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Abstract

Every new generation of high performance computing (HPC) processors brings
higher complexity to boost performance: the increasing number of cores within the
processor itself, cores with the ability to run multiple threads (i.e. Simultaneous
Multithreading or SMT), increased available memory bandwidth, and multiple ar-
chitectural improvements. On top of this, HPC systems are typically composed of
multiple sockets with Non-Uniform Memory Access (NUMA) to increase the num-
ber of available processors in the system. As a result, the application running on the
different processors experience contention in the acceess to shared resources, which
might lead to individual application’s performance degradation.

Modern HPC systems include hardware knobs to adapt architectural parame-
ters to the workload demands with the goal of improving performance, energy, or
power consumption. However, a default hardware knob configuration is set by the
hardware designers and the responsibility of finding the best hardware knob con-
figuration is left to the user, which is an overwhelming process due to the large
search space and the different resource demands of applications. In addition, setting
a hardware knob independently of others can result in suboptimal configurations
and sometimes to conflicting decisions that jeopardize system power-performance
efficiency.

Furthermore, the number and heterogeneity of compute devices, even within a
single compute node, has been steadily on the rise. Conflicting decisions can appear
when incorporating multiple diverse accelerators within a node to provide efficient
performance growth through specialization (e.g. graphics processing unit or GPU),
since complex heterogeneous systems with multiple discrete accelerators cannot af-
ford to fully power all the devices simultaneously.

In a HPC system, the number of discrete devices that can run simultaneously at
their highest frequency is limited by the globally-imposed power cap. Current sys-
tems incorporate a centralized power management unit that statically controls the
distribution of power among the devices within the node. However, such static dis-
tribution policies are unaware of the dynamic utilization profile across the devices,
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which leads to power allocations that end up degrading system throughput perfor-
mance. The problem is particularly acute in the presence of heterogeneity since type-
specific performance-boost capabilities cannot be leveraged via utilization-agnostic
static power allocations.

The main goal of this Thesis is to leverage runtime system data to intelligently co-
ordinate hardware knobs while taking into account interactions between each other
at application level, hardware level, and system level. This Thesis proposes multiple
methods to dynamically coordinate multiple hardware knobs to maximize system
power-performance efficiency.

At application level, we propose an infrastructure for shared memory parallel
programming models that transparently configures the different hardware knobs
available in the architecture. During execution time, the best hardware configura-
tion is discovered for different fine-grained regions of the application without user
intervention and without modifying the original source code of the application. This
Thesis proposes two mechanisms to discover the best hardware knob configuration:
(1) libPRISM: an exploration-based approach useful for reduced search spaces that
needs almost no previous knowledge of the system, and (2) MARK: an intelligent
approach based on machine learning (ML) to search large design spaces.

At hardware level, this Thesis demonstrates that a hardware knob can benefit
from fine-grained coordination between its own possible configurations. We show
that runtime metrics can be used to guide the hardware knob to achieve higher
power-performance effiency.

At system level, this Thesis proposes a hardware/software power distribution
mechanism that maximizes the performance of power-constrained heterogeneous
systems by leveraging system information to distribute power among all the devices.
Our proposed solution is agnostic of the devices (CPU, GPU, or other accelerators), it
uses a simple and scalable heuristic that requires minimal communication between
devices, it works for single applications and multiprogrammed workloads, and it
can be implemented in current systems without any hardware modification.

Overall, this Thesis demonstrates that fine-grained hardware coordination is
needed at different levels to maximize energy-efficiency for parallel applications and
multiprogrammed workloads.
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Chapter 1

Introduction

The evolution of microprocessors design has changed significantly in the last few
decades. For many years, Moore’s law drove the progress of every new generation
of processors by increasing the number of transistors in the chip and its clock fre-
quency, allowing to build faster and more complex single-core processors that could
exploit Instruction Level Parallelism (ILP) of sequential programs. As shown in Fig-
ure 1.1, this trend continued until the early 2000s, when Moore’s law encountered
three fundamental obstacles: the memory wall, the power wall or the end of Den-
nard’s scaling, and the ILP wall.

In the early 2000s, to overcome the performance stagnation of single-core proces-
sors, the landscape of microprocessors design entered into the multicore era. Multi-
core processors provide the desired performance gains by exploiting the Task Level
Parallelism (TLP) of parallel programs. However, they face problems concerning the
orchestration of parallel workloads such as the communication between cores or the
concurrency in memory accesses, giving rise to the programmability wall.

The memory wall is the disparity between the speeds of the CPU and the main
memory [165]. For many years, as the cores were increasing their frequency at a
very high rate, the frequency of the main memories was increasing at a much lower
pace. Due to this trend, the latency of the memory accesses grew significantly in
relative terms. To solve this, CPUs include caches and prefetchers. Caches are small
and high speed memories that are close to the cores, and prefetchers bring data to
the caches before it is demanded by the applications. The addition of caches and
prefetchers has been key to reduce the latency of the memory accesses.

The power wall is the difficulty of increasing the power consumption of chips
due to the fundamental constraints imposed by affordable power dissipation and
delivery [106]. As shown in Figure 1.1, the frequency of CPUs has not increased in
the last years. This is due to the temperatures of the CPUs, which have reached a
limit where they cannot be tolerated without incorporating extremely costly cool-
ing systems. To solve this, multicore architectures and accelerators are introduced
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FIGURE 1.1: Trend in the number of transistors, single-thread performance, frequency and
power of a core, and number of logical cores. Data up to year 2010 collected by M. Horowitz,
F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten. Data spanning 2010-2020
collected by K. Rupp. Data spanning 2017-2020 collected by A. Segura. Data of 2021 collected

by C. Ortega.

in modern systems, since CPUs with multiple cores running at lower frequencies
are easier to cool. Also, specialized accelerators are used as a way to speedup spe-
cific computing problems while not consuming power when they are not working.
Adding more accelerators that can have a high power consumption creates the prob-
lem of what device (CPU or accelerators) needs to have more power budget since all
devices cannot be fully powered at the same time.

The ILP wall refers to the limited ILP in sequential applications. The ILP captures
which instructions in a sequence are independent and can be executed in parallel.
Dependencies on the instructions have a direct impact on the ILP of an application.
For instance, if two instructions A and B are totally independent, they can be exe-
cuted in parallel. Yet, if there is an instruction C that depends on the result of A and
B, C cannot be executed in parallel and needs to wait for A and B to be finished.
Simultaneous Multi-Threading (SMT) was introduced to maximize the occupancy
of hardware resources. In a SMT processor, multiple independent threads can be
executed simultaneously in the same core. Yet, SMT needs to be used correctly to
maximize performance gains since scheduling applications with similar needs (i.e.
integer calculations, memory bandwidth) can lead to overall slowdowns since ap-
plications are competing for hardware resources.

The programmability walls refers to the difficulties of programming complex
systems with multiple CPUs and accelerators. Programming in modern systems is
more difficult since, in order to maximize performance, programmers need to be
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conscious of the architecture they are targeting in order that programs can fully uti-
lize all the available hardware resources of the underlying architecture. To solve
this, a new abstraction layer is introduced in the software stack: the runtime system.
Runtime systems are libraries that abstract programmers from the low-level intrica-
cies of complex parallel architectures. With this approach, programmers can write
high-level parallel code, and the runtime system is responsible for orchestrating the
parallel execution and efficiently using the available hardware resources.

1.1 The Need for Hardware and Software Coordination

Nowadays, every new generation of processors achieves better performance than
its predecessor at the cost of augmenting the complexity of the architecture. In par-
ticular, successive generations of processors have increased the number of cores,
the number of threads per core, the available memory bandwidth, and have in-
cluded new sophisticated microarchitectural techniques. On top of this, most High-
Performance Computing (HPC) systems are composed of multiple sockets in Non-
Uniform Memory Access (NUMA) configurations. As a result of this trend, the com-
plexity of processors has increased dramatically and the contention in the access to
shared resources has been exacerbated.

Complex architectures are generally beneficial for most applications, even if they
have very different characteristics. Yet, not all the features of these complex archi-
tectures are equally effective across all the applications. For instance, for a particular
compute intensive application, increasing the number of cores and threads can be
very beneficial, but increasing the available memory bandwidth may not be as rele-
vant. For this reason, modern processors include numerous hardware “knobs” that
allow the user to adapt the architectural parameters of the processor to the demands
of the workload. This configurability is key to maximize the performance and the
energy efficiency of the applications. However, the responsibility of finding the best
hardware knob configuration is left to the user, which is an overwhelming process
due to the large search space and the different resource demands of applications. In
addition, setting a hardware knob independently of others can result in conflicting
decisions that lead to underperforming configurations.

Previous research focuses on controlling hardware knobs independently of each
other [28, 20, 168, 167, 80, 129, 163, 125]. This independent actuation can lead to con-
flicting decisions that jeopardize system power-performance efficiency [153]. For
instance, parallel applications with a large amount of shared data and synchroniza-
tion points can run better in a single socket (uniform memory accesses), high SMT
level (high computation), and set the prefetcher to bring less cache lines (no cache
pollution). Coordinating thread placement, SMT level, and data prefetcher hard-
ware knobs is challenging due to the large search space and possible interactions
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between each hardware knob.
Another trend in modern systems is to incorporate multiple diverse accelera-

tors, which provide efficient performance growth through specialization. However,
complex heterogeneous systems cannot afford to fully power all the devices simulta-
neously [47, 66]. To overcome this limitation, modern systems include mechanisms
to adjust the power budget of the devices, allowing them to safely operate under a
given power cap. The power cap can change over time for a variety of reasons, in-
cluding safe operation modes when power delivery and thermal limits are reached,
battery-saving modes in embedded systems, and economical reasons in servers.

Efficiently distributing power in heterogeneous systems with multiple discrete
accelerators and varying power caps is a challenging and non-trivial problem. The
growing amount of accelerators requires power distribution algorithms to be sim-
ple and scalable to ensure fast response times. Moreover, communication between
discrete devices suffers from long latencies, therefore minimizing device commu-
nication is a must. On top of this, the proliferation of different types of accelera-
tors (GPUs, FPGAs, ASICs, etc.) manufactured by different vendors imposes power
management solutions to use generic knobs that are present in all kind of devices.
Another important limitation is the lack of standard interfaces to coordinate the
power consumption of every device in the system [127]. Therefore, power manage-
ment of a system must be handled through software drivers. The nature of hetero-
geneous workloads further complicates the problem, as their power demands can
drastically change due to program phases [108], accelerators being active or idle in
different phases [10], and multiple applications running in different devices.

Previous works have studied how to efficiently distribute power under a lim-
ited power budget in single chips. However, these approaches are not applicable to
heterogeneous system with multiple discrete devices since single chips do not have
information about the requirements and the power budgets of the discrete devices.

All the previous optimizations demonstrate that, nowadays, correctly configur-
ing all the hardware knobs present in modern systems is of paramount importance
to maximize their performance and power efficiency. Unfortunately, the amount of
possible hardware knobs configurations has become extremely large, to the point
where finding the best configuration for each application is an insurmountable task
for any user. For this reason, an intelligent automatic system is needed to find the
best hardware knob configuration and power distribution for each application.

1.2 Contributions

The goal of this Thesis is to pioneer automatic hardware knob coordination mecha-
nisms that maximize the performance and the power efficiency of complex systems.
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The Thesis is structured into three different themes, each referring to a different sce-
nario where automatic hardware knob coordination mechanisms can be introduced
in an intelligent manner.

1.2.1 Hardware knob coordination for performance

The first contribution of this Thesis tackles the hardware knob coordination at an
application level. First, this work demonstrates that the independent actuation of
the different hardware knobs in a system can lead to conflicting decisions that jeop-
ardize system power-performance efficiency due to interactions between different
hardware knobs. This work also shows that the best hardware knob configuration
changes depending on (1) the goal of the end user (increasing performance, reducing
power consumption or improving energy-efficiency), (2) the behavior of the appli-
cation, and (3) the input of the application. To solve the independent actuation, this
Thesis proposes a runtime system that coordinates multiple hardware knobs in or-
der to increase performance, power, or energy when a single parallel application is
being executed in a shared memory system.

This Thesis first proposes and demonstrates a heuristic solution that is sufficient
for a reduced search space. Then, given the limited scalability of heuristic solutions
for a large number of hardware knob configurations, this Thesis proposes a solution
based on machine learning that is able to scale to a huge search space.

1.2.2 Dynamic hardware knobs in hardware prefetchers

The second contribution of this Thesis demonstrates that allowing the customization
of a hardware knob at execution time increases the opportunities to be adapted to the
running application. This work analyzes the impact of a single hardware knob when
a parallel application is running in a cycle-accurate simulator. Results show that
more fine-grained options for customization of a hardware prefetcher can increase
performance, reduce power consumption, or improve energy-efficiency. Thus, this
work proposes a hardware modification that increases the number of configurations
exposed by the hardware prefetcher. These configurations are evaluated to show
that using the correct hardware prefetcher achieves performance improvements, re-
duces power consumption, or improves energy-efficiency.

1.2.3 Hardware knob coordination for power cap

The third contribution of this Thesis consists of a mechanisms that intelligently man-
ages the power budgets of a system with multiple discrete devices. The work ana-
lyzes the impact of the independent actuation of a hardware knob of different multi-
ple discrete devices, showing that it leads to performance degradations of the over-
all system. Then, this proposal presents a hardware/software power distribution
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mechanism that carefully balances efficiency and fairness by leveraging dynamic
load information, enabling devices that are more utilized to have a higher power
budget than devices that are less utilized. The proposed approach is agnostic of the
devices (CPU, GPU, or other accelerators), it uses a simple and scalable heuristic that
requires minimal communication between devices, it works for single applications
and multiprogrammed workloads, and it can be implemented in current systems
without any hardware modification. The contribution is demonstrated and evalu-
ated on a system with 2 CPUs and 4 GPUs, showing that it outperforms static power
distributions and state-of-the-art solutions.

1.3 Thesis Structure

The contents of this Thesis are organized as follows:

• Chapter 2 presents the required background and terminology of the hardware
knobs and systems used in this Thesis. It also presents the state-of-the-art re-
lated to the multiple proposals introduced in this Thesis.

• Chapter 3 explains the experimental setup, methodology, metrics, and tools
used to analyze and evaluate the proposals introduced in this Thesis.

• Chapter 4 tackles the independent actuation of the different hardware knobs in
a system when a single parallel application is running. This chapters proposes
a heuristic solution to coordinate the multiple hardware knobs.

• Chapter 5 describes an intelligent solution to coordinate the multiple hardware
knobs that is able to scale to large search spaces.

• Chapter 6 demonstrates that configurable fine-grained options in a hardware
prefetcher allows improving the overall performance of an application.

• Chapter 7 proposes a centralized solution at a system level to coordinate the
power control knob of multiple discrete devices when the system has a limited
power budget.

• Chapter 8 presents the final conclusions of this Thesis and exposes directions
for future work.

1.4 List of Publications
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• Cristobal Ortega, Lluc Alvarez, Miquel Moreto, Alper Buyuktosunoglu, Ra-
mon Bertran, and Pradip Bose, "MARK: Machine Learning for Hardware Re-
configuration at Fine Granularity". To be submitted.
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Chapter 2

State of the Art

This section provides the required background and the state of the art on Dynamic
Voltage and Frequency Scaling (DVFS), thread placement, SMT, data prefetching,
machine learning, power capping, and runtime systems for shared memory pro-
gramming models.

2.1 Dynamic Voltage and Frequency Scaling

Nowadays, processors have different DVFS levels (multiple possible combinations
of voltage and frequency) under which they can safely operate. DVFS provides a
mechanism to adjust voltage and frequency dynamically on commodity hardware
[42, 84]. DVFS benefits mainly from idle/stall periods of non-critical regions, where
frequency can be lowered to save power while achieving the same performance ob-
tained with a higher frequency. Therefore, a user could tune the DVFS hardware
knob accordingly to increase energy efficiency[155]. For instance, the energy effi-
ciency of memory bound applications can be improved by running the cores at a low
frequency. Previous works on DVFS focus on achieving a better energy efficiency in
serial applications and multi-programmed workloads.

Modern Operating Systems (OS) use the different DVFS levels based on a pol-
icy. The most used policy in modern Linux kernels is the ondemand policy, which
periodically calculates the CPU utilization (non-idle cycles) and sets a correspond-
ing frequency [11, 118]. A small increase on the processor load can increase the
frequency to the highest available configuration, diminishing possible power gains
and degrading the overall system power-performance efficiency. Similarly, NVIDIA
GPUs typically use the Maximum Efficiency mode [116] policy, which sets the maxi-
mum frequency when a workload is running and it lowers the frequency otherwise.

Some works propose using DVFS to reduce power consumption in program
phases where the highest frequency is not needed to achieve the best performance.
Hsu et al. determine theses phases at compile time[71], while Keramidas et al. [85]
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and Eyerman et al. [49] determine these phases at runtime with support of perfor-
mance counters.

Other works coordinate DVFS with techniques to save energy. Vega et al. use
DVFS and core folding in order to reduce power consumption of the system[153].
Deng et al. use DVFS to coordinate CPU and memory power management to reduce
power consumption while remaining within some performance bounds [38]. These
approaches are not applicable to parallel applications, since all the threads of the
application have, in general, very similar hardware demands and, thus, it would
lead to an equal partition of the hardware resources. In addition, these approaches
are not able to tune hardware knobs that impact the behavior of multiple threads at
the same time such as the SMT level.

Research on DVFS with parallel workloads has focused on using DVFS to accel-
erate task that are in the critical path of the application [26, 23] or to improve the
overall energy efficiency of a system when running big data workloads [32].

2.2 Thread Placement and Simultaneous Multithreading

Thread placement is a known hardware knob to impact performance in NUMA sys-
tems [125, 140] due to their non-uniform behavior when accessing memory. Parallel
applications have a mixture of private and shared resources and, depending on the
executed parallel workload, using all cores within all sockets can lead to a degraded
performance due to contention on shared resources (e.g., threads lose data locality
across sockets). Therefore, using the correct thread placement can boost performance
by increasing data locality or reduce data movement across sockets.

SMT increases the number of running threads within the same core, which helps
to hide memory latency and exploit more instruction level parallelism (ILP). In a
processor with different SMT levels (i.e., the number of running threads within the
same core), the processor fetches instructions from different threads and puts them
on a shared instruction queue. Then, in the execution stage, all threads share the
hardware resources of the core where they run, increasing the overall resource uti-
lization and throughput. However, individual thread performance may be degraded
due the contention on the shared hardware resources.

Multi-programmed workloads can significantly benefit from higher SMT levels
when multiple applications stress different functional units or have different mem-
ory access patterns. Therefore, the usage of the hardware resources is higher [54,
143, 104, 48]. In contrast, parallel applications that follow a traditional fork-join
parallelization scheme execute the very same code on the different threads. In this
scenario, all threads compete for the same hardware resources, leading to a higher
contention on shared hardware resources, which might degrade overall system per-
formance [67, 37].
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Previous works on thread placement focus on achieving better performance of
the running workloads in the system. There are multiple works that use exploration-
based approaches [129, 163, 125] to set the placement of the threads in a way that
maximizes performance. Other works propose using prediction models based on
machine learning. Sanchez et al. [140] propose a method driven by machine learn-
ing that predicts the best configuration of thread placement and data prefetching
in a NUMA system to improve performance. Wang et al. [158] propose a machine
learning model to select parallelism mapping for OpenMP workloads. Denoyelle et
al. [39] propose a model to select the best thread placement based on the memory ac-
cess patterns of the threads, among other features. These works focus on minimizing
execution time only with thread placement.

In environments with multi-programmed workloads, some works show that the
SMT level can be adjusted to improve fairness across applications [30, 29, 148, 20,
19, 21]. In addition, other works predict the IPC of the workloads running on an
SMT processor and schedule serial applications on logic cores to boost the overall
performance of the system [104, 143, 52, 54, 53].

Parallel workloads have also been targeted by previous works. Zhang et al. [168,
167] and Heirman et al. [67] propose a dynamic algorithm inside the OpenMP run-
time system that selects the number of threads that maximize performance. Jia et
al. [77] propose a machine learning model to predict the SMT level that maximizes
performance in big data workloads, although their solution only considers a very
small search space of 4 possible SMT levels.

2.3 Hardware Data Prefetching

Hardware data prefetching reduces memory latency by bringing data to the proces-
sor caches before it is needed, reducing stalls due to memory accesses. Most modern
processors include multiple hardware data prefetch engines as it is a powerful tech-
nique to improve the overall performance of the system.

Applications with predictable (e.g., regular) memory access patterns and spatial
locality significantly benefit from data prefetching. However, other workloads with
more unpredictable (e.g., random) memory patterns do not benefit from prefetch-
ing as much, and under certain circumstances the prefetcher can even degrade per-
formance and energy efficiency [90]. Inaccurate prefetches waste memory band-
width and pollute the cache hierarchy; therefore, they can cause increased power
consumption and decreased performance. Nevertheless, a correctly configured data
prefetcher can speed up the execution time, save memory bandwidth and achieve
significant reductions in power consumption [80, 79].

Ideally, a hardware data prefetcher brings the exact amount of data needed by the
processor in a timely manner and without evicting other useful data that is already
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present in the cache. In practice, different application behaviors require hardware
data prefetchers to tune their aggressiveness during application execution. To this
end, modern architectures expose prefetcher configuration parameters that the users
can tune and adapt according to the requirements of the running workload. Some
configurable prefetcher parameters are:

• Degree: Number of cache lines transferred in every prefetch request. Increas-
ing this parameter can help improve performance by bringing more cache
lines. This also leads to an increased prefetcher aggressiveness, which can
cause evictions of useful data and memory bandwidth wastage.

• Distance: Number of cache lines ahead of the current memory address be-
ing accessed that will be prefetched. Increasing this parameter prefetches
cache lines further than the offended cache line, which can improve perfor-
mance by prefetching ahead and, therefore, reducing latency and possible late
prefetches. Aggressively increasing the distance can also result in evictions of
useful data in the cache and in a high demand of memory bandwidth.

• Type of accesses: Enable prefetching for loads, for stores, or for both. Enabling
and disabling of prefetches can also consider other aspects of the memory ac-
cesses such as their stride, or whether if they hit or miss in the cache.

When measuring a prefetcher performance, we need to take into account
whether the prefetcher is bringing in useful data and whether it does so in a timely
fashion without evicting useful data. Therefore, the performance of prefetchers is
measured using the following metrics:

• Accuracy measures the amount of prefetched cache lines that are later de-
manded by the application.

• Timeliness measures the amount of prefetched cache lines that arrive to the
cache before the cache line is demanded by the application.

• Pollution measures the amount of cache lines that are demanded by the appli-
cation and have been evicted from the cache to place prefetched cache lines.

Hardware prefetchers are attached to a single cache. Therefore, it is possible to
have different types of prefetchers in different cache levels and have different config-
urations. Typically, complex data prefetchers offer more performance at the cost of
more area and increased power consumption. Simpler data prefetchers occupy less
area but they usually perform worse than a complex data prefetcher, due to being
unable to recognize complex memory access patterns. Some of the prefetchers used
in modern systems are:
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• Nextline Prefetcher A simple prefetcher that detects sequential access patterns
and prefetches the next consecutive cache line [142].

• Stream Prefetcher In this prefetching scheme, the hardware prefetches consec-
utive cache blocks after a short training period during which it observes mem-
ory access streams. A stream is a group of data references in a short period of
time that frequently repeat and are stable [83].

• Stride Prefetcher In this scheme, the hardware prefetcher calculates the dis-
tance between memory addresses (or stride) from the same instructions. When
the prefetcher is trained, upon a cache miss of an instruction that is recognized,
the missing cache line and the cache line with the same requested address plus
the stride are returned [57].

• Neighbor Prefetcher In this scheme, the hardware prefetcher brings to the
cache the surrounding cache lines of the demanded cache line [89]. The sur-
rounding cache lines to be prefetched are called the neighborhood, which is
composed by different cache lines near to the missing cache block (how near
or far are the cache lines depends on the defined size of the neighborhood).
The neighborhood needs a training phase to work properly.

• Correlation (Global History Buffer prefetcher) In this scheme, the hardware
keeps an ordered list of memory addresses generated by the same memory
instruction. This information is used in a training phase to observe possible
correlations. Those correlations are used to prefetch cache blocks [113].

2.3.1 Data Prefetching Knobs in Modern Systems

The data prefetching algorithm is usually fixed in the processor design and cannot
by modified. However, modern architectures include mechanisms to configure the
parameters of the prefetcher, in order that the user can tune it according to the work-
load characteristics by selecting the number of lines to bring ahead of time, prefetch
data on load and/or store instructions, etc. In addition, many processors also of-
fer instructions to let the programmer or the compiler do software prefetching, al-
though these instructions need to be used consciously by the programmer because
they have a non-negligible cost and can end up deteriorating performance. Overall,
a correctly configured data prefetcher can speed up the execution time, save memory
bandwidth and reduce power consumption significantly [80, 79].

Previous works propose hardware modifications of the prefetcher implementa-
tions to improve performance on multicore chips. Zhuang et al. propose a hardware
modification to reduce cache pollution via filtering [169]. Wu et al. incorporates last-
level cache information in order to prefetch data [164]. Bakshalipour et al. propose
a new hardware data prefetcher to improve performance [13]. Heirman et al. [68]
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track late prefetches in serial and parallel applications through hardware. Using
this information, they tune the hardware prefetcher aggressiveness to reduce late
prefetches and increase useful prefetches. Srinath et al. improve performance by
adjusting the prefetching based on several metrics [144]. Ebrahimi et al. provide
mechanisms in order to improve performance and fairness of shared resources with
data prefetching in a multi-core processor scenario [45, 46, 44]. Nesbit et al. divide
the memory address into equal-sized zones and detect patterns within each zone.
Then, they adapt the prefetcher aggressiveness and the size of the zones [112].

