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0Abstract
The work presented in this dissertation intends to demonstrate that efficient time-
series databases, able to benefit from the particularities of both time-series data
nature and its expected operations, can be achieved by means of tailoring generic
and popular databases, such as document-oriented ones. This objective intends,
not only at offering a highly effective approach, but also at reducing its learning
curve, and the requested resources. In order to tackle this goal, we aim at providing
a holistic approach for developing highly-efficient time series database for Moni-
toring Infrastructures. In order to do so, the work is divided into three different but
incremental chapters. The first one intends to establish the foundations for building
a cost-efficient time-series approach, defining, among others, an initial data organi-
zation based on a document-oriented database. The second one aims at introducing
a new paradigm for improving the performance of time-series data handling, named
Cascading Polyglot Persistence. It aims at tailoring the database not only to the
nature of time-series data, but also to the expected operations to be performed
according to the data flow and aging. Last, the third chapter aims to analyze the
different considerations to take into account when scaling the database, while also
providing a tailored approach for scaling out databases that follow the paradigm
explained in the previous chapter, which further optimizes its performance.
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El trabajo presentado en esta tesis doctoral pretende demostrar que es posible
obtener bases de datos eficientes, especializadas en series temporales, a partir de
bases de datos genéricas y populares, gracias a su adaptación a las particularidades
y a la naturaleza de los datos que acogerán. El objetivo de este trabajo pretende, no
solo ofrecer una técnica para el desarrollo de bases de datos altamente eficientes,
sino también reducir su curva de aprendizaje, y los recursos necesarios. Por tal de
atajar este objetivo, este trabajo pretende presentar una técnica para desarrollar, de
manera holística, bases de datos para Infraestructuras de Monitorización. Esta tesis
está dividida en tres capítulos diferentes pero incrementales: El primero establece
los cimientos para el desarrollo de una base de datos eficiente, definiendo, entre
otras cosas, una organización inicial de los datos sobre una base de datos orientada
a documentos. El segundo capítulo introduce un nuevo paradigma para mejorar
el rendimiento de la gestión de datos procedentes de series temporales, llamado
Persistencia Políglota en Cascada. Su objetivo es ajustar la base de datos, no solo a
la naturaleza de sus datos, sino también a las operaciones esperadas acorde al paso
del tiempo. Por último, el tercer capítulo analiza las diferentes consideraciones a
tener en cuenta cuando se escala la base de datos, en forma de una base de datos
distribuida. Además, proporciona una técnica específicamente creada para escalar
eficientemente bases de datos que siguen el paradigma explicado en el capítulo
anterior, mejorando aún más su rendimiento.
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El treball presentat en aquesta tesi doctoral pretén demostrar que és possible
obtenir bases de dades eficients, especialitzades en sèries temporals, a partir de
bases de dades genèriques i populars, gràcies a la seva adaptació a les particularitats
i a la naturalesa de les dades que acolliran. L’objectiu d’aquest treball pretén,
no sols oferir una tècnica per al desenvolupament de bases de dades altament
eficients, sinó també reduir la seva corba d’aprenentatge, i els recursos necessaris.
Per tal d’atallar aquest objectiu, aquest treball pretén presentar una tècnica per
a desenvolupar, de manera holística, bases de dades per a Infraestructures de
Monitoratge. Aquesta tesi està dividida en tres capítols diferents però incrementals:
El primer estableix els fonaments per al desenvolupament d’una base de dades
eficient, definint, entre altres coses, una organització inicial de les dades sobre una
base de dades orientada a documents. El segon capítol introdueix un nou paradigma
per a millorar el rendiment de la gestió de dades procedents de sèries temporals,
anomenat Persistència Poliglota en Cascada. El seu objectiu és ajustar la base de
dades, no nomes a la naturalesa de les seves dades, sinó també a les operacions
esperades acord el pas del temps. Finalment, el tercer capítol analitza les diferents
consideracions a tenir en compte quan s’escala la base de dades, en forma d’una
base de dades distribuïda. A més, proporciona una tècnica específicament creada
per a escalar eficientment bases de dades que segueixen el paradigma explicat en el
capítol anterior, millorant encara més el seu rendiment.
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1 Introduction

This dissertation consists on the design and evaluation of a novel approach for
building highly efficient Time-series databases for Monitoring Infrastructures.

To do so, we divide the approach in three different and holistic techniques, each
proposed and evaluated in a different chapter. Each chapter is intended to be
as self contained as possible, although the approach is designed and evaluated
incrementally, with respect to the different chapters.

1.1 Origin and Motivation

The great advancement in the technological field has led to a great explosion in the
amount of generated data: Many sectors have understood the benefits of acquiring,
storing, and further analyzing information, which has led to a broad proliferation
of measurement devices, or sensors.

Those sensors’ typical job is to monitor the state of a given ecosystem: Tradition-
ally, factories used sensors to real-time monitor their machines and devices in order
to anticipate to failures. However, imagination has played its role and enterprises
and organizations started to push the limits of the monitoreable assets: Shopping
malls started to track their customers in order to better understand their behaviour
and needs, and football clubs started to bio-monitor the activity of their players in
order to improve their performance, prevent injuries, and help them heal faster.

However, in order to obtain further information from the gathered data, it be-
comes necessary to store it along time. Once there is enough data stored, data
scientists are able to extract further information from it, such as repetitive patterns,
trends, anomalous behaviours, and a long etcetera.

As the amount of gathered and stored data grows, the information that can be
extracted from it grows as well. In consequence, databases, whose main role is to
organize data collections, became the cornerstone of Monitoring Infrastructures.
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Chapter 1 Introduction

Traditionally, databases had been considered a passive asset: OnLine Transaction
Processing systems ingested structured data, in order to facilitate daily operations,
and the relational model was considered, de facto, the standard model. Thus, one-
size-fits-all was the extended generalistic approach: Each scenario was just modeled
to fit in the relational model.

While General-purpose databasemanagement systems, such as Relational Database
Management Systems, have been historically capable of managing a wide range of
scenarios, they were found inefficient, or even unsuitable, in handling the Velocity
and Volume of nowadays large Infrastructures.

As soon as organizations realized the real potential of the data, several database
technologies emerged, improving the handling of the data in a wide range of
scenarios: The NoSQL (Not only SQL) term was coined, showing a profound
distancing from the one-size-fits-all approach.

In not many years, databases moved from one-size-fits-all to one-size-for-each,
where each scenario had a very specific and efficient data model, and each data
model had a plethora of different databases to choose from. For example, Graph
databases enabled the full potential of social networks and key-value stores became
crucial in huge online marketplaces.

Aiming to address the specific challenges of Monitoring Infrastructures, spe-
cialized systems like Time-series Database Management Systems arose, becoming
the fastest-growing database category since 2019. However, as each monitoring
infrastructure has its own particularities, choosing the best fitting candidate so-
lution became fairly laborious. In consequence, implementing efficient solutions
involving Time-series databases became an expensive and arduous task, not only
in terms of investing in the most appropriate software and hardware infrastructure,
but also in terms of finding expert personnel able to keep track and master those
rapidly evolving technologies.

To sum up, this dissertation is motivated by two different statements: Firstly,
sensors and monitoring technology have become a game-changer in nowadays
industrial and non-industrial sectors. Secondly, Database Management Systems
(DBMS), just like the ones that any monitoring infrastructure needs, become more
efficient when following one-size-for-each approaches. However, this implies a big
economic investment, which is typically not affordable by Small and Medium-sized
Enterprises, nor users who want to benefit from Monitoring data, but lack the
resources needed to deploy these specialized data handling architectures.
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Goals and scope Section 1.2

1.2 Goals and scope
In this research, we understand as a Monitoring Infrastructure a set of devices,
usually called sensors, where each supervises the state of a specific asset alongside
time. The global reporting of those sensors is able to describe the state of the whole
system in a given point in time.

Time-series databases are meant to store the data that Monitoring Infrastructures
produce in a streaming fashion. The data obtained during this process is crucial
for performing batch tasks, such as predictive maintenance or forecasting, and
pseudo-stream tasks, such as early anomaly detection.
In this dissertation we aim to demonstrate that efficient Time-series databases,

able to benefit from the particularities of both Time-series data nature, and its
expected operations, can be achieved by means of tailoring generic and popular
databases, such as document-oriented ones. This objective intends, not only at
offering a highly effective approach, but also at reducing its learning curve, and the
requested resources, mitigating obstacles that are faced when handling data from
Monitoring Infrastructures, lowering down the barriers their deployment.
Thus, this research aims at proposing a highly efficient Time-series database

approach for Monitoring Infrastructures that should meet the following soft re-
quirements and constraints:

• Allow fast ingestion of streaming data from monitoring infrastructures.
• Allow fast data retrieval, supporting the typical needs of Time-series data
owners, as well as data analysis.

• Minimize the need of storage.
• Use as few different technologies as possible, reducing the adoption time.
• Be adaptable to the organizations’ need and particularities.
• Be deployed in commodity machines.

In consequence, the holistic approach that this dissertation is intended to provide
should offer a good trade-off between performance and resource consumption,
instead of just targeting at offering the best performance, at any cost.
However, although it is intended for small organizations or resource-limited

parties, it could be beneficial for any other organization too, regardless of its size
or resource availability.

The outcomes of this research are, in addition, intended to pave the way towards
NagareDB, our Time-series database, aimed at materializing our approaches in an
integrated way, and as an out-of-the-box solution.
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Chapter 1 Introduction

1.3 Organization and methods
This dissertation is divided into three different chapters. Each chapter proposes a
different, and complementary, approach for improving a certain aspect of Time-
series databases, namely:

• Chapter 1: Fundamental Logical and Physical data organization. It in-
volves the design and evaluation of a Time-series database approach, that will
serve as foundation for the subsequent approaches. It includes its logical data
model and its physical data schema approximations, that enable cost-efficient
queries, and further techniques for reducing machinery requirements.

• Chapter 2: Cascading Polyglot Persistence. It presents an approach
for improving the efficiency of Time-series data stores, called Cascading
Polyglot Persistence, altogether with several complementary techniques.
This approach can be implemented in any data store, but in this dissertation
it is evaluated after being materialized in the database approach presented
in the previous chapter, using its data model, altogether with other popular
ones.

• Chapter 3: A heterogeneous sharding and replication approach. This
chapter discuses the most popular scalability mechanisms, altogether with
their best practices. In addition, it presents and evaluates a scalability mecha-
nism specifically suited for Time-series data stores that follow the Cascading
Polyglot Persistence approach presented in the previous chapter. Thanks to
this tailored mechanism, the database is able to extract further performance
from the highly-efficient polyglot approach, while ensuring data availability
and fault tolerance.

All different approaches can be joined, in order to develop a highly efficient
Time-series database. In spite of that, they could be implemented as separated
approaches. For instance, a Time-series database could implement the approach
detailed in chapter one without applying the subsequent two, or another one could
apply the approach explained in the second chapter without applying the one
detailed in the first one.

However, this is not strictly true with regard to the last chapter, as it is linked to
the results obtained in the second one. This makes the second and third chapter to
be more correlated, but still they are considered different approaches, with different
goals. However, it still could be used as a guideline or baseline for different or novel
developments.
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Last, each chapter, presenting a different holistic approach, is intended to be as
self-contained as possible, in order to ease independent or selective reading, as they
could be used independently. However, when taking all of them into account, they
are, in fact, a list of incremental approaches.

1.4 Contributions and results
The design and evaluation of the approaches detailed in the different chapters
outcome several relevant contributions and results, as well as various potential im-
plications, in the future road-map of this research, and its field. These contributions
are extensively explained in Chapter 6.
Here we provide a summary of the main findings and contributions, gathered

during the development of this research, according to their chapter:

• Chapter 1: Fundamental Logical and Physical data organization.

1. We introduce and discuss the most relevant requirements on Time-
series databases, regarding Software, Hardware and Personnel, and the
obstacles that interested parties are likely to face, when deploying them.

2. We provide an efficient technique for handling Time-series data in
document-oriented databases, demonstrating that our approach outper-
forms popular state-of-the-art solutions involving documents.

3. We introduce a on-query-time limited decimal data type, that can be
implemented over databases such as MongoDB, where the decimal is
typically set to use 64 bits. Thanks to this approach, the database is able
to efficiently store limited decimal data types, in just 32 bits, dramatically
reducing the storage consumption.

4. We benchmark the performance of databases such as InfluxDB 2.0 and
MongoDB 4.4, the most popular databases in their respective category,
altogether with our approach. We find out how InfluxDB is an outper-
forming database when retrieving data, while MongoDB 4.4 is able to
ingest real-time data faster. After analyzing their performance with
four different query types we discuss their implementations’ pros and
cons, and how our approach is able to provide and intermediate and
balanced solution between the other two alternatives.

5
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• Chapter 2: Cascading Polyglot Persistence.

1. We introduce a polyglot persistence based approach, called Cascad-
ing Polyglot Persistence, demonstrating its efficiency by tailoring the
database to:
a) The natural data-flow of real-time data (ingestion, storage, retrieval)
b) The expected operations according to data aging

which has shown to enhance the database performance, globally outper-
forming InfluxDB and MongoDB, both when ingesting real-time data
and when querying.

2. We demonstrate how Time-series databases, that are typically imple-
mented over column-oriented approaches, are able to benefit from com-
plementary data models, such as the key-value one.

3. We exemplify how a multi-model database is able to concentrate the
advantages of several technologies, but just using a single solution,
reducing software and expert personnel costs.

4. We define how to build Polyglot Abstraction Layers over Cascading
Polyglot Persistence, in order to abstract users from the complexity of
several data models. Moreover, it provides a unified view of the database,
able to retrieve data in the format that users select, providing further
efficiency.

5. We evaluate and benchmark MongoDB 5.0, a recently launched version
of the database (mid-2021), that focuses its improvements on providing
a Time-series enhanced capability.

6. We demonstrate how a highly-efficient approach, even when using com-
modity hardware, is able to provide outstanding results, emphasising
that good performance can be achieved, not only by powerful hardware,
but also thanks to optimized software.

• Chapter 3: A heterogeneous sharding and replication approach.

1. We discuss the most relevant characteristics that interact in order to
balance the performance and resource consumption when scaling a
database, such as the scalability type, data consistency, data availability,
partition tolerance, data compression techniques, disk drives alterna-
tives, approaches for organizing data, data sharding and data replication.

6
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2. We propose an approach for scaling Time-series data stores under Cas-
cading Polyglot Persistence, which shows to significantly reduce the
number of needed machines, while offering scalability performance up
to 85%, in comparison to a perfect theoretical scenario.

3. We state and evaluate the different approaches for ingesting stream
data, providing pros and cons, while analyzing the performance of the
solution, from strict real-time ingestion until three different near-real
time ingestion approaches. Moreover, we generate a flexible road-map
to follow, in order to optimize the different database parameters, so that
each use case can obtain to obtain the best balance, according to each
scenario requirements.

4. We demonstrate how outstanding performance can be achieved by using
low-requirement hardware, as low as just 3GB of RAM, 3 vCPU and
60GB of storage, if a holistic, tailored and optimized approach is used.

7





2 Methodology

This section describes the methodology used during the evaluation of the subse-
quent approaches of this dissertation. More precisely, one of the main requirements
of our holistic approach is to be highly efficient, enabling Time-series data handling
even in commodity machines.

Thus, the evaluation methodology followed throughout the dissertation will be
tailored to limited-resources scenarios. This methodology involves: (1) A data-
source Monitoring Infrastructure setup, (2) a low-resource database infrastructure
strategy, and (3) a holistic performance evaluation methodology.

2.1 Data-source Monitoring Infrastructure Setup
The goal of our Monitoring Infrastructure is to enable the evaluation of the different
approaches, as it is the main data source of the Time-series databases in our scope.
Thus, its aim is to provide a synthetic data-set that does not use real data, but whose
sensor readings are close enough to real-world problems.

Following this goal, we simulate a sampleMonitoring Infrastructure based on real-
world settings of some external organizations that collaborate with the Barcelona
Supercomputing Center.

More precisely, we simulate a Monitoring Infrastructure composed of 500 sensors.
Each virtual sensor is set to ship a reading every minute. Sensor readings (R) follow
the trend of a Normal Distribution with mean 𝜇 and standard deviation 𝜎 :

𝑅 ∼ N(𝜇, 𝜎2) : 𝜇 ∼ U(200, 400), 𝜎 ∼ U(50, 70) (2.1)

where each sensor’s 𝜇 and 𝜎 are uniformly distributed.

The Monitoring Infrastructure simulation is ran in order to obtain a 10-year
historical data set. The start date is set to be year 2000, and the simulation is
stopped when reaching year 2009, included. In consequence, the total amount of
triplets, composed of Timestamp, SensorID, and Sensor Reading, is 2,630,160,000.

9



Chapter 2 Methodology

The data-set generated by this simulated Monitoring Infrastructure will be used
throughout the dissertation and all its chapters, in order to show a consistent view
of the result’s evolution when applying different techniques and approaches.

2.2 Database Infrastructure Strategy
When evaluating approaches that target efficiency, a monolithic -single machine-
infrastructure will be used. This intends to isolate the performance properties of
our proposed approaches, removing distributed database techniques, that could add
further variables and noise to the results, making its interpretation more difficult.
When specifically targeting to evaluate distributed database approaches, a cluster
setup will be put in place.
Moreover, the different database-supporting infrastructures will be composed

by one or several virtual machines, within the premises of the Barcelona Super-
computing Center, which enables fast machine(s) dimensioning and configuration.
These infrastructures will not only be used for deploying our approaches, but also
related-work solutions, such as relevant databases, in order to conduct performance
comparisons and benchmarking.
Last, with respect to the specific configurations of the different machines, they

will all follow a basic-requirements strategy. This means that they will mimic
commodity machines, such as the ones that small and medium organizations or
research groups can seamlessly afford.

2.3 Performance Evaluation Methodology
The evaluation and benchmarking will be typically done in three different aspects:
Stream Data Ingestion Speed, Storage Usage, and Data Retrieval Speed. Thanks to
this complete evaluation, it is possible to analyze the performance of the different
solutions during the persistent data life-cycle, with regard to the database scope:
From being ingested, to being stored and, lately, retrieved.
In addition, data retrieval will be evaluated, when relevant and appropriate,

using four different kind of querying types, typically involved in Time-series data
scenarios. For instance:

• Historical querying: Obtain sensor readings for a specific time range.

• Timestamped querying: Obtain sensor readings for a specific time in-
stant.
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• Aggregation querying: Derives group data by analyzing a set on indi-
vidual data entries. It is divided in two sub-categories:

– AVG Downsampling:Reduce the granularity of the data by performing
averages of individual readings.

– Single Value Aggregation: Obtains a single value from a set of
individual readings, such as the Minimum value.

• Inverted querying: Ask for moments in time that matches certain value
condition, instead of values in a specific instant.

Each query category will be represented by one or more specific queries, shared
across the different chapters, in order to obtain a complete and multi-perspective
evaluation of the different approaches.
More precisely, the testing query set is composed by 12 queries (Table 2.1),

intended to cover a wide range of use-case scenarios, while providing insights of
the databases’ performance and behavior.SIG Proceedings Paper in LaTeX Format SAC’22, April 25 –April 29, 2022, Brno, Czech Republic

ID Query Type #Sensors Sensor Condition Period Value Condition Target Granularity
Q1 Historical 1 Random Day - Minute
Q2 Historical 1 Random Month - Minute
Q3 Historical 1 Random Year - Minute
Q4 Historical 10 Consecutive Day - Minute
Q5 Historical 10 Consecutive Month - Minute
Q6 Historical 10 Consecutive Year - Minute
Q7 Historical 10 ID mod 50 = 0 Year - Minute
Q8 Timestamped 500 All Minute - Minute
Q9 Downsampling (AVG) 1 Random Year - Hour
Q10 Downsampling (AVG) 20 Consecutive Year - Hour
Q11 Aggregation (MIN) 1 Random Day - Minute
Q12 Inverted 1 Random Year 𝑉 ≤ 𝜇 − 2𝜎 || 𝑉 ≥ 𝜇 + 2𝜎 Minute

Table 1: Data retrieval queries, used in the benchmarking.

Table 2: Queries execution time, and standard deviation, in seconds.

Query ID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 NagareDB MongoDB InfluxDB
Q1 0.150 (0.018) 0.016 (0.011) 0.016 (0.009) 0.033 (0.016) 0.783 (0.653) 0.061 (0.026)
Q2 - 0.206 (0.018) 0.143 (0.009) 0.392 (0.031) 1.636 (3.084) 0.482 (0.034)
Q3 - 2.342 0.040) 1.644 (0.035) 4.589 (0.110) 6.641 (2.635) 5.004 (0.116)
Q4 0.214 (0.017) 0.024 (0.011) 0.036 (0.007) 0.051 (0.014) 0.888 (0.796) 0.085 (0.022)
Q5 - 0.408 (0.026) 0.344 (0.037) 0.877 (0.027) 9.119 (2.845) 1.113 (0.049)
Q6 - 4.791 (0.190) 4.052 (0.189) 10.998 (0.122) 32.192 (10.926) 12.351 (0.338)
Q7 - 7.728 (0.449) 4.236 (0.113) 13.603 (0.440) 38.508 (21.974) 21.552 (0.278)
Q8 0.008 (0.005) 0.107 (0.039) 0.466 (0.028) 0.121 (0.057) 0.497 (0.065) 0.533 (0.049)
Q9 - 0.335 (0.034) 0.157 (0.021) 0.544 (0.076) 2.425 (2.838) 0.451 (0.029)
Q10 - 1.925 (0.247) 1.785 (0.131) 2.139 (0.260) 32.966 (15.799) 1.301 (0.063)
Q11 0.129 (0.013) 0.008 (0.004) 0.008 (0.006) 0.007 (0.006) 0.800 (0.930) 0.026 (0.016)
Q12 - 1.003 (0.043) 0.547 (0.029) 1.168 (0.053) 1.662 (2.550) 1.108 (0.066)

Figure 2.1: Experimental data retrieval queries.

Each query will be executed 10 times, and we will record the average execution
time. The querying is always performed using Python Drivers. In order to ensure
the fairness of the results, the cache is cleaned and the databases rebooted after the
evaluation of each query.
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Physical data organization

In order to address the specific challenges of Monitoring Infrastructures, specialized
systems like Time Series DatabaseManagement Systems (TSBD) arose. As explained
in chapter 1, TSBD are specially tailored to the nature of sensor readings, where
each entry is associated with a timestamp, being able to efficiently represent them
as a sequence of values over time.

As monitoring systems attracted more and more interest, along with the Internet
of Things (IoT) boom, TSDB grew in popularity, becoming the fastest-growing
database type from 2019 [Sol22b]. However, this led to a situation in which a single
scenario, such as Time-series data handling, could be implemented with a plethora
of different technologies [SC05], each one with different performance, functioning,
requirements, and even query language.

As a consequence, implementing capable solutions involving Time-series databases
became fairly laborious to small and medium-sized organizations [Col+16] (SMEs),
that wanted to benefit fromMonitoring data, but lacked the resources to build those
specialized data handling architectures, facing three different obstacles:

• Hardware: Handling real-time data requires computing resources in line with
the Monitoring Infrastructure’s size. Moreover, as time passes and more data is
gathered, the storage requirements grow accordingly. A common approach to
tackle this problem is to just keep a fixed amount of data, following FIFO method:
As new data is stored, the oldest is removed. This is therefore a double-sided
sword, since it prevents storage costs to grow, but it also implies that data is
being discarded, and potentially relevant information is lost.

• Software: While some databases are open-source, most popular databases
offer both a limited-free version and a commercial-enterprise edition. However,
license pricing is only one of the many considerations to take into account: for
example, large-scale Monitoring Infrastructures typically require the software to
be horizontally-scalable, so, able to scale out by adding more machines.

• Expert Personnel: FollowingMonitoring Infrastructure’s rising interest, TSDB
became the fastest-growing database category, leading to a plethora of new
databases. Furthermore, each database typically has a different query language
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and a completely different way-of-thinking associated with its usage. However,
Data Engineers are expected to select and master the most appropriate solution
for each situation. Consequently, experts are not easy to find or train, nor cheap
to hire [Dav21].

The main contributions of this chapter are towards relieving the above explained
problems, helping in the democratization ofMonitoring Infrastructures, by lowering
down the barriers to employing a Time-series Database. Concretely, we demonstrate
and benchmark the novel approach followed for kicking off our envisaged Time-
series solution: NagareDB, a resource-efficient Time-series database built on top of
MongoDB — a database typically discouraged in the Time-series scenario [HKK18;
KS20; Mak+19].

NagareDB’s conception intends to ease access to the essential resources needed:
First, by working on top on a open-source and broadly-known database such as
MongoDB, which relieves SMEs from licensing costs, and personnel from learning to
use from scratch yet-another database. Secondly, by offering a fair trade-off between
efficiency and requirements, which makes it able to be deployed in commodity
machines while offering outstanding performance.
More precisely, our experiments show that NagareDB is able to outperform

MongoDB’s time series data model, providing up to a 4.7 speedup when querying,
while also offering a 35% faster synchronous real-time ingestion, in comparison
with InfluxDB, the most popular Time Series Database, whose non-scalable version
is open source.

Moreover, thanks to the optional usage of a naive-but-efficient data type approx-
imation, NagareDB is able to provide further querying speedup while reducing the
disk space consumption up to 40%, which makes it able to store an almost 1.7 times
bigger historical period in the same disk space.

3.1 Background

3.1.1 Solutions Categorization
Concerning Time-series datamanagement, databases can be efficiently-implemented
following a wide range of data models such as key-value or column oriented data
models [BKF17]. However, this research focuses on their outcomes and purpose,
in disregard of their internal implementation. Consequently, Time-series databases
could be classified either in General-Purpose DB, or Purpose-Built Time-series DB,
which, in turn, could be considered either Native TSDB or Adapted TSDB.
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General-purpose databases (GDB). GDB intend to meet the needs of as many
applications as possible. In consequence, GDB are designed to be independent with
regard to the nature of the data to be handled. Thanks to this Swiss army knife
behavior, GDB are typically the most popular DBMS, which makes it easier to find
expert personnel in their usage [Sol22b]. However, this flexibility is gained at the
expense of efficiency, since GDB are not tailored to benefit from the specifics of
any particular scenario [PG85]. Hence, system performance is limited, and strongly
attached to the design decisions made by the database engineers, while fitting the
particular scenario into the GDB.

