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Prof. Jing Na

© Bin Wang 2022



To my family



Acknowledgments

I would like to take this chance to express my deep and sincere gratitude to my research supervisors,
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Chapter 1

Introduction

1.1 Motivation

The climate change and the health problems caused by the utilization of the fossil fuels have attracted

great attentions with the rapid growth of global population. Exploring green energies to replace tradi-

tional fossil fuels is regarded the most effective and promising way to solve these problems [3]. The

main contributors to the green energies include solar energy, wind energy, hydro energy and hydrogen

energy. Hydro energy is one of the most attractive clean energy among different kinds of sustainable en-

ergies [4,5]. To obtain hydro energy, hydraulic turbine is an essential element that can transform water’s

kinetic energy to mechanical energy. In the power system including various power resources, variations

in either power generation from other kinds of resources or special demands of hydro power directly af-

fect the hydraulic turbines [6]. The turbines have to change the power output constantly in order to fulfill

these demands. As a result, hydraulic turbines work at different design points with varying load condi-

tions. In other words, hydraulic turbines experience unsteady flows under different load conditions [1].

These unstable flows intensely degrade the hydraulic turbines.

To improve the efficiency and performance of the hydraulic turbines, it is essential to develop an

active flow control system to ensure the turbine work safely in various operating conditions. This is the

main purpose of the EU-funded AFC4Hydro project [7]. By designing the active flow control strategies,

the hydraulic turbines can work at their best efficiency points. Recently, some results show the dynamics

of fluid-structure interaction can be modelled by using COMSOL [8] or ANSYS [9]. However, these

models are mainly focus on the modal analysis and are difficult to be utilized for controller design. Due

to the fact that unstable flow conditions severely affect the turbine systems, the estimation of the system

parameters is not trivial. Although the natural frequency can be estimated by using the finite element

analysis [10], the procedure is time consuming. The control may not be realized in real time. Under the

framework of the AFC4Hydro project, this thesis mainly addresses the modelling, parameter estimation

and vibration control of the structure-fluid interaction problem for the hydraulic turbine system.

One of the main challenge is reducing vibration caused by the cavitation. Cavitation occurs in many

mechanical systems with fluid dynamics and can cause significant deformation of mechanical structures.

This phenomenon is devastating in high-speed rotating scenarios where rapid pressure changes of the

swirling fluid generate intense shock waves. In particular, a rapid expansion from a thin vortex to a much

broader vortex with severe vibration (also known as vortex breakdown phenomenon) can significantly

deteriorate or even damage the mechanical structure of the engineering applications [11]. In [12], the

2
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Figure 1.1: Vortex in the Francis turbine [1]

physical phenomena is reviewed and the main effects of cavitation are discussed. In [13], the cavitation

instabilities are summarized. Numerical methods describing the cavitation turbulent flows are presented.

How to cope with vortex breakdown phenomenon and prevent the vibration of the mechanical structure

become a meaningful topic [14]. Figure. 1.1 shows the profile of the vortex in the typical Francis turbine.

The vibrations induced by the vortex breaking are different with various load conditions [1]. These

vibrations lead to damage to the runner blades and the shaft, which in return deteriorate the performance

on the power output.

The main goal of this thesis is to cope with the vibrations caused by vortex breakdown in the water

turbine system. To achieve this, the first step is to develop the mathematical model of the plant. For

the purpose of focusing on the vibration of the rotating wheel (runner) of the water turbine system,

we assume that the blade of the wheel can be partly described by a flexible cantilever beam. Then

the problem is transformed to the beam-fluid interaction problem and the main goal becomes vibration

suppression of the beam in fluid. The sketch of the beam-fluid interaction system is shown in Figure 1.2.

For the beam-fluid interaction problem, modelling of beam and fluid as well as beam-fluid interaction

are significant to describe the system dynamics. During the past decades, many researchers have been

interested in modelling of beam to explore modal dynamics [15] [16] [17] due to its application in many

engineering practice. The well known Euler–Bernoulli beam [15], Timoshenko beam [18] and Rayleigh

beam [19] were investigated, leading to the developments of a broad class of beam models [20, 21].

In [22], a piezoelectric laminate beam model was developed using piezoelectric actuator and sensor.

In [23], the Rayleigh damping was included into the Euler–Bernoulli beam to represent a flexible-link

robot. However, most of these beam models are described by using partial differential equations (PDE).

Although the modelling of the beam and the simplification of several PDE models have been studied

in the above-mentioned literatures, a model that is suitable for online estimating the parameters of the

submerged beam by using the piezoelectric actuator and strain gauge was not developed yet.

In this thesis, we will firstly focus on the modelling of beam and fluid respectively. Because there are

many literature regarding beam dynamics and also fluid dynamics, the problems mainly remain in beam-

fluid interaction dynamics. For the beam, the main problem is how to cope with the distributed parameter

system described by partial differential equation. For distributed parameter systems, unlike lumped

parameter systems, it is more difficult to analyze and conduct control strategies in a direct manner.
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Figure 1.2: Sketch of beam-fluid interaction system

For the fluid, due to the complexity and difficulty to implement the ideal flow equation (Navier-Stokes

equation) in practical applications, proper assumptions and approximations are necessary. For the fluid-

structure interaction, it is critical to create mathematic models that can describe the dynamics of beam-

fluid interaction, and at the same time, easy to implement.

Automatic control plays an important role in both protecting the devices and improving the efficiency

of the applications. For the beam-fluid interaction problems, appropriate control strategies can effectively

suppress the vibration of the beam. In particular, smart materials (e.g. piezoelectric materials) are

generating a lot of interests for the design of vibration control [24]. Such materials can apply control

forces on the structures, thus the vibration can be suppressed with appropriate controllers. Although

there are many literature regarding the control of mechanical structures like beams and plates [25–27],

very few control strategies have been developed for beam-fluid interactions. To guarantee the safety of

the hydro turbines (i.e. the fluid-structure interaction) under various scenarios, it is very significant to

introduce new control methods regarding these specific problems. At the same time, due to the fact that

unknown dynamics can seriously degrade the control performance, it is useful to investigate parameter

estimation methods and unknown dynamics estimation techniques.

Another challenging issue is that the accurate beam-fluid interaction model is described by partial

differential equation (PDE). Compared with the ordinary differential equation (ODE), PDE is difficult

to find the analytical solution. This makes the modelling and control of such system difficult and time-

consuming. Some well known approximations (e.g. finite element method, finite difference method)

have been used to cope with PDE. As a result, convergence of approximations and stabilization of the

transformed system become interesting research areas. In a word, it is worth investigating the approxima-

tion methods and appropriate simplifications to model and control of the beam-fluid interaction system

as well as many other systems described by PDE.

For the above reasons, in this thesis we will explore the fundamental principles of beam-fluid inter-

action problems and develop suitable models to describe the problems. After this, we will focus on the

parameter estimation and control strategies of the beam and the beam submerged in fluid under various

flow scenarios.
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Figure 1.3: Test bench of the beam system

1.2 Experimental apparatus of the beam system

This work is conducted mainly based on the test bench as shown in Figure 1.3. We can see that a steel

cantilever beam is vertically placed in a cubic tank. We use a piezoelectric actuator (type number: P-

876.A12) from PI Ceramic GmbH to excite the beam. The voltage applied on the actuator is an amplified

signal (ranges: ±100V) from the voltage amplifier and the original voltage signal (ranges: ±10V) is gen-

erated from NI 9262 module which is a simultaneously updating analog output module from National

Instruments. The NI 9223 module is used to monitor the amplified signal. To configure the sensor sub-

system, we use a strain gauge (type number: WFLA-6-11-3LDBTB) from Tokyo Measuring Instruments

Laboratory to measure the strain of the beam. The NI 9235 quarter-bridge strain measurement module is

used to collect the signal of the strain gauge. A bridge offset nulling calibration is introduced to eliminate

the offset of the strain gauge. For the real-time control purpose, we use compactRIO-9047 from National

Instruments. The geometric and material properties of the steel beam and the piezoelectric actuator are

described in Table 1.1 [28] and Table 1.2 [29] , respectively. The specific characteristics of the hardware

configuration are summarized in the following subsections.
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Table 1.1: Material properties of the beam

Variables Values

Density of the beam (ρ) 7723.13 kg/m3

Cross sectional area (A) 0.00008 m2

Young’s modulus of elasticity (E) 1.93× 1011N/m2

Bending moment of inertia (I) 6.67× 10−12m4

Damping factor (C) 9.8× 107N/(m/s)
Length of the beam (L) 0.36 m

Table 1.2: Material data of the piezoelectric ceramics

Variables Values

Young’s modulus of elasticity (Ep) 7.06 · 1010N/m2

Piezoelectric coefficient (d31) −1.8 · 10−10C/N
Effective moment arm (ra) 0.001 m

1.2.1 Strain gauge

The strain gauge we use in the experiments is a waterproof strain gauge (type number: WFLA-6-11-

3LDBTB) from Tokyo Measuring Instruments Laboratory. The strain gauge is shown in Figure 1.4 and

the main characteristics are summarized as follows

• Applicable specimen: Metal, Glass, Ceramics

• Operational temperature(°C) : 0 to +80°C

• Temperature compensation range(°C) : +10 to +80°C

• Applicable adhesive: CN, P-2

• Backing: Epoxy

• Element: Cu-Ni

• Strain limit: 3% (30000 × 106 strain)

• Dimensions of the gauge: 6 mm × 2.2 mm

• Dimensions of the backing: 25 mm × 11 mm × 1.5 mm

1.2.2 Piezoelectric actuator

In the experiments, we use a piezoelectric actuator (type number: P-876.SP1) from PI Ceramic GmbH to

excite the beam. The piezoelectric actuator is shown in Figure 1.5 and the main characteristics are given

as

Figure 1.4: Photo of the strain gauge (type number: WFLA-6-11-3LDBTB)
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Figure 1.5: Photo of the piezoelectric actuator (type number: P-876.A12)

• Operating voltage range: -100 V to 400 V

• Piezo ceramic: PIC255

• Piezoceramic height: 200 µm

• Dimensions: 61 mm × 35 mm × 0.5 mm

1.2.3 Strain measurement module (NI 9235)

The strain measurement module (NI 9235) is chosen to collect the strain data of the beam in the experi-

ments. The module is shown in Figure 1.6 and the main characteristics are summarized as follows

• Spring terminal connectivity

• Simultaneous dynamic strain analog input

• Built-in voltage excitation for quarter-bridge sensors

• 120 Ω strain gauge measurements

• -40 °C to 70 °C operating range, 5 g vibration, 50 g shock

1.2.4 Signal generation module (NI 9262)

In the experiments, the excitation signal and the control signal are all generated through the signal gener-

ation module (NI 9262). The NI 9262 module is a simultaneously updating analog output module. The

module is shown in Figure 1.7 and the main characteristics are summarized as follows

• Output range: ±10 V

• 6-Channel C Series Voltage Output Module

• 16-bit resolution

1.2.5 Signal monitor module (NI 9223)

The signal monitor module (NI 9223) is a 4-Channel 16-Bit simultaneous analog input module. In the

experiments, it is used to monitor the amplified voltage applied on the piezoelectric actuator. The module

is shown in Figure 1.8.
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Figure 1.6: Photo of the strain mea-
surement module (NI 9235)

Figure 1.7: Photo of the signal gener-
ation module (NI 9262)

Figure 1.8: Photo of the signal moni-
tor module (NI 9223)

1.2.6 compactRIO-9047

To control the beam system in real time, compactRIO-9047 is selected which includes a Kintex-7 70T

FPGA with LabVIEW FPGA Module. The compactRIO-9047 is shown in Figure 1.9 and the main

characteristics are summarized as follows

Figure 1.9: Photo of compactRIO-9047

• CPU: Intel Atom E3940

• Number of cores: 4

• CPU frequency: 1.6 GHz (base), 1.8 GHz (burst)

• On-die L2 cache: 2 MB

• Supported C Series module programming modes: Real-Time (NI-DAQmx), Real-Time Scan (I/O

Variables), LabVIEW FPGA

• Maximum input or output frequency: 1 MHz

• I/O standard compatibility: 5 V TTL

• I/O voltage protection ±30 V
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1.3 Thesis objectives

The overall objective of the research is to develop a modern modelling and control framework for the

beam submerged in fluid in order to fulfil the demanding requirements for vibration suppression and

control performance. Comparing with the beam in air, there are many challenges on the modelling and

control for beam in fluid due to nonlinear and strong-coupled characteristics. The global objectives can

be listed as follows:

1. Develop control-oriented models. For the beam, different models will be introduced and the feasi-

bility for control will be verified. For the fluid dynamics, we will introduce Navier-Stokes equation

to describe the flow in a box. In order to construct the beam-fluid interaction system, we will intro-

duce the distributed force from the fluid to the beam. To simplify the fluid dynamics, a combined

simplified force will be derived. To handle the model, it will be necessary to discretize the model

with appropriate discretization methods due to the fact that the analytical solution of the PDE sys-

tem is difficult to obtain. We will use finite difference method to get the approximation solution

of the system. We will then implement the system in MATLAB to see the behavior of the beam

system.

2. Investigate the parameter estimation methods to online estimate the unknown parameters of the

beam system. For the system considering the first vibration mode, the states can be measured or

estimated, the parameter estimation methods can be designed based on the states. For the higher-

order system considering multiple vibration modes, we design the parameter estimation algorithms

based on the input and output, which can be directly measured from the system. New adaptive laws

will be studied based on the proposed estimation framework.

3. Design control algorithms together with unknown dynamics estimation methods to suppress the

vibration, so as to alleviate the degradation of the system. Specifically, for the control of the

beam immersed in fluid, we will investigate unknown dynamics estimation methods to estimate

the unknown force imposed on the beam. In no doubt the distributed control will be complicated

and the implementation will be time-consuming. To solve this problem, proper simplification of

both the model and the control strategy will be investigated. Unknown system dynamics estimator

(USDE) based controller will be designed. In addition, adaptive control will be investigated for

the beam system.

4. Study the applicability of the designed control framework with simulations and experiments. Sim-

ulations of different parameter estimation methods and control strategies will be conducted in

MATLAB. Since the complicated model together will high performance but time-consuming con-

trols are difficult to implement in practice due to the limitation of the computer processor, appro-

priate simplifications (e.g. model reduction) will be proposed for practical experiments.
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1.4 Outline of the thesis

This thesis mainly focuses on the modelling, parameter estimation and vibration control of a submerged

piezoelectric cantilever beam. In this chapter, the motivation, experimental apparatus of the beam system

and thesis objectives have been described.

The rest of the thesis is organized as follows:

• Chapter 2, ”Modelling of the submerged piezoelectric cantilever beam”, provides the system

models described by both the PDE and ODE. By using the Hamilton’s principle, a PDE model

is presented considering the piezoelectric actuator, the Kelvin-Voigt damping and the fluid force.

The ODE model is then derived with the help of Galerkin’s method.

• Chapter 3, ”Adaptive parameter estimation for first mode system”, gives a new adaptive parameter

estimation framework to online estimate unknown system parameters considering the first vibra-

tion mode. To obtain the system states, the Levant exact differentiator via sliding mode technique

is constructed. Instead of using the observer/predictor error as in the classical parameter estimation

methods, a novel adaptive law which is driven by the parameter estimation error is proposed.

• Chapter 4, ”Adaptive parameter estimation for the beam system with multi-modes”, deals with

parameter estimation of the beam system with multi-modes. A novel adaptive parameter estimation

strategy is introduced to estimate the unknown system parameters in real time. Specifically, a time-

varying gain is designed to handle the effects of regressor to enhance convergence performance and

simplify the tuning of learning gains.

• Chapter 5, ”Unknown dynamics estimator based vibration control for the beam”, provides an

estimator based vibration control strategy to both suppress the vibration and estimate the unknown

system dynamics. Different to the function approximation based methods, the proposed control has

a simple structure which is more realistic to implement in practice. In the proposed estimator, only

one parameter need to be tuned depends on the bandwidth of the filter. The estimated unknown

dynamics is compensated into the controller and thus makes the system more robust to unknown

external disturbances. The stability and convergence properties of the proposed control is proved

by using Lyapunov theory.

• Chapter 6, ”Adaptive vibration control for the beam”, presents an adaptive control scheme for

the beam system with uncertainties. By using the parameter estimation error based adaptive law,

the system parameters can be online updated. To suppress the vibration of the beam, the adaptive

controller is designed and the stability is proved.

• Chapter 7, ”Conclusions and future work”, gives the conclusions of this thesis and a proposal for

future research.

The diagram and logic of the thesis structure is provided in Figure. 1.10.
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Part II

Modelling of the Beam System

12



Chapter 2

Modelling of the submerged beam

2.1 Introduction

In this chapter, modelling of the beam together with the fluid dynamics is done. A brief overview of the

beam theories is presented. To describe the dynamics of a submerged piezoelectric beam, Euler-Bernoulli

equation and Navier–Stokes equation are taken into considered. Piezoelectric effects are included in the

system model and the strain-deflection relationship is derived for the experiment purpose. A tradeoff is

made between the accuracy and the practicability to fulfill the demand of the real plant.

2.2 State of art

There are many beam theories in the literature considering different behaviour for the vibrating beam.

The Euler-Bernoulli model was firstly presented by Jacob Bernoulli and then accepted by Leonhard Euler

in the 18th century. Jacob Bernoulli first discovered the curvature of the elastic beam is proportional to

the bending moment and his nephew Daniel Bernoulli first formulated the motion equation of a vibrating

beam. Leonhard Euler accepted Jacob Bernoulli’s theory in the studies of the shape of elastic beams

under various loading conditions [30]. The sketch of a flexible cantilever beam is shown in Figure. 2.1.

x

w

L

x

y, w

Figure 2.1: Sketch of a flexible cantilever beam

The partial differential equation for the Euler-Bernoulli beam model can be written as

ρA
∂2w(x, t)

∂t2
+ EI

∂4w(x, t)

∂x4
= f(x, t) (2.1)

where w(x, t) is the transverse displacement at position x and time t, ρ is the density assumed to be a

constant, A is the cross-sectional area, E is the Young’s modulus of elasticity, I is the bending moment
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of inertia, and f(x, t) is the forcing function of both space and time. Four possible boundary conditions

shown in Figure. 2.2 can be listed as

• ∂2w
∂x2

= 0, w = 0 for hinged end (Figure 2.2 (a));

• ∂w
∂x = 0, w = 0 for clamped end (Figure 2.2 (b));

• ∂2w
∂x2

= 0, ∂3w
∂x3

= 0 for free end (Figure 2.2 (c));

• ∂w
∂x = 0, ∂3w

∂x3
= 0 for sliding end (Figure 2.2 (d)).

Figure 2.2: Four types of boundary conditions: (a) hinged; (b) clamped; (c) free; (d) sliding. [2]

The Euler-Bernoulli beam theory, also known as classical beam theory, is the most commonly used

in many engineering problems mainly because it is simple and reasonable for approximations in many

scenarios. For example, in the analysis of nonlinear dynamics, Euler-Bernoulli beam model is widely

used. As one of the most well-known nonlinear systems, rotating beams have even become a benchmark

plant for validating nonlinear effects. In [31], Chung and Yoo analysed dynamic characteristics of a ro-

tating beam by using finite element method. Stability analysis of the rotating beam is further investigated

in [32]. Vibration analysis of a multi-layer composite beam is then carried out in [33]. In [34], a rotating

thin-walled cantilever beam is modelled and the nonlinear dynamics are analysed. For variable speed

rotating beams, a nonlinear model is presented in [20, 35].

The Euler-Bernoulli model normally tend to slightly overestimate the natural frequency of the vi-

brating beam. In order to improve the model, Rayleigh included the effect of rotational inertia of the

cross-sectional area in 1877 [30]. The governing equation of Rayleigh beam model can be given as

ρA
∂2w(x, t)

∂t2
+ EI

∂4w(x, t)

∂x4
− ρI ∂

4w(x, t)

∂x2∂t2
= f(x, t) (2.2)

with four possible boundary conditions

• ∂2w
∂x2

= 0, w = 0 for hinged end (Figure 2.2 (a));

• ∂w
∂x = 0, w = 0 for clamped end (Figure 2.2 (b));

• ∂2w
∂x2

= 0, ∂3w
∂x3
− ρI ∂3w

∂x∂t2
= 0 for free end (Figure 2.2 (c));

• ∂w
∂x = 0, ∂3w

∂x3
− ρI ∂3w

∂x∂t2
= 0 for sliding end (Figure 2.2 (d)).