On the software side, previous works only target serial applications or multi-
programmed workloads [95, 72, 86, 87], but not parallel applications. Jimenez et al.
detect phases of applications during their execution and change the data prefetcher
configuration according to the overall demands of the applications running on the
system [80, 79]. Similarly, Navarro et al. [111] and Hiebel et al. [69] propose different
methods to control prefetching with different goals. Also, Chilimbi et al. make use
of software prefetching to speed up applications [33]. Wang et al. use information at
compile time to correctly set the data prefetcher aggressiveness [159].

Some works propose techniques based on machine learning to decide the
prefetcher configuration. Rahman et al. [130] apply a model to enable or disable
different prefetcher engines present in an Intel processor. Liao et al. [92] create a
model to enable or disable those prefetcher engines in data center workloads. Li
et al. [91] apply a machine learning model to predict the best settings for the data
prefetcher in different parallel workloads.

2.4 Coordination of Multiple Hardware Knobs

Some works in the literature propose techniques to reconfigure multiple hardware
structures of a processor in a coordinated manner.

Petrica et al. dynamically adapt the number of lanes in the front end, execute,
and memory stages of a multicore processor to achieve a higher performance in
a power-constrained system [124]. At intervals of 100ms, they evaluate different
configurations and run with the best configuration until the next interval.

Jha et al. coordinate several hardware structures, cache size, and DVFS level to
increase the performance under a given power budget [76]. They sample statistics
from every core of a multicore processor to calculate a subset of possible configura-
tions. Then they test different configurations of this subset to find the best configu-
ration for the execution until a new application phase begins.

Bitirgen et al. manage multiple hardware resources (cache partitioning, mem-
ory bandwidth, and DVFS level) in a coordinated fashion to enforce a higher-level
performance objective for serial applications[17]. They build a model with multiple
inputs that represent the past behavior of the application (L2 cache space, memory
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bandwidth, and power budget). Then, at runtime, they gather those metrics at the
end of an interval. Then, based on the model they decide the new hardware config-
uration for the next interval.

Sun et al. manage data prefetching and cache partitioning to reduce prefetch
caused intercore interference on Intel multi-core processors without introducing ad-
ditional hardware support [145]. Similarly, Sanchez et al. investigate the interactions
between thread placement and data prefetching in an Intel system [140].

Pothukuchi et al. propose the management of multiple hardware knobs such as
frequency, cache size, and number of ROB entries at a core level through a dedicated
piece of hardware [126, 128].

2.5 Hardware Reconfiguration using Machine Learning
Approaches

The amount of hardware knobs present in systems has steadily increased in the last
years. As a consequence, the number of possible knob configurations has grown
dramatically, up to a point where the search space is too large to be handled with
traditional heuristics. This has created the need for using new scalable methods to
coordinate the hardware knobs. A promising solution for a problem of this nature is
using ML.

ML algorithms can be used to generate a predictor model. A ML model is built
based on samples of data (or training data) to make predictions for new samples.
There are different learning approaches to train a model depending on the appli-
cation of the model: supervised training, unsupervised learning, semi-supervised
learning, and reinforcement learning.

Supervised learning is a well known approach to construct the ML model. In su-
pervised learning, the ML model is trained with samples, and each sample includes
a label that represents the correct (or ground truth) output the ML model should
produce. For instance, a ML model could predict the IPC (output) of an application
from the memory bandwidth (feature). The difference between the output and the
label (i.e. the error) is passed to a cost function. A typical cost function is the mean-
squared error, which is the average squared error between the ML model output and
the label for each trained sample.

This process of feeding the ML model with samples is called training. The train-
ing is an iterative process that aims at minimizing the results of the cost function.
In each training step, the ML model is fed with a different samples. Then, the ML
model output is compared to the label to obtain the error, and the cost function is
calculated.
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A ML model can be used to leverage the large amount of data, process it, and
generate a hardware knob coordination that takes into account the multiple inter-
actions between hardware knobs. Tarsa et al. propose a core architecture that se-
lects to be in a high-performance or low-power mode based on the output of a ML
model [147]. Lurbe et al. infer a model to set the best prefetcher per application
in a multithreaded system [96]. Shi et al. apply ML to the cache replacement prob-
lem [141]. Denoyelle et al. use ML for data and thread placement in NUMA architec-
tures [39]. Rahman improves data prefetching with ML on an Intel processor [130],
while Li et al. use ML to improve data prefetching on a POWER8 processor [91].

2.6 Power Capping

DVFS provides a mechanism to adjust the voltage and the frequency of different
parts of a chip. DVFS exposes different combinations of voltage and frequency in
which the hardware can safely operate. DVFS is included in virtually any system,
[34, 70, 149, 61, 116, 139, 136], making it the most used hardware knob to control the
power consumption of a device. However, previous works show that it is possible to
control the power consumption of CPUs using other hardware knobs such as power
gating [153], core allocation [35, 134], or SMT levels [166].

To ensure heterogeneous systems with multiple discrete devices do not exceed
their power cap, designers estimate the peak power consumption of the individual
devices and add them up to get the peak power consumption of the system [55, 137].
However, modern computing systems are often restricted to consume less power
than its peak for a variety of reasons, including safe operation modes when power
delivery and thermal limits are reached, battery-saving modes in commodity and
embedded systems, and economical reasons in servers and data centers. When these
situations arise, a power cap is introduced in the system and the available power is
distributed among the devices.

Current industrial systems with multiple devices use static power distribution
schemes, i.e., for a given power cap, they set a fixed power budget for every device
regardless of the characteristics of the workloads running on the devices. For exam-
ple, the IBM OCC controller of the OpenPOWER architecture provides a mechanism
to adjust the power budgets of the group of CPUs and the GPUs when a power cap
is introduced. As shown in previous research [136], this mechanism can be used to
implement different static power distributions.

In a static power distribution, once the controllers have assigned power budgets
to all the devices, these can adjust their running frequency inside a range of available
frequencies that honor their power budget. This decoupled scheme loses opportuni-
ties for optimization, as the power distribution among the devices does not consider
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their utilization, limiting the range of available frequencies for the devices to maxi-
mize performance or efficiency.

Static power distributions can be outperformed by dynamic mechanisms that in-
telligently distribute the available power among the devices. Next sections discuss
the approaches proposed in the literature to dynamically distribute power in differ-
ent types of systems.

2.6.1 Homogeneous Chips

Previous research on power distribution has target homogeneous multicore proces-
sors. Isci et al. [74] propose to monitor the performance of the cores and apply DVFS
to maximize the overall performance under a power cap. Winter et al. [161] present
different scheduling and power management algorithms on a 256-core architecture.
Adileh et al. [4, 3] schedule applications into out-of-order or in-order cores based on
their performance and power consumption. Some works propose to coordinate the
frequencies of the CPU and the memory to maximize performance [55, 109, 93], co-
ordinate DVFS with other techniques such as power gating [153], core allocation [35,
134], and SMT levels [166], save energy [38] under a power cap, and manage power
through a resource controller based on a market solution [62, 157] and a machine
learning model [18].

2.6.2 Heterogeneous Systems with a Single GPU

Some research works have studied how to distribute power in heterogeneous sys-
tems with only one accelerator. These solutions are tailored to a single heteroge-
neous application, and their algorithms distribute power only when compute ker-
nels start and finish their execution on the accelerator.

Majumdar et al. [98] predicts the best hardware configuration for GPU compu-
tation kernels at runtime to improve energy-efficiency by tracking recent execution
history. Jiao et al. [78] coordinate the execution of concurrent kernels and DVFS to
improve the energy efficiency of a system with a single GPU. Bailey et al. [12] co-
ordinate the DVFS of a power capped system with a single GPU executing a single
CPU-GPU application. Similarly, Komoda et al. [88] coordinate DVFS and task map-
ping in a system with a single GPU.

The main drawback of these solutions is that they do not apply to multipro-
grammed workloads, since taking decisions at system level based on the combina-
tion of profile information of single applications leads to underperforming config-
urations. Also, these solutions need to profile the power and performance of the
system running the kernels at all the possible frequencies, which requires a huge
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amount of offline experiments or long online training periods. In addition, profiling-
based solutions can present inaccuracies when the computational kernels have dif-
ferent behaviors in different executions or if the profiled executions are not repre-
sentative of the real runs.

Sampling-based techniques are used by Indrani et al. to distribute the power
in a heterogeneous chip with an integrated GPU to improve energy efficiency [122]
and performance [121]. Their proposal only configures the power states of the CPUs
among 4 possible preset values, and they rely on the controller to indirectly re-adjust
the frequency of the GPU based on the power state of the CPU and the thermal cou-
pling of both devices. Yet, the overall power budget of the chip is not taken into
account. This is not applicable to discrete GPUs because they do not have thermal
coupling effects. Pathania et al. [120] propose a sampling-based OS-level solution
that manages the DVFS of a CPU and an integrated GPU to save power while meet-
ing the performance requirements of 3D games.

2.6.3 Heterogeneous Systems with Multiple GPUs

Tangram [127] is the only previous work that distributes power on a heterogeneous
system with multiple discrete devices. Tangram introduces a power management
solution that uses a hierarchical organization of robust controllers with a common
scalable interface, and it is demonstrated on a system with 2 CPUs and 1 GPU run-
ning a single CPU-GPU application. Tangram requires a significant amount of long
latency communication between the devices and the Nelder-Mead search method
that distributes power suffers from long training periods.

2.7 Runtime Systems and Shared Memory Programming
Models

With the increasing number of cores, orchestrating the parallel execution of an ap-
plication is becoming more difficult. Current parallel programming models leverage
the usage of a runtime system to manage this complexity and to exploit the paral-
lelism of multicore systems. Runtime systems are used as an abstract layer in the
software stack to parallelize codes.

Usually, they need compiler support to translate from directives to real code that
will be executed: the programmer needs to use a specific directive to spawn all the
threads, share the data among them, or synchronize them. This method reduces the
burden of developing parallel applications and drives the design of future architec-
tures [24, 51, 152].
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Specifically, OpenMP [117] has become the de-facto programming model for
shared memory systems. OpenMP is based on directives that are translated to par-
allel code at compile time. These directives delimit the parallel regions, which are
the parts of the source code that are executed in parallel.

Typical HPC applications consist of a set of phases that are iteratively exe-
cuted [160, 108, 150, 64]. In OpenMP programs, each phase is usually composed of
one or more parallel regions that present a regular behavior over time. This program
structure allows taking advantage of the runtime system of parallel programming
models to automatically manage hardware knobs during the execution. In partic-
ular, the repetitive behavior of parallel regions across iterations can be exploited to
learn the best knob configuration in the first iterations, and apply this one during
the rest of the execution. Also, parallel regions naturally delimit the different ap-
plication phases; therefore, they provide a great opportunity to manage hardware
knobs at intra-application granularity by setting the configuration that better suits
the characteristics of each application phase.

2.7.1 Runtime-aware architectures

A Runtime-Aware Architecture [152] is proposed as an approach to improve per-
formance and energy efficiency while minimizing the different constraints or walls
in modern systems. In this architecture, hardware and software are tightly coordi-
nated through a runtime layer. This runtime layer is responsible to use and coordi-
nate multiple hardware knobs to further increase performance and energy efficiency.
Coordinating multiple hardware knobs can lead to further performance than when
multiple hardware knobs are used independently.

Both Garcia et al. [59] and Papaefstathiou et al. [119] propose using the runtime
information about dependencies to prefetch data blocks. On the other hand, Mani-
vannan et al. [100, 99] use the dependency and task information to predict dead
blocks that can be substituted in the caches. Dimic et al. leverage a runtime to pro-
pose cache insertion policies based on the use of reference intervals and to compute
reductions in the cache hierarchy [41, 40]. Alvarez et al. leverage compiler and
runtime information to manage the coherence of scratchpad memories [7, 6, 9, 8].
Barredo et al. propose a hardware unit to join sparse predicated vector instructions
into denser vectors [14]. Gomez et al. propose an efficient method to run Sparse
Matrix-Vector multiplication (SpMV) on long vector architectures [60]. Castillo et
al. uses a runtime to increase the clock frequency of cores that are running critical
processes [26] and improves a runtime system for a better hardware-software coor-
dination [25, 27]. Jaulmes et al. uses runtime information for reliability and fault
tolerance [75].

Runtime-aware architectures show that performance can be increase when con-
sidering interactions between differents hardware knobs. Since future processors
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are likely to become more resource-constrained and with a higher number of hard-
ware knobs, runtime-aware architectures are an interesting area of research. Within
this topic, the goal of the work in this thesis is to improve performance, power con-
sumption, and energy-efficiency of real systems through hardware coordination at
different levels.



21

Chapter 3

Methodology

This chapter describes the experimental methodology used in this Thesis. The first
section explains the multiple experimental setups used. In this Thesis, several real
systems are used to validate and evaluate our proposals. The second section de-
scribes the simulation infrastructure. The sections explains the baseline architecture
modeled in the simulator and the software stack. The third section details the bench-
marks with their characteristics for both the real systems and simulation evaluated
in this Thesis. Finally, the fourth section introduces the metrics used to evaluate the
proposals of this Thesis.

3.1 Real System Infrastructure

We evaluate our proposals on several IBM-based systems. Specifically, we use an
IBM POWER8 and an IBM POWER9 system. Both have several architectural details
in common that we introduce in this section.

The POWER processors used in this Thesis have SMT capabilities, meaning that
each core can simultaneously run up to N threads, where N is the maximum SMT
level. Yet, they also support running at lower SMT levels. For instance, a processor
with a SMT level of 4 can run up to 4 threads within the same physical core but it
also supports running 1 and 2 threads per core. The OS exposes a physical core as
a group of 4 logic cores and, when the machine boots, it automatically sets the SMT
level to 4. The SMT level is adjusted automatically by the hypervisor based on the
utilization of the system. For example, when the system is in SMT4 level, the OS
exposes 4 logic cores per each physical core. When just one of those logic cores is
used, the system sets the SMT level to ST level automatically, making all the core
hardware resources available to the application.

To force a desired SMT level, we need to specify the number of threads running
in a physical core. This can be done manually by setting the desired number of
threads of the application and pinning threads to physical cores accordingly. Also,
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TABLE 3.1: Layout of the DSCR register. The register is 64-bit wide and 25 bits are mapped
to different functions.

SWTE HWTE STE LTE SWUE HWUE
UNT
CNT

URG LSD SNSE SSE DPFD

0:38 39 40 41 42 43 44 45:54 55:57 58 59 60 61:63

it can be done by disabling the logic cores through specific online registers exposed
by the OS. In OpenMP, the required number of threads can be defined directly from
the application code with specific calls to the runtime system.

POWER processors include a powerful and configurable data prefetcher that can
be controlled at the core level by a special purpose register called Data Streams Con-
trol Register (DSCR) [65], which is exposed by the OS. The DSCR register is 64-bit
wide where bits control different functions as shown in Table 3.1. The different func-
tions (or fields) in DSCR offer a total of 225 possible configurations. The most rele-
vant fields for our experiments due to differences in execution time, energy, and
power are the following ones:

• URG or urgency: How quickly the prefetch depth can be reached when
prefetching data. A low URG leads to lower contention in the cache due to
lower number of prefetchers realized. A high URG can degrade performance
if data needs to be reused.

• LDS: Enables data prefetching for load instructions.

• SNSE: Enables data prefetching for load and store instructions that have a
stride bigger than a cache block.

• SSE: Enables data prefetching for store instructions.

• DPDF: Number of cache blocks that will be prefetched, from 1 cache block up
to 7 cache blocks.

When a system boots, it sets the prefetcher to the default configuration: URG set
to 4, LDS enabled, DPDF set to 4, and all the other options disabled.

DVFS is also available and configurable in both systems. The DVFS hardware
knob is controlled at the physical core level through an exposed file by the OS. To
set the frequencies of all the devices in the system, we enable the userspace policy to
change the frequency of the CPUs to the desired value and to disable the OS to set
new frequencies.

3.1.1 IBM POWER8

We evaluate our solutions on an IBM POWER8 based system (8335-GTA
model) [103]. This system has an IBM POWER8 processor that runs at 3.49 GHz
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FIGURE 3.2: Architecture schematic of the POWER9.

with 512 GB of DDR3 CDIMM memory running at 1.6 GHz. The POWER8 proces-
sor in this system is packaged as a single-chip module with 20 cores. Each core has
SMT8 capabilities and 64 KB L1 data and 32 KB L1 instruction caches, a 512 KB L2
cache and an 8 MB L3 cache with a total of shared on-chip L3 cache of 80MB (160MB
for both sockets) as shown in Figure 3.1. The system runs Ubuntu 14.10 operating
system with the kernel version 3.16.

The POWER8 system has 44 possible frequency configurations from 2.0 GHz to
3.49GHz by steps of 0.03GHz and 0.04 GHz as reported by the OS. Each frequency
has a determined voltage associated.

When running benchmarks in this system, we compile all the benchmarks with
GCC version 4.9.3, which supports OpenMP 4.0.

3.1.2 IBM POWER9

We also evaluate an OpenPOWER architecture with a POWER9-based system (Pow-
erNV 8335-GTH) with 2 CPUs and 4 GPUs distributed in 2 sockets. Each socket
has an IBM POWER9 processor [139] that runs by default at 3.00GHz with 512GB of
DDR4 DIMM memory at 2666MHz, and 2 NVIDIA Volta V100 GPUs [116] that run
by default at 1.53GHz with 16GB of HBM2 memory. The POWER9 processor has 20
cores with SMT4 capabilities. Each core has 32KB L1 data and 32KB L1 instruction
caches. Each pair of cores has a 512KB L2 cache and a 10MB L3 cache (with a total
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TABLE 3.2: Cache parameters on our simulated cores.

Parameter L1D L1I L2 L3
Size 32kB 32kB 256kB 2MB
Hit latency (cycles) 1 1 4 20
Associativy 4 2 16 16
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FIGURE 3.3: Architecture schematic of the simulated chip with 4 ARM Cortex-A53-like.

of shared on-chip L3 cache of 100MB) as shown in Figure 3.2. Each NVIDIA Volta
V100 has 640 NVIDIA Tensor cores with a memory bandwidth up to 900GB/sec.
The operating system is a Red Hat Enterprise Linux Server 7.5 with kernel 4.14.0.

The POWER9 processor has 43 frequency levels (from 3.00GHz to 2.30GHz).
While the NVIDIA Volta GPUs can be set to run from 1.53GHz to 135MHz

In addition, our system has 2 sockets, and the system by default adjusts the run-
ning threads to be executed across both sockets and all cores to maximize band-
width. To set the desired thread placement, the function sched_setaffinity available in
Linux can be used to pin the threads to different sockets.

3.2 Simulation Infrastructure

In order to evaluate the effectiveness of the different prefetchers in a simulated en-
vironment, we use a customized version of gem5 [16] to simulate a 64-bit ARMv8
system. We report results while running in full-system mode with a 4-core config-
urations. These cores are ARM Cortex-A53-like. As shown in Figure 3.3, each core
has private L1 and L2 exclusive caches, and a shared, inclusive L3 with the param-
eters specified in Table 3.2. The replacement policy for cache lines is least recently
used (LRU). The system is configured such that prefetches occur on cache misses.
The memory used is a DDR4 running at 2.4GHz, with 1 channel and a 16-byte bus.
On the simulated system, we run a Linux kernel version 3.16 with a configured base
page size of 64kB. We use MPICH3.2 [105] to run MPI benchmarks. Hardware-wise,
the L1 data prefetcher is allowed to cross page boundaries if the accessed page is
already translated in the translation lookaside buffer (TLB). Therefore, the accessed
page is in memory.
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3.3 Benchmarks

In this section, we describe the benchmarks use to prove the different proposals in-
troduced in this Thesis. We always use benchmarks well known by the community.

Depending on the proposal, we use different benchmarks to stress and target the
issue we want to solve. Therefore, the benchmarks executed can be categorized in
terms of what proposal uses them:

• Coordination of multiple hardware knobs: these benchmarks are multi-
threaded. They are described along with their inputs in Section 3.3.1.

• Hardware data prefetchers: these benchmarks are multi-threaded and memory
intensive. They are described along with their inputs in Section 3.3.2.

• Power shifting for multiple independent devices: these benchmarks can be
single or multi threaded and can be CPU-intensive, GPU-intensive, or memory
intensive. They are described along with their inputs in Section 3.3.3.

3.3.1 Benchmarks for parallel workloads in real systems

To evaluate the effectiveness of our proposals when coordinating multiple hardware
knobs, we use a wide set of benchmarks from the suites NPB [82] with the class D
inputs and SPEC OMP 2012 [107] with the reference input.

The NPB suite is composed of 6 kernels and 3 pseudo-applications, which are
derived from computational fluid dynamics (CFD). The SPEC OMP 2012 suite con-
tains 14 applications from CFD to image modeling. They are focused on compute
intensive performance. All SPEC OMP benchmarks are evaluated except botsspar
and smithwa, as these two benchmarks did not pass SPEC’s validation tools in our
environment. All the benchmarks are parallelized with OpenMP and written in C,
C++ or Fortran.

Benchmarks are executed accordingly to their thread placement and SMT level
and pinned to them to avoid thread migration. We pin the different threads with the
environment variable OMP_PLACES and sched_setaffinity function in Linux. Bench-
marks are executed in isolation until completion.

3.3.2 Benchmarks for parallel workloads in simulation

In order to evaluate the effectiveness of the different prefetchers implemented,
we use benchmarks from different suites: Mantevo [101], HPC Challenge [97],
Proxy applications [94], Trinity benchmarks [151] and the High Performance Con-
jugate Gradients (HPCG) benchmark [43]. These benchmarks are high performance
computing-oriented benchmarks and parallelized using OpenMP or MPI.

Brief descriptions, including a list of parameters can be found in Table 3.3.
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Description Input Heap Usage (MB)

CoMD
Co-designed Molecular Dynamics a classical
molecular dynamics proxy application

20 -N 20 -T 4000 70

DGEMM Double precision real matrix-matrix multiplication 5000 10
FTT One-dimensional Discrete Fourier Transform 5000 35
PTRANS Parallel matrix transpose 5000 65
STREAM Sustainable memory bandwidth 5000 55

HPCG
High Performance Conjugate Gradient:
preconditioned Conjugate Gradient method

24 55

mcb
Monte Carlo Benchmark: a simple heuristic
transport equation using a Monte Carlo technique

320000 12

miniFE
Implicit Finite Elements: a proxy application for
unstructured implicit finite element codes

860 95

pathfinder Signature-search mini-application medlarge1 15

TABLE 3.3: Input and heap usage for the benchmarks used in the evaluation. Heap usage
is measured on a physical 64-bit ARMv8 machine, using Valgrind [114]. Total memory foot-
print used exceeds the total cache size. gem5 reports for all benchmarks a high heap usage

(>95%)

3.3.3 Benchmarks for system level in real systems

TABLE 3.4: List of CPU (left) and GPU (right) benchmarks.

Name Suite Power Name Suite Power

DAXPY - High Tensorflow - High

BT NAS High DGEMM - High

EP NAS High Particlefilter Rodinia High

FT NAS High Heartwall Rodinia Low

MG NAS High Kmeans Rodinia Low

UA NAS High Myocyte Rodinia Low

CG NAS Low Srad (v1) Rodinia Low

LU NAS Low Srad (v2) Rodinia Low

SP NAS Low Quicksilver CORAL Low

Kripke CORAL Low QMCPack CORAL Low

graph500 CORAL Low Lulesh CORAL Low

When coordinating the power cap of multiple independent devices in a system,
we use the benchmarks shown in Table 3.4. Table 3.4 shows the CPU and the GPU
benchmarks used in our evaluation in the left and right columns, respectively, and
their average power consumption (high/low).

The benchmarks belong to the NPB [82], CORAL [36], and Rodinia [31] suites.
For the NPB suite, we use the input class C. When running benchmarks from the
CORAL suite, we use the recommended input for a single node. And, for the Ro-
dinia suite, we run with the reference input with an increased number of iterations
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FIGURE 3.4: Visual interface of AMESTER.

to equal the execution time of all the benchmarks.
We also train an Inception v3 neural network [146] with the ImageNet data

set [138] in Tensorflow [1], and use a DAXPY kernel for the CPU, and a DGEMM
kernel for the GPU. The execution time of all benchmarks is 200s to 375s running in
isolation with no power cap.

3.4 Metrics

The following metrics are used across different proposals in this Thesis.
We report speedup in execution time, power consumption and energy-delay

product (EDP) for all the benchmarks.
In order to read execution time, we measure the wall time for the entire appli-

cation or the parallel region in case we only are measuring the parallel region. This
wall time includes the time for thread synchronization, which it is fair when mea-
suring time in parallel applications.

We also gather multiple performance counters in order to drive our proposals.
These performance counters are collected using perf [102].

To read power consumption in the POWER8, we use AMESTER (Automated
Measurement of Systems for Energy and Temperature Reporting) [56] to measure
the power consumption of the processor and memory chips (its interface is shown
in Figure 3.4). The tool remotely collects power, thermal and performance metrics
from the system using the Flexible Service Processor (FSP). The FSP allows reading
different sensors from the system without using any of the processing cycles of the
system. Therefore, it has no impact on the performance of the running benchmarks.
We report the average power consumption for the total execution and energy-delay
product (EDP). Power consumption results do not include the idle power of the sys-
tem to put more emphasis on active power consumption savings. When reporting
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EDP, we report energy (taking idle power of the system into account) multiplied by
execution time.

