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Abstract

The Internet of Things (IoT) leads technological advancements across
diverse sectors, ranging from smart healthcare to intelligent trans-
portation. However, rapid development of IoT devices with increasing
energy demands have raised concerns about reliance on conventional,
limited-life batteries. The use of conventional batteries in IoT devices
brings various drawbacks, including high maintenance costs, frequent
battery replacements, and environmental concerns. Moreover, the en-
ergy crisis highlights the urgency of ensuring technology sustainabil-
ity, particularly within the IoT paradigm. A promising solution to
tackle these challenges involves integrating Energy Harvesting (EH)
technologies into IoT systems, reducing the need for frequent battery
replacements, extending operational life of these devices, and dimin-
ishing the negative effect on the environment.

Nevertheless, the peculiarities of EH technologies and the varying en-
ergy requirements of IoT systems present new challenges. This com-
plex integration demands adaptations across multiple layers of the IoT
protocol stack, primarily focusing on the energy-intensive Medium
Access Control (MAC) layer operations. Despite its key role in opti-
mizing energy consumption within IoT systems, there is a noticeable
gap in the literature regarding systematic MAC layer enhancements
for EH integration. These enhancements may be particularly relevant
in critical applications like IoT medical devices.

This dissertation presents a comprehensive framework for assessing
energy consumption across diverse wireless technologies, focusing on
MAC operation perspectives. This innovative framework provides
valuable insights for choosing appropriate EH solutions adapted to
specific communication technologies within Wi-Fi-based IoT systems.

Throughout our research, we perform simulations in a densely de-
ployed solar-powered Wi-Fi network operating in an e-healthcare en-
vironment. Our main goal is to ensure that Quality of Service (QoS)
requirements are met within a QoS limited environment, while mini-
mizing the network’s energy usage. To achieve this, we fine-tune the
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Contention Window (CW) initialization and introduce an optimiza-
tion algorithm which considers the Access Point (AP) coordination.
Our approach draws inspiration from the forthcoming IEEE 802.11bn
amendment, which discusses AP coordination method.

Finally, we leverage Reinforcement Learning (RL) methods to further
strengthen this approach to effectively adapt to the complexity and
dynamic behavior of the network. The innovative RL algorithms we
propose for MAC layer parameters effectively reduce the energy con-
sumption of the network compared to traditional Wi-Fi setups, while
ensuring the QoS for e-healthcare applications is maintained. Further-
more, we show that more energy can be conserved within the network
by fine-tuning MAC layer parameters. This highlights the potential
for reducing the size of solar cells while increasing the adaptability of
EH techniques for IoT devices. Lastly, we implement a sleep/wake-
up strategy, which significantly reduces network energy consumption
which may impact QoS requirements.

The main contribution of this dissertation is to improve the energy ef-
ficiency in IoT systems through passive technologies such as EH meth-
ods. We conclude that this work can help researchers in academia and
industry to understand the current state-of-the-art of EH MAC proto-
cols for IoT, improve the early adoption of EH MAC layer protocols in
IoT systems, and new possibilities for IoT EH integration, particularly
in contexts with restricted QoS environments such as e-Healthcare.
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Resumen

El Internet de las cosas (IoT, de sus siglas en inglés) lidera los avances
tecnológicos en diversos sectores, desde la atención sanitaria inteligente
hasta el transporte inteligente. Sin embargo, el rápido desarrollo de
dispositivos IoT con demandas de enerǵıa crecientes ha suscitado pre-
ocupación por la dependencia de bateŕıas convencionales de vida lim-
itada. El uso de bateŕıas convencionales en dispositivos IoT conll-
eva varios inconvenientes, incluidos los altos costos de mantenimiento,
reemplazos frecuentes de bateŕıas y problemas ambientales. Además,
la crisis energética destaca la urgencia de garantizar la sostenibilidad
tecnológica, especialmente dentro del paradigma IoT. Una solución
prometedora para abordar estos desaf́ıos consiste en integrar tec-
noloǵıas de captación de enerǵıa (EH, de sus siglas en inglés) en los
sistemas IoT, reduciendo la necesidad de sustituir las bateŕıas con fre-
cuencia, prolongando la vida útil de estos dispositivos y disminuyendo
el efecto negativo en el medio ambiente.

Sin embargo, las peculiaridades de las tecnoloǵıas de EH y los diversos
requisitos de enerǵıa de los sistemas IoT presentan nuevos desaf́ıos.
Esta compleja integración exige adaptaciones en múltiples capas de la
pila de protocolos IoT, centrándose principalmente en las operaciones
de la capa de control de acceso al medio (MAC, de sus siglas en
inglés) que consumen mucha enerǵıa. A pesar de su papel clave en
la optimización del consumo de enerǵıa dentro de los sistemas IoT,
existe una brecha notable en la literatura con respecto a las mejoras
sistemáticas de la capa MAC para la integración de EH. Estas mejoras
pueden ser particularmente relevantes en aplicaciones cŕıticas como los
dispositivos IoT médicos.

Esta disertación presenta un marco integral para evaluar el consumo
de enerǵıa en diversas tecnoloǵıas inalámbricas, centrado en la per-
spectiva de operación de la capa MAC. Este marco innovador pro-
porciona información valiosa para elegir soluciones de EH adecuadas,
adaptadas a tecnoloǵıas de comunicación espećıficas dentro de sis-
temas IoT basados en Wi-Fi.
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A lo largo de esta investigación, se han realizado simulaciones en re-
des Wi-Fi densas alimentadas con enerǵıa solar, implementadas en un
entorno de e-salud. El objetivo principal ha sido garantizar que se
cumplan los requisitos de calidad del servicio (QoS, de sus siglas en
inglés) dentro de un entorno de QoS limitado, a la vez que se minimiza
el uso de enerǵıa de la red. Para lograrlo, se ha ajustado la inicial-
ización de la ventana de contención (CW, de sus siglas en inglés) y se
ha introducido un algoritmo de optimización que considera la coordi-
nación del punto de acceso (AP, de sus siglas en inglés). El enfoque de
esta investigación se inspira en la próxima enmienda IEEE 802.11bn,
que propone el método de coordinación de AP.

Por último, se aprovechan los métodos de aprendizaje por refuerzo
(RL, de sus siglas en inglés) para fortalecer aún más este enfoque,
y adaptarse de forma efectiva a la complejidad y el comportamiento
dinámico de la red. Los innovadores algoritmos de RL que se pro-
ponen para los parámetros de la capa MAC reducen eficazmente el
consumo de enerǵıa de la red en comparación con las configuraciones
de Wi-Fi tradicionales, al tiempo que garantizan que se mantenga la
QoS para las aplicaciones de e-salud. Además, se demuestra que se
puede conservar más enerǵıa de la red ajustando los parámetros de la
capa MAC. Esto destaca el potencial de reducir el tamaño de las cel-
das solares, a la vez que aumenta la adaptabilidad de las técnicas de
EH para los dispositivos IoT. Por último, se implementa una estrate-
gia de dormir/despertar, que reduce significativamente el consumo de
enerǵıa de la red, lo que puede afectar los requisitos de QoS.

La principal contribución de esta disertación es mejorar la eficiencia
energética en los sistemas IoT a través de tecnoloǵıas pasivas como
los métodos de EH. Concluimos que este trabajo puede ayudar a los
investigadores del ámbito académico y de la industria a comprender
los nuevos protocolos MAC de EH para IoT, mejorar la adopción tem-
prana de protocolos de capa MAC de EH en sistemas IoT, y aportar
nuevas posibilidades para la integración de EH en IoT, especialmente
en contextos con entornos de QoS restringidos como la e-salud.

vi



Resum

La Internet de les Coses (IoT, de les seves sigles en anglès) lidera
els avanços tecnològics en diversos sectors, des de l’atenció sanitària
intel·ligent fins al transport intel·ligent. No obstant això, el ràpid de-
senvolupament de dispositius IoT amb demandes d’energia creixents
ha suscitat preocupació per la dependència de bateries convencionals
de vida limitada. L’ús de bateries convencionals en dispositius IoT
comporta diversos inconvenients, inclosos els alts costos de manteni-
ment, reemplaçaments freqüents de bateries i problemes ambientals.
A més, la crisi energètica destaca la urgència de garantir la sosteni-
bilitat tecnològica, especialment dins del paradigma IoT. Una solució
prometedora per a abordar aquests desafiaments consisteix a integrar
tecnologies de captació d’energia (EH, de les seves sigles en anglès) en
els sistemes IoT, reduint la necessitat de substituir les bateries amb
freqüència, prolongant la vida útil d’aquests dispositius i disminuint
l’efecte negatiu en el medi ambient.

No obstant això, les peculiaritats de les tecnologies d’EH i els di-
versos requisits d’energia dels sistemes IoT presenten nous desafia-
ments. Aquesta complexa integració exigeix adaptacions en múltiples
capes de la pila de protocols IoT, centrant-se principalment en les
operacions de la capa de control d’accés al medi (MAC, de les seves
sigles en anglès) que consumeixen molta energia. Malgrat el seu pa-
per clau en l’optimització del consum d’energia dins dels sistemes IoT,
existeix una escletxa notable en la literatura respecte a les millores
sistemàtiques de la capa MAC per a la integració d’EH. Aquestes mil-
lores poden ser particularment rellevants en aplicacions cŕıtiques com
els dispositius IoT mèdics.

Aquesta dissertació presenta un marc integral per a avaluar el consum
d’energia en diverses tecnologies sense fils, centrat en la perspectiva
d’operació de la capa MAC. Aquest marc innovador proporciona in-
formació valuosa per a triar solucions d’EH adequades, adaptades a
tecnologies de comunicació espećıfiques dins de sistemes IoT basats
en Wi-Fi.
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Al llarg d’aquesta recerca, s’han realitzat simulacions en xarxes Wi-
Fi denses alimentades amb energia solar, implementades en un entorn
d’e-salut. L’objectiu principal ha estat garantir que es compleixin els
requisits de qualitat del servei (QoS, de les seves sigles en anglès) dins
d’un entorn de QoS limitat, alhora que es minimitza l’ús d’energia
de la xarxa. Per a aconseguir-ho, s’ha ajustat la inicialització de
la finestra de contenció (CW, de les seves sigles en anglès) i s’ha
introdüıt un algorisme d’optimització que considera la coordinació
del punt d’accés (AP, de les seves sigles en anglès). L’enfocament
d’aquesta recerca s’inspira en la propera esmena IEEE 802.11bn, que
proposa el mètode de coordinació d’AP.

Finalment, s’aprofiten els mètodes d’aprenentatge per reforç (RL, de
les seves sigles en anglès) per a enfortir encara més aquest enfocament,
i adaptar-se de manera efectiva a la complexitat i el comportament
dinàmic de la xarxa. Els innovadors algorismes de RL que es proposen
per als paràmetres de la capa MAC redueixen eficaçment el consum
d’energia de la xarxa en comparació amb les configuracions de Wi-
Fi tradicionals, al mateix temps que garanteixen que es mantingui la
QoS per a les aplicacions d’e-salut. A més, es demostra que es pot
conservar més energia de la xarxa ajustant els paràmetres de la capa
MAC. Això destaca el potencial de reduir la mida de les cel·les solars,
alhora que augmenta l’adaptabilitat de les tècniques d’EH per als dis-
positius IoT. Finalment, s’implementa una estratègia de dormir/des-
pertar, que redueix significativament el consum d’energia de la xarxa,
la qual cosa pot afectar els requisits de QoS.

La principal contribució d’aquesta dissertació és millorar l’eficiència
energètica en els sistemes IoT a través de tecnologies passives com
els mètodes d’EH. Concloem que aquest treball pot ajudar als in-
vestigadors de l’àmbit acadèmic i de la indústria a comprendre els
nous protocols MAC d’EH per a IoT, millorar l’adopció primerenca
de protocols de capa MAC d’EH en sistemes IoT, i aportar noves pos-
sibilitats per a la integració d’EH en IoT, especialment en contextos
amb entorns de QoS restringits com l’e-salut.
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This book is dedicated to everyone who has lost loved ones in the
COVID-19 pandemic. May science and technology one day prevent

such crises.
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Introduction

The Internet of Things (IoT) ecosystem facilitates the connection and data trans-
fer of a large number of physical things via the Internet. These devices are
equipped with unique hardware and software that improves the performance and
efficiency of various applications and services (4). As part of the IoT paradigm,
these improvements seek to enhance every element of human life and society, from
process management in industrial automation to digital hospitals in healthcare
services (5).

The idea of the IoT paradigm was first introduced by Kevin Ashton in 1999,
who considered Radio Frequency Identification (RFID) as the fundamental tech-
nology for IoT systems. He declared that IoT aims to integrate short-range mobile
transceivers into numerous devices to enable new inter-thing-human communica-
tions. However, Cisco reported that the IoT ecosystem was born between 2008
and 2009 when the number of connected devices was estimated to reach 12.5
billion in 2010 (6). According to the latest report from Cisco, approximately 30
billion connected IoT devices will exist by the end of 2023 (7), which follows by a
considerable increase in the Compound Annual Growth Rate (CAGR) from 465
billion dollars in 2019 to 1.5 trillion dollars (8).

As the statistics demonstrate, the number of connected devices continues to
grow exponentially, which makes providing sufficient energy to sustain this mas-
sive ecosystem a significant challenging issue. Research conducted by “The Shift
Project” (9) reveals a concerning trend in the energy consumption of IoT deploy-
ments, projecting a CAGR of 4.5% from 2312 TWh in 2015 to 4350 TWh in 2025.
These predictions raise concerns about the viability of powering IoT devices with
conventional batteries, which have limited lifetimes and require frequent replace-
ments. Such challenges risk IoT system failures and highlight the inefficiency and
costliness associated with maintaining and replacing batteries, particularly when
IoT devices are located in hard-to-reach or hazardous areas across various sectors
such as healthcare, industrial, transportation, and residential. Consequently, dis-
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posing of billions of batteries in landfills each year poses significant environmental
concerns and diminish resources at a planetary scale, including ecotoxicity and
water pollution (10). Moreover, EH technologies play a pivotal role in the am-
bitious Net Zero 2050 project (11), designed to balance the equilibrium between
greenhouse emissions extracted from the atmosphere and those emitted into it.
The realization of this goal lies on the widespread integration of EH techniques
into IoT devices.

As a result, academia and industry have taken an interest in finding ways to
extend the lifespan of IoT devices and conserve energy while maintaining optimal
performance. In mitigating these negative impacts, power management tech-
niques have been explored, where sustainability plays a pivotal role in optimiza-
tion of the energy consumption of the network. Effective techniques that move
towards sustainability include energy-efficient methods such as lightweight pro-
tocols, scheduling optimization, low-power transceivers, and passive techniques.
Passive technologies in wireless communication include techniques that do not
require an external energy source to transmit data. These techniques involve
the harvesting and utilization of wireless energy without the need to convert it
into another form of power generation. Energy Harvesting (EH) techniques are
included within this paradigm.

In conjunction with energy-efficient techniques that reduce overall energy con-
sumption in networks, recent innovations in IoT technologies have introduced
portable devices with small batteries. This has led to the emergence of EH tech-
nologies as a promising and environment-friendly solution to provide sufficient
energy for these devices and prolong the lifespan of the network while minimizing
the drawbacks associated with conventional batteries. The growing interest from
academia and industry has contributed to the expansion of the global EH market,
which is projected to increase from 360.6 million dollars in 2020 to 987.09 million
dollars by 2028 (12).

1.1 Motivation

Moving towards sustainability in IoT systems can be accomplished through the
implementation of EH deployments. Nevertheless, integrating EH within the
IoT ecosystem poses a significant challenge due to various factors, including de-
vice/harvester form factor, end-user device type, the specific IoT application,
power density of the harvester, and the type of wireless communication (13).

To gain insight into how EH technologies can be supported in IoT, there is a
need to understand the essential role of each component in the IoT device, which
is equipped with an energy harvester. Several components come into play when
dealing with a sensor equipped with EH technology. First, the specialized energy
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harvester collects energy from the environment. An energy storage device is nec-
essary to store this harvested energy. Once the harvesting system is connected
to a wireless sensor or actuator, the processing unit manages the data collection
process. The key goal is to achieve Energy Neutral Operation (ENO), where the
energy supplied by the harvester meets or exceeds the system’s energy require-
ments. At the same time, the system must facilitate wireless communication.
This concept is illustrated in Figure 1.1, which is extracted from paper (1).

Energy Harvesting System

Energy Harvester Energy Storage Device

 Sensor

Actuator

Data Acquisition 
Unit

 Processor

Memory

Processing 
Unit

Upper Layers

MAC Layer

PHY Layer

Communication 
Unit

Figure 1.1: General schematic of an IoT node equipped with EH (1).

In the wireless communication field, Key Performance Indicators (KPIs) are
known as targeted metrics. They evaluate the performance of various aspects of
a wireless network and provide valuable insight into how well the network func-
tions and how effectively it addresses users’ needs. IoT applications might be
different in their specific KPIs such as data rate, energy consumption, coverage,
and latency. For this reason, the IoT industry employs a diverse range of wireless
communication technologies to attain specific levels of targeted KPIs for its ap-
plications at the communication level. In other words, depending on the deployed
wireless communication protocol, each IoT system will have various performance
requirements. Thus, selecting a suitable wireless connection technology while in-
stalling IoT devices is another critical issue. As shown in Figure 1.2, wireless
communication technologies have evolved over time. Since, for many IoT appli-
cations, energy consumption is one of the most important KPIs, there is a need

3



1. INTRODUCTION

for a unified energy model approach to characterize the energy consumption in
different IoT wireless communication technologies and understand its impact on
IoT performance.

Figure 1.2: Illustration of the Evolution of IoT.

However, achieving sustainability of the IoT systems towards the ENO prop-
erty, while considering specific factors (such as a small energy harvester size) and
meeting the overall system requirements, still presents a gap in the current lit-
erature. In addition, the energy provided by EH is not always sufficient for IoT
communication technologies because of the limited and intermittent behavior of
the energy sources of EH techniques. Hence, the challenge is integrating EH in
wireless communication technologies without impacting the performance of the
system.

Thus, to successfully integrate EH into IoT systems, optimizing energy con-
sumption in wireless communication technologies across different layers of the
IoT architecture is essential. The energy consumption of the IoT protocol stack
has been mitigated by using optimization methods such as channel adaptation
or energy-aware routing algorithms. However, since the MAC layer, responsible
for scheduling data frame transmissions, encounters inherent communication chal-
lenges such as collision frames, control packet overhead, idle listening, unused idle
slots, and synchronization, it consumes a significant portion of the energy budget
in wireless communications. For this reason, the MAC layer operations benefit
significantly from optimization algorithms, such as channel access optimization
techniques. It is essential to ensure these optimizations and modifications remain
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compatible with current wireless technologies.

In recent years Machine Learning (ML) algorithms have demonstrated a pow-
erful capability to improve and evolve optimization problems from classical op-
timization methods in wireless networks. ML-based algorithms might be re-
quired to efficiently meet the complex features of different wireless communica-
tion technologies, such as Extreme Ultra Reliable Low Latency Communications
in cellular networks and Access Point (AP) coordination in Wi-Fi 7 and Be-
yond.Furthermore, these algorithms can play a crucial role in optimizing the MAC
layer to support EH techniques. By leveraging ML, the MAC layer can adap-
tively adjust parameters based on real-time network conditions and the available
harvested energy. This integration of ML and EH, enables intelligent resource
management, reducing collisions, improving energy efficiency, and maximizing
the benefits of EH in wireless networks. Through efficient resource allocation and
intelligent energy management, ML-enhanced MAC layer operations, may aid in
enabling a more sustainable approach to wireless communication by minimizing
energy waste and prolonging the lifespan of battery-powered devices.

In summary, implementing energy efficient-IoT systems utilizing the latest
wireless communication technologies relies on integrating EH techniques. These
techniques are essential for ensuring sustainable operation by allowing devices
to generate power from their surroundings. In addition, novel and advanced
optimization methods need to be integrated to optimize and improve overall ef-
ficiency within IoT networks and move towards a more resilient, sustainable,
and advanced IoT ecosystem. These optimization methods mainly employ ML
techniques, which hold significant promise for enhancing network performance.

1.2 Objectives of the Ph.D.

As emphasized in the Motivation 1.1, achieving sustainability in the IoT ecosys-
tem and integrating EH technologies necessitates a thorough understanding of the
energy requirements for communication. Subsequently, employing appropriate
optimization methods becomes crucial to enhance system performance, specifi-
cally in terms of network energy consumption. This research dissertation aims
to introduce and evaluate modifications at the MAC layer of a solar-based Wi-Fi
system within a Medical IoT (MIoT) scenario, to mitigate energy consumption
while preserving the necessary Quality of Service (QoS) for e-Health applications.

This research dissertation focuses on the following primary objectives that we
aim to address:
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1.2.1 To review the State of the Art to evaluate the en-
hancement of IoT performance through the utiliza-
tion of passive techniques

The rapid development of the IoT ecosystem requires improvement in the perfor-
mance of the IoT systems, specifically in terms of energy efficiency. Therefore,
this evaluation reviews the State of the Art and focuses explicitly on the sig-
nificance of energy efficiency and the progression towards sustainability within
the IoT ecosystem. Thus, the critical aspect is determining the most relevant
requirements for an EH method in IoT wireless communication technologies and
investigating the possibility of a successful EH integration in the IoT systems
through a proper energy model.

1.2.2 To reach an in-depth understanding of MAC layer
operations and investigate the impact of these oper-
ations on the energy consumption of wireless com-
munication technologies in the IoT ecosystem

The previous objective focuses on the analyzing the energy consumption associ-
ated with MAC layer operations in wireless communication. A method to improve
energy efficiency at the MAC layer is by integrating EH, however, incorporating
EH into the system could increase the initial energy requirements. Hence, min-
imizing MAC layer operations through optimization methods that address the
needs of both EH technologies and IoT systems becomes imperative.

This objective includes a MAC layer protocol, which needs to be compatible
with the selected wireless communication and the EH technology. In addition, it
is important to note that the rate of harvesting energy has a significant effect on
the proposal of the EH MAC protocol.

1.2.3 To enable the EH integration within the IoT sce-
nario through MAC layer optimization

MAC layer optimization methods can effectively reduce energy consumption dur-
ing operations at this layer. Consequently, it is crucial to identify the optimal
values for MAC layer parameters that achieve minimal energy consumption with-
out compromising the performance of other network metrics.
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1.2.4 To explore the impact of Reinforcement Learning
(RL) optimization algorithms in successfully inte-
grating EH technologies within the IoT systems

The emergence of ML, particularly RL-based optimization, has dramatically en-
hanced the optimization field, making it more powerful for networking applica-
tions. While identifying an optimal configuration for MAC layer parameters can
lead to reduced energy consumption in the network, the dynamic nature of net-
work conditions necessitates a flexible approach. Frequent changes in network
conditions imply that the optimal value needs to be adaptive and responsive to
these fluctuations. RL-based optimization methods are well-suited for this task,
as they excel in dynamic environments and can effectively adjust to changing net-
work conditions. Consequently, RL-based optimization methods offer a promising
solution to enhance the integration of EH within IoT systems by enabling dynamic
and efficient parameter selection.

1.3 Research Methodology

To accomplish the aforementioned objectives, the approach employed in this
Ph.D. study can be outlined into two distinct approaches. The initial approach
focuses on an exhaustive literature review, developing a cohesive model for assess-
ing energy consumption in wireless communication technologies (Objectives 1.2.1
and 1.2.2). This is achieved by investigating the main databases to find the most
relevant articles from indexed journals and conferences, and their corresponding
references, cited over the last twenty years. Our search was structured around a
selected list of relevant keywords to the topic, ensuring a thorough exploration of
the subject matter. The second approach entails designing, implementing, and
evaluating a system model to identify optimal MAC layer parameters integrated
with EH technology, within QoS-constrained environments, to enhance overall
energy efficiency (Objectives 1.2.3). To reach this goal, Network Simulator 3
(ns-3) is selected as the simulation environment, specifically the default WiFi
module, which defines several amendments. Among all these amendments, we
select the IEEE 802.11n amendment. Then, we implement the AP coordination
technique from the upcoming amendment IEEE 802.11bn and demonstrate its
backward compatibility. Finally, a similar strategy is adopted to leverage ML
technology in optimizing energy utilization within the use case mentioned above
(Objectives 1.2.4). In this approach, we utilize ns3-gym, which makes the ML al-
gorithm deployment possible, and we develop RL algorithms for the optimization
problem.

The research methodology employed in this Ph.D. study is visually depicted in
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Figure 1.3. As illustrated, the initial phase involves a comprehensive exploration
of existing challenges and gaps concerning enhancing energy efficiency within IoT
systems, aiming to extend the operational lifespan of associated devices. This in-
vestigative phase is the momentum for formulating research inquiries aligned with
the stated objectives. This work includes problem description, the proposal of
potential solutions, and the strategic road map for achieving the objectives. Sub-
sequently, an extensive literature review follows, delving into relevant studies to
accumulate foundational insights and identify possible methods for addressing the
gaps in this research domain. These studies undergo thorough analysis, finalizing
in the constructing of a model tailored to address the defined issue.

In the context of this dissertation, the constraints of IoT technologies are
highlighted through an energy model, adjusting with potential IoT technologies
and the dynamic characteristics of EH techniques. Aligned with the contextual
requirements of the system environment, this model is precisely designed, outlin-
ing the selected methodologies and network performance metrics. According to
Figure 1.3, the next phase centers on evaluating the proposed model, which is ef-
fectively executed through simulations. The chosen simulation platform operates
at the packet level, fairly emulating real-world network behaviors and operations.
Concluding the methodology, the outcomes of the proposed model are subjected
to rigorous validation, substantiated through publication in international jour-
nals. This systematic framework repeats consistently across all articulated ob-
jectives, ensuring a robust and comprehensive approach to the research work.

MOTIVATION
RESEARCH 
QUESTION

LITERATURE 
REVIEW

REQUIRED 
ANALYSIS 

MODEL 
DESIGN AND 

CREATION

 MODEL 
EVALUATION AND 

EXPERIMENTATION

RESULTS 
(DOCUMENTS)

Figure 1.3: Research methodology Steps.
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1.4 Contributions of the Ph.D. Dissertation

The main goal of this Ph.D. dissertation is to explore the feasibility of integrating
passive technologies, specifically EH, within the IoT ecosystem. Although EH
solutions can be beneficial for various IoT systems, their application in MIoT,
which accounts for 20% of the global IoT systems (14) offers a dual advantage.
Firstly, implementing EH reduces maintenance costs associated with powering
medical devices and systems. By harvesting energy from the surrounding en-
vironment, IoT devices (including MIoT) can operate without frequent battery
replacements or external power sources, leading to cost savings in the long run.
Secondly, EH techniques improve human well-being by ensuring reliable and un-
interrupted operation of medical devices. Patients and healthcare providers can
rely on continuous monitoring and accurate data collection, enhancing patient
care and outcomes. Moreover, considering that Wi-Fi is the prevailing wireless
communication technology in indoor IoT systems (15), this study investigates the
possibility of integrating EH technologies within Wi-Fi technology through ex-
tensive simulations. To reach this goal, our first objective is to assess how passive
techniques can elevate IoT performance, which requires investigating deeply into
MAC layer operations to comprehend their intricacies and evaluate their influ-
ence on the energy consumption of wireless communication technologies within
the IoT framework. The second objective is to enable the seamless integration of
EH within the IoT ecosystem by optimizing the MAC layer. Finally, we explore
the efficacy of RL optimization algorithms in incorporating EH technologies into
IoT systems to enhance overall efficiency and sustainability.

1.4.1 Analysis of energy considerations and an in-depth
exploration into the feasibility of integrating EH
within the IoT Paradigm

This contribution (see Chapter 3) encloses an in-depth review of energy-aware
MAC protocols, categorizing them based on various dimensions to facilitate the
concurrent utilization of EH techniques. In addition, a thorough investigation of
wireless communication technologies, evaluating their compatibility with the IoT
paradigm and analyzing their MAC layer features and optimization techniques is
conducted. By adopting a unified approach, this research contributes to a more
profound comprehension of energy models, shedding light on energy requirements
of IoT systems and limitations in relation to wireless communication technologies.
The functionalities and suitability of existing energy harvesters for IoT wireless
communication technologies are also assessed. Furthermore, this contribution
comprehensively examines current EHMAC protocols’ functionality, benefits, and

9



1. INTRODUCTION

limitations, specifically focusing on their integration at the MAC layer. Moreover,
the energy consumption across different levels of IoT systems, emphasizing MAC
layer operations and identifying energy wastage caused by MAC anomalies, is
extensively reviewed. Lastly, comprehensive guidelines that address open issues
and research challenges on EH MAC protocols within IoT systems are provided.

1.4.2 Energy reduction through MAC layer optimization

This contribution proposes an objective function that, considering medical-grade
QoS criteria and energy usage, optimizes a Wi-Fi-based IoT system equipped with
EH technology in a field hospital (see Chapter 4). This objective function guides
the decision-making process towards achieving the desired QoS while minimizing
energy consumption. In addition, a sleep/wake-up mechanism is designed to put
specific stations into sleep mode for a specific time interval when their residual
energy drops below a particular threshold. This mechanism effectively reduces
network energy consumption while maintaining the desired level of QoS for the
medical applications. Lastly, extensive simulations within the ns-3 environment
are proposed to accurately deploy a Wi-Fi communication for solar-based med-
ical devices. This approach incorporates the AP coordination concept from the
upcoming IEEE 802.11bn standard, ensuring backward compatibility with the
existing IEEE 802.11 standard.

1.4.3 Dynamic optimization for MAC layer of Wi-Fi

In this contribution, innovative RL-based optimization algorithms are proposed
(see Chapter 5), which are specifically designed for a solar-based Wi-Fi system
operating in a MIoT scenario. Similar to the previous contribution, this approach
ensures the compatibility with the existing IEEE 802.11 standard. To enhance
system performance, an objective function is introduced, which aims at maxi-
mizing the remaining energy while minimizing both the End-to-End (E2E) delay
and Packet Loss Rate (PLR) to fulfill the medical-grade QoS requirements. By
introducing RL-based optimization algorithms, our research enhances the previ-
ous contribution and improves the flexibility of the algorithm to adapt to the
dynamic behavior of dense networks.

1.5 Contributions Alignment with the Ph.D. Dis-

sertation’s Research Objectives

In this section, we provide a detailed explanation of the alignment between the
designated Research Objectives 1.2 in this Ph.D. study and the specific achieve-
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ments to effectively address each objective, towards the contributions of this
Thesis (c.f. Section 1.4).

After thoroughly investigating the energy demands of wireless communica-
tion technologies and their compatibility with IoT systems, we have identified a
notable gap in the existing literature concerning the seamless integration of pas-
sive technologies within IoT systems. Furthermore, we have recognized a need
for insights into how passive technologies, such as EH techniques, can signifi-
cantly enhance the energy efficiency of IoT systems (c.f. Objective 1.2.1). Since
the energy consumption in wireless communication directly depends on the op-
erations at the MAC layer, we have devised a distinctive energy consumption
decomposition model focusing on the MAC layer operations. This model is based
on an extensive analysis of the operations at the MAC layer, aligning with the
requirements of IoT systems and their chosen wireless communication technology
(Objective 1.2.2). These two objectives are developed in the Contribution 1.4.1,
which is detailed in Chapter 3, and published in (1), where we delve into the
comprehensive exploration of these principles.

To accomplish our third Objective 1.2.3, we have conceptualized, executed,
and assessed a comprehensive system model. This model allows us to specify opti-
mal MAC layer parameters within QoS-constrained environments, integrating EH
technology. This integration, together with wake-up/sleep method deployment,
aim to significantly enhance the overall energy efficiency of the network system.
This contribution is developed in the Contribution 1.4.2, which is detailed in
Chapter 4, and published in (2).

Finally, our fourth and last Objective 1.2.4 is approached by employing a sim-
ilar strategic approach, leveraging the ML process to optimize energy utilization
within a similar use case explained in the previous contribution. This involves de-
signing and implementing a ML algorithm that analyzes real-time data from the
IoT system, and fine-tunes MAC layer parameters for energy consumption mitiga-
tion and consumption patterns, to achieve an optimal and sustainable operational
model. Through iterative learning and adaptation, this ML-driven approach aims
to continuously enhance the energy efficiency of the system, making it dynamic
to the changes of the environment. Moreover, the addition of ML techniques may
increase the likelihood of EH integration within IoT deployments in the future.
The accomplishment of this objective is developed in Contribution 1.4.3, included
in Chapter 5, and published in our second technical paper (3).

Table 1.1 links the Objectives of this dissertation with the achieved Contri-
butions, in this PhD Thesis in the format of articles compilation.
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Table 1.1: Objectives and Contributions alignment within the PhD Thesis.

Objective Contribution Chapter Publication
1.2.1 & 1.2.2 1.4.1 3 (1)

1.2.3 1.4.2 4 (2)
1.2.4 1.4.3 5 (3)

1.6 Overview of the PhD Thesis

The reminder of this PhD Thesis is organized as follows:
Chapter 2 describes the State of the Art of the aforementioned objectives.

We conduct an extensive background study on MAC layer protocols, looking into
their classifications to grasp their diverse inherent features. Subsequently, we
present an in-depth exploration of early and promising wireless communication
technologies within the IoT ecosystem. Furthermore, we offer insights into ap-
propriate EH techniques suitable for IoT systems. Following this, we thoroughly
examine existing EH MAC layer protocols, analyzing their respective merits and
limitations. This research provides valuable insights into the current gap within
the literature regarding the integration of EH techniques within the IoT ecosys-
tem. Furthermore, it leads us for offering comprehensive guidelines for future
research efforts. Moreover, we justify our choice of the ns-3 simulation environ-
ment, highlighting its suitability over other simulators in the networking field,
where we emphasize the capabilities that make it a prime choice for our research.

Since this Ph.D. dissertation is prepared based on the papers that have been
published (papers compilation), they are explained in three separate chapters,
where each chapter contains one of the papers. A brief explanation of the content
of each paper is provided as follows.

Chapter 3 offers a thorough and systematic classification of existing EH MAC
protocols found in the literature based on the adopted channel access method.
This classification highlights the advantages and disadvantages of both traditional
and recent innovative approaches. Furthermore, the paper comprehensively ex-
amines the energy requirements for the possible wireless communication technolo-
gies. It accomplishes this by detailing the actual energy consumption of current
wireless communication technologies, which is introduced through a unified ap-
proach based on MAC layer protocols. Then, the compatibility of selected EH
MAC protocols with potential wireless communication technologies is evaluated
in this paper. Lastly, the contribution delves into a detailed exploration of avail-
able ambient and non-ambient energy harvesters, assessing their suitability for
integration with the current wireless communication technologies.

In Chapter 4 the focus is on the incorporation of EH technologies into a dense
Wi-Fi network. The paper introduces an optimization algorithm in the MAC
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layer motivated by the AP coordination method discussed in the upcoming IEEE
802.11be amendment (16). This algorithm aims to find the optimal Contention
Window (CW) combination separately in the master and slave cells. Its objective
is to meet the QoS requirements in a restricted QoS environment while minimiz-
ing the energy consumption of the network. Moreover, a sleep/wake-up method
is proposed, which significantly reduces energy usage within the network. The
effectiveness of the proposed algorithm is assessed through extensive simulations
conducted in a dense Wi-Fi network scenario, specifically in a field hospital where
all devices are equipped with solar cells.

Chapter 5 focuses on introducing RL-based optimization algorithms in the
MAC layer of a dense Wi-Fi network powered by solar energy. The primary
objective of this paper is to explore the feasibility of integrating EH technologies
while ensuring the provision of QoS for medical applications. By incorporating
RL-based optimization algorithms, this paper builds upon previous work, which
is presented in Chapter 4, and enhances the flexibility of the algorithm to adapt to
the dynamic nature of dense networks. These RL-based algorithms aim to reduce
the energy consumption associated with MAC layer operations in a solar-based
Wi-Fi network. Additionally, they endeavor to meet specific QoS parameters
which are essential for medical applications, such as PLR and E2E delay, thus
improving the overall performance of the network in medical-grade scenarios.

Finally, Chapter 6 summarizes the findings of this Ph.D. thesis. We elaborate
on the outcomes and concluded remarks of each paper and explain how the contri-
butions are connected. By outlining the potential and future research directions,
the chapter aims to inspire and guide future researchers in expanding upon the
existing knowledge and addressing the unresolved questions or challenges in the
domain.

It is essential to emphasize that the provided bibliography included in this
dissertation, only includes references explicitly cited in Chapters 1, 2, and 6.
Readers keen on exploring the referenced papers can find them in their respective
chapters.
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State of the Art

In wireless communication, the optimization of the MAC layer operations signif-
icantly affect the energy efficiency of IoT devices. A MAC classification helps to
comprehend the features of various MAC techniques and their limits in the IoT
environment. Given that a variety of wireless technologies are already used at
the communication level of IoT systems, a general overview of each technology,
and its MAC layer activities, must be carried out to understand each technol-
ogy’s energy requirements. As mentioned in the Introduction 1, since integrating
EH technologies is a promising solution to keep powering the IoT devices up, it
is necessary to estimate the amount of energy each harvester contributes to the
system. Furthermore, mitigating the energy consumption of the system may also
increase EH integration within IoT deployments in the future. Hence, design-
ing and implementing an ML algorithm that analyzes real-time data from the
IoT system and fine-tunes MAC layer parameters, may contribute towards these
goals. For this reason, an introduction to ML algorithms which are relevant to
this PhD Thesis is also included in this State of the Art. Finally, the method-
ological approach used in this Thesis requires the precise simulation of wireless
communication scenarios. To support the distinction and suitability of the se-
lected simulation environment for this Thesis (ns-3), in this State of the Art we
included a comparison of the advantages and disadvantages of this simulator over
other simulators in the networking field.

This chapter is organized as follows: Section 2.1 presents the main categories
of the energy-aware MAC protocols for IoT systems. Next, in Section 2.2, the
early wireless communication technologies, and then in Section 2.3, potential
wireless communication technologies for IoT systems are explained. Section 2.4
summarize the relevant energy harvesters for IoT systems. A comprehensive
comparison between wireless network simulators, the suitability of ns-3 as the
evaluation tool used in this dissertation, and its layered architecture is presented
in Section 2.5. In Section 2.6, an introduction to ML methods relevant to the
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goals of this Thesis are presented. Finally, Section 2.7, summarizes the State of
the Art most relevant points.

2.1 Categorization of Energy-Aware MAC Pro-

tocols for IoT Systems

In line with the IoT protocol stack, the MAC layer functions as a sub-layer within
the data link layer. Its primary role involves orchestrating the transmission sched-
ule and potential re-transmissions across the shared medium. In wireless com-
munication technologies within IoT systems, the MAC layer’s operations, which
facilitate adaptive channel access, encounter challenges such as collisions and idle
listening (especially in random access) or issues like synchronization and unused
idle slots (in scheduled access). Consequently, these challenges significantly con-
sume the energy resources available to IoT systems.

Notably, while deploying EH technologies can extend battery life, the unpre-
dictable and unstable nature of the obtained energy poses compatibility issues
with conventional MAC layer mechanisms. Hence, modifications are essential to
integrate these technologies effectively. Given that one of the primary objectives
of this Thesis is to enable EH within the MAC layer of IoT systems, to move to-
wards sustainability in IoT systems, a comprehensive understanding of each MAC
protocol’s functioning is critical. Additionally, exploring the inherent limitations
in existing MAC protocols becomes crucial. This exploration can be facilitated
through an in-depth categorization of energy-aware MAC protocols, taking into
account their performance and distinctive features.

The following section categorizes channel access techniques into four main
categories, and provides a brief explanation of each one. Then, Chapter 3 will
explain techniques within each category in detail, where the categorization will
be clarified through an illustrative approach.

1. Random Access: Within this category, a coordinator is absent to control
transmissions, with each node initiating transmission independently at any
given time. This category is divided into two subcategories: carrier sensing
and blind access. The decentralized nature of methods in this category offers
advantages like immediate transmission, yet their disposition for collisions
presents a significant challenge, leading to higher energy consumption.

To delve deeper into the complexity of the random access category outlined
in this subsection, interested readers are directed to references such as (17,
18, 19) for more comprehensive details.

2. Scheduled Access: In the scheduled access category, frame transmissions
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follow an organized structure, with all nodes initiating transmissions at
predetermined slots (Fixed Assignment) or under the guidance of a coor-
dinator (Dynamic Assignment). Compared to the random access category,
this organized approach mitigates energy wastage associated with idle lis-
tening and collisions, making it more energy-efficient.

However, this efficiency comes at the cost of reduced flexibility for indi-
vidual nodes, as the coordinator node controls them. Parameters such as
Quality of Service (QoS) and Quality of Experience (QoE) may need to be
more adaptable. Additionally, the coordinator node’s role in making nu-
merous decisions increases operational complexity, compared to other nodes
in the network. For a more in-depth understanding of the scheduled access
category discussed in this subsection, readers are encouraged to explore
references such as (17, 20).

3. Hybrid Access: This classification integrates the advantages of random ac-
cess (characterized by a distributed nature and full channel utilization) and
scheduled access (offering contention-free operation for long frames), mit-
igating their drawbacks. Within this category, three subcategories exist:
random access, scheduled access combinations, and duty-cycled access op-
erations. To gain a deeper comprehension of the hybrid access category
highlighted in this subsection, readers are motivated to delve into resources
such as (21, 22, 23).

4. Cross-Layer: Enhancing the management of network peripherals is achiev-
able by comprehending the dynamics of individual layers within the IoT
protocol stack. Within this category, the simultaneous interaction of two or
three layers of the IoT protocol stack is employed to optimize the network’s
performance, focusing on minimizing energy consumption. For further in-
formation, regarding this category the readers can consult the following
survey papers (24, 25).

2.2 Early Wireless Communication Technolo-

gies Towards IoT Paradigm

Although IoT devices can be connected to the Internet through wired or wireless
connections, wireless communication technologies are considered an essential part
of IoT systems. However, there exist wireless technologies which were introduced
before the advent of the IoT paradigm. Thus they did not consider IoT require-
ments in their protocol design. These technologies are essential because they are,
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in a way, the foundation of other technologies that meet IoT requirements. In
this section, a brief description of these wireless technologies is given.

2.2.1 General Packet Radio Service (GPRS)

GPRS is a packet-oriented communication standard that was introduced in 2000-
2001. Since this technology is between the second generation (2G) and the third
generation (3G) of cellular communication, it is known as 2.5G. GPRS is able
to provide moderate data rates (56-114kbit/sec) and deploy TDMA for channel
access in the Global System for Mobile communication (GSM) systems (26). It
supports smart devices by enabling internet applications via Wireless Applica-
tion Protocol (WAP). GPRS defines three types of devices, class A devices that
support GPRS and GSM services at the same time. The second type, known as
class B, can make a connection between GPRS and GSM services but not at the
same time. The last type, class C, relates to devices that are able to support
GPRS or GSM services by switching between them manually. The network con-
nection supports point-to-point or point-to-multipoint communications. GPRS
is a widely adopted solution for IoT due to existing development in large range
sub-GHz band and efficient transfer of short messages.

2.2.2 Wireless Local Area Network (WLAN)

Among different wireless communication technologies, Wi-Fi is widely used in IoT
and has evolved over time. The Institute of Electrical and Electronics Engineers
(IEEE) 802.11 technology was designed based on a random access mechanism
(CSMA/CA), which is an energy consuming protocol (27). The reason for such
energy consumption is the collision avoidance functionality of this protocol, which
keeps stations awake (in active mode) to listen to the channel for a certain du-
ration before attempting to transmit (28). Next, the early versions of the 802.11
technology are briefly described.

1. IEEE 802.11 legacy (29):

(a) Architecture: The architecture of the IEEE 802.11 protocol includes
two types of networks, infrastructure and ad hoc networks. In the in-
frastructure networks, all the stations are communicated through the
APs, whereas in the ad hoc networks, stations communicate with each
other directly and without requiring a centralized entity. Infrastruc-
ture networks are more suitable for permanent networks and, compared
to ad hoc networks, need less network resources, are easy to scale up,
and have less interference. A simple illustration of the infrastructure
and the ad hoc networks are shown in Figure 2.1.
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AP1

Station1

Station2

Station3

Station4

Station5

(a) Infrastructure-based WiFi network

Station2Station1

Station3

Station4 Station5

(b) Ad hoc-based WiFi network

Figure 2.1: General architecture of the WiFi networks.

(b) Fundamental mechanism of MAC protocol: The fundamental tech-
nique of the MAC layer in IEEE 802.11 standard is a two way hand-
shake protocol, known as the Distributed Coordination Function (DCF).
It uses a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA)
method with binary exponential back-off. Figure 2.2 depicts the de-
fault access technique known as a two-way handshaking scheme. Ac-
cording to CSMA/CA mechanism, stations monitor the channel before
sending the data frame. They will start a back-off countdown if they
sense the channel idle for a specific time interval known as Distributed
Inter-Frame Space (DIFS). Otherwise, if the channel is sensed as busy,
the stations keep monitoring the channel until the channel is sensed
idle for a DIFS. Then, the back-off countdown timer starts after the
channel is sensed idle for a DIFS. Since DCF is defined in a discrete-
time back-off manner, each transmission must begin at the start of
the time slot. Moreover, stations wake up and ask the AP for buffered
frames using the Power Save Poll (PS-Poll) control frame. The PS-Poll
control frame was considered the power management method in the
standardized amendments until 2005.

(c) MAC protocol anomalies: The MAC layer of the IEEE 802.11 in-
cludes inherent characteristics that each cause an increment in the en-
ergy consumption of the network. These anomalies are collision frame,
transmission overhead, overhearing, hidden and exposed terminal.

Within Random-based access mechanisms, a collision frame emerges
when two or more stations simultaneously attempt to transmit data
frames over the shared channel. This collision results in the discarding
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Figure 2.2: CSMA/CA Back-off procedure (2).

of data frames and requires a re-transmission.

The DCF mechanism suffers from different sources of transmission
overhead. The first source of overhead is the interference of non-
Wi-Fi and Wi-Fi devices. The second reason is the random back-off
procedure, where the lengthy back-off procedure increases the trans-
mission overhead. The third source of extra transmission overhead is
the control frames that, although they do not contain data, are neces-
sary for communication management.

Wi-Fi stations receive data frames that are not meant for them, which
means they receive any wireless interference within their communica-
tion range. This phenomena is known as overhearing and it intensi-
fies in the case of a dense network.

In random-based access mechanisms, if two stations that are out of the
communication range of each other start transmission simultaneously
to a receiver, the receiver may face a collision, and the two senders are
known as hidden terminals.

A station in random-based access mechanisms may be prevented from
starting the transmission and faces unnecessary waiting due to ongo-
ing transmissions of neighboring stations. This anomaly is known as
exposed terminal.

(d) Enhanced Distributed Channel Access (EDCA): The IEEE 802.11
standard group defines another mechanism known as EDCA, which
supports differentiated Quality of Service (QoS) in Wi-Fi communi-
cations. This mechanism introduces four different Access Categories
(ACVO, ACVI, ACBE, and ACBK) to prioritize channel access, where
the ACVO has the highest priority and ACBK has the lowest prior-
ity. The ACVO, ACVI, ACBE, and ACBK categories are meant for
voice, video, best-effort, and background traffic respectively. Accord-
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ing to this mechanism, the MAC layer parameters such as CWmin and
CWmax, Arbitrary Inter-Frame Space (AIFS), Transmission Opportu-
nity (TXOP), and queue length are set to different values to achieve
this prioritization. For instance, ACVO parameters are assigned to the
smallest values among other categories to give the highest transmis-
sion opportunity to the traffic under this category. However, since
different applications require various ACs, and Wi-Fi proposed fixed
EDCA parameters for each AC (Table 2.1), it is unsuitable and un-
feasible for heterogeneous networks (30), such as e-Health networks,
where the time-sensitive and emergency traffic require a certain level
of QoS. For this reason, new ACs with special queues are required.
Moreover, as explained in (31), since the CW is the principal param-
eter of the back-off procedure, among the EDCA-related parameters,
which are listed in Table 2.1, CW has the most impact on rescheduling
the transmissions and QoS parameters.

Table 2.1: Default EDCA ACs parameters (2).

Access Category CWmin CWmax AIFSN TXOP
VO 7 15 2 1.5 ms
VI 15 31 2 3.0 ms
BE 31 1023 3 0.0 ms
BK 31 1023 7 0.0 ms

As highlighted in previous works (32, 33, 34), since the inherent be-
havior of DCF and EDCA mechanisms are contention-based, collisions
may be caused by simultaneous transmissions, which is one of the rea-
sons that imposes extra energy consumption on the Wi-Fi stations. It
is worth mentioning that, in Time Division Multiple Access (TDMA), a
control channel makes the channel collision-free; however, this feature
is not available on Wi-Fi. The other reason behind the energy-hungry
feature of the DCF mechanism is the transmission errors due to the
imperfect channel condition, which causes re-transmission. Besides the
amount of energy consumed in the transmission state, the idle state of
DCF can also consume a significant amount of energy. Although var-
ious methods have been introduced to reduce these effects, they need
to precisely select the involved parameters to avoid extra energy con-
sumption (35). For instance, setting the beacon and idle intervals in
the power-saving mode is very important to prevent frequent wake-up
nodes, or simultaneous wake-ups, from wasting the energy of station.

(e) Four-way handshake mechanism: The DCF method can be ad-
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vanced by sending special short Request To Send (RTS) and Clear To
Send (CTS) frames before the actual frame transmission to reduce the
collision probability due to the hidden terminal anomalies. As shown in
Figure 2.3, before the frame transmission is triggered, the RTS frame
is sent, and only if the CTS frame is successfully exchanged, then
the channel can be reserved for the period needed to transport the
data frame. This approach is an optional mechanism that increases
the overhead in the case of small data frames while enabling other
stations to know the actual transmission length before the long data
frame is delivered.

DATA ACK DATA ACK

DATA ACK

DIFS DIFS

STATION A

STATION B

BUSY

BUSY BUSY

DIFS

DIFSSIFS

SIFS

SIFS

CW

CW

Back-off procedure for Station A

Back-off procedure

 for Station B

Time slot

RTS

CTS

SIFS SIFS

RTS

CTS

SIFS SIFS

Figure 2.3: A simple illustration of the four-way handshake mechanism.

2. IEEE 802.11a\b\g (36):

The first group of IEEE 802.11 amendments was introduced, between 1999
and 2003, as IEEE 802.11a\b\g. IEEE 802.11a works at the 5GHz band,
whereas IEEE 802.11b\g work at the 2.4GHz frequency band. Working at
a 5GHz frequency band reduces the probability of interference for IEEE
802.11a signals. Compared to IEEE 802.11b\g, IEEE 802.11a suffers from
low range commutation due to its small wavelength and vulnerability to
signal absorption by physical objects. It is worth mentioning that all these
amendments apply power management that uses PS-Poll control frames. In
this mechanism, the station has to transmit a PS-Poll control frame to ask
the AP to allocate a buffered uni-cast frame.

3. IEEE 802.11n (37):

IEEE 802.11n was followed by IEEE 802.11a\b\g and was standardized in
2009. It is the first wireless network standard that enables MIMO trans-
missions and, thus, enhances the standard for high throughput communica-
tions, while also supporting both 2.4GHz ad 5GHz frequency bands (5GHz
is optional). Similar to the IEEE 802.11g amendment, this amendment is
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backward compatible with legacy and Previous ones (IEEE 802.11a\b\g
amendment). In this amendment Spatial Multiplexing Power Saving (SM-
PS) and multi poll power saving methods are used to reduce the power
consumption of the operations. In the SM-PS method all radios but one
will be turned off by a device. This significantly lowers the possible data
rates. After that, the station stops supporting MIMO and many of the
benefits of IEEE 802.11n. The second method, is able to reduce the power
consumption by scheduling the uplink and downlink transmissions through
the power saving multi poll frames.

