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As the Internet of Things (IoT) deployment proceeds, the number of radio solu-
tions used in the Wireless Sensor Network (WSN) space increases. This well-known
process has led to fragmentation in the IoT space, as well as to incompatibility
between the constrained radio solutions used in WSN devices and the more general-
purpose ones, used in most connective devices. Thus, there is a research opportunity
in improving the interoperability of the overspecialized and non-inter-operable ra-
dio solutions currently used in WSN. Therefore, this thesis proposes mechanisms
to achieve interoperability and, as a consequence, the convergence of WSN radio
solutions. It does so by applying Wake-up Radio (WuR).

Wake-up Radio (WuR) allows devices to save power by remaining inactive while, at
the same time, remaining responsive. Currently, WuR is being used to enable low-
power WSN use cases with mainstream radio solutions, such as IEEE 802.11. This
contribution evaluates the state-of-the-art in WSN and WuR and justifies several
specific areas to contribute. First, to reduce specialization by broadening the scope
of technologies that can be used in WSN, and, second, to improve compatibility
between those solutions already deployed. For this purpose, this thesis develops
research aimed at extending the scope of a generalist solution, legacy IEEE 802.11,
to the low-power uses cases required by WSN. Next, this thesis researches improving
the compatibility of already existing solutions IEEE 802.11 and IEEE 802.15.4 by
using WuR to achieve interoperability.

To contribute to the adoption of IEEE 802.11 in WSN use cases, this work presents
a procedure to implement a Wake-up Transmitter (WuTx) that can be implemented
using legacy IEEE 802.11 transceivers. The method devised, is capable of operating
at 250 kbps and is thoroughly evaluated and compared to the state-of-the-art WuR
solutions compatible with IEEE 802.11 through simulations. Later, the legacy-
compatible WuTx was implemented in two proof-of-concept IEEE 802.11 devices,
one embedded and another Linux-based. To further contribute to enabling IEEE
802.11 use in low-power WSN, this thesis presents a WuRx (Wake-up Receiver),
complementary to the previously proposed WuTx. The power consumption of this
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WuRx baseband is characterized under different scenarios. Thus, jointly with the
previously presented WuTx, this contribution extends low-power WSN use cases
through WuR to even legacy-IEEE 802.11 devices.

Next, to improve the interoperability between WSN devices, the previous WuR
developments presented in this thesis are applied to the interconnection of non-
compatible devices through WuR. This application of WuR is named here WuR
Cross Technology Communications (WuR-CTC). To demonstrate the WuR-CTC
concept, a WuR-CTC solution is developed and implemented in a testbed, showcas-
ing WuR-enabled communication between IEEE 802.11 and IEEE 802.15.4 devices
as a way to reduce fragmentation in the WSN radio solution space. All source code
and hardware design for these implementations are shared, thus, enabling reproduc-
tion and extension.

Through its research work, this thesis advances the state of the art in both low-
power IEEE 802.11 use, as well as cross-technology communications. This work
has showcased what can be achieved with further convergence inside the fragmented
WSN radio landscape while, simultaneously, demonstrating how WuR can be applied
to achieve these goals.
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Chapter 1

Introduction

1.1 Motivation

During the last two decades, the Internet of Things (IoT) has evolved from an aca-
demic concept to a widely applied paradigm. Its developments are used to solve
everyday challenges, such as preventive maintenance, home automation, and asset
tracking, among others. From its inception, the IoT has been developed to imple-
ment the “pervasive computing” concept, presented in the influential article The
Computer for the 21st Century [1]. Citing the article preface:

“The most profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it.”

Pervasive computing aims to use computing to improve daily life, making it so
tightly integrated that it becomes unnoticed and, consequently, taken for granted.
In the same way, the IoT proposes a global network of smart objects to improve
the commodity and productivity of its users in a transparent manner. Currently,
IoT related developments have been incorporated in application domains as varied
as industrial control, healthcare, home automation, and logistics [2].

The IoT paradigm is wide, including several areas of research in communications
and networks. This work centers mainly on one of them, Wireless Sensor Networks
(WSN). As defined in [3], research in WSN focuses on the study of wireless networks
that perform monitoring and actuation over a large physical environment. Nonethe-
less, WSN research is currently applied to more reduced environments, such as in
the field of domotics. Each of the elements of the WSN, also called a node, performs
data acquisition and processing. Additionally, nodes communicate with other nodes
and external networks. WSN networks face unique constraints: first, they are de-
ployed in sites that might not feature reliable power sources, and second, usually,
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the WSN includes a large number of nodes, which is required to cover the target
area. Therefore, to face those challenges, the nodes used in WSN networks need to
be both low-power and low-cost, making the deployment of a large enough number
of them in harsh environments feasible.

The state-of-the-art in WSN has greatly evolved during the last two decades. It has
moved from nodes using ad-hoc radio solutions, to energy-constrained radio stan-
dards, such as the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4
specification [4] or Bluetooth release 4.1 and above [5]. Following the requirements
of WSN applications, these energy-constrained solutions were developed with effi-
ciency in mind. Therefore, they prioritize low power consumption over throughput
and range. In this way, energy-constrained solutions use low-power transceivers,
typically, with an active current consumption lower than 10mA. Moreover, energy-
constrained solutions use Media Access Control Layer (MAC) protocols optimized
for energy efficiency. Those focus on reducing the time that the transceiver is kept
powered on without receiving incoming frames, i.e., the idle listening time. However,
because of these domain-specific optimizations, energy-constraint solutions only of-
fer up to a few Mbps data rates, with Maximum Transmission Unit (MTU) lower
than 251 [5] bytes.

Unexpectedly, the development of wireless solutions for WSN has been prolific and
it is still ongoing. Consequently, multiple non-compatible solutions compete for
the WSN niche in IoT applications. Therefore, fragmentation defines the current
landscape, which nowadays features multiple competing solutions and a rapid ob-
solescence cycle. The effect of fragmentation in the deployment of new WSN devel-
opments is considerable. For example, due to the growing number of IoT solutions,
new developments might be put on hold, waiting for a dominant solution to emerge.
Additionally, the extension of existing developments is slowed by the obsolescence of
the solutions chosen for the initial development. Those quickly become incompatible
with the solutions currently found in the market.

The low bit rates and reduced frame sizes supported by WSN-specific solutions diffi-
cult their integration with the commonly used Transport Control Protocol (TCP)/Internet
protocol (IP) stack used by the bulk of internet-connected devices. Typically, devices
implementing the full TCP/IP stack are non-energy-constrained and are optimized
both for increased throughput and range, while their power consumption is a sec-
ondary concern. Non-energy-constrained wireless technologies include the various
cellular solutions standardized by the 3GPP, such as [6] and UMTS [7], among oth-
ers). Nonetheless, there are low-power cellular-oriented technologies, such as NB-IoT
[8], LTE-M [8], and others [9]. Another example of a non-constrained radio tech-
nology would be the family of IEEE 802.11 specifications for Wireless Local Area
Network (WLAN). The current market implantation of these technologies is much
higher than the ones used for WSN, for example, IEEE 802.11, alone, will ship up
to 20 billion devices in the 2019-2024 period, according to analysts [10].
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The receiver consumption of non-constrained devices (which dominates the total
power consumption of radio devices) is, typically, an order of magnitude higher
than those of energy-constrained solutions used by WSN nodes. Nonetheless, due to
their increased throughput, non-energy-constrained devices are more efficient trans-
mitters, with lower energies per bit and higher spectral efficiency. However, due
to their increased receiver consumption, devices integrating non-energy-constrained
solutions cannot be used as WSN nodes in most applications. Regardless, devices
using non-energy-constrained solutions are preferred as end-user devices, such as
laptops and smartphones.

Therefore, there is a clear divide between constrained and non-constrained devices,
which are non-compatible and, therefore, cannot interact directly. Moreover, as men-
tioned earlier, there is also a divide between energy-constrained devices implement-
ing incompatible solutions. In both cases, communications between non-compatible
devices must flow through gateway devices, which perform protocol translation be-
tween incompatible protocol stacks. Thus, gateways enable the formation of WSNs
with heterogeneous nodes as well as their connection to the Internet through non-
energy constrained endpoints.

Protocol translation has led gateways to a prominent spot in IoT networks, but its
use does not come without disadvantages [11]. Gateways, by performing protocol
translation, add one additional transmission to each message. Therefore, gateway
use adds an additional hop that reduces the overall spectral efficiency of a network.
Moreover, a gateway needs to face coexistence issues that arise between the multi-
ple transmitters that it incorporates. Finally, gateway use introduces a reliability
problem since the gateway becomes a single-point-of-failure for the whole network.
For example, a gateway malfunction can interrupt both communications between
non-compatible WSN nodes and internet connectivity.

Therefore, shifting WSN away from gateway-dependency would benefit the roll-out
speed of the IoT, by providing networks that are more reliable and cohesive. The
approach chosen in this thesis tries to face the two issues identified, the divide
between energy-constrained and non-energy-constrained devices, and the fragmen-
tation in energy-constrained solutions, using one solution: Wake-up Radio (WuR).
Using WuR, the energy consumption of non-energy-constrained devices can be re-
duced, allowing them to operate in more energy-constrained roles in WSN. Moreover,
WuR provides a way to connect constrained and non-constrained devices directly,
as well as constrained devices implementing non-compatible wireless solutions.

1.2 WuR for power saving and interoperability

As mentioned earlier, the main factor that blocks the use of a certain wireless solu-
tion in WSN applications is power consumption. Specifically, the energy consumed
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by performing idle reception, which dominates the overall figure among the traffic
profiles seen in WSN [12]. Therefore, it is most important to reduce the energy
wasted by the receiver when not receiving incoming frames, the idle listening time.
Thus, even a non-low-power receiver, such as those found in non-energy-constrained
devices can still be used in an energy-constrained role if idle listening is minimized.

Idle listening can be reduced by using MAC schemes that minimize the time that the
receiver is kept enabled, waiting for frames. For example, both Bluetooth [13] and
IEEE 802.11 Power Saving Mode (PSM) [14], disable the receiver most of the time.
In those solutions, the receiver is only activated periodically for a brief interval. Such
a scheme increases the latency of the interactions, which become, on average, half
the duration of the period that the receiver spends powered off. Here, non-energy-
constrained devices are at disadvantage since the energy consumption introduced
by their less efficient receivers must be compensated for. To obtain a duty cycle
low-enough to enable WSN operation with non-energy-constrained receivers, the
proportion of time said receiver spends active must be extremely low. Consequently,
the time that the receiver is powered off increases, and, as expected, so does latency.
For example, the low power modes introduced by IEEE 802.11ah define sleep periods
that can go from one second, and up to years [15].

There are other techniques, other than synchronous duty-cycling that allow for en-
ergy savings at low latency. For example, LoRaWAN class-A endpoints [16] can
asynchronously wake up once they have frames buffered for transmission and then
remain awoken for a certain time, waiting for responses. However, to offer this
power-saving measure, the LoRa gateway device cannot save power by sleeping and
must remain active permanently. This technique is then not applicable in the mesh
topologies typical of WSN. In those, some devices will be acting as routers and, with
such a scheme, will not be able to save power.

Nonetheless, WuR [17] enables a low receiver duty cycle on all devices present in
the network, and additionally, provides low latency. In WuR, all devices incorporate
an ultra-low-power receiver, called Wake-up Receiver (WuRx). When not expecting
transmissions, WuR enabled devices turn off their main radio and go to a low-
power state, i.e., to sleep. However, the WuRx of the device is kept active, listening
to the medium, for Wake-up Signal (WuS) sent from other stations that, when
received correctly, awakes the device from sleep. The device that generates the WuS
is the Wake-up Transmitter (WuTx), which can be either a specifically purposed
transmitter or just the main radio of the device. The interaction of a wake-up is
clearly explained in Fig.1.1. Also, since, with WuR, the devices are only activated
on-demand, WuR power-saving is competitive against optimized traditional duty-
cycled schemes [18].

With WuR, non-energy-constraint devices can reduce their power consumption.
Thus, allowing them to perform energy-constrained roles in WSN applications and,
at the same time, retain their advantages in range and throughput. This way, WuR
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1. WuS is emitted by Initiator device main radio.
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    using their main radios.

4. Target device controller wakes up its main radio.
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  (4)
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Initiator device Target device

Figure 1.1: Diagram explaining the operation of a WuR system, where the main
radio is also the WuTx.

can enable WSN applications to benefit from the economies of scale of general-
purpose wireless devices. Moreover, the WuS can carry binary data, a capability
originally introduced to add addressing information. However, this capability also al-
lows devices to interact with their WuR hardware, regardless of the wireless solutions
adopted for their main radio. This way, WuR can be used to allow non-compatible
WSN nodes can interact with each other, as well as enable direct connectivity from
the WSN to end-devices and the Internet.

1.3 Document Structure

This thesis is structured in the following way: first, Chapter 2 presents the gen-
eral background for this thesis and motivates its developments; second, Chapter
3 presents the development of a legacy-compatible alternative to IEEE 8023.11ba;
thirdly, Chapter 4 introduces the implementation of a low-cost microcontroller-based
WuRx compatible with the previously presented legacy-compatible WuR solution;
next, Chapter 5 describes the application of the previous developments to another
field, Cross Standard Communications; finally, 6 presents the conclusions. After-
ward, the appendices introduce supplementary material.
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Chapter 2

An overview of the power-saving
mechanisms used in WSN

2.1 The appearance of WSN

As with many other technologies, the first WSN fulfilled military purposes. When
introduced in the 90s, the objective of these networks was to perform reconnaissance
and track enemy targets [19, 20], for this purpose, a self-organizing wireless mesh
network was proposed. One important result that appeared from these programs
was the Wireless Integrated Network Sensors (WINS) project, which used a single
Complimentary Metallic Oxide Semiconductor (CMOS) chip, integrating sensors,
processing, and a low-power radio on a reduced component footprint [19].

Eventually, further developments introduced applications of WSN in civilian uses.
Those are wide, comprising maintenance, monitoring, domotics, entertainment, and
surveillance, among others [2]. A pioneer in this approach was the Smart Dust
project [21]. This influential paper introduced the “mote”, as in mote of dust, to
name WSN nodes. The naming was inspired by the pervasive nanotechnology-based
devices featured in the cyberpunk novel The Diamond Age by Neal Stephenson
[22]. Smart Dust presents the applicability of WSN and elaborates on the design
challenges to be faced. Finally, it proposes a theoretical WSN solution based on low-
power nodes implemented with monolithic integrated circuits, like those proposed
by WINS [19]. Smart Dust also proposed the use of a mesh network structure, which
was to be formed by a high number of devices optimized for low power consumption.

However, at that point, there were no wireless specifications that conformed to the
WSN requirements. Therefore, subsequent WSN developments used ad-hoc radio
solutions, as well as purpose build protocol stacks. Nonetheless, due to the increased
costs intrinsic to these specific solutions, the applicability of WSN developments to
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widely applicable commercial applications remained low.

Consequently, standardization efforts were started on several fronts. These efforts
were aimed at enabling commercially viable WSN developments. The results of
this drive were materialized in several specialized wireless solutions, as well as the
adaptation of other solutions previously developed.

2.2 Wireless Radio and Protocol Solutions used

in WSN

To fulfill the requirements of WSN, solutions involving several layers of the Open
System Interconnection (OSI) protocol stack are needed. In this way, Physical Layer
(PHY) and MAC solutions for low-power radio links were developed concurrently
with the advances on the network layer.

WSN research has greatly benefited from the development of Wireless Personal Area
Networks (WPAN), originally targeted at body area networking, intending to sup-
port wearable sensors and various computing interfaces. Similar to WSN, WPAN
require low-power, low-complexity, and physically reduced radios. Consequently,
research in WSN adopted WPAN standards, as they share most of the same re-
quirements and, with some amendments, are also suited for operation in WSN.

The most prevalent solution through the development of WSN has been IEEE
802.15.4 [23], which is supported by the IEEE task force dedicated to WSN use
[24]. As with other popular IEEE-backed specifications, the IEEE 802.15.4 defines
the first two layers of the OSI protocol model, the PHY and link layers. Several
protocol stacks used in WSN research, as well as commercial applications, have
extended IEEE 802.15.4 with functionality in higher protocol layers. The most
prominent of those are Zigbee [25] and Thread [26]. IEEE 802.15.4 is also used
with several 6LoWPAN-based stacks [27], such as the uIP stack [28], featured in the
Contiki Operating System (OS) [29]. Afterward, Bluetooth [13] entered the WSN
space in 2018, with its fifth release, Bluetooth 5.0, which finally added first-class
support for mesh networks into the main Bluetooth specification. Nonetheless, are
other specifications that are still relevant to commercial applications of WSN. For
example, Z-Wave and Insteon [30, 31] are closed specifications that gained traction
in the home automation market. Nonetheless, those have failed to gain significant
traction in research. Moreover, there are other low-power radio solutions on the
market, such as those under the Low Power Wide Area Networks (LPWAN) cate-
gory [32]. Although also widely used in IoT applications, those are not related to
WSN as its network topology is not a mesh, but a star, closely following the model
of cellular radio system.
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Regardless of its origin, specifications targeted at WPAN and WSN contemplate
small devices without access to a non-finite reliable power supply. For example,
those considered use a battery of limited capacity (i.e, less than 1000 mAh) as a
power source, which might be complemented with energy-harvesting. A widely-used
power source in WSN devices without energy harvesting are coin-sized lithium-
ion batteries. Those have rated capacities that usually fall lower than 500 mAh,
supporting current loads of up to 25 mA without significant reduction in performance
[33]. Nonetheless, devices with energy harvesting capabilities use a wider range of
energy storage solutions, including rechargeable batteries and super-capacitors [34].

As a consequence, the physical layer of those specifications uses uncomplicated mod-
ulations, paired with low-power transceivers. Specifically, those that use signaling
based on phase or frequency, which do not require complex highly-linear amplifi-
cation nor highly performant decoder structures. For example, the IEEE 802.15.4
specification [23] uses several phase-based modulations in its PHY implementations.
Another example is Bluetooth [13], which uses a variant of FSK with gaussian
windowing, Gaussian FSK (GSFK). Consequently, state-of-the-art transmitters im-
plementing these specifications have low power consumptions, both in transmission,
and reception modes. Currently, those are in the order of 10 mA in reception mode,
and 20 mA in transmission mode, when considering an output power in the order of
10 dBm [35, 36]. The specifications of several state-of-the-art devices used in WSN
can be found below, in table 2.1.

Table 2.1: IEEE 802.15.4 transceiver comparative.

Device Tx Power Sensitivity Tx Current Rx Current
CC2650[37] 5 dBm -100 dBm 5.9 mA 6.1 mA
NRF52840[36] 8 dBm -100 dBm 4.6 mA 4.8 mA
EFR32MG13[38] 19.5 dBm -102.7 dBm 131 mA 10.3 mA

Nevertheless, a low-power transceiver is not enough to support extended battery-
powered operation. Especially, for longer periods (i.e, months to years), as is re-
quired in WSN applications. For example, here is the case of an IEEE 802.15.4 radio
featured in Table 2.1, the nRF52840, which consumes 4.8 mA on reception mode.
Considering continuous operation in reception mode, a rough approximation of the
battery life with a 500 mAh coin battery would approximately be only 4.35 days.

Fortunately, WSN use cases require the nodes to send and receive small amounts of
data periodically, with a long period of inactivity. Therefore, to maximize battery
life, the device, and its radio, can be kept inactive most of the time. Using the same
example as before, reducing the receiver activity to 1% would extend the battery
life of the nRF52840 to 435 days. Thus, by reducing idle listening time, extended
battery-powered operation can be achieved with current WSN devices.

The power-saving mechanisms used to reduce idle listening time control the activa-
tion of the transceiver. Therefore, these regulate when the transceiver can send or
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receive messages. Consequently, these power-saving mechanisms are considered part
of the MAC sublayer. Their design principles, as well as a taxonomy of the existing
MAC-level power-saving mechanisms, will be discussed in the next section.

2.3 Power Consumption Reduction at MAC level

A wide array of MAC-level energy-saving techniques are described in the literature.
The aim of those is to allow WSN devices that can either be powered using energy
scavenging [39] or withstand years of use with a single battery charge. The last is
a requirement for most WSN applications [40]. Consequently, MAC power-saving
mechanisms aim to reduce the device duty cycle by reducing idle listening time,
which adds up most of the total energy consumption of a WSN node [17].

If devices do not coordinate their activation status, communications become impos-
sible, since inactive nodes by definition cannot receive messages. Therefore, coor-
dination between nodes implementing MAC-level power-saving schemes is required.
As a consequence, each power-saving MAC scheme presents a coordination mecha-
nism, also called a rendez-vous scheme. These can be classified into three different
types according to the taxonomy presented in [41]:

1. Synchronous rendez-vous schemes:

In synchronous schemes, the nodes coordinate their wake-ups at periodic time
intervals. This type of technique can reduce greatly the amount of idle listening
time, just at the cost of the protocol overhead required for device synchroniza-
tion. The main drawback of synchronous schemes is waste. Devices need to
wake up according to the schedule, regardless if there is any message to be
sent or received. Another significant drawback of these types of schemes is
that they introduce a compromise between power saving and latency. By us-
ing a lower duty cycle, a device sleeps for more time each cycle, increasing
the time between wake-ups. As a consequence, the average latency of com-
munications, which is half the sleep interval, increases. Additionally, for long
sleep cycles, low drift clocks become a requirement. These are not typically
found in feature-limited devices and, therefore, increment the cost of a WSN
deployment. Research in synchronous protocols gained interest with the de-
velopment of S-MAC, which proposed the use of synchronized device clusters
[42]. A prolific variation of duty-cycled MAC protocols appeared consecutively
with specialized variations and refinements of S-MAC for diverse low-power
applications [43]. Additionally, a synchronous rendez-vous scheme is used to
reduce power drain in a non-constrained protocol, IEEE 802.11 [14].

2. Pseudo-synchronous rendez-vous schemes:
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In this type of scheme, the nodes sleep with a certain periodicity, however,
there is no synchronization between the wake-up intervals of the different
nodes. Alternatively to the synchronous schemes, here, the rendez-vous hap-
pens opportunistically, when the transmission of one node coincides with the
wake-up of another. This system provides a simple manner to achieve energy
savings through duty-cycling, without any of the protocol overhead required
for synchronization. However, it is less efficient in channel usage than the syn-
chronous version. To awaken the receiving node, the transmitter must send
lengthy preambles to ensure that the frames bearing data are received [44].
Nonetheless, this scheme suffers from, generally, poor synchronization, which
leads to frame repetitions, increasing the overall energy consumption of nodes.
Additionally, pseudo-synchronous schemes suffer from the same latency vs ef-
ficiency trade-off as synchronous schemes, since the nodes still have a wake-up
schedule. A pseudo-asynchronous rendez-vous scheme was first used in 2002
in the Mica platform [45] and, later, in 2004 on the WiseNET project [46, 47].
The research on asynchronous MAC schemes produced more results such as
B-MAC [48] and the default MAC used in the Contiki project, ContikiMAC
[49].

3. Asynchronous rendez-vous schemes:

In asynchronous schemes, nodes wake up other nodes on-demand, using a side-
channel for wake-up signaling. This technique, ideally, offers better energy effi-
ciency than synchronous schemes, as the device will be only woken up when it
is required. Besides, this scheme does not introduce a power vs latency trade-
off since wake-ups occur on-demand. However, it requires the addition of a
secondary ultra-low-power transceiver to the device. This specialized hardware
allows the device to receive wake-up requests from other nodes. This comes
at the cost of extra hardware and protocol overhead for the wake-up requests.
Additionally, the secondary transceiver increases the energy consumption in
sleep mode. When the transceiver is a radio-frequency device, this scheme is
called WuR, which appeared applied to WSN in 2002 [50], when advancements
in CMOS technology allowed for the production of ultra-low-powered wake-up
circuits [51]. Since then, research in asynchronous rendez-vous has matured
both in the radio and non-radio based alternatives applying the latest devel-
opments in microelectronics to reduce transceiver power consumption, down
to the nano-watt scale [52]. This has allowed wake-up radio to improve over
the energy efficiency results obtained with synchronous rendez-vous schemes
[18].
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2.4 Wake-up Radio

2.4.1 Origin of Wake-up Radio developments

The use of a remote wake-up signal in WSN as a rendez-vous mechanism was not
mentioned until 2002, with the Picoradio WSN project, developed by the Univer-
sity of California [53]. One of the articles produced by the Picoradio project [50]
proposed using WuR as a MAC scheme to save power. The goal for the WuR was
to achieve an average node current consumption lower than 100µW. This figure
was proposed in [50] to enable either indefinite WSN node operation using power-
harvesting technologies or a lifespan of at least one year on batteries.

The main fields in WuR research are protocols and WuRx designs. The following
subsections contain the state of the art in these two topics.

2.4.2 State of the Art of Wake-up Radio based MAC pro-
tocols

Protocol level research into WuR has explored several possibilities to reduce power
consumption, latency or increase the security of WSN devices. Most of these research
initiatives are not developed in hardware testbeds but in network simulators like
OMNET++ [54] or the NS family [55]. A quick historical view of MAC WuR
protocol research, with a balanced view of the most impactful articles, is presented
next. It has been compiled using references from the fine survey compiled by Djiroun
and Djenouri [56] and the survey developed by Piyare et al. [52].

As presented before, the first WuR MAC came in 2001, later into the development
of the Picoradio project. The authors of [57] present a WuR MAC protocol with
addressing, as well as Code Division Multiple Access (CDMA). The MAC proposed
includes an algorithm to assign neighboring nodes different CDMA codes for their
WuS, thus, if a WuS is transmitted with the code of one of the neighbors, the rest
would not receive it, which avoids spending energy on false wake-ups.

Afterward, in 2002, [58] proposed a novel WuR MAC protocol, Sparse Topology
and Energy Management (STEM). The main feature of STEM was the use of two
different frequency bands: one for the primary radio and, another, for the WuR. In
this way, STEM introduced out-of-band WuR to reduce congestion of the main radio
frequency band. STEM was implemented in a testbed but, due to the still poor WuR
transceiver state-of-the-art, the WuRx was implemented using a low-power receiver
with a light duty cycle.

An optimization of STEM, called the Pipelined Tone Wakeup (PTW) scheme, was
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presented in 2004 [59]. PTW introduced latency minimization in multihop WSN.
Authors of [59] proposed chaining the wake-ups of all nodes in the path of the
transmitted frame to minimize the total latency, i.e., the WuS for the next hop is
transmitted by the next hop immediately after waking up, waking up the whole
transmission chain before forwarding the frame to it using the main radio.

Later, in 2005 [60] presented a WuR MAC for multihop WSN. The protocol pre-
sented relied on buffering to reduce the number of device wake-ups. Moreover, it
balanced the wake-ups requests between multiple nodes using estimations of their
incoming frame rates. By using buffering this protocol sacrifices part of the latency
advantage of WuR, but it reduces wake-up overhead and, as a consequence, it fur-
ther reduces device power consumption. Nonetheless, the efforts presented in [60]
were started, partly, due to the still considerable power consumption of WuRx from
its period. For more context, the available WuRx of the period used more than
380 µW [53], while state-of-the-art WuRx can present an energy consumption lower
than several nW [52].

In 2009, the usage of an Out-of-Band WuR was proposed not only for wake-up func-
tionality but also for the transmission of management messages [61]. The proposal
embedded the request for using the transmission medium and its acknowledgment
(i.e. the Request To Send (RTS) and Clear To Send (CTS) frames used in many
wireless protocols [4, 62]) into the WuS.

Afterward, in 2011, On-Demand MAC (ODMAC) [63] a receiver-initiated MAC
protocol. In ODMAC, a node wakes up its neighbors periodically via beacons, in-
dicating that is ready to receive frames. Such scheme is caller Receiver Initiated
Cycled Receiver (RICER). If any of the neighbors has a frame to transmit, they
contend for the medium using Carrier Sense Multiple Access with Collision Avoid-
ance (CSMA-CA) to send buffered frames. Lastly, in 2013, [64] introduced a WuR
enabled variant of the same concept with WuR-Transmitter Initiated Cycled Re-
ceiver (TICER) which is analogous to RICER, but with the transmitter sending a
WuS when it has frames buffered and ready to transmit.

Further research in WuR MAC has found uses in several applications. Some high-
lights are the health monitoring oriented MAC developed in 2012 by [65]; also, the
WPAN network-oriented MAC defined in 2015 by [66]; the BATS project, devel-
oped in 2016 by [67], defines a WuR MAC for nodes located on bats flying in the
wild, intending to acquire their location. Moreover, recently a WuR MAC has been
developed by the IEEE 802.11ba task group for its use with IEEE 802.11[68]. A
summary of the MAC-layer developments is shown in Table 2.2.

12



Table 2.2: Summary of the presented WuR MAC developments.

Protocol Highlight
Picoradio [57] CDMA for Addressing
STEM [58] Out-of-Band WuR
PTW [59] Mesh Oriented WuR
[60] Buffering and scheduling
WUR-MAC[61] Management frames on WuR channel
ODMAC[63] Introduction of RICER to WuR
WhMAC[64] Introduction of TICER to WuR

2.4.3 State of the Art of Wake-up Radio Receivers

Another avenue of WuR research is WuRx hardware development. WuRx are criti-
cal to any WuR scheme since their power consumption determines how much energy
the device consumes while inactive. Therefore, the trend in this area is to use newer
CMOS technologies to produce lower power radios, as well as to propose architec-
tural improvements to increase range or further reduce power consumption. WuRx
implementations need to balance a trade-off of range vs. power consumption. For
example, lower power designs, tend to be mostly passive and, therefore, have poorer
amplification and filtering characteristics. Typically, these tend to present poor sen-
sitivities, limiting the WuRx range. Nonetheless, most of the WuRx developed tend
to favor lowering the power consumption as much as possible, while keeping the
sensitivity threshold low enough to operate in their target application.

This section introduces a timeline of relevant WuRx research using a taxonomy of
three different architectural types of WuRx: passive, semi-active, and active. The
aforementioned types of WuRx will be introduced along with one or more relevant
implementation examples. As in the previous section, this compilation has been
produced mainly with references extracted from the Piyare et al. [52] survey, as well
as Demirkol et al. [69] survey.

Passive WuRx are exclusively implemented using passive components and, in the
same way as Radio-Frequency Identification (RFID) devices, only use the incident
RF power from the WuS to operate. In [70] authors proposed using passive radio-
triggered circuits for WuR. These circuits need to accumulate enough energy from
the WuS to produce a high voltage level that triggers the wake-up of the node
via interruption. In this way, depending on the distance and the transmitted power,
radio-triggered circuits can take seconds to awake the target node. Moreover, simple
radio-triggered circuits cannot support addressing in the WuS. Those only use the
continued presence of power in the transmission media as their signaling mechanism,
without further discriminators. For example, in [70] a basic radio-triggered circuit
is presented. The block diagram of this circuit is shown in Fig.2.1. The circuit just
features 5 elements: an antenna, an RF-transformer to increase voltage, a series
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resistance to limit current, a low-threshold diode for rectification of the incoming RF
WuS, and a capacitor to store charge. Of course, passive WuRx has the advantage
in energy efficiency when compared to other WuRx solutions. These do not add
additional power consumption when the node is asleep, waiting for a WuS. However,
regardless of their superior energy efficiency, fully passive designs have not gained
traction in the current state of the art, as they suffer either from long wake-up times
or short ranges.

Vout

Figure 2.1: Circuital Diagram of a 5-element Passive WuRx. The WuRx connects
to the node with the Vout terminal.

However, authors of [70] also presented the following category, semi-active WuRx.
Semi-active designs use the same radio-triggered RF front-end as passive designs,
however, they feature active components that enable them to receive, and parse,
digital data. In [70] a semi-active design is proposed using the same basic radio-
triggered-circuit shown in Fig.2.1 as its radio front-end. The circuit adds a digital
baseband used to receive digital data as well as a baseband amplifier to extend
its operating range. Since the design includes active components, it is no longer a
passive WuRx and has a static power consumption figure. Moreover, by adding a
digital baseband section, semi-active WuRx can distinguish between device addresses
with the help of an address correlator.

Several variations of semi-active designs can be found in the literature, however,
all use a mostly passive RF front-end circuitry, which is terminated with an active
signal processing chain. Currently, semi-active designs include short-range nano-
watt scale WuRx. One of the first prominent semi-active WuRx designs was featured
in CargoNet, presented in 2007 [71]. The CargoNet prototype was designed and
implemented to monitor environmental conditions of individual packages inside a
shipping container, using short-range wireless communications and a semi-active
WuRx, with a power consumption of 2.8 µW and a throughput of 750 bps. Later,
in 2009, authors of [72] presented a semi-active WuRx with addressing and digital
data transmission with a power consumption of 12.528 µW for a tested range of 10
meters [72].

Active WuRx uses powered circuitry both in the radio front-end and the baseband
section. In contrast to semi-active designs, active designs feature non-baseband am-
plification and, in some cases, even heterodyne signal detection. Therefore, active
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Figure 2.2: Block Diagram of a semi-active WuRx capable of receiving 250kbps
OOK presented in [73]

WuRx designs present higher power consumption than semi-passive WuRx. In con-
trast, active designs present lower sensitivity as well as higher throughput. Due
to their characteristics, active WuRx are used in long-range and low-latency WuR
systems. One of the first fully-featured active WuRx was presented in 2007 [74],
pioneering the development of a WuRx implemented in a CMOS integrated circuit.
The prototype achieved a power consumption of 65µW, with a sensitivity of -50 dBm
using 40 kbps with On-Off Keying (OOK) modulation, well under the proposed up-
per limit for WuRx power consumption of 100µW formulated in [50]. To reduce
power consumption a non-heterodyne receiver design was used. Such a receiver
does not make use of some of the most power-intensive RF components, e.g., Phase-
Locked Loops (PLLs) and high-frequency oscillators. In their place, to demodulate
the incoming RF signal to baseband, the WuRx proposed by them uses a CMOS
based envelope detector, which was based on the design proposed in [75]. This de-
sign introduced common functional blocks of non-heterodyne WuRx RF front-end:
an envelope detector, a Programmable Gain Amplifier (PGA), and an Analog-to-
Digital Converter (ADC), which is implemented with a single comparator in most
designs.

BB Gain

Envelope
Detector

Band-pass 
Filter 

LNA

RF Gain

Digital
Baseband

WuR Output

Figure 2.3: Block Diagram of a non-heterodyne active WuRx, as proposed in [74]

A landmark development in active WuRx development was the development of low-
power heterodyne designs, presented in [76]. Contrary to standard heterodyne radio
designs, the design proposed by them does not use precise oscillators and a PLLs to
synthesize the frequency required for demodulation. Instead, it uses a 3 stage CMOS
ring oscillator, the simplest possible, with 3 NOT gates. Although the oscillator has
an important frequency error (in [76] frequency errors are in the range of +- 100
Mhz on a 2 GHz carrier), the demodulated signal produced is at an Intermediate
Frequency (IF) close enough to baseband. As a consequence, signal amplification be-
comes much more energy-efficient. In this way, the design presented in [76] achieved
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a 52 µW power consumption and a sensitivity of -72 dBm at 100kbps.

Envelope
Detector

Band-pass 
Filter IF Gain

Digital
Baseband

WuR Output

IF Oscillator

Figure 2.4: Block Diagram of an uncertain-IF active WuRx, such as the one pre-
sented in [76].

The current state-of-the-art WuRx features both semi-active and active designs
aimed at different use cases. Semi-active designs are leading in terms of power
consumption. This is exemplified by the semi-active design in [77], which achieves
a power consumption of 4.5nW at a sensitivity of -69 dBm. This design achieves a
remarkable power consumption using an almost-passive RF front-end where the only
active element is a CMOS-based active envelope detector. This low-power front-end
ends with an ultra-low-power comparator and a power-optimized baseband, working
at 300 bps. However, both in sensitivity and throughput, active designs lead the
way. One example is the active WuRx presented by [78], which reaches -97 dBm of
sensitivity, at 10 kbps, while consuming 99µW. It can be considered a refinement
of the uncertain-IF architecture presented in [76] that solves some of the noise floor
problems introduced by the usage of an unknown IF through feedback loops.WW

2.4.4 Wake-up Radio applied to an existing radio solution:
IEEE 802.11ba

Recently, WLAN) solutions have entered the IoT market in force, capturing up to
48% of new developments [79]. Nonetheless, WLAN devices still are not able to
operate in most energy-restricted domains. Thus, enabling non-energy-constrained
devices for low-power uses remains a challenge for the development of the WSN. In
this way, WSN use cases can benefit from the reduced cost of these solutions, as
well as from their greater compatibility.

The idle listening time represents the bulk of the energy consumption of non-energy-
constrained devices. Nonetheless, the power consumption of non-constrained radios
operating in reception is up to an order of magnitude higher, when comparing state-
of-the-art devices [37, 80]. Therefore, it is challenging to achieve a power con-
sumption low enough to permit battery-powered operation during long periods. For
example, if a MAC power-saving mechanism with a traditional synchronous rendez-
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vous mechanism is used, for a given activity period, sleep intervals need to be up
to ten times higher than with energy-constrained devices. Conversely, the activ-
ity period could be reduced by a factor of ten, to maintain latency. However, this
introduces tighter synchronization requirements, which might no longer be feasible
to implement in feature-limited devices. Thus, the increased energy consumption
inherent to non-energy constrained devices often leads to an intolerable latency in-
crease. This effect is magnified in multi-hop environments, where several wake-ups
must be coordinated for a given data packet. However,WuR provides a solution to
the problem, since it offers, potentially, extremely low duty cycles without introduc-
ing significant latency penalties. As a consequence, using WuR appears as a viable
way of enabling non-energy-constrained devices for low-power operation, principally
in applications that require low latency. Additionally, non-energy constrained de-
vices are more efficient as transmitters, with radios that provide lower energies per
bit, as well as higher throughput. This improves the energy efficiency of non-energy
constrained devices in WuR schemes.

The introduction of WuR to non-energy-constrained devices can be performed in
multiple ways. The most naive one being the addition of a pair of stand-alone
WuTx and WuRx to each device. However, such a solution increments the cost
per device. A more elegant solution is to use the transmitter of the main radio as
WuTx. Moreover, common-transmitter solutions can maintain the interoperability
between legacy and WuR enabled devices. If the legacy transmitter can be used as
WuTx, then, legacy devices can wake up sleeping WuR-enabled devices to interact
with them.