When reading power consumption in the POWER9, we do in-band readings
from Linux to the OCC [136] for the CPUs and with the NVIDIA Management Li-
brary (NVML) [115] for the GPUs. These in-band readings simplify the process of
reading the power consumption of the system.
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Chapter 4

Exploration for Hardware Knob
Reconfiguration

4.1 Introduction

Every new generation of processors is increasing the number of cores and the num-
ber of threads that can run within the same core (SMT). As a result, processor shared
resources might experience contention, which might lead to performance degrada-
tion. Processors have several hardware knobs to prevent performance degradation
by adapting its behavior to workloads demands, such as the SMT, DVFS levels, the
thread priorities or the data prefetcher settings. These knobs allow the user to tune
the hardware to adapt it to workload demands.

Multiple policies have been proposed to derive suitable configurations for the
hardware knobs, but these policies have always treated them independently of each
other [28, 20, 168, 167, 80]. This independent actuation can lead to conflicting de-
cisions that jeopardize system power-performance efficiency [153]. For example, a
higher SMT level allows to increase the overall system throughput, but it reduces the
effective bandwidth and last level cache size per thread. As a result, coordinating
these decisions with other knobs that also contend for the memory bandwidth, such
as the data prefetcher or DVFS, is required to optimize the overall system power-
performance efficiency.

In this chapter, we present a detailed power/performance characterization of
an IBM POWER8 and OpenPower system when running parallel applications. We
demonstrate that the best hardware knob configuration differs depending on the end
goal. We propose libPRISM1, an infrastructure for shared memory parallel program-
ming models that transparently configures the different hardware knobs available
in the architecture. During execution time, libPRISM discovers the best hardware

1libPRISM code available at: https://github.com/criort/libPRISM
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configuration for different fine-grained regions of the application without user in-
tervention and without modifying the original source code of the application.

4.2 The Need for Hardware Knob Coordination
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FIGURE 4.1: CG behavior under different hardware knob configurations. The Y and X axis
show speedup and power consumption with respect to the default hardware configuration,
respectively. Energy-Delay Product (EDP) normalized with respect to the default hardware
configuration is represented with lines. For power and EDP, lower is better. Default config-

uration is SMT8, default data prefetcher, and highest frequency.

To illustrate the need for a coordinated adaptive system, Figure 4.1 shows the
performance, average power consumption, and Energy-Delay Product (EDP) lines
of the CG benchmark from the NAS Parallel Benchmarks (NPB)[81] suite with dif-
ferent hardware knob configurations with respect to the default hardware knob con-
figuration (SMT8 level, default data prefetcher, and highest frequency). EDP is cal-
culated as POWER× EXECUTION TIME× EXECUTION TIME. We report EDP
instead of energy since degrading execution time of the application has a higher
penalty with this metric.

In Figure 4.1, configurations above the 100% EDP isoline have a higher efficiency
due to reduced power consumption or execution time with respect to the default
configuration of the system. There are multiple configurations that have a really low
power consumption with respect to the default configuration. Yet, those configura-
tions are inefficient due to a higher execution time (configurations below the 100%
EDP line).

Other configurations provide different tradeoffs within the same EDP lines. For
instance, the best hardware knob configuration in terms of performance achieves
an EDP of 41.4% with respect to the default hardware configuration due to a 1.6x
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speedup and the 10% increase in power consumption. While the best configura-
tion in terms of EDP (37.5% with respect to the default hardware configuration)
can achieve a 1.4x speedup while reducing 25% of the power consumption. The
best speedup in performance is achieved with a configuration with the highest fre-
quency, a SMT8 level and the prefetcher disabled. While the best EDP is achieved
with a medium level of frequency by sacrificing execution time and reducing power
consumption.

The previous experiment shows that different knob configurations yield a wide
range of speedup and power consumption tradeoffs depending on resource de-
mands from applications. Furthermore, applications can have different intra re-
sources demands, increasing even more the variety of optimal hardware knob con-
figurations. Therefore, hardware knobs must be tightly coordinated to achieve the
maximum performance or the minimum EDP.

Performing an exhaustive profiling of each possible configuration (more than 350
possible configurations in our evaluated system) for each application (and each par-
allel region inside the application) and input data size is a time consuming process.
Thus, we claim that using an adaptive online coordinated management of related
hardware knobs is a more robust and practical approach to performance tuning than
exhaustive offline profiling.

4.3 libPRISM
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FIGURE 4.2: libPRISM execution stack and work flow.

libPRISM is located on top of the runtime system, as shown in Figure 4.2, and is
composed of several components: (1) the interposition mechanism, (2) monitoring,
(3) hardware knob settings, and (4) the policy. libPRISM uses a library interposition
mechanism to intercept calls from the application to the runtime. The monitoring
component is used to gather data from different sensors of the system such as per-
formance counters, timing, and power consumption. The monitoring is performed
by the master thread of the application in order to reduce possible overheads. The
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hardware knob settings are used to configure the underlying hardware in the sys-
tem. Finally, the policy leverages the gathered information to configure the hard-
ware knobs in the system aiming to minimize a target metric at a parallel region
level.

libPRISM takes care of communicating configuration changes to the runtime sys-
tem through the master thread and to the underlying hardware. The software stack
shown in Figure 4.2 allows libPRISM to: (1) indicate to the runtime system the avail-
able threads for the incoming parallel region and set the hardware knob configura-
tion; (2) gather profiling data from the runtime and hardware; and (3) avoid the need
to change code nor recompile the application or the runtime itself. In this scenario,
the application executes as usual without being aware that libPRISM is dynamically
adapting the hardware resources based on a custom defined policy.

When a parallel region starts or ends, the application calls our library instead of
the runtime system. At compile time, parallel regions are transformed into functions
that are called by the application. Parallel regions can be identified by their next
program counter (PC) in the program stack of the intercepted runtime function calls.
libPRISM identifies a parallel region using its PC, as shown in Figure 4.2.

Whenever a parallel region starts or ends, libPRISM intercepts the call and in-
forms the policy about the incoming event (call parallel region start and parallel region
stop in Figure 4.2).

For every parallel region that is executed, the policy records a performance pro-
file under different hardware knob configurations (Set up and start sensors and Stop
and read sensors in Figure 4.2). The policy builds this performance profile for each
parallel region using different performance counters (executed instructions and cy-
cles), the power consumption, and the number of times the region has been executed.

HPC parallel applications consist of a set of phases that are iteratively executed,
and each phase is usually composed of one or more parallel regions. Therefore, a
given parallel region will be executed multiple times. The policy takes advantage of
this repetitive behavior of parallel applications to find the best hardware knob con-
figuration for each parallel region. To that end, the policy uses an iterative learning
approach. In the first iterations of each parallel region, the policy explores several
possible configurations to build a performance profile and uses it to determine the
best hardware knob configuration. Once the policy finds the best hardware knob
configuration, in the following iterations it tracks the behavior of a parallel region
and, in case the behavior changes, it starts the hardware knob configuration opti-
mization phase again.

We implement different policies using the libPRISM infrastructure to tune the
SMT, the data prefetcher, and the DVFS knobs in order to exploit the optimization
opportunities to minimize execution time, EDP and power consumption. In the next
section, we explain in detail the algorithm of our proposed policies.
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4.4 libPRISM policies

Policies leverage the gathered data by libPRISM to find the optimal hardware knob
configuration for a certain target metric (e.g., execution time, power consumption,
or EDP). To reach their goal, policies can manage several hardware knobs such as
the SMT level, the data prefetcher and the DVFS knobs.

We propose a novel policy that minimizes a specified metric. This policy is imple-
mented as a generic policy to allow its extension with hardware knobs and metrics
(execution time, EDP, or power consumption). Our generic policy uses a vector of
hardware knob configurations for each hardware knob to be optimized. This vec-
tor contains the different possible configurations a hardware knob can use as an
input for our algorithm. The hardware knob vector is useful to reduce the time
spent building the performance profile of each parallel region for hardware knobs
such as the data prefetcher or the DVFS knobs, which can have hundreds of possi-
ble configurations. Users can change the hardware knob vector to better suit their
needs. Short vectors conver the best hardware knob configuration faster than longer
vectors, while longer vectors can have more fine-grained configurations than short
vectors.
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FIGURE 4.3: Phases of the generic policy.

In order to find the best hardware knob configuration per parallel region in the
executed application, our policy goes through the three phases shown in Figure 4.3.

The first phase is the knob priority exploration shown in Listing 4.1, which de-
cides the hardware knobs with the most impact on performance. This phase uses
the N first iterations of a parallel region, where N is the number of hardware knobs
available in the system.

The hardware knobs with a higher boost on performance are explored first in or-
der to improve performance as soon as possible and achieve a closer performance to
the best performance earlier. Our generic policy learns which hardware knobs have
more impact on performance by testing each hardware knob and their performance
boost when going from a default configuration to a less aggressive configuration
(lines 5 to 14 of Listing 4.1).
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1// Cal l to p a r a l l e l _ r e g i o n _ b e g i n i n t e r c e p t e d
2 function paral le l_region_begin_wrapper {
3 // S e l e c t HW KNOB to measure
4 HW_KNOB = VECTOR_HW_KNOBS[ i t e r a t i o n ]
5 set_CONF_NO_AGGRESSIVE(HW_KNOB)
6 ++ i t e r a t i o n
7
8 start_measurement ( )
9

10 // Return c o n t r o l to runtime
11 p a r a l l e l _ r e g i o n _ b e g i n _ r e a l ( )
12
13 end_measurement ( )
14 measure_performance (HW_CONF_DEFAULT, HW_CONF_NO_AGGRESSIVE)
15
16 i f i t e r a t i o n == len (VECTOR_HW_KNOBS) :
17 //From highes t performance to lowest performance
18 s o r t _ v e c t o r (VECTOR_HW_KNOBS)
19
20 //This phase i s completed
21 next_phase ( )
22 }

LISTING 4.1: Knob priority exploration phase (phase 1) of the proposed generic policy.

For instance, we have measured that the best performing SMT level can lead to
a performance boost larger than 10% (with respect to the default SMT level), while
the best performing data prefetcher setting boosts performance around 5% (with re-
spect to the default data prefetcher). Depending on the application running, our
policies will explore first the different SMT configurations, the different prefetcher
aggressiveness or the different DVFS configurations. Usually, the DVFS knob is ex-
plored last due to the SMT level and the prefetcher aggressiveness reporting a higher
boost in terms of speedup2. In our experiments, the DVFS knob does not lead to any
speedup in terms of execution time but it does lead to a reduction on power con-
sumption. This is because the default configuration for the DVFS knob is the highest
frequency in the system. Therefore, reducing it can lead to a performance degrada-
tion.

Once our policy determines the best order to explore the hardware knobs, it en-
ters in the hardware knob configuration optimization phase (shown Figure 4.3 and
its pseudocode in Listing 4.2). In this phase, the policy explores different hardware
knob configurations specified in the hardware knob vector seeking to minimize a
specified metric with respect to the best hardware knob configuration.

In this phase, a hierarchical generic search algorithm is used to explore different
hardware knobs individually. The algorithm in this phase tunes first the hardware
resources that have higher impact on the final performance of the application based
on the results obtained in the previous phase (line 18 from Listing 4.1 and line 21
from Listing 4.2.) Our heuristic-based search converges faster to a hardware knob
configuration that provides a better performance by taking into account inter-knob

2Turbo boost is not enabled in our experiments
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1// Cal l to p a r a l l e l _ r e g i o n _ b e g i n i n t e r c e p t e d
2 function paral le l_region_begin_wrapper {
3 i f t a r g e t M e t r i c [PC] > min_time_threshold :
4 execut ions [PC] + 1
5 i f execut ions [PC] == r e p e t i t i o n s :
6 previousMetricPerformance = currentMetricPerformance
7 currentMetricPerformance = avgMetricPerformance ( )
8
9 module_HW_knob ( )

10
11 // Return c o n t r o l to runtime
12 p a r a l l e l _ r e g i o n _ b e g i n _ r e a l ( )
13 }
14
15 /∗ Hardware knob module ∗/
16 function module_HW_knob ( ) {
17 i f previousMetricPerformance > currentMetricPerformance
18 && time > bestTime ∗(1+ Degradation ) :
19 b e s t _ c o n f i g u r a t i o n = c u r r e n t _ c o n f i g u r a t i o n
20 bestMetricPerformance = currentMetricPerformance
21 next_HW_knob ( )
22 i f performance_current_knob >> performance_previous_knobs
23 reset_previous_knobs ( )
24 e lse :
25 move_next_configuration_current_knob ( )
26 se t_current_knob_conf igura t ion ( )
27 }

LISTING 4.2: Hardware knob configuration optimization phase (phase 2) of the proposed
generic policy.

effects than exploring all the search space. This reduces the overheads associated
with exploring hardware knob configurations.

For each hardware knob, the generic policy implements a greedy search through
the different configurations in the vector of configurations of that given knob. The
use of a greedy algorithm instead of an exhaustive one is needed to reduce the over-
head cost of exploring all the possible configurations of the hardware knobs.

The first time a parallel region is executed, libPRISM sets the available hardware
knobs to the first hardware knob configuration specified in the vector of hardware
knob configurations and records its performance profile when the parallel region
finishes. This measurement is performed a number of repetitions in order to avoid
measurement noise due to new knob configuration. For instance, the first parallel
region execution after changing the SMT level might suffer from increased number
of cache misses (cold cache effects).

If the duration of the parallel region is too short (i.e. below a threshold),
libPRISM stops the knob configuration optimization phase as the cost of reconfig-
uring the available hardware knobs would neglect the potential performance bene-
fits of an optimized hardware configuration (Line 3 in Listing 4.2). Therefore, short
parallel regions (as well as serial regions) run with the hardware knob configuration
already set in the system. Short parallel regions are not aggregated into a larger par-
allel region due to the possible execution paths and order of execution of the parallel
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regions, which can change during the execution of the application. Since the time
spent changing the specific hardware knobs is paid at least once per parallel region,
this threshold needs to be an upper-bound of the worst case scenario when changing
all the hardware knobs. We present a detailed overhead analysis in Section 4.5.4.

The next time the same parallel region is executed, libPRISM sets the hardware
knob configuration to the next possible hardware knob configuration and measures
its performance profile again. If setting the next hardware knob configuration leads
to a degradation in terms of the target metric, the knob configuration optimization
phase for the current knob stops and the previous configuration is selected as the
best found performing configuration for this knob (Lines from 17 to 20 in Listing 4.2).
Notice that this mechanism avoids achieving worse performance than the default
hardware knob configuration of the system. Then, the policy continues the hardware
knob configuration optimization phase with the next hardware knob to configure
(Line 21 in Listing 4.2).

The maximum number of iterations for the hardware knob configuration opti-
mization phase without taking into account re-entering in the phase with N as the
number of hardware knobs to configure is:

N

∑
i=1

length_vector_HW_knobi

Vectors of hardware knob configurations can have different lengths. Depending
on the application and the selected policy in libPRISM, the number of iterations to
find the best hardware knob configuration can vary. For instance, when maximiz-
ing performance, libPRISM stops exploring as soon as the performance is degraded,
using less iterations for the tuning phase. When minimizing power, libPRISM can
explore more configurations as long as the power is reduced, using more iterations
for the tuning phase. In our experiments, we observe that the maximum number of
iterations is never reached. We measured the number of iterations needed to achieve
a steady hardware configuration with libPRISM in our experimental setup, our ob-
servations show that less than 10 iterations (6.1 iterations on average) are enough
to tune non-variable parallel regions when the DVFS knob is not involved. For the
DVFS knob there are 22 possible power levels in our infrastructure, and the different
policies require different number of iterations to tune it. When minimizing execu-
tion time, the maximum observed number of iterations to tune the DVFS knobs is 5.
On the other hand, when minimizing power consumption, the number of iterations
can reach up to 20 iterations. These typically are a small fraction of the total number
of iterations of a parallel region, 338.6 on average in our experimental setup.

Notice that the vector hardware knobs are configured by the user with all the
configurations to be tested for each hardware knob. An user could reduce the num-
ber of iterations spent tuning different configurations by selecting a reduced number
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of configurations for each vector hardware knob.

1 metr ic = readCurrentMetric ( )
2
3 i f metr ic > avgBestMetric ∗(1+ threshold ) :
4 i n c r e a s e _ r e p e t i t i o n s ( )
5 r e s e t _ e x p l o r a t i o n ( )
6 e lse :
7 set_best_HW_knob_configuration ( )
8 e x e c u t e _ p a r a l l e l _ r e g i o n ( )

LISTING 4.3: Optimal hardware knob configuration tracking phase (phase 3) of the proposed
generic policy.

After the hardware knob configuration optimization phase, the policy identifies
a competitive performing hardware knob configuration for a particular parallel re-
gion and reaches the optimal hardware knob configuration tracking phase where
tracks the performance profile of each parallel region as shown in Figure 4.3. The
pseudocode of this phase is shown in Listing 4.3. Every time the parallel region is
executed, the hardware knobs are set to the identified best found performing hard-
ware knob configuration. In order to identify phase changes in the application, the
performance profile of the parallel region is compared against the average perfor-
mance profile found during the hardware knob configuration optimization phase.

If the last measured performance of a parallel region differs more than a config-
urable threshold (Line 3 in Listing 4.3) from the average performance of that parallel
region, the hardware knob configuration optimization phase is restarted with an in-
creased number of repetitions to obtain a new average performance, which minimizes
continuous reconfiguration overheads and takes into account different control flow
paths (Line 4 in Listing 4.3). This threshold (shared across all applications) needs to
take into account the possible variability in the execution time of a parallel region.
If the execution time of a parallel region presents a large variability (e.g., because
of shared environments, or different behavior in different iterations) this threshold
needs to be larger. In our experiments, we configure this threshold as 5.0%.

We configure our generic policy with different hardware knobs, metrics, and op-
timization goals. Table 4.1 shows the policies derived from the different configura-
tions that are evaluated in this work. For each policy, we show the possible hardware
knob configuration that a hardware knob can use and the inputs metrics and opti-
mization goal of the metric.

The following sections explain in detail how we configured our generic policy to
optimize different target metrics.
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TABLE 4.1: Summary of policies used in this work. SMT can be configured as SMT8, SMT4,
SMT2, or ST. Prefetcher can be set to the mostaggressive (3), aggressive (2), default (1), or

disabled (0). DVFS is explored in steps of 0.06 GHz.

Policy Hardware knob configurations Input metrics Optimization goal

SMT Prefetcher DVFS

MAXPERF 8,4,2,1 3,2,1,0 3.49GHz Execution time Minimize execution time

MINEDP 8,4,2,1 3,2,1,0
3.49GHz to
2.06GHz

Execution time
and power consumption

Minimize execution time
and power consumption

MINPOWER 8,4,2,1 3,2,1,0
3.49GHz to
2.06GHz

Execution time
and power consumption

Minimize power consumption
with a maximum configurable
performance degradation

4.4.1 MAXPERF Policy

The MAXPERF policy seeks to maximize performance by minimizing the execution
time. To that end, we define a metric to minimize execution time of the parallel re-
gions and the hardware knob configuration vectors for hardware knobs: SMT level,
data prefetcher, and DVFS.

• For the SMT level, MAXPERF explores four SMT levels: SMT8, SMT4, SMT2
and ST.

• For the data prefetcher, MAXPERF explores four configurations: most aggres-
sive, aggressive, default aggressiveness and disabled configurations (shown in
Table 4.1 as 3,2,1,0, respectively).

• For the DVFS knob, MAXPERF only selects the highest frequency, which is the
default configuration. In our experiments, lowering frequency only increases
the execution time. Therefore, if we seek to minimize the execution time, fre-
quency needs to be set to the highest available configuration.

4.4.2 MINEDP Policy

The MINEDP policy seeks to minimize the EDP, i.e. maximize speedup while reduc-
ing the power consumption. In the MINEDP policy, execution time, and EDP are
used as input metrics with the constraint that execution time cannot be degraded.

The MINEDP policy uses 3 hardware knobs and their corresponding hardware
knob configuration vectors are the following:

• For the SMT level, the MINEDP policy explores all the SMT levels available in
our platform: SMT8, SMT4, SMT2, and ST.

• For the data prefetcher, the MINEDP policy explores four configurations: most
aggressive, aggressive, default aggressiveness and disabled configurations
(shown in Table 4.1 as 3,2,1,0, respectively).
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• For the DVFS, the MINEDP policy explores 22 configurations, from the highest
(3.49 GHz) to the lowest frequency (2.06 GHz) by steps of 0.06 GHz.

Based on the hardware knob priority exploration phase, the DVFS knob is ex-
plored the last because the default configuration for the DVFS knob is set to the
highest available frequency in the system. Therefore, reducing the frequency can
only lead to a performance degradation. The SMT level and the data prefetcher
knobs have a higher beneficial impact on performance than the DVFS knob. There-
fore, SMT level and the data prefetcher are explored first. This method allows us
to achieve a similar performance than the MAXPERF policy and then use the DVFS
knob to reduce the power consumption without affecting the performance. As a
result, increasing the energy efficiency of the system.

4.4.3 MINPOWER Policy

The MINPOWER policy seeks to minimize the overall power consumption of the
platform with respect to the optimal hardware knob configuration for execution
time.

To achieve the optimal configuration, the MINPOWER policy allows changes in
the hardware knob configurations if execution time is improved. Therefore, in the
second phase of our algorithm, libPRISM uses the optimal hardware knob configu-
ration as starting point to reduce power consumption.

This policy allows a performance degradation for the iterations of a parallel re-
gion in terms of execution time with respect to the best hardware configuration to
achieve greater savings on power consumption. The performance degradation in
terms of execution time can be controlled with a degradation threshold defined by
the user (Line 18 in Listing 4.2). The higher the value of this threshold, higher per-
formance degradations are allowed and higher savings in power consumption can
be achieved. The user needs to set this threshold according to its needs. The input
metrics for this policy are power consumption and execution time.

This policy explores different hardware knob configurations defined in the hard-
ware knob configuration vectors, which are:

• For the SMT level, MINPOWER explores all the SMT levels available in our
platform: SMT8, SMT4, SMT2, and ST.

• For the data prefetcher, the MINPOWER policy explores four configurations:
most aggressive, aggressive, default aggressiveness and disabled configura-
tions (shown in Table 4.1 as 3,2,1,0, respectively).

• For the DVFS knob, the MINPOWER policy explores 22 configurations, from
the highest frequency (3.49GHz) to the lowest frequency (2.06GHz) by steps of
0.06GHz.
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FIGURE 4.4: MINPOWER policy with a 10% threshold in libPRISM to select a competitive
performing configuration for SMT level, data prefetcher and DVFS for the CG application.
The X-axis shows the iterations of the same parallel region and the Y-axis the execution time

for that given iteration. Repetitions is set to 1 (algorithm shown in Listing 4.2).

4.4.4 Case Study: MINPOWER Policy

In this section we illustrate the detailed behavior of the MINPOWER policy to select
the best hardware knob configuration for the CG application.

The MINPOWER policy minimizes power consumption while performance is
not degraded more than a certain threshold with respect to the maximum perfor-
mance achievable (10% in this example). For clarification in this example, the MIN-
POWER policy just explores default aggressiveness and disabled prefetcher config-
urations for the prefetcher knob and for the DVFS knob it explores from the highest
to the lowest frequency by steps of 0.1 GHz. SMT level is explored as explained in
Section 4.4.3.

Figure 4.4 shows how the hardware knob configuration optimization phase
(shown in Listing 4.2) is performed on the longest parallel region of CG benchmark.
This figure shows the selected SMT level, the prefetcher, and frequency configura-
tion in a particular iteration of the parallel region, as well as the execution time of
the parallel region under this configuration. The first iteration of a parallel region
runs in the default hardware knob configuration in order to use it as a reference for
the hardware knob priority exploration phase. The hardware knob priority explo-
ration phase (shown in Listing 4.1) is realized from iteration 1 to iteration 3, which
detects what are the hardware knobs impacting most the performance. The policy
measures speedup in execution time for a lower aggressive configuration of each
hardware knob.

Then, libPRISM goes to the hardware knob configuration optimization phase.
Since in this application, the prefetcher is the hardware knob with most impact it
starts explore the prefetcher aggressiveness from iteration 3, which has no more pos-
sible configurations. Therefore, MINPOWER decides to turn it off. Then, in the next
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iteration 4, the MINPOWER policy lowers the SMT from SMT8 to SMT4 just to real-
ize that it slowdowns the execution time and power consumption is not improved.
After exploring the prefetcher aggressiveness and the SMT level, the policy explores
the DVFS knob vector. From iteration 5 to 10, the MINPOWER policy lowers fre-
quency until it sees a performance degradation of the specified threshold of 10%.
Therefore, it stops the exploration and goes to the optimal hardware knob configu-
ration tracking phase (shown in Listing 4.3).

In the case that a hardware knob has a performance interaction with other hard-
ware knob that has been previously explored, libPRISM can reset the exploration of
all the hardware knobs in order to consider the interaction, as shown in Lines 22 and
23 in Listing 4.2.

When an important change in performance during the optimal hardware knob
configuration tracking phase happens, the MINPOWER policy starts again the hard-
ware knob configuration optimization. For this case study, the policy does not detect
any phase change during the rest of the execution in CG of this parallel region.