Native Time-series databases (N-TSDB). N-TSDB are DBMS that are optimized
for storing and retrieving time series data, such as the one produced by sensors
or smart meters. As TSDB are tailored to the specific requirements of Time series
data, they can be offered as an out-of-the-box solution, meaning that not many
design decisions have to be taken, speeding up the deployment time. However,
as a consequence of their intrinsic specialization, their popularity is substantially
reduced, in comparison to General-purpose DBMS [Sol22b].

Adapted Time-series databases (A-TSDB). This specific case of TSDB does not
employ a new database engine, but borrows one from a GDB. Specific functionalities
and design decisions, with respect to the time series nature, have been implemented
on top of a GDB, using the underlying database as a persistence layer, and offering
the outcome as an out-of-the-box solution. Thus, the newly created database looses
the ability of handling scenarios that was typically able to. As the foundation
data model is inherited from the GDB, the optimization approaches than can be
performed are limited. Thus, A-TSDB rely on the popularity and robustness of the
chosen GDB, while providing an scenario-optimized solution.

3.1.2 Time-series Properties

Time-series databases are tailored to the specifics of Time-series data, which em-
powers their efficient data handling. Some of the most fundamental properties of
Time-series data [BD86; Zha19] are:

• Triplet-based Data Model. Time series data is mainly composed of
three parts: The subject to be measured (f.i sensor ID), the measurement, and
the timestamp at which the measurement was read.

• Smooth and continuous stream. The writing of time series data is rel-
atively stable, and its generation is typically done at a fixed time frequency.
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• Immutable data. Once data is read and written, it is never updated, except
in case of manual revisions.

• Decaying query probability. Recent data is more likely to be queried.
Thus, as newer data is ingested, the older data has less chances of being
consulted.

3.1.3 TSDBs Requirements
Time-series databases can be implemented following a wide range of approaches
in order to benefit one or another feature or specific use case requirements. For
example, a given TSBD could be designed in order to maximize the ingestion speed,
while other might intend at speeding up data retrieval.

While optimizing at the same time some of these requirements might be possible,
sometimes it is necessary to find a trade-off [Aba12; Blo+01; HJ11]. In addition,
some non-functional requirements might depend on the target users or even the
business model of the database developers.
This dissertation classifies TSBD requirements according to the resource that

benefit or compromise the most, as explained in the introduction of chapter 3.
Concretely:

• Software. Requirements regarding software characteristics or database
functionalities, involving query or data types, allowed operations, etc.

• Hardware. The ones regarding the ability of the database to reduce or to
optimize the machine(s) speed or resources usage.

• Expert personnel. These requirements describe the different ways the
user is able to interact with the database, including the facility of its usage or
the compatibility of the database with the user’s environment.

Thus, some of the most relevant requirements on time series databases are
[BKF17; Sol22b; Zha19]:

• Software.

– Continous calculations. The TSDB is able to resolve functions
continuously, taking into account the recently ingested data, and the
historical information, keeping the outcomes internally. An example is
the continuous calculation of the last hour average value, for a given
item.
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– Time Granularity. It defines the smallest time unit precision in
which a timestamp can be stored and interpreted. For example, a given
TSDB could be able to store up to seconds, being unable to keep infor-
mation regarding the millisecond in which the data was generated.

– Aggregation. When aggregating, the database is able to group multi-
ples values and perform operations over them, returning a single result.
The retrieval of the minimum/maximum value during a given time
period is an example of aggregation.

– Downsampling. It is the process of reducing the sampling rate of a
given data source or sensor, taking into account a specific time granu-
larity or sample interval. For example, if the database stored a sensor
reading in minute-basis, the database should be able to retrieve its data
in hourly intervals, showing, for example, the average of the total sensor
readings for each hour.

– License. A license regulates, among others, who and how the database
can be used. Since this research focus on being resource-efficient, the
price or cost of licenses, for using a given database, is especially relevant.

• Hardware.

– Distribution/Clusterability. Scalability and load balancing fea-
tures are able to compensate machine failures, preventing the system
from down-times. Moreover, by scaling horizontally, the database is
able to increase its storage or its performance, by adding further nodes
or machines to the cluster.

– Retention Policy. In a TSDB, a data Retention Policy specifies for
how long data should be kept in the system, until being deleted. The
possibility of setting up retention policies is crucial for TSDB, as keeping
the data forever is not typically affordable for most users, as hardware
storage might be limited and expensive.

– Storage Approach and Compression Algorithms. The approach
followed for implementing the data persistence will directly affect the
storage usage of the database and its compression capability. For exam-
ple, databases implemented following column-oriented data models are
likely able to compress data more efficiently, by means of Run Length
Encoding [Jov+19]. Moreover, each database employs a given compres-
sion algorithm, reducing either its disk usage, its compression time or
finding a trade-off [GBK17].
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– Ability to support highly concurrent writes. Data is typ-
ically ingested at a regular pace, following the Smooth and continuous
stream property explained in Section 3.1.2. However, it is important for
the database to be able to ingest it as fast as possible, as it enables a
wider range of scenarios, including more demanding ones.

– Ability to retrieve data speedily. Queries should be answered
as fast as possible, as the TSDB might be the cornerstone of further
systems or operations, such as data exploration or visualization, data
analysis, or machine learning techniques such as predictivemaintenance
or anomaly detection [Din+18; MF21].

• Expert personnel.

– Database and Query Language Popularity. As a database raises
more interest, it becomes easier to find expert personnel on its usage,
clear documentation and even courses or training material. The same
effect happens with the query language: While some databases use their
own language, some others mimic, inherit or support a more popular
and external query language, in order to facilitate its querying.

– Interfaces. Interfaces can be used by programming languages to com-
municate to a database. Thus, the more interfaces a database provides,
the easier it becomes to adapt to personnel expertise.

– Operating Systems. As it happens with interfaces and query lan-
guages, users might be specialized in a given operative system. More-
over, some companies could promote the usage of a given operative
system. Thus, as more Operative Systems the database is able to be
deployed in, the more possibilities it will have to fit in its user’s envi-
ronment.

3.2 Related Work
The problem of handling Time-series data has been addressed by employing or
developing different database solutions laying in one of the three categories ex-
plained in Section 3.1.1. Concretely, just DB-ENGINES, the Knowledge Base of
Relational and NoSQL Database Management Systems [Sol22b], keeps track of more
than 35 Time Series Databases, such as InfluxDB, KdB+, Prometheus, Graphite,
or TimescaleDB. While their shared goal is to empower data management, their
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approaches, strengths and weaknesses are different, being InfluxDB the most popu-
lar Native Time-series, and TimescaleDB the most popular Adapted Time-series
database [Sol22b]. Thus, some of the most relevant technologies related to this
chapter are:

MongoDB 4.4. It is a general-purpose open-source database written in C++
[Mon21e]. It offers an extremely flexible data model, since its base structure is
document-oriented, so, made out of JSON-like documents. These documents act
like independent dictionaries where the user can freely add of remove new fields,
releasing the database of up-front constraints. Thus, there is no need to set up
or alter any enforced global schema, as it would happen in relational databases
[PPV13; Sto10].

However, this flexibility implies constant metadata repetition, such as the key of
the key-value JSON dictionary pairs. This negative impact is partially palliated by
its data compression mechanisms [Gu+15]. It is able to scale horizontally freely, by
means of shards and replicas, which makes it possible to create a database cluster
composed by commodity machines. Regarding its interaction methods, it has its
own query language and a really wide range of interfaces to work with. It is able
to perform continuous queries when retrieving new values by means of change
streams and to aggregate and down-sample data.
Regarding its compatibility, it can be installed on Linux-based systems, MacOS,

and Windows, which makes it able to reach a great number of users. However,
although it is considered the most popular NoSQL DBMS [Sol22b; YLP19], its
usage in the Time-series domain has been typically discouraged due to its time-
expensive query answering [HKK18; KS20; Mak+19], and its timestamps are limited
to milliseconds [Mon21c], which might be insufficient for high-demanding use
cases. Last, although it provides optional retention policies, in the form of capped
collections, they are tight to the insertion date of a given sensor reading, and not
to its generation date [Mon21c], which might be problematic for some Time-series
use cases, in case of delays or non-chronological insertions.

InfluxDB 2.0. It is a native Purpose-Built Time-series database [Inf21b] written
in GO. From 2016, it is considered the most popular TSDB [Sol22b]. It supports
plenty of programming languages and two different querying approaches: Flux,
its own query language, and InfluxQL, as SQL-like support, each having different
limitations. It is able to efficiently perform a wide range of operations, such as con-
tinuous querying, down-sampling and aggregations. Moreover, is able to efficiency
reduce and limit disk usage, by means of its compression mechanisms and its data
retention policy.
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However, it provides a commercial enterprise version and an open-source version,
with some limitations. Among others, the open-source version is not able to grow
horizontally, so the deployment is limited to one single machine [Inf21b], not being
able to carry out data sharding or replication, which strongly limits the performance,
at the same time that reduces the system availability and fault-tolerance. Regarding
its potential user’s operative systems, it can be installed on Linux-based systems
and OS X, but not on Windows itself. Last, although it is the most popular TSDB,
its popularity score is almost twenty times smaller than other general-purpose
databases, such as MongoDB [Sol22b].

TimescaleDB. It is an adapted open-source TSDB built over PostgreSQL, one of
the most popular General-Purpose DBMS [Sol22b]. Thus, it inherits PostgreSQL’s
broadly known SQL query language and its powerful querying features and inter-
faces, which lowers down its learning curve. Moreover, it is able to run onWindows,
MacOS, and Linux, which makes it able to reach a wide number of potential users.

However, due to the limitations of the underlying rigid Relational data model,
its scalability might be compromised, and its performance might vary depending
on the query [FS20]. Moreover, as its underlying data model is row-oriented, its
disk-usage consumption is significantly greater than other TSDB, such as InfluxDB
[FS20], and its compression mechanisms are not likely able to demonstrate its full
potential [AMH08].

To sum up, on the one hand, MongoDB is a general-purpose and open source
database, but despite being considered the most popular NoSQL DBMS, its usage
in the Time-series scenario has been discouraged. On the other hand, TimescaleDB
relies on a well-known SQL solution and offers good optimizations, but generally
worse than Native TSDBs. Last, InfluxDB offers an upstanding performance, but its
usage is limited to Linux-based and OS X, at the same time that its full version is
commercial-licensed, which reduces the number of users that could benefit from it.
In addition, as it is a native TSDB, it becomes necessary to learn a new technology
from scratch.

However, our approach, used as foundation for NagareDB, aim at providing
a fair trade-off between efficiency and resources demand, offering an optimized
TSDB solution that relies on a moldable, open-source, and well-known NoSQL
General-purpose DBMS.
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3.3 Design Approach
This section describes the holistic andmost relevant design decisions materialized in
NagareDB, with the goal of creating an efficient and balanced Adapted Time-series
database.

In addition, it states the main differences between the MongoDB Recommended
Implementation [Mon18] for Time-series (briefed as MongoDB-RI), and other re-
lated solutions.

3.3.1 Data Model
As in any adapted database, the overlying data model adaptability is limited by the
malleability of the foundation data model. Taking this into account, our Time-series
Data Model approach has the following key features:

Medium-sized time-shaped bucketing

Sensor readings are packed together in medium-sized buckets or documents, fol-
lowing the nature of time. Concretely, a document clusters together the readings
of three consecutive units of time. For instance, if the frequency unit in which a
sensor is reading values is set to minute (First unit), all readings belonging to the
same hour (Second unit) will be packed together, for afterwards being bucketed in
a daily document (Third unit).

By contrast, MongoDB-RI packs together readings in small-sized buckets, taking
just 2 time units. For instance, if the database stored minutely data, the readings
from a given hour will be packed together, in a single document. While this
could be efficient for short-ranged queries, it severely penalizes medium and high
ranged historical queries, as the storage device is asked to retrieve a large amount of
documents, that could be scattered. Since long queries aremore resource-consuming
than small ones, this approach is considered more balanced.

Time rigidity

Following the smoothness property explained in Section 3.1.2, sensor readings are
organized via a rigid schema-full approximation, meaning that there is a pre-defined
rigid structure for their storage, where each reading has an specific allocation and
position. This bucket structure, consisting in a dictionary of arrays, is created as a
whole when a sensor reading, belonging to it, is received.
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This structure can be seen in Figure 3.1, where the document representing the
15th day of 02/2000 has several pre-defined and fixed-size data structures. As one
of the most important features in MongoDB is its schema-less design, enforcing
a schema could be seen as counter-intuitive at first sight, however, imposing a
structure provides two important benefits, perfectly suited for time-dependent data:

First, it allows to store time-sorted data in disk, and second, it allows to leverage
from implicit information, inherent to the structure design, such as the value array
position.

Conversely, MongoDB recommended datamodel (Figure 3.2) following its schema-
less nature, keeps sensor readings dictionaries, where the key provides recurrent
explicit information about time (f.i the minute when the reading was performed),
and the value contains the sensor reading itself.

Sensor elasticity

With respect to the sensor dimension, it follows the schema-less approximation
inherent to MongoDB. Consequently, new sensors can be incorporated or removed
in an elastic way, without having to alter any global schema, as it could happen in
rigid data models such as relational ones [PPV13; Sto10].

Pre-existing timestamps

Every sensor reading is implicitly assigned to an already existing timestamp. Thus,
timestamps are not calculated on the fly, as it happens in MongoDB-RI.

Data-driven bucket identification

Each bucket is identified and sorted by sensor’s reading time. By contrast, MongoDB-
RI identifies and sorts buckets by metadata, such as insertion time. However, in
Time-series scenarios, sorting by insertion time is not necessarily equal to sorting
by data-generation time, as data could be delayed or even ingested disorderly.

3.3.2 Access Structures and Layered Bucketing
Sensor readings, containerized in buckets as explained in Section 3.3.1 and in Figure
3.1, are hash-distributed and grouped, according to time, in so-called MongoDB
collections. More precisely, a MongoDB collection, containing a set of documents
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sorted by a B-Tree, is intended to keep the data produced in a given month, and in a
specific year. For example, as it can be seen in Figure 3.1, the bucket containing the
readings of sensor 0001 for the day 15 February 2020 is classified in the collection
Month 2000_02.

Month 2000_02

Month 2000_01

Month 2009_12

[....]

   _id: 
   

  0: [..., ..., ...]
  1: [..., ..., ...]
  2: [56.56, 57,56, ...., 115.70]

  [...]

  23: [..., ..., ...]

 day: 30, 
 sensorID: 0001 _id: 

   

      0: [..., ..., ...]
      1: [..., ..., ...]
      2: [56.68, 57.56, ..., 115.7]

       [...]

      23: [..., ..., ...]

 day: 15, 
 sensorID: 0001

m
in

m
ax

Figure 3.1: Schematic simplification of NagareDB’s Access Structures and Data Model,
when querying for Sensor0001 readings, for hour 2 AM of day 15 February 2020. Colour
shows the query path, until reaching the sensors’ readings, that can be retrieved without
further processing, as they are physically sorted, already.
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This bucketing approach intrinsically enables, on the one hand, the possibility
of performing efficient lazy-querying, eventually performing several small queries
(one per bucket) instead of a big one (whole database query). Moreover, querying
can performed bymeans of chained queries, so, performing several time-consecutive
queries, relieving the system from searching or holding data that is not yet needed.
On the other hand, when querying speed is crucial, this bucketing approach also
enables efficient parallel querying, as data is already naturally grouped, being able
to perform several queries to different buckets at the same time.

Last, benefiting from both the decaying and immutability properties of Time-
series (Section 3.1.2), this bucketing approach allows the natural compaction of
already filled-up buckets, that are not likely to be updated, which also have less
possibilities of being queried.

Using amore granular bucket distribution, such as grouping data by its generation
day, instead of its generation month, while tempting for high-granularity data,
is currently discarded in this approach, but subject to future re-considerations.
This is due to the fact that MongoDB’s WiredTiger Storage Engine requires the
Operative System to open two files per collection, plus one per each additional
index [Mon21c], which could overwhelm the Operative System’s open files table.
This is, actually, a recurrent problem found in InfluxDB [Inf21c], which makes it
necessary for database administrators to apply patches, for example with the ulimit
command [BCO00]. However, as NagareDB is intended to be a fast-deploying and
resource-compromised solution, this self-imposed limitation was preferred.

By contrast, as seen in Figure 3.2, MongoDB-RI’s strategy is to keep data stored
as a whole, accessing it via a single B-tree. However, this B-tree is intended to
be kept in RAM [Mon21c], independently from the time range of the query to be
performed. While this benefits efficiency, it potentially misallocates RAM resources.
Conversely, the approach proposed in this research intends to save resources, by
selectively loading and replacing small indexes based on the time-range of the
queries, following a Least Recently Used approach.
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   _id: ObjectID()
   sensorID: "Sensor0001"
   date: 2018-06-30T13:00:00Z
   readings: 

min max

   _id: ObjectID()
   sensorID: "Sensor0001"
   date: 2018-06-30T13:00:00Z
   readings: 

   _id: ObjectID()
   sensorID: 0001
   date: 2000-02-15T02:00:00Z
   readings: 

     1: 57.56,
     0: 56.68,
     3: 59.51,
     2: 58.24,

     [...],

     59 : 115.7

Figure 3.2: Schematic simplification of MongoDB-RI’s Access Structures and Data Model,
when querying for Sensor0001 readings, for hour 15 February 2020 T02. Colour shows
the query path, accessing though a B+ tree, until reaching the corresponding minutely
readings, that have to be processed, as they are stored in an (unsorted) dictionary.
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3.3.3 Retention Policies
Retention policies are crucial in Time-series databases, as the amount of data to be
kept is limited by the available resources. Concretely, retention policies describe
for how long a record needs to be stored in the system.
In order to tackle this problem, NagareDB proposes a flexible retention policy

strategy, with the aim of finding a good resource-saving and performance trade-off.
Concretely, the flexible retention policy is configured with a maximum and a

minimum retention time. Thus, data will be eventually bulk-deleted in some point
in between the minimum and the maximum allowed time.

The main advantage of this strategy is its instant and inexpensive bucket delete
operations. For instance, if the retention time is set in terms of months (so, the
number of buckets), the oldest data could be deleted as a whole, by dropping the
monthly bucket.

By contrast, in fixed retention policy strategies, such as the ones of MongoDB-RI
[Mon21c] or InfluxDB [Inf21a], when a new record is received, the oldest one is
removed, meaning that each insert operation is potentially triggering an implicit
delete operation, which reduces insert performance, at the same time that overloads
the system.

Moreover, MongoDB’s retention policy is based capped collections, and takes into
account the last inserted record. However in Time-series scenarios, insertion time
order is not necessarily equal to data-generation order, as data could be received
disorderly.

3.3.4 Data Types
MongoDB has a wide number of available data types [Mon21c], which can be inher-
ited to any specific-purpose database built on top. Concretely, but not exclusively:

• Array

• Date: Milliseconds since the Unix epoch (1 January 1970), using 64 bits.
• Decimal128: High-precision decimal.
• Document

• Double: 64-bit signed floating point.
• Int32/64: 32-bit or 64-bit signed integer.
• String
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In spite of the wide variety of data types provided by MongoDB, decimal values
are always requesting, at least, 64 bits for storage. While the usage of 64-bit double-
precision decimals might be required for some high-precision scenario, moremodest
and resource-limited scenarios might find a more balanced solution by limiting the
number of decimals digits, using a 32-bit data type for its representation.
Furthermore, this would allow users to store the same historical period of data

using, theoretically, up to half of the disk storage resources or, said in another way,
to keep up to two times more historical data in the same disk space.

As 32-bit decimals are not implemented inMongoDB, and taking into account that
one of the main goals of this research is to provide a resource-balanced solution, the
proposed approach includes one further, optional, and naive data type, understood
as a on-query-time limited decimal. This naive data type relies on two different data
types:

• 32-bit signed Integer: It keeps the decimal number without the deci-
mal point. Thus, the integer part and the fractional part of the number are
stored together, without separation.

• BSON Document: It is a meta-data configuration document, functioning as
a dictionary, that keeps, per each sensor, which is the desired maximum
number of decimal digits. Also, it keeps a default setting, that will be used if
no specific configuration is set, for a given sensor.

This naive-but-effective approach is intended to enable the storage of decimal
numbers in 32 bits, while limiting the foreseen overhead produced by the type
casting. Data rounding is automatically done at insertion time, and the consequent
type casting is accordingly performed during ingestion and query time.

Taking into account that a 32-bit signed Integer is able to represent a maximum
value of 231 − 1 and a minimum value of −231, this on-query-time limited decimal
is able to represent, for example, a maximum number of 21.474, 9999, when using
four decimals, given that the number of decimal digits has to be static, and each
decimal digit should be able to range from 0 to 9. This approach was preferred,
in comparison to standard representations, since MongoDB 4.4 requests at least
64bits for storing binary data[Mon21a], and keeping binary data in other data types
would imply further casting and parsing overhead. Moreover, it is also important
to maintain MongoDB’s compatibility, letting the user accessing the database, and
understanding its data, even through MongoDB.
This self-imposed limitation is optional, and targeted to sensors with low or

medium magnitude order variability. Concretely, its target scenarios are the ones in
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which Monitoring Infrastructures set up a retention policy, as explained in Section
3.3.3. For example, for resource-limited scenarios involving anomaly detection or
predictive maintenance, in which real anomalies or failures rarely occur, it will
likely be more relevant to keep more historical data, if the sensor data fits in this
naive decimal data type, than keeping more decimal digits [Gup+15; Wan+18].

Regarding InfluxDB, its available data types are [Inf21a]:

• 64-bit floating-point numbers

• 64-bit integers: Signed and unsigned

• Plain text string

• Boolean

• Unix timestamp

Which makes it mandatory to use 64 bits for any kind of number.

3.3.5 Further Considerations

Horizontal Scalability

It is inherited from MongoDB, providing it via shards and/or replicas. By constrast,
InfluxDB is only able to grow horizontally in its commercial version.

Compression

MongoDB uses snappy compression [Goo11] by default, which intends to minimize
the compression time. However, NagareDB is set up to use Zstandard compression.
ZSTD is able to offer higher compression rates, while slightly reducing query
performance [Fac16]. However, as one of the main objectives of the proposed
approach is to reduce resource requirements, this option is preferred.

Timestamps

MongoDB’s date type is limited to milliseconds. Thus, NagareDB’s approach is
also limited to it. While it would be possible to create a new data type for storing
nanoseconds, we consider it enough to keep up to milliseconds, as NagareDB is
intended to provide a good trade-off between resources and features offer, not
specifically targeting the highest demanding use cases. Conversely, InfluxDB uses
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nanosecond precision. This makes InfluxDB a more time-precise database, but
it also implies that in a not-that-precise scenario it will keep unnecessary date
information [Inf20b].

Query Parallelization

The bucketing technique explained in Section 3.3.2 enables intrinsic query paral-
lelization, as data is already equally distributed in buckets. However, as NagareDB
is intended to provide a good resource-outcomes compromise, query parallelization
is only enabled for queries whose nature is CPU-DISK balanced, and limited to
half of the available threads. For instance, queries that request a historical period
will not use query parallelization, as their CPU usage is low. Conversely, queries
involving data aggregation, which requires higher CPU usage, are parallelized.

Time-series Granularity and Frequency

NagareDB is intended for discrete time series, with stable frequency and round
timestamps, following the smooth property explained in Section 3.1.2. For instance,
users are expected to define the baseline granularity for each sensor, and/or a default
one. Thus, when receiving a reading, the timestamp will be truncated to the desired
granularity. By contrast, InfluxDB does allow non-truncated timestamps, but
strongly recommends to truncate them, as otherwise efficiency drops significantly
[Inf16]. This self-imposed limitation provides extended performance, at the same time
that prevents users from inefficient practices.

3.4 Experimental Setup
The experimental setup is intended to enable the evaluation of the performance of
NagareDB in moderate-demand use cases, as well as the effects of implementing
more lightweight data types, such as the one explained in Section 3.3.4.
Concretely, the experimental set up is made against two different solutions:

First, the MongoDB recommended implementation (MongoDB-RI), as a reference
point. Second, InfluxDB, as it is considered the most popular Time-series Database
[Sol22b].

3.4.1 Virtual Machine
The experiment is conducted in a Virtual Machine (VM) that emulates a commodity
PC, in accordance to NagareDB’s goals, as explained in Section 3.
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More precisely, the VM is configured as follows:

• OS Ubuntu 16.04.7 LTS (Xenial Xerus)

• 4 vCPU @ 2.2Ghz (Intel® Xeon® Silver 4114)

• 8GB RAM DDR4 2666MHz (Samsung)

• 300GB - fixed size (Samsung 860 EVO SSD)

3.4.2 Comparative Software

• MongoDB 4.4 CE: Time-series Recommended Implementation, referred as
MongoDB-RI.

• InfluxDB OSS 2.0: Referred as InfluxDB.

• NagareDB-64b: When globally using MongoDB’s 64-bit decimal data type.

• NagareDB-32b: When using the limited-precision data type explained in
Section 3.3.4, set up to keep 4 decimals.

3.5 Evaluation and Benchmarking

This section demonstrates the performance of NagareDB in comparison to other
database solutions, as explained in Section 3.4.

Concretely, the evaluation and benchmarking is done in three different aspects:
Storage Usage, Data Retrieval Speed, and Data Ingestion Speed. Thanks to this
complete evaluation, it is possible to analyze the performance of the different
solutions during the persistent data life-cycle, with regard to the database scope, as
explained in section 2.3.

3.5.1 Storage Usage

After ingesting the data, as explained in Section 2.1, the disk space usage of the
different database solutions is as shown in Figure 3.3.
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On the one hand, MongoDB-RI is the implementation that requires more disk
space. This could be explained due its schema-less implementation and by its snappy
[Goo11] compression mechanisms intended to improve query performance while
reducing its compression ratio, following the implications explained in Section
3.3.5.

On the other hand, both InfluxDB and NagareDB-64b require the same amount
of disk space, which could be explained by its shared pseudo-column oriented data
representation and by its powerful compression mechanisms.

Last, NagareDB-32b is able to reduce the disk usage by 40%, in comparison to
both InfluxDB and NagareDB-64b, thanks to its lightweight data type, explained in
Section 3.3.4. In consequence, NagareDB-32b is able to store, approximately, a 1.7
times bigger historical period in the same disk space.