Consequently, due to the growing interest in WuR, IEEE initiated a standardization
effort to incorporate WuR into the IEEE 802.11 specification. This standardization
process is, at the moment of writing, being drafted in the forthcoming IEEE 802.11ba
specification [81] [68]. One of the defining characteristics of IEEE 802.11ba is its use
of the IEEE 802.11 radio as WuTx to reduce implementation costs. IEEE 802.11ba,
like most other WuR systems [17], transmits a WuS coded using OOK. However,
none of the PHY specified in the current IEEE 802.11 specification supports the
transmission of symbols with low constant amplitude, as required by OOK. As a
consequence, legacy IEEE 802.11 devices are unable to transmit the OOK modula-
tion with fidelity. Consequently, IEEE 802.11ba proposes a modified version of the
802.11 Orthogonal Frequency Division Multiplexing (OFDM) PHY transmitter that
is capable of transmitting waveforms with close to zero amplitude, thus, allowing
for reliable OOK symbol transmission.

As a result of these modifications, the transmitters of existing, and already deployed,
IEEE 802.11 devices are incompatible with the new specification, since they cannot
generate the WuS defined by IEEE 802.11ba. Keeping backward compatibility with
legacy transmitters is necessary for interoperability between legacy IEEE 802.11 de-
vices and the new IEEE 802.11ba enabled devices. Without backward compatibility,
a legacy device is not able to interact directly with a sleeping IEEE 802.11ba device
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since it cannot send the WuS required for its wake-up.

Therefore, the development of a legacy compatible solution, which could send IEEE
802.11 symbols with legacy transmitters is a worthwhile contribution. Such a so-
lution is capable of accelerating the implantation of WuR in WLAN technologies.
This thesis presents a software-based WuTx design that is compatible with legacy
IEEE 802.11g transceivers. First, the solution was evaluated using simulations, and,
afterward, it was implemented and validated in a Linux-based device as well as in
the ESP-32 embedded IEEE 802.11 platform. Finally, a low-cost WuRx design com-
patible with the legacy WuTx solution is presented. To improve reproducibility and
access, the WuRx is based on off-the-shelf parts.

2.5 Energy-efficient Wake-up Radio for Cross Tech-

nology Communications

As mentioned earlier, the currently deployed WSN have a dependency on gateway
devices. Gateways are required for interactions between heterogeneous devices in-
side the WSN, as well as for interaction with devices external to the WSN, which
implement WLAN technologies. Nonetheless, as mentioned earlier, in Section 1.1,
gateway devices come with drawbacks [11]. Thus, there is an interest in developing
solutions that enable heterogeneous devices to interact directly. This way, appeared
CTC as a research area that investigates ways of providing direct interaction between
devices that implement non-compatible wireless solutions.

To communicate non-compatible devices, CTC developments propose communica-
tion modes that, in general, were not intended by the designers of wireless solutions.
As a consequence, CTC solutions do come with prominent drawbacks. There are
different approaches to CTC, which are discussed in depth in Chapter 5. However,
all of them suffer, at least, from one of the two following drawbacks. The first is
unidirectional communications. For example, in a prominent CTC implementation,
IEEE 802.11 devices can send messages to IEEE 802.15.4 devices, but communica-
tion cannot occur in the inverse order, i.e, from the IEEE 802.15.4 devices to the
IEEE 802.11 ones. The second prominent drawback is the extremely low data rates
achieved by most CTC solutions. This drawback affects those systems that can
achieve bidirectional communications. Specifically, CTC solutions in the literature
offer throughput rates as low as 16 bits per second [82]. Additionally, CTC trans-
mitters typically use their full-rate spectrum consumption to achieve low CTC data
rates. An IEEE 802.11 transmitter from [82] achieves a 16 bits per second through-
put while using its full 20 MHz bandwidth, thus only providing a spectral efficiency
of 0,0000008 bits/Hz. In contrast, a simple OOK implementation, like those used
in WuR, can ideally achieve a rate of 1 bit/Hz.
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This contribution on WuR, which adds additional communication capabilities to
devices. In the same way, WuR-enabled devices can send binary addresses, they can
also send arbitrary binary data. Thus, WuR provides a secondary communications
channel that is independent of the technology used in the main radio of the device.
Therefore, heterogeneous devices can use their WuR hardware to establish CTC.

WuR assisted CTC (WuR-CTC) can provide improvements over existing CTC so-
lutions. First, WuR offers a symmetric communication link. All devices can in-
corporate both a WuTx and a WuRx. Thus, WuR-CTC enables fully bidirectional
communications, in a clear improvement over the majority of CTC solutions. Ad-
ditionally, WuR systems, as previously shown in Section 2.4, can achieve relatively
high data rates, which can be up to the hundreds of kbps, as it is specified in the
IEEE 802.11ba drafts [68]. Those are orders of magnitude higher than most of those
offered by most CTC implementations and closer to the rates offered by widely used
WSN solutions, such as Bluetooth and IEEE 802.15.4. Thus, WuR-CTC overcomes
simultaneously both of the main drawbacks of CTC, in a clear improvement over
the state of the art. However, these advantages over previous CTC solutions come
at a cost, the introduction of additional hardware elements to the device to support
WuR. Typically, this is fulfilled by the addition of a WuRx, while the main radio
also performs as WuTx. Moreover, the presence of WuR hardware also enables the
device to reduce its power consumption to the level required for its target WSN
application. Thus, WuR-CTC adds additional functionality using hardware that,
can be present in WSN devices for power-saving purposes.

To achieve interoperability, WuR hardware incorporated in devices must remain
compatible. Currently, with an ongoing WuR standardization process, it is critical to
explore WuR-CTC concept, which provides future WuR specifications a compelling
reason to maintain compatibility with previous WuR developments, such as IEEE
802.11ba.

Thus, researching the feasibility of the application of WuR to CTC is a timely and
worthwhile contribution. Moreover, the legacy-compatible IEEE 802.11 WuR imple-
mentation developed for this work provides the building blocks for the evaluation of
WuR-CTC. This thesis contributes with a formulation of the WuR-CTC concept, as
well as with a real-world testbed of WuR-CTC between energy-constrained devices
and WLAN devices. Thus, showcasing the advantages of using WuR to enable direct
interaction between energy-constrained nodes on a WSN and external devices and
networks. With this contribution, it is demonstrated that WuR-CTC can enable
direct communications between heterogeneous devices.
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Chapter 3

A Backward-compatible IEEE
802.11 Wake-up Radio

Following the motivation presented in Section 2.4.4, this chapter presents the design
and implementation of a WuR solution that is compatible with legacy IEEE 802.11
transmitters. It features a WuTx that is backward-compatible with the legacy IEEE
802.11 OFDM PHY specification. Instead of using OOK symbols, which cannot be
created with a legacy IEEE 802.11 transmitter, the WuTx uses of a novel amplitude-
based modulation. This modulation, Peak-Flat, can be received by OOK receivers
as an imperfect OOK modulation. Thus, allowing its use for low-power and feature-
limited WuRx. Thus, this chapter presents the design, the implementation and the
evaluation of this backward-compatible WuTx solution.

This chapter is structured as follows. Section 3.1 exposes the challenges of enabling
WuR with IEEE 802.11-related technologies, which use OFDM radios. Section 3.2
presents the structure of IEEE 802.11 OFDM PHY and proposes the Peak-Flat
modulation as a legacy-compatible alternative to OOK. Section 3.3 explains the
generation of Peak-Flat Symbols using an IEEE 802.11g transmitter. Section 3.4
proposes a WuS generation method using Peak-Flat for IEEE 802.11g. Section 3.5
describes and compares two possible WuRx architectures. Section 3.6 compares
the performance of Peak-Flat against OOK-based modulations using the previously
described WuTx and WuRx. Section 3.7 develops the topic of compatibility between
the proposed WuR system and IEEE 802.11ba. Section 3.8 presents two physical
implementations of the WuTx derived from this work. Finally, Section 3.9 presents
the conclusion of this chapter.
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3.1 Challenges of OOK-based WuS Generation with

IEEE 802.11 OFDM PHY

An OFDM transmitter is a flexible radio that can create complex waveforms from
digital data. Therefore, an OFDM transmitter can be used, with the right inputs,
to generate amplitude-based waveforms that can be decoded by low-power receivers
[83].

The use of OFDM to transmit data was introduced to the IEEE 802.11 specification
with the IEEE 802.11 OFDM PHY, which firstly appeared with IEEE 802.11a spec-
ification. Afterward, in 2003, IEEE 802.11g was published, which extended OFDM
PHY for operation at the 2.4 GHz ISM band. IEEE 802.11 OFDM PHY data rates
were improved subsequently with IEEE 802.11n High-Throughput (HT) in 2009 and
again with IEEE 802.11ac Very High Throughput (VHT) published in 2013.

As mentioned in Section 2.4.4, IEEE 802.11 OFDM PHY is not able to generate
good quality OOK signals. A critical parameter of an OOK transmitter is its extinc-
tion ratio. This parameter is defined as the relation between the squared amplitude
of the “0” symbol and the squared amplitude of the “1” symbol. This way, a
higher extinction ratio implies that “0” symbols are further away in the constella-
tion from the “1” symbols, for a given transmission power level, therefore reducing
the probability of errors in symbol detection. The main challenge for creating an
OOK modulation using a transmitter implementing the IEEE 802.11 OFDM PHY
is achieving a sufficient extinction ratio.

Two IEEE 802.11 OFDM PHY characteristics reduce the achievable extinction ratio
by adding a constant power to the OFDM symbol. First, the addition of four high
amplitude pilot tones to each OFDM symbol, and second, the lack of symbols with
“0” amplitude in the constellations by IEEE 802.11 OFDM PHY [84]. Therefore,
there is no way to create an OFDM symbol with an amplitude close to 0 with legacy
IEEE 802.11 OFDM PHY.

In IEEE 802.11ba, these problems are sidestepped by using a modified IEEE 802.11
OFDM PHY, which allows setting subcarrier values to 0. This feature enables the
generation of “0” OOK symbols with constant 0 amplitude. Additionally, the DC
subcarrier, deactivated in the original IEEE 802.11 OFDM PHY, is also enabled in
IEEE 802.11ba to help with the generation of smoother pulses for “1” OOK symbols.
The contributors to the IEEE 802.11ba have reached good results in synthesizing
OOK symbols with this technique, called Multi-Carrier OOK (MC-OOK) [85, 86].

Thus, enabling WuR with legacy IEEE radios requires an alternative procedure to
generate an amplitude-based modulation that can be received by low-power WuRx.
Such an alternative would enable the generation of an amplitude-based signal ca-
pable of bearing digital information using an unmodified IEEE 802.11 OFDM PHY
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transmitter. Moreover, if the symbols produced by the alternative could be decoded
by OOK receivers, a compatibility level with IEEE 802.11ba could be achieved.

3.2 Structure of IEEE 802.11a/g OFDM PHY and

amplitude-based signal generation

The first design decision is to determine in which IEEE 802.11 amendment should
the legacy-compatible WuR solution be developed. As the purpose of this develop-
ment is to include legacy compatibility, the ideal targets for the effort are the oldest
and more widespread OFDM-based amendments, IEEE 802.11a/g. Moreover, de-
vices implementing newer amendments are required to support these for backward
compatibility. For this reason, 802.11a/g is chosen for the implementation of the
WuR Proof of Concept (POC) presented in this thesis.

Additionally, the extra features found in subsequent amendments of the IEEE 802.11
OFDM PHY do not impose modifications to the WuR concept discussed and allow
for the applicability of the same principles.

3.2.1 Block structure of IEEE 802.11a/g OFDM PHY

To implement a backward-compatible IEEE 802.11 WuTx, the complete and un-
modified IEEE 802.11 OFDM PHY must be used. This way, the resulting WuTx
will be compatible with virtually all already deployed devices, without further mod-
ifications. The implementation of such a WuTx does only require software/firmware
upgrades. Nonetheless, the IEEE 802.11 OFDM PHY specification defines a com-
plex signal processing chain, which incorporates several features such as scrambling,
interleaving, and channel codification. All of these procedures perform modifications
to the bitstream inputted to the IEEE 802.11 OFDM PHY and change the waveform
of the OFDM symbol output by the radio. Therefore, a software-based WuTx must
address its effects to obtain a predictable signal at the output of the IEEE 802.11
OFDM PHY. The block structure of the IEEE 802.11a/g OFDM PHY, from the
insertion of the entry bitstream to the radio output is presented in Fig.3.1.

The signal processing chain for IEEE 802.11a/g is the following. First, the entry
bitstream is injected into the Scrambler block, which adds by an XOR function
a pseudo-random sequence to the entry bitstream. This procedure decreases the
probability of systematic errors and improves transmitter performance by reducing
the output signal dynamic range. Afterward, the output of the Scrambler block is
encoded with the Convolutional Coder block. For this, the IEEE 802.11a/g specifica-
tion defines coding rates between 1/2 and 3/4. Once coded, the resulting bitstream
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Symbol Mapping Interleaver
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Figure 3.1: IEEE 802.11a/g OFDM PHY block structure for the data path. This
block structure is also applicable to IEEE 802.11n/ac OFDM symbol generation.
However, spatial multiplexing has to be taken into account.

is separated into blocks of bits, each of these the size of an OFDM symbol payload,
and their contents are interleaved by the Interleaver block. This procedure separates
consecutive bits of the entry bitstream, thus reducing the likelihood of error bursts
and improving the effectiveness of the convolutional code.

Subsequent blocks, i.e., from Symbol Mapping to IQ Modulation, perform the trans-
formation of each of the aforementioned blocks of bits to OFDM symbols. First, the
Symbol Mapping block converts the binary values from the bit block into complex
symbols, using one of the four available constellations: BPSK, QPSK, 16-QAM, or
64-QAM. Thus, the bit block output by the Interleaver results in a symbol block
containing 48 complex samples. Then, four maximum amplitude symbols are added
through the Tone Mapping and Pilot insertion block. This procedure, called tone
addition, increments the number of symbols in the block from 48 to 52. Next, the
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52 subcarriers are padded with “0” symbols, increasing the size of the symbol block
to a multiple of 2, 64 samples. Later, the symbol block is sent to the Inverse Fast
Fourier Transform (IFFT) block, which applies a 64-point IFFT to the bit block.
Its output is a sequence of 64 time-domain data samples, which are the values of
the OFDM symbol in the time domain. Finally, the cyclic prefix is prepended in the
Guard Interval Insertion block. The cyclic prefix, which comprises the last 16 sam-
ples of the time domain OFDM symbol, is added to mitigate the effect of multipath
propagation on the OFDM symbol and keep inter-carrier interference low. Thus, the
final OFDM symbol consists of a total of 80 time-domain samples, which are sent
to the IQ Modulator block. Subsequently, the modulator transforms the samples of
the OFDM symbol into the analog domain at a rate of 20 Msps, obtaining a 4µs
long waveform. Finally, this waveform is sent through the RF front end.

3.2.2 Possible waveforms for WuS generation

A simulation of the last stages of IEEE 802.11a/g OFDM PHY transmitter (i.e,
from Symbol Mapping to Guard Interval Insertion) was developed to study which
waveforms could be generated using software with IEEE 802.11a/g OFDM PHY. For
this purpose, firstly, the MATLAB WLAN Toolbox [87] was studied. Nonetheless,
this toolbox did not provide explicit functional support to implement only this subset
of blocks from the complete signal processing pipeline. Therefore, the simulation
framework for this task was implemented using MATLAB standard library functions.
To ensure accuracy, the results obtained in this simulation framework were cross-
validated with the output waveforms obtained with MATLAB WLAN Toolbox on
equivalent inputs. According to the limitations of legacy IEEE 802.11 transmitters,
other types of amplitude-based waveforms than OOK symbols were considered.

The core of this effort is the generate symbol function, shown below. This function
codes a block of bits, as if it was output by the Interleaver block, and obtains its
corresponding waveform in the time domain. Thus, the generate symbol function
implements symbol mapping, pilot tone insertion, and cyclic prefix addition, as well
as windowing. This function takes as inputs the bit block, the size of the symbol
block, and the phase of the pilot tones.

1 function waveform = generate symbol(data packet, Bits per Symbol, ...
p phase)

2 %64 samples for IFFT
3 N = 64;
4

5 %80 time samples adding the cyclic prefix
6 N2 = 80;
7

8 %bits per subcarrier
9 data mapped = wlanConstellationMap(data packet interleaved, ...
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encoded symbol size/48);
10

11 %now, map the symbols on their respective subcarriers and add ...
pilot tones.

12 data sequenced pos = zeros(N/2, 1);
13 data sequenced neg = zeros(N/2, 1);
14

15 %negative half of ifft
16 data sequenced neg(1:6) = 0;
17 data sequenced neg(7:11) = data mapped(1:5);
18 data sequenced neg(12) = 1*p phase;
19 data sequenced neg(13:25) = data mapped(6:18);
20 data sequenced neg(26) = 1*p phase;
21 data sequenced neg(27:32) = data mapped(19:24);
22

23 %positive half of ifft
24

25 data sequenced pos(1) = 0;
26 data sequenced pos(2:7) = data mapped(25:30);
27 data sequenced pos(8) = 1*p phase;
28 data sequenced pos(9:21) = data mapped(31:43);
29 data sequenced pos(22) = −1*p phase;
30 data sequenced pos(23:27) = data mapped(44:48);
31 data sequenced pos(28:32) = 0;
32

33 data sequenced = [data sequenced pos; data sequenced neg];
34

35 data in time = ifft(data sequenced, N);
36

37 %add another sample for windowing with next symbol.
38 waveform = zeros(1,N2 + 1);
39 %add cyclic prefix
40

41 %add the windowing as WLAN Toolbox and IEEE 802.11a standard ...
suggest

42 waveform(1) = data in time(49)/2;
43 waveform(2:16) = data in time(50:64);
44 waveform(17:80) = data in time;
45 waveform(81) = data in time(1)/2;
46

47 end

In the process of transforming a bit block into an analog waveform, the discrete
version of the Fourier Transform, the Discrete Fourier Transform (DFT), is used. As
explained before, its inverse, the Inverse Discrete Fourier Transform (IDFT) is used
to transform the symbol block derived from the bitstream into the OFDM symbol
that is sent through the radio interface. Fortunately, DFT and its inverse share
many properties with their analog counterpart, the Fourier Transform. One of them
is frequency scaling, relating the temporal signal length with its transform signal
length in the frequency domain, and vice versa. Signal expansion in the frequency
domain leads to signal contraction in the time domain. The complete proof of this
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property for DFT can be found in [88]. Consequently, the generation of a wide
constant pulse in the frequency domain leads to a very narrow waveform in the time
domain, being most of its energy contained on a very narrow temporal region, i.e., a
peak. Therefore, this property can be useful for the generation of amplitude-based
waveforms. For example, a signal containing a very pronounced peak, if low-pass
filtered, resembles an OOK “0” symbol, albeit, with a lower extinction ratio.

With this approach, several input sequences generate symbol were trialed. Nearly
constant subcarrier blocks were used to produce OFDM symbols that, after the
application of the IDFT, had very distinctive regions, with pronounced peaks and
valleys. With this type of waveform, the presence of one peak concentrates the
symbol energy on a very narrow temporal interval. Besides the “peak” region, this
waveform also features a larger “valley” section, conferring it a high Peak-to-Average
Power Ratio (PAPR). Conversely, it also possible to input sequences to the IDFT
block that result in symbols with nearly constant amplitude. Those, by being flatter,
present low PAPR. Using these two types of waveforms, a binary constellation can be
derived. The constellation comprises one symbol with very high PAPR, henceforth
referred to as Peak Symbol, and another symbol with a very low PAPR referred to
as Flat Symbol. An ideal Peak Symbol candidate, with no contribution from pilot
tone addition, and no cyclic prefix, is shown in Fig.3.2.
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Figure 3.2: Amplitude a Peak Symbol candidate, in frequency (a) and time (b)
domains. Note that this representation does not include the cyclic prefix. Hence,
the time domain representation has only 64 samples.

The symbols of this modulation can then be easily discriminated with low-complexity
non-coherent receivers. One approach is to discriminate them using their peak height
with a non-linear peak detector circuit. This way, the higher that the PAPR is, the
more separated that the symbols become in the constellation. Another approach is
to receive these symbols as if they were ideal OOK symbols, using a simple OOK
detector with low-pass filtering. Using this detector, the low-pass filter produces a

26



pseudo-OOK modulation using the Peak and Flat Symbols. This way, Peak Symbols
resemble imperfect OOK “0” symbols and Flat Symbols, “1” OOK symbols. This is
shown in a pair of examples for the Peak and Flat Symbols in Fig.3.3 Nonetheless,
this approach suffers from a reduced extinction ratio, since the “0” symbols obtained
with this pseudo-OOK approach are far from perfect. However, it is compatible with
other OOK receivers, such as those used in IEEE 802.11ba.
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Figure 3.3: Detail of a pair of Peak and Flat Symbol candidates in time domain,
shown in (a) and (b), respectively. This representation was generated with the
generate symbol function. Results of low-pass filtering with a second order But-
terworth filter with a cutoff of 250 kHz are outlined in red.

3.3 Generation of Peak/Flat Symbols using an

IEEE 802.11a/g OFDM PHY

The WuTx implementation can only become compatible with standard-compliant
transceivers if no hardware changes are required. Hence, an implementation done
using exclusively software-level access in standard-compliant transceivers is required.
The generation of Peak-Flat is proposed by the means of inputting a bitstream to
the transmission chain of a standard-compliant IEEE 802.11a/g OFDM PHY. This
is, by no means a trivial challenge. Following, Subsections 3.3.1 and 3.3.2 introduce
the methodology used for the generation of Peak and Flat Symbols using data bits
from higher layers on the IEEE 802.11 OFDM PHY, particularizing for the IEEE
802.11g transmitter used as PoC.
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3.3.1 Generation of the Peak Symbol

An Idealized Peak Symbol with IEEE 802.11a/g

According to the previous design principle to obtain an optimal Peak Symbol, one
must use the widest possible constant waveform at the input of the IDFT block.
With the IEEE 802.11 OFDM PHY, the closest implementation is a uniform symbol
block, created by assigning the same value to all the available OFDM subcarriers.
IEEE 802.11g specifies that values for the subcarrier with index 0 as well as the
subcarriers that belong to the ranges going from -27 to -32 and from 26 to 31 must
set to “0” [84].

Then, according to IEEE 802.11a/g, the resulting symbol block is described math-
ematically in (3.1), where k represents the subcarrier index, and a, an arbitrary
complex value. Such a symbol is shown in Fig.3.2a. Nonetheless, this is not fea-
sible as the value of a minority of the subcarriers, i.e., the pilot tones, cannot be
controlled directly by the bits input to the IEEE 802.11 OFDM PHY. The effect of
these will be addressed later, in Section 3.1). Thus, such a symbol as one described
in (3.1) cannot be implemented. However, it is possible to obtain close-enough
implementations of this ideal Peak Symbol, despite pilot tone interference.

X[k] =


0 k < −26
a −26 ≤ k < 0
0 k = 0
a 0 < k < 26
0 k ≥ 26

(3.1)

In the time domain, the ideal Peak Symbol adopts the expression of (3.2), where n
corresponds to the sample index, which goes from 0 to 63. A plot based on (3.2) is
shown in Fig.3.2b.

The IEEE 802.11a/g OFDM PHY adds a guard interval (also called or cyclic prefix)
of 16 samples to the OFDM symbol. Being its values a repetition of the last 16
samples of the OFDM symbol and increasing the length of the time-domain OFDM
symbol to 80 samples. The introduction of this guard interval, for the time-domain
OFDM symbol described by (3.2) is showcased in Fig.3.4.

x[n] =
1

64

sin(2π 53
64
n)

sin(2π 1
64
n)
− 1 , 0 ≤ n ≤ 63 (3.2)

As shown by (3.1), the Peak Symbol can be produced by any uniform symbol block
independently of the complex value used to initialize its 52 samples. Therefore,

28



0 10 20 30 40 50 60 70

Sample

0

0.2

0.4

0.6

0.8

1

A
m

p
li

tu
d
e 

(A
b
so

lu
te

 V
al

u
e)

(a)

0 20 40 60 80

Sample

0

0.2

0.4

0.6

0.8

1

A
m

p
li

tu
d
e 

(A
b
so

lu
te

 V
al

u
e)

(b)

Figure 3.4: Comparison of the same symbol before (a) and after (b) guard interval
insertion.

all possible constellation symbol values supported by IEEE 802.11 OFDM PHY
produce a waveform with the same shape and PAPR, although, with different scale
factors.

Nonetheless, the implementation of the Peak Symbol devised in this section using a
complete IEEE 802.11a/g OFDM PHY still requires a method to obtain a suitable
bit sequence. Such a sequence, after being manipulated by the blocks found before
the Symbol Mapping block, produces a uniform symbol block at the input of the
IDFT block. This way, the rest of the section presents the solutions taken to build
the Peak Symbol from the bitstream at the entry of the IEEE 802.11g OFDM PHY
data path.

Addressing the effect of the Scrambler block

The first block of the IEEE 802.11g OFDM PHY block structure is the Scrambler.
Its purpose, to randomize the input bitstream to avoid long runs of “0” or “1”. The
goal of this is to minimize both the average PAPR of OFDM symbols and the DC
bias at the reception.

The IEEE 802.11 scrambler is implemented using an LFSR with the characteristic
polynomial presented in (5.4). Its graphical representation is also shown in Fig.3.5,
where Sin is the input bitstream, and Sout the scrambled bitstream.

S[x] = 1 + x4 + x7 (3.3)
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Sin[n]

Sout[n]

Figure 3.5: LFSR representation of the scrambler used in IEEE 802.11 OFDM
PHY[84]

The specification determines that the seed used to initialize the LFSR should change
at the start of each frame transmission [84]. Additionally, there is no requirement
for IEEE 802.11 OFDM PHY implementations to provide read or write access to
the scrambler seed. Therefore, the seed is a priori an unknown value to the users of
the transceivers.

Nonetheless, in some cases, the scrambler seed can be determined using information
external to the transceiver as pointed out by [89]. Various transmitters use either a
constant seed to initialize the LFSR or one that can be predicted using data external
to the IEEE 802.11 OFDM PHY, such as the MAC address of the transceiver and
the number of transmitted bits.

To produce the Peak-Flat modulation, a controlled sequence is required at the output
of the scrambler. Hence, the randomization introduced by the scrambler must be
compensated. If the initialization seed is known, then, the effect of the Scrambler
can be canceled by scrambling the input bitstream in advance. This can be achieved
by pre-scrambling the input data using the same bit sequence that the Scrambler
will generate. The proof of this uncomplicated solution can be seen in (5.5)-(3.7).
Where x[n] consists of the intended bit sequence at the output of the scrambler, y[n]
the pseudo-random bit sequence generated by the Scrambler, sin[n] the sequence at
the input of the Scrambler, and finally, sout[n] the output sequence of the Scrambler.

sin[n] = y[n]⊕ x[n] (3.4)

sout[n] = sin[n]⊕ y[n] (3.5)

sout[n] = x[n]⊕ y[n]⊕ y[n] (3.6)

sout[n] = x[n] (3.7)

Therefore, the effect of the scrambler in the input sequence can be compensated
for, but only if the Scrambler initialization seed is known in advance and the input
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sequence is pre-scrambled. This way, any input bit sequence can cross the scrambler
unmodified, and, therefore, advance one step closer to the Symbol Mapping Block.

Addressing the effect of the Convolutional Coder block

The Convolutional Coder block protects the incoming data from random errors with
a Forward Error Correcting (FEC) code. The convolutional coder used by IEEE
802.11 is parametrized by the following variables, where r represents the coding
rate, k the window length, being g0 and g1 are the generator polynomials. All these
are defined in Table 3.1.

Table 3.1: Parameters of the convolutional coder used in IEEE 802.11 OFDM PHY

Symbol Value
r 2
k 7
g0 1338

g1 1718

The coder, as shown in Fig.3.6, generates two output bits for every input bit and
has a memory of 6 bits. The coding rate implemented is 1/2 but additional coding
rates of 2/3 and 3/4 can be obtained from the same by using Puncturing. This
technique removes bits from the output of the coder, which are introduced again in
the receiver, before the decoder block, as “0” values.

The use of the convolutional coder is required with IEEE 802.11a/g. Nonetheless,
in the following releases, the presence of a convolutional coder on the device is still a
requirement. This way, the solution presented here is compatible with later releases,
such as IEEE 802.11n/ac.

T b T b T b T b T b T b 

Input Data

Output Data A

Output Data B

Figure 3.6: Convolutional Coder used in IEEE 802.11 PHY. Note that for each bit
input, two outputs, Data A and Data B are generated. Each Tb block represents a
one bit delay[84].

If the goal is to obtain a controlled sequence of bits at the input of the symbol
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mapping stage, the Convolutional Coder is the most challenging block to work with.
Not every bit sequence is possible at the output due to the effect of coding and the
redundancies added. However, both uniform bit sequences (i.e, one with “0” and
another with “1”) can produce a Peak Symbol at the symbol mapping stage and are
not modified by the addition of coding. They still appear uniform at the output,
only that their length is multiplied by the inverse of the coding rate used.

For example, the uniform input sequence of “0” bits, results in another uniform
output sequence of “0” bits, but grown, i.e., a sequence of 50 “0” at the input,
coded with a rate of 1/2, results in a sequence of 100 “0” at the output. This is
a consequence of the exclusive use of the coder only implements linear operations,
i.e., XORs. As seen in (3.8)-(3.11), for each “0” at the input, two “0” are obtained
at the output.

s[n] = {0, 0, 0, 0, 0, 0} (3.8)

x = 0 (3.9)

ya = x⊕ s[2]⊕ s[3]⊕ s[5]⊕ s[6] = 0⊕ 0⊕ 0⊕ 0⊕ 0 = 0 (3.10)

yb = x⊕ s[1]⊕ s[2]⊕ s[3]⊕ s[6] = 0⊕ 0⊕ 0⊕ 0⊕ 0 = 0 (3.11)

where x represents the input bit, s[n], the 6-bit wide scrambler state, ya the Data
A output of the coder, obtained by applying g0 to x, and, finally, yb the Data B
output, generated in a similar way by g1. Both Data A and Data B correspond to
the outputs displayed in Fig.3.6.

Consequently, the sequence with uniform “1” also appears unmodified at the output,
as long as the coder state bits are also set all to “1”. This is a consequence of the
odd number of XOR operations in both branches, which is five. An odd number of
XOR operation with the same value, here “1”. This can be seen in (3.12)-(3.15),
using the same variable notation that was used in (3.8)-(3.11). This condition holds
in IEEE 802.11a/g/n/ac, which include the odd-numbered generator polynomials
shown here.

s[n] = {1, 1, 1, 1, 1, 1} (3.12)

x = 0 (3.13)
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ya = x⊕ s[2]⊕ s[3]⊕ s[5]⊕ s[6]

= 1⊕ 1⊕ 1⊕ 1⊕ 1

= ((((1⊕ 1)⊕ 1)⊕ 1)⊕ 1)

= (((0⊕ 1)⊕ 1)⊕ 1)

= ((1⊕ 1)⊕ 1)

= (0⊕ 1) = 1

(3.14)

yb = x⊕ s[1]⊕ s[2]⊕ s[3]⊕ s[6] = 1⊕ 1⊕ 1⊕ 1⊕ 1 (3.15)

Nonetheless, the Convolutional Coder has a state. This state modifies subsequent
bits depending on the values of the previous ones. Thus, its effects affect the transi-
tions between Peak and Flat Symbols, where the input sequence goes from uniform
values to non-uniform values. This issue is addressed in Section 3.3.2, which intro-
duces the Flat Symbol generation procedure, as well as the measures taken to avoid
this issue.

Therefore, in conclusion, the two uniform binary sequences can cross the coder
unmodified, i.e., all “1” and all “0” sequences. These sequences are of interest since
they produce uniform symbol blocks at the input of the IDFT block, and those
allow the generation of Peak Symbols. Then, uniform bit sequences, that are pre-
scrambled can cross unmodified both the Scrambler and the Convolutional Coder
blocks. Next section, the effect of the Interleaver will be addressed.

Addressing the effect of the Interleaver block

The purpose of an interleaver is to distribute bit errors uniformly, therefore maxi-
mizing the effectiveness of FEC coding. The Interleaver block in the IEEE 802.11a/g
OFDM PHY separates the incoming bitstream on blocks of an integer number of
bits. The bits from these blocks will be jointly encoded in the same OFDM symbol.
The length of these bit blocks depends only on the modulation used on the Sym-
bol Mapping block. Afterward, the Interleaver shuffles the bits in the block in two
steps. First, it distributes the adjacent bits within the block so that they will be
encoded into non-adjacent subcarriers. Thus, protecting the payload against error
bursts caused by narrow-band fading, which cannot be recovered by FEC. Second,
the bits assigned to each subcarrier are distributed among the less and more sig-
nificant bits of the QAM constellation symbol. This step only makes sense when
subcarriers bear at least 4 bits, consequently, it is only applied when QAM symbols
are employed to map subcarriers. This last mechanism randomizes the effect of the
greater systematic error rate that the least significant bits of QAM symbols suffer.

Returning to Peak Symbol generation, the effect of the Interleaver block can be
canceled by pre-interleaving the sequence at the data input. that is, moving bits so
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they are shuffled into their intended positions by the Interleaver. Nonetheless, this
is not necessary for the two uniform “0” and “1” sequences proposed before. As
they are uniform, they are, by definition, unaffected by any transposition of their
elements.

Effect of the Symbol Mapping block

The Symbol Mapping block terminates the section of the processing chain that works
directly with binary values. It does so by converting the bit blocks output by the
Interleaver into symbol blocks with complex values. The symbols in the block are
also referred to as subcarriers since each of those corresponds to one of the various
tones that compose an OFDM symbol in the frequency domain. In IEEE 802.11a/g,
each symbol block comprises 48 complex symbol values [84], a number that remains
constant over all data rates supported. Nonetheless, subsequent amendments can
support a higher number of subcarriers per OFDM symbol. For example, up to 108
symbols in IEEE 802.11n [90], 468 in IEEE 802.11ac [91] and 980 in IEEE 802.11ax
[92].

To convert from bits to symbols, this block uses one of the constellations available
in IEEE 802.11a/g OFDM PHY: BPSK, QPSK, 16-QAM, 64-QAM. Nonetheless, in
posterior releases, these 256-QAM and 1024-QAM were added. The first four con-
stellations are supported in IEEE 802.11a/g/n while, 256-QAM, is only supported
from IEEE 802.11ac and 1024 QAM is only supported by IEEE 802.11ax.

As determined by the results of Section 3.3.1, Peak Symbols can be generated by
uniform symbol blocks. Moreover, the shape of the waveform generated by those
is the same, regardless of which symbol it is used. Additionally, as shown in the
previous sections, pre-scrambled uniform bit sequences can cross the previous blocks
without suffering modifications. Those produce uniform bit blocks at the output
of the Interleaver Block, which the Symbol Mapped Block encodes into uniform
symbol blocks. Nonetheless, since uniform bit blocks only contain bits of equal
value, they can only be encoded into symbol blocks using a subset of symbols that
represent exclusively either “0” or “1” bits. Those change according to the different
constellations used for the data rates OFDM PHY defined in the IEEE 802.11a/g
specification. The symbol values that can be generated by uniform bit blocks are
found in Table 3.2.

Effect of pilot tone, and cyclic prefix addition

After the bit blocks are mapped into symbol blocks, pilot tones are inserted by the
Tone Mapping and Pilot Tone Insertion block. This adds 4 pilot symbols to the
existing symbol block, increasing its length from 48 to 52 subcarriers. Those are

34



Table 3.2: Possible symbol values derived from uniform bit blocks

Modulation Symbol value Coded Bits
BPSK −1 “0”
BPSK +1 “1”
QPSK +1 + 1j “11”
QPSK −1− 1j “00”
16-QAM 1 + 1j “1111”
16-QAM −3− 3j “0000”
64-QAM 3 + 3j “111111”
64-QAM −7− 7j “000000”

added to indexes 7, 21, -7, and -21 of the symbol block. The amplitude of pilot tones
is fixed at 1, regardless of the constellation used to map the subcarriers, nonetheless,
their phase can vary. The specification fixes that three of the tones share the same
phase, and only one must present a phase π radians opposite. According to these
principles, the contribution to the symbol block is shown in sequence P−26,26 from
(3.16).

P−26,25 = {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, (3.16)

0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0,

0, 0}

Moreover, the phase of the pilot tones is switched after each OFDM symbol. The
switching of the pilot tone phase occurs according to a pseudo-random sequence that
is generated by an LFSR equal to the one used by the Scrambler (see Section 3.3.1).
When the LFSR outputs a “0”, the phase of the pilot tones is switched by π radians
(i.e, the values of (3.16) are multiplied by “-1”), otherwise, it is left unchanged
[84]. According to this dynamic phase component, two pilot tone combinations
alternate in a pseudo-random pattern. The first, comprises three tones with the
“+1” value and one tone with the “-1”, thus, with mostly positive values; and the
second comprises three tones with the “-1” value, and one the “+1” value, therefore,
with mostly negative values.

The addition of these pilot tones breaks the uniformity of the symbol block, which,
in turn, alters the resulting OFDM symbol, which no longer corresponds to the ideal
representation presented in 3.3.1. Consequently, as the symbol block is no longer
perfectly uniform, its PAPR is degraded with respect to the ideal Peak Symbol. The
magnitude of this effect depends on the disparity between the symbol value of the
subcarriers conforming the symbol block and the pilot tones. e.g., if the value of the
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majority of the pilot tones is “-1”, the PAPR of the resulting Peak Symbol will be
higher if the rest of its subcarriers are also “-1”, and lower if they are “+1”.

To optimize the performance of the WuTx, it is important to determine which
symbol block values provided better PAPR, and accordingly, less degraded Peak
Symbols concerning the ideal. For this purpose, the MALAB function described in
Section 3.2.2, generate symbols was used to generate Peak Symbols with all the
subcarrier values generated with uniform bit blocks (see Table 3.2) and pilot tone
combinations. The result of this study, which includes the addition of the cyclic
prefix, can be found in Table 3.3. To represent the effect of pilot tones, the average
PAPR for a given subcarrier symbol value is derived by averaging the PAPR of the
two possible Peak Symbols, one with each pilot tone combination (in-phase and on
opposite phase).