Many investigations have been conducted based on the Rayleigh beam theory. The dynamics of a

rotating Rayleigh beam with an added force is studied in [36]. In [21, 37], the vibration and stability

of axially moving Rayleigh beams are investigated. The Rayleigh beam model partially corrects the

overestimation of natural frequencies in the Euler-Bernoulli model. However, the natural frequencies are

still overestimated.
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The shear beam model added the shear distortion to the Euler-Bernoulli model [30]. This consid-

erably improves the estimation of the natural frequencies. The governing equation of the shear beam

model can be stated as follows

ρA
∂2w(x, t)

∂t2
−GAs

(
∂2w(x, t)

∂x2
− ∂α(x, t)

∂x

)
= f(x, t)

EI
∂2α(x, t)

∂x2
+GAs

(
∂w(x, t)

∂x
− α(x, t)

)
= 0,

(2.3)

where G is the shear modulus, α(x, t) denotes the rotation angle due to bending, As = A/k, with A

being the cross-sectional area and k the shear correction coefficient, depends on the shape of the cross

section. Four possible boundary conditions can be listed as

• ∂α
∂x = 0, w = 0 for hinged end (Figure 2.2 (a));

• α = 0, w = 0 for clamped end (Figure 2.2 (b));

• ∂α
∂x = 0, GAs

(
∂w
∂x − α

)
= 0 for free end (Figure 2.2 (c));

• α = 0,
(
∂w
∂x − α

)
= 0 for sliding end (Figure 2.2 (d)).

The Shear beam model is often used for the analysis of building behavior [38–40]. In [39], a mul-

tistory building considering coupling actions is described by the shear beam model. Modelling by the

shear beam approach is proved effective in the analysis of torsionally coupled buildings. In [40], a shear

beam model is used to analyse the nonlinear properties of the reinforced concrete and the nature of strong

motion for a seven-story building with earthquake excitation.

Timoshenko formulated the beam model by adding both the effect of shear and effect of rotation into

the Euler-Bernoulli model [41]. The governing equation of the Timoshenko beam model is [38]

ρA
∂2w(x, t)

∂t2
−GAs

(
∂2w(x, t)

∂x2
− ∂α(x, t)

∂x

)
= f(x, t)

ρI
∂2α(x, t)

∂t2
− EI ∂

2α(x, t)

∂x2
−GAs

(
∂w(x, t)

∂x
− α(x, t)

)
= 0,

(2.4)

and the boundary conditions are identical to those of shear beam model.

For scenarios that can not neglect shear and rotary effects, the Timoshenko beam theory is regarded as

a major improvement for non-slender beams with high frequencies. Properties of the natural frequencies

and modes of Timoshenko beam model can be found in [42]. In [43], the advantages of Timoshenko

beam model are shown in the vibration analysis of multi-walled carbon nanotubes, where the effects

of shear deformation and rotary inertia are significant and considering high vibration modes. Different

beam models are summarized in Table 2.1.

Euler-Bernoulli beam Rayleigh beam Shear beam Timoshenko beam
[30] [31] [32] [33] [34] [30] [36] [30] [39] [30] [41]

[20] [35] [44] [45] [21] [37] [40] [42] [43]
Table 2.1: Summary of different beam models in the literature

Over the past years, the submerged beam has attracted a lot of research interests. The fluid flow can

be generally classified into three different types as shown in Figure 2.3. The regular flow represents the

behavior of general evolvement of the fluid. The rebound flow is the flow back to the beam from the wall.

The external flow is the flow input from outside. In [46], a cantilevered Euler–Bernoulli beam submerged

15



Regular flow External flow

Rebound flow

Figure 2.3: Different fluid flow interacting with the beam

in Newtonian fluid is modeled. A simplified analytical fluid–structure interaction model is derived. In

trying to calculate the coupled frequencies of vibration of a partially submerged beam, [47] provides an

theoretical model that describes the vibrational behavior of the submerged beam. In [48], the vortex is

modeled by a nonlinear oscillator satisfying the van der Pol equation. As a result, the structure-fluid

interaction can be described by the wake oscillator and a one degree-of-freedom structural oscillator.

In addition to model the complex structure-fluid interaction dynamics, there are many literature work-

ing on the simplified fluid forces. In this way, the fluid forces can be directly integrated to the beam

models. In [49], the fluid dynamics are simplified as a combination of inviscid forces and viscous forces.

In [50], a flexible slender cantilevered beam is modeled interacting with an incompressible fluid. The

fluid is modeled by using an added mass and a summation of forces including the shear force, the vis-

cous force and the axial tension. We can see that the key point of the simplified beam-fluid interaction

problems can be summarized as: construct the virtual flow considering different behaviors of fluid; select

or create appropriate methods to simplify the solving procedure. Some of these considerations can also

be found in the literature. In [51], Eftekhari and Jafari propose a mixed modal-differential quadrature

method to study the dynamic behavior of beams in contact with fluid. This methodology uses the modal

technique for the structure while it applies the differential quadrature method for the fluid. Thus, the

governing partial differential equations of the beam and fluid are reduced to a set of ordinary differential

equations in time. Later, some similar results are obtained in [52]. In [53], free vibration and stability of

a cantilever beam attached to an axially moving base in fluid is studied by using Galerkin approach. For

Euler-Bernoulli beam, a semi-analytical technique called differential transformation method is employed

for solving a fluid-structure interaction in [54].

Most of the above-mentioned models are developed by using PDEs. Although the PDE based models

can describe the detailed dynamics of the beam system, it is hard to implement them in real applications

due to the limitation of the hardware (e.g., bandwidth and local memory capacity). In this thesis, we will

focus on both the PDE and ODE models for the system modelling and analysis. In order to obtain system

parameters and suppress the vibration in reality, we will mainly deal with the simplified ODE model.
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2.3 Beam Modelling

In this section, we will derive the beam model based on Euler-Bernoulli beam theory. The piezoelectric

actuator model will be included in the beam model. In order to collect the output information with strain

gauge in the experiments, we will derive the relationship between deflection and strain. The derived

beam model will be then simplified with different simplification methods.

2.3.1 Cantilever beam model

The sketch of the cantilever beam considering the flapwise deflection is depicted in Figure 2.4.
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Figure 2.4: Sketch of the piezoelectric cantilever beam

For an inextensible beam (neglecting the strech deformation), the kinetic energy T can be given

as [35, 55]

T =

∫ L

0

1

2
mV 2

y dx =
1

2
ρA

∫ L

0

(
∂w

∂t

)2

dx (2.5)

where m is the mass of the cantilever beam, Vy is the flapwise velocity, ρ is the density, A is the cross-

sectional area of the beam (A = b ·h, b is the beam width and h is the beam thickness), w is the flapwise

displacement and L is the length of the beam.

To describe the dynamics associated with damping, the Kelvin-Voigt damping model is considered.

Based on the Kelvin-Voigt hypothesis, the conservative moment Mc and the non-conservative moment

Mnc can be given as [56, 57]

Mc = EI
∂2w

∂x2
(2.6)

Mnc = CI
d

dt

(
∂2w

∂x2

)
(2.7)

where E is the Young’s modulus, I is the Bending moment of inertia and C is the damping factor of the

beam.

Considering the flapwise deformation [58], the potential energy (or strain energy) U of an inextensi-

ble beam may be obtained by using the conservative moment (2.6) [57, 59]

U =
1

2

∫ L

0
EI

(
∂2w

∂x2

)2

dx. (2.8)

Using the non-conservative moment (2.7), the non-conservative force Fnc can be written as [57]

Fnc =

∫ L

0

∂2

∂x2
Mncdx =

∫ L

0
CI

∂2

∂x2

[
d

dt

(
∂2w

∂x2

)]
dx. (2.9)

17



Therefore, the variation of works done of the non-conservative force Fnc and the piezoelectric force

Fac are given as [57]

δW = −(Fnc + Fac)δwdx

=

∫ L

0
−
{
CI

∂2

∂x2

[
d

dt

(
∂2w

∂x2

)]
+ Fac

}
δwdx.

(2.10)

By using the variation and integrating (2.5), (2.8) and (2.10) by parts respectively, one could have∫ t2

t1

δTdt = ρA

∫ t2

t1

∫ L

0

∂w

∂t
δ
∂w

∂t
dxdt

= ρA

∫ L

0

(
∂w

∂t
δw

∣∣∣∣t2
t1

)
dx− ρA

∫ L

0

∫ t2

t1

∂2w

∂t2
δwdtdx

= −ρA
∫ L

0

∫ t2

t1

∂2w

∂t2
δwdtdx

(2.11)

∫ t2

t1

δUdt = EI

∫ t2

t1

∫ L

0

∂2w

∂x2
δ
∂2w

∂x
dxdt

= EI

∫ t2

t1

(
∂2w

∂x2
δw

∣∣∣∣L
0

−
∫ L

0

∂3w

∂x3
δ
∂w

∂x
dx

)
dt

= EI

∫ t2

t1

(
∂2w

∂x2
δ
∂w

∂x

∣∣∣∣L
0

− ∂3w

∂x3
δw

∣∣∣∣L
0

+

∫ L

0

∂4w

∂x4
δwdx

)
dt

(2.12)

∫ t2

t1

δW =

∫ t2

t1

∫ L

0
−
{
CI

∂2

∂x2

[
d

dt

(
∂2w

∂x2

)]
+ Fac

}
δwdxdt. (2.13)

For deformable bodies with infinite number of degrees of freedom, the states of the systems can be

represented by using continuous functions of time and space. For such bodies, the Hamilton’s principle

is given by ∫ t2

t1

[δT − (δU − δW )] dt = 0 (2.14)

where t1 and t2 are the initial and final times.

Substituting (2.11), (2.12) and (2.13) into (2.14), we have

−
∫ t2

t1

∫ L

0
(ρA

∂2w

∂t2
+ EI

∂4w

∂x4
+ CI

∂5w

∂t∂x4
+ Fac)δwdxdt

− EI
∫ t2

t1

(
∂2w

∂x2
δ
∂w

∂x

∣∣∣∣L
0

− ∂3w

∂x3
δw

∣∣∣∣L
0

)
dt = 0.

(2.15)

As δw is an nonzero arbitrary variation, the terms with double integrals in (2.15) are set equal to

zero. Then, the governing equation of motion can be written as

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
+ CI

∂5w

∂t∂x4
+ Fac = 0. (2.16)

The boundary conditions are obtained by setting the single integrals in (2.15) equal to zero as

w|x=0 = 0;
∂w

∂x

∣∣∣∣
x=0

= 0;
∂2w

∂x2

∣∣∣∣
x=L

= 0;
∂3w

∂x3

∣∣∣∣
x=L

= 0. (2.17)

This means at the fixed end both the deflection and the slope are zero. At the free end of the cantilever

beam, there are no bending moments or shear forces.

18



2.3.2 Cantilever beam with piezoelectric actuator

It is common to assume that the piezoelectric actuator’s layer is much thinner than the cantilever beam.

The effect of the bonding material and the layer are negligible. In addition, the twisting (shear) effect is

not considered [60].

The voltage applied to the actuator introduces strain in the actuator. Since there is a distance be-

tween the actuator and the neutral surface, the strain introduces counteracting control moment on the

mechanical structure. The control moment can be described as [60, 61]

Ma = rad31EpUa(x, t) (2.18)

where ra is the effective moment arm (distance between the surface of the beam and the mid-plane of the

piezoelectric actuator), d31 is the transverse piezoelectric coefficient [29], Ep is the Young’s modulus of

the piezoelectric patch and Ua(x, t) is the imposed actuator voltage.

The voltage applied on the piezoelectric actuator can be given as

Ua(x, t) = Ua(t) [H (x− xa)−H (x− xb)] (2.19)

where xa, xb represent the two ends of the piezoelectric actuator as shown in Figure 2.4. H(·) is the

Heaviside step function which is defined as

H (x− xi) =

{
0 x < xi

1 x ≥ xi
(2.20)

The piezoelectric force can be written as

Fac =

∫ L

0

∂2

∂x2
Madx. (2.21)

Substituting (2.21) into (2.13), we have

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
+ CI

∂5w

∂t∂x4
+
∂2Ma

∂x2
= 0. (2.22)

2.3.3 Deflection calculation from strain

From the stress-strain relationship in the Kelvin-Voigt model, the strain can be written as

ε(t) =
σ

E

(
1− e−t/λ

)
(2.23)

where σ is bending stress, ε(t) is strain and λ = C/E is the retardation time .

When we calculate strain ε(t) from the known bending stress σ, the strain can be approximately

given as

ε(t) =
σ

E
. (2.24)

The theoretical force Ft for a cantilever beam can be calculated as [62]

Ft =
3EIw

L3
. (2.25)

Then the bending stress can be given by

σ =
Mh

2I
=
FtL1h

2I
=

3EwL1h

2L3
(2.26)

where L1 is the distance from the strain gauge to the theoretical force location.

Consider the stress-strain relationship from (2.24), we have the deflection-strain relationship as

w =
2L3ε

3L1h
(2.27)
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Note that the deflection-strain relationship will be only used in experiments to transform the strain to

displacement and will not be included in the model. This is because displacement and velocity are more

straightforward for analysis in practice compared to strain.

Remark 2.1. Compared to the classical formulation of Euler-Bernoulli beam, we included the effect of

Kelvin-Voigt damping (2.7) and the piezoelectric force (2.21) in this work. Besides, the deflection-strain

relationship is derived. The derived model (2.22) together with the deflection-strain relationship (2.27)

make it possible to represent the practical beam bonding with the piezoelectric actuator and the strain

gauge.

2.3.4 Ideal fluid force

Ideally, the fluid dynamics should be described by the Navier-Stokes equation. The Navier-Stokes equa-

tion is a partial differential equation that describes the flow of incompressible fluid. In the 18th century,

the equation is introduced by French engineer Claude-Louis Navier, which is an extension of the Euler

equation and includes the element of viscosity for the more realistic problems in viscous fluids.

2.3.4.1 Navier–Stokes equation

Euler’s original equation can be written as
∂V

∂t
+ (V · ∇)V = − 1

ρd
∇P, (2.28)

where V is the fluid velocity vector, P is the fluid pressure, ρd is the fluid density, and ∇ indicates the

gradient differential operator.

The Navier–Stokes equation is given as
∂V

∂t
+ (V · ∇)V = − 1

ρd
∇P + v∇2V, (2.29)

where v is the kinematic viscosity,∇2 is the Laplacian operator.

2.3.4.2 Continuity equation

In fluid dynamics, the conservation of mass can be achieved by the mass continuity equation given as

∇ ·V = 0, (2.30)

which means that the divergence of the velocity field is zero everywhere.

2.3.4.3 Pressure poisson equation

The continuity equation (2.30) acts as a constraint for computing the pressure. However, there is only

velocity but no pressure in the continuity equation, which means there is no explicit form to couple

velocity and the pressure considering the continuity equation. Thus, we derive pressure poisson equation

as follows.
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For two-dimensional incompressible flow, equation (2.29) and (2.30) can be written as
∂Vy
∂t

+ Vy ·
∂Vy
∂y

+ Vz ·
∂Vy
∂z

= −1

ρ

∂p

∂y
+ v ·

(
∂2Vy
∂y2

+
∂2Vy
∂z2

)
(2.31)

∂Vz
∂t

+ Vy ·
∂Vz
∂y

+ Vz ·
∂Vz
∂z

= −1

ρ

∂p

∂z
+ v ·

(
∂2Vz
∂y2

+
∂2Vz
∂z2

)
(2.32)

∂Vy
∂y

+
∂Vz
∂z

= 0 (2.33)

Differentiating (2.31) with respect to y to provide
∂

∂t

(
∂Vy
∂y

)
+
∂Vy
∂y
· ∂Vy
∂y

+ Vy ·
∂2Vy
∂y2

+
∂Vz
∂y
· ∂Vy
∂z

+ Vz ·
∂2Vy
∂z∂y

= −1

ρ

∂2p

∂y2
+ v · ∂

∂y

(
∇2Vy

)
(2.34)

Similarly, differentiating (2.32) with respect to z to provide

∂

∂t

(
∂Vz
∂z

)
+
∂Vy
∂z
· ∂Vz
∂y

+ Vy ·
∂2Vz
∂y∂z

+
∂Vz
∂z
· ∂Vz
∂z

+ Vz ·
∂2Vz
∂z2

= −1

ρ

∂2p

∂z2
+ v · ∂

∂z

(
∇2Vz

)
(2.35)

Addition of equations (2.34) and (2.35) yields

∂

∂t

(
∂Vy
∂y

+
∂Vz
∂z

)
+

(
∂Vy
∂y

)2

+

(
∂Vz
∂z

)2

+ 2 · ∂Vz
∂y
· ∂Vy
∂z

+ Vy

(
∂2Vy
∂y2

+
∂2Vz
∂y∂z

)
+ Vz

(
∂2Vz
∂z2

+
∂2Vy
∂z∂y

)
= −1

ρ

(
∂2p

∂y2
+
∂2p

∂z2

)
+ v

[
∂

∂y

(
∇2Vy

)
+

∂

∂z

(
∇2Vz

)] (2.36)

Considering the continuity equation (2.33), we have
∂

∂t

(
∂Vy
∂y

+
∂Vz
∂z

)
= 0 (2.37)

∂2Vy
∂y2

+
∂2Vz
∂y∂z

=
∂

∂y

(
∂Vy
∂y

+
∂Vz
∂z

)
= 0 (2.38)

∂2Vz
∂z2

+
∂2Vy
∂z∂y

=
∂

∂z

(
∂Vy
∂y

+
∂Vz
∂z

)
= 0 (2.39)

∂

∂y

(
∇2Vy

)
+

∂

∂z

(
∇2Vz

)
=

∂

∂y

(
∂2Vz
∂y2

+
∂2Vz
∂z2

)
+

∂

∂z

(
∂2Vz
∂y2

+
∂2Vz
∂z2

)
=

∂2

∂y2

(
∂Vy
∂y

+
∂Vz
∂z

)
+

∂2

∂z2

(
∂Vy
∂y

+
∂Vz
∂z

)
= 0

(2.40)

Thus, equation (2.36) reduces to

∂2p

∂x2
+
∂2p

∂y2
= −ρ

[(
∂Vy
∂y

)2

+

(
∂Vz
∂z

)2

+ 2 · ∂Vz
∂y
· ∂Vy
∂z

]
(2.41)

This equation is called pressure poisson equation.
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2.3.4.4 Discretization of the Navier-Stokes equations and the pressure poisson equation

Now, we have the system equation including the Navier-Stokes equations and the pressure poisson equa-

tion as
∂Vy
∂t

+ Vy ·
∂Vy
∂y

+ Vz ·
∂Vy
∂z

= −1

ρ

∂p

∂y
+ v ·

(
∂2Vy
∂y2

+
∂2Vy
∂z2

)
(2.42)

∂Vz
∂t

+ Vy ·
∂Vz
∂y

+ Vz ·
∂Vz
∂z

= −1

ρ

∂p

∂z
+ v ·

(
∂2Vz
∂y2

+
∂2Vz
∂z2

)
(2.43)

∂2p

∂y2
+
∂2p

∂z2
= −ρ

[(
∂Vy
∂y

)2

+

(
∂Vz
∂z

)2

+ 2 · ∂Vz
∂y
· ∂Vy
∂z

]
(2.44)

The discretized equations can be written as

V n+1
y(i,j) − V

n
y(i,j)

∆t
+ V n

y(i,j)

V n
y(i,j) − V

n
y(i−1,j)

∆y
+ V n

z(i,j)

V n
y(i,j) − V

n
y(i,j−1)

∆z

= −1

ρ

pni+1,j − pni−1,j

2∆y
+ v

(
V n
y(i+1,j) − 2V n

y(i,j) + V n
y(i−1,j)

∆y2
+
V n
y(i,j+1) − 2V n

y(i,j) + V n
y(i,j−1)

∆z2

)
(2.45)

V n+1
z(i,j) − V

n
z(i,j)

∆t
+ V n

y(i,j)

V n
z(i,j) − V

n
z(i−1,j)

∆y
+ V n

z(i,j)

V n
z(i,j) − V

n
z(i,j−1)

∆z

= −1

ρ

pni+1,j − pni−1,j

2∆y
+ v

(
V n
z(i+1,j) − 2V n

z(i,j) + V n
z(i−1,j)

∆y2
+
V n
z(i,j+1) − 2V n

z(i,j) + V n
z(i,j−1)

∆z2

)
(2.46)

pni+1,j − 2pni,j + pni−1,j

∆y2
+
pni,j+1 − 2pni,j + pni,j−1

∆z2

= ρ

[
1

∆t

(
Vy(i+1,j) − Vy(i−1,j)

2∆y
+
Vz(i,j+1) − Vz(i,j−1)

2∆z

)
−
Vy(i+1,j) − Vy(i−1,j)

2∆y

Vy(i+1,j) − Vy(i−1,j)

2∆y

− 2
Vy(i,j+1) − Vy(i,j−1)

2∆z

Vz(i+1,j) − Vz(i−1,j)

2∆y
−
Vz(i,j+1) − Vz(i,j−1)

2∆z

Vz(i,j+1) − Vz(i,j−1)

2∆z

]
(2.47)

where n denotes the current time point and n+ 1 the next time point, and spacial notations are shown in

Figure 2.5.

