched (|k| “ k0) and
a mismacthed (|k| “ 2.9k0) spin wave. For a phase-matched spin wave one
can define the superradiance solid angle Ωs as the solid angle around k over
which a substantial fraction (e.g. 99%) of this coherent εpr, tq emission is
directed, and find that it is practically set by Ωs “ pk0σq

´2 for the Gaussian
distribution ρprq „ e´r

2{2σ2 [45, 188, 189]. The CDM approach can be used
to predict observables and compare with experiments. Specifically, one can
define Ikptq9

ş

Ωs
|εpr, tq|2d2Ω as the superradiant intensity, as represented

in Fig. 2.1 (e).
One additional complexity that arises in disordered systems is that

observables need to be averaged over many microscopic spatial configura-
tions. Note that this averaging only retains the part of the field that has a
coherent phase relationship with the spin wave, while eliminating the field
that has a phase that randomly depends on the microscopic configuration.
Performing an average over many microscopic spatial configurations trju to
obtain xIkptqy and xOkptqy as the final simulated observables to compare
with the experimental data. In each sample atomic positions rj are ran-
domly and independently sampled according to the Gaussian distribution
density distribution, ρprq “ ρ0e

´px2`y2q{2σ2´z2{2l2z with ksσ, kslz " 1, with
the specific values being fixed in Fig. 2.1.

Finally, while the initial amplitudes βjpt“0q have been fixed by hand
in the method described above, the equations can readily be modified to
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explicitly account for a weak probe pulse to initially excite the atomic
amplitudes βj . For the dilute sample with ρ ! k3

0 and with the nanosecond
probe pulse in this work, we find that the difference in the simulated results
is negligible.

A.1 MBE simulations

The Maxwell-Bloch equations (MBE) describe coherent coupling between
continuous optical media (described by optical Bloch equations) and optical
fields (described by Maxwell’s equations), and is one of most common
approaches to describe light-atom interactions [1, 2, 50–55] and performance
of applications, e.g. quantum memories [3, 54].

These equations are generally derived from the standard approach in
quantum optics and the goal is to derive the equation of motion for the field
and the atomic degrees of freedom. Importantly, to simplify the description,
it is assumed that the granularity of atoms is ignored, and the atomic
medium treated as a smooth density distribution ρprq “ x

ř

j δpr ´ rjqy.
The fields and polarizations can then be smoothed as well, ε and p. In
that case, the field (Maxwell) equation becomes

∇ˆ∇ˆ ε´ ω2
0

c2
ε “

ω2
0

ε0c2
p, (A.8)

while the Bloch equation describing the evolution of the polarization in
response to the field is

9p “ ´
Γ0

2
p`

Γ0

2
ε0χ0prqεprq, (A.9)

where the linear susceptibility is χ0prq “ ρprqα0{ε0 with α0 “ 2i|℘|2{h̄Γ0.
It has to be noticed that Eq. (A.9) constitutes the “smoothed-out” version
of Eq. (A.5) for the polarization field.

Finally, Eq. (A.9) is the generalization of the MBE that we presented
in the introductory chapter of the thesis (Eq. (1.1)) for non-uniform distri-
bution of emitters and in the resonant case (∆ “ 0).

As before, our goal now is to solve the Maxwell-Bloch equations (A.8)
and (A.9), starting from a phase-matched spin wave as the initial excitation
ppr, t “ 0q “ p℘{

?
Nqρprqeiks¨r. For a smooth density distribution

ρprq “ ρ0e
´px2`y2q{2σ2´z2{2l2z , (A.10)
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with ksσ, kslz " 1, we can assume that the field and polarization have
slowly-varying envelope ε̃ and p̃, related to the original quantities by
ε “ ε̃eiks¨r and p “ p̃eiks¨r. In that case, the wave equation significantly
simplifies,

2iksBZ ε̃ “ ´∇2
Kε̃´

ω2
0

ε0c2
p̃. (A.11)

For convenience, a Z-direction to align with that of the spin wave direction
ks has been defined, while ∇K denotes the divergence operator in the
XY -plane. The boundary condition for the field is given by ε̃ Ñ 0 as
Z Ñ ´8. To simulate the coupled equations (A.9) and (A.11), we discretize
a simulation space with LX “ LY “ 10σ, LZ “ 10lz into NXˆNY ˆNZ