4. IEEE 802.11s (36):

The IEEE 802.11s amendment was mainly designed for wireless mesh net-
working by introducing a mandatory default routing protocol – Hybrid
Wireless Mesh Protocol (HWMP). The physical layer of this amendment is
designed based on IEEE 802.11n and its MAC layer is based on the IEEE
802.11n and IEEE 802.11e amendments. According to this amendment, the
WiFi devices are a Mesh Point Portal (MPP) which provides a gateway to
the wired network, Mesh Point (MP), which provides a wireless backbone
between other meshed devices and Mesh AP (MAP) that provides a wire-
less backbone as well as serves client stations. Moreover, this amendment
introduces a power-saving mechanism known as the Peer Service Period
(PSP). In this approach, if the receiver is operating in PSM, which means
it is operating in light sleep or deep sleep mode for the connection, then a
predetermined continuous period is employed to exchange buffered frames
in the link.

5. IEEE 802.11ac (38):

The following amendment was IEEE 802.11ac, introduced in 2013 and built
on top of IEEE 802.11n. It supports simultaneous connections in 2.4 and 5
GHz bands and provides backward compatibility with IEEE 802.11a\b\g.
Since these amendments do not meet IoT communication requirements,
(e.g. dense network deployment and low power communications) other
amendments and communication technologies have been introduced to sup-
port IoT systems. Based on the VHT TXOP power saving method, a station
will turn off its radio during a transmission if it notices that another station
has a TXOP. The more battery is conserved, the longer the TXOP and the
longer the sleep period.
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2.3 Overview of Potential Wireless Communi-

cation Technologies for IoT

IoT low-power technologies and approaches have recently received increased at-
tention. In this area, new concepts have been brought to satisfy IoT requirements.
This section introduces WLAN amendments that can be deployed in IoT systems,
together with their MAC layers characteristics, and lists the other potential wire-
less communication technologies for IoT systems. Furthermore, in Chapter 3,
these possible wireless communication technologies will be explained in detail
and aligned with their energy models.

2.3.1 WLAN

The IEEE 802.11 standard group has introduced in recent years different amend-
ments that aim to satisfy the IoT systems requirements. Within this amendments,
the original channel access method has been changing through the technical def-
inition of each amendment, looking for better performance in IoT systems.

1. IEEE 802.11ah:

In 2017 the IEEE 802.11 Working Group published the IEEE 802.11ah
amendment (39) for supporting the concept of IoT. The physical layer of
this amendment is a modification of the physical layer of IEEE 802.11ac,
providing sub-1GHz bandwidth (863-868 MHz in Europe, 755-787 MHz in
China and 902-928 MHz in the USA) (40) and a new Modulation and Cod-
ing Scheme (MCS), to reduce interference and extend the coverage range up
to 1.5km (41). Similar to the IEEE 802.11 legacy, the channel access method
of IEEE 802.11ah is based on CSMA/CA. However, some additional fea-
tures of the MAC layer such as hierarchical Association IDentifiers (AID),
group sectorization, and Restricted Access Window (RAW), make IEEE
802.11ah acceptable for a large number of devices deployment, by reducing
the contention in the medium. Among these features, RAW is considered
an optional one. Moreover, this amendment meets IoT requirements in
terms of low power consumption by introducing new MAC features such as
Relay Access Point (Relay AP), bi-directional Transmission Opportunity
(TXOP), Target Wake Time (TWT) and the optional feature RAW. The
first feature increases the connectivity range of the APs and the duration
of inactive mode of a node, the second feature reduces the awake time of
the stations and the last one reduces the signalling overhead (41).

2. IEEE 802.11ax:
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The Task Group 802.11ax (TGax) started the IEEE 802.11ax project in
2014 (42). Contrary to the IEEE 802.11ah, which has been designed to
meet IoT requirements, the IEEE 802.11ax amendment was designed for
dense deployments. The physical layer of this technology is a modification
of the IEEE 802.11ac amendment, operating in 1-6GHz frequency bands.
The channel access method of this technology adds OFDMA on top of
CSMA/CA, which is able to support MU. The most relevant modifica-
tion regarding energy efficiency is introducing a MU-Multiple Input, Mul-
tiple Output (MU-MIMO) uplink communication, where a control frame
with scheduling information is used, making this technology appropriate for
dense deployments. A MAC feature that makes IEEE 802.11ax a suitable
technology for dense environments is the Basic Service Set (BBS) coloring,
where the information of neighbors increases the TXOP of the station, and
in consequence increases the spatial reuse (43). Moreover, in this technol-
ogy energy efficiency can also be achieved through microsleep, TWT, and
Opportunistic Power Save (OPS) approaches (42). Microsleep mechanism is
the extended approach defined in IEEE 802.11ac, which keeps the stations
in deep sleep mode during an uplink or TXOP transmission within the same
BBS. TWT was adopted from IEEE 802.11ah, where the stations wake up
only for TWT Service Period (SP), and it does not depend on other control
frame modifications. The OPS is a combination of Traffic Indication Map
(TIM) segmentation and TWT SPs, where only a group of stations awake
for data transmissions and other stations stay in sleep mode (42).

3. IEEE 802.11ba:

Unlike the above IEEE 802.11 amendments, the IEEE 802.11ba is designed
for green IoT applications, and aims to balance the trade-off between low
latency and low power states in devices (44). The aim of this technology is
to reduce the power consumption of the active mode to less than 1mW (45).
The IEEE 802.11ba TG started to work on WUR in 2017 (46) and at the
moment of writing this dissertation, the standardization of IEEE 802.11ba
is under development. The implementation of the WUR system is based
on a Wake-up Transmitter (WuTx) and Wake-up Receiver (WuRx). On
the receiver side, there are two transceivers, which are known as primary
and WuRx radios. In this technology, primary radio is usually off and only
wakes up to receive an incoming transmission, and the WuRx is responsible
for receiving a 1bit On-Off Keying (OOK) signal known as WUR call (WuC)
from other devices (47). Since the WuRx is a very low power consumption
radio and the primary radio wakes up on-demand, the trade-off between
low latency and low power communications can be balanced (48). Since
one of the requirements of this technology is the compatibility with 802.11
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legacy, the frequency band in IEEE 802.11ba for WuTx is 2.4GHz (47). The
channel access method of WuR is Enhanced Distributed Channel Access
(EDCA) based on CSMA/CA.

4. IEEE 802.11be:

Along with the aforementioned IEEE 802.11 amendments, an upcoming
IEEE 802.11be or Extremely High Throughput (EHT) has features that IoT
systems can benefit from them (started in May 2019). The IEEE 802.11be
is built on top of the IEEE 802.11ax amendment and will support real-
time applications, where QoS provisioning is challenging. In addition, this
amendment will provide a very high data rate and makes massive Multi-
Input Multi-Output (MIMO) communications possible. Some advanced
modifications and enhancements are introduced at the Physical (PHY) and
MAC layers to fulfill these features. For instance, the AP coordination
and Hybrid Automatic Repeat Request (HARQ) are presented at the MAC
layer. According to the AP coordination technique, so-called master APs,
to improve the performance of their associated non-AP stations, have the
ability to communicate with other APs located within its transmission range
(slave APs), where the master AP receives the beacon frames from the slave
APs. In this technique, the master AP is able to dynamically request the
slave APs to reschedule the resources based on the channel conditions (cf.
Figure 2.4) (49). It is worth mentioning that this technique is specifically
designed for the needs of uncoordinated systems; however, the coordinated
systems can benefit from the concept of this technique. Moreover, the
HARQ technique combines the forward error correction method and ARQ to
deliver reliability for data frame transmission. Furthermore, the pick rate,
channelization, and time planning at the PHY layer are improved (16, 50).
The amendment has currently reached a mature stage with the release of
multiple drafts and the definition of a set of features. The 802.11be TG is
expected to produce the final amendment in May 2024.

5. IEEE 802.11bn: This Study Group (SG) was established in July 2022
to provide specific support for Ultra-Reliable Low-Latency Communication
(URLLC). The Ultra High Reliability (UHR) SG will develop a fresh project
outlining the particular goals, frequency bands, and technologies to be ex-
plored beyond the scope of 802.11be. The plan is to constitute the UHR TG
by November 2023, following the traditional single-release standardization
cycle, scheduled to conclude in 2028. This initiative will define the protocol
functionalities for future Wi-Fi 8 products, emphasizing areas where im-
provements compared to 802.11be, such as Data rates, latency, and jitter,
while considering mobility and overlapping BSSs (OBSSs). Reuse of the
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AP1 AP2

Station1

Station2

Coordination

Figure 2.4: AP coordination concept (2).

wireless medium. Power saving and integration of AI/ML methods in this
amendment.

Table 2.2 summarizes the continuous evolution of IEEE 802.11 standards over
time.

Several technologies fall within the category of potential communication tech-
nologies for IoT systems, specifically under the categories of Low Power Area
Network (LPWAN) such as LoRa, Sigfox, and NB-IoT; Radio Frequency Identi-
fication (RFID) encompassing both passive and active techniques; and Wireless
Personal Area Network (WPAN) technologies like BLE and Zigbee. As mentioned
earlier these technologies will be explained in detail in Chapter 3. Other potential
communication technologies can be listed as Z-Wave, Weightless SIG, Wireless
Highway Addressable Remote Transducer (WirelessHART), THREAD, ANT+,
Long Term Evolution for Machines (LTE-M), and Extended Coverage Global Sys-
tem for Mobile communication (EC-GSM). Readers interested in further details
of different LPWAN technologies are referred to the papers (51, 52).

2.4 Energy Harvesting Solutions for IoT Tech-

nologies

EH systems play a crucial role in the IoT paradigm, contributing to extending
battery lifetimes, enhancing energy efficiency, and establishing sustainable IoT
systems. The classification of EH mechanisms relies on intrinsic characteristics
such as scalability, maintainability, capacity, form factor, and sustainability, fo-
cusing on improving the lifespan of IoT devices.
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Table 2.2: Consistent development of IEEE 802.11 over Time.
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2.4 Energy Harvesting Solutions for IoT Technologies

According to the energy source, EH technologies are divided into two main
categories: ambient environment and external sources. In the first group, energy
harvesters extract energy from various sources including light (such as sunlight
or artificial light), heat (thermal sources), and fluid flow (such as wind or hydro
power). In the second group, energy can be harvested from the human body,
utilizing parameters such as heart rate, body temperature, respiration, and me-
chanical movements of joints like the ankle or elbow. Additionally, energy can be
harnessed from physical activities such as walking, running, or cycling. Mechani-
cal energy harvesters extend beyond human activities to capture energy from any
mechanical motion, such as driving. However, Wireless Energy Harvesting meth-
ods (WEH) offer further possibilities. In this approach, energy can be scavenged
either from the surrounding environment or from an external source providing
waves for RF (Radio Frequency) harvesters. When energy is obtained from the
environment, WEH falls into the first group, whereas if it relies on an external
source, it falls into the second group as an additional power source.

This categorization is depicted in Figure 2.5. Chapter 3 delves into a com-
prehensive exploration of the most relevant IoT-related features, structures, and
functionalities of these EH technologies.

Energy Harvester

Ambient Environment

External Source

RF

Solar

Thermal

Flow

Human 

Mechanical

Wind

Hydro

Vibration

Pressure

Stress-Strain

Activity

Physiological

Dedicated RF

Figure 2.5: Energy harvesters categorization.
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2.5 Network Simulators

According to the available literature in the wireless network community, re-
searchers have been extensively conducting simulations to evaluate the perfor-
mance of different modifications and protocols proposed at different levels of the
wireless networks in various simulation tools. Some of the current network sim-
ulators are listed as follows, Network Simulator 2 (ns-2) (53, 54), QualNet (55),
Cooja (56), GloMoSim (57), Objective Modular Network Testbed in C++ (OM-
NET++) (58), Optimized Network Engineering Tools in C++ (OPNET++) (59),
J-Sim (60), NetSim (61, 62), and Simulink MATrix LABoratory (MATLAB) (63).

According to the objectives of this Thesis, the selected simulator needs to be
capable of real-world code integration and fast code execution for Wi-Fi-based
IoT systems (dense scenarios). In addition, the simulator has to support and
provide accurate models for energy and energy harvesting analysis. Moreover,
the contribution to the core code of the simulator needs to be applicable. The es-
sential indicators among the network simulators mentioned above are highlighted
in Table 2.3. As shown among these network simulators, ns-3 is an open-source
simulator, which provides many features that need to be accomplished to meet
the IoT requirements. Some of these features include the high-performance core
that enables parallelization, supporting high-fidelity models of cellular networks
and Wi-Fi with scalability and robustness. Fundamentally, ns-3 is built on ns-2
and improved it in different aspects such as implementation code, execution en-
vironment (ns-3 enables running Linux kernel code and real applications through
Direct Code Execution) and low level of abstraction by allowing researchers to
identify and reassign the parameters as new configurations as desired. Addition-
ally, ns-3 introduces optional Python bindings, makes the core code development
more manageable, and makes the interconnection modules possible (new software
core and modular integration). Moreover, the modular representation of network
devices and sockets is near to realism, and the testbed integration (packet send-
ing over real NICs for testbeds) is possible based on the needs of the researchers.
Thus, particularly in the case of simulating IoT systems with unpredictable and
dynamic network behavior, the researchers can benefit from the analysis obtained
from real-world scenarios. Furthermore, it makes the analysis more accessible by
introducing the virtualization and tracing the statistics of the network, which
provide essential information for the analysis (64). Thus, ns-3 outperforms other
network simulators, and these features have led us to choose ns-3 to analyze our
research lines and proposed scenario. An overall comparison between network
simulators in terms of their advantages and limitations is written in Table 2.4.

1These features are only available through an extra library which is called INET.
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Table 2.3: Features comparison of ns-3 and other network simulators.
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Table 2.4: Wireless simulators comparison in terms of advantages and limitations.

Simulators Advantages Disadvantages References
Modularity Low speed execution

ns-2 Support of various Complex models (53, 54)
platforms for real systems

QualNet Parallel execution High complexity to install in Linux (55, 65)
Expensive

Cooja Strong focus on Low speed execution (56, 66)
low power IoT devices High complex configuration

GloMoSim Parallel execution Lack of excellent documentation (57, 67, 68)
OMNeT++ Modularity Not support various protocols (58)

Not practical for simulations
OPNET++ High speed execution with stable conditions (59, 69)

after long time/Low accuracy
J-Sim Support of various Lack of flexibility (60, 70)

platforms due to Java regulations
NetSim High accuracy Expensive (61, 62, 71, 72)

Flexibility Low speed execution
Simulink Easy to debug High computer resources (63, 73, 74)
®(MATLAB) Complex core code contribution

All the Moderate complexity
ns-3 aforementioned Require maintainers (75)

advantages

2.5.1 Basic ns-3 Modular Architecture

The overall workflow of ns-3 can be explained as follows: First, the problem
is defined. Then the experiment is described through modeling and scenario
generation. In the next step, ns-3 executes the code as the executive manager.
Lastly, the managed results are obtained as output data. However, before we start
to explain the evaluation based on simulations, it is essential to understand the
modular architecture of the Wi-Fi-based node in ns-3. As we mentioned earlier,
in ns-3, each IoT protocol stack layer is designed modularly. We depict the basic
architecture of a Wi-Fi-based node in Figure 2.6, and then we will explain each
module separately.

1. Wifi channel Model:

As shown in Figure 2.6, the bottom layer of a Wi-Fi node architecture
is the WifiChannel. This layer is responsible for transmitting the signal
from one node to another on the same Wi-Fi channel. Additionally, the
PropagationLoss and PropagationDelay models are the two main settings
of WiFiChannel. These two models are implemented based on the Yan-
sWifiChannel (76).
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Application Protocol
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Interface

Default ns-3 

node

Figure 2.6: The default layered architecture of a sensor node in ns-3.

(a) YansWifiChannel: The class YansWifiChannel models the WifiChan-
nel 802.11 and collaborates with the WifiPhy class. The helper class
YansWifiChannelHelper is part of WifiChannel. The default WifiChan-
nel model is a channel with the PropagationDelay model equal to the
speed of light (ConstantSpeedPropagationDelayModel) and the Prop-
agationLoss model equivalent to the log distance model (reference loss
of 46.6777 dB at 1m), which is named LogDistancePropagationLoss-
Model.

(b) PropagationDelay model: This class implements two models, the Ran-
domPropagationDelayModel, and the ConstantSpeedPropagationDelay-
Model. Every time the model is invoked in the first model, a new
propagation delay that is fully random is generated. All packets, in-
cluding the transmitted ones between two fixed nodes, encounter a
random delay. As a result, the transmitted packets are not in order.
In the second one, the signal moves at a constant, light-speed rate.
The transmitter and receiver locations are used to compute the delay.
The Euclidean distance separates the antenna of the transmitter and
the receiver. This model takes into account that the earth is flat.

(c) PropagationLoss model: The ns-3 defines different propagation loss
models, which consider the transmit power and the relative positions
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of the sending and receiving antennas when calculating the reception
power. Readers interested in further details of the propagation loss
models are referred to (77, 78).

According to the FriisPropagationLossModel in ideal conditions, it en-
ables nodes to predict the power level that will be received while taking
a distance into account. Specifically, there must not be any barriers
close to the channel that might interfere with electromagnetic propa-
gation.

In the ThreeLogDistancePropagationLossModel the same concept as
LogDistancePropagationLossModel is used, but it takes into account
three distances (close, medium, and far) with various exponents. The
transmission power is returned when the path loss is requested at a
distance shorter than the reference distance. The reference distance is
set by default to 1 m.

The propagation occurrence inside a building is modeled based on
the BuildingPropagationLossModel, in which the shadowing and prop-
agation losses of external and internal walls are taken into account.
Two different propagation loss models are built based on this model,
OhBuildingsPropagationLossModel and HybridBuildingsPropagation-
LossModel. The first model adds the OkumuraHataPropagationLoss-
Model into the building model. The second model is a combination
of different models considering frequencies from 200MHz to 2600MHz
for various environments, including open areas, suburban and urban.
Moreover, it considers the position of the node that can be placed
inside or outside of the building. Furthermore, the dimension of the
city, penetration loss due to the internal and external walls, the rooftop
level, and the type of the building (residential, commercial, office) can
be defined according to the selected scenario.

2. Physical layer model:

The Physical layer model in ns3 includes functions and operations regard-
ing this layer. The physical layer model is primarily in charge of sim-
ulating packet receipt, monitoring energy consumption and handling the
sleep/wake-up, and it can be implemented based on YansWifiPhy class or
SpectrumWifiPhy class. Typically, packet reception in physical layer model
consists of three essential parts: Each packet is probabilistically assessed
for successful or unsuccessful receipt. The probability of transmission is
calculated based on the amendment specifications (PHY entity, PPDUs),
modulation, signal-to-noise ratio, interference, and the state of the physical
layer, which can be the TX (transmission of a signal based on its associ-
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ated MAC), RX (synchronized on a signal and awaiting the final bit before
forwarding it to the MAC), CCA Busy (represent the Clear Channel As-
sessment which is used for the primary channel), sleep, idle (the physical
layer is not in TX, RX, or CCA BUSY states), switching (the physical layer
is switching channels), and off (the radio is powered off and no transmis-
sion or reception of frames occur) states. To calculate the right interference
power for each packet when a reception choice has to be taken, an object
exists that tracks all received signals.

The probability of a successful reception is calculated by using one or more
error models that correlate to the modulation and standard. Readers inter-
ested in further details of the WifiPhyModel are referred to (76, 79)

(a) YansWifiPhy: This model was first designed based on the IEEE 802.11a
and supported IEEE 802.11e specifications. The primary responsibil-
ity of the YansWifiPhy is to receive the data frames from the MAC
layer and pass them to the YansWifiChannel, which is connected to
that physical layer. The YansWifiPhy also takes data packets from
the channel and sends them to the MAC layer.

The procedure of the single MPDU data frame reception in the Yan-
sWifiPhy is defined as follows. First of all, the power level of the signal
is compared with the power threshold value (RxSensitivity); if the data
frame has a power lower than the threshold value, it will be discarded
(the default value is set to the thermal noise floor at 20MHz at room
temperature). Then, based on a call from the channel, the physical
layer starts to receive the preamble. At this step, signal-to-noise mon-
itoring is possible. In the next step, the state of the physical layer is
considered, and the data frame is received by starting the preamble
detection period if only the physical layer is in idle or reception states.
This detection period will end at the end of the preamble if the signal
power is strong enough to be received, which means it needs to be
above the threshold value (ThresholdPreambleDetectionModel). At
this stage, the physical layer goes to CCA BUSY mode. If the PHY
has detected a signal occupying the primary channel with a received
power exceeding CcaSensitivity or if the measured energy on the pri-
mary channel is above the energy detection threshold CcaEdThreshold,
the physical layer goes to CCA BUSY. The current preamble and the
header correction are checked in the following step. Then, with the
help of interference and the error models, the correct decoding of the
header is checked. Only at this point, the payload reception can be
started and the whole data frame reception procedure is completed.
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It is worth mentioning that the probability of error (PER) and SINR
are calculated based on the observed SNR by the interefernceHelper.

(b) SpectrumWifiPhy: A more comprehensive implementation built on
the Spectrum framework used for other ns-3 wireless models is the
SpectrumWifiPhy class. In the case of the coexistence of other wireless
technologies with WiFi on the same channel, the spectrum enables a
perfectly well frequency segmentation of the signal.

3. MAC layer model:

According to Figure 2.6, this layer includes two modules which are known
as MACLow and MACHigh.

(a) MACLow: This module include FrameExchangeManager, Txop and
QosTxop and ChannelAccessManager classes. The FrameExchange-
Manger class makes the exchange sequences of the data frames accord-
ing to each amendment of IEEE 802.11 standard possible. Moreover,
this class supports data frame aggregation, re-transmission, frame
protection (RTS/CTS), and acknowledgment(ACK/BlockAck). Txop
controls the data frame queue in the DCF function; similarly, for the
EDCA function, QosTxop is used. Also, MACHigh uses the Txop and
QosTxop classes for data frame transmission. These two classes are
also known as MACMiddle. The ChannelAccessManager is responsi-
ble for enabling DCF and EDCA mechanisms. The DCF and EDCA
mechanisms are introduced in IEEE 802.11 legacy and IEEE802.11e
consequently and are explained in Section 2.2.2.

(b) MACHigh: According to the network architecture, the MACHigh model
(upper MAC) includes three classes, ApWifiMac, StaWifiMac, and Ad-
hocWifiMac. As explained in (80) the most straightforward class refers
to the AdhocWifiMac, which does not need beaconing, probing, and
associating. The StaWifiMac class enables active probing and associ-
ating. In the case of beacons are missed, it automatically handles the
re-association. In the last class, APs are responsible for periodically
generating beacons and managing the associations. The MACHigh
model is also responsible for managing the Rate control algorithms.

It is essential to mention that in the layered architecture of ns-3, the com-
bination of physical and MAC layer models is known as the WifiNetDevi-
ceInerface.

4. Network layer model:
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The next layer of the architecture of a WiFi node in ns-3 is the net-
work layer, which includes two main components InternetStackHelper and
Ipv4AddressHelper. The responsibility of this layer is to add IP addresses
and define the routing protocol to the nodes created in the previous steps.

(a) InternetStackHelper: The InternetStackHelper connects nodes with
IP addresses and TCP/UDP protocols. Moreover, it provides event
monitoring through pcap and ascii tracings.

(b) Ipv4AddressHelper: This helper makes access to the IPv4 implemen-
tation possible, such as pairing (adding or deleting) the created nodes
with the specific IPv4 address and defining a routing table and routing
path to forward the data frames.

5. Transport layer model:

This layer efficiently controls the data transmissions flow through TCP, and
UDP is the other communication protocol provided by the transport layer.
The UDP/TCP Protocol is utilized to create the proper TCP/UDP sockets,
which are then used to connect to the application layer.

6. Application layer model:

Each created node must associate with an application to generate the traf-
fic and keep track of generated data through the traffic sink. The ns-3
provides applications such as OnOffApplication, bulkSendApplication, Pack-
etSink (completed the OnOffApplication), UdpClientServer, and UdpEcho.
Each application type offers a start and stop time and defines the packet
size, application data rate, and specific traffic types.

7. Mobility Model:

The MobilityModel class includes different subclasses that all use the Carte-
sian coordination system to track the position and speed of the nodes. These
MobilityModel subclasses are known as, ConstantPosition, ConstantVeloc-
ity, ConstantAcceleration, GaussMarkov, Hierarchical, RandomDirection2D,
RandomWalk2D, RandomWaypoint, SteadyStateRandomWaypoint, and W-
aypoint. In addition this class allocates the initial layout of the nodes as
list, Grid, Rectangle, Box, Disc (random and uniform).
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2.6 Overview and Categorization of Machine

Learning in Wireless Communication

According to computer scientist John McCarthy, the phrase ”artificial intelli-
gence” refers to intelligence displayed by machines and was first used in 1956 (81).
Building algorithms or models for systems that can automatically learn to make
decisions and predictions based on experience and data and improve performance
is the goal of a sub-field of the Artificial Intelligence (AI) area known as ML.

Recently, the adoption of ML has increased significantly across various appli-
cations. ML algorithms provide great adaptability, flexibility, profitability, and
processing capabilities. Since they expand on conventional methods (already used
in many industries and research areas), they are gaining popularity in making pre-
dictions and making decisions without having to be explicitly programmed. One
of the ML application areas is network operation and management. In the do-
main of networking, ML techniques have been investigated for network security,
performance improvement, and traffic engineering (82, 83).

ML techniques are often divided into four major groups depending on the
type of information or feedback the learning system has access to.

2.6.1 Machine Learning Categorization

In this subsection, the four ML subcategories known as Supervised Learning (SL),
Unsupervised Learning (USL), Semi-Supervised Learning (SSL) and Reinforce-
ment Learning (RL) (84) will be explained, which are summarized in Figure 2.7.

1. Supervised Learning:

The main feature of SL algorithms is that they allocate labels to data
sets, to train algorithms to predict the output accurately and deliver to the
desired one. This category is separated into two methods, classification and
regression.

(a) Classification: A dataset including input characteristics and their as-
sociated labels is used as the starting point for the classification proce-
dure. In the training phase, the algorithm learns to efficiently adjust
input features to labels and modifies its internal parameters to mini-
mize prediction errors. After training, the algorithm creates a model
that encapsulates the link between labels and features, allowing it to
predict values for new data occurrences. As it is shown in Figure 2.7,
the following classification techniques are often used: decision tree,
k-nearest neighbor, random forests, Support Vector Machines(SVM),
logistic regression, and Naive Bayes.
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Figure 2.7: The categorization of ML algorithms.
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(b) Regression: It is a method for determining how independent traits
or variables relate to a dependent feature or output. This method is
used for ML predictive modeling, where an algorithm is deployed to
forecast continuous outcomes. Popular regression techniques include
linear regression, ridge/lasso regression, generalized additive models
and polynomial regression (85).

Since the concept of ML entered the field of wireless communication net-
works, researchers have been trying to introduce intelligent optimization of
wireless communication technologies through ML techniques. As the first
selected category, SL has been focused on the different wireless communi-
cation technologies to elevate them to intelligent systems. For instance, a
SL algorithm is proposed in (86), which is able to associate end users to
the base stations in a cellular network (5G) in the most efficient way. In
another work (87), the authors focus on classifying the behavior detection
of the elderly based on KNN, SVM, and logistic regression algorithms while
using passive RFID tags. They conveyed that all the classification methods
improved the accuracy of the feature detection. SL is also applied in the
rate selection in Wi-Fi networks, where the channel condition is used for
the rate selection (88).

2. Unsupervised Learning:

The main feature of USL is that the methods are applied to unlabeled data
sets. According to these algorithms, the output is achieved by identifying
hidden patterns and informational similarities and distinctions or data clus-
ters in the input without the assistance of a human. This category is divided
into three methods, clustering, dimensionality reduction and association.

(a) Clustering: In clustering the unlabeled data is grouped by using the
data mining method based on similarities or differences. The cluster-
ing methods are employed to organize raw, unclassified data items into
groups that may be seen as patterns or structures in the data. Sev-
eral types of clustering methods including mean shift, K-means, K-
medoids, K-models, hierarchical, Gaussian mixture, hidden Markov,
and linear discriminant models (Figure 2.7).

(b) Dimensionality reduction: Although more data often produces more
accurate findings, it can potentially affect ML algorithm performance
(for instance, overfitting) and make data sets more challenging to vi-
sualize. When a given data collection has excessive characteristics or
dimensions, this method is utilized. It keeps the integrity of data set
feasible while reducing the quantity of data inputs to a tolerable level.
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There are several different dimensionality reduction techniques, includ-
ing Principal Component Analysis (PCA), feature selection, Singular
Value Decomposition (SVD).

(c) Association: A rule-based method for identifying connections between
variables in a given data set is an association. Although several al-
ternative algorithms, including Apriori, Eclat, FP-Growth, and rapid
association rules mining are employed to produce association rules, the
Apriori approach is the most often used (89).

According to recent survey research on the role of ML in Wi-Fi commu-
nications (83), compared to SL methods, USL methods are less employed
in these scenarios. One of the employment of the USL method in Wi-Fi
networks is explained in (90), where the authors apply a self-organizing
hidden Markov model map (SOHMMM) algorithm to reduce the anomaly
detection of an AP, which performs based on the IEEE 802.11 standard.
According to the obtained results, their proposed algorithm increases the
accuracy of classification and speed of convergence to the optimal. The
novelty of their work is that they provide a real-time diagnostic approach
for anomaly detection on Wi-Fi. Also, the USL method has been applied
to LPWAN scenarios. For instance, in (91), the K-means clustering-based
algorithm is defined to reduce the delay and collision while increasing the
throughput in a dense LoRa network. Another example of this category is
presented in (92), where the authors proposed an Indoor Wireless Local-
ization based on Unsupervised Learning (IWLUL) algorithm based on the
hierarchical Bayesian hidden Markov mode. In this work, the localization
of mobile devices is accomplished based on the received signal strength of
the devices with a high level of accuracy.

3. Semi-Supervised Learning:

Semi-supervised learning is a method of ML that, during training, merges
a considerable amount of unlabeled data with a small amount of labeled
data. Semi-supervised learning category is between SL (with labeled train-
ing data) and USL (with only labeled training data), in which, combined
with a tiny quantity of labeled data, unlabeled data can significantly in-
crease learning accuracy. This category is divided into two methods, clas-
sification and clustering.

(a) Classification: Semi-Supervised Classification (SSC) is similar to the
Supervised algorithm. In contrast to a supervised algorithm, it clas-
sifies a lot of test data with less training data. To lower the cost and
length of the data set construction, it is feasible to use less training
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data while utilizing this semi-supervised classification. Some of the
techniques that belong to this category are, self-training, graph-based
learning, and co-training.

(b) Clustering: Semi-supervised clustering is a unique variant of unsuper-
vised clustering. Although in unsupervised clustering, the unlabeled
data patterns are used for clustering, in semi-supervised clustering,
some information together with labeled and unlabeled data as pair-
wise constraints are considered, which aids in grouping the data pat-
terns. Three techniques of this category are known as low density
separation, Perturbation-based, and maximum margin (93).

Some other techniques, such as multi view learning, manifolds, and genera-
tive adversarial networks, are considered a combination of semi-supervised
classification and clustering methods to achieve better accuracy (93). In the
literature, some researchers have been trying to benefit from the advantages
of the SL and USL methods and defined SSL-based optimization algorithms.
One example of this category is proposed by Thapaliya et al. (94), where
the outcomes of different SL-based algorithms are provided to the USL-
based algorithm to estimate the network congestion level more accurately
in a Wi-Fi scenario. Another example of applying the SSL method in a
Wi-Fi network is provided in (95), which considers congestion issues in a
dynamic environment. For this reason, first, they apply different SL-based
algorithms to extract the features of the locations with various congestion
levels. Then, based on the USL methods, they cluster the congestion levels
in specific groups. The authors in (96) applied the SSL-based algorithm in a
heterogeneous network where the energy level is used to accurately predict
the co-channel interference in the coexistence of the cellular network (LTE)
and Wi-Fi networks. SSL method is also applied in other wireless commu-
nication technologies rather than Wi-Fi, such as Long Range (LoRa) (97)
communication, the coexistence of Wi-Fi and Bluetooth (98), and cellular
network (99). The performance of these proposed algorithms is evaluated
through mathematical analysis or employed in a test bed. Nevertheless,
non of these algorithms are able to learn from the current knowledge and
make decisions intelligently. Thus to fill this gap RL-based algorithms are
introduced.

4. Reinforcement Learning:

RL is the last category of ML, which fundamentally includes two main
entities: environment and agent. In contrast to the previous ML categories,
RL can learn to interact with the environment through the agent based on
its experiences, and finally reach the optimal point of the selected target
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(reward). As it is shown in Figure 2.8, the environment consists of the model
(network model), which provides a set of observations (state, St), and then
the agent takes action and makes a decision (At) based on the observation.
Then, the reward function (a signal as feedback, Rt) is provided as a feed
of action to the agent entity to determine how far the algorithm is from the
desired optimal value. The agent retains the RL algorithm and updated
policies at each time or event interval to maximize the performance of the
system.

Environment

Agent

Policy

RL 

Algorithm

Action

A

Reward

R

Observation

(State, S ) t

Update

t

t

Figure 2.8: The general framework of the reinforcement learning algorithms.

RL is separated into two main subcategories: model-based and model-free
methods. The model-free learning methods gains action values based on
reward prediction errors (RPEs). By using an RPE, the action value—the
anticipated reward associated with certain activity—is updated to increase
the precision of the value estimate. In contrast, model-based methods con-
sider the values of future states as opposed to present actions, for this reason
they need to connect to the external structure of the environment rather
than the internal structure of the model (100).

(a) Model-Free: Training the agent in this method is accomplished by two
main approaches: Policy Optimization and Q-Learning. Techniques
built on the first approach clearly reflect a policy. They either directly
or indirectly maximize the required parameters through gradient as-
cent on the performance target or by maximizing local approximations
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of the performance objective. Most of the time, this optimization is
carried out on-policy, meaning that each update only makes use of in-
formation gathered while operating in accordance with the most cur-
rent revision of the policy. To determine how to update the policy,
policy optimization usually includes learning an approximator for the
on-policy reward function. According to Figure 2.7, some techniques
that belonging to this method are known as, Advantage Actor Critic
(A2C) and Asynchronous Advantage Actor Critic (A3C) which by ap-
plying gradient ascent can maximize performance directly. In contrast,
the updates of Proximal Policy Optimization (PPO) technique do not
directly optimize performance but rather maximize a surrogate objec-
tive function that provides a cautious estimate of the change in the
approximation goal due to the update. Other techniques are policy
gradient and Trust Region Policy Optimization (TRPO).

The second approach is used to develop techniques that train an ap-
proximator for the optimal action-value function. In general, the Bell-
man equation-based goal function is used in these techniques. There-
fore, as a result, each update can incorporate data gathered at any
time during training, regardless of how the agent was selected to ex-
plore the environment at the time the data was gained. This optimiza-
tion is most of the time carried out off-policy. This method includes
techniques such as Deep-Q Networks (DQN) which consider the basic
technique of deep RL, Categorical51 (C51), Quantil Regression Deep-
Q Networks (QR-DQN), and HER.

Alongside the aforementioned techniques, there are others such as
Deep Deterministic Policy Gradient (DDPG), Twin-Delayed Deep De-
terministic Policy Gradient (TD3), and Soft Actor Critic (SAC). These
techniques perform based on the combination of the policy optimiza-
tion and Q-learning which try to improve the specific advantage of
each approach and balance the trade-off between them.

In general, techniques based on the first approach provide a direct,
stable and reliable optimization, whereas the second approach applies
an indirect and sustainable optimization.

(b) Model-Based: The RL model-based methods can be separated into two
approaches: Learn the Model or Learned Model andGiven the Model or
Known Model. Despite the model-free methods, model-based methods
do not have a simple defined cluster approach, and they are able to pro-
vide numerous techniques. The simplest approach of this method (pure
planning) chooses actions by using just pure planning techniques like
model-predictive control (MPC), and it never explicitly representing
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the policy. In MPC, in each iteration the agent computes an optimum
plan in relation to the model based on the observations. The plan then
outlines the actions to be taken over a specific iteration following the
present (the planning algorithm may consider future rewards beyond
the horizon through the use of a learned value function). The agent
then takes the first part of the plan before tossing the others. Every
time it becomes ready to interact with the environment, it computes
a new plan to prevent utilizing an action from a plan with a shorter
planning horizon than intended. Some other examples of model-based
learn the model method are known as, Model-Based for Model-Free
(MBMF), world models, Model-Based Value Expansion (MBVE), and
Imagination-Augmented Agents (I2A).

One of the approaches that belong to the model-based approach is the
expert iteration approach, which uses and learns an explicit represen-
tation of the policy. The agent takes samples from its present policy
and creates candidate actions for the plan using a planning technique
(like Monte Carlo Tree Search) in the model. The planning algorithm
is an ”expert” on the policy since it generates an action superior to
what the policy alone would have generated. The policy is then modi-
fied to result closer to the planning algorithm’s output. The techniques
which follow this approach are Large Language Models (LLMs) and
AlphaZero (101).

In contrast to the previous categories, RL recently attracted more attention
among researchers in the wireless communication networks area. The reason
is that RL methods are capable of solving more complex problems than other
ML categories. They are able to correct the errors through the training pro-
cess in which the long-term results are more accurate and reliable, and closer
to the human learning process. Solving a problem does not need to include a
training process because it learns from experience. In particular, in the case of
Wi-Fi networks, since the new and upcoming amendments of IEEE 802.11 have
introduced new features and increased the density and complexity of the Wi-Fi
network (distributed management and deployment), the deployment of RL meth-
ods in wireless networks is becoming more attractive. It is worth mentioning that
including the ML learning features to improve the performance of Wi-Fi networks
is under discussion for IEEE 802.11be amendment and beyond (102).

Specifically, RL methods can be applied to the core features of the Wi-Fi net-
works, such as optimization of the CW value (103), transmission time slot (104),
data rate adaptation (105, 106), and frame size (107), or recent features such
as beamforming (108, 109), multi-user communication (110), spatial reuse (111,
112), channel bonding (113, 114), and MIMO networks (115). Other works fo-
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cus on Wi-Fi management, such as channel and band selection (116, 117), and
management architecture (118). Rather than employing RL methods in Wi-Fi
scenarios, RL methods have been applied to LPWAN networks such as (119, 120).
In these works, the RL methods reduce the required energy for the systems.

Table 2.5 compares the available research in different categories of ML in the
literature.

2.6.2 Machine Learning Tools

In recent decades, different ML tools have been introduced that make the usage of
ML more accessible for researchers in distinct fields, from marketing management
and stock analysis to computer vision, speech recognition, and network engineer-
ing. Since this thesis use ns-3 simulator as the evaluation tool, OpenAI Gym as
one of the available tool-kits which has been integrated with ns-3. The features
of this tool are explained in this section.

1. OpenAI Gym: Fundamentally, OpenAI Gym is a toolkit that is capable
of creating new ML algorithms in a range of simulated environments (such
as Atari games, board games, 2D and 3D physical simulations). Thus,
algorithms can be developed and then evaluated without the requirement of
implementing a specific environment from scratch.. OpenAI Gym provides
a user-friendly platform to integrate AI projects. Readers interested in
further details of the OpenAI Gym are referred to (121).

2. ns3-gym: As shown in Figure 2.9, ns-3 gym consists of three main parts,
the first part is the OpenAI Gym module, which controls the agent actions
and is developed in Python. The second part is the environment, which cor-
responds to the ns-3 simulator and is provided in C++. The third part is
known as the ns-3 gym interface, which is responsible for providing the con-
nection between the environment and the agent and interpreting the agent
to understand the output of the environment, and vice-versa. In addition
to the observation space, the action space, game over conditions (when the
RL algorithm must stop), and reward (the desired optimal value) need to
be defined in the environment part. Then, through the ns-3 gym interface,
which takes action behind the scene (in this case, ZMQ library), the obser-
vation values are sent to the agent, and the agent makes the decision based
on these values.
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Table 2.5: Features comparison of related work on different ML categories.
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Figure 2.9: The framework of the ns3-gym (3).

2.7 Chapter Summary

This chapter categorized the existing energy-aware MAC protocols. Then it ex-
amined the present wireless communication technologies and their current MAC
layer characteristics, along with several MAC optimization methods for each tech-
nology. Since the MAC layer operations are relatively energy-hungry, by focusing
on their optimization, the energy consumption of the considered system can be
reduced. Moreover, this chapter listed the most relevant energy harvesters for
the IoT paradigm. Since solar energy harvesters can be deployed in both outdoor
and indoor environments, providing a significant amount of energy relative to
their size (it will be discussed in Section 5 of Chapter 3), and their form factor
adaptability, makes them one of the most promising options for IoT devices.

The selection of the most appropriate simulation environments for the Thesis
was guided by an extensive comparison of various network simulators, which is
detailed in Tables 2.3 and 2.4. This comparison not only supports our choice
but also provides a solid foundation for the Thesis. In summary, ns3 is an open-
source network simulator that makes collaboration and customization possible.
Moreover, it provides a high level of realism, capability of simulating large-scale
networks, and seamless integration with real-world tools to facilitate validation
and experimentation, which is crucial for accurately evaluating the performance
of new network protocols and technologies. Finally, its modular nature and exten-
sibility enable easy integration of new models and algorithms, ensuring relevance
across diverse research networking areas. Given that one of the objectives of this
Thesis is to illustrate how optimization scenarios can leverage ML techniques,
in this chapter, we elaborated on the relevant state-of-the-art ML approaches.
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2.7 Chapter Summary

Additionally, the potential integration of ns3 with OpenAI Gym is discussed as
a means to enhance the exploration of ML methodologies (RL in this case) in
network optimization.

The thorough explanation of the existing energy-aware MAC protocols cat-
egorization, together with the relevant EH technologies and analysis of energy
models, will be presented in the next chapter, helping clarify the energy needs
and shortages of IoT systems in wireless communication technologies. The next
chapter will also show the preeminence of wireless communication technologies
within the IoT paradigm. Then, the appropriateness of the explained energy har-
vesting technologies for wireless communication technologies in the IoT paradigm
will be investigated. Additionally, the categorized energy harvesting MAC proto-
cols will be compared in the next chapter, and an assessment of the actual energy
usage of the various IoT system layers with an emphasis on MAC layer opera-
tions will be given. This dissertation will outline the energy lost due to MAC
anomalies, establishing the crucial factors enabling MAC layer energy harvesting
strategies. Detailed guidance for open problems and research obstacles for energy
harvesting MAC protocols within IoT devices will be provided.

To the best of our knowledge, this dissertation is the first to study the com-
patibility of IoT communications with readily accessible energy harvesters from
a MAC layer perspective in an organized manner.
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3

A Comprehensive Review on
Energy Harvesting Integration in
IoT Systems from MAC Layer
Perspective: Challenges and
Opportunities

This chapter includes contributions regarding investigating the possibility of EH
integration in the IoT ecosystem and the existing gap in the literature, which was
published as a journal article in Sensors, MDPI. Specifically, it thoroughly studies
existing energy-aware MAC protocols, focusing on their functionality, benefits,
and limitations. It also examines the compatibility of wireless communication
technologies with IoT and their MAC layer features. The research also examines
energy consumption across different levels of IoT systems and identifies energy
wastage caused by MAC anomalies. Finally, it provides guidelines to address
open issues and research challenges in EH MAC protocols.
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Abstract: The Internet of Things (IoT) is revolutionizing technology in a wide variety of areas, from
smart healthcare to smart transportation. Due to the increasing trend in the number of IoT devices and
their different levels of energy requirements, one of the significant concerns in IoT implementations
is powering up the IoT devices with conventional limited lifetime batteries. One efficient solution
to prolong the lifespan of these implementations is to integrate energy harvesting technologies
into IoT systems. However, due to the characteristics of the energy harvesting technologies and
the different energy requirements of the IoT systems, this integration is a challenging issue. Since
Medium Access Control (MAC) layer operations are the most energy-consuming processes in wireless
communications, they have undergone different modifications and enhancements in the literature
to address this issue. Despite the essential role of the MAC layer to efficiently optimize the energy
consumption in IoT systems, there is a gap in the literature to systematically understand the possible
MAC layer improvements allowing energy harvesting integration. In this survey paper, we provide
a unified framework for different wireless technologies to measure their energy consumption from a
MAC operation-based perspective, returning the essential information to select the suitable energy
harvesters for different communication technologies within IoT systems. Our analyses show that only
23% of the presented protocols in the literature fulfill Energy Neutral Operation (ENO) condition.
Moreover, 48% of them are based on the hybrid approaches, which shows its capability to be adapted
to energy harvesting. We expect this survey paper to lead researchers in academia and industry to
understand the current state-of-the-art of energy harvesting MAC protocols for IoT and improve the
early adoption of these protocols in IoT systems.

Keywords: Internet of Things; wireless communication technologies; MAC layer operations; energy
harvesting MAC protocols; energy models; energy neutral operation

1. Introduction

The Internet of Things (IoT) enables the connection and data transferring over the In-
ternet for a massive number of physical objects, which are equipped with distinct hardware
and software to enhance a wide range of applications and services [1]. These enhance-
ments as part of the IoT paradigm aim at adding value to every aspect of human life and
society, from digital hospitals in healthcare services to process management in industrial
automation [2]. According to the Cisco Annual Internet Report [3], it is expected that the
number of connected devices will increase from 18.4 billion in 2018 to 29.3 billion devices
by 2023. Hence, providing sufficient energy to maintain this massive number of connected
devices will be a challenging . The analysis from “The Shift Project” [4] conveys that the
increasing trend of IoT connected devices leads to a Computational Annual Growth Rate
of 4.5% in the expected energy consumption of IoT deployments (from 2312 TWh in 2015

Sensors 2021, 21, 3097. https://doi.org/10.3390/s21093097 https://www.mdpi.com/journal/sensors
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to 4350 TWh in 2025). According to these predictions, in the near future, powering up
IoT devices with conventional batteries with a limited lifetime, which requires frequent
replacement, is a concerning issue and may cause system failure [5]. Moreover, since IoT
systems have spread across many different use cases, from healthcare and industrial to
transportation and residential, end devices may be located in hard to reach and hazardous
areas, where the maintenance and frequent conventional batteries replacement make the
usage of them inefficient and costly [6]. This means each year, billions of batteries are
accumulated in landfills, which negatively impact the environment, such as ecotoxicity
and water pollution.

The limited lifetime of the conventional batteries, which increases the maintenance
cost, number of replacements, and negative impact on the environment, in a system with a
few devices do not raise an issue, whereas, in networks with millions or even billions of
devices, it becomes a significant issue. Since these battery limitations threaten the rapid
development of the IoT paradigm, academia and industry have become interested in
extending the lifetime of IoT devices while maintaining optimal performance. For this pur-
pose, power management techniques, including energy-efficient methods (e.g., light-weight
protocols, scheduling optimization, and low power transceivers) or energy harvesting tech-
niques (e.g., ambient energy harvesting, and dedicated energy harvesting) [7], and energy
conservation methods in IoT devices are currently hot topics. Alongside the energy-efficient
techniques, which reduce the networks’ energy consumption, recent innovations in IoT
technologies such as portable devices with small batteries lead to introducing energy
harvesting technologies as a promising solution to provide enough energy for them [8]
and prolong the lifetime of the network. The authors in [9] emphasized the fundamental
role of energy harvesting technologies in IoT systems by imparting that the increasing
interest of academia and industry in energy harvesting technologies leads to a growth in
the energy harvesting global market from 360.6 million dollars in 2020 to 987.09 million
dollars by 2028.

Although energy harvesting technologies provide more energy to IoT systems, to sat-
isfy their possibility of integration with IoT systems, some parameters such as size, type of
the end-user device, and IoT application need to be taken into account. To understand how
energy harvesting technologies are envisioned to be supported in IoT, different authors
in the literature [10,11] provide the schematic in Figure 1. This figure is based on these
papers, which lists the key components required to support energy harvesting at the IoT
system’s sensor level. The top layer is responsible for harvesting energy. Three parts of the
bottom layer make wireless communication possible, manage the entire device, and include
sensors and actuators (from right to left). In systems like Figure 1, the Energy Neutral
Operation (ENO) condition is achieved if the energy harvester provides energy greater
than or equal to the required energy of the system. However, fulfilling this condition under
specific considerations (e.g., small size of the energy harvester) and the whole system’s
requirements remains a gap in the literature.

Energy Harvesting System

Energy Harvester Energy Storage Device

 Sensor

Actuator

Data Acquisition 
Unit

 Processor

Memory

Processing 
Unit

Upper Layers

MAC Layer

PHY Layer

Communication 
Unit

Figure 1. General schematic of an IoT node equipped with energy harvesting.
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1.1. Motivation

The increasing trend in the number of connected devices in the IoT paradigm suggests
that powering up these devices with conventional batteries requires frequent battery
replacement, which is not efficient and leads to environmental contamination. Hence, there
is a need to improve the efficiency of IoT technologies to be able to prolong the lifetime
of these systems. However, due to the different characteristics of each IoT technology,
achieving this sustainability improvement is a challenge.

The IoT market is providing different wireless communication technologies to support
the various Key Performance Indicators (KPIs) of the IoT applications at the communication
level (cf. Figure 2). Depending on the implemented wireless communication technology,
each IoT system will have different performance requirements, where energy consumption
is one of the most critical aspects. Hence, there is the need to study energy consumption
in different IoT wireless communication technologies to understand its impact on IoT
performance. Since there is no proper characterization of these technologies in terms of
energy requirements in the literature, there is a need for a unified energy model approach.
After understanding the energy requirements at the IoT communication level, different
solutions to improve the sustainability of the IoT systems towards the ENO property can be
introduced. Within the available solutions, energy harvesting is a popular one for improv-
ing sustainability in IoT. However, based on the current literature, the energy provided by
energy harvesting is not always sufficient with the IoT communication technologies be-
cause of the limited and intermittent behavior of energy harvesting energy sources. Hence,
the challenge is to integrate energy harvesting in wireless communication technologies
without impacting the system’s performance.
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Figure 2. Different KPIs for IoT use cases [12–18].

For successful integration of energy harvesting within IoT systems, there is the need
to optimize the energy consumption in wireless communication technologies at different
IoT layers. For instance, an adaptation to the channel condition or energy-aware routing
protocols can optimize the energy consumption level at the physical and network layer,
respectively. Nevertheless, since the Medium Access Control (MAC) layer is responsible for
scheduling the data frame transmissions and faces fundamental communication challenges
(e.g., collision frames, the overhead of control packets, idle listening, unused idle slots,
synchronization, and others), it consumes most of the energy budget of wireless commu-
nications. Thus, there is the need to adapt this layer to make the IoT systems sustainable
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and compatible with energy harvesters while keeping these modifications compatible with
existing wireless technologies.

1.2. Contribution

As highlighted in the introduction of this survey, the MAC layer in wireless communi-
cation has an essential role in optimizing the IoT systems’ energy usage. To understand
the characteristics of different MAC mechanisms and their limitations in the IoT scenario,
a MAC categorization is necessary. Since there are diverse wireless technologies already
being deployed at the communication level of the IoT systems, to understand the re-
quirements of each technology in terms of energy, given that MAC layer operations are
power-hungry, the analysis of energy consumption needs to be performed based on these
operations. The study of energy consumption for communication technologies is achieved
by energy consumption models, which can be obtained based on real hardware measure-
ments, simulations, or analytical models. Before explaining the already existing energy
harvesting-based MAC modifications and enhancements in the wireless communication
technologies literature, together with their benefits, drawbacks, and compatibility between
energy harvesters and its application to the different IoT use cases, it is necessary to es-
timate the amount of energy that each energy harvester provides to the system. Thus,
the characteristics of the energy harvesters and their energy sources need to be studied.
We expect the provided information lead the researchers in academia and industry to
understand the limitations of the existing works and promote a change of thinking for
early adoption of energy harvesting techniques within the IoT paradigm.