Figure 2.5: Notations for fluid domain
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We reorganise equations (2.45), (2.46) and (2.47), the following discretized form can be derived

V n+1
y(i,j) =V n

y(i,j) − V
n
y(i,j)

∆t

∆y

(
V n
y(i,j) − V

n
y(i−1,j)

)
− V n

z(i,j)

∆t

∆z

(
V n
y(i,j) − V

n
y(i,j−1)

)
− ∆t

ρ2∆y

(
pni+1,j − pni−1,j

)
+ v

(
∆t

∆y2

(
V n
y(i+1,j) − 2V n

y(i,j) + V n
y(i−1,j)

)
+

∆t

∆z2

(
V n
y(i,j+1) − 2V n

y(i,j) + V n
y(i,j−1)

)) (2.48)

V n+1
z(i,j) =V n

z(i,j) − V
n
z(i,j)

∆t

∆y

(
V n
z(i,j) − V

n
z(i−1,j)

)
− V n

y(i,j)

∆t

∆z

(
V n
z(i,j) − V

n
z(i,j−1)

)
− ∆t

ρ2∆y

(
pni+1,j − pni−1,j

)
+ v

(
∆t

∆y2

(
V n
z(i,j) − 2V n

z(i,j) + V n
z(i−1,j)

)
+

∆t

∆z2

(
V n
z(i,j+1) − 2V n

z(i,j) + V n
z(i,j−1)

)) (2.49)

pni,j =

(
pni+1,j + pni−1,j

)
∆z2 +

(
pni,j+1 + pni,j−1

)
∆y2

2 (∆y2 + ∆z2)

− ρ∆y2∆z2

2 (∆y2 + ∆z2)
×
[

1

∆t

(
Vy(i+1,j) − Vy(i−1,j)

2∆y
+
Vz(i,j+1) − Vz(i,j−1)

2∆z

)
−
Vy(i+1,j) − Vy(i−1,j)

2∆y

Vy(i+1,j) − Vy(i−1,j)

2∆y

− 2
Vy(i,j+1) − Vy(i,j−1)

2∆z

Vz(i+1,j) − Vz(i−1,j)

2∆y
−
Vz(i,j+1) − Vz(i,j−1)

2∆z

Vz(i,j+1) − Vz(i,j−1)

2∆z

]
(2.50)

2.3.4.5 Boundary conditions

• At the left and right boundary:

Vy = 0; Vz = 0 (2.51)

• At the bottom boundary:

Vz = 0; Vy = 0 (2.52)

• At the top boundary:

Vz = 0 (2.53)

Now, we can obtain the fluid force (2.50) everywhere in the fluid domain by using the Navier-Stokes

equations (2.48)-(2.49) and the boundary conditions (2.51)-(2.53). Figure 2.6 and Figure 2.7 show the

pressure distribution at the 1st second and the 2nd second respectively. We can see that the pressure and

their directions change everywhere in the fluid domain at the two different time points.

It should be noted the fluid force (2.50) has no analytical solution. To obtain the solution, approxi-

mated numerical solution can be found by iteration. Therefore, this fluid force can be used for theoretical

analysis without considering the computation time. For the real time estimation and control, we will

make further simplifications to fulfill the requirements of fast response and practical implementations in

the following section.
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Figure 2.6: Pressure in the fluid domain at the 1st second
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Figure 2.7: Pressure in the fluid domain at the 2nd second
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2.3.5 Simplified fluid force

In the beam-structure interaction problem, dealing with the Navier–Stokes equation is hard for online

parameter estimation and real-time control due to the limitation of the hardware. Certain assumptions

and simplifications are desired to be made. In this thesis, we assume the fluid works under stokes flow

[63, 64]. This assumption is suitable for the situation of the submerged beam. The stokes flow is useful

for a low Reynolds number flow. The Reynolds number is a ratio measuring the relative importance of

inertia forces (or fictitious forces) and viscous forces defined by [65]

Re =
DUdρd
v

, (2.54)

where D is the diameter of the domain occupied by the fluid, Ud is the flow speed, ρd is the fluid density

and v is the viscosity.

Then the Navier–Stokes equation can be simplified and the fluid dynamics can be described by the

Reynolds equation as [66]

12v
∂(Pwh)

∂t
= ∇ ·

[
(1 + 6Kn)h3P∇P

]
, (2.55)

where v is the viscosity of fluid, P is the pressure, wh is the distance between the beam and the wall

and Kn is the Knudsen number (the ratio describes the relationship of the mean free path of the fluid

molecule and the distance of the gap).

Further, we assume the Knudsen number is negligibly small, the Reynolds equation (2.55) reduces

to
∂(Pwh)

∂t
=

h3

12v

(
1

2
∇2P 2

)
. (2.56)

Under the above assumptions and simplifications, we will introduce the main components of the fluid

force for the beam-fluid interaction in the following subsections.

2.3.5.1 Added inertia force

Since the vibration of the beam would influence the surrounding fluid, the created force due to the

acceleration of the fluid has effect on the beam [67, 68]. The resulted added inertia force can be written

as

Fa = ma
∂2w

∂t2
, (2.57)

where ma is the added mass per unit length of the beam. For a rectangular beam, the value of ma can be

given as [68]

ma = CaρdA, (2.58)

where Ca is the correction factor determined by the gap between the beam and the rigid wall. ρd is the

density of the fluid and A is the cross sectional area.

The added inertia force is of critical importance in fluid-structure interactions [69]. In [70], an

empirical added mass formulation is derived for the submerged cantilever plates. The frequencies and

mode shapes are determined by using Rayleigh–Ritz method. In [71], the added mass effect has been

discussed and simulated on a francis turbine runner, the vibration problems in hydraulic turbine systems

are summarized. However, few investigations have addressed the online system parameter estimation and

vibration control for the piezoelectric cantilever beam considering the added inertia force. Therefore, in

this work, we will take into consideration of the added inertia force on modelling of the fluid-beam
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interaction. Moreover, online parameter estimation and vibration control for the submerged beam will

be studied.

2.3.5.2 Squeeze flow force

For the beam-fluid interaction problem in the water turbine system, the squeeze flow force is one of the

dominated forces. The squeeze force is generated from the movement of the beam towards the wall. The

fluid squeeze out when the beam approach to the wall and the pressure increases. When the beam moves

away from the wall, a suddenly drag is applied on the beam because the fluid fills back to the gap [72].

To approximate the squeeze flow force, we linearize (2.56) about an assumed operating point. We let

w0 being the average gap distance and P0 being the static pressure, then we have the gap distance as

wh = w0 + w (2.59)

where w is the the oscillation amplitude of the beam, and the pressure as

P = P0 + P̄ (2.60)

where P̄ is the pressure variation of P0.

We assume the fluid motion is in the vertical direction to the beam, the linearized Reynolds equation

can be derived as
∂P ∗

∂t
=
w2

0P0

12vb2
∂2P ∗

∂ξ2
− 1

w0

∂wh
∂t

(2.61)

where P ∗ = P̄ /P0 and ξ = wh/b.

One can obtain the solution of (2.61) by using the eigenfunction method as [66]

P ∗ = − z0

w0

∑
n odd

4

nπ
[sinnπξ]e−αnt (2.62)

where z0 is an imaginary step input and

αn =
w2

0P0n
2π2

12vb2
. (2.63)

The squeeze flow force Fs acting on the beam is

Fs(t) = P0bL

∫ 1

0
P ∗(t, ξ)dξ (2.64)

and the Laplace transformation is [66]

Fs(s) =

[
96vLb3

π4w3
0

∑
n odd

1

n4

1

1 + s
αn

]
sz(s) (2.65)

where z(s) is the Laplace transform of the displacement of the beam w(t).

It can be observed from (2.65) the magnitude of the coefficients is dominated by the first term with

n = 1. The other terms with n ≥ 2 are negligible compared with the first term. Therefore, we can use

the first term to approximate the force as

Fs(s) =
96vLb3

π4w3
0

1

1 + s
αn

sz(s). (2.66)

Consequently, the squeeze flow force can be simplified as

Fs(t) = bs
∂w

∂t
. (2.67)

It can be seen the squeeze flow force is finally reduced to a damping force. The direction of the force

is opposite to the vibration of the beam.
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2.3.5.3 Total fluid force

The total fluid force Fz can be finally derived by combining the main force components affect on the

beam as

Fz = Fa + Fs = ma
∂2w

∂t2
+ bs

∂w

∂t
(2.68)

where Fa is the added inertia force due to the added fluid mass on the submerged beam, Fs is the squeeze

flow force resulted from the interaction of the beam and fluid.

2.3.6 Model of the submerged beam

Considering the fluid force (2.68) along with the dry beam (2.22), the model of the submerged beam can

be written as

(ρA+ma)
∂2w

∂t2
+ EI

∂4w

∂x4
+ CI

∂5w

∂t∂x4
+
∂2Ma

∂x2
+ bs

∂w

∂t
= 0. (2.69)

The derived PDE model (2.69) describes the dynamics of the submerged beam by considering the

Kelvin-Voigt damping, the piezoelectric effect and the fluid force. The model can better describe the

characteristics of a real beam compared to the beam model in [22] due to the effect of the damping

in practice. Compared to the proportional (Rayleigh) damping considered in [23], the Kelvin-Voigt

damping included in (2.22) has its advantage in representing the behaviour of stress and strain state [73].

In addition, the proposed model included the lumped fluid force which can describe the dynamics of the

beam-fluid interaction.
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2.4 Beam model discretization

To manipulate the PDE model (2.69), one effective way is to discretize the PDE to obtain the numerical

solution because the analytical solution is difficult to be found at the moment [74]. In this section, we

will focus on the beam model discretization by using finite difference method. We will mainly discrete

space domain to develop a semi-discrete model. After further discrete the time domain, a fully discrete

model can also be obtained.

2.4.1 Finite difference method

For partial differential equations, finite difference method (FDM) is an effective way to obtain the nu-

merical solution [75]. This method is versatile and simple to implement on a computer. The basic idea is

to determine the variables according to the neighbouring or surrounding points as shown in Figure 2.8.

1. The finite difference equation of first derivative is [74]
∂w

∂x

∣∣∣∣
k

=
wk+1 − wk

∆x
(2.70)

where k and k + 1 represent the current node and the next node as shown in Figure 2.8.

1k =

1
w

1k
w

- k
w

1k
w

+3
w

2
w

2K
w

- 1K
w

- K
w

x
D

x
D2k = 3k =

Figure 2.8: Notations for the finite difference scheme

2. The finite difference equation of second derivative is
∂2w

∂x2

∣∣∣∣
k

=
wk+1 − 2wk + wk−1

(∆x)2
. (2.71)

3. The finite difference equation of third derivative is
∂3w

∂x3

∣∣∣∣
k

=
wk+2 − 2wk+1 + 2wk−1 − wk−2

(∆x)3
. (2.72)

4. The finite difference equation of fourth derivative is
∂4w

∂x4

∣∣∣∣
k

=
wk+2 − 4wk+1 + 6wk − 4wk−1 + wk−2

(∆x)4
. (2.73)

The above-mentioned equations (2.70)-(2.73) are called centered difference approximation. There

are also forward difference approximations and backward difference approximations as following

1. Forward difference approximations of the first and second derivatives:
∂w

∂x

∣∣∣∣
k

=
−3wk + 4wk+1 − wk+2

2∆x
. (2.74)

∂2w

∂x2

∣∣∣∣
k

=
2wk − 5wk+1 + 4wk+2 − wk+3

(∆x)2
. (2.75)

2. Backward difference approximations of the first and second derivatives:
∂w

∂x

∣∣∣∣
k

=
3wk − 4wk−1 + wk−2

2∆x
. (2.76)
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∂2w

∂x2

∣∣∣∣
k

=
2wk − 5wk−1 + 4wk−2 − wk−3

(∆x)2
. (2.77)

The finite difference method is a simple approach to approximate the derivatives. Moreover, it can

treat different initial conditions and boundary conditions. As a result, we use the finite difference method

to derive the following semi-discrete model and the discrete model for analysis.

2.4.2 Semi-discrete beam model

We recall the beam model without external excitation

(ρA+ma)
∂2w

∂t2
+ EI

∂4w

∂x4
+ CI

∂5w

∂t∂x4
+
∂2Ma

∂x2
+ bs

∂w

∂t
= 0. (2.78)

Ideally, the PDE model (2.78) has infinite spacial nodes. However, in practice, we can only address

finite spatial nodes. Therefore, we can discretize spacial domain to reserve finite number of nodes. For

the time domain, we will not make the discretization in this section.

Using finite difference method, we obtain a semi-discrete approximation model by spacial discretiza-

tion. The continuous model (2.78) can be reconstructed along with (2.73) as
d2wk
dt2

=rk(wk−2 − 4wk−1 + 6wk − 4wk+1 + wk+2) + rc
d(wk−2 − 4wk−1 + 6wk − 4wk+1 + wk+2)

dt

+ ru(Mk+1 − 2Mk +Mk−1),
(2.79)

where rk = −EI/((ρA + ma)(∆x)4), rc = −CI/((ρA + ma)(∆x)4) − bs/(ρA + ma) and ru =

−1/((ρA+ma)(∆x)2).

For the finite difference scheme, we let fk = wk−2 − 4wk−1 + 6wk − 4wk+1 + wk+2, 1 ≤ k ≤ K.

Then we have

fk =



w−1 − 4w0 + 6w1 − 4w2 + w3 k = 1

w0 − 4w1 + 6w2 − 4w3 + w4 k = 2

wk−2 − 4wk−1 + 6wk − 4wk+1 + wk+2 3 ≤ k ≤ K − 2

w
k−3
− 4w

k−2
+ 6w

k−1
− 4w

k
+ w

k+1
k = K − 1

w
k−2
− 4w

k−1
+ 6w

k
− 4w

k+1
+ w

k+2
k = K

. (2.80)

Note that in (2.80) there are four virtual points w0, w−1, wK+1 and wK+2 are used. It is necessary

to represent these points with real points of the beam. This can be achieved by using the boundary

conditions (2.17) and the finite difference equations (2.70)-(2.72)

w0 = 0;

w−1 = w1;

wK+1 = 2wK − wK−1 ;

wK+2 = 2wK+1 − 2wK−1 + wK−2 = 4wK − 4wK−1 + wK−2 .

(2.81)

Substituting (2.81) into (2.80), we obtain

fk =



7w1 − 4w2 + w3 k = 1

−4w1 + 6w2 − 4w3 + w4 k = 2

wk−2 − 4wk−1 + 6wk − 4wk+1 + wk+2 3 ≤ k ≤ K − 2

w
k−3
− 4w

k−2
+ 5w

k−1
− 2w

k
k = K − 1

2w
k−2
− 4w

k−1
+ 2w

k
k = K

. (2.82)
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Then, the matrix form of fk can be written as

fk =



7 −4 1 0 · · · · · · · · · 0

−4 6 −4 1
. . . . . . . . .

...

1 −4 6 −4 1
. . . . . .

...

0 1 −4 6 −4 1
. . .

...
...

. . . . . . . . . . . . . . . . . . 0
...

. . . . . . 1 −4 6 −4 1
...

. . . . . . . . . 1 −4 5 −2

0 · · · · · · · · · 0 2 −4 2





w1

w2

wk
...
...
...

wk

wK−1

wK



= Af

[
w1· · ·wK

]T
. (2.83)

We choose the system state vector as x = [x1,x2]>, then the state-space model of the beam system

can be given as [
ẋ1

ẋ2

]
=

[
0 I

rkAf rcAf

][
x1

x2

]
+

[
0

Bu

]
u

y =
[

I 0
] [ x1

x2

] (2.84)

with x1 = [w1· · ·wK ]T , x2 = [ẇ1· · ·ẇK ]T , u = Ua(t) and Bu = −3ru[Ma1 · · ·MaK ]. Note that Bu

depends on the location of the piezoelectric actuator.

The state space model (2.84) can be then written as

ẋ = Ax +Bu

y = Cx,
(2.85)

where

A =

[
0 I

rkAf rcAf

]
, B =

[
0

Bu

]
, C =

[
I 0

]
.

We set the number of nodes of the beam model (2.85) as K = 8. The parameters rk, rc and ru can

be theoretically computed by using the material properties in Table 1.1 and Table 1.2. At the free end of

the beam, we can obtain the following transfer function of (2.85)

G(s) =

− 113.2s11 − 6.555e07s10 − 1.265e13s9 − 8.14e17s8 − 1.123e19s7 − 5.41e23s6

+ 1.336e26s5 + 5.159e30s4 + 2.212e31s3 + 7.117e35s2 − 1.125e36s− 3.101e40

s16 + 75.96s15 + 1.466e07s14 + 8.376e08s13 + 8.084e13s12 + 3.239e15s11

+ 2.084e20s10 + 5.27e21s9 + 2.543e26s8 + 3.42e27s7 + 1.32e32s6 + 6.923e32s5

+ 2.227e37s4 + 2.329e37s3 + 6.421e41s2 + 2.519e40s+ 6.078e44

(2.86)

The frequency response is shown in Figure 2.9. We can see that eight vibration modes are kept

because the number of nodes is selected as K = 8. The beam dynamics can be better described with

increasing number of nodes. However, the system order and computational load will be higher with

increasing nodes. Therefore, appropriate trade-off should be made between the accuracy and flexibility.
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Figure 2.9: Frequency response of system (2.84)

2.4.3 Discrete beam model

We first discrete the beam equation

(ρA+ma)
∂2w

∂t2
+ EI

∂4w

∂x4
+ CI

∂5w

∂t∂x4
+
∂2Ma

∂x2
+ bs

∂w

∂t
= 0 (2.87)

as

(ρA+ma)
wn+1
k − 2wnk + wn−1

k

∆t2
+ EI

wnk+2 − 4wnk+1 + 6wnk − 4wnk−1 + wnk−2

∆x4

+ CI

wn
k+2−4wn

k+1+6wn
k−4wn

k−1+wn
k−2

∆x4
− wn−1

k+2−4wn−1
k+1 +6wn−1

k −4wn−1
k−1+wn−1

k−2

∆x4

∆t

+
Ma

n
k+1 − 2Ma

n
k +Ma

n
k−1

∆x2
+ bs

wnk − w
n−1
k

∆t
= 0

(2.88)

where n and k represent time and spacial node respectively.

Reorganizing (2.88), one have

wn+1
k = − ∆t2

(ρA+ma)

(
EI

wnk+2 − 4wnk+1 + 6wnk − 4wnk−1 + wnk−2

∆x4

+ CI

wn
k+2−4wn

k+1+6wn
k−4wn

k−1+wn
k−2

∆x4
− wn−1

k+2−4wn−1
k+1 +6wn−1

k −4wn−1
k−1+wn−1

k−2

∆x4

∆t

+
Mn
k+1 − 2Mn

k +Mn
k−1

∆x2
+ bs

wnk − w
n−1
k

∆t

)
+ 2wnk − wn−1

k .

