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ABSTRACT

This thesis, mostly experimental, is based on two fundamental pil-
lars: nonlinear interferometers and Optical Coherence Tomography
(OCT). Nonlinear interferometers are a class of interferometers that
exhibit nonclassical phenomena brought on by nonlinear elements,
such as optical parametric amplifiers and parametric down-conversion
(PDC) nonlinear crystals. OCT is a non-invasive imaging technique
that allows to obtain images with high axial and cross-sectional res-
olution of a wide variety of samples.

The first novel contribution of this thesis is an experimental scheme
that combines the two ideas: an OCT scheme based on a nonlinear
interferometer. In these new approach the reflectivity of the sample
translates in a loss of first-order coherence between two beams, that
is the variable that is measured. In addition, it allows probing the
sample with a wavelength different from the one that is measured. In
this way, the penetration depth in the sample can be enhanced using
longer wavelengths while using light at the optimal wavelength for
detection.

We present and implement two different experimental configura-
tions. The first is a nonlinear interferometer based on induced coher-
ence, orMandel-type interferometer, that works in the low parametric
gain regime of parametric down-conversion (PDC). The results pre-
sented here are a proof-of-concept, that can potentially offer new ap-
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plications for OCT, but that are not meant to substitute traditional
OCT systems.

The second OCT scheme overcomes some of the limitations of
the first scheme discussed above. It is an SU(1,1), or Yurke-type
interferometer, that operates in the high parametric gain regime of
parametric down-conversion. In addition to taking advantage of the
salutary features of this new approach, it also enables obtaining val-
ues of power and axial resolution comparable to those of conventional
OCT.

The second novel contribution of this thesis is related to funda-
mental aspects at the heart of nonlinear interferometers. We dis-
cuss two experiments that study two important concepts behind the
idea of induced coherence: quantum distinguishability and paramet-
ric amplification (stimulated emission). In the first experiment we
propose a new experimental measure of quantum distinguishability
and derive a complementarity relation between distinguishability and
first-order coherence. In the second experiment, we contribute to the
ongoing debate about the true role of quantum distinguishability and
stimulated emission in explaining the induced coherence effect.

Finally, we put forward theoretically a new scheme to retrieve
transverse spatial information of a sample using a nonlinear interfer-
ometer, based on projecting the outgoing photons in selected spatial
modes. We call this new proposal spatial spectroscopy, and it does
not require a physical mechanical scan of the sample. We demon-
strate the feasibility of the technique with a simple example. This
last contribution constitutes a future proposal to be carried out with
nonlinear interferometers, evidencing their great versatility and po-
tential applications in new areas.
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RESUM

Aquesta tesi, majoritàriament experimental, està basada en dos pi-
lars fonamentals: els interferòmetres nolineals i la Tomografia de Co-
herència Òptica (OCT). Els interferòmetres nolineals són un tipus
d’interferòmetres en els que tenen lloc fenòmens no-clàssics gener-
ats per la presència d’elements nolineals, com amplificadors òptics
paramètrics i cristalls de conversió paramètrica descendent. OCT és
una tècnica interferomètrica no-invasiva per obtenir imatges 3D amb
alta resolució axial d’una gran varietat de mostres.

La primera contribució original d’aquesta tesi és un esquema ex-
perimental que combina dues idees: un esquema d’OCT basat en un
interferòmetre nolineal. En aquesta nova proposta, la reflectivitat de
la mostra es tradueix en una pèrdua de coherència entre dos feixos de
llum, que és la quantitat mesurada. A més a més, permet il·luminar
la mostra amb una longitud d’ona diferent a la mesurada. D’aquesta
manera, podem guanyar penetració a la mostra mentre utilitzem llum
a la longitud d’ona òptima per la detecció.

En aquest sentit, presentem i implementem dues configuracions
experimentals diferents. La primera es tracta d’un interferòmetre
nolineal basat en el concepte de coherència indüıda, o també anom-
enat interferòmetre de Mandel, que opera en el règim de baix guany
de conversió paramètrica descendent. Els resultats presentats con-
stitueixen una prova del principi de funcionament, que poden su-
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posar noves aplicacions per OCT, però no estan enfocats a substituir
els sistemes convencionals d’OCT.

El segon esquema d’OCT que proposem millora algunes de les
limitacions de l’anterior proposta. Es tracta d’un SU(1,1), o inter-
feròmetre de Yurke, que opera en el règim d’alt guany de conversió
paramètrica descendent. A més d’aprofitar les caracteŕıstiques ben-
eficioses d’aquests nous esquemes, també permet obtenir valors de
potència i resolució axial comparables als dels sistemes d’OCT tradi-
cionals.

La segona contribució original d’aquesta tesi està relacionada amb
aspectes fonamentals que estan rere els interferòmetres nolineals.
Presentem dos experiments que estudien dos conceptes importants
que expliquen la idea de coherència indüıda: la distingibilitat quàntica
i l’amplificació paramètrica (o emissió estimulada). En el primer ex-
periment proposem una nova mesura de la distingibilitat quàntica
i derivem una relació entre la distingibilitat i la coherència. En el
segon experiment, contribüım al debat vigent sobre el rol de la dis-
tingibilitat quàntica i l’emissió estimulada per explicar el concepte de
la coherència indüıda.

Finalment, presentem les bases teòriques d’un nou esquema per
obtenir informació espacial d’una mostra utilitzant un interferòmetre
nolineal, basat en la projecció dels fotons en uns modes espacials
de llum concrets. Anomenen aquesta nova proposta espectroscòpia
espacial, i no requereix un escaneig f́ısic-mecànic de la mostra. De-
mostrem la viabilitat de la tècnica amb un exemple senzill. Aquesta
última contribució constitueix una proposta de futur a realitzar amb
els interferòmetres nolineals, evidenciant la seva gran versatilitat i
potencials aplicacions en noves àrees.
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CHAPTER

ONE

INTRODUCTION

Optical interferometers superimpose two light beams in order to mea-
sure a phase shift. In many cases, the sought-after phase shift can
be retrieved measuring the intensity at one output port of the in-
terferometer, or the difference of intensities between the two output
ports of the interferometer. In this way we can estimate the value
of a variable of interest, such as path difference, refractive index of
a medium or surface irregularities, since the phase shift generated
depends on any of these variables.

One interferometer of paramount importance was built by Michel-
son and Morley in 1887 [1], giving its name to what is now known
as the Michelson interferometer. Since its invention, it has become
a powerful tool that have found numerous applications in metrology,
sensing, spectroscopy and gravitational wave detection. The Michel-
son interferometer is of special relevance for this thesis, since it is at
the heart of Optical Coherence Tomography (OCT). Introduced in
1991 [2, 3], OCT is a widely-used 3D imaging technique that allows
cross-sectional and high-resolution tomographic imaging of samples
by measuring light reflected back from it. It is a mature technique
that finds applications in many areas of science and technology, from

1
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Introduction

medicine [4] to art conservation studies [5, 6].

The object of study of this thesis are the so-called nonlinear in-
terferometers : interferometers that contain light-generating nonlin-
ear elements, such as optical parametric amplifiers and parametric
down-conversion (PDC) nonlinear crystals [7]. These schemes were
first devised in the late 1980s and were shown to improve phase sen-
sitivity below the shot-noise limit [8].

The novelty of the work presented in this thesis is twofold. First,
we demonstrate that nonlinear interferometers can be used to per-
form OCT measurements. Two experimental OCT realizations are
presented, which differ in their basic geometry, and most important,
they operate in different gain regimes of parametric down-conversion
(PDC). It should be said that the results presented in this thesis do
not compete in terms of performance with conventional OCT systems.
The objective is to explore and lay the foundations for this novel pro-
posal, and highlight potential advantages and disadvantages of using
nonlinear interferometers when compared with OCT schemes based
on standard Michelson interferometers.

Secondly, we study some fundamental physical concepts that are
at the heart of the nonlinear interferometers explored in this thesis.
Specifically, we revisit with new experiments and ideas the concept
of induced coherence, which was introduced the same year as OCT
[9]. Thus, experimental results are presented that shed light on the
concepts of path distinguishability and parametric amplification in
schemes of this type.

In the final chapter, we present the theoretical foundation for
performing spatial spectroscopy with nonlinear interferometers as a
potential future application. We call spatial spectroscopy a scheme
aimed at obtaining spatial information of a sample, spatial features
of its shape. The key ingredient is the projection in conveniently se-
lected spatial modes of light, which avoid the need to physically scan
the sample transversely. Furthermore, this scheme benefits from the
salutary features of nonlinear interferometers: retrieving information
by detecting photons that never interacted with the sample.

2



“output” — 2022/9/14 — 17:28 — page 3 — #21

The use of nonlinear interferometers for imaging, sensing, spec-
troscopy and microscopy have had a revival during the last decade.
The main advantage of these schemes from a practical standpoint is
that they allow to select a wavelength for the idler beam, which inter-
acts with the sample but is never detected, and a different wavelength
for the signal beam, which can be detected with high efficiency. This
is why such systems are referred sometimes to as imaging/sensing
with undetected photons.

Recent experimental applications of non-

linear interferometers

Here we give an overview of recent experimental applications involv-
ing nonlinear interferometers in imaging, sensing, spectroscopy and
microscopy:

• Imaging.

Lemos et al. demonstrated in 2014 [10] a 2D imaging scheme
that used a nonlinear interferometer based on induced coher-
ence. They probed objects that modulate the phase and inten-
sity of reflected light. The object was illuminated with infrared
light, while the detection used visible light. The object was
placed in the idler i1 path between the two nonlinear crystals.
The presence of the object modifies the interference of the sig-
nal photons, that is measured. Thus the object is imaged with
photons that never interacted with it.

Cardoso et al. demonstrated in 2018 [11] a 2D imaging scheme
that they describe as the classical analog of Barreto et al. ex-
periment. They defined its scheme as classical because they
used stimulated parametric down-conversion instead of sponta-
neous parametric down-conversion. The first nonlinear crystal
is illuminated by a pump beam and with a strong laser beam
at the idler frequency.

3
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Gilaberte et al. [12] demonstrated a quantum imaging scheme
based on the use of nonlinear interferometers that allows imag-
ing with minimal photo dose, while still capable of recording
at video rate in the visible frequency range. The same group
led by Markus Gräfe [13] demonstrated phase shifting digital
holography with an SU(1,1) nonlinear interferometer.

• Sensing.

Kutas et al. [14] made use of an SU(1,1) nonlinear interferom-
eter to perform terahertz sensing of a sample while detecting
only visible photons. They measured the layer thickness of an
object placed in the idler arm. This work might be important
for the terahertz industry, since there are no good semiconduc-
tor detectors for this frequency range and one can avoid the use
of cryogenically cooled bolometers.

• Spectroscopy.

Krivitsky et al. [15,16] used an SU(1,1) nonlinear interferometer
to measure the real and imaginary part of the complex refrac-
tive index, the transmittance, the reflection and absorption of a
medium in the infrared range by detecting only visible photons.
The experiments worked in the low parametric gain regime of
down-conversion and claim to be relevant for applications in
material analysis, IR-photonics and telecommunications.

• Microscopy.

The research groups of Ramelow [17] and Krivitsky [18] demon-
strated experimentally hyperspectral mid-IR microscopy using
an SU(1,1) nonlinear interferometer by detecting only near-IR
radiation with a silicon-based camera. They imaged a biolog-
ical sample with high spatial resolution (10 µm). The results
showed a wide field of view, fast readout and negligible heat
transfer to the sample.

4
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Goals of this thesis

Nonlinear interferometers are at the heart of this thesis. The main
results presented here are intended i) to investigate its use in optical
coherence tomography schemes as well as ii) to explore fundamental
concepts behind these types of schemes. As a final step we also ex-
plore the feasibility of doing imaging based on spatial modes of light.
Our results are experimental results as well as theoretical analysis.
The thesis key goals are:

• To demonstrate and characterize, experimentally and theoret-
ically, the feasibility of doing optical coherence tomography
(OCT) based on the use of nonlinear interferometers. We im-
plement two experimental OCT schemes, one that works in the
low parametric gain regime of parametric amplifiers (see Chap-
ter 3) and another one that works in the high parametric gain
regime (see Chapter 4).

• To study, and experimentally measure, signal-idler correlations
in an induced coherence scheme to introduce a new measure-
ment of quantum distinguishability (see Chapter 5). We also
address the concepts of parametric amplification and quantum
distinguishability in an induced coherence scheme (see Chapter
6) with the aim at trying to unveil the role and importance of
each phenomena to explain why induced coherence is observed.
There is an ongoing dispute on this topic that has not been
clearly resolved yet [19, 20].

• To introduce a scheme to obtain transverse spatial information
of a phase object (spatial spectroscopy) based on the use of non-
linear interferometers (see Chapter 7). The basic ingredient is
the use of projection onto selected spatial modes in the detec-
tion stage, avoiding in this way the need to do spatial scans of
the sample.

5
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Outline of this thesis

The contents of this thesis are organized as follows.

Chapter 2 presents and sets the theoretical quantum formalism
that describes how nonlinear interferometers work. We consider the
two fundamental types of nonlinear interferometers that constitute
the basis of this thesis: the SU(1,1) or Yurke-type interferometer,
and the Mandel-type interferometer, based on the idea of induced co-
herence. Since nonlinear interferometers are formed by parametric
amplifiers, the phenomenon of parametric down-conversion (PDC) is
theoretically described in the Heisenberg and the Schrödinger pic-
tures. We expand upon this formalism to the signal measured in dif-
ferent optical coherence tomography schemes. The last part of this
chapter is devoted to summarize the main applications that these
types of interferometers based on nonlinear parametric amplifiers
have found in the last decade.

Chapter 3 is dedicated to present and describe the experimental
implementation of an optical coherence tomography scheme based on
induced coherence (Mandel-type interferometer). This system works
in the low parametric gain regime of down-conversion. For the sake
of comparison, we first do a brief review of the fundamental charac-
teristics of conventional OCT systems, as well as the main equations
that describe its functioning. Next we introduce the novel scheme
proposed in this thesis and describe its basic operating principles.
The experimental results obtained in the laboratory that demonstrate
its feasibility are shown. The last part of the chapter is devoted
to present the main advantages and limitations of this novel OCT
scheme over its standard counterpart.

Chapter 4 begins by introducing a new optical coherence to-
mography scheme that solves some of the limitations presented in
the previous chapter. We present a new experimental OCT scheme
based on an SU(1,1) nonlinear interferometer operating in the high
parametric gain regime of down-conversion (Yurke-type interferome-
ter). This novel OCT proposal constitutes the core of this chapter,

6
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in which the experimental setup and the main experimental results
are described in detail.

Chapter 5 begins a series of two chapters devoted to studying
fundamental quantum concepts of nonlinear interferometers based
on the induced coherence effect. We discuss the concept of quan-
tum distinguishability and its role in explaining induced coherence.
We implement experimentally a measure of quantum distinguishabil-
ity that is based on second-order correlation functions between the
signal and idler photons generated in parametric down-conversion.
To measure such correlations experimentally, coincidence measure-
ments between single photons must be made. For that reason, the
method used to measure coincidences between photons is described
in detail. The new distinguishability measure introduced allows us
to derive and demonstrate a complementarity inequality that relates
two fundamental concepts of a quantum interferometer: quantum
distinguishability and interference visibility.

Chapter 6 discusses the roles of parametric amplification and
quantum distinguishability for explaining the phenomenon of induced
coherence. There is an ongoing debate about whether, or how, quan-
tum distinguishability, and the stimulated emission associated to
parametric amplification are the real reasons for the induced coher-
ence effect. The objective of this chapter is not to state categorically
which of these explanations plays a more transcendental role, but to
revisit a variant of usual experiments where the possibility of para-
metric amplification is eliminated, so only quantum distinguishabil-
ity remains as possible explanation. However we need to move from
measuring singles to measuring coincidences, which is a drawback for
interpreting certain aspects of the experimental results.

Chapter 7 introduces and describes theoretically a new appli-
cation of nonlinear interferometers: spatial spectroscopy, or imaging
based on projection onto spatial modes. The experimental realization
of this new scheme has not been carried out in this thesis. The idea
of the proposal is to explore the possibility of obtaining transverse
spatial information of a sample by means of projection into selected

7
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spatial modes of light. We derive the main equations, and a sim-
ple example is shown to demonstrate the feasibility of the technique.
This last chapter can be considered as a proposal for possible future
work to be done with nonlinear interferometers.

8
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CHAPTER

TWO

THE QUANTUM
DESCRIPTION OF

NONLINEAR
INTERFEROMETERS

This chapter describes in detail the main characteristics of nonlinear
interferometers, which are the experimental schemes implemented in
this thesis. We first present a brief historical overview and a qualita-
tive description of the different schemes generally used. Our attention
shifts to present the theoretical basis of the two nonlinear interfer-
ometers considered in this work: the SU(1,1) interferometer (Yurke-
type) and the interferometer based on induced coherence (Mandel-
type). The physical phenomena of parametric down-conversion and
parametric amplification is characterized quantum-mechanically us-
ing two different approaches: the Heisenberg and the Scrödinger pic-
tures.

9
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2.1 What is a Nonlinear Interferometer?

A nonlinear interferometer [7] is an interferometric scheme where
nonlinear crystals or atomic systems generating light through non-
linear effects are placed inside the interferometer. In these schemes,
two or more nonlinear sources are spatially separated and pumped
coherently. Under various conditions, the radiation emitted from the
sources may exhibit full or partial interference, or even no interference
at all. The degree of interference is measured. Different factors affect
the degree of coherence and, consequently, the degree of interference
between various signals. We will analyze the conditions under which
interference can be observed.

Figure 2.1: General scheme of a nonlinear interferometer. A pump
beam illuminates coherently two spatially separated nonlinear opti-
cal sources. In the first nonlinear crystal the input signal is in the
vacuum state, so there is spontaneous parametric down-conversion.
The second nonlinear crystal acts as a parametric amplifier of the
signal generated in the first nonlinear crystal.

Figure 2.1 shows a general scheme of the kind of nonlinear in-
terferometers considered in this thesis. The generation of light by
using nonlinear optics sources dates back to the pioneering work of
N. Bloembergen, among many others [21]. These pioneering results
already showed some of the promising features of these schemes: the
measurement of the amplitude and phase of the nonlinear signals can
provide information about the phase delays acquired by the nonlinear
radiation due to the propagation from the first to the second source.
This constitutes the starting point for future applications aimed at

10
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determining properties of samples of interest placed between the two
nonlinear sources.

In this thesis, we are interested in the case in which the first non-
linear optics source acts as a spontaneous parametric down-converter
(SPDC), generating pairs of photons known as signal and idler pho-
tons, while the second one acts as a parametric amplifier. Depending
on the strength of the nonlinear interaction in each nonlinear crys-
tal, characterized by the so-called parametric gain G, photon pairs or
bright twin beams are generated. Moreover two main configurations
are considered: the SU(1,1) interferometer [8] and the interferometer
based on induced coherence [9, 22].

2.2 Types of Nonlinear Interferometers

2.2.1 SU(1,1) interferometer (Yurke-type)

The pump beam illuminates coherently the two nonlinear crystals.
In the first down-converter crystal signal and idler photons are gen-
erated. If the signal and idler photons generated in the first nonlinear
crystal are injected in the second nonlinear crystal, as shown in Fig.
2.1, we have an SU(1,1) nonlinear interferometer1. The signal and
idler photons can experience delays and/or losses when travelling
from the first to the second nonlinear crystal. The resulting signal
after the second nonlinear crystal, that is measured, can show am-
plification or de-amplification, depending on the phases acquired by
the travelling photons, and the presence of loss.

The very first works with this type of nonlinear schemes dates
back to the late 80’s, and were aimed at increasing the sensitivity
of phase estimation by means of using two squeezers [8]. In this
regard, the first experimental execution of an SU(1,1) nonlinear in-
terferometer was realized in the low parametric-gain regime of down-
conversion (weak pumping) [23, 24]. Due to technical reasons, the

1See Appendix A for an explanation of where the term SU(1,1) comes from.

11
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high parametric-gain version (strong pumping) of an SU(1,1) inter-
ferometer was not implemented until very recently [25,26].

The usual geometries considered for linear interferometers (Mach-
Zehnder, Michelson, Young and Sagnac) can be easily translated to
the SU(1,1) nonlinear version. We are mainly interested in the Mach-
Zehnder and Michelson geometries, both shown in Fig. 2.2.

Figure 2.2: Different geometries of an SU(1,1) nonlinear interferome-
ter. (a) Mach-Zehnder interferometer; (b) Michelson interferometer.
NLC designate second-order nonlinear crystal, and χ(2) is the non-
linear coefficient of the nonlinear crystals. DM designates a dichroic
mirror.

In the Mach-Zehnder version [Fig. 2.2(a)] the pump illuminates
the first nonlinear crystal, leading to the generation of the signal s1
and the idler i1 beams. The three beams impinge on the second
nonlinear crystal, in which amplification or deamplification happens
depending on the losses experienced and the phases acquired by each
of the beams. The fact that the pump, the signal and the idler waves

12
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propagate along the same path, makes this configuration more robust
to the presence of random phase fluctuations.

A Michelson-type SU(1,1) configuration [Fig. 2.2(b)] can be im-
plemented using an unique nonlinear crystal. In this case, the pump
and the signal s1 beams are separated from the idler i1 by a dichroic
mirror DM . All three beams are reflected back by mirrors and in-
jected again in the nonlinear crystal, in which a parameric ampli-
fication process occurs. This geometry is more versatile than the
Mach-Zehnder one since phase, delays or losses can be more easily
introduced independently for each of the three beams.

Typically, the flux rate of signal photons s2 or its spectrum are the
quantities measured at the output of the interferometer. Depending
on phase delays and losses, the interference fringes will show different
amplitude, characterized by its visibility V . In Section 2.3.1 we de-
rive the expressions for the signal spectrum and the visibility of the
interference fringes for the low and high parametric gain regimes.

2.2.2 Interferometer based on the induced coher-
ence effect (Mandel-type)

In 1991, Zou, Wang and Mandel [9] considered a nonlinear interfer-
ometer where only the idler beam generated in the first parametric
down-conversion crystal passes through the second nonlinear optics
source. This novel nonlinear interferometer is aimed at demonstrat-
ing the concept of induced coherence. They built an ingenious Mach-
Zehnder type nonlinear interferometer where two second-order non-
linear crystals (NLC1 and NLC2) are optically pumped by two mutu-
ally coherent pump beams coming from the same laser [Fig. 2.3(a)].

Pairs of entangled photons might emerge from any of the crystals
(signal s1 and idler i1 from NLC1, and signal s2 and idler i2 from
NLC2) via PDC. The crystals are arranged such that idler i1 from
NLC1 passes through NLC2 and is perfectly aligned with idler i2.
The two signals s1 and s2 are mixed in a beam splitter BS and the
output signal is detected. The key question is whether the two signal

13
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Figure 2.3: Different geometries of an interferometer based on the in-
duced coherence effect. (a) Mach-Zehnder interferometer; (b) Michel-
son interferometer. NLC designate nonlinear crystals, and χ(2) is the
nonlinear coefficient of the nonlinear crystals. DM stands for dichroic
mirror, and QWP stands for quarter-wave plate.

photons s1 and s2 will exhibit interference.
The effect of induced coherence can also be demonstrated us-

ing a Michelson type configuration [Fig. 2.3(b)]. In this case, the
polarization of the signal beam s1 is rotated 90◦ by using a quarter-
wave plate (QWP). This prevents the signal beam from being am-
plified/deamplified on the second pass through the nonlinear crystal
and allows to have three beams at the output of the interferometer:
idler i2 and signals s1 and s2 with orthogonal polarizations.

In the low parametric gain regime (weak pumping), paired pho-
tons are expected to be emitted from one or the other nonlinear crys-
tal, being the probability of emission at both crystals simultaneously

14
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negligible. Therefore any coherence induced between signal photons
will not come from an induced emission process. In this scenario, if
the idler beams i1 and i2 are indistinguishable, the signal photons s1
and s2 show first-order coherence [27]. If i1 is partially blocked by a
filter (NDF) with transmissivity τ , this results in a loss of first-order
coherence between signal photons. In the extreme case that the idler
i1 is completely blocked by inserting a beam stop and prevented from
reaching NLC2, the two signal beams show no first-order coherence
and all interference disappears.

It was shown soon that the effect of induced coherence should still
be present even in the high parametric gain regime (strong pumping)
[28, 29], where signal photons can be generated simultaneously in
both nonlinear crystals. The important point is that in all regimes
the measurement of the degree of coherence between signal photons
provides information about the value of the losses introduced in the
idler i1 path. For |τ | = 0 (total blocking of idler i1), there is no first-
order coherence between signals s1 and s2. For |τ | = 1 (no blocking),
there is maximum first-order coherence. In Section 2.3.1 we present
the expressions of first-order coherence for both gain regimes.

2.3 Quantum description

In this subsection, we provide a quantum description of an SU(1,1)
nonlinear interferometer and an interferometer based on induced co-
herence. We first need to characterize theoretically the process of
parametric down-conversion and extend this analysis for two spatially
separated down-converters. We consider the two main approaches:
the Heisenberg picture (Subsection 2.3.1) and the Schrödinger picture
(Subsection 2.3.3).

2.3.1 Heisenberg picture

The first considerations about the phenomenon of parametric down-
conversion (PDC) date back to the decade of 1960s [30–32]. The first
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experimental realizations were done soon after [33–35]. Parametric
down-conversion, also called in the early days of the field parametric
fluorescence, is a nonlinear optical process in which a photon of higher
frequency from a strong pump beam interacts with the molecules of
a nonlinear medium that mediate the generation of a pair of photons
at a lower frequency (see Fig. 2.4). These photons are called, for
historical reasons, signal and idler. Key parameters that determine
the efficiency of this process are the pump beam power, the second-
order nonlinear susceptibility (χ(2)) of the medium and the length of
the nonlinear crystal.

Figure 2.4: General scheme of parametric down-conversion. A pump
photon with frequency ωp interacts with the molecules of a nonlinear
crystal with nonlinear susceptibility χ(2), and two photons are gen-
erated: the signal (frequency, ωs) and the idler (frequency, ωi). The
frequencies of all waves obey the relationship ωp = ωs + ωi, that re-
flects conservation of energy in a parametric process. The subscripts
p, s, i refer to the pump, signal and idler waves, respectively.

Although certain models, based exclusively on the use of classical
electromagnetism concepts, can describe particular aspects of para-
metric down-conversion, only a full quantum description can success-
fully describe all aspects of the process. For instance, a quantum
description incorporates naturally the role of quantum vacuum fluc-
tuations in the generation of two lower-frequency photons (signal
and idler) in spontaneous parametric down-conversion, while classi-
cal modes might need to consider artificially the presence of input
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classical noise. In a general scenario, we need to consider multiple
properties of the waves involved: spatial and spectral shape, coher-
ence, intensity, and type of quantum state of the pump beam...

In the Heisenberg picture, the quantum state of signal-idler pho-
tons is considered to be unchanged (not evolving) during the time
evolution of the process. The field operators are the variables that
evolve as a function of the propagation distance all along the nonlin-
ear crystal. Therefore the aim in the Heisenberg picture is to derive
the relation between the input field operators (b̂s,i and b̂†s,i), and the

output signal and idler operators (âs,i and â†s,i). In all cases we assume
that the pump beam is a strong classical pump beam undepleted at
the end of the nonlinear crystal. Figure 2.5 shows a sketch of the
parametric down-conversion process, with all the waves and opera-
tors considered in the Heisenberg picture.

Figure 2.5: Parametric down-conversion scheme in the Heisenberg
picture. A pump photon with frequency ωp and electric field Ep =
E+

p + E−
p interacts with a nonlinear medium with susceptibility χ(2)

that mediates the generation of two photons: signal (frequency, ωs)
and idler (frequency, ωi). b̂s,i are the input annihilation operators for
the signal and idler modes. âs,i are the output annihilation operators
for the signal and idler modes, respectively.