In this survey paper, we searched for the most relevant articles in available databases
among the high-quality journals and conferences and their relevant references that were
cited papers during the past two decades. We organized our search based on a selected
keyword list which includes the most common and relevant keywords to this topic. To
the best of our knowledge, the wireless communication technologies of the IoT paradigm
have not been compared based on their actual amount of power consumption before in the
literature. Also, to the best of our knowledge, the compatibility of IoT communications
with available energy harvesters is studied from a MAC layer perspective in a structured
manner for the first time in our survey paper. To summarize, this survey paper includes
the following contributions:

• We extensively review the already existing energy-aware MAC protocols to develop a
categorization that identifies the various dimensions of proposed MAC additions to
enable the concurrent use of energy harvesting.

• We comprehensively study the available wireless communication technologies to
highlight their compatibility with the IoT paradigm and their existing MAC layer
features, accompanied by different MAC optimization techniques for each technology.
Our work takes current literature to develop a unified approach to analyze energy
models, contributing to a better understanding of energy requirements and shortages
of the IoT systems in terms of wireless communication technologies.

• We contribute with an analysis of the functionalities and characteristics of existing
energy harvesters and their suitability for the wireless communication technologies in
the IoT paradigm.

• We thoroughly study the functionality of existing energy harvesting MAC protocols
in the literature, their benefits and drawbacks, to understand the available integration
of energy harvesting techniques at the MAC layer and their limitations.

• We comprehensively review the energy consumption of the different levels of IoT
systems with a focus on the MAC layer operations. This study specifies the energy
wastage through MAC anomalies, which determines the essential considerations to
enable energy harvesting techniques at the MAC layer.

• We provide an extensive guideline for open issues and research challenges for energy
harvesting MAC protocols within IoT systems.
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The remainder of this paper is organized as follows. In Section 2 the state of the art
of this paper is highlighted. Section 3 presents the categorization of the energy-aware
MAC protocols for IoT systems. Then potential wireless communication technologies and
their energy models for IoT systems are explained in Section 4. Section 5 is described
the available energy harvester technologies and their applicability with IoT systems. The
existing energy harvesting MAC protocols in the literature are categorized based on their
mechanisms and then explained in Section 6. Some challenges regarding the MAC layer
and open research directions and future works are highlighted in Section 7. In the end,
in Section 8 some final remarks are given.

2. State of the Art

There are numerous existing MAC protocols in the literature, where each of them
has distinct benefits and drawbacks. To meet the requirements of the existing wireless
communication technologies, specifically in terms of energy consumption, the MAC layer
protocols of these technologies may adopt different mechanisms. However, the defined
MAC protocols, for the current wireless communication technologies, do not consider the
energy harvesting paradigm in their design procedure. Thus, to support energy harvesting
techniques on the specific MAC protocol, it is necessary to understand the implications
of these techniques on the benefits and drawbacks of that protocol. The first step to
understand these requirements is to review the available energy harvesting MAC protocols
in a structured way. In the past decade, several studies have defined various categorizations
for the energy harvesting MAC protocols in IoT systems and highlighted the requirements
of different MAC mechanisms to support energy harvesting technologies. This section will
explain the related works regarding these categorizations.

One of the earliest studies that explored the possibility of enabling energy harvesting
techniques in the MAC layer of IoT systems by reviewing previous works was proposed
in [19]. In this work, the authors explain the role of energy harvesters in IoT systems and
the requirements of these networks. The proposed energy harvesting MAC classification
was built based on the adopted optimization techniques in designing the protocols, such as
load balancing, contention reduction, or wake-up time awareness. In this work, the authors
study the approaches of the MAC protocols which have enabled the available ambient
energy harvesting methods, and then they highlight the strengths and drawbacks of each
energy harvesting MAC protocol. Although the authors provide detailed information
about the functionality of the selected protocols, the selection of state-of-the-art requires an
update to include all the existing energy harvesting MAC protocols in the literature. Also,
the challenging issues in designing an energy harvesting MAC protocol and the possible
future guidelines to improve the existing energy harvesting-based MAC protocols were
not considered. Similar to the previous literature review paper [20], briefly explains the
primary sources of ambient energy for energy harvesting IoT systems and the architecture
of the energy harvester node. In this work, the author emphasizes the ENO condition as the
main difference between the non-energy harvesting MAC protocols and energy harvesting
ones. Although more energy harvesting MAC protocols have been studied in the research,
the studies are still limited to a few well-known MAC mechanisms. In contrast to the
presented work in [19], the open issues and future research directions to improve the energy
harvesting MAC protocols are highlighted in [20]. None of these related works have consid-
ered the actual energy consumption in the existing wireless communication technologies
and the available amount of energy provided by each energy harvesting technique.

The authors in [21] first examined the amount of energy produced by different energy
harvesting techniques and their characteristics. Then, they highlighted the requirements of
the energy harvesting IoT systems. The presented classification in this work was accom-
plished by reviewing the principal characteristics of the energy harvesting MAC protocols
the type of data transfer start point (sender, receiver, or sink initiated). The selected MAC
protocols mainly operate based on the Carrier Sensing Multiple Access (CSMA) method,
where the nodes listen to the shared medium before starting the transmission, and polling



Sensors 2021, 21, 3097 6 of 53

approach, which benefits from a poll frame to avoid collision frames in the transmissions.
Similar to the aforementioned survey papers, the advantages and disadvantages of each
selected protocol are explained. Also, their performance in terms of different KPIs is high-
lighted. In contrast to the two aforementioned survey papers, in [21], the authors studied
both ambient and non-ambient energy harvesting MAC protocols. Moreover, in those
papers, approaches such as hybrid access and cross-layer, which have recently attracted
more attention due to their ability to optimize network performance, were not considered.

One of the latest classifications of energy harvesting MAC protocols is proposed in [22],
where in addition to sender/receiver-initiated divisions are used by the aforementioned
survey papers, approaches such as scheduled-based access protocols are included in this
classification. Then, some energy harvesting MAC protocols’ functionality is explained
based on the MAC layer requirements in IoT systems. Although this work includes a much
more comprehensive number of energy harvesting MAC mechanisms than the previous
surveys, the authors do not provide any information regarding the harvesters’ available
energy, which is required to optimize the MAC layer operations.

Alongside the energy harvesting MAC protocol categorizations, some studies focus
on a specific group or features of the IoT systems MAC protocols and then explain the
available energy harvesting MAC protocol within the selected group. For instance [23,24],
emphasized the importance of the Wake-Up Radio (WUR) concept in reducing the energy
consumption of the IoT systems and studied the available WUR MAC protocols. Since
the focus of these papers is WUR, no information is provided about the issues that arise
with enabling energy harvesting techniques at MAC protocols. Another example that is
presented in [25] classifies the MAC protocols in IoT systems based on a specific feature of
these protocols and analyzes the MAC protocols operations regarding the selected feature.
In this work, the authors consider wake-up/idle scheduling duration. Then, they explain
the functionality of the most well-known energy harvesting MAC protocols within this
classification, along with battery characteristics and conditions in IoT systems. Although
this work provides a deep understanding of the MAC functionality that operates based
on the wake-up/idle scheduling approach, there are other existing energy harvesting
MAC protocols that cannot be explained through this classification. The authors in [25]
accomplished a deep analysis of the estimation of the remaining energy in the batteries of
wireless communication devices by presenting energy models of these batteries. However,
the amount of available energy provided by different energy harvesters and actual energy
consumption models based on various existing wireless communication technologies was
not considered.

To the best of our knowledge, in the available state-of-the-art, the importance of
the required amount of energy for the communication unit and the compatibility of the
selected energy harvesting MAC protocols with the potential wireless communication
technologies are not investigated. Also, the existing literature lacks a complete and sound
classification covering all the most relevant existing energy harvesting MAC protocols in
the literature, where not only the conventional approaches are studied, but also recent
novel approaches are considered. Thus, in this survey paper, we fill this gap in the literature
by investigating the mechanisms of the most relevant energy harvesting MAC protocols
along with their benefits and drawbacks. Specifically, we first present a categorization
for energy-aware MAC protocols based on the adopted channel access method. We also
provide the actual amount of energy consumption in existing wireless communication
technologies by providing a unified MAC-based approach. Finally, we study the available
ambient and non-ambient energy harvesters in detail and investigate their compatibility
with the existing wireless communication technologies.

3. Categorization of Energy-Aware MAC Protocols for IoT Systems

According to the IoT protocol stack, the MAC layer is a sub-layer of the data link layer
and is responsible for scheduling transmission or possible re-transmissions over the shared
medium. In wireless communication technologies of IoT systems, MAC layer operations
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that provide adaptive channel access may face different problems such as collisions and idle
listening (mostly in random access), or synchronization and unused idle slot (in scheduled
access), which consume a significant portion of available energy of the IoT systems. Besides
requiring different energy levels for MAC layer performance, wireless communication
technologies are kept powered by conventional batteries. However due to the technological
limitations of batteries, they may not perform for a long duration. Although the lifespan
of the batteries can be increased by deploying energy harvesting technologies, due to
the erratic and unpredictable nature of the provided energy, conventional MAC layer
mechanisms are not compatible with these technologies. Thus they need modifications
to integrate with energy harvesting techniques [21]. Since this paper focuses on the
energy harvesting MAC protocols for IoT systems, this section describes how each MAC
operates, together with the limitations of existing MAC protocols. These limitations
can be understood with the help of a comprehensive categorization of energy-aware
MAC protocols based on the performance and features of the protocols. Later in the
document, Section 6 details how energy harvesting technologies are integrated within
each energy-aware MAC protocol. This section provides an energy-aware MAC protocols
categorization (cf. Figure 3).







MAC Protocols for IoT

O-Persistant

1-Persistent (CSMA/CD)

Non-Persistent (CSMA/CD)

P-Persistent (CSMA/CA)

Pure ALOHA

Slotted ALOHA + CSMA/CA

Slotted ALOHA

DS-CDMA

CSMA/CA + Preamble Sampling

FTDMA

CDMA + TDMA

TDMA + NOMA

CSMA/CA + ID Polling

Wireless Token Ring Protocols (WTRP)

Token Bus (TBB-MAC)

Probabilistic Polling

Identity Polling (ID Polling)

CSMA/CA + TDMA

CSMA/CD + TDMA

AO-ALOHA

TSCH

Token + CSMA/CA

ALOHA + Preamble Sampling

CSMA/CA + FTDMA

Slotted ALOHA + FTDMA + CDMA

LEACH + CDMA + CSMA/CA

Node Location + CSMA/CD

TDMA + CDMA + CSMA/CA

Non-Persistent CSMA + MQAM Modulation

Distributed Flooding + Multi Token 

Clustered based PEGASIS  + CSMA/CA

LEACH + CSMA/CA

LEACH + TDMA

Routing + CSMA/CA + Beam Steering 

Antenna
Greedy Forwarding + Sleep Scheduling + 

Transmission Power

Shortest Path Routing + X-MAC + BER

Slotted ALOHA + NOMA (SAN)

STDMA

OPDMA

Random Access

Scheduled Access

Hybrid Access

Cross-Layer

Random + Scheduled 

Access

Carrier Sensing

Dynamic Assignment 

Reservation (Controlled Access)

Fixed Assignment Reserva tion 

(Channelization)

Network

Application

Medium Access Control

Physical

CSMA

ALOHA

PDMA

CDMA

TDMA

FDMA

Polling

Token Passing

Polling + CSMA

CSMA + TDMA

CDMA + ALOHA

ALOHA + TDMA

Token Passing + CSMA

CSMA + FDMA + TDMA

ALOHA + FDMA + TDMA 

+ CDMA

TDMA + CDMA + CSMA

Target Tracking + CSMA

Geographic Routing + 

TDMA
Hierarchical Routing + 

TDMA
Hierarchical Routing + 

CSMA
Distributed Hierarchical 

Routing + Token Passing
Hierarchical Routing + 

CDMA + CSMA

CSMA + Modulation

Routing + CSMA + 

Directional Antenna
Geographic  Routing + Channel 

Hopping + Signal Quality

Link-state Routing + CSMA + 

Channel Quality(Duty-Cycled)

IDeg + TDMA

Polling + ALOHA



NOMA



Duty-Cycled

Blind Access

Opportunistic Routing + CSMA + WUR 

CSMA + Packetized Wake-up Transmission

CSMA + WUR(Duty-Cycled)

Pure ALOHA + TDMA (FA)

Slotted ALOHA + TDMA (FSA)
ALOHA + PDMA



Figure 3. IoT systems Medium Access Control categorization.

3.1. Random Access

In this category, there is no coordinator to schedule the transmissions, and each node
independently starts the transmission at any time. This category is divided into two
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subcategories: carrier sensing, blind access. Readers interested in further details of the
random access category described in this subsection are referred to [26–28].

3.1.1. Carrier Sensing

In the carrier sensing procedure, each node can sense the carrier signal of the other
nodes of the network and decide whether to start the transmission or wait.

Carrier Sensing Multiple Access (CSMA): This sensing procedure is performed based
on 1-Persistent and Non-Persistent, which are used in CSMA with Collision Detection
(CSMA/CD) systems, or P-Persistent mechanism, which is used in CSMA with
Collision Avoidance (CSMA/CA). In O-Persistent a supervisor updates the order of
transmission for each node based on the ongoing transmissions.

3.1.2. Blind Access

Since in this subcategory, the transmission procedure starts without sensing the shared
medium, the probability of collision, and consequently, the energy consumption of the
transmission procedure is higher than in the CSMA method.

ALOHA: This method is divided into Pure ALOHA and Slotted ALOHA mechanisms.
Due to the slot definition in the Slotted ALOHA structure, the frame transmissions
in the Slotted ALOHA mechanism are more energy-efficient from the end node
perspective than the Pure ALOHA.

3.1.3. Combination of Carrier Sensing and Blind Access

CSMA + ALOHA: This mechanism adds the collision avoidance feature of CSMA/CA
to reduce the probability of frame collisions (Slotted ALOHA + CSMA/CA) and
consequently reduce the wasted energy of re-transmitted frames.

3.2. Scheduled Access

Frame transmission in the scheduled access category occurs in a an organized manner,
where all the nodes start transmissions at predefined slots or are controlled by a coordinator.
Readers interested in further details of the scheduled access category described in this
subsection are referred to [26,29].

3.2.1. Fixed Assignment Reservation (Channelization)

In this subcategory, the shared medium is divided into a fixed amount of channel
resources (slots of time/frequency/power/spread spectrum). Each node is only allowed to
use the slots allocated to it and therefore does not contend to access the shared medium.

1. Code Division Multiple Access (CDMA): Before initiating the transmission, different
codes are assigned to the nodes to encode their data.The most widely used mechanism
of this method is Direct-Sequence CDMA (DS-CDMA), which reduces the total energy
consumption of the network by using wide band signals with randomness that have
lower interference compared to narrow band signals.

2. Time Division Multiple Access (TDMA): This method divides time into several pe-
riods, which itself is divided into a certain number of time slots. An advanced
mechanism based on the TDMA method is Spatial Time Division Multiple Access
(STDMA) that can reduce the energy consumption of the nodes by re-assigning time
slots based on geographical locations/space, where the number of the unused slots is
reduced by deactivating a certain number of slots which can save energy.

3. Frequency Division Multiple Access (FDMA): This method divides the medium into
different frequencies, which are then assigned separately to each node. Since FDMA
mechanisms such as Orthogonal FDMA (OFDMA) are non-energy efficient, it is out
of scope in our current evaluation.

4. Power Division Multiple Access (PDMA): To share the power of the channel between
nodes and avoid collisions, PDMA allocates specific transmission power to each
node. The Non-Orthogonal Multiple Access (NOMA) intends to simplify the power
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division procedure while satisfying the QoS requirement of the transmission, co-
channel interference cancellation, fairness improvement, and simultaneous successful
frame reception [30]. The Orthogonal Power Division Multiple Access (OPDMA) [31]
reduces the required energy for defining and assigning power slots to each node, and
consequently, it decreases the network energy consumption.

3.2.2. Combination of Channelization Methods

This subcategory combines the features of different channelization methods to im-
prove energy efficiency, which leads to a more efficient resource allocation, transmission
coordination, and more flexibility in terms of the traffic type and network size.

1. TDMA + PDMA: In this mechanism, nodes are divided into groups, and then a time
slot is assigned to each group of nodes. Thus, the nodes within each group can start
the transmission simultaneously [32].

2. TDMA + CDMA: In this method, time slots are assigned to different nodes which
communicate through CDMA.With this combination, fewer time slots are required
to have a successful frame transmission, which improves the performance of the
network in terms of energy efficiency, flexibility, and scalability [33].

3. TDMA + FDMA: This mechanism, also called Frequency Time Division Multiple
Access (FTDMA), in which, before initiating/allowing transmission, each node is
assigned a specific time slot and appropriate frequency by the coordinator [34]. Thus,
FTDMA reduces the number of the frame re-transmission which in return decreases
the consumed energy of the network.

3.2.3. Dynamic Assignment Reservation (Controlled Access)

In the dynamic assignment subcategory, coordination is achieved by a control message
(poll, token), and only one node can start the transmission at a particular time.

1. Token passing: This method is divided into two mechanisms, Token Bus [35], where the
token frame is passed in a probabilistic manner among a group of nodes enclosed in
an area, and Wireless Token Ring Protocol (WTRP) [36], in which the nodes create a
ring that token frame can pass through it only in one direction.

2. Polling: This method is divided into two mechanisms, Identity Polling (ID Polling) [37]
and Probabilistic Polling [38]. In the first mechanism, a specific ID is assigned to each
node. If the polling packet contains their ID, they start the transmission. If not, they
have to wait for their turn. In the second mechanism, the polling packet contains the
contention probability, which the coordinator assigns and allows each node to start
the transmission according to a probability.

3.3. Hybrid Access

This category combines the benefits of the random (i.e., distributed nature, full channel
utilization) and the scheduled access (i.e., contention-free for long frames) categories while
diminishing their drawbacks. This category is divided into two subcategories: combination
of random access and scheduled access, and duty-cycled.

3.3.1. Combination of Random and Scheduled Access

A coordinator node schedules the timing for starting a random access-based data
frame transmission. Thus, this method adapts to the network traffic conditions swiftly,
optimizes the channel access method, and subsequently reduces the energy consumption
of the network. Moreover, the mechanisms in the hybrid access category can guarantee
the QoS, delay, and frame collision rate reduction. However, this strength in hybrid access
may increase the level of MAC mechanisms complexity.

1. CDMA + ALOHA: The orthogonality feature of CDMA Slotted ALOHA [39] mech-
anism, makes the simultaneous transmissions possible with more efficient use of
network resources and prevents degradation in the network’s performance.
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2. ALOHA + TDMA: This combination is divided into three mechanisms, which are
known as Frame ALOHA (FA), Frame Slotted ALOHA (FSA) [40], and Time Slotted
Channel Hopping (TSCH) [41]. In these mechanisms, thanks to the contention-free
feature of the TDMA, the number of frame re-transmission is reduced, and thus,
the available energy of each node is conserved.

3. CSMA + TDMA: This combination includes CSMA/CA + TDMA [42–44], and CSMA/CD
+ TDMA [45] mechanisms. In these mechanisms, the reservation slot nature of TDMA
provides a contention-free transmission for the mechanisms based on the random
access category to avoid collision problems.

4. ALOHA + NOMA: One such mechanisms is the Slotted ALOHA-NOMA (SAN)
[46] mechanism, which adds the MU feature of the NOMA to the slotted ALOHA
mechanism to enhance the performance in terms of energy efficiency, low complexity,
ease of implementation, and improved scalability.

5. Polling + CSMA: One of the mechanisms of this method is ID Polling + CSMA/CA [47],
in which the coordinator defines the ID Polling period for each node by sending a
specific polling frame to each node and then, each node only wakes up if it has a
frame to send and transmits the frame based on the CSMA/CA mechanism.

6. Token passing + CSMA: A mechanism based on this method is known as Token
+ CSMA/CA [48,49], which is introduced as a multi-token-based approach with
a random sleep scheduling structure.In this mechanism, several coordinators are
defined to manage the transmissions based on their token frames.

7. CSMA + FDMA + TDMA: In CSMA/CA + FTDMA [50], the contention-free feature
of both TDMA and FDMA is combined to conserve the energy, and the RTS/CTS
handshaking method of CSMA/CA to reduce the hidden terminal issue.

8. ALOHA + FDMA + TDMA + CDMA: An example of this method is the Slotted
ALOHA + FTDMA + CDMA [51], in which a coordinator node broadcasts time,
frequency, and code slots to the nodes of the network. Then, each node randomly
chooses a set of slots and is only allowed to start the frame transmission at these re-
served slots. This pre-assignment of FTDMA and CDMA reduces collision probability
and thus results in some energy saving at the node.

9. TDMA + CDMA + CSMA: In TDMA + CDMA + CSMA/CA [52] mechanism, the nodes
are located inside the cluster (inter-cluster) and transmit short frames. In this mech-
anism, transmission power and times are controlled for each node; thus, the IoT
systems’ energy efficiency is improved.

3.3.2. Duty-Cycled

This subcategory is one of the main techniques to conserve transmission energy in IoT
systems by adjusting the active and sleep duration of each node.

1. CSMA + Polling: This mechanism’s main target is to recognize the receiver, reduce the
idle listening duration, and consequently reduce the total energy consumption of the
network. This goal is achieved by applying a preamble sampling or preamble strobing
approach, where each node transmits a low power preamble frame to announce the
access point that it intends to start the transmission [25].

2. ALOHA + Polling: In this mechanism, the sender starts the transmission only a
short duration before the receiver’s wake-up time based on the ALOHA method.
Thus, the long preambles are reduced to shorter ones, which helps reduce the energy
consumption of the network.

3. CSMA + TDMA: In this method, the data transmission procedure is started precisely
after the receiver wakes up, making the listening duration shorter than previous
approaches. Thus less energy is consumed during the listening period [25].

3.4. Cross-Layer

Since the network peripherals could be better managed by understanding the dynam-
ics of each IoT protocol stack’s layer, in this category, two or three layers of the IoT protocol
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stack interact with each other simultaneously to optimize the performance of the network,
especially in terms of energy consumption.

3.4.1. Interaction between Application and MAC Layers

In this subcategory, the MAC layer interacts and exchanges information with the
application layer to improve its mechanism. For instance, the application layer information,
such as the QoS requirements or the application sensitivity to the network performance,
can optimize the transmission scheduling process at the MAC layer.

Target tracking + CSMA: In a monitoring area, predicting the next location of a mobile
node is known as target tracking, which is mostly done by its neighboring nodes.
In this subcategory, the total energy consumption of the network is decreased by
increasing the accuracy of the position estimation of the mobile node while sending
some of its neighbors into sleep mode [53]. An example of this category is Node Loca-
tion + CSMA/CD [54] mechanism, which intends to balance the trade-off between
the QoS improvement and the network energy consumption.

3.4.2. Interaction between Routing and MAC Layer

Since routing algorithms consume a considerable amount of energy, the interaction of
an energy-efficient routing protocol with the MAC layer can improve network efficiency.

1. Geographic routing + TDMA: In this method, the geographic routing protocol gen-
erates the routing table based on the locations of the nodes. In IDeg-Routing +
TDMA [55] mechanism, time slot assignments and routing tree generation occur
simultaneously. Then based on the number of the routes to the same destination
node, they are divided into single path or multipath scenarios. In multipath scenarios,
the collision-free nature of the TDMA method and selecting the route with the highest
amount of residual energy reduces the network energy consumption.

2. Hierarchical routing + TDMA: To reduce the energy consumption of the network
and expand its lifetime, the Low Energy Adaptive Clustering Hierarchy (LEACH)
routing approach is adopted in LEACH + TDMA [56] method, in which the network
is divided into several clusters. Each cluster head is selected randomly and based on
the remaining energy of the node and its distance to the base station.

3. Hierarchical routing + CSMA: This method includes two mechanisms, LEACH +
CSMA/CA [57] and Power Efficient Gathering in Sensor Information Systems (PE-
GASIS) + CSMA/CA [58]. In the first mechanism, due to the sleep duration added
to the CSMA/CA , the energy consumption of the nodes in LEACH + CSMA/CA
is lower than LEACH + TDMA. In the PEGASIS mechanism, to reduce the energy
consumption of the network, all the nodes go to the sleep state unless they have a
frame to send or if they are going to receive a frame.

4. Distributed hierarchical routing + Token passing: One example of this method is an
energy-efficient cluster-based routing protocol that interacts with a token passing
method. The target of Distributed Flooding + Multi Token [59] mechanism is that the
network continues to operate even if some nodes are disconnected from the network
and conserve the network energy consumption.

5. Hierarchical routing + CDMA + CSMA: An example of this method is LEACH +
CDMA + CSMA/CA [60,61], in which the inter-cluster nodes are assigned to a certain
number of time slots based on their available energy levels, which can schedule the
sleep state duration of each node. For these reasons, some part of the energy budget
of the network is saved, and the network lifetime is expanded.

3.4.3. Interaction between MAC and Physical Layers

In this method, several parameters of the physical layer, such as power and sub-carrier
allocation strategies, antenna cooperation, and beam-forming techniques, are used to
enable the energy-efficient scheduling transmission in the MAC layer.
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1. CSMA + Modulation: An example of this method is an interaction of an adaptive
modulation with a multi-channel CSMA, known as CSMA + M-Ary Quadrature
Amplitude Modulation (MQAM) [62]. In this mechanism, the modulation scheme
information, along with an adaptive back-off probability, can reduce the delays due
to the re-transmissions and thus save the energy budget of the network.

2. CSMA + WUR: This method proposes a CSMA-based mechanism with two different
approaches for ultra-low power networks. The first one reduces the energy con-
sumption due to the overhearing issue by continuously packetizing the wake-up
transmissions. The second one operates based on the energy existence on the channel
and reduces the size of the receive check [63].

3.4.4. Interaction between Routing, MAC and Physical Layers

In this method, the routing and physical layer innovations can assist the MAC layer
to operate in an energy-efficient manner [64].

1. Routing + CSMA + Directional antenna: An example of this method is Routing +
CSMA/CA + Beam Steering Antenna [65], in which to conserve the energy budget
of the network, the CSMA method adjusts the wake-up/sleep scheduling duration
of the radio transceiver to the traffic load adaptively and makes the transmissions
more energy-efficient. This mechanism benefits from the advantages of directional
antennas (where the antenna only radiates in a narrower geographical area), making
simultaneous transmissions possible.

2. Geographic routing + Channel hopping + Signal quality: A mechanism that belongs to
this method is Greedy Forwarding + Sleep Scheduling + Power Transmission [66,67],
in which according to the information that is provided by the routing protocol and
the amount of transmission power, the MAC layer decides the sleep duration of each
node; thus, it can reduce the network energy consumption.

3. Link-State routing + CSMA + Channel quality: The (Shortest Path Routing + CSMA
+ BER) [68] is an example of this method, which reduces the energy consumption
of the network through an estimation of the Bit Error Rate (BER) and updating the
information from the network layer (distance table) along with the short adaptive
duration of sleep mode.
The last mechanism refers to the interaction of a duty-cycled-based method and an
opportunistic routing protocol. This mechanism applies different estimation tech-
niques such as the Expected Duty Cycled Wakeups (EDC) and Energy-Centric Data
Collection with Anycast in Duty-Cycled (EDAD). It uses the information provided
from opportunistic routing protocols to approximate the number of required wake-
ups for transmitting a data frame. For this reason, this mechanism schedules the idle
listening and wake-ups more precisely and thus reduces the energy consumption of
the network [69–71].

4. IoT Technologies and Energy Models

In recent years, IoT communication technologies connect new approaches and con-
cepts to meet energy efficiency requirements. In order to define the IoT requirements in
terms of energy efficiency, available tools like energy models or empirical energy measure-
ments have been used in the literature.

This section first summarizes each IoT communication technology regarding its avail-
able MAC layers and energy consumption characteristics. The available energy models in
the literature are then presented and categorized based on their wireless communication
technologies. In the end, this section is summarized by providing a comparison of wireless
communication technologies and reviewing their applicability for IoT systems in terms of
energy consumption. For this reason, the total power consumption of each technology is
modeled based on the different states of its MAC layer. The parameters from the equations
used in the energy consumption analyses for IoT technologies are explained in Table 1.
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Table 1. Parameters of the energy model equations.

Parameter Description

ETotal Total energy consumption

ESl Energy consumption in sleep mode

EWu Energy consumption of wake-up mode

Em Energy consumption during data measurement

EMcu Energy consumption of microcontroller processing

EWut Energy consumption of wake-up mode for transceiver

ETx Energy consumption of transmission mode

ERx Energy consumption of reception mode

EIfs Energy consumption during the inter-frame space

EId Energy consumption of idle mode

EDisconn Energy consumption of User Equipment(UE) disconnected mode

TTx Duration of transmission mode

TRx Duration of reception mode

TId Duration of idle mode

TSl Duration of sleep mode

TWu Duration of wake-up mode

TCd Duration of cool down mode

TSw Duration of switching mode from transmission to reception and vice versa

PTx Power consumption of transmission mode

PRx Power consumption of reception mode

PId Power consumption of idle mode

PSl Power consumption of sleep mode

PWu Power consumption of wake up mode

PCd Power consumption of cool down mode

PSw Power consumption of switching mode from transmission to reception and vice versa

n Number of the tag

4.1. Wireless Local Area Network (WLAN)

The Institute of Electrical and Electronics Engineers (IEEE) 802.11 technology was de-
signed based on a random access mechanism (CSMA/CA), which is an energy-consuming
protocol [72]. The reason for that is the collision avoidance functionality of this protocol,
which keeps stations awake (in active mode) to listen to the channel for a certain dura-
tion before attempting to transmit [73]. To cater to this drawback, a power management
mode was introduced to IEEE 802.11 standard [74]. In this technology, the total energy
consumption is obtained through the consumed energy within the different states of the
communication, where the consumed energy of each state is the multiplication of the power
consumption of that state to its corresponding duration. The energy consumption model
for IEEE 802.11 technology is obtained through Equation (1), defined in [75].

ETotal = TRx.PRx + TTx.PTx + TId.PId + TSl.PSl (1)

The IEEE 802.11 standard group has introduced in recent years different amendments
that aim to satisfy the IoT systems requirements. Within these amendments, the original
channel access method has been changing through the technical definition of each amend-
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ment, looking for better performance in IoT systems. Below, the most relevant energy
models for the IoT-compatible IEEE 802.11 amendments are described.

4.1.1. IEEE 802.11ah

Similar to the legacy IEEE 802.11, the channel access method of IEEE 802.11ah is
based on CSMA/CA. However, additional features to the MAC layer such as hierarchical
Association IDentifiers (AID), group sectorization, Restricted Access Window (RAW), Relay
Access Point (Relay AP), bi-directional Transmission Opportunity (TXOP), and Target Wake
Time (TWT) [76], make IEEE 802.11ah acceptable for IoT systems with a large number of
devices deployment (by reducing the contention ), and low power communications. Due
to the equality of the channel access method of this amendment and IEEE 802.11 standard,
the total energy consumption of this technology is also obtained through Equation (1).
The IEEE 802.11ah energy model was first introduced by Raeesi et al. [77], where the
sleep duration is extended, and power consumption of transmission state is reduced by
utilizing short beacon frames, short MAC header, etc. Thus, the total energy consumption
is reduced. This energy model was later reformulated by Bel et al. [78] to consider TIM and
page segmentation scheme.

Along with the analytical models, empirical power consumption analyses have been
performed based on real hardware measurements included in the Orinoco Wireless Fidelity
(WiFi) card data sheet [79] and smart grid IEEE 802.11ah chip designed in [80]. The
analytical models do not consider the energy consumption of hardware components such
as the microcontroller, whereas energy models based on real measurements do so.

4.1.2. IEEE 802.11ax

The channel access method of this technology adds OFDMA on top of CSMA/CA.A
MAC feature that makes IEEE 802.11ax a suitable technology for dense environments is
the Basic Service Set (BSS) coloring [81]. Moreover, in this technology, energy efficiency can
also be achieved through approaches such as microsleep, TWT, and Opportunistic Power
Save (OPS) [82].

According to the channel access mechanism of IEEE 802.11ax technology, the energy
model of this technology includes the basic four states of Equation (1). An OFDMA-based
Hybrid Channel Access (OHCA) for uplink MU transmissions is introduced in [83], and
an energy model based on the MU power-saving mode is proposed in [84]. Through this
model, the authors showed that, by defining a certain sleep duration for the uplink flow, it
is possible to save a significant amount of power. The total energy consumption for the
power saving mode is obtained through Equation (2).

ETotal = TRx.PRx + TTx.PTx + TSl.PSl (2)

According to Equation (2), for uplink transmissions, the station only wakes up from
deep sleep mode when it wants to receive or transmit frames. Thus, in power saving mode,
the idle mode is removed from the total energy consumption Equation (1).

4.1.3. IEEE 802.11ba

This amendment aims to balance the trade-off between low latency and low power
states (1mW) in devices [85–87] while being backward compatible [88]. This amendment
works on WUR, whose implementation is based on a Wake-up Transmitter (WuTx) and
Wake-up Receiver (WuRx). Since the WuRx is a very low power consumption radio and the
primary radio wakes up on-demand, the power consumption during idle mode decreases
significantly [88].

The channel access method IEEE 802.11ba is the Enhanced Distributed Channel Ac-
cess (EDCA) based on CSMA/CA, and power-saving mode is fulfilled through the WUR.
The total energy consumption of IEEE 802.11ba is modeled in [89], where a dynamic hybrid
WLAN communication model for IoT devices is considered. In this model, MU operation
(IEEE 802.11ax) and WUR (IEEE 802.11ba) are taken into account. According to the pro-
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posed model presented in [89], the total energy consumption in each station is achieved
through Equation (3).

ETotal = TRx.PRx + TTx.PTx + TId.PId + TWu.PWu + 2TSw.PSw (3)

Presenting an efficient scheme for the wake-up receiver, while considering the coexis-
tence with IEEE 802.11 legacy, is becoming an attractive topic [88,90–93], where some of
these energy models are proposed based on the AS3933 chip by Austria Microsystems.

4.2. Low-Power Wide Area Network (LPWAN)

Unlike the above IEEE 802.11 amendments, LPWAN technologies support longer
communications with extremely low bandwidth, low power consumption, and constrained
duty-cycles (how frequently an end-device transmits data) [94]. These features make
LPWAN technologies more attractive for IoT than other long-range communication tech-
nologies. Long-Range Wide Area Networks (LoRaWAN), Sigfox, and Narrow-Band IoT
(NB-IoT) are described next as LPWAN examples.

4.2.1. LoRa

The basic channel access method is a simple random channel access mechanism (Pure
ALOHA/Slotted ALOHA), which simplifies this technology at the protocol level [95].
However, to reduce the power consumption in long-range communication, the MAC layer
of this technology has been modified by adding sleep mode (CSMA feature) at its protocol
level [96,97].

To the best of our knowledge, the basic energy models for LoRa technology are
designed based on the real Class A device characteristics to the date of this paper. An
energy consumption analysis and its model design for the most common LoRa transceiver
chip, SX1272, are presented in [98,99]. The accuracy of the proposed energy model, which
mimics the energy consumption of the LoRaWAN Class A device, is evaluated through
simulation in Network Simulator-3 (NS-3) [99]. Thus the total energy consumption of a
simple data transmission procedure can be derived from Equation (4).

ETotal = TRx.PRx + TTx.PTx + TSl.PSl (4)

An energy consumption estimation based on the different states of the LoRaWAN
hardware is proposed in [100] through Equation (5). Since this model is formulated based
on a real sensor node, some parameters such as a wake-up transceiver, microcontroller,
and data measurement are added to Equation (4). According to the authors, this model is
applicable for Class A end devices.

ETotal = ERx + ETx + ESl + EWu + Em + EMcu + EWut (5)

4.2.2. Sigfox

The channel access method in Sigfox is known as Random Frequency and Time
Division Multiple Access (RFTDMA). To provide a simple and low power consumption at
the protocol level, this technology limits the number of data transmissions [101] and does
not use packet synchronization and beacon frames [72].

According to the authors in [102], the total energy consumption of a bidirectional
Sigfox-based communication for the MKRFOX1200 device can be modeled based on the
different states of the transaction, which includes wake-up, transmission, listening, recep-
tion, cool down, and sleep states. According to this model, the total energy consumption of
a MKRFOX1200 device is obtained through Equation (6).

ETotal = TWu.PWu + TRx.PRx + 3.TTx.PTx + 2.TId.PId + TCd.PCd + TSl.PSl (6)
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Moreover, in [102] an analytical model for energy consumption of data delivery and
battery lifetime of the MKRFOX1200 Sigfox device is proposed. The novelty of this work is
the impact consideration of the frame losses.

4.2.3. NB-IoT

This technology reduces the power consumption by using different power saving
mechanisms such as Handling Re-transmission (HARQ), Extended Discontinuous Recep-
tion (eDRx), and Wake-up (Wu) signal. The eDRx reduces the power consumption by
keeping the device in an inactive mode for a long duration (deep sleep mode), whereas Wu
signal is sent during the idle mode to wake-up the main receiver [103].

Although in NB-IoT technology, different channel access methods are deployed for
uplink and downlink communications (SC-FDMA, OFDMA), a single energy model is
valid for both uplink and downlink communications, where the energy consumption of
transmission mode can be defined as an uplink or downlink flow. This model is defined
in [104], where four different communication modes (wake-up and connect, transmis-
sion, disconnect and sleep/idle) are considered. Equation (7) expresses the total energy
consumption of this technology.

ETotal = EWu + ETx + EDisconn + EId (7)

In the work presented by [105], two different methods are defined for each communi-
cation flow. In this model, the authors utilized power-saving mode for uplink and eDRX
mechanism for downlink communications (sleep/idle mode extension) to reduce the total
energy consumption. The authors showed that their proposed energy model is able to
prolong the battery life over 12 years.

4.3. Radio Frequency Identification (RFID)

Compared to the LPWAN technologies, which provide long-range communication,
RFID and Near-Field Communication (NFC) are suitable for shorter-range applications.

The high-level classification of RFID technology divides it into passive and active.
Passive technology tags are kept powered through a passive technique such as energy

harvesting methods or backscattering. One of these technologies is the Electronic Product
Code Class 1 Generation 2 (EPC Gen2) [106]. Passive tags are small, cheap, and ultra-
low power consumption, these features making them suitable for massive deployment
environments and hard to reach use cases. However, this technology suffers from a low
communication range (10 m) [107].

Active technology refers to the devices that require power supply on tags such as
a battery. This technology is not as popular as passive RFID. The active technology
can transmit stronger signals and, in consequence, provide a more extended range of
communication (100 m) [108]. However, compared to passive tags, they are large and
expensive (due to their on-board batteries).

Due to the random nature of the channel access method in this technology (Slotted
ALOHA or FSA), transmission and reception states are considered to define the energy
model. The proposed energy model in [109] is based on an energy-aware ALOHA channel
access, where the consumed energy per tag is obtained through Equation (8).

ETotal/n = ERx/n + ETx/n (8)

4.4. Wireless Personal Area Network (WPAN)

In contrast to the above wireless technologies, the WPAN technologies are applicable
only for personal network applicationswhere short-range and low power consumption
communications are required. Among WPAN technologies, Bluetooth Low Energy (BLE-
Bluetooth 4.0) and Zigbee (IEEE 802.15.4) are the most energy-efficient and cost-effective
ones. Thus, they are the most adopted WPAN standards for IoT use cases [110].
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4.4.1. BLE

The BLE-based device is always in sleep mode and wakes up only for short periods
based on its channel access method (TDMA). This wake-up period is called connection
state [72]. Based on the proposed energy model in [111], during these periodic wake-up
intervals, a short delay is defined as the Interframe space (Ifs). This delay is the time interval
between transmission and reception in each connection. The total energy consumption of
the slave connection is expressed through Equation (9).

ETotal = EWu + ERx + ETx + EIfs + EMcu (9)

The energy model presented in [111] is designed based on the BlueGiga BLE112
hardware module (based on TI’s CC2540 System-On-Chip). Since this model is based on
real hardware, some parameters such as energy consumption in microcontroller and Ifs are
also taken into account.

4.4.2. Zigbee

Similar to the IEEE 802.11 legacy, the basic channel access method of this technology
is based on the CSMA/CA mechanism [72]. Since it is a low data rate technology, devices
usually stay in sleep mode and only wake up for short periods to send data, reducing
power consumption. Compared to the IEEE 802.11ah/ax, Zigbee is a low complex and low
power consumption (about four times less) technology, which prolongs the battery lifetime
while it provides less coverage range [112].

The proposed energy model in [113] is designed based on the random nature of the
channel access method, where due to the three aforementioned characteristics, the number
of collisions and consequently re-transmissions are reduced. Since the channel access
method in Zigbee and IEEE 802.11 standard is the same, the total energy consumption for
this technology is also obtained based on Equation (1).

The aforementioned wireless communications are just a few technologies that can
be considered the potential communication technologies for IoT systems. Other potential
communication technologies can be listed as Z-Wave, Weightless SIG, Wireless Highway
Addressable Remote Transducer (WirelessHART), THREAD, ANT+, Long Term Evolution
for Machines (LTE-M), and Extended Coverage Global System for Mobile communication
(EC-GSM). Readers interested in further details of different LPWAN technologies are
referred to the papers [94,98].

4.5. Comparison of Communication Technologies and Their Suitability for IoT Regarding Energy
Consumption

Table 2, which is built based on the references [72,76,88,114], provides a brief compari-
son of the technologies mentioned above in terms of the most relevant aspects regarding
the IoT paradigm. Then, the IoT-related MAC features of each potential communication
technology are listed in Figure 4.
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Table 2. Overview of potential technologies for IoT.

Technology Standard Coverage Data Rate Frequency MAC IoT
Range (Max) Protocol Application

WiFi
HaLow 802.11ah <1.5 km 346 Mbps Sub-1 GHz CSMA/CA Smart City

WiFi-6 802.11ax <300 m 9.607 Gbps 1–6 GHz OFDMA Retail
Smart Transportation

WiFi-WUR 802.11ba <50 m 0.25 Mbps 2.4/5 GHz CSMA/CA Smart City
Smart Healthcare

LoRa LoRaWAN <20 km <25 kbps Sub-1 GHz ALOHA Smart City

Sigfox Sigfox <40 km 0.1 kbps Sub-1 GHz RFTDMA Industrial Automation
Smart City

RFID EPC global
Gen2 10 m 423 kbps 850/950 MHz FSA Supply Chain

Bluetooth 802.15.1 100 m 3 Mbps 2.4 GHz TDMA Smart Transportation
Smart Buildings

BLE 802.15.1 100 m 1 Mbps 2.4 GHz TDMA Smart Healthcare

ZigBee 802.15.4 <100 m 250 kbps 2.4 GHz CSMA/CA Smart Buildings

Z-Wave Z-Wave 10 m 100 kbps Sub-1 GHz CSMA/CA Smart Buildings

Weightless
SIG

Weightless
(W/N/P) 5 km 10 Mbps Sub-1 GHz SA

FTDMA Smart City

WirelessHART 802.15.4 100 m 250 kbps 2.4 GHz TDMA Industrial Automation

NFC ISO 13157 0.1 m 424 kbps 13.56 MHz TSCH
CDMA/CA

Retail
Smart Buildings

THREAD 802.15.4 11 m 250 kbps 2.4 GHz TSCH Smart Buildings

ANT+ ANT+
Alliance 100 m 1 Mbps 2.4 GHz TSCH Smart Healthcare

NB-IoT 3 GPP <100 km 250 kbps Cellular
Bands

OFDMA
SC-FDMA

Industrial Automation
Retail

LTE-M 3 GPP <100 km 1 Gbps Cellular
Bands OFDMA Smart Transportation

EC-GSM 3 GPP <100 km 2 Mbps Cellular
Bands

TDMA
FDMA Industrial Automation

For instance, in the LPWAN family, NB-IoT is a license-based standard, while LoRa
and Sigfox work on the unlicensed Radio Frequency (RF) spectrum, and these technologies
support communications with a long-range and low data rate. For this reason, they
are mostly deployed in IoT applications such as smart cities and industrial automation.
Other than LPWAN technologies, WLAN technologies benefit from the characteristics
and features of the CSMA method to manage the collision frame during the transmission
procedure and provide services such as QoS and QoE. For example, to support QoS, WLAN
technologies support EDCA based on their MAC layer functionality, whereas this is not
provided in LPWAN proprietary technologies (cf. Figure 4). In contrast to LPWAN and
WLAN families, BLE technology which belongs to the WPAN family is the most widely
deployed in IoT healthcare applications due to the collision-free characteristic of its MAC
layer and its low power consumption communications. However, since the WPAN family
is applicable for short-range transmissions, it may not be practical in IoT applications that
require long-range such as smart transportation.

According to the power consumption values of the different communication states
of IoT technologies (cf. Table 3), and the limitations of each wireless communication
technology, some of these technologies may be more appropriate for IoT implementation.
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Figure 4. Overview of the MAC protocols of the current IoT technologies.

Table 3. Power consumption for IoT technologies (mW).

Wireless Standards Tx Rx Idle Sleep Research Methodologies References

255 135 1 NA Analytical Model Olyaei et al. [115]
(Simulation OMNeT++)

IEEE 802.11ah 15.8 6.2 NA 10 × 10−3 Model Design and Creation Zheng et al. [80]
(Matlab Simulation)

255 135 NA 1.5 Analytical Model Raeesi et al. [77]

IEEE 802.11ax 1000 600 300 150 Model Design and Creation
(computer simulations) Yang et al. [84]

IEEE 802.11ba 280 100 50 NA Model Design and Creation Hong et al. [89]
352 154 55 5 × 10−3 Survey (IEEE Report) McCormick [85]

LoRa (13 dBm) 18.81 31.65 NA 3.3 × 10−3 Model Design and Creation Finnegan et al. [99]
LoRa (13 dBm) 92.4 34.65 NA 0.0033 × 10−3 (ns3)/Analytical Model Finnegan et al. [98]
LoRa (7 dBm) 59.4 34.65 NA 0.0033 × 10−3 Real Measurements
LoRa (20 dBm) 419.6 44.06 NA 4.32 × 10−3 Real Measurements Morin et al. [116]

Sigfox (14 dBm) 214.5 132 1.65 16.5 × 10−3 Real Measurement data-sheet [117]
Sigfox (14 dBm) 147 30 NA 4.32 × 10−3 Real Measurements Morin et al. [116]

Sigfox Unidirectional 81.6 NA 3.6 48 × 10−3 Model Design and Creation Gomez et al. [102]
TXN (14.5 dBm) Real Measurements

Sigfox Bidirectional 82.8 55.5 3.6 48 × 10−3 Model Design and Creation Gomez et al. [102]
TXN (14.5 dBm) Real Measurements

RFID Active Tag 35 28 NA NA Model Design and Creation Namboodiri
RFID Reader 825 125 NA NA Simulation et al. [118,119]

84 66 NA NA Model Design and Creation Siekkinen et al. [111]
801.15.1 (BLE) Real Measurements

24.11 19.26 4.67 3.24 × 10−3 Real Measurements Morin et al. [116]

90 72 NA NA Model Design and Creation Siekkinen et al. [111]
802.15.4 (ZigBee) Real Measurements

163.74 89.66 40.56 0.165 Experiment Gray et al. [120]

NB-IoT 852.92 178.34 21.6 0.0108 × 10−3 Model Design and Creation
(Matlab and ns3) Sultania et al. [105]

543 90 2.4 0.015 Model Design and Creation Ratasuk et al. [121]
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In comparison with IEEE 802.11 legacy, which is a power-hungry technology regarding
IoT, IEEE 802.11ah and IEEE802.11ba have been able to reduce energy consumption (about
7.5 times for IEEE 802.11ah and 5 times for IEEE 802.11ba less than legacy) by introducing
specific modifications [76,87]. Although the aim of IEEE 802.11ax is dense deployment
(not exclusively for IoT), it can reduce the energy consumption of the network devices
up to 1.5 times less than legacy by extending the duration of sleep mode [82]. However,
since IEEE 802.11ba is still under development and IEEE802.11ax has not reached sufficient
technical maturity yet, these technologies require more time to be well adapted for IoT
applications. Since LPWAN technologies provide low energy consumption (about 7 times
less than WLAN technologies) and very long coverage range (up to 100 km in case of NB-
IoT) [122] communications compared to the above wireless technologies, these technologies
include a wide range of IoT applications from smart buildings to industrial automation.
However, the main drawback of LPWAN technologies is their low data rate. Although
energy consumption by WPAN communications is lower than the aforementioned WLAN
technologies (10 times less) [116,120], due to their frequency band (2.4 GHz), they suffer
from interference, resulting in a loss of communication reliability. Thus, WPAN is only
appropriate for smart home and wearable devices. Moreover, EPC Gen2 RFID [106] is one
standard allowing passive communications, which is suitable for IoT applications in the
supply chain system, with a limited communication range.

Based on the available state of the art on IoT wireless communication technologies,
LPWAN technologies and IEEE 802.11ah are promising ones. Nevertheless, the limited
battery lifetime of these technologies may represent an issue for specific IoT scenarios.
For instance, those requiring high availability or low maintenance cannot afford frequent
battery replacement. Hence, techniques to prolong battery lifetime, like energy harvesting,
may improve different IoT applications.

5. Energy Harvesting Solutions for IoT Technologies

Energy harvesting systems are applied to the IoT paradigm to prolong the battery life
time and make these systems more energy-efficient. The classification of energy harvesting
mechanisms is based on their inherent characteristics such as, scalability, maintainability,
ability to improve IoT devices life time, form factor, capacity, and sustainability. The
energy harvesting mechanisms are fed by environmental and non-environmental energy
sources. The former includes sun radiation, wind and water flows, geothermal, within
others, whereas the latter refers to RF signals and mechanical forces.

In this section, first the most relevant IoT related features of energy harvesting systems
are highlighted. Then, the structure and the functionality of those energy harvesting
technologies are explained. In the end, an investigation of the compatibility of energy
harvesters and the aforementioned wireless technologies is provided.

5.1. IoT Energy Source Characteristics

One of the main difficulties that IoT systems face is the limited sources of energy to
keep devices powered, which is traditionally provided by batteries. Since IoT systems
include thousands of devices, frequent replacement of their batteries or finding the failed
ones, require time and human intervention, which increase the cost of maintenance. This
issue becomes worse when the devices are located in hard-to-reach areas or mobile locations.
The above battery shortcomings as energy source for IoT systems, bring energy harvesting
technologies into consideration.

To continuously keep IoT systems powered, energy harvesting technologies harvest
energy from the surrounding environment, which may provide longer lifetime and lower
maintenance operations. Additionally, most of the energy sources in energy harvesting
technologies can provide the required power for wireless communications, which makes
these technologies scalable to various IoT applications and services. In contrast to battery
disposal, which has negative effects to the environment [123], energy harvesting technolo-
gies can alleviate these harmful effects and move towards sustainable IoT systems. The
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above advantages of energy harvesting technologies over batteries can make IoT systems
more feasible and cost-effective.

Table 4 highlights the characteristics of the main energy sources that feed harvesting
systems. The main energy harvesting techniques for IoT systems are described next.

Table 4. Energy source characteristics.