(2.89)

Theoretically, the unknown parameters estimation and the controller design can be realised based on

the discrete model (2.89) or the semi-discrete model (2.85). In practice, there are still challenging issues

that are not fully addressed. Although the PDE model can be implemented by using the finite difference

method, a critical issue lies in these models is that estimating the unknown parameters is time consuming

and sometimes impossible to complete in practice [76].
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2.5 Beam model simplification

To estimate the unknown system parameters and design controllers, the PDE model (2.69) is desired to

be simplified due to the complexity on designing and the time-consuming feature on realizing.

In the literature, plenty of simplification methods can be find to simplify the PDE models. For

example, the Galerkin’s summation method was proposed and its convergence properties were studied

under different boundary conditions in [77]. In [78], a specific procedure for implementing the Galerkin’s

method was provided and illustrated with numerical examples. In [79], a reduced-order model was

introduced by using the truncated set of linear mode shapes, where different vibration modes of the

elastic beams were studied. Another approach named differential quadrature method that can simplify

the PDE model in an approximate form was proposed in [49]. The effect of different varying parameters

was discussed based on the simplified form. In [80], the balanced model reduction method was proposed

to simplify the high-order model. However, the states information is replaced by the new states that have

no physical meanings. Although the modelling of the beam and the simplification of several PDE models

have been studied in the above-mentioned literatures, a model that is suitable for online estimating the

parameters of the beam by using the piezoelectric actuator and strain gauge was not developed yet.

Before going into the specific methodologies, we show the idea of modelling with different methods

in Figure 2.10. The semi-discrete model and the discrete model make it possible to implement the PDE

model by using finite difference method. However, these two system models are described by infinite

spatial nodes, which lead to high-order systems. With less nodes, the accuracy will not be guaranteed.

For the balanced model order reduction method, the states of the system are completely changed. Overall,

the Galerkin’s model shows a best flexibility for real plant compared with other models. Therefore, we

will use this method to construct the model for parameter estimation and control.

2.5.1 Model simplification with balanced model order reduction method

Since the system model (2.85) is derived by finite difference method as shown in Section 2.4.2, the model

will be more accurate with an increasing number of nodes. However, the order will increase along with

the node numbers. It is numerically difficult to operate with high-order systems even if no controller

included. As a result, model order reduction is very important for such scenarios.

Balanced model order reduction is a method that can neglect the low effect states to represent the

system model by using a lower-order model [81, 82]. In (2.85), we set the number of nodes as 500 to

make a trade-off between the accuracy and the complexity. For comparison purpose, we name the beam

system with 500 nodes as full-order system. The model is reduced to a fourth-order system by balanced

model reduction method as

ẋr = Arxr + Bru

y = Crxr + Dru.
(2.90)
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Figure 2.10: Modelling of the beam with different methods

33



The Bode Diagram of the high-order system and the reduced-order system is shown in Figure 2.11.

We can see that the first two modes are reserved to represent the system.
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Figure 2.11: Bode diagram of the full-order system and reduced-order system

2.5.2 Model simplification with the Galerkin’s method

Although the model can be reduced by the balanced model order reduction method, the reduced system

(2.90) is not straightforward to represent the original system (2.85) because the information in the states

are not retained. It is desired to have a simplified model that describes the characteristics of the system.

Therefore, we investigated another method named Galerkin’s method for a better representation. In this

section, we use Galerkin method to simplify the model of the system (2.90).

The model of vertically placed beam with the effect of fluid can be written as

(ρA+ma)
∂2w

∂t2
+ EI

∂4w

∂x4
+ CI

∂w

∂t
+
∂2Ma

∂x2
+ bs

∂w

∂t
= 0 (2.91)

The Galerkin’s method is adopted to convert the PDE to an ODE. It is shown that the Galerkin method

is valid for such a transformation [83]. The displacement of the beam can be written as a summation of

different oscillation modes as

w(x, t) =

n∑
i=1

Wi(x)ηi(t) (2.92)

where Wi(x) are the mode shape functions and ηi(t) are the corresponding modal coefficients.

By substituting (2.92) into (2.91) one have the residual

R =(ρA+ma)

n∑
i=1

Wi(x)
d2ηi(t)

dt2
+ EI

n∑
i=1

d4Wi(x)

dx4
ηi(t) + CI

n∑
i=1

d4Wi(x)

dx4

dηi(t)

dt

+
d2Ma

dx2
+ bs

n∑
i=1

Wi(x)
dηi(t)

dt
.

(2.93)
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The Galerkin method gives ∫ L

0
RWj(x)dx = 0. (2.94)

Then, we have∫ L

0
(ρA+ma)

n∑
i=1

Wi(x)
d2ηi(t)

dt2
Wj(x)dx+

∫ L

0
EI

n∑
i=1

d4Wi(x)

dx4
ηi(t)Wj(x)dx

+

∫ L

0
CI

n∑
i=1

d4Wi(x)

dx4

dηi(t)

dt
Wj(x)dx+

∫ L

0

d2Ma

dx2
Wj(x)dx

+

∫ L

0
bs

n∑
i=1

Wi(x)
dηi(t)

dt
Wj(x)dx = 0.

(2.95)

Equation (2.95) becomes
n∑
i=1

{
mij

d2ηi(t)

dt2
+ cij

dηi(t)

dt
+ kijηi(t) + ziu(t)

}
= 0,

j = 1, 2, . . . , n

(2.96)

where

mij =

∫ L

0
(ρA+ma)Wi(x)Wj(x)dx (2.97)

cij =

∫ L

0
CI

d4Wi(x)

dx4
Wj(x)dx+

∫ L

0
bs

n∑
i=1

Wi(x)Wj(x)dx. (2.98)

kij =

∫ L

0
EI

d4Wi(x)

dx4
Wj(x)dx. (2.99)

zi = rad31Ep

[
d

dx
Wi (x1)− d

dx
Wi (x2)

]
= rad31Ep

∫ L

0
Wj(x)

d2

dx2
[H (x− x1)−H (x− x2)] dx.

(2.100)

u(t) = Ua(t) (2.101)

Using the orthogonality principle of the modes shapes [56], one have∫ L

0
Wi(x)Wj(x)dx = 0, i 6= j. (2.102)

i.e.

mij = 0, i 6= j. (2.103)

cij = 0, i 6= j. (2.104)

kij = 0, i 6= j. (2.105)

We can then rewrite the motion equation (2.96) as a matrix-vector form

Mη̈ + Cη̇ + Kη = zu (2.106)

where
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Figure 2.12: Bode plot of the full order model and first mode Galerkin model

M =


m11 · · · 0

...
. . .

...

0 · · · mnn

 ,C =


c11 · · · 0

...
. . .

...

0 · · · cnn

 ,

K =


k11 · · · 0

...
. . .

...

0 · · · knn

 , z =


z1

...

zn

 .
Theoretical values of mij , cij , kij of the dry beam can be computed by using (2.96) along with the

mode shape function [56]

Wi(x) = Ci

[
(cosβix− coshβix)− cosβiL+ coshβiL

sinβiL+ sinhβiL
(sinβix− sinhβix)

]
. (2.107)

2.5.3 Comparison of the simplified Galerkin model and the full order model

To compare the simplified Galerkin model with the full order model, we take first three modes for illus-

tration. For the full order model, we refer to the semi-discrete model (2.85). The number of nodes are

set as K = 500 to achieve a trade-off between the accuracy and the computation cost. A 1000th-order

model is constructed to represent the full order model. The derived values mij , cij , kij in the simplified

Galerkin model (2.106) are computed based on (2.96) and (2.107). Material properties of a steel beam is

given in Table 1.1.

Take m11 for example, we have

m11 =

∫ L

0
(ρA+ma)W1(x)W1(x)dx

= (ρA+ma)

∫ L

0
(cosβ1x− coshβ1x)− cosβ1L+ coshβ1L

sinβ1L+ sinhβ1L
(sinβ1x− sinhβ1x)

= 0.2224

(2.108)
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Figure 2.13: Displacement of the tip of the beam by using the full order model and first mode Galerkin model

Similarly, we can compute

m22 = 0.2224,m33 = 0.2224

c11 = 0.36, c22 = 0.36, c33 = 0.36

k11 = 340.9348, k22 = 13390, k33 = 104978

z1 = −2.1435, z2 = −4.8029

(2.109)

We firstly consider the Galerkin model (2.106) with the first vibration mode, the beam model can be

written as a second-order model as[
ẋ1

ẋ2

]
=

[
0 1

−1532.98 −1.62

][
x1

x2

]
+

[
0

9.64

]
u

y =
[
−2 0

] [ x1

x2

] (2.110)

where x2 = ẋ1.

We release the beam at a distance of 0.01m (i.e., set the initial condition of (2.110) as x(0) =

[−0.005, 0]). The initial condition is computed by

W1(L)x1(0) = 0.01

−2x1(0) = 0.01

x1(0) = −0.005.

(2.111)

Comparison results are shown in Figure 2.12 and Figure 2.13. From Figure 2.12 we can see the first

vibration mode (the first peak in Figure 2.12) is reserved and the higher modes are truncated. Figure 2.13

shows the results of the simplification for the full order model by using the Galerkin’s method.

We can then consider the first two oscillation modes using the Galerkin model. By computing the

values mij , cij , kij in the simplified Galerkin model (2.106), a fourth-order model can be obtained as
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Figure 2.14: Bode plot of the full order model and first two modes Galerkin model
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x1

x2

x3

x4

+


0

0

9.64

16.1493

u

y =
[
−2 2 0 0

]

x1

x2

x3

x4


(2.112)

where x3 = ẋ1 and x4 = ẋ2.

We release the beam at a distance of 0.01m (i.e., set the initial condition of (2.112) as x(0) =

[−0.0058,−0.0008, 0, 0]). The initial condition is computed by

W1(L)x1(0) +W2(L)x2(0) = 0.01

W1(L/2)x1(0) +W2(L/2)x2(0) = 0.005
(2.113)

i.e.
−2x1(0) + 2x2(0) = 0.01

−0.6767x1(0)− 1.4282x2(0) = 0.005
(2.114)

i.e.
x1(0) = −0.0058

x2(0) = −0.0008.
(2.115)

Comparison results are shown in Figure 2.14-Figure 2.15. From Figure 2.14 we can see the first

vibration mode and the second vibration mode are reserved and the higher modes are truncated. Figure

2.15 shows the first two modes Galerkin model (2.112) is a better simplification of the full order model

compared with the first mode Galerkin model (2.110) in Figure 2.13.
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Figure 2.15: Displacement of the tip of the beam by using the full order model and first two modes Galerkin model

To further see the influence of the higher modes of the beam, we then consider the first three oscil-

lation modes of the Galerkin model. By computing the values mij , cij , kij in the simplified Galerkin

model (2.106), a sixth-order model can be obtained as

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1532.98 0 0 −1.62 0 0

0 −60207 0 0 −1.62 0

0 0 −472020 0 0 −1.62





x1

x2

x3

x4

x5

x6


+



0

0

0

9.64

16.1493

−16.1722


u

y =
[
−2 2 −2 0 0 0

]


x1

x2

x3

x4

x5

x6


(2.116)

where x4 = ẋ1, x5 = ẋ2 and x6 = ẋ3.

We release the beam at a distance of 0.01m (i.e., set the initial condition of (2.116) as

x(0) = [−0.0057,−0.0009,−0.0002, 0, 0, 0]). The initial condition is computed by

W1(L)x1(0) +W2(L)x2(0) +W3(L)x3(0) = 0.01

W1(2L/3)x1(0) +W2(2L/3)x2(0) +W3(2L/3)x3(0) = 0.0067

W1(L/3)x1(0) +W2(L/3)x2(0) +W3(L/3)x3(0) = 0.0033

(2.117)
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Figure 2.16: Bode plot of the full order model and first three modes Galerkin model

i.e.
−2x1(0) + 2x2(0)− 2x3(0) = 0.01

−1.0904x1(0)− 0.8533x2(0) + 1.2841x3(0) = 0.0067

−0.3299x1(0)− 1.1769x2(0)− 1.4460x3(0) = 0.0033

(2.118)

i.e.
x1(0) = −0.0057

x2(0) = −0.0009

x3(0) = −0.0002.

(2.119)

Comparison results are shown in Figure 2.16-Figure 2.17. From Figure 2.16 we can see the first three

vibration modes are reserved and the higher modes are truncated. Figure 2.17 shows the first three modes

Galerkin model (2.116) is slightly different with the first two modes Galerkin model (2.112) presented

in Figure 2.15.

From the above comparisons we can see the vibration of the beam is dominated by the first mode

and the second mode. Although higher modes can be further considered without much difficulty, the

improvement is slight. Moreover, including higher modes make the model more complex which is

not desired in practice. Therefore, we mainly deal with the first mode vibration and the second mode

vibration for illustration in the following chapters.
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Figure 2.17: Displacement of the tip of the beam by using the full order model and first three modes Galerkin
model

2.6 Conclusions

In this chapter, a PDE based model is provided including the beam motion equation and the piezoelec-

tric actuator sub-model. The Kelvin-Voigt damping is considered in the modelling procedure and the

deflection-strain relationship is presented for the purpose of experimental validation. Moreover, the fluid

dynamics are described by a combination of fluid forces. The model is then described by a semi-discrete

model and a discrete model. To implement and analysis the proposed model, finite difference method is

adopted to discrete the beam model. In addition, the model is simplified with balanced model order re-

duction method and Galerkin’s method respectively. Since the Galerkin’s method can retain the physical

information of the states compared with the balanced model order reduction method, it is more flexible

for parameter estimation and control.
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Part III

Parameter Estimation for the Beam
System
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Chapter 3

Adaptive Parameter Estimation for One
Mode Beam System

3.1 Introduction

For a wide class of dynamics systems, the structure of the system model may be known. The problem

is that the parameters are usually unknown or partly known. Some of the parameters can be determined

by the physical laws or the characteristics of materials, many other parameters are not possible to be

directly measured or computed [9, 84]. In some applications, the parameters are fixed constants which

can be determined by using off-line parameter estimation methods. However, in many applications,

the parameters may be changing with time due to different operating scenarios. In such cases, off-line

parameter estimation methods may be not capable to determine these time varying parameters.

To estimate the parameters during the process of dynamics systems, on-line parameter estimation

methods have been widely studied in the past decades. The main idea behind on-line parameter estima-

tion methods is to minimize the output error by using optimization algorithms. The well known param-

eter estimation methods that can be found in the literature are gradient algorithm based methods [85]

and least-squares based methods [84]. A general description of both gradient method and least-squares

are presented in [84]. Because of the simple structure of the gradient method, a wide class of adap-

tive laws are designed based on the success of gradient method and these methods have been widely

used in industry in the early 1960s. In the 1970s, it was found the gradient method is not stable in the

global sense. Since then, the gradient algorithm based parameter estimation methods have been replaced

by Lyapunov theory based gradient methods which are proved global stable [84]. The least-squares is

another classical method used for parameter estimation with recursive form or nonrecursive form [84].

In [86], a variable forgetting factor recursive least-squares is proposed for system identification. The for-

getting factor leads to a compromise between the tracking capabilities and the stability. To avoid using

the prediction error, [87] proposed an estimation error based adaptive parameter estimation method. The

persistent excitation condition can be online verified.

For the beam parameters, a least squares formulation is introduced considering different bound-

ary conditions in [88]. In [89], a real-time parameter estimation strategy is presented to determine the

unknown stiffness, damping and a voltage/force conversion constant. The dynamic system is defined

and augmented by these parameters which is estimated in real time. In [90], uncertain parameters of a

moving-mass and beam system are estimated by the subspace-based algorithm both in numerical simu-
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lation and experiments.

In this chapter, the parameter estimation problem of the beam system with the first oscillation mode

is addressed. The states of the system are estimated by using the Levant exact differentiator via sliding

mode technique. To online estimate the parameters, the parameter estimation error is extracted by intro-

ducing an auxiliary filter. A new adaptive parameter updating law is then derived based on the estimation

error. By using Lyapunov theory, the stability of the system is proved. Simulation and experimental

results show the effectiveness of the proposed estimation method.

3.2 Adaptive parameter estimation for the beam system with first mode

We can write the Galerkin model (2.106) with the first oscillation mode as

m11η̈ + c11η̇ + k11η = z1u. (3.1)

We choose the system state vector as x = [x1, x2]T = [η, η̇]T , then the state-space formulation of

the system (3.1) can be given as 
ẋ1 = x2

ẋ2 = −Θ1x2 −Θ2x1 + b11u

y = x1

(3.2)

where Θ1 = c11
m11

,Θ2 = k11
m11

are the unknown system parameters, b11 = z1
m11

is supposed to be a known

parameter.

To estimate the unknown system parameters Θ1 and Θ2, we will propose a new parameter estimation

method in this section. Figure 3.1 shows the structure of the proposed parameter estimation method.

Beam system Levant's differentiator

y

1̂x 2x̂

1 1 1

2 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ

f f f

f f f

k x x x

k x x x

 + =


+ =

( )2 2
ˆ ˆ /

ˆ

T

f f

T
T

f f f

M lM

N lN x x k

W M N

 = − + 



 = − + −  


= −

Filter operation

Adaptive law

ˆ W = 

W

̂

Figure 3.1: Structure of the proposed parameter estimation method
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3.2.1 State Estimation

In order to estimate the coefficients of (3.1), we measure the output (displacement information) from

the strain gauge. Although the system output y = x1 can can be measured, the other state variable x2

is unknown. In such a case, we use Levant exact differentiator [91] to estimate the state x2 via sliding

mode technique. The Levant’s differentiator is constructed as{
˙̂x1 = −α1 |x̂1 − x1|1/2 sign (x̂1 − x1) + x̂2

˙̂x2 = −α2 sign
(
x̂2 − ˙̂x1

) (3.3)

where α1, α2 are positive constants and x̂1, x̂2 are observed states of x1, x2.

Based on the developments in [91], the following theorem holds:

Theorem 3.1. [91] For an input signal x1 consisting of a base signal x0 and a bounded noise that

fulfills |x1 − x0| ≤ ε, the following inequalities establish in finite time

|x1 − x̂1| ≤ µ1ε

|x2 − x̂2| ≤ µ2ε
1/2

(3.4)

where µ1, µ2 depend exclusively on the parameters α1, α2 of the differentiator (3.3).

Proof. We refer to [91] for detailed proof.

From the analysis in [91] and [92], the exact derivatives can be by calculated by using the robust

exact differentiator with finite-time convergence. The differentiator is proved to feature the best possible

asymptotics in the presence of infinitesimal Lebesgue-measurable measurement noises, if the second

time derivative of the unknown base signal is bounded. Therefore, with the help of the robust exact

differentiator (3.3), it is acceptable to use the estimated states in the parameter estimation algorithms.

To ensure the convergence of parameter estimation, the following definition of regressor should be

used:

Definition 3.1. [93] A vector Ψ is persistently excited if there exist T1 > 0, ς > 0, such that∫ t+T1
t Ψ(r)ΨT (r)dr ≥ ςI, ∀t ≥ 0 is true.

The above condition implies that sufficiently rich information should be involved in the regressor,

which has been recognized as a mandatory condition for parameter estimation [93]. This condition can

usually be fulfilled in the beam system.

3.2.2 Adaptive parameter estimation and stability analysis

In this section, we will introduce a new adaptive algorithm to estimate the parameters in the Galerkin

model (3.1). For this purpose, we first define a set of filtered variables as [87]{
kf ˙̂x1f + x̂1f = x̂1, x̂1f (0) = 0

kf ˙̂x2f + x̂2f = x̂2, x̂2f (0) = 0.
(3.5)

where kf is a designing filter coefficient. In order to focus on the parameter estimation and their appli-

cations on the beam system, the effects of nonzero initial conditions are ignored.

To facilitate the parameter estimation, we reconstruct the second equation in (3.2) as

˙̂x2f = ΨfΘ + ζ1, (3.6)
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where Ψf = [−x̂2f − x̂1f ] is known regressor and Θ = [Θ1 Θ2]T is the unknown parameter vector

to be estimated. ζ1 is the lumped state observer error. From Theorem 3.1 we know that ζ1 is a small

bounded error.