Table 3.3: PAPR obtained for each symbol and pilot tone phase combination

Modulation Symbol
value

Negative
pilot tones
PAPR(dB)

Positive
pilot tones
PAPR(dB)

Average
PAPR(dB)

BPSK −1 17.39 16.59 16.99
BPSK +1 16.59 17.39 16.99
QPSK 1 + 1j 16.76 17.24 17.00
QPSK −1− 1j 17.24 16.76 17.00
16-QAM 1 + 1j 15.17 16.27 15.72
16-QAM −3− 3j 17.35 16.99 17.17
64-QAM 3 + 3j 16.16 16.90 16.53
64-QAM −7− 7j 17.38 17.05 17.22

According to the results, the best subcarrier symbol value, with an average PAPR
of 17.22 dB, is 64-QAM “-7 -7j”, which encodes 6 “0” bits. The BPSK “-1” and
“+1” values, representing “0” and “1” logic values, present the second-best results.
Nonetheless, BPSK symbols present the best PAPR results when the pilot tones are
in phase, with a PAPR of 17.39 dB. In contrast, Peak Symbols built using BPSK
subcarrier values are on average lower when the pilot tones are on the opposite
phase. Consequently, the average PAPR for both BPSK “+1” and “-1” is 16.99,
approximately 0,2 dB lower than the average PAPR obtained by 64-QAM “-7 -7j”.
Below, in Fig.3.7 the waveforms generated by the Peak Symbols corresponding to
subcarrier symbol values “-7 - 7j” and “-1” are shown.

Bit sequences used to generate the Peak Symbol

Previous Sections propose that uniform bit sequences, after being pre-scrambled,
can go through the blocks of the IEEE 802.11 OFDM PHY data path and produce
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Figure 3.7: Amplitude of best case non-ideal Peak Symbols for the “-7 -7j” subcarrier
value (a) and “-1” subcarrier value (b).

uniform symbol blocks. These sequences can generate an array of different Peak
Symbols, depending on the data rate used by the IEEE 802.11 OFDM PHY.

To summarize, the requirements that these Peak Symbol bit input sequences must
fulfill are condensed in the following statements.

1. They need to be pre-scrambled with the same scrambler sequence generated
by the Scrambler block.

2. The bit sequence at the output of the scrambler must be uniform, i.e, all values
must be either “0” or “1”.

3. The length of the sequence must be equal to the OFDM symbol payload length.

4. The sequence must be aligned with OFDM symbol boundaries to be encoded
jointly in the same OFDM symbol.

Using these conditions, the input bit sequence necessary to generate a Peak Symbol
can be obtained on any of the supported data rates of the IEEE 802.11a/g OFDM
PHY ( i.e, any of those shown in 3.2). For example, the sequence used at the input
of the OFDM PHY to obtain the Peak Symbol that corresponds to the 6 Mbps data
rate, and the “-1” constellation value. This sequence is a bit sequence of 24 “0” bits,
that needs to be pre-scrambled before being input to the IEEE 802.11a/g OFDM
PHY. The “0” bits are mapped to the “-1” symbol value and the length of 24 bits is
equal to the OFDM symbol payload used for the 6 Mbps data rate. Nonetheless, the
values used for the pre-scrambling procedure will vary according to the seed used
by the Scrambler block.
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Therefore, this Section presents a procedure to determine bit sequences that generate
Peak Symbols using software-level access compatible with standard-compliant IEEE
802.11a/g transmitters. With this, the first of the two symbols proposed by the Peak-
Flat modulation can be generated with exclusively software level access on standard-
compliant IEEE 802.11a/g transmitters. Nonetheless, a procedure to generate Flat
Symbols is still to be defined.

3.3.2 Generation of Flat Symbols

To complement the Peak Symbol, a Flat Symbol, with the minimum possible PAPR
must be designed. This section presents the procedure used to generate the Flat
Symbol and proposes one example of Flat Symbol generation.

Relation between the Peak and the matching Flat Symbol

As proposed in Section 3.2.2, the Peak Symbol requires a counterpart, with low
PAPR, i.e, as flat as possible. This allows this symbol to be distinguished from the
Peak Symbol, either by its lower higher peak-value, or, after low-pass filtering, by its
higher average amplitude. Additionally, the Flat Symbol must be constructed using
the same modulation and coding scheme as its complementary Peak Symbol. IEEE
802.11g/a OFDM PHY frames combining two different data rates after the SIGNAL
field are not supported by standard-compliant transmitters [84]. Consequently, a
different Flat Symbol needs to be matched to each of the Peak Symbols presented
in Section 3.3.1.

To preserve compatibility with standard-compliant IEEE 802.11a/g transmitters, in
the same way as before, the Peak Symbol must be built using the input bitstream
to the IEEE 802.11 OFDM PHY. Therefore, the Flat Symbol will be provided by
the bit sequence that generates the OFDM symbol with the lowest PAPR.

Moreover, the use of the Peak Symbol cannot interfere with subsequent Flat Symbols
and vice versa. The convolutional coder has a six-sample memory, which can modify
the bits that will be coded into the next symbol, depending on previous values. For
example, if the bit block that generates the Flat Symbol contained, for example,
any “1” bits on its last 6 samples, it could introduce unexpected values on the bit
block coding the next Peak or Flat Symbol. Thus, a solution is to choose the last 6
values of the bit block generating the Flat Symbol, so the state of the Convolutional
Coder can be reset to a given value. For this purpose, the last six bits of the bit
block sequence have to be either “0” or “1”. Thus, to eliminate this inter-symbol
interference, the value of these last bits needs is chosen to equal to the value of the
uniform bit sequence used to generate the corresponding Peak Symbol. e.g., if the
corresponding Peak Symbol is generated by a block of “0” bits, then, the last six
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bits of its matching Flat Symbol need to be chosen as “0”.

Therefore, with this constraint, the search space for an optimal Flat Symbol is
determined by its matched Peak Symbol. Thus, it includes all bit sequences equal
in length to the OFDM symbol payload for a given data rate. Additionally, all these
sequences must end with six “1” or six “0” bits, being their value matched to the
uniform sequence that generates the corresponding Peak Symbol.

Example of Flat Symbol generation

With the constraints mentioned above, finding the optimum Flat Symbol becomes
an optimization problem, and its complexity depends on the data rate used. The
size of the search space is defined by the size of the bit block, and this is, in turn,
defined by the data rate used.

Thus, the generate symbol developed for Section 3.2.2 was extended to include
the complete IEEE 802.11a/g processing chain, so the PAPR of all the sequences
in the problem space can be obtained. The code for this updated version, which
uses MATLAB WLAN Toolkit functions to emulate the first 3 blocks can be found
below.

1 function waveform = generate symbol(data packet, Bits per Symbol, ...
code ratio, p phase)

2 %64 samples for IFFT
3 N = 64;
4

5 %80 time samples adding the cyclic prefix
6 N2 = 80;
7

8 data packet coded = wlanBCCEncode(data packet, code ratio);
9

10 encoded symbol size = Bits per Symbol/eval(code ratio);
11 data packet interleaved = ...

wlanBCCInterleave(data packet coded,'Non−HT',
12 encoded symbol size);
13

14 %bits per subcarrier
15 data mapped = wlanConstellationMap(data packet interleaved, ...

encoded symbol size/48);
16

17 %now, map the symbols on their respective subcarriers and add pilot
18 %tones.
19

20 data sequenced pos = zeros(N/2, 1);
21 data sequenced neg = zeros(N/2, 1);
22

23 %negative half of ifft
24 data sequenced neg(1:6) = 0;
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25 data sequenced neg(7:11) = data mapped(1:5);
26 data sequenced neg(12) = 1*p phase;
27 data sequenced neg(13:25) = data mapped(6:18);
28 data sequenced neg(26) = 1*p phase;
29 data sequenced neg(27:32) = data mapped(19:24);
30

31 %positive half of ifft
32

33 data sequenced pos(1) = 0;
34 data sequenced pos(2:7) = data mapped(25:30);
35 data sequenced pos(8) = 1*p phase;
36 data sequenced pos(9:21) = data mapped(31:43);
37 data sequenced pos(22) = −1*p phase;
38 data sequenced pos(23:27) = data mapped(44:48);
39 data sequenced pos(28:32) = 0;
40

41 data sequenced = [data sequenced pos; data sequenced neg];
42

43 data in time = ifft(data sequenced, N);
44

45 %add another sample for windowing with next symbol.
46 waveform = zeros(1,N2 + 1);
47 %add cyclic prefix
48

49 waveform(1) = data in time(49)/2;
50 waveform(2:16) = data in time(50:64);
51 waveform(17:80) = data in time;
52 waveform(81) = data in time(1)/2;
53

54 %use the same scale factor as waveform generator
55 waveform = waveform.*10;
56

57 end

Fortunately, this naive solution can be applied when the problem space is small, such
as in the low data rates defined by IEEE 802.11a/g. For example, the bit sequence
that generates the Flat Symbol for the Peak Symbol examples proposed in Section
3.3.1 can be found this way.

Thus, let us find the optimal Flat Symbol for the Peak Symbol defined by a data
rate of 6 Mbps, with the BPSK symbol value “-1”. The bit block length for this
modulation and coding rate is 24 bits, consequently, the search space for the optimal
Flat Symbol comprises all sequences of 24 bits that end with 6 consecutive “0” bits.
That adds up to a total of 218 possible sequences. This is still a tractable number of
sequences to be explored exhaustively with the OFDM PHY simulator previously
developed. This way, the PAPR of the OFDM symbols generated by every bit
sequence in the problem space was calculated to obtain the optimal Flat Symbol.
This procedure took close to 3 minutes, using MATLAB 2018 on a desktop PC, with
an Intel i7 2600.
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The resulting Flat Symbol, found for the 6 Mbps data rate and “BPSK” “-1” symbol,
can be generated by the bit sequence s[n] from (3.17). It presents an average PAPR
of 3.09 dB, using both pilot tone polarities. It is displayed in Fig.3.8.

s[n] = {1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1,
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}

(3.17)
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Figure 3.8: Amplitude of the Flat Symbol generated by the binary sequence pre-
sented in (3.17) for mostly positive pilot tones (a) and mostly negative pilot tones
(b). Note that its maximum amplitude is significantly lower than the peak of its
respective Peak Symbol presented in Fig.3.7b.

For other bit rates that employ longer bit block lengths, the total number of se-
quences is not tractable with this naive optimization approach. However, sub-
optimal symbol values, with PAPR lower than 4 dB, were found for those mod-
ulations by searching only 220 sequences.

For example, a sub-optimal Flat Symbol for 54 Mbps and the “-7 -7j” symbol value
was obtained after exploring 220 random sequences. Its averaged PAPR is 3.90 dB,
and it is displayed in Fig.3.9. The runtime of the search procedure took less than
20 min.

3.4 Simulation of the Wake-up Transmitter

Now that the procedure to obtain the bit sequences that generate both the Peak
and Flat Symbols for a given modulation have been found, they can be applied to
the implementation of Peak-Flat-based WuTx. To evaluate this implementation, a
PoC WuTx based on the MATLAB WLAN toolbox is proposed. Given an entry
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Figure 3.9: Amplitude of a Flat Symbol designed for 54 Mbps with the symbol “-7
-7j”, displayed with mostly positive pilot tones (a) and mostly negative pilot tones
(b).

bitstream, the MATLAB WLAN Toolbox implements functions that emulate the
entire IEEE 802.11a/g OFDM PHY. Moreover, it allows setting the initial state of
the scrambler, so the prerequisite detailed in Section 3.3.1 to use the Peak-Flat mod-
ulation is met. Moreover, the evaluation of the WuTx can be used with simulated
WuRx for the evaluation of the complete system.

3.4.1 Implementation of the WuTx PoC

For this PoC, the following parameters are used:

� BPSK as modulation.

� “-1” symbol value.

� 6 Mbps data rate.

To match OOK reception, the Peak Symbol is set to encode the “0” logic value
and the Flat Symbol is used to encode the “1” logic value. Using one of the stan-
dard MATLAB WLAN Toolkit functions, the bitstream that generates the WuS is
injected at PSDU level, following the legacy non-HT IEEE 802.11 frame structure
used by IEEE 802.11a/g [84].

The Peak/Flat modulated WuS is injected into the PSDU of the WLAN frame, thus,
the rest of the headers and footers defined by the standard remain unmodified. This
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allows better coexistence with other IEEE 802.11 stations since the frame includes
all the coexistence mechanisms defined by IEEE 802.11a/g, including the Network
Allocation Vector (NAV) headers. The insertion of the WuTx inside a standard-
compliant IEEE 802.11g non-HT frame with the short Physical Layer Convergence
Procedure (PLCP) preamble is represented in Fig.3.10.

PLCP Preamble 
12 Symbols 

SIGNAL 
1 OFDM Symbol 

DATA 
Variable Number of OFDM Symbols 

SERVICE 
16 bits 

PSDU 
 

Tail 
6 bits 

Pad
bits 

WuS pad 
8 bits 

WuS Data 
24 * N bits 

Figure 3.10: Insertion of the WuS inside the IEEE 802.11g frame structure.

The following procedure allows generating a bit sequence that produces a Peak-Flat-
based WuS (see Section 3.3). As mentioned in previous sections, this procedure is
compatible with any standard compliant IEEE 802.11a/g OFDM PHY transmitter
if the scrambler seed can be obtained or set after sending a frame.

1. Add padding to the bit sequence. The first 16 bits corresponding to the
IEEE 802.11 non-HT PPDU are occupied by the Service field, which is not
part of the PSDU. Padding is required to begin the bit sequence at the OFDM
symbol boundary. Thus, 8 bits of padding are appended at the start of the
PSDU to complete the first 24-bit OFDM symbol. Therefore, aligning the
bit sequence to the next OFDM symbol boundary and allowing the next bits,
which codify the WuS, to start on the second OFDM symbol of the PSDU.

2. Append the WuS data to the bit sequence. Add a bit block for each
WuS payload bit. If the WuS bit value is “1”, the 24-bit Flat Symbol sequence
derived in Section 3.3.2 can be used. Otherwise, codify a “0” value, the 24 bit
“0” sequence for a Peak Symbol derived in Section 3.3.1 needs to be used.

3. Pre-scramble the bit sequence. Apply the predicted scrambler sequence,
starting after the padding previously added to the bit sequence. Nonetheless,
proper alignment must be ensured. For this, the value of the seed must be
advanced 24 bits, to match the real scrambler state at the start of the WuS.
After this, for every bit in the sequence added in step 2), advance the predicted
scrambler state one bit and XOR the predicted scrambler result to that bit.
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4. Send the resulting binary sequence to the transmitter. After 3) the
bit sequence is completed. Thus, it can be input to the IEEE 802.11a/g PHY
for transmission.

The previous procedure was applied to the MATLAB WLAN Toolkit generating a
WuS frame ‘with the payload “0101010101010101010”, as displayed in Fig. 3.11.

0 10 20 30 40 50 60 70 80 90

Time (microseconds)

0

1

2

3

4

5

6

7

8

9

A
m

p
li

tu
d

e 
(a

b
so

lu
te

 v
al

u
e)

PLCP preamble

Signal

+ Pad WuS

"0" "1" "0" "1" "0" "1" "0" "1" "0" "1" "0" "1" "0" "1" "0"

Figure 3.11: The WuS as generated by the PoC WuTx, encoding the binary value
“0101010101010101010” in the WuS.

This last sequence is useful to highlight the differences between Peak and Flat sym-
bols since it alternates them. As it can be better observed in Fig.3.12, the Flat
Symbols that follow a Peak Symbol display a secondary peak, with roughly half of
the amplitude of the peak featured in the previous Peak Symbol. This is caused by
the MATLAB WLAN Toolbox implementation of windowing, which occurs at the
start of every OFDM symbol. The purpose of this mechanism, which is not fulfilled
in this case, is to smooth transitions between consecutive symbols.

Consider the waveform generated by the WuTx and represented in Fig.3.11. The
WuS displayed carries the WuS payload “010101010101010”. This sequence, which
alternates Peak and Flat Symbols, displays the differences between the two possible
waveforms of the Peak-Flat modulation. Peak Symbols, labeled as “0” feature their
characteristic peak and the low amplitude region that follows it. In contrast, Flat
Symbols, labeled as “1”, have less disparity between sample values and a more
rectangular shape. As it can be better observed in Fig.3.12, the Flat Symbols that
follow a Peak Symbol display a secondary peak with roughly half of the amplitude
of the peak featured in the previous Peak Symbol. This is caused by the MATLAB
WLAN Toolbox implementation of windowing, occurring at the start of every OFDM
symbol. The purpose of this mechanism, which in no way is fulfilled in this case, is
to smooth OFDM symbol transitions.

Newer IEEE OFDM PHY releases, such as those defined in IEEE 802.11n/ac/ax
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Figure 3.12: Detail of two consecutive Peak and Flat Symbols from the waveform
displayed in Fig.3.11.

define transmission modes entailing a signal processing chain that is compatible
with the presented method. In this way, the described procedure can be applied
to single spatial stream transmissions, i.e., from MCS 0 to MCS 7. This is valid
if the transmitter is configured to use the compulsory Convolutional Coder-based
FEC and the optional space-time block coding feature is not in use.

3.4.2 PHY derived impairments in Peak-Flat Symbol gen-
eration

Although the present work introduces a software-based method to generate a WuS,
the impact of the proposed waveforms on the physical components of the transmitter
must be considered. Even if Peak-Flat defines what is a completely valid IEEE
802.11 signal, the high dynamic range of Peak Symbols can introduce distortion
and, as a consequence, out-of-band emissions. This section addresses the effects
on power amplifier non-linearity and saturation, which can affect the regulatory
compliance of the Peak-Flat modulation, as well as the reception of the Peak-Flat
Symbols.

Thus, to analyze this possible issue, the regulatory compliance of Peak-Flat signals
has been evaluated with a simulated non-ideal power amplifier model. Fortunately,
the MATLAB WLAN Toolbox spectrum compliance tools to check for out-of-band
emissions against the spectral mask defined by IEEE 802.11a, which can be easily
integrated with the previously developed WuTx PoC. These tools were used with a
non-linear amplifier model to evaluate the effect of non-linearity.

The effect of non-linear amplification has been modeled with a Rapp model [93] with
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parameter p = 3. To emulate the most restrictive scenario, the evaluation includes
the Peak-Flat configuration that generates the highest PAPR (IEEE 802.11g with 6
Mbps data rate and the “-1” BPSK symbol, with a maximum of 17,39 dB PAPR).
Another parameter of the model is the saturation power of the amplifier. The
MATLAB model allows setting this value as relative to the average signal power.
Here, saturation power is expressed in dB, relative to the mean average transmission
power of the frame. PAPR models the maximum height of the peak, versus the frame
average, thus, the peak power of the Peak Symbols considered is 17.39 dB. To test
compliance, the spectrum of the non-ideal Peak Symbols is fit against a spectral
mask. Moreover, the clipping suffered by the Peak Symbol is also measured.

Following this setup, the effect of the amplifier saturation, from here on Asat, referred
to as dB above the mean signal power is evaluated.

Initially, a saturation Asat value of 27 dB causes no clipping, as can be seen in Fig.
3.13. Consequently, the signal remains completely inside the spectral mask.
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Figure 3.13: Spectrum of a peak signal with Asat = 27 dBm. The dashed red line
represents the spectral mask.

Later, the Asat was lowered until the signal no longer fit inside the spectral mask.
Unexpectedly, Peak Flat can operate with an amount of distortion. For example,
even with an Asat of 14.75 dB, which falls below the peak power, it maintains
compliance. Nonetheless, such a level of distortion causes visible clipping of the
peaks, and, consequently, reduces the performance of WuRx receiver architectures
based on peak-detectors. The resulting waveform is displayed in Fig. 3.14, and the
peak amplitude, while clipped, maintains its compliance with the spectrum mask.

However, an Asat lower than 14.75 dB causes Peak-Flat to fail compliance tests.
Nonetheless, even with lower Asat values, compliance with the spectrum mask is
still possible, although, the transmitted power must be reduced accordingly. For
example, if the mean average transmission power is reduced to -3 dB in relation to
the reference, the system remains compliant down to an Asat of 11.75 dB.
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Figure 3.14: Spectrum of a peak signal with Asat = 14.75 dBm. The dashed red line
represents the spectral mask.

In conclusion, Peak-Flat remains compliant with the IEEE spectrum masks for
OFDM, if the saturation power of the amplifier remains at most 2.64 dB lower
than the peak transmitted power. After that point, the transmission power must
be lowered accordingly to ensure compliance. Therefore, as with the rest of IEEE
802.11 signals, the final limit to allowed transmission power for Peak-Flat depends
on both the regional regulatory limits and the saturation limit imposed by the power
amplifier of the device.

Nonetheless, regulatory compliance can be improved by using Peak Symbols with
low-level peaks. This can be effectively achieved using modulations with multilevel
symbols. For example, the 16-QAM symbol “1 + 1j”, from the Table 3.2. This
symbol produces the lowest relative Peak of those featured, with an amplitude 3
times lower than the highest amplitude in its constellation. Since this symbol is
produced by a uniform block of low-amplitude symbols, its average amplitude is
lower when compared to its respective Flat Symbol. Thus, it presents a higher
extinction ratio than other Peak-Flat variants, improving its reception with an OOK
receiver. However, this comes at the cost of lowering its performance with a WuRx
that uses a peak-detector design.

To evaluate this effect, the performance of using 16-QAM and BPSK under two
WuRx architectures will be determined in the next Section.

3.5 Simulation of the Wake-up Receiver

Two architectures of WuRx are proposed to receive the Peak-Flat modulated WuS,
one using a peak-detector circuit, and another implementing an OOK receiver. This
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section presents two WuRx, each based on one of the proposals. Moreover, these
receivers serve as a base of a benchmark used to evaluate the performance of the
Peak-Flat against OOK-based signals.

As a WuTx PoC was already developed with MATLAB, a Simulink-based model
was selected to evaluate WuRx architectures. The designs proposed are presented
as a means to study and compare the performance of Peak-Flat in each receiver
architecture, as well as to compare it with other modulations used in the WuR
state-of-the-art. Consequently, both proposals feature minimal designs, modeled
using off-the-shelf components. Of course, the results obtained by these WuRx are
by no means intended to be compared against the current WuRx state of the art,
nor serve as optimal receivers for the Peak-Flat modulation, nor any other.

3.5.1 Architecture of the WuRx

Although this section presents two architectural proposals for the WuRx, these
present some common elements. The proposed WuRx, which is shown in Fig.3.15,
follows an active WuRx architecture, a common design pattern used in many low-
power WuRx designs [17]. Thus, it can be divided into two main blocks. The first
is the Radio Front End, which is tasked with signal conditioning. Its output is
the incoming signal filtered and modulated down to a baseband waveform. Second,
follows the decoder, which decodes the incoming analog waveform into a binary
stream. The two WuRx architectures evaluated differ in the decoder section and use
a common Radio Front End- section.

LNA Bit Decoder

Band-pass filter for
th 2.4 GHz ISM band

Low Noise Amplifier Envelope detectorBand-pass filter with
16 MHz bandwidth

Radio Front End Decoder

Figure 3.15: Structure of the proposed WuRx.

The proposed Radio Front End consists of the following elements: an antenna, a
band-pass filter (tuned to the 2.4 GHz ISM band), a Low Noise Amplifier (LNA), a
band-pass filter, and, finally, an envelope detector. Nonetheless, since the MATLAB
WLAN toolkit already outputs complex signals in baseband, these do not need to
be implemented for the simulated WuRx benchmark.

Following, the two decoder alternatives, one for each architecture are presented.
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3.5.2 An OOK decoder

The first WuRx decoder implementation follows the basic design for OOK signal
detection. As shown in Section 3.3.1 and Fig.3.12 the Flat Symbols have a higher
mean amplitude than Peak Symbols. Thus, Peak-Flat can be received by OOK
receivers as an imperfect OOK modulation, with reduced extinction ratios. Of
course, this receiver is still capable of decoding OOK-based modulations, like the
one used in the current IEEE 802.11ba proposal. More interestingly, Peak-Flat can
be detected by standard OOK receivers, albeit, with degraded performance when
compared to ideal OOK symbols.

To facilitate its simulation, the OOK receiver implementation shown here follows a
minimal design based on off-the-shelf components: two filters, and a comparator. A
block diagram of the proposed design is shown in Fig.3.16. The first filter is tuned
close to 250 kHz, matching it with the IEEE 802.11g OFDM symbol rate. This
first low-pass filters out noise and smooths the envelope of the signal. Its cut-off
frequency of 250 kHz was determined heuristically, by comparing the obtained bit
error rates in a parametric simulation.

The second filter provides a reference signal for the comparator; thus, it is tuned
to a frequency that allows it to obtain an almost constant envelope from a regular
IEEE 802.11 frame. Also obtained by parametric simulations, its cut-off frequency
is fixed at 2.5 kHz.

Finally, a comparator is used to compare the output of both filters. If a Flat Symbol
is present, the output of the first filter (which tracks signal envelope) is higher than
the one from the second filter (which provides the reference value), therefore, the
comparator output becomes high. On the contrary, for a Peak Symbol, the output
from the first filter is lower than the reference value, thus, the comparator output
becomes low.

Low-pass Filter (250 kHz)

Low-pass Filter 2.5 kHz

Comparator

Input 
 

Output

VDD

GND

Figure 3.16: Structure of the proposed decoder based on OOK reception.
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3.5.3 A Peak detector decoder

The second proposed decoder implementation for the WuRx distinguishes between
Peak and Flat Symbols by the presence of a peak above a certain amplitude. Due
to their design, Peak Symbols produce a detectable peak, well above the maximum
signal level produced by Flat Symbols. The presence of this peak can effectively be
detected using a non-linear peak detector circuit.

The implementation of the Bit Decoder is composed of a peak detector circuit, a
voltage divider, a low-pass filter, and a comparator. A block diagram of the proposed
design is shown in Fig.3.17.

Low-pass Filter 2.5 kHz

Input 
 

Voltage  
Divider (0.64)

Comparator

Output

VDD

GND

Peak Detector

Figure 3.17: Structure of the proposed decoder based on peak detection.

The peak detector circuit is a non-linear circuit, which is also used for AM signal
demodulation. It features a Schottky diode, followed by a capacitor for charge
storage and a resistance, connected in parallel. When the input signal is greater
than the diode voltage threshold, the capacitor will charge through the parasite
series resistance of the diode, which is low. However, the capacitor must discharge
through the output terminal, as the diode blocks the flow of current back to the input
terminal. This slows the discharge of the capacitor and, consequently, generates an
asymmetry between the charge and discharge rates of the diode. Therefore, when
a peak is received, the peak detector charges fast, and then, after the peak ends, it
discharges at a slower speed. If a high enough equivalent resistance is presented by
the output terminal, this non-linear effect increases the duration of the peak, which
is originally 50ns (a single sample at 20 Msps). This increase in the duration of the
peak protects the signal against synchronization issues, typical of feature limited
electronics, and reduces the error rate.

To differentiate between Peak and Flat Symbols the peak voltage level must be
compared to a reference signal. Therefore, the low-pass filter element in this receiver
has the same purpose as the second filter of the OOK detector architecture ( i.e., to
provide a reference value based on the frame envelope). This component is placed
after peak detection since this non-linear procedure changes the average amplitude
of the received signal.
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To reduce false peak detection a voltage divider is connected at the output of the
peak detector. Without this component, whenever the peak detector output raised
slightly above the average amplitude of the frame, a peak would be detected. The
values of the resistances need to be relatively high since they are also the discharge
path of the peak detector capacitor.

Finally, the decoding decision is determined by the comparator output. The voltage
divider output is connected to the comparator non-inverting input, whereas the
low-pass filter output is connected to its inverting input. Using this configuration, a
peak only produces a high level at the output of the comparator when its amplitude,
diminished by the voltage divider, is higher than the average envelope, provided by
the low-pass filter. Conversely to the OOK receiver, the peak detector generates a
high logic value for Peak Symbols and a low one for Flat Symbols.

For the Simulink implementation of this receiver, the filter keeping the frame ref-
erence level is, as in the OOK implementation, a first-order RC filter tuned at 2.5
kHz. The value for the capacitance used for the peak detector is 1nF, heuristically
determined using a parametric sweep on the Simulink model. The Peak detector,
jointly with the resistances of the voltage divider that provide its discharge path,
increments the duration of the peak to 1 µs. For this purpose, the divider uses
resistances of 4 kΩ and 7.6 kΩ.

3.6 Results

3.6.1 Evaluation environment

The simulated WuRx presented before are used to compare the performance of WuR
modulations, including Peak-Flat, OOK, and the specific Manchester-coded OOK
version used in IEEE 802.11ba fast data rate. Thus, to evaluate these modulations
two simulations were produced.

First, the BER vs. SNR curve was obtained in an Additive White Gaussian Noise
(AWGN) channel using the complete simulated WuR system, including the WuTx
and WuRx. Second, the PER vs SNR curve was also simulated on a fading channel
model, TGn Channel B. This channel model applies an attenuation at frame level,
consequently, the bit error probability for bits in the same frame is not independent
from the others. Thus, BER simulations need a much larger value of iterations to
converge. That number was determined greater than it is feasible to simulate with
the available computing hardware. Thus, to obtain results that are relevant to the
performance of the evaluated modulations, the TGn Channel B evaluation uses the
PER instead of the BER as its figure of merit.
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In both AWNG and TGn Channel B simulations, the noise considered, and the
resulting SNR, are specified at 20 MHz bandwidth. Nonetheless, the equivalent
noise bandwidth that affects the WuRx is lower due to the low-pass filter used
before envelope detection and the filters added in both receiver models. However,
using SNR referred at 20 MHz allows comparing the results of the WuR modulations
with standard WLAN signals.

The signal processing chain used in MATLAB for the evaluation in an AWGN chan-
nel is shown in Fig.3.18. It is based on the WuRx structure proposed in Section 3.5.1
and displayed in Fig.3.15, whoever, the processing chain only includes the baseband
elements since the MATLAB WLAN Toolkit already produces baseband signals.
Moreover, the evaluation of BER vs SNR using bandpass signals was not compu-
tationally feasible with the resources available. In this chain, the AWGN noise is
added to the WuS generated by the WuTx at the start. Then, it is filtered and
demodulated using an ideal envelope detector. Finally, the resulting signal is input
to the decoder. Finally, the binarized waveform output from the decoder is sampled
and compared with the input bit stream for BER computation. To obtain accurate
BER values, the evaluation of BER vs SNR is performed in increments of 0.5 dB of
SNR. And, to obtain a BER with a resolution lower than 10−4 , 64000 bits are used
in each SNR value.

WLAN generator output

AWGN 
 

Envelope
Detector

8 MHz Low-pass filter

Bit Decoder Input

Figure 3.18: Diagram of the signal processing chain used for the evaluation of BER
under AWGN.

The TGn Ch.B simulation signal processing chain used to simulate PER results in
fading channels is shown in Fig. 3.19. In contrast to the prior AWGN simulation,
now the incoming WLAN signal is distorted by a fading channel based on the TGn
Channel B model. As before, the SNR increases in steps of 0.5 dB. To obtain
reliable PER results, 5000 frames are simulated per each SNR step, having each
frame a length of 128 bits.

This work evaluates the reception of an ideal 250 kBd OOK, and the 250 kbps
Manchester-coded OOK used in IEEE 802.11ba fast data rate. These state-of-the-
art solutions are evaluated only with the OOK WuRx architecture. To support
Manchester code at 250 kbps, IEEE 802.11ba operates using 2 µs OOK pulses.
Thus, to improve the reception of this signal, the receiver cut-off frequency for its
first low-pass filter was increased to 500 kHz when evaluating this modulation.
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WLAN generator output

AWGN 
 

Envelope
Detector

8 MHz Low-pass filter

TGn Ch. B

Bit Decoder Input

Figure 3.19: Diagram of the signal processing chain used for TGn Ch.B PER eval-
uation.

Two variants of the Peak-Flat modulation are evaluated with the OOK WuRx ar-
chitecture. First, the Peak-Flat modulation using BPSK, which is optimized for
PAPR. Second, the Peak-Flat modulation with 16-QAM constellation proposed in
Section 3.4.2, which provides a reduced PAPR, but higher extinction ratios. Only
the Peak-Flat modulation using the BPSK constellation is tested with the peak-
detector-based WuRx. This is the variant of Peak-Flat that achieved the highest
PAPR, thus, it is the one that benefits more from this receiver architecture.

Further detail concerning the software implementation of these simulations is con-
tained in Appendix A.

3.6.2 Decoder evaluation results

First, the AWGN simulation results are shown in Fig.3.20a, which includes BER
values down to 5 · 10−4. The results favor the BPSK-based Peak-Flat modulation,
evaluated with the peak detector. It achieves a 10−3 BER before all other modula-
tions, at roughly 3.5 dB of SNR. The next, the manchester-coded IEEE 802.11ba,
needs at least 4.5 dB SNR to achieve the same result. 250 kBd OOK falls behind
at roughly 5 dB SNR for a sensitivity of 10−3. Peak-Flat variants fall well behind
when received with an OOK detector. Low-PAPR Peak-Flat (obtained using the
16-QAM constellation) achieved the 10−3 BER at 8.5 dB of SNR, 3.5 dB later than
an equivalent ideal OOK. Finally, BPSK Peak-Flat modulation achieved sensitivity
at 12.5 dB, 7.5 dB below an equivalent ideal OOK.

These results indicate that BPSK-based Peak-Flat performance under AWGN is bet-
ter than state-of-the-art if a Peak-Detector WuRx is used, however, it falls behind
when received by a WuRx based on an OOK detector. Nonetheless, this disad-
vantage is reduced if a low-PAPR Peak-Flat variant is used, such as one based on
the 16-QAM constellation. The reduced performance of Peak-Flat variants with an
OOK-based WuRx remains consistent with their reduced extinction ratios versus an
ideal OOK signal.

Second, the TGn Ch.B simulation results are shown in Fig.3.20b, which include
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PER values down to 5 · 10−2. In a coherent manner with the addition of a fading
channel, all modulations present worsened results in these simulations. The best
result is obtained by the BPSK constellation-based Peak-Flat modulation evaluated
with the peak detector. It achieves a 10−1 PER at 10 dB of SNR, higher than both
state-of-the-art modulations evaluated with the OOK-based WuRx. These achieve
the same result, obtaining a 10−1 PER at 13 dB of SNR. Surprisingly, the low-
PAPR Peak-Flat variant achieves the same performance as ideal OOK modulations.
Nonetheless, the high-PAPR Peak-Flat modulation, decoded with OOK detector,
falls behind the other options, achieving a 10−1 at 19 dB, a result that falls outside
the area shown in Fig.3.20b.

These results, consistent with the AWGN simulations, indicate that BPSK-based
Peak-Flat performance with the peak-detector WuRx is, at least, equivalent to the
state of the art. Moreover, they indicate that low-PAPR Peak-Flat performance is
similar to an ideal equivalent-rate OOK under realistic channel conditions.
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Figure 3.20: Simulation of Peak-Flat performance on the presented receivers versus
various modulations. (a) BER vs SNR in AWGN channel and, (b) PER vs SNR in
TGn Ch.B.

Thus, the Peak-Flat modulation performance appears to be better or equal to state-
of-the-art WuR modulations, when tested with the proposed WuRx implementa-
tions. However, more complex and specialized IEEE 802.11ba receivers can achieve
better results than the receivers proposed in this chapter, which were designed to
provide equitable demonstration platforms. In this way, preliminary results ap-
pearing in several TGba documents already suggest that better sensitivity figures
are achievable for IEEE 802.11ba [85, 86]. Nonetheless, the comparisons here use
equivalent receivers and provide evidence that Peak-Flat performance can be, at
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least, competitive with equivalent rate OOK modulations. Additionally, Peak-Flat
modulation provides the added value of being compatible with legacy IEEE 802.11
devices. Moreover, the Peak-Flat modulation receiver can be evolved, from the PoC
receiver presented, into a more advanced one.

3.7 Compatibility with IEEE 802.11ba and other

releases

This Ph.D. thesis proposes a WuR system for legacy IEEE 802.11 devices that is an
alternative to what is defined in IEEE 802.11ba. Nonetheless, enabling legacy and
IEEE 802.11ba-enabled devices to interact would improve the applicability of this
proposal.

Both IEEE 802.11ba and the WuR system proposed in this chapter propose amplitude-
based modulations that can be received with OOK detectors. Moreover, IEEE
802.11ba Low Rate (LR) [68], uses a 62.5 kbps Manchester code. The codewords
are formed by 4 OOK pulses, alternating high and low levels. Each of the afore-
mentioned pulses is 4 µs long, thus, this signaling scheme can be reproduced by
chaining 4 Peak-Flat Symbols. These would be received by IEEE 802.11ba receivers
as pseudo-OOK symbols.

This opens the possibility of interoperability between the two WuR systems. Nonethe-
less, due to the framing mechanisms used by IEEE 802.11ba, the resulting interop-
erability is not straightforward. There are then two possible interactions between
devices implementing our Peak-Flat-based WuR solution and IEEE 802.11ba de-
vices.

First, let us consider a situation where an IEEE 802.11ba device uses its WuTx to
wake up a Peak-Flat-enabled device. As discussed in Section VIII, the WuRx for
the Peak-Flat device can be implemented using two different architectures. If the
OOK detector architecture is used, then, the LR IEEE 802.11ba WuS signal will be
detected since it is already OOK-coded. However, the OOK-coded signal cannot be
reliably decoded by the peak detector design due to its higher detection threshold,
which misses ’1’ OOK pulses. Nonetheless, the OOK WuTx should be adapted
to correctly receive the synchronization preambles used by IEEE 802.11ba, which
use a sequence of 2µs OOK symbols. Despite this, devices incorporating Peak-Flat
WuRx could interpret an IEEE 802.11ba WuS, and consequently, be awoken by
standard-compliant IEEE 802.11ba devices.

Second, let us consider the reverse, a Peak-Flat device awakening an IEEE 802.11ba
device. Here, even if the symbols that compose the data field of frames are compat-
ible, the framing is not. The rest of the framing, including synchronization headers,
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needs to be compatible to enable a wake-up. These headers use the 2 µs pulses de-
fined by the current draft of IEEE 802.11ba [68], which cannot be generated with the
legacy-compatible Peak-Flat modulation. Consequently, the WuR system described
in this work will not be able to wake up sleeping IEEE 802.11ba stations.