3D grids. The grid size is chosen to support the slowly varying ε̃, p̃ only,
and do not need to be very fine. Practically, we find NX,Y,Z “ 400 allows
for convergence for both type “A” and “B” samples in this work. One
can therefore directly solve Eqs. (A.9) and (A.11) in the time domain and
use this to construct the superradiant field emission ε̃px, y, z, tq and the
superradiant intensity, Ikptq “

ş

Ωs
dΩ|ε̃pr, tq|2, integrated over the solid

angle of emission. Equivalently, one can also define the smooth MBE version
of the survival ratio, Ok “ |

ş

dr3p̃˚pr, 0q ¨ p̃pr, tq|2, of the initialized spin
wave order. In Fig. 2.1(c) and 2.1(d), the MBE simulations are performed
assuming a smooth atomic cloud of the same Gaussian density distribution
from from which the samples of atomic positions were extracted before in
the CDM simulations.
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APPENDIX B
Effect of atomic motion

All the discussions so far in this work assume that the dipole spin waves
are excited in a motionless gas of atoms. Here, we estimate the errors
associated with this assumption. We first analyze the impact of atomic
motion to the near-field interaction associated with Eq. (2.4). For a
thermal ensemble, the relative motion of an atomic pair leads to a position
change of δr1 “ vTδt during the spin-wave evolution time δt. Furthermore,
considering the energy shift of an interacting pair at close distances, ω˘prq “
˘3Γ0p3 cos2 θ ´ 1q{4k3

0r
3, one sees that they create a van der Waals force

that accelerates the relative motion, leading to a velocity change δv „
3vr ˆ |ω˘δt|{k0r and an associated relative displacement δr2 „ 3vrδt ˆ
|ω˘δt|{2k0r. Here vr “ h̄k0{m „ 6 mm/s is the recoil velocity of the D2
excitation, and vT « 50 mm/s is the thermal velocity of our T „ 30 µK
87Rb sample. The validity of the P pωq „ 1{ω2 scaling analysis of the
frequency distribution of nearby pairs, calculated in Sec. 2.4, requires a
positional change δr1,2 ! r, which sets an upper bound to |ω˘|, and thus
to the density, during the observation time δt. This bound is given by
|ω| ! minpΓ0pΓ0k0vrδt

2q´3{5,Γ0pk0vTδtq
´3q. For example, for δt “ Ti “

30 ns, we find |ω˘| ! 100Γ0. Since the frequency distribution broaden
with the density, i.e. it width is roughly given by ∆ω „ ηΓ0, breaking
thin bound would require densities on the orders of η „ 100, here, not
explored. Equivalently, the atomic motion also sets a characteristic Doppler
dephasing time τD “ 1{k0vT [211], which is at the microsecond level in this
experiment and is expected to affect negligibly the spin-wave decay [188].
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APPENDIX C
Band Structure Calculations

In this appendix, we review the systematic approach to performing the cal-
culation of the band structures and the decay rates of the atomic excitation
that naturally arise when the atoms are organized in regular lattices.

As already introduced, for an infinite periodic Bravais lattice (single
atom per unit cell) the single excitation eigenstates are, due to Bloch
theorem, spin waves with definite momentum (Bloch modes)

|ky “
ÿ

j

eik¨rjσjeg|gy (C.1)

where k is the associated Bloch vector, chosen to be in the first Brillouin
zone r´π{d, π{ds3 and where d is the lattice constant. As discussed in
the main text, given the eigenfunction it is immediate to find the eigen-
values of the dipole-dipole Hamiltonian (Eq.(2.1)) for such a spin wave,
H|ky “ pJk ´ iΓk{2q |ky, where the real and the imaginary part, respec-
tively describing the dispersive and dissipative behavior are given by:

Jk “ ω0 ` Repχkq (C.2)
Γk “ Γ0 ´ 2Impχkq, (C.3)

having defined the sum

χk “ ´
3πΓ0

k0

ÿ

r‰0

eik¨r℘˚ ¨G0pr, ω0q ¨ ℘. (C.4)