To avoid using the prediction error as in the classical method (e.g. gradient method), we define the

auxiliary variables as follows [94]
Ṁ = −lM + ΨT

f Ψf

Ṅ = −lN + ΨT
f [(x̂2 − x̂2f ) /kf ]T

W = MΘ̂−N
(3.7)

where l > 0 is a positive constant. Θ̂ is the estimated parameter defined by Θ̂ = Θ − Θ̃ with Θ̃ being

the parameter estimation error.

By integrating both sides of (3.7), the solution of M and N can be derived as{
M =

∫ t
0 e
−l(t−r)ΨT

f (r)Ψf (r)dr

N =
∫ t

0 e
−l(t−r)ΨT

f (r) [(x̂2 − x̂2f ) /kf ]T dr
(3.8)

Remark 3.1. From (3.8) we can deduce that N = MΘ + ζ2 with ζ2 =
∫ t

0 e
−l(t−r)ΨT

f (r)ζ1dr being

the bounded residual error fulfills ||ζ2|| ≤ $. Thus we can represent the auxiliary variable W as

W = MΘ̂−N = −MΘ̃− ζ2. Since W contains the information of the estimation error Θ̃, an adaptive

law can be designed based on W .

We design the parameter updating law as
˙̂
Θ = ΓW. (3.9)

Remark 3.2. Compared to the traditional parameter estimation methods (e.g. gradient method), the

proposed adaptive law (3.9) is driven by the parameter estimation error rather than the prediction error.

Thus the convergence of the parameter estimation error can be guaranteed.

The main results of this chapter can be summarized as follows:

Theorem 3.2. Consider system (3.1) with the parameter updating law (3.9), if the regressor matrix Ψ is

persistently excited, the filtered regressor matrixM satisfies λmin(M) > σ > 0 and the parameter error

Θ̃ exponentially converge to a small set around zero [94].

Proof. We select the Lyapunov function as

V1 =
1

2
tr(Θ̃TΓ−1Θ̃). (3.10)

One can obtain the time derivative of V1 as

V̇1 = tr(Θ̃TΓ−1 ˙̃Θ) = tr(Θ̃TW ) = tr(−Θ̃TMΘ̃− Θ̃T ζ2)

≤ −σ||Θ̃||2 − tr(Θ̃T ζ2)
(3.11)

By using Young’s inequality, we have

tr(Θ̃T ζ2) ≤ 1

2
||Θ̃||2 +

1

2
||ζ2||2 (3.12)

Substituting (3.12) into (3.11) yields

V̇1 ≤ −(σ − 1

2
)||Θ̃||2 − 1

2
$2 ≤ −τ1V1 + τ2 (3.13)

where τ1 = σ − 1/2 is a positive constant for all t > 0 since σ can be designed as σ > 1/2, τ2 =

−1/2$2 is an small residual error. Based on Lyapunov’s Theorem and Theorem 1, the parameter error

Θ̃ exponentially converge to a small set around zero.
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3.3 Simulations and Experiments

3.3.1 Simulations

3.3.1.1 Simulations with the simplified system model

In this simulation, the beam system is described by the simplified Galerkin model (3.1). The system

parameters are set as Θ1 = 0.83,Θ2 = 1600. In the adaptive estimation scheme, the same model

is used. The parameters of the adaptive law (3.9) are set as Γ = 1 · diag(1 · 1011, 1 · 108), kf =

0.001, l = 1 · diag(0.1, 0.1). For the tuning of these parameters, large learning gain Γ can increase the

convergence rate while may cause parameter shifting at the transient response. The filter coefficient kf
and the forgetting factor l should be chosen by making a trade-off between the estimation performance

and the robustness.

We release the tip of the beam at a distance of 0.01m to show the effectiveness of the proposed

adaptive parameter estimation method. This is a regular case in the turbine system encountering flows.

The vibration of the beam makes the system fulfills the persistent excitation condition. Therefore, the

unknown system parameters can be estimated as mentioned in Theorem 3.2.

Simulation results are shown in Figure 3.2- Figure 3.4. We can see from Figure 3.2 the displacement

and the velocity can be exactly observed by using the robust sliding mode observer (3.3). Figure 3.3

shows the result of parameter estimation with the help of the proposed adaptive parameter updating

law (3.9). With the estimated parameters, we collected the output data from the estimated model. The

estimated output match well with the system output as shown in Figure 3.4.
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Figure 3.2: Observed states by using the robust sliding
mode observer (3.3)
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Figure 3.3: Estimated parameters by using the proposed
adaptive law (3.9)

3.3.1.2 Simulations with the high-order (20th-order) system model

In this simulation, the system model is described by using the high-order model (2.85) with 10 spacial

nodes. System parameters are set following Table 1.1. In the adaptive parameter estimation scheme,

the simplified Galerkin model (3.1) is used. The parameters of the adaptive law (3.9) are set as Γ =

1 · diag(1 · 107, 1 · 1010), kf = 0.001, l = 1 · diag(0.1, 0.1).

Simulation results are shown in Figure 3.5- Figure 3.7. We can see from Figure 3.5 the displacement

and the velocity can be estimated using the robust sliding mode observer (3.3). Figure 3.6 shows the
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Figure 3.4: Comparison of system output and estimated output

result of parameter estimation with the help of the proposed adaptive parameter updating law (3.9). With

the estimated parameters, we collected the output data from the estimated model. The estimated output

match well with the high-order (20th-order) system output as shown in Figure 3.7.
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Figure 3.5: Observed states by using the robust sliding
mode observer (3.3)
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Figure 3.6: Estimated parameters by using the proposed
adaptive law (3.9)

3.3.2 Practical Experiments

In the experiment, we use a waterproof strain gauge (type number: WFLA-6-11-3LDBTB) from Tokyo

Measuring Instruments Laboratory to measure the strain of the beam. NI 9235 quarter-bridge strain

gauge module from National Instruments is used to collect the signal of the strain gauge. A bridge

offset nulling calibration is introduced to eliminate the offset of the strain gauge. The overall experiment

configuration is shown in Figure 3.8.

We firstly estimate the parameters of the dry beam. The experimental results are shown in Figure

3.9- Figure 3.11. The state estimation results and the parameter estimation results are depicted in Figure

3.9 and Figure 3.10. Figure 3.11 shows the vibration of the first mode are correctly estimated.

To show the estimation performance of the submerged beam, we further estimated the parameters of

the beam submerged in water. Because the piezoelectric actuator is not waterproof, we submerged 24cm
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Figure 3.7: Comparison of system output and estimated output

Strain gauge
Strain measurement 

module (NI 9235)

Cantilever beam

Computer

Figure 3.8: Overall experiment configuration for parameter estimation of the beam system
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Figure 3.9: Observed states of the dry beam
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Figure 3.10: Estimated parameters of the dry beam
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Figure 3.11: Comparison of experimental output and estimated output of the dry beam

of the beam in the water tank. We then release the beam at a distance of 1cm. The experiment results are

given in Figure 3.12- Figure 3.14. From Figure 3.12 we can see the states of the system can be estimated.

The estimation performance of the system parameters are presented in Figure 3.13. Figure 3.14 shows

the comparison of experimental output and estimated output of the submerged beam. It can be seen the

system response of the model with estimated parameters fits well with the experimental output.
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Figure 3.12: Observed states of the submerged beam
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Figure 3.13: Estimated parameters of the submerged
beam
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Figure 3.14: Comparison of experimental output and estimated output of the submerged beam

3.4 Conclusions

In this chapter, we mainly addressed the parameter estimation problem of the beam system with the first

oscillation mode. The states of the system are estimated by using the Levant exact differentiator via

sliding mode technique. To online estimate the parameters, the parameter estimation error is extracted

by introducing an auxiliary filter. A new adaptive parameter updating law is then derived based on

the estimation error. By using Lyapunov theory, the stability of the system is proved. Simulation and

experimental results show the effectiveness of the proposed estimation method.
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Chapter 4

Adaptive Parameter Estimation for
Multi-modes Beam System

4.1 Introduction

For the vibrating systems like the beam, system parameters may be unknown and varying under different

operating conditions [95, 96]. For example, the frequency and damping of the beam in different liquids

are not the same [97]. It is highly desired to design parameter estimation strategies to online estimate

the unknown varying model parameters, which in turn contributes to the precise modeling and control

synthesis. For parameter estimation techniques of the PDE models, many challenging mathematical

problems (e.g. the uniqueness and stability) remain to be addressed. In [98], a high-gain adaptive

regulator was introduced to stabilize and estimate the unknown parameters of a PDE based beam model.

Although the uniqueness of the classical solution is justified, the computational load is high for solving

the PDE numerically. Hence, in practice, it is preferable to construct the ordinary differential equation

(ODE) based models. In [80], an offline identification approach was adopted to estimate the parameters

of the discrete-time beam model. In [99], an online estimator was proposed to estimate the frequencies of

the two main vibration modes of a cantilever beam. The work was done in the frequency domain based

on the algebraic derivative approach.

For parameter estimation of ODE-based systems, many researchers have been working on adaptive

parameter estimation techniques [93]. In [77], a two-stage gradient based method was proposed by

means of iterative algorithms for autoregressive systems. In [100], an online optimization algorithm

based on the gradient method together with an extended Kalman filter was investigated. Another well-

known parameter estimation technique is the least-squares method or recursive least-squares method

[84, 101]. Although the convergence of these algorithms can be proved under the persistent excitation

condition, there are still challenging issues accounting for measurement noises for the beam systems and

the verification of the required excitation condition.

Moreover, for parameter estimation, it is more convenient to parameterize the system model to sep-

arate the lumped parameters from signals [87]. In this procedure, the use of differentiation (or system

states) is not desirable because of the amplification of the noises, which would even be worse for the

plants that contain high-frequency modes [84]. To address this problem, in our previous work [94], a

stable filter is applied to derive a new parameterized formula without using the derivatives. Then the un-

known parameters are estimated by using the input and output signals only. In addition, the convergence
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of parameter estimation error is proved under the persistent excitation (PE) condition. However, with

respect to the vibration problem in the beam system, there are multiple oscillation modes with higher

frequencies. In such cases, the estimation algorithm in [94] may not retain its performance since only a

constant gain set by the designer is adopted.

In this chapter, we will estimate the system parameters for multi-modes beam system with only input

and output information due to the fact that the states of the system can not be measured or estimated.

A new adaptive parameter estimation approach will be proposed to online estimate the parameters of a

cantilever beam modeled with Euler-Bernoulli theory. To illustrate the proposed adaptive algorithm for

estimating the system parameters with multiple oscillation modes, we will select the first mode and the

second mode to construct the model. The model with two oscillation modes will be then written as a

compact parameterized form. Based on the parameterized model, a new adaptive parameter updating law

will be proposed. The convergence of the parameter estimation error is proved by using Lyapunov theory.

Compared to conventional gradient method and least-squares method, the proposed adaptive estimation

method can achieve improved performance. Comparative simulations and experiments will be carried

out to verify the effectiveness of the proposed method.

4.2 Model description
Based on the definition of natural frequency and damping ratio [56], equation (2.106) together with

(2.92) can be further written as the following state-space model{
Ẋ = AX +Bu

y = CX
(4.1)

where the system state vector is chosen as X = [η1, η2, · · · , ηn−1, ηn, η̇1, η̇2, · · · , η̇n−1, η̇n]T and

A =

[
0n×n In×n

−Ω2 −2ζΩ

]
, B =

[
0n×1

Bw

]
,

C =
[
Cw 01×n

]

Ω =


ω1 · · · 0
...

. . .
...

0 · · · ωn

 , ζ =


ζ1 · · · 0
...

. . .
...

0 · · · ζn

 ,
Bw =

[
z1
m11

· · · zn
mnn

]
,

Cw =
[
W1 · · · Wn

]
where ωi and ζi are the natural frequency and damping ratio of ith(i = 1, 2, . . . , n) oscillation mode.

In the system model (4.1), the unknown parameters ωi and ζi are essential for modeling and subse-

quent control synthesis. Hence, the aim of this study is to introduce a constructive estimation scheme to

derive the values of ωi and ζi by using the input and output measurement.

Remark 4.1. System (4.1) describes the piezoelectric cantilever beam behavior with multiple oscillation

modes. Theoretically, the system model will be more accurate with more oscillation modes. However,

this will lead to a high order system model, which is more complicated to implement in practice. As a

result, a trade-off should be made between the accuracy and the practicability. In this paper, we take

two major oscillation modes into consideration to demonstrate the effectiveness of the proposed adaptive

parameter estimation method.
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4.3 Adaptive Parameter Estimation

This section will introduce a real-time parameter estimation scheme for the above ODE based model

(4.1) with two main vibration modes. After parameterizing the system model, an adaptive law with a

time-varying gain will be proposed. Without loss of generality, we assume the input u and output y

are bounded. For the unbounded cases, the normalization operation [102] can be applied to fulfill this

condition.

4.3.1 Model Parameterization

Considering the first and second oscillation modes, the model (4.1) can be rewritten as{
˙̄X = ĀX̄ + B̄u

y = C̄X̄
(4.2)

where the system states are chosen as X̄ = [η1, η2, η̇1, η̇2]T and

Ā =


0 0 1 0

0 0 0 1

k̄1 0 c̄1 0

0 k̄2 0 c̄2

 , B̄ =


0

0

b̄1

b̄2

 ,
C̄ =

[
−2 2 0 0

]
(4.3)

with k̄1 = −ω2
1, k̄2 = −ω2

2, c̄1 = −2ζ1ω1, c̄2 = −2ζ2ω2, b̄1 = z1/m11 and b̄2 = z2/m22.

As shown in the above model (4.2), the parameters k̄1, k̄2, c̄1, c̄2, b̄1, b̄2 involving ωi and ζi are es-

sential for modeling the beam system, which will be estimated in this study. However, one difficulty for

using model (4.2) is that the states X̄ cannot be directly measured. In practice, only the input voltage

u = Ua(t) and the output displacement y = 2L3ε/(3L1h) can be measured. Hence, an alternative model

that is described by the input and output is desirable for parameter estimation. To address this issue, we

can obtain the transfer function of model (4.2) as

G(s) = C̄(sI − Ā)−1B̄ =
b2s

2 + b1s+ b0
s4 + a3s3 + a2s2 + a1s+ a0

(4.4)

where 

b2 = 2b̄2 − 2b̄1

b1 = 2b̄1c̄2 − 2b̄2c̄1

b0 = 2b̄1k̄2 − 2b̄2k̄1

a3 = −c̄1 − c̄2

a2 = −k̄1 − k̄2 + c̄1c̄2

a1 = c̄1k̄2 + k̄1c̄2

a0 = k̄1k̄2

(4.5)

are unknown parameters including ωi and ζi as shown in (4.3).

To accomplish the parameter estimation in the time-domain, the model (4.4) can be further expressed

as an ODE as

y(4) + a3y
(3) + a2y

(2) + a1y
(1) + a0y = b2u

(2) + b1u
(1) + b0u (4.6)
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To avoid using derivatives of output y as [94], i.e. y(4), y(3), y(2), y(1), we filter each side of (4.6)

with a fourth-order filter 1/Λ(s), where Λ(s) = (s+ λ)4 = s4 + k3s
3 + k2s

2 + k1s+ k0, and then have

s4

Λ(s)
y + a3

s3

Λ(s)
y + a2

s2

Λ(s)
y + a1

s

Λ(s)
y + a0

1

Λ(s)
y

= b2
s2

Λ(s)
u+ b1

s

Λ(s)
u+ b0

1

Λ(s)
u.

(4.7)

Then, equation (4.7) can be rewritten as a parameterized form

y =b2
s2

Λ(s)
u+ b1

s

Λ(s)
u+ b0

1

Λ(s)
u+ (k3 − a3)

s3

Λ(s)
y

+ (k2 − a2)
s2

Λ(s)
y + (k1 − a1)

s

Λ(s)
y + (k0 − a0)

1

Λ(s)
y

=ΘTΨ

(4.8)

where
Θ = [b2, b1, b0, k3 − a3, k2 − a2, k1 − a1, k0 − a0]T ,

Ψ =

[
s2

Λ(s)
u,

s

Λ(s)
u,

1

Λ(s)
u,

s3

Λ(s)
y,

s2

Λ(s)
y,

s

Λ(s)
y,

1

Λ(s)
y

]T
.

The values of frequencies ω1, ω2 and damping ratios ζ1, ζ2 to be online estimated are determined by

k̄1, k̄2, c̄1, c̄2, which can be obtained by using (4.3) and (4.4). One can obtain the eigenvalues of Ā in

(4.3) as 

p1 = c̄2
2 +

√
c̄22+4k̄2

2

p2 = c̄2
2 −
√
c̄22+4k̄2

2

p3 = c̄1
2 +

√
c̄21+4k̄1

2

p4 = c̄1
2 −
√
c̄21+4k̄1

2

(4.9)

From (4.4), one can obtain the eigenvalues p1, p2, p3, p4 by computing the roots of the characteristic

polynomial s4 + a3s
3 + a2s

2 + a1s + a0. Substituting p1, p2, p3, p4 into (4.9), we can solve (4.9) and

obtain k̄1, k̄2, c̄1, c̄2. Then the frequencies ω1, ω2 and damping ratios ζ1, ζ2 can be computed.

For the other two parameters b̄1 and b̄2 in (4.3), one can obtain the values with the help of (4.5). We

can rewrite the first three equations of (4.5) as −2 2

2c̄2 −2c̄1

2k̄2 −2k̄1

[ b̄1

b̄2

]
=

 b2

b1

b0

 . (4.10)

Since (4.10) is over-constrained, we can obtain the approximate solution of (4.10) by introducing

Moore–Penrose inverse. Then b̄1 and b̄2 can be obtained as[
b̄1

b̄2

]
=

 −2 2

2c̄2 −2c̄1

2k̄2 −2k̄1


+  b2

b1

b0

 (4.11)

where [·]+ is the Moore–Penrose inverse. Another way to compute b̄1 and b̄2 is to use only two equations

of (4.10). The computational burden will be less and the differences will be only in transient.

Clearly, the system parameters k̄1, k̄2, c̄1, c̄2, b̄1, b̄2 in (4.3) can be obtained as long as the parameters

ai, i = 0, 1, 2, 3 and bj , j = 0, 1, 2 in (4.5) are estimated online. Hence, the problem now is to online

estimate the unknown model parameters Θ based on the measured input u and output y.
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To ensure the convergence of parameter estimation, the persistent excitation condition should be

fulfilled. This condition can usually be fulfilled in the beam system. However, the verification of this

condition is not a trivial task. This will be studied in the following subsection.

4.3.2 Adaptive Parameter Estimation

Although the classical gradient algorithm has been applied for system (4.8), the tuning of learning gain

that affects the performance is generally difficult, since it is also sensitive to measurement noise. In this

subsection, we introduce an alternative adaptive parameter estimation algorithm to estimate the unknown

parameter Θ of parameterized model (4.8), and allow verifying the required excitation condition.

To eliminate the influence of noise, we first define the auxiliary regressor matrix P and vector Q as{
Ṗ = −lP + ΨΨT , P (0) = 0

Q̇ = −lQ+ Ψy,Q(0) = 0
(4.12)

where l > 0 is a forgetting factor set as a small constant.

One can obtain the solution of (4.12) as{
P =

∫ t
0 e
−l(t−r)Ψ(r)ΨT (r)dr

Q =
∫ t

0 e
−l(t−r)Ψ(r)y(r)dr

(4.13)

which are bounded for any bounded Ψ and y.

To obtain the estimation error Θ̃ = Θ − Θ̂ to design an adaptive law, we define another auxiliary

vector W as

W = P Θ̂−Q (4.14)

where Θ̂ is the estimated parameter.

Combining (4.13) and (4.14), the vector W can be further reformulated as

W = −P Θ̃. (4.15)

Hence, the parameter estimation error Θ̃ can be explicitly calculated online based on the measured

input u and output y, which can be used to design the adaptive laws [87] to obtain better performance

than the classical gradient algorithm. Moreover, the purpose of introducing the above filtered matrix P

is to provide a feasible approach to verify the required excitation condition, which can be summarized as

the following lemma:

Lemma 4.1. If the regressor Ψ defined in (4.8) is persistently excited, the matrix P is positively definite

(i.e., λmin(P (t)) > σ > 0 for a positive constant σ), and vice versa.