Energy Form Life Cost Maintenance Reliability Scalability Proper
Source Factor Time Environment

Sun
radiation Medium High Medium Medium Low Low Outdoor

Mechanical Low Low/ Medium High Medium High Indoor/
force Medium /High Outdoor

Dynamic High High High Low Low/ Low Outdoor
fluid Medium

Thermoelectric High Medium High Low High High Industrial
area

Acoustic Low Low Medium High Medium Low Airport/
noise /High Railroad

RF Medium High Medium Low High High Urban area

5.2. Suitable Energy Harvesting Technologies for IoT

In this section, we briefly highlight the suitable energy harvesting techniques that can
be utilized in IoT devices. These methods can be fed by ambient or non-ambient sources.
The illustration of each mechanism is shown in Figure 5.
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Figure 5. Existing energy harvesting mechanisms according to their source of energy.

5.2.1. Solar-Based Energy Harvester

The high power density feature of the solar cell, makes it a suitable power unit
technique for IoT applications such as smart agriculture and smart city. The solar or photo-
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voltaic cells absorb the energy from a natural or artificial source of light (sun or fluorescent
light), and then convert it to electric current. The converted energy is conducted into
two metals in the top and bottom of the cell, and is usually stored in a super-capacitor
or a battery to keep IoT devices [124] powered. Based on the type of the source of light,
solar cells can be indoor or outdoor, which vary in size. These cells can be as large as
a solar panel (integrated cell) or a small thin-film (Dye-Sensitized). Depending on the
amount of solar or fluorescent light radiation, the power density varies from 10 µW/cm3

to 100 mW/cm3 [125,126]. However, due to the size of the cell, stochastic characteristic of
the energy source, and the amount of wasted energy (significant amount energy is turned
into heat or is reflected by the surface of the cell), it is not a feasible method for some IoT
applications such as wearable devices [127]. The simplified structure of a photo-voltaic
module is shown in Figure 5a.

5.2.2. Mechanical-Based Energy Harvester

In contrast to solar cells, mechanical harvesters are smaller in size and provide a
high power density. For these reasons, they are widely used in IoT applications (from
wearable devices to monitoring). The mechanical energy is divided into two groups,
kinetic and potential, where the former is generated through motion, vibration, pressure
and human activity, and the later one is generated based on the position of the energy
source. The mechanical energy harvesters are designed based on three different methods,
electromagnetic, electrostatic and piezoelectric. Within these methods, the piezoelectric
energy harvesters are light-weight and cost-effective and provide high output voltage,
energy density, and capacitance, which make them more suitable for IoT applications [128].
The piezoelectric energy harvesters operate based on the piezoelectric material where the
crystal ionizes under a certain strain, and is able to convert kinetic energy to electrical
energy. The piezoelectric modules are known as cantilever beam, circular diaphragm,
cymbal, and stacked structure [128]. Based on the type of the piezoelectric material and
the amount of energy source, these modules provide a wide range of power density from
0.021 µW/mm3 to 2 W/cm3 [10,129]. However, these materials are frangible, easy to
break, and can be toxic [10]. Figure 5b illustrates the simple structure of the piezoelectric
energy harvester.

5.2.3. Dynamic Fluid-Based Energy Harvester

Compared to the solar cells, dynamic fluid energy harvesters have lower power
density and have more limitations regarding the installation site. The dynamic fluid
energy source is divided into two main types, wind, and water. The most common energy
harvester in this category is the turbine. According to the general structure of the turbine,
the blades are connected to a shaft that can spin the generator by its rotation. Microturbines
(windmill [130] and wind-belt [131]) were designed to make the wind turbine suitable for
IoT applications regarding their scale, however, the efficiency of these turbines is decreased
by reducing the size of the blades [132]. Moreover, hyper-power turbines that are available
in different scales are used for the flowing water energy source. Since this method is
flexible in size, pollution-free, and has a continuous source of energy, it is feasible for IoT
applications [125]. According to the scale of the harvesters and their installation site, they
provide a power density from 1 mW/cm2 to 41.2 mW/cm2 [10,133,134]. Nevertheless,
turbines have some limitations, such as feasibility only in open, windy, or near the sea
areas. Figure 5c shows the basic structure of a dynamic fluid energy harvester.

5.2.4. Thermal-Based Energy Harvester

Compared to the above energy harvesters, thermal energy harvester modules provide
a range of power density between solar cells and turbines. Thermal energy harvesters
include geothermal, waste heat from the industrial sector, solar heat, or even the human
body [125]. The thermocouple or Thermometric Generator (TEG) is a widely known ex-
ample of thermal energy harvester. It is made of two different metals or semiconductors,
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which generate a voltage, based on the temperature difference between their two junc-
tions [129]. These harvesters have a long life and low maintenance, however, their low
efficiency (5–11%) has prevented them from being widely used in IoT applications [114,125].
According to the type and the reflected heat of the TEG, its power density varies between
40 µW/cm2 and 50 mW/cm2 [10]. Figure 5d illustrates a typical model of a TEG made
of semiconductors.

5.2.5. Acoustic Noise-Based Energy Harvester

Compared to the above energy harvesters, the lowest power density is generated by
the acoustic noise harvester. The energy source of acoustic noise is based on sound waves
(longitudinal, transverse, bending, hydro-static, and shears waves) and vibration [125].
According to the functionality of the acoustic noise harvester, they are divided into three
main types, Helmholtz resonator-based, quarter-wavelength resonator-based, and acoustic
metamaterial based techniques [135]. To generate power from noise waves, first, the noise
is directed into the barrier and vibrates in the resonator. Then the converters change the
resonance into electricity, which can be stored in the super-capacitors or batteries [135].
Among the aforementioned energy harvesters, acoustic noise harvesters usually provide
the lowest power density (up to 960 nW/cm3), and there are scarce environments with the
required level of acoustic noise. Hence, it is only a feasible method for powering up some
IoT applications such as infrastructural monitoring [125]. Figure 5e illustrates the basic
structure of an acoustic noise energy harvester.

5.2.6. Radio Frequency-Based Energy Harvester

After acoustic noise harvester, Wireless Energy Harvesting (WEH) methods generate
the lowest power density among the aforementioned techniques. RF signals are divided
into two main groups, dedicated and radiated signals. The former group relies on RF
transmitters included in the same IoT system, which usually have predictable features [136],
whereas the latter group includes ambient RF signals that are radiated from other sources
like TV, GSM, WiFi, microwave, ovens, or radar among others. The fundamental parts of
an RF energy harvester are known as the receiving antenna, matching circuit, peak detector,
and voltage elevator, which are shown in Figure 5f. The combination of the peak detector
and voltage elevator is usually named rectifier and the RF energy harvester is named
rectenna. In principle, RF signals are received by an antenna. Then in the matching circuit,
the voltage is amplified by matching the antenna impedance to the rectifier circuit. Finally,
the rectifier which is a part of Alternating Current/Direct Current (AC/DC) converter,
captures the AC signal and converts it to a DC signal [126]. It is possible to store the
energy by adding a capacitor (rechargeable battery) to the RF energy harvesting module or
power-up, for instance, a passive RFID tag [114]. Due to the simplicity, availability, and
easy to implement features of RF signals, WEH methods are a promising solution for IoT
systems [137]. However, since the efficiency of RF energy harvesting systems depends on
the amount of captured power and AC/DC conversion effectiveness, they are not practical
in the rural areas [10]. Based on the physical characteristics and installation site of the
WEH, the amount of generated power density by rectenna can vary from 0.1 µW/cm2 to
300 µW/cm2 [129,138].

5.3. Compatibility between Communication and Energy Harvesting Technologies

The available amount of energy that is harvested from ambient and non-ambient
energy sources by each existing energy harvester is listed in Table 5. Generally speaking,
among the aforementioned energy harvesters, solar cells and turbines can provide more
power density, however, their large scale and availability are their main drawbacks, and
make them mostly suitable for outdoor IoT applications [139]. Moreover, piezoelectric
materials that are widely used as mechanical and acoustic noise harvesters suffer from
brittleness. Since thermal energy source is independent of environmental conditions and
uses a simple harvester system to scavenge the energy, it can be well adopted in different
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IoT applications such as healthcare (wearable devices) [140]. However, the main drawback
of the thermal energy harvester is its low efficiency. Different IoT applications such as
smart city and healthcare can benefit from RF harvesting systems, where the RF signals
are converted to electricity to keep those devices powered. Nevertheless, compared to
solar cells and turbines, RF harvesters provide lower power density, and RF signal strength
depends on the distance between its harvester and the signal source.

Table 5. Various energy harvesting mechanisms.

Energy Energy Power Limitation References
Source Harvester Density

Sun Photo-voltaic 0.15–100 mW/cm3 Large scale/ Zhou et al. [125]
radiation panel Unavailable

during night
Fluorescent Dye Sensitized 10–100 µW/cm3 Dependent on Zhou et al. [125]

light Solar Cell (DSSC) the indoor light Aparicio et al. [126]

Human Body Piezoelectric 1–2 mW/cm2 Frangible material He et al. [10]
Motion 0.2 mW/cm2 Grag et al. [129]

Vibration Electromagnetic 0.2 mW/cm3 Difficult magnet Grag et al. [129]
Induction 0.3 mW/cm3 integration Zhou et al. [125]

Vibration Electrostatic 0.021 µW/mm3 Mechanical Zhou et al. [125]
conversion stability

Wind force MicroWindbelt 41.2 mW/cm2 Unavailable Laštovička
in closed area -Medin [133]

Flowing water Francis turbine 1 mW/cm2 Unavailable He et al. [10]
force in closed area

Thermoelectric Thermocouple 40 µW/cm2 Low efficiency He et al. [10]
50 mW/cm2 Grag et al. [129]

Acoustic noise Acoustoelatic Sonic 3 (75 dB) nW/cm3 Scarce He et al. [10]
Crystal (AESC) 960 (100 dB) nW/cm3 energy source Yuan et al. [135]

Radio Wireless Energy 0.1 µW/cm2 Unavailable Adila et al. [138]
Frequency Harvester (WEH) 300 µW/cm2 in suburban areas Grag et al. [129]

The intersection of the available harvested energy from existing energy harvesting tech-
nologies (cf. Table 5), and the power consumption IoT technologies analysis from Section 4,
defines suitable combinations of these technologies. Due to its low-power consumption,
LPWAN technologies like LoRa can benefit from a wide range of energy harvesting tech-
nologies like solar panel or thermocouple, making it a promising IoT technology. Another
long-range wireless communication technology like IEEE 802.11ah, although having higher
power consumption, can benefit from more powerful energy harvesting technologies like
solar panel or wind force for outdoor use cases.

Different examples in the literature show that it is possible to provide a certain percent-
age of the required power for the IoT systems by means of energy harvesting technologies.
This amount of harvested energy adds to the battery and prolongs its operational lifetime.
For instance, the waste heat from a central heating installation, can extend the operational
lifetime of the batteries in a monitoring system powered based on a WiFi communication
technology [141]. Based on the size of the solar cells and the amount of illumination
of the sun, solar energy harvester modules can keep devices powered by extending the
battery’s lifetime, which operate under LPWAN technologies [139]. Due to the low power
consumption of the WPAN technologies, they can benefit from ambient RF [142] or thermal
energy harvesting from the human body [143]. Moreover, a dedicated RF source can keep
low-power RFID applications powered [144]. Experimental results combining the existing
literature, and the available amount of energy that can be provided by different energy
harvesters, are summarized in Table 6. Thus, according to the available power density of
these energy harvesting systems (cf. Table 5), they can prolong the battery’s lifetime in
IoT communication technologies (cf. Table 3), as detailed in Table 6. For instance, a TEG
harvester can add about 10% of the IEEE 802.11ah WiFi required power to the batteries of
the system, and thus, prolong their lifetime.

Besides the limited harvested power and the hardware related limitations of the
energy harvesters, there is a need to improve the IoT communication technologies in terms
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of energy consumption. In the design procedure of potential wireless communications
for IoT, the requirements of energy harvesting systems and their constraints are not well
taken into account. Thus, there is a need to change the legacy protocols to accommodate
the unpredictable behavior of energy harvesting sources. This requires a comprehensive
review of relevant existing energy harvesting MAC protocols in the literature.

Table 6. Experimental analyses in literature on the suitability of specific energy harvesters with IoT
technologies [139,141–144].

Energy Energy IoT IoT Power for
Harvester Harvester Feature Technology Use Case IoT Technologies (%)

Solar Panel 38.5–40.7 cm2 LoRa (13
dBm) Weather Monitoring 98

TEG 4.5 ◦C (∆T ) WiFi (IEEE
802.11ah) Smart Building 10

Human Body (TEG) 3–15 ◦C (∆T ) BLE Smart Healthcare 3.7

Human Body Motion Located in the shoe with Zigbee Smart Building 1.3
(Piezoelectric) the speed of 6.44 km/h Smart Healthcare

Dedicated RF Tag size RFID active
tag

Industrial
Automation 0.3

Harvester 95 mm × 24 mm

6. Energy Harvesting MAC Protocols

In Section 3, we provided a comprehensive classification of the recent existing energy-
aware MAC mechanisms in the literature for IoT systems. However, since these mecha-
nisms are not designed based on the intermittent nature of the energy harvesting energy
sources, they may not provide sufficient energy for these techniques. To fill this gap and
enable the integration of the energy harvesting techniques with existing communication
technologies, various energy harvesting MAC protocols are proposed in the literature.
However, since these protocols have their own benefits and drawbacks, to highlight the
characteristics of each energy harvesting MAC protocol, we need to have a precise compar-
ison of the existing energy harvesting MAC protocols.

For this reason, we provide a comparison of existing energy harvesting MAC protocols
according to the categorization presented in Section 3. Then, for each channel access category,
we consider two sets of parameters, which are not absolute values. The first group of
parameters is related to the common features (extracted from the existing literature) of the
energy harvesting proposed MAC protocols regardless of their channel access categories,
and the second set of parameters is defined based on the specific requirements of each
channel access category. Since the parameters from the first set are common among all four
categories, we list them at this point, and the specific parameters of each category will be
explained within their related category. The common set of parameters include the type of the
energy harvester, whether the MAC protocol mechanism is energy-efficient and is designed
based on ENO condition, and probabilistic approach. Energy efficiency is an important
parameter in the context of energy-aware MAC protocols since their goal is to reduce energy
consumption to adapt to energy harvesting. Hence, the listed MAC protocols in Section 3
do not introduce energy efficiency at all, but the MAC protocols in Section 6 try to modify
and enhance the Section 3 protocols in a way to increase the efficiency in terms of energy.
The ENO condition has not been satisfied in any energy harvesting MAC protocol included
in this survey, and it is more like a benchmark for future works. It is worth mentioning
that the probabilistic approach in this context means that the MAC protocol makes decisions
based on the previously gathered information and refers to the techniques that the MAC
mechanisms adopt to manage the available energy of the nodes (estimation of the energy
level and dynamic change of the MAC parameters based on the network conditions). Further
parameters include whether the MAC mechanisms adapt to the variable amount of available
energy or not and prioritize the frame transmission or not. For each energy harvesting MAC
protocol, the specific energy management techniques which are deployed in the mechanism,
and the type of IoT application that is supported, are highlighted.
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In this section, the mechanisms of existing energy harvesting MAC protocols in the
literature are explained, then, some of the advantages and disadvantages of these protocols
are highlighted. Finally, some of their modifications and enhancements are listed.

6.1. Random Access

In the random access category, the increasing trend of collision rate can be alleviated
by balancing the trade-off between collision rate and parameters such as idle listening,
overhead reduction, load balancing, and QoS support.

6.1.1. Carrier Sensing-Based Energy Harvesting MAC Protocols

The collision management techniques used to reduce the energy consumption in
carrier sensing-based MAC are divided into two main approaches known as channel
prioritization and forced to leave the contention.

The first approach is channel prioritization in which the network energy consumption
is reduced by adjusting the wake-up duration to the energy level of an individual node
and prioritizing the frame transmissions based on their contents. One of the earliest energy
harvesting MAC protocols, which is mostly known as the reference mechanism of this
approach, is Radio Frequency MAC protocol (RF-MAC) [145]. This protocol intends to
balance the trade-off between data frame and energy transmissions at the same frequency
band. Also since the data frame transmission is based on the random contention window
values, nodes with a high level of energy do not access the channel more than those
nodes with a low energy level. Although this protocol reduces some amount of energy
consumption of the network, it faces a few challenges, such as long transmission delay
due to the random back-off and harvesting procedures and lack of providing the QoS
requirements. Since this protocol is designed based on the CSMA method and does not
provide time synchronization, optimizing the output power of high-frequency signals with
different phases, is another challenge for this protocol.

One solution for the shortcomings of RF-MAC is presented in [146], where an al-
gorithm allows an on demand energy harvesting within contention (back-off) period, to
reduce the delay. However, in networks with high traffic and frequent energy harvesting
procedure, this MAC protocol still suffers from unpredictable and long transmission delays.

In the second approach, active nodes are randomly forced to leave the contention and
go to sleep mode. Consequently some amount of the energy budget of the network is
saved. One of the earliest energy harvesting MAC protocols that adopted this approach is
Energy-Level MAC protocol (EL-MAC) [147]. This protocol divides the nodes into primary
(higher energy) and secondary nodes (lower energy). First, it gives the access channel to
the secondary nodes with a lower level of energy and forces the primary nodes to go to
sleep mode. For this reason, this protocol conserves energy by reducing the contention level
and providing channel prioritization. However, since nodes with a high level of energy are
forced to harvest energy while they stay in sleep mode, they lose the opportunity to contend.

Although the second approach improves the trade-off between collision rate and
idle listening more than the first approach, neither considers load balancing or overhead
reduction as energy-related parameters.

6.1.2. Blind Access-Based Energy Harvesting MAC Protocols

A mathematical model of an energy harvesting MAC protocol, which is designed
based on an integration of the RF harvester with the Slotted ALOHA mechanism, is
proposed in [148]. According to this mechanism, each node includes a data frame buffer
with a single frame capacity and an energy frame buffer with the capacity to transmit a
certain amount of energy frames. Data frame transmission for each node requires a specific
amount of energy frames. Since in this mechanism, the data frame and energy buffer
highly interact with each other, it is able to model only small-sized networks. Also, in this
mechanism, long transmission delay reduces the number of arriving energy frames, which
increases the data transmission failure.
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To reduce the transmission failure in small-size networks, the authors in [149] in-
troduced a Hybrid AP (HAP), which controls frame synchronization and channel access
prioritization. An enhancement of harvest-then-transmit protocol [150], defines a dynamic
energy harvesting duration for each node to support dense networks, reduce the imple-
mentation complexity, and frame transmission overhead. However, delay due to long idle
listening duration remains an open issue, and due to the lack of any exact performance
measurements, it has not been deployed in wireless environments.

6.1.3. Analytical Discussion of Random Access Category

The aforementioned random access-based energy harvesting MAC protocols are just
a few protocols considered as the reference protocols belonging to each approach. Other
random access-based energy harvesting MAC protocols are listed in Table 7. As described
in this section, most of the protocols focus on collision management techniques, which may
increase the idle listening duration, and thus increase the network energy consumption.
Moreover [146,151], intend to improve RF-MAC in terms of energy efficiency by applying
various energy management techniques such as adaptive contention window algorithm,
energy-aware RTS/CTS. However, the ENO concept, which adjusts the performance of the
protocol to the chaotic behavior of the harvested energy, is taken into consideration only
in [146,152]. In contrast to the carrier sensing approaches [149,150], approaches reduce the
overhead. However, in both subcategories, the missing energy-related parameter among
the proposed MAC protocols is load balancing. The carrier sensing-based approaches were
mainly designed based on in-band RF technique, whereas blind access approaches are
considered out-of-band RF technique. A few of the listed MAC protocols in Table 7 are
evaluated based on real measurements, while the rest are evaluated through analytical
models and simulations. Among all the protocols, QAEE-MAC [153], QPPD-MAC [154]
and DeepSleep MAC [155] protocols fulfill most of the energy conservation parameters,
which are highlighted in this table.

Table 7. Comparison of random access energy harvesting MAC protocols.

Protocol
EH
Technique

Energy

Efficient
ENO
Consideration

Adaption
Respect
to Energy

Prioritization
Respect
to Energy

Probabilistic
Approach

Energy

Technique
Management

Application

Support
Collision
Management

Idle
Listening

Overhead
Reduction

Load
Balancing

QoS
Support

QAEE Generic 3 7 7 3 3 Adaptive CW Critical/ 3 3 7 7 3
MAC Approach Urgent Traffic

QPPD Solar Cell 3 7 3 3 3 Wake-up Hard to Reach/ 7 3 7 7 3

MAC Beacon Delay Sensitive
Application

RF-MAC In-Band 7 7 3 3 3 Adaptive CW Generic
Application 7 3 7 7 7

RF Beacon

REACH In-Band 3 7 7 3 7 Adaptive CW Real Time 3 7 7 7 7
MAC RF Application

HE-MAC In-Band 7 3 7 3 3 EDCA/ M2M Application 7 7 7 7 3
RF Adaptive CW

OER-MAC In-Band 3 3 7 3 3 On-demand Event-driven 3 7 7 7 7
RF Energy Request Application

EL-MAC Generic 3 7 3 3 3 Adaptive CW Cognitive Radio 3 7 7 7 7
Approach Networks

DeepSleep Ambient 3 7 3 3 3 Energy Aware M2M 3 3 7 7 7
Energy DeepSleep/ Application
Source Controlled Access

W2P-MAC In-Band 7 7 3 7 3 ERTS/ ECTS N/A 3 3 7 7 7

RF

CEH-MAC Generic 3 7 3 3 3 Cooperation of Healthcare 7 3 7 7 7
Approach Harvested Application

Energy and Data

Sakakibara Out-of-Band 3 7 7 7 3 Queuing N/A 3 7 7 7 3
et al. RF Mechanism

Hadzi-
Velkov Out-of-Band 7 7 7 7 3 Energy Queue/ Generic 3 7 7 7 3

et al. RF HAP Application

Choi Out-of-Band 7 7 7 3 3 HAP N/A 7 7 3 7 7
et. al RF

Harvest-
Until In-Band 7 7 7 7 3 HAP N/A 3 7 3 7 7

Access RF
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6.2. Scheduled Access

In the scheduled access category, node synchronization is one of the main issues that
have an impact on the energy consumption of the network [156]. Other energy-related
parameters that need to be taken into account for this category include end-to-end delay,
resource allocation, overhead, and interference.

6.2.1. Channelization-Based Energy Harvesting MAC Protocols

Predefined frame assignment avoids collision and makes the idle listening duration
unnecessary. However, fixed assignment methods require global time synchronization,
which increases the overhead and thus increases the network energy consumption. Among
all methods of this category, TDMA tackles overhead issues more efficiently.

One of the reference protocols in this subcategory is the Energy Harvesting TDMA
(EH-TDMA) [156], which assigns predefined frames to the nodes for data transmissions,
and controls these transmissions by sending a small frame known as a ping message.
In the EH-TDMA MAC, all nodes have the responsibility to harvest the energy whenever
possible. EH-TDMA is designed for single-hop scenarios, and improves channel utilization,
interference reduction, and is evaluated based on the simulations on the three different
radio platforms. Since the EH-TDMA mechanism does not provide an energy management
method to estimate the future energy level based on the existing level of energy, it cannot
manage the energy budget of dense networks and intermediate nodes efficiently and may
not be practical for them.

The network energy consumption can be managed through NOMA-based approaches.
In [157], the protocol dynamically defines the duration of energy transfer based on the
number of active nodes in the network, to optimize resource allocation. Since this modi-
fication does not consider the future energy level of each node, it faces a long delay due
to global time synchronization. Another NOMA-based modification of EH-TDMA MAC
protocol is proposed in [158], where the transmission power is reduced to support dense
networks. Although these protocols manage network energy consumption, they suffer
from hardware (especially receiver) and computational complexity.

6.2.2. Controlled Access-Based Energy Harvesting MAC Protocols

The proposed MAC protocols in this subcategory are primarily designed based on the
polling method rather than the token passing method.

One of the earliest energy harvesting MAC protocols in this subcategory is a Probabilis-
tic Polling mechanism (PP-MAC) [159], which is evaluated based on real measurements.
This protocol broadcasts a defined contention probability through the network. The coordi-
nator adjusts this value based on the network conditions, such as the energy harvesting
rate of each node and the size of the network, which can be changed dynamically. Al-
though PP-MAC protocol provides fairness in the network, it changes to network dynamics
very slowly, which increases the transmission delay and cannot support scenarios with
intermediates nodes, interference, and hidden terminal issue.

One solution to address these shortcomings is the method Estimated Number of
Active Neighbors (ENAN) [160], which dynamically adjusts the contention probability to
the energy harvesting rate, thus reducing the collision rate and the number of polling frames
simultaneously. In contrast to polling-based mechanisms, which face long delays due to
synchronization, token-based mechanisms reduce it by eliminating the synchronization
from the channel management procedure.

Although the channelization-based protocols require global synchronization, control
access-based mechanisms such as Probabilistic Polling and Token passing require local
synchronization, and thus they can reduce the transmission delay. However, two cru-
cial energy-related parameters, overhead and high channel utilization, are missed in the
scheduled access-based energy harvesting MAC protocols.
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6.2.3. Analytical Discussion on Scheduled Access

The aforementioned scheduled access-based energy harvesting MAC protocols are just
a few protocols that can be considered as the reference protocols belong to each approach.
Other scheduled access-based energy harvesting MAC protocols are listed in Table 8. As
described in the table, most of the proposed energy harvesting MAC protocols belong
to this category, are equipped with RF energy harvesters to prolong the lifetime of the
wireless devices. However, these protocols do not consider the ENO concept and cannot
reduce the energy consumption of the communication process. Also, they apply various
energy management techniques such as power allocation and grouping strategy to reduce
the energy consumption of the network. Some of the presented MAC protocols in Table 8
are evaluated based on the empirical measurements whereas, others perform simulations.
Among all these protocols, EH-TDMA MAC [156] and EH-MAC [160] satisfy more features
towards the MAC layer energy conservation.

Table 8. Comparison of scheduled access energy harvesting MAC protocols.

Protocol
EH
Technique

Energy

Efficient
ENO
Consideration

Adaption
Respect
to Energy

Prioritization
Respect
to Energy

Probabilistic
Approach

Energy

Technique
Management

Application

Support

Delay

Reduction

Synchronization

Required
Overhead
Reduction

High

Channel
Utilization

Interference
Consideration

EH-TDMA Ambient 3 3 3 7 3
Adaptive

Wake-up Time N/A 7 3 7 3 3

MAC Energy
Sources to Energy Level

TR-EH-TDMA In-Band 7 7 7 7 3 N/A Heterogeneous 7 7 7 7 3
MAC RF Networks

D-TDMA In-Band 7 7 7 7 3 N/A N/A 7 7 7 7 3
MAC RF

NOMA-MAC In-Band 7 7 7 7 3 N/A N/A 7 3 7 7 3
RF

NOMA-
HeTNeT In-Band 3 7 7 3 3

Sub-channel
Allocation/ Heterogeneous 7 7 7 7 3

MAC RF Power Allocation
Algorithms Networks

NOMA+TDMA In-Band 3 7 7 7 3
Grouping
Strategy/ N/A 7 3 7 7 3

MAC RF SCA Algorithm

PP-MAC Solar Cell/ 3 7 3 7 3
Contention
Probability Monitoring 3 3 3 N/A 7

Thermal Adjustment Application

MTPP-MAC Solar Cell 3 7 3 7 3 Grouping Generic 3 7 7 N/A 3
Strategy Application

EH-MAC Ambient 7 7 3 7 3
Contention
Probability Event-Driven 3 3 3 N/A 3

Energy
Sources Adjustment Application

AIMD/ENAN

V.B. Mišić In-Band 3 7 3 7 3 Wake-up/Sleep Generic 3 7 7 7 7
et al. RF Application

M.S.I.Khan In-Band 3 7 3 7 3
Queuing

Mechanism Generic 3 7 7 7 3

et al. RF Application

EDF-HEAP Ambient 7 7 3 3 3 Earliest Deadline Monitoring 7 7 3 7 7

MAC Energy
Sources First Polling Application

Fair-Polling Ambient 7 7 3 3 3
Contention
Probability Monitoring 7 7 7 3 7

MAC Energy
Sources Adjustment Application

Token-MAC In-Band 7 7 3 7 3 N/A Inventory
Management/ 3 7 7 7 7

RF Asset Tracking

6.3. Hybrid Access

In hybrid access category, due to the combination of random and scheduled access
categories, the main issues that impact the energy consumption of the network are collision
rate and node synchronization. The relevant parameters to collision management are
overhead, load balancing, QoS requirements, and grouping strategies. At the same time,
the relevant parameter to node synchronization is resource allocation. In this subsection,
we list such hybrid schemes that combine random and scheduled access.
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6.3.1. Combination of Blind Access and Channelization Subcategories

One of the earliest versions of the Dynamic Frame ALOHA (DFA) MAC protocol with
energy harvesting is introduced in [161]. In this protocol, a coordinator node initializes a
query command, which synchronizes the nodes and schedules the order of channel access
for each node. Then each node, which is equipped with an energy storage device and
a harvester, is allowed to start the data transmission procedure at an inventory round
according to the DFA mechanism. The authors highlighted that the frame size needs
to be dynamically adjusted to the energy harvesting rate and energy level of the nodes.
Moreover, the required energy of each frame depends on the reception of a query message,
acknowledgment, or transmission of a data frame. This protocol is evaluated based on
a mathematical model and intends to provide a balance between the complexity level of
implementation and the size of the network. However, this protocol suffers from high
level of energy consumption, due to the node synchronization and the increasing trend of
collision rate under high traffic load.

To alleviate energy wastage due to node synchronization, an ALOHA-based approach
is presented in [162] which defines a grouping procedure. In this protocol, instead of
individual node synchronization, the synchronization is defined for each group of nodes,
and thus the energy wastage due to this issue is decreased. Another enhancement of the
DFA MAC protocol is presented in [163]. Collision rate reduction is achieved by combining
the NOMA method with the SA method, where the nodes start transmission based on
different predetermined power transmissions. Nevertheless, addressing some energy-
related parameters such as long transmission delay, overhead reduction, load balancing
and QoS requirements still remain unsolved.

6.3.2. Combination of the Carrier Sensing and Channelization Subcategories

An early energy harvesting MAC protocol based on the combination of CSMA/CA
mechanism and TDMA method is an adaptive energy harvesting MAC protocol, which
is proposed in [164]. This protocol divides the frame into four different parts. In the first
period, the controller node sends a notification to all the nodes to prepare them for the
energy harvesting period. In the second period, only nodes that contain a frame can start
harvesting energy. Then in the third period, these nodes start to contend to access the
channel based on the CSMA/CA mechanism. In this phase, according to the energy level
of each node, a certain contending probability is assigned to them (nodes with a lower
level of energy have a higher contending probability). In the end, the successful nodes
transmit data frames according to the TDMA method. This protocol is evaluated based
on a mathematical model, which reduces the transmission delay, number of collisions
and optimizes the energy harvesting period. Hence, in this protocol, energy harvesting is
fulfilled in an out-of-band manner, no interference occurs between energy and data frame
transmissions. However, in the case of in-band energy transfer, the MAC protocol needs to
be designed in a way to avoid energy and data frame interference.

One solution to this issue is presented in [165], where an interference cancellation
technique is applied to make sure that all the nodes have sufficient energy to operate, and
utilizes an adaptive sleep duration management to provide node synchronization and
reduce the collision rate. Another method to prevent the energy and data frame interference
is the clustering approach, which is presented in [166]. For this reason, the active time of
the cluster heads is reduced to an optimal value. However, providing individual charging
time for each node, or using a clustering approach, make these protocol implementation
complex for the coordinator and they cannot meet the QoS requirements.

6.3.3. Combination of Carrier Sensing and Controlled Access Subcategories

An example of this technique is Human Energy Harvesting for WBANs (HEH-
BMAC) [47] protocol, which is evaluated based on extensive simulations and can be
applied to realistic networks. The main target of this protocol is to prioritize channel
access based on the data traffic type. Hence, the data traffic load is divided into two types,
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data with high priority and data with normal priority. The ID-Polling MAC protocol,
which provides contention-free channel access, is used for high priority transmissions, and
CSMA is used for nodes with regular priority transmissions. The HEH-BMAC dynamically
schedules the duration of each procedure based on the energy level of nodes. According to
the authors, this protocol adapts to the changes in network size and energy harvesting rate
and reduces the transmission delay. However, mathematical evaluation of the proposed
MAC protocol, QoS of the network, and introducing a smart energy-efficient algorithm
have been considered as the future work.

An early enhancement of this protocol [167] intends to reduce the collisions and move
towards a smart energy-efficient approach. For this reason, it combines a wake-up/sleep
scheduling approach and ENAN mechanism (where the coordinator node frequently
updates the polling probability), to reduce the number of missed poll frames, and thus
decreases the number of re-transmissions. However, transmission delay has not been
evaluated in this work and is considered as an open issue. Similar to HEH-BMAC, this
protocol has not been designed for ENO conditions, and supporting QoS and load balancing
as energy-related parameters remain open challenges.

6.3.4. Switching from Random Access to Scheduled Access Categories

The Receiver-Initiated Harvesting-aware MAC (RIH-MAC) protocol [168] adopts a
fixed assignment reservation method in direct communications, where a controller sched-
ules the frame transmission procedure according to the information of nodes. In contrast, in
the absence of the controller node (ad hoc), it operates based on the CSMA/CA mechanism.
In both cases, the transmission procedure is started when the receiver has harvested enough
energy to send the Ready to Receive (RTR) message to the nodes. Then, these nodes are
only allowed to send their data frames after the reception of the RTR message. The RIH
protocol adapts to the size of the network and reduces the number of collisions. Hence,
it saves some amount of energy budget of the network. However, it still suffers from the
hidden terminal issue and long transmission delay.

6.3.5. Duty-Cycled-Based Energy Harvesting MAC Protocols

The reference MAC protocols based on this approach are two dynamic wake-up/sleep
scheduling protocols known as Duty-cycle Scheduling based on Residual energy (DSR) and
Duty-cycle Scheduling based on Prospective increase in residual energy (DSP) [169]. The
DSR protocol reduces the delay duration due to the sleep mode, while the DSP protocol
adjusts the duration of wake-up/sleep mode to the estimation of the increasing amount of
the residual energy based on the available harvested energy (it reduces the sleep latency).
These two protocols are evaluated based on extensive simulations utilizing Network
Simulator 2 (ns-2).

One of the modifications of these two protocols, which intends to reduce the energy
wastage during the idle listening mode, is proposed in [170]. ODMAC protocol adjusts
the wake-up/sleep duration to the current residual energy of each node and saves the
energy budget of the network. However, it faces two unsolved issues, it does not apply any
mechanism to control frame re-transmissions and it suffers from the hidden node problem.
To address the energy wastage due to the re-transmission an exponential decision MAC is
introduced in [171], where the wake-up/sleep scheduling is defined based on the future
residual energy of each node (intelligent scheduling). Although this protocol outperforms
ODMAC in terms of energy consumption, it does not point to the hidden node issue and its
computational complexity costs a longer transmission delay. A more recent enhancement
of DSR and DSP protocols is proposed in [172], where not only wake-up/sleep scheduling,
but also the contention window, is adjusted to the amount of harvested energy and energy
harvesting rate. This protocol outperforms ODMAC and ERI-MAC in terms of network
energy consumption by reducing the level of contention. However, the performance of this
protocol has not been evaluated under dense networks condition.
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A realistic evaluation is performed in [173] based on the Synchronized Wake-up
interval MAC (SyWiM) protocol. This protocol benefits from a solar cell and is designed
based on the Receiver Initiated Cycled Receiver (RICER) MAC protocol. It intends to
improve the QoS, reduce the delay, load balancing, and total energy consumption of the
network by considering the ENO condition. According to this protocol, nodes stay in a
harvesting or a non-harvesting period. The energy consumption of the non-harvesting
period is reduced by dynamic adaptation of the wake-up/sleep interval to the residual
energy of the node, and in the harvesting period, this interval adapts to the harvested
energy. The SyWiM protocol is validated on a real implementation; however, by increasing
the number of nodes, the performance of the network may be affected. In duty-cycled-based
energy harvesting MAC protocols, balancing the trade-off between energy conservation
and transmission delay still is a challenge. Moreover, introducing new methods of wake-
up/sleep adjustment to the features of the battery, such as available energy in a battery, its
capacity of loss, and charging profile, remain open issues.

There is two main differences between duty-cycled-based energy harvesting MAC
protocols and other hybrid-based ones. First of all, thanks to the duty-cycle techniques,
these protocols balance the trade-off between collision rate and idle listening duration. The
second difference relates to their capability to support QoS.

6.3.6. Analytical Discussion on Hybrid Access Category

The aforementioned hybrid access-based energy harvesting MAC protocols are just a
few that can be considered as the fundamental protocols in this category. Other proposed
protocols, which are listed in Table 9, mainly reduce the energy consumption of the network
by applying energy management techniques such as adaptive wake-up/sleep scheduling,
probabilistic contention, and collision management. However, they still do not consider
the ENO concept. Due to the combination of the random and the scheduled access,
the deployed energy harvesting techniques in the hybrid access protocols can be adapted to
a random access approach or a scheduled one. Also, these protocols support a wide variety
of application types from healthcare applications (HEH-BMAC [47]) to M2M applications
(DFSA and EH-RDFSA [174,175]). Among all these protocols, the AH-MAC [166] and
SyWiM [173] are two protocols, which support most of the listed parameters and have been
evaluated through a real test-bed.

6.4. Cross-Layer

The energy-related parameters in this category are taken from the lower layer (power
transmission) or upper layer (optimal path selection) of the MAC layer in the IoT protocol
stack, whose information helps the MAC layer to make an optimal decision. Also, other
parameters, such as grouping strategy and the number of connected layers, can express
useful information regarding the complexity of the implementation of the proposed ap-
proach. In the following subsection, existing literature on other protocol layers that assist
the MAC in improving the energy efficiency are explained.

6.4.1. Interaction between the Physical Layer and MAC Layer

The presented MAC protocol in [176] intends to combine information of the phys-
ical layer with the MAC layer performance. It dynamically adjusts the duration of the
wake-up/sleep scheduling and the transmission power to the harvested energy level and
the quality of the link. These adjustments are jointly made based on the Exponentially
Weighted Moving-Average (EWMA) algorithm and the last Received Signal Strength Indi-
cator (RSSI). This cross-layer mechanism deploys a Transmitter Initiated Cycled Receiver
MAC (TICER) protocol to manage the contention level of the channel. The proposed proto-
col is implemented in the PowWow [177] platform, with a solar cell and a super capacitor
to save the harvested energy. This protocol is evaluated based on a realistic network and
provides energy efficiency in a real IoT system.
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6.4.2. Interaction between the MAC Layer and Network Layer

The Opportunistic Wake-Up MAC (OPWUM) [178] protocol which belongs to this
subcategory, benefits from the information of the routing table and hence, reduces the
energy consumption of the transmissions. This protocol operates based on the CSMA/CA
mechanism and selects the receiver node among several receivers in an opportunistic
manner (opportunistic forwarding). The transmission procedure is started when a node
sends the RTS frame to all the potential receivers. Then, the potential receivers adjust their
back-off timers to the state of a specific metric, which is defined according to the application
requirements. For instance, one metric can be the level of residual energy. In this case,
the receiver nodes with a higher level of residual energy have a higher priority to respond
to the node. The OPWUM protocol is evaluated based on a mathematical model and then
is implemented in GreenCastalia. This protocol reduces the level of contention and total
energy consumption of the network. However, other parameters, such as transmission
delay and network size, are not considered.

6.4.3. Interaction between the Physical, MAC, and Network Layers

The cross-layer approach, which is presented in [67], aims to balance the trade-off
between energy consumption and the duration of the wake-up/sleep scheduling approach.
This protocol deploys a geographic routing protocol known as Two-Phase Geographic
Greedy Forwarding (TPGFPlus) at the network layer, and it adjusts the transmission
power to the residual energy level at the physical layer. The MAC layer of this method
operates based on the Connected K-Neighbourhood (CKN) sleep scheduling algorithm.
This algorithm periodically adjusts the wake-up/sleep duration to the residual energy level
of the nodes. Each node decides to stay in sleep mode or active mode based on the collected
information from the two-hop neighbor locations, energy harvesting rate, residual energy,
and the energy consumption of the network. This dynamic decision reduces the number
of collision rate; however, different energy-related parameters such as load balancing,
overhead reduction are not addressed in this protocol.

The Cross-Layer MAC Energy Harvesting Sensor Node (CL_EHSN) [179] is another
protocol that belongs to this group. In the CL_EHSN protocol, first of all, a path is
established between two nodes with the help of routing protocols. Then, the MAC protocol
based on this information decides about the next-hop nodes. The fundamental of the MAC
protocol is based on the four-way handshaking CSMA/CA mechanism and is responsible
for determining the charging and active duration of the node. According to the residual
energy level of each node, the node decides whether to start the transmission procedure or
to start harvesting energy. For this purpose, the node sets its antenna at Transmit/Receive
(Tx/Rx) mode and then switches its antenna to energy harvesting mode for the rest of the
time. The CL_EHSN provides a flexible and energy-efficient discovery path method. Also,
in the case of the dense network, the CL_EHSN outperforms conventional protocols in
terms of long transmission delay issues.

6.4.4. Analytical Discussion on Cross-Layer Category

Table 10 summarises the characteristics of energy harvesting MAC protocols based
on the cross-layer approach. The main target of these protocols is to satisfy the ENO
concept and then evaluates them based on a real implementation. These protocols mostly
benefit from the adaptive wake-up/sleep scheduling technique. Among all the mentioned
protocols in Table 10, the CL_EHSN MAC addresses most of the parameters that need to
be considered towards enabling energy harvesting techniques in wireless communication
systems. Since hybrid access and cross-layer approaches are designed based on the com-
bination and integration of different techniques and layers of the network model, these
approaches may increase the computational process of the protocol which requires further
optimizations. Although the Low Energy Self-Organizing Protocol (LESOP-MAC) [54]
does not consider an energy harvesting technique, it makes the integration of the energy
harvesting techniques possible.
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Table 9. Comparison of hybrid access energy harvesting MAC protocols.

Protocol
EH
Technique

Energy

Efficient
ENO
Consideration

Adaption
Respect
to Energy

Prioritization
Respect
to Energy

Probabilistic
Approach

Energy

Technique
Management

Application

Support
Collision
Management

Overhead
Reduction

Load
Balancing

QoS
Support

Efficient
Resource
Allocation

Node
Grouping

Packet
Fragmentation

Synchronization

Required

DFA Ambient 7 7 3 7 3 Backlog Energy
Constrained 3 7 7 7 3 7 7 3

Energy
Sources

Estimation
Algorithm IoT Systems

FA Generic 7 7 3 7 3 Backlog Generic 7 7 7 7 3 7 7 3

Approach Estimation
Algorithm Application

EG-DFA Ambient 3 7 3 7 3 Backlog Critical/ 3 7 7 7 7 3 7 7
Energy
Sources

Estimation
Algorithm

Urgent
Application

HE-MAC Generic 7 7 3 7 3 N/A Generic 3 7 7 7 3 7 7 7
Approach Application

FSA Solar Panel 3 3 3 7 3 EWMA/ Automatic
Meter 7 7 7 7 7 7 7 3

Wake-
up/Sleep

Reading
Application

DFSA Ambient 3 7 3 3 3
Markov Chain

Model M2M 3 7 7 7 7 7 7 3

Energy
Sources Application

EH-RDFSA Generic 3 7 3 7 3
Markov Chain

Model M2M 3 7 7 7 3 7 3 7

Approaches Application

AT-MAC Generic 7 3 3 7 3 N/A Healthcare 3 N/A N/A N/A 3 7 7 3
Approach Monitoring

PLoRa Solar Cell 3 7 7 7 3 ON-OFF Various IoT 3 7 N/A N/A 7 N/A 7 3

and RF Signals Keying
Technique Application

SAN In-Band 3 7 7 7 3 SIC/JD NGIoT 3 7 7 7 3 3 7 3
RF Application

Y.Liu Ambient 3 7 3 3 3 N/A M2M 3 7 7 7 7 7 7 7

et al. Energy
Sources Application

FarMAC In-Bnad 3 7 3 3 3
Wake-

up/Sleep
Data

Collection 3 7 7 7 7 3 7 3

RF Application

AH-MAC Solar Panel 3 7 3 7 3
Wake-

up/Sleep
Low-Rate

Monitoring 3 3 3 7 3 3 7 3

Modified Application/Event-

Synchronization Driven Alarm

HEH-BMAC Human Body 3 7 3 3 3
Probabilistic
Contention Healthcare 3 7 7 N/A 3 7 7 7

Energy
Sources Application

RIH-MAC Piezoelectric 7 7 3 7 3 RTR Packet/ Nano-Scale 3 7 7 7 7 7 7 3
Coordinated

Energy Monitoring

Consumption
Schedule

H-MAC Solar Cell 3 7 3 3 3
Wake-

up/Sleep Heterogeneous 3 7 7 7 3 7 7 7

Networks
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Table 9. Cont.

Protocol
EH
Technique

Energy

Efficient
ENO
Consideration

Adaption
Respect
to Energy

Prioritization
Respect
to Energy

Probabilistic
Approach

Energy

Technique
Management

Application

Support
Collision
Management

Overhead
Reduction

Load
Balancing

QoS
Support

Efficient
Resource
Allocation

Node
Grouping

Packet
Fragmentation

Synchronization

Required

DSR-MAC Solar Panel 7 7 3 7 3
Wake-up/

Sleep Generic 3 N/A N/A 3 7 7 N/A 7

DSP-MAC Scheduling Application

OD-MAC Ambient 7 3 3 7 3 Opportunistic Low-Delay/ 3 7 3 7 7 3 N/A 3

Energy Forwarding Delay
Sensitive

Sources Application

A-MAC Ambient 7 3 3 7 3 Opportunistic Delay-
Sensitive 3 7 3 7 7 7 N/A 7

Energy Forwarding Application
Sources

ERI-MAC Ambient 3 3 3 3 7 Queuing Realistic 3 3 7 3 3 7 N/A 3
Energy Mechanism Traffic Model
Sources

RF-AASP In-Band 3 7 3 3 3
Adaptive

CW/Adaptive
Application

with 3 7 7 3 3 7 N/A 3

RF Beacon Order Variable Traffic
Superframe

Order Conditions

EA-MAC In-Band 3 7 3 7 3 Adaptive Environmental 3 7 7 7 7 3 7 7
RF Contention Monitoring

Algorithm

SEHEE Solar Cell 3 7 3 7 3
Slotted

Preamble Habitat 3 7 7 7 7 7 N/A 7

MAC Technique Monitoring
for Wake-up/

Sleep
Scheduling

PS-EHWSN Generic 3 7 3 3 3
Determining

Next N/A 3 7 7 7 N/A 7 N/A 7

MAC Approach Period Sleep
Period/ LPL

EEM-EHWSN Generic 3 3 3 7 3
Wake-up/

Sleep
Application

with 3 7 3 7 N/A 7 7 7

MAC Approach Scheduling Periodic Traffic

WURTICER Generic 3 3 3 7 7
Wake-

up/Sleep Monitoring 7 7 7 3 N/A 7 N/A 7

MAC Approach Scheduling Application

LEB-MAC Solar Cell 3 7 3 3 3 Fuzzy Logic N/A 3 7 3 3 3 3 3 7

ED-MAC Generic 3 7 3 7 3 ED-CR/ N/A 3 7 7 7 7 7 N/A 7
Approach ED-PIR

SyWiM Solar Cell 3 3 3 7 3
Wake-up
Variation Monitoring N/A 3 3 3 3 3 N/A 3

Reduction
Power Application

Management
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Table 10. Comparison of cross-layer energy harvesting MAC protocols.

Protocol
EH
Technique

Energy

Efficient
ENO
Consideration

Adaption
Respect
to Energy

Prioritization
Respect
to Energy

Probabilistic
Approach

Energy

Technique
Management

Application

Support

Optimal

Path
Selection

Adjusted

Transmission
Power

Number of
Connected
Layers

Node
Grouping

Castagnetti Solar Cell 3 3 3 7 7 Wake-up/Sleep Monitoring N/A 3 2 7
et al. Application

OPWUM Solar Panel 3 7 3 7 3 Wake-up/Sleep/ Monitoring 3 7 2 7
Timer-based
Contention Application

TPGFPlus Solar Cell 7 7 7 7 7 Wake-up/Sleep Generic 3 3 3 3
Application

CL_EHSN In-Band 3 3 3 7 3 Wake-up/Sleep Generic 3 3 3 3
RF /Harvesting Time Application

LESOP-
MAC N/A 3 N/A 3 7 3 Wake-up/Sleep Surveillance N/A 7 2 7

Application

7. Open Issues and Research Challenges for Energy Harvesting MAC Protocols within
IoT Systems

According to Table 5, energy harvesters provide a wide range of output power from
3 nW to 100 mW, which is produced by an AESC and a solar cell, respectively. Moreover,
energy models, which are explained in Section 4 show that the power consumption of
wireless communication technologies is much higher than the scavenged energy through
the well-known energy harvesters listed in Table 5. For instance, according to Table 6, a
radio frequency antenna which provides a power density of at most 0.3 mW/cm2, cannot
support IEEE 802.11ah frame transmission in different applications such as agricultural
monitoring (mean current consumption 0.12 mA) or smart metering (mean current con-
sumption 0.045 mA). Since IoT systems include a large number of devices with limited
size, the energy insufficiency which lies between the energy harvester device and wireless
communication device power consumption becomes worse.

In IEEE 802.11, around 80% of the total energy budget of the whole network is wasted
by the MAC layer anomalies (collision frame, idle listening, overhearing, overhead) [180].
Thus, as mentioned in Section 6, to make the energy harvesters applicable for integrating
with the existing wireless communication technologies and alleviate the energy wastage
of MAC layer anomalies, different enhancements or modifications of the currentenergy-
efficient MAC approaches in the literature are proposed. A comparison of the common
feature of the energy harvesting MAC mechanisms, which are explained in Section 6 is
summarized in Figure 7. From this figure, it can be perceived that among the selected
energy harvesting MAC protocols, cross-layer mechanisms propose the most energy-
efficient methods by considering energy level adaptation. In the random access category,
57% of the protocols are energy-efficient, whereas in the hybrid access category, this value
increases to 74%, and 90% of these hybrid protocols adapt to the energy level of the node.
In contrast to the random and the scheduled access categories that allocated 14% and 67% of
the protocols to ENO condition, in the hybrid access category 32% of the protocols consider
this condition. Also, according to the analysis results (cf. Figure 7), 23% of the existing
energy harvesting MAC protocols in the literature consider the ENO condition, which is
the key parameter in IoT systems equipped with energy harvesters. To address energy
efficiency in energy harvesting MAC protocol designs, 66% of related works have applied
different energy optimization methods and energy management techniques. Although 90%
of the MAC protocol designs have adopted a probabilistic approach, 73% of them schedule
the node transmissions based on the available level of the energy in the node, and only
34% prioritize the transmission of the nodes with a lower level of energy. Figures 6 and 7
convey that, since only a reduced set of features have been considered in the design of
the proposed energy harvesting MAC protocols, there still exists room for improvement
in designing energy harvesting MAC protocols. Also, they show that reflecting all the
essential considerations to enable energy harvesting techniques at the MAC layer remains a
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challenging issue, specifically in hybrid access and cross-layer categories that can optimize
the performance of MAC layer operations.
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Figure 6. Category-based comparison of energy-related parameters in energy harvesting
MAC protocols.
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Figure 7. General comparison of energy-related parameters in energy harvesting MAC protocols.

In the first part of this section, we will list the energy wastage at each level of IoT
systems, and then we will focus on the role of MAC layer operations regarding energy
wastage. In the second part of this section, we will expand the existing challenges that can
lead to future research in these topics.

7.1. Essential Considerations to Make MAC Protocols Applicable for Energy Harvesting
Techniques

To enable energy harvesting techniques at the MAC layer within the communication
level of IoT systems, different challenging issues need to be considered. The most relevant
considerations are described next.