We start from the classical wave equation that describes the prop-
agation of the field amplitudes in the paraxial and narrowband regime.
This equation relates the field amplitude with the nonlinear polariza-
tion induced by the nonlinear medium. The nonlinear polarization
can be written as a function of the incident electric fields. The field

17



“output” — 2022/9/14 — 17:28 — page 18 — #36

The quantum description of nonlinear interferometers

amplitudes are quantized by substituting them by field operators and
the evolution equations are obtained for PDC. Finally, the solution
to these equations are the desired input-output operators relations
(so-called Bogoliubov transformations). In [36] you can find a de-
tailed derivation of all expressions leading to the Bogoliubov trans-
formations. Here we give a succinct summary of the mathematical
derivations.

The first step is to write the wave equation in a nonlinear optical
media that describes the spatial and temporal evolution of a classical
electromagnetic field inside the medium. We consider the nonreso-
nant case, in which the frequencies of the light beams are far from
possible atomic or molecular transitions in the nonlinear crystal. In
this scenario, the wave equation is written as [37]

∇2E− n2

c2
∂2E

∂t2
=

1

ϵ0c2
∂2P

∂t2
, (2.1)

where E is the electric field, P is the induced polarization of the
medium, t is time, n is the refractive index of the nonlinear medium,
c the velocity of light in vacuum and ϵ0 is the electrical permittivity
of vacuum.

The polarization P represents the density of electric dipoles in a
dielectric material. In other words, the material’s response when it
is excited by an external electromagnetic wave with electric field E.
Since optical nonlinearities are generally small, the induced polariza-
tion of the medium can be written as a function of powers of the
incident electric field [38] as

P = ϵ0χ
(1)E+ ϵ0χ

(2)EE+ ϵ0χ
(3)EEE+ ... (2.2)

χ(1) is the first-order (linear) susceptibility. It describes the linear
response of the medium (PL). χ(2) is the second-order nonlinear
susceptibility, χ(3) is the third-order nonlinear susceptibility and so
forth. The higher nonlinear order terms stand for the nonlinear re-
sponse of the medium (PNL). The three-wave mixing processes like
parametric down-conversion are χ(2)-dependent interactions, so this
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is the nonlinear coefficient of interest for us. Typical values of χ(2)

vary among different materials, they can range between a few 1-2
pm/V to values of 100-300 pm/V.

Light beams in the experiments considered in this thesis are well
approximated as paraxial narrowband waves with well-defined polar-
ization propagating along the z direction. The electric field and the
induced polarization can be written as the sum of several waves with
different central frequencies and polarizations as E =

∑
k Ej êj + h.c.

and P =
∑

j Pj êj + h.c. with

Ej(t, r, z) =
1

(2π)3/2

∫
dΩdqEj(Ω,q, z) exp {ikjz + iq · r− iωt} ,

Pj(t, r, z) =
1

(2π)3/2

∫
dΩdqPj(Ω,q, z) exp {iq · r− iωt} . (2.3)

The index j stand for each of the waves considered in the nonlinear
interaction. q = (qx, qy) is the transverse wave vector and r = (x, y)
is the spatial transverse coordinate. The frequency ω is written as
ω = ω0

j + Ω, with ω0
j being the central frequency of the wave and

Ω the frequency deviation from the corresponding central frequency.
In the narrowband regime considered here, the frequency deviation
is much more smaller than the central frequency, i.e. Ω ≪ ω0

j . The
longitudinal wave number kj is

kj(Ω,q) =

[
(ω0

j + Ω)2n2
j

c2
− |q|2

]1/2
. (2.4)

Considering the slowly varying approximation, in which the envelope
of a wave varies slowly in time and space compared to its wavelength,
a simplified version of the wave equation [Eq. (2.1)] can be obtained.
Under this approximation the coupled nonlinear equations that de-
scribe the evolution in the longitudinal coordinate z of the electrical
field amplitudes Ej and the polarizations Pj are [39]

∂Ej(Ω,q, z)

∂z
= i

ω0
j

2ϵ0cnj

PNL
j (Ω,q, z) exp {−ikjz} . (2.5)
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To obtain the quantum version of these coupled equations, quantiza-
tion of the electric and polarization fields is required. This procedure
assumes that the field operators (Êj and P̂j) have a similar form to
the classical version, that is

Ê+
j (t, r, z) =

i

(2π)3/2

∫
dΩdqf0 âj(Ω,q, z)×

× exp {ikjz + iq · r− iωt} ,
(2.6)

where the normalization function is f0 = [ℏ(ω0
j )/2ϵ0cnj]

1/2. The an-

nihilation and creation operators (âj and â†j) fulfill the commutation
relations

[âj(Ω,q), â
†
j(Ω

′,q′)] = δ(Ω− Ω′)δ(q− q′), (2.7)

[âj(Ω,q), âj(Ω
′,q′)] = 0, (2.8)

[â†j(Ω,q), â
†
j(Ω

′,q′)] = 0. (2.9)

Analogously to Eq. (2.5), the coupled nonlinear equations that de-
scribe the evolution of the electrical field operators Ê+

j are

∂Ê†
j (Ω,q, z)

∂z
= i

ω0
j

2ϵ0cnj

[
P̂NL
j (Ω,q, z)

]†
exp {−ikjz} . (2.10)

Finally, by substituting the appropriate nonlinear polarization P̂NL
j

that characterizes a concrete nonlinear process one can obtain the
evolution equations for the field operators [36, 39]. For the case of
parametric down-conversion the signal and idler operators evolve as

∂âs(Ωs,qs, z)

∂z
= −iβ

∫
dΩidqiâ

†
i (Ωi,qi, z)Fp(Ωs + Ωi,qs + qi)

× exp
{
i
[
kp(Ωs + Ωi,qs + qi)− ks(Ωs,qs)− ki(Ωi,qi)

]}
, (2.11)

∂âi(Ωi,qi, z)

∂z
= −iβ

∫
dΩsdqsâ

†
s(Ωs,qs, z)Fp(Ωs + Ωi,qs + qi)

× exp
{
i
[
kp(Ωs + Ωi,qs + qi)− ks(Ωs,qs)− ki(Ωi,qi)

]}
, (2.12)
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where the frequencies of the signal and idler down-converted photons
can be written as ωs,i = ω0

s,i+Ωs,i, ω
0
s,i are the central frequencies and

Ωs,i the frequency deviations from the corresponding central frequen-
cies. The phase mismatch function is ∆k = kp(Ωs + Ωi,qs + qi) −
ks(Ωs,qs)− ki(Ωi,qi), with kp,s,i being the transverse wave numbers
of the pump, signal and idler photons, respectively. The function
Fp(Ωs + Ωi,qs + qi) defines the spectral and spatial profile of the
pump beam at the initial facet (z = 0) of the nonlinear medium with∫

dΩ dq
∣∣∣Fp(Ω,q)

∣∣∣2 = Np, (2.13)

Np being the total number of photons of the pump beam. The con-
stant β, measured in units of s1/2 is

β =

[
ℏω0

pω
0
sω

0
i [χ

(2)]2

64π3ϵ0c3np(ω0
p)ns(ω0

s)ni(ω0
i )

]1/2
. (2.14)

np,s,i are refractive index at the corresponding central frequencies.
The solutions of Eqs. (2.11) and (2.12) can be written as

âs(Ω,q) =

∫
dΩ′ dq′

[
As(Ω,q,Ω

′,q′)b̂s(Ω
′,q′) +

+Bs(Ω,q,Ω
′,q′)b̂†i (Ω

′,q′)
]
, (2.15)

âi(Ω,q) =

∫
dΩ′ dq′

[
Ai(Ω,q,Ω

′,q′)b̂i(Ω
′,q′) +

+Bi(Ω,q,Ω
′,q′)b̂†s(Ω

′,q′)
]
. (2.16)

These are the Bogoliubov transformations, a relationship between
the input annihilation operators b̂s,i (at the input face of the nonlin-
ear crystal (z = 0)), and the output annihilation operators âs,i (at
the output face of the nonlinear crystal (z = L)). As,i and Bs,i are
functions that should be determined for each case. In general, these
functions have to be determined numerically. However, under cer-
tain assumptions and approximations, Eqs. (2.11) and (2.12) can be
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solved analytically. This is the case when the pump is considered to
be a continuous-wave (CW) and a plane-wave beam. This approxi-
mation is valid when the bandwidth of the down-converted photons is
much larger than the pump bandwidth, ∆dc ≫ ∆p [40]. In addition,
the pump can be considered a plane wave when the length of the
nonlinear crystal is much larger that the Rayleigh range of the pump
beam. In these circumstances, the propagation equations (2.11) and
(2.12) can be simplified and written as

∂âs(Ω,q, z)

∂z
= −iσâ†i (−Ω,−q, z) exp {i∆kz} , (2.17)

∂âi(Ω,q, z)

∂z
= −iσâ†s(−Ω,−q, z) exp {i∆kz} , (2.18)

where ∆k = k0
p − ks(Ω,q) − ki(−Ω,−q) and the coefficient σ (mea-

sured in units of m−1) is

σ =

[
ℏω0

pω
0
sω

0
i [χ

(2)]2Rp

8ϵ0c3np(ω0
p)ns(ω0

s)ni(ω0
i )

]1/2
, (2.19)

Rp is the flux rate of pump photons (photons/s/m2), that can be
approximated as

Rp =
Ep

ℏωp T0Sp

. (2.20)

Ep is the energy per pulse of the pump beam, T0 is the pump pulse
duration and Sp the effective area of the pump beam. The solution
to Eqs. (2.17) and (2.18) is [41,42]

âs(Ω,q) = Us(Ω,q) b̂s(Ω,q) + Vs(Ω,q) b̂
†
i (−Ω,−q), (2.21)

âi(Ω,q) = Ui(Ω,q) b̂i(Ω,q) + Vi(Ω,q) b̂
†
s(−Ω,−q). (2.22)

The functions Us,i(Ω,q) and Vs,i(Ω,q) are

Us,i(Ω,q) =

{
cosh(ΓL)− i

∆s,i

2Γ
sinh(ΓL)

}
exp

[
iδs,iL

2

]
, (2.23)
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Vs,i(Ω,q) = −iσ

Γ
sinh(ΓL) exp

[
i
δs,iL

2

]
. (2.24)

L is the nonlinear crystal length. Under the paraxial approximation,
and for q ∼ 0, an important case that we will consider in the following
chapters, the phase matching functions ∆s,i can be written as ∆s =
−∆i = (Di − Ds)Ω. Ds,i are the inverse group velocities at the
signal and idler central frequencies, respectively. The functions δs,i
are δs,i = kp + ks,i(Ω,q)− ki,s(−Ω,−q) and the parameter Γ is

Γ =

(
σ2 − ∆2

s

4

)1/2

. (2.25)

The flux rate (photons/s/m2) of signal (or idler) photons generated
is

Rs =
1

(2π)3

∫
dΩdq

∫
dΩ′dq′⟨â†s(Ω,q)âs(Ω′,q′)⟩

× exp
[
− i
(
Ω− Ω′

)
t+ i

(
q− q′

)
· r
)]

= (2.26)

=
1

(2π)3

∫
dΩ dq

∣∣∣Vs(Ω,q)
∣∣∣2.

An important parameter that characterizes any PDC process is the
so-called parametric gain (G). To know how to measure this pa-
rameter, and get some physical intuition about what it represents,
let us analyze the flux rate of down converted signal photons in the
single-mode approximation. In this approach, we just focus on pho-
tons generated around the central frequency ω0

s and consider a small
frequency deviation around the central frequency (∆Ω) and a small
∆q. Since in this case Γ = σ, the flux rate of signal photons at the
output facet (z = L) of the nonlinear crystal reads [43]

Rs =
1

(2π)3
sinh2(σL)∆Ω∆q = R0 sinh

2(σL). (2.27)

The parametric gain is defined as

G = σL. (2.28)

23



“output” — 2022/9/14 — 17:28 — page 24 — #42

The quantum description of nonlinear interferometers

If we measure the signal during time TD in an integration area SD,
the number of photons detected is

Ns = N0 sinh
2(σL). (2.29)

where N0 = ∆Ω∆qTDSD/(2π)
3. Taking into account Eq. (2.29), the

gain is an estimation of the number of photons generated per unit
frequency and spatial bandwidth. Figure 2.6 shows the photon flux
rate (in arbitrary units) of signal photons emitted for a 1-mm-long
nonlinear crystal as a function of the parametric gain.

When G = σL ≪ 1, the PDC process is said to be in the low
parametric gain regime. The flux rate grows linearly as a function of
the gain. On the other hand, if G ≫ 1, the PDC process is said to be
in the high parametric gain regime, the flux rate grows exponentially
as a function of the gain. In any PDC process, a number of spatio-
temporal independent modes can be selected [44, 45], so there is no
cross-talk among them. It can be demonstrated that in the low para-
metric gain regime, the flux rate of paired photons generated per
mode is much smaller than one, while in the high parametric gain
regime the flux rate of photons generated per mode is much higher
than one.

As can be deduced from analyzing the factors that influence the
value of σL, one can increase the parametric gain G by:

• Reducing the area of the pump beam, Sp. The coefficient σ
[see Eq. (2.19)] depends on the area of the pump beam as ∼
1/
√

Sp, so stronger focusing of the pump beam implies a higher
nonlinear coefficient, and therefore a higher parametric gain.
However, if we still want to use the plane wave approximation,
we need that this strong focusing does not break down the fact
that the Rayleigh range of the pump beam is much larger than
the crystal length.

• Reducing the pump pulse duration, T0. Increasing the peak
intensity of the pump beam is key to increase the parametric
gain. We need to combine two things: reducing the pump pulse
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Figure 2.6: Flux rate of signal photons generated per mode as a
function of the gain G = σL, according to Eq. (2.29). The two insets
indicate graphically the two regimes of PDC: the so-called low and
high parametric gain regimes.

duration T0 and/or increasing the energy per pulse Ep. The
ideal case would be to have the shortest and more energetic
pulse, but in a realistic scenario there must be a compromise
between energy and pulse duration. We will see in a following
chapter that the use of pulsed lasers that generate picosecond
pulses with energy per pulse of tens of microjoules constitutes
a convenient solution.

• Using longer nonlinear crystals. The parametric gain [Eq. (2.28)]
depends linearly on the length of the nonlinear medium, so that
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longer crystals lead to higher gain. However, the use of longer
crystals can also produce undesirable effects for certain appli-
cations, such as a smaller bandwidth. The axial resolution of
optical coherence tomography schemes deteriorates with dimin-
ishing sizes of the bandwidth.

To conclude with the analysis of the parametric gain, let us consider
some numbers obtained from real experimental implementations. In
the majority of experiments a continuous-wave (CW) laser source
is used to pump the nonlinear crystal. High flux rates of down-
converted photons using a CW pump laser have been achieved, e.g.
∼ 1012 entangled photons pairs per second in Ref. [46], which is
equivalent to a classical power level of 0.3 µW. But does this mean
that this PDC process is in the high parametric gain regime (G > 1)?

With the parameters used in this experiment, and considering a
pump power2 of up to P = 2 W, the calculation of the parametric
gain leads to a value of about G ≈ 10−12, which clearly corresponds to
the low parametric gain regime of PDC. This evidences the fact that
the parametric gain is a measure of the number of down-converted
photons generated per mode, and not just a measure of the photon
fluxes generated.

Instead, if a picosecond pulsed laser with pulse duration T0 = 18
ps and average power of Pav = 20 mW is used to illuminate the
same nonlinear crystal, the parametric gain increases dramatically to
a value of about G ≈ 10. This example puts forward the key point
to achieve the high parametric gain regime of PDC: a pulsed pump
with high peak power. This is why the use of CW lasers does not
lead to high-gain PDC processes.

To clarify even more this idea, let us consider a pulsed laser with
pulse duration T0 = 100 fs and the same average power Pav = 20
mW. The parametric gain in this case is reduced to a value of about
G ≈ 0.5, which corresponds again to a low-gain PDC process. This

2This value of pump power was provided to us by one of the authors of the
paper.
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is a clear example of how energy per pulse and pulse duration both
matter, and explains why picosecond lasers with tens of milliwatts
average power are used to implement parametric down-conversion
process that operate in the high parametric gain regime [47,48].

Quantum analysis of an SU(1,1) nonlinear interferometer

We have introduced the main expressions in the Heisenberg picture
that describe parametric down-conversion in a single nonlinear crys-
tal. Let us extend now this analysis to the case of nonlinear interfer-
ometers, in which two PDC processes take place. We carry out the
analysis for the two types of nonlinear interferometers implemented
experimentally in this thesis: an SU(1,1) configuration and an inter-
ferometer based on induced coherence.

A sketch of an SU(1,1) nonlinear interferometer is shown in Fig.
2.7. The pump beam illuminates a nonlinear crystal (NLC) where
signal (s1) and idler (i1) waves are generated. The pump and the
signal are transmitted through a dichroic mirror, while the idler is
reflected. The pump and the signal are reflected by a mirror and
enter again the nonlinear crystal. The distance traveled by the signal
beam before reaching the crystal is zs. We consider a reflectivity rs
that account for frequency independent losses in the signal path due
to the optical elements. The idler beam interacts with a lossy object
with reflectivity ri(Ω) and is reflected back onto the crystal, traveling
a total distance zi.

The pump beam illuminates the same nonlinear crystal back-
wards, and the signal (s1) and idler (i1) are also injected back into
the nonlinear crystal. Signal s2 and idler i2 waves are generated af-
ter the second pass by the nonlinear crystal. Finally, the spectrum
and/or the flux rate of the signal photons s2 is the quantity measured
by detector D.

We neglect the spatial dependence of all waves involved: the
pump, signal and idler beams are considered plane waves. The rela-
tionship between the input annihilation operators b̂s and b̂i and the
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Figure 2.7: Sketch of an SU(1,1) nonlinear interferometer.

output operators âs1 and âi1 of the signal and idler beams gener-
ated after the first pass by the nonlinear crystal is described by the
Bogoliubov transformations

âs1(Ω) = Us(Ω)b̂s(Ω) + Vs(Ω)b̂
†
i (−Ω), (2.30)

âi1(Ω) = Ui(Ω)b̂i(Ω) + Vi(Ω)b̂
†
s(−Ω). (2.31)

The expressions for Us,i and Vs,i are the ones shown in Eqs. (2.23) and
(2.24). The transformations of the operators âi1 and âs1 accounting
for propagation and loss [49,50] read

âi1(Ω) =⇒ ri(Ω)âi1(Ω) exp [iφi(Ω)] + f̂i(Ω), (2.32)

âs1(Ω) =⇒ rsâs1(Ω) exp [iφs(Ω)] + f̂s(Ω), (2.33)

where φs,i(Ω) = (ω0
s,i + Ω)zs,i/c and f̂s,i are operators that fulfill the

commutation relation [f̂i(Ω), f̂
†
i (Ω

′)] = [1− |ri(Ω)|2] δ(Ω − Ω′) and

[f̂s(Ω), f̂
†
s (Ω

′)] = [1− |rs|2] δ(Ω− Ω′).
The PDC process occurring in the second nonlinear crystal is

characterized by the Bogoliubov transformation for the signal beam
âs2(Ω) as

âs2(Ω) = Us(Ω)âs1(Ω) + Vs(Ω)â
†
i1
(−Ω), (2.34)
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which yields

âs2(Ω) =
[
rsUs(Ω)Us(Ω) exp [iφs(Ω)] +

+r∗i (−Ω)Vs(Ω)V
∗
i (−Ω) exp [−iφi(−Ω)]

]
b̂s(Ω) +

+
[
rsUs(Ω)Vs(Ω) exp [iφs(Ω)] + (2.35)

+r∗i (−Ω)Vs(Ω)U
∗
i (−Ω) exp [−iφi(−Ω)]

]
b̂†i (−Ω) +

+Us(Ω)fs(Ω) + Vs(Ω)f̂
†
i (−Ω).

The spectrum of the signal photons s2 is

S(Ω) = ⟨â†s2(Ω)âs2(Ω)⟩ =

=
[
1− |ri(Ω)|2

]
|Vs(Ω)|2 +

+
∣∣∣rsUs(Ω)Vs(Ω) exp [iφs(Ω)] + (2.36)

+r∗i (−Ω)Vs(Ω)U
∗
i (−Ω) exp [−iφi(−Ω)]

∣∣∣2.
Figure 2.8 shows some examples of signal spectra for different values
of the idler reflectivity ri, according to Eq. (2.36). For the sake of
simplicity, we consider rs = 1, no frequency dependence of ri and a
fixed path unbalance between signal and idler paths of ∆z = zs−zi =
300 µm. When the idler path is blocked (ri = 0), the signal spectrum
does not show any modulation. Fringes appear for values ri ̸= 0, and
show maximum visibility for ri = 1.

The flux rate of signal photons can be calculated as3

Ns =
1

2π

∫
dΩS(Ω). (2.37)

3The 1/(2π) term that appears in front of the integral, instead of the term
1/(2π)3 that appears in Eq. 2.27, is due to the fact that here we are considering
as variable only the frequency, neglecting the q variable.
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Figure 2.8: Signal spectra S(Ω) for three different values of the idler
losses ri. (TOP) ri = 0. (CENTER) ri = 0.5. (BOTTOM) ri = 1.
We make use of Eq. (2.36).

We measure the flux rate of signal photons Ns as a function of the
path length difference ∆z = zs − zi and determine the visibility of
the interference fringes. The visibility is defined as

V =
Nmax

s −Nmin
s

Nmax
s +Nmin

s

(2.38)

with Nmax
s and Nmin

s being the maximum and the minimum values
of flux rate, respectively. The visibility of the fringes is [51]

V =
2|rs||ri| |ν|

(1− |ri|2)α + |ri|2β + |rs|2γ
, (2.39)
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where

ν =

∫
dΩUs(Ω)Ui(−Ω)

∣∣Vs(Ω)
∣∣2 exp [iΩ

c
∆z

]
,

α =

∫
dΩ |Vs(Ω)|2 ,

β =

∫
dΩ |Ui(−Ω)|2 |Vs(Ω)|2 ,

γ =

∫
dΩ |Us(Ω)|2 |Vs(Ω)|2 . (2.40)

We can obtain simplified expressions for the visibility in two extreme
but highly important cases: the low (G ≪ 1) and high (G ≫ 1)
parametric gain regimes.

• Low parametric gain regime

In this regime, the gain σL is very small, thus we can safely
write Γ ∼ i∆s

2
. The Bogoliubov functions Us,i and Vs,i can be

written as

Us,i(Ω) = exp
[
i
ks,iL

2

]
, (2.41)

Vs,i(Ω) = −iσL sinc(
∆sL

2
) exp

[
i
∆sL

2

]
. (2.42)

In this case the visibility of the interference fringes gives a linear
relationship on |ri|, that is

V =
2|rs|

1 + |rs|2
|ri|. (2.43)

This linear dependence on the reflectivity ri is shown in Fig.
2.9 as the blue curve.

• High parametric gain regime

In this regime, the σL is large and the parametric gain is greater
than one (G > 1). We need to consider the full expressions of

31



“output” — 2022/9/14 — 17:28 — page 32 — #50

The quantum description of nonlinear interferometers

the Bogoliubov functions Us,i and Vs,i (see Eqs. (2.23) and
(2.24)). The visibility in this case is

V =
2|rs|

|ri|2 + |rs|2
|ri|. (2.44)

Fig. 2.9 shows this nonlinear dependence on the reflectivity ri
for a high value of the gain, G = 4, as the red curve.
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Figure 2.9: Visibility of the interference fringes as a function of the
idler reflectivity (ri) for different values of the parametric gain in an
SU(1,1) nonlinear interferometer. The blue solid line correspond to
G = 0.01 (low parametric gain regime). The red solid line corre-
sponds to G = 4 (high parametric gain regime).
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Quantum analysis of an interferometer based on the induced
coherence effect

A sketch of an interferometer based on induced coherence is shown
in Fig. 2.10. The pump beam illuminates two identical second-order
nonlinear crystals (NLC1 and NLC2) and paired photons emerge
from both crystals (signal s1 and idler i1 from NLC1; signal s2 and
idler i2 from NLC2). The idler i1 interacts with an object with
reflectivity ri(Ω) and is then injected in NLC2. The total distance
travelled by i1 before reaching NLC2 is zi. Both idler photons i1 and
i2 are made to be indistinguishable.

Figure 2.10: Sketch of an nonlinear interferometer based on the in-
duced coherence effect.

The relationship between the input annihilation operators b̂s and
b̂i and the output operators âs1 and âi1 of the signal and idler beams
generated after NLC1 is described by the Bogoliubov transformation

âs1(Ω) = Us(Ω)b̂s(Ω) + Vs(Ω)b̂
†
i (−Ω), (2.45)

âi1(Ω) = Ui(Ω)b̂i(Ω) + Vi(Ω)b̂
†
s(−Ω). (2.46)
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The expressions for Us,i and Vs,i are the ones shown in Eqs. (2.23) and
(2.24). The transformations for the operators âi1 and âs1 accounting
for propagation and loss read

âi1(Ω) =⇒ ri(Ω)âi1(Ω) exp [iφi(Ω)] + f̂i(Ω), (2.47)

âs1(Ω) =⇒ âs1(Ω) exp [iφs1(Ω)] , (2.48)

where φs1,i(Ω) = (ω0
s,i + Ω)zs1,i/c and f̂i is an operator that fulfills

the commutation relation [f̂i(Ω), f̂
†
i (Ω

′)] = [1− |ri(Ω)|2] δ(Ω− Ω′).
The parametric down-conversion process occurring in the second

nonlinear crystal is characterized by the Bogoliubov transformation
for the signal s2 beam as

âs2(Ω) = Us(Ω)ĉs(Ω) + Vs(Ω)â
†
i1
(−Ω), (2.49)

taking into account propagation along a distance zs2 = zs1 +∆z

âs2(Ω) =⇒ âs2(Ω) exp [iφs2(Ω)] , (2.50)

where φs2(Ω) = (ω0
s2
+ Ω)zs2/c and ∆z is the optical path difference

travelled by s2. Finally we can write

âs2(Ω) = Us(Ω)ĉs(Ω) +

+r∗i (−Ω)Vs(Ω)U
∗
i (−Ω) exp[−i φi(−Ω)] b̂†i (−Ω) +

+r∗i (−Ω)Vs(Ω)V
∗
i (−Ω) exp[−i φi(−Ω)] b̂s(Ω) + (2.51)

+Vs(Ω)f̂
†
i (−Ω).