We refer to [94] for a similar proof of the above lemma. The value of this lemma lies in that one

can calculate the minimum eigenvalue of matrix P to evaluate if the required excitation condition of

regressor Ψ is fulfilled.

Since W is a function of parameter estimation error Θ̃, one can use it to design the adaptive laws

as shown in [94], where the adopted constant learning gain should be carefully set by the designers.

However, from (4.12) and (4.15), we can see that the regressor Ψ is involved in the vector W , which

may influence the convergence response of the estimated parameters [103]. Hence, we will introduce a

new adaptive law with a time-varying gain to handle effects of regressor so as to simplify the tuning of

learning gains. Taking the effect of the regressor Ψ into consideration, we define a time-varying gain H
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as

Ḣ = γH −HΨΨTH (4.16)

where γ > 0 is a design constant and H(0) = H0 > 0 is the initial condition.

Using the matrix identity
d

dt
HH−1 = ḢH−1 +H

d

dt
H−1 = 0 (4.17)

we have its solution

H(t) =

[
e−γtH−1

0 +

∫ t

0
e−γ(t−r)Ψ(r)ΨT (r)dr

]−1

. (4.18)

Now, the boundedness of matrix H is shown as [103]:

Lemma 4.2. If the regressor Ψ is persistently excited, the matrix H−1 defined in (4.17) is bounded by

βI ≤ H−1(t) ≤ αI (4.19)

where β = e−γT1ς and α = λmin(H−1
0 ) +$2, $ ≥ ‖Ψ‖.

The proof of the above claims can be inspired by [103], which is not presented here due to the page

limit.

As shown in (4.13) and (4.18), the matrix H converges to the inverse of auxiliary matrix P . Hence,

it can be used to compensate the effect of regressor in the variable W . We can use W and H together to

design the following adaptive parameter updating law
˙̂
Θ = −ΓHW (4.20)

where Γ > 0 is a positive constant.

The main results of this paper can be given as the following Theorem:

Theorem 4.1. Consider system (4.6) with the parameter updating law (4.20), if the regressor Ψ is per-

sistently excited, the estimation error Θ̃ exponentially converges to zero.

Proof. We choose the Lyapunov candidate function as

V =
1

2Γ
Θ̃TH−1Θ̃. (4.21)

One can obtain the time derivative of V along with (4.20) as

V̇ =
1

2Γ

(
˙̃ΘTH−1Θ̃ + Θ̃T Ḣ−1Θ̃ + Θ̃TH−1 ˙̃Θ

)
=

1

Γ
Θ̃TH−1 ˙̃Θ +

1

2Γ
Θ̃T Ḣ−1Θ̃

= −Θ̃TP Θ̃ +
1

2Γ
Θ̃T Ḣ−1Θ̃.

(4.22)

From (4.18), we have

Ḣ−1 = −γH−1 + ΨΨT . (4.23)

Then, equation (4.22) can be further written as

V̇ = −Θ̃TP Θ̃ +
1

2Γ
Θ̃T
(
−γH−1 + ΨΨT

)
Θ̃

≤ −σ
α

Θ̃TH−1Θ̃− γ

2Γ
Θ̃TH−1Θ̃ +

$2

2Γβ
Θ̃TH−1Θ̃

≤ −
(

2Γσ

α
+ γ − $2

β

)
1

2Γ
Θ̃TH−1Θ̃

≤ −µV

(4.24)
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where µ = 2Γσ/α + γ − $2/β is a positive constant for large gains Γ, γ. Based on the Lyapunov’s

Theorem, the estimation error Θ̃ exponentially converges to zero.

Remark 4.2. One can find that the adaptive law (4.20) is constructed based on the derived variable W ,

which is driven by the parameter estimation error Θ̃ as shown in (4.15). Therefore, the convergence of

this algorithm can be rigorously proved. Clearly, the proposed adaptive estimation method avoids using

any predictor/observer, which is different from the gradient algorithms and least-squares methods driven

by the observer error (as shown in [84]). Besides, a time-varying gain H is adopted to compensate the

effect of regressor Ψ in the adaptive law to enhance the convergence over that given in [94]. In this

line, as shown in the proof of Theorem 1, the learning gain Γ can be trivially selected compared with the

gradient counterparts. Moreover, online validation of the persistent excitation can be achieved by testing

the positive definiteness of P according to Lemma 4.1.

4.4 Simulations and Experiments

4.4.1 Simulations

In the simulations, the beam system model (4.6) can be written as

y(4) + 65.42y(3) + 6.18 · 104y(2) + 1.95 · 105y(1)

+ 9.23 · 107y = 13.02u(2) − 1.18 · 103u(1) − 1.11 · 106u
(4.25)

where a3 = 65.42, a2 = 6.18 · 104, a1 = 1.95 · 105, a0 = 9.23 · 107, b2 = 13.02, b1 = −1.18 ·
103, b0 = −1.11 · 106 are the model parameters to be estimated. These nominal values are computed

from the material properties given in Table 1.1 together with the procedure described in Section 2.5.3

and Section 4.3. The input signal is a square wave with amplitude 0.1 and frequency 7 Hz to ensure

the required excitation condition given in Lemma 1. The polynomial used to derive the parameterized

form is chosen as Λ(s) = (s + 100)4. The other parameters of the proposed adaptive law are Γ =

80 · diag(1, 1, 1, 1, 1, 1, 1), H(0) = 1 · 1022 · diag(1, 1, 10, 10, 10, 10, 10) and l = 0.01, γ = 0.1.

For comparison, the gradient-based method and least-squares method [84] are used to estimate the

unknown system parameters under the same operation condition. The gradient-based adaptive law is

designed as [84]
˙̂
Θ = Γ1eΨ, e = y − Θ̂TΨ (4.26)

and the least-squares algorithm as
˙̂
Θ = Γ2eΨ, e = y − Θ̂TΨ, Γ̇2 = −Γ2ΨΨTΓ2. (4.27)

The learning gain of the gradient-based method in (4.26) is Γ1 = 1 · diag(2 · 1011, 2 · 1015, 6 · 1019, 3 ·
1012, 2 · 1017, 7 · 1018, 4 · 1023). The initial value of the covariance matrix Z in the least-squares method

(4.27) is Γ2(0) = 1 · 1023 · diag(1, 1, 1, 10, 10, 10, 10).

Clearly, the tuning of these gains for the gradient-based method and least-squares method should

consider the effect of regressor Ψ (e.g. the amplitude of each component), and thus it is a time-consuming

phase, requiring preliminary information of the plant. In contrast, for the proposed estimation algorithm,

since the effect of regressor Ψ on the convergence is handled by introducing the time-varying gain H ,

such that the tuning of the learning constant Γ is more straightforward, i.e. all components in the gain Γ

can be set as a constant.
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Simulation results are depicted in Figure 4.1 and Figure 4.2. Figure 4.1 shows the profile of the

input and output signal of the system (4.25). Figure 4.2 provides the estimation of the parameters ai, bj .

We can see that the proposed adaptive estimation method has a smoother and faster response compared

with the gradient method and least-squares method. Hence, the proposed adaptive method can accurately

estimate the unknown model parameters. This is because the adaptive law (4.20) is designed by using the

extracted parameter estimation error instead of the predictor/observer error in the conventional methods.

The gradient method achieves larger overshoots and slower convergence performance. Moreover, the

least-squares method suffers from a windup problem in the gain Γ2 given in (4.27).
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Figure 4.1: Input and output signals (simulation results)

According to (4.2) and (4.4), we can obtain the first mode frequency ω1, the second mode frequency

ω2, the first mode damping ratio ζ1 and the second mode damping ratio ζ2. Comparative values are

shown in Table 4.1. It is shown that the proposed adaptive method has better estimation results than the

other two methods.

Table 4.1: Comparison of frequencies and damping ratios with gradient method, least-squares and the proposed
adaptive method

ω1(rad/s) ω2(rad/s) ζ1 ζ2

True value 39.1533 245.3711 0.0207 0.13
Gradient 38.8304 245.0479 0.0216 0.1374

least-squares 39.1339 231.6241 0.02 0.1205
Adaptive 39.1682 245.3184 0.0207 0.13
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Figure 4.2: Comparative convergence performance of gradient method, least-squares method and the proposed
adaptive method (simulation results)
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Figure 4.3: Estimation results of the first mode system

4.4.2 Practical Experiments

Before performing the estimation of the two modes system, we firstly consider the system with only the

first mode. Following the procedure in Section 4.3, we can obtain the parameterized system as

y = ΘTΨ (4.28)

where

Θ = [b0, k1 − a1, k0 − a0]T ,Ψ =

[
1

Λ(s)
u,

s

Λ(s)
y,

1

Λ(s)
y

]T
.

The polynomial is chosen as Λ(s) = (s+ 2)2. The parameters of the adaptive law (4.20) used in the

experiments are Γ = 10 · diag(1, 1, 10), H(0) = 1 · diag(1 · 1021, 1 · 1021, 1 · 1023), l = 0.01, γ = 0.1.

The estimation results are given in Figure 4.3 and the reconstructed output is shown in Figure 4.4. From

Figure 4.4 we can see that the dynamics of the system output can be partly reconstructed considering the

first mode while there are discrepancies between the experiment output and the reconstructed output.

Following the analysis given in the simulations, we conduct the experiments for the two modes sys-

tem.The parameters of the adaptive law (4.20) used in the experiments are Γ = 10·diag(1, 1, 1, 1, 1, 1, 1), H(0) =

1 · diag(1 · 1023, 1 · 1015, 1 · 1024, 1 · 1021, 1 · 1022, 1 · 1024, 1 · 1025), l = 0.01, γ = 0.1. The learn-
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Figure 4.4: Reconstructed model output with the proposed adaptive method for the first mode system

ing gain of the gradient-based method in (4.26) is Γ1 = 1 · diag(1 · 1011, 1 · 1010, 1 · 1019, 1 · 1016, 1 ·
1017, 1 ·1019, 1 ·1021). The initial value of the covariance matrix Γ2 in the least-squares method (4.27) is

Γ2(0) = 1 ·diag(1 ·1010, 1 ·1016, 1 ·1017, 1 ·1021, 1 ·1024, 1 ·1023, 1 ·1027). Clearly, since a time-varying

gain H is used to handle the effect of regressor, the tuning of learning gain for the proposed algorithm is

easier than the gradient algorithm.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-50

0

50

V
o
lt
a
g
e
 (

V
)

Input signal

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-0.02

-0.01

0

0.01

0.02

D
is

p
la

c
e
m

e
n
t 
(m

)

Output (Displacement of the end of the beam)

Figure 4.5: Input and output signals (experiment results)

Experimental results are given in Figure 4.5-Figure 4.7. Figure 4.5 describes the profile of the input

and output signal collected from the test bench. The input signal is a square wave with amplitude 50 V

and frequency 7 Hz. To alleviate the effect of the high-frequency electrical noises, a low-pass filter is ap-

plied before feeding into the estimation algorithm. The parameter estimation results of gradient method,

least-squares method and the proposed adaptive method are shown in Figure 4.6. We can see that the pro-

posed adaptive method (4.20) has an overall better performance compared to the gradient-based method
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Figure 4.6: Comparative convergence performance of gradient method, least-squares method and the proposed
adaptive method (experiment results)

63



0 1 2 3 4 5 6 7 8 9 10
-0.04

-0.02

0

0.02

D
is

p
la

c
e
m

e
n
t 
(m

)

Experiment output Reconstructed output with Gradient method

0 1 2 3 4 5 6 7 8 9 10

-0.02

-0.01

0

0.01

0.02

D
is

p
la

c
e
m

e
n
t 
(m

)

Experiment output Reconstructed output with Least-squares method

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-0.02

-0.01

0

0.01

0.02

D
is

p
la

c
e
m

e
n
t 
(m

)

Experiment output Reconstructed output with proposed Adaptive method

Figure 4.7: Reconstructed model output with gradient method, least-squares method and the proposed adaptive
method

(a) Case 1: In air (b) Case 2: 8cm submerged (c) Case 3: 16cm submerged (d) Case 4: 24cm submerged

Figure 4.8: The beam submerged in different level of water

Table 4.2: Frequencies and damping ratios for the beam submerged in different level of water

ω1(rad/s) ω2(rad/s) ζ1 ζ2

Case 1: In air 39.6432 197.0857 0.0155 0.2099
Case 2: 8cm submerged 20.4028 180.0480 0.1117 0.2723
Case 3: 16cm submerged 16.2501 123.4138 0.2442 0.3914
Case 4: 24cm submerged 14.4084 112.3138 0.3483 0.4825
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(4.26) and the least-squares method (4.27). In particular, smaller oscillations of the parameters can be

achieved with the proposed adaptive method. However, the gradient algorithm has a slow convergence

rate and more oscillations or even steady-state errors in the estimated parameters. To illustrate the ac-

curacy of the proposed approach, we further reconstruct and compare the output of the model using the

estimated parameters with these three different methods. The measured output and model output with

the estimated parameters are shown in Figure 4.7, from which we can see that the proposed method can

accurately estimate the unknown model parameters and thus approximate the output dynamics of the

real beam system. In contrast, the gradient method and the least-squares method can not achieve such

a good performance. The gradient algorithm leads to steady-state errors in the model output, implying

unprecise parameter estimation, while the least-squares method has a transient error during the first 3

sec, indicating a sluggish convergence for parameter estimation. These experimental results showcase

the advantages of the proposed learning algorithm with the introduced time-varying gains.

To show the effectiveness of the proposed method for the beam submerged in fluid. Different level of

water is filled in the box as shown in Figure 4.8. Comparative results for the beam submerged in different

level of water are given in Table 4.2. From Table 4.2 we can see both of the first mode frequency and

the second mode frequency of the submerged beam are less than the frequencies of the dry beam. For

each mode of the submerged beam, the frequency decreases as the water level increases. Moreover, the

damping of the submerged beam is larger than the dry beam. For the submerged beam, the damping

increases as the water level increases.

4.5 Conclusion

This chapter developed a new adaptive parameter estimation approach for a cantilever beam modeled

based on the Euler-Bernoulli theory. Taking into consideration of the first mode and second mode, the

beam model is finally reduced to a fourth-order ODE. Then the adaptive parameter estimation method

is proposed to estimate the unknown parameters. The estimation can be online achieved and only input

and output signal is needed. Differentiation of the signals are avoided in the estimation procedure which

is preferable in practice. At last, the convergence of the parameter estimation error is proved by suing

Lyapunov theory. Simulation and experiment results show the effectiveness of the proposed method.
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Part IV

Vibration Control of the Beam System
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Chapter 5

Unknown System Dynamics Estimator
based Vibration Control for the Beam
System

5.1 Introduction

Unknown system dynamics (e.g. unmodelled dynamics, parameter perturbations and external distur-

bances) are unavoidable in the beam system. The disturbance observer based methods [25, 104–106]

provide an effective way to address the lumped unknown dynamics. The vibration control performance

for the beam system can be enhanced by including the estimated unknown dynamics because the lumped

unknown dynamics can be compensated by the controller. In this chapter, we will take all the unmod-

elled dynamics, uncertainties, parameter perturbations and unknown disturbances as lumped unknown

dynamics, an unknown system dynamics estimator will be proposed to cope with the lumped unknown

dynamics of the beam system. To suppress the vibration of the beam, a feedback control law including

the estimated dynamics will be developed.

5.2 State of art

In many applications that can be described by beams (e.g. turbine blades), different forces (e.g. flow

forces) are imposed on the flexible beams. Control strategies play important roles on rejecting these

external forces. If no control strategy is used, the vibration of the beam will last for a very long time

once the beam is exerted by an external force. The vibration not only affects the performance of the

applications, but also damages the structure and reduces the service life. In recent years, vibration

suppression of the beam has been a research area of great interest.

In this section, we will review control strategies for the beam and beam in the fluid. In addition,

unknown parameters estimation methods will be introduced when the accurate model can not be obtained

in practice.
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5.2.1 Classification of beam control

In order to control the beam, the control force can be applied at different position with different char-

acteristics. In this regard, the control can be mainly divided into two types, i.e. boundary control and

distributed control [107]. The main difference between boundary control and distributed control is the

control force applied on the beam.

Boundary control is a method that applies control force at the boundary of the beam. It requires

only a few actuators and sensors, and this feature makes it simple to implement in practical engineer-

ing. The idea of boundary control was firstly utilised on the systems described by the wave equations

like strings [108], and then extended to other systems. In [109], the boundary control was introduced

for the Timoshenko beam. For Euler-Bernoulli beam, a dynamic boundary force control and a dynamic

boundary torque control are applied at the end of the clamped-free beam in [110]. For rotating beam

problems, a rotating Timoshenko beam was investigated by using boundary control [111]; a shear beam

was studied under boundary control by combining a decoupled controller and an observer [112]. For

beams with input delay in boundary control, [113] introduced a feedback control law that makes the sys-

tem exponentially stabilisation; [114] provided an observer-predictor based scheme to track and estimate

the state in the stabilisation procedure of the system.

Compared with boundary control, distributed control increases the number of sensors and actuators

in different points. With more feedback signals, distributed control can obtain a better performance.

However, it will be more difficult to implement in practice. In [115], distributed control was used to

design the control strategy for the active damper. The distributed control allows to control all the modes

of vibration at once. Hence, one may avoid the spillover problems of the uncontrolled modes. In [116],

the optimally controlled distributed forces effectively damps out the transient vibration of the beam.

For the Euler–Bernoulli beam model with the tip payload, [117] proposed a distributed control in order

to track a desired reference signal of the motion of the beam. It is proved that the tracking error is

exponentially stable in a constrained space.

5.2.2 Classical beam control strategies

For the control strategies for the vibration suppression of the flexible beams, the most widely studied

control methods of the beam can be summarized as follows.

5.2.2.1 PID control

Proportional, integral and derivative (PID) control is a well-known practical controller widely used in

many industrial equipment. It has a simple structure and is easy to implement. A salient feature of PID

control is it does not need the precise model of the system. Although PID control can deal well with

simple linear systems, it is difficult for it to get a good control performance for high-order systems and

nonlinear systems. PID control algorithm is described as

u = Kpe+Ki

∫ t

0
edt+Kd

d

dt
e (5.1)

where u is the control action, e is the error, Kp is proportional gain, Ki is integral gain and Kd is

derivative gain.

For beam control problem, [118] provided an experimental result of PID control for flexible steel can-
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tilever beam by using piezoelectric actuators. In [119], a mathematical beam model was introduced and

corresponding PID control is designed. Similar modelling procedure and PID-based control algorithm

can also be found in [120] and [24].

5.2.2.2 Optimal control

Optimal control deals with finding a control law for the dynamic system over a period time such that the

cost function is optimized. The cost function is generally defined as

J =

∫ T

0

(
xTQx + uTRu

)
dt (5.2)

where x is the state vector of the system, u is the control action. Q and R are positive matrices.

Optimal control strategies are investigated for the vibration control of different beams in many lit-

erature. In [26], a minimax linear–quadratic–Gaussian (LQG) optimal control was proposed which

minimizes the total vibration energy in the beam. A digital regulator is designed and experimentally

implemented for a flexible beam type structure containing piezoelectric sensors and actuators by using

optimal control design techniques in [121]. For beams controls considering time delay, a discrete optimal

control algorithm [122] was designed based on the augmented state system. [123] addressed the issue of

the active vibration control of the transverse modes in a flexible elastic systems by applying the optimal

forces on a sets of piezoelectric actuators.

5.2.2.3 Robust control

In order to address the uncertainties and unknown dynamics, robust control is introduced to control

flexible beams. In [124], a distributed parameter H∞ method is proposed for an Euler-Bernoulli beam

with Kelvin-Voigt damping. Finite dimensional suboptimal controllers are derived and show robust

stabilization in the presence of unmodelled time delays. In [125], a mixed H2/H∞ control is presented

for the purpose of vibration suppression of a clamped-free smart beam with piezoelectric actuator and

vibrometer sensor in the linear matrix inequality (LMI) framework. The robust controller with a regional

pole placement constraint is designed based on the augmented plant composed of the nominal model and

its accompanied uncertainty by solving a convex optimization problem.