In this specific application, we can observe that it is better to use a high SMT level
(SMT8), moderately high frequency (3.0GHz), and disable the prefetcher. The largest
parallel region of CG does random memory accesses and uses the read data in a sim-
ple calculation. Disabling the prefetcher allows to reduce memory bandwidth and,
thus, reduce the latency for useful memory accesses, which allows the application to
exploit a higher SMT level. As the memory accesses are slow and the computation
depends on them, it is possible to run all the threads with a lower DVFS level. This
reduces power consumption while not degrading performance more than a given
threshold (10%).

4.5 Evaluation

In this section we evaluate libPRISM in a POWER8 system3. We use libPRISM to
coordinate the SMT level, data prefetcher, and DVFS knobs.

As presented in Chapter 3.1.1, the POWER8 system has 4 SMT levels: 8, 4, 2, and
ST. In terms of data prefetching, the most relevant fields of the DSCR register are the
following ones:

• LDS: Enables data prefetching for load instructions.

• SNSE: Enables data prefetching for load and store instructions that have a
stride bigger than a cache block.

• SSE: Enables data prefetching for store instructions.

• DPDF: Number of cache blocks that will be prefetched, from 1 cache block up
to 7 cache blocks.

3The experimental setup is detailed in Section 3.1.1.
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FIGURE 4.5: Results with respect to the default configuration (SMT8, default prefetcher,
and the highest frequency of 3.5GHz). Best Static per Application (BSA): best SMT level,
prefetch aggressiveness, and frequency configuration for all the execution found after an
offline profiling. libPRISM is running with the MAXPERF, MINEDP, MINPOWER 10%, and
MINPOWER 20% policies that select the hardware knob configuration for a certain metric

per parallel region at execution time.

Therefore, we select 4 possible different configurations: default, OFF, medium,
and aggressive configurations. The details of the DSCR configuration is shown in
Table 4.2.

In our experimental setup, we observe that the aggressive prefetcher configura-
tion performs better or equal than the medium configuration in most of the cases.
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TABLE 4.2: The aggressiveness levels considered in libPRISM with their corresponding con-
figurations for the DSCR.

Aggressiveness
level

LDS SNSE DPDF

OFF Disabled Disabled Not considered
Default Enabled Disabled 4
Medium Enabled Disabled 7
Aggressive Enabled Enabled 4

However, in a small amount of cases, we observe that the aggressive prefetcher con-
figuration reduces the hit ratio of the last level cache because it replaces useful blocks
to make room for inaccurately prefetched blocks.

TABLE 4.3: Voltage used when running a benchmark designed to stress the power consump-
tion of the processor with different frequencies. Voltage is normalized to the highest voltage

observed.

Frequency (GHz) 2.06 2.50 2.80 3.10 3.30 3.49
Voltage (normalized) 0.80 0.86 0.89 0.94 0.97 1.00

In order to explain the behavior when using the DVFS knob, we run a maxi-
mum power stressmark [15] to measure the upper voltage limit associated with each
frequency. Table 4.3 shows the processor voltage when executing the benchmark
to stress power consumption with a specified frequency. The difference between
running the benchmark to stress power consumption at the highest and lowest fre-
quency in terms of voltage is 20%. By default, DVFS selects the highest frequency
when running any benchmark we evaluated. Maximum power consumption of the
evaluated benchmarks achieves only 42% of the maximum power consumption ob-
served when running the benchmark to stress power consumption.

In this section we evaluate the behavior of different policies:

• Best static per application (BSA): Best performing hardware configuration
found for each application after an exhaustive offline profiling (352 configu-
rations: 4 SMT levels × 4 prefetcher aggressiveness × 22 frequency levels).

Notice that the BSA configuration achieves the best possible performance with
a static hardware knob configuration and can only be outperformed with a
dynamic hardware knob configuration.

• MAXPERF: dynamically sets the hardware knob configuration for every par-
allel region based on the MAXPERF policy, which seeks the maximum perfor-
mance in terms of execution time.

• MINEDP: dynamically sets the hardware knob configuration for every parallel
region based on the MINEDP policy, which seeks the minimum EDP within the
maximum performance achievable in terms of execution time.
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• MINPOWER (10%): dynamically sets the hardware knob configuration for ev-
ery parallel region based on the MINPOWER policy with a threshold of 10%,
which seeks the minimum power consumption while sacrificing up to 10% ex-
ecution time with respect to the execution time of BSA configuration.

• MINPOWER (20%): dynamically sets the hardware knob configuration for ev-
ery parallel region based on the MINPOWER policy with a threshold of 20%,
which seeks the minimum power consumption while sacrificing up to 20% ex-
ecution time with respect to the execution time of BSA configuration.

Figure 4.5a shows the speedup results in execution time with respect to the de-
fault hardware configuration (SMT8, default data prefetcher and the highest fre-
quency of 3.5GHz) for the Best Static for Application hardware Configuration (BSA)
and all our policies. By comparing the results with respect to BSA, we can observe
how the performance degradations introduced by our policies affect performance,
power consumption, and EDP. Figure 4.5b shows the power consumption normal-
ized to the default hardware configuration for the BSA configuration and all our
policies on top of libPRISM. Figure 4.5c shows the EDP normalized to the default
hardware configuration for the BSA configuration and all our policies on top of
libPRISM. In the next sections we will comment these results individually for each
of our policies: MAXPERF, MINEDP, and MINPOWER.

4.5.1 MAXPERF Policy

4.5.1.1 Performance

Figure 4.5a shows that the default hardware configuration is already the best per-
forming configuration for 2 out of 8 evaluated benchmarks. For the remaining 6
benchmarks, 5 benchmarks can reach performance improvements above 20% illus-
trating the need for an adaptive system that manages shared hardware resources. On
average, BSA reaches a 35.5% performance improvement over the default configu-
ration. The policy MAXPERF almost achieves the same performance improvement
as the BSA (31.6%).

Figure 4.6 shows the final hardware configuration in terms of SMT level, data
prefetcher aggressiveness and frequency for all parallel regions. As we can see, most
of the benchmarks run with 1 or 2 different configurations (frequency is set to the
highest frequency). For instance, IS runs with SMT4 and the prefetcher disabled for
the 13% of the time and with SMT2 and the prefetcher with the default configuration
for the remaining 87% of the execution. The difference in the average performance
between the MAXPERF policy and the BSA comes mainly from the benchmark FT
and IS.
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FIGURE 4.6: Final hardware knob configuration for the different parallel regions when run-
ning with libPRISM and MAXPERF policy.

The benchmark FT is composed of several parallel regions, and FT iterates
through these parallel regions from 1 to 27 times. In the case of executing a par-
allel region once, libPRISM cannot improve performance. In the cases of executing
a parallel region 27 times, libPRISM spends several iterations to explore and set the
hardware knob configuration. This exploration overhead accounts for the difference
in execution time.

In the case of IS, the MAXPERF policy improvement over the BSA is due to the
dynamic behavior of libPRISM. As we can see in Figure 4.6, IS runs 13% of the time
in SMT8 and 87% of the time in SMT4 and the prefetcher is disabled for 13.3% of the
time.

In EP, we observe that all the policies have the same behavior. EP is composed
of some time consuming parallel regions that are only executed once and some very
short parallel regions that are executed multiple times. In this scenario, libPRISM is
not able to tune the hardware knobs for the time consuming parallel regions; there-
fore, they are executed with the default hardware knob configuration. In addition,
libPRISM does not tune the hardware knobs for the short parallel regions because
the overhead of reconfiguring the knobs is higher than their execution time. In con-
trast, BSA has slightly worse performance than the default hardware configuration
due to the overheads when setting the hardware knob configuration for the short
parallel regions.

The other benchmarks can run with the highest speedup with a static configura-
tion, which is found after an exhaustive offline profiling. The MAXPERF policy is
able to dynamically match at runtime the same performance as the BSA configura-
tion without requiring any offline profiling.
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4.5.1.2 Energy Efficiency

Next, we discuss the energy efficiency results obtained with libPRISM using the
MAXPERF policy. Figure 4.5b shows the power consumption of the processor when
running with the BSA configuration and our policies. Power results are normalized
to the default configuration. In the MAXPERF policy, power consumption on aver-
age is the same as the BSA configuration (81.6% and 81.4%, respectively). MAXPERF
can slightly reduce power consumption on some benchmarks or slightly increase it.
The differences come from parallel region that are executed once, therefore, MAX-
PERF runs those parallel regions with the default hardware knob configuration,
which can differ from the BSA configuration.

In terms of EDP, Figure 4.5c shows EDP normalized to the default configuration.
Results show that the MAXPERF policy is able to reduce it by 30% with respect to
the default hardware knob configuration.

We can appreciate differences between the MAXPERF policy and the BSA con-
figuration in several benchmarks such as FT and IS. In the case of IS, the MAX-
PERF policy can reduce the EDP up to 5% with respect to the BSA configuration.
The difference comes from a better execution time and better power consumption
with respect to the BSA configuration. For several parallel regions of these bench-
marks, libPRISM adapts the hardware knob configuration to different intra appli-
cation requirements by lowering the level of different hardware knobs as shown in
Figure 4.6.

4.5.2 MINEDP Policy

4.5.2.1 Performance
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FIGURE 4.7: Final hardware knob configuration for the different parallel regions when run-
ning with libPRISM and MINEDP policy.

In Figure 4.5a we can see that the MINEDP policy achieves the similar perfor-
mance as BSA and MAXPERF (30.8% on average). Yet, Figure 4.7 shows that the
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MINEDP policy is able to reduce frequency in several parallel regions from bench-
marks such as FT, LU and SP while achieving the same performance.

In the case of BT and FT, the MINEDP policy is able to reduce frequency to
3.43GHz for 20% of execution time of BT and 85% of execution time of FT. In the
case of SP, frequency can be lowered to 3.19GHz for 33% of the execution time. In
the case of the other five benchmarks, the MINEDP policy is not able to lower the fre-
quency and keep the same performance due to requirements of the parallel regions.
In the case of CG, Figure 4.5a shows that the configuration selected by MINEDP
achieves the same performance as MAXPERF. This is caused by the constraint to not
reduce performance with respect to the best performing hardware configuration. As
shown in Section 4.5.3, CG can achieve a lower EDP and power consumption if a
higher performance degradation is allowed.

4.5.2.2 Energy Efficiency

As we can see in Figure 4.5b, power consumption is slightly reduced due the
MINEDP policy lowers the frequency for several parallel regions in different bench-
marks. In the case of SP, MINEDP policy can reduce power consumption by 4.3%
with respect to the BSA configuration while lowering the frequency 2.1% with re-
spect to the BSA configuration.

In terms of EDP (see Figure 4.5c), the MINEDP policy achieves the same EDP
as the BSA configuration and the MAXPERF policy since in EDP calculation execu-
tion time has more weight than power consumption. The slightly reduced power
consumption caused by a lower frequency is not highly reflected in this metric.

From Table 4.3, we see that the highest drop on voltage is 20%, which hap-
pens from the highest frequency to the lowest frequency in an ideal scenario. The
MINEDP policy is not able to reduce frequency to the lowest frequency due to the
performance constraint and power consumption is not lowered more due to serial
regions of the code, overheads of reconfiguring the hardware knobs, and total power
consumption from the parallel region. Therefore, in our next evaluated policy we re-
lax the performance constraint.

4.5.3 MINPOWER Policy

4.5.3.1 Performance

In Figure 4.5a, we show two configurations with different thresholds of the MIN-
POWER policy (10% and 20% maximum execution time degradation).

On average, the MINPOWER policy is still able to significantly improve execu-
tion time with respect to the default hardware configuration more than 20%: with a
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10% threshold, execution time is improved by 24% and with a 20% threshold, execu-
tion time is improved by 17%. With respect to BSA, the MINPOWER policy degrades
execution time by 7% and 15% with a 10% and 20% threshold, respectively.

S
M
T

P
re
f.

F
re
q
.

S
M
T

P
re
f.

F
re
q
.

S
M
T

P
re
f.

F
re
q
.

S
M
T

P
re
f.

F
re
q
.

S
M
T

P
re
f.

F
re
q
.

S
M
T

P
re
f.

F
re
q
.

S
M
T

P
re
f.

F
re
q
.

S
M
T

P
re
f.

F
re
q
.0.0

0.2

0.4

0.6

0.8

1.0

P
a
ra

ll
e
l 
re

g
io

n
s

e
x
e
c
u

ti
o
n

 t
im

e
 b

re
a
k
d

o
w

n

BT CG EP FT IS LU MG SP

SMT8

SMT4

SMT2

ST

Aggressive

Medium

Default

Off

3.49GHz

[3.43,3.25]GHz

[3.24,2.75]GHz

[2.74,2.06]GHz

(A) 10% Threshold

S
M
T

P
re
f.

F
re
q
.

S
M
T

P
re
f.

F
re
q
.

S
M
T

P
re
f.

F
re
q
.

S
M
T

P
re
f.

F
re
q
.

S
M
T

P
re
f.

F
re
q
.

S
M
T

P
re
f.

F
re
q
.

S
M
T

P
re
f.

F
re
q
.

S
M
T

P
re
f.

F
re
q
.0.0

0.2

0.4

0.6

0.8

1.0

P
a
ra

ll
e
l 
re

g
io

n
s

e
x
e
c
u

ti
o
n

 t
im

e
 b

re
a
k
d

o
w

n

BT CG EP FT IS LU MG SP

SMT8

SMT4

SMT2

ST

Aggressive

Medium

Default

Off

3.49GHz

[3.43,3.25]GHz

[3.24,2.75]GHz

[2.74,2.06]GHz

(B) 20% Threshold

FIGURE 4.8: Final hardware knob configuration for the different parallel regions when run-
ning with libPRISM and MINPOWER policy with thresholds of 10% and 20%.

The main difference on execution time comes from a lowered frequency as we
can see in the breakdown of the parallel execution time for 10% and 20% thresholds
in Figures 4.8a and 4.8b, respectively. As we can see in these figures, there are several
sections of the code where frequency cannot be lowered in order to not degrade
execution time. On the other hand, several parallel regions can run at the lowest
frequency with only the 10% execution time degradation threshold.

4.5.3.2 Energy Efficiency

The MINPOWER policy is able to reduce power consumption as we can see in Fig-
ure 4.5b. This reduction in some cases is greater than the execution time degradation.
For instance, in BT we can reduce power consumption up to 30% while execution
time is increased by 20% with respect to the default hardware configuration. In the



4.5. Evaluation 49

case of CG, the MINPOWER policy can reduce power consumption up to 29% while
still achieving a speedup of 47% with respect to the default hardware configuration
with a 20% threshold. Notice that MINPOWER can achieve a 2% lower EDP than
MINEDP in CG when allowing a higher performance degradation of 10%

In contrast, in some cases such as FT or MG, increasing the execution time thresh-
old does not achieve the same power consumption reduction, even as seen in Fig-
ures 4.8a and 4.8b.

Figure 4.5c shows the results for the EDP metric. The MINPOWER policy is able
to significantly decrease power consumption and improve the average EDP. When
the MINPOWER policy uses a 10% threshold can improve EDP up to 1.5% with
respect to the BSA configuration. On the other hand, allowing a 20% execution time
degradation achieves a worse EDP than the BSA configuration by 3.0%.

In the case of CG, the MINPOWER policy lowers EDP an extra 2.1% with respect
to the MINEDP policy and an extra 3.5% with respect to the BSA configuration. In
contrast, benchmarks such as BT or SP see a worse EDP only when we allow a higher
execution time degradation (going from a 10% threshold to a 20% threshold).

4.5.4 Overhead Analysis

In this section, we study in detail the overheads introduced by libPRISM and how
we mitigate them.

libPRISM overheads are mainly introduced by reading the different sensors,
compute the selected policy, and configuring the different hardware knobs at a par-
allel region level:

• Reading performance: as mentioned earlier, we use perf to read several perfor-
mance counters such as instructions and cycles.

• Reading power consumption: AMESTER updates the power consumption ev-
ery 250 microseconds and it is read at the end of a parallel region.

• Reconfiguring SMT, prefetcher, and DVFS knobs: as explained in Section 3.1,
libPRISM needs to modify several registers exposed to the OS.

• Policy Computation: libPRISM needs to process the available information to
configure the hardware knobs according to an user-selected policy.

These overheads have a magnitude of microseconds and their weights are shown
in Figure 4.9. From these overheads, 5 of them are unavoidable: measuring perfor-
mance, power consumption, reconfiguring SMT, prefetcher, and DVFS knobs. The
only overhead we can mitigate is the policy computation, which is defined by the
algorithm implemented.

We need to keep a lightweight policy computation due to the nature of the bench-
marks. Several benchmarks used in this thesis have thousands of short parallel
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FIGURE 4.9: Contribution to the total overhead of a single parallel region execution of all the
libPRISM components.
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FIGURE 4.10: Percentage of short parallel regions (execution time of a single iteration is
shorter than 1 second) of the benchmarks from NPB suite. Percentage on top of each bar
represents the total time spent in short parallel regions with respect to the total time spent in

parallel regions.

regions (execution time of a single iteration is shorter than a second) as shown in
Figure 4.10 , that can represent a large percentage of the total execution of the bench-
mark (e.g., LU, MG, and SP). Therefore, unavoidable overheads from libPRISM can
represent a considerable percentage of the total execution of a parallel region.

Also, in Table 4.4 we measure the execution time of a single iteration of the short-
est, longest, and most representative parallel regions in the benchmarks from the
NPB suite. The shortest parallel regions are usually executed within microseconds,
while the largest parallel regions can take seconds to complete. Several short paral-
lel regions have a shorter time than the unavoidable overheads of libPRISM. Notice
that in MG and SP the most representative parallel region is a short parallel region.
Therefore, possible overheads can degrade performance in parallel regions that are
representative of the overall performance of the benchmark.
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TABLE 4.4: Execution time in seconds of the benchmarks from the NPB suite of the shortest,
largest, and most representative parallel region in benchmarks from NPB. The most repre-
sentative parallel region is the parallel region that contributes the most to the total execution

time taking into account the number of iterations of all the parallel regions.

Benchmark Smallest PR Largest PR Most representative PR

BT 0.0025 1.26 1.06

CG 0.0029 6.87 6.87

EP 0.0067 82.29 82.29

FT 0.0047 7.43 7.43

IS 0.0049 17.78 17.78

LU 0.0022 4.02 4.02

MG 0.0021 0.14 0.09

SP 0.0019 1.53 0.83

In order to mitigate these overheads, libPRISM relies on 2 mechanisms config-
urable by the user: (1) policies and (2) filtering of parallel regions with short dura-
tion.

Policies described in this chapter implement a greedy search for the decision al-
gorithm. This decision algorithm achieves the best hardware knob configuration
while minimizing the policy computation overhead. Figure 4.9 shows the break-
down of all overheads introduced by libPRISM in a single iteration of a parallel
region. As we can see, the policy computation is the smallest overhead. Also, notice
that other overheads are unavoidable and cannot be reduced.

Since several overheads are unavoidable, libPRISM implements an user-
specified threshold to not explore parallel regions that are shorter than a threshold.
This mechanism avoids introducing overheads to short parallel regions where the
overheads are larger than the parallel region itself.

Finally, we measure the total overhead introduced by running the benchmarks
with and without libPRISM infrastructure. In this experiment, libPRISM only tracks
and profiles the different parallel regions without reconfiguring the hardware knobs.
The measured overhead in terms of execution time is always below 2.3% (1.0% on
average), mainly because of monitoring short parallel regions. After selecting an
appropriate threshold to control which parallel regions are explored, the exploration
overhead is effectively reduced to less than 1.0%, which makes the energy overhead
negligible as well.

4.5.5 Discussion

In this section we discuss potential applicability of libPRISM together with its limi-
tations.
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Although we only demonstrated the usage of libPRISM for coordinating the
management of SMT, prefetcher and DVFS knobs for OpenMP applications on a
POWER8-based system, the infrastructure can be leveraged for other purposes. For
instance, other shared memory programming models that mark parallel regions or
serial regions can be supported by libPRISM using the same library interposition
mechanism. Also, other hardware knobs and sensors can be used by the policies im-
plemented within libPRISM. This is enabled by the generic, modular, extensible and
architecture-agnostic design of libPRISM. Using libPRISM on a different architecture
or system only requires changing the way that the hardware knob configurations are
passed to the architecture, and the way the power measurements are obtained from
the system. All the other parts of libPRISM, including the algorithms, are indepen-
dent of the architecture 4. However, the potential of libPRISM can change depend-
ing on the system. In particular, the most common case for x86 architectures is to
offer only up to SMT2 level, the data prefetcher knobs are limited to enabling or
disabling the individual prefetchers present in the architecture [73], and the power-
performance efficiency of DVFS can change depending on the processor implemen-
tation.

4.6 Conclusions

Because of the potential resource contentions among threads in the memory sub-
system, current processors offer the user a wide range of configurable knobs such
as the SMT level, the data prefetcher aggressiveness or the DVFS knob. Unfortu-
nately, finding the optimal settings of these knobs is difficult because of the large
search space, the strong interactions between different architectural knobs and the
different hardware demands of application phases.

In this chapter we introduce libPRISM, an infrastructure for parallel applica-
tions to dynamically adapt the architectural knobs based on a custom policy. On
top of libPRISM we develop several policies for managing the SMT level, the data
prefetcher and the DVFS hardware knobs: the MAXPERF policy with the goal of
increasing performance; the MINEDP policy with the goal of reducing the overall
EDP; and the MINPOWER policy with the goal of reducing power consumption at
the cost of execution time.

We evaluate our solution for a wide set of OpenMP benchmarks running on an
IBM POWER8 system. Results show a boost in performance, a power consumption
reduction and an energy-delay product reduction when compared to the default
static system configuration with our proposed policies.

4libPRISM source code for x86 architectures is also available at
https://github.com/criort/libPRISM/tree/x86
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Chapter 5

Machine Learning for Hardware
Knob Reconfiguration

5.1 Introduction

The main limitation of exploration-based techniques is that they incur increasingly
high overheads and require longer training periods as the search space grows. The
search space of possible knob configurations is already very large in current proces-
sors, and it is expected to be even larger in the future, since the number of hardware
knobs and the amount of configuration options for each knob are increasing in every
new generation of HPC processors.
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FIGURE 5.1: Speedup of MD when running with different knob configurations with respect to
the default knob configuration. The aggressiveness of the Y-axis represents the SMT levels
of the cores, the number of cores within a socket, and the number of sockets used to run the

parallel application.

In a dual socket POWER9-based system, the hardware knobs to control the
thread placement, the SMT level, and the data prefetcher combine for a total of
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320 possible hardware knob configurations. Figure 5.1 shows the speedup of the
MD benchmark from the SPEC OMP 2012 suite when using all the possible knob con-
figurations with respect to the default knob configuration. The axis shows the hard-
ware configuration used to run MD: the Y-axis represents the aggressiveness in terms
of number of sockets and SMT level (i.e. higher aggressiveness implies a higher
number of sockets or SMT level); and the X-axis represents the aggressiveness of the
data prefetcher. The default knob configuration of the system is set to a high aggres-
siveness for thread allocation and SMT (2 sockets and the highest SMT level) and a
medium aggressiveneess for the data prefetcher.

As shown in Figure 5.1, the performance of the MD benchmark is heavily influ-
enced by the knob configuration, and the coordination of the hardware knobs is of
paramount importance. In this benchmark, the best performance is achieved using
a mid-to-low prefetcher aggressiveness and a medium thread allocation and SMT
aggressiveness. However, the same mid-to-low prefetcher aggressiveness degrades
performance when combined with other thread allocation and SMT aggressiveness
configurations. This also poses a great challenge for exploration-based techniques
that use heuristics to avoid the impracticality of exploring all configurations, since
they can easily fall into local maximums. All together, exploration-based techniques
are not able to find the best knob configuration when the search space is very large
and the hardware knobs interact between themselves. Instead, ML techniques have
great potential to solve problems of this nature, as they have proven to be an effec-
tive solution for decision-making problems with large search spaces, both in terms
of accuracy and speed.

This chapter presents Machine Learning for Hardware Knobs (MARK), a tech-
nique that dynamically adapts the hardware knobs through a prediction model
based on Machine Learning (ML) with the aim of minimizing execution time, power
consumption, or Energy-Delay Product (EDP). MARK uses library interposition to
identify the parallel regions of parallel applications. During the execution of the pro-
gram, MARK builds a profile of the parallel regions, it predicts the best knob con-
figuration for them using a neural network model, and re-configures the hardware
knobs accordingly. With this approach, MARK avoids the limitations and caveats
of exploration-based techniques such as the limited scalability and the overheads
they incur when many knobs are considered, algorithm specific search for differ-
ent metrics, and portability across systems. Instead, MARK uses fast and scalable
inferences of the neural network to make the predictions, it considers interactions
between hardware knobs, it is completely transparent to the user, and it does not
require modifications in the source code of the applications.
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TABLE 5.1: Performance Counters measured in order to build the Cycles Per Instruction
(CPI) Stack in our POWER9 based system. NTC is the Next-To-Complete instruction

Performance Counter
Group

Description Measured Performance Counters

PM ICT NOSLOT
Cycles that no instruction is available to execute
(Branch miss predictions)

IC_MISS, NOSLOT_BR_MPRED, NOSLOT_BR_MPRED_ICMISS, NOSLOT_DISP_HELD

PM ISSUE HOLD Cycles that the NTC instruction is held in the issue ISSUE_HELD_DARQ_FULL, ISSUE_HELD_ARB, ISSUE_HELD_OTHER

PM CMPLU STALL
Cycles that instructions are stalled in execution
(Stalls due to execution units and cache misses)

BRU, FXU, DP, DFU, PM, CRYPTO, VFX, VDP, LRQ_FULL, PM_CMPLU_SRQ_FULL,
LSAQ_ARB, ERAT_MISS, EMQ_FULL, LMQ_FULL, ST_FWD, LHS, LSU_MFSPR,
LARX, LRQ_OTHER, DMISS_L2L3, DMISS_L3MISS, LOAD_FINISH, STORE_DATA,
LWSYNC, HWSYNC, EIEIO, STCX, SLB, TEND, PASTE, TLBIE, STORE_PIPE_ARB,
STORE_FIN_ARB, STORE_FINISH, LSU_FIN, NTC_FLUSH, NTC_DISP_FIN

PM CMPLU THRD CYC
Cycles that instructions are stalled in execution
due to the actions of a different thread on the same core
(Exceptions and synchronization between threads)

EXCEPTION, ANY_SYNC, SYNC_PMU_INT, SPEC_FINISH, FLUSH_ANY_THREAD,
LSU_FLUSH_NEXT, NESTED_TBEGIN, NESTED_TEND, MTFPSCR, OTHER_CMPL

PM 1PLUS PPC CMP Completed instructions PM_1PLUS_PPC_CMP

5.2 Machine Learning for Hardware Knobs

This section presents MARK, a technique based on ML that reconfigures multiple
hardware knobs during the execution of parallel programs to minimize execution
time, power consumption, or EDP.