3.5.2 Data Retrieval

The testing query set, as explained in section 2.3 is composed by 12 queries (Table
2.1), intended to cover awide range of use-case scenarios, while providing insights of
the databases’ performance and behavior. More precisely, the different queries lay in
four different categories: Historical Querying, Timestamped Querying, Aggregation
Querying, and Inverted Querying. In addition, an example of NagareDB’s querying
can be seen in section 7.1, although there is no distinction between querying
MongoDB and NagareDB.
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HistoricalQuerying

As it can be seen in Figure 3.4, NagareDB is able to retrieve historical data up
to 5 times faster than MongoDB-RI, while also outperforming InfluxDB in every
historical query. In addition, the plotting shows some interesting insights:

• MongoDB is faster when retrieving small historical ranges in comparison to when
retrieving big ones. Concretely, NagareDB speeds up MongoDB by 2.5 in daily
queries (Q1, Q4), while doubling the speedup when requesting a larger historical
period. In contrast, InfluxDB performs better when retrieving more historical
data.

• NagareDB-32b is generally faster than NagareDB-64b, but the difference is almost
negligible in this category. This is due to the fact that, while it handles smaller
data, it also performs internal type castings, as explained in Section 3.3.4.

• NagareDB slightly reduces its performance when retrieving sparse data (Q7).
This effect also occurs in InfluxDB, but more notoriously.
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ID Query Type #Sensors Sensor Condition Period Value Condition Target Granularity

Q1 Historical 1 Random Day - Minute
Q2 Historical 1 Random Month - Minute
Q3 Historical 1 Random Year - Minute
Q4 Historical 10 Consecutive Day - Minute
Q5 Historical 10 Consecutive Month - Minute
Q6 Historical 10 Consecutive Year - Minute
Q7 Historical 10 ID mod 50 = 0 Year - Minute
Q8 Timestamped 500 All Minute - Minute
Q9 Aggregation (AVG) 1 Random Year - Hour

Q10 Aggregation (AVG) 20 Consecutive Year - Hour
Q11 Aggregation (MIN) 1 Random Day - Minute
Q12 Inverted 1 Random Year V ≤ µ− 2σ || V ≥ µ + 2σ Minute

Table 1: Experimental data retrieval queries
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Figure 3.4: Historical querying response times, in seconds.

TimestampedQuerying

Timestamped querying requests all sensor values for a given timestamp. Hence,
it does not benefit from the columnar design that NagareDB and InfluxDB follow,
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being penalized [AMH08]. Thus, MongoDB, based on small buckets, is able to
outperform them.
However, as it can bee seen in Figure 3.5, NagareDB is able to outperform

InfluxDB using any of its data types. Moreover, NagareDB-32b is able to provide
much better performance than NagareDB-64b. This is due to the fact that the data
buckets, that have to be loaded to RAM, are much smaller, with the advantage that
there is only one value requested per bucket, so the data type parsing overhead is
greatly reduced.
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Finally, it is important to take into account that this kind of query is answered
fast, even in the case of InfluxDB, which shows the worst speedup. Concretely,
NagareDB-32 only needs 0.065 seconds in order to answer the query. Thus, despite
of the fact that MongoDB outperforms all three alternatives, the response times are
still far acceptable.

AggregationQuerying

Both NagareDB and InfluxDB greatly surpass MongoDB-RI. This behavior is even
more notable in downsampling queries (Q9–10), as seen in Figure 3.6. More pre-
cisely:

• InfluxDB is more efficient when performing queries that involve big amounts of
data, but the outcome is calculated by reducing it, such as downsampling queries.
However, when the result consists in one single value, such as minimum-value
detection queries (Q11), NagareDB is able to outperform it.
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• NagareDB-32b outperforms NagareDB-64b as NagareDB-32b is able to read values
slightly faster, without the negative impact of performing numerous type castings.

Concretely, unlike when querying historical data, NagareDB-32b needs to process
all the data, but it is only request to perform one type casting per every 60 sensor
readings (R) (on the average result, in this case), as the base granularity is minute,
but the target granularity is hour:∑60

𝑖=1 𝑅(𝑖)
60

10𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑60
𝑖=1

𝑅(𝑖)
10𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

60
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InvertedQuerying

In inverted querying, databases are asked to read the sensor values in a given range,
but to only process those who meet certain conditions. In this case, databases are
requested to retrieve outlier triples, as shown in Table 2.1.

This kind of query can potentially benefit from inverted indexes. These indexing
structures are meant to store a mapping from the value itself, to its location (or
timestamp). Moreover, they are typically sorted, so finding the timestamps corre-
sponding to a range of values would be rapid. However, while these indexes are
available in MongoDB [Mon21c], they are not present in InfluxDB [Inf20a].
In despite of the exceptional performance that inverted indexes could provide

[CP20], they are not included by default in NagareDB. This is due to NagareDB’s
goals with respect to resource-saving, as inverted indexes can require high amounts
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of disk space and RAM. Thus, queries on values have to scan all sensor readings in
the specified time range, which is the same behavior as InfluxDB, which also lacks
these indexes.
Regarding its comparative speedup against MongoDB-RI, as it can be seen in

Figure 3.7 both NagareDB and InfluxDB are able to provide a speedup greater
than 10, being InfluxDB the fastest. Also, NagareDB-32b slightly outperforms
NagareDB-64b, as it has to carry out type castings only in a brief subset of the data.
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Summary

The experiments show that NagareDB is able to greatly outperform MongoDB
Recommended Implementation, our baseline, in 11 out of the total 12 queries.
Concretely, it extensively outperforms MongoDB when performing middle or high
time-ranged queries, which are the most time-consuming ones.
However, when queries involve a tiny amount of consecutive readings, for a

big number of different sensors, MongoDB-RI is able to retrieve results faster.
This is mainly because of its small-sized bucketing approach and its lightweight
compression mechanisms. Nonetheless, as it can be seen in Table 3.8, these kind
of queries are answered really fast, in a tenth of a second, even in a worst case
scenario such as the one provided by Query 8, which turns this drawback into an
unimportant obstacle for most scenarios.
In comparison to InfluxDB, the most popular Time-series database, NagareDB

has shown to be faster when retrieving Historical data and Timestamped data,
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while falling a little behind when performing Aggregation queries and Inverted
Queries.
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Table 2. Queries execution time, in seconds.

QID MongoDB-RI NagareDB-32b NagareDB-64b InfluxDB

Q1 0.071 0.030 0.033 0.055
Q2 1.557 0.352 0.365 0.495
Q3 19.266 4.469 4.424 5.238

Q4 0.134 0.049 0.049 0.094
Q5 3.618 0.770 0.792 1.130
Q6 45.473 9.520 9.833 12.679

Q7 50.967 12.810 12.603 22.004

Q8 0.023 0.065 0.133 0.399

Q9 12.800 0.542 0.542 0.405
Q10 25.117 1.526 2.017 1.285
Q11 0.044 0.007 0.008 0.024

Q12 12.817 1.140 1.156 1.030

6.3. Data Ingestion
6.3.1. Performance Metrics and Set Up

The simulation is run along with 1 to 5 ingestion jobs, each handling an equal amount
of sensors, and keeping the average writes/second metric. It is performed simulating a
synchronized, distributed and real-time stream-ingestion approach, meaning that sensor’s
data streaming is decentralized, data is stored when received, without waiting, and each
write is not considered as finished until the database acknowledges its correct reception,
and physically persists the Write-ahead log. Thus, this scenario intents to guarantee write
operation durability while simulating an accurate real-time Monitoring Infrastructure.

6.3.2. Results

Regarding stream data ingestion, as seen in Figure 8, MongoDB-RI provides the fastest
writes/second ratio. This is mainly due to two reasons: First, MongoDB-RI uses snappy
compression, which provides a lighter but faster compression, in comparison to any com-
pression technique that NagareDB or InfluxDB uses. Second, MongoDB-RI’s data model
follows a document-oriented data model which is, in fact, a key-value approximation,
where the value is a document that stores a small bucket, considered as a small column of
sensor readings according to time.
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Figure 3.8: Queries execution time, in seconds.

3.5.3 Data Ingestion

Performance Metrics and Set Up

The simulation is run along with 1 to 5 ingestion jobs, each handling an equal
amount of sensors, and keeping the average writes/second metric. It is performed
simulating a synchronized, distributed and real-time stream-ingestion approach,
meaning that sensor’s data streaming is decentralized, data is stored when received,
without waiting, and each write is not considered as finished until the database
acknowledges its correct reception, and physically persists the Write-ahead log.
Thus, this scenario intents to guarantee write operation durability while simulating
an accurate real-time Monitoring Infrastructure.

Results

Regarding stream data ingestion, as seen in Figure 3.9, MongoDB-RI provides the
fastest writes/second ratio. This is mainly due to two reasons: First, MongoDB-
RI uses snappy compression, which provides a lighter but faster compression, in
comparison to any compression technique that NagareDB or InfluxDB uses. Second,
MongoDB-RI’s data model follows a document-oriented data model which is, in
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fact, a key-value approximation, where the value is a document that stores a small
bucket, considered as a small column of sensor readings according to time.
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Conversely, InfluxDB provides the slowest ratio in this scenario. This could be
partially explained by its columnar data model design. This data model benefits
batch writes to single columns (or sensors), so, it is really fast when inserting, at
the same time, a lot of readings of one single sensor. However, this behavior is
distant from a real-time scenario, when all sensors ship their readings altogether,
and they have to be inserted at the moment.
Laying in the middle, NagareDB, uses an intermediate data model: While it is

using a document-oriented (so, key-value) approximation as MongoDB-RI does,
it holds much bigger columns than MongoDB-RI, but not as extensive as In-
fluxDB[Inf20c]. In addition, NagareDB uses ZSTD compression, which provides
better compression ratio, at the expense of slightly slowing down insertion time
[Fac16], following NagareDB’s resource-saving goals. This makes NagareDB data
model a some-how hybrid between MongoDB-RI and InfluxDB, providing, thus,
an intermediate performance. In addition, NagareDB-32b is able to slighly surpass
NagareDB-64b, as the data types that it uses are smaller than its high-precision
alternative version.

Finally, all databases have demonstrated to provide an efficient scaling speedup,
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as they did not reach the parallel slowdown point, when adding more parallel jobs
implies a speedup decay, not even with five parallel jobs.

3.6 Conclusions
This chapter introduced the obstacles that users or organizations who lack from
resources might face when dealing with Time-series databases, as well as the
requirements that a good TSBD should fulfill.

In order to address this problem, and to lower the barriers to building Monitoring
Infrastructures, we introduced the novel approach followed to envisage NagareDB, a
resource-compromised and efficient Time-series database built on top of MongoDB,
the most popular NoSQL open-source database.

Thus, thanks to the improvements and adaptations performed in NagareDB, and
to the inherent MongoDB features and popularity, NagareDB is able to satisfy all
modern TSDB requirements, while being an easy-to-master solution.

Concretely, our experiment results show that NagareDB is able to smoothly exe-
cute any TSDB typical query or operation, and to comfortably work in commodity
PCs, consuming less disk space than MongoDB’s recommended implementation,
while also outperforming it in up to 377% when retrieving data.

Moreover, when comparing NagareDBwith TOP-tier databases, such as InfluxDB,
the most popular Time-series database, our experiments show that NagareDB is
able to compete against it, providing similar global query results. In addition, when
ingesting real-time data, NagareDB is able to outperform InfluxDB by 35%.

Furthermore, NagareDB is built on top of MongoDB’s Community Edition, which
is able to freely scale horizontally, while InfluxDB has this feature restricted to its
commercial version, making it mandatory to follow a monolithic approach, limiting
the database to one single machine.
Finally, our experiments show that this first approach to NagareDB is able to

provide further speedup, and to reduce its storage consumption up to 40% when
relaxing some requirements with regard data decimal precision, providing an even
better resource-outcome trade-off.

The work presented in this chapter has been published in the journal "Data" (MDPI),
which belongs to the second quartile (Q2) of "Information Systems and Management",
and has a CiteScore of 4.8 (2021).
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Time-series databases have demonstrated to efficiently handle data coming from
Monitoring Infrastructures. Targeting at this very same objective, but also follow-
ing a resource-efficient perspective, NagareDB was born. As detailed in Chapter 3,
NagareDB’s approach has demonstrated to provide a fair trade-off between per-
formance and resource consumption, in all three different perspectives: Software,
Hardware and Expert Personnel.
In order to further reduce hardware requirements, while also improving Na-

gareDB’s approach performance, among others, in this chapter we intend to go
one step beyond. More precisely, we propose an all-round polyglot-based approach
for TSDBs, aimed at providing outstanding global performance while adapting
itself to the particularities of each use case. In particular, our holistic approach
attempts to tailor the database not only to time series data, but also (1) to the
natural data-flow of real-time data (ingestion, storage, retrieval), (2) to the expected
operations according to data aging, and (3) to the final format in which users want
to retrieve the data.

In order to evaluate its performance, we materialize our approach in an alterna-
tive implementation of NagareDB, presented in Chapter 3. With this evaluation
approach we aim (1) to demonstrate that the proposed technique is capable of
outperforming popular and mainstream approaches, and (2) to illustrate that it is
possible to improve and adapt already-existent databases, in order to cope with
demanding specific-purpose scenarios, relieving the need of developing further
database management systems (DBMS) from scratch.
Moreover, we design and evaluate our approach following a resource-efficient

orientation, meaning that we aim, not just to obtain good results, but to obtain
them in a resource-limited scenario. This restrictions aim to further demonstrate
that fast Time-series data handling can be achieved by not only adding more and
more hardware resources, but also by applying resource-efficient techniques.

Applying our Polyglot-based approaches has shown to greatly improve the origi-
nal database performance, being able to retrieve historical data up to 12 times faster
than MongoDB’s recently launched Time-series capability, and timestamped data
up to 5 times faster than InfluxDB, the most popular Time-series database. More-
over, we demonstrate that our approach improves real-time ingestion, behaving
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two times faster than any of InfluxDB, MongoDB and NagareDB, while using the
same disk space as InfluxDB and NagareDB, and half as much as MongoDB.

4.1 Background

4.1.1 Data models

Data models organize elements of data and define how they relate to each-other.
Each data model has its own specific properties, performance, and may be preferred
for different use cases. As data models vary, their properties and performance do
too. Although the actual implementation might differ from one database to another,
each data model follows some shared principles. Some of the most relevant data
models, related to this Time-series, are:

• Key-Value oriented. It is composed of independent and high granular records.
These records are stored and retrieved by means of a key that globally identifies
a record, linking it to a value. Thanks to this independence, new records can
be inserted speedily, even in parallel, reducing or preventing database locking
procedures[DCL18].
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Figure 1: Key-value oriented data model sample.Figure 4.1: Key-value oriented data model sample.

• Row oriented. A row, or tuple, represents a single data structure composed
of multiple related data, such as sensor readings. Each row contains all the
existing attributes that are closely related to the row primary key, the attribute
that uniquely identifies the row. This makes it efficient to retrieve all attributes
for a given primary key. All rows typically follow the same structure. Traditional
relational solutions follow this design principle.
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2021/01/31 10:02:00, 15.411, 33.435, 20.332

  Attributes:

Figure 4.2: Row oriented data model sample.

• Column oriented. Data is organized following a column fashion. Each column
contains all the existing values related to the column identifier, f.i a sensorID. Col-
umn orientation is greatly efficient when performing historical queries[DCL18].
In addition, they enable cost-effective compression mechanisms, such as Run-
Length Encoding[Jov+19].
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Atributes:

Figure 2: Row oriented data model sample.
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Figure 3: Column oriented data model sample.
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Figure 4: PL-NagareDB’s Polyglot Persistence Cascade.
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Figure 4.3: Column oriented data model sample.

4.1.2 Time series data representation

The format in which Time-series data is ingested can differ greatly from the
way it is stored in disk, as explained in section 4.1.1. However, most Time-series
databases follow the same, or very similar, way to ingest data. A Time-series
record is typically represented as a triplet, or a three-element structure, composed
by: the ID of the sensor that reads the data, a timestamp of the instant in which
it was read, and a value, representing the reading. However, some databases
incorporate more elements, integrating further metadata.

4.1.3 Polyglot Persistence

The NoSQL movement represented a great distancing from the one-size-fits-
all approach, and its relational implementations. Particularly, it offered great
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progress towards more efficient databases, aiming the database engineers to select
specific data models, choosing them according to type of data to be handled, and
its properties.

Even so, this was found still not sufficient for some high demanding scenarios,
which lead to the birth of Polyglot persistence[KW19], defined as using multiple
data storage technologies chosen by the way data is used by individual applications.
Thus, polyglot persistence intended to obtain the best from every technology,
tailoring every application with the database that fitted the most. However, it
had a major problem: There were a big number of different data models, and each
data model was implemented by a plethora of different NoSQL solutions. Finding
experts for keeping track and mastering all those rapidly evolving technologies
became increasingly difficult.

In order to alleviate this problem, other NoSQL technologies emerged: The
so-called multi-model databases. They were specifically designed following a
schema-less principle: No schema was enforced, thus, holding enough elasticity
to allow the database engineer to create its own data model. Moreover, by pushing
their limits, it was found even possible to create several data models at the same
time[Mac+20]. Thus, one single technology could hold different data models, and
each data model could serve to a different application, in the same way polyglot
persistence was conceived to do. This alternative was able to provide similar
results to using ad hoc database solutions[OV16], while reducing drastically the
number of software solutions to be used and mastered.

4.2 Related work

This section describes related solutions and research from two different perspec-
tives: Time Series Databases and Polyglot Approaches. Time-series Databases are
target solutions aimed at sensor data management, while Polyglot Approaches
describe some mechanisms used to improve general data management. Our
approach aims at pushing the limits of both perspectives, while merging them
into a single solution.

4.2.1 Time Series Databases

– MongoDB is the most popular NoSQL database[Sol22b]. It is an open-source
general-purpose solution that incorporates an extremely flexible document-
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based data model made out of JSON-like documents. As Time-series databases
became increasingly relevant, MongoDB 5.0, released in mid-2021, introduced
native Time-series capabilities, being able to behave as a specific-purpose
time series database on its own by following a bucketed column-like data
model[Mon21f], embedded in its document-oriented data model. In order to
query, users may use MongoDB’s specific query language, named MongoQL.
Regarding deployment and setup, MongoDB is able to scale horizontally at no
cost, and to run natively in Windows, Linux, and MacOS, thus reaching a wide
number of users.

– NagareDB is a Time-series database built on top of MongoDB, which lowers its
learning curve. Its data model, built on top of MongoDB’s document-oriented
data model, follows a column-oriented approximation, as data columns are
embedded inside JSON-like documents [Cal+21]. NagareDB inherits most
of MongoDB’s features, including its query language, its free and straight-
forward horizontal scalability. It is a free, competitive alternative to popular and
enterprise-licensed Time-series databases[Cal+21], both in terms of querying
and ingestion performance–however not always with a consistent or remark-
able speed-up, sometimes falling behind popular Time-series databases, such
as InfluxDB.

– InfluxDB is a specific-purpose Time-series database [Inf21b], considered the
most popular one since 2016[Sol22b]. InfluxDB follows a column-oriented data
model, able to efficiently reduce its disk usage. In order to query, users can
use InfluxQL, a SQL-like query language, or Flux, a more powerful alternative,
able to overcome many of the limitations of InfluxQL [Inf21b]. Regarding
its deployment, its open source version is limited to a single machine, only
allowing monolithic setups, and relegating its scalable mechanisms to the
enterprise edition. InfluxDB can be installed on Linux-based and MacOS
systems, but not on Windows.

– TimescaleDB is a Time-series database built on top of PostgreSQL, one of
the most popular General-Purpose DBMS [Sol22b], which lowers its learning
curve. However, due to the limitations of the underlying rigid row-oriented
relational data model, its scalability, performance and disk usage might be
compromised, depending on the use case and query [AMH08]. It is able to run
on Windows, MacOS, and Linux, thus reaching a wide number of potential
users.

To sum up, MongoDB is a greatly-known general-purpose database, recently
enabled to act as a specific Time-series database (a novel change that has not been
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benchmarked yet). Laying on top of it, NagareDB is able to offer outstanding
optimizations, but falls behind the other solutions in some scenarios. A similar
problem occurs to TimescaleDB: It relies on a popular SQL solution and offers
good optimizations, but generally behaves worse than other TSDBs. Lastly,
InfluxDB offers an outstanding performance, but its usage is limited to Linux-
based and MacOS, and its open-source version is limited to monolithic set ups.
Moreover, although it is the most popular Time-series database, its general
popularity is almost 20 times smaller than other general-purpose databases, such
as MongoDB or PostgreSQL[Sol22b].

Notice that most of the mentioned databases are designed to use a column-
oriented data model, either as its base data model, like InfluxDB, or by adapting
its underlying data model, in order to simulate a column-oriented approximation.
In consequence, we expect performances to be rather similar (proficient in some
scenarios and penalizing in others), following the intrinsic limitations of column-
oriented data models.

Our goal is to overcome these constrains by not limiting the database to a single
data model, but to employ several interrelated ones, able to act as a whole, in
different steps of the data-flow path, pushing the concept of polyglot persistence.

4.2.2 Polyglot Approaches

Polyglot persistence aims at leveragingmultiple data storage technologies. Each
application, within an organization, is connected to the most suitable database
solution. For example, the Future Archiver of the European Organization for
Nuclear Research (CERN), employs polyglot persistence for storing the data of
CERN’s experiments and facilities[Gol+17]. Each application is able to benefit
from the preferred data model and database, such as Apache Kudu (Column-
oriented data model) or Oracle (Relational data model).

Multi-model databases intend to provide the same benefits of polyglot persis-
tence, but within just one database solution. Thus, a single database is able to
provide different data models at the same time, when designed to do so. Each
data model is connected to the application that fits the most. For example, Mon-
goDB, a multi-model database, has been capable of offering a Graph data model
approach[Mac+20], allowing it to store, at the same time, document-oriented data
(the original MongoDB’s data model) and social-network data, using the graph
data model. In addition, multi-model databases have shown to provide similar or
even better performance than simple, or specific-purpose, data stores[OV16].
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Here we will introduce a novel and holistic polyglot approach, not only referring
to the persistence itself, but also to the ways in which users interact with the
database. We will demonstrate the potential of our approach by implementing
it in NagareDB, expecting the outcome to be an all-round better version of its
baseline solution.

4.3 Design approach

Here we introduce the holistic approaches materialized in the alternative im-
plementation of NagareDB, referred as PL-NagareDB. They are divided in three
different categories, with respect to their scope. Concretely: (1) Cascading Poly-
glot Persistence intends to create an efficient way of ingesting and storing data,
for its later retrieval, (2) Polyglot Abstraction Layers aims to offer an efficient and
easy way in which users can query the database, hiding its internal complexity,
and, lastly, (3) Miscellaneous explains some ad hoc modifications of the original
NagareDB, in order to better fit the alternative PL-NagareDB.

4.3.1 Cascading Polyglot Persistence

We define Cascading Polyglot Persistence as using multiple consecutive data
models for persisting data of a specific scope, where each data element is stored
in one and only one data model at the same time, eventually cascading from one
data model to another, until reaching the last one. Thanks to Cascading Polyglot
Persistence, the database can be tailored, not just to Time-series data itself, but
also to its data-flow, from ingestion to retrieval, and to the expected operations
performed in each step of the data flow, maximizing its performance.

Here, Cascading Polyglot Persistence is materialized on top of a multi-model
database, intended to keep all data models. This not only reduces software
requirements, but also the overhead of cascading data from one data model to
another.

PL-NagareDB implements three different data models (DM 1 to 3), keeping sensor
readings just in one single data model at the same time, cascading from one data
model to another along time. These three data models are fitted to the inevitable
data generation order, according to time. Moreover, this hybrid approximation
is intended to benefit ingestion and query speed, while ensuring that no extra
disk space is needed. Concretely, sensor readings will be ingested in DM1, for
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later being temporarily stored in DM2, and finally being consolidated in DM3, as
shown in Figure 4.4.
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Figure 4.4: PL-NagareDB’s Polyglot Persistence Cascade, showing the three consecutive
data models (DM): Data is ingested using DM1, until reaching DM3 through DM2.

More precisely, the data models are defined as follows:
DM1: Key-Value. It is modeled following a key-value approximation, where
each sensor reading is completely independent from others. This non-bucketing
strategy is mainly intended to improve the throughput in data ingestion processes.
Moreover, thanks to the fact that data is not organized in buckets, queries that
do not involve historical data will be highly benefited. For example, real-time
control panels typically check the current status of all sensors in a certain point
in time, or even continuously. This data model is specifically intended to benefit
those timestamped queries as, first, it benefits non-historical queries and, second,
it only keeps most recent data, which is the typical target of monitoring control
panels. Its default data capacity is one day, meaning that sensor readings will be
flushed from DM1 to DM2 once per day. However, it can be modified according
to the use-case preferences.

DM2: Short-Column. It acts as a data bridge between DM1 and DM3. Data
is bucketed in its 3 uppers temporal levels. For instance, if data granularity
is minute, it will form daily short columns, per each sensor, meaning that all
readings for a given sensor and a given day will be packed together in a columnar
shape. Thus, JSON-like documents, the basic data structure of the underlying
database, are intended to store data in a columnar shape, following a schema-
fixed approach. The specific data embedding mechanisms that DM2 follows are
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extensively detailed in NagareDB’s presentation research study as, actually, the
original data model of NagareDB is equivalent to this research’s DM2 [Cal+21].
In disk, it is organized following the natural time line, according to data arrival
order from DM1: All sensor’s data from a given day will be placed adjacently.
This makes it organized in a time-natural way: first by day, and, later, by sensor.
Figure 4.5 represents the in-disk representation of DM2: All sensor readings of a
given day are consecutively organized in disk, left to right. Thus, when solving
the sample query return every sensor data in day 2, the disk will be able to go to
the first element of day 2 (Sensor 1 data), and sequentially read all data of other
sensors, for that very same day, making it efficient. Conversely, if requesting all
historical data for Sensor 4, as seen in Figure 4.5, it will have to jump from one
day to another, performing several random reads, which is far less efficient. This
bridge data model is intended to optimize daily and hybrid queries, at the same
time that its usage is mandatory, as it is not possible to directly store all sensor
historical data consecutively in disk, because it contradicts the natural order of
time, without the usage of padding or further resource-consuming techniques. Its
default data capacity is one month, meaning that sensor readings will be flushed
from DM2 to DM3 each month, although it can be adjusted.
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Figure 4.5: Simplified data access of PL-NagareDB’s second data model, when requesting
all existent readings for day 2 (left), and all historical readings for Sensor 4 (right). As
illustrated, the disk is able to perform an efficient sequential access operation on the left
query, whereas it needs to complete several random-access operations on the right one.
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DM3: Long-Column. It is modeled following a columnar approximation, where
all historical data of a given sensor, in a specific month, is stored consecutively.
This is intended to improve historical queries –the ones expected in historical
and not-so-recent data– as it is able to benefit from sequential readings. In
fact, the logical data representation is the same as in DM2, the original short-
column data model of NagareDB. The main difference is that these short-columns
are stored consecutively in disk, by sensor, forming a long-column. Figure 4.6
represents the in-disk representation of DM3: All sensor readings of a given
sensor are consecutively organized in disk, left to right. Thus, for solving the
sample query return every sensor data of day 2 it will jump from one sensor to
another, performing several random reads. Conversely, if requesting all historical
data for Sensor 4, as seen in Figure 4.6, the disk will be able to go to the first
element of Sensor 4 (Day 1), and sequentially read all data of other days, for that
very same sensor. This data model keeps all the historical data that is not present
in DM1 or DM2.
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Figure 4.6: Simplified data access of PL-NagareDB’s third data model, when requesting
all existent readings for day 2 (left), and all historical readings for Sensor 4 (right). As
illustrated, the disk needs to complete several random-access operations on the left query,
whereas it is able to perform an efficient sequential access operation on the right one.