There are also several other control methods that can be suitable on the beam control problems.

For the Euler-Bernoulli beam, [126] introduced active disturbance rejection and sliding mode control

approach to attenuate the external disturbances and stabilize the beam. In [127], an adaptive boundary

iterative learning control was proposed based on a time-weighted Lyapunov-Krasovskii-like composite

energy function. To deal with the uncertainty, three adaptive laws are designed and learned in the iteration

domain. In [27], a semi-active control method was proposed for the vibration control of a sandwich beam.

Although there are many control strategies proposed for various beams, very few control methods

are focusing on the beams immersed in fluid. However, the beam-fluid interaction problem is increas-

ingly getting attention in hydrodynamic applications [50]. In [128], vibration amplitude of a cantilever

beam immersed in fluid was controlled according to a closed-loop velocity proportional feedback control

approach. The equation of motion of coupled fluid-structure system was solved by Galerkin methods.

For different flows contacting with beams, there are still many problems (e.g. parametric perturbations,

unmodelled dynamics and time delays) need to be further investigated. To control the beam submerged
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in fluid, new control strategies and disturbance rejection techniques are required to conduct further in-

vestigations.

5.2.3 Disturbance observer based methods

In real applications, it is unavoidable to cope with the unknown dynamics (e.g. unmodelled dynamics and

unknown disturbances) which may deteriorate the control performance. In recent years, lots of attentions

have been attracted on this problem. For the elastic structures, it is nearly impossible to have the complete

system description for the control purpose. In such cases, unknown system dynamics estimator plays an

important role on addressing the unknown dynamics.

Vibration control is commonly applied on the flexible systems to suppress the vibration. The problem

in the vibration control is that the unknown forces or torques can not be directly measured. These forces

can only be computed indirectly by the resulting vibrations. As a result, apart from the control of vibra-

tion, it is essential to compensate the unknown forces which lead to the vibration. In [25], a disturbance

observer (DO) is designed for a Timoshenko beam under distributed disturbances. DO-based boundary

control is introduced to stabilize vibrations of the beam. In [129], a proportional integral observer (PIO)

is proposed to estimate the unknown inputs for the flexible beam. As a special modification of DO, the

PIO is mainly designed for detection of faults and estimation of nonlinear affects (e.g. fraction and back-

lash). This work show the effectiveness of the estimation of the force in practice. In [130], a modified

PIO is further developed for the estimation of the unknown forces of the elastic structure. Improved

robustness is achieved accounting for the measurement noise.

Taking the lumped unknown dynamics as an extra state, extended state observer (ESO) provides

another scheme to estimate the unknown terms [104, 105]. In [131], an ESO-based LQR control is

designed for the ball and beam system with disturbances and uncertainties. To avoid accurate high-order

model of the system, a simpler model is used in the controller. An ESO-based controller is designed

which shows good robustness to the disturbances. In [132], a high-gain ESO is proposed to compensate

the unknown dynamics of the flexible beam. Based on the high-gian ESO, the ADRC is presented to

supress the vibration of the beam. The boundedness of the closed-loop system is proved by a frequency

domain method. For the Euler-Bernoulli beam, an ESO is proposed to estimate the disturbance and

canceled online in [126], where ADRC and SMC are constructed respectively.

For distributed systems, an infinite dimensional disturbance estimator is proposed to determine the

unknown dynamics for the Euler-Bernoulli beam in [133]. Based on the estimator, a state observer and

two tyeps of velocity feedback controllers are constructed. In [134], the distributed disturbance estimator

is proposed for the wave equation described by PDE. It is proved that the estimator is capable to estimate

the unknown dynamics.

Along with the rapidly growth of the artificial intelligence, neural network estimators are of great

interests in recent years. In [135], a flexible spacecraft is investigated which uses NN to estimate the

nonlinearities and uncertainties. The estimated terms are then incorporated into the adaptive control.

In [106], the NN is constructed to estimate the natural frequencies of a steel beam. For the beam with

a surface crack, a NN-based identification method is proposed to identify the crack locations and depth.

Compared with the multi-layer perceptron network, the proposed RBFNN takes less computational time

at the training procedure.

Although the above-mentioned estimation methods can satisfy certain applications, tuning of the
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parameters is still not trivial. For the NN-based estimation approaches, it is time consuming to online

estimate the unavoidable unknown system dynamics. In real applications, a simple structure of the

estimator is preferable.

In this chapter, we will take all the unmodelled dynamics, uncertainties, parameter perturbations

and unknown disturbances as lumped unknown dynamics, a new unknown system dynamics estima-

tor (USDE) will be proposed to estimate the unknown dynamics. An USDE-based controller will be

designed to suppress the vibration of the beam.

5.3 Unknown system dynamics estimation

In this section, we will propose an estimator to capture the unknown dynamics of the beam system. In

addition, radial basis function neural network (RBFNN) and the extended state observer (ESO) will be

presented for comparison.

5.3.1 Design of the unknown system dynamics estimator

We recall the Galerkin model (2.106) with unknown system dynamics Fw as
ẋ1 = x2

ẋ2 = −k1x1 − c1x2 + b1u+ Fw

y = x1

(5.3)

In this subsection, we mainly focus on the estimation of the lumped unknown system dynamics Fw.

We assume Fw and its derivative are bounded, i.e., supt>0 |Ḟw| ≤ F̄w holds for a constant F̄w > 0. To

reconstruct the unknown dynamics Fw, we first define a set of filtered variables as
kf ẋ1f + x1f = x1, x1f (0) = 0

kf ẋ2f + x2f = x2, x2f (0) = 0

kf u̇f + uf = u, uf (0) = 0

(5.4)

where kf > 0 is a positive filter parameter.

The USDE can be designed as

F̂w =
x2 − x2f

kf
+ k1x1f + c1x2f − b1uf (5.5)

The convergence property of the USDE can be given as

Lemma 5.1. For system (5.3) with the USDE (5.5), the estimation error F̃w = Fw − F̂w is bounded as

‖F̃w‖ ≤
√
F̃ 2
w(0)e

− t
kf + k2

f F̄
2
w (5.6)

and thus F̂w → Fw holds for any kf → 0 and/or F̄w → 0.

Proof. We apply a low-pass filter on both sides of the second equation in (5.3), one can obtain

ẋ2f = −k1x1f − c1x2f + b1uf + Fwf (5.7)

where Fwf given by kf Ḟwf + Fwf = Fw is the filtered variable of Fw.

To avoid using the filtered acceleration signal ẋ2f , one can rewrite the second equation of (5.4) as

ẋ2f =
x2 − x2f

kf
(5.8)
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By substituting (5.8) into (5.7) along with (5.5), one can obtain F̂w = Fwf . This means the USDE

(5.5) deduces the filtered version of the lumped unknown dynamics.

From the definition F̃w = Fw − F̂w and the fact Ḟwf = − 1
kf
Fwf + 1

kf
Fw = 1

kf
F̃w, one can obtain

the derivative ˙̃Fw as
˙̃Fw = Ḟw − Ḟwf = Ḟw +

1

kf
Fwf −

1

kf
Fw = − 1

kf
F̃w + Ḟw (5.9)

We choose a Lyapunov candidate function as

V =
1

2
F̃ Tw F̃w (5.10)

The time derivative of (5.10) can be calculated along with (5.9) as

V̇ = F̃ Tw
˙̃Fw ≤ −

1

kf
F̃ Tw F̃w + F̃ Tw Ḟw (5.11)

By using the Young’s inequality F̃ Tw Ḟw = F̃T
w F̃w

2kf
+

kf
2 Ḟ

T
w Ḟw, (5.11) can be further written as

V̇ ≤ − 1

kf
F̃ Tw F̃w +

F̃ Tw F̃w
2kf

+
kf
2
Ḟ Tw Ḟw ≤ −

1

kf
V +

kf
2
F̄ 2
w (5.12)

Then we can deduce that the estimation error F̃w is bounded by ‖F̃w‖ ≤
√
F̃ 2
w(0)e

− t
kf + k2

f F̄
2
w.

Hence, we can conclude that F̃w can exponentially converge to zero as kf → 0 and/or F̄w → 0.

Remark 5.1. To implement the proposed USDE (5.5), the designing parameter kf in the filter (5.4)

needs to be determined appropriately. The parameter kf can not be chosen too large due to the phase

lag. A small kf can reduce the ultimate estimation error, while a too small one may make the system

sensitive to noise. As a result, a trade-off between the estimation performance and the robustness should

be appropriately made.

5.3.2 Comparison to other estimators

In order to show the advantages of the proposed USDE, we compare with some other estimators. One is

the radial basis function neural network (RBFNN), which is a function approximator. Another estimator

selected is the extended state observer (ESO).

5.3.2.1 Radial basis function neural network (RBFNN)

For the unknown function approximation, radial basis function (RBF)NN is distinguished from other

networks because of its universal approximation and fast learning speed [136]. In control engineering,

RBFNN can be used to modelling unknown system dynamics due to its good capability on unknown

function approximation [137]. Any function can be approximated within an arbitrary small error by

using an RBFNN provided there are enough neurons [138]. The RBFNN has one input layer, one hidden

layer and one output layer. The number of neurons in the input layer is related to the number of inputs.

The input neurons normalise the inputs and feed them into the hidden layer. The hidden layer conducts a

nonlinear transformation commonly by using Gaussian activation functions to obtain a variable number

of neurons. The output layer generates the prediction which is a linear summation of the hidden layer’s

outputs multiplied by the corresponding NN weights. In this this layer, the NN weights need to be

online updated. In this chapter, the following linearly parameterized RBFNN is used to approximate the
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unknown danamics Fw(uw)

Fw(uw) = ΨT
w(uw)W (5.13)

where W = [w1, w2, . . . , wn]T ∈ Rn is the NN weight vector and n is the neuron number; Ψw(uw) =

[Ψw1(uw),Ψw2(uw), . . . ,Ψwq(uw)]T is the regressor vector with Ψwi(uw) being chosen as the follow-

ing Gaussian functions

Ψwi(uw) = exp

[
− (uw − µi)T (uw − µi)

ς2
i

]
, i = 1, 2, . . . , q (5.14)

where uw = [uw1, uw2, . . . , uwj ]
T is the input vector, µi are the neuron’s centers and ςi are the width of

the Gaussian functions. The overall structure of the RBFNN is shown in Figure. 5.1.

1wu

2wu

wju

1w

2w

wq


wF

Input layer Hidden  layer Output layer

1w

2w

nw

Figure 5.1: Overall structure of RBFNN

It has been proved that the RBFNN (5.13) is capable to approximate any continuous function to an

arbitrary accuracy given enough neurons. The approximation can be written as

Fww(uw) = ΨT
w(uw)W ∗ + ξ (5.15)

where W ∗ are the ideal NN weights and ξ is the NN approximation error.

Note that the ideal NN weights W ∗ presented in (5.15) is only for analytical purpose. W ∗ is defined

as follows [137]

W ∗ , arg min
W∈Rn

{
sup

uw∈Rq

∣∣Fww(uw)−ΨT
w(uw)W

∣∣} . (5.16)

The following assumption is widely accepted and applied for the RBFNN:

Assumption 5.1. The ideal NN weights exist and the approximation error ξ is bounded by ‖ξ‖ ≤ ξ∗

with constant ξ∗ > 0.

Remark 5.2. Compared to other NN approximations (e.g. multi-layer neural network), the RBFNN has

a linear parameterized form which is much easier to design and implement. Another salient feature in the

RBFNN structure is only one NN weight vector requires to be online updated. A wide class of adaptive

law can be tailored to drive the RBFNN approximator.

For the beam system (5.3), the lumped unknown dynamics including parameter uncertainties and

unknown disturbances F̂w can be estimated by using the RBFNN as

F̂w = ΨT
w(uw)W (5.17)
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By defining auxiliary variables P , Q and M as
Ṗ = −lP + ΨT

wΨw

Q̇ = −lQ+ ΨT
w [(x2 − x2f ) /kf + k1x1 + c1x2 − b1u]T

M = PŴ −Q
(5.18)

the weighted parameter updating law can be designed as
˙̂
W = ΓwM (5.19)

where Γ > 0 is a designed diagonal matrix.

5.3.2.2 Extended state observer (ESO)

As stated in [104], ESO takes the lumped unknown dynamics as a new state variable. We define x3 = Fw

and denote ẋ3 = h(t), then the beam system (5.3) can be rearranged as
ẋ1 = x2

ẋ2 = −k1x1 − c1x2 + b1u+ x3

ẋ3 = h(t)

y = x1

(5.20)

A high-gain observer can be designed to estimate the states of the extended system (5.20) as [104]
˙̂x1 = x̂2 − λa (x̂1 − x1)

˙̂x2 = −k1x1 − c1x2 + b1u+ x̂3 − λb (x̂1 − x1)

˙̂x3 = −λc (x̂1 − x1)

(5.21)

where λa, λb and λc are the feedback gains of the observer. x̂3 is the estimation of the unknown dynamics

Fw. The explanation of choosing observer gains λa, λb and λc can be found in [104].

Remark 5.3. Compared to the RBFNN (5.17), ESO (5.21) and the proposed USDE (5.5) have simpler

structures which are easier to realize and tune for designers. A salient feature of the proposed USDE (5.5)

is only one designing parameter need to be adjusted while the ESO and RBFNN have more coefficients

have to be determined.

5.4 USDE-based controller design

After obtaining the estimation of the unknown system dynamics F̂w in (5.5), we introduce a composite

control for the beam system (5.3) in this section.

To achieve the goal of vibration suppression, we define an auxiliary variable including the control

error x1 and its derivative x2 as

z = α2x1 + x2 (5.22)

where α2 > 0 is a positive constant. As noted in [139], x1 is bounded as long as z is bounded. For

real-time control, we use Euler method to obtain x2 from x1. The error deduced from Euler method is

ignored in the controller design.

Then we can design the USDE based controller as

u =
1

b1

(
−β2z + k1x1 + c1x2 − α2x2 − F̂w

)
. (5.23)
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The closed-loop system stability with the controller (5.23) and the USDE (5.5) is shown in the fol-

lowing theorem.

Theorem 5.1. Consider the beam system (5.3), the controller (5.23) and the USDE (5.5), the error

variable z and the estimation error F̃w will converge to a small region around zero.

Proof. We select a Lyapunov function as

V =
1

2
z2 +

1

2
F̃ 2
w. (5.24)

The time derivative of V can be calculated as

V̇ = z · ż + F̃w · ˙̃Fw

= z · (α2x2 + ẋ2) + F̃w · ˙̃Fw

= z(α2x2 − k1x1 − c1x2 + b1u+ F̂w + F̃w) + F̃w · ˙̃Fw

= z(−β2z + F̃w) + F̃w · ˙̃Fw

= −β2z
2 + z · F̃w + F̃w · ˙̃Fw

= −β2z
2 + z · F̃w + F̃w · (−

1

kf
F̃w + Ḟw)

= −β2z
2φ− 1

kf
F̃ 2
w + z · F̃w + F̃w · Ḟw

≤ −β2z
2φ− 1

kf
F̃ 2
w +

1

2
z2 +

1

2
F̃ 2
w +

1

2
F̃ 2
w +

1

2
Ḟ 2
w

≤ −(β2 −
1

2
)z2 − (

1

kf
− 1)F̃ 2 +

1

2
F̄ 2
w

≤ −τ3V + ξ3

(5.25)

where τ3 = min {β2 − 1/2, 1/kf − 1} is a positive constant as long as β2 > 1/2 and 0 < kf < 1,

ξ3 = 1/2F̄ 2
w. Then the ultimate bounds of z and F̃w can be obtained by solving the inequality (5.25) as

V (t) ≤ e−τ3tV (0) + ξ3/τ3. This implies z and F̃w all exponentially converge to a small region defined

by Ω :=
{
z, F̃w | ‖z‖ ≤

√
2ξ3/τ3, ‖F̃w‖ ≤

√
2ξ3/τ3

}
. Then we can conclude that the errors z and

F̃w are bounded and the ultimate bounds are determined by the variation rate of the lumped unknown

dynamics supt>0 |Ḟw| ≤ F̄w. This further implies the control error x1 converge to zero.

5.5 Simulations

In this section, we will provide comparative results to illustrate the effectiveness of the proposed USDE

(5.5) and the USDE-based controller (5.23). We let the tip of the beam release at a distance at 0.01m,

then we compare the estimation results during the vibration and the control performance with PD control

and USDE-based control.

The filter coefficient of (5.4) is chosen as kf = 0.001, the feedback gains in the controller (5.23) are

set as α2 = 20, β2 = 100. We let F̂w = 0 in (5.23) and a PD controller is formed.

From Figure 5.2 we can see the estimation of the unknown dynamics with the proposed USDE (5.5)

has a fairly good estimation performance. We release the tip of the beam at a distance of 0.01m, the

vibration control results are shown in Figure 5.3. Both the PD control and the USDE-based control can
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suppress the vibration of the beam. The USDE-based control has a faster response compared with the

PD control. In addition, the steady-state error can reach to zero with the proposed USDE-based control

in a short time. This is because the lumped unknown dynamics can be estimated with the help of (5.5)

and then compensated into the USDE-based controller (5.23).

To show the advantage of the proposed USDE, we will compare the USDE with the RBFNN approx-

imation approach and the ESO method. The parameters of the RBFNN are chosen as uw = [x1, x2]T,

µj,i =

[
−10 −5 0 5 10

−10 −5 0 5 10

]
and ςi = 5, i = 1, 2, 3, 4, 5. The parameters of the adaptive law (5.19)

are set as Γw = 1 ·diag(1×104, 1×104, 1×104, 1×104, 1×104), l = 1 ·diag(800, 800, 800, 800, 800).

The parameters of ESO are selected as s3 + λas
2 + λbs + λc = (s + 1000)3 for the trade-off between

robustness and the estimation performance. The comparative results are given in Figure 5.4 and Figure

5.5. It is shown that the three estimators can all have a good estimation after a short time. However, the

ESO has a large overshoot at the transient state which is not desired. One may see from Figure 5.5 the

proposed USDE has a better estimation accuracy compared with the RBFNN and the ESO. Although the

RBFNN can achieve better performance by increasing the number of neurons, the computational cost

would be increased at the same time. For the ESO, a larger observer gain can improve the estimation

performance. However, a very large gain will make the system sensitive to noise.
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Figure 5.2: Unknown dynamics estimation of proposed UDE

To further illustrate the effectiveness of the proposed USDE-based control, a higher order (20th-

order) model will be used to simulate the system dynamics which is more close to the reality. We select

the number of nodes in (2.85) as K = 10. Then a twentieth-order model is constructed to describe the

system dynamics. In the controller design, the second order model (5.3) is retained. Comparative results

are shown in Figure 5.6 - Figure 5.8. We can see both the PD control and the USDE-based control can

suppress the vibration. The advantage of the USDE-based control is a smoother response can be achieved

without any overshoot. This lies in the compensation of the proposed estimator (5.5).
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Figure 5.3: Vibration control performance with PD control and the proposed UDE-based control
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Figure 5.5: The room-in plot of Figure 5.4

77



Figure 5.6: Vibration of the beam without control

Figure 5.7: Vibration control of the beam with PD con-
trol

Figure 5.8: Vibration control of the beam with proposed
UDE-based control

78



Piezoelectric

actuator

Strain gauge

Amplifier

Strain measurement

module (NI 9235)

Signal generation

module (NI 9262)

Signal monitor

module (NI 9223)

Cantilever beam

compactRIO-9047

Computer

Figure 5.9: Overall hardware configuration of the beam system

5.6 Experiments

The overall hardware configuration for the control of the beam is given in Figure 5.9.

In the experiments, the sampling rate of the compactRIO-9047 is set as fs = 800Hz. The parameters

of the PD control is set as kp = 200000, kd = 0.15. The filter parameter in (5.5) is chosen as kf = 0.002.

The parameters in the USDE-based control (5.23) are selected as α = 540, β = 1500.