3.8 Prototype implementation

The developments in the previous sections open the door to the implementation
of the Peak-Flat WuTx in commodity IEEE 802.11 hardware. Nonetheless, a pre-
condition to implement this WuTx is having access to the scrambler seed of the
IEEE 802.11 transmitter. This can be solved either by direct access to it through
the manufacturer driver, or through any means to predict its value using meta-
information (i.e., MAC addresses, number of bytes transmitted) for the given piece
of hardware [89, 94].

Currently, there is no way to obtain or set the scrambler seed in openly documented
operating systems. For example, the Linux IEEE 802.11 driver interface does not
support either setting or retrieving this data [95]. Moreover, an in-depth search
did not reveal any commodity WLAN chipset that allowed access to these values
directly through any public driver interfaces, or extensions. Therefore, a reliable
way to obtain scrambler sequences through other means was needed.

According to the literature [89, 94] various IEEE 802.11a/g implementations produce
predictable scrambler seeds. Nonetheless, most of these require knowledge of a
previous scrambler value to infer subsequent values. However, some of these use
always the same scrambler state, i.e., the RTL8192CU chipset, among others (see
next subsection).

The scrambler seed used for a given frame is obtained by the receiving station using
the first 7 SERVICE field bits. As these bits are always set to 0, their value can be
used by the receiver to retrieve the scrambler state. However, access to this field
from incoming packets is not available to the clients of commodity WLAN cards.
Consequently, packet analyzers such as Wireshark do not include this information
in captures. To search for other IEEE 802.11 implementations with fixed scrambler
sequences, an Software Defined Radio (SDR)-based solution was devised.

3.8.1 Using an SDR to characterize scrambler seed variabil-
ity in commodity devices

With an SDR, all the signal processing is either done or controlled, by software [96].
Thus, all stages in the signal processing chain of an SDR receiver can be inspected.
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There are various SDR-based implementations of IEEE 802.11 prior to this work.
One of them, published by Bloessl et al. [97], is available for the popular GNU-Radio
SDR framework [98]. This SDR implementation has also been made open-source
and shared with the wider community in a Github repository [99].

The repository contains various application examples, one of them is a complete
IEEE 802.11a/g/p receiver, which outputs incoming frames to a Wireshark-formated
capture file. The frames in the capture contain additional physical parameters to
those that can be obtained through standard IEEE 802.11 frame captures with com-
modity hardware. In the example, the frequency offset is added to those. Nonethe-
less, this example does not include the scrambler seed of the received frames.

To display the scrambler seed, the GNU-Radio block tasked with decoding the in-
coming MAC frame was modified to output the scrambler seed received. This value
was added to the Wireshark capture via RFtap protocol.

Using this receiver, the scrambler seeds used by various commodity IEEE 802.11
hardware that were already acquired for other projects were tested. This was used
to search for those that use a fixed scrambler seed. This way, several of those devices
were found:

� The Linksys WUSB54GCv1, a USB-based device, using the Railink RT2501
chipset.

� The Edimax Nano USB EW-7811Un, a USB-based device, using the Realtek
RTL8188CUS chipset.

� The ESP-32 microcontroller, developed by Espressif.

These devices comprise USB transceivers, which are usable in Linux-based comput-
ers, as well as embedded platforms, such as the ESP-32. All of these are susceptible
to be used as WuTx, using the software-based method exposed in 3.4.1.

3.8.2 Implementation of the Peak-Flat WuTx in a Linux-
based device

To check the viability of the Peak-Flat WuTx, its implementation was started using
a Linux PC with the 4.1 kernel version and the Linksys WUSB54GCv1 USB-based
transceiver.

The implementation was undertaken using the Python language. Although it is a
high-level programming language, Python allows interacting with network interfaces
directly, and send data at the raw socket level. Nonetheless, user-level APIs in Linux
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do not allow enough low-level access to implement the procedure described in Section
3.4.1, which introduces the WuS inside the Physical Service Data Unit (PSDU). Only
those bytes set in the IEEE 802.11 MPDU can be freely modified using raw-socket
access.

Consequently, the procedure described in 3.4 was modified to account for further
offset introduced by the MAC headers, which are set before the start of the WuS.
Evaluated for a unicast frame, these headers add 36 bytes of data before the start
of the WuS. As the length of these is specified in bytes, they will be mapped into a
different number of symbols for each data rate, therefore, the scrambler is advanced
a number N of bits, where N is obtained using (3.18) and depends on Symbits the
number of data bits coded per OFDM symbol, which can be found in Table 3.4.

N =

⌈
368̇

Symbits

⌉
(3.18)

Moreover, the padding also varies in function of Symbits and needs to be calculated
using the expression in (3.19).

N =

⌈
36 · 8
Symbits

⌉
− 36 · 8 (3.19)

Table 3.4: Bits per symbol corresponding to each data rate supported by IEEE
802.11a/g

Data Rate
(Mbps)

Bits

6 24
9 36
12 48
18 72
24 96
36 144
48 192
54 216

The WuTx functionality was packaged in a command-line interface called packet generator.py.
It allows the user to send arbitrary IEEE 802.11 frames with WuS data, using any
of the data rates and symbol combinations defined previously in 3.3. Of course,
provided that the correct scrambler seed is correctly passed in the input.

In Fig. 3.21 the output generated by the WuTx based on Linksys WUSB54GCv1
can be seen for the WuS sequence: ”0101010101010101010”.
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Figure 3.21: The envelope of a WuS generated by a WuTx with Linksys
WUSB54GCv1, using the encoding the binary value “0101010101010101010” cap-
tured using a GNU Radio scope with a USRP B200 SDR.

Further detail concerning the Python implementation of the WuTx, including snip-
pets of source code is contained in Appendix B.1.

3.8.3 Implementation of the Peak-Flat WuTx in an embed-
ded device

After the success of the Linux-based WuTx implementation, the implementation of
the Peak-Flat WuTx was attempted in an embedded platform, the ESP-32. This
low-cost System on a Chip (SOC) is relevant to current IoT developments. There-
fore, it is closer to the target application environment for IEEE 802.11ba.

Although there are Python-based SDKs for ESP-32 [100], the implementation of the
Peak-Flat WuTx requires access to low-level functionality that is not available from
those. Consequently, the development started in Section 3.8.2 was ported to the
ESP-32 native SDK: ESP-IDF, v3.2 [101]. The previously developed Linux WuTx
implementations was ported to C/C++, and the specific WLAN interaction model
supported by ESP-IDF.

This framework enables low-level interaction with the WLAN hardware, however,
in the same way, as in Linux, only access to the MSDU is allowed. Therefore, the
same solutions taken in the previous section to allow for the insertion of the WuS in
the MSDU also were applied here. Nonetheless, not all combinations of data rates
and symbols were implemented for this platform. Those implemented were the ones
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showing more promise, BPSK with the -1 symbol and 16-QAM with the +1 symbol.

Further detail concerning the C implementation of the ESP-32 based WuTx, includ-
ing snippets of source code is contained in Appendix B.2.

3.9 Conclusion

This chapter has presented a WuR system alternative to IEEE 802.11ba, that is
compatible with legacy IEEE 802.11 devices. With it, WuR can be extended to
legacy-compatible IEEE 802.11 devices. Thus, proving that a legacy-compatible
WuR implementation, alternative to IEEE 802.11ba, is feasible. This implementa-
tion is based on an amplitude-based modulation compatible with low-power WuRx,
which, additionally, can also be received by OOK receivers with a sensitivity penalty.
The proposed Peak-Flat modulation used by the WuTx is generated with a software-
based method particularized for IEEE 802.11g. Consequently, it can be generated
by any standard-compliant IEEE 802.11g OFDM PHY transmitter without requir-
ing any hardware addition. Nonetheless, the proposed method requires that the
scrambler seed used by the IEEE 802.11 transmitter is known in advance. At the
moment, support for this feature is not found in public IEEE 802.11 driver interac-
tion models, however, the possibility of using WuR can drive more manufacturers
to expose this functionality at the driver level or, alternatively, document the seed
generation procedure so the scrambler seed can be effectively predicted. It has also
been shown that Peak-Flat can coexist with other IEEE 802.11 stations, as well as
follow the spectrum masks mandated by the IEEE 802.11 standard after accounting
for non-linear amplifier models.

The performance of Peak-Flat has been evaluated using detailed MATLAB simula-
tions of an IEEE 802.11 transmitter and two different WuRx architectures, all based
on off-the-shelf components. With this evaluation, it has been shown that Peak-Flat
can operate with a comparable performance against state-of-the-art WuR modula-
tions, when evaluated under AWGN and fading channel models. Finally, Peak-Flat
has been implemented using commodity IEEE 802.11 hardware in embedded and
non-embedded devices. This chapter concludes with the implementation of the
Peak-Flat WuTx, therefore, to obtain a complete WuR system, the construction of
a low-power WuRx is needed. Thus, the next step is to design a receiver based on
any of the previously evaluated architectures.

This chapter was published as an article in IEEE Access (Q1, Computer Science,
Information Systems 35/156 [102]) on the 9th of April 2019:

M.Cervià, A.Calveras, E.López, E.Garcia, I.Demirkol and J.Paradells.
An Alternative to IEEE 802.11ba: Wake-up Radio with Legacy IEEE
802.11 Transmitters. IEEE Access [103]
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Additionally, the software-based method to generate WuS with Peak-Flat is in pro-
cess of being patented.

M.Cervià, A.Calveras, E.López, E.Garcia, I.Demirkol and J.Paradells.
EP3824607 - A METHOD AND A DEVICE TO GENERATE AN AMPLITUDE-
BASED MODULATION WIRELESS SIGNAL USING OFDM TO BE
RECEIVED BY A LOW-POWER NON-COHERENT RECEIVER. Patent [104]
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Chapter 4

A microcontroller-based WuRx

As previously discussed, the performance of WuR as a MAC-level energy-saving
technique depends strongly on the power consumption of the WuRx. To achieve low
latency, the WuRx needs to be close to always-on, continuously waiting for incoming
WuS. To illustrate this, Fig.4.1 presents a WuRx turning on a device after receiving
a WuS.

WuTx

WuRx

Primary
Radio

ON

OFF

ON
WuS

Figure 4.1: A WuRx receiving a WuS and turning on its associated primary radio.

Low-power WuRx are built using state-of-the-art CMOS manufacturing processes
[105]. This is a barrier of entry to WuR research, both in terms of cost and expertise.
Consequently, WuRx development is a research topic that is commonly outside the
reach of most network research groups, which lack expertise in microelectronics
and, generally, rarely can access the investment required. Thus, research in WuR
networks is done mainly by simulation [106][69][17]. The field could benefit from
an accessible WuRx design, which facilitated the implementation and evaluation of
WuR networks in testbed form. Such a tool would allow networking research groups
to improve their output to the WuR state-of-the-art with real-life testbeds.

Thus, this chapter presents an accessible WuRx design based on off-the-shelf com-
ponents, aimed to lower the barriers of entry to WuR research. Therefore, allow-
ing other researchers to replicate this WuRx implementation, as well as extending
it, without requiring a significant investment. Following the state of the art, the
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WuRx proposed in this chapter includes a high rate baseband capable of support-
ing a 250 kbps OOK data rate, equivalent to the maximum bit rate supported by
IEEE 802.11ba [68]. Moreover, besides OOK, it is compatible with the legacy IEEE
802.11 WuTx introduced in Chapter 3. Thus, the proposed WuRx, with the legacy-
compatible WuTx implementation presented in that chapter, provide a complete
WuR system. Thanks to its high bit rate, this WuR system can be applied to other
more generic uses, such as transmitting arbitrary information between devices.

The work in this chapter was done with the collaboration of Maison Hussein, which
presented part of the results herein contained in her Master’s Thesis [107]. Her
role included the software implementation of the WuRx, as well as the realization
and validation of the experimental results. The work developed in the context
of this Ph.D. thesis included the protocol design, the design of the software and
hardware elements, and the procedures for their validation. All these developments
are presented in this chapter.

4.1 Design and Implementation of a WuRx using

off-the-shelf parts

The proposed WuRx must decode frames sent with a 250 kbps OOK modulation.
For its implementation, the WuRx [17] was separated into two main subsections: the
first, the RF front-end, which performs signal conditioning and outputs a binarized
waveform; the second, the baseband, which decodes the binarized waveform output
by the first. The baseband detects the start of frames. Afterward, after a frame has
been detected, it samples an address and, if it matches the expected, wakes up the
device connected to the WuRx. This design is featured in Fig. 4.2.

RF
front-end Baseband

WuRx To Host
Device

Figure 4.2: Structure of the proposed WuRx.

The development of the WuRx was separated into two different projects, each one
concerning one of the aforementioned parts. The first, discussed here [107] covers
the implementation of a low-power baseband, while the second, [108] covers the
development of a low-power RF front-end.
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4.1.1 WuRx RF front-end implementation

An RF front-end composed of off-the-shelf non-low-power components that were
commercially available was used to validate and integrate the baseband section of
the WuRx. Therefore, allowing to development of the baseband and the RF front-
end to advance independently from each other.

The front-end implementation, which follows an active WuR design, includes a signal
conditioning chain with a Low-Noise Amplifier (LNA), a band-pass filter (BPF), an
envelope detector, and a comparator. This minimal set of components allows the
WuRx to operate in an indoor environment. Thus, enabling the evaluation of the
baseband with real WuS. The off-the-shelf components used for the design are listed
below in Table 4.1.

Table 4.1: Component parameters.

Component Parameters

LNA

Gain1 31 dB

Noise factor 2.8 dB

Supply voltage 5 V

Supply current1 200 mA

BPF

Center frequency 2.45 GHz

Bandwidth1 150 MHz

Insertion loss 2 dB

LTC5508[109]

Supply Voltage 4 V

Active current 550 µA

Standby current 2 µA

CA3140[110]
Supply Voltage 4 V

Supply current1 2 mA

1 Value obtained experimentally.

The components included are connected as described in Fig.4.3. A detailed de-
scription of each component is available below, with the same numeration used in
Fig.4.3.

1. A LNA with a nominal gain of 40 dB. This device, provided by the low-volume
manufacturer GPIO-labs, covers the 2.4 GHz ISM band used by IEEE 802.11
signals. However, this component consumes 200 mA at a supply voltage of 5
V. Consequently, this LNA is not usable in a low-power WuRx design. Its gain
goes from 30 to 40 dB over its operating bandwidth, which encompasses from
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RF front-end

LNA (1) Filter (2) Envelope (3) Comparator (4)
To

Baseband

Figure 4.3: Components of the WuRx RF front-end.

100 MHz to 8 GHz. Specifically, at the 2.4 GHz band used by IEEE 802.11a/g
signals, the gain was characterized to be 31 dB.

2. A band-pass filter for the 2.4 GHz ISM band. This filter, also sourced from
GPIO labs, presents a center frequency of 2.45 GHz with 150 MHz of band-
width. A filter with lower bandwidth could provide better Signal to Noise Ra-
tio (SNR) figures to the WuRx. Optimally, the filter bandwidth should match
a single IEEE 802.11 channel, which is the bandwidth of legacy-compatible
IEEE 802.11 signals. However, there was not any readily available part with
these characteristics. Additionally, its insertion loss, at 2 dB, is relatively low.

3. An envelope detector. This function is covered by the LTC5508 [109] power
detector. Its operating range goes from 300 MHz to 7 Ghz, covers the 2.4 GHz
band. Additionally, this device is available in the form of low-cost demonstra-
tion boards, which facilitates its integration with the rest of the WuRx. In
contrast with the LNA, the LTC5508 consumes only 550 µA in active mode,
and 2 µA in standby. Therefore, with a moderate duty cycle, it is compatible
with a low-power WuRx design.

4. A comparator. This component was implemented using a general-purpose
Operational Amplifier (OP-amp), the CA3140 [110]. It compares the incoming
demodulated signal with a fixed 250 mV voltage threshold, obtained with a
voltage divider. This threshold corresponds to an input signal of -24 dBm at
the entry of the LTC5508, which, after amplification, is easily achieved indoors
with commodity transmitters operating at 20 dBm in the 2.4 GHz band.

This front-end design was implemented in a rapid prototype. It can be seen paired
with an antenna and the corresponding baseband microcontroller using a protoboard
in Fig 4.4.

4.1.2 WuRx baseband implementation

The WuRx baseband is implemented in software, using a low-power microcontroller.
This microcontroller samples the signal output by the RF front-end at 250 ksps. To
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Figure 4.4: Final prototype of the WuRx, with the RF front-end.

correctly receive a WuS, it detects the start of frames bearing a possible WuS and
correlates the bits received to the address of the WuRx. Finally, if the address from
the WuS matches the device, the WuRx triggers the wake-up of the main radio.

The microcontroller for the baseband implementation is the PIC18LF23K22 [111],
manufactured by Microchip. This 8-bit microcontroller has a remarkably low power
consumption, consuming only 10 nA in sleep mode, and 3 mA when operating at
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its maximum instruction clock, 4 MHz. Additionally, it does not require external
oscillator circuits that could increase power consumption above the aforementioned
figures. The rest of the characteristics of the PIC18LF23K22 are summarized in
Table 4.2.

Table 4.2: Microcontroller parameters.

PIC18LF23K22[111]

Supply Voltage 3 V

System Clock 16 MHz

Instruction Clock 4 MHz

Active current 3 mA

Standby current 10 nA

However, even the low-power PIC18LF23K22 microcontroller consumes too much
energy while operating in active mode. To conserve power the PIC18LF23K22
remains in sleep mode most of the time. When a WuS arrives, a transition to a high
level occurs at the output of the RF front-end, this triggers the awakening of the
microcontroller.

Nonetheless, the WuS frame structure is designed to allow this mode of operation.

WuR frame format with addressing for a low-power microcontroller

To support compatibility with IEEE 802.11 frames, the WuS payload must start 72
µs after the start of the frame. This equals the length of the shortest backward-
compatible PLCP preamble included in the IEEE 802.11g release, which is consid-
ered for the WuTx presented in Chapter 3. This 72 µs preamble is received by
the WuRx as a single high-level pulse, as the transmission power remains roughly
constant. Additionally, the preamble duration is long enough to allow the local
oscillator of the PIC18LF23K22 to stabilize after waking up. A stable instruction
clock is required for the address sampling and correlation.

After waking up, the microcontroller needs to synchronize itself with the symbol
period. For this purpose, a frame delimiter sequence is used. It begins with two
“0” OOK symbols after the previous 72 µs pulse ends. The transition to a low level
signals the microcontroller the start of the synchronization preamble. Although
using only one “0” pulse would be optimal, two “0” pulses are used instead due to
processing time constraints in the microcontroller. If this transition is not found,
the microcontroller assumes that the frame is not a WuS and returns to sleep. After
these, the frame delimiter is completed by a “1” OOK symbol, which causes a
transition to a high level. The microcontroller starts sampling for OOK symbols
encoding its address exactly 6 µs after this transition. Additionally, this last “1”
OOK symbol allows the microcontroller to distinguish a WuS from shorter interfering

67



frames. The total preamble and the frame delimiter length is 84 µs. These are shown
together in Fig.4.5.

0 10

72 12 

Figure 4.5: WuS headers. Red arrows highlight signal transitions.

The WuS frame is completed with a 16-bit address which is used to identify each
WuRx in the local network. The duration of the address is 64 µs, being each address
bit coded by a 4 µs OOK symbol. Therefore, the WuS length, adding the preamble
and address fields, is 148 µs. The complete frame structure is shown in Fig.4.6.

0 0 0 0 111110

4

148 

Preamble 84 16 bits address 64 

72 12 

Figure 4.6: WuS frame structure.

Software implementation of the WuRx

As mentioned before, the WuRx microcontroller remains sleeping most of the time,
awakening only if a possible WuS is detected. Consequently, the PIC18LF23K22 is
configured to wake on a rising flank interruption. The behavior of the microcon-
troller was defined in accordance with the frame structure presented before, shown
in Fig.4.7.

The microcontroller starts all frame WuS receptions in the Sleep state (state 1).
After waking up, the microcontroller enters the Preamble Analysis state (state 2).
Here the microcontroller spends 40 µs waiting for its clock to stabilize, and, after-
ward, it awaits a low-flank interrupt, signaling the start of the frame delimiter. If the
frame delimiter is not successfully received, the microcontroller returns to the Sleep
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state. If the delimiter is received correctly, the microcontroller enters the Sampling
Bit 0 state (state 3), and, if the received bits can be matched to the WuRx address,
it advances up to the Sampling Bit 15 state, and triggers the wake up of the main
radio, afterward, it returns to the Sleep state (state 18). If any bit address bit does
not match the expected value, the WuRx stops the correlation process and returns
to sleep. Before returning to sleep, the microcontroller enters the Hold Sensing state
(state 19) and waits an amount of time. this is done to avoid successive wake-ups
on the same received frame.

Sleep

State 1

Preamble
Analysis

State 2

Sampling
Bit 0/ID:0

State 3

Sampling
Bit 15/ID:15

State 18

Sampling
Bit N/ID:N

State N + 3

Hold 
Sensing

State 19 bit 0 != ID:0

bit N != ID:N

bit 15 != ID:15

Wrong 
Address

PREAMBLE_ok

INT_rx

INT_rx

PREAMBLE_ok

bit 0 == ID:0

bit N == ID:N

bit 15 == ID:15

Turn-on 
command
to primary

radio 

Figure 4.7: State diagram for the WuS processing.

The microcontroller needs to be fast enough to process the WuS in real-time. For-
tunately, the PIC18LF23K22 supports various clock frequencies using its embedded
clock sources. These go from 31 kHz to 16 MHz. However, the instruction rates
are 4-fold lower than the clock rates, being the highest instruction rate attainable 4
MHz.
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To minimize power consumption, the minimum clock rate capable of operating the
WuRx in real-time is required. The most computationally intensive process, i.e.,
the address correlation procedure, is used to derive the lowest instruction clock
compatible with real-time operation. The main loop of this process must be executed
at least once for each symbol; therefore, its run time must be lower than 4 µs. It is
as follows:

addressArray ← WuRxAddress
i← 0
while i <length(address) do
bit← readP inV alue
if bit 6= address(i) then

return false
else
i = i+ 1

end if
end while
return true

Thus, the microcontroller must sample the incoming bit, compare its value with
the corresponding address bit obtained from memory, increment the loop counter,
and finally, compare the counter with the length bound. These 4 operations, when
compiled to the machine code, cost 18 instruction cycles. At the highest possible
instruction rate, 4 MHz, the execution time of the loop is 4.5 µs. Therefore, it
is not possible to meet the timing requirement of 4 µs with this design. The last
operation, the comparison with the counter value, can be suppressed to save some
valuable instruction cycles. By using manual loop unrolling, the loop was unrolled
into 16 successive iterations. This allowed reducing the cost of each correlation cycle
to 15 instructions, with a run time of 3.75 µs, below the 4 MHz limit.

This hard limit in the instructions available per symbol period made it impossible
to synchronize the sampling instants using clock-derived interruptions. To align the
sampling time with the symbol period, an additional NOP instruction was added (a
placeholder instruction that does nothing and consumes 1 instruction cycle) to each
sampling operation to lengthen the run time to 4 µs. In the same way, to meet the
strict timing constraints, the state machine described in Fig.4.7 was implemented
with a sequence of if-else statements, instead of using a traditional do-while loop
with a switch statement.
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4.2 Performance of the WuRx

The WuRx was evaluated using two different signal sources. First, one using an ideal
250 kbps OOK modulation, and, second, using the legacy-compatible IEEE WuTx
described in Chapter 3, which also operates at 250 kbps. The correct reception of
WuS from both WuTx was evaluated at 2 meters distance, in an indoor environment.

4.2.1 An SDR-based OOK WuTx

The implementation of the OOK WuTx was performed in an SDR using the GNU
Radio SDR framework. For this design, two GNU radio blocks were created using
the GNU Radio C++ API. These generate the frame format required by the WuRx
at bit level. The first block adds bits corresponding to the address of the target
WuRx. The second block adds the physical preambles. The first preamble is a long
72 µs pulse, which is represented by 18 “1” bits. The second preamble added is the
frame delimiter sequence, comprising two “0” bits followed by one “1” bit.

Afterward, the resulting sequence is coded into OOK symbols, each one represented
by a 4 µ OOK pulse. Finally, the spectrum of each pulse is widened to 20 MHz to
emulate a WuS embedded into an IEEE 802.11 frame. This bandwidth is equal to
the WuS sent by the legacy-compatible WuTx presented in Chapter 3. Although
IEEE 802.11ba does also use a high-bandwidth OOK signal, it is only 4 MHz wide.
The IEEE 802.11ba drafts propose a mechanism for signal generation that only use
16 subcarriers [85] [68]. In contrast, the legacy-compatible mechanism from Chapter
3 uses the 64 subcarriers present in the IEEE 802.11g OFDM PHY specification.
Thus, the spectrum of the OOK WuS is widened to 20 MHz by multiplying each of
the 4 µs pulses by a chirp sequence of 80 additional 5 ns pulses with an alternating
“1” to “0” pattern.

Finally, the resulting GNU Radio flow diagram was configured to strobe a WuS
directed to an address configured through the GNU Radio Companion GUI. This
way, a WuS could be sent each 100 ms, emulating a wake-up procedure synchronized
with IEEE 802.11 beacons. Transmission of a WuS as sent by the OOK WuTx is
shown in Fig.4.8.

4.2.2 A legacy IEEE 802.11-based WuTx

The Linux-based legacy IEEE 802.11 WuTx described in Section 3.8.2 was adjusted
to follow the framing specified in this chapter. To respect the preambles defined in
Section 4.1.2, the WuTx was configured to use exclusively IEEE 802.11g OFDM. By
adding extra padding to the IEEE 802.11 headers, which include the OFDM PLCP,
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Figure 4.8: OOK WuS

and the MAC headers, it was possible to configure the WuTx to emit a single 72
µs pulse at the start of each frame. Following, the implementation was configured
to append the frame delimiter, followed by a 16-bit WuRx address. Despite the
modifications, the underlying IEEE 802.11 stack adds an additional footer. This
corresponds to the checksum and padding defined by the legacy IEEE 802.11 MAC
framing [84]. Nonetheless, this addition does not interfere with the reception of the
WuS, which ends just after the last address bit. A WuS as sent by the legacy IEEE
WuTx is shown in Fig.4.9.

Figure 4.9: Legacy-compatible WuS to the WuRx address “0101010101010000”, as
received with a USRP B200.

4.2.3 Results

The WuRx baseband was evaluated in an indoor environment to not introduce
relevant propagation loss. To address the efficiency of the WuRx baseband, the
power consumption of the WuRx was evaluated using three different scenarios. The
WuTx used for evaluation on all scenarios was the OOK WuTx explained in Section
4.2.1. Nonetheless, the Linux legacy-based IEEE 802.11g WuTx was also evaluated
to work with the WuRx.

The first scenario measures the energy consumption of the WuRx for correct WuS
reception. For this purpose, this scenario includes a correct WuS sent to the ex-
pected WuRx address. The second scenario measures the energy consumption of
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the WuRx when it receives a non-WuS frame, i.e., a non-WuR IEEE 802.11 frame.
Consequently, it includes a frame with a mismatched frame delimiter. Finally, a
third scenario evaluates the energy consumption of the WuRx when it receives a
WuS addressed to another WuRx. This scenario explores a relatively optimistic
case where the first bit of the address is mismatched. Nonetheless, due to the length
of the hold sensing state, power consumption of addresses mismatched on later bits
cause similar power consumption profiles. For each scenario, the resulting energy
consumption was evaluated with a DC power analyzer, obtaining the duration of the
wake-up event and the average current consumed by the WuRx during the wake-up.
These results are evaluated at a voltage supply level of 3 V for the microcontroller
to obtain the energy consumed.

Receiving a correct WuS, as evaluated in the first scenario, consumed an average of
982.29 µA during 230.4 µs, obtaining a total of 679 nJ. When the incoming frame
fails to follow the frame delimiter, the detection of the WuS stops at an earlier
time point, thus, reducing energy consumption. Moreover, the WuRx consumes less
average current as it is performing less energy-intensive NOP operations in the hold
sensing state. This way, in the second scenario, the average current consumption
is 793.9 µA, with only 163.8 µs of wake-up time, resulting in 390 nJ of energy
consumption. Finally, an address mismatch is a costly scenario in terms of energy
consumption. The wake-up time includes the preamble sensing, as well as the time
spent in the hold sensing state. However, the inclusion of the hold sensing state is
required to avoid consecutive wakeups that would further increment the energy cost
of these events. The energy consumption for the reception of a mismatched WuS is
753 nJ. All these results are showcased in Table 4.3.

Table 4.3: WuRx baseband energy consumption.

Scenario Avg Current
(µA)

Avg Wake-up
time (µs)

Energy consumed
(nJ)

Correct WuS 982.29 230.4 679
Incorrect frame delimiter 793.9 163.8 390
WuS with mismatched ad-
dress

1090 230.4 753

4.3 Conclusion

This chapter proposes implementing an affordable WuRx design with off-the-shelf
components. This way, a low-power WuRx baseband capable of receiving OOK sig-
nals at a 250 kbps data rate was designed and implemented. The WuRx baseband
was evaluated using a provisional non-low-power RF front end. Nonetheless, the
baseband is designed to operate in low-power environments. The microcontroller-
based baseband implements preamble detection and address matching using an ex-
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tremely low-power 8-bit microcontroller to its highest potential. It was found capa-
ble of achieving low-power operation, with an idle current consumption of 10 nA.
Additionally, the energy expenditure per WuS triggered wake-up was found low, at
679 nJ per WuS received. Moreover, the energy consumption per false wake-up was
found lower, at 390 nJ, due to the preamble detection procedure implemented in the
baseband.

The results of this chapter point in the direction that a high bitrate WuRx baseband
constructed with off-the-shelf parts can perform well in low-power environments.
Additionally, the low-power WuRx baseband presented was found robust to inter-
ference, being able to operate with non-WuS frame transmissions occurring in the
same site. Nonetheless, evaluating the performance of the baseband under non-WuS
traffic profiles requires further study. The WuRx developed for this chapter validates
experimentally the WuTx presented in Chapter 3 with a physical WuRx, thus, com-
pleting a WuR system compatible with devices implementing legacy versions of the
IEEE 802.11 specification.

Thus, the results from this chapter can be used jointly with those of Chapter 3
to provide a high bit rate WuR system. Such a system allows the transmission
of more complex signals that can go beyond simple wake-up calls. For example,
WuR frames bearing data can be used to provide efficient data transmission be-
tween heterogeneous devices. Moreover, such a WuR system can also enable direct
communications between WSN devices and non-energy-constrained devices. Thus,
enabling gateway-less interaction between non-compatible WSN devices and con-
tributing to the achievement of convergence between most technologies applied to
WSN developments.

This chapter was published as an article to IEEE Wireless Communications Letters
(Q1, Telecommunications 17/90 [102]) on the 1st of July 2019.

M.Hussein, E.López, M.Cervià and A.Calveras. Design and Implemen-
tation of a Wake-up Radio Receiver for Fast 250 kbps Bit Rate. IEEE
Wireless Communications Letters[73]
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Chapter 5

Enabling Wireless Convergence
with WuR

Nowadays, several wireless communication solutions targeted at low-power devices
(e.g. sensors, actuators) compete for market dominance. As a consequence, fragmen-
tation slows the deployment of the Internet of Things. However, there is a window
of opportunity to use a WuR to bridge the gap between incompatible technologies.

The previous chapters present a high rate WuR solution, that is capable of send-
ing arbitrary binary payloads. In addition to using this capability to address WuS,
devices can use high-rate WuR hardware as a secondary means of communication.
Since WuR compatibility is unrelated to main radio hardware compatibility, commu-
nication among heterogeneous devices can be another application area for high-rate
WuR. Thus, WuR offers a way to bridge the gap between heterogeneous devices,
allowing them to interact directly without requiring a gateway.

Therefore, WuR can contribute to the already existing landscape of CTC solutions.
In this chapter, a WuR-CTC solution will be presented and evaluated in a physical
testbed, using WuTx and WuRx solutions derived from those already presented in
Chapters 3 and 4. Importantly, the addition of WuR to devices enables asynchronous
communications and, in a clear improvement over existing CTC solutions, provides
energy savings.

The content presented in this chapter is structured as follows: Section 5.1 exposes the
rationale behind this development and motivates WuR-CTC; Section 5.2 explains
the communication scenario envisioned, as well as the characteristics of the desired
WuR-CTC solution; Sections 5.3, 5.4, and 5.5 detail the WuR solution adopted
and its implementation in the testbed; Section 5.6 presents the experimental results
obtained from the testbed operation; finally, Section 5.7 concludes the study and
points out next research issues.
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5.1 Contribution of WuR to the CTC state-of-

the-art

As previously stated in Section 2.2, WSN have motivated the extension and develop-
ment of a considerable number of solutions that suit their set of requirements (e.g.,
low-power consumption, low-cost and increased range). However, these heteroge-
neous solutions are not interoperable, most of them defining incompatible physical
layer implementations. This precludes direct communications between heteroge-
neous devices, becoming one prominent cause of the often-cited IoT fragmentation
problem.

The issue of compatibility is mitigated through the use of gateways, devices that can
translate between incompatible protocol stacks. Nonetheless, as discussed in Section
1.1, the use of gateways does not come without caveats [11]. Those include reliability
and performance issues. Therefore, there is a research opportunity in investigating
ways to achieve direct communications between heterogeneous devices. This area is
CTC research, which concentrates on finding techniques that allow direct interaction
between non-compatible devices. Fig.5.1 shows the comparison between CTC and
gateway use on an example network with IEEE 802.11 and IEEE 802.15.4 devices.

IEEE 802.11

IEEE 802.15.4 network Gateway IEEE 802.11 network

IEEE 802.15.4

Gateway-based Interaction

CTC-based Interaction

IEEE 802.15.4 network IEEE 802.11 network

IEEE 802.15.4
+

CTC

IEEE 802.11
+

CTC

IEEE
802.11

+
IEEE

802.15.4

Figure 5.1: Examples of communication scenarios comparing gateway-based inter-
action with CTC-based interaction

Two approaches have been previously evaluated in the CTC literature to provide
direct communications between non-compatible devices: first, re-purposing CSMA
mechanisms and, second, signal emulation. Following, the state-of-the-art of each
CTC approach is presented, along with the advantages and disadvantages of various
CTC approaches.
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CSMA-based CTC approach

This approach repurposes the coexistence mechanisms that WPAN and WLAN pro-
tocols implement for its use with CTC. The most widely deployed WLAN and
WPAN technologies that have appeared in the last decades operate on the 2.4 GHz
ISM band [13, 23, 112] using CSMA with Collision Avoidance (CSMA/CA) as their
MAC approach. CSMA-enabled stations avoid collisions by sensing the channel
before starting a transmission. Thus, CSMA- equipped stations can detect trans-
mission bursts initiated by non-physically compatible devices. Moreover, they can
also determine the duration of an incoming transmission burst by measuring its
length. Therefore, CSMA/CA-based CTC encodes binary data using signal fea-
tures that can be received by any CSMA-enabled station, such as the frame length
and the inter-frame interval. This approach to CTC was first proposed in [113],
which presents a proof-of-concept implementation supporting unidirectional com-
munications between IEEE 802.11 based transmitters and IEEE 802.15.4 receivers.
[113] uses several IEEE 802.11 frame lengths as codewords to build a dictionary for
CTC, reaching a throughput of 1.6 kbps in a best-case scenario. Later, the idea
of using frames to encode information was generalized to use the interval between
frames to code information in [114] and [115].

Low spectral efficiency and throughput limit the usability of CSMA-based CTC. To
maximize spectral efficiency, authors of [114] proposed piggybacking CTC commu-
nications on existing data fluxes. In [114], binary data is modulated by changes in
the transmission intervals of frames from pre-existing TCP/UDP fluxes sent by an
IEEE 802.11 station. Although [114] still presents a relatively low bitrate, it reuses
frames from already present data streams with minimal disruption. However, it also
requires the presence of an existing data flow. If frames need to be sent explicitly
to convey a CTC message, the spectral efficiency advantage is lost.

To send CTC data without depending on other data flows to piggyback messages,
[115] uses slight variations of the interval between beacon frames to send informa-
tion. This allows [115] to enable bidirectional CTC between IEEE 802.11 and IEEE
802.15.4. Moreover, [115] it is also capable of sending information unidirectionally
from Bluetooth transmitters to IEEE 802.15.4 and IEEE 802.11 receivers. The bi-
trate of [115] is determined by the rate beacon frames are sent, which is relatively low
in most technologies, for example, the default IEEE 802.11 beacon rate is 100 ms.
Moreover, to ensure reliability, several beacon transmissions are required to encode
a symbol. As a consequence, the throughput achieved a [115] data flow is around
30 bps. Nonetheless, several parallel data flows can coexist by sending beacons in
a non-overlapping manner. This way, the aggregated throughput of the system can
be increased to up to 1400 bps.

Despite improvements in spectral efficiency, the main drawback of CSMA-based
CTC is that it uses entire frames as symbols. Consequently, CSMA-based CTC only
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encodes a few bits of information in each of them. As a result, CSMA-based CTC
throughput will always be low when compared to the solution used by the respective
main radio. Moreover, the symbols used by CTC (frame lengths, or inter-frame
intervals) can be spontaneously generated by non-CTC network activity, causing
false detection events. The interference caused by those needs to be mitigated either
by using codification or by performing retransmissions, further reducing CSMA-
based CTC throughput. In a realistic scenario with the presence of interference,
the maximum throughput achieved by CSMA-based CTC is close to 3.1 kbps, with
unidirectional CTC from BLE to IEEE 802.11 [116]. Nonetheless, as [116] reuses
existing Bluetooth data fluxes, its spectral efficiency remains high.

Table 5.1: Characteristics of CSMA-based proposals referenced

Reference Method CTC Maximum
Throughput

[113] Burst length 326bps Unidirectional,
IEEE 802.11 to
IEEE 802.15.4

[115] Burst interval 30 bps a Bidirectional,
IEEE 802.11 and
IEEE 802.15.4.
Unidirectional,
Bluetooth to

IEEE 802.11 and
IEEE 802.15.4

[114] Burst interval 760bps b Bidirectional,
IEEE 802.11 to
IEEE 802.15.4

[116] Burst power 3.1 kbps b Unidirectional
Bluetooth to

Wifi

a Possibility of parallel streams. b Embedded into non-CTC traffic.