Signal photons s1 and s2 are overlapped in a beam splitter BS and the
degree of interference between both waves is the quantity measured at
detector D. The total distance travelled by signal s1 is zs1 , and zs2 is
the distance travelled by signal s2 before reaching the beam splitter.
At the beam splitter, the input-output operators relationship between
input operators, âs1 and âs2 , and output operators, âs3 and âs4 , are

âs3(Ω) = râs1(Ω) + tâs2(Ω)

âs4(Ω) = tâs1(Ω) + râs2(Ω) (2.52)
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where r = 1/
√
2 is the reflection coefficient of the BS, and t = i/

√
2

is its transmission coefficient.
The spectrum of signal photons measured in one output port of

the BS is

S(Ω) =
〈
â†s3(Ω) âs3(Ω)

〉
=
[
1− |ri(Ω)|2

]
|Vs(Ω)|2 +

+
∣∣∣Vs(Ω) exp[i φs1(Ω)] + (2.53)

+r∗i (−Ω)Vs(Ω)U
∗
i (−Ω) exp[−i φi(−Ω) + iφs2(Ω)]

∣∣∣2.
First-order correlation function between signal photons s1
and s2

We are also interested in calculating the normalized first-order cor-
relation function g

(1)
s1,s2 between signal photons generated in the first

nonlinear crystal (with operator âs1) and signal photons generated in
the second nonlinear crystal (with operator âs2). The maximum value
of the first-order correlation function takes place when zs1 = zs2 + zi,
and this is the case we consider here. We have

g(1)s1,s2
=

∣∣∣⟨â†s1(t)âs2(t)⟩∣∣∣√
⟨â†s1(t))âs1(t)⟩

√
⟨â†s2(t)âs2(t)⟩

. (2.54)

The flux rate of signal photons s1 is

⟨â†s1(t)âs1(t)⟩ =
1

2π

∫
dΩ
∣∣∣Vs(Ω)

∣∣∣2. (2.55)

The flux rate of signal photons s2 is

⟨â†s2(t)âs2(t)⟩ =
1

2π

∫
dΩ
∣∣∣Vs(Ω)

∣∣∣2[1 + |ri|2
∣∣∣Vi(−Ω)

∣∣∣2]. (2.56)

The cross-correlation term is

⟨â†s1(t)âs2(t)⟩ =
r∗i
2π

∫
dΩ
∣∣∣Vs(Ω)

∣∣∣2 U∗
i (−Ω) (2.57)
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The first-order correlation function can be written as

g(1)s1,s2
=

|ri|
∣∣∣ ∫ dΩ

∣∣Vs(Ω)
∣∣2 U∗

i (−Ω)
∣∣∣√∫

dΩ
∣∣Vs(Ω)

∣∣2√∫ dΩ
∣∣Vs(Ω)

∣∣2[1 + |ri|2
∣∣Vi(−Ω)

∣∣2] . (2.58)

In the low parametric gain regime, |Ui| ∼ 1 and |Vs(Ω)|2 ≪ 1. More-
over we can safely assume that Ui(Ω) is constant over the bandwidth
determined by the function Vs(Ω). In this case we obtain [9]

g(1)s1,s2
= |ri|. (2.59)

In the low parametric gain regime the degree of first-order coherence
corresponds to the visibility of the interference pattern observed in
one output port of the interferometer. This linear dependence on the
reflectivity ri is shown in Fig. 2.11 (blue line).

In all other cases we need to consider the full expression given
in Eq. (2.58). Except in the case of low parametric gain regime
considered above, the degree of first-order coherence does not corre-
spond to the visibility of the interference pattern, although it can be
obtained from its measurement (see Appendix D for a detailed expla-
nation). The reason for this is that the flux rates of signal photons
s1 and s2 are not equal. One example of the nonlinear dependence
on the reflectivity ri is shown in Fig. 2.11 (red line). This shape is
qualitatively very similar to the ones obtained using the single-mode
approximation [29,52].

2.3.2 Single-mode approximation

Some of the results presented before can also be well described quali-
tatively using the single-mode approximation (Ω = 0). We can obtain
an expression for the visibility of the interference fringes in an SU(1,1)
nonlinear interferometer equivalent to Eq. (2.39), that is

V =
2|rs||ri||U1||U2||V1||V2|

(1− |ri|2)|V2|2 + |ri|2|U1|2|V2|2 + |rs|2|U2|2|V1|2
, (2.60)

36



“output” — 2022/9/14 — 17:28 — page 37 — #55

2.3 Quantum description

0 0.2 0.4 0.6 0.8 1

Reflectivity (r
i
)

0

0.2

0.4

0.6

0.8

1

g
(1

)

s
1
,s

2

G = 4

G = 0.01

Figure 2.11: Degree of first-order coherence as a function of the idler
reflectivity (ri) for different values of the parametric gain in an inter-
ferometer based on induced coherence. The blue solid line correspond
to G = 0.01 (low parametric gain regime). The red solid line corre-
sponds to G = 4 (high parametric gain regime).

where U1 and V1 refer to the first pass by the nonlinear crystal and
U2 and V2 to the second pass. If we write |Vj| = sinh(Gj), |Uj| =
cosh(Gj) and we make use of |Uj|2 − |Vj|2 = 1 (j = 1, 2) [48], then

V =
0.5× |rs||ri|

[
sinh2(G1 +G2)− sinh2(G1 −G2)

]
sinh2(G2) + |rs|2 sinh2(G1) + (|rs|2 + |ri|2) sinh2(G1) sinh

2(G2)
.

(2.61)
We consider two important limits. First, in the low parametric gain
regime, the values of G1,2 are very small, so sinh(Gj) ∼ Gj and
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G2
1G

2
2 ≪ G2

1, G
2
2. We thus have

V =
2|rs|G1G2

G2
2 + |rs|2G2

1

|ri|, (2.62)

which corresponds to the expected linear relationship on |ri|. For
G1 = G2 this is Eq. (2.43).

Second, in the very high parametric gain regime, when the dif-
ference of gains is small, sinh2(G1 + G2) ∼ exp[2(G1 + G2)]/4 ≫
sinh2(G1 − G2) and sinh2(G1) sinh

2(G2) ∼ exp[2(G1 + G2)]/16 ≫
sinh2(G1), sinh

2(G2). The visibility is

V =
2|rs||ri|

|rs|2 + |ri|2
. (2.63)

Notice two important points for the limit of very high parametric gain
regime, when the difference of gains is not very large: i) The visibility
does not depend on the gain, and ii) For |rs| = |ri| the visibility is 1.

2.3.3 Quantum analysis of a nonlinear interfer-
ometer in the Schrödinger picture

SU(1,1) nonlinear interferometer

In the Schrödinger picture, the input state of signal and idler pho-
tons evolve along the the nonlinear crystal using a phenomenological
Hamiltonian. For the case of parametric down-conversion, the Hamil-
tonian describes the process in which the nonlinear medium absorbs
a pump photon and two down-converted photons are generated. The
Hamiltonian operator is written as

Ĥj = ℏ(gj â†sâ
†
i + g∗j âsâi), (2.64)

where j = 1, 2 refers to the first and the second nonlinear crystals
where the interactions take place, and the coupling constants gj are
defined as

gj = |g| exp(iφpj). (2.65)
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The losses introduced by the object placed in the path of the idler
i1 are modeled considering a beam splitter with reflection and trans-
mission coefficients, r and t, respectively. The relation between the
input |Ψin⟩ and the output state |Ψout⟩ is obtained through the uni-
tary transformation T defined as [53–55]

T = exp

(
−iĤ2τ

ℏ

)
exp

(
γ(â†0âi + â†i â0)

)
×

× exp
(
iφsâ

†
sâs + iφiâ

†
i âi

)
exp

(
−iĤ1τ

ℏ

)
,

(2.66)

where τ is the interaction time. Notice that the transformation T is
essentially the product of four exponential terms. The first term rep-
resents generation of photons in the second nonlinear crystal. The
second term stand for the losses experienced by the idler i1, with
tan(γ) = r/t. a0 is the annihilation operator associated to the lossy
output port. The third term corresponds to the propagation of the
signal s1 and the idler i1, with φs,i being the phases acquired in free
propagation by experienced by both waves. Substituting the expres-
sions of the Hamiltonian [Eq. (2.64)], the unitary transformation can
be rewritten as

T = exp
[
−iτ(g2â

†
sâ

†
i + g∗2 âsâi)

]
exp

[
γ(â†0âi + â†i â0)

]
×

× exp
[
iφsâ

†
sâs + iφiâ

†
i âi

]
exp

[
−iτ(g1â

†
sâ

†
i + g∗1 âsâi)

]
.

(2.67)

If the input state is the vacuum |Ψin⟩ = |0⟩s |0⟩i |0⟩0, the output state
is |Ψout⟩ = T |Ψin⟩. In the Fock state basis the output quantum state
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reads

|Ψout⟩ =
1

U2
1

∞∑
q=0

q∑
n=0

∞∑
k=q−n

q−n∑
l=0

[
V1 exp[i(φi + φs)]

U1

]k [
V2

U1

]n

×
[
−V ∗

2

U1

]k+n−q (
k

l

) 1
2
(

k

q − n

) 1
2
(

k − l

k + n− q

) 1
2
(
q

n

) 1
2
(
q − l

n

) 1
2

× rk−ltlU
l−2(q−n)
1 |q⟩s |q − l⟩i |l⟩0 ,

(2.68)

where U1 = U2 = cosh(τ |g|) and Vj = −i sinh(τ |g|) exp(iφpj). The
strength of the interaction is given by the value of τ |g|. φpj are the
phases of the pump beam in the first and second nonlinear crystals.

Despite the algebraic difficulty shown in Eq. (2.68), the Schrödinger
picture is quite useful to get an intuitive idea of the physical meaning
of the final state in the low parametric gain regime. In this regime
the functions U1,2 and Vj are U1 = U2 = 1 and Vj = −iτ |g| exp(iφpj).
For the sake of simplicity, let us consider that there is no loss in the
idler path, so the transmission coefficient is t = 0 and therefore only
terms with index l = 0 are different from zero. To keep the expansion
in Eq. (2.68) to first order on the strength of the interaction, we need
to consider only the terms with indexes q = 1, l = 0, k = 0, n = 1
and q = 1, l = 0, k = 1, n = 0. The output quantum state in the
low parametric gain regime reads

|Ψout⟩ ∼ |vac⟩s,i,0 +
{
V1 exp

[
i(φs + φi + φr)

]
+ V2

}
|1⟩s |1⟩i |0⟩0 ,

(2.69)
where φr is the phase introduced by reflection from the phase object.
This is the quantum state usually considered in the analysis of exper-
iments working with SU(1,1) interferometers in the low parametric
gain regime [10,17]. Inspection of the quantum state shows that the
probability to observe pairs of signal-idler photons after the second
pass by the nonlinear crystal is the result of interference between two
options:
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• The signal-idler pairs are generated in the first nonlinear crys-
tal, or in the first pass by a single nonlinear crystal. Taking
into account the phase of the pump during the first pass by the
nonlinear crystal, the reflectivity of the sample (we are consid-
ering a phase object), and the path traversed by both photons,
that provide phases φs and φi, the quantum amplitude of this
option is: rV1 exp

[
i(φs + φi)

]
.

• The signal-idler pairs are generated in the second nonlinear
crystal, or in the second pass by a single nonlinear crystal.
Taking into account the phase of the pump during the second
pass by the nonlinear crystal, the quantum amplitude of this
second option is V2.

The probability to detect a signal photon is maximum when

∆φp = φp2 − φp1 = φr + φs + φi, (2.70)

and the probability is minimum when

∆φp = φr + φs + φi + π. (2.71)

If |V2| = |V1| the probability goes from zero to a maximum value.

Nonlinear interferometer based on induced coherence

For an interferometer based on induced coherence, the general ex-
pression of the transformation T reads

T = exp

[
−iĤ2τ

ℏ

]
exp

[
γ(â†0âi + â†i â0)

]
exp

[
−iĤ1τ

ℏ

]
. (2.72)

For the sake of simplicity, we neglect here the role of phases acquired
during propagation of all waves. Substituting the expressions for the
Hamiltonian [see Eq. (2.64)] we can write

T = exp
[
−iτ(g2â

†
s2
â†i + g∗2 âs2 âi)

]
exp

[
γ(â†0âi + â†i â0)

]
× exp

[
−iτ(g1â

†
s1
â†i + g∗1 âs1 âi)

]
.

(2.73)
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The output quantum state is obtained by applying this transforma-
tion to an initial state that considers all the modes in the vacuum
state |Ψin⟩ = |0⟩s1 |0⟩s2 |0⟩i |0⟩0. The output quantum state reads

|Ψout⟩ =
∞∑

k,m=0

k∑
n=0

tnrk−n 1

U1U
n+1
2

[
V1

U1

]k [
V2

U2

]m(
k

n

) 1
2
(
n+m

n

) 1
2

× |k⟩s1 |m⟩s2 |n+m⟩i |k − n⟩0 .
(2.74)

In the low parametric gain regime, the functions U1,2 and Vj are
U1,2 = 1 and Vj = −iτ |g| exp{iφpj} and the output quantum state
described in Eq. (2.74) can be written as∣∣Ψ̄out

〉
= |vac⟩s1,s2,i,0 + V2 |0⟩s1 |1⟩s2 |1⟩i |0⟩0+

+ V1

[
t |1⟩s1 |0⟩s2 |1⟩i |0⟩0 + r |1⟩s1 |0⟩s2 |0⟩i |1⟩0

]
,

(2.75)

which is the typical state considered in the literature for induced
coherence experiments working in the low parametric gain regime
[9, 10]. Inspection of Eq. (2.75) shows that when r = 0 (no loss in
the idler path), there is quantum interference between two options:
the paired signal-idler photons are generated in the first nonlinear
crystal (quantum amplitude V1) or in the second nonlinear crystal
(quantum amplitude V2). If the idler photon generated in the first
nonlinear crystal is blocked (t = 0), there is no quantum interference
between signal photons.

The Schrödinger picture gives an intuitive explanation of the
phenomena considered in the low parametric gain regime. How-
ever, when we consider multimode systems (including the frequency,
for instance) or go to the high parametric gain regime, the use of
the Schrödinger picture becomes very complicated and inconvenient,
since one needs to include higher order terms that are cumbersome to
handle. The Schrödinger picture losses its intuitive appealing. This
is why it is much more convenient and easy to use a quantum analysis
based on the Heisenberg picture.
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CHAPTER

THREE

OPTICAL COHERENCE
TOMOGRAPHY (OCT) IN
THE LOW PARAMETRIC

GAIN REGIME

This chapter puts forward a new application of nonlinear interferom-
eters in the field of imaging: Optical Coherence Tomography (OCT).
In 2017 (corresponding paper published at the beginning of 2018 [56])
we demonstrated the feasibility of doing OCT making use of an inter-
ferometer based on induced coherence (Mandel-type interferometer).
A few months later Paterova et al. [16] presented the same idea using
an SU(1,1) interferometer (Yurke-type interferometer). Both schemes
worked in the low parametric gain regime of down-conversion. The
first standard OCT schemes were introduced in the early 1990s [2,3].
In this chapter we give a detailed analysis of the OCT introduced in
2018 [56]. We analyze its working principle, the experimental details,
the pros and cons of our approach and the potential main applica-
tions are put forward. The first section of this chapter revisits the
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main characteristics of standard OCT for the sake of comparison with
the novel scheme presented here and in the following chapter. The
last section of this chapter is devoted to discuss key potential benefits
of the novel OCT scheme when compared with the standard counter-
part, as well as the limitations that must be overcome before it can
be considered a viable OCT alternative solution.

3.1 Introduction to standard optical co-

herence tomography

Optical Coherence Tomography (OCT) is a noninvasive imaging tech-
nique that allows cross-sectional and high axial resolution tomo-
graphic imaging of a sample by measuring the light reflected from
it. It was first introduced in 1991 and the name of this novel tech-
nique was given by Huang et al. [2]. The same imaging method was
demonstrated the very same year by Dresel et al. [3]. The main differ-
ence between both research works was that Huang et al. imaged the
retina in their implementation of OCT, while Dresel et al. imaged a
rough surface. Imaging of the retina turns out to be one of the main
and most successful applications of OCT. However the fundamental
working principle in both papers is the same.

Since its invention and first implementation in 1991, OCT has
become a widespread highly successful imaging technique1 applied in
many different areas of science and technology, from medicine [4] to
art conservation studies [5,6]. The first commercial OCT instrument
was developed by Carl Zeiss in 1994 for ophthalmology. From then
on this technology has been embraced by the ophthalmic community
becoming the gold standard for live retinal imaging today.

Replacing tissue excision, which is highly invasive and suscep-
tible to sampling errors, by minimally invasive techniques such as
magnetic resonance imaging (MRI), position emission tomography
(PET) or X-ray computed tomography (CT) has revolutionized the

1For a daily basis update of information on OCT see www.octnews.org.
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diagnostic medicine in the last decades. Thanks to many different
advances in medical devices, OCT has joined these imaging systems,
and is nowadays also applied to image internal body organs by using
catheters or other imaging probes. OCT is increasingly becoming a
key tool for non-invasive diagnosis, finding new applications in areas
such as cardiology or gastroenterology.

Before entering into a detailed explanation of the working prin-
ciple of OCT, let us consider why it is an important and success-
ful technology in comparison with other medical imaging techniques.
The key advantage of OCT is that it fills the gap between axial
resolution and penetration depth between confocal microscopy and
ultrasound. This can be clearly seen in Fig. 3.1.

On the one hand, confocal microscopy has submicron axial reso-
lution but a poor image penetration depth of less than a millimeter
in most biological tissues. On the other hand, standard clinical ul-
trasound attain huge penetration depth (∼ 10 cm) but shows a very
limited axial resolution. Higher frequency ultrasound gains resolu-
tion but reduced image penetration. OCT constitutes the trade-off
between both techniques: the axial resolution ranges from 1 to 15
micrometers and the imaging depth is limited to 2 − 3 millimeters
due to optical scattering.

OCT can be called low-coherence interferometry. Interferometry
is the tool to measure the magnitude and echo time delay of the
backscattered light from a sample. The low-coherence (broad band-
width) nature of the source of light allows to obtain an axial resolu-
tion of just a few ∼ µm, even submicron resolution in non-commercial
advanced systems. To do so, OCT uses a Michelson interferometer
(Fig. 3.2). Light coming from a broadband light source is divided
by a beam splitter forming the two arms of the interferometer. One
light beam constitutes the reference beam and the other, which il-
luminates the sample, is the object beam. The output signal that
is measured results from the interference of the reference beam with
the object beam after being reflected from the sample.

Interferometry assesses the electric field rather than the intensity
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Figure 3.1: Graphical comparison between optical coherence tomog-
raphy, confocal microscopy and ultrasound techniques in terms of
penetration depth and axial imaging resolution. Image taken from
Chapter 1 of Ref. [4].

of the light wave, but the detector measures the output intensity.
The output field of an interferometer is the sum of the reference and
object electric fields (Er and Eo), and the intensity is proportional
to the square of the electric field. The output intensity I0 is

I0 = |Er|2 + |Eo|2 + 2ErEo cos(2k∆L), (3.1)

where ∆L is the path length difference between the reference and
object arms of the interferometer and k is the frequency-dependent
wavenumber.
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In the next section we will give a detailed mathematical analysis
of OCT. However, for the sake of simplicity, let us consider here the
case of a sample formed by a layer of refractive index n and thickness
d embedded between two facets with reflectivities r1 and r2 (see Fig.
3.2). The reflection coefficient ri under normal incidence is

r1 =
n− n0

n+ n0

, r2 =
n0 − n

n0 + n
. (3.2)

The sample is embedded between media with refractive index n0.
We assume that the refractive index n and the reflectivities r1,2 do
not depend noticeable on the frequency. The electric field coming
from the reference arm is Er = Ei/

√
2 where Ei is the input electric

field. If the reflectivity of the facets that form the layers is very small
(|r1,2|2 ≪ 1 and |t1|2 ∼ 1), which is the case in most situations of
interest such as biological samples, we can approximate the object
beam as a superposition of multiple beams reflected from different
longitudinal positions inside the sample as

Eo =
iEi√
2

{
r1 + r2 exp

[
2i
ω0 + Ω

c
nd
]}

. (3.3)

OCT measures directly the reflectivity of each layer of the object and
its position. The key factor that allows to distinguish the position of
different layers is the low-coherence of the light source. Indeed the
axial resolution of the OCT system depends on the coherence length
of the source, i.e. the shorter the coherence length, the better the
axial resolution.

The general expression of the coherence length lc is [57]

lc =
4 ln 2

nπ

λ2
0

∆λFWHM

, (3.4)

where λ0 = 2πc/ω0 is the central wavelength of the light source,
∆λFWHM is the bandwidth at full width half maximum and n is
the refractive index of the medium at a certain depth. Eq. (3.4)
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Figure 3.2: General scheme of an optical coherence tomography
(OCT) setup. r1,2 are the reflectivities of the object at the input
and the output facets, respectively. d is the thickness of the sample
and n its refractive index. The mirror in the reference arm can be
moved changing the path length traversed by the reference beam, so
the path length difference between the reference and object beams.

shows clearly that the broader the bandwidth, the smaller is the
coherence length, and so the better is the axial resolution of OCT.
The most common and easy way to generate broadband light is by
using continuous-wave (CW) light with extremely low-coherence.

The visibility of the interference fringes measured at the output
of the interferometer for a specific layer inside the object depend on
the reflectivity at this specific layer, as

V =
Imax − Imin

Imax + Imin

=
2|ri|

1 + |ri|2
, (3.5)

where Imax and Imin are the maximum and minimum intensities mea-
sured changing the path length traversed by the reference beam with
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the help of a movable mirror. For each axial measurement, the two in-
terfering waves (the reference and the object beams) show coherence
only at a certain axial position, and the low-coherence nature of the
source provides the resolution required to determine the position of
the reflectivity measurement. The interference can be observed and
measured in two domains: the time-domain (TD) and the spectral
or Fourier-domain (FD), giving name to the two main modalities of
OCT. In TD-OCT, we measure the total intensity at the detection
stage Id(z) as a function of the position z of the movable reference
mirror. Its displacement is used to reconstruct the sample reflec-
tivity profile. Interference is only observed if the two arms of the
interferometer are balanced up to the coherence length of the light
source. The main disadvantage of this time domain approach is that
requires relatively complex mechanical and optical elements to scan
10 picosecond delays at kilohertz rates to achieve real-time imaging.

In FD-OCT, the intensity Id(k) is measured as a function of
the wavenumber k. This spectrum is the result of the frequency-
dependent interference between the reference and object beams [58].
The presence of the sample modulates the spectrum and by Fourier
analysis the sample reflectivity profile can be retrieved. The Wiener-
Khinchin theorem relates the auto-correlation and the spectral den-
sity power, so that the depth profile of the sample can be calculated
by Fourier transforming the measured spectra. In this approach there
is no need to scan the reference mirror position, thus the imaging
speed is dramatically increased. In addition, FD-OCT just requires
a single scan so that’s why it shows better signal to noise ratio com-
pared to TD-OCT [59].

3.2 Mathematical analysis of standard

OCT

The main goal of OCT is to reconstruct the reflectivity depth profile
of an arbitrary sample from noninvasive measurements using low-
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coherence interferometry. To do so, it makes use of a Michelson
interferometer as shown in (Fig. 3.2). The broadband light source
has a spectral density Φ(k) characterized with a Gaussian function
of the form

Φ(k) =
1√
πB

exp(− k2

B2
), (3.6)

where k = Ω/c is the wavenumber deviation from the central wavenum-
ber k0 = ω0/c. The function Φ(k) is normalized so that

∫
Φ(k)dk = 1.

The parameter B is related with the full width half maximum spec-
tral bandwidth ∆λFWHM of the light source as

∆λFWHM =
λ2
0

√
ln(2)

π
B, (3.7)

where λ0 is the central wavelength of the laser source. It is convenient
to write the expressions considering the wavenumber k as the main
variable, since we will see that the Fourier transform directly relates
this variable to the depth profile of the sample. The input electric
field Ei is considered a plane wave written in complex form as

Ei = Φ(k) exp(ikz). (3.8)

The light coming from the source is divided by a 50:50 beam
splitter with reflection r = 1/

√
2 and transmission t = i/

√
2 coeffi-

cients. The reference beam is reflected back by the reference mirror
and travels a total distance of 2zR. The object beam interacts with
the sample and traverses a total distance of 2zS = 2(zR +∆L), with
2∆L being the path unbalance between the reference and the object
arms of the interferometer.

The object to be analyzed is characterized by its field reflectivity
profile along the beam propagation, r(k). For real biological tissues,
this is a continuous varying function since the refractive index changes
continuously depending on the depth and light source wavelength,
n(z, λ). For the sake of simplicity, let us consider a series of N-
discrete reflections located at different depth inside the sample. In
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this scenario, the field reflectivity r(k) can be written as

r(k) =
N∑

n=1

rSne
2ikn(zSn )(zSn−zS), (3.9)

where rS1 , rS2 ... are the electric field reflectivities at distances zS1 , zS2 ...
from the beam splitter, respectively. n(zSn) is the refractive index of
the sample at the corresponding depth position zSn . The power re-
flectivity is the squared of the electric field reflectivity Rn = |rn|2.
The electric fields coming from the sample and the reference arm of
the interferometer are

ER =
Ei√
2
exp(2ikzR), (3.10)

ES =
Ei√
2
r(k) exp(2ikzS). (3.11)

Finally, both beams recombine at the beam splitter and the interfer-
ence of both electric fields generates a photocurrent at the detector
ID(k) that is proportional to the square of the sum of the fields

ID(k) =
〈
|ER + ES|2

〉
=

Φ(k)

4
[1 +RS1 +RS2 + ...]+

+
Φ(k)

2

N∑
n=1

√
RSn cos (2k(zR − zSn))+

+
Φ(k)

4

N∑
n̸=m=1

√
RSnRSm cos (2k(zSn − zSm)).

(3.12)

As can be seen in Eq. (3.12), the detector current is composed by
three terms:

• The constant or DC component : The first term constitutes a
constant term independent of the path-length difference. It is
mainly composed by the light source wavenumber spectrum and
the amplitude is proportional to the sum of the sample reflec-
tivities. It is the largest component of the detector current.
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• The Cross-Correlation components : This second term is the de-
sired one for doing OCT, because it provides information about
the sample reflectors and its axial position. It depends on the
spectrum wavenumber and the path difference between the ref-
erence arm and the corresponding sample reflector. The ampli-
tude is proportional to the square-root of the sample reflector
reflectivity, so it is typically smaller than the DC component.

• The Auto-Correlation components : The last term stands for
the interference between different sample reflectors. They are
undesired terms of the OCT signal, and are generally consid-
ered as artifacts. The amplitude of this component depends on
the square-root product of the power reflectivities of different
sample reflectors. Therefore these terms are smaller than the
cross-correlation terms. In any case, one option to remove this
undesired information is to use common-path systems, in which
the auto-correlation terms are directly the desired OCT signal.

3.2.1 Time-Domain OCT (TD-OCT)

In time-domain OCT (TD-OCT), the detector current ID(zR) is mea-
sured while the path length of the reference arm zR is varied in time.
In this approach, the reference mirror is translated longitudinally to
retrieve the internal sample reflectivity profile. The OCT signal is
obtained by integration of Eq. (3.12) over all wavenumber k, so that

ID(zR) =
1

4
[1 +RS1 +RS2 + ...]+

+
1

2

N∑
n=1

√
RSn cos (2k0(zR − zSn))e

−(zR−zSn )
2∆k2 .

(3.13)

The first term constitutes a DC offset proportional to the sum of the
sample reflectivities. The second term depends on the square-root
of the power reflectivity of each sample reflector and is modulated
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Figure 3.3: Time-domain OCT signal ID(zR) as a result of an axial
scan of a single layer sample composed by two facets. RS1 and RS2

are the power reflectivities of each facet, zS1 and zS2 are the facet’s
locations. Figure taken from Ref. [4].

by a cosinusoidal carrier wave centered at the arm length difference
between the reference and the object arms.

As an illustration and for the sake of simplicity, let us consider
a single layer sample constituted by two low reflectivity facets. The
field reflectivity r(k) [Eq. (3.9)] in this case can be written as

r(k) = rS1 + rS2 exp(2ik0n0d+ 2ikngd), (3.14)

where n0 is the refractive index of the sample at the central frequency,
d is the sample thickness and ng the group refractive index. Thus
the time domain OCT signal [Eq. (3.13)] depending on the reference
arm scanning position ID(zR) is

ID(zR) =
1

4
[1 +RS1 +RS2 ]+

+
1

2

√
RS1 cos (2k0(zR − zS1))e

−(zR−zS1
)2∆k2+

+
1

2

√
RS2 cos (2k0(zR − zS2))e

−(zR−zS2
)2∆k2 .

(3.15)

Figure 3.3 shows a typical result of an axial scan for this single
layer sample in TD-OCT. When the sample reflectivity profile is con-
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volved with the source coherence function, two fringe bursts appear
at the layers’ unbalancing positions (zR − zSn) providing the infor-
mation about the thickness of the sample d = (zS2 − zS1)/n. The
value of each facet’s field reflectivity (rS1 and rS2) is determined by
the amplitude of the fringes.