At execution time, every time a parallel region is executed, MARK is invoked
to obtain the best knob configuration for it. For each parallel region of the pro-
gram, MARK builds a profile with its Cycles Per Instruction (CPI) stack and power
consumption. When a parallel region is about to be executed, MARK predicts the
best knob configuration for the profile of that parallel region by inferring a machine
learning based predictor model, and the knob configuration is applied by setting the
hardware knobs accordingly. The following sections explain in detail the different
components and steps performed in MARK.

5.2.1 Building a Profile

MARK builds a profile with the CPI stack and the power consumption of all the par-
allel regions of the program. Modern processors allow to build up a CPI stack [50]
to breakdown the cycles a processor is stalled processing or completing an instruc-
tion. The CPI stack captures and identifies the behavior of an application and can be
leveraged to set the multiple hardware knobs to reduce the number of stalled cycles.

A complete CPI stack is composed of multiple performance counters. Table 5.1
shows all the performance counters that are captured by MARK to build the CPI
stacks in our experimental setup. Different performance counters from the CPI
stack measure the different causes of the stalls that a thread suffers. For instance,
PM_CMPLU_STALL_CYC measures stalls due to executions units, cache, or mem-
ory. On the other hand, PM_CMPLU_THRD_CYC measures stalls due to SMT.
MARK reads the complete CPI stack with a single execution of a parallel region.
Note that, depending on the system, this approach could lead to low accuracy when
reading the performance counters. We further discuss this in Section 5.3.2.

MARK builds the profile of a parallel region the first time it is executed. Then, in
the subsequent instances of the parallel region, the profile is used to predict its best
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knob configuration. This method minimizes the exploration time of a parallel region
to a single execution.

5.2.2 ML Predictor Model

Every time the application enters a parallel region, MARK predicts the best knob
configuration for the execution of the parallel region. The predictions made by
MARK are based on a knob configuration predictor built offline. ML is needed due
to the large search space in current systems, up to 320 possible knob configurations
in our setup that considers the thread placement, SMT level, and data prefetcher
knobs.

To build a ML model, we go through a process for gathering data, curating data,
and training a ML model. To gather the data we use for training, we run a set of
benchmarks with all the possible knob configurations, and then we use the results
of the experiments to train the model. Figure 5.2 shows the details of this process.
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FIGURE 5.2: Steps to build the predictor model incorporated in MARK. All these steps are
carried out offline. The predictor model’s training process needs to have the information of

the execution of the benchmarks with the different knob configurations.

As shown at 1 in Figure 5.2, we carry out an extensive offline profiling of all
benchmarks with all possible hardware knob configurations. When running the
benchmarks with a given knob configuration, we gather multiple information to
build the profile of all parallel regions in the benchmark: its CPI stack, power con-
sumption, execution time, and the knob configuration used. In order to read the CPI
Stack in our system, MARK reads the 52 performance counters shown in Table 5.1.
The result of this profiling is a dataset with all the information about every parallel
region in our benchmarks when executed with a given hardware knob configura-
tion.

The dataset is processed in order to find the best knob configuration that min-
imizes a given metric for every parallel region. For every unique parallel region,
we compare the multiple profiles of the parallel region when running with differ-
ent knob configurations and choose the one that minimizes the given metric as the
best hardware knob configuration as shown at 2 . Then, we add a new field on
the profile with the best hardware knob configuration as shown at 3 in Figure 5.2.
At this point, we can manually build an oracle that runs every parallel region in a
benchmark with the best knob configuration.
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This new processed dataset can be leveraged to build an intelligent model with
supervised learning as shown at 4 in Figure 5.2. With supervised learning, we can
train a model that maps an input (the different profiles from every parallel region)
to an output (the best hardware knob configuration). Therefore, we use the charac-
teristics of a parallel region as features of the model: CPI stack, power consumption,
and the knob configuration used to gather the data. The desired output value for
our model is the best knob configuration that minimizes the given metric.

After the supervised learning process, we have a trained model to minimize a
given metric as shown at 4 in Figure 5.2. This model can be optimized by tuning
its parameters to increase its prediction accuracy. After an optimization step where
different parameters of the predictor are tuned (shown at 5 ), the trained model
is ready to predict the best knob configuration from a system state (current knob
configuration), a CPI stack, and power consumption.

5.2.3 Runtime Actions

Execution Time
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Parallel
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Parallel execution with
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FIGURE 5.3: Runtime for library interposition included in MARK in order to intercept the
start or end of a parallel region and reconfigure the hardware knobs specifically for a given

parallel region.

MARK implements a runtime library that, using library interposition, captures
the calls to the OpenMP runtime library. Library interposition is a well known and
commonly used mechanism to gather profiling information and reconfigure the sys-
tem without modifying or recompiling the source code of the applications. Using
the LD_PRELOAD environment variable from Linux, we can use MARK on top of
the OpenMP library as shown in Figure 5.3. Therefore, when the application calls to
the OpenMP library to start or end a parallel region, (GOMP_start and GOMP_end
functions, respectively), the runtime library of MARK intercepts the call, sets the
hardware knobs, starts the profiling, and then calls the actual OpenMP library. Note
that MARK could be used in many other parallel or task library that exposes the
start and end of a parallel region as library functions.

The runtime library of MARK is in charge of:
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1. Identifying the parallel region by its Program Counter (PC).

2. Using the predictor model to infer the knob configuration to be used.

3. Setting the hardware knobs of the architecture system through the
sched_setaffinity function from Linux for the thread placement knob, the
set_num_threads function from OpenMP for the SMT level knob, and writing
to the DSCR register for the data prefetcher knob.

4. Setting the performance counters to be measured at the beginning of the par-
allel region

5. Stopping and reading the performance counters with perf and reading the
power consumption of the system with in-band readings at the end of the par-
allel region.

The first time a parallel region is executed, MARK runs the parallel region with
the default knob configuration. The next time the same parallel region is about to
be executed, MARK intercepts the parallel region start, calls the ML model, and pre-
dicts the best knob configuration. Then, the hardware knobs are set and the parallel
region is executed with better performance. Therefore, MARK predicts the best knob
configuration from the default knob configuration in the first inference, and in the
following instances it predicts the best knob configuration from the previous best
knob configuration. This allows MARK to adapt when the behavior of a parallel
region changes due to input sensitivity.

The runtime needs to take into account the overheads of setting the hardware
knobs. Setting the hardware knobs of a short parallel region can lead to slowdowns
due to overheads being longer than the execution of the parallel region itself.

Note that MARK can be easily ported to other systems and hardware knobs by
simply re-training the ML model of the predictor on the target system, without any
changes in the algorithm of the MARK runtime library.

5.3 Methodology

In this section, we explain in detail the different evaluated hardware knob config-
urations and how performance counters are gathered. Then, the gathered data are
analyzed and the process for training and validating our ML model is detailed.

5.3.1 Hardware Knob Configurations

We coordinate the configuration of the thread placement across sockets, the SMT
level, and the data prefetcher aggressiveness.
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For the thread placement and the SMT level, Table 5.2 shows the possible combi-
nations of SMT level and thread placement considered for the evaluation of MARK
in our experimental setup with a POWER9-based HPC system.

TABLE 5.2: Possible combinations of the SMT level and occupancy of the sockets. A full
occupancy of a socket is when all 20 physical cores are executing the application, a half
occupancy is when 10 physical cores are used. The logic cores being used by an application

depends on the SMT level and the occupancy of the sockets.

SMT level Occupancy of Socket 1 Occupancy of Socket 2 Num. Threads
4 Full Full 160
2 Full Full 80
1 Full Full 40
4 Full Empty 80
2 Full Empty 40
4 Half Half 80
2 Half Half 40
4 Half Empty 40

For the prefetcher, we consider the most relevant fields for our experiments due
to differences in execution time, energy, and power consumption as explained in
Section 3.1.

When the machine boots, it sets the prefetcher to the default configuration: URG
set to 4, LDS enabled, DPDF set to 4, and all the other options disabled. We consider
40 possible configurations for the prefetcher with the fields described in Section 3.1.

5.3.2 Collecting Runtime Data

The data that drives our predictors at runtime are based on the performance coun-
ters that build the CPI stack, which consists of up to 52 performance counters in our
experimental setup. Unfortunately, reading a large amount of performance counters
at the same time is unfeasible. For instance, the POWER9 system we use in our ex-
perimental setup has 6 Performance Monitoring Units (PMU); therefore, it can only
read up to 6 different performance counters. 2 of these PMUs always measure cycles
and completed instructions. To allow reading more performance counters than the
available number of PMUs, modern OS automatically handle the switching between
groups of a size of the available number of PMUs at a small granularity (10ms in our
system). Therefore, there are 2 approaches to gather the required performance coun-
ters: (1) set by hand the performance counters in batches of 4 to be read in every
execution of a parallel region or (2) read all the performance counters at the same
time and rely on the OS to switch between them.

Figure 5.4 shows the difference between (1) reading performance counters in
batches of 4 across different executions of a parallel region (Precise) and (2) read-
ing all the performance counters in a single iteration of a parallel region relying
on the OS to switch between them at fine granularity (Multiplexing). It can be ob-
served that, for these 5 performance counters, there is no tangible difference between
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FIGURE 5.4: Difference between reading performance counters in groups of 4 and OS mul-
tiplexing at fine granularity. We show 5 different performance counters measuring instruc-
tions completed (INST CMPL), stalls due to a double precision execution pipe (STALL DP),
stalls due to the store queue was full (STALL SRQ FULL), stalls due to cache misses in the
L1 data cache that was resolved in the L2 or L3 cache (STALL DMISS L2L3), and stalls due

to cache misses in the L3 cache (STALL DMISS L3MISS).

the two approaches. The rest of performance counters we capture follow the same
trends. Since applications can have a low number of iterations, we use the Multi-
plexing approach that relies on the OS to switch between the performance counters.

Measuring performance counters with multiplexing within a parallel region can
lead to inaccuracies when the parallel region has a low execution time, since the
OS switches between groups of 4 performance counters at an interval of 10ms in
our setup. Thus, measuring the 52 performance counters that form the CPI stack
requires that the parallel regions run for at least 130ms. MARK considers parallel
regions with an execution time shorter than one second to be short parallel regions,
ensuring that the performance counters are measured correctly while taking into
account the overheads described in Section 5.2.3.

5.3.3 Data Analysis

Figures 5.5 (a) and (b) show the distribution of the best hardware configurations
when minimizing the execution time of all the parallel regions of all the benchmarks.
Figure 5.5 (a) shows the number of parallel regions that, with a given hardware con-
figuration, maximize their speedup with respect to the default configuration. Fig-
ure 5.5 (b) shows the distribution of the best hardware configurations when maxi-
mizing speedup in terms of aggressiveness for thread placement and SMT level, and
data prefetcher.

As shown in Figure 5.5 (a), plenty of hardware configurations do not improve
the default hardware configuration when running a given parallel region of a bench-
mark. Also, we can see that plenty of parallel regions have a unique best hardware
knob configuration that maximizes speedup.

Figure 5.5 (b) shows that the hardware configurations maximize the speedup are
biased to higher aggressiveness for the thread placement and SMT level. This bias is
also present when targeting other metrics such as power consumption or EDP.
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These two characteristics (unique best hardware configurations and biased data)
can have a negative impact on the training of the machine learning predictor model.
As mentioned before, in supervised learning, the training phase is done by feed-
ing inputs to the model and adjusting the model to the desired output. Using an
unbalanced dataset can lead to a predictor model with a low accuracy.

In the next section we propose a solution to deal with datasets with such charac-
teristics.

5.3.4 Dealing with Biased Training Data

Biased training data sets can cause accuracy problems in machine learning predictor
models, since the training data does not contain all possible scenarios and therefore,
they can fail to generalize when predicting for not previously seen data. This is due
to the tendency of multiple hardware configurations to perform better for multiple
benchmarks as shown in Section 5.3.3. As shown in Figure 5.5 (b), our training
data for thread placement and SMT level is biased to higher aggressiveness. On
the other hand, for the data prefetcher this bias is not present. This happens because
we use benchmarks designed for high performance computing systems, which in
most cases benefit from using a higher number of threads and sockets, although it is
not the case for all benchmarks. In contrast, the effectiveness of the data prefetcher
depends on the data access patterns of the applications, which is more varied.

To avoid accuracy problems caused by biased training data sets, we evaluate a
hybrid approach that uses the predictor model only for one dimension (the data



62 Chapter 5. Machine Learning for Hardware Knob Reconfiguration

prefetcher) followed by a second step that applies an exploration approach on the
other two dimensions (thread placement and SMT level). The search space for the
second exploration step uses the combinations shown in Table 5.2.

We evaluate two approaches in Section 5.4. The approach that predicts all the
hardware knob configuration (i.e. thread placement, SMT level, and data prefetcher)
using the machine learning model is called MARK-OML, and the approach that uses
the machine learning model to predict the data prefetcher configuration and then
uses a second exploration step to predict the thread placement and the SMT level is
called MARK-2step.

In MARK-2step, the prediction of the best hardware configuration from a CPI
stack is divided into two steps: (1) the predictor model is inferred to find the best
hardware data prefetcher configuration for the current thread placement and SMT
level. Then, (2) it performs a limited exploration step for the possible thread place-
ment and SMT level configurations with the predicted hardware data prefetcher,
taking 7 iterations of the parallel region. Then the resulting best hardware knob con-
figuration from the exploration is selected as the best hardware knob configuration.
Notice that this hybrid approach leads to a reduction of the search space.

In order to react to changes in the same parallel region across multiple instanti-
ations, MARK-2step records the best execution time of the parallel region after the
exploration step. The described process is restarted when the current execution time
differs more than a 10% with respect to the best execution time.

5.3.5 ML Model Training and Validation

We train the ML model with supervised learning as introduced in Section 2.5. The
inputs for the training process are the different CPI stacks of all the parallel regions
from all benchmarks and the desired output is set to the best hardware knob config-
uration found offline.

In order to validate and test our model on unseen data, we validate the model to
asset the generality of the model. Therefore, we split the dataset into two datasets:
one for training and one for validation. We feed the training dataset to build and
train the predictor and the validation dataset is used to validate the built model. We
use the leave-one-out cross-validation (LOOCV) method. We select all benchmarks
except the one to be validated to build the training dataset and the benchmark to
be validated is the evaluation dataset. Notice that a given benchmark can contain
multiple parallel regions.

Table 5.3 shows the achieved accuracy when running different predictors for
MARK-OML and MARK-2step. The parameters shown for each predictor in Ta-
ble 5.3 are chosen based on an offline evaluation for different values of each parame-
ter. The chosen parameters are the parameters that offered the highest accuracy. No-
tice that multiple hardware knob configurations can achieve a similar performance.
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TABLE 5.3: The different models explored in this work. For each model, we show the most
important parameters and their accuracy when predicting the best hardware knob configu-
ration. MARK-OML column reflects the accuracy when predicting the complete configura-
tion (thread placement, SMT level, and data prefetcher). MARK-2step column reflects the
accuracy when predicting the data prefetcher and a limited exploration for thread placement
and SMT level. Accuracy represents the percentage of correct predictions with respect to the
total predictions. A correct prediction is a prediction of a hardware knob configuration with

the same performance as the best hardware knob configuration.

Prediction accuracy

Predictor Parameters MARK-OML MARK-2step

Random Forest
Number of trees: 100
Minimum samples to split: 2

50% 81%

KNeighbor
Number of neighbors: 5
Weights: Uniform

44% 78%

ADA
No base estimator
Number of estimators: 50

36% 77%

Decision Tree
Minimum samples to split: 2
Criteria for splitting: Gini

36% 77%

MLP
Number of layers: 100
Activation function: sigmoid
Solver: lbfgs

22% 74%

GaussianNB No priorities 34% 67%

Therefore, even though the accuracy in the predictions can be low, the performance
of the hardware knob configuration can be similar to the best hardware knob config-
uration.

From the results of Table 5.3, all the experiments presented in the evaluation use
the Random Forest predictor model in both MARK-OML and MARK-2step.

5.4 Evaluation

This section evaluates MARK and compares it to other techniques. The techniques
evaluated in this section are:

• Default is the default configuration when the machine boots up. The machine
is set to use both sockets with SMT4 enabled and the default prefetcher. The
default prefetcher has the LDS enabled, URG set to 4, DPDF set to 4, and all
the other options disabled.

• Exploration is an exploration-based approach (see Chapter 4). The explo-
ration technique explores the configurations in the following order: SMT level,
prefetcher aggressiveness, and thread placement.
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• Best Hardware Configuration (BHC) is the best configuration per parallel re-
gion. The best configuration is found after an exhaustive offline profiling (320
possible configurations for a given parallel region).

• MARK-OML is the MARK technique which predicts all the hardware configu-
ration using a Random Forest [22] as underlying predictor.

• MARK-2step is the MARK technique using the 2-step technique to deal with
biased data to train a Random Forest [22] as underlying predictor.

In the following sections, we evaluate the performance of MARK to minimize
different metrics: (1) execution time in Section 5.4.1, (2) power consumption in Sec-
tion 5.4.2, and (3) Energy-Delay Product (EDP) in Section 5.4.3. The underlying pre-
dictor of MARK can be changed easily, which allows to minimize different metrics
without tuning or redesigning the algorithm of MARK. Therefore, minimizing a dif-
ferent metric only needs to train a new model and feed it to MARK.

In many of the evaluated benchmarks the default hardware knob configuration
is the best hardware knob configuration in terms of execution time. For clarity, we
show the subset of parallel benchmarks for which their best hardware configura-
tion achieves an speedup of at least 10% with respect to the default hardware knob
configuration.

5.4.1 Performance
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FIGURE 5.6: Results when minimizing execution time. X-axis shows the different evaluated
benchmarks and the Y-axis shows the speedup with respect to the default configuration.

Higher is better.

Figure 5.6 shows the speedup with respect to the default knob configuration
for all the evaluated benchmarks with different techniques. Results show that the
best hardware configuration can achieve an average speedup of 1.34x. MARK-OML
achieves an average speedup of 1.15x, while Exploration and MARK-2step achieve
average speedups of 1.19x and 1.24x, respectively. Next we focus on showing the
behaviors of FT and MD, as they are the benchmarks that benefit the most from a
different knob configuration than the default configuration.

FT and MD benefit the most from a different knob configuration with speedups
of 1.91x and 1.48x when running with BHC, respectively. The exploration approach
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only achieves a speedup of 1.65x for FT and no speedup for MD. For MARK-OML,
FT achieves a similar speedup as Exploration (1.64x) and MD achieves a better per-
formance than Exploration (1.09x). Last, MARK-2step performs better than the ex-
ploration technique and MARK-OML, achieving speedups of 1.73x and 1.15x for FT
and MD, respectively.
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Figures 5.7 and 5.8 show the configuration breakdown for the whole execution
of FT and MD, respectively, when running with BHC and MARK-2step. As shown
in the figures, the techniques select different knob configurations.

For FT, different knob configurations are needed to achieve the speedup of 1.91x
with respect to the default configuration. BHC always selects configurations using
both sockets with lower SMT levels than the default SMT level (SMT2 and ST) with
a data prefetcher with low aggressiveness (mid URG, mid Depth, or low URG). On
the other hand, our proposed MARK-2step selects similar configurations, yet, the
small differences in the configuration lead to a slowdown of 18.0% with respect to
the BHC.
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FIGURE 5.9: Cache misses per kilo Instruction for L2 and L3 caches when running the L3
caches for L2 and L3 caches when running the MD benchmark within a single socket and

both sockets.

For MD, the best knob configuration is using a single socket with a SMT4 level
and a low urgency prefetcher. As we can see in Figure 5.9, the number of misses
in the L2 and in the L3 caches increase dramatically when running in both sockets.
This is caused by the dynamic task scheduling used in the main parallel region of MD,
where threads execute iterations of the parallel loop as soon as their current iteration



66 Chapter 5. Machine Learning for Hardware Knob Reconfiguration

is finished. Therefore, threads execute iterations with non-consecutive data, which
causes to lose data locality.

Note that MARK-2step is able to predict almost perfectly the knob configuration.
MARK-2step selects a low URG prefetcher with the StrideN option, while the opti-
mal configuration is the same low URG prefetcher but without the StrideN option.
The small difference in selecting the prefetcher configuration leads to a slowdown
of 33% with respect to the BHC.

5.4.2 Power consumption
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FIGURE 5.10: Results when minimizing power consumption. X-axis shows the different
evaluated benchmarks and the Y-axis shows the power consumption normalized with re-

spect to the default configuration. Lower is better.

Figure 5.10 shows the power consumption normalized to the default configura-
tion for all the evaluated benchmarks with the different techniques. It can be ob-
served that MARK-OML and MARK-2step achieve large reductions in power con-
sumption, with averages of 30% and 31%, respectively. In contrast, the exploration
technique only achieves an average power reduction of 17%, and in 4 benchmarks
it is unable to achieve any significant reductions (IS, SP, swim, applu331). The ex-
ploration technique is not able to reduce power consumption due to its nature, since
the knobs are explored one by one, which can miss opportunities if the exploration
order is not the optimal.

Figure 5.11a shows the distribution of the aggressiveness of the best hardware
configurations when minimizing power consumption for all parallel regions and
benchmarks. We can see that thread placement and SMT level are biased to low ag-
gressiveness hardware configurations (i.e. less sockets and number of threads within
the sockets usually will consume less power). Therefore, an exploration technique
has to traverse all the search space of the thread placement and SMT level without
falling into a local minimum.

It can be observed that no approach is able to reduce the power consumption
of IS. This benchmark is composed of 3 parallel regions, although 97.2% of the ex-
ecution time is spent in a single parallel region. The best hardware configuration is
using a single socket with a SMT2 level and a high aggressiveness prefetcher (i.e.
high URG, high Depth, and prefetch on Stores as well). However, the exploration
approach falls into a local minimum and selects the default hardware configuration;
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FIGURE 5.11: Distribution of aggressiveness of the hardware configuration for the best hard-
ware configurations when minimizing different metrics. Boxplots show the 25th, 50th, and

75th percentiles and whiskers show the minimum and maximum value.

MARK-OML predicts incorrectly the thread placement, the SMT level, and the data
prefetcher; and MARK-2step predicts incorrectly the prefetcher configuration, which
leads to selecting the default hardware configuration. On the other hand, in SP, the
exploration technique falls into a local minimum, while MARK-OML and MARK-
2step find a hardware configuration that reduces power consumption by 34.2% and
37.4%, respectively.

5.4.3 EDP
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FIGURE 5.12: Results when minimizing EDP (Energy-Delay Product). X-axis shows the
different evaluated benchmarks and the Y-axis shows the EDP normalized with respect to

the default configuration. Lower is better.

Figure 5.12 shows the EDP normalized to the default configuration for all the
evaluated benchmarks with the different techniques. On average, MARK-2step re-
duces EDP with respect to the Default configuration by 30%, while the exploration
approach reduces it by 21%. In contrast, MARK-OML is unable to reduce EDP, and
even increases it slightly on average. We also can see that the exploration technique
and MARK-OML are unable to find a better hardware configuration than the default
hardware configuration for multiple benchmarks (e.g., IS, MD, NAB, SWIM, MGRID331).
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Figure 5.11b shows the distribution of the aggressiveness of the best hardware
configurations when minimizing EDP for all parallel regions and benchmarks. Con-
trary to the distribution when minimizing power consumption (Figure 5.11a), the
best thread placement and SMT level configurations are biased to higher aggressive-
ness. Yet, the 25th percentile shows that low aggressiveness for thread placement
and SMT level is still relevant. This leads to the exploration approach falling in lo-
cal minimums. In addition, this figure shows that MARK-OML is biased to higher
aggressiveness in thread placement and SMT level. Therefore, MARK-OML fails to
predict correctly in multiple benchmarks. On the other hand, MARK-2step, predicts
correctly the hardware configuration with a few exceptions (e.g., mgrid331) because
it is not affected by the bias of the thread placement and the SMT level.
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FIGURE 5.13: Execution time and power consumption distribution of the 3 main parallel
regions of FT for the MARK-2step when minimizing EDP and maximizing speedup with

respect to the default configuration.