Emulation-based CTC approach

The emulation-based CTC approach can overcome the low throughput associated
with CSMA-based CTC. Emulation tries to reproduce the signaling defined by a
wireless solution using a transmitter implementing another wireless solution. This
approach appeared in the literature with WEBee [117], which defines a procedure
to emulate IEEE 802.15.4 signals with an OFDM transmitter following the IEEE
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802.11 standard. WEBee provides a unidirectional link between a transmitting
IEEE 802.11 station and one or more receiving IEEE 802.15.4 stations at IEEE
802.15.4 full data rate, 250 kbps. Nevertheless, inaccuracies on the emulation of
IEEE 802.15.4 cause degraded range and a frame error rate close to 40%, which the
authors mitigate with a repetition code. However, coding limits the effective data
rate to 63 kbps. Subsequent proposals [118, 119] present incremental improvements
over [117]. The first, [118] proposes modifications to [117], enabling it to use the
IEEE 802.11 5 MHz down-clocked mode to reduce the bandwidth disparity between
the IEEE 802.11 transmitter and the IEEE 802.15.4 receiver. As a consequence,
IEEE 802.15.4 receiver SNR is increased since the emulated signal falls mostly inside
of its filtering bandwidth. This, coupled with optimizations in preamble coding,
reduce the frame error rate and increase range. The second, [119] uses physical-layer
coding to further reduce the frame error rate. The code works by effectively splitting
an emulated symbol into two symbols, using symmetry between IEEE 802.15.4 chip
sequences. The solution ensures that, between the two transmitted symbols, the
chips encoding the expected symbol avoid boundary errors. As a result, [119] can
achieve a throughput 3 times as high as [117]. With CTC by emulation has been
also introduced to other technologies, including Bluetooth to IEEE 802.15.4 [120]
and Bluetooth/IEEE 802.15.4 to LoRa [121].

However, in the implementations found in the literature, emulation works only one
way. For example, while an IEEE 802.11 can emulate the signaling used by IEEE
802.15.4, the reverse link is not possible. This also appears in [120], for IEEE
802.15.4 and Bluetooth, and, finally, in [121], a reverse link, from LoRa to either
IEEE 802.15.4 or Bluetooth is not found. Therefore, emulation is not able to provide
a truly bidirectional link, thus, limiting its usefulness in most communication sce-
narios. Nonetheless, [122] introduced support for reliable communications by using
confirmation messages. In this proposal, the authors use emulation-based CTC to
send high-rate data streams from IEEE 802.11 to IEEE 802.15.4 using WEBee [117]
with low-rate confirmation messages sent from the IEEE 802.15.4 nodes. These
confirmation frames are received by the IEEE 802.11 nodes using raw access to
the channel samples, a feature that is not accessible in commodity IEEE 802.11
devices. Still, the lack of symmetric bidirectional connectivity relegates emulation-
based CTC to one-way communications or data dissemination via broadcast and
multicast.

5.1.1 Overcoming CTC limitations with WuR-CTC

Due to the aforementioned limitations, current CTC developments offer either one-
way communication, or a data rate several orders of magnitude lower than state-
of-the-art WSN solutions. As a consequence, CTC in WSN is relegated to those
use cases enabled by one-way, low-rate communications, such as data dissemination
through broadcast.
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Table 5.2: Characteristics of Emulation-based proposals referenced

Reference CTC Data Rate Throughput

[117] Unidirectional,
IEEE 802.11 to
IEEE 802.15.4

n/a 63 kbpsa

[118] Unidirectional,
IEEE 802.11 to
IEEE 802.15.4

n/a 63 kbpsb

[119] Unidirectional,
IEEE 802.11 to
IEEE 802.15.4

n/a 3 times higher
than [117]c

[120] Unidirectional,
Bluetooth to

IEEE 802.15.4

n/a 220 kbps

[121] Unidirectional,
Bluetooth and

IEEE 802.15.4 to
a non-standard
LoRa receiver

3.2 kbps n/a

[122] Unidirectional,
IEEE 802.11 to
IEEE 802.15.4 d

n/a 10.67 kbps

a [117] and [118] use a repetition code to achieve reliability. b [118] offer
longer range than [117], through physical layer optimizations and preamble
coding. c [119] manuscript refers its throughput to be 3 times higher than
WeeBee, however, WeeBee throughput is only displayed in Fig.34 of [117].
No exact figure is provided in the manuscript. d [122] supports reliable
communications through acknowledgment messages sent from IEEE 802.11
stations through CSMA-based CTC.

At the moment, CTC cannot contribute to enabling heterogeneous mesh networks
for WSN. To allow that, CTC must be able to support bidirectional communications
and, preferably, at a rate that is close to those offered by the main radio of popu-
lar WSN solutions. Thus, providing high-rate bidirectional CTC could open up at
least three new use cases for CTC while, at the same time, contribute to reducing
fragmentation in the WSN space. The first of those use cases is direct interaction
between end-user devices and a WPAN network. For example, a mobile IEEE 802.11
terminal could configure, actuate, and obtain sensor data from an IoT network com-
posed exclusively of IEEE 802.15.4 WuR-enabled devices. Another relevant use case
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concerns heterogeneous network architectures. These appear as a consequence of
the rapid pace of innovation in the IoT space, where, after the initial deployment
of an IoT network, subsequent extensions may use other wireless solutions due to
improvements in the state-of-the-art. With bidirectional CTC, the devices forming
these heterogeneous networks can freely communicate, regardless of their respective
wireless implementations, without requiring a gateway device translating. For ex-
ample, bidirectional CTC could enable the expansion of an IEEE 802.15.4 network
composed of specialized low-power devices with higher throughput IEEE 802.11ba
devices, which could go on to form the backbone of the network. Thus, improv-
ing the overall performance of the resulting network. Simultaneously, bidirectional
CTC can be used to improve coexistence between the different wireless solutions
present in the network. With it, a heterogeneous network can adapt to changes in
the environment by coordinately switching the operating frequencies of all device
radios. Of course, these examples can be generalized to any arbitrary combination
of non-compatible wireless solutions.

This contribution proposes the application of WuR to CTC to enable high-rate
bidirectional CTC. WuR can provide CTC that is high-throughput, as well as bidi-
rectional, through the assistance of the dedicated WuR hardware elements. These
can be compatible, even if deployed in devices with divergent main radio imple-
mentations. Additionally, WuR-enabled devices can use those to provide higher
throughput digital communications. For example, WuR implementations proposed
for IEEE 802.11 devices offer up to 250 kbps of data rate [103, 105]. This rate is
more than 50 times faster than the fastest CSMA-based CTC development [116] and
equivalent to the data rates enabled by emulation-based CTC. Moreover, WuR also
enables low-power operation, which is a requirement on most WSN use cases. Thus,
with these advantages in mind, this contribution presents the WuR-CTC concept to
provide direct communications among heterogeneous devices.

Nonetheless, the current state of WuR research is relatively concerning in regards to
compatibility among WuR implementations. Instead of standardizing a single WuR
solution compatible with a wide range of IoT applications, the current industry
trend is to develop specific WuR solutions, related to existing WPAN and WLAN
solutions. The first example of this approach is IEEE 802.11ba [68], which defines
a WuR solution exclusively aimed at IEEE 802.11 devices. These specific WuR
solutions could become non-compatible with each other. As a consequence, it is
critical to highlight the harmonization opportunity that new WuR developments
bring. There is a window of opportunity for reducing fragmentation in the IoT
environment with WuR, however, only if the actors in the field harmonize nascent
WuR implementations.
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5.2 A proof-of-concept WuR-CTC testbed

To demonstrate the feasibility of WuR-CTC, its implementation in a testbed is
proposed. Nonetheless, to showcase CTC, the testbed must feature a set of charac-
teristics, which are determined according to a WSN-based communication scenario.

5.2.1 Testbed Characteristics

The communication scenario considered for the testbed involves symmetric and reli-
able point-to-point communications, the mode of communication required for WSN
mesh networks. This showcases the utility of bidirectional CTC over unidirectional
CTC solutions.

Most WSN devices operate in shared frequency bands, i.e., both IEEE 802.15.4,
IEEE 802.11, and Bluetooth can operate in the 2.4 GHz ISM band. Therefore, to
show its applicability, the testbed needs to consider coexistence with other solutions
operating at the same frequency band.

Furthermore, to present the added value of WuR-CTC, and to better support low-
latency mesh networks, time-sensitive interactions will be considered. Point-to-point
communications should occur with a latency lower than other bidirectional CTC
solutions. For this purpose, a target latency lower than of 100 ms is set.

Current WSN developments allow nodes to communicate over IP. Both between
them, and with the wider Internet. Consequently, the WuR-CTC testbed envisioned
should to be capable of supporting an IP-based communications stack (e.g., an IP
stack with a 6Lo adaptation layer[123]).

Moreover, the testbed needs to feature devices that are representative of the current
trends in WSN hardware, and that the fulfill requirements of WSN applications. In
this way, prospective WuR-CTC devices are:

� Heterogeneous, operating at the 2.4 GHz ISM band which is supported by the
physical layers of most WPAN and WLAN standards.

� Battery-friendly. Low-power, paired with low activity ratio. This capability
can be enabled or supported by WuR.

� Limited computational capability, i.e., microcontroller hardware.

� Off-the-shelf available. Both in the devices themselves and their components.

Derived from the above described, jointly with the device profile, the following
requirements for the WuR-CTC testbed were identified.
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� To reduce the power consumption of the device, the WuRx must be imple-
mented by separate low-power hardware that is available off the shelf. To
implement WuR with off-the-shelf parts, the WuS needs to be coded with
OOK. Moreover, OOK is used throughout most of the WuR implementations
in the literature[124].

� To achieve bidirectional and reliable communications in a point-to-point sce-
nario, the testbed needs to use an Automatic Repeat Request (ARQ) mecha-
nism and two-way addressing.

� A CSMA-CA implementation is required to coexist with other WPAN and
WLAN standards operating on the same unlicensed frequency band.

� To provide compatibility with IP communications, the testbed needs to provide
a payload size that is sufficient to achieve low fragmentation overhead with a
prospective 6Lo implementation. Payload size should be close to those defined
by other WPAN solutions with existing 6Lo implementations such as IEEE
802.15.4.

5.2.2 Standards implemented

This chapter presents the WuR-CTC concept as standard agnostic. In this way, the
WuR-CTC implementation presented here is designed to showcase communications
between different WPAN and WLAN solutions by the means of a compatible WuR
implementation. Nonetheless, to allow for the prompt evaluation of WuR-CTC, the
testbed incorporates devices implementing two wireless communication standards:
IEEE 802.11 and IEEE 802.15.4.

Both IEEE 802.15.4 and IEEE 802.11 standards are massively deployed for industrial
and domestic use cases, however, they are not interoperable. Their PHY are defined
with different modulations, channel assignments, physical framing, bandwidth, and
transmission rates. Despite these differences, both can operate at the 2.4 GHz
ISM frequency band. Moreover, commodity devices implementing both of these
standards are available for development. Furthermore, it is possible to generate
OOK signaling at a high symbol rate (250 kBd) with the main radios of devices
implementing both standards.

A pseudo-OOK modulation can be generated with IEEE 802.11g/a transmitters by
using the technique presented in Chapter 3. Although IEEE 802.11ba also defines
a WuTx implementation, the specification is still to be ratified and, at the time
of writing of this document, there are no commercially available IEEE 802.11ba
embedded devices that could be incorporated in the testbed. Therefore, using the
legacy compatible IEEE 802.11 WuTx implementation enables the evaluation of
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WuR-CTC with a testbed based on commercially available commodity IEEE 802.11
hardware.

The legacy-compatible WuTx implementation requires the transmitter PHY to use
a predictable scrambler sequence (a condition that occurs in several IEEE 802.11
devices [117, 125]). Moreover, the requirements presented in Section 5.2 call for
a low-power embedded device. The ESP-32 WuTx implementation, presented in
Section 3.8.3 fulfills these requirements.

The generation of OOK is not possible with all standard-compliant IEEE 802.15.4
devices. However, several devices implementing IEEE 802.15.4 include reconfig-
urable radio hardware that can generate OOK signals while maintaining its operation
as a standard-compliant IEEE 802.15.4 device. One of these is the EFR-32MG12
[126], which can transition its main radio between IEEE 802.15.4 and OOK in less
than 100 µs. This reduced switching time allows for time-sensitive communications,
as required in Section 5.2. Therefore, an EFR-32MG12 can operate as a part of an
IEEE 802.15.4 network, reconfigure its radio to transmit with OOK, send a frame
and, finally, reconfigure its radio back to IEEE 802.15.4. The same can indeed be
done in some Bluetooth devices [36] incorporating a proprietary radio mode, which
can also generate OOK. Nonetheless, IEEE 802.15.4 was selected for this purpose
due to familiarity with the underlying protocol and previous experience with the
development environment.

Thus, the WuR-CTC testbed will feature an IEEE 802.11-enabled device, the ESP-
32, and an IEEE 802.15.4-enabled device, the EFR32MG12.

5.3 PHY layer specification for the WuR-CTC

testbed

As in previous chapters, the PHY specification for the WuR-CTC testbed proposes
using the main radio as WuTx and a separate dedicated low-power receiver as WuRx.
The advantage of this approach is that it reduces device complexity and implemen-
tation cost since the only required addition is the WuRx.

First, the testbed WuR-CTC PHY uses a single transmission rate of 250 kbps with
OOK symbols. This rate is supported both in the previously presented legacy IEEE
802.11 WuTx, and the IEEE 802.15.4-compatible WuTx [35]. This relatively high
transmission rate is lower than the minimum 1 Mbps bitrate defined by IEEE 802.11
or Bluetooth. However, it matches the data rate offered by the popular IEEE
802.15.4 WPAN standard.

To aid in synchronization and allow the WuRx to retrieve the WuR-CTC PSDU,
as in most wireless protocol specifications [68], [112], [23] the WuR-CTC Physical
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Protocol Data Unit (PPDU) includes a PHY header that is added before the WuR-
CTC PSDU.

5.3.1 WuR-CTC PPDU structure

The WuR-CTC PPDU, partially based on the format presented in Chapter 4, in-
cludes two components: a preamble sequence and a frame delimiter. The complete
structure of the WuR-CTC PPDU, including both of these fields, and the PSDU is
shown in Fig.5.2.

The preamble sequence consists of 10 symbols, alternating “1” symbols and “0”
symbols (5.1). The preamble also maintains a constant average amplitude that the
WuRx uses to calibrate its OOK symbol detection level. Additionally, transitions
from high to low can be used to synchronize the WuRx with the symbol period. This
uncomplicated design allows very simple WuRx based on low-power microcontroller
hardware without dedicated correlators.

{1, 0, 1, 0, 1, 0, 1, 0, 1, 0} (5.1)

After it, a frame delimiter field composed of two “1” symbols (5.2) is appended.

{1, 1} (5.2)

Synchronization
Sequence

10 symbols

Frame Delimiter

2 symbols

WuR-CTC PSDU

Variable

Figure 5.2: WuR-CTC PPDU structure.

5.3.2 Encapsulation of the WuR-CTC PPDU

The WuR-CTC solution is designed to operate with commodity transmitters. These
are not fully reconfigurable since they already implement other wireless solutions.
As a consequence, complete control over the framing of the WuR-CTC PPDU can-
not be achieved. For example, the IEEE 802.11 transmitter adds its own PPDU,
including training sequences and preamble fields before the WuS PPDU can be
sent. Therefore, the WuR-CTC PHY needs an encapsulation mechanism to embed
the WuR-CTC PPDU inside the frame structure followed by the radio operating as
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WuTx. This encapsulation mechanism is designed to allow any WuRx to retrieve
the WuR-CTC PPDU regardless of which encapsulation format has been used.

Therefore, for the testbed, two encapsulation formats, compatible at reception, are
defined. The first is used by IEEE 802.11-based WuTx [125] and the second is used
by IEEE 802.15.4-compatible WuTx based on a reconfigurable radio [126].

IEEE 802.11-compatible encapsulation format

On an IEEE 802.11-based WuTx the WuR-CTC PPDU is encapsulated in the MAC
Service Data Unit (MSDU) of a standard IEEE 802.11g frame. This differs from the
first mechanism introduced in Chapter 3, which describes the encapsulation of the
WuR-CTC PPDU directly in the IEEE 802.11g PSDU. However, as seen in Sections
3.8.3 and 3.8.2, using the MSDU provides wider compatibility to the method since
most IEEE 802.11 implementations allow for raw byte access to the MSDU from
software.

As in Chapters 3 and 4, the WuR-CTC PPDU is coded with OOK symbols at one
bit per symbol, for a data rate of 250 kbps, being each of the WuR-CTC symbols
a standard-compliant IEEE 802.11g OFDM symbol. Consequently, the bandwidth
of the symbols comprising IEEE 802.11-encapsulated WuR-CTC PPDU is 20 MHz
[125].

To reduce overhead, the IEEE 802.11 encapsulation uses the ERP-OFDM PLCP
format, which enables frames sent by the IEEE 802.11-based WuTx to coexist with
other non-WuR-CTC IEEE 802.11g OFDM stations. Thus, reducing the overhead
of the encapsulation, in comparison with the solution presented in Chapter 4. The
legacy-compatible PLCP used there is at least 72 µs, while the OFDM PLCP is
only 16 µs long. As a drawback, the WuR-CTC IEEE 802.11 encapsulation is not
compatible with the backward-compatible DSSS-OFDM preambles. However, this
can be mitigated by using IEEE 802.11-defined mechanisms, as the CTS-to-self, in
mixed networks. The resulting encapsulation of the WuR-CTC PPDU inside an
IEEE 802.11g OFDM frame is represented in Fig.5.3.

PLCP 
 

48 us

SIGNAL
 

4us

SERVICE
+ padding 

4us 

IEEE 802.11  
MPDU 

 
Variable

MAC header  
 

16 us

MAC footer 

8 us

IEEE 802.11 WuR-CTC Frame WuR-CTC PPDU

Figure 5.3: WuR-CTC PPDU encapsulation format for the IEEE 802.11g WuTx.
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IEEE 802.15-4-compatible encapsulation format

The IEEE 802.15.4-compatible WuTx switches between IEEE 802.15.4 operation to
OOK on demand. Before sending a WuR-CTC PPDU, the device must configure
its reconfigurable radio from IEEE 802.15.4 to OOK symbols at 250 kbps. The
bandwidth of the OOK symbols is slightly lower than 1 MHz, defined with a 20 dB
attenuation, equivalent criteria that the one used to define the IEEE 802.11 20 MHz
bandwidth.

To encapsulate the WuR-CTC PPDU, an OOK preamble including 18 OOK sym-
bols with an alternating “1” to “0” pattern is prepended. This preamble delays
the start of the WuR-CTC PPDU, thus allowing feature-limited WuRx to wake up
and stabilize their local oscillators before the WuR-CTC PPDU starts. The encap-
sulation of the WuR-CTC PPDU inside a frame sent by a reconfigurable radio is
represented in Fig.5.4.

OOK 
preamble OOK Data

WuR-CTC PPDU

Figure 5.4: WuR-CTC PPDU encapsulation format for the IEEE 802.15.4 WuTx.

5.3.3 Determining the maximum WuR-CTC PSDU size

The maximum size of data that can be carried in the WuR-CTC PSDU is limited
by the encapsulation format used. To support a 6Lo-based stack running on top
of WuR-CTC, this figure must be made as high as possible. As mentioned before,
WuR-CTC uses the OFDM symbols of the IEEE 802.11g MSDU as OOK symbols,
each of those introducing a given amount of bytes that count to the IEEE 802.11
MTU of 2304 bytes. Consequently, IEEE 802.11-based encapsulation provides the
most limiting scenario when compared to EFR-32MG12 [126].

This way, the maximum number of OFDM symbols that the IEEE 802.11g MSDU
can carry is limited by the number of octets jointly coded in each OFDM symbol.
This number, in turn, depends on the transmission rate used by the IEEE 802.11g
radio. Lower transmission rates use a lower number of WLAN level bytes encoded
per OFDM symbol. Consequently, these yield a higher number of available OFDM
symbols for encoding WuR-CTC data since they require a higher number of OFDM
symbols to reach the 2304 byte MTU. However, higher transmission rates yield a
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lower maximum WuR-CTC MTU.

To find the available WuR-CTC PSDU size, the following formula can be used.
The (WuRCTCPSDU) is calculated as a function of the IEEE 802.11 maximum
PSDU (MSDUmax) size in octets, the bits per OFDM symbol (ODFMbits), and the
overhead bits introduced by the WuR-CTC PPDU headers (PPDUheader), which
corresponds to 12 bits (5.3).

WuRCTCPSDU =
ODFMbits

8 ·MSDUmax

− PPDUheader (5.3)

The results of applying (5.3) for each transmission rate supported by IEEE 802.11g
are displayed in Table 5.3. It lists the available WuR-CTC PSDU in function of
the data rate used and the corresponding bit loading used by OFDM symbols.
According to the results, to maximize the WuR-CTC PSDU size, the testbed uses
the 6 Mbps transmission rate, which yields a maximum PSDU size of 94 bytes.
However, using an alternative transmission rate of 24 Mbps (corresponding to the
16-QAM modulation) could provide increased range, as per the simulation results
shown in Section 3.6. Nonetheless, the WuR-CTC PSDU would need to be reduced
to 22 bytes.

A 96 byte frame size is similar to other WPAN standards, such as IEEE 802.15.4,
that support IP-based stacks. This facilitates the implementation of 6-Lo in WuR-
CTC, fulfilling one of the requirements formulated in the previous section.

Table 5.3: Maximum WuR-CTC PSDU Size

Throughput
(Mbps)

OFDM symbol
loading (bits)

WuR PSDU size
(bytes)a

6 24 94

9 36 62

12 48 46

18 72 30

24 96 22

36 144 14

48 192 10

54 216 9

a Obtained by rounding the number of bytes to the lowest
integer.
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5.4 Link layer specification for the WuR-CTC testbed

The WuR-CTC link layer defines both MAC and Logical Link Control (LLC) sub-
layers, providing three services:

� Transmission medium sharing

� Addressing

� Reliability

The first is provided by the MAC sublayer, being the following responsibility of the
LLC sublayer.

5.4.1 MAC sublayer

In most wireless regulatory domains, devices using the 2.4 GHz band are required to
implement strategies to share the medium with other stations. In the 2.4 GHz ISM
band regulations require either the use of a variant of the CSMA MAC mechanism
or to severely limit the radio duty cycle of the station. To improve coexistence with
other solutions and to comply with these regulations, WuR-CTC uses CSMA/CA
as a coexistence method. The WuR-CTC WuTx implementations are heterogeneous
and each of those implements CSMA using specific methods to ensure coexistence.
Two CSMA implementations are used by the WuTx supported by the current WuR-
CTC testbed.

1. IEEE 802.11 based WuTx encapsulate the WuR-CTC PPDU inside the MSDU
of an IEEE 802.11g compliant frame, which is sent with a standard complying
transmitter. As a consequence, no additional CSMA mechanisms are used,
since the CSMA/CA coexistence mechanisms defined by IEEE 802.11 already
apply.

2. IEEE 802.15.4 compatible WuTx send the WuR-CTC PPDU using the CS-
MA/CA method provided by the reconfigurable radio of the device [126].
Nonetheless, the configurable parameters of the CSMA/CA implementation
are limited to a given set of values. Those are tuned to be as close as possi-
ble to those defined by IEEE 802.11 for mixed b/g networks[127] to optimize
coexistence with IEEE 802.11 stations (see Table 5.4).
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Table 5.4: WuR CSMA/CA Parameters for the reconfigurable radio

CSMA/CA parameter Value Unit

Slot Time 20 µs

Minimum Backoff
Exponent

4 Slots

Maximum Backoff
Exponenta

8 Slots

Retries 7 n/a

Detection Thresholdb -82 dBm

CCA Interval 14 µs

a Reduced from the 10 defined by the IEEE 802.11-
2003 spec [127] to 8 due to hardware limitations
on the EFR-32MG12 reconfigurable radio[126].
b The minimum allowed by EFR-32MG12 recon-
figurable radio [126].

Latency and coexistence considerations

The WuTx is separated physically from the WuRx, which is implemented as a sepa-
rate peripheral that is interfaced through a bus. This procedure adds additional la-
tency to communication since there is one additional jump that received frames must
travel. Low-power microcontroller hardware exposes feature-limited buses, such as
I2C and SPI. Those provide low data rates, making it impossible to acknowledge
frames with the same speed as other wireless solutions where the transmitter is inte-
grated with the receiver. Those include the solutions used by the main radio of the
devices featured in the testbed, IEEE 802.15.4 and IEEE 802.11. As a consequence,
devices implementing these other solutions can send frames between a WuR-CTC
frame is send and it is acknowledged.

For example, WuR-CTC implementations send ACK frames with a higher delay than
the Short Interframe Space (SIFS) interval defined by the IEEE 802.11 standard.
Therefore, the WuR-CTC ACKs do not gain priority over other frames sent by
coexisting IEEE 802.11 stations and WuR-CTC ACKs need to contend with IEEE
802.11 traffic. This coexistence issue is also present in other wireless solutions such
as Bluetooth [13] and IEEE 802.15.4 [23], which also use heterogeneous inter-frame
spaces for their confirmation messages. For example, these two technologies use
inter-frame spaces that are higher than the SIFS defined by IEEE 802.11 releases.

Nonetheless, with the IEEE 802.11-based WuTx this issue can be mitigated. The
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IEEE 802.11 NAV can be used to reserve the channel with enough time to protect
the WuR-CTC frame, as well as its acknowledgment. Protection can be achieved
by using a CTS-to-self frame before starting a WuR-CTC exchange. However, this
mechanism cannot protect transactions initiated by IEEE 802.15.4 WuTx. These
do not include an IEEE 802.11 compatible radio capable of transmitting the frame
fields required to set the NAV of IEEE 802.11 stations.

5.4.2 LLC sublayer

To provide LLC functionality, WuR-CTC implements a stop-and-wait ARQ mecha-
nism that supports ACK piggybacking and uses 10-bit unicast addresses. With an
address space capable of supporting up to 1024 devices per network, the protocol
can fulfill its role as WuR demonstrator for relatively large networks. Addressing
scope is local, thus device addresses could be reused in other networks, as long as
there is no coverage overlap between them. If desired, devices can be segmented in
sub-networks in an energy efficient manner by using a common prefix at the start
of the address field.

As any WuR protocol, the WuR-CTC LLC protocol defines control messages neces-
sary to awaken and sleep other stations. Nonetheless, in contrast to most WuR im-
plementations, this protocol adds additional header fields that are used to support
reliable general-purpose communications. Additionally, the protocol must enable
WuR functionality, i.e., to wake up or put to sleep other devices. The header fields
used are the minimum required to support the mode of communication chosen for
the testbed, point-to-point reliable communication.

LLC headers

To support the aforementioned use cases, the WuR-CTC MAC Protocol Data Unit
(MPDU) includes the header fields shown in Fig.5.5.

Receiver
Address Type Seq.

Num. Length MPSU CRC-8Sender
Address

10 bit 10 bit 3 bit 1 bit 8 bit 0 - 89 bytes 8 bit

Figure 5.5: WuR-CTC MPDU.

The included fields are:
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� Receiver Address: A 10-bit address that identifies the destination WuR-CTC
node.

� Sender Address: A 10-bit address that identifies the source WuR-CTC node.

� Type: A 3-bit field with the following flags, ordered from the most significant
bit to less significant bit, in Big Endian:

1. Data flag.

2. ACK flag.

3. WuS flag.

Using these flags, the protocol defines 6 types of frames:

– “100”: DATA frame. Includes data.

– “010”: ACK frame. Acknowledges a previously transmitted frame.

– “001”: WAKE frame. Awakens/sleeps other stations.

– “110”: DATA+ACK frame. Includes data and acknowledges a previ-
ous frame.

– “101”: WuS+DATA frame. Includes data for a sleepy station. This
frame type does not keep the station awoken after the reception.

The two remaining frame types are not used in the testbed and remain reserved
for future use.

� Sequence Number: A 1-bit sequence number. The ACK frame sequence
number must match the sequence number of the acknowledged frame.

� Length: An 8-bit length indicator. Contains the WuR-CTC MSDU length
in bytes. Although, the maximum MSDU length supported is only 89, the
length of this field is set to 8 bit due to implementation constraints on the
EFR32MG12 reconfigurable radio [126].

� MSDU: The payload, which can range from 0 to 89 bytes. The maximum
length corresponds to the maximum allowable WuR-CTC PSDU obtained from
Table 5.3 minus 5 bytes, which account for the length of the LLC header and
footer.

� CRC-8: A 8-bit length CRC field. It is calculated on the rest of the MPDU,
including headers and payload, and appended at the end of the payload. The
CRC-8 polynomial is used (5.4):

p(x) = (x8) + x2 + x+ 1 (5.4)

The use of a CRC-8 provides a minimal overhead, and, most importantly, it is
fast on most micro-controllers, including ultra-low-power 8-bit ones, with an
uncomplicated implementation based in a look-up table. While it is true that
the selection of the CRC-8 polynomial could be optimized [128], this decision
requires prior knowledge of the traffic profile.
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LLC message flow

All frame types previously defined, except ACK frames, must be acknowledged by
the receiver. No other frame can be sent before receiving the corresponding ACK
frame or the expiration of the reception timeout. Moreover, all frame types must
feature all the fields defined for the WuR-CTC MPDU as shown in 5.5.

Both IEEE 802.15.4 and IEEE 802.11 use a bounded ACK latency. The bounds
are fixed to be lower than the standard inter-frame space, so, as a consequence, no
other frames can be sent before a frame is acknowledged by its corresponding ACK.
This allows the LLC sublayers of these protocols to skip the source address in the
ACK since no other stations can send a frame at that moment. However, due to the
latency added by interfacing, a tight bound on ACK latency cannot be applied to
WuR-CTC.

It is important to notice that, in contrast to these wireless protocols, WuR-CTC
ACK frames include source and destination addresses, as well as a sequence flag.
Thus, WuR-CTC frames can be acknowledged unambiguously without strict timing
constraints. This is not the case in other protocols, which omit the sender’s address
from the ACK frame. As a result, these protocols need to guarantee strict timing
constraints to ensure that the acknowledgment frame is sent before any other frame.
The SIFS used before an acknowledgment frame in IEEE 802.11 is an example of
such a constraint.

WAKE frame payload data length must be 1 byte, and its value encodes the intent
of the frame:

� A payload of 0xFF is a WAKE frame, which indicates that the device should
be woken up.

� A payload of 0x00 is a SLEEP frame, which indicates that the device needs
to be returned to sleep.

Sending a SLEEP frame is recommended. However, a previously woken device
will return to sleep automatically after a timeout passes. An exchange featuring
the wake-up of a target device and communications using the primary radio can
be found in Fig.5.6. The interaction starts with a WAKE frame (1), which is
acknowledged by an ACK frame (2) when the receiver fully wakes up. After this,
both devices can interact with their main radios. The exchange is finished by a
SLEEP frame (3), which must also be acknowledged by an ACK frame (4).
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Node: 0x001 Node: 0x002

(1) WAKE message to 0x002

(3) SLEEP message to 0x002

(4) ACK to 0x001

0x002 Goes to power save mode

0x002 Wakes from power save mode

(2) ACK to 0x001

Main Radio Exchange

Figure 5.6: Traditional WuS interaction between two sleepy nodes.

However, WuR-CTC is not limited to just coordinating wake-ups. A station can
send data to another with a single WuS+DATA frame, without neither a prior
WAKE frame nor a SLEEP frame. This exchange conveys information but
does not initiate any exchange with the main radio, nor force the receiver device
to remain awake for any given time, as is the case with an interaction that starts
with a WAKE frame. Fig.5.7 features this scenario, with a WuS+DATA frame
(1), acknowledged with an ACK frame after the receiving device processes the
incoming data.
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Node: 0x001 Node: 0x002

(1) DATA+WAKE message to 0x002

(2) ACK to 0x001

0x002 Goes to power save mode

0x002 Wakes from power save mode
0x002 Processes Data

Figure 5.7: Sending data to a sleepy node.

Additionally, a Request/Response interaction between two sleepy WuR-CTC de-
vices using their WuR hardware can also occur. This type of exchange is shown in
Fig.5.8 for devices with assigned WuR addresses 0x001 and 0x002 on a specific situ-
ation featuring a request/response interaction using piggybacking. The interaction
includes a WAKE frame (1) to awake the receiver device, one or more DATA
frames (3), or DATA+ACK frames (4). Finally, the interaction finishes with a
SLEEP frame (6) to indicate to the receiver that it can return to sleep.
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Node: 0x001 Node: 0x002

(1) WAKE message to 0x002

(2) ACK to 0x001

(3) DATA to 0x002

(4) ACK with DATA to 0x001

(6) SLEEP message to 0x002

(7) ACK to 0x001

0x002 Goes to power save mode

0x002 Wakes from power save mode

(5) ACK to 0x001

Figure 5.8: Request/response WuR-CTC communications between two sleepy nodes.

5.5 Device implementation for the WuR-CTC testbed

Devices from the testbed implement the aforementioned protocol layers, as well as a
demo application to evaluate the achievable throughput of WuR-CTC. To obtain an
effective testbed with efficiency, the developments previously produced in chapters
3 and 4 were modified and applied as necessary.

5.5.1 WuTx implementation for the WuR-CTC testbed

The WuTx implementation is done in software in both the ESP-32 and the EFR32MG12
platforms, allowing the reuse of the main radio of the device as WuTx. To support
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both devices, the WuTx implementation differs according to the different approaches
taken for OOK signal generation in both platforms. However, to allow for code re-
usability, both implementations present the same programming API, defined in the
ook com.h header file.

1

2 #include "lib conf.h"
3

4 /* initializes the WuTx*/
5 wur errors t ook wur init context(void);
6

7 /*
8 * Sends a WLAN frame containing a WuS data bytes len. It
9 * requires that ook wur init context has been called

10 * previously to initialize the WuTx.
11 */
12 wur errors t ook wur transmit frame(uint8 t* data bytes, uint8 t ...

data bytes len);

Consequently, the WuTx defines an Application Programming Interface (API) that
is used in the same way in both platforms WuTx implementations. First, ook wur init context

must set up the platform-specific facilities to start using the WuTx, and, afterward,
ook wur transmit frame is called to send frames embedding WuR-CTC PPDU.
Both functions use the wur errors enumeration to inform the caller of the result.

1 typedef enum wur errors{
2 WUR OK = 0,
3 WUR KO = 1
4 }wur errors t;

IEEE 802.11g WuTx

The generation of the OOK signal in the ESP-32 platform is based on previous
work, performed in Chapter 3. Consequently, the implementation of Section 3.8.3
was particularized for the transmission rate of 6 Mbps, which provides the maximum
WuR-CTC MSDU length, as can be seen in Table 5.3. Additional logic was added
to introduce the headers and footers defined in Sections 5.3.

The WuTx implementation of the functions exposed by ook wur init context com-
prises a single C source file, providing the required functions to set up the WuTx,
as well as using it to send WLAN frames embedding a WuR-CTC signal. Addi-
tionally, the implementation also provides functionality to send WuR-CTC signals
over a GPIO port output signal instead of the WLAN radio. The GPIO output
consists of pulses as produced by OOK signals at the output of the RF front-end,
thus, emulating the WuR-CTC protocol for WuRx baseband validation. This was
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used as a debug tool for the development of the library.

The ook wur init context implementation sets up the WLAN for the ESP-32 con-
necting it to an unsecured AP and configuring the data rate to the required. Fol-
lowing, the scrambler sequence is generated according to the data rate to be used
and the seed configured to the library. Currently, both 6 Mbps, featuring BPSK,
and 24 Mbps, featuring 16-QAM, are supported. The ook wur transmit frame im-
plementation embeds a WuR-CTC frame containing the incoming byte buffer inside
a standard-compliant IEEE 802.11g data frame, directed at broadcast. Directing
the frame to non-existing, or existing stations would produce either ACKs frames
and/or retransmissions after the WuR frame. Choosing a broadcast frame limits
further retransmissions of the frame undertaken by the IEEE 802.11 transmitter, as
those are best-effort and no ACK frame is expected. Moreover, those are protected
by the NAV mechanism [112]. First, the PHY WuR-CTC preamble, as well as its
corresponding frame delimiter, are prepended to the aforementioned buffer. After-
ward, the aforementioned byte buffer is translated into a sequence of bytes that
produces a Peak-Flat modulated waveform when sent by the IEEE 802.11g PHY,
according to the procedure explained in Section 3.4. Finally, the resulting bytes are
sent through the IEEE 802.11 interface. Further detail about this implementation
can be found in Annex B.2.

IEEE 802.15.4-compatible WuTx

The WuTx used by IEEE 802.15.4-compatible devices is based on the reconfigurable
radio incorporated in the EFR-32 Mighty Gecko (EFR-32MG12) [35], which sup-
ports sending OOK symbols and obtain a data rate of 250 kbps. It does so through
the Flex-Radio [126] library, which allows defining proprietary radio profiles that
can be switched on and off on-demand.

The implementation of the WuTx also comprises a single source file, which imple-
ments the interface between the Flex-Radio API and the corresponding WuR-CTC
functionality. The implementation is complemented by the rail config.h header
file, containing the configuration according to the Flex-Radio APIs. The frame
format defined in that header uses OOK at 250 kbps and includes the WuR-CTC
PHY headers and the CRC-8 LLC footer. The ook wur init context uses the in-
formation in rail config.h to add the WuTx profile to those supported by the
EFR32MG12 reconfigurable radio. This configuration also includes the CSMA/CA
parameters defined in Table 5.4.

The ook wur transmit frame schedules the transmission of a WuR-CTC frame, and
waits for the operation to finish. As mentioned previously, the WuR-CTC WuTx
shares the same physical transceiver with IEEE 802.15.4, being the default state of
the hardware. Therefore, after a WuR-CTC frame is scheduled, the transceiver is
configured from receiving IEEE 802.15.4 to transmitting WuR-CTC. This operation
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takes around 100 µs, afterward, the WuR-CTC frame is sent. Finally, the transceiver
is configured back into its default state, IEEE 802.15.4 receiver.