7.1.1. Energy Optimization at Different Levels of IoT Systems Architecture

IoT systems are defined by academia and industry based on three levels known as,
management level, communication level, and end device level. Our focus in this paper is
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the optimization at the communication level. The most relevant approaches in the literature
to achieve this goal are described next.

1. Optimization at management level
The management level in IoT systems architecture refers to data centers and cloud
computing. Estimations show that around 1% of the worldwide energy budget is
spent in data centers [181], thus different works in the literature [182–184] have been
oriented towards optimizing the energy consumption at the management level. Along
with these methods, in LoRa and Sigfox proprietary standards duty-cycle regulations,
which are defined at the management level, can manage the energy consumption of
the network by setting the duty-cycle at 0.1% and 1.0% duty cycle per day based on
the channel (in Europe). However, since the MAC layer operations do not have a
direct connection with this level, the energy optimization at the management level is
out of the scope of our study.

2. Optimization at communication level
At the communication level of the IoT system architecture, the energy consumption
of the networks (including those equipped with energy harvesters) can be optimized
through different approaches. One approach is the cross-layer framework design [185],
which may exclude network and transport layers from the IoT protocol stack to
avoid operations of these two layers, or use the information from the network and
physical layers to enhance the performance of the MAC layer operations. However,
merging different layers of IoT protocol stack is a challenging issue and requires some
predefined standardization [185].
The second approach refers to the optimized energy consumption of the network by se-
lecting the best placement of the gateways or APs [186]. In this approach, each gateway
can create a cluster to address specific constraints such as connectivity coverage range,
shortest path selection, transmission power, and resource allocation. This grouping
strategy could help the MAC layer to optimize the transmission scheduling according
to the requirements of each group. Although grouping strategy can be a challenging
issue in terms of prediction models, it may reduce the number of required sensors to
fulfill a measurement.
The third approach refers to various PSMs that are deployed in different wireless
communication technologies. These methods mainly send the node to the sleep mode
state to save energy, however changing the sleep mode to wake-up mode several
times has some drawbacks such as long delay. For this reason, there has been many
studies in the literature to balance the trade-off between PSMs and other KPIs of the
network [155], however, this issue still requires more attention.
The fourth approach refers to the application layer IoT protocols like Constrained
Application Protocol (CoAP) and Message Queue Telemetry Transport (MQTT).
Since these protocols are considered lightweight protocols with small header sizes,
they reduce the energy consumption of the network. However, due to their lack of
direct impact on the MAC layer, a study on them is out of the scope of this study.

3. Optimization at sensing and perception level
This level mainly includes sensors, actuators and edge devices, which interact with the
environment. For this reason, the optimization methods are designed for processor,
and wireless transmitters. For instance, one approach is WUR, which is designed
based on the communication range and other characteristics of the networks, however
it suffers from wake-up beacon collisions. For this reason, designing an energy-
efficient WUR is a challenging issue, which has been addressed in literature [24] and
but still requires more research.
The other approach refers to optimizing the central unit processing-memory related
power consumption in IoT end devices. This approach is more challenging for non-
real time applications, which require a prediction of the deadline, arrival time, and
workload of each task beforehand. For instance [187] proposes a dynamic voltage
and frequency scaling method, which can adapt to the nature of the non-real time
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applications by using a machine learning algorithm. The authors demonstrated
that their proposed algorithm reduces 42% of the Central Processing Unit-memory
(CPU-memory) related energy consumption.
Besides, in the CL_EHSN cross-layer mechanism [179], which is explained in Section 6,
the processor-memory related power consumption can be reduced through the energy-
aware MAC, which makes the decisions based on the status of the battery, and esti-
mating the charging time.
The implementation complexity of the MAC protocol, or its algorithms, is another
issue that consumes some parts of the network energy consumption. Since complex
algorithms require more computation time, they may consume more energy. Never-
theless, the optimization methods complexity should be suitable to the requirements
of each level. For instance, channel access complexity should be managed by the
central units or APs and should not move to the sensing level.

7.1.2. Energy Optimization for Different MAC Anomalies

According to Section 6, IoT systems benefit from different channel access mechanisms.
However, each mechanism has its own drawbacks. For instance, in random-based access
mechanisms, energy is wasted due to the re-transmissions, and extra overhead exchanging
frames. In scheduled-based access mechanisms, the energy wastage is caused due to the
node synchronization or idle slots. The most relevant reasons why MAC protocols in
wireless communication devices waste energy are detailed next.

1. Collision frame
In Random-based access mechanisms, collision frame occurs when two or more nodes
try to send data frames over the shared channel simultaneously. The collision causes
data frame discarding, which requires a re-transmission. Thus, due to the frame
re-transmissions, the energy consumption increases. The authors in [188] showed
that in the DFSA mechanism the amount of wasted energy due to the collisions
varies from 0.1 to 1000 mJ for different network densities. To alleviate this issue,
different approaches such as NOMA [158,163] have been proposed, however, still
more researches are required to reduce collision rate and conserve energy.

2. Idle listening
Although the time listening to the shared medium and waiting to start the frame trans-
mission controls the collision rate, it causes extra energy consumption specifically
in random access and hybrid access categories. According to the literature [189], be-
tween 80–90% of the energy wastage of data transmission procedure in the distributed
mechanisms is related to the idle listening duration. The authors in [155,171,188,190]
showed that depending on the network density and mechanism’s constraints, energy
wastage during idle listening can be varied from 1 mJ to 1 J. Although to balance the
trade-off between the idle listening duration and collision rate, different researches
have been done [191], finding an optimal value for this duration still remains an
open challenge. This issue in the context of duty-cycled mechanisms has a different
definition. Based on the data frame transmission in duty-cycled mechanisms, some
amount of energy can be wasted, due to idle listening mode. This means a receiver
node stays in idle listening mode and waits for receiving a data frame, while no data
frame has been sent by the senders.

3. Overhead
Although control frames do not contain any data, they are necessary for communi-
cation management. In random access and controlled access approaches, different
QoS requirements, control messages, and long headers within data frames consume
extra energy during the transmission procedure. The authors in [192] showed that
the energy consumption of the overhead control packets in IEEE 802.15.4 varies
from 0.1 to 2 J based on the network density. For these reasons, the overhead re-
duction issue has been attracting researcher’s attention in recent years, and some
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solutions such as frame concatenating (superframes) have been proposed to alleviate
the overhead issue.

4. Overhearing
In the case of a dense network, overhearing (i.e., receiving data frames from other
transmissions) intensifies and increases the energy consumption of the network. The
authors in [180] proposed a decomposition of energy consumption in IEEE 802.11.
Since overhearing depends on the size of the network, it changes from 0.01 to 0.11 mJ.
According to Section 6 this issue has received less attention rather than collision rate
and overhead issues.

5. Hidden terminal
In random-based access mechanisms, a network may waste energy if two nodes start
a transmission at about the same time, but are out of range (hidden) of each other.
Based on the number of the hidden nodes, the amount of energy wastage may vary
from 1 to 4.3 J [193]. This challenging issue can be reduced through the RTS/CTS
mechanism, or even by increasing the power transmission. These two solutions
cannot be considered as energy-efficient approaches. For this reason, it is necessary to
address this issue in a more energy-efficient manner.

6. Node synchronization
Although node synchronization approach provides a collision-free data transmission,
it is considered the main energy wastage of the channelization MAC protocols [194].
The reason for high energy consumption in this approach is that synchronization
requires frequent executions at each node with a defined duration [156]. The amount
of wasted energy varies depending on the execution frequency and duration of the
synchronization at each node.

7. Unused slots stay idle
Another issue which causes energy wastage in scheduled-based access mechanisms is
the predefined frame slots [156]. Since the specific slot (time/frequency /code/power)
is allocated to each node, this slot cannot be used by other nodes to transmit data
frames. For this reason, nodes without any data frame to send waste the channel
resources (e.g., bandwidth) and energy. The amount of energy wastage may vary
based on frame size and network density.

8. Fixed slot-frame length
Scheduled-based access mechanisms having a fixed slot-frame size, may not have
a successful energy-efficient transmission depending on the data frames size. For
instance, a long data frame may need to be fragmented to be successfully transmitted.
Since the fragmented part of the frame needs additional overhead, it wastes the energy
of the network. The authors in [195] showed that in the LPWAN, the transmission
energy consumption increases with the number of fragmented frames.

9. Adaptive polling interval to the network load
This issue reflects the impact of the duration between two successive poll phases in
the Polling access method. Although, by increasing the time interval between two poll
periods, the number of polls is decreased, and thus the network energy consumption
is saved, having long time intervals between these two polling phases increases the
energy wastage of the network. Hence, although this issue has been addressed in
some researches [37,196,197], finding an equilibrium time interval in polling MAC
protocols remains a critical issue.

10. Token pass timing
In MAC protocols which operate based on the token passing method, the controller
node allocates a time interval for passing the token frame to all nodes. During this
time interval, no data frame transmission is allowed, and thus, this duration causes
energy wastage. Moreover, as the number of network nodes is increased, more energy
is wasted due to longer time duration.
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7.1.3. Application Diversity

As mentioned in Section 1, IoT systems include a wide range of applications from
healthcare and smart cities to industrial automation applications. Nevertheless, each of
them requires a different level of KPIs. For instance, healthcare applications require
communications with a high level of reliability, availability, and low latency in a small
service dimension area with a specific data rate value. Whereas agricultural monitoring
must guarantee QoS requirements such as high latency communications, wider service
dimension area and lower data rate compared to healthcare applications. Also the reliability
in these applications is not as crucial as healthcare applications. The available energy
harvesting MAC protocols only focus on one or two KPIs and intend to enhance them
for certain applications with a specific range of data rates. Moreover, due to the energy
shortage, burstiness of traffic, and lack of synchronization in the network, some real
applications may operate based on the new concept of intermittent computing [198].
To specifically address the requirement of intermittent computing in terms of energy
consumption, it is necessary to balance the trade-off between these KPIs in the design
enhancement of an energy harvesting MAC protocol. The compatibility of these MAC
protocols with the diversity of the IoT applications still is a challenging issue.

7.1.4. Adaptation to the Network Conditions

The performance of a wireless network mainly depends on the application type,
dynamics of the deploying environment, channel, and MAC layer conditions. These aspects
specify the required traffic rate, network density and topology (insertion/removal of the
network nodes), the propagation loss, node prioritization, noise interference, channel
resource utilization, transmission range, within other parameters [166]. To enhance the
design of the MAC protocol, all these parameters need to be taken into consideration. For
example, in contrast to the scenarios based on star typologies, the network conditions in
multi-hop scenarios dynamically change, and thus, some MAC protocol mechanisms such
as channelization-based mechanisms are not suitable for them [160,173]. Another example
considers mobility management of the node when a node moves from a network domain
with some specific conditions, to another one, and force the network to redefine all its
parameters. In this case, the MAC protocol needs to adapt its operation to the new network
conditions [194].

7.1.5. Energy Prediction Algorithms

According to Tables 7–10, some of the proposed energy harvesting MAC protocols
deploy prediction algorithms such as EWMA, Weather Conditioned Moving Average
(WCMA), and Artificial Intelligence (AI) [199] to predict the required amount of energy of
the next transmissions, energy harvesting rate, satisfy ENO, and make the unpredictable
behavior of the harvested energy sufficient for protocol operations [200]. For instance,
Q-learning and self-learning algorithms are deployed in [201,202] respectively, to achieve
optimal approach for energy-efficient communications. It is worth mentioning that to
make the network perform in an optimal manner, different energy prediction algorithms
depend on the various aspects and requirements of the network, need to be applied at all
levels of the IoT architecture. Since machine learning or prediction algorithms require a
considerable amount of computational resources, implementing them for dense network
scenarios can be complex, challenging, and requires further research.

7.1.6. Validation of the Proposed Energy Harvesting MAC Protocols

In Section 6, we observed that most of the proposed MAC protocols are designed
based on analytical models. Also, some works are validated through the use of simulations.
However, the simulators which are used in these works are mainly custom-based simulators
with ideal conditions, hard to compare or reproduce and may not provide reliable results.
In contrast to custom-based simulators, packet level simulators such as NS-3, Optimized
Network Engineering Tools in C++ (OPNET++), and Objective Modular Network Testbed
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in C++ (OMNeT++) are capable of modeling the general structure of the networks such
as channel condition, physical, MAC and application layers and imitating the real world
network conditions. Other than analytical models and simulation approaches, a few of
these works extend the validation of their proposed models to the hardware level and
test-bed. For instance, the authors in [203] validated their proposed model with the help of
the Field Programmable Gate Array (FPGA) platform, solar and RF energy harvesters. Thus
a combination of test-beds,(which consider interaction of different levels and components
of the real systems to study the behaviour of the whole system), and simulations based on
the packet level simulator for validating the energy harvesting MAC protocols, would be a
proper method of validation.

7.1.7. Acceptability of the Design of the Proposed Energy Harvesting MAC Protocols

Plenty of novel energy harvesting MAC protocols have been proposed in the literature.
However, those protocols closer to already existing standards have more opportunity to be
accepted in the industry. For instance, DeepSleep, HE-MAC, and W2P-MAC, protocols are
designed based on the IEEE 802.11 standard, and AH-MAC and RF-AASP MAC protocols
are designed based on the IEEE 802.15.4 standard. However other novel MAC protocol
definitions require changes on the node behaviour, frame exchanges, and complexity of
network, which require strong redesigns of existing standards. The reluctance to deploy
them may also lie on the backward compatibility of the proposed MAC protocols with
existing wireless devices.

7.2. Open Research Challenges

Supporting energy harvesting at MAC layer in currently available wireless technolo-
gies can be a promising solution to the energy shortage of IoT end devices. Nevertheless, it
may raise new challenges and issues at different levels of IoT systems. In this subsection
some of the research challenges that still remain as open issues are highlighted.

1. Radio Resource Management (RRM)
Radio level management plays a critical role in efficiently scheduling and controlling
different radio network parameters which have an indirect impact on the MAC layer
operations, and can improve some of the MAC anomalies. RRM can be performed
statically to schedule parameters such as frequency and channel allocation, antenna
heights, and directions, modulation and channel coding, static handover and energy
level of the nodes. Our analysis shows, although different proposed MAC protocols
in the literature dynamically adjust the power control level to the data rate [204] or
directional antenna [205], they do not enable the integration of energy harvesting
with the MAC layer of IoT systems. Thus, presenting RRM algorithms to make
the operation of the energy harvesting MAC protocols more efficient would be an
attractive research direction (e.g., cross layer approaches).

2. Scalability to dense networks
Since IoT systems may include a large amount of devices, optimal and scalable net-
work deployment for these systems is required. This means that, by expanding the
size of the network, the MAC protocol must keep the network performance at a
stable level and satisfy the fairness and QoS among the network. One approach,
which addresses the requirements of a dense network is the massive Machine-Type
Communication (mMTC). This approach focuses on 5G and Beyond 5G (B5G) tech-
nologies and intends to provide reliable and efficient communications while reducing
the energy consumption of the network [206]. Although this approach provides the
possibility of energy harvesting integration with IoT systems, due to the low level of
transmit power, energy transfer (which is one of the methods of energy harvesting
technologies) in massive communications with long-distance is not efficient. Accord-
ing to the existing literature that has been studied in this paper, although different
assumptions have been taken into consideration to simulate the performance of an
energy harvesting MAC protocol in a dense network, optimal deployment of the
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nodes (which is an important issue for nodes equipped with energy harvester) and
network scalability, has not been studied at the same time.

3. Heterogeneity among IoT systems
In IoT applications such as smart cities, devices may operate based on different
technologies and protocols with various constraints and characteristics. In contrast
to homogeneous networks, heterogeneous networks face new challenges, such as
the coexistence of the technologies [207]. The coexistence issue arises when two or
more technologies intend to access the same radio frequency band to complete their
communication process. Since coexistence can cause interference in communications,
heterogeneous networks are more likely to waste energy [208]. Rather than the
interference issue, other factors, such as the network structure complexity and lack of
proper resource management, may cause energy waste in heterogeneous networks.
Although, one solution to conserve the energy in these networks without degrading
the network performance, is to define a universal ENO value for the network, it may
be a challenging issue and remains an open research direction.

4. Interoperability among IoT devices
Different applications that belong to an IoT system require various radio interfaces,
network structures, and protocols. This diversity among two or more networks which
aim to cooperate at different layers is known as interoperablilty and becomes an issue
for IoT systems. From MAC layer perspective, since the energy harvesting MAC
protocols are responsible for rescheduling the transmissions, timings, and parameters
related to the energy level, interoperability may increase the noise, frame loss, resource
utilization and energy wastage in the network. Thus, these protocols need to take
into account the effect of interoperability, where the standardizing the interactions
between networks can lead to new research directions.

5. Towards batteryless networks with intermittent operations
In batteryless systems, the required energy to keep the device powered, is provided
through energy harvesters. However, due to the unpredictable behavior of energy
harvesters, the system may face failure. This problem, which is also known as intermit-
tent system problem, faces various challenges at different levels of the network. Since
the intermittent networks cannot operate based on the traditional communication
protocols, they require modifications and adjustments at communication coordination
and scheduling based on the intermittent nature of the network. At this level, a robust
MAC protocol and network topology are needed to provide energy-aware protocols
and satisfy the requirement of the intermittent systems. Although researchers have
been attempting to address these challenges, defining a standardization at each level
of this system establishes new research directions.

6. Achieving energy efficiency in fog computing
This concept refers to moving an enormous amount of computational data operations,
management, and storage from data centers and core networks to the communication
level of the IoT, where the central units (gateways and APs) are located, to reduce the
computational workload of the data centers [209]. Since big data parallel processing
which is the key operation of data centers, is a power hungry operation, artificial
intelligence approaches are introduced to alleviate the energy consumption of this
process. For instance, machine learning algorithms which are known as artificial
intelligence approaches use the information of the end devices and then manage the
network resources by adapting the MAC layer (e.g., frame size adjustment) of the
central units to the behavior of end devices. Thus, artificial intelligence approaches in
Fog computing open new research directions in the energy-efficient IoT paradigm.

7. Hybrid approaches for energy harvesters
Since the energy harvesters that keep IoT systems powered have different harvesting
rate, to enable the energy harvesting techniques at the MAC layer, the operations at
this layer need to be adjusted to the harvesting rate. The harvesting rate depends on
the energy harvester type, environmental conditions and network topology changes.
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To tackle the dependency of the harvesting rates on the environmental conditions,
network topology changes, and to achieve higher output power, some researchers
have intended to integrate different energy harvesters. However, the design of hybrid
energy harvester may introduce new challenges. These hybrid harvesters may harvest
more energy than the system needs which is wasted through the energy leakage in the
energy storage devices. To reduce the extra amount of harvested energy, the energy
management needs to match the harvested energy with the energy requirements of
the IoT applications.
Alongside this issue, adaptability to different energy harvesting rates may increase
the complexity of the MAC protocol, and based on our background study, only a
few works deploying hybrid energy harvesters [203]. Thus, hybrid energy harvester
deployment and extra harvested energy management are challenges that have not
been addressed as much as other issues, which open new directions to researchers.

8. Conclusions

The available energy harvesting technologies cannot continuously power up the IoT
devices, which are supported by different wireless communication technologies. To make
this integration possible, there is the need to optimize the energy consumption on the
wireless communication technologies at different IoT layers. Thus, MAC layer operations,
which consume most of the energy budget of wireless communication, are the most relevant
candidate for applying energy optimization methods and conserving energy. To justify this
argument, we provided a thorough review of the MAC layer operations and different MAC
optimization techniques, which some of them are employed in the current IoT wireless
communication technologies. Then, based on the informative aspects of the MAC layer
operations, we developed a unified approach to systematically analyze energy models
for each technology. In addition, we extensively studied the available energy harvesting
technologies and their constraints. According to this analysis, we showed that, based on
the duty-cycle regulation, simple random access mechanism, low energy consumption,
and long-range communications, LPWAN technologies are applicable for different IoT
use cases. Moreover, since IEEE 802.11ah is specifically designed for IoT systems, it meets
various requirements of these systems, such as long-range and low power consumption
communications, with higher data rates. In addition, our research on available energy
harvesters concluded that technologies like photo-voltaic panels or thermocouples are
applicable to these two wireless communication technologies. For these reasons, LPWAN
family and IEEE 802.11ah are two of the promising wireless technologies in IoT systems.
Also, this paper has described how the available energy harvesting MAC protocols adapt
to the integration of energy harvesting in IoT systems, and gave a precise comparison
between these MAC protocols based on energy harvesting-related network parameters.
These analysis results demonstrated that ENO condition, which is one of the most energy-
related parameters for enabling energy harvesting in IoT systems, is only considered by
23% of the reviewed literature set. Furthermore, hybrid access MAC protocols can be one
of the optimal approaches for IoT systems equipped with energy harvesters. Their high
adaptation to the energy level of the nodes and acceptable network energy consumption
reduction favours their presence in 48% of the analyzed literature. Alongside the hybrid
access energy harvesting MAC protocols, cross-layer mechanisms show a remarkable
energy consumption reduction of the network. However, due to their high computational
complexity, they have not reached maturity and have not shown their successful role in the
current technologies yet. These results convey that there is still room for improvement in
this area. We believe that this survey paper could shed light on enabling the integration of
energy harvesting in the IoT concept and guide researchers to explore the adaptation of
future MAC layer protocols to energy harvesting techniques in IoT systems.
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16. Cero, E.; Husić, J.B.; Baraković, S. IoT’s Tiny Steps Towards 5G: Telco’s Perspective. Symmetry 2017, 9, 213. [CrossRef]
17. Singh, R.K.; Puluckul, P.P.; Berkvens, R.; Weyn, M. Energy Consumption Analysis of LPWAN Technologies and Lifetime

Estimation for IoT Application. Sensors 2020, 20, 4794. [CrossRef]
18. Putra, G.D.; Pratama, A.R.; Lazovik, A.; Aiello, M. Comparison of Energy Consumption in Wi-Fi and Bluetooth Communication

in a Smart Building. In Proceedings of the IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC),
Las Vegas, NV, USA, 9–11 January 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.

19. Ramezani, P.; Pakravan, M.R. Overview of MAC Protocols for Energy Harvesting Wireless Sensor Networks. In Proceedings of
the IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong,
China, 30 August–2 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 2032–2037.

20. Kosunalp, S. MAC Protocols for Energy Harvesting Wireless Sensor Networks: Survey. ETRI J. 2015, 37, 804–812. [CrossRef]
21. Sherazi, H.H.R.; Grieco, L.A.; Boggia, G. A Comprehensive Review on Energy Harvesting MAC Protocols in WSNs: Challenges

and Tradeoffs. Ad Hoc Netw. 2018, 71, 117–134. [CrossRef]



Sensors 2021, 21, 3097 46 of 53

22. Kaur, P.; Sohi, B.S.; Singh, P. Recent Advances in MAC Protocols for the Energy Harvesting Based WSN: A Comprehensive
Review. Wirel. Pers. Commun. 2019, 104, 423–440. [CrossRef]

23. Djiroun, F.Z.; Djenouri, D. MAC Protocols with Wake-Up Radio for Wireless Sensor Networks: A Review. IEEE Commun. Surv.
Tutor. 2016, 19, 587–618. [CrossRef]

24. Ghribi, M.; Meddeb, A. Survey and Taxonomy of MAC, Routing and Cross Layer Protocols Using Wake-Up Radio. J. Netw.
Comput. Appl. 2020, 149, 102465. [CrossRef]

25. Quintero, V.; Estevez, C.; Orchard, M.; Pérez, A. Improvements of Energy-Efficient Techniques in WSNs: A MAC-Protocol
Approach. IEEE Commun. Surv. Tutor. 2018. [CrossRef]

26. Kurose, J.F.; Ross, K.W. Computer Networking: A Top-Down Approach, 5th ed.; Addison-Wesley Publishing Company: Boston, MA,
USA, 2009.

27. Tanenbaum, A.S.; Wetherall, D. Computer Networks, 5th ed.; Pearson: London, UK, 2011.
28. Li, L.; Zhang, H. A Novel Effective Protocol Design for Wireless ad hoc Networks. In Proceedings of the Asia-Pacific Conference

on Computational Intelligence and Industrial Applications (PACIIA), Wuhan, China, 28–29 November 2009; IEEE: Piscataway,
NJ, USA, 2009; Volume 1, pp. 361–364.

29. Demirkol, I.; Ersoy, C.; Alagoz, F. MAC Protocols for Wireless Sensor Networks: A Survey. IEEE Commun. Mag. 2006, 44, 115–121.
[CrossRef]

30. Zhou, F.; Wu, Y.; Hu, R.Q.; Wang, Y.; Wong, K.K. Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks.
IEEE Netw. 2018, 32, 152–160. [CrossRef]

31. Han, W.; Zhang, Y.; Wang, X.; Li, J.; Sheng, M.; Ma, X. Orthogonal Power Division Multiple Access: A Green Communication
Perspective. IEEE J. Sel. Areas Commun. 2016, 34, 3828–3842. [CrossRef]

32. Li, Z.; Gui, J. Energy-Efficient Resource Allocation with Hybrid TDMA-NOMA for Cellular-Enabled Machine-to-Machine
Communications. IEEE Access 2019, 7, 105800–105815. [CrossRef]

33. Shu, T.; Krunz, M. Energy-Efficient Power/Rate Control and Scheduling in Hybrid TDMA/CDMA Wireless Sensor Networks.
Comput. Netw. 2009, 53, 1395–1408. [CrossRef]

34. Salajegheh, M.; Soroush, H.; Kalis, A. HYMAC: Hybrid TDMA/FDMA Medium Access Control Protocol for Wireless Sensor
Networks. In Proceedings of the 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens,
Greece, 3–7 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1–5.

35. Udayakumar, P.; Vyas, R.; Vyas, O.P. Token Bus Based MAC Protocol for Wireless Sensor Networks. Int. J. Comput. Appl. 2012,
43, 6–10. [CrossRef]

36. Wei, F.; Zhang, X.; Xiao, H.; Men, A. A Modified Wireless Token Ring Protocol for Wireless Sensor Network. In Proceedings of
the 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang, China, 21–23
April 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 795–799.

37. Siddiqui, S.; Ghani, S.; Khan, A.A. ADP-MAC: An Adaptive and Dynamic Polling-Based MAC Protocol for Wireless Sensor
Networks. IEEE Sens. J. 2017, 18, 860–874. [CrossRef]

38. Fujii, C.; Seah, W.K.G. Multi-Tier Probabilistic Polling in Wireless Sensor Networks Powered by Energy Harvesting. In Proceedings
of the Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Adelaide,
SA, Australia, 6–9 December 2011; pp. 383–388. [CrossRef]

39. Venkitasubramaniam, P.; Adireddy, S.; Tong, L. Opportunistic ALOHA and Cross Layer Design for Sensor Networks. In Pro-
ceedings of the IEEE Military Communications Conference, 2003 (MILCOM 2003), Boston, MA, USA, 13–16 October 2003; IEEE:
Piscataway, NJ, USA, 2003; Volume 1, pp. 705–710.

40. Prodanoff, Z.G. Optimal Frame Size Analysis for Framed Slotted ALOHA Based RFID Networks. Comput. Commun. 2010,
33, 648–653. [CrossRef]

41. Hermeto, R.T.; Gallais, A.; Theoleyre, F. Scheduling for IEEE802.15.4-TSCH and Slow Channel hopping MAC in Low Power
Industrial Wireless Networks: A Survey. Comput. Commun. 2017, 114, 84–105. [CrossRef]

42. Rhee, I.; Warrier, A.; Aia, M.; Min, J.; Sichitiu, M.L. Z-MAC: A Hybrid MAC for Wireless Sensor Networks. IEEE/ACM Trans.
Netw. 2008, 16, 511–524. [CrossRef]

43. Shrestha, B.; Hossain, E.; Choi, K.W. Distributed and Centralized Hybrid CSMA/CA-TDMA Schemes for Single-Hop Wireless
Networks. IEEE Trans. Wirel. Commun. 2014, 13, 4050–4065. [CrossRef]

44. Yang, X.; Wang, L.; Xie, J.; Zhang, Z. Energy Efficiency TDMA/CSMA Hybrid Protocol with Power Control for WSN. Wirel.
Commun. Mob. Comput. 2018, 2018. [CrossRef]

45. Lenka, M.R.; Swain, A.R.; Sahoo, M.N. Distributed Slot Scheduling Algorithm for Hybrid CSMA/TDMA MAC in Wireless
Sensor Networks. In Proceedings of the IEEE International Conference on Networking, Architecture and Storage (NAS), Long
Beach, CA, USA, 8–10 August 2016; pp. 1–4. [CrossRef]

46. Elkourdi, M.; Mazin, A.; Balevi, E.; Gitlin, R.D. Enabling Slotted ALOHA-NOMA for Massive M2M Communication in IoT
Networks. In Proceedings of the 19th Wireless and Microwave Technology Conference (WAMICON), Sand Key, FL, USA,
9–10 April 2018; pp. 1–4. [CrossRef]

47. Ibarra, E.; Antonopoulos, A.; Kartsakli, E.; Verikoukis, C. HEH-BMAC: Hybrid Polling MAC Protocol for WBANs Operated by
Human Energy Harvesting. Telecommun. Syst. 2015, 58, 111–124. [CrossRef]



Sensors 2021, 21, 3097 47 of 53

48. Dash, S.; Swain, A.R.; Ajay, A. Reliable Energy Aware Multi-Token Based MAC Protocol for WSN. In Proceedings of the 26th
International Conference on Advanced Information Networking and Applications, Fukuoka, Japan, 26–29 March 2012; IEEE:
Piscataway, NJ, USA, 2012; pp. 144–151.

49. Dash, S.; Saras, K.; Lenka, M.R.; Swain, A.R. Multi-Token Based MAC-Cum-Routing Protocol for WSN: A Distributed Approach.
J. Commun. Softw. Syst. 2019, 15, 272–283. [CrossRef]

50. Rajasekaran, A.; Nagarajan, V. Adaptive Intelligent Hybrid MAC Protocol for Wireless Sensor Network. In Proceedings of the
International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 6–8 April 2016; pp. 2284–2289.
[CrossRef]

51. Alassery, F.; Ahmed, W.K.M.; Lawrence, V. MDSA: Multi-Dimensional Slotted ALOHA MAC Protocol for Low-Collision
High-Throughput Wireless Communication Systems. In Proceedings of the 36th IEEE Sarnoff Symposium, Newark, NJ, USA,
20–22 September 2015; pp. 179–184. [CrossRef]

52. Zhao, J.; Erdogan, A.T. A Novel Self-Organizing Hybrid Network Protocol for Wireless Sensor Networks. In Proceedings of the
First NASA/ESA Conference on Adaptive Hardware and Systems (AHS’06), Istanbul, Turkey, 15–18 June 2006; IEEE: Piscataway,
NJ, USA, 2006; pp. 412–419.

53. Kim, H.; Han, K. A Target Tracking Method to Reduce the Energy Consumption in Wireless Sensor Networks. In International
Conference on Computational Science; Springer: Berlin/Heidelberg, Germany, 2006; pp. 940–943.

54. Song, L.; Hatzinakos, D. A Cross-Layer Architecture of Wireless Sensor Networks for Target Tracking. IEEE/ACM Trans. Netw.
2007, 15, 145–158. [CrossRef]

55. Louail, L.; Felea, V. Routing and TDMA Joint Cross-Layer Design for Wireless Sensor Networks. In International Conference on
Ad-Hoc Networks and Wireless; Springer: Berlin/Heidelberg, Germany, 2016; pp. 111–123.

56. Bai, R.; Ji, Y.; Lin, Z.T.; Wang, Q.H.; Zhou, X.F.; Qu, Y.G.; Zhao, B. Cross-Layer Protocol Combining Tree Routing and TDMA
Slotting in Wireless Sensor Networks. IEICE Trans. 2009, 92-D, 1905–1914. [CrossRef]

57. Sharma, R.; Sohi, B.S.; Mittal, N. Hierarchical Energy Efficient MAC Protocol for Wireless Sensor Networks. Int. J. Appl. Eng. Res.
2017, 12, 14727–14738.

58. Korbi, I.E.; Saïdane, L.A. Performance Evaluation of Unslotted CSMA/CA for Wireless Sensor Networks: Energy Consumption
Analysis and Cross Layer Routing. Int. J. Comput. Netw. Inf. Secur. 2017, 9, 1. [CrossRef]

59. Thaskani, S.; Kumar, K.V.; Murthy, G.R. Energy Efficient Cross-Layer Design Protocol by Using Token Passing Mechanism
for WSN. In Proceedings of the IEEE Symposium on Computers Informatics, Kuala Lumpur, Malaysia, 20–23 March 2011;
pp. 572–575. [CrossRef]

60. Guo, C.; Zhong, L.C.; Rabaey, J.M. Low Power Distributed MAC for ad hoc Sensor Radio Networks. In Proceedings of the
GLOBECOM’01 IEEE Global Telecommunications Conference (Cat. No.01CH37270), San Antonio, TX, USA, 25–29 November
2001; Volume 5, pp. 2944–2948. [CrossRef]

61. Silva, J.L.D.; Shamberger, J.; Ammer, M.J.; Guo, C.; Li, S.; Shah, R.; Tuan, T.; Sheets, M.; Rabaey, J.M.; Nikolic, B.; et al. Design
Methodology for PicoRadio Networks. In Proceedings of the Design, Automation and Test in Europe, Conference and Exhibition
2001, Munich, Germany, 3–16 March 2001; IEEE: Piscataway, NJ, USA, 2001; pp. 314–323.

62. Salameh, H.B.; Shu, T.; Krunz, M. Adaptive Cross-Layer MAC Design for Improved Energy-Efficiency in Multi-Channel Wireless
Sensor Networks. Ad Hoc Netw. 2007, 5, 844–854. [CrossRef]

63. Moss, D.; Levis P. BoX-MACs: Exploiting physical and link layer boundaries in low-power networking. Comput. Syst. Lab. Stanf.
Univ. 2008, 64, 120.

64. Liu, S.; Bai, Y.; Sha, M.; Deng, Q.; Qian, D. CLEEP: A Novel Cross-Layer Energy-Efficient Protocol for Wireless Sensor Networks.
In Proceedings of the 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian,
China, 12–14 October 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–4.

65. Mainetti, L.; Mighali, V.; Patrono, L. HEC-MAC: A Hybrid Energy-Aware Cross-Layer MAC Protocol for Wireless Sensor
Networks. Int. J. Distrib. Sens. Netw. 2015, 11, 536794. [CrossRef]

66. Bai, Y.; Liu, S.; Sha, M.; Lu, Y.; Xu, C. An Energy Optimization Protocol Based on Cross-Layer for Wireless Sensor Networks. JCM
2008, 3, 27–34. [CrossRef]

67. Han, G.; Dong, Y.; Guo, H.; Shu, L.; Wu, D. Cross-Layer Optimized Routing in Wireless Sensor Networks with Duty Cycle and
Energy Harvesting. Wirel. Commun. Mob. Comput. 2015, 15, 1957–1981. [CrossRef]

68. Sadiq, A.S.; Almohammad, T.Z.; Khadri, R.A.B.M.; Ahmed, A.A.; Lloret, J. An Energy-Efficient Cross-Layer Approach for Cloud
Wireless Green Communications. In Proceedings of the 2nd International Conference on Fog and Mobile Edge Computing
(FMEC), Valencia, Spain, 8–11 May 2017; pp. 230–234. [CrossRef]

69. Ghadimi, E.; Landsiedel, O.; Soldati, P.; Duquennoy, S.; Johansson, M. Opportunistic Routing in Low Duty-Cycle Wireless Sensor
Networks. ACM Trans. Sens. Netw. (TOSN) 2014, 10, 1–39. [CrossRef]

70. Duquennoy, S.; Landsiedel, O.; Voigt, T. Let the Tree Bloom: Scalable Opportunistic Routing with ORPL. In Proceedings of the
11th ACM Conference on Embedded Networked Sensor Systems, Roma, Italy, 11–15 November 2013; pp. 1–14.

71. Wymore, M.L.; Peng, Y.; Zhang, X.; Qiao, D. EDAD: Energy-Centric Data Collection with Anycast in Duty-Cycled Wireless Sensor
Networks. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA,
USA, 9–12 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1560–1565.



Sensors 2021, 21, 3097 48 of 53

72. Oliveira, L.; Rodrigues, J.; Kozlov, S.A.; Rabêlo, R.A.L.; Albuquerque, V. MAC Layer Protocols for Internet of Things: A Survey.
Future Internet 2019, 11, 16. [CrossRef]

73. Tsao, S.L.; Huang, C.H. A Survey of Energy Efficient MAC Protocols for IEEE 802.11 WLAN. Comput. Commun. 2011, 34, 54–67.
[CrossRef]

74. IEEE Standards Association (IEEE SA). IEEE: IEEE std 802.11-2012 (Revision of IEEE std 802.11-2007); Technical Report; IEEE:
Piscataway, NJ, USA, 2012; pp. 1–2793.

75. Feeney, L.M.; Nilsson, M. Investigating the Energy Consumption of a Wireless Network Interface in an Ad Hoc Networking
Environment. In Proceedings of the IEEE INFOCOM 2001, Conference on Computer Communications, Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213), Anchorage, AK, USA, 22–26 April 2001;
Volume 3, pp. 1548–1557.

76. Ba nos-Gonzalez, V.; Afaqui, M.; Lopez-Aguilera, E.; Garcia-Villegas, E. IEEE 802.11 ah: A Technology to Face the IoT Challenge.
Sensors 2016, 16, 1960. [CrossRef]

77. Raeesi, O.; Pirskanen, J.; Hazmi, A.; Levanen, T.; Valkama, M. Performance Evaluation of IEEE 802.11 ah and Its Restricted
Access Window Mechanism. In Proceedings of the IEEE international conference on communications workshops (ICC), Sydney,
Australia, 10–14 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 460–466.

78. Bel, A.; Adame, T.; Bellalta, B. An Energy Consumption Model for IEEE 802.11 ah WLANs. Ad Hoc Netw. 2018, 72, 14–26.
[CrossRef]

79. Adame, T.; Bel, A.; Bellalta, B.; Barceló, J.; Gonzalez, J.; Oliver, M. Capacity Analysis of IEEE 802.11 ah WLANs for M2M
Communications. In International Workshop on Multiple Access Communications; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 139–155.

80. Zheng, Z.; Cui, W.; Qiao, L.; Guo, J. Performance and Power Consumption Analysis of IEEE802.11ah for Smart Grid. Wirel.
Commun. Mob. Comput. 2018, 2018. [CrossRef]

81. Afaqui, M.S.; Garcia-Villegas, E.; Lopez-Aguilera, E. IEEE 802.11ax: Challenges and Requirements for Future High Efficiency
WiFi. IEEE Wirel. Commun. 2016, 24, 130–137. [CrossRef]

82. Khorov, E.; Kiryanov, A.; Lyakhov, A.; Bianchi, G. A Tutorial on IEEE 802.11ax High Efficiency WLANs. IEEE Commun. Surv.
Tutor. 2018, 21, 197–216. [CrossRef]

83. Lee, J. OFDMA-Based Hybrid Channel Access for IEEE 802.11ax WLAN. In Proceedings of the 14th International Wireless
Communications Mobile Computing Conference (IWCMC), Limassol, Cyprus, 25–29 June 2018; pp. 188–193.

84. Yang, H.; Deng, D.J.; Chen, K.C. On Energy Saving in IEEE 802.11ax. IEEE Access 2018, 6, 47546–47556. [CrossRef]
85. McCormick, D.K. IEEE Technology Report on Wake-Up Radio: An Application, Market, and Technology Impact Analysis of Low-

Power/Low-Latency 802.11 Wireless LAN Interfaces; IEEE: Piscataway, NJ, USA, 2017.
86. IEEE Standards Association. IEEE Draft Standard for Information Technology–Telecommunications and Information Exchange

Between Systems Local and Metropolitan Area Networks–Specific Requirements Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications Amendment: Wake-up radio operation. In IEEE P802.11ba/D2.0, January 2019
(amendment to IEEE P802.11REVmd/D2.0, as amended by IEEE P802.11ax/D3.3, IEEE P802.11ay/D2.2, and IEEE P802.11az/D0.6); IEEE
Std.: Piscataway, NJ, USA, 2019; pp. 1–130.

87. Oller, J.; Demirkol, I.; Casademont, J.; Paradells, J.; Gamm, G.U.; Reindl, L. Wake-Up Radio as an Energy-Efficient Alternative to
Conventional Wireless Sensor Networks MAC Protocols. In Proceedings of the 16th ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM), Barcelona, Spain, 3–8 November 2013; pp. 173–180.

88. Lopez-Aguilera, E.; Demirkol, I.; Garcia-Villegas, E.; Paradells, J. IEEE 802.11-Enabled Wake-Up Radio: Use Cases and
Applications. Sensors 2020, 20, 66. [CrossRef]

89. Hong, H.; Kim, Y.; Kim, R. A Low-Power WLAN Communication Scheme for IoT WLAN Devices Using Wake-Up Receivers.
Appl. Sci. 2018, 8, 72. [CrossRef]

90. Oller, J.; Garcia, E.; Lopez, E.; Demirkol, I.; Casademont, J.; Paradells, J.; Gamm, U.; Reindl, L. IEEE 802.11-Enabled Wake-Up
Radio System: Design and Performance Evaluation. Electron. Lett. 2014, 50, 1484–1486. [CrossRef]

91. Caballé, M.C.; Augé, A.C.; Lopez-Aguilera, E.; Garcia-Villegas, E.; Demirkol, I.; Aspas, J.P. An Alternative to IEEE 802.11ba:
Wake-Up Radio with Legacy IEEE 802.11 Transmitters. IEEE Access 2019, 7, 48068–48086. [CrossRef]

92. Casademont, J.; Lopez-Aguilera, E.; Paradells, J. Wake-Up Radio Systems for Cooperative-Intelligent Transport Systems
Architecture. In Proceedings of the 7th International Conference on Future Internet of Things and Cloud (FiCloud), Istanbul,
Turkey, 26–28 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 358–363.

93. Lopez-Aguilera, E.; Hussein, M.; Cervia, M.; Paradells, J.; Calveras, A. Design and Implementation of a Wake-Up Radio Receiver
for Fast 250 kb/s Bit Rate. IEEE Wirel. Commun. Lett. 2019, 8, 1537–1540. [CrossRef]

94. Farrell, S. LPWAN Overview: Draft-IETF-LPWAN-Overview-09. Available online: https://tools.ietf.org/html/draft-farrell-
lpwan-overview-04 (accessed on 1 February 2021).

95. Polonelli, T.; Brunelli, D.; Marzocchi, A.; Benini, L. Slotted Aloha on LoRaWAN-Design, Analysis, and Deployment. Sensors 2019,
19, 838. [CrossRef] [PubMed]

96. To, T.H.; Duda, A. Simulation of LoRa in NS-3: Improving LoRa Performance with CSMA. In Proceedings of the 2018 IEEE
International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 1–7.



Sensors 2021, 21, 3097 49 of 53

97. Lea, P. Internet of Things for Architects: Architecting IoT Solutions by Implementing Sensors, Communication Infrastructure, Edge
Computing, Analytics, and Security; Packt Publishing Ltd.: Birmingham, UK, 2018.

98. Finnegan, J.; Brown, S. An Analysis of the Energy Consumption of LPWA-based IoT Devices. In Proceedings of the 2018
International Symposium on Networks, Computers and Communications (ISNCC), Rome, Italy, 19–21 June 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 1–6.

99. Finnegan, J.; Brown, S.; Farrell, R. Modeling the Energy Consumption of LoRaWAN in ns-3 Based on Real World Measurements.
In Proceedings of the 2018 Global Information Infrastructure and Networking Symposium (GIIS), Thessaloniki, Greece, 23–25
October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4.

100. Bouguera, T.; Diouris, J.F.; Chaillout, J.J.; Jaouadi, R.; Andrieux, G. Energy Consumption Model for Sensor Nodes Based on LoRa
and LoRaWAN. Sensors 2018, 18, 2104. [CrossRef]

101. Reynders, B.; Meert, W.; Pollin, S. Range and Coexistence Analysis of Long Range Unlicensed Communication. In Proceedings of
the 23rd International Conference on Telecommunications (ICT), Thessaloniki, Greece, 16–18 May 2016; pp. 1–6.

102. Gomez, C.; Veras, J.C.; Vidal, R.; Casals, L.; Paradells, J. A Sigfox Energy Consumption Model. Sensors 2019, 19, 681. [CrossRef]
103. Mwakwata, C.B.; Malik, H.; Alam, M.M.; Moullec, Y.L.; Parand, S.; Mumtaz, S. Narrowband Internet of Things (NB-IoT): From

Physical (PHY) and Media Access Control (MAC) Layers Perspectives. Sensors 2019, 19, 2613. [CrossRef]
104. Lauridsen, M.; Krigslund, R.; Rohr, M.; Madueno, G. An Empirical NB-IoT Power Consumption Model for Battery Lifetime

Estimation. In Proceedings of the IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 1–5.

105. Sultania, A.K.; Zand, P.; Blondia, C.; Famaey, J. Energy Modeling and Evaluation of NB-IoT with PSM and eDRX. In Proceedings
of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 1–7.

106. GS1 Technical Committee. GS1 EPC UHF Gen2 Air Interface Protocol. Available online: https://www.gs1.org/standards/epc-
rfid/uhf-air-interface-protocol (accessed on 21 June 2020).

107. Garcia-Alfaro, J.; Herrera-Joancomartí, J.; Melià-Seguí, J. Security and Privacy Concerns about the RFID Layer of EPC Gen2
Networks. In Advanced Research in Data Privacy; Springer: Berlin/Heidelberg, Germany, 2015; pp. 303–324.

108. Roberts, C.M. Radio Frequency Identification (RFID). Comput. Secur. 2006, 25, 18–26. [CrossRef]
109. Landaluce, H.; Perallos, A.; Onieva, E.; Arjona, L.; Bengtsson, L. An Energy and Identification Time Decreasing Procedure for

Memoryless RFID Tag Anticollision Protocols. IEEE Trans. Wirel. Commun. 2016, 15, 4234–4247. [CrossRef]
110. Darroudi, S.M.; Gomez, C. Bluetooth Low Energy Mesh Networks: A Survey. Sensors 2017, 17, 1467. [CrossRef] [PubMed]
111. Siekkinen, M.; Hiienkari, M.; Nurminen, J.K.; Nieminen, J. How Low Energy is Bluetooth Low Energy? Comparative Measure-

ments with Zigbee/802.15.4. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), Paris, France, 1 April 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 232–237.

112. Legg, G. ZigBee: Wireless Technology for Low-Power Sensor Networks. Available online: https://www.eetimes.com/zigbee-
wireless-technology-for-low-power-sensor-networks/ (accessed on 17 May 2019).

113. Kazeem, O.; Akintade, O.; Kehinde, L. Comparative Study of Communication Interfaces for Sensors and Actuators in the Cloud
of Internet of Things. Int. J. Internet Things 2017, 6, 9–13. [CrossRef]

114. Shirvanimoghaddam, M.; Shirvanimoghaddam, K.; Abolhasani, M.M.; Farhangi, M.; Barsari, V.Z.; Liu, H.; Dohler, M.; Naebe, M.
Towards a Green and Self-Powered Internet of Things using Piezoelectric Energy Harvesting. IEEE Access 2019, 7, 94533–94556.
[CrossRef]

115. Olyaei, B.B.; Pirskanen, J.; Raeesi, O.; Hazmi, A.; Valkama, M. Performance Comparison Between Slotted IEEE 802.15.4 and IEEE
802.11 ah in IoT Based Applications. In Proceedings of the IEEE 9th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), Lyon, France, 7–9 October 2013; IEEE: Piscataway, NJ, USA, 2013, pp. 332–337.

116. Morin, E.; Maman, M.; Guizzetti, R.; Duda, A. Comparison of the Device Lifetime in Wireless Networks for the Internet of Things.
IEEE Access 2017, 5, 7097–7114. [CrossRef]

117. Adeunis-RF Company. SIGFOX Si868-25 mW RF Module Datasheet. Available online: http://www.farnell.com/datasheets/20
00063.pdf (accessed on 17 May 2019).

118. Namboodiri, V.; Gao, L. Energy-Aware Tag Anti-Collision Protocols for RFID Systems. IEEE Trans. Mob. Comput. 2010, 9, 44–59.
[CrossRef]

119. Yan, X.; Liu, X. Evaluating the Energy Consumption of the RFID Tag Collision Resolution Protocols. Telecommun. Syst. 2013,
52, 2561–2568. [CrossRef]

120. Gray, C.; Campbell, L. Should My Toaster Be Polled? Towards an Energy-Efficient Internet of Things. In Proceedings of the 26th
International Telecommunication Networks and Applications Conference (ITNAC), Dunedin, New Zealand, 7–9 December 2016;
IEEE: Piscataway, NJ, USA, 2016; pp. 26–31. [CrossRef]

121. Ratasuk, R.; Vejlgaard, B.; Mangalvedhe, N.; Ghosh, A. NB-IoT system for M2M communication. In Proceedings of the IEEE
Wireless Communications and Networking Conference (WCNC), Doha, Qatar, 3–6 April 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 1–5.

122. Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A Comparative Study of LPWAN Technologies for Large-Scale IoT Deployment. ICT
Express 2019, 5, 1–7. [CrossRef]



Sensors 2021, 21, 3097 50 of 53

123. Singh, J.; Kaur, R.; Singh, D. Energy Harvesting in Wireless Sensor Networks: A Taxonomic Survey. Int. J. Energy Res. 2020, 45,
118-140. [CrossRef]

124. Hantula, R. How Do Solar Panels Work? Infobase Publishing: New York, NY, USA, 2009.
125. Zhou, G.; Huang, L.; Li, W.; Zhu, Z. Harvesting Ambient Environmental Energy for Wireless Sensor Networks: A Survey. J. Sens.

2014, 2014. [CrossRef]
126. Aparicio, M.P.; Bakkali, A.; Pelegri-Sebastia, J.; Sogorb, T.; Llario, V.; Bou, A. Radio Frequency Energy Harvesting-Sources and

Techniques. In Renewable Energy-Utilisation and System Integration; IntechOpen: London, UK, 2016.
127. de Beer, B.; Rix, A.J. Influences of Energy Throughput on the Life of Various Battery Technologies. Available online:

https://www.researchgate.net/profile/Arnold-Rix/publication/313249361_Influences_of_Energy_Throughput_on_the_
Life_of_Various_Battery_Technologies/links/589440a692851c545748dfcb/Influences-of-Energy-Throughput-on-the-Life-of-
Various-Battery-Technologies.pdf (accessed on 30 May 2019).