The EDP of FT and MD are improved mainly due to the reduction on execution
time as explained previously, which translate into selecting the same hardware con-
figuration than MARK-2step when maximizing speedup. Yet, for FT, MARK-2step
minimizing EDP selects a slightly better hardware configuration in terms of EDP.
FT has 3 main parallel regions that take up to 85% of the total execution time when
running with the default hardware configuration. Figure 5.13 shows the change on
execution time and power consumption of these 3 parallel regions (labelled as PR1,
PR2 and PR3) when running with the default configuration and MARK-2step when
minimizing EDP and maximizing speedup. As seen in this figure, when maximiz-
ing speedup, MARK-2step selects a faster hardware configuration while keeping the
same power consumption than the default configuration. On the other hand, when
minimizing EDP, MARK-2step selects a hardware configuration that reduces power
consumption while offering a slightly worse execution time than when maximizing
speedup. As a result, when minimizing EDP, MARK-2step reduces EDP by 78.0%
and 2.4% with respect to the default hardware configuration and MARK-2step when
maximizing speedup, respectively.

For IS, the exploration approach falls into a local minimum and ends up selecting
the default configuration. On the other hand, both MARK-OML and MARK-2step
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fail to predict correctly the best hardware configuration shown with the BHC tech-
nique. Yet, MARK-2step is able to select a hardware configuration that achieves a
similar EDP than the default hardware configuration.

5.5 Conclusions

Complex HPC systems include many architectural features that are not equally ef-
fective across applications. For this reason, modern processors include multiple
hardware knobs such as thread placement, SMT level, or the data prefetcher con-
figuration, to adapt the behavior of the processor to the running workload. In this
chapter we identify interactions between these knobs, and we demonstrate that they
need to be configured at fine granularity and in a coordinated manner to minimize
execution time, power consumption, or EDP. However, finding the optimal hard-
ware configuration for these knobs is challenging due to the large search space, the
interactions between the hardware knobs, and the different resource demands of the
applications.

To overcome these problems we present MARK, a library for parallel applica-
tions that adapts the different hardware knobs available in the architecture with a
prediction model based on Machine Learning. MARK is able to minimize differ-
ent target metrics and is completely transparent to the user. We evaluate MARK
with multiple predictor models for a wide set of OpenMP benchmarks running on
an OpenPOWER system with a POWER9 processor. Compared to the default knob
configuration, MARK achieves speedups of up to 1.73x (24.0% on average), power
consumption reductions of up to 39.4% (31.3% on average) and EDP reductions of
up to 73.1% (30.1% on average) when targeting these metrics.
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Chapter 6

Data Prefetching for In-order cores

6.1 Introduction

The High Performance Computing (HPC) field seeks to increase performance of cur-
rent system to reach exascale, whilst maintaining a 20MW power budget [162]. This
level of performance/Watt needs solutions with unprecedented levels of energy ef-
ficiency [2, 5].

Current commodity hardware such as embedded and mobile processors is de-
signed to be energy efficient due to constraints such as battery life and over-heating.
Usually, these low-power processors contain in-order cores, which are significantly
smaller (area, power) and lower performance compared to the typical desktop or
server-class out-of-order processors. Low-power processors are promising due to
their density for HPC, and they have previously been investigated for such pur-
poses [132, 131, 110, 58]. Yet, adding more cores in a processor puts more pressure
on the memory system.

To alleviate the memory wall problem different solutions are available. Out-of-
order processors can reorder instructions to avoid stalls due to being waiting for
data. Therefore, the order of execution, within consistency constraints, is based
on data availability in an order different than the original order of execution. An-
other option vendors use to reduce memory latency is to include a hardware data
prefetcher. The data prefetcher brings data to the processor’s cache before it is
needed, thus reducing stalls.

Low-power processors are usually based on in-order cores. Therefore, instruc-
tion reordering is not possible to reduce memory stalls. However, data prefetching
can be used and we explore this solution in this chapter.

In this chapter we simulate and exhaustively analyze the performance of 5 hard-
ware prefetchers in an in-order core in single and multicore systems, with 2 state-of-
the-art dynamic mechanisms. Results show that dynamically reconfiguring the data
prefetcher on in-order cores can speedup executions up to 1.4x.
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6.2 Dynamic Mechanisms

We implement 2 dynamic mechanisms to modify at runtime the behavior of the
different possible prefetchers.

Our dynamic mechanisms gather different data prefetcher metrics and, based on
those metrics, are reconfigured at the end of an interval. An interval is defined when
half of the blocks of the cache are evicted. We use an interval based on cache activity
instead of fixed-time, as the cache-related data is more relevant to the prefetcher. We
use the global history of the metrics to take into account the global behavior of the
application in order to reduce the noise of small application phases.

6.2.1 Dynamic prefetcher aggressiveness

We dynamically tune the prefetcher aggressiveness at execution time following the
proposed algorithm in [144]. Due to constraints in our simulation environment, this
dynamic mechanism can only be applied to queue-based prefetchers. Queue-based
prefetchers are prefetchers with a buffer that holds data petitions that are handled
when the memory controller is idle. On the other hand, non-queue-based prefetchers
request their own data petitions in an active manner.

TABLE 6.1: Agressiveness (A) and Thresholds (T) values for the dynamic mechanisms used
in this chapter.

Ahigh Alow Tlateness Tpollution Tcongestion

0.75 0.40 0.05 0.001 0.005

Original thresholds from the work by Srinath et al. [144] are changed to adapt
them to our in-order system, which we show in Table 6.1. We needed to increase the
lateness threshold (Tlateness) and reduce the pollution one (Tpollution) in order to not
lose performance since original thresholds were causing a reduction in prefetcher
aggressiveness and a slowdown in execution time.

TABLE 6.2: Possible configurations for the dynamic prefetcher aggressiveness

Configuration Distance Degree

Very conservative 4 1

Conservative 8 1

Middle-of-the-road 16 2

Aggressive 32 4

Very aggressive 64 4
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We consider 5 possible configurations for the prefetcher aggressiveness as shown
in Table 6.2. The middle-of-the-road configuration is the default data prefetcher con-
figuration for our simulated core to initialize the dynamic mechanism.

6.2.2 Dynamic destination

We implement a mechanism to decide dynamically where a cache stores the
prefetched cache lines for 2 reasons: (1) to be able to prefetch even if the cache is
blocked due to having too many demand accesses and (2) to alleviate the memory
bandwidth requirements for the caches.

In this mechanism, we select a cache to be a master cache. The master cache
decides at each interval where to store the prefetched cache lines. The master cache
uses the full memory access stream to train the prefetcher. Then, the master cache
can decide to store the prefetched cache line into another cache level if the cache is
polluted or to issue a prefetch from another prefetcher if the cache is congested.

In our experiments, we use the L1 cache as master. Therefore, all L1 caches can
send prefetches to their respective private L2 or to the shared L3 cache. We set the
master cache to the L1 cache for several reasons: (1) L1 cache is the best performing
one in terms of latency of all the caches due to its proximity to the core; (2) usually,
it is the cache most limited by the memory bandwidth.

At the end of each interval, the master cache checks the pollution and congestion
levels of the cache where current prefetches are being stored, starting with itself.

In the case the cache is polluted or congested, new prefetches will be send to
the next level cache for the next interval (i.e. pollution level or congestion level are
greater than Tpollution or Tcongestion, respectively). If that next cache level is polluted
or congested, prefetches are sent to the last level cache. This happens irrespective
whether the L3 cache is polluted or congested.

At the end of every interval, the master cache checks its own pollution and con-
gestion levels in order to try to prefetch always to itself, which performs better since
we set the master cache to the L1 cache, closest cache to the processor.

6.2.3 Metrics

Our dynamic mechanisms are based on the following gathered metrics:

• Prefetch Accuracy: This measures if the prefetcher is bringing in useful data
before the cache block is accessed. We define data as useful when it is accessed
during its lifetime. We consider its lifetime as all the time that exists in a cache.

It is defined as:
Number of useful prefetches
Number of issued prefetches
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• Prefetch Lateness: This measures whether the prefetch requests arrived in a
timely fashion, in time to satisfy the demand access. It is defined as:

Number of late prefetches
Number of useful prefetches

• Cache Pollution: This measures the useless data brought in by the prefetcher
in the cache. It is defined as:
Number of misses caused by the prefetcher

Number of misses
In order to track useless data, we track cache lines that are brought by the
prefetcher. If there is a miss on a cache line that was brought by the prefetcher,
we consider it as useless data brought by the prefetcher.

• Cache Congestion: This measures the time that the cache’s prefetcher cannot
issue more prefetches due to the unavailability of free Miss Status Handling
Registers (MSHRs). It is defined as:
Number of times cache is blocked due to a MSHR miss

Number of MSHR misses

6.3 Evaluation

6.3.1 Hardware Data Prefetchers Evaluated

We evaluate 5 different prefetchers, including running experiments without any
hardware prefetching. Every cache level can have a hardware prefetcher, and we
perform a full design-space exploration, running every benchmark with all the pos-
sible combinations of prefetchers. The prefetchers we evaluate are described in Sec-
tion 2.3: Neighbor, Nextline, Correlation, Stride and Stream.

Notice that, we only apply our dynamic aggressiveness mechanisms on the
queue-based prefetchers: Nextline, Stream and Stride. The Queue class in gem5 is a
class for existing prefetchers in gem5, which process every memory request ordered
by age. Queue-based prefetchers can be generically tuned with parameters such as
distance or degree. If they are not queue-based prefetchers, the available parame-
ter set relies on each prefetcher’s implementation, which may not have distance or
degree exposed.

6.3.2 Region of Interest Simulation

A checkpoint is created at the start of the Region of Interest (ROI) of every bench-
mark.



6.3. Evaluation 75

We simulate the Region of Interest (ROI) of each benchmark until either the ROI
finishes or a maximum number of instructions is reached. We select the ROI manu-
ally via source-code instrumentation, as the SimPoint methodology [123] cannot be
applied to multi-threaded applications.

Before collecting data to measure the performance of the given configuration, we
warm-up the simulation for all benchmarks using 50M instructions. The standard
detailed simulation interval is 500M (except in the FFT benchmark, which runs for
1B instructions). The number of instructions simulated is chosen taking into account
that every thread must be doing useful work.

We define useful work as progress on the execution, which ensures execution is
not stalled in an idle loop waiting for data. We measure this via number of memory,
scalar or floating operations executed.

6.3.3 Results Single Core

In this section, we cover results obtained using a single-core system and all bench-
marks run using a single thread. All others components are the same as detailed in
Section 3.2.
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FIGURE 6.1: System-wide IPC in static experiments with different prefetchers for the L1
cache against no prefetching. The L1 prefetcher can prefetch cache lines into the L1 (normal
behavior), L2 or L3 caches in order to explore possible benefits using the dynamic destination

explained in Section 6.2.2

We start by evaluating the possible performance gains of dynamic destination
mechanisms. Figure 6.1 shows the performance in terms of IPC of different L1 data
cache prefetchers using dynamic destination, with respect to no prefetching at any
cache level. Table 6.3 lists which prefetchers were used for the L2 and L3 caches.
Please note that these vary depending on the application, as we chose the best L2
and L3 prefetchers in each case.

We observe that as prefetchers insert the prefetched lines into upper levels in the
cache hierarchy, application performance with respect to prefetching to the L1 cache
is reduced, as upper cache levels have higher latency.
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TABLE 6.3: L2 and L3 prefetchers used in the single core experiments. These configurations
are the most performing ones in static experiments.

Benchmark L2 Prefetcher L3 Prefetcher

CoMD Neighbor Neighbor

DGEMM Stride Stride

FFT Neighbor Stride

PTRANS Stride Stride

STREAM Neighbor Stride

HPCG Neighbor Stride

mcb Neighbor Stride

miniFE Neighbor Neighbor

pathfinder Stride Stride

The most complex the prefetcher, the most sensitive to prefetching into the up-
per cache levels. For instance, Correlation and Neighbor prefetchers have a higher
penalty when prefetching into the next upper cache level (Prefetch to L2).

In the case of Neighbor, this technique is detrimental: when prefetching to a
higher cache level the performance is the same as no prefetching. This is caused by
how the prefetchers on all the cache levels interact in this experiment. We cover this
in further detail later.
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FIGURE 6.2: System-wide IPC with different L1 prefetchers and different configurations
with the dynamic mechanisms explained in Sections 6.2.1 and 6.2.2. L2 and L3 prefetchers
are fixed across the different configurations to the prefetchers specified in Table 6.3. Due to
implementantation limitations, Neighbor and Correlation prefetchers cannot dynamically

adapt their aggressiveness.

Figure 6.2 shows the performance of various L1 data cache prefetchers, using
the configurations listed in Table 6.3, relative to no prefetching. The L2 and L3 con-
figurations are as outlined in Table 6.4. Results show that, typically, all prefetchers
benefit from the dynamic mechanisms, however, at different rates.



6.3. Evaluation 77

TABLE 6.4: Prefetcher configurations used in this work. DA is Dynamic Aggressiveness
enabled. DD is Dynamic Destination enabled.

Prefetchers

Configuration L1 L2 L3

1. No prefetcher config. - - -

2. Static config. - - -

3. L1 Aggr. DA - -

4. L1 Dest. DD - -

5. All Aggr. DA DA DA

6. All Aggr. + L1 Dest. DA & DD DA DA

The Neighbor prefetchers shows a small performance reduction when the dy-
namic destination is enabled. As we explain in detail later, the Neighbor prefetcher
has a high accuracy, which leads it to place useful prefetchers further away from the
L1 cache, thus affecting the overall latency by keeping in the cache hierarchy useful
cache lines.

The Nextline prefetcher gains the most out of the dynamic destination mecha-
nism, as the prefetcher normally issues a large number of prefetches which, if all
the prefetched cached lines placed in the same cache, would lead to increased levels
of pollution. As such, by using this mechanism we can increase the prefetch data’s
utilization.

The Correlation prefetcher has performance gains of 10% across the different
static and dynamic configurations against not using an L1 data cache prefetcher.
The lowest gain is when all prefetchers have the dynamic aggressiveness enabled.
This is caused by pollution added by the L2 and L3 cache prefetchers. The dynamic
destination mechanism renders the highest performance.

The Stride prefetchers slightly benefits from all dynamic mechanisms. The dy-
namic destination, for example, reduces cache pollution, while the aggressiveness
can help save memory bandwidth by not over-prefetching.

The Stream prefetcher’s performance is lower than the other prefetchers. This
is caused by the prefetcher not using sufficient memory bandwidth. The Stream
perfetcher’s performance lowers whenever any dynamic mechanism is used.

6.3.4 Results Multi Core

In this section, we show our experimental results while running a multi-core system.
We report memory bandwidth, cache misses, cache pollution and a classification
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in terms of used, late and unused prefetches for every prefetch issued, and Instruc-
tions per Cycle (IPC) of the overall system calculated as:

Total number of instructions
Total number of cycles

We experiment with several prefetcher configurations, as shown in Table 6.4.
Configuration 1 is a processor with no prefetcher in any cache level. Configura-

tion 2 is a standard configuration for current in-order processors. In configuration 3,
we enable the dynamic aggressiveness feature only in the L1 data cache prefetcher.
In configuration 4, we instead enable the dynamic destination feature. And in con-
figuration 5 the dynamic aggressiveness is enabled for all prefetchers in the system.
Finally, configuration 6 uses the dynamic aggressivenes features for all prefetcher
levels and the dynamic destination for the L1 data cache prefetcher.

Results from the rest of the section have a specific prefetcher configuration for
the second and last level cache. We set a Nextline prefetcher for the second level
cache and a Stride prefetcher for the last level cache. This configuration is one of
the most performing ones seen in our experiments, which offers a view of possible
performance gains for the dynamic mechanisms.

6.3.4.1 Performance

no
 P

re
f. 

on
 L

2/
L3

 
L2

 N
ex

tli
ne

. L
3 

St
rid

e 
L1

 A
gg

r. 
L1

 D
es

t. 
Al

l A
gg

r. 
Al

l A
gg

r. 
+

 L
1 

De
st

 
no

 P
re

f. 
on

 L
2/

L3
 

L2
 N

ex
tli

ne
. L

3 
St

rid
e 

L1
 A

gg
r. 

L1
 D

es
t. 

Al
l A

gg
r. 

Al
l A

gg
r. 

+
 L

1 
De

st
 

no
 P

re
f. 

on
 L

2/
L3

 
L2

 N
ex

tli
ne

. L
3 

St
rid

e 
L1

 A
gg

r. 
L1

 D
es

t. 
Al

l A
gg

r. 
Al

l A
gg

r. 
+

 L
1 

De
st

 
no

 P
re

f. 
on

 L
2/

L3
 

L2
 N

ex
tli

ne
. L

3 
St

rid
e 

L1
 A

gg
r. 

L1
 D

es
t. 

Al
l A

gg
r. 

Al
l A

gg
r. 

+
 L

1 
De

st
 

no
 P

re
f. 

on
 L

2/
L3

 
L2

 N
ex

tli
ne

. L
3 

St
rid

e 
L1

 A
gg

r. 
L1

 D
es

t. 
Al

l A
gg

r. 
Al

l A
gg

r. 
+

 L
1 

De
st

 0.8
0.9
1.0
1.1
1.2
1.3
1.4

Sy
st

em
-w

id
e

IP
C 

sp
ee

du
p

Neighbor Nextline Correlation Stride Stream

IPC

1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sy
st

em
-w

id
e

Ba
nd

w
id

th
 s

pe
ed

up

Neighbor Nextline Correlation Stride Stream

BW

FIGURE 6.3: System-wide IPC and system-wide bandwidth for several configurations with
the dynamic mechanisms with respect to no prefetching on L1, L2, nor L3 cache. Due to im-
plementation limitations, Neighbor and Correlation prefetchers cannot dynamically adapt

their aggressiveness. Their degree and distance parameters are not reconfigurable.

Figure 6.3 shows the speed-up in terms of execution time and memory band-
width of different prefetcher configurations with respect to no prefetching.

We observe that the main cause of performance increase is using a prefetcher
on the L1 cache, which can speed-up execution time by 28% and up to 65% with
the Stream prefetcher offering the least performance increase, while the Neighbor
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prefetcher increasing performance the most. As explained previously, the Stream
prefetcher memory bandwidth is low compared to the other prefetchers.

The Neighbor prefetcher performance degrades a 2.0% when enabling dynamic
destination. This performance degradation is caused by a higher penalty accessing
data in L2 or L3 caches, which is higher than the possible benefit of reducing the
pollution.

The Nextline prefetcher does not lose performance when enabling any dynamic
mechanism. The dynamic aggressiveness mechanism improves performance by
3.2%. This is because the Nextline prefetcher reduces cache misses by bringing as
many cache lines as possible before these cache lines are needed. Therefore, the
dynamic aggressiveness mechanism chooses a performing configuration for the ag-
gressiveness of the prefetcher while the dynamic destination mechanism reduces
pollution in the L1 cache.

The Correlation prefetcher obtains a speed-up by adding a L2 and L3 prefetchers.
When the dynamic aggressiveness mechanism is enabled, performance degrades for
2% and 4%. This is caused by a higher miss cache rate in the L2 and L3 caches (3%
higher miss cache rate when only the dynamic aggressiveness is enabled and 7%
when the dynamic destination is enabled), while a lower aggressive is set due to the
added pollution from the L1 prefetcher with the dynamic destination enabled.

The Stride prefetcher maintains performance across the different prefetcher con-
figurations. The only exception is when both dynamic mechanisms are enabled,
which leads to performance degradation due to increased pollution. Pollution is
increased by 5% in the L3 cache with respect to only enabling the dynamic aggres-
siveness mechanism. Stride prefetcher shows a lower performance than Nextline
prefetcher due to its lower memory bandwidth usage.

The Stream prefetcher suffers from a performance degradation when the dy-
namic aggressiveness mechanism is enabled, going from 1.30x speed-up to a 1.26x
speed-up due to the mechanism choosing a less aggressive configuration. The
Stream prefetcher shows a lower performance than Stride prefetcher due to lower
memory bandwidth usage.

In the Figure 6.3, we observe that there is a trade-off between memory bandwidth
and performance. Enabling our dynamic mechanisms, the same performance can be
achieved while decreasing memory bandwidth, cache misses, and cache pollution.

6.3.4.2 Cache misses

Figure 6.4 shows system-wide cache misses across all the cache in order to have a
perspective of how data prefetchers affect the entire system.

Cache misses are classified in 3 categories: (1) Half miss, a prefetch was issued,
but the prefetch has not arrived to the cache yet; (2) Due to prefetcher, cache misses
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FIGURE 6.4: Overall cache misses in the system. Cache misses in L1, L2 and L3 cache are
taken into account. We report half misses: miss in cache, but it hits on the MSHR; due to
prefetcher: cache misses that are caused by the prefetcher itself; full misses: miss in cache

and the data must be bring from another location.

caused by a prefetcher overwriting cache blocks for prefetched data; and (3) Full
miss, the data is in memory and must be brought.

Cache misses are very similar across the different prefetcher configurations. We
can see that misses due to the prefetcher are mainly seen in simple prefetchers. Over-
all, Nextline is the prefetcher that causes most system-wide misses compared to oth-
ers (even compared to simple prefetchers). This is caused by the high number of
issued prefetches to consecutive cache lines.

In terms of the dynamic mechanisms, increasing the aggressiveness of the L1
prefetcher for the Nextline, Stride and Stream prefetchers does not increase perfor-
mance since they do not reduce cache misses. Therefore, their aggressiveness level
is not highly increased due to other constraints such as pollution or congestion. As
we can see with the Neighbor and the Correlation prefetchers, they obtain similar
performance compared to the simpler prefetchers, while lowering bandwidth usage
(see Figure 6.3).

When enabling the dynamic destination, L1 cache misses are increased, yet, we
can see that the overall cache misses decrease. This is not highly reflected in terms
of performance due to a higher latency access to the L2 and L3 caches but it should
impact on overall power consumption.

6.3.4.3 Issued Prefetches

We measure how useful are the issued prefetches in Figure 6.5. We classify every
prefetch issued by the L1 prefetcher into: (1) unused, when a prefetched block is
not addresses by the application; (2) late, the system performs a demand access to
an address, that address misses in the cache and hits on a prefetch register (MSHR);
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FIGURE 6.5: Classification of the issued prefetchers for different prefetcher configurations.
They are classified and unused: the cache block prefetched was not used by the processor;
late: the cache line was accessed before the cache line arrived to the cache and used: the

prefetcher brought a cache line that was used in time.

and (3) used, when a prefetched block is addressed by the application. When a
prefetched block is accessed it is classified as used.

In Figure 6.5, the Unused component is mostly present in the simple prefetchers
due to their simplistic nature.

The Nextline prefetcher without dynamic destination can waste up to 40% of
the issued prefetches. When we enable dynamic destination, the Nextline Unused
prefetches decrease by up to 5% due to cache lines can be prefetched into an upper
cache level to be reused in the future. The Neighbor and Correlation prefetchers lead
to a better utilization of the prefetched cache lines since they bring in fewer cache
lines and in a more efficient way. They waste up to 10% of the issued prefetches.

In terms of lateness, the prefetcher issuing late requests is Correlation. This be-
havior is highlighted when there are no prefetchers in the L2 nor the L3 cache. This
is casued by the training phase of the Correlation prefetcher, adding a L2 or L3 cache
prefetcher can help to reduce the overall latency, and therefore reducing the training
phase, which helps to increase timely prefetches.

6.3.4.4 Cache Pollution

In Figure 6.6, we report the overall cache pollution of the system for the different
prefetcher configurations. The figure shows the ratio between misses caused by hav-
ing a prefetcher and the total misses of the system.

Pollution is higher with the Nextline and the Stride prefetchers, both of them
are simple prefetchers. The Neighbor and Correlation prefetchers offer the best rate
performance to pollution rate.
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FIGURE 6.6: Cache pollution of the system for different prefetcher configurations. It is mea-
sured as the ratio between cache misses caused by having a prefetcher and the total misses

of the system.

When evaluating the dynamic mechanisms, we see that dynamic aggressiveness
does not affect pollution negatively, unless all the prefetchers in the cache hierarchy
have the dynamic aggressiveness enabled (such the case of the Nextline and Stride
prefetchers). Dynamic destination can help to reduce cache pollution since cache
line can be stored in other cache levels.

6.4 Conclusions

Data prefetching in in-order cores has a major impact on the overall performance
since it is a known technique to alleviate the evolving performance gap between
processor and memory. There are several data prefetchers available, but research
has been focused in out-of-order processors.

In this work we perform an exhaustive analysis of different data prefetchers in
terms of performance, bandwidth and cache requirements. We implement 2 state-of-
the-art dynamic mechanisms and evaluate them in our in-order core infrastructure.

Results show that there is a trade-off between complexity and memory band-
width requirements. Simple data prefetchers have a higher memory bandwidth us-
age, which can be unaffordable for low-power processors. On the other hand, com-
plex data prefetchers can be expensive in terms of area, which can be unaffordable
for embedded processors.

Dynamically increasing the aggressiveness of the data prefetcher can increase
performance at the cost of a higher memory bandwidth usage. While other mecha-
nisms such as the dynamic destination can increase the efficiency of the prefetchers
and the caches. Therefore, simple data prefetchers with dynamic mechanisms can
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match the performance of complex data prefetchers while using less area, which can
meet the requirements for embedded and low-power processors.
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Chapter 7

CPU-GPU Power Distribution
under a System Power Cap

7.1 Introduction

In recent years, data centers have started incorporating multiple diverse accelerators
per node to provide efficient performance growth through specialization. However,
complex heterogeneous systems with multiple discrete accelerators cannot afford to
fully power all the devices simultaneously [47, 66].