This allows WuR-CTC IEEE 802.15.4 devices to perform as a standard-compliant
IEEE 802.15.4 radio. In this testbed, the EFR-32MG12 is running a full IEEE
802.15.4 based protocol stack (the Thread stack [129]) concurrently with the WuR-
CTC solution proposed in this article.

5.5.2 WuRx implementation for the WuR-CTC testbed

The WuRx is based on the implementation presented in Chapter 4. It is divided
into two parts: the RF Front-End that amplifies, demodulates, and normalizes the
incoming signal; and the baseband, which processes incoming signals into a binary
stream and parses them according to the protocol. The block structure of the WuRx
is presented in Fig.5.9

RF front-end

In the same way as in Chapter 4, the RF front-end developed for this testbed is
composed of non-low-power, off-the-shelf RF components. Its block structure is
shown in Fig. 5.9a, and it is analogous to the structure presented in Chapter 4.

Indeed, using a monolithic WuRx implementation including the front-end and the
baseband using an integrated circuit would be ideal for the reduction in power
consumption [105, 130]. Nevertheless, the off-the-shelf approach used produces a
testbed for the evaluation of WuR-CTC that is both low-cost and flexible. The
main characteristics of the current non-low-power RF front-end are summarized in
Table 5.5. All components, except the LNA, which is USB powered, are powered
from the STM32L0R8 3.3V voltage regulator output.

The RF front-end uses one band-pass filter that covers the complete 2.4 GHz ISM
band instead of a single IEEE 802.11 channel filter covering 20 MHz. As a result,
the RF front-end output is derived from the overlap of all channels operating in the
2.4 GHz band. This design increments the interference received by the WuRx versus
a single-channel filter. Nonetheless, the WuRx design remains fit to demonstrate the
viability of WuR-CTC. Not selecting a single-channel filter increments the robustness
of the results presented, as these include a pessimistic scenario concerning received
interference. Moreover, using this type of filter makes the testbed design more
accessible to other researchers since, at the moment of writing of this document,
single-channel IEEE 802.11 filters are not available off-the-shelf on major component
providers. The consequences of the increased interference, both for frame error rate
and false wake-ups are studied and discussed in depth in Section 3.6.
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Low Noise Amplifier
GPIO Labs 40 dB LNA

Envelope Detector
LTC5508

Band-Pass
Filter

GPIO Labs BPF

    CA3140

2 KHz low-pass
filter

To Baseband

(a)

I2C@400kbps

Interrupt Line

WuRx
Microcontroller
STM32L053R8

From RF Front-end

(b)

Figure 5.9: Block diagrams of the two WuRx components. (a) Structure of the RF
front-end. (b) Structure of the baseband.

The filter is followed by an LNA and an envelope detector to demodulate the incom-
ing signal down to baseband. The envelope detector has a low-pass filter behavior
that can be tuned according to the load at its output. The input signals considered
are both the 20 MHz bandwidth pseudo-OOK used by the IEEE 802.11 WuTx, and
the 1 MHz bandwidth OOK used by the IEEE 802.15.4 compatible WuTx. There-
fore, the envelope detector bandwidth cannot be matched specifically to any of the
two signals without compromising the reception of the other. Instead, the detector
output bandwidth was tuned to 2 MHz, a compromise in reception performance for
the two input signal types. Although 2 MHz is lower than the 10 MHz baseband
bandwidth of the IEEE 802.11 WuTx signal, in agreement with the WuRx sim-
ulation results in Chapter 3, the receiver exhibited better performance with lower
bandwidth. Moreover, a 2 MHz receiver bandwidth also favors the reception of OOK
signals sent by the IEEE 802.15.4 compatible WuTx by matching more closely their
1 MHz bandwidth. Nevertheless, such a design is sub-optimal to a matched filter
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implementation, such as those that can be implemented in IEEE 802.11ba receivers,
which only need to be matched to the 4 MHz bandwidth of the MC-OOK symbols.

To translate the OOK pulses into a binary waveform, the front-end uses a compara-
tor, which matches the instantaneous signal level with a reference. In the prototype,
this role is fulfilled by a CA3140 operational amplifier. The reference signal for the
comparator. In contrast to the implementation of Chapter 4, the reference is ob-
tained via a passive RC first-order low-pass filter with a cutoff frequency of 2 kHz.

Table 5.5: Components of the WuRx RF front-end.

Component Parameters Values

LNA

Gain1 31 dB

Noise Factor 2.8 dB

Supply Voltage 5 V

Supply Current 200 mA

BPF

Center
Frequency

2.45 GHz

Bandwidth1 150 MHz

Insertion Loss 2 dB

LTC5508
Active Current 550 µA

Standby Current 2 µA

CA3140 Supply Current1 2 mA

1 Obtained through component characterization.

Baseband

The baseband implementation is shown in Fig. 5.9b. It uses an STM-32L053R8 as
the WuRx microcontroller instead of the PIC-8 used in Chapter 4. With an instruc-
tion clock of 16 MHz, this powerful 32-bit microcontroller is capable of processing
the more complex WuR-CTC protocol in real–time. Nonetheless, its standby power
consumption is higher (410 nA with the required peripherals active, compared to
the 10 nA of the PIC-8 implementation). However, it is still a sub-µA current con-
sumption, fit for low-power operation with a suitable low-power RF front-end. In
addition, the active current consumption of the STM-32L053R8 is lower than with
the PIC-8 (2.82 mA on the STM-32L053R8 vs 3 mA on the PIC-8).
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Table 5.6: Components of the WuRx Baseband.

Component Parameters Values

STM32L053R8

Instruction
Clock

16 MHz

Active Current 2.82 mA

Standby Current 410 nA

To allow for WuR-CTC, the WuRx needs to send the received WuR-CTC payload
to the host device, in addition to taking it up when a WuS is received. Therefore,
in addition to an interruption line to signal wake-ups, a bus is required to send
data from received WuR-CTC frames to the host. Consequently, communications
between the host device and the WuRx microcontroller occur through an I2C bus
at 400 kbps.

WuRx software implementation

Analogously to the WuRx presented before, in Chapter 4, the WuRx microcontroller
firmware handles the reception of incoming frames. Although the new WuRx micro-
controller is relatively powerful, the synchronization procedure is not based on an
optimal correlation mechanism [131], such a procedure still cannot be implemented
using the current hardware. As in the previous work, WuRx synchronization is
achieved by edge detection and a frame delimiter. Nonetheless, the extra comput-
ing power of the current microcontroller platform allows for a more precise imple-
mentation. The wake-up procedure is shown in Fig.5.10, explained below. First,
the microcontroller is woken up from standby mode (0) with a rising edge from the
comparator output, i.e., at the start of an incoming frame on the band of interest.
After waking up, the WuRx microcontroller waits for a transition to a low level
on the comparator output. If the WuRx does not find any transition to 0 after 40
samples sampled at 1.25 Msps, it discards the event as a false wake-up (1). After
detecting the transition, the WuRx starts sampling preamble symbols at 250 ksps.
At this point, if the WuRx finds more than 3 consecutive “0” symbols it discards
the frame as a false wake-up (2). Otherwise, it keeps sampling the preamble until
it encounters the frame delimiter or the preamble finishes. After the delimiter, the
WuRx starts to match the address (3). If it fails to do so, it enters the hold sensing
state, returning to sleep after a minor delay to avoid multiple wake-ups per frame
(6).

Once a valid address is detected, the rest of the WuR-CTC frame is received and
its CRC-8 checksum is calculated (4). If it matches the checksum received from the
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frame, the WuRx microcontroller saves the frame and generates a pulse on the inter-
rupt line to wake up the device connected to the WuRx (5). Otherwise, the frame is
silently discarded, and the microcontroller returns to hold sensing (6). Afterward,
the WuRx microcontroller returns to sleep directly (0). After being woken up, the
host device can retrieve the frame from the WuRx via an I2C command.

Sleep

State 0

Preamble
Detection

State 1

Delimiter
Detection

State 2

Sampling
Frame

State 4

Address
Detection

State 3

Hold 
Sensing

State 6
DELIMITER_ko

ADDRESS_ko

CRC_ko

PREAMBLE_ko

INT_rx

INT_rx

PREAMBLE_ok

DELIMITER_ok

ADDRESS_ok

Wake Host

State 5

CRC_ok

HOLD_timer

HOLD_timer

Figure 5.10: State machine representing the frame parsing procedure implemented
in the WuRx microcontroller. The main reception path is highlighted in red.

To allow high transmission rates while keeping the power consumption of the base-
band low, the WuRx microcontroller uses two clock sources. These are switched on
and off mirroring the state of the host microcontroller:

1. An internal low-power RC oscillator with a clock accuracy of 0.25%. With
this clock source, the WuRx can receive a frame of up to 20 bytes with-
out losing synchronization. The internal RC is used for receiving WuS and
WuS+DATA frames when in low-power mode.

2. An external oscillator circuit that incorporates a crystal resonator rated to 30
ppm accuracy. It has a power consumption of up to 100µW. However, with
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this more precise clock source, the WuRx can receive DATA frames with
the maximum length allowed by the WuR-CTC protocol. This oscillator is
activated once the device is woken up to activity with a WAKE frame. It is
deactivated after receiving a SLEEP frame.

The complete source code for the WuRx firmware can be found in Github [132] and
further details about the implementation can be found in Appendix D.1.

5.5.3 Software implementation of the WuR-CTC solution

The only entity capable of interacting with the WuTx is the host device connected to
the WuRx, as a consequence, most of the WuR-CTC LLC protocol implementation (
as seen in Section 5.4.1) is found there. Said protocol implementation is programmed
in C and strives to be portable, with a low resource footprint. Currently, it supports
both the ESP-32 and EFR-32MG12 platform libraries. The implementation can be
configured to be OS aware and run efficiently in a separate task or thread. Moreover,
it can be executed in an event loop in platforms where no OS is present. To aid in the
reproduction of the results and extension of the WuR-CTC solution presented the
sources for this implementation, which include the WuTx are published in Github
[133]. The implementation of the library is further discussed in Appendix D.1.

To evaluate the WuR-CTC testbed a demonstration scenario was prepared, including
a data transmission from an IEEE 802.11 device to an IEEE 802.15.4 device, both
equipped with WuRx. The code used for the demonstration application for both
the ESP-32 and EFR-32MG12 can also be found in Github [134][135]. This code is
further documented in Appendix D.2.

5.6 Operation of the WuR-CTC testbed

Devices for the testbed implement a demo application to evaluate the achievable
throughput of WuR-CTC. The testbed was used to obtain tangible results that allow
evaluating the feasibility of WuR-CTC. Some of the results were obtained directly
from the testbed operation while others were obtained through the emulation of
network traffic using parameters derived from the testbed operation.

The results obtained directly from the testbed operation include throughput, frame
error rate, latency, and WuS loss. These are used to compare the WuR-CTC testbed
to other state-of-the-art CTC systems found in the literature, as well as to validate
the performance of the WuR system proposed in this chapter.

The results obtained from emulation allow assessing the viability of the low-power
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of our off-the-shelf WuRx solution under realistic conditions. Although the RF
front-end used in this testbed is not low-power, the microcontroller-based baseband
is designed to operate in low-power applications and needs to be assessed in such
scenarios.

5.6.1 Direct results of testbed operation

Scenario

The testbed includes a WuRx equipped IEEE 802.11 device, the ESP-32, and a
WuRx equipped IEEE 802.15.4 device, the EFR-32MG12. Since the objective of
the tests is not to profile the RF front-end of the WuRx, the layout of the devices is
set up to not introduce relevant propagation losses. The two WuR enabled devices
are separated by 1 meter and placed in an indoor residential environment. A diagram
with the testbed layout is shown in Fig.5.11. This layout is also used in other CTC
developments [122], thus, providing a valid comparator for the results.

IEEE 802.11
ESP-32

WuRx

IEEE 802.15.4
EFR-32MG12

WuRx

Figure 5.11: Diagram of testbed experimental setup.

To measure accurately the throughput and frame error rate, each device performs
a transmission of 6.4 kbytes spread over 100 frames, each containing 64 bytes of
randomly obtained payload bytes in its WuR-CTC MSDU. In addition to the 100
frames bearing data, and their corresponding ACK frames, the total transmission
time accounts for the complete WuR interaction, including the WAKE and SLEEP
frames required to wake up the receiving station. This procedure is repeated 25 times
for each of the devices in the testbed, averaging the effect produced by bursts of
interference. Additionally, throughput results include the effect of frame errors and
retransmissions caused by received interference.

The transaction time is measured using a WAKE+DATA frame with a 1-byte
payload. This is the shortest transaction bearing data that is viable to perform
on a sleepy node. The transaction time takes into account the time required to
complete the whole transaction, including the generation and transmission of the
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WuS+DATA frame and the reception of the ACK frame generated by the re-
ceiver device. The test is performed 10 times to reduce the variability in delays.
These can be caused by jitter in the host device event processing time and OS
introduced delays.

Additionally, the probability of a missed wake-up transaction was measured to char-
acterize the performance of the WuR mechanism implemented for the WuR-CTC
testbed. This probability was evaluated using 500 wake-up transactions initiated by
each of the WuTx. A transaction was counted as valid only if both, the WAKE
frame and its respective ACK frame, were correctly received. Each wake-up
transaction was spaced at least 100 ms to minimize bias introduced by bursts of
interference. All WAKE frames were received with the WuRx in the low-power
state.

Throughput and Frame Error Rate Results

The throughput results of the test, classified by WuTx device technology, are shown
in Fig.5.12. Fig.5.13 shows the frame error rate from test sessions. These figures
show the data with a box and whisker plot visualization with median and interquar-
tile ranges, with the results from each of the test realizations overlayed.
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Figure 5.12: Throughput obtained from testbed operation. Results are shown for
each of the WuTx.

The mean throughput is 26.737 kbps for the ESP-32 (IEEE 802.11) and 23.647 kbps
for EFR-32MG12 (IEEE 802.15.4). These differ by roughly 3 kbps. This reduced
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Figure 5.13: Frame error rate obtained from testbed operation. Results are shown
for each of the WuTx.

difference is caused by device-specific frame processing times, including differences
in the speed and latency of I2C communications with the WuRx microcontroller.

The WuR-CTC devices achieved a multiple of 7 throughput improvement over the
CSMA-based CTC state of the art (3.1 kbps in [116]). The mean frame error
rate observed was 13% and 14.48%, for ESP-32 and EFR-32MG12, respectively.
A relatively high frame error rate is expected due to the nature of the experimental
setup. The WuRx receives interference over the span of the 2.4 GHz ISM band while
the WuTx only uses CSMA/CA on the channel where the main radio operates.
Therefore, the testbed is vulnerable to collisions that will affect the WuRx but
that neither the WuTx nor interfering stations can detect. In addition, the current
WuRx implementation is more prone to synchronization errors than a WuRx based
on correlation. However, the frame error rate measured is a three-fold improvement
over non-channel-coded, emulation-based CTC between IEEE 802.15.4 and IEEE
802.11 [117] (40% in [117]). As a result, the throughput obtained with the WuR-
CTC testbed, which includes the loss of throughput due to retransmissions caused
by frame errors, more than doubles the maximum throughput found on the literature
for emulation-based CTC with reliability (10.67 kbps in [122], also evaluated at 1
meter distance).
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Latency Results

The transaction time results obtained are shown in Fig.5.14 with the same box plot
format as the two preceding figures. When the ESP-32 acts as WuTx the transaction
is completed in a mean of 10.63 ms. When the EFR-32MG12 acts as the transmitter,
the transaction takes a mean of 12.83 ms.
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Figure 5.14: Transmission time obtained from testbed operation. Results are shown
for each of the WuTx

Missed Wake-up Signals

With the ESP-32 WuTx, the missed wake-up transaction probability is 3.8%, while
with the EFR-32MG12 WuTx it is 3.2%. Both rates are lower than the 13,74%
frame error rate calculated for the 64 byte data frames evaluated for throughput.
Nonetheless, the effect of a missed wake-up transaction is subsequently mitigated
by retransmissions, which will occur after the receiving station fails to acknowledge
the WAKE frame before a 20 millisecond timeout.

5.6.2 Emulation results

Although the prototype WuRx presented in this testbed has a non-low-power RF
front-end, its baseband is designed to operate under restrictive power constraints.
The WuRx microcontroller, which implements the WuR-CTC baseband, awakens to
decode incoming frames and returns to sleep after processing them.
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Unfortunately, the WuRx microcontroller needs to wake up to discriminate WuR-
CTC frames from non-WuR-CTC frames. Therefore, non-WuR-CTC network activ-
ity increases WuRx power consumption. For this purpose, the length of the WuRx
microcontroller wake-ups caused by non-WuR-CTC network frames was measured.
Results of the measurements are shown in (5.5) show the dependence between the
length of the non-WuR-CTC frame received and the WuRx wake-up length, accord-
ing to the preamble sampling mechanism explained in Section 5.5.2.

This mechanism separates (5.5) into three regions, which can be mapped to the
states shown in Fig.5.10. On the first, the non-WuR-CTC frame ends before the
WuRx wakes up and is discarded after sampling three “0” symbols (1). On the
second, the WuRx finds a transition to “0” in the expected range, but, in the same
way as before, discards the frame after reading three “0” symbols (1). On the last,
a transition to “0” and the comparator output remains high, causing the WuRx to
discard the frame (2). Fig.5.15, shows graphically how the WuRx reacts to non-WuR
frames according to (5.5).

f(Frmlen) =


64µs : Frmlen < 42µs

Frmlen + 22µs : 42 ≤ Frmlen < 74µs

78µs : Frmlen ≥ 74µs

(5.5)

t

Non-WuR signals

t

WuRx Activation

Figure 5.15: Example of non-WuR signals and the corresponding WuRx activation
length according to (5.5).

Emulation framework

To help quantify the activity of the WuRx microcontroller, the WuRx activity rate
is defined as the time fraction that the WuRx microcontroller spends on a high
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power state. The lower the WuRx activity rate is, the longer the battery life of a
WuR-CTC device will be. This figure resembles the duty cycle used in traditional
synchronous power-saving mechanisms. To assess the viability of the baseband, the
WuRx activity rate is measured under two different emulated scenarios comprising
non-WuR interference.

The first scenario models a residential scenario. A location with low IEEE 802.11
network activity coming from a limited number of devices. The second scenario
models a crowded location with a public WLAN and, consequently, features high
network activity coming from a considerable number of devices. As presented in
Section 5.5.2, the WuRx uses a band-pass filter covering the entire 2.4 GHz ISM
band. The filter output is then fed to an envelope detector. As a consequence, the
signal that reaches the WuRx microcontroller contains a binary version of the IEEE
802.11 network activity aggregated from the 2.4 GHz band. This signal reaches a
high level when a frame is being transmitted on one or more channels and a low level
when no transmission is occurring in any of them. To the author’s best knowledge,
there is no public dataset describing such a signal generated by IEEE 802.11 network
activity at the time of writing of this document.

As a solution, one or more single-channel captures of IEEE 802.11 frames are com-
bined to generate an overlapped occupation capture, which emulates the signal re-
ceived by the WuRx microcontroller. This capture is derived from overlapping IEEE
802.11 frame sequences at the same time axis. These sequences are obtained from
one or more IEEE 802.11 network captures. The overlapping process is the follow-
ing: First, an occupation capture is derived from each source capture. The capture
is generated by registering the intervals when a frame transmission occupies the
channel. Second, the occupation captures are overlapped in an iterative process, as
shown in Fig.5.16 to produce the final overlapped occupation capture; Last of all,
the length of the intervals of the overlapped occupation capture is used to calculate
the activity rate of the WuRx, according to (5.5).

The use of IEEE 802.11 frames provides a more pessimistic scenario for the emulation
of the WuRx activity rate than using other standards operating on the 2.4 GHz ISM
band. IEEE 802.11 uses shorter frames than other prominent technologies operating
in the same band (IEEE 802.15.4 [23] or Bluetooth [13]). This leads to a higher
proportion of WuRx wake-up time for each frame and an increased WuRx activity
rate. Moreover, the method used to overlap the occupation captures overestimates
the time that the channel will be seen as occupied by the WuRx since it assumes that
all frame interference events generate constructive interference that can be detected
by the WuRx and trigger a wake-up event.

For the low traffic residential scenario, the overlapped occupation capture is gen-
erated by using as source data 11 captures registered ad-hoc. These captures were
taken with a commodity IEEE 802.11bgn WLAN card on a Linux PC in a single
residential location from all IEEE 802.11 channels where activity was detected in
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the study period. The use of captures from different channels reflects the effect of
different channel traffic profiles on the aggregated network activity.

A capture obtained from the VWave dataset [136] scenario “Pioneer” was used to
construct the overlapped occupation capture for the high network activity scenario.
It features traffic obtained from a public WLAN network with a high number of
devices. However, it does only cover a single channel. Therefore, in this case, the
original “Pioneer” capture is separated into 11 equal-length consecutive segments,
which are used to generate the overlapped occupation capture. An iteration of this
procedure is shown in Fig.5.16

t

Overlapped Occupation Capture for channels 1 to N

t

 Occupation Capture for channel  N+1

t

Overlapped  Occupation Capture for channels 1 to N+1

Figure 5.16: An iteration of the channel overlapping process.

Finally, to relate the network activity with the WuRx activity, the overall occupancy
rate of the channel was defined as the rate of time that the channel remains occupied
with non-WuR-CTC frames.

Emulation Results

As can be observed in Fig.5.17, the final activity rate for the WuRx is lower than
the occupancy rate of the channel in all scenarios. In the high traffic scenario, the
WuRx activity rate is 2.31%, while the channel occupancy rate is 19.33%. In the low
traffic scenario, the activity rate is only 0.24%, while the channel occupancy rate is
1.17%. The ratio of WuRx activity compared to the overall channel occupancy rate
is 0.21 in the low traffic scenario and 0.12 in the high traffic scenario. This reflects
the influence of the distribution of frame lengths received.

With these activity rates, the WuRx baseband consumes an average of 65.54 µA and
7.18 µA in the high and low traffic scenarios, respectively. These results support
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Figure 5.17: Channel occupancy rate and WuRx activity rate for both scenarios.

continuing the development of an off-the-shelf RF front-end to use with the current
WuRx baseband. This combination would provide an accessible solution to evaluate
WuR-CTC in its main application field: energy-restricted wireless networks.

Scenarios with even higher sustained traffic and, therefore, higher WuRx activity
rate than the high traffic scenario emulated here are plausible. However, these sce-
narios take place in locations with a high device density. To support the high density
of devices, such locations usually need to have a reliable power source available. As
a result, these scenarios fall outside of the application scope of WuR-CTC as a
technology to enable low-power device operation.

5.7 Conclusions

This chapter introduces WuR-CTC, a solution that helps to reduce IoT fragmen-
tation by providing direct, reliable, and bidirectional communication between non-
compatible devices. With WuR-CTC, it is demonstrated that WuR is not only a
power-saving mechanism but a contribution to the CTC landscape. Thus, WuR-
CTC defines a high-throughput CTC solution that can be added to existing WPAN
and WLAN devices.

Instead of using a simulated platform, the viability of the WuR-CTC approach is
validated with a physical testbed. The development of that testbed reused com-
ponents previously introduced in chapters 3 and 4, involving both hardware and
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software implementation. The resulting testbed implementation introduces a WuR-
CTC solution covering the PHY and MAC layers. The devices on the testbed were
capable of reliable and fully bidirectional CTC. Moreover, the presented implemen-
tation provides a MTU high enough to support a 6Lo stack, which would enable
it to provide IP-based CTC. The testbed has shown improvements in throughput
over the current CTC state of the art. This demonstrates the advantages of the
WuR-CTC approach over other CTC solutions.

The testbed throughput, which includes the loss of throughput due to retransmis-
sions caused by frame errors, more than doubles the maximum throughput found
on the literature for emulation-based CTC with reliability (10.67 kbps in [122]).
Moreover, it provides a 7-fold throughput improvement over the CSMA-based CTC
state of the art (3.1 kbps in [116]).

Finally, it has been shown that a microcontroller-based WuRx base-band, as imple-
mented using the off-the-shelf approach firstly presented in Section 4, and further
developed in the testbed, can operate in power restricted environments, even those
with high network activity.

Finally, and although the WuR-CTC implementation presented here might not be
optimal in terms of power consumption, it serves in demonstrating the viability of
the WuR-CTC concept. The testbed is implemented using easily available off-the-
shelf parts, thus, enabling the reproduction and extension of the results presented
therein. Additionally, the firmware of all devices used has been made open-source.
The results obtained with the WuR-CTC testbed highlight what can be achieved
by harmonizing the nascent WuR standards: enabling bidirectional communications
between heterogeneous devices in a transparent, and low-power manner.

Finally, Chapter 5 was published in IEEE Access (Q1, Computer Science, Informa-
tion Systems 35/156 [102]) on the 1st of January 2021.

M.Cervià, A.Calveras and J.Paradells. Wake-up Radio: an Enabler of
Wireless Convergence. IEEE Access [137]

Additionally, the firmware developed for this chapter has been open-sourced and
can be found in Github [132–135].

In future work, WuR-CTC could be implemented using more performant WuR hard-
ware solutions, such as those being developed for IEEE 802.11ba. Moreover, a 6Lo
layer can be developed on top of the proposed solution.
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Chapter 6

Conclusion and future work

After the inception of WSN, several incompatible wireless specifications targeted at
low-power applications appeared. Additionally, those solutions have rapid obsoles-
cence cycles. Both of these issues difficult to maintain or upgrade existing WSN.
Thus, fragmentation in the WSN space is one of the main factors hampering the
adoption of WSN solutions. However, fragmentation is a multi-faceted problem.
On one hand, there is an incompatibility between specialized WSN devices and
general-use devices, which are used by end-user and that provide access points to
the Internet. On the other, there is another incompatibility between the differ-
ent solutions competing in the WSN space. To face both of these challenges, this
contribution presents solutions that follow a common thread: WuR. WuR initially
appeared as a power saving-mechanism. It was proposed to enable devices to save
power when inactive and, at the same time, be responsive to incoming messages.
This way, WuR offers improvements over classic power-saving schemes that present
a trade-off between latency and efficiency.

First of all, this work has contributed to the enablement of general-use devices in
low-power applications with WuR. The aim is to reduce the divide between WSN
and those networks formed by general-use wireless devices. For this purpose, a WuR
system for IEEE 802.11 devices was designed and developed. The system, in an im-
provement over IEEE 802.11ba, proposes a WuTx implementation that remains
compatible with legacy devices. The legacy-compatible WuTx uses an amplitude-
based modulation called Peak-Flat, which can be received by OOK receivers. The
WuR system herein presented achieves a 250 kbps data rate and its WuTx imple-
mentation is purely software-based. Therefore, this proposal is easily deployable
in legacy devices with a software update. To be completely WuR-enabled, those
only require the addition of a WuRx peripheral. The viability of the legacy-based
Peak-Flat modulation has been demonstrated using detailed simulations with two
different WuRx architectures. In those simulations, the performance of Peak-Flat
has been found competitive against the state of the art using realistic channel mod-
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els. Moreover, the WuTx has been implemented in commodity IEEE 802.11 devices.
First, on Linux-based computers and, afterward, on an embedded wireless device,
the ESP-32. A journal article describing this work was accepted for publication
in IEEE Access [125]. Additionally, the software-based WuS generation method
derived from this work is in the process of being patented [104]. Finally, further
outreach about this work has been made in IEEE 802.11ba work group meetings.

Next, to complement the previously presented WuTx, a matching WuRx has been
designed and implemented. This device is completely based on easily available off-
the-shelf parts. The development of the WuRx has been separated into two different
projects. The first, covering the RF front-end, and the second, the baseband. This
work features the development of the baseband. This component is based on an
ultra-low-power microcontroller with an sleep mode consumption of 10 nA. Addi-
tionally, the baseband supports 16-bit addressing, with a data rate of 250 kbps. It is
demonstrated that the development of a high rate and low-power WuRx baseband is
feasible using off-the-shelf parts. Moreover, the WuRx design allowed to physically
validate the use of the previously introduced backward-compatible WuTx. Finally,
the off-the-shelf implementation broadens the reproducibility and applicability of
the previous findings. The work related to this baseband was published in IEEE
Wireless Communications Letters[73], and is being used in upcoming developments
by the research group.

The previously developed WuRx and WuTx were applied to the last challenge re-
maining, connecting non-compatible wireless devices. High-rate WuR enables send-
ing arbitrary data, instead of only device addresses. This way, the WuR-CTC con-
cept was introduced to obtain CTC that is high-rate and bidirectional. Thus, WuR
is applied not only as a power-saving mechanism but as an opportunity to connect
previously non-compatible devices. Using the WuTx and WuRx designs based on
those presented in the previous contributions, a physical testbed was implemented
to showcase and validate direct general-purpose communications with WuR between
IEEE 802.11 and IEEE 802.15.4 devices. The testbed demonstrated reliable bidi-
rectional communications, with a throughput higher than previous CTC solutions.
This result showcases the opportunity for harmonization that nascent WuR spec-
ifications bring to the WSN space. This research was accepted for publication in
IEEE Access [137]. Additionally, the source code for all firmware implementation
has been made available publicly [132–135].

The results produced by both of these research topics allow fulfilling both of the
research objectives involving WuR. Nonetheless, other research topics, derived from
those, can be undertaken as future work.

The first is an optimization in the WuRx design presented in Chapters 4 and 5,
concerning the implementation and refinement of a low-power WuRx RF front-end.
This development should complement the already low-power baseband developments
presented in Chapters 4 and 5. For this purpose, a semi-passive WuRx can be devel-
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oped with off-the-shelf parts that, while sub-optimal to monolithic implementations,
can add to the low-power microcontroller baseband, while following the off-the-shelf
design philosophy to broaden the accessibility of WuR research.

The second would be the implementation of an IP-based communications stack over
the WuR-CTC solution presented in Chapter 5. The WuR-CTC solution link layer
provides an MTU of 89 bytes, enabling the use of relatively unconstrained IP-based
communications over a 6-Lo adaptation layer. This way, the utility of WuR-CTC
can be maximized as it can be used to connect WSN devices directly to the internet.
This can allow robust WSN that connect to the internet in a decentralized manner,
without using gateway devices, as is common in current WSN deployments.

Finally, there is current interest in WuR in the cellular ecosystem. The 3GPP
accepted the use of a duty-cycled WuS to signal stations incoming messages in
Release 16 [138][139]. The methodology presented previously for WLAN could be
applied here in order to add OOK-based WuR functionality in a way that is legacy-
compatible with already released Long Term Evolution (LTE) stations.
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Appendix A

WuRx evaluation with MATLAB

Three key elements were implemented in MATLAB and Simulink to perform Peak-
Flat WuR evaluation in a simulated environment. First, the WuTx, described next
in Section A.1, second, the channel emulation, shown in Section A.2, and, last, the
WuRx, presented next in Section A.3.

A.1 Implementing the WuTx

To implement the WuTx, several elements of the MATLAB WLAN Toolkit were
used in conjunction with the software-based method to generate a WuS.

First, the WLAN Toolkit waveform generator object is initialized. The object is
parametrized to use a 6 Mbps bitrate (MCS0 in the WLAN Toolkit library) with
the non-HT header format, which is used by IEEE 802.11g. Additionally, its payload
size is selected to fit the desired number of WuS bits.

1 % 6 mbps and adapt the payload length of the WuR PSDU accordingly
2 nonHT = wlanNonHTConfig;
3 nonHT.MCS = 0;
4 nonHT.PSDULength = 1 + (24*length(psdu)/8);

Code Listing A.1: Initialization of the wavefom generator.

Afterward, the bitstream that generates the WuS is created following the princi-
ples described in Section 3.4. For example, in the following snippet, the variable
one sequence is the 24-bit Flat Symbol generation sequence obtained in (3.17).
The output of this procedure featured in the following snippet is sequence, which
contains the WuS bitstream.
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1

2 % initialize scrambler predicted state and data bit array
3 state = [1,0,1,1,1,0,1];
4 sequence = zeros(1, 24*length(psdu) + 8);
5

6 %prepare the packet with the desired symbols.
7 for i=1:1:(length(psdu)−1)
8 %skip the rest of the first symbol, with the SERVICE field.
9 index = ((i−1)*24) + 9;

10

11 if psdu(i) == 1
12 sequence(index:(index + 23)) = one sequence;
13 end
14 end
15

16 %this is the PSDU, so if the seed is 93, the state is not the same ...
as the

17 %16 SERVICE bits have already been scrambled.
18 for i = 1:1:16
19 res = mod(state(7) + state(4), 2);
20 shifted = zeros(size(state));
21 shifted(2:7) = state(1:6);
22 shifted(1) = res;
23 state = shifted;
24 end
25

26 %generate scrambler sequence for predistortion
27 for i = 1:1:(24*length(psdu))
28 res = mod(state(7) + state(4), 2);
29 shifted = zeros(size(state));
30 shifted(2:7) = state(1:6);
31 shifted(1) = res;
32 state = shifted;
33 sequence(i) = xor(res, sequence(i));
34 end

Code Listing A.2: Generation of the WuS bitstream.

Next, the waveform featuring the WuS is generated by feeding the bitstream con-
tained in the sequence variable, along with the previously created waveform gener-
ator to the wlanWaveformGenerator function. This function outputs the complex
waveform generated by the IEEE 802.11g PHY, according to the input bitstream,
sampled at 20 Msps. Additionally, the scrambler seed previously used to generate
the bitstream is passed.

Finally, the waveform is prepended with 100 ’0’ samples and a corresponding time
axis is generated.

1 txWaveform = wlanWaveformGenerator(sequence, nonHT, ...
'ScramblerInitialization', 93);

2
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3 %prepend amplitude zero.
4 txWaveform = [zeros(100*20,1); txWaveform];
5 time = (0:length(txWaveform)−1)*(1/sample rate);

Code Listing A.3: Generation of the WuS wavefom.

The variable txWaveform contains the WuS waveform, which is next passed to the
channel model.

A.2 Implementing the transmission channel

Channel simulation was used to emulate the effect of the transmission medium on
the WuS waveform. For this purpose, two channel models were used. First, an
AWGN model was implemented, where only Gaussian noise was added to the WuS
waveform. Second, a fading channel model, following IEEE 802.11 TGn Ch.B model
was implemented.

First, the waveform output by the WuTx was resampled to 160 Msps. This is done
to reduce the error on the subsequent filtering done by the WuRx implementation.

1 txWaveform = resample(txWaveform, oversampling factor, 1);

Code Listing A.4: Resampling of the WuS waveform.

No additional signal processing is done in the AWGN implementation. However,
after this step, the TGn. Ch.B model fading channel is incorporated before adding
Gaussian noise.

1 tgnChan = wlanTGnChannel('SampleRate',160e6, ...
2 'CarrierFrequency', 2.45e9);
3 %apply TGnB channel
4 txWaveform = tgnChan(txWaveform);
5 txWaveform = awgn(txWaveform, snr penalty, mean pow);

Code Listing A.5: Addition of fading according to TG. Ch.B model.

To correctly calculate the resulting noise power, the additional bandwidth of the
signal, versus the 20 MHz noise bandwidth must be compensated. Thus, a penal-
ization factor is used to obtain the expected noise spectral density and maintain
the spectral noise density that maintains the 20 MHz Bandwidth SNR previously
defined. Following, the corrected SNR and the WuS waveform are input to the awgn

function, which adds Gaussian noise with the expected spectral density.

1 snr penalty = snr − 10*log10(oversampling factor)
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2 txWaveform = awgn(txWaveform, snr penalty, mean pow);

Code Listing A.6: Addition of Gaussian noise.

Now, txWaveform is ready to be passed to the WuRx implementation.

A.3 Implementing the WuRx

The WuRx implementation follows the block diagram shown in Fig.3.16. It includes
a band-pass filter, envelope detection, low-pass filtering, a bit decoder implementa-
tion, sampling, and, finally, symbol decision.

First, the txWaveform, which is described in baseband, is filtered by a Butterworth
low-pass filter with 2.4 MHz bandwidth. This action emulates the band-pass filtering
that would be applied to an actual band-pass WuR signal.

1 %filter at bw 2.4 MHz just as specified on ba guideline
2 order LPF=2;
3 Fcut = 2.4e6; %3dB cut−off frequency at 2.5MHz
4 Fs = oversampled rate; % the high sampling frequency is used such ...

that the Matlab
5 function "freqz" is approximately correct within 6MHz.
6 [num LPF,den LPF] = butter(order LPF, Fcut/(0.5*Fs), 'low');
7 %save as timeseries for simulink
8 txWaveform = filter(num LPF,den LPF,txWaveform);

Code Listing A.7: Bandpass filtering.

Afterward, the waveform is transformed back to baseband, and its envelope is taken
out. This is modeled by the application of an absolute value function to the complex
input waveform.

1 txWaveform = abs(txWaveform);

Code Listing A.8: Obtaining the signal envelope and .

Afterward, a time axis is generated, and a Timeseries object is generated from the
incoming waveform and the related time axis.

1 timeWaveform = (0:length(txWaveform)−1)*(1/oversampled rate);
2 wlanTimeSeries = timeseries(txWaveform, timeWaveform);

Code Listing A.9: Timeseries object creation.
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The Timeseries object is then passed to a Simulink model implementing low-pass
filtering and bit decoding. Simulink models are developed according to the ar-
chitectures presented in Sections 3.5.2 and 3.5.3, which contain circuital elements.
Simulating those elements with rigor would require a more complex implementa-
tion than what would be feasible to develop in the framework of this contribution.
Fortunately, Simulink provides detailed models of circuital elements and tight inte-
gration with MATLAB, therefore, it was used to facilitate this implementation. The
previously obtained Timeseries object, containing the WuS waveform is fed as an
environment variable to the model using the sim API. The model, in turn, generates
an output Timeseries object, that is received by the script also as an environment
variable.

1 wlanTimeSeries = timeseries(txWaveform, timeWaveform);
2

3 %simulate the result
4 r = sim('lowpass.slx');
5 val out sliced packet
6 res time = val out sliced packet.Time;
7 res val = val out sliced packet.Data;

Code Listing A.10: Calling the Simulink model.

The waveforms generated by a model of a OOK bit decoder implementation, as
described in Section 3.5.2 can be observed in Fig.A.1.

Finally, the bits contained in the Simulink output waveform are sampled. The
sampling time of the first bit is obtained using the delay from the start of the
waveform, to the ideal sampling time of the first WuS bit. Subsequent sampling
times are obtained by adding the bit period to the previous sampling time.