MongoDB –PL-NagareDB’s foundation database– has usually paid little attention
to document disk order, as it brings low-level extra difficulties for the database
architects. However, this disk-conscious approach is able to bring further opti-
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mizations. Concretely, creating an in-disk long column (DM3) from short columns
(DM2) has two main benefits: First, it does not involve the creation of a new data
structure. Thus, from a user’s code perspective there is no difference between
querying DM2 or DM3. Second, the cascade from DM2 to DM3 is expected to be
efficient, as there is no real overhead in changing from one logical data model to
another, with the physical disk organization being the only difference.

When cascading data to the following data model, it is not necessary to perform
any where or match query, as data is already separated in collections, in a daily
or monthly basis. Thus, the operation intended to move data from one data
model to another only needs to perform a collection scan in a bulk-operation
fashion, making it cost-efficient (see results section 4.5). Moreover, this operation
can be completely performed in-database, thanks to the out and merge function
enhancement introduced in MongoDB 4.4. This allows to perform both the
operation and the disk persistence in one single query, within the database, as
explained in MongoDB’s manual, aggregation operators section[Mon21c]. Finally,
as data is organized in different collections, according to time, when flushing data
from one data model to another, a different collection will be used for storing the
real-time data received. This prevents the database from waiting due to blocking
or locking mechanisms.

4.3.2 Polyglot Abstraction Layers

While Cascading Polyglot Persistence is expected to improve the databases’ per-
formance, it also increases the system complexity, which can negatively affect
user interaction. In order to reduce this drawback, while providing further opti-
mizations, Cascading Polyglot Persistence is coupled with Polyglot Abstraction
Layers.

An Abstraction Layer typically allows users to comfortably work with their
data, without having to worry about the actual in-disk data model or persistence
mechanisms. However, PL-NagareDB goes one step beyond by implementing
Polyglot Abstraction Layers, so, several data representations from which the user
can access the very same data, but in different ways. This approach provides two
additional main benefits:

Hybrid Queries. The Abstraction Layers enable Data-Model Coexistence. Thus,
users are able to retrieve data independently from which data models it is stored
in. This enables users to comfortably query, at the same time, data that is stored
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in 1, 2 or even 3 different data models. Moreover, thanks to the Polyglot approach,
users are able to choose from which abstraction layer to query from, minimizing
the data model transformation costs (see red and green arrows in Figure 4.7).
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Figure 4.7: PL-NagareDB’s Abstraction Layers, in three different data model orientations.
Green colour represents direct or cost-less data flows, while red ones represent data flows
in which transformations are required. Thanks to the Abstraction Layers, users are able to
query data in their preferred data model, and to maximize query performance.

Final Format Consciousness. Regardless of the internal data representation,
databases typically return data in one specific and pre-defined format. For ex-
ample, MongoDB transforms its internal data representation to a key-value
approximation for its use[Mon21d], and InfluxDB returns data in a row-oriented
fashion[Inf21b]. While this might be suitable in some occasions, it can heavily
compromise the system performance, due to excessive and unnecessary data
transformation overheads. For instance, if the user is expecting to retrieve data
in commonly-used Python Pandas dataframes, which are efficiently generated
from columnar data, MongoDB and InfluxDB outputs are heavily penalized: Both
databases would shape their data into columns, transform it into key-values
and rows, respectively, for later re-creating the columnar data (which was the
original data model approximation), in order to fit the end dataframe format.
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PL-NagareDB’s adaptability or Final Format Consciousness prevents this data
transformation overhead, becoming more efficient and more resource-saving,
accommodating itself to the final data format needed by the user. If the user
requests data in tables or dataframes, PL-NagareDB will query the columnar
abstraction layer. If the user requests a dictionary, PL-NagareDB will internally
use the key-value abstraction layer, and so on.

All three abstraction layers are internally implemented as a database view, so,
a new data collection made out of the result set of a stored query or procedure.
Users can query it just as they would in a real data collection. Thus, users are
able to query any abstraction layer straightforwardly, not even noticing that it
is, in fact, a view, and not a data collection. The main traits of our approach’s
abstraction layers are:

– Non-materialized views. Abstraction layers are not persisted on disk, mean-
ing that data is only stored once, in the database’s internal format, but shown
to the user in different perspectives. Data is transformed on-the-fly, if neces-
sary, following one of the three predefined data mappings: Key-value, column
or row. This transformations are not always performed, as some abstraction
layers can be generated without further processing, or can be partially cached
in memory.

– Hinted generation. Each query involves certain data, such as a specific time
range, and/or several data origins or sensors. Abstraction layers receive this
query metadata, which is, in fact, a part of the query itself, known as WHERE
clause in SQL systems. Thanks to this hint, the abstractions layers evaluate
which data should be selected and transformed, fitting the abstraction layers
to the requested data. By contrast, MongoDB, when querying time series,
typically request the whole collection to be transformed, making it necessary
to reshape data that might not be ever used, and to keep it in RAM, replacing
its cache or consuming further RAM resources.

– On-demand. Due to its hinted generation trait, and since every query involves
different hints, there is no specific view ready to be queried. Instead, it is
dynamically generated and returned to the user on-the-fly, when the user
executes a particular query over the generic and visible abstraction layer. If the
user navigates through the database, without performing any specific query,
this very same generic abstraction layer, or view, will be shown, so that user’s
database perspective is kept consistent.
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– Pipelined Mapping. The data mapping from the original data model to the
final data model, offered by the abstraction layers, is performed in multiple
stages or in several, consecutive, intermediate mappings. Each stage is intended
to transform, simultaneously, all data, taking into account that the output of
one stage will be the input of the following one. Those stages are performed
in RAM, using the underlying MongoDB’s Aggregation Framework. This
framework is typically intended to perform operation such as aggregations
(MIN, AVG, etc.), but it is also able to alter the shape of data, or its structure,
even being able to convert data from one data model to another, by using
its powerful tools, such as aggregation pipelines or operations following the
map-reduce paradigm.

4.3.3 Miscellaneous

As our approach is aimed at increasing system performance without increased
cost, some further modifications are done to PL-NagareDB in order to maximize
the trade-off between efficiency and resource consumption.

Query Parallelization

NagareDB’s configuration was modified so that query parallelization is only
performed in aggregation queries. Any other CPU-consuming query, such as the
ones that involve comparisons, were set to be executed serially.

Timestamps

NagareDB’s behaviour is to never generate timestamps, but to join data with
already existing, and persisted, ones. Here we modify this behaviour so that
it only happens with historical queries, where the number of timestamps is
equivalent to the number of sensor readings per sensor. Said in another way, in
those queries where the number of timestamps is smaller than the number of
values to display, the timestamps will be generated dynamically. This affects, for
example, downsampling queries: If the baseline granularity was set to minutes,
and the target one to hours, there would be 60 sensor readings per hour, but only
one timestamp. In this situation, the timestamp is generated dynamically.
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4.4 Experimental Setup

The experimental setup is intended to evaluate the performance of the polyglot
approaches implemented in PL-NagareDB, comparing it against the Time-series
databases described in Section 4.2.1. The experimental setup is set to be similar
to the one used for NagareDB’s benchmarking [Cal+21].

4.4.1 Virtual Machine (VM)

The set up follows a monolithic architecture, intending to isolate the performance
properties of our proposed approach, removing distributed database techniques,
that could add further variables and noise to the results, making its interpretation
more difficult. Thus, following this approximation, and the resource-efficiency
goals that this research aims, the experiment is conducted in a VM that emulates
a commodity PC, configured with:

– OS Ubuntu 18.04.5 LTS (Bionic Beaver)

– 4 vCPU @ 2.2Ghz (Intel® Xeon® Silver 4114)

– 8GB RAM DDR4 2666MHz (Samsung)

– 300GB fixed size Storage (Samsung 860 SSD)

4.4.2 Comparative Software

– MongoDB 5.0 CE: It is the most popular NoSQL database. It includes, by
default, a Time series implementation.

– InfluxDB OSS 2.0: The most popular TSDB.

– NagareDB: A Time-series database, built on top of MongoDB 4.4 CE.

– PL-NagareDB: An alternative multi-model implementation of NagareDB
that includes the polyglot approaches explained in section 4.3.

MongoDB, NagareDB and PL-NagareDB use MongoQL, whereas InfluxDB uses
Flux, its respective query languages.
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4.5 Evaluation and benchmarking

This section demonstrates the performance of PL-NagareDB, and all its cascade
data models, in comparison to other database solutions, as explained in Section
4.4. This all-round benchmark is based on NagareDB’s original one, making it
easier to perform a detailed and precise analysis against NagareDB’s original
implementation.

Concretely, the evaluation and benchmarking is done in four different aspects:
Data Retrieval Speed, Storage Usage, Data Ingestion Speed, and Data Cascading
Speed. Thanks to this complete evaluation, it is possible to analyze the perfor-
mance of the different data models during the data flow path, including the time
spent cascading data from one to another.

With respect to the data itself, DM1 is set to only hold one day, its default
configuration. DM2 is, by default, only expected to hold one month of data.
However, since it is the baseline data model of NagareDB, it will also participate
in yearly queries, in order to obtain further insights and behaviour differences.

Last, NagareDB is able to use limited-precision data types, allowing up to 40% of
disk usage while providing further speedup[Cal+21]. However, as this behaviour
does not affect the effectiveness of the polyglot mechanisms, this benchmark only
includes full-precision data types, in order to avoid repetitive or trivial results.

4.5.1 Data retrieval

This section benchmarks the efficiency and query compatibility of PL-NagareDB’s
data models, evaluating them against other TSDB solutions, in terms of query
answer time. First, our approach is evaluated against MongoDB, considered as
a Baseline solution, and, later it is evaluated against more advanced solutions
for Time-series data management, such as InfluxDB, and NagareDB’s original
implementation.

This benchmark partitioning intends to provide clearer plots, as execution-time
result sets belong to different magnitude orders, depending on the database,
which substantially detracts value from the visualizations, when plotting them
together.
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Moreover, in order to obtain an exhaustive benchmark, while keeping its simplic-
ity, data models are tested separately. However, they can be queried simultane-
ously, in an hybrid manner, as explained in section 4.3.2, providing a gradient
of times, proportional to the amount of data belonging to one or another data
model.

The testing query set, as explained in section 2.3 is composed by 12 queries (Table
2.1), intended to cover a wide range of use-case scenarios, while providing insights
of the databases’ performance and behavior. More precisely, the different queries
lay in four different categories: Historical Querying, Timestamped Querying,
Aggregation Querying, and Inverted Querying.
While the nature of the different query types is singularly diverse, their imple-
mentation is straight-forward. In fact, in SQL terms, all querying types could
consist only in three different clauses: SELECT, FROM and WHERE, except from
the aggregation querying ones, that could also incorporate a GROUP BY clause.
An example of NagareDB’s querying can be seen in section 7.1.

Each query is executed 10 times over the data-set described in section 2.1, one
per each year (2000 to 2009). We record all execution times and outputs, and
calculate, for each query, the average execution time, its 95% confidence interval,
and its mean value.

All queries are evaluated against every PL-NagareDB’s data model, except from
Data Model 1, that only executes queries involving time ranges equal or smaller
than one day, as it is its default maximum size, as explained in section 4.3.1.

BASELINE BENCHMARK

In order to perform the first -baseline- benchmark, we evaluate our approach and
all its data models, materialized as PL-NagareDB, against MongoDB’s Time-series
capability.

Table 4.1 contains the execution times for all PL-NagareDB’s data models, as
well as for MongoDB’s solution. PL-NagareDB’s execution times are displayed
calculating their average execution time, plus its 95% confidence interval. Mon-
goDB’s execution times are displayed in two fashions: its average execution time,
plus its 95% confidence interval, and its median execution time (last column).
This complementary metric, specific to MongoDB, is proposed due to its substan-
tially large confidence interval, which makes execution times more unstable in
MongoDB than in our proposed approach.
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Table 5: Queries execution time, and standard deviation, in seconds.

Query ID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 MongoDB MongoDB - MED
Q1 0.150 [0.141, 0.162] 0.016 [0.011, 0.024] 0.016 [0.013, 0.023] 0.783 [0.397, 1.19] 0.446
Q2 - 0.206 [0.198, 0.219] 0.143 [0.138, 0.15] 1.636 [0.469, 3.706] 0.472
Q3 - 2.342 [2.316, 2.366] 1.644 [1.623, 1.667] 6.641 [5.713, 8.428] 5.816
Q4 0.214 [0.204, 0.225] 0.024 [0.019, 0.031] 0.036 [0.033, 0.041] 0.888 [0.422, 1.401] 0.502
Q5 - 0.408 [0.391, 0.422] 0.344 [0.321, 0.367] 9.119 [7.927, 11.147] 8.434
Q6 - 4.791 [4.656, 4.902] 4.052 [3.951, 4.184] 32.192 [28.403, 39.578] 28.472
Q7 - 7.728 [7.411, 7.928] 4.236 [4.165, 4.307] 38.508 [30.443, 53.472] 31.126
Q8 0.008 [0.005, 0.011] 0.107 [0.084, 0.131] 0.466 [0.448, 0.483] 0.497 [0.463, 0.545] 0.476
Q9 - 0.335 [0.316, 0.358] 0.157 [0.145, 0.171] 2.425 [1.459, 4.333] 1.494
Q10 - 1.925 [1.78, 2.074] 1.785 [1.704, 1.859] 32.966 [27.457, 43.554] 27.871
Q11 0.129 [0.121, 0.137] 0.008 [0.007, 0.011] 0.008 [0.005, 0.012] 0.800 [0.316, 1.481] 0.374
Q12 - 1.003 [0.974, 1.029] 0.547 [0.527, 0.565] 1.662 [0.789, 3.379] 0.818

Table 4.1: Queries execution time in seconds: Average and 95% confidence intervals, plus
median for MongoDB (last column).

This effect is due to the fact that MongoDB implements an abstraction layer based
on a fixed non-materialized view for accessing its data: When users perform
a query, MongoDB aims to transform all data to its exposed data model, with
disregard to the specific data requested[Mon21d]. This prefetch technique intends
to anticipate to future queries, but makes it really dependent from Random Access
Memory (RAM), as transformed data, that might never be used, is kept there,
consuming further resources. Moreover, once a different data set is queried,
if RAM is not free enough, it might be partially or totally replaced, making it
necessary to load everything back from disk.
This pattern can be seen in Figure 4.8, where the first time a query is executed, it
typically lasts longer. This happens even in the situation that different data is
requested in each iteration, as this benchmark is designed to. Thus, if consecutive
queries are performed on distant data (regarding its disk position), or RAM is
not big enough, queries are likely to behave often as in the first iteration, the
most costly one, as it takes more time to complete. By contrast, if queries are
repetitively performed over close data, and it fits in RAM, queries are likely to
behave more often as in the second, and consecutive, iterations.
Thus, this cache-relying mechanism makes MongoDB to behave differently de-
pending on the hardware, and on the use case. Conversely, our approach limits
the abstraction layer to the data that is being requested, as it is generated on-
the-fly when users perform a query, as explained in section 4.3.2. This approach
minimizes the RAM usage, while offering more stable response times.
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Figure 19: Query response time evolution, in MongoDB.
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Figure 20: Query response time evolution, in MongoDB.
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Figure 21: Query response time evolution, in MongoDB.
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Figure 21: Query response time evolution, in MongoDB.Figure 4.8: Query response time evolution, in MongoDB. Notice how the execution time
of the first iteration is typically higher than the following ones, due to MongoDB’s cache-
relying data prefetch mechanisms.

As seen in Table 4.1, PL-NagareDB is able to execute the 12 proposed queries much
faster than MongoDB, in average, while providing more stable results. Moreover,
when taking into account MongoDB’s best case scenario (when the abstraction
layer’s data is already cached), it still falls broadly behind PL-NagareDB. This
goes to the extend that Historical Queries (such as Q1 and Q4), run faster in
PL-NagareDB’s DM1 than in MongoDB, which might be surprising, as historical
queries are a worst case scenario for key-value data models, such as the one of
DM1, as its data holds the highest granularity.

ADVANCED BENCHMARK

In order to perform the advanced benchmark, we evaluate our approach and all
its data models (for instance: DM1, DM2 and DM3), materialized as PL-NagareDB,
against InfluxDB, intending to evaluate its performance in comparison to a top-
tier Time-series database, and against NagareDB’s original implementation, in
order to check whether our approaches improve the performance of the database.
The benchmark, in terms of querying, is divided in four different sections, one per
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each query category, for instance: Historical Querying, Timestamped Querying,
Aggregation Querying, and Inverted Querying, as explained in section 4.5.1.

2.1) Historical Querying

As it can be seen in Figure 4.9, PL-NagareDB is able to globally outperform
InfluxDB and NagareDB significantly.

In addition, the plots show some interesting insights:

– PL-NagareDB is generally significantly faster than InfluxDB and NagareDB
with one single exception: when PL-NagareDB uses its first data model
(Q1, Q4). This phenomenon is expected, since the DM1 is not intended to
participate in historical queries, and it only holds as much as one day of
data. Instead, it is meant to improve ingestion and timestamped queries.
However, even though historical queries are a worst-case scenario for DM1,
its response time is relatively low, in absolute terms.

– PL-NagareDB’s DM3 efficiency increases along with the historical period
requested, in comparison with DM2. This is expected and intended, since
DM2 stores data in short columns, and DM3 in long columns, being able
to benefit from sequential (and historical) reads much better. In contrast,
when requesting short-ranged historical queries (Q1, Q4), based in random
reads instead of sequential reads, DM2 outperforms DM3, which is, actually,
one of the goals of DM2.

– While PL-NagareDB’s DM2 is identical to NagareDB’s data model, it is
able to retrieve data approximately 1.5 times faster. This phenomenon is
explained by PL-NagareDB’s efficient Polyglot Abstraction Layers, that are
able to reduce data transformation overheads, as explained in section 4.3.2.
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ID Query Type #Sensors Sensor Condition Period Value Condition Target Granularity
Q1 Historical 1 Random Day - Minute
Q2 Historical 1 Random Month - Minute
Q3 Historical 1 Random Year - Minute
Q4 Historical 10 Consecutive Day - Minute
Q5 Historical 10 Consecutive Month - Minute
Q6 Historical 10 Consecutive Year - Minute
Q7 Historical 10 ID mod 50 = 0 Year - Minute
Q8 Timestamped 500 All Minute - Minute
Q9 Downsampling (AVG) 1 Random Year - Hour
Q10 Downsampling (AVG) 20 Consecutive Year - Hour
Q11 Aggregation (MIN) 1 Random Day - Minute
Q12 Inverted 1 Random Year 𝑉 ≤ 𝜇 − 2𝜎 || 𝑉 ≥ 𝜇 + 2𝜎 Minute

Table 1: Data retrieval queries, used in the benchmarking.
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Figure 8: Historical querying response times, in seconds (shorter is
better).

Figure 4.9: Historical querying response times. PL-NagareDB’s DM2 and DM3 are able
outperform any other approach, while DM1 provides the slowest response time, as it is not
meant for intensive historical querying.
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2.2) Timestamped Querying

As it can be seen in Figure 4.10, PL-NagareDB is able to retrieve timestamped data
globally faster than InfluxDB, in all of its possible data models. More precisely:

– PL-NagareDB’s DM1 is able to solve timestamped queries more than 60
times faster than InfluxDB. This evidences that non-historical queries are
greatly benefited from data models that do not follow a column-oriented
approach, such as DM1, intentionally implemented following a key-value
orientation.

– PL-NagareDB’s DM3, that follows a long-column orientation similar to
InfluxDB, is able to solve timestamped queries slightly faster than it. As
timestamped queries are a worst-case scenario for column-oriented data
models, its efficiency is far lower than other data models, such as short-
column oriented ones (NagareDB and PL-NagareDB’s DM2) or Key-value
oriented ones (PL-NagareDB’s DM1).

– PL-NagareDB’s DM2 is able to provide good average results in terms of
query answer time, not being as efficient as DM1, but neither as costly as
DM3. This is intended and expected, as DM2 is built to be a generalist data
bridge between the specialized data models (DM1 and DM3). Thus, it is
expected to be globally good, while not standing out in any particular case.
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Table 2: Queries execution time, and standard deviation, in seconds.

Query ID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 NagareDB MongoDB InfluxDB
Q1 0.150 (0.018) 0.016 (0.011) 0.016 (0.009) 0.033 (0.016) 0.783 (0.653) 0.061 (0.026)
Q2 - 0.206 (0.018) 0.143 (0.009) 0.392 (0.031) 1.636 (3.084) 0.482 (0.034)
Q3 - 2.342 0.040) 1.644 (0.035) 4.589 (0.110) 6.641 (2.635) 5.004 (0.116)
Q4 0.214 (0.017) 0.024 (0.011) 0.036 (0.007) 0.051 (0.014) 0.888 (0.796) 0.085 (0.022)
Q5 - 0.408 (0.026) 0.344 (0.037) 0.877 (0.027) 9.119 (2.845) 1.113 (0.049)
Q6 - 4.791 (0.190) 4.052 (0.189) 10.998 (0.122) 32.192 (10.926) 12.351 (0.338)
Q7 - 7.728 (0.449) 4.236 (0.113) 13.603 (0.440) 38.508 (21.974) 21.552 (0.278)
Q8 0.008 (0.005) 0.107 (0.039) 0.466 (0.028) 0.121 (0.057) 0.497 (0.065) 0.533 (0.049)
Q9 - 0.335 (0.034) 0.157 (0.021) 0.544 (0.076) 2.425 (2.838) 0.451 (0.029)
Q10 - 1.925 (0.247) 1.785 (0.131) 2.139 (0.260) 32.966 (15.799) 1.301 (0.063)
Q11 0.129 (0.013) 0.008 (0.004) 0.008 (0.006) 0.007 (0.006) 0.800 (0.930) 0.026 (0.016)
Q12 - 1.003 (0.043) 0.547 (0.029) 1.168 (0.053) 1.662 (2.550) 1.108 (0.066)

Table 3: Queries execution time, and standard deviation, in seconds.

Query ID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 MongoDB MongoDB - MED
Q1 0.150 (0.018) 0.016 (0.011) 0.016 (0.009) 0.783 (0.653) 0.446
Q2 - 0.206 (0.018) 0.143 (0.009) 1.636 (3.084) 0.472
Q3 - 2.342 0.040) 1.644 (0.035) 6.641 (2.635) 5.816
Q4 0.214 (0.017) 0.024 (0.011) 0.036 (0.007) 0.888 (0.796) 0.502
Q5 - 0.408 (0.026) 0.344 (0.037) 9.119 (2.845) 8.434
Q6 - 4.791 (0.190) 4.052 (0.189) 32.192 (10.926) 28.472
Q7 - 7.728 (0.449) 4.236 (0.113) 38.508 (21.974) 31.126
Q8 0.008 (0.005) 0.107 (0.039) 0.466 (0.028) 0.497 (0.065) 0.476
Q9 - 0.335 (0.034) 0.157 (0.021) 2.425 (2.838) 1.494
Q10 - 1.925 (0.247) 1.785 (0.131) 32.966 (15.799) 27.871
Q11 0.129 (0.013) 0.008 (0.004) 0.008 (0.006) 0.800 (0.930) 0.374
Q12 - 1.003 (0.043) 0.547 (0.029) 1.662 (2.550) 0.818
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Figure 9: Timestamped querying times, in seconds.
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Figure 10: Aggregation querying response times, in seconds.

Figure 4.10: Timestamped querying response times. PL-NagareDB’s DM1 is able to ex-
tensively outperform any other approach, as its data model fits more naturally with times-
tamped querying, the opposite that occurs with long column solutions, such as the ones of
PL-NagareDB’s DM3 and InfluxDB.
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2.3) Aggregation Querying

PL-NagareDB and InfluxDB show similar results, taking into account the global
results, as seen in Figure 4.11. In addition:

– PL-NagareDB is found to provide faster responses than InfluxDB and Na-
gareDBwhen aggregating sensors one-by-one (Q9), while InfluxDB is found
to be slightly faster when aggregating a set of sensors (Q10).

– PL-NagareDB’s DM2 is found to be slightly faster than its sibling datamodel,
the one of NagareDB. This is explained by the change in the behaviour
with respect to timestamp generation, as explained in section 4.3.3.

– PL-NagareDB’s DM3 is found to be more efficient than DM2. This is
expected, since aggregation queries are, actually, historical queries with
further processing steps.

– PL-NagareDB’s DM1 falls behind all other PL-NagareDB’s data models
(Q11), as its data model is not intended for querying historical data, or
performing aggregations in historical data. Although the difference might
seem considerable, DM1 is just expected to keep as much as one day of
data, the same amount of data that Q11 involves, making its total cost of
0.12 seconds relatively insignificant.
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Figure 21: Query response time evolution, in MongoDB.
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Figure 22: Aggregation querying response times, in seconds.Figure 4.11: Aggregation querying response times. PL-NagareDB’s DM1 provides the
slowest response time, as it is not designed for handling historical or aggregation queries.
The other solutions provide a variety of response times, greatly differing depending on the
specific querying parameters.
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2.4) Inverted Querying

As seen in Figure 4.12, PL-NagareDB’s DM2 and DM3 are able to outperform
both NagareDB’s original implementation and InfluxDB. Also, the plot shows
some interesting insights:

– PL-NagareDB’s DM3 is the fastest one. This is due to its long-column
orientation, that benefits from sequential reads, such as the ones that
inverted queries perform, as they have to analyze every record in a time
period, for later selecting the ones that meet certain condition.