3.2.2 Fourier-Domain OCT (FD-OCT)

Fourier-domain OCT (FD-OCT) was introduced by Fercher et al. in
1995 [58]. The core features of this approach are the same as those
of its time domain counterpart: low-coherence interferometry with a
broadband light source. However now one measures the spectrum of
the signal without scanning the reference mirror. This OCT modal-
ity encompasses two main approaches depending on the detection
system: swept-source and spectral-domain OCT.

In spectral-domain OCT (SD-OCT), the interference spectrum is
measured directly by a detector array placed after a grating (spec-
trometer) and a high-speed line camera. This method is the one
proposed by Fercher in 1995. Because SD-OCT effectively captures
the interference spectrum in one scan, it offers a significant sensitiv-
ity advantage (∼ 50 − 100 times higher) over the temporal domain
detection.

In swept-source OCT (SS-OCT), the wavenumber dependent cur-
rent Id(k) is measured sequentially by the same detector while chang-
ing the wavenumber of the narrowband swept-laser source [60]. This
approach does not require a spectrometer and a line scan camera. As
a result, it can work over a wider range of wavelengths than cameras
do. Furthermore, swept-source OCT is not constrained by camera
speed, allowing for faster imaging than spectral-domain OCT. How-
ever this technique requires the use of a high-speed sweeping narrow-
linewidth source.

In both spectral-domain OCT (SD-OCT) and swept-source OCT
(SS-OCT), regardless of the detection system, one captures the spec-
tral density S(k) and processes it using Fourier analysis to reconstruct
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the sample’s reflectivity profile. The spectral density S(k) of the out-
put beam of the interferometer for an arbitrary reflection coefficient
r(k) is

S(k) =
Φ(k)

4

∣∣∣∣∣ exp (2i(k0 + k)zr
)
+ r(k) exp

(
2i(k0 + k)zs

)∣∣∣∣∣
2

. (3.16)

Expanding the modulus of Eq. (3.16) and substituting the ex-
pression of the field reflectivity r(k) [Eq. (3.9)], the spectral density
is written as

S(k) =
Φ(k)

4
[1 +RS1 +RS2 ...]+

+
Φ(k)

2

N∑
n=1

√
RSn cos (2k(zR − zSn))+

+
Φ(k)

4

N∑
n̸=m=1

√
RSnRSm cos (2k(zSn − zSm)).

(3.17)

The position of the interfaces and the corresponding reflectivities are
obtained by Fourier transforming the spectral density shown in Eq.
(3.17) so

Ŝ(z) = F [S(k)] =
Φ̂(z)

4
[1 +RS1 +RS2 ...]+

+
1

4

N∑
n=1

√
RSn

[
Φ̂
(
2(zR − zSn)

)
+ Φ̂

(
− 2(zR − zSn)

)]
+

+
1

4

N∑
n̸=m=1

√
RSnRSm

[
Φ̂
(
2(zSn − zSm)

)
+ Φ̂

(
− 2(zSn − zSm)

)]
,

(3.18)

where Φ̂(z) = F [Φ(k)]. Analogously to the time domain case, let us
consider a single layer sample with two low reflectivity facets. The
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Figure 3.4: Fourier-domain OCT signal Ŝ(z) as a result of an axial
scan of a single layer sample composed by two low reflectivity facets.
zR is the optical path length of the reference arm; zS1 and zS2 are the
facet’s locations. Figure taken from Ref. [4].

field reflectivity function r(k) of the sample is described in Eq. (3.14).
The Fourier-domain OCT signal [Eq. (3.18)] can be written as

Ŝ(z) =
Φ̂(z)

4
[1 +RS1 +RS2 ]+

+
1

4

√
RS1

[
Φ̂
(
2(zR − zS1)

)
+ Φ̂

(
− 2(zR − zS1)

)]
+

+
1

4

√
RS2

[
Φ̂
(
2(zR − zS2)

)
+ Φ̂

(
− 2(zR − zS2)

)]
+

+
1

4

√
RS1RS2

[
Φ̂
(
2(zS1 − zS2)

)
+ Φ̂

(
− 2(zS1 − zS2)

)]
.

(3.19)

Note that the OCT signal in this case is composed by seven peaks
(Fig. 3.4). One DC peak appearing at z = 0, three peaks located at
z > 0 and three more peaks at z < 0. The cross-correlation peaks,
which provide information about the location and reflectivity of the
two sides of the sample, appear at a relative position to the reference
coordinate zR that is doubled 2(zR ± zSn). The square-root of the
power reflectivity

√
RSn of each layer determines the amplitude of

these peaks.
The artifact auto-correlation peaks appear nearby the zero path
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length position, since the distance between the sample reflectors is
typically much smaller than the distance between them and the mir-
ror in the reference arm. The amplitude of these peaks is much
smaller than the cross-correlation ones.

3.3 OCT based on induced coherence

In this section we present a new type of optical coherence tomogra-
phy scheme based on the concept of induced coherence2. The idea
to merge two ideas, OCT and nonlinear interferometers, was first in-
troduced in 2018 [56]. A proof-of-concept experiment demonstrated
that in addition to obtaining information in the transverse plane of a
sample [10] (perpendicular to the beam propagation), it was also pos-
sible to do optical sectioning (in the axial direction, along the beam
propagation). Three-dimensional images can be obtained without the
need to detect the photons that actually interacted with the sample.

The proposed experimental setup (Fig. 3.5) is a nonlinear in-
terferometer based on the concept of induced coherence, using two
spatially separated down-converters working in the low parametric
gain regime of down-conversion. The sample is placed between the
two PDC sources.

There are subtle differences between this novel technique and
standard OCT schemes (Fig. 3.6) [61]. In standard OCT, the refer-
ence and the object light beams have different intensities: I0/2 and
|τ |2Io/2, respectively (Fig. 3.6(a)). τ is the field reflectivity (trans-
missivity) of the sample. The two beams show first-order coherence
for a concrete value of the delay between both (Fig. 3.6(b)). The
visibility of the interference fringes depends directly on τ [Eq. (3.5)]
since both beams have different intensities. Thus OCT performs a
measurement of the output intensity that gives the reflectivity of the
sample. It does not measure first-order coherence.

On the other hand, in the proposed scheme based on induced

2See Section 2.2.2 for a detailed description of the induced coherence effect.
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NLC1

NLC2

Object

Mirror

s1

s2
i1

i2

measurement

of

coherence

Figure 3.5: Simplified sketch of the nonlinear interferometer based
on the concept of induced coherence, aimed at measuring optical
sectioning of an object. NLC1,2 are nonlinear crystals; s, i refer to
the signal and idler photons, with sub-indexes indicating from which
crystal they are emitted.

coherence in the low parametric gain regime, the two signal beams
that are made to interfere have the same photon flux N0/2 (Fig.
3.6(c)), independently of the reflectivity τ of the sample. Instead, the
coherence between both signal beams depends linearly on the losses
introduced by the sample (Fig. 3.6(d)). Thus the role of optical
coherence is twofold: assessing the desired value of the reflectivity
and providing the axial optical sectioning of the sample.

Regarding axial resolution there is no practical advantage nor
difference between the standard OCT scheme and the proposed one.
In general the broader the bandwidth of the light source, the better
the axial resolution. So that, if the bandwidth of the light source
used in standard OCT is the same as the bandwidth of the down-
converted photons in this novel approach, the axial resolution will be
identical.
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Figure 3.6: Differences in physical principle between an standard
OCT scheme and the novel configuration based on induced coher-
ence. (a, c) Intensity (or photon flux) of the reference and the sample
beams of the interferometer. (b, d) Degree of first-order coherence
between the reference and sample beams of the interferometer. I0 is
the total intensity and N0 is the total number of photons propagating
through the interferometer. τ is the field reflectivity of the sample.

3.4 Experimental setup

The experimental setup used for observing optical sectioning based
on the concept of induced coherence is shown in Fig. 3.7. The pump
laser is a high-power continuous-wave (CW) laser Verdi V10 (Coher-
ent) with wavelength λp = 532 nm. A linear attenuator composed by
a half-wave plate, a polarizing beam splitter and a second half-wave
plate is implemented to control the power of the pump beam and its
polarization.

A short-pass filter (SPF) is used to eliminate residual emission
from the Verdi V10 at different wavelengths. This is due to the laser’s
operating principle. Namely, the Verdi is made up of two diodes that
emit light at 808 nm and pump a neodymium-doped yttrium vana-
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Figure 3.7: Experimental setup aimed at doing OCT based on the
concept of induced coherence. Laser: Verdi V10 (Coherent). Optical
system: linear attenuator and short-pass filter (SPF). BS: beam
splitter. M : mirrors. PPLN1,2: periodically-poled lithium niobate
crystals. DM1,2: dichroic mirrors. PBS1,2: polarizing beam splitters.
QWP : quarter-wave plate. HWP1,2: half-wave plates. Sample:
simulated by a mirror and a neutral density filter. P : linear polarizer.
BPF : bandpass filter. D1: optical spectrum analyzer (OSA) for
telecom band. D2: single-photon counting module. V designates
vertical polarization with sub-indexes indicating the wavelengths of
the corresponding beams.

date (Nd:YVO4) crystal, which then re-emits light at 1064 nm. This
light is frequency-doubled by a lithium triborate (LBO) crystal in
a ring cavity arrangement, yielding the desired 532 nm light. We
discovered residual emission at 808 and 1064 nm in our measure-
ments, which manifested as noise, and this is why we filtered out this
unwanted emission.
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A 50:50 beam splitter (BS) divides the pump beam, allowing
it to be directed with equal power to the two nonlinear crystals.
The crystals are two 20 mm long periodically-poled lithium niobate3

(PPLN1,2). They absorb the 532 nm pump photon and generate
two lower-frequency ones, the signal and the idler, by means of para-
metric down-conversion (PDC). The PDC process is non-degenerate
Type-0, which means the pump, signal and idler photons all have the
same vertical polarization and that the signal and the idler photons
have different central wavelengths, 810 and 1550 nm, respectively.

The two nonlinear crystals are mounted on top of ovens (PV20
from Covesion) that are coupled to temperature controllers (OC2
from Covesion) that allow for temperature adjustments with a preci-
sion of 0.01 ◦C and a maximum working temperature of 200 ◦C. The
spectral response of the nonlinear crystals changes with the tempera-
ture, resulting in various phase-matching conditions for each temper-
ature. We set the temperatures in both ovens so that the emission
from both crystals is spectrally identical.

The efficiency of the PDC processes in our experiment is very low.
In particular, given that the crystals’ effective second order nonlinear
coefficient is χ(2) = 14 pm/V and that we used a pump power of P =
1 W, the parametric gain4 is of about G ≈ 10−11. This result implies
that the number of entangled photons generated per mode at each
crystal is significantly less than one, indicating that we are in the low
parametric gain regime of PDC. In this scenario, the probability to
generate simultaneously a pair of photons in both nonlinear crystals
is negligible.

The signal s1 and the idler i1 generated in the first nonlinear crys-
tal (PPLN1) are separated by a dichroic mirror (DM1). The signal
s1 is transmitted and forms the upper arm of the interferometer. The
residual pump beam is eliminated with a dichroic mirror (DM2). The
signal s1 experiences a temporal delay implemented by means of two
mirrors located on top of a 6-mm translation stage (Thorlabs Z806).

3See Appendix B for the detailed material properties of the crystal.
4See Section 2.3.1 for a detailed analysis of the parametric gain concept.
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This platform can move in steps of 30 nm to introduce the desired
phase shift between both arms of the interferometer. After that, its
polarization is rotated to horizontal by a half-wave plate (HWP2)
before reaching the PBS2.

The idler i1 is reflected and starts the lower arm of the interfer-
ometer. Because of its vertical polarization, it is reflected again by
the polarizing beam splitter (PBS1). A quarter-wave plate (QWP )
changes its polarization to circular before interacting with the sample,
simulated by a neutral density filter and a mirror mounted on a trans-
lation stage than can be moved longitudinally up to 1 mm. The idler
is reflected by the sample with probability |τ |2. After this interaction,
the idler i1 polarization is changed to horizontal by the quarter-wave
plate (QWP ). The i1 photon is then transmitted through PBS1 and
its polarization is again changed to vertical with a half-wave plate
(HWP1), in order to erase all distinguishing information with the
idler generated in PPLN2. It is finally reflected by the dichroic mir-
ror (DM1) and spatially overlapped with the pump that shines the
second nonlinear crystal (PPLN2).

As a result, the idler i2 photon generated in PPLN2 is conse-
quently fully spatially and spectrally overlapped with the one coming
from PPLN1. The two idler photons are separated from the second
signal photon s2 by means of a dichroic mirror (DM1) and coupled
into a single mode fiber to an optical spectrum analyzer (OSA). The
residual pump beam is eliminated with a dichroic mirror (DM2). The
signal photon s2 travels through the lower arm of the interferometer
until it reaches the PBS2. An 810 ± 10 nm band-pass filter (BPF) is
implemented at the output of PBS2 to filter out any residual pump
beam and to exclusively select the desired signal photons.

The results shown in the next section are interferometric mea-
surements between the two signal photons (s1 and s2) after being
recombined in the last polarizing beam splitter (PBS2). In practice,
the pump and the down-converted light have finite spectral width,
which means finite coherence time. As a result, additional constraints
related to the interferometers’ arm lengths must be fulfilled. If the
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pump has much longer coherence length than the down-converted
light, which is the case, the following conditions must be satisfied:

|zp2 − zp1 − zi1| ≪ Ldc, (3.20)

|zs1 − zs2 − zi1| ≪ Ldc, (3.21)

where zp2 is the optical path length travelled by the pump beam from
the input BS to PPLN2; zp1 is the optical path length travelled by
the pump beam from the input BS to PPLN1; zi1 is the optical path
length travelled by the i1 photon from PPLN1 to PPLN2; zs1 is the
optical path length travelled by the s1 photon from PPLN1 to the
last PBS2; zs2 is the optical path length travelled by the s2 photon
from PPLN2 to the last PBS2; and Ldc is the coherence length of
the down-converted light.

In other words, the two arms of the interferometer must be un-
balanced up to the coherence length of the down-converted photons.
If this requisite is satisfied, there is no way to tell which crystal a
signal photon came from when it arrived at the detector. On the
other hand, the interference is lost if the idler i1 path is blocked or
the conditions in Eqs. (3.20) and (3.21) are not met.

In the case that there is coherence between the signal photons,
the polarization state at the output of PBS2 is

|Ψ⟩ = 1√
2

[
|H⟩+ exp(iϕ) |V ⟩

]
, (3.22)

where ϕ is the phase shift between the two arms of the interferometer,
assuming equal emission probability from both sources. Contrarily,
if there is no coherence between the signal photons the polarization
state reads

ρ =
1

2

[
|H⟩ ⟨H|+ |V ⟩ ⟨V |

]
, (3.23)

which shows no phase difference dependence. In practice, a polarizer
(P ) is implemented at the output of PBS2 to measure the phase
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shift given in Eq. (3.22). The polarizer projects both orthogonally
polarized signal photons to a diagonal state of the form

|D⟩ = 1√
2

[
|H⟩+ |V ⟩

]
. (3.24)

Finally, the interference signal is coupled into a single-mode fiber and
measured with a silicon-based single-photon detector (SPCM-AQRH-
13-FC from Perkin-Elmer).

3.5 Results

The main purpose of this work is to show, in a proof-of-concept ex-
periment, the possibility to do a 1D axial scan of a sample using a
nonlinear interferometer based on induced coherence . The results
presented below are not meant to compete with the axial resolution
values provided by standard OCT systems. In conventional OCT
schemes LED light sources having a bandwidth greater than 100 nm
(FWHM) are used, providing axial resolutions of few microns.

In our case, the idler spectral emission of the 20-mm-long PPLN
Type-0 crystals has a bandwidth of around 1.6 nm at full-width at
half maximum (FWHM). An optical spectrum analyzer for telecom
band (HP 71451B from Hewlett Packard) was used to measure the
spectrum, which was then digitized using WebPlotDigitizer. Figure
3.8 shows the measured spectrum of the idler photons, which cor-
responds to an axial resolution of about 500 µm. In the discussion
section, it will be addressed how to increase the axial resolution.

The OCT measurement is mimicked by putting a mirror in the
idler i1 path, where the sample is meant to be placed (see Fig. 3.7),
and changing its longitudinal position 1 mm. As mentioned in the
previous subsection, the degree of first-order coherence between the
signal photons is the quantity measured. The result is shown in Fig.
3.9.

The envelope delineated by the experimental data (blue dots) in
Fig. 3.9 clearly corresponds to a triangular coherence function (solid
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Figure 3.8: Measured spectrum of the idler photons. The spectrum
is centered at 1552.3 nm with a bandwidth of 1.6 nm at full width at
half maximum (FWHM).

blue line) for each of the two-layer positions, which can be written
as5

∣∣∣g(1)s1,s2
(T )
∣∣∣ =

∣∣∣⟨â†s1(t+ T )âs2(t)⟩
∣∣∣√

⟨â†s1(t))âs1(t)⟩
√

⟨â†s2(t)âs2(t)⟩
=

= tri
{ 1

DL
(T − T0)

}
,

(3.25)

where tri is the triangular function, D is the inverse group velocity
difference between signal and idler photons, L is the length of the
nonlinear crystal and T0 is the temporal delay between signal photons.

The product DL is the inverse bandwidth of the down-converted
photons, which is proportional to the coherence length. The spatial

5See Appendix E for the complete derivation of the first-order coherence func-
tion.
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Figure 3.9: Degree of first-order coherence between the signal photons
measured from two simulated layers separated 1 mm. We detect with
a single-photon detector the 809.4 nm signal photons at the output
of PBS2, while changing the path length difference between the two
arms of the interferometer by 1 µm steps. The maximum visibility
is V = 73%, marked with the red region. Blue dots are experimental
data and the solid blue line stands for the theoretical prediction given
by Eq. (3.25), considering our visibility values.

resolution cDL is the axial resolution of the OCT scheme (500 µm, in
our case). This can be directly assessed by the value of the bandwidth
at FWHM of the coherence functions shown in Fig. 3.9.

The maximum visibility of the peaks is slightly different, V =
69% for the left peak and V = 73% for the right one. This small
discrepancy is due to the fact that the alignment was optimized for
one position of the mirror. In these results, the full bandwidth of
the down-converted photons generated in both crystals is used. Each
experimental dot represents the number of signal photons detected
by the single-photon module as the path length difference between
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the two arms of the interferometer is changed in 1 µm increments.
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Figure 3.10: (a) Interference fringes for two different values of the
reflection coefficient. Blue circles: |τ | = 1; Red diamonds: |τ | =
0. The maximum visibility measured is V = 90%. The error bars
designate the standard deviation of the experimental measures. (b)
Experimental and theoretical relationship between the interference
pattern visibility and the reflectivity (τ). Circles: experimental data;
Solid line: theoretical prediction given by Eq. (2.59), taking into
account our visibility conditions.

Finally, we must get the experimental linear relationship between
the visibility of the signal photons and the losses introduced in the
idler i1 path [Eq. (2.59)] in order to demonstrate that we are wit-
nessing induced coherence in the low parametric gain regime. Figure
3.10(a) shows the number of signal photons detected at the output
of PBS2 while changing the path length of one arm of the interfer-
ometer with respect to the other by 30 nm steps. Interference fringes
appear for |τ | = 1 (blue circles) with a visibility of V = 90%. On
the other hand, when the idler i1 path is blocked (|τ | = 0) the inter-
ference disappears (red diamonds). The phase scan depicted in Fig.
3.10(a) was performed in the red region shown in Fig. 3.9.

Figure 3.10(b) depicts the experimental relationship between the
visibility of the interference pattern and the reflectivity τ . The value
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of τ is introduced by a variable neutral density filter (NDF) placed
in the idler i1 path. The maximum visibility observed is V = 90%,
which is crucial for achieving high sensitivities when sensing layer
reflectivities.

In contrast to the results presented in Fig. 3.9, where the whole
bandwidth of the signal photons was used, in the measurements
shown in Fig. 3.10 the spectral bandwidth is filtered using a 8-
mm fiber Bragg grating (FBG). It provides a very narrow filtering of
about 0.1 nm. At room temperature, the FBG filter’s central oper-
ating wavelength is 809.4 nm. The central wavelength can be altered
by changing its temperature or stretching it, but we chose to change
the temperature of the PPLN ovens instead. This is the reason why
the idler spectrum shown in Fig. 3.8 is centered at 1552.3 nm.

The FBG is used to narrowly filter the signal photons bandwidth
for two main reasons. To begin with, it increases the coherence length
up to tens of centimeters, making it simpler to experimentally bal-
ance both arms of the interferometer. Notwithstanding, the axial
resolution degrades considerably. This the reason why we do not use
the FBG for the optical sectioning measurement shown in Fig. 3.9.

On the other hand, the use of the FBG provides for a reduction
in the spectrum distinguishability of photons generated in distinct
crystals. This explains the noticeable increase in visibility compared
to when we use the full bandwidth. In fact, the maximum visibility
value obtained in our work (V = 90%) is remarkably high when
compared to the values of similar works.

For instance, in the original paper on induced coherence paper
from 1991 [9] the maximum visibility value obtained was V = 30%.
In a more recent work by Barreto et al. [10], they showed a maximum
visibility value of V = 77%. These results from prior works demon-
strate how difficult it is to correctly overlap spatial modes when huge
bandwidths are considered, as well as to adjust for all the many de-
grees of freedom in the system than can cause path distinguishability.
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3.6 Frequency-correlation require-

ments for observing induced

coherence

Note: the results, figures and conclusions of this section are taken
from Ref. [62]. The idea of induced coherence was first demonstrated
in the low parametric gain regime of down-conversion [9,22], although
later it was also shown that this effect is still present in the high
gain regime as well [28, 29]. In the first scenario, paired photons
are generated in one crystal or the other, while in the latter can be
generated in both simultaneously.

The low parametric gain regime is of particular interest to us
because it allows to easily assess the degree of entanglement be-
tween down-converted photons. In this context, a continuous-wave
(CW) laser is used to shine coherently the two separated paramet-
ric down-converters, so that the bandwidth of the pump laser δp is
much smaller than the bandwidth of down-conversion ∆dc [40]. Thus,
the signal-idler pair is generated with a high degree of entanglement.
Thus, we can ask ourselves: What is the role of entanglement and
correlations in induced coherence? Can induced coherence still be ob-
served if there is no frequency-correlations between the signal-idler
pair?

For the sake of simplicity, we restrict our analysis to the frequency-
entanglement case. That is, we consider the biphoton function that
describes the signal-idler pair to be of the form Φ(Ωs,Ωi), where Ωs,i

are the signal and idler photons frequency deviations, respectively. If
the biphoton function can be factored, i.e. Φ(ωs, ωi) = F (Ωs)G(Ωi),
then the state is separable and there is no frequency entanglement.
On the contrary, if the biphoton function is not separable, then the
state is entangled.

The key parameter to quantify the degree of entanglement is the
ratio between the bandwidth of the pump and the bandwidth of
down-conversion γ = δp/∆dc [63,64]. The state is separable if γ = 1,
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and the degree of entanglement is high if γ ≫ 1 or γ ≪ 1.
Let us start our analysis assuming that the shape of the spectrum

of pump beam is described by the function

Fp(Ωp) =
T

1/2
0

π1/4
exp

[
−
Ω2

pT
2
0

2

]
exp [ikp(Ωp)zp] , (3.26)

which constitutes a Gaussian spectral shape. Ωp = Ωs + Ωi is the
pump frequency deviation, T0 is the temporal width of the pump
pulse duration, kp is the pump wave-vector and zp is the distance
travelled by the pump beam until it reaches the nonlinear crystal.
The function Fp(Ωp) is normalized to 1.

Starting from this and taking into account the appropriate Bo-
goliubov transformations at both nonlinear crystals, the first-order
correlation function g

(1)
s1,s2 between the signal photons in an induced

coherence scheme is6

∣∣g(1)s1,s2
(T1, T2)

∣∣ = tri

(
T1

DL

)
exp

[
− 1

16T 2
0

[(
1− 2D+

D

)
T1 + 2T2

]2 ]
,

(3.27)
where tri(ξ/2) = 1/π

∫
sinc2(x)exp(iξx)dx is the triangular function,

D+ = Np − (Ns +Ni)/2 (Np,s,i are the inverse group velocities), and

T1 =
z3 − z1 + z2

c
+NiL, (3.28)

T2 =
zp2 − zp1 − z2

c
−NiL. (3.29)

z1,2,3 are the distances travelled by the signal s1, the idler i1 and the
signal s2, respectively. The condition T2 = 0 needs to be fulfilled
to ensure proper parametric amplification in the second nonlinear
crystal.

On the other hand, in an induced coherence scheme working in
the low parametric gain regime, the biphoton function Ψ(ωs, ωi) can

6See Appendix E for the complete derivation of g
(1)
s1,s2 .
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be written as [61]

Ψ(Ωs,Ωi) = iσLF (Ωs + Ωi)sinc

[
∆kL

2

]
exp (iskL) , (3.30)

where σ is the nonlinear coefficient (see Section 2.3.1, Eq. (2.19)), L
is the length of the nonlinear crystal, F (Ωs + Ωi) is a function that
describes the pump spectrum shape, ∆k = kp(Ωs + Ωi) − ks(Ωs) −
ki(Ωi) is the wave-vector phase mismatch, and sk = kp(Ωs + Ωi) +
ks(Ωs)+ki(Ωi) determines the nature of the correlations between the
paired photons and the degree of entanglement between them [36].

Under certain approximations [61, 65], the normalized biphoton
function [Eq. (3.30)] is

Φ(Ωs,Ωi) =

(
αT0DL√

2π

)1/2

exp

[
−(Ωs + Ωi)

2T 2
0

2

]
× exp

[
−α2(DL)2

16
(Ωs − Ωi)

2

]
, (3.31)

where α = 0.455; T0 is the pump pulse duration and D = Ni −Ns is
the difference of idler and signal inverse group velocities. |Φ(Ωs,Ωi)|2
is the probability to detect a signal photon at frequency ω0

s + Ωs in
coincidence with an idler photon at frequency ω0

i + Ωi.
Figure 3.11 shows the normalized biphoton functions [Eq. (3.31)]

and the first-order correlation functions [Eq. (3.27)], for three dif-
ferent pump pulse widths. The three cases correspond to different
degrees of entanglement γ: γ ≪ 1 (T0 = 100 ps), γ = 1 (T0 = 212 fs)
and γ ≫ 1 (T0 = 10 fs).

There is frequency anti-correlation between signal and idler pho-
tons when T0 ≫ DL (Fig. 3.11(a)). In this scenario, coincidences can
be detected if Ωi ∼ −Ωs. There is frequency correlation for T0 ≪ DL
(Fig. 3.11(c)), and there are coincidences if Ωi ∼ Ωs. The degree of
correlation is low in between, and the quantum state is separable (Fig.
3.11(b)). The first-order correlation functions for these examples are
shown in Fig. 3.11(d), (e) and (f). We see coherence for all degrees
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Figure 3.11: (a), (b) and (c): Normalized biphoton function
|Φ(Ωs,Ωi)|2, for different pump pulse duration T0. The axis corre-
spond to the signal and idler angular frequency deviation, Ωs and Ωi,
respectively. (d), (e) and (f): First-order correlation function g

(1)
s1,s2 .

The pump pulse duration T0 are: (a) and (d) T0 = 100 ps; (b) and
(e) T0 = 212 fs; (c) and (f) T0 = 10 fs. The nonlinear crystal length
is L = 5 mm.

of entanglement, throwing out the possibility that induced coherence
is caused by the entanglement nature of the paired photons.