Subsequently, after a bit is sampled, it is compared with its expected value. This
operation provides the number of bit errors, which at the end of the simulation is
used to estimate the BER.

1 samp conversion = oversampled rate;
2 samp offset = 3.8e−6 * samp conversion;
3 init sample = 124e−6 * samp conversion;
4 init sample = init sample + samp offset;
5

6 bits ko = zeros(1,length(psdu));
7 bits detected = zeros(1,length(psdu));
8

9 reference value = mean(res val)
10

11 %skip preabmble bits.
12 for k = 4:(length(psdu) − 1)
13 sample = uint32(init sample + (k − 1)*4e−6* samp conversion);
14 sample = res val(sample);
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Figure A.1: Waveforms input and output by an OOK detector Simulink model.
The orange waveform corresponds to the WuS waveform contaminated with noise
by an AWGN channel model. The yellow waveform corresponds to the low-pass
filtered input signal, fed to the positive terminal of the decoder comparator. The
blue waveform corresponds to the detection threshold, fed to the negative terminal
of the decoder comparator. Finally, the green waveform is the comparator output,
which corresponds to the model output.

15

16 if(sample > 0.7)
17 sample = 1;
18 else
19 sample = 0;
20 end
21

22 if(sample 6= psdu(k))
23 disp(strcat(["Error in bit " num2str(k) ". Sample is " ...

num2str(sample) "
24 and bit is " psdu(k)]))
25 bits ko(k) = 1;
26 bit errors(k − 3) = bit errors(k − 3) + 1;
27 end
28

29 bits detected(k) = sample;
30 end

Code Listing A.11: Bit sampling and comparison.

If any of the bits in the frame is erroneous, the frame reception is considered failed
towards the FER statistic.
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Appendix B

Software-based legacy-compatible
WuTx implementation

This appendix describes the implementation of the legacy-compatible WuTx, focus-
ing on its software implementation. First, the implementation of a Python-based
WuTx, compatible with Linux-based platforms, is presented in detail in Section
B.1. Afterward, a C-based WuTx implementation, compatible with the embedded
ESP-32 platform, is described in Section B.2.

B.1 Python WuTx implementation

The Python-based WuTx implementation is compatible with any Linux computer
that supports Python 2, as long as it includes kernel support for the nl80211 wire-
less driver interface. Currently, nl80211 is the prevalent driver model, thus, the
implementation is compatible with the vast majority of modern Linux distributions.

Access to the WuTx implementation is offered through a command-line interface.
The interface accepts various configuration arguments, which support setting the
desired WLAN output interface, the scrambler seed, the number of frames to trans-
mit, the repetition interval, the target address, and the bitrate to be used by the
PHY. The order of the command-line configuration arguments is the following:

test packets.py -i <interface> -s <seed> -n <packageNumber (discard

or 0 for indefinite)> -f <sendInterval ( in ms)> -a <address> -m <useMcs
(from the 802.11g available MCS)>

Following, the implementation of the WuTx will be discussed in detail, using snippets
from the source code. First, the implementation configures the radio interface with
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the expected bit rate defined by the MCS argument and, subsequently opens a raw
socket bound to the same interface.

1 if not pyw.iswireless(self.int):
2 raise InterfaceDoesNotExistError("Interface "
3 + self.int + " not found.")
4

5 #get info about this interface
6 card = pyw.getcard(self.int)
7 self.macAddr = pyw.macget(card)
8 link = pyw.link(card)
9 Printer.log("interface:"+ self.int)

10

11 if link != None:
12 for d in link:
13 Printer.log(str(d) + ":" + str(link[d]))
14 #try to set the correct tx MCS to this interface
15 # iw dev wlan0 set bitrates mcs−2.4 <mcs>
16 try:
17 subprocess.check call(["iw", "dev", self.int, 'set', ...

'bitrates', 'legacy−2.4',
18 str(BitrateConverter.get rate from mcs(self.m))])
19

20 except subprocess.CalledProcessError:
21 Printer.log("Device does NOT accept speed:" +
22 str(BitrateConverter.get rate from mcs(self.m))
23 +". Continuing at default rate.")
24

25

26 try:
27 self.injecter = socket.socket(socket.AF PACKET,
28 socket.SOCK RAW, socket.htons(0x0003))
29 self.injecter.bind((self.int, 0x0003))
30 except Exception as e:
31 print e
32 raise InterfaceDoesNotAcceptPrepareTx("Could not bind the ...

socket.")

Code Listing B.1: Implementation of the WuTx setup.

Afterward, the payload that generates the WuS specified through the command line
is generated, ready to be sent over the raw socket.

The first step of this procedure consists of aligning the bytes that generate the
WuS with the IEEE 802.11 framing, as explained in Section 3.4.1. However, due
to platform limits, the WuS is introduced into the MSDU instead of the PSDU of
the IEEE 802.11 frame. Hence, extra padding and additional configuration for the
IEEE 802.11 MAC headers is added to the procedure.
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1 #generate the bit array using the seed value after
2 #the signal field (the one extracted with gnu radio)
3 # without MAC header!
4 self.state = BitArray(7)
5 self.state.uint = self.seed
6 self.state.reverse()
7

8 # The rest of service filed, 9 bits, MAC header 24 bytes and ...
llc, which cannot

9 # be modified fully is 36 bytes long,
10 # Consequently, update the scrambler status this byte number so ...

it does not
11 # desync. Also take into acconut the void signal byte.
12 #now generate a packet which needs a sufficient number of bits ...

to send the
13 #address, after MAC symbol has been sent.
14

15 bits headers = 36.0*8.0
16 symbols headers = math.ceil(bits headers/self.bitspersymbol)
17 bits headers padded = symbols headers*self.bitspersymbol
18 bits padding = int(bits headers padded − bits headers)
19

20 #advance signal field symbol, headers plus signal symbol.
21 self.pos = int(symbols headers) + 2
22

23 Printer.log("bits headers: " + str(bits headers))
24 Printer.log( "header symbols : " + str(symbols headers))
25 Printer.log( "bits headers padded : " + str(bits headers padded))
26 Printer.log( "bits padding : " + str(bits padding))
27

28 #two MAC and the last two bytes of LLC, 14 bytes −−> 112 bits
29 settable headers bits = (14*8)
30 #skipping service!
31 self.bitArray = BitArray((self.length*self.bitspersymbol * 16) +
32 int(bits headers padded) + (self.length*self.bitspersymbol * ...

36) − 16)
33 self.bitArrayIndex = 0
34 payload = BitArray((self.length*self.bitspersymbol * 16) + ...

bits padding +
35 settable headers bits + (self.length*self.bitspersymbol ...

* 36))
36 self.offset = 0
37 #advance the state of the scrambler an equal number of the ...

symbols we're going to
38 # skip.
39 self. sendSymbol(False, None, int(bits headers padded − 16))
40

41 #set the settable MAC headers to the required values
42 #dst
43 payload.overwrite('0x010203040506', 0)
44 #src
45 payload.overwrite('0x010203040506', 48)
46 #next header
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47 payload.overwrite('0xabcd', 96)
48

49 #leave the padding bytes as zeros
50

51 self.offset = bits padding + settable headers bits

Code Listing B.2: Adding padding and alignment to the byte sequence generating
the WuS.

The payload WuS uses basic framing. It starts with a 4-bit frame delimiter, followed
by an alternating 16-bit sequence that can allow the receiver to synchronize itself
with the signal. Afterward, the address of the target device is set in the following
16 bits.

1 #add a delimiter for the WuRx
2 for in range(self.length):
3 self. sendSymbol(False, payload)
4

5 for in range(self.length):
6 self. sendSymbol(False, payload)
7

8 for in range(self.length):
9 self. sendSymbol(False, payload)

10

11 for in range(self.length):
12 self. sendSymbol(True, payload)
13

14 #Send a sync preamble
15 for i in range(0,16):
16 self. sendSymbol(True, payload)
17 self. sendSymbol(False, payload)
18

19 #Generate the address bits
20 address = BitArray(16)
21 address.uint = self.address
22

23 for bit in address:
24 for in range(self.length):
25 self. sendSymbol(bit,payload)
26

27 print payload[(bits padding + settable headers bits):]
28 print self.bitArray
29

30 #swap the bit endianness to match what is used on the wlan TX
31 self.message bytes = bytearray(payload.tobytes())
32

33 #Append the payload of the WuS.
34 for i in range((bits padding + settable headers bits)/8, ...

len(self.message bytes)):
35 self.message bytes[i] = ...
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BitReverseTable256[self.message bytes[i]]

Code Listing B.3: Adding framing to the WuS.

This procedure uses the sendSymbol callback, which is set according to the modu-
lation used. It can send the two possible Peak-Flat Symbols. A Flat Symbol, coding
a “1” bit, or a Peak Symbol, coding a “0” bit. It is implemented according to the
sequence generating the Flat Symbol, for example, here can be seen the implemen-
tation for the 6 Mbps data rate, using the Flat sequence found in Section 3.3.2. For
each of the payload bits coding a WuS bit, the implementation adds the expected
scrambler value, and, if the WuS bit is to code a “1”, XORs the corresponding Flat
Symbol sequence bit.

1 def sendSymbol 24(self, bit, payload=None, length=0):
2 good bit one = [1,1,0,0,1,1,1,0,1,0,1,1,0,1,0,1,0,0,0,0,0,0,0,0]
3 if length is 0:
4 length = self.bitspersymbol
5

6 for i in range(self.offset, self.offset + length):
7 res = self.state[6] ˆ self.state[3]
8 #print "[" + str(i) +"]:"+ self.state.bin
9 self.bitArray.set(res, self.bitArrayIndex)

10 self.bitArrayIndex = self.bitArrayIndex + 1
11 if bit is True:
12 payload.set(good bit one[i − self.offset], i)
13 if payload is not None:
14 payload.set(payload[i] ˆ res, i)
15 self.state.ror(1)
16 self.state[0] = res

Code Listing B.4: Add the payload to code for a WuS bit.

Finally, the obtained payload is sent through the raw socket a pre-specified number
of times, with the configured interval between frames. Afterward, the raw socket is
closed and the process exits successfully.

1 def send wus(self):
2

3 if self.sent packets ≥ self.num and self.num is not 0 :
4 raise SenderHasNoMorePacketsToSend("Successfully sent " +
5 str(self.sent packets) + " packets.")
6

7 time.sleep(self.period/1000.0)
8

9 self.injecter.send(self.message bytes)
10

11 self.sent packets = self.sent packets + 1
12 Printer.log("Sent packet num " + str(self.sent packets))
13

14 def send frames(packet sender):
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15 try:
16 last millis = millis()
17 while(True):
18 Printer.log("[" + str(millis()) + "]:" + ...

str(packet sender.sent packets)
19 +":"+hex(packet sender.seed))
20 packet sender.send wus()
21 except SenderHasNoMorePacketsToSend as e:
22 print e
23 Printer.log("Sent all packets.")
24

25 packet sender.close()
26 sys.exit(0)

Code Listing B.5: Add the payload to code for a WuS bit.

B.2 WuTx implementation for the ESP-32

The C-based WuTx implementation is compatible with the API offered by the ESP-
32 microcontroller, a widely available embedded microcontroller that incorporates an
IEEE 802.11 transceiver. In contrast to the Linux-based implementation, this WuTx
offers an API defined by two functions that implement the WuTx functions defined
in the ook com.h header file, as referenced in Section 5.5. This code presented
here implements the WuTx described in Section 3.8.3, the WuR-CTC IEEE 802.11g
WuTx.

First, wlan wur init context sets up the device WLAN with the expected bit rate
and sets up the local state variables, such as the scrambler values and the IEEE
802.11 headers. Additionally, if the USE GPIO flag is set, the library is configured for
transmission of simulated OOK signals through a GPIO port, instead of a WLAN
interface. This feature was developed for debugging and integration purposes.

1 esp err t wlan wur init context(wlan wur ctxt t *wur context,
2 uint8 t initial state,
3 symbol size t symbol size){
4 #ifndef USE GPIO
5 memset(wur context−>frame buffer, 0, WLAN TOTAL BYTES);
6

7 initial state &= 0x7f;
8

9 wur context−>initial scrambler state = reverse(initial state) ...
>> 1;

10 wur context−>current scrambler state = ...
wur context−>initial scrambler state;

11

12 switch(symbol size){
13 case WUR SIZE 6M:
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14 wur context−>send bit fn = set frame bit 6 mbps;
15 break;
16 case WUR SIZE 24M:
17 wur context−>send bit fn = set frame bit 24 mbps;
18 break;
19 default:
20 printf("Symbol size still not supported!\n");
21 return ESP ERR INVALID ARG;
22 }
23

24 wur context−>symbol len = symbol size;
25 wur context−>current len = 0;
26 switch(symbol size){
27 case WUR SIZE 6M:
28 set wifi fixed rate(WIFI PHY RATE 6M);
29 esp wifi set max tx power(ESP CUSTOM POWER 6M);
30 break;
31 case WUR SIZE 24M:
32 set wifi fixed rate(WIFI PHY RATE 24M);
33 esp wifi set max tx power(ESP CUSTOM POWER 24M);
34 break;
35 default:
36 printf("Rate still not supported!\n");
37 return ESP ERR INVALID ARG;
38 }
39

40 memset(wur context−>scrambler buffer, 0, WLAN TOTAL BYTES);
41 wur context−>current scrambler state = ...

wur context−>initial scrambler state;
42 printf("Innitializing frame with scrambler state 0x%02X.\n",
43 wur context−>current scrambler state);
44

45 uint8 t symbol bytes = wur context−>symbol len/8;
46

47 /* get the padding byte number to align payload to OFDM symbol ...
start boundary*/

48 uint8 t padding bytes = (symbol bytes − ((SIGNAL FIELD BYTES + ...
WLAN HEADERS BYTES) %

49 symbol bytes)) % symbol bytes;
50 printf("Using %d Padding bytes for a symbol size of %d ...

bytes.\n", padding bytes,
51 symbol bytes);
52

53 uint16 t total offset bits = 9 + ((WLAN HEADERS BYTES + ...
padding bytes)*8);

54 /* advance the scrambler state to include the SIGNAL field and ...
the non settable byts

55 of the header*/
56 uint8 t scrambler state = wur context−>current scrambler state;
57

58 for(uint16 t i = 0; i < total offset bits; i++){
59 uint8 t feedback = 0;
60 feedback = ((!!(scrambler state & 64))) ˆ ...
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(!!(scrambler state & 8));
61 scrambler state = ((scrambler state << 1) & 0x7e) | feedback;
62 }
63

64 wur context−>current scrambler state = scrambler state;
65 printf("Current scrambler state is 0x%02X.\n", ...

wur context−>current scrambler state);
66

67 /* Create the scrambler values for the whole frame*/
68 /* signal field bytes are scrambled but are not part of the MPDU*/
69 scramble bytes(wur context, WLAN TOTAL BYTES, ...

wur context−>scrambler buffer);
70 memset(&wur context−>frame buffer[wur context−>current len], 0, ...

padding bytes);
71

72 wur context−>padding bytes = padding bytes;
73 #else
74 gpio pad select gpio(OUTPUT GPIO);
75 /* Set the GPIO as a push/pull output */
76 gpio set direction(OUTPUT GPIO, GPIO MODE OUTPUT);
77 #endif
78 gpio pad select gpio(SIGNAL OUTPUT GPIO);
79 /* Set the GPIO as a push/pull output */
80 gpio set direction(SIGNAL OUTPUT GPIO, GPIO MODE OUTPUT);
81

82 return ESP OK;
83 }

Code Listing B.6: Initialize the WuS library with the correct values.

Besides the operations directly implemented in its code, wlan wur init context

uses the scramble bytes function, which prepares cache with pre-scrambled byte
values. The scrambler values of any given frame remain constant, as the ESP-32
uses a constant scrambler seed. Thus, this optimization allows reusing those values
and speeds up the execution of the library.

1 static void scramble bytes(wlan wur ctxt t *ctxt,
2 uint16 t byte len,
3 uint8 t* payload){
4

5 uint8 t scrambler state = ctxt−>current scrambler state;
6

7 /* scramble each byte*/
8 for(uint16 t i = 0; i < byte len; i++){
9 uint8 t scrambler byte = 0x00;

10 /* advance scrambler state and XOR rtesult to byte array, ...
if present*/

11 for(uint8 t j = 0; j < 8; j++){
12 uint8 t feedback = 0, bit = 0;
13 feedback = ((!!(scrambler state & 64))) ˆ ...

(!!(scrambler state & 8));
14 bit = feedback ˆ (payload[i] >> (j%8));
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15 scrambler state = ((scrambler state << 1) & 0x7e) | ...
feedback;

16 /* scrambler sequencer is applied MSB first*/
17 scrambler byte |= bit << (j%8);
18 }
19 if(payload != NULL){
20 payload[i] = scrambler byte;
21 }
22 }
23

24 ctxt−>current scrambler state = scrambler state;
25 }

Code Listing B.7: Initialize a cache with the expected scrambler values.

After initialization, the library is ready to send WuS frames. For this purpose, the
wlan wur transmit frame is used. As wlan wur init context, this function also
supports sending frames through GPIO instead of WLAN by defining the USE GPIO

flag. The main flow, which contemplates sending WuS frames through the WLAN
will be described.

1 esp err t IRAM ATTR wlan wur transmit frame(
2 wlan wur ctxt t *wur context,
3 uint8 t* data bytes,
4 uint8 t data bytes len){
5

6 esp err t esp res;
7

8 #ifndef USE GPIO
9 esp res = wlan wur init frame(wur context);

10 if(esp res != ESP OK){
11 printf("Failed to prepare frame of len %d because of %d.\n",
12 wur context−>current len, esp res);
13 return ESP FAIL;
14 }
15 send preamble legacy wlan(wur context);
16 #else
17 portENTER CRITICAL(&wlanGroupMux);
18 SET OUTPUT;
19 ets delay us(20);
20 send preamble legacy gpio();
21 #endif
22

23 /* now send the actual frame, bit by bit*/
24 for(uint16 t i = 0; i < data bytes len; i++){
25 send byte legacy wlan(wur context, data bytes[i]);
26 }
27

28 #ifndef USE GPIO
29 int32 t res = esp wifi internal tx(ESP IF WIFI STA, ...

wur context−>frame buffer,
30 wur context−>current len);
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31 if(res != ESP OK){
32 printf("Failed to sand frame of len %d because of %d.\n",
33 wur context−>current len, res);
34 }
35 #else
36 CLEAR OUTPUT;
37 portEXIT CRITICAL(&wlanGroupMux);
38 #endif
39 return ESP OK;
40 }

Code Listing B.8: Send the contents of a byte buffer as a WuS through the WLAN
interface.

First, wlan wur transmit frame initializes the frame context with wlan wur init frame.
This auxiliary function re-initializes the frame transmission offset and buffer and,
afterward, copies the WLAN MAC headers to the WLAN frame buffer. Finally, it
advances the buffer offset past the recently set headers.

1 esp err t wlan wur init frame(wlan wur ctxt t *wur context){
2 wur context−>current len = 0;
3

4 switch(wur context−>symbol len){
5 case WUR SIZE 6M:
6 memset(wur context−>frame buffer, 0, WLAN TOTAL BYTES);
7 break;
8 case WUR SIZE 24M:
9 memset(wur context−>frame buffer, 0xff, WLAN TOTAL BYTES);

10 break;
11 default:
12 printf("Rate still not supported!\n");
13 return ESP ERR INVALID ARG;
14 }
15

16 /* set the header data apropiately*/
17 memcpy(wur context−>frame buffer, standard wlan headers, ...

WLAN SETABLE BYTES);
18 wur context−>current len += WLAN SETABLE BYTES;
19 /* signal field bytes are scrambled but are not part of the MPDU*/
20 wur context−>current len += wur context−>padding bytes;
21

22 return ESP OK;
23 }

Code Listing B.9: Reset frame state variables.

Afterward, the WLAN payload bytes encoding the bits encoding the WuR-CTC
physical framing are added to the WLAN frame buffer. This is done by repeatedly
calling the send bit fn callback, which is set according to the WLAN bit rate used.
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1 static void send preamble legacy wlan(wlan wur ctxt t *wur ctxt){
2

3 wur ctxt−>send bit fn(wur ctxt, 0);
4 wur ctxt−>send bit fn(wur ctxt, 1);
5 wur ctxt−>send bit fn(wur ctxt, 0);
6 wur ctxt−>send bit fn(wur ctxt, 1);
7 wur ctxt−>send bit fn(wur ctxt, 0);
8 wur ctxt−>send bit fn(wur ctxt, 1);
9 wur ctxt−>send bit fn(wur ctxt, 0);

10 wur ctxt−>send bit fn(wur ctxt, 1);
11 wur ctxt−>send bit fn(wur ctxt, 0);
12 wur ctxt−>send bit fn(wur ctxt, 1);
13 wur ctxt−>send bit fn(wur ctxt, 0);
14 wur ctxt−>send bit fn(wur ctxt, 1);
15 wur ctxt−>send bit fn(wur ctxt, 1);
16 }

Code Listing B.10: Send WuR-CTC Physical preambles.

The send bit fn callback adds the required bytes to send a Peak or Flat Symbol
and, afterward, scrambles them with the corresponding pre-scrambled byte values
taken from the previously generated cache.

1 static void send preamble legacy wlan(wlan wur ctxt t *wur ctxt){
2

3 static IRAM ATTR esp err t set frame bit 6 mbps(wlan wur ctxt t ...

*ctxt, uint8 t value){
4

5 if(value){
6 memcpy(&ctxt−>frame buffer[ctxt−>current len], ...

one seq 6mbps, 3);
7 }
8

9 if(scramble payload(ctxt, 3) != ESP OK){
10 return ESP FAIL;
11 }
12

13 return ESP OK;
14

15 }

Code Listing B.11: Encode a WuS bit into the WLAN frame buffer.

After adding the preambles, the rest of the frame is added using the send byte legacy wlan

function, which takes one byte from the buffer passed as an argument to wlan wur transmit frame

and codes it into the WLAN frame buffer. As before, this is done by calling the
send bit fn callback for each of the bits contained in the byte passed to the func-
tion. Additionally, this function also allows sending the message through a GPIO
port by generating 4 µs OOK pulses.
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1

2 static IRAM ATTR void send byte legacy wlan(wlan wur ctxt t ...

*wur ctxt, uint8 t byte){
3 for(int16 t i = 7; i ≥ 0; i−−){
4 uint8 t bit;
5 bit = (byte & (1 << i)) >> i;
6 #ifndef USE GPIO
7 wur ctxt−>send bit fn(wur ctxt, bit);
8 #else
9 if(bit){

10 SET OUTPUT;
11 }else{
12 CLEAR OUTPUT;
13 }
14 cdelay(928);
15 #endif
16 }
17 }

Code Listing B.12: Encode a payload byte into the WLAN frame buffer.

Finally, the WLAN frame buffer is sent through the WLAN interface by using the
ESP-32 API function esp wifi internal tx.
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Appendix C

Software-based WuRx baseband
implementation

The WuRx baseband used in Chapter 5 comprises a software-based implementation
in an STM32L053R8 microcontroller. This piece of software is tasked with sampling
and decoding incoming WuR-CTC frames. Afterwards it notifies the host device
when a correct frame is received. The WuRx baseband only implements address
correlation, therefore, the PSDU of received frames is read by the host device via
an I2C bus, being processed there. This section covers the software implementation
of the WuRx baseband in Section C.1. Additionally, the bus protocol and I2C
implementation are covered in Section C.2.

C.1 WuR-CTC receiver

The WuRx baseband must manage its energy consumption. It awakens when a pu-
tative WuR-CTC frame is detected, and returns to sleep after finishing its reception.

The awakening status of the microcontroller follows the state diagram displayed in
Fig.C.1. By default, the microcontroller sleeps in S.0, but there are two events that
can trigger its wakening. First, a high level is detected in its signal input, which
corresponds to a putative WuR-CTC frame, or a pulse in its wake-up line, which
is used by the host device to wake the microcontroller before a bus interaction via
I2C.

When awakened by a putative WuR-CTC frame reception, the microcontroller goes
to S.1, and attempts the decoding of the possible WuR-CTC frame. If the frame
fails to decode or decodes with an incorrect CRC-8, the microcontroller returns to
S.0, sleeping. If a correct frame is received, the microcontroller will awaken the host
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Figure C.1: State diagram of the WuRx baseband activation.

device via an interrupt line in S.2. Afterward, the microcontroller will match the
expected state of the host device. If the received frame is not a WAKE frame,
the microcontroller will return to sleep (S.0). However, if a WAKE is received,
the microcontroller will remain awakened in S.3, waiting for larger data frames.
Additionally, while in S.3, the microcontroller will maintain its precise oscillator
circuit activated. While in S.3, the microcontroller does also answer messages sent
by the host device via I2C. This state will be maintained until either a timeout is
reached, or a SLEEP frame is received, returning to S.0.

When awakened by its wake-up line, the microcontroller will reach S.4, waiting for an
incoming I2C request by the host device or a timeout. After any of these conditions
are met, the device returns to sleep in S.0.

The behavior shown in Fig.C.1 is implemented by the firmware loopMain function
in a state machine implementation using a switch clause. All the following code
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fragments include signaling using the GPIO pin set as WAKE UP FAST that is used
for debugging.

First, S.0 is implemented by the WUR SLEEPING label, which handles sleeping the
microcontroller and transitioning to either S.1, or S.4, depending on the input events.
To solve possible conflicts, passible WuR-CTC frame reception events have priority
over I2C wake-ups. If a WuR-CTC frame reception is started the function calls
WuR process frame, which implements the reception, returning to sleep if the frame
reception is not a WAKE frame, or fails. The logic switches the next state as
WUR WAIT DATA, representing S.3 in the diagram is a WAKE frame is received.
Analogously, if the event is an I2C transaction, the logic switches the next state to
WUR WAIT I2C, implementing S.4. In both of these last cases, the length of a timeout
is configured in millisecond scale. For a WAKE frame reception, the number of
wake-up milliseconds specified in the frame is used. For an I2C transaction, a fixed
timeout of 10 milliseconds is configured.

1 case WUR SLEEPING:
2 I2C operation = 0;
3 WuR operation = 0;
4 WuR go sleep(context);
5 /* configure on wakeup for HSI use*/
6 SystemPower sleep();
7 if(WuR operation && !I2C operation){
8 /* WAKE MS for a WAKE frame, will be != 0, it will be ...

0xFFFF for a
9 SLEEP frame*/

10 wake status = WuR process frame(context, 1);
11 WuR operation = 0;
12 if(wake status < 0){
13 break;
14 }
15 if(wake status > 0){
16 app wurx ctxt.wurx timestamp = wake status;
17 app wurx ctxt.wurx status = WUR WAIT DATA;
18 }
19 }else if(I2C operation){
20 I2C operation = 0;
21 app wurx ctxt.wurx timestamp = 10;
22 app wurx ctxt.wurx status = WUR WAIT I2C;
23 }else{
24 WuR operation = 0;
25 I2C operation = 0;
26 }
27 break;

Code Listing C.1: Switch clause controlling wake-up behaviour.

The more complex S.3 state is implemented by the WAIT DATA clause. This clause
handles arming the exit timeout at the number of milliseconds specified by the
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previous WAKE frame. Next, the clause configures the high-speed and accurate
oscillator circuit as the clock source. Following, the clause includes a while loop,
running until the end of the timeout. This loop handles the same interruptions as
WUR SLEEPING clause, using the same priorities, where WuR-CTC frame receptions
take over I2C frame reception events. However, if a SLEEP frame is received by
WuR process frame, the timeout controlling the loop is set to exit in 10 ms. After
the timeout ends, the clause deactivates the high-speed oscillator circuit, sets the
state to WUR SLEEPING, and returns the control to the main state machine loop.

1 case WUR WAIT DATA:
2 /* activate HSE for use. During this interval the ...

microcontroller will be
3 irresponsive.*/
4 PIN SET(GPIOA, WAKE UP FAST);
5 SystemPower data();
6 HAL SuspendTick();
7 /* notify host that we have a frame ready via interrupt and ...

change state
8 accordingly*/
9 PIN SET(GPIOA, ADDR OK);

10 ADJUST WITH NOPS;
11 ADJUST WITH NOPS;
12 PIN RESET(GPIOA, ADDR OK);
13 /* prepare TIM6 to end at the timeout */
14 TIM6 CLK ENABLE();
15 TIMER SET PERIOD(TIM6, app wurx ctxt.wurx timestamp);
16 TIMER UIT ENABLE(TIM6);
17 TIMER COMMIT UPDATE(TIM6);
18 TIMER ENABLE(TIM6);
19 WuR operation = 0;
20 I2C operation = 0;
21 pinModeWaitFrame();
22 /* activate again the reception interrupt*/
23 /* loop used inside the state to minimize jitter*/
24 PIN RESET(GPIOA, WAKE UP FAST);
25 while(!IS TIMER EXPIRED(TIM6))
26 {
27 if(WuR operation && !I2C operation){
28 PIN SET(GPIOA, WAKE UP FAST);
29 pinModeFrameReceived();
30 WuR operation = 0;
31 PIN RESET(GPIOA, WAKE UP FAST);
32 /* WAKE MS for a WAKE frame, will be != 0, it will be ...

0x1 for a
33 SLEEP frame*/
34 wake status = WuR process frame(context, 0);
35 PIN SET(GPIOA, WAKE UP FAST);
36 if(wake status < 0){
37 WuR operation = 0;
38 pinModeWaitFrame();
39 continue;
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40 }
41 else if(wake status == 0x0001){
42 /* if that, set the TIM6 to timeout in 10 ms*/
43 TIMER SET PERIOD(TIM6, 10);
44 TIMER UIT ENABLE(TIM6);
45 TIMER COMMIT UPDATE(TIM6);
46 }
47 pinModeWaitFrame();
48 WuR operation = 0;
49 PIN SET(GPIOA, ADDR OK);
50 ADJUST WITH NOPS;
51 ADJUST WITH NOPS;
52 PIN RESET(GPIOA, ADDR OK);
53 }else if(I2C operation){
54 /* protect I2C transactions from frame interruptions*/
55 PIN SET(GPIOA, WAKE UP FAST);
56 PIN RESET(GPIOA, WAKE UP FAST);
57 pinModeFrameReceived();
58 while(i2Cbusy());
59 I2C operation = 0;
60 pinModeWaitFrame();
61 PIN SET(GPIOA, WAKE UP FAST);
62 }
63 }
64 CLEAR TIMER EXPIRED(TIM6);
65 TIMER DISABLE(TIM6);
66 TIM6 CLK DISABLE();
67 /* deactivate HSE and return to the default clock config with HSI*/
68 SystemPower wake();
69 app wurx ctxt.wurx status = WUR SLEEPING;
70 break;

Code Listing C.2: Switch clause controlling data frame reception.

Finally, I2C frame reception is controlled by the WUR WAIT I2C clause. This simpler
handler runs to receive a single I2C request or timeout expiration. Once a request
is received, the timeout is cut short to 2 milliseconds, which allows the interrupt
routine handling I2C transfers to finish.

1

2 case WUR WAIT I2C:
3 pinModeWaitFrame();
4 /* prepare TIM6 to end at the timeout */
5 TIM6 CLK ENABLE();
6 TIMER SET PERIOD(TIM6, app wurx ctxt.wurx timestamp);
7 TIMER UIT ENABLE(TIM6);
8 TIMER COMMIT UPDATE(TIM6);
9 TIMER ENABLE(TIM6);

10 WuR operation = 0;
11 I2C operation = 0;
12 while(!IS TIMER EXPIRED(TIM6))
13 {
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14 if(I2C operation){
15 I2C operation = 0;
16 TIMER SET PERIOD(TIM6, 2);
17 TIMER COMMIT UPDATE(TIM6);
18 }
19 }
20 TIMER DISABLE(TIM6);
21 I2C operation = 0;
22 reset i2c state(&I2cHandle);
23 app wurx ctxt.wurx status = WUR SLEEPING;
24 break;

Code Listing C.3: Switch clause controlling I2C request reception.

The function WuR process frame implements WuR-CTC frame reception, as defined
previously in Fig.5.10. As the previous switch clauses of loopMain, this function
uses strobes with the WAKE UP FAST pin for debug purposes.

First, after being called, the function arms a timer for the detection of the WuR-
CTC PHY preambles. This function can be called after the device is woken up, or
with the device already woken up, as it is done in the WAIT DATA clause. Waking
up from sleep takes more clock cycles, thus, when the execution has reached this
sentence the window of opportunity for the preamble to start appearing is lower.
Therefore, the timeout adjusted is lower if the WuR process frame is called after
the device is woken up.

1

2 if(context−>wurx state == WURX HAS FRAME){
3 /* notify host via interrupt that a frame is still pending*/
4 return −1;
5 }
6 /*wait 64.25 us for operation completition */
7 context−>wurx state = WURX DECODING FRAME;
8

9 PIN RESET(GPIOA, WAKE UP FAST);
10 PIN SET(GPIOA, WAKE UP FAST);
11 PIN RESET(GPIOA, WAKE UP FAST);
12

13 /* wait for preamble init.*/
14 TIM2 CLK ENABLE();
15 /* block for 60 us @ 16 ticks x us*/
16 if(from sleep){
17 preamble timeout = 650;
18 }
19 else{
20 preamble timeout = 1300;
21 }
22 TIMER SET PERIOD(TIM2, preamble timeout);
23 TIMER COMMIT UPDATE(TIM2);
24 CLEAR TIMER EXPIRED(TIM2);

141



25 TIMER ENABLE(TIM2);

Code Listing C.4: Prepare the reception of the WuR-CTC preambles.

Next, the microcontroller begins sampling the input GPIO, waiting for a transition
to a low level, which indicates the start of the WuR-CTC preambles. To reduce
the possibility of false detection caused by noise, or a transient, the routine requires
5 consecutive samples to be 0 before detecting the start of a possible WuR-CTC
preamble. If no low levels are detected, the frame reception is canceled and the
function returns an error.

1

2 /* finish waiting for PHY encapsulation start */
3 while(!IS TIMER EXPIRED(TIM2)){
4 PIN SET(GPIOA, WAKE UP FAST);
5 PIN RESET(GPIOA, WAKE UP FAST);
6

7 result = READ PIN(GPIOA, INPUT FAST, INPUT FAST NUM);
8 if(result != 0){
9 continue;

10 }
11

12 PIN SET(GPIOA, WAKE UP FAST);
13 PIN RESET(GPIOA, WAKE UP FAST);
14 result = READ PIN(GPIOA, INPUT FAST, INPUT FAST NUM);
15 if(result != 0){
16 continue;
17 }
18

19 PIN SET(GPIOA, WAKE UP FAST);
20 PIN RESET(GPIOA, WAKE UP FAST);
21 result = READ PIN(GPIOA, INPUT FAST, INPUT FAST NUM);
22 if(result != 0){
23 continue;
24 }
25

26 PIN SET(GPIOA, WAKE UP FAST);
27 PIN RESET(GPIOA, WAKE UP FAST);
28 result = READ PIN(GPIOA, INPUT FAST, INPUT FAST NUM);
29 if(result != 0){
30 continue;
31 }
32

33 PIN SET(GPIOA, WAKE UP FAST);
34 PIN RESET(GPIOA, WAKE UP FAST);
35

36 result = READ PIN(GPIOA, INPUT FAST, INPUT FAST NUM);
37 if(result == 0){
38 preamble detected = 1;
39 if(from sleep){
40 ALIGN WITH AWAKE;
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41 }
42 else{
43 ALIGN WITH SLEEP;
44 }
45 break;
46 }
47

48 }
49 if(!preamble detected){
50 PIN SET(GPIOA, WAKE UP FAST);
51 PIN RESET(GPIOA, WAKE UP FAST);
52 PIN SET(GPIOA, WAKE UP FAST);
53 PIN RESET(GPIOA, WAKE UP FAST);
54 return −2;
55 }

Code Listing C.5: Detect the start of a WuR-CTC preamble.

Following, the routine starts sampling OOK symbols, searching for the end of the
preamble, the frame delimiter. For this purpose, the timer is armed at 63 cycles,
which correspond to 4 µs, the symbol period, and the sampling period. Afterward,
the routine enters a sampling loop, which ends when the frame delimiter is found.

The delimiter is composed of two consecutive high-level symbols. To quickly discard
non-WuR-CTC frames at this stage, the procedure ends with an error if three con-
secutive low-level symbols are sampled. Additionally, if no delimiter is found before
the number of symbols contained in the WuR-CTC PHY preamble, the function
returns with an error.

1

2 TIMER SET PERIOD(TIM2, 63);
3 TIMER COMMIT UPDATE(TIM2);
4

5 while(!IS TIMER EXPIRED(TIM2));
6 CLEAR TIMER EXPIRED(TIM2);
7 for(loop = 0; loop < PREAMBLE MATCHING LEN; loop++){
8 while(!IS TIMER EXPIRED(TIM2));
9 CLEAR TIMER EXPIRED(TIM2);

10 result = READ PIN(GPIOA, INPUT FAST, INPUT FAST NUM);
11 PIN SET(GPIOA, WAKE UP FAST);
12 PIN RESET(GPIOA, WAKE UP FAST);
13

14 if(result && last results[0]){
15 /* We have a preamble match! */
16 break;
17 }
18 else if(!result && !last results[0] && !last results[1] && ...

!last results[2]){
19 PIN SET(GPIOA, WAKE UP FAST);
20 PIN RESET(GPIOA, WAKE UP FAST);
21 PIN SET(GPIOA, WAKE UP FAST);
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22 PIN RESET(GPIOA, WAKE UP FAST);
23 return −2;
24 }
25

26 last results[2] = last results[1];
27 last results[1] = last results[0];
28 last results[0] = result;
29

30 if(loop == PREAMBLE MATCHING LEN −1){
31 PIN SET(GPIOA, WAKE UP FAST);
32 PIN RESET(GPIOA, WAKE UP FAST);
33 PIN SET(GPIOA, WAKE UP FAST);
34 PIN RESET(GPIOA, WAKE UP FAST);
35 return −2;
36 }
37 }

Code Listing C.6: Search for the frame delimiter.

After sampling the WuR-CTC PHY preambles, the WuR-CTC MPDU follows. It
starts with the destination address field. The routine correlates the address field
with the device own address, if any mismatch is detected, the function returns with
error, detecting a frame not directed to the station. This and all subsequent fields
that pertain to the WuR-CTC MPDU are stored into a frame buffer, which will be
sent via I2C to the host device after successful frame detection.