– PL-NagareDB’s DM2 is twice as costly as DM3. This is due to the fact
that DM2 keeps its data in short-columns, instead of long-columns, which
implies that the disk has to perform further random-access operations.

– Although NagareDB’s data model is identical to PL-NagareDB’s DM2, our
approach is able to retrieve data slightly faster. This can be explained due
to the miscellaneous re-configurations, explained in section 4.3.3. Thanks
to them, PL-NagareDB only generates the timestamps that are going to be
retrieved (the ones that meet certain value condition), instead to all the
ones that are analyzed, as typically happens in NagareDB.
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Figure 11: Inverted querying response times, in seconds.
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Figure 14: Response time evolution for Historical Querying,
in MongoDB.
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Figure 4.12: Inverted querying response times. PL-NagareDB’s DM3 is able to outperform
all other alternatives, that provide similar results.
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SUMMARY

The experiments show that, in general, PL-NagareDB, NagareDB, and InfluxDB
extensively outperform MongoDB. Moreover, PL-NagareDB is able to substan-
tially surpass both NagareDB and InfluxDB in every query, with one single
exception: When downsampling a subset of sensors (Q10), PL-NagareDB’s falls
slightly behind InfluxDB.

In addition, the experiments confirm that the three data models of PL-NagareDB
work efficiently when they are expected to: Key-value data model (DM1) improve
timestamped queries significantly, long-column data model (DM3) greatly im-
prove historical querying, and short-column data model (DM2) effectively acts as
a hybrid bridge between DM1 and DM3.

Precise querying execution times can be found in Table 4.2.

SAC’22, April 25 –April 29, 2022, Brno, Czech Republic Unknown author et al.

Table 2: Queries execution time, and standard deviation, in seconds.

Query ID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 NagareDB MongoDB InfluxDB
Q1 0.150 (0.018) 0.016 (0.011) 0.016 (0.009) 0.033 (0.016) 0.783 (0.653) 0.061 (0.026)
Q2 - 0.206 (0.018) 0.143 (0.009) 0.392 (0.031) 1.636 (3.084) 0.482 (0.034)
Q3 - 2.342 0.040) 1.644 (0.035) 4.589 (0.110) 6.641 (2.635) 5.004 (0.116)
Q4 0.214 (0.017) 0.024 (0.011) 0.036 (0.007) 0.051 (0.014) 0.888 (0.796) 0.085 (0.022)
Q5 - 0.408 (0.026) 0.344 (0.037) 0.877 (0.027) 9.119 (2.845) 1.113 (0.049)
Q6 - 4.791 (0.190) 4.052 (0.189) 10.998 (0.122) 32.192 (10.926) 12.351 (0.338)
Q7 - 7.728 (0.449) 4.236 (0.113) 13.603 (0.440) 38.508 (21.974) 21.552 (0.278)
Q8 0.008 (0.005) 0.107 (0.039) 0.466 (0.028) 0.121 (0.057) 0.497 (0.065) 0.533 (0.049)
Q9 - 0.335 (0.034) 0.157 (0.021) 0.544 (0.076) 2.425 (2.838) 0.451 (0.029)
Q10 - 1.925 (0.247) 1.785 (0.131) 2.139 (0.260) 32.966 (15.799) 1.301 (0.063)
Q11 0.129 (0.013) 0.008 (0.004) 0.008 (0.006) 0.007 (0.006) 0.800 (0.930) 0.026 (0.016)
Q12 - 1.003 (0.043) 0.547 (0.029) 1.168 (0.053) 1.662 (2.550) 1.108 (0.066)

Table 3: Queries execution time, and standard deviation, in seconds.

Query ID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 MongoDB MongoDB - MED
Q1 0.150 (0.018) 0.016 (0.011) 0.016 (0.009) 0.783 (0.653) 0.446
Q2 - 0.206 (0.018) 0.143 (0.009) 1.636 (3.084) 0.472
Q3 - 2.342 0.040) 1.644 (0.035) 6.641 (2.635) 5.816
Q4 0.214 (0.017) 0.024 (0.011) 0.036 (0.007) 0.888 (0.796) 0.502
Q5 - 0.408 (0.026) 0.344 (0.037) 9.119 (2.845) 8.434
Q6 - 4.791 (0.190) 4.052 (0.189) 32.192 (10.926) 28.472
Q7 - 7.728 (0.449) 4.236 (0.113) 38.508 (21.974) 31.126
Q8 0.008 (0.005) 0.107 (0.039) 0.466 (0.028) 0.497 (0.065) 0.476
Q9 - 0.335 (0.034) 0.157 (0.021) 2.425 (2.838) 1.494
Q10 - 1.925 (0.247) 1.785 (0.131) 32.966 (15.799) 27.871
Q11 0.129 (0.013) 0.008 (0.004) 0.008 (0.006) 0.800 (0.930) 0.374
Q12 - 1.003 (0.043) 0.547 (0.029) 1.662 (2.550) 0.818

Table 4: Queries execution time, and standard deviation, in seconds.

QID PL-NagareDB-DM1 PL-NagareDB-DM2 PL-NagareDB-DM3 NagareDB MongoDB InfluxDB
Q1 0.150 [0.141, 0.162] 0.016 [0.011, 0.024] 0.016 [0.013, 0.023] 0.033 [0.026, 0.044] 0.783 [0.397, 1.19] 0.061 [0.051, 0.08]
Q2 - 0.206 [0.198, 0.219] 0.143 [0.138, 0.15] 0.392 [0.373, 0.412] 1.636 [0.469, 3.706] 0.482 [0.466, 0.507]
Q3 - 2.342 [2.316, 2.366] 1.644 [1.623, 1.667] 4.589 [4.522, 4.662] 6.641 [5.713, 8.428] 5.004 [4.933, 5.079]
Q4 0.214 [0.204, 0.225] 0.024 [0.019, 0.031] 0.036 [0.033, 0.041] 0.051 [0.044, 0.06] 0.888 [0.422, 1.401] 0.085 [0.075, 0.101]
Q5 - 0.408 [0.391, 0.422] 0.344 [0.321, 0.367] 0.877 [0.86, 0.895] 9.119 [7.927, 11.147] 1.113 [1.086, 1.145]
Q6 - 4.791 [4.656, 4.902] 4.052 [3.951, 4.184] 10.998 [10.916, 11.073] 32.192 [28.403, 39.578] 12.351 [12.165, 12.58]
Q7 - 7.728 [7.411, 7.928] 4.236 [4.165, 4.307] 13.603 [13.321, 13.867] 38.508 [30.443, 53.472] 21.552 [21.385, 21.742]
Q8 0.008 [0.005, 0.011] 0.107 [0.084, 0.131] 0.466 [0.448, 0.483] 0.121 [0.087, 0.158] 0.497 [0.463, 0.545] 0.533 [0.505, 0.567]
Q9 - 0.335 [0.316, 0.358] 0.157 [0.145, 0.171] 0.544 [0.5, 0.595] 2.425 [1.459, 4.333] 0.451 [0.434, 0.473]
Q10 - 1.925 [1.78, 2.074] 1.785 [1.704, 1.859] 2.139 [1.975, 2.312] 32.966 [27.457, 43.554] 1.301 [1.273, 1.347]
Q11 0.129 [0.121, 0.137] 0.008 [0.007, 0.011] 0.008 [0.005, 0.012] 0.007 [0.005, 0.011] 0.800 [0.316, 1.481] 0.026 [0.019, 0.037]
Q12 - 1.003 [0.974, 1.029] 0.547 [0.527, 0.565] 1.168 [1.138, 1.203] 1.662 [0.789, 3.379] 1.108 [1.068, 1.15]

REFERENCESTable 4.2: Queries average execution time, and their 95% confidence interval, in seconds.
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4.5.2 Storage Usage

After ingesting the data, as explained in Section 2.1, the disk space usage of the
different database solutions is as shown in Figure 4.13.

MongoDB is the database that requires more disk space. This could be ex-
plained due its schema-less approach, and by its snappy compression mech-
anisms intended to improve query performance while reducing its compression
ratio[Goo11]. Moreover, it keeps, per each data triplet, a unique insertion-time
identifier plus its generation timestamp[Mon21d]. Conversely, the other database
solutions do not require insertion-time identifiers, and generation times are
globally shared, keeping them just once, preventing timestamps repetitions.

Thus, all other alternatives require similar disk usage, which could be explained
by its shared pseudo-column oriented data representation and by its powerful
compression mechanisms.

Last, when comparing PL-NagareDB against its original and non-polyglot version,
the storage usage does not have any significant difference. This is due to two
different reasons: First, while PL-NagareDB has three different data models, the
first one is only used for storing one day, out of the total 10 years. Secondly,
although DM2 and DM3 represent different on-disk global structures (short-
column and long-column, respectively), the document-based representation is
the same in both data models, also coinciding with the NagareDB’s data model.

SAC’22, April 25 –April 29, 2022, Brno, Czech Republic Unknown author et al.
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Figure 8: Historical querying response times, in seconds
(shorter is better).
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Figure 4.13: Storage consumption comparison, in GBs. MongoDB is the database that
requests more disk space, whereas all other alternatives consume similar storage.
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4.5.3 Data ingestion

PERFORMANCE METRICS AND SET UP

The simulation is run along with one to five data shipping jobs, each shipping an
equal amount of sensor values, in parallel. It is performed simulating a synchro-
nized, distributed and real-time stream-ingestion scenario. Each write operation
is not considered as finished until the database acknowledges its correct recep-
tion, and physically persists its Write-ahead log, guaranteeing write operation
durability. Thus, the faster the database is able to acknowledge the data safety,
the faster the shipper will send the following triplet, or sensor reading, being
able to finalize the ingestion of the data-set faster. Thus, the pace or streaming
rate is naturally adjusted by the database according to its ingestion capabilities.
In consequence, the performance metric is the average triplets writes/second.

RESULTS

As seen in Figure 4.14, PL-NagareDB provides the fastest writes/second ratio,
being able to ingest data twice as fast as the other solutions. This is due to the
fact that it ingests data using the Data Model 1, based on a key-value approach, in
contrast to the other solutions, that implement column-oriented approaches. This
is, in fact, one of the main goals of DM1, as it stores data triplets independently
one from each other, whereas other solutions, such as NagareDB, keep their data
in buckets, following a columnar shape. Thus, the key-value data model that our
approach follows is found to be more suitable for ingestion-intensive applications,
such as large monitoring infrastructures.

Finally, all databases show an efficient parallel ingestion speedup, as none of
them reached the parallel slowdown point–when adding further parallel jobs
reduces the system’s performance. Moreover, PL-NagareDB seems to behave
more efficiently in parallel ingestion scenarios, while, in contrast, both InfluxDB
and MongoDB show a slight dropping tendency.
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Figure 13: Scalability of ingestion with parallel jobs.Figure 4.14: Scalability of ingestion with parallel jobs. PL-NagareDB is able to greatly
outperform, in ingestion capabilities, all the alternative solutions, that provide similar
performance.

4.5.4 Data Cascading

As the database is composed of three different data models, it is essential that
data can efficiently flow from one to another, following its cascade data path. It is
important to recall that there are two different moments in which the data must
flow: From DM1 to DM2, and from DM2 to DM3. The first cascade is executed,
by default, once per day, and the second one, once per month.

Taking into account the set-up and the data set of this experiment, explained in
section 4.4, the data cascading from DM1 to DM2 took, on average, 2.25 seconds,
being able to process approximately 320.000 readings per second. The second
data cascade, from DM2 to DM3, took on average approximately 3 seconds. This
fast data model conversions are mainly due to several design key aspects:

– Data Bucketing. Data is already separated into different buckets or collec-
tions, so that it is not necessary to perform any conditional search, being
enough with performing a bulk read, translated into a disk sequential scan.
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– Internal operation. Thanks to the out and merge operations of Mon-
goDB’s aggregation framework, available from MongoDB 4.4, the database
is able to perform in-database calculations, leaving the result directly into
the database, relieving the application from transferring the data to its
memory space.

– Shared Logical Data Model. The conversion from DM2 to DM3 does not
involve any kind of document-altering action, and it is just based on a sort
operation plus a bulk write.

To sum up, this efficient data cascade provides the advantages of three different
data models, being able to speed up both read and write operations, at a propor-
tionally insignificant overhead cost, as the data cascade is only performed once a
day, and once a month. For instance, if we added the cost of cascading from DM1
to DM2 to the ingestion times, showed in section 4.5.3, no difference would be
noticeable.

4.6 Conclusions

We discussed the evolution of data models and databases, passing through the one-
size-fits-all approach, to the NoSQL movement, and up to multi-model databases,
powered by polyglot persistence. We also considered some of the most popular
solutions existing nowadays, with respect to the specific field of Time-series
databases, the ones that enable sensor data management.

This chapter put together both perspectives, by introducing the concept of Cas-
cading Polyglot Persistence, consisting in using multiple consecutive data models
for persisting data, where each data element is expected to cascade from the first
data model, until eventually reaching the last one. Moreover, in order to evaluate
its performance, we materialized this approach, along with further optimiza-
tions, into an alternative implementation of NagareDB, a Time-series database,
comparing it against top tier popular databases, such as InfluxDB and MongoDB.

The evaluation results show that the resulting database benefits from the data-
flow awareness, empowered by three different data models, at virtually no cost.
In addition, we demonstrated that good performance can be obtained without
multiple software solutions, as it was implemented using a single database tech-
nology.
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More specifically, after evaluating the response times of twelve different com-
mon queries in Time-series scenarios, our experimental results show that our
polyglot-based data-flow aware approach, implemented as PL-NagareDB is able,
not just to outperform the original NagareDB, but also to greatly outperform
MongoDB’s novel Time-series approach, while providing more stable response
times. Moreover, our benchmark results showed that PL-NagareDB was able to
globally surpass InfluxDB, the most popular Time-series database.

In addition, in order to evaluate its ingestion capabilities, we simulated a syn-
chronized, distributed and real-time stream-ingestion scenario. After running it
with different parallelization levels, PL-NagareDB showed to be able to ingest
data streams two times faster than any of NagareDB, MongoDB and InfluxDB.

Finally, regarding its data storage consumption, InfluxDB, PL-NagareDB, and
NagareDB have shown to request similar disk usage, being able to store two
times more data than MongoDB, in the same space.

The work presented in this chapter has been published in the journal "Access" (IEEE),
which belongs to the first quartile (Q1) of "General Computer Science", and has
a CiteScore of 6.7 (2021). In addition, and prior to the publication of the research
article, a patent involving the innovations of this chapter has been written and filled
to the European Patent Office (EPO), with ID number: P22382535.7.
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and replication approach

Following the aim of further facilitate Time-series data management, NagareDB
was born. NagareDB’s approach targets to a different objective that most popular
databases, as it does not intend to provide the fastest performance at any cost,
but the best balance between resources consumption and performance[Cal+21].
In order to lower barriers to sensor data management, NagareDB materialized a
Cascading Polyglot Persistence approach, which has shown, not only to reduce
the needed software and hardware resources, but also to outperform so-popular
databases such as MongoDB and InfluxDB.

Cascading Polyglot Persistence follows a complex time-oriented nature, where
several data-models complement each other in the handling of Time-series data.
More precisely, it makes sensor readings to flow from one data model to another,
until reaching the last one, being data present in one single data model at a time.

Although Cascading Polyglot Persistence showed to greatly improve the database
performance, it was only tailored to monolithic architectures, relying on third-
party general approaches for scaling out, in a cluster fashion. In consequence,
Cascading Polyglot Persistence approaches could, in fact, be deployed among
different machines in a collaborative way, but the scaling approach was not suited
neither to the nature nor the goal of Cascading Polyglot Persistence itself, missing
the opportunity of maximizing its efficiency.

As Monitoring Infrastructures’ market is growing day by day, monolithic ap-
proaches, so, data infrastructures that consist of a single machine, are not always
able to handle all use cases. More precisely, back-end data infrastructures are
typically requested to consist of several machines, either for performance reasons,
or due to data safety concerns. In consequence, it becomes necessary for every
database to provide a tailored and specific scaling approach, aimed to maximize
its performance, and to strengthen its goal.

In this chapterwe propose an ad hoc scalability approach for Time-series databases
following Cascading Polyglot Persistence. However, we do not intend to provide
a fixed approach, as each use case hold its particular requirements involving data
consistency, fault tolerance, and many others. In consequence, we propose a
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flexible one, that can be tailored to the specifics of each scenario, altogether with
further analysis and performance tips. Not only that, we analyze the behaviour
and performance of the approach given different possible set ups according to
both real-time and near real-time data management. Thus, our flexible approach
intends to facilitate the tailoring of the cluster to each different use case, while
further improving the system performance.

More precisely, our approach aims to correlate each data model of Cascading
Polyglot Persistence to a very specific set up and configuration, both in terms
of software and hardware. This holistic approach intends to extract the whole
potential of Cascading Polyglot Persistence, fitting it even more naturally to the
infrastructure of each deployment scenario.

After analysing the approach with different cluster set ups, from one to three
ingestion nodes, and from one to one hundred ingestion jobs, the approach
showed to be able to offer a scalability performance up to 85%, in comparison
to a theoretically perfect 100% performance, while also ensuring data safety,
by automatically replicating the data in different machines. In addition, it has
demonstrated to be able to reduce the cluster size by 33%, in a set up with just
three ingestion nodes, and up to 50%, in a set up with ten ingestion nodes. Last,
it has shown to be able to write up to 250.000 triplet data points per second, each
composed by a Timestamp, a sensor ID, and a value, in a cluster composed by
machines allocated with poor resources, such as 3 vCPUs, 3GB of RAM and a
Solid disk drive of just 60GB.

Thus, our approach demonstrated that fast results can be obtained not only by
powerful and expensive machinery, but also thanks to use-case tailored resources
and efficient strategies.
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5.1 Background

5.1.1 CAP Theorem

When dealing with distributed systems, such as a databases in a cluster fashion,
it becomes essential to understand and deal with the CAP theorem[GL02]. This
theorem eases the election of the data management systems that better fits
the characteristics and requirements of the application that serves, and helps
to understand the problems that might occur when dealing with a distributed
environment.
The CAP theorem, also called Brewer’s Conjecture, states that a distributed system
can deliver only two of the three commonly desired properties: Consistency,
Availability and Partition-tolerance, affirming that it is not possible to achieve all
three.

Consistency


Partition   
Tolerance      Availability

CA CP

AP

Figure 5.1: CAP theorem representation.

Consistency. It means that all database clients will always see the same data, in
disregard of the cluster machine or node that they are connecting to. In order
to ensure this property, whenever data is written or updated to one node of the
distributed system, it must be immediately propagated to all other machines
that hold or are expected to hold that data. Moreover, the operation will not be
considered finished until all involved nodes acknowledge its correct reception
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and persistence, typically making the client wait until that happens, in order to
continue with the following operation.

When a distributed system does not enforce this property, in order to deliver
the remaining two properties, it typically follows an approach called eventual
consistency, meaning that changes to one node of the system will propagate
gradually to the other involved ones. Thus, in the meantime, not all nodes will
reflect those changes.

Availability. This property means that any client making a request to the data
management system will always get a response, even in the case that one or more
nodes of the cluster are down, as long as the node that received the request is
running correctly.

When distributed systems do not enforce this property, it is typically due to
the fact that the application requirements heavily depend on consistency, and
also on partition-tolerance. For instance, a bank database could compromise its
availability, as it is crucial to provide a complete consistent view, among others,
in order to ensure that transactions are done correctly, and that a given bank
account provides the very same view anywhere and anytime, avoiding errors
and frauds.

Partition-tolerance. It means that when a cluster suffers from a partition, a
communication break between two nodes, the system should be able to continue
working, despite of the number of partitions that the system suffered.

When a distributed system does not enforce this property, when running correctly,
it will be able deliver consistency and availability, so, data will be always available
to be queried, and the client view will be the same anytime. However, if there is
a communication break between two nodes, the whole system will not be able
to continue working, as it will only work if it is able to ensure full consistency,
which is not possible if some machines cannot communicate correctly between
them.
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5.1.2 Scalability Approaches

While some use cases might find it enough to follow a static approach, in terms
of computing resources, more demanding scenarios, either in terms of storage,
performance, availability, or capacity planning, are likely to need a more so-
phisticated set-up. In order to overcome the limitations of a given machine,
applications such as databases, are typically requested to scale along with the
hosting machinery.
When scaling, databases are able to increase its storage, performance, and/or
availability offer, either in a permanent or long-term fashion, as for example
when a factory increases its number of machines, or in a temporary basis, due to
a fleeting growth in demand, such as during a flash sales campaign. There are
several approaches to pursue that growth:

Vertical scalability. When performing vertical scalability, or scaling up, the
infrastructure keeps the same set-up, but increases its specifications. As the
infrastructure remains the same, there is no need to modify any configuration or
database client code: The database is not distributed among different machines
(or, at least, not more than previously), but just running in a set-up with more
resources than prior to the scaling. Thanks to scaling up, monolithic set-ups
-infrastructures based on a single machine- are able to handle more requests or
data without having to deal with the management of a distributed environment
overhead. However, servers are not able to scale up endlessly, as at some point it
will become expensive to add further CPU, RAM or storage devices, or it will be
just not possible. When reaching that threshold, it becomes necessary to scale
horizontally. In addition, monolithic set-ups, so, infrastructures that have only
grown vertically, do not provide any fault tolerance at machine level: If they
become unavailable, the infrastructure will be unreachable.

Horizontal scalability. Thanks to scaling horizontally, or scaling out, databases
are able to work in a distributed environment: The performance no longer resides
in a single-but-powerful machine, but in a set of different machines that could be
commodity ones. Thus, the data and load are distributed across differentmachines,
that work together as a whole. Moreover, as the approach is far from a monolithic
set-up, full down-times are typically reduced, as the application does not depend
on a single machine: If a machine of the cluster stops working, the other ones
could temporary assume its workload, improving the fault-tolerance of the system.
However, the cluster topology or set-up will greatly vary depending on the use
case requirements. Thus, it becomes necessary to take further decisions related
to the data handling or to the load distribution. Moreover, as several machines
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are intending to work altogether, further network-relying mechanisms have to
be in place, such as communication/synchronization, data routing, etc. which
might overhead the system, negatively impacting its performance.
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g

Horizontal Scaling

Figure 5.2: Vertical and horizontal scaling representation. The vertical axis represents
the hardware upgrade or replacement, while the horizontal one represents the addition of
further machines.

5.1.3 Cluster Techniques

In the context of this research, the most relevant scalability techniques involving
the creation of a cluster, such as horizontal scalability, are: Sharding, Replication,
and their combination.

Sharding

It is a database architectural pattern associated with horizontal scalability. As
seen in Figure 5.3, when sharding, data is divided across different instances of
the database, typically in different machines.
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{ }

{ }

Shard 1 Shard 2

{ }

Shard 3

{ }

Figure 5.3: Sharding example.

This database fragmentation enables data to be stored and distributed across
the cluster. Moreover, it allows the database to grow in different instances or
machines, being able to use further resources, such as extending its storage, or
answering queries in parallel, using several machines at the same time.

However, there are some disadvantages of performing solely sharing. For example,
if one shard is down, when performing queries that involve data of that shard,
phenomenons such as wrong query answering are likely to happen. For instance,
queries will return partial or incomplete results, not being possible to assume
that the query was answered correctly, as important information will be missing.

On the other hand, if the database is set up to avoid wrong query answering, when
a node or shard becomes unavailable, the whole database will be compromised,
and every query against the database will be discarded, or blocked, until the
missing shard becomes available. This reduced availability effect is increased
when sharding, in comparison than when having a unique instance, as the more
machines the cluster is composed of, the more likely it will be that a machine
suffers any issue.

Replication

Data replication is the process of creating several copies of a given dataset across
different instances or machines, in order to make the data more available, and the
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cluster more reliable. Figure 5.4 represents two replica sets that ensure partition
tolerance, so, two groups of instances that have the same data, which replication
factor is three, implying that the very same data will be persisted three times in
the cluster.
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Figure 5.4: Replication sample. On the left, under a CP approximation of the CAP theorem.
On the right, under a AP approximation.

On the one hand, in order to avoid consistency issues, thus following a AP approx-
imation of the CAP theorem, each replica set of size N is typically composed by a
primary instance, and N-1 secondary instances. Write operations are performed
directly to the primary instance, for later being replicated to the secondary in-
stances. This restrictions makes the primary instance the main access point to
the system, which ensures consistency. In the situation that the primary instance
becomes unavailable, a secondary instance will take the role of the primary one,
temporarily receiving all write operations. In the meantime after the primary
instance is compromised, but before the secondary instance takes its role, the
system will not be available for any write operation, as, in fact, it follows a CP
approximation, missing the Availability property.
On the other hand, in order to avoid availability issues, replica sets can be
configured so that all members have equal responsibilities. When following the
AP approximation of the CAP theorem, all nodes are able to read and write data,
making all nodes equally important. Thus, if a node fails, queries are able to
be straight-forwardly redirected to another node. However, as all nodes ingest
different data, for its later synchronization, consistency is compromised, as there
is no guarantee that all nodes will have the same data.
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However, although replication brings recovery capabilities and improves data
availability, among others, it has an important drawback: The bigger is the replica
set, the more available it will be, but also the more it will cost. For instance, if the
replication factor is set to 3, three machines will be holding the same data, which
implies to triple the hardware and maintenance costs, dramatically increasing
the budget requirements.

Sharding and Replication

As explained in section 5.1.3, sharding is able to increase the system capabilities
and resources. However, it does not come free of inconvenience, as it is at
the expense of compromising the data availability. In the opposite direction,
replication is aimed at improving data availability. Thus, it is noticeable that
replication is able to compensate the issue that sharding causes. As a consequence,
both sharding and replication techniques are likely to collaborate, creating a
cluster composed of shards and replica sets.
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Figure 5.5: Cluster Sharding plus Replication example.

As seen in figure 5.5, when combining replication and sharding, sharding typically
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divides or fragments the database, and replication is aimed to replicate those
separated shards, improving their availability. However, while replication is
able to compensate the main problem of sharding, replications’ drawback -the
increased infrastructure costs- is still an issue.

5.1.4 Data Compression

Since the amount of data to be kept is limited by the storage resources, data
compression techniques, capable of reducing the storage requirements while
keeping the same amount of data, play a relevant role in Time-series databases.

While further storage devices could be added or upgraded, storage capacity is not
unlimited, nor cheap, especially if the data has to be safeguarded from potential
issues. More specifically, data is typically replicated two or more times, in order
to ensure its security and availability, which ends up multiplying the associated
costs.