Efficiently distributing power in heterogeneous systems with multiple discrete
accelerators and varying power caps is a challenging problem. The growing amount
of accelerators requires power distribution algorithms to be simple and scalable to
ensure fast response times. Moreover, the latency of communicating control signals
between discrete devices is usually very long; therefore, minimizing device commu-
nation is a must. On top of this, the proliferation of different accelerators (GPUs,
FPGAs, ASICs, etc.) manufactured by different vendors imposes power manage-
ment solutions to use generic knobs present in all kind of devices, such as Dynamic
Voltage Frequency Scaling (DVFS).

TABLE 7.1: Previos work on distributing power among components in different scenarios.

Scope of work Target workloads Work

Core level Mixed CPU workloads [74, 55, 153, 38, 161]

Heterogeneous Chip Single CPU-GPU workloads [12, 88, 98, 78, 121, 122, 154]

Homogeneous System Mixed CPU workloads [157, 18, 166, 35, 134, 135]

Heterogeneous System
Multiple Mixed CPU workloads
and CPU-GPU workloads

This work, [127, 62]

Previous works have studied how to efficiently distribute power under a limited
power budget in different scenarios, and we summarize them in Table 7.1. All these
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techniques are not directly applicable to systems with multiple discrete devices since
single chips do not have information about the requeriments and the power budgets
of the discrete devices. However, this does not apply to systems with multiple accel-
erators running multiprogrammed workloads and we summarize their differences
with this work in Table 7.2.

TABLE 7.2: Comparison with the state of the art

Related work
Works for single
CPU-GPU workloads

Works for multiple
CPU-GPU workloads

Power cap in
Prediction Failure

[12, 88, 98, 78, 121, 122, 154] ! % %

[127, 62] ! ! %

This work ! ! !

This chapter presents Adaptive Power Shifting for heterogeneous systems (APS), a
technique that maximizes the performance of power-constrained heterogeneous sys-
tems by leveraging system information to distribute power among all the devices.
APS advocates for a hardware/software power distribution mechanism that care-
fully balances efficiency and fairness by leveraging dynamic load information. In
contrast with previous works, APS is agnostic of the devices (CPU, GPU, or other
accelerators), it uses a simple and scalable heuristic that requires minimal commu-
nication between devices, it works for single applications and multiprogrammed
workloads, and it can be implemented in current systems without any hardware
modification, as we demonstrate with the deployment on a real OpenPOWER sys-
tem with 2 CPUs and 4 GPUs.

APS uses device utilization as the metric for optimization, which is very well
suited for heterogeneous systems with devices with different power and perfor-
mance characteristics, and it is also a very accurate proxy for power consumption. At
execution time, APS monitors the power consumption and the utilization of all the
devices in the system and dynamically shifts the power between them. To maximize
performance, APS enables devices that are more utilized to have a higher power
budget than devices that are less utilized. APS also captures changes in the power
cap and quickly re-assigns the power budgets of the devices to minimize the time the
system is over the specified power cap and to reduce the time a device is assigned
an underperforming power budget.

Our results demostrate that current solutions in modern systems can lead to
over or under provisioning the power budget of individual devices in a power-
constrained heterogeneous system. APS improves performance over static power
distributions up to 15.9% for single CPU-GPU applications and up to 20.5% for mul-
tiprogrammed workloads. APS improves performance up to 14.9% state-of-the-art
solutions [62, 157].
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7.2 Motivation

To highlight the challenges of distributing power consumption under a power cap,
we run a CPU-bound workload and a GPU-bound workload on an OpenPOWER
system with 2 CPUs and 4 GPUs. The CPU-bound workload is composed of a
DAXPY kernel in the CPUs and a Speckle Reducing Anisotropic Diffusion (SRAD)
kernel [31] in the GPUs. The GPU-bound workload is Tensorflow [1] training an In-
ception v3 neural network, which uses the GPUs for the main computation and the
CPUs for the data transfers, updating the weights, and offloading work to the GPUs.

As explained in Section 2.6, the IBM OCC of the OpenPOWER architecture pro-
vides a mechanism to adjust the power budget of the group of CPUs and the GPUs
when a power cap is introduced. Following this mechanism, we implement three
static power distributions:

• Fairness (Fairness). The system power cap is equally distributed among all
devices in the system.

• CPU Priority (CPUprio). The system power cap is distributed between CPUs
and GPUs with different weights in favor of the CPUs.

• GPU Priority (GPUprio). The system power cap is distributed between CPUs
and GPUs with different weights in favor of the GPUs.
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FIGURE 7.1: Execution of DAXPY in the CPUs and SRAD in the GPUs (left), and Tensorflow
training an Inception v3 neural network (right).
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Figure 7.1 compares the default power distribution of the OpenPOWER archi-
tecture (Default1), the three static power distribution techniques Fairness, CPUprio,
and GPUprio, and APS in a system with a power cap of 800W and different numbers
of GPUs used. The y-axis shows the weighted speedup with respect to the Fairness
technique and same number of GPUs, and the x-axis shows the average power con-
sumption of the main computation phase normalized to the system power cap of
800W.

The left plot in Figure 7.1 shows the results for the CPU-bound workload run-
ning a DAXPY kernel in the CPUs and a SRAD kernel in the GPUs. The default
power distribution degrades the performance with respect to Fairness because it
drastically reduces the frequency of the CPUs. CPUprio significantly improves the
weighted speedup with respect to Fairness by 16.5%, 16.7%, and 12.0% for 1, 2, and 4
GPUs, respectively. Reducing the power assigned to the GPUs does not degrade the
performance of SRAD, while the extra power in the CPUs boosts the performance of
DAXPY.

Finally, APS improves the weighted speedup with respect to CPUprio by 6.3%,
4.8%, and, 3.8% for 1, 2, and 4 GPUs, respectively. APS shifts power to the GPUs
when the CPUs enter an idle state, boosting GPU applications and improving the
overall performance. Also, APS reduces the average power consumption with re-
spect to CPUprio (between 2.8% and 5.1%) because it lowers the frequency of the
GPUs when they are in a low utilization phase.

The right chart in Figure 7.1 shows the results for the GPU-bound workload run-
ning Tensorflow. CPUprio degrades performance up to 34.6% with respect to Fair-
ness because the computation in the GPUs is drastically slowed down, affecting the
overall performance even if the data transfers to the GPUs and the weight updates
in the CPUs are done at the maximum possible performance. The default power dis-
tribution lowers the frequency of the GPUs more than Fairness but not as much as
CPUprio, resulting in a slowdown of 15.0%. In contrast, GPUprio achieves speedups
of up to 24.7% (with 1 GPU) by accelerating the computation phase in the GPUs.

APS achieves the best performance for this workload by dynamically shifting
power between the CPUs and the GPUs. In the phases that perform data transfers
and weights update, APS shifts power to the CPUs while, in the compute phases, the
power is shifted to the GPUs. As a result, APS improves the weighted speedup with
respect to GPUprio by 17.0%, 10.2%, and a 3.9% for 1, 2, and 4 GPUs, respectively.

In conclusion, APS outperforms static techniques due to a better utilization of the
available power. Static distributions cannot respond to the changing power require-
ments of heterogeneous applications that use different devices in program phases.
Thus, an intelligent dynamic power distribution specially targeted to heterogeneous

1There is no public information on the default behavior of the OpenPOWER architecture. Based on
the experimental results, the default behavior sets very conservative power budgets to all the devices.
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systems with multiple discrete accelerators is needed to maximize the system power-
performance efficiency. To this end, APS provides a hardware/software power dis-
tribution mechanism [166, 63, 128] that carefully balances efficiency and fairness by
leveraging dynamic load information, increasing the fidelity of the power distribu-
tions [156]. Thanks to these properties, APS outperforms other dynamic techniques
such as Tangram [127] and market-based allocation [62].

7.3 Adaptive Power Shifting for
Multi-Accelerator Heterogeneous Systems

APS maximizes the performance of power-constrained heterogeneous systems by
shifting power among devices based on their utilization. Devices with high power
budgets and low utilization cannot fully use their power budget, thus APS shifts
power to devices with a higher utilization.

7.3.1 Overview

Force Power Cap

Monitoring Device Activity and Power 

Freq-
power
tables

Power
cap Power Distribution

PhasesAPS

Inputs  Device 1
Power
budget

I

II

III

Set power
budget of

every device

IV

Device N
Power
budget

FIGURE 7.2: Overview of a system using APS.

Figure 7.2 shows a system using APS. APS is independent of the underlying
devices and of the type of workload, which can be composed of any number of
applications using any combination of devices during their execution.

APS constantly monitors the power consumption and utilization of all the de-
vices in the Monitoring Device Activity and Power phase ( I in Figure 7.2). These
readings are done through the standard interfaces of each device. As explained in
Section 3.4, in our setup we use perf for the CPU utilization, in-band OCC read-
ings for the CPU power consumption, and NVML for the utilization and the power
consumption of the GPUs.

After gathering multiple samples of the power consumption and utilization,
the algorithm triggers a Power Distribution phase to distribute the available power
among the devices based on their utilization ( II in Figure 7.2). If the total power
consumption surpasses the power cap, APS goes to a Force Power Cap phase to meet
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the power cap as soon as possible ( III in Figure 7.2). The power cap is an input
to APS set by the administrator or higher-level power manager (e.g., rack or cluster
level). If no power cap is specified, it is set to the node Thermal Design Power (TDP).

The frequency-power (freq_power) tables are key elements of the design of APS
( IV in Figure 7.2). APS uses a pre-generated freq_power table for every device type
in the system. The freq_power table of each device contains the maximum observed
power consumption for all the frequencies, and is generated offline by running a
stressmark that intensively uses the hardware and has a high power consumption.
In our system we use as stressmarks a DAXPY for the CPUs and a DGEMM for the
GPUs. With the freq_power tables APS can quickly set a frequency level that honors
the power budget assigned to a device and avoid iterative searches for a budget
compliant frequency. These freq_power tables are stored in software, but they could
be implemented in hardware since they are small (one entry per DVFS level).

Note that the design of APS is open to using other hardware knobs other than
DVFS to adjust the power budgets of the devices. The only requirement to use other
hardware knobs is to create a proxy that correlates the configuration values of a
knob with the power consumption of the device under that configuration, similarly
to the freq_power tables. To combine multiple knobs [133], APS would require a
table that contains every combination of the values of the knobs and their power, as
well as a mechanism that decides the most convenient configuration when the same
power can be achieved with different combinations of the knobs. This scenario with
multiple knobs is out of the scope of this work.

APS does not require any modifications in the source code of the applications and
it does not instrument the offloading of the GPU kernels nor any application-level
interaction between the CPUs and GPUs. Instead, the interaction between the de-
vices is modeled after their utilization and power consumption, which is measured
at system level.

7.3.2 APS Phases

APS relies on 3 phases, as shown in Figure 7.2: I monitor the system, II distribute
the available power, and III force the power cap when the total system power ex-
ceeds it.

7.3.2.1 Monitoring Device Activity and Power

The monitoring phase is responsible of monitoring the system status and triggering
the Power Distribution and Force Power Cap phases. The system status includes
power consumption and utilization of all the devices, which is computed as the
percentage of cycles that a device has been executing a process during the sampling
period. The sampling period in our experimental setup is 200ms, as discussed in
Section 7.4.1.
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1 avgSamples = N
2 numSamples = 0
3 while True do :
4 T o t a l U t i l = 0 . 0
5 TotalPower = 0 . 0
6 for a l l devices in the system :
7 f r e q [ device ] ← read device frequency
8 u t i l [ device ] ← read device u t i l i z a t i o n
9 power [ device ] ← read device power

10 T o t a l U t i l + = u t i l [ device ]
11 TotalPower + = power [ device ]
12 ++numSamples
13 i f numSamples == ( avgSamples−1) :
14 PowerDistr ibut ion ( freq , u t i l , power , T o t a l U t i l )
15 numSamples = 0
16 e l s e i f TotalPower > PowerCap :
17 ForcePowerCap ( freq , power , TotalPower ) ;

LISTING 7.1: Algorithm of the monitoring phase.

The monitoring phase iterates indefinitely over the algorithm shown in List-
ing 7.1. After the initialization, the algorithm gathers the current frequency, the uti-
lization and the power consumption of all the devices (lines 7 to 9 in Listing 7.1). The
frequencies, the utilization and the power consumption of the devices are stored in
three vectors, freq, util and power, which contain one element per device. In addi-
tion, the accumulated utility and power consumption of all the devices is calculated
(lines 10 and 11) on TotalUtil and CurrentPower, respectively. When a number
of samples has been taken (5 in our setup), the monitoring algorithm triggers the
Power Distribution phase (lines 13 to 15). When the total system power exceeds the
power cap, the monitoring algorithm triggers the Force Power Cap phase (lines 16
and 17) to reduce the power budget of every device in order that the power cap is
respected.

7.3.2.2 Power Distribution

1 Require : f r e q [ ] , u t i l [ ] , power [ ] , T o t a l U t i l , PowerCap
2 for a l l devices in the system :
3 R e l a t i v e U t i l [ device ] = u t i l [ device ] / T o t a l U t i l
4 while PowerHeadroom > 0 and PowerHeadroom > minPowerStep :
5 CurrentPower = 0
6 MaxFreqDevices = devices with f r e q == maxFreq
7 N = Number of devices in MaxFreqDevices
8 i f N == Number of devices in the system : break
9 for a l l devices in the system :

10 TargetPower = R e l a t i v e U t i l [ device ] × PowerCap
11 StressmarkPower = freq_power_table [ f r e q [ device ] ]
12 RatioDevice = stressmarkPower / power [ device ]
13 PowerBudget = TargetPower × RatioDevice
14 f r e q [ device ] = freq_power_table [ PowerBudget ]
15 CurrentPower = CurrentPower + TargetPower
16 PowerHeadroom = PowerCap − CurrentPower
17 apply_frequencies ( )

LISTING 7.2: Algorithm of the Power Distribution phase.
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The Power Distribution phase is responsible of setting the power budgets of all
the devices in the system according to their utilization. The algorithm that imple-
ments this phase is shown in Listing 7.2. The input to the algorithm is the data
gathered by the monitoring algorithm and the total system power cap (PowerCap).

The Power Distribution algorithm starts by computing the relative utilization
RelativeUtil of every device with respect to the total utilization of the system (lines
2 and 3). To do so, it divides the utilization of each device by the accumulated uti-
lizations of all the devices TotalUtil. For instance, if a system with 6 devices has a
TotalUtil of 400% and one of the devices has an utilization of 80%, its relative utiliza-
tion is 0.8/4.0 = 0.2. Then, the algorithm enters a loop that iterates until there is
no power headroom. To control this condition, the PowerHeadroom is the difference
between the total system power cap and the sum of the power consumption of all
the devices in the system, and the minPowerStep is the minimum possible increase
in power consumption caused by the minimum possible increase of the frequency
of any of the devices of the system. The minPowerStep avoids re-triggering the outer
loop constantly. In our setup minPowerStep is 5 Watts, corresponding to the mini-
mum possible increase of 70 Hz in the CPU frequency. Thus, when the PowerHead-
room is lower than 5 Watts, it is impossible to assign the PowerHeadroom to any device
and the Power Distribution phase finishes.

The outermost loop starts by setting the CurrentPower to zero (line 5), which is
a variable that is going to accumulate the power consumed by all the devices run-
ning at a certain frequency. Then, the algorithm checks if all the devices are running
at their maximum frequencies (lines 6 and 7). If all the devices are already run-
ning at their maximum frequencies, the Power Distribution phase finishes (line 8).
Otherwise, the innermost loop iterates over all the devices (line 9). For each de-
vice, its TargetPower (line 10) is calculated as RelativeUtil[device]× PowerCap. The
TargetPower of a device represents the maximum power the device can consume,
based on the relative utility of the device in the system and the power cap. For in-
stance, for a power cap of 1000W, a device with a relative utilization of 20% will
have a TargetPower of 0.2× 1000W = 200W. Note that, if two different devices have
the same relative utilization, they will get the same portion of the power cap as
TargetPower. Then the StressmarkPower of the device is obtained by consulting the
freq_power table (line 11). The StressmarkPower represents the power consumption
of the device running the stressmark at the current frequency. Then the algorithm
calculates the RatioDevice of the device (line 12) as StressmarkPower/power[device].
The RatioDevice represents how much power an application consumes running at a
certain frequency compared to the stressmark running at the same frequency. This
is done because the freq_power tables store frequency and power values gener-
ated with stressmarks that are CPU and GPU intensive, but most workloads have
different frequency-power characteristics than the stressmark. For instance, if an
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IO-intensive application has a power consumption of 75W running at a certain fre-
quency and the stressmark consumes 150W running at the same frequency, the Ra-
tioDevice is 150W/75W = 2. The goal of the RatioDevice is to scale up the Target-
Power of the device before looking for its target frequency in the freq_power table,
therefore, the optimal frequency for that device is found in a single step, honoring
the power budget and minimizing the power headroom without the need to itera-
tively refine the power budget. To do so, the algorithm calculates the PowerBudget as
TargetPower× RatioDevice (line 13). This PowerBudget is searched in the freq_power
table for that device type (line 14), and APS selects the highest frequency that sat-
isfies the PowerBudget. Finally, the TargetPower of the device is accumulated in the
CurrentPower (line 15). Once the innermost loop has calculated the frequencies of all
the devices, the PowerHeadroom is calculated as PowerCap− CurrentPower (line 16).

At the end of the algorithm, when all the frequencies of all the devices have been
calculated and there is no power headroom available, the new frequencies are ap-
plied to all the devices via the DVFS controller (line 17). The new frequency of a
device limits its power consumption to its calculated power budget until the moni-
toring phase triggers again the Power Distribution phase.

Note that this algorithm could be implemented as a reinforcement learning prob-
lem where agents or devices take actions by increasing or reducing their running
frequencies, and the reward is based on how much power headroom is left or what
is their individual throughput. The viability of this approach depends mostly on the
trade-offs between the quality of the decisions and the complexity, which can lead
to large overheads compared to simpler heuristics. We leave the study of such an
approach for future work.

7.3.2.3 Force Power Cap

1 Require : f r e q [ ] , power [ ] , CurrentPower , PowerCap
2 while CurrentPower > PowerCap :
3 NonMinFreqDevices = devices with f r e q > minFreq
4 N = Number of devices in NonMinFreqDevices
5 i f N == 0 : break
6 PowerToReduce = ( CurrentPower − PowerCap )
7 DevicePowerToReduce = ( PowerToReduce / N)
8 CurrentPower = 0
9 for device in NonMinFreqDevices :

10 PowerBudget = power [ device ] − DevicePowerToReduce
11 f r e q [ device ] = freq_power_table [ PowerBudget ]
12 CurrentPower + = PowerBudget
13 MinFreqDevices = devices with f r e q == minFreq
14 CurrentPower + = sumPower ( MinFreqDevices )
15 apply_frequencies ( )

LISTING 7.3: Algorithm of the Force Power Cap phase.

This phase forces the power cap when the total power consumption exceeds it.
The goal of this phase is to reduce the power consumption as soon as possible to
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minimize the time over the specified power cap. For this reason, the Force Power
Cap phase quickly reduces the power consumption equally from all the devices, and
APS relies on the next Power Distribution phase to optimize the power budgets of
the devices under the new power cap. The algorithm that implements the Force
Power Cap phase is shown in Listing 7.3. Note that this phase can be triggered at
any moment of the execution, as the power cap can be exceeded at any time due to
applications entering a phase with higher power consumption, responses to thermal
or energetic emergencies, etc.

Therefore, distributing the power in this phase can lead to measurements not rep-
resentative of the workloads running in the devices (the Power Distribution phase
measures 5 samples before distributing the power).

The Force Power Cap algorithm reduces the power budget of the devices that are
not running at their minimum frequency until the sum of the power of all devices
is less than or equal to the power cap. First, the algorithm selects the devices that
are not running at their minimum frequency (lines 3 to 4 in Listing 7.3) and, if all of
the devices are running at their minimum frequencies, the algorithm finishes (line
5). Otherwise, APS calculates the amount of power that needs to be reduced, Pow-
erToReduce, as CurrentPower − PowerCap (line 6). The PowerToReduce is equally di-
vided among these devices by calculating the DevicePowerToReduce in (line 7). Then,
the CurrentPower is set to zero (line 8), and the algorithm enters a loop that reduces
the power of all the devices that are not running at their minimum frequency (line
9).

For each device that is not running at its minimum frequency, its new power
budget (PowerBudget in line 10) is computed by subtracting the DevicePowerToReduce
from the current power consumption of the device. Then, the device is assigned a
new frequency by looking up its new power budget in the freq_power table of that
device type and selecting the highest frequency that satisfies it (line 11), and the
PowerBudget of the device is accumulated on the CurrentPower (line 12), which con-
trols the total power of the system. After the innermost loop, the power consumption
of the devices that are running at their minimum frequency is also accumulated on
CurrentPower (lines 13 and 14).

Finally, the frequencies assigned to all the devices are applied (line 15). The new
frequencies of all devices ensure that the total power consumption honors the power
cap or that all the devices are running at their lowest frequency. If the power be-
havior changes and exceeds the power cap, the monitoring phase is in charge of
triggering this phase again.

APS can use this algorithm thanks to the information of the freq_power tables.
Previous work [127] need to lower the frequencies of all devices to their minimum
possible frequency level since their mechanism is not aware of the power consump-
tion of every frequency level.



7.3. Adaptive Power Shifting for
Multi-Accelerator Heterogeneous Systems

95

7.3.3 Algorithm Walkthrough for a CPU+GPU
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FIGURE 7.3: Synthetic example of APS distributing power in a system with 1 CPU and 1
GPU.

Figure 7.3 shows an example of APS managing a system with 1 CPU and 1 GPU
(red and blue lines, respectively). The total power consumption is represented by the
sum of both devices (black line). Initially ( 1 ), each device is running a workload and
no power cap is specified. At 2 , a power cap of 400W is introduced. APS invokes
the Force Power Cap phase to reduce the power consumption of each device. As a
result, the CPU and GPU are set to a lower frequency and their power consumption
decreases.

The applications running in the CPU and the GPU enter a phase with a lower
power consumption at 3 . At 4 APS invokes the Power Distribution phase to set
the power budget of the CPU and GPU based on their utilization from the last 5
samples. Since the total system power consumption is lower than the power cap,
APS has power headroom to increase the frequencies of the CPU and GPU. The
right part of Figure 7.3 shows how this process is done with an example.

At 4 , the total system power consumption is 330W, and the CPU and GPU con-
sume 150W and 180W with an utilization of 40% and 60%, respectively. Thus, APS
has a power headroom of 70W to boost the performance. The first step is to calculate
the Target power, that represents the maximum power budget for a device within a
power cap. In this example, the target power for the CPU and GPU is 160W and
240W, respectively.

Next, APS calculates the power budget of every device. To do so, APS relies on
a freq_power table that is generated with a stressmark for that device. Therefore, if
an application has a lower power consumption than the stressmark at a given fre-
quency and APS applies this same frequency, the device will not fully use its power
budget. In the example, the power consumption of the CPU stressmark running at
2.68GHz is 200W, and the GPU running the stressmark at 1365MHz consumes 200W.
Consequently, the RatioDevice for the CPU is 200/150 = 1.3, and for the GPU the
RatioDevice is 200/180 = 1.1.

In the next step APS looks for the highest frequency that honors the power budget
in the freq_power table of each device. The power values searched in the freq_power
tables of the CPU and the GPU are 208W and 264W, respectively. Note that these
power values are higher than the Target power of each device, but neither the CPU nor
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the GPU will consume that much power because the workloads they are executing
have a lower power consumption than the stressmarks, as reflected by a RatioDevice
higher than 1.

Finally, after applying the new frequencies in the CPU and the GPU, the power
consumption of both devices is the same as their Target power (note that it could
be a bit lower), and the available power is used much more efficiently than in the
initial state at 4 . After the Power Distribution phase, the power consumption of
the devices does not change. Therefore, from 5 until the end of the execution, APS
keeps monitoring the system but does not change the frequencies.

7.4 Evaluation

This section describes the implementation used to evaluate APS and the baselines
used in this chapter. Then, we evaluate APS in a system running a single heteroge-
neous application (Section 7.4.4) and multiprogrammed workloads (Section 7.4.5).
Section 7.4.6 compares APS with multiple state-of-the-art techniques. Finally, Sec-
tion 7.4.7 discusses different implementation approaches for APS.

7.4.1 Implementation

We implement APS as a process running in the system. The process measures ex-
ecution time and utilization with perf [102] and does in-band power consumption
readings from Linux to the OCC [136] for the CPUs and with the NVIDIA Man-
agement Library (NVML) [115] for the GPUs. The APS sampling rate is limited by
the overheads of the measurement tools. Reading the power consumption and uti-
lization of the CPUs and the GPUs takes on average 50ms and 105ms, respectively,
and can be affected by the load of the system. Therefore, we set a sampling time of
200ms, which allows APS to recognize irregular behaviors.

7.4.2 DVFS Capabilities

The CPUs in our system have 43 frequency levels (from 3.00GHz to 2.30GHz).
Lowering the frequency level has a linear impact on power and performance for
a DAXPY stressmark as shown in Figure 7.4 (left). The GPUs can be set to run from
1.53GHz to 135MHz through the NVML. We limit APS to use frequencies higher
than 500MHz, since lower frequencies have a significant negative impact on perfor-
mance, as shown in Figure 7.4 (right).

To ensure that the physical power management of the system does not intervene
in our experiments, we set an unrealistic high power cap that is never reached.
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(left) and GPU (right). CPU and GPU stressmarks are DAXPY and DGEMM, respectively.

TABLE 7.3: Static power distributions for multiple devices in a system with 2 CPUs and 4
GPUs.