The important result to be discussed in this appendix is that it is found
that in 3D lattices is that their propagation can be described solely in
terms of a real band structure since the decay rate is Γk “ 0 for every k.
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A numerical approach to evaluate the sum Eq. (C.4) can be always
used in principle, however, in this way, already the presence of long-range
interaction makes the summation of the Green’s tensor over all the lattice
sites converge slowly, making an accurate computation difficult. We will
review the procedure to perform this summation in momentum space
instead, where convergence is in principle faster than in position space
and in free space where the analytical expression of the Green’s tensor in
momentum space can be used to push the analytical calculations further.
For example, the decay rates and the energy shifts for the 1D chain are
evaluated analytically [90]. In the 2D case, for a simple square lattice,
only the decay rates are obtained analytically. Numerically instead, the
band structure of a topologically non-trivial 2D lattice is derived in [171].
Here, the focus will be on reviewing the results obtained on 3D arrays,
where the band structure of a 3D simple cubic and of a diamond lattice
are respectively calculated in Ref. [229] and Ref. [231].

C.1 Sums in momentum space

The summation over an infinite lattice can be converted in a sum over
momentum space by using the Poisson identity

ÿ

rPL

eipp`kq¨r “
1

V
ÿ

QPRL

p2πqdLδpdLqpQ´ p´ kq (C.5)

where dL is the lattice dimension, V is the volume of the unit cell and the
Q P RL are the vectors in the reciprocal lattice, related to triui“1,...,N P L
by the relationship r ¨Q “ 2πm with m P N. In order to apply Eq. (C.5) we
make use of the representation of the Green’s tensor in momentum space
[229]:

G0prq “

ż

d3p

p2πq3
eip¨rG̃0ppq

G̃0ppq “
1

k2
0

k2
01´ pb p

k2
0 ´ p

2
.

(C.6)
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While it will become more important later, it is important to notice that
such quantity it is purely real. The sum over the lattice thus reads:

ÿ

rPL

eik¨rG0prq “

ż

d3p

p2πq3

ÿ

rPL

eipp`kq¨rG̃0ppq “

“
1

V

ż

d3p

p2πq3

ÿ

QPRL

p2πq3δp3qpp` k´QqG̃0ppq “
1

V
ÿ

QPRL

G̃0pQ´ kq.

(C.7)

After adding and subtracting the zero term of the Green’s tensor, the sum
can be therefore fully rewritten in momentum space:
ÿ

r‰0

eik¨rG0prq “
ÿ

rPL

eik¨rG0prq ´G0p0q “
1

V
ÿ

QPRL

G̃0pQ´ kq ´G0p0q.

(C.8)
It is therefore possible to write down a general procedure to evaluate the
energy shift and the decay rates for an infinite lattice in 3D, in an efficient
way in momentum space.

χk “ ´
3πΓ0

k0
℘˚ ¨

«

1

V
ÿ

QPRL

G̃0pQ´ kq ´G0p0q

ff

¨ ℘. (C.9)

However, both terms are now divergent, only their difference being finite.
The behavior is caused by the well-known divergence of the Green’s function
at the origin, roughly G0prq „0 1{r3, which comes from treating atoms as
point-like dipoles. An established regularization technique to control the
difference between these two diverging quantities is to smear the position
of each atom over a smooth distribution [171, 229] and is discussed in the
next section.

C.2 Green’s tensor regularization

The regularization scheme to capture the difference between two divergent
quantities is based on integrating the Green’s tensor over some particular
smooth distribution R, smearing out over a finite volume the divergent
part at r “ 0 [229]:

G˚
0prq :“

ż

d3x G0pr´ xqRpa,xq

Rpa,xq “ 1

p
?

2πaq3
e´x

2{2a2
(C.10)
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where a acts as a regulation parameter. A natural choice is to take a
Gaussian distribution but in principle all the choices of the R function that
makes the zero-fluctuations limit (aÑ 0) of the regularized Green’s tensor

lim
aÑ0

G˚
0pa, rq “ G0prq (C.11)

to tend to the original one. By doing so all the calculations in which the
divergence at the origin cause problems can be performed safely, taking the
limit only at the end.