Further more, in some scenarios, the data growth becomes a great issue [Col+16],
either because of the high amount of data being constantly stored, because of
a resource-limited scenario, or both. Those scenarios are typically requested to
set up a retention policy, aimed to establish for how long data should be kept in
the system, until being removed. However, they have an important drawback, as
removing data means losing important information.

Thus, taking into account the resource-varied scenarios, and the wide number
of applications that Time-series data are involved in, choosing the most suitable
data compression technique has become an almost mandatory step in every data
handling scenario.

Offering a good compression technique means to able to store more data in the
same disk space, limiting retention policies, and reducing costs associated to
hardware purchasing and maintenance, among others.

However, compressing real-time data has an important drawback, as it is not
computationally free, meaning that it typically reduces the I/0 throughput, trading
CPU time for this reduced storage consumption[Fac16; PSF21].

As a consequence, it becomes important not only to choose the technique that
offers the best compression ratio, but also to find a good trade-off between the
CPU overhead produced by the compression, and the disk space saved, specifically
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tailored to the requirements of the use case. Some of the most relevant loss-less
compression techniques, in the context of this research, are:

Snappy. It is one of the fastest compressors [KIM20]. It was developed by
Google, and it has been used by a wide number of distributed file systems, such
as Apache Hadoop. In particular, it does not aim for the maximum compression,
but for a fast compression/decompression, and a reasonable compression ratio
[Goo11]. It is able to process data in an order of magnitude faster, for most inputs,
in comparison to other compression techniques, such as ZLIB. However, as a
consequence, its compression ratio falls behind both Zstd and Zlib [Fac16].

Zlib. It is a general-purpose lossless data-compression library [Gai04]. It is able
to provide superior compression ratios[PSF21], while also being suitable for real-
time compression due to its acceptable compression latency[KIM20]. However,
its compression and decompression speed falls far behind other compression
algorithms, such as snappy or zstd [Fac16].

Zstd. Zstandard, commonly known as zstd, is a fast lossless compression algo-
rithm developed by Facebook, whose target focuses on real-time compression
scenarios[Fac16]. It offers a good compression ratio, being similar to the one of
Zlib, in some scenarios, while providing a faster compression speed in all cases,
slightly slower than fast compressors such as snappy[Fac16; KIM20]. Thus, it is
able to provide a good trade-off between fast compression and compression ratio.

5.1.5 Disk drives

Over the last years, disk drives have experienced a dramatic evolution, in order
to meet new challenges and demands. This game-changing breakthrough have
directly impacted database management systems, which cornerstone is, typically,
its persistence devices. In the context of this research, the most relevant tech-
nologies associated to disk drives are:

Hard Disk Drives (HDD). They are an electromechanical device, as the informa-
tion is stored on a spinning disk, covered with ferromagnetic material. A motor
and a magnetic head are used in order to read and write data from and to the
disk[Den11]. Thus, as the disk has to physically rotate, applications that have to
read or write data in a random fashion are heavily penalized, as fast accesses are
limited to the mechanical movement speed of the disk.
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In the opposite scenario, applications that have to read or write data sequentially,
meaning that data is stored adjacently in disk, obtain a good disk performance,
as physical movements of the disk will be limited or reduced[Mic17].

However, although they are the traditional cornerstone of storage technology, and
their capacity has substantially increased year by year, their performance improve-
ment has become stagnant, providing almost imperceptible general enhancements
in the past years [Den11]. In consequence, given its historical background and
its year-by-year increasing capacity, its ratio storage/price ratio is typically out-
standing, making them an affordable option for persisting data [Kas11].

Solid-State Drives (SSD). As they are solid drives, they lack from any moving
mechanical part. As a consequence, there is no need for any kind of motor or
spinning part, which greatly improves the reading and writing speed of data.
Thus, in contrast to traditional HDD devices, there is no difference between a
random and a sequential access[Mic17], as they do not rely on any magnetic
head that has to move inside the device[MME12]. In consequence, they offer
exceptionally high performance, both when reading and writing data.

This performance gap between them and traditional Hard Disk Drives has made
them to gain prominence during the past years. However, they still offer much
less capacity per drive, in comparison to HDDs, making them relatively more
expensive, in terms of storage/price ratio [Kas11].

Furthermore, in contrast to HDD devices, Solid-State Drives have experienced
a great evolution during the last years, which has ended up in a wide range of
different SSD devices, each with a different interface connector and a different
speed to offer.

For instance, traditional SSD devices, which typically rely on a SATA 3 interface,
are able to offer speeds up to 600MB/s, meanwhile SSD devices that rely either
on NVMe M.2 or a PCIe 3.0 interfaces, are able to offer speeds up to 3900MB/s.
Ultimately, latest SSD devices implementing new interfaces such as PCIe 4.0, are
able to reach up to 8000MB/s, leaving far behind, not just traditional HDDs, but
also its SSD siblings. However, this stunning speed improvements, specially re-
garding last generation SSDs, come associated with high purchasing costs[Kas11],
becoming almost prohibitive for some modest environments.

In conclusion, SSDs are able to provide far more performance than HDDs. How-
ever, they are not likely to substitute them completely, at least not in the following
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years, due to its high price, in comparison to the affordable solution than HDD
offer[Kas11]. Thus, they are meant to co-exist and to complement each other, be-
ing able to selectively tackle the use-case scenarios and the economic conditions
that fits the most.

In consequence, it becomes a further challenge, and an important decision, to
determine the best way to efficiently fulfill, in terms of performance, costs, and
capacity, the persistence and querying requirements of each application.

5.1.6 Data organization

Databases’ performance is not only affected by the way data is physically stored
or persisted, f.i its data model, but also by the structure of the data that is being
sent to the database, and retrieved from it[CBC]. As explained in section 5,
this research will also dig into this phenomenon, and into how it interacts with
the approaches explained in section 5.1.3. In order to facilitate the reading of
the concepts that will follow, this section briefs the three most relevant data
organizations, in the context of this research:

Timestamp Sensor0001

2000-01-01T00:00:00 1.53

Sensor0002

2.84 3.75

[...]

...

Sensor0500

5.76

2000-01-01T00:01:00

2000-01-01T00:02:00 2.53 4.84 9.85 ... 6.89

2000-01-01T00:03:00 1.63 5.64 ... 7.52

2000-01-01T00:04:00 2.97 7.84 ... 8.53

2000-01-01T00:05:00 9.14 ... 9.89

2000-01-01T00:06:00 6.25 11.89 ... 4.26

2000-01-01T00:07:00 9.88 13.55 9.44

2000-01-01T00:08:00 1.65 15.74 ... 6.51

[...]

Sensor0002 [...] Sensor0500Sensor0001 Sensor0003

...

1.57 3.44 8.65 ... 6.66

20.65

30.85

1.55 35.95

45.85

80.85

60.775

Table 5.1: Table-like representation of a sample set of sensor readings, consisting of 500
sensors, that deliver data minutely. Green color highlights a sample triplet of value 1.55,
purple color a sample row starting with a triplet of value 1.57, and orange color a sample
column, starting with a triplet of value 20.65.
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Triplet. It is the most granular record in a Time-series database, presented in an
independent fashion, with respect to other records or triplets. It is a three-element
structure composed by: The ID of the sensor that read the data, a timestamp
of the instant in which it was read, and a value, representing the reading. The
first two elements could be considered meta-data, meanwhile the last one, the
sensor reading itself, is considered data. A triplet sample can be seen in Table
5.1, colored in green: It is composed by the timestamp 2000-01-01T00:05:00, the
sensorID Sensor0001, and the value 1.55, meaning that the sensor Sensor0001 read
the value 1.55 at 2000-01-01T00:05:00.

Row. It is a data structure that groups triplets that share one particular dimension
of the meta-data: The timestamp. Thus, a full row will contain all the triplets
whose timestamp is equal to the one that identifies the row, in disregard of their
sensorID. This structure is able to provide a global view of the monitored assets,
as it offers all information that the sensors obtained, at a given point in time.
A full row could be divided into other rows, making them to share the same
timestamp, but each having a different subset of sensorIDs. A full row sample
can be seen in Table 5.1, colored in purple: It is composed by all the triplets that
share the timestamp 2000-01-01T00:01:00.

Column. It groups triplets that share the same sensorID. It is typically incomplete,
mostly in real-time on-going systems, since having a full column would mean
to possess all information for any existing timestamp. Thus, it typically has a
starting timestamp, and a latest timestamp, which delimit the column length,
being able to provide historical data of a given sensor, showing its evolution
along time. A column sample can be seen in Table 5.1, colored in orange: It
holds the sensor reading of sensor Sensor0003, between 2000-01-01T00:03:00 and
2000-01-01T00:08:00, both included.

5.2 Related Work

This section describes related solutions involving Time-series Databases, aimed
at handling sensor data management. More precisely, it describes some of the
most relevant solutions in the context of this research, their different approaches
for tackling scalability, the best practices that they recommend to follow when
dealing with clusters, and how they relate to the CAP theorem, among others.
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5.2.1 MongoDB

It is the most popular NoSQL database[Sol22a; YLP19]. It provides an extremely
flexible data model based on JSON-like documents[Mon21b]. However, although
its aim is to provide a general-purpose but powerful database, from mid-2021,
and starting since MongoDB 5.0, it also provides an specific-purpose capability,
aimed to handle Time-series data. Thanks to this capability, MongoDB is able to
work either as a general-purpose database, or as a Time-series database[Mon21d].
Given that MongoDB is a broadly known database, this new capability is able to
further lower the barriers to access Time-series databases, as finding experts in
MongoDB, and its query language, is easier that in any other specific-purpose
database[Sol22b].

MongoDB stores all time series data in a single set of documents, by default[Mon21d].
Moreover, it uses an approximation to a column-oriented data model, embedded
on top of its document-based data structure[Mon21f]. This eases the usage of
the database itself, as the basic persistence model does not vary with respect
to MongoDBs’ document-based capabilities, while it also improves historical
querying, due to its column-oriented approximation[CBC; DCL18]. However, in
terms of performance, it falls far behind other Time-series database solutions,
while it typically consumes more disk resources[CBC].

Regarding its scalability offer, MongoDB enables the database to scale out, even
in its Community Edition version. More precisely, MongoDB globally provides
two different patterns: Sharding, and replication. Thanks to them, the database
is able to grow in a cluster fashion, adding further machines and resources to the
distributed database, as explained in section 5.1.3.

On the one hand, when sharding, MongoDB advocates for uniformly distribute
the data across the different shards, as explained in the MongoDB’s Sharding
Manual[Mon21b]. More precisely, data is grouped in chunks -a continuous range
of shard keys, with default size of 64Mb-, and each chunk is assigned to a different
shard, aiming to avoid uneven distributions, and migrating chunks from one
shard to another if necessary. They shard key, the element MongoDB uses to
distribute data, can be chosen by the database administrator, which makes it
possible to distribute data according to the timestamp, according to the sensorID,
or any other metadata.

On the other hand, when performing replication, MongoDB offers it in a instance-
wise basis. This means that it is not possible to replicate a single shard, but a just
a whole instance of the mongo daemon. Thus, if a machine holds a MongoDB
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instance, and the instance holds several shards, it is not possible to replicate a
single shard, but all of them.
This makes the cluster work in two different fashions at the same time: chunk-
wise for sharding, and instance-wise for replication. In order to ensure data
availability, as explained in section 5.1.3, MongoDB clusters typically materialize
both scalability approaches simultaneously.
Last, regarding its guarantees as a distributed data store, according to the CAP
theorem explained in section 5.1.1, MongoDB mainly behaves, by default, fol-
lowing the CP approach. This makes MongoDB to assure Data Consistency and
Partition Tolerance, while compromising Availability. More precisely, this is due
to the fact that, when acting as a distributed database, MongoDB, by default, does
not allow to query secondary instances, but only to query primary ones[Mon21b].
In the case of a failure on the primary one, it will not be possible to interact with
the system, until a secondary one takes the role of a primary one. If MongoDB
allowed to query secondary instances, in case of failure, the system would be
query-able, but it would probably return inconsistent results (behaving as a AP),
as there is no guarantee that the secondary would have the exact same data as
the primary.

5.2.2 InfluxDB

It is the most popular Time-series database [Sol22b]. InfluxDB follows a column-
oriented data model[Inf21b], able to efficiently reduce historical data disk usage,
while also providing outstanding historical querying speed [CBC; HKK18]. In-
fluxDB internally organizes and groups its data according to several factors, such
as the retention policy of the data itself -the maximum time that it will remain in
the system before removed-, the measurement type, and other metadata [Inf21b].
This way of organizing data in groups that share several properties allows it to
efficiently query time series data within the same group, and to offer an outstand-
ing compression. However, this constant grouping implies several overheads
when querying data that belongs to different groups[CBC], both when retrieving
and ingesting data, and also determines, and limits, the way in which the database
is able to grow.
More precisely, regarding scalability, InfluxDB is only able to grow, in a cluster
fashion, in its Enterprise Edition. This implies that the free and open source
version of the database is only able to work in a monolithic environment, limiting
itself to vertical scalability approaches. When scaling using its Enterprise Edition,
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InfluxDB is able to grow following the shard-replica technique, explained in
section 5.1.3. However, due to its particular way of storing and understanding
time series data, its sharding technique has several specificities. For instance,
InfluxDB is designed around the idea that data is temporary, meaning each
element of data, when enters the system, it is already known when it is going to
be removed. This is not an exception to shard, as they are linked to a retention
policy, meaning that they will only live a certain duration, which is, by default,
always less than 7 days[Inf21b]. When reaching the duration of a shard, a new
one will be created. This approach is very particular to InfluxDB, as shards
will be constantly being created, in contrast with techniques such as the one
of MongoDB, that establishes a fixed amount of shards, not being mandatorily
linked to a retention policy. Last, shards, both original ones and its replicas, are
uniformly distributed across the cluster, aiming to also distribute its load.
Regarding its replication approach particularities, InfluxDB treats primary in-
stances and secondary instances in a more similar way than other databases, such
as MongoDB. For instance, when querying a shard that has been replicated, the
query is not mandatorily answered by the primary shard, but by a random-picked
one[22]. This mechanism is able to improve querying speed, as they can be dis-
tributed to several machines, instead of being handled by a fixed one. However,
this brings further issues with respect to consistency, as they is no guarantee that
all the replicas will have the same data. This design approach makes InfluxDB to
belong to the AP approach of the CAP theorem, as it is able to provide Availability
and Partition Tolerance, but there is just a limited guarantee of Consistency.

5.2.3 NagareDB

NagareDB is a Time-series database built on top of MongoDB 4.4 CE, fact that
lowers its learning curve, as it inherits most of its capabilities, and its popular
query language. In contrast to other databases, NagareDB’s goal is not to obtain
the fastest results at any cost, but to provide a good trade-off between efficiency
and resource usage. Thus, it aims democratize time series databases approaches,
intending to offer a fast solution that is able to run in commodity environments.

Following its cost-efficient philosophy, but aiming to further maximize perfor-
mance, NagareDB recently introduced an approach called Cascading Polyglot
Persistence. Thanks to this approach, the database, sometimes referred as PL-
NagareBD, is not just tailored to time series data, but also (1) to the natural flow
of Time-series data, from ingestion, to storage, until retrieval, (2) to the expected
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operations according to data aging, and (3) to the final format in which users
want to retrieve the data[CBC].

Mainly, it was defined as using multiple consecutive data models for persisting
data of a specific scope, where each data element is stored in one and only one
data model at the same time, eventually cascading from one data model to another,
until reaching the last one[CBC].

This new paradigm for handling Time-series data implies that the data store is
split into several parts and data models, while being requested to act as a whole,
in an uniform way, as a single logical database. In addition, data is expected to
remain in a data model a certain amount of configurable time.

For instance, when using three data models, as explained in figure 5.6, data is
stored, by default, one day in the first data model, and one month in the second
one, until reaching the last data model, where it will remain.

Thus, data is requested to eventually cascade from one data model to another,
altering its structure. This difficulty, however, can be substantially lightened if
Cascading Polyglot Persistence is implemented in a multi-model database, such
as NagareDB does, able to handle several data models at the same time, which
has shown to transform data requesting just a trifling amount of time[CBC].

Moreover, Cascading Polyglot Persistence comes accompanied with Polyglot
Abstraction Layers, which relieves the user from handling the different data
models, and its internal representations. Thus, the user interacts with a uniform
layer, in a general and simple data model, without having to worry about the
internal data representation, and whether data is persisted in a data model or in
another.

NagareDB, when implementing Cascading Polyglot Persistence, has demon-
strated, not only to beat MongoDB, but also to globally surpass InfluxDB, the
most popular Time-series database, both in terms of querying and ingestion,
while requesting a similar amount of disk. More precisely, the approach was able
to solved queries up to 12 times faster than MongoDB, and to ingest data two
times faster than InfluxDB, among others.

However, while NagareDB’s new approach has shown promising results, the
architecture is not accompanied by an efficient and effective way of scaling,
relying on classical scalability approaches, inherited by MongoDB, leaving a big
space for further improvements, in cluster-like set ups.

86



Related Work Section 5.2

1






2






3






Figure 5.6: Simplification of a sample Cascading Polyglot Persistence data flow set up,
with three different data models: Key-value, Short Column and Long Column. The first
Data Model is in charge of providing a fast way for data ingestion, increasing its I/O ratio,
the third data model is aimed to provide excellent historical querying, and the second data
model is in charge of providing a hybrid and intermediate solution between the other two.

5.2.4 Conclusions

In this section we analyzed the two typical mechanisms for horizontal scalability:
Sharding and Replication, plus some of the most relevant databases, in the context
of this research: MongoDB, InfluxDB and NagareDB under Cascading Polyglot
Persistence.

To sum up, all three solutions offer different approaches for tackling Time-
series data: First, MongoDB offers a specialization of its broadly-known and
free database, which makes it easier for any database engineer to use their so-
lution. However, it suffers from low performance and high disk consumption.
Second, InfluxDB is the most popular Time-series database, although its global
popularity is far behind MongoDB’s. Its data model offers a fast way to query
historical data, an outstanding reduced disk usage, but a limited ingestion speed
in some circumstances. Its scalability mechanisms are efficiently tailored to way
the database treats the data, however, they are limited to the Enterprise -paid-
version.

Last, Cascading Polyglot Persistence, when implemented in data stores such as
NagareDB, offers an excellent performance, able to surpass InfluxDB in both
querying and ingestion, while using a similar disk space. However, it lacks from
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specific scalability methods, relying on MongoDB’s inherited ones, fact that
minimizes its potential when deploying a distributed environment.

Our goal is to overcome the problems associated with the above technologies,
proposing a method for handling Time-series data in a distributed environment,
able to provide a fast and resource-efficient solution, lowering down barriers to
the handling of time series data.

5.3 Proposed Approach

As explained in section 5.2, Cascading Polyglot Persistence was intended to
provide data stores with a technique to efficiently handle Time-series data, not
only in terms of query performance, but also in terms of resource-saving.

It was introduced and evaluated by dividing the database into three different
interconnected parts: The first one was in charge of maximizing the ingestion
performance, the last one aimed at providing a fast historical querying, and the
intermediate one at providing a hybrid and intermediate solution between the
other two, as drawn in figure 5.7.

DM1: Key-Value

DM2: Short Column

DM3: Long Column

Actor

Figure 5.7: Simplification of a sample database following Cascading Polyglot Persistence,
consistent in three different cascading data models. Data is ingested directly to the Data
Model 1, while the user can interact with the whole database.

However, while other Time-series solutions offered ad-hoc scalability approaches,
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as explained in section 5.2, Cascading Polyglot Persistence lacked from a specific
growing method, relying on general approaches, such as the one represented in
Figure 5.8, missing the opportunity to further extract its performance.

Actor

Replica Set

Figure 5.8: Simplification of a sample database following Cascading Polyglot Persistence,
when scaling out using traditional replication. Data is ingested directly to the Data Model
1 of the primary node, for later cascading until the last data model. The whole database is
replicated two times, creating a replica set of three instances.

Here we introduce the holistic approach, aimed at providing Cascading Polyglot
Persistence with a scalability mechanism tailored to Time-series data, expected
to offer further benefits with respect to resource usage, minimizing hardware
deployment costs, while offering an efficient scaling.

The main principle of our approach follows the same philosophy of Cascading
Polyglot Persistence: Specialization. Traditional approaches uniformly distribute
data across the different shards or machines: In order to balance the load, each
shard does the very same job as any other. In this approach, however, each replica
set, and their respective shards, are grouped according to their data model and,
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hence, according to their expected usage. This means that data will no longer
be distributed uniformly, but to a given specific shard, according to Cascading
Polyglot Persistence.

For instance, some shard groups will be in charge of ingestion, through Data
Model 1, whereas other instances will be in charge of holding historical data, all
within the same logical database. Thus, each shard can be configured specifically
for improving a particular job or function, also according to the data model that
they implement. Last, it is important to recall that, following the same goal as
Cascading Polyglot Persistence, one of the main objectives of this approach is to
reduce costs, while maximizing performance.

Thus, following a sample Cascading Polyglot Persistence approach composed by
three data models, such as the one represented in figure 5.6, the ad-hoc scalability
approach divides the cluster into two different replica sets, each holding different
properties.

5.3.1 Ingestion Replica Set - DM1

The First Data Model of Cascading Polyglot persistence is intended to improve
data ingestion, while also providing excellent performance on short queries[CBC].
The ability of speedily ingest data is crucial for Time-series databases, as the
vast majority of operations against them are actually write operations [Zha19].
Also, DM1 does not intend to keep data long time, as its default duration is
one day. After that, data will be flushed to the next data model in the cascade.
Thus, the main goal of scaling out this data model is to provide further ingestion
performance.

Taking into account this objective, the Ingestion Replica Set is characterized by
the following tightly interrelated properties:

– Diagonal Scalability. When sharding, the cluster could reduce its avail-
ability. As explained in section 5.1.3, this draw-back is compensated thanks
to replication. However, replication introduces a further issue: Excessive
need of machines. This approach aims at relieving this problem, combining
both horizontal and vertical scalability, looking for a good trade-off, thus,
scaling diagonally.

More precisely, primary ingestion shards will grow horizontally, each shard
in one machine, but their replicas will be hosted together, in machines
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following vertical scalability. Each machine hosting secondary shards,
however, will have a maximum number of shards to host, according to its
resources limitation. If the number of maximum shards is reached, another
machine will be added, growing horizontally, repeating the process. This
intends to reduce the number of machines within the cluster, while still
providing goof performance, as primary shards, the ones who ingest data,
do not have to share resources.

– Sensor-wise sharding. When sharding, data is divided across the different
shards. However, the way in which data is assigned to a shard or another
is not trivial. In this approach, data is divided and grouped according to
the original source, or sensorID. This approach is way different to the one
followed by other databases such as InfluxDB, where sharding is performed
time-wise, for instance, creating a new shard according to a given duration.

However, sharding sensor-wise has a main benefit: Data ingestion can be
parallelized efficiently and straightforwardly, as ingestion is done in all
shards simultaneously. By contrast, if sharding according to time, all sensor
data will be shipped to the same shard, the one storing the current day,
missing the opportunity to use all available resources.

The opposite happens when querying a record history of a given sensor:
As all sensor data will be in the same shard, it will not benefit from paral-
lelization. However, historical queries are typically executed against old
-historical- data. Given these characteristics, also considering that Data
Model 1 is mainly intended to improve ingestion performance, and it will
only keep as much as one day of data to be retrieved when querying, a
sensor-wise sharding strategy is preferred.

– Targeted operations. They use a given key to locate the data. As data will
be distributed sensor-wise, the shard key will be also scattered sensor-wise,
meaning that each shard will receive a specific range of sensorIDs. Thanks
to this pre-defined fixed distribution, the query router is able to ship queries
and data speedily, to the specific shard where they belong.

This property is intended to avoid broadcast operations, where a given
query in sent to all available shards, causing network overhead. Moreover,
broadcast operations typically cause scatter gather queries, so, queries that
are scattered to all shards, either hosting the data or not, for later having
to gather, and merge, all results.
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– Eventual Consistency. The Ingestion Replica Set will follow an interme-
diate approximation between CP and AP, of the CAP theorem. By default,
the database guarantees consistency (CP), as the router directly queries
the primary node, which is always up-to-date, as explained in section 5.2.
However, it is also possible to query the secondary node, if specifically
requested. This means that, in the situation that the primary node becomes
unavailable, the system itself will be always available for readings, through
the secondary node. In addition, it is also possible to query the secondary
node just for load balancing purposes.

However, when doing that, there is no guarantee that the data is consistent,
as it can be the case that the primary node failed before synchronizing
with the secondary one. This flexibility allows the system to offer the
best from CP, while also providing a limited AP approach under certain
circumstances. This adjustment is related to the Time-series data nature:
Time series data is typically immutable, meaning that data is added but
never updated, except when donemanually. Thus, this eventual consistency
just implies that, when querying a secondary, it can be the situation that
the last inserted elements are still not visible, within some milliseconds
time range, which makes it fair enough to be traded for availability.

– Reduced Write Concern. The database write concern is set up to one
acknowledgement. This means that each insert operation will be considered
successful when it is acknowledged by the primary shard, without waiting
until being replicated to the secondary one(s). This property improves
system speed, as operations have to wait less time to be completed, and
enables secondary shards to copy data from the primary in a batch-basis,
reliving them from excessive workloads, making an efficient use of the
CPU, disk, and network resources. As all secondary shards will be hosted in
the same machine, due to diagonal scalability, this property is crucial, as it
prevents vertical hosts, that hold several shards, to saturate. This property
is tightly related to Eventual Consistency, as it also implies that the data
from primary and secondary nodes will be some milliseconds apart.

– Primary priority. User’s querying operations will always target, by de-
fault, the primary shard. This is intended to provide always up-to-date
results, as secondary ones follow eventual persistence. Thus, in contrast
to other solutions such as InfluxDB, queries are not randomly assigned
to random shards within the replica set. However, data fall or cascading
operations, so, operations that flush data from one data model to another,
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use the secondary shards to gather the data, in order to relieve primary
shards from further workload. Despite of that, it is possible for the users to
query secondary nodes, if specifically shipping queries to them, although
the query router, by default, will just target the primary ones.