Power Cap (W) Fairness CPU Prio. GPU Prio.
CPUs GPUs CPUs GPUs CPUs GPUs

1000 166×2 166×4 200×2 150×4 75×2 212×4
900 150×2 150×4 200×2 125×4 75×2 187×4
800 133×2 133×4 200×2 100×4 75×2 162×4
700 116×2 116×4 200×2 75×4 75×2 137×4
600 100×2 100×4 200×2 50×4 75×2 112×4

7.4.3 Baselines

Table 7.3 shows the power budgets of the devices for each policy in a heteroge-
neous system with 2 CPUs and 4 GPUs and power caps of 1000, 900, 800, 700, and
600W. The static policies set the power budget of the devices to fixed values, without
considering their utilization, which can lead to underperforming power distribu-
tions. For instance, if a workload is CPU intensive and the power distribution is not
CPUprio, CPUs run at a low frequency, leading to an overall slowdown. Moreover,
if an application has CPU and GPU phases, static power distributions are unable to
boost specific accelerators at the appropriate time.

Once the controllers have assigned power budgets to all the devices, these can
adjust their running frequency inside a range of available frequencies that honor
their power budget.

We compare APS against these 3 static power distributions (Fairness, CPUprio,
GPUprio) and a profile-based approach. We do not include the default OCC of the
OpenPOWER system because, as seen in Section 7.2, it is very conservative and it is
outperformed by all the other approaches.

For the Fairness, CPUprio, and GPUprio power distributions we set the power
budgets of all the devices as specified in Table 7.3. The power budget of the devices
is constantly monitored and, if needed, their frequencies are corrected to honor their
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power budgets. If a device has available power headroom we increase its running
frequency.

The profile-based static approach (Static Prof) finds the best power distribu-
tion for mixed workloads using offline profiling of the workloads and computing
a Mixed-Integer Linear Programming (MILP) model. We measure offline the maxi-
mum power consumption and execution time of every benchmark individually for
every available frequency in our system, and then we apply a MILP model (speci-
fied in Model 7.1) to select the frequencies of the devices that minimize the overall
slowdown of all the benchmarks. At the beginning of the execution, Static Prof sets
the frequencies of every device to the frequencies obtained by the model.

minimize ∑ Id f × Slowdownd f
subject to ∑6

i=0 Ii f = 1
∑ Id f × Powerd f ≤ System power cap

Id f =

{
1 if device d runs at frequency f

0 Otherwise

}

MODEL 7.1: Mixed-Integer Linear Programming to set the frequency of the devices when
using Static Prof. Powerd f is the maximum power measured in an offline profiling when
the device d runs at frequency f. Slowdownd f is the slowdown when the device d runs at

frequency f with respect to the device d running at its highest frequency.

7.4.4 Single CPU-GPU Applications

We evaluate APS with Tensorflow training an Inception v3 neural network using all
the CPUs and GPUs in the system. The GPUs perform the main computation phase,
but the CPU performance is relevant for (1) updating the weights of the neural net-
work, (2) transferring data between CPUs and GPUs, and (3) doing I/O operations
while GPUs are idle.
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FIGURE 7.5: Speedup of Tensorflow training an Inception v3 network with different power
distributions and power caps.

We experiment with Fairness, CPUprio, GPUprio, Static Prof, and APS with
power caps of 1000, 900, 800, 700, and 600W. Results are shown in Figure 7.5. The
y-axis shows the speedup with respect to Fairness and different power caps are rep-
resented in the x-axis. When no power cap is applied, this experiment consumes up
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to 1660W (1090W on average). Fairness degrades performance with respect to no
power cap by 14.4%, 18.3%, 25.5%, 33.4%, and 48.1% for power caps of 1000, 900,
800, 700, and 600W, respectively.
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FIGURE 7.6: Power consumption over time of the all the devices running Tensorflow under
a Fairness power distribution.

Figure 7.6 shows a timeline of the power consumed by the CPUs and the GPUs
running Tensorflow under Fairness with a power cap of 900W. The timeline shows
a stable power consumption by the CPUs of between 59W and 75W in the whole
execution. In contrast, the power consumption of the GPUs varies widely over time,
with high and low power spikes of 50W to 150W. These power spikes are caused
by the characteristics of the workload in different program phases, since the power
budgets and the frequencies of the GPUs are constant under Fairness. The average
duration of the GPU phases with low and high power consumption are 404ms and
470ms, respectively.

Figure 7.5 shows that APS and GPUprio outperform Fairness. This workload re-
lies on GPUs for the main computation; therefore, the performance increases when
the power distribution favors the GPUs. APS can respond to this behavior dynam-
ically based on the power consumption and the utilization of the devices. Note
that, the lower the power cap, the higher the speedup for APS and GPUprio. This
happens because, as shown in Figure 7.4 in the GPU power-performance curve, the
power consumption drops faster than the performance. Thus, the performance im-
provements of APS and GPUprio with respect to Fairness and CPUprio are higher
as we lower the power cap. With a power cap of 600W, APS and GPUprio outper-
form Fairness by 15.9% and 11.5%, respectively. These speedups come from using
higher frequencies for the GPUs, and the extra 4.4% of APS is due to running the
CPU phases at a higher frequency. APS and GPUprio run the GPUs at a higher fre-
quency than Fairness and APS further improves performance by running the CPUs
at a higher frequency for the data transfers, the weight updates, and the I/O phases.
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Notice that the data transfers and the execution of the GPU kernels are overlapped,
as a result, there are no obvious program phases during the execution. However,
the power consumption of the GPUs varies during the execution (as shown in Fig-
ure 7.6), which is exploited by APS to efficiently distribute power.

CPUprio assigns power budgets favoring the CPUs. With a power cap of 700W,
Fairness runs GPUs at 900MHz while CPUprio sets their frequency to 643MHz. This
causes large performance differences because the GPUs power-performance trade-
off is much better at 900MHz than at 643MHz, as shown in Figure 7.4. For high and
low power caps the performance differences are smaller. For 600W, Fairness sets
a very low power budget for the GPUs, which results in similar frequencies to the
ones used by CPUprio. For 1000W and 900W there is enough power for CPUprio to
set a high GPU frequency similar than Fairness.

Static Prof achieves a performance improvement with respect to Fairness of 5.2%,
4.3%, and 7.3% for power caps of 1000W, 900W, and 800W, respectively. For lower
power caps of 700W and 600W, Static Prof has a performance degradation with re-
spect to Fairness of 23.4% and 2.9%, respectively. When setting a power cap of 700W,
Static Prof lowers the frequency of the GPUs to 690MHz, much less than the 900MHz
set by Fairness, as a result, the performance is greatly degraded. For 600W, the fre-
quency of the GPUs is similar in Static Prof and Fairness, 645MHz and 723MHz,
respectively.

In terms of power consumption, GPUprio, Static Prof, and APS have a similar
power consumption for a power cap of 1000W. Yet, as we lower the power cap to
600W, GPUprio consumes similar power than APS without providing performance
benefits due to the CPUs running at a lower frequency, while Static Prof fails to use
the available power headroom due to the high power phases of Tensorflow.
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FIGURE 7.7: Power consumption of Tensorflow training an Inception v3 network with differ-
ent power distributions and power caps. Boxes represent from the 25th to the 75th percentiles

and whiskers from the 5th to the 95th percentiles.

Figure 7.7 shows the power consumption of the experiments with power caps
of 1000W and 600W. The figure shows power consumption in the y-axis for all the
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static and our dynamic power distributions in the x-axis. The boxes represent from
the 75th to the 25th percentile, the band inside the boxes represent the median power,
and the whiskers represent from the 95th to the 5th percentile. It can be observed that,
with a power cap of 1000W, GPUprio, Static Prof, and APS have a similar power
consumption. Yet, as we lower the power cap to 600W, GPUprio consumes similar
power than APS without providing performance benefits due to the CPUs running
at a lower frequency, while Static Prof fails to use the available power headroom due
to the high power phases of Tensorflow.

7.4.5 Mixed Workloads (CPU-GPU Applications)

This section evaluates APS in a power capped system running mixed workloads
composed of CPU and GPU programs. The mixed workloads are composed of 2
CPU benchmarks and 4 GPU benchmarks randomly selected from Table 3.4. To
refer to these mixed workloads, we use the following nomencalture:

WorkloadNumberCPUHigh−CPULow,GPUHigh−GPULow

where CPUHigh and GPUHigh are the number of high-power consumption bench-
marks (for CPU and GPU, respectively) and CPULow and GPULow are the number
of low-power consumption benchmarks (for CPU and GPU, respectively). The de-
vices start running their assigned benchmarks at the same time and benchmarks run
until completion.
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FIGURE 7.8: Weighted speedup of mixed workloads (2 CPU and 4 GPU applications) run-
ning under different power caps.

Figure 7.8 reports the weighted speedup for different workloads under 3 power
caps (1000, 800, and 600W) using the Fairness, CPUprio, GPUprio, Static Prof, and
APS power distributions. The x-axis shows 2 random workloads for 5 scenarios
(CPUHigh − CPULow, GPUHigh − GPULow): (1) 1-1, 2-2; (2) 0-2, 3-1; (3) 2-0,1-3; (4)
1-1,3-1; (5) 1-1, 1-3. Figure 7.9 shows the average power consumption and power
headroom for the mixed workloads with respect to the power cap. When no power
cap is applied, these mixed workloads have a power consumption of up to 1614W
(867.5W on average). On average, Fairness degrades performance with respect to
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FIGURE 7.9: Average power consumption and power headroom for different power distri-
butions under different power caps when running different mixed workloads.

no power cap by 10.1%, 19.6%, and 30.1% for power caps of 1000, 800, and 600W,
respectively.

Figure 7.8 shows that APS achieves the best performance across all the workloads
and power caps, achieving average weighted speedups over Fairness of 8.8%, 13.9%,
and 13.6% for power caps of 1000, 800, and 600W, respectively. The best power distri-
bution heavily depends on the characteristics of each workload; therefore, the static
approaches fail at improving performance for all workloads, while APS consistently
achieves speedups in all cases by intelligently shifting the power to the devices that
better utilize it. For this reason, Figure 7.9 shows that APS increases the average
power consumption over Fairness by 6.8%, 5.9%, and 6.3% for power caps of 1000,
800, and 600W, respectively, while respecting the power cap. Notice that the avail-
able power headroom also depends on the workload power consumption behavior.
On average, the time over the power cap for APS is 1.2%, 3.1%, 4.9% for power caps
of 1000, 800, and 600W, respectively.

CPUprio outperforms Fairness in several workloads. In particular, workloads
4, 5, 8 and 9 are running 3 low-power GPU benchmarks and at least 1 high-power
CPU benchmark; consequently, shifting power to CPUs improves performance. The
opposite situation happens in workloads 1, 6, and 7, as a result, the performance of
CPUprio is worse than Fairness. As seen in Figure 7.9, CPUprio is the approach that
uses the least power, with power headrooms of 36.6%, 36.5%, and 29.6% for power
caps of 1000, 800, and 600W, respectively.

GPUprio achieves similar or worse performance than Fairness with a power
cap of 1000W. This is because CPUs run at the lowest frequency and the GPUs at
the highest frequency, and the slowdowns in the CPU benchmarks outweigh the
speedups in the GPU benchmarks. With lower power caps, GPUprio achieves better
performance than Fairness due to the power-performance curve of GPUs (shown in
Figure 7.4), specially in workloads where 3 GPUs are running high-power bench-
marks (workloads 1, 3, 6, and 7). Consequently, the average power consumption of
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GPUprio over Fairness increases as the power decreases, as shown in Figure 7.9.
Static Prof achieves average performance improvements of 4.3%, 8.8%, and 2.1%

with respect to Fairness for power caps of 1000W, 800W, and 600W. For a power
cap of 600W, Static Prof degrades performance for workloads 3, 6, and 7 due to
GPUs running high-power benchmarks. In higher power caps, this behavior is less
noticeable due to the power-performance curve of the GPUs (as shown in Figure 7.4).
Static Prof is a conservative approach in workloads with changing power behaviors,
which can present a large power headroom in some application phases. As we can
observe in Figure 7.9, Static Prof uses 3.9% less power on average than Fairness for
a power cap of 600W.

7.4.6 Comparison with State-of-the-Art

This section compares APS with two state-of-the-art techniques: a market-based so-
lution [62] and Tangram [127].

We implement a market solution based on [157], which is aimed to distribute
multiple resources (e.g., cache, off-chip bandwidth, and power) among multiple
CPUs. We adapt the algorithm to distribute power between CPUs and GPUs. In
our market solution (Market), agents (e.g., CPUs and GPUs) bid for power based
on their expected power utility. Power utility is modeled based on the fact that the
length of the compute phase tends to scale linearly with the processor frequency.
Agents measure their compute and memory phases from the last interval to com-
pute their power utility. Then, a centralized resource arbiter collects bids, adjusts
the price of the resource based on the bids and the power availability, and publishes
the new price. Agents bid again based on the new price and their utility. We set the
budget for bidding for the agents as their maximum TDP. In our setup, GPUs have
a higher TDP and higher budget for bidding than CPUs. If the power surpasses the
power cap, all the devices reduce their power budget equally. Note that this im-
plementation, as proposed in the original paper [157], does not take advantage of
real-time power measurements, limiting the ability of the bidders to bid accurately.
Using real-time measurements in Market is left for future work.

We also compare APS with Tangram [127], which manages the power budgets of
the devices in heterogeneous systems to minimize the overall Energy-Delay Product
(EDP). Tangram has two operating modes: (1) preconfiguration mode and (2) en-
hancement mode. The preconfiguration mode is used when the computation only
uses one device type, and it applies a static power distribution for all the devices.
We extend the static power distributions to fit our larger-scale experimental frame-
work. The enhancement mode is used when all the devices in the system are active.
This mode applies a Nelder-Mead search to find the power distribution that mini-
mizes EDP. The Nelder-Mead search is leveraged by throughput, which is read by
collecting performance counters in the CPUs and the GPUs. As described in [127], if
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the power goes above the power limit, the devices are set to their lowest frequencies
and the Nelder-Mead search is restarted. Also, there is 5% probability to restart the
search. Since the power is already limited to a given power cap, we set Tangram to
maximize overall throughput. Note that, although Tangram is proposed as a hard-
ware technique, in the original manuscript [127] it is evaluated using a software
implementation. For our comparison with APS, we use a software implementation
of Tangram that has a single Nelder-Mead search.

Note that systems under APS, Tangram and Market (as well as under other state-
of-the-art solutions) can surpass the power cap. This happens if, at the moment the
power consumption is stable and maximized under a power cap, a device enters a
program phase with a higher power consumption, or if the power cap is decreased
due to external circumstances such as power or thermal emergencies. For this rea-
son, the three solutions include a control mechanism that ensures the power cap is
always respected.
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FIGURE 7.10: Average weighted speedup of Market and Tangram with respect to APS for
mixed workloads (from Figure 7.8) with different power caps. Whiskers represent the range

of speedups achieved in all the workload mixes.

Figure 7.10 shows the average weighted speedup of Market and Tangram with
respect to APS for the mixed workloads evaluated in Section 7.4.5 with power caps
of 1000W, 800W and 600W. The whiskers represent the range of speedups achieved
by Market and Tangram in all the workload mixes.

Results show that, compared to APS, Market presents average slowdowns of
3.5%, 2.9% and 7.5% for power caps of 1000W, 800W and 600W, respectively. In addi-
tion, the whiskers show that Market does not improve performance in any workload
mix with any power cap compared to APS. Market performs worse than APS in the
workload mixes that benefit from assigning more power to the CPUs (workloads
4 and 5) because, in our implementation where the agents have a bidding budget
of their maximum TDP, GPUs have a higher bidding budget; as a consequnce, the
algorithm is biased to power distributions that favor GPUs while CPUs starve for
power. As a consequence, we observe large imbalances in the power budgets of
the GPUs and the CPUs, which end up causing performance inefficiencies in the
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CPU-intensive mixed workloads because the speedups in the GPU workloads are
overweighted by the slowdowns in the CPU workloads. In addition, we also ob-
serve that Market introduces performance penalties when GPUs bid intensively for
power (workloads 6 and 7). Since agents only consider power utility but not the cur-
rent power consumption of the devices, they bid for power independently of low or
high power phases, which are common in GPU workloads. This can lead to power
distributions that do not honor the system power cap, forcing an emergency power
reduction in all the devices to lower the consumption below the power cap. All to-
gether, we observe that Market is not able to correctly balance the power budgets
of the CPUs and the GPUs in some cases. This problem is not caused by the fun-
damental idea behind the market approaches in general nor by the algorithm that
makes the decisions. Instead, the main problem of Market is the implementation of
the bidding capacities of the devices. In our implementation the bidding capacity
of a device is its maximum TDP, as a result, there is a big disparity in the bidding
power of the CPUs and the GPUs. In general, bids in a market mechanism should re-
flect the actual value that the bidding process obtains from using the resource. Thus,
if bids are set heuristically, the Market algorithm is subject to the vagaries of that
heuristic. The problem of finding an optimal bidding mechanism for systems with
CPUs and GPUs has never been addressed because Market algorithms have never
been studied in this context. This research direction is left for future work.

Figure 7.10 also shows that Tangram offers less performance than APS, with av-
erage slowdowns of 7.2%, 9.5% and 8.5% under power caps of 1000W, 800W and
600W, respectively. As before, all the workloads mixes perform worse with Tan-
gram than with APS. We observe that the main reason for this performance dispar-
ity is that, in some workload mixes, Tangram suffers from slow reactions to chang-
ing power behaviors. The Nelder-Mead search is a complex algorithm with a long
search phase, which compromises response time and scalability for a large number
of devices. Therefore, in workload mixes where power consumption varies con-
siderably along the execution (workloads 4, 6, 7, and 9), the Nelder-Mead search
misses opportunities to boost the overall performance. Another important reason
for the performance differences are the unbalanced power distributions that Tan-
gram uses for some workload mixes (workloads 0, 1, 2, 3, and 8), which are caused
by the nature of the Nelder-Mead search. The algorithm assigns more power to the
devices with a higher throughput so, when it assigns more power to the GPU with
the highest throughput, its throughput is repeatedly augmented at every iteration
of the Nelder-Mead search, while the rest of devices are never assigned more power.
In some phases of the execution we see that this behavior creates big imbalances in
the power budgets of the devices. As a result, an important speedup is achieved
for the single application running on the GPU with the highest throughput, but the
performance does not change in the rest of applications running in the other devices.
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In contrast, APS distributes the power in a much more balanced way; therefore, the
speedup achieved by the application running on the GPU with the highest through-
put is not as large as in Tangram, but it is compensated by the speedups obtained
in the rest of applications, resulting in an average weighted speedup larger than
Tangram.

On average, Tangram performs slightly worse than Market for all the power
caps. However, in many workload mixes they achieve very similar performance,
as shown by the whiskers. In some workload mixes Tangram is not as effective
as Market because of the slower Nelder-Mead search. In other cases (workloads
4 and 9) the reason is the imbalance between the power budgets of the CPUs and
the GPUs, which happens in both Market and Tangram, but it is more extreme in
Tangram. Tangram assigns as much power budget as possible to the GPUs with
maximum throughput and does not increase the power budget of the CPUs. In Mar-
ket the GPUs have a higher bidding budget than the CPUs; as a consequence, a big
portion of the power is shifted to the GPUs, but the CPUs still get a small portion
of the power headroom, hence the distribution is not as extremely unbalanced as in
Tangram.

7.4.7 APS Design Discussion

This section shows the importance of the RatioDevice, the freq-power tables, and the
Force Power Cap phase of APS.

To demonstrate the benefits of the proposed design, we compare APS against
4 alternative implementations: APS-NoScalePower (APS-NSP) does not scale the
current power consumption; therefore, the RatioDevice is always set to 1. APS-
SpecificBenchmarkTables (APS-SBT) uses a specific freq-power table for every bench-
mark instead of a freq-power table generated with a stressmark. The freq-power
tables are generated offline by running all the benchmarks on their devices at every
available frequency. APS-NoForcePowerCap-Min (APS-NFPC-Min) uses a constant
RatioDevice of 1 and, when a power cap is introduced, reduces the frequencies of all
the devices to their minimum. APS-NoForcePowerCap-Max (APS-NFPC-Max) uses a
constant RatioDevice of 1 and, when a power cap is introduced, it does not change
the frequencies of the devices. The two last variants use the Power Distribution
phase to iteratively adjust the frequencies of the devices until their power consump-
tion is equal to their power budget and the system power cap is met.

Figure 7.11 shows the average weighted speedup with respect to Fairness for
the mixed workloads evaluated in Section 7.4.5 with a power cap of 800W. Results
show that APS outperforms all the alternative designs except APS-SBT. Compared
to APS, APS-NSP, APS-NFPC-Min and APS-NFPC-Max present performance losses
of 1.5%, 4.6% and 2.2%, respectively. These slowdowns happen because these alter-
native implementations do not scale the power of the running applications to the
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FIGURE 7.11: Average weighted speedup of different APS variants with respect to Fairness
for mixed workloads (from Figure 7.8) with a power cap of 800W.

one observed with the stressmark; as a consequence, more iterations of the Power
Distribution phase are required to optimally distribute the power. The performance
differences between APS-SBT and APS are below 1% because the specific freq-power
tables per benchmark achieve the same goal as the one generated by the stressmark.
However, generating the freq-power tables per benchmark requires a huge amount
of executions to profile all the applications running on their devices at all the fre-
quencies, which can be avoided by combining the RatioDevice and a single freq-
power table per device generated with a stressmark.

7.5 Conclusions

Current systems include multiple discrete devices per node. Unfortunately, power
constraints limit the number of devices that can operate simultaneously at their high-
est frequency. To efficiently distribute the power in such systems, dynamic power
management techniques that consider device utilization are needed.

In this chapter, we demonstrate that APS, a mechanism that leverages system uti-
lization to distribute the available power among multiple discrete devices in power-
constrained multi-accelerator heterogeneous systems. APS dynamically adjusts the
power budget of the devices based on their utilization, allowing highly-utilized de-
vices to have a higher power budget than low-utilized devices. Results show that an
intelligent power management outperforms static power distributions and state-of-
the-art proposals in single CPU-GPU applications and in multiprogrammed work-
loads.
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Chapter 8

Conclusions and Future Work

For years, increasing processor’s clock frequency was the main reason for perfor-
mance improvement in every new generation thanks to Moore’s Law. Recent years
have proven that frequency cannot keep driving performance improvement due to
power constraints. New techniques are constantly being pushed to improve perfor-
mance, power consumption, and energy efficiency in new systems.

Hardware coordination is a fundamental step in modern systems where inde-
pendent techniques are used to improve performance, power consumption, and en-
ergy efficiency. As more techniques are implemented in future systems, this hard-
ware coordination will become essential to improve future workloads.

As shown in this Thesis, hardware coordination is needed at several levels. At
a processor level, it can be used to coordinate multiple aspects of a single technique
such as data prefetching. At a system level, it can be used to coordinate multiple
independent and single techniques such data prefetching, SMT, socket allocation,
and clock frequency. And, at a node level, it can be used to coordinate multiple
independent devices within the node to collaborate towards a given metric.

This Thesis has presented several techniques for hardware coordination that
leverage information already present in current systems. These techniques are able
to improve performance, power consumption, and energy efficiency without over-
heads or introducing substantial changes in the systems.

We have implemented and assessed hardware coordination as a solution to im-
prove performance, reduce power consumption, and improve energy efficiency in
modern systems at the three different levels:

• At a processor level, this Thesis proposes a low level coordination for data
prefetching in order to improve performance and reduce power consumption
when data prefetching requirements of a workload changes over time.

• At a system level, we introduce a library that intelligently coordinates multiple
hardware knobs such as SMT, data prefetching, socket allocation, and clock
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frequency to improve performance, reduce power consumption, and improve
energy efficiency.

• At a node level, we show that utilization and power requirements change over
time and depending on the nature of the device itself. We coordinate the power
consumption of multiple independent devices in order to honor an arbitrary
power cap.

In this Thesis, we demonstrated that current and future systems need a fine-
grained hardware coordination at all levels to maximize their energy-efficiency for
parallel applications and multiprogrammed workloads.

8.1 Future Work

This Thesis opens the door to possible lines of future work. In this section we detail
the ones with particular potential.

• Generalization for hardware coordination. This Thesis proposes the coordination
of multiple hardware knobs in a POWER-based system. Yet, other architec-
tures expose hardware knobs as well. A line of future work is to explore what
changes are needed to generalize the technique introduced in this Thesis. For
this, it is needed to identify the information used to leverage the decisions,
evaluate the interactions between different hardware knobs, and find the pos-
sible trade offs.

• Hardware coordination for multiple workloads. This Thesis proposes a technique
to coordinate multiple hardware knobs when a single parallel application is
running in the system. Yet, it is possible that a system is running multiple
workloads at once. In a multi-core system this can mean that different cores
have different hardware requirements. A configuration local to a core affects
to the global (or system) performance. Therefore, it exists a trade-off between
the global performance and the local performance.

This scenario is left unexplored in this Thesis. An interesting line of work is
to explore how hardware knobs affect to the local and global performance and
how manage the different trade-offs.

• Power shifting with hardware knobs. We introduce a technique to honor a given
power cap in a system with multiple independent devices. This technique is
evaluated as a software process, which has limitations such as overheads and
gathered information. This technique can be added to the centralized units of
modern systems to reduce those limitations.
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We believe that without those limitations we can increase furthermore the per-
formance of the workloads running the system due to react faster and with
more accurate information.
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