1

2 /* match address!*/
3 //64 instructions loop at 16MHz
4 for(loop = 0; loop < ADDR LEN; loop++){
5 while(!IS TIMER EXPIRED(TIM2));
6 CLEAR TIMER EXPIRED(TIM2);
7 result = READ PIN(GPIOA, INPUT FAST, INPUT FAST NUM);
8

9 PIN SET(GPIOA, WAKE UP FAST);
10 PIN RESET(GPIOA, WAKE UP FAST);
11 if(result != context−>wurx address[loop]){
12 PIN SET(GPIOA, WAKE UP FAST);
13 PIN RESET(GPIOA, WAKE UP FAST);
14 PIN SET(GPIOA, WAKE UP FAST);
15 PIN RESET(GPIOA, WAKE UP FAST);
16 PIN SET(GPIOA, WAKE UP FAST);
17 PIN RESET(GPIOA, WAKE UP FAST);
18 WuR clear buffer(context);
19 return −3;
20 }
21

22 frame buffer[offset] = (result != 0);
23 offset++;
24 }

Code Listing C.7: Address correlation.
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Next, all the WuR-CTC MPDU fields, up to the length field, are read and stored.
The received length is stored for the subsequent reception of the payload and CRC-
8. If the received length is higher than the specified by the protocol, an error is
returned.

1

2 /* store sender address*/
3 for(loop = 0; loop < ADDR LEN; loop++){
4 while(!IS TIMER EXPIRED(TIM2));
5 CLEAR TIMER EXPIRED(TIM2);
6 result = READ PIN(GPIOA, INPUT FAST, INPUT FAST NUM);
7

8 PIN SET(GPIOA, WAKE UP FAST);
9 PIN RESET(GPIOA, WAKE UP FAST);

10 frame buffer[offset] = (result != 0);
11 offset++;
12 }
13

14

15 /* now decode frame type, 3 bits */
16 while(!IS TIMER EXPIRED(TIM2));
17 CLEAR TIMER EXPIRED(TIM2);
18 frame buffer[offset] = READ PIN(GPIOA, INPUT FAST, INPUT FAST NUM);
19 PIN SET(GPIOA, WAKE UP FAST);
20 PIN RESET(GPIOA, WAKE UP FAST);
21 offset++;
22

23 while(!IS TIMER EXPIRED(TIM2));
24 CLEAR TIMER EXPIRED(TIM2);
25 frame buffer[offset] = READ PIN(GPIOA, INPUT FAST, INPUT FAST NUM);
26 PIN SET(GPIOA, WAKE UP FAST);
27 PIN RESET(GPIOA, WAKE UP FAST);
28 offset++;
29

30 while(!IS TIMER EXPIRED(TIM2));
31 CLEAR TIMER EXPIRED(TIM2);
32 frame buffer[offset] = READ PIN(GPIOA, INPUT FAST, INPUT FAST NUM);
33 PIN SET(GPIOA, WAKE UP FAST);
34 PIN RESET(GPIOA, WAKE UP FAST);
35 offset++;
36

37 /* now decode seq number, one bit */
38 while(!IS TIMER EXPIRED(TIM2));
39 CLEAR TIMER EXPIRED(TIM2);
40 frame buffer[offset] = READ PIN(GPIOA, INPUT FAST, INPUT FAST NUM);
41 PIN SET(GPIOA, WAKE UP FAST);
42 PIN RESET(GPIOA, WAKE UP FAST);
43 offset++;
44

45 /* now decode length! */
46

47 for(loop = 0; loop < LENGTH LEN; loop++){
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48 while(!IS TIMER EXPIRED(TIM2));
49 CLEAR TIMER EXPIRED(TIM2);
50 result = READ PIN(GPIOA, INPUT FAST, INPUT FAST NUM);
51 PIN SET(GPIOA, WAKE UP FAST);
52 PIN RESET(GPIOA, WAKE UP FAST);
53 if(result){
54 length |= 1 << (7 − loop);
55 }
56

57 frame buffer[offset] = result;
58 offset++;
59 }
60

61 if(length > MAX LEN DATA FRAME){
62 PIN SET(GPIOA, WAKE UP FAST);
63 PIN RESET(GPIOA, WAKE UP FAST);
64 PIN SET(GPIOA, WAKE UP FAST);
65 PIN RESET(GPIOA, WAKE UP FAST);
66 PIN SET(GPIOA, WAKE UP FAST);
67 PIN RESET(GPIOA, WAKE UP FAST);
68 PIN SET(GPIOA, WAKE UP FAST);
69 PIN RESET(GPIOA, WAKE UP FAST);
70 WuR clear buffer(context);
71 return −4;
72 }

Code Listing C.8: Reception of header fields.

Following, the payload contained in the MSDU is received jointly with the CRC-
8. Afterward, the headers, which were stored as bits are converted to a byte array.
Finally, the calculated CRC-8 is matched with the received. If a mismatch is detected
the frame is discarded and an error is returned.

1 /* now we have length, read the rest of bits!*/
2

3 for(byte = 0; byte < length + 1; byte++){
4 uint8 t byte res = 0;
5

6 for(loop = 0; loop < 8; loop++){
7 while(!IS TIMER EXPIRED(TIM2));
8 CLEAR TIMER EXPIRED(TIM2);
9 result = READ PIN(GPIOA, INPUT FAST, INPUT FAST NUM);

10 PIN SET(GPIOA, WAKE UP FAST);
11 PIN RESET(GPIOA, WAKE UP FAST);
12

13 if(result){
14 byte res |= 1 << (7 − loop);
15 }
16

17 context−>frame buffer[WUR DATA OFFSET BYTES + byte] = byte res;
18 }
19 }
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20

21 /* well, now the frame is over, let's just process it */
22

23 /* first, move from header bits to bytes! */
24 WuR set frame buffer(context, frame buffer, 32);
25 context−>frame len += length + 1;
26

27 /* is CRC ok? */
28 if(!WuR is CRC good(context)){
29 PIN SET(GPIOA, WAKE UP FAST);
30 PIN RESET(GPIOA, WAKE UP FAST);
31 PIN SET(GPIOA, WAKE UP FAST);
32 PIN RESET(GPIOA, WAKE UP FAST);
33 PIN SET(GPIOA, WAKE UP FAST);
34 PIN RESET(GPIOA, WAKE UP FAST);
35 PIN SET(GPIOA, WAKE UP FAST);
36 PIN RESET(GPIOA, WAKE UP FAST);
37 WuR clear buffer(context);
38 return −4;
39 }

Code Listing C.9: Reception of payload and CRC-8.

Finally, the return value of the function is calculated. If the received frame type is a
WAKE/SLEEP frame, the function returns the number of milliseconds contained
in the frame payload, which allows the WuRx to set up the sleep timeout accordingly.
However, if neither of the WuS frames is detected, the function returns 0.

1

2 /* a WuR WAKE/SLEEP frame is present*/
3 if(length == 2 && ((context−>frame buffer[WUR FLAGS OFFSET BYTES] & ...

0x0E) == 0b0010)){
4 memcpy(&wake ms, &context−>frame buffer[WUR DATA OFFSET BYTES], 2);
5 wake ms = ntohs(wake ms);
6 }
7

8 context−>wurx state = WURX HAS FRAME;
9

10 /* return wake time to notify the WuRx the time in ms it must stay ...
awake.*/

11 return wake ms;

Code Listing C.10: Obtaining sleep timeout.

C.2 Communications with the host device

Communications over the I2C bus follow the request/response pattern, where the
WuRx microcontroller is always the server, and the host device is the client. Both
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devices operate in a dedicated I2C bus, and each of them has a pre-assigned 7-bit
address.

To perform a request, the host device must first wake the microcontroller via a
dedicated wake ping. Afterward, the host device can start a request. Sadly it was
not possible to enable read/write transactions with the STM32L053R8 and host
libraries. Specifically, no solution that supported this was found for the ESP-32
native SDK. As a consequence, every request is initiated by a write transaction,
where the host specifies what operation it wants to perform. Following, the host
can send the frame to perform the solicited operation, which can be contained by
an I2C frame with a read or write flag.

The frame used to select operation is the following, as shown in FigC.3. It includes
a 1 byte payload, with a 7-bit register identifier followed by a 1-bit write flag.
Afterward, the host will send a write or read operation, and its format depends on
the operation register used.

Receiver
Address Reg. Write

FlagWrite Flag

7 bit 1 bit 7 bit 1 bit

Figure C.2: I2C frame to perform register selection.

The microcontroller firmware supports 3 operations, which are identified with 3
registers. Each of them defines a frame format that is used to read or write the
corresponding data. These are described by the following enumeration.

1. I2C STATUS REGISTER: A read-only register that enables reading the state of
the WuR-CTC frame reception. The content includes 2 bytes. The first byte
contains the frame reception state. It follows an enumeration with 3 states,
enumerated by the following identifiers:

(0) WURX NO FRAME

(1) WURX DECODING FRAME

(2) WURX FRAME READY

The second byte contains, if any, the number of bytes that can be read from
the received WuR-CTC frame buffer. The frame format is shown in Fig.C.3.

2. I2C ADDR REGISTER: A read/write register that allows reading and setting the
WuR-CTC address of the microcontroller. The content is the 10-bit WuR-
CTC address set to the device, which can be either read or written by the
host. The frame format is shown in Fig.C.4.

148



Receiver
Address

WuR
State Buffer LenRead Flag

7 bit 1 bit 8 bit 8 bit

Figure C.3: I2C frame to read WuR-CTC frame reception status.

Receiver
Address

WuR
Address

Read/Write
Flag

7 bit 1 bit 16 bit

Figure C.4: I2C frame to read or write WuR-CTC address.

3. FRAME REGISTER: A read-only register that includes a buffer storing the last
received frame. Includes a number of bytes, limited to the maximum WuR-
CTC PSDU. The frame format is shown in Fig.C.5.

Receiver
Address

WuR
Frame BufferRead Flag

7 bit 1 bit 1-94 bytes

Figure C.5: I2C frame to read WuR-CTC frame buffer.

All the logic handling the I2C interaction is written in a state machine called by
Interrupt Service Routine (ISR) handling I2C transactions. Although the state
machine is relatively complex, it only reads or writes variables to, or from, device
memory and does not include any blocking operation. Hence it is suitable for running
inside an ISR without penalizing device performance.

1 static void i2c state machine(uint8 t i2c operation, ...
I2C HandleTypeDef *I2cHandle){

2 uint8 t register id;
3 uint8 t operation id;
4 uint16 t address = 0;
5

6 if(i2c operation == I2C ERROR){
7 /* restore to the initial state!*/
8 reset i2c coms(I2cHandle);
9 return;

10 }else if(i2c operation != I2C SUCCESS READ && i2c operation != ...
I2C SUCCESS WRITE){

11 reset i2c coms(I2cHandle);
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12 return;
13 }
14

15 switch(i2c context.i2c state){
16 case I2C IDLE:
17 reset i2c coms(I2cHandle);
18 break;
19 case I2C WAITING OPERATION:
20 register id = i2c context.i2c frame buffer[0] >> 1;
21 operation id = i2c context.i2c frame buffer[0] & 0x01;
22

23 if(operation id){
24 operation id = I2C WRITE OP;
25 }else{
26 operation id = I2C READ OP;
27 }
28

29 switch(register id){
30 case I2C STATUS REGISTER:
31 if(operation id == I2C WRITE OP){
32 //write is not supported in this register
33 reset i2c coms(I2cHandle);
34 }
35 else{
36 i2c context.i2c frame buffer[0] = ...

wur context−>wurx state;
37 i2c context.i2c frame buffer[1] = ...

wur context−>frame len;
38

39 if(HAL I2C Slave Transmit IT(I2cHandle, ...
(uint8 t*)

40 i2c context.i2c frame buffer, 2) != HAL OK)
41 {
42 /* Transfer error in transmission process */
43 reset i2c coms(I2cHandle);
44 }
45 }
46 break;
47 case I2C ADDR REGISTER:
48 if(operation id == I2C WRITE OP){
49 if(HAL I2C Slave Receive IT(I2cHandle, ...

(uint8 t*)
50 i2c context.i2c frame buffer, 2) != HAL OK)
51 {
52 /* Transfer error in transmission process */
53 reset i2c coms(I2cHandle);
54 }
55 }
56 else{
57 address = WuR get hex addr(wur context);
58 i2c context.i2c frame buffer[0] = (address ...

& 0x0F00) >> 8;
59 i2c context.i2c frame buffer[1] = address & ...
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0xFF;
60

61 if(HAL I2C Slave Transmit IT(I2cHandle, ...
(uint8 t*)

62 i2c context.i2c frame buffer, 2) != HAL OK)
63 {
64 /* Transfer error in reception process */
65 reset i2c coms(I2cHandle);
66 }
67 }
68 break;
69 case I2C FRAME REGISTER:
70 if(operation id == I2C WRITE OP){
71 //write is not supported in this register
72 reset i2c coms(I2cHandle);
73 }
74 uint8 t frame len;
75

76 if(wur context−>frame len == 0){
77 frame len = 1;
78 }else{
79 frame len = wur context−>frame len;
80 }
81

82 memcpy((uint8 t*)i2c context.i2c frame buffer,
83 (uint8 t*)wur context−>frame buffer, ...

frame len);
84 if(HAL I2C Slave Transmit IT(I2cHandle, (uint8 t*)
85 i2c context.i2c frame buffer, frame len) != ...

HAL OK)
86 {
87 /* Transfer error in transmission process */
88 reset i2c coms(I2cHandle);
89 }
90 WuR clear context((wurx context t*)wur context);
91 break;
92

93 default:
94 reset i2c coms(I2cHandle);
95 return;
96 }
97 /* successful start of read/write operation, save ...

status for completition.*/
98 if(operation id == I2C WRITE OP){
99 i2c context.i2c state = I2C PERFORM WRITE;

100 }else{
101 i2c context.i2c state = I2C PERFORM READ;
102 }
103

104 i2c context.i2c last reg = register id;
105 i2c context.i2c last operation = operation id;
106 break;
107 case I2C PERFORM WRITE:
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108 if(i2c operation != I2C SUCCESS READ){
109 //wrong operation for the current state!
110 reset i2c coms(I2cHandle);
111 break;
112 }
113 if(i2c context.i2c last reg == I2C NONE REGISTER){
114 /* Should not happen,operation not started?!*/
115 reset i2c coms(I2cHandle);
116 break;
117 }
118 switch(i2c context.i2c last reg){
119 case I2C ADDR REGISTER:
120 address = 0;
121 address |= (i2c context.i2c frame buffer[0] & ...

0x03) << 8;
122 address |= i2c context.i2c frame buffer[1];
123 WuR set hex addr(address, wur context);
124 break;
125 default:
126 //Operation not supported on write access
127 break;
128 }
129 reset i2c state(I2cHandle);
130 break;
131 case I2C PERFORM READ:
132 if(i2c operation != I2C SUCCESS WRITE){
133 //wrong operation for the current state!
134 reset i2c coms(I2cHandle);
135 break;
136 }
137 if(i2c context.i2c last reg == I2C NONE REGISTER){
138 /* Should not happen,operation not started?!*/
139 reset i2c coms(I2cHandle);
140 break;
141 }
142 switch(i2c context.i2c last reg){
143 case I2C FRAME REGISTER:
144 /* as frame has been read, we can flush it and ...

reset the start of the
145 machine*/
146 break;
147 default:
148 break;
149 }
150 reset i2c state(I2cHandle);
151 break;
152 default:
153 break;
154 }
155 }

Code Listing C.11: I2C state machine.
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Appendix D

WuR-CTC host software
implementation

The host devices used in the WuR-CTC use software to handle the LLC layer of the
WuR-CTC protocol. The software implementing LLC was developed as a library
that is hardware agnostic, maximizing code sharing between the heterogeneous host
devices featured in the WuR-CTC testbed. Its implementation is discussed next, in
Section D.1.

To produce results, a demonstration scenario of WuR-CTC was developed for both
ESP-32 and EFR32MG12 devices. The scenario implements a data transfer over
WuR-CTC and provides the means to control and validate the process. Its imple-
mentation details are discussed in Section D.2.

D.1 WuR-CTC stack implementation

To support the ESP-32 and EFR32MG12 the library uses a Hardware Abstraction
Layer (HAL) that abstracts interactions with the platform software libraries. The
HAL comprises a configuration header file, lib conf.h, where a variable sets the
target platform.

1

2 #define LIB CONF H
3

4 #define USE ESP VERSION
5 //#define USE EFR VERSION
6

7 #if (defined USE ESP VERSION) && defined(USE EFR VERSION)
8 #error "Only one target platform can be used."
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9 #endif
10

11 #if !(defined USE ESP VERSION) && !defined(USE EFR VERSION)
12 #error "Please, chose one valid traget platform at the start of ...

lib conf.h."
13 #endif
14

15 /* add common ESP 32 includes*/
16 #ifdef USE ESP VERSION
17

18 #include "esp system.h"
19 #include "driver/i2c.h"
20 #include "freertos/FreeRTOS.h"
21 #include "freertos/semphr.h"
22 #include "esp wifi.h"
23

24 #define I2C WAKEUP GPIO GPIO NUM 19
25

26 #define USE FREERTOS
27 #endif /* USE ESP VERSION */
28

29 /* add common EFR 32 includes*/
30 #ifdef USE EFR VERSION
31 #define NO RTOS
32

33 #include "em cmu.h"
34 #include "ustimer.h"
35 #include "hal−config.h"
36 #include PLATFORM HEADER
37 #include CONFIGURATION HEADER
38 #include <stdio.h>
39 #define ntohs(x) ntohs(x)
40 #define htons(x) htons(x)
41 #endif /*USE EFR VERSION*/

Code Listing D.1: WuR-CTC library configuration header.

Additionally, the lib conf.h abstracts away the presence of an Real Time Operating
System (RTOS) by conditionally defining RTOS primitives, such as mutexes and
queues. If no RTOS is configured, those are left as void implementations, otherwise,
they are defined using the equivalent RTOS primitives.

1

2 #ifdef USE FREERTOS
3

4 #define WuRBinarySemaphoreHandle t SemaphoreHandle t
5 #define WuRRecursiveMutexHandle t SemaphoreHandle t
6

7 #define WuRBinarySemaphoreCreate() xSemaphoreCreateBinary()
8 #define WuRBinarySemaphoreGive(x) xSemaphoreGive(x)
9 #define WuRBinarySemaphoreTake(x, y) xSemaphoreTake(x, y)

10
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11 #define WuRRecursiveMutexCreate() xSemaphoreCreateRecursiveMutex()
12 #define WuRRecursiveMutexGive(x) xSemaphoreGiveRecursive(x)
13 #define WuRRecursiveMutexTake(x, y) xSemaphoreTakeRecursive(x, y)
14

15 #define WuRTaskCreate(task function, task name, stack size, args p, ...
priority,

16 task handle)
17 xTaskCreate(task function, task name, stack size, args p, priority, ...

task handle)
18

19 #define WuRTickPeriodMS portTICK PERIOD MS
20 #define WuRMaxDelayMS portMAX DELAY
21

22 #else /* USE FREERTOS */
23

24 #define WuRBinarySemaphoreHandle t uint32 t
25 #define WuRRecursiveMutexHandle t uint32 t
26

27 #define WuRBinarySemaphoreCreate() 0
28 #define WuRBinarySemaphoreGive(x)
29 #define WuRBinarySemaphoreTake(x, y)
30

31 #define WuRRecursiveMutexCreate() 0
32 #define WuRRecursiveMutexGive(x)
33 #define WuRRecursiveMutexTake(x, y)
34

35 #define WuRTaskCreate(task function, task name, stack size, args p, ...
priority,

36 task handle)
37

38 #define WuRTickPeriodMS 1
39

40 #define WuRMaxDelayMS 1
41

42 #endif /* USE FREERTOS*/

Code Listing D.2: WuR-CTC RTOS configuration.

Other HAL functions include I2C transactions, WuTx interactions, GPIOs, and
ISRs. Those are defined in the i2c com.h and ook com.h headers. Those definitions
are implemented in a platform-specific manner in the respective “c” source files, one
for each platform. The platform-specific sources for each supported platform are
contained in the esp 32 and efr 32 folders, which are conditionally compiled.

The rest of the library is relatively generic, with few snippets that are condition-
ally compiled, depending on the target platform. The non-platform-specific func-
tions that implement sending and receiving WuR-CTC messages over the WuTx
are implemented in the ook wur.c source file, while those comprising I2C inter-
actions are implemented in the i2c wur.c source file. Finally, wur.c implements
the state machine handling the WuR-CTC stack implementation. This part of the
implementation is RTOS aware and uses mutexes to allow concurrent access to its
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functionality.

The WuR-CTC functionality is exposed to clients through the wur.h header that
contains the functions and callbacks that are exposed to the client software. The
wur init function initializes the WuR-CTC library and its associated structures.
This function must be called before starting any WuR-CTC interaction. With RTOS
platforms, wur init starts running the WuR-CTC state machine in its own thread.

The header exposes several functions to allow clients to send WuR-CTC messages:

� wur send wake: send WAKE/SLEEP frames, to a given address, using a
return-to-sleep timeout in milliseconds passed as the argument ms.

1 wur tx res t wur send wake(uint16 t addr, uint16 t ms);

Code Listing D.3: wur send wake signature.

� wur send data: send DATA frames and DATA+ACK frames to a given
address.

1 wur tx res t wur send data(uint16 t addr, uint8 t* data,
2 uint8 t data len, uint8 t is ack,
3 int8 t ack seq num);

Code Listing D.4: wur send data signature.

Where the addr argument contains the target address, data and data len

the buffer to be sent and its size, is ack can be set to configure the frame
as DATA+ACK, and, finally, ack seq num passes the sequence flag. This
last argument can be set as ”-1” to use the expected is ack as tracked by the
library.

� wur send ack: send ACK frames, to a given address.

1 wur tx res t wur send ack(uint16 t addr, int8 t ack seq num);

Code Listing D.5: wur send ack signature.

In the same way as wur send data, the ack seq num can be set to force a
certain sequence number in the outgoing frame.

Since the library can run with targets that do not use any RTOS, it offers an
asynchronous callback-based interface to receive events. Clients can add their own
callbacks to receive frame transmission and reception events using the following
functions:
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� wur set tx cb: subscribe to a callback that will be called when the result of
a frame transmission is known. The callback needs to present the following
signature.

1 typedef void (*wur tx cb) (wur tx res t tx res);

Code Listing D.6: wur tx cb signature.

Where wur tx res t is an enumeration containing the following cases:

1 typedef enum wur tx res{
2 WUR ERROR TX OK = 0,
3 WUR ERROR TX ACK DATA TIMEOUT = −1,
4 WUR ERROR TX ACK WAKE TIMEOUT = −2,
5 WUR ERROR TX NACK = −3,
6 WUR ERROR TX FAILED = −4,
7 WUR ERROR TX BUSY = −5
8 }wur tx res t;

Code Listing D.7: wur tx res t enumeration.

� wur set rx cb: subscribe to a callback that will be called when a non-ACK
frame is received. The callback will be passed needs to present the following
signature.

1 typedef void (*wur rx cb) (wur rx res t rx res, uint8 t* ...
rx bytes, uint8 t rx bytes len);

Code Listing D.8: wur rx cb signature.

Where wur rx res t is an enumeration containing:

1 typedef enum wur rx res{
2 WUR ERROR RX OK = 0,
3 WUR ERROR RX FAILED = −1
4 }wur rx res t;

Code Listing D.9: wur rx res t enumeration.

And rx bytes is a stack-resident byte buffer with the received payload bytes.
Finally, rx bytes len codes the length of the received buffer.

The main loop of the protocol, handling timeouts and the WuR-CTC stack logic
is implemented in the wur tick. In platforms without RTOS, the user must call
this function repetitively, preferably at constant intervals. In RTOS platforms, this
wur tick is called at constant intervals in an associated thread started by wur init.

The code of wur tick handles timeouts, frame reception over I2C, and calls the
associated client callbacks when a suitable message is required.
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D.2 WuR-CTC demo scenario

To evaluate a file transmission using the WuR-CTC protocol, two demonstration
applications using the WuR-CTC library were developed. In contrast to the WuR-
CTC library, those make extensive use of their platform-specific libraries. In this
Section, the implementation details for both platforms will be explained.

Nonetheless, both of them implement a scenario that includes a wake-up of another
WuR-CTC station, sending 100 frames containing 64 bytes of data each, and fi-
nally, sending the receiving station to sleep. This functionality is coded into a state
machine, which code is largely shared between the two platforms.

Additionally, the demonstration application provides the means to start the test
scenario and to visualize the results in a simple way. For this purpose, both appli-
cations expose the controls for the test scenario using communication interfaces, a
minimal web app in ESP-32, and a CoAP-based API in the EFR32MG12.

D.2.1 Event loop

The event loop of the demo application comprises several states, which enable a
transmitter to wake up a receiver, send 100 DATA frames, and put the receiver to
sleep. The receiver will just ACK received frames, as it is required and implemented
in the WuR-CTC stack implementation. Moreover, the transmitter also tracks the
run time of the test and keeps a score of frame dropouts, which are those not ACKed
by the receiver.

The state machine handling the transmitter demo logic incorporates several states,
that, on a correct demo execution, occur in an almost-sequential manner, as shown
in Fig.D.1. These cover the wake-up of the other station and include an internal
loop that sends the test frames and annotates the result of each transmission.

The code sections implementing the state machine described in Fig.D.1 are im-
plemented in two functions, shared between both implementations. These are,
WuRAppTick, handling timeouts and non-message-related state transitions, and wur tx cb,
handling state transitions that depend on a message transmission outcome.

1

2 void WuRAppTick(void){
3

4 uint32 t current timestamp = halCommonGetInt32uMillisecondTick();
5 uint16 t wur addr, wake ms;
6 wur tx res t tx res;
7

8 wur tick(current timestamp);
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Figure D.1: State diagram of the transmitter demonstration. The internal loop that
sends and validates the test frames is highlighted in red

9

10 switch(app ctxt.app status){
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11 case APP IDLE:
12 if(current timestamp % 10000 == 0){
13 emberAfCorePrintln("[%d]: Device IDLE", ...

current timestamp);
14 }
15 break;
16

17 /* ... */
18

19

20

21 case TEST SENDING WAKE:
22 printf("[%d]: Sending Test Wake Device REQ!\n", ...

current timestamp);
23 wur addr = TEST ADDR & (0x03FF);
24 wake ms = TEST WAKE INTERVAL;
25

26 app ctxt.app status = TEST WAITING WAKE;
27 tx res = wur send wake(wur addr, wake ms);
28 if(tx res != WUR ERROR TX OK){
29 printf("[%d]: Failure to send Wake Device REQ!\n", ...

current timestamp);
30 respondWithError(APP TRANS KO TX);
31 app ctxt.app status = TEST COMPLETE FAILURE;
32 break;
33 }
34 printf("[%d]: Sent Test Wake Device REQ!\n", ...

current timestamp);
35 break;
36

37 case TEST WAITING WAKE:
38 //printf("Waiting frame!");
39 break;
40

41

42 case TEST GENERATE FRAME:
43 printf("Generating frame!");
44 generate test frame(test data buf, TEST FRAME SIZE);
45 app ctxt.app status = TEST SEND FRAME;
46 break;
47

48 case TEST SEND FRAME:
49 printf("[%d]: Sending Data to Device test, frame %d/%d!\n",
50 current timestamp, test ctxt.current frame, ...

test ctxt.total frames);
51 wur addr = TEST ADDR & (0x03FF);
52 app ctxt.app status = TEST WAIT FRAME;
53 tx res = wur send data(wur addr, ...

(uint8 t*)&test data buf, TEST FRAME SIZE,
54 false, −1);
55 if(tx res != WUR ERROR TX OK){
56 printf("[%d]: Failure to send Data to Device ...

REQ!\n", current timestamp);
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57 update text context(&test ctxt, false);
58 app ctxt.app status = TEST GENERATE FRAME;
59 }
60 printf("[%d]: Sent Test Data Device REQ!\n", ...

current timestamp);
61 break;
62

63 case TEST WAIT FRAME:
64 //printf("Wait Frame!");
65 break;
66

67 case TEST COMPLETE OK FRAME:
68 printf("Frame sent OK!");
69 update text context(&test ctxt, true);
70 if(test ctxt.test status == TEST IN PROGRESS){
71 //printf("Prepare next frame!");
72 app ctxt.app status = TEST GENERATE FRAME;
73 }
74 break;
75 case TEST COMPLETE KO FRAME:
76 printf("Frame sent KO!");
77 update text context(&test ctxt, false);
78 if(test ctxt.test status == TEST IN PROGRESS){
79 printf("Prepare next frame!");
80 app ctxt.app status = TEST GENERATE FRAME;
81 }
82 break;
83 case TEST COMPLETE FAILURE:
84 printf("Test failure!");
85 fail test context(&test ctxt, "Error while taking the ...

test.\n",
86 current timestamp);
87 app ctxt.app status = APP IDLE;
88 break;
89 default:
90 break;
91 }
92 }

Code Listing D.10: WuRAppTick implementation snippet handling WuR-CTC demo.

1

2 static void wur tx cb(wur tx res t tx res){
3 uint32 t current timestamp = halCommonGetInt32uMillisecondTick();
4

5 switch(app ctxt.app status){
6

7 /* ... */
8

9 case TEST WAITING WAKE:
10 if(tx res == WUR ERROR TX OK){
11 app ctxt.app status = TEST GENERATE FRAME;
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12 }
13 else{
14 app ctxt.app status = TEST COMPLETE FAILURE;
15 }
16 break;
17 case TEST WAIT FRAME:
18 if(tx res == WUR ERROR TX OK){
19 printf("[%d]: Received ACK!\n", current timestamp);
20 app ctxt.app status = TEST COMPLETE OK FRAME;
21 }
22 else if(tx res == WUR ERROR TX ACK DATA TIMEOUT){
23 printf("[%d]: Received NACK!\n", current timestamp);
24 app ctxt.app status = TEST COMPLETE KO FRAME;
25 }
26 else{
27 printf("[%d]: Received Error!\n", current timestamp);
28 app ctxt.app status = TEST COMPLETE FAILURE;
29 }
30 memset(app ctxt.app data buf, 0, MAX APP DATA BUF);
31 app ctxt.app data buf len = 0;
32 break;
33 default:
34 printf("[%d]: Received ACK while not waiting. Is this ...

an error?!",
35 current timestamp);
36 break;
37 }
38 }

Code Listing D.11: wur tx cb implementation snippet handling WuR-CTC demo.

The test progress and results are contained in the test ctxt structure, which is up-
dated with the results by calling update text context every time that the outcome
of a message is known. This same function ends the test when the target number of
frame transmissions has been logged.

1

2 static void update text context(test ctxt t* ctxt, bool OK result){
3 ctxt−>current frame++;
4 if(OK result){
5 ctxt−>OK frames++;
6 }
7 else{
8 ctxt−>KO frames++;
9 }

10 if(ctxt−>current frame == ctxt−>total frames){
11 aprove test context(ctxt, halCommonGetInt32uMillisecondTick());
12 }
13 }

Code Listing D.12: update text context implementation.
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The test ctxt t stores all the information related to the execution of the test,
which is later accessed and sent to clients using platform specific methods.

1

2 typedef struct test ctxt{
3 test status t test status;
4 uint16 t total frames;
5 uint16 t current frame;
6 uint16 t OK frames;
7 uint16 t KO frames;
8 uint32 t start timestamp;
9 uint32 t finish timestamp;

10 char failure reason[TEST REASON LEN];
11 }test ctxt t;

Code Listing D.13: test ctxt t structure definition.

D.2.2 Control and display interfaces

The methods to start and display the status of the WuR-CTC test are specific
to each platform. Both of them use different communication stacks and present
diverging implementation constraints.

ESP-32

The ESP-32 demo implementation exposes an HTTP-based interface that can start
a test scenario and poll the results of a test still ongoing, or finished. For this
purpose, two HTTP endpoints are exposed.

� POST /wur/test/start: Requests the start of a WuR-CTC demonstration.
The request produces the following responses, depending on the state:

– If no WuR-CTC demonstration is currently running, a new demonstration
is started. The response is a 200 (OK) code, with a JSON in the body
with the vale: {“ok”: true }

– If a WuR-CTC demonstration is currently running, the operation fails
with an error 500.

� GET /wur/test/status: Requests the run status of the WuR-CTC demon-
stration. The response contains a JSON with the following format.

1 {
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2 "status": String ("idle", "in_progress", ...

"finished", "failed "),

3 "currentFrame": Integer,

4 "totalFrames": Integer,

5 "framesOK": Integer,

6 "framesKO": Integer,

7 "runTime": Number

8 }

Code Listing D.14: /wur/test/status response format

For validation purposes, the ESP-32 demo includes endpoints to perform additional
functionality. These include:

� POST /wur/data: Sends a WuR-CTC DATA frame to a station. The request
must contain a JSON body with the following format:

1 {
2 "wur_address": String. Device address in ...

hexadecimal format,

3 "data": String. Data buffer to be sent in ...

hexadecimal format

4 }

Code Listing D.15: /wur/data request body format

The response values can be the following:

– 200 (OK). The frame was successfully sent and acknowledged by the
receiving station. The response contains a plaintext body with the hex-
adecimal representation of the data, if any, responded by the receiving
station in the ACK frame.

– 400 (Bad Request) The contents of the request could not be properly
parsed. A plaintext string with more details is added to the body of the
response.

– 412 (Precondition Failed) The device is already busy with another task.
A plaintext string with more details is added to the body of the response.

� POST /wur/wake: Sends a WuR-CTC WuS frame to a station. The request
must contain a JSON body with the following format:

1 {
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2 "wur_address": String. Device address in ...

hexadecimal format,

3 "wake_time": Integer. Wake -up frame payload ...

for the receiver, in milliseconds.

4 }

Code Listing D.16: /wur/wake request body format

A value of “wake time” of “1” is used to trigger a SLEEP frame. Other
values trigger the transmission of a WAKE frame with a configurable receiver
sleep timeout set to “wake time” milliseconds.

The response values can be the following:

– 200 (OK). The frame was successfully sent and acknowledged by the
receiving station. The response contains a plaintext body with the hex-
adecimal representation of the data, if any, responded by the receiving
station in the ACK frame.

– 400 (Bad Request) The contents of the request could not be properly
parsed. A plaintext string with more details is added to the body of the
response.

– 412 (Precondition Failed) The device is already busy with another task.
A plaintext string with more details is added to the body of the response.

The ESP-32 demonstration firmware provides an embedded webapp that allows the
HTTP API previously defined over any HTTP browser compliant with Javascript.
A screenshot of the interface is shown in Fig.D.2.

With the webapp, a user can easily start a WuR-CTC demonstration test run with
the “Start Test” button displayed at the bottom of the interface shown in Fig.D.2.
Afterward, the test status will be periodically polled and updated by the webapp.
The user can check the progress and the results under the “Test Status” textual
label.
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Figure D.2: Screenshot of the embedded ESP-32 control webapp

EFR32MG12

A CoAP interface is used to expose WuR-CTC demonstration controls and results.
These implement a similar request/response-based interface as the one defined with
the ESP-32, with the same endpoints and methods. Nonetheless, to support the
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more constrained environment, the message format used in requests and responses
is binary.

To control the WuR-CTC demonstration, two CoAP endpoints are used:

� POST /wur/test/start: Requests the start of a WuR-CTC demonstration.
The request produces the following responses, depending on the state:

– If no WuR-CTC demonstration is currently running, a new demonstration
is started. The response is a 203 (valid) code, with an empty body.

– If a WuR-CTC demonstration is currently running, the operation fails
with an error 412, with the body field left empty.

� GET /wur/test/status: Requests the run status of the WuR-CTC demon-
stration. The response contains a binary encoded response with code 203
(VALID). The body contains the following successive fields, all coded in Big
Endian.

1 {
2 uint8 t test status, //Contains the test status ...

coded as an integer
3 uint16 t current frame, //Current frame offset
4 uint16 t total frames, //Total number of frames to be sent
5 uint16 t ok frames, //Total number of acknowledged
6 uint16 t ko frames, //Total number of non−acknowledged
7 uint32 t timestamp //Test runtime, in milliseconds.
8

9 }

Code Listing D.17: /wur/test/status response format

For validation purposes, the EFR32MG12 demo includes endpoints to perform ad-
ditional functionality. These include:

� POST /wur/data: Sends a WuR-CTC DATA frame to a station. The request
must contain a body with the following format:

1 {
2 uint16 t wur address, //Contains the target WuR−CTC ...

address
3 uint8 t wur data[], //Contains the buffer sent with ...

the frame
4 }

Code Listing D.18: /wur/data request body format
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The response values can be the following:

– 203 (VALID). The frame was successfully sent and acknowledged by the
receiving station. The response contains a plaintext body with the data,
if any, responded by the receiving station in the ACK frame.

– 400 (Bad Request) The contents of the request could not be properly
parsed.

– 412 (Precondition Failed) The device is already busy with another task.

� POST /wur/wake: Sends a WuR-CTC WuS frame to a station. The request
must contain a JSON body with the following format:

1 {
2 uint16 t wur address, //Contains the target WuR−CTC ...

address
3 uint16 t wake time, //Contains the intent of the ...

WuS frame
4 }

Code Listing D.19: /wur/wake request body format

A value of “wake time” of “1” is used to trigger a SLEEP frame. Other
values trigger the transmission of a WAKE frame with a configurable receiver
sleep timeout set to “wake time” milliseconds.

In the same way as with the ESP-32, the EFR32MG12 CoAP API can be accessed
with a simple application. Nonetheless, due to the protocol constraints of the device,
the endpoint is another IEEE 802.15.4 device. For this purpose, a simple demon-
stration firmware was programmed in an EFR32MG12 development board, which
includes user interactive elements, such as buttons and a monochrome screen, as
can be seen in Fig.D.3

The firmware offers a simple button-based front-end to the CoAP API provided by
the device running the WuR-CTC demonstration firmware, which runs on another
EFR32MG12 device. The user can start a WuR-CTC Demonstration run by pressing
PB0 on the main screen of the application (See Fig.D.4). Afterward, the progress
and results will be displayed on the screen as soon as they become available (See
Fig.D.5).
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Figure D.3: The EFR32MG12 development board.

Figure D.4: The main screen of the application.
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Figure D.5: Screen showing test status.
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