– Heterogeneous performance-driven storage. As one of the main re-
quirements for Time-series databases is to speedily perform write oper-
ations[Zha19], the storage infrastructure has to enable the fulfilling of
that demand. Thus, following the diagonal scalability property, primary
instances will be placed in separated nodes, while secondary ones will
be placed together, sharing resources, in a vertical scalability fashion. As
hardware has to enable this set up, primary nodes will persist its data in
SSD devices, able to write data up to 600MB/s, as explained in section 5.1.5.
On the other hand, secondary nodes will be placed in a host based on SSDs
NVMe, able to reach speeds up to 3900MB/s, which makes it able to handle
the same amount of disk work as several primary nodes.

Moreover, the usage of SSD is not only justified by their speed, but because
they enable efficient job paralelization, so, handling several ingestion jobs at
the same time. This is due to the fact that they lack from moving parts and
seek time, as explained in section 5.1.5. As an alternative, in the situation
where further data availability has to be ensured, secondaries nodes can
be placed in a SSD RAID, which could be able to provide similar write
speeds as a M.2 device. This property, that highly depends on the previous
ones, intends to provide maximum performance, while relieving the need
of further machines and resources.

– Ad hoc computing resources. The specificities of the Ingestion Replica
Set are also an opportunity for adapting and reducing hardware costs. For
instance, as ingestion nodes will keep as much as one day of data[CBC],
by default, the disk space can be reduced, being enough with small hard
drives, in terms of GBs. Moreover, for the same reason, and also taking into
account that most of the operations will be write operations, that do not
benefit from caching, there is no need for a large RAM that acts as cache.

Last, taking into account that the approach has demonstrated to use low
resources[Cal+21], the number of CPUs can also be reduced, always ac-
cording to the scenario needs.

Thus, the proposed infrastructure mainly depends on the Operating System
Minimum requirements plus the needs of the use case. It is recommended,
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thus, to establish an amount of RAM and CPU resources per shard, without
taking into account the O.S requirements. For instance, if using Ubuntu
18.04, which Minimum requirements are 2 vCPUs and 2GB RAM [Can18],
and each shard is defined to use 1GB RAM plus 1 vCPU, each primary node
would request 3 vCPUs and 3GB of RAM, meanwhile the machine holding
the secondary instances would require 2 + shards vCPUs and 2 + shards
GBs.

– Fast Compression. Compressing data is necessary in order to reduce
storage requirements. However, as explained in section 5.1.4, compression
is traded for CPU usage. As the ingestion data model, and its replica set, is
intended to speedily ingest data, it is preferred to make ingestion instances
to use a fast compressor, such as snappy. Snappy compression offers a good
enough compression ratio at the same time that minimizes CPU usage.
Thus, it is able to increase the I/O throughput, in comparison to other
compression algorithms, at the expense of a slightly greater space request.

However, as Data Model 1, and its Ingestion Replica Set, is just set up to
store the new data, and as much as one day of history, it highly reduced
storage requirements. Thus, the nature of the ingestion data model is
able to compensate the reduced compression ratio of a fast-compression
algorithm, making a great combination trade-off.

5.3.2 Consolidation Replica Set - DM2 & DM3

The Second and Third Data Model of Cascading Polyglot Persistence are aimed to
store recent and historical data, respectively, enabling fast data retrieval queries.
Moreover, their involvement in ingestion queries is limited to the moment in
which their respective upper data model flushes data. For instance, by default,
DM2 only receives data once per day, from DM1, and DM3 only ingests data
from DM2 once per month. In addition, this flush operations are performed in a
bulk-fashion, which makes its execution time to be trifling[CBC]. This makes
that both DM2 and DM3 share some properties, more focused on safe storage
and a cost-efficient retrieval basis, than in ingestion performance.

Taking into account this considerations, the Consolidation Replica Set is charac-
terized by the following properties:

– Horizontal Scalability. Given the big amount of data that these data
models are expected to hold, horizontal scalability is able, first, to provide
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a non-expensive way of adding further storage devices and, second, to
ensure data safety, thanks to replication. Thus, the scalability will intend
to improve its availability, and the simultaneous number of queries that
the system can hold. Following this goal, the approach will be replica first,
shard last. This means that the priority will be to replicate data, and that
sharding is expected to be performed only when the storage of the database
has to be extended, adding further machines. This approach aims to reduce
resource usage, not providing the fastest retrieval speed, that would be
achieved through sharding, but a good cost-efficiency trade-off.

– Raised write concern. Given that DM2 and DM3 will only ingest data
once per day and once per month, respectively, write operations can re-
duce its performance, trading it for a more synchronized or transactional
approach, ensuring that the operations are performed simultaneously on
both primary and secondary instances. Thus, write concern can be raised
to all, meaning that an operation will not be considered as finished until
all replicas acknowledge its successful application.

– Highly consistent. The Ingestion Replica Set followed a intermediate CP-
AP approximation of CAP theorem. However, the Consolidation Replica
Set is expected to be more consistent. This is both due to the fact that
ingestion is occasional, and that the write concern is raised.

– Flexible read preference. Given the highly consistent property of the
Consolidation Replica Set, retrieval queries are allowed to be performed
both to the primary and to the secondary, as a mismatch will hardly ever
occur. This allows to further distribute the workload among both instances,
instead of always targeting the primary one. Moreover, it also implies
that queries will be answered faster, as the nodes will be less congested or
saturated.

– Cost-driven storage infrastructure. The Consolidation Replica Set is in
charge of storing all the historical data, that will continuously grow along
time, requesting more and more resources, if a retention policy is not set up.
Thus, it is important to minimize storage costs, in order to extend as much
as possible the amount of stored data. In consequence, the infrastructure
is based on HDD devices that, as explained in section 5.1.5, provide the
best storage/price ratio, assuming that the performance speedup does not
justify its over-cost in this situation, as some manufacturers claim[Kas11].
This is, among others, due to the sequential data access expected to be done
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to historical data, through historical queries, which is still satisfactory in
HDD devices. A more expensive alternative approach could be using basic
SSD devices for the primary node and HDD devices for the secondary ones.

Notice that this approach is completely opposite to the Ingestion Replica
Set one, where the main goal was the performance, being fully deployed
on advanced SSD devices.

– Storage-saving compression. Given the archiving approximation of
the Consolidation Replica Set, the compression is set to maximize the
compression ratio. Zlib is able to provide one of the best compression ratio,
as explain in section 5.1.4. However, Zstd is able to provide an almost
equivalent compression ratio, for far less CPU usage. Thus, the selected
compression technique is Zstd.

5.3.3 Global considerations and sum up

While most of the properties target specific replica sets, some of them affect the
whole cluster:

– Local query router. Queries are performed against the query router, a
lightweight process whose job is to simply redirect queries to the appropriate
shard or instance. Although it could be placed in an independent machine,
this approach recommends to instantiate a router in each data shipping node.
Placing routers in the shipping machine reduces the network overhead, while
also reduces the query latency, as queries can directly target the destination
instance, when leaving the data shipping node, instead of reaching a router in
a different machine, for later been re-sent to the target shard or node.

– Arbiters. Most databases recommend a replication factor equal or greater
than 3, typically an odd number. This means that every data will be placed
several times in the system, aiming at preserving data safety. In addition, an
odd number will help in reaching consensus when a primary node fails, and
a secondary node has to be elected as a primary one. However, in order to
provide a more resource-efficient approach, each replica set is expected to be
replicated only once, having a replication factor of two, which reduces the
number of needed machines. In order to prevent problems related to elections
with tie results, each replica set will add an arbiter instance, that can be hosted
in the other replica set. Arbiters are a lightweight process that does not hold
data, but intervenes in elections in order to ensure unties.
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– Abstract system view. Final users view the system as a single-database with
a single data model of their preference. This feature is provided by Cascading
Polyglot Persistence and its Polyglot Abstraction Layers[CBC], not being
affected by the approach, as scalability is also abstracted automatically.

Last, it is important to notice that the proposed approach is to be understood as
an ideation guideline for scalability under Cascading Polyglot Persistence from
which to start, and not as a fixed road-map to follow: In order to maximize the
leveraging of the resources, each scenario should fit this approach, with respect to
their specific particularities regarding performance, data treatment and recovery.
A briefing on the properties of our approach can be seen in table 5.2.
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Table 1: Queries execution time, and standard deviation, in seconds. COL SIZE 2

Ingestion Replica Set Consolidation Replica Set

Data Model DM1 DM2 and DM3
Scalability Diagonal Horizontal
Sharding Sensor-wise -

Consistency Eventual Consistency High Consistency
Write Acknowledgement Primary-only All

Query Preference Primary then Secondary Any
CAP Theorem Neither CP/AP CP
Storage Type SSD + Nvme-like HDD

Compression Technique Fast (Snappy) High (Zstd)

Table 5.2: Sum up of the scalability approach’s properties.

5.4 Architectural design and resource usage

This section intends to materialize the holistic approach explained in section 5.3
into an architectural design or pattern. Thus, the architecture is tightly related to
the properties that the scalability approach follows, working as expected when all
the properties are meet. For instance, figure 5.9 illustrates a distributed database
under a sample Cascading Polyglot Persistence of three different data models,
following the approach explained in section 5.3.

The distributed database is composed by two replica sets: the Ingestion Replica
Set, holding Data Model 1, and the Consolidation one, holding DM2 and DM3.

On the one hand, the sample Ingestion Replica Set is composed by four machines:
Three of them hold a primary (or master) instance, whereas the last one holds
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all secondary instances, in a vertical scalability fashion. The master nodes are
expected to use a SSD device up to 600MB/s, whereas the last node is expected to
use a over-performing SSD device, up to 3500MB/s, as it holds more shards.
When cascading data from the Ingestion Replica Set to the Consolidation Replica
Set, the secondary instances are used, in order to avoid adding further workload
to the primary ones, while at the same time benefiting from data locality, as it is
all stored in the same machine.

M

M

VM2

S

S

VM3

Consolidation Replica Set

S

S

S

VM1

Ingestion Replica Set

Ingestors

Actor

DM3






DM2

DM1

M

VM0.2

M

VM0.3

M

VM0.1

Abstraction


Layers

Figure 5.9: Sample architectural overview of a distributed database under Cascading
Polyglot Persistence, following our approach. The Cascading technique is composed by
three different data models (DM1-3), from light blue to dark blue. DM1 is in charge of
facilitating the Ingestion Replica Set, while the other two Data Models are stored together
in the Consolidation Replica Set. Dotted lines represent an automatic data flow, f.i sensor
readings or database communications, whereas plain lines represent operations performed
outside the database automatisms, such as user or API querying, through the router. The
whistle symbol represents that a node is part of another replica set, but does not hold data,
just acting as an arbiter, in order to avoid ties during cluster-wise decisions.
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On the other hand, the Consolidation Replica Set is composed by two machines,
acting as a traditional replica set, and based on large-storage HDD devices. This
is due to the fact that the Consolidation Replica Set is expected to store big
amounts of data, which is far more affordable in HDD devices. In addition, HDD
devices are sufficiently efficient when performing sequential operations, such as
historical querying[Kas11].

When cascading data from DM2 to DM3, the primary node is used, instead of the
secondary one. This is due to the fact that ingestion instances must be primary
ones. It would be possible to cascade data from the secondary node (VM3’s DM2)
to the primary node (VM2’s DM3), which is, in fact, the pattern that the cascade
from DM1 to DM2 follows. However, as in this case DM2 and DM3 are stored in
the same machine, the operation from primary-to-primary is far more efficient,
as it avoids network and latency overheads.

Last, in order to assure an odd number of voters, each replica set is able to vote in
the election of the other replica set, through their respective secondary machines.
This is represented with a whistle symbol.

The monitoring Infrastructure, composed by sensors, ships data to the primary
nodes of the Ingestion Replica Set, through the router, whereas the user is able
to query data regardless of the replica set in which data is stored in. Moreover,
thanks to the Polyglot Abstraction Layers implemented in the Cascading Polyglot
Persistence approach, the user is able to see the whole system as a single instance
and a single data model.

Thanks to this approach, the distributed database is able to maximize its ingestion
performance, as Time-series databases for Monitoring Infrastructures are mostly
targeted with write operations[Zha19], while enabling fast data retrieval.

In addition, as seen in Figure 5.10, the cluster is able to substantially reduce its
resource usage, in terms ofmachines, with respect to the total number of machines
involved in ingestion operations. This is, in fact, one of the main objectives of
this approach, as it is not intended to provide just a better performance, but a
reduced resource consumption.

As explained in section 5.3, this is achieved thanks to specialization, as each
part of the database can grow independently. In the opposite scenario, when
implementing more traditional approaches, the database acts and scales as a
whole.
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Figure 1: Total cluster size growth, according to the amount of nodes involved in direct data ingestion.

Table 1: Queries execution time, and standard deviation, in seconds. COL SIZE 2

Operation ID Simultaneous jobs Row size
NCOL:1x500 1 500
NCOL:5x100 5 100
NCOL:10x50 10 50
NCOL:25x20 25 20
NCOL:50x10 50 10
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Figure 2: Sensor reads per second retrieved in a timestamped
query, in three different set-ups involving one, two, or three
nodes. Single running job.

*

Figure 5.10: Total cluster size per ingestion nodes comparison, between MongoDB and
NagareDB, representing our approach for scalability. MongoDB’s cluster grows 3 by 3, as
each node is multi-purpose and typically replicated three times. PL-NagareDB’s cluster
grows one by one, since it is possible to grow only in the Ingestion Replica Set, as nodes
are specialized. Once each secondary node, that grows vertically, reaches its limit (5 shards,
in this case), an extra new machine is added.

5.5 Experimental Setup

The experimental setup is intended to enable the evaluation of the performance
of our approach in moderate-demand use cases. This is due to the fact that both
Cascading Polyglot Persistence and the scalability approach presented in this
research are intended for resource-saving scenarios, aiming at providing fast
performance while minimizing the resource usage.

More precisely, this approach is implemented on top of NagareDB, a resource-
efficient database[Cal+21], under Cascading Polyglot Persistence, as explained in
section 5.2.

Regarding the precise evaluated scenarios, the set up will consist in the architec-
ture represented in Figure 5.9, from one to three ingestion nodes. Moreover, the
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experimental setup is only focused to enable the performance evaluation of the
Ingestion Replica Set with respect to ingestion and multi-shard querying, as the
Consolidation Replica Set, and single-instance querying, are not affected by this
approach, delivering equal results as in previous benchmarks [CBC].

5.5.1 Cluster Infrastructure

The cluster is divided into two different parts: The Ingestion Replica Set and
the Consolidation Replica Set. Each machine has its own specific hardware
configuration, and is able to communicate with any other machine through an
Internal Network.

Moreover, as explained in section 5.3.1, the machines will be set up for minimum
resource usage, in order to demonstrate that good results can be achieved with
commodity machines, if applying optimized techniques, such as our approach.

More precisely, regarding the Ingestion Replica Set, hosting each shard will imply
adding 1 further Gigabyte of RAM and 1 vCPU to the host machine, that will
have, by default, Ubuntu 18.04’s Recommended Minimum Requirements[Can18],
for instance:

– OS Ubuntu 18.04 LTS (Bionic Beaver)

– 2 GHz dual core processor or better

– 2 GB system memory

Regarding the Ingestion Replica Set hardware, there will be one machine per
primary shard, with the following configuration:

– OS Ubuntu 18.04 LTS (Bionic Beaver)

– 3 vCPUs @ 2.2Ghz (Intel® Xeon® Silver 4114)

– 3GB RAM DDR4 2666MHz (Samsung)

– 60GB - fixed size (Samsung 860 EVO SSD @ 550MB/s)

Regarding its secondary shards, there will be one machine for them all, with the
following configuration:

– OS Ubuntu 18.04 LTS (Bionic Beaver)

– (2 + #holdedShards) vCPUs @ 2.2Ghz (Intel® Xeon® Silver 4114)
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– (2 + #holdedShards) GB RAM DDR4 2666MHz (Samsung)

– (60GB * #holdedShards) - fixed size

For instance, when the infrastructure consists in three ingestion nodes, this
vertical scalable machine will be assigned with:

– OS Ubuntu 18.04 LTS (Bionic Beaver)

– 5 vCPUs @ 2.2Ghz (Intel® Xeon® Silver 4114)

– 5 GB RAM DDR4 2666MHz (Samsung)

– 180GB - fixed size (Samsung 970 SSD NVMe @ 3500MB/s)

The presence of the Consolidation Replica Set, in this evaluation, is just a testi-
monial approximation, as explained above. It is deployed over HDD devices, and
using Ubuntu’s Minimum Requirements, with respect to the number of CPUs
and Gigabytes of RAM.

5.6 Analysis and Evaluation

This section is intended to analyze and evaluate the performance of the proposed
approach, not only by showing its raw metrics, but also by providing techniques
from which database architects can diagnose efficiency leakages, and further
improve the approach performance, tailoring it to each specific use case.

As explained in section 5.5, this section analyzes and evaluates the performance
from one to three ingestion nodes, focusing on the Ingestion Replica set, both in
ingestion operations and multi-shard queries.

5.6.1 Ingestion capabilities

The ingestion will be evaluated in two different shipping scenarios: In the first
one, data is shipped to be ingested just when being generated, in a real-time
fashion. On the second one, the shipper will accumulate a certain amount of
sensor readings, in order to ship them in a near-real time fashion.

The ingestion is evaluated under a simulation using the data explained in section
2.1. However, in this experiments the nature of data looses certain importance,
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as the experiment will be speeded up, not waiting to ship data each minute, as it
would happen in a real scenario.

This method intends to provide a realistic maximum ingestion performance
of each approach. More precisely, it is performed simulating a synchronized
and distributed scenario: Each write operation is not considered as finished
until the database acknowledges its correct reception, and physically persists
its Write-ahead log, guaranteeing write operation durability. Thus, the faster
the database is able to safeguard the data, the faster the shipper will send the
following triplet, being able to finalize the ingestion of the data-set faster. In
consequence, the pace or streaming rate is naturally adjusted by the distributed
database according to its ingestion capabilities. The performance metric is the
average triplets writes/second, where each triplet, as explained in section 5.1.6, is
composed by a timestamp, sensor ID and value.

Real-time ingestion

This section evaluates the ingestion ability and performance of the cluster under
a strict real-time simulated monitoring infrastructure. Thus, data is shipped
individually, in a triplet structure, as soon as it is generated. The evaluation
is carried from one to three ingestion shards, and from 1 to 100 shipping, or
ingestion, jobs. Each shipping job will be shipping an equal amount of data,
dividing the total triplets among them. For instance, if the set up is composed
by 10 shipping jobs, each one will be in charge of shipping and ensuring the
correct ingestion of the data from 50 sensors, as the total amount of sensors
is 500. Thus, the more shipping jobs, the more parallelism can be achieved, as
the system receives more simultaneous workload. Last, when adding ingestion
shards or nodes, the ingestion can be further parallelized, as several nodes can
collaboratively handle the workload coming from the shipping jobs.
As seen in figure 5.12, adding further shards to the ingestion cluster is able to gen-
erally provide an increased speed up in data ingestion, in terms of writes/second.
However, the plot show some interesting insights:

– Until reaching 10 simultaneous jobs, the performance of the cluster, with
one, two or three ingestion shards remains virtually equal. This is due to
the fact that a single machine is able to handle the ingestion parallelism
achieved with less than 10 simultaneous jobs, which imply that, in that
configuration, there is no benefit in adding more resources. Thus, it is
important to evaluate the requirements of each scenario before the set up,
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Figure 6: Scalability of the proposed approach with one to
three ingestion nodes, and from 1 to 25 ingestion jobs, in a
row-shipping fashion.
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Figure 5.11: Evolution of the performance, in terms of triplet writes/second, from one to
100 parallel ingestion or shipping jobs, and from one to three ingestion shards.

as, in this case, adding more ingestion resources only increases the costs,
and not the performance.

– In scenarios with approximately 20 or more parallel ingestion jobs, adding
more ingestion resources imply a better ingestion speed. In addition, the
difference between 3 and 2 shards is approximately 50% of the difference
between 1 and 2, which makes proportional sense. However, the speed
up is far from the perfect scaling, providing better but not cost-efficient
results.

– Any of the cluster configurations, from one to three shards, did not reach
the parallel slowdown point - when adding further parallel jobs reduces
the system’s performance. However, it is noticeable that starting from
approximately 80 parallel jobs, the ingestion reaches almost a speedup
stagnation point - when adding further parallel jobs implies a poor or
nonexistent performance gain.

We conclude that, when following real-time ingestion, adding more machines
can actually speed-up the system, but not efficiently. This can be explained
due to the extremely-high granular approach, where each sensor reading is

104



Analysis and Evaluation Section 5.6

shipped individually, along with its corresponding metadata. This implies that the
messages/second are really high, but the Megabytes/second writing of real data is
pretty low. In consequence, the router has to constantly ship individual messages
to the right shard, the network has to handle a huge amount of independent
messages, and the shipper CPUs have to be constantly sending data, and waiting
for their acknowledgement, spending CPU cycles. This ends up causing a big
overhead to the whole system, wasting resources, and limiting the scalability of
the application [Gar+08].

This is the main reason why, even most sophisticated real-time systems, are not
truly real real-time systems, but, actually, near real-time systems[M+17].

Near real-time ingestion

Near real-time ingestion does not intend to ingest data as soon as it is generated,
but to accumulate it up to a certain moment, aiming at a real-time enough solution.
It is a technique implement by some of the most relevant streaming platforms, in
order to ensure efficiency[Apa22; Zah+13].

This accumulated data, typically called micro-batches, are ingested close to the
moment where they were generated, but not immediately. In consequence, as
data is sent in groups, the global overhead of the system is reduced, and the
performance can be generally increased. Thus, the bigger the micro-batch, the
more efficiently it will be ingested, but, however, the more it accumulates before
shipping, the less real-time it will be.

Finding the best balance between these two components is use-case specific,
meaning that there is no standard configuration and that, in order to maximize
the performance, this will have to be evaluated in each scenario.

In order to provide some steps or guideline when looking for the best performance,
according to the use case real-time needs, this research utilises the following
notation, according to the data organization explained in section 5.1.6:

𝐶𝐿 : #𝑅𝑥𝑅𝐿 (5.1)

Where CL is the column length, #R, the number of rows, and RL, the size of the
individual rows, taking into account that:

#𝑅 ∗ 𝑅𝐿 = #𝑆 (5.2)
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where #S is the total number of sensors.
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Figure 5.12: Schematic representation of the 2:50x10 set up.

For instance, the data-set grouping represented in Figure 5.12, where each group
has a row size of 10, and a column length of 2, is represented as:

2 : 50𝑥10 (5.3)

where 500 (50x10) is the total number of data sources or sensors, making each
group to be composed by 20 sensors readings.
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Figure 1: Total cluster size growth, according to the amount of nodes involved in direct data ingestion.

Table 1: Queries execution time, and standard deviation, in seconds. COL SIZE 2

Operation ID Simultaneous jobs Row size
NCOL:1x500 1 500
NCOL:5x100 5 100
NCOL:10x50 10 50
NCOL:25x20 25 20
NCOL:50x10 50 10
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Figure 2: Sensor reads per second retrieved in a timestamped
query, in three different set-ups involving one, two, or three
nodes. Single running job.

*
Figure 5.13: The different operations to be performed, and their identification, as a combi-
nation of the row size and the simultaneous jobs.

The setups to be tested are represented in figure 5.13, where NCOLS parameter
will be 2, 10, and 50, from more real-time to less, as the columns represent the
temporal dimension, or the time-steps.
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The methodology will follow a local maximum approach: The best configurations
for NCOLS=2will be evaluated and analyzed for NCOLS=10, repeating the process
for NCOLS=10 and NCOLS=50.

Micro-batching: 2 time-steps

With a column depth of two time-steps, the shipper will send the data with a
single timestamp difference, meaning that it does not ship data once it gathers
one reading, but when it gathers two. It is the closest approximation to real
real-time ingestion.

Figure 5.14 shows the results, after executing the different set ups with one, two,
and three ingestion nodes or shards.

As seen in figure 5.14, the performance speedup, according to the number of
ingestion nodes, greatly differs depending on the row group configuration. Some
of the most interesting insights that the plot provides are:

– When using one single group, so, a row of size 500 (2:1x500), the perfor-
mance is the lowest, in comparison to the other ingestion alternatives. In
addition, when adding further ingestion nodes or shards, instead of increas-
ing, the performance decreases. This shows that adding further resources
do not always improve the system performance, at least if the approach is
not evaluated holistically.

– When dividing all the sensors in five different groups, and shipping them in
parallel (2:5x100), the performance improves greatly, in comparison to the
previous group. However, it suffers from the same issue: Adding further
resources decreases the system performance.

– The third, intermediate, configuration (2:10x50) is able to offer some speedup
when scaling out, however, this only applies when adding a secondmachine.
Thus, when adding a third machine the system worsens its performance,
remaining better than with a single ingestion shard, but worse than with
two machines.

– The TOP 2 most granular groups (2:25x10 and 2:50x10) offer the best scala-
bility among all the options with a column size of two. However, the most
scalable option is not the most granular one, but the second: 2:25x20.

107



Chapter 5 A heterogeneous sharding and replication approach

– Although the 2 most granular setups offer the best scalability, the interme-
diate option (2:10x50) is the most efficient one, if there is only one ingestion
machine available, such as in a monolithic approach.
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Figure 3: Scalability of the proposed approach with one to three ingestion nodes, for set ups of 2 as column length.
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Figure 4: Scalability of the proposed approach with one to
three ingestion nodes, for set ups of 10 as column length.
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Figure 5: Scalability of the proposed approach with one to
three ingestion nodes, for set ups of 50 as column length.

Por ejemplo, con 5 nodos vemos como el mas eficiente es 1 shard,
2 shard es mas lento y 3 shards es mas ento aun, es decir, añadir
shards empeora el sistema: 1 nodo es capaz de asumir la carga
perfectamente, solo produce overhead y ademas el efecto router
split.

En realidad los splits solo aportan inestabilidad creo

Figure 5.14: Performance of the different set ups for a column length of two.

In addition, there is a relevant pattern that keeps repeating across the different
set ups: The speedup sometimes ends up decreasing when adding more shards,
which seems contrary to the objective of scalability. Particularly, the two less
granular set ups constantly decrease its performance when scaling out, and the
intermediate configuration increases its performance when adding a second node,
for later decreasing its performance when adding a third one.
This phenomenon is caused by two relevant events that can occur when perform-
ing bulk ingestions over distributed databases: Multi-target operations, and
Parallel barriers.
In order to better illustrate this phenomenon, the following figure represents a
briefed data ingestion procedure.
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Figure 5.15: Briefed data ingestion procedure, under a set up following 1:1x500 approxi-
mation, with two ingestion shards, each holding half of the data.