In conclusion, the initial question is answered: induced coherence
in the low parametric gain regime can be observed regardless of the
degree of entanglement between the signal and idler photons. As
a result, we infer that the induced coherence is not the product of
paired photon quantum entanglement.
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3.7 Discussion

As previously stated, the results reported in Section 3.5 constitute a
proof of work that lay the groundwork for developing OCT techniques
based on nonlinear interferometers. For realizing this promise, this
novel approach should solve certain problems that at this moment in
time prevent the new OCT scheme from being considered a practical
OCT solution.

The most remarkable practical advantage of OCT based on a
nonlinear interferometer vs typical or standard OCT systems is that
it allows the light that probes the sample under investigation to have
a different wavelength than the light that is detected. This has two
important consequences:

• To detect light at the most convenient wavelength: Certain
wavelengths are more handy because detectors in that frequency
band are more efficient. Silicon-based photodetectors, for ex-
ample, which are the most common and cost-effective, perform
admirably in the 700 − 900 nm wavelength range, with great
efficiency and response times. However, due to the material’s
inherent limitations, silicon produces a significant reduction in
sensitivity above 1000 nm. Alternatives to silicon-based pho-
todetectors, such as indium gallium arsenide (InGaAs) detec-
tors, are significantly more expensive and harder to operate.

• To use longer wavelengths for probing the sample: Paramet-
ric down-conversion is a versatile solution to generate light in
the far-IR range or even THz radiation [14, 66]. In a biologi-
cal imaging scenario, this would result in a deeper penetration
depth into the sample, while still using the optimum wavelength
for detection.

The following are the most noticeable limitations of OCT based
on induced coherence over its standard counterpart:
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• The axial resolution: As a general rule in OCT systems, the
broader the spectrum bandwidth, the better is the axial resolu-
tion. Typical axial resolution values of standard OCT systems
are between 3 and 12 µm [4]. Broader bandwidths (hundreds of
nanometers) in parametric down-conversion can be obtained by
using shorter nonlinear crystals or by appropriately engineer-
ing the phase-matching conditions of longer crystals [64,67,68].
In this way, axial resolutions similar to the ones achieved with
current OCT systems are likely to be observed.

• The acquisition times: The OCT approach proposed here is
based on a time domain measurement, which involves scanning
the location of one mirror in one interferometer arm while mea-
suring the interference signal. As mentioned in the introduction
of this Chapter, Fourier or spectral-domain OCT provides for
a noticeable increase of the imaging speed because there are
no movable elements. It also outperforms TD-OCT in terms of
sensitivity [59]. In short, re-adapting our proposal’s detection
system to perform frequency measurements would be a signifi-
cant upgrade.

• The power: For OCT applications in ophthalmology, for exam-
ple, light entering the cornea should have a maximum power
of about 750 µW. Typical power values in art restoration stud-
ies are a few mW. All of these power values are dramatically
higher than the power involved in our proposal. The solution to
this challenge is to work in the high parametric gain regime of
down-conversion [43], rather than the low gain regime. In this
sense, applications for imaging have been already demonstrated
in both regimes [69]. Another possibility is to use stimulated
parametric down-conversion processes [70].

• The robustness: The OCT system proposed has to improve
in terms of robustness. As previously stated, any type of path
distinguishability has a significant impact on the induced coher-
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ence effect, and precisely overlapping the idler modes is quite
difficult. As a result, this novel approach is unlikely to be a
viable OCT solution. A Michelson-type nonlinear interferom-
eter7 could be a more robust choice since only one nonlinear
crystal is employed. It is easier to align experimentally and
requires fewer optical elements.

It is worth noting that several of these limitations have been
already addressed in different works. In 2018, two months after
our publication, Paterova et al. [16] demonstrated a TD-OCT sys-
tem using an SU(1,1) nonlinear interferometer in the low parametric
gain regime of down-conversion. This approach solves the robustness
weakness of our proposal since only one nonlinear crystal is used, but
still the power limitation is present.

In 2020, Vanselow et al. [71] put forward a FD-OCT system using
an SU(1,1) nonlinear interferometer in the low parametric gain regime
of down-conversion. They use ultra-broadband paired photons, which
allows them to reach an impressive OCT axial resolution of 10 µm.
Furthermore, the measurements are made in the Fourier domain,
which speeds up acquisition and improves sensitivity. Even so, the
power used to illuminate the sample (90 pW) is still insufficient for
ophthalmology applications.

It is conceivable to devise an OCT setup based on nonlinear in-
terferometry that overcomes all of these drawbacks. It is an SU(1,1)
nonlinear interferometer that makes Fourier domain measurements
and operates in the high parametric gain regime with broad band-
width paired photons. That is precisely the proposal presented in the
following Chapter.

7See Section 2.2 for a detailed description of a Michelson-type nonlinear in-
terferometer.
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CHAPTER

FOUR

OPTICAL COHERENCE
TOMOGRAPHY IN THE

HIGH PARAMETRIC GAIN
REGIME

This chapter describes the second nonlinear interferometer aimed at
doing OCT implemented in this thesis. It is an SU(1,1) nonlinear
interferometer working in the high parametric gain regime of down-
conversion [51]. This novel scheme can be understood as the enhanced
version of the experimental setup presented in Chapter 3. The first
part of this chapter is devoted to describe how this new scheme over-
comes the main limitations presented in the discussion section of the
previous chapter. Then the attention is shifted to analyze mathe-
matically this new scheme. Finally the experimental setup and main
results are presented and discussed in detail.
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4.1 Introduction

For sensing and imaging, the high parametric gain regime of PDC
has various advantages. Firstly, higher photon fluxes allow for the
use of standard charge-coupled device (CCD) cameras or spectrom-
eters rather than single-photon detectors, resulting in images with a
higher signal-to-noise ratio and faster acquisition times. Secondly, in
contrast to traditional OCT or in the case of low parametric gain ap-
plications, the measured power is significantly higher than the power
probing the sample. Thirdly, because the interference visibility is
nonlinearly related to the idler losses, this regime is particularly sus-
ceptible to small reflectivities. Finally, the high-gain regime affords
bigger frequency bandwidths [47], which would result in an improved
axial resolution in OCT methods.

There are a few weaknesses in the OCT scheme presented in the
previous chapter that can be now fixed. These limitations have prac-
tical solutions. Working in the high parametric gain regime of PDC
is the solution to achieve higher power values to probe the sample
and to detect it. The parametric gain indicates the flux rate of pho-
ton pairs generated per mode, and the most efficient way to achieve
higher-than-one values of the gain is to use strong pulsed pump lasers
(among others, see Section 2.3.1).

In one of the experiments with the highest flux rate of down-
converted photons reported up to date using CW pumping [46], they
generated flux rates of ∼ 1012 paired photons per second, which is
equivalent to a power of ∼ 0.3 µW at 1064 nm. This high values
of the flux rate required the use of a long crystal (L = 12 mm) and
type-I SPDC, which restricted the bandwidth of down-conversion to
∆λ = 31 nm. More dramatically, pump powers of up to 2 W were
needed. Still the value of the gain is very small, G ∼ 10−11. We
should remark that these high values of flux rates would be very
difficult to achieve with CW pumping with shorter crystals and non-
degenerate SPDC configurations.

Instead, when using a pulsed pump laser high gain levels can be
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achieved. In Ref. [72], they use a pulsed laser with pulses of duration
18 ps, beam waist 170 µm, and average pump power up to 25 mW.
They generated flux rates of ∼ 5 × 107 paired photons per second
and per mode, with a gain of G = 15. Taking into account that the
frequency repetition rate of the pump laser is 1 KHz, and at least 40
modes are being generated, this result in a flux rate of ∼ 2 × 1012

paired photons per second. The bandwidth is ∆λ = 90 nm at 790
nm. The main advantage of this approach is that it is much more
versatile concerning which photon wavelengths, bandwidth and flux
rates can be generated.

It is worth noting that in 2009, Shapiro et al. [73] demonstrated
an OCT scheme based on induced coherence and large parametric
gain, using a pair of bright pseudo-thermal beams possessing phase-
sensitive cross correlation. This proposal solves the power limitation
of our proposal, although it still has a low axial resolution (∼ 2 mm)
and perform the measurements with IR light beams.

Returning to our proposal’s limitations, adopting Fourier or spec-
tral domain OCT (FD-OCT) instead of time-domain OCT (TD-
OCT) can result in a reduction in acquisition times. Experimentally,
it is as simple as measuring the signal spectrum with a standard
visible spectrometer without having to scan the phase of one of the
interferometer arms.

Furthermore, as shown in Ref. [16], utilizing a single crystal con-
figuration improves robustness and simplicity. The scheme is an
SU(1,1) nonlinear interferometer rather than an induced coherence
interferometer. Because fewer optical elements are required, the risk
of loss and misalignment is reduced, which is advantageous for OCT.

Finally, the axial resolution of our OCT scheme (∼ 500 µm) is
very far from the values handled in standard OCT (∼ 3 − 12 µm).
The axial resolution of OCT is generally determined by the band-
width of the light employed, with the broader the bandwidth, the
higher the axial resolution. There are several approaches to enhance
the bandwidth of down-converted photons. We choose the easiest
solution: shorten the nonlinear crystal’s length. As a result, we will
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employ an identical nonlinear crystal as in the previous chapter, but
20 times shorter.

The scheme presented in this chapter is the product of all of these
considerations and experimental changes. It is an SU(1,1) nonlinear
interferometer that works in the high parametric gain regime of down-
conversion. The goal is to conduct a proof-of-concept experiment to
show that this approach can be used to perform FD-OCT of a sample.

4.2 Experimental setup

The experimental setup used is shown in Fig. 4.1. The pump laser
is the second-harmonic of a pulsed Nd:YAG laser (model PL2210A-
SH-TH, from EKSPLA) that generates 18 ps pulses at wavelength
λp = 532 nm and repetition rate of 1 kHz. A linear attenuator (not
depicted in Fig. 4.1) composed by a half-wave plate, a polarizing
beam splitter and a second half-wave plate is implemented to control
the mean power and the polarization of the pump beam.

A dichroic mirror (DM1) reflects the pump beam towards an
L = 1 mm periodically poled lithium niobate (PPLN) crystal that
generates by means of parametric down-conversion signal and idler
beams at central wavelengths λs = 810 nm and λi = 1550 nm, respec-
tively. The PDC process is Type-0, meaning that the pump, signal
and idler beams have the same vertical polarization.

The nonlinear crystal is mounted on top of an oven (PV10 from
Covesion) that is coupled to a temperature controller (OC1 from
Covesion) that allows for temperature adjustments with a 0.01 ◦C
precision and a maximum working temperature of 200 ◦C. In this
way, the spectral response of the nonlinear crystal can be tuned by
changing its temperature. The temperature of the PPLN crystal is
set at T = 123 ◦C, obtaining a signal spectrum bandwidth of 8 ± 1
nm at full-width half maximum (FWHM), measured with a visible
spectrometer (AvaSpec StarLine, from Avantes). The idler spectrum
bandwidth is 30 ± 3 nm, measured with an infrared spectrometer
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Figure 4.1: Experimental setup aimed at doing OCT based on an
SU(1,1) nonlinear interferometer in the high-parametric gran regime
of down-conversion. Laser: PL2210A/SH/TH (Ekspla). DM1,2:
dichroic mirrors. L1,2,3,4: lenses. PPLN : periodically-poled lithium
niobate crystal. M : mirror. PA: piezoelectric actuator. F : short-
pass filter. V designates vertical polarization with sub-indexes indi-
cating the wavelengths of the corresponding beams. With a flip mir-
ror, one can measure the flux rate of signal photons (Time-domain
measurement) or its spectrum (Fourier-domain measurement).

(AvaSpec NIRLine, from Avantes).

The pump beam is focused onto the nonlinear crystal by means of
lens L1 with focal length f1 = 200 mm. The pump beam size at the
crystal is 40 ± 10 µm (FWHM). The signal s1 and the idler i1 beams
are separated by a short-pass dichroic mirror (DM2) with transmis-
sion edge at 950 nm (DMSP950T, from Thorlabs). The signal s1 and
the pump are transmitted while the idler beam is reflected, forming
the two arms of the interferometer.

The reference arm of the interferometer is formed by the signal
s1 and pump beams. Both are collimated using a lens L2 with focal
length f2 = 200 mm. On the other hand, the idler i1 beam constitutes
the probing arm of the interferometer and is collimated using the lens
L3 with focal length f3 = 150 mm.
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The pump and signal beams are reflected by a mirror (M) that
is mounted into a piezoelectric actuator (PA) to scan the phase if
needed. After that, both beams are focused back onto the nonlinear
crystal by means of lens L2. The distance travelled by the signal
s1 before re-entering the nonlinear crystal is 2zs. At the same time,
the idler i1 beam interacts with an object with reflectivity ri and is
focused back on the crystal by the lens L3, travelling a total distance
2zi.

Finally, parametric amplification takes places due to the second
pass of the pump by the nonlinear crystal. The signal s2 and idler
i2 beams are generated. Both are transmitted by the dichroic mirror
(DM1) and the idler radiation is filtered out by a short-pass filter
(F ). A flip mirror allows to change between two different detection
devices: a CCD camera and a spectrometer. The results presented
in the next section were taken using both detection systems.

In the first case, the signal s2 is reflected by the mirror to a
CCD camera (SP620U, from Spiricon) placed in the Fourier plane
of a lens L4 (focal length f4 = 100 mm). In this scenario, when
the phase of the pump beam is scanned by the piezoelectric actuator
(PA), interference fringes arise if the arms of the interferometer are
balanced up to the coherence length of the PDC radiation.

On the other hand, if the flip mirror is removed from the signal s2
path, the signal beam is spatially filtered in the Fourier plane of lens
L4 and fiber-coupled to a visible spectrometer (AvaSpec StarLine,
from Avantes). In this scenario, the signal s2 spectrum is directly
measured. The spectral interference is observed without scanning
the phase, regardless of the optical path difference [74], as long as
the fringes are broader than the spectrometer resolution.
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4.3 Mathematical analysis of OCT in the

high parametric gain regime

The results presented in the next section are based on measurements
of the signal beam spectrum S(k) (Fourier-domain measurement) or
signal photons flux Ns (time-domain measurement). The complete
derivation of both quantities for an SU(1,1) nonlinear interferometer
is done in detail in Section 2.3.1. In particular, the OCTmeasurement
that we present next is in the Fourier domain. This means that
when a sample is introduced into the idler i1 path, the spectrum of
the signal s2 beam is measured without scanning any mirror. The
probed sample is a single layer with two facets. In this case, its field
reflectivity can be written as [61]

r(k) = r1 + r2 exp
[
2i(k0n0 + kng)d

]
, (4.1)

where r1,2 are the field reflection coefficients from the first and the
second facets, respectively. Note that the power reflection coefficients
are R1,2 = |r1,2|2. n0 is the refractive index at the central frequency,
ng is the group index, d is the sample thickness, k = Ω/c is the
wavenumber deviation from the central wavenumber k0 = ω0/c, and
Ω is the angular frequency deviation from the central frequency ω0.

The spectral density of the signal photons s2, which is the quantity
that is measured by a spectrometer, is

S(k) = |Vs(k)|2
[
1− |r(−k)|2

]
+

+

∣∣∣∣Us(k)Vs(k)e
iφs(k) + r∗(−k)U∗

i (−k)Vs(k)e
−iφi(−k)

∣∣∣∣2, (4.2)

where φs(k) = 2(k0
s + k)zs and φi(k) = 2(k0

i + k)zi. 2zs and 2zi
are the distances traversed by the signal and idler photons before
entering the nonlinear crystal. The expressions for the Bogoliubov
complex functions Us,i(k) and Vs,i(k) are presented in Section 2.3.1
[Eqs. (2.23) and (2.24)].
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As detailed in Section 3.2.2, a Fourier transform procedure is ap-
plied to the measured spectrum S(k) to experimentally determine
the position of the sample’s facets and their reflection coefficients.
Although the shape of the spectrum S(k) in the low and high para-
metric gain regimes are qualitatively similar, it is only possible to
obtain an analytical solution for the Fourier transform in the low
parametric gain regime [61].

On the other hand, we carry out a time-domain measurement
to investigate the dependence of the signal s2 beam’s interference
visibility on the sample’s reflectivity located in the idler i1 path.
That is, the flux of signal s2 photons is measured while the phase is
scanned, for different reflectivity values of the sample. The general
expression for the interference visibility is described in Section 2.3.1.

4.4 Experimental results

The key to the results presented in this chapter is that the measure-
ments have been made in the high parametric gain regime of down-
conversion. The concept of parametric gain has been defined and
explained in length on these pages, including what it means, what it
depends on, and what are its implications. However, no instructions
on how to quantify it experimentally have been provided. Now is the
time to do so.

The parametric gain G can be found from the nonlinear depen-
dence of the measured PDC intensity I on the pump average power
P (see Fig. 4.2) [43]. The fitting function [75]

I = I0 sinh
2
(
B
√
P
)
, (4.3)

is based on Eqs. (2.27) and (2.29), with I0 and B being the fitting
parameters. The gain must be measured around the zero mismatch;
otherwise, one gets an averaged value ofG. This is why the PDC radi-
ation must be well filtered in q and Ω, near the frequency-degenerate
point. To do so experimentally, the signal photons are filtered very
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narrowly with a band-pass filter (810 ± 2 nm) and its intensity is
measured in the Fourier plane of a lens f = 50 mm.
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Figure 4.2: Measured dependence of the PDC intensity on the pump
power (blue dots) and its fit function (red line), according to Eq.
(4.3). The error bars designate the standard deviation of the experi-
mental measures.

After the fitting and proper filtering, each pump power corre-
sponds to a certain gain value

G = B
√
P . (4.4)

In our experiment, we measure the parametric gain for the first pass
by the nonlinear crystal to be G = 1.7± 0.2. Thus, the total number
of idler photons probing the sample is estimated to be about ∼ 13000
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photons, which is equivalent to ∼ 7 paired photons per mode, clearly
corresponding to the high parametric gain regime of PDC. The total
energy of the idler photons probing the sample is 1.6 pJ, which leads
to a mean power value of 1.6 pW1.

Apart from the value of the parametric gain, the nonlinear depen-
dence of the interference visibility on the reflectivity of the sample
is another crucial evidence that we are in the high parametric gain
regime of PDC. To study this relation, the reflectivity of a sample
is mimicked by a variable neutral density filter (NDC-50C-4M, from
Thorlabs) and a highly reflecting mirror.

We measure the flux rate of signal s2 photonsNs = 1/(2π)
∫
S(k)dk

as a function of the path length difference between the two arms of
the interferometer, scanned by a piezoelectric actuator PA (see Fig.
4.1). The visibility of the interference fringes is assessed according to
the definition V = (Nmax

s −Nmin
s )/(Nmax

s +Nmin
s ), where Nmax

s and
Nmin

s are the maximum and minimum of the flux rate, respectively.
The procedure is repeated for several values of the reflectivity of the
sample ri, i.e. for several positions of the neutral density filter placed
in the idler i1 path.

Note that the two arms are balanced up to the coherence length
of the PDC radiation (lc ∼ λ2/∆λ = 82 µm), where ∆λ is the band-
width of PDC at FWHM. The phase scan is performed in a small
region (0.5 µm) around the maximum visibility point. Figure 4.3
shows the measured interference visibility (blue dots) for G = 1.7
and calculated for G = 0.4 (red dashed line), G = 1.7 (green solid
line) and G = 4.8 (blue dashed line), according to Eq. (2.39). The
insets of Fig. 4.3 show some examples of the measured interference
patterns when scanning the phase. The maximum visibility value
measured is V = 90%.

We consider a reflectivity rs = 0.6 for the signal beam that takes
into account losses in optical elements along the signal s1 path (double
pass through an uncoated lens and the dichroic mirror) and possible
spatial mode mismatch. Note that in the very high parametric gain

1See Appendix F for a detailed explanation on how to estimate all these values.
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Figure 4.3: Interference visibility as a function of the idler reflectivity.
Blue dots are experimental data, error bars are given by the standard
deviation, and lines are theoretical predictions. We consider rs =
0.6. Dashed red curve: G = 0.4 (low gain regime); green solid line:
G = 1.7; dashed blue line: G = 4.8. For the theoretical curves, we
choose the path length difference ∆z that provides the best visibility.
The error bars designate the standard deviation obtained by error
propagation (see Appendix I for further details).

(blue dashed line) case, if the signal and idler losses are equal, rs = ri,
the visibility value is 1.

The green solid line is the case studied in our experiment, which
clearly shows the expected nonlinear dependence. The experimen-
tal results are in good agreement with the theory. These nonlin-
ear relationships have also been observed for configurations where
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the first parametric down-converter is seeded with an intense signal
beam [11,76].

This nonlinear dependence is an indication of the sensitivity en-
hancement of OCT: for lower reflectivity values, which is the case of
interest for multiple OCT applications, the slope increases with the
gain. Concretely, the slope goes from 1 for the low gain regime [Eq.
(2.43)] to 2 for the high gain regime [Eq. (2.44)]. This last value is
also characteristic of standard OCT systems.

The final results in this work demonstrate Fourier or spectral-
domain OCT (FD-OCT) using this high-gain SU(1,1) nonlinear in-
terferometer. In contrast to time-domain OCT (TD-OCT), which
requires a value of path unbalancing ∆z near to zero (within the
coherence length of the source), FD-OCT analyzes the modulation
of the spectrum of the output signal beam and requires a non-zero
value of the path length difference. This is the reason why we start
by determining the path length difference between the two arms of
the interferometer.

Figure 4.4 summarizes the main results on the path unbalancing
∆z characterization. We move the position of a mirror in the sig-
nal path to modify the path difference between the two arms of the
interferometer. Figure 4.4(a) and (b) show the measured spectrum
for two different values of the path length difference: ∆z1 = 300 µm
and ∆z2 = 220 µm. The spectral modulation visibility is affected by
signal path losses as well as the resolution of the spectrometer (δλ ∼
1.2 nm). Despite this, we can still obtain relevant information.

Figure 4.4(c) depicts the Fourier transform of the spectra shown
in Figs. 4.4(a) and (b). The separation between the two peaks is
80 µm, which is exactly the difference between the two unbalancing
values (∆z1−∆z2) considered. Finally, the procedure is repeated for
several unbalancing positions. Figure 4.4(d) shows the position of the
Fourier transform peaks as a function of the path length difference.
The experimental data is in good agreement with the theoretical
prediction.

There are some limitations to consider when resolving the spectral
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Figure 4.4: (a,b) Spectra measured for two different optical path dif-
ferences ∆z1,2 (solid line). The dotted lines stand for the spectrum
when the idler arm is blocked. (a) ∆z1 = 300 µm; (b) ∆z2 = 220 µm.
(c) Zoom of the Fourier transforms of the (a,b) spectra after resam-
pling to wavenumber k. The position of the peaks assesses directly
the unbalancing between the arms of the interferometer. The peak
separation is 80 µm, corresponding to the path difference between
∆z1 − ∆z2. (d) Position of the Fourier transform peak versus the
path difference. Stars are the experimental data, and the dashed line
is the theoretical dependence assuming exact equality.

modulations, basically related to the bandwidth of the source ∆dc

and the resolution of the spectrometer δλ. That is, the average fringe
separation in angular frequency (2πc/|∆z|), must be smaller than the
PDC bandwidth and greater than the resolution of the spectrometer.
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This constraint can be written in the form

λ2
s

∆λs

≪ |∆z| ≪ λ2
s

δλ
. (4.5)

In our experiment, we have ∆λs = 8 nm and δλ = 1.2 nm, so
that the restriction on the path unbalancing bounds reads as 82 µm
≪ |∆z| ≪ 546 µm.

These results are the prelude to the FD-OCT measurement, in
which the objective is to perform a 1D axial scan of a single layer sam-
ple with two reflective facets. Particularly, we probe a d = 100 µm
thickness microscope glass slide, with group index ng ∼ 1.5. Thus,
the optical path length is 2ngd ∼ 300 µm. We measure the spec-
trum S(λ) of the signal s2 beam with a visible spectrometer. After
proper re-sampling to wavenumber k, a Fourier transform procedure2

is applied to obtain information of the sample.
The 1D FD-OCT measurement performed in our experiment is

shown in Fig. 4.5. As explained in Section 3.2.2, the Fourier trans-
form of a single layer sample with two reflective facets must show
seven peaks. In our case, only three peaks are observed. This is
because the resolution of the spectrometer used (δλ) does not al-
low to resolve the spectral modulation caused by the sample when
|∆z1|, |∆z2| ≪ 82 µm, with ∆z1,2 being the path length differences
corresponding to each of the two facets. Both of them must fulfill
the restriction shown in Eq. (4.5).

Despite this, the distance between the peaks located at z ̸= 0
shown in Fig. 4.5 is twice the optical length of the sample3 2ngd. The
axial resolution of our OCT scheme can be assessed by the bandwidth
of the Fourier transform peaks at FWHM, 60 µm. Of course, this
value can be readily improved by engineering phase-matching condi-
tions of nonlinear crystals [64,67,68,77] and by spectral shaping [78].

2See Appendix G for further details on the FT method employed for OCT.
3See Appendix H for a detailed explanation on why the FT of the spectrum

of the signal beam shown in Fig. 4.5 shows three peaks, and why the distance
between peaks is 2ngd.
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Figure 4.5: Fourier transform of the measured spectrum after re-
sampling it to wavenumbers. The inset shows the measured spectrum
S(λ). The separation between the two lower peaks corresponds to the
measured optical path length of the sample, 325 µm. The inset shows
the measured spectrum S(λ).
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CHAPTER

FIVE

COMPLEMENTARITY
RELATIONSHIP IN

NONLINEAR
INTERFEROMETERS
BASED ON INDUCED

COHERENCE

This chapter considers a nonlinear interferometer based on induced
coherence. It address a fundamental question: how to measure and
quantify the role of the distinguishability of signal photons that orig-
inate in different nonlinear crystals and its influence on the degree of
first-order coherence induced. The first part of this chapter is devoted
to explaining what is the relationship between quantum interference,
measured as visibility of a interference pattern, and distinguishabil-
ity. We introduce and demonstrate a novel scheme to quantify such
distinguishability based on the measurement of second-order correla-
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tion functions. Surprisingly, this measurement is found to be valid for
both the low and high parametric gain regimes of down-conversion.
This allows us to write down a complementarity relationship between
distinguishability and first-order coherence.

5.1 Introduction

Quantum interference happens when there are several alternatives
for an event to happen and there is no way, even in principle, to
distinguish between them. This is one of the most profound and
fundamental statements coming from quantum mechanics. Richard
Feynmann considered quantum interference as the greatest mystery
in quantum mechanics [79].

The possible alternatives can be identified as different possible
spatial paths that a quantum entity (i.e., a photon, an atom, etc.)
can undergo before reaching a detector. Quantum interference is
observed in a detector if, and only if, each quantum detection can
NOT be associated with any particular path linking the detector and
the quantum source [80]. The gold standard for illustrating this idea
is the double-slit experiment, in which interference is only observed
if the paths are indistinguishable [81].

The most common way to quantify quantum interference is the
visibility of the interference fringes of an interference pattern. On
the other hand, path distinguishability is usually associated with the
available amount of which-way information. What is interesting is
that both quantities are complementary and can be quantitatively
related. In diverse interferometric scenarios, simple expressions of
the form D2 + V 2 = 1 have been derived [82–84], where D is the
distinguishability and V the visibility of the interference pattern.

There are lots of theoretical papers on this subject, however there
aren’t many experiments. One experiment by Rempe’s group is ar-
guably the most important [85–87]. They use a double-slit configura-
tion to measure the interference of Rubidium atom trajectories, and
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used as path witness the quantum internal state of the atoms, which
can change depending on which path the atoms take. Interestingly,
the observation of no interference in this which-way experiment can-
not be attributed to the ’back action’ of path detection on the atom’s
momentum, because it is too little to explain the atomic motion. As
a result, rather than the uncertainty principle, they attribute it to
correlations between the which-way detector and atomic motion.