128. Covaci, C.; Gontean, A. Piezoelectric Energy Harvesting Solutions: A Review. Sensors 2020, 20, 3512. [CrossRef]
129. Garg, N.; Garg, R. Energy Harvesting in IoT Devices: A Survey. In Proceedings of the International Conference on Intelligent

Sustainable Systems (ICISS), Palladam, India, 7–8 December 2017; pp. 127–131.
130. Yang, B.; Liu, H.; Liu, J.; Lee, C. Micro and Nano Energy Harvesting Technologies; Artech House: Norwood, MA, USA, 2014.
131. Arroyo, E.; Foong, S.; Wood, K.L. Modeling and Experimental Characterization of a Fluttering Windbelt for Energy Harvesting; IOP

Publishing: Bristol, UK, 2014; Volume 557, p. 012089.
132. Albadi, M. On Techno-Economic Evaluation of Wind-Based DG. Ph.D. Thesis, University of Waterloo Library, Waterloo, ON,

Canada, 2010.
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4

Enabling Energy
Harvesting-Based Wi-Fi System
for an e-Health Application: A
MAC Layer Perspective

This chapter includes contributions regarding the integration of EH technologies
into dense Wi-Fi networks, which was published as a journal article in Sensors,
MDPI. It focuses especially on introducing an optimization algorithm in the MAC
layer. The algorithm aims to find optimal CW combinations in master and slave
cells, minimizing energy consumption while meeting QoS requirements in a re-
stricted environment.
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Abstract: The adverse impacts of using conventional batteries in the Internet of Things (IoT) devices,
such as cost-effective maintenance, numerous battery replacements, and environmental hazards, have
led to an interest in integrating energy harvesting technology into IoT devices to extend their lifetime
and sustainably effectively. However, this requires improvements in different IoT protocol stack
layers, especially in the MAC layer, due to its high level of energy consumption. These improvements
are essential in critical applications such as IoT medical devices. In this paper, we simulated a
dense solar-based energy harvesting Wi-Fi network in an e-Health environment, introducing a new
algorithm for energy consumption mitigation while maintaining the required Quality of Service
(QoS) for e-Health. In compliance with the upcoming Wi-Fi amendment 802.11be, the Access Point
(AP) coordination-based optimization technique is proposed, where an AP can request dynamic
resource rescheduling along with its nearby APs, to reduce the network energy consumption through
adjustments within the standard MAC protocol. This paper shows that the proposed algorithm,
alongside using solar energy harvesting technology, increases the energy efficiency by more than
40% while maintaining the e-Health QoS requirements. We believe this research will open new
opportunities in IoT energy harvesting integration, especially in QoS-restricted environments.

Keywords: energy harvesting; e-Healthcare; Wi-Fi technology; MAC layer; optimization; MIoT;
contention window; sleep mode; objective function

1. Introduction

The Internet of Things (IoT) ecosystem includes a massive number of physical devices,
which interact through the Internet to improve and enhance various applications and ser-
vices [1]. According to the Cisco Annual Internet Report [2], by the end of 2023, the number
of connected IoT devices will increase to 29.3 billion devices. Thus, conventional batteries,
known as the most common energy source for IoT devices, might not be efficient. This
inefficiency is due to the limited lifetime of conventional batteries, which require frequent
replacement and maintenance. The adversity of battery replacement and maintenance
intensifies, especially where the devices are placed in hard-to-reach areas and dangerous
places. In addition, the disposal of this amount of batteries releases toxic material into the
environment.

Different passive techniques have been introduced in the literature to diminish the
disadvantages of conventional batteries and reduce their maintenance cost. One of these
techniques is deploying energy harvesting technologies, which is considered a promising
solution to provide enough energy for IoT devices and keep them powered up.

Although all IoT sectors benefit from energy harvesting technologies, deploying
these technologies in Medical IoT (MIoT or IoMT) offers a double benefit: reducing the
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maintenance cost and saving human life. This would be especially beneficial in the event
of a pandemic, such as the one that occurred in 2020 (the COVID-19 crisis), when hospitals’
total capacity was nearly fully occupied by patients who required specialized care [3].
In these cases, establishing a center such as a field hospital or a mobile medical unit is
inevitable. Since these constructions face new challenges in providing enough reliable
energy sources for the monitoring devices, cooperating energy harvesting technologies
(solar cells or Piezoelectric harvesters) can help deliver sustainable and reliable energy
sources [4] for these temporary medical centers.

Another critical challenge in mobile unit deployments is selecting relevant wireless
communication technologies. Among all the available wireless communication technolo-
gies, Wi-Fi is considered to be cost-effective and accessible deployment technology. More-
over, the Institute of Electrical and Electronics Engineers (IEEE)-based Wireless Local Area
Network (WLAN) standard [5] has been widely used in different environments and is one
of the most successful wireless communication technologies for indoor environments. For
instance, in the case of the coexistence of Wi-Fi and Zigbee in indoor environments, since
Wi-Fi devices have a shorter Channel Clear Assessment (CCA) time, they have priority
over Zigbee devices. In addition, since Zigbee frame transmissions have a longer frame
in the air time, they suffer more than Wi-Fi devices from the hidden node problem [6].
Furthermore, IEEE 802.11 introduces amendments such as IEEE 802.11ax [7], IEEE 802.11be
(not standardized yet) suitable for dense indoor environments, and IoT networks similar to
a mobile medical unit.

Wi-Fi technology offers powerful benefits for deploying in dense indoor environments.
However, the issues inherent to traditional Wi-Fi networks could be intensified in these
environments. The challenges that dense Wi-Fi networks face can be studied from two per-
spectives, the physical layer and the MAC layer. One of the immediate issues related to the
physical layer is the placement of the APs in the dense network, which causesoverlapping
coverage and have a significant effect on the spectrum efficiency and throughput of the
network [8]. Regarding the MAC layer perspective, the other issue is channel interference
due to the high number of devices, originating due to the contention-based nature of the
MAC layer of IEEE 802.11. In these environments, channel interference causes exposed and
hidden node problems and increases the collision rate [9,10]. One of the consequences of
all these issues is the increase in the systems’ energy consumption.

As we highlighted, due to the high energy-consuming nature of MAC layer operations
and the challenges that it faces, integrating an energy harvester may not be sufficient to
keep the MIoT devices powered up. Therefore, to reach a sustainable MIoT system without
degrading the system’s performance and maintaining the QoS at a certain level, there is a
need to optimize the energy consumption of the Wi-Fi communication technology at the
MAC layer and adapt it to the MIoT systems.

To address the integration of energy harvesting technologies within a dense Wi-Fi
network, in this paper, we propose an AP coordination-based optimization algorithm (in-
spired from the AP coordination method under discussion in the upcoming IEEE 802.11be
amendment), that supports the QoS requirements for a restricted QoS environment while
mitigating the network’s energy consumption. Additionally, we implement a sleep/wake-
up method, which considerably reduces network energy consumption. The proposed
algorithm is evaluated under extensive simulations in a dense Wi-Fi network in a field hos-
pital, where all the devices are equipped with solar cells. To the best of our knowledge, this
is the first time the suggested combination of AP coordination-based and sleep/wake-up
algorithms has been outlined in the literature to minimize network energy consumption
while preserving a specific degree of QoS for a solar-based dense e-Health environment.
Furthermore, we propose an innovative objective function used for evaluation proposes.
To summarize, this paper includes the following contributions:

• We conduct extensive simulations in the Network Simulator 3 (ns-3) environment,
which can accurately mimic the deployment of Wi-Fi communication for solar-based
medical devices in the proposed scenario.
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• We incorporate the AP coordination idea from the upcoming IEEE 802.11be standard in
our AP coordination-based optimization approach, while also maintaining backward
compatibility with the IEEE 802.11 standard.

• We propose an objective function based on medical-grade QoS criteria and energy usage.
• We propose a sleep/wake-up mechanism that puts non-AP stations to sleep for a time

interval if residual energy falls below a particular threshold. This approach allows
network energy consumption reduction while maintaining the desired level of QoS.

The remainder of this paper is organized as follows. In Section 2, the main concepts
around the fundamental IEEE 802.11 MAC layer mechanisms and the relevant amend-
ments, energy harvesting technologies, and e-Health applications are introduced. Section 3
highlights the relevant existing works in the literature. In Sections 4 and 5, the applied
methodology and all the steps taken for the simulations are explained. Section 6 provides
the performance evaluation of the AP coordination-based optimization algorithm, along
with an analytical discussion. Finally, in Section 7, some final remarks and future directions
are given.

2. Background Study

In this section, we divide the main concepts of this paper into three parts, briefly
explain each concept and then find their intersection points. These concepts are listed as
electronic healthcare (e-Healthcare), IEEE 802.11 (Wireless communication technology),
and the relevant energy harvesting technologies for the e-Healthcare use case.

2.1. E-Healthcare

E-Healthcare refers to the deployment of information and communication technologies
(ICTs), such as IoT, cloud computing, big data, and artificial intelligence, to intelligently
manage the healthcare system and make it on-demand, more accurate, and more effi-
cient [11–13]. E-Health enables versatile telehealth services (telemedicine, telesurgery,
telerehabilitation), wearable devices, e-Health records, smart healthcare applications, etc.
These services improve patient monitoring for medical staff and patients, facilitate self-
health management, and encourage people to form healthier habits. In addition, e-Health
reduces human error and the cost of activities simultaneously.

As explained in the introduction, the growing trend of the MIoT as a subcategory of IoT
faces various challenges at different levels of its architecture. As the first level of the MIoT
architecture, the sensing and perception layer includes real hardware and is responsible for
collecting patients’ data. At this level, the devices need to be low-power and low-cost, small
in the physical dimension, and user friendly. Since medical sensors have to provide a long
operational lifetime, having batteries with a limited lifespan is challenging and motivates
the use of low-power consumption devices or even devices without batteries. Removing
the battery from MIoT increases the flexibility of wireless devices and the operational
lifetime of medical devices, which is especially vital for hard-to-reach devices and reduces
maintenance costs.

The second level defines the communication protocols regardless of the use of either
wired or wireless communications. At this level, different power management and optimiza-
tion mechanisms can be applied to satisfy the devices’ required low-power consumption
feature. In addition, since the content of data transmitted in MIoT is privacy-sensitive,
network security features such as confidentiality, integrity, and availability of medical
data are challenging. Moreover, since MIoT is considered a QoS-restricted environment,
especially in terms of the Packet Loss Ratio (PLR) and delay [14], at this level, ensuring the
medical-related QoS requirement is a demanding issue.

The last level is responsible for managing and controlling the applications on devices,
which the medical business providers control. Furthermore, some information technologies
such as artificial intelligence, deep machine learning for healthcare, and big data belong to
this architectural level of MIoT. At this level, the user’s privacy is a challenging issue [4,15].
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Figure 1 demonstrates a patient who is located in a field hospital and is connected
to different medical sensors (the applications which are in red are not considered in the
simulation setup), and other real-time applications such as video conferencing with a doctor.
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Figure 1. An example of MIoT applications in a field hospital.

2.2. IEEE 802.11

The IEEE 802.11 working group has been standardizing different amendments by
specifying various sets of MAC and physical layers for WLAN communications.

The fundamental mechanism of the MAC layer in IEEE 802.11 standard is known as the
Distributed Coordination Function (DCF). It uses a Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA) method with binary exponential back-off. Figure 2 demonstrates
the default access technique known as a two-way handshaking scheme. According to
CSMA/CA mechanism, stations monitor the channel before sending the data frame. They
will start a back-off countdown if they sense the channel idle for a specific time interval
known as Distributed Inter-Frame Space (DIFS). Otherwise, if the channel is sensed as busy,
the stations keep monitoring the channel until the channel is sensed idle for a DIFS. Then,
the back-off countdown timer starts after the channel is sensed idle for a DIFS. Since DCF
is defined in a discrete-time back-off manner, each transmission must begin at the start of
the time slot.

DATA ACK DATA ACK

DATA ACK

DIFS DIFS

STATION A

STATION B

BUSY

BUSY BUSY

DIFS

DIFSSIFS

SIFS

SIFS

CW

CW

Back-off procedure for Station A

Back-off procedure

 for Station B

Time slot

Figure 2. CSMA/CA Back-off procedure.

The back-off procedure is started by initializing the Contention Window (CW) to
CWmin, where the station chooses a random number within (0, CW-1). The counter de-
creases the back-off timer if the channel is sensed idle during a time slot. However, in the
case of data frame transmission, the timer halts and only reactivates if the channel stays idle
for more than DIFS. If the data frame is unsuccessful, the CW is doubled until it reaches
its maximum value (2nCWmin = CWmax). Once a data frame is transmitted, the sender
waits for an Acknowledgment (ACK) frame to confirm the data frame’s correct reception.
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Suppose the station that started the transmission does not receive an ACK frame during
the ACK timeout period. In that case, it understands that a collision happened. Therefore,
the station retransmits the data frame according to the back-off process. The data frame
will be discarded if it experiences more collisions than the maximum retry limit.

The IEEE 802.11 standard group defines another mechanism known as Enhanced
Distributed Channel Access (EDCA), which supports differentiated Quality of Service (QoS)
in Wi-Fi communications. This mechanism introduces four different Access Categories
(ACVO, ACVI, ACBE, and ACBK) to prioritize channel access, where the ACVO has the
highest priority and ACBK has the lowest priority. The ACVO, ACVI, ACBE, and ACBK
categories are meant for voice, video, best-effort, and background traffic. According to this
mechanism, the MAC layer parameters such as CWmin and CWmax, Arbitrary Inter-Frame
Space (AIFS), Transmission Opportunity (TXOP), and queue length are set to different
values to achieve this prioritization. For instance, ACVO parameters are assigned to the
smallest values among other categories to give the highest transmission opportunity to
the traffic under this category. However, since different applications require various ACs,
and Wi-Fi proposed fixed EDCA parameters for each AC (Table 1), it is unsuitable and
unfeasible for heterogeneous networks [16], such as e-Health networks, where the time-
sensitive and emergency traffic require a certain level of QoS. For this reason, new ACs
with special queues are required. Moreover, as we explained, since the CW is the principal
parameter of the back-off procedure, among the EDCA-related parameters [17], which
are listed in Table 1, CW has the most impact on rescheduling the transmissions and QoS
parameters.

Table 1. Default EDCA ACs parameters.

Access Category CWmin CWmax AIFSN TXOP

VO 7 15 2 1.5 ms
VI 15 31 2 3.0 ms
BE 31 1023 3 0.0 ms
BK 31 1023 7 0.0 ms

As highlighted in previous works [18–20], since the inherent behavior of DCF and
EDCA mechanisms are contention-based, collisions may be caused by simultaneous trans-
missions, which is one of the reasons that imposes extra energy consumption on the Wi-Fi
stations. It is worth mentioning that, in Time Division Multiple Access (TDMA), a control
channel makes the channel collision-free; however, this feature is not available on Wi-Fi.
The other reason behind the energy-hungry feature of the DCF mechanism is the transmis-
sion errors due to the imperfect channel condition, which causes re-transmission. Besides
the amount of energy consumed in the transmission state, the idle state of DCF can also
consume a significant amount of energy. Although various methods have been introduced
to reduce these effects, they need to precisely select the involved parameters to avoid
extra energy consumption [21]. For instance, setting the beacon and idle intervals in the
power-saving mode is very important to prevent frequent wake-up nodes or simultaneous
wake-ups from wasting the station’s energy.

2.2.1. Previous IEEE 802.11 Amendments

The IEEE 802.11 standard group introduced different features to the amendments
to meet the IoT requirements while reducing the energy consumption of the MAC layer
operations. For instance, IEEE 802.11ah [22] provides some additional features to the MAC
layer of IEEE 802.11, such as hierarchical Association IDentifiers (AID), group sectorization,
Restricted Access Window (RAW), Relay AP, bi-directional TXOP, and Target Wake Time
(TWT) [23], that make this amendment enable supporting the IoT concept. However, IEEE
802.11ax and IEEE 802.11ba [24] were designed to support dense and low-power consump-
tion deployments, respectively. The Basic Service Set (BSS) coloring MAC feature in IEEE
802.11ax makes this amendment suitable for dense network deployment [9]. Furthermore,
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the energy efficiency is provided through microsleep, TWT, and Opportunistic Power Save
(OPS) mechanisms [25]. In contrast to these two amendments, IEEE 802.11ba balances the
trade-off between low-power consumption and latency by implementing the concept of
Wake Up Radio (WUR) [26].

2.2.2. Wi-Fi 7

Along with the aforementioned IEEE 802.11 amendments, an upcoming IEEE 802.11be
has features that IoT systems can benefit from them. The IEEE 802.11be is built on top
of the IEEE 802.11ax amendment and will support real-time applications, where QoS
provisioning is challenging. In addition, this amendment will provide a very high data rate
and makes massive Multi-Input Multi-Output (MIMO) communications possible. Some
advanced modifications and enhancements are introduced at the Physical (PHY) and MAC
layers to fulfill these features. For instance, the AP coordination and Hybrid Automatic
Repeat Request (HARQ) are presented at the MAC layer. According to the AP coordination
technique, so-called master APs, to improve the performance of their associated non-AP
stations, have the ability to communicate with other APs located within its transmission
range (slave APs), where the master AP receives the beacon frames the slave APs. In this
technique, the master AP is able to dynamically request the slave APs to reschedule the
resources based on the channel conditions (cf. Figure 3) [27]. It is worth mentioning that
this technique is specifically designed for the needs of uncoordinated systems; however, the
coordinated systems can benefit from the concept of this technique. Moreover, the HARQ
technique combines the forward error correction method and ARQ to deliver reliability for
data frame transmission. Furthermore, the pick rate, channelization, and time planning at
the PHY layer are improved [28,29].

AP1 AP2

Station1

Station2

Coordination

Figure 3. Wi-Fi 7 allows AP coordination.

2.3. Energy Harvesting in E-Healthcare

MIoT can benefit from different types of harvesting technologies to keep power-up
MIoT devices and introduce battery-less devices [30–33]. Among the existing energy
harvesting mechanisms, photo-voltaic, piezoelectric, Thermoelectric Generator (TEG), and
Radio Frequency (RF) are the most relevant technologies for the MIoT [34,35].

Photo-voltaic cells absorb the energy from artificial light or sunlight and then converts
it to electric energy. Based on the amount of light radiation, the power density of the cell
varies from 10 µW/cm3 to 100 mW/cm3 [4].

A rectenna or RF harvester captures the RF signals (dedicated or radiated signals), and
then the rectifier circuit (peak detector and voltage elevator) converts them to DC signals.
Depending on the physical features and position of the Wireless Energy Harvester (WEH),
the power density of RF harvesters varies from 0.1 µW/cm2 to 300 µW/cm2 [4].

TEG or thermocouple captures the generated voltage based on the temperature differ-
ence between the two types of metals or semiconductors. Various types of the TEG provide
a wide range of power density from 40 µW/cm2 to 50 mW/cm2.
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A piezoelectric energy harvester obtains energy from a crystal-ionized piezoelectric
material under a certain strain (human motion and activity). This harvester converts kinetic
energy to electric energy. Depending on the harvester material and the amount of kinetic
energy, the piezoelectric power density varies from 0.021 µW/mm3 to 2 W/cm3 [4].

Due to the high power density of solar cells and piezoelectric harvesters and their
form factor flexibility, these harvesters are widely used in IoT applications [4]. However, in
MIoT systems, since TEG and piezoelectric harvesters are able to harvest energy from the
human body, they attract much attention from industry and academia. The aforementioned
energy harvesters are summarized in Table 2.

Table 2. Relevant energy harvesting for MIoT system [4].

Energy Source Energy Harvester Power Density

Sun radiation Photo-voltaic cell 10 µW/cm3

Artificial light 100 mW/cm3

Radio Frequency Wireless energy 0.1 µW/cm2

harvester 300 µW/cm2

Heat Thermocouple 40 µW/cm2

50 mW/cm2

Human body motion Piezoelectric 0.021 µW/mm3

Vibration 2 W/cm3

Figure 4 represents the relevant energy harvesting technologies that can be imple-
mented in an e-Healthcare sector based on the positions and activities of the patient. The
possible positions on the human body for each energy harvester are determined by a num-
ber corresponding to that specific energy harvester technology. For instance, a kinetic-based
energy harvester (piezoelectric) is able to harvest energy from the movement of the ankle,
finger, or foot of a person, while a vibration-based energy harvester can be placed on the
chest or elbow of the person. These points are depicted as numbers 3 and 4 [36] in Figure 4,
respectively. Since the photo-voltaic panel needs to be in contact with artificial light or
sunlight radiation, the most suitable position for this energy harvester is the forehead of
the person (number 1) [37]. Although the WEH does not need a direct connection to the
wireless waves, one of the suitable positions for its placement is on the shoulder of the
person (number 5) [38]. Finally, the wrist of the person can be a proper position for TEG
harvester placement. Since in the wrist measuring the temperature difference between the
human body and the air can be more feasible (number 2) [39].

1. Photo-voltaic

panel

TEG

2. Thermoelectric 

Generator

3. Piezoelectric

(Kinetic energy)

3
4. Piezoelectric

(Vibration energy)

5. Wireless energy 

harvester

1

4
4

3

3

3

55

2

Figure 4. An example of the energy harvesters placement on the human body in the MIoT system.
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3. Related Work

In recent years, IEEE 802.11 WLAN has been one of the attractive wireless technologies
deployed in IoT networks. However, due to the high interference nature of its medium
and high energy-consuming MAC layer operations, deploying an energy harvesting tech-
nology to extend the lifetime of the IoT devices while ensuring QoS features becomes a
challenging issue. This issue becomes more demanding for QoS-restricted environments,
where real-time, multimedia and distributed emergency applications are deployed, such as
the healthcare sector, disaster recovery, and industrial emergency traffic. Although there
have been many works in the literature on QoS requirements provisioning, they do not
consider the requirements of energy harvesting technology deployment aligned with the
QoS guarantee as a critical point in the IEEE 802.11 WLAN. Thus, to completely understand
this issue, there is a need to have a structural literature review of MAC layer modifications
to provisioning QoS and the integration of energy harvesting technologies with the IEEE
802.11 standard. This section will explain the related works regarding these perspectives.

3.1. MAC Layer Modification

In this subsection, we explain the relevant studies on MAC modification and enhance-
ment to meet the QoS requirements within the IEEE 802.11 standard.

In 2005, the IEEE 802.11e working group introduced the IEEE 802.11e amendment,
whose MAC layer supports time-sensitive applications [17]. However, the EDCA mecha-
nism in this amendment has limitations and does not support QoS-restricted environments.
One of the studies on enhancing IEEE 802.11e QoS is proposed in [40]. In this work, the
authors consider three types of traffic, real-time medical traffic such as Electrocardiogram
(ECG), emergency alarms, and non-real-time traffic. The authors assign different levels of
priority to these applications. Then, based on the QoS requirements and the level of priority
of each medical application, they introduce an adaptive AIFS algorithm for each medical
traffic. In this algorithm, the station with the higher priority traffic maintains the required
QoS level by requesting the stations with lower priority traffic to increase their AIFS values
and delay their transmissions. In addition, they propose an admission control algorithm,
which is able to guarantee the QoS for the highest priority traffic. Although the authors
show that the proposed algorithms perform well under saturated conditions where more
stations join the network, the QoS may not be guaranteed.

As we explained in Section 1, compared to the AIFSN parameter, the CW value is an-
other MAC layer parameter that has a more significant impact on the network performance
metrics such as the end-to-end delay, throughput, PLR, collision rate, and even energy
consumption of the network. For this reason, extensive research has been conducted on
CW value variations to address QoS restrictions. In some works, the CW size is fixed at
an optimal value. In contrast, in some other research, the CW size is dynamically adapted
to an optimal value regarding the network conditions. Tian et al. in [41] proposed an
algorithm based on the CW value doubling not only when a collision occurs but also when
the channel is sensed as busy. By doubling the CW value, the stations which suffer from
overhearing can benefit more by reducing their collision rate. However, the stations with
less overhearing will face longer end-to-end delay. In contrast to the previous work, to
mitigate the long delay, Syed et al. in [42] proposed a dynamic CW adaptation based on the
network load. The proposed algorithm estimates the number of active stations to reduce
the number of retransmissions due to the high collision rate in high traffic load conditions.
Then it selects the most proper CW value based on that estimation for each access category.
Thus, for a dense network, a higher value of CW is determined, and a lower CW value is
specified for lower traffic loads. Therefore, this algorithm improves the throughput and
collision rate for the delay-sensitive application while minimizing the delay of the network.
However, in these studies, the energy efficiency of the network was not considered.

Accompanied by the AIFS and CW dynamic adaptations, in the IEEE 802.11ah amend-
ment, the QoS can be guaranteed through the RAW feature. However, this approach has
not received much attention. The authors in [43] assign different channel access timing for
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each group of stations based on the priority of their QoS requirements. For this reason, they
define two types of stations, stations with periodic traffic and stations with non-periodic
traffic. In the case of frame collision, the periodic stations halt the transmission procedure,
and only non-periodic ones continue to transmit. Based on this algorithm, the stations with
higher priority have more chance to access the channel than stations with lower priority.
This means that the QoS in the stations with the lower priority may not be guaranteed.
In another QoS provisioning study, the authors mathematically model the EDCA concept
into the RAW feature of IEEE 802.11ah [44]. This algorithm performs station categorization
based on the back-off value, the idle state probability, and the throughput during the non-
idle states. However, according to the proposed algorithm, although QoS is guaranteed in
scenarios with a low traffic load, the stations with lower priority will suffer from long delay
and low throughput. To address this issue, the authors in [45] introduce a longer RAW size
for stations with higher priority compared to the lower priority stations. Nevertheless, the
proposed algorithm is not completely backward-compatible with IEEE802.11ah due to its
back-off procedure.

One of the latest IEEE 802.11 amendments, known as IEEE 802.11ax, improves the
concept of multi-user transmission by introducing Orthogonal Frequency-Division Multiple
Access (OFDMA). This feature makes channel scheduling and resource allocation flexible
for high-density networks. In [46], an efficient channel scheduler is implemented in
the AP, which is able to increase the resource unit allocation. The algorithm makes the
decision based on the amount of data and the information priority of the QoS in each
associated station. Therefore, the proposed algorithm provides the QoS requirements in
dense networks.

In recent years, with the advent of the concept of artificial intelligence, researchers
have tried to benefit from different machine learning methods in the e-health sector to
improve the performance of the healthcare systems, such as telehealth monitoring and
remote patient monitoring. Malche et al. [47] propose a machine learning method for a
MIoT device that performs real-time monitoring of the vital signal of the patient during
specific activities such as walking, running, exercising, and sleeping. Although the wireless
communication technology in this work is considered Bluetooth Low Energy (BLE), their
work could be adapted by including the concept of master-slave communication. In
addition, the sleep/wake-up method and the integration of an energy harvester can be
introduced to the network. The authors in [48] propose a machine learning approach to
predict the patient’s health status in real time by monitoring vital signals. However, the
role of energy harvesters and methods to reduce the network’s energy consumption have
not been taken into consideration.

3.2. Integration of the Energy Harvesting Technologies with Wi-Fi

Comprehending the current research on MAC layer modifications for QoS-restricted
environments demonstrates that the MAC layer operations may consume more energy
under these conditions. In addition, applying machine learning methods increases the
computational complexity of the systems, and the devices’ energy consumption rises in
consequence. In these cases, integrating energy harvesting techniques becomes essential.
Thus, there is a need to study the integration of these technologies within the IEEE 802.11
standard. This study will lead us to elaborate on the existing gap in the literature.

One of the earliest investigations on the integration of energy harvesting technologies
within the IEEE 802.11 standard is proposed in [49]. In this work, a CO2 sensor that
communicates based on the IEEE 802.11 standard is powered up with indoor light radiation.
Although the authors demonstrate the possibility of sustainable wireless communication,
they do not consider energy efficiency in their experiments. They claim that the consumed
energy can be reduced to half of the current value by applying an energy-efficient MAC
layer protocol. The authors in [50] proposed an algorithm based on the 802.11 power-saving
mechanism, which offers more priority to the stations with a lower level of energy. Each
ambient energy-based station is frequently sent to the sleep mode to save energy in this
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algorithm. Although the proposed algorithm reduces the overhearing issue, it suffers from
a long delay due to random sleep duration and wake-up modes.

Among all energy harvesting technologies, since RF harvesters can directly harvest
Wi-Fi signals from nearby Wi-Fi devices, the integration of the RF harvesters with IEEE
802.11 has attracted more attention in academia and industry. For instance, in [51], the
authors design, optimize and fabricate a rectenna, which is able to harvest energy from the
2.4 Ghz frequency band from Wi-Fi devices. Based on the simulation and experimental
results, they demonstrate that the proposed rectenna is low-cost and easy to integrate with
IoT devices. One of the latest investigations on RF harvester use in WLAN scenarios is
presented in [52], in which the wake-up receiver and duty cycle concepts are combined
to address the energy efficiency issue in IEEE 802.11-based communications. This work
demonstrates the feasibility and flexibility of the wake-up signal to reduce the energy
consumption of the uplink and downlink wireless communications. The authors claim that
the proposed approach outperforms the IEEE 802.11 power-saving mechanism and can be
further deployed in batteryless IoT devices.

3.3. Energy Harvesting MAC Layer Protocols

In addition to the works mentioned previously, there are studies in the literature on
energy harvesting MAC protocols, in which the authors proposed MAC mechanisms to
reduce energy consumption by balancing the trade-off between collision rate and overhead
reduction, QoS provisioning, or idle listening duration. For instance, the authors in [53]
provide channel prioritization based on the content of a frame while adjusting the wake-up
duration to the energy level of an individual node to reduce the energy consumption of
the network. The shortcoming of this method is its random back-off procedure, where
nodes waste a considerable amount of energy during the long idle listening. Another QoS
MAC protocol which is defined in [54], provides four different data prioritization. In this
mechanism, transmissions are organized by the receiver based on each node’s waiting
time, duration, and energy level. As with the previous research, the prioritization in this
protocol is determined by the frame contents of each node. This protocol reduces the delay
of the networks with dynamic traffic load. However, this protocol may face a long delay
in applications with a high collision rate and waste the energy of the network. The first
work deploys a generic energy harvester, whereas the second study integrates a solar panel
to the sensor nodes. The MAC mechanisms, which are specifically designed for Radio
Frequency energy harvester, are proposed in [55–57], where the prioritization of the frame
transmissions are scheduled based on the residual energy, energy harvesting rate, or Energy
Request frame (ER) of the stations. However, since these works revamp the structure of the
CSMA/CA mechanism, the compatibility and adaptability of these MAC mechanisms with
the IEEE 802.11 becomes a problem and requires an accurate justification [55]. Moreover,
the key role of the QoS metrics provisioning is clearly defined in works such as [53,54]. In
addition, integrating the energy harvesters with MAC mechanisms in these works may not
lead to the reduction of energy consumption of the network.

According to the available state-of-the-art, although some simulators such as QualNet,
Cooja, ns-2, and MATLAB have been widely used in IoT network simulations for analytical
analysis, the energy models reveal different limitations. For instance, these models for
energy harvesting systems are abstract and straightforward and do not address many
energy harvesting technologies and process features. However, since the defined energy
model in ns-3 is an accurate model [58], it is able to provide a simulation environment
that addresses these constraints accurately. In addition, it has the ability to enable real
applications through Direct Code Execution and packet sending over actual Network
Interface Cards (NICs) to testbeds.

Furthermore, the impact of using energy harvesting technologies on the network’s
energy consumption and QoS-restricted environments has not been thoroughly studied.
Thus, in this paper, we fill this gap in the literature by applying an AP coordination
optimization in a solar-based dense Wi-Fi network in the ns-3 environment. Then we
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introduce a sleep/wake-up duration to reduce the network’s energy consumption while
maintaining the QoS metrics such as delay and PLR. Finally, we demonstrate the feasibility
and energy efficiency of integrating solar energy harvesting technology in a dense medical
Wi-Fi network for medical-grade QoS IoT applications based on extensive simulations and
the proposed objective function. Table 3 emphasizes the originality of the proposed work
by comparing it with relevant previous works.

Table 3. Features comparison of related work and our proposal.

Studies

Properties
Wireless

Communication 1
MAC

Modification
AP

Coordination
Sleep/Wake-Up

Deployment
Energy

Harvester
QoS

Support
Dense

Deployment

Son et al. [40] Wi-Fi 3 7 7 7 3 7

Tian et al. [41] Wi-Fi 3 7 7 7 3 7

Syed et al. [42] Wi-Fi 3 7 7 7 3 3

Ahmed et al. [43] Wi-Fi 3 7 3 7 3 3

Ali. et al. [44] Wi-Fi 3 7 3 7 3 3

Ali. et al. [45] Wi-Fi 3 7 7 7 3 3

Filoso et al. [46] Wi-Fi 3 7 7 7 3 3

Malche et al. [47] BLE 7 7 3 7 7 3

Sheela et al. [48] Wi-Fi 7 7 7 7 7 3

Fafoutis et al. [49] Wi-Fi 3 7 3 3 7 7

Lin et al. [50] Wi-Fi 3 7 3 3 7 3

Shafique et al. [51] Wi-Fi 7 7 7 3 7 3

Blobel et al. [52] Wi-Fi 3 7 3 3 7 3

Kim et al. [53] Multiple 3 7 3 3 3 7

Sarang et al. [54] Multiple 3 7 3 3 3 7

Kim et al. [56] Multiple 3 7 7 3 7 3

Naderi et al. [55] Multiple 3 7 7 3 7 7

Guntupalli et al. [57] Multiple 3 7 3 3 7 3

Our proposal Wi-Fi 3 3 3 3 3 3

1 In multiple studies the focus of the authors is on the CSMA/CA as the channel access mechanism. Since this
mechanism can be used in different wireless communication technologies such as Wi-Fi, Zigbee, LoRa (class C
devices), and active RFID, we convey it as multiple wireless communication technologies.

4. Methodology

In this section, first we define the implementation of the proposed optimization
algorithm and sleep/wake-up mode in ns-3. Then we describe the structural layout of a
station in this simulator, and finally, we explain the network evaluation parameters based
on their respective expressions.

4.1. AP Coordination-Based Optimization Algorithm

In this subsection, first we express the method that we define to find the combination
of CWmin and CWmax for each AC, then we explain the functionality of the proposed
algorithm in detail.

CWmax-new = CWmin + α
(1)
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Equation (1) demonstrates the method to obtain the new CWmax values. In our ap-
proach, the relation between CWmax and CWmin maintains the same as the DCF mechanism
which is given by CWmax= 2nCWmin. However, we add an initial value as α to this relation
to increase the buffer slightly. In this Equation, α is the difference between the standard
CWmin and CWmax values and defines the CW size. The α value is defined as 8, 16, and 922
for ACVO, ACVI and ACBE, respectively. According to this method, the CW changes are
adapted to the traffic while maintaining the CW size constant defined in the IEEE 802.11
standard Table 1.

As explained in Section 2, in the AP coordination technique, the master APs have the
possibility to communicate with slave APs to reschedule their resource allocation. This
technique addresses the QoS requirements for QoS-restricted applications, particularly for
real-time, multimedia, and emergency applications. Our proposed AP coordination-based
optimized algorithm, divided into two main parts, is retrieved from this technique to meet
the medical-grade QoS requirements while adapting energy harvesting technology in the
IEEE 802.11-based network.

As the preliminary step to the algorithm, the CW is changed in all the cells to find the
optimal CW combination for the network. The CW optimal value for each desired medical
application is selected based on the level of QoS parameters and energy consumption per
cell. Then the procedure of the algorithm starts by dividing the APs into two groups based
on the Frame Error Rate (FER) per cell obtained values when the CW values are set to
the standard values. The cells with a greater FER value than the average FER per cell are
labeled as master cells; otherwise, they are labeled as slave cells. In the next phase, the CW
values of master cells are assigned to the optimal CW values, which are obtained in the
preliminary step, and the algorithm increases the CW values for slave cells according to
Equation (1). For each set of CW combinations, the QoS parameters such as delay, PLR,
and FER are analyzed, and if they meet the medical-grade QoS requirements, the algorithm
will stop. Otherwise, the phase where the CW values are increased will repeat until these
metrics meet the requirements. The flow graph in Figure 5a illustrates each stage of the
procedure of the algorithm.

The second process of the algorithm, which is demonstrated in Figure 5b, starts by
dividing the cells into two groups of master and slave cells, as explained in algorithm part 1.
However, at this point, CW values are kept constant at the optimal CW values, which are
obtained based on part 1, and the CW values on master cells shrink by a non-standard value
gradually. In the end, for each set of CW combinations, the desired QoS parameters are
analyzed. If they only meet the medical-grade QoS requirements, the algorithm will stop;
otherwise, the phase where the CW values are decreased will repeat until these metrics
meet the requirements.
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Figure 5. Flow graph of the AP coordination based optimization algorithm.
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4.2. Sleep/Wake-Up Mode

Additionally, we introduce a sleep/wake-up technique in the network. When the
remaining energy of the network drops below a certain level, this method is triggered.
It would considerably reduce the energy consumption of the non-AP stations associated
with both slave and master APs while having a negligible impact on medical-grade QoS
requirements. However, the greatest benefits are for the master cells, that otherwise had
increased FER, which resulted in more energy being consumed in collisions. The schematic
of this technique is illustrated in Figure 6.

We multiply the offered load by a factor of X (let us say 2, cf. Figure 6b). To transmit
the same data along with the addition of the systematic sleep procedure, the wake-up
duration and sleep duration for master cells are divided by the same factor X in a manner
that the master can only transmit from A seconds to 1/X seconds (e.g., 0 to 0.5 s) and sleep
from 1/X to 1/X + 1/X seconds (i.g., 0.5 to 1 s, cf. Figure 6c). Consequently, the slave is only
allowed to transmit when the master is in sleep mode (i.g., 0.5 to 1 s). Since each second of
transmission is specifically divided base on master and slave cells, A would be continuous
with time. Furthermore, the designed algorithm is generic enough to have more than one
set of master and slave cells (i.e., if X is 4, then two sets of Masters and Slaves could be
used).

Offered Load=X

2Time Slot Time Slot

t t t

OFF

ONONON

(a) (b) (c)

Offered Load=2X Offered Load=2X

2Time Slot

Time Slot

Figure 6. Sleep/Wake-up mode schematic. (a) Transmission before applying the sleep/wake-up
technique, (b) offered load multiplication by factor X, (c) wake-up and sleep duration division by
same factor X.

The proposed sleep/wake-up mode concept is adapted from the assertion that unnec-
essary wake-up duration is reduced by forcing a non-AP station to sleep according to its
periodicity. According to this technique, the non-AP stations are set to partitions based on
the BSS. Then, within each group, the AP has the permission to define a sleep/wake-up
duration for each non-AP station to control their access to the channel and reduce the
contention on the medium [59].

In accordance with the proposed sleep/wake-up algorithm, in the first stage, when
all the cells are in sleep mode, the data rate needs to multiply by the factor of X and
time slot is divided by the factor of X, and the counter is initialized. In the next step, if
the cell is selected as a master cell, it operates from A second to 1/X seconds (when the
counter is an odd value) and is then sent to the sleep mode from 1/X seconds to 1/X +
1/X seconds (when the counter is an even value). In the case of the slave cell, the sleep
duration corresponds to the master cell’s wake-up duration. This procedure continues until
the algorithm’s counter reaches the total simulation time, and it will stop. The flow graph
of the proposed sleep/wake-up method is illustrated in Figure 7.

Despite the fact that the defined sleep/wake-up method aims to reduce the network’s
energy consumption, it mimics and addresses the intermittent communications challenge
in the Wi-Fi environment. Intermittent communication becomes challenging in the bursty
channel with a high level of interference or when there is not enough energy to keep the
system powered up, where interruptions in communication are possible.
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Figure 7. Flow graph of the Sleep/Wake-up mode algorithm.

4.3. System Model

The structure of the ns-3 sensor node (non-AP station) is illustrated in Figure 8,
in which different layers of IoT protocol stack along with energy-related modules are
presented. As shown in this figure, our studies focus on the PHY layer, MAC layer, and
energy-related modules illustrated in color. In contrast, the other layers of the IoT protocol
stack, such as the network, transportation, and application layers, including the channel
and mobility models, are in grayscale, meaning no changes are applied in this work.

The PHY layer, which is shown in pink, sets different transmission states of communi-
cation and the sleep/wake-up state for each station. The MAC layer presented in green is
responsible for adjusting the EDCA values for each category, where our AP coordination
technique is introduced. The energy-related modules illustrated in purple consist of three
main parts: device energy model, Wi-Fi radio energy model, and energy source. The
energy source considers different batteries, such as an RV battery, Li-ion battery, or even
a capacitor. In addition, this module is responsible for setting the specific parameters for
each type of energy source. The Wi-Fi radio energy module defines the consumed energy
in each transmission state. Furthermore, it is responsible for calculating the network’s
total energy consumption. In addition, the Wi-Fi radio energy module is installed on each
station through the device energy model [60]. Apart from these modules, there is a solar
energy harvester, which is designed for ns-3 [58]. However, this module does not exist
in the official ns-3 versions. The ns-3 solar harvesting system is an accurate model which
considers different aspects of the harvesting process. This system realistically designs a
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solar panel and mathematically models various characteristics of the sun, which have an
impact on harvesting the energy. The actual amount of power that a solar panel harvests
from sun radiation at a given time is obtained through Equation (2).

Wifiphy
(YansWifiPhy)/ChannelNumber

SetSleepMode/ResumeFromSleep

WifiChannel
(YansWifiChannel)

HybridBuildingPropagationLossModel

MACLow

InternetStack/IPv4Address
IPv4Interface

UDP Por tocol
UDP Socket

OnOffApplication
e-Health applications

Energy Harvester Model

WifiNetDevice
IEEE 802.11n 

Inter face

IPv4GlobalRouting
(PopulateRoutingTables)

Mobility Model
AttachPosition

E-Health Sensor 
Node

MACHigh

DcaTxOp Mac Rx 
MiddleDCFManager

Device Energy 
Model

L i-ion Battery
Wifi Radio 

Energy Model

Energy Model

Sun Harvester
(Solar Panel)

Eenrgy Source

Modified 
MAC

Figure 8. The layered structure of a sensor node (The modules in green, pink and purple represent
the modified MAC layer, PHY layer, energy model, and energy harvester, respectively).

PSun Harvester = ηsc × ηDC−DC × DPanel × IM(t) (2)

where PSun Harvester is the total harvested power, ηsc and ηDC−DC represent the solar cell
efficiency and DC to DC converter efficiency, respectively. IM(t) is the insolation parameter,
which is perceived by the surface of solar panel and is obtained through Equation (3).

IM(t) = Idirect(t) + Idiffused(t) (3)

According to Equation (3), Idirect(t) and Idiffused(t) represent the direct radiation of the
sun and diffused radiation of the sun, respectively. These parameters may vary during the
year and depending on the position of the sun and the day time.



Sensors 2022, 22, 3831 17 of 32

The general expression to obtain the energy consumption of wireless communication
in IEEE 802.11 is defined through Equation (4) [61]:

ETotal = TRx × PRx + TTx × PTx + TSl × PSl + TId × PId (4)

The power consumption of each state (reception, transmission, sleep, and idle) is the
multiplication of the power consumption of that state to its corresponding duration.

4.4. Evaluation Metrics

Our system model is evaluated in terms of the following metrics.

4.4.1. End-to-End Delay

This metric represents the average of the mean delay parameter for all the network
stations. The mean delay parameter is considered when the source generates the frame
until it reaches its destination. Thus, it includes delays due to transmission, queuing, and
contention [62].

4.4.2. Throughput

This metric refers to all the data frames that have been received successfully at the
destination of the communication. This metric is obtained through Equation (5) [62].

S =
RxBytes × 8

TxTime
(5)

where the RxBytes is the number of the received frames in bytes, and TxTime is the duration
between the last received frame and the first transmitted frame.

4.4.3. FER

This metric is calculated through Equation (6). Since in IEEE 802.11, all the successfully
received frames by the destination are acknowledged, to obtain the Frame Success Rate
(FSR), we divided the number of acknowledged frames by the total transmitted frames [63].

FER = 1 − FSR (6)

4.4.4. Collision Rate

The collision occurs when two or more stations try to send data frames over the shared
channel simultaneously. This metric is calculated through Equation (7).

Collision rate =
Rxerror

Rxerror + RxOk
2

(7)

where Rxerror and RxOk represent the total number of the frames that have been received
unsuccessfully and successfully, respectively. Since in a successful transmission RxOk is
taken into account twice (one for the data frame and one for the ACK frame), to calculate
the collision rate value, we need to divide RxOk by 2.

4.4.5. PLR

This metric is calculated by Equation (8).

PLR = 1 − PDR (8)

where the Packet Delivery Ratio (PRD) is the number of delivered packets divided by the
total number of sent packets [62].
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4.4.6. Fairness

This metric is defined through Jain’s fairness index (see Equation (9)), which deter-
mines the share of each station in the network resources [64]. This value is bounded
between 0 and 1 (all stations have the same share of resources).

Fairness =
(∑n

i=1 Si)
2

n × ∑n
i=1 Si

2 (9)

where Si is the throughput of the ith station, and n represents the number of the stations in
the network.

4.4.7. Objective Function

OF =
Remaining energy

Delay × PLR
(10)

Since, in this paper, our target is to reduce energy consumption while maintaining
the QoS requirement for medical applications, there is a need to define the level of QoS
parameters for each medical application. For this reason, Table 4 is proposed based on the
existing literature on real-time, emergency, and medical applications. Medical monitor-
ing applications, along with video and telemetry alarm, are time-sensitive applications,
while the Electronic Medical Record (EMR) is not a time-sensitive application. The ECG
and Electroencephalogram (EEG) applications are considered applications with moderate
latency, which means the end-to-end delay needs to be lower than 250 ms. In contrast, since
a telemetry alarm is considered an emergency application, it requires a lower end-to-end
delay (<100 ms). In EMR and video, this value can be higher(<400 ms). The required
bandwidth for all medical applications remains the same (1 Mbps); however, in the case of
video streaming, due to its high data rate, larger bandwidth is required. The PLR metric
has to stay under 10% for all the medical applications and emergency services. However,
in the case of video streaming, this value has to reduce to 5%. In Section 6, we will validate
our analysis and obtain results based on Table 4.

Table 4. Quality of service requirements for e-Health applications.

Application Type

QoS Parameters

End-to-End Required Packet Loss Jitter Sensitivity
Delay (ms) Bandwidth (Mbps) Ratio (%) (ms) to Context

ECG [40,65,66] <250 1 <10 25 3
EEG [40,65,66] <250 1 <10 25 3

EMR [40,67,68] <300 1 <10 30 7
Telemetry alarm [40,65] <100 1 <10 25 3

Video [69] 150–400 2 <5 30 7

5. Simulation Setup

To evaluate the performance of the proposed system model, we implement a dense
solar-based Wi-Fi network in a field hospital in the ns-3 simulation environment. In this
section, we explain the simulation setup environment under designated conditions.

5.1. Network Scenario Definition and Assumptions

We consider a field hospital to be the simulation environment, where the relevant
propagation loss model is the hybrid buildings propagation loss. The field hospital has
one floor of 3 m height off the floor. The type of the hospital is considered an office-
type building. The area of the field hospital is 40 m × 80 m, and the size of each room
inside the field hospital is defined as 20 m × 20 m. The rooms are separated via wooden
walls, and the external walls are considered concrete with windows. We locate one AP in
the center of each room and associate the n number of non-AP stations to each AP. The



Sensors 2022, 22, 3831 19 of 32

stations are arranged in a circular pattern around the AP in each room, ranging in the
distance from 1 to 10 m, and connect with the AP in the uplink direction. In this paper,
the transmission performance is based on the IEEE 802.11n amendment. This represents
a worst-case scenario since IEEE 802.11n uses the 2.4 GHz frequency band, which suffers
from interference that impacts its performance, particularly in dense environments. In each
set of simulations, to evaluate the performance of the network model, we consider the
network size of five non-AP stations associated with each AP. The layout of the deployment
when n = 5 is illustrated in Figure 9, where the brown lines represent the internal walls, and
the black lines demonstrate the external walls. Moreover, the blue triangles and red circles
represent APs and non-AP stations, respectively. In addition, the depicted numbers on the
X and Y dimensions, represent the length of each room corresponding to these dimensions.

Each station is equipped with four different e-Health applications (ECG, EEG, EMR,
and Telemetry alarm) in the simulations. The demonstration of the physical and default
EDCA MAC layers parameters and medical traffic characteristics for the simulation are
detailed in Table 5, Table 1 and Table 6, respectively.

Room's dimension in the x-axis (m)

Figure 9. Layout of the Wi-Fi deployment in field hospital.

According to the priority of each e-Health application, specific access categories are
defined for them. Telemetry alarm has the highest priority (ACVO) among the selected
applications in these network evaluations, and ECG, EEG, and EMR have the lowest
priority (ACBE). To calculate the ON-OFF period in the case of the telemetry alarm, since
the traffic pattern shows 3.6 events per hour and each event duration is 1 s, we divide
the number of events per hour to find the probability of the ON period (0.001) and the
probability of the OFF period is 0.999. In the case of EEG [70] the probability of the OFF
period is defined as 0.71; consequently, the ON probability is 0.29. In the case of EMR, since
it represents the medical file transferring, it has a probability of 0.05 for the ON period and
0.95 OFF period. This means that file transmissions are not frequent. In the end, in the
case of ECG, the probability of the ON period is defined as 0.65, and the probability of OFF
duration is 0.35 [71]. Since ECG and EEG are both telemonitoring applications, the traffic
type for ON and OFF is defined as the Constant Bit Rate (CBR). However, telemetry alarms
and EMR have exponential traffic types (cf. Table 1).
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Table 5. Physical layer parameters for simulation.

Parameter Value

Wireless Standard IEEE 802.11n
Frequency band 2.4 GHz

Physical transmission rate MCS 5 for data frames
Propagation loss model Hybrid building propagation loss

External Wall penetration loss 7 dB
Internal Wall penetration loss 4 dB

Transmission power 16 dBm
Energy detection threshold −62 dBm

CCA mode1 threshold −82 dBm
Guard interval Short

Channel bandwidth 20 MHz
Channel Number 1

Aggregation Disable
Stations per AP 5

Table 6. Traffic characteristics in the simulation study.

Traffic Type ECG EEG EMR Telemetry
Alarm

Access Category BE BE BE VO

Traffic model ON-OFF ON-OFF ON-OFF ON-OFF
(0.650–0.350) (0.29–0.71) (0.05–0.95) (0.001–0.999)

CBR [72] CBR [40] Exponential [40] Exponential [40]

Data rate 12 kbps [71] 32 kbps [73] 4.1 Mbps [40] 5 kbps [40]

Packet
size (Bytes) 147 [40] 155 [73] 1528 [40] 668 [74]

Moreover, each non-AP station is equipped with a solar panel with the dimension of
17 cm2 whose size is matched with a remote blood oxygen monitoring [75]. Furthermore,
the geographic coordination of the panel is set to the Barcelona city with a latitude of
41.3851◦, longitude of 2.1734◦, and altitude of 12 m above the sea. To obtain the energy
consumption of each state of transmission, the current consumption of these states is
defined according to to [76]. Additionally to the solar panel, each non-AP station is
equipped with a Li-ion battery as a source of energy, whose characteristics are listed
in Table 7.

Moreover, each non-AP station is equipped with a solar panel with a dimension of
17 cm2 whose size is matched with a remote blood oxygen monitoring. Furthermore, the
geographic coordination of the panel is set to the Barcelona city with a latitude of 41.3851◦,
longitude of 2.1734◦, and altitude of 12 m above the sea. In addition to the solar panel, each
non-AP station is equipped with a Li-ion battery as a source of energy, whose characteristics
are listed in Table 7. To obtain the energy consumption of each state of transmission, the
current consumption of these states is defined according to [76].
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Table 7. Energy-related parameters.

Parameter Value

Panel dimension [58] 17 cm2

Panel latitude [58] 41.3851◦

Panel longitude [58] 2.1734◦

Panel altitude [58] 12.000 m
Harvesting update interval [58] 0.100 s

Initial energy [77] 100.000 J
Initial voltage [77] 3.200 v

Nominal voltage [77] 4.000 v
Exponential voltage [77] 4.000 v

Rated capacity [77] 0.950 Ah
Nominal capacity [77] 1.600 Ah

Exponential capacity [77] 0.200 Ah
Internal resistance [77] 0.035 Ω

Minimum threshold voltage [77] 3.000 v
Idle current [76] 0.233 A

Transmission current [76] 0.466 A
Reception current [76] 0.300 A

Sleep current [76] 0.020 A
CCA_Busy [76] 0.273 A

This setup permits us to examine the performance of our proposed algorithm by vary-
ing the CW value as a MAC parameter together with the offered sleep/wake-up method.

Next, the energy consumption based on the different communication states is analyzed.