Figure 5.15 is composed by 5 different main steps, that represent a briefed data
ingestion procedure, under a 1:1x500 set up with two ingestion shards:

1. The shippingmachine intends to ship the group of 500 triplets, that contains
the sensor readings and its metadata, from S1 to S500.

2. The router receives the data and intends to redirect it to the appropriate
shards, for its ingestion. However, as there are two shards, each one is in
charge of holding half of the data. This means that the router will have to
perform aMulti-target operation, meaning that it will have to split the
group, fact that produces a system overhead, and to perform two different
ingestion operations, each targeting a different shard: 2.1, and 2.2.

3. Each shard receives its respective operation (3.1 and 3.2), and persists its
data to the disk or write-ahead log, keeping it safe.

4. Once each operation has been completed, each shard returns an acknowl-
edgment (4.1 and 4.2), given that the ingestion operations are synchronous.

109



Chapter 5 A heterogeneous sharding and replication approach

5. However, as the operation was initially just one, although it was splitted in
two different sub-operations, it is not possible to consider the operation
finished until all sub-operations have also been completed.

This phenomenon is specially relevant when using heterogeneous hardware
in the cluster. It is, actually, a Parallel Barrier, which means that the total
operation time will depend on the slowest sub-operation time, reducing the
system performance if both shards do not spend exactly the same time per
operation. Once both sub-operations are completed, the shipper receives
the acknowledgement of the successfully finished operation, and is able to
continue with its remaining ones.

This phenomenon occurs in the previously selected configurations, and leads
to a penalization when adding more machines. Thus, if the system was able to
handle the requested workload without that newly-introduced machine, and,
in addition, we introduce the unequal load balance penalization, the system’s
performance drops. Thus, it is important to take into account this phenomenon,
when designing a distributed database, and act accordingly in order to reduce its
occurrences and negative effects.

In addition, more complex occurrences of this phenomenon are found during
the evaluation. For instance, figure 5.16 represents a briefed schema of the data
ingestion flow for a configuration 1:5x100, under a cluster with three different
ingestion nodes.

In the scenario of figure 5.16, the 500 sensors are divided across three different
shards. When the shipper intends to send 5 groups of 100 sensors each, some
groups can be directly shipped to a shard, whereas other groups will have to be
splitted. For example, S1-S100 group can be directly routed to the Shard 1, that
holds S1-S166 data, but group S101-S200 will have to be splitted, into a Multi-
Target operation, to SH1 (S1-S166) and SH2 (S167-S333). Thus, some operations
will finish speedily, whereas the splitted operations will be slower due to the
Multi-target operation.

Last, regarding the intermediate configuration (2:10x50), as seen in figure 5.14, a
mountain-shaped performance is achieved: A second shard introduces further
performance, whereas a third one decreases it. This is, in fact, also explained by
Multi-target operations and Parallel barriers.
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Figure 5.16: Briefed data ingestion procedure, under a set up following 1:5x100 approxi-
mation, with three ingestion shards, each holding one third of the data.

When dividing the 10 groups into two shards, each shard receives 5 groups,
meaning that there is no Multi-target operations, not parallel barrier caused by a
group split. However, when adding a third shard, the 4th group is splitted across
the first and second shard, and the 7th groups is splitted across the second and
third shard, causing the performance drop phenomenon explained previously.

Thus, when configuring a distributed database following the approach presented
here, it will be important to detect, reduce or avoid this problems, selecting
configurations that fit both the data-set and the architecture.
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Micro-batching: 10 time-steps

Taking into account the methodology explained in this section, the following
configurations are selected to be evaluated:

– 10:10x50

– 10:25x20

– 10:50x10

as these row sizes were the most performing ones, in the previous evaluation.

As seen in figure 5.17, in comparison to figure 5.14, the overall performance
is far better with a column length of 10, than with a column length of 2. For
instance, the different three set ups, when using a column length of 2 under
one single node, write approximately 50.000 triplets/second, as seen in figure
5.14, whereas when using a column length of 10, the same set up reaches 80.000
writes/second. In consequence, this extension in the micro-batching size trades
distance to real-time, with cost-efficiency.

In addition, some of the most interesting insights that the plot provides are:

– The set up that involves less groups, 10:10x50, is the less scalable one: It
is able to scale with certain speedup when adding a second machine, but
when adding a third one it virtually provides the same performance. This
is due to the Multi-target operations and the parallel barrier, that do not
take place, under that configuration, with two shards, but it appears when
adding a third one.

– All three set ups virtually provide the same performance if one single shard
is used, which probably means that 80.000 triplet writes/second in the
maximum speed that the used hardware is able to provide, when using one
ingestion node.

– The top two most granular set ups (10:50x10 and 10:25x20) provide an
equivalent performance and a virtually equal scaling speedup, in all differ-
ent configurations, from 1 ingestion node until 3 ingestion nodes. Their
write performance reaches approximately 180.000 triplet writes/second.
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Por ejemplo, con 5 nodos vemos como el mas eficiente es 1 shard,
2 shard es mas lento y 3 shards es mas ento aun, es decir, añadir
shards empeora el sistema: 1 nodo es capaz de asumir la carga
perfectamente, solo produce overhead y ademas el efecto router
split.

En realidad los splits solo aportan inestabilidad creo

Figure 5.17: Performance of the different set ups for a column length of ten time-steps.

Micro-batching: 50 time-steps

After selecting the two most performing set ups, in the previous micro-batching
approach, and repeating the experiments with a column size of 50 time-steps, the
experiments outcome the following results:

As it can be seen in figure 5.18, both approaches reach an almost perfect scalability
performance, and a maximum speed of almost 250.000 triplet writes/second, when
using three ingestion nodes. It is important to take into account that, under a
set up of three ingestion nodes, the ingestion still suffers from the problems
explained previously, regarding Multi-target operations and parallel barriers.

However, as the parallelization is maximized, creating a big number of simul-
taneous short-lasting jobs, the negative effects are diluted, as the system is
overwhelmed otherwise. Thus, each scenario using the approach presented in
this research, is invited to evaluate and tune the parameters of the set up, in
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order to reach the desired balance between scalability performance and real-time
ingestion, but targeting to an outcome similar to the one of figure 5.18.
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Por ejemplo, con 5 nodos vemos como el mas eficiente es 1 shard,
2 shard es mas lento y 3 shards es mas ento aun, es decir, añadir
shards empeora el sistema: 1 nodo es capaz de asumir la carga
perfectamente, solo produce overhead y ademas el efecto router
split.

En realidad los splits solo aportan inestabilidad creo

Figure 5.18: Performance of the different set ups for a column length of fifty time-steps.

5.6.2 Querying capabilities

In order to evaluate the scalability performance of the Ingestion Replica Set, this
evaluation is run with the different cluster configurations, from one to three
ingestion shards. In addition, we define a high parallelizable query, so, a query
that can be answered using all the available hardware.

The query itself belongs to the category of Timestamped querying[CBC]. These
queries are intended to obtain all sensor readings for a specific timestamp. As
sensor readings are divided across all the different shards, when performing a
timestamped querying, all nodes will be asked to work collaboratively, which
allows to evaluate the scalability performance.

After evaluating the query against 10 different random timestamps, cleaning
cache after each execution, the result was as follows:
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Figure 1: Total cluster size growth, according to the amount of nodes involved in direct data ingestion.

Table 1: Queries execution time, and standard deviation, in seconds. COL SIZE 2

Operation ID Simultaneous jobs Row size
NCOL:1x500 1 500
NCOL:5x100 5 100
NCOL:10x50 10 50
NCOL:25x20 25 20
NCOL:50x10 50 10
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Figure 2: Sensor reads per second retrieved in a timestamped
query, in three different set-ups involving one, two, or three
nodes. Single running job.
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Figure 5.19: Execution time of a timestamped query, in set ups from one to three shards.

As it can be seen in figure 5.19, the scalability performance achieved is outstanding.
This is due to the fact that it does not involve a big amount of parallel petitions,
that might overwhelm the system, as real-time ingestion does. In this case,
the query is answered by 1, 2 or 3 nodes, that are able to efficiently divide the
workload among them.

5.7 Conclusions

We introduced and discussed the concepts and obstacles that organizations have
to bear in mind when deploying infrastructures for distributed databases, not
only in terms of software/hardware approaches and performance, but also in
terms of resource expenses.

In order to alleviate those obstacles, specifically aiming at reducing infrastructure
costs, we introduced a holistic approach for scaling Time-series databases under
Cascading Polyglot Persistence, following a cluster fashion. This approach intends
to be understood as a model or departure point, for scenarios that target, on the
one hand, to enable efficient data ingestion and retrieval and, on the other hand,
to reduce the number of needed machines.
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More precisely, we set our starting point to be the Cascading Polyglot Persistence
technique, that aimed to enable cost-efficient Time-series data management, but
lacked from a specific scalability approach, relying on generic ones.

When introducing our scalability approach, the database showed to fit better to
the nature of Cascading Polyglot Persistence, improving its performance and
maximizing its objectives. In particular, it was able to reach upstanding speedup
performances, up to 85% improvement, in comparison to a theoretical and perfect
scenario, when executing multi-shard operations. Moreover, it was able to greatly
reduce the number of needed machines, and demonstrated to obtain excellent
results when using commodity machines with configuration requirements as low
as just 3GB of RAM and 3 vCPUs.

More precisely, when deploying three low-requirement ingestion nodes under
an internal network, the distributed database was able to reach the writing
speed of almost 250.000 triplets/second, each composed by three different data
types, while also ensuring data safety. Thus, our approach exemplifies that high
performances can be achieved, while also ensuring data safety, not only by adding
further expensive hardware, but also when using efficient software and tailored
architectural approaches.

Last, our research illustrates how adding more machines, in our time-series
data context, does not always implies a positive performance speedup. This
further keeps away the idea that increasing the system’s performance can be
done by simply adding more resources. Thus, analyzing the interaction between
the hardware and the software configurations, as exemplified in this research,
becomes a mandatory step for efficient distributed time-series databases.

The work presented in this chapter is to be submitted to the journal "Big Data and
Cognitive Computing" (MDPI), which belongs to the first quartile (Q1) of "Computer
Science Applications", and has a CiteScore of 6.1 (2021).
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This dissertation proposed and evaluated a holistic approach for developing highly
efficient Time-series databases for Monitoring Infrastructures. To do so, the global
approach was divided into three different but accumulative and complementary
approaches, than can be implemented together in order to develop a fully capable
solution. This chapter summarizes the conclusions, lessons learnt and overall
contributions of this research.

6.1 Summary

We designed and evaluated three different approaches involving time series
databases, intending to pave theway towardsNagareDB, our Time-series database,
aimed at materializing all our approaches in an integrated way, and as an out-of-
the-box solution.

The first one, detailed in Chapter 3, aimed at providing a foundation time series
capability over a popular document-oriented databases such as MongoDB. This
approximation consisted on the proposal of schema-full data model for Time-
series data, on top of a schema-less database. In addition, it provided several
optimization approaches, such as a limited-precision decimal type. The approach
demonstrated to offer efficient results both in terms of writing and reading data
while being able to reduce disk usage up to 40%, when using the tailored 32bit
data type, in comparison to popular alternatives such as InfluxDB and MongoDB.
Last, it contributed to lowering down barriers to accessing Time-series databases,
in three different perspectives: (1) Software, as the approach was implemented
over a open-source Time-series database, (2) Hardware, as it demonstrated to
be able to provide good results in limited-resource machines, being also able to
freely scale out, and (3) Expert Personnel, as it is build over the most popular
NoSQL, relieving database engineers from having to master yet-another database
and query language from scratch.

The second approach, developed throughout chapter 4, introduced the concept
of Cascading Polyglot Persistence, aimed to tailor the data-flow to the expected
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operations performed according to data aging. More specifically, it consists in
using multiple consecutive data models for persisting data, where each data
element is expected to cascade from one to another, until eventually reaching
the last one. Also, it introduced complementary methods, such as Polyglot
Abstraction Layers, aimed at minimizing the negative effects of the complexity
of Cascading Polyglot Persistence. Regarding its specific materialization, it was
evaluated when putting together three different data models: (1) A key-value
data model, aimed at maximizing ingestion performance, (2) a short-column
data model, which is, actually, the main outcome of the first chapter, and (3)
a long-column data model, as a variation of the previous one. The evaluation
results showed that the resulting database benefits from the data-flow awareness,
empowered by three different data models, at virtually no cost.

After evaluating the response times of twelve different common queries in Time-
series scenarios, our experimental results show that our polyglot-based data-flow
aware approach is not just able to outperform the original non polyglot approach,
but also to greatly outperform MongoDB’s novel Time-series approach, while
providing more stable response times. Moreover, our benchmark results showed
that it is also able to globally surpass InfluxDB, the most popular -commercial-
Time-series database.

In addition, in order to evaluate its ingestion capabilities, we simulated a synchro-
nized, distributed, and real-time stream-ingestion scenario. The results showed
that our approach is able to ingest data streams two times faster than the non-
polyglot NagareDB’s approach, MongoDB and InfluxDB.

Finally, regarding its data storage consumption, all databases have shown to
request similar disk usage, except from MongoDB, who requested two times
more disk space. However, it is important to recall that by applying the limited-
precision data type introduced in chapter 3, the disk consumption could be
reduced up to 40%.

The last chapter discussed the concepts and obstacles that organizations have to
bear in mind when deploying infrastructures for distributed databases, not only
in terms of software/hardware approaches and performance, but also in terms of
resource expenses.

In order to alleviate those obstacles, the chapter introduced a holistic approach
for scaling Time-series databases under Cascading Polyglot Persistence, aimed to
further maximize its performance while reducing costs. Our results showed that it
was able to reach upstanding speedup performances, both at writing and reading

118



Future work Section 6.2

data, when executing multi-shard operations. Moreover, it was able to greatly
reduce the number of needed machines, and demonstrated to obtain excellent
results when using commodity machines with configuration requirements as low
as just 3GB of RAM and 3 vCPUs.

Regarding the different usages of the three approaches, the first two can be
used independently with respect to the others, but the last one can only be
fully implemented after the second one is materialized. If this is not the case,
however, it still can be used for better understanding some of the issues that lead
to low-performance scalability, and their solutions.

Thus, when all approaches are integrated into a single approach, the outcome is
a highly efficient Time-series database for monitoring infrastructures.

Finally, our approaches exemplify that high performances can be achieved, while
also ensuring data safety, not only by adding further expensive hardware, but
also when using efficient software and tailored architectural approaches.

6.2 Future work

While this dissertation efficiently tackled the obstacles than involve time series
databases, both in terms of performance and resources, there is still a long way
to go. The next steps of this Time-series approach are two-sided.

On the one side, it is important to keep looking for further and more complex
approaches, following the cost-efficiency goal. While our approach has shown
to be able outperform top tier alternative solution, there is still room to grow,
further improving both reading and writing operations, as well as reducing even
more the scalability costs.

On the other side, less focused on research, and more into software development,
it is important to continue paving the way towards our out-of-the-box Time-
series database, namely NagareDB, including documentation, tutorials, scheduled
maintenance, upgrades, long term user support, etc.
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6.3 Final words

In this dissertation we have intended to address the main issues and obstacles
when dealing with Time-series databases for monitoring infrastructures. Not
only that, we have taken a different path than the usual one: Cost-efficiency.
Nowadays computation is gradually becoming cheaper and cheaper -mostly for
big organizations and enterprises- which has lead developers to typically target
obtaining the best performance, while disregarding the resource usage or waste.
This effect typically leaves behind small and medium organizations or research
groups, who still want to benefit from monitoring data, but lack the resources
to do so. Moreover, as a consequence of the cheapening of resources, some big
organizations typically tackle performance problems by just adding more and
more hardware resources. Given that adding computing resources, apart from
being costly, also increments the impact to the environment, it becomes almost an
ethical obligation to intend to reduce the negative implications that technological
development prints to the planet.
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7 Appendix

7.1 Querying NagareDB

The querying can be performed usingMongoQL, the query language of MongoDB
– the underlying database. It is extensively explained in MongoDB’s documen-
tation[Mon21c]. However, here we present a sample pseudo-query, in order to
better understand its data structure and its easy way of querying.

MongoDB queries, within the so-called Aggregation Framework[Mon21c], follow
Aggregation Pipelines. So, a query is composed by several operations, where the
output of a given operations is the input of the following one.

NagareDB generally follows a columnar data model, materialized within a JSON
document. The so-called "short-column approximation", as presented in Chapter
3, is intended to keep data for one day, if the data granularity is minutely. Thus,
each document, or short-column, keeps the data for a given sensor and a given
day.

In this example we aim at retrieving the value that the sensor "Sensor0001" read
at 2000/01/01 01:05:00. Recall that this example is not aimed at providing precise
code, that can be found in MongoDBs manual, but to help in the understanding
of the querying steps and NagareDB’s internal format.

As data is organized in daily column, first, we should find the column for day
2000/01/01, for that sensor. This can be done with a match clause:

1 {"menu": {
2 "id": "file",
3 "value": "File",
4 "popup": {
5 "menuitem": [
6 {"value": "New", "onclick": "CreateNewDoc()"},
7 {"value": "Open", "onclick": "OpenDoc()"},
8 {"value": "Close", "onclick": "CloseDoc()"}
9 ]

10 }
11 }}
12 0123456789

step-by-step aggregation framework
sample pseudo-query, looking for the sensor reading of the sensor sen-

sorID="Sensor0001", at Timestamp=2000/01/01 01:05:00
sensorID is an array of sensors to match.

1 {"$match": {
2 "_id.timestamp": ISODate(2000-01-01),
3 "_id.sensorID": "Sensor0001"
4 }}

1 {"_id": {"timestamp": ISODate(2000-01-01),
2 "sensorID": "Sensor0001"},
3

4 "0": [#minute_0_of_hour_0_sensorReading,
5 #minute_1_of_hour_0_sensorReading,
6 ...
7 #minute_59_of_hour_0_sensorReading],
8

9 "1": [#minute_0_of_hour_1_sensorReading,
10 #minute_1_of_hour_1_sensorReading,
11 ...
12 #minute_59_of_hour_1_sensorReading],
13

14 ... ,
15

16 "23": [#minute_0_of_hour_23_sensorReading,
17 #minute_1_of_hour_23_sensorReading,
18 ...
19 #minute_59_of_hour_23_sensorReading]
20 }

1

Figure 7.1:Match query, similar to a SQL select where clause.
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The selected document, that materializes a day short-column is as follows:

1 {"menu": {
2 "id": "file",
3 "value": "File",
4 "popup": {
5 "menuitem": [
6 {"value": "New", "onclick": "CreateNewDoc()"},
7 {"value": "Open", "onclick": "OpenDoc()"},
8 {"value": "Close", "onclick": "CloseDoc()"}
9 ]

10 }
11 }}
12 0123456789

step-by-step aggregation framework
sample pseudo-query, looking for the sensor reading of the sensor sen-

sorID="Sensor0001", at Timestamp=2000/01/01 01:05:00
sensorID is an array of sensors to match.

1 {"$match": {
2 "_id.timestamp": ISODate(2000-01-01),
3 "_id.sensorID": "Sensor0001"
4 }}

1 {"_id": {"timestamp": ISODate(2000-01-01),
2 "sensorID": "Sensor0001"},
3

4 "0": [#minute_0_of_hour_0_sensorReading,
5 #minute_1_of_hour_0_sensorReading,
6 ...
7 #minute_59_of_hour_0_sensorReading],
8

9 "1": [#minute_0_of_hour_1_sensorReading,
10 #minute_1_of_hour_1_sensorReading,
11 ...
12 #minute_59_of_hour_1_sensorReading],
13

14 ... ,
15

16 "23": [#minute_0_of_hour_23_sensorReading,
17 #minute_1_of_hour_23_sensorReading,
18 ...
19 #minute_59_of_hour_23_sensorReading]
20 }

1
Figure 7.2: Match query result.

However, we are not interested in all the readings, but only in the one performed
at 2000/01/01 01:05:00. Thus, we will just keep the attribute/hour that we are
interested in: 1.

After adding the following operation to the query:
——

1 {"$project": {
2 "_id": "$_id.sensorID",
3 "1" : 1
4 }}

1 {"_id": "Sensor0001",
2

3 "1": [#minute_0_of_hour_1_sensorReading,
4 #minute_1_of_hour_1_sensorReading,
5 ...
6 #minute_59_of_hour_1_sensorReading]
7 }

——
position = int(desiredMinute/SensorReadingFrequency) position = int(5/1)

position = 5

1 {"$project": {
2 "_id": 1,
3 "value" : {"$arrayElemAt": ["$1", 5]}
4 }}

1 {"_id": "Sensor0001",
2 "value": #minute_5_of_hour_1_sensorReading}

1 {"$match": {
2 "_id.timestamp": Timestamp.day,
3 "_id.sensorID": sensorID
4 }},
5 {"$project": {
6 "_id": "$_id.sensorID",
7 "1" : 1
8 }},
9 {"$project": {

10 "_id": 1,
11 "value" : {"$arrayElemAt": ["$1", 5]}
12 }}

2

Figure 7.3: First project operation.

The output is as follows:
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——

1 {"$project": {
2 "_id": "$_id.sensorID",
3 "1" : 1
4 }}

1 {"_id": "Sensor0001",
2

3 "1": [#minute_0_of_hour_1_sensorReading,
4 #minute_1_of_hour_1_sensorReading,
5 ...
6 #minute_59_of_hour_1_sensorReading]
7 }

——
position = int(desiredMinute/SensorReadingFrequency) position = int(5/1)

position = 5

1 {"$project": {
2 "_id": 1,
3 "value" : {"$arrayElemAt": ["$1", 5]}
4 }}

1 {"_id": "Sensor0001",
2 "value": #minute_5_of_hour_1_sensorReading}

1 {"$match": {
2 "_id.timestamp": Timestamp.day,
3 "_id.sensorID": sensorID
4 }},
5 {"$project": {
6 "_id": "$_id.sensorID",
7 "1" : 1
8 }},
9 {"$project": {

10 "_id": 1,
11 "value" : {"$arrayElemAt": ["$1", 5]}
12 }}

2

Figure 7.4: First project operation’s result.

Again, we do not want all the readings from that hour, just the one performed
at minute 5. As the reading frequency of that sensor is 1, positionInArray =
Minute/frequency (5/1): 5th position. After adding another project operation, we
can filter out the other data:

——

1 {"$project": {
2 "_id": "$_id.sensorID",
3 "1" : 1
4 }}

1 {"_id": "Sensor0001",
2

3 "1": [#minute_0_of_hour_1_sensorReading,
4 #minute_1_of_hour_1_sensorReading,
5 ...
6 #minute_59_of_hour_1_sensorReading]
7 }

——
position = int(desiredMinute/SensorReadingFrequency) position = int(5/1)

position = 5

1 {"$project": {
2 "_id": 1,
3 "value" : {"$arrayElemAt": ["$1", 5]}
4 }}

1 {"_id": "Sensor0001",
2 "value": #minute_5_of_hour_1_sensorReading}

1 {"$match": {
2 "_id.timestamp": Timestamp.day,
3 "_id.sensorID": sensorID
4 }},
5 {"$project": {
6 "_id": "$_id.sensorID",
7 "1" : 1
8 }},
9 {"$project": {

10 "_id": 1,
11 "value" : {"$arrayElemAt": ["$1", 5]}
12 }}

2

Figure 7.5: Second project operation.

Retrieving the final document:

——

1 {"$project": {
2 "_id": "$_id.sensorID",
3 "1" : 1
4 }}

1 {"_id": "Sensor0001",
2

3 "1": [#minute_0_of_hour_1_sensorReading,
4 #minute_1_of_hour_1_sensorReading,
5 ...
6 #minute_59_of_hour_1_sensorReading]
7 }

——
position = int(desiredMinute/SensorReadingFrequency) position = int(5/1)

position = 5

1 {"$project": {
2 "_id": 1,
3 "value" : {"$arrayElemAt": ["$1", 5]}
4 }}

1 {"_id": "Sensor0001",
2 "value": #minute_5_of_hour_1_sensorReading}

1 {"$match": {
2 "_id.timestamp": Timestamp.day,
3 "_id.sensorID": sensorID
4 }},
5 {"$project": {
6 "_id": "$_id.sensorID",
7 "1" : 1
8 }},
9 {"$project": {

10 "_id": 1,
11 "value" : {"$arrayElemAt": ["$1", 5]}
12 }}

2

Figure 7.6: Second project operation’s result.
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The final, complete, query would be as follows:

1 {"menu": {
2 "id": "file",
3 "value": "File",
4 "popup": {
5 "menuitem": [
6 {"value": "New", "onclick": "CreateNewDoc()"},
7 {"value": "Open", "onclick": "OpenDoc()"},
8 {"value": "Close", "onclick": "CloseDoc()"}
9 ]

10 }
11 }}
12 0123456789

step-by-step aggregation framework
sample pseudo-query, looking for the sensor reading of the sensor sen-

sorID="Sensor0001", at Timestamp=2000/01/01 01:05:00
sensorID is an array of sensors to match.

1 {"$match": {
2 "_id.timestamp": ISODate(2000-01-01),
3 "_id.sensorID": "Sensor0001"
4 }}

1 {"$match": {
2 "_id.timestamp": ISODate(2000-01-01),
3 "_id.sensorID": "Sensor0001"
4 }},
5 {"$project": {
6 "_id": "$_id.sensorID",
7 "1" : 1
8 }},
9 {"$project": {

10 "_id": 1,
11 "value" : {"$arrayElemAt": ["$1", 5]}
12 }}

1

Figure 7.7: Query pipeline.

Notice that the second and third operation could be combined into one -single
and more efficient- operation. However, we left it as-it-is in order to show a more
detailed and step-by-step approach.
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7.2 NagareDB’s origin

NagareDB’s name comes from the Japanese language. Nagare, both as a name and
a verb, is typically represented with the Kanji shown in figure 7.8, being Nagare
root its representation in Rōmaji, following the Latin alphabet. The author of this
dissertation has a strong bond with the Japanese culture, and moved from Tokyo,
where he was living, to Barcelona, in order to start working on this research, at
BSC-CNS.

Figure 7.8: Root Kanji of Nagare.

Nagare means and symbolizes the flow: The flow or passage of time, and the flow
or stream of water, such as in a river or in a cascade. Given that our database
manages the data along time, being a time-series database, and that it is also
implemented following Cascading Polyglot Persistence, which is conceptualized
as a water cascade, composed by several water/data falls, "NagareDB" was found
to be a suitable and inspiring name for our database.
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