We release the tip of the beam at a distance at 0.01m, the experimental results are given in Figure

5.10 and Figure 5.11. It is shown both the PD control and the USDE-based control can suppress the

vibration. Clearly, the proposed USDE-based control has a better control performance compared with

the PD control. With the proposed USDE-based control, the beam can be stabilized within a very short

time (roughly 2 seconds). In contrast, the PD control need a longer time to achieve the same performance.

To show the effectiveness of the vibration suppression for the submerged beam, we submerged 1cm

of the beam in water. Because the damping of the submerged beam is much larger than the dry beam.

We release the submerged beam at a distance of 2cm, the results are described in Figure 5.12. It is shown

the vibration of the submerged beam can be reduced with the USDE-based control. However, the control

signal is not large enough to impose a larger force on the beam. As shown in Figure 5.13, The control

signal is saturated at −100V and 250V due to the limit of the hardware.

5.7 Conclusions

In this chapter, an alternative estimator based vibration control strategy is proposed to both suppress the

vibration and estimate the unknown system dynamics. Different to the function approximation based

methods, the proposed control has a simple structure which is more realistic to implement in practice. In

the proposed estimator, only one parameter need to be tuned depends on the bandwidth of the filter. The

estimated unknown dynamics is compensated into the controller and thus makes the system more robust
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Figure 5.10: Tip displacement of the beam with and
without PD control (experiment results)
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Figure 5.11: Tip displacement of the submerged beam
with and without USDE based control (experiment re-
sults)
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Figure 5.12: Tip displacement of the submerged beam
with and without USDE based control (experiment re-
sults)
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Figure 5.13: Control signal of the USDE-based control
for the submerged beam (experiment results)
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to unknown external disturbances. The stability and convergence properties of the proposed control is

proved by using Lyapunov theory. In the simulation, the convergence performance of the proposed es-

timator and the vibration suppression performance are demonstrated. The proposed control method is

further verified on a distributed model. The results show that the proposed control has a better perfor-

mance compared to the PD control. At last, experiment results show the effectiveness of the proposed

control method.
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Chapter 6

Adaptive Vibration Control for the Beam
System

6.1 Introduction

For the systems with uncertainties and parameter perturbations, adaptive control is one of the most ef-

fective control methods [140]. A salient feature in adaptive control is the unknown parameters can be

online updated. This feature makes it possible to control systems under different conditions.

In the past several decades, adaptive control has been widely applied in many systems such as

robots [141], aircrafts [142] and navigation systems [143]. The advantage of adaptive control lies in the

self-adjusting parameters of the system with regard to various operating conditions. In [144], a robust

adaptive control strategy is proposed for teleoperatioin systems. Time-varying delay and uncertainties

are addressed with the help of adaptive control. For robot manipulators, [145] provides an adaptive

motion control method, where the gravity can be online compensated. In [146], the adaptive control

is extended to the unmanned vehicles. It is shown the adaptive control can address the motion control

problem for the unmanned systems with hydrodynamical uncertainties.

For the beam system, adaptive control has been investigated in a few articles. In [147], an adaptive

shape control is proposed for the flexible beam. The composite beam was modelled by using piezoelec-

tric actuators and sensors. Dynamic response of the integrated laminated beam was studied. In [148],

adaptive barrier control was introduced to suppress the vibration and cope with the system uncertainties.

A new barrier Lyapunov function was proposed for the control design and stability analysis to prevent

the constraint violation. In [149], a model reference adaptive control was investigated. The adaptive law

was developed based on the Lyapunov redesign method on an infinite dimensional Hilbert space.

In this chapter, a new adaptive parameter estimation and control scheme will be introduced for the

beam system. Different to the existing adaptive control methods, the proposed adaptive law will be

driven by the parameter estimation error instead of the prediction error. In addition to online estimate

the unknown parameters, the vibration of the beam can be suppressed by using the proposed adaptive

controller.
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6.2 Adaptive control for the beam system

In this section, we will propose a new adaptive control strategy for the flexible beam. The dynamics of

the beam under different flow loads behaves like other beams with different parameters. Therefore, we

can design adaptive control as long as the parameters can be online estimated. We recall the beam model

as 
ẋ1 = x2

ẋ2 = −Θ1x1 −Θ2x2 + b1u

y = x1

(6.1)

where Θ1 and Θ2 are the unknown system parameters, b1 is a known piezoelectric coefficient.

6.2.1 Adaptive parameter estimation

Before introducing the adaptive controller, an adaptive law should be designed to update the unknown

parameters of the beam system. In stead of designing traditional adaptive laws using the prediction error,

we will construct a new adaptive law driven by the parameter estimation error. For this purpose, we

define a set of filtered variables as
kf ẋ1f + x1f = x1, x1f (0) = 0

kf ẋ2f + x2f = x2, x2f (0) = 0

kf u̇f + uf = u, uf (0) = 0

(6.2)

To facilitate the parameter estimation, we can reconstruct the second equation in (6.1) as the follow-

ing compact form

ẋ2f = ΦT
f Θ (6.3)

where

Φf = [−x1f ,−x2f ]T , Θ = [Θ1,Θ2]T . (6.4)

Moreover, we define the auxiliary variables P and Q as [87]{
Ṗ = −lP + ΦT

f Φf

Q̇ = −lQ+ ΦT
f [(x2 − x2f ) /kf − b1uf ]T

(6.5)

where l > 0 is a positive constant.

By integrating (6.5) we can obtain its solution as{
P =

∫ t
0 e
−l(t−r)ΦT

f (r)Φf (r)dr

Q =
∫ t

0 e
−l(t−r)ΦT

f (r) [(x2 − x2f ) /kf − b1uf ]T dr
(6.6)

Then a crucial variable can be derived as

M = P Θ̂−Q = −P Θ̃ (6.7)

where Θ̂ is the estimated parameter and Θ̃ is the estimation error fulfills Θ̃ = Θ − Θ̂. From (6.5) we

can find that the variable M contains the information of the estimation error Θ̃. As a result, M can be

used to drive the adaptive law. As shown in [150], the variable M can guarantee the convergence of the

parameter error and enhance the control performance as well.
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6.2.2 Adaptive controller design and stability analysis

In order to suppress the vibration of the beam system, we define a sliding surface variable z with the

control error x1 and its derivative x2 as

z = α1x1 + x2 (6.8)

By differentiating (6.8), one can derive ż along with (6.1) as

ż = α1x2 + ẋ2 = α1x2 −Θ1x1 −Θ2x2 + b1u (6.9)

The adaptive control law can be designed as

u =
1

b1
(−β1z + Θ̂1x1 + Θ̂2x2 − α1x2) (6.10)

where Θ̂1 and Θ̂2 are the unknown system parameters that can be online estimated with the lumped

vector Θ.

Then, we can design the parameter updating law to online estimate the unknown parameters Θ̂1 and

Θ̂2 with the help of (6.7) as
˙̂
Θ = Γ(ΦT z −M) (6.11)

where Γ > 0 is a designed diagonal matrix. The overall structure of the proposed adaptive control

scheme for the beam system is shown in Figure. 6.1.
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Figure 6.1: Structure of the proposed adaptive control scheme for the beam system

Remark 6.1. Different to the existing adaptive control strategies, a new leakage term M is included in

the parameter updating law (6.11). The new leakage term M contains the parameter estimation error,

thus the parameter convergence can be guaranteed. Consequently, the convergence of the control error

can be guaranteed by using the proposed adaptive control (6.10).

The following Theorem summarizes the main results of this chapter:

Theorem 6.1. Consider system (6.1) with the adaptive control (6.10) and the parameter updating law

(6.11), if the regressor matrix Φ is persistently excited, the filtered regressor matrixP satisfies λmin(P ) >

σ > 0 and both the control error x1 and the parameter error Θ̃ exponentially converge to zero.

Proof. We select the Lyapunov function as

V1 =
1

2
z2 +

1

2
Θ̃TΓ−1Θ̃ (6.12)
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Figure 6.2: Estimated parameters of the beam system with the proposed adaptive control scheme

One can obtain the time derivative of V1 from (6.12), (4.20) and (6.9) as

V̇1 = zż + Θ̃TΓ−1 ˙̃Θ

= z(−β1z + ΦΘ̃) + Θ̃TΓ−1(−ΓΦT z − ΓP Θ̃)

= −β1z
2 − Θ̃TP Θ̃

≤ −β1z
2 − 2σkm/λmax

(
Γ−1

)
Θ̃TΓ−1Θ̃

≤ −τV1

(6.13)

where τ = 2min{β1, σkm/λmax

(
Γ−1

)
} is a positive constant for all t > 0. Based on Lyapunov’s

Theorem and Theorem 6.1, both z and the parameter error Θ̃ exponentially converge to zero. This

implies the control error x1 converge to zero.

6.3 Simulations

In order to verify the effectiveness of the proposed adaptive control. The parameters of the adaptive law

(4.20) are set as Γ = 1 · diag(1 · 1011, 1 · 108), kf = 0.001, l = 1 · diag(0.1, 0.1). The parameters

of the control law (6.10) are chosen as β1 = 20, α1 = 120. For the tuning of these parameters, large

learning gain Γ can increase the convergence rate while may cause parameter shifting at the transient

response. Large β1 and α1 can improve the control performance while requiring a larger-range control

signal depends on the actuator. The filter coefficient kf and the forgetting factor l should be chosen by

making a trade-off between the estimation performance and the robustness.

We release the tip of the beam at a distance of 0.01m to show the effectiveness of the proposed
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Figure 6.3: Vibration control performance with PD control and the proposed adaptive control scheme

adaptive control. This is a regular case in the turbine system encountering flows. The vibration of

the beam makes the system fulfills the persistent excitation condition. Therefore, the unknown system

parameters can be estimated as mentioned in Theorem 6.1.

The parameter estimation results and vibration control results are shown in Figure 6.2 and Figure

6.3. From Figure 6.2 we can see the parameters can be exactly estimated in a short time. Figure 6.3

shows both the PD control and the adaptive control can suppress the vibration of the beam. The adaptive

control has a better control performance compared with the PD control.

To further illustrate the effectiveness of the proposed adaptive control, a higher order (20th-order)

model will be used to simulate the system dynamics which is more close to the reality. We select the

number of nodes in (2.85) as K = 10. Then a twentieth-order model is constructed to describe the

system dynamics. In the controller design, the second order model (6.1) is retained. The comparative

results are shown in Figure 6.4-Figure 6.6. From Figure 6.4 we can see the free vibration of the beam

without control vibrates around 15 seconds after release. With the PD control, the beam can be stabilized

at around 5 seconds as shown in Figure 6.5. With the proposed adaptive control, the vibration of the

beam can be suppressed within a very short time around 2 seconds, which illustrate the effectiveness and

the advantage of the proposed adaptive control method.
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Figure 6.4: Vibration of the beam without control

Figure 6.5: Vibration control of the beam with PD con-
trol

Figure 6.6: Vibration control of the beam with the pro-
posed adaptive control
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6.4 Conclusions

This chapter proposes an adaptive control for the beam with uncertainties. In the adaptive law design, a

new parameter estimation error based algorithm is introduced which is different to the classical predic-

tion error based methods (e.g. gradient method). By using the new adaptive law, the unknown system

parameters can be online updated. To suppress the vibration of the beam, the adaptive controller is de-

signed and the stability is proved by using Lyapunov theorems. Simulation results show the effectiveness

of the proposed adaptive control scheme.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions and contributions

In this thesis, the dynamic model for the piezoelectric cantilever beam is build by using PDE. To facilitate

the parameter estimation procedure and the controller design, a simplified control-oriented ODE-based

model is constructed. Adaptive parameter estimation strategies are developed for the system with the first

mode and the system with multi-modes respectively. In order to suppress the vibration of the beam, an

USDE-based controller is introduced for the beam. To further take into account the unknown parameters,

adaptive control is proposed which can online update the parameters. The main contributions of the thesis

can be summarized as follows:

• Development of the PDE-based model and the ODE-based model for the submerged piezo-
electric cantilever beam
The system is described by both the PDE-based model and ODE-based model. The motion equa-

tion of the cantilever beam is build with the help of Hamilton’s principle. The piezoelectric actuator

model is included in the derived PDE and the deflection-strain relationship is presented for the pur-

pose of experimental validation. To make it convenient for parameter estimation, Galerkin method

is adopted to convert the PDE to ODE.

• Adaptive parameter estimation strategy design for the beam system with one mode
A new adaptive parameter estimation framework is proposed to online estimate unknown system

parameters considering the first vibration mode. To obtain the system states, the Levant exact

differentiator via sliding mode technique is constructed. Instead of using the observer/predictor

error as in the classical parameter estimation methods, a novel adaptive law which is driven by the

parameter estimation error is proposed.

• Adaptive parameter estimation for the beam system with multi-modes by using input and
output
In order to cope with multiple vibration modes of the beam, a novel parameter estimation strategy

is formulated to identify the beam system. A novel adaptive law is introduced to estimate the

unknown system parameters in real time. Specifically, a time-varying gain is designed to handle

the effects of regressor to enhance convergence performance and simplify the tuning of learning

gains.

90



• Development of the USDE-based vibration control for the beam system
An estimator based vibration control strategy is introduced to both suppress the vibration and

estimate the unknown system dynamics. Different to the function approximation based methods,

the proposed control has a simple structure which is more realistic to implement in practice. In the

proposed estimator, only one parameter need to be tuned depends on the bandwidth of the filter.

The estimated unknown dynamics is compensated into the controller and thus makes the system

more robust to unknown external disturbances. The stability and convergence properties of the

proposed control is proved by using Lyapunov theory.

• Adaptive control design for the beam system
To suppress the vibration of the beam with unknown system parameters, an adaptive control is

proposed. By using the parameter estimation error based adaptive law, the unknown system pa-

rameters can be online updated. To suppress the vibration of the beam, the adaptive controller is

designed and the stability is proved.

7.2 Future work

In the future work, some issues not fully resolved would be investigated. Although we have developed a

framework on modelling, identification and control on the beam system, there are still lots of interested

points deserve to be studied. The major future work would be the investigation of the PDE systems.

The learning-based controller and the strict persistent excitation condition would be two other important

aspects. The specific discussion about the future work is given as follows:

• Design parameter estimation algorithms and controllers directly on PDE systems
In the current work, an accurate PDE model and the reduced order model are constructed. For

the control purpose, we designed the parameter estimation strategies and controllers based on

the simplified ODE model. Although we have tested the estimation algorithms and the UDE-

based control on the real plant by using the ODE model, it is always desired to operate with the

accurate PDE model to describe the complete dynamics of the system. With the rapid growth

of the hardware’s processor, PDE-based algorithms would be realized on the applications. As a

result, it is promising to investigate PDE systems.

• Reduce the computation cost of learning-based controller
In Chapter 6, we have proposed adaptive control to suppress the vibration of the beam. Although

we have good simulation results, there are still some problems on conducting the experiments. The

major problem is the high computation cost, which led to a long delay for the real-time control. At

the same time, a small sampling time is needed to correctly online estimate the parameters. These

two reasons make it not able to be realized on the test bench. For the well-established systems with

current processor, it is important to explore more efficient algorithms to reduce the computation

cost of learning-based controller.

• Relax persistent excitation condition in parameter estimation
For the adaptive parameter estimation in Chapter 3 and Chapter 4, there is a strong assumption

named persistent excitation condition. In real applications, not all the systems can fulfill this con-

dition. In such cases, the parameters will not converge to the true values. The adaptive estimation
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and the adaptive control may not work at a feasible range at such cases thus my deteriorate the sys-

tem. Consequently, investigation on relaxing persistent excitation condition is of great importance

for real applications.
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Appendix A

Computation of theoretical frequencies
and mode shapes of the beam

In the absence of the damping term, piezoelectric effect and the external load, we have the free vibration

equation

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
= 0, (A.1)

and the boundary conditions

w|x=0 = 0;
∂w

∂x

∣∣∣∣
x=0

= 0 (A.2)

∂2w

∂x2

∣∣∣∣
x=L

= 0;
∂3w

∂x3

∣∣∣∣
x=L

= 0. (A.3)

The free vibration solution can be obtained by using the method of separation of variables as [56]

w(x, t) = W (x)T (t). (A.4)

Substituting (A.4) into (A.1), we have

ρAW (x)
d2T (t)

dt2
+ EI

d4W (x)

dx4
T (t) = 0. (A.5)

Rearranging (A.5), one yields
c2

W (x)

d4W (x)

dx4
= − 1

T (t)

d2T (t)

dt2
= β2 (A.6)

where

c =

√
EI

ρA
. (A.7)

Then, we have the following ordinary differential equations
d4W (x)

dx4
− β4W (x) = 0 (A.8)

d2T (t)

dt2
+ ω2T (t) = 0 (A.9)

where

β4 =
ω2

c2
=
ρAω2

EI
. (A.10)
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The solution of (A.8) can be given as

W (x) = C1 cosβx+ C2 sinβx+ C3 coshβx+ C4 sinhβx. (A.11)

The solution of (A.9) can be expressed as

T (t) = A cosωt+B sinωt. (A.12)

Substituting boundary condition (A.2) into (A.11), one have

C1 + C3 = 0, C2 + C4 = 0 (A.13)

and then

W (x) = C1(cosβx− coshβx) + C2(sinβx− sinhβx). (A.14)

Substituting boundary condition (A.3) into (A.14) yields

−C1(cosβL+coshβL)−C2(sinβL+sinhβL) = 0,−C1(− sinβL+sinhβL)−C2(cosβL+coshβL) = 0.

(A.15)

Since C1 and C2 are nonzero, the determinant of the coefficients must be zero∣∣∣∣∣ −(cosβL+ coshβL) −(sinβL+ sinhβL)

−(− sinβL+ sinhβL) −(cosβL+ coshβL)

∣∣∣∣∣ = 0 (A.16)

or

(cosβL+ coshβL)2 −
(
sinh2 βL− sin2 βL

)
= 0. (A.17)

Equation (A.17) can be simplified to obtain the frequency equation as

cosβL coshβL+ 1 = 0. (A.18)

In Table A.1, we list five solutions of (A.18) computed by using MAPLE.

β1L 1.875104069
β2L 4.694091133
β3L 7.854757438
β4L 10.99554073
β5L 14.13716839
β6L 17.27875953

Table A.1: Six solutions of (A.18)

The natural frequency can be obtained as

ωi = (βiL)2

√
EI

ρAL4
, i = 1, 2, . . . (A.19)

where βnL is the nth root of the frequency equation (A.18).

Equation (A.15) gives

C2 = −cosβL+ coshβL

sinβL+ sinhβL
C1. (A.20)

Then the mode shape can be obtained as

Wi(x) = Ci

[
(cosβix− coshβix)− cosβiL+ coshβiL

sinβiL+ sinhβiL
(sinβix− sinhβix)

]
. (A.21)

w(x, t) =
n∑
i=1

Wi(x)ηi(t) (A.22)

The unknown constant Ci is unique for each frequency and is determined by the information (the dis-
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placement and velocity) of initial conditions at t = 0. The first to fifth mode shapes (a typical value

Ci = 1 is used) are shown in Figure A.1.
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Figure A.1: First six mode shapes of the beam system
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[125] Atta Oveisi and Tamara Nestorović. Robust mixed h2/h8 active vibration controller in attenuation

of smart beam. Facta Universitatis, Series: Mechanical Engineering, 12(3):235–249, 2014.

[126] Bao-Zhu Guo and Feng-Fei Jin. The active disturbance rejection and sliding mode control ap-

proach to the stabilization of the euler–bernoulli beam equation with boundary input disturbance.

Automatica, 49(9):2911–2918, 2013.

[127] Wei He, Tingting Meng, Deqing Huang, and Xuefang Li. Adaptive boundary iterative learning

control for an euler–bernoulli beam system with input constraint. IEEE transactions on neural

networks and learning systems, 29(5):1539–1549, 2017.

[128] Mohammad Fadaee and Mostafa Talebitooti. Active vibration control of carbon nanotube-

reinforced composite beam submerged in fluid using magnetostrictive layers. Mechanics Based

Design of Structures and Machines, pages 1–18, 2020.

105



[129] Claus Abicht, Jens Bormann, Peter C Müller, Dirk Söffker, and Heinz Ulbrich. Model-based
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