The concept of distinguishability was given an entirely new per-
spective when the idea of induced coherence was introduced in the
early 1990s. Rather than considering alternatives like the path each
of the interfering photons takes, the alternatives are the creation of
the photon pairs themselves. The signal photons that are combined
in the interferometer, s1 and s2, can be generated in different non-
linear crystals. The idler photons, i1 and i2, that accompany the
corresponding signal photons can act as witnesses of the origin of the
signal photons. If the idler photons are perfectly overlapped, there is
no information about which crystal the signal photons originate, the
signal photons show first-order coherence and we observe interference
with high visibility between them. If we can distinguish the origin of
the idler photons, and so the origin of the signal photons, there is no
induced coherence and we observe no interference between the signal
photons.

The idea of induced coherence was put forward and demonstrated
in the low parametric gain regime of down-conversion, where paired
photons are generated in one nonlinear crystal or the other. In this
scenario, the explanation given above is absolutely valid. However,
induced coherence is still present in the case of high parametric gain
[29, 52], when signal and idler pairs are generated in both crystals
simultaneously. In this case the usual explanation is that there is
a phase relationship between input and output beams in the second
nonlinear crystal that induce coherence between the two signal beams
that are made to interfere. Some even discuss the quantum versus
non-quantum character of this regime compared to the case of low
parametric gain regime.
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The question is: Are two different explanations necessary to de-
scribe the physics in both regimes? In this chapter we will show that
this is not the case. We can explain the concept of induced coherence
in all regimes with ideas based on information concepts, as it was
originally done. We can make use of the explanation given for the
low parametric gain regime presented in 1991 [9]. Here we introduce
and demonstrate experimentally a new measure of distinguishability
that applies to both low and high parametric gain regimes, which is
based solely on second-order correlation functions g

(2)
si between signal

and idler photons. This allows us to write an equality of the type
D2 + V 2 = 1 for both gain regimes of down-conversion.

We should mention that there have been experiments utilizing
quantum erasing of which-way information [88], that needs to mea-
sure correlations (coincidence counts) in order to delete path infor-
mation. In our experiments on induced coherence we always measure
singles to observe an interference pattern.

5.2 Induced coherence: a Quantum In-

formation view

Figure 5.1 shows a sketch of an interferometer that makes use of
the induced coherence effect. The study of the first-order correlation
function g

(1)
12 between signals s1 and s2 has been done in detail in

Section 2.3.1. The aim here is to investigate the second-order corre-
lation functions g

(2)
13 and g

(2)
23 between signal s1 and s2 and the idler

i3 to determine a measurable variable of distinguishability.

Analysis in the low parametric gain regime

Parametric down-conversion efficiency is so low that we can safely
assume that paired photons are generated in one nonlinear crystal
or in the other, but never simultaneously in both crystals. In this
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Figure 5.1: Simplified sketch of an induced coherence experimental
setup. DM : dichroic mirror; r and t are the reflection and transmis-
sion coefficients of a beam splitter that models losses in the idler path.
s1: signal photon generated in the first NL-crystal; s2: signal pho-
ton generated in the second NL-crystal; i1: idler photon generated in
the first NL-crystal; i2 idler photon generated in the first nonlinear
crystal and reflected from the BS; i3: idler photon generated in the
second nonlinear crystal, or generated in the first nonlinear crystal
and transmitted at the BS.

scenario, the quantum state of signal-idler photons is

|Ψ⟩si =
1√
2
|1⟩s1 |0⟩s2

[
r |1⟩i2 |0⟩i3 + t |0⟩i2 |1⟩i3

]
+

+
1√
2
|0⟩s1 |1⟩s2 |0⟩i2 |1⟩i3 . (5.1)

The first term corresponds to the generation of the signal-idler pair
in the first nonlinear crystal, and the second term corresponds to the
generation in the second nonlinear crystal. The quantum state that
describes the idler photons in the basis {|1⟩i1 |0⟩i3 , |0⟩i1 |1⟩i3} is

ρ1 =

(
|r|2 rt∗

r∗t |t|2
)
, (5.2)
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where r and t are the reflectivity and transmissivity values of the
beamsplitter that simulate the losses experienced by the idler i1, with
|r|2 + |t|2 = 1. If the signal and idler photons are generated in the
second nonlinear crystal, the quantum state of the idler photons in
the same basis is

ρ2 =

(
0 0
0 1

)
. (5.3)

The quantum state of the witness idler photons is

ρw =
1

2
ρ1 +

1

2
ρ2 =

1

2

(
|r|2 rt∗

r∗t |t|2
)
+

1

2

(
0 0
0 1

)
=

1

2

(
|r|2 rt∗

r∗t 1 + |t|2
)
.

(5.4)
The distinguishability D can be defined as the trace distance between
the density operators ρ1 and ρ2 [84]

D =
1

2
Tr
∣∣∣ρ1 − ρ2

∣∣∣. (5.5)

The eigenvalues λ1,2 of

1

2
(ρ1 − ρ2) =

(
|r|2/2 rt∗/2
r∗t/2 −|r|2/2

)
, (5.6)

are
λ1,2 = ±|r| = ±

√
1− |t|2, (5.7)

The distinguishability D is

D =
1

2
(|λ1|+ |λ2|) = |r| =

√
1− |t|2. (5.8)

Since the visibility V of the interference fringes of induced coherence
experiments in the low parametric gain regime is

V = |t|, (5.9)

an Englert-type [84] equality of the form

V 2 +D2 = |t|2 + (1− |t|2) = 1, (5.10)
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is fulfilled.
In the Heinsenberg picture, the second-order correlation function

g
(2)
13 between signal s1 and idler i3, and the second-order correlation

function g
(2)
23 between signal s2 and idler i3 are [36,89]

g
(2)
13 = 1 +

|t|2

1 + |t|2
B

R
, (5.11)

and

g
(2)
23 = 1 +

1

1 + |t|2
B

R
, (5.12)

where B is the down-conversion bandwidth and R is the flux rate
of paired photons. This expressions are valid for a temporal delay
between signal and idler photons smaller than 1/B. Otherwise, g

(2)
13 =

g
(2)
23 = 1. Substituting Eqs. (5.11) and (5.12) in Eq. (5.8) we have

D =
√
1− |t|2 =

√√√√g
(2)
23 − g

(2)
13

g
(2)
23 − 1

, (5.13)

which constitutes a measurable value of the distinguishability D valid
for an induced coherence scheme.

Analysis in the general case, including the

high and low parametric gain regimes

In order to extend this analysis to the general case of any photon
flux, let us consider the single-mode approximation. In this scenario,
the Bogoliubov transformations that state the input-output operator
relations (see Fig. 5.1) in the first nonlinear crystal are

âs1 = Ub̂s + V b̂†i ,

âi1 = Ub̂i + V b̂†s, (5.14)
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with |U |2 − |V |2 = 1. The idler i1 interacts with a lossy object, thus

âi1 =⇒ tâi1 + f̂ , (5.15)

with t being the transmissivity. The operator f̂ fulfills [f̂ , f̂ †] =
1 − |t|2. The input-output relations in the second nonlinear crystal
read

âs2 = Uĉs + V â†i1 ,

âi3 = Uâi1 + V ĉ†s. (5.16)

The normalized second-order correlation functions between signal s1
and the idler photon i3 [g

(2)
13 ] and between signal s2 and the idler

photon i3 [g
(2)
23 ] are

g
(2)
13 =

⟨â†s1 â
†
i3
âi3 âs1⟩

⟨â†s1 âs1⟩⟨â
†
i3
âi3⟩

, (5.17)

g
(2)
23 =

⟨â†s2 â
†
i3
âi3 âs2⟩

⟨â†s2 âs2⟩⟨â
†
i3
âi3⟩

. (5.18)

The expected values can be written as

⟨â†s1 âs1⟩ = |V |2, (5.19)

⟨â†s2 âs2⟩ = |V |2
(
1 + |t|2|V |2

)
, (5.20)

⟨â†i3 âi3⟩ = |V |2
(
1 + |t|2|U |2

)
, (5.21)

⟨â†s1 â
†
i3
âi3 âs1⟩ = |V |2

[
|V |2 + |t|2|U |2(1 + 2|V |2)

]
, (5.22)

⟨â†s2 â
†
i3
âi3 âs2⟩ = |V |2|U |2

[
|t|4(|U |4 + |V |4 + 1) + 2|t|2(|V |2 − 1) + 1

]
.

(5.23)
Substituting these values on Eqs. (5.17) and (5.18), the final expres-
sions of the normalized second-order correlation functions are

g
(2)
13 = 1 +

|t|2|U |4

|V |2
[
1 + |t|2|U |2

] , (5.24)
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and

g
(2)
23 = 1 +

|t|4|U |6 + 2|t|2|U |4 − 2|t|4|U |4 + |U |2(1− |t|2)2

|V |2
[
1 + |t|2|V |2

][
1 + |t|2|U |2

] . (5.25)

Finally, substituting Eqs. (5.24) and (5.25) into the definition of the
proposed distinguishability D [Eq. (5.8)], we obtain

D =

√
1− (1− |V |2)|t|2 − |t|4|V |2

1 + 2|t|2|V |2 + |t|4|V |4
, (5.26)

which constitutes a measurable distinguishability D value valid for
any parametric gain regime.

As detailed in Appendix D, the visibility of the interference pat-
tern in the high parametric gain regime is not equivalent to the degree
of coherence |g(1)12 |, since the flux rate of signal photons s1 and s2 may
be different. The general expression of the degree of coherence for an
induced coherence scheme is [29,52]

g
(1)
12 = |t|

√
1 + |V |2

1 + |V |2|t|2
. (5.27)

It can be easily demonstrated that the following equality is fulfilled

D2 + [g
(1)
12 ]

2 = 1, (5.28)

using Eqs. (5.26) and (5.27). Figure 5.2 shows some examples of this
relationship for different values of the parametric gain. The impor-
tant point to remark here is that we have derived a complementarity
relationship that relates the first-order induced coherence between
signal photons s1 and s2 and the distinguishability.
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Figure 5.2: Complementarity relationship between the first-order cor-
relation function of signal photons s1 and s2, and the distinguisha-
bility D, for different values of the parametric gain G. The red solid
curves stand for the first-order coherence g

(1)
12 ; the blue solid line stand

for the distinguishability D; the black dashed line stand for the sum
D2 + [g

(1)
12 ]

2. (a) G = 0.01; (b) G = 1.7 and (c) G = 10.
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5.3 Experimental setup

The experimental setup is depicted in Fig. 5.3. It is essentially the
same setup used in Ref. [56], which is explained in detail in Chapter
3. The main difference is that now the idler photons are measured
to perform coincidence measurements with the signal photons. Let
us summarize the key elements of the experiment, with a special
emphasis on how we perform coincidence measurements.

Figure 5.3: Experimental setup aimed at observing optical coherence
and quantum correlations. In order to measure the first-order coher-
ence function, we only use one the single-photon detector D2. For
measuring second-order correlation functions, we use detectors D1

and D2.

Our setup is essentially a nonlinear interferometer made up of two
identical sources separated and pumped by the same pump beam.
The pump is the continuous-wave (CW) Verdi V10 model (Coher-
ent), with a central wavelength of λp = 532 nm. The PDC sources
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are two 20-mm-long PPLN crystals mounted in ovens, to guaran-
tee the necessary phase matching to generate the signal-idler pair of
photons with maximum efficiency. The central wavelengths of the
signal and the idler are λs = 810 nm and λi = 1550 nm, respectively.
The idler photon generated in the first crystal experiences losses in-
troduced by a neutral density filter, before being injected into the
second crystal. The idler photons generated in both crystals (which
are ideally indistinguishable) are coupled to a single-mode fiber and
measured by the D1 detector. On the other hand, the signal photons
generated in both crystals are recombined in the last polarizing beam
splitter PBS before being detected by D2.

The goal is to evaluate the second-order correlation functions g
(2)
13

and g
(2)
23 by measuring coincidences (simultaneous detection) between

signal s1 and idler i3 and between signal s2 and idler i3, as function of
the losses experienced by the idler i1. In our case, the measurements
of coincidences must be done between photons with differing cen-
tral wavelengths, which implies the use of two separate and different
single-photon detectors, one operating in the visible range (signal)
and the other in the near infrared (idler). Because the electronics,
response times and detection windows of both detectors are obviously
different, the challenge will be to devise a way to measure coincidences
in both.

To do this, it is necessary to understand how both single-photon
detectors operate. We use two single-photon avalanche photodiodes
(APD), which are semiconductor-based photodetectors. The working
principle of APD’s is based on the photoelectric effect: the absorbed
photons excite the carriers (electrons and holes) from the thin semi-
conductor film layer. APD’s operate with a relatively high reverse
voltage (typically tens or hundreds of volts), that allows the carriers
to be strongly accelerated in the strong internal electric field, so that
they easily generate secondary carriers. This avalanche process am-
plifies the photocurrent by a significant factor, also called gain. The
signal photons are detected by a silicon-based single-photon count-
ing module SPCM-AQRH-14-FC (Perkin-Elmer), that detects single
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photons over the wavelength range of 400 nm to 1060 nm. The pho-
ton detection efficiency at 810 nm is approximately 60 %. The signal
photons are coupled to the detector via single mode fiber. Each pho-
ton detection generates a 30 ns width TTL-level electronic signal that
is available at the output BNC connector.

The idler photons are detected by a single-photon detection mod-
ule id201 (idQuantique) based on indium gallium arsenide (InGaAs).
This module detects IR photons with an efficiency up to 25 %. The
idler photons are coupled via single mode fiber and each detection
generates a TTL-type electronic signal of 100±10 ns width. It has an
adjustable detection pulse width from 2.5 ns to 100 ns and a tunable
delay between 0 and 25 ns.

The coincidence measurements are performed in the following
way: the Perkin-Elmer output detection is used as the input trig-
ger for the idler photon detection. As a result, an idler count is
directly a coincidence. To make that happen, the photons’ arrival
times at their detectors must be fine-tuned. Not only that, but we
must additionally account for the detectors’ response times as well
as the delay provided by the BNC connection that links them.

Figure 5.4 shows a schematic with the time lines of both photons
and the id201 detector. The time of arrival of the idler photon to the
detector needs to be adjusted so that the condition: tidler ≥ tsignal+8
ns, is fulfilled. To do this, we must use the right fiber and coaxial
cable lengths. The signal and the idler photons’ single mode optical
fiber lengths in the experiment are lsignal = 2 m and lidler = 12 m,
respectively. The length of the BNC coaxial cable that connects both
APD’s is lBNC = 0.40 m.

5.4 Experimental results

The goal is to measure the second-order correlation function between
signal and idler photons generated in the two SPDC crystals, g

(2)
13 and

g
(2)
23 , as a function of the losses introduced in the idler i1 path. The
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Figure 5.4: Temporal lines for both photons and the idQuantique
id201 detector. The detection of the signal photon generates an elec-
tronic signal that serves as in input trigger to detect a coincidence
with the id201 detector. To account for a coincidence, the time of
arrival tidler of the idler photon to the detector needs to be adjusted
so that it falls within the detection window.

theoretical expressions are shown in Eqs. (5.11) and (5.12). Now the
question is: how can such functions be evaluated using coincidence
measurements?

Let us answer it step by step. First, in an experimental setup the
rate of coincidence counts R13 in a detection time window TR is [90]

R13 = η13

∫
dτ < a†s1(t)a

†
i3
(t+ τ)ai3(t+ τ)as1(t) >=

=
η13
η1η3

R1R3TR

[
1 +

Tc

TR

B

R

]
,

(5.29)

where η13 is the efficiency of coincidence detection, R1,3 is the mea-
sured singles flux rate, η1,3 are singles efficiencies, TR is the detection
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time and Tc is the coherence time (inverse bandwidth) of the paired

signal-idler photons. We write g
(2)
13 (τ) = 1 + γ(τ). Therefore

γ(0) =
R13 − ηR1R3TR

ηR1R3Tc

, (5.30)

where η = η13/(η1η3). The value of γ(0) and hence the correlation

function g
(2)
13 (0) can be assessed using the experimental values of R13,

R1, R2 and R3. The procedure is repeated for different values of the
reflectivity r of the neutral density filter introduced in the idler path.

Furthermore, Eqs. (5.29) and (5.30) show that given a constant
temporal detection window TR, flux rates should be as low as possible
(RTR << 1) and total detection windows (T0) as long as possible
(T0 >> TR). The experimental parameters are set to be:

• Detection (coincidence) window width: TR = 2.5 ns.

• Total detection window width: T0 = 30 s.

• Trigger (signal) flux rate: R1 = 2000 Hz.

• Idler singles flux rate: R3 = 2000 Hz.

Figure 5.5 illustrates the coincidence countsR13 andR23 measured
as a function of the delay between the signal photons and the idler,
for different values of the reflection coefficient r introduced by the
NDF. Signal s1 and idler coincidences are affected by the value of
r, which has a direct impact on the signal-idler correlation. On the
other hand, the value of r is observed not to have any effect on the
coincidences between signal s2 and idler i3, as expected.

Finally, using Eqs. (5.29) and (5.30), the normalized second-order

correlation functions g
(2)
13 and g

(2)
23 can be assessed from the maximum

values of R13 and R23 and the singles flux rates R1, R2 and R3, for
each reflection coefficient r. Figure 5.6 shows both the experimental
data and the theoretical curves, showing a very good agreement.
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Figure 5.5: Measured coincidences counts (R12) for different values
of the reflection coefficient (r) as a function of the temporal delay.
LEFT: Coincidences counts between signal s1 photons and idler pho-
tons. The different curves correspond to different values of the idler
losses: |r| = 1.0; |r| = 0.8; |r| = 0.6; |r| = 0.4; |r| = 0.2 and |r| = 0.
RIGHT: Coincidences counts rate between signal s2 photons and idler
photons. The different curves correspond to different values of the
idler losses: |r| = 1.0; |r| = 0.5 and |r| = 0.

Once we have measured the second order correlation functions
dependence on the reflection coefficient, we can calculate the pro-
posed distinguishability according to Eq. (5.13). Figure 5.7 shows
both theoretical and experimental values of visibility (red) and dis-
tinguishability (blue) as a function of the reflection coefficient. The
experimental results are in good agreement with the theory.
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Figure 5.6: Normalized second-order correlation functions (g
(2)
13 and

g
(2)
23 ) as a function of the reflection coefficient (r). The blue dots

correspond to calculated values from experimental data of g
(2)
13 and

the red ones for g
(2)
23 . The theoretical curves [Eqs. (5.17) and (5.18)]

make use of the measured values R1,2 = 2000 Hz and B = 1/580 fs.
The error bars designate the standard deviation of the experimental
measures.

In conclusion, we have demonstrated a profound link between
coherence (first-order correlation function) and correlations (second-
order correlation function). We have measured the dependence of the

normalized second-order correlation functions (g
(2)
13 and g

(2)
23 ) with the

reflection coefficient r that inroduce loss. This loss also tunes the de-
gree of coherence between signal photons. Distinguishability can be
quantified by how much difference there is between g

(2)
13 and g

(2)
23 , that

also determines the amount of coherence present between signal pho-
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Figure 5.7: Experimental and theoretical relationship between the in-
terference pattern visibility and the proposed distinguishability with
the reflectivity. (BLUE) Distinguishability. Circles: experimental
data; Solid line: theoretical prediction given by Eq. (5.13). (RED)
Visibility of the interference fringes. Circles: experimental data; Solid
line: theoretical prediction given by Eq. (5.9).

tons. This is valid for all regimes of parametric down-conversion.
The result obtained constitute a beautiful bridge between two fun-
damental aspects on quantum optics: coherence and correlations.
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CHAPTER

SIX

INDUCED COHERENCE:
STIMULATED EMISSION VS

QUANTUM
DISTINGUISHABILITY

In this chapter we consider the role of two explanations of the ori-
gin of induced coherence: stimulated emission and quantum distin-
guishability. There is an ongoing discussion about what is the true
role of both explanations [19,20]. We present experiments that show
that quantum erasure of distinguishing information in a nonlinear
interferometer based on the induced coherence effect can produce
interference between signal photons, independently if there is stim-
ulated emission or not. However, we need to consider coincidence
measurements. In the last section we present some calculations that
seem to suggest that stimulated emission should be present to observe
induced coherence, even in the low parametric gain regime.
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6.1 Introduction

In 1991 Zou, Wang and Mandel [9] demonstrated the effect of induced
coherence between two signal photons, s1 and s2, that originate in
different second-order nonlinear crystals. They claimed [91] that their
experiments demonstrated that was possible to induce coherence that
was not accompanied by induced emission. In current words, the
induced coherence between s1 and s2 photons took place even though
there was no stimulated emission on the second nonlinear crystal.

The observation of induced coherence was attributed to the lack
of distinguishing information concerning in which crystal the signal
photons are generated. If the idler photons that accompany signal
photons s1 and s2 are made indistinguishable, we have no information
on the origin of the signal photons and therefore they show first-
order coherence. As we have demonstrated in the previous chapter,
this kind of explanation can be summarized elegantly by means of
a complementarity relation between first-order coherence and path
distinguishability.

In an analysis of 2015 [19], it is said that interferometers based on
induced coherence rely on stimulated, rather than spontaneous, emis-
sions from the wavelength-converting phase conjugator. When one
analyzes induced coherence from the viewpoint of the Heisenberg ap-
proach, this seems to be an evident consequence. In the analysis,
as shown in Chapter 2, one needs to consider parametric amplifica-
tion, or stimulated emission, in the second nonlinear optical crystal.
However, from the viewpoint of Schrödinger’s approach, in the low
parametric gain regime one can analyze the induced coherence phe-
nomenon without considering the existence of stimulated emission.

It might be possible that stimulated emission in the second non-
linear crystal, and quantum distinguishability of the origin of signal
photons are just two complementary explanations for the same phys-
ical effects. In other words, we need stimulated emission to observe
quantum distinguishabilty, and thus first-order coherence. The pres-
ence of both effects might be inseparable. Research in the group of
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Prof. Anton Zeilinger [20] does not follow this line of thinking. They
consider that quantum distinguishability is the key element required
to observe stimulated emission, and they claim that stimulated emis-
sion is not responsible of the induce of mutual coherence between the
signal photons.

Here we want to contribute to this debate by showing that we
can observe mutual coherence between the signal photons eliminat-
ing the possibility of having stimulated emission in the second non-
linear crystal. We will show that if we erase the distinguishability on
the origin of the signal photons introduced by the idler photons, we
induce mutual coherence. However, we should consider coincidence
signal-idler measurements to achieve this, instead of measuring only
signal photons, a highly relevant characteristic of induced coherence
experiments. This is an important drawback towards resolving the
debate. However, we still think our experiments can illuminate some
aspects of the debate.

6.2 Mathematical analysis in the Sch-

rödinger picture

Figure 6.1 shows a simplified sketch of the experimental setup. The
aim is to investigate the second-order correlation function g(2) be-
tween the signal and idler photons as a function of the idler i1 polar-
ization state, and the losses it suffers. To do so we rotate, with the
help of a polarizer, the polarization of the idler photon i1 an angle
α. Losses (value of transmissivity t) are introduced with a neutral
density filter (NDF ). Signal-idler coincidence measurements are per-
formed to study the visibility of the interference pattern depending
on the angle α and the value of t.

The polarizer located in the idler i1 path rotates its linear po-
larization an angle α. This means that the polarization remains un-
changed for α = 0◦ and is rotated to an orthogonal state for α = 90◦.
The PDC process is Type-0, the pump, signal and idler all have the
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Figure 6.1: Simplified sketch of the experimental setup. The sig-
nal and idler beams are represented by the blue and red solid lines,
respectively. α: angle of polarization rotation; NDF : gradual neu-
tral density filter; DM : dichroic mirror; HWP : half-wave plate; P :
polarizer; D1: near infrared detector; D2: visible detector; PBS: po-
larizing beam splitter; M : mirror.

same vertical polarization. As a result α = 0◦ leaves the vertical
polarization of i1 invariant, while α = 90◦ rotates its polarization to
horizontal.

The polarizers P located in front of the detectorsD1,2 project both
signal and idler photons to a diagonal or anti-diagonal polarization
state. The half-wave plate located in the path of the signal pho-
ton generated in the second nonlinear crystal rotates its polarization
to horizontal, allowing its transmission through the final polarizing
beam splitter (PBS).
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6.2 Mathematical analysis in the Schrödinger picture

6.2.1 Case I: induced coherence with stimulated
emission

The polarization of the idler i1 after the polarizer is α = 0◦, the polar-
izer does not change the polarization of the idler photons. This case
is equivalent to a standard induced coherence scheme. We use the
Schrödinger approach in the low parametric gain regime to analyze
the experiment. The quantum state of signal-idler pairs is

|Ψ⟩ = 1√
2

{
t|1⟩s1|0⟩s2 |1⟩i2|0⟩i3 exp

(
iφs1 + iφi1

)
+

+r|1⟩s1|0⟩s2 |0⟩i2|1⟩i3 exp
(
iφs1 + iφi3

)]
(6.1)

+|0⟩s1|1⟩s2|1⟩i2 |0⟩i3 exp
(
iφs2 + iφi2

)}
where r and t are the reflection and transmission coefficients associ-
ated to the losses in the idler path, and φs1 , φs2 , φi1 , φi2 and φi3 are
the phases acquired by photons during propagation.

Photons s1 and s2 show orthogonal polarization. We project the
signal photons into diagonal (|1⟩Ds = [|1⟩Hs + |1⟩Vs ]/

√
2) and anti-

diagonal (|1⟩As = [|1⟩Hs − |1⟩Vs ]/
√
2) polarization states. We project

the idler photons into an equivalent basis. We have

|Ψ⟩ = 1

2
√
2

[
t exp

(
iφs1 + iφi1

)
+ exp

(
iφs2 + iφi2

)]
|1⟩Ds |1⟩Di

|0⟩i3

+
1

2
√
2

[
t exp

(
iφs1 + iφi1

)
− exp

(
iφs2 + iφi2

)]
|1⟩As|1⟩Ai

|0⟩i3 +

+
1

2
√
2

[
t exp

(
iφs1 + iφi1

)
+ exp

(
iφs2 + iφi2

)]
|1⟩Ds|1⟩Ai

|0⟩i3 +

+
1

2
√
2

[
t exp

(
iφs1 + iφi1

)
− exp

(
iφs2 + iφi2

)]
|1⟩As|1⟩Di

|0⟩i3 +

+
r√
2
exp

(
iφs1 + iφi3

)
|1⟩s1|0⟩i2|1⟩i3 . (6.2)

The probability to measure a coincidence between a signal photon
with diagonal polarization, or anti-diagonal polarization, and an idler
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photon with diagonal or anti-diagonal polarization, is

PDs,Di
=

1

8

[
1 + |t|2 + 2|t| cos

(
∆φs +∆φi + φt

)]
, (6.3)

PAs,Ai
=

1

8

[
1 + |t|2 − 2|t| cos

(
∆φs +∆φi + φt

)]
, (6.4)

PDs,Ai
=

1

8

[
1 + |t|2 + 2|t| cos

(
∆φs +∆φi + φt

)]
, (6.5)

PAs,Di
=

1

8

[
1 + |t|2 − 2|t| cos

(
∆φs +∆φi + φt

)]
, (6.6)

where the transmissivity is t = |t| exp(iφt), ∆φs = φs1 − φs2 and
∆φi = φi1 − φi2 . The visibility of the interference pattern of coinci-
dence measurements as a function of ∆φs is

V =
Pmax
Ds,Di − Pmin

Ds,Di

Pmax
Ds,Di

+ Pmin
Ds,Di

=
2|t|

1 + |t|2
, (6.7)

similarly for all other cases. On the other hand, the probability to
detect signal photons with diagonal polarization is

PDs = PDs,As + PDs,Ai
+

|r|2

4
=

=
1

4

[
1 + |t|2 + 2|t| cos

(
∆φs +∆φi + φt

)]
+

|r|2

4
. (6.8)

The visibility Vs of the interference fringes is

Vs = |t|, (6.9)

which corresponds to the well-known induced coherence effect.