5.2. Energy Consumption of Each Transmission State

To completely understand the total energy consumption in each transmission state of
the communication, we analyze the network performance under saturated traffic (there
is always a frame to transmit) and non-saturated traffic with and without applying the
sleep/wake-up method.

According to Figure 10, which demonstrates the energy consumption of each state
of transmission for the selected scenarios, in the case of saturated traffic (with/without
sleep), the most consuming energy is the reception state. The reason behind it is that in
Wi-Fi standard communications, the stations always sense the shared medium and receive
the preamble frame of the communications of all the contenders. Then they decode the
preamble frames only if they are meant for those stations. This procedure has a considerable
impact on energy consumption under saturated conditions. In contrast to the saturated
condition, in the case of the non-saturated network condition, since most of the time
stations are in the idle state, almost 80% of the consumed energy belongs to this state (cf.
Figure 10). In addition, Figure 10 coveys that applying sleep/wake-up mode reduces the
energy consumption from 23.77 J to 14.14 J and from 27.55 J to 15.17 J in non-saturated and
saturated scenarios, respectively. In the case of the saturated scenario, although the energy
consumption of all the transmission states reduces, this parameter is reduced to more than
half for the reception state. In the case of the non-saturated scenario, the most consuming
energy state is the idle state, whose energy consumption reduce to half by applying the
sleep/wake-up method.
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Figure 10. The idle and Rx states are responsible for most of a node energy consumption.

6. Performance Evaluation and Discussion

In this section, through extensive simulations, we assess the performance of our
AP coordination-based optimization algorithm in a solar-based dense Wi-Fi network im-
plemented in a field hospital. As described in Section 4, to find the most proper CW
combination for each medical application, the proposed simulations run in the selected
environment for each application individually based on three steps (i) CW changes on all
cells of the network, (ii) CW changes only on slave cells, (iii) CW changes only on master
cells. Then, we apply the sleep/wake-up mode to improve the network performance
regarding energy consumption. The analysis is based on the PLR and end-to-end delay as
the medical-grade QoS feature, FER, and energy consumption. Finally, we demonstrate the
importance of the energy harvester implementation in the network.

6.1. Adaptation to the CW Changes on All the Cells

Although IEEE 802.11 standard defines specific CW values for each AC, these values
may need to vary based on the network conditions for each type of traffic. The selection of
proper CW values has an essential impact on the network’s performance. For instance, the
network will suffer from a long delay if the CW values are selected as very large values.
In contrast, in the case of selecting a very small value for CW, the collision rate will increase.
Since we consider three different medical applications with distinct traffic models, we must
first find the most proper CW combination for each application in these simulations.

For this reason, we first increase the CW combinations from default values (the
standard combination for ACBE) to cases 1, 2, 3, and 4 in all the cells. Although different
possible combinations can be defined, to summarize the results, we consider four cases in
our simulations that are listed in Table 8. In these simulations, five non-AP stations are
associated with each AP during 30 s of the simulation run. We repeat the exact simulation
10 runs to obtain more accurate results.

Table 8. Label adaptation of CW combinations to find the optimal point.

Combination of CWmin Adapted Label in the Case of
and CWmax CW Changes in All the Cells

31–1023 Default
63–1055 case 1

127–1119 case 2
255–1247 case 3
511–1503 case 4
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6.1.1. CW Changes under ECG Application

Figure 11a shows the objective function in the case of ECG application when CW
changes in all the cells. According to the objective function, the most improvements in the
network belong to case 2. We can see that the objective function decrease in cases 3 and 4
due to the large CW combinations, which delay the transmission. The PLR parameter can
benefit from increasing the CW combination. However, selecting a large CW combination,
such as the ones in cases 3 and 4, increases the packet loss, which causes a reduction in
the objective function. The reason for this is that all the non-AP stations are delayed for a
longer duration.

In contrast to the delay and PLR parameters, energy consumption and FER can bene-
fit from increasing the CW combination, where FER has a significant reduction (47.62%)
among all other metrics (cf. Figure 11b). Although the energy consumption is decreased,
this reduction is almost 0.01% and is negligible. The reason for this is that selecting a larger
CW value reduces the collision ratio and FER, which both impact energy consumption.
Nevertheless, to choose the most proper combination and consider all four metrics together,
and based on the objective function, case 4 has the worst impact on the network perfor-
mance, and case 2 has the most suitable case for ECG application. In addition to the QoS
metrics, the results indicate a possible but slight improvement in throughput parameters.
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Figure 11. ECG QoS metrics and energy consumption under CW changes for all cells.

6.1.2. CW Changes under EEG and EMR Applications

According to the objective functions for EEG and EMR applications, which are illus-
trated in Figures 12a and 13a, the optimal case in both applications is case 1. Moreover, the
objective functions indicate that case 5 has the worst impact on the network performance.
The reason for this is that in case 5, the network suffers from large delay and PLR.

As shown in Figure 12b, all the metrics in the optimal case are improved even though
there is a slight increase in the throughput parameter. However, in the case of EMR
application (cf. Figure 13b), although FER is decreased by 32.66%, which causes a slight
reduction in the energy consumption, PLR and delay are increased by 10.28% and 5.61%.
Nevertheless, since the increasing percentage in PLR and delay are drastic, these two
metrics stay below the QoS restrictions for EMR application. By comparing the FER in
Figures 12b and 13b, we convey that a longer delay causes more reduction in FER and
energy consumption. Therefore, in case 4, with a larger CW combination, there is a huge
improvement in network performance in terms of FER and energy consumption. However,
we cannot consider this case to be the optimal point due to its large PLR and delay that
cause a drastic reduction in the objective function. Thus, we need to take into consideration
the best value of all the metrics simultaneously. For this reason, case 2, with the least
PLR and delay for both applications, has the best network performance under this CW
combination. As objective functions demonstrate, this case is considered to be the optimal
CW combination.
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Figure 12. EEG QoS metrics and energy consumption under CW changes for all cells.
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Figure 13. EMR QoS metrics and energy consumption under CW changes for all cells.

We observe that the proper CW combination for ECG application is larger than the
CW combination for EEG and EMR applications. The reason for that is the traffic type of
this application with a larger probability for the ON period compared to EEG and EMR
applications.

6.2. Adaptation to CW Changes on Slave Cells

In the next step, we evaluate the network’s performance when the master cells keep
their CW values constant based on the previous step (optimal combination) and request
the slave cells to increase their CW values.

6.2.1. CW Changes under ECG Application

Increasing the CW values on the slave cells allows the master cells to improve their
medical-grade QoS metrics and energy consumption performance by starting the trans-
mission faster than the slave cells. The larger the CW combination selected, the more the
network benefits. As shown in Figure 14a, by comparing the obtained results to the default
case, the maximum objective function belongs to case 4. However, similar to the previous
results, the percentage reduction in energy consumption is negligible.
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Figure 14. ECG QoS metrics and energy consumption under CW changes for slave cells.
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6.2.2. CW Changes under EEG and EMR Applications

Similar to the ECG application, in the case of EEG and EMR applications, all the QoS
metrics benefit from a larger CW selection. Increasing the CW values for EEG application
has the most impact on the PLR parameter by decreasing 73.33% from the standard value
(cf. Figure 15b), and the EMR application has the most impact on the FER by a 64.32%
decrease (cf. Figure 16b).
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Figure 15. EEG QoS metrics and energy consumption under CW changes for slave cells.

We observe that to increase the performance of the master cells and give more oppor-
tunity for them to transmit faster with less collision, the CW values in the slave cells need
to be larger than the CW values in the master cells. However, selecting a minimal CW value
for the master cell increases the collision among them and degrades their performance. For
this reason, we need to find the most proper CW combination for master cells as well.

0

100

200

300

400

500

600

Default Case 2 Case 3 Case 4

O
b

je
ct

iv
e 

F
u

n
ct

io
n

(a) Objective Function

50.54

14.91

0.06

64.33

0

10

20

30

40

50

60

70

Delay PLR Energy FER Throughput

%
D

ec
re

a
se

-0.3

(b) Performance at the optimal point

Figure 16. EMR QoS metrics and energy consumption under CW changes for slave cells.

6.3. Adaptation to CW Changes on Master Cells

As mentioned previously, by increasing the CW value on slave cells and delaying their
transmissions, the master cells will have more opportunities to start transmission. Addi-
tionally, shrinking the CW values on master cells will offer them even more opportunities
to start the transmissions faster. However, this can increase the collision rate among master
cells with smaller CW values. Therefore, there is an optimal CW value for master cells to
increase their transmission opportunity. In this step, the slave cells keep the CW values
constant based on the previous step to case 4 for all three applications and gradually shrink
the CW values on the master cells according to Table 9.
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Table 9. Label adaptation of CW combinations in master cells.

Combination of CWmin and CWmax
Adapted Label in the Case of CW Changes in

Master Cells

31–1023 Default
123–1116 case 5
119–1112 case 6
115–1108 case 7

6.3.1. CW Changes under ECG and EEG Applications

In this set of simulations, the CW values in master cells shrink from case 5 to case 7.
In the ECG application, as shown in Figure 17a, case 5 is the optimal selection, where the
PLR benefits more than other metrics and decreases by 100% (cf. Figure 17b). However,
this reduction cannot be observed in energy consumption, where the decrease percentage
is only 0.01%. Similarly, in the EEG application, as the objective function demonstrates,
case 5 is the optimal CW combination, where the delay and FER benefit more than other
metrics (cf. Figure 18b).

In this combination, CW values in slave cells stay large enough to allow master cells to
start communication before them. The CW values in master cells are small enough to make
their transmission faster while maintaining the level of medical-grade QoS requirements
below the restrictions.
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Figure 17. ECG QoS metrics and energy consumption under CW changes for master cells.
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Figure 18. EEG QoS metrics and energy consumption under CW changes for master cells.

6.3.2. CW Changes under EMR Application

In contrast to the ECG and EEG applications, in EMR application case 6 demonstrates
the maximum decrease in delay and PLR (cf. Figure 19b and while having an acceptable
level of decrements in FER 66.79%.
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Figure 19. EMR QoS metrics and energy consumption under CW changes for master cells.

The analysis based on the obtained results indicates that, although the medical-grade
QoS requirement is met through our AP coordination-based algorithm, the energy con-
sumption reduction compared to the standard CW combination is not as much as QoS
metrics. For this reason, in the following subsection, we will introduce the sleep/wake-up
mode to reduce the network’s energy consumption with a focus on master cells.

6.4. Sleep/Wake-Up Mode with CW Changes

As we explained in Section 4, to reduce the network’s total energy consumption, we
introduce a sleep/wake-up mode to the network with the optimal CW combinations in both
master and slave cells. According to this method, for the case of simplicity, the wake-up
duration and sleep duration for the master cell are defined as 0 s–0.5 s and 0.5 s–1.0 s,
respectively. In this method, while the master cell is in sleep mode, the slave cell has
permission to transmit, and during the wake-up duration of the master cell, it is sent to
sleep mode. To avoid losing frames and degrading the network’s performance in terms of
throughput for each medical application, we double the data rate. In this case, in the ON
period (0.5 s), each application transmits the same amount of data sent before.

Compared to the obtained results of the standard without sleep/wake-up mode,
although PLR in both ECG and EEG applications increases, it still stays below the QoS
restrictions. Nevertheless, other QoS parameters such as delay and FER improve, and en-
ergy consumption experiences a considerable reduction of almost 40% in both applications
(cf. Figure 20c).

6.5. Impact of Energy Harvester

As we explained throughout the paper, IoT systems benefit from deploying energy
harvesting technologies, specifically when providing a reliable energy source for devices.
Thus, to reveal the critical role of the energy harvester in our simulations, we compared the
network’s remaining energy in two scenarios while changing the size of the solar panel.
On the one hand, with the implementation of the proposed algorithm, and on the other
hand, without the proposed algorithm. The results indicate that in the network without the
algorithm’s implementation, larger panel size is required to provide enough energy to the
network system (the smallest possible dimension, in this case, is 47 cm2). However, when
applying the algorithm, it is possible to reduce the size of the panel from 47 cm2 to 7 cm2,
which means the harvested energy from a panel size of 7 cm2 will be sufficient to keep the
system to powered up. This comparison, which is illustrated in Figure 21, conveys the
effectiveness of the proposed algorithm on the solar panel size reduction, and consequently,
the feasibility of the cooperation of the energy harvesting technologies and Wi-Fi-based
IoT systems.
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Figure 20. Desired QoS metrics and energy consumption under CW changes with sleep/wake-
up mode.
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Figure 21. Impact of the proposed algorithm on the selection of the solar panel.

6.6. Discussion

Results show that the EDCA CW selection should be adapted for different medical
applications. For instance, in the presented work, since the traffic characteristics of the
considered medical applications (ECG, EEG, and EMR) are varying, there is not a unique
valid CW combination. Thus, there is an optimal CW combination within the same AC for
each application. Furthermore, according to the results, the network performance in terms
of medical-grade QoS, in this case, delay and PLR, can be improved by introducing AP
coordination within IEEE 802.11 standard. In this context, first, the transmission in slave
cells is delayed by increasing their CW values, then the CW values shrink in master cells to
give them more opportunity to start the transmission. However, there is an optimal value
for CW values in both master and slave cells to not increase the collision rate probability
by decreasing the CW and delay the slave a lot by increasing this value. Additionally,
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the proposed sleep/wake-up mode considerably reduces energy consumption in medical
applications without violating the QoS restrictions. Finally, we indicate the importance of
the energy harvester in the system and the effectiveness of our proposed algorithm, which
can reduce the dimension of the required solar panel.

7. Conclusions and Future Works

This paper presents a novel e-Health-oriented communications system, simulated
in ns-3, where the cooperation of energy harvesting technologies with Wi-Fi-based IoT
systems is possible. We introduced an AP coordination-based optimization algorithm in
the MAC layer that encounters the optimal CW combination in both master and slave
cells separately to improve the non-AP station’s performance associated with the master
APs in terms of medical-grade QoS. The results indicate that the proposed algorithm can
improve the level of the QoS metrics for considered applications at most 80% (different for
various applications and metrics). In addition, the proposed algorithm aligned with the
sleep/wake-up method introduces a reduction of more than 40% in the network’s energy
consumption while maintaining the QoS metrics below the restriction level. We consider
that this paper could shed light on enabling the integration of energy harvesting in IoT
systems. In future work, this study can be expanded in terms of adapting the proposed
algorithm to other MAC layer parameters rather than just CW. In addition, to covey a
more profound analysis, the per non-AP station evaluation for a more dense network can
be conducted.
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45. Ali, M.Z.; Mišić, J.; Mišić, V.B. Performance evaluation of heterogeneous IoT nodes with differentiated QoS in IEEE 802.11 ah
RAW mechanism. IEEE Trans. Veh. Technol. 2019, 68, 3905–3918. [CrossRef]

46. Filoso, D.G.; Kubo, R.; Hara, K.; Tamaki, S.; Minami, K.; Tsuji, K. Proportional-based resource allocation control with QoS
adaptation for IEEE 802.11 ax. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC),
Dublin, Ireland, 7–11 June 2020; pp. 1–6.

47. Malche, T.; Tharewal, S.; Tiwari, P.K.; Jabarulla, M.Y.; Alnuaim, A.A.; Hatamleh, W.A.; Ullah, M.A. Artificial Intelligence of
Things-(AIoT-) Based Patient Activity Tracking System for Remote Patient Monitoring. J. Healthc. Eng. 2022, 2022, 8732213.
[CrossRef]

48. Sheela, K.G.; Varghese, A.R. Machine Learning based health monitoring system. Mater. Today: Proc. 2020, 24, 1788–1794.
49. Fafoutis, X.; Sørensen, T.; Madsen, J. Energy harvesting-wireless sensor networks for indoors applications using IEEE 802.11.

Procedia Comput. Sci. 2014, 32, 991–996. [CrossRef]
50. Lin, H.-H.; Shih, M.-J.; Wei, H.-Y.; Vannithamby, R. DeepSleep: IEEE 802.11 enhancement for energy-harvesting machine-to-

machine communications. Wirel. Netw. 2015, 21, 357–370. [CrossRef]
51. Shafique, K.; Khawaja, B.A.; Khurram, M.D.; Sibtain, S.M.; Siddiqui, Y.; Mustaqim, M.; Chattha, H.T.; Yang, X. Energy harvesting

using a low-cost rectenna for Internet of Things (IoT) applications. IEEE Access 2018, 6, 30932–30941. [CrossRef]
52. Blobel, J.; Tran, V.H.; Misra, A.; Dressler, F. Low-Power Downlink for the Internet of Things using IEEE 802.11-compliant Wake-Up

Receivers. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada,
10–13 May 2021; pp. 1–10.

53. Kim, S.C.; Jeon, J.H.; Park, H.J. QoS Aware Energy-Efficient (QAEE) MAC Protocol for Energy Harvesting Wireless Sensor
Networks. In Proceedings of the International Conference on Hybrid Information Technology (ICHIT), Daejeon, Korea, 23–25
August 2012; Springer: Berlin/Heidelberg, Geramny, 2012; pp. 41–48.

54. Sarang, S.; Drieberg, M.; Awang, A.; Ahmad, R. A QoS MAC protocol for prioritized data in energy harvesting wireless sensor
networks. Comput. Netw. 2018, 144, 141–153. [CrossRef]

55. Naderi, M.Y.; Nintanavongsa, P.; Chowdhury, K.R. RF-MAC: A Medium Access Control Protocol for Re-Chargeable Sensor
Networks Powered by Wireless Energy Harvesting. IEEE Trans. Wirel. Commun. 2014, 13, 3926–3937. [CrossRef]



Sensors 2022, 22, 3831 32 of 32

56. Kim, T.; Park, J.; Kim, J.; Noh, J.; Cho, S. REACH: An Efficient MAC Protocol for RF Energy Harvesting in Wireless Sensor
Network. Wirel. Commun. Mob. Comput. 2017, 2017, 6438726. [CrossRef]

57. Guntupalli, L.; Gidlund, M.; Li, F.Y. An On-Demand Energy Requesting Scheme for Wireless Energy Harvesting Powered IoT
Networks. IEEE Internet Things J. 2018, 5, 2868–2879. [CrossRef]

58. Benigno, G.; Briante, O.; Ruggeri, G. A Sun Energy Harvester Model for the Network Simulator 3 (ns-3). In Proceedings of the
2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking-Workshops (SECON Workshops),
Seattle, WA, USA, 22–25 June 2015; pp. 1–6.

59. Nurzaman, A.; Iftekhar, H.M. Periodic traffic scheduling for IEEE 802.11 ah networks. IEEE Commun. Lett. 2020, 24, 1510–1513.
60. Wu, H.; Nabar, S.; Poovendran, R. An Energy Framework for the Network Simulator 3 (ns-3). In Proceedings of the 4th

International ICST Conference on Simulation Tools and Techniques, Seattle, WA, USA, 22–25 June 2011; pp. 222–230.
61. Feeney, L.M.; Nilsson, M. Investigating the energy consumption of a wireless network interface in an ad hoc networking

environment. In Proceedings of the IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society (Cat. No. 01CH37213), Anchorage, AK, USA, 22–26 April 2001;
Volume 3; pp. 1548–1557.

62. Carneiro, G.; Fortuna, P.; Ricardo, M. Flowmonitor: A network monitoring framework for the network simulator 3 (ns-3). In
Proceedings of the Fourth International ICST Conference on Performance Evaluation Methodologies and Tools, Pisa Italy, 20–22
October 2009; pp. 1–10.

63. Afaqui, M.S.; Brown, S.; Farrell, R. Detecting MAC Misbehavior of IEEE 802.11 Devices within Ultra Dense Wi-Fi Networks.
In Proceedings of the 2018 25th International Conference on Telecommunications (ICT), Saint-Malo, France, 26–28 June 2018;
pp. 213–219.

64. Jain, R.K.; Chiu, D.M.; Hawe, W.R. A Quantitative Measure of Fairness and Discrimination; Eastern Research Laboratory, Digital
Equipment Corporation: Hudson, MA, USA, 1984.

65. Cisotto, G.; Casarin, E.; Tomasin, S. Requirements and enablers of advanced healthcare services over future cellular systems.
IEEE Commun. Mag. 2020, 58, 76–81. [CrossRef]

66. Ibarra, E.; Antonopoulos, A.; Kartsakli, E.; Rodrigues, J.P.C.; Verikoukis, C. QoS-aware energy management in body sensor nodes
powered by human energy harvesting. IEEE Sens. J. 2015, 16, 542–549. [CrossRef]

67. Kokkonis, G.; Psannis, K.; Kostas, E.; Roumeliotis, M.; Ishibashi, Y.; Kim, B.-G..; Constantinides, A.-G. Transferring wireless high
update rate supermedia streams over IoT. In New Advances in the Internet of Things; Springer: Cham, Switzerland, 2018; pp. 93–103.

68. Al-Tarawneh, L.A. Medical Grade QoS Improvement Using IEEE802. 11e WLAN Protocol. In Smart Technologies and Innovation for
a Sustainable Future; Springer: Cham, Switzerland, 2019; pp. 229–235.

69. Martiradonna, S.; Cisotto, G.; Boggia, G.; Piro, G.; Vangelista, L.; Tomasin, S. Cascaded WLAN-FWA networking and computing
architecture for pervasive in-home healthcare. IEEE Wirel. Commun. 2021, 28, 92–99. [CrossRef]

70. Mukhopadhyay, S. Design of Low-Power Wireless Electroencephalography (EEG) System; Technical Report; Georgia Institute of
Technology: Atlanta, GA, USA, 2011.

71. Liang, X.; Balasingham, I. Performance Analysis of the IEEE 802.15.4 based ECG Monitoring Network. In Proceedings of the
7th IASTED international Conferences on Wireless and Optical Communications, Montreal, QC, Canada, 30 May–1 June 2007;
Citeseer: University Park, PA, USA, 2007; pp. 99–104.

72. Yuce, M.R.; Khan, J. Wireless Body Area Networks: Technology, Implementation, and Applications; CRC Press: Boca Raton, FL, USA,
2011.

73. Fauvel, S.; Ward, R.K. An energy efficient compressed sensing framework for the compression of electroencephalogram signals.
Sensors 2014, 14, 1474–1496. [CrossRef]

74. Park, K.-J.; Shrestha, D.M.; Ko, Y.-B.; Vaidya, N.H.; Sha, L. IEEE 802.11 WLAN for Medical-Grade QoS. In Proceedings of the 1st
ACM International Workshop on Medical-Grade Wireless Networks, New York, NY, USA, 18 May 2009; pp. 3–8.

75. Zacurate Company. Zacurate 500DL Pro Series Fingertip Pulse Oximeter. Available online: https://zacurate.com (accessed on 10
April 2022).

76. Adame, T.; Bel, A.; Bellalta, B.; Barceló, J.; Gonzalez, J.; Oliver, M. Capacity analysis of IEEE 802.11 ah WLANs for M2M
communications. In Proceedings of the International Workshop on Multiple Access Communications, Vilnius, Lithuania, 16–17
December 2013; Springer: Cham, Switzerland, 2013; pp. 139–155.

77. Tapparello, C.; Ayatollahi, H.; Heinzelman, W. Energy harvesting framework for network simulator 3 (ns-3). In Proceedings of
the 2nd International Workshop on Energy Neutral Sensing Systems, Memphis TN, USA, 6 November 2014; pp. 37–42.



4. ENABLING ENERGY HARVESTING-BASED WI-FI SYSTEM
FOR AN E-HEALTH APPLICATION: A MAC LAYER
PERSPECTIVE

138



5

Introducing reinforcement
learning in the Wi-Fi MAC layer
to support sustainable
communications in e-Health
scenarios

This chapter introduces innovative contributions, including an RL-based opti-
mization algorithm for solar-powered Wi-Fi networks, which was published as a
journal article in IEEE Access. The algorithm is specifically designed to inte-
grate EH technologies and ensure QoS for medical applications. The algorithms
effectively reduce energy consumption and meet QoS parameters for medical ap-
plications, such as PLR and E2E delay, thereby improving network performance
in medical-grade scenarios. This innovative approach highlights the novelty of
the research and its potential to advance the field.
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ABSTRACT The crisis of energy supplies has led to the need for sustainability in technology, especially in
the Internet of Things (IoT) paradigm. One solution is the integration of passive technologies like Energy
Harvesting (EH) into IoT systems, which reduces the amount of battery replacement. However, integrating
EH technologies within IoT systems is challenging, and it requires adaptations at different layers of the IoT
protocol stack, especially at the Medium Access Control (MAC) layer due to its energy-hungry features.
Since Wi-Fi is a widely used wireless technology in IoT systems, in this paper, we perform an extensive
set of simulations in a dense solar-based energy-harvesting Wi-Fi network in an e-Health environment.
We introduce optimization algorithms, which benefit from the Reinforcement Learning (RL) methods to
efficiently adjust to the complexity and dynamic behaviour of the network. We assume the concept of Access
Point (AP) coordination to demonstrate the feasibility of the upcoming Wi-Fi amendment IEEE 802.11bn
(Wi-Fi 8). This paper shows that the proposed algorithms reduce the network’s energy consumption by up
to 25% compared to legacy Wi-Fi while maintaining the required Quality of Service (QoS) for e-Health
applications. Moreover, by considering the specific adjustment of MAC layer parameters, up to 37% of the
energy of the network can be conserved, which illustrates the viability of reducing the dimensions of solar
cells, while concurrently augmenting the flexibility of this EH technique for deployment within the IoT
devices. We anticipate this research will shed light on new possibilities for IoT energy harvesting integration,
particularly in contexts with restricted QoS environments such as passive sensing and e-Healthcare.

INDEX TERMS Medical Internet of Things, access point coordination, sleep/wake-up, machine learning,
reinforcement learning, energy harvesting technologies, passive communications.

I. INTRODUCTION
According to Cisco, approximately 30 billion connected
Internet of Things (IoT) devices will exist by the end
of 2023 [1], this fast development and deployment of
IoT ecosystems, from smart cities to smart agriculture,
have a negative impact on the environment and planetary

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

resources [2]. One crucial factor in mitigating these harmful
effects is sustainability, which can be conducted through
various passive technologies such as Energy Harvesting (EH)
techniques. EH technologies are environment-friendly and
reliable approaches that have the ability to expand the lifespan
of IoT devices, enable multifunctional wireless networks,
while also diminishing the disadvantages of conventional bat-
teries. The wind and solar photovoltaic capacity experiences
a threefold growth, surging from approximately 75 GW in
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2020 to 230 GW by 2030 [3]. In addition, EH technologies
are the leading part of the Net Zero 2050 project [4],1

in which the trade-off between emitted greenhouse gases
to the atmosphere and the amount of removed greenhouse
gases from the atmosphere is balanced. On the one hand,
Medical IoT (MIoT) allocates 20% of the global IoT
systems [5], and on the other hand, healthcare is responsible
for 4-5% of the emissions of greenhouse gases. Thus,
using these technologies in MIoT delivers a threefold
advantage: reducing the amount of greenhouse gas emis-
sions [6], lowering maintenance costs, and improving human
well-being [7].

An illustrative example of the importance of the EH in
MIoT can be presented in a pandemic situation, such as
the COVID-19 crisis in 2020. Hospitals’ total capacity was
nearly occupied by patients needing special medical care,
and thus, field hospitals or mobile medical units had to be
quickly assembled under critical circumstances. Since one
essential issue in establishing mobile medical units is to
provide reliable and adequate energy sources, cooperating
energy harvesting technologies (solar cells, piezoelectric, and
thermoelectric harvesters) might assist in offering sustainable
communications and energy sources, especially for medical
devices and monitoring systems.

Pursuing sustainability in Information and Communication
Technology (ICT), specifically wireless communications,
is a concerning issue where carbon-based energy carriers
fuel systems. It has been estimated that around 80% of
greenhouse gas emission is due to carbon-based energy
carriers (fossil fuels such as coal, oil, natural gas, gasoline,
and diesel fuel) [8]. As stated by the authors in [9], wireless
communication constitutes 75% of ICT, with wireless being
the predominant mode of communication in IoT systems.
Wireless communications presently contribute to 4% of
the total global CO2 emissions, which is projected to
rise due to the growing number of connected devices.
To reduce the emission of greenhouse gases, it is necessary
to understand the energy requirement of the systems and
minimize the usage of these energy carriers, whether by
introducing EH technologies and renewable energy carri-
ers or applying energy-efficient methods. In this regard,
selecting an appropriate wireless technology and integrating
it with a proper EH technique in terms of power density
and form factor is essential for successful integration.
Optimization algorithms such as channel adaptation or
energy-aware routing algorithms have been used to reduce
energy consumption at different layers of the IoT protocol
stack. However, since Medium Access Control (MAC) layer
operations consume most of the wireless communication’s
energy budget, this layer can benefit more from optimization
algorithms such as channel access optimization methods.
Given that advanced energy optimization methods involve

1The theUnitedNations (UN) and the Intergovernmental Panel onClimate
Change (IPCC) lead in promoting net zero emissions. The 2015 Paris
Agreement, under the UNFCCC, urges nations to achieve net zero emissions
by the latter half of the 21st century.

the consideration of increasingly complex features, the
significance of Machine Learning (ML) algorithms in this
context cannot be underestimated.

IEEE 802.11, commonly referred to as Wi-Fi, is the
dominant wireless communication technology in indoor IoT
systems (it is reported that 51% of the wireless commu-
nication in 2022 belongs to Wi-Fi communication [10]).
The channel access method of legacy IEEE 802.11 includes
the contention-based Enhanced Distributed Channel Access
(EDCA) mechanism, which defines four Access Categories
(AC) for provisioning Quality of Service (QoS) for different
traffic types based on the MAC layer parameters. The afore-
mentioned EDCA mechanism is used to support service dif-
ferentiation by assigning different Contention Window (CW)
sizes, transmit opportunity (TXOP), Arbitration Inter-Frame
Space (AIFS), and retransmission limit value. However,
it faces inherent issues of using static parameters assignment
of CW size AIFSN, TXOP limit, and retransmission limit
without taking into consideration the current status of ACs
as well as the number of stations competing to gain access
to the shared channel. In addition, there might be another
issue, where stations can act selfishly and choose a very
small CW in order to increase their channel access [11].
This results in a decrease in channel access opportunities for
well-behaved stations. Lastly, EDCA does not differentiate
between applications with the same traffic type but different
levels of QoS requirements. This means that applications
with high QoS requirements may experience higher latency
or packet loss than applications with low QoS requirements.
Consequently, these issues affect the manner in which the
stations contend to access the shared channel, which leads
to more collisions and thus impacts the overall performance
of the network. These issues become a complex problem
in dense deployments, which are characterized by frequent
collisions [12]. The increased collision rate can impact energy
consumption as they need retransmissions and activating
collision avoidance mechanisms, leading to increased energy
usage. Therefore, integrating EH techniques with a dense
Wi-Fi network in a medical environment poses significant
challenges due to collisions and increased energy consump-
tion, making it a complex problem. Moreover, the existing
IEEE 802.11 channel access mechanism with predefined
MAC layer parameter configurations is unable to meet the
specific QoS requirements mandated in medical settings.
Despite these obstacles, exploring the implementation of EH
techniques in such networks remains essential to unlock their
potential benefits.

In recent years, ML algorithms have demonstrated a
powerful capability to improve and evolve optimization
problems from classical optimization methods in wireless
networks [13]. For instance, features such as the Access Point
(AP) coordination mechanism in Wi-Fi 7 and beyond can
reduce the network’s energy consumption by coordinating
the schedules of the transmission time between APs, and
reducing the overall delay of the network [14]. To meet this
feature, complex configurations, and non-linear optimization
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are required that can be fulfilled through ML-based algo-
rithms. Thus, ML algorithms are necessary, particularly
in the MAC layer operations and mechanisms, to make
the configuration dynamic, flexible, and energy-efficient
for dense and heterogeneous networks while provisioning
QoS requirements. Furthermore, these algorithms can play
a crucial role in optimizing the MAC layer to support EH
techniques. By leveragingML, the MAC layer can adaptively
adjust parameters based on real-time network conditions
and harvested energy availability. This integration of ML
and EH enables intelligent resource management, reducing
collisions, improving energy efficiency, and maximizing the
benefits of energy harvesting in wireless networks. Through
efficient resource allocation and intelligent energy manage-
ment, ML-enhanced MAC layer operations help in enabling
a more sustainable approach to wireless communication by
minimizing energy waste and prolonging the lifespan of
battery-powered devices.

To the best of our knowledge, this is one of the first
papers that tries to achieve sustainability in IoT-based
QoS-restricted2 dense MIoT scenarios. Three ML-based
algorithms are proposed which intend to guarantee the QoS
requirements - End-to-End delay (E2E delay) and Packet
Loss Ratio (PLR) - while maximizing the total remaining
energy of the network and consequently reducing the
emission of the greenhouse gases. This article is recapitulated
in the following contributions:

• We propose novel RL-based optimization algorithms for
a solar-based Wi-Fi system in a medical IoT scenario.

• We assume the AP coordination concept from the
upcoming Wi-Fi amendment (IEEE 802.11bn) while
supporting backward compatibility with the IEEE
802.11 standard.

• We present an objective function to maximize remain-
ing energy and minimize E2E delay and PLR for
medical-grade QoS criteria.

• We accomplish an extensive set of simulations on
Network Simulator 3 (ns-3) to evaluate the suitability of
our proposals.

The remainder of this article is structured as follows.
In Section II, we highlight the relevant studies in the
literature. The existing problem is elaborated in Section III.
Sections IV and V explain the methodology and simulations
setup, respectively. Section VI is devoted to the performance
evaluation of the proposals’ analytical discussions. Finally,
in Section VII, we provide final remarks and future work.

II. RELATED WORK
Modifying and optimizing the MAC layer operations of
IEEE 802.11 has undergone a lot of investigations and
research studies. However, these optimization studies do not

2QoS-restricted scenario refers to a situation where the available network
resources, such as bandwidth, capacity, energy, and processing power, are
limited due to the high number of connected stations. This limitation creates
challenges in delivering the desired level of service to all applications or users
simultaneously.

address the dense EH-based QoS-restricted environments,
which require dynamic changes, such as medical IoT systems
where real-time, emergency, and multimedia applications are
employed.

A set of techniques described in the literature consists of
modifying the initialization of the MAC layer parameters,
such as CW, AIFS, and TXOP, to adjust the channel
access scheduling in the EDCA mechanism. Dynamic
initialization of AIFS is presented in [15] to support
QoS requirements for real-time and non-real-time medical
applications. Nevertheless, this algorithm is not able to meet
QoS in a saturated condition. Other works intend to address
QoS-restricted environments by defining fixed or dynamic
CW values adaptation algorithms. In [16], the authors explain
an algorithm that doubles the CW values when the channel is
busy, or collision occurs, whereas in [17], the authors define
a dynamic selection of CW values based on the traffic load
of the network to reduce the collision rate and transmission
delay in the network. However, these optimization algorithms
modify the fundamental of the EDCA mechanism, and they
may not be compatible with the IEEE 802.11 standardization.
In one of the most recent MAC layer modifications [18], the
authors proposed an enhanced Preliminary Channel Access
(PCA) method, which allows the transmission for Real-Time
Application (RTA) access to the channel faster than other
transmissions compared to PCA and EDCA mechanisms.
The aim of this study aligns with Wi-Fi 7, where low
delay and high reliability are the two requirements for the
RTA use cases. The proposed mechanism provides backward
compatibility inWi-Fi scenarios. However, this work does not
include any energy-related analysis.

There are a few energy-harvesting MAC layer protocols
in the literature which consider the integration of the energy
harvesting technologies with WLAN communication. Some
of these works try to achieve an energy-efficient MAC
protocol even by only increasing the energy budget of
the network or reaching an optimal energy consumption
point. In [19], the authors propose algorithms to reduce
the energy consumption of a Wi-Fi solar-based network.
Whereas in [20], an optional energy-saving mode feature
in IEEE802.11ah is evaluated along with the EH technique
deployment. However, the authors do not consider QoS
restricted environment in these works.

Another set of techniques used in the literature is based
on ML. Specifically, RL is able to provide reliable solu-
tions to complex decision-making problems. Recently, these
techniques have attracted more attention among researchers
in the wireless communication networks area. Proposing
new features in the IEEE 802.11be and beyond to meet
the IoT systems requirements (distributed management
and deployment) may increase the Wi-Fi network’s den-
sity, dynamic condition, and complexity. Thus, deploying
RL-based algorithms becomes more influential in this
scenario [21]. The RL-based algorithms can be deployed in
IEEE 802.11 standard to optimize the existing techniques
and the defined parameters, which lead to reducing the
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collision probability, increased throughput, and optimized
frame length [22], [23], [24]. Recent studies demonstrate
that Deep RL (DRL) algorithm can improve the handovers
in mmWave communications [25], optimize the resource
unit allocation for multi-user scenarios [26], configure the
channel bonding [27], or address the channel allocation and
AP clustering issues in MIMO networks [28]. Other studies
on RL-based algorithms focus on Wi-Fi management, such
as the works presented in [29], [30] for channel and band
selection or management architecture [31].

An RL-based optimization algorithm for updating the CW
value based on the collision probabilities is proposed in [32],
in which the throughput increases while the delay maintains a
certain level. Although this mechanism introduces an optimal
point between the collision rate probability and CW increase
or decrease, it does not consider the network’s total energy
consumption and provision of QoS for applications with
different traffic types.

As indicated in Table 1, most of the aforementioned studies
benefit from the integration of the traditional RL with deep
neural networks, such as Deep RL (DRL) to handle complex
tasks, Deep Q-Network (DQN) to approximate the Q-value
function, Deep Deterministic Policy Gradient (DDPG) to
approximate both the policy and Q-value functions and offer-
ing better performance in continuous action domains, and
Deep Q-Learning (DQL) to handle high-dimensional state
spaces more effectively. In addition, some other approaches
focus onmaximizing the reward, such asMulti-ArmedBandit
(MAB) or the ones that consider interaction between agents,
such as Multi-Agent RL (MARL).

As stated in the introduction, while EH integration can
help IoT systems attain sustainability by lowering the demand
for traditional batteries, it also introduces new obstacles
regarding physical dimensions, communication protocols,
and user privacy. Thus, it is necessary to reduce the energy
budget of the IoT system to tackle energy-related issues,
which can be addressed through energy model optimizations.
One energy model optimization, proposed in [33], was the
first work to present the MAC layer operation modifications
(optimal selection of CW initialization) based on the type of
medical applications and AP coordination concept. However,
the authors conclude that an ML algorithm would benefit the
performance of such systems.

Table 1 demonstrates how our research contributes to the
field by comparing the features of the current study with the
relevant existing literature. According to the extensive study
on the existing literature, we believe that several outstanding
throughput and fairness optimization studies propose inno-
vative solutions that need a comprehensive transformation
and re-imagining of the IEEE 802.11 standard. Nevertheless,
ensuring backward compatibility poses a complex challenge,
as existing and old equipment cannot be changed. It is
essential to highlight that our effort is to strongly achieve
backward compatibility in the proposed RL-based algorithms
that focus on optimizing the energy (remaining) of the
network.

To the best of our knowledge, no RL-based MAC layer
optimization assesses the feasibility of integrating energy
harvesting technologies aligned with provisioning QoS for
medical applications. Thus, this article enhances the previous
work and improves the algorithm’s flexibility to the dynamic
behavior of dense networks by introducing RL-based opti-
mization algorithms. These algorithms are able to reduce
the energy consumption of the MAC layer operations
in a solar-based Wi-Fi network while meeting specific
QoS medical-grade parameters for medical applications like
PLR and delay. Thus, this novel integration provides a
fresh perspective and yields significant advancements in
sustainable IoT-based Wi-Fi communication.

III. PROBLEM STATEMENT
The IEEE 802.11 MAC layer is a contention-based dis-
tributed layer that consumes most of the energy budget of
the network due to associated collisions, retransmissions,
and back-off mechanisms [34]. Figure 1 demonstrates the
default access technique known as the two-way handshaking
scheme [35].

To assess channel conditions prior to transmission, the
traditional IEEE 802.11 protocol employs a technique known
as Physical Clear Channel Assessment (PHYCCA) at each
network node. By measuring the energy level in the channel,
the node can determine whether it is above a predetermined
threshold, called the carrier sensing threshold (CST). If the
measured energy level exceeds the CST, indicating that the
channel is occupied, the node will defer its transmission and
wait for the channel to become available. This mechanism
allows nodes to avoid transmitting when the channel is
already in use, reducing the likelihood of collisions and
improving overall network efficiency.

Once a station detects the channel to be busy, it initiates
a random back-off process by generating a random back-off
time within a CW size. The CW defines the range of possible
back-off values. In this process, a slotted binary exponential
back-off random interval is selected from the range of
[0, CW], where CW initially starts with a minimum value of
CWmin.

If a transmission attempt is unsuccessful, the CW value
is doubled, resulting in a larger range of possible back-off
values, up to a maximum value of CWmax. This doubling
process continues with subsequent unsuccessful transmission
attempts, allowing for increased back-off times and reducing
the chances of collisions. On the contrary, a successful
transmission results in the CW value being reset to its
minimum value, CWmin. This reset aims to exploit the clear
channel and ensure quick access to the medium for the station
that successfully transmitted its data.

In other words, the random back-off procedure is defined to
reduce the collision probability, energy consumption, and to
allow fair access to themedium in a distributedmanner, which
can be controlled by initializing and changing the MAC layer
parameters value. The selection of appropriate MAC layer
values is crucial, not only for efficient channel access but
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TABLE 1. Features comparison of related work and our proposal.

FIGURE 1. CSMA/CA back-off procedure.

also to minimize energy consumption related to collisions.
For instance, a larger CW value reduces collisions and
minimizes energy wastage associated with collision events,
which is beneficial for energy efficiency. However, a larger
CWvalue can also introduce increased delays in accessing the
channel, potentially affecting QoS requirements, particularly
for time-sensitive applications. On the other hand, a smaller
CW value reduces delay but increases the probability of
collisions and energy consumption. In addition, regarding
other MAC layer parameters, such as AIFSN and TXOP,
the system performance can be improved by adjusting these
values. Reducing AIFSN values grants higher-priority frames
a briefer back-off time, facilitating quicker transmission after
the channel becomes idle. Modifying the TXOP permits
consecutive transmission of multiple frames, minimizing the
back-off and contention overhead. Thus, finding the right
balance for the MAC layer parameters is crucial to optimize
network performance, energy efficiency, and meeting the
specific QoS restrictions imposed by the applications running
on the network. Since IoT-based networks have a high level
of collision probability, there is a need to apply modifications

TABLE 2. Quality of service requirements for e-Health applications.

to the selection of these parameters and adjust them to the
condition of the network and application types. However,
these modifications have to be aligned with the standard and
address the restricted QoS e-health environments.

Although ML algorithms have been introduced to improve
the performance of Wi-Fi communication effectively, they
mainly focus on increasing the throughput without consid-
ering the QoS requirement and energy efficiency of the
network, which are necessary for the successful integration
of EH techniques within Wi-Fi-based IoT systems. To fill
the existing gap in the literature, in this article, we for-
mulate the optimization problem based on three RL-based
algorithms that are able to initialize different MAC layer
parameters (i.e., initialization of CW values) dynamically
based on the network condition and application traffic
type while maintaining the two critical QoS parameters for
QoS-restricted e-health applications known as E2E delay and
PLR. The medical-grade QoS restrictions that are considered
in this study are listed in Table 2.

Along with the high collision probability, unfair access
to the medium, and increasing throughput requirement
to meet the emerging applications (i.e., health-tracking
wearable, 4k and 8k video streaming, VR or AR and
gaming) provisions, such as ultra-reliable low-latency com-
munication requirements and extremely high throughput,
the channel access mechanism of the Wi-Fi MAC layer
faces another concern for prioritizing and coordinating
the transmissions. The extremely high throughput and
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FIGURE 2. AP coordination concept.

ultra-low latency requirements listed above are beyond the
capabilities of IEEE 802.11ax, even though the recently
released IEEE 802.11ax emphasizes network performance
and user experience in high-density deployment scenarios.
IEEE 802.11ax only supports communication from a single
AP and executes spatial reuse between APs and nodes
without coordination among nearby APs. As a result, its
ability to efficiently use time, frequency, and spatial resources
is severely limited. In contrast, Wi-Fi 7 and Beyond with
EHT capabilities improve this capability by allowing APs to
share data and control information, increasing the throughput,
reducing latency, and improving spectrum efficiency. Multi-
AP coordination, which includes coordinated spatial reuse,
coordinated orthogonal frequency-division multiple access,
coordinated beamforming, and joint transmission, is one of
the main differences between Wi-Fi 7 and Beyond and IEEE
802.11ax [14]. Therefore, to address these requirements, the
upcoming amendment IEEE 802.11bn defines key concepts
such as distributed multi-link operation, integrated mmWave
operations, Physical (PHY) and MAC layer enhancement,
and Multi AP coordination [42]. Among all these new
features, controlling the delay of the system is possible based
on AP coordination, which is a critical point for MIoT
applications. The AP coordination technique states that to
improve the performance of their associated non-AP stations,
the so-called master APs can interact with other APs (slave
APs) within their broadcast range. The master AP receives
the beacon frames from the slave APs. The master AP might
employ this technique to dynamically request the slaveAPs to
rearrange the resources depending on the channel conditions
(see Figure 2). While the need for uncoordinated systems
is the main emphasis of this method, it is significant to
emphasize that this strategy may also be used to coordinate
systems [43].

In contrast to the aforementioned advantages of the concept
of the AP coordination, it faces several issues when it comes
to backward compatibility. The interoperability, influence
on the network performance, implementation complexity,
resource allocation, and overhead management are just
a few of the new difficulties and challenges that come

with AP coordination with backward compatibility. The
functioning of AP coordination may cause interoperability
issues when older devices find it difficult to interact
with newer APs, resulting in decreased overall network
performance, reliability, and efficiency, which can lessen
the advantages of optimized performance of the current
devices. The network’s design and implementation may
become more difficult, and additional management and
configuration for overhead is needed if it supports both
backward compatibility and advanced coordinating features.
Furthermore, resource allocation for newer devices capable
of handling more sophisticated coordination methods may be
wasteful due to coordinating APs allocating resources based
on the capabilities of old devices [44].

In this article, each group of nodes (i.e., non-AP stations)
is associated with one respective AP in the assessed scenario.
The main purpose of the proposed algorithms is to reduce
the collision probability by differentiating the initialization
of CW once per node and then per cell (i.e., all the nodes
associated with their corresponding AP). However, per-node
analysis increases the level of processing in the nodes, which
can cause an increase in energy consumption. For this reason,
centralized techniques are introduced to reduce the level of
node processing. For example, the AP receives information
about radio resource measurements of nodes [45]; therefore,
the nodes with the low E2E delay increase their CW values
to delay the data frame transmission.

In contrast, the nodes that exceed the medical-grade QoS
threshold will reduce the CW to access the medium faster
and immediately start the transmission. Furthermore, the
agent makes decisions based on the remaining energy and
E2E delay, which allows the node to harvest energy while
maintaining medical-grade QoS requirements. In addition,
the effect of the AP coordination concept is assumed in the
proposed algorithms, in which APs are able to reschedule the
resources based on the medium access conditions. Finally,
a sleep/wake-up method is applied to obtain a higher level
of energy reduction in the network.

IV. METHODOLOGY
This section utilizes RL-based optimization algorithms
derived from Markov Decision Processes (MDP) to meet the
proposed objectives of this paper.

In this study, MDP depicts the interaction between APs
and nodes within a solar-based Wi-Fi, and it updates the
decision-making in which an agent (AP) interacts with
the environment. This framework models the optimization
problem sequentially and is simplified as the following tuple.

(3, 1,0a, 8a) (1)

where 3 is the representative of the group of states,
which include the variables that define the environment or
observation (in this paper, it corresponds to remaining energy,
E2E delay, and PLR). 3 is updated at each step of the
execution of the algorithms. 1 is the group of actions the
agent executes in the AP, which is responsible for dynamic
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Algorithm 1 Delay-Based Algorithm
1: Initialization: CWmin = 31,CWmax = 1023

Application-based QoS threshold
2: Input: Delay_node
3: Output: CWnew_node
4: if Delay <= QoS Threshold then
5: CWnew = ((CWcurrent + 1) × 2) − 1
6: else if then
7: CWnew =

(
CWcurrent+1

2

)
− 1

8: end if
9: return CWnew
10: end procedure

changes of the MAC layer parameters (corresponding to the
main operation of the proposed algorithms). 0a

(
3t+1

|3t , a
)

is the probability transition function depicting the probability
of the action a (belongs to 1) takes place in state t to
reach state (t + 1) in the environment. Finally, 8a is the
reward function, calculated after the execution of action a and
updated at each step of the algorithm’s execution to provide
feedback for the decision-making in the next state [46], [47].

Each proposed algorithm highlights different decision-
making methods for initializing MAC layer parameters. The
first, second, and third sections address the initialization
of MAC layer parameters for each node in the assessed
scenario, where the CW values consider the primary param-
eter due to the random back-off procedure. Nevertheless,
in Subsection IV-E, decisions are made based on the sleep/
wake-up mode. Additionally, in Subsection VI-D, we explore
the effects of AIFSN and TXOP (considered as key MAC
layer parameters) adjustments, alongside an evaluation of
the CW adjustments. The difference between the proposed
algorithms can be explained based on the level of the
information that is fed to the APs to make decisions (i.e.,
only considering E2E delay or considering E2E delay and
remaining energy). It is expected that the more information
is considered, the level of optimization will be higher.
In addition, the way that each algorithm selects the associated
nodes to apply the dynamic changes ofMAC layer parameters
is different, which can be performed cell-wise or node-
wise. In particular, in the case of CW values, it is expected
that the differentiation in CW initialization reduces collision
probability, addresses the medical-grade QoS requirement,
and gives nodes with lower energy levels more opportunity
to harvest energy. Aligning with the CW value changes
the impact of the AIFSN and TXOP dynamic adjustments,
as other MAC layer parameters need to be investigated.

A. DELAY-BASED ALGORITHM
The first proposed algorithm is the delay-based algorithm,
which aims to reduce the collision probability of each node by
delaying or accelerating the data transmissions in each node.
This differentiation in initiating and selecting CW helps to
avoid extra collisions due to the simultaneous transmissions.

Algorithm 2 Extremum-based AI algorithm.
1: Initialization: CWmin = 31,CWmax = 1023

Application-based QoS threshold
2: Input: Delay_node, RemainingEnergy_node
3: Output: CWnew_node
4: for <nodes associated to the same AP> do
5: <Sorting based on the node’s
remaining energy>

6: end for
7: if node with maximum remaining energy then
8: if Delay <= QoS Threshold then
9: CWnew = ((CWcurrent + αmin) − 1)
10: else if then
11: CWnew = ((CWcurrent − αmax) − 1)
12: end if
13: end if
14: if node with minimum remaining energy then
15: if Delay <= QoS Threshold then
16: CWnew = ((CWcurrent + αmax) − 1)
17: else if then
18: CWnew = ((CWcurrent − αmin) − 1)
19: end if
20: end if
21: return CWnew
22: end procedure

As explained in Algorithm 1, the agent (AP) checks the delay
value for each node individually and makes decisions based
on comparing the obtained E2E delay values with the defined
corresponding medical-grade QoS threshold for each node at
each time that the algorithm runs.

B. RANK-BASED EXTREMUM NODES ALGORITHM
In the second algorithm, the decision-making is made per cell
to reduce the level of complexity and increase the residual
energy at the node level. Then, within each cell, the algorithm
selects the nodes with the extremum (i.e., the nodes with
the minimum and maximum remaining energy) value of
remaining energy, while the rest of the nodes store their
current CW values and do not enter the following steps.
According to Algorithm 2, the CW values are reduced by
the factor of α ({2, 4, 8, 16}) if the delay of the extremum
node exceeds the QoS requirement threshold. Otherwise,
the α value is added to the current CW values. It is worth
mentioning that the selection of the α value is in line with the
IEEE 802.11 standard initialization of the CW values. This
algorithm aims to assign different values of CW to the node
to give the ones with the minimum energy the opportunity
to harvest more energy and those with the maximum value
of remaining energy to start the data frame transmission
immediately.