Looking at equation (C.9) and substituting for the newly introduced
regularized quantities one needs to evaluate this new regularized Green’s
tensor at position r “ 0. Carefully calculating such quantity (see Refs. [171,
229]) gives:

G˚
0p0q “ 1

k0

6π

˜

´
p´1{2q ` pk0aq

2

a

π
2 pk0aq3

´
erfik0a?

2
´ i

epk0aq2
.

¸

(C.12)

The result is consistent with what is well known about the imaginary part
of Green’s function in free space, encoding the rate at which atoms dissipate
into free space modes. In concrete, in the limit of a point-like atom:

´
3πΓ0

k0
℘˚ ¨ ImG˚

0p0q ¨ ℘ “
Γ0

2
e´a

2k2
0{2 “ÝÑ

aÑ0

Γ0

2
. (C.13)

Moving forward one can also derive the regularized tensor in momentum
space. Following equation (C.10) and exploiting the convolution theorem
it is easy to show that the regularized Green’s tensor in momentum space
is simply the original one but scaled by a Gaussian factor

G̃˚
0ppq “

1

k2
0

k2
01´ pb p

k2
0 ´ p

2
e´a

2p2{2 (C.14)

Under the regularization scheme the sum of (C.4), evaluated for an infinite
3D lattice is given by

χk “ ´
3πΓ0

k0
℘˚ ¨

«

1

V
ÿ

QPRL

G̃˚
0pQ´kq ´G˚

0p0q

ff

¨ ℘. (C.15)

This last expression is thus equivalent to Eq. (C.9) but with the substitution
in favor of regularized quantities. Finally, in the last section below, we
discuss the decay rates and the band structure in the important point-like
limit (aÑ0) of interest.



C.3. BAND STRUCTURE AND CONVERGENCE 111

Γ X M R Γ

−10

0

10

χ
k
/Γ

0

(a)

−1.0 −0.5 0.0 0.5 1.0
kzd/π

−10

0

10

χ
k
/Γ

0

a/d = 0.8

a/d = 0.4

a/d = 0.1

a/d = 0.05

(b)

Figure C.1: (a) Photonic band structure of a 3D infinite array of atoms in a simple
cubic lattice, along the standard irreducible path. Lattice constant is chosen to be
d{λ0 “ 0.2. (b) Convergence of the momentum sum to the exact band structure
(unidirectional) for a 3D chain of atoms in free space. Summing on few lattice
sites, „ 253 in these simulations, the sum Eq. (C.9) is numerically implemented
for different values of the regularization parameter a{d. Convergence is achieved
already for values of a{d “ 0.1.

C.3 Band structure and convergence

Importantly, also the regularized Green’s tensor in momentum space is
purely real such that some imaginary components, describing dissipation,
can only come from the regularized self-energy of Eq. (C.12). As a result,
for every 3D geometry, every decay contains a vanishing term like

Γk “ Γ0 ´ 2Imχk „ Γ0p1´ e
´a2k2

0{2q ÝÑ
aÑ0

0, (C.16)

This simply corresponds to the fact that excitations can never escape from
an infinite 3D lattice that covers the whole space. The system is therefore
only characterized by the dispersion relation:

Jk “ ω0 ` χk (C.17)

This quantity can be now easily implemented numerically with the proce-
dure described above. For a simple cubic lattice for example, and a specific
lattice constant, the band structure is plotted in Fig. C.1(a) for momenta
along the standard irreducible path in 3D. For every spin-wave momentum,
three propagating modes, with their respective polarization and energy shift
exist. Moreover, the system does not possess a full band gap, i.e. for every
frequency, there are multiple propagating modes associated with the same
eigenenergy Jk. As argued in the main text, however, for a sub-wavelength
lattice we want to focus on the propagation of spin waves along a single



112 APPENDIX C. BAND STRUCTURE CALCULATIONS

direction and for a single polarization, as plotted in Fig. 4.2, for example
along with ẑ. This corresponds to the path ´X Ñ Γ Ñ X in Fig. C.1(a).

Finally, as expected and represented in Fig. C.1(b), convergence to
exact band structure (for example the unidirectional one) can be achieved
with modest computational resources [171, 229]
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