6.2.2 Case II: induced coherence without stimu-
lated emission

The polarization of the idler i1 is rotated from vertical to horizontal
with a half-wave plate (HWP ). In this way, there is no stimulated
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emission at the second nonlinear crystal. Note that the parametric
down-conversion process is Type-0, requiring vertical polarizations of
all waves for the process to occur, so that a photon with horizontal
polarization passes through the crystal without participating in the
down-conversion process.

The quantum state of signal-idler pairs is now

|Ψ⟩ = 1√
2

{
t|1⟩s1|0⟩s2|0⟩i2 |1⟩i4|0⟩i3 exp

(
iφs1 + iφi1

)
+

+r|1⟩s1 |0⟩s2|0⟩i2|0⟩i4 |1⟩i3 exp
(
iφs1 + iφi3

)
+ (6.10)

+|0⟩s1|1⟩s2|1⟩i2|0⟩i4|0⟩i3 exp
(
iφs2 + iφi2

)}
.

We project the signal and idler photons into diagonal and anti-diagonal
polarization states. We have

|Ψ⟩ = 1

2
√
2

[
t exp

(
iφs1 + iφi1

)
+ exp

(
iφs2 + iφi2

)]
|1⟩Ds |1⟩Di

|0⟩i3

− 1

2
√
2

[
t exp

(
iφs1 + iφi1

)
+ exp

(
iφs2 + iφi2

)]
|1⟩As|1⟩Ai

|0⟩i3

− 1

2
√
2

[
t exp

(
iφs1 + iφi1

)
− exp

(
iφs2 + iφi2

)]
|1⟩Ds|1⟩Ai

|0⟩i3

+
1

2
√
2

[
t exp

(
iφs1 + iφi1

)
− exp

(
iφs2 + iφi2

)]
|1⟩As|1⟩Di

|0⟩i3

+
r√
2
|1⟩s1 |0⟩i2|1⟩i3 exp

(
iφs1 + iφi3

)]
. (6.11)

The visibility of the interference pattern of coincidence measurements
as a function of ∆φs is again

V =
Pmax
Ds,Di − Pmin

Ds,Di

Pmax
Ds,Di

+ Pmin
Ds,Di

=
2|t|

1 + |t|2
, (6.12)

similarly for all other cases.
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On the other hand, the probability to detect signal photons with
diagonal polarization is

PDs = PDs,As + PDs,Ai
+

|r|2

4
=

1

2
. (6.13)

The visibility Vs of the interference fringes is Vs = 0. There is no
induced coherence effect.

6.3 Experimental setup

The experimental setup is depicted in Fig. 6.2. It is essentially the
same setup described in detail in Chapters 3 and 5, with some subtle
differences regarding idler i1 and the experimental arrangement to
measure coincidences.

A CW pump laser Verdi V10 (Coherent) with central wavelength
λp = 532 nm illuminates two identical 20-mm-long PPLN crystals.
Signal and idler photons are generated with central wavelengths λs =
810 nm and λi = 1550 nm, respectively. The signal photons are de-
tected by a silicon-based APD SPCM-AQRH-14-FC (Perkin-Elmer).
The idler photons are detected by an indium gallium arsenide (In-
GaAs) avalanche photodiode id201 (idQuantique). The polarizer lo-
cated in the idler i1 path allows to rotate its polarization with an
angle α. The gradual neutral density filter (NDF) introduces losses,
characterized by a certain transmissivity t. The polarizers P placed
in front of the single-photon detectors D1,2 project the photons into
diagonal or anti-diagonal polarization states.

The method for measuring coincidences between signal and idler
photons is different from the one described in Chapter 5. This time,
we use a coincidence counter Abacus AB1004 (Tausand). It is an
electronic coincidence unit with four BNC type inputs to which up to
four distinct detectors’ electronic output TTL signals can be directly
attached. The coincidences are counted by means of edge detection,
i.e. reading the instant where a rising edge of an electronic input ar-
rives within the coincidence window. As a result, duplicate counting

118



“output” — 2022/9/14 — 17:28 — page 119 — #137

6.3 Experimental setup

Figure 6.2: Experimental setup proposal for measuring the visibility
of the signal-idler coincidences. M : mirror; BS: beam splitter; DM :
dichroic mirror; α: rotation angle introduced by a polarizer; NDF :
gradual neutral density filter; P : polarizer; PBS: polarizing beam
splitter; HWP (45◦): half-wave plate at 45 ◦ to rotate the polarization
of signal s2 from linear vertical to horizontal; D1: id201 idQuantique;
D2: SPCM-AQRH-14-FC Perkin-Elmer.

coincidences caused by differing electronic pulse widths emitted by
various detectors are avoided. Furthermore, this device can measure
coincidences with 5 ns resolution and includes a variety of adjustable
settings to maximize coincidence detections, such as sampling time,
sleep time, delays, etc.

The parameters that characterize our experiment are set to be:

• Coincidence window width: TR = 5 ns.

• Signals flux rate: Rs1 = Rs2 = 180 kHz.

• Idler flux rate: Ri1 = Ri2 = 20 kHz.
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To enhance coincidences, the Abacus device permits a time delay
sweep between electronic pulses from -100 ns to 100 ns. As a result,
the length of the fibers is not crucial in this scenario, as it can be read-
ily rectified by adjusting the delay. In the experimental data reported
in the following section, the delay between the electronic pulses is set
to the value that offers the largest number of coincidences.

The ultimate goal of the experimental measurements is to investi-
gate the visibility of the coincidence fringes. To do this, it is necessary
to scan the phase of one of the two arms of the interferometer. That
is why two mirrors located in the signal s1 path are mounted on top
of a Thorlabs Z806 translation stage, which allows to perform steps
of 30 nm along 6 mm.

6.4 Experimental results

The objective of this section is to present the main results of the
visibility of the coincidence fringes for the two cases of interest ex-
plained in Section 6.2: α = 0◦ and α = 90◦. In addition, we show the
visibility results of the singles for both cases.

First, we characterize the spectra of the signal photons generated
from both crystals to ensure that their emission is as close to equal
in terms of central wavelength and intensity as possible. The spectra
of both signal photons were measured using the Horiba Jobin Yvon
MicroHR monochromator, as shown in Fig. 6.3. Both emissions have
the same amplitude and are centered at 809.6 nm.

The spectra of the idler photons could not be characterized due
to the lack of a spectrometer for such wavelength range or an op-
tical spectrum analyzer. Despite this, we can guarantee that both
idler photons are coupled to single mode fiber with the same single
counts and that they will be centered at 1552.3 nm due to energy
and momentum conservation with the signal and pump waves.

The polarization of the idler i1 generated in the first nonlinear
crystal is linear and vertical. The cases of interest that concern us
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Figure 6.3: Measured spectrum of the signal s1 and s2 photons. The
spectra are centered at 809.6 nm with a bandwidth of 0.8 nm at full
width at half maximum (FWHM).

involve rotating this polarization with an angle α. Experimentally
we do this with a half-wave plate set at angle θ, so that α = 2θ. So
that, if we want to rotate the polarization of idler i1 by α = 90◦, the
HWP will be set at θ = 45◦.

Both signal and idler photons are projected onto a diagonal po-
larization state before detection. For the sake of simplicity, in the
experimental setup (Fig. 6.2) description we exemplify it with a po-
larizer P . But actually this diagonal polarization projection is done
by a half-wave plate at 22.5◦ followed by a polarizing beam splitter. In
the same way, if the desired polarization projection is anti-diagonal,
the half-wave plate is at -22.5◦. The results presented below are
projecting both signal and idler photons into a diagonal polarization
state.
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6.4.1 Case I: induced coherence with stimulated
emission

This scenario corresponds to the usual induced coherence case. The
half-wave plate located in the idler i1 path is set at θ = 0◦, so that
its polarization is unchanged. To verify that we are indeed observing
the induced coherence effect, we will first look at whether we observe
the linear dependence of the visibility of the singles with the losses
introduced by the neutral density filter t. To do so, we use the Perkin-
Elmer to measure singles while scanning the phase of one arm of the
interferometer in 60-nm steps.

Figure 6.4(a) depicts the experimental relationship of the signals
interference pattern and the transmissivity of the neutral density fil-
ter located in the idler i1 path. The insets show some examples of
the interference pattern measured by scanning the phase in a small
region (∼ 4 µm) around the point of maximum visibility. The maxi-
mum visibility observed is V = 83%.

Figure 6.4(b) depicts the experimental relationship of the coin-
cidence fringes and the transmissivity of the neutral density filter
located in the idler i1 path. The insets show some examples of the
coincidences fringes measured by scanning the phase in a small region
(∼4 µm) around the point of maximum visibility. The coincidence
window set at the coincidence counter Abacus AB1004 is TR = 5 ns,
and the total temporal window detection is T0 = 3 s. The maximum
visibility observed is V = 92%.

6.4.2 Case II: induced coherence without stimu-
lated emission

The polarization of idler i1 is rotated to horizontal polarization. The
half-wave plate located in its path is set at θ = 45◦, converting its
polarization to linear horizontal. In this case the signal photons show
no induced coherence, thus the visibility of the interference fringes is
null for each value t of the NDF transmissivity.
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Figure 6.4: (a) Experimental relation between the singles visibility
of the interference pattern and the transmissivity of the simulated
sample t. (b) Experimental relation between the visibility of the
coincidence fringes and the transmissivity of the simulated sample t.
Blue dots correspond to the experimental measurements, while the
red solid curve are the theoretical predictions [Eqs. (6.9) and (6.7)]
for our particular visibility conditions, considering the characterized
transmission values of our neutral density filter.

Figure 6.5(a) shows such experimental dependency. It can be
clearly seen that, effectively, the visibility of the singles is null for any
value of transmissivity of the NDF. This is exactly what the theory
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predicts. The insets show some examples of the singles measured
while scanning the phase in a small region (∼ 4 µm).

On the other hand, Fig. 6.5(b) depicts the experimental relation-
ship of the visibility of the coincidence fringes with the transmissivity
of the NDF, t. The expected nonlinear relationship is shown in Eq.
(6.12). The coincidence window width is set to be TR = 5 ns, and the
total temporal window detection is T0 = 3 s. The insets show some
examples of the coincidence fringes while scanning the phase of the
interferometer, for three different values of the transmissivity. The
maximum visibility observed is V = 55%.

6.5 Second-order correlation function be-

tween signal photons

The aim of this section is to calculate the second-order correlation
function g

(2)
s1,s2 between signal photons, s1 and s2, generated in the

two spatially separated down-converters. In [20], they calculated the
second-order correlation function of signal photons s1 and s2 using the
Schrödinger picture under certain approximations. This calculation
can be made much simpler using the Heisenberg picture. Moreover
our approach provides much more information since it does not make
use of the same approximations used in [20]. For the sake of simplic-
ity, we consider the single-mode approximation, that gives the main
features of g

(2)
s1,s2 .

The Bogoliubov transformations in the first nonlinear crystal are

âs1 = Us1 b̂s + Vs1 b̂
†
i ,

âi1 = Ui1 b̂i + Vi1 b̂
†
s, (6.14)

where the functions Us1 and Vs1 fulfill |Us1 |2 − |Vs1|2 = 1. Similarly
for Ui1 and Vi1 . The expressions for the functions Us1,i1 and Vs1,i1

are the ones shown in Eqs. (2.23) and (2.24) with Ω −→ 0. The
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Figure 6.5: (a) Experimental relation between the singles visibility
of the interference pattern and the transmissivity of the simulated
sample t. (b) Experimental relation between the visibility of the co-
incidence fringes and the transmissivity of the simulated sample t.
Blue dots correspond to the experimental measurements, while the
red solid curve is the theoretical prediction [Eq. (6.12)] for our partic-
ular visibility conditions, considering the characterized transmission
values of our neutral density filter.

transformation for the operator âi1 accounting for losses is

âi1 =⇒ tâi1 + f̂

= tUi1 b̂i + tVi1 b̂
†
s + f̂ (6.15)
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where f̂ is an operator that fulfills the commutation relation [f̂ , f̂ †] =
1 − |t|2. The linear polarization of idler i1 is rotated an angle α.
The annihilation operator associated to the vertical component of the
idler i1, that participates in the PDC process in the second nonlinear
crystal can be written as

t cosαUi1 b̂i + t cosαVi1 b̂
†
s + cosα f̂ + sinα ĉi, (6.16)

where ĉi is the annihilation operator associated to the orthogonal
polarization to the idler i1 after rotation angle α. The Bogoliubov
transformation in the second nonlinear crystal reads

âs2 = Us2 ĉs +

+Vs2

[
t cosαUi1 b̂i + t cosαVi1 b̂

†
s + cosα f̂ + sinα ĉi

]†
=

= Us2 ĉs + t∗ cosαU∗
i1
b̂†i + t∗ cosαV ∗

i1
b̂s +

+cosα f̂ † + sinα ĉ†i . (6.17)

The number of signal photons s1 generated is

Ns1 = ⟨â†s1 âs1⟩ = |Vs1|2. (6.18)

The number of signal photons s2 generated is

Ns2 = ⟨â†s2 âs2⟩ = |Vs2|2
[
1 + |t|2 cos2 α |Vi1 |2

]
. (6.19)

The normalized second-order correlation function g
(2)
s1,s2 between the

signal photons generated in both nonlinear crystals is

g(2)s1,s2
=

⟨â†s1 â
†
s2
âs2 âs1⟩

⟨â†s1 âs1⟩⟨â
†
s2 âs2⟩

. (6.20)

We have

⟨â†s1 â
†
s2
âs2 âs1⟩ = |Vs1|2|Vs2|2

[
1 + |t|2 cos2 α +

+2|t|2 cos2 α |Vi1 |2
]
. (6.21)
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Substituting this expression, and Eqs. (6.18) and (6.19) into Eq.
(6.20), we obtain

g(2)s1,s2
=

1 + |t|2 cos2 α + 2|t|2 cos2 α |Vi1|2

1 + |t|2 cos2 α |Vi1|2
=

= 1 + |t|2 cos2 α
1 + |Vi1|2

1 + |t|2 cos2 α |Vi1|2
. (6.22)

If the idler i1 is blocked, then t = 0 and g
(2)
s1,s2 = 1. This means

that the emission of both nonlinear crystals is independent, they are
uncorrelated. If the idler photon i1 is rotated an angle of 90◦, so there
is no stimulated emission in the second nonlinear crystal, we obtain
again g

(2)
s1,s2 = 1, the signal photons s1 and s2 are uncorrelated.

For α = 0◦, in the high parametric gain (|Vi1|2 ≫ 1), we have

g
(2)
s1,s2 = 2. This bunching effect can be attributed to the presence of
an intense flux rate of idler photons i1 coming from the first nonlinear
crystal that generates stimulated emission of signal photons s2 in the
second nonlinear crystal. The value of 2 is independent of the values
of t.

What is somehow surprisingly is that in the low parametric gain
regime, where |V | ≪ 1, and paired photons are assumed to be gen-
erated in only one of the nonlinear crystals, being the probability to
generate them simultaneously in both nonlinear crystals negligible.
We can write

g(2)s1,s2
= 1 + |t|2 cos2 α. (6.23)

If the idler is not blocked (t = 1), the second-order correlation func-

tion is g
(2)
s1,s2 = 1 if α = 90◦ (no stimulated emission), while it is

g
(2)
s1,s2 = 2 if α = 0◦ (there is stimulated emission). We cannot longer
say that the emission of signal photons from the two nonlinear crys-
tals is uncorrelated. This seems to suggest that stimulated emission
plays a role in the induced coherence effect. This bunching effect can
be attributed to the presence of the idler photon i2 generated in the
first nonlinear crystal that stimulates the generation of signal s2 in
the second nonlinear crystal.
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CHAPTER

SEVEN

SPATIAL SPECTROSCOPY
WITH A NONLINEAR
INTERFEROMETER

Spectroscopy aims at unveiling characteristics of an object as its
chemical composition by studying the interaction between electro-
magnetic radiation and matter as a function of the wavelength of
the radiation. In the special case of Hyperspectral Imaging, tens
and even hundreds of different wavelength are considered. Spatial
spectroscopy designates any imaging or sensing scheme aimed at re-
trieving the shape of an object, its transverse spatial features, using
spatial modes of light. Similarly to the case of Hyperspectral Imag-
ing, we might consider many spatial modes.

In this chapter we put forward a scheme to do spatial spectroscopy
with a nonlinear interferometer. In the first section we describe what
are the spatial modes of light, highlighting some of the most widely
used. This leads us to introduce the concept of orbital angular mo-
mentum (OAM) and how to generate experimentally light with OAM.
We propose an scheme for doing spatial spectroscopy and we show the

129



“output” — 2022/9/14 — 17:28 — page 130 — #148

Spatial spectroscopy with a nonlinear interferometer

main equations that demonstrate the validity of this novel approach.
Finally, for the sake of example, we apply the technique proposed to
the case of a simple cliff-like structure, a phase object, to illustrate
that the spatial spectroscopy scheme would work effectively.

7.1 Spatial modes of light

Light beams are described by a set of variables that will determine
its usefulness for different applications: its central wavelength, band-
width, and state of polarization. Light beams can also have spatial
shape, a degree of freedom that is being extensively explored for new
applications in the last few decades [92,93].

In general, Maxwell equations dictate that all the degrees of free-
dom that characterize a light beam are linked, especially in extreme
cases, such as highly focused beams or with a large bandwidth. How-
ever, under the paraxial approximation, when the effective size of the
beam (w0) is much larger than the wavelength (λ0), the spatial shape
f(x, y) of the beam can be considered separately from its polarization
and frequency. Under these circumstances, one can decompose the
spatial shape as

f(x, y) =
∑
n

cnUn(x, y), (7.1)

where Un(x, y) are light beams with a specific spatial shape and cn
are the complex coefficients that determine the mode decomposition.
We refer to the set Un as spatial modes of light.

There is a great freedom for selecting one particular basis of
spatial modes, and the choice generally depends on what is more
convenient in the specific problem that one wants to address. The
Hermite-Gaussian (HG) modes are a common choice in cartesian co-
ordinates. They are of special interest since they emerge naturally
from a laser cavity. Two sets of spatial modes emerge in cylindrical
coordinates: the Laguerre-Gaussian (LG) modes and the Bessel (BB)
modes. These are good examples of ring-shaped beams which carry
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orbital angular momentum (OAM) [94].
The angular momentum (AM) of a light beam contains two con-

tributions: one associated to its polarization state (spin angular mo-
mentum) and the other associated to its spatial shape, especially the
spatial distribution of the phase of the light beam (orbital angular
momentum).

There are different ways to experimentally generate beams carry-
ing OAM. One of the most popular makes use of spatial light modula-
tors (SLMs) [95, 96]. These are computer-controlled pixelated liquid
crystal devices whose operating principle is based on displaying an
interference pattern that introduces the desired spatial phase dis-
tribution on the impinging beam. Its main advantage is that the
encoded information in the phase pattern can be changed with fre-
quencies up to 60 Hz. Other methods to generate beams with OAM
are Digital Micromirror Devices (DMDs) and q-plates.

Figure 7.1(a) shows an example of a forked hologram produced by
the superposition of a blazed grating and the spiraling phase aimed
at generating a concrete Laguerre-Gaussian mode (Fig. 7.1(b)). This
kind of interference pattern are the ones displayed, for instance, in the
liquid-crystal display of an SLM. The use of fork holograms produces
several diffracted orders, so experimentally one needs to select the
desired one.

Spatial modes of light and beams with OAM have experienced
a surge of interest in recent years and have found numerous appli-
cations. They have been used for phase estimation [97–100] and to
characterize entanglement [101, 102]. Furthermore, new topological
states of light have been demonstrated experimentally [103].
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Figure 7.1: (a) Fork hologram encoded in an SLM to create a LG
mode of light. (b) Example of a LG mode generated with the holo-
gram shown in (a).

7.2 Spatial spectroscopy

In order to obtain transverse spatial information of an object, such as
its shape or its phase gradient, all imaging schemes based on nonlin-
ear interferometers need to scan the sample in the transverse plane
(perpendicularly to the direction of propagation of the light beam
that illuminates the sample). Here we put forward the possibility
to obtain spatial information of a phase object, based on the proper
selection and projection in concrete spatial modes of light at the de-
tection stage.

Figure 7.2 illustrates a simplified sketch of the setup aimed at do-
ing spatial spectroscopy with a nonlinear interferometer. The phase
object located in the idler i1 path changes the spatial mode decom-
position of the idler photon i1. The aim is to demonstrate that the
visibility of the interference of signal photons can assess spatial prop-
erties of the object.

We analyze parametric down-conversion in the Schrödinger pic-
ture. Concerning the spatial shape degree of freedom of the pairs
of signal-idler photons generated in a nonlinear crystal, its quantum
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7.2 Spatial spectroscopy

Figure 7.2: Simplified sketch of the spatial spectroscopy setup. The
signal and idler beams are represented by the blue and red solid lines,
respectively. DM : dichroic mirror; D1: near infrared detector; D2:
visible detector; BS: beam splitter; M : mirror; SLM : spatial light
modulator.

state can be written as [104]

|Ψ12⟩ =
∫

dx1dx2Ψ(x1,x2)âs
†(x1)âi

†(x2) |vac⟩ , (7.2)

where x1 = (x1, y1) are transverse coordinates for the signal photon
and x2 = (x2, y2) are transverse coordinates for the idler photons.
The function Ψ(x1,x2) is the mode function that characterizes the
quantum state of signal-idler photons. If Ψ(x1,x2) = Ψs(x1)×Ψi(x2),
the quantum state is separable. In general, the quantum state can
always be decomposed as the so-called Schmidt decomposition [102]

|Ψ⟩ =
∑
k

λk |uk⟩ |vk⟩ , (7.3)

where {|uk⟩ , |vk⟩} are basis in the Hilbert spaces of the signal and
idler modes, respectively. The coefficients λk are the Schmidt coef-
ficients, and if the state is normalized they fulfill

∑
k λ

2
k = 1. The
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quantum states {|uk⟩ , |vk⟩} can be writen as

|uk⟩ =
∫

dxfk(x)âs
†(x) |vac⟩ ,

|vk⟩ =
∫

dxgk(x)âi
†(x) |vac⟩ . (7.4)

Let us consider that in the idler i1 path there is a phase object that
introduces a spatially-dependent phase change φ(x) to the spatial
shape of the input photons. The transformation of Schmidt modes
that describes the interaction with the phase object is

|vk⟩ =⇒ |wk⟩ , (7.5)

where

|wk⟩ =
∫

dx gk(x) exp
[
iφ(x)

]
âi

†(x) |vac⟩ . (7.6)

Using this formalism, the quantum state |Ψ1⟩ before the last beam
splitter shown in Fig. 7.2 can be written as

|Ψ1⟩ =
1√
2

∑
n

λn

[
|un⟩s1 |wn⟩i2 + |un⟩s2 |vn⟩i2

]
. (7.7)

The beam splitter have reflection coefficient r and transmission coef-
ficient t. At the two output ports of the BS, we have signal photons
s3 and s4. The quantum state |Ψ34⟩ at the output ports of the beam
splitter is

|Ψ34⟩ = |Ψ3⟩+ |Ψ4⟩ =
1√
2

∑
n

λn

{
|un⟩s3

[
r |wn⟩i2 + t |vn⟩i2

]
+

+ |un⟩s4
[
t |wn⟩i2 + r |vn⟩i2

]}
, (7.8)

the sub-indexes s1,2 stand for the signal photons generated in the first
and the second nonlinear crystal, respectively. i2 is the idler beam,
constituted by the indistinguishable idler photons generated in both
nonlinear crystals.
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At the detection state, we project signal photon s3 onto the mode
|uk⟩s3 and the idler photon i2 onto the mode |vl⟩i2 . The probability
to detect a coincidence as a function of the phase difference θ is

Plk =
λ2
k

2

∣∣∣r⟨vl|wk⟩+ t exp(iθ)δkl

∣∣∣2 =
=

λ2
k

2

[
|r|2⟨wk|vl⟩⟨vl|wk⟩+ |t|2δkl + (7.9)

+rt∗ exp(−iθ)⟨vl|wk⟩ δkl + r∗t exp(iθ)⟨wk|vl⟩ δkl
]
.

Finally we sum over all l modes to obtain the probability to detect a
signal photon in mode k. We obtain

Pk =
∑
l

Pkl =
λ2
k

2

[
|r|2 + |t|2 +

+rt∗ exp(−iθ)⟨vk|wk⟩+ r∗t exp(iθ)⟨wk|vk⟩
]
=

=
λ2
k

2

[
1 + |⟨wk|vk⟩| sinφ

]
. (7.10)

We have made use of r = i/
√
2, t = 1/

√
2 and

∑
l |vl⟩⟨vl| = I. The

maximum Pmax
k and minimum Pmin

k values of Pk are

Pmax
k =

λ2
k

2

[
1 + |⟨wk|vk⟩|

]
, (7.11)

Pmin
k =

λ2
k

2

[
1− |⟨wk|vk⟩|

]
. (7.12)

The visibility V is the interference fringes that appear as function of
θ is

V =
Pmax
k − Pmin

k

Pmax
k + Pmin

k

= |⟨wk|vk⟩|. (7.13)

The visibility of the interference pattern of signal photons depends
on how the object changes the spatial properties of the idler photon
i1, introducing a spatially dependent phase φ(x). The shape of the
object can be reconstructed by projecting the signal photons in ap-
propriately selected spatial modes without the need to scan spatially
the object.
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Example: estimation of the height of the step of a cliff-like
structure

For the sake of example, let us consider a simple object located in the
idler i1 path. It is a cliff-like structure [105, 106] and the parameter
to be estimated is the height d of the step and its position x0 (see
Fig. 7.3).

Figure 7.3: Sketch of a phase object. A cliff-like structure with step
height d. The beam that illuminates the sample is shown in red.

We assume that the Schmidt decomposition is of the form

|Ψ⟩ = λ0 |u0⟩ |v0⟩+
∑
k ̸=0

λk |uk⟩ |vk⟩ , (7.14)

where the spatial shape of |u0⟩ and |v0⟩ are described by Gaussian
modes of the form

g0(x) =
1

(πw2
0)

1/2
exp

[
− |x|2

2w2
0

]
, (7.15)

where x is the spatial coordinate and w0 is the beam width. If the
transmissivity of the object is high (|t| ∼ 1 and |r| ∼ 0), we can
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neglect reflections at the facets of the object. The spatially-varying
phase φ(x) introduced by the object is

φ(x) =
∆

2

[
1 + tanhα(x− x0)

]
, (7.16)

where ∆ = k0d(n− 1), k0 is the central wavenumber, d the height of
the step, n the refractive index of the material, α is a measure of the
steepness of the step that we assume here to be large, and x0 is the
position of the step.
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Figure 7.4: Visibility of the interference fringes as function of the
phase difference ∆ = k0d(n − 1). The step is located at x0 = 0 and
the beam width of the mode is w0 = 100 µm.

The input gaussian mode vk is transformed by the object to a new
spatial mode wk

g0(x) =
1

(πw2
0)

1/2
exp

[
− |x|2

2w2
0

]
exp[iφ(x)]. (7.17)

The overlap between spatial modes before and after the object is

⟨wk|vk⟩ =
1

(πw2
0)

1/2

∫
dx exp

[
− x2

w2
0

− iφ(x)
]
. (7.18)
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The height d of the step can be determined from the dependence of
the visibility with the phase difference ∆. If we consider a sample
with n = 1.5, the phase difference is ∆ = π(d/λ). Figure 7.4 shows
the visibility of the interference fringes induced by the presence of
the phase object. When d = λ, ∆ = π and we observe no fringes
(zero visibility).
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Figure 7.5: Visibility of the interference fringes for a three different
cliff-like structures with heights: d = 250 nm (red solid line); d =
500 nm (blue solid line) and d = λ = 1500 nm (dashed line). The
visibility is zero for d = λ.