C. RANK-BASED ALL NODES ALGORITHM
In contrast to the second algorithm, the decision-making
is made at each node in the third one. In Algorithm 3,
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Algorithm 3 Rank-Based All Nodes AI Algorithm
1: Initialization: CWmin = 31,CWmax = 1023

Application-based QoS threshold
2: Input: Delay_node, Remaining Energy_node
3: Output: CWnew_node
4: for <nodes within cell> do
5: <sorting based on the node’s
remaining energy and select the
median node>

6: end for
7: if remaining energy_node > node with median remaining

energy then
8: if Delay <= QoS Threshold then
9: CWnew = ((CWcurrent + α) − 1)
10: else if then
11: CWnew = ((CWcurrent − α) − 1)
12: end if
13: end if
14: if remaining energy_node < node with median remaining

energy then
15: if Delay <= QoS Threshold then
16: CWnew = ((CWcurrent + α) − 1)
17: else if then
18: CWnew = ((CWcurrent − α) − 1)
19: end if
20: end if
21: return CWnew
22: end procedure

within the cell, the node with the median value of remaining
energy keeps the CW values the same as its previous state.
In comparison, the nodes with greater remaining energy
than the median value slightly increase their delay duration
if their delay lowers the QoS requirement. Otherwise,
their CW values are decreased by the largest defined α

values ({16,8}) to start the transmissions faster, differentiate
the transmission’s starting point, and reduce the collision
probability.

In the opposite case, the nodes with the remaining energy
values less than the median value need to increase their
opportunity to harvest more energy for continuing the
communication. The nodes with a delay less than QoS
requirements increase the delay value by selecting larger
CW values (α = 16,8). On the contrary, although nodes
have to start the transmission immediately to reduce the
delay, the algorithm delays the communications for a short
duration to allow them to harvest energy and begin the frame
transmission while maintaining the QoS restrictions (α =

4,2). Thus, in this algorithm, the agent allows all the nodes
to differentiate the start of communication by initiating the
CW values based on the condition of the channel and their
remaining energy.

D. PROPOSED ALGORITHMS FOR AIFSN AND TXOP
ADJUSTMENTS
While the RL-based algorithm designed for initializing
CW values could be repurposed for adjusting other MAC
layer parameters such as AIFSN and TXOP, it is essential
to acknowledge the intrinsic differences between the CW
and AIFSN, where AIFSN remains constant, whereas CW
adjustments rely on random processes. Given this distinction,
we have made subtle modifications to the algorithms to
accommodate AIFSN adjustments. The node with an E2E
delay less than QoS requirements updates its AIFSN value
in the next window as follows.

AIFSNnew = AIFSNold + 1 (2)

where the initial value for AIFSN is considered as 2, and
the maximum value is set to 15. We propose a strategy to
prevent extended idle periods due to the maximum selection
of AIFSN for all the nodes or the same value for all the nodes.
AIFSN value increases until it is set to its maximum allowable
limit and the E2E delay exceeds the QoS threshold. In this
case, when the AIFSN reaches this maximum in a given
window, it is then reset to its initial value in the following
window. By resetting the AIFSN value to the initial value,
we increase the level of randomness in AIFSN selection and
prevent undesirable delay for all the nodes.

Shifting our focus to TXOP adjustment, the procedures
mirror those outlined in Algorithms 1 to 3, ensuring
consistent and coherent changes. If the node shows an E2E
delay less than the QoS threshold, the transmission is delayed
by increasing the idle listening duration.

TXOPnew = TXOPold − 32 (3)

By reducing the TXOP value, the duration a node
requires to access the channel for transmission is diminished.
This, in turn, allocates greater chances for other nodes to
initiate their transmissions. It’s worth highlighting that any
alterations to the TXOP timing limit must occur in the
multiple of 32 microseconds. The permissible range for
TXOP values spans from 0 to 7.04 ms. However, in this case,
when the E2E delay exceeds the QoS threshold, the TXOP
value needs to gradually increase, and reduce the delay value.
Selecting a large TXOP value for one node or setting it to the
maximum value affects the network’s fairness and gives other
nodes less opportunity to start transmission. Thus, to prevent
this behavior if the E2E delay of other nodes exceeds the
limit, each algorithm reduces the TXOP of the node with the
highest value of TXOP. In contrast to the AIFSN adjustment,
higher TXOP values increase the idle listening duration for
other nodes and violate network fairness.

E. SLEEP/WAKE-UP MODE
In this algorithm, to reduce the collision probability and
improve the energy efficiency of the network, instead of
differentiating the CW values in the proposed RL-based
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Algorithm 4 Sleep/Wake-Up Method
1: Initialization: CWmin = 31,CWmax = 1023

Application-based QoS threshold
2: Input: Delay_node
3: if Delay >= QoS Threshold then
4: node is forced to sleep
5: else if then
6: Trigger the proposed RL-based algorithms
7: end if
8: end procedure

FIGURE 3. The general framework of the integration of RL with ns-3.

optimization algorithms, the selected nodes are forced to
sleep mode, which will determine the starting time of
the frame transmission of nodes (see Algorithm 4). The
sleep/wake-up method procedure is detailed in [35]. This
method mimics intermittent communication [48] when the
communication is interrupted due to insufficient energy to
keep the system powered up or a high level of interference
in the channel.

V. SIMULATION SETUP
In this section, the system model and experimental envi-
ronment to implement a dense solar-based Wi-Fi network
in field hospital circumstances in the ns3-gym environment
are described in detail. Then, the evaluation metrics are
explained. This simulation setup allows us to assess the
proposed RL-based optimization algorithms under specified
conditions. Section VI will evaluate and discuss these
algorithms.

A. SYSTEM MODEL
The proposed RL-based optimization algorithms are
deployed in the ns3-gym framework, which consists of three
main components, known as ns-3 simulator, OpenAI Gym,
and ns3-gym middleware (see Figure 3).

The ns-3 simulator is an open-source network simulator
that mimics real-world constraints and provides features that
need to be accomplished to meet IoT requirements [49],
[50]. According to Figure 3, the ns-3 simulator is considered
as an actual deployment of a solar-based dense Wi-Fi
network in ns-3 (environment), and the E2E delay, PLR,

remaining energy, and consumed energy are extracted from it
(observation parameters). Since the reward function returns a
numerical value as feedback to the action, the agent is able
to make the most optimal decision based on this value. Here,
the defined objective function (see Equation 4) is maximized
based on the reward function feedback, where the remaining
energy is maximized, and the E2E delay and PLR values are
minimized.

Objective Function =
Remaining energy
E2E delay × PLR

(4)

The protocol level implementation of ns-3 Wi-Fi solar-
enabled nodes is highlighted in Figure 4. The purple blocks
correspond to components of energy-harvesting modules that
have been integrated into the node. These modules define
the type of source of energy (battery or a capacitor), Wi-Fi
radio energy model, and device energy model. The device
energy model locates the Wi-Fi radio energy model in each
node for calculating the energy consumption of each state of
transmission or the total energy consumption of the node [51].
It is worth mentioning that the solar energy harvester model,
designed in [52], is appended to the energy-related model
since the official version of ns-3 does not include this module.
This implementation closely mimics the real behavior of a
solar energy harvester that takes into account various aspects
of the harvesting process in the ns-3 solar harvesting system.
This technology realistically develops a solar panel and
mathematically calculates many solar features influencing
energy harvesting.

Along with the energy-related modules added to the
ns-3 architecture, the proposed algorithms directly impact
the initialization of the MAC layer parameters, shown in
the green and blue blocks. These blocks describe the Wi-Fi
MAC layer protocol implementation we adapt during the
simulation. Another module that affects the MAC layer
operation is the PHY layer, shown by the pink block.
This block defines the different transmission states of the
communication, where the sleep/wake-up method is defined
to reduce the contention, which directly impacts the MAC
layer [35]. The architecture of an AP in ns-3 is illustrated
in Figure 4b, where the optimization problem is formulated,
and the AP coordination concept is introduced (the blue
block). In addition, the MAC layer modification commands
and initialization values are sent to the nodes from the
APs that the agent controls based on actions (the green
block). Moreover, the PHY layer generates the sleep/wake-up
commands triggered by the AP. Here, the APs decide when
andwhich node has to go to sleep or wake-upmode. It is noted
that no changes or modifications are applied to the gray-scale
blocks.

The second part of the n3-gym is the ns3-gymmiddleware,
which sends the gathered information to the environment
gateway entity for saving the numerical data in a structured
manner and encoding the received actions from the agent to
numerical data. In addition, ns3-gymmiddleware receives the
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FIGURE 4. Ns-3 IEEE 802.11 architecture to support RL algorithm and EH.

environment information (i.e., observation) and sends it to the
agent.

The third part of the ns3-gym framework is the OpenAI
Gym, which fundamentally is a toolkit capable of creating
new ML algorithms in a range of simulated environments.
The Python process, consisting of the agent and the
Gym environment, establishes communication with the C++
process, responsible for the ns-3 network simulation, through
ZMQ sockets. Readers interested in learning more about the
OpenAI Gym are referred to [53].

B. ENERGY MODEL FOR THE CONSIDERED WI-FI
SCENARIO
Various components contribute to the overall energy con-
sumption of Wi-Fi systems. Yet, achieving an exact cal-
culation of the total energy consumption proves intricate,
owing to the dynamic characteristics of wireless channels,
the complexity of the Wi-Fi protocol, and the fluctuations in
network traffic patterns. This section delves into a simplified
explanation of the total energy consumption within the
specific Wi-Fi scenario under consideration.

The total energy consumption of the Wi-Fi system
corresponds to the sum of the energy consumption during
the fundamental states, such as transmission, reception,
transition, idle, and back-off states, which is formulated as
follows.

ETotal =

m∑

i=1

(
ETx(m) + ERx(m) + EIdle(m)

+ ETransition(m) + EBack-off(m)
)

(5)

where

ETx = EAck-tx + EData-tx,

ERx = EAck-rx + EData-rx,

ETransition = ESleep + EWake-up,

EBack-off = EBO + ECollision

In this case ETx, ERx, ETransition correspond to the energy
consumption in the transmission state, reception state, and
changing from sleep mode to wake-up or vice versa.

In addition, this formula considers the energy consumption
during the back-off procedure (EBack-off), which includes
initialization of the CW procedure and collision. Here,
m refers to the number of the stations in the network.
Furthermore, each component can be decomposed as the
multiplication of the power and duration of that state as
follows.

ETx = PAck-tx × TAck-tx + PData-tx × TData-tx,

ERx = PAck-rx × TAck-rx + PData-rx × TData-rx,

EIdle = PIdle × TIdle,

ETransition = PSleep × TSleep + PWake-up × TWake-up,

EBack-off = PBO × TBO + PCollision × TCollision

According to the EDCA mechanism, the duration of
the acknowledgment, successful data frame transmission,
idle [54], back-off procedure, and collision are defined as
follows.

TAck = DIFS + TSlot + SIFS,

TData = DIFS + TSlot + SIFS + TAck,

TIdle = AIFS,

TBO = (CW − 1) × TSlot,

TCollision = SIFS + TAck + AIFS

It is important to mention that the energy consumption
during the frame retransmission is considered in the ECollision,
in addition, the sleep and wake-up duration could vary
based on the specific AC and power-saving settings that is
considered in the algorithm.

In line with the total energy consumption formula
and aforementioned analysis, an inverse relationship exists
between the CW and total energy consumption ( 1

CW ∝

ETotal). As the CW value decreases, the duration before
transmission becomes shorter. This reduction in waiting time
leads to increased transmission attempts due to more active
states and potential retransmissions, ultimately resulting in
elevated energy consumption.

A simulation-based decomposition of the energy consump-
tion of the network is analyzed in [35], where the ETx,
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ERx, EIdle, ETransition and EBack-off states consumed 0.5 J,
3.42 J, 9.02 J, 1.02 J, and 0.63 J, respectively. According
to the analyzed energy model, the network’s total energy
consumption equals 14.59 J, and each node consumes 0.364 J
in the system. In this paper, we examine all the MAC layer
parameters outlined in Equation 5, encompassing not only
those mentioned but also encompassing wake and sleep
states.

C. NETWORK SCENARIO DEFINITION AND EVALUATION
METRICS
The simulation environment is a one-floor field hospital (sim-
ilar to an office-type building) with an area of 3200 m2 and
3 m of the height of the floor. According to Figure 5, this area
is divided into 8 symmetric rooms (each room area is 20 m ×

20m). The rooms are separated throughwoodenwalls (brown
lines), and the external walls are defined as concrete walls
with windows (black bars). The simulations were carried out
using the hybrid building propagation model, which provides
the required flexibility to represent theWi-Fi implementation
in a building environment. This model includes several
factors, such as the frequency in use, the environments (urban,
suburban, or rural), International Telecommunication Union
defined path loss model [55], the position of the interfering
nodes, external wall penetration loss of different types of
buildings (such as windows, without windows, concrete
among others), and the internal wall loss. All of the factors
mentioned above, among others, are used to derive the indoor
path loss, which is used along with the transmit signal
power to derive the received signal power. By design choice,
we consider a single AP per room, in which one AP is located
in the middle of the room, and 5 nodes are placed randomly
within the room. The distance between the AP and each node
is randomly selected from 1 to 10 m. This article considers
the worst-case scenario of Wi-Fi communication, where the
2.4 GHz frequency band is used for communications. The
restricted bandwidth of 2.4 GHz, with only three non-
overlapping channels, causes high interference, and due to
the few non-overlapping channels, the 2.4 GHz frequency can
become congested quickly. For this reason, the main issue of
contention-based communications in the 2.4 GHz frequency
band is the high collision probability.

It is important to note that we have employed IEEE
802.11n in the simulated scenario. This choice ensures that
the scenario that has been discussed here aligns precisely with
the enterprise model outlined in the IEEE 802.11ax standard
and described in [59]. Furthermore, most assessments of
Wi-Fi 7 and Beyond follow the operational guidelines
established by the IEEE 802.11ax Working Task Group.
This is because the development of Wi-Fi 7 builds upon
discussions held with Task Group ax(TGax), essentially
serving as an extension of those conversations.

To evaluate the performance of the proposed RL-based
optimization algorithms in each set of simulations, we con-
sider 8 AP (triangles in Figure 5) and nodes associated
with each one (red circles). In addition, the master APs

FIGURE 5. Layout of the Wi-Fi deployment in the field hospital.

TABLE 3. PHY layer parameters for the simulation.

TABLE 4. MAC layer parameters for the simulation.

are illustrated as green triangles and the slave APs as
blue triangles. Each node uses three medical applications
in the simulations: ECG, EEG, and EMR (representing
medical file transferring). For the final results, each set of
simulations is repeated 20 times with different seed values
(to add randomness to the implementation) to increase the
confidence level.

The parameters of the PHY and MAC layers are listed in
Table 3 and Table 4. Since the Request to Send (RTS)/Clear
to Send (CTS) mechanism (the four-way handshaking
mechanism) increases the transmission time inherently, and
a non-optimal frame aggregation can increase the error rate,
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TABLE 5. Traffic characteristics in the simulation study.

as is shown in Table 4, frame aggregation and RTS/CTS are
disabled. The default MAC layer parameters are selected as
the Best Effort (BE) Access Category (AC) corresponding
to the traffic model of the three medical applications. Only
the CW values change dynamically in this paper, and AIFSN
and TXOP are maintained constant. It is noted that during the
MAC layermodifications, all the parameters of the PHY layer
are kept constant according to Table 3.

Table 5 summarizes the traffic model, data rate, and packet
size for ECG, EEG, and EMR applications as the selected
medical applications.

The Li-Ion battery and the panel dimension (corresponding
to the size of a remote blood oxygen monitoring [60]) are
adopted from [35]. The metrics for the evaluation are defined
based on their equations in Table 6.

This setup allows us to explore the performance of our
proposed RL-based algorithms by automatically varying the
CW values as a MAC parameter for nodes based on the
current condition of the channel and then with the offered
sleep/wake-up method.

VI. PERFORMANCE EVALUATION AND DISCUSSION
In this section, through extensive ns3-gym-based simulations,
we evaluate the performance of the proposed RL-based
optimization algorithms in the selected environment. The
performance evaluation analysis first focuses on CW value
changes to define the usefulness and assess the proposed
RL-based algorithms. In Section VI-D, we investigate the
impact of other MAC layer parameters on the performance
of the network. For this reason, we will use a consistent
EDCA queue, denoted as EMR, to assess the effects
of altering various MAC layer parameters. Subsequently,
we will contrast the outcomes with those of a system
adhering to default values (Tabel 4). This clarification will
be explicitly presented in Section VI-D. As highlighted in
Section III, to manage the network resources more efficiently
and decrease E2E delay in this scenario, the concept of AP
coordination will be introduced to the proposed algorithms
and evaluated in this section. In this study, the master and
slave cells are distinguished based on their Frame Error
Rate (FER).

A. COMPARISON OF LEGACY WITH THE PROPOSED
ALGORITHMS FOR CW ADJUSTMENT
Previous studies indicated that there is an optimal value
for initializing CW for a node that can retain the collision
probability at the lowest possible level and, as a result,
reduces energy consumption while maintaining the E2E

FIGURE 6. Legacy comparison with the proposed algorithms under CW
adjustment for medical applications.

latency and PLR metrics below the medical-grade QoS
requirements [35]. Additionally, this optimal value varies
depending on the application and traffic types and the
condition of the network. Therefore, it is necessary to
dynamically assign an optimal CW value to each node in
IoT-based networks to prevent long E2E delays and high
collision probability. It is expected that such a scenario will
benefit from RL algorithms. In each algorithm initially the
CWmin and CWmax values are set to the default values (see
Table 4). Then, these values are selected based on the received
information from the environment.

Figure 6 illustrates the improvement of remaining energy
by applying the RL algorithms in the Wi-Fi-based IoT
system for medical applications. While the rank-based all-
nodes algorithm, when used for EMR application, increases
the energy efficiency up to 26.5% (from 14.68 J to
18.36 J), it reduces the E2E delay, PLR (15.87 ms and
2.4%receptively), ECG, and EEG applications benefit more
from the rank-based extremum nodes algorithm. Where the
remaining energy improves up to 23.5% and 16.2% (4 and
3 J improvement per application), delay reduces to 9 and
3 ms for ECG and EEG applications, respectively (PLR is
negligible in ECG and EEG applications). The results are
shown in Table 7 can be explained by differentiating the CW
values initialization among nodes based on the traffic model
characteristics. As indicated in Figure 7, the selected CW
values are relatively large in the delay-based algorithm, which
increases the network delay considerably and consumes
more energy. However, since the CW values initialization is
more distributed among all possible intervals in the rank-
based all-nodes algorithm, it has a better adaptation to the
network condition. Consequently, it can save more energy
for applications with high data rates and large packet sizes,
such as EMR applications. In contrast to the high-traffic
load applications, the applications with low traffic load levels
benefit the rank-based extremum nodes algorithm with a
lower level of complexity.

B. COMPARISON OF LEGACY WITH THE PROPOSED
ALGORITHMS UNDER AP COORDINATION ASSUMPTION
FOR CW ADJUSTMENT
In this set of simulations, we evaluate the impact of the AP
coordination concept on the performance of the network with

126716 VOLUME 11, 2023



G. Famitafreshi et al.: Introducing RL in the Wi-Fi MAC Layer

TABLE 6. Metrics for evaluation.

FIGURE 7. Probability Density Function for CW changes for the proposed RL-based algorithms.

FIGURE 8. Impact of master cells AP coordination on the proposed
algorithms under CW adjustment.

three proposed RL-based optimization algorithms. If the cell
has a FER value greater than the average FER of the network,
it is considered the master cell, otherwise, it is deemed a slave
cell.

For this scenario, the proposed algorithms are deployed
only at the master cells. As illustrated in Figure 8 the system
faces improvements in the evaluated metrics compared to the
legacy in all the cases. However, the improvement percentage
is less than the case where we implement three algorithms
in all the cells (cf. Table 7). The logic behind the obtained
results can be explained through the differentiation of the
initialization in the CW values for central and edge nodes,
where the master cells (located as central nodes) face more
variation in the initialization of the CW values. However,
for the nodes in the slave cell, the initialization is fixed to

FIGURE 9. Impact of slave cells AP coordination on the proposed
algorithms under CW adjustment.

the default values. The results prove that more variation in
the initialization of the CW values based on the network
condition can improve the energy efficiency of the network
while reducing the QoS parameters such as delay and PLR.

In the following scenario, when the proposed algorithms
are applied to the slave cells, the obtained results demonstrate
a lower improvement level than the previous results. Regard-
less of the network conditions, the initialization of the CW
values for the nodes in the center (which face more collisions)
is fixed as the default values. Therefore, the network reaches
at most 19.60% remaining energy improvement for EMR
application in the case of the rank-based all-nodes algorithm,
16.40%, and 16.23% in the case of ECG and EEG application
under the deployment of the rank-based extremum nodes
algorithm (see Figure 9).
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FIGURE 10. Impact of sleep/wake-up method on the proposed
algorithms.

It can be concluded that when the proposed algorithms
are only applied to a group of cells in the AP coordi-
nation, although the E2E delay can be controlled through
the AP coordination concept, the fixed CW initialization
for the other group of cells can degrade the network’s
overall performance. For this reason, the overall network
improvement is smaller than when the proposed algorithms
are applied to all the nodes. It can be perceived from
Table 7 improvements are less than 1 J for the remain-
ing energy metric for all the applications regardless of
whether the AP coordination is deployed in master or slave
cells.

In the following set of simulations, to reduce the collision
probability, and consequently, increase the remaining energy,
instead of differentiating the CW initialization on the nodes,
the algorithms will force the node to go to sleep.

C. COMPARISON OF LEGACY WITH THE PROPOSED
ALGORITHMS UNDER SLEEP/WAKE-UP METHOD
In this set of simulations, we introduce the sleep/wake-up
method (introduced in [35]) to our proposed algorithms.
In this case, the algorithm restricts the node to transmit, with
a condition that the E2E delay does not exceed the set QoS
threshold. Therefore, the sleeping node has the opportunity
to harvest energy and then, in the next time step, follows the
procedure of the proposed RL-based optimization algorithm.
According to Figure 10, all the proposed algorithms improve
the energy efficiency for the three selected applications.
Although E2E delay values are still under the QoS threshold,
these values increase considerably compared to the previous
evaluation. In some cases, such as the rank-based extremum
nodes algorithm for EMR, the E2E delay exceeds the
threshold. In contrast to the earlier cases, the highest
remaining energy level while keeping the QoS values at
the desired level corresponds to the delay-based algorithm
(cf. Table 7), where the system is able to conserve energy
around 4 J for ECG and EEG applications and 5 J for EMR
application. The reason is the simplicity of the procedure of
the algorithm, which makes decisions faster than the other
algorithms. Finally, the node can harvest more energy in a
shorter duration.

TABLE 7. Impact of proposed algorithms on network metrics.

D. COMPARISON OF LEGACY WITH THE PROPOSED
ALGORITHMS FOR AIFSN AND TXOP ADJUSTMENTS
As discussed in Section I, the EDCA mechanism prioritizes
channel access through three key parameters: CW, AIFSN,
and TXOP, aiming to deliver the necessary QoS for diverse
applications. This series of simulations showcases the indi-
vidual impacts of these parameters on network performance.
The algorithms under examination dynamically select CW,
AIFSN, and TXOP, each addressed separately, to pursue this
goal.

According to the EDCA framework, a lower AIFSN value
signifies elevated traffic priority for channel access. However,
unsuitable AIFSN adjustments can compromise QoS regard-
ing E2E delay, fairness among stations, and diminishing
overall network throughput. Reduced AIFSN intensifies
contention dynamics, fostering potential collisions, while
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TABLE 8. Impact of MAC parameters changes on the proposed
algorithms.

higher values lead to extended idle periods and channel
under-utilization. Thus, as explained in subsection IV-D, it is
necessary to set a proper AIFSN value for each individual
node. This phenomenon is corroborated by the findings
in Table 8, revealing decreased remaining energy due to
prolonged idle duration and increased collisions, which is less
than 1 J reduction in remaining energy for ECG and EEG
applications. In the case of E2E delay, this reduction shows
15 ms for ECG and EEG applications. However, this energy
reduction is marginal when compared with legacy values.
In the case of the EMR application, a proper AIFSN value
conserves the energy of the network around 3 J by reducing
the E2E delay for 16.4 ms.

Regarding dynamic TXOP, a station granted a TXOP can
transmit frames consecutively without inter-frame channel
contention. This enhances throughput efficiency within the
station’s allocated time window. Nonetheless, this increased
throughput for one station can hinder other stations’ channel
access, resulting in extended idle periods and decreased
overall throughput, surpassing the fairness issues attributed
to inappropriate TXOP selection. This behavior is depicted
in Figure 11 to Figure 13, where dynamic TXOP RL-based
algorithms exhibit the lowest remaining energy values,
in contrast to the dynamic initialization of CW values, which
result in the highest remaining energy values. According to
Table 8 the remaining energy values under TXOP RL-based
algorithms decrease more than 1 J per application. Here,
the legacy value is illustrated as a straight dotted line that

FIGURE 11. Impact of MAC layer dynamic changes on remaining energy
for EMR application.

FIGURE 12. Impact of MAC layer dynamic changes on E2E for EMR
application.

FIGURE 13. Impact of MAC layer dynamic changes on PLR for EMR
application.

indicates the values achieved by the legacy network, in which
all devices use the default MAC layer parameters without ML
adaptation. These values are listed in Table 4. These outcomes
underscore the need for more comprehensive networkmetrics
when making AIFSN and TXOP adjustments. It is important
to note that, since the changes are more considerable in the
case of the EMR application, we only visualize the impact of
the MAC layer parameters in network metrics, and the rest of
the metric comparisons can be found in Table 8.

Notably, although TXOP dynamics reduce remaining
energy, E2E delay remains within QoS requirements, which
means less than 30ms for ECG and EEG applications and less
than 100 ms for EMR application. This implies the efficacy
of the proposed algorithms in such scenarios for these three
MAC layer parameters. However, these algorithms demand
more comprehensive information (more network metrics) for
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FIGURE 14. Remaining energy actual values comparison per application.

enhanced decision-making accuracy. Consequently, dynamic
CW initiation proves more effective within the current
scenario.

Drawing upon the results deriving from the proposed
RL-based optimizations at the MAC layer, the finest
configuration for individual MAC parameters becomes
achievable and tailored to each application’s unique demands.
Within the simulations, these optimal values are considered
when notable enhancements in system performance arise,
particularly evident in conserving the network’s total energy
exceeding 5 J for ECG and EEG while staying below 5 J
for EMR scenarios. Nevertheless, the E2E delay increased
slightly from the CW adjustment results due to the AIFS
duration increase.

To facilitate a more comprehensive comparison of remain-
ing energy among the legacy MAC layer parameters, the
proposed RL-based algorithms, and the optimizedMAC layer
parameters, we visually present the actual remaining energy
values per application in Figure 14. As previously noted,
the fine-tuned MAC layer parameters outperform other cases
through the most energy-efficient configuration.

E. IMPACT OF THE PROPOSED ALGORITHMS ON THE
SOLAR CELL FORM FACTOR
According to the literature, since solar cells, piezoelec-
tric, and thermoelectric harvesters provide a more reliable
and higher power density level for indoor environments
(100 mW/cm3, 2 W/cm3, 50 mW/cm3 for solar cell,
piezoelectric, and thermoelectric, respectively), they are
widely used in IoT applications, especially in MIoT systems,
where the flexibility of the form factor is critical [33]. Thus,
in this paper, it is essential to investigate the impact of
the proposed algorithm on the form factor of the selected
EH technology. The extent of detail included in evaluated
simulations could also be used to understand the requirements
for the solar panel size. This is important and relevant to the
topic under discussion because this study aims to develop a
viable system to be implemented in a real-world scenario,
such as an e-health environment. As concluded from previous
scenarios, in the case of the EMR application, the rank-based
algorithm had superiority over other proposed algorithms.
Nevertheless, as the proposed RL-based algorithms provide
the fine-tuning MAC layer adjustments, utilizing these

FIGURE 15. Impact of the proposed algorithms on the solar panel form
factor.

optimal values significantly influences network performance,
consequently leading to a substantial reduction in solar
panel dimensions. This conclusion is also demonstrated in
Figure 15, which reduces the required solar panel size to
3 cm2. However, the smallest possible size of the panel in the
scenarios with legacy, delay-based, and rank-based extremum
nodes are 50 cm2, 35 cm2, and 20 cm2, respectively. For
instance, in the case of the legacy, the minimum size of
the solar panel needs to be 50 cm2 to keep powering the
MIoT system up. Thus, legacy communications with solar
panels smaller than 50 cm2 are impossible. This comparison
supported the advantage of integrating energy harvesting
technologies within IoT systems.

Our previous study [35] revealed that the idle state
accounts for the highest energy consumption in IEEE
802.11 nodes. This finding aligns with the fact that idle
listening can be a significant source of energy drain in
wireless systems. The nodes need to continuously monitor
the wireless medium for available transmission slots, which
consumes energy even when no actual data transmission is
taking place. Therefore, longer waiting times and increased
idle time would contribute to higher energy consumption by
keeping the nodes in an active state for a longer duration.
Based on the aforementioned discussion, it is crucial to
emphasize that the remaining energy trend for legacy stations
does not align with the trend observed in algorithms aimed
at increasing the CW to improve the energy consumption
of nodes. In other words, the energy consumption patterns
of legacy stations do not follow the same trajectory as
nodes implementing CW-increasing algorithms in an effort
to enhance energy efficiency, and it is important to consider
these findings when using the proposed algorithms.

F. DISCUSSION
As explained throughout this article, the fixed initialization of
the MAC layer parameters to the default values is unsuitable
and inefficient for IoT systems with unpredictable behavior.
Our previous studies demonstrated that the initialization of
the CW values needs to be adapted optimally to the various
applications [35]. In this article, the CW value initialization
is updated dynamically based on the network conditions
changes to optimize the network’s performance and meet
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the medical-grade QoS requirements. Generally speaking,
the results indicated that the cell-based algorithms perform
better than the node-based ones. The reason is that in cell-
based algorithms, the AP considers the condition of all
the associated nodes to make decisions. In contrast, in the
node-wise algorithm, AP makes decisions individually for
each associated node regardless of its state, compared to
other nodes within the same cell. In addition, it is shown
that for applications with high traffic load, the rank-based
all-nodes optimization algorithm has superiority over the
other proposed algorithms. This is due to the algorithm’s
high level of flexibility, which converges to the optimal
condition very quickly. However, in the case of the low traffic
load (ECG and EEG applications), the rank-based extremum
nodes optimization algorithm performs better than the other
algorithms.

In addition, we demonstrated that adjusting the ini-
tialization of the CW values is particularly pronounced,
as it directly shapes how stations compete for channel
access, consequently influencing collision rates and overall
network efficiency. While AIFSN predominantly governs the
hierarchy of frame priorities rather than altering the fun-
damental contention process, and TXOP primarily governs
the sequential transmission of multiple frames after channel
contention, their effects might carry a different weight than
those originating from CW adjustments. Thus, it can be
concluded that enhancements to AIFSN and TXOP primarily
focus on optimizing and prioritizing frame transmission
within an already contented channel. The actual outcomes of
optimizing energy utilization, E2E delay, and PLR through
RL-driven adjustments within the MAC layer are presented
in Table 8. The optimal metrics corresponding to the con-
sidered medical applications, achieved via MAC parameter
tuning, are distinctly highlighted. It is comprehensible that
the dynamic manipulation of AIFSN and TXOP values
shows the rank-based all-nodes algorithm to outperform
alternative propositions for EMR applications. Conversely,
the rank-based extremum nodes exhibit the most productive
outcomes regarding ECG and EEG applications. Notably,
despite TXOP adjustments falling slightly short of the
efficiency gained through CW value optimization, it still
satisfactorily fulfills the stringent medical QoS requisites,
particularly concerning E2E delay.

Furthermore, we indicate that assuming the AP coordi-
nation concept in the proposed algorithms can improve the
network’s performance. Nevertheless, this improvement is
less than the case without applying this concept. For these
reasons, we declare that there is no unique initialization
for CW values. In addition, introducing the sleep/wake-up
mode into our proposals indicates that although the energy
efficiency of the network increases, it causes an increment
in the E2E delay values, while still maintaining the QoS
requirements. It is noted that the most optimal value for
evaluated metrics in each set of simulations is highlighted in
Table 7 and Table 8, where the assessed PLR values for ECG
and EEG applications are negligible. We have demonstrated

that the acquired optimal MAC layer parameters yield a
discernible enhancement in network performance, with a
particular focus on energy consumption. This improvement
surpasses the impact of isolated adjustments to individual
MAC layer parameters. In the end, we convey that deploying
the proposed RL-based optimization algorithms align with
fine-tuning of MAC layer parameters making the panel size
reduction in IoT systems possible; thus, it takes a crucial step
towards achieving sustainability in future IoT systems.

VII. CONCLUSION AND FUTURE WORK
This article presented the possibility of integrating energy
harvesting technologies within a Wi-Fi-based MIoT system
through extensive simulations on the ns3-gym framework.
We proposed three RL-based algorithms for the IEEE
802.11 MAC layer optimization, a novel approach that
improves the energy efficiency of the system while provi-
sioning the medical grade QoS requirement. The obtained
results demonstrated that in the case of applications with
high traffic load, the rank-based all-nodes algorithm can
reduce the energy consumption of the system by more than
25%. We also demonstrated that further improvement could
be achieved by deploying the sleep/wake-up method to the
proposed algorithm, in which the improvement increased
to 30%. In addition, the AP coordination concept from
the upcoming IEEE 802.11bn amendment was evaluated
in this system. We believe this article will shed light on
integrating energy harvesting into dense networks such as IoT
systems. Moreover, our research highlights that the acquired
optimal MAC layer parameters bring about a noticeable
enhancement in network performance, particularly regarding
energy consumption. This advancement goes beyond the
effects achieved by making isolated adjustments to individual
MAC layer parameters. The enhancements introduced by the
proposed algorithm and the particular fine-tuning of MAC
layer parameters demonstrate the feasibility of downsizing
solar cells while enhancing their flexibility for integrating this
EH technique with IoT devices. These advancements pave
the way for integrating them seamlessly into IoT devices,
particularly wearable medical devices, leading to a new
era of compact, versatile, and energy-efficient technology.
This research can be enhanced by introducing a deep
learning approach to the proposed algorithms to make
the decisions more accurate and flexible to the network
changes. Furthermore, we can consider more information
(other MAC layer parameters) and different medical grades
QoS requirements for the RL-based optimization algorithm.
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6

Summary of Findings,
Discussion, and Directions for
Future Research

The evolution of the IoT paradigm’s future development indicates a remark-
able escalation in IoT devices, exerting profound influence across diverse sectors,
including industry, agriculture, healthcare, and more. Among the key consider-
ations, ensuring energy efficiency in IoT systems stands prominent, a challenge
that finds its solution in the advent of sustainable IoT systems. Instead of con-
ventional batteries, passive technologies such as EH techniques are deployed in
these systems. By adopting such approaches, not only is the burden of mainte-
nance cost alleviated, but also the adverse environmental impacts are mitigated,
concurrently enhancing the operational lifespan of IoT devices.

Nonetheless, the challenge of managing energy within the IoT paradigm ex-
tends beyond the disposal of conventional batteries. Another critical aspect of
energy consumption in the IoT paradigm is associated with the wireless commu-
nication infrastructure that is deployed in these systems. The prevalent method
of communication for most IoT devices relies on wireless technologies, where the
IEEE 802.11, commonly known as Wi-Fi, dominates indoor IoT environments.
However, due to its MAC layer operations, Wi-Fi emerges as an energy-intensive
technology, thus raising concerns about its environmental impact. The emis-
sions of significant CO2 into the atmosphere from battery waste, and the implicit
energy needs from communication technologies like Wi-Fi can expedite global
warming, amplifying its urgency. As deploying dense or intricate networks like
heterogeneous networks increases these concerns, the path towards a sustainable
IoT future entails integrating EH techniques. Such integration becomes imper-
ative to shorten the environmental repercussions, which requires a reduction in
the energy consumption of the deployed wireless communication technologies in
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6. SUMMARY OF FINDINGS, DISCUSSION, AND DIRECTIONS
FOR FUTURE RESEARCH

the system.

While the IEEE 802.11 working group has been introducing various features
into amendments to mitigate network energy consumption, there remain oppor-
tunities for enhancement. These encompasses enhancing the scheduling of the
MAC layer, simplifying operational intricacies within nodes, and introducing co-
ordinated transmission mechanisms to the inherently distributed framework of
Wi-Fi communication while ensuring seamless backward compatibility.

In this Ph.D. study, our objective revolves around exploring the viability of
incorporating passive technologies, specifically EH techniques, to enhance the
energy efficiency of IoT systems. Within this framework, we have clarified that
optimization possibilities exist within the operations of the MAC layer of IEEE
802.11, which can effectively mitigate the total energy consumption of the network
and render it manageable for the integration of EH technology within IoT systems.

Furthermore, we have undertaken an evaluation of the utility of ML methods
within the examined scenario. This evaluation underscores the significance of ML
techniques in the context of Wi-Fi 7 and Beyond, showcasing their relevance and
importance.

This chapter first summarizes the key findings, followed by a discussion of
limitations. It concludes by outlining potential directions for future research.

6.1 Summary of Findings and Discussion

Throughout this Ph.D. study, we have substantiated that existing EH technolo-
gies need to provide continuous power for IoT devices reliant on various wireless
communication technologies. Achieving a seamless integration, necessitates op-
timizing energy consumption within the IoT layers, particularly concerning the
diverse wireless communication technologies. Consequently, focusing on the MAC
layer operations, which notably deplete the energy budget of wireless communica-
tion, emerges as a key approach for implementing energy optimization techniques
and preserving valuable energy resources.

In our initial contribution supporting this argument, we conducted a com-
prehensive review of MAC layer operations and various MAC optimization tech-
niques, several of which find application in current IoT wireless communication
technologies. Building upon the insights gained from this examination of MAC
layer operations, we developed a unified analytical approach to systematically as-
sess energy models for each technology. Additionally, we extensively examined the
available EH technologies and considered their limitations. Our analysis led us to
assert that LPWAN technologies are well-suited for diverse IoT use cases, owing
to attributes such as duty-cycle regulation, simple random access mechanisms,
low energy consumption, and long-range communications. Aligned with LPWAN
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technologies, since IEEE 802.11ah explicitly designed for IoT systems, it meets
crucial requirements such as long-range capabilities, low power consumption, and
higher data rates.

Our investigation into EH technologies confirmed that devices like photo-
voltaic panels or thermocouples are viable for integrating LPWAN, IEEE 802.11ah,
and upcoming amendments (Wi-Fi 7 and Beyond) wireless communication tech-
nologies. Hence, we identify LPWAN and IEEE 802.11ah as promising wireless
technologies within IoT systems. This work also elaborates on how existing EH
MAC protocols adapt to integrating EH in IoT systems, precisely comparing these
MAC protocols based on EH-related network parameters. Our analysis revealed
that only 23% of the reviewed literature considered the ENO condition, a crucial
parameter for enabling EH in IoT systems.

Moreover, we demonstrated that the hybrid access MAC protocols exhibit sig-
nificant potential for IoT systems equipped with energy harvesters, showcasing
high adaptability to node energy levels and effectively reducing network energy
consumption in 48% of the literature analyzed. Alongside these hybrid access
energy harvesting MAC protocols, cross-layer mechanisms have demonstrated
noteworthy energy consumption reductions within the network. However, their
application still needs to be improved due to the substantial computational com-
plexity they entail, warranting further development and maturation in current
technologies. These findings are explained in Chapter 3 in detail.

The outcomes of the second contribution (see Chapter 4) underscore the need
to customize the CW selection of the EDCA mechanism to conform to various
medical applications. For example, within this study, we observed diverse traf-
fic characteristics among the considered medical applications (ECG, EEG, and
EMR). As a result, a universal and optimal CW combination applicable across
all ACs does not exist. Instead, each application necessitates a distinct CW
combination within its respective AC.

Furthermore, our findings demonstrate that network performance, specifically
in terms of medical-grade QoS metrics like E2E Delay and PLR, can be enhanced
by implementing AP coordination as outlined in the upcoming IEEE 802.11be
amendment (varies with applications and metrics). To achieve this, the trans-
mission in slave cells is intentionally delayed by adjusting their CW values. Sub-
sequently, the CW values are reduced in master cells to afford them more oppor-
tunities for initiating transmissions. Modifying the right balance in CW values
for both master and slave cells is critical to avoid increasing the collision rates
due to excessively low CW values, or excessively delay slave cells if CW is set to
a large value.

Additionally, the proposed algorithm, synchronized with the sleep/wake-up
method, results in reduction in the network’s energy consumption while ensuring
that QoS metrics remain within acceptable thresholds. Lastly, we emphasize
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the significance of EH within the system and highlight the effectiveness of our
proposed algorithm in drastically reducing the solar panel dimension required to
7 cm2.

In the third contribution (see Chapter 5), we highlighted the inadequacy and
inefficiency of the fixed initialization of MAC layer parameters to standard default
values in IoT systems with unpredictable behavior. Consequently, within this
contribution, we proposed a dynamic update for initializing the CW values based
on changes in network conditions, aiming to optimize the network’s performance
and meet the stringent medical-grade QoS requirements.

The results show outstanding performance of cell-based algorithms compared
to node-based ones. In cell-based algorithms, the AP considers the conditions
of all associated nodes when making decisions. Conversely, node-wise algorithms
have the AP making decisions for each associated node individually, regardless of
its state relative to other nodes within the same cell.

Additionally, we demonstrated that the rank-based all-nodes optimization al-
gorithm outperforms other proposed algorithms for applications with high traffic
loads. This superiority arises from the high flexibility of the algorithm, allowing
it to converge to optimal conditions rapidly. Conversely, for low-traffic load ap-
plications (such as ECG and EEG), the rank-based extremum nodes optimization
algorithm performs better than other algorithms.

Furthermore, we illustrated the significance of adjusting the initialization of
CW values as it directly impacts how stations contend for channel access, thereby
influencing collision rates and overall network efficiency. While AIFSN primarily
governs frame priority hierarchy and TXOP regulates sequential frame transmis-
sion after channel contention, their effects may carry different weights compared
to adjustments in CW values. Hence, optimizing AIFSN and TXOP focuses on
enhancing and prioritizing frame transmission within a contended channel. Dy-
namic manipulation of AIFSN and TXOP values revealed that the rank-based
all-nodes algorithm outperforms other propositions for EMR applications. In
contrast, rank-based extremum nodes present optimal outcomes for ECG and
EEG applications. Despite slightly falling short of CW value optimization in ef-
ficiency, TXOP adjustments satisfactorily meet stringent medical QoS requisites,
particularly concerning E2E delay.

Additionally, we underscored that assuming the AP coordination concept in
the proposed algorithms could enhance network performance, though to a lesser
extent than without this concept. The results demonstrated that the rank-based
all-nodes algorithm can reduce the system’s energy consumption by over 25%
for applications with high traffic loads. Moreover, integrating the sleep/wake-up
mode into our proposals indicated a 30% increase in network energy efficiency,
albeit at the expense of slightly higher E2E delay values, while still adhering to
QoS requirements.
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We further explained that deploying the sleep/wake-up method in the pro-
posed algorithm can lead to additional improvements. The obtained optimal
MAC layer parameters significantly enhance network performance, particularly
in energy consumption, surpassing the impact of individual MAC layer param-
eter adjustments. In conclusion, deploying the proposed RL-based optimization
algorithms, aligned with MAC layer parameter fine-tuning, is critical in reducing
panel size (down to 3 cm2) in IoT systems. This marks a crucial stride toward
achieving sustainability in future IoT systems.

6.2 Future Works

Finally, this study provides comprehensive guidance for unresolved issues and
challenging research topics regarding sustainability in the IoT paradigm, specifi-
cally from MAC layer protocols incorporating EH techniques perspective. These
research lines can be divided into the following points.

6.2.1 Integrating Advanced ML Approaches within Wire-
less Communication Technologies

Incorporating advanced ML techniques, such as DRL, into the envisioned opti-
mization framework provides a sophisticated way of predicting complex functions.
Within these techniques, the complexities of the optimization problem can be ef-
fectively addressed, enabling dynamic fine-tuning of a diverse range of MAC and
physical layer parameters. This integration empowers the system to adapt seam-
lessly to the network’s dynamic conditions in real-time, optimizing performance
during each operational window without degrading the functionality of other net-
work processes. As an example, through the utilization of DRL, the proposed
approach controls the learning capabilities of the system, allowing it to adjust and
refine MAC layer parameters autonomously based on evolving environmental fac-
tors. This not only enhances the adaptability of the network but also contributes
to the overall efficiency and responsiveness of the system, aligning it more closely
with the dynamic demands of future wireless communication environments.

While integrating ML approaches in the upcoming generation of cellular net-
works and Wi-Fi has garnered considerable interest, there remains a substantial
opportunity for further enhancements in network performance while concurrently
preserving energy efficiency and moving towards sustainability.
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6.2.2 Enhancing the Collective Optimization of Wi-Fi Fea-
tures

Maximizing the potential of Wi-Fi’s collective features presents a compelling op-
portunity for enhanced performance. In such a context, a central controller is
critical in orchestrating the fine-tuning of MAC layer parameters. This strate-
gic management encompasses a subtle consideration of dynamic shifts occurring
in the physical layer, ranging from data rate variations to antenna orientation
alterations. According to the dynamic changes of the network parameters, the
controller can optimize the overall efficiency of the Wi-Fi network, ensuring seam-
less adaptability to changing conditions. This proactive approach enhances the
network’s stability and contributes to a more reliable and responsive wireless com-
munication environment. As we delve into the intricacies of Wi-Fi optimization,
integrating intelligent control mechanisms becomes instrumental in developing
this ubiquitous technology’s full spectrum of capabilities. Therefore, defining
and developing orchestrators at the MAC layer is challenging and requires more
effort.

It is worth mentioning that in the next generation of cellular networks, orches-
trators play a critical role in coordinating and managing various components to
ensure the efficient operation and optimization of the network, such as resource
allocation, network slicing, load balancing, interference management, and energy
efficiency.

6.2.3 Overseeing and Managing Novel and Adaptable yet
Complex Features of the Next Generation Wi-Fi

Wi-Fi 7 and Beyond indicate a new era in wireless communication, introducing
advanced capabilities to meet the evolving demands of the future. As anticipated
in upcoming IEEE 802.11 updates, several innovative capabilities will enter the
Wi-Fi standard. Among these developments that stand out are multi-link oper-
ation and the potential addition of multi-AP coordination, which will smoothly
enhance the current feature set.

This next wave of Wi-Fi technology builds upon existing features and tries to
enhance them, such as OFDMA, downlink and uplink MU-MIMO, spatial reuse
mechanisms, and channel aggregation. Collectively, these features contribute to
optimizing network efficiency, enhancing data throughput, and reinforcing the
overall performance of Wi-Fi networks. This adaptability will help to revolu-
tionize the management of diverse real-time data streams, enabling more efficient
utilization of available resources. However, these new features may increase the
network’s energy consumption, which may require deploying the power-saving
mode techniques in the next generation Wi-Fi.
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6.2.4 Simultaneous Operation and Collaboration Between
Wi-Fi and 5G and Beyond

Throughout this Ph.D. study, our focus has predominantly centered on a Wi-Fi
scenario. However, in IoT applications, particularly in the context of smart cities,
devices often operate on diverse technologies and protocols, each characterized
by distinct constraints. One of the paramount challenges encountered in hetero-
geneous networks (HetNets) lies in the coexistence of these varied technologies.
The inherent heterogeneity introduces complexities in network structure, leading
to increased energy waste primarily due to interference and a lack of efficient re-
source management. In HetNets, the complicated interplay between different de-
vices exacerbates energy inefficiencies. Given the heterogeneous nature of HetNet
devices, energy efficiency becomes a critical consideration for fostering profitabil-
ity and sustainability. Consequently, implementing energy-saving strategies and
effective power consumption management emerges as imperative in establishing
robust and enduring networks.

Notably, exploring green heterogeneous networking has been the subject of
considerable research. Some studies delve into dynamic optimization at the MAC
layer, exemplified by NOMA, as a means to mitigate energy consumption. Ad-
ditionally, the concept of defining a universal ENO value for the entire network
has been proposed. Despite these efforts, addressing the multifaceted challenges
presented by the heterogeneous nature of HetNet devices remains an ongoing
and intricate research direction, which intensifies in the case of dense HetNet
configuration.

6.2.5 Provisioning Green Connectivity in the Next Gener-
ation of the Wireless Communication Technologies

Information and communication technologies (ICT) that incorporate EH tech-
nologies positively affect sustainability and decrease CO2 footprint while ensuring
clean and affordable energy. Next-generation technologies such as 6G and Wi-Fi8
are among the wireless communication technologies that consider EH integration
a critical enabling factor and are able to promote global sustainability.

Extremely-Enhanced Mobile Broadband (eMBB), Extremely-Reliable and Low-
Latency Communication (URLLC), Extremely-Massive Machine-Type Commu-
nications (mMTC), and Extremely-High Energy Efficient (EHEE) communica-
tion are the theoretical directions that 6G communication is moving towards.
Furthermore, 6G aims to replace millimeter-wave bands, which offer high-speed
communication at a significant energy cost. Furthermore, significant interfer-
ence affect the mix of terrestrial and satellite communications in 6G communica-
tion, increasing the network’s energy usage. To overcome these constraints and
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challenges, 6G connection proposes technologies like Backscatter Communication
(BsC) and wireless power transfer (energy beamforming). In the former scenario,
the wireless nodes will passively receive radio signals from the surrounding en-
vironment, enabling battery-free operation; in the latter scenario, a collection of
high beam antennas is concentrated on transferring the energy through narrow
beams to a particular set of nodes.

The next-generation Wi-Fi introduces advanced features such as multi-AP co-
ordination, distributed multi-link operation, and MAC and PHY layer enhance-
ments. While these advancements may lead to increased energy consumption
within the network, the upcoming amendment brings potential benefits through
passive Wi-Fi. This innovative approach leverages energy-efficient backscatter
communication to reduce the system’s overall energy consumption significantly.
Another notable technique contributing to energy reduction and sustainability
in the next generation of Wi-Fi is the AP power-saving method. This approach
prioritizes efficiency by deactivating the AP interface during prolonged periods of
inactivity. The AP becomes functional and active only when a frame is ready for
transmission. This dynamic strategy optimizes energy usage and aligns with pro-
viding a sustainable and resource-efficient Wi-Fi ecosystem. In this PhD study,
this feature was deployed and evaluated. The evaluations demonstrated that a
considerable amount of energy can be conserved through this method. However,
the power-saving mechanisms for the upcoming amendment are still in their early
stage and require more research and investigation.
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802.11 ac: Enhancements for very high throughput WLANs. In 2011 IEEE 22nd
International Symposium on Personal, Indoor and Mobile Radio Communica-
tions, pages 849–853. IEEE, 2011. 23

[39] IEEE Standards Association and others. IEEE Standard for Information
technology- Telecommunications and information exchange between systems -
Local and metropolitan area networks-Specific requirements - Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications
Amendment 2: Sub 1 GHz License Exempt Operation. IEEE Std 802.11ah-2016
(Amendment to IEEE Std 802.11-2016, as amended by IEEE Std 802.11ai-2016),
pages 1–594, 2017. 24
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