Figure 7.5 shows the visibility introduced by the presence of three
different cliff-like structures with heights d = 250 nm, d = 500 nm
and d = λ = 1500 nm, as a function of x0. If we have a priori
information about the value of d, Fig. 7.5 allows us to determine the
position of the step x0.
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CHAPTER

EIGHT

CONCLUSIONS

In this thesis we have introduced and demonstrated two novel optical
coherence tomography (OCT) schemes based on the use of nonlinear
interferometers. One scheme works in the low parametric gain regime
of parametric amplifiers and is based on the concept of induced coher-
ence [56]. The other scheme is an SU(1,1) interferometer that works
in the high parametric gain regime [51]. We have characterized, ex-
perimentally and theoretically [61, 62], how these systems work and
its main advantages and limitations. We should mention that our
work is the first demonstration of OCT based on nonlinear interfer-
ometers.

We have derived and demonstrated a complementarity relation-
ship between quantum distinguishability and first-order coherence
that explains the trade-off between both quantities in a general case,
including the extreme cases of low and high parametric gain regime1.
This is one rare case of complementarity relationship that does not
apply only in the single-photon regime, as it is the case of most of
the other relationships of this type.

1We are currently writing three scientific papers that cover some of the topics
discussed here and not yet published.
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Conclusions

We have investigated the role of fundamental concepts such as
stimulated emission and quantum distinguishability in the explana-
tion of why and how induced coherence takes place. There is an ongo-
ing dispute on this topic [19,20], that has not been resolved yet, about
what is the true explanation of the concept of induced coherence. We
have derived results that show that even in the low parametric gain
regime the signal photons generated in spatially separated nonlinear
crystals are not uncorrelated, even though one generally assumes that
in this regime stimulated emission does not play any role to generate
induced coherence.

We have introduced a scheme based on a nonlinear interferome-
ter to obtain transverse spatial information of a phase object (spatial
spectroscopy). The basic ingredient of this new scheme is the use of
projection onto selected spatial modes in the detection stage, avoid-
ing in this way the need to use spatial scans of the sample. Most
schemes based on a nonlinear interferometer perform spatial scans of
the sample with a focused beam to retrieve spatial information of the
object under investigation.
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APPENDIXA

ORIGIN OF THE TERM
SU(1,1) INTERFEROMETER

Classical interferometers such as Michelson and Mach-Zehnder con-
figurations, that make use of beam splitters (BS), are also called
SU(2) interferometers. The presence of beam splitters, whose trans-
formation matrices belong to the special unitary SU(2) group, give
them their name. In Yurke-type nonlinear interferometers [8] the
beam splitters are substituted by parametric down-conversion sources,
whose transformation matrices belong to the special unitary SU(1,1)
group. Hence its name. Let us analyze both cases separately.

The beam splitter

Signals with electric fields E1 and E2 enter the input ports 1 and 2
of the BS, respectively (see Fig. A.1). The output electric fields E3

and E4 can be written as function of the input fields as

E3 = rE1 + tE2, (A.1)

E4 = tE1 + rE2, (A.2)

where r and t are the reflection and transmission coefficients of the
beam splitter. In a symmetric lossless beam splitter, the reflection
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Origin of the term SU(1,1) interferometer

Figure A.1: Schematic illustration of a beam splitter. Input ports
(green): 1 & 2. Output ports (red): 3 & 4.

and transmission coefficients fulfil the relations |r|2 + |t|2 = 1 and
rt∗ + r∗t = 0.

Equations (A.1) and (A.2) can be written in matrix form as

Eout =

(
E3

E4

)
=

(
r t
t r

)(
E1

E2

)
= T Ein, (A.3)

where T is the transformation matrix. T is unitary, i.e. T −1 = T †,
so (

r t
t r

)(
r∗ t∗

t∗ r∗

)
=

(
1 0
0 1

)
. (A.4)

The determinant is 1. These matrices are said to belong to the special
unitary SU(2) Lie group, since they are 2 × 2 matrices, they are
unitary and they have unit determinant.

The reflection and transmission coefficients are complex numbers,
i.e. r = |r| exp(iα) and t = |t| exp(iβ). As example we can write
|r| = cosϕ, |t| = sinϕ, α = 0 and β = π/2. Hence the matrix T
becomes

T =

(
cos(ϕ) i sin(ϕ)
i sin(ϕ) cos(ϕ)

)
. (A.5)
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A parametric down-conversion source

Figure A.2: Schematic illustration of a PDC source. Input operators
(green): â1 and â2. Output operators (red): â3 and â4.

The input-output operators relations (so-called Bogoliubov trans-
formations) can be written in its simplest form as:

â3 = Uâ1 + V â†2, (A.6)

â4 = Uâ2 + V â†1, (A.7)

where U and V are complex functions. Equations (A.6) and (A.7)
can be written in matrix form as(

â3
â†4

)
= T

(
â1
â†2

)
=

(
U V
V ∗ U∗

)(
â1
â†2

)
. (A.8)

Definition: A matrix U is said to belong to the special uni-
tary SU(m,n) group if it leaves invariant the Hermitian form
UAU † = A, where

Aij = aiδij

{
ai = 1 1 ≤ i ≤ m

ai = −1 m+ 1 ≤ i ≤ m+ n
(A.9)

The SU(1,1) group consists of 2 × 2 complex matrices U that
satisfy the relation UAU † = A, with

A =

(
1 0
0 −1

)
. (A.10)
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Origin of the term SU(1,1) interferometer

It can be easily checked that this is only satisfied by matrices U of
the form

U =

(
α β
β∗ α∗

)
. (A.11)

with |α|2 − |β|2 = 1. The matrix T presented in Eq. (A.8) that
characterizes a PDC source is equivalent to the matrix U [Eq. (A.11)]
with α = U and β = V . T also fulfills the relation

T AT † =

=

(
U V
V ∗ U∗

)(
1 0
0 −1

)(
U∗ V
V ∗ U

)
=

(
1 0
0 −1

)
= A.

(A.12)

The matrix T that characterizes the input-output relationship be-
tween operators of a PDC source belongs to the so-called SU(1,1)
group, giving name to this Yurke-type nonlinear interferometer.

Recently it has been shown the possibility of mixing both classes
of interferometers [107,108].
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APPENDIXB

MATERIAL PROPERTIES OF
LITHIUM NIOBATE

This appendix compiles the fundamental properties of lithium nio-
bate, the material from which the nonlinear crystals used in this thesis
are composed. Specifically, we have used periodically poled lithium
niobate crystals (PPLN) from Covesion, with lengths of L = 1 mm
and L = 20 mm.

• Sellmeier equation:

n2 = 5.756 + 2.86× 10−6f +

+
0.0983 + 4.7× 10−8f

λ2 − (0.2020 + 6.113× 10−8f)2
+ (B.1)

+
189.32 + 1.516× 10−4f

λ2 − 12.522
− 1.32× 10−2λ2,

where f = (T − 24.5)(T + 570.82), with T in ◦C. Expression
extracted from1.

1https://www.covesion.com/en/resource/material-properties-of-lithium-
niobate/
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Material Properties of Lithium Niobate

• Second-order nonlinear susceptibility: χ(2) = 14 pm/V.

• Refractive index: For T = 123 ◦C.

PPLN refractive index
Wavelength [nm] n

532 2.2569
810 2.1975
1550 2.1608

• Inverse Group Velocity: For T = 123 ◦C.

PPLN Inverse Group Velocity
Wavelength [nm] D [ns/m]

810 7.3250
1550 7.2027
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APPENDIXC

QUANTUM ANALYSIS OF
ATTENUATION

The action of an attenuator can be modeled as a beam splitter with
transmission t and reflection coefficient r. The input ports are labeled
as 1 and 2, with associated operators â1 and â2. The output ports are
labeled as 3 and 4, with operators â3 and â4. Light reflected through
output port 4 is considered lost. The relationships between input and
output operators are

â3 = tâ1 + râ2, (C.1)

â4 = râ1 + tâ2. (C.2)

All the input and output operators must fulfill the usual commutation
relations

[â1, â
†
1] = [â2, â

†
2] = [â3, â

†
3] = [â4, â

†
4] = 1, (C.3)

[â1, â1] = [â2, â2] = [â3, â3] = [â4, â4] = 1, (C.4)

[â1, â2] = [â3, â4] = 0. (C.5)

Notice that this is indeed happening. For instance, we have

[â3, â
†
3] = [tâ1 + râ2, t

∗â†1 + r∗â†2]

= |t|2[â1, â†1] + |r|2[â2, â†2] = |r|2 + |t|2 = 1. (C.6)
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Quantum analysis of attenuation

We can write that the operator associated to a photon that propa-
gates through a lossy medium transforms as [49,50]

â1 −→ tâ1 + f̂ , (C.7)

where the operator f̂ is f̂ = râ2. The operator f̂ fulfils the commu-
tation relation

[f̂ , f̂ †] = [râ2, r
∗â†2] = |r|2 [â2, â†2] = |r|2 = 1− |t|2. (C.8)
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APPENDIXD

RELATIONSHIP BETWEEN
FIRST-ORDER
CORRELATION AND
INTERFERENCE VISIBILITY

Consider an optical signal labeled 3, with associated quantum op-
erator â3, that is the superposition of two signals with associated
operators â1 and â2:

â3 = â1 exp(iφ1) + â2 exp(iφ2), (D.1)

φ1,2 are phases acquired by signals 1 and 2 during propagation that
can change. The number of photons of signal 3 is:

N3 = ⟨â†3â3⟩ =
= ⟨
[
â†1 exp(−iφ1) + â†2 exp(−iφ2)

][
â1 exp(iφ1) + â2 exp(iφ2)

]
=

= ⟨â†1â1⟩+ ⟨â†2â2⟩+ ⟨â†1â2⟩ exp(−iφ1 + iφ2)

+⟨â†2â1⟩ exp(iφ1 − iφ2) = (D.2)

= N1 +N2 + 2N
1/2
1 N

1/2
2 |g(2)12 | cos(φ2 − φ1 + φg),
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Relationship between g(1) and interference visibility

where g
(1)
12 = |g(1)12 | exp(iφg) = ⟨â†1â2⟩/(N

1/2
1 N

1/2
2 ) is the normalized

first-order correlation function between signals 1 and 2.
As a function of the phase difference ∆φ = φ2 − φ1 the value of

N3 oscillate between the maximum

Nmax
3 = N1 +N2 + 2N

1/2
1 N

1/2
2 |g(2)12 |, (D.3)

and the minimum

Nmin
3 = N1 +N2 − 2N

1/2
1 N

1/2
2 |g(2)12 |. (D.4)

The visibility of the interference fringes is

V =
Nmax

3 −Nmin
3

Nmax
3 +Nmin

3

=
2N

1/2
1 N

1/2
2

N1 +N2

|g(2)12 |. (D.5)

The signals 1 and 3 can bear different number of photons (energy).
We define the distinguishability D as

D =
∣∣∣∣∣N1 −N2

∣∣
N1 +N2

∣∣∣. (D.6)

Taking into account that

1−D2 =
2N1N2

(N1 +N2)2
, (D.7)

we can write
V =

√
1−D2 |g(2)12 |. (D.8)

If N1 = N2, D = 0 and V = |g(2)12 |. The value of the visibility of the
interference fringes is the value of the first-order correlation function.
However, when N1 ̸= N2, the value of the first-order correlation func-
tion can be derived from the measurement of the visibility with the
help of Eq. (D.8).
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APPENDIXE

CALCULATION OF THE
FIRST-ORDER
CORRELATION FUNCTION
IN A NONLINEAR
INTERFEROMETER BASED
ON INDUCED COHERENCE

In this Appendix we calculate the value of the normalized first-order
correlation function g

(1)
s1,s2 between signal photons s1 and s2 that are

generated in different nonlinear crystals. The experimental scheme is
depicted in Fig. 3.7. Figure E.1 shows schematically the annihilation
operators at different positions inside the experimental setup, as well
as the main distances travelled by the photons.

We consider a pump laser that generates coherent light with a
spectrum described by the function F (Ωp). The frequency of the
pump is ωp = ω0

p + Ωp, with ω0
p being the central frequency and Ωp

the frequency deviation from the central frequency. A beam splitter

151



“output” — 2022/9/14 — 17:28 — page 152 — #170

Calculation of g(1) in an induced coherence scheme

Figure E.1: Simple sketch of the experimental set-up that shows
the name of the operators at different locations and main distances
considered in the calculation.

divides the pump beam into two coherent sub-beams that pump the
two nonlinear crystals. The two sub-beams travel distances zp1 and
zp2 before reaching PPLN1 and PPLN2, respectively.

The two identical crystals have nonlinear susceptibility χ(2) and
length L. The nonlinear interaction generates signal and idler pho-
tons s1 and i1 in PPLN1, and s2 and i2 in PPLN2. The frequency of
the signal and idler photons reads ωs = ω0

s + Ωs and ωi = ω0
i + Ωi,

where ω0
s,i are central frequencies and Ωs,i are frequency deviations

from the corresponding central frequencies. The conditions ω0
p =

ω0
s + ω0

i and Ωp = Ωs + Ωi are fulfilled.
The quantum operators âs1,s2(Ωs) and âi1,i2(Ωi) correspond to sig-

nal and idler modes at the output face of the corresponding nonlinear
crystals. b̂s1,s2(Ωs) and b̂i1(Ωi) designate the corresponding operators
at the input face. In the low parametric gain regime, the Bogoliubov
transformations that relate the input-output operators for PPLN1

are [36,44]:

âs1(Ωs) = Us(Ωs)b̂s1(Ωs) +

∫
dΩiVs1(Ωs,Ωi)b̂

†
i1
(Ωi), (E.1)

âi1(Ωi) = Ui(Ωi)b̂i1(Ωi) +

∫
dΩsVi1(Ωs,Ωi)b̂

†
s1
(Ωs), (E.2)
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where Us(Ωs) = exp [iks(Ωs)L], Ui(Ωi) = exp [iki(Ωi)L] and

Vs1(Ωs,Ωi) = i(σL)Fp1(Ωs + Ωi)sinc

[
∆kL

2

]
×

× exp

[
i
ks(Ωs)− ki(Ωi)

2
L

]
, (E.3)

Vi1(Ωs,Ωi) = i(σL)Fp1(Ωs + Ωi)sinc

[
∆kL

2

]
×

× exp

[
i
ki(Ωi)− ks(Ωs)

2
L

]
. (E.4)

The nonlinear coefficient σ is [36, 40,44]

σ =

[
ℏω0

pω
0
sω

0
i [χ

(2)]2N0

16πϵ0c3npnsniA

]1/2
, (E.5)

where N0 is the number of photons per pulse of the pump beam, A is
the effective area of interaction in the nonlinear crystal and np,s,i are
the refractive indexes at the central frequencies of all waves involved.
The wave-vector phase mismatch is ∆k = kp(Ωs+Ωi)−ks(Ωs)−ki(Ωi).
If we expand in Taylor series to first order the wave-vectors as ki(Ω) =
k0
i +NiΩ (Np,s,i are inverse group velocities) and assume perfect phase

matching at the central frequencies (k0
p = k0

s + k0
i ), we obtain ∆k =

D+Ωp +DΩ−/2, where Ω− = Ωs − Ωi, D+ = Np − (Ns +Ni)/2 and
D = Ni −Ns.

The idler mode âi1 traverses a distance z2 before encountering a
lossy sample characterized by reflectivity r(Ωi). The quantum oper-
ator transformation that describes this process is [37, 49]

âi1(Ωi) −→ r(Ωi)âi1(Ωi) exp [iki(Ωi)z2] + f̂(Ωi), (E.6)

where the operator f̂ fulfills the commutation relationship [f̂(Ω), f̂ †(Ω′)] =
(1− |r(Ω)|2)δ(Ω− Ω′).
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The idler beam is injected into PPLN2 so that the operator âs2
that describes signal beam s2 at the output face of PPLN2 is

âs2(Ωs) = Us(Ωs)b̂s2(Ωs) +

∫
dΩiVs2(Ωs,Ωi)f̂

†(Ωi) (E.7)

+

∫
dΩir

∗(Ωi)Vs2(Ωs,Ωi)U
∗
i (Ωi) exp [−iki(Ωi)z2] b̂

†
i (Ωi),

where only terms up to first order in σL have been considered and
the only terms that give a non-zero contribution in the calculation
of the first-order correlation function. The expression of the function
Vs2 is analogous to the expression of Vs1 in Eq. (E.3) with Fp2 =
Fp(Ωp) exp [ikp(Ωp)zp2 ].

Signal photon s1 traverses a distance z1 before detection, and sig-
nal photon s2 traverses a distance z3. The number of down-converted
signal photons generated per pulse, Ns1 =

∫
dΩ â†s1(Ω)âs1(Ω) and

Ns2 =
∫
dΩ â†s2(Ω)âs2(Ω) are

Ns1 = Ns2 = 2π
σ2L

D
. (E.8)

It depends on the total number of pump photons per pulse, however it
is independent of the shape of the pulse. This fact and thatNs1 = Ns2

are characteristics of the low parametric gain regime.

We are interested in the normalized first-order correlation func-
tion g

(1)
s1,s2 between signal beams s1 and s2 that gives the visibility of

the interference pattern detected after combining both signals in a
beam splitter, i.e.,

g(1)s1,s2
=

1

N
1/2
s1 N

1/2
s2

∫
dΩ â†s1(Ω)âs2(Ω). (E.9)

Let us first assume that there are no losses in the idler path (r(Ωi) =
1). Using Eqs. (E.1), (E.7) and (E.8) into Eq. (E.9) and taking
into account the distances z1 and z3 that signal beams s1 and s2
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propagate before combination in the beam splitter, the first-order
correlation function can be written as∣∣g(1)s1,s2

(T1, T2)
∣∣ = tri

(
T1

DL

)
× exp

[
− 1

16T 2
0

[(
1− 2D+

D

)
T1 + 2T2

]2 ]
, (E.10)

where tri(ξ/2) = 1/π
∫
sinc2(x)exp(iξx)dx is the triangular function

and

T1 =
z3 − z1 + z2

c
+NiL, (E.11)

T2 =
zp2 − zp1 − z2

c
−NiL. (E.12)

We assume that the condition zp2 = zp1 + cNiL + z2 if fulfilled, so
that T2 = 0. In order to optimize pulsed parametric amplification
in PPLN2 one needs to synchronize the time of arrival of pump and
idler pulses to the nonlinear crystal [73].
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APPENDIXF

ESTIMATION OF THE
NUMBER OF PHOTONS
PER MODE GENERATED IN
A PARAMETRIC
DOWN-CONVERSION
PROCESS

The number of photons per mode generated in a parametric down-
conversion process can be estimated by measuring the second-order
correlation function g(2) [27] of the down-converted photons. For
high signal-idler output flux, g(2) can be measured as a function of
the PDC flux rate I as

g(2) =
⟨I2⟩
⟨I⟩2

=
N
∑N

i=1 I
2
i(∑N

i=1 Ii

)2 , (F.1)
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Estimation of the number of photons per mode in PDC

where N is the number of modes. For the number of idler photons
generated in the experiment,

g
(2)
idler =

⟨I2idler⟩
⟨Iidler⟩2

= 1.0006± 0.0075, (F.2)

where the error has been derived from the variance of the measured
intensity σ2

I as

σ2
g =

N∑
i=1

[∂g(2)
∂Ii

]2
σ2
I =

4σ2
I

⟨I⟩2
(
1− g(2)

)2
. (F.3)

The total number of modes (both spatial and temporal) M = msmt

[75] is

M =
g
(2)
s (0)− 1

g
(2)
meas(0)− 1

, (F.4)

where g
(2)
s (0) is the normalised second-order correlation function for

single mode PDC and g
(2)
meas(0) is the measured second-order correla-

tion function. By substituting the value of the second-order correla-
tion function for single-mode PDC, g

(2)
s (0) = 2, the number of modes

M in our experiment is estimated to be

M =
1

g
(2)
idler − 1

= 1774± 178. (F.5)

The total number of idler photons Ni generated in our experiment,
taking into account a parametric gain value of G = 1.7, is

Ni = M sinh2 (G) = M sinh2 (1.7) ≈ 13000. (F.6)

The idler energy per pump pulse Ei and the mean power Pi of the
idler photons can be calculated as

Ei = Niℏωi = 1.6 fJ, (F.7)
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Appendix F

and
Pi = EifR = 1.6 pW, (F.8)

where ωi is the idler angular frequency and fR = 1kHz is the fre-
quency repetition rate of the pulsed pump laser. These are the values
shown in Ref. [51].
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Estimation of the number of photons per mode in PDC
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APPENDIXG

FOURIER TRANSFORM
ANALYSIS OF THE SIGNAL
MEASURED IN FD-OCT

Here we explain in detail how to obtain the Fourier transform of
the spectrum measured as a function of the wavelength of the signal
beam, S(λ). Figure G.1 depicts the step-by-step procedure.

Figure G.1(a) shows the spectrum S(λ) measured with a spec-
trometer sensitive in the visible range. The spectrum is rewritten as
function of the wavenumber k = 2π/λ. Considering the Jacobian of
the transformation, the k-spectrum S(k) is

S(k) =
2π

k2
S(λ). (G.1)

The spectrum is re-sampled to obtain a function S(k) with equally-
spaced k-values [Fig. G.1(b)]. The Fourier transform of the re-
sampled spectrum is calculated as

F [S(k)] =

∫
dkS(k) exp(ikz). (G.2)

This result is shown as a function of the axial position z in Fig.
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Fourier Transform analysis of the signal in FD-OCT
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Figure G.1: Step-by-step procedure to obtain the depth profile of the
OCT sample. (a) Spectrum measured with a visible spectrometer,
S(λ). (b) Spectrum re-sampled to wavenumbers, S(k). (c) Fourier
transform of the re-sampled spectrum. (d) Zoom of the Fourier trans-
form showing the peak at a positive value of the z-coordinate.

G.1(c). Finally, we show a zoom of the FT showing only the peak of
the FT at the positive value of the z-coordinate [Fig. G.1(d)].
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APPENDIXH

THE SHAPE OF THE
SIGNAL SPECTRUM AND
ITS FOURIER TRANSFORM

In this Appendix we explain why the Fourier transform of the spec-
trum of the signal beam shown in Fig. 4.5 of the main text shows
three peaks, and why the distance between peaks located at z ̸= 0 is
2ngd, twice the optical length of the sample.

Let us define t as the distance from the first layer of the sample
to the z-position with zero path length difference (zs = zi). If t = 0
the position of the first layer is such that ∆z1 = 0. If t = ngd, the
position of the second layer fulfills ∆z2 = 0. If t < 0 the position
of zero path length difference is located before the first layer of the
sample, and if t > ngd the position of zero path length difference is
located beyond the second layer of the sample.

We assume that the shape of the spectrum in the low and high
parametric gain regimes is qualitatively similar, while in the low para-
metric gain regime one can obtain useful analytical expressions of the
spectrum S(k) as a function of the wavenumber k = Ω/c. The spec-
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The shape of the signal spectrum and its Fourier transform
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Figure H.1: Position of the peaks of the Fourier transform of the
spectrum of the signal beam as a function of the position of the
translation stage. Black dots represent experimental points. The
dashed blue lines are theoretical lines based on Eq. (H.1) that best
fit the experimental data. In this way, we can determine to which
value of t corresponds each position of the translation stage. Points
of interest are indicated as A, B, C, D, E and F, highlighted in red.

trum is

S(k) = 2 |Vs(k)|2 {1 + r1 cos [φ1 + k (cDL+ 2t)]

+r2 cos [φ2 + k (cDL+ 2t− 2ngd)]} . (H.1)

The reflectivities of the first and second layers of the sample are r1,2,
D = Ds−Di where Ds,i are inverse group velocities at the signal and
idler central frequencies, ng is the group index of the sample and φ1,2
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are constant phases given by

φ1 =
ωs

c
nsL+

ωi

c
niL+ 2

ωs

c
zs + 2

ωi

c
zi,

φ2 = φ1 + 2
ωi

c
n0d. (H.2)

L is the length of the nonlinear crystal, n0 is the refractive index
of the sample, zs is the distance from the nonlinear crystal to the
reference mirror located in the signal arm and zi is the distance from
the crystal to the first layer of the sample.

Let us first neglect the effect of the axial resolution for unveiling all
peaks of the FT. The first term in Eq. (H.1) will produce a peak of the
FT at z = 0. The second term would generate two symmetric peaks
at 2t+ cDL and −2t− cDL. Finally the third term would generate
peaks at 2t+cDL−2ngd and −2t−cDL+2ngd. We show in Fig. H.1
the location of these peaks (dashed lines) and the positions of peaks
obtained experimentally (dots). For t < −cDL/2 or t > ngd−cDL/2,
there will be always five FT peaks and the distance between the two
peaks peaks at z > 0, or z < 0, will be 2ngd. If one now considers the
effect of the axial resolution for distinguishing the FT peaks, the ideal
scenario for OCT is t ≪ −cDL/2 or t ≫ ngd−cDL/2. Unfortunately
the sensitivity of the spectrometer used in our experiments impedes
us to work in this regime and the axial resolution (∼ 60 µm) makes
the observation of the FT peaks close to the central peak troublesome.

However, for −cDL/2 < t < ngd− cDL/2 we still can determine
the distance between layers. In this scenario the number of FT peaks
and the distance between them might change. We focus on three
cases that correspond to three values of t where only two FT peaks
at z ̸= 0 are expected. In Fig. H.1 these points are the ones where
the theoretical lines intersect. The first case is for t = −cDL/2
(points A and B) and the separation between these peaks is 4ngd.
The second case is for t = ngd − cDL/2 (points E and F) and the
separation between the peaks is the same. Figure 4.5 of the main
text corresponds to the third case, that is t = (ngL− cDL)/2 (points
C and D). The separation between these peaks is 2ngd.
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The shape of the signal spectrum and its Fourier transform
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APPENDIX I

ERROR PROPAGATION FOR
VISIBILITY VS LOSSES
CURVE

Error propagation is used to create the error bars displayed in Fig. 4.3
for the measured visibility of the interference fringes and for the idler
reflectivity values. The flux rate of signal photons Ns, with variance
σ2
Ns
, is the quantity used to calculate visibility by its definition

V =
Nmax

s −Nmin
s

Nmax
s +Nmin

s

. (I.1)

Thus, the error of the visibility can be derived from the variance
of the measured flux rates as

σ2
V =

∣∣∣ ∂V

∂Nmax
s

∣∣∣2σ2
Nmax

s
+
∣∣∣ ∂V

∂Nmin
s

∣∣∣2σ2
Nmin

s
. (I.2)

If we calculate the partial derivatives, we obtain

σ2
V =

4

(Nmax
s +Nmin

s )4
{[

Nmin
s

]2
σ2
Nmax

s
+
[
Nmax

s

]2
σ2
Nmin

s

}
. (I.3)
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Error propagation for Visibility vs losses curve

The idler reflectivity ri is varied with a gradual density filter and is
measured as

ri =
I

Imax

, (I.4)

with I being the idler intensity for a concrete position of the density
filter and Imax is the idler intensity for the maximum transmission of
the density filter. The error of the reflectivity can be derived from
the variance of both measured quantities as

σ2
ri
=
∣∣∣∂ri
∂I

∣∣∣2σ2
I +

∣∣∣ ∂ri
∂Imax

∣∣∣2σ2
Imax

. (I.5)

If we calculate the partial derivatives, we obtain

σ2
ri
=

σ2
I

I2max

+
( I

I2max

)2
σ2
Imax

. (I.6)
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